File: | dev/pci/if_em_hw.c |
Warning: | line 7665, column 49 The left operand of '&' is a garbage value |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /******************************************************************************* | |||
2 | ||||
3 | Copyright (c) 2001-2005, Intel Corporation | |||
4 | All rights reserved. | |||
5 | ||||
6 | Redistribution and use in source and binary forms, with or without | |||
7 | modification, are permitted provided that the following conditions are met: | |||
8 | ||||
9 | 1. Redistributions of source code must retain the above copyright notice, | |||
10 | this list of conditions and the following disclaimer. | |||
11 | ||||
12 | 2. Redistributions in binary form must reproduce the above copyright | |||
13 | notice, this list of conditions and the following disclaimer in the | |||
14 | documentation and/or other materials provided with the distribution. | |||
15 | ||||
16 | 3. Neither the name of the Intel Corporation nor the names of its | |||
17 | contributors may be used to endorse or promote products derived from | |||
18 | this software without specific prior written permission. | |||
19 | ||||
20 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |||
21 | AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |||
22 | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |||
23 | ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | |||
24 | LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |||
25 | CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |||
26 | SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |||
27 | INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |||
28 | CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |||
29 | ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |||
30 | POSSIBILITY OF SUCH DAMAGE. | |||
31 | ||||
32 | *******************************************************************************/ | |||
33 | ||||
34 | /* $OpenBSD: if_em_hw.c,v 1.113 2022/01/09 05:42:50 jsg Exp $ */ | |||
35 | /* | |||
36 | * if_em_hw.c Shared functions for accessing and configuring the MAC | |||
37 | */ | |||
38 | ||||
39 | #include <sys/param.h> | |||
40 | #include <sys/systm.h> | |||
41 | #include <sys/sockio.h> | |||
42 | #include <sys/mbuf.h> | |||
43 | #include <sys/malloc.h> | |||
44 | #include <sys/kernel.h> | |||
45 | #include <sys/device.h> | |||
46 | #include <sys/socket.h> | |||
47 | #include <sys/kstat.h> | |||
48 | ||||
49 | #include <net/if.h> | |||
50 | #include <net/if_media.h> | |||
51 | ||||
52 | #include <netinet/in.h> | |||
53 | #include <netinet/if_ether.h> | |||
54 | ||||
55 | #include <uvm/uvm_extern.h> | |||
56 | ||||
57 | #include <dev/pci/pcireg.h> | |||
58 | #include <dev/pci/pcivar.h> | |||
59 | ||||
60 | #include <dev/pci/if_em.h> | |||
61 | #include <dev/pci/if_em_hw.h> | |||
62 | #include <dev/pci/if_em_soc.h> | |||
63 | ||||
64 | #include <dev/mii/rgephyreg.h> | |||
65 | ||||
66 | #define STATIC | |||
67 | ||||
68 | static int32_t em_swfw_sync_acquire(struct em_hw *, uint16_t); | |||
69 | static void em_swfw_sync_release(struct em_hw *, uint16_t); | |||
70 | static int32_t em_read_kmrn_reg(struct em_hw *, uint32_t, uint16_t *); | |||
71 | static int32_t em_write_kmrn_reg(struct em_hw *hw, uint32_t, uint16_t); | |||
72 | static int32_t em_get_software_semaphore(struct em_hw *); | |||
73 | static void em_release_software_semaphore(struct em_hw *); | |||
74 | ||||
75 | static int32_t em_check_downshift(struct em_hw *); | |||
76 | static void em_clear_vfta(struct em_hw *); | |||
77 | void em_clear_vfta_i350(struct em_hw *); | |||
78 | static int32_t em_commit_shadow_ram(struct em_hw *); | |||
79 | static int32_t em_config_dsp_after_link_change(struct em_hw *, boolean_t); | |||
80 | static int32_t em_config_fc_after_link_up(struct em_hw *); | |||
81 | static int32_t em_match_gig_phy(struct em_hw *); | |||
82 | static int32_t em_detect_gig_phy(struct em_hw *); | |||
83 | static int32_t em_erase_ich8_4k_segment(struct em_hw *, uint32_t); | |||
84 | static int32_t em_get_auto_rd_done(struct em_hw *); | |||
85 | static int32_t em_get_cable_length(struct em_hw *, uint16_t *, uint16_t *); | |||
86 | static int32_t em_get_hw_eeprom_semaphore(struct em_hw *); | |||
87 | static int32_t em_get_phy_cfg_done(struct em_hw *); | |||
88 | static int32_t em_get_software_flag(struct em_hw *); | |||
89 | static int32_t em_ich8_cycle_init(struct em_hw *); | |||
90 | static int32_t em_ich8_flash_cycle(struct em_hw *, uint32_t); | |||
91 | static int32_t em_id_led_init(struct em_hw *); | |||
92 | static int32_t em_init_lcd_from_nvm_config_region(struct em_hw *, uint32_t, | |||
93 | uint32_t); | |||
94 | static int32_t em_init_lcd_from_nvm(struct em_hw *); | |||
95 | static int32_t em_phy_no_cable_workaround(struct em_hw *); | |||
96 | static void em_init_rx_addrs(struct em_hw *); | |||
97 | static void em_initialize_hardware_bits(struct em_softc *); | |||
98 | static void em_toggle_lanphypc_pch_lpt(struct em_hw *); | |||
99 | static int em_disable_ulp_lpt_lp(struct em_hw *hw, bool_Bool force); | |||
100 | static boolean_t em_is_onboard_nvm_eeprom(struct em_hw *); | |||
101 | static int32_t em_kumeran_lock_loss_workaround(struct em_hw *); | |||
102 | static int32_t em_mng_enable_host_if(struct em_hw *); | |||
103 | static int32_t em_read_eeprom_eerd(struct em_hw *, uint16_t, uint16_t, | |||
104 | uint16_t *); | |||
105 | static int32_t em_write_eeprom_eewr(struct em_hw *, uint16_t, uint16_t, | |||
106 | uint16_t *data); | |||
107 | static int32_t em_poll_eerd_eewr_done(struct em_hw *, int); | |||
108 | static void em_put_hw_eeprom_semaphore(struct em_hw *); | |||
109 | static int32_t em_read_ich8_byte(struct em_hw *, uint32_t, uint8_t *); | |||
110 | static int32_t em_verify_write_ich8_byte(struct em_hw *, uint32_t, uint8_t); | |||
111 | static int32_t em_write_ich8_byte(struct em_hw *, uint32_t, uint8_t); | |||
112 | static int32_t em_read_ich8_word(struct em_hw *, uint32_t, uint16_t *); | |||
113 | static int32_t em_read_ich8_dword(struct em_hw *, uint32_t, uint32_t *); | |||
114 | static int32_t em_read_ich8_data(struct em_hw *, uint32_t, uint32_t, | |||
115 | uint16_t *); | |||
116 | static int32_t em_write_ich8_data(struct em_hw *, uint32_t, uint32_t, | |||
117 | uint16_t); | |||
118 | static int32_t em_read_eeprom_ich8(struct em_hw *, uint16_t, uint16_t, | |||
119 | uint16_t *); | |||
120 | static int32_t em_write_eeprom_ich8(struct em_hw *, uint16_t, uint16_t, | |||
121 | uint16_t *); | |||
122 | static int32_t em_read_invm_i210(struct em_hw *, uint16_t, uint16_t, | |||
123 | uint16_t *); | |||
124 | static int32_t em_read_invm_word_i210(struct em_hw *, uint16_t, uint16_t *); | |||
125 | static void em_release_software_flag(struct em_hw *); | |||
126 | static int32_t em_set_d3_lplu_state(struct em_hw *, boolean_t); | |||
127 | static int32_t em_set_d0_lplu_state(struct em_hw *, boolean_t); | |||
128 | static int32_t em_set_lplu_state_pchlan(struct em_hw *, boolean_t); | |||
129 | static int32_t em_set_pci_ex_no_snoop(struct em_hw *, uint32_t); | |||
130 | static void em_set_pci_express_master_disable(struct em_hw *); | |||
131 | static int32_t em_wait_autoneg(struct em_hw *); | |||
132 | static void em_write_reg_io(struct em_hw *, uint32_t, uint32_t); | |||
133 | static int32_t em_set_phy_type(struct em_hw *); | |||
134 | static void em_phy_init_script(struct em_hw *); | |||
135 | static int32_t em_setup_copper_link(struct em_hw *); | |||
136 | static int32_t em_setup_fiber_serdes_link(struct em_hw *); | |||
137 | static int32_t em_adjust_serdes_amplitude(struct em_hw *); | |||
138 | static int32_t em_phy_force_speed_duplex(struct em_hw *); | |||
139 | static int32_t em_config_mac_to_phy(struct em_hw *); | |||
140 | static void em_raise_mdi_clk(struct em_hw *, uint32_t *); | |||
141 | static void em_lower_mdi_clk(struct em_hw *, uint32_t *); | |||
142 | static void em_shift_out_mdi_bits(struct em_hw *, uint32_t, uint16_t); | |||
143 | static uint16_t em_shift_in_mdi_bits(struct em_hw *); | |||
144 | static int32_t em_phy_reset_dsp(struct em_hw *); | |||
145 | static int32_t em_write_eeprom_spi(struct em_hw *, uint16_t, uint16_t, | |||
146 | uint16_t *); | |||
147 | static int32_t em_write_eeprom_microwire(struct em_hw *, uint16_t, uint16_t, | |||
148 | uint16_t *); | |||
149 | static int32_t em_spi_eeprom_ready(struct em_hw *); | |||
150 | static void em_raise_ee_clk(struct em_hw *, uint32_t *); | |||
151 | static void em_lower_ee_clk(struct em_hw *, uint32_t *); | |||
152 | static void em_shift_out_ee_bits(struct em_hw *, uint16_t, uint16_t); | |||
153 | static int32_t em_write_phy_reg_ex(struct em_hw *, uint32_t, uint16_t); | |||
154 | static int32_t em_read_phy_reg_ex(struct em_hw *, uint32_t, uint16_t *); | |||
155 | static uint16_t em_shift_in_ee_bits(struct em_hw *, uint16_t); | |||
156 | static int32_t em_acquire_eeprom(struct em_hw *); | |||
157 | static void em_release_eeprom(struct em_hw *); | |||
158 | static void em_standby_eeprom(struct em_hw *); | |||
159 | static int32_t em_set_vco_speed(struct em_hw *); | |||
160 | static int32_t em_polarity_reversal_workaround(struct em_hw *); | |||
161 | static int32_t em_set_phy_mode(struct em_hw *); | |||
162 | static int32_t em_host_if_read_cookie(struct em_hw *, uint8_t *); | |||
163 | static uint8_t em_calculate_mng_checksum(char *, uint32_t); | |||
164 | static int32_t em_configure_kmrn_for_10_100(struct em_hw *, uint16_t); | |||
165 | static int32_t em_configure_kmrn_for_1000(struct em_hw *); | |||
166 | static int32_t em_set_pciex_completion_timeout(struct em_hw *hw); | |||
167 | static int32_t em_set_mdio_slow_mode_hv(struct em_hw *); | |||
168 | int32_t em_hv_phy_workarounds_ich8lan(struct em_hw *); | |||
169 | int32_t em_lv_phy_workarounds_ich8lan(struct em_hw *); | |||
170 | int32_t em_link_stall_workaround_hv(struct em_hw *); | |||
171 | int32_t em_k1_gig_workaround_hv(struct em_hw *, boolean_t); | |||
172 | int32_t em_k1_workaround_lv(struct em_hw *); | |||
173 | int32_t em_k1_workaround_lpt_lp(struct em_hw *, boolean_t); | |||
174 | int32_t em_configure_k1_ich8lan(struct em_hw *, boolean_t); | |||
175 | void em_gate_hw_phy_config_ich8lan(struct em_hw *, boolean_t); | |||
176 | int32_t em_access_phy_wakeup_reg_bm(struct em_hw *, uint32_t, | |||
177 | uint16_t *, boolean_t); | |||
178 | int32_t em_access_phy_debug_regs_hv(struct em_hw *, uint32_t, | |||
179 | uint16_t *, boolean_t); | |||
180 | int32_t em_access_phy_reg_hv(struct em_hw *, uint32_t, uint16_t *, | |||
181 | boolean_t); | |||
182 | int32_t em_oem_bits_config_pchlan(struct em_hw *, boolean_t); | |||
183 | void em_power_up_serdes_link_82575(struct em_hw *); | |||
184 | int32_t em_get_pcs_speed_and_duplex_82575(struct em_hw *, uint16_t *, | |||
185 | uint16_t *); | |||
186 | int32_t em_set_eee_i350(struct em_hw *); | |||
187 | int32_t em_set_eee_pchlan(struct em_hw *); | |||
188 | int32_t em_valid_nvm_bank_detect_ich8lan(struct em_hw *, uint32_t *); | |||
189 | int32_t em_initialize_M88E1512_phy(struct em_hw *); | |||
190 | ||||
191 | /* IGP cable length table */ | |||
192 | static const uint16_t | |||
193 | em_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE128] = | |||
194 | {5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, | |||
195 | 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, | |||
196 | 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40, | |||
197 | 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, | |||
198 | 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90, | |||
199 | 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, | |||
200 | 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, | |||
201 | 110, | |||
202 | 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, | |||
203 | 120}; | |||
204 | ||||
205 | static const uint16_t | |||
206 | em_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE113] = | |||
207 | {0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, | |||
208 | 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, | |||
209 | 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, | |||
210 | 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, | |||
211 | 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, | |||
212 | 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, | |||
213 | 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, | |||
214 | 121, 124}; | |||
215 | ||||
216 | /****************************************************************************** | |||
217 | * Set the phy type member in the hw struct. | |||
218 | * | |||
219 | * hw - Struct containing variables accessed by shared code | |||
220 | *****************************************************************************/ | |||
221 | STATIC int32_t | |||
222 | em_set_phy_type(struct em_hw *hw) | |||
223 | { | |||
224 | DEBUGFUNC("em_set_phy_type");; | |||
225 | ||||
226 | if (hw->mac_type == em_undefined) | |||
227 | return -E1000_ERR_PHY_TYPE6; | |||
228 | ||||
229 | switch (hw->phy_id) { | |||
230 | case M88E1000_E_PHY_ID0x01410C50: | |||
231 | case M88E1000_I_PHY_ID0x01410C30: | |||
232 | case M88E1011_I_PHY_ID0x01410C20: | |||
233 | case M88E1111_I_PHY_ID0x01410CC0: | |||
234 | case M88E1112_E_PHY_ID0x01410C90: | |||
235 | case M88E1543_E_PHY_ID0x01410EA0: | |||
236 | case M88E1512_E_PHY_ID0x01410DD0: | |||
237 | case I210_I_PHY_ID0x01410C00: | |||
238 | case I347AT4_E_PHY_ID0x01410DC0: | |||
239 | hw->phy_type = em_phy_m88; | |||
240 | break; | |||
241 | case IGP01E1000_I_PHY_ID0x02A80380: | |||
242 | if (hw->mac_type == em_82541 || | |||
243 | hw->mac_type == em_82541_rev_2 || | |||
244 | hw->mac_type == em_82547 || | |||
245 | hw->mac_type == em_82547_rev_2) { | |||
246 | hw->phy_type = em_phy_igp; | |||
247 | break; | |||
248 | } | |||
249 | case IGP03E1000_E_PHY_ID0x02A80390: | |||
250 | case IGP04E1000_E_PHY_ID0x02A80391: | |||
251 | hw->phy_type = em_phy_igp_3; | |||
252 | break; | |||
253 | case IFE_E_PHY_ID0x02A80330: | |||
254 | case IFE_PLUS_E_PHY_ID0x02A80320: | |||
255 | case IFE_C_E_PHY_ID0x02A80310: | |||
256 | hw->phy_type = em_phy_ife; | |||
257 | break; | |||
258 | case M88E1141_E_PHY_ID0x01410CD0: | |||
259 | hw->phy_type = em_phy_oem; | |||
260 | break; | |||
261 | case I82577_E_PHY_ID0x01540050: | |||
262 | hw->phy_type = em_phy_82577; | |||
263 | break; | |||
264 | case I82578_E_PHY_ID0x004DD040: | |||
265 | hw->phy_type = em_phy_82578; | |||
266 | break; | |||
267 | case I82579_E_PHY_ID0x01540090: | |||
268 | hw->phy_type = em_phy_82579; | |||
269 | break; | |||
270 | case I217_E_PHY_ID0x015400A0: | |||
271 | hw->phy_type = em_phy_i217; | |||
272 | break; | |||
273 | case I82580_I_PHY_ID0x015403A0: | |||
274 | case I350_I_PHY_ID0x015403B0: | |||
275 | hw->phy_type = em_phy_82580; | |||
276 | break; | |||
277 | case RTL8211_E_PHY_ID0x001CC912: | |||
278 | hw->phy_type = em_phy_rtl8211; | |||
279 | break; | |||
280 | case BME1000_E_PHY_ID0x01410CB0: | |||
281 | if (hw->phy_revision == 1) { | |||
282 | hw->phy_type = em_phy_bm; | |||
283 | break; | |||
284 | } | |||
285 | /* FALLTHROUGH */ | |||
286 | case GG82563_E_PHY_ID0x01410CA0: | |||
287 | if (hw->mac_type == em_80003es2lan) { | |||
288 | hw->phy_type = em_phy_gg82563; | |||
289 | break; | |||
290 | } | |||
291 | /* FALLTHROUGH */ | |||
292 | default: | |||
293 | /* Should never have loaded on this device */ | |||
294 | hw->phy_type = em_phy_undefined; | |||
295 | return -E1000_ERR_PHY_TYPE6; | |||
296 | } | |||
297 | ||||
298 | return E1000_SUCCESS0; | |||
299 | } | |||
300 | ||||
301 | /****************************************************************************** | |||
302 | * IGP phy init script - initializes the GbE PHY | |||
303 | * | |||
304 | * hw - Struct containing variables accessed by shared code | |||
305 | *****************************************************************************/ | |||
306 | static void | |||
307 | em_phy_init_script(struct em_hw *hw) | |||
308 | { | |||
309 | uint16_t phy_saved_data; | |||
310 | DEBUGFUNC("em_phy_init_script");; | |||
311 | ||||
312 | if (hw->phy_init_script) { | |||
313 | msec_delay(20)(*delay_func)(1000*(20)); | |||
314 | /* | |||
315 | * Save off the current value of register 0x2F5B to be | |||
316 | * restored at the end of this routine. | |||
317 | */ | |||
318 | em_read_phy_reg(hw, 0x2F5B, &phy_saved_data); | |||
319 | ||||
320 | /* Disabled the PHY transmitter */ | |||
321 | em_write_phy_reg(hw, 0x2F5B, 0x0003); | |||
322 | msec_delay(20)(*delay_func)(1000*(20)); | |||
323 | em_write_phy_reg(hw, 0x0000, 0x0140); | |||
324 | msec_delay(5)(*delay_func)(1000*(5)); | |||
325 | ||||
326 | switch (hw->mac_type) { | |||
327 | case em_82541: | |||
328 | case em_82547: | |||
329 | em_write_phy_reg(hw, 0x1F95, 0x0001); | |||
330 | em_write_phy_reg(hw, 0x1F71, 0xBD21); | |||
331 | em_write_phy_reg(hw, 0x1F79, 0x0018); | |||
332 | em_write_phy_reg(hw, 0x1F30, 0x1600); | |||
333 | em_write_phy_reg(hw, 0x1F31, 0x0014); | |||
334 | em_write_phy_reg(hw, 0x1F32, 0x161C); | |||
335 | em_write_phy_reg(hw, 0x1F94, 0x0003); | |||
336 | em_write_phy_reg(hw, 0x1F96, 0x003F); | |||
337 | em_write_phy_reg(hw, 0x2010, 0x0008); | |||
338 | break; | |||
339 | case em_82541_rev_2: | |||
340 | case em_82547_rev_2: | |||
341 | em_write_phy_reg(hw, 0x1F73, 0x0099); | |||
342 | break; | |||
343 | default: | |||
344 | break; | |||
345 | } | |||
346 | ||||
347 | em_write_phy_reg(hw, 0x0000, 0x3300); | |||
348 | msec_delay(20)(*delay_func)(1000*(20)); | |||
349 | ||||
350 | /* Now enable the transmitter */ | |||
351 | em_write_phy_reg(hw, 0x2F5B, phy_saved_data); | |||
352 | ||||
353 | if (hw->mac_type == em_82547) { | |||
354 | uint16_t fused, fine, coarse; | |||
355 | /* Move to analog registers page */ | |||
356 | em_read_phy_reg(hw, | |||
357 | IGP01E1000_ANALOG_SPARE_FUSE_STATUS0x20D1, &fused); | |||
358 | ||||
359 | if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED0x0100)) { | |||
360 | em_read_phy_reg(hw, | |||
361 | IGP01E1000_ANALOG_FUSE_STATUS0x20D0, &fused); | |||
362 | ||||
363 | fine = fused & | |||
364 | IGP01E1000_ANALOG_FUSE_FINE_MASK0x0F80; | |||
365 | coarse = fused & | |||
366 | IGP01E1000_ANALOG_FUSE_COARSE_MASK0x0070; | |||
367 | ||||
368 | if (coarse > | |||
369 | IGP01E1000_ANALOG_FUSE_COARSE_THRESH0x0040) { | |||
370 | coarse -= | |||
371 | IGP01E1000_ANALOG_FUSE_COARSE_100x0010; | |||
372 | fine -= | |||
373 | IGP01E1000_ANALOG_FUSE_FINE_10x0080; | |||
374 | } else if (coarse == | |||
375 | IGP01E1000_ANALOG_FUSE_COARSE_THRESH0x0040) | |||
376 | fine -= IGP01E1000_ANALOG_FUSE_FINE_100x0500; | |||
377 | ||||
378 | fused = (fused & | |||
379 | IGP01E1000_ANALOG_FUSE_POLY_MASK0xF000) | | |||
380 | (fine & | |||
381 | IGP01E1000_ANALOG_FUSE_FINE_MASK0x0F80) | | |||
382 | (coarse & | |||
383 | IGP01E1000_ANALOG_FUSE_COARSE_MASK0x0070); | |||
384 | ||||
385 | em_write_phy_reg(hw, | |||
386 | IGP01E1000_ANALOG_FUSE_CONTROL0x20DC, | |||
387 | fused); | |||
388 | ||||
389 | em_write_phy_reg(hw, | |||
390 | IGP01E1000_ANALOG_FUSE_BYPASS0x20DE, | |||
391 | IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL0x0002); | |||
392 | } | |||
393 | } | |||
394 | } | |||
395 | } | |||
396 | ||||
397 | /****************************************************************************** | |||
398 | * Set the mac type member in the hw struct. | |||
399 | * | |||
400 | * hw - Struct containing variables accessed by shared code | |||
401 | *****************************************************************************/ | |||
402 | int32_t | |||
403 | em_set_mac_type(struct em_hw *hw) | |||
404 | { | |||
405 | DEBUGFUNC("em_set_mac_type");; | |||
406 | ||||
407 | switch (hw->device_id) { | |||
408 | case E1000_DEV_ID_825420x1000: | |||
409 | switch (hw->revision_id) { | |||
410 | case E1000_82542_2_0_REV_ID2: | |||
411 | hw->mac_type = em_82542_rev2_0; | |||
412 | break; | |||
413 | case E1000_82542_2_1_REV_ID3: | |||
414 | hw->mac_type = em_82542_rev2_1; | |||
415 | break; | |||
416 | default: | |||
417 | /* Invalid 82542 revision ID */ | |||
418 | return -E1000_ERR_MAC_TYPE5; | |||
419 | } | |||
420 | break; | |||
421 | case E1000_DEV_ID_82543GC_FIBER0x1001: | |||
422 | case E1000_DEV_ID_82543GC_COPPER0x1004: | |||
423 | hw->mac_type = em_82543; | |||
424 | break; | |||
425 | case E1000_DEV_ID_82544EI_COPPER0x1008: | |||
426 | case E1000_DEV_ID_82544EI_FIBER0x1009: | |||
427 | case E1000_DEV_ID_82544GC_COPPER0x100C: | |||
428 | case E1000_DEV_ID_82544GC_LOM0x100D: | |||
429 | hw->mac_type = em_82544; | |||
430 | break; | |||
431 | case E1000_DEV_ID_82540EM0x100E: | |||
432 | case E1000_DEV_ID_82540EM_LOM0x1015: | |||
433 | case E1000_DEV_ID_82540EP0x1017: | |||
434 | case E1000_DEV_ID_82540EP_LOM0x1016: | |||
435 | case E1000_DEV_ID_82540EP_LP0x101E: | |||
436 | hw->mac_type = em_82540; | |||
437 | break; | |||
438 | case E1000_DEV_ID_82545EM_COPPER0x100F: | |||
439 | case E1000_DEV_ID_82545EM_FIBER0x1011: | |||
440 | hw->mac_type = em_82545; | |||
