File: | crypto/sha2.c |
Warning: | line 622, column 30 Although the value stored to 'h' is used in the enclosing expression, the value is never actually read from 'h' |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* $OpenBSD: sha2.c,v 1.19 2021/03/12 10:22:46 jsg Exp $ */ |
2 | |
3 | /* |
4 | * FILE: sha2.c |
5 | * AUTHOR: Aaron D. Gifford <me@aarongifford.com> |
6 | * |
7 | * Copyright (c) 2000-2001, Aaron D. Gifford |
8 | * All rights reserved. |
9 | * |
10 | * Redistribution and use in source and binary forms, with or without |
11 | * modification, are permitted provided that the following conditions |
12 | * are met: |
13 | * 1. Redistributions of source code must retain the above copyright |
14 | * notice, this list of conditions and the following disclaimer. |
15 | * 2. Redistributions in binary form must reproduce the above copyright |
16 | * notice, this list of conditions and the following disclaimer in the |
17 | * documentation and/or other materials provided with the distribution. |
18 | * 3. Neither the name of the copyright holder nor the names of contributors |
19 | * may be used to endorse or promote products derived from this software |
20 | * without specific prior written permission. |
21 | * |
22 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND |
23 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
24 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
25 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE |
26 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
27 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
28 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
29 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
30 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
31 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
32 | * SUCH DAMAGE. |
33 | * |
34 | * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $ |
35 | */ |
36 | |
37 | #include <sys/time.h> |
38 | #include <sys/systm.h> |
39 | #include <crypto/sha2.h> |
40 | |
41 | /* |
42 | * UNROLLED TRANSFORM LOOP NOTE: |
43 | * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform |
44 | * loop version for the hash transform rounds (defined using macros |
45 | * later in this file). Either define on the command line, for example: |
46 | * |
47 | * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c |
48 | * |
49 | * or define below: |
50 | * |
51 | * #define SHA2_UNROLL_TRANSFORM |
52 | * |
53 | */ |
54 | #ifndef SMALL_KERNEL |
55 | #if defined(__amd64__1) || defined(__i386__) |
56 | #define SHA2_UNROLL_TRANSFORM |
57 | #endif |
58 | #endif |
59 | |
60 | /*** SHA-256/384/512 Machine Architecture Definitions *****************/ |
61 | /* |
62 | * BYTE_ORDER NOTE: |
63 | * |
64 | * Please make sure that your system defines BYTE_ORDER. If your |
65 | * architecture is little-endian, make sure it also defines |
66 | * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are |
67 | * equivalent. |
68 | * |
69 | * If your system does not define the above, then you can do so by |
70 | * hand like this: |
71 | * |
72 | * #define LITTLE_ENDIAN 1234 |
73 | * #define BIG_ENDIAN 4321 |
74 | * |
75 | * And for little-endian machines, add: |
76 | * |
77 | * #define BYTE_ORDER LITTLE_ENDIAN |
78 | * |
79 | * Or for big-endian machines: |
80 | * |
81 | * #define BYTE_ORDER BIG_ENDIAN |
82 | * |
83 | * The FreeBSD machine this was written on defines BYTE_ORDER |
84 | * appropriately by including <sys/types.h> (which in turn includes |
85 | * <machine/endian.h> where the appropriate definitions are actually |
86 | * made). |
87 | */ |
88 | #if !defined(BYTE_ORDER1234) || (BYTE_ORDER1234 != LITTLE_ENDIAN1234 && BYTE_ORDER1234 != BIG_ENDIAN4321) |
89 | #error Define BYTE_ORDER1234 to be equal to either LITTLE_ENDIAN1234 or BIG_ENDIAN4321 |
90 | #endif |
91 | |
92 | |
93 | /*** SHA-256/384/512 Various Length Definitions ***********************/ |
94 | /* NOTE: Most of these are in sha2.h */ |
95 | #define SHA256_SHORT_BLOCK_LENGTH(64 - 8) (SHA256_BLOCK_LENGTH64 - 8) |
96 | #define SHA384_SHORT_BLOCK_LENGTH(128 - 16) (SHA384_BLOCK_LENGTH128 - 16) |
97 | #define SHA512_SHORT_BLOCK_LENGTH(128 - 16) (SHA512_BLOCK_LENGTH128 - 16) |
98 | |
99 | /* |
100 | * Macro for incrementally adding the unsigned 64-bit integer n to the |
101 | * unsigned 128-bit integer (represented using a two-element array of |
102 | * 64-bit words): |
103 | */ |
104 | #define ADDINC128(w,n){ (w)[0] += (u_int64_t)(n); if ((w)[0] < (n)) { (w)[1]++; } } { \ |
105 | (w)[0] += (u_int64_t)(n); \ |
106 | if ((w)[0] < (n)) { \ |
107 | (w)[1]++; \ |
108 | } \ |
109 | } |
110 | |
111 | /*** THE SIX LOGICAL FUNCTIONS ****************************************/ |
112 | /* |
113 | * Bit shifting and rotation (used by the six SHA-XYZ logical functions: |
114 | * |
115 | * NOTE: The naming of R and S appears backwards here (R is a SHIFT and |
116 | * S is a ROTATION) because the SHA-256/384/512 description document |
117 | * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this |
118 | * same "backwards" definition. |
119 | */ |
120 | /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ |
121 | #define R(b,x)((x) >> (b)) ((x) >> (b)) |
122 | /* 32-bit Rotate-right (used in SHA-256): */ |
123 | #define S32(b,x)(((x) >> (b)) | ((x) << (32 - (b)))) (((x) >> (b)) | ((x) << (32 - (b)))) |
124 | /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ |
125 | #define S64(b,x)(((x) >> (b)) | ((x) << (64 - (b)))) (((x) >> (b)) | ((x) << (64 - (b)))) |
126 | |
127 | /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */ |
128 | #define Ch(x,y,z)(((x) & (y)) ^ ((~(x)) & (z))) (((x) & (y)) ^ ((~(x)) & (z))) |
129 | #define Maj(x,y,z)(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) |
130 | |
131 | /* Four of six logical functions used in SHA-256: */ |
132 | #define Sigma0_256(x)(((((x)) >> (2)) | (((x)) << (32 - (2)))) ^ ((((x )) >> (13)) | (((x)) << (32 - (13)))) ^ ((((x)) >> (22)) | (((x)) << (32 - (22))))) (S32(2, (x))((((x)) >> (2)) | (((x)) << (32 - (2)))) ^ S32(13, (x))((((x)) >> (13)) | (((x)) << (32 - (13)))) ^ S32(22, (x))((((x)) >> (22)) | (((x)) << (32 - (22))))) |
133 | #define Sigma1_256(x)(((((x)) >> (6)) | (((x)) << (32 - (6)))) ^ ((((x )) >> (11)) | (((x)) << (32 - (11)))) ^ ((((x)) >> (25)) | (((x)) << (32 - (25))))) (S32(6, (x))((((x)) >> (6)) | (((x)) << (32 - (6)))) ^ S32(11, (x))((((x)) >> (11)) | (((x)) << (32 - (11)))) ^ S32(25, (x))((((x)) >> (25)) | (((x)) << (32 - (25))))) |
134 | #define sigma0_256(x)(((((x)) >> (7)) | (((x)) << (32 - (7)))) ^ ((((x )) >> (18)) | (((x)) << (32 - (18)))) ^ (((x)) >> (3))) (S32(7, (x))((((x)) >> (7)) | (((x)) << (32 - (7)))) ^ S32(18, (x))((((x)) >> (18)) | (((x)) << (32 - (18)))) ^ R(3 , (x))(((x)) >> (3))) |
135 | #define sigma1_256(x)(((((x)) >> (17)) | (((x)) << (32 - (17)))) ^ ((( (x)) >> (19)) | (((x)) << (32 - (19)))) ^ (((x)) >> (10))) (S32(17, (x))((((x)) >> (17)) | (((x)) << (32 - (17)))) ^ S32(19, (x))((((x)) >> (19)) | (((x)) << (32 - (19)))) ^ R(10, (x))(((x)) >> (10))) |
136 | |
137 | /* Four of six logical functions used in SHA-384 and SHA-512: */ |
138 | #define Sigma0_512(x)(((((x)) >> (28)) | (((x)) << (64 - (28)))) ^ ((( (x)) >> (34)) | (((x)) << (64 - (34)))) ^ ((((x)) >> (39)) | (((x)) << (64 - (39))))) (S64(28, (x))((((x)) >> (28)) | (((x)) << (64 - (28)))) ^ S64(34, (x))((((x)) >> (34)) | (((x)) << (64 - (34)))) ^ S64(39, (x))((((x)) >> (39)) | (((x)) << (64 - (39))))) |
139 | #define Sigma1_512(x)(((((x)) >> (14)) | (((x)) << (64 - (14)))) ^ ((( (x)) >> (18)) | (((x)) << (64 - (18)))) ^ ((((x)) >> (41)) | (((x)) << (64 - (41))))) (S64(14, (x))((((x)) >> (14)) | (((x)) << (64 - (14)))) ^ S64(18, (x))((((x)) >> (18)) | (((x)) << (64 - (18)))) ^ S64(41, (x))((((x)) >> (41)) | (((x)) << (64 - (41))))) |
140 | #define sigma0_512(x)(((((x)) >> (1)) | (((x)) << (64 - (1)))) ^ ((((x )) >> (8)) | (((x)) << (64 - (8)))) ^ (((x)) >> (7))) (S64( 1, (x))((((x)) >> (1)) | (((x)) << (64 - (1)))) ^ S64( 8, (x))((((x)) >> (8)) | (((x)) << (64 - (8)))) ^ R( 7, (x))(((x)) >> (7))) |
141 | #define sigma1_512(x)(((((x)) >> (19)) | (((x)) << (64 - (19)))) ^ ((( (x)) >> (61)) | (((x)) << (64 - (61)))) ^ (((x)) >> (6))) (S64(19, (x))((((x)) >> (19)) | (((x)) << (64 - (19)))) ^ S64(61, (x))((((x)) >> (61)) | (((x)) << (64 - (61)))) ^ R( 6, (x))(((x)) >> (6))) |
142 | |
143 | /*** INTERNAL FUNCTION PROTOTYPES *************************************/ |
144 | /* NOTE: These should not be accessed directly from outside this |
145 | * library -- they are intended for private internal visibility/use |
146 | * only. |
