Bug Summary

File:src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/CodeGen/SelectionDAGNodes.h
Warning:line 1114, column 10
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name X86ISelDAGToDAG.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model static -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Analysis -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ASMParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/BinaryFormat -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitstream -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /include/llvm/CodeGen -I /include/llvm/CodeGen/PBQP -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Coroutines -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData/Coverage -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/CodeView -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/DWARF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/MSF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/PDB -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Demangle -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/JITLink -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/Orc -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenACC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenMP -I /include/llvm/CodeGen/GlobalISel -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IRReader -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/LTO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Linker -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC/MCParser -I /include/llvm/CodeGen/MIRParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Object -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Option -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Passes -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Scalar -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ADT -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/Symbolize -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Target -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Utils -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Vectorize -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/IPO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/libLLVM/../include -I /usr/src/gnu/usr.bin/clang/libLLVM/obj -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -stack-protector 2 -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp

1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines a DAG pattern matching instruction selector for X86,
10// converting from a legalized dag to a X86 dag.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86.h"
15#include "X86MachineFunctionInfo.h"
16#include "X86RegisterInfo.h"
17#include "X86Subtarget.h"
18#include "X86TargetMachine.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/CodeGen/MachineModuleInfo.h"
21#include "llvm/CodeGen/SelectionDAGISel.h"
22#include "llvm/Config/llvm-config.h"
23#include "llvm/IR/ConstantRange.h"
24#include "llvm/IR/Function.h"
25#include "llvm/IR/Instructions.h"
26#include "llvm/IR/Intrinsics.h"
27#include "llvm/IR/IntrinsicsX86.h"
28#include "llvm/IR/Type.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/KnownBits.h"
32#include "llvm/Support/MathExtras.h"
33#include <cstdint>
34
35using namespace llvm;
36
37#define DEBUG_TYPE"x86-isel" "x86-isel"
38
39STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor")static llvm::Statistic NumLoadMoved = {"x86-isel", "NumLoadMoved"
, "Number of loads moved below TokenFactor"}
;
40
41static cl::opt<bool> AndImmShrink("x86-and-imm-shrink", cl::init(true),
42 cl::desc("Enable setting constant bits to reduce size of mask immediates"),
43 cl::Hidden);
44
45static cl::opt<bool> EnablePromoteAnyextLoad(
46 "x86-promote-anyext-load", cl::init(true),
47 cl::desc("Enable promoting aligned anyext load to wider load"), cl::Hidden);
48
49extern cl::opt<bool> IndirectBranchTracking;
50
51//===----------------------------------------------------------------------===//
52// Pattern Matcher Implementation
53//===----------------------------------------------------------------------===//
54
55namespace {
56 /// This corresponds to X86AddressMode, but uses SDValue's instead of register
57 /// numbers for the leaves of the matched tree.
58 struct X86ISelAddressMode {
59 enum {
60 RegBase,
61 FrameIndexBase
62 } BaseType;
63
64 // This is really a union, discriminated by BaseType!
65 SDValue Base_Reg;
66 int Base_FrameIndex;
67
68 unsigned Scale;
69 SDValue IndexReg;
70 int32_t Disp;
71 SDValue Segment;
72 const GlobalValue *GV;
73 const Constant *CP;
74 const BlockAddress *BlockAddr;
75 const char *ES;
76 MCSymbol *MCSym;
77 int JT;
78 Align Alignment; // CP alignment.
79 unsigned char SymbolFlags; // X86II::MO_*
80 bool NegateIndex = false;
81
82 X86ISelAddressMode()
83 : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
84 Segment(), GV(nullptr), CP(nullptr), BlockAddr(nullptr), ES(nullptr),
85 MCSym(nullptr), JT(-1), SymbolFlags(X86II::MO_NO_FLAG) {}
86
87 bool hasSymbolicDisplacement() const {
88 return GV != nullptr || CP != nullptr || ES != nullptr ||
89 MCSym != nullptr || JT != -1 || BlockAddr != nullptr;
90 }
91
92 bool hasBaseOrIndexReg() const {
93 return BaseType == FrameIndexBase ||
94 IndexReg.getNode() != nullptr || Base_Reg.getNode() != nullptr;
95 }
96
97 /// Return true if this addressing mode is already RIP-relative.
98 bool isRIPRelative() const {
99 if (BaseType != RegBase) return false;
100 if (RegisterSDNode *RegNode =
101 dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
102 return RegNode->getReg() == X86::RIP;
103 return false;
104 }
105
106 void setBaseReg(SDValue Reg) {
107 BaseType = RegBase;
108 Base_Reg = Reg;
109 }
110
111#if !defined(NDEBUG1) || defined(LLVM_ENABLE_DUMP)
112 void dump(SelectionDAG *DAG = nullptr) {
113 dbgs() << "X86ISelAddressMode " << this << '\n';
114 dbgs() << "Base_Reg ";
115 if (Base_Reg.getNode())
116 Base_Reg.getNode()->dump(DAG);
117 else
118 dbgs() << "nul\n";
119 if (BaseType == FrameIndexBase)
120 dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n';
121 dbgs() << " Scale " << Scale << '\n'
122 << "IndexReg ";
123 if (NegateIndex)
124 dbgs() << "negate ";
125 if (IndexReg.getNode())
126 IndexReg.getNode()->dump(DAG);
127 else
128 dbgs() << "nul\n";
129 dbgs() << " Disp " << Disp << '\n'
130 << "GV ";
131 if (GV)
132 GV->dump();
133 else
134 dbgs() << "nul";
135 dbgs() << " CP ";
136 if (CP)
137 CP->dump();
138 else
139 dbgs() << "nul";
140 dbgs() << '\n'
141 << "ES ";
142 if (ES)
143 dbgs() << ES;
144 else
145 dbgs() << "nul";
146 dbgs() << " MCSym ";
147 if (MCSym)
148 dbgs() << MCSym;
149 else
150 dbgs() << "nul";
151 dbgs() << " JT" << JT << " Align" << Alignment.value() << '\n';
152 }
153#endif
154 };
155}
156
157namespace {
158 //===--------------------------------------------------------------------===//
159 /// ISel - X86-specific code to select X86 machine instructions for
160 /// SelectionDAG operations.
161 ///
162 class X86DAGToDAGISel final : public SelectionDAGISel {
163 /// Keep a pointer to the X86Subtarget around so that we can
164 /// make the right decision when generating code for different targets.
165 const X86Subtarget *Subtarget;
166
167 /// If true, selector should try to optimize for minimum code size.
168 bool OptForMinSize;
169
170 /// Disable direct TLS access through segment registers.
171 bool IndirectTlsSegRefs;
172
173 public:
174 explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
175 : SelectionDAGISel(tm, OptLevel), Subtarget(nullptr),
176 OptForMinSize(false), IndirectTlsSegRefs(false) {}
177
178 StringRef getPassName() const override {
179 return "X86 DAG->DAG Instruction Selection";
180 }
181
182 bool runOnMachineFunction(MachineFunction &MF) override {
183 // Reset the subtarget each time through.
184 Subtarget = &MF.getSubtarget<X86Subtarget>();
185 IndirectTlsSegRefs = MF.getFunction().hasFnAttribute(
186 "indirect-tls-seg-refs");
187
188 // OptFor[Min]Size are used in pattern predicates that isel is matching.
189 OptForMinSize = MF.getFunction().hasMinSize();
190 assert((!OptForMinSize || MF.getFunction().hasOptSize()) &&((void)0)
191 "OptForMinSize implies OptForSize")((void)0);
192
193 SelectionDAGISel::runOnMachineFunction(MF);
194 return true;
195 }
196
197 void emitFunctionEntryCode() override;
198
199 bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
200
201 void PreprocessISelDAG() override;
202 void PostprocessISelDAG() override;
203
204// Include the pieces autogenerated from the target description.
205#include "X86GenDAGISel.inc"
206
207 private:
208 void Select(SDNode *N) override;
209
210 bool foldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
211 bool matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM,
212 bool AllowSegmentRegForX32 = false);
213 bool matchWrapper(SDValue N, X86ISelAddressMode &AM);
214 bool matchAddress(SDValue N, X86ISelAddressMode &AM);
215 bool matchVectorAddress(SDValue N, X86ISelAddressMode &AM);
216 bool matchAdd(SDValue &N, X86ISelAddressMode &AM, unsigned Depth);
217 bool matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
218 unsigned Depth);
219 bool matchAddressBase(SDValue N, X86ISelAddressMode &AM);
220 bool selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
221 SDValue &Scale, SDValue &Index, SDValue &Disp,
222 SDValue &Segment);
223 bool selectVectorAddr(MemSDNode *Parent, SDValue BasePtr, SDValue IndexOp,
224 SDValue ScaleOp, SDValue &Base, SDValue &Scale,
225 SDValue &Index, SDValue &Disp, SDValue &Segment);
226 bool selectMOV64Imm32(SDValue N, SDValue &Imm);
227 bool selectLEAAddr(SDValue N, SDValue &Base,
228 SDValue &Scale, SDValue &Index, SDValue &Disp,
229 SDValue &Segment);
230 bool selectLEA64_32Addr(SDValue N, SDValue &Base,
231 SDValue &Scale, SDValue &Index, SDValue &Disp,
232 SDValue &Segment);
233 bool selectTLSADDRAddr(SDValue N, SDValue &Base,
234 SDValue &Scale, SDValue &Index, SDValue &Disp,
235 SDValue &Segment);
236 bool selectRelocImm(SDValue N, SDValue &Op);
237
238 bool tryFoldLoad(SDNode *Root, SDNode *P, SDValue N,
239 SDValue &Base, SDValue &Scale,
240 SDValue &Index, SDValue &Disp,
241 SDValue &Segment);
242
243 // Convenience method where P is also root.
244 bool tryFoldLoad(SDNode *P, SDValue N,
245 SDValue &Base, SDValue &Scale,
246 SDValue &Index, SDValue &Disp,
247 SDValue &Segment) {
248 return tryFoldLoad(P, P, N, Base, Scale, Index, Disp, Segment);
249 }
250
251 bool tryFoldBroadcast(SDNode *Root, SDNode *P, SDValue N,
252 SDValue &Base, SDValue &Scale,
253 SDValue &Index, SDValue &Disp,
254 SDValue &Segment);
255
256 bool isProfitableToFormMaskedOp(SDNode *N) const;
257
258 /// Implement addressing mode selection for inline asm expressions.
259 bool SelectInlineAsmMemoryOperand(const SDValue &Op,
260 unsigned ConstraintID,
261 std::vector<SDValue> &OutOps) override;
262
263 void emitSpecialCodeForMain();
264
265 inline void getAddressOperands(X86ISelAddressMode &AM, const SDLoc &DL,
266 MVT VT, SDValue &Base, SDValue &Scale,
267 SDValue &Index, SDValue &Disp,
268 SDValue &Segment) {
269 if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
270 Base = CurDAG->getTargetFrameIndex(
271 AM.Base_FrameIndex, TLI->getPointerTy(CurDAG->getDataLayout()));
272 else if (AM.Base_Reg.getNode())
273 Base = AM.Base_Reg;
274 else
275 Base = CurDAG->getRegister(0, VT);
276
277 Scale = getI8Imm(AM.Scale, DL);
278
279 // Negate the index if needed.
280 if (AM.NegateIndex) {
281 unsigned NegOpc = VT == MVT::i64 ? X86::NEG64r : X86::NEG32r;
282 SDValue Neg = SDValue(CurDAG->getMachineNode(NegOpc, DL, VT, MVT::i32,
283 AM.IndexReg), 0);
284 AM.IndexReg = Neg;
285 }
286
287 if (AM.IndexReg.getNode())
288 Index = AM.IndexReg;
289 else
290 Index = CurDAG->getRegister(0, VT);
291
292 // These are 32-bit even in 64-bit mode since RIP-relative offset
293 // is 32-bit.
294 if (AM.GV)
295 Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(),
296 MVT::i32, AM.Disp,
297 AM.SymbolFlags);
298 else if (AM.CP)
299 Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32, AM.Alignment,
300 AM.Disp, AM.SymbolFlags);
301 else if (AM.ES) {
302 assert(!AM.Disp && "Non-zero displacement is ignored with ES.")((void)0);
303 Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
304 } else if (AM.MCSym) {
305 assert(!AM.Disp && "Non-zero displacement is ignored with MCSym.")((void)0);
306 assert(AM.SymbolFlags == 0 && "oo")((void)0);
307 Disp = CurDAG->getMCSymbol(AM.MCSym, MVT::i32);
308 } else if (AM.JT != -1) {
309 assert(!AM.Disp && "Non-zero displacement is ignored with JT.")((void)0);
310 Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
311 } else if (AM.BlockAddr)
312 Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp,
313 AM.SymbolFlags);
314 else
315 Disp = CurDAG->getTargetConstant(AM.Disp, DL, MVT::i32);
316
317 if (AM.Segment.getNode())
318 Segment = AM.Segment;
319 else
320 Segment = CurDAG->getRegister(0, MVT::i16);
321 }
322
323 // Utility function to determine whether we should avoid selecting
324 // immediate forms of instructions for better code size or not.
325 // At a high level, we'd like to avoid such instructions when
326 // we have similar constants used within the same basic block
327 // that can be kept in a register.
328 //
329 bool shouldAvoidImmediateInstFormsForSize(SDNode *N) const {
330 uint32_t UseCount = 0;
331
332 // Do not want to hoist if we're not optimizing for size.
333 // TODO: We'd like to remove this restriction.
334 // See the comment in X86InstrInfo.td for more info.
335 if (!CurDAG->shouldOptForSize())
336 return false;
337
338 // Walk all the users of the immediate.
339 for (SDNode::use_iterator UI = N->use_begin(),
340 UE = N->use_end(); (UI != UE) && (UseCount < 2); ++UI) {
341
342 SDNode *User = *UI;
343
344 // This user is already selected. Count it as a legitimate use and
345 // move on.
346 if (User->isMachineOpcode()) {
347 UseCount++;
348 continue;
349 }
350
351 // We want to count stores of immediates as real uses.
352 if (User->getOpcode() == ISD::STORE &&
353 User->getOperand(1).getNode() == N) {
354 UseCount++;
355 continue;
356 }
357
358 // We don't currently match users that have > 2 operands (except
359 // for stores, which are handled above)
360 // Those instruction won't match in ISEL, for now, and would
361 // be counted incorrectly.
362 // This may change in the future as we add additional instruction
363 // types.
364 if (User->getNumOperands() != 2)
365 continue;
366
367 // If this is a sign-extended 8-bit integer immediate used in an ALU
368 // instruction, there is probably an opcode encoding to save space.
369 auto *C = dyn_cast<ConstantSDNode>(N);
370 if (C && isInt<8>(C->getSExtValue()))
371 continue;
372
373 // Immediates that are used for offsets as part of stack
374 // manipulation should be left alone. These are typically
375 // used to indicate SP offsets for argument passing and
376 // will get pulled into stores/pushes (implicitly).
377 if (User->getOpcode() == X86ISD::ADD ||
378 User->getOpcode() == ISD::ADD ||
379 User->getOpcode() == X86ISD::SUB ||
380 User->getOpcode() == ISD::SUB) {
381
382 // Find the other operand of the add/sub.
383 SDValue OtherOp = User->getOperand(0);
384 if (OtherOp.getNode() == N)
385 OtherOp = User->getOperand(1);
386
387 // Don't count if the other operand is SP.
388 RegisterSDNode *RegNode;
389 if (OtherOp->getOpcode() == ISD::CopyFromReg &&
390 (RegNode = dyn_cast_or_null<RegisterSDNode>(
391 OtherOp->getOperand(1).getNode())))
392 if ((RegNode->getReg() == X86::ESP) ||
393 (RegNode->getReg() == X86::RSP))
394 continue;
395 }
396
397 // ... otherwise, count this and move on.
398 UseCount++;
399 }
400
401 // If we have more than 1 use, then recommend for hoisting.
402 return (UseCount > 1);
403 }
404
405 /// Return a target constant with the specified value of type i8.
406 inline SDValue getI8Imm(unsigned Imm, const SDLoc &DL) {
407 return CurDAG->getTargetConstant(Imm, DL, MVT::i8);
408 }
409
410 /// Return a target constant with the specified value, of type i32.
411 inline SDValue getI32Imm(unsigned Imm, const SDLoc &DL) {
412 return CurDAG->getTargetConstant(Imm, DL, MVT::i32);
413 }
414
415 /// Return a target constant with the specified value, of type i64.
416 inline SDValue getI64Imm(uint64_t Imm, const SDLoc &DL) {
417 return CurDAG->getTargetConstant(Imm, DL, MVT::i64);
418 }
419
420 SDValue getExtractVEXTRACTImmediate(SDNode *N, unsigned VecWidth,
421 const SDLoc &DL) {
422 assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width")((void)0);
423 uint64_t Index = N->getConstantOperandVal(1);
424 MVT VecVT = N->getOperand(0).getSimpleValueType();
425 return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL);
426 }
427
428 SDValue getInsertVINSERTImmediate(SDNode *N, unsigned VecWidth,
429 const SDLoc &DL) {
430 assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width")((void)0);
431 uint64_t Index = N->getConstantOperandVal(2);
432 MVT VecVT = N->getSimpleValueType(0);
433 return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL);
434 }
435
436 // Helper to detect unneeded and instructions on shift amounts. Called
437 // from PatFrags in tablegen.
438 bool isUnneededShiftMask(SDNode *N, unsigned Width) const {
439 assert(N->getOpcode() == ISD::AND && "Unexpected opcode")((void)0);
440 const APInt &Val = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
441
442 if (Val.countTrailingOnes() >= Width)
443 return true;
444
445 APInt Mask = Val | CurDAG->computeKnownBits(N->getOperand(0)).Zero;
446 return Mask.countTrailingOnes() >= Width;
447 }
448
449 /// Return an SDNode that returns the value of the global base register.
450 /// Output instructions required to initialize the global base register,
451 /// if necessary.
452 SDNode *getGlobalBaseReg();
453
454 /// Return a reference to the TargetMachine, casted to the target-specific
455 /// type.
456 const X86TargetMachine &getTargetMachine() const {
457 return static_cast<const X86TargetMachine &>(TM);
458 }
459
460 /// Return a reference to the TargetInstrInfo, casted to the target-specific
461 /// type.
462 const X86InstrInfo *getInstrInfo() const {
463 return Subtarget->getInstrInfo();
464 }
465
466 /// Address-mode matching performs shift-of-and to and-of-shift
467 /// reassociation in order to expose more scaled addressing
468 /// opportunities.
469 bool ComplexPatternFuncMutatesDAG() const override {
470 return true;
471 }
472
473 bool isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const;
474
475 // Indicates we should prefer to use a non-temporal load for this load.
476 bool useNonTemporalLoad(LoadSDNode *N) const {
477 if (!N->isNonTemporal())
478 return false;
479
480 unsigned StoreSize = N->getMemoryVT().getStoreSize();
481
482 if (N->getAlignment() < StoreSize)
483 return false;
484
485 switch (StoreSize) {
486 default: llvm_unreachable("Unsupported store size")__builtin_unreachable();
487 case 4:
488 case 8:
489 return false;
490 case 16:
491 return Subtarget->hasSSE41();
492 case 32:
493 return Subtarget->hasAVX2();
494 case 64:
495 return Subtarget->hasAVX512();
496 }
497 }
498
499 bool foldLoadStoreIntoMemOperand(SDNode *Node);
500 MachineSDNode *matchBEXTRFromAndImm(SDNode *Node);
501 bool matchBitExtract(SDNode *Node);
502 bool shrinkAndImmediate(SDNode *N);
503 bool isMaskZeroExtended(SDNode *N) const;
504 bool tryShiftAmountMod(SDNode *N);
505 bool tryShrinkShlLogicImm(SDNode *N);
506 bool tryVPTERNLOG(SDNode *N);
507 bool matchVPTERNLOG(SDNode *Root, SDNode *ParentA, SDNode *ParentBC,
508 SDValue A, SDValue B, SDValue C, uint8_t Imm);
509 bool tryVPTESTM(SDNode *Root, SDValue Setcc, SDValue Mask);
510 bool tryMatchBitSelect(SDNode *N);
511
512 MachineSDNode *emitPCMPISTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad,
513 const SDLoc &dl, MVT VT, SDNode *Node);
514 MachineSDNode *emitPCMPESTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad,
515 const SDLoc &dl, MVT VT, SDNode *Node,
516 SDValue &InFlag);
517
518 bool tryOptimizeRem8Extend(SDNode *N);
519
520 bool onlyUsesZeroFlag(SDValue Flags) const;
521 bool hasNoSignFlagUses(SDValue Flags) const;
522 bool hasNoCarryFlagUses(SDValue Flags) const;
523 };
524}
525
526
527// Returns true if this masked compare can be implemented legally with this
528// type.
529static bool isLegalMaskCompare(SDNode *N, const X86Subtarget *Subtarget) {
530 unsigned Opcode = N->getOpcode();
531 if (Opcode == X86ISD::CMPM || Opcode == X86ISD::CMPMM ||
532 Opcode == X86ISD::STRICT_CMPM || Opcode == ISD::SETCC ||
533 Opcode == X86ISD::CMPMM_SAE || Opcode == X86ISD::VFPCLASS) {
534 // We can get 256-bit 8 element types here without VLX being enabled. When
535 // this happens we will use 512-bit operations and the mask will not be
536 // zero extended.
537 EVT OpVT = N->getOperand(0).getValueType();
538 // The first operand of X86ISD::STRICT_CMPM is chain, so we need to get the
539 // second operand.
540 if (Opcode == X86ISD::STRICT_CMPM)
541 OpVT = N->getOperand(1).getValueType();
542 if (OpVT.is256BitVector() || OpVT.is128BitVector())
543 return Subtarget->hasVLX();
544
545 return true;
546 }
547 // Scalar opcodes use 128 bit registers, but aren't subject to the VLX check.
548 if (Opcode == X86ISD::VFPCLASSS || Opcode == X86ISD::FSETCCM ||
549 Opcode == X86ISD::FSETCCM_SAE)
550 return true;
551
552 return false;
553}
554
555// Returns true if we can assume the writer of the mask has zero extended it
556// for us.
557bool X86DAGToDAGISel::isMaskZeroExtended(SDNode *N) const {
558 // If this is an AND, check if we have a compare on either side. As long as
559 // one side guarantees the mask is zero extended, the AND will preserve those
560 // zeros.
561 if (N->getOpcode() == ISD::AND)
562 return isLegalMaskCompare(N->getOperand(0).getNode(), Subtarget) ||
563 isLegalMaskCompare(N->getOperand(1).getNode(), Subtarget);
564
565 return isLegalMaskCompare(N, Subtarget);
566}
567
568bool
569X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
570 if (OptLevel == CodeGenOpt::None) return false;
571
572 if (!N.hasOneUse())
573 return false;
574
575 if (N.getOpcode() != ISD::LOAD)
576 return true;
577
578 // Don't fold non-temporal loads if we have an instruction for them.
579 if (useNonTemporalLoad(cast<LoadSDNode>(N)))
580 return false;
581
582 // If N is a load, do additional profitability checks.
583 if (U == Root) {
584 switch (U->getOpcode()) {
585 default: break;
586 case X86ISD::ADD:
587 case X86ISD::ADC:
588 case X86ISD::SUB:
589 case X86ISD::SBB:
590 case X86ISD::AND:
591 case X86ISD::XOR:
592 case X86ISD::OR:
593 case ISD::ADD:
594 case ISD::ADDCARRY:
595 case ISD::AND:
596 case ISD::OR:
597 case ISD::XOR: {
598 SDValue Op1 = U->getOperand(1);
599
600 // If the other operand is a 8-bit immediate we should fold the immediate
601 // instead. This reduces code size.
602 // e.g.
603 // movl 4(%esp), %eax
604 // addl $4, %eax
605 // vs.
606 // movl $4, %eax
607 // addl 4(%esp), %eax
608 // The former is 2 bytes shorter. In case where the increment is 1, then
609 // the saving can be 4 bytes (by using incl %eax).
610 if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1)) {
611 if (Imm->getAPIntValue().isSignedIntN(8))
612 return false;
613
614 // If this is a 64-bit AND with an immediate that fits in 32-bits,
615 // prefer using the smaller and over folding the load. This is needed to
616 // make sure immediates created by shrinkAndImmediate are always folded.
617 // Ideally we would narrow the load during DAG combine and get the
618 // best of both worlds.
619 if (U->getOpcode() == ISD::AND &&
620 Imm->getAPIntValue().getBitWidth() == 64 &&
621 Imm->getAPIntValue().isIntN(32))
622 return false;
623
624 // If this really a zext_inreg that can be represented with a movzx
625 // instruction, prefer that.
626 // TODO: We could shrink the load and fold if it is non-volatile.
627 if (U->getOpcode() == ISD::AND &&
628 (Imm->getAPIntValue() == UINT8_MAX0xff ||
629 Imm->getAPIntValue() == UINT16_MAX0xffff ||
630 Imm->getAPIntValue() == UINT32_MAX0xffffffffU))
631 return false;
632
633 // ADD/SUB with can negate the immediate and use the opposite operation
634 // to fit 128 into a sign extended 8 bit immediate.
635 if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB) &&
636 (-Imm->getAPIntValue()).isSignedIntN(8))
637 return false;
638
639 if ((U->getOpcode() == X86ISD::ADD || U->getOpcode() == X86ISD::SUB) &&
640 (-Imm->getAPIntValue()).isSignedIntN(8) &&
641 hasNoCarryFlagUses(SDValue(U, 1)))
642 return false;
643 }
644
645 // If the other operand is a TLS address, we should fold it instead.
646 // This produces
647 // movl %gs:0, %eax
648 // leal i@NTPOFF(%eax), %eax
649 // instead of
650 // movl $i@NTPOFF, %eax
651 // addl %gs:0, %eax
652 // if the block also has an access to a second TLS address this will save
653 // a load.
654 // FIXME: This is probably also true for non-TLS addresses.
655 if (Op1.getOpcode() == X86ISD::Wrapper) {
656 SDValue Val = Op1.getOperand(0);
657 if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
658 return false;
659 }
660
661 // Don't fold load if this matches the BTS/BTR/BTC patterns.
662 // BTS: (or X, (shl 1, n))
663 // BTR: (and X, (rotl -2, n))
664 // BTC: (xor X, (shl 1, n))
665 if (U->getOpcode() == ISD::OR || U->getOpcode() == ISD::XOR) {
666 if (U->getOperand(0).getOpcode() == ISD::SHL &&
667 isOneConstant(U->getOperand(0).getOperand(0)))
668 return false;
669
670 if (U->getOperand(1).getOpcode() == ISD::SHL &&
671 isOneConstant(U->getOperand(1).getOperand(0)))
672 return false;
673 }
674 if (U->getOpcode() == ISD::AND) {
675 SDValue U0 = U->getOperand(0);
676 SDValue U1 = U->getOperand(1);
677 if (U0.getOpcode() == ISD::ROTL) {
678 auto *C = dyn_cast<ConstantSDNode>(U0.getOperand(0));
679 if (C && C->getSExtValue() == -2)
680 return false;
681 }
682
683 if (U1.getOpcode() == ISD::ROTL) {
684 auto *C = dyn_cast<ConstantSDNode>(U1.getOperand(0));
685 if (C && C->getSExtValue() == -2)
686 return false;
687 }
688 }
689
690 break;
691 }
692 case ISD::SHL:
693 case ISD::SRA:
694 case ISD::SRL:
695 // Don't fold a load into a shift by immediate. The BMI2 instructions
696 // support folding a load, but not an immediate. The legacy instructions
697 // support folding an immediate, but can't fold a load. Folding an
698 // immediate is preferable to folding a load.
699 if (isa<ConstantSDNode>(U->getOperand(1)))
700 return false;
701
702 break;
703 }
704 }
705
706 // Prevent folding a load if this can implemented with an insert_subreg or
707 // a move that implicitly zeroes.
708 if (Root->getOpcode() == ISD::INSERT_SUBVECTOR &&
709 isNullConstant(Root->getOperand(2)) &&
710 (Root->getOperand(0).isUndef() ||
711 ISD::isBuildVectorAllZeros(Root->getOperand(0).getNode())))
712 return false;
713
714 return true;
715}
716
717// Indicates it is profitable to form an AVX512 masked operation. Returning
718// false will favor a masked register-register masked move or vblendm and the
719// operation will be selected separately.
720bool X86DAGToDAGISel::isProfitableToFormMaskedOp(SDNode *N) const {
721 assert(((void)0)
722 (N->getOpcode() == ISD::VSELECT || N->getOpcode() == X86ISD::SELECTS) &&((void)0)
723 "Unexpected opcode!")((void)0);
724
725 // If the operation has additional users, the operation will be duplicated.
726 // Check the use count to prevent that.
727 // FIXME: Are there cheap opcodes we might want to duplicate?
728 return N->getOperand(1).hasOneUse();
729}
730
731/// Replace the original chain operand of the call with
732/// load's chain operand and move load below the call's chain operand.
733static void moveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
734 SDValue Call, SDValue OrigChain) {
735 SmallVector<SDValue, 8> Ops;
736 SDValue Chain = OrigChain.getOperand(0);
737 if (Chain.getNode() == Load.getNode())
738 Ops.push_back(Load.getOperand(0));
739 else {
740 assert(Chain.getOpcode() == ISD::TokenFactor &&((void)0)
741 "Unexpected chain operand")((void)0);
742 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
743 if (Chain.getOperand(i).getNode() == Load.getNode())
744 Ops.push_back(Load.getOperand(0));
745 else
746 Ops.push_back(Chain.getOperand(i));
747 SDValue NewChain =
748 CurDAG->getNode(ISD::TokenFactor, SDLoc(Load), MVT::Other, Ops);
749 Ops.clear();
750 Ops.push_back(NewChain);
751 }
752 Ops.append(OrigChain->op_begin() + 1, OrigChain->op_end());
753 CurDAG->UpdateNodeOperands(OrigChain.getNode(), Ops);
754 CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
755 Load.getOperand(1), Load.getOperand(2));
756
757 Ops.clear();
758 Ops.push_back(SDValue(Load.getNode(), 1));
759 Ops.append(Call->op_begin() + 1, Call->op_end());
760 CurDAG->UpdateNodeOperands(Call.getNode(), Ops);
761}
762
763/// Return true if call address is a load and it can be
764/// moved below CALLSEQ_START and the chains leading up to the call.
765/// Return the CALLSEQ_START by reference as a second output.
766/// In the case of a tail call, there isn't a callseq node between the call
767/// chain and the load.
768static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
769 // The transformation is somewhat dangerous if the call's chain was glued to
770 // the call. After MoveBelowOrigChain the load is moved between the call and
771 // the chain, this can create a cycle if the load is not folded. So it is
772 // *really* important that we are sure the load will be folded.
773 if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
774 return false;
775 LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
776 if (!LD ||
777 !LD->isSimple() ||
778 LD->getAddressingMode() != ISD::UNINDEXED ||
779 LD->getExtensionType() != ISD::NON_EXTLOAD)
780 return false;
781
782 // Now let's find the callseq_start.
783 while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
784 if (!Chain.hasOneUse())
785 return false;
786 Chain = Chain.getOperand(0);
787 }
788
789 if (!Chain.getNumOperands())
790 return false;
791 // Since we are not checking for AA here, conservatively abort if the chain
792 // writes to memory. It's not safe to move the callee (a load) across a store.
793 if (isa<MemSDNode>(Chain.getNode()) &&
794 cast<MemSDNode>(Chain.getNode())->writeMem())
795 return false;
796 if (Chain.getOperand(0).getNode() == Callee.getNode())
797 return true;
798 if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
799 Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
800 Callee.getValue(1).hasOneUse())
801 return true;
802 return false;
803}
804
805static bool isEndbrImm64(uint64_t Imm) {
806// There may be some other prefix bytes between 0xF3 and 0x0F1EFA.
807// i.g: 0xF3660F1EFA, 0xF3670F1EFA
808 if ((Imm & 0x00FFFFFF) != 0x0F1EFA)
809 return false;
810
811 uint8_t OptionalPrefixBytes [] = {0x26, 0x2e, 0x36, 0x3e, 0x64,
812 0x65, 0x66, 0x67, 0xf0, 0xf2};
813 int i = 24; // 24bit 0x0F1EFA has matched
814 while (i < 64) {
815 uint8_t Byte = (Imm >> i) & 0xFF;
816 if (Byte == 0xF3)
817 return true;
818 if (!llvm::is_contained(OptionalPrefixBytes, Byte))
819 return false;
820 i += 8;
821 }
822
823 return false;
824}
825
826void X86DAGToDAGISel::PreprocessISelDAG() {
827 bool MadeChange = false;
828 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
829 E = CurDAG->allnodes_end(); I != E; ) {
830 SDNode *N = &*I++; // Preincrement iterator to avoid invalidation issues.
831
832 // This is for CET enhancement.
833 //
834 // ENDBR32 and ENDBR64 have specific opcodes:
835 // ENDBR32: F3 0F 1E FB
836 // ENDBR64: F3 0F 1E FA
837 // And we want that attackers won’t find unintended ENDBR32/64
838 // opcode matches in the binary
839 // Here’s an example:
840 // If the compiler had to generate asm for the following code:
841 // a = 0xF30F1EFA
842 // it could, for example, generate:
843 // mov 0xF30F1EFA, dword ptr[a]
844 // In such a case, the binary would include a gadget that starts
845 // with a fake ENDBR64 opcode. Therefore, we split such generation
846 // into multiple operations, let it not shows in the binary
847 if (N->getOpcode() == ISD::Constant) {
848 MVT VT = N->getSimpleValueType(0);
849 int64_t Imm = cast<ConstantSDNode>(N)->getSExtValue();
850 int32_t EndbrImm = Subtarget->is64Bit() ? 0xF30F1EFA : 0xF30F1EFB;
851 if (Imm == EndbrImm || isEndbrImm64(Imm)) {
852 // Check that the cf-protection-branch is enabled.
853 Metadata *CFProtectionBranch =
854 MF->getMMI().getModule()->getModuleFlag("cf-protection-branch");
855 if (CFProtectionBranch || IndirectBranchTracking) {
856 SDLoc dl(N);
857 SDValue Complement = CurDAG->getConstant(~Imm, dl, VT, false, true);
858 Complement = CurDAG->getNOT(dl, Complement, VT);
859 --I;
860 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Complement);
861 ++I;
862 MadeChange = true;
863 continue;
864 }
865 }
866 }
867
868 // If this is a target specific AND node with no flag usages, turn it back
869 // into ISD::AND to enable test instruction matching.
870 if (N->getOpcode() == X86ISD::AND && !N->hasAnyUseOfValue(1)) {
871 SDValue Res = CurDAG->getNode(ISD::AND, SDLoc(N), N->getValueType(0),
872 N->getOperand(0), N->getOperand(1));
873 --I;
874 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
875 ++I;
876 MadeChange = true;
877 continue;
878 }
879
880 /// Convert vector increment or decrement to sub/add with an all-ones
881 /// constant:
882 /// add X, <1, 1...> --> sub X, <-1, -1...>
883 /// sub X, <1, 1...> --> add X, <-1, -1...>
884 /// The all-ones vector constant can be materialized using a pcmpeq
885 /// instruction that is commonly recognized as an idiom (has no register
886 /// dependency), so that's better/smaller than loading a splat 1 constant.
887 if ((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
888 N->getSimpleValueType(0).isVector()) {
889
890 APInt SplatVal;
891 if (X86::isConstantSplat(N->getOperand(1), SplatVal) &&
892 SplatVal.isOneValue()) {
893 SDLoc DL(N);
894
895 MVT VT = N->getSimpleValueType(0);
896 unsigned NumElts = VT.getSizeInBits() / 32;
897 SDValue AllOnes =
898 CurDAG->getAllOnesConstant(DL, MVT::getVectorVT(MVT::i32, NumElts));
899 AllOnes = CurDAG->getBitcast(VT, AllOnes);
900
901 unsigned NewOpcode = N->getOpcode() == ISD::ADD ? ISD::SUB : ISD::ADD;
902 SDValue Res =
903 CurDAG->getNode(NewOpcode, DL, VT, N->getOperand(0), AllOnes);
904 --I;
905 CurDAG->ReplaceAllUsesWith(N, Res.getNode());
906 ++I;
907 MadeChange = true;
908 continue;
909 }
910 }
911
912 switch (N->getOpcode()) {
913 case X86ISD::VBROADCAST: {
914 MVT VT = N->getSimpleValueType(0);
915 // Emulate v32i16/v64i8 broadcast without BWI.
916 if (!Subtarget->hasBWI() && (VT == MVT::v32i16 || VT == MVT::v64i8)) {
917 MVT NarrowVT = VT == MVT::v32i16 ? MVT::v16i16 : MVT::v32i8;
918 SDLoc dl(N);
919 SDValue NarrowBCast =
920 CurDAG->getNode(X86ISD::VBROADCAST, dl, NarrowVT, N->getOperand(0));
921 SDValue Res =
922 CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, CurDAG->getUNDEF(VT),
923 NarrowBCast, CurDAG->getIntPtrConstant(0, dl));
924 unsigned Index = VT == MVT::v32i16 ? 16 : 32;
925 Res = CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, Res, NarrowBCast,
926 CurDAG->getIntPtrConstant(Index, dl));
927
928 --I;
929 CurDAG->ReplaceAllUsesWith(N, Res.getNode());
930 ++I;
931 MadeChange = true;
932 continue;
933 }
934
935 break;
936 }
937 case X86ISD::VBROADCAST_LOAD: {
938 MVT VT = N->getSimpleValueType(0);
939 // Emulate v32i16/v64i8 broadcast without BWI.
940 if (!Subtarget->hasBWI() && (VT == MVT::v32i16 || VT == MVT::v64i8)) {
941 MVT NarrowVT = VT == MVT::v32i16 ? MVT::v16i16 : MVT::v32i8;
942 auto *MemNode = cast<MemSDNode>(N);
943 SDLoc dl(N);
944 SDVTList VTs = CurDAG->getVTList(NarrowVT, MVT::Other);
945 SDValue Ops[] = {MemNode->getChain(), MemNode->getBasePtr()};
946 SDValue NarrowBCast = CurDAG->getMemIntrinsicNode(
947 X86ISD::VBROADCAST_LOAD, dl, VTs, Ops, MemNode->getMemoryVT(),
948 MemNode->getMemOperand());
949 SDValue Res =
950 CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, CurDAG->getUNDEF(VT),
951 NarrowBCast, CurDAG->getIntPtrConstant(0, dl));
952 unsigned Index = VT == MVT::v32i16 ? 16 : 32;
953 Res = CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, Res, NarrowBCast,
954 CurDAG->getIntPtrConstant(Index, dl));
955
956 --I;
957 SDValue To[] = {Res, NarrowBCast.getValue(1)};
958 CurDAG->ReplaceAllUsesWith(N, To);
959 ++I;
960 MadeChange = true;
961 continue;
962 }
963
964 break;
965 }
966 case ISD::VSELECT: {
967 // Replace VSELECT with non-mask conditions with with BLENDV.
968 if (N->getOperand(0).getValueType().getVectorElementType() == MVT::i1)
969 break;
970
971 assert(Subtarget->hasSSE41() && "Expected SSE4.1 support!")((void)0);
972 SDValue Blendv =
973 CurDAG->getNode(X86ISD::BLENDV, SDLoc(N), N->getValueType(0),
974 N->getOperand(0), N->getOperand(1), N->getOperand(2));
975 --I;
976 CurDAG->ReplaceAllUsesWith(N, Blendv.getNode());
977 ++I;
978 MadeChange = true;
979 continue;
980 }
981 case ISD::FP_ROUND:
982 case ISD::STRICT_FP_ROUND:
983 case ISD::FP_TO_SINT:
984 case ISD::FP_TO_UINT:
985 case ISD::STRICT_FP_TO_SINT:
986 case ISD::STRICT_FP_TO_UINT: {
987 // Replace vector fp_to_s/uint with their X86 specific equivalent so we
988 // don't need 2 sets of patterns.
989 if (!N->getSimpleValueType(0).isVector())
990 break;
991
992 unsigned NewOpc;
993 switch (N->getOpcode()) {
994 default: llvm_unreachable("Unexpected opcode!")__builtin_unreachable();
995 case ISD::FP_ROUND: NewOpc = X86ISD::VFPROUND; break;
996 case ISD::STRICT_FP_ROUND: NewOpc = X86ISD::STRICT_VFPROUND; break;
997 case ISD::STRICT_FP_TO_SINT: NewOpc = X86ISD::STRICT_CVTTP2SI; break;
998 case ISD::FP_TO_SINT: NewOpc = X86ISD::CVTTP2SI; break;
999 case ISD::STRICT_FP_TO_UINT: NewOpc = X86ISD::STRICT_CVTTP2UI; break;
1000 case ISD::FP_TO_UINT: NewOpc = X86ISD::CVTTP2UI; break;
1001 }
1002 SDValue Res;
1003 if (N->isStrictFPOpcode())
1004 Res =
1005 CurDAG->getNode(NewOpc, SDLoc(N), {N->getValueType(0), MVT::Other},
1006 {N->getOperand(0), N->getOperand(1)});
1007 else
1008 Res =
1009 CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
1010 N->getOperand(0));
1011 --I;
1012 CurDAG->ReplaceAllUsesWith(N, Res.getNode());
1013 ++I;
1014 MadeChange = true;
1015 continue;
1016 }
1017 case ISD::SHL:
1018 case ISD::SRA:
1019 case ISD::SRL: {
1020 // Replace vector shifts with their X86 specific equivalent so we don't
1021 // need 2 sets of patterns.
1022 if (!N->getValueType(0).isVector())
1023 break;
1024
1025 unsigned NewOpc;
1026 switch (N->getOpcode()) {
1027 default: llvm_unreachable("Unexpected opcode!")__builtin_unreachable();
1028 case ISD::SHL: NewOpc = X86ISD::VSHLV; break;
1029 case ISD::SRA: NewOpc = X86ISD::VSRAV; break;
1030 case ISD::SRL: NewOpc = X86ISD::VSRLV; break;
1031 }
1032 SDValue Res = CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
1033 N->getOperand(0), N->getOperand(1));
1034 --I;
1035 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
1036 ++I;
1037 MadeChange = true;
1038 continue;
1039 }
1040 case ISD::ANY_EXTEND:
1041 case ISD::ANY_EXTEND_VECTOR_INREG: {
1042 // Replace vector any extend with the zero extend equivalents so we don't
1043 // need 2 sets of patterns. Ignore vXi1 extensions.
1044 if (!N->getValueType(0).isVector())
1045 break;
1046
1047 unsigned NewOpc;
1048 if (N->getOperand(0).getScalarValueSizeInBits() == 1) {
1049 assert(N->getOpcode() == ISD::ANY_EXTEND &&((void)0)
1050 "Unexpected opcode for mask vector!")((void)0);
1051 NewOpc = ISD::SIGN_EXTEND;
1052 } else {
1053 NewOpc = N->getOpcode() == ISD::ANY_EXTEND
1054 ? ISD::ZERO_EXTEND
1055 : ISD::ZERO_EXTEND_VECTOR_INREG;
1056 }
1057
1058 SDValue Res = CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
1059 N->getOperand(0));
1060 --I;
1061 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
1062 ++I;
1063 MadeChange = true;
1064 continue;
1065 }
1066 case ISD::FCEIL:
1067 case ISD::STRICT_FCEIL:
1068 case ISD::FFLOOR:
1069 case ISD::STRICT_FFLOOR:
1070 case ISD::FTRUNC:
1071 case ISD::STRICT_FTRUNC:
1072 case ISD::FROUNDEVEN:
1073 case ISD::STRICT_FROUNDEVEN:
1074 case ISD::FNEARBYINT:
1075 case ISD::STRICT_FNEARBYINT:
1076 case ISD::FRINT:
1077 case ISD::STRICT_FRINT: {
1078 // Replace fp rounding with their X86 specific equivalent so we don't
1079 // need 2 sets of patterns.
1080 unsigned Imm;
1081 switch (N->getOpcode()) {
1082 default: llvm_unreachable("Unexpected opcode!")__builtin_unreachable();
1083 case ISD::STRICT_FCEIL:
1084 case ISD::FCEIL: Imm = 0xA; break;
1085 case ISD::STRICT_FFLOOR:
1086 case ISD::FFLOOR: Imm = 0x9; break;
1087 case ISD::STRICT_FTRUNC:
1088 case ISD::FTRUNC: Imm = 0xB; break;
1089 case ISD::STRICT_FROUNDEVEN:
1090 case ISD::FROUNDEVEN: Imm = 0x8; break;
1091 case ISD::STRICT_FNEARBYINT:
1092 case ISD::FNEARBYINT: Imm = 0xC; break;
1093 case ISD::STRICT_FRINT:
1094 case ISD::FRINT: Imm = 0x4; break;
1095 }
1096 SDLoc dl(N);
1097 bool IsStrict = N->isStrictFPOpcode();
1098 SDValue Res;
1099 if (IsStrict)
1100 Res = CurDAG->getNode(X86ISD::STRICT_VRNDSCALE, dl,
1101 {N->getValueType(0), MVT::Other},
1102 {N->getOperand(0), N->getOperand(1),
1103 CurDAG->getTargetConstant(Imm, dl, MVT::i32)});
1104 else
1105 Res = CurDAG->getNode(X86ISD::VRNDSCALE, dl, N->getValueType(0),
1106 N->getOperand(0),
1107 CurDAG->getTargetConstant(Imm, dl, MVT::i32));
1108 --I;
1109 CurDAG->ReplaceAllUsesWith(N, Res.getNode());
1110 ++I;
1111 MadeChange = true;
1112 continue;
1113 }
1114 case X86ISD::FANDN:
1115 case X86ISD::FAND:
1116 case X86ISD::FOR:
1117 case X86ISD::FXOR: {
1118 // Widen scalar fp logic ops to vector to reduce isel patterns.
1119 // FIXME: Can we do this during lowering/combine.
1120 MVT VT = N->getSimpleValueType(0);
1121 if (VT.isVector() || VT == MVT::f128)
1122 break;
1123
1124 MVT VecVT = VT == MVT::f64 ? MVT::v2f64 : MVT::v4f32;
1125 SDLoc dl(N);
1126 SDValue Op0 = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT,
1127 N->getOperand(0));
1128 SDValue Op1 = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT,
1129 N->getOperand(1));
1130
1131 SDValue Res;
1132 if (Subtarget->hasSSE2()) {
1133 EVT IntVT = EVT(VecVT).changeVectorElementTypeToInteger();
1134 Op0 = CurDAG->getNode(ISD::BITCAST, dl, IntVT, Op0);
1135 Op1 = CurDAG->getNode(ISD::BITCAST, dl, IntVT, Op1);
1136 unsigned Opc;
1137 switch (N->getOpcode()) {
1138 default: llvm_unreachable("Unexpected opcode!")__builtin_unreachable();
1139 case X86ISD::FANDN: Opc = X86ISD::ANDNP; break;
1140 case X86ISD::FAND: Opc = ISD::AND; break;
1141 case X86ISD::FOR: Opc = ISD::OR; break;
1142 case X86ISD::FXOR: Opc = ISD::XOR; break;
1143 }
1144 Res = CurDAG->getNode(Opc, dl, IntVT, Op0, Op1);
1145 Res = CurDAG->getNode(ISD::BITCAST, dl, VecVT, Res);
1146 } else {
1147 Res = CurDAG->getNode(N->getOpcode(), dl, VecVT, Op0, Op1);
1148 }
1149 Res = CurDAG->getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Res,
1150 CurDAG->getIntPtrConstant(0, dl));
1151 --I;
1152 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
1153 ++I;
1154 MadeChange = true;
1155 continue;
1156 }
1157 }
1158
1159 if (OptLevel != CodeGenOpt::None &&
1160 // Only do this when the target can fold the load into the call or
1161 // jmp.