441 | break; | |||
442 | case E1000_DEV_ID_82545GM_COPPER0x1026: | |||
443 | case E1000_DEV_ID_82545GM_FIBER0x1027: | |||
444 | case E1000_DEV_ID_82545GM_SERDES0x1028: | |||
445 | hw->mac_type = em_82545_rev_3; | |||
446 | break; | |||
447 | case E1000_DEV_ID_82546EB_COPPER0x1010: | |||
448 | case E1000_DEV_ID_82546EB_FIBER0x1012: | |||
449 | case E1000_DEV_ID_82546EB_QUAD_COPPER0x101D: | |||
450 | hw->mac_type = em_82546; | |||
451 | break; | |||
452 | case E1000_DEV_ID_82546GB_COPPER0x1079: | |||
453 | case E1000_DEV_ID_82546GB_FIBER0x107A: | |||
454 | case E1000_DEV_ID_82546GB_SERDES0x107B: | |||
455 | case E1000_DEV_ID_82546GB_PCIE0x108A: | |||
456 | case E1000_DEV_ID_82546GB_QUAD_COPPER0x1099: | |||
457 | case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP30x10B5: | |||
458 | case E1000_DEV_ID_82546GB_20x109B: | |||
459 | hw->mac_type = em_82546_rev_3; | |||
460 | break; | |||
461 | case E1000_DEV_ID_82541EI0x1013: | |||
462 | case E1000_DEV_ID_82541EI_MOBILE0x1018: | |||
463 | case E1000_DEV_ID_82541ER_LOM0x1014: | |||
464 | hw->mac_type = em_82541; | |||
465 | break; | |||
466 | case E1000_DEV_ID_82541ER0x1078: | |||
467 | case E1000_DEV_ID_82541GI0x1076: | |||
468 | case E1000_DEV_ID_82541GI_LF0x107C: | |||
469 | case E1000_DEV_ID_82541GI_MOBILE0x1077: | |||
470 | hw->mac_type = em_82541_rev_2; | |||
471 | break; | |||
472 | case E1000_DEV_ID_82547EI0x1019: | |||
473 | case E1000_DEV_ID_82547EI_MOBILE0x101A: | |||
474 | hw->mac_type = em_82547; | |||
475 | break; | |||
476 | case E1000_DEV_ID_82547GI0x1075: | |||
477 | hw->mac_type = em_82547_rev_2; | |||
478 | break; | |||
479 | case E1000_DEV_ID_82571EB_AF0x10A1: | |||
480 | case E1000_DEV_ID_82571EB_AT0x10A0: | |||
481 | case E1000_DEV_ID_82571EB_COPPER0x105E: | |||
482 | case E1000_DEV_ID_82571EB_FIBER0x105F: | |||
483 | case E1000_DEV_ID_82571EB_SERDES0x1060: | |||
484 | case E1000_DEV_ID_82571EB_QUAD_COPPER0x10A4: | |||
485 | case E1000_DEV_ID_82571EB_QUAD_FIBER0x10A5: | |||
486 | case E1000_DEV_ID_82571EB_QUAD_COPPER_LP0x10BC: | |||
487 | case E1000_DEV_ID_82571EB_SERDES_DUAL0x10D9: | |||
488 | case E1000_DEV_ID_82571EB_SERDES_QUAD0x10DA: | |||
489 | case E1000_DEV_ID_82571PT_QUAD_COPPER0x10D5: | |||
490 | hw->mac_type = em_82571; | |||
491 | break; | |||
492 | case E1000_DEV_ID_82572EI_COPPER0x107D: | |||
493 | case E1000_DEV_ID_82572EI_FIBER0x107E: | |||
494 | case E1000_DEV_ID_82572EI_SERDES0x107F: | |||
495 | case E1000_DEV_ID_82572EI0x10B9: | |||
496 | hw->mac_type = em_82572; | |||
497 | break; | |||
498 | case E1000_DEV_ID_82573E0x108B: | |||
499 | case E1000_DEV_ID_82573E_IAMT0x108C: | |||
500 | case E1000_DEV_ID_82573E_PM0x10B3: | |||
501 | case E1000_DEV_ID_82573L0x109A: | |||
502 | case E1000_DEV_ID_82573L_PL_10x10B0: | |||
503 | case E1000_DEV_ID_82573L_PL_20x10B4: | |||
504 | case E1000_DEV_ID_82573V_PM0x10B2: | |||
505 | hw->mac_type = em_82573; | |||
506 | break; | |||
507 | case E1000_DEV_ID_82574L0x10D3: | |||
508 | case E1000_DEV_ID_82574LA0x10F6: | |||
509 | case E1000_DEV_ID_82583V0x150C: | |||
510 | hw->mac_type = em_82574; | |||
511 | break; | |||
512 | case E1000_DEV_ID_82575EB_PT0x10A7: | |||
513 | case E1000_DEV_ID_82575EB_PF0x10A9: | |||
514 | case E1000_DEV_ID_82575GB_QP0x10D6: | |||
515 | case E1000_DEV_ID_82575GB_QP_PM0x10E2: | |||
516 | hw->mac_type = em_82575; | |||
517 | hw->initialize_hw_bits_disable = 1; | |||
518 | break; | |||
519 | case E1000_DEV_ID_825760x10C9: | |||
520 | case E1000_DEV_ID_82576_FIBER0x10E6: | |||
521 | case E1000_DEV_ID_82576_SERDES0x10E7: | |||
522 | case E1000_DEV_ID_82576_QUAD_COPPER0x10E8: | |||
523 | case E1000_DEV_ID_82576_QUAD_CU_ET20x1526: | |||
524 | case E1000_DEV_ID_82576_NS0x150A: | |||
525 | case E1000_DEV_ID_82576_NS_SERDES0x1518: | |||
526 | case E1000_DEV_ID_82576_SERDES_QUAD0x150D: | |||
527 | hw->mac_type = em_82576; | |||
528 | hw->initialize_hw_bits_disable = 1; | |||
529 | break; | |||
530 | case E1000_DEV_ID_82580_COPPER0x150E: | |||
531 | case E1000_DEV_ID_82580_FIBER0x150F: | |||
532 | case E1000_DEV_ID_82580_QUAD_FIBER0x1527: | |||
533 | case E1000_DEV_ID_82580_SERDES0x1510: | |||
534 | case E1000_DEV_ID_82580_SGMII0x1511: | |||
535 | case E1000_DEV_ID_82580_COPPER_DUAL0x1516: | |||
536 | case E1000_DEV_ID_DH89XXCC_SGMII0x0438: | |||
537 | case E1000_DEV_ID_DH89XXCC_SERDES0x043A: | |||
538 | case E1000_DEV_ID_DH89XXCC_BACKPLANE0x043C: | |||
539 | case E1000_DEV_ID_DH89XXCC_SFP0x0440: | |||
540 | hw->mac_type = em_82580; | |||
541 | hw->initialize_hw_bits_disable = 1; | |||
542 | break; | |||
543 | case E1000_DEV_ID_I210_COPPER0x1533: | |||
544 | case E1000_DEV_ID_I210_COPPER_OEM10x1534: | |||
545 | case E1000_DEV_ID_I210_COPPER_IT0x1535: | |||
546 | case E1000_DEV_ID_I210_FIBER0x1536: | |||
547 | case E1000_DEV_ID_I210_SERDES0x1537: | |||
548 | case E1000_DEV_ID_I210_SGMII0x1538: | |||
549 | case E1000_DEV_ID_I210_COPPER_FLASHLESS0x157B: | |||
550 | case E1000_DEV_ID_I210_SERDES_FLASHLESS0x157C: | |||
551 | case E1000_DEV_ID_I211_COPPER0x1539: | |||
552 | hw->mac_type = em_i210; | |||
553 | hw->initialize_hw_bits_disable = 1; | |||
554 | hw->eee_enable = 1; | |||
555 | break; | |||
556 | case E1000_DEV_ID_I350_COPPER0x1521: | |||
557 | case E1000_DEV_ID_I350_FIBER0x1522: | |||
558 | case E1000_DEV_ID_I350_SERDES0x1523: | |||
559 | case E1000_DEV_ID_I350_SGMII0x1524: | |||
560 | case E1000_DEV_ID_I350_DA40x1546: | |||
561 | case E1000_DEV_ID_I354_BACKPLANE_1GBPS0x1F40: | |||
562 | case E1000_DEV_ID_I354_SGMII0x1F41: | |||
563 | case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS0x1F45: | |||
564 | hw->mac_type = em_i350; | |||
565 | hw->initialize_hw_bits_disable = 1; | |||
566 | hw->eee_enable = 1; | |||
567 | break; | |||
568 | case E1000_DEV_ID_80003ES2LAN_COPPER_SPT0x10BA: | |||
569 | case E1000_DEV_ID_80003ES2LAN_SERDES_SPT0x10BB: | |||
570 | case E1000_DEV_ID_80003ES2LAN_COPPER_DPT0x1096: | |||
571 | case E1000_DEV_ID_80003ES2LAN_SERDES_DPT0x1098: | |||
572 | hw->mac_type = em_80003es2lan; | |||
573 | break; | |||
574 | case E1000_DEV_ID_ICH8_IFE0x104C: | |||
575 | case E1000_DEV_ID_ICH8_IFE_G0x10C5: | |||
576 | case E1000_DEV_ID_ICH8_IFE_GT0x10C4: | |||
577 | case E1000_DEV_ID_ICH8_IGP_AMT0x104A: | |||
578 | case E1000_DEV_ID_ICH8_IGP_C0x104B: | |||
579 | case E1000_DEV_ID_ICH8_IGP_M0x104D: | |||
580 | case E1000_DEV_ID_ICH8_IGP_M_AMT0x1049: | |||
581 | case E1000_DEV_ID_ICH8_82567V_30x1501: | |||
582 | hw->mac_type = em_ich8lan; | |||
583 | break; | |||
584 | case E1000_DEV_ID_ICH9_BM0x10E5: | |||
585 | case E1000_DEV_ID_ICH9_IFE0x10C0: | |||
586 | case E1000_DEV_ID_ICH9_IFE_G0x10C2: | |||
587 | case E1000_DEV_ID_ICH9_IFE_GT0x10C3: | |||
588 | case E1000_DEV_ID_ICH9_IGP_AMT0x10BD: | |||
589 | case E1000_DEV_ID_ICH9_IGP_C0x294C: | |||
590 | case E1000_DEV_ID_ICH9_IGP_M0x10BF: | |||
591 | case E1000_DEV_ID_ICH9_IGP_M_AMT0x10F5: | |||
592 | case E1000_DEV_ID_ICH9_IGP_M_V0x10CB: | |||
593 | case E1000_DEV_ID_ICH10_R_BM_LF0x10CD: | |||
594 | case E1000_DEV_ID_ICH10_R_BM_LM0x10CC: | |||
595 | case E1000_DEV_ID_ICH10_R_BM_V0x10CE: | |||
596 | hw->mac_type = em_ich9lan; | |||
597 | break; | |||
598 | case E1000_DEV_ID_ICH10_D_BM_LF0x10DF: | |||
599 | case E1000_DEV_ID_ICH10_D_BM_LM0x10DE: | |||
600 | case E1000_DEV_ID_ICH10_D_BM_V0x1525: | |||
601 | hw->mac_type = em_ich10lan; | |||
602 | break; | |||
603 | case E1000_DEV_ID_PCH_M_HV_LC0x10EB: | |||
604 | case E1000_DEV_ID_PCH_M_HV_LM0x10EA: | |||
605 | case E1000_DEV_ID_PCH_D_HV_DC0x10F0: | |||
606 | case E1000_DEV_ID_PCH_D_HV_DM0x10EF: | |||
607 | hw->mac_type = em_pchlan; | |||
608 | hw->eee_enable = 1; | |||
609 | break; | |||
610 | case E1000_DEV_ID_PCH2_LV_LM0x1502: | |||
611 | case E1000_DEV_ID_PCH2_LV_V0x1503: | |||
612 | hw->mac_type = em_pch2lan; | |||
613 | break; | |||
614 | case E1000_DEV_ID_PCH_LPT_I217_LM0x153A: | |||
615 | case E1000_DEV_ID_PCH_LPT_I217_V0x153B: | |||
616 | case E1000_DEV_ID_PCH_LPTLP_I218_LM0x155A: | |||
617 | case E1000_DEV_ID_PCH_LPTLP_I218_V0x1559: | |||
618 | case E1000_DEV_ID_PCH_I218_LM20x15A0: | |||
619 | case E1000_DEV_ID_PCH_I218_V20x15A1: | |||
620 | case E1000_DEV_ID_PCH_I218_LM30x15A2: | |||
621 | case E1000_DEV_ID_PCH_I218_V30x15A3: | |||
622 | hw->mac_type = em_pch_lpt; | |||
623 | break; | |||
624 | case E1000_DEV_ID_PCH_SPT_I219_LM0x156F: | |||
625 | case E1000_DEV_ID_PCH_SPT_I219_V0x1570: | |||
626 | case E1000_DEV_ID_PCH_SPT_I219_LM20x15B7: | |||
627 | case E1000_DEV_ID_PCH_SPT_I219_V20x15B8: | |||
628 | case E1000_DEV_ID_PCH_LBG_I219_LM30x15B9: | |||
629 | case E1000_DEV_ID_PCH_SPT_I219_LM40x15D7: | |||
630 | case E1000_DEV_ID_PCH_SPT_I219_V40x15D8: | |||
631 | case E1000_DEV_ID_PCH_SPT_I219_LM50x15E3: | |||
632 | case E1000_DEV_ID_PCH_SPT_I219_V50x15D6: | |||
633 | case E1000_DEV_ID_PCH_CMP_I219_LM120x0D53: | |||
634 | case E1000_DEV_ID_PCH_CMP_I219_V120x0D55: | |||
635 | hw->mac_type = em_pch_spt; | |||
636 | break; | |||
637 | case E1000_DEV_ID_PCH_CNP_I219_LM60x15BD: | |||
638 | case E1000_DEV_ID_PCH_CNP_I219_V60x15BE: | |||
639 | case E1000_DEV_ID_PCH_CNP_I219_LM70x15BB: | |||
640 | case E1000_DEV_ID_PCH_CNP_I219_V70x15BC: | |||
641 | case E1000_DEV_ID_PCH_ICP_I219_LM80x15DF: | |||
642 | case E1000_DEV_ID_PCH_ICP_I219_V80x15E0: | |||
643 | case E1000_DEV_ID_PCH_ICP_I219_LM90x15E1: | |||
644 | case E1000_DEV_ID_PCH_ICP_I219_V90x15E2: | |||
645 | case E1000_DEV_ID_PCH_CMP_I219_LM100x0D4E: | |||
646 | case E1000_DEV_ID_PCH_CMP_I219_V100x0D4F: | |||
647 | case E1000_DEV_ID_PCH_CMP_I219_LM110x0D4C: | |||
648 | case E1000_DEV_ID_PCH_CMP_I219_V110x0D4D: | |||
649 | case E1000_DEV_ID_PCH_TGP_I219_LM130x15FB: | |||
650 | case E1000_DEV_ID_PCH_TGP_I219_V130x15FC: | |||
651 | case E1000_DEV_ID_PCH_TGP_I219_LM140x15F9: | |||
652 | case E1000_DEV_ID_PCH_TGP_I219_V140x15FA: | |||
653 | case E1000_DEV_ID_PCH_TGP_I219_LM150x15F4: | |||
654 | case E1000_DEV_ID_PCH_TGP_I219_V150x15F5: | |||
655 | case E1000_DEV_ID_PCH_ADP_I219_LM160x1A1E: | |||
656 | case E1000_DEV_ID_PCH_ADP_I219_V160x1A1F: | |||
657 | case E1000_DEV_ID_PCH_ADP_I219_LM170x1A1C: | |||
658 | case E1000_DEV_ID_PCH_ADP_I219_V170x1A1D: | |||
659 | case E1000_DEV_ID_PCH_MTP_I219_LM180x550A: | |||
660 | case E1000_DEV_ID_PCH_MTP_I219_V180x550B: | |||
661 | case E1000_DEV_ID_PCH_MTP_I219_LM190x550C: | |||
662 | case E1000_DEV_ID_PCH_MTP_I219_V190x550D: | |||
663 | hw->mac_type = em_pch_cnp; | |||
664 | break; | |||
665 | case E1000_DEV_ID_EP80579_LAN_10x5040: | |||
666 | hw->mac_type = em_icp_xxxx; | |||
667 | hw->icp_xxxx_port_num = 0; | |||
668 | break; | |||
669 | case E1000_DEV_ID_EP80579_LAN_20x5044: | |||
670 | case E1000_DEV_ID_EP80579_LAN_40x5041: | |||
671 | hw->mac_type = em_icp_xxxx; | |||
672 | hw->icp_xxxx_port_num = 1; | |||
673 | break; | |||
674 | case E1000_DEV_ID_EP80579_LAN_30x5048: | |||
675 | case E1000_DEV_ID_EP80579_LAN_50x5045: | |||
676 | hw->mac_type = em_icp_xxxx; | |||
677 | hw->icp_xxxx_port_num = 2; | |||
678 | break; | |||
679 | case E1000_DEV_ID_EP80579_LAN_60x5049: | |||
680 | hw->mac_type = em_icp_xxxx; | |||
681 | hw->icp_xxxx_port_num = 3; | |||
682 | break; | |||
683 | default: | |||
684 | /* Should never have loaded on this device */ | |||
685 | return -E1000_ERR_MAC_TYPE5; | |||
686 | } | |||
687 | ||||
688 | switch (hw->mac_type) { | |||
689 | case em_ich8lan: | |||
690 | case em_ich9lan: | |||
691 | case em_ich10lan: | |||
692 | case em_pchlan: | |||
693 | case em_pch2lan: | |||
694 | case em_pch_lpt: | |||
695 | case em_pch_spt: | |||
696 | case em_pch_cnp: | |||
697 | hw->swfwhw_semaphore_present = TRUE1; | |||
698 | hw->asf_firmware_present = TRUE1; | |||
699 | break; | |||
700 | case em_80003es2lan: | |||
701 | case em_82575: | |||
702 | case em_82576: | |||
703 | case em_82580: | |||
704 | case em_i210: | |||
705 | case em_i350: | |||
706 | hw->swfw_sync_present = TRUE1; | |||
707 | /* FALLTHROUGH */ | |||
708 | case em_82571: | |||
709 | case em_82572: | |||
710 | case em_82573: | |||
711 | case em_82574: | |||
712 | hw->eeprom_semaphore_present = TRUE1; | |||
713 | /* FALLTHROUGH */ | |||
714 | case em_82541: | |||
715 | case em_82547: | |||
716 | case em_82541_rev_2: | |||
717 | case em_82547_rev_2: | |||
718 | hw->asf_firmware_present = TRUE1; | |||
719 | break; | |||
720 | default: | |||
721 | break; | |||
722 | } | |||
723 | ||||
724 | return E1000_SUCCESS0; | |||
725 | } | |||
726 | ||||
727 | /** | |||
728 | * em_set_sfp_media_type_82575 - derives SFP module media type. | |||
729 | * @hw: pointer to the HW structure | |||
730 | * | |||
731 | * The media type is chosen based on SFP module. | |||
732 | * compatibility flags retrieved from SFP ID EEPROM. | |||
733 | **/ | |||
734 | STATIC int32_t em_set_sfp_media_type_82575(struct em_hw *hw) | |||
735 | { | |||
736 | struct sfp_e1000_flags eth_flags; | |||
737 | int32_t ret_val = E1000_ERR_CONFIG3; | |||
738 | uint32_t ctrl_ext = 0; | |||
739 | uint8_t transceiver_type = 0; | |||
740 | int32_t timeout = 3; | |||
741 | ||||
742 | /* Turn I2C interface ON and power on sfp cage */ | |||
743 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))))); | |||
744 | ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA0x00000080; | |||
745 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))), (ctrl_ext | 0x02000000))); | |||
746 | ||||
747 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
748 | ||||
749 | /* Read SFP module data */ | |||
750 | while (timeout) { | |||
751 | ret_val = em_read_sfp_data_byte(hw, | |||
752 | E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET)(0x0000 + (0x00)), | |||
753 | &transceiver_type); | |||
754 | if (ret_val == E1000_SUCCESS0) | |||
755 | break; | |||
756 | msec_delay(100)(*delay_func)(1000*(100)); | |||
757 | timeout--; | |||
758 | } | |||
759 | if (ret_val != E1000_SUCCESS0) | |||
760 | goto out; | |||
761 | ||||
762 | ret_val = em_read_sfp_data_byte(hw, | |||
763 | E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET)(0x0000 + (0x06)), | |||
764 | (uint8_t *)ð_flags); | |||
765 | if (ret_val != E1000_SUCCESS0) | |||
766 | goto out; | |||
767 | ||||
768 | /* Check if there is some SFP module plugged and powered */ | |||
769 | if ((transceiver_type == E1000_SFF_IDENTIFIER_SFP0x03) || | |||
770 | (transceiver_type == E1000_SFF_IDENTIFIER_SFF0x02)) { | |||
771 | if (eth_flags.e1000_base_lx || eth_flags.e1000_base_sx) { | |||
772 | hw->media_type = em_media_type_internal_serdes; | |||
773 | } else if (eth_flags.e100_base_fx || eth_flags.e100_base_lx) { | |||
774 | hw->media_type = em_media_type_internal_serdes; | |||
775 | hw->sgmii_active = TRUE1; | |||
776 | } else if (eth_flags.e1000_base_t) { | |||
777 | hw->media_type = em_media_type_copper; | |||
778 | hw->sgmii_active = TRUE1; | |||
779 | } else { | |||
780 | DEBUGOUT("PHY module has not been recognized\n"); | |||
781 | ret_val = E1000_ERR_CONFIG3; | |||
782 | goto out; | |||
783 | } | |||
784 | } else { | |||
785 | ret_val = E1000_ERR_CONFIG3; | |||
786 | goto out; | |||
787 | } | |||
788 | ret_val = E1000_SUCCESS0; | |||
789 | out: | |||
790 | /* Restore I2C interface setting */ | |||
791 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))), (ctrl_ext))); | |||
792 | return ret_val; | |||
793 | } | |||
794 | ||||
795 | ||||
796 | /***************************************************************************** | |||
797 | * Set media type and TBI compatibility. | |||
798 | * | |||
799 | * hw - Struct containing variables accessed by shared code | |||
800 | * **************************************************************************/ | |||
801 | void | |||
802 | em_set_media_type(struct em_hw *hw) | |||
803 | { | |||
804 | uint32_t status, ctrl_ext, mdic; | |||
805 | DEBUGFUNC("em_set_media_type");; | |||
806 | ||||
807 | if (hw->mac_type != em_82543) { | |||
808 | /* tbi_compatibility is only valid on 82543 */ | |||
809 | hw->tbi_compatibility_en = FALSE0; | |||
810 | } | |||
811 | ||||
812 | if (hw->mac_type == em_82575 || hw->mac_type == em_82580 || | |||
813 | hw->mac_type == em_82576 || | |||
814 | hw->mac_type == em_i210 || hw->mac_type == em_i350) { | |||
815 | hw->media_type = em_media_type_copper; | |||
816 | hw->sgmii_active = FALSE0; | |||
817 | ||||
818 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))))); | |||
819 | switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK0x00C00000) { | |||
820 | case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX0x00400000: | |||
821 | hw->media_type = em_media_type_internal_serdes; | |||
822 | ctrl_ext |= E1000_CTRL_I2C_ENA0x02000000; | |||
823 | break; | |||
824 | case E1000_CTRL_EXT_LINK_MODE_SGMII0x00800000: | |||
825 | mdic = EM_READ_REG(hw, E1000_MDICNFG)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (0x00E04))); | |||
826 | ctrl_ext |= E1000_CTRL_I2C_ENA0x02000000; | |||
827 | if (mdic & E1000_MDICNFG_EXT_MDIO0x80000000) { | |||
828 | hw->media_type = em_media_type_copper; | |||
829 | hw->sgmii_active = TRUE1; | |||
830 | break; | |||
831 | } | |||
832 | /* FALLTHROUGH */ | |||
833 | case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES0x00C00000: | |||
834 | ctrl_ext |= E1000_CTRL_I2C_ENA0x02000000; | |||
835 | if (em_set_sfp_media_type_82575(hw) != 0) { | |||
836 | hw->media_type = em_media_type_internal_serdes; | |||
837 | if ((ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK0x00C00000) == | |||
838 | E1000_CTRL_EXT_LINK_MODE_SGMII0x00800000) { | |||
839 | hw->media_type = em_media_type_copper; | |||
840 | hw->sgmii_active = TRUE1; | |||
841 | } | |||
842 | } | |||
843 | ||||
844 | ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK0x00C00000; | |||
845 | if (hw->sgmii_active) | |||
846 | ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII0x00800000; | |||
847 | else | |||
848 | ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES0x00C00000; | |||
849 | break; | |||
850 | default: | |||
851 | ctrl_ext &= ~E1000_CTRL_I2C_ENA0x02000000; | |||
852 | break; | |||
853 | } | |||
854 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))), (ctrl_ext))); | |||
855 | return; | |||
856 | } | |||
857 | ||||
858 | switch (hw->device_id) { | |||
859 | case E1000_DEV_ID_82545GM_SERDES0x1028: | |||
860 | case E1000_DEV_ID_82546GB_SERDES0x107B: | |||
861 | case E1000_DEV_ID_82571EB_SERDES0x1060: | |||
862 | case E1000_DEV_ID_82571EB_SERDES_DUAL0x10D9: | |||
863 | case E1000_DEV_ID_82571EB_SERDES_QUAD0x10DA: | |||
864 | case E1000_DEV_ID_82572EI_SERDES0x107F: | |||
865 | case E1000_DEV_ID_80003ES2LAN_SERDES_DPT0x1098: | |||
866 | hw->media_type = em_media_type_internal_serdes; | |||
867 | break; | |||
868 | case E1000_DEV_ID_EP80579_LAN_10x5040: | |||
869 | case E1000_DEV_ID_EP80579_LAN_20x5044: | |||
870 | case E1000_DEV_ID_EP80579_LAN_30x5048: | |||
871 | case E1000_DEV_ID_EP80579_LAN_40x5041: | |||
872 | case E1000_DEV_ID_EP80579_LAN_50x5045: | |||
873 | case E1000_DEV_ID_EP80579_LAN_60x5049: | |||
874 | hw->media_type = em_media_type_copper; | |||
875 | break; | |||
876 | default: | |||
877 | switch (hw->mac_type) { | |||
878 | case em_82542_rev2_0: | |||
879 | case em_82542_rev2_1: | |||
880 | hw->media_type = em_media_type_fiber; | |||
881 | break; | |||
882 | case em_ich8lan: | |||
883 | case em_ich9lan: | |||
884 | case em_ich10lan: | |||
885 | case em_pchlan: | |||
886 | case em_pch2lan: | |||
887 | case em_pch_lpt: | |||
888 | case em_pch_spt: | |||
889 | case em_pch_cnp: | |||
890 | case em_82573: | |||
891 | case em_82574: | |||
892 | /* | |||
893 | * The STATUS_TBIMODE bit is reserved or reused for | |||
894 | * the this device. | |||
895 | */ | |||
896 | hw->media_type = em_media_type_copper; | |||
897 | break; | |||
898 | default: | |||
899 | status = E1000_READ_REG(hw, STATUS)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
900 | if (status & E1000_STATUS_TBIMODE0x00000020) { | |||
901 | hw->media_type = em_media_type_fiber; | |||
902 | /* tbi_compatibility not valid on fiber */ | |||
903 | hw->tbi_compatibility_en = FALSE0; | |||
904 | } else { | |||
905 | hw->media_type = em_media_type_copper; | |||
906 | } | |||
907 | break; | |||
908 | } | |||
909 | } | |||
910 | } | |||
911 | /****************************************************************************** | |||
912 | * Reset the transmit and receive units; mask and clear all interrupts. | |||
913 | * | |||
914 | * hw - Struct containing variables accessed by shared code | |||
915 | *****************************************************************************/ | |||
916 | int32_t | |||
917 | em_reset_hw(struct em_hw *hw) | |||
918 | { | |||
919 | uint32_t ctrl; | |||
920 | uint32_t ctrl_ext; | |||
921 | uint32_t icr; | |||
922 | uint32_t manc; | |||
923 | uint32_t led_ctrl; | |||
924 | uint32_t timeout; | |||
925 | uint32_t extcnf_ctrl; | |||
926 | int32_t ret_val; | |||
927 | DEBUGFUNC("em_reset_hw");; | |||
928 | ||||
929 | /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ | |||
930 | if (hw->mac_type == em_82542_rev2_0) { | |||
931 | DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); | |||
932 | em_pci_clear_mwi(hw); | |||
