File: | src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86/X86PreAMXConfig.cpp |
Warning: | line 246, column 22 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===- Target/X86/X86PreAMXConfig.cpp - ------------------------*- C++ -*-===// | ||||
2 | // | ||||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||
4 | // See https://llvm.org/LICENSE.txt for license information. | ||||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||
6 | // | ||||
7 | //===----------------------------------------------------------------------===// | ||||
8 | // | ||||
9 | /// Insert tilecfg for each area of key AMX intrinsic. | ||||
10 | /// All the key AMX intrinsic's tile operand must come from tileload. And the | ||||
11 | /// def tile of key AMX intrinsic must be tilestored. | ||||
12 | /// take tdpbssd for example: | ||||
13 | /// -------------------------------------------------------------------------- | ||||
14 | /// %t1 = call x86_amx @llvm.x86.tileloadd64.internal(...) key | ||||
15 | /// %t2 = call x86_amx @llvm.x86.tileloadd64.internal(...) | | ||||
16 | /// %t3 = call x86_amx @llvm.x86.tileloadd64.internal(...) amx | ||||
17 | /// %td = tail call x86_amx @llvm.x86.tdpbssd.internal(t1, t2, t3) | | ||||
18 | /// call void @llvm.x86.tilestored64.internal(... td) area | ||||
19 | /// -------------------------------------------------------------------------- | ||||
20 | /// This pass will insert tilecfg before every key-amx-area, some like: | ||||
21 | /// -------------------------------------------------------------------------- | ||||
22 | /// %cfgmem = alloca <16 x i32>, align 4 * allocate mem | ||||
23 | /// store <16 x i32> zeroinitializer, <16 x i32>* %cfgmem * zero init | ||||
24 | /// ... | ||||
25 | /// ... pre-config shape of %t1 * | ||||
26 | /// store volatile i8 %m, i8* %amx.tmm.0.shape.row, align 1 * | ||||
27 | /// store volatile i16 %k, i16* %amx.tmm.0.shape.col, align 2 * pre-config | ||||
28 | /// ... * | ||||
29 | /// ... pre-config shape of %t2 * shapes | ||||
30 | /// store volatile i8 %k, i8* %amx.tmm.1.shape.row, align 1 * | ||||
31 | /// store volatile i16 %n, i16* %amx.tmm.1.shape.col, align 2 * | ||||
32 | /// ... | ||||
33 | /// call void @llvm.x86.ldtilecfg(i8* %cfgmem) * tile config | ||||
34 | // | ||||
35 | //===----------------------------------------------------------------------===// | ||||
36 | // | ||||
37 | #include "X86.h" | ||||
38 | #include "llvm/ADT/SmallSet.h" | ||||
39 | #include "llvm/Analysis/TargetTransformInfo.h" | ||||
40 | #include "llvm/CodeGen/Passes.h" | ||||
41 | #include "llvm/CodeGen/TargetPassConfig.h" | ||||
42 | #include "llvm/CodeGen/ValueTypes.h" | ||||
43 | #include "llvm/IR/DataLayout.h" | ||||
44 | #include "llvm/IR/Function.h" | ||||
45 | #include "llvm/IR/IRBuilder.h" | ||||
46 | #include "llvm/IR/Instructions.h" | ||||
47 | #include "llvm/IR/IntrinsicInst.h" | ||||
48 | #include "llvm/IR/IntrinsicsX86.h" | ||||
49 | #include "llvm/IR/PatternMatch.h" | ||||
50 | #include "llvm/InitializePasses.h" | ||||
51 | #include "llvm/Pass.h" | ||||
52 | #include "llvm/Support/raw_ostream.h" | ||||
53 | #include "llvm/Target/TargetMachine.h" | ||||
54 | |||||
55 | using namespace llvm; | ||||
56 | using namespace PatternMatch; | ||||
57 | |||||
58 | #define DEBUG_TYPE"pre-amx-config" "pre-amx-config" | ||||
59 | |||||
60 | static bool isAMXIntrinsic(IntrinsicInst *II) { | ||||
61 | for (Value *Operand : II->operands()) | ||||
62 | if (Operand->getType()->isX86_AMXTy()) | ||||
63 | return true; | ||||
64 | return II->getType()->isX86_AMXTy(); | ||||
65 | } | ||||
66 | |||||
67 | static bool isTileLoad(IntrinsicInst *II) { | ||||
68 | return II->getIntrinsicID() == Intrinsic::x86_tileloadd64_internal || | ||||
69 | II->getIntrinsicID() == Intrinsic::x86_tileloaddt164_internal; | ||||
70 | } | ||||
71 | |||||
72 | static bool isTileStore(IntrinsicInst *II) { | ||||
73 | return II->getIntrinsicID() == Intrinsic::x86_tilestored64_internal; | ||||
74 | } | ||||
75 | |||||
76 | #ifndef NDEBUG1 | ||||
77 | static bool onlyTileDef(IntrinsicInst *II) { | ||||
78 | for (Value *Operand : II->operands()) | ||||
79 | if (Operand->getType()->isX86_AMXTy()) | ||||
80 | return false; | ||||
81 | return II->getType()->isX86_AMXTy(); | ||||
82 | } | ||||
83 | |||||
84 | static bool brokenVolatile(Instruction *I) { | ||||
85 | // Todo: it is weak to identify a normal call here. | ||||
86 | if ((isa<CallInst>(I) && !isa<IntrinsicInst>(I)) || I->isTerminator()) | ||||
87 | return true; | ||||
88 | return false; | ||||
89 | } | ||||
90 | #endif | ||||
91 | |||||
92 | namespace { | ||||
93 | class X86PreAMXConfig { | ||||
94 | Function &F; | ||||
95 | |||||
96 | public: | ||||
97 | X86PreAMXConfig(Function &Func) : F(Func) {} | ||||
98 | bool preTileConfig(); | ||||
99 | bool addTileConfig(Instruction *ModelStart, SmallVector<Value *, 8> &Shapes); | ||||
100 | bool findConfigShapes( | ||||
101 | DenseMap<Instruction *, SmallVector<Value *, 8>> &PosAndShapes); | ||||
102 | bool getKeyAMXShapes(IntrinsicInst *KeyAMX, SmallVector<Value *, 8> &Shapes); | ||||
103 | bool preWriteTileCfg(Value *I8Ptr, Instruction *Pos, | ||||
104 | SmallVector<Value *, 8> &Shapes); | ||||
105 | BasicBlock::iterator | ||||
106 | getShapesAndConfigPosEnd(BasicBlock::iterator Iter, | ||||
107 | SmallVector<Value *, 8> &Shapes); | ||||
108 | bool checkVolatileModel(SmallSet<Value *, 4> &Loads, IntrinsicInst *Store, | ||||
109 | IntrinsicInst *KeyAMX); | ||||
110 | }; | ||||
111 | |||||
112 | // Orderly write the shapes in tilecfg's mem. This maybe not right. | ||||
113 | // Because the first shape may not corresponding to the first tmm register, | ||||
114 | // so we need to handle at at X86FastTileConfig::materializeTileCfg() | ||||