1162 !Subtarget->useIndirectThunkCalls() &&
1163 ((N->getOpcode() == X86ISD::CALL && !Subtarget->slowTwoMemOps()) ||
1164 (N->getOpcode() == X86ISD::TC_RETURN &&
1165 (Subtarget->is64Bit() ||
1166 !getTargetMachine().isPositionIndependent())))) {
1167 /// Also try moving call address load from outside callseq_start to just
1168 /// before the call to allow it to be folded.
1169 ///
1170 /// [Load chain]
1171 /// ^
1172 /// |
1173 /// [Load]
1174 /// ^ ^
1175 /// | |
1176 /// / \--
1177 /// / |
1178 ///[CALLSEQ_START] |
1179 /// ^ |
1180 /// | |
1181 /// [LOAD/C2Reg] |
1182 /// | |
1183 /// \ /
1184 /// \ /
1185 /// [CALL]
1186 bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
1187 SDValue Chain = N->getOperand(0);
1188 SDValue Load = N->getOperand(1);
1189 if (!isCalleeLoad(Load, Chain, HasCallSeq))
1190 continue;
1191 moveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
1192 ++NumLoadMoved;
1193 MadeChange = true;
1194 continue;
1195 }
1196
1197 // Lower fpround and fpextend nodes that target the FP stack to be store and
1198 // load to the stack. This is a gross hack. We would like to simply mark
1199 // these as being illegal, but when we do that, legalize produces these when
1200 // it expands calls, then expands these in the same legalize pass. We would
1201 // like dag combine to be able to hack on these between the call expansion
1202 // and the node legalization. As such this pass basically does "really
1203 // late" legalization of these inline with the X86 isel pass.
1204 // FIXME: This should only happen when not compiled with -O0.
1205 switch (N->getOpcode()) {
1206 default: continue;
1207 case ISD::FP_ROUND:
1208 case ISD::FP_EXTEND:
1209 {
1210 MVT SrcVT = N->getOperand(0).getSimpleValueType();
1211 MVT DstVT = N->getSimpleValueType(0);
1212
1213 // If any of the sources are vectors, no fp stack involved.
1214 if (SrcVT.isVector() || DstVT.isVector())
1215 continue;
1216
1217 // If the source and destination are SSE registers, then this is a legal
1218 // conversion that should not be lowered.
1219 const X86TargetLowering *X86Lowering =
1220 static_cast<const X86TargetLowering *>(TLI);
1221 bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
1222 bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
1223 if (SrcIsSSE && DstIsSSE)
1224 continue;
1225
1226 if (!SrcIsSSE && !DstIsSSE) {
1227 // If this is an FPStack extension, it is a noop.
1228 if (N->getOpcode() == ISD::FP_EXTEND)
1229 continue;
1230 // If this is a value-preserving FPStack truncation, it is a noop.
1231 if (N->getConstantOperandVal(1))
1232 continue;
1233 }
1234
1235 // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
1236 // FPStack has extload and truncstore. SSE can fold direct loads into other
1237 // operations. Based on this, decide what we want to do.
1238 MVT MemVT = (N->getOpcode() == ISD::FP_ROUND) ? DstVT : SrcVT;
1239 SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
1240 int SPFI = cast<FrameIndexSDNode>(MemTmp)->getIndex();
1241 MachinePointerInfo MPI =
1242 MachinePointerInfo::getFixedStack(CurDAG->getMachineFunction(), SPFI);
1243 SDLoc dl(N);
1244
1245 // FIXME: optimize the case where the src/dest is a load or store?
1246
1247 SDValue Store = CurDAG->getTruncStore(
1248 CurDAG->getEntryNode(), dl, N->getOperand(0), MemTmp, MPI, MemVT);
1249 SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store,
1250 MemTmp, MPI, MemVT);
1251
1252 // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
1253 // extload we created. This will cause general havok on the dag because
1254 // anything below the conversion could be folded into other existing nodes.
1255 // To avoid invalidating 'I', back it up to the convert node.
1256 --I;
1257 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
1258 break;
1259 }
1260
1261 //The sequence of events for lowering STRICT_FP versions of these nodes requires
1262 //dealing with the chain differently, as there is already a preexisting chain.
1263 case ISD::STRICT_FP_ROUND:
1264 case ISD::STRICT_FP_EXTEND:
1265 {
1266 MVT SrcVT = N->getOperand(1).getSimpleValueType();
1267 MVT DstVT = N->getSimpleValueType(0);
1268
1269 // If any of the sources are vectors, no fp stack involved.
1270 if (SrcVT.isVector() || DstVT.isVector())
1271 continue;
1272
1273 // If the source and destination are SSE registers, then this is a legal
1274 // conversion that should not be lowered.
1275 const X86TargetLowering *X86Lowering =
1276 static_cast<const X86TargetLowering *>(TLI);
1277 bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
1278 bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
1279 if (SrcIsSSE && DstIsSSE)
1280 continue;
1281
1282 if (!SrcIsSSE && !DstIsSSE) {
1283 // If this is an FPStack extension, it is a noop.
1284 if (N->getOpcode() == ISD::STRICT_FP_EXTEND)
1285 continue;
1286 // If this is a value-preserving FPStack truncation, it is a noop.
1287 if (N->getConstantOperandVal(2))
1288 continue;
1289 }
1290
1291 // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
1292 // FPStack has extload and truncstore. SSE can fold direct loads into other
1293 // operations. Based on this, decide what we want to do.
1294 MVT MemVT = (N->getOpcode() == ISD::STRICT_FP_ROUND) ? DstVT : SrcVT;
1295 SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
1296 int SPFI = cast<FrameIndexSDNode>(MemTmp)->getIndex();
1297 MachinePointerInfo MPI =
1298 MachinePointerInfo::getFixedStack(CurDAG->getMachineFunction(), SPFI);
1299 SDLoc dl(N);
1300
1301 // FIXME: optimize the case where the src/dest is a load or store?
1302
1303 //Since the operation is StrictFP, use the preexisting chain.
1304 SDValue Store, Result;
1305 if (!SrcIsSSE) {
1306 SDVTList VTs = CurDAG->getVTList(MVT::Other);
1307 SDValue Ops[] = {N->getOperand(0), N->getOperand(1), MemTmp};
1308 Store = CurDAG->getMemIntrinsicNode(X86ISD::FST, dl, VTs, Ops, MemVT,
1309 MPI, /*Align*/ None,
1310 MachineMemOperand::MOStore);
1311 if (N->getFlags().hasNoFPExcept()) {
1312 SDNodeFlags Flags = Store->getFlags();
1313 Flags.setNoFPExcept(true);
1314 Store->setFlags(Flags);
1315 }
1316 } else {
1317 assert(SrcVT == MemVT && "Unexpected VT!")((void)0);
1318 Store = CurDAG->getStore(N->getOperand(0), dl, N->getOperand(1), MemTmp,
1319 MPI);
1320 }
1321
1322 if (!DstIsSSE) {
1323 SDVTList VTs = CurDAG->getVTList(DstVT, MVT::Other);
1324 SDValue Ops[] = {Store, MemTmp};
1325 Result = CurDAG->getMemIntrinsicNode(
1326 X86ISD::FLD, dl, VTs, Ops, MemVT, MPI,
1327 /*Align*/ None, MachineMemOperand::MOLoad);
1328 if (N->getFlags().hasNoFPExcept()) {
1329 SDNodeFlags Flags = Result->getFlags();
1330 Flags.setNoFPExcept(true);
1331 Result->setFlags(Flags);
1332 }
1333 } else {
1334 assert(DstVT == MemVT && "Unexpected VT!")((void)0);
1335 Result = CurDAG->getLoad(DstVT, dl, Store, MemTmp, MPI);
1336 }
1337
1338 // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
1339 // extload we created. This will cause general havok on the dag because
1340 // anything below the conversion could be folded into other existing nodes.
1341 // To avoid invalidating 'I', back it up to the convert node.
1342 --I;
1343 CurDAG->ReplaceAllUsesWith(N, Result.getNode());
1344 break;
1345 }
1346 }
1347
1348
1349 // Now that we did that, the node is dead. Increment the iterator to the
1350 // next node to process, then delete N.
1351 ++I;
1352 MadeChange = true;
1353 }
1354
1355 // Remove any dead nodes that may have been left behind.
1356 if (MadeChange)
1357 CurDAG->RemoveDeadNodes();
1358}
1359
1360// Look for a redundant movzx/movsx that can occur after an 8-bit divrem.
1361bool X86DAGToDAGISel::tryOptimizeRem8Extend(SDNode *N) {
1362 unsigned Opc = N->getMachineOpcode();
1363 if (Opc != X86::MOVZX32rr8 && Opc != X86::MOVSX32rr8 &&
1364 Opc != X86::MOVSX64rr8)
1365 return false;
1366
1367 SDValue N0 = N->getOperand(0);
1368
1369 // We need to be extracting the lower bit of an extend.
1370 if (!N0.isMachineOpcode() ||
1371 N0.getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG ||
1372 N0.getConstantOperandVal(1) != X86::sub_8bit)
1373 return false;
1374
1375 // We're looking for either a movsx or movzx to match the original opcode.
1376 unsigned ExpectedOpc = Opc == X86::MOVZX32rr8 ? X86::MOVZX32rr8_NOREX
1377 : X86::MOVSX32rr8_NOREX;
1378 SDValue N00 = N0.getOperand(0);
1379 if (!N00.isMachineOpcode() || N00.getMachineOpcode() != ExpectedOpc)
1380 return false;
1381
1382 if (Opc == X86::MOVSX64rr8) {
1383 // If we had a sign extend from 8 to 64 bits. We still need to go from 32
1384 // to 64.
1385 MachineSDNode *Extend = CurDAG->getMachineNode(X86::MOVSX64rr32, SDLoc(N),
1386 MVT::i64, N00);
1387 ReplaceUses(N, Extend);
1388 } else {
1389 // Ok we can drop this extend and just use the original extend.
1390 ReplaceUses(N, N00.getNode());
1391 }
1392
1393 return true;
1394}
1395
1396void X86DAGToDAGISel::PostprocessISelDAG() {
1397 // Skip peepholes at -O0.
1398 if (TM.getOptLevel() == CodeGenOpt::None)
1399 return;
1400
1401 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
1402
1403 bool MadeChange = false;
1404 while (Position != CurDAG->allnodes_begin()) {
1405 SDNode *N = &*--Position;
1406 // Skip dead nodes and any non-machine opcodes.
1407 if (N->use_empty() || !N->isMachineOpcode())
1408 continue;
1409
1410 if (tryOptimizeRem8Extend(N)) {
1411 MadeChange = true;
1412 continue;
1413 }
1414
1415 // Look for a TESTrr+ANDrr pattern where both operands of the test are
1416 // the same. Rewrite to remove the AND.
1417 unsigned Opc = N->getMachineOpcode();
1418 if ((Opc == X86::TEST8rr || Opc == X86::TEST16rr ||
1419 Opc == X86::TEST32rr || Opc == X86::TEST64rr) &&
1420 N->getOperand(0) == N->getOperand(1) &&
1421 N->isOnlyUserOf(N->getOperand(0).getNode()) &&
1422 N->getOperand(0).isMachineOpcode()) {
1423 SDValue And = N->getOperand(0);
1424 unsigned N0Opc = And.getMachineOpcode();
1425 if (N0Opc == X86::AND8rr || N0Opc == X86::AND16rr ||
1426 N0Opc == X86::AND32rr || N0Opc == X86::AND64rr) {
1427 MachineSDNode *Test = CurDAG->getMachineNode(Opc, SDLoc(N),
1428 MVT::i32,
1429 And.getOperand(0),
1430 And.getOperand(1));
1431 ReplaceUses(N, Test);
1432 MadeChange = true;
1433 continue;
1434 }
1435 if (N0Opc == X86::AND8rm || N0Opc == X86::AND16rm ||
1436 N0Opc == X86::AND32rm || N0Opc == X86::AND64rm) {
1437 unsigned NewOpc;
1438 switch (N0Opc) {
1439 case X86::AND8rm: NewOpc = X86::TEST8mr; break;
1440 case X86::AND16rm: NewOpc = X86::TEST16mr; break;
1441 case X86::AND32rm: NewOpc = X86::TEST32mr; break;
1442 case X86::AND64rm: NewOpc = X86::TEST64mr; break;
1443 }
1444
1445 // Need to swap the memory and register operand.
1446 SDValue Ops[] = { And.getOperand(1),
1447 And.getOperand(2),
1448 And.getOperand(3),
1449 And.getOperand(4),
1450 And.getOperand(5),
1451 And.getOperand(0),
1452 And.getOperand(6) /* Chain */ };
1453 MachineSDNode *Test = CurDAG->getMachineNode(NewOpc, SDLoc(N),
1454 MVT::i32, MVT::Other, Ops);
1455 CurDAG->setNodeMemRefs(
1456 Test, cast<MachineSDNode>(And.getNode())->memoperands());
1457 ReplaceUses(N, Test);
1458 MadeChange = true;
1459 continue;
1460 }
1461 }
1462
1463 // Look for a KAND+KORTEST and turn it into KTEST if only the zero flag is
1464 // used. We're doing this late so we can prefer to fold the AND into masked
1465 // comparisons. Doing that can be better for the live range of the mask
1466 // register.
1467 if ((Opc == X86::KORTESTBrr || Opc == X86::KORTESTWrr ||
1468 Opc == X86::KORTESTDrr || Opc == X86::KORTESTQrr) &&
1469 N->getOperand(0) == N->getOperand(1) &&
1470 N->isOnlyUserOf(N->getOperand(0).getNode()) &&
1471 N->getOperand(0).isMachineOpcode() &&
1472 onlyUsesZeroFlag(SDValue(N, 0))) {
1473 SDValue And = N->getOperand(0);
1474 unsigned N0Opc = And.getMachineOpcode();
1475 // KANDW is legal with AVX512F, but KTESTW requires AVX512DQ. The other
1476 // KAND instructions and KTEST use the same ISA feature.
1477 if (N0Opc == X86::KANDBrr ||
1478 (N0Opc == X86::KANDWrr && Subtarget->hasDQI()) ||
1479 N0Opc == X86::KANDDrr || N0Opc == X86::KANDQrr) {
1480 unsigned NewOpc;
1481 switch (Opc) {
1482 default: llvm_unreachable("Unexpected opcode!")__builtin_unreachable();
1483 case X86::KORTESTBrr: NewOpc = X86::KTESTBrr; break;
1484 case X86::KORTESTWrr: NewOpc = X86::KTESTWrr; break;
1485 case X86::KORTESTDrr: NewOpc = X86::KTESTDrr; break;
1486 case X86::KORTESTQrr: NewOpc = X86::KTESTQrr; break;
1487 }
1488 MachineSDNode *KTest = CurDAG->getMachineNode(NewOpc, SDLoc(N),
1489 MVT::i32,
1490 And.getOperand(0),
1491 And.getOperand(1));
1492 ReplaceUses(N, KTest);
1493 MadeChange = true;
1494 continue;
1495 }
1496 }
1497
1498 // Attempt to remove vectors moves that were inserted to zero upper bits.
1499 if (Opc != TargetOpcode::SUBREG_TO_REG)
1500 continue;
1501
1502 unsigned SubRegIdx = N->getConstantOperandVal(2);
1503 if (SubRegIdx != X86::sub_xmm && SubRegIdx != X86::sub_ymm)
1504 continue;
1505
1506 SDValue Move = N->getOperand(1);
1507 if (!Move.isMachineOpcode())
1508 continue;
1509
1510 // Make sure its one of the move opcodes we recognize.
1511 switch (Move.getMachineOpcode()) {
1512 default:
1513 continue;
1514 case X86::VMOVAPDrr: case X86::VMOVUPDrr:
1515 case X86::VMOVAPSrr: case X86::VMOVUPSrr:
1516 case X86::VMOVDQArr: case X86::VMOVDQUrr:
1517 case X86::VMOVAPDYrr: case X86::VMOVUPDYrr:
1518 case X86::VMOVAPSYrr: case X86::VMOVUPSYrr:
1519 case X86::VMOVDQAYrr: case X86::VMOVDQUYrr:
1520 case X86::VMOVAPDZ128rr: case X86::VMOVUPDZ128rr:
1521 case X86::VMOVAPSZ128rr: case X86::VMOVUPSZ128rr:
1522 case X86::VMOVDQA32Z128rr: case X86::VMOVDQU32Z128rr:
1523 case X86::VMOVDQA64Z128rr: case X86::VMOVDQU64Z128rr:
1524 case X86::VMOVAPDZ256rr: case X86::VMOVUPDZ256rr:
1525 case X86::VMOVAPSZ256rr: case X86::VMOVUPSZ256rr:
1526 case X86::VMOVDQA32Z256rr: case X86::VMOVDQU32Z256rr:
1527 case X86::VMOVDQA64Z256rr: case X86::VMOVDQU64Z256rr:
1528 break;
1529 }
1530
1531 SDValue In = Move.getOperand(0);
1532 if (!In.isMachineOpcode() ||
1533 In.getMachineOpcode() <= TargetOpcode::GENERIC_OP_END)
1534 continue;
1535
1536 // Make sure the instruction has a VEX, XOP, or EVEX prefix. This covers
1537 // the SHA instructions which use a legacy encoding.
1538 uint64_t TSFlags = getInstrInfo()->get(In.getMachineOpcode()).TSFlags;
1539 if ((TSFlags & X86II::EncodingMask) != X86II::VEX &&
1540 (TSFlags & X86II::EncodingMask) != X86II::EVEX &&
1541 (TSFlags & X86II::EncodingMask) != X86II::XOP)
1542 continue;
1543
1544 // Producing instruction is another vector instruction. We can drop the
1545 // move.
1546 CurDAG->UpdateNodeOperands(N, N->getOperand(0), In, N->getOperand(2));
1547 MadeChange = true;
1548 }
1549
1550 if (MadeChange)
1551 CurDAG->RemoveDeadNodes();
1552}
1553
1554
1555/// Emit any code that needs to be executed only in the main function.
1556void X86DAGToDAGISel::emitSpecialCodeForMain() {
1557 if (Subtarget->isTargetCygMing()) {
1558 TargetLowering::ArgListTy Args;
1559 auto &DL = CurDAG->getDataLayout();
1560
1561 TargetLowering::CallLoweringInfo CLI(*CurDAG);
1562 CLI.setChain(CurDAG->getRoot())
1563 .setCallee(CallingConv::C, Type::getVoidTy(*CurDAG->getContext()),
1564 CurDAG->getExternalSymbol("__main", TLI->getPointerTy(DL)),
1565 std::move(Args));
1566 const TargetLowering &TLI = CurDAG->getTargetLoweringInfo();
1567 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
1568 CurDAG->setRoot(Result.second);
1569 }
1570}
1571
1572void X86DAGToDAGISel::emitFunctionEntryCode() {
1573 // If this is main, emit special code for main.
1574 const Function &F = MF->getFunction();
1575 if (F.hasExternalLinkage() && F.getName() == "main")
1576 emitSpecialCodeForMain();
1577}
1578
1579static bool isDispSafeForFrameIndex(int64_t Val) {
1580 // On 64-bit platforms, we can run into an issue where a frame index
1581 // includes a displacement that, when added to the explicit displacement,
1582 // will overflow the displacement field. Assuming that the frame index
1583 // displacement fits into a 31-bit integer (which is only slightly more
1584 // aggressive than the current fundamental assumption that it fits into
1585 // a 32-bit integer), a 31-bit disp should always be safe.
1586 return isInt<31>(Val);
1587}
1588
1589bool X86DAGToDAGISel::foldOffsetIntoAddress(uint64_t Offset,
1590 X86ISelAddressMode &AM) {
1591 // We may have already matched a displacement and the caller just added the
1592 // symbolic displacement. So we still need to do the checks even if Offset
1593 // is zero.
1594
1595 int64_t Val = AM.Disp + Offset;
1596
1597 // Cannot combine ExternalSymbol displacements with integer offsets.
1598 if (Val != 0 && (AM.ES || AM.MCSym))
1599 return true;
1600
1601 CodeModel::Model M = TM.getCodeModel();
1602 if (Subtarget->is64Bit()) {
1603 if (Val != 0 &&
1604 !X86::isOffsetSuitableForCodeModel(Val, M,
1605 AM.hasSymbolicDisplacement()))
1606 return true;
1607 // In addition to the checks required for a register base, check that
1608 // we do not try to use an unsafe Disp with a frame index.
1609 if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
1610 !isDispSafeForFrameIndex(Val))
1611 return true;
1612 }
1613 AM.Disp = Val;
1614 return false;
1615
1616}
1617
1618bool X86DAGToDAGISel::matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM,
1619 bool AllowSegmentRegForX32) {
1620 SDValue Address = N->getOperand(1);
1621
1622 // load gs:0 -> GS segment register.
1623 // load fs:0 -> FS segment register.
1624 //
1625 // This optimization is generally valid because the GNU TLS model defines that
1626 // gs:0 (or fs:0 on X86-64) contains its own address. However, for X86-64 mode
1627 // with 32-bit registers, as we get in ILP32 mode, those registers are first
1628 // zero-extended to 64 bits and then added it to the base address, which gives
1629 // unwanted results when the register holds a negative value.
1630 // For more information see http://people.redhat.com/drepper/tls.pdf
1631 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address)) {
1632 if (C->getSExtValue() == 0 && AM.Segment.getNode() == nullptr &&
1633 !IndirectTlsSegRefs &&
1634 (Subtarget->isTargetGlibc() || Subtarget->isTargetAndroid() ||
1635 Subtarget->isTargetFuchsia())) {
1636 if (Subtarget->isTarget64BitILP32() && !AllowSegmentRegForX32)
1637 return true;
1638 switch (N->getPointerInfo().getAddrSpace()) {
1639 case X86AS::GS:
1640 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1641 return false;
1642 case X86AS::FS:
1643 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1644 return false;
1645 // Address space X86AS::SS is not handled here, because it is not used to
1646 // address TLS areas.
1647 }
1648 }
1649 }
1650
1651 return true;
1652}
1653
1654/// Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes into an addressing
1655/// mode. These wrap things that will resolve down into a symbol reference.
1656/// If no match is possible, this returns true, otherwise it returns false.
1657bool X86DAGToDAGISel::matchWrapper(SDValue N, X86ISelAddressMode &AM) {
1658 // If the addressing mode already has a symbol as the displacement, we can
1659 // never match another symbol.
1660 if (AM.hasSymbolicDisplacement())
1661 return true;
1662
1663 bool IsRIPRelTLS = false;
1664 bool IsRIPRel = N.getOpcode() == X86ISD::WrapperRIP;
1665 if (IsRIPRel) {
1666 SDValue Val = N.getOperand(0);
1667 if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
1668 IsRIPRelTLS = true;
1669 }
1670
1671 // We can't use an addressing mode in the 64-bit large code model.
1672 // Global TLS addressing is an exception. In the medium code model,
1673 // we use can use a mode when RIP wrappers are present.
1674 // That signifies access to globals that are known to be "near",
1675 // such as the GOT itself.
1676 CodeModel::Model M = TM.getCodeModel();
1677 if (Subtarget->is64Bit() &&
1678 ((M == CodeModel::Large && !IsRIPRelTLS) ||
1679 (M == CodeModel::Medium && !IsRIPRel)))
1680 return true;
1681
1682 // Base and index reg must be 0 in order to use %rip as base.
1683 if (IsRIPRel && AM.hasBaseOrIndexReg())
1684 return true;
1685
1686 // Make a local copy in case we can't do this fold.
1687 X86ISelAddressMode Backup = AM;
1688
1689 int64_t Offset = 0;
1690 SDValue N0 = N.getOperand(0);
1691 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
1692 AM.GV = G->getGlobal();
1693 AM.SymbolFlags = G->getTargetFlags();
1694 Offset = G->getOffset();
1695 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
1696 AM.CP = CP->getConstVal();
1697 AM.Alignment = CP->getAlign();
1698 AM.SymbolFlags = CP->getTargetFlags();
1699 Offset = CP->getOffset();
1700 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
1701 AM.ES = S->getSymbol();
1702 AM.SymbolFlags = S->getTargetFlags();
1703 } else if (auto *S = dyn_cast<MCSymbolSDNode>(N0)) {
1704 AM.MCSym = S->getMCSymbol();
1705 } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
1706 AM.JT = J->getIndex();
1707 AM.SymbolFlags = J->getTargetFlags();
1708 } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
1709 AM.BlockAddr = BA->getBlockAddress();
1710 AM.SymbolFlags = BA->getTargetFlags();
1711 Offset = BA->getOffset();
1712 } else
1713 llvm_unreachable("Unhandled symbol reference node.")__builtin_unreachable();
1714
1715 if (foldOffsetIntoAddress(Offset, AM)) {
1716 AM = Backup;
1717 return true;
1718 }
1719
1720 if (IsRIPRel)
1721 AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
1722
1723 // Commit the changes now that we know this fold is safe.
1724 return false;
1725}
1726
1727/// Add the specified node to the specified addressing mode, returning true if
1728/// it cannot be done. This just pattern matches for the addressing mode.
1729bool X86DAGToDAGISel::matchAddress(SDValue N, X86ISelAddressMode &AM) {
1730 if (matchAddressRecursively(N, AM, 0))
1731 return true;
1732
1733 // Post-processing: Make a second attempt to fold a load, if we now know
1734 // that there will not be any other register. This is only performed for
1735 // 64-bit ILP32 mode since 32-bit mode and 64-bit LP64 mode will have folded
1736 // any foldable load the first time.
1737 if (Subtarget->isTarget64BitILP32() &&
1738 AM.BaseType == X86ISelAddressMode::RegBase &&
1739 AM.Base_Reg.getNode() != nullptr && AM.IndexReg.getNode() == nullptr) {
1740 SDValue Save_Base_Reg = AM.Base_Reg;
1741 if (auto *LoadN = dyn_cast<LoadSDNode>(Save_Base_Reg)) {
1742 AM.Base_Reg = SDValue();
1743 if (matchLoadInAddress(LoadN, AM, /*AllowSegmentRegForX32=*/true))
1744 AM.Base_Reg = Save_Base_Reg;
1745 }
1746 }
1747
1748 // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
1749 // a smaller encoding and avoids a scaled-index.
1750 if (AM.Scale == 2 &&
1751 AM.BaseType == X86ISelAddressMode::RegBase &&
1752 AM.Base_Reg.getNode() == nullptr) {
1753 AM.Base_Reg = AM.IndexReg;
1754 AM.Scale = 1;
1755 }
1756
1757 // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
1758 // because it has a smaller encoding.
1759 // TODO: Which other code models can use this?
1760 switch (TM.getCodeModel()) {
1761 default: break;
1762 case CodeModel::Small:
1763 case CodeModel::Kernel:
1764 if (Subtarget->is64Bit() &&
1765 AM.Scale == 1 &&
1766 AM.BaseType == X86ISelAddressMode::RegBase &&
1767 AM.Base_Reg.getNode() == nullptr &&
1768 AM.IndexReg.getNode() == nullptr &&
1769 AM.SymbolFlags == X86II::MO_NO_FLAG &&
1770 AM.hasSymbolicDisplacement())
1771 AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
1772 break;
1773 }
1774
1775 return false;
1776}
1777
1778bool X86DAGToDAGISel::matchAdd(SDValue &N, X86ISelAddressMode &AM,
1779 unsigned Depth) {
1780 // Add an artificial use to this node so that we can keep track of
1781 // it if it gets CSE'd with a different node.
1782 HandleSDNode Handle(N);
1783
1784 X86ISelAddressMode Backup = AM;
1785 if (!matchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1786 !matchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
1787 return false;
1788 AM = Backup;
1789
1790 // Try again after commutating the operands.
1791 if (!matchAddressRecursively(Handle.getValue().getOperand(1), AM,
1792 Depth + 1) &&
1793 !matchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth + 1))
1794 return false;
1795 AM = Backup;
1796
1797 // If we couldn't fold both operands into the address at the same time,
1798 // see if we can just put each operand into a register and fold at least
1799 // the add.
1800 if (AM.BaseType == X86ISelAddressMode::RegBase &&
1801 !AM.Base_Reg.getNode() &&
1802 !AM.IndexReg.getNode()) {
1803 N = Handle.getValue();
1804 AM.Base_Reg = N.getOperand(0);
1805 AM.IndexReg = N.getOperand(1);
1806 AM.Scale = 1;
1807 return false;
1808 }
1809 N = Handle.getValue();
1810 return true;
1811}
1812
1813// Insert a node into the DAG at least before the Pos node's position. This
1814// will reposition the node as needed, and will assign it a node ID that is <=
1815// the Pos node's ID. Note that this does *not* preserve the uniqueness of node
1816// IDs! The selection DAG must no longer depend on their uniqueness when this
1817// is used.
1818static void insertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
1819 if (N->getNodeId() == -1 ||
1820 (SelectionDAGISel::getUninvalidatedNodeId(N.getNode()) >
1821 SelectionDAGISel::getUninvalidatedNodeId(Pos.getNode()))) {
1822 DAG.RepositionNode(Pos->getIterator(), N.getNode());
1823 // Mark Node as invalid for pruning as after this it may be a successor to a
1824 // selected node but otherwise be in the same position of Pos.
1825 // Conservatively mark it with the same -abs(Id) to assure node id
1826 // invariant is preserved.
1827 N->setNodeId(Pos->getNodeId());
1828 SelectionDAGISel::InvalidateNodeId(N.getNode());
1829 }
1830}
1831
1832// Transform "(X >> (8-C1)) & (0xff << C1)" to "((X >> 8) & 0xff) << C1" if
1833// safe. This allows us to convert the shift and and into an h-register
1834// extract and a scaled index. Returns false if the simplification is
1835// performed.
1836static bool foldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
1837 uint64_t Mask,
1838 SDValue Shift, SDValue X,
1839 X86ISelAddressMode &AM) {
1840 if (Shift.getOpcode() != ISD::SRL ||
1841 !isa<ConstantSDNode>(Shift.getOperand(1)) ||
1842 !Shift.hasOneUse())
1843 return true;
1844
1845 int ScaleLog = 8 - Shift.getConstantOperandVal(1);
1846 if (ScaleLog <= 0 || ScaleLog >= 4 ||
1847 Mask != (0xffu << ScaleLog))
1848 return true;
1849
1850 MVT VT = N.getSimpleValueType();
1851 SDLoc DL(N);
1852 SDValue Eight = DAG.getConstant(8, DL, MVT::i8);
1853 SDValue NewMask = DAG.getConstant(0xff, DL, VT);
1854 SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight);
1855 SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask);
1856 SDValue ShlCount = DAG.getConstant(ScaleLog, DL, MVT::i8);
1857 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount);
1858
1859 // Insert the new nodes into the topological ordering. We must do this in
1860 // a valid topological ordering as nothing is going to go back and re-sort
1861 // these nodes. We continually insert before 'N' in sequence as this is
1862 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
1863 // hierarchy left to express.
1864 insertDAGNode(DAG, N, Eight);
1865 insertDAGNode(DAG, N, Srl);
1866 insertDAGNode(DAG, N, NewMask);
1867 insertDAGNode(DAG, N, And);
1868 insertDAGNode(DAG, N, ShlCount);
1869 insertDAGNode(DAG, N, Shl);
1870 DAG.ReplaceAllUsesWith(N, Shl);
1871 DAG.RemoveDeadNode(N.getNode());
1872 AM.IndexReg = And;
1873 AM.Scale = (1 << ScaleLog);
1874 return false;
1875}
1876
1877// Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
1878// allows us to fold the shift into this addressing mode. Returns false if the
1879// transform succeeded.
1880static bool foldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
1881 X86ISelAddressMode &AM) {
1882 SDValue Shift = N.getOperand(0);
1883
1884 // Use a signed mask so that shifting right will insert sign bits. These
1885 // bits will be removed when we shift the result left so it doesn't matter
1886 // what we use. This might allow a smaller immediate encoding.
1887 int64_t Mask = cast<ConstantSDNode>(N->getOperand(1))->getSExtValue();
1888
1889 // If we have an any_extend feeding the AND, look through it to see if there
1890 // is a shift behind it. But only if the AND doesn't use the extended bits.
1891 // FIXME: Generalize this to other ANY_EXTEND than i32 to i64?
1892 bool FoundAnyExtend = false;
1893 if (Shift.getOpcode() == ISD::ANY_EXTEND && Shift.hasOneUse() &&
1894 Shift.getOperand(0).getSimpleValueType() == MVT::i32 &&
1895 isUInt<32>(Mask)) {
1896 FoundAnyExtend = true;
1897 Shift = Shift.getOperand(0);
1898 }
1899
1900 if (Shift.getOpcode() != ISD::SHL ||
1901 !isa<ConstantSDNode>(Shift.getOperand(1)))
1902 return true;
1903
1904 SDValue X = Shift.getOperand(0);
1905
1906 // Not likely to be profitable if either the AND or SHIFT node has more
1907 // than one use (unless all uses are for address computation). Besides,
1908 // isel mechanism requires their node ids to be reused.
1909 if (!N.hasOneUse() || !Shift.hasOneUse())
1910 return true;
1911
1912 // Verify that the shift amount is something we can fold.
1913 unsigned ShiftAmt = Shift.getConstantOperandVal(1);
1914 if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
1915 return true;
1916
1917 MVT VT = N.getSimpleValueType();
1918 SDLoc DL(N);
1919 if (FoundAnyExtend) {
1920 SDValue NewX = DAG.getNode(ISD::ANY_EXTEND, DL, VT, X);
1921 insertDAGNode(DAG, N, NewX);
1922 X = NewX;
1923 }
1924
1925 SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, DL, VT);
1926 SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
1927 SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));
1928
1929 // Insert the new nodes into the topological ordering. We must do this in
1930 // a valid topological ordering as nothing is going to go back and re-sort
1931 // these nodes. We continually insert before 'N' in sequence as this is
1932 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
1933 // hierarchy left to express.
1934 insertDAGNode(DAG, N, NewMask);
1935 insertDAGNode(DAG, N, NewAnd);
1936 insertDAGNode(DAG, N, NewShift);
1937 DAG.ReplaceAllUsesWith(N, NewShift);
1938 DAG.RemoveDeadNode(N.getNode());
1939
1940 AM.Scale = 1 << ShiftAmt;
1941 AM.IndexReg = NewAnd;
1942 return false;
1943}
1944
1945// Implement some heroics to detect shifts of masked values where the mask can
1946// be replaced by extending the shift and undoing that in the addressing mode
1947// scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
1948// (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
1949// the addressing mode. This results in code such as:
1950//
1951// int f(short *y, int *lookup_table) {
1952// ...
1953// return *y + lookup_table[*y >> 11];
1954// }
1955//
1956// Turning into:
1957// movzwl (%rdi), %eax
1958// movl %eax, %ecx
1959// shrl $11, %ecx
1960// addl (%rsi,%rcx,4), %eax
1961//
1962// Instead of:
1963// movzwl (%rdi), %eax
1964// movl %eax, %ecx
1965// shrl $9, %ecx
1966// andl $124, %rcx
1967// addl (%rsi,%rcx), %eax
1968//
1969// Note that this function assumes the mask is provided as a mask *after* the
1970// value is shifted. The input chain may or may not match that, but computing
1971// such a mask is trivial.
1972static bool foldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
1973 uint64_t Mask,
1974 SDValue Shift, SDValue X,
1975 X86ISelAddressMode &AM) {
1976 if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
1977 !isa<ConstantSDNode>(Shift.getOperand(1)))
1978 return true;
1979
1980 unsigned ShiftAmt = Shift.getConstantOperandVal(1);
1981 unsigned MaskLZ = countLeadingZeros(Mask);
1982 unsigned MaskTZ = countTrailingZeros(Mask);
1983
1984 // The amount of shift we're trying to fit into the addressing mode is taken
1985 // from the trailing zeros of the mask.
1986 unsigned AMShiftAmt = MaskTZ;
1987
1988 // There is nothing we can do here unless the mask is removing some bits.
1989 // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
1990 if (AMShiftAmt == 0 || AMShiftAmt > 3) return true;
1991
1992 // We also need to ensure that mask is a continuous run of bits.
1993 if (countTrailingOnes(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true;
1994
1995 // Scale the leading zero count down based on the actual size of the value.
1996 // Also scale it down based on the size of the shift.
1997 unsigned ScaleDown = (64 - X.getSimpleValueType().getSizeInBits()) + ShiftAmt;
1998 if (MaskLZ < ScaleDown)
1999 return true;
2000 MaskLZ -= ScaleDown;
2001
2002 // The final check is to ensure that any masked out high bits of X are
2003 // already known to be zero. Otherwise, the mask has a semantic impact
2004 // other than masking out a couple of low bits. Unfortunately, because of
2005 // the mask, zero extensions will be removed from operands in some cases.
2006 // This code works extra hard to look through extensions because we can
2007 // replace them with zero extensions cheaply if necessary.
2008 bool ReplacingAnyExtend = false;
2009 if (X.getOpcode() == ISD::ANY_EXTEND) {
2010 unsigned ExtendBits = X.getSimpleValueType().getSizeInBits() -
2011 X.getOperand(0).getSimpleValueType().getSizeInBits();
2012 // Assume that we'll replace the any-extend with a zero-extend, and
2013 // narrow the search to the extended value.
2014 X = X.getOperand(0);
2015 MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
2016 ReplacingAnyExtend = true;
2017 }
2018 APInt MaskedHighBits =
2019 APInt::getHighBitsSet(X.getSimpleValueType().getSizeInBits(), MaskLZ);
2020 KnownBits Known = DAG.computeKnownBits(X);
2021 if (MaskedHighBits != Known.Zero) return true;
2022
2023 // We've identified a pattern that can be transformed into a single shift
2024 // and an addressing mode. Make it so.
2025 MVT VT = N.getSimpleValueType();
2026 if (ReplacingAnyExtend) {
2027 assert(X.getValueType() != VT)((void)0);
2028 // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
2029 SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X);
2030 insertDAGNode(DAG, N, NewX);
2031 X = NewX;
2032 }
2033 SDLoc DL(N);
2034 SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8);
2035 SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
2036 SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8);
2037 SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt);
2038
2039 // Insert the new nodes into the topological ordering. We must do this in
2040 // a valid topological ordering as nothing is going to go back and re-sort
2041 // these nodes. We continually insert before 'N' in sequence as this is
2042 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
2043 // hierarchy left to express.
2044 insertDAGNode(DAG, N, NewSRLAmt);
2045 insertDAGNode(DAG, N, NewSRL);
2046 insertDAGNode(DAG, N, NewSHLAmt);
2047 insertDAGNode(DAG, N, NewSHL);
2048 DAG.ReplaceAllUsesWith(N, NewSHL);
2049 DAG.RemoveDeadNode(N.getNode());
2050
2051 AM.Scale = 1 << AMShiftAmt;
2052 AM.IndexReg = NewSRL;
2053 return false;
2054}
2055
2056// Transform "(X >> SHIFT) & (MASK << C1)" to
2057// "((X >> (SHIFT + C1)) & (MASK)) << C1". Everything before the SHL will be
2058// matched to a BEXTR later. Returns false if the simplification is performed.
2059static bool foldMaskedShiftToBEXTR(SelectionDAG &DAG, SDValue N,
2060 uint64_t Mask,
2061 SDValue Shift, SDValue X,
2062 X86ISelAddressMode &AM,
2063 const X86Subtarget &Subtarget) {
2064 if (Shift.getOpcode() != ISD::SRL ||
2065 !isa<ConstantSDNode>(Shift.getOperand(1)) ||
2066 !Shift.hasOneUse() || !N.hasOneUse())
2067 return true;
2068
2069 // Only do this if BEXTR will be matched by matchBEXTRFromAndImm.
2070 if (!Subtarget.hasTBM() &&
2071 !(Subtarget.hasBMI() && Subtarget.hasFastBEXTR()))
2072 return true;
2073
2074 // We need to ensure that mask is a continuous run of bits.
2075 if (!isShiftedMask_64(Mask)) return true;
2076
2077 unsigned ShiftAmt = Shift.getConstantOperandVal(1);
2078
2079 // The amount of shift we're trying to fit into the addressing mode is taken
2080 // from the trailing zeros of the mask.
2081 unsigned AMShiftAmt = countTrailingZeros(Mask);
2082
2083 // There is nothing we can do here unless the mask is removing some bits.
2084 // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
2085 if (AMShiftAmt == 0 || AMShiftAmt > 3) return true;
2086
2087 MVT VT = N.getSimpleValueType();
2088 SDLoc DL(N);
2089 SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8);
2090 SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
2091 SDValue NewMask = DAG.getConstant(Mask >> AMShiftAmt, DL, VT);
2092 SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, NewSRL, NewMask);
2093 SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8);
2094 SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewAnd, NewSHLAmt);
2095
2096 // Insert the new nodes into the topological ordering. We must do this in
2097 // a valid topological ordering as nothing is going to go back and re-sort
2098 // these nodes. We continually insert before 'N' in sequence as this is
2099 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
2100 // hierarchy left to express.
2101 insertDAGNode(DAG, N, NewSRLAmt);
2102 insertDAGNode(DAG, N, NewSRL);
2103 insertDAGNode(DAG, N, NewMask);
2104 insertDAGNode(DAG, N, NewAnd);
2105 insertDAGNode(DAG, N, NewSHLAmt);
2106 insertDAGNode(DAG, N, NewSHL);
2107 DAG.ReplaceAllUsesWith(N, NewSHL);
2108 DAG.RemoveDeadNode(N.getNode());
2109
2110 AM.Scale = 1 << AMShiftAmt;
2111 AM.IndexReg = NewAnd;
2112 return false;
2113}
2114
2115bool X86DAGToDAGISel::matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
2116 unsigned Depth) {
2117 SDLoc dl(N);
2118 LLVM_DEBUG({do { } while (false)
2119 dbgs() << "MatchAddress: ";do { } while (false)
2120 AM.dump(CurDAG);do { } while (false)
2121 })do { } while (false);
2122 // Limit recursion.
2123 if (Depth > 5)
2124 return matchAddressBase(N, AM);
2125
2126 // If this is already a %rip relative address, we can only merge immediates
2127 // into it. Instead of handling this in every case, we handle it here.
2128 // RIP relative addressing: %rip + 32-bit displacement!
2129 if (AM.isRIPRelative()) {
2130 // FIXME: JumpTable and ExternalSymbol address currently don't like
2131 // displacements. It isn't very important, but this should be fixed for
2132 // consistency.
2133 if (!(AM.ES || AM.MCSym) && AM.JT != -1)
2134 return true;
2135
2136 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
2137 if (!foldOffsetIntoAddress(Cst->getSExtValue(), AM))
2138 return false;
2139 return true;
2140 }
2141
2142 switch (N.getOpcode()) {
2143 default: break;
2144 case ISD::LOCAL_RECOVER: {
2145 if (!AM.hasSymbolicDisplacement() && AM.Disp == 0)
2146 if (const auto *ESNode = dyn_cast<MCSymbolSDNode>(N.getOperand(0))) {
2147 // Use the symbol and don't prefix it.
2148 AM.MCSym = ESNode->getMCSymbol();
2149 return false;
2150 }
2151 break;
2152 }
2153 case ISD::Constant: {
2154 uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
2155 if (!foldOffsetIntoAddress(Val, AM))
2156 return false;
2157 break;
2158 }
2159
2160 case X86ISD::Wrapper:
2161 case X86ISD::WrapperRIP:
2162 if (!matchWrapper(N, AM))
2163 return false;
2164 break;
2165
2166 case ISD::LOAD:
2167 if (!matchLoadInAddress(cast<LoadSDNode>(N), AM))
2168 return false;
2169 break;
2170
2171 case ISD::FrameIndex:
2172 if (AM.BaseType == X86ISelAddressMode::RegBase &&
2173 AM.Base_Reg.getNode() == nullptr &&
2174 (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
2175 AM.BaseType = X86ISelAddressMode::FrameIndexBase;
2176 AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
2177 return false;
2178 }
2179 break;
2180
2181 case ISD::SHL:
2182 if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
2183 break;
2184
2185 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
2186 unsigned Val = CN->getZExtValue();
2187 // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
2188 // that the base operand remains free for further matching. If
2189 // the base doesn't end up getting used, a post-processing step
2190 // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
2191 if (Val == 1 || Val == 2 || Val == 3) {
2192 AM.Scale = 1 << Val;
2193 SDValue ShVal = N.getOperand(0);
2194
2195 // Okay, we know that we have a scale by now. However, if the scaled
2196 // value is an add of something and a constant, we can fold the
2197 // constant into the disp field here.
2198 if (CurDAG->isBaseWithConstantOffset(ShVal)) {
2199 AM.IndexReg = ShVal.getOperand(0);
2200 ConstantSDNode *AddVal = cast<ConstantSDNode>(ShVal.getOperand(1));
2201 uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val;
2202 if (!foldOffsetIntoAddress(Disp, AM))
2203 return false;
2204 }
2205
2206 AM.IndexReg = ShVal;
2207 return false;
2208 }
2209 }
2210 break;
2211
2212 case ISD::SRL: {
2213 // Scale must not be used already.
2214 if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
2215
2216 // We only handle up to 64-bit values here as those are what matter for
2217 // addressing mode optimizations.
2218 assert(N.getSimpleValueType().getSizeInBits() <= 64 &&((void)0)
2219 "Unexpected value size!")((void)0);
2220
2221 SDValue And = N.getOperand(0);
2222 if (And.getOpcode() != ISD::AND) break;
2223 SDValue X = And.getOperand(0);
2224
2225 // The mask used for the transform is expected to be post-shift, but we
2226 // found the shift first so just apply the shift to the mask before passing
2227 // it down.
2228 if (!isa<ConstantSDNode>(N.getOperand(1)) ||
2229 !isa<ConstantSDNode>(And.getOperand(1)))
2230 break;
2231 uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);
2232
2233 // Try to fold the mask and shift into the scale, and return false if we
2234 // succeed.
2235 if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
2236 return false;
2237 break;
2238 }
2239
2240 case ISD::SMUL_LOHI:
2241 case ISD::UMUL_LOHI:
2242 // A mul_lohi where we need the low part can be folded as a plain multiply.
2243 if (N.getResNo() != 0) break;
2244 LLVM_FALLTHROUGH[[gnu::fallthrough]];
2245 case ISD::MUL:
2246 case X86ISD::MUL_IMM:
2247 // X*[3,5,9] -> X+X*[2,4,8]
2248 if (AM.BaseType == X86ISelAddressMode::RegBase &&
2249 AM.Base_Reg.getNode() == nullptr &&
2250 AM.IndexReg.getNode() == nullptr) {
2251 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1)))
2252 if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
2253 CN->getZExtValue() == 9) {
2254 AM.Scale = unsigned(CN->getZExtValue())-1;
2255
2256 SDValue MulVal = N.getOperand(0);
2257 SDValue Reg;
2258
2259 // Okay, we know that we have a scale by now. However, if the scaled
2260 // value is an add of something and a constant, we can fold the
2261 // constant into the disp field here.
2262 if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
2263 isa<ConstantSDNode>(MulVal.getOperand(1))) {
2264 Reg = MulVal.getOperand(0);
2265 ConstantSDNode *AddVal =
2266 cast<ConstantSDNode>(MulVal.getOperand(1));
2267 uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
2268 if (foldOffsetIntoAddress(Disp, AM))
2269 Reg = N.getOperand(0);
2270 } else {
2271 Reg = N.getOperand(0);
2272 }
2273
2274 AM.IndexReg = AM.Base_Reg = Reg;
2275 return false;
2276 }
2277 }
2278 break;
2279
2280 case ISD::SUB: {
2281 // Given A-B, if A can be completely folded into the address and
2282 // the index field with the index field unused, use -B as the index.
2283 // This is a win if a has multiple parts that can be folded into
2284 // the address. Also, this saves a mov if the base register has
2285 // other uses, since it avoids a two-address sub instruction, however
2286 // it costs an additional mov if the index register has other uses.
