clang -cc1 -cc1 -triple amd64-unknown-openbsd7.4 -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name radtree.c -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 1 -pic-is-pie -mframe-pointer=all -relaxed-aliasing -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -target-feature +retpoline-indirect-calls -target-feature +retpoline-indirect-branches -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/usr.sbin/nsd/obj -resource-dir /usr/local/llvm16/lib/clang/16 -I . -I /usr/src/usr.sbin/nsd -internal-isystem /usr/local/llvm16/lib/clang/16/include -internal-externc-isystem /usr/include -O2 -fdebug-compilation-dir=/usr/src/usr.sbin/nsd/obj -ferror-limit 19 -fwrapv -D_RET_PROTECTOR -ret-protector -fcf-protection=branch -fno-jump-tables -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/scan/2024-01-11-140451-98009-1 -x c /usr/src/usr.sbin/nsd/radtree.c
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 | |
| 6 | #include "config.h" |
| 7 | #include <assert.h> |
| 8 | #include <stdlib.h> |
| 9 | #include <string.h> |
| 10 | #include <unistd.h> |
| 11 | #include <time.h> |
| 12 | #include "radtree.h" |
| 13 | #include "util.h" |
| 14 | #include "region-allocator.h" |
| 15 | |
| 16 | #include <stdio.h> |
| 17 | #include <ctype.h> |
| 18 | |
| 19 | struct radtree* radix_tree_create(struct region* region) |
| 20 | { |
| 21 | struct radtree* rt = (struct radtree*)region_alloc(region, sizeof(*rt)); |
| 22 | if(!rt) return NULL; |
| 23 | rt->region = region; |
| 24 | radix_tree_init(rt); |
| 25 | return rt; |
| 26 | } |
| 27 | |
| 28 | void radix_tree_init(struct radtree* rt) |
| 29 | { |
| 30 | rt->root = NULL; |
| 31 | rt->count = 0; |
| 32 | } |
| 33 | |
| 34 | |
| 35 | static void radnode_del_postorder(struct region* region, struct radnode* n) |
| 36 | { |
| 37 | unsigned i; |
| 38 | if(!n) return; |
| 39 | for(i=0; i<n->len; i++) { |
| 40 | radnode_del_postorder(region, n->array[i].node); |
| 41 | region_recycle(region, n->array[i].str, n->array[i].len); |
| 42 | } |
| 43 | region_recycle(region, n->array, n->capacity*sizeof(struct radsel)); |
| 44 | region_recycle(region, n, sizeof(*n)); |
| 45 | } |
| 46 | |
| 47 | void radix_tree_clear(struct radtree* rt) |
| 48 | { |
| 49 | radnode_del_postorder(rt->region, rt->root); |
| 50 | rt->root = NULL; |
| 51 | rt->count = 0; |
| 52 | } |
| 53 | |
| 54 | void radix_tree_delete(struct radtree* rt) |
| 55 | { |
| 56 | if(!rt) return; |
| 57 | radix_tree_clear(rt); |
| 58 | region_recycle(rt->region, rt, sizeof(*rt)); |
| 59 | } |
| 60 | |
| 61 | |
| 62 | static struct radnode* |
| 63 | radnode_last_in_subtree(struct radnode* n) |
| 64 | { |
| 65 | int idx; |
| 66 | |
| 67 | for(idx=((int)n->len)-1; idx >= 0; idx--) { |
| 68 | if(n->array[idx].node) { |
| 69 | |
| 70 | if(n->array[idx].node->len > 0) { |
| 71 | struct radnode* s = radnode_last_in_subtree( |
| 72 | n->array[idx].node); |
| 73 | if(s) return s; |
| 74 | } |
| 75 | |
| 76 | if(n->array[idx].node->elem) |
| 77 | return n->array[idx].node; |
| 78 | } |
| 79 | } |
| 80 | return NULL; |
| 81 | } |
| 82 | |
| 83 | |
| 84 | static struct radnode* |
| 85 | radnode_last_in_subtree_incl_self(struct radnode* n) |
| 86 | { |
| 87 | struct radnode* s = radnode_last_in_subtree(n); |
| 88 | if(s) return s; |
| 89 | if(n->elem) return n; |
| 90 | return NULL; |
| 91 | } |
| 92 | |
| 93 | |
| 94 | static struct radnode* |
| 95 | radnode_first_in_subtree(struct radnode* n) |
| 96 | { |
| 97 | unsigned idx; |
| 98 | struct radnode* s; |
| 99 | |
| 100 | for(idx=0; idx<n->len; idx++) { |
| 101 | if(n->array[idx].node) { |
| 102 | |
| 103 | if(n->array[idx].node->elem) |
| 104 | return n->array[idx].node; |
| 105 | |
| 106 | if((s=radnode_first_in_subtree(n->array[idx].node))!=0) |
| 107 | return s; |
| 108 | } |
| 109 | } |
| 110 | return NULL; |
| 111 | } |
| 112 | |
| 113 | |
| 114 | static struct radnode* |
| 115 | radnode_find_prev_from_idx(struct radnode* n, unsigned from) |
| 116 | { |
| 117 | unsigned idx = from; |
| 118 | while(idx > 0) { |
| 119 | idx --; |
| 120 | if(n->array[idx].node) { |
| 121 | struct radnode* s = radnode_last_in_subtree_incl_self( |
| 122 | n->array[idx].node); |
| 123 | if(s) return s; |
| 124 | } |
| 125 | } |
| 126 | return NULL; |
| 127 | } |
| 128 | |
| 129 | |
| 130 | |
| 131 | |
| 132 | |
| 133 | |
| 134 | |
| 135 | |
| 136 | |
| 137 | |
| 138 | |
| 139 | static int radix_find_prefix_node(struct radtree* rt, uint8_t* k, |
| 140 | radstrlen_type len, struct radnode** result, radstrlen_type* respos) |
| 141 | { |
| 142 | struct radnode* n = rt->root; |
| 143 | radstrlen_type pos = 0; |
| 144 | uint8_t byte; |
| 145 | *respos = 0; |
| 146 | *result = n; |
| 147 | if(!n) return 0; |
| 27 | | Assuming 'n' is non-null | |
|
| |
| 148 | while(n) { |
| 29 | | Loop condition is true. Entering loop body | |
|
| 149 | if(pos == len) { |
| |
| 150 | return 1; |
| 151 | } |
| 152 | byte = k[pos]; |
| 153 | if(byte < n->offset) { |
| 31 | | Assuming 'byte' is >= field 'offset' | |
|
| |
| 154 | return 1; |
