File: | dev/pci/drm/amd/pm/powerplay/hwmgr/vega10_hwmgr.c |
Warning: | line 3207, column 2 Value stored to 'result' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* |
2 | * Copyright 2016 Advanced Micro Devices, Inc. |
3 | * |
4 | * Permission is hereby granted, free of charge, to any person obtaining a |
5 | * copy of this software and associated documentation files (the "Software"), |
6 | * to deal in the Software without restriction, including without limitation |
7 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
8 | * and/or sell copies of the Software, and to permit persons to whom the |
9 | * Software is furnished to do so, subject to the following conditions: |
10 | * |
11 | * The above copyright notice and this permission notice shall be included in |
12 | * all copies or substantial portions of the Software. |
13 | * |
14 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
15 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
16 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
17 | * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
18 | * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
19 | * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
20 | * OTHER DEALINGS IN THE SOFTWARE. |
21 | * |
22 | */ |
23 | |
24 | #include <linux/delay.h> |
25 | #include <linux/fb.h> |
26 | #include <linux/module.h> |
27 | #include <linux/pci.h> |
28 | #include <linux/slab.h> |
29 | |
30 | #include "hwmgr.h" |
31 | #include "amd_powerplay.h" |
32 | #include "hardwaremanager.h" |
33 | #include "ppatomfwctrl.h" |
34 | #include "atomfirmware.h" |
35 | #include "cgs_common.h" |
36 | #include "vega10_powertune.h" |
37 | #include "smu9.h" |
38 | #include "smu9_driver_if.h" |
39 | #include "vega10_inc.h" |
40 | #include "soc15_common.h" |
41 | #include "pppcielanes.h" |
42 | #include "vega10_hwmgr.h" |
43 | #include "vega10_smumgr.h" |
44 | #include "vega10_processpptables.h" |
45 | #include "vega10_pptable.h" |
46 | #include "vega10_thermal.h" |
47 | #include "pp_debug.h" |
48 | #include "amd_pcie_helpers.h" |
49 | #include "ppinterrupt.h" |
50 | #include "pp_overdriver.h" |
51 | #include "pp_thermal.h" |
52 | #include "vega10_baco.h" |
53 | |
54 | #include "smuio/smuio_9_0_offset.h" |
55 | #include "smuio/smuio_9_0_sh_mask.h" |
56 | |
57 | #define smnPCIE_LC_SPEED_CNTL0x11140290 0x11140290 |
58 | #define smnPCIE_LC_LINK_WIDTH_CNTL0x11140288 0x11140288 |
59 | |
60 | #define HBM_MEMORY_CHANNEL_WIDTH128 128 |
61 | |
62 | static const uint32_t channel_number[] = {1, 2, 0, 4, 0, 8, 0, 16, 2}; |
63 | |
64 | #define mmDF_CS_AON0_DramBaseAddress00x0044 0x0044 |
65 | #define mmDF_CS_AON0_DramBaseAddress0_BASE_IDX0 0 |
66 | |
67 | //DF_CS_AON0_DramBaseAddress0 |
68 | #define DF_CS_AON0_DramBaseAddress0__AddrRngVal__SHIFT0x0 0x0 |
69 | #define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn__SHIFT0x1 0x1 |
70 | #define DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT0x4 0x4 |
71 | #define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel__SHIFT0x8 0x8 |
72 | #define DF_CS_AON0_DramBaseAddress0__DramBaseAddr__SHIFT0xc 0xc |
73 | #define DF_CS_AON0_DramBaseAddress0__AddrRngVal_MASK0x00000001L 0x00000001L |
74 | #define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn_MASK0x00000002L 0x00000002L |
75 | #define DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK0x000000F0L 0x000000F0L |
76 | #define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel_MASK0x00000700L 0x00000700L |
77 | #define DF_CS_AON0_DramBaseAddress0__DramBaseAddr_MASK0xFFFFF000L 0xFFFFF000L |
78 | |
79 | typedef enum { |
80 | CLK_SMNCLK = 0, |
81 | CLK_SOCCLK, |
82 | CLK_MP0CLK, |
83 | CLK_MP1CLK, |
84 | CLK_LCLK, |
85 | CLK_DCEFCLK, |
86 | CLK_VCLK, |
87 | CLK_DCLK, |
88 | CLK_ECLK, |
89 | CLK_UCLK, |
90 | CLK_GFXCLK, |
91 | CLK_COUNT, |
92 | } CLOCK_ID_e; |
93 | |
94 | static const ULONG PhwVega10_Magic = (ULONG)(PHM_VIslands_Magic); |
95 | |
96 | static struct vega10_power_state *cast_phw_vega10_power_state( |
97 | struct pp_hw_power_state *hw_ps) |
98 | { |
99 | PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic),do { if (!((PhwVega10_Magic == hw_ps->magic))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Invalid Powerstate Type!"); return ((void *)0);; } } while (0) |
100 | "Invalid Powerstate Type!",do { if (!((PhwVega10_Magic == hw_ps->magic))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Invalid Powerstate Type!"); return ((void *)0);; } } while (0) |
101 | return NULL;)do { if (!((PhwVega10_Magic == hw_ps->magic))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Invalid Powerstate Type!"); return ((void *)0);; } } while (0); |
102 | |
103 | return (struct vega10_power_state *)hw_ps; |
104 | } |
105 | |
106 | static const struct vega10_power_state *cast_const_phw_vega10_power_state( |
107 | const struct pp_hw_power_state *hw_ps) |
108 | { |
109 | PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic),do { if (!((PhwVega10_Magic == hw_ps->magic))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Invalid Powerstate Type!"); return ((void *)0);; } } while (0) |
110 | "Invalid Powerstate Type!",do { if (!((PhwVega10_Magic == hw_ps->magic))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Invalid Powerstate Type!"); return ((void *)0);; } } while (0) |
111 | return NULL;)do { if (!((PhwVega10_Magic == hw_ps->magic))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Invalid Powerstate Type!"); return ((void *)0);; } } while (0); |
112 | |
113 | return (const struct vega10_power_state *)hw_ps; |
114 | } |
115 | |
116 | static void vega10_set_default_registry_data(struct pp_hwmgr *hwmgr) |
117 | { |
118 | struct vega10_hwmgr *data = hwmgr->backend; |
119 | |
120 | data->registry_data.sclk_dpm_key_disabled = |
121 | hwmgr->feature_mask & PP_SCLK_DPM_MASK ? false0 : true1; |
122 | data->registry_data.socclk_dpm_key_disabled = |
123 | hwmgr->feature_mask & PP_SOCCLK_DPM_MASK ? false0 : true1; |
124 | data->registry_data.mclk_dpm_key_disabled = |
125 | hwmgr->feature_mask & PP_MCLK_DPM_MASK ? false0 : true1; |
126 | data->registry_data.pcie_dpm_key_disabled = |
127 | hwmgr->feature_mask & PP_PCIE_DPM_MASK ? false0 : true1; |
128 | |
129 | data->registry_data.dcefclk_dpm_key_disabled = |
130 | hwmgr->feature_mask & PP_DCEFCLK_DPM_MASK ? false0 : true1; |
131 | |
132 | if (hwmgr->feature_mask & PP_POWER_CONTAINMENT_MASK) { |
133 | data->registry_data.power_containment_support = 1; |
134 | data->registry_data.enable_pkg_pwr_tracking_feature = 1; |
135 | data->registry_data.enable_tdc_limit_feature = 1; |
136 | } |
137 | |
138 | data->registry_data.clock_stretcher_support = |
139 | hwmgr->feature_mask & PP_CLOCK_STRETCH_MASK ? true1 : false0; |
140 | |
141 | data->registry_data.ulv_support = |
142 | hwmgr->feature_mask & PP_ULV_MASK ? true1 : false0; |
143 | |
144 | data->registry_data.sclk_deep_sleep_support = |
145 | hwmgr->feature_mask & PP_SCLK_DEEP_SLEEP_MASK ? true1 : false0; |
146 | |
147 | data->registry_data.disable_water_mark = 0; |
148 | |
149 | data->registry_data.fan_control_support = 1; |
150 | data->registry_data.thermal_support = 1; |
151 | data->registry_data.fw_ctf_enabled = 1; |
152 | |
153 | data->registry_data.avfs_support = |
154 | hwmgr->feature_mask & PP_AVFS_MASK ? true1 : false0; |
155 | data->registry_data.led_dpm_enabled = 1; |
156 | |
157 | data->registry_data.vr0hot_enabled = 1; |
158 | data->registry_data.vr1hot_enabled = 1; |
159 | data->registry_data.regulator_hot_gpio_support = 1; |
160 | |
161 | data->registry_data.didt_support = 1; |
162 | if (data->registry_data.didt_support) { |
163 | data->registry_data.didt_mode = 6; |
164 | data->registry_data.sq_ramping_support = 1; |
165 | data->registry_data.db_ramping_support = 0; |
166 | data->registry_data.td_ramping_support = 0; |
167 | data->registry_data.tcp_ramping_support = 0; |
168 | data->registry_data.dbr_ramping_support = 0; |
169 | data->registry_data.edc_didt_support = 1; |
170 | data->registry_data.gc_didt_support = 0; |
171 | data->registry_data.psm_didt_support = 0; |
172 | } |
173 | |
174 | data->display_voltage_mode = PPVEGA10_VEGA10DISPLAYVOLTAGEMODE_DFLT0xffffffff; |
175 | data->dcef_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT0xffffffff; |
176 | data->dcef_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT0xffffffff; |
177 | data->dcef_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT0xffffffff; |
178 | data->disp_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT0xffffffff; |
179 | data->disp_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT0xffffffff; |
180 | data->disp_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT0xffffffff; |
181 | data->pixel_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT0xffffffff; |
182 | data->pixel_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT0xffffffff; |
183 | data->pixel_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT0xffffffff; |
184 | data->phy_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT0xffffffff; |
185 | data->phy_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT0xffffffff; |
186 | data->phy_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT0xffffffff; |
187 | |
188 | data->gfxclk_average_alpha = PPVEGA10_VEGA10GFXCLKAVERAGEALPHA_DFLT25; |
189 | data->socclk_average_alpha = PPVEGA10_VEGA10SOCCLKAVERAGEALPHA_DFLT25; |
190 | data->uclk_average_alpha = PPVEGA10_VEGA10UCLKCLKAVERAGEALPHA_DFLT25; |
191 | data->gfx_activity_average_alpha = PPVEGA10_VEGA10GFXACTIVITYAVERAGEALPHA_DFLT25; |
192 | } |
193 | |
194 | static int vega10_set_features_platform_caps(struct pp_hwmgr *hwmgr) |
195 | { |
196 | struct vega10_hwmgr *data = hwmgr->backend; |
197 | struct phm_ppt_v2_information *table_info = |
198 | (struct phm_ppt_v2_information *)hwmgr->pptable; |
199 | struct amdgpu_device *adev = hwmgr->adev; |
200 | |
201 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
202 | PHM_PlatformCaps_SclkDeepSleep); |
203 | |
204 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
205 | PHM_PlatformCaps_DynamicPatchPowerState); |
206 | |
207 | if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE0x0) |
208 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
209 | PHM_PlatformCaps_ControlVDDCI); |
210 | |
211 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
212 | PHM_PlatformCaps_EnableSMU7ThermalManagement); |
213 | |
214 | if (adev->pg_flags & AMD_PG_SUPPORT_UVD(1 << 3)) |
215 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
216 | PHM_PlatformCaps_UVDPowerGating); |
217 | |
218 | if (adev->pg_flags & AMD_PG_SUPPORT_VCE(1 << 4)) |
219 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
220 | PHM_PlatformCaps_VCEPowerGating); |
221 | |
222 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
223 | PHM_PlatformCaps_UnTabledHardwareInterface); |
224 | |
225 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
226 | PHM_PlatformCaps_FanSpeedInTableIsRPM); |
227 | |
228 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
229 | PHM_PlatformCaps_ODFuzzyFanControlSupport); |
230 | |
231 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
232 | PHM_PlatformCaps_DynamicPowerManagement); |
233 | |
234 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
235 | PHM_PlatformCaps_SMC); |
236 | |
237 | /* power tune caps */ |
238 | /* assume disabled */ |
239 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
240 | PHM_PlatformCaps_PowerContainment); |
241 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
242 | PHM_PlatformCaps_DiDtSupport); |
243 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
244 | PHM_PlatformCaps_SQRamping); |
245 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
246 | PHM_PlatformCaps_DBRamping); |
247 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
248 | PHM_PlatformCaps_TDRamping); |
249 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
250 | PHM_PlatformCaps_TCPRamping); |
251 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
252 | PHM_PlatformCaps_DBRRamping); |
253 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
254 | PHM_PlatformCaps_DiDtEDCEnable); |
255 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
256 | PHM_PlatformCaps_GCEDC); |
257 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
258 | PHM_PlatformCaps_PSM); |
259 | |
260 | if (data->registry_data.didt_support) { |
261 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtSupport); |
262 | if (data->registry_data.sq_ramping_support) |
263 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SQRamping); |
264 | if (data->registry_data.db_ramping_support) |
265 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRamping); |
266 | if (data->registry_data.td_ramping_support) |
267 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TDRamping); |
268 | if (data->registry_data.tcp_ramping_support) |
269 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TCPRamping); |
270 | if (data->registry_data.dbr_ramping_support) |
271 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRRamping); |
272 | if (data->registry_data.edc_didt_support) |
273 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtEDCEnable); |
274 | if (data->registry_data.gc_didt_support) |
275 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_GCEDC); |
276 | if (data->registry_data.psm_didt_support) |
277 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PSM); |
278 | } |
279 | |
280 | if (data->registry_data.power_containment_support) |
281 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
282 | PHM_PlatformCaps_PowerContainment); |
283 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
284 | PHM_PlatformCaps_CAC); |
285 | |
286 | if (table_info->tdp_table->usClockStretchAmount && |
287 | data->registry_data.clock_stretcher_support) |
288 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
289 | PHM_PlatformCaps_ClockStretcher); |
290 | |
291 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
292 | PHM_PlatformCaps_RegulatorHot); |
293 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
294 | PHM_PlatformCaps_AutomaticDCTransition); |
295 | |
296 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
297 | PHM_PlatformCaps_UVDDPM); |
298 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
299 | PHM_PlatformCaps_VCEDPM); |
300 | |
301 | return 0; |
302 | } |
303 | |
304 | static int vega10_odn_initial_default_setting(struct pp_hwmgr *hwmgr) |
305 | { |
306 | struct vega10_hwmgr *data = hwmgr->backend; |
307 | struct phm_ppt_v2_information *table_info = |
308 | (struct phm_ppt_v2_information *)(hwmgr->pptable); |
309 | struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table); |
310 | struct vega10_odn_vddc_lookup_table *od_lookup_table; |
311 | struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table; |
312 | struct phm_ppt_v1_clock_voltage_dependency_table *dep_table[3]; |
313 | struct phm_ppt_v1_clock_voltage_dependency_table *od_table[3]; |
314 | struct pp_atomfwctrl_avfs_parameters avfs_params = {0}; |
315 | uint32_t i; |
316 | int result; |
317 | |
318 | result = pp_atomfwctrl_get_avfs_information(hwmgr, &avfs_params); |
319 | if (!result) { |
320 | data->odn_dpm_table.max_vddc = avfs_params.ulMaxVddc; |
321 | data->odn_dpm_table.min_vddc = avfs_params.ulMinVddc; |
322 | } |
323 | |
324 | od_lookup_table = &odn_table->vddc_lookup_table; |
325 | vddc_lookup_table = table_info->vddc_lookup_table; |
326 | |
327 | for (i = 0; i < vddc_lookup_table->count; i++) |
328 | od_lookup_table->entries[i].us_vdd = vddc_lookup_table->entries[i].us_vdd; |
329 | |
330 | od_lookup_table->count = vddc_lookup_table->count; |
331 | |
332 | dep_table[0] = table_info->vdd_dep_on_sclk; |
333 | dep_table[1] = table_info->vdd_dep_on_mclk; |
334 | dep_table[2] = table_info->vdd_dep_on_socclk; |
335 | od_table[0] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_sclk; |
336 | od_table[1] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_mclk; |
337 | od_table[2] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_socclk; |
338 | |
339 | for (i = 0; i < 3; i++) |
340 | smu_get_voltage_dependency_table_ppt_v1(dep_table[i], od_table[i]); |
341 | |
342 | if (odn_table->max_vddc == 0 || odn_table->max_vddc > 2000) |
343 | odn_table->max_vddc = dep_table[0]->entries[dep_table[0]->count - 1].vddc; |
344 | if (odn_table->min_vddc == 0 || odn_table->min_vddc > 2000) |
345 | odn_table->min_vddc = dep_table[0]->entries[0].vddc; |
346 | |
347 | i = od_table[2]->count - 1; |
348 | od_table[2]->entries[i].clk = hwmgr->platform_descriptor.overdriveLimit.memoryClock > od_table[2]->entries[i].clk ? |
349 | hwmgr->platform_descriptor.overdriveLimit.memoryClock : |
350 | od_table[2]->entries[i].clk; |
351 | od_table[2]->entries[i].vddc = odn_table->max_vddc > od_table[2]->entries[i].vddc ? |
352 | odn_table->max_vddc : |
353 | od_table[2]->entries[i].vddc; |
354 | |
355 | return 0; |
356 | } |
357 | |
358 | static void vega10_init_dpm_defaults(struct pp_hwmgr *hwmgr) |
359 | { |
360 | struct vega10_hwmgr *data = hwmgr->backend; |
361 | int i; |
362 | uint32_t sub_vendor_id, hw_revision; |
363 | uint32_t top32, bottom32; |
364 | struct amdgpu_device *adev = hwmgr->adev; |
365 | |
366 | vega10_initialize_power_tune_defaults(hwmgr); |
367 | |
368 | for (i = 0; i < GNLD_FEATURES_MAX; i++) { |
369 | data->smu_features[i].smu_feature_id = 0xffff; |
370 | data->smu_features[i].smu_feature_bitmap = 1 << i; |
371 | data->smu_features[i].enabled = false0; |
372 | data->smu_features[i].supported = false0; |
373 | } |
374 | |
375 | data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_id = |
376 | FEATURE_DPM_PREFETCHER_BIT0; |
377 | data->smu_features[GNLD_DPM_GFXCLK].smu_feature_id = |
378 | FEATURE_DPM_GFXCLK_BIT1; |
379 | data->smu_features[GNLD_DPM_UCLK].smu_feature_id = |
380 | FEATURE_DPM_UCLK_BIT2; |
381 | data->smu_features[GNLD_DPM_SOCCLK].smu_feature_id = |
382 | FEATURE_DPM_SOCCLK_BIT3; |
383 | data->smu_features[GNLD_DPM_UVD].smu_feature_id = |
384 | FEATURE_DPM_UVD_BIT4; |
385 | data->smu_features[GNLD_DPM_VCE].smu_feature_id = |
386 | FEATURE_DPM_VCE_BIT5; |
387 | data->smu_features[GNLD_DPM_MP0CLK].smu_feature_id = |
388 | FEATURE_DPM_MP0CLK_BIT7; |
389 | data->smu_features[GNLD_DPM_LINK].smu_feature_id = |
390 | FEATURE_DPM_LINK_BIT8; |
391 | data->smu_features[GNLD_DPM_DCEFCLK].smu_feature_id = |
392 | FEATURE_DPM_DCEFCLK_BIT9; |
393 | data->smu_features[GNLD_ULV].smu_feature_id = |
394 | FEATURE_ULV_BIT6; |
395 | data->smu_features[GNLD_AVFS].smu_feature_id = |
396 | FEATURE_AVFS_BIT10; |
397 | data->smu_features[GNLD_DS_GFXCLK].smu_feature_id = |
398 | FEATURE_DS_GFXCLK_BIT11; |
399 | data->smu_features[GNLD_DS_SOCCLK].smu_feature_id = |
400 | FEATURE_DS_SOCCLK_BIT12; |
401 | data->smu_features[GNLD_DS_LCLK].smu_feature_id = |
402 | FEATURE_DS_LCLK_BIT13; |
403 | data->smu_features[GNLD_PPT].smu_feature_id = |
404 | FEATURE_PPT_BIT14; |
405 | data->smu_features[GNLD_TDC].smu_feature_id = |
406 | FEATURE_TDC_BIT15; |
407 | data->smu_features[GNLD_THERMAL].smu_feature_id = |
408 | FEATURE_THERMAL_BIT16; |
409 | data->smu_features[GNLD_GFX_PER_CU_CG].smu_feature_id = |
410 | FEATURE_GFX_PER_CU_CG_BIT17; |
411 | data->smu_features[GNLD_RM].smu_feature_id = |
412 | FEATURE_RM_BIT18; |
413 | data->smu_features[GNLD_DS_DCEFCLK].smu_feature_id = |
414 | FEATURE_DS_DCEFCLK_BIT19; |
415 | data->smu_features[GNLD_ACDC].smu_feature_id = |
416 | FEATURE_ACDC_BIT20; |
417 | data->smu_features[GNLD_VR0HOT].smu_feature_id = |
418 | FEATURE_VR0HOT_BIT21; |
419 | data->smu_features[GNLD_VR1HOT].smu_feature_id = |
420 | FEATURE_VR1HOT_BIT22; |
421 | data->smu_features[GNLD_FW_CTF].smu_feature_id = |
422 | FEATURE_FW_CTF_BIT23; |
423 | data->smu_features[GNLD_LED_DISPLAY].smu_feature_id = |
424 | FEATURE_LED_DISPLAY_BIT24; |
425 | data->smu_features[GNLD_FAN_CONTROL].smu_feature_id = |
426 | FEATURE_FAN_CONTROL_BIT25; |
427 | data->smu_features[GNLD_ACG].smu_feature_id = FEATURE_ACG_BIT28; |
428 | data->smu_features[GNLD_DIDT].smu_feature_id = FEATURE_GFX_EDC_BIT27; |
429 | data->smu_features[GNLD_PCC_LIMIT].smu_feature_id = FEATURE_PCC_LIMIT_CONTROL_BIT29; |
430 | |
431 | if (!data->registry_data.prefetcher_dpm_key_disabled) |
432 | data->smu_features[GNLD_DPM_PREFETCHER].supported = true1; |
433 | |
434 | if (!data->registry_data.sclk_dpm_key_disabled) |
435 | data->smu_features[GNLD_DPM_GFXCLK].supported = true1; |
436 | |
437 | if (!data->registry_data.mclk_dpm_key_disabled) |
438 | data->smu_features[GNLD_DPM_UCLK].supported = true1; |
439 | |
440 | if (!data->registry_data.socclk_dpm_key_disabled) |
441 | data->smu_features[GNLD_DPM_SOCCLK].supported = true1; |
442 | |
443 | if (PP_CAP(PHM_PlatformCaps_UVDDPM)phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, ( PHM_PlatformCaps_UVDDPM))) |
444 | data->smu_features[GNLD_DPM_UVD].supported = true1; |
445 | |
446 | if (PP_CAP(PHM_PlatformCaps_VCEDPM)phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, ( PHM_PlatformCaps_VCEDPM))) |
447 | data->smu_features[GNLD_DPM_VCE].supported = true1; |
448 | |
449 | data->smu_features[GNLD_DPM_LINK].supported = true1; |
450 | |
451 | if (!data->registry_data.dcefclk_dpm_key_disabled) |
452 | data->smu_features[GNLD_DPM_DCEFCLK].supported = true1; |
453 | |
454 | if (PP_CAP(PHM_PlatformCaps_SclkDeepSleep)phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, ( PHM_PlatformCaps_SclkDeepSleep)) && |
455 | data->registry_data.sclk_deep_sleep_support) { |
456 | data->smu_features[GNLD_DS_GFXCLK].supported = true1; |
457 | data->smu_features[GNLD_DS_SOCCLK].supported = true1; |
458 | data->smu_features[GNLD_DS_LCLK].supported = true1; |
459 | data->smu_features[GNLD_DS_DCEFCLK].supported = true1; |
460 | } |
461 | |
462 | if (data->registry_data.enable_pkg_pwr_tracking_feature) |
463 | data->smu_features[GNLD_PPT].supported = true1; |
464 | |
465 | if (data->registry_data.enable_tdc_limit_feature) |
466 | data->smu_features[GNLD_TDC].supported = true1; |
467 | |
468 | if (data->registry_data.thermal_support) |
469 | data->smu_features[GNLD_THERMAL].supported = true1; |
470 | |
471 | if (data->registry_data.fan_control_support) |
472 | data->smu_features[GNLD_FAN_CONTROL].supported = true1; |
473 | |
474 | if (data->registry_data.fw_ctf_enabled) |
475 | data->smu_features[GNLD_FW_CTF].supported = true1; |
476 | |
477 | if (data->registry_data.avfs_support) |
478 | data->smu_features[GNLD_AVFS].supported = true1; |
479 | |
480 | if (data->registry_data.led_dpm_enabled) |
481 | data->smu_features[GNLD_LED_DISPLAY].supported = true1; |
482 | |
483 | if (data->registry_data.vr1hot_enabled) |
484 | data->smu_features[GNLD_VR1HOT].supported = true1; |
485 | |
486 | if (data->registry_data.vr0hot_enabled) |
487 | data->smu_features[GNLD_VR0HOT].supported = true1; |
488 | |
489 | smum_send_msg_to_smc(hwmgr, |
490 | PPSMC_MSG_GetSmuVersion0x2, |
491 | &hwmgr->smu_version); |
492 | /* ACG firmware has major version 5 */ |
493 | if ((hwmgr->smu_version & 0xff000000) == 0x5000000) |
494 | data->smu_features[GNLD_ACG].supported = true1; |
495 | if (data->registry_data.didt_support) |
496 | data->smu_features[GNLD_DIDT].supported = true1; |
497 | |
498 | hw_revision = adev->pdev->revision; |
499 | sub_vendor_id = adev->pdev->subsystem_vendor; |
500 | |
501 | if ((hwmgr->chip_id == 0x6862 || |
502 | hwmgr->chip_id == 0x6861 || |
503 | hwmgr->chip_id == 0x6868) && |
504 | (hw_revision == 0) && |
505 | (sub_vendor_id != 0x1002)) |
506 | data->smu_features[GNLD_PCC_LIMIT].supported = true1; |
507 | |
508 | /* Get the SN to turn into a Unique ID */ |
509 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop320x58, &top32); |
510 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom320x59, &bottom32); |
511 | |
512 | adev->unique_id = ((uint64_t)bottom32 << 32) | top32; |
513 | } |
514 | |
515 | #ifdef PPLIB_VEGA10_EVV_SUPPORT |
516 | static int vega10_get_socclk_for_voltage_evv(struct pp_hwmgr *hwmgr, |
517 | phm_ppt_v1_voltage_lookup_table *lookup_table, |
518 | uint16_t virtual_voltage_id, int32_t *socclk) |
519 | { |
520 | uint8_t entry_id; |
521 | uint8_t voltage_id; |
522 | struct phm_ppt_v2_information *table_info = |
523 | (struct phm_ppt_v2_information *)(hwmgr->pptable); |
524 | |
525 | PP_ASSERT_WITH_CODE(lookup_table->count != 0,do { if (!(lookup_table->count != 0)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Lookup table is empty"); return -22; } } while (0) |
526 | "Lookup table is empty",do { if (!(lookup_table->count != 0)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Lookup table is empty"); return -22; } } while (0) |
527 | return -EINVAL)do { if (!(lookup_table->count != 0)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Lookup table is empty"); return -22; } } while (0); |
528 | |
529 | /* search for leakage voltage ID 0xff01 ~ 0xff08 and sclk */ |
530 | for (entry_id = 0; entry_id < table_info->vdd_dep_on_sclk->count; entry_id++) { |
531 | voltage_id = table_info->vdd_dep_on_socclk->entries[entry_id].vddInd; |
532 | if (lookup_table->entries[voltage_id].us_vdd == virtual_voltage_id) |
533 | break; |
534 | } |
535 | |
536 | PP_ASSERT_WITH_CODE(entry_id < table_info->vdd_dep_on_socclk->count,do { if (!(entry_id < table_info->vdd_dep_on_socclk-> count)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Can't find requested voltage id in vdd_dep_on_socclk table!" ); return -22; } } while (0) |
537 | "Can't find requested voltage id in vdd_dep_on_socclk table!",do { if (!(entry_id < table_info->vdd_dep_on_socclk-> count)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Can't find requested voltage id in vdd_dep_on_socclk table!" ); return -22; } } while (0) |
538 | return -EINVAL)do { if (!(entry_id < table_info->vdd_dep_on_socclk-> count)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Can't find requested voltage id in vdd_dep_on_socclk table!" ); return -22; } } while (0); |
539 | |
540 | *socclk = table_info->vdd_dep_on_socclk->entries[entry_id].clk; |
541 | |
542 | return 0; |
543 | } |
544 | |
545 | #define ATOM_VIRTUAL_VOLTAGE_ID0 0xff01 |
546 | /** |
547 | * Get Leakage VDDC based on leakage ID. |
548 | * |
549 | * @param hwmgr the address of the powerplay hardware manager. |
550 | * @return always 0. |
551 | */ |
552 | static int vega10_get_evv_voltages(struct pp_hwmgr *hwmgr) |
553 | { |
554 | struct vega10_hwmgr *data = hwmgr->backend; |
555 | uint16_t vv_id; |
556 | uint32_t vddc = 0; |
557 | uint16_t i, j; |
558 | uint32_t sclk = 0; |
559 | struct phm_ppt_v2_information *table_info = |
560 | (struct phm_ppt_v2_information *)hwmgr->pptable; |
561 | struct phm_ppt_v1_clock_voltage_dependency_table *socclk_table = |
562 | table_info->vdd_dep_on_socclk; |
563 | int result; |
564 | |
565 | for (i = 0; i < VEGA10_MAX_LEAKAGE_COUNT8; i++) { |
566 | vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i; |
567 | |
568 | if (!vega10_get_socclk_for_voltage_evv(hwmgr, |
569 | table_info->vddc_lookup_table, vv_id, &sclk)) { |
570 | if (PP_CAP(PHM_PlatformCaps_ClockStretcher)phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, ( PHM_PlatformCaps_ClockStretcher))) { |
571 | for (j = 1; j < socclk_table->count; j++) { |
572 | if (socclk_table->entries[j].clk == sclk && |
573 | socclk_table->entries[j].cks_enable == 0) { |
574 | sclk += 5000; |
575 | break; |
576 | } |
577 | } |
578 | } |
579 | |
580 | PP_ASSERT_WITH_CODE(!atomctrl_get_voltage_evv_on_sclk_ai(hwmgr,do { if (!(!atomctrl_get_voltage_evv_on_sclk_ai(hwmgr, VOLTAGE_TYPE_VDDC , sclk, vv_id, &vddc))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Error retrieving EVV voltage value!"); continue; } } while (0) |
581 | VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc),do { if (!(!atomctrl_get_voltage_evv_on_sclk_ai(hwmgr, VOLTAGE_TYPE_VDDC , sclk, vv_id, &vddc))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Error retrieving EVV voltage value!"); continue; } } while (0) |
582 | "Error retrieving EVV voltage value!",do { if (!(!atomctrl_get_voltage_evv_on_sclk_ai(hwmgr, VOLTAGE_TYPE_VDDC , sclk, vv_id, &vddc))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Error retrieving EVV voltage value!"); continue; } } while (0) |
583 | continue)do { if (!(!atomctrl_get_voltage_evv_on_sclk_ai(hwmgr, VOLTAGE_TYPE_VDDC , sclk, vv_id, &vddc))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Error retrieving EVV voltage value!"); continue; } } while (0); |
584 | |
585 | |
586 | /* need to make sure vddc is less than 2v or else, it could burn the ASIC. */ |
587 | PP_ASSERT_WITH_CODE((vddc < 2000 && vddc != 0),do { if (!((vddc < 2000 && vddc != 0))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Invalid VDDC value"); result = -22;; } } while (0) |
588 | "Invalid VDDC value", result = -EINVAL;)do { if (!((vddc < 2000 && vddc != 0))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Invalid VDDC value"); result = -22;; } } while (0); |
589 | |
590 | /* the voltage should not be zero nor equal to leakage ID */ |
591 | if (vddc != 0 && vddc != vv_id) { |
592 | data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc/100); |
593 | data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id; |
594 | data->vddc_leakage.count++; |
595 | } |
596 | } |
597 | } |
598 | |
599 | return 0; |
600 | } |
601 | |
602 | /** |
603 | * Change virtual leakage voltage to actual value. |
604 | * |
605 | * @param hwmgr the address of the powerplay hardware manager. |
606 | * @param pointer to changing voltage |
607 | * @param pointer to leakage table |
608 | */ |
609 | static void vega10_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr, |
610 | uint16_t *voltage, struct vega10_leakage_voltage *leakage_table) |
611 | { |
612 | uint32_t index; |
613 | |
614 | /* search for leakage voltage ID 0xff01 ~ 0xff08 */ |
615 | for (index = 0; index < leakage_table->count; index++) { |
616 | /* if this voltage matches a leakage voltage ID */ |
617 | /* patch with actual leakage voltage */ |
618 | if (leakage_table->leakage_id[index] == *voltage) { |
619 | *voltage = leakage_table->actual_voltage[index]; |
620 | break; |
621 | } |
622 | } |
623 | |
624 | if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0) |
625 | pr_info("Voltage value looks like a Leakage ID but it's not patched\n")do { } while(0); |
626 | } |
627 | |
628 | /** |
629 | * Patch voltage lookup table by EVV leakages. |
630 | * |
631 | * @param hwmgr the address of the powerplay hardware manager. |
632 | * @param pointer to voltage lookup table |
633 | * @param pointer to leakage table |
634 | * @return always 0 |
635 | */ |
636 | static int vega10_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr, |
637 | phm_ppt_v1_voltage_lookup_table *lookup_table, |
638 | struct vega10_leakage_voltage *leakage_table) |
639 | { |
640 | uint32_t i; |
641 | |
642 | for (i = 0; i < lookup_table->count; i++) |
643 | vega10_patch_with_vdd_leakage(hwmgr, |
644 | &lookup_table->entries[i].us_vdd, leakage_table); |
645 | |
646 | return 0; |
647 | } |
648 | |
649 | static int vega10_patch_clock_voltage_limits_with_vddc_leakage( |
650 | struct pp_hwmgr *hwmgr, struct vega10_leakage_voltage *leakage_table, |
651 | uint16_t *vddc) |
652 | { |
653 | vega10_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table); |
654 | |
655 | return 0; |
656 | } |
657 | #endif |
658 | |
659 | static int vega10_patch_voltage_dependency_tables_with_lookup_table( |
660 | struct pp_hwmgr *hwmgr) |
661 | { |
662 | uint8_t entry_id, voltage_id; |
663 | unsigned i; |
664 | struct phm_ppt_v2_information *table_info = |
665 | (struct phm_ppt_v2_information *)(hwmgr->pptable); |
666 | struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = |
667 | table_info->mm_dep_table; |
668 | struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table = |
669 | table_info->vdd_dep_on_mclk; |
670 | |
671 | for (i = 0; i < 6; i++) { |
672 | struct phm_ppt_v1_clock_voltage_dependency_table *vdt; |
673 | switch (i) { |
674 | case 0: vdt = table_info->vdd_dep_on_socclk; break; |
675 | case 1: vdt = table_info->vdd_dep_on_sclk; break; |
676 | case 2: vdt = table_info->vdd_dep_on_dcefclk; break; |
677 | case 3: vdt = table_info->vdd_dep_on_pixclk; break; |
678 | case 4: vdt = table_info->vdd_dep_on_dispclk; break; |
679 | case 5: vdt = table_info->vdd_dep_on_phyclk; break; |
680 | } |
681 | |
682 | for (entry_id = 0; entry_id < vdt->count; entry_id++) { |
683 | voltage_id = vdt->entries[entry_id].vddInd; |
684 | vdt->entries[entry_id].vddc = |
685 | table_info->vddc_lookup_table->entries[voltage_id].us_vdd; |
686 | } |
687 | } |
688 | |
689 | for (entry_id = 0; entry_id < mm_table->count; ++entry_id) { |
690 | voltage_id = mm_table->entries[entry_id].vddcInd; |
691 | mm_table->entries[entry_id].vddc = |
692 | table_info->vddc_lookup_table->entries[voltage_id].us_vdd; |
693 | } |
694 | |
695 | for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) { |
696 | voltage_id = mclk_table->entries[entry_id].vddInd; |
697 | mclk_table->entries[entry_id].vddc = |
698 | table_info->vddc_lookup_table->entries[voltage_id].us_vdd; |
699 | voltage_id = mclk_table->entries[entry_id].vddciInd; |
700 | mclk_table->entries[entry_id].vddci = |
701 | table_info->vddci_lookup_table->entries[voltage_id].us_vdd; |
702 | voltage_id = mclk_table->entries[entry_id].mvddInd; |
703 | mclk_table->entries[entry_id].mvdd = |
704 | table_info->vddmem_lookup_table->entries[voltage_id].us_vdd; |
705 | } |
706 | |
707 | |
708 | return 0; |
709 | |
710 | } |
711 | |
712 | static int vega10_sort_lookup_table(struct pp_hwmgr *hwmgr, |
713 | struct phm_ppt_v1_voltage_lookup_table *lookup_table) |
714 | { |
715 | uint32_t table_size, i, j; |
716 | |
717 | PP_ASSERT_WITH_CODE(lookup_table && lookup_table->count,do { if (!(lookup_table && lookup_table->count)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Lookup table is empty" ); return -22; } } while (0) |
718 | "Lookup table is empty", return -EINVAL)do { if (!(lookup_table && lookup_table->count)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Lookup table is empty" ); return -22; } } while (0); |
719 | |
720 | table_size = lookup_table->count; |
721 | |
722 | /* Sorting voltages */ |
723 | for (i = 0; i < table_size - 1; i++) { |
724 | for (j = i + 1; j > 0; j--) { |
725 | if (lookup_table->entries[j].us_vdd < |
726 | lookup_table->entries[j - 1].us_vdd) { |
727 | swap(lookup_table->entries[j - 1],do { __typeof(lookup_table->entries[j - 1]) __tmp = (lookup_table ->entries[j - 1]); (lookup_table->entries[j - 1]) = (lookup_table ->entries[j]); (lookup_table->entries[j]) = __tmp; } while (0) |
728 | lookup_table->entries[j])do { __typeof(lookup_table->entries[j - 1]) __tmp = (lookup_table ->entries[j - 1]); (lookup_table->entries[j - 1]) = (lookup_table ->entries[j]); (lookup_table->entries[j]) = __tmp; } while (0); |
729 | } |
730 | } |
731 | } |
732 | |
733 | return 0; |
734 | } |
735 | |
736 | static int vega10_complete_dependency_tables(struct pp_hwmgr *hwmgr) |
737 | { |
738 | int result = 0; |
739 | int tmp_result; |
740 | struct phm_ppt_v2_information *table_info = |
741 | (struct phm_ppt_v2_information *)(hwmgr->pptable); |
742 | #ifdef PPLIB_VEGA10_EVV_SUPPORT |
743 | struct vega10_hwmgr *data = hwmgr->backend; |
744 | |
745 | tmp_result = vega10_patch_lookup_table_with_leakage(hwmgr, |
746 | table_info->vddc_lookup_table, &(data->vddc_leakage)); |
747 | if (tmp_result) |
748 | result = tmp_result; |
749 | |
750 | tmp_result = vega10_patch_clock_voltage_limits_with_vddc_leakage(hwmgr, |
751 | &(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc); |
752 | if (tmp_result) |
753 | result = tmp_result; |
754 | #endif |
755 | |
756 | tmp_result = vega10_patch_voltage_dependency_tables_with_lookup_table(hwmgr); |
757 | if (tmp_result) |
758 | result = tmp_result; |
759 | |
760 | tmp_result = vega10_sort_lookup_table(hwmgr, table_info->vddc_lookup_table); |
761 | if (tmp_result) |
762 | result = tmp_result; |
763 | |
764 | return result; |
765 | } |
766 | |
767 | static int vega10_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr) |
768 | { |
769 | struct phm_ppt_v2_information *table_info = |
770 | (struct phm_ppt_v2_information *)(hwmgr->pptable); |
771 | struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table = |
772 | table_info->vdd_dep_on_socclk; |
773 | struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table = |
774 | table_info->vdd_dep_on_mclk; |
775 | |
776 | PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table,do { if (!(allowed_sclk_vdd_table)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "VDD dependency on SCLK table is missing. This table is mandatory" ); return -22; } } while (0) |
777 | "VDD dependency on SCLK table is missing. This table is mandatory", return -EINVAL)do { if (!(allowed_sclk_vdd_table)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "VDD dependency on SCLK table is missing. This table is mandatory" ); return -22; } } while (0); |
778 | PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,do { if (!(allowed_sclk_vdd_table->count >= 1)) { printk ("\0014" "amdgpu: [powerplay] " "%s\n", "VDD dependency on SCLK table is empty. This table is mandatory" ); return -22; } } while (0) |
779 | "VDD dependency on SCLK table is empty. This table is mandatory", return -EINVAL)do { if (!(allowed_sclk_vdd_table->count >= 1)) { printk ("\0014" "amdgpu: [powerplay] " "%s\n", "VDD dependency on SCLK table is empty. This table is mandatory" ); return -22; } } while (0); |
780 | |
781 | PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table,do { if (!(allowed_mclk_vdd_table)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "VDD dependency on MCLK table is missing. This table is mandatory" ); return -22; } } while (0) |
