| File: | src/usr.bin/openssl/speed.c |
| Warning: | line 1580, column 4 Value stored to 'rsa_count' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* $OpenBSD: speed.c,v 1.34 2023/07/27 07:01:50 tb Exp $ */ |
| 2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| 3 | * All rights reserved. |
| 4 | * |
| 5 | * This package is an SSL implementation written |
| 6 | * by Eric Young (eay@cryptsoft.com). |
| 7 | * The implementation was written so as to conform with Netscapes SSL. |
| 8 | * |
| 9 | * This library is free for commercial and non-commercial use as long as |
| 10 | * the following conditions are aheared to. The following conditions |
| 11 | * apply to all code found in this distribution, be it the RC4, RSA, |
| 12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| 13 | * included with this distribution is covered by the same copyright terms |
| 14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| 15 | * |
| 16 | * Copyright remains Eric Young's, and as such any Copyright notices in |
| 17 | * the code are not to be removed. |
| 18 | * If this package is used in a product, Eric Young should be given attribution |
| 19 | * as the author of the parts of the library used. |
| 20 | * This can be in the form of a textual message at program startup or |
| 21 | * in documentation (online or textual) provided with the package. |
| 22 | * |
| 23 | * Redistribution and use in source and binary forms, with or without |
| 24 | * modification, are permitted provided that the following conditions |
| 25 | * are met: |
| 26 | * 1. Redistributions of source code must retain the copyright |
| 27 | * notice, this list of conditions and the following disclaimer. |
| 28 | * 2. Redistributions in binary form must reproduce the above copyright |
| 29 | * notice, this list of conditions and the following disclaimer in the |
| 30 | * documentation and/or other materials provided with the distribution. |
| 31 | * 3. All advertising materials mentioning features or use of this software |
| 32 | * must display the following acknowledgement: |
| 33 | * "This product includes cryptographic software written by |
| 34 | * Eric Young (eay@cryptsoft.com)" |
| 35 | * The word 'cryptographic' can be left out if the rouines from the library |
| 36 | * being used are not cryptographic related :-). |
| 37 | * 4. If you include any Windows specific code (or a derivative thereof) from |
| 38 | * the apps directory (application code) you must include an acknowledgement: |
| 39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| 40 | * |
| 41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| 42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| 45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 51 | * SUCH DAMAGE. |
| 52 | * |
| 53 | * The licence and distribution terms for any publically available version or |
| 54 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
| 55 | * copied and put under another distribution licence |
| 56 | * [including the GNU Public Licence.] |
| 57 | */ |
| 58 | /* ==================================================================== |
| 59 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
| 60 | * |
| 61 | * Portions of the attached software ("Contribution") are developed by |
| 62 | * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. |
| 63 | * |
| 64 | * The Contribution is licensed pursuant to the OpenSSL open source |
| 65 | * license provided above. |
| 66 | * |
| 67 | * The ECDH and ECDSA speed test software is originally written by |
| 68 | * Sumit Gupta of Sun Microsystems Laboratories. |
| 69 | * |
| 70 | */ |
| 71 | |
| 72 | /* most of this code has been pilfered from my libdes speed.c program */ |
| 73 | |
| 74 | #ifndef OPENSSL_NO_SPEED |
| 75 | |
| 76 | #define SECONDS3 3 |
| 77 | #define RSA_SECONDS10 10 |
| 78 | #define DSA_SECONDS10 10 |
| 79 | #define ECDSA_SECONDS10 10 |
| 80 | #define ECDH_SECONDS10 10 |
| 81 | |
| 82 | #define MAX_UNALIGN16 16 |
| 83 | |
| 84 | #include <math.h> |
| 85 | #include <signal.h> |
| 86 | #include <stdio.h> |
| 87 | #include <stdlib.h> |
| 88 | #include <limits.h> |
| 89 | #include <string.h> |
| 90 | #include <unistd.h> |
| 91 | |
| 92 | #include "apps.h" |
| 93 | |
| 94 | #include <openssl/bn.h> |
| 95 | #include <openssl/crypto.h> |
| 96 | #include <openssl/err.h> |
| 97 | #include <openssl/evp.h> |
| 98 | #include <openssl/modes.h> |
| 99 | #include <openssl/objects.h> |
| 100 | #include <openssl/x509.h> |
| 101 | |
| 102 | #ifndef OPENSSL_NO_AES |
| 103 | #include <openssl/aes.h> |
| 104 | #endif |
| 105 | #ifndef OPENSSL_NO_BF |
| 106 | #include <openssl/blowfish.h> |
| 107 | #endif |
| 108 | #ifndef OPENSSL_NO_CAST |
| 109 | #include <openssl/cast.h> |
| 110 | #endif |
| 111 | #ifndef OPENSSL_NO_CAMELLIA |
| 112 | #include <openssl/camellia.h> |
| 113 | #endif |
| 114 | #ifndef OPENSSL_NO_DES |
| 115 | #include <openssl/des.h> |
| 116 | #endif |
| 117 | #include <openssl/dsa.h> |
| 118 | #include <openssl/ecdh.h> |
| 119 | #include <openssl/ecdsa.h> |
| 120 | #ifndef OPENSSL_NO_HMAC |
| 121 | #include <openssl/hmac.h> |
| 122 | #endif |
| 123 | #ifndef OPENSSL_NO_IDEA |
| 124 | #include <openssl/idea.h> |
| 125 | #endif |
| 126 | #ifndef OPENSSL_NO_MD4 |
| 127 | #include <openssl/md4.h> |
| 128 | #endif |
| 129 | #ifndef OPENSSL_NO_MD5 |
| 130 | #include <openssl/md5.h> |
| 131 | #endif |
| 132 | #ifndef OPENSSL_NO_RC2 |
| 133 | #include <openssl/rc2.h> |
| 134 | #endif |
| 135 | #ifndef OPENSSL_NO_RC4 |
| 136 | #include <openssl/rc4.h> |
| 137 | #endif |
| 138 | #include <openssl/rsa.h> |
| 139 | #ifndef OPENSSL_NO_RIPEMD |
| 140 | #include <openssl/ripemd.h> |
| 141 | #endif |
| 142 | #ifndef OPENSSL_NO_SHA |
| 143 | #include <openssl/sha.h> |
| 144 | #endif |
| 145 | #ifndef OPENSSL_NO_WHIRLPOOL |
| 146 | #include <openssl/whrlpool.h> |
| 147 | #endif |
| 148 | |
| 149 | #include "./testdsa.h" |
| 150 | #include "./testrsa.h" |
| 151 | |
| 152 | #define BUFSIZE(1024*8+64) (1024*8+64) |
| 153 | int run = 0; |
| 154 | |
| 155 | static int mr = 0; |
| 156 | static int usertime = 1; |
| 157 | |
| 158 | static double Time_F(int s); |
| 159 | static void print_message(const char *s, long num, int length); |
| 160 | static void |
| 161 | pkey_print_message(const char *str, const char *str2, |
| 162 | long num, int bits, int sec); |
| 163 | static void print_result(int alg, int run_no, int count, double time_used); |
| 164 | static int do_multi(int multi); |
| 165 | |
| 166 | #define ALGOR_NUM32 32 |
| 167 | #define SIZE_NUM5 5 |
| 168 | #define RSA_NUM4 4 |
| 169 | #define DSA_NUM3 3 |
| 170 | |
| 171 | #define EC_NUM6 6 |
| 172 | #define MAX_ECDH_SIZE256 256 |
| 173 | |
| 174 | static const char *names[ALGOR_NUM32] = { |
| 175 | "md2", "md4", "md5", "hmac(md5)", "sha1", "rmd160", |
| 176 | "rc4", "des cbc", "des ede3", "idea cbc", "seed cbc", |
| 177 | "rc2 cbc", "rc5-32/12 cbc", "blowfish cbc", "cast cbc", |
| 178 | "aes-128 cbc", "aes-192 cbc", "aes-256 cbc", |
| 179 | "camellia-128 cbc", "camellia-192 cbc", "camellia-256 cbc", |
| 180 | "evp", "sha256", "sha512", "whirlpool", |
| 181 | "aes-128 ige", "aes-192 ige", "aes-256 ige", "ghash", |
| 182 | "aes-128 gcm", "aes-256 gcm", "chacha20 poly1305", |
| 183 | }; |
| 184 | static double results[ALGOR_NUM32][SIZE_NUM5]; |
| 185 | static int lengths[SIZE_NUM5] = {16, 64, 256, 1024, 8 * 1024}; |
| 186 | static double rsa_results[RSA_NUM4][2]; |
| 187 | static double dsa_results[DSA_NUM3][2]; |
| 188 | static double ecdsa_results[EC_NUM6][2]; |
| 189 | static double ecdh_results[EC_NUM6][1]; |
| 190 | |
| 191 | static void sig_done(int sig); |
| 192 | |
| 193 | static void |
| 194 | sig_done(int sig) |
| 195 | { |
| 196 | signal(SIGALRM14, sig_done); |
| 197 | run = 0; |
| 198 | } |
| 199 | |
| 200 | #define START0 TM_RESET0 |
| 201 | #define STOP1 TM_GET1 |
| 202 | |
| 203 | |
| 204 | static double |
| 205 | Time_F(int s) |
| 206 | { |
| 207 | if (usertime) |
| 208 | return app_timer_user(s); |
| 209 | else |
| 210 | return app_timer_real(s); |
| 211 | } |
| 212 | |
| 213 | |
| 214 | static const int KDF1_SHA1_len = 20; |
| 215 | static void * |
| 216 | KDF1_SHA1(const void *in, size_t inlen, void *out, size_t * outlen) |
| 217 | { |
| 218 | #ifndef OPENSSL_NO_SHA |
| 219 | if (*outlen < SHA_DIGEST_LENGTH20) |
| 220 | return NULL((void *)0); |
| 221 | else |
| 222 | *outlen = SHA_DIGEST_LENGTH20; |
| 223 | return SHA1(in, inlen, out); |
| 224 | #else |
| 225 | return NULL((void *)0); |
| 226 | #endif /* OPENSSL_NO_SHA */ |
| 227 | } |
| 228 | |
| 229 | int |
| 230 | speed_main(int argc, char **argv) |
| 231 | { |
| 232 | unsigned char *real_buf = NULL((void *)0), *real_buf2 = NULL((void *)0); |
| 233 | unsigned char *buf = NULL((void *)0), *buf2 = NULL((void *)0); |
| 234 | size_t unaligned = 0; |
| 235 | int mret = 1; |
| 236 | long count = 0, save_count = 0; |
| 237 | int i, j, k; |
| 238 | long rsa_count; |
| 239 | unsigned rsa_num; |
| 240 | unsigned char md[EVP_MAX_MD_SIZE64]; |
| 241 | #ifndef OPENSSL_NO_MD4 |
| 242 | unsigned char md4[MD4_DIGEST_LENGTH16]; |
| 243 | #endif |
| 244 | #ifndef OPENSSL_NO_MD5 |
| 245 | unsigned char md5[MD5_DIGEST_LENGTH16]; |
| 246 | unsigned char hmac[MD5_DIGEST_LENGTH16]; |
| 247 | #endif |
| 248 | #ifndef OPENSSL_NO_SHA |
| 249 | unsigned char sha[SHA_DIGEST_LENGTH20]; |
| 250 | #ifndef OPENSSL_NO_SHA256 |
| 251 | unsigned char sha256[SHA256_DIGEST_LENGTH32]; |
| 252 | #endif |
| 253 | #ifndef OPENSSL_NO_SHA512 |
| 254 | unsigned char sha512[SHA512_DIGEST_LENGTH64]; |
| 255 | #endif |
| 256 | #endif |
| 257 | #ifndef OPENSSL_NO_WHIRLPOOL |
| 258 | unsigned char whirlpool[WHIRLPOOL_DIGEST_LENGTH(512/8)]; |