| 155 | } |
| 156 | byte -= n->offset; |
| 157 | if(byte >= n->len) { |
| 33 | | Assuming 'byte' is < field 'len' | |
|
| |
| 158 | return 1; |
| 159 | } |
| 160 | pos++; |
| 161 | if(n->array[byte].len != 0) { |
| 35 | | Assuming field 'len' is not equal to 0 | |
|
| |
| 162 | |
| 163 | if(pos+n->array[byte].len > len) { |
| 37 | | Assuming the condition is false | |
|
| |
| 164 | return 1; |
| 165 | } |
| 166 | if(memcmp(&k[pos], n->array[byte].str, |
| 39 | | Assuming the condition is true | |
|
| |
| 167 | n->array[byte].len) != 0) { |
| 168 | return 1; |
| 169 | } |
| 170 | pos += n->array[byte].len; |
| 171 | } |
| 172 | n = n->array[byte].node; |
| 173 | if(!n) return 1; |
| 174 | *respos = pos; |
| 175 | *result = n; |
| 176 | } |
| 177 | |
| 178 | |
| 179 | return 1; |
| 180 | } |
| 181 | |
| 182 | |
| 183 | static int |
| 184 | radnode_array_grow(struct region* region, struct radnode* n, unsigned want) |
| 185 | { |
| 186 | unsigned ns = ((unsigned)n->capacity)*2; |
| 187 | struct radsel* a; |
| 188 | assert(want <= 256); |
| 189 | if(want > ns) |
| 190 | ns = want; |
| 191 | if(ns > 256) ns = 256; |
| 192 | |
| 193 | |
| 194 | a = (struct radsel*)region_alloc_array(region, ns, sizeof(struct radsel)); |
| 195 | if(!a) return 0; |
| 196 | assert(n->len <= n->capacity); |
| 197 | assert(n->capacity < ns); |
| 198 | memcpy(&a[0], &n->array[0], n->len*sizeof(struct radsel)); |
| 199 | region_recycle(region, n->array, n->capacity*sizeof(struct radsel)); |
| 200 | n->array = a; |
| 201 | n->capacity = ns; |
| 202 | return 1; |
| 203 | } |
| 204 | |
| 205 | |
| 206 | static int |
| 207 | radnode_array_space(struct region* region, struct radnode* n, uint8_t byte) |
| 208 | { |
| 209 | |
| 210 | if(!n->array || n->capacity == 0) { |
| 211 | n->array = (struct radsel*)region_alloc(region, |
| 212 | sizeof(struct radsel)); |
| 213 | if(!n->array) return 0; |
| 214 | memset(&n->array[0], 0, sizeof(struct radsel)); |
| 215 | n->len = 1; |
| 216 | n->capacity = 1; |
| 217 | n->offset = byte; |
| 218 | |
| 219 | } else if(n->len == 0 && n->capacity != 0) { |
| 220 | n->len = 1; |
| 221 | n->offset = byte; |
| 222 | memset(&n->array[0], 0, sizeof(struct radsel)); |
| 223 | |
| 224 | } else if(byte < n->offset) { |
| 225 | |
| 226 | unsigned idx; |
| 227 | unsigned need = n->offset-byte; |
| 228 | if(n->len+need > n->capacity) { |
| 229 | |
| 230 | if(!radnode_array_grow(region, n, n->len+need)) |
| 231 | return 0; |
| 232 | } |
| 233 | |
| 234 | memmove(&n->array[need], &n->array[0], |
| 235 | n->len*sizeof(struct radsel)); |
| 236 | |
| 237 | for(idx = 0; idx < n->len; idx++) { |
| 238 | if(n->array[idx+need].node) |
| 239 | n->array[idx+need].node->pidx = idx+need; |
| 240 | } |
| 241 | |
| 242 | memset(&n->array[0], 0, need*sizeof(struct radsel)); |
| 243 | n->len += need; |
| 244 | n->offset = byte; |
| 245 | |
| 246 | } else if(byte-n->offset >= n->len) { |
| 247 | |
| 248 | unsigned need = (byte-n->offset) - n->len + 1; |
| 249 | |
| 250 | if(n->len + need > n->capacity) { |
| 251 | if(!radnode_array_grow(region, n, n->len+need)) |
| 252 | return 0; |
| 253 | } |
| 254 | |
| 255 | memset(&n->array[n->len], 0, need*sizeof(struct radsel)); |
| 256 | |
| 257 | n->len += need; |
| 258 | } |
| 259 | return 1; |
| 260 | } |
| 261 | |
| 262 | |
| 263 | static int |
| 264 | radsel_str_create(struct region* region, struct radsel* r, uint8_t* k, |
| 265 | radstrlen_type pos, radstrlen_type len) |
| 266 | { |
| 267 | r->str = (uint8_t*)region_alloc(region, sizeof(uint8_t)*(len-pos)); |
| 268 | if(!r->str) |
| 269 | return 0; |
| 270 | memmove(r->str, k+pos, len-pos); |
| 271 | r->len = len-pos; |
| 272 | return 1; |
| 273 | } |
| 274 | |
| 275 | |
| 276 | static int |
| 277 | bstr_is_prefix(uint8_t* p, radstrlen_type plen, uint8_t* x, |
| 278 | radstrlen_type xlen) |
| 279 | { |
| 280 | |
| 281 | if(plen == 0) |
| 282 | return 1; |
| 283 | |
| 284 | if(plen > xlen) |
| 285 | return 0; |
| 286 | return (memcmp(p, x, plen) == 0); |
| 287 | } |
| 288 | |
| 289 | |
| 290 | static radstrlen_type |
| 291 | bstr_common(uint8_t* x, radstrlen_type xlen, uint8_t* y, radstrlen_type ylen) |
| 292 | { |
| 293 | unsigned i, max = ((xlen<ylen)?xlen:ylen); |
| 294 | for(i=0; i<max; i++) { |
| 295 | if(x[i] != y[i]) |
| 296 | return i; |
| 297 | } |
| 298 | return max; |
| 299 | } |
| 300 | |
| 301 | |
| 302 | int |
| 303 | bstr_is_prefix_ext(uint8_t* p, radstrlen_type plen, uint8_t* x, |
| 304 | radstrlen_type xlen) |
| 305 | { |
| 306 | return bstr_is_prefix(p, plen, x, xlen); |
| 307 | } |
| 308 | |
| 309 | radstrlen_type |
| 310 | bstr_common_ext(uint8_t* x, radstrlen_type xlen, uint8_t* y, |
| 311 | radstrlen_type ylen) |
| 312 | { |
| 313 | return bstr_common(x, xlen, y, ylen); |
| 314 | } |
| 315 | |
| 316 | |
| 317 | |
| 318 | static int |
| 319 | radsel_prefix_remainder(struct region* region, radstrlen_type plen, |
| 320 | uint8_t* l, radstrlen_type llen, |
| 321 | uint8_t** s, radstrlen_type* slen) |
| 322 | { |
| 323 | *slen = llen - plen; |