147 | */ |
148 | void SHA512Last(SHA2_CTX *); |
149 | void SHA256Transform(u_int32_t *, const u_int8_t *); |
150 | void SHA512Transform(u_int64_t *, const u_int8_t *); |
151 | |
152 | |
153 | /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ |
154 | /* Hash constant words K for SHA-256: */ |
155 | const static u_int32_t K256[64] = { |
156 | 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, |
157 | 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, |
158 | 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, |
159 | 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, |
160 | 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, |
161 | 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, |
162 | 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, |
163 | 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, |
164 | 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, |
165 | 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, |
166 | 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, |
167 | 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, |
168 | 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, |
169 | 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, |
170 | 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, |
171 | 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL |
172 | }; |
173 | |
174 | /* Initial hash value H for SHA-256: */ |
175 | const static u_int32_t sha256_initial_hash_value[8] = { |
176 | 0x6a09e667UL, |
177 | 0xbb67ae85UL, |
178 | 0x3c6ef372UL, |
179 | 0xa54ff53aUL, |
180 | 0x510e527fUL, |
181 | 0x9b05688cUL, |
182 | 0x1f83d9abUL, |
183 | 0x5be0cd19UL |
184 | }; |
185 | |
186 | /* Hash constant words K for SHA-384 and SHA-512: */ |
187 | const static u_int64_t K512[80] = { |
188 | 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, |
189 | 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, |
190 | 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, |
191 | 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, |
192 | 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, |
193 | 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, |
194 | 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, |
195 | 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, |
196 | 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, |
197 | 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, |
198 | 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, |
199 | 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, |
200 | 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, |
201 | 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, |
202 | 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, |
203 | 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, |
204 | 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, |
205 | 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, |
206 | 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, |
207 | 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, |
208 | 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, |
209 | 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, |
210 | 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, |
211 | 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, |
212 | 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, |
213 | 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, |
214 | 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, |
215 | 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, |
216 | 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, |
217 | 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, |
218 | 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, |
219 | 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, |
220 | 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, |
221 | 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, |
222 | 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, |
223 | 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, |
224 | 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, |
225 | 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, |
226 | 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, |
227 | 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL |
228 | }; |
229 | |
230 | /* Initial hash value H for SHA-384 */ |
231 | const static u_int64_t sha384_initial_hash_value[8] = { |
232 | 0xcbbb9d5dc1059ed8ULL, |
233 | 0x629a292a367cd507ULL, |
234 | 0x9159015a3070dd17ULL, |
235 | 0x152fecd8f70e5939ULL, |
236 | 0x67332667ffc00b31ULL, |
237 | 0x8eb44a8768581511ULL, |
238 | 0xdb0c2e0d64f98fa7ULL, |
239 | 0x47b5481dbefa4fa4ULL |
240 | }; |
241 | |
242 | /* Initial hash value H for SHA-512 */ |
243 | const static u_int64_t sha512_initial_hash_value[8] = { |
244 | 0x6a09e667f3bcc908ULL, |
245 | 0xbb67ae8584caa73bULL, |
246 | 0x3c6ef372fe94f82bULL, |
247 | 0xa54ff53a5f1d36f1ULL, |
248 | 0x510e527fade682d1ULL, |
249 | 0x9b05688c2b3e6c1fULL, |
250 | 0x1f83d9abfb41bd6bULL, |
251 | 0x5be0cd19137e2179ULL |
252 | }; |
253 | |
254 | |
255 | /*** SHA-256: *********************************************************/ |
256 | void |
257 | SHA256Init(SHA2_CTX *context) |
258 | { |
259 | memcpy(context->state.st32, sha256_initial_hash_value,__builtin_memcpy((context->state.st32), (sha256_initial_hash_value ), (32)) |
260 | SHA256_DIGEST_LENGTH)__builtin_memcpy((context->state.st32), (sha256_initial_hash_value ), (32)); |
261 | memset(context->buffer, 0, SHA256_BLOCK_LENGTH)__builtin_memset((context->buffer), (0), (64)); |
262 | context->bitcount[0] = 0; |
263 | } |
264 | |
265 | #ifdef SHA2_UNROLL_TRANSFORM |
266 | |
267 | /* Unrolled SHA-256 round macros: */ |
268 | |
269 | #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)do { W256[j] = (u_int32_t)data[3] | ((u_int32_t)data[2] << 8) | ((u_int32_t)data[1] << 16) | ((u_int32_t)data[0] << 24); data += 4; T1 = (h) + ((((((e))) >> (6)) | ((((e) )) << (32 - (6)))) ^ (((((e))) >> (11)) | ((((e)) ) << (32 - (11)))) ^ (((((e))) >> (25)) | ((((e)) ) << (32 - (25))))) + ((((e)) & ((f))) ^ ((~((e))) & ((g)))) + K256[j] + W256[j]; (d) += T1; (h) = T1 + ((((((a)) ) >> (2)) | ((((a))) << (32 - (2)))) ^ (((((a))) >> (13)) | ((((a))) << (32 - (13)))) ^ (((((a))) >> (22)) | ((((a))) << (32 - (22))))) + ((((a)) & ((b ))) ^ (((a)) & ((c))) ^ (((b)) & ((c)))); j++; } while (0) do { \ |
270 | W256[j] = (u_int32_t)data[3] | ((u_int32_t)data[2] << 8) | \ |
271 | ((u_int32_t)data[1] << 16) | ((u_int32_t)data[0] << 24); \ |
272 | data += 4; \ |
273 | T1 = (h) + Sigma1_256((e))((((((e))) >> (6)) | ((((e))) << (32 - (6)))) ^ ( ((((e))) >> (11)) | ((((e))) << (32 - (11)))) ^ ( ((((e))) >> (25)) | ((((e))) << (32 - (25))))) + Ch((e), (f), (g))((((e)) & ((f))) ^ ((~((e))) & ((g)))) + K256[j] + W256[j]; \ |
274 | (d) += T1; \ |
275 | (h) = T1 + Sigma0_256((a))((((((a))) >> (2)) | ((((a))) << (32 - (2)))) ^ ( ((((a))) >> (13)) | ((((a))) << (32 - (13)))) ^ ( ((((a))) >> (22)) | ((((a))) << (32 - (22))))) + Maj((a), (b), (c))((((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c )))); \ |
276 | j++; \ |
277 | } while(0) |
278 | |
279 | #define ROUND256(a,b,c,d,e,f,g,h)do { s0 = W256[(j+1)&0x0f]; s0 = (((((s0)) >> (7)) | (((s0)) << (32 - (7)))) ^ ((((s0)) >> (18)) | (( (s0)) << (32 - (18)))) ^ (((s0)) >> (3))); s1 = W256 [(j+14)&0x0f]; s1 = (((((s1)) >> (17)) | (((s1)) << (32 - (17)))) ^ ((((s1)) >> (19)) | (((s1)) << ( 32 - (19)))) ^ (((s1)) >> (10))); T1 = (h) + ((((((e))) >> (6)) | ((((e))) << (32 - (6)))) ^ (((((e))) >> (11)) | ((((e))) << (32 - (11)))) ^ (((((e))) >> (25)) | ((((e))) << (32 - (25))))) + ((((e)) & ((f ))) ^ ((~((e))) & ((g)))) + K256[j] + (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); (d) += T1; (h) = T1 + ((((( (a))) >> (2)) | ((((a))) << (32 - (2)))) ^ (((((a ))) >> (13)) | ((((a))) << (32 - (13)))) ^ (((((a ))) >> (22)) | ((((a))) << (32 - (22))))) + ((((a )) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c)))); j++; } while(0) do { \ |
280 | s0 = W256[(j+1)&0x0f]; \ |
281 | s0 = sigma0_256(s0)(((((s0)) >> (7)) | (((s0)) << (32 - (7)))) ^ ((( (s0)) >> (18)) | (((s0)) << (32 - (18)))) ^ (((s0 )) >> (3))); \ |
282 | s1 = W256[(j+14)&0x0f]; \ |
283 | s1 = sigma1_256(s1)(((((s1)) >> (17)) | (((s1)) << (32 - (17)))) ^ ( (((s1)) >> (19)) | (((s1)) << (32 - (19)))) ^ ((( s1)) >> (10))); \ |
284 | T1 = (h) + Sigma1_256((e))((((((e))) >> (6)) | ((((e))) << (32 - (6)))) ^ ( ((((e))) >> (11)) | ((((e))) << (32 - (11)))) ^ ( ((((e))) >> (25)) | ((((e))) << (32 - (25))))) + Ch((e), (f), (g))((((e)) & ((f))) ^ ((~((e))) & ((g)))) + K256[j] + \ |