115 | // after register allocation. | ||||
116 | // For example: | ||||
117 | // -------------------------------------------------------------------------- | ||||
118 | // zeroinitialize tilecfg's mem (of ldtilecfg) | ||||
119 | // -------------------------------------------------------------------------- | ||||
120 | // ... pre-config shape of %t1 * | ||||
121 | // %amx.tmm.0.shape.row = getelementptr i8, i8* %mem, i64 48 * | ||||
122 | // %amx.tmm.0.shape.col = getelementptr i16, i16* %mem, i64 16 * | ||||
123 | // store volatile i8 %m, i8* %amx.tmm.0.shape.row, align 1 * | ||||
124 | // store volatile i16 %k, i16* %amx.tmm.0.shape.col, align 2 * pre-config | ||||
125 | // ... * | ||||
126 | // ... pre-config shape of %t2 * | ||||
127 | // %amx.tmm.1.shape.row = getelementptr i8, i8* %mem, i64 49 * | ||||
128 | // %amx.tmm.1.shape.col = getelementptr i16, i16* %mem, i64 18 * | ||||
129 | // store volatile i8 %k, i8* %amx.tmm.1.shape.row, align 1 * shapes | ||||
130 | // store volatile i16 %n, i16* %amx.tmm.1.shape.col, align 2 * | ||||
131 | // ... * | ||||
132 | // ... pre-config shape of %t3 * of | ||||
133 | // %amx.tmm.2.shape.row = getelementptr i8, i8* %mem, i64 50 * | ||||
134 | // %amx.tmm.2.shape.col = getelementptr i16, i16* %mem, i64 20 * | ||||
135 | // store volatile i8 %m, i8* %amx.tmm.2.shape.row, align 1 * | ||||
136 | // store volatile i16 %n, i16* %amx.tmm.2.shape.col, align 2 * | ||||
137 | // ... * tiles | ||||
138 | // ... pre-config shape of %td * | ||||
139 | // %amx.tmm.3.shape.row = getelementptr i8, i8* %mem, i64 51 * | ||||
140 | // %amx.tmm.3.shape.col = getelementptr i16, i16* %mem, i64 22 * | ||||
141 | // store volatile i8 %m, i8* %amx.tmm.3.shape.row, align 1 * | ||||
142 | // store volatile i16 %n, i16* %amx.tmm.3.shape.col, align 2 * | ||||
143 | // -------------------------------------------------------------------------- | ||||
144 | // call void @llvm.x86.ldtilecfg(i8* %mem) * tile config | ||||
145 | // -------------------------------------------------------------------------- | ||||
146 | // %t1 = call x86_amx @llvm.x86.tileloadd64.internal(m, k, ...) key | ||||
147 | // %t2 = call x86_amx @llvm.x86.tileloadd64.internal(k, n, ...) | ||||
148 | // %t3 = call x86_amx @llvm.x86.tileloadd64.internal(m, n, ...) amx | ||||
149 | // %td = tail call x86_amx @llvm.x86.tdpbssd.internal(m, n, k, t1, t2, t3) | ||||
150 | // call void @llvm.x86.tilestored64.internal(... td) area | ||||
151 | // -------------------------------------------------------------------------- | ||||
152 | bool X86PreAMXConfig::preWriteTileCfg(Value *I8Ptr, Instruction *Pos, | ||||
153 | SmallVector<Value *, 8> &Shapes) { | ||||
154 | bool Write = false; | ||||
155 | LLVMContext &Ctx = Pos->getParent()->getContext(); | ||||
156 | Type *I8Ty = Type::getInt8Ty(Ctx); | ||||
157 | Type *I16Ty = Type::getInt16Ty(Ctx); | ||||
158 | |||||
159 | // TODO: Currently we defaultly set Palette = 1, it may be assigned to | ||||
160 | // other value in the future. | ||||
161 | Value *PaletteOffset = ConstantInt::get(Type::getInt64Ty(Ctx), 0); | ||||
162 | Value *PaletteValue = ConstantInt::get(Type::getInt8Ty(Ctx), 1); | ||||
163 | Value *PalettePos = | ||||
164 | GetElementPtrInst::Create(I8Ty, I8Ptr, PaletteOffset, "", Pos); | ||||
165 | new StoreInst(PaletteValue, PalettePos, Pos); | ||||
166 | |||||
167 | for (int I = 0, E = Shapes.size() / 2; I < E; I++) { | ||||
168 | Value *RowOffset = ConstantInt::get(Type::getInt64Ty(Ctx), 48 + I); | ||||
169 | Value *ColOffset = ConstantInt::get(Type::getInt64Ty(Ctx), 16 + I * 2); | ||||
170 | const std::string ShapeName = "amx.tmm." + itostr(I); | ||||
171 | Value *RowPos = GetElementPtrInst::Create(I8Ty, I8Ptr, RowOffset, | ||||
172 | ShapeName + ".shape.row", Pos); | ||||
173 | Value *ColPos = GetElementPtrInst::Create(I8Ty, I8Ptr, ColOffset, "", Pos); | ||||
174 | ColPos = new BitCastInst(ColPos, PointerType::get(I16Ty, 0), | ||||
175 | ShapeName + ".shape.col", Pos); | ||||
176 | Value *Row = Shapes[I * 2]; | ||||
177 | Value *Col = Shapes[I * 2 + 1]; | ||||
178 | Row = new TruncInst(Row, I8Ty, "", Pos); | ||||
179 | new StoreInst(Row, RowPos, Pos); | ||||
180 | new StoreInst(Col, ColPos, Pos); | ||||
181 | Write = true; | ||||
182 | } | ||||
183 | return Write; | ||||
184 | } | ||||
185 | |||||
186 | bool X86PreAMXConfig::addTileConfig(Instruction *ModelStart, | ||||
187 | SmallVector<Value *, 8> &Shapes) { | ||||
188 | Module *M = F.getParent(); | ||||
189 | IRBuilder<> Builder(ModelStart); | ||||
190 | const DataLayout &DL = M->getDataLayout(); | ||||
191 | unsigned AddrSpace = DL.getAllocaAddrSpace(); | ||||
192 | LLVMContext &Ctx = Builder.getContext(); | ||||
193 | Type *V512Ty = VectorType::get(Builder.getInt32Ty(), 16, false); | ||||
194 | Align Alignment = DL.getPrefTypeAlign(Type::getInt32Ty(Ctx)); | ||||
195 | |||||
196 | AllocaInst *Addr = | ||||
197 | new AllocaInst(V512Ty, AddrSpace, "", &F.getEntryBlock().front()); | ||||
198 | Addr->setAlignment(Alignment); | ||||
199 | Value *I8Ptr = Builder.CreateBitCast(Addr, Builder.getInt8PtrTy()); | ||||
200 | |||||
201 | std::array<Value *, 1> Args = {I8Ptr}; | ||||
202 | Instruction *Cfg = | ||||
203 | Builder.CreateIntrinsic(Intrinsic::x86_ldtilecfg_internal, None, Args); | ||||
204 | |||||
205 | Value *Val0 = Constant::getNullValue(V512Ty); | ||||
206 | Instruction *Init0 = new StoreInst(Val0, Addr, false, Alignment, Cfg); | ||||
207 | assert(Init0 && "Not Zero initilizate the cfg mem!")((void)0); | ||||
208 | |||||
209 | preWriteTileCfg(I8Ptr, Cfg, Shapes); | ||||
210 | |||||
211 | return Init0; | ||||
212 | } | ||||
213 | |||||
214 | // Todo: We may need to handle "more than one store" case in the future. | ||||
