| File: | src/lib/libcrypto/ec/ecp_smpl.c |
| Warning: | line 1175, column 16 Access to field 'Z_is_one' results in a dereference of a null pointer (loaded from variable 'p') |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* $OpenBSD: ecp_smpl.c,v 1.56 2023/08/03 18:53:56 tb Exp $ */ | |||
| 2 | /* Includes code written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> | |||
| 3 | * for the OpenSSL project. | |||
| 4 | * Includes code written by Bodo Moeller for the OpenSSL project. | |||
| 5 | */ | |||
| 6 | /* ==================================================================== | |||
| 7 | * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. | |||
| 8 | * | |||
| 9 | * Redistribution and use in source and binary forms, with or without | |||
| 10 | * modification, are permitted provided that the following conditions | |||
| 11 | * are met: | |||
| 12 | * | |||
| 13 | * 1. Redistributions of source code must retain the above copyright | |||
| 14 | * notice, this list of conditions and the following disclaimer. | |||
| 15 | * | |||
| 16 | * 2. Redistributions in binary form must reproduce the above copyright | |||
| 17 | * notice, this list of conditions and the following disclaimer in | |||
| 18 | * the documentation and/or other materials provided with the | |||
| 19 | * distribution. | |||
| 20 | * | |||
| 21 | * 3. All advertising materials mentioning features or use of this | |||
| 22 | * software must display the following acknowledgment: | |||
| 23 | * "This product includes software developed by the OpenSSL Project | |||
| 24 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | |||
| 25 | * | |||
| 26 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | |||
| 27 | * endorse or promote products derived from this software without | |||
| 28 | * prior written permission. For written permission, please contact | |||
| 29 | * openssl-core@openssl.org. | |||
| 30 | * | |||
| 31 | * 5. Products derived from this software may not be called "OpenSSL" | |||
| 32 | * nor may "OpenSSL" appear in their names without prior written | |||
| 33 | * permission of the OpenSSL Project. | |||
| 34 | * | |||
| 35 | * 6. Redistributions of any form whatsoever must retain the following | |||
| 36 | * acknowledgment: | |||
| 37 | * "This product includes software developed by the OpenSSL Project | |||
| 38 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | |||
| 39 | * | |||
| 40 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | |||
| 41 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |||
| 42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | |||
| 43 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | |||
| 44 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |||
| 45 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | |||
| 46 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |||
| 47 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |||
| 48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | |||
| 49 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |||
| 50 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | |||
| 51 | * OF THE POSSIBILITY OF SUCH DAMAGE. | |||
| 52 | * ==================================================================== | |||
| 53 | * | |||
| 54 | * This product includes cryptographic software written by Eric Young | |||
| 55 | * (eay@cryptsoft.com). This product includes software written by Tim | |||
| 56 | * Hudson (tjh@cryptsoft.com). | |||
| 57 | * | |||
| 58 | */ | |||
| 59 | /* ==================================================================== | |||
| 60 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | |||
| 61 | * Portions of this software developed by SUN MICROSYSTEMS, INC., | |||
| 62 | * and contributed to the OpenSSL project. | |||
| 63 | */ | |||
| 64 | ||||
| 65 | #include <openssl/err.h> | |||
| 66 | ||||
| 67 | #include "bn_local.h" | |||
| 68 | #include "ec_local.h" | |||
| 69 | ||||
| 70 | /* | |||
| 71 | * Most method functions in this file are designed to work with | |||
| 72 | * non-trivial representations of field elements if necessary | |||
| 73 | * (see ecp_mont.c): while standard modular addition and subtraction | |||
| 74 | * are used, the field_mul and field_sqr methods will be used for | |||
| 75 | * multiplication, and field_encode and field_decode (if defined) | |||
| 76 | * will be used for converting between representations. | |||
| 77 | * | |||
| 78 | * Functions ec_GFp_simple_points_make_affine() and | |||
| 79 | * ec_GFp_simple_point_get_affine_coordinates() specifically assume | |||
| 80 | * that if a non-trivial representation is used, it is a Montgomery | |||
| 81 | * representation (i.e. 'encoding' means multiplying by some factor R). | |||
| 82 | */ | |||
| 83 | ||||
| 84 | int | |||
| 85 | ec_GFp_simple_group_init(EC_GROUP *group) | |||
| 86 | { | |||
| 87 | BN_init(&group->field); | |||
| 88 | BN_init(&group->a); | |||
| 89 | BN_init(&group->b); | |||
| 90 | group->a_is_minus3 = 0; | |||
| 91 | return 1; | |||
| 92 | } | |||
| 93 | ||||
| 94 | void | |||
| 95 | ec_GFp_simple_group_finish(EC_GROUP *group) | |||
| 96 | { | |||
| 97 | BN_free(&group->field); | |||
| 98 | BN_free(&group->a); | |||
| 99 | BN_free(&group->b); | |||
| 100 | } | |||
| 101 | ||||
| 102 | int | |||
| 103 | ec_GFp_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src) | |||
| 104 | { | |||
| 105 | if (!bn_copy(&dest->field, &src->field)) | |||
| 106 | return 0; | |||
| 107 | if (!bn_copy(&dest->a, &src->a)) | |||
| 108 | return 0; | |||
| 109 | if (!bn_copy(&dest->b, &src->b)) | |||
| 110 | return 0; | |||
| 111 | ||||
| 112 | dest->a_is_minus3 = src->a_is_minus3; | |||
| 113 | ||||
| 114 | return 1; | |||
| 115 | } | |||
| 116 | ||||
| 117 | static int | |||
| 118 | ec_decode_scalar(const EC_GROUP *group, BIGNUM *bn, const BIGNUM *x, BN_CTX *ctx) | |||
| 119 | { | |||
| 120 | if (bn == NULL((void *)0)) | |||
| 121 | return 1; | |||
| 122 | ||||
| 123 | if (group->meth->field_decode != NULL((void *)0)) | |||
| 124 | return group->meth->field_decode(group, bn, x, ctx); | |||
| 125 | ||||
| 126 | return bn_copy(bn, x); | |||
| 127 | } | |||
| 128 | ||||
| 129 | static int | |||
| 130 | ec_encode_scalar(const EC_GROUP *group, BIGNUM *bn, const BIGNUM *x, BN_CTX *ctx) | |||
| 131 | { | |||
| 132 | if (!BN_nnmod(bn, x, &group->field, ctx)) | |||
| 133 | return 0; | |||
| 134 | ||||
| 135 | if (group->meth->field_encode != NULL((void *)0)) | |||
| 136 | return group->meth->field_encode(group, bn, bn, ctx); | |||
| 137 | ||||
| 138 | return 1; | |||
| 139 | } | |||
| 140 | ||||
| 141 | static int | |||
| 142 | ec_encode_z_coordinate(const EC_GROUP *group, BIGNUM *bn, int *is_one, | |||
| 143 | const BIGNUM *z, BN_CTX *ctx) | |||
| 144 | { | |||
| 145 | if (!BN_nnmod(bn, z, &group->field, ctx)) | |||
| 146 | return 0; | |||
| 147 | ||||
| 148 | *is_one = BN_is_one(bn); | |||
| 149 | if (*is_one && group->meth->field_set_to_one != NULL((void *)0)) | |||
| 150 | return group->meth->field_set_to_one(group, bn, ctx); | |||
| 151 | ||||
| 152 | if (group->meth->field_encode != NULL((void *)0)) | |||
| 153 | return group->meth->field_encode(group, bn, bn, ctx); | |||
| 154 | ||||
| 155 | return 1; | |||
| 156 | } | |||
| 157 | ||||
| 158 | int | |||
| 159 | ec_GFp_simple_group_set_curve(EC_GROUP *group, | |||