933 | } | |||
934 | if (hw->bus_type == em_bus_type_pci_express) { | |||
935 | /* | |||
936 | * Prevent the PCI-E bus from sticking if there is no TLP | |||
937 | * connection on the last TLP read/write transaction when MAC | |||
938 | * is reset. | |||
939 | */ | |||
940 | if (em_disable_pciex_master(hw) != E1000_SUCCESS0) { | |||
941 | DEBUGOUT("PCI-E Master disable polling has failed.\n"); | |||
942 | } | |||
943 | } | |||
944 | ||||
945 | /* Set the completion timeout for 82575 chips */ | |||
946 | if (hw->mac_type == em_82575 || hw->mac_type == em_82580 || | |||
947 | hw->mac_type == em_82576 || | |||
948 | hw->mac_type == em_i210 || hw->mac_type == em_i350) { | |||
949 | ret_val = em_set_pciex_completion_timeout(hw); | |||
950 | if (ret_val) { | |||
951 | DEBUGOUT("PCI-E Set completion timeout has failed.\n"); | |||
952 | } | |||
953 | } | |||
954 | ||||
955 | /* Clear interrupt mask to stop board from generating interrupts */ | |||
956 | DEBUGOUT("Masking off all interrupts\n"); | |||
957 | E1000_WRITE_REG(hw, IMC, 0xffffffff)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x000D8 : em_translate_82542_register (0x000D8))), (0xffffffff))); | |||
958 | /* | |||
959 | * Disable the Transmit and Receive units. Then delay to allow any | |||
960 | * pending transactions to complete before we hit the MAC with the | |||
961 | * global reset. | |||
962 | */ | |||
963 | E1000_WRITE_REG(hw, RCTL, 0)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00100 : em_translate_82542_register (0x00100))), (0))); | |||
964 | E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00400 : em_translate_82542_register (0x00400))), (0x00000008))); | |||
965 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
966 | /* | |||
967 | * The tbi_compatibility_on Flag must be cleared when Rctl is | |||
968 | * cleared. | |||
969 | */ | |||
970 | hw->tbi_compatibility_on = FALSE0; | |||
971 | /* | |||
972 | * Delay to allow any outstanding PCI transactions to complete before | |||
973 | * resetting the device | |||
974 | */ | |||
975 | msec_delay(10)(*delay_func)(1000*(10)); | |||
976 | ||||
977 | ctrl = E1000_READ_REG(hw, CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))))); | |||
978 | ||||
979 | /* Must reset the PHY before resetting the MAC */ | |||
980 | if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) { | |||
981 | E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST))((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), ((ctrl | 0x80000000)))); | |||
982 | msec_delay(5)(*delay_func)(1000*(5)); | |||
983 | } | |||
984 | /* | |||
985 | * Must acquire the MDIO ownership before MAC reset. Ownership | |||
986 | * defaults to firmware after a reset. | |||
987 | */ | |||
988 | if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) { | |||
989 | timeout = 10; | |||
990 | ||||
991 | extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F00 : em_translate_82542_register (0x00F00))))); | |||
992 | extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP0x00000020; | |||
993 | ||||
994 | do { | |||
995 | E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F00 : em_translate_82542_register (0x00F00))), (extcnf_ctrl))); | |||
996 | extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F00 : em_translate_82542_register (0x00F00))))); | |||
997 | ||||
998 | if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP0x00000020) | |||
999 | break; | |||
1000 | else | |||
1001 | extcnf_ctrl |= | |||
1002 | E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP0x00000020; | |||
1003 | ||||
1004 | msec_delay(2)(*delay_func)(1000*(2)); | |||
1005 | timeout--; | |||
1006 | } while (timeout); | |||
1007 | } | |||
1008 | /* Workaround for ICH8 bit corruption issue in FIFO memory */ | |||
1009 | if (hw->mac_type == em_ich8lan) { | |||
1010 | /* Set Tx and Rx buffer allocation to 8k apiece. */ | |||
1011 | E1000_WRITE_REG(hw, PBA, E1000_PBA_8K)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x01000 : em_translate_82542_register (0x01000))), (0x0008))); | |||
1012 | /* Set Packet Buffer Size to 16k. */ | |||
1013 | E1000_WRITE_REG(hw, PBS, E1000_PBS_16K)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x01008 : em_translate_82542_register (0x01008))), (0x0010))); | |||
1014 | } | |||
1015 | /* | |||
1016 | * Issue a global reset to the MAC. This will reset the chip's | |||
1017 | * transmit, receive, DMA, and link units. It will not effect the | |||
1018 | * current PCI configuration. The global reset bit is self- | |||
1019 | * clearing, and should clear within a microsecond. | |||
1020 | */ | |||
1021 | DEBUGOUT("Issuing a global reset to MAC\n"); | |||
1022 | ||||
1023 | switch (hw->mac_type) { | |||
1024 | case em_82544: | |||
1025 | case em_82540: | |||
1026 | case em_82545: | |||
1027 | case em_82546: | |||
1028 | case em_82541: | |||
1029 | case em_82541_rev_2: | |||
1030 | /* | |||
1031 | * These controllers can't ack the 64-bit write when issuing | |||
1032 | * the reset, so use IO-mapping as a workaround to issue the | |||
1033 | * reset | |||
1034 | */ | |||
1035 | E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST))em_write_reg_io((hw), 0x00000, (ctrl | 0x04000000)); | |||
1036 | break; | |||
1037 | case em_82545_rev_3: | |||
1038 | case em_82546_rev_3: | |||
1039 | /* Reset is performed on a shadow of the control register */ | |||
1040 | E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST))((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00004 : em_translate_82542_register (0x00004))), ((ctrl | 0x04000000)))); | |||
1041 | break; | |||
1042 | case em_ich8lan: | |||
1043 | case em_ich9lan: | |||
1044 | case em_ich10lan: | |||
1045 | case em_pchlan: | |||
1046 | case em_pch2lan: | |||
1047 | case em_pch_lpt: | |||
1048 | case em_pch_spt: | |||
1049 | case em_pch_cnp: | |||
1050 | if (!hw->phy_reset_disable && | |||
1051 | em_check_phy_reset_block(hw) == E1000_SUCCESS0) { | |||
1052 | /* | |||
1053 | * PHY HW reset requires MAC CORE reset at the same | |||
1054 | * time to make sure the interface between MAC and | |||
1055 | * the external PHY is reset. | |||
1056 | */ | |||
1057 | ctrl |= E1000_CTRL_PHY_RST0x80000000; | |||
1058 | /* | |||
1059 | * Gate automatic PHY configuration by hardware on | |||
1060 | * non-managed 82579 | |||
1061 | */ | |||
1062 | if ((hw->mac_type == em_pch2lan) && | |||
1063 | !(E1000_READ_REG(hw, FWSM)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B54 : em_translate_82542_register (0x05B54))))) & E1000_FWSM_FW_VALID0x00008000)) { | |||
1064 | em_gate_hw_phy_config_ich8lan(hw, TRUE1); | |||
1065 | } | |||
1066 | } | |||
1067 | em_get_software_flag(hw); | |||
1068 | E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST))((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), ((ctrl | 0x04000000)))); | |||
1069 | /* HW reset releases software_flag */ | |||
1070 | hw->sw_flag = 0; | |||
1071 | msec_delay(20)(*delay_func)(1000*(20)); | |||
1072 | ||||
1073 | /* Ungate automatic PHY configuration on non-managed 82579 */ | |||
1074 | if (hw->mac_type == em_pch2lan && !hw->phy_reset_disable && | |||
1075 | !(E1000_READ_REG(hw, FWSM)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B54 : em_translate_82542_register (0x05B54))))) & E1000_FWSM_FW_VALID0x00008000)) { | |||
1076 | msec_delay(10)(*delay_func)(1000*(10)); | |||
1077 | em_gate_hw_phy_config_ich8lan(hw, FALSE0); | |||
1078 | } | |||
1079 | break; | |||
1080 | default: | |||
1081 | E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST))((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), ((ctrl | 0x04000000)))); | |||
1082 | break; | |||
1083 | } | |||
1084 | ||||
1085 | if (em_check_phy_reset_block(hw) == E1000_SUCCESS0) { | |||
1086 | if (hw->mac_type == em_pchlan) { | |||
1087 | ret_val = em_hv_phy_workarounds_ich8lan(hw); | |||
1088 | if (ret_val) | |||
1089 | return ret_val; | |||
1090 | } | |||
1091 | else if (hw->mac_type == em_pch2lan) { | |||
1092 | ret_val = em_lv_phy_workarounds_ich8lan(hw); | |||
1093 | if (ret_val) | |||
1094 | return ret_val; | |||
1095 | } | |||
1096 | } | |||
1097 | ||||
1098 | /* | |||
1099 | * After MAC reset, force reload of EEPROM to restore power-on | |||
1100 | * settings to device. Later controllers reload the EEPROM | |||
1101 | * automatically, so just wait for reload to complete. | |||
1102 | */ | |||
1103 | switch (hw->mac_type) { | |||
1104 | case em_82542_rev2_0: | |||
1105 | case em_82542_rev2_1: | |||
1106 | case em_82543: | |||
1107 | case em_82544: | |||
1108 | /* Wait for reset to complete */ | |||
1109 | usec_delay(10)(*delay_func)(10); | |||
1110 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))))); | |||
1111 | ctrl_ext |= E1000_CTRL_EXT_EE_RST0x00002000; | |||
1112 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))), (ctrl_ext))); | |||
1113 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
1114 | /* Wait for EEPROM reload */ | |||
1115 | msec_delay(2)(*delay_func)(1000*(2)); | |||
1116 | break; | |||
1117 | case em_82541: | |||
1118 | case em_82541_rev_2: | |||
1119 | case em_82547: | |||
1120 | case em_82547_rev_2: | |||
1121 | /* Wait for EEPROM reload */ | |||
1122 | msec_delay(20)(*delay_func)(1000*(20)); | |||
1123 | break; | |||
1124 | case em_82573: | |||
1125 | case em_82574: | |||
1126 | if (em_is_onboard_nvm_eeprom(hw) == FALSE0) { | |||
1127 | usec_delay(10)(*delay_func)(10); | |||
1128 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))))); | |||
1129 | ctrl_ext |= E1000_CTRL_EXT_EE_RST0x00002000; | |||
1130 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))), (ctrl_ext))); | |||
1131 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
1132 | } | |||
1133 | /* FALLTHROUGH */ | |||
1134 | ||||
1135 | /* Auto read done will delay 5ms or poll based on mac type */ | |||
1136 | ret_val = em_get_auto_rd_done(hw); | |||
1137 | if (ret_val) | |||
1138 | return ret_val; | |||
1139 | break; | |||
1140 | default: | |||
1141 | /* Wait for EEPROM reload (it happens automatically) */ | |||
1142 | msec_delay(5)(*delay_func)(1000*(5)); | |||
1143 | break; | |||
1144 | } | |||
1145 | ||||
1146 | /* Disable HW ARPs on ASF enabled adapters */ | |||
1147 | if (hw->mac_type >= em_82540 && hw->mac_type <= em_82547_rev_2 && | |||
1148 | hw->mac_type != em_icp_xxxx) { | |||
1149 | manc = E1000_READ_REG(hw, MANC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05820 : em_translate_82542_register (0x05820))))); | |||
1150 | manc &= ~(E1000_MANC_ARP_EN0x00002000); | |||
1151 | E1000_WRITE_REG(hw, MANC, manc)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05820 : em_translate_82542_register (0x05820))), (manc))); | |||
1152 | } | |||
1153 | if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) { | |||
1154 | em_phy_init_script(hw); | |||
1155 | ||||
1156 | /* Configure activity LED after PHY reset */ | |||
1157 | led_ctrl = E1000_READ_REG(hw, LEDCTL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00E00 : em_translate_82542_register (0x00E00))))); | |||
1158 | led_ctrl &= IGP_ACTIVITY_LED_MASK0xFFFFF0FF; | |||
1159 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE0x0300 | IGP_LED3_MODE0x07000000); | |||
1160 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00E00 : em_translate_82542_register (0x00E00))), (led_ctrl))); | |||
1161 | } | |||
1162 | ||||
1163 | /* | |||
1164 | * For PCH, this write will make sure that any noise | |||
1165 | * will be detected as a CRC error and be dropped rather than show up | |||
1166 | * as a bad packet to the DMA engine. | |||
1167 | */ | |||
1168 | if (hw->mac_type == em_pchlan) | |||
1169 | E1000_WRITE_REG(hw, CRC_OFFSET, 0x65656565)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05F50 : em_translate_82542_register (0x05F50))), (0x65656565))); | |||
1170 | ||||
1171 | /* Clear interrupt mask to stop board from generating interrupts */ | |||
1172 | DEBUGOUT("Masking off all interrupts\n"); | |||
1173 | E1000_WRITE_REG(hw, IMC, 0xffffffff)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x000D8 : em_translate_82542_register (0x000D8))), (0xffffffff))); | |||
1174 | ||||
1175 | /* Clear any pending interrupt events. */ | |||
1176 | icr = E1000_READ_REG(hw, ICR)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x000C0 : em_translate_82542_register (0x000C0))))); | |||
1177 | ||||
1178 | /* If MWI was previously enabled, reenable it. */ | |||
1179 | if (hw->mac_type == em_82542_rev2_0) { | |||
1180 | if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE0x0010) | |||
1181 | em_pci_set_mwi(hw); | |||
1182 | } | |||
1183 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | |||
1184 | uint32_t kab = E1000_READ_REG(hw, KABGTXD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x03004 : em_translate_82542_register (0x03004))))); | |||
1185 | kab |= E1000_KABGTXD_BGSQLBIAS0x00050000; | |||
1186 | E1000_WRITE_REG(hw, KABGTXD, kab)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x03004 : em_translate_82542_register (0x03004))), (kab))); | |||
1187 | } | |||
1188 | ||||
1189 | if (hw->mac_type == em_82580 || hw->mac_type == em_i350) { | |||
1190 | uint32_t mdicnfg; | |||
1191 | uint16_t nvm_data; | |||
1192 | ||||
1193 | /* clear global device reset status bit */ | |||
1194 | EM_WRITE_REG(hw, E1000_STATUS, E1000_STATUS_DEV_RST_SET)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (0x00008), (0x00100000))); | |||
1195 | ||||
1196 | em_read_eeprom(hw, EEPROM_INIT_CONTROL3_PORT_A0x0024 + | |||
1197 | NVM_82580_LAN_FUNC_OFFSET(hw->bus_func)(hw->bus_func ? (0x40 + (0x40 * hw->bus_func)) : 0), 1, | |||
1198 | &nvm_data); | |||
1199 | ||||
1200 | mdicnfg = EM_READ_REG(hw, E1000_MDICNFG)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (0x00E04))); | |||
1201 | if (nvm_data & NVM_WORD24_EXT_MDIO0x0004) | |||
1202 | mdicnfg |= E1000_MDICNFG_EXT_MDIO0x80000000; | |||
1203 | if (nvm_data & NVM_WORD24_COM_MDIO0x0008) | |||
1204 | mdicnfg |= E1000_MDICNFG_COM_MDIO0x40000000; | |||
1205 | EM_WRITE_REG(hw, E1000_MDICNFG, mdicnfg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (0x00E04), (mdicnfg))); | |||
1206 | } | |||
1207 | ||||
1208 | if (hw->mac_type == em_i210 || hw->mac_type == em_i350) | |||
1209 | em_set_eee_i350(hw); | |||
1210 | ||||
1211 | return E1000_SUCCESS0; | |||
1212 | } | |||
1213 | ||||
1214 | /****************************************************************************** | |||
1215 | * | |||
1216 | * Initialize a number of hardware-dependent bits | |||
1217 | * | |||
1218 | * hw: Struct containing variables accessed by shared code | |||
1219 | * | |||
1220 | *****************************************************************************/ | |||
1221 | STATIC void | |||
1222 | em_initialize_hardware_bits(struct em_softc *sc) | |||
1223 | { | |||
1224 | struct em_hw *hw = &sc->hw; | |||
1225 | struct em_queue *que; | |||
1226 | ||||
1227 | DEBUGFUNC("em_initialize_hardware_bits");; | |||
1228 | ||||
1229 | if ((hw->mac_type >= em_82571) && (!hw->initialize_hw_bits_disable)) { | |||
1230 | /* Settings common to all silicon */ | |||
1231 | uint32_t reg_ctrl, reg_ctrl_ext; | |||
1232 | uint32_t reg_tarc0, reg_tarc1; | |||
1233 | uint32_t reg_tctl; | |||
1234 | uint32_t reg_txdctl; | |||
1235 | reg_tarc0 = E1000_READ_REG(hw, TARC0)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x03840 : em_translate_82542_register (0x03840))))); | |||
1236 | reg_tarc0 &= ~0x78000000; /* Clear bits 30, 29, 28, and | |||
1237 | * 27 */ | |||
1238 | FOREACH_QUEUE(sc, que)for ((que) = (sc)->queues; (que) < ((sc)->queues + ( sc)->num_queues); (que)++) { | |||
1239 | reg_txdctl = E1000_READ_REG(hw, TXDCTL(que->me))((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? ((que->me) < 4 ? (0x03828 + ((que->me) * 0x100)) : (0x0E028 + ((que->me ) * 0x40))) : em_translate_82542_register(((que->me) < 4 ? (0x03828 + ((que->me) * 0x100)) : (0x0E028 + ((que-> me) * 0x40)))))))); | |||
1240 | reg_txdctl |= E1000_TXDCTL_COUNT_DESC0x00400000; /* Set bit 22 */ | |||
1241 | E1000_WRITE_REG(hw, TXDCTL(que->me), reg_txdctl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? ((que->me) < 4 ? (0x03828 + ((que->me) * 0x100)) : (0x0E028 + ((que->me ) * 0x40))) : em_translate_82542_register(((que->me) < 4 ? (0x03828 + ((que->me) * 0x100)) : (0x0E028 + ((que-> me) * 0x40)))))), (reg_txdctl))); | |||
1242 | } | |||
1243 | ||||
1244 | /* | |||
1245 | * Old code always initialized queue 1, | |||
1246 | * even when unused, keep behaviour | |||
1247 | */ | |||
1248 | if (sc->num_queues == 1) { | |||
1249 | reg_txdctl = E1000_READ_REG(hw, TXDCTL(1))((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? ((1) < 4 ? (0x03828 + ((1) * 0x100)) : (0x0E028 + ((1) * 0x40))) : em_translate_82542_register (((1) < 4 ? (0x03828 + ((1) * 0x100)) : (0x0E028 + ((1) * 0x40 )))))))); | |||
1250 | reg_txdctl |= E1000_TXDCTL_COUNT_DESC0x00400000; | |||
1251 | E1000_WRITE_REG(hw, TXDCTL(1), reg_txdctl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? ((1) < 4 ? (0x03828 + ((1) * 0x100)) : (0x0E028 + ((1) * 0x40))) : em_translate_82542_register (((1) < 4 ? (0x03828 + ((1) * 0x100)) : (0x0E028 + ((1) * 0x40 )))))), (reg_txdctl))); | |||
1252 | } | |||
1253 | ||||
1254 | switch (hw->mac_type) { | |||
1255 | case em_82571: | |||
1256 | case em_82572: | |||
1257 | reg_tarc1 = E1000_READ_REG(hw, TARC1)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x03940 : em_translate_82542_register (0x03940))))); | |||
1258 | reg_tctl = E1000_READ_REG(hw, TCTL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00400 : em_translate_82542_register (0x00400))))); | |||
1259 | ||||
1260 | /* Set the phy Tx compatible mode bits */ | |||
1261 | reg_tarc1 &= ~0x60000000; /* Clear bits 30 and 29 */ | |||
1262 | ||||
1263 | reg_tarc0 |= 0x07800000; /* Set TARC0 bits 23-26 */ | |||
1264 | reg_tarc1 |= 0x07000000; /* Set TARC1 bits 24-26 */ | |||
1265 | ||||
1266 | if (reg_tctl & E1000_TCTL_MULR0x10000000) | |||
1267 | /* Clear bit 28 if MULR is 1b */ | |||
1268 | reg_tarc1 &= ~0x10000000; | |||
1269 | else | |||
1270 | /* Set bit 28 if MULR is 0b */ | |||
1271 | reg_tarc1 |= 0x10000000; | |||
1272 | ||||
1273 | E1000_WRITE_REG(hw, TARC1, reg_tarc1)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x03940 : em_translate_82542_register (0x03940))), (reg_tarc1))); | |||
1274 | break; | |||
1275 | case em_82573: | |||
1276 | case em_82574: | |||
1277 | reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))))); | |||
1278 | reg_ctrl = E1000_READ_REG(hw, CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))))); | |||
1279 | ||||
1280 | reg_ctrl_ext &= ~0x00800000; /* Clear bit 23 */ | |||
1281 | reg_ctrl_ext |= 0x00400000; /* Set bit 22 */ | |||
1282 | reg_ctrl &= ~0x20000000; /* Clear bit 29 */ | |||
1283 | ||||
1284 | E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))), (reg_ctrl_ext))); | |||
1285 | E1000_WRITE_REG(hw, CTRL, reg_ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (reg_ctrl))); | |||
1286 | break; | |||
1287 | case em_80003es2lan: | |||
1288 | if ((hw->media_type == em_media_type_fiber) || | |||
1289 | (hw->media_type == em_media_type_internal_serdes)) { | |||
1290 | /* Clear bit 20 */ | |||
1291 | reg_tarc0 &= ~0x00100000; | |||
1292 | } | |||
1293 | reg_tctl = E1000_READ_REG(hw, TCTL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00400 : em_translate_82542_register (0x00400))))); | |||
1294 | reg_tarc1 = E1000_READ_REG(hw, TARC1)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x03940 : em_translate_82542_register (0x03940))))); | |||
1295 | if (reg_tctl & E1000_TCTL_MULR0x10000000) | |||
1296 | /* Clear bit 28 if MULR is 1b */ | |||
1297 | reg_tarc1 &= ~0x10000000; | |||
1298 | else | |||
1299 | /* Set bit 28 if MULR is 0b */ | |||
1300 | reg_tarc1 |= 0x10000000; | |||
1301 | ||||
1302 | E1000_WRITE_REG(hw, TARC1, reg_tarc1)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x03940 : em_translate_82542_register (0x03940))), (reg_tarc1))); | |||
1303 | break; | |||
1304 | case em_ich8lan: | |||
1305 | case em_ich9lan: | |||
1306 | case em_ich10lan: | |||
1307 | case em_pchlan: | |||
1308 | case em_pch2lan: | |||
1309 | case em_pch_lpt: | |||
1310 | case em_pch_spt: | |||
1311 | case em_pch_cnp: | |||
1312 | if (hw->mac_type == em_ich8lan) | |||
1313 | /* Set TARC0 bits 29 and 28 */ | |||
1314 | reg_tarc0 |= 0x30000000; | |||
1315 | ||||
1316 | reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))))); | |||
1317 | reg_ctrl_ext |= 0x00400000; /* Set bit 22 */ | |||
1318 | /* Enable PHY low-power state when MAC is at D3 w/o WoL */ | |||
1319 | if (hw->mac_type >= em_pchlan) | |||
1320 | reg_ctrl_ext |= E1000_CTRL_EXT_PHYPDEN0x00100000; | |||
1321 | E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))), (reg_ctrl_ext))); | |||
1322 | ||||
1323 | reg_tarc0 |= 0x0d800000; /* Set TARC0 bits 23, | |||
1324 | * 24, 26, 27 */ | |||
1325 | ||||
1326 | reg_tarc1 = E1000_READ_REG(hw, TARC1)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x03940 : em_translate_82542_register (0x03940))))); | |||
