File: | src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp |
Warning: | line 671, column 26 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===// | ||||||
2 | // | ||||||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||||
4 | // See https://llvm.org/LICENSE.txt for license information. | ||||||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||||
6 | // | ||||||
7 | //===----------------------------------------------------------------------===// | ||||||
8 | // | ||||||
9 | // This file implements some loop unrolling utilities for loops with run-time | ||||||
10 | // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time | ||||||
11 | // trip counts. | ||||||
12 | // | ||||||
13 | // The functions in this file are used to generate extra code when the | ||||||
14 | // run-time trip count modulo the unroll factor is not 0. When this is the | ||||||
15 | // case, we need to generate code to execute these 'left over' iterations. | ||||||
16 | // | ||||||
17 | // The current strategy generates an if-then-else sequence prior to the | ||||||
18 | // unrolled loop to execute the 'left over' iterations before or after the | ||||||
19 | // unrolled loop. | ||||||
20 | // | ||||||
21 | //===----------------------------------------------------------------------===// | ||||||
22 | |||||||
23 | #include "llvm/ADT/SmallPtrSet.h" | ||||||
24 | #include "llvm/ADT/Statistic.h" | ||||||
25 | #include "llvm/Analysis/LoopIterator.h" | ||||||
26 | #include "llvm/Analysis/ScalarEvolution.h" | ||||||
27 | #include "llvm/IR/BasicBlock.h" | ||||||
28 | #include "llvm/IR/Dominators.h" | ||||||
29 | #include "llvm/IR/MDBuilder.h" | ||||||
30 | #include "llvm/IR/Metadata.h" | ||||||
31 | #include "llvm/IR/Module.h" | ||||||
32 | #include "llvm/Support/CommandLine.h" | ||||||
33 | #include "llvm/Support/Debug.h" | ||||||
34 | #include "llvm/Support/raw_ostream.h" | ||||||
35 | #include "llvm/Transforms/Utils.h" | ||||||
36 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | ||||||
37 | #include "llvm/Transforms/Utils/Cloning.h" | ||||||
38 | #include "llvm/Transforms/Utils/LoopUtils.h" | ||||||
39 | #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" | ||||||
40 | #include "llvm/Transforms/Utils/UnrollLoop.h" | ||||||
41 | #include <algorithm> | ||||||
42 | |||||||
43 | using namespace llvm; | ||||||
44 | |||||||
45 | #define DEBUG_TYPE"loop-unroll" "loop-unroll" | ||||||
46 | |||||||
47 | STATISTIC(NumRuntimeUnrolled,static llvm::Statistic NumRuntimeUnrolled = {"loop-unroll", "NumRuntimeUnrolled" , "Number of loops unrolled with run-time trip counts"} | ||||||
48 | "Number of loops unrolled with run-time trip counts")static llvm::Statistic NumRuntimeUnrolled = {"loop-unroll", "NumRuntimeUnrolled" , "Number of loops unrolled with run-time trip counts"}; | ||||||
49 | static cl::opt<bool> UnrollRuntimeMultiExit( | ||||||
50 | "unroll-runtime-multi-exit", cl::init(false), cl::Hidden, | ||||||
51 | cl::desc("Allow runtime unrolling for loops with multiple exits, when " | ||||||
52 | "epilog is generated")); | ||||||
53 | static cl::opt<bool> UnrollRuntimeOtherExitPredictable( | ||||||
54 | "unroll-runtime-other-exit-predictable", cl::init(false), cl::Hidden, | ||||||
55 | cl::desc("Assume the non latch exit block to be predictable")); | ||||||
56 | |||||||
57 | /// Connect the unrolling prolog code to the original loop. | ||||||
58 | /// The unrolling prolog code contains code to execute the | ||||||
59 | /// 'extra' iterations if the run-time trip count modulo the | ||||||
60 | /// unroll count is non-zero. | ||||||
61 | /// | ||||||
62 | /// This function performs the following: | ||||||
63 | /// - Create PHI nodes at prolog end block to combine values | ||||||
64 | /// that exit the prolog code and jump around the prolog. | ||||||
65 | /// - Add a PHI operand to a PHI node at the loop exit block | ||||||
66 | /// for values that exit the prolog and go around the loop. | ||||||
67 | /// - Branch around the original loop if the trip count is less | ||||||
68 | /// than the unroll factor. | ||||||
69 | /// | ||||||
70 | static void ConnectProlog(Loop *L, Value *BECount, unsigned Count, | ||||||
71 | BasicBlock *PrologExit, | ||||||
72 | BasicBlock *OriginalLoopLatchExit, | ||||||
73 | BasicBlock *PreHeader, BasicBlock *NewPreHeader, | ||||||
74 | ValueToValueMapTy &VMap, DominatorTree *DT, | ||||||
75 | LoopInfo *LI, bool PreserveLCSSA) { | ||||||
76 | // Loop structure should be the following: | ||||||
77 | // Preheader | ||||||
78 | // PrologHeader | ||||||
79 | // ... | ||||||
80 | // PrologLatch | ||||||
81 | // PrologExit | ||||||
82 | // NewPreheader | ||||||
83 | // Header | ||||||
84 | // ... | ||||||
85 | // Latch | ||||||
86 | // LatchExit | ||||||
87 | BasicBlock *Latch = L->getLoopLatch(); | ||||||
88 | assert(Latch && "Loop must have a latch")((void)0); | ||||||
89 | BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]); | ||||||
90 | |||||||
91 | // Create a PHI node for each outgoing value from the original loop | ||||||
92 | // (which means it is an outgoing value from the prolog code too). | ||||||
93 | // The new PHI node is inserted in the prolog end basic block. | ||||||
94 | // The new PHI node value is added as an operand of a PHI node in either | ||||||
95 | // the loop header or the loop exit block. | ||||||
96 | for (BasicBlock *Succ : successors(Latch)) { | ||||||
97 | for (PHINode &PN : Succ->phis()) { | ||||||
98 | // Add a new PHI node to the prolog end block and add the | ||||||
99 | // appropriate incoming values. | ||||||
100 | // TODO: This code assumes that the PrologExit (or the LatchExit block for | ||||||
101 | // prolog loop) contains only one predecessor from the loop, i.e. the | ||||||
102 | // PrologLatch. When supporting multiple-exiting block loops, we can have | ||||||
103 | // two or more blocks that have the LatchExit as the target in the | ||||||
104 | // original loop. | ||||||
105 | PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr", | ||||||
106 | PrologExit->getFirstNonPHI()); | ||||||
107 | // Adding a value to the new PHI node from the original loop preheader. | ||||||
108 | // This is the value that skips all the prolog code. | ||||||
109 | if (L->contains(&PN)) { | ||||||
110 | // Succ is loop header. | ||||||
111 | NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), | ||||||
112 | PreHeader); | ||||||
113 | } else { | ||||||
114 | // Succ is LatchExit. | ||||||
115 | NewPN->addIncoming(UndefValue::get(PN.getType()), PreHeader); | ||||||
116 | } | ||||||
117 | |||||||
118 | Value *V = PN.getIncomingValueForBlock(Latch); | ||||||
119 | if (Instruction *I = dyn_cast<Instruction>(V)) { | ||||||
120 | if (L->contains(I)) { | ||||||
121 | V = VMap.lookup(I); | ||||||
122 | } | ||||||
123 | } | ||||||
124 | // Adding a value to the new PHI node from the last prolog block | ||||||
125 | // that was created. | ||||||
126 | NewPN->addIncoming(V, PrologLatch); | ||||||
127 | |||||||
128 | // Update the existing PHI node operand with the value from the | ||||||
129 | // new PHI node. How this is done depends on if the existing | ||||||
130 | // PHI node is in the original loop block, or the exit block. | ||||||
131 | if (L->contains(&PN)) | ||||||
132 | PN.setIncomingValueForBlock(NewPreHeader, NewPN); | ||||||
133 | else | ||||||
134 | PN.addIncoming(NewPN, PrologExit); | ||||||
135 | } | ||||||
136 | } | ||||||
137 | |||||||
138 | // Make sure that created prolog loop is in simplified form | ||||||
139 | SmallVector<BasicBlock *, 4> PrologExitPreds; | ||||||
140 | Loop *PrologLoop = LI->getLoopFor(PrologLatch); | ||||||
141 | if (PrologLoop) { | ||||||
142 | for (BasicBlock *PredBB : predecessors(PrologExit)) | ||||||
143 | if (PrologLoop->contains(PredBB)) | ||||||
144 | PrologExitPreds.push_back(PredBB); | ||||||
145 | |||||||
146 | SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI, | ||||||
147 | nullptr, PreserveLCSSA); | ||||||
148 | } | ||||||
149 | |||||||
150 | // Create a branch around the original loop, which is taken if there are no | ||||||
151 | // iterations remaining to be executed after running the prologue. | ||||||
152 | Instruction *InsertPt = PrologExit->getTerminator(); | ||||||
153 | IRBuilder<> B(InsertPt); | ||||||
154 | |||||||
155 | assert(Count != 0 && "nonsensical Count!")((void)0); | ||||||
156 | |||||||
157 | // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1) | ||||||
158 | // This means %xtraiter is (BECount + 1) and all of the iterations of this | ||||||
159 | // loop were executed by the prologue. Note that if BECount <u (Count - 1) | ||||||
160 | // then (BECount + 1) cannot unsigned-overflow. | ||||||
161 | Value *BrLoopExit = | ||||||
162 | B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1)); | ||||||
163 | // Split the exit to maintain loop canonicalization guarantees | ||||||
164 | SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit)); | ||||||
165 | SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI, | ||||||
166 | nullptr, PreserveLCSSA); | ||||||
167 | // Add the branch to the exit block (around the unrolled loop) | ||||||
168 | B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader); | ||||||
169 | InsertPt->eraseFromParent(); | ||||||
170 | if (DT) | ||||||
171 | DT->changeImmediateDominator(OriginalLoopLatchExit, PrologExit); | ||||||
172 | } | ||||||
173 | |||||||
174 | /// Connect the unrolling epilog code to the original loop. | ||||||
175 | /// The unrolling epilog code contains code to execute the | ||||||
176 | /// 'extra' iterations if the run-time trip count modulo the | ||||||
177 | /// unroll count is non-zero. | ||||||
178 | /// | ||||||
179 | /// This function performs the following: | ||||||
180 | /// - Update PHI nodes at the unrolling loop exit and epilog loop exit | ||||||
181 | /// - Create PHI nodes at the unrolling loop exit to combine | ||||||
182 | /// values that exit the unrolling loop code and jump around it. | ||||||
183 | /// - Update PHI operands in the epilog loop by the new PHI nodes | ||||||
184 | /// - Branch around the epilog loop if extra iters (ModVal) is zero. | ||||||
185 | /// | ||||||
186 | static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit, | ||||||
187 | BasicBlock *Exit, BasicBlock *PreHeader, | ||||||
188 | BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader, | ||||||
189 | ValueToValueMapTy &VMap, DominatorTree *DT, | ||||||
190 | LoopInfo *LI, bool PreserveLCSSA) { | ||||||
191 | BasicBlock *Latch = L->getLoopLatch(); | ||||||
192 | assert(Latch && "Loop must have a latch")((void)0); | ||||||
193 | BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]); | ||||||
194 | |||||||
195 | // Loop structure should be the following: | ||||||
196 | // | ||||||
197 | // PreHeader | ||||||
198 | // NewPreHeader | ||||||
199 | // Header | ||||||
200 | // ... | ||||||
201 | // Latch | ||||||
202 | // NewExit (PN) | ||||||
203 | // EpilogPreHeader | ||||||
204 | // EpilogHeader | ||||||
205 | // ... | ||||||
206 | // EpilogLatch | ||||||
207 | // Exit (EpilogPN) | ||||||
208 | |||||||
209 | // Update PHI nodes at NewExit and Exit. | ||||||
210 | for (PHINode &PN : NewExit->phis()) { | ||||||
211 | // PN should be used in another PHI located in Exit block as | ||||||
212 | // Exit was split by SplitBlockPredecessors into Exit and NewExit | ||||||
213 | // Basicaly it should look like: | ||||||
214 | // NewExit: | ||||||
215 | // PN = PHI [I, Latch] | ||||||
216 | // ... | ||||||
217 | // Exit: | ||||||
218 | // EpilogPN = PHI [PN, EpilogPreHeader] | ||||||
219 | // | ||||||
220 | // There is EpilogPreHeader incoming block instead of NewExit as | ||||||
221 | // NewExit was spilt 1 more time to get EpilogPreHeader. | ||||||
222 | assert(PN.hasOneUse() && "The phi should have 1 use")((void)0); | ||||||
223 | PHINode *EpilogPN = cast<PHINode>(PN.use_begin()->getUser()); | ||||||
224 | assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block")((void)0); | ||||||
225 | |||||||
226 | // Add incoming PreHeader from branch around the Loop | ||||||
227 | PN.addIncoming(UndefValue::get(PN.getType()), PreHeader); | ||||||
228 | |||||||
229 | Value *V = PN.getIncomingValueForBlock(Latch); | ||||||
230 | Instruction *I = dyn_cast<Instruction>(V); | ||||||
231 | if (I && L->contains(I)) | ||||||
232 | // If value comes from an instruction in the loop add VMap value. | ||||||
233 | V = VMap.lookup(I); | ||||||
234 | // For the instruction out of the loop, constant or undefined value | ||||||
235 | // insert value itself. | ||||||
236 | EpilogPN->addIncoming(V, EpilogLatch); | ||||||
237 | |||||||
238 | assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 &&((void)0) | ||||||
239 | "EpilogPN should have EpilogPreHeader incoming block")((void)0); | ||||||
240 | // Change EpilogPreHeader incoming block to NewExit. | ||||||
241 | EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader), | ||||||
242 | NewExit); | ||||||
243 | // Now PHIs should look like: | ||||||
244 | // NewExit: | ||||||
245 | // PN = PHI [I, Latch], [undef, PreHeader] | ||||||
246 | // ... | ||||||
247 | // Exit: | ||||||
248 | // EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch] | ||||||
249 | } | ||||||
250 | |||||||
251 | // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader). | ||||||
252 | // Update corresponding PHI nodes in epilog loop. | ||||||
253 | for (BasicBlock *Succ : successors(Latch)) { | ||||||
254 | // Skip this as we already updated phis in exit blocks. | ||||||
255 | if (!L->contains(Succ)) | ||||||
256 | continue; | ||||||
257 | for (PHINode &PN : Succ->phis()) { | ||||||
258 | // Add new PHI nodes to the loop exit block and update epilog | ||||||
259 | // PHIs with the new PHI values. | ||||||
260 | PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr", | ||||||
261 | NewExit->getFirstNonPHI()); | ||||||
262 | // Adding a value to the new PHI node from the unrolling loop preheader. | ||||||
263 | NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), PreHeader); | ||||||
264 | // Adding a value to the new PHI node from the unrolling loop latch. | ||||||
265 | NewPN->addIncoming(PN.getIncomingValueForBlock(Latch), Latch); | ||||||
266 | |||||||
267 | // Update the existing PHI node operand with the value from the new PHI | ||||||
268 | // node. Corresponding instruction in epilog loop should be PHI. | ||||||
269 | PHINode *VPN = cast<PHINode>(VMap[&PN]); | ||||||
270 | VPN->setIncomingValueForBlock(EpilogPreHeader, NewPN); | ||||||
271 | } | ||||||
272 | } | ||||||
273 | |||||||
274 | Instruction *InsertPt = NewExit->getTerminator(); | ||||||
275 | IRBuilder<> B(InsertPt); | ||||||
276 | Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod"); | ||||||
277 | assert(Exit && "Loop must have a single exit block only")((void)0); | ||||||
278 | // Split the epilogue exit to maintain loop canonicalization guarantees | ||||||
279 | SmallVector<BasicBlock*, 4> Preds(predecessors(Exit)); | ||||||
280 | SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, nullptr, | ||||||
281 | PreserveLCSSA); | ||||||
282 | // Add the branch to the exit block (around the unrolling loop) | ||||||
283 | B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit); | ||||||
284 | InsertPt->eraseFromParent(); | ||||||
285 | if (DT) | ||||||
286 | DT->changeImmediateDominator(Exit, NewExit); | ||||||
287 | |||||||
288 | // Split the main loop exit to maintain canonicalization guarantees. | ||||||
289 | SmallVector<BasicBlock*, 4> NewExitPreds{Latch}; | ||||||
290 | SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI, nullptr, | ||||||
291 | PreserveLCSSA); | ||||||
292 | } | ||||||
293 | |||||||
294 | /// Create a clone of the blocks in a loop and connect them together. | ||||||
295 | /// If CreateRemainderLoop is false, loop structure will not be cloned, | ||||||
296 | /// otherwise a new loop will be created including all cloned blocks, and the | ||||||
297 | /// iterator of it switches to count NewIter down to 0. | ||||||
298 | /// The cloned blocks should be inserted between InsertTop and InsertBot. | ||||||
299 | /// If loop structure is cloned InsertTop should be new preheader, InsertBot | ||||||
300 | /// new loop exit. | ||||||
301 | /// Return the new cloned loop that is created when CreateRemainderLoop is true. | ||||||
302 | static Loop * | ||||||
303 | CloneLoopBlocks(Loop *L, Value *NewIter, const bool CreateRemainderLoop, | ||||||
304 | const bool UseEpilogRemainder, const bool UnrollRemainder, | ||||||
305 | BasicBlock *InsertTop, | ||||||
306 | BasicBlock *InsertBot, BasicBlock *Preheader, | ||||||
307 | std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks, | ||||||
308 | ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) { | ||||||
309 | StringRef suffix = UseEpilogRemainder ? "epil" : "prol"; | ||||||
310 | BasicBlock *Header = L->getHeader(); | ||||||
311 | BasicBlock *Latch = L->getLoopLatch(); | ||||||
312 | Function *F = Header->getParent(); | ||||||
313 | LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); | ||||||
314 | LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); | ||||||
315 | Loop *ParentLoop = L->getParentLoop(); | ||||||
316 | NewLoopsMap NewLoops; | ||||||
317 | NewLoops[ParentLoop] = ParentLoop; | ||||||
318 | if (!CreateRemainderLoop) | ||||||
319 | NewLoops[L] = ParentLoop; | ||||||
320 | |||||||
321 | // For each block in the original loop, create a new copy, | ||||||
322 | // and update the value map with the newly created values. | ||||||
323 | for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { | ||||||
324 | BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F); | ||||||
325 | NewBlocks.push_back(NewBB); | ||||||
326 | |||||||
327 | // If we're unrolling the outermost loop, there's no remainder loop, | ||||||
328 | // and this block isn't in a nested loop, then the new block is not | ||||||
329 | // in any loop. Otherwise, add it to loopinfo. | ||||||
330 | if (CreateRemainderLoop || LI->getLoopFor(*BB) != L || ParentLoop) | ||||||
331 | addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops); | ||||||
332 | |||||||
333 | VMap[*BB] = NewBB; | ||||||
334 | if (Header == *BB) { | ||||||
335 | // For the first block, add a CFG connection to this newly | ||||||
336 | // created block. | ||||||
337 | InsertTop->getTerminator()->setSuccessor(0, NewBB); | ||||||
338 | } | ||||||
339 | |||||||
340 | if (DT) { | ||||||
341 | if (Header == *BB) { | ||||||
342 | // The header is dominated by the preheader. | ||||||
343 | DT->addNewBlock(NewBB, InsertTop); | ||||||
344 | } else { | ||||||
345 | // Copy information from original loop to unrolled loop. | ||||||
346 | BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock(); | ||||||
347 | DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB])); | ||||||
348 | } | ||||||
349 | } | ||||||
350 | |||||||
351 | if (Latch == *BB) { | ||||||
352 | // For the last block, if CreateRemainderLoop is false, create a direct | ||||||
353 | // jump to InsertBot. If not, create a loop back to cloned head. | ||||||
354 | VMap.erase((*BB)->getTerminator()); | ||||||
355 | BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]); | ||||||
356 | BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator()); | ||||||
357 | IRBuilder<> Builder(LatchBR); | ||||||
358 | if (!CreateRemainderLoop) { | ||||||
359 | Builder.CreateBr(InsertBot); | ||||||
360 | } else { | ||||||
361 | PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, | ||||||
362 | suffix + ".iter", | ||||||
363 | FirstLoopBB->getFirstNonPHI()); | ||||||
364 | Value *IdxSub = | ||||||
365 | Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), | ||||||
366 | NewIdx->getName() + ".sub"); | ||||||
367 | Value *IdxCmp = | ||||||
368 | Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp"); | ||||||
369 | Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot); | ||||||
370 | NewIdx->addIncoming(NewIter, InsertTop); | ||||||
371 | NewIdx->addIncoming(IdxSub, NewBB); | ||||||
372 | } | ||||||
373 | LatchBR->eraseFromParent(); | ||||||
374 | } | ||||||
375 | } | ||||||
376 | |||||||
377 | // Change the incoming values to the ones defined in the preheader or | ||||||
378 | // cloned loop. | ||||||
379 | for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { | ||||||
380 | PHINode *NewPHI = cast<PHINode>(VMap[&*I]); | ||||||
381 | if (!CreateRemainderLoop) { | ||||||
382 | if (UseEpilogRemainder) { | ||||||
383 | unsigned idx = NewPHI->getBasicBlockIndex(Preheader); | ||||||
384 | NewPHI->setIncomingBlock(idx, InsertTop); | ||||||
385 | NewPHI->removeIncomingValue(Latch, false); | ||||||
386 | } else { | ||||||
387 | VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader); | ||||||
388 | cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI); | ||||||
389 | } | ||||||
390 | } else { | ||||||
391 | unsigned idx = NewPHI->getBasicBlockIndex(Preheader); | ||||||
392 | NewPHI->setIncomingBlock(idx, InsertTop); | ||||||
393 | BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); | ||||||
394 | idx = NewPHI->getBasicBlockIndex(Latch); | ||||||
395 | Value *InVal = NewPHI->getIncomingValue(idx); | ||||||
396 | NewPHI->setIncomingBlock(idx, NewLatch); | ||||||
397 | if (Value *V = VMap.lookup(InVal)) | ||||||
398 | NewPHI->setIncomingValue(idx, V); | ||||||
399 | } | ||||||
400 | } | ||||||
401 | if (CreateRemainderLoop) { | ||||||
402 | Loop *NewLoop = NewLoops[L]; | ||||||
403 | assert(NewLoop && "L should have been cloned")((void)0); | ||||||
404 | MDNode *LoopID = NewLoop->getLoopID(); | ||||||
405 | |||||||
406 | // Only add loop metadata if the loop is not going to be completely | ||||||
407 | // unrolled. | ||||||
408 | if (UnrollRemainder) | ||||||
409 | return NewLoop; | ||||||
410 | |||||||
411 | Optional<MDNode *> NewLoopID = makeFollowupLoopID( | ||||||
412 | LoopID, {LLVMLoopUnrollFollowupAll, LLVMLoopUnrollFollowupRemainder}); | ||||||
413 | if (NewLoopID.hasValue()) { | ||||||
414 | NewLoop->setLoopID(NewLoopID.getValue()); | ||||||
415 | |||||||
416 | // Do not setLoopAlreadyUnrolled if loop attributes have been defined | ||||||
417 | // explicitly. | ||||||
418 | return NewLoop; | ||||||
419 | } | ||||||
420 | |||||||
421 | // Add unroll disable metadata to disable future unrolling for this loop. | ||||||
422 | NewLoop->setLoopAlreadyUnrolled(); | ||||||
423 | return NewLoop; | ||||||
424 | } | ||||||
425 | else | ||||||
426 | return nullptr; | ||||||
427 | } | ||||||
428 | |||||||
429 | /// Returns true if we can safely unroll a multi-exit/exiting loop. OtherExits | ||||||
430 | /// is populated with all the loop exit blocks other than the LatchExit block. | ||||||
431 | static bool canSafelyUnrollMultiExitLoop(Loop *L, BasicBlock *LatchExit, | ||||||
432 | bool PreserveLCSSA, | ||||||
433 | bool UseEpilogRemainder) { | ||||||
434 | |||||||
435 | // We currently have some correctness constrains in unrolling a multi-exit | ||||||
436 | // loop. Check for these below. | ||||||
437 | |||||||
438 | // We rely on LCSSA form being preserved when the exit blocks are transformed. | ||||||
439 | if (!PreserveLCSSA) | ||||||
440 | return false; | ||||||
441 | |||||||
442 | // TODO: Support multiple exiting blocks jumping to the `LatchExit` when | ||||||
443 | // UnrollRuntimeMultiExit is true. This will need updating the logic in | ||||||
444 | // connectEpilog/connectProlog. | ||||||
445 | if (!LatchExit->getSinglePredecessor()) { | ||||||
446 | LLVM_DEBUG(do { } while (false) | ||||||
447 | dbgs() << "Bailout for multi-exit handling when latch exit has >1 "do { } while (false) | ||||||
448 | "predecessor.\n")do { } while (false); | ||||||
449 | return false; | ||||||
450 | } | ||||||
451 | // FIXME: We bail out of multi-exit unrolling when epilog loop is generated | ||||||
452 | // and L is an inner loop. This is because in presence of multiple exits, the | ||||||
453 | // outer loop is incorrect: we do not add the EpilogPreheader and exit to the | ||||||
454 | // outer loop. This is automatically handled in the prolog case, so we do not | ||||||
455 | // have that bug in prolog generation. | ||||||
456 | if (UseEpilogRemainder && L->getParentLoop()) | ||||||
457 | return false; | ||||||
458 | |||||||
459 | // All constraints have been satisfied. | ||||||
460 | return true; | ||||||
461 | } | ||||||
462 | |||||||
463 | /// Returns true if we can profitably unroll the multi-exit loop L. Currently, | ||||||
464 | /// we return true only if UnrollRuntimeMultiExit is set to true. | ||||||
465 | static bool canProfitablyUnrollMultiExitLoop( | ||||||
466 | Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit, | ||||||
467 | bool PreserveLCSSA, bool UseEpilogRemainder) { | ||||||
468 | |||||||
469 | #if !defined(NDEBUG1) | ||||||
470 | assert(canSafelyUnrollMultiExitLoop(L, LatchExit, PreserveLCSSA,((void)0) | ||||||
471 | UseEpilogRemainder) &&((void)0) | ||||||
472 | "Should be safe to unroll before checking profitability!")((void)0); | ||||||
473 | #endif | ||||||
474 | |||||||
475 | // Priority goes to UnrollRuntimeMultiExit if it's supplied. | ||||||
476 | if (UnrollRuntimeMultiExit.getNumOccurrences()) | ||||||
477 | return UnrollRuntimeMultiExit; | ||||||
478 | |||||||
479 | // The main pain point with multi-exit loop unrolling is that once unrolled, | ||||||
480 | // we will not be able to merge all blocks into a straight line code. | ||||||
481 | // There are branches within the unrolled loop that go to the OtherExits. | ||||||
482 | // The second point is the increase in code size, but this is true | ||||||
483 | // irrespective of multiple exits. | ||||||
484 | |||||||
485 | // Note: Both the heuristics below are coarse grained. We are essentially | ||||||
486 | // enabling unrolling of loops that have a single side exit other than the | ||||||
487 | // normal LatchExit (i.e. exiting into a deoptimize block). | ||||||
488 | // The heuristics considered are: | ||||||
489 | // 1. low number of branches in the unrolled version. | ||||||
490 | // 2. high predictability of these extra branches. | ||||||
491 | // We avoid unrolling loops that have more than two exiting blocks. This | ||||||
492 | // limits the total number of branches in the unrolled loop to be atmost | ||||||
493 | // the unroll factor (since one of the exiting blocks is the latch block). | ||||||
494 | SmallVector<BasicBlock*, 4> ExitingBlocks; | ||||||
495 | L->getExitingBlocks(ExitingBlocks); | ||||||
496 | if (ExitingBlocks.size() > 2) | ||||||
497 | return false; | ||||||
498 | |||||||
499 | // Allow unrolling of loops with no non latch exit blocks. | ||||||
500 | if (OtherExits.size() == 0) | ||||||
501 | return true; | ||||||
502 | |||||||
503 | // The second heuristic is that L has one exit other than the latchexit and | ||||||
504 | // that exit is a deoptimize block. We know that deoptimize blocks are rarely | ||||||
505 | // taken, which also implies the branch leading to the deoptimize block is | ||||||
506 | // highly predictable. When UnrollRuntimeOtherExitPredictable is specified, we | ||||||
507 | // assume the other exit branch is predictable even if it has no deoptimize | ||||||
508 | // call. | ||||||
509 | return (OtherExits.size() == 1 && | ||||||
510 | (UnrollRuntimeOtherExitPredictable || | ||||||
511 | OtherExits[0]->getTerminatingDeoptimizeCall())); | ||||||
512 | // TODO: These can be fine-tuned further to consider code size or deopt states | ||||||
513 | // that are captured by the deoptimize exit block. | ||||||
514 | // Also, we can extend this to support more cases, if we actually | ||||||
515 | // know of kinds of multiexit loops that would benefit from unrolling. | ||||||
516 | } | ||||||
517 | |||||||
518 | // Assign the maximum possible trip count as the back edge weight for the | ||||||
519 | // remainder loop if the original loop comes with a branch weight. | ||||||
520 | static void updateLatchBranchWeightsForRemainderLoop(Loop *OrigLoop, | ||||||
521 | Loop *RemainderLoop, | ||||||
522 | uint64_t UnrollFactor) { | ||||||
523 | uint64_t TrueWeight, FalseWeight; | ||||||
524 | BranchInst *LatchBR = | ||||||
525 | cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); | ||||||
526 | if (LatchBR->extractProfMetadata(TrueWeight, FalseWeight)) { | ||||||
527 | uint64_t ExitWeight = LatchBR->getSuccessor(0) == OrigLoop->getHeader() | ||||||
528 | ? FalseWeight | ||||||
529 | : TrueWeight; | ||||||
530 | assert(UnrollFactor > 1)((void)0); | ||||||
531 | uint64_t BackEdgeWeight = (UnrollFactor - 1) * ExitWeight; | ||||||
532 | BasicBlock *Header = RemainderLoop->getHeader(); | ||||||
533 | BasicBlock *Latch = RemainderLoop->getLoopLatch(); | ||||||
534 | auto *RemainderLatchBR = cast<BranchInst>(Latch->getTerminator()); | ||||||
535 | unsigned HeaderIdx = (RemainderLatchBR->getSuccessor(0) == Header ? 0 : 1); | ||||||
536 | MDBuilder MDB(RemainderLatchBR->getContext()); | ||||||
537 | MDNode *WeightNode = | ||||||
538 | HeaderIdx ? MDB.createBranchWeights(ExitWeight, BackEdgeWeight) | ||||||
539 | : MDB.createBranchWeights(BackEdgeWeight, ExitWeight); | ||||||
540 | RemainderLatchBR->setMetadata(LLVMContext::MD_prof, WeightNode); | ||||||
541 | } | ||||||
542 | } | ||||||
543 | |||||||
544 | /// Insert code in the prolog/epilog code when unrolling a loop with a | ||||||
545 | /// run-time trip-count. | ||||||
546 | /// | ||||||
547 | /// This method assumes that the loop unroll factor is total number | ||||||
548 | /// of loop bodies in the loop after unrolling. (Some folks refer | ||||||
549 | /// to the unroll factor as the number of *extra* copies added). | ||||||
550 | /// We assume also that the loop unroll factor is a power-of-two. So, after | ||||||
551 | /// unrolling the loop, the number of loop bodies executed is 2, | ||||||
552 | /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch | ||||||
553 | /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for | ||||||
554 | /// the switch instruction is generated. | ||||||
555 | /// | ||||||
556 | /// ***Prolog case*** | ||||||
557 | /// extraiters = tripcount % loopfactor | ||||||
558 | /// if (extraiters == 0) jump Loop: | ||||||
559 | /// else jump Prol: | ||||||
560 | /// Prol: LoopBody; | ||||||
561 | /// extraiters -= 1 // Omitted if unroll factor is 2. | ||||||
562 | /// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2. | ||||||
563 | /// if (tripcount < loopfactor) jump End: | ||||||
564 | /// Loop: | ||||||
565 | /// ... | ||||||
566 | /// End: | ||||||
567 | /// | ||||||
568 | /// ***Epilog case*** | ||||||
569 | /// extraiters = tripcount % loopfactor | ||||||
570 | /// if (tripcount < loopfactor) jump LoopExit: | ||||||
571 | /// unroll_iters = tripcount - extraiters | ||||||
572 | /// Loop: LoopBody; (executes unroll_iter times); | ||||||
573 | /// unroll_iter -= 1 | ||||||
574 | /// if (unroll_iter != 0) jump Loop: | ||||||
575 | /// LoopExit: | ||||||
576 | /// if (extraiters == 0) jump EpilExit: | ||||||
577 | /// Epil: LoopBody; (executes extraiters times) | ||||||
578 | /// extraiters -= 1 // Omitted if unroll factor is 2. | ||||||
579 | /// if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2. | ||||||
580 | /// EpilExit: | ||||||
581 | |||||||
582 | bool llvm::UnrollRuntimeLoopRemainder( | ||||||
583 | Loop *L, unsigned Count, bool AllowExpensiveTripCount, | ||||||
584 | bool UseEpilogRemainder, bool UnrollRemainder, bool ForgetAllSCEV, | ||||||
585 | LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, | ||||||
586 | const TargetTransformInfo *TTI, bool PreserveLCSSA, Loop **ResultLoop) { | ||||||
587 | LLVM_DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n")do { } while (false); | ||||||
| |||||||
588 | LLVM_DEBUG(L->dump())do { } while (false); | ||||||
589 | LLVM_DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n"do { } while (false) | ||||||
590 | : dbgs() << "Using prolog remainder.\n")do { } while (false); | ||||||
591 | |||||||
592 | // Make sure the loop is in canonical form. | ||||||
593 | if (!L->isLoopSimplifyForm()) { | ||||||
594 | LLVM_DEBUG(dbgs() << "Not in simplify form!\n")do { } while (false); | ||||||
595 | return false; | ||||||
596 | } | ||||||
597 | |||||||
598 | // Guaranteed by LoopSimplifyForm. | ||||||
599 | BasicBlock *Latch = L->getLoopLatch(); | ||||||
600 | BasicBlock *Header = L->getHeader(); | ||||||
601 | |||||||
602 | BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); | ||||||
603 | |||||||
604 | if (!LatchBR
| ||||||
605 | // The loop-rotate pass can be helpful to avoid this in many cases. | ||||||
606 | LLVM_DEBUG(do { } while (false) | ||||||
607 | dbgs()do { } while (false) | ||||||
608 | << "Loop latch not terminated by a conditional branch.\n")do { } while (false); | ||||||
609 | return false; | ||||||
610 | } | ||||||
611 | |||||||
612 | unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0; | ||||||
613 | BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex); | ||||||
614 | |||||||
615 | if (L->contains(LatchExit)) { | ||||||
616 | // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the | ||||||
617 | // targets of the Latch be an exit block out of the loop. | ||||||
618 | LLVM_DEBUG(do { } while (false) | ||||||
619 | dbgs()do { } while (false) | ||||||
620 | << "One of the loop latch successors must be the exit block.\n")do { } while (false); | ||||||
621 | return false; | ||||||
622 | } | ||||||
623 | |||||||