215 | bool X86PreAMXConfig::checkVolatileModel(SmallSet<Value *, 4> &Loads, | ||||
216 | IntrinsicInst *Store, | ||||
217 | IntrinsicInst *KeyAMX) { | ||||
218 | Value *ST = Store->getOperand(4); | ||||
219 | |||||
220 | // Only has tileload and tilestore. | ||||
221 | if (!KeyAMX) | ||||
222 | return (Loads.size() == 1) && Loads.contains(ST); | ||||
223 | |||||
224 | // All Loads should be operands of KeyAMX. | ||||
225 | // All tile operands of KeyAMX should come from Loads. | ||||
226 | for (Value *Op : KeyAMX->operands()) { | ||||
227 | if (Op->getType()->isX86_AMXTy()) | ||||
228 | if (!Loads.erase(Op)) | ||||
229 | return false; | ||||
230 | } | ||||
231 | |||||
232 | // The def of KeyAMX should be stored into mem. | ||||
233 | // Todo: is it key amx can be no def? | ||||
234 | return Loads.empty() && (ST == cast<Value>(KeyAMX)); | ||||
235 | } | ||||
236 | |||||
237 | bool X86PreAMXConfig::getKeyAMXShapes(IntrinsicInst *KeyAMX, | ||||
238 | SmallVector<Value *, 8> &Shapes) { | ||||
239 | for (unsigned I = 0; I < KeyAMX->getNumOperands(); I++) { | ||||
240 | Value *Op = KeyAMX->getOperand(I); | ||||
241 | if (!Op->getType()->isX86_AMXTy()) | ||||
242 | continue; | ||||
243 | IntrinsicInst *TileDef = dyn_cast<IntrinsicInst>(Op); | ||||
244 | assert((TileDef && isTileLoad(TileDef)) &&((void)0) | ||||
245 | "All KeyAMX's tile definiation should comes from TileLoad!")((void)0); | ||||
246 | Shapes.push_back(TileDef->getOperand(0)); | ||||
| |||||
247 | Shapes.push_back(TileDef->getOperand(1)); | ||||
248 | } | ||||
249 | if (!isTileStore(KeyAMX)) { | ||||
250 | Shapes.push_back(KeyAMX->getOperand(0)); | ||||
251 | Shapes.push_back(KeyAMX->getOperand(1)); | ||||
252 | } | ||||
253 | return Shapes.size() != 0; | ||||
254 | } | ||||
255 | |||||
256 | // Collect the shapes and skip the area of current key amx intrinsic. | ||||
257 | // | ||||
258 | // For example: | ||||
259 | // ... | ||||
260 | // -------------------------------------------------------------------------- | ||||
261 | // %t1 = call x86_amx @llvm.x86.tileloadd64.internal(m, k, ...) record (m,k) | ||||
262 | // %t2 = call x86_amx @llvm.x86.tileloadd64.internal(k, n, ...) record (m,k) | ||||
263 | // %t3 = call x86_amx @llvm.x86.tileloadd64.internal(m, n, ...) record (m,k) | ||||
264 | // %td = call x86_amx @llvm.x86.tdpbssd.internal(...t1, t2, t3) | ||||
265 | // call void @llvm.x86.tilestored64.internal(m, n,... td) <--PosEnd record (m,k) | ||||
266 | // -------------------------------------------------------------------------- | ||||
267 | BasicBlock::iterator | ||||
268 | X86PreAMXConfig::getShapesAndConfigPosEnd(BasicBlock::iterator Iter, | ||||
269 | SmallVector<Value *, 8> &Shapes) { | ||||
270 | IntrinsicInst *KeyAMX = nullptr; | ||||
271 | BasicBlock *BB = Iter->getParent(); | ||||
272 | BasicBlock::iterator PosEnd = BB->end(); | ||||
273 | SmallSet<Value *, 4> Loads; | ||||
274 | |||||
275 | // See TileStore as "Config Position End" and check volatile model. | ||||
276 | for (auto I = Iter, E = BB->end(); I != E; ++I) { | ||||
277 | assert(!brokenVolatile(&*I) && "Not reach tile store!")((void)0); | ||||
278 | IntrinsicInst *II = dyn_cast<IntrinsicInst>(&*I); | ||||
279 | if (!II || !isAMXIntrinsic(II)) | ||||
280 | continue; | ||||
281 | |||||
282 | if (isTileLoad(II)) { | ||||
283 | Loads.insert(II); | ||||
284 | } else if (isTileStore(II)) { | ||||
285 | if (!checkVolatileModel(Loads, II, KeyAMX)) | ||||
286 | report_fatal_error("Not Volatile AMX Model!"); | ||||
287 | PosEnd = I; | ||||
288 | break; | ||||
289 | } else { | ||||
290 | assert(!KeyAMX && "Too many key amx intrinsic!")((void)0); | ||||
291 | KeyAMX = II; | ||||
292 | } | ||||
293 | } | ||||
294 | assert(PosEnd != BB->end() && "Not find TileStore!")((void)0); | ||||
295 | |||||
296 | // See KeyAMX as TileStore if only TileLoad and TileStore. | ||||
297 | if (!KeyAMX
| ||||
298 | KeyAMX = dyn_cast<IntrinsicInst>(&*PosEnd); | ||||
299 | |||||
300 | // Get Shapes in order. | ||||
301 | assert(Shapes.empty() && "Shapes should be clean.")((void)0); | ||||
302 | getKeyAMXShapes(KeyAMX, Shapes); | ||||
303 | |||||
304 | return PosEnd; | ||||
305 | } | ||||
306 | |||||
307 | // Record a key amx area's shapes with its position. | ||||
308 | // Use the first tileload as its position. | ||||
309 | // For example: | ||||
310 | // ... | ||||
311 | // -------------------------------------------------------------------------- | ||||
312 | // %t1 = call x86_amx @llvm.x86.tileloadd64.internal(m, k, ...) <-- pos | ||||
313 | // %t2 = call x86_amx @llvm.x86.tileloadd64.internal(k, n, ...) / | ||||
314 | // %t3 = call x86_amx @llvm.x86.tileloadd64.internal(m, n, ...) shapes: | ||||
315 | // %td = call x86_amx @llvm.x86.tdpbssd.internal(...t1, t2, t3) (m,k)(k,n) | ||||
316 | // call void @llvm.x86.tilestored64.internal(m, n,... td) (m,n)(m,n) | ||||
317 | // -------------------------------------------------------------------------- | ||||
318 | bool X86PreAMXConfig::findConfigShapes( | ||||
319 | DenseMap<Instruction *, SmallVector<Value *, 8>> &PosAndShapes) { | ||||
320 | bool Find = false; | ||||
321 | for (BasicBlock &BB : F) { | ||||
322 | for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I) { | ||||
323 | IntrinsicInst *II = dyn_cast<IntrinsicInst>(&*I); | ||||
324 | if (!II
| ||||
325 | continue; | ||||
326 | if (!isAMXIntrinsic(II)) | ||||
327 | continue; | ||||
328 | assert(onlyTileDef(II) && "Not volatile model for AMX at O0!")((void)0); | ||||
329 | |||||
330 | I = getShapesAndConfigPosEnd(I, PosAndShapes[&*I]); | ||||
331 | Find = true; | ||||
332 | } | ||||
333 | } | ||||
334 | return Find; | ||||
335 | } | ||||
336 | |||||