| 259 | #endif |
| 260 | #ifndef OPENSSL_NO_RIPEMD |
| 261 | unsigned char rmd160[RIPEMD160_DIGEST_LENGTH20]; |
| 262 | #endif |
| 263 | #ifndef OPENSSL_NO_RC4 |
| 264 | RC4_KEY rc4_ks; |
| 265 | #endif |
| 266 | #ifndef OPENSSL_NO_RC2 |
| 267 | RC2_KEY rc2_ks; |
| 268 | #endif |
| 269 | #ifndef OPENSSL_NO_IDEA |
| 270 | IDEA_KEY_SCHEDULE idea_ks; |
| 271 | #endif |
| 272 | #ifndef OPENSSL_NO_BF |
| 273 | BF_KEY bf_ks; |
| 274 | #endif |
| 275 | #ifndef OPENSSL_NO_CAST |
| 276 | CAST_KEY cast_ks; |
| 277 | #endif |
| 278 | static const unsigned char key16[16] = |
| 279 | {0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, |
| 280 | 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12}; |
| 281 | #ifndef OPENSSL_NO_AES |
| 282 | static const unsigned char key24[24] = |
| 283 | {0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, |
| 284 | 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, |
| 285 | 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34}; |
| 286 | static const unsigned char key32[32] = |
| 287 | {0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, |
| 288 | 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, |
| 289 | 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, |
| 290 | 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56}; |
| 291 | #endif |
| 292 | #ifndef OPENSSL_NO_CAMELLIA |
| 293 | static const unsigned char ckey24[24] = |
| 294 | {0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, |
| 295 | 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, |
| 296 | 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34}; |
| 297 | static const unsigned char ckey32[32] = |
| 298 | {0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, |
| 299 | 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, |
| 300 | 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, |
| 301 | 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56}; |
| 302 | #endif |
| 303 | #ifndef OPENSSL_NO_AES |
| 304 | #define MAX_BLOCK_SIZE128 128 |
| 305 | #else |
| 306 | #define MAX_BLOCK_SIZE128 64 |
| 307 | #endif |
| 308 | unsigned char DES_iv[8]; |
| 309 | unsigned char iv[2 * MAX_BLOCK_SIZE128 / 8]; |
| 310 | #ifndef OPENSSL_NO_DES |
| 311 | static DES_cblock key = {0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0}; |
| 312 | static DES_cblock key2 = {0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12}; |
| 313 | static DES_cblock key3 = {0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34}; |
| 314 | DES_key_schedule sch; |
| 315 | DES_key_schedule sch2; |
| 316 | DES_key_schedule sch3; |
| 317 | #endif |
| 318 | #ifndef OPENSSL_NO_AES |
| 319 | AES_KEY aes_ks1, aes_ks2, aes_ks3; |
| 320 | #endif |
| 321 | #ifndef OPENSSL_NO_CAMELLIA |
| 322 | CAMELLIA_KEY camellia_ks1, camellia_ks2, camellia_ks3; |
| 323 | #endif |
| 324 | #define D_MD20 0 |
| 325 | #define D_MD41 1 |
| 326 | #define D_MD52 2 |
| 327 | #define D_HMAC3 3 |
| 328 | #define D_SHA14 4 |
| 329 | #define D_RMD1605 5 |
| 330 | #define D_RC46 6 |
| 331 | #define D_CBC_DES7 7 |
| 332 | #define D_EDE3_DES8 8 |
| 333 | #define D_CBC_IDEA9 9 |
| 334 | #define D_CBC_SEED10 10 |
| 335 | #define D_CBC_RC211 11 |
| 336 | #define D_CBC_RC512 12 |
| 337 | #define D_CBC_BF13 13 |
| 338 | #define D_CBC_CAST14 14 |
| 339 | #define D_CBC_128_AES15 15 |
| 340 | #define D_CBC_192_AES16 16 |
| 341 | #define D_CBC_256_AES17 17 |
| 342 | #define D_CBC_128_CML18 18 |
| 343 | #define D_CBC_192_CML19 19 |
| 344 | #define D_CBC_256_CML20 20 |
| 345 | #define D_EVP21 21 |
| 346 | #define D_SHA25622 22 |
| 347 | #define D_SHA51223 23 |
| 348 | #define D_WHIRLPOOL24 24 |
| 349 | #define D_IGE_128_AES25 25 |
| 350 | #define D_IGE_192_AES26 26 |
| 351 | #define D_IGE_256_AES27 27 |
| 352 | #define D_GHASH28 28 |
| 353 | #define D_AES_128_GCM29 29 |
| 354 | #define D_AES_256_GCM30 30 |
| 355 | #define D_CHACHA20_POLY130531 31 |
| 356 | double d = 0.0; |
| 357 | long c[ALGOR_NUM32][SIZE_NUM5]; |
| 358 | #define R_DSA_5120 0 |
| 359 | #define R_DSA_10241 1 |
| 360 | #define R_DSA_20482 2 |
| 361 | #define R_RSA_5120 0 |
| 362 | #define R_RSA_10241 1 |
| 363 | #define R_RSA_20482 2 |
| 364 | #define R_RSA_40963 3 |
| 365 | |
| 366 | #define R_EC_P1600 0 |
| 367 | #define R_EC_P1921 1 |
| 368 | #define R_EC_P2242 2 |
| 369 | #define R_EC_P2563 3 |
| 370 | #define R_EC_P3844 4 |
| 371 | #define R_EC_P5215 5 |
| 372 | |
| 373 | RSA *rsa_key[RSA_NUM4]; |
| 374 | long rsa_c[RSA_NUM4][2]; |
| 375 | static unsigned int rsa_bits[RSA_NUM4] = {512, 1024, 2048, 4096}; |
| 376 | static unsigned char *rsa_data[RSA_NUM4] = |
| 377 | {test512, test1024, test2048, test4096}; |
| 378 | static int rsa_data_length[RSA_NUM4] = { |
| 379 | sizeof(test512), sizeof(test1024), |
| 380 | sizeof(test2048), sizeof(test4096)}; |
| 381 | DSA *dsa_key[DSA_NUM3]; |
| 382 | long dsa_c[DSA_NUM3][2]; |
| 383 | static unsigned int dsa_bits[DSA_NUM3] = {512, 1024, 2048}; |
| 384 | #ifndef OPENSSL_NO_EC |
| 385 | /* |
| 386 | * We only test over the following curves as they are representative, |
| 387 | * To add tests over more curves, simply add the curve NID and curve |
| 388 | * name to the following arrays and increase the EC_NUM value |
| 389 | * accordingly. |
| 390 | */ |
| 391 | static unsigned int test_curves[EC_NUM6] = { |
| 392 | NID_secp160r1709, |
| 393 | NID_X9_62_prime192v1409, |
| 394 | NID_secp224r1713, |
| 395 | NID_X9_62_prime256v1415, |
| 396 | NID_secp384r1715, |
| 397 | NID_secp521r1716, |
| 398 | }; |
| 399 | static const char *test_curves_names[EC_NUM6] = { |
| 400 | "secp160r1", |
| 401 | "nistp192", |
| 402 | "nistp224", |
| 403 | "nistp256", |
| 404 | "nistp384", |
| 405 | "nistp521", |
| 406 | }; |
| 407 | static int test_curves_bits[EC_NUM6] = { |
| 408 | 160, 192, 224, 256, 384, 521, |
| 409 | }; |
| 410 | |
| 411 | #endif |
| 412 | |
| 413 | unsigned char ecdsasig[256]; |
| 414 | unsigned int ecdsasiglen; |
| 415 | EC_KEY *ecdsa[EC_NUM6]; |
| 416 | long ecdsa_c[EC_NUM6][2]; |
| 417 | |
| 418 | EC_KEY *ecdh_a[EC_NUM6], *ecdh_b[EC_NUM6]; |
| 419 | unsigned char secret_a[MAX_ECDH_SIZE256], secret_b[MAX_ECDH_SIZE256]; |
| 420 | int secret_size_a, secret_size_b; |
| 421 | int ecdh_checks = 0; |
| 422 | int secret_idx = 0; |
| 423 | long ecdh_c[EC_NUM6][2]; |
| 424 | |
| 425 | int rsa_doit[RSA_NUM4]; |
| 426 | int dsa_doit[DSA_NUM3]; |
| 427 | int ecdsa_doit[EC_NUM6]; |
| 428 | int ecdh_doit[EC_NUM6]; |
| 429 | int doit[ALGOR_NUM32]; |
| 430 | int pr_header = 0; |
| 431 | const EVP_CIPHER *evp_cipher = NULL((void *)0); |
| 432 | const EVP_MD *evp_md = NULL((void *)0); |
| 433 | int decrypt = 0; |
| 434 | int multi = 0; |
| 435 | const char *errstr = NULL((void *)0); |
| 436 | |
| 437 | if (pledge("stdio proc", NULL((void *)0)) == -1) { |
| 438 | perror("pledge"); |
| 439 | exit(1); |
| 440 | } |
| 441 | |
| 442 | usertime = -1; |
| 443 | |
| 444 | memset(results, 0, sizeof(results)); |
| 445 | memset(dsa_key, 0, sizeof(dsa_key)); |
| 446 | for (i = 0; i < EC_NUM6; i++) |
| 447 | ecdsa[i] = NULL((void *)0); |
| 448 | for (i = 0; i < EC_NUM6; i++) { |
| 449 | ecdh_a[i] = NULL((void *)0); |
| 450 | ecdh_b[i] = NULL((void *)0); |
| 451 | } |
| 452 | |
| 453 | memset(rsa_key, 0, sizeof(rsa_key)); |
| 454 | for (i = 0; i < RSA_NUM4; i++) |
| 455 | rsa_key[i] = NULL((void *)0); |
| 456 | |
| 457 | if ((buf = real_buf = malloc(BUFSIZE(1024*8+64) + MAX_UNALIGN16)) == NULL((void *)0)) { |
| 458 | BIO_printf(bio_err, "out of memory\n"); |
| 459 | goto end; |
| 460 | } |
| 461 | if ((buf2 = real_buf2 = malloc(BUFSIZE(1024*8+64) + MAX_UNALIGN16)) == NULL((void *)0)) { |
| 462 | BIO_printf(bio_err, "out of memory\n"); |
| 463 | goto end; |
| 464 | } |
| 465 | memset(c, 0, sizeof(c)); |
| 466 | memset(DES_iv, 0, sizeof(DES_iv)); |
| 467 | memset(iv, 0, sizeof(iv)); |
| 468 | |
| 469 | for (i = 0; i < ALGOR_NUM32; i++) |
| 470 | doit[i] = 0; |
| 471 | for (i = 0; i < RSA_NUM4; i++) |
| 472 | rsa_doit[i] = 0; |
| 473 | for (i = 0; i < DSA_NUM3; i++) |
| 474 | dsa_doit[i] = 0; |
| 475 | for (i = 0; i < EC_NUM6; i++) |
| 476 | ecdsa_doit[i] = 0; |
| 477 | for (i = 0; i < EC_NUM6; i++) |
| 478 | ecdh_doit[i] = 0; |
| 479 | |
| 480 | |
| 481 | j = 0; |
| 482 | argc--; |
| 483 | argv++; |
| 484 | while (argc) { |
| 485 | if (argc > 0 && strcmp(*argv, "-elapsed") == 0) { |
| 486 | usertime = 0; |
| 487 | j--; /* Otherwise, -elapsed gets confused with an |
| 488 | * algorithm. */ |
| 489 | } else if (argc > 0 && strcmp(*argv, "-evp") == 0) { |
| 490 | argc--; |
| 491 | argv++; |
| 492 | if (argc == 0) { |
| 493 | BIO_printf(bio_err, "no EVP given\n"); |
| 494 | goto end; |
| 495 | } |
| 496 | evp_cipher = EVP_get_cipherbyname(*argv); |
| 497 | if (!evp_cipher) { |
| 498 | evp_md = EVP_get_digestbyname(*argv); |
| 499 | } |
| 500 | if (!evp_cipher && !evp_md) { |
| 501 | BIO_printf(bio_err, "%s is an unknown cipher or digest\n", *argv); |
| 502 | goto end; |
| 503 | } |
| 504 | doit[D_EVP21] = 1; |
| 505 | } else if (argc > 0 && strcmp(*argv, "-decrypt") == 0) { |
| 506 | decrypt = 1; |
| 507 | j--; /* Otherwise, -decrypt gets confused with an |
| 508 | * algorithm. */ |
| 509 | } else if (argc > 0 && strcmp(*argv, "-multi") == 0) { |
| 510 | argc--; |
| 511 | argv++; |
| 512 | if (argc == 0) { |
| 513 | BIO_printf(bio_err, "no multi count given\n"); |
| 514 | goto end; |
| 515 | } |
| 516 | multi = strtonum(argv[0], 1, INT_MAX0x7fffffff, &errstr); |
| 517 | if (errstr) { |
| 518 | BIO_printf(bio_err, "bad multi count: %s", errstr); |
| 519 | goto end; |
| 520 | } |
| 521 | j--; /* Otherwise, -multi gets confused with an |
| 522 | * algorithm. */ |