624 | // These are exit blocks other than the target of the latch exiting block. | ||||||
625 | SmallVector<BasicBlock *, 4> OtherExits; | ||||||
626 | L->getUniqueNonLatchExitBlocks(OtherExits); | ||||||
627 | bool isMultiExitUnrollingEnabled = | ||||||
628 | canSafelyUnrollMultiExitLoop(L, LatchExit, PreserveLCSSA, | ||||||
629 | UseEpilogRemainder) && | ||||||
630 | canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA, | ||||||
631 | UseEpilogRemainder); | ||||||
632 | // Support only single exit and exiting block unless multi-exit loop unrolling is enabled. | ||||||
633 | if (!isMultiExitUnrollingEnabled
| ||||||
634 | (!L->getExitingBlock() || OtherExits.size())) { | ||||||
635 | LLVM_DEBUG(do { } while (false) | ||||||
636 | dbgs()do { } while (false) | ||||||
637 | << "Multiple exit/exiting blocks in loop and multi-exit unrolling not "do { } while (false) | ||||||
638 | "enabled!\n")do { } while (false); | ||||||
639 | return false; | ||||||
640 | } | ||||||
641 | // Use Scalar Evolution to compute the trip count. This allows more loops to | ||||||
642 | // be unrolled than relying on induction var simplification. | ||||||
643 | if (!SE) | ||||||
644 | return false; | ||||||
645 | |||||||
646 | // Only unroll loops with a computable trip count, and the trip count needs | ||||||
647 | // to be an int value (allowing a pointer type is a TODO item). | ||||||
648 | // We calculate the backedge count by using getExitCount on the Latch block, | ||||||
649 | // which is proven to be the only exiting block in this loop. This is same as | ||||||
650 | // calculating getBackedgeTakenCount on the loop (which computes SCEV for all | ||||||
651 | // exiting blocks). | ||||||
652 | const SCEV *BECountSC = SE->getExitCount(L, Latch); | ||||||
653 | if (isa<SCEVCouldNotCompute>(BECountSC) || | ||||||
654 | !BECountSC->getType()->isIntegerTy()) { | ||||||
655 | LLVM_DEBUG(dbgs() << "Could not compute exit block SCEV\n")do { } while (false); | ||||||
656 | return false; | ||||||
657 | } | ||||||
658 | |||||||
659 | unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth(); | ||||||
660 | |||||||
661 | // Add 1 since the backedge count doesn't include the first loop iteration. | ||||||
662 | const SCEV *TripCountSC = | ||||||
663 | SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1)); | ||||||
664 | if (isa<SCEVCouldNotCompute>(TripCountSC)) { | ||||||
665 | LLVM_DEBUG(dbgs() << "Could not compute trip count SCEV.\n")do { } while (false); | ||||||
666 | return false; | ||||||
667 | } | ||||||
668 | |||||||
669 | BasicBlock *PreHeader = L->getLoopPreheader(); | ||||||
670 | BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); | ||||||
671 | const DataLayout &DL = Header->getModule()->getDataLayout(); | ||||||
| |||||||
672 | SCEVExpander Expander(*SE, DL, "loop-unroll"); | ||||||
673 | if (!AllowExpensiveTripCount && | ||||||
674 | Expander.isHighCostExpansion(TripCountSC, L, SCEVCheapExpansionBudget, | ||||||
675 | TTI, PreHeaderBR)) { | ||||||
676 | LLVM_DEBUG(dbgs() << "High cost for expanding trip count scev!\n")do { } while (false); | ||||||
677 | return false; | ||||||
678 | } | ||||||
679 | |||||||
680 | // This constraint lets us deal with an overflowing trip count easily; see the | ||||||
681 | // comment on ModVal below. | ||||||
682 | if (Log2_32(Count) > BEWidth) { | ||||||
683 | LLVM_DEBUG(do { } while (false) | ||||||
684 | dbgs()do { } while (false) | ||||||
685 | << "Count failed constraint on overflow trip count calculation.\n")do { } while (false); | ||||||
686 | return false; | ||||||
687 | } | ||||||
688 | |||||||
689 | // Loop structure is the following: | ||||||
690 | // | ||||||
691 | // PreHeader | ||||||
692 | // Header | ||||||
693 | // ... | ||||||
694 | // Latch | ||||||
695 | // LatchExit | ||||||
696 | |||||||
697 | BasicBlock *NewPreHeader; | ||||||
698 | BasicBlock *NewExit = nullptr; | ||||||
699 | BasicBlock *PrologExit = nullptr; | ||||||
700 | BasicBlock *EpilogPreHeader = nullptr; | ||||||
701 | BasicBlock *PrologPreHeader = nullptr; | ||||||
702 | |||||||
703 | if (UseEpilogRemainder) { | ||||||
704 | // If epilog remainder | ||||||
705 | // Split PreHeader to insert a branch around loop for unrolling. | ||||||
706 | NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI); | ||||||
707 | NewPreHeader->setName(PreHeader->getName() + ".new"); | ||||||
708 | // Split LatchExit to create phi nodes from branch above. | ||||||
709 | SmallVector<BasicBlock*, 4> Preds(predecessors(LatchExit)); | ||||||
710 | NewExit = SplitBlockPredecessors(LatchExit, Preds, ".unr-lcssa", DT, LI, | ||||||
711 | nullptr, PreserveLCSSA); | ||||||
712 | // NewExit gets its DebugLoc from LatchExit, which is not part of the | ||||||
713 | // original Loop. | ||||||
714 | // Fix this by setting Loop's DebugLoc to NewExit. | ||||||
715 | auto *NewExitTerminator = NewExit->getTerminator(); | ||||||
716 | NewExitTerminator->setDebugLoc(Header->getTerminator()->getDebugLoc()); | ||||||
717 | // Split NewExit to insert epilog remainder loop. | ||||||
718 | EpilogPreHeader = SplitBlock(NewExit, NewExitTerminator, DT, LI); | ||||||
719 | EpilogPreHeader->setName(Header->getName() + ".epil.preheader"); | ||||||
720 | } else { | ||||||
721 | // If prolog remainder | ||||||
722 | // Split the original preheader twice to insert prolog remainder loop | ||||||
723 | PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI); | ||||||
724 | PrologPreHeader->setName(Header->getName() + ".prol.preheader"); | ||||||
725 | PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(), | ||||||
726 | DT, LI); | ||||||
727 | PrologExit->setName(Header->getName() + ".prol.loopexit"); | ||||||
728 | // Split PrologExit to get NewPreHeader. | ||||||
729 | NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI); | ||||||
730 | NewPreHeader->setName(PreHeader->getName() + ".new"); | ||||||
731 | } | ||||||
732 | // Loop structure should be the following: | ||||||
733 | // Epilog Prolog | ||||||
734 | // | ||||||
735 | // PreHeader PreHeader | ||||||
736 | // *NewPreHeader *PrologPreHeader | ||||||
737 | // Header *PrologExit | ||||||
738 | // ... *NewPreHeader | ||||||
739 | // Latch Header | ||||||
740 | // *NewExit ... | ||||||
741 | // *EpilogPreHeader Latch | ||||||
742 | // LatchExit LatchExit | ||||||
743 | |||||||
744 | // Calculate conditions for branch around loop for unrolling | ||||||
745 | // in epilog case and around prolog remainder loop in prolog case. | ||||||
746 | // Compute the number of extra iterations required, which is: | ||||||
747 | // extra iterations = run-time trip count % loop unroll factor | ||||||
748 | PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); | ||||||
749 | Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(), | ||||||
750 | PreHeaderBR); | ||||||
751 | Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(), | ||||||
752 | PreHeaderBR); | ||||||
753 | IRBuilder<> B(PreHeaderBR); | ||||||
754 | Value *ModVal; | ||||||
755 | // Calculate ModVal = (BECount + 1) % Count. | ||||||
756 | // Note that TripCount is BECount + 1. | ||||||
757 | if (isPowerOf2_32(Count)) { | ||||||
758 | // When Count is power of 2 we don't BECount for epilog case, however we'll | ||||||
759 | // need it for a branch around unrolling loop for prolog case. | ||||||
760 | ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter"); | ||||||
761 | // 1. There are no iterations to be run in the prolog/epilog loop. | ||||||
762 | // OR | ||||||
763 | // 2. The addition computing TripCount overflowed. | ||||||
764 | // | ||||||
765 | // If (2) is true, we know that TripCount really is (1 << BEWidth) and so | ||||||
766 | // the number of iterations that remain to be run in the original loop is a | ||||||
767 | // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we | ||||||
768 | // explicitly check this above). | ||||||
769 | } else { | ||||||
770 | // As (BECount + 1) can potentially unsigned overflow we count | ||||||
771 | // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count. | ||||||
772 | Value *ModValTmp = B.CreateURem(BECount, | ||||||
773 | ConstantInt::get(BECount->getType(), | ||||||
774 | Count)); | ||||||
775 | Value *ModValAdd = B.CreateAdd(ModValTmp, | ||||||
776 | ConstantInt::get(ModValTmp->getType(), 1)); | ||||||
777 | // At that point (BECount % Count) + 1 could be equal to Count. | ||||||
778 | // To handle this case we need to take mod by Count one more time. | ||||||
779 | ModVal = B.CreateURem(ModValAdd, | ||||||
780 | ConstantInt::get(BECount->getType(), Count), | ||||||
781 | "xtraiter"); | ||||||
782 | } | ||||||
783 | Value *BranchVal = | ||||||
784 | UseEpilogRemainder ? B.CreateICmpULT(BECount, | ||||||
785 | ConstantInt::get(BECount->getType(), | ||||||
786 | Count - 1)) : | ||||||
787 | B.CreateIsNotNull(ModVal, "lcmp.mod"); | ||||||
788 | BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader; | ||||||
789 | BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit; | ||||||
790 | // Branch to either remainder (extra iterations) loop or unrolling loop. | ||||||
791 | B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop); | ||||||
792 | PreHeaderBR->eraseFromParent(); | ||||||
793 | if (DT) { | ||||||
794 | if (UseEpilogRemainder) | ||||||
795 | DT->changeImmediateDominator(NewExit, PreHeader); | ||||||
796 | else | ||||||
797 | DT->changeImmediateDominator(PrologExit, PreHeader); | ||||||
798 | } | ||||||
799 | Function *F = Header->getParent(); | ||||||
800 | // Get an ordered list of blocks in the loop to help with the ordering of the | ||||||
801 | // cloned blocks in the prolog/epilog code | ||||||
802 | LoopBlocksDFS LoopBlocks(L); | ||||||
803 | LoopBlocks.perform(LI); | ||||||
804 | |||||||
805 | // | ||||||
806 | // For each extra loop iteration, create a copy of the loop's basic blocks | ||||||
807 | // and generate a condition that branches to the copy depending on the | ||||||
808 | // number of 'left over' iterations. | ||||||
809 | // | ||||||
810 | std::vector<BasicBlock *> NewBlocks; | ||||||
811 | ValueToValueMapTy VMap; | ||||||
812 | |||||||
813 | // For unroll factor 2 remainder loop will have 1 iterations. | ||||||
814 | // Do not create 1 iteration loop. | ||||||
815 | bool CreateRemainderLoop = (Count != 2); | ||||||
816 | |||||||
817 | // Clone all the basic blocks in the loop. If Count is 2, we don't clone | ||||||
818 | // the loop, otherwise we create a cloned loop to execute the extra | ||||||
819 | // iterations. This function adds the appropriate CFG connections. | ||||||
820 | BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit; | ||||||
821 | BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader; | ||||||
822 | Loop *remainderLoop = CloneLoopBlocks( | ||||||
823 | L, ModVal, CreateRemainderLoop, UseEpilogRemainder, UnrollRemainder, | ||||||
824 | InsertTop, InsertBot, | ||||||
825 | NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI); | ||||||
826 | |||||||
827 | // Assign the maximum possible trip count as the back edge weight for the | ||||||
828 | // remainder loop if the original loop comes with a branch weight. | ||||||
829 | if (remainderLoop && !UnrollRemainder) | ||||||
830 | updateLatchBranchWeightsForRemainderLoop(L, remainderLoop, Count); | ||||||
831 | |||||||
832 | // Insert the cloned blocks into the function. | ||||||
833 | F->getBasicBlockList().splice(InsertBot->getIterator(), | ||||||
834 | F->getBasicBlockList(), | ||||||
835 | NewBlocks[0]->getIterator(), | ||||||
836 | F->end()); | ||||||
837 | |||||||
838 | // Now the loop blocks are cloned and the other exiting blocks from the | ||||||
839 | // remainder are connected to the original Loop's exit blocks. The remaining | ||||||
840 | // work is to update the phi nodes in the original loop, and take in the | ||||||
841 | // values from the cloned region. | ||||||
842 | for (auto *BB : OtherExits) { | ||||||
843 | for (auto &II : *BB) { | ||||||
844 | |||||||
845 | // Given we preserve LCSSA form, we know that the values used outside the | ||||||
846 | // loop will be used through these phi nodes at the exit blocks that are | ||||||
847 | // transformed below. | ||||||
848 | if (!isa<PHINode>(II)) | ||||||
849 | break; | ||||||
850 | PHINode *Phi = cast<PHINode>(&II); | ||||||
851 | unsigned oldNumOperands = Phi->getNumIncomingValues(); | ||||||
852 | // Add the incoming values from the remainder code to the end of the phi | ||||||
853 | // node. | ||||||
854 | for (unsigned i =0; i < oldNumOperands; i++){ | ||||||
855 | Value *newVal = VMap.lookup(Phi->getIncomingValue(i)); | ||||||
856 | // newVal can be a constant or derived from values outside the loop, and | ||||||
857 | // hence need not have a VMap value. Also, since lookup already generated | ||||||
858 | // a default "null" VMap entry for this value, we need to populate that | ||||||
859 | // VMap entry correctly, with the mapped entry being itself. | ||||||
860 | if (!newVal) { | ||||||
861 | newVal = Phi->getIncomingValue(i); | ||||||
862 | VMap[Phi->getIncomingValue(i)] = Phi->getIncomingValue(i); | ||||||
863 | } | ||||||
864 | Phi->addIncoming(newVal, | ||||||
865 | cast<BasicBlock>(VMap[Phi->getIncomingBlock(i)])); | ||||||
866 | } | ||||||
867 | } | ||||||
868 | #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG1) | ||||||
869 | for (BasicBlock *SuccBB : successors(BB)) { | ||||||
870 | assert(!(any_of(OtherExits,((void)0) | ||||||
871 | [SuccBB](BasicBlock *EB) { return EB == SuccBB; }) ||((void)0) | ||||||
872 | SuccBB == LatchExit) &&((void)0) | ||||||
873 | "Breaks the definition of dedicated exits!")((void)0); | ||||||
874 | } | ||||||
875 | #endif | ||||||
876 | } | ||||||
877 | |||||||
878 | // Update the immediate dominator of the exit blocks and blocks that are | ||||||
879 | // reachable from the exit blocks. This is needed because we now have paths | ||||||
880 | // from both the original loop and the remainder code reaching the exit | ||||||
881 | // blocks. While the IDom of these exit blocks were from the original loop, | ||||||
882 | // now the IDom is the preheader (which decides whether the original loop or | ||||||
883 | // remainder code should run). | ||||||
884 | if (DT && !L->getExitingBlock()) { | ||||||
885 | SmallVector<BasicBlock *, 16> ChildrenToUpdate; | ||||||
886 | // NB! We have to examine the dom children of all loop blocks, not just | ||||||
887 | // those which are the IDom of the exit blocks. This is because blocks | ||||||
888 | // reachable from the exit blocks can have their IDom as the nearest common | ||||||
889 | // dominator of the exit blocks. | ||||||
890 | for (auto *BB : L->blocks()) { | ||||||
891 | auto *DomNodeBB = DT->getNode(BB); | ||||||
892 | for (auto *DomChild : DomNodeBB->children()) { | ||||||
893 | auto *DomChildBB = DomChild->getBlock(); | ||||||
894 | if (!L->contains(LI->getLoopFor(DomChildBB))) | ||||||
895 | ChildrenToUpdate.push_back(DomChildBB); | ||||||
896 | } | ||||||
897 | } | ||||||
898 | for (auto *BB : ChildrenToUpdate) | ||||||
899 | DT->changeImmediateDominator(BB, PreHeader); | ||||||
900 | } | ||||||
901 | |||||||
902 | // Loop structure should be the following: | ||||||
903 | // Epilog Prolog | ||||||
904 | // | ||||||
905 | // PreHeader PreHeader | ||||||
906 | // NewPreHeader PrologPreHeader | ||||||
907 | // Header PrologHeader | ||||||
908 | // ... ... | ||||||
909 | // Latch PrologLatch | ||||||
910 | // NewExit PrologExit | ||||||
911 | // EpilogPreHeader NewPreHeader | ||||||
912 | // EpilogHeader Header | ||||||
913 | // ... ... | ||||||
914 | // EpilogLatch Latch | ||||||
915 | // LatchExit LatchExit | ||||||
916 | |||||||
917 | // Rewrite the cloned instruction operands to use the values created when the | ||||||
918 | // clone is created. | ||||||
919 | for (BasicBlock *BB : NewBlocks) { | ||||||
920 | for (Instruction &I : *BB) { | ||||||
921 | RemapInstruction(&I, VMap, | ||||||
922 | RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); | ||||||
923 | } | ||||||
924 | } | ||||||
925 | |||||||
926 | if (UseEpilogRemainder) { | ||||||
927 | // Connect the epilog code to the original loop and update the | ||||||
928 | // PHI functions. | ||||||
929 | ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader, | ||||||
930 | EpilogPreHeader, NewPreHeader, VMap, DT, LI, | ||||||
931 | PreserveLCSSA); | ||||||
932 | |||||||
933 | // Update counter in loop for unrolling. | ||||||
934 | // I should be multiply of Count. | ||||||
935 | IRBuilder<> B2(NewPreHeader->getTerminator()); | ||||||
936 | Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter"); | ||||||
937 | BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); | ||||||
938 | B2.SetInsertPoint(LatchBR); | ||||||
939 | PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter", | ||||||
940 | Header->getFirstNonPHI()); | ||||||
941 | Value *IdxSub = | ||||||
942 | B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), | ||||||
943 | NewIdx->getName() + ".nsub"); | ||||||
944 | Value *IdxCmp; | ||||||
945 | if (LatchBR->getSuccessor(0) == Header) | ||||||
946 | IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp"); | ||||||
947 | else | ||||||
948 | IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp"); | ||||||
949 | NewIdx->addIncoming(TestVal, NewPreHeader); | ||||||
950 | NewIdx->addIncoming(IdxSub, Latch); | ||||||
951 | LatchBR->setCondition(IdxCmp); | ||||||
952 | } else { | ||||||
953 | // Connect the prolog code to the original loop and update the | ||||||
954 | // PHI functions. | ||||||
955 | ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader, | ||||||
956 | NewPreHeader, VMap, DT, LI, PreserveLCSSA); | ||||||
957 | } | ||||||
958 | |||||||
959 | // If this loop is nested, then the loop unroller changes the code in the any | ||||||
960 | // of its parent loops, so the Scalar Evolution pass needs to be run again. | ||||||
961 | SE->forgetTopmostLoop(L); | ||||||
962 | |||||||
963 | // Verify that the Dom Tree is correct. | ||||||
964 | #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG1) | ||||||
965 | if (DT) | ||||||
966 | assert(DT->verify(DominatorTree::VerificationLevel::Full))((void)0); | ||||||
967 | #endif | ||||||
968 | |||||||
969 | // Canonicalize to LoopSimplifyForm both original and remainder loops. We | ||||||
970 | // cannot rely on the LoopUnrollPass to do this because it only does | ||||||
971 | // canonicalization for parent/subloops and not the sibling loops. | ||||||
972 | if (OtherExits.size() > 0) { | ||||||
973 | // Generate dedicated exit blocks for the original loop, to preserve | ||||||
974 | // LoopSimplifyForm. | ||||||
975 | formDedicatedExitBlocks(L, DT, LI, nullptr, PreserveLCSSA); | ||||||
976 | // Generate dedicated exit blocks for the remainder loop if one exists, to | ||||||
977 | // preserve LoopSimplifyForm. | ||||||
978 | if (remainderLoop) | ||||||
979 | formDedicatedExitBlocks(remainderLoop, DT, LI, nullptr, PreserveLCSSA); | ||||||
980 | } | ||||||
981 | |||||||
982 | auto UnrollResult = LoopUnrollResult::Unmodified; | ||||||
983 | if (remainderLoop && UnrollRemainder) { | ||||||
984 | LLVM_DEBUG(dbgs() << "Unrolling remainder loop\n")do { } while (false); | ||||||
985 | UnrollResult = | ||||||
986 | UnrollLoop(remainderLoop, | ||||||
987 | {/*Count*/ Count - 1, /*Force*/ false, /*Runtime*/ false, | ||||||
988 | /*AllowExpensiveTripCount*/ false, | ||||||
989 | /*UnrollRemainder*/ false, ForgetAllSCEV}, | ||||||
990 | LI, SE, DT, AC, TTI, /*ORE*/ nullptr, PreserveLCSSA); | ||||||
991 | } | ||||||
992 | |||||||
993 | if (ResultLoop && UnrollResult != LoopUnrollResult::FullyUnrolled) | ||||||
994 | *ResultLoop = remainderLoop; | ||||||
995 | NumRuntimeUnrolled++; | ||||||
996 | return true; | ||||||
997 | } |
1 | //===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file exposes the class definitions of all of the subclasses of the |
10 | // Instruction class. This is meant to be an easy way to get access to all |
11 | // instruction subclasses. |
12 | // |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #ifndef LLVM_IR_INSTRUCTIONS_H |
16 | #define LLVM_IR_INSTRUCTIONS_H |
17 | |
18 | #include "llvm/ADT/ArrayRef.h" |
19 | #include "llvm/ADT/Bitfields.h" |
20 | #include "llvm/ADT/MapVector.h" |
21 | #include "llvm/ADT/None.h" |
22 | #include "llvm/ADT/STLExtras.h" |
23 | #include "llvm/ADT/SmallVector.h" |
24 | #include "llvm/ADT/StringRef.h" |
25 | #include "llvm/ADT/Twine.h" |
26 | #include "llvm/ADT/iterator.h" |
27 | #include "llvm/ADT/iterator_range.h" |
28 | #include "llvm/IR/Attributes.h" |
29 | #include "llvm/IR/BasicBlock.h" |
30 | #include "llvm/IR/CallingConv.h" |
31 | #include "llvm/IR/CFG.h" |
32 | #include "llvm/IR/Constant.h" |
33 | #include "llvm/IR/DerivedTypes.h" |
34 | #include "llvm/IR/Function.h" |
35 | #include "llvm/IR/InstrTypes.h" |
36 | #include "llvm/IR/Instruction.h" |
37 | #include "llvm/IR/OperandTraits.h" |
38 | #include "llvm/IR/Type.h" |
39 | #include "llvm/IR/Use.h" |
40 | #include "llvm/IR/User.h" |
41 | #include "llvm/IR/Value.h" |
42 | #include "llvm/Support/AtomicOrdering.h" |
43 | #include "llvm/Support/Casting.h" |
44 | #include "llvm/Support/ErrorHandling.h" |
45 | #include <cassert> |
46 | #include <cstddef> |
47 | #include <cstdint> |
48 | #include <iterator> |
49 | |
50 | namespace llvm { |
51 | |
52 | class APInt; |
53 | class ConstantInt; |
54 | class DataLayout; |
55 | class LLVMContext; |
56 | |
57 | //===----------------------------------------------------------------------===// |
58 | // AllocaInst Class |
59 | //===----------------------------------------------------------------------===// |
60 | |
61 | /// an instruction to allocate memory on the stack |
62 | class AllocaInst : public UnaryInstruction { |
63 | Type *AllocatedType; |
64 | |
65 | using AlignmentField = AlignmentBitfieldElementT<0>; |
66 | using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>; |
67 | using SwiftErrorField = BoolBitfieldElementT<UsedWithInAllocaField::NextBit>; |
68 | static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField, |
69 | SwiftErrorField>(), |
70 | "Bitfields must be contiguous"); |
71 | |
72 | protected: |
73 | // Note: Instruction needs to be a friend here to call cloneImpl. |
74 | friend class Instruction; |
75 | |
76 | AllocaInst *cloneImpl() const; |
77 | |
78 | public: |
79 | explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, |
80 | const Twine &Name, Instruction *InsertBefore); |
81 | AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, |
82 | const Twine &Name, BasicBlock *InsertAtEnd); |
83 | |
84 | AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name, |
85 | Instruction *InsertBefore); |
86 | AllocaInst(Type *Ty, unsigned AddrSpace, |
87 | const Twine &Name, BasicBlock *InsertAtEnd); |
88 | |
89 | AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align, |
90 | const Twine &Name = "", Instruction *InsertBefore = nullptr); |
91 | AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align, |
92 | const Twine &Name, BasicBlock *InsertAtEnd); |
93 | |
94 | /// Return true if there is an allocation size parameter to the allocation |
95 | /// instruction that is not 1. |
96 | bool isArrayAllocation() const; |
97 | |
98 | /// Get the number of elements allocated. For a simple allocation of a single |
99 | /// element, this will return a constant 1 value. |
100 | const Value *getArraySize() const { return getOperand(0); } |
101 | Value *getArraySize() { return getOperand(0); } |
102 | |
103 | /// Overload to return most specific pointer type. |
104 | PointerType *getType() const { |
105 | return cast<PointerType>(Instruction::getType()); |
106 | } |
107 | |
108 | /// Get allocation size in bits. Returns None if size can't be determined, |
109 | /// e.g. in case of a VLA. |
110 | Optional<TypeSize> getAllocationSizeInBits(const DataLayout &DL) const; |
111 | |
112 | /// Return the type that is being allocated by the instruction. |
113 | Type *getAllocatedType() const { return AllocatedType; } |
114 | /// for use only in special circumstances that need to generically |
115 | /// transform a whole instruction (eg: IR linking and vectorization). |
116 | void setAllocatedType(Type *Ty) { AllocatedType = Ty; } |
117 | |
118 | /// Return the alignment of the memory that is being allocated by the |
119 | /// instruction. |
120 | Align getAlign() const { |
121 | return Align(1ULL << getSubclassData<AlignmentField>()); |
122 | } |
123 | |
124 | void setAlignment(Align Align) { |
125 | setSubclassData<AlignmentField>(Log2(Align)); |
126 | } |
127 | |
128 | // FIXME: Remove this one transition to Align is over. |
129 | unsigned getAlignment() const { return getAlign().value(); } |
130 | |
131 | /// Return true if this alloca is in the entry block of the function and is a |
132 | /// constant size. If so, the code generator will fold it into the |
133 | /// prolog/epilog code, so it is basically free. |
134 | bool isStaticAlloca() const; |
135 | |
136 | /// Return true if this alloca is used as an inalloca argument to a call. Such |
137 | /// allocas are never considered static even if they are in the entry block. |
138 | bool isUsedWithInAlloca() const { |
139 | return getSubclassData<UsedWithInAllocaField>(); |
140 | } |
141 | |
142 | /// Specify whether this alloca is used to represent the arguments to a call. |
143 | void setUsedWithInAlloca(bool V) { |
144 | setSubclassData<UsedWithInAllocaField>(V); |
145 | } |
146 | |
147 | /// Return true if this alloca is used as a swifterror argument to a call. |
148 | bool isSwiftError() const { return getSubclassData<SwiftErrorField>(); } |
149 | /// Specify whether this alloca is used to represent a swifterror. |
150 | void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); } |
151 | |
152 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
153 | static bool classof(const Instruction *I) { |
154 | return (I->getOpcode() == Instruction::Alloca); |
155 | } |
156 | static bool classof(const Value *V) { |
157 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
158 | } |
159 | |
160 | private: |
161 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
162 | // method so that subclasses cannot accidentally use it. |
163 | template <typename Bitfield> |
164 | void setSubclassData(typename Bitfield::Type Value) { |
165 | Instruction::setSubclassData<Bitfield>(Value); |
166 | } |
167 | }; |
168 | |
169 | //===----------------------------------------------------------------------===// |
170 | // LoadInst Class |
171 | //===----------------------------------------------------------------------===// |
172 | |
173 | /// An instruction for reading from memory. This uses the SubclassData field in |
174 | /// Value to store whether or not the load is volatile. |
175 | class LoadInst : public UnaryInstruction { |
176 | using VolatileField = BoolBitfieldElementT<0>; |
177 | using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>; |
178 | using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>; |
179 | static_assert( |
180 | Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(), |
181 | "Bitfields must be contiguous"); |
182 | |
183 | void AssertOK(); |
184 | |
185 | protected: |
186 | // Note: Instruction needs to be a friend here to call cloneImpl. |
187 | friend class Instruction; |
188 | |
189 | LoadInst *cloneImpl() const; |
190 | |
191 | public: |
192 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, |
193 | Instruction *InsertBefore); |
194 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd); |
195 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
196 | Instruction *InsertBefore); |
197 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
198 | BasicBlock *InsertAtEnd); |
199 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
200 | Align Align, Instruction *InsertBefore = nullptr); |
201 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
202 | Align Align, BasicBlock *InsertAtEnd); |
203 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
204 | Align Align, AtomicOrdering Order, |
205 | SyncScope::ID SSID = SyncScope::System, |
206 | Instruction *InsertBefore = nullptr); |
207 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
208 | Align Align, AtomicOrdering Order, SyncScope::ID SSID, |
209 | BasicBlock *InsertAtEnd); |
210 | |
211 | /// Return true if this is a load from a volatile memory location. |
212 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
213 | |
214 | /// Specify whether this is a volatile load or not. |
215 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
216 | |
217 | /// Return the alignment of the access that is being performed. |
218 | /// FIXME: Remove this function once transition to Align is over. |
219 | /// Use getAlign() instead. |
220 | unsigned getAlignment() const { return getAlign().value(); } |
221 | |
222 | /// Return the alignment of the access that is being performed. |
223 | Align getAlign() const { |
224 | return Align(1ULL << (getSubclassData<AlignmentField>())); |
225 | } |
226 | |
227 | void setAlignment(Align Align) { |
228 | setSubclassData<AlignmentField>(Log2(Align)); |
229 | } |
230 | |
231 | /// Returns the ordering constraint of this load instruction. |
232 | AtomicOrdering getOrdering() const { |
233 | return getSubclassData<OrderingField>(); |
234 | } |
235 | /// Sets the ordering constraint of this load instruction. May not be Release |
236 | /// or AcquireRelease. |
237 | void setOrdering(AtomicOrdering Ordering) { |
238 | setSubclassData<OrderingField>(Ordering); |
239 | } |
240 | |
241 | /// Returns the synchronization scope ID of this load instruction. |
242 | SyncScope::ID getSyncScopeID() const { |
243 | return SSID; |
244 | } |
245 | |
246 | /// Sets the synchronization scope ID of this load instruction. |
247 | void setSyncScopeID(SyncScope::ID SSID) { |
248 | this->SSID = SSID; |
249 | } |
250 | |
251 | /// Sets the ordering constraint and the synchronization scope ID of this load |
252 | /// instruction. |
253 | void setAtomic(AtomicOrdering Ordering, |
254 | SyncScope::ID SSID = SyncScope::System) { |
255 | setOrdering(Ordering); |
256 | setSyncScopeID(SSID); |
257 | } |
258 | |
259 | bool isSimple() const { return !isAtomic() && !isVolatile(); } |
260 | |
261 | bool isUnordered() const { |
262 | return (getOrdering() == AtomicOrdering::NotAtomic || |
263 | getOrdering() == AtomicOrdering::Unordered) && |
264 | !isVolatile(); |
265 | } |
266 | |
267 | Value *getPointerOperand() { return getOperand(0); } |
268 | const Value *getPointerOperand() const { return getOperand(0); } |
269 | static unsigned getPointerOperandIndex() { return 0U; } |
270 | Type *getPointerOperandType() const { return getPointerOperand()->getType(); } |
271 | |
272 | /// Returns the address space of the pointer operand. |
273 | unsigned getPointerAddressSpace() const { |
274 | return getPointerOperandType()->getPointerAddressSpace(); |
275 | } |
276 | |
277 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
278 | static bool classof(const Instruction *I) { |
279 | return I->getOpcode() == Instruction::Load; |
280 | } |
281 | static bool classof(const Value *V) { |
282 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
283 | } |
284 | |
285 | private: |
286 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
287 | // method so that subclasses cannot accidentally use it. |
288 | template <typename Bitfield> |
289 | void setSubclassData(typename Bitfield::Type Value) { |
290 | Instruction::setSubclassData<Bitfield>(Value); |
291 | } |
292 | |
293 | /// The synchronization scope ID of this load instruction. Not quite enough |
294 | /// room in SubClassData for everything, so synchronization scope ID gets its |
295 | /// own field. |
296 | SyncScope::ID SSID; |
297 | }; |
298 | |
299 | //===----------------------------------------------------------------------===// |
300 | // StoreInst Class |
301 | //===----------------------------------------------------------------------===// |
302 | |
303 | /// An instruction for storing to memory. |
304 | class StoreInst : public Instruction { |
305 | using VolatileField = BoolBitfieldElementT<0>; |
306 | using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>; |
307 | using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>; |
308 | static_assert( |
309 | Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(), |
310 | "Bitfields must be contiguous"); |
311 | |
312 | void AssertOK(); |
313 | |
314 | protected: |
315 | // Note: Instruction needs to be a friend here to call cloneImpl. |
316 | friend class Instruction; |
317 | |
318 | StoreInst *cloneImpl() const; |
319 | |
320 | public: |
321 | StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore); |
322 | StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd); |
323 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Instruction *InsertBefore); |
324 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd); |
325 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
326 | Instruction *InsertBefore = nullptr); |
327 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
328 | BasicBlock *InsertAtEnd); |
329 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
330 | AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System, |
331 | Instruction *InsertBefore = nullptr); |
332 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