337 | // Insert ldtilecfg and preconfig the shapes for each area of key AMX intrinsic. | ||||
338 | // e.g. (key amx = tdpbssd) | ||||
339 | // -------------------------------------------------------------------------- | ||||
340 | // %cfgmem = alloca <16 x i32>, align 4 * allocate mem | ||||
341 | // store <16 x i32> zeroinitializer, <16 x i32>* %cfgmem * zero init | ||||
342 | // ... | ||||
343 | // ... pre-config shape of %t1 * | ||||
344 | // store volatile i8 %m, i8* %amx.tmm.0.shape.row, align 1 * | ||||
345 | // store volatile i16 %k, i16* %amx.tmm.0.shape.col, align 2 * pre-config | ||||
346 | // ... * | ||||
347 | // ... pre-config shape of %t2 * | ||||
348 | // store volatile i8 %k, i8* %amx.tmm.1.shape.row, align 1 * shapes | ||||
349 | // store volatile i16 %n, i16* %amx.tmm.1.shape.col, align 2 * | ||||
350 | // ... * | ||||
351 | // ... pre-config shape of %t3 * of | ||||
352 | // store volatile i8 %m, i8* %amx.tmm.2.shape.row, align 1 * | ||||
353 | // store volatile i16 %n, i16* %amx.tmm.2.shape.col, align 2 * | ||||
354 | // ... * tiles | ||||
355 | // ... pre-config shape of %td * | ||||
356 | // store volatile i8 %m, i8* %amx.tmm.3.shape.row, align 1 * | ||||
357 | // store volatile i16 %n, i16* %amx.tmm.3.shape.col, align 2 * | ||||
358 | // | ||||
359 | // call void @llvm.x86.ldtilecfg(i8* %cfgmem) * pre-config | ||||
360 | // -------------------------------------------------------------------------- | ||||
361 | // %t1 = call x86_amx @llvm.x86.tileloadd64.internal(m, k, ...) key | ||||
362 | // %t2 = call x86_amx @llvm.x86.tileloadd64.internal(k, n, ...) | ||||
363 | // %t3 = call x86_amx @llvm.x86.tileloadd64.internal(m, n, ...) amx | ||||
364 | // %td = tail call x86_amx @llvm.x86.tdpbssd.internal(m, n, k, t1, t2, t3) | ||||
365 | // call void @llvm.x86.tilestored64.internal(... td) area | ||||
366 | // -------------------------------------------------------------------------- | ||||
367 | bool X86PreAMXConfig::preTileConfig() { | ||||
368 | DenseMap<Instruction *, SmallVector<Value *, 8>> PosAndShapes; | ||||
369 | bool NeedCfg = findConfigShapes(PosAndShapes); | ||||
370 | if (!NeedCfg) | ||||
371 | return false; | ||||
372 | for (auto &IPAndShapes : PosAndShapes) | ||||
373 | addTileConfig(IPAndShapes.first, IPAndShapes.second); | ||||
374 | |||||
375 | return true; | ||||
376 | } | ||||
377 | } // anonymous namespace | ||||
378 | |||||
379 | namespace { | ||||
380 | |||||
381 | class X86PreAMXConfigPass : public FunctionPass { | ||||
382 | public: | ||||
383 | static char ID; | ||||
384 | |||||
385 | X86PreAMXConfigPass() : FunctionPass(ID) { | ||||
386 | initializeX86PreAMXConfigPassPass(*PassRegistry::getPassRegistry()); | ||||
387 | } | ||||
388 | |||||
389 | bool runOnFunction(Function &F) override { | ||||
390 | TargetMachine *TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); | ||||
391 | bool C = false; | ||||
392 | |||||
393 | // Prepare for fast register allocation at O0. | ||||
394 | if (TM->getOptLevel() == CodeGenOpt::None) { | ||||
| |||||
395 | |||||
396 | // We pre-config each key AMX intrinsic at O0. | ||||
397 | // In theory, one tile config can cover several AMX intrinsics, but | ||||
398 | // it is very diffcult to classify the tile shapes at O0. So here we | ||||
399 | // let thing be easy, pre-config every key AMX intrinsic. | ||||
400 | X86PreAMXConfig PCFG(F); | ||||
401 | C = PCFG.preTileConfig(); | ||||
402 | } | ||||
403 | |||||
404 | return C; | ||||
405 | } | ||||
406 | |||||
407 | void getAnalysisUsage(AnalysisUsage &AU) const override { | ||||
408 | AU.setPreservesCFG(); | ||||
409 | AU.addRequired<TargetPassConfig>(); | ||||
410 | } | ||||
411 | }; | ||||
412 | |||||
413 | } // anonymous namespace | ||||
414 | |||||
415 | static const char PassName[] = "Pre AMX Tile Config"; | ||||
416 | char X86PreAMXConfigPass::ID = 0; | ||||
417 | INITIALIZE_PASS_BEGIN(X86PreAMXConfigPass, DEBUG_TYPE, PassName, false, false)static void *initializeX86PreAMXConfigPassPassOnce(PassRegistry &Registry) { | ||||
418 | INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)initializeTargetPassConfigPass(Registry); | ||||
419 | INITIALIZE_PASS_END(X86PreAMXConfigPass, DEBUG_TYPE, PassName, false, false)PassInfo *PI = new PassInfo( PassName, "pre-amx-config", & X86PreAMXConfigPass::ID, PassInfo::NormalCtor_t(callDefaultCtor <X86PreAMXConfigPass>), false, false); Registry.registerPass (*PI, true); return PI; } static llvm::once_flag InitializeX86PreAMXConfigPassPassFlag ; void llvm::initializeX86PreAMXConfigPassPass(PassRegistry & Registry) { llvm::call_once(InitializeX86PreAMXConfigPassPassFlag , initializeX86PreAMXConfigPassPassOnce, std::ref(Registry)); } | ||||
420 | |||||
421 | FunctionPass *llvm::createX86PreAMXConfigPass() { | ||||
422 | return new X86PreAMXConfigPass(); | ||||
423 | } |
1 | //===- llvm/Type.h - Classes for handling data types ------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file contains the declaration of the Type class. For more "Type" |
10 | // stuff, look in DerivedTypes.h. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #ifndef LLVM_IR_TYPE_H |
15 | #define LLVM_IR_TYPE_H |
16 | |
17 | #include "llvm/ADT/APFloat.h" |
18 | #include "llvm/ADT/ArrayRef.h" |
19 | #include "llvm/ADT/SmallPtrSet.h" |
20 | #include "llvm/Support/CBindingWrapping.h" |
21 | #include "llvm/Support/Casting.h" |
22 | #include "llvm/Support/Compiler.h" |
23 | #include "llvm/Support/ErrorHandling.h" |
24 | #include "llvm/Support/TypeSize.h" |
25 | #include <cassert> |
26 | #include <cstdint> |
27 | #include <iterator> |
28 | |
29 | namespace llvm { |
30 | |
31 | class IntegerType; |
32 | class LLVMContext; |
33 | class PointerType; |
34 | class raw_ostream; |