| 324 | *s = (uint8_t*)region_alloc(region, (*slen)*sizeof(uint8_t)); |
| 325 | if(!*s) |
| 326 | return 0; |
| 327 | memmove(*s, l+plen, llen-plen); |
| 328 | return 1; |
| 329 | } |
| 330 | |
| 331 | |
| 332 | |
| 333 | |
| 334 | |
| 335 | |
| 336 | |
| 337 | |
| 338 | |
| 339 | |
| 340 | static int |
| 341 | radsel_split(struct region* region, struct radsel* r, uint8_t* k, |
| 342 | radstrlen_type pos, radstrlen_type len, struct radnode* add) |
| 343 | { |
| 344 | uint8_t* addstr = k+pos; |
| 345 | radstrlen_type addlen = len-pos; |
| 346 | if(bstr_is_prefix(addstr, addlen, r->str, r->len)) { |
| |
| 347 | uint8_t* split_str=NULL, *dupstr=NULL; |
| 348 | radstrlen_type split_len=0; |
| 349 | |
| 350 | |
| 351 | |
| 352 | |
| 353 | |
| 354 | |
| 355 | assert(addlen != r->len); |
| 356 | assert(addlen < r->len); |
| 357 | if(r->len-addlen > 1) { |
| 358 | |
| 359 | if(!radsel_prefix_remainder(region, addlen+1, r->str, |
| 360 | r->len, &split_str, &split_len)) |
| 361 | return 0; |
| 362 | } |
| 363 | if(addlen != 0) { |
| 364 | dupstr = (uint8_t*)region_alloc(region, |
| 365 | addlen*sizeof(uint8_t)); |
| 366 | if(!dupstr) { |
| 367 | region_recycle(region, split_str, split_len); |
| 368 | return 0; |
| 369 | } |
| 370 | memcpy(dupstr, addstr, addlen); |
| 371 | } |
| 372 | if(!radnode_array_space(region, add, r->str[addlen])) { |
| 373 | region_recycle(region, split_str, split_len); |
| 374 | region_recycle(region, dupstr, addlen); |
| 375 | return 0; |
| 376 | } |
| 377 | |
| 378 | add->parent = r->node->parent; |
| 379 | add->pidx = r->node->pidx; |
| 380 | add->array[0].node = r->node; |
| 381 | add->array[0].str = split_str; |
| 382 | add->array[0].len = split_len; |
| 383 | r->node->parent = add; |
| 384 | r->node->pidx = 0; |
| 385 | |
| 386 | r->node = add; |
| 387 | region_recycle(region, r->str, r->len); |
| 388 | r->str = dupstr; |
| 389 | r->len = addlen; |
| 390 | } else if(bstr_is_prefix(r->str, r->len, addstr, addlen)) { |
| |
| 391 | uint8_t* split_str = NULL; |
| 392 | radstrlen_type split_len = 0; |
| 393 | |
| 394 | |
| 395 | |
| 396 | |
| 397 | assert(addlen != r->len); |
| 398 | assert(r->len < addlen); |
| 399 | if(addlen-r->len > 1) { |
| |
| 400 | |
| 401 | if(!radsel_prefix_remainder(region, r->len+1, addstr, |
| 402 | addlen, &split_str, &split_len)) |
| 403 | return 0; |
| 404 | } |
| 405 | if(!radnode_array_space(region, r->node, addstr[r->len])) { |
| 51 | | 3rd function call argument is an uninitialized value |
|
| 406 | region_recycle(region, split_str, split_len); |
| 407 | return 0; |
| 408 | } |
| 409 | |
| 410 | add->parent = r->node; |
| 411 | add->pidx = addstr[r->len] - r->node->offset; |
| 412 | r->node->array[add->pidx].node = add; |
| 413 | r->node->array[add->pidx].str = split_str; |
| 414 | r->node->array[add->pidx].len = split_len; |
| 415 | } else { |
| 416 | |
| 417 | |
| 418 | |
| 419 | |
| 420 | struct radnode* com; |
| 421 | uint8_t* common_str=NULL, *s1_str=NULL, *s2_str=NULL; |
| 422 | radstrlen_type common_len, s1_len=0, s2_len=0; |
| 423 | common_len = bstr_common(r->str, r->len, addstr, addlen); |
| 424 | assert(common_len < r->len); |
| 425 | assert(common_len < addlen); |
| 426 | |
| 427 | |
| 428 | com = (struct radnode*)region_alloc_zero(region, sizeof(*com)); |
| 429 | if(!com) return 0; |
| 430 | |
| 431 | |
| 432 | if(r->len-common_len > 1) { |
| 433 | |
| 434 | if(!radsel_prefix_remainder(region, common_len+1, |
| 435 | r->str, r->len, &s1_str, &s1_len)) { |
| 436 | region_recycle(region, com, sizeof(*com)); |
| 437 | return 0; |
| 438 | } |
| 439 | } |
| 440 | if(addlen-common_len > 1) { |
| 441 | if(!radsel_prefix_remainder(region, common_len+1, |
| 442 | addstr, addlen, &s2_str, &s2_len)) { |
| 443 | region_recycle(region, com, sizeof(*com)); |
| 444 | region_recycle(region, s1_str, s1_len); |
| 445 | return 0; |
| 446 | } |
| 447 | } |
| 448 | |
| 449 | |
| 450 | if(common_len > 0) { |
| 451 | common_str = (uint8_t*)region_alloc(region, |
| 452 | common_len*sizeof(uint8_t)); |
| 453 | if(!common_str) { |
| 454 | region_recycle(region, com, sizeof(*com)); |
| 455 | region_recycle(region, s1_str, s1_len); |
| 456 | region_recycle(region, s2_str, s2_len); |
| 457 | return 0; |
| 458 | } |
| 459 | memcpy(common_str, addstr, common_len); |
| 460 | } |
| 461 | |
| 462 | |
| 463 | if(!radnode_array_space(region, com, r->str[common_len]) || |
| 464 | !radnode_array_space(region, com, addstr[common_len])) { |
| 465 | region_recycle(region, com->array, com->capacity*sizeof(struct radsel)); |
| 466 | region_recycle(region, com, sizeof(*com)); |
| 467 | region_recycle(region, common_str, common_len); |
| 468 | region_recycle(region, s1_str, s1_len); |
| 469 | region_recycle(region, s2_str, s2_len); |
| 470 | return 0; |
| 471 | } |
| 472 | |
| 473 | |
| 474 | com->parent = r->node->parent; |
| 475 | com->pidx = r->node->pidx; |
| 476 | r->node->parent = com; |
| 477 | r->node->pidx = r->str[common_len]-com->offset; |
| 478 | add->parent = com; |
| 479 | add->pidx = addstr[common_len]-com->offset; |
