File: | dev/pci/drm/amd/pm/powerplay/smumgr/polaris10_smumgr.c |
Warning: | line 573, column 11 Value stored to 'lo_sidd' during its initialization is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* |
2 | * Copyright 2015 Advanced Micro Devices, Inc. |
3 | * |
4 | * Permission is hereby granted, free of charge, to any person obtaining a |
5 | * copy of this software and associated documentation files (the "Software"), |
6 | * to deal in the Software without restriction, including without limitation |
7 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
8 | * and/or sell copies of the Software, and to permit persons to whom the |
9 | * Software is furnished to do so, subject to the following conditions: |
10 | * |
11 | * The above copyright notice and this permission notice shall be included in |
12 | * all copies or substantial portions of the Software. |
13 | * |
14 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
15 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
16 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
17 | * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
18 | * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
19 | * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
20 | * OTHER DEALINGS IN THE SOFTWARE. |
21 | * |
22 | */ |
23 | |
24 | #include <linux/pci.h> |
25 | |
26 | #include "pp_debug.h" |
27 | #include "smumgr.h" |
28 | #include "smu74.h" |
29 | #include "smu_ucode_xfer_vi.h" |
30 | #include "polaris10_smumgr.h" |
31 | #include "smu74_discrete.h" |
32 | #include "smu/smu_7_1_3_d.h" |
33 | #include "smu/smu_7_1_3_sh_mask.h" |
34 | #include "gmc/gmc_8_1_d.h" |
35 | #include "gmc/gmc_8_1_sh_mask.h" |
36 | #include "oss/oss_3_0_d.h" |
37 | #include "gca/gfx_8_0_d.h" |
38 | #include "bif/bif_5_0_d.h" |
39 | #include "bif/bif_5_0_sh_mask.h" |
40 | #include "ppatomctrl.h" |
41 | #include "cgs_common.h" |
42 | #include "smu7_ppsmc.h" |
43 | #include "smu7_smumgr.h" |
44 | |
45 | #include "smu7_dyn_defaults.h" |
46 | |
47 | #include "smu7_hwmgr.h" |
48 | #include "hardwaremanager.h" |
49 | #include "atombios.h" |
50 | #include "pppcielanes.h" |
51 | |
52 | #include "dce/dce_10_0_d.h" |
53 | #include "dce/dce_10_0_sh_mask.h" |
54 | |
55 | #define POLARIS10_SMC_SIZE0x20000 0x20000 |
56 | #define POWERTUNE_DEFAULT_SET_MAX1 1 |
57 | #define VDDC_VDDCI_DELTA200 200 |
58 | #define MC_CG_ARB_FREQ_F10x0b 0x0b |
59 | |
60 | static const struct polaris10_pt_defaults polaris10_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX1] = { |
61 | /* sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt, |
62 | * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT */ |
63 | { 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000, |
64 | { 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61}, |
65 | { 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 } }, |
66 | }; |
67 | |
68 | static const sclkFcwRange_t Range_Table[NUM_SCLK_RANGE8] = { |
69 | {VCO_2_43, POSTDIV_DIV_BY_164, 75, 160, 112}, |
70 | {VCO_3_61, POSTDIV_DIV_BY_164, 112, 224, 160}, |
71 | {VCO_2_43, POSTDIV_DIV_BY_83, 75, 160, 112}, |
72 | {VCO_3_61, POSTDIV_DIV_BY_83, 112, 224, 160}, |
73 | {VCO_2_43, POSTDIV_DIV_BY_42, 75, 160, 112}, |
74 | {VCO_3_61, POSTDIV_DIV_BY_42, 112, 216, 160}, |
75 | {VCO_2_43, POSTDIV_DIV_BY_21, 75, 160, 108}, |
76 | {VCO_3_61, POSTDIV_DIV_BY_21, 112, 216, 160} }; |
77 | |
78 | #define PPPOLARIS10_TARGETACTIVITY_DFLT50 50 |
79 | |
80 | static const SMU74_Discrete_GraphicsLevel avfs_graphics_level_polaris10[8] = { |
81 | /* Min pcie DeepSleep Activity CgSpll CgSpll CcPwr CcPwr Sclk Enabled Enabled Voltage Power */ |
82 | /* Voltage, DpmLevel, DivId, Level, FuncCntl3, FuncCntl4, DynRm, DynRm1 Did, Padding,ForActivity, ForThrottle, UpHyst, DownHyst, DownHyst, Throttle */ |
83 | { 0x100ea446, 0x00, 0x03, 0x3200, 0, 0, 0, 0, 0, 0, 0x01, 0x01, 0x0a, 0x00, 0x00, 0x00, { 0x30750000, 0x3000, 0, 0x2600, 0, 0, 0x0004, 0x8f02, 0xffff, 0x2f00, 0x300e, 0x2700 } }, |
84 | { 0x400ea446, 0x01, 0x04, 0x3200, 0, 0, 0, 0, 0, 0, 0x01, 0x01, 0x0a, 0x00, 0x00, 0x00, { 0x409c0000, 0x2000, 0, 0x1e00, 1, 1, 0x0004, 0x8300, 0xffff, 0x1f00, 0xcb5e, 0x1a00 } }, |
85 | { 0x740ea446, 0x01, 0x00, 0x3200, 0, 0, 0, 0, 0, 0, 0x01, 0x01, 0x0a, 0x00, 0x00, 0x00, { 0x50c30000, 0x2800, 0, 0x2000, 1, 1, 0x0004, 0x0c02, 0xffff, 0x2700, 0x6433, 0x2100 } }, |
86 | { 0xa40ea446, 0x01, 0x00, 0x3200, 0, 0, 0, 0, 0, 0, 0x01, 0x01, 0x0a, 0x00, 0x00, 0x00, { 0x60ea0000, 0x3000, 0, 0x2600, 1, 1, 0x0004, 0x8f02, 0xffff, 0x2f00, 0x300e, 0x2700 } }, |
87 | { 0xd80ea446, 0x01, 0x00, 0x3200, 0, 0, 0, 0, 0, 0, 0x01, 0x01, 0x0a, 0x00, 0x00, 0x00, { 0x70110100, 0x3800, 0, 0x2c00, 1, 1, 0x0004, 0x1203, 0xffff, 0x3600, 0xc9e2, 0x2e00 } }, |
88 | { 0x3c0fa446, 0x01, 0x00, 0x3200, 0, 0, 0, 0, 0, 0, 0x01, 0x01, 0x0a, 0x00, 0x00, 0x00, { 0x80380100, 0x2000, 0, 0x1e00, 2, 1, 0x0004, 0x8300, 0xffff, 0x1f00, 0xcb5e, 0x1a00 } }, |
89 | { 0x6c0fa446, 0x01, 0x00, 0x3200, 0, 0, 0, 0, 0, 0, 0x01, 0x01, 0x0a, 0x00, 0x00, 0x00, { 0x905f0100, 0x2400, 0, 0x1e00, 2, 1, 0x0004, 0x8901, 0xffff, 0x2300, 0x314c, 0x1d00 } }, |
90 | { 0xa00fa446, 0x01, 0x00, 0x3200, 0, 0, 0, 0, 0, 0, 0x01, 0x01, 0x0a, 0x00, 0x00, 0x00, { 0xa0860100, 0x2800, 0, 0x2000, 2, 1, 0x0004, 0x0c02, 0xffff, 0x2700, 0x6433, 0x2100 } } |
91 | }; |
92 | |
93 | static const SMU74_Discrete_MemoryLevel avfs_memory_level_polaris10 = { |
94 | 0x100ea446, 0, 0x30750000, 0x01, 0x01, 0x01, 0x00, 0x00, 0x64, 0x00, 0x00, 0x1f00, 0x00, 0x00}; |
95 | |
96 | static int polaris10_perform_btc(struct pp_hwmgr *hwmgr) |
97 | { |
98 | int result = 0; |
99 | struct smu7_smumgr *smu_data = (struct smu7_smumgr *)(hwmgr->smu_backend); |
100 | |
101 | if (0 != smu_data->avfs_btc_param) { |
102 | if (0 != smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_PerformBtc((uint16_t) 0x26C), smu_data->avfs_btc_param, |
103 | NULL((void *)0))) { |
104 | pr_info("[AVFS][SmuPolaris10_PerformBtc] PerformBTC SMU msg failed")do { } while(0); |
105 | result = -1; |
106 | } |
107 | } |
108 | if (smu_data->avfs_btc_param > 1) { |
109 | /* Soft-Reset to reset the engine before loading uCode */ |
110 | /* halt */ |
111 | cgs_write_register(hwmgr->device, mmCP_MEC_CNTL, 0x50000000)(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0x208d,0x50000000)); |
112 | /* reset everything */ |
113 | cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0xffffffff)(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0x2008,0xffffffff)); |
114 | cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0)(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0x2008,0)); |
115 | } |
116 | return result; |
117 | } |
118 | |
119 | |
120 | static int polaris10_setup_graphics_level_structure(struct pp_hwmgr *hwmgr) |
121 | { |
122 | uint32_t vr_config; |
123 | uint32_t dpm_table_start; |
124 | |
125 | uint16_t u16_boot_mvdd; |
126 | uint32_t graphics_level_address, vr_config_address, graphics_level_size; |
127 | |
128 | graphics_level_size = sizeof(avfs_graphics_level_polaris10); |
129 | u16_boot_mvdd = PP_HOST_TO_SMC_US(1300 * VOLTAGE_SCALE)(__uint16_t)(__builtin_constant_p(1300 * 4) ? (__uint16_t)((( __uint16_t)(1300 * 4) & 0xffU) << 8 | ((__uint16_t) (1300 * 4) & 0xff00U) >> 8) : __swap16md(1300 * 4)); |
130 | |
131 | PP_ASSERT_WITH_CODE(0 == smu7_read_smc_sram_dword(hwmgr,do { if (!(0 == smu7_read_smc_sram_dword(hwmgr, 0x20000 + __builtin_offsetof (SMU74_Firmware_Header, DpmTable), &dpm_table_start, 0x40000 ))) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Polaris10_SetupGfxLvlStruct] SMU could not communicate starting address of DPM table" ); return -1; } } while (0) |
132 | SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU74_Firmware_Header, DpmTable),do { if (!(0 == smu7_read_smc_sram_dword(hwmgr, 0x20000 + __builtin_offsetof (SMU74_Firmware_Header, DpmTable), &dpm_table_start, 0x40000 ))) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Polaris10_SetupGfxLvlStruct] SMU could not communicate starting address of DPM table" ); return -1; } } while (0) |
133 | &dpm_table_start, 0x40000),do { if (!(0 == smu7_read_smc_sram_dword(hwmgr, 0x20000 + __builtin_offsetof (SMU74_Firmware_Header, DpmTable), &dpm_table_start, 0x40000 ))) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Polaris10_SetupGfxLvlStruct] SMU could not communicate starting address of DPM table" ); return -1; } } while (0) |
134 | "[AVFS][Polaris10_SetupGfxLvlStruct] SMU could not communicate starting address of DPM table",do { if (!(0 == smu7_read_smc_sram_dword(hwmgr, 0x20000 + __builtin_offsetof (SMU74_Firmware_Header, DpmTable), &dpm_table_start, 0x40000 ))) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Polaris10_SetupGfxLvlStruct] SMU could not communicate starting address of DPM table" ); return -1; } } while (0) |
135 | return -1)do { if (!(0 == smu7_read_smc_sram_dword(hwmgr, 0x20000 + __builtin_offsetof (SMU74_Firmware_Header, DpmTable), &dpm_table_start, 0x40000 ))) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Polaris10_SetupGfxLvlStruct] SMU could not communicate starting address of DPM table" ); return -1; } } while (0); |
136 | |
137 | /* Default value for VRConfig = VR_MERGED_WITH_VDDC + VR_STATIC_VOLTAGE(VDDCI) */ |
138 | vr_config = 0x01000500; /* Real value:0x50001 */ |
139 | |
140 | vr_config_address = dpm_table_start + offsetof(SMU74_Discrete_DpmTable, VRConfig)__builtin_offsetof(SMU74_Discrete_DpmTable, VRConfig); |
141 | |
142 | PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, vr_config_address,do { if (!(0 == smu7_copy_bytes_to_smc(hwmgr, vr_config_address , (uint8_t *)&vr_config, sizeof(uint32_t), 0x40000))) { printk ("\0014" "amdgpu: " "%s\n", "[AVFS][Polaris10_SetupGfxLvlStruct] Problems copying VRConfig value over to SMC" ); return -1; } } while (0) |
143 | (uint8_t *)&vr_config, sizeof(uint32_t), 0x40000),do { if (!(0 == smu7_copy_bytes_to_smc(hwmgr, vr_config_address , (uint8_t *)&vr_config, sizeof(uint32_t), 0x40000))) { printk ("\0014" "amdgpu: " "%s\n", "[AVFS][Polaris10_SetupGfxLvlStruct] Problems copying VRConfig value over to SMC" ); return -1; } } while (0) |
144 | "[AVFS][Polaris10_SetupGfxLvlStruct] Problems copying VRConfig value over to SMC",do { if (!(0 == smu7_copy_bytes_to_smc(hwmgr, vr_config_address , (uint8_t *)&vr_config, sizeof(uint32_t), 0x40000))) { printk ("\0014" "amdgpu: " "%s\n", "[AVFS][Polaris10_SetupGfxLvlStruct] Problems copying VRConfig value over to SMC" ); return -1; } } while (0) |
145 | return -1)do { if (!(0 == smu7_copy_bytes_to_smc(hwmgr, vr_config_address , (uint8_t *)&vr_config, sizeof(uint32_t), 0x40000))) { printk ("\0014" "amdgpu: " "%s\n", "[AVFS][Polaris10_SetupGfxLvlStruct] Problems copying VRConfig value over to SMC" ); return -1; } } while (0); |
146 | |
147 | graphics_level_address = dpm_table_start + offsetof(SMU74_Discrete_DpmTable, GraphicsLevel)__builtin_offsetof(SMU74_Discrete_DpmTable, GraphicsLevel); |
148 | |
149 | PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, graphics_level_address,do { if (!(0 == smu7_copy_bytes_to_smc(hwmgr, graphics_level_address , (uint8_t *)(&avfs_graphics_level_polaris10), graphics_level_size , 0x40000))) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Polaris10_SetupGfxLvlStruct] Copying of SCLK DPM table failed!" ); return -1; } } while (0) |
150 | (uint8_t *)(&avfs_graphics_level_polaris10),do { if (!(0 == smu7_copy_bytes_to_smc(hwmgr, graphics_level_address , (uint8_t *)(&avfs_graphics_level_polaris10), graphics_level_size , 0x40000))) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Polaris10_SetupGfxLvlStruct] Copying of SCLK DPM table failed!" ); return -1; } } while (0) |
151 | graphics_level_size, 0x40000),do { if (!(0 == smu7_copy_bytes_to_smc(hwmgr, graphics_level_address , (uint8_t *)(&avfs_graphics_level_polaris10), graphics_level_size , 0x40000))) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Polaris10_SetupGfxLvlStruct] Copying of SCLK DPM table failed!" ); return -1; } } while (0) |
152 | "[AVFS][Polaris10_SetupGfxLvlStruct] Copying of SCLK DPM table failed!",do { if (!(0 == smu7_copy_bytes_to_smc(hwmgr, graphics_level_address , (uint8_t *)(&avfs_graphics_level_polaris10), graphics_level_size , 0x40000))) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Polaris10_SetupGfxLvlStruct] Copying of SCLK DPM table failed!" ); return -1; } } while (0) |
153 | return -1)do { if (!(0 == smu7_copy_bytes_to_smc(hwmgr, graphics_level_address , (uint8_t *)(&avfs_graphics_level_polaris10), graphics_level_size , 0x40000))) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Polaris10_SetupGfxLvlStruct] Copying of SCLK DPM table failed!" ); return -1; } } while (0); |
154 | |
155 | graphics_level_address = dpm_table_start + offsetof(SMU74_Discrete_DpmTable, MemoryLevel)__builtin_offsetof(SMU74_Discrete_DpmTable, MemoryLevel); |
156 | |
157 | PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, graphics_level_address,do { if (!(0 == smu7_copy_bytes_to_smc(hwmgr, graphics_level_address , (uint8_t *)(&avfs_memory_level_polaris10), sizeof(avfs_memory_level_polaris10 ), 0x40000))) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Polaris10_SetupGfxLvlStruct] Copying of MCLK DPM table failed!" ); return -1; } } while (0) |
158 | (uint8_t *)(&avfs_memory_level_polaris10), sizeof(avfs_memory_level_polaris10), 0x40000),do { if (!(0 == smu7_copy_bytes_to_smc(hwmgr, graphics_level_address , (uint8_t *)(&avfs_memory_level_polaris10), sizeof(avfs_memory_level_polaris10 ), 0x40000))) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Polaris10_SetupGfxLvlStruct] Copying of MCLK DPM table failed!" ); return -1; } } while (0) |
159 | "[AVFS][Polaris10_SetupGfxLvlStruct] Copying of MCLK DPM table failed!",do { if (!(0 == smu7_copy_bytes_to_smc(hwmgr, graphics_level_address , (uint8_t *)(&avfs_memory_level_polaris10), sizeof(avfs_memory_level_polaris10 ), 0x40000))) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Polaris10_SetupGfxLvlStruct] Copying of MCLK DPM table failed!" ); return -1; } } while (0) |
160 | return -1)do { if (!(0 == smu7_copy_bytes_to_smc(hwmgr, graphics_level_address , (uint8_t *)(&avfs_memory_level_polaris10), sizeof(avfs_memory_level_polaris10 ), 0x40000))) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Polaris10_SetupGfxLvlStruct] Copying of MCLK DPM table failed!" ); return -1; } } while (0); |
161 | |
162 | /* MVDD Boot value - neccessary for getting rid of the hang that occurs during Mclk DPM enablement */ |
163 | |
164 | graphics_level_address = dpm_table_start + offsetof(SMU74_Discrete_DpmTable, BootMVdd)__builtin_offsetof(SMU74_Discrete_DpmTable, BootMVdd); |
165 | |
166 | PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, graphics_level_address,do { if (!(0 == smu7_copy_bytes_to_smc(hwmgr, graphics_level_address , (uint8_t *)(&u16_boot_mvdd), sizeof(u16_boot_mvdd), 0x40000 ))) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Polaris10_SetupGfxLvlStruct] Copying of DPM table failed!" ); return -1; } } while (0) |
167 | (uint8_t *)(&u16_boot_mvdd), sizeof(u16_boot_mvdd), 0x40000),do { if (!(0 == smu7_copy_bytes_to_smc(hwmgr, graphics_level_address , (uint8_t *)(&u16_boot_mvdd), sizeof(u16_boot_mvdd), 0x40000 ))) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Polaris10_SetupGfxLvlStruct] Copying of DPM table failed!" ); return -1; } } while (0) |
168 | "[AVFS][Polaris10_SetupGfxLvlStruct] Copying of DPM table failed!",do { if (!(0 == smu7_copy_bytes_to_smc(hwmgr, graphics_level_address , (uint8_t *)(&u16_boot_mvdd), sizeof(u16_boot_mvdd), 0x40000 ))) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Polaris10_SetupGfxLvlStruct] Copying of DPM table failed!" ); return -1; } } while (0) |
169 | return -1)do { if (!(0 == smu7_copy_bytes_to_smc(hwmgr, graphics_level_address , (uint8_t *)(&u16_boot_mvdd), sizeof(u16_boot_mvdd), 0x40000 ))) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Polaris10_SetupGfxLvlStruct] Copying of DPM table failed!" ); return -1; } } while (0); |
170 | |
171 | return 0; |
172 | } |
173 | |
174 | |
175 | static int polaris10_avfs_event_mgr(struct pp_hwmgr *hwmgr) |
176 | { |
177 | struct smu7_smumgr *smu_data = (struct smu7_smumgr *)(hwmgr->smu_backend); |
178 | |
179 | if (!hwmgr->avfs_supported) |
180 | return 0; |
181 | |
182 | PP_ASSERT_WITH_CODE(0 == polaris10_setup_graphics_level_structure(hwmgr),do { if (!(0 == polaris10_setup_graphics_level_structure(hwmgr ))) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Polaris10_AVFSEventMgr] Could not Copy Graphics Level table over to SMU" ); return -22; } } while (0) |
183 | "[AVFS][Polaris10_AVFSEventMgr] Could not Copy Graphics Level table over to SMU",do { if (!(0 == polaris10_setup_graphics_level_structure(hwmgr ))) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Polaris10_AVFSEventMgr] Could not Copy Graphics Level table over to SMU" ); return -22; } } while (0) |
184 | return -EINVAL)do { if (!(0 == polaris10_setup_graphics_level_structure(hwmgr ))) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Polaris10_AVFSEventMgr] Could not Copy Graphics Level table over to SMU" ); return -22; } } while (0); |
185 | |
186 | if (smu_data->avfs_btc_param > 1) { |
187 | pr_info("[AVFS][Polaris10_AVFSEventMgr] AC BTC has not been successfully verified on Fiji. There may be in this setting.")do { } while(0); |
188 | PP_ASSERT_WITH_CODE(0 == smu7_setup_pwr_virus(hwmgr),do { if (!(0 == smu7_setup_pwr_virus(hwmgr))) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Polaris10_AVFSEventMgr] Could not setup Pwr Virus for AVFS " ); return -22; } } while (0) |
189 | "[AVFS][Polaris10_AVFSEventMgr] Could not setup Pwr Virus for AVFS ",do { if (!(0 == smu7_setup_pwr_virus(hwmgr))) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Polaris10_AVFSEventMgr] Could not setup Pwr Virus for AVFS " ); return -22; } } while (0) |
190 | return -EINVAL)do { if (!(0 == smu7_setup_pwr_virus(hwmgr))) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Polaris10_AVFSEventMgr] Could not setup Pwr Virus for AVFS " ); return -22; } } while (0); |
191 | } |
192 | |
193 | PP_ASSERT_WITH_CODE(0 == polaris10_perform_btc(hwmgr),do { if (!(0 == polaris10_perform_btc(hwmgr))) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Polaris10_AVFSEventMgr] Failure at SmuPolaris10_PerformBTC. AVFS Disabled" ); return -22; } } while (0) |
194 | "[AVFS][Polaris10_AVFSEventMgr] Failure at SmuPolaris10_PerformBTC. AVFS Disabled",do { if (!(0 == polaris10_perform_btc(hwmgr))) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Polaris10_AVFSEventMgr] Failure at SmuPolaris10_PerformBTC. AVFS Disabled" ); return -22; } } while (0) |
195 | return -EINVAL)do { if (!(0 == polaris10_perform_btc(hwmgr))) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Polaris10_AVFSEventMgr] Failure at SmuPolaris10_PerformBTC. AVFS Disabled" ); return -22; } } while (0); |
196 | |
197 | return 0; |
198 | } |
199 | |
200 | static int polaris10_start_smu_in_protection_mode(struct pp_hwmgr *hwmgr) |
201 | { |
202 | int result = 0; |
203 | |
204 | /* Wait for smc boot up */ |
205 | /* PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(smumgr, SMC_IND, RCU_UC_EVENTS, boot_seq_done, 0) */ |
206 | |
207 | /* Assert reset */ |
208 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((1) << 0x0))))) |
209 | SMC_SYSCON_RESET_CNTL, rst_reg, 1)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((1) << 0x0))))); |
210 | |
211 | result = smu7_upload_smu_firmware_image(hwmgr); |
212 | if (result != 0) |
213 | return result; |
214 | |
215 | /* Clear status */ |
216 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMU_STATUS, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xe0003088,0)); |
217 | |
218 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000004,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000004))) & ~0x1) | (0x1 & ((0) << 0x0))))) |
219 | SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000004,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000004))) & ~0x1) | (0x1 & ((0) << 0x0))))); |
220 | |
221 | /* De-assert reset */ |
222 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((0) << 0x0))))) |
223 | SMC_SYSCON_RESET_CNTL, rst_reg, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((0) << 0x0))))); |
224 | |
225 | |
226 | PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS, INTERRUPTS_ENABLED, 1)phm_wait_on_indirect_register(hwmgr, 0x1AC, 0xc0000004, (1) << 0x10, 0x10000); |
227 | |
228 | |
229 | /* Call Test SMU message with 0x20000 offset to trigger SMU start */ |
230 | smu7_send_msg_to_smc_offset(hwmgr); |
231 | |
232 | /* Wait done bit to be set */ |
233 | /* Check pass/failed indicator */ |
234 | |
235 | PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, SMU_STATUS, SMU_DONE, 0)phm_wait_for_indirect_register_unequal(hwmgr, 0x1AC, 0xe0003088 , (0) << 0x0, 0x1); |
236 | |
237 | if (1 != PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xe0003088))) & 0x2) >> 0x1) |
238 | SMU_STATUS, SMU_PASS)((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xe0003088))) & 0x2) >> 0x1)) |
239 | PP_ASSERT_WITH_CODE(false, "SMU Firmware start failed!", return -1)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "SMU Firmware start failed!" ); return -1; } } while (0); |
240 | |
241 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixFIRMWARE_FLAGS, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x3f000,0)); |
242 | |
243 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((1) << 0x0))))) |
244 | SMC_SYSCON_RESET_CNTL, rst_reg, 1)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((1) << 0x0))))); |
245 | |
246 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((0) << 0x0))))) |
247 | SMC_SYSCON_RESET_CNTL, rst_reg, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((0) << 0x0))))); |
248 | |
249 | /* Wait for firmware to initialize */ |
250 | PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1)phm_wait_on_indirect_register(hwmgr, 0x1AC, 0x3f000, (1) << 0x0, 0x1); |
251 | |
252 | return result; |
253 | } |
254 | |
255 | static int polaris10_start_smu_in_non_protection_mode(struct pp_hwmgr *hwmgr) |
256 | { |
257 | int result = 0; |
258 | |
259 | /* wait for smc boot up */ |
260 | PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, RCU_UC_EVENTS, boot_seq_done, 0)phm_wait_for_indirect_register_unequal(hwmgr, 0x1AC, 0xc0000004 , (0) << 0x7, 0x80); |
261 | |
262 | /* Clear firmware interrupt enable flag */ |
263 | /* PHM_WRITE_VFPF_INDIRECT_FIELD(pSmuMgr, SMC_IND, SMC_SYSCON_MISC_CNTL, pre_fetcher_en, 1); */ |
264 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x3f000,0)) |
265 | ixFIRMWARE_FLAGS, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x3f000,0)); |
266 | |
267 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((1) << 0x0))))) |
268 | SMC_SYSCON_RESET_CNTL,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((1) << 0x0))))) |
269 | rst_reg, 1)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((1) << 0x0))))); |
270 | |
271 | result = smu7_upload_smu_firmware_image(hwmgr); |
272 | if (result != 0) |
273 | return result; |
274 | |
275 | /* Set smc instruct start point at 0x0 */ |
276 | smu7_program_jump_on_start(hwmgr); |
277 | |
278 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000004,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000004))) & ~0x1) | (0x1 & ((0) << 0x0))))) |
279 | SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000004,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000004))) & ~0x1) | (0x1 & ((0) << 0x0))))); |
280 | |
281 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((0) << 0x0))))) |
282 | SMC_SYSCON_RESET_CNTL, rst_reg, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((0) << 0x0))))); |
283 | |
284 | /* Wait for firmware to initialize */ |
285 | |
286 | PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,phm_wait_on_indirect_register(hwmgr, 0x1AC, 0x3f000, (1) << 0x0, 0x1) |