| 160 | const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | |||
| 161 | { | |||
| 162 | BIGNUM *a_plus_3; | |||
| 163 | int ret = 0; | |||
| 164 | ||||
| 165 | /* p must be a prime > 3 */ | |||
| 166 | if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) { | |||
| 167 | ECerror(EC_R_INVALID_FIELD)ERR_put_error(16,(0xfff),(103),"/usr/src/lib/libcrypto/ec/ecp_smpl.c" ,167); | |||
| 168 | return 0; | |||
| 169 | } | |||
| 170 | ||||
| 171 | BN_CTX_start(ctx); | |||
| 172 | ||||
| 173 | if ((a_plus_3 = BN_CTX_get(ctx)) == NULL((void *)0)) | |||
| 174 | goto err; | |||
| 175 | ||||
| 176 | if (!bn_copy(&group->field, p)) | |||
| 177 | goto err; | |||
| 178 | BN_set_negative(&group->field, 0); | |||
| 179 | ||||
| 180 | if (!ec_encode_scalar(group, &group->a, a, ctx)) | |||
| 181 | goto err; | |||
| 182 | if (!ec_encode_scalar(group, &group->b, b, ctx)) | |||
| 183 | goto err; | |||
| 184 | ||||
| 185 | if (!BN_set_word(a_plus_3, 3)) | |||
| 186 | goto err; | |||
| 187 | if (!BN_mod_add(a_plus_3, a_plus_3, a, &group->field, ctx)) | |||
| 188 | goto err; | |||
| 189 | ||||
| 190 | group->a_is_minus3 = BN_is_zero(a_plus_3); | |||
| 191 | ||||
| 192 | ret = 1; | |||
| 193 | ||||
| 194 | err: | |||
| 195 | BN_CTX_end(ctx); | |||
| 196 | ||||
| 197 | return ret; | |||
| 198 | } | |||
| 199 | ||||
| 200 | int | |||
| 201 | ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, | |||
| 202 | BIGNUM *b, BN_CTX *ctx) | |||
| 203 | { | |||
| 204 | if (p != NULL((void *)0)) { | |||
| 205 | if (!bn_copy(p, &group->field)) | |||
| 206 | return 0; | |||
| 207 | } | |||
| 208 | if (!ec_decode_scalar(group, a, &group->a, ctx)) | |||
| 209 | return 0; | |||
| 210 | if (!ec_decode_scalar(group, b, &group->b, ctx)) | |||
| 211 | return 0; | |||
| 212 | ||||
| 213 | return 1; | |||
| 214 | } | |||
| 215 | ||||
| 216 | int | |||
| 217 | ec_GFp_simple_group_get_degree(const EC_GROUP *group) | |||
| 218 | { | |||
| 219 | return BN_num_bits(&group->field); | |||
| 220 | } | |||
| 221 | ||||
| 222 | int | |||
| 223 | ec_GFp_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx) | |||
| 224 | { | |||
| 225 | BIGNUM *p, *a, *b, *discriminant; | |||
| 226 | int ret = 0; | |||
| 227 | ||||
| 228 | BN_CTX_start(ctx); | |||
| 229 | ||||
| 230 | if ((p = BN_CTX_get(ctx)) == NULL((void *)0)) | |||
| 231 | goto err; | |||
| 232 | if ((a = BN_CTX_get(ctx)) == NULL((void *)0)) | |||
| 233 | goto err; | |||
| 234 | if ((b = BN_CTX_get(ctx)) == NULL((void *)0)) | |||
| 235 | goto err; | |||
| 236 | if ((discriminant = BN_CTX_get(ctx)) == NULL((void *)0)) | |||
| 237 | goto err; | |||
| 238 | ||||
| 239 | if (!EC_GROUP_get_curve(group, p, a, b, ctx)) | |||
| 240 | goto err; | |||
| 241 | ||||
| 242 | /* | |||
| 243 | * Check that the discriminant 4a^3 + 27b^2 is non-zero modulo p. | |||
| 244 | */ | |||
| 245 | ||||
| 246 | if (BN_is_zero(a) && BN_is_zero(b)) | |||
| 247 | goto err; | |||
| 248 | if (BN_is_zero(a) || BN_is_zero(b)) | |||
| 249 | goto done; | |||
| 250 | ||||
| 251 | /* Compute the discriminant: first 4a^3, then 27b^2, then their sum. */ | |||
| 252 | if (!BN_mod_sqr(discriminant, a, p, ctx)) | |||
| 253 | goto err; | |||
| 254 | if (!BN_mod_mul(discriminant, discriminant, a, p, ctx)) | |||
| 255 | goto err; | |||
| 256 | if (!BN_lshift(discriminant, discriminant, 2)) | |||
| 257 | goto err; | |||
| 258 | ||||
| 259 | if (!BN_mod_sqr(b, b, p, ctx)) | |||
| 260 | goto err; | |||
| 261 | if (!BN_mul_word(b, 27)) | |||
| 262 | goto err; | |||
| 263 | ||||
| 264 | if (!BN_mod_add(discriminant, discriminant, b, p, ctx)) | |||
| 265 | goto err; | |||
| 266 | ||||
| 267 | if (BN_is_zero(discriminant)) | |||
| 268 | goto err; | |||
| 269 | ||||
| 270 | done: | |||
| 271 | ret = 1; | |||
| 272 | ||||
| 273 | err: | |||
| 274 | BN_CTX_end(ctx); | |||
| 275 | ||||
| 276 | return ret; | |||
| 277 | } | |||
| 278 | ||||
| 279 | int | |||
| 280 | ec_GFp_simple_point_init(EC_POINT * point) | |||
| 281 | { | |||
| 282 | BN_init(&point->X); | |||
| 283 | BN_init(&point->Y); | |||
| 284 | BN_init(&point->Z); | |||
| 285 | point->Z_is_one = 0; | |||
| 286 | ||||
| 287 | return 1; | |||
| 288 | } | |||
| 289 | ||||
| 290 | void | |||
| 291 | ec_GFp_simple_point_finish(EC_POINT *point) | |||
| 292 | { | |||
| 293 | BN_free(&point->X); | |||
| 294 | BN_free(&point->Y); | |||
| 295 | BN_free(&point->Z); | |||
| 296 | point->Z_is_one = 0; | |||
| 297 | } | |||
| 298 | ||||
| 299 | int | |||
| 300 | ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src) | |||
| 301 | { | |||
| 302 | if (!bn_copy(&dest->X, &src->X)) | |||
| 303 | return 0; | |||
| 304 | if (!bn_copy(&dest->Y, &src->Y)) | |||
| 305 | return 0; | |||
| 306 | if (!bn_copy(&dest->Z, &src->Z)) | |||
| 307 | return 0; | |||
| 308 | dest->Z_is_one = src->Z_is_one; | |||
| 309 | ||||
| 310 | return 1; | |||
| 311 | } | |||
| 312 | ||||
| 313 | int | |||
| 314 | ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group, EC_POINT *point) | |||
| 315 | { | |||
| 316 | point->Z_is_one = 0; | |||
| 317 | BN_zero(&point->Z); | |||
| 318 | return 1; | |||
| 319 | } | |||
| 320 | ||||
| 321 | int | |||
| 322 | ec_GFp_simple_set_Jprojective_coordinates(const EC_GROUP *group, | |||
| 323 | EC_POINT *point, const BIGNUM *x, const BIGNUM *y, const BIGNUM *z, | |||
| 324 | BN_CTX *ctx) | |||
| 325 | { | |||
| 326 | int ret = 0; | |||
| 327 | ||||
| 328 | /* | |||
| 329 | * Setting individual coordinates allows the creation of bad points. | |||
| 330 | * EC_POINT_set_Jprojective_coordinates() checks at the API boundary. | |||
| 331 | */ | |||
| 332 | ||||
| 333 | if (x != NULL((void *)0)) { | |||
| 334 | if (!ec_encode_scalar(group, &point->X, x, ctx)) | |||
| 335 | goto err; | |||
| 336 | } | |||
| 337 | if (y != NULL((void *)0)) { | |||
| 338 | if (!ec_encode_scalar(group, &point->Y, y, ctx)) | |||
| 339 | goto err; | |||
| 340 | } | |||
| 341 | if (z != NULL((void *)0)) { | |||
| 342 | if (!ec_encode_z_coordinate(group, &point->Z, &point->Z_is_one, | |||
| 343 | z, ctx)) | |||
| 344 | goto err; | |||
| 345 | } | |||
| 346 | ||||
| 347 | ret = 1; | |||
| 348 | ||||
| 349 | err: | |||
| 350 | return ret; | |||
| 351 | } | |||
| 352 | ||||
| 353 | int | |||
| 354 | ec_GFp_simple_get_Jprojective_coordinates(const EC_GROUP *group, | |||
| 355 | const EC_POINT *point, BIGNUM *x, BIGNUM *y, BIGNUM *z, BN_CTX *ctx) | |||
| 356 | { | |||
| 357 | int ret = 0; | |||
| 358 | ||||
| 359 | if (!ec_decode_scalar(group, x, &point->X, ctx)) | |||
| 360 | goto err; | |||
| 361 | if (!ec_decode_scalar(group, y, &point->Y, ctx)) | |||
| 362 | goto err; | |||
| 363 | if (!ec_decode_scalar(group, z, &point->Z, ctx)) | |||
| 364 | goto err; | |||
| 365 | ||||
| 366 | ret = 1; | |||
| 367 | ||||
| 368 | err: | |||
| 369 | return ret; | |||
| 370 | } | |||
| 371 | ||||
| 372 | int | |||
| 373 | ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point, | |||
| 374 | const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) | |||
| 375 | { | |||
| 376 | if (x == NULL((void *)0) || y == NULL((void *)0)) { | |||
| 377 | /* unlike for projective coordinates, we do not tolerate this */ | |||
| 378 | ECerror(ERR_R_PASSED_NULL_PARAMETER)ERR_put_error(16,(0xfff),((3|64)),"/usr/src/lib/libcrypto/ec/ecp_smpl.c" ,378); | |||
| 379 | return 0; | |||
| 380 | } | |||