| 523 | } else if (argc > 0 && strcmp(*argv, "-unaligned") == 0) { |
| 524 | argc--; |
| 525 | argv++; |
| 526 | if (argc == 0) { |
| 527 | BIO_printf(bio_err, "no alignment offset given\n"); |
| 528 | goto end; |
| 529 | } |
| 530 | unaligned = strtonum(argv[0], 0, MAX_UNALIGN16, &errstr); |
| 531 | if (errstr) { |
| 532 | BIO_printf(bio_err, "bad alignment offset: %s", |
| 533 | errstr); |
| 534 | goto end; |
| 535 | } |
| 536 | buf = real_buf + unaligned; |
| 537 | buf2 = real_buf2 + unaligned; |
| 538 | j--; /* Otherwise, -unaligned gets confused with an |
| 539 | * algorithm. */ |
| 540 | } else if (argc > 0 && strcmp(*argv, "-mr") == 0) { |
| 541 | mr = 1; |
| 542 | j--; /* Otherwise, -mr gets confused with an |
| 543 | * algorithm. */ |
| 544 | } else |
| 545 | #ifndef OPENSSL_NO_MD4 |
| 546 | if (strcmp(*argv, "md4") == 0) |
| 547 | doit[D_MD41] = 1; |
| 548 | else |
| 549 | #endif |
| 550 | #ifndef OPENSSL_NO_MD5 |
| 551 | if (strcmp(*argv, "md5") == 0) |
| 552 | doit[D_MD52] = 1; |
| 553 | else |
| 554 | #endif |
| 555 | #ifndef OPENSSL_NO_MD5 |
| 556 | if (strcmp(*argv, "hmac") == 0) |
| 557 | doit[D_HMAC3] = 1; |
| 558 | else |
| 559 | #endif |
| 560 | #ifndef OPENSSL_NO_SHA |
| 561 | if (strcmp(*argv, "sha1") == 0) |
| 562 | doit[D_SHA14] = 1; |
| 563 | else if (strcmp(*argv, "sha") == 0) |
| 564 | doit[D_SHA14] = 1, |
| 565 | doit[D_SHA25622] = 1, |
| 566 | doit[D_SHA51223] = 1; |
| 567 | else |
| 568 | #ifndef OPENSSL_NO_SHA256 |
| 569 | if (strcmp(*argv, "sha256") == 0) |
| 570 | doit[D_SHA25622] = 1; |
| 571 | else |
| 572 | #endif |
| 573 | #ifndef OPENSSL_NO_SHA512 |
| 574 | if (strcmp(*argv, "sha512") == 0) |
| 575 | doit[D_SHA51223] = 1; |
| 576 | else |
| 577 | #endif |
| 578 | #endif |
| 579 | #ifndef OPENSSL_NO_WHIRLPOOL |
| 580 | if (strcmp(*argv, "whirlpool") == 0) |
| 581 | doit[D_WHIRLPOOL24] = 1; |
| 582 | else |
| 583 | #endif |
| 584 | #ifndef OPENSSL_NO_RIPEMD |
| 585 | if (strcmp(*argv, "ripemd") == 0) |
| 586 | doit[D_RMD1605] = 1; |
| 587 | else if (strcmp(*argv, "rmd160") == 0) |
| 588 | doit[D_RMD1605] = 1; |
| 589 | else if (strcmp(*argv, "ripemd160") == 0) |
| 590 | doit[D_RMD1605] = 1; |
| 591 | else |
| 592 | #endif |
| 593 | #ifndef OPENSSL_NO_RC4 |
| 594 | if (strcmp(*argv, "rc4") == 0) |
| 595 | doit[D_RC46] = 1; |
| 596 | else |
| 597 | #endif |
| 598 | #ifndef OPENSSL_NO_DES |
| 599 | if (strcmp(*argv, "des-cbc") == 0) |
| 600 | doit[D_CBC_DES7] = 1; |
| 601 | else if (strcmp(*argv, "des-ede3") == 0) |
| 602 | doit[D_EDE3_DES8] = 1; |
| 603 | else |
| 604 | #endif |
| 605 | #ifndef OPENSSL_NO_AES |
| 606 | if (strcmp(*argv, "aes-128-cbc") == 0) |
| 607 | doit[D_CBC_128_AES15] = 1; |
| 608 | else if (strcmp(*argv, "aes-192-cbc") == 0) |
| 609 | doit[D_CBC_192_AES16] = 1; |
| 610 | else if (strcmp(*argv, "aes-256-cbc") == 0) |
| 611 | doit[D_CBC_256_AES17] = 1; |
| 612 | else if (strcmp(*argv, "aes-128-ige") == 0) |
| 613 | doit[D_IGE_128_AES25] = 1; |
| 614 | else if (strcmp(*argv, "aes-192-ige") == 0) |
| 615 | doit[D_IGE_192_AES26] = 1; |
| 616 | else if (strcmp(*argv, "aes-256-ige") == 0) |
| 617 | doit[D_IGE_256_AES27] = 1; |
| 618 | else |
| 619 | #endif |
| 620 | #ifndef OPENSSL_NO_CAMELLIA |
| 621 | if (strcmp(*argv, "camellia-128-cbc") == 0) |
| 622 | doit[D_CBC_128_CML18] = 1; |
| 623 | else if (strcmp(*argv, "camellia-192-cbc") == 0) |
| 624 | doit[D_CBC_192_CML19] = 1; |
| 625 | else if (strcmp(*argv, "camellia-256-cbc") == 0) |
| 626 | doit[D_CBC_256_CML20] = 1; |
| 627 | else |
| 628 | #endif |
| 629 | #ifndef RSA_NULL |
| 630 | if (strcmp(*argv, "openssl") == 0) { |
| 631 | RSA_set_default_method(RSA_PKCS1_SSLeay()); |
| 632 | j--; |
| 633 | } else |
| 634 | #endif |
| 635 | if (strcmp(*argv, "dsa512") == 0) |
| 636 | dsa_doit[R_DSA_5120] = 2; |
| 637 | else if (strcmp(*argv, "dsa1024") == 0) |
| 638 | dsa_doit[R_DSA_10241] = 2; |
| 639 | else if (strcmp(*argv, "dsa2048") == 0) |
| 640 | dsa_doit[R_DSA_20482] = 2; |
| 641 | else if (strcmp(*argv, "rsa512") == 0) |
| 642 | rsa_doit[R_RSA_5120] = 2; |
| 643 | else if (strcmp(*argv, "rsa1024") == 0) |
| 644 | rsa_doit[R_RSA_10241] = 2; |
| 645 | else if (strcmp(*argv, "rsa2048") == 0) |
| 646 | rsa_doit[R_RSA_20482] = 2; |
| 647 | else if (strcmp(*argv, "rsa4096") == 0) |
| 648 | rsa_doit[R_RSA_40963] = 2; |
| 649 | else |
| 650 | #ifndef OPENSSL_NO_RC2 |
| 651 | if (strcmp(*argv, "rc2-cbc") == 0) |
| 652 | doit[D_CBC_RC211] = 1; |
| 653 | else if (strcmp(*argv, "rc2") == 0) |
| 654 | doit[D_CBC_RC211] = 1; |
| 655 | else |
| 656 | #endif |
| 657 | #ifndef OPENSSL_NO_IDEA |
| 658 | if (strcmp(*argv, "idea-cbc") == 0) |
| 659 | doit[D_CBC_IDEA9] = 1; |
| 660 | else if (strcmp(*argv, "idea") == 0) |
| 661 | doit[D_CBC_IDEA9] = 1; |
| 662 | else |
| 663 | #endif |
| 664 | #ifndef OPENSSL_NO_BF |
| 665 | if (strcmp(*argv, "bf-cbc") == 0) |
| 666 | doit[D_CBC_BF13] = 1; |
| 667 | else if (strcmp(*argv, "blowfish") == 0) |
| 668 | doit[D_CBC_BF13] = 1; |
| 669 | else if (strcmp(*argv, "bf") == 0) |
| 670 | doit[D_CBC_BF13] = 1; |
| 671 | else |
| 672 | #endif |
| 673 | #ifndef OPENSSL_NO_CAST |
| 674 | if (strcmp(*argv, "cast-cbc") == 0) |
| 675 | doit[D_CBC_CAST14] = 1; |
| 676 | else if (strcmp(*argv, "cast") == 0) |
| 677 | doit[D_CBC_CAST14] = 1; |
| 678 | else if (strcmp(*argv, "cast5") == 0) |
| 679 | doit[D_CBC_CAST14] = 1; |
| 680 | else |
| 681 | #endif |
| 682 | #ifndef OPENSSL_NO_DES |
| 683 | if (strcmp(*argv, "des") == 0) { |
| 684 | doit[D_CBC_DES7] = 1; |
| 685 | doit[D_EDE3_DES8] = 1; |
| 686 | } else |
| 687 | #endif |
| 688 | #ifndef OPENSSL_NO_AES |
| 689 | if (strcmp(*argv, "aes") == 0) { |
| 690 | doit[D_CBC_128_AES15] = 1; |
| 691 | doit[D_CBC_192_AES16] = 1; |
| 692 | doit[D_CBC_256_AES17] = 1; |
| 693 | } else if (strcmp(*argv, "ghash") == 0) |
| 694 | doit[D_GHASH28] = 1; |
| 695 | else if (strcmp(*argv,"aes-128-gcm") == 0) |
| 696 | doit[D_AES_128_GCM29]=1; |
| 697 | else if (strcmp(*argv,"aes-256-gcm") == 0) |
| 698 | doit[D_AES_256_GCM30]=1; |
| 699 | else |
| 700 | #endif |
| 701 | #ifndef OPENSSL_NO_CAMELLIA |
| 702 | if (strcmp(*argv, "camellia") == 0) { |
| 703 | doit[D_CBC_128_CML18] = 1; |
| 704 | doit[D_CBC_192_CML19] = 1; |
| 705 | doit[D_CBC_256_CML20] = 1; |
| 706 | } else |
| 707 | #endif |
| 708 | #if !defined(OPENSSL_NO_CHACHA) && !defined(OPENSSL_NO_POLY1305) |
| 709 | if (strcmp(*argv,"chacha20-poly1305") == 0) |
| 710 | doit[D_CHACHA20_POLY130531]=1; |
| 711 | else |
| 712 | #endif |
| 713 | if (strcmp(*argv, "rsa") == 0) { |
| 714 | rsa_doit[R_RSA_5120] = 1; |
| 715 | rsa_doit[R_RSA_10241] = 1; |
| 716 | rsa_doit[R_RSA_20482] = 1; |
| 717 | rsa_doit[R_RSA_40963] = 1; |
| 718 | } else |
| 719 | if (strcmp(*argv, "dsa") == 0) { |
| 720 | dsa_doit[R_DSA_5120] = 1; |
| 721 | dsa_doit[R_DSA_10241] = 1; |
| 722 | dsa_doit[R_DSA_20482] = 1; |
| 723 | } else |
| 724 | if (strcmp(*argv, "ecdsap160") == 0) |
| 725 | ecdsa_doit[R_EC_P1600] = 2; |
| 726 | else if (strcmp(*argv, "ecdsap192") == 0) |
| 727 | ecdsa_doit[R_EC_P1921] = 2; |
| 728 | else if (strcmp(*argv, "ecdsap224") == 0) |
| 729 | ecdsa_doit[R_EC_P2242] = 2; |
| 730 | else if (strcmp(*argv, "ecdsap256") == 0) |
| 731 | ecdsa_doit[R_EC_P2563] = 2; |
| 732 | else if (strcmp(*argv, "ecdsap384") == 0) |
| 733 | ecdsa_doit[R_EC_P3844] = 2; |
| 734 | else if (strcmp(*argv, "ecdsap521") == 0) |
| 735 | ecdsa_doit[R_EC_P5215] = 2; |
| 736 | else if (strcmp(*argv, "ecdsa") == 0) { |
| 737 | for (i = 0; i < EC_NUM6; i++) |
| 738 | ecdsa_doit[i] = 1; |
| 739 | } else |
| 740 | if (strcmp(*argv, "ecdhp160") == 0) |
| 741 | ecdh_doit[R_EC_P1600] = 2; |
| 742 | else if (strcmp(*argv, "ecdhp192") == 0) |
| 743 | ecdh_doit[R_EC_P1921] = 2; |
| 744 | else if (strcmp(*argv, "ecdhp224") == 0) |
| 745 | ecdh_doit[R_EC_P2242] = 2; |
| 746 | else if (strcmp(*argv, "ecdhp256") == 0) |
| 747 | ecdh_doit[R_EC_P2563] = 2; |
| 748 | else if (strcmp(*argv, "ecdhp384") == 0) |
| 749 | ecdh_doit[R_EC_P3844] = 2; |
| 750 | else if (strcmp(*argv, "ecdhp521") == 0) |
| 751 | ecdh_doit[R_EC_P5215] = 2; |
| 752 | else if (strcmp(*argv, "ecdh") == 0) { |
| 753 | for (i = 0; i < EC_NUM6; i++) |
| 754 | ecdh_doit[i] = 1; |
| 755 | } else |
| 756 | { |
| 757 | BIO_printf(bio_err, "Error: bad option or value\n"); |
| 758 | BIO_printf(bio_err, "\n"); |
| 759 | BIO_printf(bio_err, "Available values:\n"); |
| 760 | #ifndef OPENSSL_NO_MD4 |
| 761 | BIO_printf(bio_err, "md4 "); |
| 762 | #endif |
| 763 | #ifndef OPENSSL_NO_MD5 |
| 764 | BIO_printf(bio_err, "md5 "); |
| 765 | #ifndef OPENSSL_NO_HMAC |
| 766 | BIO_printf(bio_err, "hmac "); |
| 767 | #endif |
| 768 | #endif |
| 769 | #ifndef OPENSSL_NO_SHA1 |
| 770 | BIO_printf(bio_err, "sha1 "); |
| 771 | #endif |
| 772 | #ifndef OPENSSL_NO_SHA256 |
| 773 | BIO_printf(bio_err, "sha256 "); |
| 774 | #endif |
| 775 | #ifndef OPENSSL_NO_SHA512 |
| 776 | BIO_printf(bio_err, "sha512 "); |
| 777 | #endif |
| 778 | #ifndef OPENSSL_NO_WHIRLPOOL |
| 779 | BIO_printf(bio_err, "whirlpool"); |
| 780 | #endif |
| 781 | #ifndef OPENSSL_NO_RIPEMD160 |
| 782 | BIO_printf(bio_err, "rmd160"); |
| 783 | #endif |
| 784 | #if !defined(OPENSSL_NO_MD2) || \ |
| 785 | !defined(OPENSSL_NO_MD4) || !defined(OPENSSL_NO_MD5) || \ |
| 786 | !defined(OPENSSL_NO_SHA1) || !defined(OPENSSL_NO_RIPEMD160) || \ |
| 787 | !defined(OPENSSL_NO_WHIRLPOOL) |
| 788 | BIO_printf(bio_err, "\n"); |
| 789 | #endif |
| 790 | |
| 791 | #ifndef OPENSSL_NO_IDEA |
| 792 | BIO_printf(bio_err, "idea-cbc "); |
| 793 | #endif |
| 794 | #ifndef OPENSSL_NO_RC2 |
| 795 | BIO_printf(bio_err, "rc2-cbc "); |
| 796 | #endif |
| 797 | #ifndef OPENSSL_NO_BF |
| 798 | BIO_printf(bio_err, "bf-cbc "); |
| 799 | #endif |
| 800 | #ifndef OPENSSL_NO_DES |