287 | FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1)phm_wait_on_indirect_register(hwmgr, 0x1AC, 0x3f000, (1) << 0x0, 0x1); |
288 | |
289 | return result; |
290 | } |
291 | |
292 | static int polaris10_start_smu(struct pp_hwmgr *hwmgr) |
293 | { |
294 | int result = 0; |
295 | struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); |
296 | |
297 | /* Only start SMC if SMC RAM is not running */ |
298 | if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) { |
299 | smu_data->protected_mode = (uint8_t) (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMU_FIRMWARE, SMU_MODE)((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xe00030a4))) & 0x10000 ) >> 0x10)); |
300 | smu_data->smu7_data.security_hard_key = (uint8_t) (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMU_FIRMWARE, SMU_SEL)((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xe00030a4))) & 0x20000 ) >> 0x11)); |
301 | |
302 | /* Check if SMU is running in protected mode */ |
303 | if (smu_data->protected_mode == 0) |
304 | result = polaris10_start_smu_in_non_protection_mode(hwmgr); |
305 | else |
306 | result = polaris10_start_smu_in_protection_mode(hwmgr); |
307 | |
308 | if (result != 0) |
309 | PP_ASSERT_WITH_CODE(0, "Failed to load SMU ucode.", return result)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Failed to load SMU ucode." ); return result; } } while (0); |
310 | |
311 | polaris10_avfs_event_mgr(hwmgr); |
312 | } |
313 | |
314 | /* Setup SoftRegsStart here for register lookup in case DummyBackEnd is used and ProcessFirmwareHeader is not executed */ |
315 | smu7_read_smc_sram_dword(hwmgr, SMU7_FIRMWARE_HEADER_LOCATION0x20000 + offsetof(SMU74_Firmware_Header, SoftRegisters)__builtin_offsetof(SMU74_Firmware_Header, SoftRegisters), |
316 | &(smu_data->smu7_data.soft_regs_start), 0x40000); |
317 | |
318 | result = smu7_request_smu_load_fw(hwmgr); |
319 | |
320 | return result; |
321 | } |
322 | |
323 | static bool_Bool polaris10_is_hw_avfs_present(struct pp_hwmgr *hwmgr) |
324 | { |
325 | uint32_t efuse; |
326 | |
327 | efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMU_EFUSE_0 + (49*4))(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0100000 + (49*4))); |
328 | efuse &= 0x00000001; |
329 | if (efuse) |
330 | return true1; |
331 | |
332 | return false0; |
333 | } |
334 | |
335 | static int polaris10_smu_init(struct pp_hwmgr *hwmgr) |
336 | { |
337 | struct polaris10_smumgr *smu_data; |
338 | |
339 | smu_data = kzalloc(sizeof(struct polaris10_smumgr), GFP_KERNEL(0x0001 | 0x0004)); |
340 | if (smu_data == NULL((void *)0)) |
341 | return -ENOMEM12; |
342 | |
343 | hwmgr->smu_backend = smu_data; |
344 | |
345 | if (smu7_init(hwmgr)) { |
346 | kfree(smu_data); |
347 | return -EINVAL22; |
348 | } |
349 | |
350 | return 0; |
351 | } |
352 | |
353 | static int polaris10_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr, |
354 | struct phm_ppt_v1_clock_voltage_dependency_table *dep_table, |
355 | uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd) |
356 | { |
357 | uint32_t i; |
358 | uint16_t vddci; |
359 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
360 | |
361 | *voltage = *mvdd = 0; |
362 | |
363 | /* clock - voltage dependency table is empty table */ |
364 | if (dep_table->count == 0) |
365 | return -EINVAL22; |
366 | |
367 | for (i = 0; i < dep_table->count; i++) { |
368 | /* find first sclk bigger than request */ |
369 | if (dep_table->entries[i].clk >= clock) { |
370 | *voltage |= (dep_table->entries[i].vddc * |
371 | VOLTAGE_SCALE4) << VDDC_SHIFT0; |
372 | if (SMU7_VOLTAGE_CONTROL_NONE0x0 == data->vddci_control) |
373 | *voltage |= (data->vbios_boot_state.vddci_bootup_value * |
374 | VOLTAGE_SCALE4) << VDDCI_SHIFT15; |
375 | else if (dep_table->entries[i].vddci) |
376 | *voltage |= (dep_table->entries[i].vddci * |
377 | VOLTAGE_SCALE4) << VDDCI_SHIFT15; |
378 | else { |
379 | vddci = phm_find_closest_vddci(&(data->vddci_voltage_table), |
380 | (dep_table->entries[i].vddc - |
381 | (uint16_t)VDDC_VDDCI_DELTA200)); |
382 | *voltage |= (vddci * VOLTAGE_SCALE4) << VDDCI_SHIFT15; |
383 | } |
384 | |
385 | if (SMU7_VOLTAGE_CONTROL_NONE0x0 == data->mvdd_control) |
386 | *mvdd = data->vbios_boot_state.mvdd_bootup_value * |
387 | VOLTAGE_SCALE4; |
388 | else if (dep_table->entries[i].mvdd) |
389 | *mvdd = (uint32_t) dep_table->entries[i].mvdd * |
390 | VOLTAGE_SCALE4; |
391 | |
392 | *voltage |= 1 << PHASES_SHIFT30; |
393 | return 0; |
394 | } |
395 | } |
396 | |
397 | /* sclk is bigger than max sclk in the dependence table */ |
398 | *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE4) << VDDC_SHIFT0; |
399 | |
400 | if (SMU7_VOLTAGE_CONTROL_NONE0x0 == data->vddci_control) |
401 | *voltage |= (data->vbios_boot_state.vddci_bootup_value * |
402 | VOLTAGE_SCALE4) << VDDCI_SHIFT15; |
403 | else if (dep_table->entries[i-1].vddci) { |
404 | vddci = phm_find_closest_vddci(&(data->vddci_voltage_table), |
405 | (dep_table->entries[i].vddc - |
406 | (uint16_t)VDDC_VDDCI_DELTA200)); |
407 | *voltage |= (vddci * VOLTAGE_SCALE4) << VDDCI_SHIFT15; |
408 | } |
409 | |
410 | if (SMU7_VOLTAGE_CONTROL_NONE0x0 == data->mvdd_control) |
411 | *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE4; |
412 | else if (dep_table->entries[i].mvdd) |
413 | *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE4; |
414 | |
415 | return 0; |
416 | } |
417 | |
418 | static uint16_t scale_fan_gain_settings(uint16_t raw_setting) |
419 | { |
420 | uint32_t tmp; |
421 | tmp = raw_setting * 4096 / 100; |
422 | return (uint16_t)tmp; |
423 | } |
424 | |
425 | static int polaris10_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr) |
426 | { |
427 | struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); |
428 | |
429 | const struct polaris10_pt_defaults *defaults = smu_data->power_tune_defaults; |
430 | SMU74_Discrete_DpmTable *table = &(smu_data->smc_state_table); |
431 | struct phm_ppt_v1_information *table_info = |
432 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
433 | struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table; |
434 | struct pp_advance_fan_control_parameters *fan_table = |
435 | &hwmgr->thermal_controller.advanceFanControlParameters; |
436 | int i, j, k; |
437 | const uint16_t *pdef1; |
438 | const uint16_t *pdef2; |
439 | |
440 | table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128))(__uint16_t)(__builtin_constant_p((uint16_t)(cac_dtp_table-> usTDP * 128)) ? (__uint16_t)(((__uint16_t)((uint16_t)(cac_dtp_table ->usTDP * 128)) & 0xffU) << 8 | ((__uint16_t)((uint16_t )(cac_dtp_table->usTDP * 128)) & 0xff00U) >> 8) : __swap16md((uint16_t)(cac_dtp_table->usTDP * 128))); |
441 | table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128))(__uint16_t)(__builtin_constant_p((uint16_t)(cac_dtp_table-> usTDP * 128)) ? (__uint16_t)(((__uint16_t)((uint16_t)(cac_dtp_table ->usTDP * 128)) & 0xffU) << 8 | ((__uint16_t)((uint16_t )(cac_dtp_table->usTDP * 128)) & 0xff00U) >> 8) : __swap16md((uint16_t)(cac_dtp_table->usTDP * 128))); |
442 | |
443 | PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,do { if (!(cac_dtp_table->usTargetOperatingTemp <= 255) ) { printk("\0014" "amdgpu: " "%s\n", "Target Operating Temp is out of Range!" ); ; } } while (0) |
444 | "Target Operating Temp is out of Range!",do { if (!(cac_dtp_table->usTargetOperatingTemp <= 255) ) { printk("\0014" "amdgpu: " "%s\n", "Target Operating Temp is out of Range!" ); ; } } while (0) |
445 | )do { if (!(cac_dtp_table->usTargetOperatingTemp <= 255) ) { printk("\0014" "amdgpu: " "%s\n", "Target Operating Temp is out of Range!" ); ; } } while (0); |
446 | |
447 | table->TemperatureLimitEdge = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(cac_dtp_table->usTargetOperatingTemp * 256) ? (__uint16_t)(((__uint16_t)(cac_dtp_table->usTargetOperatingTemp * 256) & 0xffU) << 8 | ((__uint16_t)(cac_dtp_table ->usTargetOperatingTemp * 256) & 0xff00U) >> 8) : __swap16md(cac_dtp_table->usTargetOperatingTemp * 256)) |
448 | cac_dtp_table->usTargetOperatingTemp * 256)(__uint16_t)(__builtin_constant_p(cac_dtp_table->usTargetOperatingTemp * 256) ? (__uint16_t)(((__uint16_t)(cac_dtp_table->usTargetOperatingTemp * 256) & 0xffU) << 8 | ((__uint16_t)(cac_dtp_table ->usTargetOperatingTemp * 256) & 0xff00U) >> 8) : __swap16md(cac_dtp_table->usTargetOperatingTemp * 256)); |
449 | table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(cac_dtp_table->usTemperatureLimitHotspot * 256) ? (__uint16_t)(((__uint16_t)(cac_dtp_table->usTemperatureLimitHotspot * 256) & 0xffU) << 8 | ((__uint16_t)(cac_dtp_table ->usTemperatureLimitHotspot * 256) & 0xff00U) >> 8) : __swap16md(cac_dtp_table->usTemperatureLimitHotspot * 256)) |
450 | cac_dtp_table->usTemperatureLimitHotspot * 256)(__uint16_t)(__builtin_constant_p(cac_dtp_table->usTemperatureLimitHotspot * 256) ? (__uint16_t)(((__uint16_t)(cac_dtp_table->usTemperatureLimitHotspot * 256) & 0xffU) << 8 | ((__uint16_t)(cac_dtp_table ->usTemperatureLimitHotspot * 256) & 0xff00U) >> 8) : __swap16md(cac_dtp_table->usTemperatureLimitHotspot * 256)); |
451 | table->FanGainEdge = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(scale_fan_gain_settings(fan_table ->usFanGainEdge)) ? (__uint16_t)(((__uint16_t)(scale_fan_gain_settings (fan_table->usFanGainEdge)) & 0xffU) << 8 | ((__uint16_t )(scale_fan_gain_settings(fan_table->usFanGainEdge)) & 0xff00U) >> 8) : __swap16md(scale_fan_gain_settings(fan_table ->usFanGainEdge))) |
452 | scale_fan_gain_settings(fan_table->usFanGainEdge))(__uint16_t)(__builtin_constant_p(scale_fan_gain_settings(fan_table ->usFanGainEdge)) ? (__uint16_t)(((__uint16_t)(scale_fan_gain_settings (fan_table->usFanGainEdge)) & 0xffU) << 8 | ((__uint16_t )(scale_fan_gain_settings(fan_table->usFanGainEdge)) & 0xff00U) >> 8) : __swap16md(scale_fan_gain_settings(fan_table ->usFanGainEdge))); |
453 | table->FanGainHotspot = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(scale_fan_gain_settings(fan_table ->usFanGainHotspot)) ? (__uint16_t)(((__uint16_t)(scale_fan_gain_settings (fan_table->usFanGainHotspot)) & 0xffU) << 8 | ( (__uint16_t)(scale_fan_gain_settings(fan_table->usFanGainHotspot )) & 0xff00U) >> 8) : __swap16md(scale_fan_gain_settings (fan_table->usFanGainHotspot))) |
454 | scale_fan_gain_settings(fan_table->usFanGainHotspot))(__uint16_t)(__builtin_constant_p(scale_fan_gain_settings(fan_table ->usFanGainHotspot)) ? (__uint16_t)(((__uint16_t)(scale_fan_gain_settings (fan_table->usFanGainHotspot)) & 0xffU) << 8 | ( (__uint16_t)(scale_fan_gain_settings(fan_table->usFanGainHotspot )) & 0xff00U) >> 8) : __swap16md(scale_fan_gain_settings (fan_table->usFanGainHotspot))); |
455 | |
456 | pdef1 = defaults->BAPMTI_R; |
457 | pdef2 = defaults->BAPMTI_RC; |
458 | |
459 | for (i = 0; i < SMU74_DTE_ITERATIONS5; i++) { |
460 | for (j = 0; j < SMU74_DTE_SOURCES3; j++) { |
461 | for (k = 0; k < SMU74_DTE_SINKS1; k++) { |
462 | table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*pdef1)(__uint16_t)(__builtin_constant_p(*pdef1) ? (__uint16_t)(((__uint16_t )(*pdef1) & 0xffU) << 8 | ((__uint16_t)(*pdef1) & 0xff00U) >> 8) : __swap16md(*pdef1)); |
463 | table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*pdef2)(__uint16_t)(__builtin_constant_p(*pdef2) ? (__uint16_t)(((__uint16_t )(*pdef2) & 0xffU) << 8 | ((__uint16_t)(*pdef2) & 0xff00U) >> 8) : __swap16md(*pdef2)); |
464 | pdef1++; |
465 | pdef2++; |
466 | } |
467 | } |
468 | } |
469 | |
470 | return 0; |
471 | } |
472 | |
473 | static int polaris10_populate_svi_load_line(struct pp_hwmgr *hwmgr) |
474 | { |
475 | struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); |
476 | const struct polaris10_pt_defaults *defaults = smu_data->power_tune_defaults; |
477 | |
478 | smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn; |
479 | smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC; |
480 | smu_data->power_tune_table.SviLoadLineTrimVddC = 3; |
481 | smu_data->power_tune_table.SviLoadLineOffsetVddC = 0; |
482 | |
483 | return 0; |
484 | } |
485 | |
486 | static int polaris10_populate_tdc_limit(struct pp_hwmgr *hwmgr) |
487 | { |
488 | uint16_t tdc_limit; |
489 | struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); |
490 | struct phm_ppt_v1_information *table_info = |
491 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
492 | const struct polaris10_pt_defaults *defaults = smu_data->power_tune_defaults; |
493 | |
494 | tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128); |
495 | smu_data->power_tune_table.TDC_VDDC_PkgLimit = |
496 | CONVERT_FROM_HOST_TO_SMC_US(tdc_limit)((tdc_limit) = (__uint16_t)(__builtin_constant_p(tdc_limit) ? (__uint16_t)(((__uint16_t)(tdc_limit) & 0xffU) << 8 | ((__uint16_t)(tdc_limit) & 0xff00U) >> 8) : __swap16md (tdc_limit))); |
497 | smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc = |
498 | defaults->TDC_VDDC_ThrottleReleaseLimitPerc; |
499 | smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt; |
500 | |
501 | return 0; |
502 | } |
503 | |
504 | static int polaris10_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset) |
505 | { |
506 | struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); |
507 | const struct polaris10_pt_defaults *defaults = smu_data->power_tune_defaults; |
508 | uint32_t temp; |
509 | |
510 | if (smu7_read_smc_sram_dword(hwmgr, |
511 | fuse_table_offset + |
512 | offsetof(SMU74_Discrete_PmFuses, TdcWaterfallCtl)__builtin_offsetof(SMU74_Discrete_PmFuses, TdcWaterfallCtl), |
513 | (uint32_t *)&temp, SMC_RAM_END0x40000)) |
514 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!" ); return -22; } } while (0) |
515 | "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!" ); return -22; } } while (0) |
516 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!" ); return -22; } } while (0); |
517 | else { |
518 | smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl; |
519 | smu_data->power_tune_table.LPMLTemperatureMin = |
520 | (uint8_t)((temp >> 16) & 0xff); |
521 | smu_data->power_tune_table.LPMLTemperatureMax = |
522 | (uint8_t)((temp >> 8) & 0xff); |
523 | smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff); |
524 | } |
525 | return 0; |
526 | } |
527 | |
528 | static int polaris10_populate_temperature_scaler(struct pp_hwmgr *hwmgr) |
529 | { |
530 | int i; |
531 | struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); |
532 | |
533 | /* Currently not used. Set all to zero. */ |
534 | for (i = 0; i < 16; i++) |
535 | smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0; |
536 | |
537 | return 0; |
538 | } |
539 | |
540 | static int polaris10_populate_fuzzy_fan(struct pp_hwmgr *hwmgr) |
541 | { |
542 | struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); |
543 | |
544 | /* TO DO move to hwmgr */ |
545 | if ((hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity & (1 << 15)) |
546 | || 0 == hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity) |
547 | hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity = |
548 | hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity; |
549 | |
550 | smu_data->power_tune_table.FuzzyFan_PwmSetDelta = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(hwmgr->thermal_controller .advanceFanControlParameters.usFanOutputSensitivity) ? (__uint16_t )(((__uint16_t)(hwmgr->thermal_controller.advanceFanControlParameters .usFanOutputSensitivity) & 0xffU) << 8 | ((__uint16_t )(hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity ) & 0xff00U) >> 8) : __swap16md(hwmgr->thermal_controller .advanceFanControlParameters.usFanOutputSensitivity)) |
551 | hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity)(__uint16_t)(__builtin_constant_p(hwmgr->thermal_controller .advanceFanControlParameters.usFanOutputSensitivity) ? (__uint16_t )(((__uint16_t)(hwmgr->thermal_controller.advanceFanControlParameters .usFanOutputSensitivity) & 0xffU) << 8 | ((__uint16_t )(hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity ) & 0xff00U) >> 8) : __swap16md(hwmgr->thermal_controller .advanceFanControlParameters.usFanOutputSensitivity)); |
552 | return 0; |
553 | } |
554 | |
555 | static int polaris10_populate_gnb_lpml(struct pp_hwmgr *hwmgr) |
556 | { |
557 | int i; |
558 | struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); |
559 | |
560 | /* Currently not used. Set all to zero. */ |
561 | for (i = 0; i < 16; i++) |
562 | smu_data->power_tune_table.GnbLPML[i] = 0; |
563 | |
564 | return 0; |
565 | } |
566 | |
567 | static int polaris10_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr) |
568 | { |
569 | struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); |
570 | struct phm_ppt_v1_information *table_info = |
571 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
572 | uint16_t hi_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd; |
573 | uint16_t lo_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd; |
Value stored to 'lo_sidd' during its initialization is never read | |
574 | struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table; |
575 | |
576 | hi_sidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256); |
577 | lo_sidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256); |
578 | |
579 | smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd = |
580 | CONVERT_FROM_HOST_TO_SMC_US(hi_sidd)((hi_sidd) = (__uint16_t)(__builtin_constant_p(hi_sidd) ? (__uint16_t )(((__uint16_t)(hi_sidd) & 0xffU) << 8 | ((__uint16_t )(hi_sidd) & 0xff00U) >> 8) : __swap16md(hi_sidd))); |
581 | smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd = |
582 | CONVERT_FROM_HOST_TO_SMC_US(lo_sidd)((lo_sidd) = (__uint16_t)(__builtin_constant_p(lo_sidd) ? (__uint16_t )(((__uint16_t)(lo_sidd) & 0xffU) << 8 | ((__uint16_t )(lo_sidd) & 0xff00U) >> 8) : __swap16md(lo_sidd))); |
583 | |
584 | return 0; |
585 | } |
586 | |
587 | static int polaris10_populate_pm_fuses(struct pp_hwmgr *hwmgr) |
588 | { |
589 | struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); |
590 | uint32_t pm_fuse_table_offset; |
591 | |
592 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
593 | PHM_PlatformCaps_PowerContainment)) { |
594 | if (smu7_read_smc_sram_dword(hwmgr, |
595 | SMU7_FIRMWARE_HEADER_LOCATION0x20000 + |
596 | offsetof(SMU74_Firmware_Header, PmFuseTable)__builtin_offsetof(SMU74_Firmware_Header, PmFuseTable), |
597 | &pm_fuse_table_offset, SMC_RAM_END0x40000)) |
598 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to get pm_fuse_table_offset Failed!" ); return -22; } } while (0) |
599 | "Attempt to get pm_fuse_table_offset Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to get pm_fuse_table_offset Failed!" ); return -22; } } while (0) |
600 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to get pm_fuse_table_offset Failed!" ); return -22; } } while (0); |
601 | |
602 | if (polaris10_populate_svi_load_line(hwmgr)) |
603 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate SviLoadLine Failed!" ); return -22; } } while (0) |
604 | "Attempt to populate SviLoadLine Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate SviLoadLine Failed!" ); return -22; } } while (0) |
605 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate SviLoadLine Failed!" ); return -22; } } while (0); |
606 | |
607 | if (polaris10_populate_tdc_limit(hwmgr)) |
608 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate TDCLimit Failed!" ); return -22; } } while (0) |
609 | "Attempt to populate TDCLimit Failed!", return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate TDCLimit Failed!" ); return -22; } } while (0); |
610 | |
611 | if (polaris10_populate_dw8(hwmgr, pm_fuse_table_offset)) |
612 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate TdcWaterfallCtl, " "LPMLTemperature Min and Max Failed!"); return -22; } } while (0) |
613 | "Attempt to populate TdcWaterfallCtl, "do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate TdcWaterfallCtl, " "LPMLTemperature Min and Max Failed!"); return -22; } } while (0) |
614 | "LPMLTemperature Min and Max Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate TdcWaterfallCtl, " "LPMLTemperature Min and Max Failed!"); return -22; } } while (0) |
615 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate TdcWaterfallCtl, " "LPMLTemperature Min and Max Failed!"); return -22; } } while (0); |
616 | |
617 | if (0 != polaris10_populate_temperature_scaler(hwmgr)) |
618 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate LPMLTemperatureScaler Failed!" ); return -22; } } while (0) |
619 | "Attempt to populate LPMLTemperatureScaler Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate LPMLTemperatureScaler Failed!" ); return -22; } } while (0) |
620 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate LPMLTemperatureScaler Failed!" ); return -22; } } while (0); |
621 | |
622 | if (polaris10_populate_fuzzy_fan(hwmgr)) |
623 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate Fuzzy Fan Control parameters Failed!" ); return -22; } } while (0) |
624 | "Attempt to populate Fuzzy Fan Control parameters Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate Fuzzy Fan Control parameters Failed!" ); return -22; } } while (0) |
625 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate Fuzzy Fan Control parameters Failed!" ); return -22; } } while (0); |
626 | |
627 | if (polaris10_populate_gnb_lpml(hwmgr)) |
628 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate GnbLPML Failed!" ); return -22; } } while (0) |
629 | "Attempt to populate GnbLPML Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate GnbLPML Failed!" ); return -22; } } while (0) |
630 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate GnbLPML Failed!" ); return -22; } } while (0); |
631 | |
632 | if (polaris10_populate_bapm_vddc_base_leakage_sidd(hwmgr)) |
633 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate BapmVddCBaseLeakage Hi and Lo " "Sidd Failed!"); return -22; } } while (0) |
634 | "Attempt to populate BapmVddCBaseLeakage Hi and Lo "do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate BapmVddCBaseLeakage Hi and Lo " "Sidd Failed!"); return -22; } } while (0) |
635 | "Sidd Failed!", return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate BapmVddCBaseLeakage Hi and Lo " "Sidd Failed!"); return -22; } } while (0); |
636 | |
637 | if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset, |
638 | (uint8_t *)&smu_data->power_tune_table, |
639 | (sizeof(struct SMU74_Discrete_PmFuses) - 92), SMC_RAM_END0x40000)) |
640 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to download PmFuseTable Failed!" ); return -22; } } while (0) |
641 | "Attempt to download PmFuseTable Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to download PmFuseTable Failed!" ); return -22; } } while (0) |
642 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to download PmFuseTable Failed!" ); return -22; } } while (0); |
643 | } |
644 | return 0; |
645 | } |
646 | |
647 | static int polaris10_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr, |
648 | SMU74_Discrete_DpmTable *table) |
649 | { |
650 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
651 | uint32_t count, level; |
652 | |
653 | if (SMU7_VOLTAGE_CONTROL_BY_GPIO0x1 == data->mvdd_control) { |
654 | count = data->mvdd_voltage_table.count; |
655 | if (count > SMU_MAX_SMIO_LEVELS4) |
656 | count = SMU_MAX_SMIO_LEVELS4; |
657 | for (level = 0; level < count; level++) { |
658 | table->SmioTable2.Pattern[level].Voltage = |
659 | PP_HOST_TO_SMC_US(data->mvdd_voltage_table.entries[level].value * VOLTAGE_SCALE)(__uint16_t)(__builtin_constant_p(data->mvdd_voltage_table .entries[level].value * 4) ? (__uint16_t)(((__uint16_t)(data-> mvdd_voltage_table.entries[level].value * 4) & 0xffU) << 8 | ((__uint16_t)(data->mvdd_voltage_table.entries[level] .value * 4) & 0xff00U) >> 8) : __swap16md(data-> mvdd_voltage_table.entries[level].value * 4)); |
660 | /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/ |
661 | table->SmioTable2.Pattern[level].Smio = |
662 | (uint8_t) level; |
663 | table->Smio[level] |= |