285 | (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ |
286 | (d) += T1; \ |
287 | (h) = T1 + Sigma0_256((a))((((((a))) >> (2)) | ((((a))) << (32 - (2)))) ^ ( ((((a))) >> (13)) | ((((a))) << (32 - (13)))) ^ ( ((((a))) >> (22)) | ((((a))) << (32 - (22))))) + Maj((a), (b), (c))((((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c )))); \ |
288 | j++; \ |
289 | } while(0) |
290 | |
291 | void |
292 | SHA256Transform(u_int32_t *state, const u_int8_t *data) |
293 | { |
294 | u_int32_t a, b, c, d, e, f, g, h, s0, s1; |
295 | u_int32_t T1, W256[16]; |
296 | int j; |
297 | |
298 | /* Initialize registers with the prev. intermediate value */ |
299 | a = state[0]; |
300 | b = state[1]; |
301 | c = state[2]; |
302 | d = state[3]; |
303 | e = state[4]; |
304 | f = state[5]; |
305 | g = state[6]; |
306 | h = state[7]; |
307 | |
308 | j = 0; |
309 | do { |
310 | /* Rounds 0 to 15 (unrolled): */ |
311 | ROUND256_0_TO_15(a,b,c,d,e,f,g,h)do { W256[j] = (u_int32_t)data[3] | ((u_int32_t)data[2] << 8) | ((u_int32_t)data[1] << 16) | ((u_int32_t)data[0] << 24); data += 4; T1 = (h) + ((((((e))) >> (6)) | ((((e) )) << (32 - (6)))) ^ (((((e))) >> (11)) | ((((e)) ) << (32 - (11)))) ^ (((((e))) >> (25)) | ((((e)) ) << (32 - (25))))) + ((((e)) & ((f))) ^ ((~((e))) & ((g)))) + K256[j] + W256[j]; (d) += T1; (h) = T1 + ((((((a)) ) >> (2)) | ((((a))) << (32 - (2)))) ^ (((((a))) >> (13)) | ((((a))) << (32 - (13)))) ^ (((((a))) >> (22)) | ((((a))) << (32 - (22))))) + ((((a)) & ((b ))) ^ (((a)) & ((c))) ^ (((b)) & ((c)))); j++; } while (0); |
312 | ROUND256_0_TO_15(h,a,b,c,d,e,f,g)do { W256[j] = (u_int32_t)data[3] | ((u_int32_t)data[2] << 8) | ((u_int32_t)data[1] << 16) | ((u_int32_t)data[0] << 24); data += 4; T1 = (g) + ((((((d))) >> (6)) | ((((d) )) << (32 - (6)))) ^ (((((d))) >> (11)) | ((((d)) ) << (32 - (11)))) ^ (((((d))) >> (25)) | ((((d)) ) << (32 - (25))))) + ((((d)) & ((e))) ^ ((~((d))) & ((f)))) + K256[j] + W256[j]; (c) += T1; (g) = T1 + ((((((h)) ) >> (2)) | ((((h))) << (32 - (2)))) ^ (((((h))) >> (13)) | ((((h))) << (32 - (13)))) ^ (((((h))) >> (22)) | ((((h))) << (32 - (22))))) + ((((h)) & ((a ))) ^ (((h)) & ((b))) ^ (((a)) & ((b)))); j++; } while (0); |
313 | ROUND256_0_TO_15(g,h,a,b,c,d,e,f)do { W256[j] = (u_int32_t)data[3] | ((u_int32_t)data[2] << 8) | ((u_int32_t)data[1] << 16) | ((u_int32_t)data[0] << 24); data += 4; T1 = (f) + ((((((c))) >> (6)) | ((((c) )) << (32 - (6)))) ^ (((((c))) >> (11)) | ((((c)) ) << (32 - (11)))) ^ (((((c))) >> (25)) | ((((c)) ) << (32 - (25))))) + ((((c)) & ((d))) ^ ((~((c))) & ((e)))) + K256[j] + W256[j]; (b) += T1; (f) = T1 + ((((((g)) ) >> (2)) | ((((g))) << (32 - (2)))) ^ (((((g))) >> (13)) | ((((g))) << (32 - (13)))) ^ (((((g))) >> (22)) | ((((g))) << (32 - (22))))) + ((((g)) & ((h ))) ^ (((g)) & ((a))) ^ (((h)) & ((a)))); j++; } while (0); |
314 | ROUND256_0_TO_15(f,g,h,a,b,c,d,e)do { W256[j] = (u_int32_t)data[3] | ((u_int32_t)data[2] << 8) | ((u_int32_t)data[1] << 16) | ((u_int32_t)data[0] << 24); data += 4; T1 = (e) + ((((((b))) >> (6)) | ((((b) )) << (32 - (6)))) ^ (((((b))) >> (11)) | ((((b)) ) << (32 - (11)))) ^ (((((b))) >> (25)) | ((((b)) ) << (32 - (25))))) + ((((b)) & ((c))) ^ ((~((b))) & ((d)))) + K256[j] + W256[j]; (a) += T1; (e) = T1 + ((((((f)) ) >> (2)) | ((((f))) << (32 - (2)))) ^ (((((f))) >> (13)) | ((((f))) << (32 - (13)))) ^ (((((f))) >> (22)) | ((((f))) << (32 - (22))))) + ((((f)) & ((g ))) ^ (((f)) & ((h))) ^ (((g)) & ((h)))); j++; } while (0); |
315 | ROUND256_0_TO_15(e,f,g,h,a,b,c,d)do { W256[j] = (u_int32_t)data[3] | ((u_int32_t)data[2] << 8) | ((u_int32_t)data[1] << 16) | ((u_int32_t)data[0] << 24); data += 4; T1 = (d) + ((((((a))) >> (6)) | ((((a) )) << (32 - (6)))) ^ (((((a))) >> (11)) | ((((a)) ) << (32 - (11)))) ^ (((((a))) >> (25)) | ((((a)) ) << (32 - (25))))) + ((((a)) & ((b))) ^ ((~((a))) & ((c)))) + K256[j] + W256[j]; (h) += T1; (d) = T1 + ((((((e)) ) >> (2)) | ((((e))) << (32 - (2)))) ^ (((((e))) >> (13)) | ((((e))) << (32 - (13)))) ^ (((((e))) >> (22)) | ((((e))) << (32 - (22))))) + ((((e)) & ((f ))) ^ (((e)) & ((g))) ^ (((f)) & ((g)))); j++; } while (0); |
316 | ROUND256_0_TO_15(d,e,f,g,h,a,b,c)do { W256[j] = (u_int32_t)data[3] | ((u_int32_t)data[2] << 8) | ((u_int32_t)data[1] << 16) | ((u_int32_t)data[0] << 24); data += 4; T1 = (c) + ((((((h))) >> (6)) | ((((h) )) << (32 - (6)))) ^ (((((h))) >> (11)) | ((((h)) ) << (32 - (11)))) ^ (((((h))) >> (25)) | ((((h)) ) << (32 - (25))))) + ((((h)) & ((a))) ^ ((~((h))) & ((b)))) + K256[j] + W256[j]; (g) += T1; (c) = T1 + ((((((d)) ) >> (2)) | ((((d))) << (32 - (2)))) ^ (((((d))) >> (13)) | ((((d))) << (32 - (13)))) ^ (((((d))) >> (22)) | ((((d))) << (32 - (22))))) + ((((d)) & ((e ))) ^ (((d)) & ((f))) ^ (((e)) & ((f)))); j++; } while (0); |
317 | ROUND256_0_TO_15(c,d,e,f,g,h,a,b)do { W256[j] = (u_int32_t)data[3] | ((u_int32_t)data[2] << 8) | ((u_int32_t)data[1] << 16) | ((u_int32_t)data[0] << 24); data += 4; T1 = (b) + ((((((g))) >> (6)) | ((((g) )) << (32 - (6)))) ^ (((((g))) >> (11)) | ((((g)) ) << (32 - (11)))) ^ (((((g))) >> (25)) | ((((g)) ) << (32 - (25))))) + ((((g)) & ((h))) ^ ((~((g))) & ((a)))) + K256[j] + W256[j]; (f) += T1; (b) = T1 + ((((((c)) ) >> (2)) | ((((c))) << (32 - (2)))) ^ (((((c))) >> (13)) | ((((c))) << (32 - (13)))) ^ (((((c))) >> (22)) | ((((c))) << (32 - (22))))) + ((((c)) & ((d ))) ^ (((c)) & ((e))) ^ (((d)) & ((e)))); j++; } while (0); |
318 | ROUND256_0_TO_15(b,c,d,e,f,g,h,a)do { W256[j] = (u_int32_t)data[3] | ((u_int32_t)data[2] << 8) | ((u_int32_t)data[1] << 16) | ((u_int32_t)data[0] << 24); data += 4; T1 = (a) + ((((((f))) >> (6)) | ((((f) )) << (32 - (6)))) ^ (((((f))) >> (11)) | ((((f)) ) << (32 - (11)))) ^ (((((f))) >> (25)) | ((((f)) ) << (32 - (25))))) + ((((f)) & ((g))) ^ ((~((f))) & ((h)))) + K256[j] + W256[j]; (e) += T1; (a) = T1 + ((((((b)) ) >> (2)) | ((((b))) << (32 - (2)))) ^ (((((b))) >> (13)) | ((((b))) << (32 - (13)))) ^ (((((b))) >> (22)) | ((((b))) << (32 - (22))))) + ((((b)) & ((c ))) ^ (((b)) & ((d))) ^ (((c)) & ((d)))); j++; } while (0); |
319 | } while (j < 16); |
320 | |
321 | /* Now for the remaining rounds to 64: */ |
322 | do { |
323 | ROUND256(a,b,c,d,e,f,g,h)do { s0 = W256[(j+1)&0x0f]; s0 = (((((s0)) >> (7)) | (((s0)) << (32 - (7)))) ^ ((((s0)) >> (18)) | (( (s0)) << (32 - (18)))) ^ (((s0)) >> (3))); s1 = W256 [(j+14)&0x0f]; s1 = (((((s1)) >> (17)) | (((s1)) << (32 - (17)))) ^ ((((s1)) >> (19)) | (((s1)) << ( 32 - (19)))) ^ (((s1)) >> (10))); T1 = (h) + ((((((e))) >> (6)) | ((((e))) << (32 - (6)))) ^ (((((e))) >> (11)) | ((((e))) << (32 - (11)))) ^ (((((e))) >> (25)) | ((((e))) << (32 - (25))))) + ((((e)) & ((f ))) ^ ((~((e))) & ((g)))) + K256[j] + (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); (d) += T1; (h) = T1 + ((((( (a))) >> (2)) | ((((a))) << (32 - (2)))) ^ (((((a ))) >> (13)) | ((((a))) << (32 - (13)))) ^ (((((a ))) >> (22)) | ((((a))) << (32 - (22))))) + ((((a )) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c)))); j++; } while(0); |
324 | ROUND256(h,a,b,c,d,e,f,g)do { s0 = W256[(j+1)&0x0f]; s0 = (((((s0)) >> (7)) | (((s0)) << (32 - (7)))) ^ ((((s0)) >> (18)) | (( (s0)) << (32 - (18)))) ^ (((s0)) >> (3))); s1 = W256 [(j+14)&0x0f]; s1 = (((((s1)) >> (17)) | (((s1)) << (32 - (17)))) ^ ((((s1)) >> (19)) | (((s1)) << ( 32 - (19)))) ^ (((s1)) >> (10))); T1 = (g) + ((((((d))) >> (6)) | ((((d))) << (32 - (6)))) ^ (((((d))) >> (11)) | ((((d))) << (32 - (11)))) ^ (((((d))) >> (25)) | ((((d))) << (32 - (25))))) + ((((d)) & ((e ))) ^ ((~((d))) & ((f)))) + K256[j] + (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); (c) += T1; (g) = T1 + ((((( (h))) >> (2)) | ((((h))) << (32 - (2)))) ^ (((((h ))) >> (13)) | ((((h))) << (32 - (13)))) ^ (((((h ))) >> (22)) | ((((h))) << (32 - (22))))) + ((((h )) & ((a))) ^ (((h)) & ((b))) ^ (((a)) & ((b)))); j++; } while(0); |
325 | ROUND256(g,h,a,b,c,d,e,f)do { s0 = W256[(j+1)&0x0f]; s0 = (((((s0)) >> (7)) | (((s0)) << (32 - (7)))) ^ ((((s0)) >> (18)) | (( (s0)) << (32 - (18)))) ^ (((s0)) >> (3))); s1 = W256 [(j+14)&0x0f]; s1 = (((((s1)) >> (17)) | (((s1)) << (32 - (17)))) ^ ((((s1)) >> (19)) | (((s1)) << ( 32 - (19)))) ^ (((s1)) >> (10))); T1 = (f) + ((((((c))) >> (6)) | ((((c))) << (32 - (6)))) ^ (((((c))) >> (11)) | ((((c))) << (32 - (11)))) ^ (((((c))) >> (25)) | ((((c))) << (32 - (25))))) + ((((c)) & ((d ))) ^ ((~((c))) & ((e)))) + K256[j] + (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); (b) += T1; (f) = T1 + ((((( (g))) >> (2)) | ((((g))) << (32 - (2)))) ^ (((((g ))) >> (13)) | ((((g))) << (32 - (13)))) ^ (((((g ))) >> (22)) | ((((g))) << (32 - (22))))) + ((((g )) & ((h))) ^ (((g)) & ((a))) ^ (((h)) & ((a)))); j++; } while(0); |