| 801 | BIO_printf(bio_err, "des-cbc des-ede3\n"); |
| 802 | #endif |
| 803 | #ifndef OPENSSL_NO_AES |
| 804 | BIO_printf(bio_err, "aes-128-cbc aes-192-cbc aes-256-cbc "); |
| 805 | BIO_printf(bio_err, "aes-128-ige aes-192-ige aes-256-ige\n"); |
| 806 | BIO_printf(bio_err, "aes-128-gcm aes-256-gcm "); |
| 807 | #endif |
| 808 | #ifndef OPENSSL_NO_CAMELLIA |
| 809 | BIO_printf(bio_err, "\n"); |
| 810 | BIO_printf(bio_err, "camellia-128-cbc camellia-192-cbc camellia-256-cbc "); |
| 811 | #endif |
| 812 | #ifndef OPENSSL_NO_RC4 |
| 813 | BIO_printf(bio_err, "rc4"); |
| 814 | #endif |
| 815 | #if !defined(OPENSSL_NO_CHACHA) && !defined(OPENSSL_NO_POLY1305) |
| 816 | BIO_printf(bio_err," chacha20-poly1305"); |
| 817 | #endif |
| 818 | BIO_printf(bio_err, "\n"); |
| 819 | |
| 820 | BIO_printf(bio_err, "rsa512 rsa1024 rsa2048 rsa4096\n"); |
| 821 | |
| 822 | BIO_printf(bio_err, "dsa512 dsa1024 dsa2048\n"); |
| 823 | BIO_printf(bio_err, "ecdsap160 ecdsap192 ecdsap224 ecdsap256 ecdsap384 ecdsap521\n"); |
| 824 | BIO_printf(bio_err, "ecdhp160 ecdhp192 ecdhp224 ecdhp256 ecdhp384 ecdhp521\n"); |
| 825 | |
| 826 | #ifndef OPENSSL_NO_IDEA |
| 827 | BIO_printf(bio_err, "idea "); |
| 828 | #endif |
| 829 | #ifndef OPENSSL_NO_RC2 |
| 830 | BIO_printf(bio_err, "rc2 "); |
| 831 | #endif |
| 832 | #ifndef OPENSSL_NO_DES |
| 833 | BIO_printf(bio_err, "des "); |
| 834 | #endif |
| 835 | #ifndef OPENSSL_NO_AES |
| 836 | BIO_printf(bio_err, "aes "); |
| 837 | #endif |
| 838 | #ifndef OPENSSL_NO_CAMELLIA |
| 839 | BIO_printf(bio_err, "camellia "); |
| 840 | #endif |
| 841 | BIO_printf(bio_err, "rsa "); |
| 842 | #ifndef OPENSSL_NO_BF |
| 843 | BIO_printf(bio_err, "blowfish"); |
| 844 | #endif |
| 845 | #if !defined(OPENSSL_NO_IDEA) || !defined(OPENSSL_NO_SEED) || \ |
| 846 | !defined(OPENSSL_NO_RC2) || !defined(OPENSSL_NO_DES) || \ |
| 847 | !defined(OPENSSL_NO_RSA) || !defined(OPENSSL_NO_BF) || \ |
| 848 | !defined(OPENSSL_NO_AES) || !defined(OPENSSL_NO_CAMELLIA) |
| 849 | BIO_printf(bio_err, "\n"); |
| 850 | #endif |
| 851 | |
| 852 | BIO_printf(bio_err, "\n"); |
| 853 | BIO_printf(bio_err, "Available options:\n"); |
| 854 | BIO_printf(bio_err, "-elapsed measure time in real time instead of CPU user time.\n"); |
| 855 | BIO_printf(bio_err, "-evp e use EVP e.\n"); |
| 856 | BIO_printf(bio_err, "-decrypt time decryption instead of encryption (only EVP).\n"); |
| 857 | BIO_printf(bio_err, "-mr produce machine readable output.\n"); |
| 858 | BIO_printf(bio_err, "-multi n run n benchmarks in parallel.\n"); |
| 859 | BIO_printf(bio_err, "-unaligned n use buffers with offset n from proper alignment.\n"); |
| 860 | goto end; |
| 861 | } |
| 862 | argc--; |
| 863 | argv++; |
| 864 | j++; |
| 865 | } |
| 866 | |
| 867 | if (multi && do_multi(multi)) |
| 868 | goto show_res; |
| 869 | |
| 870 | if (j == 0) { |
| 871 | for (i = 0; i < ALGOR_NUM32; i++) { |
| 872 | if (i != D_EVP21) |
| 873 | doit[i] = 1; |
| 874 | } |
| 875 | for (i = 0; i < RSA_NUM4; i++) |
| 876 | rsa_doit[i] = 1; |
| 877 | for (i = 0; i < DSA_NUM3; i++) |
| 878 | dsa_doit[i] = 1; |
| 879 | for (i = 0; i < EC_NUM6; i++) |
| 880 | ecdsa_doit[i] = 1; |
| 881 | for (i = 0; i < EC_NUM6; i++) |
| 882 | ecdh_doit[i] = 1; |
| 883 | } |
| 884 | for (i = 0; i < ALGOR_NUM32; i++) |
| 885 | if (doit[i]) |
| 886 | pr_header++; |
| 887 | |
| 888 | if (usertime == 0 && !mr) |
| 889 | BIO_printf(bio_err, "You have chosen to measure elapsed time instead of user CPU time.\n"); |
| 890 | |
| 891 | for (i = 0; i < RSA_NUM4; i++) { |
| 892 | const unsigned char *p; |
| 893 | |
| 894 | p = rsa_data[i]; |
| 895 | rsa_key[i] = d2i_RSAPrivateKey(NULL((void *)0), &p, rsa_data_length[i]); |
| 896 | if (rsa_key[i] == NULL((void *)0)) { |
| 897 | BIO_printf(bio_err, "internal error loading RSA key number %d\n", i); |
| 898 | goto end; |
| 899 | } |
| 900 | } |
| 901 | |
| 902 | dsa_key[0] = get_dsa512(); |
| 903 | dsa_key[1] = get_dsa1024(); |
| 904 | dsa_key[2] = get_dsa2048(); |
| 905 | |
| 906 | #ifndef OPENSSL_NO_DES |
| 907 | DES_set_key_unchecked(&key, &sch); |
| 908 | DES_set_key_unchecked(&key2, &sch2); |
| 909 | DES_set_key_unchecked(&key3, &sch3); |
| 910 | #endif |
| 911 | #ifndef OPENSSL_NO_AES |
| 912 | AES_set_encrypt_key(key16, 128, &aes_ks1); |
| 913 | AES_set_encrypt_key(key24, 192, &aes_ks2); |
| 914 | AES_set_encrypt_key(key32, 256, &aes_ks3); |
| 915 | #endif |
| 916 | #ifndef OPENSSL_NO_CAMELLIA |
| 917 | Camellia_set_key(key16, 128, &camellia_ks1); |
| 918 | Camellia_set_key(ckey24, 192, &camellia_ks2); |
| 919 | Camellia_set_key(ckey32, 256, &camellia_ks3); |
| 920 | #endif |
| 921 | #ifndef OPENSSL_NO_IDEA |
| 922 | idea_set_encrypt_key(key16, &idea_ks); |
| 923 | #endif |
| 924 | #ifndef OPENSSL_NO_RC4 |
| 925 | RC4_set_key(&rc4_ks, 16, key16); |
| 926 | #endif |
| 927 | #ifndef OPENSSL_NO_RC2 |
| 928 | RC2_set_key(&rc2_ks, 16, key16, 128); |
| 929 | #endif |
| 930 | #ifndef OPENSSL_NO_BF |
| 931 | BF_set_key(&bf_ks, 16, key16); |
| 932 | #endif |
| 933 | #ifndef OPENSSL_NO_CAST |
| 934 | CAST_set_key(&cast_ks, 16, key16); |
| 935 | #endif |
| 936 | memset(rsa_c, 0, sizeof(rsa_c)); |
| 937 | #define COND(c)(run && count<0x7fffffff) (run && count<0x7fffffff) |
| 938 | #define COUNT(d)(count) (count) |
| 939 | signal(SIGALRM14, sig_done); |
| 940 | |
| 941 | #ifndef OPENSSL_NO_MD4 |
| 942 | if (doit[D_MD41]) { |
| 943 | for (j = 0; j < SIZE_NUM5; j++) { |
| 944 | print_message(names[D_MD41], c[D_MD41][j], lengths[j]); |
| 945 | Time_F(START0); |
| 946 | for (count = 0, run = 1; COND(c[D_MD4][j])(run && count<0x7fffffff); count++) |
| 947 | EVP_Digest(&(buf[0]), (unsigned long) lengths[j], &(md4[0]), NULL((void *)0), EVP_md4(), NULL((void *)0)); |
| 948 | d = Time_F(STOP1); |
| 949 | print_result(D_MD41, j, count, d); |
| 950 | } |
| 951 | } |
| 952 | #endif |
| 953 | |
| 954 | #ifndef OPENSSL_NO_MD5 |
| 955 | if (doit[D_MD52]) { |
| 956 | for (j = 0; j < SIZE_NUM5; j++) { |
| 957 | print_message(names[D_MD52], c[D_MD52][j], lengths[j]); |
| 958 | Time_F(START0); |
| 959 | for (count = 0, run = 1; COND(c[D_MD5][j])(run && count<0x7fffffff); count++) |
| 960 | EVP_Digest(&(buf[0]), (unsigned long) lengths[j], &(md5[0]), NULL((void *)0), EVP_get_digestbyname("md5"), NULL((void *)0)); |
| 961 | d = Time_F(STOP1); |
| 962 | print_result(D_MD52, j, count, d); |
| 963 | } |
| 964 | } |
| 965 | #endif |
| 966 | |
| 967 | #if !defined(OPENSSL_NO_MD5) && !defined(OPENSSL_NO_HMAC) |
| 968 | if (doit[D_HMAC3]) { |
| 969 | HMAC_CTX *hctx; |
| 970 | |
| 971 | if ((hctx = HMAC_CTX_new()) == NULL((void *)0)) { |
| 972 | BIO_printf(bio_err, "Failed to allocate HMAC context.\n"); |
| 973 | goto end; |
| 974 | } |
| 975 | |
| 976 | HMAC_Init_ex(hctx, (unsigned char *) "This is a key...", |
| 977 | 16, EVP_md5(), NULL((void *)0)); |
| 978 | |
| 979 | for (j = 0; j < SIZE_NUM5; j++) { |
| 980 | print_message(names[D_HMAC3], c[D_HMAC3][j], lengths[j]); |
| 981 | Time_F(START0); |
| 982 | for (count = 0, run = 1; COND(c[D_HMAC][j])(run && count<0x7fffffff); count++) { |
| 983 | if (!HMAC_Init_ex(hctx, NULL((void *)0), 0, NULL((void *)0), NULL((void *)0))) { |
| 984 | HMAC_CTX_free(hctx); |
| 985 | goto end; |
| 986 | } |
| 987 | if (!HMAC_Update(hctx, buf, lengths[j])) { |
| 988 | HMAC_CTX_free(hctx); |
| 989 | goto end; |
| 990 | } |
| 991 | if (!HMAC_Final(hctx, &(hmac[0]), NULL((void *)0))) { |
| 992 | HMAC_CTX_free(hctx); |
| 993 | goto end; |
| 994 | } |
| 995 | } |
| 996 | d = Time_F(STOP1); |
| 997 | print_result(D_HMAC3, j, count, d); |
| 998 | } |
| 999 | HMAC_CTX_free(hctx); |
| 1000 | } |
| 1001 | #endif |
| 1002 | #ifndef OPENSSL_NO_SHA |
| 1003 | if (doit[D_SHA14]) { |
| 1004 | for (j = 0; j < SIZE_NUM5; j++) { |
| 1005 | print_message(names[D_SHA14], c[D_SHA14][j], lengths[j]); |
| 1006 | Time_F(START0); |
| 1007 | for (count = 0, run = 1; COND(c[D_SHA1][j])(run && count<0x7fffffff); count++) |
| 1008 | EVP_Digest(buf, (unsigned long) lengths[j], &(sha[0]), NULL((void *)0), EVP_sha1(), NULL((void *)0)); |
| 1009 | d = Time_F(STOP1); |
| 1010 | print_result(D_SHA14, j, count, d); |
| 1011 | } |
| 1012 | } |
| 1013 | #ifndef OPENSSL_NO_SHA256 |
| 1014 | if (doit[D_SHA25622]) { |
| 1015 | for (j = 0; j < SIZE_NUM5; j++) { |
| 1016 | print_message(names[D_SHA25622], c[D_SHA25622][j], lengths[j]); |
| 1017 | Time_F(START0); |
| 1018 | for (count = 0, run = 1; COND(c[D_SHA256][j])(run && count<0x7fffffff); count++) |
| 1019 | SHA256(buf, lengths[j], sha256); |
| 1020 | d = Time_F(STOP1); |
| 1021 | print_result(D_SHA25622, j, count, d); |
| 1022 | } |
| 1023 | } |
| 1024 | #endif |
| 1025 | |
| 1026 | #ifndef OPENSSL_NO_SHA512 |
| 1027 | if (doit[D_SHA51223]) { |
| 1028 | for (j = 0; j < SIZE_NUM5; j++) { |
| 1029 | print_message(names[D_SHA51223], c[D_SHA51223][j], lengths[j]); |
| 1030 | Time_F(START0); |
| 1031 | for (count = 0, run = 1; COND(c[D_SHA512][j])(run && count<0x7fffffff); count++) |
| 1032 | SHA512(buf, lengths[j], sha512); |
| 1033 | d = Time_F(STOP1); |
| 1034 | print_result(D_SHA51223, j, count, d); |
| 1035 | } |
| 1036 | } |
| 1037 | #endif |
| 1038 | #endif |
| 1039 | |
| 1040 | #ifndef OPENSSL_NO_WHIRLPOOL |
| 1041 | if (doit[D_WHIRLPOOL24]) { |
| 1042 | for (j = 0; j < SIZE_NUM5; j++) { |
| 1043 | print_message(names[D_WHIRLPOOL24], c[D_WHIRLPOOL24][j], lengths[j]); |
| 1044 | Time_F(START0); |
| 1045 | for (count = 0, run = 1; COND(c[D_WHIRLPOOL][j])(run && count<0x7fffffff); count++) |
| 1046 | WHIRLPOOL(buf, lengths[j], whirlpool); |
| 1047 | d = Time_F(STOP1); |
| 1048 | print_result(D_WHIRLPOOL24, j, count, d); |
| 1049 | } |
| 1050 | } |
| 1051 | #endif |
| 1052 | |
| 1053 | #ifndef OPENSSL_NO_RIPEMD |