| 381 | return EC_POINT_set_Jprojective_coordinates(group, point, x, y, | |||
| 382 | BN_value_one(), ctx); | |||
| 383 | } | |||
| 384 | ||||
| 385 | int | |||
| 386 | ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *group, | |||
| 387 | const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx) | |||
| 388 | { | |||
| 389 | BIGNUM *z, *Z, *Z_1, *Z_2, *Z_3; | |||
| 390 | int ret = 0; | |||
| 391 | ||||
| 392 | if (EC_POINT_is_at_infinity(group, point) > 0) { | |||
| 393 | ECerror(EC_R_POINT_AT_INFINITY)ERR_put_error(16,(0xfff),(106),"/usr/src/lib/libcrypto/ec/ecp_smpl.c" ,393); | |||
| 394 | return 0; | |||
| 395 | } | |||
| 396 | ||||
| 397 | BN_CTX_start(ctx); | |||
| 398 | ||||
| 399 | if ((z = BN_CTX_get(ctx)) == NULL((void *)0)) | |||
| 400 | goto err; | |||
| 401 | if ((Z = BN_CTX_get(ctx)) == NULL((void *)0)) | |||
| 402 | goto err; | |||
| 403 | if ((Z_1 = BN_CTX_get(ctx)) == NULL((void *)0)) | |||
| 404 | goto err; | |||
| 405 | if ((Z_2 = BN_CTX_get(ctx)) == NULL((void *)0)) | |||
| 406 | goto err; | |||
| 407 | if ((Z_3 = BN_CTX_get(ctx)) == NULL((void *)0)) | |||
| 408 | goto err; | |||
| 409 | ||||
| 410 | /* Convert from projective coordinates (X, Y, Z) into (X/Z^2, Y/Z^3). */ | |||
| 411 | ||||
| 412 | if (!ec_decode_scalar(group, z, &point->Z, ctx)) | |||
| 413 | goto err; | |||
| 414 | ||||
| 415 | if (BN_is_one(z)) { | |||
| 416 | if (!ec_decode_scalar(group, x, &point->X, ctx)) | |||
| 417 | goto err; | |||
| 418 | if (!ec_decode_scalar(group, y, &point->Y, ctx)) | |||
| 419 | goto err; | |||
| 420 | goto done; | |||
| 421 | } | |||
| 422 | ||||
| 423 | if (BN_mod_inverse_ct(Z_1, z, &group->field, ctx) == NULL((void *)0)) { | |||
| 424 | ECerror(ERR_R_BN_LIB)ERR_put_error(16,(0xfff),(3),"/usr/src/lib/libcrypto/ec/ecp_smpl.c" ,424); | |||
| 425 | goto err; | |||
| 426 | } | |||
| 427 | if (group->meth->field_encode == NULL((void *)0)) { | |||
| 428 | /* field_sqr works on standard representation */ | |||
| 429 | if (!group->meth->field_sqr(group, Z_2, Z_1, ctx)) | |||
| 430 | goto err; | |||
| 431 | } else { | |||
| 432 | if (!BN_mod_sqr(Z_2, Z_1, &group->field, ctx)) | |||
| 433 | goto err; | |||
| 434 | } | |||
| 435 | ||||
| 436 | if (x != NULL((void *)0)) { | |||
| 437 | /* | |||
| 438 | * in the Montgomery case, field_mul will cancel out | |||
| 439 | * Montgomery factor in X: | |||
| 440 | */ | |||
| 441 | if (!group->meth->field_mul(group, x, &point->X, Z_2, ctx)) | |||
| 442 | goto err; | |||
| 443 | } | |||
| 444 | if (y != NULL((void *)0)) { | |||
| 445 | if (group->meth->field_encode == NULL((void *)0)) { | |||
| 446 | /* field_mul works on standard representation */ | |||
| 447 | if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx)) | |||
| 448 | goto err; | |||
| 449 | } else { | |||
| 450 | if (!BN_mod_mul(Z_3, Z_2, Z_1, &group->field, ctx)) | |||
| 451 | goto err; | |||
| 452 | } | |||
| 453 | ||||
| 454 | /* | |||
| 455 | * in the Montgomery case, field_mul will cancel out | |||
| 456 | * Montgomery factor in Y: | |||
| 457 | */ | |||
| 458 | if (!group->meth->field_mul(group, y, &point->Y, Z_3, ctx)) | |||
| 459 | goto err; | |||
| 460 | } | |||
| 461 | ||||
| 462 | done: | |||
| 463 | ret = 1; | |||
| 464 | ||||
| 465 | err: | |||
| 466 | BN_CTX_end(ctx); | |||
| 467 | ||||
| 468 | return ret; | |||
| 469 | } | |||
| 470 | ||||
| 471 | int | |||
| 472 | ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) | |||
| 473 | { | |||
| 474 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); | |||
| 475 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); | |||
| 476 | BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6; | |||
| 477 | const BIGNUM *p; | |||
| 478 | int ret = 0; | |||
| 479 | ||||
| 480 | if (a == b) | |||
| 481 | return EC_POINT_dbl(group, r, a, ctx); | |||
| 482 | if (EC_POINT_is_at_infinity(group, a) > 0) | |||
| 483 | return EC_POINT_copy(r, b); | |||
| 484 | if (EC_POINT_is_at_infinity(group, b) > 0) | |||
| 485 | return EC_POINT_copy(r, a); | |||
| 486 | ||||
| 487 | field_mul = group->meth->field_mul; | |||
| 488 | field_sqr = group->meth->field_sqr; | |||
| 489 | p = &group->field; | |||
| 490 | ||||
| 491 | BN_CTX_start(ctx); | |||
| 492 | ||||
| 493 | if ((n0 = BN_CTX_get(ctx)) == NULL((void *)0)) | |||
| 494 | goto end; | |||
| 495 | if ((n1 = BN_CTX_get(ctx)) == NULL((void *)0)) | |||
| 496 | goto end; | |||
| 497 | if ((n2 = BN_CTX_get(ctx)) == NULL((void *)0)) | |||
| 498 | goto end; | |||
| 499 | if ((n3 = BN_CTX_get(ctx)) == NULL((void *)0)) | |||
| 500 | goto end; | |||
| 501 | if ((n4 = BN_CTX_get(ctx)) == NULL((void *)0)) | |||
| 502 | goto end; | |||
| 503 | if ((n5 = BN_CTX_get(ctx)) == NULL((void *)0)) | |||
| 504 | goto end; | |||
| 505 | if ((n6 = BN_CTX_get(ctx)) == NULL((void *)0)) | |||
| 506 | goto end; | |||
| 507 | ||||
| 508 | /* | |||
| 509 | * Note that in this function we must not read components of 'a' or | |||
| 510 | * 'b' once we have written the corresponding components of 'r'. ('r' | |||
| 511 | * might be one of 'a' or 'b'.) | |||
| 512 | */ | |||
| 513 | ||||
| 514 | /* n1, n2 */ | |||
| 515 | if (b->Z_is_one) { | |||
| 516 | if (!bn_copy(n1, &a->X)) | |||
| 517 | goto end; | |||
| 518 | if (!bn_copy(n2, &a->Y)) | |||
| 519 | goto end; | |||
| 520 | /* n1 = X_a */ | |||
| 521 | /* n2 = Y_a */ | |||
| 522 | } else { | |||
| 523 | if (!field_sqr(group, n0, &b->Z, ctx)) | |||
| 524 | goto end; | |||
| 525 | if (!field_mul(group, n1, &a->X, n0, ctx)) | |||
| 526 | goto end; | |||
| 527 | /* n1 = X_a * Z_b^2 */ | |||
| 528 | ||||
| 529 | if (!field_mul(group, n0, n0, &b->Z, ctx)) | |||
| 530 | goto end; | |||
| 531 | if (!field_mul(group, n2, &a->Y, n0, ctx)) | |||
| 532 | goto end; | |||
| 533 | /* n2 = Y_a * Z_b^3 */ | |||
| 534 | } | |||
| 535 | ||||
| 536 | /* n3, n4 */ | |||
| 537 | if (a->Z_is_one) { | |||
| 538 | if (!bn_copy(n3, &b->X)) | |||
| 539 | goto end; | |||
| 540 | if (!bn_copy(n4, &b->Y)) | |||
| 541 | goto end; | |||
| 542 | /* n3 = X_b */ | |||
| 543 | /* n4 = Y_b */ | |||
| 544 | } else { | |||
| 545 | if (!field_sqr(group, n0, &a->Z, ctx)) | |||
| 546 | goto end; | |||
| 547 | if (!field_mul(group, n3, &b->X, n0, ctx)) | |||
| 548 | goto end; | |||
| 549 | /* n3 = X_b * Z_a^2 */ | |||
| 550 | ||||
| 551 | if (!field_mul(group, n0, n0, &a->Z, ctx)) | |||
| 552 | goto end; | |||
| 553 | if (!field_mul(group, n4, &b->Y, n0, ctx)) | |||
| 554 | goto end; | |||
| 555 | /* n4 = Y_b * Z_a^3 */ | |||
| 556 | } | |||
| 557 | ||||
| 558 | /* n5, n6 */ | |||
| 559 | if (!BN_mod_sub_quick(n5, n1, n3, p)) | |||
| 560 | goto end; | |||
| 561 | if (!BN_mod_sub_quick(n6, n2, n4, p)) | |||
| 562 | goto end; | |||
| 563 | /* n5 = n1 - n3 */ | |||
| 564 | /* n6 = n2 - n4 */ | |||
| 565 | ||||
| 566 | if (BN_is_zero(n5)) { | |||
| 567 | if (BN_is_zero(n6)) { | |||
| 568 | /* a is the same point as b */ | |||
| 569 | BN_CTX_end(ctx); | |||
| 570 | ret = EC_POINT_dbl(group, r, a, ctx); | |||
| 571 | ctx = NULL((void *)0); | |||
| 572 | goto end; | |||
| 573 | } else { | |||
| 574 | /* a is the inverse of b */ | |||
| 575 | BN_zero(&r->Z); | |||
| 576 | r->Z_is_one = 0; | |||
| 577 | ret = 1; | |||
| 578 | goto end; | |||
| 579 | } | |||
| 580 | } | |||
| 581 | /* 'n7', 'n8' */ | |||
| 582 | if (!BN_mod_add_quick(n1, n1, n3, p)) | |||
| 583 | goto end; | |||
| 584 | if (!BN_mod_add_quick(n2, n2, n4, p)) | |||