782 | "VDD dependency on MCLK table is missing. This table is mandatory", return -EINVAL)do { if (!(allowed_mclk_vdd_table)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "VDD dependency on MCLK table is missing. This table is mandatory" ); return -22; } } while (0); |
783 | PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,do { if (!(allowed_mclk_vdd_table->count >= 1)) { printk ("\0014" "amdgpu: [powerplay] " "%s\n", "VDD dependency on MCLK table is empty. This table is mandatory" ); return -22; } } while (0) |
784 | "VDD dependency on MCLK table is empty. This table is mandatory", return -EINVAL)do { if (!(allowed_mclk_vdd_table->count >= 1)) { printk ("\0014" "amdgpu: [powerplay] " "%s\n", "VDD dependency on MCLK table is empty. This table is mandatory" ); return -22; } } while (0); |
785 | |
786 | table_info->max_clock_voltage_on_ac.sclk = |
787 | allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk; |
788 | table_info->max_clock_voltage_on_ac.mclk = |
789 | allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk; |
790 | table_info->max_clock_voltage_on_ac.vddc = |
791 | allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc; |
792 | table_info->max_clock_voltage_on_ac.vddci = |
793 | allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci; |
794 | |
795 | hwmgr->dyn_state.max_clock_voltage_on_ac.sclk = |
796 | table_info->max_clock_voltage_on_ac.sclk; |
797 | hwmgr->dyn_state.max_clock_voltage_on_ac.mclk = |
798 | table_info->max_clock_voltage_on_ac.mclk; |
799 | hwmgr->dyn_state.max_clock_voltage_on_ac.vddc = |
800 | table_info->max_clock_voltage_on_ac.vddc; |
801 | hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = |
802 | table_info->max_clock_voltage_on_ac.vddci; |
803 | |
804 | return 0; |
805 | } |
806 | |
807 | static int vega10_hwmgr_backend_fini(struct pp_hwmgr *hwmgr) |
808 | { |
809 | kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl); |
810 | hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL((void *)0); |
811 | |
812 | kfree(hwmgr->backend); |
813 | hwmgr->backend = NULL((void *)0); |
814 | |
815 | return 0; |
816 | } |
817 | |
818 | static int vega10_hwmgr_backend_init(struct pp_hwmgr *hwmgr) |
819 | { |
820 | int result = 0; |
821 | struct vega10_hwmgr *data; |
822 | uint32_t config_telemetry = 0; |
823 | struct pp_atomfwctrl_voltage_table vol_table; |
824 | struct amdgpu_device *adev = hwmgr->adev; |
825 | |
826 | data = kzalloc(sizeof(struct vega10_hwmgr), GFP_KERNEL(0x0001 | 0x0004)); |
827 | if (data == NULL((void *)0)) |
828 | return -ENOMEM12; |
829 | |
830 | hwmgr->backend = data; |
831 | |
832 | hwmgr->workload_mask = 1 << hwmgr->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT]; |
833 | hwmgr->power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT; |
834 | hwmgr->default_power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT; |
835 | |
836 | vega10_set_default_registry_data(hwmgr); |
837 | data->disable_dpm_mask = 0xff; |
838 | |
839 | /* need to set voltage control types before EVV patching */ |
840 | data->vddc_control = VEGA10_VOLTAGE_CONTROL_NONE0x0; |
841 | data->mvdd_control = VEGA10_VOLTAGE_CONTROL_NONE0x0; |
842 | data->vddci_control = VEGA10_VOLTAGE_CONTROL_NONE0x0; |
843 | |
844 | /* VDDCR_SOC */ |
845 | if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr, |
846 | VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) { |
847 | if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr, |
848 | VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2, |
849 | &vol_table)) { |
850 | config_telemetry = ((vol_table.telemetry_slope << 8) & 0xff00) | |
851 | (vol_table.telemetry_offset & 0xff); |
852 | data->vddc_control = VEGA10_VOLTAGE_CONTROL_BY_SVID20x2; |
853 | } |
854 | } else { |
855 | kfree(hwmgr->backend); |
856 | hwmgr->backend = NULL((void *)0); |
857 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "VDDCR_SOC is not SVID2!"); return -1; } } while (0) |
858 | "VDDCR_SOC is not SVID2!",do { if (!(0)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "VDDCR_SOC is not SVID2!"); return -1; } } while (0) |
859 | return -1)do { if (!(0)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "VDDCR_SOC is not SVID2!"); return -1; } } while (0); |
860 | } |
861 | |
862 | /* MVDDC */ |
863 | if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr, |
864 | VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2)) { |
865 | if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr, |
866 | VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2, |
867 | &vol_table)) { |
868 | config_telemetry |= |
869 | ((vol_table.telemetry_slope << 24) & 0xff000000) | |
870 | ((vol_table.telemetry_offset << 16) & 0xff0000); |
871 | data->mvdd_control = VEGA10_VOLTAGE_CONTROL_BY_SVID20x2; |
872 | } |
873 | } |
874 | |
875 | /* VDDCI_MEM */ |
876 | if (PP_CAP(PHM_PlatformCaps_ControlVDDCI)phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, ( PHM_PlatformCaps_ControlVDDCI))) { |
877 | if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr, |
878 | VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT)) |
879 | data->vddci_control = VEGA10_VOLTAGE_CONTROL_BY_GPIO0x1; |
880 | } |
881 | |
882 | data->config_telemetry = config_telemetry; |
883 | |
884 | vega10_set_features_platform_caps(hwmgr); |
885 | |
886 | vega10_init_dpm_defaults(hwmgr); |
887 | |
888 | #ifdef PPLIB_VEGA10_EVV_SUPPORT |
889 | /* Get leakage voltage based on leakage ID. */ |
890 | PP_ASSERT_WITH_CODE(!vega10_get_evv_voltages(hwmgr),do { if (!(!vega10_get_evv_voltages(hwmgr))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Get EVV Voltage Failed. Abort Driver loading!" ); return -1; } } while (0) |
891 | "Get EVV Voltage Failed. Abort Driver loading!",do { if (!(!vega10_get_evv_voltages(hwmgr))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Get EVV Voltage Failed. Abort Driver loading!" ); return -1; } } while (0) |
892 | return -1)do { if (!(!vega10_get_evv_voltages(hwmgr))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Get EVV Voltage Failed. Abort Driver loading!" ); return -1; } } while (0); |
893 | #endif |
894 | |
895 | /* Patch our voltage dependency table with actual leakage voltage |
896 | * We need to perform leakage translation before it's used by other functions |
897 | */ |
898 | vega10_complete_dependency_tables(hwmgr); |
899 | |
900 | /* Parse pptable data read from VBIOS */ |
901 | vega10_set_private_data_based_on_pptable(hwmgr); |
902 | |
903 | data->is_tlu_enabled = false0; |
904 | |
905 | hwmgr->platform_descriptor.hardwareActivityPerformanceLevels = |
906 | VEGA10_MAX_HARDWARE_POWERLEVELS2; |
907 | hwmgr->platform_descriptor.hardwarePerformanceLevels = 2; |
908 | hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50; |
909 | |
910 | hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */ |
911 | /* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */ |
912 | hwmgr->platform_descriptor.clockStep.engineClock = 500; |
913 | hwmgr->platform_descriptor.clockStep.memoryClock = 500; |
914 | |
915 | data->total_active_cus = adev->gfx.cu_info.number; |
916 | if (!hwmgr->not_vf) |
917 | return result; |
918 | |
919 | /* Setup default Overdrive Fan control settings */ |
920 | data->odn_fan_table.target_fan_speed = |
921 | hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM; |
922 | data->odn_fan_table.target_temperature = |
923 | hwmgr->thermal_controller. |
924 | advanceFanControlParameters.ucTargetTemperature; |
925 | data->odn_fan_table.min_performance_clock = |
926 | hwmgr->thermal_controller.advanceFanControlParameters. |
927 | ulMinFanSCLKAcousticLimit; |
928 | data->odn_fan_table.min_fan_limit = |
929 | hwmgr->thermal_controller. |
930 | advanceFanControlParameters.usFanPWMMinLimit * |
931 | hwmgr->thermal_controller.fanInfo.ulMaxRPM / 100; |
932 | |
933 | data->mem_channels = (RREG32_SOC15(DF, 0, mmDF_CS_AON0_DramBaseAddress0)amdgpu_device_rreg(adev, (adev->reg_offset[DF_HWIP][0][0] + 0x0044), 0) & |
934 | DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK0x000000F0L) >> |
935 | DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT0x4; |
936 | PP_ASSERT_WITH_CODE(data->mem_channels < ARRAY_SIZE(channel_number),do { if (!(data->mem_channels < (sizeof((channel_number )) / sizeof((channel_number)[0])))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Mem Channel Index Exceeded maximum!"); return -22; } } while (0) |
937 | "Mem Channel Index Exceeded maximum!",do { if (!(data->mem_channels < (sizeof((channel_number )) / sizeof((channel_number)[0])))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Mem Channel Index Exceeded maximum!"); return -22; } } while (0) |
938 | return -EINVAL)do { if (!(data->mem_channels < (sizeof((channel_number )) / sizeof((channel_number)[0])))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Mem Channel Index Exceeded maximum!"); return -22; } } while (0); |
939 | |
940 | return result; |
941 | } |
942 | |
943 | static int vega10_init_sclk_threshold(struct pp_hwmgr *hwmgr) |
944 | { |
945 | struct vega10_hwmgr *data = hwmgr->backend; |
946 | |
947 | data->low_sclk_interrupt_threshold = 0; |
948 | |
949 | return 0; |
950 | } |
951 | |
952 | static int vega10_setup_dpm_led_config(struct pp_hwmgr *hwmgr) |
953 | { |
954 | struct vega10_hwmgr *data = hwmgr->backend; |
955 | PPTable_t *pp_table = &(data->smc_state_table.pp_table); |
956 | |
957 | struct pp_atomfwctrl_voltage_table table; |
958 | uint8_t i, j; |
959 | uint32_t mask = 0; |
960 | uint32_t tmp; |
961 | int32_t ret = 0; |
962 | |
963 | ret = pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_LEDDPM, |
964 | VOLTAGE_OBJ_GPIO_LUT, &table); |
965 | |
966 | if (!ret) { |
967 | tmp = table.mask_low; |
968 | for (i = 0, j = 0; i < 32; i++) { |
969 | if (tmp & 1) { |
970 | mask |= (uint32_t)(i << (8 * j)); |
971 | if (++j >= 3) |
972 | break; |
973 | } |
974 | tmp >>= 1; |
975 | } |
976 | } |
977 | |
978 | pp_table->LedPin0 = (uint8_t)(mask & 0xff); |
979 | pp_table->LedPin1 = (uint8_t)((mask >> 8) & 0xff); |
980 | pp_table->LedPin2 = (uint8_t)((mask >> 16) & 0xff); |
981 | return 0; |
982 | } |
983 | |
984 | static int vega10_setup_asic_task(struct pp_hwmgr *hwmgr) |
985 | { |
986 | if (!hwmgr->not_vf) |
987 | return 0; |
988 | |
989 | PP_ASSERT_WITH_CODE(!vega10_init_sclk_threshold(hwmgr),do { if (!(!vega10_init_sclk_threshold(hwmgr))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to init sclk threshold!" ); return -22; } } while (0) |
990 | "Failed to init sclk threshold!",do { if (!(!vega10_init_sclk_threshold(hwmgr))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to init sclk threshold!" ); return -22; } } while (0) |
991 | return -EINVAL)do { if (!(!vega10_init_sclk_threshold(hwmgr))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to init sclk threshold!" ); return -22; } } while (0); |
992 | |
993 | PP_ASSERT_WITH_CODE(!vega10_setup_dpm_led_config(hwmgr),do { if (!(!vega10_setup_dpm_led_config(hwmgr))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to set up led dpm config!" ); return -22; } } while (0) |
994 | "Failed to set up led dpm config!",do { if (!(!vega10_setup_dpm_led_config(hwmgr))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to set up led dpm config!" ); return -22; } } while (0) |
995 | return -EINVAL)do { if (!(!vega10_setup_dpm_led_config(hwmgr))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to set up led dpm config!" ); return -22; } } while (0); |
996 | |
997 | smum_send_msg_to_smc_with_parameter(hwmgr, |
998 | PPSMC_MSG_NumOfDisplays0x56, |
999 | 0, |
1000 | NULL((void *)0)); |
1001 | |
1002 | return 0; |
1003 | } |
1004 | |
1005 | /** |
1006 | * Remove repeated voltage values and create table with unique values. |
1007 | * |
1008 | * @param hwmgr the address of the powerplay hardware manager. |
1009 | * @param vol_table the pointer to changing voltage table |
1010 | * @return 0 in success |
1011 | */ |
1012 | |
1013 | static int vega10_trim_voltage_table(struct pp_hwmgr *hwmgr, |
1014 | struct pp_atomfwctrl_voltage_table *vol_table) |
1015 | { |
1016 | uint32_t i, j; |
1017 | uint16_t vvalue; |
1018 | bool_Bool found = false0; |
1019 | struct pp_atomfwctrl_voltage_table *table; |
1020 | |
1021 | PP_ASSERT_WITH_CODE(vol_table,do { if (!(vol_table)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Voltage Table empty."); return -22; } } while (0) |
1022 | "Voltage Table empty.", return -EINVAL)do { if (!(vol_table)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Voltage Table empty."); return -22; } } while (0); |
1023 | table = kzalloc(sizeof(struct pp_atomfwctrl_voltage_table), |
1024 | GFP_KERNEL(0x0001 | 0x0004)); |
1025 | |
1026 | if (!table) |
1027 | return -ENOMEM12; |
1028 | |
1029 | table->mask_low = vol_table->mask_low; |
1030 | table->phase_delay = vol_table->phase_delay; |
1031 | |
1032 | for (i = 0; i < vol_table->count; i++) { |
1033 | vvalue = vol_table->entries[i].value; |
1034 | found = false0; |
1035 | |
1036 | for (j = 0; j < table->count; j++) { |
1037 | if (vvalue == table->entries[j].value) { |
1038 | found = true1; |
1039 | break; |
1040 | } |
1041 | } |
1042 | |
1043 | if (!found) { |
1044 | table->entries[table->count].value = vvalue; |
1045 | table->entries[table->count].smio_low = |
1046 | vol_table->entries[i].smio_low; |
1047 | table->count++; |
1048 | } |
1049 | } |
1050 | |
1051 | memcpy(vol_table, table, sizeof(struct pp_atomfwctrl_voltage_table))__builtin_memcpy((vol_table), (table), (sizeof(struct pp_atomfwctrl_voltage_table ))); |
1052 | kfree(table); |
1053 | |
1054 | return 0; |
1055 | } |
1056 | |
1057 | static int vega10_get_mvdd_voltage_table(struct pp_hwmgr *hwmgr, |
1058 | phm_ppt_v1_clock_voltage_dependency_table *dep_table, |
1059 | struct pp_atomfwctrl_voltage_table *vol_table) |
1060 | { |
1061 | int i; |
1062 | |
1063 | PP_ASSERT_WITH_CODE(dep_table->count,do { if (!(dep_table->count)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Voltage Dependency Table empty."); return -22; } } while (0) |
1064 | "Voltage Dependency Table empty.",do { if (!(dep_table->count)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Voltage Dependency Table empty."); return -22; } } while (0) |
1065 | return -EINVAL)do { if (!(dep_table->count)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Voltage Dependency Table empty."); return -22; } } while (0); |
1066 | |
1067 | vol_table->mask_low = 0; |
1068 | vol_table->phase_delay = 0; |
1069 | vol_table->count = dep_table->count; |
1070 | |
1071 | for (i = 0; i < vol_table->count; i++) { |
1072 | vol_table->entries[i].value = dep_table->entries[i].mvdd; |
1073 | vol_table->entries[i].smio_low = 0; |
1074 | } |
1075 | |
1076 | PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr,do { if (!(!vega10_trim_voltage_table(hwmgr, vol_table))) { printk ("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to trim MVDD Table!" ); return -1; } } while (0) |
1077 | vol_table),do { if (!(!vega10_trim_voltage_table(hwmgr, vol_table))) { printk ("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to trim MVDD Table!" ); return -1; } } while (0) |
1078 | "Failed to trim MVDD Table!",do { if (!(!vega10_trim_voltage_table(hwmgr, vol_table))) { printk ("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to trim MVDD Table!" ); return -1; } } while (0) |
1079 | return -1)do { if (!(!vega10_trim_voltage_table(hwmgr, vol_table))) { printk ("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to trim MVDD Table!" ); return -1; } } while (0); |
1080 | |
1081 | return 0; |
1082 | } |
1083 | |
1084 | static int vega10_get_vddci_voltage_table(struct pp_hwmgr *hwmgr, |
1085 | phm_ppt_v1_clock_voltage_dependency_table *dep_table, |
1086 | struct pp_atomfwctrl_voltage_table *vol_table) |
1087 | { |
1088 | uint32_t i; |
1089 | |
1090 | PP_ASSERT_WITH_CODE(dep_table->count,do { if (!(dep_table->count)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Voltage Dependency Table empty."); return -22; } } while (0) |
1091 | "Voltage Dependency Table empty.",do { if (!(dep_table->count)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Voltage Dependency Table empty."); return -22; } } while (0) |
1092 | return -EINVAL)do { if (!(dep_table->count)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Voltage Dependency Table empty."); return -22; } } while (0); |
1093 | |
1094 | vol_table->mask_low = 0; |
1095 | vol_table->phase_delay = 0; |
1096 | vol_table->count = dep_table->count; |
1097 | |
1098 | for (i = 0; i < dep_table->count; i++) { |
1099 | vol_table->entries[i].value = dep_table->entries[i].vddci; |
1100 | vol_table->entries[i].smio_low = 0; |
1101 | } |
1102 | |
1103 | PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr, vol_table),do { if (!(!vega10_trim_voltage_table(hwmgr, vol_table))) { printk ("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to trim VDDCI table." ); return -1; } } while (0) |
1104 | "Failed to trim VDDCI table.",do { if (!(!vega10_trim_voltage_table(hwmgr, vol_table))) { printk ("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to trim VDDCI table." ); return -1; } } while (0) |
1105 | return -1)do { if (!(!vega10_trim_voltage_table(hwmgr, vol_table))) { printk ("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to trim VDDCI table." ); return -1; } } while (0); |
1106 | |
1107 | return 0; |
1108 | } |
1109 | |
1110 | static int vega10_get_vdd_voltage_table(struct pp_hwmgr *hwmgr, |
1111 | phm_ppt_v1_clock_voltage_dependency_table *dep_table, |
1112 | struct pp_atomfwctrl_voltage_table *vol_table) |
1113 | { |
1114 | int i; |
1115 | |
1116 | PP_ASSERT_WITH_CODE(dep_table->count,do { if (!(dep_table->count)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Voltage Dependency Table empty."); return -22; } } while (0) |
1117 | "Voltage Dependency Table empty.",do { if (!(dep_table->count)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Voltage Dependency Table empty."); return -22; } } while (0) |
1118 | return -EINVAL)do { if (!(dep_table->count)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Voltage Dependency Table empty."); return -22; } } while (0); |
1119 | |
1120 | vol_table->mask_low = 0; |
1121 | vol_table->phase_delay = 0; |
1122 | vol_table->count = dep_table->count; |
1123 | |
1124 | for (i = 0; i < vol_table->count; i++) { |
1125 | vol_table->entries[i].value = dep_table->entries[i].vddc; |
1126 | vol_table->entries[i].smio_low = 0; |
1127 | } |
1128 | |
1129 | return 0; |
1130 | } |
1131 | |
1132 | /* ---- Voltage Tables ---- |
1133 | * If the voltage table would be bigger than |
1134 | * what will fit into the state table on |
1135 | * the SMC keep only the higher entries. |
1136 | */ |
1137 | static void vega10_trim_voltage_table_to_fit_state_table( |
1138 | struct pp_hwmgr *hwmgr, |
1139 | uint32_t max_vol_steps, |
1140 | struct pp_atomfwctrl_voltage_table *vol_table) |
1141 | { |
1142 | unsigned int i, diff; |
1143 | |
1144 | if (vol_table->count <= max_vol_steps) |
1145 | return; |
1146 | |
1147 | diff = vol_table->count - max_vol_steps; |
1148 | |
1149 | for (i = 0; i < max_vol_steps; i++) |
1150 | vol_table->entries[i] = vol_table->entries[i + diff]; |
1151 | |
1152 | vol_table->count = max_vol_steps; |
1153 | } |
1154 | |
1155 | /** |
1156 | * Create Voltage Tables. |
1157 | * |
1158 | * @param hwmgr the address of the powerplay hardware manager. |
1159 | * @return always 0 |
1160 | */ |
1161 | static int vega10_construct_voltage_tables(struct pp_hwmgr *hwmgr) |
1162 | { |
1163 | struct vega10_hwmgr *data = hwmgr->backend; |
1164 | struct phm_ppt_v2_information *table_info = |
1165 | (struct phm_ppt_v2_information *)hwmgr->pptable; |
1166 | int result; |
1167 | |
1168 | if (data->mvdd_control == VEGA10_VOLTAGE_CONTROL_BY_SVID20x2 || |
1169 | data->mvdd_control == VEGA10_VOLTAGE_CONTROL_NONE0x0) { |
1170 | result = vega10_get_mvdd_voltage_table(hwmgr, |
1171 | table_info->vdd_dep_on_mclk, |
1172 | &(data->mvdd_voltage_table)); |
1173 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to retrieve MVDDC table!"); return result; } } while (0) |
1174 | "Failed to retrieve MVDDC table!",do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to retrieve MVDDC table!"); return result; } } while (0) |
1175 | return result)do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to retrieve MVDDC table!"); return result; } } while (0); |
1176 | } |
1177 | |
1178 | if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE0x0) { |
1179 | result = vega10_get_vddci_voltage_table(hwmgr, |
1180 | table_info->vdd_dep_on_mclk, |
1181 | &(data->vddci_voltage_table)); |
1182 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to retrieve VDDCI_MEM table!"); return result; } } while (0) |
1183 | "Failed to retrieve VDDCI_MEM table!",do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to retrieve VDDCI_MEM table!"); return result; } } while (0) |
1184 | return result)do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to retrieve VDDCI_MEM table!"); return result; } } while (0); |
1185 | } |
1186 | |
1187 | if (data->vddc_control == VEGA10_VOLTAGE_CONTROL_BY_SVID20x2 || |
1188 | data->vddc_control == VEGA10_VOLTAGE_CONTROL_NONE0x0) { |
1189 | result = vega10_get_vdd_voltage_table(hwmgr, |
1190 | table_info->vdd_dep_on_sclk, |
1191 | &(data->vddc_voltage_table)); |
1192 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to retrieve VDDCR_SOC table!"); return result; } } while (0) |
1193 | "Failed to retrieve VDDCR_SOC table!",do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to retrieve VDDCR_SOC table!"); return result; } } while (0) |
1194 | return result)do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to retrieve VDDCR_SOC table!"); return result; } } while (0); |
1195 | } |
1196 | |
1197 | PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 16,do { if (!(data->vddc_voltage_table.count <= 16)) { printk ("\0014" "amdgpu: [powerplay] " "%s\n", "Too many voltage values for VDDC. Trimming to fit state table." ); vega10_trim_voltage_table_to_fit_state_table(hwmgr, 16, & (data->vddc_voltage_table)); } } while (0) |
1198 | "Too many voltage values for VDDC. Trimming to fit state table.",do { if (!(data->vddc_voltage_table.count <= 16)) { printk ("\0014" "amdgpu: [powerplay] " "%s\n", "Too many voltage values for VDDC. Trimming to fit state table." ); vega10_trim_voltage_table_to_fit_state_table(hwmgr, 16, & (data->vddc_voltage_table)); } } while (0) |
1199 | vega10_trim_voltage_table_to_fit_state_table(hwmgr,do { if (!(data->vddc_voltage_table.count <= 16)) { printk ("\0014" "amdgpu: [powerplay] " "%s\n", "Too many voltage values for VDDC. Trimming to fit state table." ); vega10_trim_voltage_table_to_fit_state_table(hwmgr, 16, & (data->vddc_voltage_table)); } } while (0) |
1200 | 16, &(data->vddc_voltage_table)))do { if (!(data->vddc_voltage_table.count <= 16)) { printk ("\0014" "amdgpu: [powerplay] " "%s\n", "Too many voltage values for VDDC. Trimming to fit state table." ); vega10_trim_voltage_table_to_fit_state_table(hwmgr, 16, & (data->vddc_voltage_table)); } } while (0); |
1201 | |
1202 | PP_ASSERT_WITH_CODE(data->vddci_voltage_table.count <= 16,do { if (!(data->vddci_voltage_table.count <= 16)) { printk ("\0014" "amdgpu: [powerplay] " "%s\n", "Too many voltage values for VDDCI. Trimming to fit state table." ); vega10_trim_voltage_table_to_fit_state_table(hwmgr, 16, & (data->vddci_voltage_table)); } } while (0) |
1203 | "Too many voltage values for VDDCI. Trimming to fit state table.",do { if (!(data->vddci_voltage_table.count <= 16)) { printk ("\0014" "amdgpu: [powerplay] " "%s\n", "Too many voltage values for VDDCI. Trimming to fit state table." ); vega10_trim_voltage_table_to_fit_state_table(hwmgr, 16, & (data->vddci_voltage_table)); } } while (0) |
1204 | vega10_trim_voltage_table_to_fit_state_table(hwmgr,do { if (!(data->vddci_voltage_table.count <= 16)) { printk ("\0014" "amdgpu: [powerplay] " "%s\n", "Too many voltage values for VDDCI. Trimming to fit state table." ); vega10_trim_voltage_table_to_fit_state_table(hwmgr, 16, & (data->vddci_voltage_table)); } } while (0) |
1205 | 16, &(data->vddci_voltage_table)))do { if (!(data->vddci_voltage_table.count <= 16)) { printk ("\0014" "amdgpu: [powerplay] " "%s\n", "Too many voltage values for VDDCI. Trimming to fit state table." ); vega10_trim_voltage_table_to_fit_state_table(hwmgr, 16, & (data->vddci_voltage_table)); } } while (0); |
1206 | |
1207 | PP_ASSERT_WITH_CODE(data->mvdd_voltage_table.count <= 16,do { if (!(data->mvdd_voltage_table.count <= 16)) { printk ("\0014" "amdgpu: [powerplay] " "%s\n", "Too many voltage values for MVDD. Trimming to fit state table." ); vega10_trim_voltage_table_to_fit_state_table(hwmgr, 16, & (data->mvdd_voltage_table)); } } while (0) |
1208 | "Too many voltage values for MVDD. Trimming to fit state table.",do { if (!(data->mvdd_voltage_table.count <= 16)) { printk ("\0014" "amdgpu: [powerplay] " "%s\n", "Too many voltage values for MVDD. Trimming to fit state table." ); vega10_trim_voltage_table_to_fit_state_table(hwmgr, 16, & (data->mvdd_voltage_table)); } } while (0) |
1209 | vega10_trim_voltage_table_to_fit_state_table(hwmgr,do { if (!(data->mvdd_voltage_table.count <= 16)) { printk ("\0014" "amdgpu: [powerplay] " "%s\n", "Too many voltage values for MVDD. Trimming to fit state table." ); vega10_trim_voltage_table_to_fit_state_table(hwmgr, 16, & (data->mvdd_voltage_table)); } } while (0) |
1210 | 16, &(data->mvdd_voltage_table)))do { if (!(data->mvdd_voltage_table.count <= 16)) { printk ("\0014" "amdgpu: [powerplay] " "%s\n", "Too many voltage values for MVDD. Trimming to fit state table." ); vega10_trim_voltage_table_to_fit_state_table(hwmgr, 16, & (data->mvdd_voltage_table)); } } while (0); |
1211 | |
1212 | |
1213 | return 0; |
1214 | } |
1215 | |
1216 | /* |
1217 | * @fn vega10_init_dpm_state |
1218 | * @brief Function to initialize all Soft Min/Max and Hard Min/Max to 0xff. |
1219 | * |
1220 | * @param dpm_state - the address of the DPM Table to initiailize. |
1221 | * @return None. |
1222 | */ |
1223 | static void vega10_init_dpm_state(struct vega10_dpm_state *dpm_state) |
1224 | { |
1225 | dpm_state->soft_min_level = 0xff; |
1226 | dpm_state->soft_max_level = 0xff; |
1227 | dpm_state->hard_min_level = 0xff; |
1228 | dpm_state->hard_max_level = 0xff; |
1229 | } |
1230 | |
1231 | static void vega10_setup_default_single_dpm_table(struct pp_hwmgr *hwmgr, |
1232 | struct vega10_single_dpm_table *dpm_table, |
1233 | struct phm_ppt_v1_clock_voltage_dependency_table *dep_table) |
1234 | { |
1235 | int i; |
1236 | |
1237 | dpm_table->count = 0; |
1238 | |
1239 | for (i = 0; i < dep_table->count; i++) { |
1240 | if (i == 0 || dpm_table->dpm_levels[dpm_table->count - 1].value <= |
1241 | dep_table->entries[i].clk) { |
1242 | dpm_table->dpm_levels[dpm_table->count].value = |
1243 | dep_table->entries[i].clk; |
1244 | dpm_table->dpm_levels[dpm_table->count].enabled = true1; |
1245 | dpm_table->count++; |
1246 | } |
1247 | } |
1248 | } |
1249 | static int vega10_setup_default_pcie_table(struct pp_hwmgr *hwmgr) |
1250 | { |
1251 | struct vega10_hwmgr *data = hwmgr->backend; |
1252 | struct vega10_pcie_table *pcie_table = &(data->dpm_table.pcie_table); |
1253 | struct phm_ppt_v2_information *table_info = |
1254 | (struct phm_ppt_v2_information *)(hwmgr->pptable); |
1255 | struct phm_ppt_v1_pcie_table *bios_pcie_table = |
1256 | table_info->pcie_table; |
1257 | uint32_t i; |
1258 | |
1259 | PP_ASSERT_WITH_CODE(bios_pcie_table->count,do { if (!(bios_pcie_table->count)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Incorrect number of PCIE States from VBIOS!"); return -1; } } while (0) |
1260 | "Incorrect number of PCIE States from VBIOS!",do { if (!(bios_pcie_table->count)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Incorrect number of PCIE States from VBIOS!"); return -1; } } while (0) |
1261 | return -1)do { if (!(bios_pcie_table->count)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Incorrect number of PCIE States from VBIOS!"); return -1; } } while (0); |
1262 | |
1263 | for (i = 0; i < NUM_LINK_LEVELS2; i++) { |
1264 | if (data->registry_data.pcieSpeedOverride) |
1265 | pcie_table->pcie_gen[i] = |
1266 | data->registry_data.pcieSpeedOverride; |
1267 | else |
1268 | pcie_table->pcie_gen[i] = |
1269 | bios_pcie_table->entries[i].gen_speed; |
1270 | |
1271 | if (data->registry_data.pcieLaneOverride) |
1272 | pcie_table->pcie_lane[i] = (uint8_t)encode_pcie_lane_width( |
1273 | data->registry_data.pcieLaneOverride); |
1274 | else |
1275 | pcie_table->pcie_lane[i] = (uint8_t)encode_pcie_lane_width( |
1276 | bios_pcie_table->entries[i].lane_width); |
1277 | if (data->registry_data.pcieClockOverride) |
1278 | pcie_table->lclk[i] = |
1279 | data->registry_data.pcieClockOverride; |
1280 | else |
1281 | pcie_table->lclk[i] = |
1282 | bios_pcie_table->entries[i].pcie_sclk; |
1283 | } |
1284 | |
1285 | pcie_table->count = NUM_LINK_LEVELS2; |
1286 | |
1287 | return 0; |
1288 | } |
1289 | |
1290 | /* |
1291 | * This function is to initialize all DPM state tables |
1292 | * for SMU based on the dependency table. |
1293 | * Dynamic state patching function will then trim these |
1294 | * state tables to the allowed range based |
1295 | * on the power policy or external client requests, |
1296 | * such as UVD request, etc. |
1297 | */ |
1298 | static int vega10_setup_default_dpm_tables(struct pp_hwmgr *hwmgr) |
1299 | { |
1300 | struct vega10_hwmgr *data = hwmgr->backend; |
1301 | struct phm_ppt_v2_information *table_info = |
1302 | (struct phm_ppt_v2_information *)(hwmgr->pptable); |
1303 | struct vega10_single_dpm_table *dpm_table; |
1304 | uint32_t i; |
1305 | |
1306 | struct phm_ppt_v1_clock_voltage_dependency_table *dep_soc_table = |
1307 | table_info->vdd_dep_on_socclk; |
1308 | struct phm_ppt_v1_clock_voltage_dependency_table *dep_gfx_table = |
1309 | table_info->vdd_dep_on_sclk; |
1310 | struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table = |
1311 | table_info->vdd_dep_on_mclk; |
1312 | struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_mm_table = |
1313 | table_info->mm_dep_table; |
1314 | struct phm_ppt_v1_clock_voltage_dependency_table *dep_dcef_table = |
1315 | table_info->vdd_dep_on_dcefclk; |
1316 | struct phm_ppt_v1_clock_voltage_dependency_table *dep_pix_table = |
1317 | table_info->vdd_dep_on_pixclk; |
1318 | struct phm_ppt_v1_clock_voltage_dependency_table *dep_disp_table = |
1319 | table_info->vdd_dep_on_dispclk; |
1320 | struct phm_ppt_v1_clock_voltage_dependency_table *dep_phy_table = |
1321 | table_info->vdd_dep_on_phyclk; |
1322 | |
1323 | PP_ASSERT_WITH_CODE(dep_soc_table,do { if (!(dep_soc_table)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "SOCCLK dependency table is missing. This table is mandatory" ); return -22; } } while (0) |
1324 | "SOCCLK dependency table is missing. This table is mandatory",do { if (!(dep_soc_table)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "SOCCLK dependency table is missing. This table is mandatory" ); return -22; } } while (0) |
1325 | return -EINVAL)do { if (!(dep_soc_table)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "SOCCLK dependency table is missing. This table is mandatory" ); return -22; } } while (0); |
1326 | PP_ASSERT_WITH_CODE(dep_soc_table->count >= 1,do { if (!(dep_soc_table->count >= 1)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "SOCCLK dependency table is empty. This table is mandatory" ); return -22; } } while (0) |
1327 | "SOCCLK dependency table is empty. This table is mandatory",do { if (!(dep_soc_table->count >= 1)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "SOCCLK dependency table is empty. This table is mandatory" ); return -22; } } while (0) |
1328 | return -EINVAL)do { if (!(dep_soc_table->count >= 1)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "SOCCLK dependency table is empty. This table is mandatory" ); return -22; } } while (0); |
1329 | |
1330 | PP_ASSERT_WITH_CODE(dep_gfx_table,do { if (!(dep_gfx_table)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "GFXCLK dependency table is missing. This table is mandatory" ); return -22; } } while (0) |
1331 | "GFXCLK dependency table is missing. This table is mandatory",do { if (!(dep_gfx_table)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "GFXCLK dependency table is missing. This table is mandatory" ); return -22; } } while (0) |
1332 | return -EINVAL)do { if (!(dep_gfx_table)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "GFXCLK dependency table is missing. This table is mandatory" ); return -22; } } while (0); |
1333 | PP_ASSERT_WITH_CODE(dep_gfx_table->count >= 1,do { if (!(dep_gfx_table->count >= 1)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "GFXCLK dependency table is empty. This table is mandatory" ); return -22; } } while (0) |
1334 | "GFXCLK dependency table is empty. This table is mandatory",do { if (!(dep_gfx_table->count >= 1)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "GFXCLK dependency table is empty. This table is mandatory" ); return -22; } } while (0) |
1335 | return -EINVAL)do { if (!(dep_gfx_table->count >= 1)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "GFXCLK dependency table is empty. This table is mandatory" ); return -22; } } while (0); |
1336 | |
1337 | PP_ASSERT_WITH_CODE(dep_mclk_table,do { if (!(dep_mclk_table)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "MCLK dependency table is missing. This table is mandatory" ); return -22; } } while (0) |
1338 | "MCLK dependency table is missing. This table is mandatory",do { if (!(dep_mclk_table)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "MCLK dependency table is missing. This table is mandatory" ); return -22; } } while (0) |
1339 | return -EINVAL)do { if (!(dep_mclk_table)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "MCLK dependency table is missing. This table is mandatory" ); return -22; } } while (0); |
1340 | PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,do { if (!(dep_mclk_table->count >= 1)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "MCLK dependency table has to have is missing. This table is mandatory" ); return -22; } } while (0) |
1341 | "MCLK dependency table has to have is missing. This table is mandatory",do { if (!(dep_mclk_table->count >= 1)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "MCLK dependency table has to have is missing. This table is mandatory" ); return -22; } } while (0) |
1342 | return -EINVAL)do { if (!(dep_mclk_table->count >= 1)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "MCLK dependency table has to have is missing. This table is mandatory" ); return -22; } } while (0); |
1343 | |
1344 | /* Initialize Sclk DPM table based on allow Sclk values */ |
1345 | dpm_table = &(data->dpm_table.soc_table); |
1346 | vega10_setup_default_single_dpm_table(hwmgr, |
1347 | dpm_table, |
1348 | dep_soc_table); |
1349 | |
1350 | vega10_init_dpm_state(&(dpm_table->dpm_state)); |
1351 | |
1352 | dpm_table = &(data->dpm_table.gfx_table); |
1353 | vega10_setup_default_single_dpm_table(hwmgr, |
1354 | dpm_table, |
1355 | dep_gfx_table); |
1356 | if (hwmgr->platform_descriptor.overdriveLimit.engineClock == 0) |
1357 | hwmgr->platform_descriptor.overdriveLimit.engineClock = |
1358 | dpm_table->dpm_levels[dpm_table->count-1].value; |
1359 | vega10_init_dpm_state(&(dpm_table->dpm_state)); |
1360 | |
1361 | /* Initialize Mclk DPM table based on allow Mclk values */ |
1362 | data->dpm_table.mem_table.count = 0; |
1363 | dpm_table = &(data->dpm_table.mem_table); |
1364 | vega10_setup_default_single_dpm_table(hwmgr, |
1365 | dpm_table, |
1366 | dep_mclk_table); |
1367 | if (hwmgr->platform_descriptor.overdriveLimit.memoryClock == 0) |
1368 | hwmgr->platform_descriptor.overdriveLimit.memoryClock = |
1369 | dpm_table->dpm_levels[dpm_table->count-1].value; |
1370 | vega10_init_dpm_state(&(dpm_table->dpm_state)); |
1371 | |
1372 | data->dpm_table.eclk_table.count = 0; |
1373 | dpm_table = &(data->dpm_table.eclk_table); |
1374 | for (i = 0; i < dep_mm_table->count; i++) { |
1375 | if (i == 0 || dpm_table->dpm_levels |
1376 | [dpm_table->count - 1].value <= |
1377 | dep_mm_table->entries[i].eclk) { |
1378 | dpm_table->dpm_levels[dpm_table->count].value = |
1379 | dep_mm_table->entries[i].eclk; |
1380 | dpm_table->dpm_levels[dpm_table->count].enabled = |
1381 | (i == 0) ? true1 : false0; |
1382 | dpm_table->count++; |
1383 | } |
1384 | } |
1385 | vega10_init_dpm_state(&(dpm_table->dpm_state)); |
1386 | |
1387 | data->dpm_table.vclk_table.count = 0; |
1388 | data->dpm_table.dclk_table.count = 0; |
1389 | dpm_table = &(data->dpm_table.vclk_table); |
1390 | for (i = 0; i < dep_mm_table->count; i++) { |
1391 | if (i == 0 || dpm_table->dpm_levels |
1392 | [dpm_table->count - 1].value <= |
1393 | dep_mm_table->entries[i].vclk) { |
1394 | dpm_table->dpm_levels[dpm_table->count].value = |
1395 | dep_mm_table->entries[i].vclk; |
1396 | dpm_table->dpm_levels[dpm_table->count].enabled = |
1397 | (i == 0) ? true1 : false0; |
1398 | dpm_table->count++; |
1399 | } |
1400 | } |
1401 | vega10_init_dpm_state(&(dpm_table->dpm_state)); |
1402 | |
1403 | dpm_table = &(data->dpm_table.dclk_table); |
1404 | for (i = 0; i < dep_mm_table->count; i++) { |
1405 | if (i == 0 || dpm_table->dpm_levels |
1406 | [dpm_table->count - 1].value <= |
1407 | dep_mm_table->entries[i].dclk) { |
1408 | dpm_table->dpm_levels[dpm_table->count].value = |
1409 | dep_mm_table->entries[i].dclk; |
1410 | dpm_table->dpm_levels[dpm_table->count].enabled = |
1411 | (i == 0) ? true1 : false0; |
1412 | dpm_table->count++; |
1413 | } |
1414 | } |
1415 | vega10_init_dpm_state(&(dpm_table->dpm_state)); |
1416 | |
1417 | /* Assume there is no headless Vega10 for now */ |