2287
2288 // Add an artificial use to this node so that we can keep track of
2289 // it if it gets CSE'd with a different node.
2290 HandleSDNode Handle(N);
2291
2292 // Test if the LHS of the sub can be folded.
2293 X86ISelAddressMode Backup = AM;
2294 if (matchAddressRecursively(N.getOperand(0), AM, Depth+1)) {
2295 N = Handle.getValue();
2296 AM = Backup;
2297 break;
2298 }
2299 N = Handle.getValue();
2300 // Test if the index field is free for use.
2301 if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
2302 AM = Backup;
2303 break;
2304 }
2305
2306 int Cost = 0;
2307 SDValue RHS = N.getOperand(1);
2308 // If the RHS involves a register with multiple uses, this
2309 // transformation incurs an extra mov, due to the neg instruction
2310 // clobbering its operand.
2311 if (!RHS.getNode()->hasOneUse() ||
2312 RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
2313 RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
2314 RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
2315 (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
2316 RHS.getOperand(0).getValueType() == MVT::i32))
2317 ++Cost;
2318 // If the base is a register with multiple uses, this
2319 // transformation may save a mov.
2320 if ((AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode() &&
2321 !AM.Base_Reg.getNode()->hasOneUse()) ||
2322 AM.BaseType == X86ISelAddressMode::FrameIndexBase)
2323 --Cost;
2324 // If the folded LHS was interesting, this transformation saves
2325 // address arithmetic.
2326 if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
2327 ((AM.Disp != 0) && (Backup.Disp == 0)) +
2328 (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
2329 --Cost;
2330 // If it doesn't look like it may be an overall win, don't do it.
2331 if (Cost >= 0) {
2332 AM = Backup;
2333 break;
2334 }
2335
2336 // Ok, the transformation is legal and appears profitable. Go for it.
2337 // Negation will be emitted later to avoid creating dangling nodes if this
2338 // was an unprofitable LEA.
2339 AM.IndexReg = RHS;
2340 AM.NegateIndex = true;
2341 AM.Scale = 1;
2342 return false;
2343 }
2344
2345 case ISD::ADD:
2346 if (!matchAdd(N, AM, Depth))
2347 return false;
2348 break;
2349
2350 case ISD::OR:
2351 // We want to look through a transform in InstCombine and DAGCombiner that
2352 // turns 'add' into 'or', so we can treat this 'or' exactly like an 'add'.
2353 // Example: (or (and x, 1), (shl y, 3)) --> (add (and x, 1), (shl y, 3))
2354 // An 'lea' can then be used to match the shift (multiply) and add:
2355 // and $1, %esi
2356 // lea (%rsi, %rdi, 8), %rax
2357 if (CurDAG->haveNoCommonBitsSet(N.getOperand(0), N.getOperand(1)) &&
2358 !matchAdd(N, AM, Depth))
2359 return false;
2360 break;
2361
2362 case ISD::AND: {
2363 // Perform some heroic transforms on an and of a constant-count shift
2364 // with a constant to enable use of the scaled offset field.
2365
2366 // Scale must not be used already.
2367 if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
2368
2369 // We only handle up to 64-bit values here as those are what matter for
2370 // addressing mode optimizations.
2371 assert(N.getSimpleValueType().getSizeInBits() <= 64 &&((void)0)
2372 "Unexpected value size!")((void)0);
2373
2374 if (!isa<ConstantSDNode>(N.getOperand(1)))
2375 break;
2376
2377 if (N.getOperand(0).getOpcode() == ISD::SRL) {
2378 SDValue Shift = N.getOperand(0);
2379 SDValue X = Shift.getOperand(0);
2380
2381 uint64_t Mask = N.getConstantOperandVal(1);
2382
2383 // Try to fold the mask and shift into an extract and scale.
2384 if (!foldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
2385 return false;
2386
2387 // Try to fold the mask and shift directly into the scale.
2388 if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
2389 return false;
2390
2391 // Try to fold the mask and shift into BEXTR and scale.
2392 if (!foldMaskedShiftToBEXTR(*CurDAG, N, Mask, Shift, X, AM, *Subtarget))
2393 return false;
2394 }
2395
2396 // Try to swap the mask and shift to place shifts which can be done as
2397 // a scale on the outside of the mask.
2398 if (!foldMaskedShiftToScaledMask(*CurDAG, N, AM))
2399 return false;
2400
2401 break;
2402 }
2403 case ISD::ZERO_EXTEND: {
2404 // Try to widen a zexted shift left to the same size as its use, so we can
2405 // match the shift as a scale factor.
2406 if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
2407 break;
2408 if (N.getOperand(0).getOpcode() != ISD::SHL || !N.getOperand(0).hasOneUse())
2409 break;
2410
2411 // Give up if the shift is not a valid scale factor [1,2,3].
2412 SDValue Shl = N.getOperand(0);
2413 auto *ShAmtC = dyn_cast<ConstantSDNode>(Shl.getOperand(1));
2414 if (!ShAmtC || ShAmtC->getZExtValue() > 3)
2415 break;
2416
2417 // The narrow shift must only shift out zero bits (it must be 'nuw').
2418 // That makes it safe to widen to the destination type.
2419 APInt HighZeros = APInt::getHighBitsSet(Shl.getValueSizeInBits(),
2420 ShAmtC->getZExtValue());
2421 if (!CurDAG->MaskedValueIsZero(Shl.getOperand(0), HighZeros))
2422 break;
2423
2424 // zext (shl nuw i8 %x, C) to i32 --> shl (zext i8 %x to i32), (zext C)
2425 MVT VT = N.getSimpleValueType();
2426 SDLoc DL(N);
2427 SDValue Zext = CurDAG->getNode(ISD::ZERO_EXTEND, DL, VT, Shl.getOperand(0));
2428 SDValue NewShl = CurDAG->getNode(ISD::SHL, DL, VT, Zext, Shl.getOperand(1));
2429
2430 // Convert the shift to scale factor.
2431 AM.Scale = 1 << ShAmtC->getZExtValue();
2432 AM.IndexReg = Zext;
2433
2434 insertDAGNode(*CurDAG, N, Zext);
2435 insertDAGNode(*CurDAG, N, NewShl);
2436 CurDAG->ReplaceAllUsesWith(N, NewShl);
2437 CurDAG->RemoveDeadNode(N.getNode());
2438 return false;
2439 }
2440 }
2441
2442 return matchAddressBase(N, AM);
2443}
2444
2445/// Helper for MatchAddress. Add the specified node to the
2446/// specified addressing mode without any further recursion.
2447bool X86DAGToDAGISel::matchAddressBase(SDValue N, X86ISelAddressMode &AM) {
2448 // Is the base register already occupied?
2449 if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
2450 // If so, check to see if the scale index register is set.
2451 if (!AM.IndexReg.getNode()) {
2452 AM.IndexReg = N;
2453 AM.Scale = 1;
2454 return false;
2455 }
2456
2457 // Otherwise, we cannot select it.
2458 return true;
2459 }
2460
2461 // Default, generate it as a register.
2462 AM.BaseType = X86ISelAddressMode::RegBase;
2463 AM.Base_Reg = N;
2464 return false;
2465}
2466
2467/// Helper for selectVectorAddr. Handles things that can be folded into a
2468/// gather scatter address. The index register and scale should have already
2469/// been handled.
2470bool X86DAGToDAGISel::matchVectorAddress(SDValue N, X86ISelAddressMode &AM) {
2471 // TODO: Support other operations.
2472 switch (N.getOpcode()) {
2473 case ISD::Constant: {
2474 uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
2475 if (!foldOffsetIntoAddress(Val, AM))
2476 return false;
2477 break;
2478 }
2479 case X86ISD::Wrapper:
2480 if (!matchWrapper(N, AM))
2481 return false;
2482 break;
2483 }
2484
2485 return matchAddressBase(N, AM);
2486}
2487
2488bool X86DAGToDAGISel::selectVectorAddr(MemSDNode *Parent, SDValue BasePtr,
2489 SDValue IndexOp, SDValue ScaleOp,
2490 SDValue &Base, SDValue &Scale,
2491 SDValue &Index, SDValue &Disp,
2492 SDValue &Segment) {
2493 X86ISelAddressMode AM;
2494 AM.IndexReg = IndexOp;
2495 AM.Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
2496
2497 unsigned AddrSpace = Parent->getPointerInfo().getAddrSpace();
2498 if (AddrSpace == X86AS::GS)
2499 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
2500 if (AddrSpace == X86AS::FS)
2501 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
2502 if (AddrSpace == X86AS::SS)
2503 AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16);
2504
2505 SDLoc DL(BasePtr);
2506 MVT VT = BasePtr.getSimpleValueType();
2507
2508 // Try to match into the base and displacement fields.
2509 if (matchVectorAddress(BasePtr, AM))
2510 return false;
2511
2512 getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
2513 return true;
2514}
2515
2516/// Returns true if it is able to pattern match an addressing mode.
2517/// It returns the operands which make up the maximal addressing mode it can
2518/// match by reference.
2519///
2520/// Parent is the parent node of the addr operand that is being matched. It
2521/// is always a load, store, atomic node, or null. It is only null when
2522/// checking memory operands for inline asm nodes.
2523bool X86DAGToDAGISel::selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
2524 SDValue &Scale, SDValue &Index,
2525 SDValue &Disp, SDValue &Segment) {
2526 X86ISelAddressMode AM;
2527
2528 if (Parent &&
2529 // This list of opcodes are all the nodes that have an "addr:$ptr" operand
2530 // that are not a MemSDNode, and thus don't have proper addrspace info.
2531 Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
2532 Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
2533 Parent->getOpcode() != X86ISD::TLSCALL && // Fixme
2534 Parent->getOpcode() != X86ISD::ENQCMD && // Fixme
2535 Parent->getOpcode() != X86ISD::ENQCMDS && // Fixme
2536 Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp
2537 Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp
2538 unsigned AddrSpace =
2539 cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
2540 if (AddrSpace == X86AS::GS)
2541 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
2542 if (AddrSpace == X86AS::FS)
2543 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
2544 if (AddrSpace == X86AS::SS)
2545 AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16);
2546 }
2547
2548 // Save the DL and VT before calling matchAddress, it can invalidate N.
2549 SDLoc DL(N);
2550 MVT VT = N.getSimpleValueType();
2551
2552 if (matchAddress(N, AM))
2553 return false;
2554
2555 getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
2556 return true;
2557}
2558
2559bool X86DAGToDAGISel::selectMOV64Imm32(SDValue N, SDValue &Imm) {
2560 // In static codegen with small code model, we can get the address of a label
2561 // into a register with 'movl'
2562 if (N->getOpcode() != X86ISD::Wrapper)
2563 return false;
2564
2565 N = N.getOperand(0);
2566
2567 // At least GNU as does not accept 'movl' for TPOFF relocations.
2568 // FIXME: We could use 'movl' when we know we are targeting MC.
2569 if (N->getOpcode() == ISD::TargetGlobalTLSAddress)
2570 return false;
2571
2572 Imm = N;
2573 if (N->getOpcode() != ISD::TargetGlobalAddress)
2574 return TM.getCodeModel() == CodeModel::Small;
2575
2576 Optional<ConstantRange> CR =
2577 cast<GlobalAddressSDNode>(N)->getGlobal()->getAbsoluteSymbolRange();
2578 if (!CR)
2579 return TM.getCodeModel() == CodeModel::Small;
2580
2581 return CR->getUnsignedMax().ult(1ull << 32);
2582}
2583
2584bool X86DAGToDAGISel::selectLEA64_32Addr(SDValue N, SDValue &Base,
2585 SDValue &Scale, SDValue &Index,
2586 SDValue &Disp, SDValue &Segment) {
2587 // Save the debug loc before calling selectLEAAddr, in case it invalidates N.
2588 SDLoc DL(N);
2589
2590 if (!selectLEAAddr(N, Base, Scale, Index, Disp, Segment))
1
Calling 'X86DAGToDAGISel::selectLEAAddr'
18
Returning from 'X86DAGToDAGISel::selectLEAAddr'
19
Taking false branch
2591 return false;
2592
2593 RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Base);
20
Calling 'dyn_cast<llvm::RegisterSDNode, llvm::SDValue>'
33
Returning from 'dyn_cast<llvm::RegisterSDNode, llvm::SDValue>'
2594 if (RN && RN->getReg() == 0)
34
Assuming 'RN' is null
35
Taking false branch
2595 Base = CurDAG->getRegister(0, MVT::i64);
2596 else if (Base.getValueType() == MVT::i32 && !isa<FrameIndexSDNode>(Base)) {
36
Calling 'SDValue::getValueType'
2597 // Base could already be %rip, particularly in the x32 ABI.
2598 SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, DL,
2599 MVT::i64), 0);
2600 Base = CurDAG->getTargetInsertSubreg(X86::sub_32bit, DL, MVT::i64, ImplDef,
2601 Base);
2602 }
2603
2604 RN = dyn_cast<RegisterSDNode>(Index);
2605 if (RN && RN->getReg() == 0)
2606 Index = CurDAG->getRegister(0, MVT::i64);
2607 else {
2608 assert(Index.getValueType() == MVT::i32 &&((void)0)
2609 "Expect to be extending 32-bit registers for use in LEA")((void)0);
2610 SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, DL,
2611 MVT::i64), 0);
2612 Index = CurDAG->getTargetInsertSubreg(X86::sub_32bit, DL, MVT::i64, ImplDef,
2613 Index);
2614 }
2615
2616 return true;
2617}
2618
2619/// Calls SelectAddr and determines if the maximal addressing
2620/// mode it matches can be cost effectively emitted as an LEA instruction.
2621bool X86DAGToDAGISel::selectLEAAddr(SDValue N,
2622 SDValue &Base, SDValue &Scale,
2623 SDValue &Index, SDValue &Disp,
2624 SDValue &Segment) {
2625 X86ISelAddressMode AM;
2626
2627 // Save the DL and VT before calling matchAddress, it can invalidate N.
2628 SDLoc DL(N);
2629 MVT VT = N.getSimpleValueType();
2630
2631 // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
2632 // segments.
2633 SDValue Copy = AM.Segment;
2634 SDValue T = CurDAG->getRegister(0, MVT::i32);
2635 AM.Segment = T;
2636 if (matchAddress(N, AM))
2
Taking false branch
2637 return false;
2638 assert (T == AM.Segment)((void)0);
2639 AM.Segment = Copy;
2640
2641 unsigned Complexity = 0;
2642 if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode())
3
Assuming field 'BaseType' is not equal to RegBase
2643 Complexity = 1;
2644 else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
4
Assuming field 'BaseType' is not equal to FrameIndexBase
5
Taking false branch
2645 Complexity = 4;
2646
2647 if (AM.IndexReg.getNode())
6
Assuming the condition is false
7
Taking false branch
2648 Complexity++;
2649
2650 // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
2651 // a simple shift.
2652 if (AM.Scale > 1)
8
Assuming field 'Scale' is <= 1
9
Taking false branch
2653 Complexity++;
2654
2655 // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
2656 // to a LEA. This is determined with some experimentation but is by no means
2657 // optimal (especially for code size consideration). LEA is nice because of
2658 // its three-address nature. Tweak the cost function again when we can run
2659 // convertToThreeAddress() at register allocation time.
2660 if (AM.hasSymbolicDisplacement()) {
10
Taking true branch
2661 // For X86-64, always use LEA to materialize RIP-relative addresses.
2662 if (Subtarget->is64Bit())
11
Taking false branch
2663 Complexity = 4;
2664 else
2665 Complexity += 2;
2666 }
2667
2668 // Heuristic: try harder to form an LEA from ADD if the operands set flags.
2669 // Unlike ADD, LEA does not affect flags, so we will be less likely to require
2670 // duplicating flag-producing instructions later in the pipeline.
2671 if (N.getOpcode() == ISD::ADD) {
12
Assuming the condition is false
13
Taking false branch
2672 auto isMathWithFlags = [](SDValue V) {
2673 switch (V.getOpcode()) {
2674 case X86ISD::ADD:
2675 case X86ISD::SUB:
2676 case X86ISD::ADC:
2677 case X86ISD::SBB:
2678 /* TODO: These opcodes can be added safely, but we may want to justify
2679 their inclusion for different reasons (better for reg-alloc).
2680 case X86ISD::SMUL:
2681 case X86ISD::UMUL:
2682 case X86ISD::OR:
2683 case X86ISD::XOR:
2684 case X86ISD::AND:
2685 */
2686 // Value 1 is the flag output of the node - verify it's not dead.
2687 return !SDValue(V.getNode(), 1).use_empty();
2688 default:
2689 return false;
2690 }
2691 };
2692 // TODO: This could be an 'or' rather than 'and' to make the transform more
2693 // likely to happen. We might want to factor in whether there's a
2694 // load folding opportunity for the math op that disappears with LEA.
2695 if (isMathWithFlags(N.getOperand(0)) && isMathWithFlags(N.getOperand(1)))
2696 Complexity++;
2697 }
2698
2699 if (AM.Disp)
14
Assuming field 'Disp' is not equal to 0
15
Taking true branch
2700 Complexity++;
2701
2702 // If it isn't worth using an LEA, reject it.
2703 if (Complexity
15.1
'Complexity' is > 2
15.1
'Complexity' is > 2
15.1
'Complexity' is > 2
<= 2)
16
Taking false branch
2704 return false;
2705
2706 getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
17
Value assigned to field 'Node'
2707 return true;
2708}
2709
2710/// This is only run on TargetGlobalTLSAddress nodes.
2711bool X86DAGToDAGISel::selectTLSADDRAddr(SDValue N, SDValue &Base,
2712 SDValue &Scale, SDValue &Index,
2713 SDValue &Disp, SDValue &Segment) {
2714 assert(N.getOpcode() == ISD::TargetGlobalTLSAddress)((void)0);
2715 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
2716
2717 X86ISelAddressMode AM;
2718 AM.GV = GA->getGlobal();
2719 AM.Disp += GA->getOffset();
2720 AM.SymbolFlags = GA->getTargetFlags();
2721
2722 if (Subtarget->is32Bit()) {
2723 AM.Scale = 1;
2724 AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
2725 }
2726
2727 MVT VT = N.getSimpleValueType();
2728 getAddressOperands(AM, SDLoc(N), VT, Base, Scale, Index, Disp, Segment);
2729 return true;
2730}
2731
2732bool X86DAGToDAGISel::selectRelocImm(SDValue N, SDValue &Op) {
2733 // Keep track of the original value type and whether this value was
2734 // truncated. If we see a truncation from pointer type to VT that truncates
2735 // bits that are known to be zero, we can use a narrow reference.
2736 EVT VT = N.getValueType();
2737 bool WasTruncated = false;
2738 if (N.getOpcode() == ISD::TRUNCATE) {
2739 WasTruncated = true;
2740 N = N.getOperand(0);
2741 }
2742
2743 if (N.getOpcode() != X86ISD::Wrapper)
2744 return false;
2745
2746 // We can only use non-GlobalValues as immediates if they were not truncated,
2747 // as we do not have any range information. If we have a GlobalValue and the
2748 // address was not truncated, we can select it as an operand directly.
2749 unsigned Opc = N.getOperand(0)->getOpcode();
2750 if (Opc != ISD::TargetGlobalAddress || !WasTruncated) {
2751 Op = N.getOperand(0);
2752 // We can only select the operand directly if we didn't have to look past a
2753 // truncate.
2754 return !WasTruncated;
2755 }
2756
2757 // Check that the global's range fits into VT.
2758 auto *GA = cast<GlobalAddressSDNode>(N.getOperand(0));
2759 Optional<ConstantRange> CR = GA->getGlobal()->getAbsoluteSymbolRange();
2760 if (!CR || CR->getUnsignedMax().uge(1ull << VT.getSizeInBits()))
2761 return false;
2762
2763 // Okay, we can use a narrow reference.
2764 Op = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(N), VT,
2765 GA->getOffset(), GA->getTargetFlags());
2766 return true;
2767}
2768
2769bool X86DAGToDAGISel::tryFoldLoad(SDNode *Root, SDNode *P, SDValue N,
2770 SDValue &Base, SDValue &Scale,
2771 SDValue &Index, SDValue &Disp,
2772 SDValue &Segment) {
2773 assert(Root && P && "Unknown root/parent nodes")((void)0);
2774 if (!ISD::isNON_EXTLoad(N.getNode()) ||
2775 !IsProfitableToFold(N, P, Root) ||
2776 !IsLegalToFold(N, P, Root, OptLevel))
2777 return false;
2778
2779 return selectAddr(N.getNode(),
2780 N.getOperand(1), Base, Scale, Index, Disp, Segment);
2781}
2782
2783bool X86DAGToDAGISel::tryFoldBroadcast(SDNode *Root, SDNode *P, SDValue N,
2784 SDValue &Base, SDValue &Scale,
2785 SDValue &Index, SDValue &Disp,
2786 SDValue &Segment) {
2787 assert(Root && P && "Unknown root/parent nodes")((void)0);
2788 if (N->getOpcode() != X86ISD::VBROADCAST_LOAD ||
2789 !IsProfitableToFold(N, P, Root) ||
2790 !IsLegalToFold(N, P, Root, OptLevel))
2791 return false;
2792
2793 return selectAddr(N.getNode(),
2794 N.getOperand(1), Base, Scale, Index, Disp, Segment);
2795}
2796
2797/// Return an SDNode that returns the value of the global base register.
2798/// Output instructions required to initialize the global base register,
2799/// if necessary.
2800SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
2801 unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
2802 auto &DL = MF->getDataLayout();
2803 return CurDAG->getRegister(GlobalBaseReg, TLI->getPointerTy(DL)).getNode();
2804}
2805
2806bool X86DAGToDAGISel::isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const {
2807 if (N->getOpcode() == ISD::TRUNCATE)
2808 N = N->getOperand(0).getNode();
2809 if (N->getOpcode() != X86ISD::Wrapper)
2810 return false;
2811
2812 auto *GA = dyn_cast<GlobalAddressSDNode>(N->getOperand(0));
2813 if (!GA)
2814 return false;
2815
2816 Optional<ConstantRange> CR = GA->getGlobal()->getAbsoluteSymbolRange();
2817 if (!CR)
2818 return Width == 32 && TM.getCodeModel() == CodeModel::Small;
2819
2820 return CR->getSignedMin().sge(-1ull << Width) &&
2821 CR->getSignedMax().slt(1ull << Width);
2822}
2823
2824static X86::CondCode getCondFromNode(SDNode *N) {
2825 assert(N->isMachineOpcode() && "Unexpected node")((void)0);
2826 X86::CondCode CC = X86::COND_INVALID;
2827 unsigned Opc = N->getMachineOpcode();
2828 if (Opc == X86::JCC_1)
2829 CC = static_cast<X86::CondCode>(N->getConstantOperandVal(1));
2830 else if (Opc == X86::SETCCr)
2831 CC = static_cast<X86::CondCode>(N->getConstantOperandVal(0));
2832 else if (Opc == X86::SETCCm)
2833 CC = static_cast<X86::CondCode>(N->getConstantOperandVal(5));
2834 else if (Opc == X86::CMOV16rr || Opc == X86::CMOV32rr ||
2835 Opc == X86::CMOV64rr)
2836 CC = static_cast<X86::CondCode>(N->getConstantOperandVal(2));
2837 else if (Opc == X86::CMOV16rm || Opc == X86::CMOV32rm ||
2838 Opc == X86::CMOV64rm)
2839 CC = static_cast<X86::CondCode>(N->getConstantOperandVal(6));
2840
2841 return CC;
2842}
2843
2844/// Test whether the given X86ISD::CMP node has any users that use a flag
2845/// other than ZF.
2846bool X86DAGToDAGISel::onlyUsesZeroFlag(SDValue Flags) const {
2847 // Examine each user of the node.
2848 for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
2849 UI != UE; ++UI) {
2850 // Only check things that use the flags.
2851 if (UI.getUse().getResNo() != Flags.getResNo())
2852 continue;
2853 // Only examine CopyToReg uses that copy to EFLAGS.
2854 if (UI->getOpcode() != ISD::CopyToReg ||
2855 cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
2856 return false;
2857 // Examine each user of the CopyToReg use.
2858 for (SDNode::use_iterator FlagUI = UI->use_begin(),
2859 FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
2860 // Only examine the Flag result.
2861 if (FlagUI.getUse().getResNo() != 1) continue;
2862 // Anything unusual: assume conservatively.
2863 if (!FlagUI->isMachineOpcode()) return false;
2864 // Examine the condition code of the user.
2865 X86::CondCode CC = getCondFromNode(*FlagUI);
2866
2867 switch (CC) {
2868 // Comparisons which only use the zero flag.
2869 case X86::COND_E: case X86::COND_NE:
2870 continue;
2871 // Anything else: assume conservatively.
2872 default:
2873 return false;
2874 }
2875 }
2876 }
2877 return true;
2878}
2879
2880/// Test whether the given X86ISD::CMP node has any uses which require the SF
2881/// flag to be accurate.
2882bool X86DAGToDAGISel::hasNoSignFlagUses(SDValue Flags) const {
2883 // Examine each user of the node.
2884 for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
2885 UI != UE; ++UI) {
2886 // Only check things that use the flags.
2887 if (UI.getUse().getResNo() != Flags.getResNo())
2888 continue;
2889 // Only examine CopyToReg uses that copy to EFLAGS.
2890 if (UI->getOpcode() != ISD::CopyToReg ||
2891 cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
2892 return false;
2893 // Examine each user of the CopyToReg use.
2894 for (SDNode::use_iterator FlagUI = UI->use_begin(),
2895 FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
2896 // Only examine the Flag result.
2897 if (FlagUI.getUse().getResNo() != 1) continue;
2898 // Anything unusual: assume conservatively.
2899 if (!FlagUI->isMachineOpcode()) return false;
2900 // Examine the condition code of the user.
2901 X86::CondCode CC = getCondFromNode(*FlagUI);
2902
2903 switch (CC) {
2904 // Comparisons which don't examine the SF flag.
2905 case X86::COND_A: case X86::COND_AE:
2906 case X86::COND_B: case X86::COND_BE:
2907 case X86::COND_E: case X86::COND_NE:
2908 case X86::COND_O: case X86::COND_NO:
2909 case X86::COND_P: case X86::COND_NP:
2910 continue;
2911 // Anything else: assume conservatively.
2912 default:
2913 return false;
2914 }
2915 }
2916 }
2917 return true;
2918}
2919
2920static bool mayUseCarryFlag(X86::CondCode CC) {
2921 switch (CC) {
2922 // Comparisons which don't examine the CF flag.
2923 case X86::COND_O: case X86::COND_NO:
2924 case X86::COND_E: case X86::COND_NE:
2925 case X86::COND_S: case X86::COND_NS:
2926 case X86::COND_P: case X86::COND_NP:
2927 case X86::COND_L: case X86::COND_GE:
2928 case X86::COND_G: case X86::COND_LE:
2929 return false;
2930 // Anything else: assume conservatively.
2931 default:
2932 return true;
2933 }
2934}
2935
2936/// Test whether the given node which sets flags has any uses which require the
2937/// CF flag to be accurate.
2938 bool X86DAGToDAGISel::hasNoCarryFlagUses(SDValue Flags) const {
2939 // Examine each user of the node.
2940 for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
2941 UI != UE; ++UI) {
2942 // Only check things that use the flags.
2943 if (UI.getUse().getResNo() != Flags.getResNo())
2944 continue;
2945
2946 unsigned UIOpc = UI->getOpcode();
2947
2948 if (UIOpc == ISD::CopyToReg) {
2949 // Only examine CopyToReg uses that copy to EFLAGS.
2950 if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
2951 return false;
2952 // Examine each user of the CopyToReg use.
2953 for (SDNode::use_iterator FlagUI = UI->use_begin(), FlagUE = UI->use_end();
2954 FlagUI != FlagUE; ++FlagUI) {
2955 // Only examine the Flag result.
2956 if (FlagUI.getUse().getResNo() != 1)
2957 continue;
2958 // Anything unusual: assume conservatively.
2959 if (!FlagUI->isMachineOpcode())
2960 return false;
2961 // Examine the condition code of the user.
2962 X86::CondCode CC = getCondFromNode(*FlagUI);
2963
2964 if (mayUseCarryFlag(CC))
2965 return false;
2966 }
2967
2968 // This CopyToReg is ok. Move on to the next user.
2969 continue;
2970 }
2971
2972 // This might be an unselected node. So look for the pre-isel opcodes that
2973 // use flags.
2974 unsigned CCOpNo;
2975 switch (UIOpc) {
2976 default:
2977 // Something unusual. Be conservative.
2978 return false;
2979 case X86ISD::SETCC: CCOpNo = 0; break;
2980 case X86ISD::SETCC_CARRY: CCOpNo = 0; break;
2981 case X86ISD::CMOV: CCOpNo = 2; break;
2982 case X86ISD::BRCOND: CCOpNo = 2; break;
2983 }
2984
2985 X86::CondCode CC = (X86::CondCode)UI->getConstantOperandVal(CCOpNo);
2986 if (mayUseCarryFlag(CC))
2987 return false;
2988 }
2989 return true;
2990}
2991
2992/// Check whether or not the chain ending in StoreNode is suitable for doing
2993/// the {load; op; store} to modify transformation.
2994static bool isFusableLoadOpStorePattern(StoreSDNode *StoreNode,
2995 SDValue StoredVal, SelectionDAG *CurDAG,
2996 unsigned LoadOpNo,
2997 LoadSDNode *&LoadNode,
2998 SDValue &InputChain) {
2999 // Is the stored value result 0 of the operation?
3000 if (StoredVal.getResNo() != 0) return false;
3001
3002 // Are there other uses of the operation other than the store?
3003 if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false;
3004
3005 // Is the store non-extending and non-indexed?
3006 if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
3007 return false;
3008
3009 SDValue Load = StoredVal->getOperand(LoadOpNo);
3010 // Is the stored value a non-extending and non-indexed load?
3011 if (!ISD::isNormalLoad(Load.getNode())) return false;
3012
3013 // Return LoadNode by reference.
3014 LoadNode = cast<LoadSDNode>(Load);
3015
3016 // Is store the only read of the loaded value?
3017 if (!Load.hasOneUse())
3018 return false;
3019
3020 // Is the address of the store the same as the load?
3021 if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
3022 LoadNode->getOffset() != StoreNode->getOffset())
3023 return false;
3024
3025 bool FoundLoad = false;
3026 SmallVector<SDValue, 4> ChainOps;
3027 SmallVector<const SDNode *, 4> LoopWorklist;
3028 SmallPtrSet<const SDNode *, 16> Visited;
3029 const unsigned int Max = 1024;
3030
3031 // Visualization of Load-Op-Store fusion:
3032 // -------------------------
3033 // Legend:
3034 // *-lines = Chain operand dependencies.
3035 // |-lines = Normal operand dependencies.
3036 // Dependencies flow down and right. n-suffix references multiple nodes.
3037 //
3038 // C Xn C
3039 // * * *
3040 // * * *
3041 // Xn A-LD Yn TF Yn
3042 // * * \ | * |
3043 // * * \ | * |
3044 // * * \ | => A--LD_OP_ST
3045 // * * \| \
3046 // TF OP \
3047 // * | \ Zn
3048 // * | \
3049 // A-ST Zn
3050 //
3051
3052 // This merge induced dependences from: #1: Xn -> LD, OP, Zn
3053 // #2: Yn -> LD
3054 // #3: ST -> Zn
3055
3056 // Ensure the transform is safe by checking for the dual
3057 // dependencies to make sure we do not induce a loop.
3058
3059 // As LD is a predecessor to both OP and ST we can do this by checking:
3060 // a). if LD is a predecessor to a member of Xn or Yn.
3061 // b). if a Zn is a predecessor to ST.
3062
3063 // However, (b) can only occur through being a chain predecessor to
3064 // ST, which is the same as Zn being a member or predecessor of Xn,
3065 // which is a subset of LD being a predecessor of Xn. So it's
3066 // subsumed by check (a).
3067
3068 SDValue Chain = StoreNode->getChain();
3069
3070 // Gather X elements in ChainOps.
3071 if (Chain == Load.getValue(1)) {
3072 FoundLoad = true;
3073 ChainOps.push_back(Load.getOperand(0));
3074 } else if (Chain.getOpcode() == ISD::TokenFactor) {
3075 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
3076 SDValue Op = Chain.getOperand(i);
3077 if (Op == Load.getValue(1)) {
3078 FoundLoad = true;
3079 // Drop Load, but keep its chain. No cycle check necessary.
3080 ChainOps.push_back(Load.getOperand(0));
3081 continue;
3082 }
3083 LoopWorklist.push_back(Op.getNode());
3084 ChainOps.push_back(Op);
3085 }
3086 }
3087
3088 if (!FoundLoad)
3089 return false;
3090
3091 // Worklist is currently Xn. Add Yn to worklist.
3092 for (SDValue Op : StoredVal->ops())
3093 if (Op.getNode() != LoadNode)
3094 LoopWorklist.push_back(Op.getNode());
3095
3096 // Check (a) if Load is a predecessor to Xn + Yn
3097 if (SDNode::hasPredecessorHelper(Load.getNode(), Visited, LoopWorklist, Max,
3098 true))
3099 return false;
3100
3101 InputChain =
3102 CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ChainOps);
3103 return true;
3104}
3105
3106// Change a chain of {load; op; store} of the same value into a simple op
3107// through memory of that value, if the uses of the modified value and its
3108// address are suitable.
3109//
3110// The tablegen pattern memory operand pattern is currently not able to match
3111// the case where the EFLAGS on the original operation are used.
3112//
3113// To move this to tablegen, we'll need to improve tablegen to allow flags to
3114// be transferred from a node in the pattern to the result node, probably with
3115// a new keyword. For example, we have this
3116// def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
3117// [(store (add (loadi64 addr:$dst), -1), addr:$dst),
3118// (implicit EFLAGS)]>;
3119// but maybe need something like this
3120// def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
3121// [(store (add (loadi64 addr:$dst), -1), addr:$dst),
3122// (transferrable EFLAGS)]>;
3123//
3124// Until then, we manually fold these and instruction select the operation
3125// here.
3126bool X86DAGToDAGISel::foldLoadStoreIntoMemOperand(SDNode *Node) {
3127 StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
3128 SDValue StoredVal = StoreNode->getOperand(1);
3129 unsigned Opc = StoredVal->getOpcode();
3130
3131 // Before we try to select anything, make sure this is memory operand size
3132 // and opcode we can handle. Note that this must match the code below that
3133 // actually lowers the opcodes.
3134 EVT MemVT = StoreNode->getMemoryVT();
3135 if (MemVT != MVT::i64 && MemVT != MVT::i32 && MemVT != MVT::i16 &&
3136 MemVT != MVT::i8)
3137 return false;
3138
3139 bool IsCommutable = false;
3140 bool IsNegate = false;
3141 switch (Opc) {
3142 default:
3143 return false;
3144 case X86ISD::SUB:
3145 IsNegate = isNullConstant(StoredVal.getOperand(0));
3146 break;
3147 case X86ISD::SBB:
3148 break;
3149 case X86ISD::ADD:
3150 case X86ISD::ADC:
3151 case X86ISD::AND:
3152 case X86ISD::OR:
3153 case X86ISD::XOR:
3154 IsCommutable = true;
3155 break;
3156 }
3157
3158 unsigned LoadOpNo = IsNegate ? 1 : 0;
3159 LoadSDNode *LoadNode = nullptr;
3160 SDValue InputChain;
3161 if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadOpNo,
3162 LoadNode, InputChain)) {
3163 if (!IsCommutable)
3164 return false;
3165
3166 // This operation is commutable, try the other operand.
3167 LoadOpNo = 1;
3168 if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadOpNo,
3169 LoadNode, InputChain))
3170 return false;
3171 }
3172
3173 SDValue Base, Scale, Index, Disp, Segment;
3174 if (!selectAddr(LoadNode, LoadNode->getBasePtr(), Base, Scale, Index, Disp,
3175 Segment))
3176 return false;
3177
3178 auto SelectOpcode = [&](unsigned Opc64, unsigned Opc32, unsigned Opc16,
3179 unsigned Opc8) {
3180 switch (MemVT.getSimpleVT().SimpleTy) {
3181 case MVT::i64:
3182 return Opc64;
3183 case MVT::i32:
3184 return Opc32;
3185 case MVT::i16:
3186 return Opc16;
3187 case MVT::i8:
3188 return Opc8;
3189 default:
3190 llvm_unreachable("Invalid size!")__builtin_unreachable();
3191 }
3192 };
3193
3194 MachineSDNode *Result;
3195 switch (Opc) {
3196 case X86ISD::SUB:
3197 // Handle negate.
3198 if (IsNegate) {
3199 unsigned NewOpc = SelectOpcode(X86::NEG64m, X86::NEG32m, X86::NEG16m,
3200 X86::NEG8m);
3201 const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, InputChain};
3202 Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32,
3203 MVT::Other, Ops);
3204 break;
3205 }
3206 LLVM_FALLTHROUGH[[gnu::fallthrough]];
3207 case X86ISD::ADD:
3208 // Try to match inc/dec.
3209 if (!Subtarget->slowIncDec() || CurDAG->shouldOptForSize()) {
3210 bool IsOne = isOneConstant(StoredVal.getOperand(1));
3211 bool IsNegOne = isAllOnesConstant(StoredVal.getOperand(1));
3212 // ADD/SUB with 1/-1 and carry flag isn't used can use inc/dec.
3213 if ((IsOne || IsNegOne) && hasNoCarryFlagUses(StoredVal.getValue(1))) {
3214 unsigned NewOpc =
3215 ((Opc == X86ISD::ADD) == IsOne)
3216 ? SelectOpcode(X86::INC64m, X86::INC32m, X86::INC16m, X86::INC8m)
3217 : SelectOpcode(X86::DEC64m, X86::DEC32m, X86::DEC16m, X86::DEC8m);
3218 const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, InputChain};
3219 Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32,
3220 MVT::Other, Ops);
3221 break;
3222 }
3223 }
3224 LLVM_FALLTHROUGH[[gnu::fallthrough]];
3225 case X86ISD::ADC:
3226 case X86ISD::SBB:
3227 case X86ISD::AND:
3228 case X86ISD::OR:
3229 case X86ISD::XOR: {
3230 auto SelectRegOpcode = [SelectOpcode](unsigned Opc) {
3231 switch (Opc) {
3232 case X86ISD::ADD:
3233 return SelectOpcode(X86::ADD64mr, X86::ADD32mr, X86::ADD16mr,
3234 X86::ADD8mr);
3235 case X86ISD::ADC:
3236 return SelectOpcode(X86::ADC64mr, X86::ADC32mr, X86::ADC16mr,
3237 X86::ADC8mr);
3238 case X86ISD::SUB:
3239 return SelectOpcode(X86::SUB64mr, X86::SUB32mr, X86::SUB16mr,
3240 X86::SUB8mr);
3241 case X86ISD::SBB:
3242 return SelectOpcode(X86::SBB64mr, X86::SBB32mr, X86::SBB16mr,
3243 X86::SBB8mr);
3244 case X86ISD::AND:
3245 return SelectOpcode(X86::AND64mr, X86::AND32mr, X86::AND16mr,
3246 X86::AND8mr);
3247 case X86ISD::OR:
3248 return SelectOpcode(X86::OR64mr, X86::OR32mr, X86::OR16mr, X86::OR8mr);
3249 case X86ISD::XOR:
3250 return SelectOpcode(X86::XOR64mr, X86::XOR32mr, X86::XOR16mr,
3251 X86::XOR8mr);
3252 default:
3253 llvm_unreachable("Invalid opcode!")__builtin_unreachable();
3254 }
3255 };
3256 auto SelectImm8Opcode = [SelectOpcode](unsigned Opc) {
3257 switch (Opc) {
3258 case X86ISD::ADD:
3259 return SelectOpcode(X86::ADD64mi8, X86::ADD32mi8, X86::ADD16mi8, 0);
3260 case X86ISD::ADC:
3261 return SelectOpcode(X86::ADC64mi8, X86::ADC32mi8, X86::ADC16mi8, 0);
3262 case X86ISD::SUB:
3263 return SelectOpcode(X86::SUB64mi8, X86::SUB32mi8, X86::SUB16mi8, 0);
3264 case X86ISD::SBB:
3265 return SelectOpcode(X86::SBB64mi8, X86::SBB32mi8, X86::SBB16mi8, 0);
3266 case X86ISD::AND:
3267 return SelectOpcode(X86::AND64mi8, X86::AND32mi8, X86::AND16mi8, 0);
3268 case X86ISD::OR:
3269 return SelectOpcode(X86::OR64mi8, X86::OR32mi8, X86::OR16mi8, 0);
3270 case X86ISD::XOR:
3271 return SelectOpcode(X86::XOR64mi8, X86::XOR32mi8, X86::XOR16mi8, 0);
3272 default:
3273 llvm_unreachable("Invalid opcode!")__builtin_unreachable();
3274 }
3275 };
3276 auto SelectImmOpcode = [SelectOpcode](unsigned Opc) {
3277 switch (Opc) {
3278 case X86ISD::ADD:
3279 return SelectOpcode(X86::ADD64mi32, X86::ADD32mi, X86::ADD16mi,
3280 X86::ADD8mi);
3281 case X86ISD::ADC:
3282 return SelectOpcode(X86::ADC64mi32, X86::ADC32mi, X86::ADC16mi,
3283 X86::ADC8mi);
3284 case X86ISD::SUB:
3285 return SelectOpcode(X86::SUB64mi32, X86::SUB32mi, X86::SUB16mi,
3286 X86::SUB8mi);
3287 case X86ISD::SBB:
3288 return SelectOpcode(X86::SBB64mi32, X86::SBB32mi, X86::SBB16mi,
3289 X86::SBB8mi);
3290 case X86ISD::AND:
3291 return SelectOpcode(X86::AND64mi32, X86::AND32mi, X86::AND16mi,
3292 X86::AND8mi);
3293 case X86ISD::OR:
3294 return SelectOpcode(X86::OR64mi32, X86::OR32mi, X86::OR16mi,
3295 X86::OR8mi);
3296 case X86ISD::XOR:
3297 return SelectOpcode(X86::XOR64mi32, X86::XOR32mi, X86::XOR16mi,
3298 X86::XOR8mi);
3299 default:
3300 llvm_unreachable("Invalid opcode!")__builtin_unreachable();
3301 }
3302 };
3303
3304 unsigned NewOpc = SelectRegOpcode(Opc);
3305 SDValue Operand = StoredVal->getOperand(1-LoadOpNo);
3306
3307 // See if the operand is a constant that we can fold into an immediate
3308 // operand.
3309 if (auto *OperandC = dyn_cast<ConstantSDNode>(Operand)) {
3310 int64_t OperandV = OperandC->getSExtValue();
3311
3312 // Check if we can shrink the operand enough to fit in an immediate (or
3313 // fit into a smaller immediate) by negating it and switching the
3314 // operation.
3315 if ((Opc == X86ISD::ADD || Opc == X86ISD::SUB) &&
3316 ((MemVT != MVT::i8 && !isInt<8>(OperandV) && isInt<8>(-OperandV)) ||
3317 (MemVT == MVT::i64 && !isInt<32>(OperandV) &&
3318 isInt<32>(-OperandV))) &&
3319 hasNoCarryFlagUses(StoredVal.getValue(1))) {
3320 OperandV = -OperandV;
3321 Opc = Opc == X86ISD::ADD ? X86ISD::SUB : X86ISD::ADD;
3322 }
3323
3324 // First try to fit this into an Imm8 operand. If it doesn't fit, then try
3325 // the larger immediate operand.
3326 if (MemVT != MVT::i8 && isInt<8>(OperandV)) {
3327 Operand = CurDAG->getTargetConstant(OperandV, SDLoc(Node), MemVT);
3328 NewOpc = SelectImm8Opcode(Opc);
3329 } else if (MemVT != MVT::i64 || isInt<32>(OperandV)) {
3330 Operand = CurDAG->getTargetConstant(OperandV, SDLoc(Node), MemVT);
3331 NewOpc = SelectImmOpcode(Opc);
3332 }
3333 }
3334
3335 if (Opc == X86ISD::ADC || Opc == X86ISD::SBB) {
3336 SDValue CopyTo =
3337 CurDAG->getCopyToReg(InputChain, SDLoc(Node), X86::EFLAGS,
3338 StoredVal.getOperand(2), SDValue());
3339
3340 const SDValue Ops[] = {Base, Scale, Index, Disp,
3341 Segment, Operand, CopyTo, CopyTo.getValue(1)};
3342 Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other,
3343 Ops);
3344 } else {
3345 const SDValue Ops[] = {Base, Scale, Index, Disp,
3346 Segment, Operand, InputChain};
3347 Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other,
3348 Ops);
3349 }
3350 break;
3351 }
3352 default:
3353 llvm_unreachable("Invalid opcode!")__builtin_unreachable();
3354 }
3355
3356 MachineMemOperand *MemOps[] = {StoreNode->getMemOperand(),
3357 LoadNode->getMemOperand()};
3358 CurDAG->setNodeMemRefs(Result, MemOps);
3359
3360 // Update Load Chain uses as well.
3361 ReplaceUses(SDValue(LoadNode, 1), SDValue(Result, 1));
3362 ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
3363 ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
3364 CurDAG->RemoveDeadNode(Node);
3365 return true;
3366}
3367
3368// See if this is an X & Mask that we can match to BEXTR/BZHI.
3369// Where Mask is one of the following patterns:
3370// a) x & (1 << nbits) - 1
3371// b) x & ~(-1 << nbits)
3372// c) x & (-1 >> (32 - y))
3373// d) x << (32 - y) >> (32 - y)
3374bool X86DAGToDAGISel::matchBitExtract(SDNode *Node) {
3375 assert(((void)0)
3376 (Node->getOpcode() == ISD::AND || Node->getOpcode() == ISD::SRL) &&((void)0)
3377 "Should be either an and-mask, or right-shift after clearing high bits.")((void)0);
3378
3379 // BEXTR is BMI instruction, BZHI is BMI2 instruction. We need at least one.
3380 if (!Subtarget->hasBMI() && !Subtarget->hasBMI2())
3381 return false;
3382
3383 MVT NVT = Node->getSimpleValueType(0);
3384
3385 // Only supported for 32 and 64 bits.
3386 if (NVT != MVT::i32 && NVT != MVT::i64)
3387 return false;
3388
3389 SDValue NBits;
3390
3391 // If we have BMI2's BZHI, we are ok with muti-use patterns.
3392 // Else, if we only have BMI1's BEXTR, we require one-use.
3393 const bool CanHaveExtraUses = Subtarget->hasBMI2();
3394 auto checkUses = [CanHaveExtraUses](SDValue Op, unsigned NUses) {
3395 return CanHaveExtraUses ||
3396 Op.getNode()->hasNUsesOfValue(NUses, Op.getResNo());
3397 };
3398 auto checkOneUse = [checkUses](SDValue Op) { return checkUses(Op, 1); };
3399 auto checkTwoUse = [checkUses](SDValue Op) { return checkUses(Op, 2); };
3400
3401 auto peekThroughOneUseTruncation = [checkOneUse](SDValue V) {
3402 if (V->getOpcode() == ISD::TRUNCATE && checkOneUse(V)) {
3403 assert(V.getSimpleValueType() == MVT::i32 &&((void)0)
3404 V.getOperand(0).getSimpleValueType() == MVT::i64 &&((void)0)
3405 "Expected i64 -> i32 truncation")((void)0);
3406 V = V.getOperand(0);
3407 }
3408 return V;
3409 };
3410
3411 // a) x & ((1 << nbits) + (-1))
3412 auto matchPatternA = [checkOneUse, peekThroughOneUseTruncation,
3413 &NBits](SDValue Mask) -> bool {
3414 // Match `add`. Must only have one use!