1327 | reg_tctl = E1000_READ_REG(hw, TCTL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00400 : em_translate_82542_register (0x00400))))); | |||
1328 | ||||
1329 | if (reg_tctl & E1000_TCTL_MULR0x10000000) | |||
1330 | /* Clear bit 28 if MULR is 1b */ | |||
1331 | reg_tarc1 &= ~0x10000000; | |||
1332 | else | |||
1333 | /* Set bit 28 if MULR is 0b */ | |||
1334 | reg_tarc1 |= 0x10000000; | |||
1335 | ||||
1336 | reg_tarc1 |= 0x45000000; /* Set bit 24, 26 and | |||
1337 | * 30 */ | |||
1338 | ||||
1339 | E1000_WRITE_REG(hw, TARC1, reg_tarc1)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x03940 : em_translate_82542_register (0x03940))), (reg_tarc1))); | |||
1340 | break; | |||
1341 | default: | |||
1342 | break; | |||
1343 | } | |||
1344 | ||||
1345 | E1000_WRITE_REG(hw, TARC0, reg_tarc0)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x03840 : em_translate_82542_register (0x03840))), (reg_tarc0))); | |||
1346 | } | |||
1347 | } | |||
1348 | ||||
1349 | /** | |||
1350 | * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value | |||
1351 | * @hw: pointer to the HW structure | |||
1352 | * | |||
1353 | * Toggling the LANPHYPC pin value fully power-cycles the PHY and is | |||
1354 | * used to reset the PHY to a quiescent state when necessary. | |||
1355 | **/ | |||
1356 | static void | |||
1357 | em_toggle_lanphypc_pch_lpt(struct em_hw *hw) | |||
1358 | { | |||
1359 | uint32_t mac_reg; | |||
1360 | ||||
1361 | DEBUGFUNC("e1000_toggle_lanphypc_pch_lpt");; | |||
1362 | ||||
1363 | /* Set Phy Config Counter to 50msec */ | |||
1364 | mac_reg = E1000_READ_REG(hw, FEXTNVM3)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x0003C : em_translate_82542_register (0x0003C))))); | |||
1365 | mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK0x0C000000; | |||
1366 | mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC0x08000000; | |||
1367 | E1000_WRITE_REG(hw, FEXTNVM3, mac_reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x0003C : em_translate_82542_register (0x0003C))), (mac_reg))); | |||
1368 | ||||
1369 | /* Toggle LANPHYPC Value bit */ | |||
1370 | mac_reg = E1000_READ_REG(hw, CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))))); | |||
1371 | mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE0x00010000; | |||
1372 | mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE0x00020000; | |||
1373 | E1000_WRITE_REG(hw, CTRL, mac_reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (mac_reg))); | |||
1374 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
1375 | msec_delay(1)(*delay_func)(1000*(1)); | |||
1376 | mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE0x00010000; | |||
1377 | E1000_WRITE_REG(hw, CTRL, mac_reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (mac_reg))); | |||
1378 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
1379 | ||||
1380 | if (hw->mac_type < em_pch_lpt) { | |||
1381 | msec_delay(50)(*delay_func)(1000*(50)); | |||
1382 | } else { | |||
1383 | uint16_t count = 20; | |||
1384 | ||||
1385 | do { | |||
1386 | msec_delay(5)(*delay_func)(1000*(5)); | |||
1387 | } while (!(E1000_READ_REG(hw, CTRL_EXT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))))) & | |||
1388 | E1000_CTRL_EXT_LPCD0x00000004) && count--); | |||
1389 | ||||
1390 | msec_delay(30)(*delay_func)(1000*(30)); | |||
1391 | } | |||
1392 | } | |||
1393 | ||||
1394 | /** | |||
1395 | * em_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP | |||
1396 | * @hw: pointer to the HW structure | |||
1397 | * @force: boolean indicating whether or not to force disabling ULP | |||
1398 | * | |||
1399 | * Un-configure ULP mode when link is up, the system is transitioned from | |||
1400 | * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled | |||
1401 | * system, poll for an indication from ME that ULP has been un-configured. | |||
1402 | * If not on an ME enabled system, un-configure the ULP mode by software. | |||
1403 | * | |||
1404 | * During nominal operation, this function is called when link is acquired | |||
1405 | * to disable ULP mode (force=FALSE); otherwise, for example when unloading | |||
1406 | * the driver or during Sx->S0 transitions, this is called with force=TRUE | |||
1407 | * to forcibly disable ULP. | |||
1408 | */ | |||
1409 | static int | |||
1410 | em_disable_ulp_lpt_lp(struct em_hw *hw, bool_Bool force) | |||
1411 | { | |||
1412 | int ret_val = E1000_SUCCESS0; | |||
1413 | uint32_t mac_reg; | |||
1414 | uint16_t phy_reg; | |||
1415 | int i = 0; | |||
1416 | ||||
1417 | if ((hw->mac_type < em_pch_lpt) || | |||
1418 | (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM0x153A) || | |||
1419 | (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V0x153B) || | |||
1420 | (hw->device_id == E1000_DEV_ID_PCH_I218_LM20x15A0) || | |||
1421 | (hw->device_id == E1000_DEV_ID_PCH_I218_V20x15A1)) | |||
1422 | return 0; | |||
1423 | ||||
1424 | if (E1000_READ_REG(hw, FWSM)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B54 : em_translate_82542_register (0x05B54))))) & E1000_FWSM_FW_VALID0x00008000) { | |||
1425 | if (force) { | |||
1426 | /* Request ME un-configure ULP mode in the PHY */ | |||
1427 | mac_reg = E1000_READ_REG(hw, H2ME)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B50 : em_translate_82542_register (0x05B50))))); | |||
1428 | mac_reg &= ~E1000_H2ME_ULP0x00000800; | |||
1429 | mac_reg |= E1000_H2ME_ENFORCE_SETTINGS0x00001000; | |||
1430 | E1000_WRITE_REG(hw, H2ME, mac_reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B50 : em_translate_82542_register (0x05B50))), (mac_reg))); | |||
1431 | } | |||
1432 | ||||
1433 | /* Poll up to 300msec for ME to clear ULP_CFG_DONE. */ | |||
1434 | while (E1000_READ_REG(hw, FWSM)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B54 : em_translate_82542_register (0x05B54))))) & E1000_FWSM_ULP_CFG_DONE0x00000400) { | |||
1435 | if (i++ == 30) { | |||
1436 | ret_val = -E1000_ERR_PHY2; | |||
1437 | goto out; | |||
1438 | } | |||
1439 | ||||
1440 | msec_delay(10)(*delay_func)(1000*(10)); | |||
1441 | } | |||
1442 | DEBUGOUT1("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10); | |||
1443 | ||||
1444 | if (force) { | |||
1445 | mac_reg = E1000_READ_REG(hw, H2ME)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B50 : em_translate_82542_register (0x05B50))))); | |||
1446 | mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS0x00001000; | |||
1447 | E1000_WRITE_REG(hw, H2ME, mac_reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B50 : em_translate_82542_register (0x05B50))), (mac_reg))); | |||
1448 | } else { | |||
1449 | /* Clear H2ME.ULP after ME ULP configuration */ | |||
1450 | mac_reg = E1000_READ_REG(hw, H2ME)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B50 : em_translate_82542_register (0x05B50))))); | |||
1451 | mac_reg &= ~E1000_H2ME_ULP0x00000800; | |||
1452 | E1000_WRITE_REG(hw, H2ME, mac_reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B50 : em_translate_82542_register (0x05B50))), (mac_reg))); | |||
1453 | } | |||
1454 | ||||
1455 | goto out; | |||
1456 | } | |||
1457 | ||||
1458 | ret_val = em_get_software_flag(hw); | |||
1459 | if (ret_val) | |||
1460 | goto out; | |||
1461 | ||||
1462 | if (force) | |||
1463 | /* Toggle LANPHYPC Value bit */ | |||
1464 | em_toggle_lanphypc_pch_lpt(hw); | |||
1465 | ||||
1466 | /* Unforce SMBus mode in PHY */ | |||
1467 | ret_val = em_read_phy_reg(hw, CV_SMB_CTRL(((769) << 5) | ((23) & 0x1F)), &phy_reg); | |||
1468 | if (ret_val) { | |||
1469 | /* The MAC might be in PCIe mode, so temporarily force to | |||
1470 | * SMBus mode in order to access the PHY. | |||
1471 | */ | |||
1472 | mac_reg = E1000_READ_REG(hw, CTRL_EXT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))))); | |||
1473 | mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS0x00000800; | |||
1474 | E1000_WRITE_REG(hw, CTRL_EXT, mac_reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))), (mac_reg))); | |||
1475 | ||||
1476 | msec_delay(50)(*delay_func)(1000*(50)); | |||
1477 | ||||
1478 | ret_val = em_read_phy_reg(hw, CV_SMB_CTRL(((769) << 5) | ((23) & 0x1F)), &phy_reg); | |||
1479 | if (ret_val) | |||
1480 | goto release; | |||
1481 | } | |||
1482 | phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS0x0001; | |||
1483 | em_write_phy_reg(hw, CV_SMB_CTRL(((769) << 5) | ((23) & 0x1F)), phy_reg); | |||
1484 | ||||
1485 | /* Unforce SMBus mode in MAC */ | |||
1486 | mac_reg = E1000_READ_REG(hw, CTRL_EXT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))))); | |||
1487 | mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS0x00000800; | |||
1488 | E1000_WRITE_REG(hw, CTRL_EXT, mac_reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))), (mac_reg))); | |||
1489 | ||||
1490 | /* When ULP mode was previously entered, K1 was disabled by the | |||
1491 | * hardware. Re-Enable K1 in the PHY when exiting ULP. | |||
1492 | */ | |||
1493 | ret_val = em_read_phy_reg(hw, HV_PM_CTRL(((770) << 5) | ((17) & 0x1F)), &phy_reg); | |||
1494 | if (ret_val) | |||
1495 | goto release; | |||
1496 | phy_reg |= HV_PM_CTRL_K1_ENABLE0x4000; | |||
1497 | em_write_phy_reg(hw, HV_PM_CTRL(((770) << 5) | ((17) & 0x1F)), phy_reg); | |||
1498 | ||||
1499 | /* Clear ULP enabled configuration */ | |||
1500 | ret_val = em_read_phy_reg(hw, I218_ULP_CONFIG1(((779) << 5) | ((16) & 0x1F)), &phy_reg); | |||
1501 | if (ret_val) | |||
1502 | goto release; | |||
1503 | phy_reg &= ~(I218_ULP_CONFIG1_IND0x0004 | | |||
1504 | I218_ULP_CONFIG1_STICKY_ULP0x0010 | | |||
1505 | I218_ULP_CONFIG1_RESET_TO_SMBUS0x0100 | | |||
1506 | I218_ULP_CONFIG1_WOL_HOST0x0040 | | |||
1507 | I218_ULP_CONFIG1_INBAND_EXIT0x0020 | | |||
1508 | I218_ULP_CONFIG1_EN_ULP_LANPHYPC0x0400 | | |||
1509 | I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST0x0800 | | |||
1510 | I218_ULP_CONFIG1_DISABLE_SMB_PERST0x1000); | |||
1511 | em_write_phy_reg(hw, I218_ULP_CONFIG1(((779) << 5) | ((16) & 0x1F)), phy_reg); | |||
1512 | ||||
1513 | /* Commit ULP changes by starting auto ULP configuration */ | |||
1514 | phy_reg |= I218_ULP_CONFIG1_START0x0001; | |||
1515 | em_write_phy_reg(hw, I218_ULP_CONFIG1(((779) << 5) | ((16) & 0x1F)), phy_reg); | |||
1516 | ||||
1517 | /* Clear Disable SMBus Release on PERST# in MAC */ | |||
1518 | mac_reg = E1000_READ_REG(hw, FEXTNVM7)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0xe4UL : em_translate_82542_register (0xe4UL))))); | |||
1519 | mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST0x00000020; | |||
1520 | E1000_WRITE_REG(hw, FEXTNVM7, mac_reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0xe4UL : em_translate_82542_register (0xe4UL))), (mac_reg))); | |||
1521 | ||||
1522 | release: | |||
1523 | em_release_software_flag(hw); | |||
1524 | if (force) { | |||
1525 | em_phy_reset(hw); | |||
1526 | msec_delay(50)(*delay_func)(1000*(50)); | |||
1527 | } | |||
1528 | out: | |||
1529 | if (ret_val) | |||
1530 | DEBUGOUT1("Error in ULP disable flow: %d\n", ret_val); | |||
1531 | ||||
1532 | return ret_val; | |||
1533 | } | |||
1534 | ||||
1535 | /****************************************************************************** | |||
1536 | * Performs basic configuration of the adapter. | |||
1537 | * | |||
1538 | * hw - Struct containing variables accessed by shared code | |||
1539 | * | |||
1540 | * Assumes that the controller has previously been reset and is in a | |||
1541 | * post-reset uninitialized state. Initializes the receive address registers, | |||
1542 | * multicast table, and VLAN filter table. Calls routines to setup link | |||
1543 | * configuration and flow control settings. Clears all on-chip counters. Leaves | |||
1544 | * the transmit and receive units disabled and uninitialized. | |||
1545 | *****************************************************************************/ | |||
1546 | int32_t | |||
1547 | em_init_hw(struct em_softc *sc) | |||
1548 | { | |||
1549 | struct em_hw *hw = &sc->hw; | |||
1550 | struct em_queue *que; | |||
1551 | uint32_t ctrl; | |||
1552 | uint32_t i; | |||
1553 | int32_t ret_val; | |||
1554 | uint16_t pcix_cmd_word; | |||
1555 | uint16_t pcix_stat_hi_word; | |||
1556 | uint16_t cmd_mmrbc; | |||
1557 | uint16_t stat_mmrbc; | |||
1558 | uint32_t mta_size; | |||
1559 | uint32_t reg_data; | |||
1560 | uint32_t ctrl_ext; | |||
1561 | uint32_t snoop; | |||
1562 | uint32_t fwsm; | |||
1563 | DEBUGFUNC("em_init_hw");; | |||
1564 | ||||
1565 | /* force full DMA clock frequency for ICH8 */ | |||
1566 | if (hw->mac_type == em_ich8lan) { | |||
1567 | reg_data = E1000_READ_REG(hw, STATUS)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
1568 | reg_data &= ~0x80000000; | |||
1569 | E1000_WRITE_REG(hw, STATUS, reg_data)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))), (reg_data))); | |||
1570 | } | |||
1571 | ||||
1572 | if (hw->mac_type == em_pchlan || | |||
1573 | hw->mac_type == em_pch2lan || | |||
1574 | hw->mac_type == em_pch_lpt || | |||
1575 | hw->mac_type == em_pch_spt || | |||
1576 | hw->mac_type == em_pch_cnp) { | |||
1577 | /* | |||
1578 | * The MAC-PHY interconnect may still be in SMBus mode | |||
1579 | * after Sx->S0. Toggle the LANPHYPC Value bit to force | |||
1580 | * the interconnect to PCIe mode, but only if there is no | |||
1581 | * firmware present otherwise firmware will have done it. | |||
1582 | */ | |||
1583 | fwsm = E1000_READ_REG(hw, FWSM)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B54 : em_translate_82542_register (0x05B54))))); | |||
1584 | if ((fwsm & E1000_FWSM_FW_VALID0x00008000) == 0) { | |||
1585 | ctrl = E1000_READ_REG(hw, CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))))); | |||
1586 | ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE0x00010000; | |||
1587 | ctrl &= ~E1000_CTRL_LANPHYPC_VALUE0x00020000; | |||
1588 | E1000_WRITE_REG(hw, CTRL, ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (ctrl))); | |||
1589 | usec_delay(10)(*delay_func)(10); | |||
1590 | ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE0x00010000; | |||
1591 | E1000_WRITE_REG(hw, CTRL, ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (ctrl))); | |||
1592 | msec_delay(50)(*delay_func)(1000*(50)); | |||
1593 | } | |||
1594 | ||||
1595 | /* Gate automatic PHY configuration on non-managed 82579 */ | |||
1596 | if (hw->mac_type == em_pch2lan) | |||
1597 | em_gate_hw_phy_config_ich8lan(hw, TRUE1); | |||
1598 | ||||
1599 | em_disable_ulp_lpt_lp(hw, TRUE1); | |||
1600 | /* | |||
1601 | * Reset the PHY before any access to it. Doing so, | |||
1602 | * ensures that the PHY is in a known good state before | |||
1603 | * we read/write PHY registers. The generic reset is | |||
1604 | * sufficient here, because we haven't determined | |||
1605 | * the PHY type yet. | |||
1606 | */ | |||
1607 | em_phy_reset(hw); | |||
1608 | ||||
1609 | /* Ungate automatic PHY configuration on non-managed 82579 */ | |||
1610 | if (hw->mac_type == em_pch2lan && | |||
1611 | (fwsm & E1000_FWSM_FW_VALID0x00008000) == 0) | |||
1612 | em_gate_hw_phy_config_ich8lan(hw, FALSE0); | |||
1613 | ||||
1614 | /* Set MDIO slow mode before any other MDIO access */ | |||
1615 | ret_val = em_set_mdio_slow_mode_hv(hw); | |||
1616 | if (ret_val) | |||
1617 | return ret_val; | |||
1618 | } | |||
1619 | ||||
1620 | /* Initialize Identification LED */ | |||
1621 | ret_val = em_id_led_init(hw); | |||
1622 | if (ret_val) { | |||
1623 | DEBUGOUT("Error Initializing Identification LED\n"); | |||
1624 | return ret_val; | |||
1625 | } | |||
1626 | /* Set the media type and TBI compatibility */ | |||
1627 | em_set_media_type(hw); | |||
1628 | ||||
1629 | /* Magic delay that improves problems with i219LM on HP Elitebook */ | |||
1630 | msec_delay(1)(*delay_func)(1000*(1)); | |||
1631 | /* Must be called after em_set_media_type because media_type is used */ | |||
1632 | em_initialize_hardware_bits(sc); | |||
1633 | ||||
1634 | /* Disabling VLAN filtering. */ | |||
1635 | DEBUGOUT("Initializing the IEEE VLAN\n"); | |||
1636 | /* VET hardcoded to standard value and VFTA removed in ICH8/ICH9 LAN */ | |||
1637 | if (!IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | |||
1638 | if (hw->mac_type < em_82545_rev_3) | |||
1639 | E1000_WRITE_REG(hw, VET, 0)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00038 : em_translate_82542_register (0x00038))), (0))); | |||
1640 | if (hw->mac_type == em_i350) | |||
1641 | em_clear_vfta_i350(hw); | |||
1642 | else | |||
1643 | em_clear_vfta(hw); | |||
1644 | } | |||
1645 | /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ | |||
1646 | if (hw->mac_type == em_82542_rev2_0) { | |||
1647 | DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); | |||
1648 | em_pci_clear_mwi(hw); | |||
1649 | E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00100 : em_translate_82542_register (0x00100))), (0x00000001))); | |||
1650 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
1651 | msec_delay(5)(*delay_func)(1000*(5)); | |||
1652 | } | |||
1653 | /* | |||
1654 | * Setup the receive address. This involves initializing all of the | |||
1655 | * Receive Address Registers (RARs 0 - 15). | |||
1656 | */ | |||
1657 | em_init_rx_addrs(hw); | |||
1658 | ||||
1659 | /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI*/ | |||
1660 | if (hw->mac_type == em_82542_rev2_0) { | |||
1661 | E1000_WRITE_REG(hw, RCTL, 0)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00100 : em_translate_82542_register (0x00100))), (0))); | |||
1662 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
1663 | msec_delay(1)(*delay_func)(1000*(1)); | |||
1664 | if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE0x0010) | |||
1665 | em_pci_set_mwi(hw); | |||
1666 | } | |||
1667 | /* Zero out the Multicast HASH table */ | |||
1668 | DEBUGOUT("Zeroing the MTA\n"); | |||
1669 | mta_size = E1000_MC_TBL_SIZE128; | |||
1670 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) | |||
1671 | mta_size = E1000_MC_TBL_SIZE_ICH8LAN32; | |||
1672 | for (i = 0; i < mta_size; i++) { | |||
1673 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05200 : em_translate_82542_register (0x05200)) + ((i) << 2)), (0))); | |||
1674 | /* | |||
1675 | * use write flush to prevent Memory Write Block (MWB) from | |||
1676 | * occurring when accessing our register space | |||
1677 | */ | |||
1678 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
1679 | } | |||
1680 | /* | |||
1681 | * Set the PCI priority bit correctly in the CTRL register. This | |||
1682 | * determines if the adapter gives priority to receives, or if it | |||
1683 | * gives equal priority to transmits and receives. Valid only on | |||
1684 | * 82542 and 82543 silicon. | |||
1685 | */ | |||
1686 | if (hw->dma_fairness && hw->mac_type <= em_82543) { | |||
1687 | ctrl = E1000_READ_REG(hw, CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))))); | |||
1688 | E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (ctrl | 0x00000004))); | |||
1689 | } | |||
1690 | switch (hw->mac_type) { | |||
1691 | case em_82545_rev_3: | |||
1692 | case em_82546_rev_3: | |||
1693 | break; | |||
1694 | default: | |||
1695 | /* | |||
1696 | * Workaround for PCI-X problem when BIOS sets MMRBC | |||
1697 | * incorrectly. | |||
1698 | */ | |||
1699 | if (hw->bus_type == em_bus_type_pcix) { | |||
1700 | em_read_pci_cfg(hw, PCIX_COMMAND_REGISTER0xE6, | |||
1701 | &pcix_cmd_word); | |||
1702 | em_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI0xEA, | |||
1703 | &pcix_stat_hi_word); | |||
1704 | cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK0x000C) | |||
1705 | >> PCIX_COMMAND_MMRBC_SHIFT0x2; | |||
1706 | stat_mmrbc = (pcix_stat_hi_word & | |||
1707 | PCIX_STATUS_HI_MMRBC_MASK0x0060) >> | |||
1708 | PCIX_STATUS_HI_MMRBC_SHIFT0x5; | |||
1709 | ||||
1710 | if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K0x3) | |||
1711 | stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K0x2; | |||
1712 | if (cmd_mmrbc > stat_mmrbc) { | |||
1713 | pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK0x000C; | |||
1714 | pcix_cmd_word |= stat_mmrbc << | |||
1715 | PCIX_COMMAND_MMRBC_SHIFT0x2; | |||
1716 | em_write_pci_cfg(hw, PCIX_COMMAND_REGISTER0xE6, | |||
1717 | &pcix_cmd_word); | |||
1718 | } | |||
1719 | } | |||
1720 | break; | |||
1721 | } | |||
1722 | ||||
1723 | /* More time needed for PHY to initialize */ | |||
1724 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) | |||
1725 | msec_delay(15)(*delay_func)(1000*(15)); | |||
1726 | ||||
1727 | /* | |||
1728 | * The 82578 Rx buffer will stall if wakeup is enabled in host and | |||
1729 | * the ME. Reading the BM_WUC register will clear the host wakeup bit. | |||
1730 | * Reset the phy after disabling host wakeup to reset the Rx buffer. | |||
1731 | */ | |||
1732 | if (hw->phy_type == em_phy_82578) { | |||
1733 | em_read_phy_reg(hw, PHY_REG(BM_WUC_PAGE, 1)(((800) << 5) | ((1) & 0x1F)), | |||
1734 | (uint16_t *)®_data); | |||
1735 | ret_val = em_phy_reset(hw); | |||
1736 | if (ret_val) | |||
1737 | return ret_val; | |||
1738 | } | |||
1739 | ||||