333 | AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd); |
334 | |
335 | // allocate space for exactly two operands |
336 | void *operator new(size_t S) { return User::operator new(S, 2); } |
337 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
338 | |
339 | /// Return true if this is a store to a volatile memory location. |
340 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
341 | |
342 | /// Specify whether this is a volatile store or not. |
343 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
344 | |
345 | /// Transparently provide more efficient getOperand methods. |
346 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
347 | |
348 | /// Return the alignment of the access that is being performed |
349 | /// FIXME: Remove this function once transition to Align is over. |
350 | /// Use getAlign() instead. |
351 | unsigned getAlignment() const { return getAlign().value(); } |
352 | |
353 | Align getAlign() const { |
354 | return Align(1ULL << (getSubclassData<AlignmentField>())); |
355 | } |
356 | |
357 | void setAlignment(Align Align) { |
358 | setSubclassData<AlignmentField>(Log2(Align)); |
359 | } |
360 | |
361 | /// Returns the ordering constraint of this store instruction. |
362 | AtomicOrdering getOrdering() const { |
363 | return getSubclassData<OrderingField>(); |
364 | } |
365 | |
366 | /// Sets the ordering constraint of this store instruction. May not be |
367 | /// Acquire or AcquireRelease. |
368 | void setOrdering(AtomicOrdering Ordering) { |
369 | setSubclassData<OrderingField>(Ordering); |
370 | } |
371 | |
372 | /// Returns the synchronization scope ID of this store instruction. |
373 | SyncScope::ID getSyncScopeID() const { |
374 | return SSID; |
375 | } |
376 | |
377 | /// Sets the synchronization scope ID of this store instruction. |
378 | void setSyncScopeID(SyncScope::ID SSID) { |
379 | this->SSID = SSID; |
380 | } |
381 | |
382 | /// Sets the ordering constraint and the synchronization scope ID of this |
383 | /// store instruction. |
384 | void setAtomic(AtomicOrdering Ordering, |
385 | SyncScope::ID SSID = SyncScope::System) { |
386 | setOrdering(Ordering); |
387 | setSyncScopeID(SSID); |
388 | } |
389 | |
390 | bool isSimple() const { return !isAtomic() && !isVolatile(); } |
391 | |
392 | bool isUnordered() const { |
393 | return (getOrdering() == AtomicOrdering::NotAtomic || |
394 | getOrdering() == AtomicOrdering::Unordered) && |
395 | !isVolatile(); |
396 | } |
397 | |
398 | Value *getValueOperand() { return getOperand(0); } |
399 | const Value *getValueOperand() const { return getOperand(0); } |
400 | |
401 | Value *getPointerOperand() { return getOperand(1); } |
402 | const Value *getPointerOperand() const { return getOperand(1); } |
403 | static unsigned getPointerOperandIndex() { return 1U; } |
404 | Type *getPointerOperandType() const { return getPointerOperand()->getType(); } |
405 | |
406 | /// Returns the address space of the pointer operand. |
407 | unsigned getPointerAddressSpace() const { |
408 | return getPointerOperandType()->getPointerAddressSpace(); |
409 | } |
410 | |
411 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
412 | static bool classof(const Instruction *I) { |
413 | return I->getOpcode() == Instruction::Store; |
414 | } |
415 | static bool classof(const Value *V) { |
416 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
417 | } |
418 | |
419 | private: |
420 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
421 | // method so that subclasses cannot accidentally use it. |
422 | template <typename Bitfield> |
423 | void setSubclassData(typename Bitfield::Type Value) { |
424 | Instruction::setSubclassData<Bitfield>(Value); |
425 | } |
426 | |
427 | /// The synchronization scope ID of this store instruction. Not quite enough |
428 | /// room in SubClassData for everything, so synchronization scope ID gets its |
429 | /// own field. |
430 | SyncScope::ID SSID; |
431 | }; |
432 | |
433 | template <> |
434 | struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> { |
435 | }; |
436 | |
437 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)StoreInst::op_iterator StoreInst::op_begin() { return OperandTraits <StoreInst>::op_begin(this); } StoreInst::const_op_iterator StoreInst::op_begin() const { return OperandTraits<StoreInst >::op_begin(const_cast<StoreInst*>(this)); } StoreInst ::op_iterator StoreInst::op_end() { return OperandTraits<StoreInst >::op_end(this); } StoreInst::const_op_iterator StoreInst:: op_end() const { return OperandTraits<StoreInst>::op_end (const_cast<StoreInst*>(this)); } Value *StoreInst::getOperand (unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<StoreInst>::op_begin(const_cast <StoreInst*>(this))[i_nocapture].get()); } void StoreInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<StoreInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned StoreInst::getNumOperands() const { return OperandTraits<StoreInst>::operands(this); } template <int Idx_nocapture> Use &StoreInst::Op() { return this ->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture > const Use &StoreInst::Op() const { return this->OpFrom <Idx_nocapture>(this); } |
438 | |
439 | //===----------------------------------------------------------------------===// |
440 | // FenceInst Class |
441 | //===----------------------------------------------------------------------===// |
442 | |
443 | /// An instruction for ordering other memory operations. |
444 | class FenceInst : public Instruction { |
445 | using OrderingField = AtomicOrderingBitfieldElementT<0>; |
446 | |
447 | void Init(AtomicOrdering Ordering, SyncScope::ID SSID); |
448 | |
449 | protected: |
450 | // Note: Instruction needs to be a friend here to call cloneImpl. |
451 | friend class Instruction; |
452 | |
453 | FenceInst *cloneImpl() const; |
454 | |
455 | public: |
456 | // Ordering may only be Acquire, Release, AcquireRelease, or |
457 | // SequentiallyConsistent. |
458 | FenceInst(LLVMContext &C, AtomicOrdering Ordering, |
459 | SyncScope::ID SSID = SyncScope::System, |
460 | Instruction *InsertBefore = nullptr); |
461 | FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID, |
462 | BasicBlock *InsertAtEnd); |
463 | |
464 | // allocate space for exactly zero operands |
465 | void *operator new(size_t S) { return User::operator new(S, 0); } |
466 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
467 | |
468 | /// Returns the ordering constraint of this fence instruction. |
469 | AtomicOrdering getOrdering() const { |
470 | return getSubclassData<OrderingField>(); |
471 | } |
472 | |
473 | /// Sets the ordering constraint of this fence instruction. May only be |
474 | /// Acquire, Release, AcquireRelease, or SequentiallyConsistent. |
475 | void setOrdering(AtomicOrdering Ordering) { |
476 | setSubclassData<OrderingField>(Ordering); |
477 | } |
478 | |
479 | /// Returns the synchronization scope ID of this fence instruction. |
480 | SyncScope::ID getSyncScopeID() const { |
481 | return SSID; |
482 | } |
483 | |
484 | /// Sets the synchronization scope ID of this fence instruction. |
485 | void setSyncScopeID(SyncScope::ID SSID) { |
486 | this->SSID = SSID; |
487 | } |
488 | |
489 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
490 | static bool classof(const Instruction *I) { |
491 | return I->getOpcode() == Instruction::Fence; |
492 | } |
493 | static bool classof(const Value *V) { |
494 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
495 | } |
496 | |
497 | private: |
498 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
499 | // method so that subclasses cannot accidentally use it. |
500 | template <typename Bitfield> |
501 | void setSubclassData(typename Bitfield::Type Value) { |
502 | Instruction::setSubclassData<Bitfield>(Value); |
503 | } |
504 | |
505 | /// The synchronization scope ID of this fence instruction. Not quite enough |
506 | /// room in SubClassData for everything, so synchronization scope ID gets its |
507 | /// own field. |
508 | SyncScope::ID SSID; |
509 | }; |
510 | |
511 | //===----------------------------------------------------------------------===// |
512 | // AtomicCmpXchgInst Class |
513 | //===----------------------------------------------------------------------===// |
514 | |
515 | /// An instruction that atomically checks whether a |
516 | /// specified value is in a memory location, and, if it is, stores a new value |
517 | /// there. The value returned by this instruction is a pair containing the |
518 | /// original value as first element, and an i1 indicating success (true) or |
519 | /// failure (false) as second element. |
520 | /// |
521 | class AtomicCmpXchgInst : public Instruction { |
522 | void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align, |
523 | AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, |
524 | SyncScope::ID SSID); |
525 | |
526 | template <unsigned Offset> |
527 | using AtomicOrderingBitfieldElement = |
528 | typename Bitfield::Element<AtomicOrdering, Offset, 3, |
529 | AtomicOrdering::LAST>; |
530 | |
531 | protected: |
532 | // Note: Instruction needs to be a friend here to call cloneImpl. |
533 | friend class Instruction; |
534 | |
535 | AtomicCmpXchgInst *cloneImpl() const; |
536 | |
537 | public: |
538 | AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment, |
539 | AtomicOrdering SuccessOrdering, |
540 | AtomicOrdering FailureOrdering, SyncScope::ID SSID, |
541 | Instruction *InsertBefore = nullptr); |
542 | AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment, |
543 | AtomicOrdering SuccessOrdering, |
544 | AtomicOrdering FailureOrdering, SyncScope::ID SSID, |
545 | BasicBlock *InsertAtEnd); |
546 | |
547 | // allocate space for exactly three operands |
548 | void *operator new(size_t S) { return User::operator new(S, 3); } |
549 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
550 | |
551 | using VolatileField = BoolBitfieldElementT<0>; |
552 | using WeakField = BoolBitfieldElementT<VolatileField::NextBit>; |
553 | using SuccessOrderingField = |
554 | AtomicOrderingBitfieldElementT<WeakField::NextBit>; |
555 | using FailureOrderingField = |
556 | AtomicOrderingBitfieldElementT<SuccessOrderingField::NextBit>; |
557 | using AlignmentField = |
558 | AlignmentBitfieldElementT<FailureOrderingField::NextBit>; |
559 | static_assert( |
560 | Bitfield::areContiguous<VolatileField, WeakField, SuccessOrderingField, |
561 | FailureOrderingField, AlignmentField>(), |
562 | "Bitfields must be contiguous"); |
563 | |
564 | /// Return the alignment of the memory that is being allocated by the |
565 | /// instruction. |
566 | Align getAlign() const { |
567 | return Align(1ULL << getSubclassData<AlignmentField>()); |
568 | } |
569 | |
570 | void setAlignment(Align Align) { |
571 | setSubclassData<AlignmentField>(Log2(Align)); |
572 | } |
573 | |
574 | /// Return true if this is a cmpxchg from a volatile memory |
575 | /// location. |
576 | /// |
577 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
578 | |
579 | /// Specify whether this is a volatile cmpxchg. |
580 | /// |
581 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
582 | |
583 | /// Return true if this cmpxchg may spuriously fail. |
584 | bool isWeak() const { return getSubclassData<WeakField>(); } |
585 | |
586 | void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); } |
587 | |
588 | /// Transparently provide more efficient getOperand methods. |
589 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
590 | |
591 | static bool isValidSuccessOrdering(AtomicOrdering Ordering) { |
592 | return Ordering != AtomicOrdering::NotAtomic && |
593 | Ordering != AtomicOrdering::Unordered; |
594 | } |
595 | |
596 | static bool isValidFailureOrdering(AtomicOrdering Ordering) { |
597 | return Ordering != AtomicOrdering::NotAtomic && |
598 | Ordering != AtomicOrdering::Unordered && |
599 | Ordering != AtomicOrdering::AcquireRelease && |
600 | Ordering != AtomicOrdering::Release; |
601 | } |
602 | |
603 | /// Returns the success ordering constraint of this cmpxchg instruction. |
604 | AtomicOrdering getSuccessOrdering() const { |
605 | return getSubclassData<SuccessOrderingField>(); |
606 | } |
607 | |
608 | /// Sets the success ordering constraint of this cmpxchg instruction. |
609 | void setSuccessOrdering(AtomicOrdering Ordering) { |
610 | assert(isValidSuccessOrdering(Ordering) &&((void)0) |
611 | "invalid CmpXchg success ordering")((void)0); |
612 | setSubclassData<SuccessOrderingField>(Ordering); |
613 | } |
614 | |
615 | /// Returns the failure ordering constraint of this cmpxchg instruction. |
616 | AtomicOrdering getFailureOrdering() const { |
617 | return getSubclassData<FailureOrderingField>(); |
618 | } |
619 | |
620 | /// Sets the failure ordering constraint of this cmpxchg instruction. |
621 | void setFailureOrdering(AtomicOrdering Ordering) { |
622 | assert(isValidFailureOrdering(Ordering) &&((void)0) |
623 | "invalid CmpXchg failure ordering")((void)0); |
624 | setSubclassData<FailureOrderingField>(Ordering); |
625 | } |
626 | |
627 | /// Returns a single ordering which is at least as strong as both the |
628 | /// success and failure orderings for this cmpxchg. |
629 | AtomicOrdering getMergedOrdering() const { |
630 | if (getFailureOrdering() == AtomicOrdering::SequentiallyConsistent) |
631 | return AtomicOrdering::SequentiallyConsistent; |
632 | if (getFailureOrdering() == AtomicOrdering::Acquire) { |
633 | if (getSuccessOrdering() == AtomicOrdering::Monotonic) |
634 | return AtomicOrdering::Acquire; |
635 | if (getSuccessOrdering() == AtomicOrdering::Release) |
636 | return AtomicOrdering::AcquireRelease; |
637 | } |
638 | return getSuccessOrdering(); |
639 | } |
640 | |
641 | /// Returns the synchronization scope ID of this cmpxchg instruction. |
642 | SyncScope::ID getSyncScopeID() const { |
643 | return SSID; |
644 | } |
645 | |
646 | /// Sets the synchronization scope ID of this cmpxchg instruction. |
647 | void setSyncScopeID(SyncScope::ID SSID) { |
648 | this->SSID = SSID; |
649 | } |
650 | |
651 | Value *getPointerOperand() { return getOperand(0); } |
652 | const Value *getPointerOperand() const { return getOperand(0); } |
653 | static unsigned getPointerOperandIndex() { return 0U; } |
654 | |
655 | Value *getCompareOperand() { return getOperand(1); } |
656 | const Value *getCompareOperand() const { return getOperand(1); } |
657 | |
658 | Value *getNewValOperand() { return getOperand(2); } |
659 | const Value *getNewValOperand() const { return getOperand(2); } |
660 | |
661 | /// Returns the address space of the pointer operand. |
662 | unsigned getPointerAddressSpace() const { |
663 | return getPointerOperand()->getType()->getPointerAddressSpace(); |
664 | } |
665 | |
666 | /// Returns the strongest permitted ordering on failure, given the |
667 | /// desired ordering on success. |
668 | /// |
669 | /// If the comparison in a cmpxchg operation fails, there is no atomic store |
670 | /// so release semantics cannot be provided. So this function drops explicit |
671 | /// Release requests from the AtomicOrdering. A SequentiallyConsistent |
672 | /// operation would remain SequentiallyConsistent. |
673 | static AtomicOrdering |
674 | getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) { |
675 | switch (SuccessOrdering) { |
676 | default: |
677 | llvm_unreachable("invalid cmpxchg success ordering")__builtin_unreachable(); |
678 | case AtomicOrdering::Release: |
679 | case AtomicOrdering::Monotonic: |
680 | return AtomicOrdering::Monotonic; |
681 | case AtomicOrdering::AcquireRelease: |
682 | case AtomicOrdering::Acquire: |
683 | return AtomicOrdering::Acquire; |
684 | case AtomicOrdering::SequentiallyConsistent: |
685 | return AtomicOrdering::SequentiallyConsistent; |
686 | } |
687 | } |
688 | |
689 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
690 | static bool classof(const Instruction *I) { |
691 | return I->getOpcode() == Instruction::AtomicCmpXchg; |
692 | } |
693 | static bool classof(const Value *V) { |
694 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
695 | } |
696 | |
697 | private: |
698 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
699 | // method so that subclasses cannot accidentally use it. |
700 | template <typename Bitfield> |
701 | void setSubclassData(typename Bitfield::Type Value) { |
702 | Instruction::setSubclassData<Bitfield>(Value); |
703 | } |
704 | |
705 | /// The synchronization scope ID of this cmpxchg instruction. Not quite |
706 | /// enough room in SubClassData for everything, so synchronization scope ID |
707 | /// gets its own field. |
708 | SyncScope::ID SSID; |
709 | }; |
710 | |
711 | template <> |
712 | struct OperandTraits<AtomicCmpXchgInst> : |
713 | public FixedNumOperandTraits<AtomicCmpXchgInst, 3> { |
714 | }; |
715 | |
716 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)AtomicCmpXchgInst::op_iterator AtomicCmpXchgInst::op_begin() { return OperandTraits<AtomicCmpXchgInst>::op_begin(this ); } AtomicCmpXchgInst::const_op_iterator AtomicCmpXchgInst:: op_begin() const { return OperandTraits<AtomicCmpXchgInst> ::op_begin(const_cast<AtomicCmpXchgInst*>(this)); } AtomicCmpXchgInst ::op_iterator AtomicCmpXchgInst::op_end() { return OperandTraits <AtomicCmpXchgInst>::op_end(this); } AtomicCmpXchgInst:: const_op_iterator AtomicCmpXchgInst::op_end() const { return OperandTraits <AtomicCmpXchgInst>::op_end(const_cast<AtomicCmpXchgInst *>(this)); } Value *AtomicCmpXchgInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<AtomicCmpXchgInst>::op_begin(const_cast <AtomicCmpXchgInst*>(this))[i_nocapture].get()); } void AtomicCmpXchgInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<AtomicCmpXchgInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned AtomicCmpXchgInst ::getNumOperands() const { return OperandTraits<AtomicCmpXchgInst >::operands(this); } template <int Idx_nocapture> Use &AtomicCmpXchgInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & AtomicCmpXchgInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
717 | |
718 | //===----------------------------------------------------------------------===// |
719 | // AtomicRMWInst Class |
720 | //===----------------------------------------------------------------------===// |
721 | |
722 | /// an instruction that atomically reads a memory location, |
723 | /// combines it with another value, and then stores the result back. Returns |
724 | /// the old value. |
725 | /// |
726 | class AtomicRMWInst : public Instruction { |
727 | protected: |
728 | // Note: Instruction needs to be a friend here to call cloneImpl. |
729 | friend class Instruction; |
730 | |
731 | AtomicRMWInst *cloneImpl() const; |
732 | |
733 | public: |
734 | /// This enumeration lists the possible modifications atomicrmw can make. In |
735 | /// the descriptions, 'p' is the pointer to the instruction's memory location, |
736 | /// 'old' is the initial value of *p, and 'v' is the other value passed to the |
737 | /// instruction. These instructions always return 'old'. |
738 | enum BinOp : unsigned { |
739 | /// *p = v |
740 | Xchg, |
741 | /// *p = old + v |
742 | Add, |
743 | /// *p = old - v |
744 | Sub, |
745 | /// *p = old & v |
746 | And, |
747 | /// *p = ~(old & v) |
748 | Nand, |
749 | /// *p = old | v |
750 | Or, |
751 | /// *p = old ^ v |
752 | Xor, |
753 | /// *p = old >signed v ? old : v |
754 | Max, |
755 | /// *p = old <signed v ? old : v |
756 | Min, |
757 | /// *p = old >unsigned v ? old : v |
758 | UMax, |
759 | /// *p = old <unsigned v ? old : v |
760 | UMin, |
761 | |
762 | /// *p = old + v |
763 | FAdd, |
764 | |
765 | /// *p = old - v |
766 | FSub, |
767 | |
768 | FIRST_BINOP = Xchg, |
769 | LAST_BINOP = FSub, |
770 | BAD_BINOP |
771 | }; |
772 | |
773 | private: |
774 | template <unsigned Offset> |
775 | using AtomicOrderingBitfieldElement = |
776 | typename Bitfield::Element<AtomicOrdering, Offset, 3, |
777 | AtomicOrdering::LAST>; |
778 | |
779 | template <unsigned Offset> |
780 | using BinOpBitfieldElement = |
781 | typename Bitfield::Element<BinOp, Offset, 4, BinOp::LAST_BINOP>; |
782 | |
783 | public: |
784 | AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment, |
785 | AtomicOrdering Ordering, SyncScope::ID SSID, |
786 | Instruction *InsertBefore = nullptr); |
787 | AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment, |
788 | AtomicOrdering Ordering, SyncScope::ID SSID, |
789 | BasicBlock *InsertAtEnd); |
790 | |
791 | // allocate space for exactly two operands |
792 | void *operator new(size_t S) { return User::operator new(S, 2); } |
793 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
794 | |
795 | using VolatileField = BoolBitfieldElementT<0>; |
796 | using AtomicOrderingField = |
797 | AtomicOrderingBitfieldElementT<VolatileField::NextBit>; |
798 | using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>; |
799 | using AlignmentField = AlignmentBitfieldElementT<OperationField::NextBit>; |
800 | static_assert(Bitfield::areContiguous<VolatileField, AtomicOrderingField, |
801 | OperationField, AlignmentField>(), |
802 | "Bitfields must be contiguous"); |
803 | |
804 | BinOp getOperation() const { return getSubclassData<OperationField>(); } |
805 | |
806 | static StringRef getOperationName(BinOp Op); |
807 | |
808 | static bool isFPOperation(BinOp Op) { |
809 | switch (Op) { |
810 | case AtomicRMWInst::FAdd: |
811 | case AtomicRMWInst::FSub: |
812 | return true; |
813 | default: |
814 | return false; |
815 | } |
816 | } |
817 | |
818 | void setOperation(BinOp Operation) { |
819 | setSubclassData<OperationField>(Operation); |
820 | } |
821 | |
822 | /// Return the alignment of the memory that is being allocated by the |
823 | /// instruction. |
824 | Align getAlign() const { |
825 | return Align(1ULL << getSubclassData<AlignmentField>()); |
826 | } |
827 | |
828 | void setAlignment(Align Align) { |
829 | setSubclassData<AlignmentField>(Log2(Align)); |
830 | } |
831 | |
832 | /// Return true if this is a RMW on a volatile memory location. |
833 | /// |
834 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
835 | |
836 | /// Specify whether this is a volatile RMW or not. |
837 | /// |
838 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
839 | |
840 | /// Transparently provide more efficient getOperand methods. |
841 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
842 | |
843 | /// Returns the ordering constraint of this rmw instruction. |
844 | AtomicOrdering getOrdering() const { |
845 | return getSubclassData<AtomicOrderingField>(); |
846 | } |
847 | |
848 | /// Sets the ordering constraint of this rmw instruction. |
849 | void setOrdering(AtomicOrdering Ordering) { |
850 | assert(Ordering != AtomicOrdering::NotAtomic &&((void)0) |
851 | "atomicrmw instructions can only be atomic.")((void)0); |
852 | setSubclassData<AtomicOrderingField>(Ordering); |
853 | } |
854 | |
855 | /// Returns the synchronization scope ID of this rmw instruction. |
856 | SyncScope::ID getSyncScopeID() const { |
857 | return SSID; |
858 | } |
859 | |
860 | /// Sets the synchronization scope ID of this rmw instruction. |
861 | void setSyncScopeID(SyncScope::ID SSID) { |
862 | this->SSID = SSID; |
863 | } |
864 | |
865 | Value *getPointerOperand() { return getOperand(0); } |
866 | const Value *getPointerOperand() const { return getOperand(0); } |
867 | static unsigned getPointerOperandIndex() { return 0U; } |
868 | |
869 | Value *getValOperand() { return getOperand(1); } |
870 | const Value *getValOperand() const { return getOperand(1); } |
871 | |
872 | /// Returns the address space of the pointer operand. |
873 | unsigned getPointerAddressSpace() const { |
874 | return getPointerOperand()->getType()->getPointerAddressSpace(); |
875 | } |
876 | |
877 | bool isFloatingPointOperation() const { |
878 | return isFPOperation(getOperation()); |
879 | } |
880 | |
881 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
882 | static bool classof(const Instruction *I) { |
883 | return I->getOpcode() == Instruction::AtomicRMW; |
884 | } |
885 | static bool classof(const Value *V) { |
886 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
887 | } |
888 | |
889 | private: |
890 | void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align, |
891 | AtomicOrdering Ordering, SyncScope::ID SSID); |
892 | |
893 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
894 | // method so that subclasses cannot accidentally use it. |
895 | template <typename Bitfield> |
896 | void setSubclassData(typename Bitfield::Type Value) { |
897 | Instruction::setSubclassData<Bitfield>(Value); |
898 | } |
899 | |
900 | /// The synchronization scope ID of this rmw instruction. Not quite enough |
901 | /// room in SubClassData for everything, so synchronization scope ID gets its |
902 | /// own field. |
903 | SyncScope::ID SSID; |
904 | }; |
905 | |
906 | template <> |
907 | struct OperandTraits<AtomicRMWInst> |
908 | : public FixedNumOperandTraits<AtomicRMWInst,2> { |
909 | }; |
910 | |
911 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)AtomicRMWInst::op_iterator AtomicRMWInst::op_begin() { return OperandTraits<AtomicRMWInst>::op_begin(this); } AtomicRMWInst ::const_op_iterator AtomicRMWInst::op_begin() const { return OperandTraits <AtomicRMWInst>::op_begin(const_cast<AtomicRMWInst*> (this)); } AtomicRMWInst::op_iterator AtomicRMWInst::op_end() { return OperandTraits<AtomicRMWInst>::op_end(this); } AtomicRMWInst::const_op_iterator AtomicRMWInst::op_end() const { return OperandTraits<AtomicRMWInst>::op_end(const_cast <AtomicRMWInst*>(this)); } Value *AtomicRMWInst::getOperand (unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<AtomicRMWInst>::op_begin(const_cast <AtomicRMWInst*>(this))[i_nocapture].get()); } void AtomicRMWInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<AtomicRMWInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned AtomicRMWInst::getNumOperands() const { return OperandTraits<AtomicRMWInst>::operands( this); } template <int Idx_nocapture> Use &AtomicRMWInst ::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &AtomicRMWInst ::Op() const { return this->OpFrom<Idx_nocapture>(this ); } |
912 | |
913 | //===----------------------------------------------------------------------===// |
914 | // GetElementPtrInst Class |
915 | //===----------------------------------------------------------------------===// |
916 | |
917 | // checkGEPType - Simple wrapper function to give a better assertion failure |
918 | // message on bad indexes for a gep instruction. |
919 | // |
920 | inline Type *checkGEPType(Type *Ty) { |
921 | assert(Ty && "Invalid GetElementPtrInst indices for type!")((void)0); |
922 | return Ty; |
923 | } |
924 | |
925 | /// an instruction for type-safe pointer arithmetic to |
926 | /// access elements of arrays and structs |
927 | /// |
928 | class GetElementPtrInst : public Instruction { |
929 | Type *SourceElementType; |
930 | Type *ResultElementType; |
931 | |
932 | GetElementPtrInst(const GetElementPtrInst &GEPI); |
933 | |
934 | /// Constructors - Create a getelementptr instruction with a base pointer an |
935 | /// list of indices. The first ctor can optionally insert before an existing |
936 | /// instruction, the second appends the new instruction to the specified |
937 | /// BasicBlock. |
938 | inline GetElementPtrInst(Type *PointeeType, Value *Ptr, |
939 | ArrayRef<Value *> IdxList, unsigned Values, |
940 | const Twine &NameStr, Instruction *InsertBefore); |
941 | inline GetElementPtrInst(Type *PointeeType, Value *Ptr, |
942 | ArrayRef<Value *> IdxList, unsigned Values, |
943 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
944 | |
945 | void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr); |
946 | |
947 | protected: |
948 | // Note: Instruction needs to be a friend here to call cloneImpl. |
949 | friend class Instruction; |
950 | |
951 | GetElementPtrInst *cloneImpl() const; |
952 | |
953 | public: |
954 | static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr, |
955 | ArrayRef<Value *> IdxList, |
956 | const Twine &NameStr = "", |
957 | Instruction *InsertBefore = nullptr) { |
958 | unsigned Values = 1 + unsigned(IdxList.size()); |
959 | assert(PointeeType && "Must specify element type")((void)0); |
960 | assert(cast<PointerType>(Ptr->getType()->getScalarType())((void)0) |
961 | ->isOpaqueOrPointeeTypeMatches(PointeeType))((void)0); |
962 | return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values, |
963 | NameStr, InsertBefore); |
964 | } |
965 | |
966 | static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr, |
967 | ArrayRef<Value *> IdxList, |
968 | const Twine &NameStr, |
969 | BasicBlock *InsertAtEnd) { |
970 | unsigned Values = 1 + unsigned(IdxList.size()); |
971 | assert(PointeeType && "Must specify element type")((void)0); |
972 | assert(cast<PointerType>(Ptr->getType()->getScalarType())((void)0) |
973 | ->isOpaqueOrPointeeTypeMatches(PointeeType))((void)0); |
974 | return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values, |
975 | NameStr, InsertAtEnd); |
976 | } |
977 | |
978 | LLVM_ATTRIBUTE_DEPRECATED(static GetElementPtrInst *CreateInBounds([[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) |
979 | Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr = "",[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) |
980 | Instruction *InsertBefore = nullptr),[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) |
981 | "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) { |
982 | return CreateInBounds( |
983 | Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, IdxList, |
984 | NameStr, InsertBefore); |
985 | } |
986 | |
987 | /// Create an "inbounds" getelementptr. See the documentation for the |
988 | /// "inbounds" flag in LangRef.html for details. |
989 | static GetElementPtrInst * |
990 | CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList, |
991 | const Twine &NameStr = "", |
992 | Instruction *InsertBefore = nullptr) { |
993 | GetElementPtrInst *GEP = |
994 | Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore); |
995 | GEP->setIsInBounds(true); |
996 | return GEP; |
997 | } |
998 | |
999 | LLVM_ATTRIBUTE_DEPRECATED(static GetElementPtrInst *CreateInBounds([[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) |
1000 | Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr,[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) |
1001 | BasicBlock *InsertAtEnd),[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) |
1002 | "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) { |
1003 | return CreateInBounds( |
1004 | Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, IdxList, |
1005 | NameStr, InsertAtEnd); |
1006 | } |
1007 | |
1008 | static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr, |
1009 | ArrayRef<Value *> IdxList, |
1010 | const Twine &NameStr, |
1011 | BasicBlock *InsertAtEnd) { |
1012 | GetElementPtrInst *GEP = |
1013 | Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd); |
1014 | GEP->setIsInBounds(true); |
1015 | return GEP; |
1016 | } |
1017 | |
1018 | /// Transparently provide more efficient getOperand methods. |
1019 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
1020 | |
1021 | Type *getSourceElementType() const { return SourceElementType; } |
1022 | |
1023 | void setSourceElementType(Type *Ty) { SourceElementType = Ty; } |
1024 | void setResultElementType(Type *Ty) { ResultElementType = Ty; } |
1025 | |
1026 | Type *getResultElementType() const { |
1027 | assert(cast<PointerType>(getType()->getScalarType())((void)0) |
1028 | ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0); |
1029 | return ResultElementType; |
1030 | } |
1031 | |
1032 | /// Returns the address space of this instruction's pointer type. |
1033 | unsigned getAddressSpace() const { |
1034 | // Note that this is always the same as the pointer operand's address space |
1035 | // and that is cheaper to compute, so cheat here. |
1036 | return getPointerAddressSpace(); |
1037 | } |
1038 | |
1039 | /// Returns the result type of a getelementptr with the given source |
1040 | /// element type and indexes. |
1041 | /// |
1042 | /// Null is returned if the indices are invalid for the specified |
1043 | /// source element type. |
1044 | static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList); |
1045 | static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList); |
1046 | static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList); |
1047 | |
1048 | /// Return the type of the element at the given index of an indexable |
1049 | /// type. This is equivalent to "getIndexedType(Agg, {Zero, Idx})". |
1050 | /// |
1051 | /// Returns null if the type can't be indexed, or the given index is not |
1052 | /// legal for the given type. |
1053 | static Type *getTypeAtIndex(Type *Ty, Value *Idx); |
1054 | static Type *getTypeAtIndex(Type *Ty, uint64_t Idx); |
1055 | |
1056 | inline op_iterator idx_begin() { return op_begin()+1; } |
1057 | inline const_op_iterator idx_begin() const { return op_begin()+1; } |
1058 | inline op_iterator idx_end() { return op_end(); } |
1059 | inline const_op_iterator idx_end() const { return op_end(); } |
1060 | |
1061 | inline iterator_range<op_iterator> indices() { |
1062 | return make_range(idx_begin(), idx_end()); |
1063 | } |
1064 | |
1065 | inline iterator_range<const_op_iterator> indices() const { |
1066 | return make_range(idx_begin(), idx_end()); |
1067 | } |
1068 | |
1069 | Value *getPointerOperand() { |