326 | ROUND256(f,g,h,a,b,c,d,e)do { s0 = W256[(j+1)&0x0f]; s0 = (((((s0)) >> (7)) | (((s0)) << (32 - (7)))) ^ ((((s0)) >> (18)) | (( (s0)) << (32 - (18)))) ^ (((s0)) >> (3))); s1 = W256 [(j+14)&0x0f]; s1 = (((((s1)) >> (17)) | (((s1)) << (32 - (17)))) ^ ((((s1)) >> (19)) | (((s1)) << ( 32 - (19)))) ^ (((s1)) >> (10))); T1 = (e) + ((((((b))) >> (6)) | ((((b))) << (32 - (6)))) ^ (((((b))) >> (11)) | ((((b))) << (32 - (11)))) ^ (((((b))) >> (25)) | ((((b))) << (32 - (25))))) + ((((b)) & ((c ))) ^ ((~((b))) & ((d)))) + K256[j] + (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); (a) += T1; (e) = T1 + ((((( (f))) >> (2)) | ((((f))) << (32 - (2)))) ^ (((((f ))) >> (13)) | ((((f))) << (32 - (13)))) ^ (((((f ))) >> (22)) | ((((f))) << (32 - (22))))) + ((((f )) & ((g))) ^ (((f)) & ((h))) ^ (((g)) & ((h)))); j++; } while(0); |
327 | ROUND256(e,f,g,h,a,b,c,d)do { s0 = W256[(j+1)&0x0f]; s0 = (((((s0)) >> (7)) | (((s0)) << (32 - (7)))) ^ ((((s0)) >> (18)) | (( (s0)) << (32 - (18)))) ^ (((s0)) >> (3))); s1 = W256 [(j+14)&0x0f]; s1 = (((((s1)) >> (17)) | (((s1)) << (32 - (17)))) ^ ((((s1)) >> (19)) | (((s1)) << ( 32 - (19)))) ^ (((s1)) >> (10))); T1 = (d) + ((((((a))) >> (6)) | ((((a))) << (32 - (6)))) ^ (((((a))) >> (11)) | ((((a))) << (32 - (11)))) ^ (((((a))) >> (25)) | ((((a))) << (32 - (25))))) + ((((a)) & ((b ))) ^ ((~((a))) & ((c)))) + K256[j] + (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); (h) += T1; (d) = T1 + ((((( (e))) >> (2)) | ((((e))) << (32 - (2)))) ^ (((((e ))) >> (13)) | ((((e))) << (32 - (13)))) ^ (((((e ))) >> (22)) | ((((e))) << (32 - (22))))) + ((((e )) & ((f))) ^ (((e)) & ((g))) ^ (((f)) & ((g)))); j++; } while(0); |
328 | ROUND256(d,e,f,g,h,a,b,c)do { s0 = W256[(j+1)&0x0f]; s0 = (((((s0)) >> (7)) | (((s0)) << (32 - (7)))) ^ ((((s0)) >> (18)) | (( (s0)) << (32 - (18)))) ^ (((s0)) >> (3))); s1 = W256 [(j+14)&0x0f]; s1 = (((((s1)) >> (17)) | (((s1)) << (32 - (17)))) ^ ((((s1)) >> (19)) | (((s1)) << ( 32 - (19)))) ^ (((s1)) >> (10))); T1 = (c) + ((((((h))) >> (6)) | ((((h))) << (32 - (6)))) ^ (((((h))) >> (11)) | ((((h))) << (32 - (11)))) ^ (((((h))) >> (25)) | ((((h))) << (32 - (25))))) + ((((h)) & ((a ))) ^ ((~((h))) & ((b)))) + K256[j] + (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); (g) += T1; (c) = T1 + ((((( (d))) >> (2)) | ((((d))) << (32 - (2)))) ^ (((((d ))) >> (13)) | ((((d))) << (32 - (13)))) ^ (((((d ))) >> (22)) | ((((d))) << (32 - (22))))) + ((((d )) & ((e))) ^ (((d)) & ((f))) ^ (((e)) & ((f)))); j++; } while(0); |
329 | ROUND256(c,d,e,f,g,h,a,b)do { s0 = W256[(j+1)&0x0f]; s0 = (((((s0)) >> (7)) | (((s0)) << (32 - (7)))) ^ ((((s0)) >> (18)) | (( (s0)) << (32 - (18)))) ^ (((s0)) >> (3))); s1 = W256 [(j+14)&0x0f]; s1 = (((((s1)) >> (17)) | (((s1)) << (32 - (17)))) ^ ((((s1)) >> (19)) | (((s1)) << ( 32 - (19)))) ^ (((s1)) >> (10))); T1 = (b) + ((((((g))) >> (6)) | ((((g))) << (32 - (6)))) ^ (((((g))) >> (11)) | ((((g))) << (32 - (11)))) ^ (((((g))) >> (25)) | ((((g))) << (32 - (25))))) + ((((g)) & ((h ))) ^ ((~((g))) & ((a)))) + K256[j] + (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); (f) += T1; (b) = T1 + ((((( (c))) >> (2)) | ((((c))) << (32 - (2)))) ^ (((((c ))) >> (13)) | ((((c))) << (32 - (13)))) ^ (((((c ))) >> (22)) | ((((c))) << (32 - (22))))) + ((((c )) & ((d))) ^ (((c)) & ((e))) ^ (((d)) & ((e)))); j++; } while(0); |
330 | ROUND256(b,c,d,e,f,g,h,a)do { s0 = W256[(j+1)&0x0f]; s0 = (((((s0)) >> (7)) | (((s0)) << (32 - (7)))) ^ ((((s0)) >> (18)) | (( (s0)) << (32 - (18)))) ^ (((s0)) >> (3))); s1 = W256 [(j+14)&0x0f]; s1 = (((((s1)) >> (17)) | (((s1)) << (32 - (17)))) ^ ((((s1)) >> (19)) | (((s1)) << ( 32 - (19)))) ^ (((s1)) >> (10))); T1 = (a) + ((((((f))) >> (6)) | ((((f))) << (32 - (6)))) ^ (((((f))) >> (11)) | ((((f))) << (32 - (11)))) ^ (((((f))) >> (25)) | ((((f))) << (32 - (25))))) + ((((f)) & ((g ))) ^ ((~((f))) & ((h)))) + K256[j] + (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); (e) += T1; (a) = T1 + ((((( (b))) >> (2)) | ((((b))) << (32 - (2)))) ^ (((((b ))) >> (13)) | ((((b))) << (32 - (13)))) ^ (((((b ))) >> (22)) | ((((b))) << (32 - (22))))) + ((((b )) & ((c))) ^ (((b)) & ((d))) ^ (((c)) & ((d)))); j++; } while(0); |
331 | } while (j < 64); |
332 | |
333 | /* Compute the current intermediate hash value */ |
334 | state[0] += a; |
335 | state[1] += b; |
336 | state[2] += c; |
337 | state[3] += d; |
338 | state[4] += e; |
339 | state[5] += f; |
340 | state[6] += g; |
341 | state[7] += h; |
342 | |
343 | /* Clean up */ |
344 | a = b = c = d = e = f = g = h = T1 = 0; |
345 | } |
346 | |
347 | #else /* SHA2_UNROLL_TRANSFORM */ |
348 | |
349 | void |
350 | SHA256Transform(u_int32_t *state, const u_int8_t *data) |
351 | { |
352 | u_int32_t a, b, c, d, e, f, g, h, s0, s1; |
353 | u_int32_t T1, T2, W256[16]; |
354 | int j; |
355 | |
356 | /* Initialize registers with the prev. intermediate value */ |
357 | a = state[0]; |
358 | b = state[1]; |
359 | c = state[2]; |
360 | d = state[3]; |
361 | e = state[4]; |
362 | f = state[5]; |
363 | g = state[6]; |
364 | h = state[7]; |
365 | |
366 | j = 0; |
367 | do { |
368 | W256[j] = (u_int32_t)data[3] | ((u_int32_t)data[2] << 8) | |
369 | ((u_int32_t)data[1] << 16) | ((u_int32_t)data[0] << 24); |
370 | data += 4; |
371 | /* Apply the SHA-256 compression function to update a..h */ |
372 | T1 = h + Sigma1_256(e)(((((e)) >> (6)) | (((e)) << (32 - (6)))) ^ ((((e )) >> (11)) | (((e)) << (32 - (11)))) ^ ((((e)) >> (25)) | (((e)) << (32 - (25))))) + Ch(e, f, g)(((e) & (f)) ^ ((~(e)) & (g))) + K256[j] + W256[j]; |
373 | T2 = Sigma0_256(a)(((((a)) >> (2)) | (((a)) << (32 - (2)))) ^ ((((a )) >> (13)) | (((a)) << (32 - (13)))) ^ ((((a)) >> (22)) | (((a)) << (32 - (22))))) + Maj(a, b, c)(((a) & (b)) ^ ((a) & (c)) ^ ((b) & (c))); |
374 | h = g; |
375 | g = f; |
376 | f = e; |
377 | e = d + T1; |
378 | d = c; |
379 | c = b; |
380 | b = a; |
381 | a = T1 + T2; |
382 | |
383 | j++; |
384 | } while (j < 16); |
385 | |
386 | do { |
387 | /* Part of the message block expansion: */ |
388 | s0 = W256[(j+1)&0x0f]; |
389 | s0 = sigma0_256(s0)(((((s0)) >> (7)) | (((s0)) << (32 - (7)))) ^ ((( (s0)) >> (18)) | (((s0)) << (32 - (18)))) ^ (((s0 )) >> (3))); |
390 | s1 = W256[(j+14)&0x0f]; |
391 | s1 = sigma1_256(s1)(((((s1)) >> (17)) | (((s1)) << (32 - (17)))) ^ ( (((s1)) >> (19)) | (((s1)) << (32 - (19)))) ^ ((( s1)) >> (10))); |
392 | |
393 | /* Apply the SHA-256 compression function to update a..h */ |
394 | T1 = h + Sigma1_256(e)(((((e)) >> (6)) | (((e)) << (32 - (6)))) ^ ((((e )) >> (11)) | (((e)) << (32 - (11)))) ^ ((((e)) >> (25)) | (((e)) << (32 - (25))))) + Ch(e, f, g)(((e) & (f)) ^ ((~(e)) & (g))) + K256[j] + |
395 | (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); |
396 | T2 = Sigma0_256(a)(((((a)) >> (2)) | (((a)) << (32 - (2)))) ^ ((((a )) >> (13)) | (((a)) << (32 - (13)))) ^ ((((a)) >> (22)) | (((a)) << (32 - (22))))) + Maj(a, b, c)(((a) & (b)) ^ ((a) & (c)) ^ ((b) & (c))); |
397 | h = g; |
398 | g = f; |
399 | f = e; |
400 | e = d + T1; |
401 | d = c; |
402 | c = b; |
403 | b = a; |
404 | a = T1 + T2; |
405 | |
406 | j++; |
407 | } while (j < 64); |
408 | |
409 | /* Compute the current intermediate hash value */ |
410 | state[0] += a; |
411 | state[1] += b; |
412 | state[2] += c; |
413 | state[3] += d; |
414 | state[4] += e; |
415 | state[5] += f; |
416 | state[6] += g; |
417 | state[7] += h; |
418 | |
419 | /* Clean up */ |
420 | a = b = c = d = e = f = g = h = T1 = T2 = 0; |
421 | } |
422 | |
423 | #endif /* SHA2_UNROLL_TRANSFORM */ |
424 | |
425 | void |
426 | SHA256Update(SHA2_CTX *context, const void *dataptr, size_t len) |
427 | { |
428 | const uint8_t *data = dataptr; |
429 | size_t freespace, usedspace; |
430 | |
431 | /* Calling with no data is valid (we do nothing) */ |
432 | if (len == 0) |
433 | return; |
434 | |
435 | usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH64; |
436 | if (usedspace > 0) { |
437 | /* Calculate how much free space is available in the buffer */ |
438 | freespace = SHA256_BLOCK_LENGTH64 - usedspace; |
439 | |
440 | if (len >= freespace) { |
441 | /* Fill the buffer completely and process it */ |
442 | memcpy(&context->buffer[usedspace], data, freespace)__builtin_memcpy((&context->buffer[usedspace]), (data) , (freespace)); |
443 | context->bitcount[0] += freespace << 3; |
444 | len -= freespace; |
445 | data += freespace; |
446 | SHA256Transform(context->state.st32, context->buffer); |
447 | } else { |
448 | /* The buffer is not yet full */ |