1740 | /* Call a subroutine to configure the link and setup flow control. */ | |||
1741 | ret_val = em_setup_link(hw); | |||
1742 | ||||
1743 | /* Set the transmit descriptor write-back policy */ | |||
1744 | if (hw->mac_type > em_82544) { | |||
1745 | FOREACH_QUEUE(sc, que)for ((que) = (sc)->queues; (que) < ((sc)->queues + ( sc)->num_queues); (que)++) { | |||
1746 | ctrl = E1000_READ_REG(hw, TXDCTL(que->me))((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? ((que->me) < 4 ? (0x03828 + ((que->me) * 0x100)) : (0x0E028 + ((que->me ) * 0x40))) : em_translate_82542_register(((que->me) < 4 ? (0x03828 + ((que->me) * 0x100)) : (0x0E028 + ((que-> me) * 0x40)))))))); | |||
1747 | ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH0x00FF0000) | | |||
1748 | E1000_TXDCTL_FULL_TX_DESC_WB0x01010000; | |||
1749 | E1000_WRITE_REG(hw, TXDCTL(que->me), ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? ((que->me) < 4 ? (0x03828 + ((que->me) * 0x100)) : (0x0E028 + ((que->me ) * 0x40))) : em_translate_82542_register(((que->me) < 4 ? (0x03828 + ((que->me) * 0x100)) : (0x0E028 + ((que-> me) * 0x40)))))), (ctrl))); | |||
1750 | } | |||
1751 | } | |||
1752 | if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) { | |||
1753 | em_enable_tx_pkt_filtering(hw); | |||
1754 | } | |||
1755 | switch (hw->mac_type) { | |||
1756 | default: | |||
1757 | break; | |||
1758 | case em_80003es2lan: | |||
1759 | /* Enable retransmit on late collisions */ | |||
1760 | reg_data = E1000_READ_REG(hw, TCTL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00400 : em_translate_82542_register (0x00400))))); | |||
1761 | reg_data |= E1000_TCTL_RTLC0x01000000; | |||
1762 | E1000_WRITE_REG(hw, TCTL, reg_data)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00400 : em_translate_82542_register (0x00400))), (reg_data))); | |||
1763 | ||||
1764 | /* Configure Gigabit Carry Extend Padding */ | |||
1765 | reg_data = E1000_READ_REG(hw, TCTL_EXT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00404 : em_translate_82542_register (0x00404))))); | |||
1766 | reg_data &= ~E1000_TCTL_EXT_GCEX_MASK0x000FFC00; | |||
1767 | reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX0x00010000; | |||
1768 | E1000_WRITE_REG(hw, TCTL_EXT, reg_data)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00404 : em_translate_82542_register (0x00404))), (reg_data))); | |||
1769 | ||||
1770 | /* Configure Transmit Inter-Packet Gap */ | |||
1771 | reg_data = E1000_READ_REG(hw, TIPG)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00410 : em_translate_82542_register (0x00410))))); | |||
1772 | reg_data &= ~E1000_TIPG_IPGT_MASK0x000003FF; | |||
1773 | reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_10000x00000008; | |||
1774 | E1000_WRITE_REG(hw, TIPG, reg_data)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00410 : em_translate_82542_register (0x00410))), (reg_data))); | |||
1775 | ||||
1776 | reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05F00 : em_translate_82542_register (0x05F00)) + ((0x0001) << 2)))); | |||
1777 | reg_data &= ~0x00100000; | |||
1778 | E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05F00 : em_translate_82542_register (0x05F00)) + ((0x0001) << 2)), (reg_data))); | |||
1779 | /* FALLTHROUGH */ | |||
1780 | case em_82571: | |||
1781 | case em_82572: | |||
1782 | case em_82575: | |||
1783 | case em_82576: | |||
1784 | case em_82580: | |||
1785 | case em_i210: | |||
1786 | case em_i350: | |||
1787 | case em_ich8lan: | |||
1788 | case em_ich9lan: | |||
1789 | case em_ich10lan: | |||
1790 | case em_pchlan: | |||
1791 | case em_pch2lan: | |||
1792 | case em_pch_lpt: | |||
1793 | case em_pch_spt: | |||
1794 | case em_pch_cnp: | |||
1795 | /* | |||
1796 | * Old code always initialized queue 1, | |||
1797 | * even when unused, keep behaviour | |||
1798 | */ | |||
1799 | if (sc->num_queues == 1) { | |||
1800 | ctrl = E1000_READ_REG(hw, TXDCTL(1))((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? ((1) < 4 ? (0x03828 + ((1) * 0x100)) : (0x0E028 + ((1) * 0x40))) : em_translate_82542_register (((1) < 4 ? (0x03828 + ((1) * 0x100)) : (0x0E028 + ((1) * 0x40 )))))))); | |||
1801 | ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH0x00FF0000) | | |||
1802 | E1000_TXDCTL_FULL_TX_DESC_WB0x01010000; | |||
1803 | E1000_WRITE_REG(hw, TXDCTL(1), ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? ((1) < 4 ? (0x03828 + ((1) * 0x100)) : (0x0E028 + ((1) * 0x40))) : em_translate_82542_register (((1) < 4 ? (0x03828 + ((1) * 0x100)) : (0x0E028 + ((1) * 0x40 )))))), (ctrl))); | |||
1804 | } | |||
1805 | break; | |||
1806 | } | |||
1807 | ||||
1808 | if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) { | |||
1809 | uint32_t gcr = E1000_READ_REG(hw, GCR)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B00 : em_translate_82542_register (0x05B00))))); | |||
1810 | gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX0x08000000; | |||
1811 | E1000_WRITE_REG(hw, GCR, gcr)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B00 : em_translate_82542_register (0x05B00))), (gcr))); | |||
1812 | } | |||
1813 | /* | |||
1814 | * Clear all of the statistics registers (clear on read). It is | |||
1815 | * important that we do this after we have tried to establish link | |||
1816 | * because the symbol error count will increment wildly if there is | |||
1817 | * no link. | |||
1818 | */ | |||
1819 | em_clear_hw_cntrs(hw); | |||
1820 | /* | |||
1821 | * ICH8 No-snoop bits are opposite polarity. Set to snoop by default | |||
1822 | * after reset. | |||
1823 | */ | |||
1824 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | |||
1825 | if (hw->mac_type == em_ich8lan) | |||
1826 | snoop = PCI_EX_82566_SNOOP_ALL(0x00000001 | 0x00000002 | 0x00000004 | 0x00000008 | 0x00000010 | 0x00000020); | |||
1827 | else | |||
1828 | snoop = (u_int32_t) ~ (PCI_EX_NO_SNOOP_ALL(0x00000001 | 0x00000002 | 0x00000004 | 0x00000008 | 0x00000010 | 0x00000020)); | |||
1829 | ||||
1830 | em_set_pci_ex_no_snoop(hw, snoop); | |||
1831 | } | |||
1832 | ||||
1833 | if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER0x1099 || | |||
1834 | hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP30x10B5) { | |||
1835 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))))); | |||
1836 | /* | |||
1837 | * Relaxed ordering must be disabled to avoid a parity error | |||
1838 | * crash in a PCI slot. | |||
1839 | */ | |||
1840 | ctrl_ext |= E1000_CTRL_EXT_RO_DIS0x00020000; | |||
1841 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))), (ctrl_ext))); | |||
1842 | } | |||
1843 | return ret_val; | |||
1844 | } | |||
1845 | ||||
1846 | /****************************************************************************** | |||
1847 | * Adjust SERDES output amplitude based on EEPROM setting. | |||
1848 | * | |||
1849 | * hw - Struct containing variables accessed by shared code. | |||
1850 | *****************************************************************************/ | |||
1851 | static int32_t | |||
1852 | em_adjust_serdes_amplitude(struct em_hw *hw) | |||
1853 | { | |||
1854 | uint16_t eeprom_data; | |||
1855 | int32_t ret_val; | |||
1856 | DEBUGFUNC("em_adjust_serdes_amplitude");; | |||
1857 | ||||
1858 | if (hw->media_type != em_media_type_internal_serdes || | |||
1859 | hw->mac_type >= em_82575) | |||
1860 | return E1000_SUCCESS0; | |||
1861 | ||||
1862 | switch (hw->mac_type) { | |||
1863 | case em_82545_rev_3: | |||
1864 | case em_82546_rev_3: | |||
1865 | break; | |||
1866 | default: | |||
1867 | return E1000_SUCCESS0; | |||
1868 | } | |||
1869 | ||||
1870 | ret_val = em_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE0x0006, 1, &eeprom_data); | |||
1871 | if (ret_val) { | |||
1872 | return ret_val; | |||
1873 | } | |||
1874 | if (eeprom_data != EEPROM_RESERVED_WORD0xFFFF) { | |||
1875 | /* Adjust SERDES output amplitude only. */ | |||
1876 | eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK0x000F; | |||
1877 | ret_val = em_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL0x1A, | |||
1878 | eeprom_data); | |||
1879 | if (ret_val) | |||
1880 | return ret_val; | |||
1881 | } | |||
1882 | return E1000_SUCCESS0; | |||
1883 | } | |||
1884 | ||||
1885 | /****************************************************************************** | |||
1886 | * Configures flow control and link settings. | |||
1887 | * | |||
1888 | * hw - Struct containing variables accessed by shared code | |||
1889 | * | |||
1890 | * Determines which flow control settings to use. Calls the appropriate media- | |||
1891 | * specific link configuration function. Configures the flow control settings. | |||
1892 | * Assuming the adapter has a valid link partner, a valid link should be | |||
1893 | * established. Assumes the hardware has previously been reset and the | |||
1894 | * transmitter and receiver are not enabled. | |||
1895 | *****************************************************************************/ | |||
1896 | int32_t | |||
1897 | em_setup_link(struct em_hw *hw) | |||
1898 | { | |||
1899 | uint32_t ctrl_ext; | |||
1900 | int32_t ret_val; | |||
1901 | uint16_t eeprom_data; | |||
1902 | uint16_t eeprom_control2_reg_offset; | |||
1903 | DEBUGFUNC("em_setup_link");; | |||
1904 | ||||
1905 | eeprom_control2_reg_offset = | |||
1906 | (hw->mac_type != em_icp_xxxx) | |||
1907 | ? EEPROM_INIT_CONTROL2_REG0x000F | |||
1908 | : EEPROM_INIT_CONTROL3_ICP_xxxx(hw->icp_xxxx_port_num)((((hw->icp_xxxx_port_num) + 1) << 4) + 1); | |||
1909 | /* | |||
1910 | * In the case of the phy reset being blocked, we already have a | |||
1911 | * link. We do not have to set it up again. | |||
1912 | */ | |||
1913 | if (em_check_phy_reset_block(hw)) | |||
1914 | return E1000_SUCCESS0; | |||
1915 | /* | |||
1916 | * Read and store word 0x0F of the EEPROM. This word contains bits | |||
1917 | * that determine the hardware's default PAUSE (flow control) mode, a | |||
1918 | * bit that determines whether the HW defaults to enabling or | |||
1919 | * disabling auto-negotiation, and the direction of the SW defined | |||
1920 | * pins. If there is no SW over-ride of the flow control setting, | |||
1921 | * then the variable hw->fc will be initialized based on a value in | |||
1922 | * the EEPROM. | |||
1923 | */ | |||
1924 | if (hw->fc == E1000_FC_DEFAULT0xFF) { | |||
1925 | switch (hw->mac_type) { | |||
1926 | case em_ich8lan: | |||
1927 | case em_ich9lan: | |||
1928 | case em_ich10lan: | |||
1929 | case em_pchlan: | |||
1930 | case em_pch2lan: | |||
1931 | case em_pch_lpt: | |||
1932 | case em_pch_spt: | |||
1933 | case em_pch_cnp: | |||
1934 | case em_82573: | |||
1935 | case em_82574: | |||
1936 | hw->fc = E1000_FC_FULL3; | |||
1937 | break; | |||
1938 | default: | |||
1939 | ret_val = em_read_eeprom(hw, | |||
1940 | eeprom_control2_reg_offset, 1, &eeprom_data); | |||
1941 | if (ret_val) { | |||
1942 | DEBUGOUT("EEPROM Read Error\n"); | |||
1943 | return -E1000_ERR_EEPROM1; | |||
1944 | } | |||
1945 | if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK0x3000) == 0) | |||
1946 | hw->fc = E1000_FC_NONE0; | |||
1947 | else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK0x3000) == | |||
1948 | EEPROM_WORD0F_ASM_DIR0x2000) | |||
1949 | hw->fc = E1000_FC_TX_PAUSE2; | |||
1950 | else | |||
1951 | hw->fc = E1000_FC_FULL3; | |||
1952 | break; | |||
1953 | } | |||
1954 | } | |||
1955 | /* | |||
1956 | * We want to save off the original Flow Control configuration just | |||
1957 | * in case we get disconnected and then reconnected into a different | |||
1958 | * hub or switch with different Flow Control capabilities. | |||
1959 | */ | |||
1960 | if (hw->mac_type == em_82542_rev2_0) | |||
1961 | hw->fc &= (~E1000_FC_TX_PAUSE2); | |||
1962 | ||||
1963 | if ((hw->mac_type < em_82543) && (hw->report_tx_early == 1)) | |||
1964 | hw->fc &= (~E1000_FC_RX_PAUSE1); | |||
1965 | ||||
1966 | hw->original_fc = hw->fc; | |||
1967 | ||||
1968 | DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc); | |||
1969 | /* | |||
1970 | * Take the 4 bits from EEPROM word 0x0F that determine the initial | |||
1971 | * polarity value for the SW controlled pins, and setup the Extended | |||
1972 | * Device Control reg with that info. This is needed because one of | |||
1973 | * the SW controlled pins is used for signal detection. So this | |||
1974 | * should be done before em_setup_pcs_link() or em_phy_setup() is | |||
1975 | * called. | |||
1976 | */ | |||
1977 | if (hw->mac_type == em_82543) { | |||
1978 | ret_val = em_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG0x000F, | |||
1979 | 1, &eeprom_data); | |||
1980 | if (ret_val) { | |||
1981 | DEBUGOUT("EEPROM Read Error\n"); | |||
1982 | return -E1000_ERR_EEPROM1; | |||
1983 | } | |||
1984 | ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT0x00F0) << | |||
1985 | SWDPIO__EXT_SHIFT4); | |||
1986 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))), (ctrl_ext))); | |||
1987 | } | |||
1988 | /* Make sure we have a valid PHY */ | |||
1989 | ret_val = em_detect_gig_phy(hw); | |||
1990 | if (ret_val) { | |||
1991 | DEBUGOUT("Error, did not detect valid phy.\n"); | |||
1992 | if (hw->mac_type == em_icp_xxxx) | |||
1993 | return E1000_DEFER_INIT15; | |||
1994 | else | |||
1995 | return ret_val; | |||
1996 | } | |||
1997 | DEBUGOUT1("Phy ID = %x \n", hw->phy_id); | |||
1998 | ||||
1999 | /* Call the necessary subroutine to configure the link. */ | |||
2000 | switch (hw->media_type) { | |||
2001 | case em_media_type_copper: | |||
2002 | case em_media_type_oem: | |||
2003 | ret_val = em_setup_copper_link(hw); | |||
2004 | break; | |||
2005 | default: | |||
2006 | ret_val = em_setup_fiber_serdes_link(hw); | |||
2007 | break; | |||
2008 | } | |||
2009 | /* | |||
2010 | * Initialize the flow control address, type, and PAUSE timer | |||
2011 | * registers to their default values. This is done even if flow | |||
2012 | * control is disabled, because it does not hurt anything to | |||
2013 | * initialize these registers. | |||
2014 | */ | |||
2015 | DEBUGOUT("Initializing the Flow Control address, type and timer regs\n" | |||
2016 | ); | |||
2017 | ||||
2018 | /* | |||
2019 | * FCAL/H and FCT are hardcoded to standard values in | |||
2020 | * em_ich8lan / em_ich9lan / em_ich10lan. | |||
2021 | */ | |||
2022 | if (!IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | |||
2023 | E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00030 : em_translate_82542_register (0x00030))), (0x8808))); | |||
2024 | E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x0002C : em_translate_82542_register (0x0002C))), (0x00000100))); | |||
2025 | E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00028 : em_translate_82542_register (0x00028))), (0x00C28001))); | |||
2026 | } | |||
2027 | E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00170 : em_translate_82542_register (0x00170))), (hw->fc_pause_time))); | |||
2028 | ||||
2029 | if (hw->phy_type == em_phy_82577 || | |||
2030 | hw->phy_type == em_phy_82578 || | |||
2031 | hw->phy_type == em_phy_82579 || | |||
2032 | hw->phy_type == em_phy_i217) { | |||
2033 | E1000_WRITE_REG(hw, FCRTV_PCH, 0x1000)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05F40 : em_translate_82542_register (0x05F40))), (0x1000))); | |||
2034 | em_write_phy_reg(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27)(((769) << 5) | ((27) & 0x1F)), | |||
2035 | hw->fc_pause_time); | |||
2036 | } | |||
2037 | ||||
2038 | /* | |||
2039 | * Set the flow control receive threshold registers. Normally, these | |||
2040 | * registers will be set to a default threshold that may be adjusted | |||
2041 | * later by the driver's runtime code. However, if the ability to | |||
2042 | * transmit pause frames in not enabled, then these registers will be | |||
2043 | * set to 0. | |||
2044 | */ | |||
2045 | if (!(hw->fc & E1000_FC_TX_PAUSE2)) { | |||
2046 | E1000_WRITE_REG(hw, FCRTL, 0)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x02160 : em_translate_82542_register (0x02160))), (0))); | |||
2047 | E1000_WRITE_REG(hw, FCRTH, 0)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x02168 : em_translate_82542_register (0x02168))), (0))); | |||
2048 | } else { | |||
2049 | /* | |||
2050 | * We need to set up the Receive Threshold high and low water | |||
2051 | * marks as well as (optionally) enabling the transmission of | |||
2052 | * XON frames. | |||
2053 | */ | |||
2054 | if (hw->fc_send_xon) { | |||
2055 | E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x02160 : em_translate_82542_register (0x02160))), ((hw->fc_low_water | 0x80000000)))) | |||
2056 | | E1000_FCRTL_XONE))((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x02160 : em_translate_82542_register (0x02160))), ((hw->fc_low_water | 0x80000000)))); | |||
2057 | E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x02168 : em_translate_82542_register (0x02168))), (hw->fc_high_water))); | |||
2058 | } else { | |||
2059 | E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x02160 : em_translate_82542_register (0x02160))), (hw->fc_low_water))); | |||
2060 | E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x02168 : em_translate_82542_register (0x02168))), (hw->fc_high_water))); | |||
2061 | } | |||
2062 | } | |||
2063 | return ret_val; | |||
2064 | } | |||
2065 | ||||
2066 | void | |||
2067 | em_power_up_serdes_link_82575(struct em_hw *hw) | |||
2068 | { | |||
2069 | uint32_t reg; | |||
2070 | ||||
2071 | if (hw->media_type != em_media_type_internal_serdes && | |||
2072 | hw->sgmii_active == FALSE0) | |||
2073 | return; | |||
2074 | ||||
2075 | /* Enable PCS to turn on link */ | |||
2076 | reg = E1000_READ_REG(hw, PCS_CFG0)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04200 : em_translate_82542_register (0x04200))))); | |||
2077 | reg |= E1000_PCS_CFG_PCS_EN8; | |||
2078 | E1000_WRITE_REG(hw, PCS_CFG0, reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04200 : em_translate_82542_register (0x04200))), (reg))); | |||
2079 | ||||
2080 | /* Power up the laser */ | |||
2081 | reg = E1000_READ_REG(hw, CTRL_EXT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))))); | |||
2082 | reg &= ~E1000_CTRL_EXT_SDP3_DATA0x00000080; | |||
2083 | E1000_WRITE_REG(hw, CTRL_EXT, reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))), (reg))); | |||
2084 | ||||
2085 | /* flush the write to verify completion */ | |||
2086 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
2087 | delay(5)(*delay_func)(5); | |||
2088 | } | |||
2089 | ||||
2090 | /****************************************************************************** | |||
2091 | * Sets up link for a fiber based or serdes based adapter | |||
2092 | * | |||
2093 | * hw - Struct containing variables accessed by shared code | |||
2094 | * | |||
2095 | * Manipulates Physical Coding Sublayer functions in order to configure | |||
2096 | * link. Assumes the hardware has been previously reset and the transmitter | |||
2097 | * and receiver are not enabled. | |||
2098 | *****************************************************************************/ | |||
2099 | static int32_t | |||
2100 | em_setup_fiber_serdes_link(struct em_hw *hw) | |||
2101 | { | |||
2102 | uint32_t ctrl, ctrl_ext, reg; | |||
2103 | uint32_t status; | |||
2104 | uint32_t txcw = 0; | |||
2105 | uint32_t i; | |||
2106 | uint32_t signal = 0; | |||
2107 | int32_t ret_val; | |||
2108 | DEBUGFUNC("em_setup_fiber_serdes_link");; | |||
2109 | ||||
2110 | if (hw->media_type != em_media_type_internal_serdes && | |||
2111 | hw->sgmii_active == FALSE0) | |||
2112 | return -E1000_ERR_CONFIG3; | |||
2113 | ||||
2114 | /* | |||
2115 | * On 82571 and 82572 Fiber connections, SerDes loopback mode | |||
2116 | * persists until explicitly turned off or a power cycle is | |||
2117 | * performed. A read to the register does not indicate its status. | |||
2118 | * Therefore, we ensure loopback mode is disabled during | |||
2119 | * initialization. | |||
2120 | */ | |||
2121 | if (hw->mac_type == em_82571 || hw->mac_type == em_82572 || | |||
2122 | hw->mac_type >= em_82575) | |||
2123 | E1000_WRITE_REG(hw, SCTL, E1000_DISABLE_SERDES_LOOPBACK)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00024 : em_translate_82542_register (0x00024))), (0x0400))); | |||
2124 | ||||
2125 | if (hw->mac_type >= em_82575) | |||
2126 | em_power_up_serdes_link_82575(hw); | |||
2127 | ||||
2128 | /* | |||
2129 | * On adapters with a MAC newer than 82544, SWDP 1 will be set when | |||
2130 | * the optics detect a signal. On older adapters, it will be cleared | |||
2131 | * when there is a signal. This applies to fiber media only. If | |||
2132 | * we're on serdes media, adjust the output amplitude to value set in | |||
2133 | * the EEPROM. | |||
2134 | */ | |||
2135 | ctrl = E1000_READ_REG(hw, CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))))); | |||
2136 | if (hw->media_type == em_media_type_fiber) | |||
2137 | signal = (hw->mac_type > em_82544) ? E1000_CTRL_SWDPIN10x00080000 : 0; | |||
2138 | ||||
2139 | ret_val = em_adjust_serdes_amplitude(hw); | |||