| 585 | goto end; | |||
| 586 | /* 'n7' = n1 + n3 */ | |||
| 587 | /* 'n8' = n2 + n4 */ | |||
| 588 | ||||
| 589 | /* Z_r */ | |||
| 590 | if (a->Z_is_one && b->Z_is_one) { | |||
| 591 | if (!bn_copy(&r->Z, n5)) | |||
| 592 | goto end; | |||
| 593 | } else { | |||
| 594 | if (a->Z_is_one) { | |||
| 595 | if (!bn_copy(n0, &b->Z)) | |||
| 596 | goto end; | |||
| 597 | } else if (b->Z_is_one) { | |||
| 598 | if (!bn_copy(n0, &a->Z)) | |||
| 599 | goto end; | |||
| 600 | } else { | |||
| 601 | if (!field_mul(group, n0, &a->Z, &b->Z, ctx)) | |||
| 602 | goto end; | |||
| 603 | } | |||
| 604 | if (!field_mul(group, &r->Z, n0, n5, ctx)) | |||
| 605 | goto end; | |||
| 606 | } | |||
| 607 | r->Z_is_one = 0; | |||
| 608 | /* Z_r = Z_a * Z_b * n5 */ | |||
| 609 | ||||
| 610 | /* X_r */ | |||
| 611 | if (!field_sqr(group, n0, n6, ctx)) | |||
| 612 | goto end; | |||
| 613 | if (!field_sqr(group, n4, n5, ctx)) | |||
| 614 | goto end; | |||
| 615 | if (!field_mul(group, n3, n1, n4, ctx)) | |||
| 616 | goto end; | |||
| 617 | if (!BN_mod_sub_quick(&r->X, n0, n3, p)) | |||
| 618 | goto end; | |||
| 619 | /* X_r = n6^2 - n5^2 * 'n7' */ | |||
| 620 | ||||
| 621 | /* 'n9' */ | |||
| 622 | if (!BN_mod_lshift1_quick(n0, &r->X, p)) | |||
| 623 | goto end; | |||
| 624 | if (!BN_mod_sub_quick(n0, n3, n0, p)) | |||
| 625 | goto end; | |||
| 626 | /* n9 = n5^2 * 'n7' - 2 * X_r */ | |||
| 627 | ||||
| 628 | /* Y_r */ | |||
| 629 | if (!field_mul(group, n0, n0, n6, ctx)) | |||
| 630 | goto end; | |||
| 631 | if (!field_mul(group, n5, n4, n5, ctx)) | |||
| 632 | goto end; /* now n5 is n5^3 */ | |||
| 633 | if (!field_mul(group, n1, n2, n5, ctx)) | |||
| 634 | goto end; | |||
| 635 | if (!BN_mod_sub_quick(n0, n0, n1, p)) | |||
| 636 | goto end; | |||
| 637 | if (BN_is_odd(n0)) | |||
| 638 | if (!BN_add(n0, n0, p)) | |||
| 639 | goto end; | |||
| 640 | /* now 0 <= n0 < 2*p, and n0 is even */ | |||
| 641 | if (!BN_rshift1(&r->Y, n0)) | |||
| 642 | goto end; | |||
| 643 | /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */ | |||
| 644 | ||||
| 645 | ret = 1; | |||
| 646 | ||||
| 647 | end: | |||
| 648 | BN_CTX_end(ctx); | |||
| 649 | ||||
| 650 | return ret; | |||
| 651 | } | |||
| 652 | ||||
| 653 | int | |||
| 654 | ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx) | |||
| 655 | { | |||
| 656 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); | |||
| 657 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); | |||
| 658 | const BIGNUM *p; | |||
| 659 | BIGNUM *n0, *n1, *n2, *n3; | |||
| 660 | int ret = 0; | |||
| 661 | ||||
| 662 | if (EC_POINT_is_at_infinity(group, a) > 0) | |||
| 663 | return EC_POINT_set_to_infinity(group, r); | |||
| 664 | ||||
| 665 | field_mul = group->meth->field_mul; | |||
| 666 | field_sqr = group->meth->field_sqr; | |||
| 667 | p = &group->field; | |||
| 668 | ||||
| 669 | BN_CTX_start(ctx); | |||
| 670 | ||||
| 671 | if ((n0 = BN_CTX_get(ctx)) == NULL((void *)0)) | |||
| 672 | goto err; | |||
| 673 | if ((n1 = BN_CTX_get(ctx)) == NULL((void *)0)) | |||
| 674 | goto err; | |||
| 675 | if ((n2 = BN_CTX_get(ctx)) == NULL((void *)0)) | |||
| 676 | goto err; | |||
| 677 | if ((n3 = BN_CTX_get(ctx)) == NULL((void *)0)) | |||
| 678 | goto err; | |||
| 679 | ||||
| 680 | /* | |||
| 681 | * Note that in this function we must not read components of 'a' once | |||
| 682 | * we have written the corresponding components of 'r'. ('r' might | |||
| 683 | * the same as 'a'.) | |||
| 684 | */ | |||
| 685 | ||||
| 686 | /* n1 */ | |||
| 687 | if (a->Z_is_one) { | |||
| 688 | if (!field_sqr(group, n0, &a->X, ctx)) | |||
| 689 | goto err; | |||
| 690 | if (!BN_mod_lshift1_quick(n1, n0, p)) | |||
| 691 | goto err; | |||
| 692 | if (!BN_mod_add_quick(n0, n0, n1, p)) | |||
| 693 | goto err; | |||
| 694 | if (!BN_mod_add_quick(n1, n0, &group->a, p)) | |||
| 695 | goto err; | |||
| 696 | /* n1 = 3 * X_a^2 + a_curve */ | |||
| 697 | } else if (group->a_is_minus3) { | |||
| 698 | if (!field_sqr(group, n1, &a->Z, ctx)) | |||
| 699 | goto err; | |||
| 700 | if (!BN_mod_add_quick(n0, &a->X, n1, p)) | |||
| 701 | goto err; | |||
| 702 | if (!BN_mod_sub_quick(n2, &a->X, n1, p)) | |||
| 703 | goto err; | |||
| 704 | if (!field_mul(group, n1, n0, n2, ctx)) | |||
| 705 | goto err; | |||
| 706 | if (!BN_mod_lshift1_quick(n0, n1, p)) | |||
| 707 | goto err; | |||
| 708 | if (!BN_mod_add_quick(n1, n0, n1, p)) | |||
| 709 | goto err; | |||
| 710 | /* | |||
| 711 | * n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2) = 3 * X_a^2 - 3 * | |||
| 712 | * Z_a^4 | |||
| 713 | */ | |||
| 714 | } else { | |||
| 715 | if (!field_sqr(group, n0, &a->X, ctx)) | |||
| 716 | goto err; | |||
| 717 | if (!BN_mod_lshift1_quick(n1, n0, p)) | |||
| 718 | goto err; | |||
| 719 | if (!BN_mod_add_quick(n0, n0, n1, p)) | |||
| 720 | goto err; | |||
| 721 | if (!field_sqr(group, n1, &a->Z, ctx)) | |||
| 722 | goto err; | |||
| 723 | if (!field_sqr(group, n1, n1, ctx)) | |||
| 724 | goto err; | |||
| 725 | if (!field_mul(group, n1, n1, &group->a, ctx)) | |||
| 726 | goto err; | |||
| 727 | if (!BN_mod_add_quick(n1, n1, n0, p)) | |||
| 728 | goto err; | |||
| 729 | /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */ | |||
| 730 | } | |||
| 731 | ||||
| 732 | /* Z_r */ | |||
| 733 | if (a->Z_is_one) { | |||
| 734 | if (!bn_copy(n0, &a->Y)) | |||
| 735 | goto err; | |||
| 736 | } else { | |||
| 737 | if (!field_mul(group, n0, &a->Y, &a->Z, ctx)) | |||
| 738 | goto err; | |||
| 739 | } | |||
| 740 | if (!BN_mod_lshift1_quick(&r->Z, n0, p)) | |||
| 741 | goto err; | |||
| 742 | r->Z_is_one = 0; | |||
| 743 | /* Z_r = 2 * Y_a * Z_a */ | |||
| 744 | ||||
| 745 | /* n2 */ | |||
| 746 | if (!field_sqr(group, n3, &a->Y, ctx)) | |||
| 747 | goto err; | |||
| 748 | if (!field_mul(group, n2, &a->X, n3, ctx)) | |||
| 749 | goto err; | |||
| 750 | if (!BN_mod_lshift_quick(n2, n2, 2, p)) | |||
| 751 | goto err; | |||
| 752 | /* n2 = 4 * X_a * Y_a^2 */ | |||
| 753 | ||||
| 754 | /* X_r */ | |||
| 755 | if (!BN_mod_lshift1_quick(n0, n2, p)) | |||
| 756 | goto err; | |||
| 757 | if (!field_sqr(group, &r->X, n1, ctx)) | |||
| 758 | goto err; | |||
| 759 | if (!BN_mod_sub_quick(&r->X, &r->X, n0, p)) | |||
| 760 | goto err; | |||
| 761 | /* X_r = n1^2 - 2 * n2 */ | |||
| 762 | ||||
| 763 | /* n3 */ | |||
| 764 | if (!field_sqr(group, n0, n3, ctx)) | |||
| 765 | goto err; | |||
| 766 | if (!BN_mod_lshift_quick(n3, n0, 3, p)) | |||
| 767 | goto err; | |||
| 768 | /* n3 = 8 * Y_a^4 */ | |||
| 769 | ||||
| 770 | /* Y_r */ | |||
| 771 | if (!BN_mod_sub_quick(n0, n2, &r->X, p)) | |||
| 772 | goto err; | |||
| 773 | if (!field_mul(group, n0, n1, n0, ctx)) | |||
| 774 | goto err; | |||
| 775 | if (!BN_mod_sub_quick(&r->Y, n0, n3, p)) | |||
| 776 | goto err; | |||
| 777 | /* Y_r = n1 * (n2 - X_r) - n3 */ | |||
| 778 | ||||
| 779 | ret = 1; | |||
| 780 | ||||
| 781 | err: | |||
| 782 | BN_CTX_end(ctx); | |||
| 783 | ||||
| 784 | return ret; | |||
| 785 | } | |||
| 786 | ||||
| 787 | int | |||
| 788 | ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) | |||
| 789 | { | |||
| 790 | if (EC_POINT_is_at_infinity(group, point) > 0 || BN_is_zero(&point->Y)) | |||
| 791 | /* point is its own inverse */ | |||
| 792 | return 1; | |||
| 793 | ||||
| 794 | return BN_usub(&point->Y, &group->field, &point->Y); | |||
| 795 | } | |||