449 | memcpy(&context->buffer[usedspace], data, len)__builtin_memcpy((&context->buffer[usedspace]), (data) , (len)); |
450 | context->bitcount[0] += len << 3; |
451 | /* Clean up: */ |
452 | usedspace = freespace = 0; |
453 | return; |
454 | } |
455 | } |
456 | while (len >= SHA256_BLOCK_LENGTH64) { |
457 | /* Process as many complete blocks as we can */ |
458 | SHA256Transform(context->state.st32, data); |
459 | context->bitcount[0] += SHA256_BLOCK_LENGTH64 << 3; |
460 | len -= SHA256_BLOCK_LENGTH64; |
461 | data += SHA256_BLOCK_LENGTH64; |
462 | } |
463 | if (len > 0) { |
464 | /* There's left-overs, so save 'em */ |
465 | memcpy(context->buffer, data, len)__builtin_memcpy((context->buffer), (data), (len)); |
466 | context->bitcount[0] += len << 3; |
467 | } |
468 | /* Clean up: */ |
469 | usedspace = freespace = 0; |
470 | } |
471 | |
472 | void |
473 | SHA256Final(u_int8_t digest[], SHA2_CTX *context) |
474 | { |
475 | unsigned int usedspace; |
476 | |
477 | usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH64; |
478 | #if BYTE_ORDER1234 == LITTLE_ENDIAN1234 |
479 | /* Convert FROM host byte order */ |
480 | context->bitcount[0] = swap64(context->bitcount[0])(__uint64_t)(__builtin_constant_p(context->bitcount[0]) ? ( __uint64_t)((((__uint64_t)(context->bitcount[0]) & 0xff ) << 56) | ((__uint64_t)(context->bitcount[0]) & 0xff00ULL) << 40 | ((__uint64_t)(context->bitcount[ 0]) & 0xff0000ULL) << 24 | ((__uint64_t)(context-> bitcount[0]) & 0xff000000ULL) << 8 | ((__uint64_t)( context->bitcount[0]) & 0xff00000000ULL) >> 8 | ( (__uint64_t)(context->bitcount[0]) & 0xff0000000000ULL ) >> 24 | ((__uint64_t)(context->bitcount[0]) & 0xff000000000000ULL ) >> 40 | ((__uint64_t)(context->bitcount[0]) & 0xff00000000000000ULL ) >> 56) : __swap64md(context->bitcount[0])); |
481 | #endif |
482 | if (usedspace > 0) { |
483 | /* Begin padding with a 1 bit: */ |
484 | context->buffer[usedspace++] = 0x80; |
485 | |
486 | if (usedspace <= SHA256_SHORT_BLOCK_LENGTH(64 - 8)) { |
487 | /* Set-up for the last transform: */ |
488 | memset(&context->buffer[usedspace], 0,__builtin_memset((&context->buffer[usedspace]), (0), ( (64 - 8) - usedspace)) |
489 | SHA256_SHORT_BLOCK_LENGTH - usedspace)__builtin_memset((&context->buffer[usedspace]), (0), ( (64 - 8) - usedspace)); |
490 | } else { |
491 | if (usedspace < SHA256_BLOCK_LENGTH64) { |
492 | memset(&context->buffer[usedspace], 0,__builtin_memset((&context->buffer[usedspace]), (0), ( 64 - usedspace)) |
493 | SHA256_BLOCK_LENGTH - usedspace)__builtin_memset((&context->buffer[usedspace]), (0), ( 64 - usedspace)); |
494 | } |
495 | /* Do second-to-last transform: */ |
496 | SHA256Transform(context->state.st32, context->buffer); |
497 | |
498 | /* And set-up for the last transform: */ |
499 | memset(context->buffer, 0,__builtin_memset((context->buffer), (0), ((64 - 8))) |
500 | SHA256_SHORT_BLOCK_LENGTH)__builtin_memset((context->buffer), (0), ((64 - 8))); |
501 | } |
502 | } else { |
503 | /* Set-up for the last transform: */ |
504 | memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH)__builtin_memset((context->buffer), (0), ((64 - 8))); |
505 | |
506 | /* Begin padding with a 1 bit: */ |
507 | *context->buffer = 0x80; |
508 | } |
509 | /* Set the bit count: */ |
510 | *(u_int64_t *)&context->buffer[SHA256_SHORT_BLOCK_LENGTH(64 - 8)] = context->bitcount[0]; |
511 | |
512 | /* Final transform: */ |
513 | SHA256Transform(context->state.st32, context->buffer); |
514 | |
515 | #if BYTE_ORDER1234 == LITTLE_ENDIAN1234 |
516 | { |
517 | /* Convert TO host byte order */ |
518 | int j; |
519 | for (j = 0; j < 8; j++) { |
520 | context->state.st32[j] = swap32(context->state.st32[j])(__uint32_t)(__builtin_constant_p(context->state.st32[j]) ? (__uint32_t)(((__uint32_t)(context->state.st32[j]) & 0xff ) << 24 | ((__uint32_t)(context->state.st32[j]) & 0xff00) << 8 | ((__uint32_t)(context->state.st32[j] ) & 0xff0000) >> 8 | ((__uint32_t)(context->state .st32[j]) & 0xff000000) >> 24) : __swap32md(context ->state.st32[j])); |
521 | } |
522 | } |
523 | #endif |
524 | memcpy(digest, context->state.st32, SHA256_DIGEST_LENGTH)__builtin_memcpy((digest), (context->state.st32), (32)); |
525 | /* Clean up state data: */ |
526 | explicit_bzero(context, sizeof(*context)); |
527 | usedspace = 0; |
528 | } |
529 | |
530 | |
531 | /*** SHA-512: *********************************************************/ |
532 | void |
533 | SHA512Init(SHA2_CTX *context) |
534 | { |
535 | memcpy(context->state.st64, sha512_initial_hash_value,__builtin_memcpy((context->state.st64), (sha512_initial_hash_value ), (64)) |
536 | SHA512_DIGEST_LENGTH)__builtin_memcpy((context->state.st64), (sha512_initial_hash_value ), (64)); |
537 | memset(context->buffer, 0, SHA512_BLOCK_LENGTH)__builtin_memset((context->buffer), (0), (128)); |
538 | context->bitcount[0] = context->bitcount[1] = 0; |
539 | } |
540 | |
541 | #ifdef SHA2_UNROLL_TRANSFORM |
542 | |
543 | /* Unrolled SHA-512 round macros: */ |
544 | |
545 | #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)do { W512[j] = (u_int64_t)data[7] | ((u_int64_t)data[6] << 8) | ((u_int64_t)data[5] << 16) | ((u_int64_t)data[4] << 24) | ((u_int64_t)data[3] << 32) | ((u_int64_t)data[2] << 40) | ((u_int64_t)data[1] << 48) | ((u_int64_t )data[0] << 56); data += 8; T1 = (h) + ((((((e))) >> (14)) | ((((e))) << (64 - (14)))) ^ (((((e))) >> (18)) | ((((e))) << (64 - (18)))) ^ (((((e))) >> (41)) | ((((e))) << (64 - (41))))) + ((((e)) & ((f ))) ^ ((~((e))) & ((g)))) + K512[j] + W512[j]; (d) += T1; (h) = T1 + ((((((a))) >> (28)) | ((((a))) << (64 - (28)))) ^ (((((a))) >> (34)) | ((((a))) << (64 - (34)))) ^ (((((a))) >> (39)) | ((((a))) << (64 - (39))))) + ((((a)) & ((b))) ^ (((a)) & ((c))) ^ (( (b)) & ((c)))); j++; } while(0) do { \ |
546 | W512[j] = (u_int64_t)data[7] | ((u_int64_t)data[6] << 8) | \ |
547 | ((u_int64_t)data[5] << 16) | ((u_int64_t)data[4] << 24) | \ |
548 | ((u_int64_t)data[3] << 32) | ((u_int64_t)data[2] << 40) | \ |
549 | ((u_int64_t)data[1] << 48) | ((u_int64_t)data[0] << 56); \ |
550 | data += 8; \ |
551 | T1 = (h) + Sigma1_512((e))((((((e))) >> (14)) | ((((e))) << (64 - (14)))) ^ (((((e))) >> (18)) | ((((e))) << (64 - (18)))) ^ (((((e))) >> (41)) | ((((e))) << (64 - (41))))) + Ch((e), (f), (g))((((e)) & ((f))) ^ ((~((e))) & ((g)))) + K512[j] + W512[j]; \ |
552 | (d) += T1; \ |
553 | (h) = T1 + Sigma0_512((a))((((((a))) >> (28)) | ((((a))) << (64 - (28)))) ^ (((((a))) >> (34)) | ((((a))) << (64 - (34)))) ^ (((((a))) >> (39)) | ((((a))) << (64 - (39))))) + Maj((a), (b), (c))((((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c )))); \ |
554 | j++; \ |
555 | } while(0) |
556 | |
557 | |
558 | #define ROUND512(a,b,c,d,e,f,g,h)do { s0 = W512[(j+1)&0x0f]; s0 = (((((s0)) >> (1)) | (((s0)) << (64 - (1)))) ^ ((((s0)) >> (8)) | ((( s0)) << (64 - (8)))) ^ (((s0)) >> (7))); s1 = W512 [(j+14)&0x0f]; s1 = (((((s1)) >> (19)) | (((s1)) << (64 - (19)))) ^ ((((s1)) >> (61)) | (((s1)) << ( 64 - (61)))) ^ (((s1)) >> (6))); T1 = (h) + ((((((e))) >> (14)) | ((((e))) << (64 - (14)))) ^ (((((e))) >> (18)) | ((((e))) << (64 - (18)))) ^ (((((e))) >> (41)) | ((((e))) << (64 - (41))))) + ((((e)) & ((f ))) ^ ((~((e))) & ((g)))) + K512[j] + (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); (d) += T1; (h) = T1 + ((((( (a))) >> (28)) | ((((a))) << (64 - (28)))) ^ (((( (a))) >> (34)) | ((((a))) << (64 - (34)))) ^ (((( (a))) >> (39)) | ((((a))) << (64 - (39))))) + ((( (a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c))) ); j++; } while(0) do { \ |
559 | s0 = W512[(j+1)&0x0f]; \ |
560 | s0 = sigma0_512(s0)(((((s0)) >> (1)) | (((s0)) << (64 - (1)))) ^ ((( (s0)) >> (8)) | (((s0)) << (64 - (8)))) ^ (((s0)) >> (7))); \ |
561 | s1 = W512[(j+14)&0x0f]; \ |
562 | s1 = sigma1_512(s1)(((((s1)) >> (19)) | (((s1)) << (64 - (19)))) ^ ( (((s1)) >> (61)) | (((s1)) << (64 - (61)))) ^ ((( s1)) >> (6))); \ |
563 | T1 = (h) + Sigma1_512((e))((((((e))) >> (14)) | ((((e))) << (64 - (14)))) ^ (((((e))) >> (18)) | ((((e))) << (64 - (18)))) ^ (((((e))) >> (41)) | ((((e))) << (64 - (41))))) + Ch((e), (f), (g))((((e)) & ((f))) ^ ((~((e))) & ((g)))) + K512[j] + \ |
564 | (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ |
565 | (d) += T1; \ |
566 | (h) = T1 + Sigma0_512((a))((((((a))) >> (28)) | ((((a))) << (64 - (28)))) ^ (((((a))) >> (34)) | ((((a))) << (64 - (34)))) ^ (((((a))) >> (39)) | ((((a))) << (64 - (39))))) + Maj((a), (b), (c))((((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c )))); \ |
567 | j++; \ |
568 | } while(0) |
569 | |
570 | void |
571 | SHA512Transform(u_int64_t *state, const u_int8_t *data) |
572 | { |
573 | u_int64_t a, b, c, d, e, f, g, h, s0, s1; |