664 | data->mvdd_voltage_table.entries[level].smio_low; |
665 | } |
666 | table->SmioMask2 = data->mvdd_voltage_table.mask_low; |
667 | |
668 | table->MvddLevelCount = (uint32_t) PP_HOST_TO_SMC_UL(count)(__uint32_t)(__builtin_constant_p(count) ? (__uint32_t)(((__uint32_t )(count) & 0xff) << 24 | ((__uint32_t)(count) & 0xff00) << 8 | ((__uint32_t)(count) & 0xff0000) >> 8 | ((__uint32_t)(count) & 0xff000000) >> 24) : __swap32md (count)); |
669 | } |
670 | |
671 | return 0; |
672 | } |
673 | |
674 | static int polaris10_populate_smc_vddci_table(struct pp_hwmgr *hwmgr, |
675 | struct SMU74_Discrete_DpmTable *table) |
676 | { |
677 | uint32_t count, level; |
678 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
679 | |
680 | count = data->vddci_voltage_table.count; |
681 | |
682 | if (SMU7_VOLTAGE_CONTROL_BY_GPIO0x1 == data->vddci_control) { |
683 | if (count > SMU_MAX_SMIO_LEVELS4) |
684 | count = SMU_MAX_SMIO_LEVELS4; |
685 | for (level = 0; level < count; ++level) { |
686 | table->SmioTable1.Pattern[level].Voltage = |
687 | PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[level].value * VOLTAGE_SCALE)(__uint16_t)(__builtin_constant_p(data->vddci_voltage_table .entries[level].value * 4) ? (__uint16_t)(((__uint16_t)(data-> vddci_voltage_table.entries[level].value * 4) & 0xffU) << 8 | ((__uint16_t)(data->vddci_voltage_table.entries[level ].value * 4) & 0xff00U) >> 8) : __swap16md(data-> vddci_voltage_table.entries[level].value * 4)); |
688 | table->SmioTable1.Pattern[level].Smio = (uint8_t) level; |
689 | |
690 | table->Smio[level] |= data->vddci_voltage_table.entries[level].smio_low; |
691 | } |
692 | } |
693 | |
694 | table->SmioMask1 = data->vddci_voltage_table.mask_low; |
695 | |
696 | return 0; |
697 | } |
698 | |
699 | static int polaris10_populate_cac_table(struct pp_hwmgr *hwmgr, |
700 | struct SMU74_Discrete_DpmTable *table) |
701 | { |
702 | uint32_t count; |
703 | uint8_t index; |
704 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
705 | struct phm_ppt_v1_information *table_info = |
706 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
707 | struct phm_ppt_v1_voltage_lookup_table *lookup_table = |
708 | table_info->vddc_lookup_table; |
709 | /* tables is already swapped, so in order to use the value from it, |
710 | * we need to swap it back. |
711 | * We are populating vddc CAC data to BapmVddc table |
712 | * in split and merged mode |
713 | */ |
714 | for (count = 0; count < lookup_table->count; count++) { |
715 | index = phm_get_voltage_index(lookup_table, |
716 | data->vddc_voltage_table.entries[count].value); |
717 | table->BapmVddcVidLoSidd[count] = convert_to_vid(lookup_table->entries[index].us_cac_low); |
718 | table->BapmVddcVidHiSidd[count] = convert_to_vid(lookup_table->entries[index].us_cac_mid); |
719 | table->BapmVddcVidHiSidd2[count] = convert_to_vid(lookup_table->entries[index].us_cac_high); |
720 | } |
721 | |
722 | return 0; |
723 | } |
724 | |
725 | static int polaris10_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr, |
726 | struct SMU74_Discrete_DpmTable *table) |
727 | { |
728 | polaris10_populate_smc_vddci_table(hwmgr, table); |
729 | polaris10_populate_smc_mvdd_table(hwmgr, table); |
730 | polaris10_populate_cac_table(hwmgr, table); |
731 | |
732 | return 0; |
733 | } |
734 | |
735 | static int polaris10_populate_ulv_level(struct pp_hwmgr *hwmgr, |
736 | struct SMU74_Discrete_Ulv *state) |
737 | { |
738 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
739 | struct phm_ppt_v1_information *table_info = |
740 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
741 | |
742 | state->CcPwrDynRm = 0; |
743 | state->CcPwrDynRm1 = 0; |
744 | |
745 | state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset; |
746 | state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset * |
747 | VOLTAGE_VID_OFFSET_SCALE2100 / VOLTAGE_VID_OFFSET_SCALE1625); |
748 | |
749 | if (hwmgr->chip_id == CHIP_POLARIS12 || hwmgr->is_kicker) |
750 | state->VddcPhase = data->vddc_phase_shed_control ^ 0x3; |
751 | else |
752 | state->VddcPhase = (data->vddc_phase_shed_control) ? 0 : 1; |
753 | |
754 | CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm)((state->CcPwrDynRm) = (__uint32_t)(__builtin_constant_p(state ->CcPwrDynRm) ? (__uint32_t)(((__uint32_t)(state->CcPwrDynRm ) & 0xff) << 24 | ((__uint32_t)(state->CcPwrDynRm ) & 0xff00) << 8 | ((__uint32_t)(state->CcPwrDynRm ) & 0xff0000) >> 8 | ((__uint32_t)(state->CcPwrDynRm ) & 0xff000000) >> 24) : __swap32md(state->CcPwrDynRm ))); |
755 | CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1)((state->CcPwrDynRm1) = (__uint32_t)(__builtin_constant_p( state->CcPwrDynRm1) ? (__uint32_t)(((__uint32_t)(state-> CcPwrDynRm1) & 0xff) << 24 | ((__uint32_t)(state-> CcPwrDynRm1) & 0xff00) << 8 | ((__uint32_t)(state-> CcPwrDynRm1) & 0xff0000) >> 8 | ((__uint32_t)(state ->CcPwrDynRm1) & 0xff000000) >> 24) : __swap32md (state->CcPwrDynRm1))); |
756 | CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset)((state->VddcOffset) = (__uint16_t)(__builtin_constant_p(state ->VddcOffset) ? (__uint16_t)(((__uint16_t)(state->VddcOffset ) & 0xffU) << 8 | ((__uint16_t)(state->VddcOffset ) & 0xff00U) >> 8) : __swap16md(state->VddcOffset ))); |
757 | |
758 | return 0; |
759 | } |
760 | |
761 | static int polaris10_populate_ulv_state(struct pp_hwmgr *hwmgr, |
762 | struct SMU74_Discrete_DpmTable *table) |
763 | { |
764 | return polaris10_populate_ulv_level(hwmgr, &table->Ulv); |
765 | } |
766 | |
767 | static int polaris10_populate_smc_link_level(struct pp_hwmgr *hwmgr, |
768 | struct SMU74_Discrete_DpmTable *table) |
769 | { |
770 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
771 | struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); |
772 | struct smu7_dpm_table *dpm_table = &data->dpm_table; |
773 | int i; |
774 | |
775 | /* Index (dpm_table->pcie_speed_table.count) |
776 | * is reserved for PCIE boot level. */ |
777 | for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) { |
778 | table->LinkLevel[i].PcieGenSpeed = |
779 | (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value; |
780 | table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width( |
781 | dpm_table->pcie_speed_table.dpm_levels[i].param1); |
782 | table->LinkLevel[i].EnabledForActivity = 1; |
783 | table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff); |
784 | table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5)(__uint32_t)(__builtin_constant_p(5) ? (__uint32_t)(((__uint32_t )(5) & 0xff) << 24 | ((__uint32_t)(5) & 0xff00) << 8 | ((__uint32_t)(5) & 0xff0000) >> 8 | ( (__uint32_t)(5) & 0xff000000) >> 24) : __swap32md(5 )); |
785 | table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30)(__uint32_t)(__builtin_constant_p(30) ? (__uint32_t)(((__uint32_t )(30) & 0xff) << 24 | ((__uint32_t)(30) & 0xff00 ) << 8 | ((__uint32_t)(30) & 0xff0000) >> 8 | ((__uint32_t)(30) & 0xff000000) >> 24) : __swap32md (30)); |
786 | } |
787 | |
788 | smu_data->smc_state_table.LinkLevelCount = |
789 | (uint8_t)dpm_table->pcie_speed_table.count; |
790 | |
791 | /* To Do move to hwmgr */ |
792 | data->dpm_level_enable_mask.pcie_dpm_enable_mask = |
793 | phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table); |
794 | |
795 | return 0; |
796 | } |
797 | |
798 | |
799 | static void polaris10_get_sclk_range_table(struct pp_hwmgr *hwmgr, |
800 | SMU74_Discrete_DpmTable *table) |
801 | { |
802 | struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); |
803 | uint32_t i, ref_clk; |
804 | |
805 | struct pp_atom_ctrl_sclk_range_table range_table_from_vbios = { { {0} } }; |
806 | |
807 | ref_clk = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev)((struct amdgpu_device *)hwmgr->adev)->asic_funcs->get_xclk (((struct amdgpu_device *)hwmgr->adev)); |
808 | |
809 | if (0 == atomctrl_get_smc_sclk_range_table(hwmgr, &range_table_from_vbios)) { |
810 | for (i = 0; i < NUM_SCLK_RANGE8; i++) { |
811 | table->SclkFcwRangeTable[i].vco_setting = range_table_from_vbios.entry[i].ucVco_setting; |
812 | table->SclkFcwRangeTable[i].postdiv = range_table_from_vbios.entry[i].ucPostdiv; |
813 | table->SclkFcwRangeTable[i].fcw_pcc = range_table_from_vbios.entry[i].usFcw_pcc; |
814 | |
815 | table->SclkFcwRangeTable[i].fcw_trans_upper = range_table_from_vbios.entry[i].usFcw_trans_upper; |
816 | table->SclkFcwRangeTable[i].fcw_trans_lower = range_table_from_vbios.entry[i].usRcw_trans_lower; |
817 | |
818 | CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc)((table->SclkFcwRangeTable[i].fcw_pcc) = (__uint16_t)(__builtin_constant_p (table->SclkFcwRangeTable[i].fcw_pcc) ? (__uint16_t)(((__uint16_t )(table->SclkFcwRangeTable[i].fcw_pcc) & 0xffU) << 8 | ((__uint16_t)(table->SclkFcwRangeTable[i].fcw_pcc) & 0xff00U) >> 8) : __swap16md(table->SclkFcwRangeTable [i].fcw_pcc))); |
819 | CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper)((table->SclkFcwRangeTable[i].fcw_trans_upper) = (__uint16_t )(__builtin_constant_p(table->SclkFcwRangeTable[i].fcw_trans_upper ) ? (__uint16_t)(((__uint16_t)(table->SclkFcwRangeTable[i] .fcw_trans_upper) & 0xffU) << 8 | ((__uint16_t)(table ->SclkFcwRangeTable[i].fcw_trans_upper) & 0xff00U) >> 8) : __swap16md(table->SclkFcwRangeTable[i].fcw_trans_upper ))); |
820 | CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower)((table->SclkFcwRangeTable[i].fcw_trans_lower) = (__uint16_t )(__builtin_constant_p(table->SclkFcwRangeTable[i].fcw_trans_lower ) ? (__uint16_t)(((__uint16_t)(table->SclkFcwRangeTable[i] .fcw_trans_lower) & 0xffU) << 8 | ((__uint16_t)(table ->SclkFcwRangeTable[i].fcw_trans_lower) & 0xff00U) >> 8) : __swap16md(table->SclkFcwRangeTable[i].fcw_trans_lower ))); |
821 | } |
822 | return; |
823 | } |
824 | |
825 | for (i = 0; i < NUM_SCLK_RANGE8; i++) { |
826 | smu_data->range_table[i].trans_lower_frequency = (ref_clk * Range_Table[i].fcw_trans_lower) >> Range_Table[i].postdiv; |
827 | smu_data->range_table[i].trans_upper_frequency = (ref_clk * Range_Table[i].fcw_trans_upper) >> Range_Table[i].postdiv; |
828 | |
829 | table->SclkFcwRangeTable[i].vco_setting = Range_Table[i].vco_setting; |
830 | table->SclkFcwRangeTable[i].postdiv = Range_Table[i].postdiv; |
831 | table->SclkFcwRangeTable[i].fcw_pcc = Range_Table[i].fcw_pcc; |
832 | |
833 | table->SclkFcwRangeTable[i].fcw_trans_upper = Range_Table[i].fcw_trans_upper; |
834 | table->SclkFcwRangeTable[i].fcw_trans_lower = Range_Table[i].fcw_trans_lower; |
835 | |
836 | CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc)((table->SclkFcwRangeTable[i].fcw_pcc) = (__uint16_t)(__builtin_constant_p (table->SclkFcwRangeTable[i].fcw_pcc) ? (__uint16_t)(((__uint16_t )(table->SclkFcwRangeTable[i].fcw_pcc) & 0xffU) << 8 | ((__uint16_t)(table->SclkFcwRangeTable[i].fcw_pcc) & 0xff00U) >> 8) : __swap16md(table->SclkFcwRangeTable [i].fcw_pcc))); |
837 | CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper)((table->SclkFcwRangeTable[i].fcw_trans_upper) = (__uint16_t )(__builtin_constant_p(table->SclkFcwRangeTable[i].fcw_trans_upper ) ? (__uint16_t)(((__uint16_t)(table->SclkFcwRangeTable[i] .fcw_trans_upper) & 0xffU) << 8 | ((__uint16_t)(table ->SclkFcwRangeTable[i].fcw_trans_upper) & 0xff00U) >> 8) : __swap16md(table->SclkFcwRangeTable[i].fcw_trans_upper ))); |
838 | CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower)((table->SclkFcwRangeTable[i].fcw_trans_lower) = (__uint16_t )(__builtin_constant_p(table->SclkFcwRangeTable[i].fcw_trans_lower ) ? (__uint16_t)(((__uint16_t)(table->SclkFcwRangeTable[i] .fcw_trans_lower) & 0xffU) << 8 | ((__uint16_t)(table ->SclkFcwRangeTable[i].fcw_trans_lower) & 0xff00U) >> 8) : __swap16md(table->SclkFcwRangeTable[i].fcw_trans_lower ))); |
839 | } |
840 | } |
841 | |
842 | static int polaris10_calculate_sclk_params(struct pp_hwmgr *hwmgr, |
843 | uint32_t clock, SMU_SclkSetting *sclk_setting) |
844 | { |
845 | struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); |
846 | const SMU74_Discrete_DpmTable *table = &(smu_data->smc_state_table); |
847 | struct pp_atomctrl_clock_dividers_ai dividers; |
848 | uint32_t ref_clock; |
849 | uint32_t pcc_target_percent, pcc_target_freq, ss_target_percent, ss_target_freq; |
850 | uint8_t i; |
851 | int result; |
852 | uint64_t temp; |
853 | |
854 | sclk_setting->SclkFrequency = clock; |
855 | /* get the engine clock dividers for this clock value */ |
856 | result = atomctrl_get_engine_pll_dividers_ai(hwmgr, clock, ÷rs); |
857 | if (result == 0) { |
858 | sclk_setting->Fcw_int = dividers.usSclk_fcw_int; |
859 | sclk_setting->Fcw_frac = dividers.usSclk_fcw_frac; |
860 | sclk_setting->Pcc_fcw_int = dividers.usPcc_fcw_int; |
861 | sclk_setting->PllRange = dividers.ucSclkPllRange; |
862 | sclk_setting->Sclk_slew_rate = 0x400; |
863 | sclk_setting->Pcc_up_slew_rate = dividers.usPcc_fcw_slew_frac; |
864 | sclk_setting->Pcc_down_slew_rate = 0xffff; |
865 | sclk_setting->SSc_En = dividers.ucSscEnable; |
866 | sclk_setting->Fcw1_int = dividers.usSsc_fcw1_int; |
867 | sclk_setting->Fcw1_frac = dividers.usSsc_fcw1_frac; |
868 | sclk_setting->Sclk_ss_slew_rate = dividers.usSsc_fcw_slew_frac; |
869 | return result; |
870 | } |
871 | |
872 | ref_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev)((struct amdgpu_device *)hwmgr->adev)->asic_funcs->get_xclk (((struct amdgpu_device *)hwmgr->adev)); |
873 | |
874 | for (i = 0; i < NUM_SCLK_RANGE8; i++) { |
875 | if (clock > smu_data->range_table[i].trans_lower_frequency |
876 | && clock <= smu_data->range_table[i].trans_upper_frequency) { |
877 | sclk_setting->PllRange = i; |
878 | break; |
879 | } |
880 | } |
881 | |
882 | sclk_setting->Fcw_int = (uint16_t)((clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / ref_clock); |
883 | temp = clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv; |
884 | temp <<= 0x10; |
885 | do_div(temp, ref_clock)({ uint32_t __base = (ref_clock); uint32_t __rem = ((uint64_t )(temp)) % __base; (temp) = ((uint64_t)(temp)) / __base; __rem ; }); |
886 | sclk_setting->Fcw_frac = temp & 0xffff; |
887 | |
888 | pcc_target_percent = 10; /* Hardcode 10% for now. */ |
889 | pcc_target_freq = clock - (clock * pcc_target_percent / 100); |
890 | sclk_setting->Pcc_fcw_int = (uint16_t)((pcc_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / ref_clock); |
891 | |
892 | ss_target_percent = 2; /* Hardcode 2% for now. */ |
893 | sclk_setting->SSc_En = 0; |
894 | if (ss_target_percent) { |
895 | sclk_setting->SSc_En = 1; |
896 | ss_target_freq = clock - (clock * ss_target_percent / 100); |
897 | sclk_setting->Fcw1_int = (uint16_t)((ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / ref_clock); |
898 | temp = ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv; |
899 | temp <<= 0x10; |
900 | do_div(temp, ref_clock)({ uint32_t __base = (ref_clock); uint32_t __rem = ((uint64_t )(temp)) % __base; (temp) = ((uint64_t)(temp)) / __base; __rem ; }); |
901 | sclk_setting->Fcw1_frac = temp & 0xffff; |
902 | } |
903 | |
904 | return 0; |
905 | } |
906 | |
907 | static int polaris10_populate_single_graphic_level(struct pp_hwmgr *hwmgr, |
908 | uint32_t clock, struct SMU74_Discrete_GraphicsLevel *level) |
909 | { |
910 | int result; |
911 | /* PP_Clocks minClocks; */ |
912 | uint32_t mvdd; |
913 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
914 | struct phm_ppt_v1_information *table_info = |
915 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
916 | SMU_SclkSetting curr_sclk_setting = { 0 }; |
917 | phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL((void *)0); |
918 | |
919 | result = polaris10_calculate_sclk_params(hwmgr, clock, &curr_sclk_setting); |
920 | |
921 | if (hwmgr->od_enabled) |
922 | vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_sclk; |
923 | else |
924 | vdd_dep_table = table_info->vdd_dep_on_sclk; |
925 | |
926 | /* populate graphics levels */ |
927 | result = polaris10_get_dependency_volt_by_clk(hwmgr, |
928 | vdd_dep_table, clock, |
929 | &level->MinVoltage, &mvdd); |
930 | |
931 | PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find VDDC voltage value for " "VDDC engine clock dependency table" ); return result; } } while (0) |
932 | "can not find VDDC voltage value for "do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find VDDC voltage value for " "VDDC engine clock dependency table" ); return result; } } while (0) |
933 | "VDDC engine clock dependency table",do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find VDDC voltage value for " "VDDC engine clock dependency table" ); return result; } } while (0) |
934 | return result)do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find VDDC voltage value for " "VDDC engine clock dependency table" ); return result; } } while (0); |
935 | level->ActivityLevel = data->current_profile_setting.sclk_activity; |
936 | |
937 | level->CcPwrDynRm = 0; |
938 | level->CcPwrDynRm1 = 0; |
939 | level->EnabledForActivity = 0; |
940 | level->EnabledForThrottle = 1; |
941 | level->UpHyst = data->current_profile_setting.sclk_up_hyst; |
942 | level->DownHyst = data->current_profile_setting.sclk_down_hyst; |
943 | level->VoltageDownHyst = 0; |
944 | level->PowerThrottle = 0; |
945 | data->display_timing.min_clock_in_sr = hwmgr->display_config->min_core_set_clock_in_sr; |
946 | |
947 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) |
948 | level->DeepSleepDivId = smu7_get_sleep_divider_id_from_clock(clock, |
949 | hwmgr->display_config->min_core_set_clock_in_sr); |
950 | |
951 | /* Default to slow, highest DPM level will be |
952 | * set to PPSMC_DISPLAY_WATERMARK_LOW later. |
953 | */ |
954 | if (data->update_up_hyst) |
955 | level->UpHyst = (uint8_t)data->up_hyst; |
956 | if (data->update_down_hyst) |
957 | level->DownHyst = (uint8_t)data->down_hyst; |
958 | |
959 | level->SclkSetting = curr_sclk_setting; |
960 | |
961 | CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage)((level->MinVoltage) = (__uint32_t)(__builtin_constant_p(level ->MinVoltage) ? (__uint32_t)(((__uint32_t)(level->MinVoltage ) & 0xff) << 24 | ((__uint32_t)(level->MinVoltage ) & 0xff00) << 8 | ((__uint32_t)(level->MinVoltage ) & 0xff0000) >> 8 | ((__uint32_t)(level->MinVoltage ) & 0xff000000) >> 24) : __swap32md(level->MinVoltage ))); |
962 | CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm)((level->CcPwrDynRm) = (__uint32_t)(__builtin_constant_p(level ->CcPwrDynRm) ? (__uint32_t)(((__uint32_t)(level->CcPwrDynRm ) & 0xff) << 24 | ((__uint32_t)(level->CcPwrDynRm ) & 0xff00) << 8 | ((__uint32_t)(level->CcPwrDynRm ) & 0xff0000) >> 8 | ((__uint32_t)(level->CcPwrDynRm ) & 0xff000000) >> 24) : __swap32md(level->CcPwrDynRm ))); |
963 | CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1)((level->CcPwrDynRm1) = (__uint32_t)(__builtin_constant_p( level->CcPwrDynRm1) ? (__uint32_t)(((__uint32_t)(level-> CcPwrDynRm1) & 0xff) << 24 | ((__uint32_t)(level-> CcPwrDynRm1) & 0xff00) << 8 | ((__uint32_t)(level-> CcPwrDynRm1) & 0xff0000) >> 8 | ((__uint32_t)(level ->CcPwrDynRm1) & 0xff000000) >> 24) : __swap32md (level->CcPwrDynRm1))); |
964 | CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel)((level->ActivityLevel) = (__uint16_t)(__builtin_constant_p (level->ActivityLevel) ? (__uint16_t)(((__uint16_t)(level-> ActivityLevel) & 0xffU) << 8 | ((__uint16_t)(level-> ActivityLevel) & 0xff00U) >> 8) : __swap16md(level-> ActivityLevel))); |
965 | CONVERT_FROM_HOST_TO_SMC_UL(level->SclkSetting.SclkFrequency)((level->SclkSetting.SclkFrequency) = (__uint32_t)(__builtin_constant_p (level->SclkSetting.SclkFrequency) ? (__uint32_t)(((__uint32_t )(level->SclkSetting.SclkFrequency) & 0xff) << 24 | ((__uint32_t)(level->SclkSetting.SclkFrequency) & 0xff00 ) << 8 | ((__uint32_t)(level->SclkSetting.SclkFrequency ) & 0xff0000) >> 8 | ((__uint32_t)(level->SclkSetting .SclkFrequency) & 0xff000000) >> 24) : __swap32md(level ->SclkSetting.SclkFrequency))); |
966 | CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_int)((level->SclkSetting.Fcw_int) = (__uint16_t)(__builtin_constant_p (level->SclkSetting.Fcw_int) ? (__uint16_t)(((__uint16_t)( level->SclkSetting.Fcw_int) & 0xffU) << 8 | ((__uint16_t )(level->SclkSetting.Fcw_int) & 0xff00U) >> 8) : __swap16md(level->SclkSetting.Fcw_int))); |
967 | CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_frac)((level->SclkSetting.Fcw_frac) = (__uint16_t)(__builtin_constant_p (level->SclkSetting.Fcw_frac) ? (__uint16_t)(((__uint16_t) (level->SclkSetting.Fcw_frac) & 0xffU) << 8 | (( __uint16_t)(level->SclkSetting.Fcw_frac) & 0xff00U) >> 8) : __swap16md(level->SclkSetting.Fcw_frac))); |
968 | CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_fcw_int)((level->SclkSetting.Pcc_fcw_int) = (__uint16_t)(__builtin_constant_p (level->SclkSetting.Pcc_fcw_int) ? (__uint16_t)(((__uint16_t )(level->SclkSetting.Pcc_fcw_int) & 0xffU) << 8 | ((__uint16_t)(level->SclkSetting.Pcc_fcw_int) & 0xff00U ) >> 8) : __swap16md(level->SclkSetting.Pcc_fcw_int) )); |
969 | CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_slew_rate)((level->SclkSetting.Sclk_slew_rate) = (__uint16_t)(__builtin_constant_p (level->SclkSetting.Sclk_slew_rate) ? (__uint16_t)(((__uint16_t )(level->SclkSetting.Sclk_slew_rate) & 0xffU) << 8 | ((__uint16_t)(level->SclkSetting.Sclk_slew_rate) & 0xff00U) >> 8) : __swap16md(level->SclkSetting.Sclk_slew_rate ))); |
970 | CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_up_slew_rate)((level->SclkSetting.Pcc_up_slew_rate) = (__uint16_t)(__builtin_constant_p (level->SclkSetting.Pcc_up_slew_rate) ? (__uint16_t)(((__uint16_t )(level->SclkSetting.Pcc_up_slew_rate) & 0xffU) << 8 | ((__uint16_t)(level->SclkSetting.Pcc_up_slew_rate) & 0xff00U) >> 8) : __swap16md(level->SclkSetting.Pcc_up_slew_rate ))); |
971 | CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_down_slew_rate)((level->SclkSetting.Pcc_down_slew_rate) = (__uint16_t)(__builtin_constant_p (level->SclkSetting.Pcc_down_slew_rate) ? (__uint16_t)(((__uint16_t )(level->SclkSetting.Pcc_down_slew_rate) & 0xffU) << 8 | ((__uint16_t)(level->SclkSetting.Pcc_down_slew_rate) & 0xff00U) >> 8) : __swap16md(level->SclkSetting.Pcc_down_slew_rate ))); |
972 | CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_int)((level->SclkSetting.Fcw1_int) = (__uint16_t)(__builtin_constant_p (level->SclkSetting.Fcw1_int) ? (__uint16_t)(((__uint16_t) (level->SclkSetting.Fcw1_int) & 0xffU) << 8 | (( __uint16_t)(level->SclkSetting.Fcw1_int) & 0xff00U) >> 8) : __swap16md(level->SclkSetting.Fcw1_int))); |
973 | CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_frac)((level->SclkSetting.Fcw1_frac) = (__uint16_t)(__builtin_constant_p (level->SclkSetting.Fcw1_frac) ? (__uint16_t)(((__uint16_t )(level->SclkSetting.Fcw1_frac) & 0xffU) << 8 | ( (__uint16_t)(level->SclkSetting.Fcw1_frac) & 0xff00U) >> 8) : __swap16md(level->SclkSetting.Fcw1_frac))); |
974 | CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_ss_slew_rate)((level->SclkSetting.Sclk_ss_slew_rate) = (__uint16_t)(__builtin_constant_p (level->SclkSetting.Sclk_ss_slew_rate) ? (__uint16_t)(((__uint16_t )(level->SclkSetting.Sclk_ss_slew_rate) & 0xffU) << 8 | ((__uint16_t)(level->SclkSetting.Sclk_ss_slew_rate) & 0xff00U) >> 8) : __swap16md(level->SclkSetting.Sclk_ss_slew_rate ))); |
975 | return 0; |
976 | } |
977 | |
978 | static int polaris10_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) |
979 | { |
980 | struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend); |
981 | struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); |
982 | struct smu7_dpm_table *dpm_table = &hw_data->dpm_table; |
983 | struct phm_ppt_v1_information *table_info = |
984 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
985 | struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table; |
986 | uint8_t pcie_entry_cnt = (uint8_t) hw_data->dpm_table.pcie_speed_table.count; |
987 | int result = 0; |
988 | uint32_t array = smu_data->smu7_data.dpm_table_start + |
989 | offsetof(SMU74_Discrete_DpmTable, GraphicsLevel)__builtin_offsetof(SMU74_Discrete_DpmTable, GraphicsLevel); |