1418 | dpm_table = &(data->dpm_table.dcef_table); |
1419 | vega10_setup_default_single_dpm_table(hwmgr, |
1420 | dpm_table, |
1421 | dep_dcef_table); |
1422 | |
1423 | vega10_init_dpm_state(&(dpm_table->dpm_state)); |
1424 | |
1425 | dpm_table = &(data->dpm_table.pixel_table); |
1426 | vega10_setup_default_single_dpm_table(hwmgr, |
1427 | dpm_table, |
1428 | dep_pix_table); |
1429 | |
1430 | vega10_init_dpm_state(&(dpm_table->dpm_state)); |
1431 | |
1432 | dpm_table = &(data->dpm_table.display_table); |
1433 | vega10_setup_default_single_dpm_table(hwmgr, |
1434 | dpm_table, |
1435 | dep_disp_table); |
1436 | |
1437 | vega10_init_dpm_state(&(dpm_table->dpm_state)); |
1438 | |
1439 | dpm_table = &(data->dpm_table.phy_table); |
1440 | vega10_setup_default_single_dpm_table(hwmgr, |
1441 | dpm_table, |
1442 | dep_phy_table); |
1443 | |
1444 | vega10_init_dpm_state(&(dpm_table->dpm_state)); |
1445 | |
1446 | vega10_setup_default_pcie_table(hwmgr); |
1447 | |
1448 | /* Zero out the saved copy of the CUSTOM profile |
1449 | * This will be checked when trying to set the profile |
1450 | * and will require that new values be passed in |
1451 | */ |
1452 | data->custom_profile_mode[0] = 0; |
1453 | data->custom_profile_mode[1] = 0; |
1454 | data->custom_profile_mode[2] = 0; |
1455 | data->custom_profile_mode[3] = 0; |
1456 | |
1457 | /* save a copy of the default DPM table */ |
1458 | memcpy(&(data->golden_dpm_table), &(data->dpm_table),__builtin_memcpy((&(data->golden_dpm_table)), (&(data ->dpm_table)), (sizeof(struct vega10_dpm_table))) |
1459 | sizeof(struct vega10_dpm_table))__builtin_memcpy((&(data->golden_dpm_table)), (&(data ->dpm_table)), (sizeof(struct vega10_dpm_table))); |
1460 | |
1461 | return 0; |
1462 | } |
1463 | |
1464 | /* |
1465 | * @fn vega10_populate_ulv_state |
1466 | * @brief Function to provide parameters for Utral Low Voltage state to SMC. |
1467 | * |
1468 | * @param hwmgr - the address of the hardware manager. |
1469 | * @return Always 0. |
1470 | */ |
1471 | static int vega10_populate_ulv_state(struct pp_hwmgr *hwmgr) |
1472 | { |
1473 | struct vega10_hwmgr *data = hwmgr->backend; |
1474 | struct phm_ppt_v2_information *table_info = |
1475 | (struct phm_ppt_v2_information *)(hwmgr->pptable); |
1476 | |
1477 | data->smc_state_table.pp_table.UlvOffsetVid = |
1478 | (uint8_t)table_info->us_ulv_voltage_offset; |
1479 | |
1480 | data->smc_state_table.pp_table.UlvSmnclkDid = |
1481 | (uint8_t)(table_info->us_ulv_smnclk_did); |
1482 | data->smc_state_table.pp_table.UlvMp1clkDid = |
1483 | (uint8_t)(table_info->us_ulv_mp1clk_did); |
1484 | data->smc_state_table.pp_table.UlvGfxclkBypass = |
1485 | (uint8_t)(table_info->us_ulv_gfxclk_bypass); |
1486 | data->smc_state_table.pp_table.UlvPhaseSheddingPsi0 = |
1487 | (uint8_t)(data->vddc_voltage_table.psi0_enable); |
1488 | data->smc_state_table.pp_table.UlvPhaseSheddingPsi1 = |
1489 | (uint8_t)(data->vddc_voltage_table.psi1_enable); |
1490 | |
1491 | return 0; |
1492 | } |
1493 | |
1494 | static int vega10_populate_single_lclk_level(struct pp_hwmgr *hwmgr, |
1495 | uint32_t lclock, uint8_t *curr_lclk_did) |
1496 | { |
1497 | struct pp_atomfwctrl_clock_dividers_soc15 dividers; |
1498 | |
1499 | PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(do { if (!(!pp_atomfwctrl_get_gpu_pll_dividers_vega10( hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, lclock, ÷rs ))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to get LCLK clock settings from VBIOS!" ); return -1; } } while (0) |
1500 | hwmgr,do { if (!(!pp_atomfwctrl_get_gpu_pll_dividers_vega10( hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, lclock, ÷rs ))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to get LCLK clock settings from VBIOS!" ); return -1; } } while (0) |
1501 | COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,do { if (!(!pp_atomfwctrl_get_gpu_pll_dividers_vega10( hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, lclock, ÷rs ))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to get LCLK clock settings from VBIOS!" ); return -1; } } while (0) |
1502 | lclock, ÷rs),do { if (!(!pp_atomfwctrl_get_gpu_pll_dividers_vega10( hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, lclock, ÷rs ))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to get LCLK clock settings from VBIOS!" ); return -1; } } while (0) |
1503 | "Failed to get LCLK clock settings from VBIOS!",do { if (!(!pp_atomfwctrl_get_gpu_pll_dividers_vega10( hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, lclock, ÷rs ))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to get LCLK clock settings from VBIOS!" ); return -1; } } while (0) |
1504 | return -1)do { if (!(!pp_atomfwctrl_get_gpu_pll_dividers_vega10( hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, lclock, ÷rs ))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to get LCLK clock settings from VBIOS!" ); return -1; } } while (0); |
1505 | |
1506 | *curr_lclk_did = dividers.ulDid; |
1507 | |
1508 | return 0; |
1509 | } |
1510 | |
1511 | static int vega10_override_pcie_parameters(struct pp_hwmgr *hwmgr) |
1512 | { |
1513 | struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev); |
1514 | struct vega10_hwmgr *data = |
1515 | (struct vega10_hwmgr *)(hwmgr->backend); |
1516 | uint32_t pcie_gen = 0, pcie_width = 0; |
1517 | PPTable_t *pp_table = &(data->smc_state_table.pp_table); |
1518 | int i; |
1519 | |
1520 | if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN40x00080000) |
1521 | pcie_gen = 3; |
1522 | else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN30x00040000) |
1523 | pcie_gen = 2; |
1524 | else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN20x00020000) |
1525 | pcie_gen = 1; |
1526 | else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN10x00010000) |
1527 | pcie_gen = 0; |
1528 | |
1529 | if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X160x00200000) |
1530 | pcie_width = 6; |
1531 | else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X120x00100000) |
1532 | pcie_width = 5; |
1533 | else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X80x00080000) |
1534 | pcie_width = 4; |
1535 | else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X40x00040000) |
1536 | pcie_width = 3; |
1537 | else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X20x00020000) |
1538 | pcie_width = 2; |
1539 | else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X10x00010000) |
1540 | pcie_width = 1; |
1541 | |
1542 | for (i = 0; i < NUM_LINK_LEVELS2; i++) { |
1543 | if (pp_table->PcieGenSpeed[i] > pcie_gen) |
1544 | pp_table->PcieGenSpeed[i] = pcie_gen; |
1545 | |
1546 | if (pp_table->PcieLaneCount[i] > pcie_width) |
1547 | pp_table->PcieLaneCount[i] = pcie_width; |
1548 | } |
1549 | |
1550 | if (data->registry_data.pcie_dpm_key_disabled) { |
1551 | for (i = 0; i < NUM_LINK_LEVELS2; i++) { |
1552 | pp_table->PcieGenSpeed[i] = pcie_gen; |
1553 | pp_table->PcieLaneCount[i] = pcie_width; |
1554 | } |
1555 | } |
1556 | |
1557 | return 0; |
1558 | } |
1559 | |
1560 | static int vega10_populate_smc_link_levels(struct pp_hwmgr *hwmgr) |
1561 | { |
1562 | int result = -1; |
1563 | struct vega10_hwmgr *data = hwmgr->backend; |
1564 | PPTable_t *pp_table = &(data->smc_state_table.pp_table); |
1565 | struct vega10_pcie_table *pcie_table = |
1566 | &(data->dpm_table.pcie_table); |
1567 | uint32_t i, j; |
1568 | |
1569 | for (i = 0; i < pcie_table->count; i++) { |
1570 | pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[i]; |
1571 | pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[i]; |
1572 | |
1573 | result = vega10_populate_single_lclk_level(hwmgr, |
1574 | pcie_table->lclk[i], &(pp_table->LclkDid[i])); |
1575 | if (result) { |
1576 | pr_info("Populate LClock Level %d Failed!\n", i)do { } while(0); |
1577 | return result; |
1578 | } |
1579 | } |
1580 | |
1581 | j = i - 1; |
1582 | while (i < NUM_LINK_LEVELS2) { |
1583 | pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[j]; |
1584 | pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[j]; |
1585 | |
1586 | result = vega10_populate_single_lclk_level(hwmgr, |
1587 | pcie_table->lclk[j], &(pp_table->LclkDid[i])); |
1588 | if (result) { |
1589 | pr_info("Populate LClock Level %d Failed!\n", i)do { } while(0); |
1590 | return result; |
1591 | } |
1592 | i++; |
1593 | } |
1594 | |
1595 | return result; |
1596 | } |
1597 | |
1598 | /** |
1599 | * Populates single SMC GFXSCLK structure using the provided engine clock |
1600 | * |
1601 | * @param hwmgr the address of the hardware manager |
1602 | * @param gfx_clock the GFX clock to use to populate the structure. |
1603 | * @param current_gfxclk_level location in PPTable for the SMC GFXCLK structure. |
1604 | */ |
1605 | |
1606 | static int vega10_populate_single_gfx_level(struct pp_hwmgr *hwmgr, |
1607 | uint32_t gfx_clock, PllSetting_t *current_gfxclk_level, |
1608 | uint32_t *acg_freq) |
1609 | { |
1610 | struct phm_ppt_v2_information *table_info = |
1611 | (struct phm_ppt_v2_information *)(hwmgr->pptable); |
1612 | struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_sclk; |
1613 | struct vega10_hwmgr *data = hwmgr->backend; |
1614 | struct pp_atomfwctrl_clock_dividers_soc15 dividers; |
1615 | uint32_t gfx_max_clock = |
1616 | hwmgr->platform_descriptor.overdriveLimit.engineClock; |
1617 | uint32_t i = 0; |
1618 | |
1619 | if (hwmgr->od_enabled) |
1620 | dep_on_sclk = (struct phm_ppt_v1_clock_voltage_dependency_table *) |
1621 | &(data->odn_dpm_table.vdd_dep_on_sclk); |
1622 | else |
1623 | dep_on_sclk = table_info->vdd_dep_on_sclk; |
1624 | |
1625 | PP_ASSERT_WITH_CODE(dep_on_sclk,do { if (!(dep_on_sclk)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Invalid SOC_VDD-GFX_CLK Dependency Table!"); return -22; } } while (0) |
1626 | "Invalid SOC_VDD-GFX_CLK Dependency Table!",do { if (!(dep_on_sclk)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Invalid SOC_VDD-GFX_CLK Dependency Table!"); return -22; } } while (0) |
1627 | return -EINVAL)do { if (!(dep_on_sclk)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Invalid SOC_VDD-GFX_CLK Dependency Table!"); return -22; } } while (0); |
1628 | |
1629 | if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_SCLK0x00000001) |
1630 | gfx_clock = gfx_clock > gfx_max_clock ? gfx_max_clock : gfx_clock; |
1631 | else { |
1632 | for (i = 0; i < dep_on_sclk->count; i++) { |
1633 | if (dep_on_sclk->entries[i].clk == gfx_clock) |
1634 | break; |
1635 | } |
1636 | PP_ASSERT_WITH_CODE(dep_on_sclk->count > i,do { if (!(dep_on_sclk->count > i)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Cannot find gfx_clk in SOC_VDD-GFX_CLK!"); return - 22; } } while (0) |
1637 | "Cannot find gfx_clk in SOC_VDD-GFX_CLK!",do { if (!(dep_on_sclk->count > i)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Cannot find gfx_clk in SOC_VDD-GFX_CLK!"); return - 22; } } while (0) |
1638 | return -EINVAL)do { if (!(dep_on_sclk->count > i)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Cannot find gfx_clk in SOC_VDD-GFX_CLK!"); return - 22; } } while (0); |
1639 | } |
1640 | |
1641 | PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,do { if (!(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_GFXCLK , gfx_clock, ÷rs))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to get GFX Clock settings from VBIOS!"); return -22; } } while (0) |
1642 | COMPUTE_GPUCLK_INPUT_FLAG_GFXCLK,do { if (!(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_GFXCLK , gfx_clock, ÷rs))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to get GFX Clock settings from VBIOS!"); return -22; } } while (0) |
1643 | gfx_clock, ÷rs),do { if (!(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_GFXCLK , gfx_clock, ÷rs))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to get GFX Clock settings from VBIOS!"); return -22; } } while (0) |
1644 | "Failed to get GFX Clock settings from VBIOS!",do { if (!(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_GFXCLK , gfx_clock, ÷rs))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to get GFX Clock settings from VBIOS!"); return -22; } } while (0) |
1645 | return -EINVAL)do { if (!(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_GFXCLK , gfx_clock, ÷rs))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to get GFX Clock settings from VBIOS!"); return -22; } } while (0); |
1646 | |
1647 | /* Feedback Multiplier: bit 0:8 int, bit 15:12 post_div, bit 31:16 frac */ |
1648 | current_gfxclk_level->FbMult = |
1649 | cpu_to_le32(dividers.ulPll_fb_mult)((__uint32_t)(dividers.ulPll_fb_mult)); |
1650 | /* Spread FB Multiplier bit: bit 0:8 int, bit 31:16 frac */ |
1651 | current_gfxclk_level->SsOn = dividers.ucPll_ss_enable; |
1652 | current_gfxclk_level->SsFbMult = |
1653 | cpu_to_le32(dividers.ulPll_ss_fbsmult)((__uint32_t)(dividers.ulPll_ss_fbsmult)); |
1654 | current_gfxclk_level->SsSlewFrac = |
1655 | cpu_to_le16(dividers.usPll_ss_slew_frac)((__uint16_t)(dividers.usPll_ss_slew_frac)); |
1656 | current_gfxclk_level->Did = (uint8_t)(dividers.ulDid); |
1657 | |
1658 | *acg_freq = gfx_clock / 100; /* 100 Khz to Mhz conversion */ |
1659 | |
1660 | return 0; |
1661 | } |
1662 | |
1663 | /** |
1664 | * @brief Populates single SMC SOCCLK structure using the provided clock. |
1665 | * |
1666 | * @param hwmgr - the address of the hardware manager. |
1667 | * @param soc_clock - the SOC clock to use to populate the structure. |
1668 | * @param current_socclk_level - location in PPTable for the SMC SOCCLK structure. |
1669 | * @return 0 on success.. |
1670 | */ |
1671 | static int vega10_populate_single_soc_level(struct pp_hwmgr *hwmgr, |
1672 | uint32_t soc_clock, uint8_t *current_soc_did, |
1673 | uint8_t *current_vol_index) |
1674 | { |
1675 | struct vega10_hwmgr *data = hwmgr->backend; |
1676 | struct phm_ppt_v2_information *table_info = |
1677 | (struct phm_ppt_v2_information *)(hwmgr->pptable); |
1678 | struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_soc; |
1679 | struct pp_atomfwctrl_clock_dividers_soc15 dividers; |
1680 | uint32_t i; |
1681 | |
1682 | if (hwmgr->od_enabled) { |
1683 | dep_on_soc = (struct phm_ppt_v1_clock_voltage_dependency_table *) |
1684 | &data->odn_dpm_table.vdd_dep_on_socclk; |
1685 | for (i = 0; i < dep_on_soc->count; i++) { |
1686 | if (dep_on_soc->entries[i].clk >= soc_clock) |
1687 | break; |
1688 | } |
1689 | } else { |
1690 | dep_on_soc = table_info->vdd_dep_on_socclk; |
1691 | for (i = 0; i < dep_on_soc->count; i++) { |
1692 | if (dep_on_soc->entries[i].clk == soc_clock) |
1693 | break; |
1694 | } |
1695 | } |
1696 | |
1697 | PP_ASSERT_WITH_CODE(dep_on_soc->count > i,do { if (!(dep_on_soc->count > i)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Cannot find SOC_CLK in SOC_VDD-SOC_CLK Dependency Table" ); return -22; } } while (0) |
1698 | "Cannot find SOC_CLK in SOC_VDD-SOC_CLK Dependency Table",do { if (!(dep_on_soc->count > i)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Cannot find SOC_CLK in SOC_VDD-SOC_CLK Dependency Table" ); return -22; } } while (0) |
1699 | return -EINVAL)do { if (!(dep_on_soc->count > i)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Cannot find SOC_CLK in SOC_VDD-SOC_CLK Dependency Table" ); return -22; } } while (0); |
1700 | |
1701 | PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,do { if (!(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK , soc_clock, ÷rs))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to get SOC Clock settings from VBIOS!"); return -22; } } while (0) |
1702 | COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,do { if (!(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK , soc_clock, ÷rs))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to get SOC Clock settings from VBIOS!"); return -22; } } while (0) |
1703 | soc_clock, ÷rs),do { if (!(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK , soc_clock, ÷rs))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to get SOC Clock settings from VBIOS!"); return -22; } } while (0) |
1704 | "Failed to get SOC Clock settings from VBIOS!",do { if (!(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK , soc_clock, ÷rs))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to get SOC Clock settings from VBIOS!"); return -22; } } while (0) |
1705 | return -EINVAL)do { if (!(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK , soc_clock, ÷rs))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to get SOC Clock settings from VBIOS!"); return -22; } } while (0); |
1706 | |
1707 | *current_soc_did = (uint8_t)dividers.ulDid; |
1708 | *current_vol_index = (uint8_t)(dep_on_soc->entries[i].vddInd); |
1709 | return 0; |
1710 | } |
1711 | |
1712 | /** |
1713 | * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states |
1714 | * |
1715 | * @param hwmgr the address of the hardware manager |
1716 | */ |
1717 | static int vega10_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) |
1718 | { |
1719 | struct vega10_hwmgr *data = hwmgr->backend; |
1720 | struct phm_ppt_v2_information *table_info = |
1721 | (struct phm_ppt_v2_information *)(hwmgr->pptable); |
1722 | PPTable_t *pp_table = &(data->smc_state_table.pp_table); |
1723 | struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.gfx_table); |
1724 | int result = 0; |
1725 | uint32_t i, j; |
1726 | |
1727 | for (i = 0; i < dpm_table->count; i++) { |
1728 | result = vega10_populate_single_gfx_level(hwmgr, |
1729 | dpm_table->dpm_levels[i].value, |
1730 | &(pp_table->GfxclkLevel[i]), |
1731 | &(pp_table->AcgFreqTable[i])); |
1732 | if (result) |
1733 | return result; |
1734 | } |
1735 | |
1736 | j = i - 1; |
1737 | while (i < NUM_GFXCLK_DPM_LEVELS8) { |
1738 | result = vega10_populate_single_gfx_level(hwmgr, |
1739 | dpm_table->dpm_levels[j].value, |
1740 | &(pp_table->GfxclkLevel[i]), |
1741 | &(pp_table->AcgFreqTable[i])); |
1742 | if (result) |
1743 | return result; |
1744 | i++; |
1745 | } |
1746 | |
1747 | pp_table->GfxclkSlewRate = |
1748 | cpu_to_le16(table_info->us_gfxclk_slew_rate)((__uint16_t)(table_info->us_gfxclk_slew_rate)); |
1749 | |
1750 | dpm_table = &(data->dpm_table.soc_table); |
1751 | for (i = 0; i < dpm_table->count; i++) { |
1752 | result = vega10_populate_single_soc_level(hwmgr, |
1753 | dpm_table->dpm_levels[i].value, |
1754 | &(pp_table->SocclkDid[i]), |
1755 | &(pp_table->SocDpmVoltageIndex[i])); |
1756 | if (result) |
1757 | return result; |
1758 | } |
1759 | |
1760 | j = i - 1; |
1761 | while (i < NUM_SOCCLK_DPM_LEVELS8) { |
1762 | result = vega10_populate_single_soc_level(hwmgr, |
1763 | dpm_table->dpm_levels[j].value, |
1764 | &(pp_table->SocclkDid[i]), |
1765 | &(pp_table->SocDpmVoltageIndex[i])); |
1766 | if (result) |
1767 | return result; |
1768 | i++; |
1769 | } |
1770 | |
1771 | return result; |
1772 | } |
1773 | |
1774 | static void vega10_populate_vddc_soc_levels(struct pp_hwmgr *hwmgr) |
1775 | { |
1776 | struct vega10_hwmgr *data = hwmgr->backend; |
1777 | PPTable_t *pp_table = &(data->smc_state_table.pp_table); |
1778 | struct phm_ppt_v2_information *table_info = hwmgr->pptable; |
1779 | struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table; |
1780 | |
1781 | uint8_t soc_vid = 0; |
1782 | uint32_t i, max_vddc_level; |
1783 | |
1784 | if (hwmgr->od_enabled) |
1785 | vddc_lookup_table = (struct phm_ppt_v1_voltage_lookup_table *)&data->odn_dpm_table.vddc_lookup_table; |
1786 | else |
1787 | vddc_lookup_table = table_info->vddc_lookup_table; |
1788 | |
1789 | max_vddc_level = vddc_lookup_table->count; |
1790 | for (i = 0; i < max_vddc_level; i++) { |
1791 | soc_vid = (uint8_t)convert_to_vid(vddc_lookup_table->entries[i].us_vdd); |
1792 | pp_table->SocVid[i] = soc_vid; |
1793 | } |
1794 | while (i < MAX_REGULAR_DPM_NUMBER8) { |
1795 | pp_table->SocVid[i] = soc_vid; |
1796 | i++; |
1797 | } |
1798 | } |
1799 | |
1800 | /** |
1801 | * @brief Populates single SMC GFXCLK structure using the provided clock. |
1802 | * |
1803 | * @param hwmgr - the address of the hardware manager. |
1804 | * @param mem_clock - the memory clock to use to populate the structure. |
1805 | * @return 0 on success.. |
1806 | */ |
1807 | static int vega10_populate_single_memory_level(struct pp_hwmgr *hwmgr, |
1808 | uint32_t mem_clock, uint8_t *current_mem_vid, |
1809 | PllSetting_t *current_memclk_level, uint8_t *current_mem_soc_vind) |
1810 | { |
1811 | struct vega10_hwmgr *data = hwmgr->backend; |
1812 | struct phm_ppt_v2_information *table_info = |
1813 | (struct phm_ppt_v2_information *)(hwmgr->pptable); |
1814 | struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_mclk; |
1815 | struct pp_atomfwctrl_clock_dividers_soc15 dividers; |
1816 | uint32_t mem_max_clock = |
1817 | hwmgr->platform_descriptor.overdriveLimit.memoryClock; |
1818 | uint32_t i = 0; |
1819 | |
1820 | if (hwmgr->od_enabled) |
1821 | dep_on_mclk = (struct phm_ppt_v1_clock_voltage_dependency_table *) |
1822 | &data->odn_dpm_table.vdd_dep_on_mclk; |
1823 | else |
1824 | dep_on_mclk = table_info->vdd_dep_on_mclk; |
1825 | |
1826 | PP_ASSERT_WITH_CODE(dep_on_mclk,do { if (!(dep_on_mclk)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Invalid SOC_VDD-UCLK Dependency Table!"); return -22 ; } } while (0) |
1827 | "Invalid SOC_VDD-UCLK Dependency Table!",do { if (!(dep_on_mclk)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Invalid SOC_VDD-UCLK Dependency Table!"); return -22 ; } } while (0) |
1828 | return -EINVAL)do { if (!(dep_on_mclk)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Invalid SOC_VDD-UCLK Dependency Table!"); return -22 ; } } while (0); |
1829 | |
1830 | if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_MCLK0x00000002) { |
1831 | mem_clock = mem_clock > mem_max_clock ? mem_max_clock : mem_clock; |
1832 | } else { |
1833 | for (i = 0; i < dep_on_mclk->count; i++) { |
1834 | if (dep_on_mclk->entries[i].clk == mem_clock) |
1835 | break; |
1836 | } |
1837 | PP_ASSERT_WITH_CODE(dep_on_mclk->count > i,do { if (!(dep_on_mclk->count > i)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Cannot find UCLK in SOC_VDD-UCLK Dependency Table!" ); return -22; } } while (0) |
1838 | "Cannot find UCLK in SOC_VDD-UCLK Dependency Table!",do { if (!(dep_on_mclk->count > i)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Cannot find UCLK in SOC_VDD-UCLK Dependency Table!" ); return -22; } } while (0) |
1839 | return -EINVAL)do { if (!(dep_on_mclk->count > i)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Cannot find UCLK in SOC_VDD-UCLK Dependency Table!" ); return -22; } } while (0); |
1840 | } |
1841 | |
1842 | PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(do { if (!(!pp_atomfwctrl_get_gpu_pll_dividers_vega10( hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_UCLK, mem_clock, ÷rs))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to get UCLK settings from VBIOS!" ); return -1; } } while (0) |
1843 | hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_UCLK, mem_clock, ÷rs),do { if (!(!pp_atomfwctrl_get_gpu_pll_dividers_vega10( hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_UCLK, mem_clock, ÷rs))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to get UCLK settings from VBIOS!" ); return -1; } } while (0) |
1844 | "Failed to get UCLK settings from VBIOS!",do { if (!(!pp_atomfwctrl_get_gpu_pll_dividers_vega10( hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_UCLK, mem_clock, ÷rs))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to get UCLK settings from VBIOS!" ); return -1; } } while (0) |
1845 | return -1)do { if (!(!pp_atomfwctrl_get_gpu_pll_dividers_vega10( hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_UCLK, mem_clock, ÷rs))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to get UCLK settings from VBIOS!" ); return -1; } } while (0); |
1846 | |
1847 | *current_mem_vid = |
1848 | (uint8_t)(convert_to_vid(dep_on_mclk->entries[i].mvdd)); |
1849 | *current_mem_soc_vind = |
1850 | (uint8_t)(dep_on_mclk->entries[i].vddInd); |
1851 | current_memclk_level->FbMult = cpu_to_le32(dividers.ulPll_fb_mult)((__uint32_t)(dividers.ulPll_fb_mult)); |
1852 | current_memclk_level->Did = (uint8_t)(dividers.ulDid); |
1853 | |
1854 | PP_ASSERT_WITH_CODE(current_memclk_level->Did >= 1,do { if (!(current_memclk_level->Did >= 1)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Invalid Divider ID!"); return -22; } } while (0) |
1855 | "Invalid Divider ID!",do { if (!(current_memclk_level->Did >= 1)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Invalid Divider ID!"); return -22; } } while (0) |
1856 | return -EINVAL)do { if (!(current_memclk_level->Did >= 1)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Invalid Divider ID!"); return -22; } } while (0); |
1857 | |
1858 | return 0; |
1859 | } |
1860 | |
1861 | /** |
1862 | * @brief Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states. |
1863 | * |
1864 | * @param pHwMgr - the address of the hardware manager. |
1865 | * @return PP_Result_OK on success. |
1866 | */ |
1867 | static int vega10_populate_all_memory_levels(struct pp_hwmgr *hwmgr) |
1868 | { |
1869 | struct vega10_hwmgr *data = hwmgr->backend; |
1870 | PPTable_t *pp_table = &(data->smc_state_table.pp_table); |
1871 | struct vega10_single_dpm_table *dpm_table = |
1872 | &(data->dpm_table.mem_table); |
1873 | int result = 0; |
1874 | uint32_t i, j; |
1875 | |
1876 | for (i = 0; i < dpm_table->count; i++) { |
1877 | result = vega10_populate_single_memory_level(hwmgr, |
1878 | dpm_table->dpm_levels[i].value, |
1879 | &(pp_table->MemVid[i]), |
1880 | &(pp_table->UclkLevel[i]), |
1881 | &(pp_table->MemSocVoltageIndex[i])); |
1882 | if (result) |
1883 | return result; |
1884 | } |
1885 | |
1886 | j = i - 1; |
1887 | while (i < NUM_UCLK_DPM_LEVELS4) { |
1888 | result = vega10_populate_single_memory_level(hwmgr, |
1889 | dpm_table->dpm_levels[j].value, |
1890 | &(pp_table->MemVid[i]), |
1891 | &(pp_table->UclkLevel[i]), |
1892 | &(pp_table->MemSocVoltageIndex[i])); |
1893 | if (result) |
1894 | return result; |
1895 | i++; |
1896 | } |
1897 | |
1898 | pp_table->NumMemoryChannels = (uint16_t)(data->mem_channels); |
1899 | pp_table->MemoryChannelWidth = |
1900 | (uint16_t)(HBM_MEMORY_CHANNEL_WIDTH128 * |
1901 | channel_number[data->mem_channels]); |
1902 | |
1903 | pp_table->LowestUclkReservedForUlv = |
1904 | (uint8_t)(data->lowest_uclk_reserved_for_ulv); |
1905 | |
1906 | return result; |
1907 | } |
1908 | |
1909 | static int vega10_populate_single_display_type(struct pp_hwmgr *hwmgr, |
1910 | DSPCLK_e disp_clock) |
1911 | { |
1912 | struct vega10_hwmgr *data = hwmgr->backend; |
1913 | PPTable_t *pp_table = &(data->smc_state_table.pp_table); |
1914 | struct phm_ppt_v2_information *table_info = |
1915 | (struct phm_ppt_v2_information *) |
1916 | (hwmgr->pptable); |
1917 | struct phm_ppt_v1_clock_voltage_dependency_table *dep_table; |
1918 | uint32_t i; |
1919 | uint16_t clk = 0, vddc = 0; |
1920 | uint8_t vid = 0; |
1921 | |
1922 | switch (disp_clock) { |
1923 | case DSPCLK_DCEFCLK: |
1924 | dep_table = table_info->vdd_dep_on_dcefclk; |
1925 | break; |
1926 | case DSPCLK_DISPCLK: |
1927 | dep_table = table_info->vdd_dep_on_dispclk; |
1928 | break; |
1929 | case DSPCLK_PIXCLK: |
1930 | dep_table = table_info->vdd_dep_on_pixclk; |
1931 | break; |
1932 | case DSPCLK_PHYCLK: |
1933 | dep_table = table_info->vdd_dep_on_phyclk; |
1934 | break; |
1935 | default: |
1936 | return -1; |
1937 | } |
1938 | |
1939 | PP_ASSERT_WITH_CODE(dep_table->count <= NUM_DSPCLK_LEVELS,do { if (!(dep_table->count <= 8)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Number Of Entries Exceeded maximum!"); return -1; } } while (0) |
1940 | "Number Of Entries Exceeded maximum!",do { if (!(dep_table->count <= 8)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Number Of Entries Exceeded maximum!"); return -1; } } while (0) |
1941 | return -1)do { if (!(dep_table->count <= 8)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Number Of Entries Exceeded maximum!"); return -1; } } while (0); |
1942 | |
1943 | for (i = 0; i < dep_table->count; i++) { |
1944 | clk = (uint16_t)(dep_table->entries[i].clk / 100); |
1945 | vddc = table_info->vddc_lookup_table-> |
1946 | entries[dep_table->entries[i].vddInd].us_vdd; |
1947 | vid = (uint8_t)convert_to_vid(vddc); |
1948 | pp_table->DisplayClockTable[disp_clock][i].Freq = |
1949 | cpu_to_le16(clk)((__uint16_t)(clk)); |
1950 | pp_table->DisplayClockTable[disp_clock][i].Vid = |
1951 | cpu_to_le16(vid)((__uint16_t)(vid)); |
1952 | } |
1953 | |
1954 | while (i < NUM_DSPCLK_LEVELS8) { |
1955 | pp_table->DisplayClockTable[disp_clock][i].Freq = |
1956 | cpu_to_le16(clk)((__uint16_t)(clk)); |
1957 | pp_table->DisplayClockTable[disp_clock][i].Vid = |
1958 | cpu_to_le16(vid)((__uint16_t)(vid)); |
1959 | i++; |
1960 | } |
1961 | |
1962 | return 0; |
1963 | } |
1964 | |
1965 | static int vega10_populate_all_display_clock_levels(struct pp_hwmgr *hwmgr) |
1966 | { |
1967 | uint32_t i; |
1968 | |
1969 | for (i = 0; i < DSPCLK_COUNT; i++) { |
1970 | PP_ASSERT_WITH_CODE(!vega10_populate_single_display_type(hwmgr, i),do { if (!(!vega10_populate_single_display_type(hwmgr, i))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to populate Clock in DisplayClockTable!" ); return -1; } } while (0) |
1971 | "Failed to populate Clock in DisplayClockTable!",do { if (!(!vega10_populate_single_display_type(hwmgr, i))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to populate Clock in DisplayClockTable!" ); return -1; } } while (0) |
1972 | return -1)do { if (!(!vega10_populate_single_display_type(hwmgr, i))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to populate Clock in DisplayClockTable!" ); return -1; } } while (0); |
1973 | } |
1974 | |
1975 | return 0; |
1976 | } |
1977 | |
1978 | static int vega10_populate_single_eclock_level(struct pp_hwmgr *hwmgr, |
1979 | uint32_t eclock, uint8_t *current_eclk_did, |
1980 | uint8_t *current_soc_vol) |
1981 | { |
1982 | struct phm_ppt_v2_information *table_info = |
1983 | (struct phm_ppt_v2_information *)(hwmgr->pptable); |
1984 | struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table = |
1985 | table_info->mm_dep_table; |
1986 | struct pp_atomfwctrl_clock_dividers_soc15 dividers; |
1987 | uint32_t i; |
1988 | |
1989 | PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,do { if (!(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK , eclock, ÷rs))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to get ECLK clock settings from VBIOS!"); return -1; } } while (0) |
1990 | COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,do { if (!(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK , eclock, ÷rs))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to get ECLK clock settings from VBIOS!"); return -1; } } while (0) |
1991 | eclock, ÷rs),do { if (!(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK , eclock, ÷rs))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to get ECLK clock settings from VBIOS!"); return -1; } } while (0) |
1992 | "Failed to get ECLK clock settings from VBIOS!",do { if (!(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK , eclock, ÷rs))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to get ECLK clock settings from VBIOS!"); return -1; } } while (0) |
1993 | return -1)do { if (!(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK , eclock, ÷rs))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to get ECLK clock settings from VBIOS!"); return -1; } } while (0); |
1994 | |
1995 | *current_eclk_did = (uint8_t)dividers.ulDid; |
1996 | |
1997 | for (i = 0; i < dep_table->count; i++) { |
1998 | if (dep_table->entries[i].eclk == eclock) |
1999 | *current_soc_vol = dep_table->entries[i].vddcInd; |
2000 | } |
2001 | |
2002 | return 0; |
2003 | } |
2004 | |
2005 | static int vega10_populate_smc_vce_levels(struct pp_hwmgr *hwmgr) |
2006 | { |
2007 | struct vega10_hwmgr *data = hwmgr->backend; |
2008 | PPTable_t *pp_table = &(data->smc_state_table.pp_table); |
2009 | struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.eclk_table); |
2010 | int result = -EINVAL22; |
2011 | uint32_t i, j; |
2012 | |
2013 | for (i = 0; i < dpm_table->count; i++) { |
2014 | result = vega10_populate_single_eclock_level(hwmgr, |
2015 | dpm_table->dpm_levels[i].value, |
2016 | &(pp_table->EclkDid[i]), |
2017 | &(pp_table->VceDpmVoltageIndex[i])); |
2018 | if (result) |
2019 | return result; |
2020 | } |
2021 | |
2022 | j = i - 1; |
2023 | while (i < NUM_VCE_DPM_LEVELS8) { |
2024 | result = vega10_populate_single_eclock_level(hwmgr, |
2025 | dpm_table->dpm_levels[j].value, |
2026 | &(pp_table->EclkDid[i]), |
2027 | &(pp_table->VceDpmVoltageIndex[i])); |
2028 | if (result) |
2029 | return result; |
2030 | i++; |
2031 | } |
2032 | |
2033 | return result; |
2034 | } |
2035 | |
2036 | static int vega10_populate_single_vclock_level(struct pp_hwmgr *hwmgr, |
2037 | uint32_t vclock, uint8_t *current_vclk_did) |
2038 | { |
2039 | struct pp_atomfwctrl_clock_dividers_soc15 dividers; |
2040 | |
2041 | PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,do { if (!(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK , vclock, ÷rs))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to get VCLK clock settings from VBIOS!"); return -22; } } while (0) |
2042 | COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,do { if (!(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK , vclock, ÷rs))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to get VCLK clock settings from VBIOS!"); return -22; } } while (0) |
2043 | vclock, ÷rs),do { if (!(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK , vclock, ÷rs))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to get VCLK clock settings from VBIOS!"); return -22; } } while (0) |
2044 | "Failed to get VCLK clock settings from VBIOS!",do { if (!(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK , vclock, ÷rs))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to get VCLK clock settings from VBIOS!"); return -22; } } while (0) |
2045 | return -EINVAL)do { if (!(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK , vclock, ÷rs))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to get VCLK clock settings from VBIOS!"); return -22; } } while (0); |
2046 | |
2047 | *current_vclk_did = (uint8_t)dividers.ulDid; |
2048 | |
2049 | return 0; |
2050 | } |
2051 | |
2052 | static int vega10_populate_single_dclock_level(struct pp_hwmgr *hwmgr, |
2053 | uint32_t dclock, uint8_t *current_dclk_did) |
2054 | { |
2055 | struct pp_atomfwctrl_clock_dividers_soc15 dividers; |
2056 | |
2057 | PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,do { if (!(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK , dclock, ÷rs))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to get DCLK clock settings from VBIOS!"); return -22; } } while (0) |
2058 | COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,do { if (!(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK , dclock, ÷rs))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to get DCLK clock settings from VBIOS!"); return -22; } } while (0) |
2059 | dclock, ÷rs),do { if (!(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK , dclock, ÷rs))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to get DCLK clock settings from VBIOS!"); return -22; } } while (0) |
2060 | "Failed to get DCLK clock settings from VBIOS!",do { if (!(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK , dclock, ÷rs))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to get DCLK clock settings from VBIOS!"); return -22; } } while (0) |
2061 | return -EINVAL)do { if (!(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK , dclock, ÷rs))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to get DCLK clock settings from VBIOS!"); return -22; } } while (0); |
2062 | |
2063 | *current_dclk_did = (uint8_t)dividers.ulDid; |
2064 | |
2065 | return 0; |
2066 | } |
2067 | |
2068 | static int vega10_populate_smc_uvd_levels(struct pp_hwmgr *hwmgr) |
2069 | { |
2070 | struct vega10_hwmgr *data = hwmgr->backend; |
2071 | PPTable_t *pp_table = &(data->smc_state_table.pp_table); |
2072 | struct vega10_single_dpm_table *vclk_dpm_table = |
2073 | &(data->dpm_table.vclk_table); |
2074 | struct vega10_single_dpm_table *dclk_dpm_table = |
2075 | &(data->dpm_table.dclk_table); |
2076 | struct phm_ppt_v2_information *table_info = |
2077 | (struct phm_ppt_v2_information *)(hwmgr->pptable); |
2078 | struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table = |
2079 | table_info->mm_dep_table; |
2080 | int result = -EINVAL22; |
2081 | uint32_t i, j; |
2082 | |
2083 | for (i = 0; i < vclk_dpm_table->count; i++) { |
2084 | result = vega10_populate_single_vclock_level(hwmgr, |
2085 | vclk_dpm_table->dpm_levels[i].value, |
2086 | &(pp_table->VclkDid[i])); |
2087 | if (result) |
2088 | return result; |
2089 | } |
2090 | |
2091 | j = i - 1; |
2092 | while (i < NUM_UVD_DPM_LEVELS8) { |
2093 | result = vega10_populate_single_vclock_level(hwmgr, |
2094 | vclk_dpm_table->dpm_levels[j].value, |
2095 | &(pp_table->VclkDid[i])); |
2096 | if (result) |
2097 | return result; |
2098 | i++; |
2099 | } |
2100 | |
2101 | for (i = 0; i < dclk_dpm_table->count; i++) { |
2102 | result = vega10_populate_single_dclock_level(hwmgr, |
2103 | dclk_dpm_table->dpm_levels[i].value, |
2104 | &(pp_table->DclkDid[i])); |
2105 | if (result) |
2106 | return result; |
2107 | } |
2108 | |
2109 | j = i - 1; |
2110 | while (i < NUM_UVD_DPM_LEVELS8) { |
2111 | result = vega10_populate_single_dclock_level(hwmgr, |
2112 | dclk_dpm_table->dpm_levels[j].value, |
2113 | &(pp_table->DclkDid[i])); |
2114 | if (result) |
2115 | return result; |
2116 | i++; |
2117 | } |
2118 | |
2119 | for (i = 0; i < dep_table->count; i++) { |
2120 | if (dep_table->entries[i].vclk == |