| 480 | com->array[r->node->pidx].node = r->node; |
| 481 | com->array[r->node->pidx].str = s1_str; |
| 482 | com->array[r->node->pidx].len = s1_len; |
| 483 | com->array[add->pidx].node = add; |
| 484 | com->array[add->pidx].str = s2_str; |
| 485 | com->array[add->pidx].len = s2_len; |
| 486 | region_recycle(region, r->str, r->len); |
| 487 | r->str = common_str; |
| 488 | r->len = common_len; |
| 489 | r->node = com; |
| 490 | } |
| 491 | return 1; |
| 492 | } |
| 493 | |
| 494 | struct radnode* radix_insert(struct radtree* rt, uint8_t* k, |
| 495 | radstrlen_type len, void* elem) |
| 496 | { |
| 497 | struct radnode* n; |
| 498 | radstrlen_type pos = 0; |
| 499 | |
| 500 | struct radnode* add = (struct radnode*)region_alloc_zero(rt->region, |
| 501 | sizeof(*add)); |
| 502 | if(!add) return NULL; |
| 24 | | Assuming 'add' is non-null | |
|
| |
| 503 | add->elem = elem; |
| 504 | |
| 505 | |
| 506 | if(!radix_find_prefix_node(rt, k, len, &n, &pos)) { |
| 26 | | Calling 'radix_find_prefix_node' | |
|
| 41 | | Returning from 'radix_find_prefix_node' | |
|
| |
| 507 | |
| 508 | assert(rt->root == NULL); |
| 509 | if(len == 0) { |
| 510 | rt->root = add; |
| 511 | } else { |
| 512 | |
| 513 | n = (struct radnode*)region_alloc_zero(rt->region, |
| 514 | sizeof(*n)); |
| 515 | if(!n) { |
| 516 | region_recycle(rt->region, add, sizeof(*add)); |
| 517 | return NULL; |
| 518 | } |
| 519 | if(!radnode_array_space(rt->region, n, k[0])) { |
| 520 | region_recycle(rt->region, n->array, |
| 521 | n->capacity*sizeof(struct radsel)); |
| 522 | region_recycle(rt->region, n, sizeof(*n)); |
| 523 | region_recycle(rt->region, add, sizeof(*add)); |
| 524 | return NULL; |
| 525 | } |
| 526 | add->parent = n; |
| 527 | add->pidx = 0; |
| 528 | n->array[0].node = add; |
| 529 | if(len > 1) { |
| 530 | if(!radsel_prefix_remainder(rt->region, 1, k, len, |
| 531 | &n->array[0].str, &n->array[0].len)) { |
| 532 | region_recycle(rt->region, n->array, |
| 533 | n->capacity*sizeof(struct radsel)); |
| 534 | region_recycle(rt->region, n, sizeof(*n)); |
| 535 | region_recycle(rt->region, add, sizeof(*add)); |
| 536 | return NULL; |
| 537 | } |
| 538 | } |
| 539 | rt->root = n; |
| 540 | } |
| 541 | } else if(pos == len) { |
| |
| 542 | |
| 543 | if(n->elem) { |
| 544 | |
| 545 | region_recycle(rt->region, add, sizeof(*add)); |
| 546 | return NULL; |
| 547 | } |
| 548 | n->elem = elem; |
| 549 | region_recycle(rt->region, add, sizeof(*add)); |
| 550 | add = n; |
| 551 | } else { |
| 552 | |
| 553 | uint8_t byte; |
| 554 | assert(pos < len); |
| 555 | byte = k[pos]; |
| 556 | |
| 557 | |
| 558 | if(byte < n->offset || byte-n->offset >= n->len) { |
| |
| 559 | |
| 560 | if(!radnode_array_space(rt->region, n, byte)) { |
| 561 | region_recycle(rt->region, add, sizeof(*add)); |
| 562 | return NULL; |
| 563 | } |
| 564 | assert(byte>=n->offset && byte-n->offset<n->len); |
| 565 | byte -= n->offset; |
| 566 | |
| 567 | if(pos+1 < len) { |
| 568 | if(!radsel_str_create(rt->region, &n->array[byte], |
| 569 | k, pos+1, len)) { |
| 570 | region_recycle(rt->region, add, sizeof(*add)); |
| 571 | return NULL; |
| 572 | } |
| 573 | } |
| 574 | |
| 575 | add->parent = n; |
| 576 | add->pidx = byte; |
| 577 | n->array[byte].node = add; |
| 578 | |
| 579 | } else if(n->array[byte-n->offset].node == NULL) { |
| 45 | | Assuming field 'node' is not equal to NULL | |
|
| |
| 580 | |
| 581 | byte -= n->offset; |
| 582 | if(pos+1 < len) { |
| 583 | |
| 584 | if(!radsel_str_create(rt->region, &n->array[byte], |
| 585 | k, pos+1, len)) { |
| 586 | region_recycle(rt->region, add, sizeof(*add)); |
| 587 | return NULL; |
| 588 | } |
| 589 | } |
| 590 | |
| 591 | add->parent = n; |
| 592 | add->pidx = byte; |
| 593 | n->array[byte].node = add; |
| 594 | } else { |
| 595 | |
| 596 | |
| 597 | |
| 598 | |
| 599 | |
| 600 | if(!radsel_split(rt->region, &n->array[byte-n->offset], |
| |
| 601 | k, pos+1, len, add)) { |
| 602 | region_recycle(rt->region, add, sizeof(*add)); |
| 603 | return NULL; |
| 604 | } |
| 605 | } |
| 606 | } |
| 607 | |
| 608 | rt->count ++; |
| 609 | return add; |
| 610 | } |
| 611 | |
| 612 | |
| 613 | static void radnode_delete(struct region* region, struct radnode* n) |
| 614 | { |
| 615 | unsigned i; |
| 616 | if(!n) return; |
| 617 | for(i=0; i<n->len; i++) { |
| 618 | |
| 619 | region_recycle(region, n->array[i].str, n->array[i].len); |
| 620 | } |
| 621 | region_recycle(region, n->array, n->capacity*sizeof(struct radsel)); |
| 622 | region_recycle(region, n, sizeof(*n)); |
| 623 | } |
| 624 | |
| 625 | |
| 626 | static int |
| 627 | radnode_cleanup_onechild(struct region* region, struct radnode* n, |
| 628 | struct radnode* par) |
| 629 | { |
| 630 | uint8_t* join; |
| 631 | radstrlen_type joinlen; |
| 632 | uint8_t pidx = n->pidx; |
| 633 | struct radnode* child = n->array[0].node; |
| 634 | |
| 635 | |
| 636 | |
| 637 | |
| 638 | assert(pidx < par->len); |
| 639 | joinlen = par->array[pidx].len + n->array[0].len + 1; |
| 640 | join = (uint8_t*)region_alloc(region, joinlen*sizeof(uint8_t)); |