1070 | return getOperand(0); |
1071 | } |
1072 | const Value *getPointerOperand() const { |
1073 | return getOperand(0); |
1074 | } |
1075 | static unsigned getPointerOperandIndex() { |
1076 | return 0U; // get index for modifying correct operand. |
1077 | } |
1078 | |
1079 | /// Method to return the pointer operand as a |
1080 | /// PointerType. |
1081 | Type *getPointerOperandType() const { |
1082 | return getPointerOperand()->getType(); |
1083 | } |
1084 | |
1085 | /// Returns the address space of the pointer operand. |
1086 | unsigned getPointerAddressSpace() const { |
1087 | return getPointerOperandType()->getPointerAddressSpace(); |
1088 | } |
1089 | |
1090 | /// Returns the pointer type returned by the GEP |
1091 | /// instruction, which may be a vector of pointers. |
1092 | static Type *getGEPReturnType(Type *ElTy, Value *Ptr, |
1093 | ArrayRef<Value *> IdxList) { |
1094 | PointerType *OrigPtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); |
1095 | unsigned AddrSpace = OrigPtrTy->getAddressSpace(); |
1096 | Type *ResultElemTy = checkGEPType(getIndexedType(ElTy, IdxList)); |
1097 | Type *PtrTy = OrigPtrTy->isOpaque() |
1098 | ? PointerType::get(OrigPtrTy->getContext(), AddrSpace) |
1099 | : PointerType::get(ResultElemTy, AddrSpace); |
1100 | // Vector GEP |
1101 | if (auto *PtrVTy = dyn_cast<VectorType>(Ptr->getType())) { |
1102 | ElementCount EltCount = PtrVTy->getElementCount(); |
1103 | return VectorType::get(PtrTy, EltCount); |
1104 | } |
1105 | for (Value *Index : IdxList) |
1106 | if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) { |
1107 | ElementCount EltCount = IndexVTy->getElementCount(); |
1108 | return VectorType::get(PtrTy, EltCount); |
1109 | } |
1110 | // Scalar GEP |
1111 | return PtrTy; |
1112 | } |
1113 | |
1114 | unsigned getNumIndices() const { // Note: always non-negative |
1115 | return getNumOperands() - 1; |
1116 | } |
1117 | |
1118 | bool hasIndices() const { |
1119 | return getNumOperands() > 1; |
1120 | } |
1121 | |
1122 | /// Return true if all of the indices of this GEP are |
1123 | /// zeros. If so, the result pointer and the first operand have the same |
1124 | /// value, just potentially different types. |
1125 | bool hasAllZeroIndices() const; |
1126 | |
1127 | /// Return true if all of the indices of this GEP are |
1128 | /// constant integers. If so, the result pointer and the first operand have |
1129 | /// a constant offset between them. |
1130 | bool hasAllConstantIndices() const; |
1131 | |
1132 | /// Set or clear the inbounds flag on this GEP instruction. |
1133 | /// See LangRef.html for the meaning of inbounds on a getelementptr. |
1134 | void setIsInBounds(bool b = true); |
1135 | |
1136 | /// Determine whether the GEP has the inbounds flag. |
1137 | bool isInBounds() const; |
1138 | |
1139 | /// Accumulate the constant address offset of this GEP if possible. |
1140 | /// |
1141 | /// This routine accepts an APInt into which it will accumulate the constant |
1142 | /// offset of this GEP if the GEP is in fact constant. If the GEP is not |
1143 | /// all-constant, it returns false and the value of the offset APInt is |
1144 | /// undefined (it is *not* preserved!). The APInt passed into this routine |
1145 | /// must be at least as wide as the IntPtr type for the address space of |
1146 | /// the base GEP pointer. |
1147 | bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const; |
1148 | bool collectOffset(const DataLayout &DL, unsigned BitWidth, |
1149 | MapVector<Value *, APInt> &VariableOffsets, |
1150 | APInt &ConstantOffset) const; |
1151 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
1152 | static bool classof(const Instruction *I) { |
1153 | return (I->getOpcode() == Instruction::GetElementPtr); |
1154 | } |
1155 | static bool classof(const Value *V) { |
1156 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1157 | } |
1158 | }; |
1159 | |
1160 | template <> |
1161 | struct OperandTraits<GetElementPtrInst> : |
1162 | public VariadicOperandTraits<GetElementPtrInst, 1> { |
1163 | }; |
1164 | |
1165 | GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr, |
1166 | ArrayRef<Value *> IdxList, unsigned Values, |
1167 | const Twine &NameStr, |
1168 | Instruction *InsertBefore) |
1169 | : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr, |
1170 | OperandTraits<GetElementPtrInst>::op_end(this) - Values, |
1171 | Values, InsertBefore), |
1172 | SourceElementType(PointeeType), |
1173 | ResultElementType(getIndexedType(PointeeType, IdxList)) { |
1174 | assert(cast<PointerType>(getType()->getScalarType())((void)0) |
1175 | ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0); |
1176 | init(Ptr, IdxList, NameStr); |
1177 | } |
1178 | |
1179 | GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr, |
1180 | ArrayRef<Value *> IdxList, unsigned Values, |
1181 | const Twine &NameStr, |
1182 | BasicBlock *InsertAtEnd) |
1183 | : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr, |
1184 | OperandTraits<GetElementPtrInst>::op_end(this) - Values, |
1185 | Values, InsertAtEnd), |
1186 | SourceElementType(PointeeType), |
1187 | ResultElementType(getIndexedType(PointeeType, IdxList)) { |
1188 | assert(cast<PointerType>(getType()->getScalarType())((void)0) |
1189 | ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0); |
1190 | init(Ptr, IdxList, NameStr); |
1191 | } |
1192 | |
1193 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)GetElementPtrInst::op_iterator GetElementPtrInst::op_begin() { return OperandTraits<GetElementPtrInst>::op_begin(this ); } GetElementPtrInst::const_op_iterator GetElementPtrInst:: op_begin() const { return OperandTraits<GetElementPtrInst> ::op_begin(const_cast<GetElementPtrInst*>(this)); } GetElementPtrInst ::op_iterator GetElementPtrInst::op_end() { return OperandTraits <GetElementPtrInst>::op_end(this); } GetElementPtrInst:: const_op_iterator GetElementPtrInst::op_end() const { return OperandTraits <GetElementPtrInst>::op_end(const_cast<GetElementPtrInst *>(this)); } Value *GetElementPtrInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<GetElementPtrInst>::op_begin(const_cast <GetElementPtrInst*>(this))[i_nocapture].get()); } void GetElementPtrInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<GetElementPtrInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned GetElementPtrInst ::getNumOperands() const { return OperandTraits<GetElementPtrInst >::operands(this); } template <int Idx_nocapture> Use &GetElementPtrInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & GetElementPtrInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
1194 | |
1195 | //===----------------------------------------------------------------------===// |
1196 | // ICmpInst Class |
1197 | //===----------------------------------------------------------------------===// |
1198 | |
1199 | /// This instruction compares its operands according to the predicate given |
1200 | /// to the constructor. It only operates on integers or pointers. The operands |
1201 | /// must be identical types. |
1202 | /// Represent an integer comparison operator. |
1203 | class ICmpInst: public CmpInst { |
1204 | void AssertOK() { |
1205 | assert(isIntPredicate() &&((void)0) |
1206 | "Invalid ICmp predicate value")((void)0); |
1207 | assert(getOperand(0)->getType() == getOperand(1)->getType() &&((void)0) |
1208 | "Both operands to ICmp instruction are not of the same type!")((void)0); |
1209 | // Check that the operands are the right type |
1210 | assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||((void)0) |
1211 | getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&((void)0) |
1212 | "Invalid operand types for ICmp instruction")((void)0); |
1213 | } |
1214 | |
1215 | protected: |
1216 | // Note: Instruction needs to be a friend here to call cloneImpl. |
1217 | friend class Instruction; |
1218 | |
1219 | /// Clone an identical ICmpInst |
1220 | ICmpInst *cloneImpl() const; |
1221 | |
1222 | public: |
1223 | /// Constructor with insert-before-instruction semantics. |
1224 | ICmpInst( |
1225 | Instruction *InsertBefore, ///< Where to insert |
1226 | Predicate pred, ///< The predicate to use for the comparison |
1227 | Value *LHS, ///< The left-hand-side of the expression |
1228 | Value *RHS, ///< The right-hand-side of the expression |
1229 | const Twine &NameStr = "" ///< Name of the instruction |
1230 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
1231 | Instruction::ICmp, pred, LHS, RHS, NameStr, |
1232 | InsertBefore) { |
1233 | #ifndef NDEBUG1 |
1234 | AssertOK(); |
1235 | #endif |
1236 | } |
1237 | |
1238 | /// Constructor with insert-at-end semantics. |
1239 | ICmpInst( |
1240 | BasicBlock &InsertAtEnd, ///< Block to insert into. |
1241 | Predicate pred, ///< The predicate to use for the comparison |
1242 | Value *LHS, ///< The left-hand-side of the expression |
1243 | Value *RHS, ///< The right-hand-side of the expression |
1244 | const Twine &NameStr = "" ///< Name of the instruction |
1245 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
1246 | Instruction::ICmp, pred, LHS, RHS, NameStr, |
1247 | &InsertAtEnd) { |
1248 | #ifndef NDEBUG1 |
1249 | AssertOK(); |
1250 | #endif |
1251 | } |
1252 | |
1253 | /// Constructor with no-insertion semantics |
1254 | ICmpInst( |
1255 | Predicate pred, ///< The predicate to use for the comparison |
1256 | Value *LHS, ///< The left-hand-side of the expression |
1257 | Value *RHS, ///< The right-hand-side of the expression |
1258 | const Twine &NameStr = "" ///< Name of the instruction |
1259 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
1260 | Instruction::ICmp, pred, LHS, RHS, NameStr) { |
1261 | #ifndef NDEBUG1 |
1262 | AssertOK(); |
1263 | #endif |
1264 | } |
1265 | |
1266 | /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc. |
1267 | /// @returns the predicate that would be the result if the operand were |
1268 | /// regarded as signed. |
1269 | /// Return the signed version of the predicate |
1270 | Predicate getSignedPredicate() const { |
1271 | return getSignedPredicate(getPredicate()); |
1272 | } |
1273 | |
1274 | /// This is a static version that you can use without an instruction. |
1275 | /// Return the signed version of the predicate. |
1276 | static Predicate getSignedPredicate(Predicate pred); |
1277 | |
1278 | /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc. |
1279 | /// @returns the predicate that would be the result if the operand were |
1280 | /// regarded as unsigned. |
1281 | /// Return the unsigned version of the predicate |
1282 | Predicate getUnsignedPredicate() const { |
1283 | return getUnsignedPredicate(getPredicate()); |
1284 | } |
1285 | |
1286 | /// This is a static version that you can use without an instruction. |
1287 | /// Return the unsigned version of the predicate. |
1288 | static Predicate getUnsignedPredicate(Predicate pred); |
1289 | |
1290 | /// Return true if this predicate is either EQ or NE. This also |
1291 | /// tests for commutativity. |
1292 | static bool isEquality(Predicate P) { |
1293 | return P == ICMP_EQ || P == ICMP_NE; |
1294 | } |
1295 | |
1296 | /// Return true if this predicate is either EQ or NE. This also |
1297 | /// tests for commutativity. |
1298 | bool isEquality() const { |
1299 | return isEquality(getPredicate()); |
1300 | } |
1301 | |
1302 | /// @returns true if the predicate of this ICmpInst is commutative |
1303 | /// Determine if this relation is commutative. |
1304 | bool isCommutative() const { return isEquality(); } |
1305 | |
1306 | /// Return true if the predicate is relational (not EQ or NE). |
1307 | /// |
1308 | bool isRelational() const { |
1309 | return !isEquality(); |
1310 | } |
1311 | |
1312 | /// Return true if the predicate is relational (not EQ or NE). |
1313 | /// |
1314 | static bool isRelational(Predicate P) { |
1315 | return !isEquality(P); |
1316 | } |
1317 | |
1318 | /// Return true if the predicate is SGT or UGT. |
1319 | /// |
1320 | static bool isGT(Predicate P) { |
1321 | return P == ICMP_SGT || P == ICMP_UGT; |
1322 | } |
1323 | |
1324 | /// Return true if the predicate is SLT or ULT. |
1325 | /// |
1326 | static bool isLT(Predicate P) { |
1327 | return P == ICMP_SLT || P == ICMP_ULT; |
1328 | } |
1329 | |
1330 | /// Return true if the predicate is SGE or UGE. |
1331 | /// |
1332 | static bool isGE(Predicate P) { |
1333 | return P == ICMP_SGE || P == ICMP_UGE; |
1334 | } |
1335 | |
1336 | /// Return true if the predicate is SLE or ULE. |
1337 | /// |
1338 | static bool isLE(Predicate P) { |
1339 | return P == ICMP_SLE || P == ICMP_ULE; |
1340 | } |
1341 | |
1342 | /// Exchange the two operands to this instruction in such a way that it does |
1343 | /// not modify the semantics of the instruction. The predicate value may be |
1344 | /// changed to retain the same result if the predicate is order dependent |
1345 | /// (e.g. ult). |
1346 | /// Swap operands and adjust predicate. |
1347 | void swapOperands() { |
1348 | setPredicate(getSwappedPredicate()); |
1349 | Op<0>().swap(Op<1>()); |
1350 | } |
1351 | |
1352 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
1353 | static bool classof(const Instruction *I) { |
1354 | return I->getOpcode() == Instruction::ICmp; |
1355 | } |
1356 | static bool classof(const Value *V) { |
1357 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1358 | } |
1359 | }; |
1360 | |
1361 | //===----------------------------------------------------------------------===// |
1362 | // FCmpInst Class |
1363 | //===----------------------------------------------------------------------===// |
1364 | |
1365 | /// This instruction compares its operands according to the predicate given |
1366 | /// to the constructor. It only operates on floating point values or packed |
1367 | /// vectors of floating point values. The operands must be identical types. |
1368 | /// Represents a floating point comparison operator. |
1369 | class FCmpInst: public CmpInst { |
1370 | void AssertOK() { |
1371 | assert(isFPPredicate() && "Invalid FCmp predicate value")((void)0); |
1372 | assert(getOperand(0)->getType() == getOperand(1)->getType() &&((void)0) |
1373 | "Both operands to FCmp instruction are not of the same type!")((void)0); |
1374 | // Check that the operands are the right type |
1375 | assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&((void)0) |
1376 | "Invalid operand types for FCmp instruction")((void)0); |
1377 | } |
1378 | |
1379 | protected: |
1380 | // Note: Instruction needs to be a friend here to call cloneImpl. |
1381 | friend class Instruction; |
1382 | |
1383 | /// Clone an identical FCmpInst |
1384 | FCmpInst *cloneImpl() const; |
1385 | |
1386 | public: |
1387 | /// Constructor with insert-before-instruction semantics. |
1388 | FCmpInst( |
1389 | Instruction *InsertBefore, ///< Where to insert |
1390 | Predicate pred, ///< The predicate to use for the comparison |
1391 | Value *LHS, ///< The left-hand-side of the expression |
1392 | Value *RHS, ///< The right-hand-side of the expression |
1393 | const Twine &NameStr = "" ///< Name of the instruction |
1394 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
1395 | Instruction::FCmp, pred, LHS, RHS, NameStr, |
1396 | InsertBefore) { |
1397 | AssertOK(); |
1398 | } |
1399 | |
1400 | /// Constructor with insert-at-end semantics. |
1401 | FCmpInst( |
1402 | BasicBlock &InsertAtEnd, ///< Block to insert into. |
1403 | Predicate pred, ///< The predicate to use for the comparison |
1404 | Value *LHS, ///< The left-hand-side of the expression |
1405 | Value *RHS, ///< The right-hand-side of the expression |
1406 | const Twine &NameStr = "" ///< Name of the instruction |
1407 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
1408 | Instruction::FCmp, pred, LHS, RHS, NameStr, |
1409 | &InsertAtEnd) { |
1410 | AssertOK(); |
1411 | } |
1412 | |
1413 | /// Constructor with no-insertion semantics |
1414 | FCmpInst( |
1415 | Predicate Pred, ///< The predicate to use for the comparison |
1416 | Value *LHS, ///< The left-hand-side of the expression |
1417 | Value *RHS, ///< The right-hand-side of the expression |
1418 | const Twine &NameStr = "", ///< Name of the instruction |
1419 | Instruction *FlagsSource = nullptr |
1420 | ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS, |
1421 | RHS, NameStr, nullptr, FlagsSource) { |
1422 | AssertOK(); |
1423 | } |
1424 | |
1425 | /// @returns true if the predicate of this instruction is EQ or NE. |
1426 | /// Determine if this is an equality predicate. |
1427 | static bool isEquality(Predicate Pred) { |
1428 | return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ || |
1429 | Pred == FCMP_UNE; |
1430 | } |
1431 | |
1432 | /// @returns true if the predicate of this instruction is EQ or NE. |
1433 | /// Determine if this is an equality predicate. |
1434 | bool isEquality() const { return isEquality(getPredicate()); } |
1435 | |
1436 | /// @returns true if the predicate of this instruction is commutative. |
1437 | /// Determine if this is a commutative predicate. |
1438 | bool isCommutative() const { |
1439 | return isEquality() || |
1440 | getPredicate() == FCMP_FALSE || |
1441 | getPredicate() == FCMP_TRUE || |
1442 | getPredicate() == FCMP_ORD || |
1443 | getPredicate() == FCMP_UNO; |
1444 | } |
1445 | |
1446 | /// @returns true if the predicate is relational (not EQ or NE). |
1447 | /// Determine if this a relational predicate. |
1448 | bool isRelational() const { return !isEquality(); } |
1449 | |
1450 | /// Exchange the two operands to this instruction in such a way that it does |
1451 | /// not modify the semantics of the instruction. The predicate value may be |
1452 | /// changed to retain the same result if the predicate is order dependent |
1453 | /// (e.g. ult). |
1454 | /// Swap operands and adjust predicate. |
1455 | void swapOperands() { |
1456 | setPredicate(getSwappedPredicate()); |
1457 | Op<0>().swap(Op<1>()); |
1458 | } |
1459 | |
1460 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
1461 | static bool classof(const Instruction *I) { |
1462 | return I->getOpcode() == Instruction::FCmp; |
1463 | } |
1464 | static bool classof(const Value *V) { |
1465 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1466 | } |
1467 | }; |
1468 | |
1469 | //===----------------------------------------------------------------------===// |
1470 | /// This class represents a function call, abstracting a target |
1471 | /// machine's calling convention. This class uses low bit of the SubClassData |
1472 | /// field to indicate whether or not this is a tail call. The rest of the bits |
1473 | /// hold the calling convention of the call. |
1474 | /// |
1475 | class CallInst : public CallBase { |
1476 | CallInst(const CallInst &CI); |
1477 | |
1478 | /// Construct a CallInst given a range of arguments. |
1479 | /// Construct a CallInst from a range of arguments |
1480 | inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1481 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
1482 | Instruction *InsertBefore); |
1483 | |
1484 | inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1485 | const Twine &NameStr, Instruction *InsertBefore) |
1486 | : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {} |
1487 | |
1488 | /// Construct a CallInst given a range of arguments. |
1489 | /// Construct a CallInst from a range of arguments |
1490 | inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1491 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
1492 | BasicBlock *InsertAtEnd); |
1493 | |
1494 | explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr, |
1495 | Instruction *InsertBefore); |
1496 | |
1497 | CallInst(FunctionType *ty, Value *F, const Twine &NameStr, |
1498 | BasicBlock *InsertAtEnd); |
1499 | |
1500 | void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args, |
1501 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr); |
1502 | void init(FunctionType *FTy, Value *Func, const Twine &NameStr); |
1503 | |
1504 | /// Compute the number of operands to allocate. |
1505 | static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) { |
1506 | // We need one operand for the called function, plus the input operand |
1507 | // counts provided. |
1508 | return 1 + NumArgs + NumBundleInputs; |
1509 | } |
1510 | |
1511 | protected: |
1512 | // Note: Instruction needs to be a friend here to call cloneImpl. |
1513 | friend class Instruction; |
1514 | |
1515 | CallInst *cloneImpl() const; |
1516 | |
1517 | public: |
1518 | static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "", |
1519 | Instruction *InsertBefore = nullptr) { |
1520 | return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore); |
1521 | } |
1522 | |
1523 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1524 | const Twine &NameStr, |
1525 | Instruction *InsertBefore = nullptr) { |
1526 | return new (ComputeNumOperands(Args.size())) |
1527 | CallInst(Ty, Func, Args, None, NameStr, InsertBefore); |
1528 | } |
1529 | |
1530 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1531 | ArrayRef<OperandBundleDef> Bundles = None, |
1532 | const Twine &NameStr = "", |
1533 | Instruction *InsertBefore = nullptr) { |
1534 | const int NumOperands = |
1535 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); |
1536 | const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
1537 | |
1538 | return new (NumOperands, DescriptorBytes) |
1539 | CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore); |
1540 | } |
1541 | |
1542 | static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr, |
1543 | BasicBlock *InsertAtEnd) { |
1544 | return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd); |
1545 | } |
1546 | |
1547 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1548 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
1549 | return new (ComputeNumOperands(Args.size())) |
1550 | CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd); |
1551 | } |
1552 | |
1553 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1554 | ArrayRef<OperandBundleDef> Bundles, |
1555 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
1556 | const int NumOperands = |
1557 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); |
1558 | const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
1559 | |
1560 | return new (NumOperands, DescriptorBytes) |
1561 | CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd); |
1562 | } |
1563 | |
1564 | static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "", |
1565 | Instruction *InsertBefore = nullptr) { |
1566 | return Create(Func.getFunctionType(), Func.getCallee(), NameStr, |
1567 | InsertBefore); |
1568 | } |
1569 | |
1570 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
1571 | ArrayRef<OperandBundleDef> Bundles = None, |
1572 | const Twine &NameStr = "", |
1573 | Instruction *InsertBefore = nullptr) { |
1574 | return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles, |
1575 | NameStr, InsertBefore); |
1576 | } |
1577 | |
1578 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
1579 | const Twine &NameStr, |
1580 | Instruction *InsertBefore = nullptr) { |
1581 | return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr, |
1582 | InsertBefore); |
1583 | } |
1584 | |
1585 | static CallInst *Create(FunctionCallee Func, const Twine &NameStr, |
1586 | BasicBlock *InsertAtEnd) { |
1587 | return Create(Func.getFunctionType(), Func.getCallee(), NameStr, |
1588 | InsertAtEnd); |
1589 | } |
1590 | |
1591 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
1592 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
1593 | return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr, |
1594 | InsertAtEnd); |
1595 | } |
1596 | |
1597 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
1598 | ArrayRef<OperandBundleDef> Bundles, |
1599 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
1600 | return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles, |
1601 | NameStr, InsertAtEnd); |
1602 | } |
1603 | |
1604 | /// Create a clone of \p CI with a different set of operand bundles and |
1605 | /// insert it before \p InsertPt. |
1606 | /// |
1607 | /// The returned call instruction is identical \p CI in every way except that |
1608 | /// the operand bundles for the new instruction are set to the operand bundles |
1609 | /// in \p Bundles. |
1610 | static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles, |
1611 | Instruction *InsertPt = nullptr); |
1612 | |
1613 | /// Generate the IR for a call to malloc: |
1614 | /// 1. Compute the malloc call's argument as the specified type's size, |
1615 | /// possibly multiplied by the array size if the array size is not |
1616 | /// constant 1. |
1617 | /// 2. Call malloc with that argument. |
1618 | /// 3. Bitcast the result of the malloc call to the specified type. |
1619 | static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy, |
1620 | Type *AllocTy, Value *AllocSize, |
1621 | Value *ArraySize = nullptr, |
1622 | Function *MallocF = nullptr, |
1623 | const Twine &Name = ""); |
1624 | static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy, |
1625 | Type *AllocTy, Value *AllocSize, |
1626 | Value *ArraySize = nullptr, |
1627 | Function *MallocF = nullptr, |
1628 | const Twine &Name = ""); |
1629 | static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy, |
1630 | Type *AllocTy, Value *AllocSize, |
1631 | Value *ArraySize = nullptr, |
1632 | ArrayRef<OperandBundleDef> Bundles = None, |
1633 | Function *MallocF = nullptr, |
1634 | const Twine &Name = ""); |
1635 | static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy, |
1636 | Type *AllocTy, Value *AllocSize, |
1637 | Value *ArraySize = nullptr, |
1638 | ArrayRef<OperandBundleDef> Bundles = None, |
1639 | Function *MallocF = nullptr, |
1640 | const Twine &Name = ""); |
1641 | /// Generate the IR for a call to the builtin free function. |
1642 | static Instruction *CreateFree(Value *Source, Instruction *InsertBefore); |
1643 | static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd); |
1644 | static Instruction *CreateFree(Value *Source, |
1645 | ArrayRef<OperandBundleDef> Bundles, |
1646 | Instruction *InsertBefore); |
1647 | static Instruction *CreateFree(Value *Source, |
1648 | ArrayRef<OperandBundleDef> Bundles, |
1649 | BasicBlock *InsertAtEnd); |
1650 | |
1651 | // Note that 'musttail' implies 'tail'. |
1652 | enum TailCallKind : unsigned { |
1653 | TCK_None = 0, |
1654 | TCK_Tail = 1, |
1655 | TCK_MustTail = 2, |
1656 | TCK_NoTail = 3, |
1657 | TCK_LAST = TCK_NoTail |
1658 | }; |
1659 | |
1660 | using TailCallKindField = Bitfield::Element<TailCallKind, 0, 2, TCK_LAST>; |
1661 | static_assert( |
1662 | Bitfield::areContiguous<TailCallKindField, CallBase::CallingConvField>(), |
1663 | "Bitfields must be contiguous"); |
1664 | |
1665 | TailCallKind getTailCallKind() const { |
1666 | return getSubclassData<TailCallKindField>(); |
1667 | } |
1668 | |
1669 | bool isTailCall() const { |
1670 | TailCallKind Kind = getTailCallKind(); |
1671 | return Kind == TCK_Tail || Kind == TCK_MustTail; |
1672 | } |
1673 | |
1674 | bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; } |
1675 | |
1676 | bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; } |
1677 | |
1678 | void setTailCallKind(TailCallKind TCK) { |
1679 | setSubclassData<TailCallKindField>(TCK); |
1680 | } |
1681 | |
1682 | void setTailCall(bool IsTc = true) { |
1683 | setTailCallKind(IsTc ? TCK_Tail : TCK_None); |
1684 | } |
1685 | |
1686 | /// Return true if the call can return twice |
1687 | bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); } |
1688 | void setCanReturnTwice() { |
1689 | addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice); |
1690 | } |
1691 | |
1692 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
1693 | static bool classof(const Instruction *I) { |
1694 | return I->getOpcode() == Instruction::Call; |
1695 | } |
1696 | static bool classof(const Value *V) { |
1697 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1698 | } |
1699 | |
1700 | /// Updates profile metadata by scaling it by \p S / \p T. |
1701 | void updateProfWeight(uint64_t S, uint64_t T); |
1702 | |
1703 | private: |
1704 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
1705 | // method so that subclasses cannot accidentally use it. |
1706 | template <typename Bitfield> |
1707 | void setSubclassData(typename Bitfield::Type Value) { |
1708 | Instruction::setSubclassData<Bitfield>(Value); |
1709 | } |
1710 | }; |
1711 | |
1712 | CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1713 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
1714 | BasicBlock *InsertAtEnd) |
1715 | : CallBase(Ty->getReturnType(), Instruction::Call, |
1716 | OperandTraits<CallBase>::op_end(this) - |
1717 | (Args.size() + CountBundleInputs(Bundles) + 1), |
1718 | unsigned(Args.size() + CountBundleInputs(Bundles) + 1), |
1719 | InsertAtEnd) { |
1720 | init(Ty, Func, Args, Bundles, NameStr); |
1721 | } |
1722 | |
1723 | CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1724 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
1725 | Instruction *InsertBefore) |
1726 | : CallBase(Ty->getReturnType(), Instruction::Call, |
1727 | OperandTraits<CallBase>::op_end(this) - |
1728 | (Args.size() + CountBundleInputs(Bundles) + 1), |
1729 | unsigned(Args.size() + CountBundleInputs(Bundles) + 1), |
1730 | InsertBefore) { |
1731 | init(Ty, Func, Args, Bundles, NameStr); |
1732 | } |
1733 | |
1734 | //===----------------------------------------------------------------------===// |
1735 | // SelectInst Class |
1736 | //===----------------------------------------------------------------------===// |
1737 | |
1738 | /// This class represents the LLVM 'select' instruction. |
1739 | /// |
1740 | class SelectInst : public Instruction { |
1741 | SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr, |
1742 | Instruction *InsertBefore) |
1743 | : Instruction(S1->getType(), Instruction::Select, |
1744 | &Op<0>(), 3, InsertBefore) { |
1745 | init(C, S1, S2); |
1746 | setName(NameStr); |
1747 | } |
1748 | |
1749 | SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr, |
1750 | BasicBlock *InsertAtEnd) |
1751 | : Instruction(S1->getType(), Instruction::Select, |
1752 | &Op<0>(), 3, InsertAtEnd) { |
1753 | init(C, S1, S2); |
1754 | setName(NameStr); |
1755 | } |
1756 | |
1757 | void init(Value *C, Value *S1, Value *S2) { |
1758 | assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select")((void)0); |
1759 | Op<0>() = C; |
1760 | Op<1>() = S1; |
1761 | Op<2>() = S2; |
1762 | } |
1763 | |
1764 | protected: |
1765 | // Note: Instruction needs to be a friend here to call cloneImpl. |
1766 | friend class Instruction; |
1767 | |
1768 | SelectInst *cloneImpl() const; |
1769 | |
1770 | public: |
1771 | static SelectInst *Create(Value *C, Value *S1, Value *S2, |
1772 | const Twine &NameStr = "", |
1773 | Instruction *InsertBefore = nullptr, |
1774 | Instruction *MDFrom = nullptr) { |
1775 | SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore); |
1776 | if (MDFrom) |
1777 | Sel->copyMetadata(*MDFrom); |
1778 | return Sel; |
1779 | } |
1780 | |
1781 | static SelectInst *Create(Value *C, Value *S1, Value *S2, |
1782 | const Twine &NameStr, |
1783 | BasicBlock *InsertAtEnd) { |
1784 | return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd); |
1785 | } |
1786 | |
1787 | const Value *getCondition() const { return Op<0>(); } |
1788 | const Value *getTrueValue() const { return Op<1>(); } |
1789 | const Value *getFalseValue() const { return Op<2>(); } |
1790 | Value *getCondition() { return Op<0>(); } |
1791 | Value *getTrueValue() { return Op<1>(); } |
1792 | Value *getFalseValue() { return Op<2>(); } |
1793 | |
1794 | void setCondition(Value *V) { Op<0>() = V; } |
1795 | void setTrueValue(Value *V) { Op<1>() = V; } |
1796 | void setFalseValue(Value *V) { Op<2>() = V; } |
1797 | |
1798 | /// Swap the true and false values of the select instruction. |
1799 | /// This doesn't swap prof metadata. |
1800 | void swapValues() { Op<1>().swap(Op<2>()); } |
1801 | |
1802 | /// Return a string if the specified operands are invalid |
1803 | /// for a select operation, otherwise return null. |
1804 | static const char *areInvalidOperands(Value *Cond, Value *True, Value *False); |
1805 | |
1806 | /// Transparently provide more efficient getOperand methods. |
1807 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
1808 | |
1809 | OtherOps getOpcode() const { |
1810 | return static_cast<OtherOps>(Instruction::getOpcode()); |
1811 | } |
1812 | |
1813 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
1814 | static bool classof(const Instruction *I) { |
1815 | return I->getOpcode() == Instruction::Select; |
1816 | } |
1817 | static bool classof(const Value *V) { |
1818 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1819 | } |
1820 | }; |
1821 | |
1822 | template <> |
1823 | struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> { |
1824 | }; |
1825 | |