| 1054 | if (doit[D_RMD1605]) { |
| 1055 | for (j = 0; j < SIZE_NUM5; j++) { |
| 1056 | print_message(names[D_RMD1605], c[D_RMD1605][j], lengths[j]); |
| 1057 | Time_F(START0); |
| 1058 | for (count = 0, run = 1; COND(c[D_RMD160][j])(run && count<0x7fffffff); count++) |
| 1059 | EVP_Digest(buf, (unsigned long) lengths[j], &(rmd160[0]), NULL((void *)0), EVP_ripemd160(), NULL((void *)0)); |
| 1060 | d = Time_F(STOP1); |
| 1061 | print_result(D_RMD1605, j, count, d); |
| 1062 | } |
| 1063 | } |
| 1064 | #endif |
| 1065 | #ifndef OPENSSL_NO_RC4 |
| 1066 | if (doit[D_RC46]) { |
| 1067 | for (j = 0; j < SIZE_NUM5; j++) { |
| 1068 | print_message(names[D_RC46], c[D_RC46][j], lengths[j]); |
| 1069 | Time_F(START0); |
| 1070 | for (count = 0, run = 1; COND(c[D_RC4][j])(run && count<0x7fffffff); count++) |
| 1071 | RC4(&rc4_ks, (unsigned int) lengths[j], |
| 1072 | buf, buf); |
| 1073 | d = Time_F(STOP1); |
| 1074 | print_result(D_RC46, j, count, d); |
| 1075 | } |
| 1076 | } |
| 1077 | #endif |
| 1078 | #ifndef OPENSSL_NO_DES |
| 1079 | if (doit[D_CBC_DES7]) { |
| 1080 | for (j = 0; j < SIZE_NUM5; j++) { |
| 1081 | print_message(names[D_CBC_DES7], c[D_CBC_DES7][j], lengths[j]); |
| 1082 | Time_F(START0); |
| 1083 | for (count = 0, run = 1; COND(c[D_CBC_DES][j])(run && count<0x7fffffff); count++) |
| 1084 | DES_ncbc_encrypt(buf, buf, lengths[j], &sch, |
| 1085 | &DES_iv, DES_ENCRYPT1); |
| 1086 | d = Time_F(STOP1); |
| 1087 | print_result(D_CBC_DES7, j, count, d); |
| 1088 | } |
| 1089 | } |
| 1090 | if (doit[D_EDE3_DES8]) { |
| 1091 | for (j = 0; j < SIZE_NUM5; j++) { |
| 1092 | print_message(names[D_EDE3_DES8], c[D_EDE3_DES8][j], lengths[j]); |
| 1093 | Time_F(START0); |
| 1094 | for (count = 0, run = 1; COND(c[D_EDE3_DES][j])(run && count<0x7fffffff); count++) |
| 1095 | DES_ede3_cbc_encrypt(buf, buf, lengths[j], |
| 1096 | &sch, &sch2, &sch3, |
| 1097 | &DES_iv, DES_ENCRYPT1); |
| 1098 | d = Time_F(STOP1); |
| 1099 | print_result(D_EDE3_DES8, j, count, d); |
| 1100 | } |
| 1101 | } |
| 1102 | #endif |
| 1103 | #ifndef OPENSSL_NO_AES |
| 1104 | if (doit[D_CBC_128_AES15]) { |
| 1105 | for (j = 0; j < SIZE_NUM5; j++) { |
| 1106 | print_message(names[D_CBC_128_AES15], c[D_CBC_128_AES15][j], lengths[j]); |
| 1107 | Time_F(START0); |
| 1108 | for (count = 0, run = 1; COND(c[D_CBC_128_AES][j])(run && count<0x7fffffff); count++) |
| 1109 | AES_cbc_encrypt(buf, buf, |
| 1110 | (unsigned long) lengths[j], &aes_ks1, |
| 1111 | iv, AES_ENCRYPT1); |
| 1112 | d = Time_F(STOP1); |
| 1113 | print_result(D_CBC_128_AES15, j, count, d); |
| 1114 | } |
| 1115 | } |
| 1116 | if (doit[D_CBC_192_AES16]) { |
| 1117 | for (j = 0; j < SIZE_NUM5; j++) { |
| 1118 | print_message(names[D_CBC_192_AES16], c[D_CBC_192_AES16][j], lengths[j]); |
| 1119 | Time_F(START0); |
| 1120 | for (count = 0, run = 1; COND(c[D_CBC_192_AES][j])(run && count<0x7fffffff); count++) |
| 1121 | AES_cbc_encrypt(buf, buf, |
| 1122 | (unsigned long) lengths[j], &aes_ks2, |
| 1123 | iv, AES_ENCRYPT1); |
| 1124 | d = Time_F(STOP1); |
| 1125 | print_result(D_CBC_192_AES16, j, count, d); |
| 1126 | } |
| 1127 | } |
| 1128 | if (doit[D_CBC_256_AES17]) { |
| 1129 | for (j = 0; j < SIZE_NUM5; j++) { |
| 1130 | print_message(names[D_CBC_256_AES17], c[D_CBC_256_AES17][j], lengths[j]); |
| 1131 | Time_F(START0); |
| 1132 | for (count = 0, run = 1; COND(c[D_CBC_256_AES][j])(run && count<0x7fffffff); count++) |
| 1133 | AES_cbc_encrypt(buf, buf, |
| 1134 | (unsigned long) lengths[j], &aes_ks3, |
| 1135 | iv, AES_ENCRYPT1); |
| 1136 | d = Time_F(STOP1); |
| 1137 | print_result(D_CBC_256_AES17, j, count, d); |
| 1138 | } |
| 1139 | } |
| 1140 | if (doit[D_IGE_128_AES25]) { |
| 1141 | for (j = 0; j < SIZE_NUM5; j++) { |
| 1142 | print_message(names[D_IGE_128_AES25], c[D_IGE_128_AES25][j], lengths[j]); |
| 1143 | Time_F(START0); |
| 1144 | for (count = 0, run = 1; COND(c[D_IGE_128_AES][j])(run && count<0x7fffffff); count++) |
| 1145 | AES_ige_encrypt(buf, buf2, |
| 1146 | (unsigned long) lengths[j], &aes_ks1, |
| 1147 | iv, AES_ENCRYPT1); |
| 1148 | d = Time_F(STOP1); |
| 1149 | print_result(D_IGE_128_AES25, j, count, d); |
| 1150 | } |
| 1151 | } |
| 1152 | if (doit[D_IGE_192_AES26]) { |
| 1153 | for (j = 0; j < SIZE_NUM5; j++) { |
| 1154 | print_message(names[D_IGE_192_AES26], c[D_IGE_192_AES26][j], lengths[j]); |
| 1155 | Time_F(START0); |
| 1156 | for (count = 0, run = 1; COND(c[D_IGE_192_AES][j])(run && count<0x7fffffff); count++) |
| 1157 | AES_ige_encrypt(buf, buf2, |
| 1158 | (unsigned long) lengths[j], &aes_ks2, |
| 1159 | iv, AES_ENCRYPT1); |
| 1160 | d = Time_F(STOP1); |
| 1161 | print_result(D_IGE_192_AES26, j, count, d); |
| 1162 | } |
| 1163 | } |
| 1164 | if (doit[D_IGE_256_AES27]) { |
| 1165 | for (j = 0; j < SIZE_NUM5; j++) { |
| 1166 | print_message(names[D_IGE_256_AES27], c[D_IGE_256_AES27][j], lengths[j]); |
| 1167 | Time_F(START0); |
| 1168 | for (count = 0, run = 1; COND(c[D_IGE_256_AES][j])(run && count<0x7fffffff); count++) |
| 1169 | AES_ige_encrypt(buf, buf2, |
| 1170 | (unsigned long) lengths[j], &aes_ks3, |
| 1171 | iv, AES_ENCRYPT1); |
| 1172 | d = Time_F(STOP1); |
| 1173 | print_result(D_IGE_256_AES27, j, count, d); |
| 1174 | } |
| 1175 | } |
| 1176 | if (doit[D_GHASH28]) { |
| 1177 | GCM128_CONTEXT *ctx = CRYPTO_gcm128_new(&aes_ks1, (block128_f) AES_encrypt); |
| 1178 | CRYPTO_gcm128_setiv(ctx, (unsigned char *) "0123456789ab", 12); |
| 1179 | |
| 1180 | for (j = 0; j < SIZE_NUM5; j++) { |
| 1181 | print_message(names[D_GHASH28], c[D_GHASH28][j], lengths[j]); |
| 1182 | Time_F(START0); |
| 1183 | for (count = 0, run = 1; COND(c[D_GHASH][j])(run && count<0x7fffffff); count++) |
| 1184 | CRYPTO_gcm128_aad(ctx, buf, lengths[j]); |
| 1185 | d = Time_F(STOP1); |
| 1186 | print_result(D_GHASH28, j, count, d); |
| 1187 | } |
| 1188 | CRYPTO_gcm128_release(ctx); |
| 1189 | } |
| 1190 | if (doit[D_AES_128_GCM29]) { |
| 1191 | const EVP_AEAD *aead = EVP_aead_aes_128_gcm(); |
| 1192 | static const unsigned char nonce[32] = {0}; |
| 1193 | size_t buf_len, nonce_len; |
| 1194 | EVP_AEAD_CTX *ctx; |
| 1195 | |
| 1196 | if ((ctx = EVP_AEAD_CTX_new()) == NULL((void *)0)) { |
| 1197 | BIO_printf(bio_err, |
| 1198 | "Failed to allocate aead context.\n"); |
| 1199 | goto end; |
| 1200 | } |
| 1201 | |
| 1202 | EVP_AEAD_CTX_init(ctx, aead, key32, EVP_AEAD_key_length(aead), |
| 1203 | EVP_AEAD_DEFAULT_TAG_LENGTH0, NULL((void *)0)); |
| 1204 | nonce_len = EVP_AEAD_nonce_length(aead); |
| 1205 | |
| 1206 | for (j = 0; j < SIZE_NUM5; j++) { |
| 1207 | print_message(names[D_AES_128_GCM29],c[D_AES_128_GCM29][j],lengths[j]); |
| 1208 | Time_F(START0); |
| 1209 | for (count = 0, run = 1; COND(c[D_AES_128_GCM][j])(run && count<0x7fffffff); count++) |
| 1210 | EVP_AEAD_CTX_seal(ctx, buf, &buf_len, BUFSIZE(1024*8+64), nonce, |
| 1211 | nonce_len, buf, lengths[j], NULL((void *)0), 0); |
| 1212 | d=Time_F(STOP1); |
| 1213 | print_result(D_AES_128_GCM29,j,count,d); |
| 1214 | } |
| 1215 | EVP_AEAD_CTX_free(ctx); |
| 1216 | } |
| 1217 | |
| 1218 | if (doit[D_AES_256_GCM30]) { |
| 1219 | const EVP_AEAD *aead = EVP_aead_aes_256_gcm(); |
| 1220 | static const unsigned char nonce[32] = {0}; |
| 1221 | size_t buf_len, nonce_len; |
| 1222 | EVP_AEAD_CTX *ctx; |
| 1223 | |
| 1224 | if ((ctx = EVP_AEAD_CTX_new()) == NULL((void *)0)) { |
| 1225 | BIO_printf(bio_err, |
| 1226 | "Failed to allocate aead context.\n"); |
| 1227 | goto end; |
| 1228 | } |
| 1229 | |
| 1230 | EVP_AEAD_CTX_init(ctx, aead, key32, EVP_AEAD_key_length(aead), |
| 1231 | EVP_AEAD_DEFAULT_TAG_LENGTH0, NULL((void *)0)); |
| 1232 | nonce_len = EVP_AEAD_nonce_length(aead); |
| 1233 | |
| 1234 | for (j = 0; j < SIZE_NUM5; j++) { |
| 1235 | print_message(names[D_AES_256_GCM30],c[D_AES_256_GCM30][j],lengths[j]); |
| 1236 | Time_F(START0); |
| 1237 | for (count = 0, run = 1; COND(c[D_AES_256_GCM][j])(run && count<0x7fffffff); count++) |
| 1238 | EVP_AEAD_CTX_seal(ctx, buf, &buf_len, BUFSIZE(1024*8+64), nonce, |
| 1239 | nonce_len, buf, lengths[j], NULL((void *)0), 0); |
| 1240 | d=Time_F(STOP1); |
| 1241 | print_result(D_AES_256_GCM30, j, count, d); |
| 1242 | } |
| 1243 | EVP_AEAD_CTX_free(ctx); |
| 1244 | } |
| 1245 | #endif |
| 1246 | #if !defined(OPENSSL_NO_CHACHA) && !defined(OPENSSL_NO_POLY1305) |
| 1247 | if (doit[D_CHACHA20_POLY130531]) { |
| 1248 | const EVP_AEAD *aead = EVP_aead_chacha20_poly1305(); |
| 1249 | static const unsigned char nonce[32] = {0}; |
| 1250 | size_t buf_len, nonce_len; |
| 1251 | EVP_AEAD_CTX *ctx; |
| 1252 | |
| 1253 | if ((ctx = EVP_AEAD_CTX_new()) == NULL((void *)0)) { |
| 1254 | BIO_printf(bio_err, |
| 1255 | "Failed to allocate aead context.\n"); |
| 1256 | goto end; |
| 1257 | } |
| 1258 | |
| 1259 | EVP_AEAD_CTX_init(ctx, aead, key32, EVP_AEAD_key_length(aead), |
| 1260 | EVP_AEAD_DEFAULT_TAG_LENGTH0, NULL((void *)0)); |
| 1261 | nonce_len = EVP_AEAD_nonce_length(aead); |
| 1262 | |
| 1263 | for (j = 0; j < SIZE_NUM5; j++) { |
| 1264 | print_message(names[D_CHACHA20_POLY130531], |
| 1265 | c[D_CHACHA20_POLY130531][j], lengths[j]); |
| 1266 | Time_F(START0); |
| 1267 | for (count = 0, run = 1; COND(c[D_CHACHA20_POLY1305][j])(run && count<0x7fffffff); count++) |
| 1268 | EVP_AEAD_CTX_seal(ctx, buf, &buf_len, BUFSIZE(1024*8+64), nonce, |
| 1269 | nonce_len, buf, lengths[j], NULL((void *)0), 0); |
| 1270 | d=Time_F(STOP1); |
| 1271 | print_result(D_CHACHA20_POLY130531, j, count, d); |
| 1272 | } |
| 1273 | EVP_AEAD_CTX_free(ctx); |
| 1274 | } |
| 1275 | #endif |
| 1276 | #ifndef OPENSSL_NO_CAMELLIA |
| 1277 | if (doit[D_CBC_128_CML18]) { |
| 1278 | for (j = 0; j < SIZE_NUM5; j++) { |
| 1279 | print_message(names[D_CBC_128_CML18], c[D_CBC_128_CML18][j], lengths[j]); |