990 | uint32_t array_size = sizeof(struct SMU74_Discrete_GraphicsLevel) * |
991 | SMU74_MAX_LEVELS_GRAPHICS8; |
992 | struct SMU74_Discrete_GraphicsLevel *levels = |
993 | smu_data->smc_state_table.GraphicsLevel; |
994 | uint32_t i, max_entry; |
995 | uint8_t hightest_pcie_level_enabled = 0, |
996 | lowest_pcie_level_enabled = 0, |
997 | mid_pcie_level_enabled = 0, |
998 | count = 0; |
999 | |
1000 | polaris10_get_sclk_range_table(hwmgr, &(smu_data->smc_state_table)); |
1001 | |
1002 | for (i = 0; i < dpm_table->sclk_table.count; i++) { |
1003 | |
1004 | result = polaris10_populate_single_graphic_level(hwmgr, |
1005 | dpm_table->sclk_table.dpm_levels[i].value, |
1006 | &(smu_data->smc_state_table.GraphicsLevel[i])); |
1007 | if (result) |
1008 | return result; |
1009 | |
1010 | /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */ |
1011 | if (i > 1) |
1012 | levels[i].DeepSleepDivId = 0; |
1013 | } |
1014 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
1015 | PHM_PlatformCaps_SPLLShutdownSupport)) |
1016 | smu_data->smc_state_table.GraphicsLevel[0].SclkSetting.SSc_En = 0; |
1017 | |
1018 | smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1; |
1019 | smu_data->smc_state_table.GraphicsDpmLevelCount = |
1020 | (uint8_t)dpm_table->sclk_table.count; |
1021 | hw_data->dpm_level_enable_mask.sclk_dpm_enable_mask = |
1022 | phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table); |
1023 | |
1024 | |
1025 | if (pcie_table != NULL((void *)0)) { |
1026 | PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),do { if (!((1 <= pcie_entry_cnt))) { printk("\0014" "amdgpu: " "%s\n", "There must be 1 or more PCIE levels defined in PPTable." ); return -22; } } while (0) |
1027 | "There must be 1 or more PCIE levels defined in PPTable.",do { if (!((1 <= pcie_entry_cnt))) { printk("\0014" "amdgpu: " "%s\n", "There must be 1 or more PCIE levels defined in PPTable." ); return -22; } } while (0) |
1028 | return -EINVAL)do { if (!((1 <= pcie_entry_cnt))) { printk("\0014" "amdgpu: " "%s\n", "There must be 1 or more PCIE levels defined in PPTable." ); return -22; } } while (0); |
1029 | max_entry = pcie_entry_cnt - 1; |
1030 | for (i = 0; i < dpm_table->sclk_table.count; i++) |
1031 | levels[i].pcieDpmLevel = |
1032 | (uint8_t) ((i < max_entry) ? i : max_entry); |
1033 | } else { |
1034 | while (hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask && |
1035 | ((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
1036 | (1 << (hightest_pcie_level_enabled + 1))) != 0)) |
1037 | hightest_pcie_level_enabled++; |
1038 | |
1039 | while (hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask && |
1040 | ((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
1041 | (1 << lowest_pcie_level_enabled)) == 0)) |
1042 | lowest_pcie_level_enabled++; |
1043 | |
1044 | while ((count < hightest_pcie_level_enabled) && |
1045 | ((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
1046 | (1 << (lowest_pcie_level_enabled + 1 + count))) == 0)) |
1047 | count++; |
1048 | |
1049 | mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) < |
1050 | hightest_pcie_level_enabled ? |
1051 | (lowest_pcie_level_enabled + 1 + count) : |
1052 | hightest_pcie_level_enabled; |
1053 | |
1054 | /* set pcieDpmLevel to hightest_pcie_level_enabled */ |
1055 | for (i = 2; i < dpm_table->sclk_table.count; i++) |
1056 | levels[i].pcieDpmLevel = hightest_pcie_level_enabled; |
1057 | |
1058 | /* set pcieDpmLevel to lowest_pcie_level_enabled */ |
1059 | levels[0].pcieDpmLevel = lowest_pcie_level_enabled; |
1060 | |
1061 | /* set pcieDpmLevel to mid_pcie_level_enabled */ |
1062 | levels[1].pcieDpmLevel = mid_pcie_level_enabled; |
1063 | } |
1064 | /* level count will send to smc once at init smc table and never change */ |
1065 | result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels, |
1066 | (uint32_t)array_size, SMC_RAM_END0x40000); |
1067 | |
1068 | return result; |
1069 | } |
1070 | |
1071 | |
1072 | static int polaris10_populate_single_memory_level(struct pp_hwmgr *hwmgr, |
1073 | uint32_t clock, struct SMU74_Discrete_MemoryLevel *mem_level) |
1074 | { |
1075 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1076 | struct phm_ppt_v1_information *table_info = |
1077 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1078 | int result = 0; |
1079 | uint32_t mclk_stutter_mode_threshold = 40000; |
1080 | phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL((void *)0); |
1081 | |
1082 | |
1083 | if (hwmgr->od_enabled) |
1084 | vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_mclk; |
1085 | else |
1086 | vdd_dep_table = table_info->vdd_dep_on_mclk; |
1087 | |
1088 | if (vdd_dep_table) { |
1089 | result = polaris10_get_dependency_volt_by_clk(hwmgr, |
1090 | vdd_dep_table, clock, |
1091 | &mem_level->MinVoltage, &mem_level->MinMvdd); |
1092 | PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find MinVddc voltage value from memory " "VDDC voltage dependency table" ); return result; } } while (0) |
1093 | "can not find MinVddc voltage value from memory "do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find MinVddc voltage value from memory " "VDDC voltage dependency table" ); return result; } } while (0) |
1094 | "VDDC voltage dependency table", return result)do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find MinVddc voltage value from memory " "VDDC voltage dependency table" ); return result; } } while (0); |
1095 | } |
1096 | |
1097 | mem_level->MclkFrequency = clock; |
1098 | mem_level->EnabledForThrottle = 1; |
1099 | mem_level->EnabledForActivity = 0; |
1100 | mem_level->UpHyst = data->current_profile_setting.mclk_up_hyst; |
1101 | mem_level->DownHyst = data->current_profile_setting.mclk_down_hyst; |
1102 | mem_level->VoltageDownHyst = 0; |
1103 | mem_level->ActivityLevel = data->current_profile_setting.mclk_activity; |
1104 | mem_level->StutterEnable = false0; |
1105 | mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW0; |
1106 | |
1107 | data->display_timing.num_existing_displays = hwmgr->display_config->num_display; |
1108 | data->display_timing.vrefresh = hwmgr->display_config->vrefresh; |
1109 | |
1110 | if (mclk_stutter_mode_threshold && |
1111 | (clock <= mclk_stutter_mode_threshold) && |
1112 | (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,((((((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0x1b35))) & 0x1) >> 0x0) |
1113 | STUTTER_ENABLE)((((((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0x1b35))) & 0x1) >> 0x0) & 0x1)) |
1114 | mem_level->StutterEnable = true1; |
1115 | |
1116 | if (!result) { |
1117 | CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd)((mem_level->MinMvdd) = (__uint32_t)(__builtin_constant_p( mem_level->MinMvdd) ? (__uint32_t)(((__uint32_t)(mem_level ->MinMvdd) & 0xff) << 24 | ((__uint32_t)(mem_level ->MinMvdd) & 0xff00) << 8 | ((__uint32_t)(mem_level ->MinMvdd) & 0xff0000) >> 8 | ((__uint32_t)(mem_level ->MinMvdd) & 0xff000000) >> 24) : __swap32md(mem_level ->MinMvdd))); |
1118 | CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency)((mem_level->MclkFrequency) = (__uint32_t)(__builtin_constant_p (mem_level->MclkFrequency) ? (__uint32_t)(((__uint32_t)(mem_level ->MclkFrequency) & 0xff) << 24 | ((__uint32_t)(mem_level ->MclkFrequency) & 0xff00) << 8 | ((__uint32_t)( mem_level->MclkFrequency) & 0xff0000) >> 8 | ((__uint32_t )(mem_level->MclkFrequency) & 0xff000000) >> 24) : __swap32md(mem_level->MclkFrequency))); |
1119 | CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel)((mem_level->ActivityLevel) = (__uint16_t)(__builtin_constant_p (mem_level->ActivityLevel) ? (__uint16_t)(((__uint16_t)(mem_level ->ActivityLevel) & 0xffU) << 8 | ((__uint16_t)(mem_level ->ActivityLevel) & 0xff00U) >> 8) : __swap16md(mem_level ->ActivityLevel))); |
1120 | CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage)((mem_level->MinVoltage) = (__uint32_t)(__builtin_constant_p (mem_level->MinVoltage) ? (__uint32_t)(((__uint32_t)(mem_level ->MinVoltage) & 0xff) << 24 | ((__uint32_t)(mem_level ->MinVoltage) & 0xff00) << 8 | ((__uint32_t)(mem_level ->MinVoltage) & 0xff0000) >> 8 | ((__uint32_t)(mem_level ->MinVoltage) & 0xff000000) >> 24) : __swap32md( mem_level->MinVoltage))); |
1121 | } |
1122 | return result; |
1123 | } |
1124 | |
1125 | static int polaris10_populate_all_memory_levels(struct pp_hwmgr *hwmgr) |
1126 | { |
1127 | struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend); |
1128 | struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); |
1129 | struct smu7_dpm_table *dpm_table = &hw_data->dpm_table; |
1130 | int result; |
1131 | /* populate MCLK dpm table to SMU7 */ |
1132 | uint32_t array = smu_data->smu7_data.dpm_table_start + |
1133 | offsetof(SMU74_Discrete_DpmTable, MemoryLevel)__builtin_offsetof(SMU74_Discrete_DpmTable, MemoryLevel); |
1134 | uint32_t array_size = sizeof(SMU74_Discrete_MemoryLevel) * |
1135 | SMU74_MAX_LEVELS_MEMORY4; |
1136 | struct SMU74_Discrete_MemoryLevel *levels = |
1137 | smu_data->smc_state_table.MemoryLevel; |
1138 | uint32_t i; |
1139 | |
1140 | for (i = 0; i < dpm_table->mclk_table.count; i++) { |
1141 | PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),do { if (!((0 != dpm_table->mclk_table.dpm_levels[i].value ))) { printk("\0014" "amdgpu: " "%s\n", "can not populate memory level as memory clock is zero" ); return -22; } } while (0) |
1142 | "can not populate memory level as memory clock is zero",do { if (!((0 != dpm_table->mclk_table.dpm_levels[i].value ))) { printk("\0014" "amdgpu: " "%s\n", "can not populate memory level as memory clock is zero" ); return -22; } } while (0) |
1143 | return -EINVAL)do { if (!((0 != dpm_table->mclk_table.dpm_levels[i].value ))) { printk("\0014" "amdgpu: " "%s\n", "can not populate memory level as memory clock is zero" ); return -22; } } while (0); |
1144 | result = polaris10_populate_single_memory_level(hwmgr, |
1145 | dpm_table->mclk_table.dpm_levels[i].value, |
1146 | &levels[i]); |
1147 | if (i == dpm_table->mclk_table.count - 1) { |
1148 | levels[i].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH1; |
1149 | levels[i].EnabledForActivity = 1; |
1150 | } |
1151 | if (result) |
1152 | return result; |
1153 | } |
1154 | |
1155 | /* In order to prevent MC activity from stutter mode to push DPM up, |
1156 | * the UVD change complements this by putting the MCLK in |
1157 | * a higher state by default such that we are not affected by |
1158 | * up threshold or and MCLK DPM latency. |
1159 | */ |
1160 | levels[0].ActivityLevel = 0x1f; |
1161 | CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel)((levels[0].ActivityLevel) = (__uint16_t)(__builtin_constant_p (levels[0].ActivityLevel) ? (__uint16_t)(((__uint16_t)(levels [0].ActivityLevel) & 0xffU) << 8 | ((__uint16_t)(levels [0].ActivityLevel) & 0xff00U) >> 8) : __swap16md(levels [0].ActivityLevel))); |
1162 | |
1163 | smu_data->smc_state_table.MemoryDpmLevelCount = |
1164 | (uint8_t)dpm_table->mclk_table.count; |
1165 | hw_data->dpm_level_enable_mask.mclk_dpm_enable_mask = |
1166 | phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table); |
1167 | |
1168 | /* level count will send to smc once at init smc table and never change */ |
1169 | result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels, |
1170 | (uint32_t)array_size, SMC_RAM_END0x40000); |
1171 | |
1172 | return result; |
1173 | } |
1174 | |
1175 | static int polaris10_populate_mvdd_value(struct pp_hwmgr *hwmgr, |
1176 | uint32_t mclk, SMIO_Pattern *smio_pat) |
1177 | { |
1178 | const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1179 | struct phm_ppt_v1_information *table_info = |
1180 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1181 | uint32_t i = 0; |
1182 | |
1183 | if (SMU7_VOLTAGE_CONTROL_NONE0x0 != data->mvdd_control) { |
1184 | /* find mvdd value which clock is more than request */ |
1185 | for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) { |
1186 | if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) { |
1187 | smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value; |
1188 | break; |
1189 | } |
1190 | } |
1191 | PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,do { if (!(i < table_info->vdd_dep_on_mclk->count)) { printk("\0014" "amdgpu: " "%s\n", "MVDD Voltage is outside the supported range." ); return -22; } } while (0) |
1192 | "MVDD Voltage is outside the supported range.",do { if (!(i < table_info->vdd_dep_on_mclk->count)) { printk("\0014" "amdgpu: " "%s\n", "MVDD Voltage is outside the supported range." ); return -22; } } while (0) |
1193 | return -EINVAL)do { if (!(i < table_info->vdd_dep_on_mclk->count)) { printk("\0014" "amdgpu: " "%s\n", "MVDD Voltage is outside the supported range." ); return -22; } } while (0); |
1194 | } else |
1195 | return -EINVAL22; |
1196 | |
1197 | return 0; |
1198 | } |
1199 | |
1200 | static int polaris10_populate_smc_acpi_level(struct pp_hwmgr *hwmgr, |
1201 | SMU74_Discrete_DpmTable *table) |
1202 | { |
1203 | int result = 0; |
1204 | uint32_t sclk_frequency; |
1205 | const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1206 | struct phm_ppt_v1_information *table_info = |
1207 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1208 | SMIO_Pattern vol_level; |
1209 | uint32_t mvdd; |
1210 | |
1211 | table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC0x01; |
1212 | |
1213 | /* Get MinVoltage and Frequency from DPM0, |
1214 | * already converted to SMC_UL */ |
1215 | sclk_frequency = data->vbios_boot_state.sclk_bootup_value; |
1216 | result = polaris10_get_dependency_volt_by_clk(hwmgr, |
1217 | table_info->vdd_dep_on_sclk, |
1218 | sclk_frequency, |
1219 | &table->ACPILevel.MinVoltage, &mvdd); |
1220 | PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "Cannot find ACPI VDDC voltage value " "in Clock Dependency Table" ); ; } } while (0) |
1221 | "Cannot find ACPI VDDC voltage value "do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "Cannot find ACPI VDDC voltage value " "in Clock Dependency Table" ); ; } } while (0) |
1222 | "in Clock Dependency Table",do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "Cannot find ACPI VDDC voltage value " "in Clock Dependency Table" ); ; } } while (0) |
1223 | )do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "Cannot find ACPI VDDC voltage value " "in Clock Dependency Table" ); ; } } while (0); |
1224 | |
1225 | result = polaris10_calculate_sclk_params(hwmgr, sclk_frequency, &(table->ACPILevel.SclkSetting)); |
1226 | PP_ASSERT_WITH_CODE(result == 0, "Error retrieving Engine Clock dividers from VBIOS.", return result)do { if (!(result == 0)) { printk("\0014" "amdgpu: " "%s\n", "Error retrieving Engine Clock dividers from VBIOS." ); return result; } } while (0); |
1227 | |
1228 | table->ACPILevel.DeepSleepDivId = 0; |
1229 | table->ACPILevel.CcPwrDynRm = 0; |
1230 | table->ACPILevel.CcPwrDynRm1 = 0; |
1231 | |
1232 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags)((table->ACPILevel.Flags) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.Flags) ? (__uint32_t)(((__uint32_t)(table ->ACPILevel.Flags) & 0xff) << 24 | ((__uint32_t) (table->ACPILevel.Flags) & 0xff00) << 8 | ((__uint32_t )(table->ACPILevel.Flags) & 0xff0000) >> 8 | ((__uint32_t )(table->ACPILevel.Flags) & 0xff000000) >> 24) : __swap32md(table->ACPILevel.Flags))); |
1233 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage)((table->ACPILevel.MinVoltage) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.MinVoltage) ? (__uint32_t)(((__uint32_t) (table->ACPILevel.MinVoltage) & 0xff) << 24 | (( __uint32_t)(table->ACPILevel.MinVoltage) & 0xff00) << 8 | ((__uint32_t)(table->ACPILevel.MinVoltage) & 0xff0000 ) >> 8 | ((__uint32_t)(table->ACPILevel.MinVoltage) & 0xff000000) >> 24) : __swap32md(table->ACPILevel.MinVoltage ))); |
1234 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm)((table->ACPILevel.CcPwrDynRm) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.CcPwrDynRm) ? (__uint32_t)(((__uint32_t) (table->ACPILevel.CcPwrDynRm) & 0xff) << 24 | (( __uint32_t)(table->ACPILevel.CcPwrDynRm) & 0xff00) << 8 | ((__uint32_t)(table->ACPILevel.CcPwrDynRm) & 0xff0000 ) >> 8 | ((__uint32_t)(table->ACPILevel.CcPwrDynRm) & 0xff000000) >> 24) : __swap32md(table->ACPILevel.CcPwrDynRm ))); |
1235 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1)((table->ACPILevel.CcPwrDynRm1) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.CcPwrDynRm1) ? (__uint32_t)(((__uint32_t )(table->ACPILevel.CcPwrDynRm1) & 0xff) << 24 | ( (__uint32_t)(table->ACPILevel.CcPwrDynRm1) & 0xff00) << 8 | ((__uint32_t)(table->ACPILevel.CcPwrDynRm1) & 0xff0000 ) >> 8 | ((__uint32_t)(table->ACPILevel.CcPwrDynRm1) & 0xff000000) >> 24) : __swap32md(table->ACPILevel .CcPwrDynRm1))); |
1236 | |
1237 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkSetting.SclkFrequency)((table->ACPILevel.SclkSetting.SclkFrequency) = (__uint32_t )(__builtin_constant_p(table->ACPILevel.SclkSetting.SclkFrequency ) ? (__uint32_t)(((__uint32_t)(table->ACPILevel.SclkSetting .SclkFrequency) & 0xff) << 24 | ((__uint32_t)(table ->ACPILevel.SclkSetting.SclkFrequency) & 0xff00) << 8 | ((__uint32_t)(table->ACPILevel.SclkSetting.SclkFrequency ) & 0xff0000) >> 8 | ((__uint32_t)(table->ACPILevel .SclkSetting.SclkFrequency) & 0xff000000) >> 24) : __swap32md (table->ACPILevel.SclkSetting.SclkFrequency))); |
1238 | CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_int)((table->ACPILevel.SclkSetting.Fcw_int) = (__uint16_t)(__builtin_constant_p (table->ACPILevel.SclkSetting.Fcw_int) ? (__uint16_t)(((__uint16_t )(table->ACPILevel.SclkSetting.Fcw_int) & 0xffU) << 8 | ((__uint16_t)(table->ACPILevel.SclkSetting.Fcw_int) & 0xff00U) >> 8) : __swap16md(table->ACPILevel.SclkSetting .Fcw_int))); |
1239 | CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_frac)((table->ACPILevel.SclkSetting.Fcw_frac) = (__uint16_t)(__builtin_constant_p (table->ACPILevel.SclkSetting.Fcw_frac) ? (__uint16_t)(((__uint16_t )(table->ACPILevel.SclkSetting.Fcw_frac) & 0xffU) << 8 | ((__uint16_t)(table->ACPILevel.SclkSetting.Fcw_frac) & 0xff00U) >> 8) : __swap16md(table->ACPILevel.SclkSetting .Fcw_frac))); |
1240 | CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_fcw_int)((table->ACPILevel.SclkSetting.Pcc_fcw_int) = (__uint16_t) (__builtin_constant_p(table->ACPILevel.SclkSetting.Pcc_fcw_int ) ? (__uint16_t)(((__uint16_t)(table->ACPILevel.SclkSetting .Pcc_fcw_int) & 0xffU) << 8 | ((__uint16_t)(table-> ACPILevel.SclkSetting.Pcc_fcw_int) & 0xff00U) >> 8) : __swap16md(table->ACPILevel.SclkSetting.Pcc_fcw_int))); |
1241 | CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_slew_rate)((table->ACPILevel.SclkSetting.Sclk_slew_rate) = (__uint16_t )(__builtin_constant_p(table->ACPILevel.SclkSetting.Sclk_slew_rate ) ? (__uint16_t)(((__uint16_t)(table->ACPILevel.SclkSetting .Sclk_slew_rate) & 0xffU) << 8 | ((__uint16_t)(table ->ACPILevel.SclkSetting.Sclk_slew_rate) & 0xff00U) >> 8) : __swap16md(table->ACPILevel.SclkSetting.Sclk_slew_rate ))); |
1242 | CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_up_slew_rate)((table->ACPILevel.SclkSetting.Pcc_up_slew_rate) = (__uint16_t )(__builtin_constant_p(table->ACPILevel.SclkSetting.Pcc_up_slew_rate ) ? (__uint16_t)(((__uint16_t)(table->ACPILevel.SclkSetting .Pcc_up_slew_rate) & 0xffU) << 8 | ((__uint16_t)(table ->ACPILevel.SclkSetting.Pcc_up_slew_rate) & 0xff00U) >> 8) : __swap16md(table->ACPILevel.SclkSetting.Pcc_up_slew_rate ))); |
1243 | CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_down_slew_rate)((table->ACPILevel.SclkSetting.Pcc_down_slew_rate) = (__uint16_t )(__builtin_constant_p(table->ACPILevel.SclkSetting.Pcc_down_slew_rate ) ? (__uint16_t)(((__uint16_t)(table->ACPILevel.SclkSetting .Pcc_down_slew_rate) & 0xffU) << 8 | ((__uint16_t)( table->ACPILevel.SclkSetting.Pcc_down_slew_rate) & 0xff00U ) >> 8) : __swap16md(table->ACPILevel.SclkSetting.Pcc_down_slew_rate ))); |
1244 | CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_int)((table->ACPILevel.SclkSetting.Fcw1_int) = (__uint16_t)(__builtin_constant_p (table->ACPILevel.SclkSetting.Fcw1_int) ? (__uint16_t)(((__uint16_t )(table->ACPILevel.SclkSetting.Fcw1_int) & 0xffU) << 8 | ((__uint16_t)(table->ACPILevel.SclkSetting.Fcw1_int) & 0xff00U) >> 8) : __swap16md(table->ACPILevel.SclkSetting .Fcw1_int))); |
1245 | CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_frac)((table->ACPILevel.SclkSetting.Fcw1_frac) = (__uint16_t)(__builtin_constant_p (table->ACPILevel.SclkSetting.Fcw1_frac) ? (__uint16_t)((( __uint16_t)(table->ACPILevel.SclkSetting.Fcw1_frac) & 0xffU ) << 8 | ((__uint16_t)(table->ACPILevel.SclkSetting. Fcw1_frac) & 0xff00U) >> 8) : __swap16md(table-> ACPILevel.SclkSetting.Fcw1_frac))); |
1246 | CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_ss_slew_rate)((table->ACPILevel.SclkSetting.Sclk_ss_slew_rate) = (__uint16_t )(__builtin_constant_p(table->ACPILevel.SclkSetting.Sclk_ss_slew_rate ) ? (__uint16_t)(((__uint16_t)(table->ACPILevel.SclkSetting .Sclk_ss_slew_rate) & 0xffU) << 8 | ((__uint16_t)(table ->ACPILevel.SclkSetting.Sclk_ss_slew_rate) & 0xff00U) >> 8) : __swap16md(table->ACPILevel.SclkSetting.Sclk_ss_slew_rate ))); |
1247 | |
1248 | |
1249 | /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */ |
1250 | table->MemoryACPILevel.MclkFrequency = data->vbios_boot_state.mclk_bootup_value; |
1251 | result = polaris10_get_dependency_volt_by_clk(hwmgr, |
1252 | table_info->vdd_dep_on_mclk, |
1253 | table->MemoryACPILevel.MclkFrequency, |
1254 | &table->MemoryACPILevel.MinVoltage, &mvdd); |
1255 | PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "Cannot find ACPI VDDCI voltage value " "in Clock Dependency Table" ); ; } } while (0) |
1256 | "Cannot find ACPI VDDCI voltage value "do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "Cannot find ACPI VDDCI voltage value " "in Clock Dependency Table" ); ; } } while (0) |
1257 | "in Clock Dependency Table",do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "Cannot find ACPI VDDCI voltage value " "in Clock Dependency Table" ); ; } } while (0) |
1258 | )do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "Cannot find ACPI VDDCI voltage value " "in Clock Dependency Table" ); ; } } while (0); |
1259 | |
1260 | if (!((SMU7_VOLTAGE_CONTROL_NONE0x0 == data->mvdd_control) || |
1261 | (data->mclk_dpm_key_disabled))) |
1262 | polaris10_populate_mvdd_value(hwmgr, |
1263 | data->dpm_table.mclk_table.dpm_levels[0].value, |
1264 | &vol_level); |
1265 | |
1266 | if (0 == polaris10_populate_mvdd_value(hwmgr, 0, &vol_level)) |
1267 | table->MemoryACPILevel.MinMvdd = PP_HOST_TO_SMC_UL(vol_level.Voltage)(__uint32_t)(__builtin_constant_p(vol_level.Voltage) ? (__uint32_t )(((__uint32_t)(vol_level.Voltage) & 0xff) << 24 | ( (__uint32_t)(vol_level.Voltage) & 0xff00) << 8 | (( __uint32_t)(vol_level.Voltage) & 0xff0000) >> 8 | ( (__uint32_t)(vol_level.Voltage) & 0xff000000) >> 24 ) : __swap32md(vol_level.Voltage)); |
1268 | else |
1269 | table->MemoryACPILevel.MinMvdd = 0; |
1270 | |
1271 | table->MemoryACPILevel.StutterEnable = false0; |
1272 | |
1273 | table->MemoryACPILevel.EnabledForThrottle = 0; |
1274 | table->MemoryACPILevel.EnabledForActivity = 0; |
1275 | table->MemoryACPILevel.UpHyst = 0; |
1276 | table->MemoryACPILevel.DownHyst = 100; |
1277 | table->MemoryACPILevel.VoltageDownHyst = 0; |
1278 | table->MemoryACPILevel.ActivityLevel = |
1279 | PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity)(__uint16_t)(__builtin_constant_p(data->current_profile_setting .mclk_activity) ? (__uint16_t)(((__uint16_t)(data->current_profile_setting .mclk_activity) & 0xffU) << 8 | ((__uint16_t)(data-> current_profile_setting.mclk_activity) & 0xff00U) >> 8) : __swap16md(data->current_profile_setting.mclk_activity )); |
1280 | |