2140 | if (ret_val) | |||
2141 | return ret_val; | |||
2142 | ||||
2143 | /* Take the link out of reset */ | |||
2144 | ctrl &= ~(E1000_CTRL_LRST0x00000008); | |||
2145 | ||||
2146 | if (hw->mac_type >= em_82575) { | |||
2147 | /* set both sw defined pins on 82575/82576*/ | |||
2148 | ctrl |= E1000_CTRL_SWDPIN00x00040000 | E1000_CTRL_SWDPIN10x00080000; | |||
2149 | ||||
2150 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))))); | |||
2151 | switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK0x00C00000) { | |||
2152 | case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX0x00400000: | |||
2153 | case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES0x00C00000: | |||
2154 | /* the backplane is always connected */ | |||
2155 | reg = E1000_READ_REG(hw, PCS_LCTL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04208 : em_translate_82542_register (0x04208))))); | |||
2156 | reg |= E1000_PCS_LCTL_FORCE_FCTRL0x80; | |||
2157 | reg |= E1000_PCS_LCTL_FSV_10004 | E1000_PCS_LCTL_FDV_FULL8; | |||
2158 | reg |= E1000_PCS_LCTL_FSD0x10; /* Force Speed */ | |||
2159 | DEBUGOUT("Configuring Forced Link\n"); | |||
2160 | E1000_WRITE_REG(hw, PCS_LCTL, reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04208 : em_translate_82542_register (0x04208))), (reg))); | |||
2161 | em_force_mac_fc(hw); | |||
2162 | hw->autoneg_failed = 0; | |||
2163 | return E1000_SUCCESS0; | |||
2164 | break; | |||
2165 | default: | |||
2166 | /* Set switch control to serdes energy detect */ | |||
2167 | reg = E1000_READ_REG(hw, CONNSW)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00034 : em_translate_82542_register (0x00034))))); | |||
2168 | reg |= E1000_CONNSW_ENRGSRC0x4; | |||
2169 | E1000_WRITE_REG(hw, CONNSW, reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00034 : em_translate_82542_register (0x00034))), (reg))); | |||
2170 | break; | |||
2171 | } | |||
2172 | } | |||
2173 | ||||
2174 | /* Adjust VCO speed to improve BER performance */ | |||
2175 | ret_val = em_set_vco_speed(hw); | |||
2176 | if (ret_val) | |||
2177 | return ret_val; | |||
2178 | ||||
2179 | em_config_collision_dist(hw); | |||
2180 | /* | |||
2181 | * Check for a software override of the flow control settings, and | |||
2182 | * setup the device accordingly. If auto-negotiation is enabled, | |||
2183 | * then software will have to set the "PAUSE" bits to the correct | |||
2184 | * value in the Tranmsit Config Word Register (TXCW) and re-start | |||
2185 | * auto-negotiation. However, if auto-negotiation is disabled, then | |||
2186 | * software will have to manually configure the two flow control | |||
2187 | * enable bits in the CTRL register. | |||
2188 | * | |||
2189 | * The possible values of the "fc" parameter are: 0: Flow control is | |||
2190 | * completely disabled 1: Rx flow control is enabled (we can receive | |||
2191 | * pause frames, but not send pause frames). 2: Tx flow control is | |||
2192 | * enabled (we can send pause frames but we do not support receiving | |||
2193 | * pause frames). 3: Both Rx and TX flow control (symmetric) are | |||
2194 | * enabled. | |||
2195 | */ | |||
2196 | switch (hw->fc) { | |||
2197 | case E1000_FC_NONE0: | |||
2198 | /* | |||
2199 | * Flow control is completely disabled by a software | |||
2200 | * over-ride. | |||
2201 | */ | |||
2202 | txcw = (E1000_TXCW_ANE0x80000000 | E1000_TXCW_FD0x00000020); | |||
2203 | break; | |||
2204 | case E1000_FC_RX_PAUSE1: | |||
2205 | /* | |||
2206 | * RX Flow control is enabled and TX Flow control is disabled | |||
2207 | * by a software over-ride. Since there really isn't a way to | |||
2208 | * advertise that we are capable of RX Pause ONLY, we will | |||
2209 | * advertise that we support both symmetric and asymmetric RX | |||
2210 | * PAUSE. Later, we will disable the adapter's ability to | |||
2211 | * send PAUSE frames. | |||
2212 | */ | |||
2213 | txcw = (E1000_TXCW_ANE0x80000000 | E1000_TXCW_FD0x00000020 | | |||
2214 | E1000_TXCW_PAUSE_MASK0x00000180); | |||
2215 | break; | |||
2216 | case E1000_FC_TX_PAUSE2: | |||
2217 | /* | |||
2218 | * TX Flow control is enabled, and RX Flow control is | |||
2219 | * disabled, by a software over-ride. | |||
2220 | */ | |||
2221 | txcw = (E1000_TXCW_ANE0x80000000 | E1000_TXCW_FD0x00000020 | E1000_TXCW_ASM_DIR0x00000100); | |||
2222 | break; | |||
2223 | case E1000_FC_FULL3: | |||
2224 | /* | |||
2225 | * Flow control (both RX and TX) is enabled by a software | |||
2226 | * over-ride. | |||
2227 | */ | |||
2228 | txcw = (E1000_TXCW_ANE0x80000000 | E1000_TXCW_FD0x00000020 | | |||
2229 | E1000_TXCW_PAUSE_MASK0x00000180); | |||
2230 | break; | |||
2231 | default: | |||
2232 | DEBUGOUT("Flow control param set incorrectly\n"); | |||
2233 | return -E1000_ERR_CONFIG3; | |||
2234 | break; | |||
2235 | } | |||
2236 | /* | |||
2237 | * Since auto-negotiation is enabled, take the link out of reset (the | |||
2238 | * link will be in reset, because we previously reset the chip). This | |||
2239 | * will restart auto-negotiation. If auto-negotiation is successful | |||
2240 | * then the link-up status bit will be set and the flow control | |||
2241 | * enable bits (RFCE and TFCE) will be set according to their | |||
2242 | * negotiated value. | |||
2243 | */ | |||
2244 | DEBUGOUT("Auto-negotiation enabled\n"); | |||
2245 | ||||
2246 | E1000_WRITE_REG(hw, TXCW, txcw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00178 : em_translate_82542_register (0x00178))), (txcw))); | |||
2247 | E1000_WRITE_REG(hw, CTRL, ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (ctrl))); | |||
2248 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
2249 | ||||
2250 | hw->txcw = txcw; | |||
2251 | msec_delay(1)(*delay_func)(1000*(1)); | |||
2252 | /* | |||
2253 | * If we have a signal (the cable is plugged in) then poll for a | |||
2254 | * "Link-Up" indication in the Device Status Register. Time-out if a | |||
2255 | * link isn't seen in 500 milliseconds seconds (Auto-negotiation | |||
2256 | * should complete in less than 500 milliseconds even if the other | |||
2257 | * end is doing it in SW). For internal serdes, we just assume a | |||
2258 | * signal is present, then poll. | |||
2259 | */ | |||
2260 | if (hw->media_type == em_media_type_internal_serdes || | |||
2261 | (E1000_READ_REG(hw, CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))))) & E1000_CTRL_SWDPIN10x00080000) == signal) { | |||
2262 | DEBUGOUT("Looking for Link\n"); | |||
2263 | for (i = 0; i < (LINK_UP_TIMEOUT500 / 10); i++) { | |||
2264 | msec_delay(10)(*delay_func)(1000*(10)); | |||
2265 | status = E1000_READ_REG(hw, STATUS)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
2266 | if (status & E1000_STATUS_LU0x00000002) | |||
2267 | break; | |||
2268 | } | |||
2269 | if (i == (LINK_UP_TIMEOUT500 / 10)) { | |||
2270 | DEBUGOUT("Never got a valid link from auto-neg!!!\n"); | |||
2271 | hw->autoneg_failed = 1; | |||
2272 | /* | |||
2273 | * AutoNeg failed to achieve a link, so we'll call | |||
2274 | * em_check_for_link. This routine will force the | |||
2275 | * link up if we detect a signal. This will allow us | |||
2276 | * to communicate with non-autonegotiating link | |||
2277 | * partners. | |||
2278 | */ | |||
2279 | ret_val = em_check_for_link(hw); | |||
2280 | if (ret_val) { | |||
2281 | DEBUGOUT("Error while checking for link\n"); | |||
2282 | return ret_val; | |||
2283 | } | |||
2284 | hw->autoneg_failed = 0; | |||
2285 | } else { | |||
2286 | hw->autoneg_failed = 0; | |||
2287 | DEBUGOUT("Valid Link Found\n"); | |||
2288 | } | |||
2289 | } else { | |||
2290 | DEBUGOUT("No Signal Detected\n"); | |||
2291 | } | |||
2292 | return E1000_SUCCESS0; | |||
2293 | } | |||
2294 | ||||
2295 | /****************************************************************************** | |||
2296 | * Make sure we have a valid PHY and change PHY mode before link setup. | |||
2297 | * | |||
2298 | * hw - Struct containing variables accessed by shared code | |||
2299 | *****************************************************************************/ | |||
2300 | static int32_t | |||
2301 | em_copper_link_preconfig(struct em_hw *hw) | |||
2302 | { | |||
2303 | uint32_t ctrl; | |||
2304 | int32_t ret_val; | |||
2305 | uint16_t phy_data; | |||
2306 | DEBUGFUNC("em_copper_link_preconfig");; | |||
2307 | ||||
2308 | ctrl = E1000_READ_REG(hw, CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))))); | |||
2309 | /* | |||
2310 | * With 82543, we need to force speed and duplex on the MAC equal to | |||
2311 | * what the PHY speed and duplex configuration is. In addition, we | |||
2312 | * need to perform a hardware reset on the PHY to take it out of | |||
2313 | * reset. | |||
2314 | */ | |||
2315 | if (hw->mac_type > em_82543) { | |||
2316 | ctrl |= E1000_CTRL_SLU0x00000040; | |||
2317 | ctrl &= ~(E1000_CTRL_FRCSPD0x00000800 | E1000_CTRL_FRCDPX0x00001000); | |||
2318 | E1000_WRITE_REG(hw, CTRL, ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (ctrl))); | |||
2319 | } else { | |||
2320 | ctrl |= (E1000_CTRL_FRCSPD0x00000800 | E1000_CTRL_FRCDPX0x00001000 | | |||
2321 | E1000_CTRL_SLU0x00000040); | |||
2322 | E1000_WRITE_REG(hw, CTRL, ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (ctrl))); | |||
2323 | ret_val = em_phy_hw_reset(hw); | |||
2324 | if (ret_val) | |||
2325 | return ret_val; | |||
2326 | } | |||
2327 | ||||
2328 | /* Set PHY to class A mode (if necessary) */ | |||
2329 | ret_val = em_set_phy_mode(hw); | |||
2330 | if (ret_val) | |||
2331 | return ret_val; | |||
2332 | ||||
2333 | if ((hw->mac_type == em_82545_rev_3) || | |||
2334 | (hw->mac_type == em_82546_rev_3)) { | |||
2335 | ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL0x10, | |||
2336 | &phy_data); | |||
2337 | phy_data |= 0x00000008; | |||
2338 | ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL0x10, | |||
2339 | phy_data); | |||
2340 | } | |||
2341 | if (hw->mac_type <= em_82543 || | |||
2342 | hw->mac_type == em_82541 || hw->mac_type == em_82547 || | |||
2343 | hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2) | |||
2344 | hw->phy_reset_disable = FALSE0; | |||
2345 | if ((hw->mac_type == em_82575 || hw->mac_type == em_82580 || | |||
2346 | hw->mac_type == em_82576 || | |||
2347 | hw->mac_type == em_i210 || hw->mac_type == em_i350) && | |||
2348 | hw->sgmii_active) { | |||
2349 | /* allow time for SFP cage time to power up phy */ | |||
2350 | msec_delay(300)(*delay_func)(1000*(300)); | |||
2351 | ||||
2352 | /* | |||
2353 | * SFP documentation requires the following to configure the SFP module | |||
2354 | * to work on SGMII. No further documentation is given. | |||
2355 | */ | |||
2356 | em_write_phy_reg(hw, 0x1B, 0x8084); | |||
2357 | em_phy_hw_reset(hw); | |||
2358 | } | |||
2359 | ||||
2360 | return E1000_SUCCESS0; | |||
2361 | } | |||
2362 | ||||
2363 | /****************************************************************************** | |||
2364 | * Copper link setup for em_phy_igp series. | |||
2365 | * | |||
2366 | * hw - Struct containing variables accessed by shared code | |||
2367 | *****************************************************************************/ | |||
2368 | static int32_t | |||
2369 | em_copper_link_igp_setup(struct em_hw *hw) | |||
2370 | { | |||
2371 | uint32_t led_ctrl; | |||
2372 | int32_t ret_val; | |||
2373 | uint16_t phy_data; | |||
2374 | DEBUGFUNC("em_copper_link_igp_setup");; | |||
2375 | ||||
2376 | if (hw->phy_reset_disable) | |||
2377 | return E1000_SUCCESS0; | |||
2378 | ||||
2379 | ret_val = em_phy_reset(hw); | |||
2380 | if (ret_val) { | |||
2381 | DEBUGOUT("Error Resetting the PHY\n"); | |||
2382 | return ret_val; | |||
2383 | } | |||
2384 | /* Wait 15ms for MAC to configure PHY from eeprom settings */ | |||
2385 | msec_delay(15)(*delay_func)(1000*(15)); | |||
2386 | if (hw->mac_type != em_ich8lan && | |||
2387 | hw->mac_type != em_ich9lan && | |||
2388 | hw->mac_type != em_ich10lan) { | |||
2389 | /* Configure activity LED after PHY reset */ | |||
2390 | led_ctrl = E1000_READ_REG(hw, LEDCTL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00E00 : em_translate_82542_register (0x00E00))))); | |||
2391 | led_ctrl &= IGP_ACTIVITY_LED_MASK0xFFFFF0FF; | |||
2392 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE0x0300 | IGP_LED3_MODE0x07000000); | |||
2393 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00E00 : em_translate_82542_register (0x00E00))), (led_ctrl))); | |||
2394 | } | |||
2395 | /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */ | |||
2396 | if (hw->phy_type == em_phy_igp) { | |||
2397 | /* disable lplu d3 during driver init */ | |||
2398 | ret_val = em_set_d3_lplu_state(hw, FALSE0); | |||
2399 | if (ret_val) { | |||
2400 | DEBUGOUT("Error Disabling LPLU D3\n"); | |||
2401 | return ret_val; | |||
2402 | } | |||
2403 | } | |||
2404 | /* disable lplu d0 during driver init */ | |||
2405 | if (hw->mac_type == em_pchlan || | |||
2406 | hw->mac_type == em_pch2lan || | |||
2407 | hw->mac_type == em_pch_lpt || | |||
2408 | hw->mac_type == em_pch_spt || | |||
2409 | hw->mac_type == em_pch_cnp) | |||
2410 | ret_val = em_set_lplu_state_pchlan(hw, FALSE0); | |||
2411 | else | |||
2412 | ret_val = em_set_d0_lplu_state(hw, FALSE0); | |||
2413 | if (ret_val) { | |||
2414 | DEBUGOUT("Error Disabling LPLU D0\n"); | |||
2415 | return ret_val; | |||
2416 | } | |||
2417 | /* Configure mdi-mdix settings */ | |||
2418 | ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL0x12, &phy_data); | |||
2419 | if (ret_val) | |||
2420 | return ret_val; | |||
2421 | ||||
2422 | if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) { | |||
2423 | hw->dsp_config_state = em_dsp_config_disabled; | |||
2424 | /* Force MDI for earlier revs of the IGP PHY */ | |||
2425 | phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX0x1000 | | |||
2426 | IGP01E1000_PSCR_FORCE_MDI_MDIX0x2000); | |||
2427 | hw->mdix = 1; | |||
2428 | ||||
2429 | } else { | |||
2430 | hw->dsp_config_state = em_dsp_config_enabled; | |||
2431 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX0x1000; | |||
2432 | ||||
2433 | switch (hw->mdix) { | |||
2434 | case 1: | |||
2435 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX0x2000; | |||
2436 | break; | |||
2437 | case 2: | |||
2438 | phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX0x2000; | |||
2439 | break; | |||
2440 | case 0: | |||
2441 | default: | |||
2442 | phy_data |= IGP01E1000_PSCR_AUTO_MDIX0x1000; | |||
2443 | break; | |||
2444 | } | |||
2445 | } | |||
2446 | ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL0x12, phy_data); | |||
2447 | if (ret_val) | |||
2448 | return ret_val; | |||
2449 | ||||
2450 | /* set auto-master slave resolution settings */ | |||
2451 | if (hw->autoneg) { | |||
2452 | em_ms_type phy_ms_setting = hw->master_slave; | |||
2453 | if (hw->ffe_config_state == em_ffe_config_active) | |||
2454 | hw->ffe_config_state = em_ffe_config_enabled; | |||
2455 | ||||
2456 | if (hw->dsp_config_state == em_dsp_config_activated) | |||
2457 | hw->dsp_config_state = em_dsp_config_enabled; | |||
2458 | /* | |||
2459 | * when autonegotiation advertisement is only 1000Mbps then | |||
2460 | * we should disable SmartSpeed and enable Auto MasterSlave | |||
2461 | * resolution as hardware default. | |||
2462 | */ | |||
2463 | if (hw->autoneg_advertised == ADVERTISE_1000_FULL0x0020) { | |||
2464 | /* Disable SmartSpeed */ | |||
2465 | ret_val = em_read_phy_reg(hw, | |||
2466 | IGP01E1000_PHY_PORT_CONFIG0x10, &phy_data); | |||
2467 | if (ret_val) | |||
2468 | return ret_val; | |||
2469 | ||||
2470 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED0x0080; | |||
2471 | ret_val = em_write_phy_reg(hw, | |||
2472 | IGP01E1000_PHY_PORT_CONFIG0x10, phy_data); | |||
2473 | if (ret_val) | |||
2474 | return ret_val; | |||
2475 | /* Set auto Master/Slave resolution process */ | |||
2476 | ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL0x09, | |||
2477 | &phy_data); | |||
2478 | if (ret_val) | |||
2479 | return ret_val; | |||
2480 | ||||
2481 | phy_data &= ~CR_1000T_MS_ENABLE0x1000; | |||
2482 | ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL0x09, | |||
2483 | phy_data); | |||
2484 | if (ret_val) | |||
2485 | return ret_val; | |||
2486 | } | |||
2487 | ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL0x09, &phy_data); | |||
2488 | if (ret_val) | |||
2489 | return ret_val; | |||
2490 | ||||
2491 | /* load defaults for future use */ | |||
2492 | hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE0x1000) ? | |||
2493 | ((phy_data & CR_1000T_MS_VALUE0x0800) ? em_ms_force_master : | |||
2494 | em_ms_force_slave) : em_ms_auto; | |||
2495 | ||||
2496 | switch (phy_ms_setting) { | |||
2497 | case em_ms_force_master: | |||
2498 | phy_data |= (CR_1000T_MS_ENABLE0x1000 | CR_1000T_MS_VALUE0x0800); | |||
2499 | break; | |||
2500 | case em_ms_force_slave: | |||
2501 | phy_data |= CR_1000T_MS_ENABLE0x1000; | |||
2502 | phy_data &= ~(CR_1000T_MS_VALUE0x0800); | |||
2503 | break; | |||
2504 | case em_ms_auto: | |||
2505 | phy_data &= ~CR_1000T_MS_ENABLE0x1000; | |||
2506 | break; | |||
2507 | default: | |||
2508 | break; | |||
2509 | } | |||
2510 | ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL0x09, phy_data); | |||
2511 | if (ret_val) | |||
2512 | return ret_val; | |||
2513 | } | |||
2514 | return E1000_SUCCESS0; | |||
2515 | } | |||
2516 | ||||
2517 | /****************************************************************************** | |||
2518 | * Copper link setup for em_phy_gg82563 series. | |||
2519 | * | |||
2520 | * hw - Struct containing variables accessed by shared code | |||
2521 | *****************************************************************************/ | |||
2522 | static int32_t | |||
2523 | em_copper_link_ggp_setup(struct em_hw *hw) | |||
2524 | { | |||
2525 | int32_t ret_val; | |||
2526 | uint16_t phy_data; | |||
2527 | uint32_t reg_data; | |||
2528 | DEBUGFUNC("em_copper_link_ggp_setup");; | |||
2529 | ||||
2530 | if (!hw->phy_reset_disable) { | |||
2531 | ||||
2532 | /* Enable CRS on TX for half-duplex operation. */ | |||
2533 | ret_val = em_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL(((2) << 5) | ((21) & 0x1F)), | |||
2534 | &phy_data); | |||
2535 | if (ret_val) | |||
2536 | return ret_val; | |||
2537 | ||||
2538 | phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX0x0010; | |||
2539 | /* Use 25MHz for both link down and 1000BASE-T for Tx clock */ | |||
2540 | phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ0x0007; | |||
2541 | ||||
2542 | ret_val = em_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL(((2) << 5) | ((21) & 0x1F)), | |||
2543 | phy_data); | |||
2544 | if (ret_val) | |||
2545 | return ret_val; | |||
2546 | /* | |||
2547 | * Options: MDI/MDI-X = 0 (default) 0 - Auto for all speeds 1 | |||
2548 | * - MDI mode 2 - MDI-X mode 3 - Auto for 1000Base-T only | |||
2549 | * (MDI-X for 10/100Base-T modes) | |||
2550 | */ | |||
2551 | ret_val = em_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL(((0) << 5) | ((16) & 0x1F)), | |||
2552 | &phy_data); | |||
2553 | ||||
2554 | if (ret_val) | |||
2555 | return ret_val; | |||
2556 | ||||
2557 | phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK0x0060; | |||
2558 | ||||
2559 | switch (hw->mdix) { | |||
2560 | case 1: | |||
2561 | phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI0x0000; | |||
2562 | break; | |||
2563 | case 2: | |||
2564 | phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX0x0020; | |||
2565 | break; | |||
2566 | case 0: | |||
2567 | default: | |||
2568 | phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO0x0060; | |||
2569 | break; | |||
2570 | } | |||
2571 | /* | |||
2572 | * Options: disable_polarity_correction = 0 (default) | |||
2573 | * Automatic Correction for Reversed Cable Polarity 0 - | |||
2574 | * Disabled 1 - Enabled | |||
2575 | */ | |||
2576 | phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE0x0002; | |||
2577 | if (hw->disable_polarity_correction == 1) | |||
2578 | phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE0x0002; | |||
2579 | ret_val = em_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL(((0) << 5) | ((16) & 0x1F)), | |||
2580 | phy_data); | |||
2581 | ||||
2582 | if (ret_val) | |||
2583 | return ret_val; | |||
2584 | ||||
2585 | /* SW Reset the PHY so all changes take effect */ | |||
2586 | ret_val = em_phy_reset(hw); | |||
2587 | if (ret_val) { | |||
2588 | DEBUGOUT("Error Resetting the PHY\n"); | |||
2589 | return ret_val; | |||
2590 | } | |||
2591 | } /* phy_reset_disable */ | |||
2592 | if (hw->mac_type == em_80003es2lan) { | |||
2593 | /* Bypass RX and TX FIFO's */ | |||
2594 | ret_val = em_write_kmrn_reg(hw, | |||
2595 | E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL0x00000000, | |||
2596 | E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS0x00000008 | | |||
2597 | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS0x00000800); | |||
2598 | if (ret_val) | |||
2599 | return ret_val; | |||