| 796 | ||||
| 797 | int | |||
| 798 | ec_GFp_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) | |||
| 799 | { | |||
| 800 | return BN_is_zero(&point->Z); | |||
| 801 | } | |||
| 802 | ||||
| 803 | int | |||
| 804 | ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx) | |||
| 805 | { | |||
| 806 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); | |||
| 807 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); | |||
| 808 | const BIGNUM *p; | |||
| 809 | BIGNUM *rh, *tmp, *Z4, *Z6; | |||
| 810 | int ret = -1; | |||
| 811 | ||||
| 812 | if (EC_POINT_is_at_infinity(group, point) > 0) | |||
| 813 | return 1; | |||
| 814 | ||||
| 815 | field_mul = group->meth->field_mul; | |||
| 816 | field_sqr = group->meth->field_sqr; | |||
| 817 | p = &group->field; | |||
| 818 | ||||
| 819 | BN_CTX_start(ctx); | |||
| 820 | ||||
| 821 | if ((rh = BN_CTX_get(ctx)) == NULL((void *)0)) | |||
| 822 | goto err; | |||
| 823 | if ((tmp = BN_CTX_get(ctx)) == NULL((void *)0)) | |||
| 824 | goto err; | |||
| 825 | if ((Z4 = BN_CTX_get(ctx)) == NULL((void *)0)) | |||
| 826 | goto err; | |||
| 827 | if ((Z6 = BN_CTX_get(ctx)) == NULL((void *)0)) | |||
| 828 | goto err; | |||
| 829 | ||||
| 830 | /* | |||
| 831 | * We have a curve defined by a Weierstrass equation y^2 = x^3 + a*x | |||
| 832 | * + b. The point to consider is given in Jacobian projective | |||
| 833 | * coordinates where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3). | |||
| 834 | * Substituting this and multiplying by Z^6 transforms the above | |||
| 835 | * equation into Y^2 = X^3 + a*X*Z^4 + b*Z^6. To test this, we add up | |||
| 836 | * the right-hand side in 'rh'. | |||
| 837 | */ | |||
| 838 | ||||
| 839 | /* rh := X^2 */ | |||
| 840 | if (!field_sqr(group, rh, &point->X, ctx)) | |||
| 841 | goto err; | |||
| 842 | ||||
| 843 | if (!point->Z_is_one) { | |||
| 844 | if (!field_sqr(group, tmp, &point->Z, ctx)) | |||
| 845 | goto err; | |||
| 846 | if (!field_sqr(group, Z4, tmp, ctx)) | |||
| 847 | goto err; | |||
| 848 | if (!field_mul(group, Z6, Z4, tmp, ctx)) | |||
| 849 | goto err; | |||
| 850 | ||||
| 851 | /* rh := (rh + a*Z^4)*X */ | |||
| 852 | if (group->a_is_minus3) { | |||
| 853 | if (!BN_mod_lshift1_quick(tmp, Z4, p)) | |||
| 854 | goto err; | |||
| 855 | if (!BN_mod_add_quick(tmp, tmp, Z4, p)) | |||
| 856 | goto err; | |||
| 857 | if (!BN_mod_sub_quick(rh, rh, tmp, p)) | |||
| 858 | goto err; | |||
| 859 | if (!field_mul(group, rh, rh, &point->X, ctx)) | |||
| 860 | goto err; | |||
| 861 | } else { | |||
| 862 | if (!field_mul(group, tmp, Z4, &group->a, ctx)) | |||
| 863 | goto err; | |||
| 864 | if (!BN_mod_add_quick(rh, rh, tmp, p)) | |||
| 865 | goto err; | |||
| 866 | if (!field_mul(group, rh, rh, &point->X, ctx)) | |||
| 867 | goto err; | |||
| 868 | } | |||
| 869 | ||||
| 870 | /* rh := rh + b*Z^6 */ | |||
| 871 | if (!field_mul(group, tmp, &group->b, Z6, ctx)) | |||
| 872 | goto err; | |||
| 873 | if (!BN_mod_add_quick(rh, rh, tmp, p)) | |||
| 874 | goto err; | |||
| 875 | } else { | |||
| 876 | /* point->Z_is_one */ | |||
| 877 | ||||
| 878 | /* rh := (rh + a)*X */ | |||
| 879 | if (!BN_mod_add_quick(rh, rh, &group->a, p)) | |||
| 880 | goto err; | |||
| 881 | if (!field_mul(group, rh, rh, &point->X, ctx)) | |||
| 882 | goto err; | |||
| 883 | /* rh := rh + b */ | |||
| 884 | if (!BN_mod_add_quick(rh, rh, &group->b, p)) | |||
| 885 | goto err; | |||
| 886 | } | |||
| 887 | ||||
| 888 | /* 'lh' := Y^2 */ | |||
| 889 | if (!field_sqr(group, tmp, &point->Y, ctx)) | |||
| 890 | goto err; | |||
| 891 | ||||
| 892 | ret = (0 == BN_ucmp(tmp, rh)); | |||
| 893 | ||||
| 894 | err: | |||
| 895 | BN_CTX_end(ctx); | |||
| 896 | ||||
| 897 | return ret; | |||
| 898 | } | |||
| 899 | ||||
| 900 | int | |||
| 901 | ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) | |||
| 902 | { | |||
| 903 | /* | |||
| 904 | * return values: -1 error 0 equal (in affine coordinates) 1 | |||
| 905 | * not equal | |||
| 906 | */ | |||
| 907 | ||||
| 908 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *); | |||
| 909 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); | |||
| 910 | BIGNUM *tmp1, *tmp2, *Za23, *Zb23; | |||
| 911 | const BIGNUM *tmp1_, *tmp2_; | |||
| 912 | int ret = -1; | |||
| 913 | ||||
| 914 | if (EC_POINT_is_at_infinity(group, a) > 0) | |||
| 915 | return EC_POINT_is_at_infinity(group, b) > 0 ? 0 : 1; | |||
| 916 | ||||
| 917 | if (EC_POINT_is_at_infinity(group, b) > 0) | |||
| 918 | return 1; | |||
| 919 | ||||
| 920 | if (a->Z_is_one && b->Z_is_one) | |||
| 921 | return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1; | |||
| 922 | ||||
| 923 | field_mul = group->meth->field_mul; | |||
| 924 | field_sqr = group->meth->field_sqr; | |||
| 925 | ||||
| 926 | BN_CTX_start(ctx); | |||
| 927 | ||||
| 928 | if ((tmp1 = BN_CTX_get(ctx)) == NULL((void *)0)) | |||
| 929 | goto end; | |||
| 930 | if ((tmp2 = BN_CTX_get(ctx)) == NULL((void *)0)) | |||
| 931 | goto end; | |||
| 932 | if ((Za23 = BN_CTX_get(ctx)) == NULL((void *)0)) | |||
| 933 | goto end; | |||
| 934 | if ((Zb23 = BN_CTX_get(ctx)) == NULL((void *)0)) | |||
| 935 | goto end; | |||
| 936 | ||||
| 937 | /* | |||
| 938 | * We have to decide whether (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, | |||
| 939 | * Y_b/Z_b^3), or equivalently, whether (X_a*Z_b^2, Y_a*Z_b^3) = | |||
| 940 | * (X_b*Z_a^2, Y_b*Z_a^3). | |||
| 941 | */ | |||
| 942 | ||||
| 943 | if (!b->Z_is_one) { | |||
| 944 | if (!field_sqr(group, Zb23, &b->Z, ctx)) | |||
| 945 | goto end; | |||
| 946 | if (!field_mul(group, tmp1, &a->X, Zb23, ctx)) | |||
| 947 | goto end; | |||
| 948 | tmp1_ = tmp1; | |||
| 949 | } else | |||
| 950 | tmp1_ = &a->X; | |||
| 951 | if (!a->Z_is_one) { | |||
| 952 | if (!field_sqr(group, Za23, &a->Z, ctx)) | |||
| 953 | goto end; | |||
| 954 | if (!field_mul(group, tmp2, &b->X, Za23, ctx)) | |||
| 955 | goto end; | |||
| 956 | tmp2_ = tmp2; | |||
| 957 | } else | |||
| 958 | tmp2_ = &b->X; | |||
| 959 | ||||
| 960 | /* compare X_a*Z_b^2 with X_b*Z_a^2 */ | |||
| 961 | if (BN_cmp(tmp1_, tmp2_) != 0) { | |||
| 962 | ret = 1; /* points differ */ | |||
| 963 | goto end; | |||
| 964 | } | |||
| 965 | if (!b->Z_is_one) { | |||
| 966 | if (!field_mul(group, Zb23, Zb23, &b->Z, ctx)) | |||
| 967 | goto end; | |||
| 968 | if (!field_mul(group, tmp1, &a->Y, Zb23, ctx)) | |||
| 969 | goto end; | |||
| 970 | /* tmp1_ = tmp1 */ | |||
| 971 | } else | |||
| 972 | tmp1_ = &a->Y; | |||
| 973 | if (!a->Z_is_one) { | |||
| 974 | if (!field_mul(group, Za23, Za23, &a->Z, ctx)) | |||
| 975 | goto end; | |||
| 976 | if (!field_mul(group, tmp2, &b->Y, Za23, ctx)) | |||
| 977 | goto end; | |||
| 978 | /* tmp2_ = tmp2 */ | |||
| 979 | } else | |||
| 980 | tmp2_ = &b->Y; | |||
| 981 | ||||
| 982 | /* compare Y_a*Z_b^3 with Y_b*Z_a^3 */ | |||
| 983 | if (BN_cmp(tmp1_, tmp2_) != 0) { | |||
| 984 | ret = 1; /* points differ */ | |||
| 985 | goto end; | |||
| 986 | } | |||
| 987 | /* points are equal */ | |||
| 988 | ret = 0; | |||
| 989 | ||||
| 990 | end: | |||
| 991 | BN_CTX_end(ctx); | |||
| 992 | ||||
| 993 | return ret; | |||
| 994 | } | |||
| 995 | ||||
| 996 | int | |||
| 997 | ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) | |||
| 998 | { | |||
| 999 | BIGNUM *x, *y; | |||
| 1000 | int ret = 0; | |||
| 1001 | ||||