| 1280 | Time_F(START0); |
| 1281 | for (count = 0, run = 1; COND(c[D_CBC_128_CML][j])(run && count<0x7fffffff); count++) |
| 1282 | Camellia_cbc_encrypt(buf, buf, |
| 1283 | (unsigned long) lengths[j], &camellia_ks1, |
| 1284 | iv, CAMELLIA_ENCRYPT1); |
| 1285 | d = Time_F(STOP1); |
| 1286 | print_result(D_CBC_128_CML18, j, count, d); |
| 1287 | } |
| 1288 | } |
| 1289 | if (doit[D_CBC_192_CML19]) { |
| 1290 | for (j = 0; j < SIZE_NUM5; j++) { |
| 1291 | print_message(names[D_CBC_192_CML19], c[D_CBC_192_CML19][j], lengths[j]); |
| 1292 | Time_F(START0); |
| 1293 | for (count = 0, run = 1; COND(c[D_CBC_192_CML][j])(run && count<0x7fffffff); count++) |
| 1294 | Camellia_cbc_encrypt(buf, buf, |
| 1295 | (unsigned long) lengths[j], &camellia_ks2, |
| 1296 | iv, CAMELLIA_ENCRYPT1); |
| 1297 | d = Time_F(STOP1); |
| 1298 | print_result(D_CBC_192_CML19, j, count, d); |
| 1299 | } |
| 1300 | } |
| 1301 | if (doit[D_CBC_256_CML20]) { |
| 1302 | for (j = 0; j < SIZE_NUM5; j++) { |
| 1303 | print_message(names[D_CBC_256_CML20], c[D_CBC_256_CML20][j], lengths[j]); |
| 1304 | Time_F(START0); |
| 1305 | for (count = 0, run = 1; COND(c[D_CBC_256_CML][j])(run && count<0x7fffffff); count++) |
| 1306 | Camellia_cbc_encrypt(buf, buf, |
| 1307 | (unsigned long) lengths[j], &camellia_ks3, |
| 1308 | iv, CAMELLIA_ENCRYPT1); |
| 1309 | d = Time_F(STOP1); |
| 1310 | print_result(D_CBC_256_CML20, j, count, d); |
| 1311 | } |
| 1312 | } |
| 1313 | #endif |
| 1314 | #ifndef OPENSSL_NO_IDEA |
| 1315 | if (doit[D_CBC_IDEA9]) { |
| 1316 | for (j = 0; j < SIZE_NUM5; j++) { |
| 1317 | print_message(names[D_CBC_IDEA9], c[D_CBC_IDEA9][j], lengths[j]); |
| 1318 | Time_F(START0); |
| 1319 | for (count = 0, run = 1; COND(c[D_CBC_IDEA][j])(run && count<0x7fffffff); count++) |
| 1320 | idea_cbc_encrypt(buf, buf, |
| 1321 | (unsigned long) lengths[j], &idea_ks, |
| 1322 | iv, IDEA_ENCRYPT1); |
| 1323 | d = Time_F(STOP1); |
| 1324 | print_result(D_CBC_IDEA9, j, count, d); |
| 1325 | } |
| 1326 | } |
| 1327 | #endif |
| 1328 | #ifndef OPENSSL_NO_RC2 |
| 1329 | if (doit[D_CBC_RC211]) { |
| 1330 | for (j = 0; j < SIZE_NUM5; j++) { |
| 1331 | print_message(names[D_CBC_RC211], c[D_CBC_RC211][j], lengths[j]); |
| 1332 | Time_F(START0); |
| 1333 | for (count = 0, run = 1; COND(c[D_CBC_RC2][j])(run && count<0x7fffffff); count++) |
| 1334 | RC2_cbc_encrypt(buf, buf, |
| 1335 | (unsigned long) lengths[j], &rc2_ks, |
| 1336 | iv, RC2_ENCRYPT1); |
| 1337 | d = Time_F(STOP1); |
| 1338 | print_result(D_CBC_RC211, j, count, d); |
| 1339 | } |
| 1340 | } |
| 1341 | #endif |
| 1342 | #ifndef OPENSSL_NO_BF |
| 1343 | if (doit[D_CBC_BF13]) { |
| 1344 | for (j = 0; j < SIZE_NUM5; j++) { |
| 1345 | print_message(names[D_CBC_BF13], c[D_CBC_BF13][j], lengths[j]); |
| 1346 | Time_F(START0); |
| 1347 | for (count = 0, run = 1; COND(c[D_CBC_BF][j])(run && count<0x7fffffff); count++) |
| 1348 | BF_cbc_encrypt(buf, buf, |
| 1349 | (unsigned long) lengths[j], &bf_ks, |
| 1350 | iv, BF_ENCRYPT1); |
| 1351 | d = Time_F(STOP1); |
| 1352 | print_result(D_CBC_BF13, j, count, d); |
| 1353 | } |
| 1354 | } |
| 1355 | #endif |
| 1356 | #ifndef OPENSSL_NO_CAST |
| 1357 | if (doit[D_CBC_CAST14]) { |
| 1358 | for (j = 0; j < SIZE_NUM5; j++) { |
| 1359 | print_message(names[D_CBC_CAST14], c[D_CBC_CAST14][j], lengths[j]); |
| 1360 | Time_F(START0); |
| 1361 | for (count = 0, run = 1; COND(c[D_CBC_CAST][j])(run && count<0x7fffffff); count++) |
| 1362 | CAST_cbc_encrypt(buf, buf, |
| 1363 | (unsigned long) lengths[j], &cast_ks, |
| 1364 | iv, CAST_ENCRYPT1); |
| 1365 | d = Time_F(STOP1); |
| 1366 | print_result(D_CBC_CAST14, j, count, d); |
| 1367 | } |
| 1368 | } |
| 1369 | #endif |
| 1370 | |
| 1371 | if (doit[D_EVP21]) { |
| 1372 | for (j = 0; j < SIZE_NUM5; j++) { |
| 1373 | if (evp_cipher) { |
| 1374 | EVP_CIPHER_CTX *ctx; |
| 1375 | int outl; |
| 1376 | |
| 1377 | names[D_EVP21] = |
| 1378 | OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher)); |
| 1379 | /* |
| 1380 | * -O3 -fschedule-insns messes up an |
| 1381 | * optimization here! names[D_EVP] somehow |
| 1382 | * becomes NULL |
| 1383 | */ |
| 1384 | print_message(names[D_EVP21], save_count, |
| 1385 | lengths[j]); |
| 1386 | |
| 1387 | if ((ctx = EVP_CIPHER_CTX_new()) == NULL((void *)0)) { |
| 1388 | BIO_printf(bio_err, "Failed to " |
| 1389 | "allocate cipher context.\n"); |
| 1390 | goto end; |
| 1391 | } |
| 1392 | if (decrypt) |
| 1393 | EVP_DecryptInit_ex(ctx, evp_cipher, NULL((void *)0), key16, iv); |
| 1394 | else |
| 1395 | EVP_EncryptInit_ex(ctx, evp_cipher, NULL((void *)0), key16, iv); |
| 1396 | EVP_CIPHER_CTX_set_padding(ctx, 0); |
| 1397 | |
| 1398 | Time_F(START0); |
| 1399 | if (decrypt) |
| 1400 | for (count = 0, run = 1; COND(save_count * 4 * lengths[0] / lengths[j])(run && count<0x7fffffff); count++) |
| 1401 | EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[j]); |
| 1402 | else |
| 1403 | for (count = 0, run = 1; COND(save_count * 4 * lengths[0] / lengths[j])(run && count<0x7fffffff); count++) |
| 1404 | EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[j]); |
| 1405 | if (decrypt) |
| 1406 | EVP_DecryptFinal_ex(ctx, buf, &outl); |
| 1407 | else |
| 1408 | EVP_EncryptFinal_ex(ctx, buf, &outl); |
| 1409 | d = Time_F(STOP1); |
| 1410 | EVP_CIPHER_CTX_free(ctx); |
| 1411 | } |
| 1412 | if (evp_md) { |
| 1413 | names[D_EVP21] = OBJ_nid2ln(EVP_MD_type(evp_md)); |
| 1414 | print_message(names[D_EVP21], save_count, |
| 1415 | lengths[j]); |
| 1416 | |
| 1417 | Time_F(START0); |
| 1418 | for (count = 0, run = 1; COND(save_count * 4 * lengths[0] / lengths[j])(run && count<0x7fffffff); count++) |
| 1419 | EVP_Digest(buf, lengths[j], &(md[0]), NULL((void *)0), evp_md, NULL((void *)0)); |
| 1420 | |
| 1421 | d = Time_F(STOP1); |
| 1422 | } |
| 1423 | print_result(D_EVP21, j, count, d); |
| 1424 | } |
| 1425 | } |
| 1426 | arc4random_buf(buf, 36); |
| 1427 | for (j = 0; j < RSA_NUM4; j++) { |
| 1428 | int ret; |
| 1429 | if (!rsa_doit[j]) |
| 1430 | continue; |
| 1431 | ret = RSA_sign(NID_md5_sha1114, buf, 36, buf2, &rsa_num, rsa_key[j]); |
| 1432 | if (ret == 0) { |
| 1433 | BIO_printf(bio_err, "RSA sign failure. No RSA sign will be done.\n"); |
| 1434 | ERR_print_errors(bio_err); |
| 1435 | rsa_count = 1; |
| 1436 | } else { |
| 1437 | pkey_print_message("private", "rsa", |
| 1438 | rsa_c[j][0], rsa_bits[j], |
| 1439 | RSA_SECONDS10); |
| 1440 | /* RSA_blinding_on(rsa_key[j],NULL); */ |
| 1441 | Time_F(START0); |
| 1442 | for (count = 0, run = 1; COND(rsa_c[j][0])(run && count<0x7fffffff); count++) { |
| 1443 | ret = RSA_sign(NID_md5_sha1114, buf, 36, buf2, |
| 1444 | &rsa_num, rsa_key[j]); |
| 1445 | if (ret == 0) { |
| 1446 | BIO_printf(bio_err, |
| 1447 | "RSA sign failure\n"); |
| 1448 | ERR_print_errors(bio_err); |
| 1449 | count = 1; |
| 1450 | break; |
| 1451 | } |
| 1452 | } |
| 1453 | d = Time_F(STOP1); |
| 1454 | BIO_printf(bio_err, mr ? "+R1:%ld:%d:%.2f\n" |
| 1455 | : "%ld %d bit private RSA in %.2fs\n", |
| 1456 | count, rsa_bits[j], d); |
| 1457 | rsa_results[j][0] = d / (double) count; |
| 1458 | rsa_count = count; |
| 1459 | } |
| 1460 | |
| 1461 | ret = RSA_verify(NID_md5_sha1114, buf, 36, buf2, rsa_num, rsa_key[j]); |
| 1462 | if (ret <= 0) { |
| 1463 | BIO_printf(bio_err, "RSA verify failure. No RSA verify will be done.\n"); |
| 1464 | ERR_print_errors(bio_err); |
| 1465 | rsa_doit[j] = 0; |
| 1466 | } else { |
| 1467 | pkey_print_message("public", "rsa", |
| 1468 | rsa_c[j][1], rsa_bits[j], |
| 1469 | RSA_SECONDS10); |
| 1470 | Time_F(START0); |
| 1471 | for (count = 0, run = 1; COND(rsa_c[j][1])(run && count<0x7fffffff); count++) { |
| 1472 | ret = RSA_verify(NID_md5_sha1114, buf, 36, buf2, |
| 1473 | rsa_num, rsa_key[j]); |
| 1474 | if (ret <= 0) { |
| 1475 | BIO_printf(bio_err, |
| 1476 | "RSA verify failure\n"); |
| 1477 | ERR_print_errors(bio_err); |
| 1478 | count = 1; |
| 1479 | break; |
| 1480 | } |
| 1481 | } |
| 1482 | d = Time_F(STOP1); |
| 1483 | BIO_printf(bio_err, mr ? "+R2:%ld:%d:%.2f\n" |
| 1484 | : "%ld %d bit public RSA in %.2fs\n", |
| 1485 | count, rsa_bits[j], d); |
| 1486 | rsa_results[j][1] = d / (double) count; |
| 1487 | } |
| 1488 | |
| 1489 | if (rsa_count <= 1) { |
| 1490 | /* if longer than 10s, don't do any more */ |
| 1491 | for (j++; j < RSA_NUM4; j++) |
| 1492 | rsa_doit[j] = 0; |
| 1493 | } |
| 1494 | } |
| 1495 | |
| 1496 | arc4random_buf(buf, 20); |
| 1497 | for (j = 0; j < DSA_NUM3; j++) { |
| 1498 | unsigned int kk; |
| 1499 | int ret; |
| 1500 | |
| 1501 | if (!dsa_doit[j]) |
| 1502 | continue; |
| 1503 | /* DSA_generate_key(dsa_key[j]); */ |
| 1504 | /* DSA_sign_setup(dsa_key[j],NULL); */ |
| 1505 | ret = DSA_sign(EVP_PKEY_DSA116, buf, 20, buf2, |
| 1506 | &kk, dsa_key[j]); |
| 1507 | if (ret == 0) { |
| 1508 | BIO_printf(bio_err, "DSA sign failure. No DSA sign will be done.\n"); |
| 1509 | ERR_print_errors(bio_err); |
| 1510 | rsa_count = 1; |
| 1511 | } else { |
| 1512 | pkey_print_message("sign", "dsa", |
| 1513 | dsa_c[j][0], dsa_bits[j], |
| 1514 | DSA_SECONDS10); |
| 1515 | Time_F(START0); |
| 1516 | for (count = 0, run = 1; COND(dsa_c[j][0])(run && count<0x7fffffff); count++) { |
| 1517 | ret = DSA_sign(EVP_PKEY_DSA116, buf, 20, buf2, |
| 1518 | &kk, dsa_key[j]); |
| 1519 | if (ret == 0) { |
| 1520 | BIO_printf(bio_err, |
| 1521 | "DSA sign failure\n"); |
| 1522 | ERR_print_errors(bio_err); |
| 1523 | count = 1; |
| 1524 | break; |
| 1525 | } |
| 1526 | } |
| 1527 | d = Time_F(STOP1); |
| 1528 | BIO_printf(bio_err, mr ? "+R3:%ld:%d:%.2f\n" |
| 1529 | : "%ld %d bit DSA signs in %.2fs\n", |
| 1530 | count, dsa_bits[j], d); |