3415 if (Mask->getOpcode() != ISD::ADD || !checkOneUse(Mask))
3416 return false;
3417 // We should be adding all-ones constant (i.e. subtracting one.)
3418 if (!isAllOnesConstant(Mask->getOperand(1)))
3419 return false;
3420 // Match `1 << nbits`. Might be truncated. Must only have one use!
3421 SDValue M0 = peekThroughOneUseTruncation(Mask->getOperand(0));
3422 if (M0->getOpcode() != ISD::SHL || !checkOneUse(M0))
3423 return false;
3424 if (!isOneConstant(M0->getOperand(0)))
3425 return false;
3426 NBits = M0->getOperand(1);
3427 return true;
3428 };
3429
3430 auto isAllOnes = [this, peekThroughOneUseTruncation, NVT](SDValue V) {
3431 V = peekThroughOneUseTruncation(V);
3432 return CurDAG->MaskedValueIsAllOnes(
3433 V, APInt::getLowBitsSet(V.getSimpleValueType().getSizeInBits(),
3434 NVT.getSizeInBits()));
3435 };
3436
3437 // b) x & ~(-1 << nbits)
3438 auto matchPatternB = [checkOneUse, isAllOnes, peekThroughOneUseTruncation,
3439 &NBits](SDValue Mask) -> bool {
3440 // Match `~()`. Must only have one use!
3441 if (Mask.getOpcode() != ISD::XOR || !checkOneUse(Mask))
3442 return false;
3443 // The -1 only has to be all-ones for the final Node's NVT.
3444 if (!isAllOnes(Mask->getOperand(1)))
3445 return false;
3446 // Match `-1 << nbits`. Might be truncated. Must only have one use!
3447 SDValue M0 = peekThroughOneUseTruncation(Mask->getOperand(0));
3448 if (M0->getOpcode() != ISD::SHL || !checkOneUse(M0))
3449 return false;
3450 // The -1 only has to be all-ones for the final Node's NVT.
3451 if (!isAllOnes(M0->getOperand(0)))
3452 return false;
3453 NBits = M0->getOperand(1);
3454 return true;
3455 };
3456
3457 // Match potentially-truncated (bitwidth - y)
3458 auto matchShiftAmt = [checkOneUse, &NBits](SDValue ShiftAmt,
3459 unsigned Bitwidth) {
3460 // Skip over a truncate of the shift amount.
3461 if (ShiftAmt.getOpcode() == ISD::TRUNCATE) {
3462 ShiftAmt = ShiftAmt.getOperand(0);
3463 // The trunc should have been the only user of the real shift amount.
3464 if (!checkOneUse(ShiftAmt))
3465 return false;
3466 }
3467 // Match the shift amount as: (bitwidth - y). It should go away, too.
3468 if (ShiftAmt.getOpcode() != ISD::SUB)
3469 return false;
3470 auto *V0 = dyn_cast<ConstantSDNode>(ShiftAmt.getOperand(0));
3471 if (!V0 || V0->getZExtValue() != Bitwidth)
3472 return false;
3473 NBits = ShiftAmt.getOperand(1);
3474 return true;
3475 };
3476
3477 // c) x & (-1 >> (32 - y))
3478 auto matchPatternC = [checkOneUse, peekThroughOneUseTruncation,
3479 matchShiftAmt](SDValue Mask) -> bool {
3480 // The mask itself may be truncated.
3481 Mask = peekThroughOneUseTruncation(Mask);
3482 unsigned Bitwidth = Mask.getSimpleValueType().getSizeInBits();
3483 // Match `l>>`. Must only have one use!
3484 if (Mask.getOpcode() != ISD::SRL || !checkOneUse(Mask))
3485 return false;
3486 // We should be shifting truly all-ones constant.
3487 if (!isAllOnesConstant(Mask.getOperand(0)))
3488 return false;
3489 SDValue M1 = Mask.getOperand(1);
3490 // The shift amount should not be used externally.
3491 if (!checkOneUse(M1))
3492 return false;
3493 return matchShiftAmt(M1, Bitwidth);
3494 };
3495
3496 SDValue X;
3497
3498 // d) x << (32 - y) >> (32 - y)
3499 auto matchPatternD = [checkOneUse, checkTwoUse, matchShiftAmt,
3500 &X](SDNode *Node) -> bool {
3501 if (Node->getOpcode() != ISD::SRL)
3502 return false;
3503 SDValue N0 = Node->getOperand(0);
3504 if (N0->getOpcode() != ISD::SHL || !checkOneUse(N0))
3505 return false;
3506 unsigned Bitwidth = N0.getSimpleValueType().getSizeInBits();
3507 SDValue N1 = Node->getOperand(1);
3508 SDValue N01 = N0->getOperand(1);
3509 // Both of the shifts must be by the exact same value.
3510 // There should not be any uses of the shift amount outside of the pattern.
3511 if (N1 != N01 || !checkTwoUse(N1))
3512 return false;
3513 if (!matchShiftAmt(N1, Bitwidth))
3514 return false;
3515 X = N0->getOperand(0);
3516 return true;
3517 };
3518
3519 auto matchLowBitMask = [matchPatternA, matchPatternB,
3520 matchPatternC](SDValue Mask) -> bool {
3521 return matchPatternA(Mask) || matchPatternB(Mask) || matchPatternC(Mask);
3522 };
3523
3524 if (Node->getOpcode() == ISD::AND) {
3525 X = Node->getOperand(0);
3526 SDValue Mask = Node->getOperand(1);
3527
3528 if (matchLowBitMask(Mask)) {
3529 // Great.
3530 } else {
3531 std::swap(X, Mask);
3532 if (!matchLowBitMask(Mask))
3533 return false;
3534 }
3535 } else if (!matchPatternD(Node))
3536 return false;
3537
3538 SDLoc DL(Node);
3539
3540 // Truncate the shift amount.
3541 NBits = CurDAG->getNode(ISD::TRUNCATE, DL, MVT::i8, NBits);
3542 insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3543
3544 // Insert 8-bit NBits into lowest 8 bits of 32-bit register.
3545 // All the other bits are undefined, we do not care about them.
3546 SDValue ImplDef = SDValue(
3547 CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i32), 0);
3548 insertDAGNode(*CurDAG, SDValue(Node, 0), ImplDef);
3549
3550 SDValue SRIdxVal = CurDAG->getTargetConstant(X86::sub_8bit, DL, MVT::i32);
3551 insertDAGNode(*CurDAG, SDValue(Node, 0), SRIdxVal);
3552 NBits = SDValue(
3553 CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::i32, ImplDef,
3554 NBits, SRIdxVal), 0);
3555 insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3556
3557 if (Subtarget->hasBMI2()) {
3558 // Great, just emit the the BZHI..
3559 if (NVT != MVT::i32) {
3560 // But have to place the bit count into the wide-enough register first.
3561 NBits = CurDAG->getNode(ISD::ANY_EXTEND, DL, NVT, NBits);
3562 insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3563 }
3564
3565 SDValue Extract = CurDAG->getNode(X86ISD::BZHI, DL, NVT, X, NBits);
3566 ReplaceNode(Node, Extract.getNode());
3567 SelectCode(Extract.getNode());
3568 return true;
3569 }
3570
3571 // Else, if we do *NOT* have BMI2, let's find out if the if the 'X' is
3572 // *logically* shifted (potentially with one-use trunc inbetween),
3573 // and the truncation was the only use of the shift,
3574 // and if so look past one-use truncation.
3575 {
3576 SDValue RealX = peekThroughOneUseTruncation(X);
3577 // FIXME: only if the shift is one-use?
3578 if (RealX != X && RealX.getOpcode() == ISD::SRL)
3579 X = RealX;
3580 }
3581
3582 MVT XVT = X.getSimpleValueType();
3583
3584 // Else, emitting BEXTR requires one more step.
3585 // The 'control' of BEXTR has the pattern of:
3586 // [15...8 bit][ 7...0 bit] location
3587 // [ bit count][ shift] name
3588 // I.e. 0b000000011'00000001 means (x >> 0b1) & 0b11
3589
3590 // Shift NBits left by 8 bits, thus producing 'control'.
3591 // This makes the low 8 bits to be zero.
3592 SDValue C8 = CurDAG->getConstant(8, DL, MVT::i8);
3593 insertDAGNode(*CurDAG, SDValue(Node, 0), C8);
3594 SDValue Control = CurDAG->getNode(ISD::SHL, DL, MVT::i32, NBits, C8);
3595 insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
3596
3597 // If the 'X' is *logically* shifted, we can fold that shift into 'control'.
3598 // FIXME: only if the shift is one-use?
3599 if (X.getOpcode() == ISD::SRL) {
3600 SDValue ShiftAmt = X.getOperand(1);
3601 X = X.getOperand(0);
3602
3603 assert(ShiftAmt.getValueType() == MVT::i8 &&((void)0)
3604 "Expected shift amount to be i8")((void)0);
3605
3606 // Now, *zero*-extend the shift amount. The bits 8...15 *must* be zero!
3607 // We could zext to i16 in some form, but we intentionally don't do that.
3608 SDValue OrigShiftAmt = ShiftAmt;
3609 ShiftAmt = CurDAG->getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShiftAmt);
3610 insertDAGNode(*CurDAG, OrigShiftAmt, ShiftAmt);
3611
3612 // And now 'or' these low 8 bits of shift amount into the 'control'.
3613 Control = CurDAG->getNode(ISD::OR, DL, MVT::i32, Control, ShiftAmt);
3614 insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
3615 }
3616
3617 // But have to place the 'control' into the wide-enough register first.
3618 if (XVT != MVT::i32) {
3619 Control = CurDAG->getNode(ISD::ANY_EXTEND, DL, XVT, Control);
3620 insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
3621 }
3622
3623 // And finally, form the BEXTR itself.
3624 SDValue Extract = CurDAG->getNode(X86ISD::BEXTR, DL, XVT, X, Control);
3625
3626 // The 'X' was originally truncated. Do that now.
3627 if (XVT != NVT) {
3628 insertDAGNode(*CurDAG, SDValue(Node, 0), Extract);
3629 Extract = CurDAG->getNode(ISD::TRUNCATE, DL, NVT, Extract);
3630 }
3631
3632 ReplaceNode(Node, Extract.getNode());
3633 SelectCode(Extract.getNode());
3634
3635 return true;
3636}
3637
3638// See if this is an (X >> C1) & C2 that we can match to BEXTR/BEXTRI.
3639MachineSDNode *X86DAGToDAGISel::matchBEXTRFromAndImm(SDNode *Node) {
3640 MVT NVT = Node->getSimpleValueType(0);
3641 SDLoc dl(Node);
3642
3643 SDValue N0 = Node->getOperand(0);
3644 SDValue N1 = Node->getOperand(1);
3645
3646 // If we have TBM we can use an immediate for the control. If we have BMI
3647 // we should only do this if the BEXTR instruction is implemented well.
3648 // Otherwise moving the control into a register makes this more costly.
3649 // TODO: Maybe load folding, greater than 32-bit masks, or a guarantee of LICM
3650 // hoisting the move immediate would make it worthwhile with a less optimal
3651 // BEXTR?
3652 bool PreferBEXTR =
3653 Subtarget->hasTBM() || (Subtarget->hasBMI() && Subtarget->hasFastBEXTR());
3654 if (!PreferBEXTR && !Subtarget->hasBMI2())
3655 return nullptr;
3656
3657 // Must have a shift right.
3658 if (N0->getOpcode() != ISD::SRL && N0->getOpcode() != ISD::SRA)
3659 return nullptr;
3660
3661 // Shift can't have additional users.
3662 if (!N0->hasOneUse())
3663 return nullptr;
3664
3665 // Only supported for 32 and 64 bits.
3666 if (NVT != MVT::i32 && NVT != MVT::i64)
3667 return nullptr;
3668
3669 // Shift amount and RHS of and must be constant.
3670 ConstantSDNode *MaskCst = dyn_cast<ConstantSDNode>(N1);
3671 ConstantSDNode *ShiftCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
3672 if (!MaskCst || !ShiftCst)
3673 return nullptr;
3674
3675 // And RHS must be a mask.
3676 uint64_t Mask = MaskCst->getZExtValue();
3677 if (!isMask_64(Mask))
3678 return nullptr;
3679
3680 uint64_t Shift = ShiftCst->getZExtValue();
3681 uint64_t MaskSize = countPopulation(Mask);
3682
3683 // Don't interfere with something that can be handled by extracting AH.
3684 // TODO: If we are able to fold a load, BEXTR might still be better than AH.
3685 if (Shift == 8 && MaskSize == 8)
3686 return nullptr;
3687
3688 // Make sure we are only using bits that were in the original value, not
3689 // shifted in.
3690 if (Shift + MaskSize > NVT.getSizeInBits())
3691 return nullptr;
3692
3693 // BZHI, if available, is always fast, unlike BEXTR. But even if we decide
3694 // that we can't use BEXTR, it is only worthwhile using BZHI if the mask
3695 // does not fit into 32 bits. Load folding is not a sufficient reason.
3696 if (!PreferBEXTR && MaskSize <= 32)
3697 return nullptr;
3698
3699 SDValue Control;
3700 unsigned ROpc, MOpc;
3701
3702 if (!PreferBEXTR) {
3703 assert(Subtarget->hasBMI2() && "We must have BMI2's BZHI then.")((void)0);
3704 // If we can't make use of BEXTR then we can't fuse shift+mask stages.
3705 // Let's perform the mask first, and apply shift later. Note that we need to
3706 // widen the mask to account for the fact that we'll apply shift afterwards!
3707 Control = CurDAG->getTargetConstant(Shift + MaskSize, dl, NVT);
3708 ROpc = NVT == MVT::i64 ? X86::BZHI64rr : X86::BZHI32rr;
3709 MOpc = NVT == MVT::i64 ? X86::BZHI64rm : X86::BZHI32rm;
3710 unsigned NewOpc = NVT == MVT::i64 ? X86::MOV32ri64 : X86::MOV32ri;
3711 Control = SDValue(CurDAG->getMachineNode(NewOpc, dl, NVT, Control), 0);
3712 } else {
3713 // The 'control' of BEXTR has the pattern of:
3714 // [15...8 bit][ 7...0 bit] location
3715 // [ bit count][ shift] name
3716 // I.e. 0b000000011'00000001 means (x >> 0b1) & 0b11
3717 Control = CurDAG->getTargetConstant(Shift | (MaskSize << 8), dl, NVT);
3718 if (Subtarget->hasTBM()) {
3719 ROpc = NVT == MVT::i64 ? X86::BEXTRI64ri : X86::BEXTRI32ri;
3720 MOpc = NVT == MVT::i64 ? X86::BEXTRI64mi : X86::BEXTRI32mi;
3721 } else {
3722 assert(Subtarget->hasBMI() && "We must have BMI1's BEXTR then.")((void)0);
3723 // BMI requires the immediate to placed in a register.
3724 ROpc = NVT == MVT::i64 ? X86::BEXTR64rr : X86::BEXTR32rr;
3725 MOpc = NVT == MVT::i64 ? X86::BEXTR64rm : X86::BEXTR32rm;
3726 unsigned NewOpc = NVT == MVT::i64 ? X86::MOV32ri64 : X86::MOV32ri;
3727 Control = SDValue(CurDAG->getMachineNode(NewOpc, dl, NVT, Control), 0);
3728 }
3729 }
3730
3731 MachineSDNode *NewNode;
3732 SDValue Input = N0->getOperand(0);
3733 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
3734 if (tryFoldLoad(Node, N0.getNode(), Input, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
3735 SDValue Ops[] = {
3736 Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Control, Input.getOperand(0)};
3737 SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
3738 NewNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
3739 // Update the chain.
3740 ReplaceUses(Input.getValue(1), SDValue(NewNode, 2));
3741 // Record the mem-refs
3742 CurDAG->setNodeMemRefs(NewNode, {cast<LoadSDNode>(Input)->getMemOperand()});
3743 } else {
3744 NewNode = CurDAG->getMachineNode(ROpc, dl, NVT, MVT::i32, Input, Control);
3745 }
3746
3747 if (!PreferBEXTR) {
3748 // We still need to apply the shift.
3749 SDValue ShAmt = CurDAG->getTargetConstant(Shift, dl, NVT);
3750 unsigned NewOpc = NVT == MVT::i64 ? X86::SHR64ri : X86::SHR32ri;
3751 NewNode =
3752 CurDAG->getMachineNode(NewOpc, dl, NVT, SDValue(NewNode, 0), ShAmt);
3753 }
3754
3755 return NewNode;
3756}
3757
3758// Emit a PCMISTR(I/M) instruction.
3759MachineSDNode *X86DAGToDAGISel::emitPCMPISTR(unsigned ROpc, unsigned MOpc,
3760 bool MayFoldLoad, const SDLoc &dl,
3761 MVT VT, SDNode *Node) {
3762 SDValue N0 = Node->getOperand(0);
3763 SDValue N1 = Node->getOperand(1);
3764 SDValue Imm = Node->getOperand(2);
3765 const ConstantInt *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue();
3766 Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType());
3767
3768 // Try to fold a load. No need to check alignment.
3769 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
3770 if (MayFoldLoad && tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
3771 SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
3772 N1.getOperand(0) };
3773 SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other);
3774 MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
3775 // Update the chain.
3776 ReplaceUses(N1.getValue(1), SDValue(CNode, 2));
3777 // Record the mem-refs
3778 CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
3779 return CNode;
3780 }
3781
3782 SDValue Ops[] = { N0, N1, Imm };
3783 SDVTList VTs = CurDAG->getVTList(VT, MVT::i32);
3784 MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops);
3785 return CNode;
3786}
3787
3788// Emit a PCMESTR(I/M) instruction. Also return the Glue result in case we need
3789// to emit a second instruction after this one. This is needed since we have two
3790// copyToReg nodes glued before this and we need to continue that glue through.
3791MachineSDNode *X86DAGToDAGISel::emitPCMPESTR(unsigned ROpc, unsigned MOpc,
3792 bool MayFoldLoad, const SDLoc &dl,
3793 MVT VT, SDNode *Node,
3794 SDValue &InFlag) {
3795 SDValue N0 = Node->getOperand(0);
3796 SDValue N2 = Node->getOperand(2);
3797 SDValue Imm = Node->getOperand(4);
3798 const ConstantInt *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue();
3799 Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType());
3800
3801 // Try to fold a load. No need to check alignment.
3802 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
3803 if (MayFoldLoad && tryFoldLoad(Node, N2, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
3804 SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
3805 N2.getOperand(0), InFlag };
3806 SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other, MVT::Glue);
3807 MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
3808 InFlag = SDValue(CNode, 3);
3809 // Update the chain.
3810 ReplaceUses(N2.getValue(1), SDValue(CNode, 2));
3811 // Record the mem-refs
3812 CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N2)->getMemOperand()});
3813 return CNode;
3814 }
3815
3816 SDValue Ops[] = { N0, N2, Imm, InFlag };
3817 SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Glue);
3818 MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops);
3819 InFlag = SDValue(CNode, 2);
3820 return CNode;
3821}
3822
3823bool X86DAGToDAGISel::tryShiftAmountMod(SDNode *N) {
3824 EVT VT = N->getValueType(0);
3825
3826 // Only handle scalar shifts.
3827 if (VT.isVector())
3828 return false;
3829
3830 // Narrower shifts only mask to 5 bits in hardware.
3831 unsigned Size = VT == MVT::i64 ? 64 : 32;
3832
3833 SDValue OrigShiftAmt = N->getOperand(1);
3834 SDValue ShiftAmt = OrigShiftAmt;
3835 SDLoc DL(N);
3836
3837 // Skip over a truncate of the shift amount.
3838 if (ShiftAmt->getOpcode() == ISD::TRUNCATE)
3839 ShiftAmt = ShiftAmt->getOperand(0);
3840
3841 // This function is called after X86DAGToDAGISel::matchBitExtract(),
3842 // so we are not afraid that we might mess up BZHI/BEXTR pattern.
3843
3844 SDValue NewShiftAmt;
3845 if (ShiftAmt->getOpcode() == ISD::ADD || ShiftAmt->getOpcode() == ISD::SUB) {
3846 SDValue Add0 = ShiftAmt->getOperand(0);
3847 SDValue Add1 = ShiftAmt->getOperand(1);
3848 auto *Add0C = dyn_cast<ConstantSDNode>(Add0);
3849 auto *Add1C = dyn_cast<ConstantSDNode>(Add1);
3850 // If we are shifting by X+/-N where N == 0 mod Size, then just shift by X
3851 // to avoid the ADD/SUB.
3852 if (Add1C && Add1C->getAPIntValue().urem(Size) == 0) {
3853 NewShiftAmt = Add0;
3854 // If we are shifting by N-X where N == 0 mod Size, then just shift by -X
3855 // to generate a NEG instead of a SUB of a constant.
3856 } else if (ShiftAmt->getOpcode() == ISD::SUB && Add0C &&
3857 Add0C->getZExtValue() != 0) {
3858 EVT SubVT = ShiftAmt.getValueType();
3859 SDValue X;
3860 if (Add0C->getZExtValue() % Size == 0)
3861 X = Add1;
3862 else if (ShiftAmt.hasOneUse() && Size == 64 &&
3863 Add0C->getZExtValue() % 32 == 0) {
3864 // We have a 64-bit shift by (n*32-x), turn it into -(x+n*32).
3865 // This is mainly beneficial if we already compute (x+n*32).
3866 if (Add1.getOpcode() == ISD::TRUNCATE) {
3867 Add1 = Add1.getOperand(0);
3868 SubVT = Add1.getValueType();
3869 }
3870 if (Add0.getValueType() != SubVT) {
3871 Add0 = CurDAG->getZExtOrTrunc(Add0, DL, SubVT);
3872 insertDAGNode(*CurDAG, OrigShiftAmt, Add0);
3873 }
3874
3875 X = CurDAG->getNode(ISD::ADD, DL, SubVT, Add1, Add0);
3876 insertDAGNode(*CurDAG, OrigShiftAmt, X);
3877 } else
3878 return false;
3879 // Insert a negate op.
3880 // TODO: This isn't guaranteed to replace the sub if there is a logic cone
3881 // that uses it that's not a shift.
3882 SDValue Zero = CurDAG->getConstant(0, DL, SubVT);
3883 SDValue Neg = CurDAG->getNode(ISD::SUB, DL, SubVT, Zero, X);
3884 NewShiftAmt = Neg;
3885
3886 // Insert these operands into a valid topological order so they can
3887 // get selected independently.
3888 insertDAGNode(*CurDAG, OrigShiftAmt, Zero);
3889 insertDAGNode(*CurDAG, OrigShiftAmt, Neg);
3890 } else
3891 return false;
3892 } else
3893 return false;
3894
3895 if (NewShiftAmt.getValueType() != MVT::i8) {
3896 // Need to truncate the shift amount.
3897 NewShiftAmt = CurDAG->getNode(ISD::TRUNCATE, DL, MVT::i8, NewShiftAmt);
3898 // Add to a correct topological ordering.
3899 insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt);
3900 }
3901
3902 // Insert a new mask to keep the shift amount legal. This should be removed
3903 // by isel patterns.
3904 NewShiftAmt = CurDAG->getNode(ISD::AND, DL, MVT::i8, NewShiftAmt,
3905 CurDAG->getConstant(Size - 1, DL, MVT::i8));
3906 // Place in a correct topological ordering.
3907 insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt);
3908
3909 SDNode *UpdatedNode = CurDAG->UpdateNodeOperands(N, N->getOperand(0),
3910 NewShiftAmt);
3911 if (UpdatedNode != N) {
3912 // If we found an existing node, we should replace ourselves with that node
3913 // and wait for it to be selected after its other users.
3914 ReplaceNode(N, UpdatedNode);
3915 return true;
3916 }
3917
3918 // If the original shift amount is now dead, delete it so that we don't run
3919 // it through isel.
3920 if (OrigShiftAmt.getNode()->use_empty())
3921 CurDAG->RemoveDeadNode(OrigShiftAmt.getNode());
3922
3923 // Now that we've optimized the shift amount, defer to normal isel to get
3924 // load folding and legacy vs BMI2 selection without repeating it here.
3925 SelectCode(N);
3926 return true;
3927}
3928
3929bool X86DAGToDAGISel::tryShrinkShlLogicImm(SDNode *N) {
3930 MVT NVT = N->getSimpleValueType(0);
3931 unsigned Opcode = N->getOpcode();
3932 SDLoc dl(N);
3933
3934 // For operations of the form (x << C1) op C2, check if we can use a smaller
3935 // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
3936 SDValue Shift = N->getOperand(0);
3937 SDValue N1 = N->getOperand(1);
3938
3939 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
3940 if (!Cst)
3941 return false;
3942
3943 int64_t Val = Cst->getSExtValue();
3944
3945 // If we have an any_extend feeding the AND, look through it to see if there
3946 // is a shift behind it. But only if the AND doesn't use the extended bits.
3947 // FIXME: Generalize this to other ANY_EXTEND than i32 to i64?
3948 bool FoundAnyExtend = false;
3949 if (Shift.getOpcode() == ISD::ANY_EXTEND && Shift.hasOneUse() &&
3950 Shift.getOperand(0).getSimpleValueType() == MVT::i32 &&
3951 isUInt<32>(Val)) {
3952 FoundAnyExtend = true;
3953 Shift = Shift.getOperand(0);
3954 }
3955
3956 if (Shift.getOpcode() != ISD::SHL || !Shift.hasOneUse())
3957 return false;
3958
3959 // i8 is unshrinkable, i16 should be promoted to i32.
3960 if (NVT != MVT::i32 && NVT != MVT::i64)
3961 return false;
3962
3963 ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
3964 if (!ShlCst)
3965 return false;
3966
3967 uint64_t ShAmt = ShlCst->getZExtValue();
3968
3969 // Make sure that we don't change the operation by removing bits.
3970 // This only matters for OR and XOR, AND is unaffected.
3971 uint64_t RemovedBitsMask = (1ULL << ShAmt) - 1;
3972 if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0)
3973 return false;
3974
3975 // Check the minimum bitwidth for the new constant.
3976 // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
3977 auto CanShrinkImmediate = [&](int64_t &ShiftedVal) {
3978 if (Opcode == ISD::AND) {
3979 // AND32ri is the same as AND64ri32 with zext imm.
3980 // Try this before sign extended immediates below.
3981 ShiftedVal = (uint64_t)Val >> ShAmt;
3982 if (NVT == MVT::i64 && !isUInt<32>(Val) && isUInt<32>(ShiftedVal))
3983 return true;
3984 // Also swap order when the AND can become MOVZX.
3985 if (ShiftedVal == UINT8_MAX0xff || ShiftedVal == UINT16_MAX0xffff)
3986 return true;
3987 }
3988 ShiftedVal = Val >> ShAmt;
3989 if ((!isInt<8>(Val) && isInt<8>(ShiftedVal)) ||
3990 (!isInt<32>(Val) && isInt<32>(ShiftedVal)))
3991 return true;
3992 if (Opcode != ISD::AND) {
3993 // MOV32ri+OR64r/XOR64r is cheaper than MOV64ri64+OR64rr/XOR64rr
3994 ShiftedVal = (uint64_t)Val >> ShAmt;
3995 if (NVT == MVT::i64 && !isUInt<32>(Val) && isUInt<32>(ShiftedVal))
3996 return true;
3997 }
3998 return false;
3999 };
4000
4001 int64_t ShiftedVal;
4002 if (!CanShrinkImmediate(ShiftedVal))
4003 return false;
4004
4005 // Ok, we can reorder to get a smaller immediate.
4006
4007 // But, its possible the original immediate allowed an AND to become MOVZX.
4008 // Doing this late due to avoid the MakedValueIsZero call as late as
4009 // possible.
4010 if (Opcode == ISD::AND) {
4011 // Find the smallest zext this could possibly be.
4012 unsigned ZExtWidth = Cst->getAPIntValue().getActiveBits();
4013 ZExtWidth = PowerOf2Ceil(std::max(ZExtWidth, 8U));
4014
4015 // Figure out which bits need to be zero to achieve that mask.
4016 APInt NeededMask = APInt::getLowBitsSet(NVT.getSizeInBits(),
4017 ZExtWidth);
4018 NeededMask &= ~Cst->getAPIntValue();
4019
4020 if (CurDAG->MaskedValueIsZero(N->getOperand(0), NeededMask))
4021 return false;
4022 }
4023
4024 SDValue X = Shift.getOperand(0);
4025 if (FoundAnyExtend) {
4026 SDValue NewX = CurDAG->getNode(ISD::ANY_EXTEND, dl, NVT, X);
4027 insertDAGNode(*CurDAG, SDValue(N, 0), NewX);
4028 X = NewX;
4029 }
4030
4031 SDValue NewCst = CurDAG->getConstant(ShiftedVal, dl, NVT);
4032 insertDAGNode(*CurDAG, SDValue(N, 0), NewCst);
4033 SDValue NewBinOp = CurDAG->getNode(Opcode, dl, NVT, X, NewCst);
4034 insertDAGNode(*CurDAG, SDValue(N, 0), NewBinOp);
4035 SDValue NewSHL = CurDAG->getNode(ISD::SHL, dl, NVT, NewBinOp,
4036 Shift.getOperand(1));
4037 ReplaceNode(N, NewSHL.getNode());
4038 SelectCode(NewSHL.getNode());
4039 return true;
4040}
4041
4042bool X86DAGToDAGISel::matchVPTERNLOG(SDNode *Root, SDNode *ParentA,
4043 SDNode *ParentBC, SDValue A, SDValue B,
4044 SDValue C, uint8_t Imm) {
4045 assert(A.isOperandOf(ParentA))((void)0);
4046 assert(B.isOperandOf(ParentBC))((void)0);
4047 assert(C.isOperandOf(ParentBC))((void)0);
4048
4049 auto tryFoldLoadOrBCast =
4050 [this](SDNode *Root, SDNode *P, SDValue &L, SDValue &Base, SDValue &Scale,
4051 SDValue &Index, SDValue &Disp, SDValue &Segment) {
4052 if (tryFoldLoad(Root, P, L, Base, Scale, Index, Disp, Segment))
4053 return true;
4054
4055 // Not a load, check for broadcast which may be behind a bitcast.
4056 if (L.getOpcode() == ISD::BITCAST && L.hasOneUse()) {
4057 P = L.getNode();
4058 L = L.getOperand(0);
4059 }
4060
4061 if (L.getOpcode() != X86ISD::VBROADCAST_LOAD)
4062 return false;
4063
4064 // Only 32 and 64 bit broadcasts are supported.
4065 auto *MemIntr = cast<MemIntrinsicSDNode>(L);
4066 unsigned Size = MemIntr->getMemoryVT().getSizeInBits();
4067 if (Size != 32 && Size != 64)
4068 return false;
4069
4070 return tryFoldBroadcast(Root, P, L, Base, Scale, Index, Disp, Segment);
4071 };
4072
4073 bool FoldedLoad = false;
4074 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4075 if (tryFoldLoadOrBCast(Root, ParentBC, C, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
4076 FoldedLoad = true;
4077 } else if (tryFoldLoadOrBCast(Root, ParentA, A, Tmp0, Tmp1, Tmp2, Tmp3,
4078 Tmp4)) {
4079 FoldedLoad = true;
4080 std::swap(A, C);
4081 // Swap bits 1/4 and 3/6.
4082 uint8_t OldImm = Imm;
4083 Imm = OldImm & 0xa5;
4084 if (OldImm & 0x02) Imm |= 0x10;
4085 if (OldImm & 0x10) Imm |= 0x02;
4086 if (OldImm & 0x08) Imm |= 0x40;
4087 if (OldImm & 0x40) Imm |= 0x08;
4088 } else if (tryFoldLoadOrBCast(Root, ParentBC, B, Tmp0, Tmp1, Tmp2, Tmp3,
4089 Tmp4)) {
4090 FoldedLoad = true;
4091 std::swap(B, C);
4092 // Swap bits 1/2 and 5/6.
4093 uint8_t OldImm = Imm;
4094 Imm = OldImm & 0x99;
4095 if (OldImm & 0x02) Imm |= 0x04;
4096 if (OldImm & 0x04) Imm |= 0x02;
4097 if (OldImm & 0x20) Imm |= 0x40;
4098 if (OldImm & 0x40) Imm |= 0x20;
4099 }
4100
4101 SDLoc DL(Root);
4102
4103 SDValue TImm = CurDAG->getTargetConstant(Imm, DL, MVT::i8);
4104
4105 MVT NVT = Root->getSimpleValueType(0);
4106
4107 MachineSDNode *MNode;
4108 if (FoldedLoad) {
4109 SDVTList VTs = CurDAG->getVTList(NVT, MVT::Other);
4110
4111 unsigned Opc;
4112 if (C.getOpcode() == X86ISD::VBROADCAST_LOAD) {
4113 auto *MemIntr = cast<MemIntrinsicSDNode>(C);
4114 unsigned EltSize = MemIntr->getMemoryVT().getSizeInBits();
4115 assert((EltSize == 32 || EltSize == 64) && "Unexpected broadcast size!")((void)0);
4116
4117 bool UseD = EltSize == 32;
4118 if (NVT.is128BitVector())
4119 Opc = UseD ? X86::VPTERNLOGDZ128rmbi : X86::VPTERNLOGQZ128rmbi;
4120 else if (NVT.is256BitVector())
4121 Opc = UseD ? X86::VPTERNLOGDZ256rmbi : X86::VPTERNLOGQZ256rmbi;
4122 else if (NVT.is512BitVector())
4123 Opc = UseD ? X86::VPTERNLOGDZrmbi : X86::VPTERNLOGQZrmbi;
4124 else
4125 llvm_unreachable("Unexpected vector size!")__builtin_unreachable();
4126 } else {
4127 bool UseD = NVT.getVectorElementType() == MVT::i32;
4128 if (NVT.is128BitVector())
4129 Opc = UseD ? X86::VPTERNLOGDZ128rmi : X86::VPTERNLOGQZ128rmi;
4130 else if (NVT.is256BitVector())
4131 Opc = UseD ? X86::VPTERNLOGDZ256rmi : X86::VPTERNLOGQZ256rmi;
4132 else if (NVT.is512BitVector())
4133 Opc = UseD ? X86::VPTERNLOGDZrmi : X86::VPTERNLOGQZrmi;
4134 else
4135 llvm_unreachable("Unexpected vector size!")__builtin_unreachable();
4136 }
4137
4138 SDValue Ops[] = {A, B, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, TImm, C.getOperand(0)};
4139 MNode = CurDAG->getMachineNode(Opc, DL, VTs, Ops);
4140
4141 // Update the chain.
4142 ReplaceUses(C.getValue(1), SDValue(MNode, 1));
4143 // Record the mem-refs
4144 CurDAG->setNodeMemRefs(MNode, {cast<MemSDNode>(C)->getMemOperand()});
4145 } else {
4146 bool UseD = NVT.getVectorElementType() == MVT::i32;
4147 unsigned Opc;
4148 if (NVT.is128BitVector())
4149 Opc = UseD ? X86::VPTERNLOGDZ128rri : X86::VPTERNLOGQZ128rri;
4150 else if (NVT.is256BitVector())
4151 Opc = UseD ? X86::VPTERNLOGDZ256rri : X86::VPTERNLOGQZ256rri;
4152 else if (NVT.is512BitVector())
4153 Opc = UseD ? X86::VPTERNLOGDZrri : X86::VPTERNLOGQZrri;
4154 else
4155 llvm_unreachable("Unexpected vector size!")__builtin_unreachable();
4156
4157 MNode = CurDAG->getMachineNode(Opc, DL, NVT, {A, B, C, TImm});
4158 }
4159
4160 ReplaceUses(SDValue(Root, 0), SDValue(MNode, 0));
4161 CurDAG->RemoveDeadNode(Root);
4162 return true;
4163}
4164
4165// Try to match two logic ops to a VPTERNLOG.
4166// FIXME: Handle inverted inputs?
4167// FIXME: Handle more complex patterns that use an operand more than once?
4168bool X86DAGToDAGISel::tryVPTERNLOG(SDNode *N) {
4169 MVT NVT = N->getSimpleValueType(0);
4170
4171 // Make sure we support VPTERNLOG.
4172 if (!NVT.isVector() || !Subtarget->hasAVX512() ||
4173 NVT.getVectorElementType() == MVT::i1)
4174 return false;
4175
4176 // We need VLX for 128/256-bit.
4177 if (!(Subtarget->hasVLX() || NVT.is512BitVector()))
4178 return false;
4179
4180 SDValue N0 = N->getOperand(0);
4181 SDValue N1 = N->getOperand(1);
4182
4183 auto getFoldableLogicOp = [](SDValue Op) {
4184 // Peek through single use bitcast.
4185 if (Op.getOpcode() == ISD::BITCAST && Op.hasOneUse())
4186 Op = Op.getOperand(0);
4187
4188 if (!Op.hasOneUse())
4189 return SDValue();
4190
4191 unsigned Opc = Op.getOpcode();
4192 if (Opc == ISD::AND || Opc == ISD::OR || Opc == ISD::XOR ||
4193 Opc == X86ISD::ANDNP)
4194 return Op;
4195
4196 return SDValue();
4197 };
4198
4199 SDValue A, FoldableOp;
4200 if ((FoldableOp = getFoldableLogicOp(N1))) {
4201 A = N0;
4202 } else if ((FoldableOp = getFoldableLogicOp(N0))) {
4203 A = N1;
4204 } else
4205 return false;
4206
4207 SDValue B = FoldableOp.getOperand(0);
4208 SDValue C = FoldableOp.getOperand(1);
4209
4210 // We can build the appropriate control immediate by performing the logic
4211 // operation we're matching using these constants for A, B, and C.
4212 const uint8_t TernlogMagicA = 0xf0;
4213 const uint8_t TernlogMagicB = 0xcc;
4214 const uint8_t TernlogMagicC = 0xaa;
4215
4216 uint8_t Imm;
4217 switch (FoldableOp.getOpcode()) {
4218 default: llvm_unreachable("Unexpected opcode!")__builtin_unreachable();
4219 case ISD::AND: Imm = TernlogMagicB & TernlogMagicC; break;
4220 case ISD::OR: Imm = TernlogMagicB | TernlogMagicC; break;
4221 case ISD::XOR: Imm = TernlogMagicB ^ TernlogMagicC; break;
4222 case X86ISD::ANDNP: Imm = ~(TernlogMagicB) & TernlogMagicC; break;
4223 }
4224
4225 switch (N->getOpcode()) {
4226 default: llvm_unreachable("Unexpected opcode!")__builtin_unreachable();
4227 case X86ISD::ANDNP:
4228 if (A == N0)
4229 Imm &= ~TernlogMagicA;
4230 else
4231 Imm = ~(Imm) & TernlogMagicA;
4232 break;
4233 case ISD::AND: Imm &= TernlogMagicA; break;
4234 case ISD::OR: Imm |= TernlogMagicA; break;
4235 case ISD::XOR: Imm ^= TernlogMagicA; break;
4236 }
4237
4238 return matchVPTERNLOG(N, N, FoldableOp.getNode(), A, B, C, Imm);
4239}
4240
4241/// If the high bits of an 'and' operand are known zero, try setting the
4242/// high bits of an 'and' constant operand to produce a smaller encoding by
4243/// creating a small, sign-extended negative immediate rather than a large
4244/// positive one. This reverses a transform in SimplifyDemandedBits that
4245/// shrinks mask constants by clearing bits. There is also a possibility that
4246/// the 'and' mask can be made -1, so the 'and' itself is unnecessary. In that
4247/// case, just replace the 'and'. Return 'true' if the node is replaced.
4248bool X86DAGToDAGISel::shrinkAndImmediate(SDNode *And) {
4249 // i8 is unshrinkable, i16 should be promoted to i32, and vector ops don't
4250 // have immediate operands.
4251 MVT VT = And->getSimpleValueType(0);
4252 if (VT != MVT::i32 && VT != MVT::i64)
4253 return false;
4254
4255 auto *And1C = dyn_cast<ConstantSDNode>(And->getOperand(1));
4256 if (!And1C)
4257 return false;
4258
4259 // Bail out if the mask constant is already negative. It's can't shrink more.
4260 // If the upper 32 bits of a 64 bit mask are all zeros, we have special isel
4261 // patterns to use a 32-bit and instead of a 64-bit and by relying on the
4262 // implicit zeroing of 32 bit ops. So we should check if the lower 32 bits
4263 // are negative too.
4264 APInt MaskVal = And1C->getAPIntValue();
4265 unsigned MaskLZ = MaskVal.countLeadingZeros();
4266 if (!MaskLZ || (VT == MVT::i64 && MaskLZ == 32))
4267 return false;
4268
4269 // Don't extend into the upper 32 bits of a 64 bit mask.
4270 if (VT == MVT::i64 && MaskLZ >= 32) {
4271 MaskLZ -= 32;
4272 MaskVal = MaskVal.trunc(32);
4273 }
4274
4275 SDValue And0 = And->getOperand(0);
4276 APInt HighZeros = APInt::getHighBitsSet(MaskVal.getBitWidth(), MaskLZ);
4277 APInt NegMaskVal = MaskVal | HighZeros;
4278
4279 // If a negative constant would not allow a smaller encoding, there's no need
4280 // to continue. Only change the constant when we know it's a win.
4281 unsigned MinWidth = NegMaskVal.getMinSignedBits();
4282 if (MinWidth > 32 || (MinWidth > 8 && MaskVal.getMinSignedBits() <= 32))
4283 return false;
4284
4285 // Extend masks if we truncated above.
4286 if (VT == MVT::i64 && MaskVal.getBitWidth() < 64) {
4287 NegMaskVal = NegMaskVal.zext(64);
4288 HighZeros = HighZeros.zext(64);
4289 }
4290
4291 // The variable operand must be all zeros in the top bits to allow using the
4292 // new, negative constant as the mask.
4293 if (!CurDAG->MaskedValueIsZero(And0, HighZeros))
4294 return false;
4295
4296 // Check if the mask is -1. In that case, this is an unnecessary instruction
4297 // that escaped earlier analysis.
4298 if (NegMaskVal.isAllOnesValue()) {
4299 ReplaceNode(And, And0.getNode());
4300 return true;
4301 }
4302
4303 // A negative mask allows a smaller encoding. Create a new 'and' node.
4304 SDValue NewMask = CurDAG->getConstant(NegMaskVal, SDLoc(And), VT);
4305 insertDAGNode(*CurDAG, SDValue(And, 0), NewMask);
4306 SDValue NewAnd = CurDAG->getNode(ISD::AND, SDLoc(And), VT, And0, NewMask);
4307 ReplaceNode(And, NewAnd.getNode());
4308 SelectCode(NewAnd.getNode());
4309 return true;
4310}
4311
4312static unsigned getVPTESTMOpc(MVT TestVT, bool IsTestN, bool FoldedLoad,
4313 bool FoldedBCast, bool Masked) {
4314#define VPTESTM_CASE(VT, SUFFIX) \
4315case MVT::VT: \
4316 if (Masked) \
4317 return IsTestN ? X86::VPTESTNM##SUFFIX##k: X86::VPTESTM##SUFFIX##k; \
4318 return IsTestN ? X86::VPTESTNM##SUFFIX : X86::VPTESTM##SUFFIX;
4319
4320
4321#define VPTESTM_BROADCAST_CASES(SUFFIX) \
4322default: llvm_unreachable("Unexpected VT!")__builtin_unreachable(); \
4323VPTESTM_CASE(v4i32, DZ128##SUFFIX) \
4324VPTESTM_CASE(v2i64, QZ128##SUFFIX) \
4325VPTESTM_CASE(v8i32, DZ256##SUFFIX) \
4326VPTESTM_CASE(v4i64, QZ256##SUFFIX) \
4327VPTESTM_CASE(v16i32, DZ##SUFFIX) \
4328VPTESTM_CASE(v8i64, QZ##SUFFIX)
4329
4330#define VPTESTM_FULL_CASES(SUFFIX) \
4331VPTESTM_BROADCAST_CASES(SUFFIX) \
4332VPTESTM_CASE(v16i8, BZ128##SUFFIX) \
4333VPTESTM_CASE(v8i16, WZ128##SUFFIX) \
4334VPTESTM_CASE(v32i8, BZ256##SUFFIX) \
4335VPTESTM_CASE(v16i16, WZ256##SUFFIX) \
4336VPTESTM_CASE(v64i8, BZ##SUFFIX) \
4337VPTESTM_CASE(v32i16, WZ##SUFFIX)
4338
4339 if (FoldedBCast) {
4340 switch (TestVT.SimpleTy) {
4341 VPTESTM_BROADCAST_CASES(rmb)
4342 }
4343 }
4344
4345 if (FoldedLoad) {
4346 switch (TestVT.SimpleTy) {
4347 VPTESTM_FULL_CASES(rm)
4348 }
4349 }
4350
4351 switch (TestVT.SimpleTy) {
4352 VPTESTM_FULL_CASES(rr)
4353 }
4354
4355#undef VPTESTM_FULL_CASES
4356#undef VPTESTM_BROADCAST_CASES
4357#undef VPTESTM_CASE
4358}
4359
4360// Try to create VPTESTM instruction. If InMask is not null, it will be used
4361// to form a masked operation.
4362bool X86DAGToDAGISel::tryVPTESTM(SDNode *Root, SDValue Setcc,
4363 SDValue InMask) {
4364 assert(Subtarget->hasAVX512() && "Expected AVX512!")((void)0);
4365 assert(Setcc.getSimpleValueType().getVectorElementType() == MVT::i1 &&((void)0)
4366 "Unexpected VT!")((void)0);
4367
4368 // Look for equal and not equal compares.
4369 ISD::CondCode CC = cast<CondCodeSDNode>(Setcc.getOperand(2))->get();
4370 if (CC != ISD::SETEQ && CC != ISD::SETNE)
4371 return false;
4372
4373 SDValue SetccOp0 = Setcc.getOperand(0);
4374 SDValue SetccOp1 = Setcc.getOperand(1);
4375
4376 // Canonicalize the all zero vector to the RHS.
4377 if (ISD::isBuildVectorAllZeros(SetccOp0.getNode()))
4378 std::swap(SetccOp0, SetccOp1);
4379
4380 // See if we're comparing against zero.
4381 if (!ISD::isBuildVectorAllZeros(SetccOp1.getNode()))
4382 return false;
4383
4384 SDValue N0 = SetccOp0;
4385
4386 MVT CmpVT = N0.getSimpleValueType();
4387 MVT CmpSVT = CmpVT.getVectorElementType();
4388
4389 // Start with both operands the same. We'll try to refine this.
4390 SDValue Src0 = N0;
4391 SDValue Src1 = N0;
4392
4393 {
4394 // Look through single use bitcasts.
4395 SDValue N0Temp = N0;
4396 if (N0Temp.getOpcode() == ISD::BITCAST && N0Temp.hasOneUse())
4397 N0Temp = N0.getOperand(0);
4398
4399 // Look for single use AND.
4400 if (N0Temp.getOpcode() == ISD::AND && N0Temp.hasOneUse()) {
4401 Src0 = N0Temp.getOperand(0);
4402 Src1 = N0Temp.getOperand(1);
4403 }
4404 }
4405
4406 // Without VLX we need to widen the operation.
4407 bool Widen = !Subtarget->hasVLX() && !CmpVT.is512BitVector();
4408
4409 auto tryFoldLoadOrBCast = [&](SDNode *Root, SDNode *P, SDValue &L,
4410 SDValue &Base, SDValue &Scale, SDValue &Index,
4411 SDValue &Disp, SDValue &Segment) {
4412 // If we need to widen, we can't fold the load.
4413 if (!Widen)
4414 if (tryFoldLoad(Root, P, L, Base, Scale, Index, Disp, Segment))
4415 return true;
4416
4417 // If we didn't fold a load, try to match broadcast. No widening limitation
4418 // for this. But only 32 and 64 bit types are supported.