1826 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)SelectInst::op_iterator SelectInst::op_begin() { return OperandTraits <SelectInst>::op_begin(this); } SelectInst::const_op_iterator SelectInst::op_begin() const { return OperandTraits<SelectInst >::op_begin(const_cast<SelectInst*>(this)); } SelectInst ::op_iterator SelectInst::op_end() { return OperandTraits< SelectInst>::op_end(this); } SelectInst::const_op_iterator SelectInst::op_end() const { return OperandTraits<SelectInst >::op_end(const_cast<SelectInst*>(this)); } Value *SelectInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<SelectInst>::op_begin(const_cast <SelectInst*>(this))[i_nocapture].get()); } void SelectInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<SelectInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned SelectInst::getNumOperands() const { return OperandTraits<SelectInst>::operands(this); } template <int Idx_nocapture> Use &SelectInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &SelectInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
1827 | |
1828 | //===----------------------------------------------------------------------===// |
1829 | // VAArgInst Class |
1830 | //===----------------------------------------------------------------------===// |
1831 | |
1832 | /// This class represents the va_arg llvm instruction, which returns |
1833 | /// an argument of the specified type given a va_list and increments that list |
1834 | /// |
1835 | class VAArgInst : public UnaryInstruction { |
1836 | protected: |
1837 | // Note: Instruction needs to be a friend here to call cloneImpl. |
1838 | friend class Instruction; |
1839 | |
1840 | VAArgInst *cloneImpl() const; |
1841 | |
1842 | public: |
1843 | VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "", |
1844 | Instruction *InsertBefore = nullptr) |
1845 | : UnaryInstruction(Ty, VAArg, List, InsertBefore) { |
1846 | setName(NameStr); |
1847 | } |
1848 | |
1849 | VAArgInst(Value *List, Type *Ty, const Twine &NameStr, |
1850 | BasicBlock *InsertAtEnd) |
1851 | : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) { |
1852 | setName(NameStr); |
1853 | } |
1854 | |
1855 | Value *getPointerOperand() { return getOperand(0); } |
1856 | const Value *getPointerOperand() const { return getOperand(0); } |
1857 | static unsigned getPointerOperandIndex() { return 0U; } |
1858 | |
1859 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
1860 | static bool classof(const Instruction *I) { |
1861 | return I->getOpcode() == VAArg; |
1862 | } |
1863 | static bool classof(const Value *V) { |
1864 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1865 | } |
1866 | }; |
1867 | |
1868 | //===----------------------------------------------------------------------===// |
1869 | // ExtractElementInst Class |
1870 | //===----------------------------------------------------------------------===// |
1871 | |
1872 | /// This instruction extracts a single (scalar) |
1873 | /// element from a VectorType value |
1874 | /// |
1875 | class ExtractElementInst : public Instruction { |
1876 | ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "", |
1877 | Instruction *InsertBefore = nullptr); |
1878 | ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr, |
1879 | BasicBlock *InsertAtEnd); |
1880 | |
1881 | protected: |
1882 | // Note: Instruction needs to be a friend here to call cloneImpl. |
1883 | friend class Instruction; |
1884 | |
1885 | ExtractElementInst *cloneImpl() const; |
1886 | |
1887 | public: |
1888 | static ExtractElementInst *Create(Value *Vec, Value *Idx, |
1889 | const Twine &NameStr = "", |
1890 | Instruction *InsertBefore = nullptr) { |
1891 | return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore); |
1892 | } |
1893 | |
1894 | static ExtractElementInst *Create(Value *Vec, Value *Idx, |
1895 | const Twine &NameStr, |
1896 | BasicBlock *InsertAtEnd) { |
1897 | return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd); |
1898 | } |
1899 | |
1900 | /// Return true if an extractelement instruction can be |
1901 | /// formed with the specified operands. |
1902 | static bool isValidOperands(const Value *Vec, const Value *Idx); |
1903 | |
1904 | Value *getVectorOperand() { return Op<0>(); } |
1905 | Value *getIndexOperand() { return Op<1>(); } |
1906 | const Value *getVectorOperand() const { return Op<0>(); } |
1907 | const Value *getIndexOperand() const { return Op<1>(); } |
1908 | |
1909 | VectorType *getVectorOperandType() const { |
1910 | return cast<VectorType>(getVectorOperand()->getType()); |
1911 | } |
1912 | |
1913 | /// Transparently provide more efficient getOperand methods. |
1914 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
1915 | |
1916 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
1917 | static bool classof(const Instruction *I) { |
1918 | return I->getOpcode() == Instruction::ExtractElement; |
1919 | } |
1920 | static bool classof(const Value *V) { |
1921 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1922 | } |
1923 | }; |
1924 | |
1925 | template <> |
1926 | struct OperandTraits<ExtractElementInst> : |
1927 | public FixedNumOperandTraits<ExtractElementInst, 2> { |
1928 | }; |
1929 | |
1930 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)ExtractElementInst::op_iterator ExtractElementInst::op_begin( ) { return OperandTraits<ExtractElementInst>::op_begin( this); } ExtractElementInst::const_op_iterator ExtractElementInst ::op_begin() const { return OperandTraits<ExtractElementInst >::op_begin(const_cast<ExtractElementInst*>(this)); } ExtractElementInst::op_iterator ExtractElementInst::op_end() { return OperandTraits<ExtractElementInst>::op_end(this ); } ExtractElementInst::const_op_iterator ExtractElementInst ::op_end() const { return OperandTraits<ExtractElementInst >::op_end(const_cast<ExtractElementInst*>(this)); } Value *ExtractElementInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value>( OperandTraits< ExtractElementInst>::op_begin(const_cast<ExtractElementInst *>(this))[i_nocapture].get()); } void ExtractElementInst:: setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void )0); OperandTraits<ExtractElementInst>::op_begin(this)[ i_nocapture] = Val_nocapture; } unsigned ExtractElementInst:: getNumOperands() const { return OperandTraits<ExtractElementInst >::operands(this); } template <int Idx_nocapture> Use &ExtractElementInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & ExtractElementInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
1931 | |
1932 | //===----------------------------------------------------------------------===// |
1933 | // InsertElementInst Class |
1934 | //===----------------------------------------------------------------------===// |
1935 | |
1936 | /// This instruction inserts a single (scalar) |
1937 | /// element into a VectorType value |
1938 | /// |
1939 | class InsertElementInst : public Instruction { |
1940 | InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, |
1941 | const Twine &NameStr = "", |
1942 | Instruction *InsertBefore = nullptr); |
1943 | InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr, |
1944 | BasicBlock *InsertAtEnd); |
1945 | |
1946 | protected: |
1947 | // Note: Instruction needs to be a friend here to call cloneImpl. |
1948 | friend class Instruction; |
1949 | |
1950 | InsertElementInst *cloneImpl() const; |
1951 | |
1952 | public: |
1953 | static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, |
1954 | const Twine &NameStr = "", |
1955 | Instruction *InsertBefore = nullptr) { |
1956 | return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore); |
1957 | } |
1958 | |
1959 | static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, |
1960 | const Twine &NameStr, |
1961 | BasicBlock *InsertAtEnd) { |
1962 | return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd); |
1963 | } |
1964 | |
1965 | /// Return true if an insertelement instruction can be |
1966 | /// formed with the specified operands. |
1967 | static bool isValidOperands(const Value *Vec, const Value *NewElt, |
1968 | const Value *Idx); |
1969 | |
1970 | /// Overload to return most specific vector type. |
1971 | /// |
1972 | VectorType *getType() const { |
1973 | return cast<VectorType>(Instruction::getType()); |
1974 | } |
1975 | |
1976 | /// Transparently provide more efficient getOperand methods. |
1977 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
1978 | |
1979 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
1980 | static bool classof(const Instruction *I) { |
1981 | return I->getOpcode() == Instruction::InsertElement; |
1982 | } |
1983 | static bool classof(const Value *V) { |
1984 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1985 | } |
1986 | }; |
1987 | |
1988 | template <> |
1989 | struct OperandTraits<InsertElementInst> : |
1990 | public FixedNumOperandTraits<InsertElementInst, 3> { |
1991 | }; |
1992 | |
1993 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)InsertElementInst::op_iterator InsertElementInst::op_begin() { return OperandTraits<InsertElementInst>::op_begin(this ); } InsertElementInst::const_op_iterator InsertElementInst:: op_begin() const { return OperandTraits<InsertElementInst> ::op_begin(const_cast<InsertElementInst*>(this)); } InsertElementInst ::op_iterator InsertElementInst::op_end() { return OperandTraits <InsertElementInst>::op_end(this); } InsertElementInst:: const_op_iterator InsertElementInst::op_end() const { return OperandTraits <InsertElementInst>::op_end(const_cast<InsertElementInst *>(this)); } Value *InsertElementInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<InsertElementInst>::op_begin(const_cast <InsertElementInst*>(this))[i_nocapture].get()); } void InsertElementInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<InsertElementInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned InsertElementInst ::getNumOperands() const { return OperandTraits<InsertElementInst >::operands(this); } template <int Idx_nocapture> Use &InsertElementInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & InsertElementInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
1994 | |
1995 | //===----------------------------------------------------------------------===// |
1996 | // ShuffleVectorInst Class |
1997 | //===----------------------------------------------------------------------===// |
1998 | |
1999 | constexpr int UndefMaskElem = -1; |
2000 | |
2001 | /// This instruction constructs a fixed permutation of two |
2002 | /// input vectors. |
2003 | /// |
2004 | /// For each element of the result vector, the shuffle mask selects an element |
2005 | /// from one of the input vectors to copy to the result. Non-negative elements |
2006 | /// in the mask represent an index into the concatenated pair of input vectors. |
2007 | /// UndefMaskElem (-1) specifies that the result element is undefined. |
2008 | /// |
2009 | /// For scalable vectors, all the elements of the mask must be 0 or -1. This |
2010 | /// requirement may be relaxed in the future. |
2011 | class ShuffleVectorInst : public Instruction { |
2012 | SmallVector<int, 4> ShuffleMask; |
2013 | Constant *ShuffleMaskForBitcode; |
2014 | |
2015 | protected: |
2016 | // Note: Instruction needs to be a friend here to call cloneImpl. |
2017 | friend class Instruction; |
2018 | |
2019 | ShuffleVectorInst *cloneImpl() const; |
2020 | |
2021 | public: |
2022 | ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, |
2023 | const Twine &NameStr = "", |
2024 | Instruction *InsertBefor = nullptr); |
2025 | ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, |
2026 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
2027 | ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask, |
2028 | const Twine &NameStr = "", |
2029 | Instruction *InsertBefor = nullptr); |
2030 | ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask, |
2031 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
2032 | |
2033 | void *operator new(size_t S) { return User::operator new(S, 2); } |
2034 | void operator delete(void *Ptr) { return User::operator delete(Ptr); } |
2035 | |
2036 | /// Swap the operands and adjust the mask to preserve the semantics |
2037 | /// of the instruction. |
2038 | void commute(); |
2039 | |
2040 | /// Return true if a shufflevector instruction can be |
2041 | /// formed with the specified operands. |
2042 | static bool isValidOperands(const Value *V1, const Value *V2, |
2043 | const Value *Mask); |
2044 | static bool isValidOperands(const Value *V1, const Value *V2, |
2045 | ArrayRef<int> Mask); |
2046 | |
2047 | /// Overload to return most specific vector type. |
2048 | /// |
2049 | VectorType *getType() const { |
2050 | return cast<VectorType>(Instruction::getType()); |
2051 | } |
2052 | |
2053 | /// Transparently provide more efficient getOperand methods. |
2054 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
2055 | |
2056 | /// Return the shuffle mask value of this instruction for the given element |
2057 | /// index. Return UndefMaskElem if the element is undef. |
2058 | int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; } |
2059 | |
2060 | /// Convert the input shuffle mask operand to a vector of integers. Undefined |
2061 | /// elements of the mask are returned as UndefMaskElem. |
2062 | static void getShuffleMask(const Constant *Mask, |
2063 | SmallVectorImpl<int> &Result); |
2064 | |
2065 | /// Return the mask for this instruction as a vector of integers. Undefined |
2066 | /// elements of the mask are returned as UndefMaskElem. |
2067 | void getShuffleMask(SmallVectorImpl<int> &Result) const { |
2068 | Result.assign(ShuffleMask.begin(), ShuffleMask.end()); |
2069 | } |
2070 | |
2071 | /// Return the mask for this instruction, for use in bitcode. |
2072 | /// |
2073 | /// TODO: This is temporary until we decide a new bitcode encoding for |
2074 | /// shufflevector. |
2075 | Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; } |
2076 | |
2077 | static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask, |
2078 | Type *ResultTy); |
2079 | |
2080 | void setShuffleMask(ArrayRef<int> Mask); |
2081 | |
2082 | ArrayRef<int> getShuffleMask() const { return ShuffleMask; } |
2083 | |
2084 | /// Return true if this shuffle returns a vector with a different number of |
2085 | /// elements than its source vectors. |
2086 | /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3> |
2087 | /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5> |
2088 | bool changesLength() const { |
2089 | unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType()) |
2090 | ->getElementCount() |
2091 | .getKnownMinValue(); |
2092 | unsigned NumMaskElts = ShuffleMask.size(); |
2093 | return NumSourceElts != NumMaskElts; |
2094 | } |
2095 | |
2096 | /// Return true if this shuffle returns a vector with a greater number of |
2097 | /// elements than its source vectors. |
2098 | /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3> |
2099 | bool increasesLength() const { |
2100 | unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType()) |
2101 | ->getElementCount() |
2102 | .getKnownMinValue(); |
2103 | unsigned NumMaskElts = ShuffleMask.size(); |
2104 | return NumSourceElts < NumMaskElts; |
2105 | } |
2106 | |
2107 | /// Return true if this shuffle mask chooses elements from exactly one source |
2108 | /// vector. |
2109 | /// Example: <7,5,undef,7> |
2110 | /// This assumes that vector operands are the same length as the mask. |
2111 | static bool isSingleSourceMask(ArrayRef<int> Mask); |
2112 | static bool isSingleSourceMask(const Constant *Mask) { |
2113 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
2114 | SmallVector<int, 16> MaskAsInts; |
2115 | getShuffleMask(Mask, MaskAsInts); |
2116 | return isSingleSourceMask(MaskAsInts); |
2117 | } |
2118 | |
2119 | /// Return true if this shuffle chooses elements from exactly one source |
2120 | /// vector without changing the length of that vector. |
2121 | /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3> |
2122 | /// TODO: Optionally allow length-changing shuffles. |
2123 | bool isSingleSource() const { |
2124 | return !changesLength() && isSingleSourceMask(ShuffleMask); |
2125 | } |
2126 | |
2127 | /// Return true if this shuffle mask chooses elements from exactly one source |
2128 | /// vector without lane crossings. A shuffle using this mask is not |
2129 | /// necessarily a no-op because it may change the number of elements from its |
2130 | /// input vectors or it may provide demanded bits knowledge via undef lanes. |
2131 | /// Example: <undef,undef,2,3> |
2132 | static bool isIdentityMask(ArrayRef<int> Mask); |
2133 | static bool isIdentityMask(const Constant *Mask) { |
2134 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
2135 | SmallVector<int, 16> MaskAsInts; |
2136 | getShuffleMask(Mask, MaskAsInts); |
2137 | return isIdentityMask(MaskAsInts); |
2138 | } |
2139 | |
2140 | /// Return true if this shuffle chooses elements from exactly one source |
2141 | /// vector without lane crossings and does not change the number of elements |
2142 | /// from its input vectors. |
2143 | /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef> |
2144 | bool isIdentity() const { |
2145 | return !changesLength() && isIdentityMask(ShuffleMask); |
2146 | } |
2147 | |
2148 | /// Return true if this shuffle lengthens exactly one source vector with |
2149 | /// undefs in the high elements. |
2150 | bool isIdentityWithPadding() const; |
2151 | |
2152 | /// Return true if this shuffle extracts the first N elements of exactly one |
2153 | /// source vector. |
2154 | bool isIdentityWithExtract() const; |
2155 | |
2156 | /// Return true if this shuffle concatenates its 2 source vectors. This |
2157 | /// returns false if either input is undefined. In that case, the shuffle is |
2158 | /// is better classified as an identity with padding operation. |
2159 | bool isConcat() const; |
2160 | |
2161 | /// Return true if this shuffle mask chooses elements from its source vectors |
2162 | /// without lane crossings. A shuffle using this mask would be |
2163 | /// equivalent to a vector select with a constant condition operand. |
2164 | /// Example: <4,1,6,undef> |
2165 | /// This returns false if the mask does not choose from both input vectors. |
2166 | /// In that case, the shuffle is better classified as an identity shuffle. |
2167 | /// This assumes that vector operands are the same length as the mask |
2168 | /// (a length-changing shuffle can never be equivalent to a vector select). |
2169 | static bool isSelectMask(ArrayRef<int> Mask); |
2170 | static bool isSelectMask(const Constant *Mask) { |
2171 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
2172 | SmallVector<int, 16> MaskAsInts; |
2173 | getShuffleMask(Mask, MaskAsInts); |
2174 | return isSelectMask(MaskAsInts); |
2175 | } |
2176 | |
2177 | /// Return true if this shuffle chooses elements from its source vectors |
2178 | /// without lane crossings and all operands have the same number of elements. |
2179 | /// In other words, this shuffle is equivalent to a vector select with a |
2180 | /// constant condition operand. |
2181 | /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3> |
2182 | /// This returns false if the mask does not choose from both input vectors. |
2183 | /// In that case, the shuffle is better classified as an identity shuffle. |
2184 | /// TODO: Optionally allow length-changing shuffles. |
2185 | bool isSelect() const { |
2186 | return !changesLength() && isSelectMask(ShuffleMask); |
2187 | } |
2188 | |
2189 | /// Return true if this shuffle mask swaps the order of elements from exactly |
2190 | /// one source vector. |
2191 | /// Example: <7,6,undef,4> |
2192 | /// This assumes that vector operands are the same length as the mask. |
2193 | static bool isReverseMask(ArrayRef<int> Mask); |
2194 | static bool isReverseMask(const Constant *Mask) { |
2195 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
2196 | SmallVector<int, 16> MaskAsInts; |
2197 | getShuffleMask(Mask, MaskAsInts); |
2198 | return isReverseMask(MaskAsInts); |
2199 | } |
2200 | |
2201 | /// Return true if this shuffle swaps the order of elements from exactly |
2202 | /// one source vector. |
2203 | /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef> |
2204 | /// TODO: Optionally allow length-changing shuffles. |
2205 | bool isReverse() const { |
2206 | return !changesLength() && isReverseMask(ShuffleMask); |
2207 | } |
2208 | |
2209 | /// Return true if this shuffle mask chooses all elements with the same value |
2210 | /// as the first element of exactly one source vector. |
2211 | /// Example: <4,undef,undef,4> |
2212 | /// This assumes that vector operands are the same length as the mask. |
2213 | static bool isZeroEltSplatMask(ArrayRef<int> Mask); |
2214 | static bool isZeroEltSplatMask(const Constant *Mask) { |
2215 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
2216 | SmallVector<int, 16> MaskAsInts; |
2217 | getShuffleMask(Mask, MaskAsInts); |
2218 | return isZeroEltSplatMask(MaskAsInts); |
2219 | } |
2220 | |
2221 | /// Return true if all elements of this shuffle are the same value as the |
2222 | /// first element of exactly one source vector without changing the length |
2223 | /// of that vector. |
2224 | /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0> |
2225 | /// TODO: Optionally allow length-changing shuffles. |
2226 | /// TODO: Optionally allow splats from other elements. |
2227 | bool isZeroEltSplat() const { |
2228 | return !changesLength() && isZeroEltSplatMask(ShuffleMask); |
2229 | } |
2230 | |
2231 | /// Return true if this shuffle mask is a transpose mask. |
2232 | /// Transpose vector masks transpose a 2xn matrix. They read corresponding |
2233 | /// even- or odd-numbered vector elements from two n-dimensional source |
2234 | /// vectors and write each result into consecutive elements of an |
2235 | /// n-dimensional destination vector. Two shuffles are necessary to complete |
2236 | /// the transpose, one for the even elements and another for the odd elements. |
2237 | /// This description closely follows how the TRN1 and TRN2 AArch64 |
2238 | /// instructions operate. |
2239 | /// |
2240 | /// For example, a simple 2x2 matrix can be transposed with: |
2241 | /// |
2242 | /// ; Original matrix |
2243 | /// m0 = < a, b > |
2244 | /// m1 = < c, d > |
2245 | /// |
2246 | /// ; Transposed matrix |
2247 | /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 > |
2248 | /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 > |
2249 | /// |
2250 | /// For matrices having greater than n columns, the resulting nx2 transposed |
2251 | /// matrix is stored in two result vectors such that one vector contains |
2252 | /// interleaved elements from all the even-numbered rows and the other vector |
2253 | /// contains interleaved elements from all the odd-numbered rows. For example, |
2254 | /// a 2x4 matrix can be transposed with: |
2255 | /// |
2256 | /// ; Original matrix |
2257 | /// m0 = < a, b, c, d > |
2258 | /// m1 = < e, f, g, h > |
2259 | /// |
2260 | /// ; Transposed matrix |
2261 | /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 > |
2262 | /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 > |
2263 | static bool isTransposeMask(ArrayRef<int> Mask); |
2264 | static bool isTransposeMask(const Constant *Mask) { |
2265 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
2266 | SmallVector<int, 16> MaskAsInts; |
2267 | getShuffleMask(Mask, MaskAsInts); |
2268 | return isTransposeMask(MaskAsInts); |
2269 | } |
2270 | |
2271 | /// Return true if this shuffle transposes the elements of its inputs without |
2272 | /// changing the length of the vectors. This operation may also be known as a |
2273 | /// merge or interleave. See the description for isTransposeMask() for the |
2274 | /// exact specification. |
2275 | /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6> |
2276 | bool isTranspose() const { |
2277 | return !changesLength() && isTransposeMask(ShuffleMask); |
2278 | } |
2279 | |
2280 | /// Return true if this shuffle mask is an extract subvector mask. |
2281 | /// A valid extract subvector mask returns a smaller vector from a single |
2282 | /// source operand. The base extraction index is returned as well. |
2283 | static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts, |
2284 | int &Index); |
2285 | static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts, |
2286 | int &Index) { |
2287 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
2288 | // Not possible to express a shuffle mask for a scalable vector for this |
2289 | // case. |
2290 | if (isa<ScalableVectorType>(Mask->getType())) |
2291 | return false; |
2292 | SmallVector<int, 16> MaskAsInts; |
2293 | getShuffleMask(Mask, MaskAsInts); |
2294 | return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index); |
2295 | } |
2296 | |
2297 | /// Return true if this shuffle mask is an extract subvector mask. |
2298 | bool isExtractSubvectorMask(int &Index) const { |
2299 | // Not possible to express a shuffle mask for a scalable vector for this |
2300 | // case. |
2301 | if (isa<ScalableVectorType>(getType())) |
2302 | return false; |
2303 | |
2304 | int NumSrcElts = |
2305 | cast<FixedVectorType>(Op<0>()->getType())->getNumElements(); |
2306 | return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index); |
2307 | } |
2308 | |
2309 | /// Change values in a shuffle permute mask assuming the two vector operands |
2310 | /// of length InVecNumElts have swapped position. |
2311 | static void commuteShuffleMask(MutableArrayRef<int> Mask, |
2312 | unsigned InVecNumElts) { |
2313 | for (int &Idx : Mask) { |
2314 | if (Idx == -1) |
2315 | continue; |
2316 | Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts; |
2317 | assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&((void)0) |
2318 | "shufflevector mask index out of range")((void)0); |
2319 | } |
2320 | } |
2321 | |
2322 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
2323 | static bool classof(const Instruction *I) { |
2324 | return I->getOpcode() == Instruction::ShuffleVector; |
2325 | } |
2326 | static bool classof(const Value *V) { |
2327 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
2328 | } |
2329 | }; |
2330 | |
2331 | template <> |
2332 | struct OperandTraits<ShuffleVectorInst> |
2333 | : public FixedNumOperandTraits<ShuffleVectorInst, 2> {}; |
2334 | |
2335 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)ShuffleVectorInst::op_iterator ShuffleVectorInst::op_begin() { return OperandTraits<ShuffleVectorInst>::op_begin(this ); } ShuffleVectorInst::const_op_iterator ShuffleVectorInst:: op_begin() const { return OperandTraits<ShuffleVectorInst> ::op_begin(const_cast<ShuffleVectorInst*>(this)); } ShuffleVectorInst ::op_iterator ShuffleVectorInst::op_end() { return OperandTraits <ShuffleVectorInst>::op_end(this); } ShuffleVectorInst:: const_op_iterator ShuffleVectorInst::op_end() const { return OperandTraits <ShuffleVectorInst>::op_end(const_cast<ShuffleVectorInst *>(this)); } Value *ShuffleVectorInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<ShuffleVectorInst>::op_begin(const_cast <ShuffleVectorInst*>(this))[i_nocapture].get()); } void ShuffleVectorInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<ShuffleVectorInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned ShuffleVectorInst ::getNumOperands() const { return OperandTraits<ShuffleVectorInst >::operands(this); } template <int Idx_nocapture> Use &ShuffleVectorInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & ShuffleVectorInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
2336 | |
2337 | //===----------------------------------------------------------------------===// |
2338 | // ExtractValueInst Class |
2339 | //===----------------------------------------------------------------------===// |
2340 | |
2341 | /// This instruction extracts a struct member or array |
2342 | /// element value from an aggregate value. |
2343 | /// |
2344 | class ExtractValueInst : public UnaryInstruction { |
2345 | SmallVector<unsigned, 4> Indices; |
2346 | |
2347 | ExtractValueInst(const ExtractValueInst &EVI); |
2348 | |
2349 | /// Constructors - Create a extractvalue instruction with a base aggregate |
2350 | /// value and a list of indices. The first ctor can optionally insert before |
2351 | /// an existing instruction, the second appends the new instruction to the |
2352 | /// specified BasicBlock. |
2353 | inline ExtractValueInst(Value *Agg, |
2354 | ArrayRef<unsigned> Idxs, |
2355 | const Twine &NameStr, |
2356 | Instruction *InsertBefore); |
2357 | inline ExtractValueInst(Value *Agg, |
2358 | ArrayRef<unsigned> Idxs, |
2359 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
2360 | |
2361 | void init(ArrayRef<unsigned> Idxs, const Twine &NameStr); |
2362 | |
2363 | protected: |
2364 | // Note: Instruction needs to be a friend here to call cloneImpl. |
2365 | friend class Instruction; |
2366 | |
2367 | ExtractValueInst *cloneImpl() const; |
2368 | |
2369 | public: |
2370 | static ExtractValueInst *Create(Value *Agg, |
2371 | ArrayRef<unsigned> Idxs, |
2372 | const Twine &NameStr = "", |
2373 | Instruction *InsertBefore = nullptr) { |
2374 | return new |
2375 | ExtractValueInst(Agg, Idxs, NameStr, InsertBefore); |
2376 | } |
2377 | |
2378 | static ExtractValueInst *Create(Value *Agg, |
2379 | ArrayRef<unsigned> Idxs, |
2380 | const Twine &NameStr, |
2381 | BasicBlock *InsertAtEnd) { |
2382 | return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd); |
2383 | } |
2384 | |
2385 | /// Returns the type of the element that would be extracted |
2386 | /// with an extractvalue instruction with the specified parameters. |
2387 | /// |
2388 | /// Null is returned if the indices are invalid for the specified type. |
2389 | static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs); |
2390 | |
2391 | using idx_iterator = const unsigned*; |
2392 | |
2393 | inline idx_iterator idx_begin() const { return Indices.begin(); } |
2394 | inline idx_iterator idx_end() const { return Indices.end(); } |
2395 | inline iterator_range<idx_iterator> indices() const { |
2396 | return make_range(idx_begin(), idx_end()); |
2397 | } |
2398 | |
2399 | Value *getAggregateOperand() { |
2400 | return getOperand(0); |
2401 | } |
2402 | const Value *getAggregateOperand() const { |
2403 | return getOperand(0); |
2404 | } |
2405 | static unsigned getAggregateOperandIndex() { |
2406 | return 0U; // get index for modifying correct operand |
2407 | } |
2408 | |
2409 | ArrayRef<unsigned> getIndices() const { |
2410 | return Indices; |
2411 | } |
2412 | |
2413 | unsigned getNumIndices() const { |
2414 | return (unsigned)Indices.size(); |
2415 | } |
2416 | |
2417 | bool hasIndices() const { |
2418 | return true; |
2419 | } |
2420 | |
2421 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
2422 | static bool classof(const Instruction *I) { |
2423 | return I->getOpcode() == Instruction::ExtractValue; |
2424 | } |
2425 | static bool classof(const Value *V) { |
2426 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
2427 | } |
2428 | }; |
2429 | |
2430 | ExtractValueInst::ExtractValueInst(Value *Agg, |
2431 | ArrayRef<unsigned> Idxs, |
2432 | const Twine &NameStr, |
2433 | Instruction *InsertBefore) |
2434 | : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)), |
2435 | ExtractValue, Agg, InsertBefore) { |
2436 | init(Idxs, NameStr); |
2437 | } |
2438 | |
2439 | ExtractValueInst::ExtractValueInst(Value *Agg, |
2440 | ArrayRef<unsigned> Idxs, |
2441 | const Twine &NameStr, |
2442 | BasicBlock *InsertAtEnd) |
2443 | : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)), |
2444 | ExtractValue, Agg, InsertAtEnd) { |
2445 | init(Idxs, NameStr); |
2446 | } |
2447 | |
2448 | //===----------------------------------------------------------------------===// |
2449 | // InsertValueInst Class |
2450 | //===----------------------------------------------------------------------===// |
2451 | |
2452 | /// This instruction inserts a struct field of array element |
2453 | /// value into an aggregate value. |
2454 | /// |
2455 | class InsertValueInst : public Instruction { |
2456 | SmallVector<unsigned, 4> Indices; |
2457 | |
2458 | InsertValueInst(const InsertValueInst &IVI); |
2459 | |
2460 | /// Constructors - Create a insertvalue instruction with a base aggregate |
2461 | /// value, a value to insert, and a list of indices. The first ctor can |
2462 | /// optionally insert before an existing instruction, the second appends |
2463 | /// the new instruction to the specified BasicBlock. |
2464 | inline InsertValueInst(Value *Agg, Value *Val, |
2465 | ArrayRef<unsigned> Idxs, |
2466 | const Twine &NameStr, |
2467 | Instruction *InsertBefore); |
2468 | inline InsertValueInst(Value *Agg, Value *Val, |
2469 | ArrayRef<unsigned> Idxs, |
2470 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
2471 | |
2472 | /// Constructors - These two constructors are convenience methods because one |
2473 | /// and two index insertvalue instructions are so common. |
2474 | InsertValueInst(Value *Agg, Value *Val, unsigned Idx, |
2475 | const Twine &NameStr = "", |
2476 | Instruction *InsertBefore = nullptr); |
2477 | InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr, |
2478 | BasicBlock *InsertAtEnd); |
2479 | |
2480 | void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, |
2481 | const Twine &NameStr); |
2482 | |
2483 | protected: |
2484 | // Note: Instruction needs to be a friend here to call cloneImpl. |
2485 | friend class Instruction; |
2486 | |
2487 | InsertValueInst *cloneImpl() const; |
2488 | |
2489 | public: |
2490 | // allocate space for exactly two operands |
2491 | void *operator new(size_t S) { return User::operator new(S, 2); } |
2492 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
2493 | |