2121 | vclk_dpm_table->dpm_levels[i].value && |
2122 | dep_table->entries[i].dclk == |
2123 | dclk_dpm_table->dpm_levels[i].value) |
2124 | pp_table->UvdDpmVoltageIndex[i] = |
2125 | dep_table->entries[i].vddcInd; |
2126 | else |
2127 | return -1; |
2128 | } |
2129 | |
2130 | j = i - 1; |
2131 | while (i < NUM_UVD_DPM_LEVELS8) { |
2132 | pp_table->UvdDpmVoltageIndex[i] = dep_table->entries[j].vddcInd; |
2133 | i++; |
2134 | } |
2135 | |
2136 | return 0; |
2137 | } |
2138 | |
2139 | static int vega10_populate_clock_stretcher_table(struct pp_hwmgr *hwmgr) |
2140 | { |
2141 | struct vega10_hwmgr *data = hwmgr->backend; |
2142 | PPTable_t *pp_table = &(data->smc_state_table.pp_table); |
2143 | struct phm_ppt_v2_information *table_info = |
2144 | (struct phm_ppt_v2_information *)(hwmgr->pptable); |
2145 | struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = |
2146 | table_info->vdd_dep_on_sclk; |
2147 | uint32_t i; |
2148 | |
2149 | for (i = 0; i < dep_table->count; i++) { |
2150 | pp_table->CksEnable[i] = dep_table->entries[i].cks_enable; |
2151 | pp_table->CksVidOffset[i] = (uint8_t)(dep_table->entries[i].cks_voffset |
2152 | * VOLTAGE_VID_OFFSET_SCALE2100 / VOLTAGE_VID_OFFSET_SCALE1625); |
2153 | } |
2154 | |
2155 | return 0; |
2156 | } |
2157 | |
2158 | static int vega10_populate_avfs_parameters(struct pp_hwmgr *hwmgr) |
2159 | { |
2160 | struct vega10_hwmgr *data = hwmgr->backend; |
2161 | PPTable_t *pp_table = &(data->smc_state_table.pp_table); |
2162 | struct phm_ppt_v2_information *table_info = |
2163 | (struct phm_ppt_v2_information *)(hwmgr->pptable); |
2164 | struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = |
2165 | table_info->vdd_dep_on_sclk; |
2166 | struct pp_atomfwctrl_avfs_parameters avfs_params = {0}; |
2167 | int result = 0; |
2168 | uint32_t i; |
2169 | |
2170 | pp_table->MinVoltageVid = (uint8_t)0xff; |
2171 | pp_table->MaxVoltageVid = (uint8_t)0; |
2172 | |
2173 | if (data->smu_features[GNLD_AVFS].supported) { |
2174 | result = pp_atomfwctrl_get_avfs_information(hwmgr, &avfs_params); |
2175 | if (!result) { |
2176 | pp_table->MinVoltageVid = (uint8_t) |
2177 | convert_to_vid((uint16_t)(avfs_params.ulMinVddc)); |
2178 | pp_table->MaxVoltageVid = (uint8_t) |
2179 | convert_to_vid((uint16_t)(avfs_params.ulMaxVddc)); |
2180 | |
2181 | pp_table->AConstant[0] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant0)((__uint32_t)(avfs_params.ulMeanNsigmaAcontant0)); |
2182 | pp_table->AConstant[1] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant1)((__uint32_t)(avfs_params.ulMeanNsigmaAcontant1)); |
2183 | pp_table->AConstant[2] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant2)((__uint32_t)(avfs_params.ulMeanNsigmaAcontant2)); |
2184 | pp_table->DC_tol_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma)((__uint16_t)(avfs_params.usMeanNsigmaDcTolSigma)); |
2185 | pp_table->Platform_mean = cpu_to_le16(avfs_params.usMeanNsigmaPlatformMean)((__uint16_t)(avfs_params.usMeanNsigmaPlatformMean)); |
2186 | pp_table->Platform_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma)((__uint16_t)(avfs_params.usMeanNsigmaDcTolSigma)); |
2187 | pp_table->PSM_Age_CompFactor = cpu_to_le16(avfs_params.usPsmAgeComfactor)((__uint16_t)(avfs_params.usPsmAgeComfactor)); |
2188 | |
2189 | pp_table->BtcGbVdroopTableCksOff.a0 = |
2190 | cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA0)((__uint32_t)(avfs_params.ulGbVdroopTableCksoffA0)); |
2191 | pp_table->BtcGbVdroopTableCksOff.a0_shift = 20; |
2192 | pp_table->BtcGbVdroopTableCksOff.a1 = |
2193 | cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA1)((__uint32_t)(avfs_params.ulGbVdroopTableCksoffA1)); |
2194 | pp_table->BtcGbVdroopTableCksOff.a1_shift = 20; |
2195 | pp_table->BtcGbVdroopTableCksOff.a2 = |
2196 | cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA2)((__uint32_t)(avfs_params.ulGbVdroopTableCksoffA2)); |
2197 | pp_table->BtcGbVdroopTableCksOff.a2_shift = 20; |
2198 | |
2199 | pp_table->OverrideBtcGbCksOn = avfs_params.ucEnableGbVdroopTableCkson; |
2200 | pp_table->BtcGbVdroopTableCksOn.a0 = |
2201 | cpu_to_le32(avfs_params.ulGbVdroopTableCksonA0)((__uint32_t)(avfs_params.ulGbVdroopTableCksonA0)); |
2202 | pp_table->BtcGbVdroopTableCksOn.a0_shift = 20; |
2203 | pp_table->BtcGbVdroopTableCksOn.a1 = |
2204 | cpu_to_le32(avfs_params.ulGbVdroopTableCksonA1)((__uint32_t)(avfs_params.ulGbVdroopTableCksonA1)); |
2205 | pp_table->BtcGbVdroopTableCksOn.a1_shift = 20; |
2206 | pp_table->BtcGbVdroopTableCksOn.a2 = |
2207 | cpu_to_le32(avfs_params.ulGbVdroopTableCksonA2)((__uint32_t)(avfs_params.ulGbVdroopTableCksonA2)); |
2208 | pp_table->BtcGbVdroopTableCksOn.a2_shift = 20; |
2209 | |
2210 | pp_table->AvfsGbCksOn.m1 = |
2211 | cpu_to_le32(avfs_params.ulGbFuseTableCksonM1)((__uint32_t)(avfs_params.ulGbFuseTableCksonM1)); |
2212 | pp_table->AvfsGbCksOn.m2 = |
2213 | cpu_to_le32(avfs_params.ulGbFuseTableCksonM2)((__uint32_t)(avfs_params.ulGbFuseTableCksonM2)); |
2214 | pp_table->AvfsGbCksOn.b = |
2215 | cpu_to_le32(avfs_params.ulGbFuseTableCksonB)((__uint32_t)(avfs_params.ulGbFuseTableCksonB)); |
2216 | pp_table->AvfsGbCksOn.m1_shift = 24; |
2217 | pp_table->AvfsGbCksOn.m2_shift = 12; |
2218 | pp_table->AvfsGbCksOn.b_shift = 0; |
2219 | |
2220 | pp_table->OverrideAvfsGbCksOn = |
2221 | avfs_params.ucEnableGbFuseTableCkson; |
2222 | pp_table->AvfsGbCksOff.m1 = |
2223 | cpu_to_le32(avfs_params.ulGbFuseTableCksoffM1)((__uint32_t)(avfs_params.ulGbFuseTableCksoffM1)); |
2224 | pp_table->AvfsGbCksOff.m2 = |
2225 | cpu_to_le32(avfs_params.ulGbFuseTableCksoffM2)((__uint32_t)(avfs_params.ulGbFuseTableCksoffM2)); |
2226 | pp_table->AvfsGbCksOff.b = |
2227 | cpu_to_le32(avfs_params.ulGbFuseTableCksoffB)((__uint32_t)(avfs_params.ulGbFuseTableCksoffB)); |
2228 | pp_table->AvfsGbCksOff.m1_shift = 24; |
2229 | pp_table->AvfsGbCksOff.m2_shift = 12; |
2230 | pp_table->AvfsGbCksOff.b_shift = 0; |
2231 | |
2232 | for (i = 0; i < dep_table->count; i++) |
2233 | pp_table->StaticVoltageOffsetVid[i] = |
2234 | convert_to_vid((uint8_t)(dep_table->entries[i].sclk_offset)); |
2235 | |
2236 | if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT0xffffffff != |
2237 | data->disp_clk_quad_eqn_a) && |
2238 | (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT0xffffffff != |
2239 | data->disp_clk_quad_eqn_b)) { |
2240 | pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 = |
2241 | (int32_t)data->disp_clk_quad_eqn_a; |
2242 | pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 = |
2243 | (int32_t)data->disp_clk_quad_eqn_b; |
2244 | pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b = |
2245 | (int32_t)data->disp_clk_quad_eqn_c; |
2246 | } else { |
2247 | pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 = |
2248 | (int32_t)avfs_params.ulDispclk2GfxclkM1; |
2249 | pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 = |
2250 | (int32_t)avfs_params.ulDispclk2GfxclkM2; |
2251 | pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b = |
2252 | (int32_t)avfs_params.ulDispclk2GfxclkB; |
2253 | } |
2254 | |
2255 | pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1_shift = 24; |
2256 | pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2_shift = 12; |
2257 | pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b_shift = 12; |
2258 | |
2259 | if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT0xffffffff != |
2260 | data->dcef_clk_quad_eqn_a) && |
2261 | (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT0xffffffff != |
2262 | data->dcef_clk_quad_eqn_b)) { |
2263 | pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 = |
2264 | (int32_t)data->dcef_clk_quad_eqn_a; |
2265 | pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 = |
2266 | (int32_t)data->dcef_clk_quad_eqn_b; |
2267 | pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b = |
2268 | (int32_t)data->dcef_clk_quad_eqn_c; |
2269 | } else { |
2270 | pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 = |
2271 | (int32_t)avfs_params.ulDcefclk2GfxclkM1; |
2272 | pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 = |
2273 | (int32_t)avfs_params.ulDcefclk2GfxclkM2; |
2274 | pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b = |
2275 | (int32_t)avfs_params.ulDcefclk2GfxclkB; |
2276 | } |
2277 | |
2278 | pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1_shift = 24; |
2279 | pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2_shift = 12; |
2280 | pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b_shift = 12; |
2281 | |
2282 | if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT0xffffffff != |
2283 | data->pixel_clk_quad_eqn_a) && |
2284 | (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT0xffffffff != |
2285 | data->pixel_clk_quad_eqn_b)) { |
2286 | pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 = |
2287 | (int32_t)data->pixel_clk_quad_eqn_a; |
2288 | pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 = |
2289 | (int32_t)data->pixel_clk_quad_eqn_b; |
2290 | pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b = |
2291 | (int32_t)data->pixel_clk_quad_eqn_c; |
2292 | } else { |
2293 | pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 = |
2294 | (int32_t)avfs_params.ulPixelclk2GfxclkM1; |
2295 | pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 = |
2296 | (int32_t)avfs_params.ulPixelclk2GfxclkM2; |
2297 | pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b = |
2298 | (int32_t)avfs_params.ulPixelclk2GfxclkB; |
2299 | } |
2300 | |
2301 | pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1_shift = 24; |
2302 | pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2_shift = 12; |
2303 | pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b_shift = 12; |
2304 | if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT0xffffffff != |
2305 | data->phy_clk_quad_eqn_a) && |
2306 | (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT0xffffffff != |
2307 | data->phy_clk_quad_eqn_b)) { |
2308 | pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 = |
2309 | (int32_t)data->phy_clk_quad_eqn_a; |
2310 | pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 = |
2311 | (int32_t)data->phy_clk_quad_eqn_b; |
2312 | pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b = |
2313 | (int32_t)data->phy_clk_quad_eqn_c; |
2314 | } else { |
2315 | pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 = |
2316 | (int32_t)avfs_params.ulPhyclk2GfxclkM1; |
2317 | pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 = |
2318 | (int32_t)avfs_params.ulPhyclk2GfxclkM2; |
2319 | pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b = |
2320 | (int32_t)avfs_params.ulPhyclk2GfxclkB; |
2321 | } |
2322 | |
2323 | pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1_shift = 24; |
2324 | pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2_shift = 12; |
2325 | pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b_shift = 12; |
2326 | |
2327 | pp_table->AcgBtcGbVdroopTable.a0 = avfs_params.ulAcgGbVdroopTableA0; |
2328 | pp_table->AcgBtcGbVdroopTable.a0_shift = 20; |
2329 | pp_table->AcgBtcGbVdroopTable.a1 = avfs_params.ulAcgGbVdroopTableA1; |
2330 | pp_table->AcgBtcGbVdroopTable.a1_shift = 20; |
2331 | pp_table->AcgBtcGbVdroopTable.a2 = avfs_params.ulAcgGbVdroopTableA2; |
2332 | pp_table->AcgBtcGbVdroopTable.a2_shift = 20; |
2333 | |
2334 | pp_table->AcgAvfsGb.m1 = avfs_params.ulAcgGbFuseTableM1; |
2335 | pp_table->AcgAvfsGb.m2 = avfs_params.ulAcgGbFuseTableM2; |
2336 | pp_table->AcgAvfsGb.b = avfs_params.ulAcgGbFuseTableB; |
2337 | pp_table->AcgAvfsGb.m1_shift = 24; |
2338 | pp_table->AcgAvfsGb.m2_shift = 12; |
2339 | pp_table->AcgAvfsGb.b_shift = 0; |
2340 | |
2341 | } else { |
2342 | data->smu_features[GNLD_AVFS].supported = false0; |
2343 | } |
2344 | } |
2345 | |
2346 | return 0; |
2347 | } |
2348 | |
2349 | static int vega10_acg_enable(struct pp_hwmgr *hwmgr) |
2350 | { |
2351 | struct vega10_hwmgr *data = hwmgr->backend; |
2352 | uint32_t agc_btc_response; |
2353 | |
2354 | if (data->smu_features[GNLD_ACG].supported) { |
2355 | if (0 == vega10_enable_smc_features(hwmgr, true1, |
2356 | data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_bitmap)) |
2357 | data->smu_features[GNLD_DPM_PREFETCHER].enabled = true1; |
2358 | |
2359 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_InitializeAcg0x5F, NULL((void *)0)); |
2360 | |
2361 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgBtc0x5C, &agc_btc_response); |
2362 | |
2363 | if (1 == agc_btc_response) { |
2364 | if (1 == data->acg_loop_state) |
2365 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgInClosedLoop0x5D, NULL((void *)0)); |
2366 | else if (2 == data->acg_loop_state) |
2367 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgInOpenLoop0x5E, NULL((void *)0)); |
2368 | if (0 == vega10_enable_smc_features(hwmgr, true1, |
2369 | data->smu_features[GNLD_ACG].smu_feature_bitmap)) |
2370 | data->smu_features[GNLD_ACG].enabled = true1; |
2371 | } else { |
2372 | pr_info("[ACG_Enable] ACG BTC Returned Failed Status!\n")do { } while(0); |
2373 | data->smu_features[GNLD_ACG].enabled = false0; |
2374 | } |
2375 | } |
2376 | |
2377 | return 0; |
2378 | } |
2379 | |
2380 | static int vega10_acg_disable(struct pp_hwmgr *hwmgr) |
2381 | { |
2382 | struct vega10_hwmgr *data = hwmgr->backend; |
2383 | |
2384 | if (data->smu_features[GNLD_ACG].supported && |
2385 | data->smu_features[GNLD_ACG].enabled) |
2386 | if (!vega10_enable_smc_features(hwmgr, false0, |
2387 | data->smu_features[GNLD_ACG].smu_feature_bitmap)) |
2388 | data->smu_features[GNLD_ACG].enabled = false0; |
2389 | |
2390 | return 0; |
2391 | } |
2392 | |
2393 | static int vega10_populate_gpio_parameters(struct pp_hwmgr *hwmgr) |
2394 | { |
2395 | struct vega10_hwmgr *data = hwmgr->backend; |
2396 | PPTable_t *pp_table = &(data->smc_state_table.pp_table); |
2397 | struct pp_atomfwctrl_gpio_parameters gpio_params = {0}; |
2398 | int result; |
2399 | |
2400 | result = pp_atomfwctrl_get_gpio_information(hwmgr, &gpio_params); |
2401 | if (!result) { |
2402 | if (PP_CAP(PHM_PlatformCaps_RegulatorHot)phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, ( PHM_PlatformCaps_RegulatorHot)) && |
2403 | data->registry_data.regulator_hot_gpio_support) { |
2404 | pp_table->VR0HotGpio = gpio_params.ucVR0HotGpio; |
2405 | pp_table->VR0HotPolarity = gpio_params.ucVR0HotPolarity; |
2406 | pp_table->VR1HotGpio = gpio_params.ucVR1HotGpio; |
2407 | pp_table->VR1HotPolarity = gpio_params.ucVR1HotPolarity; |
2408 | } else { |
2409 | pp_table->VR0HotGpio = 0; |
2410 | pp_table->VR0HotPolarity = 0; |
2411 | pp_table->VR1HotGpio = 0; |
2412 | pp_table->VR1HotPolarity = 0; |
2413 | } |
2414 | |
2415 | if (PP_CAP(PHM_PlatformCaps_AutomaticDCTransition)phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, ( PHM_PlatformCaps_AutomaticDCTransition)) && |
2416 | data->registry_data.ac_dc_switch_gpio_support) { |
2417 | pp_table->AcDcGpio = gpio_params.ucAcDcGpio; |
2418 | pp_table->AcDcPolarity = gpio_params.ucAcDcPolarity; |
2419 | } else { |
2420 | pp_table->AcDcGpio = 0; |
2421 | pp_table->AcDcPolarity = 0; |
2422 | } |
2423 | } |
2424 | |
2425 | return result; |
2426 | } |
2427 | |
2428 | static int vega10_avfs_enable(struct pp_hwmgr *hwmgr, bool_Bool enable) |
2429 | { |
2430 | struct vega10_hwmgr *data = hwmgr->backend; |
2431 | |
2432 | if (data->smu_features[GNLD_AVFS].supported) { |
2433 | /* Already enabled or disabled */ |
2434 | if (!(enable ^ data->smu_features[GNLD_AVFS].enabled)) |
2435 | return 0; |
2436 | |
2437 | if (enable) { |
2438 | PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_AVFS].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "[avfs_control] Attempt to Enable AVFS feature Failed!" ); return -1; } } while (0) |
2439 | true,do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_AVFS].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "[avfs_control] Attempt to Enable AVFS feature Failed!" ); return -1; } } while (0) |
2440 | data->smu_features[GNLD_AVFS].smu_feature_bitmap),do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_AVFS].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "[avfs_control] Attempt to Enable AVFS feature Failed!" ); return -1; } } while (0) |
2441 | "[avfs_control] Attempt to Enable AVFS feature Failed!",do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_AVFS].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "[avfs_control] Attempt to Enable AVFS feature Failed!" ); return -1; } } while (0) |
2442 | return -1)do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_AVFS].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "[avfs_control] Attempt to Enable AVFS feature Failed!" ); return -1; } } while (0); |
2443 | data->smu_features[GNLD_AVFS].enabled = true1; |
2444 | } else { |
2445 | PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,do { if (!(!vega10_enable_smc_features(hwmgr, 0, data->smu_features [GNLD_AVFS].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "[avfs_control] Attempt to Disable AVFS feature Failed!" ); return -1; } } while (0) |
2446 | false,do { if (!(!vega10_enable_smc_features(hwmgr, 0, data->smu_features [GNLD_AVFS].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "[avfs_control] Attempt to Disable AVFS feature Failed!" ); return -1; } } while (0) |
2447 | data->smu_features[GNLD_AVFS].smu_feature_bitmap),do { if (!(!vega10_enable_smc_features(hwmgr, 0, data->smu_features [GNLD_AVFS].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "[avfs_control] Attempt to Disable AVFS feature Failed!" ); return -1; } } while (0) |
2448 | "[avfs_control] Attempt to Disable AVFS feature Failed!",do { if (!(!vega10_enable_smc_features(hwmgr, 0, data->smu_features [GNLD_AVFS].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "[avfs_control] Attempt to Disable AVFS feature Failed!" ); return -1; } } while (0) |
2449 | return -1)do { if (!(!vega10_enable_smc_features(hwmgr, 0, data->smu_features [GNLD_AVFS].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "[avfs_control] Attempt to Disable AVFS feature Failed!" ); return -1; } } while (0); |
2450 | data->smu_features[GNLD_AVFS].enabled = false0; |
2451 | } |
2452 | } |
2453 | |
2454 | return 0; |
2455 | } |
2456 | |
2457 | static int vega10_update_avfs(struct pp_hwmgr *hwmgr) |
2458 | { |
2459 | struct vega10_hwmgr *data = hwmgr->backend; |
2460 | |
2461 | if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_VDDC0x00000010) { |
2462 | vega10_avfs_enable(hwmgr, false0); |
2463 | } else if (data->need_update_dpm_table) { |
2464 | vega10_avfs_enable(hwmgr, false0); |
2465 | vega10_avfs_enable(hwmgr, true1); |
2466 | } else { |
2467 | vega10_avfs_enable(hwmgr, true1); |
2468 | } |
2469 | |
2470 | return 0; |
2471 | } |
2472 | |
2473 | static int vega10_populate_and_upload_avfs_fuse_override(struct pp_hwmgr *hwmgr) |
2474 | { |
2475 | int result = 0; |
2476 | |
2477 | uint64_t serial_number = 0; |
2478 | uint32_t top32, bottom32; |
2479 | struct phm_fuses_default fuse; |
2480 | |
2481 | struct vega10_hwmgr *data = hwmgr->backend; |
2482 | AvfsFuseOverride_t *avfs_fuse_table = &(data->smc_state_table.avfs_fuse_override_table); |
2483 | |
2484 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop320x58, &top32); |
2485 | |
2486 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom320x59, &bottom32); |
2487 | |
2488 | serial_number = ((uint64_t)bottom32 << 32) | top32; |
2489 | |
2490 | if (pp_override_get_default_fuse_value(serial_number, &fuse) == 0) { |
2491 | avfs_fuse_table->VFT0_b = fuse.VFT0_b; |
2492 | avfs_fuse_table->VFT0_m1 = fuse.VFT0_m1; |
2493 | avfs_fuse_table->VFT0_m2 = fuse.VFT0_m2; |
2494 | avfs_fuse_table->VFT1_b = fuse.VFT1_b; |
2495 | avfs_fuse_table->VFT1_m1 = fuse.VFT1_m1; |
2496 | avfs_fuse_table->VFT1_m2 = fuse.VFT1_m2; |
2497 | avfs_fuse_table->VFT2_b = fuse.VFT2_b; |
2498 | avfs_fuse_table->VFT2_m1 = fuse.VFT2_m1; |
2499 | avfs_fuse_table->VFT2_m2 = fuse.VFT2_m2; |
2500 | result = smum_smc_table_manager(hwmgr, (uint8_t *)avfs_fuse_table, |
2501 | AVFSFUSETABLE, false0); |
2502 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to upload FuseOVerride!"); ; } } while (0) |
2503 | "Failed to upload FuseOVerride!",do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to upload FuseOVerride!"); ; } } while (0) |
2504 | )do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to upload FuseOVerride!"); ; } } while (0); |
2505 | } |
2506 | |
2507 | return result; |
2508 | } |
2509 | |
2510 | static void vega10_check_dpm_table_updated(struct pp_hwmgr *hwmgr) |
2511 | { |
2512 | struct vega10_hwmgr *data = hwmgr->backend; |
2513 | struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table); |
2514 | struct phm_ppt_v2_information *table_info = hwmgr->pptable; |
2515 | struct phm_ppt_v1_clock_voltage_dependency_table *dep_table; |
2516 | struct phm_ppt_v1_clock_voltage_dependency_table *odn_dep_table; |
2517 | uint32_t i; |
2518 | |
2519 | dep_table = table_info->vdd_dep_on_mclk; |
2520 | odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dep_on_mclk); |
2521 | |
2522 | for (i = 0; i < dep_table->count; i++) { |
2523 | if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) { |
2524 | data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC0x00000010 | DPMTABLE_OD_UPDATE_MCLK0x00000002; |
2525 | return; |
2526 | } |
2527 | } |
2528 | |
2529 | dep_table = table_info->vdd_dep_on_sclk; |
2530 | odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dep_on_sclk); |
2531 | for (i = 0; i < dep_table->count; i++) { |
2532 | if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) { |
2533 | data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC0x00000010 | DPMTABLE_OD_UPDATE_SCLK0x00000001; |
2534 | return; |
2535 | } |
2536 | } |
2537 | } |
2538 | |
2539 | /** |
2540 | * Initializes the SMC table and uploads it |
2541 | * |
2542 | * @param hwmgr the address of the powerplay hardware manager. |
2543 | * @param pInput the pointer to input data (PowerState) |
2544 | * @return always 0 |
2545 | */ |
2546 | static int vega10_init_smc_table(struct pp_hwmgr *hwmgr) |
2547 | { |
2548 | int result; |
2549 | struct vega10_hwmgr *data = hwmgr->backend; |
2550 | struct phm_ppt_v2_information *table_info = |
2551 | (struct phm_ppt_v2_information *)(hwmgr->pptable); |
2552 | PPTable_t *pp_table = &(data->smc_state_table.pp_table); |
2553 | struct pp_atomfwctrl_voltage_table voltage_table; |
2554 | struct pp_atomfwctrl_bios_boot_up_values boot_up_values; |
2555 | struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table); |
2556 | |
2557 | result = vega10_setup_default_dpm_tables(hwmgr); |
2558 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to setup default DPM tables!"); return result; } } while (0) |
2559 | "Failed to setup default DPM tables!",do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to setup default DPM tables!"); return result; } } while (0) |
2560 | return result)do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to setup default DPM tables!"); return result; } } while (0); |
2561 | |
2562 | if (!hwmgr->not_vf) |
2563 | return 0; |
2564 | |
2565 | /* initialize ODN table */ |
2566 | if (hwmgr->od_enabled) { |
2567 | if (odn_table->max_vddc) { |
2568 | data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK0x00000001 | DPMTABLE_OD_UPDATE_MCLK0x00000002; |
2569 | vega10_check_dpm_table_updated(hwmgr); |
2570 | } else { |
2571 | vega10_odn_initial_default_setting(hwmgr); |
2572 | } |
2573 | } |
2574 | |
2575 | pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_VDDC, |
2576 | VOLTAGE_OBJ_SVID2, &voltage_table); |
2577 | pp_table->MaxVidStep = voltage_table.max_vid_step; |
2578 | |
2579 | pp_table->GfxDpmVoltageMode = |
2580 | (uint8_t)(table_info->uc_gfx_dpm_voltage_mode); |
2581 | pp_table->SocDpmVoltageMode = |
2582 | (uint8_t)(table_info->uc_soc_dpm_voltage_mode); |
2583 | pp_table->UclkDpmVoltageMode = |
2584 | (uint8_t)(table_info->uc_uclk_dpm_voltage_mode); |
2585 | pp_table->UvdDpmVoltageMode = |
2586 | (uint8_t)(table_info->uc_uvd_dpm_voltage_mode); |
2587 | pp_table->VceDpmVoltageMode = |
2588 | (uint8_t)(table_info->uc_vce_dpm_voltage_mode); |
2589 | pp_table->Mp0DpmVoltageMode = |
2590 | (uint8_t)(table_info->uc_mp0_dpm_voltage_mode); |
2591 | |
2592 | pp_table->DisplayDpmVoltageMode = |
2593 | (uint8_t)(table_info->uc_dcef_dpm_voltage_mode); |
2594 | |
2595 | data->vddc_voltage_table.psi0_enable = voltage_table.psi0_enable; |
2596 | data->vddc_voltage_table.psi1_enable = voltage_table.psi1_enable; |
2597 | |
2598 | if (data->registry_data.ulv_support && |
2599 | table_info->us_ulv_voltage_offset) { |
2600 | result = vega10_populate_ulv_state(hwmgr); |
2601 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to initialize ULV state!"); return result; } } while (0) |
2602 | "Failed to initialize ULV state!",do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to initialize ULV state!"); return result; } } while (0) |
2603 | return result)do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to initialize ULV state!"); return result; } } while (0); |
2604 | } |
2605 | |
2606 | result = vega10_populate_smc_link_levels(hwmgr); |
2607 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to initialize Link Level!"); return result; } } while (0) |
2608 | "Failed to initialize Link Level!",do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to initialize Link Level!"); return result; } } while (0) |
2609 | return result)do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to initialize Link Level!"); return result; } } while (0); |
2610 | |
2611 | result = vega10_override_pcie_parameters(hwmgr); |
2612 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to override pcie parameters!"); return result; } } while (0) |
2613 | "Failed to override pcie parameters!",do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to override pcie parameters!"); return result; } } while (0) |
2614 | return result)do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to override pcie parameters!"); return result; } } while (0); |
2615 | |
2616 | result = vega10_populate_all_graphic_levels(hwmgr); |
2617 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to initialize Graphics Level!"); return result; } } while (0) |
2618 | "Failed to initialize Graphics Level!",do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to initialize Graphics Level!"); return result; } } while (0) |
2619 | return result)do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to initialize Graphics Level!"); return result; } } while (0); |
2620 | |
2621 | result = vega10_populate_all_memory_levels(hwmgr); |
2622 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to initialize Memory Level!"); return result; } } while (0) |
2623 | "Failed to initialize Memory Level!",do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to initialize Memory Level!"); return result; } } while (0) |
2624 | return result)do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to initialize Memory Level!"); return result; } } while (0); |
2625 | |
2626 | vega10_populate_vddc_soc_levels(hwmgr); |
2627 | |
2628 | result = vega10_populate_all_display_clock_levels(hwmgr); |
2629 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to initialize Display Level!"); return result; } } while (0) |
2630 | "Failed to initialize Display Level!",do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to initialize Display Level!"); return result; } } while (0) |
2631 | return result)do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to initialize Display Level!"); return result; } } while (0); |
2632 | |
2633 | result = vega10_populate_smc_vce_levels(hwmgr); |
2634 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to initialize VCE Level!"); return result; } } while (0) |
2635 | "Failed to initialize VCE Level!",do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to initialize VCE Level!"); return result; } } while (0) |
2636 | return result)do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to initialize VCE Level!"); return result; } } while (0); |
2637 | |
2638 | result = vega10_populate_smc_uvd_levels(hwmgr); |
2639 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to initialize UVD Level!"); return result; } } while (0) |
2640 | "Failed to initialize UVD Level!",do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to initialize UVD Level!"); return result; } } while (0) |
2641 | return result)do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to initialize UVD Level!"); return result; } } while (0); |
2642 | |
2643 | if (data->registry_data.clock_stretcher_support) { |
2644 | result = vega10_populate_clock_stretcher_table(hwmgr); |
2645 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to populate Clock Stretcher Table!"); return result ; } } while (0) |
2646 | "Failed to populate Clock Stretcher Table!",do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to populate Clock Stretcher Table!"); return result ; } } while (0) |
2647 | return result)do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to populate Clock Stretcher Table!"); return result ; } } while (0); |
2648 | } |
2649 | |
2650 | result = pp_atomfwctrl_get_vbios_bootup_values(hwmgr, &boot_up_values); |
2651 | if (!result) { |
2652 | data->vbios_boot_state.vddc = boot_up_values.usVddc; |
2653 | data->vbios_boot_state.vddci = boot_up_values.usVddci; |
2654 | data->vbios_boot_state.mvddc = boot_up_values.usMvddc; |
2655 | data->vbios_boot_state.gfx_clock = boot_up_values.ulGfxClk; |
2656 | data->vbios_boot_state.mem_clock = boot_up_values.ulUClk; |
2657 | pp_atomfwctrl_get_clk_information_by_clkid(hwmgr, |
2658 | SMU9_SYSPLL0_SOCCLK_ID, 0, &boot_up_values.ulSocClk); |
2659 | |
2660 | pp_atomfwctrl_get_clk_information_by_clkid(hwmgr, |
2661 | SMU9_SYSPLL0_DCEFCLK_ID, 0, &boot_up_values.ulDCEFClk); |
2662 | |
2663 | data->vbios_boot_state.soc_clock = boot_up_values.ulSocClk; |
2664 | data->vbios_boot_state.dcef_clock = boot_up_values.ulDCEFClk; |
2665 | if (0 != boot_up_values.usVddc) { |
2666 | smum_send_msg_to_smc_with_parameter(hwmgr, |
2667 | PPSMC_MSG_SetFloorSocVoltage0x1A, |
2668 | (boot_up_values.usVddc * 4), |
2669 | NULL((void *)0)); |
2670 | data->vbios_boot_state.bsoc_vddc_lock = true1; |
2671 | } else { |
2672 | data->vbios_boot_state.bsoc_vddc_lock = false0; |
2673 | } |
2674 | smum_send_msg_to_smc_with_parameter(hwmgr, |
2675 | PPSMC_MSG_SetMinDeepSleepDcefclk0x40, |
2676 | (uint32_t)(data->vbios_boot_state.dcef_clock / 100), |
2677 | NULL((void *)0)); |
2678 | } |
2679 | |
2680 | result = vega10_populate_avfs_parameters(hwmgr); |
2681 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to initialize AVFS Parameters!"); return result; } } while (0) |
2682 | "Failed to initialize AVFS Parameters!",do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to initialize AVFS Parameters!"); return result; } } while (0) |
2683 | return result)do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to initialize AVFS Parameters!"); return result; } } while (0); |
2684 | |
2685 | result = vega10_populate_gpio_parameters(hwmgr); |
2686 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to initialize GPIO Parameters!"); return result; } } while (0) |
2687 | "Failed to initialize GPIO Parameters!",do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to initialize GPIO Parameters!"); return result; } } while (0) |
2688 | return result)do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to initialize GPIO Parameters!"); return result; } } while (0); |
2689 | |
2690 | pp_table->GfxclkAverageAlpha = (uint8_t) |
2691 | (data->gfxclk_average_alpha); |
2692 | pp_table->SocclkAverageAlpha = (uint8_t) |
2693 | (data->socclk_average_alpha); |
2694 | pp_table->UclkAverageAlpha = (uint8_t) |
2695 | (data->uclk_average_alpha); |
2696 | pp_table->GfxActivityAverageAlpha = (uint8_t) |
2697 | (data->gfx_activity_average_alpha); |
2698 | |
2699 | vega10_populate_and_upload_avfs_fuse_override(hwmgr); |
2700 | |
2701 | result = smum_smc_table_manager(hwmgr, (uint8_t *)pp_table, PPTABLE, false0); |
2702 | |
2703 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to upload PPtable!"); return result; } } while (0) |
2704 | "Failed to upload PPtable!", return result)do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to upload PPtable!"); return result; } } while (0); |
2705 | |
2706 | result = vega10_avfs_enable(hwmgr, true1); |
2707 | PP_ASSERT_WITH_CODE(!result, "Attempt to enable AVFS feature Failed!",do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Attempt to enable AVFS feature Failed!"); return result; } } while (0) |
2708 | return result)do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Attempt to enable AVFS feature Failed!"); return result; } } while (0); |
2709 | vega10_acg_enable(hwmgr); |
2710 | |
2711 | return 0; |
2712 | } |
2713 | |
2714 | static int vega10_enable_thermal_protection(struct pp_hwmgr *hwmgr) |
2715 | { |
2716 | struct vega10_hwmgr *data = hwmgr->backend; |
2717 | |
2718 | if (data->smu_features[GNLD_THERMAL].supported) { |
2719 | if (data->smu_features[GNLD_THERMAL].enabled) |
2720 | pr_info("THERMAL Feature Already enabled!")do { } while(0); |
2721 | |
2722 | PP_ASSERT_WITH_CODE(do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_THERMAL].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Enable THERMAL Feature Failed!"); return -1; } } while (0) |
2723 | !vega10_enable_smc_features(hwmgr,do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_THERMAL].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Enable THERMAL Feature Failed!"); return -1; } } while (0) |
2724 | true,do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_THERMAL].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Enable THERMAL Feature Failed!"); return -1; } } while (0) |
2725 | data->smu_features[GNLD_THERMAL].smu_feature_bitmap),do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_THERMAL].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Enable THERMAL Feature Failed!"); return -1; } } while (0) |
2726 | "Enable THERMAL Feature Failed!",do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_THERMAL].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Enable THERMAL Feature Failed!"); return -1; } } while (0) |
2727 | return -1)do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_THERMAL].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Enable THERMAL Feature Failed!"); return -1; } } while (0); |
2728 | data->smu_features[GNLD_THERMAL].enabled = true1; |
2729 | } |
2730 | |
2731 | return 0; |
2732 | } |
2733 | |
2734 | static int vega10_disable_thermal_protection(struct pp_hwmgr *hwmgr) |
2735 | { |
2736 | struct vega10_hwmgr *data = hwmgr->backend; |
2737 | |
2738 | if (data->smu_features[GNLD_THERMAL].supported) { |
2739 | if (!data->smu_features[GNLD_THERMAL].enabled) |
2740 | pr_info("THERMAL Feature Already disabled!")do { } while(0); |
2741 | |
2742 | PP_ASSERT_WITH_CODE(do { if (!(!vega10_enable_smc_features(hwmgr, 0, data->smu_features [GNLD_THERMAL].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "disable THERMAL Feature Failed!"); return -1; } } while (0) |
2743 | !vega10_enable_smc_features(hwmgr,do { if (!(!vega10_enable_smc_features(hwmgr, 0, data->smu_features [GNLD_THERMAL].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "disable THERMAL Feature Failed!"); return -1; } } while (0) |
2744 | false,do { if (!(!vega10_enable_smc_features(hwmgr, 0, data->smu_features [GNLD_THERMAL].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "disable THERMAL Feature Failed!"); return -1; } } while (0) |
2745 | data->smu_features[GNLD_THERMAL].smu_feature_bitmap),do { if (!(!vega10_enable_smc_features(hwmgr, 0, data->smu_features [GNLD_THERMAL].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "disable THERMAL Feature Failed!"); return -1; } } while (0) |
2746 | "disable THERMAL Feature Failed!",do { if (!(!vega10_enable_smc_features(hwmgr, 0, data->smu_features [GNLD_THERMAL].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "disable THERMAL Feature Failed!"); return -1; } } while (0) |
2747 | return -1)do { if (!(!vega10_enable_smc_features(hwmgr, 0, data->smu_features [GNLD_THERMAL].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "disable THERMAL Feature Failed!"); return -1; } } while (0); |
2748 | data->smu_features[GNLD_THERMAL].enabled = false0; |
2749 | } |
2750 | |
2751 | return 0; |
2752 | } |
2753 | |
2754 | static int vega10_enable_vrhot_feature(struct pp_hwmgr *hwmgr) |
2755 | { |
2756 | struct vega10_hwmgr *data = hwmgr->backend; |
2757 | |
2758 | if (PP_CAP(PHM_PlatformCaps_RegulatorHot)phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, ( PHM_PlatformCaps_RegulatorHot))) { |
2759 | if (data->smu_features[GNLD_VR0HOT].supported) { |
2760 | PP_ASSERT_WITH_CODE(do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_VR0HOT].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable VR0 Hot feature Failed!"); return -1; } } while (0) |
2761 | !vega10_enable_smc_features(hwmgr,do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_VR0HOT].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable VR0 Hot feature Failed!"); return -1; } } while (0) |
2762 | true,do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_VR0HOT].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable VR0 Hot feature Failed!"); return -1; } } while (0) |
2763 | data->smu_features[GNLD_VR0HOT].smu_feature_bitmap),do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_VR0HOT].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable VR0 Hot feature Failed!"); return -1; } } while (0) |
2764 | "Attempt to Enable VR0 Hot feature Failed!",do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_VR0HOT].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable VR0 Hot feature Failed!"); return -1; } } while (0) |