1281 | CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency)((table->MemoryACPILevel.MclkFrequency) = (__uint32_t)(__builtin_constant_p (table->MemoryACPILevel.MclkFrequency) ? (__uint32_t)(((__uint32_t )(table->MemoryACPILevel.MclkFrequency) & 0xff) << 24 | ((__uint32_t)(table->MemoryACPILevel.MclkFrequency) & 0xff00) << 8 | ((__uint32_t)(table->MemoryACPILevel .MclkFrequency) & 0xff0000) >> 8 | ((__uint32_t)(table ->MemoryACPILevel.MclkFrequency) & 0xff000000) >> 24) : __swap32md(table->MemoryACPILevel.MclkFrequency))); |
1282 | CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage)((table->MemoryACPILevel.MinVoltage) = (__uint32_t)(__builtin_constant_p (table->MemoryACPILevel.MinVoltage) ? (__uint32_t)(((__uint32_t )(table->MemoryACPILevel.MinVoltage) & 0xff) << 24 | ((__uint32_t)(table->MemoryACPILevel.MinVoltage) & 0xff00 ) << 8 | ((__uint32_t)(table->MemoryACPILevel.MinVoltage ) & 0xff0000) >> 8 | ((__uint32_t)(table->MemoryACPILevel .MinVoltage) & 0xff000000) >> 24) : __swap32md(table ->MemoryACPILevel.MinVoltage))); |
1283 | |
1284 | return result; |
1285 | } |
1286 | |
1287 | static int polaris10_populate_smc_vce_level(struct pp_hwmgr *hwmgr, |
1288 | SMU74_Discrete_DpmTable *table) |
1289 | { |
1290 | int result = -EINVAL22; |
1291 | uint8_t count; |
1292 | struct pp_atomctrl_clock_dividers_vi dividers; |
1293 | struct phm_ppt_v1_information *table_info = |
1294 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1295 | struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = |
1296 | table_info->mm_dep_table; |
1297 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1298 | uint32_t vddci; |
1299 | |
1300 | table->VceLevelCount = (uint8_t)(mm_table->count); |
1301 | table->VceBootLevel = 0; |
1302 | |
1303 | for (count = 0; count < table->VceLevelCount; count++) { |
1304 | table->VceLevel[count].Frequency = mm_table->entries[count].eclk; |
1305 | table->VceLevel[count].MinVoltage = 0; |
1306 | table->VceLevel[count].MinVoltage |= |
1307 | (mm_table->entries[count].vddc * VOLTAGE_SCALE4) << VDDC_SHIFT0; |
1308 | |
1309 | if (SMU7_VOLTAGE_CONTROL_BY_GPIO0x1 == data->vddci_control) |
1310 | vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table), |
1311 | mm_table->entries[count].vddc - VDDC_VDDCI_DELTA200); |
1312 | else if (SMU7_VOLTAGE_CONTROL_BY_SVID20x2 == data->vddci_control) |
1313 | vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA200; |
1314 | else |
1315 | vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE4) << VDDCI_SHIFT15; |
1316 | |
1317 | |
1318 | table->VceLevel[count].MinVoltage |= |
1319 | (vddci * VOLTAGE_SCALE4) << VDDCI_SHIFT15; |
1320 | table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT30; |
1321 | |
1322 | /*retrieve divider value for VBIOS */ |
1323 | result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
1324 | table->VceLevel[count].Frequency, ÷rs); |
1325 | PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find divide id for VCE engine clock"); return result ; } } while (0) |
1326 | "can not find divide id for VCE engine clock",do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find divide id for VCE engine clock"); return result ; } } while (0) |
1327 | return result)do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find divide id for VCE engine clock"); return result ; } } while (0); |
1328 | |
1329 | table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider; |
1330 | |
1331 | CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency)((table->VceLevel[count].Frequency) = (__uint32_t)(__builtin_constant_p (table->VceLevel[count].Frequency) ? (__uint32_t)(((__uint32_t )(table->VceLevel[count].Frequency) & 0xff) << 24 | ((__uint32_t)(table->VceLevel[count].Frequency) & 0xff00 ) << 8 | ((__uint32_t)(table->VceLevel[count].Frequency ) & 0xff0000) >> 8 | ((__uint32_t)(table->VceLevel [count].Frequency) & 0xff000000) >> 24) : __swap32md (table->VceLevel[count].Frequency))); |
1332 | CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage)((table->VceLevel[count].MinVoltage) = (__uint32_t)(__builtin_constant_p (table->VceLevel[count].MinVoltage) ? (__uint32_t)(((__uint32_t )(table->VceLevel[count].MinVoltage) & 0xff) << 24 | ((__uint32_t)(table->VceLevel[count].MinVoltage) & 0xff00 ) << 8 | ((__uint32_t)(table->VceLevel[count].MinVoltage ) & 0xff0000) >> 8 | ((__uint32_t)(table->VceLevel [count].MinVoltage) & 0xff000000) >> 24) : __swap32md (table->VceLevel[count].MinVoltage))); |
1333 | } |
1334 | return result; |
1335 | } |
1336 | |
1337 | static int polaris10_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr, |
1338 | int32_t eng_clock, int32_t mem_clock, |
1339 | SMU74_Discrete_MCArbDramTimingTableEntry *arb_regs) |
1340 | { |
1341 | uint32_t dram_timing; |
1342 | uint32_t dram_timing2; |
1343 | uint32_t burst_time; |
1344 | int result; |
1345 | |
1346 | result = atomctrl_set_engine_dram_timings_rv770(hwmgr, |
1347 | eng_clock, mem_clock); |
1348 | PP_ASSERT_WITH_CODE(result == 0,do { if (!(result == 0)) { printk("\0014" "amdgpu: " "%s\n", "Error calling VBIOS to set DRAM_TIMING." ); return result; } } while (0) |
1349 | "Error calling VBIOS to set DRAM_TIMING.", return result)do { if (!(result == 0)) { printk("\0014" "amdgpu: " "%s\n", "Error calling VBIOS to set DRAM_TIMING." ); return result; } } while (0); |
1350 | |
1351 | dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0x9dd)); |
1352 | dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0x9de)); |
1353 | burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0)((((((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0xa02))) & 0x1f) >> 0x0); |
1354 | |
1355 | |
1356 | arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dram_timing)(__uint32_t)(__builtin_constant_p(dram_timing) ? (__uint32_t) (((__uint32_t)(dram_timing) & 0xff) << 24 | ((__uint32_t )(dram_timing) & 0xff00) << 8 | ((__uint32_t)(dram_timing ) & 0xff0000) >> 8 | ((__uint32_t)(dram_timing) & 0xff000000) >> 24) : __swap32md(dram_timing)); |
1357 | arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2)(__uint32_t)(__builtin_constant_p(dram_timing2) ? (__uint32_t )(((__uint32_t)(dram_timing2) & 0xff) << 24 | ((__uint32_t )(dram_timing2) & 0xff00) << 8 | ((__uint32_t)(dram_timing2 ) & 0xff0000) >> 8 | ((__uint32_t)(dram_timing2) & 0xff000000) >> 24) : __swap32md(dram_timing2)); |
1358 | arb_regs->McArbBurstTime = (uint8_t)burst_time; |
1359 | |
1360 | return 0; |
1361 | } |
1362 | |
1363 | static int polaris10_program_memory_timing_parameters(struct pp_hwmgr *hwmgr) |
1364 | { |
1365 | struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend); |
1366 | struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); |
1367 | struct SMU74_Discrete_MCArbDramTimingTable arb_regs; |
1368 | uint32_t i, j; |
1369 | int result = 0; |
1370 | |
1371 | for (i = 0; i < hw_data->dpm_table.sclk_table.count; i++) { |
1372 | for (j = 0; j < hw_data->dpm_table.mclk_table.count; j++) { |
1373 | result = polaris10_populate_memory_timing_parameters(hwmgr, |
1374 | hw_data->dpm_table.sclk_table.dpm_levels[i].value, |
1375 | hw_data->dpm_table.mclk_table.dpm_levels[j].value, |
1376 | &arb_regs.entries[i][j]); |
1377 | if (result == 0) |
1378 | result = atomctrl_set_ac_timing_ai(hwmgr, hw_data->dpm_table.mclk_table.dpm_levels[j].value, j); |
1379 | if (result != 0) |
1380 | return result; |
1381 | } |
1382 | } |
1383 | |
1384 | result = smu7_copy_bytes_to_smc( |
1385 | hwmgr, |
1386 | smu_data->smu7_data.arb_table_start, |
1387 | (uint8_t *)&arb_regs, |
1388 | sizeof(SMU74_Discrete_MCArbDramTimingTable), |
1389 | SMC_RAM_END0x40000); |
1390 | return result; |
1391 | } |
1392 | |
1393 | static int polaris10_populate_smc_uvd_level(struct pp_hwmgr *hwmgr, |
1394 | struct SMU74_Discrete_DpmTable *table) |
1395 | { |
1396 | int result = -EINVAL22; |
1397 | uint8_t count; |
1398 | struct pp_atomctrl_clock_dividers_vi dividers; |
1399 | struct phm_ppt_v1_information *table_info = |
1400 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1401 | struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = |
1402 | table_info->mm_dep_table; |
1403 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1404 | uint32_t vddci; |
1405 | |
1406 | table->UvdLevelCount = (uint8_t)(mm_table->count); |
1407 | table->UvdBootLevel = 0; |
1408 | |
1409 | for (count = 0; count < table->UvdLevelCount; count++) { |
1410 | table->UvdLevel[count].MinVoltage = 0; |
1411 | table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk; |
1412 | table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk; |
1413 | table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc * |
1414 | VOLTAGE_SCALE4) << VDDC_SHIFT0; |
1415 | |
1416 | if (SMU7_VOLTAGE_CONTROL_BY_GPIO0x1 == data->vddci_control) |
1417 | vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table), |
1418 | mm_table->entries[count].vddc - VDDC_VDDCI_DELTA200); |
1419 | else if (SMU7_VOLTAGE_CONTROL_BY_SVID20x2 == data->vddci_control) |
1420 | vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA200; |
1421 | else |
1422 | vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE4) << VDDCI_SHIFT15; |
1423 | |
1424 | table->UvdLevel[count].MinVoltage |= (vddci * VOLTAGE_SCALE4) << VDDCI_SHIFT15; |
1425 | table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT30; |
1426 | |
1427 | /* retrieve divider value for VBIOS */ |
1428 | result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
1429 | table->UvdLevel[count].VclkFrequency, ÷rs); |
1430 | PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find divide id for Vclk clock"); return result; } } while (0) |
1431 | "can not find divide id for Vclk clock", return result)do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find divide id for Vclk clock"); return result; } } while (0); |
1432 | |
1433 | table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider; |
1434 | |
1435 | result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
1436 | table->UvdLevel[count].DclkFrequency, ÷rs); |
1437 | PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find divide id for Dclk clock"); return result; } } while (0) |
1438 | "can not find divide id for Dclk clock", return result)do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find divide id for Dclk clock"); return result; } } while (0); |
1439 | |
1440 | table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider; |
1441 | |
1442 | CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency)((table->UvdLevel[count].VclkFrequency) = (__uint32_t)(__builtin_constant_p (table->UvdLevel[count].VclkFrequency) ? (__uint32_t)(((__uint32_t )(table->UvdLevel[count].VclkFrequency) & 0xff) << 24 | ((__uint32_t)(table->UvdLevel[count].VclkFrequency) & 0xff00) << 8 | ((__uint32_t)(table->UvdLevel[count] .VclkFrequency) & 0xff0000) >> 8 | ((__uint32_t)(table ->UvdLevel[count].VclkFrequency) & 0xff000000) >> 24) : __swap32md(table->UvdLevel[count].VclkFrequency))); |
1443 | CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency)((table->UvdLevel[count].DclkFrequency) = (__uint32_t)(__builtin_constant_p (table->UvdLevel[count].DclkFrequency) ? (__uint32_t)(((__uint32_t )(table->UvdLevel[count].DclkFrequency) & 0xff) << 24 | ((__uint32_t)(table->UvdLevel[count].DclkFrequency) & 0xff00) << 8 | ((__uint32_t)(table->UvdLevel[count] .DclkFrequency) & 0xff0000) >> 8 | ((__uint32_t)(table ->UvdLevel[count].DclkFrequency) & 0xff000000) >> 24) : __swap32md(table->UvdLevel[count].DclkFrequency))); |
1444 | CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage)((table->UvdLevel[count].MinVoltage) = (__uint32_t)(__builtin_constant_p (table->UvdLevel[count].MinVoltage) ? (__uint32_t)(((__uint32_t )(table->UvdLevel[count].MinVoltage) & 0xff) << 24 | ((__uint32_t)(table->UvdLevel[count].MinVoltage) & 0xff00 ) << 8 | ((__uint32_t)(table->UvdLevel[count].MinVoltage ) & 0xff0000) >> 8 | ((__uint32_t)(table->UvdLevel [count].MinVoltage) & 0xff000000) >> 24) : __swap32md (table->UvdLevel[count].MinVoltage))); |
1445 | } |
1446 | |
1447 | return result; |
1448 | } |
1449 | |
1450 | static int polaris10_populate_smc_boot_level(struct pp_hwmgr *hwmgr, |
1451 | struct SMU74_Discrete_DpmTable *table) |
1452 | { |
1453 | int result = 0; |
1454 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1455 | |
1456 | table->GraphicsBootLevel = 0; |
1457 | table->MemoryBootLevel = 0; |
1458 | |
1459 | /* find boot level from dpm table */ |
1460 | result = phm_find_boot_level(&(data->dpm_table.sclk_table), |
1461 | data->vbios_boot_state.sclk_bootup_value, |
1462 | (uint32_t *)&(table->GraphicsBootLevel)); |
1463 | |
1464 | result = phm_find_boot_level(&(data->dpm_table.mclk_table), |
1465 | data->vbios_boot_state.mclk_bootup_value, |
1466 | (uint32_t *)&(table->MemoryBootLevel)); |
1467 | |
1468 | table->BootVddc = data->vbios_boot_state.vddc_bootup_value * |
1469 | VOLTAGE_SCALE4; |
1470 | table->BootVddci = data->vbios_boot_state.vddci_bootup_value * |
1471 | VOLTAGE_SCALE4; |
1472 | table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value * |
1473 | VOLTAGE_SCALE4; |
1474 | |
1475 | CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc)((table->BootVddc) = (__uint16_t)(__builtin_constant_p(table ->BootVddc) ? (__uint16_t)(((__uint16_t)(table->BootVddc ) & 0xffU) << 8 | ((__uint16_t)(table->BootVddc) & 0xff00U) >> 8) : __swap16md(table->BootVddc)) ); |
1476 | CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci)((table->BootVddci) = (__uint16_t)(__builtin_constant_p(table ->BootVddci) ? (__uint16_t)(((__uint16_t)(table->BootVddci ) & 0xffU) << 8 | ((__uint16_t)(table->BootVddci ) & 0xff00U) >> 8) : __swap16md(table->BootVddci ))); |
1477 | CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd)((table->BootMVdd) = (__uint16_t)(__builtin_constant_p(table ->BootMVdd) ? (__uint16_t)(((__uint16_t)(table->BootMVdd ) & 0xffU) << 8 | ((__uint16_t)(table->BootMVdd) & 0xff00U) >> 8) : __swap16md(table->BootMVdd)) ); |
1478 | |
1479 | return 0; |
1480 | } |
1481 | |
1482 | static int polaris10_populate_smc_initailial_state(struct pp_hwmgr *hwmgr) |
1483 | { |
1484 | struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend); |
1485 | struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); |
1486 | struct phm_ppt_v1_information *table_info = |
1487 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1488 | uint8_t count, level; |
1489 | |
1490 | count = (uint8_t)(table_info->vdd_dep_on_sclk->count); |
1491 | |
1492 | for (level = 0; level < count; level++) { |
1493 | if (table_info->vdd_dep_on_sclk->entries[level].clk >= |
1494 | hw_data->vbios_boot_state.sclk_bootup_value) { |
1495 | smu_data->smc_state_table.GraphicsBootLevel = level; |
1496 | break; |
1497 | } |
1498 | } |
1499 | |
1500 | count = (uint8_t)(table_info->vdd_dep_on_mclk->count); |
1501 | for (level = 0; level < count; level++) { |
1502 | if (table_info->vdd_dep_on_mclk->entries[level].clk >= |
1503 | hw_data->vbios_boot_state.mclk_bootup_value) { |
1504 | smu_data->smc_state_table.MemoryBootLevel = level; |
1505 | break; |
1506 | } |
1507 | } |
1508 | |
1509 | return 0; |
1510 | } |
1511 | |
1512 | static int polaris10_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr) |
1513 | { |
1514 | uint32_t ro, efuse, volt_without_cks, volt_with_cks, value, max, min; |
1515 | struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); |
1516 | |
1517 | uint8_t i, stretch_amount, volt_offset = 0; |
1518 | struct phm_ppt_v1_information *table_info = |
1519 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1520 | struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = |
1521 | table_info->vdd_dep_on_sclk; |
1522 | |
1523 | stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount; |
1524 | |
1525 | /* Read SMU_Eefuse to read and calculate RO and determine |
1526 | * if the part is SS or FF. if RO >= 1660MHz, part is FF. |
1527 | */ |
1528 | efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0100000 + (67 * 4))) |
1529 | ixSMU_EFUSE_0 + (67 * 4))(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0100000 + (67 * 4))); |
1530 | efuse &= 0xFF000000; |
1531 | efuse = efuse >> 24; |
1532 | |
1533 | if (hwmgr->chip_id == CHIP_POLARIS10) { |
1534 | if (hwmgr->is_kicker) { |
1535 | min = 1200; |
1536 | max = 2500; |
1537 | } else { |
1538 | min = 1000; |
1539 | max = 2300; |
1540 | } |
1541 | } else if (hwmgr->chip_id == CHIP_POLARIS11) { |
1542 | if (hwmgr->is_kicker) { |
1543 | min = 900; |
1544 | max = 2100; |
1545 | } else { |
1546 | min = 1100; |
1547 | max = 2100; |
1548 | } |
1549 | } else { |
1550 | min = 1100; |
1551 | max = 2100; |
1552 | } |
1553 | |
1554 | ro = efuse * (max - min) / 255 + min; |
1555 | |
1556 | /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */ |
1557 | for (i = 0; i < sclk_table->count; i++) { |
1558 | smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |= |
1559 | sclk_table->entries[i].cks_enable << i; |
1560 | if (hwmgr->chip_id == CHIP_POLARIS10) { |
1561 | volt_without_cks = (uint32_t)((2753594000U + (sclk_table->entries[i].clk/100) * 136418 - (ro - 70) * 1000000) / \ |
1562 | (2424180 - (sclk_table->entries[i].clk/100) * 1132925/1000)); |
1563 | volt_with_cks = (uint32_t)((2797202000U + sclk_table->entries[i].clk/100 * 3232 - (ro - 65) * 1000000) / \ |
1564 | (2522480 - sclk_table->entries[i].clk/100 * 115764/100)); |
1565 | } else { |
1566 | volt_without_cks = (uint32_t)((2416794800U + (sclk_table->entries[i].clk/100) * 1476925/10 - (ro - 50) * 1000000) / \ |
1567 | (2625416 - (sclk_table->entries[i].clk/100) * (12586807/10000))); |
1568 | volt_with_cks = (uint32_t)((2999656000U - sclk_table->entries[i].clk/100 * 392803 - (ro - 44) * 1000000) / \ |
1569 | (3422454 - sclk_table->entries[i].clk/100 * (18886376/10000))); |
1570 | } |
1571 | |
1572 | if (volt_without_cks >= volt_with_cks) |
1573 | volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks + |
1574 | sclk_table->entries[i].cks_voffset) * 100 + 624) / 625); |
1575 | |
1576 | smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset; |
1577 | } |
1578 | |
1579 | smu_data->smc_state_table.LdoRefSel = (table_info->cac_dtp_table->ucCKS_LDO_REFSEL != 0) ? table_info->cac_dtp_table->ucCKS_LDO_REFSEL : 6; |
1580 | /* Populate CKS Lookup Table */ |
1581 | if (stretch_amount == 0 || stretch_amount > 5) { |
1582 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
1583 | PHM_PlatformCaps_ClockStretcher); |
1584 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Stretch Amount in PPTable not supported" ); return -22; } } while (0) |
1585 | "Stretch Amount in PPTable not supported",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Stretch Amount in PPTable not supported" ); return -22; } } while (0) |
1586 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Stretch Amount in PPTable not supported" ); return -22; } } while (0); |
1587 | } |
1588 | |
1589 | value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL)(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0200350)); |
1590 | value &= 0xFFFFFFFE; |
1591 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0200350,value)); |
1592 | |
1593 | return 0; |
1594 | } |
1595 | |
1596 | static int polaris10_populate_vr_config(struct pp_hwmgr *hwmgr, |
1597 | struct SMU74_Discrete_DpmTable *table) |
1598 | { |
1599 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1600 | struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); |
1601 | uint16_t config; |
1602 | |
1603 | config = VR_MERGED_WITH_VDDC0; |
1604 | table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT8); |
1605 | |
1606 | /* Set Vddc Voltage Controller */ |
1607 | if (SMU7_VOLTAGE_CONTROL_BY_SVID20x2 == data->voltage_control) { |
1608 | config = VR_SVI2_PLANE_11; |
1609 | table->VRConfig |= config; |
1610 | } else { |
1611 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "VDDC should be on SVI2 control in merged mode!" ); ; } } while (0) |
1612 | "VDDC should be on SVI2 control in merged mode!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "VDDC should be on SVI2 control in merged mode!" ); ; } } while (0) |
1613 | )do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "VDDC should be on SVI2 control in merged mode!" ); ; } } while (0); |
1614 | } |
1615 | /* Set Vddci Voltage Controller */ |
1616 | if (SMU7_VOLTAGE_CONTROL_BY_SVID20x2 == data->vddci_control) { |
1617 | config = VR_SVI2_PLANE_22; /* only in merged mode */ |
1618 | table->VRConfig |= (config << VRCONF_VDDCI_SHIFT16); |
1619 | } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO0x1 == data->vddci_control) { |
1620 | config = VR_SMIO_PATTERN_13; |
1621 | table->VRConfig |= (config << VRCONF_VDDCI_SHIFT16); |
1622 | } else { |
1623 | config = VR_STATIC_VOLTAGE5; |
1624 | table->VRConfig |= (config << VRCONF_VDDCI_SHIFT16); |
1625 | } |
1626 | /* Set Mvdd Voltage Controller */ |
1627 | if (SMU7_VOLTAGE_CONTROL_BY_SVID20x2 == data->mvdd_control) { |
1628 | config = VR_SVI2_PLANE_22; |
1629 | table->VRConfig |= (config << VRCONF_MVDD_SHIFT24); |
1630 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, smu_data->smu7_data.soft_regs_start +(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,smu_data->smu7_data.soft_regs_start + __builtin_offsetof(SMU74_SoftRegisters, AllowMvddSwitch),0x1 )) |
1631 | offsetof(SMU74_SoftRegisters, AllowMvddSwitch), 0x1)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,smu_data->smu7_data.soft_regs_start + __builtin_offsetof(SMU74_SoftRegisters, AllowMvddSwitch),0x1 )); |
1632 | } else { |
1633 | config = VR_STATIC_VOLTAGE5; |
1634 | table->VRConfig |= (config << VRCONF_MVDD_SHIFT24); |
1635 | } |
1636 | |
1637 | return 0; |
1638 | } |
1639 | |
1640 | |
1641 | static int polaris10_populate_avfs_parameters(struct pp_hwmgr *hwmgr) |
1642 | { |
1643 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
1644 | struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); |
1645 | struct amdgpu_device *adev = hwmgr->adev; |
1646 | |
1647 | SMU74_Discrete_DpmTable *table = &(smu_data->smc_state_table); |
1648 | int result = 0; |
1649 | struct pp_atom_ctrl__avfs_parameters avfs_params = {0}; |
1650 | AVFS_meanNsigma_t AVFS_meanNsigma = { {0} }; |
1651 | AVFS_Sclk_Offset_t AVFS_SclkOffset = { {0} }; |
1652 | uint32_t tmp, i; |
1653 | |
1654 | struct phm_ppt_v1_information *table_info = |
1655 | (struct phm_ppt_v1_information *)hwmgr->pptable; |
1656 | struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = |
1657 | table_info->vdd_dep_on_sclk; |
1658 | |
1659 | |
1660 | if (!hwmgr->avfs_supported) |
1661 | return 0; |
1662 | |
1663 | result = atomctrl_get_avfs_information(hwmgr, &avfs_params); |
1664 | |
1665 | if (0 == result) { |
1666 | if (((adev->pdev->device == 0x67ef) && |
1667 | ((adev->pdev->revision == 0xe0) || |
1668 | (adev->pdev->revision == 0xe5))) || |
1669 | ((adev->pdev->device == 0x67ff) && |
1670 | ((adev->pdev->revision == 0xcf) || |
1671 | (adev->pdev->revision == 0xef) || |
1672 | (adev->pdev->revision == 0xff)))) { |
1673 | avfs_params.ucEnableApplyAVFS_CKS_OFF_Voltage = 1; |
1674 | if ((adev->pdev->device == 0x67ef && adev->pdev->revision == 0xe5) || |
1675 | (adev->pdev->device == 0x67ff && adev->pdev->revision == 0xef)) { |
1676 | if ((avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0 == 0xEA522DD3) && |
1677 | (avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1 == 0x5645A) && |
1678 | (avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2 == 0x33F9E) && |
1679 | (avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1 == 0xFFFFC5CC) && |
1680 | (avfs_params.usAVFSGB_FUSE_TABLE_CKSOFF_m2 == 0x1B1A) && |
1681 | (avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b == 0xFFFFFCED)) { |
1682 | avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0 = 0xF718F1D4; |
1683 | avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1 = 0x323FD; |
1684 | avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2 = 0x1E455; |
1685 | avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1 = 0; |
1686 | avfs_params.usAVFSGB_FUSE_TABLE_CKSOFF_m2 = 0; |
1687 | avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b = 0x23; |
1688 | } |
1689 | } |
1690 | } else if (hwmgr->chip_id == CHIP_POLARIS12 && !hwmgr->is_kicker) { |