2494 | static InsertValueInst *Create(Value *Agg, Value *Val, |
2495 | ArrayRef<unsigned> Idxs, |
2496 | const Twine &NameStr = "", |
2497 | Instruction *InsertBefore = nullptr) { |
2498 | return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore); |
2499 | } |
2500 | |
2501 | static InsertValueInst *Create(Value *Agg, Value *Val, |
2502 | ArrayRef<unsigned> Idxs, |
2503 | const Twine &NameStr, |
2504 | BasicBlock *InsertAtEnd) { |
2505 | return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd); |
2506 | } |
2507 | |
2508 | /// Transparently provide more efficient getOperand methods. |
2509 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
2510 | |
2511 | using idx_iterator = const unsigned*; |
2512 | |
2513 | inline idx_iterator idx_begin() const { return Indices.begin(); } |
2514 | inline idx_iterator idx_end() const { return Indices.end(); } |
2515 | inline iterator_range<idx_iterator> indices() const { |
2516 | return make_range(idx_begin(), idx_end()); |
2517 | } |
2518 | |
2519 | Value *getAggregateOperand() { |
2520 | return getOperand(0); |
2521 | } |
2522 | const Value *getAggregateOperand() const { |
2523 | return getOperand(0); |
2524 | } |
2525 | static unsigned getAggregateOperandIndex() { |
2526 | return 0U; // get index for modifying correct operand |
2527 | } |
2528 | |
2529 | Value *getInsertedValueOperand() { |
2530 | return getOperand(1); |
2531 | } |
2532 | const Value *getInsertedValueOperand() const { |
2533 | return getOperand(1); |
2534 | } |
2535 | static unsigned getInsertedValueOperandIndex() { |
2536 | return 1U; // get index for modifying correct operand |
2537 | } |
2538 | |
2539 | ArrayRef<unsigned> getIndices() const { |
2540 | return Indices; |
2541 | } |
2542 | |
2543 | unsigned getNumIndices() const { |
2544 | return (unsigned)Indices.size(); |
2545 | } |
2546 | |
2547 | bool hasIndices() const { |
2548 | return true; |
2549 | } |
2550 | |
2551 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
2552 | static bool classof(const Instruction *I) { |
2553 | return I->getOpcode() == Instruction::InsertValue; |
2554 | } |
2555 | static bool classof(const Value *V) { |
2556 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
2557 | } |
2558 | }; |
2559 | |
2560 | template <> |
2561 | struct OperandTraits<InsertValueInst> : |
2562 | public FixedNumOperandTraits<InsertValueInst, 2> { |
2563 | }; |
2564 | |
2565 | InsertValueInst::InsertValueInst(Value *Agg, |
2566 | Value *Val, |
2567 | ArrayRef<unsigned> Idxs, |
2568 | const Twine &NameStr, |
2569 | Instruction *InsertBefore) |
2570 | : Instruction(Agg->getType(), InsertValue, |
2571 | OperandTraits<InsertValueInst>::op_begin(this), |
2572 | 2, InsertBefore) { |
2573 | init(Agg, Val, Idxs, NameStr); |
2574 | } |
2575 | |
2576 | InsertValueInst::InsertValueInst(Value *Agg, |
2577 | Value *Val, |
2578 | ArrayRef<unsigned> Idxs, |
2579 | const Twine &NameStr, |
2580 | BasicBlock *InsertAtEnd) |
2581 | : Instruction(Agg->getType(), InsertValue, |
2582 | OperandTraits<InsertValueInst>::op_begin(this), |
2583 | 2, InsertAtEnd) { |
2584 | init(Agg, Val, Idxs, NameStr); |
2585 | } |
2586 | |
2587 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)InsertValueInst::op_iterator InsertValueInst::op_begin() { return OperandTraits<InsertValueInst>::op_begin(this); } InsertValueInst ::const_op_iterator InsertValueInst::op_begin() const { return OperandTraits<InsertValueInst>::op_begin(const_cast< InsertValueInst*>(this)); } InsertValueInst::op_iterator InsertValueInst ::op_end() { return OperandTraits<InsertValueInst>::op_end (this); } InsertValueInst::const_op_iterator InsertValueInst:: op_end() const { return OperandTraits<InsertValueInst>:: op_end(const_cast<InsertValueInst*>(this)); } Value *InsertValueInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<InsertValueInst>::op_begin (const_cast<InsertValueInst*>(this))[i_nocapture].get() ); } void InsertValueInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<InsertValueInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned InsertValueInst::getNumOperands() const { return OperandTraits <InsertValueInst>::operands(this); } template <int Idx_nocapture > Use &InsertValueInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &InsertValueInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
2588 | |
2589 | //===----------------------------------------------------------------------===// |
2590 | // PHINode Class |
2591 | //===----------------------------------------------------------------------===// |
2592 | |
2593 | // PHINode - The PHINode class is used to represent the magical mystical PHI |
2594 | // node, that can not exist in nature, but can be synthesized in a computer |
2595 | // scientist's overactive imagination. |
2596 | // |
2597 | class PHINode : public Instruction { |
2598 | /// The number of operands actually allocated. NumOperands is |
2599 | /// the number actually in use. |
2600 | unsigned ReservedSpace; |
2601 | |
2602 | PHINode(const PHINode &PN); |
2603 | |
2604 | explicit PHINode(Type *Ty, unsigned NumReservedValues, |
2605 | const Twine &NameStr = "", |
2606 | Instruction *InsertBefore = nullptr) |
2607 | : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore), |
2608 | ReservedSpace(NumReservedValues) { |
2609 | assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")((void)0); |
2610 | setName(NameStr); |
2611 | allocHungoffUses(ReservedSpace); |
2612 | } |
2613 | |
2614 | PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr, |
2615 | BasicBlock *InsertAtEnd) |
2616 | : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd), |
2617 | ReservedSpace(NumReservedValues) { |
2618 | assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")((void)0); |
2619 | setName(NameStr); |
2620 | allocHungoffUses(ReservedSpace); |
2621 | } |
2622 | |
2623 | protected: |
2624 | // Note: Instruction needs to be a friend here to call cloneImpl. |
2625 | friend class Instruction; |
2626 | |
2627 | PHINode *cloneImpl() const; |
2628 | |
2629 | // allocHungoffUses - this is more complicated than the generic |
2630 | // User::allocHungoffUses, because we have to allocate Uses for the incoming |
2631 | // values and pointers to the incoming blocks, all in one allocation. |
2632 | void allocHungoffUses(unsigned N) { |
2633 | User::allocHungoffUses(N, /* IsPhi */ true); |
2634 | } |
2635 | |
2636 | public: |
2637 | /// Constructors - NumReservedValues is a hint for the number of incoming |
2638 | /// edges that this phi node will have (use 0 if you really have no idea). |
2639 | static PHINode *Create(Type *Ty, unsigned NumReservedValues, |
2640 | const Twine &NameStr = "", |
2641 | Instruction *InsertBefore = nullptr) { |
2642 | return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore); |
2643 | } |
2644 | |
2645 | static PHINode *Create(Type *Ty, unsigned NumReservedValues, |
2646 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
2647 | return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd); |
2648 | } |
2649 | |
2650 | /// Provide fast operand accessors |
2651 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
2652 | |
2653 | // Block iterator interface. This provides access to the list of incoming |
2654 | // basic blocks, which parallels the list of incoming values. |
2655 | |
2656 | using block_iterator = BasicBlock **; |
2657 | using const_block_iterator = BasicBlock * const *; |
2658 | |
2659 | block_iterator block_begin() { |
2660 | return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace); |
2661 | } |
2662 | |
2663 | const_block_iterator block_begin() const { |
2664 | return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace); |
2665 | } |
2666 | |
2667 | block_iterator block_end() { |
2668 | return block_begin() + getNumOperands(); |
2669 | } |
2670 | |
2671 | const_block_iterator block_end() const { |
2672 | return block_begin() + getNumOperands(); |
2673 | } |
2674 | |
2675 | iterator_range<block_iterator> blocks() { |
2676 | return make_range(block_begin(), block_end()); |
2677 | } |
2678 | |
2679 | iterator_range<const_block_iterator> blocks() const { |
2680 | return make_range(block_begin(), block_end()); |
2681 | } |
2682 | |
2683 | op_range incoming_values() { return operands(); } |
2684 | |
2685 | const_op_range incoming_values() const { return operands(); } |
2686 | |
2687 | /// Return the number of incoming edges |
2688 | /// |
2689 | unsigned getNumIncomingValues() const { return getNumOperands(); } |
2690 | |
2691 | /// Return incoming value number x |
2692 | /// |
2693 | Value *getIncomingValue(unsigned i) const { |
2694 | return getOperand(i); |
2695 | } |
2696 | void setIncomingValue(unsigned i, Value *V) { |
2697 | assert(V && "PHI node got a null value!")((void)0); |
2698 | assert(getType() == V->getType() &&((void)0) |
2699 | "All operands to PHI node must be the same type as the PHI node!")((void)0); |
2700 | setOperand(i, V); |
2701 | } |
2702 | |
2703 | static unsigned getOperandNumForIncomingValue(unsigned i) { |
2704 | return i; |
2705 | } |
2706 | |
2707 | static unsigned getIncomingValueNumForOperand(unsigned i) { |
2708 | return i; |
2709 | } |
2710 | |
2711 | /// Return incoming basic block number @p i. |
2712 | /// |
2713 | BasicBlock *getIncomingBlock(unsigned i) const { |
2714 | return block_begin()[i]; |
2715 | } |
2716 | |
2717 | /// Return incoming basic block corresponding |
2718 | /// to an operand of the PHI. |
2719 | /// |
2720 | BasicBlock *getIncomingBlock(const Use &U) const { |
2721 | assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?")((void)0); |
2722 | return getIncomingBlock(unsigned(&U - op_begin())); |
2723 | } |
2724 | |
2725 | /// Return incoming basic block corresponding |
2726 | /// to value use iterator. |
2727 | /// |
2728 | BasicBlock *getIncomingBlock(Value::const_user_iterator I) const { |
2729 | return getIncomingBlock(I.getUse()); |
2730 | } |
2731 | |
2732 | void setIncomingBlock(unsigned i, BasicBlock *BB) { |
2733 | assert(BB && "PHI node got a null basic block!")((void)0); |
2734 | block_begin()[i] = BB; |
2735 | } |
2736 | |
2737 | /// Replace every incoming basic block \p Old to basic block \p New. |
2738 | void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) { |
2739 | assert(New && Old && "PHI node got a null basic block!")((void)0); |
2740 | for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op) |
2741 | if (getIncomingBlock(Op) == Old) |
2742 | setIncomingBlock(Op, New); |
2743 | } |
2744 | |
2745 | /// Add an incoming value to the end of the PHI list |
2746 | /// |
2747 | void addIncoming(Value *V, BasicBlock *BB) { |
2748 | if (getNumOperands() == ReservedSpace) |
2749 | growOperands(); // Get more space! |
2750 | // Initialize some new operands. |
2751 | setNumHungOffUseOperands(getNumOperands() + 1); |
2752 | setIncomingValue(getNumOperands() - 1, V); |
2753 | setIncomingBlock(getNumOperands() - 1, BB); |
2754 | } |
2755 | |
2756 | /// Remove an incoming value. This is useful if a |
2757 | /// predecessor basic block is deleted. The value removed is returned. |
2758 | /// |
2759 | /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty |
2760 | /// is true), the PHI node is destroyed and any uses of it are replaced with |
2761 | /// dummy values. The only time there should be zero incoming values to a PHI |
2762 | /// node is when the block is dead, so this strategy is sound. |
2763 | /// |
2764 | Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true); |
2765 | |
2766 | Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) { |
2767 | int Idx = getBasicBlockIndex(BB); |
2768 | assert(Idx >= 0 && "Invalid basic block argument to remove!")((void)0); |
2769 | return removeIncomingValue(Idx, DeletePHIIfEmpty); |
2770 | } |
2771 | |
2772 | /// Return the first index of the specified basic |
2773 | /// block in the value list for this PHI. Returns -1 if no instance. |
2774 | /// |
2775 | int getBasicBlockIndex(const BasicBlock *BB) const { |
2776 | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) |
2777 | if (block_begin()[i] == BB) |
2778 | return i; |
2779 | return -1; |
2780 | } |
2781 | |
2782 | Value *getIncomingValueForBlock(const BasicBlock *BB) const { |
2783 | int Idx = getBasicBlockIndex(BB); |
2784 | assert(Idx >= 0 && "Invalid basic block argument!")((void)0); |
2785 | return getIncomingValue(Idx); |
2786 | } |
2787 | |
2788 | /// Set every incoming value(s) for block \p BB to \p V. |
2789 | void setIncomingValueForBlock(const BasicBlock *BB, Value *V) { |
2790 | assert(BB && "PHI node got a null basic block!")((void)0); |
2791 | bool Found = false; |
2792 | for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op) |
2793 | if (getIncomingBlock(Op) == BB) { |
2794 | Found = true; |
2795 | setIncomingValue(Op, V); |
2796 | } |
2797 | (void)Found; |
2798 | assert(Found && "Invalid basic block argument to set!")((void)0); |
2799 | } |
2800 | |
2801 | /// If the specified PHI node always merges together the |
2802 | /// same value, return the value, otherwise return null. |
2803 | Value *hasConstantValue() const; |
2804 | |
2805 | /// Whether the specified PHI node always merges |
2806 | /// together the same value, assuming undefs are equal to a unique |
2807 | /// non-undef value. |
2808 | bool hasConstantOrUndefValue() const; |
2809 | |
2810 | /// If the PHI node is complete which means all of its parent's predecessors |
2811 | /// have incoming value in this PHI, return true, otherwise return false. |
2812 | bool isComplete() const { |
2813 | return llvm::all_of(predecessors(getParent()), |
2814 | [this](const BasicBlock *Pred) { |
2815 | return getBasicBlockIndex(Pred) >= 0; |
2816 | }); |
2817 | } |
2818 | |
2819 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
2820 | static bool classof(const Instruction *I) { |
2821 | return I->getOpcode() == Instruction::PHI; |
2822 | } |
2823 | static bool classof(const Value *V) { |
2824 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
2825 | } |
2826 | |
2827 | private: |
2828 | void growOperands(); |
2829 | }; |
2830 | |
2831 | template <> |
2832 | struct OperandTraits<PHINode> : public HungoffOperandTraits<2> { |
2833 | }; |
2834 | |
2835 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)PHINode::op_iterator PHINode::op_begin() { return OperandTraits <PHINode>::op_begin(this); } PHINode::const_op_iterator PHINode::op_begin() const { return OperandTraits<PHINode> ::op_begin(const_cast<PHINode*>(this)); } PHINode::op_iterator PHINode::op_end() { return OperandTraits<PHINode>::op_end (this); } PHINode::const_op_iterator PHINode::op_end() const { return OperandTraits<PHINode>::op_end(const_cast<PHINode *>(this)); } Value *PHINode::getOperand(unsigned i_nocapture ) const { ((void)0); return cast_or_null<Value>( OperandTraits <PHINode>::op_begin(const_cast<PHINode*>(this))[i_nocapture ].get()); } void PHINode::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<PHINode>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned PHINode::getNumOperands () const { return OperandTraits<PHINode>::operands(this ); } template <int Idx_nocapture> Use &PHINode::Op( ) { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &PHINode::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
2836 | |
2837 | //===----------------------------------------------------------------------===// |
2838 | // LandingPadInst Class |
2839 | //===----------------------------------------------------------------------===// |
2840 | |
2841 | //===--------------------------------------------------------------------------- |
2842 | /// The landingpad instruction holds all of the information |
2843 | /// necessary to generate correct exception handling. The landingpad instruction |
2844 | /// cannot be moved from the top of a landing pad block, which itself is |
2845 | /// accessible only from the 'unwind' edge of an invoke. This uses the |
2846 | /// SubclassData field in Value to store whether or not the landingpad is a |
2847 | /// cleanup. |
2848 | /// |
2849 | class LandingPadInst : public Instruction { |
2850 | using CleanupField = BoolBitfieldElementT<0>; |
2851 | |
2852 | /// The number of operands actually allocated. NumOperands is |
2853 | /// the number actually in use. |
2854 | unsigned ReservedSpace; |
2855 | |
2856 | LandingPadInst(const LandingPadInst &LP); |
2857 | |
2858 | public: |
2859 | enum ClauseType { Catch, Filter }; |
2860 | |
2861 | private: |
2862 | explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues, |
2863 | const Twine &NameStr, Instruction *InsertBefore); |
2864 | explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues, |
2865 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
2866 | |
2867 | // Allocate space for exactly zero operands. |
2868 | void *operator new(size_t S) { return User::operator new(S); } |
2869 | |
2870 | void growOperands(unsigned Size); |
2871 | void init(unsigned NumReservedValues, const Twine &NameStr); |
2872 | |
2873 | protected: |
2874 | // Note: Instruction needs to be a friend here to call cloneImpl. |
2875 | friend class Instruction; |
2876 | |
2877 | LandingPadInst *cloneImpl() const; |
2878 | |
2879 | public: |
2880 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
2881 | |
2882 | /// Constructors - NumReservedClauses is a hint for the number of incoming |
2883 | /// clauses that this landingpad will have (use 0 if you really have no idea). |
2884 | static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses, |
2885 | const Twine &NameStr = "", |
2886 | Instruction *InsertBefore = nullptr); |
2887 | static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses, |
2888 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
2889 | |
2890 | /// Provide fast operand accessors |
2891 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
2892 | |
2893 | /// Return 'true' if this landingpad instruction is a |
2894 | /// cleanup. I.e., it should be run when unwinding even if its landing pad |
2895 | /// doesn't catch the exception. |
2896 | bool isCleanup() const { return getSubclassData<CleanupField>(); } |
2897 | |
2898 | /// Indicate that this landingpad instruction is a cleanup. |
2899 | void setCleanup(bool V) { setSubclassData<CleanupField>(V); } |
2900 | |
2901 | /// Add a catch or filter clause to the landing pad. |
2902 | void addClause(Constant *ClauseVal); |
2903 | |
2904 | /// Get the value of the clause at index Idx. Use isCatch/isFilter to |
2905 | /// determine what type of clause this is. |
2906 | Constant *getClause(unsigned Idx) const { |
2907 | return cast<Constant>(getOperandList()[Idx]); |
2908 | } |
2909 | |
2910 | /// Return 'true' if the clause and index Idx is a catch clause. |
2911 | bool isCatch(unsigned Idx) const { |
2912 | return !isa<ArrayType>(getOperandList()[Idx]->getType()); |
2913 | } |
2914 | |
2915 | /// Return 'true' if the clause and index Idx is a filter clause. |
2916 | bool isFilter(unsigned Idx) const { |
2917 | return isa<ArrayType>(getOperandList()[Idx]->getType()); |
2918 | } |
2919 | |
2920 | /// Get the number of clauses for this landing pad. |
2921 | unsigned getNumClauses() const { return getNumOperands(); } |
2922 | |
2923 | /// Grow the size of the operand list to accommodate the new |
2924 | /// number of clauses. |
2925 | void reserveClauses(unsigned Size) { growOperands(Size); } |
2926 | |
2927 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
2928 | static bool classof(const Instruction *I) { |
2929 | return I->getOpcode() == Instruction::LandingPad; |
2930 | } |
2931 | static bool classof(const Value *V) { |
2932 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
2933 | } |
2934 | }; |
2935 | |
2936 | template <> |
2937 | struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> { |
2938 | }; |
2939 | |
2940 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)LandingPadInst::op_iterator LandingPadInst::op_begin() { return OperandTraits<LandingPadInst>::op_begin(this); } LandingPadInst ::const_op_iterator LandingPadInst::op_begin() const { return OperandTraits<LandingPadInst>::op_begin(const_cast< LandingPadInst*>(this)); } LandingPadInst::op_iterator LandingPadInst ::op_end() { return OperandTraits<LandingPadInst>::op_end (this); } LandingPadInst::const_op_iterator LandingPadInst::op_end () const { return OperandTraits<LandingPadInst>::op_end (const_cast<LandingPadInst*>(this)); } Value *LandingPadInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<LandingPadInst>::op_begin( const_cast<LandingPadInst*>(this))[i_nocapture].get()); } void LandingPadInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<LandingPadInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned LandingPadInst::getNumOperands() const { return OperandTraits <LandingPadInst>::operands(this); } template <int Idx_nocapture > Use &LandingPadInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &LandingPadInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
2941 | |
2942 | //===----------------------------------------------------------------------===// |
2943 | // ReturnInst Class |
2944 | //===----------------------------------------------------------------------===// |
2945 | |
2946 | //===--------------------------------------------------------------------------- |
2947 | /// Return a value (possibly void), from a function. Execution |
2948 | /// does not continue in this function any longer. |
2949 | /// |
2950 | class ReturnInst : public Instruction { |
2951 | ReturnInst(const ReturnInst &RI); |
2952 | |
2953 | private: |
2954 | // ReturnInst constructors: |
2955 | // ReturnInst() - 'ret void' instruction |
2956 | // ReturnInst( null) - 'ret void' instruction |
2957 | // ReturnInst(Value* X) - 'ret X' instruction |
2958 | // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I |
2959 | // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I |
2960 | // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B |
2961 | // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B |
2962 | // |
2963 | // NOTE: If the Value* passed is of type void then the constructor behaves as |
2964 | // if it was passed NULL. |
2965 | explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr, |
2966 | Instruction *InsertBefore = nullptr); |
2967 | ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd); |
2968 | explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd); |
2969 | |
2970 | protected: |
2971 | // Note: Instruction needs to be a friend here to call cloneImpl. |
2972 | friend class Instruction; |
2973 | |
2974 | ReturnInst *cloneImpl() const; |
2975 | |
2976 | public: |
2977 | static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr, |
2978 | Instruction *InsertBefore = nullptr) { |
2979 | return new(!!retVal) ReturnInst(C, retVal, InsertBefore); |
2980 | } |
2981 | |
2982 | static ReturnInst* Create(LLVMContext &C, Value *retVal, |
2983 | BasicBlock *InsertAtEnd) { |
2984 | return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd); |
2985 | } |
2986 | |
2987 | static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) { |
2988 | return new(0) ReturnInst(C, InsertAtEnd); |
2989 | } |
2990 | |
2991 | /// Provide fast operand accessors |
2992 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
2993 | |
2994 | /// Convenience accessor. Returns null if there is no return value. |
2995 | Value *getReturnValue() const { |
2996 | return getNumOperands() != 0 ? getOperand(0) : nullptr; |
2997 | } |
2998 | |
2999 | unsigned getNumSuccessors() const { return 0; } |
3000 | |
3001 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
3002 | static bool classof(const Instruction *I) { |
3003 | return (I->getOpcode() == Instruction::Ret); |
3004 | } |
3005 | static bool classof(const Value *V) { |
3006 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
3007 | } |
3008 | |
3009 | private: |
3010 | BasicBlock *getSuccessor(unsigned idx) const { |
3011 | llvm_unreachable("ReturnInst has no successors!")__builtin_unreachable(); |
3012 | } |
3013 | |
3014 | void setSuccessor(unsigned idx, BasicBlock *B) { |
3015 | llvm_unreachable("ReturnInst has no successors!")__builtin_unreachable(); |
3016 | } |
3017 | }; |
3018 | |
3019 | template <> |
3020 | struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> { |
3021 | }; |
3022 | |
3023 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)ReturnInst::op_iterator ReturnInst::op_begin() { return OperandTraits <ReturnInst>::op_begin(this); } ReturnInst::const_op_iterator ReturnInst::op_begin() const { return OperandTraits<ReturnInst >::op_begin(const_cast<ReturnInst*>(this)); } ReturnInst ::op_iterator ReturnInst::op_end() { return OperandTraits< ReturnInst>::op_end(this); } ReturnInst::const_op_iterator ReturnInst::op_end() const { return OperandTraits<ReturnInst >::op_end(const_cast<ReturnInst*>(this)); } Value *ReturnInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<ReturnInst>::op_begin(const_cast <ReturnInst*>(this))[i_nocapture].get()); } void ReturnInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<ReturnInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned ReturnInst::getNumOperands() const { return OperandTraits<ReturnInst>::operands(this); } template <int Idx_nocapture> Use &ReturnInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &ReturnInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
3024 | |
3025 | //===----------------------------------------------------------------------===// |
3026 | // BranchInst Class |
3027 | //===----------------------------------------------------------------------===// |
3028 | |
3029 | //===--------------------------------------------------------------------------- |
3030 | /// Conditional or Unconditional Branch instruction. |
3031 | /// |
3032 | class BranchInst : public Instruction { |
3033 | /// Ops list - Branches are strange. The operands are ordered: |
3034 | /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because |
3035 | /// they don't have to check for cond/uncond branchness. These are mostly |
3036 | /// accessed relative from op_end(). |
3037 | BranchInst(const BranchInst &BI); |
3038 | // BranchInst constructors (where {B, T, F} are blocks, and C is a condition): |
3039 | // BranchInst(BB *B) - 'br B' |
3040 | // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F' |
3041 | // BranchInst(BB* B, Inst *I) - 'br B' insert before I |
3042 | // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I |
3043 | // BranchInst(BB* B, BB *I) - 'br B' insert at end |
3044 | // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end |
3045 | explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr); |
3046 | BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, |
3047 | Instruction *InsertBefore = nullptr); |
3048 | BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd); |
3049 | BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, |
3050 | BasicBlock *InsertAtEnd); |
3051 | |
3052 | void AssertOK(); |
3053 | |
3054 | protected: |
3055 | // Note: Instruction needs to be a friend here to call cloneImpl. |
3056 | friend class Instruction; |
3057 | |
3058 | BranchInst *cloneImpl() const; |
3059 | |
3060 | public: |
3061 | /// Iterator type that casts an operand to a basic block. |
3062 | /// |
3063 | /// This only makes sense because the successors are stored as adjacent |
3064 | /// operands for branch instructions. |
3065 | struct succ_op_iterator |
3066 | : iterator_adaptor_base<succ_op_iterator, value_op_iterator, |
3067 | std::random_access_iterator_tag, BasicBlock *, |
3068 | ptrdiff_t, BasicBlock *, BasicBlock *> { |
3069 | explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {} |
3070 | |
3071 | BasicBlock *operator*() const { return cast<BasicBlock>(*I); } |
3072 | BasicBlock *operator->() const { return operator*(); } |
3073 | }; |
3074 | |
3075 | /// The const version of `succ_op_iterator`. |
3076 | struct const_succ_op_iterator |
3077 | : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator, |
3078 | std::random_access_iterator_tag, |
3079 | const BasicBlock *, ptrdiff_t, const BasicBlock *, |
3080 | const BasicBlock *> { |
3081 | explicit const_succ_op_iterator(const_value_op_iterator I) |
3082 | : iterator_adaptor_base(I) {} |
3083 | |
3084 | const BasicBlock *operator*() const { return cast<BasicBlock>(*I); } |
3085 | const BasicBlock *operator->() const { return operator*(); } |
3086 | }; |
3087 | |
3088 | static BranchInst *Create(BasicBlock *IfTrue, |
3089 | Instruction *InsertBefore = nullptr) { |
3090 | return new(1) BranchInst(IfTrue, InsertBefore); |
3091 | } |
3092 | |
3093 | static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, |
3094 | Value *Cond, Instruction *InsertBefore = nullptr) { |
3095 | return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore); |
3096 | } |
3097 | |
3098 | static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) { |
3099 | return new(1) BranchInst(IfTrue, InsertAtEnd); |
3100 | } |
3101 | |
3102 | static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, |
3103 | Value *Cond, BasicBlock *InsertAtEnd) { |
3104 | return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd); |
3105 | } |
3106 | |
3107 | /// Transparently provide more efficient getOperand methods. |
3108 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
3109 | |
3110 | bool isUnconditional() const { return getNumOperands() == 1; } |
3111 | bool isConditional() const { return getNumOperands() == 3; } |
3112 | |
3113 | Value *getCondition() const { |
3114 | assert(isConditional() && "Cannot get condition of an uncond branch!")((void)0); |
3115 | return Op<-3>(); |
3116 | } |
3117 | |
3118 | void setCondition(Value *V) { |
3119 | assert(isConditional() && "Cannot set condition of unconditional branch!")((void)0); |
3120 | Op<-3>() = V; |
3121 | } |
3122 | |
3123 | unsigned getNumSuccessors() const { return 1+isConditional(); } |
3124 | |
3125 | BasicBlock *getSuccessor(unsigned i) const { |
3126 | assert(i < getNumSuccessors() && "Successor # out of range for Branch!")((void)0); |
3127 | return cast_or_null<BasicBlock>((&Op<-1>() - i)->get()); |
3128 | } |
3129 | |
3130 | void setSuccessor(unsigned idx, BasicBlock *NewSucc) { |
3131 | assert(idx < getNumSuccessors() && "Successor # out of range for Branch!")((void)0); |
3132 | *(&Op<-1>() - idx) = NewSucc; |
3133 | } |
3134 | |
3135 | /// Swap the successors of this branch instruction. |
3136 | /// |
3137 | /// Swaps the successors of the branch instruction. This also swaps any |
3138 | /// branch weight metadata associated with the instruction so that it |
3139 | /// continues to map correctly to each operand. |
3140 | void swapSuccessors(); |
3141 | |
3142 | iterator_range<succ_op_iterator> successors() { |
3143 | return make_range( |
3144 | succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)), |
3145 | succ_op_iterator(value_op_end())); |
3146 | } |
3147 | |
3148 | iterator_range<const_succ_op_iterator> successors() const { |
3149 | return make_range(const_succ_op_iterator( |
3150 | std::next(value_op_begin(), isConditional() ? 1 : 0)), |
3151 | const_succ_op_iterator(value_op_end())); |
3152 | } |
3153 | |
3154 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
3155 | static bool classof(const Instruction *I) { |
3156 | return (I->getOpcode() == Instruction::Br); |
3157 | } |
3158 | static bool classof(const Value *V) { |
3159 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
3160 | } |
3161 | }; |
3162 | |
3163 | template <> |
3164 | struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> { |
3165 | }; |
3166 | |
3167 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)BranchInst::op_iterator BranchInst::op_begin() { return OperandTraits <BranchInst>::op_begin(this); } BranchInst::const_op_iterator BranchInst::op_begin() const { return OperandTraits<BranchInst >::op_begin(const_cast<BranchInst*>(this)); } BranchInst ::op_iterator BranchInst::op_end() { return OperandTraits< BranchInst>::op_end(this); } BranchInst::const_op_iterator BranchInst::op_end() const { return OperandTraits<BranchInst >::op_end(const_cast<BranchInst*>(this)); } Value *BranchInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<BranchInst>::op_begin(const_cast <BranchInst*>(this))[i_nocapture].get()); } void BranchInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<BranchInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned BranchInst::getNumOperands() const { return OperandTraits<BranchInst>::operands(this); } template <int Idx_nocapture> Use &BranchInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &BranchInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
3168 | |
3169 | //===----------------------------------------------------------------------===// |
3170 | // SwitchInst Class |
3171 | //===----------------------------------------------------------------------===// |
3172 | |
3173 | //===--------------------------------------------------------------------------- |
3174 | /// Multiway switch |
3175 | /// |
3176 | class SwitchInst : public Instruction { |
3177 | unsigned ReservedSpace; |
3178 | |
3179 | // Operand[0] = Value to switch on |
3180 | // Operand[1] = Default basic block destination |
3181 | // Operand[2n ] = Value to match |
3182 | // Operand[2n+1] = BasicBlock to go to on match |
3183 | SwitchInst(const SwitchInst &SI); |
3184 | |
3185 | /// Create a new switch instruction, specifying a value to switch on and a |