| 1531 | dsa_results[j][0] = d / (double) count; |
| 1532 | rsa_count = count; |
| 1533 | } |
| 1534 | |
| 1535 | ret = DSA_verify(EVP_PKEY_DSA116, buf, 20, buf2, |
| 1536 | kk, dsa_key[j]); |
| 1537 | if (ret <= 0) { |
| 1538 | BIO_printf(bio_err, "DSA verify failure. No DSA verify will be done.\n"); |
| 1539 | ERR_print_errors(bio_err); |
| 1540 | dsa_doit[j] = 0; |
| 1541 | } else { |
| 1542 | pkey_print_message("verify", "dsa", |
| 1543 | dsa_c[j][1], dsa_bits[j], |
| 1544 | DSA_SECONDS10); |
| 1545 | Time_F(START0); |
| 1546 | for (count = 0, run = 1; COND(dsa_c[j][1])(run && count<0x7fffffff); count++) { |
| 1547 | ret = DSA_verify(EVP_PKEY_DSA116, buf, 20, buf2, |
| 1548 | kk, dsa_key[j]); |
| 1549 | if (ret <= 0) { |
| 1550 | BIO_printf(bio_err, |
| 1551 | "DSA verify failure\n"); |
| 1552 | ERR_print_errors(bio_err); |
| 1553 | count = 1; |
| 1554 | break; |
| 1555 | } |
| 1556 | } |
| 1557 | d = Time_F(STOP1); |
| 1558 | BIO_printf(bio_err, mr ? "+R4:%ld:%d:%.2f\n" |
| 1559 | : "%ld %d bit DSA verify in %.2fs\n", |
| 1560 | count, dsa_bits[j], d); |
| 1561 | dsa_results[j][1] = d / (double) count; |
| 1562 | } |
| 1563 | |
| 1564 | if (rsa_count <= 1) { |
| 1565 | /* if longer than 10s, don't do any more */ |
| 1566 | for (j++; j < DSA_NUM3; j++) |
| 1567 | dsa_doit[j] = 0; |
| 1568 | } |
| 1569 | } |
| 1570 | |
| 1571 | for (j = 0; j < EC_NUM6; j++) { |
| 1572 | int ret; |
| 1573 | |
| 1574 | if (!ecdsa_doit[j]) |
| 1575 | continue; /* Ignore Curve */ |
| 1576 | ecdsa[j] = EC_KEY_new_by_curve_name(test_curves[j]); |
| 1577 | if (ecdsa[j] == NULL((void *)0)) { |
| 1578 | BIO_printf(bio_err, "ECDSA failure.\n"); |
| 1579 | ERR_print_errors(bio_err); |
| 1580 | rsa_count = 1; |
Value stored to 'rsa_count' is never read | |
| 1581 | } else { |
| 1582 | EC_KEY_precompute_mult(ecdsa[j], NULL((void *)0)); |
| 1583 | |
| 1584 | /* Perform ECDSA signature test */ |
| 1585 | EC_KEY_generate_key(ecdsa[j]); |
| 1586 | ret = ECDSA_sign(0, buf, 20, ecdsasig, |
| 1587 | &ecdsasiglen, ecdsa[j]); |
| 1588 | if (ret == 0) { |
| 1589 | BIO_printf(bio_err, "ECDSA sign failure. No ECDSA sign will be done.\n"); |
| 1590 | ERR_print_errors(bio_err); |
| 1591 | rsa_count = 1; |
| 1592 | } else { |
| 1593 | pkey_print_message("sign", "ecdsa", |
| 1594 | ecdsa_c[j][0], |
| 1595 | test_curves_bits[j], |
| 1596 | ECDSA_SECONDS10); |
| 1597 | |
| 1598 | Time_F(START0); |
| 1599 | for (count = 0, run = 1; COND(ecdsa_c[j][0])(run && count<0x7fffffff); |
| 1600 | count++) { |
| 1601 | ret = ECDSA_sign(0, buf, 20, |
| 1602 | ecdsasig, &ecdsasiglen, |
| 1603 | ecdsa[j]); |
| 1604 | if (ret == 0) { |
| 1605 | BIO_printf(bio_err, "ECDSA sign failure\n"); |
| 1606 | ERR_print_errors(bio_err); |
| 1607 | count = 1; |
| 1608 | break; |
| 1609 | } |
| 1610 | } |
| 1611 | d = Time_F(STOP1); |
| 1612 | |
| 1613 | BIO_printf(bio_err, mr ? "+R5:%ld:%d:%.2f\n" : |
| 1614 | "%ld %d bit ECDSA signs in %.2fs \n", |
| 1615 | count, test_curves_bits[j], d); |
| 1616 | ecdsa_results[j][0] = d / (double) count; |
| 1617 | rsa_count = count; |
| 1618 | } |
| 1619 | |
| 1620 | /* Perform ECDSA verification test */ |
| 1621 | ret = ECDSA_verify(0, buf, 20, ecdsasig, |
| 1622 | ecdsasiglen, ecdsa[j]); |
| 1623 | if (ret != 1) { |
| 1624 | BIO_printf(bio_err, "ECDSA verify failure. No ECDSA verify will be done.\n"); |
| 1625 | ERR_print_errors(bio_err); |
| 1626 | ecdsa_doit[j] = 0; |
| 1627 | } else { |
| 1628 | pkey_print_message("verify", "ecdsa", |
| 1629 | ecdsa_c[j][1], |
| 1630 | test_curves_bits[j], |
| 1631 | ECDSA_SECONDS10); |
| 1632 | Time_F(START0); |
| 1633 | for (count = 0, run = 1; COND(ecdsa_c[j][1])(run && count<0x7fffffff); count++) { |
| 1634 | ret = ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[j]); |
| 1635 | if (ret != 1) { |
| 1636 | BIO_printf(bio_err, "ECDSA verify failure\n"); |
| 1637 | ERR_print_errors(bio_err); |
| 1638 | count = 1; |
| 1639 | break; |
| 1640 | } |
| 1641 | } |
| 1642 | d = Time_F(STOP1); |
| 1643 | BIO_printf(bio_err, mr ? "+R6:%ld:%d:%.2f\n" |
| 1644 | : "%ld %d bit ECDSA verify in %.2fs\n", |
| 1645 | count, test_curves_bits[j], d); |
| 1646 | ecdsa_results[j][1] = d / (double) count; |
| 1647 | } |
| 1648 | |
| 1649 | if (rsa_count <= 1) { |
| 1650 | /* if longer than 10s, don't do any more */ |
| 1651 | for (j++; j < EC_NUM6; j++) |
| 1652 | ecdsa_doit[j] = 0; |
| 1653 | } |
| 1654 | } |
| 1655 | } |
| 1656 | |
| 1657 | for (j = 0; j < EC_NUM6; j++) { |
| 1658 | if (!ecdh_doit[j]) |
| 1659 | continue; |
| 1660 | ecdh_a[j] = EC_KEY_new_by_curve_name(test_curves[j]); |
| 1661 | ecdh_b[j] = EC_KEY_new_by_curve_name(test_curves[j]); |
| 1662 | if ((ecdh_a[j] == NULL((void *)0)) || (ecdh_b[j] == NULL((void *)0))) { |
| 1663 | BIO_printf(bio_err, "ECDH failure.\n"); |
| 1664 | ERR_print_errors(bio_err); |
| 1665 | rsa_count = 1; |
| 1666 | } else { |
| 1667 | /* generate two ECDH key pairs */ |
| 1668 | if (!EC_KEY_generate_key(ecdh_a[j]) || |
| 1669 | !EC_KEY_generate_key(ecdh_b[j])) { |
| 1670 | BIO_printf(bio_err, "ECDH key generation failure.\n"); |
| 1671 | ERR_print_errors(bio_err); |
| 1672 | rsa_count = 1; |
| 1673 | } else { |
| 1674 | /* |
| 1675 | * If field size is not more than 24 octets, |
| 1676 | * then use SHA-1 hash of result; otherwise, |
| 1677 | * use result (see section 4.8 of |
| 1678 | * draft-ietf-tls-ecc-03.txt). |
| 1679 | */ |
| 1680 | int field_size, outlen; |
| 1681 | void *(*kdf) (const void *in, size_t inlen, void *out, size_t * xoutlen); |
| 1682 | field_size = EC_GROUP_get_degree(EC_KEY_get0_group(ecdh_a[j])); |
| 1683 | if (field_size <= 24 * 8) { |
| 1684 | outlen = KDF1_SHA1_len; |
| 1685 | kdf = KDF1_SHA1; |
| 1686 | } else { |
| 1687 | outlen = (field_size + 7) / 8; |
| 1688 | kdf = NULL((void *)0); |
| 1689 | } |
| 1690 | secret_size_a = ECDH_compute_key(secret_a, outlen, |
| 1691 | EC_KEY_get0_public_key(ecdh_b[j]), |
| 1692 | ecdh_a[j], kdf); |
| 1693 | secret_size_b = ECDH_compute_key(secret_b, outlen, |
| 1694 | EC_KEY_get0_public_key(ecdh_a[j]), |
| 1695 | ecdh_b[j], kdf); |
| 1696 | if (secret_size_a != secret_size_b) |
| 1697 | ecdh_checks = 0; |
| 1698 | else |
| 1699 | ecdh_checks = 1; |
| 1700 | |
| 1701 | for (secret_idx = 0; |
| 1702 | (secret_idx < secret_size_a) |
| 1703 | && (ecdh_checks == 1); |
| 1704 | secret_idx++) { |
| 1705 | if (secret_a[secret_idx] != secret_b[secret_idx]) |
| 1706 | ecdh_checks = 0; |
| 1707 | } |
| 1708 | |
| 1709 | if (ecdh_checks == 0) { |
| 1710 | BIO_printf(bio_err, |
| 1711 | "ECDH computations don't match.\n"); |
| 1712 | ERR_print_errors(bio_err); |
| 1713 | rsa_count = 1; |
| 1714 | } else { |
| 1715 | pkey_print_message("", "ecdh", |
| 1716 | ecdh_c[j][0], |
| 1717 | test_curves_bits[j], |
| 1718 | ECDH_SECONDS10); |
| 1719 | Time_F(START0); |
| 1720 | for (count = 0, run = 1; |
| 1721 | COND(ecdh_c[j][0])(run && count<0x7fffffff); count++) { |
| 1722 | ECDH_compute_key(secret_a, |
| 1723 | outlen, |
| 1724 | EC_KEY_get0_public_key(ecdh_b[j]), |
| 1725 | ecdh_a[j], kdf); |
| 1726 | } |
| 1727 | d = Time_F(STOP1); |
| 1728 | BIO_printf(bio_err, mr |
| 1729 | ? "+R7:%ld:%d:%.2f\n" |
| 1730 | : "%ld %d-bit ECDH ops in %.2fs\n", |
| 1731 | count, test_curves_bits[j], d); |
| 1732 | ecdh_results[j][0] = d / (double) count; |
| 1733 | rsa_count = count; |
| 1734 | } |
| 1735 | } |
| 1736 | } |
| 1737 | |
| 1738 | |
| 1739 | if (rsa_count <= 1) { |
| 1740 | /* if longer than 10s, don't do any more */ |
| 1741 | for (j++; j < EC_NUM6; j++) |
| 1742 | ecdh_doit[j] = 0; |
| 1743 | } |
| 1744 | } |
| 1745 | show_res: |
| 1746 | if (!mr) { |
| 1747 | fprintf(stdout(&__sF[1]), "%s\n", SSLeay_version(SSLEAY_VERSION0)); |
| 1748 | fprintf(stdout(&__sF[1]), "%s\n", SSLeay_version(SSLEAY_BUILT_ON3)); |
| 1749 | fprintf(stdout(&__sF[1]), "%s\n", SSLeay_version(SSLEAY_CFLAGS2)); |
| 1750 | } |
| 1751 | if (pr_header) { |
| 1752 | if (mr) |
| 1753 | fprintf(stdout(&__sF[1]), "+H"); |
| 1754 | else { |
| 1755 | fprintf(stdout(&__sF[1]), "The 'numbers' are in 1000s of bytes per second processed.\n"); |
| 1756 | fprintf(stdout(&__sF[1]), "type "); |
| 1757 | } |
| 1758 | for (j = 0; j < SIZE_NUM5; j++) |
| 1759 | fprintf(stdout(&__sF[1]), mr ? ":%d" : "%7d bytes", lengths[j]); |
| 1760 | fprintf(stdout(&__sF[1]), "\n"); |
| 1761 | } |
| 1762 | for (k = 0; k < ALGOR_NUM32; k++) { |
| 1763 | if (!doit[k]) |
| 1764 | continue; |
| 1765 | if (mr) |
| 1766 | fprintf(stdout(&__sF[1]), "+F:%d:%s", k, names[k]); |
| 1767 | else |
| 1768 | fprintf(stdout(&__sF[1]), "%-13s", names[k]); |
| 1769 | for (j = 0; j < SIZE_NUM5; j++) { |
| 1770 | if (results[k][j] > 10000 && !mr) |
| 1771 | fprintf(stdout(&__sF[1]), " %11.2fk", results[k][j] / 1e3); |
| 1772 | else |
| 1773 | fprintf(stdout(&__sF[1]), mr ? ":%.2f" : " %11.2f ", results[k][j]); |
| 1774 | } |
| 1775 | fprintf(stdout(&__sF[1]), "\n"); |
| 1776 | } |
| 1777 | j = 1; |
| 1778 | for (k = 0; k < RSA_NUM4; k++) { |
| 1779 | if (!rsa_doit[k]) |
| 1780 | continue; |
| 1781 | if (j && !mr) { |
| 1782 | printf("%18ssign verify sign/s verify/s\n", " "); |
| 1783 | j = 0; |
| 1784 | } |
| 1785 | if (mr) |
| 1786 | fprintf(stdout(&__sF[1]), "+F2:%u:%u:%f:%f\n", |
| 1787 | k, rsa_bits[k], rsa_results[k][0], |
| 1788 | rsa_results[k][1]); |
| 1789 | else |
| 1790 | fprintf(stdout(&__sF[1]), "rsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n", |
| 1791 | rsa_bits[k], rsa_results[k][0], rsa_results[k][1], |
| 1792 | 1.0 / rsa_results[k][0], 1.0 / rsa_results[k][1]); |
| 1793 | } |
| 1794 | j = 1; |
| 1795 | for (k = 0; k < DSA_NUM3; k++) { |
| 1796 | if (!dsa_doit[k]) |
| 1797 | continue; |
| 1798 | if (j && !mr) { |