2765 | return -1)do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_VR0HOT].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable VR0 Hot feature Failed!"); return -1; } } while (0); |
2766 | data->smu_features[GNLD_VR0HOT].enabled = true1; |
2767 | } else { |
2768 | if (data->smu_features[GNLD_VR1HOT].supported) { |
2769 | PP_ASSERT_WITH_CODE(do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_VR1HOT].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable VR0 Hot feature Failed!"); return -1; } } while (0) |
2770 | !vega10_enable_smc_features(hwmgr,do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_VR1HOT].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable VR0 Hot feature Failed!"); return -1; } } while (0) |
2771 | true,do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_VR1HOT].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable VR0 Hot feature Failed!"); return -1; } } while (0) |
2772 | data->smu_features[GNLD_VR1HOT].smu_feature_bitmap),do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_VR1HOT].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable VR0 Hot feature Failed!"); return -1; } } while (0) |
2773 | "Attempt to Enable VR0 Hot feature Failed!",do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_VR1HOT].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable VR0 Hot feature Failed!"); return -1; } } while (0) |
2774 | return -1)do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_VR1HOT].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable VR0 Hot feature Failed!"); return -1; } } while (0); |
2775 | data->smu_features[GNLD_VR1HOT].enabled = true1; |
2776 | } |
2777 | } |
2778 | } |
2779 | return 0; |
2780 | } |
2781 | |
2782 | static int vega10_enable_ulv(struct pp_hwmgr *hwmgr) |
2783 | { |
2784 | struct vega10_hwmgr *data = hwmgr->backend; |
2785 | |
2786 | if (data->registry_data.ulv_support) { |
2787 | PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_ULV].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Enable ULV Feature Failed!"); return -1; } } while ( 0) |
2788 | true, data->smu_features[GNLD_ULV].smu_feature_bitmap),do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_ULV].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Enable ULV Feature Failed!"); return -1; } } while ( 0) |
2789 | "Enable ULV Feature Failed!",do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_ULV].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Enable ULV Feature Failed!"); return -1; } } while ( 0) |
2790 | return -1)do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_ULV].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Enable ULV Feature Failed!"); return -1; } } while ( 0); |
2791 | data->smu_features[GNLD_ULV].enabled = true1; |
2792 | } |
2793 | |
2794 | return 0; |
2795 | } |
2796 | |
2797 | static int vega10_disable_ulv(struct pp_hwmgr *hwmgr) |
2798 | { |
2799 | struct vega10_hwmgr *data = hwmgr->backend; |
2800 | |
2801 | if (data->registry_data.ulv_support) { |
2802 | PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,do { if (!(!vega10_enable_smc_features(hwmgr, 0, data->smu_features [GNLD_ULV].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "disable ULV Feature Failed!"); return -22; } } while (0) |
2803 | false, data->smu_features[GNLD_ULV].smu_feature_bitmap),do { if (!(!vega10_enable_smc_features(hwmgr, 0, data->smu_features [GNLD_ULV].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "disable ULV Feature Failed!"); return -22; } } while (0) |
2804 | "disable ULV Feature Failed!",do { if (!(!vega10_enable_smc_features(hwmgr, 0, data->smu_features [GNLD_ULV].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "disable ULV Feature Failed!"); return -22; } } while (0) |
2805 | return -EINVAL)do { if (!(!vega10_enable_smc_features(hwmgr, 0, data->smu_features [GNLD_ULV].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "disable ULV Feature Failed!"); return -22; } } while (0); |
2806 | data->smu_features[GNLD_ULV].enabled = false0; |
2807 | } |
2808 | |
2809 | return 0; |
2810 | } |
2811 | |
2812 | static int vega10_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr) |
2813 | { |
2814 | struct vega10_hwmgr *data = hwmgr->backend; |
2815 | |
2816 | if (data->smu_features[GNLD_DS_GFXCLK].supported) { |
2817 | PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_DS_GFXCLK].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable DS_GFXCLK Feature Failed!"); return -22; } } while (0) |
2818 | true, data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap),do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_DS_GFXCLK].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable DS_GFXCLK Feature Failed!"); return -22; } } while (0) |
2819 | "Attempt to Enable DS_GFXCLK Feature Failed!",do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_DS_GFXCLK].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable DS_GFXCLK Feature Failed!"); return -22; } } while (0) |
2820 | return -EINVAL)do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_DS_GFXCLK].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable DS_GFXCLK Feature Failed!"); return -22; } } while (0); |
2821 | data->smu_features[GNLD_DS_GFXCLK].enabled = true1; |
2822 | } |
2823 | |
2824 | if (data->smu_features[GNLD_DS_SOCCLK].supported) { |
2825 | PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_DS_SOCCLK].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable DS_SOCCLK Feature Failed!"); return -22; } } while (0) |
2826 | true, data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap),do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_DS_SOCCLK].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable DS_SOCCLK Feature Failed!"); return -22; } } while (0) |
2827 | "Attempt to Enable DS_SOCCLK Feature Failed!",do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_DS_SOCCLK].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable DS_SOCCLK Feature Failed!"); return -22; } } while (0) |
2828 | return -EINVAL)do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_DS_SOCCLK].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable DS_SOCCLK Feature Failed!"); return -22; } } while (0); |
2829 | data->smu_features[GNLD_DS_SOCCLK].enabled = true1; |
2830 | } |
2831 | |
2832 | if (data->smu_features[GNLD_DS_LCLK].supported) { |
2833 | PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_DS_LCLK].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable DS_LCLK Feature Failed!"); return -22; } } while (0) |
2834 | true, data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap),do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_DS_LCLK].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable DS_LCLK Feature Failed!"); return -22; } } while (0) |
2835 | "Attempt to Enable DS_LCLK Feature Failed!",do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_DS_LCLK].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable DS_LCLK Feature Failed!"); return -22; } } while (0) |
2836 | return -EINVAL)do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_DS_LCLK].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable DS_LCLK Feature Failed!"); return -22; } } while (0); |
2837 | data->smu_features[GNLD_DS_LCLK].enabled = true1; |
2838 | } |
2839 | |
2840 | if (data->smu_features[GNLD_DS_DCEFCLK].supported) { |
2841 | PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_DS_DCEFCLK].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable DS_DCEFCLK Feature Failed!"); return -22; } } while (0) |
2842 | true, data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap),do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_DS_DCEFCLK].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable DS_DCEFCLK Feature Failed!"); return -22; } } while (0) |
2843 | "Attempt to Enable DS_DCEFCLK Feature Failed!",do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_DS_DCEFCLK].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable DS_DCEFCLK Feature Failed!"); return -22; } } while (0) |
2844 | return -EINVAL)do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_DS_DCEFCLK].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable DS_DCEFCLK Feature Failed!"); return -22; } } while (0); |
2845 | data->smu_features[GNLD_DS_DCEFCLK].enabled = true1; |
2846 | } |
2847 | |
2848 | return 0; |
2849 | } |
2850 | |
2851 | static int vega10_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr) |
2852 | { |
2853 | struct vega10_hwmgr *data = hwmgr->backend; |
2854 | |
2855 | if (data->smu_features[GNLD_DS_GFXCLK].supported) { |
2856 | PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,do { if (!(!vega10_enable_smc_features(hwmgr, 0, data->smu_features [GNLD_DS_GFXCLK].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to disable DS_GFXCLK Feature Failed!"); return -22; } } while (0) |
2857 | false, data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap),do { if (!(!vega10_enable_smc_features(hwmgr, 0, data->smu_features [GNLD_DS_GFXCLK].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to disable DS_GFXCLK Feature Failed!"); return -22; } } while (0) |
2858 | "Attempt to disable DS_GFXCLK Feature Failed!",do { if (!(!vega10_enable_smc_features(hwmgr, 0, data->smu_features [GNLD_DS_GFXCLK].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to disable DS_GFXCLK Feature Failed!"); return -22; } } while (0) |
2859 | return -EINVAL)do { if (!(!vega10_enable_smc_features(hwmgr, 0, data->smu_features [GNLD_DS_GFXCLK].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to disable DS_GFXCLK Feature Failed!"); return -22; } } while (0); |
2860 | data->smu_features[GNLD_DS_GFXCLK].enabled = false0; |
2861 | } |
2862 | |
2863 | if (data->smu_features[GNLD_DS_SOCCLK].supported) { |
2864 | PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,do { if (!(!vega10_enable_smc_features(hwmgr, 0, data->smu_features [GNLD_DS_SOCCLK].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to disable DS_ Feature Failed!"); return -22 ; } } while (0) |
2865 | false, data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap),do { if (!(!vega10_enable_smc_features(hwmgr, 0, data->smu_features [GNLD_DS_SOCCLK].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to disable DS_ Feature Failed!"); return -22 ; } } while (0) |
2866 | "Attempt to disable DS_ Feature Failed!",do { if (!(!vega10_enable_smc_features(hwmgr, 0, data->smu_features [GNLD_DS_SOCCLK].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to disable DS_ Feature Failed!"); return -22 ; } } while (0) |
2867 | return -EINVAL)do { if (!(!vega10_enable_smc_features(hwmgr, 0, data->smu_features [GNLD_DS_SOCCLK].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to disable DS_ Feature Failed!"); return -22 ; } } while (0); |
2868 | data->smu_features[GNLD_DS_SOCCLK].enabled = false0; |
2869 | } |
2870 | |
2871 | if (data->smu_features[GNLD_DS_LCLK].supported) { |
2872 | PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,do { if (!(!vega10_enable_smc_features(hwmgr, 0, data->smu_features [GNLD_DS_LCLK].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to disable DS_LCLK Feature Failed!"); return -22; } } while (0) |
2873 | false, data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap),do { if (!(!vega10_enable_smc_features(hwmgr, 0, data->smu_features [GNLD_DS_LCLK].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to disable DS_LCLK Feature Failed!"); return -22; } } while (0) |
2874 | "Attempt to disable DS_LCLK Feature Failed!",do { if (!(!vega10_enable_smc_features(hwmgr, 0, data->smu_features [GNLD_DS_LCLK].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to disable DS_LCLK Feature Failed!"); return -22; } } while (0) |
2875 | return -EINVAL)do { if (!(!vega10_enable_smc_features(hwmgr, 0, data->smu_features [GNLD_DS_LCLK].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to disable DS_LCLK Feature Failed!"); return -22; } } while (0); |
2876 | data->smu_features[GNLD_DS_LCLK].enabled = false0; |
2877 | } |
2878 | |
2879 | if (data->smu_features[GNLD_DS_DCEFCLK].supported) { |
2880 | PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,do { if (!(!vega10_enable_smc_features(hwmgr, 0, data->smu_features [GNLD_DS_DCEFCLK].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to disable DS_DCEFCLK Feature Failed!"); return -22; } } while (0) |
2881 | false, data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap),do { if (!(!vega10_enable_smc_features(hwmgr, 0, data->smu_features [GNLD_DS_DCEFCLK].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to disable DS_DCEFCLK Feature Failed!"); return -22; } } while (0) |
2882 | "Attempt to disable DS_DCEFCLK Feature Failed!",do { if (!(!vega10_enable_smc_features(hwmgr, 0, data->smu_features [GNLD_DS_DCEFCLK].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to disable DS_DCEFCLK Feature Failed!"); return -22; } } while (0) |
2883 | return -EINVAL)do { if (!(!vega10_enable_smc_features(hwmgr, 0, data->smu_features [GNLD_DS_DCEFCLK].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to disable DS_DCEFCLK Feature Failed!"); return -22; } } while (0); |
2884 | data->smu_features[GNLD_DS_DCEFCLK].enabled = false0; |
2885 | } |
2886 | |
2887 | return 0; |
2888 | } |
2889 | |
2890 | static int vega10_stop_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap) |
2891 | { |
2892 | struct vega10_hwmgr *data = hwmgr->backend; |
2893 | uint32_t i, feature_mask = 0; |
2894 | |
2895 | if (!hwmgr->not_vf) |
2896 | return 0; |
2897 | |
2898 | if(data->smu_features[GNLD_LED_DISPLAY].supported == true1){ |
2899 | PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,do { if (!(!vega10_enable_smc_features(hwmgr, 0, data->smu_features [GNLD_LED_DISPLAY].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to disable LED DPM feature failed!"); return -22; } } while (0) |
2900 | false, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap),do { if (!(!vega10_enable_smc_features(hwmgr, 0, data->smu_features [GNLD_LED_DISPLAY].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to disable LED DPM feature failed!"); return -22; } } while (0) |
2901 | "Attempt to disable LED DPM feature failed!", return -EINVAL)do { if (!(!vega10_enable_smc_features(hwmgr, 0, data->smu_features [GNLD_LED_DISPLAY].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to disable LED DPM feature failed!"); return -22; } } while (0); |
2902 | data->smu_features[GNLD_LED_DISPLAY].enabled = false0; |
2903 | } |
2904 | |
2905 | for (i = 0; i < GNLD_DPM_MAX(GNLD_DPM_DCEFCLK + 1); i++) { |
2906 | if (data->smu_features[i].smu_feature_bitmap & bitmap) { |
2907 | if (data->smu_features[i].supported) { |
2908 | if (data->smu_features[i].enabled) { |
2909 | feature_mask |= data->smu_features[i]. |
2910 | smu_feature_bitmap; |
2911 | data->smu_features[i].enabled = false0; |
2912 | } |
2913 | } |
2914 | } |
2915 | } |
2916 | |
2917 | vega10_enable_smc_features(hwmgr, false0, feature_mask); |
2918 | |
2919 | return 0; |
2920 | } |
2921 | |
2922 | /** |
2923 | * @brief Tell SMC to enabled the supported DPMs. |
2924 | * |
2925 | * @param hwmgr - the address of the powerplay hardware manager. |
2926 | * @Param bitmap - bitmap for the features to enabled. |
2927 | * @return 0 on at least one DPM is successfully enabled. |
2928 | */ |
2929 | static int vega10_start_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap) |
2930 | { |
2931 | struct vega10_hwmgr *data = hwmgr->backend; |
2932 | uint32_t i, feature_mask = 0; |
2933 | |
2934 | for (i = 0; i < GNLD_DPM_MAX(GNLD_DPM_DCEFCLK + 1); i++) { |
2935 | if (data->smu_features[i].smu_feature_bitmap & bitmap) { |
2936 | if (data->smu_features[i].supported) { |
2937 | if (!data->smu_features[i].enabled) { |
2938 | feature_mask |= data->smu_features[i]. |
2939 | smu_feature_bitmap; |
2940 | data->smu_features[i].enabled = true1; |
2941 | } |
2942 | } |
2943 | } |
2944 | } |
2945 | |
2946 | if (vega10_enable_smc_features(hwmgr, |
2947 | true1, feature_mask)) { |
2948 | for (i = 0; i < GNLD_DPM_MAX(GNLD_DPM_DCEFCLK + 1); i++) { |
2949 | if (data->smu_features[i].smu_feature_bitmap & |
2950 | feature_mask) |
2951 | data->smu_features[i].enabled = false0; |
2952 | } |
2953 | } |
2954 | |
2955 | if(data->smu_features[GNLD_LED_DISPLAY].supported == true1){ |
2956 | PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_LED_DISPLAY].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable LED DPM feature Failed!"); return -22; } } while (0) |
2957 | true, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap),do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_LED_DISPLAY].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable LED DPM feature Failed!"); return -22; } } while (0) |
2958 | "Attempt to Enable LED DPM feature Failed!", return -EINVAL)do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_LED_DISPLAY].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable LED DPM feature Failed!"); return -22; } } while (0); |
2959 | data->smu_features[GNLD_LED_DISPLAY].enabled = true1; |
2960 | } |
2961 | |
2962 | if (data->vbios_boot_state.bsoc_vddc_lock) { |
2963 | smum_send_msg_to_smc_with_parameter(hwmgr, |
2964 | PPSMC_MSG_SetFloorSocVoltage0x1A, 0, |
2965 | NULL((void *)0)); |
2966 | data->vbios_boot_state.bsoc_vddc_lock = false0; |
2967 | } |
2968 | |
2969 | if (PP_CAP(PHM_PlatformCaps_Falcon_QuickTransition)phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, ( PHM_PlatformCaps_Falcon_QuickTransition))) { |
2970 | if (data->smu_features[GNLD_ACDC].supported) { |
2971 | PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_ACDC].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable DS_GFXCLK Feature Failed!"); return -1; } } while (0) |
2972 | true, data->smu_features[GNLD_ACDC].smu_feature_bitmap),do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_ACDC].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable DS_GFXCLK Feature Failed!"); return -1; } } while (0) |
2973 | "Attempt to Enable DS_GFXCLK Feature Failed!",do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_ACDC].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable DS_GFXCLK Feature Failed!"); return -1; } } while (0) |
2974 | return -1)do { if (!(!vega10_enable_smc_features(hwmgr, 1, data->smu_features [GNLD_ACDC].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable DS_GFXCLK Feature Failed!"); return -1; } } while (0); |
2975 | data->smu_features[GNLD_ACDC].enabled = true1; |
2976 | } |
2977 | } |
2978 | |
2979 | if (data->registry_data.pcie_dpm_key_disabled) { |
2980 | PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,do { if (!(!vega10_enable_smc_features(hwmgr, 0, data->smu_features [GNLD_DPM_LINK].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Disable Link DPM feature Failed!"); return -22; } } while (0) |
2981 | false, data->smu_features[GNLD_DPM_LINK].smu_feature_bitmap),do { if (!(!vega10_enable_smc_features(hwmgr, 0, data->smu_features [GNLD_DPM_LINK].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Disable Link DPM feature Failed!"); return -22; } } while (0) |
2982 | "Attempt to Disable Link DPM feature Failed!", return -EINVAL)do { if (!(!vega10_enable_smc_features(hwmgr, 0, data->smu_features [GNLD_DPM_LINK].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Disable Link DPM feature Failed!"); return -22; } } while (0); |
2983 | data->smu_features[GNLD_DPM_LINK].enabled = false0; |
2984 | data->smu_features[GNLD_DPM_LINK].supported = false0; |
2985 | } |
2986 | |
2987 | return 0; |
2988 | } |
2989 | |
2990 | |
2991 | static int vega10_enable_disable_PCC_limit_feature(struct pp_hwmgr *hwmgr, bool_Bool enable) |
2992 | { |
2993 | struct vega10_hwmgr *data = hwmgr->backend; |
2994 | |
2995 | if (data->smu_features[GNLD_PCC_LIMIT].supported) { |
2996 | if (enable == data->smu_features[GNLD_PCC_LIMIT].enabled) |
2997 | pr_info("GNLD_PCC_LIMIT has been %s \n", enable ? "enabled" : "disabled")do { } while(0); |
2998 | PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,do { if (!(!vega10_enable_smc_features(hwmgr, enable, data-> smu_features[GNLD_PCC_LIMIT].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable PCC Limit feature Failed!" ); return -22; } } while (0) |
2999 | enable, data->smu_features[GNLD_PCC_LIMIT].smu_feature_bitmap),do { if (!(!vega10_enable_smc_features(hwmgr, enable, data-> smu_features[GNLD_PCC_LIMIT].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable PCC Limit feature Failed!" ); return -22; } } while (0) |
3000 | "Attempt to Enable PCC Limit feature Failed!",do { if (!(!vega10_enable_smc_features(hwmgr, enable, data-> smu_features[GNLD_PCC_LIMIT].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable PCC Limit feature Failed!" ); return -22; } } while (0) |
3001 | return -EINVAL)do { if (!(!vega10_enable_smc_features(hwmgr, enable, data-> smu_features[GNLD_PCC_LIMIT].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable PCC Limit feature Failed!" ); return -22; } } while (0); |
3002 | data->smu_features[GNLD_PCC_LIMIT].enabled = enable; |
3003 | } |
3004 | |
3005 | return 0; |
3006 | } |
3007 | |
3008 | static int vega10_enable_dpm_tasks(struct pp_hwmgr *hwmgr) |
3009 | { |
3010 | struct vega10_hwmgr *data = hwmgr->backend; |
3011 | int tmp_result, result = 0; |
3012 | |
3013 | if (hwmgr->not_vf) { |
3014 | vega10_enable_disable_PCC_limit_feature(hwmgr, true1); |
3015 | |
3016 | smum_send_msg_to_smc_with_parameter(hwmgr, |
3017 | PPSMC_MSG_ConfigureTelemetry0x14, data->config_telemetry, |
3018 | NULL((void *)0)); |
3019 | |
3020 | tmp_result = vega10_construct_voltage_tables(hwmgr); |
3021 | PP_ASSERT_WITH_CODE(!tmp_result,do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to construct voltage tables!"); result = tmp_result ; } } while (0) |
3022 | "Failed to construct voltage tables!",do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to construct voltage tables!"); result = tmp_result ; } } while (0) |
3023 | result = tmp_result)do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to construct voltage tables!"); result = tmp_result ; } } while (0); |
3024 | } |
3025 | |
3026 | if (hwmgr->not_vf || hwmgr->pp_one_vf) { |
3027 | tmp_result = vega10_init_smc_table(hwmgr); |
3028 | PP_ASSERT_WITH_CODE(!tmp_result,do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to initialize SMC table!"); result = tmp_result ; } } while (0) |
3029 | "Failed to initialize SMC table!",do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to initialize SMC table!"); result = tmp_result ; } } while (0) |
3030 | result = tmp_result)do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to initialize SMC table!"); result = tmp_result ; } } while (0); |
3031 | } |
3032 | |
3033 | if (hwmgr->not_vf) { |
3034 | if (PP_CAP(PHM_PlatformCaps_ThermalController)phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, ( PHM_PlatformCaps_ThermalController))) { |
3035 | tmp_result = vega10_enable_thermal_protection(hwmgr); |
3036 | PP_ASSERT_WITH_CODE(!tmp_result,do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to enable thermal protection!"); result = tmp_result ; } } while (0) |
3037 | "Failed to enable thermal protection!",do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to enable thermal protection!"); result = tmp_result ; } } while (0) |
3038 | result = tmp_result)do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to enable thermal protection!"); result = tmp_result ; } } while (0); |
3039 | } |
3040 | |
3041 | tmp_result = vega10_enable_vrhot_feature(hwmgr); |
3042 | PP_ASSERT_WITH_CODE(!tmp_result,do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to enable VR hot feature!"); result = tmp_result ; } } while (0) |
3043 | "Failed to enable VR hot feature!",do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to enable VR hot feature!"); result = tmp_result ; } } while (0) |
3044 | result = tmp_result)do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to enable VR hot feature!"); result = tmp_result ; } } while (0); |
3045 | |
3046 | tmp_result = vega10_enable_deep_sleep_master_switch(hwmgr); |
3047 | PP_ASSERT_WITH_CODE(!tmp_result,do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to enable deep sleep master switch!"); result = tmp_result; } } while (0) |
3048 | "Failed to enable deep sleep master switch!",do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to enable deep sleep master switch!"); result = tmp_result; } } while (0) |
3049 | result = tmp_result)do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to enable deep sleep master switch!"); result = tmp_result; } } while (0); |
3050 | } |
3051 | |
3052 | if (hwmgr->not_vf) { |
3053 | tmp_result = vega10_start_dpm(hwmgr, SMC_DPM_FEATURES0x30F); |
3054 | PP_ASSERT_WITH_CODE(!tmp_result,do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to start DPM!"); result = tmp_result; } } while (0) |
3055 | "Failed to start DPM!", result = tmp_result)do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to start DPM!"); result = tmp_result; } } while (0); |
3056 | } |
3057 | |
3058 | if (hwmgr->not_vf) { |
3059 | /* enable didt, do not abort if failed didt */ |
3060 | tmp_result = vega10_enable_didt_config(hwmgr); |
3061 | PP_ASSERT(!tmp_result,do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to enable didt config!"); } } while (0) |
3062 | "Failed to enable didt config!")do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to enable didt config!"); } } while (0); |
3063 | } |
3064 | |
3065 | tmp_result = vega10_enable_power_containment(hwmgr); |
3066 | PP_ASSERT_WITH_CODE(!tmp_result,do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to enable power containment!"); result = tmp_result ; } } while (0) |
3067 | "Failed to enable power containment!",do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to enable power containment!"); result = tmp_result ; } } while (0) |
3068 | result = tmp_result)do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to enable power containment!"); result = tmp_result ; } } while (0); |
3069 | |
3070 | if (hwmgr->not_vf) { |
3071 | tmp_result = vega10_power_control_set_level(hwmgr); |
3072 | PP_ASSERT_WITH_CODE(!tmp_result,do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to power control set level!"); result = tmp_result ; } } while (0) |
3073 | "Failed to power control set level!",do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to power control set level!"); result = tmp_result ; } } while (0) |
3074 | result = tmp_result)do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to power control set level!"); result = tmp_result ; } } while (0); |
3075 | |
3076 | tmp_result = vega10_enable_ulv(hwmgr); |
3077 | PP_ASSERT_WITH_CODE(!tmp_result,do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to enable ULV!"); result = tmp_result; } } while (0) |
3078 | "Failed to enable ULV!",do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to enable ULV!"); result = tmp_result; } } while (0) |
3079 | result = tmp_result)do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to enable ULV!"); result = tmp_result; } } while (0); |
3080 | } |
3081 | |
3082 | return result; |
3083 | } |
3084 | |
3085 | static int vega10_get_power_state_size(struct pp_hwmgr *hwmgr) |
3086 | { |
3087 | return sizeof(struct vega10_power_state); |
3088 | } |
3089 | |
3090 | static int vega10_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr, |
3091 | void *state, struct pp_power_state *power_state, |
3092 | void *pp_table, uint32_t classification_flag) |
3093 | { |
3094 | ATOM_Vega10_GFXCLK_Dependency_Record_V2 *patom_record_V2; |
3095 | struct vega10_power_state *vega10_power_state = |
3096 | cast_phw_vega10_power_state(&(power_state->hardware)); |
3097 | struct vega10_performance_level *performance_level; |
3098 | ATOM_Vega10_State *state_entry = (ATOM_Vega10_State *)state; |
3099 | ATOM_Vega10_POWERPLAYTABLE *powerplay_table = |
3100 | (ATOM_Vega10_POWERPLAYTABLE *)pp_table; |
3101 | ATOM_Vega10_SOCCLK_Dependency_Table *socclk_dep_table = |
3102 | (ATOM_Vega10_SOCCLK_Dependency_Table *) |
3103 | (((unsigned long)powerplay_table) + |
3104 | le16_to_cpu(powerplay_table->usSocclkDependencyTableOffset)((__uint16_t)(powerplay_table->usSocclkDependencyTableOffset ))); |
3105 | ATOM_Vega10_GFXCLK_Dependency_Table *gfxclk_dep_table = |
3106 | (ATOM_Vega10_GFXCLK_Dependency_Table *) |
3107 | (((unsigned long)powerplay_table) + |
3108 | le16_to_cpu(powerplay_table->usGfxclkDependencyTableOffset)((__uint16_t)(powerplay_table->usGfxclkDependencyTableOffset ))); |
3109 | ATOM_Vega10_MCLK_Dependency_Table *mclk_dep_table = |
3110 | (ATOM_Vega10_MCLK_Dependency_Table *) |
3111 | (((unsigned long)powerplay_table) + |
3112 | le16_to_cpu(powerplay_table->usMclkDependencyTableOffset)((__uint16_t)(powerplay_table->usMclkDependencyTableOffset ))); |
3113 | |
3114 | |
3115 | /* The following fields are not initialized here: |
3116 | * id orderedList allStatesList |
3117 | */ |
3118 | power_state->classification.ui_label = |
3119 | (le16_to_cpu(state_entry->usClassification)((__uint16_t)(state_entry->usClassification)) & |
3120 | ATOM_PPLIB_CLASSIFICATION_UI_MASK0x0007) >> |
3121 | ATOM_PPLIB_CLASSIFICATION_UI_SHIFT0; |
3122 | power_state->classification.flags = classification_flag; |
3123 | /* NOTE: There is a classification2 flag in BIOS |
3124 | * that is not being used right now |
3125 | */ |
3126 | power_state->classification.temporary_state = false0; |
3127 | power_state->classification.to_be_deleted = false0; |
3128 | |
3129 | power_state->validation.disallowOnDC = |
3130 | ((le32_to_cpu(state_entry->ulCapsAndSettings)((__uint32_t)(state_entry->ulCapsAndSettings)) & |
3131 | ATOM_Vega10_DISALLOW_ON_DC0x00004000) != 0); |
3132 | |
3133 | power_state->display.disableFrameModulation = false0; |
3134 | power_state->display.limitRefreshrate = false0; |
3135 | power_state->display.enableVariBright = |
3136 | ((le32_to_cpu(state_entry->ulCapsAndSettings)((__uint32_t)(state_entry->ulCapsAndSettings)) & |
3137 | ATOM_Vega10_ENABLE_VARIBRIGHT0x00008000) != 0); |
3138 | |
3139 | power_state->validation.supportedPowerLevels = 0; |
3140 | power_state->uvd_clocks.VCLK = 0; |
3141 | power_state->uvd_clocks.DCLK = 0; |
3142 | power_state->temperatures.min = 0; |
3143 | power_state->temperatures.max = 0; |
3144 | |
3145 | performance_level = &(vega10_power_state->performance_levels |
3146 | [vega10_power_state->performance_level_count++]); |
3147 | |
3148 | PP_ASSERT_WITH_CODE(do { if (!((vega10_power_state->performance_level_count < 8))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Performance levels exceeds SMC limit!" ); return -1; } } while (0) |
3149 | (vega10_power_state->performance_level_count <do { if (!((vega10_power_state->performance_level_count < 8))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Performance levels exceeds SMC limit!" ); return -1; } } while (0) |
3150 | NUM_GFXCLK_DPM_LEVELS),do { if (!((vega10_power_state->performance_level_count < 8))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Performance levels exceeds SMC limit!" ); return -1; } } while (0) |
3151 | "Performance levels exceeds SMC limit!",do { if (!((vega10_power_state->performance_level_count < 8))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Performance levels exceeds SMC limit!" ); return -1; } } while (0) |
3152 | return -1)do { if (!((vega10_power_state->performance_level_count < 8))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Performance levels exceeds SMC limit!" ); return -1; } } while (0); |
3153 | |
3154 | PP_ASSERT_WITH_CODE(do { if (!((vega10_power_state->performance_level_count <= hwmgr->platform_descriptor. hardwareActivityPerformanceLevels ))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Performance levels exceeds Driver limit!" ); return -1; } } while (0) |
3155 | (vega10_power_state->performance_level_count <=do { if (!((vega10_power_state->performance_level_count <= hwmgr->platform_descriptor. hardwareActivityPerformanceLevels ))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Performance levels exceeds Driver limit!" ); return -1; } } while (0) |
3156 | hwmgr->platform_descriptor.do { if (!((vega10_power_state->performance_level_count <= hwmgr->platform_descriptor. hardwareActivityPerformanceLevels ))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Performance levels exceeds Driver limit!" ); return -1; } } while (0) |
3157 | hardwareActivityPerformanceLevels),do { if (!((vega10_power_state->performance_level_count <= hwmgr->platform_descriptor. hardwareActivityPerformanceLevels ))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Performance levels exceeds Driver limit!" ); return -1; } } while (0) |
3158 | "Performance levels exceeds Driver limit!",do { if (!((vega10_power_state->performance_level_count <= hwmgr->platform_descriptor. hardwareActivityPerformanceLevels ))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Performance levels exceeds Driver limit!" ); return -1; } } while (0) |
3159 | return -1)do { if (!((vega10_power_state->performance_level_count <= hwmgr->platform_descriptor. hardwareActivityPerformanceLevels ))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Performance levels exceeds Driver limit!" ); return -1; } } while (0); |
3160 | |
3161 | /* Performance levels are arranged from low to high. */ |
3162 | performance_level->soc_clock = socclk_dep_table->entries |
3163 | [state_entry->ucSocClockIndexLow].ulClk; |
3164 | performance_level->gfx_clock = gfxclk_dep_table->entries |
3165 | [state_entry->ucGfxClockIndexLow].ulClk; |
3166 | performance_level->mem_clock = mclk_dep_table->entries |
3167 | [state_entry->ucMemClockIndexLow].ulMemClk; |
3168 | |
3169 | performance_level = &(vega10_power_state->performance_levels |
3170 | [vega10_power_state->performance_level_count++]); |
3171 | performance_level->soc_clock = socclk_dep_table->entries |
3172 | [state_entry->ucSocClockIndexHigh].ulClk; |
3173 | if (gfxclk_dep_table->ucRevId == 0) { |
3174 | /* under vega10 pp one vf mode, the gfx clk dpm need be lower |
3175 | * to level-4 due to the limited 110w-power |
3176 | */ |
3177 | if (hwmgr->pp_one_vf && (state_entry->ucGfxClockIndexHigh > 0)) |
3178 | performance_level->gfx_clock = |
3179 | gfxclk_dep_table->entries[4].ulClk; |
3180 | else |
3181 | performance_level->gfx_clock = gfxclk_dep_table->entries |
3182 | [state_entry->ucGfxClockIndexHigh].ulClk; |
3183 | } else if (gfxclk_dep_table->ucRevId == 1) { |
3184 | patom_record_V2 = (ATOM_Vega10_GFXCLK_Dependency_Record_V2 *)gfxclk_dep_table->entries; |
3185 | if (hwmgr->pp_one_vf && (state_entry->ucGfxClockIndexHigh > 0)) |
3186 | performance_level->gfx_clock = patom_record_V2[4].ulClk; |
3187 | else |
3188 | performance_level->gfx_clock = |
3189 | patom_record_V2[state_entry->ucGfxClockIndexHigh].ulClk; |
3190 | } |
3191 | |
3192 | performance_level->mem_clock = mclk_dep_table->entries |
3193 | [state_entry->ucMemClockIndexHigh].ulMemClk; |
3194 | return 0; |
3195 | } |
3196 | |
3197 | static int vega10_get_pp_table_entry(struct pp_hwmgr *hwmgr, |
3198 | unsigned long entry_index, struct pp_power_state *state) |
3199 | { |
3200 | int result; |
3201 | struct vega10_power_state *ps; |
3202 | |
3203 | state->hardware.magic = PhwVega10_Magic; |
3204 | |
3205 | ps = cast_phw_vega10_power_state(&state->hardware); |
3206 | |
3207 | result = vega10_get_powerplay_table_entry(hwmgr, entry_index, state, |
Value stored to 'result' is never read | |
3208 | vega10_get_pp_table_entry_callback_func); |
3209 | |
3210 | /* |
3211 | * This is the earliest time we have all the dependency table |
3212 | * and the VBIOS boot state |
3213 | */ |
3214 | /* set DC compatible flag if this state supports DC */ |
3215 | if (!state->validation.disallowOnDC) |
3216 | ps->dc_compatible = true1; |
3217 | |
3218 | ps->uvd_clks.vclk = state->uvd_clocks.VCLK; |
3219 | ps->uvd_clks.dclk = state->uvd_clocks.DCLK; |
3220 | |
3221 | return 0; |
3222 | } |
3223 | |
3224 | static int vega10_patch_boot_state(struct pp_hwmgr *hwmgr, |
3225 | struct pp_hw_power_state *hw_ps) |
3226 | { |
3227 | return 0; |
3228 | } |
3229 | |
3230 | static int vega10_apply_state_adjust_rules(struct pp_hwmgr *hwmgr, |
3231 | struct pp_power_state *request_ps, |
3232 | const struct pp_power_state *current_ps) |
3233 | { |
3234 | struct amdgpu_device *adev = hwmgr->adev; |
3235 | struct vega10_power_state *vega10_ps = |
3236 | cast_phw_vega10_power_state(&request_ps->hardware); |
3237 | uint32_t sclk; |
3238 | uint32_t mclk; |
3239 | struct PP_Clocks minimum_clocks = {0}; |
3240 | bool_Bool disable_mclk_switching; |
3241 | bool_Bool disable_mclk_switching_for_frame_lock; |
3242 | bool_Bool disable_mclk_switching_for_vr; |
3243 | bool_Bool force_mclk_high; |
3244 | const struct phm_clock_and_voltage_limits *max_limits; |
3245 | uint32_t i; |
3246 | struct vega10_hwmgr *data = hwmgr->backend; |
3247 | struct phm_ppt_v2_information *table_info = |
3248 | (struct phm_ppt_v2_information *)(hwmgr->pptable); |
3249 | int32_t count; |
3250 | uint32_t stable_pstate_sclk_dpm_percentage; |
3251 | uint32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0; |
3252 | uint32_t latency; |
3253 | |
3254 | data->battery_state = (PP_StateUILabel_Battery == |
3255 | request_ps->classification.ui_label); |
3256 | |
3257 | if (vega10_ps->performance_level_count != 2) |
3258 | pr_info("VI should always have 2 performance levels")do { } while(0); |
3259 | |
3260 | max_limits = adev->pm.ac_power ? |
3261 | &(hwmgr->dyn_state.max_clock_voltage_on_ac) : |
3262 | &(hwmgr->dyn_state.max_clock_voltage_on_dc); |
3263 | |
3264 | /* Cap clock DPM tables at DC MAX if it is in DC. */ |