1691 | avfs_params.ucEnableApplyAVFS_CKS_OFF_Voltage = 1; |
1692 | avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0 = 0xF6B024DD; |
1693 | avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1 = 0x3005E; |
1694 | avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2 = 0x18A5F; |
1695 | avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1 = 0x315; |
1696 | avfs_params.usAVFSGB_FUSE_TABLE_CKSOFF_m2 = 0xFED1; |
1697 | avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b = 0x3B; |
1698 | } else if (((adev->pdev->device == 0x67df) && |
1699 | ((adev->pdev->revision == 0xe0) || |
1700 | (adev->pdev->revision == 0xe3) || |
1701 | (adev->pdev->revision == 0xe4) || |
1702 | (adev->pdev->revision == 0xe5) || |
1703 | (adev->pdev->revision == 0xe7) || |
1704 | (adev->pdev->revision == 0xef))) || |
1705 | ((adev->pdev->device == 0x6fdf) && |
1706 | ((adev->pdev->revision == 0xef) || |
1707 | (adev->pdev->revision == 0xff)))) { |
1708 | avfs_params.ucEnableApplyAVFS_CKS_OFF_Voltage = 1; |
1709 | avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0 = 0xF843B66B; |
1710 | avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1 = 0x59CB5; |
1711 | avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2 = 0xFFFF287F; |
1712 | avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1 = 0; |
1713 | avfs_params.usAVFSGB_FUSE_TABLE_CKSOFF_m2 = 0xFF23; |
1714 | avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b = 0x58; |
1715 | } |
1716 | } |
1717 | |
1718 | if (0 == result) { |
1719 | table->BTCGB_VDROOP_TABLE[0].a0 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a0)(__uint32_t)(__builtin_constant_p(avfs_params.ulGB_VDROOP_TABLE_CKSON_a0 ) ? (__uint32_t)(((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSON_a0 ) & 0xff) << 24 | ((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSON_a0 ) & 0xff00) << 8 | ((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSON_a0 ) & 0xff0000) >> 8 | ((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSON_a0 ) & 0xff000000) >> 24) : __swap32md(avfs_params.ulGB_VDROOP_TABLE_CKSON_a0 )); |
1720 | table->BTCGB_VDROOP_TABLE[0].a1 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a1)(__uint32_t)(__builtin_constant_p(avfs_params.ulGB_VDROOP_TABLE_CKSON_a1 ) ? (__uint32_t)(((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSON_a1 ) & 0xff) << 24 | ((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSON_a1 ) & 0xff00) << 8 | ((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSON_a1 ) & 0xff0000) >> 8 | ((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSON_a1 ) & 0xff000000) >> 24) : __swap32md(avfs_params.ulGB_VDROOP_TABLE_CKSON_a1 )); |
1721 | table->BTCGB_VDROOP_TABLE[0].a2 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a2)(__uint32_t)(__builtin_constant_p(avfs_params.ulGB_VDROOP_TABLE_CKSON_a2 ) ? (__uint32_t)(((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSON_a2 ) & 0xff) << 24 | ((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSON_a2 ) & 0xff00) << 8 | ((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSON_a2 ) & 0xff0000) >> 8 | ((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSON_a2 ) & 0xff000000) >> 24) : __swap32md(avfs_params.ulGB_VDROOP_TABLE_CKSON_a2 )); |
1722 | table->BTCGB_VDROOP_TABLE[1].a0 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0)(__uint32_t)(__builtin_constant_p(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0 ) ? (__uint32_t)(((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0 ) & 0xff) << 24 | ((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0 ) & 0xff00) << 8 | ((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0 ) & 0xff0000) >> 8 | ((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0 ) & 0xff000000) >> 24) : __swap32md(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0 )); |
1723 | table->BTCGB_VDROOP_TABLE[1].a1 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1)(__uint32_t)(__builtin_constant_p(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1 ) ? (__uint32_t)(((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1 ) & 0xff) << 24 | ((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1 ) & 0xff00) << 8 | ((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1 ) & 0xff0000) >> 8 | ((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1 ) & 0xff000000) >> 24) : __swap32md(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1 )); |
1724 | table->BTCGB_VDROOP_TABLE[1].a2 = PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2)(__uint32_t)(__builtin_constant_p(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2 ) ? (__uint32_t)(((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2 ) & 0xff) << 24 | ((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2 ) & 0xff00) << 8 | ((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2 ) & 0xff0000) >> 8 | ((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2 ) & 0xff000000) >> 24) : __swap32md(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2 )); |
1725 | table->AVFSGB_VDROOP_TABLE[0].m1 = PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_m1)(__uint32_t)(__builtin_constant_p(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_m1 ) ? (__uint32_t)(((__uint32_t)(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_m1 ) & 0xff) << 24 | ((__uint32_t)(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_m1 ) & 0xff00) << 8 | ((__uint32_t)(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_m1 ) & 0xff0000) >> 8 | ((__uint32_t)(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_m1 ) & 0xff000000) >> 24) : __swap32md(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_m1 )); |
1726 | table->AVFSGB_VDROOP_TABLE[0].m2 = PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSON_m2)(__uint16_t)(__builtin_constant_p(avfs_params.usAVFSGB_FUSE_TABLE_CKSON_m2 ) ? (__uint16_t)(((__uint16_t)(avfs_params.usAVFSGB_FUSE_TABLE_CKSON_m2 ) & 0xffU) << 8 | ((__uint16_t)(avfs_params.usAVFSGB_FUSE_TABLE_CKSON_m2 ) & 0xff00U) >> 8) : __swap16md(avfs_params.usAVFSGB_FUSE_TABLE_CKSON_m2 )); |
1727 | table->AVFSGB_VDROOP_TABLE[0].b = PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_b)(__uint32_t)(__builtin_constant_p(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_b ) ? (__uint32_t)(((__uint32_t)(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_b ) & 0xff) << 24 | ((__uint32_t)(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_b ) & 0xff00) << 8 | ((__uint32_t)(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_b ) & 0xff0000) >> 8 | ((__uint32_t)(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_b ) & 0xff000000) >> 24) : __swap32md(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_b )); |
1728 | table->AVFSGB_VDROOP_TABLE[0].m1_shift = 24; |
1729 | table->AVFSGB_VDROOP_TABLE[0].m2_shift = 12; |
1730 | table->AVFSGB_VDROOP_TABLE[1].m1 = PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1)(__uint32_t)(__builtin_constant_p(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1 ) ? (__uint32_t)(((__uint32_t)(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1 ) & 0xff) << 24 | ((__uint32_t)(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1 ) & 0xff00) << 8 | ((__uint32_t)(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1 ) & 0xff0000) >> 8 | ((__uint32_t)(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1 ) & 0xff000000) >> 24) : __swap32md(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1 )); |
1731 | table->AVFSGB_VDROOP_TABLE[1].m2 = PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSOFF_m2)(__uint16_t)(__builtin_constant_p(avfs_params.usAVFSGB_FUSE_TABLE_CKSOFF_m2 ) ? (__uint16_t)(((__uint16_t)(avfs_params.usAVFSGB_FUSE_TABLE_CKSOFF_m2 ) & 0xffU) << 8 | ((__uint16_t)(avfs_params.usAVFSGB_FUSE_TABLE_CKSOFF_m2 ) & 0xff00U) >> 8) : __swap16md(avfs_params.usAVFSGB_FUSE_TABLE_CKSOFF_m2 )); |
1732 | table->AVFSGB_VDROOP_TABLE[1].b = PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b)(__uint32_t)(__builtin_constant_p(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b ) ? (__uint32_t)(((__uint32_t)(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b ) & 0xff) << 24 | ((__uint32_t)(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b ) & 0xff00) << 8 | ((__uint32_t)(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b ) & 0xff0000) >> 8 | ((__uint32_t)(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b ) & 0xff000000) >> 24) : __swap32md(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b )); |
1733 | table->AVFSGB_VDROOP_TABLE[1].m1_shift = 24; |
1734 | table->AVFSGB_VDROOP_TABLE[1].m2_shift = 12; |
1735 | table->MaxVoltage = PP_HOST_TO_SMC_US(avfs_params.usMaxVoltage_0_25mv)(__uint16_t)(__builtin_constant_p(avfs_params.usMaxVoltage_0_25mv ) ? (__uint16_t)(((__uint16_t)(avfs_params.usMaxVoltage_0_25mv ) & 0xffU) << 8 | ((__uint16_t)(avfs_params.usMaxVoltage_0_25mv ) & 0xff00U) >> 8) : __swap16md(avfs_params.usMaxVoltage_0_25mv )); |
1736 | AVFS_meanNsigma.Aconstant[0] = PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant0)(__uint32_t)(__builtin_constant_p(avfs_params.ulAVFS_meanNsigma_Acontant0 ) ? (__uint32_t)(((__uint32_t)(avfs_params.ulAVFS_meanNsigma_Acontant0 ) & 0xff) << 24 | ((__uint32_t)(avfs_params.ulAVFS_meanNsigma_Acontant0 ) & 0xff00) << 8 | ((__uint32_t)(avfs_params.ulAVFS_meanNsigma_Acontant0 ) & 0xff0000) >> 8 | ((__uint32_t)(avfs_params.ulAVFS_meanNsigma_Acontant0 ) & 0xff000000) >> 24) : __swap32md(avfs_params.ulAVFS_meanNsigma_Acontant0 )); |
1737 | AVFS_meanNsigma.Aconstant[1] = PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant1)(__uint32_t)(__builtin_constant_p(avfs_params.ulAVFS_meanNsigma_Acontant1 ) ? (__uint32_t)(((__uint32_t)(avfs_params.ulAVFS_meanNsigma_Acontant1 ) & 0xff) << 24 | ((__uint32_t)(avfs_params.ulAVFS_meanNsigma_Acontant1 ) & 0xff00) << 8 | ((__uint32_t)(avfs_params.ulAVFS_meanNsigma_Acontant1 ) & 0xff0000) >> 8 | ((__uint32_t)(avfs_params.ulAVFS_meanNsigma_Acontant1 ) & 0xff000000) >> 24) : __swap32md(avfs_params.ulAVFS_meanNsigma_Acontant1 )); |
1738 | AVFS_meanNsigma.Aconstant[2] = PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant2)(__uint32_t)(__builtin_constant_p(avfs_params.ulAVFS_meanNsigma_Acontant2 ) ? (__uint32_t)(((__uint32_t)(avfs_params.ulAVFS_meanNsigma_Acontant2 ) & 0xff) << 24 | ((__uint32_t)(avfs_params.ulAVFS_meanNsigma_Acontant2 ) & 0xff00) << 8 | ((__uint32_t)(avfs_params.ulAVFS_meanNsigma_Acontant2 ) & 0xff0000) >> 8 | ((__uint32_t)(avfs_params.ulAVFS_meanNsigma_Acontant2 ) & 0xff000000) >> 24) : __swap32md(avfs_params.ulAVFS_meanNsigma_Acontant2 )); |
1739 | AVFS_meanNsigma.DC_tol_sigma = PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_DC_tol_sigma)(__uint16_t)(__builtin_constant_p(avfs_params.usAVFS_meanNsigma_DC_tol_sigma ) ? (__uint16_t)(((__uint16_t)(avfs_params.usAVFS_meanNsigma_DC_tol_sigma ) & 0xffU) << 8 | ((__uint16_t)(avfs_params.usAVFS_meanNsigma_DC_tol_sigma ) & 0xff00U) >> 8) : __swap16md(avfs_params.usAVFS_meanNsigma_DC_tol_sigma )); |
1740 | AVFS_meanNsigma.Platform_mean = PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_mean)(__uint16_t)(__builtin_constant_p(avfs_params.usAVFS_meanNsigma_Platform_mean ) ? (__uint16_t)(((__uint16_t)(avfs_params.usAVFS_meanNsigma_Platform_mean ) & 0xffU) << 8 | ((__uint16_t)(avfs_params.usAVFS_meanNsigma_Platform_mean ) & 0xff00U) >> 8) : __swap16md(avfs_params.usAVFS_meanNsigma_Platform_mean )); |
1741 | AVFS_meanNsigma.PSM_Age_CompFactor = PP_HOST_TO_SMC_US(avfs_params.usPSM_Age_ComFactor)(__uint16_t)(__builtin_constant_p(avfs_params.usPSM_Age_ComFactor ) ? (__uint16_t)(((__uint16_t)(avfs_params.usPSM_Age_ComFactor ) & 0xffU) << 8 | ((__uint16_t)(avfs_params.usPSM_Age_ComFactor ) & 0xff00U) >> 8) : __swap16md(avfs_params.usPSM_Age_ComFactor )); |
1742 | AVFS_meanNsigma.Platform_sigma = PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_sigma)(__uint16_t)(__builtin_constant_p(avfs_params.usAVFS_meanNsigma_Platform_sigma ) ? (__uint16_t)(((__uint16_t)(avfs_params.usAVFS_meanNsigma_Platform_sigma ) & 0xffU) << 8 | ((__uint16_t)(avfs_params.usAVFS_meanNsigma_Platform_sigma ) & 0xff00U) >> 8) : __swap16md(avfs_params.usAVFS_meanNsigma_Platform_sigma )); |
1743 | |
1744 | for (i = 0; i < NUM_VFT_COLUMNS; i++) { |
1745 | AVFS_meanNsigma.Static_Voltage_Offset[i] = (uint8_t)(sclk_table->entries[i].cks_voffset * 100 / 625); |
1746 | AVFS_SclkOffset.Sclk_Offset[i] = PP_HOST_TO_SMC_US((uint16_t)(sclk_table->entries[i].sclk_offset) / 100)(__uint16_t)(__builtin_constant_p((uint16_t)(sclk_table->entries [i].sclk_offset) / 100) ? (__uint16_t)(((__uint16_t)((uint16_t )(sclk_table->entries[i].sclk_offset) / 100) & 0xffU) << 8 | ((__uint16_t)((uint16_t)(sclk_table->entries[i].sclk_offset ) / 100) & 0xff00U) >> 8) : __swap16md((uint16_t)(sclk_table ->entries[i].sclk_offset) / 100)); |
1747 | } |
1748 | |
1749 | result = smu7_read_smc_sram_dword(hwmgr, |
1750 | SMU7_FIRMWARE_HEADER_LOCATION0x20000 + offsetof(SMU74_Firmware_Header, AvfsMeanNSigma)__builtin_offsetof(SMU74_Firmware_Header, AvfsMeanNSigma), |
1751 | &tmp, SMC_RAM_END0x40000); |
1752 | |
1753 | smu7_copy_bytes_to_smc(hwmgr, |
1754 | tmp, |
1755 | (uint8_t *)&AVFS_meanNsigma, |
1756 | sizeof(AVFS_meanNsigma_t), |
1757 | SMC_RAM_END0x40000); |
1758 | |
1759 | result = smu7_read_smc_sram_dword(hwmgr, |
1760 | SMU7_FIRMWARE_HEADER_LOCATION0x20000 + offsetof(SMU74_Firmware_Header, AvfsSclkOffsetTable)__builtin_offsetof(SMU74_Firmware_Header, AvfsSclkOffsetTable ), |
1761 | &tmp, SMC_RAM_END0x40000); |
1762 | smu7_copy_bytes_to_smc(hwmgr, |
1763 | tmp, |
1764 | (uint8_t *)&AVFS_SclkOffset, |
1765 | sizeof(AVFS_Sclk_Offset_t), |
1766 | SMC_RAM_END0x40000); |
1767 | |
1768 | data->avfs_vdroop_override_setting = (avfs_params.ucEnableGB_VDROOP_TABLE_CKSON << BTCGB0_Vdroop_Enable_SHIFT0) | |
1769 | (avfs_params.ucEnableGB_VDROOP_TABLE_CKSOFF << BTCGB1_Vdroop_Enable_SHIFT1) | |
1770 | (avfs_params.ucEnableGB_FUSE_TABLE_CKSON << AVFSGB0_Vdroop_Enable_SHIFT2) | |
1771 | (avfs_params.ucEnableGB_FUSE_TABLE_CKSOFF << AVFSGB1_Vdroop_Enable_SHIFT3); |
1772 | data->apply_avfs_cks_off_voltage = (avfs_params.ucEnableApplyAVFS_CKS_OFF_Voltage == 1) ? true1 : false0; |
1773 | } |
1774 | return result; |
1775 | } |
1776 | |
1777 | static int polaris10_init_arb_table_index(struct pp_hwmgr *hwmgr) |
1778 | { |
1779 | struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); |
1780 | uint32_t tmp; |
1781 | int result; |
1782 | |
1783 | /* This is a read-modify-write on the first byte of the ARB table. |
1784 | * The first byte in the SMU73_Discrete_MCArbDramTimingTable structure |
1785 | * is the field 'current'. |
1786 | * This solution is ugly, but we never write the whole table only |
1787 | * individual fields in it. |
1788 | * In reality this field should not be in that structure |
1789 | * but in a soft register. |
1790 | */ |
1791 | result = smu7_read_smc_sram_dword(hwmgr, |
1792 | smu_data->smu7_data.arb_table_start, &tmp, SMC_RAM_END0x40000); |
1793 | |
1794 | if (result) |
1795 | return result; |
1796 | |
1797 | tmp &= 0x00FFFFFF; |
1798 | tmp |= ((uint32_t)MC_CG_ARB_FREQ_F10x0b) << 24; |
1799 | |
1800 | return smu7_write_smc_sram_dword(hwmgr, |
1801 | smu_data->smu7_data.arb_table_start, tmp, SMC_RAM_END0x40000); |
1802 | } |
1803 | |
1804 | static void polaris10_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr) |
1805 | { |
1806 | struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); |
1807 | struct phm_ppt_v1_information *table_info = |
1808 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1809 | |
1810 | if (table_info && |
1811 | table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX1 && |
1812 | table_info->cac_dtp_table->usPowerTuneDataSetID) |
1813 | smu_data->power_tune_defaults = |
1814 | &polaris10_power_tune_data_set_array |
1815 | [table_info->cac_dtp_table->usPowerTuneDataSetID - 1]; |
1816 | else |
1817 | smu_data->power_tune_defaults = &polaris10_power_tune_data_set_array[0]; |
1818 | |
1819 | } |
1820 | |
1821 | static int polaris10_init_smc_table(struct pp_hwmgr *hwmgr) |
1822 | { |
1823 | int result; |
1824 | struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend); |
1825 | struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); |
1826 | |
1827 | struct phm_ppt_v1_information *table_info = |
1828 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
1829 | struct SMU74_Discrete_DpmTable *table = &(smu_data->smc_state_table); |
1830 | uint8_t i; |
1831 | struct pp_atomctrl_gpio_pin_assignment gpio_pin; |
1832 | pp_atomctrl_clock_dividers_vi dividers; |
1833 | |
1834 | polaris10_initialize_power_tune_defaults(hwmgr); |
1835 | |
1836 | if (SMU7_VOLTAGE_CONTROL_NONE0x0 != hw_data->voltage_control) |
1837 | polaris10_populate_smc_voltage_tables(hwmgr, table); |
1838 | |
1839 | table->SystemFlags = 0; |
1840 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
1841 | PHM_PlatformCaps_AutomaticDCTransition)) |
1842 | table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC0x01; |
1843 | |
1844 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
1845 | PHM_PlatformCaps_StepVddc)) |
1846 | table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC0x02; |
1847 | |
1848 | if (hw_data->is_memory_gddr5) |
1849 | table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR50x04; |
1850 | |
1851 | if (hw_data->ulv_supported && table_info->us_ulv_voltage_offset) { |
1852 | result = polaris10_populate_ulv_state(hwmgr, table); |
1853 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize ULV state!" ); return result; } } while (0) |
1854 | "Failed to initialize ULV state!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize ULV state!" ); return result; } } while (0); |
1855 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc020015c,0x00040035)) |
1856 | ixCG_ULV_PARAMETER, SMU7_CGULVPARAMETER_DFLT)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc020015c,0x00040035)); |
1857 | } |
1858 | |
1859 | result = polaris10_populate_smc_link_level(hwmgr, table); |
1860 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Link Level!" ); return result; } } while (0) |
1861 | "Failed to initialize Link Level!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Link Level!" ); return result; } } while (0); |
1862 | |
1863 | result = polaris10_populate_all_graphic_levels(hwmgr); |
1864 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Graphics Level!" ); return result; } } while (0) |
1865 | "Failed to initialize Graphics Level!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Graphics Level!" ); return result; } } while (0); |
1866 | |
1867 | result = polaris10_populate_all_memory_levels(hwmgr); |
1868 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Memory Level!" ); return result; } } while (0) |
1869 | "Failed to initialize Memory Level!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Memory Level!" ); return result; } } while (0); |
1870 | |
1871 | result = polaris10_populate_smc_acpi_level(hwmgr, table); |
1872 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize ACPI Level!" ); return result; } } while (0) |
1873 | "Failed to initialize ACPI Level!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize ACPI Level!" ); return result; } } while (0); |
1874 | |
1875 | result = polaris10_populate_smc_vce_level(hwmgr, table); |
1876 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize VCE Level!" ); return result; } } while (0) |
1877 | "Failed to initialize VCE Level!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize VCE Level!" ); return result; } } while (0); |
1878 | |
1879 | /* Since only the initial state is completely set up at this point |
1880 | * (the other states are just copies of the boot state) we only |
1881 | * need to populate the ARB settings for the initial state. |
1882 | */ |
1883 | result = polaris10_program_memory_timing_parameters(hwmgr); |
1884 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to Write ARB settings for the initial state." ); return result; } } while (0) |
1885 | "Failed to Write ARB settings for the initial state.", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to Write ARB settings for the initial state." ); return result; } } while (0); |
1886 | |
1887 | result = polaris10_populate_smc_uvd_level(hwmgr, table); |
1888 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize UVD Level!" ); return result; } } while (0) |
1889 | "Failed to initialize UVD Level!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize UVD Level!" ); return result; } } while (0); |
1890 | |
1891 | result = polaris10_populate_smc_boot_level(hwmgr, table); |
1892 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Boot Level!" ); return result; } } while (0) |
1893 | "Failed to initialize Boot Level!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Boot Level!" ); return result; } } while (0); |
1894 | |
1895 | result = polaris10_populate_smc_initailial_state(hwmgr); |
1896 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Boot State!" ); return result; } } while (0) |
1897 | "Failed to initialize Boot State!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Boot State!" ); return result; } } while (0); |
1898 | |
1899 | result = polaris10_populate_bapm_parameters_in_dpm_table(hwmgr); |
1900 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate BAPM Parameters!" ); return result; } } while (0) |
1901 | "Failed to populate BAPM Parameters!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate BAPM Parameters!" ); return result; } } while (0); |
1902 | |
1903 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
1904 | PHM_PlatformCaps_ClockStretcher)) { |
1905 | result = polaris10_populate_clock_stretcher_data_table(hwmgr); |
1906 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate Clock Stretcher Data Table!" ); return result; } } while (0) |
1907 | "Failed to populate Clock Stretcher Data Table!",do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate Clock Stretcher Data Table!" ); return result; } } while (0) |
1908 | return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate Clock Stretcher Data Table!" ); return result; } } while (0); |
1909 | } |
1910 | |
1911 | result = polaris10_populate_avfs_parameters(hwmgr); |
1912 | PP_ASSERT_WITH_CODE(0 == result, "Failed to populate AVFS Parameters!", return result;)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate AVFS Parameters!" ); return result;; } } while (0); |
1913 | |
1914 | table->CurrSclkPllRange = 0xff; |
1915 | table->GraphicsVoltageChangeEnable = 1; |
1916 | table->GraphicsThermThrottleEnable = 1; |
1917 | table->GraphicsInterval = 1; |
1918 | table->VoltageInterval = 1; |
1919 | table->ThermalInterval = 1; |
1920 | table->TemperatureLimitHigh = |
1921 | table_info->cac_dtp_table->usTargetOperatingTemp * |
1922 | SMU7_Q88_FORMAT_CONVERSION_UNIT256; |
1923 | table->TemperatureLimitLow = |
1924 | (table_info->cac_dtp_table->usTargetOperatingTemp - 1) * |
1925 | SMU7_Q88_FORMAT_CONVERSION_UNIT256; |
1926 | table->MemoryVoltageChangeEnable = 1; |
1927 | table->MemoryInterval = 1; |
1928 | table->VoltageResponseTime = 0; |
1929 | table->PhaseResponseTime = 0; |
1930 | table->MemoryThermThrottleEnable = 1; |
1931 | table->PCIeBootLinkLevel = 0; |
1932 | table->PCIeGenInterval = 1; |
1933 | table->VRConfig = 0; |
1934 | |
1935 | result = polaris10_populate_vr_config(hwmgr, table); |
1936 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate VRConfig setting!" ); return result; } } while (0) |
1937 | "Failed to populate VRConfig setting!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate VRConfig setting!" ); return result; } } while (0); |
1938 | hw_data->vr_config = table->VRConfig; |
1939 | table->ThermGpio = 17; |
1940 | table->SclkStepSize = 0x4000; |
1941 | |
1942 | if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID61, &gpio_pin)) { |
1943 | table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift; |
1944 | } else { |
1945 | table->VRHotGpio = SMU7_UNUSED_GPIO_PIN0x7F; |