| 1002 | if (point->Z_is_one || EC_POINT_is_at_infinity(group, point) > 0) | |||
| 1003 | return 1; | |||
| 1004 | ||||
| 1005 | BN_CTX_start(ctx); | |||
| 1006 | ||||
| 1007 | if ((x = BN_CTX_get(ctx)) == NULL((void *)0)) | |||
| 1008 | goto err; | |||
| 1009 | if ((y = BN_CTX_get(ctx)) == NULL((void *)0)) | |||
| 1010 | goto err; | |||
| 1011 | ||||
| 1012 | if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx)) | |||
| 1013 | goto err; | |||
| 1014 | if (!EC_POINT_set_affine_coordinates(group, point, x, y, ctx)) | |||
| 1015 | goto err; | |||
| 1016 | if (!point->Z_is_one) { | |||
| 1017 | ECerror(ERR_R_INTERNAL_ERROR)ERR_put_error(16,(0xfff),((4|64)),"/usr/src/lib/libcrypto/ec/ecp_smpl.c" ,1017); | |||
| 1018 | goto err; | |||
| 1019 | } | |||
| 1020 | ret = 1; | |||
| 1021 | ||||
| 1022 | err: | |||
| 1023 | BN_CTX_end(ctx); | |||
| 1024 | ||||
| 1025 | return ret; | |||
| 1026 | } | |||
| 1027 | ||||
| 1028 | int | |||
| 1029 | ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx) | |||
| 1030 | { | |||
| 1031 | BIGNUM *tmp0, *tmp1; | |||
| 1032 | size_t pow2 = 0; | |||
| 1033 | BIGNUM **heap = NULL((void *)0); | |||
| 1034 | size_t i; | |||
| 1035 | int ret = 0; | |||
| 1036 | ||||
| 1037 | if (num == 0) | |||
| ||||
| 1038 | return 1; | |||
| 1039 | ||||
| 1040 | BN_CTX_start(ctx); | |||
| 1041 | ||||
| 1042 | if ((tmp0 = BN_CTX_get(ctx)) == NULL((void *)0)) | |||
| 1043 | goto err; | |||
| 1044 | if ((tmp1 = BN_CTX_get(ctx)) == NULL((void *)0)) | |||
| 1045 | goto err; | |||
| 1046 | ||||
| 1047 | /* | |||
| 1048 | * Before converting the individual points, compute inverses of all Z | |||
| 1049 | * values. Modular inversion is rather slow, but luckily we can do | |||
| 1050 | * with a single explicit inversion, plus about 3 multiplications per | |||
| 1051 | * input value. | |||
| 1052 | */ | |||
| 1053 | ||||
| 1054 | pow2 = 1; | |||
| 1055 | while (num > pow2) | |||
| 1056 | pow2 <<= 1; | |||
| 1057 | /* | |||
| 1058 | * Now pow2 is the smallest power of 2 satifsying pow2 >= num. We | |||
| 1059 | * need twice that. | |||
| 1060 | */ | |||
| 1061 | pow2 <<= 1; | |||
| 1062 | ||||
| 1063 | heap = reallocarray(NULL((void *)0), pow2, sizeof heap[0]); | |||
| 1064 | if (heap == NULL((void *)0)) | |||
| 1065 | goto err; | |||
| 1066 | ||||
| 1067 | /* | |||
| 1068 | * The array is used as a binary tree, exactly as in heapsort: | |||
| 1069 | * | |||
| 1070 | * heap[1] heap[2] heap[3] heap[4] heap[5] | |||
| 1071 | * heap[6] heap[7] heap[8]heap[9] heap[10]heap[11] | |||
| 1072 | * heap[12]heap[13] heap[14] heap[15] | |||
| 1073 | * | |||
| 1074 | * We put the Z's in the last line; then we set each other node to the | |||
| 1075 | * product of its two child-nodes (where empty or 0 entries are | |||
| 1076 | * treated as ones); then we invert heap[1]; then we invert each | |||
| 1077 | * other node by replacing it by the product of its parent (after | |||
| 1078 | * inversion) and its sibling (before inversion). | |||
| 1079 | */ | |||
| 1080 | heap[0] = NULL((void *)0); | |||
| 1081 | for (i = pow2 / 2 - 1; i > 0; i--) | |||
| 1082 | heap[i] = NULL((void *)0); | |||
| 1083 | for (i = 0; i < num; i++) | |||
| 1084 | heap[pow2 / 2 + i] = &points[i]->Z; | |||
| 1085 | for (i = pow2 / 2 + num; i < pow2; i++) | |||
| 1086 | heap[i] = NULL((void *)0); | |||
| 1087 | ||||
| 1088 | /* set each node to the product of its children */ | |||
| 1089 | for (i = pow2 / 2 - 1; i > 0; i--) { | |||
| 1090 | heap[i] = BN_new(); | |||
| 1091 | if (heap[i] == NULL((void *)0)) | |||
| 1092 | goto err; | |||
| 1093 | ||||
| 1094 | if (heap[2 * i] != NULL((void *)0)) { | |||
| 1095 | if ((heap[2 * i + 1] == NULL((void *)0)) || BN_is_zero(heap[2 * i + 1])) { | |||
| 1096 | if (!bn_copy(heap[i], heap[2 * i])) | |||
| 1097 | goto err; | |||
| 1098 | } else { | |||
| 1099 | if (BN_is_zero(heap[2 * i])) { | |||
| 1100 | if (!bn_copy(heap[i], heap[2 * i + 1])) | |||
| 1101 | goto err; | |||
| 1102 | } else { | |||
| 1103 | if (!group->meth->field_mul(group, heap[i], | |||
| 1104 | heap[2 * i], heap[2 * i + 1], ctx)) | |||
| 1105 | goto err; | |||
| 1106 | } | |||
| 1107 | } | |||
| 1108 | } | |||
| 1109 | } | |||
| 1110 | ||||
| 1111 | /* invert heap[1] */ | |||
| 1112 | if (!BN_is_zero(heap[1])) { | |||
| 1113 | if (BN_mod_inverse_ct(heap[1], heap[1], &group->field, ctx) == NULL((void *)0)) { | |||
| 1114 | ECerror(ERR_R_BN_LIB)ERR_put_error(16,(0xfff),(3),"/usr/src/lib/libcrypto/ec/ecp_smpl.c" ,1114); | |||
| 1115 | goto err; | |||
| 1116 | } | |||
| 1117 | } | |||
| 1118 | if (group->meth->field_encode != NULL((void *)0)) { | |||
| 1119 | /* | |||
| 1120 | * in the Montgomery case, we just turned R*H (representing | |||
| 1121 | * H) into 1/(R*H), but we need R*(1/H) (representing | |||
| 1122 | * 1/H); i.e. we have need to multiply by the Montgomery | |||
| 1123 | * factor twice | |||
| 1124 | */ | |||
| 1125 | if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) | |||
| 1126 | goto err; | |||
| 1127 | if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) | |||
| 1128 | goto err; | |||
| 1129 | } | |||
| 1130 | /* set other heap[i]'s to their inverses */ | |||
| 1131 | for (i = 2; i < pow2 / 2 + num; i += 2) { | |||
| 1132 | /* i is even */ | |||
| 1133 | if ((heap[i + 1] != NULL((void *)0)) && !BN_is_zero(heap[i + 1])) { | |||
| 1134 | if (!group->meth->field_mul(group, tmp0, heap[i / 2], heap[i + 1], ctx)) | |||
| 1135 | goto err; | |||
| 1136 | if (!group->meth->field_mul(group, tmp1, heap[i / 2], heap[i], ctx)) | |||
| 1137 | goto err; | |||
| 1138 | if (!bn_copy(heap[i], tmp0)) | |||
| 1139 | goto err; | |||
| 1140 | if (!bn_copy(heap[i + 1], tmp1)) | |||
| 1141 | goto err; | |||
| 1142 | } else { | |||
| 1143 | if (!bn_copy(heap[i], heap[i / 2])) | |||
| 1144 | goto err; | |||
| 1145 | } | |||
| 1146 | } | |||
| 1147 | ||||
| 1148 | /* | |||
| 1149 | * we have replaced all non-zero Z's by their inverses, now fix up | |||
| 1150 | * all the points | |||
| 1151 | */ | |||
| 1152 | for (i = 0; i < num; i++) { | |||
| 1153 | EC_POINT *p = points[i]; | |||
| 1154 | ||||
| 1155 | if (!BN_is_zero(&p->Z)) { | |||
| 1156 | /* turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1) */ | |||
| 1157 | ||||
| 1158 | if (!group->meth->field_sqr(group, tmp1, &p->Z, ctx)) | |||
| 1159 | goto err; | |||
| 1160 | if (!group->meth->field_mul(group, &p->X, &p->X, tmp1, ctx)) | |||
| 1161 | goto err; | |||
| 1162 | ||||
| 1163 | if (!group->meth->field_mul(group, tmp1, tmp1, &p->Z, ctx)) | |||
| 1164 | goto err; | |||
| 1165 | if (!group->meth->field_mul(group, &p->Y, &p->Y, tmp1, ctx)) | |||
| 1166 | goto err; | |||
| 1167 | ||||
| 1168 | if (group->meth->field_set_to_one != NULL((void *)0)) { | |||
| 1169 | if (!group->meth->field_set_to_one(group, &p->Z, ctx)) | |||
| 1170 | goto err; | |||
| 1171 | } else { | |||
| 1172 | if (!BN_one(&p->Z)) | |||
| 1173 | goto err; | |||
| 1174 | } | |||
| 1175 | p->Z_is_one = 1; | |||
| ||||
| 1176 | } | |||
| 1177 | } | |||
| 1178 | ||||
| 1179 | ret = 1; | |||
| 1180 | ||||
| 1181 | err: | |||
| 1182 | BN_CTX_end(ctx); | |||
| 1183 | ||||
| 1184 | if (heap != NULL((void *)0)) { | |||
| 1185 | /* | |||
| 1186 | * heap[pow2/2] .. heap[pow2-1] have not been allocated | |||
| 1187 | * locally! | |||
| 1188 | */ | |||
| 1189 | for (i = pow2 / 2 - 1; i > 0; i--) { | |||