| 641 | if(!join) { |
| 642 | |
| 643 | |
| 644 | return 0; |
| 645 | } |
| 646 | |
| 647 | if(par->array[pidx].str) |
| 648 | memcpy(join, par->array[pidx].str, par->array[pidx].len); |
| 649 | |
| 650 | join[par->array[pidx].len] = child->pidx + n->offset; |
| 651 | |
| 652 | if(n->array[0].str) |
| 653 | memmove(join+par->array[pidx].len+1, n->array[0].str, n->array[0].len); |
| 654 | region_recycle(region, par->array[pidx].str, par->array[pidx].len); |
| 655 | par->array[pidx].str = join; |
| 656 | par->array[pidx].len = joinlen; |
| 657 | |
| 658 | par->array[pidx].node = child; |
| 659 | child->parent = par; |
| 660 | child->pidx = pidx; |
| 661 | |
| 662 | radnode_delete(region, n); |
| 663 | return 1; |
| 664 | } |
| 665 | |
| 666 | |
| 667 | static void |
| 668 | radnode_array_clean_all(struct region* region, struct radnode* n) |
| 669 | { |
| 670 | n->offset = 0; |
| 671 | n->len = 0; |
| 672 | |
| 673 | region_recycle(region, n->array, n->capacity*sizeof(struct radsel)); |
| 674 | n->array = NULL; |
| 675 | n->capacity = 0; |
| 676 | } |
| 677 | |
| 678 | |
| 679 | static void |
| 680 | radnode_array_reduce_if_needed(struct region* region, struct radnode* n) |
| 681 | { |
| 682 | if(n->len <= n->capacity/2 && n->len != n->capacity) { |
| 683 | struct radsel* a = (struct radsel*)region_alloc_array(region, |
| 684 | sizeof(*a), n->len); |
| 685 | if(!a) return; |
| 686 | memcpy(a, n->array, sizeof(*a)*n->len); |
| 687 | region_recycle(region, n->array, n->capacity*sizeof(*a)); |
| 688 | n->array = a; |
| 689 | n->capacity = n->len; |
| 690 | } |
| 691 | } |
| 692 | |
| 693 | |
| 694 | static void |
| 695 | radnode_array_clean_front(struct region* region, struct radnode* n) |
| 696 | { |
| 697 | |
| 698 | unsigned idx, shuf = 0; |
| 699 | |
| 700 | while(shuf < n->len && n->array[shuf].node == NULL) |
| 701 | shuf++; |
| 702 | if(shuf == 0) |
| 703 | return; |
| 704 | if(shuf == n->len) { |
| 705 | |
| 706 | radnode_array_clean_all(region, n); |
| 707 | return; |
| 708 | } |
| 709 | assert(shuf < n->len); |
| 710 | assert((int)shuf <= 255-(int)n->offset); |
| 711 | memmove(&n->array[0], &n->array[shuf], |
| 712 | (n->len - shuf)*sizeof(struct radsel)); |
| 713 | n->offset += shuf; |
| 714 | n->len -= shuf; |
| 715 | for(idx=0; idx<n->len; idx++) |
| 716 | if(n->array[idx].node) |
| 717 | n->array[idx].node->pidx = idx; |
| 718 | |
| 719 | radnode_array_reduce_if_needed(region, n); |
| 720 | } |
| 721 | |
| 722 | |
| 723 | static void |
| 724 | radnode_array_clean_end(struct region* region, struct radnode* n) |
| 725 | { |
| 726 | |
| 727 | unsigned shuf = 0; |
| 728 | |
| 729 | while(shuf < n->len && n->array[n->len-1-shuf].node == NULL) |
| 730 | shuf++; |
| 731 | if(shuf == 0) |
| 732 | return; |
| 733 | if(shuf == n->len) { |
| 734 | |
| 735 | radnode_array_clean_all(region, n); |
| 736 | return; |
| 737 | } |
| 738 | assert(shuf < n->len); |
| 739 | n->len -= shuf; |
| 740 | |
| 741 | |
| 742 | radnode_array_reduce_if_needed(region, n); |
| 743 | } |
| 744 | |
| 745 | |
| 746 | static void |
| 747 | radnode_cleanup_leaf(struct region* region, struct radnode* n, |
| 748 | struct radnode* par) |
| 749 | { |
| 750 | uint8_t pidx; |
| 751 | |
| 752 | |
| 753 | pidx = n->pidx; |
| 754 | radnode_delete(region, n); |
| 755 | |
| 756 | |
| 757 | assert(pidx < par->len); |
| 758 | region_recycle(region, par->array[pidx].str, par->array[pidx].len); |
| 759 | par->array[pidx].str = NULL; |
| 760 | par->array[pidx].len = 0; |
| 761 | par->array[pidx].node = NULL; |
| 762 | |
| 763 | |
| 764 | if(par->len == 1) { |
| 765 | |
| 766 | radnode_array_clean_all(region, par); |
| 767 | } else if(pidx == 0) { |
| 768 | |
| 769 | radnode_array_clean_front(region, par); |
| 770 | } else if(pidx == par->len-1) { |
| 771 | |
| 772 | radnode_array_clean_end(region, par); |
| 773 | } |
| 774 | } |
| 775 | |
| 776 | |
| 777 | |
| 778 | |
| 779 | |
| 780 | |
| 781 | |
| 782 | |
| 783 | static int |
| 784 | radnode_cleanup(struct radtree* rt, struct radnode* n) |
| 785 | { |
| 786 | while(n) { |
| 787 | if(n->elem) { |
| 788 | |
| 789 | return 1; |
| 790 | } else if(n->len == 1 && n->parent) { |
| 791 | return radnode_cleanup_onechild(rt->region, n, n->parent); |
| 792 | } else if(n->len == 0) { |
| 793 | struct radnode* par = n->parent; |
| 794 | if(!par) { |
| 795 | |
| 796 | radnode_delete(rt->region, n); |
| 797 | rt->root = NULL; |
| 798 | return 1; |
| 799 | } |
| 800 | |
| 801 | radnode_cleanup_leaf(rt->region, n, par); |
| 802 | |
| 803 | n = par; |
| 804 | } else { |
| 805 | |
| 806 | return 1; |
| 807 | } |
| 808 | } |
| 809 | |
| 810 | return 1; |
| 811 | } |
| 812 | |
| 813 | void radix_delete(struct radtree* rt, struct radnode* n) |
| 814 | { |
| 815 | if(!n) return; |
| 816 | n->elem = NULL; |
| 817 | rt->count --; |
| 818 | if(!radnode_cleanup(rt, n)) { |
| 819 | |
| 820 | |
| 821 | } |
| 822 | } |
| 823 | |
| 824 | struct radnode* radix_search(struct radtree* rt, uint8_t* k, |
| 825 | radstrlen_type len) |
| 826 | { |