3186 | /// default destination. The number of additional cases can be specified here |
3187 | /// to make memory allocation more efficient. This constructor can also |
3188 | /// auto-insert before another instruction. |
3189 | SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, |
3190 | Instruction *InsertBefore); |
3191 | |
3192 | /// Create a new switch instruction, specifying a value to switch on and a |
3193 | /// default destination. The number of additional cases can be specified here |
3194 | /// to make memory allocation more efficient. This constructor also |
3195 | /// auto-inserts at the end of the specified BasicBlock. |
3196 | SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, |
3197 | BasicBlock *InsertAtEnd); |
3198 | |
3199 | // allocate space for exactly zero operands |
3200 | void *operator new(size_t S) { return User::operator new(S); } |
3201 | |
3202 | void init(Value *Value, BasicBlock *Default, unsigned NumReserved); |
3203 | void growOperands(); |
3204 | |
3205 | protected: |
3206 | // Note: Instruction needs to be a friend here to call cloneImpl. |
3207 | friend class Instruction; |
3208 | |
3209 | SwitchInst *cloneImpl() const; |
3210 | |
3211 | public: |
3212 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
3213 | |
3214 | // -2 |
3215 | static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1); |
3216 | |
3217 | template <typename CaseHandleT> class CaseIteratorImpl; |
3218 | |
3219 | /// A handle to a particular switch case. It exposes a convenient interface |
3220 | /// to both the case value and the successor block. |
3221 | /// |
3222 | /// We define this as a template and instantiate it to form both a const and |
3223 | /// non-const handle. |
3224 | template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT> |
3225 | class CaseHandleImpl { |
3226 | // Directly befriend both const and non-const iterators. |
3227 | friend class SwitchInst::CaseIteratorImpl< |
3228 | CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>; |
3229 | |
3230 | protected: |
3231 | // Expose the switch type we're parameterized with to the iterator. |
3232 | using SwitchInstType = SwitchInstT; |
3233 | |
3234 | SwitchInstT *SI; |
3235 | ptrdiff_t Index; |
3236 | |
3237 | CaseHandleImpl() = default; |
3238 | CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {} |
3239 | |
3240 | public: |
3241 | /// Resolves case value for current case. |
3242 | ConstantIntT *getCaseValue() const { |
3243 | assert((unsigned)Index < SI->getNumCases() &&((void)0) |
3244 | "Index out the number of cases.")((void)0); |
3245 | return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2)); |
3246 | } |
3247 | |
3248 | /// Resolves successor for current case. |
3249 | BasicBlockT *getCaseSuccessor() const { |
3250 | assert(((unsigned)Index < SI->getNumCases() ||((void)0) |
3251 | (unsigned)Index == DefaultPseudoIndex) &&((void)0) |
3252 | "Index out the number of cases.")((void)0); |
3253 | return SI->getSuccessor(getSuccessorIndex()); |
3254 | } |
3255 | |
3256 | /// Returns number of current case. |
3257 | unsigned getCaseIndex() const { return Index; } |
3258 | |
3259 | /// Returns successor index for current case successor. |
3260 | unsigned getSuccessorIndex() const { |
3261 | assert(((unsigned)Index == DefaultPseudoIndex ||((void)0) |
3262 | (unsigned)Index < SI->getNumCases()) &&((void)0) |
3263 | "Index out the number of cases.")((void)0); |
3264 | return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0; |
3265 | } |
3266 | |
3267 | bool operator==(const CaseHandleImpl &RHS) const { |
3268 | assert(SI == RHS.SI && "Incompatible operators.")((void)0); |
3269 | return Index == RHS.Index; |
3270 | } |
3271 | }; |
3272 | |
3273 | using ConstCaseHandle = |
3274 | CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>; |
3275 | |
3276 | class CaseHandle |
3277 | : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> { |
3278 | friend class SwitchInst::CaseIteratorImpl<CaseHandle>; |
3279 | |
3280 | public: |
3281 | CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {} |
3282 | |
3283 | /// Sets the new value for current case. |
3284 | void setValue(ConstantInt *V) { |
3285 | assert((unsigned)Index < SI->getNumCases() &&((void)0) |
3286 | "Index out the number of cases.")((void)0); |
3287 | SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V)); |
3288 | } |
3289 | |
3290 | /// Sets the new successor for current case. |
3291 | void setSuccessor(BasicBlock *S) { |
3292 | SI->setSuccessor(getSuccessorIndex(), S); |
3293 | } |
3294 | }; |
3295 | |
3296 | template <typename CaseHandleT> |
3297 | class CaseIteratorImpl |
3298 | : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>, |
3299 | std::random_access_iterator_tag, |
3300 | CaseHandleT> { |
3301 | using SwitchInstT = typename CaseHandleT::SwitchInstType; |
3302 | |
3303 | CaseHandleT Case; |
3304 | |
3305 | public: |
3306 | /// Default constructed iterator is in an invalid state until assigned to |
3307 | /// a case for a particular switch. |
3308 | CaseIteratorImpl() = default; |
3309 | |
3310 | /// Initializes case iterator for given SwitchInst and for given |
3311 | /// case number. |
3312 | CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {} |
3313 | |
3314 | /// Initializes case iterator for given SwitchInst and for given |
3315 | /// successor index. |
3316 | static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI, |
3317 | unsigned SuccessorIndex) { |
3318 | assert(SuccessorIndex < SI->getNumSuccessors() &&((void)0) |
3319 | "Successor index # out of range!")((void)0); |
3320 | return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1) |
3321 | : CaseIteratorImpl(SI, DefaultPseudoIndex); |
3322 | } |
3323 | |
3324 | /// Support converting to the const variant. This will be a no-op for const |
3325 | /// variant. |
3326 | operator CaseIteratorImpl<ConstCaseHandle>() const { |
3327 | return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index); |
3328 | } |
3329 | |
3330 | CaseIteratorImpl &operator+=(ptrdiff_t N) { |
3331 | // Check index correctness after addition. |
3332 | // Note: Index == getNumCases() means end(). |
3333 | assert(Case.Index + N >= 0 &&((void)0) |
3334 | (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&((void)0) |
3335 | "Case.Index out the number of cases.")((void)0); |
3336 | Case.Index += N; |
3337 | return *this; |
3338 | } |
3339 | CaseIteratorImpl &operator-=(ptrdiff_t N) { |
3340 | // Check index correctness after subtraction. |
3341 | // Note: Case.Index == getNumCases() means end(). |
3342 | assert(Case.Index - N >= 0 &&((void)0) |
3343 | (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&((void)0) |
3344 | "Case.Index out the number of cases.")((void)0); |
3345 | Case.Index -= N; |
3346 | return *this; |
3347 | } |
3348 | ptrdiff_t operator-(const CaseIteratorImpl &RHS) const { |
3349 | assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((void)0); |
3350 | return Case.Index - RHS.Case.Index; |
3351 | } |
3352 | bool operator==(const CaseIteratorImpl &RHS) const { |
3353 | return Case == RHS.Case; |
3354 | } |
3355 | bool operator<(const CaseIteratorImpl &RHS) const { |
3356 | assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((void)0); |
3357 | return Case.Index < RHS.Case.Index; |
3358 | } |
3359 | CaseHandleT &operator*() { return Case; } |
3360 | const CaseHandleT &operator*() const { return Case; } |
3361 | }; |
3362 | |
3363 | using CaseIt = CaseIteratorImpl<CaseHandle>; |
3364 | using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>; |
3365 | |
3366 | static SwitchInst *Create(Value *Value, BasicBlock *Default, |
3367 | unsigned NumCases, |
3368 | Instruction *InsertBefore = nullptr) { |
3369 | return new SwitchInst(Value, Default, NumCases, InsertBefore); |
3370 | } |
3371 | |
3372 | static SwitchInst *Create(Value *Value, BasicBlock *Default, |
3373 | unsigned NumCases, BasicBlock *InsertAtEnd) { |
3374 | return new SwitchInst(Value, Default, NumCases, InsertAtEnd); |
3375 | } |
3376 | |
3377 | /// Provide fast operand accessors |
3378 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
3379 | |
3380 | // Accessor Methods for Switch stmt |
3381 | Value *getCondition() const { return getOperand(0); } |
3382 | void setCondition(Value *V) { setOperand(0, V); } |
3383 | |
3384 | BasicBlock *getDefaultDest() const { |
3385 | return cast<BasicBlock>(getOperand(1)); |
3386 | } |
3387 | |
3388 | void setDefaultDest(BasicBlock *DefaultCase) { |
3389 | setOperand(1, reinterpret_cast<Value*>(DefaultCase)); |
3390 | } |
3391 | |
3392 | /// Return the number of 'cases' in this switch instruction, excluding the |
3393 | /// default case. |
3394 | unsigned getNumCases() const { |
3395 | return getNumOperands()/2 - 1; |
3396 | } |
3397 | |
3398 | /// Returns a read/write iterator that points to the first case in the |
3399 | /// SwitchInst. |
3400 | CaseIt case_begin() { |
3401 | return CaseIt(this, 0); |
3402 | } |
3403 | |
3404 | /// Returns a read-only iterator that points to the first case in the |
3405 | /// SwitchInst. |
3406 | ConstCaseIt case_begin() const { |
3407 | return ConstCaseIt(this, 0); |
3408 | } |
3409 | |
3410 | /// Returns a read/write iterator that points one past the last in the |
3411 | /// SwitchInst. |
3412 | CaseIt case_end() { |
3413 | return CaseIt(this, getNumCases()); |
3414 | } |
3415 | |
3416 | /// Returns a read-only iterator that points one past the last in the |
3417 | /// SwitchInst. |
3418 | ConstCaseIt case_end() const { |
3419 | return ConstCaseIt(this, getNumCases()); |
3420 | } |
3421 | |
3422 | /// Iteration adapter for range-for loops. |
3423 | iterator_range<CaseIt> cases() { |
3424 | return make_range(case_begin(), case_end()); |
3425 | } |
3426 | |
3427 | /// Constant iteration adapter for range-for loops. |
3428 | iterator_range<ConstCaseIt> cases() const { |
3429 | return make_range(case_begin(), case_end()); |
3430 | } |
3431 | |
3432 | /// Returns an iterator that points to the default case. |
3433 | /// Note: this iterator allows to resolve successor only. Attempt |
3434 | /// to resolve case value causes an assertion. |
3435 | /// Also note, that increment and decrement also causes an assertion and |
3436 | /// makes iterator invalid. |
3437 | CaseIt case_default() { |
3438 | return CaseIt(this, DefaultPseudoIndex); |
3439 | } |
3440 | ConstCaseIt case_default() const { |
3441 | return ConstCaseIt(this, DefaultPseudoIndex); |
3442 | } |
3443 | |
3444 | /// Search all of the case values for the specified constant. If it is |
3445 | /// explicitly handled, return the case iterator of it, otherwise return |
3446 | /// default case iterator to indicate that it is handled by the default |
3447 | /// handler. |
3448 | CaseIt findCaseValue(const ConstantInt *C) { |
3449 | CaseIt I = llvm::find_if( |
3450 | cases(), [C](CaseHandle &Case) { return Case.getCaseValue() == C; }); |
3451 | if (I != case_end()) |
3452 | return I; |
3453 | |
3454 | return case_default(); |
3455 | } |
3456 | ConstCaseIt findCaseValue(const ConstantInt *C) const { |
3457 | ConstCaseIt I = llvm::find_if(cases(), [C](ConstCaseHandle &Case) { |
3458 | return Case.getCaseValue() == C; |
3459 | }); |
3460 | if (I != case_end()) |
3461 | return I; |
3462 | |
3463 | return case_default(); |
3464 | } |
3465 | |
3466 | /// Finds the unique case value for a given successor. Returns null if the |
3467 | /// successor is not found, not unique, or is the default case. |
3468 | ConstantInt *findCaseDest(BasicBlock *BB) { |
3469 | if (BB == getDefaultDest()) |
3470 | return nullptr; |
3471 | |
3472 | ConstantInt *CI = nullptr; |
3473 | for (auto Case : cases()) { |
3474 | if (Case.getCaseSuccessor() != BB) |
3475 | continue; |
3476 | |
3477 | if (CI) |
3478 | return nullptr; // Multiple cases lead to BB. |
3479 | |
3480 | CI = Case.getCaseValue(); |
3481 | } |
3482 | |
3483 | return CI; |
3484 | } |
3485 | |
3486 | /// Add an entry to the switch instruction. |
3487 | /// Note: |
3488 | /// This action invalidates case_end(). Old case_end() iterator will |
3489 | /// point to the added case. |
3490 | void addCase(ConstantInt *OnVal, BasicBlock *Dest); |
3491 | |
3492 | /// This method removes the specified case and its successor from the switch |
3493 | /// instruction. Note that this operation may reorder the remaining cases at |
3494 | /// index idx and above. |
3495 | /// Note: |
3496 | /// This action invalidates iterators for all cases following the one removed, |
3497 | /// including the case_end() iterator. It returns an iterator for the next |
3498 | /// case. |
3499 | CaseIt removeCase(CaseIt I); |
3500 | |
3501 | unsigned getNumSuccessors() const { return getNumOperands()/2; } |
3502 | BasicBlock *getSuccessor(unsigned idx) const { |
3503 | assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!")((void)0); |
3504 | return cast<BasicBlock>(getOperand(idx*2+1)); |
3505 | } |
3506 | void setSuccessor(unsigned idx, BasicBlock *NewSucc) { |
3507 | assert(idx < getNumSuccessors() && "Successor # out of range for switch!")((void)0); |
3508 | setOperand(idx * 2 + 1, NewSucc); |
3509 | } |
3510 | |
3511 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
3512 | static bool classof(const Instruction *I) { |
3513 | return I->getOpcode() == Instruction::Switch; |
3514 | } |
3515 | static bool classof(const Value *V) { |
3516 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
3517 | } |
3518 | }; |
3519 | |
3520 | /// A wrapper class to simplify modification of SwitchInst cases along with |
3521 | /// their prof branch_weights metadata. |
3522 | class SwitchInstProfUpdateWrapper { |
3523 | SwitchInst &SI; |
3524 | Optional<SmallVector<uint32_t, 8> > Weights = None; |
3525 | bool Changed = false; |
3526 | |
3527 | protected: |
3528 | static MDNode *getProfBranchWeightsMD(const SwitchInst &SI); |
3529 | |
3530 | MDNode *buildProfBranchWeightsMD(); |
3531 | |
3532 | void init(); |
3533 | |
3534 | public: |
3535 | using CaseWeightOpt = Optional<uint32_t>; |
3536 | SwitchInst *operator->() { return &SI; } |
3537 | SwitchInst &operator*() { return SI; } |
3538 | operator SwitchInst *() { return &SI; } |
3539 | |
3540 | SwitchInstProfUpdateWrapper(SwitchInst &SI) : SI(SI) { init(); } |
3541 | |
3542 | ~SwitchInstProfUpdateWrapper() { |
3543 | if (Changed) |
3544 | SI.setMetadata(LLVMContext::MD_prof, buildProfBranchWeightsMD()); |
3545 | } |
3546 | |
3547 | /// Delegate the call to the underlying SwitchInst::removeCase() and remove |
3548 | /// correspondent branch weight. |
3549 | SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I); |
3550 | |
3551 | /// Delegate the call to the underlying SwitchInst::addCase() and set the |
3552 | /// specified branch weight for the added case. |
3553 | void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W); |
3554 | |
3555 | /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark |
3556 | /// this object to not touch the underlying SwitchInst in destructor. |
3557 | SymbolTableList<Instruction>::iterator eraseFromParent(); |
3558 | |
3559 | void setSuccessorWeight(unsigned idx, CaseWeightOpt W); |
3560 | CaseWeightOpt getSuccessorWeight(unsigned idx); |
3561 | |
3562 | static CaseWeightOpt getSuccessorWeight(const SwitchInst &SI, unsigned idx); |
3563 | }; |
3564 | |
3565 | template <> |
3566 | struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> { |
3567 | }; |
3568 | |
3569 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)SwitchInst::op_iterator SwitchInst::op_begin() { return OperandTraits <SwitchInst>::op_begin(this); } SwitchInst::const_op_iterator SwitchInst::op_begin() const { return OperandTraits<SwitchInst >::op_begin(const_cast<SwitchInst*>(this)); } SwitchInst ::op_iterator SwitchInst::op_end() { return OperandTraits< SwitchInst>::op_end(this); } SwitchInst::const_op_iterator SwitchInst::op_end() const { return OperandTraits<SwitchInst >::op_end(const_cast<SwitchInst*>(this)); } Value *SwitchInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<SwitchInst>::op_begin(const_cast <SwitchInst*>(this))[i_nocapture].get()); } void SwitchInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<SwitchInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned SwitchInst::getNumOperands() const { return OperandTraits<SwitchInst>::operands(this); } template <int Idx_nocapture> Use &SwitchInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &SwitchInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
3570 | |
3571 | //===----------------------------------------------------------------------===// |
3572 | // IndirectBrInst Class |
3573 | //===----------------------------------------------------------------------===// |
3574 | |
3575 | //===--------------------------------------------------------------------------- |
3576 | /// Indirect Branch Instruction. |
3577 | /// |
3578 | class IndirectBrInst : public Instruction { |
3579 | unsigned ReservedSpace; |
3580 | |
3581 | // Operand[0] = Address to jump to |
3582 | // Operand[n+1] = n-th destination |
3583 | IndirectBrInst(const IndirectBrInst &IBI); |
3584 | |
3585 | /// Create a new indirectbr instruction, specifying an |
3586 | /// Address to jump to. The number of expected destinations can be specified |
3587 | /// here to make memory allocation more efficient. This constructor can also |
3588 | /// autoinsert before another instruction. |
3589 | IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore); |
3590 | |
3591 | /// Create a new indirectbr instruction, specifying an |
3592 | /// Address to jump to. The number of expected destinations can be specified |
3593 | /// here to make memory allocation more efficient. This constructor also |
3594 | /// autoinserts at the end of the specified BasicBlock. |
3595 | IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd); |
3596 | |
3597 | // allocate space for exactly zero operands |
3598 | void *operator new(size_t S) { return User::operator new(S); } |
3599 | |
3600 | void init(Value *Address, unsigned NumDests); |
3601 | void growOperands(); |
3602 | |
3603 | protected: |
3604 | // Note: Instruction needs to be a friend here to call cloneImpl. |
3605 | friend class Instruction; |
3606 | |
3607 | IndirectBrInst *cloneImpl() const; |
3608 | |
3609 | public: |
3610 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
3611 | |
3612 | /// Iterator type that casts an operand to a basic block. |
3613 | /// |
3614 | /// This only makes sense because the successors are stored as adjacent |
3615 | /// operands for indirectbr instructions. |
3616 | struct succ_op_iterator |
3617 | : iterator_adaptor_base<succ_op_iterator, value_op_iterator, |
3618 | std::random_access_iterator_tag, BasicBlock *, |
3619 | ptrdiff_t, BasicBlock *, BasicBlock *> { |
3620 | explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {} |
3621 | |
3622 | BasicBlock *operator*() const { return cast<BasicBlock>(*I); } |
3623 | BasicBlock *operator->() const { return operator*(); } |
3624 | }; |
3625 | |
3626 | /// The const version of `succ_op_iterator`. |
3627 | struct const_succ_op_iterator |
3628 | : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator, |
3629 | std::random_access_iterator_tag, |
3630 | const BasicBlock *, ptrdiff_t, const BasicBlock *, |
3631 | const BasicBlock *> { |
3632 | explicit const_succ_op_iterator(const_value_op_iterator I) |
3633 | : iterator_adaptor_base(I) {} |
3634 | |
3635 | const BasicBlock *operator*() const { return cast<BasicBlock>(*I); } |
3636 | const BasicBlock *operator->() const { return operator*(); } |
3637 | }; |
3638 | |
3639 | static IndirectBrInst *Create(Value *Address, unsigned NumDests, |
3640 | Instruction *InsertBefore = nullptr) { |
3641 | return new IndirectBrInst(Address, NumDests, InsertBefore); |
3642 | } |
3643 | |
3644 | static IndirectBrInst *Create(Value *Address, unsigned NumDests, |
3645 | BasicBlock *InsertAtEnd) { |
3646 | return new IndirectBrInst(Address, NumDests, InsertAtEnd); |
3647 | } |
3648 | |
3649 | /// Provide fast operand accessors. |
3650 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
3651 | |
3652 | // Accessor Methods for IndirectBrInst instruction. |
3653 | Value *getAddress() { return getOperand(0); } |
3654 | const Value *getAddress() const { return getOperand(0); } |
3655 | void setAddress(Value *V) { setOperand(0, V); } |
3656 | |
3657 | /// return the number of possible destinations in this |
3658 | /// indirectbr instruction. |
3659 | unsigned getNumDestinations() const { return getNumOperands()-1; } |
3660 | |
3661 | /// Return the specified destination. |
3662 | BasicBlock *getDestination(unsigned i) { return getSuccessor(i); } |
3663 | const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); } |
3664 | |
3665 | /// Add a destination. |
3666 | /// |
3667 | void addDestination(BasicBlock *Dest); |
3668 | |
3669 | /// This method removes the specified successor from the |
3670 | /// indirectbr instruction. |
3671 | void removeDestination(unsigned i); |
3672 | |
3673 | unsigned getNumSuccessors() const { return getNumOperands()-1; } |
3674 | BasicBlock *getSuccessor(unsigned i) const { |
3675 | return cast<BasicBlock>(getOperand(i+1)); |
3676 | } |
3677 | void setSuccessor(unsigned i, BasicBlock *NewSucc) { |
3678 | setOperand(i + 1, NewSucc); |
3679 | } |
3680 | |
3681 | iterator_range<succ_op_iterator> successors() { |
3682 | return make_range(succ_op_iterator(std::next(value_op_begin())), |
3683 | succ_op_iterator(value_op_end())); |
3684 | } |
3685 | |
3686 | iterator_range<const_succ_op_iterator> successors() const { |
3687 | return make_range(const_succ_op_iterator(std::next(value_op_begin())), |
3688 | const_succ_op_iterator(value_op_end())); |
3689 | } |
3690 | |
3691 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
3692 | static bool classof(const Instruction *I) { |
3693 | return I->getOpcode() == Instruction::IndirectBr; |
3694 | } |
3695 | static bool classof(const Value *V) { |
3696 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
3697 | } |
3698 | }; |
3699 | |
3700 | template <> |
3701 | struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> { |
3702 | }; |
3703 | |
3704 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)IndirectBrInst::op_iterator IndirectBrInst::op_begin() { return OperandTraits<IndirectBrInst>::op_begin(this); } IndirectBrInst ::const_op_iterator IndirectBrInst::op_begin() const { return OperandTraits<IndirectBrInst>::op_begin(const_cast< IndirectBrInst*>(this)); } IndirectBrInst::op_iterator IndirectBrInst ::op_end() { return OperandTraits<IndirectBrInst>::op_end (this); } IndirectBrInst::const_op_iterator IndirectBrInst::op_end () const { return OperandTraits<IndirectBrInst>::op_end (const_cast<IndirectBrInst*>(this)); } Value *IndirectBrInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<IndirectBrInst>::op_begin( const_cast<IndirectBrInst*>(this))[i_nocapture].get()); } void IndirectBrInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<IndirectBrInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned IndirectBrInst::getNumOperands() const { return OperandTraits <IndirectBrInst>::operands(this); } template <int Idx_nocapture > Use &IndirectBrInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &IndirectBrInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
3705 | |
3706 | //===----------------------------------------------------------------------===// |
3707 | // InvokeInst Class |
3708 | //===----------------------------------------------------------------------===// |
3709 | |
3710 | /// Invoke instruction. The SubclassData field is used to hold the |
3711 | /// calling convention of the call. |
3712 | /// |
3713 | class InvokeInst : public CallBase { |
3714 | /// The number of operands for this call beyond the called function, |
3715 | /// arguments, and operand bundles. |
3716 | static constexpr int NumExtraOperands = 2; |
3717 | |
3718 | /// The index from the end of the operand array to the normal destination. |
3719 | static constexpr int NormalDestOpEndIdx = -3; |
3720 | |
3721 | /// The index from the end of the operand array to the unwind destination. |
3722 | static constexpr int UnwindDestOpEndIdx = -2; |
3723 | |
3724 | InvokeInst(const InvokeInst &BI); |
3725 | |
3726 | /// Construct an InvokeInst given a range of arguments. |
3727 | /// |
3728 | /// Construct an InvokeInst from a range of arguments |
3729 | inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
3730 | BasicBlock *IfException, ArrayRef<Value *> Args, |
3731 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
3732 | const Twine &NameStr, Instruction *InsertBefore); |
3733 | |
3734 | inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
3735 | BasicBlock *IfException, ArrayRef<Value *> Args, |
3736 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
3737 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
3738 | |
3739 | void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
3740 | BasicBlock *IfException, ArrayRef<Value *> Args, |
3741 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr); |
3742 | |
3743 | /// Compute the number of operands to allocate. |
3744 | static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) { |
3745 | // We need one operand for the called function, plus our extra operands and |
3746 | // the input operand counts provided. |
3747 | return 1 + NumExtraOperands + NumArgs + NumBundleInputs; |
3748 | } |
3749 | |
3750 | protected: |
3751 | // Note: Instruction needs to be a friend here to call cloneImpl. |
3752 | friend class Instruction; |
3753 | |
3754 | InvokeInst *cloneImpl() const; |
3755 | |
3756 | public: |
3757 | static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
3758 | BasicBlock *IfException, ArrayRef<Value *> Args, |
3759 | const Twine &NameStr, |
3760 | Instruction *InsertBefore = nullptr) { |
3761 | int NumOperands = ComputeNumOperands(Args.size()); |
3762 | return new (NumOperands) |
3763 | InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands, |
3764 | NameStr, InsertBefore); |
3765 | } |
3766 | |
3767 | static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
3768 | BasicBlock *IfException, ArrayRef<Value *> Args, |
3769 | ArrayRef<OperandBundleDef> Bundles = None, |
3770 | const Twine &NameStr = "", |
3771 | Instruction *InsertBefore = nullptr) { |
3772 | int NumOperands = |
3773 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); |
3774 | unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
3775 | |
3776 | return new (NumOperands, DescriptorBytes) |
3777 | InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands, |
3778 | NameStr, InsertBefore); |
3779 | } |
3780 | |
3781 | static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
3782 | BasicBlock *IfException, ArrayRef<Value *> Args, |
3783 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
3784 | int NumOperands = ComputeNumOperands(Args.size()); |
3785 | return new (NumOperands) |
3786 | InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands, |
3787 | NameStr, InsertAtEnd); |
3788 | } |
3789 | |
3790 | static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
3791 | BasicBlock *IfException, ArrayRef<Value *> Args, |
3792 | ArrayRef<OperandBundleDef> Bundles, |
3793 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
3794 | int NumOperands = |
3795 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); |
3796 | unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
3797 | |
3798 | return new (NumOperands, DescriptorBytes) |
3799 | InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands, |
3800 | NameStr, InsertAtEnd); |
3801 | } |
3802 | |
3803 | static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, |
3804 | BasicBlock *IfException, ArrayRef<Value *> Args, |
3805 | const Twine &NameStr, |
3806 | Instruction *InsertBefore = nullptr) { |
3807 | return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, |
3808 | IfException, Args, None, NameStr, InsertBefore); |
3809 | } |
3810 | |
3811 | static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, |
3812 | BasicBlock *IfException, ArrayRef<Value *> Args, |
3813 | ArrayRef<OperandBundleDef> Bundles = None, |
3814 | const Twine &NameStr = "", |
3815 | Instruction *InsertBefore = nullptr) { |
3816 | return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, |
3817 | IfException, Args, Bundles, NameStr, InsertBefore); |
3818 | } |
3819 | |
3820 | static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, |
3821 | BasicBlock *IfException, ArrayRef<Value *> Args, |
3822 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
3823 | return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, |
3824 | IfException, Args, NameStr, InsertAtEnd); |
3825 | } |
3826 | |
3827 | static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, |
3828 | BasicBlock *IfException, ArrayRef<Value *> Args, |
3829 | ArrayRef<OperandBundleDef> Bundles, |
3830 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
3831 | return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, |
3832 | IfException, Args, Bundles, NameStr, InsertAtEnd); |
3833 | } |
3834 | |
3835 | /// Create a clone of \p II with a different set of operand bundles and |
3836 | /// insert it before \p InsertPt. |
3837 | /// |
3838 | /// The returned invoke instruction is identical to \p II in every way except |
3839 | /// that the operand bundles for the new instruction are set to the operand |
3840 | /// bundles in \p Bundles. |
3841 | static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles, |
3842 | Instruction *InsertPt = nullptr); |
3843 | |
3844 | // get*Dest - Return the destination basic blocks... |
3845 | BasicBlock *getNormalDest() const { |
3846 | return cast<BasicBlock>(Op<NormalDestOpEndIdx>()); |
3847 | } |
3848 | BasicBlock *getUnwindDest() const { |
3849 | return cast<BasicBlock>(Op<UnwindDestOpEndIdx>()); |
3850 | } |
3851 | void setNormalDest(BasicBlock *B) { |
3852 | Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B); |
3853 | } |
3854 | void setUnwindDest(BasicBlock *B) { |
3855 | Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B); |
3856 | } |
3857 | |
3858 | /// Get the landingpad instruction from the landing pad |
3859 | /// block (the unwind destination). |
3860 | LandingPadInst *getLandingPadInst() const; |
3861 | |
3862 | BasicBlock *getSuccessor(unsigned i) const { |
3863 | assert(i < 2 && "Successor # out of range for invoke!")((void)0); |
3864 | return i == 0 ? getNormalDest() : getUnwindDest(); |
3865 | } |
3866 | |
3867 | void setSuccessor(unsigned i, BasicBlock *NewSucc) { |
3868 | assert(i < 2 && "Successor # out of range for invoke!")((void)0); |
3869 | if (i == 0) |
3870 | setNormalDest(NewSucc); |
3871 | else |
3872 | setUnwindDest(NewSucc); |
3873 | } |
3874 | |
3875 | unsigned getNumSuccessors() const { return 2; } |
3876 | |
3877 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
3878 | static bool classof(const Instruction *I) { |
3879 | return (I->getOpcode() == Instruction::Invoke); |
3880 | } |
3881 | static bool classof(const Value *V) { |
3882 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
3883 | } |
3884 | |
3885 | private: |
3886 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
3887 | // method so that subclasses cannot accidentally use it. |
3888 | template <typename Bitfield> |
3889 | void setSubclassData(typename Bitfield::Type Value) { |
3890 | Instruction::setSubclassData<Bitfield>(Value); |
3891 | } |
3892 | }; |
3893 | |
3894 | InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
3895 | BasicBlock *IfException, ArrayRef<Value *> Args, |
3896 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
3897 | const Twine &NameStr, Instruction *InsertBefore) |
3898 | : CallBase(Ty->getReturnType(), Instruction::Invoke, |
3899 | OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, |
3900 | InsertBefore) { |
3901 | init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr); |
3902 | } |
3903 | |
3904 | InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
3905 | BasicBlock *IfException, ArrayRef<Value *> Args, |
3906 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
3907 | const Twine &NameStr, BasicBlock *InsertAtEnd) |
3908 | : CallBase(Ty->getReturnType(), Instruction::Invoke, |
3909 | OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, |
3910 | InsertAtEnd) { |
3911 | init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr); |
3912 | } |
3913 | |
3914 | //===----------------------------------------------------------------------===// |
3915 | // CallBrInst Class |
3916 | //===----------------------------------------------------------------------===// |
3917 | |
3918 | /// CallBr instruction, tracking function calls that may not return control but |
3919 | /// instead transfer it to a third location. The SubclassData field is used to |
3920 | /// hold the calling convention of the call. |
3921 | /// |
3922 | class CallBrInst : public CallBase { |
3923 | |
3924 | unsigned NumIndirectDests; |
3925 | |
3926 | CallBrInst(const CallBrInst &BI); |
3927 | |
3928 | /// Construct a CallBrInst given a range of arguments. |
3929 | /// |
3930 | /// Construct a CallBrInst from a range of arguments |
3931 | inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, |
3932 | ArrayRef<BasicBlock *> IndirectDests, |
3933 | ArrayRef<Value *> Args, |
3934 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
3935 | const Twine &NameStr, Instruction *InsertBefore); |