35 | class StringRef; |
36 | |
37 | /// The instances of the Type class are immutable: once they are created, |
38 | /// they are never changed. Also note that only one instance of a particular |
39 | /// type is ever created. Thus seeing if two types are equal is a matter of |
40 | /// doing a trivial pointer comparison. To enforce that no two equal instances |
41 | /// are created, Type instances can only be created via static factory methods |
42 | /// in class Type and in derived classes. Once allocated, Types are never |
43 | /// free'd. |
44 | /// |
45 | class Type { |
46 | public: |
47 | //===--------------------------------------------------------------------===// |
48 | /// Definitions of all of the base types for the Type system. Based on this |
49 | /// value, you can cast to a class defined in DerivedTypes.h. |
50 | /// Note: If you add an element to this, you need to add an element to the |
51 | /// Type::getPrimitiveType function, or else things will break! |
52 | /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding. |
53 | /// |
54 | enum TypeID { |
55 | // PrimitiveTypes |
56 | HalfTyID = 0, ///< 16-bit floating point type |
57 | BFloatTyID, ///< 16-bit floating point type (7-bit significand) |
58 | FloatTyID, ///< 32-bit floating point type |
59 | DoubleTyID, ///< 64-bit floating point type |
60 | X86_FP80TyID, ///< 80-bit floating point type (X87) |
61 | FP128TyID, ///< 128-bit floating point type (112-bit significand) |
62 | PPC_FP128TyID, ///< 128-bit floating point type (two 64-bits, PowerPC) |
63 | VoidTyID, ///< type with no size |
64 | LabelTyID, ///< Labels |
65 | MetadataTyID, ///< Metadata |
66 | X86_MMXTyID, ///< MMX vectors (64 bits, X86 specific) |
67 | X86_AMXTyID, ///< AMX vectors (8192 bits, X86 specific) |
68 | TokenTyID, ///< Tokens |
69 | |
70 | // Derived types... see DerivedTypes.h file. |
71 | IntegerTyID, ///< Arbitrary bit width integers |
72 | FunctionTyID, ///< Functions |
73 | PointerTyID, ///< Pointers |
74 | StructTyID, ///< Structures |
75 | ArrayTyID, ///< Arrays |
76 | FixedVectorTyID, ///< Fixed width SIMD vector type |
77 | ScalableVectorTyID ///< Scalable SIMD vector type |
78 | }; |
79 | |
80 | private: |
81 | /// This refers to the LLVMContext in which this type was uniqued. |
82 | LLVMContext &Context; |
83 | |
84 | TypeID ID : 8; // The current base type of this type. |
85 | unsigned SubclassData : 24; // Space for subclasses to store data. |
86 | // Note that this should be synchronized with |
87 | // MAX_INT_BITS value in IntegerType class. |
88 | |
89 | protected: |
90 | friend class LLVMContextImpl; |
91 | |
92 | explicit Type(LLVMContext &C, TypeID tid) |
93 | : Context(C), ID(tid), SubclassData(0) {} |
94 | ~Type() = default; |
95 | |
96 | unsigned getSubclassData() const { return SubclassData; } |
97 | |
98 | void setSubclassData(unsigned val) { |
99 | SubclassData = val; |
100 | // Ensure we don't have any accidental truncation. |
101 | assert(getSubclassData() == val && "Subclass data too large for field")((void)0); |
102 | } |
103 | |
104 | /// Keeps track of how many Type*'s there are in the ContainedTys list. |
105 | unsigned NumContainedTys = 0; |
106 | |
107 | /// A pointer to the array of Types contained by this Type. For example, this |
108 | /// includes the arguments of a function type, the elements of a structure, |
109 | /// the pointee of a pointer, the element type of an array, etc. This pointer |
110 | /// may be 0 for types that don't contain other types (Integer, Double, |
111 | /// Float). |
112 | Type * const *ContainedTys = nullptr; |
113 | |
114 | public: |
115 | /// Print the current type. |
116 | /// Omit the type details if \p NoDetails == true. |
117 | /// E.g., let %st = type { i32, i16 } |
118 | /// When \p NoDetails is true, we only print %st. |
119 | /// Put differently, \p NoDetails prints the type as if |
120 | /// inlined with the operands when printing an instruction. |
121 | void print(raw_ostream &O, bool IsForDebug = false, |
122 | bool NoDetails = false) const; |
123 | |
124 | void dump() const; |
125 | |
126 | /// Return the LLVMContext in which this type was uniqued. |
127 | LLVMContext &getContext() const { return Context; } |
128 | |
129 | //===--------------------------------------------------------------------===// |
130 | // Accessors for working with types. |
131 | // |
132 | |
133 | /// Return the type id for the type. This will return one of the TypeID enum |
134 | /// elements defined above. |
135 | TypeID getTypeID() const { return ID; } |
136 | |
137 | /// Return true if this is 'void'. |
138 | bool isVoidTy() const { return getTypeID() == VoidTyID; } |
139 | |
140 | /// Return true if this is 'half', a 16-bit IEEE fp type. |
141 | bool isHalfTy() const { return getTypeID() == HalfTyID; } |
142 | |
143 | /// Return true if this is 'bfloat', a 16-bit bfloat type. |
144 | bool isBFloatTy() const { return getTypeID() == BFloatTyID; } |
145 | |
146 | /// Return true if this is 'float', a 32-bit IEEE fp type. |
147 | bool isFloatTy() const { return getTypeID() == FloatTyID; } |
148 | |
149 | /// Return true if this is 'double', a 64-bit IEEE fp type. |
150 | bool isDoubleTy() const { return getTypeID() == DoubleTyID; } |
151 | |
152 | /// Return true if this is x86 long double. |
153 | bool isX86_FP80Ty() const { return getTypeID() == X86_FP80TyID; } |
154 | |
155 | /// Return true if this is 'fp128'. |
156 | bool isFP128Ty() const { return getTypeID() == FP128TyID; } |
157 | |
158 | /// Return true if this is powerpc long double. |
159 | bool isPPC_FP128Ty() const { return getTypeID() == PPC_FP128TyID; } |
160 | |
161 | /// Return true if this is one of the six floating-point types |