| 827 | struct radnode* n = rt->root; |
| 828 | radstrlen_type pos = 0; |
| 829 | uint8_t byte; |
| 830 | while(n) { |
| 831 | if(pos == len) |
| 832 | return n->elem?n:NULL; |
| 833 | byte = k[pos]; |
| 834 | if(byte < n->offset) |
| 835 | return NULL; |
| 836 | byte -= n->offset; |
| 837 | if(byte >= n->len) |
| 838 | return NULL; |
| 839 | pos++; |
| 840 | if(n->array[byte].len != 0) { |
| 841 | |
| 842 | if(pos+n->array[byte].len > len) |
| 843 | return NULL; |
| 844 | if(memcmp(&k[pos], n->array[byte].str, |
| 845 | n->array[byte].len) != 0) |
| 846 | return NULL; |
| 847 | pos += n->array[byte].len; |
| 848 | } |
| 849 | n = n->array[byte].node; |
| 850 | } |
| 851 | return NULL; |
| 852 | } |
| 853 | |
| 854 | |
| 855 | static int ret_self_or_prev(struct radnode* n, struct radnode** result) |
| 856 | { |
| 857 | if(n->elem) |
| 858 | *result = n; |
| 859 | else *result = radix_prev(n); |
| 860 | return 0; |
| 861 | } |
| 862 | |
| 863 | int radix_find_less_equal(struct radtree* rt, uint8_t* k, radstrlen_type len, |
| 864 | struct radnode** result) |
| 865 | { |
| 866 | struct radnode* n = rt->root; |
| 867 | radstrlen_type pos = 0; |
| 868 | uint8_t byte; |
| 869 | int r; |
| 870 | if(!n) { |
| 871 | |
| 872 | *result = NULL; |
| 873 | return 0; |
| 874 | } |
| 875 | while(pos < len) { |
| 876 | byte = k[pos]; |
| 877 | if(byte < n->offset) { |
| 878 | |
| 879 | |
| 880 | return ret_self_or_prev(n, result); |
| 881 | } |
| 882 | byte -= n->offset; |
| 883 | if(byte >= n->len) { |
| 884 | |
| 885 | |
| 886 | if((*result=radnode_last_in_subtree_incl_self(n))==0) |
| 887 | *result = radix_prev(n); |
| 888 | return 0; |
| 889 | } |
| 890 | pos++; |
| 891 | if(!n->array[byte].node) { |
| 892 | |
| 893 | |
| 894 | *result = radnode_find_prev_from_idx(n, byte); |
| 895 | if(*result) |
| 896 | return 0; |
| 897 | |
| 898 | return ret_self_or_prev(n, result); |
| 899 | } |
| 900 | if(n->array[byte].len != 0) { |
| 901 | |
| 902 | if(pos+n->array[byte].len > len) { |
| 903 | |
| 904 | if( (memcmp(&k[pos], n->array[byte].str, |
| 905 | len-pos)) <= 0) { |
| 906 | |
| 907 | *result = radix_prev(n->array[byte].node); |
| 908 | } else { |
| 909 | |
| 910 | |
| 911 | |
| 912 | *result=radnode_last_in_subtree_incl_self(n->array[byte].node); |
| 913 | |
| 914 | |
| 915 | |
| 916 | |
| 917 | if(!*result) |
| 918 | *result = radix_prev(n->array[byte].node); |
| 919 | } |
| 920 | return 0; |
| 921 | } |
| 922 | if( (r=memcmp(&k[pos], n->array[byte].str, |
| 923 | n->array[byte].len)) < 0) { |
| 924 | *result = radix_prev(n->array[byte].node); |
| 925 | return 0; |
| 926 | } else if(r > 0) { |
| 927 | |
| 928 | |
| 929 | |
| 930 | *result=radnode_last_in_subtree_incl_self(n->array[byte].node); |
| 931 | |
| 932 | if(!*result) *result = radix_prev(n->array[byte].node); |
| 933 | return 0; |
| 934 | } |
| 935 | pos += n->array[byte].len; |
| 936 | } |
| 937 | n = n->array[byte].node; |
| 938 | } |
| 939 | if(n->elem) { |
| 940 | |
| 941 | *result = n; |
| 942 | return 1; |
| 943 | } |
| 944 | |
| 945 | *result = radix_prev(n); |
| 946 | return 0; |
| 947 | } |
| 948 | |
| 949 | |
| 950 | struct radnode* radix_first(struct radtree* rt) |
| 951 | { |
| 952 | struct radnode* n; |
| 953 | if(!rt || !rt->root) return NULL; |
| 954 | n = rt->root; |
| 955 | if(n->elem) return n; |
| 956 | return radix_next(n); |
| 957 | } |
| 958 | |
| 959 | struct radnode* radix_last(struct radtree* rt) |
| 960 | { |
| 961 | if(!rt || !rt->root) return NULL; |
| 962 | return radnode_last_in_subtree_incl_self(rt->root); |
| 963 | } |
| 964 | |
| 965 | struct radnode* radix_next(struct radnode* n) |
| 966 | { |
| 967 | if(!n) return NULL; |
| 968 | if(n->len) { |
| 969 | |
| 970 | struct radnode* s = radnode_first_in_subtree(n); |
| 971 | if(s) return s; |
| 972 | } |
| 973 | |
| 974 | while(n->parent) { |
| 975 | unsigned idx = n->pidx; |
| 976 | n = n->parent; |
| 977 | idx++; |
| 978 | for(; idx < n->len; idx++) { |
| 979 | |
| 980 | if(n->array[idx].node) { |
| 981 | struct radnode* s; |
| 982 | |
| 983 | if(n->array[idx].node->elem) |
| 984 | return n->array[idx].node; |
| 985 | |
| 986 | s = radnode_first_in_subtree( |
| 987 | n->array[idx].node); |
| 988 | if(s) return s; |
| 989 | } |
| 990 | } |
| 991 | } |
| 992 | return NULL; |
| 993 | } |
| 994 | |
| 995 | struct radnode* radix_prev(struct radnode* n) |
| 996 | { |
| 997 | if(!n) return NULL; |
| 998 | |
| 999 | while(n->parent) { |
| 1000 | uint8_t idx = n->pidx; |
| 1001 | struct radnode* s; |
| 1002 | n = n->parent; |
| 1003 | assert(n->len > 0); |
| 1004 | |
| 1005 | s = radnode_find_prev_from_idx(n, idx); |
| 1006 | if(s) return s; |
| 1007 | |
| 1008 | if(n->elem) |
| 1009 | return n; |
| 1010 | } |
| 1011 | return NULL; |
| 1012 | } |
| 1013 | |
| 1014 | |
| 1015 | static uint8_t char_d2r(uint8_t c) |
| 1016 | { |
| 1017 | if(c < 'A') return c+1; |
| 1018 | else if(c <= 'Z') return c-'A'+'a'; |
| 1019 | else return c; |
| 1020 | } |
| 1021 | |
| 1022 | |
| 1023 | static uint8_t char_r2d(uint8_t c) |
| 1024 | { |