2600 | ||||
2601 | ret_val = em_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2(((0) << 5) | ((26) & 0x1F)), | |||
2602 | &phy_data); | |||
2603 | if (ret_val) | |||
2604 | return ret_val; | |||
2605 | ||||
2606 | phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG0x2000; | |||
2607 | ret_val = em_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2(((0) << 5) | ((26) & 0x1F)), | |||
2608 | phy_data); | |||
2609 | ||||
2610 | if (ret_val) | |||
2611 | return ret_val; | |||
2612 | ||||
2613 | reg_data = E1000_READ_REG(hw, CTRL_EXT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))))); | |||
2614 | reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK0x00C00000); | |||
2615 | E1000_WRITE_REG(hw, CTRL_EXT, reg_data)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))), (reg_data))); | |||
2616 | ||||
2617 | ret_val = em_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL(((193) << 5) | ((20) & 0x1F)), | |||
2618 | &phy_data); | |||
2619 | if (ret_val) | |||
2620 | return ret_val; | |||
2621 | /* | |||
2622 | * Do not init these registers when the HW is in IAMT mode, | |||
2623 | * since the firmware will have already initialized them. We | |||
2624 | * only initialize them if the HW is not in IAMT mode. | |||
2625 | */ | |||
2626 | if (em_check_mng_mode(hw) == FALSE0) { | |||
2627 | /* Enable Electrical Idle on the PHY */ | |||
2628 | phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE0x0001; | |||
2629 | ret_val = em_write_phy_reg(hw, | |||
2630 | GG82563_PHY_PWR_MGMT_CTRL(((193) << 5) | ((20) & 0x1F)), phy_data); | |||
2631 | if (ret_val) | |||
2632 | return ret_val; | |||
2633 | ||||
2634 | ret_val = em_read_phy_reg(hw, | |||
2635 | GG82563_PHY_KMRN_MODE_CTRL(((193) << 5) | ((16) & 0x1F)), &phy_data); | |||
2636 | if (ret_val) | |||
2637 | return ret_val; | |||
2638 | ||||
2639 | phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER0x0800; | |||
2640 | ret_val = em_write_phy_reg(hw, | |||
2641 | GG82563_PHY_KMRN_MODE_CTRL(((193) << 5) | ((16) & 0x1F)), phy_data); | |||
2642 | ||||
2643 | if (ret_val) | |||
2644 | return ret_val; | |||
2645 | } | |||
2646 | /* | |||
2647 | * Workaround: Disable padding in Kumeran interface in the | |||
2648 | * MAC and in the PHY to avoid CRC errors. | |||
2649 | */ | |||
2650 | ret_val = em_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL(((194) << 5) | ((18) & 0x1F)), | |||
2651 | &phy_data); | |||
2652 | if (ret_val) | |||
2653 | return ret_val; | |||
2654 | phy_data |= GG82563_ICR_DIS_PADDING0x0010; | |||
2655 | ret_val = em_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL(((194) << 5) | ((18) & 0x1F)), | |||
2656 | phy_data); | |||
2657 | if (ret_val) | |||
2658 | return ret_val; | |||
2659 | } | |||
2660 | return E1000_SUCCESS0; | |||
2661 | } | |||
2662 | ||||
2663 | /****************************************************************************** | |||
2664 | * Copper link setup for em_phy_m88 series. | |||
2665 | * | |||
2666 | * hw - Struct containing variables accessed by shared code | |||
2667 | *****************************************************************************/ | |||
2668 | static int32_t | |||
2669 | em_copper_link_mgp_setup(struct em_hw *hw) | |||
2670 | { | |||
2671 | int32_t ret_val; | |||
2672 | uint16_t phy_data; | |||
2673 | DEBUGFUNC("em_copper_link_mgp_setup");; | |||
2674 | ||||
2675 | if (hw->phy_reset_disable) | |||
2676 | return E1000_SUCCESS0; | |||
2677 | ||||
2678 | /* disable lplu d0 during driver init */ | |||
2679 | if (hw->mac_type == em_pchlan || | |||
2680 | hw->mac_type == em_pch2lan || | |||
2681 | hw->mac_type == em_pch_lpt || | |||
2682 | hw->mac_type == em_pch_spt || | |||
2683 | hw->mac_type == em_pch_cnp) | |||
2684 | ret_val = em_set_lplu_state_pchlan(hw, FALSE0); | |||
2685 | ||||
2686 | /* Enable CRS on TX. This must be set for half-duplex operation. */ | |||
2687 | ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL0x10, &phy_data); | |||
2688 | if (ret_val) | |||
2689 | return ret_val; | |||
2690 | ||||
2691 | if (hw->phy_id == M88E1141_E_PHY_ID0x01410CD0) { | |||
2692 | phy_data |= 0x00000008; | |||
2693 | ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL0x10, | |||
2694 | phy_data); | |||
2695 | if (ret_val) | |||
2696 | return ret_val; | |||
2697 | ||||
2698 | ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL0x10, | |||
2699 | &phy_data); | |||
2700 | if (ret_val) | |||
2701 | return ret_val; | |||
2702 | ||||
2703 | phy_data &= ~M88E1000_PSCR_ASSERT_CRS_ON_TX0x0800; | |||
2704 | ||||
2705 | } | |||
2706 | /* For BM PHY this bit is downshift enable */ | |||
2707 | else if (hw->phy_type != em_phy_bm) | |||
2708 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX0x0800; | |||
2709 | /* | |||
2710 | * Options: MDI/MDI-X = 0 (default) 0 - Auto for all speeds 1 - MDI | |||
2711 | * mode 2 - MDI-X mode 3 - Auto for 1000Base-T only (MDI-X for | |||
2712 | * 10/100Base-T modes) | |||
2713 | */ | |||
2714 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE0x0060; | |||
2715 | ||||
2716 | switch (hw->mdix) { | |||
2717 | case 1: | |||
2718 | phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE0x0000; | |||
2719 | break; | |||
2720 | case 2: | |||
2721 | phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE0x0020; | |||
2722 | break; | |||
2723 | case 3: | |||
2724 | phy_data |= M88E1000_PSCR_AUTO_X_1000T0x0040; | |||
2725 | break; | |||
2726 | case 0: | |||
2727 | default: | |||
2728 | phy_data |= M88E1000_PSCR_AUTO_X_MODE0x0060; | |||
2729 | break; | |||
2730 | } | |||
2731 | /* | |||
2732 | * Options: disable_polarity_correction = 0 (default) Automatic | |||
2733 | * Correction for Reversed Cable Polarity 0 - Disabled 1 - Enabled | |||
2734 | */ | |||
2735 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL0x0002; | |||
2736 | if (hw->disable_polarity_correction == 1) | |||
2737 | phy_data |= M88E1000_PSCR_POLARITY_REVERSAL0x0002; | |||
2738 | ||||
2739 | /* Enable downshift on BM (disabled by default) */ | |||
2740 | if (hw->phy_type == em_phy_bm) | |||
2741 | phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT0x0800; | |||
2742 | ||||
2743 | ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL0x10, phy_data); | |||
2744 | if (ret_val) | |||
2745 | return ret_val; | |||
2746 | ||||
2747 | if (((hw->phy_type == em_phy_m88) && | |||
2748 | (hw->phy_revision < M88E1011_I_REV_40x04) && | |||
2749 | (hw->phy_id != BME1000_E_PHY_ID0x01410CB0)) || | |||
2750 | (hw->phy_type == em_phy_oem)) { | |||
2751 | /* | |||
2752 | * Force TX_CLK in the Extended PHY Specific Control Register | |||
2753 | * to 25MHz clock. | |||
2754 | */ | |||
2755 | ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL0x14, | |||
2756 | &phy_data); | |||
2757 | if (ret_val) | |||
2758 | return ret_val; | |||
2759 | ||||
2760 | if (hw->phy_type == em_phy_oem) { | |||
2761 | phy_data |= M88E1000_EPSCR_TX_TIME_CTRL0x0002; | |||
2762 | phy_data |= M88E1000_EPSCR_RX_TIME_CTRL0x0080; | |||
2763 | } | |||
2764 | phy_data |= M88E1000_EPSCR_TX_CLK_250x0070; | |||
2765 | ||||
2766 | if ((hw->phy_revision == E1000_REVISION_22) && | |||
2767 | (hw->phy_id == M88E1111_I_PHY_ID0x01410CC0)) { | |||
2768 | /* Vidalia Phy, set the downshift counter to 5x */ | |||
2769 | phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK0x0E00); | |||
2770 | phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X0x0800; | |||
2771 | ret_val = em_write_phy_reg(hw, | |||
2772 | M88E1000_EXT_PHY_SPEC_CTRL0x14, phy_data); | |||
2773 | if (ret_val) | |||
2774 | return ret_val; | |||
2775 | } else { | |||
2776 | /* Configure Master and Slave downshift values */ | |||
2777 | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK0x0C00 | | |||
2778 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK0x0300); | |||
2779 | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X0x0000 | | |||
2780 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X0x0100); | |||
2781 | ret_val = em_write_phy_reg(hw, | |||
2782 | M88E1000_EXT_PHY_SPEC_CTRL0x14, phy_data); | |||
2783 | if (ret_val) | |||
2784 | return ret_val; | |||
2785 | } | |||
2786 | } | |||
2787 | if ((hw->phy_type == em_phy_bm) && (hw->phy_revision == 1)) { | |||
2788 | /* | |||
2789 | * Set PHY page 0, register 29 to 0x0003 | |||
2790 | * The next two writes are supposed to lower BER for gig | |||
2791 | * connection | |||
2792 | */ | |||
2793 | ret_val = em_write_phy_reg(hw, BM_REG_BIAS129, 0x0003); | |||
2794 | if (ret_val) | |||
2795 | return ret_val; | |||
2796 | ||||
2797 | /* Set PHY page 0, register 30 to 0x0000 */ | |||
2798 | ret_val = em_write_phy_reg(hw, BM_REG_BIAS230, 0x0000); | |||
2799 | if (ret_val) | |||
2800 | return ret_val; | |||
2801 | } | |||
2802 | if (hw->phy_type == em_phy_82578) { | |||
2803 | ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL0x14, | |||
2804 | &phy_data); | |||
2805 | if (ret_val) | |||
2806 | return ret_val; | |||
2807 | ||||
2808 | /* 82578 PHY - set the downshift count to 1x. */ | |||
2809 | phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE0x0020; | |||
2810 | phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK0x001C; | |||
2811 | ret_val = em_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL0x14, | |||
2812 | phy_data); | |||
2813 | if (ret_val) | |||
2814 | return ret_val; | |||
2815 | } | |||
2816 | /* SW Reset the PHY so all changes take effect */ | |||
2817 | ret_val = em_phy_reset(hw); | |||
2818 | if (ret_val) { | |||
2819 | DEBUGOUT("Error Resetting the PHY\n"); | |||
2820 | return ret_val; | |||
2821 | } | |||
2822 | return E1000_SUCCESS0; | |||
2823 | } | |||
2824 | ||||
2825 | /****************************************************************************** | |||
2826 | * Copper link setup for em_phy_82577 series. | |||
2827 | * | |||
2828 | * hw - Struct containing variables accessed by shared code | |||
2829 | *****************************************************************************/ | |||
2830 | static int32_t | |||
2831 | em_copper_link_82577_setup(struct em_hw *hw) | |||
2832 | { | |||
2833 | int32_t ret_val; | |||
2834 | uint16_t phy_data; | |||
2835 | uint32_t led_ctl; | |||
2836 | DEBUGFUNC("em_copper_link_82577_setup");; | |||
2837 | ||||
2838 | if (hw->phy_reset_disable) | |||
2839 | return E1000_SUCCESS0; | |||
2840 | ||||
2841 | /* Enable CRS on TX for half-duplex operation. */ | |||
2842 | ret_val = em_read_phy_reg(hw, I82577_PHY_CFG_REG22, &phy_data); | |||
2843 | if (ret_val) | |||
2844 | return ret_val; | |||
2845 | ||||
2846 | phy_data |= I82577_PHY_CFG_ENABLE_CRS_ON_TX(1 << 15) | | |||
2847 | I82577_PHY_CFG_ENABLE_DOWNSHIFT((1 << 10) + (1 << 11)); | |||
2848 | ||||
2849 | ret_val = em_write_phy_reg(hw, I82577_PHY_CFG_REG22, phy_data); | |||
2850 | if (ret_val) | |||
2851 | return ret_val; | |||
2852 | ||||
2853 | /* Wait 15ms for MAC to configure PHY from eeprom settings */ | |||
2854 | msec_delay(15)(*delay_func)(1000*(15)); | |||
2855 | led_ctl = hw->ledctl_mode1; | |||
2856 | ||||
2857 | /* disable lplu d0 during driver init */ | |||
2858 | ret_val = em_set_lplu_state_pchlan(hw, FALSE0); | |||
2859 | if (ret_val) { | |||
2860 | DEBUGOUT("Error Disabling LPLU D0\n"); | |||
2861 | return ret_val; | |||
2862 | } | |||
2863 | ||||
2864 | E1000_WRITE_REG(hw, LEDCTL, led_ctl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00E00 : em_translate_82542_register (0x00E00))), (led_ctl))); | |||
2865 | ||||
2866 | return E1000_SUCCESS0; | |||
2867 | } | |||
2868 | ||||
2869 | static int32_t | |||
2870 | em_copper_link_82580_setup(struct em_hw *hw) | |||
2871 | { | |||
2872 | int32_t ret_val; | |||
2873 | uint16_t phy_data; | |||
2874 | ||||
2875 | if (hw->phy_reset_disable) | |||
2876 | return E1000_SUCCESS0; | |||
2877 | ||||
2878 | ret_val = em_phy_reset(hw); | |||
2879 | if (ret_val) | |||
2880 | goto out; | |||
2881 | ||||
2882 | /* Enable CRS on TX. This must be set for half-duplex operation. */ | |||
2883 | ret_val = em_read_phy_reg(hw, I82580_CFG_REG22, &phy_data); | |||
2884 | if (ret_val) | |||
2885 | goto out; | |||
2886 | ||||
2887 | phy_data |= I82580_CFG_ASSERT_CRS_ON_TX(1 << 15) | | |||
2888 | I82580_CFG_ENABLE_DOWNSHIFT(3 << 10); | |||
2889 | ||||
2890 | ret_val = em_write_phy_reg(hw, I82580_CFG_REG22, phy_data); | |||
2891 | ||||
2892 | out: | |||
2893 | return ret_val; | |||
2894 | } | |||
2895 | ||||
2896 | static int32_t | |||
2897 | em_copper_link_rtl8211_setup(struct em_hw *hw) | |||
2898 | { | |||
2899 | int32_t ret_val; | |||
2900 | uint16_t phy_data; | |||
2901 | ||||
2902 | DEBUGFUNC("em_copper_link_rtl8211_setup: begin");; | |||
2903 | ||||
2904 | if (!hw) { | |||
2905 | return -1; | |||
2906 | } | |||
2907 | /* SW Reset the PHY so all changes take effect */ | |||
2908 | em_phy_hw_reset(hw); | |||
2909 | ||||
2910 | /* Enable CRS on TX. This must be set for half-duplex operation. */ | |||
2911 | phy_data = 0; | |||
2912 | ||||
2913 | ret_val = em_read_phy_reg_ex(hw, RGEPHY_CR0x10, &phy_data); | |||
2914 | if (ret_val) { | |||
2915 | printf("Unable to read RGEPHY_CR register\n"); | |||
2916 | return ret_val; | |||
2917 | } | |||
2918 | DEBUGOUT3("RTL8211: Rx phy_id=%X addr=%X SPEC_CTRL=%X\n", hw->phy_id, | |||
2919 | hw->phy_addr, phy_data); | |||
2920 | phy_data |= RGEPHY_CR_ASSERT_CRS0x0800; | |||
2921 | ||||
2922 | ret_val = em_write_phy_reg_ex(hw, RGEPHY_CR0x10, phy_data); | |||
2923 | if (ret_val) { | |||
2924 | printf("Unable to write RGEPHY_CR register\n"); | |||
2925 | return ret_val; | |||
2926 | } | |||
2927 | ||||
2928 | phy_data = 0; /* LED Control Register 0x18 */ | |||
2929 | ret_val = em_read_phy_reg_ex(hw, RGEPHY_LC0x18, &phy_data); | |||
2930 | if (ret_val) { | |||
2931 | printf("Unable to read RGEPHY_LC register\n"); | |||
2932 | return ret_val; | |||
2933 | } | |||
2934 | ||||
2935 | phy_data &= 0x80FF; /* bit-15=0 disable, clear bit 8-10 */ | |||
2936 | ret_val = em_write_phy_reg_ex(hw, RGEPHY_LC0x18, phy_data); | |||
2937 | if (ret_val) { | |||
2938 | printf("Unable to write RGEPHY_LC register\n"); | |||
2939 | return ret_val; | |||
2940 | } | |||
2941 | /* LED Control and Definition Register 0x11, PHY spec status reg */ | |||
2942 | phy_data = 0; | |||
2943 | ret_val = em_read_phy_reg_ex(hw, RGEPHY_SR0x11, &phy_data); | |||
2944 | if (ret_val) { | |||
2945 | printf("Unable to read RGEPHY_SR register\n"); | |||
2946 | return ret_val; | |||
2947 | } | |||
2948 | ||||
2949 | phy_data |= 0x0010; /* LED active Low */ | |||
2950 | ret_val = em_write_phy_reg_ex(hw, RGEPHY_SR0x11, phy_data); | |||
2951 | if (ret_val) { | |||
2952 | printf("Unable to write RGEPHY_SR register\n"); | |||
2953 | return ret_val; | |||
2954 | } | |||
2955 | ||||
2956 | phy_data = 0; | |||
2957 | ret_val = em_read_phy_reg_ex(hw, RGEPHY_SR0x11, &phy_data); | |||
2958 | if (ret_val) { | |||
2959 | printf("Unable to read RGEPHY_SR register\n"); | |||
2960 | return ret_val; | |||
2961 | } | |||
2962 | ||||
2963 | /* Switch to Page2 */ | |||
2964 | phy_data = RGEPHY_PS_PAGE_20x0002; | |||
2965 | ret_val = em_write_phy_reg_ex(hw, RGEPHY_PS0x1F, phy_data); | |||
2966 | if (ret_val) { | |||
2967 | printf("Unable to write PHY RGEPHY_PS register\n"); | |||
2968 | return ret_val; | |||
2969 | } | |||
2970 | ||||
2971 | phy_data = 0x0000; | |||
2972 | ret_val = em_write_phy_reg_ex(hw, RGEPHY_LC_P20x1A, phy_data); | |||
2973 | if (ret_val) { | |||
2974 | printf("Unable to write RGEPHY_LC_P2 register\n"); | |||
2975 | return ret_val; | |||
2976 | } | |||
2977 | usec_delay(5)(*delay_func)(5); | |||
2978 | ||||
2979 | ||||
2980 | /* LED Configuration Control Reg for setting for 0x1A Register */ | |||
2981 | phy_data = 0; | |||
2982 | ret_val = em_read_phy_reg_ex(hw, RGEPHY_LC_P20x1A, &phy_data); | |||
2983 | if (ret_val) { | |||
2984 | printf("Unable to read RGEPHY_LC_P2 register\n"); | |||
2985 | return ret_val; | |||
2986 | } | |||
2987 | ||||
2988 | phy_data &= 0xF000; | |||
2989 | phy_data |= 0x0F24; | |||
2990 | ret_val = em_write_phy_reg_ex(hw, RGEPHY_LC_P20x1A, phy_data); | |||
2991 | if (ret_val) { | |||
2992 | printf("Unable to write RGEPHY_LC_P2 register\n"); | |||
2993 | return ret_val; | |||
2994 | } | |||
2995 | phy_data = 0; | |||
2996 | ret_val= em_read_phy_reg_ex(hw, RGEPHY_LC_P20x1A, &phy_data); | |||
2997 | if (ret_val) { | |||
2998 | printf("Unable to read RGEPHY_LC_P2 register\n"); | |||
2999 | return ret_val; | |||
3000 | } | |||
3001 | DEBUGOUT1("RTL8211:ReadBack for check, LED_CFG->data=%X\n", phy_data); | |||
3002 | ||||
3003 | ||||
3004 | /* After setting Page2, go back to Page 0 */ | |||
3005 | phy_data = 0; | |||
3006 | ret_val = em_write_phy_reg_ex(hw, RGEPHY_PS0x1F, phy_data); | |||
3007 | if (ret_val) { | |||
3008 | printf("Unable to write PHY RGEPHY_PS register\n"); | |||
3009 | return ret_val; | |||
3010 | } | |||
3011 | ||||
3012 | /* pulse streching= 42-84ms, blink rate=84mm */ | |||
3013 | phy_data = 0x140 | RGEPHY_LC_PULSE_42MS0x2000 | RGEPHY_LC_LINK0x0008 | | |||
3014 | RGEPHY_LC_DUPLEX0x0004 | RGEPHY_LC_RX0x0002; | |||
3015 | ||||
3016 | ret_val = em_write_phy_reg_ex(hw, RGEPHY_LC0x18, phy_data); | |||
3017 | if (ret_val) { | |||
3018 | printf("Unable to write RGEPHY_LC register\n"); | |||
3019 | return ret_val; | |||
3020 | } | |||
3021 | return E1000_SUCCESS0; | |||
3022 | } | |||
3023 | ||||
3024 | /****************************************************************************** | |||
3025 | * Setup auto-negotiation and flow control advertisements, | |||
3026 | * and then perform auto-negotiation. | |||
3027 | * | |||
3028 | * hw - Struct containing variables accessed by shared code | |||
3029 | *****************************************************************************/ | |||
3030 | int32_t | |||
3031 | em_copper_link_autoneg(struct em_hw *hw) | |||
3032 | { | |||
3033 | int32_t ret_val; | |||
3034 | uint16_t phy_data; | |||
3035 | DEBUGFUNC("em_copper_link_autoneg");; | |||
3036 | /* | |||
3037 | * Perform some bounds checking on the hw->autoneg_advertised | |||
3038 | * parameter. If this variable is zero, then set it to the default. | |||
3039 | */ | |||
3040 | hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT0x002F; | |||
3041 | /* | |||
3042 | * If autoneg_advertised is zero, we assume it was not defaulted by | |||
3043 | * the calling code so we set to advertise full capability. | |||
3044 | */ | |||
3045 | if (hw->autoneg_advertised == 0) | |||
3046 | hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT0x002F; | |||
3047 | ||||
3048 | /* IFE phy only supports 10/100 */ | |||
3049 | if (hw->phy_type == em_phy_ife) | |||
3050 | hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL0x000F; | |||
3051 | ||||
3052 | DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); | |||
3053 | ret_val = em_phy_setup_autoneg(hw); | |||
3054 | if (ret_val) { | |||
3055 | DEBUGOUT("Error Setting up Auto-Negotiation\n"); | |||
3056 | return ret_val; | |||
3057 | } | |||
3058 | DEBUGOUT("Restarting Auto-Neg\n"); | |||
3059 | /* | |||
3060 | * Restart auto-negotiation by setting the Auto Neg Enable bit and | |||
3061 | * the Auto Neg Restart bit in the PHY control register. | |||
3062 | */ | |||
3063 | ret_val = em_read_phy_reg(hw, PHY_CTRL0x00, &phy_data); | |||
3064 | if (ret_val) | |||
3065 | return ret_val; | |||
3066 | ||||
3067 | phy_data |= (MII_CR_AUTO_NEG_EN0x1000 | MII_CR_RESTART_AUTO_NEG0x0200); | |||
3068 | ret_val = em_write_phy_reg(hw, PHY_CTRL0x00, phy_data); | |||
3069 | if (ret_val) | |||
3070 | return ret_val; | |||
3071 | /* | |||
3072 | * Does the user want to wait for Auto-Neg to complete here, or check | |||
3073 | * at a later time (for example, callback routine). | |||
3074 | */ | |||
3075 | if (hw->wait_autoneg_complete) { | |||
3076 | ret_val = em_wait_autoneg(hw); | |||
3077 | if (ret_val) { | |||
3078 | DEBUGOUT("Error while waiting for autoneg to complete\n" | |||
3079 | ); | |||
3080 | return ret_val; | |||
3081 | } | |||
3082 | } | |||
3083 | hw->get_link_status = TRUE1; | |||
3084 | ||||
3085 | return E1000_SUCCESS0; | |||
3086 | } | |||
3087 | ||||
3088 | /****************************************************************************** | |||
3089 | * Config the MAC and the PHY after link is up. | |||
3090 | * 1) Set up the MAC to the current PHY speed/duplex | |||
3091 | * if we are on 82543. If we | |||
3092 | * are on newer silicon, we only need to configure | |||
3093 | * collision distance in the Transmit Control Register. | |||
3094 | * 2) Set up flow control on the MAC to that established with | |||
3095 | * the link partner. | |||
3096 | * 3) Config DSP to improve Gigabit link quality for some PHY revisions. | |||
3097 | * | |||
3098 | * hw - Struct containing variables accessed by shared code | |||
3099 | *****************************************************************************/ | |||
3100 | int32_t | |||
3101 | em_copper_link_postconfig(struct em_hw *hw) | |||
3102 | { | |||
3103 | int32_t ret_val; | |||
3104 | DEBUGFUNC("em_copper_link_postconfig");; | |||
3105 | ||||