| 1799 | printf("%18ssign verify sign/s verify/s\n", " "); |
| 1800 | j = 0; |
| 1801 | } |
| 1802 | if (mr) |
| 1803 | fprintf(stdout(&__sF[1]), "+F3:%u:%u:%f:%f\n", |
| 1804 | k, dsa_bits[k], dsa_results[k][0], dsa_results[k][1]); |
| 1805 | else |
| 1806 | fprintf(stdout(&__sF[1]), "dsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n", |
| 1807 | dsa_bits[k], dsa_results[k][0], dsa_results[k][1], |
| 1808 | 1.0 / dsa_results[k][0], 1.0 / dsa_results[k][1]); |
| 1809 | } |
| 1810 | j = 1; |
| 1811 | for (k = 0; k < EC_NUM6; k++) { |
| 1812 | if (!ecdsa_doit[k]) |
| 1813 | continue; |
| 1814 | if (j && !mr) { |
| 1815 | printf("%30ssign verify sign/s verify/s\n", " "); |
| 1816 | j = 0; |
| 1817 | } |
| 1818 | if (mr) |
| 1819 | fprintf(stdout(&__sF[1]), "+F4:%u:%u:%f:%f\n", |
| 1820 | k, test_curves_bits[k], |
| 1821 | ecdsa_results[k][0], ecdsa_results[k][1]); |
| 1822 | else |
| 1823 | fprintf(stdout(&__sF[1]), |
| 1824 | "%4u bit ecdsa (%s) %8.4fs %8.4fs %8.1f %8.1f\n", |
| 1825 | test_curves_bits[k], |
| 1826 | test_curves_names[k], |
| 1827 | ecdsa_results[k][0], ecdsa_results[k][1], |
| 1828 | 1.0 / ecdsa_results[k][0], 1.0 / ecdsa_results[k][1]); |
| 1829 | } |
| 1830 | |
| 1831 | |
| 1832 | j = 1; |
| 1833 | for (k = 0; k < EC_NUM6; k++) { |
| 1834 | if (!ecdh_doit[k]) |
| 1835 | continue; |
| 1836 | if (j && !mr) { |
| 1837 | printf("%30sop op/s\n", " "); |
| 1838 | j = 0; |
| 1839 | } |
| 1840 | if (mr) |
| 1841 | fprintf(stdout(&__sF[1]), "+F5:%u:%u:%f:%f\n", |
| 1842 | k, test_curves_bits[k], |
| 1843 | ecdh_results[k][0], 1.0 / ecdh_results[k][0]); |
| 1844 | |
| 1845 | else |
| 1846 | fprintf(stdout(&__sF[1]), "%4u bit ecdh (%s) %8.4fs %8.1f\n", |
| 1847 | test_curves_bits[k], |
| 1848 | test_curves_names[k], |
| 1849 | ecdh_results[k][0], 1.0 / ecdh_results[k][0]); |
| 1850 | } |
| 1851 | |
| 1852 | mret = 0; |
| 1853 | |
| 1854 | end: |
| 1855 | ERR_print_errors(bio_err); |
| 1856 | free(real_buf); |
| 1857 | free(real_buf2); |
| 1858 | for (i = 0; i < RSA_NUM4; i++) |
| 1859 | if (rsa_key[i] != NULL((void *)0)) |
| 1860 | RSA_free(rsa_key[i]); |
| 1861 | for (i = 0; i < DSA_NUM3; i++) |
| 1862 | if (dsa_key[i] != NULL((void *)0)) |
| 1863 | DSA_free(dsa_key[i]); |
| 1864 | |
| 1865 | for (i = 0; i < EC_NUM6; i++) |
| 1866 | if (ecdsa[i] != NULL((void *)0)) |
| 1867 | EC_KEY_free(ecdsa[i]); |
| 1868 | for (i = 0; i < EC_NUM6; i++) { |
| 1869 | if (ecdh_a[i] != NULL((void *)0)) |
| 1870 | EC_KEY_free(ecdh_a[i]); |
| 1871 | if (ecdh_b[i] != NULL((void *)0)) |
| 1872 | EC_KEY_free(ecdh_b[i]); |
| 1873 | } |
| 1874 | |
| 1875 | |
| 1876 | return (mret); |
| 1877 | } |
| 1878 | |
| 1879 | static void |
| 1880 | print_message(const char *s, long num, int length) |
| 1881 | { |
| 1882 | BIO_printf(bio_err, mr ? "+DT:%s:%d:%d\n" |
| 1883 | : "Doing %s for %ds on %d size blocks: ", s, SECONDS3, length); |
| 1884 | (void) BIO_flush(bio_err)(int)BIO_ctrl(bio_err,11,0,((void *)0)); |
| 1885 | alarm(SECONDS3); |
| 1886 | } |
| 1887 | |
| 1888 | static void |
| 1889 | pkey_print_message(const char *str, const char *str2, long num, |
| 1890 | int bits, int tm) |
| 1891 | { |
| 1892 | BIO_printf(bio_err, mr ? "+DTP:%d:%s:%s:%d\n" |
| 1893 | : "Doing %d bit %s %s for %ds: ", bits, str, str2, tm); |
| 1894 | (void) BIO_flush(bio_err)(int)BIO_ctrl(bio_err,11,0,((void *)0)); |
| 1895 | alarm(tm); |
| 1896 | } |
| 1897 | |
| 1898 | static void |
| 1899 | print_result(int alg, int run_no, int count, double time_used) |
| 1900 | { |
| 1901 | BIO_printf(bio_err, mr ? "+R:%d:%s:%f\n" |
| 1902 | : "%d %s in %.2fs\n", count, names[alg], time_used); |
| 1903 | results[alg][run_no] = ((double) count) / time_used * lengths[run_no]; |
| 1904 | } |
| 1905 | |
| 1906 | static char * |
| 1907 | sstrsep(char **string, const char *delim) |
| 1908 | { |
| 1909 | char isdelim[256]; |
| 1910 | char *token = *string; |
| 1911 | |
| 1912 | if (**string == 0) |
| 1913 | return NULL((void *)0); |
| 1914 | |
| 1915 | memset(isdelim, 0, sizeof isdelim); |
| 1916 | isdelim[0] = 1; |
| 1917 | |
| 1918 | while (*delim) { |
| 1919 | isdelim[(unsigned char) (*delim)] = 1; |
| 1920 | delim++; |
| 1921 | } |
| 1922 | |
| 1923 | while (!isdelim[(unsigned char) (**string)]) { |
| 1924 | (*string)++; |
| 1925 | } |
| 1926 | |
| 1927 | if (**string) { |
| 1928 | **string = 0; |
| 1929 | (*string)++; |
| 1930 | } |
| 1931 | return token; |
| 1932 | } |
| 1933 | |
| 1934 | static int |
| 1935 | do_multi(int multi) |
| 1936 | { |
| 1937 | int n; |
| 1938 | int fd[2]; |
| 1939 | int *fds; |
| 1940 | static char sep[] = ":"; |
| 1941 | const char *errstr = NULL((void *)0); |
| 1942 | |
| 1943 | fds = reallocarray(NULL((void *)0), multi, sizeof *fds); |
| 1944 | if (fds == NULL((void *)0)) { |
| 1945 | fprintf(stderr(&__sF[2]), "reallocarray failure\n"); |
| 1946 | exit(1); |
| 1947 | } |
| 1948 | for (n = 0; n < multi; ++n) { |
| 1949 | if (pipe(fd) == -1) { |
| 1950 | fprintf(stderr(&__sF[2]), "pipe failure\n"); |
| 1951 | exit(1); |
| 1952 | } |
| 1953 | fflush(stdout(&__sF[1])); |
| 1954 | fflush(stderr(&__sF[2])); |
| 1955 | if (fork()) { |
| 1956 | close(fd[1]); |
| 1957 | fds[n] = fd[0]; |
| 1958 | } else { |
| 1959 | close(fd[0]); |
| 1960 | close(1); |
| 1961 | if (dup(fd[1]) == -1) { |
| 1962 | fprintf(stderr(&__sF[2]), "dup failed\n"); |
| 1963 | exit(1); |
| 1964 | } |
| 1965 | close(fd[1]); |
| 1966 | mr = 1; |
| 1967 | usertime = 0; |
| 1968 | free(fds); |
| 1969 | return 0; |
| 1970 | } |
| 1971 | printf("Forked child %d\n", n); |
| 1972 | } |
| 1973 | |
| 1974 | /* for now, assume the pipe is long enough to take all the output */ |
| 1975 | for (n = 0; n < multi; ++n) { |
| 1976 | FILE *f; |
| 1977 | char buf[1024]; |
| 1978 | char *p; |
| 1979 | |
| 1980 | f = fdopen(fds[n], "r"); |
| 1981 | while (fgets(buf, sizeof buf, f)) { |
| 1982 | p = strchr(buf, '\n'); |
| 1983 | if (p) |
| 1984 | *p = '\0'; |
| 1985 | if (buf[0] != '+') { |
| 1986 | fprintf(stderr(&__sF[2]), "Don't understand line '%s' from child %d\n", |
| 1987 | buf, n); |
| 1988 | continue; |
| 1989 | } |
| 1990 | printf("Got: %s from %d\n", buf, n); |
| 1991 | if (!strncmp(buf, "+F:", 3)) { |
| 1992 | int alg; |
| 1993 | int j; |
| 1994 | |
| 1995 | p = buf + 3; |
| 1996 | alg = strtonum(sstrsep(&p, sep), |
| 1997 | 0, ALGOR_NUM32 - 1, &errstr); |
| 1998 | sstrsep(&p, sep); |
| 1999 | for (j = 0; j < SIZE_NUM5; ++j) |
| 2000 | results[alg][j] += atof(sstrsep(&p, sep)); |
| 2001 | } else if (!strncmp(buf, "+F2:", 4)) { |
| 2002 | int k; |
| 2003 | double d; |
| 2004 | |
| 2005 | p = buf + 4; |
| 2006 | k = strtonum(sstrsep(&p, sep), |
| 2007 | 0, ALGOR_NUM32 - 1, &errstr); |
| 2008 | sstrsep(&p, sep); |
| 2009 | |
| 2010 | d = atof(sstrsep(&p, sep)); |
| 2011 | if (n) |
| 2012 | rsa_results[k][0] = 1 / (1 / rsa_results[k][0] + 1 / d); |
| 2013 | else |
| 2014 | rsa_results[k][0] = d; |
| 2015 | |
| 2016 | d = atof(sstrsep(&p, sep)); |
| 2017 | if (n) |
| 2018 | rsa_results[k][1] = 1 / (1 / rsa_results[k][1] + 1 / d); |
| 2019 | else |
| 2020 | rsa_results[k][1] = d; |
| 2021 | } else if (!strncmp(buf, "+F2:", 4)) { |
| 2022 | int k; |
| 2023 | double d; |
| 2024 | |
| 2025 | p = buf + 4; |
| 2026 | k = strtonum(sstrsep(&p, sep), |
| 2027 | 0, ALGOR_NUM32 - 1, &errstr); |
| 2028 | sstrsep(&p, sep); |
| 2029 | |
| 2030 | d = atof(sstrsep(&p, sep)); |
| 2031 | if (n) |
| 2032 | rsa_results[k][0] = 1 / (1 / rsa_results[k][0] + 1 / d); |
| 2033 | else |
| 2034 | rsa_results[k][0] = d; |
| 2035 | |
| 2036 | d = atof(sstrsep(&p, sep)); |
| 2037 | if (n) |
| 2038 | rsa_results[k][1] = 1 / (1 / rsa_results[k][1] + 1 / d); |
| 2039 | else |
| 2040 | rsa_results[k][1] = d; |
| 2041 | } |
| 2042 | else if (!strncmp(buf, "+F3:", 4)) { |
| 2043 | int k; |
| 2044 | double d; |
| 2045 | |
| 2046 | p = buf + 4; |
| 2047 | k = strtonum(sstrsep(&p, sep), |
| 2048 | 0, ALGOR_NUM32 - 1, &errstr); |
| 2049 | sstrsep(&p, sep); |
| 2050 | |
| 2051 | d = atof(sstrsep(&p, sep)); |
| 2052 | if (n) |
| 2053 | dsa_results[k][0] = 1 / (1 / dsa_results[k][0] + 1 / d); |
| 2054 | else |
| 2055 | dsa_results[k][0] = d; |
| 2056 | |
| 2057 | d = atof(sstrsep(&p, sep)); |
| 2058 | if (n) |
| 2059 | dsa_results[k][1] = 1 / (1 / dsa_results[k][1] + 1 / d); |
| 2060 | else |
| 2061 | dsa_results[k][1] = d; |
| 2062 | } |
| 2063 | else if (!strncmp(buf, "+F4:", 4)) { |
| 2064 | int k; |
| 2065 | double d; |
| 2066 | |
| 2067 | p = buf + 4; |
| 2068 | k = strtonum(sstrsep(&p, sep), |
| 2069 | 0, ALGOR_NUM32 - 1, &errstr); |
| 2070 | sstrsep(&p, sep); |
| 2071 | |
| 2072 | d = atof(sstrsep(&p, sep)); |
| 2073 | if (n) |
| 2074 | ecdsa_results[k][0] = 1 / (1 / ecdsa_results[k][0] + 1 / d); |
| 2075 | else |
| 2076 | ecdsa_results[k][0] = d; |
| 2077 | |
| 2078 | d = atof(sstrsep(&p, sep)); |
| 2079 | if (n) |
| 2080 | ecdsa_results[k][1] = 1 / (1 / ecdsa_results[k][1] + 1 / d); |
| 2081 | else |
| 2082 | ecdsa_results[k][1] = d; |
| 2083 | } |
| 2084 | |
| 2085 | else if (!strncmp(buf, "+F5:", 4)) { |
| 2086 | int k; |
| 2087 | double d; |
| 2088 | |
| 2089 | p = buf + 4; |
| 2090 | k = strtonum(sstrsep(&p, sep), |
| 2091 | 0, ALGOR_NUM32 - 1, &errstr); |
| 2092 | sstrsep(&p, sep); |
| 2093 | |
| 2094 | d = atof(sstrsep(&p, sep)); |
| 2095 | if (n) |
| 2096 | ecdh_results[k][0] = 1 / (1 / ecdh_results[k][0] + 1 / d); |
| 2097 | else |
| 2098 | ecdh_results[k][0] = d; |
| 2099 | |
| 2100 | } |
| 2101 | |
| 2102 | else if (!strncmp(buf, "+H:", 3)) { |
| 2103 | } else |
| 2104 | fprintf(stderr(&__sF[2]), "Unknown type '%s' from child %d\n", buf, n); |
| 2105 | } |
| 2106 | |
| 2107 | fclose(f); |
| 2108 | } |
| 2109 | free(fds); |
| 2110 | return 1; |
| 2111 | } |
| 2112 | #endif |