162 | bool isFloatingPointTy() const { |
163 | return getTypeID() == HalfTyID || getTypeID() == BFloatTyID || |
164 | getTypeID() == FloatTyID || getTypeID() == DoubleTyID || |
165 | getTypeID() == X86_FP80TyID || getTypeID() == FP128TyID || |
166 | getTypeID() == PPC_FP128TyID; |
167 | } |
168 | |
169 | const fltSemantics &getFltSemantics() const { |
170 | switch (getTypeID()) { |
171 | case HalfTyID: return APFloat::IEEEhalf(); |
172 | case BFloatTyID: return APFloat::BFloat(); |
173 | case FloatTyID: return APFloat::IEEEsingle(); |
174 | case DoubleTyID: return APFloat::IEEEdouble(); |
175 | case X86_FP80TyID: return APFloat::x87DoubleExtended(); |
176 | case FP128TyID: return APFloat::IEEEquad(); |
177 | case PPC_FP128TyID: return APFloat::PPCDoubleDouble(); |
178 | default: llvm_unreachable("Invalid floating type")__builtin_unreachable(); |
179 | } |
180 | } |
181 | |
182 | /// Return true if this is X86 MMX. |
183 | bool isX86_MMXTy() const { return getTypeID() == X86_MMXTyID; } |
184 | |
185 | /// Return true if this is X86 AMX. |
186 | bool isX86_AMXTy() const { return getTypeID() == X86_AMXTyID; } |
187 | |
188 | /// Return true if this is a FP type or a vector of FP. |
189 | bool isFPOrFPVectorTy() const { return getScalarType()->isFloatingPointTy(); } |
190 | |
191 | /// Return true if this is 'label'. |
192 | bool isLabelTy() const { return getTypeID() == LabelTyID; } |
193 | |
194 | /// Return true if this is 'metadata'. |
195 | bool isMetadataTy() const { return getTypeID() == MetadataTyID; } |
196 | |
197 | /// Return true if this is 'token'. |
198 | bool isTokenTy() const { return getTypeID() == TokenTyID; } |
199 | |
200 | /// True if this is an instance of IntegerType. |
201 | bool isIntegerTy() const { return getTypeID() == IntegerTyID; } |
202 | |
203 | /// Return true if this is an IntegerType of the given width. |
204 | bool isIntegerTy(unsigned Bitwidth) const; |
205 | |
206 | /// Return true if this is an integer type or a vector of integer types. |
207 | bool isIntOrIntVectorTy() const { return getScalarType()->isIntegerTy(); } |
208 | |
209 | /// Return true if this is an integer type or a vector of integer types of |
210 | /// the given width. |
211 | bool isIntOrIntVectorTy(unsigned BitWidth) const { |
212 | return getScalarType()->isIntegerTy(BitWidth); |
213 | } |
214 | |
215 | /// Return true if this is an integer type or a pointer type. |
216 | bool isIntOrPtrTy() const { return isIntegerTy() || isPointerTy(); } |
217 | |
218 | /// True if this is an instance of FunctionType. |
219 | bool isFunctionTy() const { return getTypeID() == FunctionTyID; } |
220 | |
221 | /// True if this is an instance of StructType. |
222 | bool isStructTy() const { return getTypeID() == StructTyID; } |
223 | |
224 | /// True if this is an instance of ArrayType. |
225 | bool isArrayTy() const { return getTypeID() == ArrayTyID; } |
226 | |
227 | /// True if this is an instance of PointerType. |
228 | bool isPointerTy() const { return getTypeID() == PointerTyID; } |
229 | |
230 | /// True if this is an instance of an opaque PointerType. |
231 | bool isOpaquePointerTy() const; |
232 | |
233 | /// Return true if this is a pointer type or a vector of pointer types. |
234 | bool isPtrOrPtrVectorTy() const { return getScalarType()->isPointerTy(); } |
235 | |
236 | /// True if this is an instance of VectorType. |
237 | inline bool isVectorTy() const { |
238 | return getTypeID() == ScalableVectorTyID || getTypeID() == FixedVectorTyID; |
239 | } |
240 | |
241 | /// Return true if this type could be converted with a lossless BitCast to |
242 | /// type 'Ty'. For example, i8* to i32*. BitCasts are valid for types of the |
243 | /// same size only where no re-interpretation of the bits is done. |
244 | /// Determine if this type could be losslessly bitcast to Ty |
245 | bool canLosslesslyBitCastTo(Type *Ty) const; |
246 | |
247 | /// Return true if this type is empty, that is, it has no elements or all of |
248 | /// its elements are empty. |
249 | bool isEmptyTy() const; |
250 | |
251 | /// Return true if the type is "first class", meaning it is a valid type for a |
252 | /// Value. |
253 | bool isFirstClassType() const { |
254 | return getTypeID() != FunctionTyID && getTypeID() != VoidTyID; |
255 | } |
256 | |
257 | /// Return true if the type is a valid type for a register in codegen. This |
258 | /// includes all first-class types except struct and array types. |
259 | bool isSingleValueType() const { |
260 | return isFloatingPointTy() || isX86_MMXTy() || isIntegerTy() || |
261 | isPointerTy() || isVectorTy() || isX86_AMXTy(); |
262 | } |
263 | |
264 | /// Return true if the type is an aggregate type. This means it is valid as |
265 | /// the first operand of an insertvalue or extractvalue instruction. This |
266 | /// includes struct and array types, but does not include vector types. |
267 | bool isAggregateType() const { |
268 | return getTypeID() == StructTyID || getTypeID() == ArrayTyID; |
269 | } |
270 | |
271 | /// Return true if it makes sense to take the size of this type. To get the |
272 | /// actual size for a particular target, it is reasonable to use the |
273 | /// DataLayout subsystem to do this. |
274 | bool isSized(SmallPtrSetImpl<Type*> *Visited = nullptr) const { |
275 | // If it's a primitive, it is always sized. |
276 | if (getTypeID() == IntegerTyID || isFloatingPointTy() || |
277 | getTypeID() == PointerTyID || getTypeID() == X86_MMXTyID || |
278 | getTypeID() == X86_AMXTyID) |
279 | return true; |
280 | // If it is not something that can have a size (e.g. a function or label), |
281 | // it doesn't have a size. |
282 | if (getTypeID() != StructTyID && getTypeID() != ArrayTyID && !isVectorTy()) |