574 | u_int64_t T1, W512[16]; |
575 | int j; |
576 | |
577 | /* Initialize registers with the prev. intermediate value */ |
578 | a = state[0]; |
579 | b = state[1]; |
580 | c = state[2]; |
581 | d = state[3]; |
582 | e = state[4]; |
583 | f = state[5]; |
584 | g = state[6]; |
585 | h = state[7]; |
586 | |
587 | j = 0; |
588 | do { |
589 | ROUND512_0_TO_15(a,b,c,d,e,f,g,h)do { W512[j] = (u_int64_t)data[7] | ((u_int64_t)data[6] << 8) | ((u_int64_t)data[5] << 16) | ((u_int64_t)data[4] << 24) | ((u_int64_t)data[3] << 32) | ((u_int64_t)data[2] << 40) | ((u_int64_t)data[1] << 48) | ((u_int64_t )data[0] << 56); data += 8; T1 = (h) + ((((((e))) >> (14)) | ((((e))) << (64 - (14)))) ^ (((((e))) >> (18)) | ((((e))) << (64 - (18)))) ^ (((((e))) >> (41)) | ((((e))) << (64 - (41))))) + ((((e)) & ((f ))) ^ ((~((e))) & ((g)))) + K512[j] + W512[j]; (d) += T1; (h) = T1 + ((((((a))) >> (28)) | ((((a))) << (64 - (28)))) ^ (((((a))) >> (34)) | ((((a))) << (64 - (34)))) ^ (((((a))) >> (39)) | ((((a))) << (64 - (39))))) + ((((a)) & ((b))) ^ (((a)) & ((c))) ^ (( (b)) & ((c)))); j++; } while(0); |
590 | ROUND512_0_TO_15(h,a,b,c,d,e,f,g)do { W512[j] = (u_int64_t)data[7] | ((u_int64_t)data[6] << 8) | ((u_int64_t)data[5] << 16) | ((u_int64_t)data[4] << 24) | ((u_int64_t)data[3] << 32) | ((u_int64_t)data[2] << 40) | ((u_int64_t)data[1] << 48) | ((u_int64_t )data[0] << 56); data += 8; T1 = (g) + ((((((d))) >> (14)) | ((((d))) << (64 - (14)))) ^ (((((d))) >> (18)) | ((((d))) << (64 - (18)))) ^ (((((d))) >> (41)) | ((((d))) << (64 - (41))))) + ((((d)) & ((e ))) ^ ((~((d))) & ((f)))) + K512[j] + W512[j]; (c) += T1; (g) = T1 + ((((((h))) >> (28)) | ((((h))) << (64 - (28)))) ^ (((((h))) >> (34)) | ((((h))) << (64 - (34)))) ^ (((((h))) >> (39)) | ((((h))) << (64 - (39))))) + ((((h)) & ((a))) ^ (((h)) & ((b))) ^ (( (a)) & ((b)))); j++; } while(0); |
591 | ROUND512_0_TO_15(g,h,a,b,c,d,e,f)do { W512[j] = (u_int64_t)data[7] | ((u_int64_t)data[6] << 8) | ((u_int64_t)data[5] << 16) | ((u_int64_t)data[4] << 24) | ((u_int64_t)data[3] << 32) | ((u_int64_t)data[2] << 40) | ((u_int64_t)data[1] << 48) | ((u_int64_t )data[0] << 56); data += 8; T1 = (f) + ((((((c))) >> (14)) | ((((c))) << (64 - (14)))) ^ (((((c))) >> (18)) | ((((c))) << (64 - (18)))) ^ (((((c))) >> (41)) | ((((c))) << (64 - (41))))) + ((((c)) & ((d ))) ^ ((~((c))) & ((e)))) + K512[j] + W512[j]; (b) += T1; (f) = T1 + ((((((g))) >> (28)) | ((((g))) << (64 - (28)))) ^ (((((g))) >> (34)) | ((((g))) << (64 - (34)))) ^ (((((g))) >> (39)) | ((((g))) << (64 - (39))))) + ((((g)) & ((h))) ^ (((g)) & ((a))) ^ (( (h)) & ((a)))); j++; } while(0); |
592 | ROUND512_0_TO_15(f,g,h,a,b,c,d,e)do { W512[j] = (u_int64_t)data[7] | ((u_int64_t)data[6] << 8) | ((u_int64_t)data[5] << 16) | ((u_int64_t)data[4] << 24) | ((u_int64_t)data[3] << 32) | ((u_int64_t)data[2] << 40) | ((u_int64_t)data[1] << 48) | ((u_int64_t )data[0] << 56); data += 8; T1 = (e) + ((((((b))) >> (14)) | ((((b))) << (64 - (14)))) ^ (((((b))) >> (18)) | ((((b))) << (64 - (18)))) ^ (((((b))) >> (41)) | ((((b))) << (64 - (41))))) + ((((b)) & ((c ))) ^ ((~((b))) & ((d)))) + K512[j] + W512[j]; (a) += T1; (e) = T1 + ((((((f))) >> (28)) | ((((f))) << (64 - (28)))) ^ (((((f))) >> (34)) | ((((f))) << (64 - (34)))) ^ (((((f))) >> (39)) | ((((f))) << (64 - (39))))) + ((((f)) & ((g))) ^ (((f)) & ((h))) ^ (( (g)) & ((h)))); j++; } while(0); |
593 | ROUND512_0_TO_15(e,f,g,h,a,b,c,d)do { W512[j] = (u_int64_t)data[7] | ((u_int64_t)data[6] << 8) | ((u_int64_t)data[5] << 16) | ((u_int64_t)data[4] << 24) | ((u_int64_t)data[3] << 32) | ((u_int64_t)data[2] << 40) | ((u_int64_t)data[1] << 48) | ((u_int64_t )data[0] << 56); data += 8; T1 = (d) + ((((((a))) >> (14)) | ((((a))) << (64 - (14)))) ^ (((((a))) >> (18)) | ((((a))) << (64 - (18)))) ^ (((((a))) >> (41)) | ((((a))) << (64 - (41))))) + ((((a)) & ((b ))) ^ ((~((a))) & ((c)))) + K512[j] + W512[j]; (h) += T1; (d) = T1 + ((((((e))) >> (28)) | ((((e))) << (64 - (28)))) ^ (((((e))) >> (34)) | ((((e))) << (64 - (34)))) ^ (((((e))) >> (39)) | ((((e))) << (64 - (39))))) + ((((e)) & ((f))) ^ (((e)) & ((g))) ^ (( (f)) & ((g)))); j++; } while(0); |
594 | ROUND512_0_TO_15(d,e,f,g,h,a,b,c)do { W512[j] = (u_int64_t)data[7] | ((u_int64_t)data[6] << 8) | ((u_int64_t)data[5] << 16) | ((u_int64_t)data[4] << 24) | ((u_int64_t)data[3] << 32) | ((u_int64_t)data[2] << 40) | ((u_int64_t)data[1] << 48) | ((u_int64_t )data[0] << 56); data += 8; T1 = (c) + ((((((h))) >> (14)) | ((((h))) << (64 - (14)))) ^ (((((h))) >> (18)) | ((((h))) << (64 - (18)))) ^ (((((h))) >> (41)) | ((((h))) << (64 - (41))))) + ((((h)) & ((a ))) ^ ((~((h))) & ((b)))) + K512[j] + W512[j]; (g) += T1; (c) = T1 + ((((((d))) >> (28)) | ((((d))) << (64 - (28)))) ^ (((((d))) >> (34)) | ((((d))) << (64 - (34)))) ^ (((((d))) >> (39)) | ((((d))) << (64 - (39))))) + ((((d)) & ((e))) ^ (((d)) & ((f))) ^ (( (e)) & ((f)))); j++; } while(0); |
595 | ROUND512_0_TO_15(c,d,e,f,g,h,a,b)do { W512[j] = (u_int64_t)data[7] | ((u_int64_t)data[6] << 8) | ((u_int64_t)data[5] << 16) | ((u_int64_t)data[4] << 24) | ((u_int64_t)data[3] << 32) | ((u_int64_t)data[2] << 40) | ((u_int64_t)data[1] << 48) | ((u_int64_t )data[0] << 56); data += 8; T1 = (b) + ((((((g))) >> (14)) | ((((g))) << (64 - (14)))) ^ (((((g))) >> (18)) | ((((g))) << (64 - (18)))) ^ (((((g))) >> (41)) | ((((g))) << (64 - (41))))) + ((((g)) & ((h ))) ^ ((~((g))) & ((a)))) + K512[j] + W512[j]; (f) += T1; (b) = T1 + ((((((c))) >> (28)) | ((((c))) << (64 - (28)))) ^ (((((c))) >> (34)) | ((((c))) << (64 - (34)))) ^ (((((c))) >> (39)) | ((((c))) << (64 - (39))))) + ((((c)) & ((d))) ^ (((c)) & ((e))) ^ (( (d)) & ((e)))); j++; } while(0); |
596 | ROUND512_0_TO_15(b,c,d,e,f,g,h,a)do { W512[j] = (u_int64_t)data[7] | ((u_int64_t)data[6] << 8) | ((u_int64_t)data[5] << 16) | ((u_int64_t)data[4] << 24) | ((u_int64_t)data[3] << 32) | ((u_int64_t)data[2] << 40) | ((u_int64_t)data[1] << 48) | ((u_int64_t )data[0] << 56); data += 8; T1 = (a) + ((((((f))) >> (14)) | ((((f))) << (64 - (14)))) ^ (((((f))) >> (18)) | ((((f))) << (64 - (18)))) ^ (((((f))) >> (41)) | ((((f))) << (64 - (41))))) + ((((f)) & ((g ))) ^ ((~((f))) & ((h)))) + K512[j] + W512[j]; (e) += T1; (a) = T1 + ((((((b))) >> (28)) | ((((b))) << (64 - (28)))) ^ (((((b))) >> (34)) | ((((b))) << (64 - (34)))) ^ (((((b))) >> (39)) | ((((b))) << (64 - (39))))) + ((((b)) & ((c))) ^ (((b)) & ((d))) ^ (( (c)) & ((d)))); j++; } while(0); |
597 | } while (j < 16); |
598 | |
599 | /* Now for the remaining rounds up to 79: */ |
600 | do { |
601 | ROUND512(a,b,c,d,e,f,g,h)do { s0 = W512[(j+1)&0x0f]; s0 = (((((s0)) >> (1)) | (((s0)) << (64 - (1)))) ^ ((((s0)) >> (8)) | ((( s0)) << (64 - (8)))) ^ (((s0)) >> (7))); s1 = W512 [(j+14)&0x0f]; s1 = (((((s1)) >> (19)) | (((s1)) << (64 - (19)))) ^ ((((s1)) >> (61)) | (((s1)) << ( 64 - (61)))) ^ (((s1)) >> (6))); T1 = (h) + ((((((e))) >> (14)) | ((((e))) << (64 - (14)))) ^ (((((e))) >> (18)) | ((((e))) << (64 - (18)))) ^ (((((e))) >> (41)) | ((((e))) << (64 - (41))))) + ((((e)) & ((f ))) ^ ((~((e))) & ((g)))) + K512[j] + (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); (d) += T1; (h) = T1 + ((((( (a))) >> (28)) | ((((a))) << (64 - (28)))) ^ (((( (a))) >> (34)) | ((((a))) << (64 - (34)))) ^ (((( (a))) >> (39)) | ((((a))) << (64 - (39))))) + ((( (a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c))) ); j++; } while(0); |
602 | ROUND512(h,a,b,c,d,e,f,g)do { s0 = W512[(j+1)&0x0f]; s0 = (((((s0)) >> (1)) | (((s0)) << (64 - (1)))) ^ ((((s0)) >> (8)) | ((( s0)) << (64 - (8)))) ^ (((s0)) >> (7))); s1 = W512 [(j+14)&0x0f]; s1 = (((((s1)) >> (19)) | (((s1)) << (64 - (19)))) ^ ((((s1)) >> (61)) | (((s1)) << ( 64 - (61)))) ^ (((s1)) >> (6))); T1 = (g) + ((((((d))) >> (14)) | ((((d))) << (64 - (14)))) ^ (((((d))) >> (18)) | ((((d))) << (64 - (18)))) ^ (((((d))) >> (41)) | ((((d))) << (64 - (41))))) + ((((d)) & ((e ))) ^ ((~((d))) & ((f)))) + K512[j] + (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); (c) += T1; (g) = T1 + ((((( (h))) >> (28)) | ((((h))) << (64 - (28)))) ^ (((( (h))) >> (34)) | ((((h))) << (64 - (34)))) ^ (((( (h))) >> (39)) | ((((h))) << (64 - (39))))) + ((( (h)) & ((a))) ^ (((h)) & ((b))) ^ (((a)) & ((b))) ); j++; } while(0); |