| 1190 | BN_free(heap[i]); | |||
| 1191 | } | |||
| 1192 | free(heap); | |||
| 1193 | } | |||
| 1194 | return ret; | |||
| 1195 | } | |||
| 1196 | ||||
| 1197 | int | |||
| 1198 | ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | |||
| 1199 | { | |||
| 1200 | return BN_mod_mul(r, a, b, &group->field, ctx); | |||
| 1201 | } | |||
| 1202 | ||||
| 1203 | int | |||
| 1204 | ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) | |||
| 1205 | { | |||
| 1206 | return BN_mod_sqr(r, a, &group->field, ctx); | |||
| 1207 | } | |||
| 1208 | ||||
| 1209 | /* | |||
| 1210 | * Apply randomization of EC point projective coordinates: | |||
| 1211 | * | |||
| 1212 | * (X, Y, Z) = (lambda^2 * X, lambda^3 * Y, lambda * Z) | |||
| 1213 | * | |||
| 1214 | * where lambda is in the interval [1, group->field). | |||
| 1215 | */ | |||
| 1216 | int | |||
| 1217 | ec_GFp_simple_blind_coordinates(const EC_GROUP *group, EC_POINT *p, BN_CTX *ctx) | |||
| 1218 | { | |||
| 1219 | BIGNUM *lambda = NULL((void *)0); | |||
| 1220 | BIGNUM *tmp = NULL((void *)0); | |||
| 1221 | int ret = 0; | |||
| 1222 | ||||
| 1223 | BN_CTX_start(ctx); | |||
| 1224 | if ((lambda = BN_CTX_get(ctx)) == NULL((void *)0)) | |||
| 1225 | goto err; | |||
| 1226 | if ((tmp = BN_CTX_get(ctx)) == NULL((void *)0)) | |||
| 1227 | goto err; | |||
| 1228 | ||||
| 1229 | /* Generate lambda in [1, group->field). */ | |||
| 1230 | if (!bn_rand_interval(lambda, 1, &group->field)) | |||
| 1231 | goto err; | |||
| 1232 | ||||
| 1233 | if (group->meth->field_encode != NULL((void *)0) && | |||
| 1234 | !group->meth->field_encode(group, lambda, lambda, ctx)) | |||
| 1235 | goto err; | |||
| 1236 | ||||
| 1237 | /* Z = lambda * Z */ | |||
| 1238 | if (!group->meth->field_mul(group, &p->Z, lambda, &p->Z, ctx)) | |||
| 1239 | goto err; | |||
| 1240 | ||||
| 1241 | /* tmp = lambda^2 */ | |||
| 1242 | if (!group->meth->field_sqr(group, tmp, lambda, ctx)) | |||
| 1243 | goto err; | |||
| 1244 | ||||
| 1245 | /* X = lambda^2 * X */ | |||
| 1246 | if (!group->meth->field_mul(group, &p->X, tmp, &p->X, ctx)) | |||
| 1247 | goto err; | |||
| 1248 | ||||
| 1249 | /* tmp = lambda^3 */ | |||
| 1250 | if (!group->meth->field_mul(group, tmp, tmp, lambda, ctx)) | |||
| 1251 | goto err; | |||
| 1252 | ||||
| 1253 | /* Y = lambda^3 * Y */ | |||
| 1254 | if (!group->meth->field_mul(group, &p->Y, tmp, &p->Y, ctx)) | |||
| 1255 | goto err; | |||
| 1256 | ||||
| 1257 | /* Disable optimized arithmetics after replacing Z by lambda * Z. */ | |||
| 1258 | p->Z_is_one = 0; | |||
| 1259 | ||||
| 1260 | ret = 1; | |||
| 1261 | ||||
| 1262 | err: | |||
| 1263 | BN_CTX_end(ctx); | |||
| 1264 | return ret; | |||
| 1265 | } | |||
| 1266 | ||||
| 1267 | #define EC_POINT_BN_set_flags(P, flags) do { \ | |||
| 1268 | BN_set_flags(&(P)->X, (flags)); \ | |||
| 1269 | BN_set_flags(&(P)->Y, (flags)); \ | |||
| 1270 | BN_set_flags(&(P)->Z, (flags)); \ | |||
| 1271 | } while(0) | |||
| 1272 | ||||
| 1273 | #define EC_POINT_CSWAP(c, a, b, w, t) do { \ | |||
| 1274 | if (!BN_swap_ct(c, &(a)->X, &(b)->X, w) || \ | |||
| 1275 | !BN_swap_ct(c, &(a)->Y, &(b)->Y, w) || \ | |||
| 1276 | !BN_swap_ct(c, &(a)->Z, &(b)->Z, w)) \ | |||
| 1277 | goto err; \ | |||
| 1278 | t = ((a)->Z_is_one ^ (b)->Z_is_one) & (c); \ | |||
| 1279 | (a)->Z_is_one ^= (t); \ | |||
| 1280 | (b)->Z_is_one ^= (t); \ | |||
| 1281 | } while(0) | |||
| 1282 | ||||
| 1283 | /* | |||
| 1284 | * This function computes (in constant time) a point multiplication over the | |||
| 1285 | * EC group. | |||
| 1286 | * | |||
| 1287 | * At a high level, it is Montgomery ladder with conditional swaps. | |||
| 1288 | * | |||
| 1289 | * It performs either a fixed point multiplication | |||
| 1290 | * (scalar * generator) | |||
| 1291 | * when point is NULL, or a variable point multiplication | |||
| 1292 | * (scalar * point) | |||
| 1293 | * when point is not NULL. | |||
| 1294 | * | |||
| 1295 | * scalar should be in the range [0,n) otherwise all constant time bets are off. | |||
| 1296 | * | |||
| 1297 | * NB: This says nothing about EC_POINT_add and EC_POINT_dbl, | |||
| 1298 | * which of course are not constant time themselves. | |||
| 1299 | * | |||
| 1300 | * The product is stored in r. | |||
| 1301 | * | |||
| 1302 | * Returns 1 on success, 0 otherwise. | |||
| 1303 | */ | |||
| 1304 | static int | |||
| 1305 | ec_GFp_simple_mul_ct(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, | |||
| 1306 | const EC_POINT *point, BN_CTX *ctx) | |||
| 1307 | { | |||
| 1308 | int i, cardinality_bits, group_top, kbit, pbit, Z_is_one; | |||
| 1309 | EC_POINT *s = NULL((void *)0); | |||
| 1310 | BIGNUM *k = NULL((void *)0); | |||
| 1311 | BIGNUM *lambda = NULL((void *)0); | |||
| 1312 | BIGNUM *cardinality = NULL((void *)0); | |||
| 1313 | int ret = 0; | |||
| 1314 | ||||
| 1315 | BN_CTX_start(ctx); | |||
| 1316 | ||||
| 1317 | if ((s = EC_POINT_new(group)) == NULL((void *)0)) | |||
| 1318 | goto err; | |||
| 1319 | ||||
| 1320 | if (point == NULL((void *)0)) { | |||
| 1321 | if (!EC_POINT_copy(s, group->generator)) | |||
| 1322 | goto err; | |||
| 1323 | } else { | |||
| 1324 | if (!EC_POINT_copy(s, point)) | |||
| 1325 | goto err; | |||
| 1326 | } | |||
| 1327 | ||||
| 1328 | EC_POINT_BN_set_flags(s, BN_FLG_CONSTTIME0x04); | |||
| 1329 | ||||
| 1330 | if ((cardinality = BN_CTX_get(ctx)) == NULL((void *)0)) | |||
| 1331 | goto err; | |||
| 1332 | if ((lambda = BN_CTX_get(ctx)) == NULL((void *)0)) | |||
| 1333 | goto err; | |||
| 1334 | if ((k = BN_CTX_get(ctx)) == NULL((void *)0)) | |||
| 1335 | goto err; | |||
| 1336 | if (!BN_mul(cardinality, &group->order, &group->cofactor, ctx)) | |||
| 1337 | goto err; | |||
| 1338 | ||||
| 1339 | /* | |||
| 1340 | * Group cardinalities are often on a word boundary. | |||
| 1341 | * So when we pad the scalar, some timing diff might | |||
| 1342 | * pop if it needs to be expanded due to carries. | |||
| 1343 | * So expand ahead of time. | |||
| 1344 | */ | |||
| 1345 | cardinality_bits = BN_num_bits(cardinality); | |||
| 1346 | group_top = cardinality->top; | |||
| 1347 | if (!bn_wexpand(k, group_top + 2) || | |||
| 1348 | !bn_wexpand(lambda, group_top + 2)) | |||
| 1349 | goto err; | |||
| 1350 | ||||
| 1351 | if (!bn_copy(k, scalar)) | |||
| 1352 | goto err; | |||
| 1353 | ||||
| 1354 | BN_set_flags(k, BN_FLG_CONSTTIME0x04); | |||
| 1355 | ||||
| 1356 | if (BN_num_bits(k) > cardinality_bits || BN_is_negative(k)) { | |||
| 1357 | /* | |||
| 1358 | * This is an unusual input, and we don't guarantee | |||
| 1359 | * constant-timeness | |||
| 1360 | */ | |||
| 1361 | if (!BN_nnmod(k, k, cardinality, ctx)) | |||
| 1362 | goto err; | |||
| 1363 | } | |||
| 1364 | ||||
| 1365 | if (!BN_add(lambda, k, cardinality)) | |||
| 1366 | goto err; | |||
| 1367 | BN_set_flags(lambda, BN_FLG_CONSTTIME0x04); | |||
| 1368 | if (!BN_add(k, lambda, cardinality)) | |||
| 1369 | goto err; | |||
| 1370 | /* | |||
| 1371 | * lambda := scalar + cardinality | |||
| 1372 | * k := scalar + 2*cardinality | |||
| 1373 | */ | |||
| 1374 | kbit = BN_is_bit_set(lambda, cardinality_bits); | |||
| 1375 | if (!BN_swap_ct(kbit, k, lambda, group_top + 2)) | |||
| 1376 | goto err; | |||
| 1377 | ||||
| 1378 | group_top = group->field.top; | |||
| 1379 | if (!bn_wexpand(&s->X, group_top) || | |||
| 1380 | !bn_wexpand(&s->Y, group_top) || | |||