| 1025 | assert(c != 0); |
| 1026 | if(c <= 'A') return c-1; |
| 1027 | else return c; |
| 1028 | } |
| 1029 | |
| 1030 | |
| 1031 | static void cpy_d2r(uint8_t* to, const uint8_t* from, int len) |
| 1032 | { |
| 1033 | int i; |
| 1034 | for(i=0; i<len; i++) |
| 17 | | Assuming 'i' is >= 'len' | |
|
| 18 | | Loop condition is false. Execution continues on line 1034 | |
|
| 1035 | to[i] = char_d2r(from[i]); |
| 1036 | } |
| 1037 | |
| 1038 | |
| 1039 | static void cpy_r2d(uint8_t* to, uint8_t* from, uint8_t len) |
| 1040 | { |
| 1041 | uint8_t i; |
| 1042 | for(i=0; i<len; i++) |
| 1043 | to[i] = char_r2d(from[i]); |
| 1044 | } |
| 1045 | |
| 1046 | |
| 1047 | void radname_d2r(uint8_t* k, radstrlen_type* len, const uint8_t* dname, |
| 1048 | size_t dlen) |
| 1049 | { |
| 1050 | |
| 1051 | |
| 1052 | |
| 1053 | |
| 1054 | |
| 1055 | |
| 1056 | |
| 1057 | |
| 1058 | |
| 1059 | |
| 1060 | |
| 1061 | |
| 1062 | |
| 1063 | |
| 1064 | |
| 1065 | |
| 1066 | |
| 1067 | const uint8_t* labstart[130]; |
| 1068 | unsigned int lab = 0, kpos, dpos = 0; |
| 1069 | |
| 1070 | assert(k && dname); |
| 1071 | assert(dlen <= 256); |
| 1072 | assert(*len >= dlen); |
| 1073 | assert(dlen > 0); |
| 1074 | |
| 1075 | |
| 1076 | if(dlen == 1) { |
| 4 | | Assuming 'dlen' is not equal to 1 | |
|
| |
| 1077 | assert(dname[0] == 0); |
| 1078 | *len = 0; |
| 1079 | return; |
| 1080 | } |
| 1081 | |
| 1082 | |
| 1083 | do { |
| 10 | | Loop condition is true. Execution continues on line 1085 | |
|
| 15 | | Loop condition is false. Exiting loop | |
|
| 1084 | |
| 1085 | if((dname[dpos] & 0xc0)) { |
| 6 | | Assuming the condition is false | |
|
| |
| 11 | | Assuming the condition is false | |
|
| |
| 1086 | *len = 0; |
| 1087 | return; |
| 1088 | } |
| 1089 | labstart[lab++] = &dname[dpos]; |
| 1090 | if(dpos + dname[dpos] + 1 >= dlen) { |
| 8 | | Assuming the condition is false | |
|
| |
| 13 | | Assuming the condition is false | |
|
| |
| 1091 | *len = 0; |
| 1092 | return; |
| 1093 | } |
| 1094 | |
| 1095 | dpos += dname[dpos]; |
| 1096 | dpos ++; |
| 1097 | } while(dname[dpos] != 0); |
| 1098 | |
| 1099 | |
| 1100 | assert(lab > 0); |
| 1101 | lab-=1; |
| 1102 | kpos = *labstart[lab]; |
| 1103 | cpy_d2r(k, labstart[lab]+1, kpos); |
| |
| 19 | | Returning from 'cpy_d2r' | |
|
| 1104 | |
| 1105 | while(lab) { |
| 20 | | Loop condition is true. Entering loop body | |
|
| 21 | | Loop condition is false. Execution continues on line 1114 | |
|
| 1106 | |
| 1107 | k[kpos++]=0; |
| 1108 | |
| 1109 | lab--; |
| 1110 | cpy_d2r(k+kpos, labstart[lab]+1, *labstart[lab]); |
| 1111 | kpos += *labstart[lab]; |
| 1112 | } |
| 1113 | |
| 1114 | assert(kpos == dlen-2); |
| 1115 | *len = kpos; |
| 1116 | } |
| 1117 | |
| 1118 | |
| 1119 | void radname_r2d(uint8_t* k, radstrlen_type len, uint8_t* dname, size_t* dlen) |
| 1120 | { |
| 1121 | |
| 1122 | uint8_t* labstart[130]; |
| 1123 | uint8_t lablen[130]; |
| 1124 | unsigned int lab = 0, dpos, kpos = 0; |
| 1125 | |
| 1126 | assert(k && dname); |
| 1127 | assert((size_t)*dlen >= (size_t)len+2); |
| 1128 | assert(len <= 256); |
| 1129 | |
| 1130 | if(len == 0) { |
| 1131 | assert(*dlen > 0); |
| 1132 | dname[0]=0; |
| 1133 | *dlen=1; |
| 1134 | return; |
| 1135 | } |
| 1136 | |
| 1137 | while(kpos < len) { |
| 1138 | lablen[lab]=0; |
| 1139 | labstart[lab]=&k[kpos]; |
| 1140 | |
| 1141 | while(kpos < len && k[kpos] != 0) { |
| 1142 | lablen[lab]++; |
| 1143 | kpos++; |
| 1144 | } |
| 1145 | lab++; |
| 1146 | |
| 1147 | if(kpos < len) { |
| 1148 | assert(k[kpos] == 0); |
| 1149 | kpos++; |
| 1150 | } |
| 1151 | } |
| 1152 | |
| 1153 | dpos = 0; |
| 1154 | while(lab) { |
| 1155 | lab--; |
| 1156 | |
| 1157 | dname[dpos++] = lablen[lab]; |
| 1158 | |
| 1159 | cpy_r2d(dname+dpos, labstart[lab], lablen[lab]); |
| 1160 | dpos += lablen[lab]; |
| 1161 | } |
| 1162 | |
| 1163 | dname[dpos++] = 0; |
| 1164 | |
| 1165 | assert((int)dpos == (int)len+2); |
| 1166 | assert(dname[dpos-1] == 0); |
| 1167 | *dlen = dpos; |
| 1168 | } |
| 1169 | |
| 1170 | |
| 1171 | struct radnode* |
| 1172 | radname_insert(struct radtree* rt, const uint8_t* d, size_t max, void* elem) |
| 1173 | { |
| 1174 | |
| 1175 | uint8_t radname[300]; |
| 1176 | radstrlen_type len = (radstrlen_type)sizeof(radname); |
| 1177 | if(max > sizeof(radname)) |
| 1 | Assuming the condition is false | |
|
| |
| 1178 | return NULL; |
| 1179 | radname_d2r(radname, &len, d, max); |
| |
| 22 | | Returning from 'radname_d2r' | |
|
| 1180 | return radix_insert(rt, radname, len, elem); |
| |
| 1181 | } |
| 1182 | |
| 1183 | |
| 1184 | void |
| 1185 | radname_delete(struct radtree* rt, const uint8_t* d, size_t max) |
| 1186 | { |
| 1187 | |
| 1188 | struct radnode* n = radname_search(rt, d, max); |
| 1189 | if(n) radix_delete(rt, n); |
| 1190 | } |
| 1191 | |
| 1192 | |
| 1193 | struct radnode* radname_search(struct radtree* rt, const uint8_t* d, |
| 1194 | size_t max) |
| 1195 | { |
| 1196 | |
| 1197 | const uint8_t* labstart[130]; |
| 1198 | unsigned int lab, dpos, lpos; |