3936 | |
3937 | inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, |
3938 | ArrayRef<BasicBlock *> IndirectDests, |
3939 | ArrayRef<Value *> Args, |
3940 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
3941 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
3942 | |
3943 | void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest, |
3944 | ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args, |
3945 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr); |
3946 | |
3947 | /// Should the Indirect Destinations change, scan + update the Arg list. |
3948 | void updateArgBlockAddresses(unsigned i, BasicBlock *B); |
3949 | |
3950 | /// Compute the number of operands to allocate. |
3951 | static int ComputeNumOperands(int NumArgs, int NumIndirectDests, |
3952 | int NumBundleInputs = 0) { |
3953 | // We need one operand for the called function, plus our extra operands and |
3954 | // the input operand counts provided. |
3955 | return 2 + NumIndirectDests + NumArgs + NumBundleInputs; |
3956 | } |
3957 | |
3958 | protected: |
3959 | // Note: Instruction needs to be a friend here to call cloneImpl. |
3960 | friend class Instruction; |
3961 | |
3962 | CallBrInst *cloneImpl() const; |
3963 | |
3964 | public: |
3965 | static CallBrInst *Create(FunctionType *Ty, Value *Func, |
3966 | BasicBlock *DefaultDest, |
3967 | ArrayRef<BasicBlock *> IndirectDests, |
3968 | ArrayRef<Value *> Args, const Twine &NameStr, |
3969 | Instruction *InsertBefore = nullptr) { |
3970 | int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size()); |
3971 | return new (NumOperands) |
3972 | CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None, |
3973 | NumOperands, NameStr, InsertBefore); |
3974 | } |
3975 | |
3976 | static CallBrInst *Create(FunctionType *Ty, Value *Func, |
3977 | BasicBlock *DefaultDest, |
3978 | ArrayRef<BasicBlock *> IndirectDests, |
3979 | ArrayRef<Value *> Args, |
3980 | ArrayRef<OperandBundleDef> Bundles = None, |
3981 | const Twine &NameStr = "", |
3982 | Instruction *InsertBefore = nullptr) { |
3983 | int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(), |
3984 | CountBundleInputs(Bundles)); |
3985 | unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
3986 | |
3987 | return new (NumOperands, DescriptorBytes) |
3988 | CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, |
3989 | NumOperands, NameStr, InsertBefore); |
3990 | } |
3991 | |
3992 | static CallBrInst *Create(FunctionType *Ty, Value *Func, |
3993 | BasicBlock *DefaultDest, |
3994 | ArrayRef<BasicBlock *> IndirectDests, |
3995 | ArrayRef<Value *> Args, const Twine &NameStr, |
3996 | BasicBlock *InsertAtEnd) { |
3997 | int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size()); |
3998 | return new (NumOperands) |
3999 | CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None, |
4000 | NumOperands, NameStr, InsertAtEnd); |
4001 | } |
4002 | |
4003 | static CallBrInst *Create(FunctionType *Ty, Value *Func, |
4004 | BasicBlock *DefaultDest, |
4005 | ArrayRef<BasicBlock *> IndirectDests, |
4006 | ArrayRef<Value *> Args, |
4007 | ArrayRef<OperandBundleDef> Bundles, |
4008 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
4009 | int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(), |
4010 | CountBundleInputs(Bundles)); |
4011 | unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
4012 | |
4013 | return new (NumOperands, DescriptorBytes) |
4014 | CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, |
4015 | NumOperands, NameStr, InsertAtEnd); |
4016 | } |
4017 | |
4018 | static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest, |
4019 | ArrayRef<BasicBlock *> IndirectDests, |
4020 | ArrayRef<Value *> Args, const Twine &NameStr, |
4021 | Instruction *InsertBefore = nullptr) { |
4022 | return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, |
4023 | IndirectDests, Args, NameStr, InsertBefore); |
4024 | } |
4025 | |
4026 | static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest, |
4027 | ArrayRef<BasicBlock *> IndirectDests, |
4028 | ArrayRef<Value *> Args, |
4029 | ArrayRef<OperandBundleDef> Bundles = None, |
4030 | const Twine &NameStr = "", |
4031 | Instruction *InsertBefore = nullptr) { |
4032 | return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, |
4033 | IndirectDests, Args, Bundles, NameStr, InsertBefore); |
4034 | } |
4035 | |
4036 | static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest, |
4037 | ArrayRef<BasicBlock *> IndirectDests, |
4038 | ArrayRef<Value *> Args, const Twine &NameStr, |
4039 | BasicBlock *InsertAtEnd) { |
4040 | return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, |
4041 | IndirectDests, Args, NameStr, InsertAtEnd); |
4042 | } |
4043 | |
4044 | static CallBrInst *Create(FunctionCallee Func, |
4045 | BasicBlock *DefaultDest, |
4046 | ArrayRef<BasicBlock *> IndirectDests, |
4047 | ArrayRef<Value *> Args, |
4048 | ArrayRef<OperandBundleDef> Bundles, |
4049 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
4050 | return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, |
4051 | IndirectDests, Args, Bundles, NameStr, InsertAtEnd); |
4052 | } |
4053 | |
4054 | /// Create a clone of \p CBI with a different set of operand bundles and |
4055 | /// insert it before \p InsertPt. |
4056 | /// |
4057 | /// The returned callbr instruction is identical to \p CBI in every way |
4058 | /// except that the operand bundles for the new instruction are set to the |
4059 | /// operand bundles in \p Bundles. |
4060 | static CallBrInst *Create(CallBrInst *CBI, |
4061 | ArrayRef<OperandBundleDef> Bundles, |
4062 | Instruction *InsertPt = nullptr); |
4063 | |
4064 | /// Return the number of callbr indirect dest labels. |
4065 | /// |
4066 | unsigned getNumIndirectDests() const { return NumIndirectDests; } |
4067 | |
4068 | /// getIndirectDestLabel - Return the i-th indirect dest label. |
4069 | /// |
4070 | Value *getIndirectDestLabel(unsigned i) const { |
4071 | assert(i < getNumIndirectDests() && "Out of bounds!")((void)0); |
4072 | return getOperand(i + getNumArgOperands() + getNumTotalBundleOperands() + |
4073 | 1); |
4074 | } |
4075 | |
4076 | Value *getIndirectDestLabelUse(unsigned i) const { |
4077 | assert(i < getNumIndirectDests() && "Out of bounds!")((void)0); |
4078 | return getOperandUse(i + getNumArgOperands() + getNumTotalBundleOperands() + |
4079 | 1); |
4080 | } |
4081 | |
4082 | // Return the destination basic blocks... |
4083 | BasicBlock *getDefaultDest() const { |
4084 | return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1)); |
4085 | } |
4086 | BasicBlock *getIndirectDest(unsigned i) const { |
4087 | return cast_or_null<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() + i)); |
4088 | } |
4089 | SmallVector<BasicBlock *, 16> getIndirectDests() const { |
4090 | SmallVector<BasicBlock *, 16> IndirectDests; |
4091 | for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i) |
4092 | IndirectDests.push_back(getIndirectDest(i)); |
4093 | return IndirectDests; |
4094 | } |
4095 | void setDefaultDest(BasicBlock *B) { |
4096 | *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B); |
4097 | } |
4098 | void setIndirectDest(unsigned i, BasicBlock *B) { |
4099 | updateArgBlockAddresses(i, B); |
4100 | *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B); |
4101 | } |
4102 | |
4103 | BasicBlock *getSuccessor(unsigned i) const { |
4104 | assert(i < getNumSuccessors() + 1 &&((void)0) |
4105 | "Successor # out of range for callbr!")((void)0); |
4106 | return i == 0 ? getDefaultDest() : getIndirectDest(i - 1); |
4107 | } |
4108 | |
4109 | void setSuccessor(unsigned i, BasicBlock *NewSucc) { |
4110 | assert(i < getNumIndirectDests() + 1 &&((void)0) |
4111 | "Successor # out of range for callbr!")((void)0); |
4112 | return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc); |
4113 | } |
4114 | |
4115 | unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; } |
4116 | |
4117 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
4118 | static bool classof(const Instruction *I) { |
4119 | return (I->getOpcode() == Instruction::CallBr); |
4120 | } |
4121 | static bool classof(const Value *V) { |
4122 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
4123 | } |
4124 | |
4125 | private: |
4126 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
4127 | // method so that subclasses cannot accidentally use it. |
4128 | template <typename Bitfield> |
4129 | void setSubclassData(typename Bitfield::Type Value) { |
4130 | Instruction::setSubclassData<Bitfield>(Value); |
4131 | } |
4132 | }; |
4133 | |
4134 | CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, |
4135 | ArrayRef<BasicBlock *> IndirectDests, |
4136 | ArrayRef<Value *> Args, |
4137 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
4138 | const Twine &NameStr, Instruction *InsertBefore) |
4139 | : CallBase(Ty->getReturnType(), Instruction::CallBr, |
4140 | OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, |
4141 | InsertBefore) { |
4142 | init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr); |
4143 | } |
4144 | |
4145 | CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, |
4146 | ArrayRef<BasicBlock *> IndirectDests, |
4147 | ArrayRef<Value *> Args, |
4148 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
4149 | const Twine &NameStr, BasicBlock *InsertAtEnd) |
4150 | : CallBase(Ty->getReturnType(), Instruction::CallBr, |
4151 | OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, |
4152 | InsertAtEnd) { |
4153 | init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr); |
4154 | } |
4155 | |
4156 | //===----------------------------------------------------------------------===// |
4157 | // ResumeInst Class |
4158 | //===----------------------------------------------------------------------===// |
4159 | |
4160 | //===--------------------------------------------------------------------------- |
4161 | /// Resume the propagation of an exception. |
4162 | /// |
4163 | class ResumeInst : public Instruction { |
4164 | ResumeInst(const ResumeInst &RI); |
4165 | |
4166 | explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr); |
4167 | ResumeInst(Value *Exn, BasicBlock *InsertAtEnd); |
4168 | |
4169 | protected: |
4170 | // Note: Instruction needs to be a friend here to call cloneImpl. |
4171 | friend class Instruction; |
4172 | |
4173 | ResumeInst *cloneImpl() const; |
4174 | |
4175 | public: |
4176 | static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) { |
4177 | return new(1) ResumeInst(Exn, InsertBefore); |
4178 | } |
4179 | |
4180 | static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) { |
4181 | return new(1) ResumeInst(Exn, InsertAtEnd); |
4182 | } |
4183 | |
4184 | /// Provide fast operand accessors |
4185 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
4186 | |
4187 | /// Convenience accessor. |
4188 | Value *getValue() const { return Op<0>(); } |
4189 | |
4190 | unsigned getNumSuccessors() const { return 0; } |
4191 | |
4192 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
4193 | static bool classof(const Instruction *I) { |
4194 | return I->getOpcode() == Instruction::Resume; |
4195 | } |
4196 | static bool classof(const Value *V) { |
4197 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
4198 | } |
4199 | |
4200 | private: |
4201 | BasicBlock *getSuccessor(unsigned idx) const { |
4202 | llvm_unreachable("ResumeInst has no successors!")__builtin_unreachable(); |
4203 | } |
4204 | |
4205 | void setSuccessor(unsigned idx, BasicBlock *NewSucc) { |
4206 | llvm_unreachable("ResumeInst has no successors!")__builtin_unreachable(); |
4207 | } |
4208 | }; |
4209 | |
4210 | template <> |
4211 | struct OperandTraits<ResumeInst> : |
4212 | public FixedNumOperandTraits<ResumeInst, 1> { |
4213 | }; |
4214 | |
4215 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)ResumeInst::op_iterator ResumeInst::op_begin() { return OperandTraits <ResumeInst>::op_begin(this); } ResumeInst::const_op_iterator ResumeInst::op_begin() const { return OperandTraits<ResumeInst >::op_begin(const_cast<ResumeInst*>(this)); } ResumeInst ::op_iterator ResumeInst::op_end() { return OperandTraits< ResumeInst>::op_end(this); } ResumeInst::const_op_iterator ResumeInst::op_end() const { return OperandTraits<ResumeInst >::op_end(const_cast<ResumeInst*>(this)); } Value *ResumeInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<ResumeInst>::op_begin(const_cast <ResumeInst*>(this))[i_nocapture].get()); } void ResumeInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<ResumeInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned ResumeInst::getNumOperands() const { return OperandTraits<ResumeInst>::operands(this); } template <int Idx_nocapture> Use &ResumeInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &ResumeInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
4216 | |
4217 | //===----------------------------------------------------------------------===// |
4218 | // CatchSwitchInst Class |
4219 | //===----------------------------------------------------------------------===// |
4220 | class CatchSwitchInst : public Instruction { |
4221 | using UnwindDestField = BoolBitfieldElementT<0>; |
4222 | |
4223 | /// The number of operands actually allocated. NumOperands is |
4224 | /// the number actually in use. |
4225 | unsigned ReservedSpace; |
4226 | |
4227 | // Operand[0] = Outer scope |
4228 | // Operand[1] = Unwind block destination |
4229 | // Operand[n] = BasicBlock to go to on match |
4230 | CatchSwitchInst(const CatchSwitchInst &CSI); |
4231 | |
4232 | /// Create a new switch instruction, specifying a |
4233 | /// default destination. The number of additional handlers can be specified |
4234 | /// here to make memory allocation more efficient. |
4235 | /// This constructor can also autoinsert before another instruction. |
4236 | CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, |
4237 | unsigned NumHandlers, const Twine &NameStr, |
4238 | Instruction *InsertBefore); |
4239 | |
4240 | /// Create a new switch instruction, specifying a |
4241 | /// default destination. The number of additional handlers can be specified |
4242 | /// here to make memory allocation more efficient. |
4243 | /// This constructor also autoinserts at the end of the specified BasicBlock. |
4244 | CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, |
4245 | unsigned NumHandlers, const Twine &NameStr, |
4246 | BasicBlock *InsertAtEnd); |
4247 | |
4248 | // allocate space for exactly zero operands |
4249 | void *operator new(size_t S) { return User::operator new(S); } |
4250 | |
4251 | void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved); |
4252 | void growOperands(unsigned Size); |
4253 | |
4254 | protected: |
4255 | // Note: Instruction needs to be a friend here to call cloneImpl. |
4256 | friend class Instruction; |
4257 | |
4258 | CatchSwitchInst *cloneImpl() const; |
4259 | |
4260 | public: |
4261 | void operator delete(void *Ptr) { return User::operator delete(Ptr); } |
4262 | |
4263 | static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest, |
4264 | unsigned NumHandlers, |
4265 | const Twine &NameStr = "", |
4266 | Instruction *InsertBefore = nullptr) { |
4267 | return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr, |
4268 | InsertBefore); |
4269 | } |
4270 | |
4271 | static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest, |
4272 | unsigned NumHandlers, const Twine &NameStr, |
4273 | BasicBlock *InsertAtEnd) { |
4274 | return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr, |
4275 | InsertAtEnd); |
4276 | } |
4277 | |
4278 | /// Provide fast operand accessors |
4279 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
4280 | |
4281 | // Accessor Methods for CatchSwitch stmt |
4282 | Value *getParentPad() const { return getOperand(0); } |
4283 | void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); } |
4284 | |
4285 | // Accessor Methods for CatchSwitch stmt |
4286 | bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); } |
4287 | bool unwindsToCaller() const { return !hasUnwindDest(); } |
4288 | BasicBlock *getUnwindDest() const { |
4289 | if (hasUnwindDest()) |
4290 | return cast<BasicBlock>(getOperand(1)); |
4291 | return nullptr; |
4292 | } |
4293 | void setUnwindDest(BasicBlock *UnwindDest) { |
4294 | assert(UnwindDest)((void)0); |
4295 | assert(hasUnwindDest())((void)0); |
4296 | setOperand(1, UnwindDest); |
4297 | } |
4298 | |
4299 | /// return the number of 'handlers' in this catchswitch |
4300 | /// instruction, except the default handler |
4301 | unsigned getNumHandlers() const { |
4302 | if (hasUnwindDest()) |
4303 | return getNumOperands() - 2; |
4304 | return getNumOperands() - 1; |
4305 | } |
4306 | |
4307 | private: |
4308 | static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); } |
4309 | static const BasicBlock *handler_helper(const Value *V) { |
4310 | return cast<BasicBlock>(V); |
4311 | } |
4312 | |
4313 | public: |
4314 | using DerefFnTy = BasicBlock *(*)(Value *); |
4315 | using handler_iterator = mapped_iterator<op_iterator, DerefFnTy>; |
4316 | using handler_range = iterator_range<handler_iterator>; |
4317 | using ConstDerefFnTy = const BasicBlock *(*)(const Value *); |
4318 | using const_handler_iterator = |
4319 | mapped_iterator<const_op_iterator, ConstDerefFnTy>; |
4320 | using const_handler_range = iterator_range<const_handler_iterator>; |
4321 | |
4322 | /// Returns an iterator that points to the first handler in CatchSwitchInst. |
4323 | handler_iterator handler_begin() { |
4324 | op_iterator It = op_begin() + 1; |
4325 | if (hasUnwindDest()) |
4326 | ++It; |
4327 | return handler_iterator(It, DerefFnTy(handler_helper)); |
4328 | } |
4329 | |
4330 | /// Returns an iterator that points to the first handler in the |
4331 | /// CatchSwitchInst. |
4332 | const_handler_iterator handler_begin() const { |
4333 | const_op_iterator It = op_begin() + 1; |
4334 | if (hasUnwindDest()) |
4335 | ++It; |
4336 | return const_handler_iterator(It, ConstDerefFnTy(handler_helper)); |
4337 | } |
4338 | |
4339 | /// Returns a read-only iterator that points one past the last |
4340 | /// handler in the CatchSwitchInst. |
4341 | handler_iterator handler_end() { |
4342 | return handler_iterator(op_end(), DerefFnTy(handler_helper)); |
4343 | } |
4344 | |
4345 | /// Returns an iterator that points one past the last handler in the |
4346 | /// CatchSwitchInst. |
4347 | const_handler_iterator handler_end() const { |
4348 | return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper)); |
4349 | } |
4350 | |
4351 | /// iteration adapter for range-for loops. |
4352 | handler_range handlers() { |
4353 | return make_range(handler_begin(), handler_end()); |
4354 | } |
4355 | |
4356 | /// iteration adapter for range-for loops. |
4357 | const_handler_range handlers() const { |
4358 | return make_range(handler_begin(), handler_end()); |
4359 | } |
4360 | |
4361 | /// Add an entry to the switch instruction... |
4362 | /// Note: |
4363 | /// This action invalidates handler_end(). Old handler_end() iterator will |
4364 | /// point to the added handler. |
4365 | void addHandler(BasicBlock *Dest); |
4366 | |
4367 | void removeHandler(handler_iterator HI); |
4368 | |
4369 | unsigned getNumSuccessors() const { return getNumOperands() - 1; } |
4370 | BasicBlock *getSuccessor(unsigned Idx) const { |
4371 | assert(Idx < getNumSuccessors() &&((void)0) |
4372 | "Successor # out of range for catchswitch!")((void)0); |
4373 | return cast<BasicBlock>(getOperand(Idx + 1)); |
4374 | } |
4375 | void setSuccessor(unsigned Idx, BasicBlock *NewSucc) { |
4376 | assert(Idx < getNumSuccessors() &&((void)0) |
4377 | "Successor # out of range for catchswitch!")((void)0); |
4378 | setOperand(Idx + 1, NewSucc); |
4379 | } |
4380 | |
4381 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
4382 | static bool classof(const Instruction *I) { |
4383 | return I->getOpcode() == Instruction::CatchSwitch; |
4384 | } |
4385 | static bool classof(const Value *V) { |
4386 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
4387 | } |
4388 | }; |
4389 | |
4390 | template <> |
4391 | struct OperandTraits<CatchSwitchInst> : public HungoffOperandTraits<2> {}; |
4392 | |
4393 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value)CatchSwitchInst::op_iterator CatchSwitchInst::op_begin() { return OperandTraits<CatchSwitchInst>::op_begin(this); } CatchSwitchInst ::const_op_iterator CatchSwitchInst::op_begin() const { return OperandTraits<CatchSwitchInst>::op_begin(const_cast< CatchSwitchInst*>(this)); } CatchSwitchInst::op_iterator CatchSwitchInst ::op_end() { return OperandTraits<CatchSwitchInst>::op_end (this); } CatchSwitchInst::const_op_iterator CatchSwitchInst:: op_end() const { return OperandTraits<CatchSwitchInst>:: op_end(const_cast<CatchSwitchInst*>(this)); } Value *CatchSwitchInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<CatchSwitchInst>::op_begin (const_cast<CatchSwitchInst*>(this))[i_nocapture].get() ); } void CatchSwitchInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<CatchSwitchInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned CatchSwitchInst::getNumOperands() const { return OperandTraits <CatchSwitchInst>::operands(this); } template <int Idx_nocapture > Use &CatchSwitchInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &CatchSwitchInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
4394 | |
4395 | //===----------------------------------------------------------------------===// |
4396 | // CleanupPadInst Class |
4397 | //===----------------------------------------------------------------------===// |
4398 | class CleanupPadInst : public FuncletPadInst { |
4399 | private: |
4400 | explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args, |
4401 | unsigned Values, const Twine &NameStr, |
4402 | Instruction *InsertBefore) |
4403 | : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values, |
4404 | NameStr, InsertBefore) {} |
4405 | explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args, |
4406 | unsigned Values, const Twine &NameStr, |
4407 | BasicBlock *InsertAtEnd) |
4408 | : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values, |
4409 | NameStr, InsertAtEnd) {} |
4410 | |
4411 | public: |
4412 | static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args = None, |
4413 | const Twine &NameStr = "", |
4414 | Instruction *InsertBefore = nullptr) { |
4415 | unsigned Values = 1 + Args.size(); |
4416 | return new (Values) |
4417 | CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore); |
4418 | } |
4419 | |
4420 | static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args, |
4421 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
4422 | unsigned Values = 1 + Args.size(); |
4423 | return new (Values) |
4424 | CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd); |
4425 | } |
4426 | |
4427 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
4428 | static bool classof(const Instruction *I) { |
4429 | return I->getOpcode() == Instruction::CleanupPad; |
4430 | } |
4431 | static bool classof(const Value *V) { |
4432 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
4433 | } |
4434 | }; |
4435 | |
4436 | //===----------------------------------------------------------------------===// |
4437 | // CatchPadInst Class |
4438 | //===----------------------------------------------------------------------===// |
4439 | class CatchPadInst : public FuncletPadInst { |
4440 | private: |
4441 | explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args, |
4442 | unsigned Values, const Twine &NameStr, |
4443 | Instruction *InsertBefore) |
4444 | : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values, |
4445 | NameStr, InsertBefore) {} |
4446 | explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args, |
4447 | unsigned Values, const Twine &NameStr, |
4448 | BasicBlock *InsertAtEnd) |
4449 | : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values, |
4450 | NameStr, InsertAtEnd) {} |
4451 | |
4452 | public: |
4453 | static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args, |
4454 | const Twine &NameStr = "", |
4455 | Instruction *InsertBefore = nullptr) { |
4456 | unsigned Values = 1 + Args.size(); |
4457 | return new (Values) |
4458 | CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore); |
4459 | } |
4460 | |
4461 | static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args, |
4462 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
4463 | unsigned Values = 1 + Args.size(); |
4464 | return new (Values) |
4465 | CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd); |
4466 | } |
4467 | |
4468 | /// Convenience accessors |
4469 | CatchSwitchInst *getCatchSwitch() const { |
4470 | return cast<CatchSwitchInst>(Op<-1>()); |
4471 | } |
4472 | void setCatchSwitch(Value *CatchSwitch) { |
4473 | assert(CatchSwitch)((void)0); |
4474 | Op<-1>() = CatchSwitch; |
4475 | } |
4476 | |
4477 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
4478 | static bool classof(const Instruction *I) { |
4479 | return I->getOpcode() == Instruction::CatchPad; |
4480 | } |
4481 | static bool classof(const Value *V) { |
4482 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
4483 | } |
4484 | }; |
4485 | |
4486 | //===----------------------------------------------------------------------===// |
4487 | // CatchReturnInst Class |
4488 | //===----------------------------------------------------------------------===// |
4489 | |
4490 | class CatchReturnInst : public Instruction { |
4491 | CatchReturnInst(const CatchReturnInst &RI); |
4492 | CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore); |
4493 | CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd); |
4494 | |
4495 | void init(Value *CatchPad, BasicBlock *BB); |
4496 | |
4497 | protected: |
4498 | // Note: Instruction needs to be a friend here to call cloneImpl. |
4499 | friend class Instruction; |
4500 | |
4501 | CatchReturnInst *cloneImpl() const; |
4502 | |
4503 | public: |
4504 | static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB, |
4505 | Instruction *InsertBefore = nullptr) { |
4506 | assert(CatchPad)((void)0); |
4507 | assert(BB)((void)0); |
4508 | return new (2) CatchReturnInst(CatchPad, BB, InsertBefore); |
4509 | } |
4510 | |
4511 | static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB, |
4512 | BasicBlock *InsertAtEnd) { |
4513 | assert(CatchPad)((void)0); |
4514 | assert(BB)((void)0); |
4515 | return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd); |
4516 | } |
4517 | |
4518 | /// Provide fast operand accessors |
4519 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
4520 | |
4521 | /// Convenience accessors. |
4522 | CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); } |
4523 | void setCatchPad(CatchPadInst *CatchPad) { |
4524 | assert(CatchPad)((void)0); |
4525 | Op<0>() = CatchPad; |
4526 | } |
4527 | |
4528 | BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); } |
4529 | void setSuccessor(BasicBlock *NewSucc) { |
4530 | assert(NewSucc)((void)0); |
4531 | Op<1>() = NewSucc; |
4532 | } |
4533 | unsigned getNumSuccessors() const { return 1; } |
4534 | |
4535 | /// Get the parentPad of this catchret's catchpad's catchswitch. |
4536 | /// The successor block is implicitly a member of this funclet. |
4537 | Value *getCatchSwitchParentPad() const { |
4538 | return getCatchPad()->getCatchSwitch()->getParentPad(); |
4539 | } |
4540 | |
4541 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
4542 | static bool classof(const Instruction *I) { |
4543 | return (I->getOpcode() == Instruction::CatchRet); |
4544 | } |
4545 | static bool classof(const Value *V) { |
4546 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
4547 | } |
4548 | |
4549 | private: |
4550 | BasicBlock *getSuccessor(unsigned Idx) const { |
4551 | assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")((void)0); |
4552 | return getSuccessor(); |
4553 | } |
4554 | |
4555 | void setSuccessor(unsigned Idx, BasicBlock *B) { |
4556 | assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")((void)0); |
4557 | setSuccessor(B); |
4558 | } |
4559 | }; |
4560 | |
4561 | template <> |
4562 | struct OperandTraits<CatchReturnInst> |
4563 | : public FixedNumOperandTraits<CatchReturnInst, 2> {}; |
4564 | |
4565 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value)CatchReturnInst::op_iterator CatchReturnInst::op_begin() { return OperandTraits<CatchReturnInst>::op_begin(this); } CatchReturnInst ::const_op_iterator CatchReturnInst::op_begin() const { return OperandTraits<CatchReturnInst>::op_begin(const_cast< CatchReturnInst*>(this)); } CatchReturnInst::op_iterator CatchReturnInst ::op_end() { return OperandTraits<CatchReturnInst>::op_end (this); } CatchReturnInst::const_op_iterator CatchReturnInst:: op_end() const { return OperandTraits<CatchReturnInst>:: op_end(const_cast<CatchReturnInst*>(this)); } Value *CatchReturnInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<CatchReturnInst>::op_begin (const_cast<CatchReturnInst*>(this))[i_nocapture].get() ); } void CatchReturnInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<CatchReturnInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned CatchReturnInst::getNumOperands() const { return OperandTraits <CatchReturnInst>::operands(this); } template <int Idx_nocapture > Use &CatchReturnInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &CatchReturnInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
4566 | |
4567 | //===----------------------------------------------------------------------===// |
4568 | // CleanupReturnInst Class |
4569 | //===----------------------------------------------------------------------===// |
4570 | |
4571 | class CleanupReturnInst : public Instruction { |
4572 | using UnwindDestField = BoolBitfieldElementT<0>; |
4573 | |
4574 | private: |
4575 | CleanupReturnInst(const CleanupReturnInst &RI); |
4576 | CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values, |
4577 | Instruction *InsertBefore = nullptr); |
4578 | CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values, |
4579 | BasicBlock *InsertAtEnd); |
4580 | |
4581 | void init(Value *CleanupPad, BasicBlock *UnwindBB); |
4582 | |
4583 | protected: |
4584 | // Note: Instruction needs to be a friend here to call cloneImpl. |
4585 | friend class Instruction; |
4586 | |
4587 | CleanupReturnInst *cloneImpl() const; |
4588 | |
4589 | public: |
4590 | static CleanupReturnInst *Create(Value *CleanupPad, |
4591 | BasicBlock *UnwindBB = nullptr, |
4592 | Instruction *InsertBefore = nullptr) { |
4593 | assert(CleanupPad)((void)0); |
4594 | unsigned Values = 1; |
4595 | if (UnwindBB) |
4596 | ++Values; |
4597 | return new (Values) |
4598 | CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore); |
4599 | } |
4600 | |
4601 | static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB, |
4602 | BasicBlock *InsertAtEnd) { |
4603 | assert(CleanupPad)((void)0); |
4604 | unsigned Values = 1; |
4605 | if (UnwindBB) |
4606 | ++Values; |
4607 | return new (Values) |
4608 | CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd); |
4609 | } |
4610 | |
4611 | /// Provide fast operand accessors |
4612 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
4613 | |
4614 | bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); } |
4615 | bool unwindsToCaller() const { return !hasUnwindDest(); } |
4616 | |
4617 | /// Convenience accessor. |
4618 | CleanupPadInst *getCleanupPad() const { |
4619 | return cast<CleanupPadInst>(Op<0>()); |
4620 | } |
4621 | void setCleanupPad(CleanupPadInst *CleanupPad) { |
4622 | assert(CleanupPad)((void)0); |
4623 | Op<0>() = CleanupPad; |
4624 | } |
4625 | |
4626 | unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; } |
4627 | |
4628 | BasicBlock *getUnwindDest() const { |
4629 | return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr; |
4630 | } |
4631 | void setUnwindDest(BasicBlock *NewDest) { |
4632 | assert(NewDest)((void)0); |
4633 | assert(hasUnwindDest())((void)0); |
4634 | Op<1>() = NewDest; |
4635 | } |
4636 | |
4637 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
4638 | static bool classof(const Instruction *I) { |
4639 | return (I->getOpcode() == Instruction::CleanupRet); |
4640 | } |
4641 | static bool classof(const Value *V) { |
4642 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
4643 | } |
4644 | |
4645 | private: |
4646 | BasicBlock *getSuccessor(unsigned Idx) const { |
4647 | assert(Idx == 0)((void)0); |
4648 | return getUnwindDest(); |
4649 | } |
4650 | |
4651 | void setSuccessor(unsigned Idx, BasicBlock *B) { |
4652 | assert(Idx == 0)((void)0); |
4653 | setUnwindDest(B); |
4654 | } |
4655 | |
4656 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
4657 | // method so that subclasses cannot accidentally use it. |
4658 | template <typename Bitfield> |
4659 | void setSubclassData(typename Bitfield::Type Value) { |
4660 | Instruction::setSubclassData<Bitfield>(Value); |
4661 | } |
4662 | }; |
4663 | |
4664 | template <> |
4665 | struct OperandTraits<CleanupReturnInst> |
4666 | : public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {}; |
4667 | |
4668 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value)CleanupReturnInst::op_iterator CleanupReturnInst::op_begin() { return OperandTraits<CleanupReturnInst>::op_begin(this ); } CleanupReturnInst::const_op_iterator CleanupReturnInst:: op_begin() const { return OperandTraits<CleanupReturnInst> :: |