3265 | if (!adev->pm.ac_power) { |
3266 | for (i = 0; i < vega10_ps->performance_level_count; i++) { |
3267 | if (vega10_ps->performance_levels[i].mem_clock > |
3268 | max_limits->mclk) |
3269 | vega10_ps->performance_levels[i].mem_clock = |
3270 | max_limits->mclk; |
3271 | if (vega10_ps->performance_levels[i].gfx_clock > |
3272 | max_limits->sclk) |
3273 | vega10_ps->performance_levels[i].gfx_clock = |
3274 | max_limits->sclk; |
3275 | } |
3276 | } |
3277 | |
3278 | /* result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/ |
3279 | minimum_clocks.engineClock = hwmgr->display_config->min_core_set_clock; |
3280 | minimum_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock; |
3281 | |
3282 | if (PP_CAP(PHM_PlatformCaps_StablePState)phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, ( PHM_PlatformCaps_StablePState))) { |
3283 | stable_pstate_sclk_dpm_percentage = |
3284 | data->registry_data.stable_pstate_sclk_dpm_percentage; |
3285 | PP_ASSERT_WITH_CODE(do { if (!(data->registry_data.stable_pstate_sclk_dpm_percentage >= 1 && data->registry_data.stable_pstate_sclk_dpm_percentage <= 100)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "percent sclk value must range from 1% to 100%, setting default value" ); stable_pstate_sclk_dpm_percentage = 75; } } while (0) |
3286 | data->registry_data.stable_pstate_sclk_dpm_percentage >= 1 &&do { if (!(data->registry_data.stable_pstate_sclk_dpm_percentage >= 1 && data->registry_data.stable_pstate_sclk_dpm_percentage <= 100)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "percent sclk value must range from 1% to 100%, setting default value" ); stable_pstate_sclk_dpm_percentage = 75; } } while (0) |
3287 | data->registry_data.stable_pstate_sclk_dpm_percentage <= 100,do { if (!(data->registry_data.stable_pstate_sclk_dpm_percentage >= 1 && data->registry_data.stable_pstate_sclk_dpm_percentage <= 100)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "percent sclk value must range from 1% to 100%, setting default value" ); stable_pstate_sclk_dpm_percentage = 75; } } while (0) |
3288 | "percent sclk value must range from 1% to 100%, setting default value",do { if (!(data->registry_data.stable_pstate_sclk_dpm_percentage >= 1 && data->registry_data.stable_pstate_sclk_dpm_percentage <= 100)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "percent sclk value must range from 1% to 100%, setting default value" ); stable_pstate_sclk_dpm_percentage = 75; } } while (0) |
3289 | stable_pstate_sclk_dpm_percentage = 75)do { if (!(data->registry_data.stable_pstate_sclk_dpm_percentage >= 1 && data->registry_data.stable_pstate_sclk_dpm_percentage <= 100)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "percent sclk value must range from 1% to 100%, setting default value" ); stable_pstate_sclk_dpm_percentage = 75; } } while (0); |
3290 | |
3291 | max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac); |
3292 | stable_pstate_sclk = (max_limits->sclk * |
3293 | stable_pstate_sclk_dpm_percentage) / 100; |
3294 | |
3295 | for (count = table_info->vdd_dep_on_sclk->count - 1; |
3296 | count >= 0; count--) { |
3297 | if (stable_pstate_sclk >= |
3298 | table_info->vdd_dep_on_sclk->entries[count].clk) { |
3299 | stable_pstate_sclk = |
3300 | table_info->vdd_dep_on_sclk->entries[count].clk; |
3301 | break; |
3302 | } |
3303 | } |
3304 | |
3305 | if (count < 0) |
3306 | stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk; |
3307 | |
3308 | stable_pstate_mclk = max_limits->mclk; |
3309 | |
3310 | minimum_clocks.engineClock = stable_pstate_sclk; |
3311 | minimum_clocks.memoryClock = stable_pstate_mclk; |
3312 | } |
3313 | |
3314 | disable_mclk_switching_for_frame_lock = |
3315 | PP_CAP(PHM_PlatformCaps_DisableMclkSwitchingForFrameLock)phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, ( PHM_PlatformCaps_DisableMclkSwitchingForFrameLock)); |
3316 | disable_mclk_switching_for_vr = |
3317 | PP_CAP(PHM_PlatformCaps_DisableMclkSwitchForVR)phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, ( PHM_PlatformCaps_DisableMclkSwitchForVR)); |
3318 | force_mclk_high = PP_CAP(PHM_PlatformCaps_ForceMclkHigh)phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, ( PHM_PlatformCaps_ForceMclkHigh)); |
3319 | |
3320 | if (hwmgr->display_config->num_display == 0) |
3321 | disable_mclk_switching = false0; |
3322 | else |
3323 | disable_mclk_switching = ((1 < hwmgr->display_config->num_display) && |
3324 | !hwmgr->display_config->multi_monitor_in_sync) || |
3325 | disable_mclk_switching_for_frame_lock || |
3326 | disable_mclk_switching_for_vr || |
3327 | force_mclk_high; |
3328 | |
3329 | sclk = vega10_ps->performance_levels[0].gfx_clock; |
3330 | mclk = vega10_ps->performance_levels[0].mem_clock; |
3331 | |
3332 | if (sclk < minimum_clocks.engineClock) |
3333 | sclk = (minimum_clocks.engineClock > max_limits->sclk) ? |
3334 | max_limits->sclk : minimum_clocks.engineClock; |
3335 | |
3336 | if (mclk < minimum_clocks.memoryClock) |
3337 | mclk = (minimum_clocks.memoryClock > max_limits->mclk) ? |
3338 | max_limits->mclk : minimum_clocks.memoryClock; |
3339 | |
3340 | vega10_ps->performance_levels[0].gfx_clock = sclk; |
3341 | vega10_ps->performance_levels[0].mem_clock = mclk; |
3342 | |
3343 | if (vega10_ps->performance_levels[1].gfx_clock < |
3344 | vega10_ps->performance_levels[0].gfx_clock) |
3345 | vega10_ps->performance_levels[0].gfx_clock = |
3346 | vega10_ps->performance_levels[1].gfx_clock; |
3347 | |
3348 | if (disable_mclk_switching) { |
3349 | /* Set Mclk the max of level 0 and level 1 */ |
3350 | if (mclk < vega10_ps->performance_levels[1].mem_clock) |
3351 | mclk = vega10_ps->performance_levels[1].mem_clock; |
3352 | |
3353 | /* Find the lowest MCLK frequency that is within |
3354 | * the tolerable latency defined in DAL |
3355 | */ |
3356 | latency = hwmgr->display_config->dce_tolerable_mclk_in_active_latency; |
3357 | for (i = 0; i < data->mclk_latency_table.count; i++) { |
3358 | if ((data->mclk_latency_table.entries[i].latency <= latency) && |
3359 | (data->mclk_latency_table.entries[i].frequency >= |
3360 | vega10_ps->performance_levels[0].mem_clock) && |
3361 | (data->mclk_latency_table.entries[i].frequency <= |
3362 | vega10_ps->performance_levels[1].mem_clock)) |
3363 | mclk = data->mclk_latency_table.entries[i].frequency; |
3364 | } |
3365 | vega10_ps->performance_levels[0].mem_clock = mclk; |
3366 | } else { |
3367 | if (vega10_ps->performance_levels[1].mem_clock < |
3368 | vega10_ps->performance_levels[0].mem_clock) |
3369 | vega10_ps->performance_levels[0].mem_clock = |
3370 | vega10_ps->performance_levels[1].mem_clock; |
3371 | } |
3372 | |
3373 | if (PP_CAP(PHM_PlatformCaps_StablePState)phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, ( PHM_PlatformCaps_StablePState))) { |
3374 | for (i = 0; i < vega10_ps->performance_level_count; i++) { |
3375 | vega10_ps->performance_levels[i].gfx_clock = stable_pstate_sclk; |
3376 | vega10_ps->performance_levels[i].mem_clock = stable_pstate_mclk; |
3377 | } |
3378 | } |
3379 | |
3380 | return 0; |
3381 | } |
3382 | |
3383 | static int vega10_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input) |
3384 | { |
3385 | struct vega10_hwmgr *data = hwmgr->backend; |
3386 | const struct phm_set_power_state_input *states = |
3387 | (const struct phm_set_power_state_input *)input; |
3388 | const struct vega10_power_state *vega10_ps = |
3389 | cast_const_phw_vega10_power_state(states->pnew_state); |
3390 | struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table); |
3391 | uint32_t sclk = vega10_ps->performance_levels |
3392 | [vega10_ps->performance_level_count - 1].gfx_clock; |
3393 | struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table); |
3394 | uint32_t mclk = vega10_ps->performance_levels |
3395 | [vega10_ps->performance_level_count - 1].mem_clock; |
3396 | uint32_t i; |
3397 | |
3398 | for (i = 0; i < sclk_table->count; i++) { |
3399 | if (sclk == sclk_table->dpm_levels[i].value) |
3400 | break; |
3401 | } |
3402 | |
3403 | if (i >= sclk_table->count) { |
3404 | if (sclk > sclk_table->dpm_levels[i-1].value) { |
3405 | data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK0x00000001; |
3406 | sclk_table->dpm_levels[i-1].value = sclk; |
3407 | } |
3408 | } |
3409 | |
3410 | for (i = 0; i < mclk_table->count; i++) { |
3411 | if (mclk == mclk_table->dpm_levels[i].value) |
3412 | break; |
3413 | } |
3414 | |
3415 | if (i >= mclk_table->count) { |
3416 | if (mclk > mclk_table->dpm_levels[i-1].value) { |
3417 | data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_MCLK0x00000002; |
3418 | mclk_table->dpm_levels[i-1].value = mclk; |
3419 | } |
3420 | } |
3421 | |
3422 | if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display) |
3423 | data->need_update_dpm_table |= DPMTABLE_UPDATE_MCLK0x00000008; |
3424 | |
3425 | return 0; |
3426 | } |
3427 | |
3428 | static int vega10_populate_and_upload_sclk_mclk_dpm_levels( |
3429 | struct pp_hwmgr *hwmgr, const void *input) |
3430 | { |
3431 | int result = 0; |
3432 | struct vega10_hwmgr *data = hwmgr->backend; |
3433 | struct vega10_dpm_table *dpm_table = &data->dpm_table; |
3434 | struct vega10_odn_dpm_table *odn_table = &data->odn_dpm_table; |
3435 | struct vega10_odn_clock_voltage_dependency_table *odn_clk_table = &odn_table->vdd_dep_on_sclk; |
3436 | int count; |
3437 | |
3438 | if (!data->need_update_dpm_table) |
3439 | return 0; |
3440 | |
3441 | if (hwmgr->od_enabled && data->need_update_dpm_table & DPMTABLE_OD_UPDATE_SCLK0x00000001) { |
3442 | for (count = 0; count < dpm_table->gfx_table.count; count++) |
3443 | dpm_table->gfx_table.dpm_levels[count].value = odn_clk_table->entries[count].clk; |
3444 | } |
3445 | |
3446 | odn_clk_table = &odn_table->vdd_dep_on_mclk; |
3447 | if (hwmgr->od_enabled && data->need_update_dpm_table & DPMTABLE_OD_UPDATE_MCLK0x00000002) { |
3448 | for (count = 0; count < dpm_table->mem_table.count; count++) |
3449 | dpm_table->mem_table.dpm_levels[count].value = odn_clk_table->entries[count].clk; |
3450 | } |
3451 | |
3452 | if (data->need_update_dpm_table & |
3453 | (DPMTABLE_OD_UPDATE_SCLK0x00000001 | DPMTABLE_UPDATE_SCLK0x00000004 | DPMTABLE_UPDATE_SOCCLK0x00000020)) { |
3454 | result = vega10_populate_all_graphic_levels(hwmgr); |
3455 | PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to populate SCLK during PopulateNewDPMClocksStates Function!" ); return result; } } while (0) |
3456 | "Failed to populate SCLK during PopulateNewDPMClocksStates Function!",do { if (!((0 == result))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to populate SCLK during PopulateNewDPMClocksStates Function!" ); return result; } } while (0) |
3457 | return result)do { if (!((0 == result))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to populate SCLK during PopulateNewDPMClocksStates Function!" ); return result; } } while (0); |
3458 | } |
3459 | |
3460 | if (data->need_update_dpm_table & |
3461 | (DPMTABLE_OD_UPDATE_MCLK0x00000002 | DPMTABLE_UPDATE_MCLK0x00000008)) { |
3462 | result = vega10_populate_all_memory_levels(hwmgr); |
3463 | PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to populate MCLK during PopulateNewDPMClocksStates Function!" ); return result; } } while (0) |
3464 | "Failed to populate MCLK during PopulateNewDPMClocksStates Function!",do { if (!((0 == result))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to populate MCLK during PopulateNewDPMClocksStates Function!" ); return result; } } while (0) |
3465 | return result)do { if (!((0 == result))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to populate MCLK during PopulateNewDPMClocksStates Function!" ); return result; } } while (0); |
3466 | } |
3467 | |
3468 | vega10_populate_vddc_soc_levels(hwmgr); |
3469 | |
3470 | return result; |
3471 | } |
3472 | |
3473 | static int vega10_trim_single_dpm_states(struct pp_hwmgr *hwmgr, |
3474 | struct vega10_single_dpm_table *dpm_table, |
3475 | uint32_t low_limit, uint32_t high_limit) |
3476 | { |
3477 | uint32_t i; |
3478 | |
3479 | for (i = 0; i < dpm_table->count; i++) { |
3480 | if ((dpm_table->dpm_levels[i].value < low_limit) || |
3481 | (dpm_table->dpm_levels[i].value > high_limit)) |
3482 | dpm_table->dpm_levels[i].enabled = false0; |
3483 | else |
3484 | dpm_table->dpm_levels[i].enabled = true1; |
3485 | } |
3486 | return 0; |
3487 | } |
3488 | |
3489 | static int vega10_trim_single_dpm_states_with_mask(struct pp_hwmgr *hwmgr, |
3490 | struct vega10_single_dpm_table *dpm_table, |
3491 | uint32_t low_limit, uint32_t high_limit, |
3492 | uint32_t disable_dpm_mask) |
3493 | { |
3494 | uint32_t i; |
3495 | |
3496 | for (i = 0; i < dpm_table->count; i++) { |
3497 | if ((dpm_table->dpm_levels[i].value < low_limit) || |
3498 | (dpm_table->dpm_levels[i].value > high_limit)) |
3499 | dpm_table->dpm_levels[i].enabled = false0; |
3500 | else if (!((1 << i) & disable_dpm_mask)) |
3501 | dpm_table->dpm_levels[i].enabled = false0; |
3502 | else |
3503 | dpm_table->dpm_levels[i].enabled = true1; |
3504 | } |
3505 | return 0; |
3506 | } |
3507 | |
3508 | static int vega10_trim_dpm_states(struct pp_hwmgr *hwmgr, |
3509 | const struct vega10_power_state *vega10_ps) |
3510 | { |
3511 | struct vega10_hwmgr *data = hwmgr->backend; |
3512 | uint32_t high_limit_count; |
3513 | |
3514 | PP_ASSERT_WITH_CODE((vega10_ps->performance_level_count >= 1),do { if (!((vega10_ps->performance_level_count >= 1))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "power state did not have any performance level" ); return -1; } } while (0) |
3515 | "power state did not have any performance level",do { if (!((vega10_ps->performance_level_count >= 1))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "power state did not have any performance level" ); return -1; } } while (0) |
3516 | return -1)do { if (!((vega10_ps->performance_level_count >= 1))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "power state did not have any performance level" ); return -1; } } while (0); |
3517 | |
3518 | high_limit_count = (vega10_ps->performance_level_count == 1) ? 0 : 1; |
3519 | |
3520 | vega10_trim_single_dpm_states(hwmgr, |
3521 | &(data->dpm_table.soc_table), |
3522 | vega10_ps->performance_levels[0].soc_clock, |
3523 | vega10_ps->performance_levels[high_limit_count].soc_clock); |
3524 | |
3525 | vega10_trim_single_dpm_states_with_mask(hwmgr, |
3526 | &(data->dpm_table.gfx_table), |
3527 | vega10_ps->performance_levels[0].gfx_clock, |
3528 | vega10_ps->performance_levels[high_limit_count].gfx_clock, |
3529 | data->disable_dpm_mask); |
3530 | |
3531 | vega10_trim_single_dpm_states(hwmgr, |
3532 | &(data->dpm_table.mem_table), |
3533 | vega10_ps->performance_levels[0].mem_clock, |
3534 | vega10_ps->performance_levels[high_limit_count].mem_clock); |
3535 | |
3536 | return 0; |
3537 | } |
3538 | |
3539 | static uint32_t vega10_find_lowest_dpm_level( |
3540 | struct vega10_single_dpm_table *table) |
3541 | { |
3542 | uint32_t i; |
3543 | |
3544 | for (i = 0; i < table->count; i++) { |
3545 | if (table->dpm_levels[i].enabled) |
3546 | break; |
3547 | } |
3548 | |
3549 | return i; |
3550 | } |
3551 | |
3552 | static uint32_t vega10_find_highest_dpm_level( |
3553 | struct vega10_single_dpm_table *table) |
3554 | { |
3555 | uint32_t i = 0; |
3556 | |
3557 | if (table->count <= MAX_REGULAR_DPM_NUMBER8) { |
3558 | for (i = table->count; i > 0; i--) { |
3559 | if (table->dpm_levels[i - 1].enabled) |
3560 | return i - 1; |
3561 | } |
3562 | } else { |
3563 | pr_info("DPM Table Has Too Many Entries!")do { } while(0); |
3564 | return MAX_REGULAR_DPM_NUMBER8 - 1; |
3565 | } |
3566 | |
3567 | return i; |
3568 | } |
3569 | |
3570 | static void vega10_apply_dal_minimum_voltage_request( |
3571 | struct pp_hwmgr *hwmgr) |
3572 | { |
3573 | return; |
3574 | } |
3575 | |
3576 | static int vega10_get_soc_index_for_max_uclk(struct pp_hwmgr *hwmgr) |
3577 | { |
3578 | struct phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table_on_mclk; |
3579 | struct phm_ppt_v2_information *table_info = |
3580 | (struct phm_ppt_v2_information *)(hwmgr->pptable); |
3581 | |
3582 | vdd_dep_table_on_mclk = table_info->vdd_dep_on_mclk; |
3583 | |
3584 | return vdd_dep_table_on_mclk->entries[NUM_UCLK_DPM_LEVELS4 - 1].vddInd + 1; |
3585 | } |
3586 | |
3587 | static int vega10_upload_dpm_bootup_level(struct pp_hwmgr *hwmgr) |
3588 | { |
3589 | struct vega10_hwmgr *data = hwmgr->backend; |
3590 | uint32_t socclk_idx; |
3591 | |
3592 | vega10_apply_dal_minimum_voltage_request(hwmgr); |
3593 | |
3594 | if (!data->registry_data.sclk_dpm_key_disabled) { |
3595 | if (data->smc_state_table.gfx_boot_level != |
3596 | data->dpm_table.gfx_table.dpm_state.soft_min_level) { |
3597 | smum_send_msg_to_smc_with_parameter(hwmgr, |
3598 | PPSMC_MSG_SetSoftMinGfxclkByIndex0x21, |
3599 | data->smc_state_table.gfx_boot_level, |
3600 | NULL((void *)0)); |
3601 | |
3602 | data->dpm_table.gfx_table.dpm_state.soft_min_level = |
3603 | data->smc_state_table.gfx_boot_level; |
3604 | } |
3605 | } |
3606 | |
3607 | if (!data->registry_data.mclk_dpm_key_disabled) { |
3608 | if (data->smc_state_table.mem_boot_level != |
3609 | data->dpm_table.mem_table.dpm_state.soft_min_level) { |
3610 | if ((data->smc_state_table.mem_boot_level == NUM_UCLK_DPM_LEVELS4 - 1) |
3611 | && hwmgr->not_vf) { |
3612 | socclk_idx = vega10_get_soc_index_for_max_uclk(hwmgr); |
3613 | smum_send_msg_to_smc_with_parameter(hwmgr, |
3614 | PPSMC_MSG_SetSoftMinSocclkByIndex0x2E, |
3615 | socclk_idx, |
3616 | NULL((void *)0)); |
3617 | } else { |
3618 | smum_send_msg_to_smc_with_parameter(hwmgr, |
3619 | PPSMC_MSG_SetSoftMinUclkByIndex0x24, |
3620 | data->smc_state_table.mem_boot_level, |
3621 | NULL((void *)0)); |
3622 | } |
3623 | data->dpm_table.mem_table.dpm_state.soft_min_level = |
3624 | data->smc_state_table.mem_boot_level; |
3625 | } |
3626 | } |
3627 | |
3628 | if (!hwmgr->not_vf) |
3629 | return 0; |
3630 | |
3631 | if (!data->registry_data.socclk_dpm_key_disabled) { |
3632 | if (data->smc_state_table.soc_boot_level != |
3633 | data->dpm_table.soc_table.dpm_state.soft_min_level) { |
3634 | smum_send_msg_to_smc_with_parameter(hwmgr, |
3635 | PPSMC_MSG_SetSoftMinSocclkByIndex0x2E, |
3636 | data->smc_state_table.soc_boot_level, |
3637 | NULL((void *)0)); |
3638 | data->dpm_table.soc_table.dpm_state.soft_min_level = |
3639 | data->smc_state_table.soc_boot_level; |
3640 | } |
3641 | } |
3642 | |
3643 | return 0; |
3644 | } |
3645 | |
3646 | static int vega10_upload_dpm_max_level(struct pp_hwmgr *hwmgr) |
3647 | { |
3648 | struct vega10_hwmgr *data = hwmgr->backend; |
3649 | |
3650 | vega10_apply_dal_minimum_voltage_request(hwmgr); |
3651 | |
3652 | if (!data->registry_data.sclk_dpm_key_disabled) { |
3653 | if (data->smc_state_table.gfx_max_level != |
3654 | data->dpm_table.gfx_table.dpm_state.soft_max_level) { |
3655 | smum_send_msg_to_smc_with_parameter(hwmgr, |
3656 | PPSMC_MSG_SetSoftMaxGfxclkByIndex0x22, |
3657 | data->smc_state_table.gfx_max_level, |
3658 | NULL((void *)0)); |
3659 | data->dpm_table.gfx_table.dpm_state.soft_max_level = |
3660 | data->smc_state_table.gfx_max_level; |
3661 | } |
3662 | } |
3663 | |
3664 | if (!data->registry_data.mclk_dpm_key_disabled) { |
3665 | if (data->smc_state_table.mem_max_level != |
3666 | data->dpm_table.mem_table.dpm_state.soft_max_level) { |
3667 | smum_send_msg_to_smc_with_parameter(hwmgr, |
3668 | PPSMC_MSG_SetSoftMaxUclkByIndex0x25, |
3669 | data->smc_state_table.mem_max_level, |
3670 | NULL((void *)0)); |
3671 | data->dpm_table.mem_table.dpm_state.soft_max_level = |
3672 | data->smc_state_table.mem_max_level; |
3673 | } |
3674 | } |
3675 | |
3676 | if (!hwmgr->not_vf) |
3677 | return 0; |
3678 | |
3679 | if (!data->registry_data.socclk_dpm_key_disabled) { |
3680 | if (data->smc_state_table.soc_max_level != |
3681 | data->dpm_table.soc_table.dpm_state.soft_max_level) { |
3682 | smum_send_msg_to_smc_with_parameter(hwmgr, |
3683 | PPSMC_MSG_SetSoftMaxSocclkByIndex0x30, |
3684 | data->smc_state_table.soc_max_level, |
3685 | NULL((void *)0)); |
3686 | data->dpm_table.soc_table.dpm_state.soft_max_level = |
3687 | data->smc_state_table.soc_max_level; |
3688 | } |
3689 | } |
3690 | |
3691 | return 0; |
3692 | } |
3693 | |
3694 | static int vega10_generate_dpm_level_enable_mask( |
3695 | struct pp_hwmgr *hwmgr, const void *input) |
3696 | { |
3697 | struct vega10_hwmgr *data = hwmgr->backend; |
3698 | const struct phm_set_power_state_input *states = |
3699 | (const struct phm_set_power_state_input *)input; |
3700 | const struct vega10_power_state *vega10_ps = |
3701 | cast_const_phw_vega10_power_state(states->pnew_state); |
3702 | int i; |
3703 | |
3704 | PP_ASSERT_WITH_CODE(!vega10_trim_dpm_states(hwmgr, vega10_ps),do { if (!(!vega10_trim_dpm_states(hwmgr, vega10_ps))) { printk ("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Trim DPM States Failed!" ); return -1; } } while (0) |
3705 | "Attempt to Trim DPM States Failed!",do { if (!(!vega10_trim_dpm_states(hwmgr, vega10_ps))) { printk ("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Trim DPM States Failed!" ); return -1; } } while (0) |
3706 | return -1)do { if (!(!vega10_trim_dpm_states(hwmgr, vega10_ps))) { printk ("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Trim DPM States Failed!" ); return -1; } } while (0); |
3707 | |
3708 | data->smc_state_table.gfx_boot_level = |
3709 | vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table)); |
3710 | data->smc_state_table.gfx_max_level = |
3711 | vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table)); |
3712 | data->smc_state_table.mem_boot_level = |
3713 | vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table)); |
3714 | data->smc_state_table.mem_max_level = |
3715 | vega10_find_highest_dpm_level(&(data->dpm_table.mem_table)); |
3716 | data->smc_state_table.soc_boot_level = |
3717 | vega10_find_lowest_dpm_level(&(data->dpm_table.soc_table)); |
3718 | data->smc_state_table.soc_max_level = |
3719 | vega10_find_highest_dpm_level(&(data->dpm_table.soc_table)); |
3720 | |
3721 | PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),do { if (!(!vega10_upload_dpm_bootup_level(hwmgr))) { printk( "\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to upload DPM Bootup Levels Failed!" ); return -1; } } while (0) |
3722 | "Attempt to upload DPM Bootup Levels Failed!",do { if (!(!vega10_upload_dpm_bootup_level(hwmgr))) { printk( "\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to upload DPM Bootup Levels Failed!" ); return -1; } } while (0) |
3723 | return -1)do { if (!(!vega10_upload_dpm_bootup_level(hwmgr))) { printk( "\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to upload DPM Bootup Levels Failed!" ); return -1; } } while (0); |
3724 | PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),do { if (!(!vega10_upload_dpm_max_level(hwmgr))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to upload DPM Max Levels Failed!" ); return -1; } } while (0) |
3725 | "Attempt to upload DPM Max Levels Failed!",do { if (!(!vega10_upload_dpm_max_level(hwmgr))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to upload DPM Max Levels Failed!" ); return -1; } } while (0) |
3726 | return -1)do { if (!(!vega10_upload_dpm_max_level(hwmgr))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to upload DPM Max Levels Failed!" ); return -1; } } while (0); |
3727 | for(i = data->smc_state_table.gfx_boot_level; i < data->smc_state_table.gfx_max_level; i++) |
3728 | data->dpm_table.gfx_table.dpm_levels[i].enabled = true1; |
3729 | |
3730 | |
3731 | for(i = data->smc_state_table.mem_boot_level; i < data->smc_state_table.mem_max_level; i++) |
3732 | data->dpm_table.mem_table.dpm_levels[i].enabled = true1; |
3733 | |
3734 | for (i = data->smc_state_table.soc_boot_level; i < data->smc_state_table.soc_max_level; i++) |
3735 | data->dpm_table.soc_table.dpm_levels[i].enabled = true1; |
3736 | |
3737 | return 0; |
3738 | } |
3739 | |
3740 | int vega10_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool_Bool enable) |
3741 | { |
3742 | struct vega10_hwmgr *data = hwmgr->backend; |
3743 | |
3744 | if (data->smu_features[GNLD_DPM_VCE].supported) { |
3745 | PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,do { if (!(!vega10_enable_smc_features(hwmgr, enable, data-> smu_features[GNLD_DPM_VCE].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable/Disable DPM VCE Failed!" ); return -1; } } while (0) |
3746 | enable,do { if (!(!vega10_enable_smc_features(hwmgr, enable, data-> smu_features[GNLD_DPM_VCE].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable/Disable DPM VCE Failed!" ); return -1; } } while (0) |
3747 | data->smu_features[GNLD_DPM_VCE].smu_feature_bitmap),do { if (!(!vega10_enable_smc_features(hwmgr, enable, data-> smu_features[GNLD_DPM_VCE].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable/Disable DPM VCE Failed!" ); return -1; } } while (0) |
3748 | "Attempt to Enable/Disable DPM VCE Failed!",do { if (!(!vega10_enable_smc_features(hwmgr, enable, data-> smu_features[GNLD_DPM_VCE].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable/Disable DPM VCE Failed!" ); return -1; } } while (0) |
3749 | return -1)do { if (!(!vega10_enable_smc_features(hwmgr, enable, data-> smu_features[GNLD_DPM_VCE].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable/Disable DPM VCE Failed!" ); return -1; } } while (0); |
3750 | data->smu_features[GNLD_DPM_VCE].enabled = enable; |
3751 | } |
3752 | |
3753 | return 0; |
3754 | } |
3755 | |
3756 | static int vega10_update_sclk_threshold(struct pp_hwmgr *hwmgr) |
3757 | { |
3758 | struct vega10_hwmgr *data = hwmgr->backend; |
3759 | uint32_t low_sclk_interrupt_threshold = 0; |
3760 | |
3761 | if (PP_CAP(PHM_PlatformCaps_SclkThrottleLowNotification)phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, ( PHM_PlatformCaps_SclkThrottleLowNotification)) && |
3762 | (data->low_sclk_interrupt_threshold != 0)) { |
3763 | low_sclk_interrupt_threshold = |
3764 | data->low_sclk_interrupt_threshold; |
3765 | |
3766 | data->smc_state_table.pp_table.LowGfxclkInterruptThreshold = |
3767 | cpu_to_le32(low_sclk_interrupt_threshold)((__uint32_t)(low_sclk_interrupt_threshold)); |
3768 | |
3769 | /* This message will also enable SmcToHost Interrupt */ |
3770 | smum_send_msg_to_smc_with_parameter(hwmgr, |
3771 | PPSMC_MSG_SetLowGfxclkInterruptThreshold0x20, |
3772 | (uint32_t)low_sclk_interrupt_threshold, |
3773 | NULL((void *)0)); |
3774 | } |
3775 | |
3776 | return 0; |
3777 | } |
3778 | |
3779 | static int vega10_set_power_state_tasks(struct pp_hwmgr *hwmgr, |
3780 | const void *input) |
3781 | { |
3782 | int tmp_result, result = 0; |
3783 | struct vega10_hwmgr *data = hwmgr->backend; |
3784 | PPTable_t *pp_table = &(data->smc_state_table.pp_table); |
3785 | |
3786 | tmp_result = vega10_find_dpm_states_clocks_in_dpm_table(hwmgr, input); |
3787 | PP_ASSERT_WITH_CODE(!tmp_result,do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to find DPM states clocks in DPM table!"); result = tmp_result; } } while (0) |
3788 | "Failed to find DPM states clocks in DPM table!",do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to find DPM states clocks in DPM table!"); result = tmp_result; } } while (0) |
3789 | result = tmp_result)do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to find DPM states clocks in DPM table!"); result = tmp_result; } } while (0); |
3790 | |
3791 | tmp_result = vega10_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input); |
3792 | PP_ASSERT_WITH_CODE(!tmp_result,do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to populate and upload SCLK MCLK DPM levels!" ); result = tmp_result; } } while (0) |
3793 | "Failed to populate and upload SCLK MCLK DPM levels!",do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to populate and upload SCLK MCLK DPM levels!" ); result = tmp_result; } } while (0) |
3794 | result = tmp_result)do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to populate and upload SCLK MCLK DPM levels!" ); result = tmp_result; } } while (0); |
3795 | |
3796 | tmp_result = vega10_generate_dpm_level_enable_mask(hwmgr, input); |
3797 | PP_ASSERT_WITH_CODE(!tmp_result,do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to generate DPM level enabled mask!"); result = tmp_result; } } while (0) |
3798 | "Failed to generate DPM level enabled mask!",do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to generate DPM level enabled mask!"); result = tmp_result; } } while (0) |
3799 | result = tmp_result)do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to generate DPM level enabled mask!"); result = tmp_result; } } while (0); |
3800 | |
3801 | tmp_result = vega10_update_sclk_threshold(hwmgr); |
3802 | PP_ASSERT_WITH_CODE(!tmp_result,do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to update SCLK threshold!"); result = tmp_result ; } } while (0) |
3803 | "Failed to update SCLK threshold!",do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to update SCLK threshold!"); result = tmp_result ; } } while (0) |
3804 | result = tmp_result)do { if (!(!tmp_result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to update SCLK threshold!"); result = tmp_result ; } } while (0); |
3805 | |
3806 | result = smum_smc_table_manager(hwmgr, (uint8_t *)pp_table, PPTABLE, false0); |
3807 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to upload PPtable!"); return result; } } while (0) |
3808 | "Failed to upload PPtable!", return result)do { if (!(!result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to upload PPtable!"); return result; } } while (0); |
3809 | |
3810 | /* |
3811 | * If a custom pp table is loaded, set DPMTABLE_OD_UPDATE_VDDC flag. |
3812 | * That effectively disables AVFS feature. |
3813 | */ |
3814 | if(hwmgr->hardcode_pp_table != NULL((void *)0)) |
3815 | data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC0x00000010; |
3816 | |
3817 | vega10_update_avfs(hwmgr); |
3818 | |
3819 | /* |
3820 | * Clear all OD flags except DPMTABLE_OD_UPDATE_VDDC. |
3821 | * That will help to keep AVFS disabled. |
3822 | */ |
3823 | data->need_update_dpm_table &= DPMTABLE_OD_UPDATE_VDDC0x00000010; |
3824 | |
3825 | return 0; |
3826 | } |
3827 | |
3828 | static uint32_t vega10_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool_Bool low) |
3829 | { |
3830 | struct pp_power_state *ps; |
3831 | struct vega10_power_state *vega10_ps; |
3832 | |
3833 | if (hwmgr == NULL((void *)0)) |
3834 | return -EINVAL22; |
3835 | |
3836 | ps = hwmgr->request_ps; |
3837 | |
3838 | if (ps == NULL((void *)0)) |
3839 | return -EINVAL22; |
3840 | |
3841 | vega10_ps = cast_phw_vega10_power_state(&ps->hardware); |
3842 | |
3843 | if (low) |
3844 | return vega10_ps->performance_levels[0].gfx_clock; |
3845 | else |
3846 | return vega10_ps->performance_levels |
3847 | [vega10_ps->performance_level_count - 1].gfx_clock; |
3848 | } |
3849 | |
3850 | static uint32_t vega10_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool_Bool low) |
3851 | { |
3852 | struct pp_power_state *ps; |
3853 | struct vega10_power_state *vega10_ps; |
3854 | |
3855 | if (hwmgr == NULL((void *)0)) |
3856 | return -EINVAL22; |
3857 | |
3858 | ps = hwmgr->request_ps; |
3859 | |
3860 | if (ps == NULL((void *)0)) |
3861 | return -EINVAL22; |
3862 | |
3863 | vega10_ps = cast_phw_vega10_power_state(&ps->hardware); |
3864 | |
3865 | if (low) |
3866 | return vega10_ps->performance_levels[0].mem_clock; |
3867 | else |
3868 | return vega10_ps->performance_levels |
3869 | [vega10_ps->performance_level_count-1].mem_clock; |
3870 | } |
3871 | |
3872 | static int vega10_get_gpu_power(struct pp_hwmgr *hwmgr, |
3873 | uint32_t *query) |
3874 | { |
3875 | uint32_t value; |
3876 | |
3877 | if (!query) |
3878 | return -EINVAL22; |
3879 | |
3880 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrPkgPwr0x61, &value); |
3881 | |
3882 | /* SMC returning actual watts, keep consistent with legacy asics, low 8 bit as 8 fractional bits */ |
3883 | *query = value << 8; |
3884 | |
3885 | return 0; |
3886 | } |
3887 | |
3888 | static int vega10_read_sensor(struct pp_hwmgr *hwmgr, int idx, |
3889 | void *value, int *size) |
3890 | { |
3891 | struct amdgpu_device *adev = hwmgr->adev; |
3892 | uint32_t sclk_mhz, mclk_idx, activity_percent = 0; |
3893 | struct vega10_hwmgr *data = hwmgr->backend; |
3894 | struct vega10_dpm_table *dpm_table = &data->dpm_table; |
3895 | int ret = 0; |
3896 | uint32_t val_vid; |
3897 | |
3898 | switch (idx) { |
3899 | case AMDGPU_PP_SENSOR_GFX_SCLK: |
3900 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetAverageGfxclkActualFrequency0x63, &sclk_mhz); |
3901 | *((uint32_t *)value) = sclk_mhz * 100; |
3902 | break; |
3903 | case AMDGPU_PP_SENSOR_GFX_MCLK: |
3904 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex0x26, &mclk_idx); |
3905 | if (mclk_idx < dpm_table->mem_table.count) { |
3906 | *((uint32_t *)value) = dpm_table->mem_table.dpm_levels[mclk_idx].value; |
3907 | *size = 4; |
3908 | } else { |
3909 | ret = -EINVAL22; |
3910 | } |
3911 | break; |
3912 | case AMDGPU_PP_SENSOR_GPU_LOAD: |
3913 | smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetAverageGfxActivity0x37, 0, |
3914 | &activity_percent); |
3915 | *((uint32_t *)value) = activity_percent > 100 ? 100 : activity_percent; |
3916 | *size = 4; |
3917 | break; |
3918 | case AMDGPU_PP_SENSOR_GPU_TEMP: |
3919 | *((uint32_t *)value) = vega10_thermal_get_temperature(hwmgr); |
3920 | *size = 4; |
3921 | break; |
3922 | case AMDGPU_PP_SENSOR_HOTSPOT_TEMP: |
3923 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetTemperatureHotspot0x39, (uint32_t *)value); |
3924 | *((uint32_t *)value) = *((uint32_t *)value) * |
3925 | PP_TEMPERATURE_UNITS_PER_CENTIGRADES1000; |
3926 | *size = 4; |
3927 | break; |
3928 | case AMDGPU_PP_SENSOR_MEM_TEMP: |
3929 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetTemperatureHBM0x3A, (uint32_t *)value); |
3930 | *((uint32_t *)value) = *((uint32_t *)value) * |
3931 | PP_TEMPERATURE_UNITS_PER_CENTIGRADES1000; |
3932 | *size = 4; |
3933 | break; |
3934 | case AMDGPU_PP_SENSOR_UVD_POWER: |
3935 | *((uint32_t *)value) = data->uvd_power_gated ? 0 : 1; |
3936 | *size = 4; |
3937 | break; |
3938 | case AMDGPU_PP_SENSOR_VCE_POWER: |
3939 | *((uint32_t *)value) = data->vce_power_gated ? 0 : 1; |
3940 | *size = 4; |
3941 | break; |
3942 | case AMDGPU_PP_SENSOR_GPU_POWER: |
3943 | ret = vega10_get_gpu_power(hwmgr, (uint32_t *)value); |
3944 | break; |
3945 | case AMDGPU_PP_SENSOR_VDDGFX: |
3946 | val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_PLANE0_CURRENTVID)amdgpu_device_rreg(adev, (adev->reg_offset[SMUIO_HWIP][0][ 0] + 0x0013), 0) & |
3947 | SMUSVI0_PLANE0_CURRENTVID__CURRENT_SVI0_PLANE0_VID_MASK0xFF000000L) >> |
3948 | SMUSVI0_PLANE0_CURRENTVID__CURRENT_SVI0_PLANE0_VID__SHIFT0x18; |
3949 | *((uint32_t *)value) = (uint32_t)convert_to_vddc((uint8_t)val_vid); |
3950 | return 0; |
3951 | case AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK: |
3952 | ret = vega10_get_enabled_smc_features(hwmgr, (uint64_t *)value); |
3953 | if (!ret) |
3954 | *size = 8; |
3955 | break; |
3956 | default: |
3957 | ret = -EINVAL22; |
3958 | break; |
3959 | } |
3960 | |
3961 | return ret; |
3962 | } |
3963 | |
3964 | static void vega10_notify_smc_display_change(struct pp_hwmgr *hwmgr, |
3965 | bool_Bool has_disp) |
3966 | { |
3967 | smum_send_msg_to_smc_with_parameter(hwmgr, |
3968 | PPSMC_MSG_SetUclkFastSwitch0x42, |
3969 | has_disp ? 1 : 0, |
3970 | NULL((void *)0)); |
3971 | } |
3972 | |
3973 | static int vega10_display_clock_voltage_request(struct pp_hwmgr *hwmgr, |
3974 | struct pp_display_clock_request *clock_req) |
3975 | { |
3976 | int result = 0; |
3977 | enum amd_pp_clock_type clk_type = clock_req->clock_type; |
3978 | uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000; |
3979 | DSPCLK_e clk_select = 0; |
3980 | uint32_t clk_request = 0; |
3981 | |
3982 | switch (clk_type) { |
3983 | case amd_pp_dcef_clock: |
3984 | clk_select = DSPCLK_DCEFCLK; |
3985 | break; |
3986 | case amd_pp_disp_clock: |
3987 | clk_select = DSPCLK_DISPCLK; |
3988 | break; |
3989 | case amd_pp_pixel_clock: |
3990 | clk_select = DSPCLK_PIXCLK; |
3991 | break; |
3992 | case amd_pp_phy_clock: |
3993 | clk_select = DSPCLK_PHYCLK; |
3994 | break; |
3995 | default: |
3996 | pr_info("[DisplayClockVoltageRequest]Invalid Clock Type!")do { } while(0); |
3997 | result = -1; |
3998 | break; |
3999 | } |
4000 | |
4001 | if (!result) { |
4002 | clk_request = (clk_freq << 16) | clk_select; |
4003 | smum_send_msg_to_smc_with_parameter(hwmgr, |
4004 | PPSMC_MSG_RequestDisplayClockByFreq0x4C, |
4005 | clk_request, |
4006 | NULL((void *)0)); |
4007 | } |
4008 | |
4009 | return result; |
4010 | } |
4011 | |
4012 | static uint8_t vega10_get_uclk_index(struct pp_hwmgr *hwmgr, |
4013 | struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table, |
4014 | uint32_t frequency) |
4015 | { |
4016 | uint8_t count; |
4017 | uint8_t i; |
4018 | |
4019 | if (mclk_table == NULL((void *)0) || mclk_table->count == 0) |
4020 | return 0; |
4021 | |
4022 | count = (uint8_t)(mclk_table->count); |
4023 | |
4024 | for(i = 0; i < count; i++) { |
4025 | if(mclk_table->entries[i].clk >= frequency) |
4026 | return i; |
4027 | } |
4028 | |
4029 | return i-1; |
4030 | } |
4031 | |
4032 | static int vega10_notify_smc_display_config_after_ps_adjustment( |
4033 | struct pp_hwmgr *hwmgr) |
4034 | { |
4035 | struct vega10_hwmgr *data = hwmgr->backend; |
4036 | struct vega10_single_dpm_table *dpm_table = |
4037 | &data->dpm_table.dcef_table; |
4038 | struct phm_ppt_v2_information *table_info = |
4039 | (struct phm_ppt_v2_information *)hwmgr->pptable; |
4040 | struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table = table_info->vdd_dep_on_mclk; |
4041 | uint32_t idx; |