4419 if (CmpSVT != MVT::i32 && CmpSVT != MVT::i64)
4420 return false;
4421
4422 // Look through single use bitcasts.
4423 if (L.getOpcode() == ISD::BITCAST && L.hasOneUse()) {
4424 P = L.getNode();
4425 L = L.getOperand(0);
4426 }
4427
4428 if (L.getOpcode() != X86ISD::VBROADCAST_LOAD)
4429 return false;
4430
4431 auto *MemIntr = cast<MemIntrinsicSDNode>(L);
4432 if (MemIntr->getMemoryVT().getSizeInBits() != CmpSVT.getSizeInBits())
4433 return false;
4434
4435 return tryFoldBroadcast(Root, P, L, Base, Scale, Index, Disp, Segment);
4436 };
4437
4438 // We can only fold loads if the sources are unique.
4439 bool CanFoldLoads = Src0 != Src1;
4440
4441 bool FoldedLoad = false;
4442 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4443 if (CanFoldLoads) {
4444 FoldedLoad = tryFoldLoadOrBCast(Root, N0.getNode(), Src1, Tmp0, Tmp1, Tmp2,
4445 Tmp3, Tmp4);
4446 if (!FoldedLoad) {
4447 // And is commutative.
4448 FoldedLoad = tryFoldLoadOrBCast(Root, N0.getNode(), Src0, Tmp0, Tmp1,
4449 Tmp2, Tmp3, Tmp4);
4450 if (FoldedLoad)
4451 std::swap(Src0, Src1);
4452 }
4453 }
4454
4455 bool FoldedBCast = FoldedLoad && Src1.getOpcode() == X86ISD::VBROADCAST_LOAD;
4456
4457 bool IsMasked = InMask.getNode() != nullptr;
4458
4459 SDLoc dl(Root);
4460
4461 MVT ResVT = Setcc.getSimpleValueType();
4462 MVT MaskVT = ResVT;
4463 if (Widen) {
4464 // Widen the inputs using insert_subreg or copy_to_regclass.
4465 unsigned Scale = CmpVT.is128BitVector() ? 4 : 2;
4466 unsigned SubReg = CmpVT.is128BitVector() ? X86::sub_xmm : X86::sub_ymm;
4467 unsigned NumElts = CmpVT.getVectorNumElements() * Scale;
4468 CmpVT = MVT::getVectorVT(CmpSVT, NumElts);
4469 MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
4470 SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, dl,
4471 CmpVT), 0);
4472 Src0 = CurDAG->getTargetInsertSubreg(SubReg, dl, CmpVT, ImplDef, Src0);
4473
4474 if (!FoldedBCast)
4475 Src1 = CurDAG->getTargetInsertSubreg(SubReg, dl, CmpVT, ImplDef, Src1);
4476
4477 if (IsMasked) {
4478 // Widen the mask.
4479 unsigned RegClass = TLI->getRegClassFor(MaskVT)->getID();
4480 SDValue RC = CurDAG->getTargetConstant(RegClass, dl, MVT::i32);
4481 InMask = SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
4482 dl, MaskVT, InMask, RC), 0);
4483 }
4484 }
4485
4486 bool IsTestN = CC == ISD::SETEQ;
4487 unsigned Opc = getVPTESTMOpc(CmpVT, IsTestN, FoldedLoad, FoldedBCast,
4488 IsMasked);
4489
4490 MachineSDNode *CNode;
4491 if (FoldedLoad) {
4492 SDVTList VTs = CurDAG->getVTList(MaskVT, MVT::Other);
4493
4494 if (IsMasked) {
4495 SDValue Ops[] = { InMask, Src0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4,
4496 Src1.getOperand(0) };
4497 CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
4498 } else {
4499 SDValue Ops[] = { Src0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4,
4500 Src1.getOperand(0) };
4501 CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
4502 }
4503
4504 // Update the chain.
4505 ReplaceUses(Src1.getValue(1), SDValue(CNode, 1));
4506 // Record the mem-refs
4507 CurDAG->setNodeMemRefs(CNode, {cast<MemSDNode>(Src1)->getMemOperand()});
4508 } else {
4509 if (IsMasked)
4510 CNode = CurDAG->getMachineNode(Opc, dl, MaskVT, InMask, Src0, Src1);
4511 else
4512 CNode = CurDAG->getMachineNode(Opc, dl, MaskVT, Src0, Src1);
4513 }
4514
4515 // If we widened, we need to shrink the mask VT.
4516 if (Widen) {
4517 unsigned RegClass = TLI->getRegClassFor(ResVT)->getID();
4518 SDValue RC = CurDAG->getTargetConstant(RegClass, dl, MVT::i32);
4519 CNode = CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
4520 dl, ResVT, SDValue(CNode, 0), RC);
4521 }
4522
4523 ReplaceUses(SDValue(Root, 0), SDValue(CNode, 0));
4524 CurDAG->RemoveDeadNode(Root);
4525 return true;
4526}
4527
4528// Try to match the bitselect pattern (or (and A, B), (andn A, C)). Turn it
4529// into vpternlog.
4530bool X86DAGToDAGISel::tryMatchBitSelect(SDNode *N) {
4531 assert(N->getOpcode() == ISD::OR && "Unexpected opcode!")((void)0);
4532
4533 MVT NVT = N->getSimpleValueType(0);
4534
4535 // Make sure we support VPTERNLOG.
4536 if (!NVT.isVector() || !Subtarget->hasAVX512())
4537 return false;
4538
4539 // We need VLX for 128/256-bit.
4540 if (!(Subtarget->hasVLX() || NVT.is512BitVector()))
4541 return false;
4542
4543 SDValue N0 = N->getOperand(0);
4544 SDValue N1 = N->getOperand(1);
4545
4546 // Canonicalize AND to LHS.
4547 if (N1.getOpcode() == ISD::AND)
4548 std::swap(N0, N1);
4549
4550 if (N0.getOpcode() != ISD::AND ||
4551 N1.getOpcode() != X86ISD::ANDNP ||
4552 !N0.hasOneUse() || !N1.hasOneUse())
4553 return false;
4554
4555 // ANDN is not commutable, use it to pick down A and C.
4556 SDValue A = N1.getOperand(0);
4557 SDValue C = N1.getOperand(1);
4558
4559 // AND is commutable, if one operand matches A, the other operand is B.
4560 // Otherwise this isn't a match.
4561 SDValue B;
4562 if (N0.getOperand(0) == A)
4563 B = N0.getOperand(1);
4564 else if (N0.getOperand(1) == A)
4565 B = N0.getOperand(0);
4566 else
4567 return false;
4568
4569 SDLoc dl(N);
4570 SDValue Imm = CurDAG->getTargetConstant(0xCA, dl, MVT::i8);
4571 SDValue Ternlog = CurDAG->getNode(X86ISD::VPTERNLOG, dl, NVT, A, B, C, Imm);
4572 ReplaceNode(N, Ternlog.getNode());
4573
4574 return matchVPTERNLOG(Ternlog.getNode(), Ternlog.getNode(), Ternlog.getNode(),
4575 A, B, C, 0xCA);
4576}
4577
4578void X86DAGToDAGISel::Select(SDNode *Node) {
4579 MVT NVT = Node->getSimpleValueType(0);
4580 unsigned Opcode = Node->getOpcode();
4581 SDLoc dl(Node);
4582
4583 if (Node->isMachineOpcode()) {
4584 LLVM_DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << '\n')do { } while (false);
4585 Node->setNodeId(-1);
4586 return; // Already selected.
4587 }
4588
4589 switch (Opcode) {
4590 default: break;
4591 case ISD::INTRINSIC_W_CHAIN: {
4592 unsigned IntNo = Node->getConstantOperandVal(1);
4593 switch (IntNo) {
4594 default: break;
4595 case Intrinsic::x86_encodekey128:
4596 case Intrinsic::x86_encodekey256: {
4597 if (!Subtarget->hasKL())
4598 break;
4599
4600 unsigned Opcode;
4601 switch (IntNo) {
4602 default: llvm_unreachable("Impossible intrinsic")__builtin_unreachable();
4603 case Intrinsic::x86_encodekey128: Opcode = X86::ENCODEKEY128; break;
4604 case Intrinsic::x86_encodekey256: Opcode = X86::ENCODEKEY256; break;
4605 }
4606
4607 SDValue Chain = Node->getOperand(0);
4608 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM0, Node->getOperand(3),
4609 SDValue());
4610 if (Opcode == X86::ENCODEKEY256)
4611 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM1, Node->getOperand(4),
4612 Chain.getValue(1));
4613
4614 MachineSDNode *Res = CurDAG->getMachineNode(
4615 Opcode, dl, Node->getVTList(),
4616 {Node->getOperand(2), Chain, Chain.getValue(1)});
4617 ReplaceNode(Node, Res);
4618 return;
4619 }
4620 case Intrinsic::x86_tileloadd64_internal:
4621 case Intrinsic::x86_tileloaddt164_internal: {
4622 if (!Subtarget->hasAMXTILE())
4623 break;
4624 unsigned Opc = IntNo == Intrinsic::x86_tileloadd64_internal
4625 ? X86::PTILELOADDV
4626 : X86::PTILELOADDT1V;
4627 // _tile_loadd_internal(row, col, buf, STRIDE)
4628 SDValue Base = Node->getOperand(4);
4629 SDValue Scale = getI8Imm(1, dl);
4630 SDValue Index = Node->getOperand(5);
4631 SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32);
4632 SDValue Segment = CurDAG->getRegister(0, MVT::i16);
4633 SDValue Chain = Node->getOperand(0);
4634 MachineSDNode *CNode;
4635 SDValue Ops[] = {Node->getOperand(2),
4636 Node->getOperand(3),
4637 Base,
4638 Scale,
4639 Index,
4640 Disp,
4641 Segment,
4642 Chain};
4643 CNode = CurDAG->getMachineNode(Opc, dl, {MVT::x86amx, MVT::Other}, Ops);
4644 ReplaceNode(Node, CNode);
4645 return;
4646 }
4647 }
4648 break;
4649 }
4650 case ISD::INTRINSIC_VOID: {
4651 unsigned IntNo = Node->getConstantOperandVal(1);
4652 switch (IntNo) {
4653 default: break;
4654 case Intrinsic::x86_sse3_monitor:
4655 case Intrinsic::x86_monitorx:
4656 case Intrinsic::x86_clzero: {
4657 bool Use64BitPtr = Node->getOperand(2).getValueType() == MVT::i64;
4658
4659 unsigned Opc = 0;
4660 switch (IntNo) {
4661 default: llvm_unreachable("Unexpected intrinsic!")__builtin_unreachable();
4662 case Intrinsic::x86_sse3_monitor:
4663 if (!Subtarget->hasSSE3())
4664 break;
4665 Opc = Use64BitPtr ? X86::MONITOR64rrr : X86::MONITOR32rrr;
4666 break;
4667 case Intrinsic::x86_monitorx:
4668 if (!Subtarget->hasMWAITX())
4669 break;
4670 Opc = Use64BitPtr ? X86::MONITORX64rrr : X86::MONITORX32rrr;
4671 break;
4672 case Intrinsic::x86_clzero:
4673 if (!Subtarget->hasCLZERO())
4674 break;
4675 Opc = Use64BitPtr ? X86::CLZERO64r : X86::CLZERO32r;
4676 break;
4677 }
4678
4679 if (Opc) {
4680 unsigned PtrReg = Use64BitPtr ? X86::RAX : X86::EAX;
4681 SDValue Chain = CurDAG->getCopyToReg(Node->getOperand(0), dl, PtrReg,
4682 Node->getOperand(2), SDValue());
4683 SDValue InFlag = Chain.getValue(1);
4684
4685 if (IntNo == Intrinsic::x86_sse3_monitor ||
4686 IntNo == Intrinsic::x86_monitorx) {
4687 // Copy the other two operands to ECX and EDX.
4688 Chain = CurDAG->getCopyToReg(Chain, dl, X86::ECX, Node->getOperand(3),
4689 InFlag);
4690 InFlag = Chain.getValue(1);
4691 Chain = CurDAG->getCopyToReg(Chain, dl, X86::EDX, Node->getOperand(4),
4692 InFlag);
4693 InFlag = Chain.getValue(1);
4694 }
4695
4696 MachineSDNode *CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
4697 { Chain, InFlag});
4698 ReplaceNode(Node, CNode);
4699 return;
4700 }
4701
4702 break;
4703 }
4704 case Intrinsic::x86_tilestored64_internal: {
4705 unsigned Opc = X86::PTILESTOREDV;
4706 // _tile_stored_internal(row, col, buf, STRIDE, c)
4707 SDValue Base = Node->getOperand(4);
4708 SDValue Scale = getI8Imm(1, dl);
4709 SDValue Index = Node->getOperand(5);
4710 SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32);
4711 SDValue Segment = CurDAG->getRegister(0, MVT::i16);
4712 SDValue Chain = Node->getOperand(0);
4713 MachineSDNode *CNode;
4714 SDValue Ops[] = {Node->getOperand(2),
4715 Node->getOperand(3),
4716 Base,
4717 Scale,
4718 Index,
4719 Disp,
4720 Segment,
4721 Node->getOperand(6),
4722 Chain};
4723 CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
4724 ReplaceNode(Node, CNode);
4725 return;
4726 }
4727 case Intrinsic::x86_tileloadd64:
4728 case Intrinsic::x86_tileloaddt164:
4729 case Intrinsic::x86_tilestored64: {
4730 if (!Subtarget->hasAMXTILE())
4731 break;
4732 unsigned Opc;
4733 switch (IntNo) {
4734 default: llvm_unreachable("Unexpected intrinsic!")__builtin_unreachable();
4735 case Intrinsic::x86_tileloadd64: Opc = X86::PTILELOADD; break;
4736 case Intrinsic::x86_tileloaddt164: Opc = X86::PTILELOADDT1; break;
4737 case Intrinsic::x86_tilestored64: Opc = X86::PTILESTORED; break;
4738 }
4739 // FIXME: Match displacement and scale.
4740 unsigned TIndex = Node->getConstantOperandVal(2);
4741 SDValue TReg = getI8Imm(TIndex, dl);
4742 SDValue Base = Node->getOperand(3);
4743 SDValue Scale = getI8Imm(1, dl);
4744 SDValue Index = Node->getOperand(4);
4745 SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32);
4746 SDValue Segment = CurDAG->getRegister(0, MVT::i16);
4747 SDValue Chain = Node->getOperand(0);
4748 MachineSDNode *CNode;
4749 if (Opc == X86::PTILESTORED) {
4750 SDValue Ops[] = { Base, Scale, Index, Disp, Segment, TReg, Chain };
4751 CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
4752 } else {
4753 SDValue Ops[] = { TReg, Base, Scale, Index, Disp, Segment, Chain };
4754 CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
4755 }
4756 ReplaceNode(Node, CNode);
4757 return;
4758 }
4759 }
4760 break;
4761 }
4762 case ISD::BRIND:
4763 case X86ISD::NT_BRIND: {
4764 if (Subtarget->isTargetNaCl())
4765 // NaCl has its own pass where jmp %r32 are converted to jmp %r64. We
4766 // leave the instruction alone.
4767 break;
4768 if (Subtarget->isTarget64BitILP32()) {
4769 // Converts a 32-bit register to a 64-bit, zero-extended version of
4770 // it. This is needed because x86-64 can do many things, but jmp %r32
4771 // ain't one of them.
4772 SDValue Target = Node->getOperand(1);
4773 assert(Target.getValueType() == MVT::i32 && "Unexpected VT!")((void)0);
4774 SDValue ZextTarget = CurDAG->getZExtOrTrunc(Target, dl, MVT::i64);
4775 SDValue Brind = CurDAG->getNode(Opcode, dl, MVT::Other,
4776 Node->getOperand(0), ZextTarget);
4777 ReplaceNode(Node, Brind.getNode());
4778 SelectCode(ZextTarget.getNode());
4779 SelectCode(Brind.getNode());
4780 return;
4781 }
4782 break;
4783 }
4784 case X86ISD::GlobalBaseReg:
4785 ReplaceNode(Node, getGlobalBaseReg());
4786 return;
4787
4788 case ISD::BITCAST:
4789 // Just drop all 128/256/512-bit bitcasts.
4790 if (NVT.is512BitVector() || NVT.is256BitVector() || NVT.is128BitVector() ||
4791 NVT == MVT::f128) {
4792 ReplaceUses(SDValue(Node, 0), Node->getOperand(0));
4793 CurDAG->RemoveDeadNode(Node);
4794 return;
4795 }
4796 break;
4797
4798 case ISD::SRL:
4799 if (matchBitExtract(Node))
4800 return;
4801 LLVM_FALLTHROUGH[[gnu::fallthrough]];
4802 case ISD::SRA:
4803 case ISD::SHL:
4804 if (tryShiftAmountMod(Node))
4805 return;
4806 break;
4807
4808 case X86ISD::VPTERNLOG: {
4809 uint8_t Imm = cast<ConstantSDNode>(Node->getOperand(3))->getZExtValue();
4810 if (matchVPTERNLOG(Node, Node, Node, Node->getOperand(0),
4811 Node->getOperand(1), Node->getOperand(2), Imm))
4812 return;
4813 break;
4814 }
4815
4816 case X86ISD::ANDNP:
4817 if (tryVPTERNLOG(Node))
4818 return;
4819 break;
4820
4821 case ISD::AND:
4822 if (NVT.isVector() && NVT.getVectorElementType() == MVT::i1) {
4823 // Try to form a masked VPTESTM. Operands can be in either order.
4824 SDValue N0 = Node->getOperand(0);
4825 SDValue N1 = Node->getOperand(1);
4826 if (N0.getOpcode() == ISD::SETCC && N0.hasOneUse() &&
4827 tryVPTESTM(Node, N0, N1))
4828 return;
4829 if (N1.getOpcode() == ISD::SETCC && N1.hasOneUse() &&
4830 tryVPTESTM(Node, N1, N0))
4831 return;
4832 }
4833
4834 if (MachineSDNode *NewNode = matchBEXTRFromAndImm(Node)) {
4835 ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
4836 CurDAG->RemoveDeadNode(Node);
4837 return;
4838 }
4839 if (matchBitExtract(Node))
4840 return;
4841 if (AndImmShrink && shrinkAndImmediate(Node))
4842 return;
4843
4844 LLVM_FALLTHROUGH[[gnu::fallthrough]];
4845 case ISD::OR:
4846 case ISD::XOR:
4847 if (tryShrinkShlLogicImm(Node))
4848 return;
4849 if (Opcode == ISD::OR && tryMatchBitSelect(Node))
4850 return;
4851 if (tryVPTERNLOG(Node))
4852 return;
4853
4854 LLVM_FALLTHROUGH[[gnu::fallthrough]];
4855 case ISD::ADD:
4856 case ISD::SUB: {
4857 // Try to avoid folding immediates with multiple uses for optsize.
4858 // This code tries to select to register form directly to avoid going
4859 // through the isel table which might fold the immediate. We can't change
4860 // the patterns on the add/sub/and/or/xor with immediate paterns in the
4861 // tablegen files to check immediate use count without making the patterns
4862 // unavailable to the fast-isel table.
4863 if (!CurDAG->shouldOptForSize())
4864 break;
4865
4866 // Only handle i8/i16/i32/i64.
4867 if (NVT != MVT::i8 && NVT != MVT::i16 && NVT != MVT::i32 && NVT != MVT::i64)
4868 break;
4869
4870 SDValue N0 = Node->getOperand(0);
4871 SDValue N1 = Node->getOperand(1);
4872
4873 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
4874 if (!Cst)
4875 break;
4876
4877 int64_t Val = Cst->getSExtValue();
4878
4879 // Make sure its an immediate that is considered foldable.
4880 // FIXME: Handle unsigned 32 bit immediates for 64-bit AND.
4881 if (!isInt<8>(Val) && !isInt<32>(Val))
4882 break;
4883
4884 // If this can match to INC/DEC, let it go.
4885 if (Opcode == ISD::ADD && (Val == 1 || Val == -1))
4886 break;
4887
4888 // Check if we should avoid folding this immediate.
4889 if (!shouldAvoidImmediateInstFormsForSize(N1.getNode()))
4890 break;
4891
4892 // We should not fold the immediate. So we need a register form instead.
4893 unsigned ROpc, MOpc;
4894 switch (NVT.SimpleTy) {
4895 default: llvm_unreachable("Unexpected VT!")__builtin_unreachable();
4896 case MVT::i8:
4897 switch (Opcode) {
4898 default: llvm_unreachable("Unexpected opcode!")__builtin_unreachable();
4899 case ISD::ADD: ROpc = X86::ADD8rr; MOpc = X86::ADD8rm; break;
4900 case ISD::SUB: ROpc = X86::SUB8rr; MOpc = X86::SUB8rm; break;
4901 case ISD::AND: ROpc = X86::AND8rr; MOpc = X86::AND8rm; break;
4902 case ISD::OR: ROpc = X86::OR8rr; MOpc = X86::OR8rm; break;
4903 case ISD::XOR: ROpc = X86::XOR8rr; MOpc = X86::XOR8rm; break;
4904 }
4905 break;
4906 case MVT::i16:
4907 switch (Opcode) {
4908 default: llvm_unreachable("Unexpected opcode!")__builtin_unreachable();
4909 case ISD::ADD: ROpc = X86::ADD16rr; MOpc = X86::ADD16rm; break;
4910 case ISD::SUB: ROpc = X86::SUB16rr; MOpc = X86::SUB16rm; break;
4911 case ISD::AND: ROpc = X86::AND16rr; MOpc = X86::AND16rm; break;
4912 case ISD::OR: ROpc = X86::OR16rr; MOpc = X86::OR16rm; break;
4913 case ISD::XOR: ROpc = X86::XOR16rr; MOpc = X86::XOR16rm; break;
4914 }
4915 break;
4916 case MVT::i32:
4917 switch (Opcode) {
4918 default: llvm_unreachable("Unexpected opcode!")__builtin_unreachable();
4919 case ISD::ADD: ROpc = X86::ADD32rr; MOpc = X86::ADD32rm; break;
4920 case ISD::SUB: ROpc = X86::SUB32rr; MOpc = X86::SUB32rm; break;
4921 case ISD::AND: ROpc = X86::AND32rr; MOpc = X86::AND32rm; break;
4922 case ISD::OR: ROpc = X86::OR32rr; MOpc = X86::OR32rm; break;
4923 case ISD::XOR: ROpc = X86::XOR32rr; MOpc = X86::XOR32rm; break;
4924 }
4925 break;
4926 case MVT::i64:
4927 switch (Opcode) {
4928 default: llvm_unreachable("Unexpected opcode!")__builtin_unreachable();
4929 case ISD::ADD: ROpc = X86::ADD64rr; MOpc = X86::ADD64rm; break;
4930 case ISD::SUB: ROpc = X86::SUB64rr; MOpc = X86::SUB64rm; break;
4931 case ISD::AND: ROpc = X86::AND64rr; MOpc = X86::AND64rm; break;
4932 case ISD::OR: ROpc = X86::OR64rr; MOpc = X86::OR64rm; break;
4933 case ISD::XOR: ROpc = X86::XOR64rr; MOpc = X86::XOR64rm; break;
4934 }
4935 break;
4936 }
4937
4938 // Ok this is a AND/OR/XOR/ADD/SUB with constant.
4939
4940 // If this is a not a subtract, we can still try to fold a load.
4941 if (Opcode != ISD::SUB) {
4942 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4943 if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
4944 SDValue Ops[] = { N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
4945 SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
4946 MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
4947 // Update the chain.
4948 ReplaceUses(N0.getValue(1), SDValue(CNode, 2));
4949 // Record the mem-refs
4950 CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N0)->getMemOperand()});
4951 ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
4952 CurDAG->RemoveDeadNode(Node);
4953 return;
4954 }
4955 }
4956
4957 CurDAG->SelectNodeTo(Node, ROpc, NVT, MVT::i32, N0, N1);
4958 return;
4959 }
4960
4961 case X86ISD::SMUL:
4962 // i16/i32/i64 are handled with isel patterns.
4963 if (NVT != MVT::i8)
4964 break;
4965 LLVM_FALLTHROUGH[[gnu::fallthrough]];
4966 case X86ISD::UMUL: {
4967 SDValue N0 = Node->getOperand(0);
4968 SDValue N1 = Node->getOperand(1);
4969
4970 unsigned LoReg, ROpc, MOpc;
4971 switch (NVT.SimpleTy) {
4972 default: llvm_unreachable("Unsupported VT!")__builtin_unreachable();
4973 case MVT::i8:
4974 LoReg = X86::AL;
4975 ROpc = Opcode == X86ISD::SMUL ? X86::IMUL8r : X86::MUL8r;
4976 MOpc = Opcode == X86ISD::SMUL ? X86::IMUL8m : X86::MUL8m;
4977 break;
4978 case MVT::i16:
4979 LoReg = X86::AX;
4980 ROpc = X86::MUL16r;
4981 MOpc = X86::MUL16m;
4982 break;
4983 case MVT::i32:
4984 LoReg = X86::EAX;
4985 ROpc = X86::MUL32r;
4986 MOpc = X86::MUL32m;
4987 break;
4988 case MVT::i64:
4989 LoReg = X86::RAX;
4990 ROpc = X86::MUL64r;
4991 MOpc = X86::MUL64m;
4992 break;
4993 }
4994
4995 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4996 bool FoldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
4997 // Multiply is commutative.
4998 if (!FoldedLoad) {
4999 FoldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5000 if (FoldedLoad)
5001 std::swap(N0, N1);
5002 }
5003
5004 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
5005 N0, SDValue()).getValue(1);
5006
5007 MachineSDNode *CNode;
5008 if (FoldedLoad) {
5009 // i16/i32/i64 use an instruction that produces a low and high result even
5010 // though only the low result is used.
5011 SDVTList VTs;
5012 if (NVT == MVT::i8)
5013 VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
5014 else
5015 VTs = CurDAG->getVTList(NVT, NVT, MVT::i32, MVT::Other);
5016
5017 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
5018 InFlag };
5019 CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5020
5021 // Update the chain.
5022 ReplaceUses(N1.getValue(1), SDValue(CNode, NVT == MVT::i8 ? 2 : 3));
5023 // Record the mem-refs
5024 CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
5025 } else {
5026 // i16/i32/i64 use an instruction that produces a low and high result even
5027 // though only the low result is used.
5028 SDVTList VTs;
5029 if (NVT == MVT::i8)
5030 VTs = CurDAG->getVTList(NVT, MVT::i32);
5031 else
5032 VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
5033
5034 CNode = CurDAG->getMachineNode(ROpc, dl, VTs, {N1, InFlag});
5035 }
5036
5037 ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
5038 ReplaceUses(SDValue(Node, 1), SDValue(CNode, NVT == MVT::i8 ? 1 : 2));
5039 CurDAG->RemoveDeadNode(Node);
5040 return;
5041 }
5042
5043 case ISD::SMUL_LOHI:
5044 case ISD::UMUL_LOHI: {
5045 SDValue N0 = Node->getOperand(0);
5046 SDValue N1 = Node->getOperand(1);
5047
5048 unsigned Opc, MOpc;
5049 unsigned LoReg, HiReg;
5050 bool IsSigned = Opcode == ISD::SMUL_LOHI;
5051 bool UseMULX = !IsSigned && Subtarget->hasBMI2();
5052 bool UseMULXHi = UseMULX && SDValue(Node, 0).use_empty();
5053 switch (NVT.SimpleTy) {
5054 default: llvm_unreachable("Unsupported VT!")__builtin_unreachable();
5055 case MVT::i32:
5056 Opc = UseMULXHi ? X86::MULX32Hrr :
5057 UseMULX ? X86::MULX32rr :
5058 IsSigned ? X86::IMUL32r : X86::MUL32r;
5059 MOpc = UseMULXHi ? X86::MULX32Hrm :
5060 UseMULX ? X86::MULX32rm :
5061 IsSigned ? X86::IMUL32m : X86::MUL32m;
5062 LoReg = UseMULX ? X86::EDX : X86::EAX;
5063 HiReg = X86::EDX;
5064 break;
5065 case MVT::i64:
5066 Opc = UseMULXHi ? X86::MULX64Hrr :
5067 UseMULX ? X86::MULX64rr :
5068 IsSigned ? X86::IMUL64r : X86::MUL64r;
5069 MOpc = UseMULXHi ? X86::MULX64Hrm :
5070 UseMULX ? X86::MULX64rm :
5071 IsSigned ? X86::IMUL64m : X86::MUL64m;
5072 LoReg = UseMULX ? X86::RDX : X86::RAX;
5073 HiReg = X86::RDX;
5074 break;
5075 }
5076
5077 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5078 bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5079 // Multiply is commmutative.
5080 if (!foldedLoad) {
5081 foldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5082 if (foldedLoad)
5083 std::swap(N0, N1);
5084 }
5085
5086 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
5087 N0, SDValue()).getValue(1);
5088 SDValue ResHi, ResLo;
5089 if (foldedLoad) {
5090 SDValue Chain;
5091 MachineSDNode *CNode = nullptr;
5092 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
5093 InFlag };
5094 if (UseMULXHi) {
5095 SDVTList VTs = CurDAG->getVTList(NVT, MVT::Other);
5096 CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5097 ResHi = SDValue(CNode, 0);
5098 Chain = SDValue(CNode, 1);
5099 } else if (UseMULX) {
5100 SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other);
5101 CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5102 ResHi = SDValue(CNode, 0);
5103 ResLo = SDValue(CNode, 1);
5104 Chain = SDValue(CNode, 2);
5105 } else {
5106 SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
5107 CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5108 Chain = SDValue(CNode, 0);
5109 InFlag = SDValue(CNode, 1);
5110 }
5111
5112 // Update the chain.
5113 ReplaceUses(N1.getValue(1), Chain);
5114 // Record the mem-refs
5115 CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
5116 } else {
5117 SDValue Ops[] = { N1, InFlag };
5118 if (UseMULXHi) {
5119 SDVTList VTs = CurDAG->getVTList(NVT);
5120 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
5121 ResHi = SDValue(CNode, 0);
5122 } else if (UseMULX) {
5123 SDVTList VTs = CurDAG->getVTList(NVT, NVT);
5124 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
5125 ResHi = SDValue(CNode, 0);
5126 ResLo = SDValue(CNode, 1);
5127 } else {
5128 SDVTList VTs = CurDAG->getVTList(MVT::Glue);
5129 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
5130 InFlag = SDValue(CNode, 0);
5131 }
5132 }
5133
5134 // Copy the low half of the result, if it is needed.
5135 if (!SDValue(Node, 0).use_empty()) {
5136 if (!ResLo) {
5137 assert(LoReg && "Register for low half is not defined!")((void)0);
5138 ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg,
5139 NVT, InFlag);
5140 InFlag = ResLo.getValue(2);
5141 }
5142 ReplaceUses(SDValue(Node, 0), ResLo);
5143 LLVM_DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG);do { } while (false)
5144 dbgs() << '\n')do { } while (false);
5145 }
5146 // Copy the high half of the result, if it is needed.
5147 if (!SDValue(Node, 1).use_empty()) {
5148 if (!ResHi) {
5149 assert(HiReg && "Register for high half is not defined!")((void)0);
5150 ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg,
5151 NVT, InFlag);
5152 InFlag = ResHi.getValue(2);
5153 }
5154 ReplaceUses(SDValue(Node, 1), ResHi);
5155 LLVM_DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG);do { } while (false)
5156 dbgs() << '\n')do { } while (false);
5157 }
5158
5159 CurDAG->RemoveDeadNode(Node);
5160 return;
5161 }
5162
5163 case ISD::SDIVREM:
5164 case ISD::UDIVREM: {
5165 SDValue N0 = Node->getOperand(0);
5166 SDValue N1 = Node->getOperand(1);
5167
5168 unsigned ROpc, MOpc;
5169 bool isSigned = Opcode == ISD::SDIVREM;
5170 if (!isSigned) {
5171 switch (NVT.SimpleTy) {
5172 default: llvm_unreachable("Unsupported VT!")__builtin_unreachable();
5173 case MVT::i8: ROpc = X86::DIV8r; MOpc = X86::DIV8m; break;
5174 case MVT::i16: ROpc = X86::DIV16r; MOpc = X86::DIV16m; break;
5175 case MVT::i32: ROpc = X86::DIV32r; MOpc = X86::DIV32m; break;
5176 case MVT::i64: ROpc = X86::DIV64r; MOpc = X86::DIV64m; break;
5177 }
5178 } else {
5179 switch (NVT.SimpleTy) {
5180 default: llvm_unreachable("Unsupported VT!")__builtin_unreachable();
5181 case MVT::i8: ROpc = X86::IDIV8r; MOpc = X86::IDIV8m; break;
5182 case MVT::i16: ROpc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
5183 case MVT::i32: ROpc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
5184 case MVT::i64: ROpc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
5185 }
5186 }
5187
5188 unsigned LoReg, HiReg, ClrReg;
5189 unsigned SExtOpcode;
5190 switch (NVT.SimpleTy) {
5191 default: llvm_unreachable("Unsupported VT!")__builtin_unreachable();
5192 case MVT::i8:
5193 LoReg = X86::AL; ClrReg = HiReg = X86::AH;
5194 SExtOpcode = 0; // Not used.
5195 break;
5196 case MVT::i16:
5197 LoReg = X86::AX; HiReg = X86::DX;
5198 ClrReg = X86::DX;
5199 SExtOpcode = X86::CWD;
5200 break;
5201 case MVT::i32:
5202 LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
5203 SExtOpcode = X86::CDQ;
5204 break;
5205 case MVT::i64:
5206 LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
5207 SExtOpcode = X86::CQO;
5208 break;
5209 }
5210
5211 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5212 bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5213 bool signBitIsZero = CurDAG->SignBitIsZero(N0);
5214
5215 SDValue InFlag;
5216 if (NVT == MVT::i8) {
5217 // Special case for div8, just use a move with zero extension to AX to
5218 // clear the upper 8 bits (AH).
5219 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain;
5220 MachineSDNode *Move;
5221 if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
5222 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
5223 unsigned Opc = (isSigned && !signBitIsZero) ? X86::MOVSX16rm8
5224 : X86::MOVZX16rm8;
5225 Move = CurDAG->getMachineNode(Opc, dl, MVT::i16, MVT::Other, Ops);
5226 Chain = SDValue(Move, 1);
5227 ReplaceUses(N0.getValue(1), Chain);
5228 // Record the mem-refs
5229 CurDAG->setNodeMemRefs(Move, {cast<LoadSDNode>(N0)->getMemOperand()});
5230 } else {
5231 unsigned Opc = (isSigned && !signBitIsZero) ? X86::MOVSX16rr8
5232 : X86::MOVZX16rr8;
5233 Move = CurDAG->getMachineNode(Opc, dl, MVT::i16, N0);
5234 Chain = CurDAG->getEntryNode();
5235 }
5236 Chain = CurDAG->getCopyToReg(Chain, dl, X86::AX, SDValue(Move, 0),
5237 SDValue());
5238 InFlag = Chain.getValue(1);
5239 } else {
5240 InFlag =
5241 CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
5242 LoReg, N0, SDValue()).getValue(1);
5243 if (isSigned && !signBitIsZero) {
5244 // Sign extend the low part into the high part.
5245 InFlag =
5246 SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
5247 } else {
5248 // Zero out the high part, effectively zero extending the input.
5249 SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i32);
5250 SDValue ClrNode =
5251 SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, VTs, None), 0);
5252 switch (NVT.SimpleTy) {
5253 case MVT::i16:
5254 ClrNode =
5255 SDValue(CurDAG->getMachineNode(
5256 TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode,
5257 CurDAG->getTargetConstant(X86::sub_16bit, dl,
5258 MVT::i32)),
5259 0);
5260 break;
5261 case MVT::i32:
5262 break;
5263 case MVT::i64:
5264 ClrNode =
5265 SDValue(CurDAG->getMachineNode(
5266 TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
5267 CurDAG->getTargetConstant(0, dl, MVT::i64), ClrNode,
5268 CurDAG->getTargetConstant(X86::sub_32bit, dl,
5269 MVT::i32)),
5270 0);
5271 break;
5272 default:
5273 llvm_unreachable("Unexpected division source")__builtin_unreachable();
5274 }
5275
5276 InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
5277 ClrNode, InFlag).getValue(1);
5278 }
5279 }
5280
5281 if (foldedLoad) {
5282 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
5283 InFlag };
5284 MachineSDNode *CNode =
5285 CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops);
5286 InFlag = SDValue(CNode, 1);
5287 // Update the chain.
5288 ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
5289 // Record the mem-refs
5290 CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
5291 } else {
5292 InFlag =
5293 SDValue(CurDAG->getMachineNode(ROpc, dl, MVT::Glue, N1, InFlag), 0);
5294 }
5295
5296 // Prevent use of AH in a REX instruction by explicitly copying it to
5297 // an ABCD_L register.
5298 //
5299 // The current assumption of the register allocator is that isel
5300 // won't generate explicit references to the GR8_ABCD_H registers. If
5301 // the allocator and/or the backend get enhanced to be more robust in
5302 // that regard, this can be, and should be, removed.
5303 if (HiReg == X86::AH && !SDValue(Node, 1).use_empty()) {
5304 SDValue AHCopy = CurDAG->getRegister(X86::AH, MVT::i8);
5305 unsigned AHExtOpcode =
5306 isSigned ? X86::MOVSX32rr8_NOREX : X86::MOVZX32rr8_NOREX;
5307
5308 SDNode *RNode = CurDAG->getMachineNode(AHExtOpcode, dl, MVT::i32,
5309 MVT::Glue, AHCopy, InFlag);
5310 SDValue Result(RNode, 0);
5311 InFlag = SDValue(RNode, 1);
5312
5313 Result =
5314 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result);
5315
5316 ReplaceUses(SDValue(Node, 1), Result);
5317 LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);do { } while (false)
5318 dbgs() << '\n')do { } while (false);
5319 }
5320 // Copy the division (low) result, if it is needed.
5321 if (!SDValue(Node, 0).use_empty()) {
5322 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
5323 LoReg, NVT, InFlag);
5324 InFlag = Result.getValue(2);
5325 ReplaceUses(SDValue(Node, 0), Result);
5326 LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);do { } while (false)
5327 dbgs() << '\n')do { } while (false);
5328 }
5329 // Copy the remainder (high) result, if it is needed.
5330 if (!SDValue(Node, 1).use_empty()) {
5331 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
5332 HiReg, NVT, InFlag);
5333 InFlag = Result.getValue(2);
5334 ReplaceUses(SDValue(Node, 1), Result);
5335 LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);do { } while (false)
5336 dbgs() << '\n')do { } while (false);
5337 }
5338 CurDAG->RemoveDeadNode(Node);
5339 return;
5340 }
5341
5342 case X86ISD::FCMP:
5343 case X86ISD::STRICT_FCMP:
5344 case X86ISD::STRICT_FCMPS: {
5345 bool IsStrictCmp = Node->getOpcode() == X86ISD::STRICT_FCMP ||
5346 Node->getOpcode() == X86ISD::STRICT_FCMPS;
5347 SDValue N0 = Node->getOperand(IsStrictCmp ? 1 : 0);
5348 SDValue N1 = Node->getOperand(IsStrictCmp ? 2 : 1);
5349
5350 // Save the original VT of the compare.
5351 MVT CmpVT = N0.getSimpleValueType();
5352
5353 // Floating point needs special handling if we don't have FCOMI.
5354 if (Subtarget->hasCMov())
5355 break;
5356
5357 bool IsSignaling = Node->getOpcode() == X86ISD::STRICT_FCMPS;
5358
5359 unsigned Opc;
5360 switch (CmpVT.SimpleTy) {
5361 default: llvm_unreachable("Unexpected type!")__builtin_unreachable();
5362 case MVT::f32:
5363 Opc = IsSignaling ? X86::COM_Fpr32 : X86::UCOM_Fpr32;
5364 break;
5365 case MVT::f64:
5366 Opc = IsSignaling ? X86::COM_Fpr64 : X86::UCOM_Fpr64;
5367 break;
5368 case MVT::f80:
5369 Opc = IsSignaling ? X86::COM_Fpr80 : X86::UCOM_Fpr80;
5370 break;
5371 }
5372
5373 SDValue Chain =
5374 IsStrictCmp ? Node->getOperand(0) : CurDAG->getEntryNode();
5375 SDValue Glue;
5376 if (IsStrictCmp) {
5377 SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
5378 Chain = SDValue(CurDAG->getMachineNode(Opc, dl, VTs, {N0, N1, Chain}), 0);
5379 Glue = Chain.getValue(1);
5380 } else {
5381 Glue = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N0, N1), 0);
5382 }
5383
5384 // Move FPSW to AX.
5385 SDValue FNSTSW =
5386 SDValue(CurDAG->getMachineNode(X86::FNSTSW16r, dl, MVT::i16, Glue), 0);
5387
5388 // Extract upper 8-bits of AX.
5389 SDValue Extract =
5390 CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl, MVT::i8, FNSTSW);
5391
5392 // Move AH into flags.
5393 // Some 64-bit targets lack SAHF support, but they do support FCOMI.
5394 assert(Subtarget->hasLAHFSAHF() &&((void)0)
5395 "Target doesn't support SAHF or FCOMI?")((void)0);
5396 SDValue AH = CurDAG->getCopyToReg(Chain, dl, X86::AH, Extract, SDValue());
5397 Chain = AH;
5398 SDValue SAHF = SDValue(
5399 CurDAG->getMachineNode(X86::SAHF, dl, MVT::i32, AH.getValue(1)), 0);
5400
5401 if (IsStrictCmp)
5402 ReplaceUses(SDValue(Node, 1), Chain);
5403
5404 ReplaceUses(SDValue(Node, 0), SAHF);
5405 CurDAG->RemoveDeadNode(Node);
5406 return;
5407 }
5408
5409 case X86ISD::CMP: {
5410 SDValue N0 = Node->getOperand(0);
5411 SDValue N1 = Node->getOperand(1);
5412
5413 // Optimizations for TEST compares.
5414 if (!isNullConstant(N1))
5415 break;
5416
5417 // Save the original VT of the compare.
5418 MVT CmpVT = N0.getSimpleValueType();
5419
5420 // If we are comparing (and (shr X, C, Mask) with 0, emit a BEXTR followed
5421 // by a test instruction. The test should be removed later by
5422 // analyzeCompare if we are using only the zero flag.
5423 // TODO: Should we check the users and use the BEXTR flags directly?
5424 if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
5425 if (MachineSDNode *NewNode = matchBEXTRFromAndImm(N0.getNode())) {
5426 unsigned TestOpc = CmpVT == MVT::i64 ? X86::TEST64rr
5427 : X86::TEST32rr;
5428 SDValue BEXTR = SDValue(NewNode, 0);
5429 NewNode = CurDAG->getMachineNode(TestOpc, dl, MVT::i32, BEXTR, BEXTR);
5430 ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
5431 CurDAG->RemoveDeadNode(Node);
5432 return;
5433 }
5434 }
5435
5436 // We can peek through truncates, but we need to be careful below.
5437 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse())
5438 N0 = N0.getOperand(0);
5439
5440 // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
5441 // use a smaller encoding.
5442 // Look past the truncate if CMP is the only use of it.
5443 if (N0.getOpcode() == ISD::AND &&
5444 N0.getNode()->hasOneUse() &&
5445 N0.getValueType() != MVT::i8) {
5446 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5447 if (!C) break;
5448 uint64_t Mask = C->getZExtValue();
5449 // We may have looked through a truncate so mask off any bits that
5450 // shouldn't be part of the compare.
5451 Mask &= maskTrailingOnes<uint64_t>(CmpVT.getScalarSizeInBits());
5452
5453 // Check if we can replace AND+IMM64 with a shift. This is possible for
5454 // masks/ like 0xFF000000 or 0x00FFFFFF and if we care only about the zero
5455 // flag.
5456 if (CmpVT == MVT::i64 && !isInt<32>(Mask) &&
5457 onlyUsesZeroFlag(SDValue(Node, 0))) {
5458 if (isMask_64(~Mask)) {
5459 unsigned TrailingZeros = countTrailingZeros(Mask);
5460 SDValue Imm = CurDAG->getTargetConstant(TrailingZeros, dl, MVT::i64);
5461 SDValue Shift =
5462 SDValue(CurDAG->getMachineNode(X86::SHR64ri, dl, MVT::i64, MVT::i32,
5463 N0.getOperand(0), Imm), 0);
5464 MachineSDNode *Test = CurDAG->getMachineNode(X86::TEST64rr, dl,
5465 MVT::i32, Shift, Shift);
5466 ReplaceNode(Node, Test);
5467 return;
5468 }
5469 if (isMask_64(Mask)) {
5470 unsigned LeadingZeros = countLeadingZeros(Mask);
5471 SDValue Imm = CurDAG->getTargetConstant(LeadingZeros, dl, MVT::i64);
5472 SDValue Shift =
5473 SDValue(CurDAG->getMachineNode(X86::SHL64ri, dl, MVT::i64, MVT::i32,
5474 N0.getOperand(0), Imm), 0);
5475 MachineSDNode *Test = CurDAG->getMachineNode(X86::TEST64rr, dl,
5476 MVT::i32, Shift, Shift);
5477 ReplaceNode(Node, Test);
5478 return;
5479 }
5480 }
5481
5482 MVT VT;
5483 int SubRegOp;
5484 unsigned ROpc, MOpc;
5485
5486 // For each of these checks we need to be careful if the sign flag is
5487 // being used. It is only safe to use the sign flag in two conditions,
5488 // either the sign bit in the shrunken mask is zero or the final test
5489 // size is equal to the original compare size.
5490
5491 if (isUInt<8>(Mask) &&
5492 (!(Mask & 0x80) || CmpVT == MVT::i8 ||
5493 hasNoSignFlagUses(SDValue(Node, 0)))) {
5494 // For example, convert "testl %eax, $8" to "testb %al, $8"
5495 VT = MVT::i8;
5496 SubRegOp = X86::sub_8bit;
5497 ROpc = X86::TEST8ri;
5498 MOpc = X86::TEST8mi;
5499 } else if (OptForMinSize && isUInt<16>(Mask) &&
5500 (!(Mask & 0x8000) || CmpVT == MVT::i16 ||
5501 hasNoSignFlagUses(SDValue(Node, 0)))) {
5502 // For example, "testl %eax, $32776" to "testw %ax, $32776".
5503 // NOTE: We only want to form TESTW instructions if optimizing for
5504 // min size. Otherwise we only save one byte and possibly get a length
5505 // changing prefix penalty in the decoders.
5506 VT = MVT::i16;
5507 SubRegOp = X86::sub_16bit;
5508 ROpc = X86::TEST16ri;
5509 MOpc = X86::TEST16mi;
5510 } else if (isUInt<32>(Mask) && N0.getValueType() != MVT::i16 &&
5511 ((!(Mask & 0x80000000) &&
5512 // Without minsize 16-bit Cmps can get here so we need to
5513 // be sure we calculate the correct sign flag if needed.
5514 (CmpVT != MVT::i16 || !(Mask & 0x8000))) ||
5515 CmpVT == MVT::i32 ||
5516 hasNoSignFlagUses(SDValue(Node, 0)))) {
5517 // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
5518 // NOTE: We only want to run that transform if N0 is 32 or 64 bits.
5519 // Otherwize, we find ourselves in a position where we have to do
5520 // promotion. If previous passes did not promote the and, we assume
5521 // they had a good reason not to and do not promote here.
5522 VT = MVT::i32;
5523 SubRegOp = X86::sub_32bit;
5524 ROpc = X86::TEST32ri;
5525 MOpc = X86::TEST32mi;
5526 } else {
5527 // No eligible transformation was found.
5528 break;
5529 }
5530
5531 SDValue Imm = CurDAG->getTargetConstant(Mask, dl, VT);
5532 SDValue Reg = N0.getOperand(0);
5533
5534 // Emit a testl or testw.