603 | ROUND512(g,h,a,b,c,d,e,f)do { s0 = W512[(j+1)&0x0f]; s0 = (((((s0)) >> (1)) | (((s0)) << (64 - (1)))) ^ ((((s0)) >> (8)) | ((( s0)) << (64 - (8)))) ^ (((s0)) >> (7))); s1 = W512 [(j+14)&0x0f]; s1 = (((((s1)) >> (19)) | (((s1)) << (64 - (19)))) ^ ((((s1)) >> (61)) | (((s1)) << ( 64 - (61)))) ^ (((s1)) >> (6))); T1 = (f) + ((((((c))) >> (14)) | ((((c))) << (64 - (14)))) ^ (((((c))) >> (18)) | ((((c))) << (64 - (18)))) ^ (((((c))) >> (41)) | ((((c))) << (64 - (41))))) + ((((c)) & ((d ))) ^ ((~((c))) & ((e)))) + K512[j] + (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); (b) += T1; (f) = T1 + ((((( (g))) >> (28)) | ((((g))) << (64 - (28)))) ^ (((( (g))) >> (34)) | ((((g))) << (64 - (34)))) ^ (((( (g))) >> (39)) | ((((g))) << (64 - (39))))) + ((( (g)) & ((h))) ^ (((g)) & ((a))) ^ (((h)) & ((a))) ); j++; } while(0); |
604 | ROUND512(f,g,h,a,b,c,d,e)do { s0 = W512[(j+1)&0x0f]; s0 = (((((s0)) >> (1)) | (((s0)) << (64 - (1)))) ^ ((((s0)) >> (8)) | ((( s0)) << (64 - (8)))) ^ (((s0)) >> (7))); s1 = W512 [(j+14)&0x0f]; s1 = (((((s1)) >> (19)) | (((s1)) << (64 - (19)))) ^ ((((s1)) >> (61)) | (((s1)) << ( 64 - (61)))) ^ (((s1)) >> (6))); T1 = (e) + ((((((b))) >> (14)) | ((((b))) << (64 - (14)))) ^ (((((b))) >> (18)) | ((((b))) << (64 - (18)))) ^ (((((b))) >> (41)) | ((((b))) << (64 - (41))))) + ((((b)) & ((c ))) ^ ((~((b))) & ((d)))) + K512[j] + (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); (a) += T1; (e) = T1 + ((((( (f))) >> (28)) | ((((f))) << (64 - (28)))) ^ (((( (f))) >> (34)) | ((((f))) << (64 - (34)))) ^ (((( (f))) >> (39)) | ((((f))) << (64 - (39))))) + ((( (f)) & ((g))) ^ (((f)) & ((h))) ^ (((g)) & ((h))) ); j++; } while(0); |
605 | ROUND512(e,f,g,h,a,b,c,d)do { s0 = W512[(j+1)&0x0f]; s0 = (((((s0)) >> (1)) | (((s0)) << (64 - (1)))) ^ ((((s0)) >> (8)) | ((( s0)) << (64 - (8)))) ^ (((s0)) >> (7))); s1 = W512 [(j+14)&0x0f]; s1 = (((((s1)) >> (19)) | (((s1)) << (64 - (19)))) ^ ((((s1)) >> (61)) | (((s1)) << ( 64 - (61)))) ^ (((s1)) >> (6))); T1 = (d) + ((((((a))) >> (14)) | ((((a))) << (64 - (14)))) ^ (((((a))) >> (18)) | ((((a))) << (64 - (18)))) ^ (((((a))) >> (41)) | ((((a))) << (64 - (41))))) + ((((a)) & ((b ))) ^ ((~((a))) & ((c)))) + K512[j] + (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); (h) += T1; (d) = T1 + ((((( (e))) >> (28)) | ((((e))) << (64 - (28)))) ^ (((( (e))) >> (34)) | ((((e))) << (64 - (34)))) ^ (((( (e))) >> (39)) | ((((e))) << (64 - (39))))) + ((( (e)) & ((f))) ^ (((e)) & ((g))) ^ (((f)) & ((g))) ); j++; } while(0); |
606 | ROUND512(d,e,f,g,h,a,b,c)do { s0 = W512[(j+1)&0x0f]; s0 = (((((s0)) >> (1)) | (((s0)) << (64 - (1)))) ^ ((((s0)) >> (8)) | ((( s0)) << (64 - (8)))) ^ (((s0)) >> (7))); s1 = W512 [(j+14)&0x0f]; s1 = (((((s1)) >> (19)) | (((s1)) << (64 - (19)))) ^ ((((s1)) >> (61)) | (((s1)) << ( 64 - (61)))) ^ (((s1)) >> (6))); T1 = (c) + ((((((h))) >> (14)) | ((((h))) << (64 - (14)))) ^ (((((h))) >> (18)) | ((((h))) << (64 - (18)))) ^ (((((h))) >> (41)) | ((((h))) << (64 - (41))))) + ((((h)) & ((a ))) ^ ((~((h))) & ((b)))) + K512[j] + (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); (g) += T1; (c) = T1 + ((((( (d))) >> (28)) | ((((d))) << (64 - (28)))) ^ (((( (d))) >> (34)) | ((((d))) << (64 - (34)))) ^ (((( (d))) >> (39)) | ((((d))) << (64 - (39))))) + ((( (d)) & ((e))) ^ (((d)) & ((f))) ^ (((e)) & ((f))) ); j++; } while(0); |
607 | ROUND512(c,d,e,f,g,h,a,b)do { s0 = W512[(j+1)&0x0f]; s0 = (((((s0)) >> (1)) | (((s0)) << (64 - (1)))) ^ ((((s0)) >> (8)) | ((( s0)) << (64 - (8)))) ^ (((s0)) >> (7))); s1 = W512 [(j+14)&0x0f]; s1 = (((((s1)) >> (19)) | (((s1)) << (64 - (19)))) ^ ((((s1)) >> (61)) | (((s1)) << ( 64 - (61)))) ^ (((s1)) >> (6))); T1 = (b) + ((((((g))) >> (14)) | ((((g))) << (64 - (14)))) ^ (((((g))) >> (18)) | ((((g))) << (64 - (18)))) ^ (((((g))) >> (41)) | ((((g))) << (64 - (41))))) + ((((g)) & ((h ))) ^ ((~((g))) & ((a)))) + K512[j] + (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); (f) += T1; (b) = T1 + ((((( (c))) >> (28)) | ((((c))) << (64 - (28)))) ^ (((( (c))) >> (34)) | ((((c))) << (64 - (34)))) ^ (((( (c))) >> (39)) | ((((c))) << (64 - (39))))) + ((( (c)) & ((d))) ^ (((c)) & ((e))) ^ (((d)) & ((e))) ); j++; } while(0); |
608 | ROUND512(b,c,d,e,f,g,h,a)do { s0 = W512[(j+1)&0x0f]; s0 = (((((s0)) >> (1)) | (((s0)) << (64 - (1)))) ^ ((((s0)) >> (8)) | ((( s0)) << (64 - (8)))) ^ (((s0)) >> (7))); s1 = W512 [(j+14)&0x0f]; s1 = (((((s1)) >> (19)) | (((s1)) << (64 - (19)))) ^ ((((s1)) >> (61)) | (((s1)) << ( 64 - (61)))) ^ (((s1)) >> (6))); T1 = (a) + ((((((f))) >> (14)) | ((((f))) << (64 - (14)))) ^ (((((f))) >> (18)) | ((((f))) << (64 - (18)))) ^ (((((f))) >> (41)) | ((((f))) << (64 - (41))))) + ((((f)) & ((g ))) ^ ((~((f))) & ((h)))) + K512[j] + (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); (e) += T1; (a) = T1 + ((((( (b))) >> (28)) | ((((b))) << (64 - (28)))) ^ (((( (b))) >> (34)) | ((((b))) << (64 - (34)))) ^ (((( (b))) >> (39)) | ((((b))) << (64 - (39))))) + ((( (b)) & ((c))) ^ (((b)) & ((d))) ^ (((c)) & ((d))) ); j++; } while(0); |
609 | } while (j < 80); |
610 | |
611 | /* Compute the current intermediate hash value */ |
612 | state[0] += a; |
613 | state[1] += b; |
614 | state[2] += c; |
615 | state[3] += d; |
616 | state[4] += e; |
617 | state[5] += f; |
618 | state[6] += g; |
619 | state[7] += h; |
620 | |
621 | /* Clean up */ |
622 | a = b = c = d = e = f = g = h = T1 = 0; |
Although the value stored to 'h' is used in the enclosing expression, the value is never actually read from 'h' | |
623 | } |
624 | |
625 | #else /* SHA2_UNROLL_TRANSFORM */ |
626 | |
627 | void |
628 | SHA512Transform(u_int64_t *state, const u_int8_t *data) |
629 | { |
630 | u_int64_t a, b, c, d, e, f, g, h, s0, s1; |
631 | u_int64_t T1, T2, W512[16]; |
632 | int j; |
633 | |
634 | /* Initialize registers with the prev. intermediate value */ |
635 | a = state[0]; |
636 | b = state[1]; |
637 | c = state[2]; |
638 | d = state[3]; |
639 | e = state[4]; |
640 | f = state[5]; |
641 | g = state[6]; |
642 | h = state[7]; |
643 | |
644 | j = 0; |
645 | do { |
646 | W512[j] = (u_int64_t)data[7] | ((u_int64_t)data[6] << 8) | |
647 | ((u_int64_t)data[5] << 16) | ((u_int64_t)data[4] << 24) | |
648 | ((u_int64_t)data[3] << 32) | ((u_int64_t)data[2] << 40) | |
649 | ((u_int64_t)data[1] << 48) | ((u_int64_t)data[0] << 56); |
650 | data += 8; |
651 | /* Apply the SHA-512 compression function to update a..h */ |
652 | T1 = h + Sigma1_512(e)(((((e)) >> (14)) | (((e)) << (64 - (14)))) ^ ((( (e)) >> (18)) | (((e)) << (64 - (18)))) ^ ((((e)) >> (41)) | (((e)) << (64 - (41))))) + Ch(e, f, g)(((e) & (f)) ^ ((~(e)) & (g))) + K512[j] + W512[j]; |
653 | T2 = Sigma0_512(a)(((((a)) >> (28)) | (((a)) << (64 - (28)))) ^ ((( (a)) >> (34)) | (((a)) << (64 - (34)))) ^ ((((a)) >> (39)) | (((a)) << (64 - (39))))) + Maj(a, b, c)(((a) & (b)) ^ ((a) & (c)) ^ ((b) & (c))); |
654 | h = g; |
655 | g = f; |
656 | f = e; |
657 | e = d + T1; |
658 | d = c; |
659 | c = b; |
660 | b = a; |
661 | a = T1 + T2; |
662 | |
663 | j++; |
664 | } while (j < 16); |
665 | |
666 | do { |
667 | /* Part of the message block expansion: */ |
668 | s0 = W512[(j+1)&0x0f]; |
669 | s0 = sigma0_512(s0)(((((s0)) >> (1)) | (((s0)) << (64 - (1)))) ^ ((( (s0)) >> (8)) | (((s0)) << (64 - (8)))) ^ (((s0)) >> (7))); |
670 | s1 = W512[(j+14)&0x0f]; |
671 | s1 = sigma1_512(s1)(((((s1)) >> (19)) | (((s1)) << (64 - (19)))) ^ ( (((s1)) >> (61)) | (((s1)) << (64 - (61)))) ^ ((( s1)) >> (6))); |
672 | |
673 | /* Apply the SHA-512 compression function to update a..h */ |
674 | T1 = h + Sigma1_512(e)(((((e)) >> (14)) | (((e)) << (64 - (14)))) ^ ((( (e)) >> (18)) | (((e)) << (64 - (18)))) ^ ((((e)) >> (41)) | (((e)) << (64 - (41))))) + Ch(e, f, g)(((e) & (f)) ^ ((~(e)) & (g))) + K512[j] + |
675 | (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); |
676 | T2 = Sigma0_512(a)(((((a)) >> (28)) | (((a)) << (64 - (28)))) ^ ((( (a)) >> (34)) | (((a)) << (64 - (34)))) ^ ((((a)) >> (39)) | (((a)) << (64 - (39))))) + Maj(a, b, c)(((a) & (b)) ^ ((a) & (c)) ^ ((b) & (c))); |
677 | h = g; |
678 | g = f; |
679 | f = e; |
680 | e = d + T1; |
681 | d = c; |
682 | c = b; |
683 | b = a; |
684 | a = T1 + T2; |
685 | |
686 | j++; |
687 | } while (j < 80); |
688 | |
689 | /* Compute the current intermediate hash value */ |
690 | state[0] += a; |
691 | state[1] += b; |
692 | state[2] += c; |
693 | state[3] += d; |
694 | state[4] += e; |
695 | state[5] += f; |
696 | state[6] += g; |
697 | state[7] += h; |
698 | |
699 | /* Clean up */ |
700 | a = b = c = d = e = f = g = h = T1 = T2 = 0; |
701 | } |
702 | |
703 | #endif /* SHA2_UNROLL_TRANSFORM */ |
704 | |
705 | void |
706 | SHA512Update(SHA2_CTX *context, const void *dataptr, size_t len) |
707 | { |
708 | const uint8_t *data = dataptr; |
709 | size_t freespace, usedspace; |
710 | |
711 | /* Calling with no data is valid (we do nothing) */ |
712 | if (len == 0) |
713 | return; |
714 | |
715 | usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH128; |
716 | if (usedspace > 0) { |