4042 | struct PP_Clocks min_clocks = {0}; |
4043 | uint32_t i; |
4044 | struct pp_display_clock_request clock_req; |
4045 | |
4046 | if ((hwmgr->display_config->num_display > 1) && |
4047 | !hwmgr->display_config->multi_monitor_in_sync && |
4048 | !hwmgr->display_config->nb_pstate_switch_disable) |
4049 | vega10_notify_smc_display_change(hwmgr, false0); |
4050 | else |
4051 | vega10_notify_smc_display_change(hwmgr, true1); |
4052 | |
4053 | min_clocks.dcefClock = hwmgr->display_config->min_dcef_set_clk; |
4054 | min_clocks.dcefClockInSR = hwmgr->display_config->min_dcef_deep_sleep_set_clk; |
4055 | min_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock; |
4056 | |
4057 | for (i = 0; i < dpm_table->count; i++) { |
4058 | if (dpm_table->dpm_levels[i].value == min_clocks.dcefClock) |
4059 | break; |
4060 | } |
4061 | |
4062 | if (i < dpm_table->count) { |
4063 | clock_req.clock_type = amd_pp_dcef_clock; |
4064 | clock_req.clock_freq_in_khz = dpm_table->dpm_levels[i].value * 10; |
4065 | if (!vega10_display_clock_voltage_request(hwmgr, &clock_req)) { |
4066 | smum_send_msg_to_smc_with_parameter( |
4067 | hwmgr, PPSMC_MSG_SetMinDeepSleepDcefclk0x40, |
4068 | min_clocks.dcefClockInSR / 100, |
4069 | NULL((void *)0)); |
4070 | } else { |
4071 | pr_info("Attempt to set Hard Min for DCEFCLK Failed!")do { } while(0); |
4072 | } |
4073 | } else { |
4074 | pr_debug("Cannot find requested DCEFCLK!")do { } while(0); |
4075 | } |
4076 | |
4077 | if (min_clocks.memoryClock != 0) { |
4078 | idx = vega10_get_uclk_index(hwmgr, mclk_table, min_clocks.memoryClock); |
4079 | smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMinUclkByIndex0x24, idx, |
4080 | NULL((void *)0)); |
4081 | data->dpm_table.mem_table.dpm_state.soft_min_level= idx; |
4082 | } |
4083 | |
4084 | return 0; |
4085 | } |
4086 | |
4087 | static int vega10_force_dpm_highest(struct pp_hwmgr *hwmgr) |
4088 | { |
4089 | struct vega10_hwmgr *data = hwmgr->backend; |
4090 | |
4091 | data->smc_state_table.gfx_boot_level = |
4092 | data->smc_state_table.gfx_max_level = |
4093 | vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table)); |
4094 | data->smc_state_table.mem_boot_level = |
4095 | data->smc_state_table.mem_max_level = |
4096 | vega10_find_highest_dpm_level(&(data->dpm_table.mem_table)); |
4097 | |
4098 | PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),do { if (!(!vega10_upload_dpm_bootup_level(hwmgr))) { printk( "\0014" "amdgpu: [powerplay] " "%s\n", "Failed to upload boot level to highest!" ); return -1; } } while (0) |
4099 | "Failed to upload boot level to highest!",do { if (!(!vega10_upload_dpm_bootup_level(hwmgr))) { printk( "\0014" "amdgpu: [powerplay] " "%s\n", "Failed to upload boot level to highest!" ); return -1; } } while (0) |
4100 | return -1)do { if (!(!vega10_upload_dpm_bootup_level(hwmgr))) { printk( "\0014" "amdgpu: [powerplay] " "%s\n", "Failed to upload boot level to highest!" ); return -1; } } while (0); |
4101 | |
4102 | PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),do { if (!(!vega10_upload_dpm_max_level(hwmgr))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to upload dpm max level to highest!" ); return -1; } } while (0) |
4103 | "Failed to upload dpm max level to highest!",do { if (!(!vega10_upload_dpm_max_level(hwmgr))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to upload dpm max level to highest!" ); return -1; } } while (0) |
4104 | return -1)do { if (!(!vega10_upload_dpm_max_level(hwmgr))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to upload dpm max level to highest!" ); return -1; } } while (0); |
4105 | |
4106 | return 0; |
4107 | } |
4108 | |
4109 | static int vega10_force_dpm_lowest(struct pp_hwmgr *hwmgr) |
4110 | { |
4111 | struct vega10_hwmgr *data = hwmgr->backend; |
4112 | |
4113 | data->smc_state_table.gfx_boot_level = |
4114 | data->smc_state_table.gfx_max_level = |
4115 | vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table)); |
4116 | data->smc_state_table.mem_boot_level = |
4117 | data->smc_state_table.mem_max_level = |
4118 | vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table)); |
4119 | |
4120 | PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),do { if (!(!vega10_upload_dpm_bootup_level(hwmgr))) { printk( "\0014" "amdgpu: [powerplay] " "%s\n", "Failed to upload boot level to highest!" ); return -1; } } while (0) |
4121 | "Failed to upload boot level to highest!",do { if (!(!vega10_upload_dpm_bootup_level(hwmgr))) { printk( "\0014" "amdgpu: [powerplay] " "%s\n", "Failed to upload boot level to highest!" ); return -1; } } while (0) |
4122 | return -1)do { if (!(!vega10_upload_dpm_bootup_level(hwmgr))) { printk( "\0014" "amdgpu: [powerplay] " "%s\n", "Failed to upload boot level to highest!" ); return -1; } } while (0); |
4123 | |
4124 | PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),do { if (!(!vega10_upload_dpm_max_level(hwmgr))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to upload dpm max level to highest!" ); return -1; } } while (0) |
4125 | "Failed to upload dpm max level to highest!",do { if (!(!vega10_upload_dpm_max_level(hwmgr))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to upload dpm max level to highest!" ); return -1; } } while (0) |
4126 | return -1)do { if (!(!vega10_upload_dpm_max_level(hwmgr))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to upload dpm max level to highest!" ); return -1; } } while (0); |
4127 | |
4128 | return 0; |
4129 | |
4130 | } |
4131 | |
4132 | static int vega10_unforce_dpm_levels(struct pp_hwmgr *hwmgr) |
4133 | { |
4134 | struct vega10_hwmgr *data = hwmgr->backend; |
4135 | |
4136 | data->smc_state_table.gfx_boot_level = |
4137 | vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table)); |
4138 | data->smc_state_table.gfx_max_level = |
4139 | vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table)); |
4140 | data->smc_state_table.mem_boot_level = |
4141 | vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table)); |
4142 | data->smc_state_table.mem_max_level = |
4143 | vega10_find_highest_dpm_level(&(data->dpm_table.mem_table)); |
4144 | |
4145 | PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),do { if (!(!vega10_upload_dpm_bootup_level(hwmgr))) { printk( "\0014" "amdgpu: [powerplay] " "%s\n", "Failed to upload DPM Bootup Levels!" ); return -1; } } while (0) |
4146 | "Failed to upload DPM Bootup Levels!",do { if (!(!vega10_upload_dpm_bootup_level(hwmgr))) { printk( "\0014" "amdgpu: [powerplay] " "%s\n", "Failed to upload DPM Bootup Levels!" ); return -1; } } while (0) |
4147 | return -1)do { if (!(!vega10_upload_dpm_bootup_level(hwmgr))) { printk( "\0014" "amdgpu: [powerplay] " "%s\n", "Failed to upload DPM Bootup Levels!" ); return -1; } } while (0); |
4148 | |
4149 | PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),do { if (!(!vega10_upload_dpm_max_level(hwmgr))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to upload DPM Max Levels!" ); return -1; } } while (0) |
4150 | "Failed to upload DPM Max Levels!",do { if (!(!vega10_upload_dpm_max_level(hwmgr))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to upload DPM Max Levels!" ); return -1; } } while (0) |
4151 | return -1)do { if (!(!vega10_upload_dpm_max_level(hwmgr))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to upload DPM Max Levels!" ); return -1; } } while (0); |
4152 | return 0; |
4153 | } |
4154 | |
4155 | static int vega10_get_profiling_clk_mask(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level, |
4156 | uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *soc_mask) |
4157 | { |
4158 | struct phm_ppt_v2_information *table_info = |
4159 | (struct phm_ppt_v2_information *)(hwmgr->pptable); |
4160 | |
4161 | if (table_info->vdd_dep_on_sclk->count > VEGA10_UMD_PSTATE_GFXCLK_LEVEL0x3 && |
4162 | table_info->vdd_dep_on_socclk->count > VEGA10_UMD_PSTATE_SOCCLK_LEVEL0x3 && |
4163 | table_info->vdd_dep_on_mclk->count > VEGA10_UMD_PSTATE_MCLK_LEVEL0x2) { |
4164 | *sclk_mask = VEGA10_UMD_PSTATE_GFXCLK_LEVEL0x3; |
4165 | *soc_mask = VEGA10_UMD_PSTATE_SOCCLK_LEVEL0x3; |
4166 | *mclk_mask = VEGA10_UMD_PSTATE_MCLK_LEVEL0x2; |
4167 | hwmgr->pstate_sclk = table_info->vdd_dep_on_sclk->entries[VEGA10_UMD_PSTATE_GFXCLK_LEVEL0x3].clk; |
4168 | hwmgr->pstate_mclk = table_info->vdd_dep_on_mclk->entries[VEGA10_UMD_PSTATE_MCLK_LEVEL0x2].clk; |
4169 | } |
4170 | |
4171 | if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) { |
4172 | *sclk_mask = 0; |
4173 | } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) { |
4174 | *mclk_mask = 0; |
4175 | } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { |
4176 | /* under vega10 pp one vf mode, the gfx clk dpm need be lower |
4177 | * to level-4 due to the limited power |
4178 | */ |
4179 | if (hwmgr->pp_one_vf) |
4180 | *sclk_mask = 4; |
4181 | else |
4182 | *sclk_mask = table_info->vdd_dep_on_sclk->count - 1; |
4183 | *soc_mask = table_info->vdd_dep_on_socclk->count - 1; |
4184 | *mclk_mask = table_info->vdd_dep_on_mclk->count - 1; |
4185 | } |
4186 | |
4187 | return 0; |
4188 | } |
4189 | |
4190 | static void vega10_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode) |
4191 | { |
4192 | if (!hwmgr->not_vf) |
4193 | return; |
4194 | |
4195 | switch (mode) { |
4196 | case AMD_FAN_CTRL_NONE: |
4197 | vega10_fan_ctrl_set_fan_speed_percent(hwmgr, 100); |
4198 | break; |
4199 | case AMD_FAN_CTRL_MANUAL: |
4200 | if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl)phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, ( PHM_PlatformCaps_MicrocodeFanControl))) |
4201 | vega10_fan_ctrl_stop_smc_fan_control(hwmgr); |
4202 | break; |
4203 | case AMD_FAN_CTRL_AUTO: |
4204 | if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl)phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, ( PHM_PlatformCaps_MicrocodeFanControl))) |
4205 | vega10_fan_ctrl_start_smc_fan_control(hwmgr); |
4206 | break; |
4207 | default: |
4208 | break; |
4209 | } |
4210 | } |
4211 | |
4212 | static int vega10_force_clock_level(struct pp_hwmgr *hwmgr, |
4213 | enum pp_clock_type type, uint32_t mask) |
4214 | { |
4215 | struct vega10_hwmgr *data = hwmgr->backend; |
4216 | |
4217 | switch (type) { |
4218 | case PP_SCLK: |
4219 | data->smc_state_table.gfx_boot_level = mask ? (ffs(mask) - 1) : 0; |
4220 | data->smc_state_table.gfx_max_level = mask ? (fls(mask) - 1) : 0; |
4221 | |
4222 | PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),do { if (!(!vega10_upload_dpm_bootup_level(hwmgr))) { printk( "\0014" "amdgpu: [powerplay] " "%s\n", "Failed to upload boot level to lowest!" ); return -22; } } while (0) |
4223 | "Failed to upload boot level to lowest!",do { if (!(!vega10_upload_dpm_bootup_level(hwmgr))) { printk( "\0014" "amdgpu: [powerplay] " "%s\n", "Failed to upload boot level to lowest!" ); return -22; } } while (0) |
4224 | return -EINVAL)do { if (!(!vega10_upload_dpm_bootup_level(hwmgr))) { printk( "\0014" "amdgpu: [powerplay] " "%s\n", "Failed to upload boot level to lowest!" ); return -22; } } while (0); |
4225 | |
4226 | PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),do { if (!(!vega10_upload_dpm_max_level(hwmgr))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to upload dpm max level to highest!" ); return -22; } } while (0) |
4227 | "Failed to upload dpm max level to highest!",do { if (!(!vega10_upload_dpm_max_level(hwmgr))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to upload dpm max level to highest!" ); return -22; } } while (0) |
4228 | return -EINVAL)do { if (!(!vega10_upload_dpm_max_level(hwmgr))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to upload dpm max level to highest!" ); return -22; } } while (0); |
4229 | break; |
4230 | |
4231 | case PP_MCLK: |
4232 | data->smc_state_table.mem_boot_level = mask ? (ffs(mask) - 1) : 0; |
4233 | data->smc_state_table.mem_max_level = mask ? (fls(mask) - 1) : 0; |
4234 | |
4235 | PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),do { if (!(!vega10_upload_dpm_bootup_level(hwmgr))) { printk( "\0014" "amdgpu: [powerplay] " "%s\n", "Failed to upload boot level to lowest!" ); return -22; } } while (0) |
4236 | "Failed to upload boot level to lowest!",do { if (!(!vega10_upload_dpm_bootup_level(hwmgr))) { printk( "\0014" "amdgpu: [powerplay] " "%s\n", "Failed to upload boot level to lowest!" ); return -22; } } while (0) |
4237 | return -EINVAL)do { if (!(!vega10_upload_dpm_bootup_level(hwmgr))) { printk( "\0014" "amdgpu: [powerplay] " "%s\n", "Failed to upload boot level to lowest!" ); return -22; } } while (0); |
4238 | |
4239 | PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),do { if (!(!vega10_upload_dpm_max_level(hwmgr))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to upload dpm max level to highest!" ); return -22; } } while (0) |
4240 | "Failed to upload dpm max level to highest!",do { if (!(!vega10_upload_dpm_max_level(hwmgr))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to upload dpm max level to highest!" ); return -22; } } while (0) |
4241 | return -EINVAL)do { if (!(!vega10_upload_dpm_max_level(hwmgr))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to upload dpm max level to highest!" ); return -22; } } while (0); |
4242 | |
4243 | break; |
4244 | |
4245 | case PP_SOCCLK: |
4246 | data->smc_state_table.soc_boot_level = mask ? (ffs(mask) - 1) : 0; |
4247 | data->smc_state_table.soc_max_level = mask ? (fls(mask) - 1) : 0; |
4248 | |
4249 | PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),do { if (!(!vega10_upload_dpm_bootup_level(hwmgr))) { printk( "\0014" "amdgpu: [powerplay] " "%s\n", "Failed to upload boot level to lowest!" ); return -22; } } while (0) |
4250 | "Failed to upload boot level to lowest!",do { if (!(!vega10_upload_dpm_bootup_level(hwmgr))) { printk( "\0014" "amdgpu: [powerplay] " "%s\n", "Failed to upload boot level to lowest!" ); return -22; } } while (0) |
4251 | return -EINVAL)do { if (!(!vega10_upload_dpm_bootup_level(hwmgr))) { printk( "\0014" "amdgpu: [powerplay] " "%s\n", "Failed to upload boot level to lowest!" ); return -22; } } while (0); |
4252 | |
4253 | PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),do { if (!(!vega10_upload_dpm_max_level(hwmgr))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to upload dpm max level to highest!" ); return -22; } } while (0) |
4254 | "Failed to upload dpm max level to highest!",do { if (!(!vega10_upload_dpm_max_level(hwmgr))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to upload dpm max level to highest!" ); return -22; } } while (0) |
4255 | return -EINVAL)do { if (!(!vega10_upload_dpm_max_level(hwmgr))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to upload dpm max level to highest!" ); return -22; } } while (0); |
4256 | |
4257 | break; |
4258 | |
4259 | case PP_DCEFCLK: |
4260 | pr_info("Setting DCEFCLK min/max dpm level is not supported!\n")do { } while(0); |
4261 | break; |
4262 | |
4263 | case PP_PCIE: |
4264 | default: |
4265 | break; |
4266 | } |
4267 | |
4268 | return 0; |
4269 | } |
4270 | |
4271 | static int vega10_dpm_force_dpm_level(struct pp_hwmgr *hwmgr, |
4272 | enum amd_dpm_forced_level level) |
4273 | { |
4274 | int ret = 0; |
4275 | uint32_t sclk_mask = 0; |
4276 | uint32_t mclk_mask = 0; |
4277 | uint32_t soc_mask = 0; |
4278 | |
4279 | if (hwmgr->pstate_sclk == 0) |
4280 | vega10_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask); |
4281 | |
4282 | switch (level) { |
4283 | case AMD_DPM_FORCED_LEVEL_HIGH: |
4284 | ret = vega10_force_dpm_highest(hwmgr); |
4285 | break; |
4286 | case AMD_DPM_FORCED_LEVEL_LOW: |
4287 | ret = vega10_force_dpm_lowest(hwmgr); |
4288 | break; |
4289 | case AMD_DPM_FORCED_LEVEL_AUTO: |
4290 | ret = vega10_unforce_dpm_levels(hwmgr); |
4291 | break; |
4292 | case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD: |
4293 | case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK: |
4294 | case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK: |
4295 | case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK: |
4296 | ret = vega10_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask); |
4297 | if (ret) |
4298 | return ret; |
4299 | vega10_force_clock_level(hwmgr, PP_SCLK, 1<<sclk_mask); |
4300 | vega10_force_clock_level(hwmgr, PP_MCLK, 1<<mclk_mask); |
4301 | break; |
4302 | case AMD_DPM_FORCED_LEVEL_MANUAL: |
4303 | case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT: |
4304 | default: |
4305 | break; |
4306 | } |
4307 | |
4308 | if (!hwmgr->not_vf) |
4309 | return ret; |
4310 | |
4311 | if (!ret) { |
4312 | if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) |
4313 | vega10_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_NONE); |
4314 | else if (level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) |
4315 | vega10_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_AUTO); |
4316 | } |
4317 | |
4318 | return ret; |
4319 | } |
4320 | |
4321 | static uint32_t vega10_get_fan_control_mode(struct pp_hwmgr *hwmgr) |
4322 | { |
4323 | struct vega10_hwmgr *data = hwmgr->backend; |
4324 | |
4325 | if (data->smu_features[GNLD_FAN_CONTROL].enabled == false0) |
4326 | return AMD_FAN_CTRL_MANUAL; |
4327 | else |
4328 | return AMD_FAN_CTRL_AUTO; |
4329 | } |
4330 | |
4331 | static int vega10_get_dal_power_level(struct pp_hwmgr *hwmgr, |
4332 | struct amd_pp_simple_clock_info *info) |
4333 | { |
4334 | struct phm_ppt_v2_information *table_info = |
4335 | (struct phm_ppt_v2_information *)hwmgr->pptable; |
4336 | struct phm_clock_and_voltage_limits *max_limits = |
4337 | &table_info->max_clock_voltage_on_ac; |
4338 | |
4339 | info->engine_max_clock = max_limits->sclk; |
4340 | info->memory_max_clock = max_limits->mclk; |
4341 | |
4342 | return 0; |
4343 | } |
4344 | |
4345 | static void vega10_get_sclks(struct pp_hwmgr *hwmgr, |
4346 | struct pp_clock_levels_with_latency *clocks) |
4347 | { |
4348 | struct phm_ppt_v2_information *table_info = |
4349 | (struct phm_ppt_v2_information *)hwmgr->pptable; |
4350 | struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = |
4351 | table_info->vdd_dep_on_sclk; |
4352 | uint32_t i; |
4353 | |
4354 | clocks->num_levels = 0; |
4355 | for (i = 0; i < dep_table->count; i++) { |
4356 | if (dep_table->entries[i].clk) { |
4357 | clocks->data[clocks->num_levels].clocks_in_khz = |
4358 | dep_table->entries[i].clk * 10; |
4359 | clocks->num_levels++; |
4360 | } |
4361 | } |
4362 | |
4363 | } |
4364 | |
4365 | static void vega10_get_memclocks(struct pp_hwmgr *hwmgr, |
4366 | struct pp_clock_levels_with_latency *clocks) |
4367 | { |
4368 | struct phm_ppt_v2_information *table_info = |
4369 | (struct phm_ppt_v2_information *)hwmgr->pptable; |
4370 | struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = |
4371 | table_info->vdd_dep_on_mclk; |
4372 | struct vega10_hwmgr *data = hwmgr->backend; |
4373 | uint32_t j = 0; |
4374 | uint32_t i; |
4375 | |
4376 | for (i = 0; i < dep_table->count; i++) { |
4377 | if (dep_table->entries[i].clk) { |
4378 | |
4379 | clocks->data[j].clocks_in_khz = |
4380 | dep_table->entries[i].clk * 10; |
4381 | data->mclk_latency_table.entries[j].frequency = |
4382 | dep_table->entries[i].clk; |
4383 | clocks->data[j].latency_in_us = |
4384 | data->mclk_latency_table.entries[j].latency = 25; |
4385 | j++; |
4386 | } |
4387 | } |
4388 | clocks->num_levels = data->mclk_latency_table.count = j; |
4389 | } |
4390 | |
4391 | static void vega10_get_dcefclocks(struct pp_hwmgr *hwmgr, |
4392 | struct pp_clock_levels_with_latency *clocks) |
4393 | { |
4394 | struct phm_ppt_v2_information *table_info = |
4395 | (struct phm_ppt_v2_information *)hwmgr->pptable; |
4396 | struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = |
4397 | table_info->vdd_dep_on_dcefclk; |
4398 | uint32_t i; |
4399 | |
4400 | for (i = 0; i < dep_table->count; i++) { |
4401 | clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10; |
4402 | clocks->data[i].latency_in_us = 0; |
4403 | clocks->num_levels++; |
4404 | } |
4405 | } |
4406 | |
4407 | static void vega10_get_socclocks(struct pp_hwmgr *hwmgr, |
4408 | struct pp_clock_levels_with_latency *clocks) |
4409 | { |
4410 | struct phm_ppt_v2_information *table_info = |
4411 | (struct phm_ppt_v2_information *)hwmgr->pptable; |
4412 | struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = |
4413 | table_info->vdd_dep_on_socclk; |
4414 | uint32_t i; |
4415 | |
4416 | for (i = 0; i < dep_table->count; i++) { |
4417 | clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10; |
4418 | clocks->data[i].latency_in_us = 0; |
4419 | clocks->num_levels++; |
4420 | } |
4421 | } |
4422 | |
4423 | static int vega10_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr, |
4424 | enum amd_pp_clock_type type, |
4425 | struct pp_clock_levels_with_latency *clocks) |
4426 | { |
4427 | switch (type) { |
4428 | case amd_pp_sys_clock: |
4429 | vega10_get_sclks(hwmgr, clocks); |
4430 | break; |
4431 | case amd_pp_mem_clock: |
4432 | vega10_get_memclocks(hwmgr, clocks); |
4433 | break; |
4434 | case amd_pp_dcef_clock: |
4435 | vega10_get_dcefclocks(hwmgr, clocks); |
4436 | break; |
4437 | case amd_pp_soc_clock: |
4438 | vega10_get_socclocks(hwmgr, clocks); |
4439 | break; |
4440 | default: |
4441 | return -1; |
4442 | } |
4443 | |
4444 | return 0; |
4445 | } |
4446 | |
4447 | static int vega10_get_clock_by_type_with_voltage(struct pp_hwmgr *hwmgr, |
4448 | enum amd_pp_clock_type type, |
4449 | struct pp_clock_levels_with_voltage *clocks) |
4450 | { |
4451 | struct phm_ppt_v2_information *table_info = |
4452 | (struct phm_ppt_v2_information *)hwmgr->pptable; |
4453 | struct phm_ppt_v1_clock_voltage_dependency_table *dep_table; |
4454 | uint32_t i; |
4455 | |
4456 | switch (type) { |
4457 | case amd_pp_mem_clock: |
4458 | dep_table = table_info->vdd_dep_on_mclk; |
4459 | break; |
4460 | case amd_pp_dcef_clock: |
4461 | dep_table = table_info->vdd_dep_on_dcefclk; |
4462 | break; |
4463 | case amd_pp_disp_clock: |
4464 | dep_table = table_info->vdd_dep_on_dispclk; |
4465 | break; |
4466 | case amd_pp_pixel_clock: |
4467 | dep_table = table_info->vdd_dep_on_pixclk; |
4468 | break; |
4469 | case amd_pp_phy_clock: |
4470 | dep_table = table_info->vdd_dep_on_phyclk; |
4471 | break; |
4472 | default: |
4473 | return -1; |
4474 | } |
4475 | |
4476 | for (i = 0; i < dep_table->count; i++) { |
4477 | clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10; |
4478 | clocks->data[i].voltage_in_mv = (uint32_t)(table_info->vddc_lookup_table-> |
4479 | entries[dep_table->entries[i].vddInd].us_vdd); |
4480 | clocks->num_levels++; |
4481 | } |
4482 | |
4483 | if (i < dep_table->count) |
4484 | return -1; |
4485 | |
4486 | return 0; |
4487 | } |
4488 | |
4489 | static int vega10_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr, |
4490 | void *clock_range) |
4491 | { |
4492 | struct vega10_hwmgr *data = hwmgr->backend; |
4493 | struct dm_pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges = clock_range; |
4494 | Watermarks_t *table = &(data->smc_state_table.water_marks_table); |
4495 | |
4496 | if (!data->registry_data.disable_water_mark) { |
4497 | smu_set_watermarks_for_clocks_ranges(table, wm_with_clock_ranges); |
4498 | data->water_marks_bitmap = WaterMarksExist1; |
4499 | } |
4500 | |
4501 | return 0; |
4502 | } |
4503 | |
4504 | static int vega10_get_ppfeature_status(struct pp_hwmgr *hwmgr, char *buf) |
4505 | { |
4506 | static const char *ppfeature_name[] = { |
4507 | "DPM_PREFETCHER", |
4508 | "GFXCLK_DPM", |
4509 | "UCLK_DPM", |
4510 | "SOCCLK_DPM", |
4511 | "UVD_DPM", |
4512 | "VCE_DPM", |
4513 | "ULV", |
4514 | "MP0CLK_DPM", |
4515 | "LINK_DPM", |
4516 | "DCEFCLK_DPM", |
4517 | "AVFS", |
4518 | "GFXCLK_DS", |
4519 | "SOCCLK_DS", |
4520 | "LCLK_DS", |
4521 | "PPT", |
4522 | "TDC", |
4523 | "THERMAL", |
4524 | "GFX_PER_CU_CG", |
4525 | "RM", |
4526 | "DCEFCLK_DS", |
4527 | "ACDC", |
4528 | "VR0HOT", |
4529 | "VR1HOT", |
4530 | "FW_CTF", |
4531 | "LED_DISPLAY", |
4532 | "FAN_CONTROL", |
4533 | "FAST_PPT", |
4534 | "DIDT", |
4535 | "ACG", |
4536 | "PCC_LIMIT"}; |
4537 | static const char *output_title[] = { |
4538 | "FEATURES", |
4539 | "BITMASK", |
4540 | "ENABLEMENT"}; |
4541 | uint64_t features_enabled; |
4542 | int i; |
4543 | int ret = 0; |
4544 | int size = 0; |
4545 | |
4546 | ret = vega10_get_enabled_smc_features(hwmgr, &features_enabled); |
4547 | PP_ASSERT_WITH_CODE(!ret,do { if (!(!ret)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "[EnableAllSmuFeatures] Failed to get enabled smc features!" ); return ret; } } while (0) |
4548 | "[EnableAllSmuFeatures] Failed to get enabled smc features!",do { if (!(!ret)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "[EnableAllSmuFeatures] Failed to get enabled smc features!" ); return ret; } } while (0) |
4549 | return ret)do { if (!(!ret)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "[EnableAllSmuFeatures] Failed to get enabled smc features!" ); return ret; } } while (0); |
4550 | |
4551 | size += snprintf(buf + size, PAGE_SIZE(1 << 12) - size, "Current ppfeatures: 0x%016llx\n", features_enabled); |
4552 | size += snprintf(buf + size, PAGE_SIZE(1 << 12) - size, "%-19s %-22s %s\n", |
4553 | output_title[0], |
4554 | output_title[1], |
4555 | output_title[2]); |
4556 | for (i = 0; i < GNLD_FEATURES_MAX; i++) { |
4557 | size += snprintf(buf + size, PAGE_SIZE(1 << 12) - size, "%-19s 0x%016llx %6s\n", |
4558 | ppfeature_name[i], |
4559 | 1ULL << i, |
4560 | (features_enabled & (1ULL << i)) ? "Y" : "N"); |
4561 | } |
4562 | |
4563 | return size; |
4564 | } |
4565 | |
4566 | static int vega10_set_ppfeature_status(struct pp_hwmgr *hwmgr, uint64_t new_ppfeature_masks) |
4567 | { |
4568 | uint64_t features_enabled; |
4569 | uint64_t features_to_enable; |
4570 | uint64_t features_to_disable; |
4571 | int ret = 0; |
4572 | |
4573 | if (new_ppfeature_masks >= (1ULL << GNLD_FEATURES_MAX)) |
4574 | return -EINVAL22; |
4575 | |
4576 | ret = vega10_get_enabled_smc_features(hwmgr, &features_enabled); |
4577 | if (ret) |
4578 | return ret; |
4579 | |
4580 | features_to_disable = |
4581 | features_enabled & ~new_ppfeature_masks; |
4582 | features_to_enable = |
4583 | ~features_enabled & new_ppfeature_masks; |
4584 | |
4585 | pr_debug("features_to_disable 0x%llx\n", features_to_disable)do { } while(0); |
4586 | pr_debug("features_to_enable 0x%llx\n", features_to_enable)do { } while(0); |
4587 | |
4588 | if (features_to_disable) { |
4589 | ret = vega10_enable_smc_features(hwmgr, false0, features_to_disable); |
4590 | if (ret) |
4591 | return ret; |
4592 | } |
4593 | |
4594 | if (features_to_enable) { |
4595 | ret = vega10_enable_smc_features(hwmgr, true1, features_to_enable); |
4596 | if (ret) |
4597 | return ret; |
4598 | } |
4599 | |
4600 | return 0; |
4601 | } |
4602 | |
4603 | static int vega10_get_current_pcie_link_width_level(struct pp_hwmgr *hwmgr) |
4604 | { |
4605 | struct amdgpu_device *adev = hwmgr->adev; |
4606 | |
4607 | return (RREG32_PCIE(smnPCIE_LC_LINK_WIDTH_CNTL)adev->pcie_rreg(adev, (0x11140288)) & |
4608 | PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD_MASK0x00000070L) |
4609 | >> PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD__SHIFT0x4; |
4610 | } |
4611 | |
4612 | static int vega10_get_current_pcie_link_speed_level(struct pp_hwmgr *hwmgr) |
4613 | { |
4614 | struct amdgpu_device *adev = hwmgr->adev; |
4615 | |
4616 | return (RREG32_PCIE(smnPCIE_LC_SPEED_CNTL)adev->pcie_rreg(adev, (0x11140290)) & |
4617 | PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE_MASK0x00006000L) |
4618 | >> PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE__SHIFT0xd; |
4619 | } |
4620 | |
4621 | static int vega10_print_clock_levels(struct pp_hwmgr *hwmgr, |
4622 | enum pp_clock_type type, char *buf) |
4623 | { |
4624 | struct vega10_hwmgr *data = hwmgr->backend; |
4625 | struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table); |
4626 | struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table); |
4627 | struct vega10_single_dpm_table *soc_table = &(data->dpm_table.soc_table); |
4628 | struct vega10_single_dpm_table *dcef_table = &(data->dpm_table.dcef_table); |
4629 | struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep = NULL((void *)0); |
4630 | uint32_t gen_speed, lane_width, current_gen_speed, current_lane_width; |
4631 | PPTable_t *pptable = &(data->smc_state_table.pp_table); |
4632 | |
4633 | int i, now, size = 0, count = 0; |
4634 | |
4635 | switch (type) { |
4636 | case PP_SCLK: |
4637 | if (data->registry_data.sclk_dpm_key_disabled) |
4638 | break; |
4639 | |
4640 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentGfxclkIndex0x23, &now); |
4641 | |
4642 | if (hwmgr->pp_one_vf && |
4643 | (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)) |
4644 | count = 5; |
4645 | else |
4646 | count = sclk_table->count; |
4647 | for (i = 0; i < count; i++) |
4648 | size += snprintf(buf + size, PAGE_SIZE(1 << 12) - size, "%d: %uMhz %s\n", |
4649 | i, sclk_table->dpm_levels[i].value / 100, |
4650 | (i == now) ? "*" : ""); |
4651 | break; |
4652 | case PP_MCLK: |
4653 | if (data->registry_data.mclk_dpm_key_disabled) |
4654 | break; |
4655 | |
4656 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex0x26, &now); |
4657 | |
4658 | for (i = 0; i < mclk_table->count; i++) |
4659 | size += snprintf(buf + size, PAGE_SIZE(1 << 12) - size, "%d: %uMhz %s\n", |
4660 | i, mclk_table->dpm_levels[i].value / 100, |
4661 | (i == now) ? "*" : ""); |
4662 | break; |
4663 | case PP_SOCCLK: |
4664 | if (data->registry_data.socclk_dpm_key_disabled) |
4665 | break; |
4666 | |
4667 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentSocclkIndex0x31, &now); |
4668 | |
4669 | for (i = 0; i < soc_table->count; i++) |
4670 | size += snprintf(buf + size, PAGE_SIZE(1 << 12) - size, "%d: %uMhz %s\n", |
4671 | i, soc_table->dpm_levels[i].value / 100, |
4672 | (i == now) ? "*" : ""); |
4673 | break; |
4674 | case PP_DCEFCLK: |
4675 | if (data->registry_data.dcefclk_dpm_key_disabled) |
4676 | break; |
4677 | |
4678 | smum_send_msg_to_smc_with_parameter(hwmgr, |
4679 | PPSMC_MSG_GetClockFreqMHz0x4D, CLK_DCEFCLK, &now); |
4680 | |
4681 | for (i = 0; i < dcef_table->count; i++) |
4682 | size += snprintf(buf + size, PAGE_SIZE(1 << 12) - size, "%d: %uMhz %s\n", |
4683 | i, dcef_table->dpm_levels[i].value / 100, |
4684 | (dcef_table->dpm_levels[i].value / 100 == now) ? |
4685 | "*" : ""); |
4686 | break; |
4687 | case PP_PCIE: |
4688 | current_gen_speed = |
4689 | vega10_get_current_pcie_link_speed_level(hwmgr); |
4690 | current_lane_width = |
4691 | vega10_get_current_pcie_link_width_level(hwmgr); |
4692 | for (i = 0; i < NUM_LINK_LEVELS2; i++) { |
4693 | gen_speed = pptable->PcieGenSpeed[i]; |
4694 | lane_width = pptable->PcieLaneCount[i]; |
4695 | |
4696 | size += snprintf(buf + size, PAGE_SIZE(1 << 12) - size, "%d: %s %s %s\n", i, |
4697 | (gen_speed == 0) ? "2.5GT/s," : |
4698 | (gen_speed == 1) ? "5.0GT/s," : |
4699 | (gen_speed == 2) ? "8.0GT/s," : |
4700 | (gen_speed == 3) ? "16.0GT/s," : "", |
4701 | (lane_width == 1) ? "x1" : |
4702 | (lane_width == 2) ? "x2" : |
4703 | (lane_width == 3) ? "x4" : |
4704 | (lane_width == 4) ? "x8" : |
4705 | (lane_width == 5) ? "x12" : |
4706 | (lane_width == 6) ? "x16" : "", |
4707 | (current_gen_speed == gen_speed) && |
4708 | (current_lane_width == lane_width) ? |
4709 | "*" : ""); |
4710 | } |
4711 | break; |
4712 | |
4713 | case OD_SCLK: |
4714 | if (hwmgr->od_enabled) { |
4715 | size = snprintf(buf, PAGE_SIZE(1 << 12), "%s:\n", "OD_SCLK"); |
4716 | podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_sclk; |
4717 | for (i = 0; i < podn_vdd_dep->count; i++) |
4718 | size += snprintf(buf + size, PAGE_SIZE(1 << 12) - size, "%d: %10uMhz %10umV\n", |
4719 | i, podn_vdd_dep->entries[i].clk / 100, |
4720 | podn_vdd_dep->entries[i].vddc); |
4721 | } |
4722 | break; |
4723 | case OD_MCLK: |
4724 | if (hwmgr->od_enabled) { |
4725 | size = snprintf(buf, PAGE_SIZE(1 << 12), "%s:\n", "OD_MCLK"); |
4726 | podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_mclk; |
4727 | for (i = 0; i < podn_vdd_dep->count; i++) |
4728 | size += snprintf(buf + size, PAGE_SIZE(1 << 12) - size, "%d: %10uMhz %10umV\n", |
4729 | i, podn_vdd_dep->entries[i].clk/100, |
4730 | podn_vdd_dep->entries[i].vddc); |
4731 | } |
4732 | break; |
4733 | case OD_RANGE: |
4734 | if (hwmgr->od_enabled) { |
4735 | size = snprintf(buf, PAGE_SIZE(1 << 12), "%s:\n", "OD_RANGE"); |
4736 | size += snprintf(buf + size, PAGE_SIZE(1 << 12) - size, "SCLK: %7uMHz %10uMHz\n", |
4737 | data->golden_dpm_table.gfx_table.dpm_levels[0].value/100, |
4738 | hwmgr->platform_descriptor.overdriveLimit.engineClock/100); |
4739 | size += snprintf(buf + size, PAGE_SIZE(1 << 12) - size, "MCLK: %7uMHz %10uMHz\n", |
4740 | data->golden_dpm_table.mem_table.dpm_levels[0].value/100, |
4741 | hwmgr->platform_descriptor.overdriveLimit.memoryClock/100); |
4742 | size += snprintf(buf + size, PAGE_SIZE(1 << 12) - size, "VDDC: %7umV %11umV\n", |
4743 | data->odn_dpm_table.min_vddc, |
4744 | data->odn_dpm_table.max_vddc); |
4745 | } |
4746 | break; |
4747 | default: |
4748 | break; |
4749 | } |
4750 | return size; |
4751 | } |
4752 | |
4753 | static int vega10_display_configuration_changed_task(struct pp_hwmgr *hwmgr) |
4754 | { |
4755 | struct vega10_hwmgr *data = hwmgr->backend; |
4756 | Watermarks_t *wm_table = &(data->smc_state_table.water_marks_table); |
4757 | int result = 0; |
4758 | |
4759 | if ((data->water_marks_bitmap & WaterMarksExist1) && |
4760 | !(data->water_marks_bitmap & WaterMarksLoaded2)) { |
4761 | result = smum_smc_table_manager(hwmgr, (uint8_t *)wm_table, WMTABLE, false0); |
4762 | PP_ASSERT_WITH_CODE(result, "Failed to update WMTABLE!", return -EINVAL)do { if (!(result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Failed to update WMTABLE!"); return -22; } } while (0); |
4763 | data->water_marks_bitmap |= WaterMarksLoaded2; |
4764 | } |
4765 | |
4766 | if (data->water_marks_bitmap & WaterMarksLoaded2) { |
4767 | smum_send_msg_to_smc_with_parameter(hwmgr, |
4768 | PPSMC_MSG_NumOfDisplays0x56, hwmgr->display_config->num_display, |
4769 | NULL((void *)0)); |
4770 | } |
4771 | |
4772 | return result; |
4773 | } |
4774 | |
4775 | static int vega10_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool_Bool enable) |
4776 | { |
4777 | struct vega10_hwmgr *data = hwmgr->backend; |
4778 | |
4779 | if (data->smu_features[GNLD_DPM_UVD].supported) { |
4780 | PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,do { if (!(!vega10_enable_smc_features(hwmgr, enable, data-> smu_features[GNLD_DPM_UVD].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable/Disable DPM UVD Failed!" ); return -1; } } while (0) |
4781 | enable,do { if (!(!vega10_enable_smc_features(hwmgr, enable, data-> smu_features[GNLD_DPM_UVD].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable/Disable DPM UVD Failed!" ); return -1; } } while (0) |
4782 | data->smu_features[GNLD_DPM_UVD].smu_feature_bitmap),do { if (!(!vega10_enable_smc_features(hwmgr, enable, data-> smu_features[GNLD_DPM_UVD].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable/Disable DPM UVD Failed!" ); return -1; } } while (0) |
4783 | "Attempt to Enable/Disable DPM UVD Failed!",do { if (!(!vega10_enable_smc_features(hwmgr, enable, data-> smu_features[GNLD_DPM_UVD].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable/Disable DPM UVD Failed!" ); return -1; } } while (0) |
4784 | return -1)do { if (!(!vega10_enable_smc_features(hwmgr, enable, data-> smu_features[GNLD_DPM_UVD].smu_feature_bitmap))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Attempt to Enable/Disable DPM UVD Failed!" ); return -1; } } while (0); |
4785 | data->smu_features[GNLD_DPM_UVD].enabled = enable; |
4786 | } |
4787 | return 0; |
4788 | } |
4789 | |
4790 | static void vega10_power_gate_vce(struct pp_hwmgr *hwmgr, bool_Bool bgate) |
4791 | { |
4792 | struct vega10_hwmgr *data = hwmgr->backend; |
4793 | |
4794 | data->vce_power_gated = bgate; |
4795 | vega10_enable_disable_vce_dpm(hwmgr, !bgate); |
4796 | } |
4797 | |
4798 | static void vega10_power_gate_uvd(struct pp_hwmgr *hwmgr, bool_Bool bgate) |
4799 | { |
4800 | struct vega10_hwmgr *data = hwmgr->backend; |
4801 | |
4802 | data->uvd_power_gated = bgate; |
4803 | vega10_enable_disable_uvd_dpm(hwmgr, !bgate); |
4804 | } |
4805 | |
4806 | static inline bool_Bool vega10_are_power_levels_equal( |
4807 | const struct vega10_performance_level *pl1, |
4808 | const struct vega10_performance_level *pl2) |
4809 | { |
4810 | return ((pl1->soc_clock == pl2->soc_clock) && |
4811 | (pl1->gfx_clock == pl2->gfx_clock) && |
4812 | (pl1->mem_clock == pl2->mem_clock)); |
4813 | } |
4814 | |
4815 | static int vega10_check_states_equal(struct pp_hwmgr *hwmgr, |
4816 | const struct pp_hw_power_state *pstate1, |
4817 | const struct pp_hw_power_state *pstate2, bool_Bool *equal) |
4818 | { |
4819 | const struct vega10_power_state *psa; |
4820 | const struct vega10_power_state *psb; |
4821 | int i; |
4822 | |
4823 | if (pstate1 == NULL((void *)0) || pstate2 == NULL((void *)0) || equal == NULL((void *)0)) |
4824 | return -EINVAL22; |
4825 | |
4826 | psa = cast_const_phw_vega10_power_state(pstate1); |
4827 | psb = cast_const_phw_vega10_power_state(pstate2); |
4828 | /* If the two states don't even have the same number of performance levels they cannot be the same state. */ |
4829 | if (psa->performance_level_count != psb->performance_level_count) { |
4830 | *equal = false0; |
4831 | return 0; |
4832 | } |
4833 | |
4834 | for (i = 0; i < psa->performance_level_count; i++) { |
4835 | if (!vega10_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) { |
4836 | /* If we have found even one performance level pair that is different the states are different. */ |
4837 | *equal = false0; |
4838 | return 0; |
4839 | } |