5535 MachineSDNode *NewNode;
5536 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5537 if (tryFoldLoad(Node, N0.getNode(), Reg, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
5538 if (auto *LoadN = dyn_cast<LoadSDNode>(N0.getOperand(0).getNode())) {
5539 if (!LoadN->isSimple()) {
5540 unsigned NumVolBits = LoadN->getValueType(0).getSizeInBits();
5541 if ((MOpc == X86::TEST8mi && NumVolBits != 8) ||
5542 (MOpc == X86::TEST16mi && NumVolBits != 16) ||
5543 (MOpc == X86::TEST32mi && NumVolBits != 32))
5544 break;
5545 }
5546 }
5547 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
5548 Reg.getOperand(0) };
5549 NewNode = CurDAG->getMachineNode(MOpc, dl, MVT::i32, MVT::Other, Ops);
5550 // Update the chain.
5551 ReplaceUses(Reg.getValue(1), SDValue(NewNode, 1));
5552 // Record the mem-refs
5553 CurDAG->setNodeMemRefs(NewNode,
5554 {cast<LoadSDNode>(Reg)->getMemOperand()});
5555 } else {
5556 // Extract the subregister if necessary.
5557 if (N0.getValueType() != VT)
5558 Reg = CurDAG->getTargetExtractSubreg(SubRegOp, dl, VT, Reg);
5559
5560 NewNode = CurDAG->getMachineNode(ROpc, dl, MVT::i32, Reg, Imm);
5561 }
5562 // Replace CMP with TEST.
5563 ReplaceNode(Node, NewNode);
5564 return;
5565 }
5566 break;
5567 }
5568 case X86ISD::PCMPISTR: {
5569 if (!Subtarget->hasSSE42())
5570 break;
5571
5572 bool NeedIndex = !SDValue(Node, 0).use_empty();
5573 bool NeedMask = !SDValue(Node, 1).use_empty();
5574 // We can't fold a load if we are going to make two instructions.
5575 bool MayFoldLoad = !NeedIndex || !NeedMask;
5576
5577 MachineSDNode *CNode;
5578 if (NeedMask) {
5579 unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrr : X86::PCMPISTRMrr;
5580 unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrm : X86::PCMPISTRMrm;
5581 CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node);
5582 ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0));
5583 }
5584 if (NeedIndex || !NeedMask) {
5585 unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrr : X86::PCMPISTRIrr;
5586 unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrm : X86::PCMPISTRIrm;
5587 CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node);
5588 ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
5589 }
5590
5591 // Connect the flag usage to the last instruction created.
5592 ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1));
5593 CurDAG->RemoveDeadNode(Node);
5594 return;
5595 }
5596 case X86ISD::PCMPESTR: {
5597 if (!Subtarget->hasSSE42())
5598 break;
5599
5600 // Copy the two implicit register inputs.
5601 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EAX,
5602 Node->getOperand(1),
5603 SDValue()).getValue(1);
5604 InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EDX,
5605 Node->getOperand(3), InFlag).getValue(1);
5606
5607 bool NeedIndex = !SDValue(Node, 0).use_empty();
5608 bool NeedMask = !SDValue(Node, 1).use_empty();
5609 // We can't fold a load if we are going to make two instructions.
5610 bool MayFoldLoad = !NeedIndex || !NeedMask;
5611
5612 MachineSDNode *CNode;
5613 if (NeedMask) {
5614 unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrr : X86::PCMPESTRMrr;
5615 unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrm : X86::PCMPESTRMrm;
5616 CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node,
5617 InFlag);
5618 ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0));
5619 }
5620 if (NeedIndex || !NeedMask) {
5621 unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrr : X86::PCMPESTRIrr;
5622 unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrm : X86::PCMPESTRIrm;
5623 CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node, InFlag);
5624 ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
5625 }
5626 // Connect the flag usage to the last instruction created.
5627 ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1));
5628 CurDAG->RemoveDeadNode(Node);
5629 return;
5630 }
5631
5632 case ISD::SETCC: {
5633 if (NVT.isVector() && tryVPTESTM(Node, SDValue(Node, 0), SDValue()))
5634 return;
5635
5636 break;
5637 }
5638
5639 case ISD::STORE:
5640 if (foldLoadStoreIntoMemOperand(Node))
5641 return;
5642 break;
5643
5644 case X86ISD::SETCC_CARRY: {
5645 // We have to do this manually because tblgen will put the eflags copy in
5646 // the wrong place if we use an extract_subreg in the pattern.
5647 MVT VT = Node->getSimpleValueType(0);
5648
5649 // Copy flags to the EFLAGS register and glue it to next node.
5650 SDValue EFLAGS =
5651 CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EFLAGS,
5652 Node->getOperand(1), SDValue());
5653
5654 // Create a 64-bit instruction if the result is 64-bits otherwise use the
5655 // 32-bit version.
5656 unsigned Opc = VT == MVT::i64 ? X86::SETB_C64r : X86::SETB_C32r;
5657 MVT SetVT = VT == MVT::i64 ? MVT::i64 : MVT::i32;
5658 SDValue Result = SDValue(
5659 CurDAG->getMachineNode(Opc, dl, SetVT, EFLAGS, EFLAGS.getValue(1)), 0);
5660
5661 // For less than 32-bits we need to extract from the 32-bit node.
5662 if (VT == MVT::i8 || VT == MVT::i16) {
5663 int SubIndex = VT == MVT::i16 ? X86::sub_16bit : X86::sub_8bit;
5664 Result = CurDAG->getTargetExtractSubreg(SubIndex, dl, VT, Result);
5665 }
5666
5667 ReplaceUses(SDValue(Node, 0), Result);
5668 CurDAG->RemoveDeadNode(Node);
5669 return;
5670 }
5671 case X86ISD::SBB: {
5672 if (isNullConstant(Node->getOperand(0)) &&
5673 isNullConstant(Node->getOperand(1))) {
5674 MVT VT = Node->getSimpleValueType(0);
5675
5676 // Create zero.
5677 SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i32);
5678 SDValue Zero =
5679 SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, VTs, None), 0);
5680 if (VT == MVT::i64) {
5681 Zero = SDValue(
5682 CurDAG->getMachineNode(
5683 TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
5684 CurDAG->getTargetConstant(0, dl, MVT::i64), Zero,
5685 CurDAG->getTargetConstant(X86::sub_32bit, dl, MVT::i32)),
5686 0);
5687 }
5688
5689 // Copy flags to the EFLAGS register and glue it to next node.
5690 SDValue EFLAGS =
5691 CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EFLAGS,
5692 Node->getOperand(2), SDValue());
5693
5694 // Create a 64-bit instruction if the result is 64-bits otherwise use the
5695 // 32-bit version.
5696 unsigned Opc = VT == MVT::i64 ? X86::SBB64rr : X86::SBB32rr;
5697 MVT SBBVT = VT == MVT::i64 ? MVT::i64 : MVT::i32;
5698 VTs = CurDAG->getVTList(SBBVT, MVT::i32);
5699 SDValue Result =
5700 SDValue(CurDAG->getMachineNode(Opc, dl, VTs, {Zero, Zero, EFLAGS,
5701 EFLAGS.getValue(1)}),
5702 0);
5703
5704 // Replace the flag use.
5705 ReplaceUses(SDValue(Node, 1), Result.getValue(1));
5706
5707 // Replace the result use.
5708 if (!SDValue(Node, 0).use_empty()) {
5709 // For less than 32-bits we need to extract from the 32-bit node.
5710 if (VT == MVT::i8 || VT == MVT::i16) {
5711 int SubIndex = VT == MVT::i16 ? X86::sub_16bit : X86::sub_8bit;
5712 Result = CurDAG->getTargetExtractSubreg(SubIndex, dl, VT, Result);
5713 }
5714 ReplaceUses(SDValue(Node, 0), Result);
5715 }
5716
5717 CurDAG->RemoveDeadNode(Node);
5718 return;
5719 }
5720 break;
5721 }
5722 case X86ISD::MGATHER: {
5723 auto *Mgt = cast<X86MaskedGatherSDNode>(Node);
5724 SDValue IndexOp = Mgt->getIndex();
5725 SDValue Mask = Mgt->getMask();
5726 MVT IndexVT = IndexOp.getSimpleValueType();
5727 MVT ValueVT = Node->getSimpleValueType(0);
5728 MVT MaskVT = Mask.getSimpleValueType();
5729
5730 // This is just to prevent crashes if the nodes are malformed somehow. We're
5731 // otherwise only doing loose type checking in here based on type what
5732 // a type constraint would say just like table based isel.
5733 if (!ValueVT.isVector() || !MaskVT.isVector())
5734 break;
5735
5736 unsigned NumElts = ValueVT.getVectorNumElements();
5737 MVT ValueSVT = ValueVT.getVectorElementType();
5738
5739 bool IsFP = ValueSVT.isFloatingPoint();
5740 unsigned EltSize = ValueSVT.getSizeInBits();
5741
5742 unsigned Opc = 0;
5743 bool AVX512Gather = MaskVT.getVectorElementType() == MVT::i1;
5744 if (AVX512Gather) {
5745 if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32)
5746 Opc = IsFP ? X86::VGATHERDPSZ128rm : X86::VPGATHERDDZ128rm;
5747 else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32)
5748 Opc = IsFP ? X86::VGATHERDPSZ256rm : X86::VPGATHERDDZ256rm;
5749 else if (IndexVT == MVT::v16i32 && NumElts == 16 && EltSize == 32)
5750 Opc = IsFP ? X86::VGATHERDPSZrm : X86::VPGATHERDDZrm;
5751 else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64)
5752 Opc = IsFP ? X86::VGATHERDPDZ128rm : X86::VPGATHERDQZ128rm;
5753 else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64)
5754 Opc = IsFP ? X86::VGATHERDPDZ256rm : X86::VPGATHERDQZ256rm;
5755 else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 64)
5756 Opc = IsFP ? X86::VGATHERDPDZrm : X86::VPGATHERDQZrm;
5757 else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32)
5758 Opc = IsFP ? X86::VGATHERQPSZ128rm : X86::VPGATHERQDZ128rm;
5759 else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32)
5760 Opc = IsFP ? X86::VGATHERQPSZ256rm : X86::VPGATHERQDZ256rm;
5761 else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 32)
5762 Opc = IsFP ? X86::VGATHERQPSZrm : X86::VPGATHERQDZrm;
5763 else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64)
5764 Opc = IsFP ? X86::VGATHERQPDZ128rm : X86::VPGATHERQQZ128rm;
5765 else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64)
5766 Opc = IsFP ? X86::VGATHERQPDZ256rm : X86::VPGATHERQQZ256rm;
5767 else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 64)
5768 Opc = IsFP ? X86::VGATHERQPDZrm : X86::VPGATHERQQZrm;
5769 } else {
5770 assert(EVT(MaskVT) == EVT(ValueVT).changeVectorElementTypeToInteger() &&((void)0)
5771 "Unexpected mask VT!")((void)0);
5772 if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32)
5773 Opc = IsFP ? X86::VGATHERDPSrm : X86::VPGATHERDDrm;
5774 else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32)
5775 Opc = IsFP ? X86::VGATHERDPSYrm : X86::VPGATHERDDYrm;
5776 else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64)
5777 Opc = IsFP ? X86::VGATHERDPDrm : X86::VPGATHERDQrm;
5778 else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64)
5779 Opc = IsFP ? X86::VGATHERDPDYrm : X86::VPGATHERDQYrm;
5780 else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32)
5781 Opc = IsFP ? X86::VGATHERQPSrm : X86::VPGATHERQDrm;
5782 else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32)
5783 Opc = IsFP ? X86::VGATHERQPSYrm : X86::VPGATHERQDYrm;
5784 else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64)
5785 Opc = IsFP ? X86::VGATHERQPDrm : X86::VPGATHERQQrm;
5786 else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64)
5787 Opc = IsFP ? X86::VGATHERQPDYrm : X86::VPGATHERQQYrm;
5788 }
5789
5790 if (!Opc)
5791 break;
5792
5793 SDValue Base, Scale, Index, Disp, Segment;
5794 if (!selectVectorAddr(Mgt, Mgt->getBasePtr(), IndexOp, Mgt->getScale(),
5795 Base, Scale, Index, Disp, Segment))
5796 break;
5797
5798 SDValue PassThru = Mgt->getPassThru();
5799 SDValue Chain = Mgt->getChain();
5800 // Gather instructions have a mask output not in the ISD node.
5801 SDVTList VTs = CurDAG->getVTList(ValueVT, MaskVT, MVT::Other);
5802
5803 MachineSDNode *NewNode;
5804 if (AVX512Gather) {
5805 SDValue Ops[] = {PassThru, Mask, Base, Scale,
5806 Index, Disp, Segment, Chain};
5807 NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops);
5808 } else {
5809 SDValue Ops[] = {PassThru, Base, Scale, Index,
5810 Disp, Segment, Mask, Chain};
5811 NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops);
5812 }
5813 CurDAG->setNodeMemRefs(NewNode, {Mgt->getMemOperand()});
5814 ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
5815 ReplaceUses(SDValue(Node, 1), SDValue(NewNode, 2));
5816 CurDAG->RemoveDeadNode(Node);
5817 return;
5818 }
5819 case X86ISD::MSCATTER: {
5820 auto *Sc = cast<X86MaskedScatterSDNode>(Node);
5821 SDValue Value = Sc->getValue();
5822 SDValue IndexOp = Sc->getIndex();
5823 MVT IndexVT = IndexOp.getSimpleValueType();
5824 MVT ValueVT = Value.getSimpleValueType();
5825
5826 // This is just to prevent crashes if the nodes are malformed somehow. We're
5827 // otherwise only doing loose type checking in here based on type what
5828 // a type constraint would say just like table based isel.
5829 if (!ValueVT.isVector())
5830 break;
5831
5832 unsigned NumElts = ValueVT.getVectorNumElements();
5833 MVT ValueSVT = ValueVT.getVectorElementType();
5834
5835 bool IsFP = ValueSVT.isFloatingPoint();
5836 unsigned EltSize = ValueSVT.getSizeInBits();
5837
5838 unsigned Opc;
5839 if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32)
5840 Opc = IsFP ? X86::VSCATTERDPSZ128mr : X86::VPSCATTERDDZ128mr;
5841 else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32)
5842 Opc = IsFP ? X86::VSCATTERDPSZ256mr : X86::VPSCATTERDDZ256mr;
5843 else if (IndexVT == MVT::v16i32 && NumElts == 16 && EltSize == 32)
5844 Opc = IsFP ? X86::VSCATTERDPSZmr : X86::VPSCATTERDDZmr;
5845 else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64)
5846 Opc = IsFP ? X86::VSCATTERDPDZ128mr : X86::VPSCATTERDQZ128mr;
5847 else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64)
5848 Opc = IsFP ? X86::VSCATTERDPDZ256mr : X86::VPSCATTERDQZ256mr;
5849 else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 64)
5850 Opc = IsFP ? X86::VSCATTERDPDZmr : X86::VPSCATTERDQZmr;
5851 else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32)
5852 Opc = IsFP ? X86::VSCATTERQPSZ128mr : X86::VPSCATTERQDZ128mr;
5853 else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32)
5854 Opc = IsFP ? X86::VSCATTERQPSZ256mr : X86::VPSCATTERQDZ256mr;
5855 else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 32)
5856 Opc = IsFP ? X86::VSCATTERQPSZmr : X86::VPSCATTERQDZmr;
5857 else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64)
5858 Opc = IsFP ? X86::VSCATTERQPDZ128mr : X86::VPSCATTERQQZ128mr;
5859 else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64)
5860 Opc = IsFP ? X86::VSCATTERQPDZ256mr : X86::VPSCATTERQQZ256mr;
5861 else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 64)
5862 Opc = IsFP ? X86::VSCATTERQPDZmr : X86::VPSCATTERQQZmr;
5863 else
5864 break;
5865
5866 SDValue Base, Scale, Index, Disp, Segment;
5867 if (!selectVectorAddr(Sc, Sc->getBasePtr(), IndexOp, Sc->getScale(),
5868 Base, Scale, Index, Disp, Segment))
5869 break;
5870
5871 SDValue Mask = Sc->getMask();
5872 SDValue Chain = Sc->getChain();
5873 // Scatter instructions have a mask output not in the ISD node.
5874 SDVTList VTs = CurDAG->getVTList(Mask.getValueType(), MVT::Other);
5875 SDValue Ops[] = {Base, Scale, Index, Disp, Segment, Mask, Value, Chain};
5876
5877 MachineSDNode *NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops);
5878 CurDAG->setNodeMemRefs(NewNode, {Sc->getMemOperand()});
5879 ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 1));
5880 CurDAG->RemoveDeadNode(Node);
5881 return;
5882 }
5883 case ISD::PREALLOCATED_SETUP: {
5884 auto *MFI = CurDAG->getMachineFunction().getInfo<X86MachineFunctionInfo>();
5885 auto CallId = MFI->getPreallocatedIdForCallSite(
5886 cast<SrcValueSDNode>(Node->getOperand(1))->getValue());
5887 SDValue Chain = Node->getOperand(0);
5888 SDValue CallIdValue = CurDAG->getTargetConstant(CallId, dl, MVT::i32);
5889 MachineSDNode *New = CurDAG->getMachineNode(
5890 TargetOpcode::PREALLOCATED_SETUP, dl, MVT::Other, CallIdValue, Chain);
5891 ReplaceUses(SDValue(Node, 0), SDValue(New, 0)); // Chain
5892 CurDAG->RemoveDeadNode(Node);
5893 return;
5894 }
5895 case ISD::PREALLOCATED_ARG: {
5896 auto *MFI = CurDAG->getMachineFunction().getInfo<X86MachineFunctionInfo>();
5897 auto CallId = MFI->getPreallocatedIdForCallSite(
5898 cast<SrcValueSDNode>(Node->getOperand(1))->getValue());
5899 SDValue Chain = Node->getOperand(0);
5900 SDValue CallIdValue = CurDAG->getTargetConstant(CallId, dl, MVT::i32);
5901 SDValue ArgIndex = Node->getOperand(2);
5902 SDValue Ops[3];
5903 Ops[0] = CallIdValue;
5904 Ops[1] = ArgIndex;
5905 Ops[2] = Chain;
5906 MachineSDNode *New = CurDAG->getMachineNode(
5907 TargetOpcode::PREALLOCATED_ARG, dl,
5908 CurDAG->getVTList(TLI->getPointerTy(CurDAG->getDataLayout()),
5909 MVT::Other),
5910 Ops);
5911 ReplaceUses(SDValue(Node, 0), SDValue(New, 0)); // Arg pointer
5912 ReplaceUses(SDValue(Node, 1), SDValue(New, 1)); // Chain
5913 CurDAG->RemoveDeadNode(Node);
5914 return;
5915 }
5916 case X86ISD::AESENCWIDE128KL:
5917 case X86ISD::AESDECWIDE128KL:
5918 case X86ISD::AESENCWIDE256KL:
5919 case X86ISD::AESDECWIDE256KL: {
5920 if (!Subtarget->hasWIDEKL())
5921 break;
5922
5923 unsigned Opcode;
5924 switch (Node->getOpcode()) {
5925 default:
5926 llvm_unreachable("Unexpected opcode!")__builtin_unreachable();
5927 case X86ISD::AESENCWIDE128KL:
5928 Opcode = X86::AESENCWIDE128KL;
5929 break;
5930 case X86ISD::AESDECWIDE128KL:
5931 Opcode = X86::AESDECWIDE128KL;
5932 break;
5933 case X86ISD::AESENCWIDE256KL:
5934 Opcode = X86::AESENCWIDE256KL;
5935 break;
5936 case X86ISD::AESDECWIDE256KL:
5937 Opcode = X86::AESDECWIDE256KL;
5938 break;
5939 }
5940
5941 SDValue Chain = Node->getOperand(0);
5942 SDValue Addr = Node->getOperand(1);
5943
5944 SDValue Base, Scale, Index, Disp, Segment;
5945 if (!selectAddr(Node, Addr, Base, Scale, Index, Disp, Segment))
5946 break;
5947
5948 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM0, Node->getOperand(2),
5949 SDValue());
5950 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM1, Node->getOperand(3),
5951 Chain.getValue(1));
5952 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM2, Node->getOperand(4),
5953 Chain.getValue(1));
5954 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM3, Node->getOperand(5),
5955 Chain.getValue(1));
5956 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM4, Node->getOperand(6),
5957 Chain.getValue(1));
5958 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM5, Node->getOperand(7),
5959 Chain.getValue(1));
5960 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM6, Node->getOperand(8),
5961 Chain.getValue(1));
5962 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM7, Node->getOperand(9),
5963 Chain.getValue(1));
5964
5965 MachineSDNode *Res = CurDAG->getMachineNode(
5966 Opcode, dl, Node->getVTList(),
5967 {Base, Scale, Index, Disp, Segment, Chain, Chain.getValue(1)});
5968 CurDAG->setNodeMemRefs(Res, cast<MemSDNode>(Node)->getMemOperand());
5969 ReplaceNode(Node, Res);
5970 return;
5971 }
5972 }
5973
5974 SelectCode(Node);
5975}
5976
5977bool X86DAGToDAGISel::
5978SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
5979 std::vector<SDValue> &OutOps) {
5980 SDValue Op0, Op1, Op2, Op3, Op4;
5981 switch (ConstraintID) {
5982 default:
5983 llvm_unreachable("Unexpected asm memory constraint")__builtin_unreachable();
5984 case InlineAsm::Constraint_o: // offsetable ??
5985 case InlineAsm::Constraint_v: // not offsetable ??
5986 case InlineAsm::Constraint_m: // memory
5987 case InlineAsm::Constraint_X:
5988 if (!selectAddr(nullptr, Op, Op0, Op1, Op2, Op3, Op4))
5989 return true;
5990 break;
5991 }
5992
5993 OutOps.push_back(Op0);
5994 OutOps.push_back(Op1);
5995 OutOps.push_back(Op2);
5996 OutOps.push_back(Op3);
5997 OutOps.push_back(Op4);
5998 return false;
5999}
6000
6001/// This pass converts a legalized DAG into a X86-specific DAG,
6002/// ready for instruction scheduling.
6003FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
6004 CodeGenOpt::Level OptLevel) {
6005 return new X86DAGToDAGISel(TM, OptLevel);
6006}

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support/Casting.h

1//===- llvm/Support/Casting.h - Allow flexible, checked, casts --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the isa<X>(), cast<X>(), dyn_cast<X>(), cast_or_null<X>(),
10// and dyn_cast_or_null<X>() templates.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_SUPPORT_CASTING_H
15#define LLVM_SUPPORT_CASTING_H
16
17#include "llvm/Support/Compiler.h"
18#include "llvm/Support/type_traits.h"
19#include <cassert>
20#include <memory>
21#include <type_traits>
22
23namespace llvm {
24
25//===----------------------------------------------------------------------===//
26// isa<x> Support Templates
27//===----------------------------------------------------------------------===//
28
29// Define a template that can be specialized by smart pointers to reflect the
30// fact that they are automatically dereferenced, and are not involved with the
31// template selection process... the default implementation is a noop.
32//
33template<typename From> struct simplify_type {
34 using SimpleType = From; // The real type this represents...
35
36 // An accessor to get the real value...
37 static SimpleType &getSimplifiedValue(From &Val) { return Val; }
38};
39
40template<typename From> struct simplify_type<const From> {
41 using NonConstSimpleType = typename simplify_type<From>::SimpleType;
42 using SimpleType =
43 typename add_const_past_pointer<NonConstSimpleType>::type;
44 using RetType =
45 typename add_lvalue_reference_if_not_pointer<SimpleType>::type;
46
47 static RetType getSimplifiedValue(const From& Val) {
48 return simplify_type<From>::getSimplifiedValue(const_cast<From&>(Val));
49 }
50};
51
52// The core of the implementation of isa<X> is here; To and From should be
53// the names of classes. This template can be specialized to customize the
54// implementation of isa<> without rewriting it from scratch.
55template <typename To, typename From, typename Enabler = void>
56struct isa_impl {
57 static inline bool doit(const From &Val) {
58 return To::classof(&Val);
59 }
60};
61
62/// Always allow upcasts, and perform no dynamic check for them.
63template <typename To, typename From>
64struct isa_impl<To, From, std::enable_if_t<std::is_base_of<To, From>::value>> {
65 static inline bool doit(const From &) { return true; }
66};
67
68template <typename To, typename From> struct isa_impl_cl {
69 static inline bool doit(const From &Val) {
70 return isa_impl<To, From>::doit(Val);
71 }
72};
73
74template <typename To, typename From> struct isa_impl_cl<To, const From> {
75 static inline bool doit(const From &Val) {
76 return isa_impl<To, From>::doit(Val);
77 }
78};
79
80template <typename To, typename From>
81struct isa_impl_cl<To, const std::unique_ptr<From>> {
82 static inline bool doit(const std::unique_ptr<From> &Val) {
83 assert(Val && "isa<> used on a null pointer")((void)0);
84 return isa_impl_cl<To, From>::doit(*Val);
85 }
86};
87
88template <typename To, typename From> struct isa_impl_cl<To, From*> {
89 static inline bool doit(const From *Val) {
90 assert(Val && "isa<> used on a null pointer")((void)0);
91 return isa_impl<To, From>::doit(*Val);
92 }
93};
94
95template <typename To, typename From> struct isa_impl_cl<To, From*const> {
96 static inline bool doit(const From *Val) {
97 assert(Val && "isa<> used on a null pointer")((void)0);
98 return isa_impl<To, From>::doit(*Val);
99 }
100};
101
102template <typename To, typename From> struct isa_impl_cl<To, const From*> {
103 static inline bool doit(const From *Val) {
104 assert(Val && "isa<> used on a null pointer")((void)0);
105 return isa_impl<To, From>::doit(*Val);
106 }
107};
108
109template <typename To, typename From> struct isa_impl_cl<To, const From*const> {
110 static inline bool doit(const From *Val) {
111 assert(Val && "isa<> used on a null pointer")((void)0);
112 return isa_impl<To, From>::doit(*Val);
113 }
114};
115
116template<typename To, typename From, typename SimpleFrom>
117struct isa_impl_wrap {
118 // When From != SimplifiedType, we can simplify the type some more by using
119 // the simplify_type template.
120 static bool doit(const From &Val) {
121 return isa_impl_wrap<To, SimpleFrom,
122 typename simplify_type<SimpleFrom>::SimpleType>::doit(
123 simplify_type<const From>::getSimplifiedValue(Val));
124 }
125};
126
127template<typename To, typename FromTy>
128struct isa_impl_wrap<To, FromTy, FromTy> {
129 // When From == SimpleType, we are as simple as we are going to get.
130 static bool doit(const FromTy &Val) {
131 return isa_impl_cl<To,FromTy>::doit(Val);
132 }
133};
134
135// isa<X> - Return true if the parameter to the template is an instance of one
136// of the template type arguments. Used like this:
137//
138// if (isa<Type>(myVal)) { ... }
139// if (isa<Type0, Type1, Type2>(myVal)) { ... }
140//
141template <class X, class Y> LLVM_NODISCARD[[clang::warn_unused_result]] inline bool isa(const Y &Val) {
142 return isa_impl_wrap<X, const Y,
143 typename simplify_type<const Y>::SimpleType>::doit(Val);
144}
145
146template <typename First, typename Second, typename... Rest, typename Y>
147LLVM_NODISCARD[[clang::warn_unused_result]] inline bool isa(const Y &Val) {
148 return isa<First>(Val) || isa<Second, Rest...>(Val);
149}
150
151// isa_and_nonnull<X> - Functionally identical to isa, except that a null value
152// is accepted.
153//
154template <typename... X, class Y>
155LLVM_NODISCARD[[clang::warn_unused_result]] inline bool isa_and_nonnull(const Y &Val) {
156 if (!Val)
157 return false;
158 return isa<X...>(Val);
159}
160
161//===----------------------------------------------------------------------===//
162// cast<x> Support Templates
163//===----------------------------------------------------------------------===//
164
165template<class To, class From> struct cast_retty;
166
167// Calculate what type the 'cast' function should return, based on a requested
168// type of To and a source type of From.
169template<class To, class From> struct cast_retty_impl {
170 using ret_type = To &; // Normal case, return Ty&
171};
172template<class To, class From> struct cast_retty_impl<To, const From> {
173 using ret_type = const To &; // Normal case, return Ty&
174};
175
176template<class To, class From> struct cast_retty_impl<To, From*> {
177 using ret_type = To *; // Pointer arg case, return Ty*
178};
179
180template<class To, class From> struct cast_retty_impl<To, const From*> {
181 using ret_type = const To *; // Constant pointer arg case, return const Ty*
182};
183
184template<class To, class From> struct cast_retty_impl<To, const From*const> {
185 using ret_type = const To *; // Constant pointer arg case, return const Ty*
186};
187
188template <class To, class From>
189struct cast_retty_impl<To, std::unique_ptr<From>> {
190private:
191 using PointerType = typename cast_retty_impl<To, From *>::ret_type;
192 using ResultType = std::remove_pointer_t<PointerType>;
193
194public:
195 using ret_type = std::unique_ptr<ResultType>;
196};
197
198template<class To, class From, class SimpleFrom>
199struct cast_retty_wrap {
200 // When the simplified type and the from type are not the same, use the type
201 // simplifier to reduce the type, then reuse cast_retty_impl to get the
202 // resultant type.
203 using ret_type = typename cast_retty<To, SimpleFrom>::ret_type;
204};
205
206template<class To, class FromTy>
207struct cast_retty_wrap<To, FromTy, FromTy> {
208 // When the simplified type is equal to the from type, use it directly.
209 using ret_type = typename cast_retty_impl<To,FromTy>::ret_type;
210};
211
212template<class To, class From>
213struct cast_retty {
214 using ret_type = typename cast_retty_wrap<
215 To, From, typename simplify_type<From>::SimpleType>::ret_type;
216};
217
218// Ensure the non-simple values are converted using the simplify_type template
219// that may be specialized by smart pointers...
220//
221template<class To, class From, class SimpleFrom> struct cast_convert_val {
222 // This is not a simple type, use the template to simplify it...
223 static typename cast_retty<To, From>::ret_type doit(From &Val) {
224 return cast_convert_val<To, SimpleFrom,
28
Returning without writing to 'Val.Node'
225 typename simplify_type<SimpleFrom>::SimpleType>::doit(
226 simplify_type<From>::getSimplifiedValue(Val));
25
Calling 'simplify_type::getSimplifiedValue'
27
Returning from 'simplify_type::getSimplifiedValue'
227 }
228};
229
230template<class To, class FromTy> struct cast_convert_val<To,FromTy,FromTy> {
231 // This _is_ a simple type, just cast it.
232 static typename cast_retty<To, FromTy>::ret_type doit(const FromTy &Val) {
233 typename cast_retty<To, FromTy>::ret_type Res2
234 = (typename cast_retty<To, FromTy>::ret_type)const_cast<FromTy&>(Val);
235 return Res2;
236 }
237};
238
239template <class X> struct is_simple_type {
240 static const bool value =
241 std::is_same<X, typename simplify_type<X>::SimpleType>::value;
242};
243
244// cast<X> - Return the argument parameter cast to the specified type. This
245// casting operator asserts that the type is correct, so it does not return null
246// on failure. It does not allow a null argument (use cast_or_null for that).
247// It is typically used like this:
248//
249// cast<Instruction>(myVal)->getParent()
250//
251template <class X, class Y>
252inline std::enable_if_t<!is_simple_type<Y>::value,
253 typename cast_retty<X, const Y>::ret_type>
254cast(const Y &Val) {
255 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")((void)0);
256 return cast_convert_val<
257 X, const Y, typename simplify_type<const Y>::SimpleType>::doit(Val);
258}
259
260template <class X, class Y>
261inline typename cast_retty<X, Y>::ret_type cast(Y &Val) {
262 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")((void)0);
263 return cast_convert_val<X, Y,
24
Calling 'cast_convert_val::doit'
29
Returning from 'cast_convert_val::doit'
30
Returning without writing to 'Val.Node'
264 typename simplify_type<Y>::SimpleType>::doit(Val);
265}
266
267template <class X, class Y>
268inline typename cast_retty<X, Y *>::ret_type cast(Y *Val) {
269 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")((void)0);
270 return cast_convert_val<X, Y*,
271 typename simplify_type<Y*>::SimpleType>::doit(Val);
272}
273
274template <class X, class Y>
275inline typename cast_retty<X, std::unique_ptr<Y>>::ret_type
276cast(std::unique_ptr<Y> &&Val) {
277 assert(isa<X>(Val.get()) && "cast<Ty>() argument of incompatible type!")((void)0);
278 using ret_type = typename cast_retty<X, std::unique_ptr<Y>>::ret_type;
279 return ret_type(
280 cast_convert_val<X, Y *, typename simplify_type<Y *>::SimpleType>::doit(
281 Val.release()));
282}
283
284// cast_or_null<X> - Functionally identical to cast, except that a null value is
285// accepted.
286//
287template <class X, class Y>
288LLVM_NODISCARD[[clang::warn_unused_result]] inline std::enable_if_t<
289 !is_simple_type<Y>::value, typename cast_retty<X, const Y>::ret_type>
290cast_or_null(const Y &Val) {
291 if (!Val)
292 return nullptr;
293 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")((void)0);
294 return cast<X>(Val);
295}
296
297template <class X, class Y>
298LLVM_NODISCARD[[clang::warn_unused_result]] inline std::enable_if_t<!is_simple_type<Y>::value,
299 typename cast_retty<X, Y>::ret_type>
300cast_or_null(Y &Val) {
301 if (!Val)
302 return nullptr;
303 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")((void)0);
304 return cast<X>(Val);
305}
306
307template <class X, class Y>
308LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type
309cast_or_null(Y *Val) {
310 if (!Val) return nullptr;
311 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")((void)0);
312 return cast<X>(Val);
313}
314
315template <class X, class Y>
316inline typename cast_retty<X, std::unique_ptr<Y>>::ret_type
317cast_or_null(std::unique_ptr<Y> &&Val) {
318 if (!Val)
319 return nullptr;
320 return cast<X>(std::move(Val));
321}
322
323// dyn_cast<X> - Return the argument parameter cast to the specified type. This
324// casting operator returns null if the argument is of the wrong type, so it can
325// be used to test for a type as well as cast if successful. This should be
326// used in the context of an if statement like this:
327//
328// if (const Instruction *I = dyn_cast<Instruction>(myVal)) { ... }
329//
330
331template <class X, class Y>
332LLVM_NODISCARD[[clang::warn_unused_result]] inline std::enable_if_t<
333 !is_simple_type<Y>::value, typename cast_retty<X, const Y>::ret_type>
334dyn_cast(const Y &Val) {
335 return isa<X>(Val) ? cast<X>(Val) : nullptr;
336}
337
338template <class X, class Y>
339LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y>::ret_type dyn_cast(Y &Val) {
340 return isa<X>(Val) ? cast<X>(Val) : nullptr;
21
Assuming 'Val' is a 'RegisterSDNode'
22
'?' condition is true
23
Calling 'cast<llvm::RegisterSDNode, llvm::SDValue>'
31
Returning from 'cast<llvm::RegisterSDNode, llvm::SDValue>'
32
Returning without writing to 'Val.Node'
341}
342
343template <class X, class Y>
344LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type dyn_cast(Y *Val) {
345 return isa<X>(Val) ? cast<X>(Val) : nullptr;
346}
347
348// dyn_cast_or_null<X> - Functionally identical to dyn_cast, except that a null
349// value is accepted.
350//
351template <class X, class Y>
352LLVM_NODISCARD[[clang::warn_unused_result]] inline std::enable_if_t<
353 !is_simple_type<Y>::value, typename cast_retty<X, const Y>::ret_type>
354dyn_cast_or_null(const Y &Val) {
355 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
356}
357
358template <class X, class Y>
359LLVM_NODISCARD[[clang::warn_unused_result]] inline std::enable_if_t<!is_simple_type<Y>::value,
360 typename cast_retty<X, Y>::ret_type>
361dyn_cast_or_null(Y &Val) {
362 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
363}
364
365template <class X, class Y>
366LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type
367dyn_cast_or_null(Y *Val) {
368 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
369}
370
371// unique_dyn_cast<X> - Given a unique_ptr<Y>, try to return a unique_ptr<X>,
372// taking ownership of the input pointer iff isa<X>(Val) is true. If the
373// cast is successful, From refers to nullptr on exit and the casted value
374// is returned. If the cast is unsuccessful, the function returns nullptr
375// and From is unchanged.
376template <class X, class Y>
377LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast(std::unique_ptr<Y> &Val)
378 -> decltype(cast<X>(Val)) {
379 if (!isa<X>(Val))
380 return nullptr;
381 return cast<X>(std::move(Val));
382}
383
384template <class X, class Y>
385LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast(std::unique_ptr<Y> &&Val) {
386 return unique_dyn_cast<X, Y>(Val);
387}
388
389// dyn_cast_or_null<X> - Functionally identical to unique_dyn_cast, except that
390// a null value is accepted.
391template <class X, class Y>
392LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &Val)
393 -> decltype(cast<X>(Val)) {
394 if (!Val)
395 return nullptr;
396 return unique_dyn_cast<X, Y>(Val);
397}
398
399template <class X, class Y>
400LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &&Val) {
401 return unique_dyn_cast_or_null<X, Y>(Val);
402}
403
404} // end namespace llvm
405
406#endif // LLVM_SUPPORT_CASTING_H

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/CodeGen/SelectionDAGNodes.h

1//===- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file declares the SDNode class and derived classes, which are used to
10// represent the nodes and operations present in a SelectionDAG. These nodes
11// and operations are machine code level operations, with some similarities to
12// the GCC RTL representation.
13//
14// Clients should include the SelectionDAG.h file instead of this file directly.
15//
16//===----------------------------------------------------------------------===//
17
18#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
19#define LLVM_CODEGEN_SELECTIONDAGNODES_H
20
21#include "llvm/ADT/APFloat.h"
22#include "llvm/ADT/ArrayRef.h"
23#include "llvm/ADT/BitVector.h"
24#include "llvm/ADT/FoldingSet.h"
25#include "llvm/ADT/GraphTraits.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/ilist_node.h"
29#include "llvm/ADT/iterator.h"
30#include "llvm/ADT/iterator_range.h"
31#include "llvm/CodeGen/ISDOpcodes.h"
32#include "llvm/CodeGen/MachineMemOperand.h"
33#include "llvm/CodeGen/Register.h"
34#include "llvm/CodeGen/ValueTypes.h"
35#include "llvm/IR/Constants.h"
36#include "llvm/IR/DebugLoc.h"
37#include "llvm/IR/Instruction.h"
38#include "llvm/IR/Instructions.h"
39#include "llvm/IR/Metadata.h"
40#include "llvm/IR/Operator.h"
41#include "llvm/Support/AlignOf.h"
42#include "llvm/Support/AtomicOrdering.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/Support/MachineValueType.h"
46#include "llvm/Support/TypeSize.h"
47#include <algorithm>
48#include <cassert>
49#include <climits>
50#include <cstddef>
51#include <cstdint>
52#include <cstring>
53#include <iterator>
54#include <string>
55#include <tuple>
56
57namespace llvm {
58
59class APInt;
60class Constant;
61template <typename T> struct DenseMapInfo;
62class GlobalValue;
63class MachineBasicBlock;
64class MachineConstantPoolValue;
65class MCSymbol;
66class raw_ostream;
67class SDNode;
68class SelectionDAG;
69class Type;
70class Value;
71
72void checkForCycles(const SDNode *N, const SelectionDAG *DAG = nullptr,
73 bool force = false);
74
75/// This represents a list of ValueType's that has been intern'd by
76/// a SelectionDAG. Instances of this simple value class are returned by
77/// SelectionDAG::getVTList(...).
78///
79struct SDVTList {
80 const EVT *VTs;
81 unsigned int NumVTs;
82};
83
84namespace ISD {
85
86 /// Node predicates
87
88/// If N is a BUILD_VECTOR or SPLAT_VECTOR node whose elements are all the
89/// same constant or undefined, return true and return the constant value in
90/// \p SplatValue.
91bool isConstantSplatVector(const SDNode *N, APInt &SplatValue);
92
93/// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where
94/// all of the elements are ~0 or undef. If \p BuildVectorOnly is set to
95/// true, it only checks BUILD_VECTOR.
96bool isConstantSplatVectorAllOnes(const SDNode *N,
97 bool BuildVectorOnly = false);
98
99/// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where
100/// all of the elements are 0 or undef. If \p BuildVectorOnly is set to true, it
101/// only checks BUILD_VECTOR.
102bool isConstantSplatVectorAllZeros(const SDNode *N,
103 bool BuildVectorOnly = false);
104
105/// Return true if the specified node is a BUILD_VECTOR where all of the
106/// elements are ~0 or undef.
107bool isBuildVectorAllOnes(const SDNode *N);
108
109/// Return true if the specified node is a BUILD_VECTOR where all of the
110/// elements are 0 or undef.
111bool isBuildVectorAllZeros(const SDNode *N);
112
113/// Return true if the specified node is a BUILD_VECTOR node of all
114/// ConstantSDNode or undef.
115bool isBuildVectorOfConstantSDNodes(const SDNode *N);
116
117/// Return true if the specified node is a BUILD_VECTOR node of all
118/// ConstantFPSDNode or undef.
119bool isBuildVectorOfConstantFPSDNodes(const SDNode *N);
120
121/// Return true if the node has at least one operand and all operands of the
122/// specified node are ISD::UNDEF.
123bool allOperandsUndef(const SDNode *N);
124
125} // end namespace ISD
126
127//===----------------------------------------------------------------------===//
128/// Unlike LLVM values, Selection DAG nodes may return multiple
129/// values as the result of a computation. Many nodes return multiple values,
130/// from loads (which define a token and a return value) to ADDC (which returns
131/// a result and a carry value), to calls (which may return an arbitrary number
132/// of values).
133///
134/// As such, each use of a SelectionDAG computation must indicate the node that
135/// computes it as well as which return value to use from that node. This pair
136/// of information is represented with the SDValue value type.
137///
138class SDValue {
139 friend struct DenseMapInfo<SDValue>;
140
141 SDNode *Node = nullptr; // The node defining the value we are using.
142 unsigned ResNo = 0; // Which return value of the node we are using.
143
144public:
145 SDValue() = default;
146 SDValue(SDNode *node, unsigned resno);
147
148 /// get the index which selects a specific result in the SDNode
149 unsigned getResNo() const { return ResNo; }
150
151 /// get the SDNode which holds the desired result
152 SDNode *getNode() const { return Node; }
153
154 /// set the SDNode
155 void setNode(SDNode *N) { Node = N; }
156
157 inline SDNode *operator->() const { return Node; }
158
159 bool operator==(const SDValue &O) const {
160 return Node == O.Node && ResNo == O.ResNo;
161 }
162 bool operator!=(const SDValue &O) const {
163 return !operator==(O);
164 }
165 bool operator<(const SDValue &O) const {
166 return std::tie(Node, ResNo) < std::tie(O.Node, O.ResNo);
167 }
168 explicit operator bool() const {
169 return Node != nullptr;
170 }
171
172 SDValue getValue(unsigned R) const {
173 return SDValue(Node, R);
174 }
175
176 /// Return true if this node is an operand of N.
177 bool isOperandOf(const SDNode *N) const;
178
179 /// Return the ValueType of the referenced return value.
180 inline EVT getValueType() const;
181
182 /// Return the simple ValueType of the referenced return value.
183 MVT getSimpleValueType() const {
184 return getValueType().getSimpleVT();
185 }
186
187 /// Returns the size of the value in bits.
188 ///
189 /// If the value type is a scalable vector type, the scalable property will
190 /// be set and the runtime size will be a positive integer multiple of the
191 /// base size.
192 TypeSize getValueSizeInBits() const {
193 return getValueType().getSizeInBits();
194 }
195
196 uint64_t getScalarValueSizeInBits() const {
197 return getValueType().getScalarType().getFixedSizeInBits();
198 }
199
200 // Forwarding methods - These forward to the corresponding methods in SDNode.
201 inline unsigned getOpcode() const;
202 inline unsigned getNumOperands() const;
203 inline const SDValue &getOperand(unsigned i) const;
204 inline uint64_t getConstantOperandVal(unsigned i) const;
205 inline const APInt &getConstantOperandAPInt(unsigned i) const;
206 inline bool isTargetMemoryOpcode() const;
207 inline bool isTargetOpcode() const;
208 inline bool isMachineOpcode() const;
209 inline bool isUndef() const;
210 inline unsigned getMachineOpcode() const;
211 inline const DebugLoc &getDebugLoc() const;
212 inline void dump() const;
213 inline void dump(const SelectionDAG *G) const;
214 inline void dumpr() const;
215 inline void dumpr(const SelectionDAG *G) const;
216
217 /// Return true if this operand (which must be a chain) reaches the
218 /// specified operand without crossing any side-effecting instructions.
219 /// In practice, this looks through token factors and non-volatile loads.
220 /// In order to remain efficient, this only
221 /// looks a couple of nodes in, it does not do an exhaustive search.
222 bool reachesChainWithoutSideEffects(SDValue Dest,
223 unsigned Depth = 2) const;
224
225 /// Return true if there are no nodes using value ResNo of Node.
226 inline bool use_empty() const;
227
228 /// Return true if there is exactly one node using value ResNo of Node.
229 inline bool hasOneUse() const;
230};
231
232template<> struct DenseMapInfo<SDValue> {
233 static inline SDValue getEmptyKey() {
234 SDValue V;
235 V.ResNo = -1U;
236 return V;
237 }
238
239 static inline SDValue getTombstoneKey() {
240 SDValue V;
241 V.ResNo = -2U;
242 return V;
243 }
244
245 static unsigned getHashValue(const SDValue &Val) {
246 return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
247 (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
248 }
249
250 static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
251 return LHS == RHS;
252 }
253};
254
255/// Allow casting operators to work directly on
256/// SDValues as if they were SDNode*'s.
257template<> struct simplify_type<SDValue> {
258 using SimpleType = SDNode *;
259
260 static SimpleType getSimplifiedValue(SDValue &Val) {
261 return Val.getNode();
26
Returning without writing to 'Val.Node'
262 }
263};
264template<> struct simplify_type<const SDValue> {
265 using SimpleType = /*const*/ SDNode *;
266
267 static SimpleType getSimplifiedValue(const SDValue &Val) {
268 return Val.getNode();
269 }
270};
271
272/// Represents a use of a SDNode. This class holds an SDValue,
273/// which records the SDNode being used and the result number, a
274/// pointer to the SDNode using the value, and Next and Prev pointers,
275/// which link together all the uses of an SDNode.
276///
277class SDUse {
278 /// Val - The value being used.
279 SDValue Val;
280 /// User - The user of this value.
281 SDNode *User = nullptr;
282 /// Prev, Next - Pointers to the uses list of the SDNode referred by
283 /// this operand.
284 SDUse **Prev = nullptr;
285 SDUse *Next = nullptr;
286
287public:
288 SDUse() = default;
289 SDUse(const SDUse &U) = delete;
290 SDUse &operator=(const SDUse &) = delete;
291
292 /// Normally SDUse will just implicitly convert to an SDValue that it holds.
293 operator const SDValue&() const { return Val; }
294
295 /// If implicit conversion to SDValue doesn't work, the get() method returns
296 /// the SDValue.
297 const SDValue &get() const { return Val; }
298
299 /// This returns the SDNode that contains this Use.
300 SDNode *getUser() { return User; }
301
302 /// Get the next SDUse in the use list.
303 SDUse *getNext() const { return Next; }
304
305 /// Convenience function for get().getNode().
306 SDNode *getNode() const { return Val.getNode(); }
307 /// Convenience function for get().getResNo().
308 unsigned getResNo() const { return Val.getResNo(); }
309 /// Convenience function for get().getValueType().