717 | /* Calculate how much free space is available in the buffer */ |
718 | freespace = SHA512_BLOCK_LENGTH128 - usedspace; |
719 | |
720 | if (len >= freespace) { |
721 | /* Fill the buffer completely and process it */ |
722 | memcpy(&context->buffer[usedspace], data, freespace)__builtin_memcpy((&context->buffer[usedspace]), (data) , (freespace)); |
723 | ADDINC128(context->bitcount, freespace << 3){ (context->bitcount)[0] += (u_int64_t)(freespace << 3); if ((context->bitcount)[0] < (freespace << 3 )) { (context->bitcount)[1]++; } }; |
724 | len -= freespace; |
725 | data += freespace; |
726 | SHA512Transform(context->state.st64, context->buffer); |
727 | } else { |
728 | /* The buffer is not yet full */ |
729 | memcpy(&context->buffer[usedspace], data, len)__builtin_memcpy((&context->buffer[usedspace]), (data) , (len)); |
730 | ADDINC128(context->bitcount, len << 3){ (context->bitcount)[0] += (u_int64_t)(len << 3); if ((context->bitcount)[0] < (len << 3)) { (context ->bitcount)[1]++; } }; |
731 | /* Clean up: */ |
732 | usedspace = freespace = 0; |
733 | return; |
734 | } |
735 | } |
736 | while (len >= SHA512_BLOCK_LENGTH128) { |
737 | /* Process as many complete blocks as we can */ |
738 | SHA512Transform(context->state.st64, data); |
739 | ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3){ (context->bitcount)[0] += (u_int64_t)(128 << 3); if ((context->bitcount)[0] < (128 << 3)) { (context ->bitcount)[1]++; } }; |
740 | len -= SHA512_BLOCK_LENGTH128; |
741 | data += SHA512_BLOCK_LENGTH128; |
742 | } |
743 | if (len > 0) { |
744 | /* There's left-overs, so save 'em */ |
745 | memcpy(context->buffer, data, len)__builtin_memcpy((context->buffer), (data), (len)); |
746 | ADDINC128(context->bitcount, len << 3){ (context->bitcount)[0] += (u_int64_t)(len << 3); if ((context->bitcount)[0] < (len << 3)) { (context ->bitcount)[1]++; } }; |
747 | } |
748 | /* Clean up: */ |
749 | usedspace = freespace = 0; |
750 | } |
751 | |
752 | void |
753 | SHA512Last(SHA2_CTX *context) |
754 | { |
755 | unsigned int usedspace; |
756 | |
757 | usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH128; |
758 | #if BYTE_ORDER1234 == LITTLE_ENDIAN1234 |
759 | /* Convert FROM host byte order */ |
760 | context->bitcount[0] = swap64(context->bitcount[0])(__uint64_t)(__builtin_constant_p(context->bitcount[0]) ? ( __uint64_t)((((__uint64_t)(context->bitcount[0]) & 0xff ) << 56) | ((__uint64_t)(context->bitcount[0]) & 0xff00ULL) << 40 | ((__uint64_t)(context->bitcount[ 0]) & 0xff0000ULL) << 24 | ((__uint64_t)(context-> bitcount[0]) & 0xff000000ULL) << 8 | ((__uint64_t)( context->bitcount[0]) & 0xff00000000ULL) >> 8 | ( (__uint64_t)(context->bitcount[0]) & 0xff0000000000ULL ) >> 24 | ((__uint64_t)(context->bitcount[0]) & 0xff000000000000ULL ) >> 40 | ((__uint64_t)(context->bitcount[0]) & 0xff00000000000000ULL ) >> 56) : __swap64md(context->bitcount[0])); |
761 | context->bitcount[1] = swap64(context->bitcount[1])(__uint64_t)(__builtin_constant_p(context->bitcount[1]) ? ( __uint64_t)((((__uint64_t)(context->bitcount[1]) & 0xff ) << 56) | ((__uint64_t)(context->bitcount[1]) & 0xff00ULL) << 40 | ((__uint64_t)(context->bitcount[ 1]) & 0xff0000ULL) << 24 | ((__uint64_t)(context-> bitcount[1]) & 0xff000000ULL) << 8 | ((__uint64_t)( context->bitcount[1]) & 0xff00000000ULL) >> 8 | ( (__uint64_t)(context->bitcount[1]) & 0xff0000000000ULL ) >> 24 | ((__uint64_t)(context->bitcount[1]) & 0xff000000000000ULL ) >> 40 | ((__uint64_t)(context->bitcount[1]) & 0xff00000000000000ULL ) >> 56) : __swap64md(context->bitcount[1])); |
762 | #endif |
763 | if (usedspace > 0) { |
764 | /* Begin padding with a 1 bit: */ |
765 | context->buffer[usedspace++] = 0x80; |
766 | |
767 | if (usedspace <= SHA512_SHORT_BLOCK_LENGTH(128 - 16)) { |
768 | /* Set-up for the last transform: */ |
769 | memset(&context->buffer[usedspace], 0,__builtin_memset((&context->buffer[usedspace]), (0), ( (128 - 16) - usedspace)) |
770 | SHA512_SHORT_BLOCK_LENGTH - usedspace)__builtin_memset((&context->buffer[usedspace]), (0), ( (128 - 16) - usedspace)); |
771 | } else { |
772 | if (usedspace < SHA512_BLOCK_LENGTH128) { |
773 | memset(&context->buffer[usedspace], 0,__builtin_memset((&context->buffer[usedspace]), (0), ( 128 - usedspace)) |
774 | SHA512_BLOCK_LENGTH - usedspace)__builtin_memset((&context->buffer[usedspace]), (0), ( 128 - usedspace)); |
775 | } |
776 | /* Do second-to-last transform: */ |
777 | SHA512Transform(context->state.st64, context->buffer); |
778 | |
779 | /* And set-up for the last transform: */ |
780 | memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2)__builtin_memset((context->buffer), (0), (128 - 2)); |
781 | } |
782 | } else { |
783 | /* Prepare for final transform: */ |
784 | memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH)__builtin_memset((context->buffer), (0), ((128 - 16))); |
785 | |
786 | /* Begin padding with a 1 bit: */ |
787 | *context->buffer = 0x80; |
788 | } |
789 | /* Store the length of input data (in bits): */ |
790 | *(u_int64_t *)&context->buffer[SHA512_SHORT_BLOCK_LENGTH(128 - 16)] = context->bitcount[1]; |
791 | *(u_int64_t *)&context->buffer[SHA512_SHORT_BLOCK_LENGTH(128 - 16)+8] = context->bitcount[0]; |
792 | |
793 | /* Final transform: */ |
794 | SHA512Transform(context->state.st64, context->buffer); |
795 | } |
796 | |
797 | void |
798 | SHA512Final(u_int8_t digest[], SHA2_CTX *context) |
799 | { |
800 | |
801 | SHA512Last(context); |
802 | |
803 | /* Save the hash data for output: */ |
804 | #if BYTE_ORDER1234 == LITTLE_ENDIAN1234 |
805 | { |
806 | /* Convert TO host byte order */ |
807 | int j; |
808 | for (j = 0; j < 8; j++) { |
809 | context->state.st64[j] = swap64(context->state.st64[j])(__uint64_t)(__builtin_constant_p(context->state.st64[j]) ? (__uint64_t)((((__uint64_t)(context->state.st64[j]) & 0xff) << 56) | ((__uint64_t)(context->state.st64[j] ) & 0xff00ULL) << 40 | ((__uint64_t)(context->state .st64[j]) & 0xff0000ULL) << 24 | ((__uint64_t)(context ->state.st64[j]) & 0xff000000ULL) << 8 | ((__uint64_t )(context->state.st64[j]) & 0xff00000000ULL) >> 8 | ((__uint64_t)(context->state.st64[j]) & 0xff0000000000ULL ) >> 24 | ((__uint64_t)(context->state.st64[j]) & 0xff000000000000ULL) >> 40 | ((__uint64_t)(context-> state.st64[j]) & 0xff00000000000000ULL) >> 56) : __swap64md (context->state.st64[j])); |
810 | } |
811 | } |
812 | #endif |
813 | memcpy(digest, context->state.st64, SHA512_DIGEST_LENGTH)__builtin_memcpy((digest), (context->state.st64), (64)); |
814 | |
815 | /* Zero out state data */ |
816 | explicit_bzero(context, sizeof(*context)); |
817 | } |
818 | |
819 | |
820 | /*** SHA-384: *********************************************************/ |
821 | void |
822 | SHA384Init(SHA2_CTX *context) |
823 | { |
824 | memcpy(context->state.st64, sha384_initial_hash_value,__builtin_memcpy((context->state.st64), (sha384_initial_hash_value ), (64)) |
825 | SHA512_DIGEST_LENGTH)__builtin_memcpy((context->state.st64), (sha384_initial_hash_value ), (64)); |
826 | memset(context->buffer, 0, SHA384_BLOCK_LENGTH)__builtin_memset((context->buffer), (0), (128)); |
827 | context->bitcount[0] = context->bitcount[1] = 0; |
828 | } |
829 | |
830 | void |
831 | SHA384Update(SHA2_CTX *context, const void *data, size_t len) |
832 | { |
833 | SHA512Update(context, data, len); |
834 | } |
835 | |
836 | void |
837 | SHA384Final(u_int8_t digest[], SHA2_CTX *context) |
838 | { |
839 | |
840 | SHA512Last(context); |
841 | |
842 | /* Save the hash data for output: */ |
843 | #if BYTE_ORDER1234 == LITTLE_ENDIAN1234 |
844 | { |
845 | /* Convert TO host byte order */ |
846 | int j; |
847 | for (j = 0; j < 6; j++) { |
848 | context->state.st64[j] = swap64(context->state.st64[j])(__uint64_t)(__builtin_constant_p(context->state.st64[j]) ? (__uint64_t)((((__uint64_t)(context->state.st64[j]) & 0xff) << 56) | ((__uint64_t)(context->state.st64[j] ) & 0xff00ULL) << 40 | ((__uint64_t)(context->state .st64[j]) & 0xff0000ULL) << 24 | ((__uint64_t)(context ->state.st64[j]) & 0xff000000ULL) << 8 | ((__uint64_t )(context->state.st64[j]) & 0xff00000000ULL) >> 8 | ((__uint64_t)(context->state.st64[j]) & 0xff0000000000ULL ) >> 24 | ((__uint64_t)(context->state.st64[j]) & 0xff000000000000ULL) >> 40 | ((__uint64_t)(context-> state.st64[j]) & 0xff00000000000000ULL) >> 56) : __swap64md (context->state.st64[j])); |
849 | } |
850 | } |
851 | #endif |
852 | memcpy(digest, context->state.st64, SHA384_DIGEST_LENGTH)__builtin_memcpy((digest), (context->state.st64), (48)); |
853 | /* Zero out state data */ |
854 | explicit_bzero(context, sizeof(*context)); |
855 | } |