4840 | } |
4841 | |
4842 | /* If all performance levels are the same try to use the UVD clocks to break the tie.*/ |
4843 | *equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk)); |
4844 | *equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk)); |
4845 | *equal &= (psa->sclk_threshold == psb->sclk_threshold); |
4846 | |
4847 | return 0; |
4848 | } |
4849 | |
4850 | static bool_Bool |
4851 | vega10_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr) |
4852 | { |
4853 | struct vega10_hwmgr *data = hwmgr->backend; |
4854 | bool_Bool is_update_required = false0; |
4855 | |
4856 | if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display) |
4857 | is_update_required = true1; |
4858 | |
4859 | if (PP_CAP(PHM_PlatformCaps_SclkDeepSleep)phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, ( PHM_PlatformCaps_SclkDeepSleep))) { |
4860 | if (data->display_timing.min_clock_in_sr != hwmgr->display_config->min_core_set_clock_in_sr) |
4861 | is_update_required = true1; |
4862 | } |
4863 | |
4864 | return is_update_required; |
4865 | } |
4866 | |
4867 | static int vega10_disable_dpm_tasks(struct pp_hwmgr *hwmgr) |
4868 | { |
4869 | int tmp_result, result = 0; |
4870 | |
4871 | if (!hwmgr->not_vf) |
4872 | return 0; |
4873 | |
4874 | if (PP_CAP(PHM_PlatformCaps_ThermalController)phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, ( PHM_PlatformCaps_ThermalController))) |
4875 | vega10_disable_thermal_protection(hwmgr); |
4876 | |
4877 | tmp_result = vega10_disable_power_containment(hwmgr); |
4878 | PP_ASSERT_WITH_CODE((tmp_result == 0),do { if (!((tmp_result == 0))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to disable power containment!"); result = tmp_result ; } } while (0) |
4879 | "Failed to disable power containment!", result = tmp_result)do { if (!((tmp_result == 0))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to disable power containment!"); result = tmp_result ; } } while (0); |
4880 | |
4881 | tmp_result = vega10_disable_didt_config(hwmgr); |
4882 | PP_ASSERT_WITH_CODE((tmp_result == 0),do { if (!((tmp_result == 0))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to disable didt config!"); result = tmp_result ; } } while (0) |
4883 | "Failed to disable didt config!", result = tmp_result)do { if (!((tmp_result == 0))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to disable didt config!"); result = tmp_result ; } } while (0); |
4884 | |
4885 | tmp_result = vega10_avfs_enable(hwmgr, false0); |
4886 | PP_ASSERT_WITH_CODE((tmp_result == 0),do { if (!((tmp_result == 0))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to disable AVFS!"); result = tmp_result; } } while (0) |
4887 | "Failed to disable AVFS!", result = tmp_result)do { if (!((tmp_result == 0))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to disable AVFS!"); result = tmp_result; } } while (0); |
4888 | |
4889 | tmp_result = vega10_stop_dpm(hwmgr, SMC_DPM_FEATURES0x30F); |
4890 | PP_ASSERT_WITH_CODE((tmp_result == 0),do { if (!((tmp_result == 0))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to stop DPM!"); result = tmp_result; } } while (0) |
4891 | "Failed to stop DPM!", result = tmp_result)do { if (!((tmp_result == 0))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to stop DPM!"); result = tmp_result; } } while (0); |
4892 | |
4893 | tmp_result = vega10_disable_deep_sleep_master_switch(hwmgr); |
4894 | PP_ASSERT_WITH_CODE((tmp_result == 0),do { if (!((tmp_result == 0))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to disable deep sleep!"); result = tmp_result ; } } while (0) |
4895 | "Failed to disable deep sleep!", result = tmp_result)do { if (!((tmp_result == 0))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to disable deep sleep!"); result = tmp_result ; } } while (0); |
4896 | |
4897 | tmp_result = vega10_disable_ulv(hwmgr); |
4898 | PP_ASSERT_WITH_CODE((tmp_result == 0),do { if (!((tmp_result == 0))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to disable ulv!"); result = tmp_result; } } while (0) |
4899 | "Failed to disable ulv!", result = tmp_result)do { if (!((tmp_result == 0))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to disable ulv!"); result = tmp_result; } } while (0); |
4900 | |
4901 | tmp_result = vega10_acg_disable(hwmgr); |
4902 | PP_ASSERT_WITH_CODE((tmp_result == 0),do { if (!((tmp_result == 0))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to disable acg!"); result = tmp_result; } } while (0) |
4903 | "Failed to disable acg!", result = tmp_result)do { if (!((tmp_result == 0))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to disable acg!"); result = tmp_result; } } while (0); |
4904 | |
4905 | vega10_enable_disable_PCC_limit_feature(hwmgr, false0); |
4906 | return result; |
4907 | } |
4908 | |
4909 | static int vega10_power_off_asic(struct pp_hwmgr *hwmgr) |
4910 | { |
4911 | struct vega10_hwmgr *data = hwmgr->backend; |
4912 | int result; |
4913 | |
4914 | result = vega10_disable_dpm_tasks(hwmgr); |
4915 | PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "[disable_dpm_tasks] Failed to disable DPM!"); ; } } while (0) |
4916 | "[disable_dpm_tasks] Failed to disable DPM!",do { if (!((0 == result))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "[disable_dpm_tasks] Failed to disable DPM!"); ; } } while (0) |
4917 | )do { if (!((0 == result))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "[disable_dpm_tasks] Failed to disable DPM!"); ; } } while (0); |
4918 | data->water_marks_bitmap &= ~(WaterMarksLoaded2); |
4919 | |
4920 | return result; |
4921 | } |
4922 | |
4923 | static int vega10_get_sclk_od(struct pp_hwmgr *hwmgr) |
4924 | { |
4925 | struct vega10_hwmgr *data = hwmgr->backend; |
4926 | struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table); |
4927 | struct vega10_single_dpm_table *golden_sclk_table = |
4928 | &(data->golden_dpm_table.gfx_table); |
4929 | int value = sclk_table->dpm_levels[sclk_table->count - 1].value; |
4930 | int golden_value = golden_sclk_table->dpm_levels |
4931 | [golden_sclk_table->count - 1].value; |
4932 | |
4933 | value -= golden_value; |
4934 | value = DIV_ROUND_UP(value * 100, golden_value)(((value * 100) + ((golden_value) - 1)) / (golden_value)); |
4935 | |
4936 | return value; |
4937 | } |
4938 | |
4939 | static int vega10_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value) |
4940 | { |
4941 | struct vega10_hwmgr *data = hwmgr->backend; |
4942 | struct vega10_single_dpm_table *golden_sclk_table = |
4943 | &(data->golden_dpm_table.gfx_table); |
4944 | struct pp_power_state *ps; |
4945 | struct vega10_power_state *vega10_ps; |
4946 | |
4947 | ps = hwmgr->request_ps; |
4948 | |
4949 | if (ps == NULL((void *)0)) |
4950 | return -EINVAL22; |
4951 | |
4952 | vega10_ps = cast_phw_vega10_power_state(&ps->hardware); |
4953 | |
4954 | vega10_ps->performance_levels |
4955 | [vega10_ps->performance_level_count - 1].gfx_clock = |
4956 | golden_sclk_table->dpm_levels |
4957 | [golden_sclk_table->count - 1].value * |
4958 | value / 100 + |
4959 | golden_sclk_table->dpm_levels |
4960 | [golden_sclk_table->count - 1].value; |
4961 | |
4962 | if (vega10_ps->performance_levels |
4963 | [vega10_ps->performance_level_count - 1].gfx_clock > |
4964 | hwmgr->platform_descriptor.overdriveLimit.engineClock) { |
4965 | vega10_ps->performance_levels |
4966 | [vega10_ps->performance_level_count - 1].gfx_clock = |
4967 | hwmgr->platform_descriptor.overdriveLimit.engineClock; |
4968 | pr_warn("max sclk supported by vbios is %d\n",printk("\0014" "amdgpu: [powerplay] " "max sclk supported by vbios is %d\n" , hwmgr->platform_descriptor.overdriveLimit.engineClock) |
4969 | hwmgr->platform_descriptor.overdriveLimit.engineClock)printk("\0014" "amdgpu: [powerplay] " "max sclk supported by vbios is %d\n" , hwmgr->platform_descriptor.overdriveLimit.engineClock); |
4970 | } |
4971 | return 0; |
4972 | } |
4973 | |
4974 | static int vega10_get_mclk_od(struct pp_hwmgr *hwmgr) |
4975 | { |
4976 | struct vega10_hwmgr *data = hwmgr->backend; |
4977 | struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table); |
4978 | struct vega10_single_dpm_table *golden_mclk_table = |
4979 | &(data->golden_dpm_table.mem_table); |
4980 | int value = mclk_table->dpm_levels[mclk_table->count - 1].value; |
4981 | int golden_value = golden_mclk_table->dpm_levels |
4982 | [golden_mclk_table->count - 1].value; |
4983 | |
4984 | value -= golden_value; |
4985 | value = DIV_ROUND_UP(value * 100, golden_value)(((value * 100) + ((golden_value) - 1)) / (golden_value)); |
4986 | |
4987 | return value; |
4988 | } |
4989 | |
4990 | static int vega10_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value) |
4991 | { |
4992 | struct vega10_hwmgr *data = hwmgr->backend; |
4993 | struct vega10_single_dpm_table *golden_mclk_table = |
4994 | &(data->golden_dpm_table.mem_table); |
4995 | struct pp_power_state *ps; |
4996 | struct vega10_power_state *vega10_ps; |
4997 | |
4998 | ps = hwmgr->request_ps; |
4999 | |
5000 | if (ps == NULL((void *)0)) |
5001 | return -EINVAL22; |
5002 | |
5003 | vega10_ps = cast_phw_vega10_power_state(&ps->hardware); |
5004 | |
5005 | vega10_ps->performance_levels |
5006 | [vega10_ps->performance_level_count - 1].mem_clock = |
5007 | golden_mclk_table->dpm_levels |
5008 | [golden_mclk_table->count - 1].value * |
5009 | value / 100 + |
5010 | golden_mclk_table->dpm_levels |
5011 | [golden_mclk_table->count - 1].value; |
5012 | |
5013 | if (vega10_ps->performance_levels |
5014 | [vega10_ps->performance_level_count - 1].mem_clock > |
5015 | hwmgr->platform_descriptor.overdriveLimit.memoryClock) { |
5016 | vega10_ps->performance_levels |
5017 | [vega10_ps->performance_level_count - 1].mem_clock = |
5018 | hwmgr->platform_descriptor.overdriveLimit.memoryClock; |
5019 | pr_warn("max mclk supported by vbios is %d\n",printk("\0014" "amdgpu: [powerplay] " "max mclk supported by vbios is %d\n" , hwmgr->platform_descriptor.overdriveLimit.memoryClock) |
5020 | hwmgr->platform_descriptor.overdriveLimit.memoryClock)printk("\0014" "amdgpu: [powerplay] " "max mclk supported by vbios is %d\n" , hwmgr->platform_descriptor.overdriveLimit.memoryClock); |
5021 | } |
5022 | |
5023 | return 0; |
5024 | } |
5025 | |
5026 | static int vega10_notify_cac_buffer_info(struct pp_hwmgr *hwmgr, |
5027 | uint32_t virtual_addr_low, |
5028 | uint32_t virtual_addr_hi, |
5029 | uint32_t mc_addr_low, |
5030 | uint32_t mc_addr_hi, |
5031 | uint32_t size) |
5032 | { |
5033 | smum_send_msg_to_smc_with_parameter(hwmgr, |
5034 | PPSMC_MSG_SetSystemVirtualDramAddrHigh0x5A, |
5035 | virtual_addr_hi, |
5036 | NULL((void *)0)); |
5037 | smum_send_msg_to_smc_with_parameter(hwmgr, |
5038 | PPSMC_MSG_SetSystemVirtualDramAddrLow0x5B, |
5039 | virtual_addr_low, |
5040 | NULL((void *)0)); |
5041 | smum_send_msg_to_smc_with_parameter(hwmgr, |
5042 | PPSMC_MSG_DramLogSetDramAddrHigh0x4E, |
5043 | mc_addr_hi, |
5044 | NULL((void *)0)); |
5045 | |
5046 | smum_send_msg_to_smc_with_parameter(hwmgr, |
5047 | PPSMC_MSG_DramLogSetDramAddrLow0x4F, |
5048 | mc_addr_low, |
5049 | NULL((void *)0)); |
5050 | |
5051 | smum_send_msg_to_smc_with_parameter(hwmgr, |
5052 | PPSMC_MSG_DramLogSetDramSize0x50, |
5053 | size, |
5054 | NULL((void *)0)); |
5055 | return 0; |
5056 | } |
5057 | |
5058 | static int vega10_get_thermal_temperature_range(struct pp_hwmgr *hwmgr, |
5059 | struct PP_TemperatureRange *thermal_data) |
5060 | { |
5061 | struct vega10_hwmgr *data = hwmgr->backend; |
5062 | PPTable_t *pp_table = &(data->smc_state_table.pp_table); |
5063 | |
5064 | memcpy(thermal_data, &SMU7ThermalWithDelayPolicy[0], sizeof(struct PP_TemperatureRange))__builtin_memcpy((thermal_data), (&SMU7ThermalWithDelayPolicy [0]), (sizeof(struct PP_TemperatureRange))); |
5065 | |
5066 | thermal_data->max = pp_table->TedgeLimit * |
5067 | PP_TEMPERATURE_UNITS_PER_CENTIGRADES1000; |
5068 | thermal_data->edge_emergency_max = (pp_table->TedgeLimit + CTF_OFFSET_EDGE5) * |
5069 | PP_TEMPERATURE_UNITS_PER_CENTIGRADES1000; |
5070 | thermal_data->hotspot_crit_max = pp_table->ThotspotLimit * |
5071 | PP_TEMPERATURE_UNITS_PER_CENTIGRADES1000; |
5072 | thermal_data->hotspot_emergency_max = (pp_table->ThotspotLimit + CTF_OFFSET_HOTSPOT5) * |
5073 | PP_TEMPERATURE_UNITS_PER_CENTIGRADES1000; |
5074 | thermal_data->mem_crit_max = pp_table->ThbmLimit * |
5075 | PP_TEMPERATURE_UNITS_PER_CENTIGRADES1000; |
5076 | thermal_data->mem_emergency_max = (pp_table->ThbmLimit + CTF_OFFSET_HBM5)* |
5077 | PP_TEMPERATURE_UNITS_PER_CENTIGRADES1000; |
5078 | |
5079 | return 0; |
5080 | } |
5081 | |
5082 | static int vega10_get_power_profile_mode(struct pp_hwmgr *hwmgr, char *buf) |
5083 | { |
5084 | struct vega10_hwmgr *data = hwmgr->backend; |
5085 | uint32_t i, size = 0; |
5086 | static const uint8_t profile_mode_setting[6][4] = {{70, 60, 0, 0,}, |
5087 | {70, 60, 1, 3,}, |
5088 | {90, 60, 0, 0,}, |
5089 | {70, 60, 0, 0,}, |
5090 | {70, 90, 0, 0,}, |
5091 | {30, 60, 0, 6,}, |
5092 | }; |
5093 | static const char *profile_name[7] = {"BOOTUP_DEFAULT", |
5094 | "3D_FULL_SCREEN", |
5095 | "POWER_SAVING", |
5096 | "VIDEO", |
5097 | "VR", |
5098 | "COMPUTE", |
5099 | "CUSTOM"}; |
5100 | static const char *title[6] = {"NUM", |
5101 | "MODE_NAME", |
5102 | "BUSY_SET_POINT", |
5103 | "FPS", |
5104 | "USE_RLC_BUSY", |
5105 | "MIN_ACTIVE_LEVEL"}; |
5106 | |
5107 | if (!buf) |
5108 | return -EINVAL22; |
5109 | |
5110 | size += snprintf(buf + size, PAGE_SIZE(1 << 12) - size, "%s %16s %s %s %s %s\n",title[0], |
5111 | title[1], title[2], title[3], title[4], title[5]); |
5112 | |
5113 | for (i = 0; i < PP_SMC_POWER_PROFILE_CUSTOM; i++) |
5114 | size += snprintf(buf + size, PAGE_SIZE(1 << 12) - size, "%3d %14s%s: %14d %3d %10d %14d\n", |
5115 | i, profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " ", |
5116 | profile_mode_setting[i][0], profile_mode_setting[i][1], |
5117 | profile_mode_setting[i][2], profile_mode_setting[i][3]); |
5118 | size += snprintf(buf + size, PAGE_SIZE(1 << 12) - size, "%3d %14s%s: %14d %3d %10d %14d\n", i, |
5119 | profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " ", |
5120 | data->custom_profile_mode[0], data->custom_profile_mode[1], |
5121 | data->custom_profile_mode[2], data->custom_profile_mode[3]); |
5122 | return size; |
5123 | } |
5124 | |
5125 | static bool_Bool vega10_get_power_profile_mode_quirks(struct pp_hwmgr *hwmgr) |
5126 | { |
5127 | struct amdgpu_device *adev = hwmgr->adev; |
5128 | |
5129 | return (adev->pdev->device == 0x6860); |
5130 | } |
5131 | |
5132 | static int vega10_set_power_profile_mode(struct pp_hwmgr *hwmgr, long *input, uint32_t size) |
5133 | { |
5134 | struct vega10_hwmgr *data = hwmgr->backend; |
5135 | uint8_t busy_set_point; |
5136 | uint8_t FPS; |
5137 | uint8_t use_rlc_busy; |
5138 | uint8_t min_active_level; |
5139 | uint32_t power_profile_mode = input[size]; |
5140 | |
5141 | if (power_profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) { |
5142 | if (size != 0 && size != 4) |
5143 | return -EINVAL22; |
5144 | |
5145 | /* If size = 0 and the CUSTOM profile has been set already |
5146 | * then just apply the profile. The copy stored in the hwmgr |
5147 | * is zeroed out on init |
5148 | */ |
5149 | if (size == 0) { |
5150 | if (data->custom_profile_mode[0] != 0) |
5151 | goto out; |
5152 | else |
5153 | return -EINVAL22; |
5154 | } |
5155 | |
5156 | data->custom_profile_mode[0] = busy_set_point = input[0]; |
5157 | data->custom_profile_mode[1] = FPS = input[1]; |
5158 | data->custom_profile_mode[2] = use_rlc_busy = input[2]; |
5159 | data->custom_profile_mode[3] = min_active_level = input[3]; |
5160 | smum_send_msg_to_smc_with_parameter(hwmgr, |
5161 | PPSMC_MSG_SetCustomGfxDpmParameters0x48, |
5162 | busy_set_point | FPS<<8 | |
5163 | use_rlc_busy << 16 | min_active_level<<24, |
5164 | NULL((void *)0)); |
5165 | } |
5166 | |
5167 | out: |
5168 | if (vega10_get_power_profile_mode_quirks(hwmgr)) |
5169 | smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetWorkloadMask0x7, |
5170 | 1 << power_profile_mode, |
5171 | NULL((void *)0)); |
5172 | else |
5173 | smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetWorkloadMask0x7, |
5174 | (!power_profile_mode) ? 0 : 1 << (power_profile_mode - 1), |
5175 | NULL((void *)0)); |
5176 | |
5177 | hwmgr->power_profile_mode = power_profile_mode; |
5178 | |
5179 | return 0; |
5180 | } |
5181 | |
5182 | |
5183 | static bool_Bool vega10_check_clk_voltage_valid(struct pp_hwmgr *hwmgr, |
5184 | enum PP_OD_DPM_TABLE_COMMAND type, |
5185 | uint32_t clk, |
5186 | uint32_t voltage) |
5187 | { |
5188 | struct vega10_hwmgr *data = hwmgr->backend; |
5189 | struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table); |
5190 | struct vega10_single_dpm_table *golden_table; |
5191 | |
5192 | if (voltage < odn_table->min_vddc || voltage > odn_table->max_vddc) { |
5193 | pr_info("OD voltage is out of range [%d - %d] mV\n", odn_table->min_vddc, odn_table->max_vddc)do { } while(0); |
5194 | return false0; |
5195 | } |
5196 | |
5197 | if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) { |
5198 | golden_table = &(data->golden_dpm_table.gfx_table); |
5199 | if (golden_table->dpm_levels[0].value > clk || |
5200 | hwmgr->platform_descriptor.overdriveLimit.engineClock < clk) { |
5201 | pr_info("OD engine clock is out of range [%d - %d] MHz\n",do { } while(0) |
5202 | golden_table->dpm_levels[0].value/100,do { } while(0) |
5203 | hwmgr->platform_descriptor.overdriveLimit.engineClock/100)do { } while(0); |
5204 | return false0; |
5205 | } |
5206 | } else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) { |
5207 | golden_table = &(data->golden_dpm_table.mem_table); |
5208 | if (golden_table->dpm_levels[0].value > clk || |
5209 | hwmgr->platform_descriptor.overdriveLimit.memoryClock < clk) { |
5210 | pr_info("OD memory clock is out of range [%d - %d] MHz\n",do { } while(0) |
5211 | golden_table->dpm_levels[0].value/100,do { } while(0) |
5212 | hwmgr->platform_descriptor.overdriveLimit.memoryClock/100)do { } while(0); |
5213 | return false0; |
5214 | } |
5215 | } else { |
5216 | return false0; |
5217 | } |
5218 | |
5219 | return true1; |
5220 | } |
5221 | |
5222 | static void vega10_odn_update_power_state(struct pp_hwmgr *hwmgr) |
5223 | { |
5224 | struct vega10_hwmgr *data = hwmgr->backend; |
5225 | struct pp_power_state *ps = hwmgr->request_ps; |
5226 | struct vega10_power_state *vega10_ps; |
5227 | struct vega10_single_dpm_table *gfx_dpm_table = |
5228 | &data->dpm_table.gfx_table; |
5229 | struct vega10_single_dpm_table *soc_dpm_table = |
5230 | &data->dpm_table.soc_table; |
5231 | struct vega10_single_dpm_table *mem_dpm_table = |
5232 | &data->dpm_table.mem_table; |
5233 | int max_level; |
5234 | |
5235 | if (!ps) |
5236 | return; |
5237 | |
5238 | vega10_ps = cast_phw_vega10_power_state(&ps->hardware); |
5239 | max_level = vega10_ps->performance_level_count - 1; |
5240 | |
5241 | if (vega10_ps->performance_levels[max_level].gfx_clock != |
5242 | gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value) |
5243 | vega10_ps->performance_levels[max_level].gfx_clock = |
5244 | gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value; |
5245 | |
5246 | if (vega10_ps->performance_levels[max_level].soc_clock != |
5247 | soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value) |
5248 | vega10_ps->performance_levels[max_level].soc_clock = |
5249 | soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value; |
5250 | |
5251 | if (vega10_ps->performance_levels[max_level].mem_clock != |
5252 | mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value) |
5253 | vega10_ps->performance_levels[max_level].mem_clock = |
5254 | mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value; |
5255 | |
5256 | if (!hwmgr->ps) |
5257 | return; |
5258 | |
5259 | ps = (struct pp_power_state *)((unsigned long)(hwmgr->ps) + hwmgr->ps_size * (hwmgr->num_ps - 1)); |
5260 | vega10_ps = cast_phw_vega10_power_state(&ps->hardware); |
5261 | max_level = vega10_ps->performance_level_count - 1; |
5262 | |
5263 | if (vega10_ps->performance_levels[max_level].gfx_clock != |
5264 | gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value) |
5265 | vega10_ps->performance_levels[max_level].gfx_clock = |
5266 | gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value; |
5267 | |
5268 | if (vega10_ps->performance_levels[max_level].soc_clock != |
5269 | soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value) |
5270 | vega10_ps->performance_levels[max_level].soc_clock = |
5271 | soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value; |
5272 | |
5273 | if (vega10_ps->performance_levels[max_level].mem_clock != |
5274 | mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value) |
5275 | vega10_ps->performance_levels[max_level].mem_clock = |
5276 | mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value; |
5277 | } |
5278 | |
5279 | static void vega10_odn_update_soc_table(struct pp_hwmgr *hwmgr, |
5280 | enum PP_OD_DPM_TABLE_COMMAND type) |
5281 | { |
5282 | struct vega10_hwmgr *data = hwmgr->backend; |
5283 | struct phm_ppt_v2_information *table_info = hwmgr->pptable; |
5284 | struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = table_info->vdd_dep_on_socclk; |
5285 | struct vega10_single_dpm_table *dpm_table = &data->golden_dpm_table.mem_table; |
5286 | |
5287 | struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep_on_socclk = |
5288 | &data->odn_dpm_table.vdd_dep_on_socclk; |
5289 | struct vega10_odn_vddc_lookup_table *od_vddc_lookup_table = &data->odn_dpm_table.vddc_lookup_table; |
5290 | |
5291 | struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep; |
5292 | uint8_t i, j; |
5293 | |
5294 | if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) { |
5295 | podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_sclk; |
5296 | for (i = 0; i < podn_vdd_dep->count; i++) |
5297 | od_vddc_lookup_table->entries[i].us_vdd = podn_vdd_dep->entries[i].vddc; |
5298 | } else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) { |
5299 | podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_mclk; |
5300 | for (i = 0; i < dpm_table->count; i++) { |
5301 | for (j = 0; j < od_vddc_lookup_table->count; j++) { |
5302 | if (od_vddc_lookup_table->entries[j].us_vdd > |
5303 | podn_vdd_dep->entries[i].vddc) |
5304 | break; |
5305 | } |
5306 | if (j == od_vddc_lookup_table->count) { |
5307 | j = od_vddc_lookup_table->count - 1; |
5308 | od_vddc_lookup_table->entries[j].us_vdd = |
5309 | podn_vdd_dep->entries[i].vddc; |
5310 | data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC0x00000010; |
5311 | } |
5312 | podn_vdd_dep->entries[i].vddInd = j; |
5313 | } |
5314 | dpm_table = &data->dpm_table.soc_table; |
5315 | for (i = 0; i < dep_table->count; i++) { |
5316 | if (dep_table->entries[i].vddInd == podn_vdd_dep->entries[podn_vdd_dep->count-1].vddInd && |
5317 | dep_table->entries[i].clk < podn_vdd_dep->entries[podn_vdd_dep->count-1].clk) { |
5318 | data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK0x00000020; |
5319 | for (; (i < dep_table->count) && |
5320 | (dep_table->entries[i].clk < podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk); i++) { |
5321 | podn_vdd_dep_on_socclk->entries[i].clk = podn_vdd_dep->entries[podn_vdd_dep->count-1].clk; |
5322 | dpm_table->dpm_levels[i].value = podn_vdd_dep_on_socclk->entries[i].clk; |
5323 | } |
5324 | break; |
5325 | } else { |
5326 | dpm_table->dpm_levels[i].value = dep_table->entries[i].clk; |
5327 | podn_vdd_dep_on_socclk->entries[i].vddc = dep_table->entries[i].vddc; |
5328 | podn_vdd_dep_on_socclk->entries[i].vddInd = dep_table->entries[i].vddInd; |
5329 | podn_vdd_dep_on_socclk->entries[i].clk = dep_table->entries[i].clk; |
5330 | } |
5331 | } |
5332 | if (podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].clk < |
5333 | podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk) { |
5334 | data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK0x00000020; |
5335 | podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].clk = |
5336 | podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk; |
5337 | dpm_table->dpm_levels[podn_vdd_dep_on_socclk->count - 1].value = |
5338 | podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk; |
5339 | } |
5340 | if (podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].vddInd < |
5341 | podn_vdd_dep->entries[podn_vdd_dep->count - 1].vddInd) { |
5342 | data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK0x00000020; |
5343 | podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].vddInd = |
5344 | podn_vdd_dep->entries[podn_vdd_dep->count - 1].vddInd; |
5345 | } |
5346 | } |
5347 | vega10_odn_update_power_state(hwmgr); |
5348 | } |
5349 | |
5350 | static int vega10_odn_edit_dpm_table(struct pp_hwmgr *hwmgr, |
5351 | enum PP_OD_DPM_TABLE_COMMAND type, |
5352 | long *input, uint32_t size) |
5353 | { |
5354 | struct vega10_hwmgr *data = hwmgr->backend; |
5355 | struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep_table; |
5356 | struct vega10_single_dpm_table *dpm_table; |
5357 | |
5358 | uint32_t input_clk; |
5359 | uint32_t input_vol; |
5360 | uint32_t input_level; |
5361 | uint32_t i; |
5362 | |
5363 | PP_ASSERT_WITH_CODE(input, "NULL user input for clock and voltage",do { if (!(input)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "NULL user input for clock and voltage"); return -22; } } while (0) |
5364 | return -EINVAL)do { if (!(input)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "NULL user input for clock and voltage"); return -22; } } while (0); |
5365 | |
5366 | if (!hwmgr->od_enabled) { |
5367 | pr_info("OverDrive feature not enabled\n")do { } while(0); |
5368 | return -EINVAL22; |
5369 | } |
5370 | |
5371 | if (PP_OD_EDIT_SCLK_VDDC_TABLE == type) { |
5372 | dpm_table = &data->dpm_table.gfx_table; |
5373 | podn_vdd_dep_table = &data->odn_dpm_table.vdd_dep_on_sclk; |
5374 | data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK0x00000001; |
5375 | } else if (PP_OD_EDIT_MCLK_VDDC_TABLE == type) { |
5376 | dpm_table = &data->dpm_table.mem_table; |
5377 | podn_vdd_dep_table = &data->odn_dpm_table.vdd_dep_on_mclk; |
5378 | data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_MCLK0x00000002; |
5379 | } else if (PP_OD_RESTORE_DEFAULT_TABLE == type) { |
5380 | memcpy(&(data->dpm_table), &(data->golden_dpm_table), sizeof(struct vega10_dpm_table))__builtin_memcpy((&(data->dpm_table)), (&(data-> golden_dpm_table)), (sizeof(struct vega10_dpm_table))); |
5381 | vega10_odn_initial_default_setting(hwmgr); |
5382 | vega10_odn_update_power_state(hwmgr); |
5383 | /* force to update all clock tables */ |
5384 | data->need_update_dpm_table = DPMTABLE_UPDATE_SCLK0x00000004 | |
5385 | DPMTABLE_UPDATE_MCLK0x00000008 | |
5386 | DPMTABLE_UPDATE_SOCCLK0x00000020; |
5387 | return 0; |
5388 | } else if (PP_OD_COMMIT_DPM_TABLE == type) { |
5389 | vega10_check_dpm_table_updated(hwmgr); |
5390 | return 0; |
5391 | } else { |
5392 | return -EINVAL22; |
5393 | } |
5394 | |
5395 | for (i = 0; i < size; i += 3) { |
5396 | if (i + 3 > size || input[i] >= podn_vdd_dep_table->count) { |
5397 | pr_info("invalid clock voltage input\n")do { } while(0); |
5398 | return 0; |
5399 | } |
5400 | input_level = input[i]; |
5401 | input_clk = input[i+1] * 100; |
5402 | input_vol = input[i+2]; |
5403 | |
5404 | if (vega10_check_clk_voltage_valid(hwmgr, type, input_clk, input_vol)) { |
5405 | dpm_table->dpm_levels[input_level].value = input_clk; |
5406 | podn_vdd_dep_table->entries[input_level].clk = input_clk; |
5407 | podn_vdd_dep_table->entries[input_level].vddc = input_vol; |
5408 | } else { |
5409 | return -EINVAL22; |
5410 | } |
5411 | } |
5412 | vega10_odn_update_soc_table(hwmgr, type); |
5413 | return 0; |
5414 | } |
5415 | |
5416 | static int vega10_set_mp1_state(struct pp_hwmgr *hwmgr, |
5417 | enum pp_mp1_state mp1_state) |
5418 | { |
5419 | uint16_t msg; |
5420 | int ret; |
5421 | |
5422 | switch (mp1_state) { |
5423 | case PP_MP1_STATE_UNLOAD: |
5424 | msg = PPSMC_MSG_PrepareMp1ForUnload0x4B; |
5425 | break; |
5426 | case PP_MP1_STATE_SHUTDOWN: |
5427 | case PP_MP1_STATE_RESET: |
5428 | case PP_MP1_STATE_NONE: |
5429 | default: |
5430 | return 0; |
5431 | } |
5432 | |
5433 | PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc(hwmgr, msg, NULL)) == 0,do { if (!((ret = smum_send_msg_to_smc(hwmgr, msg, ((void *)0 ))) == 0)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "[PrepareMp1] Failed!" ); return ret; } } while (0) |
5434 | "[PrepareMp1] Failed!",do { if (!((ret = smum_send_msg_to_smc(hwmgr, msg, ((void *)0 ))) == 0)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "[PrepareMp1] Failed!" ); return ret; } } while (0) |
5435 | return ret)do { if (!((ret = smum_send_msg_to_smc(hwmgr, msg, ((void *)0 ))) == 0)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "[PrepareMp1] Failed!" ); return ret; } } while (0); |
5436 | |
5437 | return 0; |
5438 | } |
5439 | |
5440 | static int vega10_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state, |
5441 | PHM_PerformanceLevelDesignation designation, uint32_t index, |
5442 | PHM_PerformanceLevel *level) |
5443 | { |
5444 | const struct vega10_power_state *ps; |
5445 | uint32_t i; |
5446 | |
5447 | if (level == NULL((void *)0) || hwmgr == NULL((void *)0) || state == NULL((void *)0)) |
5448 | return -EINVAL22; |
5449 | |
5450 | ps = cast_const_phw_vega10_power_state(state); |
5451 | |
5452 | i = index > ps->performance_level_count - 1 ? |
5453 | ps->performance_level_count - 1 : index; |
5454 | |
5455 | level->coreClock = ps->performance_levels[i].gfx_clock; |
5456 | level->memory_clock = ps->performance_levels[i].mem_clock; |
5457 | |
5458 | return 0; |
5459 | } |
5460 | |
5461 | static int vega10_disable_power_features_for_compute_performance(struct pp_hwmgr *hwmgr, bool_Bool disable) |
5462 | { |
5463 | struct vega10_hwmgr *data = hwmgr->backend; |
5464 | uint32_t feature_mask = 0; |
5465 | |
5466 | if (disable) { |
5467 | feature_mask |= data->smu_features[GNLD_ULV].enabled ? |
5468 | data->smu_features[GNLD_ULV].smu_feature_bitmap : 0; |
5469 | feature_mask |= data->smu_features[GNLD_DS_GFXCLK].enabled ? |
5470 | data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap : 0; |
5471 | feature_mask |= data->smu_features[GNLD_DS_SOCCLK].enabled ? |
5472 | data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap : 0; |
5473 | feature_mask |= data->smu_features[GNLD_DS_LCLK].enabled ? |
5474 | data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap : 0; |
5475 | feature_mask |= data->smu_features[GNLD_DS_DCEFCLK].enabled ? |
5476 | data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap : 0; |
5477 | } else { |
5478 | feature_mask |= (!data->smu_features[GNLD_ULV].enabled) ? |
5479 | data->smu_features[GNLD_ULV].smu_feature_bitmap : 0; |
5480 | feature_mask |= (!data->smu_features[GNLD_DS_GFXCLK].enabled) ? |
5481 | data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap : 0; |
5482 | feature_mask |= (!data->smu_features[GNLD_DS_SOCCLK].enabled) ? |
5483 | data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap : 0; |
5484 | feature_mask |= (!data->smu_features[GNLD_DS_LCLK].enabled) ? |
5485 | data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap : 0; |
5486 | feature_mask |= (!data->smu_features[GNLD_DS_DCEFCLK].enabled) ? |
5487 | data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap : 0; |
5488 | } |
5489 | |
5490 | if (feature_mask) |
5491 | PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,do { if (!(!vega10_enable_smc_features(hwmgr, !disable, feature_mask ))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "enable/disable power features for compute performance Failed!" ); return -22; } } while (0) |
5492 | !disable, feature_mask),do { if (!(!vega10_enable_smc_features(hwmgr, !disable, feature_mask ))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "enable/disable power features for compute performance Failed!" ); return -22; } } while (0) |
5493 | "enable/disable power features for compute performance Failed!",do { if (!(!vega10_enable_smc_features(hwmgr, !disable, feature_mask ))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "enable/disable power features for compute performance Failed!" ); return -22; } } while (0) |
5494 | return -EINVAL)do { if (!(!vega10_enable_smc_features(hwmgr, !disable, feature_mask ))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "enable/disable power features for compute performance Failed!" ); return -22; } } while (0); |
5495 | |
5496 | if (disable) { |
5497 | data->smu_features[GNLD_ULV].enabled = false0; |
5498 | data->smu_features[GNLD_DS_GFXCLK].enabled = false0; |
5499 | data->smu_features[GNLD_DS_SOCCLK].enabled = false0; |
5500 | data->smu_features[GNLD_DS_LCLK].enabled = false0; |
5501 | data->smu_features[GNLD_DS_DCEFCLK].enabled = false0; |
5502 | } else { |
5503 | data->smu_features[GNLD_ULV].enabled = true1; |
5504 | data->smu_features[GNLD_DS_GFXCLK].enabled = true1; |
5505 | data->smu_features[GNLD_DS_SOCCLK].enabled = true1; |
5506 | data->smu_features[GNLD_DS_LCLK].enabled = true1; |
5507 | data->smu_features[GNLD_DS_DCEFCLK].enabled = true1; |
5508 | } |
5509 | |
5510 | return 0; |
5511 | |
5512 | } |
5513 | |
5514 | static const struct pp_hwmgr_func vega10_hwmgr_funcs = { |
5515 | .backend_init = vega10_hwmgr_backend_init, |
5516 | .backend_fini = vega10_hwmgr_backend_fini, |
5517 | .asic_setup = vega10_setup_asic_task, |
5518 | .dynamic_state_management_enable = vega10_enable_dpm_tasks, |
5519 | .dynamic_state_management_disable = vega10_disable_dpm_tasks, |
5520 | .get_num_of_pp_table_entries = |
5521 | vega10_get_number_of_powerplay_table_entries, |
5522 | .get_power_state_size = vega10_get_power_state_size, |
5523 | .get_pp_table_entry = vega10_get_pp_table_entry, |
5524 | .patch_boot_state = vega10_patch_boot_state, |
5525 | .apply_state_adjust_rules = vega10_apply_state_adjust_rules, |
5526 | .power_state_set = vega10_set_power_state_tasks, |
5527 | .get_sclk = vega10_dpm_get_sclk, |
5528 | .get_mclk = vega10_dpm_get_mclk, |
5529 | .notify_smc_display_config_after_ps_adjustment = |
5530 | vega10_notify_smc_display_config_after_ps_adjustment, |
5531 | .force_dpm_level = vega10_dpm_force_dpm_level, |
5532 | .stop_thermal_controller = vega10_thermal_stop_thermal_controller, |
5533 | .get_fan_speed_info = vega10_fan_ctrl_get_fan_speed_info, |
5534 | .get_fan_speed_percent = vega10_fan_ctrl_get_fan_speed_percent, |
5535 | .set_fan_speed_percent = vega10_fan_ctrl_set_fan_speed_percent, |
5536 | .reset_fan_speed_to_default = |
5537 | vega10_fan_ctrl_reset_fan_speed_to_default, |
5538 | .get_fan_speed_rpm = vega10_fan_ctrl_get_fan_speed_rpm, |
5539 | .set_fan_speed_rpm = vega10_fan_ctrl_set_fan_speed_rpm, |
5540 | .uninitialize_thermal_controller = |
5541 | vega10_thermal_ctrl_uninitialize_thermal_controller, |
5542 | .set_fan_control_mode = vega10_set_fan_control_mode, |
5543 | .get_fan_control_mode = vega10_get_fan_control_mode, |
5544 | .read_sensor = vega10_read_sensor, |
5545 | .get_dal_power_level = vega10_get_dal_power_level, |
5546 | .get_clock_by_type_with_latency = vega10_get_clock_by_type_with_latency, |
5547 | .get_clock_by_type_with_voltage = vega10_get_clock_by_type_with_voltage, |
5548 | .set_watermarks_for_clocks_ranges = vega10_set_watermarks_for_clocks_ranges, |
5549 | .display_clock_voltage_request = vega10_display_clock_voltage_request, |
5550 | .force_clock_level = vega10_force_clock_level, |
5551 | .print_clock_levels = vega10_print_clock_levels, |
5552 | .display_config_changed = vega10_display_configuration_changed_task, |
5553 | .powergate_uvd = vega10_power_gate_uvd, |
5554 | .powergate_vce = vega10_power_gate_vce, |
5555 | .check_states_equal = vega10_check_states_equal, |
5556 | .check_smc_update_required_for_display_configuration = |
5557 | vega10_check_smc_update_required_for_display_configuration, |
5558 | .power_off_asic = vega10_power_off_asic, |
5559 | .disable_smc_firmware_ctf = vega10_thermal_disable_alert, |
5560 | .get_sclk_od = vega10_get_sclk_od, |
5561 | .set_sclk_od = vega10_set_sclk_od, |
5562 | .get_mclk_od = vega10_get_mclk_od, |
5563 | .set_mclk_od = vega10_set_mclk_od, |
5564 | .avfs_control = vega10_avfs_enable, |
5565 | .notify_cac_buffer_info = vega10_notify_cac_buffer_info, |
5566 | .get_thermal_temperature_range = vega10_get_thermal_temperature_range, |
5567 | .register_irq_handlers = smu9_register_irq_handlers, |
5568 | .start_thermal_controller = vega10_start_thermal_controller, |
5569 | .get_power_profile_mode = vega10_get_power_profile_mode, |
5570 | .set_power_profile_mode = vega10_set_power_profile_mode, |
5571 | .set_power_limit = vega10_set_power_limit, |
5572 | .odn_edit_dpm_table = vega10_odn_edit_dpm_table, |
5573 | .get_performance_level = vega10_get_performance_level, |
5574 | .get_asic_baco_capability = smu9_baco_get_capability, |
5575 | .get_asic_baco_state = smu9_baco_get_state, |
5576 | .set_asic_baco_state = vega10_baco_set_state, |
5577 | .enable_mgpu_fan_boost = vega10_enable_mgpu_fan_boost, |
5578 | .get_ppfeature_status = vega10_get_ppfeature_status, |
5579 | .set_ppfeature_status = vega10_set_ppfeature_status, |
5580 | .set_mp1_state = vega10_set_mp1_state, |
5581 | .disable_power_features_for_compute_performance = |
5582 | vega10_disable_power_features_for_compute_performance, |
5583 | }; |
5584 | |
5585 | int vega10_hwmgr_init(struct pp_hwmgr *hwmgr) |
5586 | { |
5587 | struct amdgpu_device *adev = hwmgr->adev; |
5588 | |
5589 | hwmgr->hwmgr_func = &vega10_hwmgr_funcs; |
5590 | hwmgr->pptable_func = &vega10_pptable_funcs; |
5591 | if (amdgpu_passthrough(adev)((adev)->virt.caps & (1 << 3))) |
5592 | return vega10_baco_set_cap(hwmgr); |
5593 | |
5594 | return 0; |
5595 | } |