283 | return false; |
284 | // Otherwise we have to try harder to decide. |
285 | return isSizedDerivedType(Visited); |
286 | } |
287 | |
288 | /// Return the basic size of this type if it is a primitive type. These are |
289 | /// fixed by LLVM and are not target-dependent. |
290 | /// This will return zero if the type does not have a size or is not a |
291 | /// primitive type. |
292 | /// |
293 | /// If this is a scalable vector type, the scalable property will be set and |
294 | /// the runtime size will be a positive integer multiple of the base size. |
295 | /// |
296 | /// Note that this may not reflect the size of memory allocated for an |
297 | /// instance of the type or the number of bytes that are written when an |
298 | /// instance of the type is stored to memory. The DataLayout class provides |
299 | /// additional query functions to provide this information. |
300 | /// |
301 | TypeSize getPrimitiveSizeInBits() const LLVM_READONLY__attribute__((__pure__)); |
302 | |
303 | /// If this is a vector type, return the getPrimitiveSizeInBits value for the |
304 | /// element type. Otherwise return the getPrimitiveSizeInBits value for this |
305 | /// type. |
306 | unsigned getScalarSizeInBits() const LLVM_READONLY__attribute__((__pure__)); |
307 | |
308 | /// Return the width of the mantissa of this type. This is only valid on |
309 | /// floating-point types. If the FP type does not have a stable mantissa (e.g. |
310 | /// ppc long double), this method returns -1. |
311 | int getFPMantissaWidth() const; |
312 | |
313 | /// Return whether the type is IEEE compatible, as defined by the eponymous |
314 | /// method in APFloat. |
315 | bool isIEEE() const { return APFloat::getZero(getFltSemantics()).isIEEE(); } |
316 | |
317 | /// If this is a vector type, return the element type, otherwise return |
318 | /// 'this'. |
319 | inline Type *getScalarType() const { |
320 | if (isVectorTy()) |
321 | return getContainedType(0); |
322 | return const_cast<Type *>(this); |
323 | } |
324 | |
325 | //===--------------------------------------------------------------------===// |
326 | // Type Iteration support. |
327 | // |
328 | using subtype_iterator = Type * const *; |
329 | |
330 | subtype_iterator subtype_begin() const { return ContainedTys; } |
331 | subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];} |
332 | ArrayRef<Type*> subtypes() const { |
333 | return makeArrayRef(subtype_begin(), subtype_end()); |
334 | } |
335 | |
336 | using subtype_reverse_iterator = std::reverse_iterator<subtype_iterator>; |
337 | |
338 | subtype_reverse_iterator subtype_rbegin() const { |
339 | return subtype_reverse_iterator(subtype_end()); |
340 | } |
341 | subtype_reverse_iterator subtype_rend() const { |
342 | return subtype_reverse_iterator(subtype_begin()); |
343 | } |
344 | |
345 | /// This method is used to implement the type iterator (defined at the end of |
346 | /// the file). For derived types, this returns the types 'contained' in the |
347 | /// derived type. |
348 | Type *getContainedType(unsigned i) const { |
349 | assert(i < NumContainedTys && "Index out of range!")((void)0); |
350 | return ContainedTys[i]; |
351 | } |
352 | |
353 | /// Return the number of types in the derived type. |
354 | unsigned getNumContainedTypes() const { return NumContainedTys; } |
355 | |
356 | //===--------------------------------------------------------------------===// |
357 | // Helper methods corresponding to subclass methods. This forces a cast to |
358 | // the specified subclass and calls its accessor. "getArrayNumElements" (for |
359 | // example) is shorthand for cast<ArrayType>(Ty)->getNumElements(). This is |
360 | // only intended to cover the core methods that are frequently used, helper |
361 | // methods should not be added here. |
362 | |
363 | inline unsigned getIntegerBitWidth() const; |
364 | |
365 | inline Type *getFunctionParamType(unsigned i) const; |
366 | inline unsigned getFunctionNumParams() const; |
367 | inline bool isFunctionVarArg() const; |
368 | |
369 | inline StringRef getStructName() const; |
370 | inline unsigned getStructNumElements() const; |
371 | inline Type *getStructElementType(unsigned N) const; |
372 | |
373 | inline uint64_t getArrayNumElements() const; |
374 | |
375 | Type *getArrayElementType() const { |
376 | assert(getTypeID() == ArrayTyID)((void)0); |
377 | return ContainedTys[0]; |
378 | } |
379 | |
380 | Type *getPointerElementType() const { |
381 | assert(getTypeID() == PointerTyID)((void)0); |
382 | return ContainedTys[0]; |
383 | } |
384 | |
385 | /// Given vector type, change the element type, |
386 | /// whilst keeping the old number of elements. |
387 | /// For non-vectors simply returns \p EltTy. |
388 | inline Type *getWithNewType(Type *EltTy) const; |
389 | |
390 | /// Given an integer or vector type, change the lane bitwidth to NewBitwidth, |
391 | /// whilst keeping the old number of lanes. |
392 | inline Type *getWithNewBitWidth(unsigned NewBitWidth) const; |
393 | |
394 | /// Given scalar/vector integer type, returns a type with elements twice as |
395 | /// wide as in the original type. For vectors, preserves element count. |
396 | inline Type *getExtendedType() const; |
397 | |
398 | /// Get the address space of this pointer or pointer vector type. |
399 | inline unsigned getPointerAddressSpace() const; |
400 | |
401 | //===--------------------------------------------------------------------===// |
402 | // Static members exported by the Type class itself. Useful for getting |
403 | // instances of Type. |
404 | // |
405 | |
406 | /// Return a type based on an identifier. |
407 | static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber); |
408 | |