310 EVT getValueType() const { return Val.getValueType(); }
311
312 /// Convenience function for get().operator==
313 bool operator==(const SDValue &V) const {
314 return Val == V;
315 }
316
317 /// Convenience function for get().operator!=
318 bool operator!=(const SDValue &V) const {
319 return Val != V;
320 }
321
322 /// Convenience function for get().operator<
323 bool operator<(const SDValue &V) const {
324 return Val < V;
325 }
326
327private:
328 friend class SelectionDAG;
329 friend class SDNode;
330 // TODO: unfriend HandleSDNode once we fix its operand handling.
331 friend class HandleSDNode;
332
333 void setUser(SDNode *p) { User = p; }
334
335 /// Remove this use from its existing use list, assign it the
336 /// given value, and add it to the new value's node's use list.
337 inline void set(const SDValue &V);
338 /// Like set, but only supports initializing a newly-allocated
339 /// SDUse with a non-null value.
340 inline void setInitial(const SDValue &V);
341 /// Like set, but only sets the Node portion of the value,
342 /// leaving the ResNo portion unmodified.
343 inline void setNode(SDNode *N);
344
345 void addToList(SDUse **List) {
346 Next = *List;
347 if (Next) Next->Prev = &Next;
348 Prev = List;
349 *List = this;
350 }
351
352 void removeFromList() {
353 *Prev = Next;
354 if (Next) Next->Prev = Prev;
355 }
356};
357
358/// simplify_type specializations - Allow casting operators to work directly on
359/// SDValues as if they were SDNode*'s.
360template<> struct simplify_type<SDUse> {
361 using SimpleType = SDNode *;
362
363 static SimpleType getSimplifiedValue(SDUse &Val) {
364 return Val.getNode();
365 }
366};
367
368/// These are IR-level optimization flags that may be propagated to SDNodes.
369/// TODO: This data structure should be shared by the IR optimizer and the
370/// the backend.
371struct SDNodeFlags {
372private:
373 bool NoUnsignedWrap : 1;
374 bool NoSignedWrap : 1;
375 bool Exact : 1;
376 bool NoNaNs : 1;
377 bool NoInfs : 1;
378 bool NoSignedZeros : 1;
379 bool AllowReciprocal : 1;
380 bool AllowContract : 1;
381 bool ApproximateFuncs : 1;
382 bool AllowReassociation : 1;
383
384 // We assume instructions do not raise floating-point exceptions by default,
385 // and only those marked explicitly may do so. We could choose to represent
386 // this via a positive "FPExcept" flags like on the MI level, but having a
387 // negative "NoFPExcept" flag here (that defaults to true) makes the flag
388 // intersection logic more straightforward.
389 bool NoFPExcept : 1;
390
391public:
392 /// Default constructor turns off all optimization flags.
393 SDNodeFlags()
394 : NoUnsignedWrap(false), NoSignedWrap(false), Exact(false), NoNaNs(false),
395 NoInfs(false), NoSignedZeros(false), AllowReciprocal(false),
396 AllowContract(false), ApproximateFuncs(false),
397 AllowReassociation(false), NoFPExcept(false) {}
398
399 /// Propagate the fast-math-flags from an IR FPMathOperator.
400 void copyFMF(const FPMathOperator &FPMO) {
401 setNoNaNs(FPMO.hasNoNaNs());
402 setNoInfs(FPMO.hasNoInfs());
403 setNoSignedZeros(FPMO.hasNoSignedZeros());
404 setAllowReciprocal(FPMO.hasAllowReciprocal());
405 setAllowContract(FPMO.hasAllowContract());
406 setApproximateFuncs(FPMO.hasApproxFunc());
407 setAllowReassociation(FPMO.hasAllowReassoc());
408 }
409
410 // These are mutators for each flag.
411 void setNoUnsignedWrap(bool b) { NoUnsignedWrap = b; }
412 void setNoSignedWrap(bool b) { NoSignedWrap = b; }
413 void setExact(bool b) { Exact = b; }
414 void setNoNaNs(bool b) { NoNaNs = b; }
415 void setNoInfs(bool b) { NoInfs = b; }
416 void setNoSignedZeros(bool b) { NoSignedZeros = b; }
417 void setAllowReciprocal(bool b) { AllowReciprocal = b; }
418 void setAllowContract(bool b) { AllowContract = b; }
419 void setApproximateFuncs(bool b) { ApproximateFuncs = b; }
420 void setAllowReassociation(bool b) { AllowReassociation = b; }
421 void setNoFPExcept(bool b) { NoFPExcept = b; }
422
423 // These are accessors for each flag.
424 bool hasNoUnsignedWrap() const { return NoUnsignedWrap; }
425 bool hasNoSignedWrap() const { return NoSignedWrap; }
426 bool hasExact() const { return Exact; }
427 bool hasNoNaNs() const { return NoNaNs; }
428 bool hasNoInfs() const { return NoInfs; }
429 bool hasNoSignedZeros() const { return NoSignedZeros; }
430 bool hasAllowReciprocal() const { return AllowReciprocal; }
431 bool hasAllowContract() const { return AllowContract; }
432 bool hasApproximateFuncs() const { return ApproximateFuncs; }
433 bool hasAllowReassociation() const { return AllowReassociation; }
434 bool hasNoFPExcept() const { return NoFPExcept; }
435
436 /// Clear any flags in this flag set that aren't also set in Flags. All
437 /// flags will be cleared if Flags are undefined.
438 void intersectWith(const SDNodeFlags Flags) {
439 NoUnsignedWrap &= Flags.NoUnsignedWrap;
440 NoSignedWrap &= Flags.NoSignedWrap;
441 Exact &= Flags.Exact;
442 NoNaNs &= Flags.NoNaNs;
443 NoInfs &= Flags.NoInfs;
444 NoSignedZeros &= Flags.NoSignedZeros;
445 AllowReciprocal &= Flags.AllowReciprocal;
446 AllowContract &= Flags.AllowContract;
447 ApproximateFuncs &= Flags.ApproximateFuncs;
448 AllowReassociation &= Flags.AllowReassociation;
449 NoFPExcept &= Flags.NoFPExcept;
450 }
451};
452
453/// Represents one node in the SelectionDAG.
454///
455class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
456private:
457 /// The operation that this node performs.
458 int16_t NodeType;
459
460protected:
461 // We define a set of mini-helper classes to help us interpret the bits in our
462 // SubclassData. These are designed to fit within a uint16_t so they pack
463 // with NodeType.
464
465#if defined(_AIX) && (!defined(__GNUC__4) || defined(__clang__1))
466// Except for GCC; by default, AIX compilers store bit-fields in 4-byte words
467// and give the `pack` pragma push semantics.
468#define BEGIN_TWO_BYTE_PACK() _Pragma("pack(2)")pack(2)
469#define END_TWO_BYTE_PACK() _Pragma("pack(pop)")pack(pop)
470#else
471#define BEGIN_TWO_BYTE_PACK()
472#define END_TWO_BYTE_PACK()
473#endif
474
475BEGIN_TWO_BYTE_PACK()
476 class SDNodeBitfields {
477 friend class SDNode;
478 friend class MemIntrinsicSDNode;
479 friend class MemSDNode;
480 friend class SelectionDAG;
481
482 uint16_t HasDebugValue : 1;
483 uint16_t IsMemIntrinsic : 1;
484 uint16_t IsDivergent : 1;
485 };
486 enum { NumSDNodeBits = 3 };
487
488 class ConstantSDNodeBitfields {
489 friend class ConstantSDNode;
490
491 uint16_t : NumSDNodeBits;
492
493 uint16_t IsOpaque : 1;
494 };
495
496 class MemSDNodeBitfields {
497 friend class MemSDNode;
498 friend class MemIntrinsicSDNode;
499 friend class AtomicSDNode;
500
501 uint16_t : NumSDNodeBits;
502
503 uint16_t IsVolatile : 1;
504 uint16_t IsNonTemporal : 1;
505 uint16_t IsDereferenceable : 1;
506 uint16_t IsInvariant : 1;
507 };
508 enum { NumMemSDNodeBits = NumSDNodeBits + 4 };
509
510 class LSBaseSDNodeBitfields {
511 friend class LSBaseSDNode;
512 friend class MaskedLoadStoreSDNode;
513 friend class MaskedGatherScatterSDNode;
514
515 uint16_t : NumMemSDNodeBits;
516
517 // This storage is shared between disparate class hierarchies to hold an
518 // enumeration specific to the class hierarchy in use.
519 // LSBaseSDNode => enum ISD::MemIndexedMode
520 // MaskedLoadStoreBaseSDNode => enum ISD::MemIndexedMode
521 // MaskedGatherScatterSDNode => enum ISD::MemIndexType
522 uint16_t AddressingMode : 3;
523 };
524 enum { NumLSBaseSDNodeBits = NumMemSDNodeBits + 3 };
525
526 class LoadSDNodeBitfields {
527 friend class LoadSDNode;
528 friend class MaskedLoadSDNode;
529 friend class MaskedGatherSDNode;
530
531 uint16_t : NumLSBaseSDNodeBits;
532
533 uint16_t ExtTy : 2; // enum ISD::LoadExtType
534 uint16_t IsExpanding : 1;
535 };
536
537 class StoreSDNodeBitfields {
538 friend class StoreSDNode;
539 friend class MaskedStoreSDNode;
540 friend class MaskedScatterSDNode;
541
542 uint16_t : NumLSBaseSDNodeBits;
543
544 uint16_t IsTruncating : 1;
545 uint16_t IsCompressing : 1;
546 };
547
548 union {
549 char RawSDNodeBits[sizeof(uint16_t)];
550 SDNodeBitfields SDNodeBits;
551 ConstantSDNodeBitfields ConstantSDNodeBits;
552 MemSDNodeBitfields MemSDNodeBits;
553 LSBaseSDNodeBitfields LSBaseSDNodeBits;
554 LoadSDNodeBitfields LoadSDNodeBits;
555 StoreSDNodeBitfields StoreSDNodeBits;
556 };
557END_TWO_BYTE_PACK()
558#undef BEGIN_TWO_BYTE_PACK
559#undef END_TWO_BYTE_PACK
560
561 // RawSDNodeBits must cover the entirety of the union. This means that all of
562 // the union's members must have size <= RawSDNodeBits. We write the RHS as
563 // "2" instead of sizeof(RawSDNodeBits) because MSVC can't handle the latter.
564 static_assert(sizeof(SDNodeBitfields) <= 2, "field too wide");
565 static_assert(sizeof(ConstantSDNodeBitfields) <= 2, "field too wide");
566 static_assert(sizeof(MemSDNodeBitfields) <= 2, "field too wide");
567 static_assert(sizeof(LSBaseSDNodeBitfields) <= 2, "field too wide");
568 static_assert(sizeof(LoadSDNodeBitfields) <= 2, "field too wide");
569 static_assert(sizeof(StoreSDNodeBitfields) <= 2, "field too wide");
570
571private:
572 friend class SelectionDAG;
573 // TODO: unfriend HandleSDNode once we fix its operand handling.
574 friend class HandleSDNode;
575
576 /// Unique id per SDNode in the DAG.
577 int NodeId = -1;
578
579 /// The values that are used by this operation.
580 SDUse *OperandList = nullptr;
581
582 /// The types of the values this node defines. SDNode's may
583 /// define multiple values simultaneously.
584 const EVT *ValueList;
585
586 /// List of uses for this SDNode.
587 SDUse *UseList = nullptr;
588
589 /// The number of entries in the Operand/Value list.
590 unsigned short NumOperands = 0;
591 unsigned short NumValues;
592
593 // The ordering of the SDNodes. It roughly corresponds to the ordering of the
594 // original LLVM instructions.
595 // This is used for turning off scheduling, because we'll forgo
596 // the normal scheduling algorithms and output the instructions according to
597 // this ordering.
598 unsigned IROrder;
599
600 /// Source line information.
601 DebugLoc debugLoc;
602
603 /// Return a pointer to the specified value type.
604 static const EVT *getValueTypeList(EVT VT);
605
606 SDNodeFlags Flags;
607
608public:
609 /// Unique and persistent id per SDNode in the DAG.
610 /// Used for debug printing.
611 uint16_t PersistentId;
612
613 //===--------------------------------------------------------------------===//
614 // Accessors
615 //
616
617 /// Return the SelectionDAG opcode value for this node. For
618 /// pre-isel nodes (those for which isMachineOpcode returns false), these
619 /// are the opcode values in the ISD and <target>ISD namespaces. For
620 /// post-isel opcodes, see getMachineOpcode.
621 unsigned getOpcode() const { return (unsigned short)NodeType; }
622
623 /// Test if this node has a target-specific opcode (in the
624 /// \<target\>ISD namespace).
625 bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
626
627 /// Test if this node has a target-specific opcode that may raise
628 /// FP exceptions (in the \<target\>ISD namespace and greater than
629 /// FIRST_TARGET_STRICTFP_OPCODE). Note that all target memory
630 /// opcode are currently automatically considered to possibly raise
631 /// FP exceptions as well.
632 bool isTargetStrictFPOpcode() const {
633 return NodeType >= ISD::FIRST_TARGET_STRICTFP_OPCODE;
634 }
635
636 /// Test if this node has a target-specific
637 /// memory-referencing opcode (in the \<target\>ISD namespace and
638 /// greater than FIRST_TARGET_MEMORY_OPCODE).
639 bool isTargetMemoryOpcode() const {
640 return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
641 }
642
643 /// Return true if the type of the node type undefined.
644 bool isUndef() const { return NodeType == ISD::UNDEF; }
645
646 /// Test if this node is a memory intrinsic (with valid pointer information).
647 /// INTRINSIC_W_CHAIN and INTRINSIC_VOID nodes are sometimes created for
648 /// non-memory intrinsics (with chains) that are not really instances of
649 /// MemSDNode. For such nodes, we need some extra state to determine the
650 /// proper classof relationship.
651 bool isMemIntrinsic() const {
652 return (NodeType == ISD::INTRINSIC_W_CHAIN ||
653 NodeType == ISD::INTRINSIC_VOID) &&
654 SDNodeBits.IsMemIntrinsic;
655 }
656
657 /// Test if this node is a strict floating point pseudo-op.
658 bool isStrictFPOpcode() {
659 switch (NodeType) {
660 default:
661 return false;
662 case ISD::STRICT_FP16_TO_FP:
663 case ISD::STRICT_FP_TO_FP16:
664#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
665 case ISD::STRICT_##DAGN:
666#include "llvm/IR/ConstrainedOps.def"
667 return true;
668 }
669 }
670
671 /// Test if this node has a post-isel opcode, directly
672 /// corresponding to a MachineInstr opcode.
673 bool isMachineOpcode() const { return NodeType < 0; }
674
675 /// This may only be called if isMachineOpcode returns
676 /// true. It returns the MachineInstr opcode value that the node's opcode
677 /// corresponds to.
678 unsigned getMachineOpcode() const {
679 assert(isMachineOpcode() && "Not a MachineInstr opcode!")((void)0);
680 return ~NodeType;
681 }
682
683 bool getHasDebugValue() const { return SDNodeBits.HasDebugValue; }
684 void setHasDebugValue(bool b) { SDNodeBits.HasDebugValue = b; }
685
686 bool isDivergent() const { return SDNodeBits.IsDivergent; }
687
688 /// Return true if there are no uses of this node.
689 bool use_empty() const { return UseList == nullptr; }
690
691 /// Return true if there is exactly one use of this node.
692 bool hasOneUse() const { return hasSingleElement(uses()); }
693
694 /// Return the number of uses of this node. This method takes
695 /// time proportional to the number of uses.
696 size_t use_size() const { return std::distance(use_begin(), use_end()); }
697
698 /// Return the unique node id.
699 int getNodeId() const { return NodeId; }
700
701 /// Set unique node id.
702 void setNodeId(int Id) { NodeId = Id; }
703
704 /// Return the node ordering.
705 unsigned getIROrder() const { return IROrder; }
706
707 /// Set the node ordering.
708 void setIROrder(unsigned Order) { IROrder = Order; }
709
710 /// Return the source location info.
711 const DebugLoc &getDebugLoc() const { return debugLoc; }
712
713 /// Set source location info. Try to avoid this, putting
714 /// it in the constructor is preferable.
715 void setDebugLoc(DebugLoc dl) { debugLoc = std::move(dl); }
716
717 /// This class provides iterator support for SDUse
718 /// operands that use a specific SDNode.
719 class use_iterator {
720 friend class SDNode;
721
722 SDUse *Op = nullptr;
723
724 explicit use_iterator(SDUse *op) : Op(op) {}
725
726 public:
727 using iterator_category = std::forward_iterator_tag;
728 using value_type = SDUse;
729 using difference_type = std::ptrdiff_t;
730 using pointer = value_type *;
731 using reference = value_type &;
732
733 use_iterator() = default;
734 use_iterator(const use_iterator &I) : Op(I.Op) {}
735
736 bool operator==(const use_iterator &x) const {
737 return Op == x.Op;
738 }
739 bool operator!=(const use_iterator &x) const {
740 return !operator==(x);
741 }
742
743 /// Return true if this iterator is at the end of uses list.
744 bool atEnd() const { return Op == nullptr; }
745
746 // Iterator traversal: forward iteration only.
747 use_iterator &operator++() { // Preincrement
748 assert(Op && "Cannot increment end iterator!")((void)0);
749 Op = Op->getNext();
750 return *this;
751 }
752
753 use_iterator operator++(int) { // Postincrement
754 use_iterator tmp = *this; ++*this; return tmp;
755 }
756
757 /// Retrieve a pointer to the current user node.
758 SDNode *operator*() const {
759 assert(Op && "Cannot dereference end iterator!")((void)0);
760 return Op->getUser();
761 }
762
763 SDNode *operator->() const { return operator*(); }
764
765 SDUse &getUse() const { return *Op; }
766
767 /// Retrieve the operand # of this use in its user.
768 unsigned getOperandNo() const {
769 assert(Op && "Cannot dereference end iterator!")((void)0);
770 return (unsigned)(Op - Op->getUser()->OperandList);
771 }
772 };
773
774 /// Provide iteration support to walk over all uses of an SDNode.
775 use_iterator use_begin() const {
776 return use_iterator(UseList);
777 }
778
779 static use_iterator use_end() { return use_iterator(nullptr); }
780
781 inline iterator_range<use_iterator> uses() {
782 return make_range(use_begin(), use_end());
783 }
784 inline iterator_range<use_iterator> uses() const {
785 return make_range(use_begin(), use_end());
786 }
787
788 /// Return true if there are exactly NUSES uses of the indicated value.
789 /// This method ignores uses of other values defined by this operation.
790 bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
791
792 /// Return true if there are any use of the indicated value.
793 /// This method ignores uses of other values defined by this operation.
794 bool hasAnyUseOfValue(unsigned Value) const;
795
796 /// Return true if this node is the only use of N.
797 bool isOnlyUserOf(const SDNode *N) const;
798
799 /// Return true if this node is an operand of N.
800 bool isOperandOf(const SDNode *N) const;
801
802 /// Return true if this node is a predecessor of N.
803 /// NOTE: Implemented on top of hasPredecessor and every bit as
804 /// expensive. Use carefully.
805 bool isPredecessorOf(const SDNode *N) const {
806 return N->hasPredecessor(this);
807 }
808
809 /// Return true if N is a predecessor of this node.
810 /// N is either an operand of this node, or can be reached by recursively
811 /// traversing up the operands.
812 /// NOTE: This is an expensive method. Use it carefully.
813 bool hasPredecessor(const SDNode *N) const;
814
815 /// Returns true if N is a predecessor of any node in Worklist. This
816 /// helper keeps Visited and Worklist sets externally to allow unions
817 /// searches to be performed in parallel, caching of results across
818 /// queries and incremental addition to Worklist. Stops early if N is
819 /// found but will resume. Remember to clear Visited and Worklists
820 /// if DAG changes. MaxSteps gives a maximum number of nodes to visit before
821 /// giving up. The TopologicalPrune flag signals that positive NodeIds are
822 /// topologically ordered (Operands have strictly smaller node id) and search
823 /// can be pruned leveraging this.
824 static bool hasPredecessorHelper(const SDNode *N,
825 SmallPtrSetImpl<const SDNode *> &Visited,
826 SmallVectorImpl<const SDNode *> &Worklist,
827 unsigned int MaxSteps = 0,
828 bool TopologicalPrune = false) {
829 SmallVector<const SDNode *, 8> DeferredNodes;
830 if (Visited.count(N))
831 return true;
832
833 // Node Id's are assigned in three places: As a topological
834 // ordering (> 0), during legalization (results in values set to
835 // 0), new nodes (set to -1). If N has a topolgical id then we
836 // know that all nodes with ids smaller than it cannot be
837 // successors and we need not check them. Filter out all node
838 // that can't be matches. We add them to the worklist before exit
839 // in case of multiple calls. Note that during selection the topological id
840 // may be violated if a node's predecessor is selected before it. We mark
841 // this at selection negating the id of unselected successors and
842 // restricting topological pruning to positive ids.
843
844 int NId = N->getNodeId();
845 // If we Invalidated the Id, reconstruct original NId.
846 if (NId < -1)
847 NId = -(NId + 1);
848
849 bool Found = false;
850 while (!Worklist.empty()) {
851 const SDNode *M = Worklist.pop_back_val();
852 int MId = M->getNodeId();
853 if (TopologicalPrune && M->getOpcode() != ISD::TokenFactor && (NId > 0) &&
854 (MId > 0) && (MId < NId)) {
855 DeferredNodes.push_back(M);
856 continue;
857 }
858 for (const SDValue &OpV : M->op_values()) {
859 SDNode *Op = OpV.getNode();
860 if (Visited.insert(Op).second)
861 Worklist.push_back(Op);
862 if (Op == N)
863 Found = true;
864 }
865 if (Found)
866 break;
867 if (MaxSteps != 0 && Visited.size() >= MaxSteps)
868 break;
869 }
870 // Push deferred nodes back on worklist.
871 Worklist.append(DeferredNodes.begin(), DeferredNodes.end());
872 // If we bailed early, conservatively return found.
873 if (MaxSteps != 0 && Visited.size() >= MaxSteps)
874 return true;
875 return Found;
876 }
877
878 /// Return true if all the users of N are contained in Nodes.
879 /// NOTE: Requires at least one match, but doesn't require them all.
880 static bool areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N);
881
882 /// Return the number of values used by this operation.
883 unsigned getNumOperands() const { return NumOperands; }
884
885 /// Return the maximum number of operands that a SDNode can hold.
886 static constexpr size_t getMaxNumOperands() {
887 return std::numeric_limits<decltype(SDNode::NumOperands)>::max();
888 }
889
890 /// Helper method returns the integer value of a ConstantSDNode operand.
891 inline uint64_t getConstantOperandVal(unsigned Num) const;
892
893 /// Helper method returns the APInt of a ConstantSDNode operand.
894 inline const APInt &getConstantOperandAPInt(unsigned Num) const;
895
896 const SDValue &getOperand(unsigned Num) const {
897 assert(Num < NumOperands && "Invalid child # of SDNode!")((void)0);
898 return OperandList[Num];
899 }
900
901 using op_iterator = SDUse *;
902
903 op_iterator op_begin() const { return OperandList; }
904 op_iterator op_end() const { return OperandList+NumOperands; }
905 ArrayRef<SDUse> ops() const { return makeArrayRef(op_begin(), op_end()); }
906
907 /// Iterator for directly iterating over the operand SDValue's.
908 struct value_op_iterator
909 : iterator_adaptor_base<value_op_iterator, op_iterator,
910 std::random_access_iterator_tag, SDValue,
911 ptrdiff_t, value_op_iterator *,
912 value_op_iterator *> {
913 explicit value_op_iterator(SDUse *U = nullptr)
914 : iterator_adaptor_base(U) {}
915
916 const SDValue &operator*() const { return I->get(); }
917 };
918
919 iterator_range<value_op_iterator> op_values() const {
920 return make_range(value_op_iterator(op_begin()),
921 value_op_iterator(op_end()));
922 }
923
924 SDVTList getVTList() const {
925 SDVTList X = { ValueList, NumValues };
926 return X;
927 }
928
929 /// If this node has a glue operand, return the node
930 /// to which the glue operand points. Otherwise return NULL.
931 SDNode *getGluedNode() const {
932 if (getNumOperands() != 0 &&
933 getOperand(getNumOperands()-1).getValueType() == MVT::Glue)
934 return getOperand(getNumOperands()-1).getNode();
935 return nullptr;
936 }
937
938 /// If this node has a glue value with a user, return
939 /// the user (there is at most one). Otherwise return NULL.
940 SDNode *getGluedUser() const {
941 for (use_iterator UI = use_begin(), UE = use_end(); UI != UE; ++UI)
942 if (UI.getUse().get().getValueType() == MVT::Glue)
943 return *UI;
944 return nullptr;
945 }
946
947 SDNodeFlags getFlags() const { return Flags; }
948 void setFlags(SDNodeFlags NewFlags) { Flags = NewFlags; }
949
950 /// Clear any flags in this node that aren't also set in Flags.
951 /// If Flags is not in a defined state then this has no effect.
952 void intersectFlagsWith(const SDNodeFlags Flags);
953
954 /// Return the number of values defined/returned by this operator.
955 unsigned getNumValues() const { return NumValues; }
956
957 /// Return the type of a specified result.
958 EVT getValueType(unsigned ResNo) const {
959 assert(ResNo < NumValues && "Illegal result number!")((void)0);
960 return ValueList[ResNo];
961 }
962
963 /// Return the type of a specified result as a simple type.
964 MVT getSimpleValueType(unsigned ResNo) const {
965 return getValueType(ResNo).getSimpleVT();
966 }
967
968 /// Returns MVT::getSizeInBits(getValueType(ResNo)).
969 ///
970 /// If the value type is a scalable vector type, the scalable property will
971 /// be set and the runtime size will be a positive integer multiple of the
972 /// base size.
973 TypeSize getValueSizeInBits(unsigned ResNo) const {
974 return getValueType(ResNo).getSizeInBits();
975 }
976
977 using value_iterator = const EVT *;
978
979 value_iterator value_begin() const { return ValueList; }
980 value_iterator value_end() const { return ValueList+NumValues; }
981 iterator_range<value_iterator> values() const {
982 return llvm::make_range(value_begin(), value_end());
983 }
984
985 /// Return the opcode of this operation for printing.
986 std::string getOperationName(const SelectionDAG *G = nullptr) const;
987 static const char* getIndexedModeName(ISD::MemIndexedMode AM);
988 void print_types(raw_ostream &OS, const SelectionDAG *G) const;
989 void print_details(raw_ostream &OS, const SelectionDAG *G) const;
990 void print(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
991 void printr(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
992
993 /// Print a SelectionDAG node and all children down to
994 /// the leaves. The given SelectionDAG allows target-specific nodes
995 /// to be printed in human-readable form. Unlike printr, this will
996 /// print the whole DAG, including children that appear multiple
997 /// times.
998 ///
999 void printrFull(raw_ostream &O, const SelectionDAG *G = nullptr) const;
1000
1001 /// Print a SelectionDAG node and children up to
1002 /// depth "depth." The given SelectionDAG allows target-specific
1003 /// nodes to be printed in human-readable form. Unlike printr, this
1004 /// will print children that appear multiple times wherever they are
1005 /// used.
1006 ///
1007 void printrWithDepth(raw_ostream &O, const SelectionDAG *G = nullptr,
1008 unsigned depth = 100) const;
1009
1010 /// Dump this node, for debugging.
1011 void dump() const;
1012
1013 /// Dump (recursively) this node and its use-def subgraph.
1014 void dumpr() const;
1015
1016 /// Dump this node, for debugging.
1017 /// The given SelectionDAG allows target-specific nodes to be printed
1018 /// in human-readable form.
1019 void dump(const SelectionDAG *G) const;
1020
1021 /// Dump (recursively) this node and its use-def subgraph.
1022 /// The given SelectionDAG allows target-specific nodes to be printed
1023 /// in human-readable form.
1024 void dumpr(const SelectionDAG *G) const;
1025
1026 /// printrFull to dbgs(). The given SelectionDAG allows
1027 /// target-specific nodes to be printed in human-readable form.
1028 /// Unlike dumpr, this will print the whole DAG, including children
1029 /// that appear multiple times.
1030 void dumprFull(const SelectionDAG *G = nullptr) const;
1031
1032 /// printrWithDepth to dbgs(). The given
1033 /// SelectionDAG allows target-specific nodes to be printed in
1034 /// human-readable form. Unlike dumpr, this will print children
1035 /// that appear multiple times wherever they are used.
1036 ///
1037 void dumprWithDepth(const SelectionDAG *G = nullptr,
1038 unsigned depth = 100) const;
1039
1040 /// Gather unique data for the node.
1041 void Profile(FoldingSetNodeID &ID) const;
1042
1043 /// This method should only be used by the SDUse class.
1044 void addUse(SDUse &U) { U.addToList(&UseList); }
1045
1046protected:
1047 static SDVTList getSDVTList(EVT VT) {
1048 SDVTList Ret = { getValueTypeList(VT), 1 };
1049 return Ret;
1050 }
1051
1052 /// Create an SDNode.
1053 ///
1054 /// SDNodes are created without any operands, and never own the operand
1055 /// storage. To add operands, see SelectionDAG::createOperands.
1056 SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
1057 : NodeType(Opc), ValueList(VTs.VTs), NumValues(VTs.NumVTs),
1058 IROrder(Order), debugLoc(std::move(dl)) {
1059 memset(&RawSDNodeBits, 0, sizeof(RawSDNodeBits));
1060 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor")((void)0);
1061 assert(NumValues == VTs.NumVTs &&((void)0)
1062 "NumValues wasn't wide enough for its operands!")((void)0);
1063 }
1064
1065 /// Release the operands and set this node to have zero operands.
1066 void DropOperands();
1067};
1068
1069/// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed
1070/// into SDNode creation functions.
1071/// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted
1072/// from the original Instruction, and IROrder is the ordinal position of
1073/// the instruction.
1074/// When an SDNode is created after the DAG is being built, both DebugLoc and
1075/// the IROrder are propagated from the original SDNode.
1076/// So SDLoc class provides two constructors besides the default one, one to
1077/// be used by the DAGBuilder, the other to be used by others.
1078class SDLoc {
1079private:
1080 DebugLoc DL;
1081 int IROrder = 0;
1082
1083public:
1084 SDLoc() = default;
1085 SDLoc(const SDNode *N) : DL(N->getDebugLoc()), IROrder(N->getIROrder()) {}
1086 SDLoc(const SDValue V) : SDLoc(V.getNode()) {}
1087 SDLoc(const Instruction *I, int Order) : IROrder(Order) {
1088 assert(Order >= 0 && "bad IROrder")((void)0);
1089 if (I)
1090 DL = I->getDebugLoc();
1091 }
1092
1093 unsigned getIROrder() const { return IROrder; }
1094 const DebugLoc &getDebugLoc() const { return DL; }
1095};
1096
1097// Define inline functions from the SDValue class.
1098
1099inline SDValue::SDValue(SDNode *node, unsigned resno)
1100 : Node(node), ResNo(resno) {
1101 // Explicitly check for !ResNo to avoid use-after-free, because there are
1102 // callers that use SDValue(N, 0) with a deleted N to indicate successful
1103 // combines.
1104 assert((!Node || !ResNo || ResNo < Node->getNumValues()) &&((void)0)
1105 "Invalid result number for the given node!")((void)0);
1106 assert(ResNo < -2U && "Cannot use result numbers reserved for DenseMaps.")((void)0);
1107}
1108
1109inline unsigned SDValue::getOpcode() const {
1110 return Node->getOpcode();
1111}
1112
1113inline EVT SDValue::getValueType() const {
1114 return Node->getValueType(ResNo);
37
Called C++ object pointer is null
1115}
1116
1117inline unsigned SDValue::getNumOperands() const {
1118 return Node->getNumOperands();
1119}
1120
1121inline const SDValue &SDValue::getOperand(unsigned i) const {
1122 return Node->getOperand(i);
1123}
1124
1125inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
1126 return Node->getConstantOperandVal(i);
1127}
1128
1129inline const APInt &SDValue::getConstantOperandAPInt(unsigned i) const {
1130 return Node->getConstantOperandAPInt(i);
1131}
1132
1133inline bool SDValue::isTargetOpcode() const {
1134 return Node->isTargetOpcode();
1135}
1136
1137inline bool SDValue::isTargetMemoryOpcode() const {
1138 return Node->isTargetMemoryOpcode();
1139}
1140
1141inline bool SDValue::isMachineOpcode() const {
1142 return Node->isMachineOpcode();
1143}
1144
1145inline unsigned SDValue::getMachineOpcode() const {
1146 return Node->getMachineOpcode();
1147}
1148
1149inline bool SDValue::isUndef() const {
1150 return Node->isUndef();
1151}
1152
1153inline bool SDValue::use_empty() const {
1154 return !Node->hasAnyUseOfValue(ResNo);
1155}
1156
1157inline bool SDValue::hasOneUse() const {
1158 return Node->hasNUsesOfValue(1, ResNo);
1159}
1160
1161inline const DebugLoc &SDValue::getDebugLoc() const {
1162 return Node->getDebugLoc();
1163}
1164
1165inline void SDValue::dump() const {
1166 return Node->dump();
1167}
1168
1169inline void SDValue::dump(const SelectionDAG *G) const {
1170 return Node->dump(G);
1171}
1172
1173inline void SDValue::dumpr() const {
1174 return Node->dumpr();
1175}
1176
1177inline void SDValue::dumpr(const SelectionDAG *G) const {
1178 return Node->dumpr(G);
1179}
1180
1181// Define inline functions from the SDUse class.
1182
1183inline void SDUse::set(const SDValue &V) {
1184 if (Val.getNode()) removeFromList();
1185 Val = V;
1186 if (V.getNode()) V.getNode()->addUse(*this);
1187}
1188
1189inline void SDUse::setInitial(const SDValue &V) {
1190 Val = V;
1191 V.getNode()->addUse(*this);
1192}
1193
1194inline void SDUse::setNode(SDNode *N) {
1195 if (Val.getNode()) removeFromList();
1196 Val.setNode(N);
1197 if (N) N->addUse(*this);
1198}
1199
1200/// This class is used to form a handle around another node that
1201/// is persistent and is updated across invocations of replaceAllUsesWith on its
1202/// operand. This node should be directly created by end-users and not added to
1203/// the AllNodes list.
1204class HandleSDNode : public SDNode {
1205 SDUse Op;
1206
1207public:
1208 explicit HandleSDNode(SDValue X)
1209 : SDNode(ISD::HANDLENODE, 0, DebugLoc(), getSDVTList(MVT::Other)) {
1210 // HandleSDNodes are never inserted into the DAG, so they won't be
1211 // auto-numbered. Use ID 65535 as a sentinel.
1212 PersistentId = 0xffff;
1213
1214 // Manually set up the operand list. This node type is special in that it's
1215 // always stack allocated and SelectionDAG does not manage its operands.
1216 // TODO: This should either (a) not be in the SDNode hierarchy, or (b) not
1217 // be so special.
1218 Op.setUser(this);
1219 Op.setInitial(X);
1220 NumOperands = 1;
1221 OperandList = &Op;
1222 }
1223 ~HandleSDNode();
1224
1225 const SDValue &getValue() const { return Op; }
1226};
1227
1228class AddrSpaceCastSDNode : public SDNode {
1229private:
1230 unsigned SrcAddrSpace;
1231 unsigned DestAddrSpace;
1232
1233public:
1234 AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, EVT VT,
1235 unsigned SrcAS, unsigned DestAS);
1236
1237 unsigned getSrcAddressSpace() const { return SrcAddrSpace; }
1238 unsigned getDestAddressSpace() const { return DestAddrSpace; }
1239
1240 static bool classof(const SDNode *N) {
1241 return N->getOpcode() == ISD::ADDRSPACECAST;
1242 }
1243};
1244
1245/// This is an abstract virtual class for memory operations.
1246class MemSDNode : public SDNode {
1247private:
1248 // VT of in-memory value.
1249 EVT MemoryVT;
1250
1251protected:
1252 /// Memory reference information.
1253 MachineMemOperand *MMO;
1254
1255public:
1256 MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs,
1257 EVT memvt, MachineMemOperand *MMO);
1258
1259 bool readMem() const { return MMO->isLoad(); }
1260 bool writeMem() const { return MMO->isStore(); }
1261
1262 /// Returns alignment and volatility of the memory access
1263 Align getOriginalAlign() const { return MMO->getBaseAlign(); }
1264 Align getAlign() const { return MMO->getAlign(); }
1265 // FIXME: Remove once transition to getAlign is over.
1266 unsigned getAlignment() const { return MMO->getAlign().value(); }
1267
1268 /// Return the SubclassData value, without HasDebugValue. This contains an
1269 /// encoding of the volatile flag, as well as bits used by subclasses. This
1270 /// function should only be used to compute a FoldingSetNodeID value.
1271 /// The HasDebugValue bit is masked out because CSE map needs to match
1272 /// nodes with debug info with nodes without debug info. Same is about
1273 /// isDivergent bit.
1274 unsigned getRawSubclassData() const {
1275 uint16_t Data;
1276 union {
1277 char RawSDNodeBits[sizeof(uint16_t)];
1278 SDNodeBitfields SDNodeBits;
1279 };
1280 memcpy(&RawSDNodeBits, &this->RawSDNodeBits, sizeof(this->RawSDNodeBits));
1281 SDNodeBits.HasDebugValue = 0;
1282 SDNodeBits.IsDivergent = false;
1283 memcpy(&Data, &RawSDNodeBits, sizeof(RawSDNodeBits));
1284 return Data;
1285 }
1286
1287 bool isVolatile() const { return MemSDNodeBits.IsVolatile; }
1288 bool isNonTemporal() const { return MemSDNodeBits.IsNonTemporal; }
1289 bool isDereferenceable() const { return MemSDNodeBits.IsDereferenceable; }
1290 bool isInvariant() const { return MemSDNodeBits.IsInvariant; }
1291
1292 // Returns the offset from the location of the access.
1293 int64_t getSrcValueOffset() const { return MMO->getOffset(); }
1294
1295 /// Returns the AA info that describes the dereference.
1296 AAMDNodes getAAInfo() const { return MMO->getAAInfo(); }
1297
1298 /// Returns the Ranges that describes the dereference.
1299 const MDNode *getRanges() const { return MMO->getRanges(); }
1300
1301 /// Returns the synchronization scope ID for this memory operation.
1302 SyncScope::ID getSyncScopeID() const { return MMO->getSyncScopeID(); }
1303
1304 /// Return the atomic ordering requirements for this memory operation. For
1305 /// cmpxchg atomic operations, return the atomic ordering requirements when
1306 /// store occurs.
1307 AtomicOrdering getSuccessOrdering() const {
1308 return MMO->getSuccessOrdering();
1309 }
1310
1311 /// Return a single atomic ordering that is at least as strong as both the
1312 /// success and failure orderings for an atomic operation. (For operations
1313 /// other than cmpxchg, this is equivalent to getSuccessOrdering().)
1314 AtomicOrdering getMergedOrdering() const { return MMO->getMergedOrdering(); }
1315
1316 /// Return true if the memory operation ordering is Unordered or higher.
1317 bool isAtomic() const { return MMO->isAtomic(); }
1318
1319 /// Returns true if the memory operation doesn't imply any ordering
1320 /// constraints on surrounding memory operations beyond the normal memory
1321 /// aliasing rules.
1322 bool isUnordered() const { return MMO->isUnordered(); }
1323
1324 /// Returns true if the memory operation is neither atomic or volatile.
1325 bool isSimple() const { return !isAtomic() && !isVolatile(); }
1326
1327 /// Return the type of the in-memory value.
1328 EVT getMemoryVT() const { return MemoryVT; }
1329
1330 /// Return a MachineMemOperand object describing the memory
1331 /// reference performed by operation.
1332 MachineMemOperand *getMemOperand() const { return MMO; }
1333
1334 const MachinePointerInfo &getPointerInfo() const {
1335 return MMO->getPointerInfo();
1336 }
1337
1338 /// Return the address space for the associated pointer
1339 unsigned getAddressSpace() const {
1340 return getPointerInfo().getAddrSpace();
1341 }
1342
1343 /// Update this MemSDNode's MachineMemOperand information
1344 /// to reflect the alignment of NewMMO, if it has a greater alignment.
1345 /// This must only be used when the new alignment applies to all users of
1346 /// this MachineMemOperand.
1347 void refineAlignment(const MachineMemOperand *NewMMO) {
1348 MMO->refineAlignment(NewMMO);
1349 }
1350
1351 const SDValue &getChain() const { return getOperand(0); }
1352
1353 const SDValue &getBasePtr() const {
1354 switch (getOpcode()) {
1355 case ISD::STORE:
1356 case ISD::MSTORE:
1357 return getOperand(2);
1358 case ISD::MGATHER:
1359 case ISD::MSCATTER:
1360 return getOperand(3);
1361 default:
1362 return getOperand(1);
1363 }
1364 }
1365
1366 // Methods to support isa and dyn_cast
1367 static bool classof(const SDNode *N) {
1368 // For some targets, we lower some target intrinsics to a MemIntrinsicNode
1369 // with either an intrinsic or a target opcode.
1370 switch (N->getOpcode()) {
1371 case ISD::LOAD:
1372 case ISD::STORE:
1373 case ISD::PREFETCH:
1374 case ISD::ATOMIC_CMP_SWAP:
1375 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
1376 case ISD::ATOMIC_SWAP:
1377 case ISD::ATOMIC_LOAD_ADD:
1378 case ISD::ATOMIC_LOAD_SUB:
1379 case ISD::ATOMIC_LOAD_AND:
1380 case ISD::ATOMIC_LOAD_CLR:
1381 case ISD::ATOMIC_LOAD_OR:
1382 case ISD::ATOMIC_LOAD_XOR:
1383 case ISD::ATOMIC_LOAD_NAND:
1384 case ISD::ATOMIC_LOAD_MIN:
1385 case ISD::ATOMIC_LOAD_MAX:
1386 case ISD::ATOMIC_LOAD_UMIN:
1387 case ISD::ATOMIC_LOAD_UMAX:
1388 case ISD::ATOMIC_LOAD_FADD:
1389 case ISD::ATOMIC_LOAD_FSUB:
1390 case ISD::ATOMIC_LOAD:
1391 case ISD::ATOMIC_STORE:
1392 case ISD::MLOAD:
1393 case ISD::MSTORE:
1394 case ISD::MGATHER:
1395 case ISD::MSCATTER:
1396 return true;
1397 default:
1398 return N->isMemIntrinsic() || N->isTargetMemoryOpcode();
1399 }
1400 }
1401};
1402
1403/// This is an SDNode representing atomic operations.
1404class AtomicSDNode : public MemSDNode {
1405public:
1406 AtomicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTL,
1407 EVT MemVT, MachineMemOperand *MMO)
1408 : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
1409 assert(((Opc != ISD::ATOMIC_LOAD && Opc != ISD::ATOMIC_STORE) ||((void)0)
1410 MMO->isAtomic()) && "then why are we using an AtomicSDNode?")((void)0);
1411 }
1412
1413 const SDValue &getBasePtr() const { return getOperand(1); }
1414 const SDValue &getVal() const { return getOperand(2); }
1415
1416 /// Returns true if this SDNode represents cmpxchg atomic operation, false
1417 /// otherwise.
1418 bool isCompareAndSwap() const {
1419 unsigned Op = getOpcode();
1420 return Op == ISD::ATOMIC_CMP_SWAP ||
1421 Op == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS;
1422 }
1423
1424 /// For cmpxchg atomic operations, return the atomic ordering requirements
1425 /// when store does not occur.
1426 AtomicOrdering getFailureOrdering() const {
1427 assert(isCompareAndSwap() && "Must be cmpxchg operation")((void)0);
1428 return MMO->getFailureOrdering();
1429 }
1430
1431 // Methods to support isa and dyn_cast
1432 static bool classof(const SDNode *N) {
1433 return N->getOpcode() == ISD::ATOMIC_CMP_SWAP ||
1434 N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
1435 N->getOpcode() == ISD::ATOMIC_SWAP ||
1436 N->getOpcode() == ISD::ATOMIC_LOAD_ADD ||
1437 N->getOpcode() == ISD::ATOMIC_LOAD_SUB ||
1438 N->getOpcode() == ISD::ATOMIC_LOAD_AND ||
1439 N->getOpcode() == ISD::ATOMIC_LOAD_CLR ||
1440 N->getOpcode() == ISD::ATOMIC_LOAD_OR ||
1441 N->getOpcode() == ISD::ATOMIC_LOAD_XOR ||
1442 N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
1443 N->getOpcode() == ISD::ATOMIC_LOAD_MIN ||
1444 N->getOpcode() == ISD::ATOMIC_LOAD_MAX ||
1445 N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
1446 N->getOpcode() == ISD::ATOMIC_LOAD_UMAX ||
1447 N->getOpcode() == ISD::ATOMIC_LOAD_FADD ||
1448 N->getOpcode() == ISD::ATOMIC_LOAD_FSUB ||
1449 N->getOpcode() == ISD::ATOMIC_LOAD ||
1450 N->getOpcode() == ISD::ATOMIC_STORE;
1451 }
1452};
1453
1454/// This SDNode is used for target intrinsics that touch
1455/// memory and need an associated MachineMemOperand. Its opcode may be
1456/// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode
1457/// with a value not less than FIRST_TARGET_MEMORY_OPCODE.
1458class MemIntrinsicSDNode : public MemSDNode {
1459public:
1460 MemIntrinsicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
1461 SDVTList VTs, EVT MemoryVT, MachineMemOperand *MMO)
1462 : MemSDNode(Opc, Order, dl, VTs, MemoryVT, MMO) {
1463 SDNodeBits.IsMemIntrinsic = true;
1464 }
1465
1466 // Methods to support isa and dyn_cast
1467 static bool classof(const SDNode *N) {
1468 // We lower some target intrinsics to their target opcode
1469 // early a node with a target opcode can be of this class
1470 return N->isMemIntrinsic() ||
1471 N->getOpcode() == ISD::PREFETCH ||
1472 N->isTargetMemoryOpcode();
1473 }
1474};
1475
1476/// This SDNode is used to implement the code generator
1477/// support for the llvm IR shufflevector instruction. It combines elements
1478/// from two input vectors into a new input vector, with the selection and
1479/// ordering of elements determined by an array of integers, referred to as
1480/// the shuffle mask. For input vectors of width N, mask indices of 0..N-1
1481/// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
1482/// An index of -1 is treated as undef, such that the code generator may put
1483/// any value in the corresponding element of the result.
1484class ShuffleVectorSDNode : public SDNode {
1485 // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
1486 // is freed when the SelectionDAG object is destroyed.
1487 const int *Mask;
1488
1489protected:
1490 friend class SelectionDAG;
1491
1492 ShuffleVectorSDNode(EVT VT, unsigned Order, const DebugLoc &dl, const int *M)
1493 : SDNode(ISD::VECTOR_SHUFFLE, Order, dl, getSDVTList(VT)), Mask(M) {}
1494
1495public:
1496 ArrayRef<int> getMask() const {
1497 EVT VT = getValueType(0);
1498 return makeArrayRef(Mask, VT.getVectorNumElements());
1499 }
1500
1501 int getMaskElt(unsigned Idx) const {
1502 assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!")((void)0);
1503 return Mask[Idx];
1504 }
1505
1506 bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
1507
1508 int getSplatIndex() const {
1509 assert(isSplat() && "Cannot get splat index for non-splat!")((void)0);
1510 EVT VT = getValueType(0);
1511 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1512 if (Mask[i] >= 0)
1513 return Mask[i];
1514
1515 // We can choose any index value here and be correct because all elements
1516 // are undefined. Return 0 for better potential for callers to simplify.