| 1199 | struct radnode* n = rt->root; |
| 1200 | uint8_t byte; |
| 1201 | radstrlen_type i; |
| 1202 | uint8_t b; |
| 1203 | |
| 1204 | |
| 1205 | if(max < 1) |
| 1206 | return NULL; |
| 1207 | if(d[0] == 0) { |
| 1208 | if(!n) return NULL; |
| 1209 | return n->elem?n:NULL; |
| 1210 | } |
| 1211 | |
| 1212 | |
| 1213 | lab = 0; |
| 1214 | dpos = 0; |
| 1215 | |
| 1216 | do { |
| 1217 | if((d[dpos] & 0xc0)) |
| 1218 | return NULL; |
| 1219 | labstart[lab++] = &d[dpos]; |
| 1220 | if(dpos + d[dpos] + 1 >= max) |
| 1221 | return NULL; |
| 1222 | |
| 1223 | dpos += d[dpos]; |
| 1224 | dpos ++; |
| 1225 | } while(d[dpos] != 0); |
| 1226 | |
| 1227 | |
| 1228 | |
| 1229 | |
| 1230 | lab-=1; |
| 1231 | lpos = 0; |
| 1232 | while(n) { |
| 1233 | |
| 1234 | if(lpos < *labstart[lab]) |
| 1235 | |
| 1236 | byte = char_d2r(labstart[lab][++lpos]); |
| 1237 | else { |
| 1238 | if(lab == 0) |
| 1239 | return n->elem?n:NULL; |
| 1240 | |
| 1241 | lpos = 0; |
| 1242 | lab--; |
| 1243 | byte = 0; |
| 1244 | } |
| 1245 | |
| 1246 | if(byte < n->offset) |
| 1247 | return NULL; |
| 1248 | byte -= n->offset; |
| 1249 | if(byte >= n->len) |
| 1250 | return NULL; |
| 1251 | if(n->array[byte].len != 0) { |
| 1252 | |
| 1253 | |
| 1254 | for(i=0; i<n->array[byte].len; i++) { |
| 1255 | |
| 1256 | if(lpos < *labstart[lab]) |
| 1257 | b = char_d2r(labstart[lab][++lpos]); |
| 1258 | else { |
| 1259 | |
| 1260 | |
| 1261 | if(lab == 0) |
| 1262 | return NULL; |
| 1263 | |
| 1264 | lpos = 0; |
| 1265 | lab--; |
| 1266 | b = 0; |
| 1267 | } |
| 1268 | if(n->array[byte].str[i] != b) |
| 1269 | return NULL; |
| 1270 | } |
| 1271 | } |
| 1272 | n = n->array[byte].node; |
| 1273 | } |
| 1274 | return NULL; |
| 1275 | } |
| 1276 | |
| 1277 | |
| 1278 | int radname_find_less_equal(struct radtree* rt, const uint8_t* d, size_t max, |
| 1279 | struct radnode** result) |
| 1280 | { |
| 1281 | |
| 1282 | const uint8_t* labstart[130]; |
| 1283 | unsigned int lab, dpos, lpos; |
| 1284 | struct radnode* n = rt->root; |
| 1285 | uint8_t byte; |
| 1286 | radstrlen_type i; |
| 1287 | uint8_t b; |
| 1288 | |
| 1289 | |
| 1290 | if(!n) { |
| 1291 | *result = NULL; |
| 1292 | return 0; |
| 1293 | } |
| 1294 | |
| 1295 | |
| 1296 | if(max < 1) { |
| 1297 | *result = NULL; |
| 1298 | return 0; |
| 1299 | } |
| 1300 | if(d[0] == 0) { |
| 1301 | if(n->elem) { |
| 1302 | *result = n; |
| 1303 | return 1; |
| 1304 | } |
| 1305 | |
| 1306 | *result = NULL; |
| 1307 | return 0; |
| 1308 | } |
| 1309 | |
| 1310 | |
| 1311 | lab = 0; |
| 1312 | dpos = 0; |
| 1313 | |
| 1314 | do { |
| 1315 | if((d[dpos] & 0xc0)) { |
| 1316 | *result = NULL; |
| 1317 | return 0; |
| 1318 | } |
| 1319 | labstart[lab++] = &d[dpos]; |
| 1320 | if(dpos + d[dpos] + 1 >= max) { |
| 1321 | *result = NULL; |
| 1322 | return 0; |
| 1323 | } |
| 1324 | |
| 1325 | dpos += d[dpos]; |
| 1326 | dpos ++; |
| 1327 | } while(d[dpos] != 0); |
| 1328 | |
| 1329 | |
| 1330 | |
| 1331 | |
| 1332 | lab-=1; |
| 1333 | lpos = 0; |
| 1334 | while(1) { |
| 1335 | |
| 1336 | if(lpos < *labstart[lab]) |
| 1337 | |
| 1338 | byte = char_d2r(labstart[lab][++lpos]); |
| 1339 | else { |
| 1340 | if(lab == 0) { |
| 1341 | |
| 1342 | |
| 1343 | if(n->elem) { |
| 1344 | *result = n; |
| 1345 | return 1; |
| 1346 | } |
| 1347 | |
| 1348 | |
| 1349 | *result = radix_prev(n); |
| 1350 | return 0; |
| 1351 | } |
| 1352 | |
| 1353 | lpos = 0; |
| 1354 | lab--; |
| 1355 | byte = 0; |
| 1356 | } |
| 1357 | |
| 1358 | if(byte < n->offset) |
| 1359 | |
| 1360 | |
| 1361 | return ret_self_or_prev(n, result); |
| 1362 | byte -= n->offset; |
| 1363 | if(byte >= n->len) { |
| 1364 | |
| 1365 | |
| 1366 | *result = radnode_last_in_subtree_incl_self(n); |
| 1367 | if(!*result) |
| 1368 | *result = radix_prev(n); |
| 1369 | return 0; |
| 1370 | } |
| 1371 | if(!n->array[byte].node) { |
| 1372 | |
| 1373 | |
| 1374 | *result = radnode_find_prev_from_idx(n, byte); |
| 1375 | if(*result) |
| 1376 | return 0; |
| 1377 | |
| 1378 | return ret_self_or_prev(n, result); |
| 1379 | } |
| 1380 | if(n->array[byte].len != 0) { |
| 1381 | |
| 1382 | |
| 1383 | for(i=0; i<n->array[byte].len; i++) { |
| 1384 | |
| 1385 | if(lpos < *labstart[lab]) |
| 1386 | b = char_d2r(labstart[lab][++lpos]); |
| 1387 | else { |
| 1388 | |
| 1389 | |
| 1390 | if(lab == 0) { |
| 1391 | |
| 1392 | |
| 1393 | *result =radix_prev( |
| 1394 | n->array[byte].node); |
| 1395 | return 0; |
| 1396 | } |
| 1397 | |
| 1398 | lpos = 0; |
| 1399 | lab--; |
| 1400 | b = 0; |
| 1401 | } |
| 1402 | if(b < n->array[byte].str[i]) { |
| 1403 | *result =radix_prev( |
| 1404 | n->array[byte].node); |
| 1405 | return 0; |
| 1406 | } else if(b > n->array[byte].str[i]) { |
| 1407 | |
| 1408 | |
| 1409 | |
| 1410 | *result = radnode_last_in_subtree_incl_self(n->array[byte].node); |
| 1411 | |
| 1412 | |
| 1413 | if(!*result) |
| 1414 | *result = radix_prev(n->array[byte].node); |
| 1415 | return 0; |
| 1416 | } |
| 1417 | } |
| 1418 | } |
| 1419 | n = n->array[byte].node; |
| 1420 | } |
| 1421 | |
| 1422 | return 0; |
| 1423 | } |
| 1424 | |