409 | //===--------------------------------------------------------------------===// |
410 | // These are the builtin types that are always available. |
411 | // |
412 | static Type *getVoidTy(LLVMContext &C); |
413 | static Type *getLabelTy(LLVMContext &C); |
414 | static Type *getHalfTy(LLVMContext &C); |
415 | static Type *getBFloatTy(LLVMContext &C); |
416 | static Type *getFloatTy(LLVMContext &C); |
417 | static Type *getDoubleTy(LLVMContext &C); |
418 | static Type *getMetadataTy(LLVMContext &C); |
419 | static Type *getX86_FP80Ty(LLVMContext &C); |
420 | static Type *getFP128Ty(LLVMContext &C); |
421 | static Type *getPPC_FP128Ty(LLVMContext &C); |
422 | static Type *getX86_MMXTy(LLVMContext &C); |
423 | static Type *getX86_AMXTy(LLVMContext &C); |
424 | static Type *getTokenTy(LLVMContext &C); |
425 | static IntegerType *getIntNTy(LLVMContext &C, unsigned N); |
426 | static IntegerType *getInt1Ty(LLVMContext &C); |
427 | static IntegerType *getInt8Ty(LLVMContext &C); |
428 | static IntegerType *getInt16Ty(LLVMContext &C); |
429 | static IntegerType *getInt32Ty(LLVMContext &C); |
430 | static IntegerType *getInt64Ty(LLVMContext &C); |
431 | static IntegerType *getInt128Ty(LLVMContext &C); |
432 | template <typename ScalarTy> static Type *getScalarTy(LLVMContext &C) { |
433 | int noOfBits = sizeof(ScalarTy) * CHAR_BIT8; |
434 | if (std::is_integral<ScalarTy>::value) { |
435 | return (Type*) Type::getIntNTy(C, noOfBits); |
436 | } else if (std::is_floating_point<ScalarTy>::value) { |
437 | switch (noOfBits) { |
438 | case 32: |
439 | return Type::getFloatTy(C); |
440 | case 64: |
441 | return Type::getDoubleTy(C); |
442 | } |
443 | } |
444 | llvm_unreachable("Unsupported type in Type::getScalarTy")__builtin_unreachable(); |
445 | } |
446 | static Type *getFloatingPointTy(LLVMContext &C, const fltSemantics &S) { |
447 | Type *Ty; |
448 | if (&S == &APFloat::IEEEhalf()) |
449 | Ty = Type::getHalfTy(C); |
450 | else if (&S == &APFloat::BFloat()) |
451 | Ty = Type::getBFloatTy(C); |
452 | else if (&S == &APFloat::IEEEsingle()) |
453 | Ty = Type::getFloatTy(C); |
454 | else if (&S == &APFloat::IEEEdouble()) |
455 | Ty = Type::getDoubleTy(C); |
456 | else if (&S == &APFloat::x87DoubleExtended()) |
457 | Ty = Type::getX86_FP80Ty(C); |
458 | else if (&S == &APFloat::IEEEquad()) |
459 | Ty = Type::getFP128Ty(C); |
460 | else { |
461 | assert(&S == &APFloat::PPCDoubleDouble() && "Unknown FP format")((void)0); |
462 | Ty = Type::getPPC_FP128Ty(C); |
463 | } |
464 | return Ty; |
465 | } |
466 | |
467 | //===--------------------------------------------------------------------===// |
468 | // Convenience methods for getting pointer types with one of the above builtin |
469 | // types as pointee. |
470 | // |
471 | static PointerType *getHalfPtrTy(LLVMContext &C, unsigned AS = 0); |
472 | static PointerType *getBFloatPtrTy(LLVMContext &C, unsigned AS = 0); |
473 | static PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0); |
474 | static PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0); |
475 | static PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0); |
476 | static PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0); |
477 | static PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0); |
478 | static PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0); |
479 | static PointerType *getX86_AMXPtrTy(LLVMContext &C, unsigned AS = 0); |
480 | static PointerType *getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS = 0); |
481 | static PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0); |
482 | static PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0); |
483 | static PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0); |
484 | static PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0); |
485 | static PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0); |
486 | |
487 | /// Return a pointer to the current type. This is equivalent to |
488 | /// PointerType::get(Foo, AddrSpace). |
489 | /// TODO: Remove this after opaque pointer transition is complete. |
490 | PointerType *getPointerTo(unsigned AddrSpace = 0) const; |
491 | |
492 | private: |
493 | /// Derived types like structures and arrays are sized iff all of the members |
494 | /// of the type are sized as well. Since asking for their size is relatively |
495 | /// uncommon, move this operation out-of-line. |
496 | bool isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited = nullptr) const; |
497 | }; |
498 | |
499 | // Printing of types. |
500 | inline raw_ostream &operator<<(raw_ostream &OS, const Type &T) { |
501 | T.print(OS); |
502 | return OS; |
503 | } |
504 | |
505 | // allow isa<PointerType>(x) to work without DerivedTypes.h included. |
506 | template <> struct isa_impl<PointerType, Type> { |
507 | static inline bool doit(const Type &Ty) { |
508 | return Ty.getTypeID() == Type::PointerTyID; |
509 | } |
510 | }; |
511 | |
512 | // Create wrappers for C Binding types (see CBindingWrapping.h). |
513 | DEFINE_ISA_CONVERSION_FUNCTIONS(Type, LLVMTypeRef)inline Type *unwrap(LLVMTypeRef P) { return reinterpret_cast< Type*>(P); } inline LLVMTypeRef wrap(const Type *P) { return reinterpret_cast<LLVMTypeRef>(const_cast<Type*>( P)); } template<typename T> inline T *unwrap(LLVMTypeRef P) { return cast<T>(unwrap(P)); } |
514 | |
515 | /* Specialized opaque type conversions. |
516 | */ |
517 | inline Type **unwrap(LLVMTypeRef* Tys) { |
518 | return reinterpret_cast<Type**>(Tys); |
519 | } |
520 | |
521 | inline LLVMTypeRef *wrap(Type **Tys) { |
522 | return reinterpret_cast<LLVMTypeRef*>(const_cast<Type**>(Tys)); |
523 | } |
524 | |
525 | } // end namespace llvm |
526 | |
527 | #endif // LLVM_IR_TYPE_H |