1946 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
1947 | PHM_PlatformCaps_RegulatorHot); |
1948 | } |
1949 | |
1950 | if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID60, |
1951 | &gpio_pin)) { |
1952 | table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift; |
1953 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
1954 | PHM_PlatformCaps_AutomaticDCTransition); |
1955 | } else { |
1956 | table->AcDcGpio = SMU7_UNUSED_GPIO_PIN0x7F; |
1957 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
1958 | PHM_PlatformCaps_AutomaticDCTransition); |
1959 | } |
1960 | |
1961 | /* Thermal Output GPIO */ |
1962 | if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID65, |
1963 | &gpio_pin)) { |
1964 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
1965 | PHM_PlatformCaps_ThermalOutGPIO); |
1966 | |
1967 | table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift; |
1968 | |
1969 | /* For porlarity read GPIOPAD_A with assigned Gpio pin |
1970 | * since VBIOS will program this register to set 'inactive state', |
1971 | * driver can then determine 'active state' from this and |
1972 | * program SMU with correct polarity |
1973 | */ |
1974 | table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0x183)) |
1975 | & (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0; |
1976 | table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY0x1; |
1977 | |
1978 | /* if required, combine VRHot/PCC with thermal out GPIO */ |
1979 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_RegulatorHot) |
1980 | && phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_CombinePCCWithThermalSignal)) |
1981 | table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT0x2; |
1982 | } else { |
1983 | table->ThermOutGpio = 17; |
1984 | table->ThermOutPolarity = 1; |
1985 | table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE0x0; |
1986 | } |
1987 | |
1988 | /* Populate BIF_SCLK levels into SMC DPM table */ |
1989 | for (i = 0; i <= hw_data->dpm_table.pcie_speed_table.count; i++) { |
1990 | result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, smu_data->bif_sclk_table[i], ÷rs); |
1991 | PP_ASSERT_WITH_CODE((result == 0), "Can not find DFS divide id for Sclk", return result)do { if (!((result == 0))) { printk("\0014" "amdgpu: " "%s\n" , "Can not find DFS divide id for Sclk"); return result; } } while (0); |
1992 | |
1993 | if (i == 0) |
1994 | table->Ulv.BifSclkDfs = PP_HOST_TO_SMC_US((USHORT)(dividers.pll_post_divider))(__uint16_t)(__builtin_constant_p((USHORT)(dividers.pll_post_divider )) ? (__uint16_t)(((__uint16_t)((USHORT)(dividers.pll_post_divider )) & 0xffU) << 8 | ((__uint16_t)((USHORT)(dividers. pll_post_divider)) & 0xff00U) >> 8) : __swap16md((USHORT )(dividers.pll_post_divider))); |
1995 | else |
1996 | table->LinkLevel[i-1].BifSclkDfs = PP_HOST_TO_SMC_US((USHORT)(dividers.pll_post_divider))(__uint16_t)(__builtin_constant_p((USHORT)(dividers.pll_post_divider )) ? (__uint16_t)(((__uint16_t)((USHORT)(dividers.pll_post_divider )) & 0xffU) << 8 | ((__uint16_t)((USHORT)(dividers. pll_post_divider)) & 0xff00U) >> 8) : __swap16md((USHORT )(dividers.pll_post_divider))); |
1997 | } |
1998 | |
1999 | for (i = 0; i < SMU74_MAX_ENTRIES_SMIO32; i++) |
2000 | table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i])(__uint32_t)(__builtin_constant_p(table->Smio[i]) ? (__uint32_t )(((__uint32_t)(table->Smio[i]) & 0xff) << 24 | ( (__uint32_t)(table->Smio[i]) & 0xff00) << 8 | (( __uint32_t)(table->Smio[i]) & 0xff0000) >> 8 | ( (__uint32_t)(table->Smio[i]) & 0xff000000) >> 24 ) : __swap32md(table->Smio[i])); |
2001 | |
2002 | CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags)((table->SystemFlags) = (__uint32_t)(__builtin_constant_p( table->SystemFlags) ? (__uint32_t)(((__uint32_t)(table-> SystemFlags) & 0xff) << 24 | ((__uint32_t)(table-> SystemFlags) & 0xff00) << 8 | ((__uint32_t)(table-> SystemFlags) & 0xff0000) >> 8 | ((__uint32_t)(table ->SystemFlags) & 0xff000000) >> 24) : __swap32md (table->SystemFlags))); |
2003 | CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig)((table->VRConfig) = (__uint32_t)(__builtin_constant_p(table ->VRConfig) ? (__uint32_t)(((__uint32_t)(table->VRConfig ) & 0xff) << 24 | ((__uint32_t)(table->VRConfig) & 0xff00) << 8 | ((__uint32_t)(table->VRConfig) & 0xff0000) >> 8 | ((__uint32_t)(table->VRConfig ) & 0xff000000) >> 24) : __swap32md(table->VRConfig ))); |
2004 | CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1)((table->SmioMask1) = (__uint32_t)(__builtin_constant_p(table ->SmioMask1) ? (__uint32_t)(((__uint32_t)(table->SmioMask1 ) & 0xff) << 24 | ((__uint32_t)(table->SmioMask1 ) & 0xff00) << 8 | ((__uint32_t)(table->SmioMask1 ) & 0xff0000) >> 8 | ((__uint32_t)(table->SmioMask1 ) & 0xff000000) >> 24) : __swap32md(table->SmioMask1 ))); |
2005 | CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2)((table->SmioMask2) = (__uint32_t)(__builtin_constant_p(table ->SmioMask2) ? (__uint32_t)(((__uint32_t)(table->SmioMask2 ) & 0xff) << 24 | ((__uint32_t)(table->SmioMask2 ) & 0xff00) << 8 | ((__uint32_t)(table->SmioMask2 ) & 0xff0000) >> 8 | ((__uint32_t)(table->SmioMask2 ) & 0xff000000) >> 24) : __swap32md(table->SmioMask2 ))); |
2006 | CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize)((table->SclkStepSize) = (__uint32_t)(__builtin_constant_p (table->SclkStepSize) ? (__uint32_t)(((__uint32_t)(table-> SclkStepSize) & 0xff) << 24 | ((__uint32_t)(table-> SclkStepSize) & 0xff00) << 8 | ((__uint32_t)(table-> SclkStepSize) & 0xff0000) >> 8 | ((__uint32_t)(table ->SclkStepSize) & 0xff000000) >> 24) : __swap32md (table->SclkStepSize))); |
2007 | CONVERT_FROM_HOST_TO_SMC_UL(table->CurrSclkPllRange)((table->CurrSclkPllRange) = (__uint32_t)(__builtin_constant_p (table->CurrSclkPllRange) ? (__uint32_t)(((__uint32_t)(table ->CurrSclkPllRange) & 0xff) << 24 | ((__uint32_t )(table->CurrSclkPllRange) & 0xff00) << 8 | ((__uint32_t )(table->CurrSclkPllRange) & 0xff0000) >> 8 | (( __uint32_t)(table->CurrSclkPllRange) & 0xff000000) >> 24) : __swap32md(table->CurrSclkPllRange))); |
2008 | CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh)((table->TemperatureLimitHigh) = (__uint16_t)(__builtin_constant_p (table->TemperatureLimitHigh) ? (__uint16_t)(((__uint16_t) (table->TemperatureLimitHigh) & 0xffU) << 8 | (( __uint16_t)(table->TemperatureLimitHigh) & 0xff00U) >> 8) : __swap16md(table->TemperatureLimitHigh))); |
2009 | CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow)((table->TemperatureLimitLow) = (__uint16_t)(__builtin_constant_p (table->TemperatureLimitLow) ? (__uint16_t)(((__uint16_t)( table->TemperatureLimitLow) & 0xffU) << 8 | ((__uint16_t )(table->TemperatureLimitLow) & 0xff00U) >> 8) : __swap16md(table->TemperatureLimitLow))); |
2010 | CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime)((table->VoltageResponseTime) = (__uint16_t)(__builtin_constant_p (table->VoltageResponseTime) ? (__uint16_t)(((__uint16_t)( table->VoltageResponseTime) & 0xffU) << 8 | ((__uint16_t )(table->VoltageResponseTime) & 0xff00U) >> 8) : __swap16md(table->VoltageResponseTime))); |
2011 | CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime)((table->PhaseResponseTime) = (__uint16_t)(__builtin_constant_p (table->PhaseResponseTime) ? (__uint16_t)(((__uint16_t)(table ->PhaseResponseTime) & 0xffU) << 8 | ((__uint16_t )(table->PhaseResponseTime) & 0xff00U) >> 8) : __swap16md (table->PhaseResponseTime))); |
2012 | |
2013 | /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */ |
2014 | result = smu7_copy_bytes_to_smc(hwmgr, |
2015 | smu_data->smu7_data.dpm_table_start + |
2016 | offsetof(SMU74_Discrete_DpmTable, SystemFlags)__builtin_offsetof(SMU74_Discrete_DpmTable, SystemFlags), |
2017 | (uint8_t *)&(table->SystemFlags), |
2018 | sizeof(SMU74_Discrete_DpmTable) - 3 * sizeof(SMU74_PIDController), |
2019 | SMC_RAM_END0x40000); |
2020 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to upload dpm data to SMC memory!" ); return result; } } while (0) |
2021 | "Failed to upload dpm data to SMC memory!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to upload dpm data to SMC memory!" ); return result; } } while (0); |
2022 | |
2023 | result = polaris10_init_arb_table_index(hwmgr); |
2024 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to upload arb data to SMC memory!" ); return result; } } while (0) |
2025 | "Failed to upload arb data to SMC memory!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to upload arb data to SMC memory!" ); return result; } } while (0); |
2026 | |
2027 | result = polaris10_populate_pm_fuses(hwmgr); |
2028 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate PM fuses to SMC memory!" ); return result; } } while (0) |
2029 | "Failed to populate PM fuses to SMC memory!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate PM fuses to SMC memory!" ); return result; } } while (0); |
2030 | |
2031 | return 0; |
2032 | } |
2033 | |
2034 | static int polaris10_program_mem_timing_parameters(struct pp_hwmgr *hwmgr) |
2035 | { |
2036 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
2037 | |
2038 | if (data->need_update_smu7_dpm_table & |
2039 | (DPMTABLE_OD_UPDATE_SCLK0x00000001 + DPMTABLE_OD_UPDATE_MCLK0x00000002)) |
2040 | return polaris10_program_memory_timing_parameters(hwmgr); |
2041 | |
2042 | return 0; |
2043 | } |
2044 | |
2045 | int polaris10_thermal_avfs_enable(struct pp_hwmgr *hwmgr) |
2046 | { |
2047 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
2048 | |
2049 | if (!hwmgr->avfs_supported) |
2050 | return 0; |
2051 | |
2052 | smum_send_msg_to_smc_with_parameter(hwmgr, |
2053 | PPSMC_MSG_SetGBDroopSettings((uint16_t) 0x305), data->avfs_vdroop_override_setting, |
2054 | NULL((void *)0)); |
2055 | |
2056 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAvfs((uint16_t) 0x26A), NULL((void *)0)); |
2057 | |
2058 | /* Apply avfs cks-off voltages to avoid the overshoot |
2059 | * when switching to the highest sclk frequency |
2060 | */ |
2061 | if (data->apply_avfs_cks_off_voltage) |
2062 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ApplyAvfsCksOffVoltage((uint16_t) 0x415), NULL((void *)0)); |
2063 | |
2064 | return 0; |
2065 | } |
2066 | |
2067 | static int polaris10_thermal_setup_fan_table(struct pp_hwmgr *hwmgr) |
2068 | { |
2069 | struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); |
2070 | SMU74_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE0 }; |
2071 | uint32_t duty100; |
2072 | uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2; |
2073 | uint16_t fdo_min, slope1, slope2; |
2074 | uint32_t reference_clock; |
2075 | int res; |
2076 | uint64_t tmp64; |
2077 | |
2078 | if (hwmgr->thermal_controller.fanInfo.bNoFan) { |
2079 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
2080 | PHM_PlatformCaps_MicrocodeFanControl); |
2081 | return 0; |
2082 | } |
2083 | |
2084 | if (smu_data->smu7_data.fan_table_start == 0) { |
2085 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
2086 | PHM_PlatformCaps_MicrocodeFanControl); |
2087 | return 0; |
2088 | } |
2089 | |
2090 | duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0300068))) & 0xff) >> 0x0) |
2091 | CG_FDO_CTRL1, FMAX_DUTY100)((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0300068))) & 0xff) >> 0x0); |
2092 | |
2093 | if (duty100 == 0) { |
2094 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
2095 | PHM_PlatformCaps_MicrocodeFanControl); |
2096 | return 0; |
2097 | } |
2098 | |
2099 | /* use hardware fan control */ |
2100 | if (hwmgr->thermal_controller.use_hw_fan_control) |
2101 | return 0; |
2102 | |
2103 | tmp64 = hwmgr->thermal_controller.advanceFanControlParameters. |
2104 | usPWMMin * duty100; |
2105 | do_div(tmp64, 10000)({ uint32_t __base = (10000); uint32_t __rem = ((uint64_t)(tmp64 )) % __base; (tmp64) = ((uint64_t)(tmp64)) / __base; __rem; } ); |
2106 | fdo_min = (uint16_t)tmp64; |
2107 | |
2108 | t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - |
2109 | hwmgr->thermal_controller.advanceFanControlParameters.usTMin; |
2110 | t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - |
2111 | hwmgr->thermal_controller.advanceFanControlParameters.usTMed; |
2112 | |
2113 | pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - |
2114 | hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin; |
2115 | pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - |
2116 | hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed; |
2117 | |
2118 | slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100); |
2119 | slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100); |
2120 | |
2121 | fan_table.TempMin = cpu_to_be16((50 + hwmgr->(__uint16_t)(__builtin_constant_p((50 + hwmgr-> thermal_controller .advanceFanControlParameters.usTMin) / 100) ? (__uint16_t)((( __uint16_t)((50 + hwmgr-> thermal_controller.advanceFanControlParameters .usTMin) / 100) & 0xffU) << 8 | ((__uint16_t)((50 + hwmgr-> thermal_controller.advanceFanControlParameters.usTMin ) / 100) & 0xff00U) >> 8) : __swap16md((50 + hwmgr-> thermal_controller.advanceFanControlParameters.usTMin) / 100 )) |
2122 | thermal_controller.advanceFanControlParameters.usTMin) / 100)(__uint16_t)(__builtin_constant_p((50 + hwmgr-> thermal_controller .advanceFanControlParameters.usTMin) / 100) ? (__uint16_t)((( __uint16_t)((50 + hwmgr-> thermal_controller.advanceFanControlParameters .usTMin) / 100) & 0xffU) << 8 | ((__uint16_t)((50 + hwmgr-> thermal_controller.advanceFanControlParameters.usTMin ) / 100) & 0xff00U) >> 8) : __swap16md((50 + hwmgr-> thermal_controller.advanceFanControlParameters.usTMin) / 100 )); |
2123 | fan_table.TempMed = cpu_to_be16((50 + hwmgr->(__uint16_t)(__builtin_constant_p((50 + hwmgr-> thermal_controller .advanceFanControlParameters.usTMed) / 100) ? (__uint16_t)((( __uint16_t)((50 + hwmgr-> thermal_controller.advanceFanControlParameters .usTMed) / 100) & 0xffU) << 8 | ((__uint16_t)((50 + hwmgr-> thermal_controller.advanceFanControlParameters.usTMed ) / 100) & 0xff00U) >> 8) : __swap16md((50 + hwmgr-> thermal_controller.advanceFanControlParameters.usTMed) / 100 )) |
2124 | thermal_controller.advanceFanControlParameters.usTMed) / 100)(__uint16_t)(__builtin_constant_p((50 + hwmgr-> thermal_controller .advanceFanControlParameters.usTMed) / 100) ? (__uint16_t)((( __uint16_t)((50 + hwmgr-> thermal_controller.advanceFanControlParameters .usTMed) / 100) & 0xffU) << 8 | ((__uint16_t)((50 + hwmgr-> thermal_controller.advanceFanControlParameters.usTMed ) / 100) & 0xff00U) >> 8) : __swap16md((50 + hwmgr-> thermal_controller.advanceFanControlParameters.usTMed) / 100 )); |
2125 | fan_table.TempMax = cpu_to_be16((50 + hwmgr->(__uint16_t)(__builtin_constant_p((50 + hwmgr-> thermal_controller .advanceFanControlParameters.usTMax) / 100) ? (__uint16_t)((( __uint16_t)((50 + hwmgr-> thermal_controller.advanceFanControlParameters .usTMax) / 100) & 0xffU) << 8 | ((__uint16_t)((50 + hwmgr-> thermal_controller.advanceFanControlParameters.usTMax ) / 100) & 0xff00U) >> 8) : __swap16md((50 + hwmgr-> thermal_controller.advanceFanControlParameters.usTMax) / 100 )) |
2126 | thermal_controller.advanceFanControlParameters.usTMax) / 100)(__uint16_t)(__builtin_constant_p((50 + hwmgr-> thermal_controller .advanceFanControlParameters.usTMax) / 100) ? (__uint16_t)((( __uint16_t)((50 + hwmgr-> thermal_controller.advanceFanControlParameters .usTMax) / 100) & 0xffU) << 8 | ((__uint16_t)((50 + hwmgr-> thermal_controller.advanceFanControlParameters.usTMax ) / 100) & 0xff00U) >> 8) : __swap16md((50 + hwmgr-> thermal_controller.advanceFanControlParameters.usTMax) / 100 )); |
2127 | |
2128 | fan_table.Slope1 = cpu_to_be16(slope1)(__uint16_t)(__builtin_constant_p(slope1) ? (__uint16_t)(((__uint16_t )(slope1) & 0xffU) << 8 | ((__uint16_t)(slope1) & 0xff00U) >> 8) : __swap16md(slope1)); |
2129 | fan_table.Slope2 = cpu_to_be16(slope2)(__uint16_t)(__builtin_constant_p(slope2) ? (__uint16_t)(((__uint16_t )(slope2) & 0xffU) << 8 | ((__uint16_t)(slope2) & 0xff00U) >> 8) : __swap16md(slope2)); |
2130 | |
2131 | fan_table.FdoMin = cpu_to_be16(fdo_min)(__uint16_t)(__builtin_constant_p(fdo_min) ? (__uint16_t)(((__uint16_t )(fdo_min) & 0xffU) << 8 | ((__uint16_t)(fdo_min) & 0xff00U) >> 8) : __swap16md(fdo_min)); |
2132 | |
2133 | fan_table.HystDown = cpu_to_be16(hwmgr->(__uint16_t)(__builtin_constant_p(hwmgr-> thermal_controller .advanceFanControlParameters.ucTHyst) ? (__uint16_t)(((__uint16_t )(hwmgr-> thermal_controller.advanceFanControlParameters.ucTHyst ) & 0xffU) << 8 | ((__uint16_t)(hwmgr-> thermal_controller .advanceFanControlParameters.ucTHyst) & 0xff00U) >> 8) : __swap16md(hwmgr-> thermal_controller.advanceFanControlParameters .ucTHyst)) |
2134 | thermal_controller.advanceFanControlParameters.ucTHyst)(__uint16_t)(__builtin_constant_p(hwmgr-> thermal_controller .advanceFanControlParameters.ucTHyst) ? (__uint16_t)(((__uint16_t )(hwmgr-> thermal_controller.advanceFanControlParameters.ucTHyst ) & 0xffU) << 8 | ((__uint16_t)(hwmgr-> thermal_controller .advanceFanControlParameters.ucTHyst) & 0xff00U) >> 8) : __swap16md(hwmgr-> thermal_controller.advanceFanControlParameters .ucTHyst)); |
2135 | |
2136 | fan_table.HystUp = cpu_to_be16(1)(__uint16_t)(__builtin_constant_p(1) ? (__uint16_t)(((__uint16_t )(1) & 0xffU) << 8 | ((__uint16_t)(1) & 0xff00U ) >> 8) : __swap16md(1)); |
2137 | |
2138 | fan_table.HystSlope = cpu_to_be16(1)(__uint16_t)(__builtin_constant_p(1) ? (__uint16_t)(((__uint16_t )(1) & 0xffU) << 8 | ((__uint16_t)(1) & 0xff00U ) >> 8) : __swap16md(1)); |
2139 | |
2140 | fan_table.TempRespLim = cpu_to_be16(5)(__uint16_t)(__builtin_constant_p(5) ? (__uint16_t)(((__uint16_t )(5) & 0xffU) << 8 | ((__uint16_t)(5) & 0xff00U ) >> 8) : __swap16md(5)); |
2141 | |
2142 | reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev)((struct amdgpu_device *)hwmgr->adev)->asic_funcs->get_xclk (((struct amdgpu_device *)hwmgr->adev)); |
2143 | |
2144 | fan_table.RefreshPeriod = cpu_to_be32((hwmgr->(__uint32_t)(__builtin_constant_p((hwmgr-> thermal_controller .advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) ? (__uint32_t)(((__uint32_t)((hwmgr-> thermal_controller .advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) & 0xff) << 24 | ((__uint32_t)((hwmgr-> thermal_controller .advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) & 0xff00) << 8 | ((__uint32_t)((hwmgr-> thermal_controller .advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) & 0xff0000) >> 8 | ((__uint32_t)((hwmgr-> thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) & 0xff000000) >> 24) : __swap32md ((hwmgr-> thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600)) |
2145 | thermal_controller.advanceFanControlParameters.ulCycleDelay *(__uint32_t)(__builtin_constant_p((hwmgr-> thermal_controller .advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) ? (__uint32_t)(((__uint32_t)((hwmgr-> thermal_controller .advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) & 0xff) << 24 | ((__uint32_t)((hwmgr-> thermal_controller .advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) & 0xff00) << 8 | ((__uint32_t)((hwmgr-> thermal_controller .advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) & 0xff0000) >> 8 | ((__uint32_t)((hwmgr-> thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) & 0xff000000) >> 24) : __swap32md ((hwmgr-> thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600)) |
2146 | reference_clock) / 1600)(__uint32_t)(__builtin_constant_p((hwmgr-> thermal_controller .advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) ? (__uint32_t)(((__uint32_t)((hwmgr-> thermal_controller .advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) & 0xff) << 24 | ((__uint32_t)((hwmgr-> thermal_controller .advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) & 0xff00) << 8 | ((__uint32_t)((hwmgr-> thermal_controller .advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) & 0xff0000) >> 8 | ((__uint32_t)((hwmgr-> thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) & 0xff000000) >> 24) : __swap32md ((hwmgr-> thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600)); |
2147 | |
2148 | fan_table.FdoMax = cpu_to_be16((uint16_t)duty100)(__uint16_t)(__builtin_constant_p((uint16_t)duty100) ? (__uint16_t )(((__uint16_t)((uint16_t)duty100) & 0xffU) << 8 | ( (__uint16_t)((uint16_t)duty100) & 0xff00U) >> 8) : __swap16md ((uint16_t)duty100)); |
2149 | |
2150 | fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0300010))) & 0xff00000 ) >> 0x14) |
2151 | hwmgr->device, CGS_IND_REG__SMC,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0300010))) & 0xff00000 ) >> 0x14) |
2152 | CG_MULT_THERMAL_CTRL, TEMP_SEL)((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0300010))) & 0xff00000 ) >> 0x14); |
2153 | |
2154 | res = smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.fan_table_start, |
2155 | (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), |
2156 | SMC_RAM_END0x40000); |
2157 | |
2158 | if (!res && hwmgr->thermal_controller. |
2159 | advanceFanControlParameters.ucMinimumPWMLimit) |
2160 | res = smum_send_msg_to_smc_with_parameter(hwmgr, |
2161 | PPSMC_MSG_SetFanMinPwm((uint16_t) 0x209), |
2162 | hwmgr->thermal_controller. |
2163 | advanceFanControlParameters.ucMinimumPWMLimit, |
2164 | NULL((void *)0)); |
2165 | |
2166 | if (!res && hwmgr->thermal_controller. |
2167 | advanceFanControlParameters.ulMinFanSCLKAcousticLimit) |
2168 | res = smum_send_msg_to_smc_with_parameter(hwmgr, |
2169 | PPSMC_MSG_SetFanSclkTarget((uint16_t) 0x206), |
2170 | hwmgr->thermal_controller. |
2171 | advanceFanControlParameters.ulMinFanSCLKAcousticLimit, |
2172 | NULL((void *)0)); |
2173 | |
2174 | if (res) |
2175 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
2176 | PHM_PlatformCaps_MicrocodeFanControl); |
2177 | |
2178 | return 0; |
2179 | } |
2180 | |
2181 | static int polaris10_update_uvd_smc_table(struct pp_hwmgr *hwmgr) |
2182 | { |
2183 | struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); |
2184 | uint32_t mm_boot_level_offset, mm_boot_level_value; |
2185 | struct phm_ppt_v1_information *table_info = |
2186 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
2187 | |
2188 | smu_data->smc_state_table.UvdBootLevel = 0; |
2189 | if (table_info->mm_dep_table->count > 0) |
2190 | smu_data->smc_state_table.UvdBootLevel = |
2191 | (uint8_t) (table_info->mm_dep_table->count - 1); |
2192 | mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU74_Discrete_DpmTable,__builtin_offsetof(SMU74_Discrete_DpmTable, UvdBootLevel) |
2193 | UvdBootLevel)__builtin_offsetof(SMU74_Discrete_DpmTable, UvdBootLevel); |
2194 | mm_boot_level_offset /= 4; |
2195 | mm_boot_level_offset *= 4; |
2196 | mm_boot_level_value = cgs_read_ind_register(hwmgr->device,(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset)) |
2197 | CGS_IND_REG__SMC, mm_boot_level_offset)(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset)); |
2198 | mm_boot_level_value &= 0x00FFFFFF; |
2199 | mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24; |
2200 | cgs_write_ind_register(hwmgr->device,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset,mm_boot_level_value )) |
2201 | CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset,mm_boot_level_value )); |
2202 | |
2203 | if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
2204 | PHM_PlatformCaps_UVDDPM) || |
2205 | phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
2206 | PHM_PlatformCaps_StablePState)) |
2207 | smum_send_msg_to_smc_with_parameter(hwmgr, |
2208 | PPSMC_MSG_UVDDPM_SetEnabledMask((uint16_t) 0x12D), |
2209 | (uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel), |
2210 | NULL((void *)0)); |
2211 | return 0; |
2212 | } |
2213 | |
2214 | static int polaris10_update_vce_smc_table(struct pp_hwmgr *hwmgr) |
2215 | { |
2216 | struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); |
2217 | uint32_t mm_boot_level_offset, mm_boot_level_value; |
2218 | struct phm_ppt_v1_information *table_info = |