1517 return 0;
1518 }
1519
1520 static bool isSplatMask(const int *Mask, EVT VT);
1521
1522 /// Change values in a shuffle permute mask assuming
1523 /// the two vector operands have swapped position.
1524 static void commuteMask(MutableArrayRef<int> Mask) {
1525 unsigned NumElems = Mask.size();
1526 for (unsigned i = 0; i != NumElems; ++i) {
1527 int idx = Mask[i];
1528 if (idx < 0)
1529 continue;
1530 else if (idx < (int)NumElems)
1531 Mask[i] = idx + NumElems;
1532 else
1533 Mask[i] = idx - NumElems;
1534 }
1535 }
1536
1537 static bool classof(const SDNode *N) {
1538 return N->getOpcode() == ISD::VECTOR_SHUFFLE;
1539 }
1540};
1541
1542class ConstantSDNode : public SDNode {
1543 friend class SelectionDAG;
1544
1545 const ConstantInt *Value;
1546
1547 ConstantSDNode(bool isTarget, bool isOpaque, const ConstantInt *val, EVT VT)
1548 : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, 0, DebugLoc(),
1549 getSDVTList(VT)),
1550 Value(val) {
1551 ConstantSDNodeBits.IsOpaque = isOpaque;
1552 }
1553
1554public:
1555 const ConstantInt *getConstantIntValue() const { return Value; }
1556 const APInt &getAPIntValue() const { return Value->getValue(); }
1557 uint64_t getZExtValue() const { return Value->getZExtValue(); }
1558 int64_t getSExtValue() const { return Value->getSExtValue(); }
1559 uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX0xffffffffffffffffULL) {
1560 return Value->getLimitedValue(Limit);
1561 }
1562 MaybeAlign getMaybeAlignValue() const { return Value->getMaybeAlignValue(); }
1563 Align getAlignValue() const { return Value->getAlignValue(); }
1564
1565 bool isOne() const { return Value->isOne(); }
1566 bool isNullValue() const { return Value->isZero(); }
1567 bool isAllOnesValue() const { return Value->isMinusOne(); }
1568 bool isMaxSignedValue() const { return Value->isMaxValue(true); }
1569 bool isMinSignedValue() const { return Value->isMinValue(true); }
1570
1571 bool isOpaque() const { return ConstantSDNodeBits.IsOpaque; }
1572
1573 static bool classof(const SDNode *N) {
1574 return N->getOpcode() == ISD::Constant ||
1575 N->getOpcode() == ISD::TargetConstant;
1576 }
1577};
1578
1579uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
1580 return cast<ConstantSDNode>(getOperand(Num))->getZExtValue();
1581}
1582
1583const APInt &SDNode::getConstantOperandAPInt(unsigned Num) const {
1584 return cast<ConstantSDNode>(getOperand(Num))->getAPIntValue();
1585}
1586
1587class ConstantFPSDNode : public SDNode {
1588 friend class SelectionDAG;
1589
1590 const ConstantFP *Value;
1591
1592 ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT)
1593 : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, 0,
1594 DebugLoc(), getSDVTList(VT)),
1595 Value(val) {}
1596
1597public:
1598 const APFloat& getValueAPF() const { return Value->getValueAPF(); }
1599 const ConstantFP *getConstantFPValue() const { return Value; }
1600
1601 /// Return true if the value is positive or negative zero.
1602 bool isZero() const { return Value->isZero(); }
1603
1604 /// Return true if the value is a NaN.
1605 bool isNaN() const { return Value->isNaN(); }
1606
1607 /// Return true if the value is an infinity
1608 bool isInfinity() const { return Value->isInfinity(); }
1609
1610 /// Return true if the value is negative.
1611 bool isNegative() const { return Value->isNegative(); }
1612
1613 /// We don't rely on operator== working on double values, as
1614 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1615 /// As such, this method can be used to do an exact bit-for-bit comparison of
1616 /// two floating point values.
1617
1618 /// We leave the version with the double argument here because it's just so
1619 /// convenient to write "2.0" and the like. Without this function we'd
1620 /// have to duplicate its logic everywhere it's called.
1621 bool isExactlyValue(double V) const {
1622 return Value->getValueAPF().isExactlyValue(V);
1623 }
1624 bool isExactlyValue(const APFloat& V) const;
1625
1626 static bool isValueValidForType(EVT VT, const APFloat& Val);
1627
1628 static bool classof(const SDNode *N) {
1629 return N->getOpcode() == ISD::ConstantFP ||
1630 N->getOpcode() == ISD::TargetConstantFP;
1631 }
1632};
1633
1634/// Returns true if \p V is a constant integer zero.
1635bool isNullConstant(SDValue V);
1636
1637/// Returns true if \p V is an FP constant with a value of positive zero.
1638bool isNullFPConstant(SDValue V);
1639
1640/// Returns true if \p V is an integer constant with all bits set.
1641bool isAllOnesConstant(SDValue V);
1642
1643/// Returns true if \p V is a constant integer one.
1644bool isOneConstant(SDValue V);
1645
1646/// Return the non-bitcasted source operand of \p V if it exists.
1647/// If \p V is not a bitcasted value, it is returned as-is.
1648SDValue peekThroughBitcasts(SDValue V);
1649
1650/// Return the non-bitcasted and one-use source operand of \p V if it exists.
1651/// If \p V is not a bitcasted one-use value, it is returned as-is.
1652SDValue peekThroughOneUseBitcasts(SDValue V);
1653
1654/// Return the non-extracted vector source operand of \p V if it exists.
1655/// If \p V is not an extracted subvector, it is returned as-is.
1656SDValue peekThroughExtractSubvectors(SDValue V);
1657
1658/// Returns true if \p V is a bitwise not operation. Assumes that an all ones
1659/// constant is canonicalized to be operand 1.
1660bool isBitwiseNot(SDValue V, bool AllowUndefs = false);
1661
1662/// Returns the SDNode if it is a constant splat BuildVector or constant int.
1663ConstantSDNode *isConstOrConstSplat(SDValue N, bool AllowUndefs = false,
1664 bool AllowTruncation = false);
1665
1666/// Returns the SDNode if it is a demanded constant splat BuildVector or
1667/// constant int.
1668ConstantSDNode *isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
1669 bool AllowUndefs = false,
1670 bool AllowTruncation = false);
1671
1672/// Returns the SDNode if it is a constant splat BuildVector or constant float.
1673ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, bool AllowUndefs = false);
1674
1675/// Returns the SDNode if it is a demanded constant splat BuildVector or
1676/// constant float.
1677ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, const APInt &DemandedElts,
1678 bool AllowUndefs = false);
1679
1680/// Return true if the value is a constant 0 integer or a splatted vector of
1681/// a constant 0 integer (with no undefs by default).
1682/// Build vector implicit truncation is not an issue for null values.
1683bool isNullOrNullSplat(SDValue V, bool AllowUndefs = false);
1684
1685/// Return true if the value is a constant 1 integer or a splatted vector of a
1686/// constant 1 integer (with no undefs).
1687/// Does not permit build vector implicit truncation.
1688bool isOneOrOneSplat(SDValue V, bool AllowUndefs = false);
1689
1690/// Return true if the value is a constant -1 integer or a splatted vector of a
1691/// constant -1 integer (with no undefs).
1692/// Does not permit build vector implicit truncation.
1693bool isAllOnesOrAllOnesSplat(SDValue V, bool AllowUndefs = false);
1694
1695/// Return true if \p V is either a integer or FP constant.
1696inline bool isIntOrFPConstant(SDValue V) {
1697 return isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V);
1698}
1699
1700class GlobalAddressSDNode : public SDNode {
1701 friend class SelectionDAG;
1702
1703 const GlobalValue *TheGlobal;
1704 int64_t Offset;
1705 unsigned TargetFlags;
1706
1707 GlobalAddressSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL,
1708 const GlobalValue *GA, EVT VT, int64_t o,
1709 unsigned TF);
1710
1711public:
1712 const GlobalValue *getGlobal() const { return TheGlobal; }
1713 int64_t getOffset() const { return Offset; }
1714 unsigned getTargetFlags() const { return TargetFlags; }
1715 // Return the address space this GlobalAddress belongs to.
1716 unsigned getAddressSpace() const;
1717
1718 static bool classof(const SDNode *N) {
1719 return N->getOpcode() == ISD::GlobalAddress ||
1720 N->getOpcode() == ISD::TargetGlobalAddress ||
1721 N->getOpcode() == ISD::GlobalTLSAddress ||
1722 N->getOpcode() == ISD::TargetGlobalTLSAddress;
1723 }
1724};
1725
1726class FrameIndexSDNode : public SDNode {
1727 friend class SelectionDAG;
1728
1729 int FI;
1730
1731 FrameIndexSDNode(int fi, EVT VT, bool isTarg)
1732 : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
1733 0, DebugLoc(), getSDVTList(VT)), FI(fi) {
1734 }
1735
1736public:
1737 int getIndex() const { return FI; }
1738
1739 static bool classof(const SDNode *N) {
1740 return N->getOpcode() == ISD::FrameIndex ||
1741 N->getOpcode() == ISD::TargetFrameIndex;
1742 }
1743};
1744
1745/// This SDNode is used for LIFETIME_START/LIFETIME_END values, which indicate
1746/// the offet and size that are started/ended in the underlying FrameIndex.
1747class LifetimeSDNode : public SDNode {
1748 friend class SelectionDAG;
1749 int64_t Size;
1750 int64_t Offset; // -1 if offset is unknown.
1751
1752 LifetimeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl,
1753 SDVTList VTs, int64_t Size, int64_t Offset)
1754 : SDNode(Opcode, Order, dl, VTs), Size(Size), Offset(Offset) {}
1755public:
1756 int64_t getFrameIndex() const {
1757 return cast<FrameIndexSDNode>(getOperand(1))->getIndex();
1758 }
1759
1760 bool hasOffset() const { return Offset >= 0; }
1761 int64_t getOffset() const {
1762 assert(hasOffset() && "offset is unknown")((void)0);
1763 return Offset;
1764 }
1765 int64_t getSize() const {
1766 assert(hasOffset() && "offset is unknown")((void)0);
1767 return Size;
1768 }
1769
1770 // Methods to support isa and dyn_cast
1771 static bool classof(const SDNode *N) {
1772 return N->getOpcode() == ISD::LIFETIME_START ||
1773 N->getOpcode() == ISD::LIFETIME_END;
1774 }
1775};
1776
1777/// This SDNode is used for PSEUDO_PROBE values, which are the function guid and
1778/// the index of the basic block being probed. A pseudo probe serves as a place
1779/// holder and will be removed at the end of compilation. It does not have any
1780/// operand because we do not want the instruction selection to deal with any.
1781class PseudoProbeSDNode : public SDNode {
1782 friend class SelectionDAG;
1783 uint64_t Guid;
1784 uint64_t Index;
1785 uint32_t Attributes;
1786
1787 PseudoProbeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &Dl,
1788 SDVTList VTs, uint64_t Guid, uint64_t Index, uint32_t Attr)
1789 : SDNode(Opcode, Order, Dl, VTs), Guid(Guid), Index(Index),
1790 Attributes(Attr) {}
1791
1792public:
1793 uint64_t getGuid() const { return Guid; }
1794 uint64_t getIndex() const { return Index; }
1795 uint32_t getAttributes() const { return Attributes; }
1796
1797 // Methods to support isa and dyn_cast
1798 static bool classof(const SDNode *N) {
1799 return N->getOpcode() == ISD::PSEUDO_PROBE;
1800 }
1801};
1802
1803class JumpTableSDNode : public SDNode {
1804 friend class SelectionDAG;
1805
1806 int JTI;
1807 unsigned TargetFlags;
1808
1809 JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned TF)
1810 : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
1811 0, DebugLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
1812 }
1813
1814public:
1815 int getIndex() const { return JTI; }
1816 unsigned getTargetFlags() const { return TargetFlags; }
1817
1818 static bool classof(const SDNode *N) {
1819 return N->getOpcode() == ISD::JumpTable ||
1820 N->getOpcode() == ISD::TargetJumpTable;
1821 }
1822};
1823
1824class ConstantPoolSDNode : public SDNode {
1825 friend class SelectionDAG;
1826
1827 union {
1828 const Constant *ConstVal;
1829 MachineConstantPoolValue *MachineCPVal;
1830 } Val;
1831 int Offset; // It's a MachineConstantPoolValue if top bit is set.
1832 Align Alignment; // Minimum alignment requirement of CP.
1833 unsigned TargetFlags;
1834
1835 ConstantPoolSDNode(bool isTarget, const Constant *c, EVT VT, int o,
1836 Align Alignment, unsigned TF)
1837 : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1838 DebugLoc(), getSDVTList(VT)),
1839 Offset(o), Alignment(Alignment), TargetFlags(TF) {
1840 assert(Offset >= 0 && "Offset is too large")((void)0);
1841 Val.ConstVal = c;
1842 }
1843
1844 ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v, EVT VT, int o,
1845 Align Alignment, unsigned TF)
1846 : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1847 DebugLoc(), getSDVTList(VT)),
1848 Offset(o), Alignment(Alignment), TargetFlags(TF) {
1849 assert(Offset >= 0 && "Offset is too large")((void)0);
1850 Val.MachineCPVal = v;
1851 Offset |= 1 << (sizeof(unsigned)*CHAR_BIT8-1);
1852 }
1853
1854public:
1855 bool isMachineConstantPoolEntry() const {
1856 return Offset < 0;
1857 }
1858
1859 const Constant *getConstVal() const {
1860 assert(!isMachineConstantPoolEntry() && "Wrong constantpool type")((void)0);
1861 return Val.ConstVal;
1862 }
1863
1864 MachineConstantPoolValue *getMachineCPVal() const {
1865 assert(isMachineConstantPoolEntry() && "Wrong constantpool type")((void)0);
1866 return Val.MachineCPVal;
1867 }
1868
1869 int getOffset() const {
1870 return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT8-1));
1871 }
1872
1873 // Return the alignment of this constant pool object, which is either 0 (for
1874 // default alignment) or the desired value.
1875 Align getAlign() const { return Alignment; }
1876 unsigned getTargetFlags() const { return TargetFlags; }
1877
1878 Type *getType() const;
1879
1880 static bool classof(const SDNode *N) {
1881 return N->getOpcode() == ISD::ConstantPool ||
1882 N->getOpcode() == ISD::TargetConstantPool;
1883 }
1884};
1885
1886/// Completely target-dependent object reference.
1887class TargetIndexSDNode : public SDNode {
1888 friend class SelectionDAG;
1889
1890 unsigned TargetFlags;
1891 int Index;
1892 int64_t Offset;
1893
1894public:
1895 TargetIndexSDNode(int Idx, EVT VT, int64_t Ofs, unsigned TF)
1896 : SDNode(ISD::TargetIndex, 0, DebugLoc(), getSDVTList(VT)),
1897 TargetFlags(TF), Index(Idx), Offset(Ofs) {}
1898
1899 unsigned getTargetFlags() const { return TargetFlags; }
1900 int getIndex() const { return Index; }
1901 int64_t getOffset() const { return Offset; }
1902
1903 static bool classof(const SDNode *N) {
1904 return N->getOpcode() == ISD::TargetIndex;
1905 }
1906};
1907
1908class BasicBlockSDNode : public SDNode {
1909 friend class SelectionDAG;
1910
1911 MachineBasicBlock *MBB;
1912
1913 /// Debug info is meaningful and potentially useful here, but we create
1914 /// blocks out of order when they're jumped to, which makes it a bit
1915 /// harder. Let's see if we need it first.
1916 explicit BasicBlockSDNode(MachineBasicBlock *mbb)
1917 : SDNode(ISD::BasicBlock, 0, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb)
1918 {}
1919
1920public:
1921 MachineBasicBlock *getBasicBlock() const { return MBB; }
1922
1923 static bool classof(const SDNode *N) {
1924 return N->getOpcode() == ISD::BasicBlock;
1925 }
1926};
1927
1928/// A "pseudo-class" with methods for operating on BUILD_VECTORs.
1929class BuildVectorSDNode : public SDNode {
1930public:
1931 // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
1932 explicit BuildVectorSDNode() = delete;
1933
1934 /// Check if this is a constant splat, and if so, find the
1935 /// smallest element size that splats the vector. If MinSplatBits is
1936 /// nonzero, the element size must be at least that large. Note that the
1937 /// splat element may be the entire vector (i.e., a one element vector).
1938 /// Returns the splat element value in SplatValue. Any undefined bits in
1939 /// that value are zero, and the corresponding bits in the SplatUndef mask
1940 /// are set. The SplatBitSize value is set to the splat element size in
1941 /// bits. HasAnyUndefs is set to true if any bits in the vector are
1942 /// undefined. isBigEndian describes the endianness of the target.
1943 bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
1944 unsigned &SplatBitSize, bool &HasAnyUndefs,
1945 unsigned MinSplatBits = 0,
1946 bool isBigEndian = false) const;
1947
1948 /// Returns the demanded splatted value or a null value if this is not a
1949 /// splat.
1950 ///
1951 /// The DemandedElts mask indicates the elements that must be in the splat.
1952 /// If passed a non-null UndefElements bitvector, it will resize it to match
1953 /// the vector width and set the bits where elements are undef.
1954 SDValue getSplatValue(const APInt &DemandedElts,
1955 BitVector *UndefElements = nullptr) const;
1956
1957 /// Returns the splatted value or a null value if this is not a splat.
1958 ///
1959 /// If passed a non-null UndefElements bitvector, it will resize it to match
1960 /// the vector width and set the bits where elements are undef.
1961 SDValue getSplatValue(BitVector *UndefElements = nullptr) const;
1962
1963 /// Find the shortest repeating sequence of values in the build vector.
1964 ///
1965 /// e.g. { u, X, u, X, u, u, X, u } -> { X }
1966 /// { X, Y, u, Y, u, u, X, u } -> { X, Y }
1967 ///
1968 /// Currently this must be a power-of-2 build vector.
1969 /// The DemandedElts mask indicates the elements that must be present,
1970 /// undemanded elements in Sequence may be null (SDValue()). If passed a
1971 /// non-null UndefElements bitvector, it will resize it to match the original
1972 /// vector width and set the bits where elements are undef. If result is
1973 /// false, Sequence will be empty.
1974 bool getRepeatedSequence(const APInt &DemandedElts,
1975 SmallVectorImpl<SDValue> &Sequence,
1976 BitVector *UndefElements = nullptr) const;
1977
1978 /// Find the shortest repeating sequence of values in the build vector.
1979 ///
1980 /// e.g. { u, X, u, X, u, u, X, u } -> { X }
1981 /// { X, Y, u, Y, u, u, X, u } -> { X, Y }
1982 ///
1983 /// Currently this must be a power-of-2 build vector.
1984 /// If passed a non-null UndefElements bitvector, it will resize it to match
1985 /// the original vector width and set the bits where elements are undef.
1986 /// If result is false, Sequence will be empty.
1987 bool getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
1988 BitVector *UndefElements = nullptr) const;
1989
1990 /// Returns the demanded splatted constant or null if this is not a constant
1991 /// splat.
1992 ///
1993 /// The DemandedElts mask indicates the elements that must be in the splat.
1994 /// If passed a non-null UndefElements bitvector, it will resize it to match
1995 /// the vector width and set the bits where elements are undef.
1996 ConstantSDNode *
1997 getConstantSplatNode(const APInt &DemandedElts,
1998 BitVector *UndefElements = nullptr) const;
1999
2000 /// Returns the splatted constant or null if this is not a constant
2001 /// splat.
2002 ///
2003 /// If passed a non-null UndefElements bitvector, it will resize it to match
2004 /// the vector width and set the bits where elements are undef.
2005 ConstantSDNode *
2006 getConstantSplatNode(BitVector *UndefElements = nullptr) const;
2007
2008 /// Returns the demanded splatted constant FP or null if this is not a
2009 /// constant FP splat.
2010 ///
2011 /// The DemandedElts mask indicates the elements that must be in the splat.
2012 /// If passed a non-null UndefElements bitvector, it will resize it to match
2013 /// the vector width and set the bits where elements are undef.
2014 ConstantFPSDNode *
2015 getConstantFPSplatNode(const APInt &DemandedElts,
2016 BitVector *UndefElements = nullptr) const;
2017
2018 /// Returns the splatted constant FP or null if this is not a constant
2019 /// FP splat.
2020 ///
2021 /// If passed a non-null UndefElements bitvector, it will resize it to match
2022 /// the vector width and set the bits where elements are undef.
2023 ConstantFPSDNode *
2024 getConstantFPSplatNode(BitVector *UndefElements = nullptr) const;
2025
2026 /// If this is a constant FP splat and the splatted constant FP is an
2027 /// exact power or 2, return the log base 2 integer value. Otherwise,
2028 /// return -1.
2029 ///
2030 /// The BitWidth specifies the necessary bit precision.
2031 int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
2032 uint32_t BitWidth) const;
2033
2034 bool isConstant() const;
2035
2036 static bool classof(const SDNode *N) {
2037 return N->getOpcode() == ISD::BUILD_VECTOR;
2038 }
2039};
2040
2041/// An SDNode that holds an arbitrary LLVM IR Value. This is
2042/// used when the SelectionDAG needs to make a simple reference to something
2043/// in the LLVM IR representation.
2044///
2045class SrcValueSDNode : public SDNode {
2046 friend class SelectionDAG;
2047
2048 const Value *V;
2049
2050 /// Create a SrcValue for a general value.
2051 explicit SrcValueSDNode(const Value *v)
2052 : SDNode(ISD::SRCVALUE, 0, DebugLoc(), getSDVTList(MVT::Other)), V(v) {}
2053
2054public:
2055 /// Return the contained Value.
2056 const Value *getValue() const { return V; }
2057
2058 static bool classof(const SDNode *N) {
2059 return N->getOpcode() == ISD::SRCVALUE;
2060 }
2061};
2062
2063class MDNodeSDNode : public SDNode {
2064 friend class SelectionDAG;
2065
2066 const MDNode *MD;
2067
2068 explicit MDNodeSDNode(const MDNode *md)
2069 : SDNode(ISD::MDNODE_SDNODE, 0, DebugLoc(), getSDVTList(MVT::Other)), MD(md)
2070 {}
2071
2072public:
2073 const MDNode *getMD() const { return MD; }
2074
2075 static bool classof(const SDNode *N) {
2076 return N->getOpcode() == ISD::MDNODE_SDNODE;
2077 }
2078};
2079
2080class RegisterSDNode : public SDNode {
2081 friend class SelectionDAG;
2082
2083 Register Reg;
2084
2085 RegisterSDNode(Register reg, EVT VT)
2086 : SDNode(ISD::Register, 0, DebugLoc(), getSDVTList(VT)), Reg(reg) {}
2087
2088public:
2089 Register getReg() const { return Reg; }
2090
2091 static bool classof(const SDNode *N) {
2092 return N->getOpcode() == ISD::Register;
2093 }
2094};
2095
2096class RegisterMaskSDNode : public SDNode {
2097 friend class SelectionDAG;
2098
2099 // The memory for RegMask is not owned by the node.
2100 const uint32_t *RegMask;
2101
2102 RegisterMaskSDNode(const uint32_t *mask)
2103 : SDNode(ISD::RegisterMask, 0, DebugLoc(), getSDVTList(MVT::Untyped)),
2104 RegMask(mask) {}
2105
2106public:
2107 const uint32_t *getRegMask() const { return RegMask; }
2108
2109 static bool classof(const SDNode *N) {
2110 return N->getOpcode() == ISD::RegisterMask;
2111 }
2112};
2113
2114class BlockAddressSDNode : public SDNode {
2115 friend class SelectionDAG;
2116
2117 const BlockAddress *BA;
2118 int64_t Offset;
2119 unsigned TargetFlags;
2120
2121 BlockAddressSDNode(unsigned NodeTy, EVT VT, const BlockAddress *ba,
2122 int64_t o, unsigned Flags)
2123 : SDNode(NodeTy, 0, DebugLoc(), getSDVTList(VT)),
2124 BA(ba), Offset(o), TargetFlags(Flags) {}
2125
2126public:
2127 const BlockAddress *getBlockAddress() const { return BA; }
2128 int64_t getOffset() const { return Offset; }
2129 unsigned getTargetFlags() const { return TargetFlags; }
2130
2131 static bool classof(const SDNode *N) {
2132 return N->getOpcode() == ISD::BlockAddress ||
2133 N->getOpcode() == ISD::TargetBlockAddress;
2134 }
2135};
2136
2137class LabelSDNode : public SDNode {
2138 friend class SelectionDAG;
2139
2140 MCSymbol *Label;
2141
2142 LabelSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl, MCSymbol *L)
2143 : SDNode(Opcode, Order, dl, getSDVTList(MVT::Other)), Label(L) {
2144 assert(LabelSDNode::classof(this) && "not a label opcode")((void)0);
2145 }
2146
2147public:
2148 MCSymbol *getLabel() const { return Label; }
2149
2150 static bool classof(const SDNode *N) {
2151 return N->getOpcode() == ISD::EH_LABEL ||
2152 N->getOpcode() == ISD::ANNOTATION_LABEL;
2153 }
2154};
2155
2156class ExternalSymbolSDNode : public SDNode {
2157 friend class SelectionDAG;
2158
2159 const char *Symbol;
2160 unsigned TargetFlags;
2161
2162 ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned TF, EVT VT)
2163 : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, 0,
2164 DebugLoc(), getSDVTList(VT)),
2165 Symbol(Sym), TargetFlags(TF) {}
2166
2167public:
2168 const char *getSymbol() const { return Symbol; }
2169 unsigned getTargetFlags() const { return TargetFlags; }
2170
2171 static bool classof(const SDNode *N) {
2172 return N->getOpcode() == ISD::ExternalSymbol ||
2173 N->getOpcode() == ISD::TargetExternalSymbol;
2174 }
2175};
2176
2177class MCSymbolSDNode : public SDNode {
2178 friend class SelectionDAG;
2179
2180 MCSymbol *Symbol;
2181
2182 MCSymbolSDNode(MCSymbol *Symbol, EVT VT)
2183 : SDNode(ISD::MCSymbol, 0, DebugLoc(), getSDVTList(VT)), Symbol(Symbol) {}
2184
2185public:
2186 MCSymbol *getMCSymbol() const { return Symbol; }
2187
2188 static bool classof(const SDNode *N) {
2189 return N->getOpcode() == ISD::MCSymbol;
2190 }
2191};
2192
2193class CondCodeSDNode : public SDNode {
2194 friend class SelectionDAG;
2195
2196 ISD::CondCode Condition;
2197
2198 explicit CondCodeSDNode(ISD::CondCode Cond)
2199 : SDNode(ISD::CONDCODE, 0, DebugLoc(), getSDVTList(MVT::Other)),
2200 Condition(Cond) {}
2201
2202public:
2203 ISD::CondCode get() const { return Condition; }
2204
2205 static bool classof(const SDNode *N) {
2206 return N->getOpcode() == ISD::CONDCODE;
2207 }
2208};
2209
2210/// This class is used to represent EVT's, which are used
2211/// to parameterize some operations.
2212class VTSDNode : public SDNode {
2213 friend class SelectionDAG;
2214
2215 EVT ValueType;
2216
2217 explicit VTSDNode(EVT VT)
2218 : SDNode(ISD::VALUETYPE, 0, DebugLoc(), getSDVTList(MVT::Other)),
2219 ValueType(VT) {}
2220
2221public:
2222 EVT getVT() const { return ValueType; }
2223
2224 static bool classof(const SDNode *N) {
2225 return N->getOpcode() == ISD::VALUETYPE;
2226 }
2227};
2228
2229/// Base class for LoadSDNode and StoreSDNode
2230class LSBaseSDNode : public MemSDNode {
2231public:
2232 LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl,
2233 SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT,
2234 MachineMemOperand *MMO)
2235 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2236 LSBaseSDNodeBits.AddressingMode = AM;
2237 assert(getAddressingMode() == AM && "Value truncated")((void)0);
2238 }
2239
2240 const SDValue &getOffset() const {
2241 return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
2242 }
2243
2244 /// Return the addressing mode for this load or store:
2245 /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2246 ISD::MemIndexedMode getAddressingMode() const {
2247 return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2248 }
2249
2250 /// Return true if this is a pre/post inc/dec load/store.
2251 bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2252
2253 /// Return true if this is NOT a pre/post inc/dec load/store.
2254 bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2255
2256 static bool classof(const SDNode *N) {
2257 return N->getOpcode() == ISD::LOAD ||
2258 N->getOpcode() == ISD::STORE;
2259 }
2260};
2261
2262/// This class is used to represent ISD::LOAD nodes.
2263class LoadSDNode : public LSBaseSDNode {
2264 friend class SelectionDAG;
2265
2266 LoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2267 ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
2268 MachineMemOperand *MMO)
2269 : LSBaseSDNode(ISD::LOAD, Order, dl, VTs, AM, MemVT, MMO) {
2270 LoadSDNodeBits.ExtTy = ETy;
2271 assert(readMem() && "Load MachineMemOperand is not a load!")((void)0);
2272 assert(!writeMem() && "Load MachineMemOperand is a store!")((void)0);
2273 }
2274
2275public:
2276 /// Return whether this is a plain node,
2277 /// or one of the varieties of value-extending loads.
2278 ISD::LoadExtType getExtensionType() const {
2279 return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2280 }
2281
2282 const SDValue &getBasePtr() const { return getOperand(1); }
2283 const SDValue &getOffset() const { return getOperand(2); }
2284
2285 static bool classof(const SDNode *N) {
2286 return N->getOpcode() == ISD::LOAD;
2287 }
2288};
2289
2290/// This class is used to represent ISD::STORE nodes.
2291class StoreSDNode : public LSBaseSDNode {
2292 friend class SelectionDAG;
2293
2294 StoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2295 ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
2296 MachineMemOperand *MMO)
2297 : LSBaseSDNode(ISD::STORE, Order, dl, VTs, AM, MemVT, MMO) {
2298 StoreSDNodeBits.IsTruncating = isTrunc;
2299 assert(!readMem() && "Store MachineMemOperand is a load!")((void)0);
2300 assert(writeMem() && "Store MachineMemOperand is not a store!")((void)0);
2301 }
2302
2303public:
2304 /// Return true if the op does a truncation before store.
2305 /// For integers this is the same as doing a TRUNCATE and storing the result.
2306 /// For floats, it is the same as doing an FP_ROUND and storing the result.
2307 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2308 void setTruncatingStore(bool Truncating) {
2309 StoreSDNodeBits.IsTruncating = Truncating;
2310 }
2311
2312 const SDValue &getValue() const { return getOperand(1); }
2313 const SDValue &getBasePtr() const { return getOperand(2); }
2314 const SDValue &getOffset() const { return getOperand(3); }
2315
2316 static bool classof(const SDNode *N) {
2317 return N->getOpcode() == ISD::STORE;
2318 }
2319};
2320
2321/// This base class is used to represent MLOAD and MSTORE nodes
2322class MaskedLoadStoreSDNode : public MemSDNode {
2323public:
2324 friend class SelectionDAG;
2325
2326 MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order,
2327 const DebugLoc &dl, SDVTList VTs,
2328 ISD::MemIndexedMode AM, EVT MemVT,
2329 MachineMemOperand *MMO)
2330 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2331 LSBaseSDNodeBits.AddressingMode = AM;
2332 assert(getAddressingMode() == AM && "Value truncated")((void)0);
2333 }
2334
2335 // MaskedLoadSDNode (Chain, ptr, offset, mask, passthru)
2336 // MaskedStoreSDNode (Chain, data, ptr, offset, mask)
2337 // Mask is a vector of i1 elements
2338 const SDValue &getOffset() const {
2339 return getOperand(getOpcode() == ISD::MLOAD ? 2 : 3);
2340 }
2341 const SDValue &getMask() const {
2342 return getOperand(getOpcode() == ISD::MLOAD ? 3 : 4);
2343 }
2344
2345 /// Return the addressing mode for this load or store:
2346 /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2347 ISD::MemIndexedMode getAddressingMode() const {
2348 return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2349 }
2350
2351 /// Return true if this is a pre/post inc/dec load/store.
2352 bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2353
2354 /// Return true if this is NOT a pre/post inc/dec load/store.
2355 bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2356
2357 static bool classof(const SDNode *N) {
2358 return N->getOpcode() == ISD::MLOAD ||
2359 N->getOpcode() == ISD::MSTORE;
2360 }
2361};
2362
2363/// This class is used to represent an MLOAD node
2364class MaskedLoadSDNode : public MaskedLoadStoreSDNode {
2365public:
2366 friend class SelectionDAG;
2367
2368 MaskedLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2369 ISD::MemIndexedMode AM, ISD::LoadExtType ETy,
2370 bool IsExpanding, EVT MemVT, MachineMemOperand *MMO)
2371 : MaskedLoadStoreSDNode(ISD::MLOAD, Order, dl, VTs, AM, MemVT, MMO) {
2372 LoadSDNodeBits.ExtTy = ETy;
2373 LoadSDNodeBits.IsExpanding = IsExpanding;
2374 }
2375
2376 ISD::LoadExtType getExtensionType() const {
2377 return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2378 }
2379
2380 const SDValue &getBasePtr() const { return getOperand(1); }
2381 const SDValue &getOffset() const { return getOperand(2); }
2382 const SDValue &getMask() const { return getOperand(3); }
2383 const SDValue &getPassThru() const { return getOperand(4); }
2384
2385 static bool classof(const SDNode *N) {
2386 return N->getOpcode() == ISD::MLOAD;
2387 }
2388
2389 bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
2390};
2391
2392/// This class is used to represent an MSTORE node
2393class MaskedStoreSDNode : public MaskedLoadStoreSDNode {
2394public:
2395 friend class SelectionDAG;
2396
2397 MaskedStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2398 ISD::MemIndexedMode AM, bool isTrunc, bool isCompressing,
2399 EVT MemVT, MachineMemOperand *MMO)
2400 : MaskedLoadStoreSDNode(ISD::MSTORE, Order, dl, VTs, AM, MemVT, MMO) {
2401 StoreSDNodeBits.IsTruncating = isTrunc;
2402 StoreSDNodeBits.IsCompressing = isCompressing;
2403 }
2404
2405 /// Return true if the op does a truncation before store.
2406 /// For integers this is the same as doing a TRUNCATE and storing the result.
2407 /// For floats, it is the same as doing an FP_ROUND and storing the result.
2408 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2409
2410 /// Returns true if the op does a compression to the vector before storing.
2411 /// The node contiguously stores the active elements (integers or floats)
2412 /// in src (those with their respective bit set in writemask k) to unaligned
2413 /// memory at base_addr.
2414 bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
2415
2416 const SDValue &getValue() const { return getOperand(1); }
2417 const SDValue &getBasePtr() const { return getOperand(2); }
2418 const SDValue &getOffset() const { return getOperand(3); }
2419 const SDValue &getMask() const { return getOperand(4); }
2420
2421 static bool classof(const SDNode *N) {
2422 return N->getOpcode() == ISD::MSTORE;
2423 }
2424};
2425
2426/// This is a base class used to represent
2427/// MGATHER and MSCATTER nodes
2428///
2429class MaskedGatherScatterSDNode : public MemSDNode {
2430public:
2431 friend class SelectionDAG;
2432
2433 MaskedGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order,
2434 const DebugLoc &dl, SDVTList VTs, EVT MemVT,
2435 MachineMemOperand *MMO, ISD::MemIndexType IndexType)
2436 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2437 LSBaseSDNodeBits.AddressingMode = IndexType;
2438 assert(getIndexType() == IndexType && "Value truncated")((void)0);
2439 }
2440
2441 /// How is Index applied to BasePtr when computing addresses.
2442 ISD::MemIndexType getIndexType() const {
2443 return static_cast<ISD::MemIndexType>(LSBaseSDNodeBits.AddressingMode);
2444 }
2445 void setIndexType(ISD::MemIndexType IndexType) {
2446 LSBaseSDNodeBits.AddressingMode = IndexType;
2447 }
2448 bool isIndexScaled() const {
2449 return (getIndexType() == ISD::SIGNED_SCALED) ||
2450 (getIndexType() == ISD::UNSIGNED_SCALED);
2451 }
2452 bool isIndexSigned() const {
2453 return (getIndexType() == ISD::SIGNED_SCALED) ||
2454 (getIndexType() == ISD::SIGNED_UNSCALED);
2455 }
2456
2457 // In the both nodes address is Op1, mask is Op2:
2458 // MaskedGatherSDNode (Chain, passthru, mask, base, index, scale)
2459 // MaskedScatterSDNode (Chain, value, mask, base, index, scale)
2460 // Mask is a vector of i1 elements
2461 const SDValue &getBasePtr() const { return getOperand(3); }
2462 const SDValue &getIndex() const { return getOperand(4); }
2463 const SDValue &getMask() const { return getOperand(2); }
2464 const SDValue &getScale() const { return getOperand(5); }
2465
2466 static bool classof(const SDNode *N) {
2467 return N->getOpcode() == ISD::MGATHER ||
2468 N->getOpcode() == ISD::MSCATTER;
2469 }
2470};
2471
2472/// This class is used to represent an MGATHER node
2473///
2474class MaskedGatherSDNode : public MaskedGatherScatterSDNode {
2475public:
2476 friend class SelectionDAG;
2477
2478 MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2479 EVT MemVT, MachineMemOperand *MMO,
2480 ISD::MemIndexType IndexType, ISD::LoadExtType ETy)
2481 : MaskedGatherScatterSDNode(ISD::MGATHER, Order, dl, VTs, MemVT, MMO,
2482 IndexType) {
2483 LoadSDNodeBits.ExtTy = ETy;
2484 }
2485
2486 const SDValue &getPassThru() const { return getOperand(1); }
2487
2488 ISD::LoadExtType getExtensionType() const {
2489 return ISD::LoadExtType(LoadSDNodeBits.ExtTy);
2490 }
2491
2492 static bool classof(const SDNode *N) {
2493 return N->getOpcode() == ISD::MGATHER;
2494 }
2495};
2496
2497/// This class is used to represent an MSCATTER node
2498///
2499class MaskedScatterSDNode : public MaskedGatherScatterSDNode {
2500public:
2501 friend class SelectionDAG;
2502
2503 MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2504 EVT MemVT, MachineMemOperand *MMO,
2505 ISD::MemIndexType IndexType, bool IsTrunc)
2506 : MaskedGatherScatterSDNode(ISD::MSCATTER, Order, dl, VTs, MemVT, MMO,
2507 IndexType) {
2508 StoreSDNodeBits.IsTruncating = IsTrunc;
2509 }
2510
2511 /// Return true if the op does a truncation before store.
2512 /// For integers this is the same as doing a TRUNCATE and storing the result.
2513 /// For floats, it is the same as doing an FP_ROUND and storing the result.
2514 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2515
2516 const SDValue &getValue() const { return getOperand(1); }
2517
2518 static bool classof(const SDNode *N) {
2519 return N->getOpcode() == ISD::MSCATTER;
2520 }
2521};
2522
2523/// An SDNode that represents everything that will be needed
2524/// to construct a MachineInstr. These nodes are created during the
2525/// instruction selection proper phase.
2526///
2527/// Note that the only supported way to set the `memoperands` is by calling the
2528/// `SelectionDAG::setNodeMemRefs` function as the memory management happens
2529/// inside the DAG rather than in the node.
2530class MachineSDNode : public SDNode {
2531private:
2532 friend class SelectionDAG;
2533
2534 MachineSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL, SDVTList VTs)
2535 : SDNode(Opc, Order, DL, VTs) {}
2536
2537 // We use a pointer union between a single `MachineMemOperand` pointer and
2538 // a pointer to an array of `MachineMemOperand` pointers. This is null when
2539 // the number of these is zero, the single pointer variant used when the
2540 // number is one, and the array is used for larger numbers.
2541 //
2542 // The array is allocated via the `SelectionDAG`'s allocator and so will
2543 // always live until the DAG is cleaned up and doesn't require ownership here.
2544 //
2545 // We can't use something simpler like `TinyPtrVector` here because `SDNode`
2546 // subclasses aren't managed in a conforming C++ manner. See the comments on
2547 // `SelectionDAG::MorphNodeTo` which details what all goes on, but the
2548 // constraint here is that these don't manage memory with their constructor or
2549 // destructor and can be initialized to a good state even if they start off
2550 // uninitialized.
2551 PointerUnion<MachineMemOperand *, MachineMemOperand **> MemRefs = {};
2552
2553 // Note that this could be folded into the above `MemRefs` member if doing so
2554 // is advantageous at some point. We don't need to store this in most cases.
2555 // However, at the moment this doesn't appear to make the allocation any
2556 // smaller and makes the code somewhat simpler to read.
2557 int NumMemRefs = 0;
2558
2559public:
2560 using mmo_iterator = ArrayRef<MachineMemOperand *>::const_iterator;
2561
2562 ArrayRef<MachineMemOperand *> memoperands() const {
2563 // Special case the common cases.
2564 if (NumMemRefs == 0)
2565 return {};
2566 if (NumMemRefs == 1)
2567 return makeArrayRef(MemRefs.getAddrOfPtr1(), 1);
2568
2569 // Otherwise we have an actual array.
2570 return makeArrayRef(MemRefs.get<MachineMemOperand **>(), NumMemRefs);
2571 }
2572 mmo_iterator memoperands_begin() const { return memoperands().begin(); }
2573 mmo_iterator memoperands_end() const { return memoperands().end(); }
2574 bool memoperands_empty() const { return memoperands().empty(); }
2575
2576 /// Clear out the memory reference descriptor list.
2577 void clearMemRefs() {
2578 MemRefs = nullptr;
2579 NumMemRefs = 0;
2580 }
2581
2582 static bool classof(const SDNode *N) {
2583 return N->isMachineOpcode();
2584 }
2585};
2586
2587/// An SDNode that records if a register contains a value that is guaranteed to
2588/// be aligned accordingly.
2589class AssertAlignSDNode : public SDNode {
2590 Align Alignment;
2591
2592public:
2593 AssertAlignSDNode(unsigned Order, const DebugLoc &DL, EVT VT, Align A)
2594 : SDNode(ISD::AssertAlign, Order, DL, getSDVTList(VT)), Alignment(A) {}
2595
2596 Align getAlign() const { return Alignment; }
2597
2598 static bool classof(const SDNode *N) {
2599 return N->getOpcode() == ISD::AssertAlign;
2600 }
2601};
2602
2603class SDNodeIterator {
2604 const SDNode *Node;
2605 unsigned Operand;
2606
2607 SDNodeIterator(const SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
2608
2609public:
2610 using iterator_category = std::forward_iterator_tag;
2611 using value_type = SDNode;
2612 using difference_type = std::ptrdiff_t;
2613 using pointer = value_type *;
2614 using reference = value_type &;
2615
2616 bool operator==(const SDNodeIterator& x) const {
2617 return Operand == x.Operand;
2618 }
2619 bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
2620
2621 pointer operator*() const {
2622 return Node->getOperand(Operand).getNode();
2623 }
2624 pointer operator->() const { return operator*(); }
2625
2626 SDNodeIterator& operator++() { // Preincrement
2627 ++Operand;
2628 return *this;
2629 }
2630 SDNodeIterator operator++(int) { // Postincrement
2631 SDNodeIterator tmp = *this; ++*this; return tmp;
2632 }
2633 size_t operator-(SDNodeIterator Other) const {
2634 assert(Node == Other.Node &&((void)0)
2635 "Cannot compare iterators of two different nodes!")((void)0);
2636 return Operand - Other.Operand;
2637 }
2638
2639 static SDNodeIterator begin(const SDNode *N) { return SDNodeIterator(N, 0); }
2640 static SDNodeIterator end (const SDNode *N) {
2641 return SDNodeIterator(N, N->getNumOperands());
2642 }
2643
2644 unsigned getOperand() const { return Operand; }
2645 const SDNode *getNode() const { return Node; }
2646};
2647
2648template <> struct GraphTraits<SDNode*> {
2649 using NodeRef = SDNode *;
2650 using ChildIteratorType = SDNodeIterator;
2651
2652 static NodeRef getEntryNode(SDNode *N) { return N; }
2653
2654 static ChildIteratorType child_begin(NodeRef N) {
2655 return SDNodeIterator::begin(N);
2656 }
2657
2658 static ChildIteratorType child_end(NodeRef N) {
2659 return SDNodeIterator::end(N);
2660 }
2661};
2662
2663/// A representation of the largest SDNode, for use in sizeof().
2664///
2665/// This needs to be a union because the largest node differs on 32 bit systems
2666/// with 4 and 8 byte pointer alignment, respectively.
2667using LargestSDNode = AlignedCharArrayUnion<AtomicSDNode, TargetIndexSDNode,
2668 BlockAddressSDNode,
2669 GlobalAddressSDNode,
2670 PseudoProbeSDNode>;
2671
2672/// The SDNode class with the greatest alignment requirement.
2673using MostAlignedSDNode = GlobalAddressSDNode;
2674
2675namespace ISD {
2676
2677 /// Returns true if the specified node is a non-extending and unindexed load.
2678 inline bool isNormalLoad(const SDNode *N) {
2679 const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
2680 return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
2681 Ld->getAddressingMode() == ISD::UNINDEXED;
2682 }
2683
2684 /// Returns true if the specified node is a non-extending load.
2685 inline bool isNON_EXTLoad(const SDNode *N) {
2686 return isa<LoadSDNode>(N) &&
2687 cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
2688 }
2689
2690 /// Returns true if the specified node is a EXTLOAD.
2691 inline bool isEXTLoad(const SDNode *N) {
2692 return isa<LoadSDNode>(N) &&
2693 cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
2694 }
2695
2696 /// Returns true if the specified node is a SEXTLOAD.
2697 inline bool isSEXTLoad(const SDNode *N) {
2698 return isa<LoadSDNode>(N) &&
2699 cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
2700 }
2701
2702 /// Returns true if the specified node is a ZEXTLOAD.
2703 inline bool isZEXTLoad(const SDNode *N) {
2704 return isa<LoadSDNode>(N) &&
2705 cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
2706 }
2707
2708 /// Returns true if the specified node is an unindexed load.
2709 inline bool isUNINDEXEDLoad(const SDNode *N) {
2710 return isa<LoadSDNode>(N) &&
2711 cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2712 }
2713
2714 /// Returns true if the specified node is a non-truncating
2715 /// and unindexed store.
2716 inline bool isNormalStore(const SDNode *N) {
2717 const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
2718 return St && !St->isTruncatingStore() &&
2719 St->getAddressingMode() == ISD::UNINDEXED;
2720 }
2721
2722 /// Returns true if the specified node is an unindexed store.
2723 inline bool isUNINDEXEDStore(const SDNode *N) {
2724 return isa<StoreSDNode>(N) &&
2725 cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2726 }
2727
2728 /// Attempt to match a unary predicate against a scalar/splat constant or
2729 /// every element of a constant BUILD_VECTOR.
2730 /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
2731 bool matchUnaryPredicate(SDValue Op,
2732 std::function<bool(ConstantSDNode *)> Match,
2733 bool AllowUndefs = false);
2734
2735 /// Attempt to match a binary predicate against a pair of scalar/splat
2736 /// constants or every element of a pair of constant BUILD_VECTORs.
2737 /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
2738 /// If AllowTypeMismatch is true then RetType + ArgTypes don't need to match.
2739 bool matchBinaryPredicate(
2740 SDValue LHS, SDValue RHS,
2741 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
2742 bool AllowUndefs = false, bool AllowTypeMismatch = false);
2743
2744 /// Returns true if the specified value is the overflow result from one
2745 /// of the overflow intrinsic nodes.
2746 inline bool isOverflowIntrOpRes(SDValue Op) {
2747 unsigned Opc = Op.getOpcode();
2748 return (Op.getResNo() == 1 &&
2749 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
2750 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO));
2751 }
2752
2753} // end namespace ISD
2754
2755} // end namespace llvm
2756
2757#endif // LLVM_CODEGEN_SELECTIONDAGNODES_H