| 1381 | !bn_wexpand(&s->Z, group_top) || | |||
| 1382 | !bn_wexpand(&r->X, group_top) || | |||
| 1383 | !bn_wexpand(&r->Y, group_top) || | |||
| 1384 | !bn_wexpand(&r->Z, group_top)) | |||
| 1385 | goto err; | |||
| 1386 | ||||
| 1387 | /* | |||
| 1388 | * Apply coordinate blinding for EC_POINT if the underlying EC_METHOD | |||
| 1389 | * implements it. | |||
| 1390 | */ | |||
| 1391 | if (!ec_point_blind_coordinates(group, s, ctx)) | |||
| 1392 | goto err; | |||
| 1393 | ||||
| 1394 | /* top bit is a 1, in a fixed pos */ | |||
| 1395 | if (!EC_POINT_copy(r, s)) | |||
| 1396 | goto err; | |||
| 1397 | ||||
| 1398 | EC_POINT_BN_set_flags(r, BN_FLG_CONSTTIME0x04); | |||
| 1399 | ||||
| 1400 | if (!EC_POINT_dbl(group, s, s, ctx)) | |||
| 1401 | goto err; | |||
| 1402 | ||||
| 1403 | pbit = 0; | |||
| 1404 | ||||
| 1405 | /* | |||
| 1406 | * The ladder step, with branches, is | |||
| 1407 | * | |||
| 1408 | * k[i] == 0: S = add(R, S), R = dbl(R) | |||
| 1409 | * k[i] == 1: R = add(S, R), S = dbl(S) | |||
| 1410 | * | |||
| 1411 | * Swapping R, S conditionally on k[i] leaves you with state | |||
| 1412 | * | |||
| 1413 | * k[i] == 0: T, U = R, S | |||
| 1414 | * k[i] == 1: T, U = S, R | |||
| 1415 | * | |||
| 1416 | * Then perform the ECC ops. | |||
| 1417 | * | |||
| 1418 | * U = add(T, U) | |||
| 1419 | * T = dbl(T) | |||
| 1420 | * | |||
| 1421 | * Which leaves you with state | |||
| 1422 | * | |||
| 1423 | * k[i] == 0: U = add(R, S), T = dbl(R) | |||
| 1424 | * k[i] == 1: U = add(S, R), T = dbl(S) | |||
| 1425 | * | |||
| 1426 | * Swapping T, U conditionally on k[i] leaves you with state | |||
| 1427 | * | |||
| 1428 | * k[i] == 0: R, S = T, U | |||
| 1429 | * k[i] == 1: R, S = U, T | |||
| 1430 | * | |||
| 1431 | * Which leaves you with state | |||
| 1432 | * | |||
| 1433 | * k[i] == 0: S = add(R, S), R = dbl(R) | |||
| 1434 | * k[i] == 1: R = add(S, R), S = dbl(S) | |||
| 1435 | * | |||
| 1436 | * So we get the same logic, but instead of a branch it's a | |||
| 1437 | * conditional swap, followed by ECC ops, then another conditional swap. | |||
| 1438 | * | |||
| 1439 | * Optimization: The end of iteration i and start of i-1 looks like | |||
| 1440 | * | |||
| 1441 | * ... | |||
| 1442 | * CSWAP(k[i], R, S) | |||
| 1443 | * ECC | |||
| 1444 | * CSWAP(k[i], R, S) | |||
| 1445 | * (next iteration) | |||
| 1446 | * CSWAP(k[i-1], R, S) | |||
| 1447 | * ECC | |||
| 1448 | * CSWAP(k[i-1], R, S) | |||
| 1449 | * ... | |||
| 1450 | * | |||
| 1451 | * So instead of two contiguous swaps, you can merge the condition | |||
| 1452 | * bits and do a single swap. | |||
| 1453 | * | |||
| 1454 | * k[i] k[i-1] Outcome | |||
| 1455 | * 0 0 No Swap | |||
| 1456 | * 0 1 Swap | |||
| 1457 | * 1 0 Swap | |||
| 1458 | * 1 1 No Swap | |||
| 1459 | * | |||
| 1460 | * This is XOR. pbit tracks the previous bit of k. | |||
| 1461 | */ | |||
| 1462 | ||||
| 1463 | for (i = cardinality_bits - 1; i >= 0; i--) { | |||
| 1464 | kbit = BN_is_bit_set(k, i) ^ pbit; | |||
| 1465 | EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one); | |||
| 1466 | if (!EC_POINT_add(group, s, r, s, ctx)) | |||
| 1467 | goto err; | |||
| 1468 | if (!EC_POINT_dbl(group, r, r, ctx)) | |||
| 1469 | goto err; | |||
| 1470 | /* | |||
| 1471 | * pbit logic merges this cswap with that of the | |||
| 1472 | * next iteration | |||
| 1473 | */ | |||
| 1474 | pbit ^= kbit; | |||
| 1475 | } | |||
| 1476 | /* one final cswap to move the right value into r */ | |||
| 1477 | EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one); | |||
| 1478 | ||||
| 1479 | ret = 1; | |||
| 1480 | ||||
| 1481 | err: | |||
| 1482 | EC_POINT_free(s); | |||
| 1483 | BN_CTX_end(ctx); | |||
| 1484 | ||||
| 1485 | return ret; | |||
| 1486 | } | |||
| 1487 | ||||
| 1488 | #undef EC_POINT_BN_set_flags | |||
| 1489 | #undef EC_POINT_CSWAP | |||
| 1490 | ||||
| 1491 | int | |||
| 1492 | ec_GFp_simple_mul_generator_ct(const EC_GROUP *group, EC_POINT *r, | |||
| 1493 | const BIGNUM *scalar, BN_CTX *ctx) | |||
| 1494 | { | |||
| 1495 | return ec_GFp_simple_mul_ct(group, r, scalar, NULL((void *)0), ctx); | |||
| 1496 | } | |||
| 1497 | ||||
| 1498 | int | |||
| 1499 | ec_GFp_simple_mul_single_ct(const EC_GROUP *group, EC_POINT *r, | |||
| 1500 | const BIGNUM *scalar, const EC_POINT *point, BN_CTX *ctx) | |||
| 1501 | { | |||
| 1502 | return ec_GFp_simple_mul_ct(group, r, scalar, point, ctx); | |||
| 1503 | } | |||
| 1504 | ||||
| 1505 | int | |||
| 1506 | ec_GFp_simple_mul_double_nonct(const EC_GROUP *group, EC_POINT *r, | |||
| 1507 | const BIGNUM *g_scalar, const BIGNUM *p_scalar, const EC_POINT *point, | |||
| 1508 | BN_CTX *ctx) | |||
| 1509 | { | |||
| 1510 | return ec_wNAF_mul(group, r, g_scalar, 1, &point, &p_scalar, ctx); | |||
| 1511 | } | |||
| 1512 | ||||
| 1513 | static const EC_METHOD ec_GFp_simple_method = { | |||
| 1514 | .field_type = NID_X9_62_prime_field406, | |||
| 1515 | .group_init = ec_GFp_simple_group_init, | |||
| 1516 | .group_finish = ec_GFp_simple_group_finish, | |||
| 1517 | .group_copy = ec_GFp_simple_group_copy, | |||
| 1518 | .group_set_curve = ec_GFp_simple_group_set_curve, | |||
| 1519 | .group_get_curve = ec_GFp_simple_group_get_curve, | |||
| 1520 | .group_get_degree = ec_GFp_simple_group_get_degree, | |||
| 1521 | .group_order_bits = ec_group_simple_order_bits, | |||
| 1522 | .group_check_discriminant = ec_GFp_simple_group_check_discriminant, | |||
| 1523 | .point_init = ec_GFp_simple_point_init, | |||
| 1524 | .point_finish = ec_GFp_simple_point_finish, | |||
| 1525 | .point_copy = ec_GFp_simple_point_copy, | |||
| 1526 | .point_set_to_infinity = ec_GFp_simple_point_set_to_infinity, | |||
| 1527 | .point_set_Jprojective_coordinates = | |||
| 1528 | ec_GFp_simple_set_Jprojective_coordinates, | |||
| 1529 | .point_get_Jprojective_coordinates = | |||
| 1530 | ec_GFp_simple_get_Jprojective_coordinates, | |||
| 1531 | .point_set_affine_coordinates = | |||
| 1532 | ec_GFp_simple_point_set_affine_coordinates, | |||
| 1533 | .point_get_affine_coordinates = | |||
| 1534 | ec_GFp_simple_point_get_affine_coordinates, | |||
| 1535 | .point_set_compressed_coordinates = | |||
| 1536 | ec_GFp_simple_set_compressed_coordinates, | |||
| 1537 | .point2oct = ec_GFp_simple_point2oct, | |||
| 1538 | .oct2point = ec_GFp_simple_oct2point, | |||
| 1539 | .add = ec_GFp_simple_add, | |||
| 1540 | .dbl = ec_GFp_simple_dbl, | |||
| 1541 | .invert = ec_GFp_simple_invert, | |||
| 1542 | .is_at_infinity = ec_GFp_simple_is_at_infinity, | |||
| 1543 | .is_on_curve = ec_GFp_simple_is_on_curve, | |||
| 1544 | .point_cmp = ec_GFp_simple_cmp, | |||
| 1545 | .make_affine = ec_GFp_simple_make_affine, | |||
| 1546 | .points_make_affine = ec_GFp_simple_points_make_affine, | |||
| 1547 | .mul_generator_ct = ec_GFp_simple_mul_generator_ct, | |||
| 1548 | .mul_single_ct = ec_GFp_simple_mul_single_ct, | |||
| 1549 | .mul_double_nonct = ec_GFp_simple_mul_double_nonct, | |||
| 1550 | .field_mul = ec_GFp_simple_field_mul, | |||
| 1551 | .field_sqr = ec_GFp_simple_field_sqr, | |||
| 1552 | .blind_coordinates = ec_GFp_simple_blind_coordinates, | |||
| 1553 | }; | |||
| 1554 | ||||
| 1555 | const EC_METHOD * | |||
| 1556 | EC_GFp_simple_method(void) | |||
| 1557 | { | |||
| 1558 | return &ec_GFp_simple_method; | |||
| 1559 | } | |||
| 1560 | LCRYPTO_ALIAS(EC_GFp_simple_method)asm(""); |