2219 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
2220 | |
2221 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
2222 | PHM_PlatformCaps_StablePState)) |
2223 | smu_data->smc_state_table.VceBootLevel = |
2224 | (uint8_t) (table_info->mm_dep_table->count - 1); |
2225 | else |
2226 | smu_data->smc_state_table.VceBootLevel = 0; |
2227 | |
2228 | mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + |
2229 | offsetof(SMU74_Discrete_DpmTable, VceBootLevel)__builtin_offsetof(SMU74_Discrete_DpmTable, VceBootLevel); |
2230 | mm_boot_level_offset /= 4; |
2231 | mm_boot_level_offset *= 4; |
2232 | mm_boot_level_value = cgs_read_ind_register(hwmgr->device,(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset)) |
2233 | CGS_IND_REG__SMC, mm_boot_level_offset)(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset)); |
2234 | mm_boot_level_value &= 0xFF00FFFF; |
2235 | mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16; |
2236 | cgs_write_ind_register(hwmgr->device,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset,mm_boot_level_value )) |
2237 | CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset,mm_boot_level_value )); |
2238 | |
2239 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) |
2240 | smum_send_msg_to_smc_with_parameter(hwmgr, |
2241 | PPSMC_MSG_VCEDPM_SetEnabledMask((uint16_t) 0x12E), |
2242 | (uint32_t)1 << smu_data->smc_state_table.VceBootLevel, |
2243 | NULL((void *)0)); |
2244 | return 0; |
2245 | } |
2246 | |
2247 | static int polaris10_update_bif_smc_table(struct pp_hwmgr *hwmgr) |
2248 | { |
2249 | struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); |
2250 | struct phm_ppt_v1_information *table_info = |
2251 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
2252 | struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table; |
2253 | int max_entry, i; |
2254 | |
2255 | max_entry = (SMU74_MAX_LEVELS_LINK8 < pcie_table->count) ? |
2256 | SMU74_MAX_LEVELS_LINK8 : |
2257 | pcie_table->count; |
2258 | /* Setup BIF_SCLK levels */ |
2259 | for (i = 0; i < max_entry; i++) |
2260 | smu_data->bif_sclk_table[i] = pcie_table->entries[i].pcie_sclk; |
2261 | return 0; |
2262 | } |
2263 | |
2264 | static int polaris10_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type) |
2265 | { |
2266 | switch (type) { |
2267 | case SMU_UVD_TABLE: |
2268 | polaris10_update_uvd_smc_table(hwmgr); |
2269 | break; |
2270 | case SMU_VCE_TABLE: |
2271 | polaris10_update_vce_smc_table(hwmgr); |
2272 | break; |
2273 | case SMU_BIF_TABLE: |
2274 | polaris10_update_bif_smc_table(hwmgr); |
2275 | default: |
2276 | break; |
2277 | } |
2278 | return 0; |
2279 | } |
2280 | |
2281 | static int polaris10_update_sclk_threshold(struct pp_hwmgr *hwmgr) |
2282 | { |
2283 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
2284 | struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); |
2285 | |
2286 | int result = 0; |
2287 | uint32_t low_sclk_interrupt_threshold = 0; |
2288 | |
2289 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
2290 | PHM_PlatformCaps_SclkThrottleLowNotification) |
2291 | && (data->low_sclk_interrupt_threshold != 0)) { |
2292 | low_sclk_interrupt_threshold = |
2293 | data->low_sclk_interrupt_threshold; |
2294 | |
2295 | CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold)((low_sclk_interrupt_threshold) = (__uint32_t)(__builtin_constant_p (low_sclk_interrupt_threshold) ? (__uint32_t)(((__uint32_t)(low_sclk_interrupt_threshold ) & 0xff) << 24 | ((__uint32_t)(low_sclk_interrupt_threshold ) & 0xff00) << 8 | ((__uint32_t)(low_sclk_interrupt_threshold ) & 0xff0000) >> 8 | ((__uint32_t)(low_sclk_interrupt_threshold ) & 0xff000000) >> 24) : __swap32md(low_sclk_interrupt_threshold ))); |
2296 | |
2297 | result = smu7_copy_bytes_to_smc( |
2298 | hwmgr, |
2299 | smu_data->smu7_data.dpm_table_start + |
2300 | offsetof(SMU74_Discrete_DpmTable,__builtin_offsetof(SMU74_Discrete_DpmTable, LowSclkInterruptThreshold ) |
2301 | LowSclkInterruptThreshold)__builtin_offsetof(SMU74_Discrete_DpmTable, LowSclkInterruptThreshold ), |
2302 | (uint8_t *)&low_sclk_interrupt_threshold, |
2303 | sizeof(uint32_t), |
2304 | SMC_RAM_END0x40000); |
2305 | } |
2306 | PP_ASSERT_WITH_CODE((result == 0),do { if (!((result == 0))) { printk("\0014" "amdgpu: " "%s\n" , "Failed to update SCLK threshold!"); return result; } } while (0) |
2307 | "Failed to update SCLK threshold!", return result)do { if (!((result == 0))) { printk("\0014" "amdgpu: " "%s\n" , "Failed to update SCLK threshold!"); return result; } } while (0); |
2308 | |
2309 | result = polaris10_program_mem_timing_parameters(hwmgr); |
2310 | PP_ASSERT_WITH_CODE((result == 0),do { if (!((result == 0))) { printk("\0014" "amdgpu: " "%s\n" , "Failed to program memory timing parameters!"); ; } } while (0) |
2311 | "Failed to program memory timing parameters!",do { if (!((result == 0))) { printk("\0014" "amdgpu: " "%s\n" , "Failed to program memory timing parameters!"); ; } } while (0) |
2312 | )do { if (!((result == 0))) { printk("\0014" "amdgpu: " "%s\n" , "Failed to program memory timing parameters!"); ; } } while (0); |
2313 | |
2314 | return result; |
2315 | } |
2316 | |
2317 | static uint32_t polaris10_get_offsetof(uint32_t type, uint32_t member) |
2318 | { |
2319 | switch (type) { |
2320 | case SMU_SoftRegisters: |
2321 | switch (member) { |
2322 | case HandshakeDisables: |
2323 | return offsetof(SMU74_SoftRegisters, HandshakeDisables)__builtin_offsetof(SMU74_SoftRegisters, HandshakeDisables); |
2324 | case VoltageChangeTimeout: |
2325 | return offsetof(SMU74_SoftRegisters, VoltageChangeTimeout)__builtin_offsetof(SMU74_SoftRegisters, VoltageChangeTimeout); |
2326 | case AverageGraphicsActivity: |
2327 | return offsetof(SMU74_SoftRegisters, AverageGraphicsActivity)__builtin_offsetof(SMU74_SoftRegisters, AverageGraphicsActivity ); |
2328 | case AverageMemoryActivity: |
2329 | return offsetof(SMU74_SoftRegisters, AverageMemoryActivity)__builtin_offsetof(SMU74_SoftRegisters, AverageMemoryActivity ); |
2330 | case PreVBlankGap: |
2331 | return offsetof(SMU74_SoftRegisters, PreVBlankGap)__builtin_offsetof(SMU74_SoftRegisters, PreVBlankGap); |
2332 | case VBlankTimeout: |
2333 | return offsetof(SMU74_SoftRegisters, VBlankTimeout)__builtin_offsetof(SMU74_SoftRegisters, VBlankTimeout); |
2334 | case UcodeLoadStatus: |
2335 | return offsetof(SMU74_SoftRegisters, UcodeLoadStatus)__builtin_offsetof(SMU74_SoftRegisters, UcodeLoadStatus); |
2336 | case DRAM_LOG_ADDR_H: |
2337 | return offsetof(SMU74_SoftRegisters, DRAM_LOG_ADDR_H)__builtin_offsetof(SMU74_SoftRegisters, DRAM_LOG_ADDR_H); |
2338 | case DRAM_LOG_ADDR_L: |
2339 | return offsetof(SMU74_SoftRegisters, DRAM_LOG_ADDR_L)__builtin_offsetof(SMU74_SoftRegisters, DRAM_LOG_ADDR_L); |
2340 | case DRAM_LOG_PHY_ADDR_H: |
2341 | return offsetof(SMU74_SoftRegisters, DRAM_LOG_PHY_ADDR_H)__builtin_offsetof(SMU74_SoftRegisters, DRAM_LOG_PHY_ADDR_H); |
2342 | case DRAM_LOG_PHY_ADDR_L: |
2343 | return offsetof(SMU74_SoftRegisters, DRAM_LOG_PHY_ADDR_L)__builtin_offsetof(SMU74_SoftRegisters, DRAM_LOG_PHY_ADDR_L); |
2344 | case DRAM_LOG_BUFF_SIZE: |
2345 | return offsetof(SMU74_SoftRegisters, DRAM_LOG_BUFF_SIZE)__builtin_offsetof(SMU74_SoftRegisters, DRAM_LOG_BUFF_SIZE); |
2346 | } |
2347 | break; |
2348 | case SMU_Discrete_DpmTable: |
2349 | switch (member) { |
2350 | case UvdBootLevel: |
2351 | return offsetof(SMU74_Discrete_DpmTable, UvdBootLevel)__builtin_offsetof(SMU74_Discrete_DpmTable, UvdBootLevel); |
2352 | case VceBootLevel: |
2353 | return offsetof(SMU74_Discrete_DpmTable, VceBootLevel)__builtin_offsetof(SMU74_Discrete_DpmTable, VceBootLevel); |
2354 | case LowSclkInterruptThreshold: |
2355 | return offsetof(SMU74_Discrete_DpmTable, LowSclkInterruptThreshold)__builtin_offsetof(SMU74_Discrete_DpmTable, LowSclkInterruptThreshold ); |
2356 | } |
2357 | break; |
2358 | } |
2359 | pr_warn("can't get the offset of type %x member %x\n", type, member)printk("\0014" "amdgpu: " "can't get the offset of type %x member %x\n" , type, member); |
2360 | return 0; |
2361 | } |
2362 | |
2363 | static uint32_t polaris10_get_mac_definition(uint32_t value) |
2364 | { |
2365 | switch (value) { |
2366 | case SMU_MAX_LEVELS_GRAPHICS: |
2367 | return SMU74_MAX_LEVELS_GRAPHICS8; |
2368 | case SMU_MAX_LEVELS_MEMORY: |
2369 | return SMU74_MAX_LEVELS_MEMORY4; |
2370 | case SMU_MAX_LEVELS_LINK: |
2371 | return SMU74_MAX_LEVELS_LINK8; |
2372 | case SMU_MAX_ENTRIES_SMIO: |
2373 | return SMU74_MAX_ENTRIES_SMIO32; |
2374 | case SMU_MAX_LEVELS_VDDC: |
2375 | return SMU74_MAX_LEVELS_VDDC16; |
2376 | case SMU_MAX_LEVELS_VDDGFX: |
2377 | return SMU74_MAX_LEVELS_VDDGFX16; |
2378 | case SMU_MAX_LEVELS_VDDCI: |
2379 | return SMU74_MAX_LEVELS_VDDCI8; |
2380 | case SMU_MAX_LEVELS_MVDD: |
2381 | return SMU74_MAX_LEVELS_MVDD4; |
2382 | case SMU_UVD_MCLK_HANDSHAKE_DISABLE: |
2383 | return SMU7_UVD_MCLK_HANDSHAKE_DISABLE0x00000100; |
2384 | } |
2385 | |
2386 | pr_warn("can't get the mac of %x\n", value)printk("\0014" "amdgpu: " "can't get the mac of %x\n", value); |
2387 | return 0; |
2388 | } |
2389 | |
2390 | static int polaris10_process_firmware_header(struct pp_hwmgr *hwmgr) |
2391 | { |
2392 | struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smu_backend); |
2393 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
2394 | uint32_t tmp; |
2395 | int result; |
2396 | bool_Bool error = false0; |
2397 | |
2398 | result = smu7_read_smc_sram_dword(hwmgr, |
2399 | SMU7_FIRMWARE_HEADER_LOCATION0x20000 + |
2400 | offsetof(SMU74_Firmware_Header, DpmTable)__builtin_offsetof(SMU74_Firmware_Header, DpmTable), |
2401 | &tmp, SMC_RAM_END0x40000); |
2402 | |
2403 | if (0 == result) |
2404 | smu_data->smu7_data.dpm_table_start = tmp; |
2405 | |
2406 | error |= (0 != result); |
2407 | |
2408 | result = smu7_read_smc_sram_dword(hwmgr, |
2409 | SMU7_FIRMWARE_HEADER_LOCATION0x20000 + |
2410 | offsetof(SMU74_Firmware_Header, SoftRegisters)__builtin_offsetof(SMU74_Firmware_Header, SoftRegisters), |
2411 | &tmp, SMC_RAM_END0x40000); |
2412 | |
2413 | if (!result) { |
2414 | data->soft_regs_start = tmp; |
2415 | smu_data->smu7_data.soft_regs_start = tmp; |
2416 | } |
2417 | |
2418 | error |= (0 != result); |
2419 | |
2420 | result = smu7_read_smc_sram_dword(hwmgr, |
2421 | SMU7_FIRMWARE_HEADER_LOCATION0x20000 + |
2422 | offsetof(SMU74_Firmware_Header, mcRegisterTable)__builtin_offsetof(SMU74_Firmware_Header, mcRegisterTable), |
2423 | &tmp, SMC_RAM_END0x40000); |
2424 | |
2425 | if (!result) |
2426 | smu_data->smu7_data.mc_reg_table_start = tmp; |
2427 | |
2428 | result = smu7_read_smc_sram_dword(hwmgr, |
2429 | SMU7_FIRMWARE_HEADER_LOCATION0x20000 + |
2430 | offsetof(SMU74_Firmware_Header, FanTable)__builtin_offsetof(SMU74_Firmware_Header, FanTable), |
2431 | &tmp, SMC_RAM_END0x40000); |
2432 | |
2433 | if (!result) |
2434 | smu_data->smu7_data.fan_table_start = tmp; |
2435 | |
2436 | error |= (0 != result); |
2437 | |
2438 | result = smu7_read_smc_sram_dword(hwmgr, |
2439 | SMU7_FIRMWARE_HEADER_LOCATION0x20000 + |
2440 | offsetof(SMU74_Firmware_Header, mcArbDramTimingTable)__builtin_offsetof(SMU74_Firmware_Header, mcArbDramTimingTable ), |
2441 | &tmp, SMC_RAM_END0x40000); |
2442 | |
2443 | if (!result) |
2444 | smu_data->smu7_data.arb_table_start = tmp; |
2445 | |
2446 | error |= (0 != result); |
2447 | |
2448 | result = smu7_read_smc_sram_dword(hwmgr, |
2449 | SMU7_FIRMWARE_HEADER_LOCATION0x20000 + |
2450 | offsetof(SMU74_Firmware_Header, Version)__builtin_offsetof(SMU74_Firmware_Header, Version), |
2451 | &tmp, SMC_RAM_END0x40000); |
2452 | |
2453 | if (!result) |
2454 | hwmgr->microcode_version_info.SMC = tmp; |
2455 | |
2456 | error |= (0 != result); |
2457 | |
2458 | return error ? -1 : 0; |
2459 | } |
2460 | |
2461 | static bool_Bool polaris10_is_dpm_running(struct pp_hwmgr *hwmgr) |
2462 | { |
2463 | return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x3f010))) & 0x2000) >> 0xd) |
2464 | CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON)((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x3f010))) & 0x2000) >> 0xd)) |
2465 | ? true1 : false0; |
2466 | } |
2467 | |
2468 | static int polaris10_update_dpm_settings(struct pp_hwmgr *hwmgr, |
2469 | void *profile_setting) |
2470 | { |
2471 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
2472 | struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *) |
2473 | (hwmgr->smu_backend); |
2474 | struct profile_mode_setting *setting; |
2475 | struct SMU74_Discrete_GraphicsLevel *levels = |
2476 | smu_data->smc_state_table.GraphicsLevel; |
2477 | uint32_t array = smu_data->smu7_data.dpm_table_start + |
2478 | offsetof(SMU74_Discrete_DpmTable, GraphicsLevel)__builtin_offsetof(SMU74_Discrete_DpmTable, GraphicsLevel); |
2479 | |
2480 | uint32_t mclk_array = smu_data->smu7_data.dpm_table_start + |
2481 | offsetof(SMU74_Discrete_DpmTable, MemoryLevel)__builtin_offsetof(SMU74_Discrete_DpmTable, MemoryLevel); |
2482 | struct SMU74_Discrete_MemoryLevel *mclk_levels = |
2483 | smu_data->smc_state_table.MemoryLevel; |
2484 | uint32_t i; |
2485 | uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp; |
2486 | |
2487 | if (profile_setting == NULL((void *)0)) |
2488 | return -EINVAL22; |
2489 | |
2490 | setting = (struct profile_mode_setting *)profile_setting; |
2491 | |
2492 | if (setting->bupdate_sclk) { |
2493 | if (!data->sclk_dpm_key_disabled) |
2494 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel((uint16_t) 0x189), NULL((void *)0)); |
2495 | for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) { |
2496 | if (levels[i].ActivityLevel != |
2497 | cpu_to_be16(setting->sclk_activity)(__uint16_t)(__builtin_constant_p(setting->sclk_activity) ? (__uint16_t)(((__uint16_t)(setting->sclk_activity) & 0xffU ) << 8 | ((__uint16_t)(setting->sclk_activity) & 0xff00U) >> 8) : __swap16md(setting->sclk_activity) )) { |
2498 | levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity)(__uint16_t)(__builtin_constant_p(setting->sclk_activity) ? (__uint16_t)(((__uint16_t)(setting->sclk_activity) & 0xffU ) << 8 | ((__uint16_t)(setting->sclk_activity) & 0xff00U) >> 8) : __swap16md(setting->sclk_activity) ); |
2499 | |
2500 | clk_activity_offset = array + (sizeof(SMU74_Discrete_GraphicsLevel) * i) |
2501 | + offsetof(SMU74_Discrete_GraphicsLevel, ActivityLevel)__builtin_offsetof(SMU74_Discrete_GraphicsLevel, ActivityLevel ); |
2502 | offset = clk_activity_offset & ~0x3; |
2503 | tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset))(__uint32_t)(__builtin_constant_p((((struct cgs_device *)hwmgr ->device)->ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC ,offset))) ? (__uint32_t)(((__uint32_t)((((struct cgs_device * )hwmgr->device)->ops->read_ind_register(hwmgr->device ,CGS_IND_REG__SMC,offset))) & 0xff) << 24 | ((__uint32_t )((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,offset))) & 0xff00) << 8 | ((__uint32_t)((((struct cgs_device *)hwmgr->device)-> ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset ))) & 0xff0000) >> 8 | ((__uint32_t)((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,offset))) & 0xff000000) >> 24 ) : __swap32md((((struct cgs_device *)hwmgr->device)->ops ->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset )))); |
2504 | tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t)); |
2505 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp))(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,offset,(__uint32_t)(__builtin_constant_p (tmp) ? (__uint32_t)(((__uint32_t)(tmp) & 0xff) << 24 | ((__uint32_t)(tmp) & 0xff00) << 8 | ((__uint32_t )(tmp) & 0xff0000) >> 8 | ((__uint32_t)(tmp) & 0xff000000 ) >> 24) : __swap32md(tmp)))); |
2506 | |
2507 | } |
2508 | if (levels[i].UpHyst != setting->sclk_up_hyst || |
2509 | levels[i].DownHyst != setting->sclk_down_hyst) { |
2510 | levels[i].UpHyst = setting->sclk_up_hyst; |
2511 | levels[i].DownHyst = setting->sclk_down_hyst; |
2512 | up_hyst_offset = array + (sizeof(SMU74_Discrete_GraphicsLevel) * i) |
2513 | + offsetof(SMU74_Discrete_GraphicsLevel, UpHyst)__builtin_offsetof(SMU74_Discrete_GraphicsLevel, UpHyst); |
2514 | down_hyst_offset = array + (sizeof(SMU74_Discrete_GraphicsLevel) * i) |
2515 | + offsetof(SMU74_Discrete_GraphicsLevel, DownHyst)__builtin_offsetof(SMU74_Discrete_GraphicsLevel, DownHyst); |
2516 | offset = up_hyst_offset & ~0x3; |
2517 | tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset))(__uint32_t)(__builtin_constant_p((((struct cgs_device *)hwmgr ->device)->ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC ,offset))) ? (__uint32_t)(((__uint32_t)((((struct cgs_device * )hwmgr->device)->ops->read_ind_register(hwmgr->device ,CGS_IND_REG__SMC,offset))) & 0xff) << 24 | ((__uint32_t )((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,offset))) & 0xff00) << 8 | ((__uint32_t)((((struct cgs_device *)hwmgr->device)-> ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset ))) & 0xff0000) >> 8 | ((__uint32_t)((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,offset))) & 0xff000000) >> 24 ) : __swap32md((((struct cgs_device *)hwmgr->device)->ops ->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset )))); |
2518 | tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpHyst, sizeof(uint8_t)); |
2519 | tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownHyst, sizeof(uint8_t)); |
2520 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp))(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,offset,(__uint32_t)(__builtin_constant_p (tmp) ? (__uint32_t)(((__uint32_t)(tmp) & 0xff) << 24 | ((__uint32_t)(tmp) & 0xff00) << 8 | ((__uint32_t )(tmp) & 0xff0000) >> 8 | ((__uint32_t)(tmp) & 0xff000000 ) >> 24) : __swap32md(tmp)))); |
2521 | } |
2522 | } |
2523 | if (!data->sclk_dpm_key_disabled) |
2524 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel((uint16_t) 0x18A), NULL((void *)0)); |
2525 | } |
2526 | |
2527 | if (setting->bupdate_mclk) { |
2528 | if (!data->mclk_dpm_key_disabled) |
2529 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel((uint16_t) 0x18B), NULL((void *)0)); |
2530 | for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) { |
2531 | if (mclk_levels[i].ActivityLevel != |
2532 | cpu_to_be16(setting->mclk_activity)(__uint16_t)(__builtin_constant_p(setting->mclk_activity) ? (__uint16_t)(((__uint16_t)(setting->mclk_activity) & 0xffU ) << 8 | ((__uint16_t)(setting->mclk_activity) & 0xff00U) >> 8) : __swap16md(setting->mclk_activity) )) { |
2533 | mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity)(__uint16_t)(__builtin_constant_p(setting->mclk_activity) ? (__uint16_t)(((__uint16_t)(setting->mclk_activity) & 0xffU ) << 8 | ((__uint16_t)(setting->mclk_activity) & 0xff00U) >> 8) : __swap16md(setting->mclk_activity) ); |
2534 | |
2535 | clk_activity_offset = mclk_array + (sizeof(SMU74_Discrete_MemoryLevel) * i) |
2536 | + offsetof(SMU74_Discrete_MemoryLevel, ActivityLevel)__builtin_offsetof(SMU74_Discrete_MemoryLevel, ActivityLevel); |
2537 | offset = clk_activity_offset & ~0x3; |
2538 | tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset))(__uint32_t)(__builtin_constant_p((((struct cgs_device *)hwmgr ->device)->ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC ,offset))) ? (__uint32_t)(((__uint32_t)((((struct cgs_device * )hwmgr->device)->ops->read_ind_register(hwmgr->device ,CGS_IND_REG__SMC,offset))) & 0xff) << 24 | ((__uint32_t )((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,offset))) & 0xff00) << 8 | ((__uint32_t)((((struct cgs_device *)hwmgr->device)-> ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset ))) & 0xff0000) >> 8 | ((__uint32_t)((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,offset))) & 0xff000000) >> 24 ) : __swap32md((((struct cgs_device *)hwmgr->device)->ops ->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset )))); |
2539 | tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t)); |
2540 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp))(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,offset,(__uint32_t)(__builtin_constant_p (tmp) ? (__uint32_t)(((__uint32_t)(tmp) & 0xff) << 24 | ((__uint32_t)(tmp) & 0xff00) << 8 | ((__uint32_t )(tmp) & 0xff0000) >> 8 | ((__uint32_t)(tmp) & 0xff000000 ) >> 24) : __swap32md(tmp)))); |
2541 | |
2542 | } |
2543 | if (mclk_levels[i].UpHyst != setting->mclk_up_hyst || |
2544 | mclk_levels[i].DownHyst != setting->mclk_down_hyst) { |
2545 | mclk_levels[i].UpHyst = setting->mclk_up_hyst; |
2546 | mclk_levels[i].DownHyst = setting->mclk_down_hyst; |
2547 | up_hyst_offset = mclk_array + (sizeof(SMU74_Discrete_MemoryLevel) * i) |
2548 | + offsetof(SMU74_Discrete_MemoryLevel, UpHyst)__builtin_offsetof(SMU74_Discrete_MemoryLevel, UpHyst); |
2549 | down_hyst_offset = mclk_array + (sizeof(SMU74_Discrete_MemoryLevel) * i) |
2550 | + offsetof(SMU74_Discrete_MemoryLevel, DownHyst)__builtin_offsetof(SMU74_Discrete_MemoryLevel, DownHyst); |
2551 | offset = up_hyst_offset & ~0x3; |
2552 | tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset))(__uint32_t)(__builtin_constant_p((((struct cgs_device *)hwmgr ->device)->ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC ,offset))) ? (__uint32_t)(((__uint32_t)((((struct cgs_device * )hwmgr->device)->ops->read_ind_register(hwmgr->device ,CGS_IND_REG__SMC,offset))) & 0xff) << 24 | ((__uint32_t )((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,offset))) & 0xff00) << 8 | ((__uint32_t)((((struct cgs_device *)hwmgr->device)-> ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset ))) & 0xff0000) >> 8 | ((__uint32_t)((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,offset))) & 0xff000000) >> 24 ) : __swap32md((((struct cgs_device *)hwmgr->device)->ops ->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset )))); |
2553 | tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpHyst, sizeof(uint8_t)); |
2554 | tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownHyst, sizeof(uint8_t)); |
2555 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp))(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,offset,(__uint32_t)(__builtin_constant_p (tmp) ? (__uint32_t)(((__uint32_t)(tmp) & 0xff) << 24 | ((__uint32_t)(tmp) & 0xff00) << 8 | ((__uint32_t )(tmp) & 0xff0000) >> 8 | ((__uint32_t)(tmp) & 0xff000000 ) >> 24) : __swap32md(tmp)))); |
2556 | } |
2557 | } |
2558 | if (!data->mclk_dpm_key_disabled) |
2559 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel((uint16_t) 0x18C), NULL((void *)0)); |
2560 | } |
2561 | return 0; |
2562 | } |
2563 | |
2564 | const struct pp_smumgr_func polaris10_smu_funcs = { |
2565 | .name = "polaris10_smu", |
2566 | .smu_init = polaris10_smu_init, |
2567 | .smu_fini = smu7_smu_fini, |
2568 | .start_smu = polaris10_start_smu, |
2569 | .check_fw_load_finish = smu7_check_fw_load_finish, |
2570 | .request_smu_load_fw = smu7_reload_firmware, |
2571 | .request_smu_load_specific_fw = NULL((void *)0), |
2572 | .send_msg_to_smc = smu7_send_msg_to_smc, |
2573 | .send_msg_to_smc_with_parameter = smu7_send_msg_to_smc_with_parameter, |
2574 | .get_argument = smu7_get_argument, |
2575 | .download_pptable_settings = NULL((void *)0), |
2576 | .upload_pptable_settings = NULL((void *)0), |
2577 | .update_smc_table = polaris10_update_smc_table, |
2578 | .get_offsetof = polaris10_get_offsetof, |
2579 | .process_firmware_header = polaris10_process_firmware_header, |
2580 | .init_smc_table = polaris10_init_smc_table, |
2581 | .update_sclk_threshold = polaris10_update_sclk_threshold, |
2582 | .thermal_avfs_enable = polaris10_thermal_avfs_enable, |
2583 | .thermal_setup_fan_table = polaris10_thermal_setup_fan_table, |
2584 | .populate_all_graphic_levels = polaris10_populate_all_graphic_levels, |
2585 | .populate_all_memory_levels = polaris10_populate_all_memory_levels, |
2586 | .get_mac_definition = polaris10_get_mac_definition, |
2587 | .is_dpm_running = polaris10_is_dpm_running, |
2588 | .is_hw_avfs_present = polaris10_is_hw_avfs_present, |
2589 | .update_dpm_settings = polaris10_update_dpm_settings, |
2590 | }; |