3106 | if (hw->mac_type >= em_82544 && | |||
3107 | hw->mac_type != em_icp_xxxx) { | |||
3108 | em_config_collision_dist(hw); | |||
3109 | } else { | |||
3110 | ret_val = em_config_mac_to_phy(hw); | |||
3111 | if (ret_val) { | |||
3112 | DEBUGOUT("Error configuring MAC to PHY settings\n"); | |||
3113 | return ret_val; | |||
3114 | } | |||
3115 | } | |||
3116 | ret_val = em_config_fc_after_link_up(hw); | |||
3117 | if (ret_val) { | |||
3118 | DEBUGOUT("Error Configuring Flow Control\n"); | |||
3119 | return ret_val; | |||
3120 | } | |||
3121 | /* Config DSP to improve Giga link quality */ | |||
3122 | if (hw->phy_type == em_phy_igp) { | |||
3123 | ret_val = em_config_dsp_after_link_change(hw, TRUE1); | |||
3124 | if (ret_val) { | |||
3125 | DEBUGOUT("Error Configuring DSP after link up\n"); | |||
3126 | return ret_val; | |||
3127 | } | |||
3128 | } | |||
3129 | return E1000_SUCCESS0; | |||
3130 | } | |||
3131 | ||||
3132 | /****************************************************************************** | |||
3133 | * Detects which PHY is present and setup the speed and duplex | |||
3134 | * | |||
3135 | * hw - Struct containing variables accessed by shared code | |||
3136 | *****************************************************************************/ | |||
3137 | static int32_t | |||
3138 | em_setup_copper_link(struct em_hw *hw) | |||
3139 | { | |||
3140 | int32_t ret_val; | |||
3141 | uint16_t i; | |||
3142 | uint16_t phy_data; | |||
3143 | uint16_t reg_data; | |||
3144 | DEBUGFUNC("em_setup_copper_link");; | |||
3145 | ||||
3146 | switch (hw->mac_type) { | |||
3147 | case em_80003es2lan: | |||
3148 | case em_ich8lan: | |||
3149 | case em_ich9lan: | |||
3150 | case em_ich10lan: | |||
3151 | case em_pchlan: | |||
3152 | case em_pch2lan: | |||
3153 | case em_pch_lpt: | |||
3154 | case em_pch_spt: | |||
3155 | case em_pch_cnp: | |||
3156 | /* | |||
3157 | * Set the mac to wait the maximum time between each | |||
3158 | * iteration and increase the max iterations when polling the | |||
3159 | * phy; this fixes erroneous timeouts at 10Mbps. | |||
3160 | */ | |||
3161 | ret_val = em_write_kmrn_reg(hw, GG82563_REG(0x34, 4)(((0x34) << 5) | ((4) & 0x1F)), 0xFFFF); | |||
3162 | if (ret_val) | |||
3163 | return ret_val; | |||
3164 | ret_val = em_read_kmrn_reg(hw, GG82563_REG(0x34, 9)(((0x34) << 5) | ((9) & 0x1F)), | |||
3165 | ®_data); | |||
3166 | if (ret_val) | |||
3167 | return ret_val; | |||
3168 | reg_data |= 0x3F; | |||
3169 | ret_val = em_write_kmrn_reg(hw, GG82563_REG(0x34, 9)(((0x34) << 5) | ((9) & 0x1F)), | |||
3170 | reg_data); | |||
3171 | if (ret_val) | |||
3172 | return ret_val; | |||
3173 | default: | |||
3174 | break; | |||
3175 | } | |||
3176 | ||||
3177 | /* Check if it is a valid PHY and set PHY mode if necessary. */ | |||
3178 | ret_val = em_copper_link_preconfig(hw); | |||
3179 | if (ret_val) | |||
3180 | return ret_val; | |||
3181 | ||||
3182 | switch (hw->mac_type) { | |||
3183 | case em_80003es2lan: | |||
3184 | /* Kumeran registers are written-only */ | |||
3185 | reg_data = | |||
3186 | E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT0x00000500; | |||
3187 | reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING0x00000010; | |||
3188 | ret_val = em_write_kmrn_reg(hw, | |||
3189 | E1000_KUMCTRLSTA_OFFSET_INB_CTRL0x00000002, reg_data); | |||
3190 | if (ret_val) | |||
3191 | return ret_val; | |||
3192 | break; | |||
3193 | default: | |||
3194 | break; | |||
3195 | } | |||
3196 | ||||
3197 | if (hw->phy_type == em_phy_igp || | |||
3198 | hw->phy_type == em_phy_igp_3 || | |||
3199 | hw->phy_type == em_phy_igp_2) { | |||
3200 | ret_val = em_copper_link_igp_setup(hw); | |||
3201 | if (ret_val) | |||
3202 | return ret_val; | |||
3203 | } else if (hw->phy_type == em_phy_m88 || | |||
3204 | hw->phy_type == em_phy_bm || | |||
3205 | hw->phy_type == em_phy_oem || | |||
3206 | hw->phy_type == em_phy_82578) { | |||
3207 | ret_val = em_copper_link_mgp_setup(hw); | |||
3208 | if (ret_val) | |||
3209 | return ret_val; | |||
3210 | } else if (hw->phy_type == em_phy_gg82563) { | |||
3211 | ret_val = em_copper_link_ggp_setup(hw); | |||
3212 | if (ret_val) | |||
3213 | return ret_val; | |||
3214 | } else if (hw->phy_type == em_phy_82577 || | |||
3215 | hw->phy_type == em_phy_82579 || | |||
3216 | hw->phy_type == em_phy_i217) { | |||
3217 | ret_val = em_copper_link_82577_setup(hw); | |||
3218 | if (ret_val) | |||
3219 | return ret_val; | |||
3220 | } else if (hw->phy_type == em_phy_82580) { | |||
3221 | ret_val = em_copper_link_82580_setup(hw); | |||
3222 | if (ret_val) | |||
3223 | return ret_val; | |||
3224 | } else if (hw->phy_type == em_phy_rtl8211) { | |||
3225 | ret_val = em_copper_link_rtl8211_setup(hw); | |||
3226 | if (ret_val) | |||
3227 | return ret_val; | |||
3228 | } | |||
3229 | if (hw->autoneg) { | |||
3230 | /* | |||
3231 | * Setup autoneg and flow control advertisement and perform | |||
3232 | * autonegotiation | |||
3233 | */ | |||
3234 | ret_val = em_copper_link_autoneg(hw); | |||
3235 | if (ret_val) | |||
3236 | return ret_val; | |||
3237 | } else { | |||
3238 | /* | |||
3239 | * PHY will be set to 10H, 10F, 100H,or 100F depending on | |||
3240 | * value from forced_speed_duplex. | |||
3241 | */ | |||
3242 | DEBUGOUT("Forcing speed and duplex\n"); | |||
3243 | ret_val = em_phy_force_speed_duplex(hw); | |||
3244 | if (ret_val) { | |||
3245 | DEBUGOUT("Error Forcing Speed and Duplex\n"); | |||
3246 | return ret_val; | |||
3247 | } | |||
3248 | } | |||
3249 | /* | |||
3250 | * Check link status. Wait up to 100 microseconds for link to become | |||
3251 | * valid. | |||
3252 | */ | |||
3253 | for (i = 0; i < 10; i++) { | |||
3254 | ret_val = em_read_phy_reg(hw, PHY_STATUS0x01, &phy_data); | |||
3255 | if (ret_val) | |||
3256 | return ret_val; | |||
3257 | ret_val = em_read_phy_reg(hw, PHY_STATUS0x01, &phy_data); | |||
3258 | if (ret_val) | |||
3259 | return ret_val; | |||
3260 | ||||
3261 | hw->icp_xxxx_is_link_up = (phy_data & MII_SR_LINK_STATUS0x0004) != 0; | |||
3262 | ||||
3263 | if (phy_data & MII_SR_LINK_STATUS0x0004) { | |||
3264 | /* Config the MAC and PHY after link is up */ | |||
3265 | ret_val = em_copper_link_postconfig(hw); | |||
3266 | if (ret_val) | |||
3267 | return ret_val; | |||
3268 | ||||
3269 | DEBUGOUT("Valid link established!!!\n"); | |||
3270 | return E1000_SUCCESS0; | |||
3271 | } | |||
3272 | usec_delay(10)(*delay_func)(10); | |||
3273 | } | |||
3274 | ||||
3275 | DEBUGOUT("Unable to establish link!!!\n"); | |||
3276 | return E1000_SUCCESS0; | |||
3277 | } | |||
3278 | ||||
3279 | /****************************************************************************** | |||
3280 | * Configure the MAC-to-PHY interface for 10/100Mbps | |||
3281 | * | |||
3282 | * hw - Struct containing variables accessed by shared code | |||
3283 | *****************************************************************************/ | |||
3284 | static int32_t | |||
3285 | em_configure_kmrn_for_10_100(struct em_hw *hw, uint16_t duplex) | |||
3286 | { | |||
3287 | int32_t ret_val = E1000_SUCCESS0; | |||
3288 | uint32_t tipg; | |||
3289 | uint16_t reg_data; | |||
3290 | DEBUGFUNC("em_configure_kmrn_for_10_100");; | |||
3291 | ||||
3292 | reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT0x00000004; | |||
3293 | ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL0x00000010, | |||
3294 | reg_data); | |||
3295 | if (ret_val) | |||
3296 | return ret_val; | |||
3297 | ||||
3298 | /* Configure Transmit Inter-Packet Gap */ | |||
3299 | tipg = E1000_READ_REG(hw, TIPG)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00410 : em_translate_82542_register (0x00410))))); | |||
3300 | tipg &= ~E1000_TIPG_IPGT_MASK0x000003FF; | |||
3301 | tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_1000x00000009; | |||
3302 | E1000_WRITE_REG(hw, TIPG, tipg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00410 : em_translate_82542_register (0x00410))), (tipg))); | |||
3303 | ||||
3304 | ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL(((193) << 5) | ((16) & 0x1F)), ®_data); | |||
3305 | ||||
3306 | if (ret_val) | |||
3307 | return ret_val; | |||
3308 | ||||
3309 | if (duplex == HALF_DUPLEX1) | |||
3310 | reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER0x0800; | |||
3311 | else | |||
3312 | reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER0x0800; | |||
3313 | ||||
3314 | ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL(((193) << 5) | ((16) & 0x1F)), reg_data); | |||
3315 | ||||
3316 | return ret_val; | |||
3317 | } | |||
3318 | ||||
3319 | static int32_t | |||
3320 | em_configure_kmrn_for_1000(struct em_hw *hw) | |||
3321 | { | |||
3322 | int32_t ret_val = E1000_SUCCESS0; | |||
3323 | uint16_t reg_data; | |||
3324 | uint32_t tipg; | |||
3325 | DEBUGFUNC("em_configure_kmrn_for_1000");; | |||
3326 | ||||
3327 | reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT0x00000000; | |||
3328 | ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL0x00000010, | |||
3329 | reg_data); | |||
3330 | if (ret_val) | |||
3331 | return ret_val; | |||
3332 | ||||
3333 | /* Configure Transmit Inter-Packet Gap */ | |||
3334 | tipg = E1000_READ_REG(hw, TIPG)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00410 : em_translate_82542_register (0x00410))))); | |||
3335 | tipg &= ~E1000_TIPG_IPGT_MASK0x000003FF; | |||
3336 | tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10000x00000008; | |||
3337 | E1000_WRITE_REG(hw, TIPG, tipg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00410 : em_translate_82542_register (0x00410))), (tipg))); | |||
3338 | ||||
3339 | ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL(((193) << 5) | ((16) & 0x1F)), ®_data); | |||
3340 | ||||
3341 | if (ret_val) | |||
3342 | return ret_val; | |||
3343 | ||||
3344 | reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER0x0800; | |||
3345 | ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL(((193) << 5) | ((16) & 0x1F)), reg_data); | |||
3346 | ||||
3347 | return ret_val; | |||
3348 | } | |||
3349 | ||||
3350 | /****************************************************************************** | |||
3351 | * Configures PHY autoneg and flow control advertisement settings | |||
3352 | * | |||
3353 | * hw - Struct containing variables accessed by shared code | |||
3354 | *****************************************************************************/ | |||
3355 | int32_t | |||
3356 | em_phy_setup_autoneg(struct em_hw *hw) | |||
3357 | { | |||
3358 | int32_t ret_val; | |||
3359 | uint16_t mii_autoneg_adv_reg; | |||
3360 | uint16_t mii_1000t_ctrl_reg; | |||
3361 | DEBUGFUNC("em_phy_setup_autoneg");; | |||
3362 | ||||
3363 | /* Read the MII Auto-Neg Advertisement Register (Address 4). */ | |||
3364 | ret_val = em_read_phy_reg(hw, PHY_AUTONEG_ADV0x04, &mii_autoneg_adv_reg); | |||
3365 | if (ret_val) | |||
3366 | return ret_val; | |||
3367 | ||||
3368 | if (hw->phy_type != em_phy_ife) { | |||
3369 | /* Read the MII 1000Base-T Control Register (Address 9). */ | |||
3370 | ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL0x09, | |||
3371 | &mii_1000t_ctrl_reg); | |||
3372 | if (ret_val) | |||
3373 | return ret_val; | |||
3374 | } else | |||
3375 | mii_1000t_ctrl_reg = 0; | |||
3376 | /* | |||
3377 | * Need to parse both autoneg_advertised and fc and set up the | |||
3378 | * appropriate PHY registers. First we will parse for | |||
3379 | * autoneg_advertised software override. Since we can advertise a | |||
3380 | * plethora of combinations, we need to check each bit individually. | |||
3381 | */ | |||
3382 | /* | |||
3383 | * First we clear all the 10/100 mb speed bits in the Auto-Neg | |||
3384 | * Advertisement Register (Address 4) and the 1000 mb speed bits in | |||
3385 | * the 1000Base-T Control Register (Address 9). | |||
3386 | */ | |||
3387 | mii_autoneg_adv_reg &= ~REG4_SPEED_MASK0x01E0; | |||
3388 | mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK0x0300; | |||
3389 | ||||
3390 | DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised); | |||
3391 | ||||
3392 | /* Do we want to advertise 10 Mb Half Duplex? */ | |||
3393 | if (hw->autoneg_advertised & ADVERTISE_10_HALF0x0001) { | |||
3394 | DEBUGOUT("Advertise 10mb Half duplex\n"); | |||
3395 | mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS0x0020; | |||
3396 | } | |||
3397 | /* Do we want to advertise 10 Mb Full Duplex? */ | |||
3398 | if (hw->autoneg_advertised & ADVERTISE_10_FULL0x0002) { | |||
3399 | DEBUGOUT("Advertise 10mb Full duplex\n"); | |||
3400 | mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS0x0040; | |||
3401 | } | |||
3402 | /* Do we want to advertise 100 Mb Half Duplex? */ | |||
3403 | if (hw->autoneg_advertised & ADVERTISE_100_HALF0x0004) { | |||
3404 | DEBUGOUT("Advertise 100mb Half duplex\n"); | |||
3405 | mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS0x0080; | |||
3406 | } | |||
3407 | /* Do we want to advertise 100 Mb Full Duplex? */ | |||
3408 | if (hw->autoneg_advertised & ADVERTISE_100_FULL0x0008) { | |||
3409 | DEBUGOUT("Advertise 100mb Full duplex\n"); | |||
3410 | mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS0x0100; | |||
3411 | } | |||
3412 | /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ | |||
3413 | if (hw->autoneg_advertised & ADVERTISE_1000_HALF0x0010) { | |||
3414 | DEBUGOUT("Advertise 1000mb Half duplex requested, request" | |||
3415 | " denied!\n"); | |||
3416 | } | |||
3417 | /* Do we want to advertise 1000 Mb Full Duplex? */ | |||
3418 | if (hw->autoneg_advertised & ADVERTISE_1000_FULL0x0020) { | |||
3419 | DEBUGOUT("Advertise 1000mb Full duplex\n"); | |||
3420 | mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS0x0200; | |||
3421 | if (hw->phy_type == em_phy_ife) { | |||
3422 | DEBUGOUT("em_phy_ife is a 10/100 PHY. Gigabit speed is" | |||
3423 | " not supported.\n"); | |||
3424 | } | |||
3425 | } | |||
3426 | /* | |||
3427 | * Check for a software override of the flow control settings, and | |||
3428 | * setup the PHY advertisement registers accordingly. If | |||
3429 | * auto-negotiation is enabled, then software will have to set the | |||
3430 | * "PAUSE" bits to the correct value in the Auto-Negotiation | |||
3431 | * Advertisement Register (PHY_AUTONEG_ADV) and re-start | |||
3432 | * auto-negotiation. | |||
3433 | * | |||
3434 | * The possible values of the "fc" parameter are: 0: Flow control is | |||
3435 | * completely disabled 1: Rx flow control is enabled (we can receive | |||
3436 | * pause frames but not send pause frames). 2: Tx flow control is | |||
3437 | * enabled (we can send pause frames but we do not support receiving | |||
3438 | * pause frames). 3: Both Rx and TX flow control (symmetric) are | |||
3439 | * enabled. other: No software override. The flow control | |||
3440 | * configuration in the EEPROM is used. | |||
3441 | */ | |||
3442 | switch (hw->fc) { | |||
3443 | case E1000_FC_NONE0: /* 0 */ | |||
3444 | /* | |||
3445 | * Flow control (RX & TX) is completely disabled by a | |||
3446 | * software over-ride. | |||
3447 | */ | |||
3448 | mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR0x0800 | NWAY_AR_PAUSE0x0400); | |||
3449 | break; | |||
3450 | case E1000_FC_RX_PAUSE1:/* 1 */ | |||
3451 | /* | |||
3452 | * RX Flow control is enabled, and TX Flow control is | |||
3453 | * disabled, by a software over-ride. | |||
3454 | */ | |||
3455 | /* | |||
3456 | * Since there really isn't a way to advertise that we are | |||
3457 | * capable of RX Pause ONLY, we will advertise that we | |||
3458 | * support both symmetric and asymmetric RX PAUSE. Later (in | |||
3459 | * em_config_fc_after_link_up) we will disable the hw's | |||
3460 | * ability to send PAUSE frames. | |||
3461 | */ | |||
3462 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR0x0800 | NWAY_AR_PAUSE0x0400); | |||
3463 | break; | |||
3464 | case E1000_FC_TX_PAUSE2:/* 2 */ | |||
3465 | /* | |||
3466 | * TX Flow control is enabled, and RX Flow control is | |||
3467 | * disabled, by a software over-ride. | |||
3468 | */ | |||
3469 | mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR0x0800; | |||
3470 | mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE0x0400; | |||
3471 | break; | |||
3472 | case E1000_FC_FULL3: /* 3 */ | |||
3473 | /* | |||
3474 | * Flow control (both RX and TX) is enabled by a software | |||
3475 | * over-ride. | |||
3476 | */ | |||
3477 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR0x0800 | NWAY_AR_PAUSE0x0400); | |||
3478 | break; | |||
3479 | default: | |||
3480 | DEBUGOUT("Flow control param set incorrectly\n"); | |||
3481 | return -E1000_ERR_CONFIG3; | |||
3482 | } | |||
3483 | ||||
3484 | ret_val = em_write_phy_reg(hw, PHY_AUTONEG_ADV0x04, mii_autoneg_adv_reg); | |||
3485 | if (ret_val) | |||
3486 | return ret_val; | |||
3487 | ||||
3488 | DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); | |||
3489 | ||||
3490 | if (hw->phy_type != em_phy_ife) { | |||
3491 | ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL0x09, | |||
3492 | mii_1000t_ctrl_reg); | |||
3493 | if (ret_val) | |||
3494 | return ret_val; | |||
3495 | } | |||
3496 | return E1000_SUCCESS0; | |||
3497 | } | |||
3498 | /****************************************************************************** | |||
3499 | * Force PHY speed and duplex settings to hw->forced_speed_duplex | |||
3500 | * | |||
3501 | * hw - Struct containing variables accessed by shared code | |||
3502 | *****************************************************************************/ | |||
3503 | static int32_t | |||
3504 | em_phy_force_speed_duplex(struct em_hw *hw) | |||
3505 | { | |||
3506 | uint32_t ctrl; | |||
3507 | int32_t ret_val; | |||
3508 | uint16_t mii_ctrl_reg; | |||
3509 | uint16_t mii_status_reg; | |||
3510 | uint16_t phy_data; | |||
3511 | uint16_t i; | |||
3512 | DEBUGFUNC("em_phy_force_speed_duplex");; | |||
3513 | ||||
3514 | /* Turn off Flow control if we are forcing speed and duplex. */ | |||
3515 | hw->fc = E1000_FC_NONE0; | |||
3516 | ||||
3517 | DEBUGOUT1("hw->fc = %d\n", hw->fc); | |||
3518 | ||||
3519 | /* Read the Device Control Register. */ | |||
3520 | ctrl = E1000_READ_REG(hw, CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))))); | |||
3521 | ||||
3522 | /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */ | |||
3523 | ctrl |= (E1000_CTRL_FRCSPD0x00000800 | E1000_CTRL_FRCDPX0x00001000); | |||
3524 | ctrl &= ~(DEVICE_SPEED_MASK0x00000300); | |||
3525 | ||||
3526 | /* Clear the Auto Speed Detect Enable bit. */ | |||
3527 | ctrl &= ~E1000_CTRL_ASDE0x00000020; | |||
3528 | ||||
3529 | /* Read the MII Control Register. */ | |||
3530 | ret_val = em_read_phy_reg(hw, PHY_CTRL0x00, &mii_ctrl_reg); | |||
3531 | if (ret_val) | |||
3532 | return ret_val; | |||
3533 | ||||
3534 | /* We need to disable autoneg in order to force link and duplex. */ | |||
3535 | ||||
3536 | mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN0x1000; | |||
3537 | ||||
3538 | /* Are we forcing Full or Half Duplex? */ | |||
3539 | if (hw->forced_speed_duplex == em_100_full || | |||
3540 | hw->forced_speed_duplex == em_10_full) { | |||
3541 | /* | |||
3542 | * We want to force full duplex so we SET the full duplex | |||
3543 | * bits in the Device and MII Control Registers. | |||
3544 | */ | |||
3545 | ctrl |= E1000_CTRL_FD0x00000001; | |||
3546 | mii_ctrl_reg |= MII_CR_FULL_DUPLEX0x0100; | |||
3547 | DEBUGOUT("Full Duplex\n"); | |||
3548 | } else { | |||
3549 | /* | |||
3550 | * We want to force half duplex so we CLEAR the full duplex | |||
3551 | * bits in the Device and MII Control Registers. | |||
3552 | */ | |||
3553 | ctrl &= ~E1000_CTRL_FD0x00000001; | |||
3554 | mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX0x0100; | |||
3555 | DEBUGOUT("Half Duplex\n"); | |||
3556 | } | |||
3557 | ||||
3558 | /* Are we forcing 100Mbps??? */ | |||
3559 | if (hw->forced_speed_duplex == em_100_full || | |||
3560 | hw->forced_speed_duplex == em_100_half) { | |||
3561 | /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */ | |||
3562 | ctrl |= E1000_CTRL_SPD_1000x00000100; | |||
3563 | mii_ctrl_reg |= MII_CR_SPEED_1000x2000; | |||
3564 | mii_ctrl_reg &= ~(MII_CR_SPEED_10000x0040 | MII_CR_SPEED_100x0000); | |||
3565 | DEBUGOUT("Forcing 100mb "); | |||
3566 | } else { | |||
3567 | /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */ | |||
3568 | ctrl &= ~(E1000_CTRL_SPD_10000x00000200 | E1000_CTRL_SPD_1000x00000100); | |||
3569 | mii_ctrl_reg |= MII_CR_SPEED_100x0000; | |||
3570 | mii_ctrl_reg &= ~(MII_CR_SPEED_10000x0040 | MII_CR_SPEED_1000x2000); | |||
3571 | DEBUGOUT("Forcing 10mb "); | |||
3572 | } | |||
3573 | ||||
3574 | em_config_collision_dist(hw); | |||
3575 | ||||
3576 | /* Write the configured values back to the Device Control Reg. */ | |||
3577 | E1000_WRITE_REG(hw, CTRL, ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (ctrl))); | |||
3578 | ||||
3579 | if ((hw->phy_type == em_phy_m88) || | |||
3580 | (hw->phy_type == em_phy_gg82563) || | |||
3581 | (hw->phy_type == em_phy_bm) || | |||
3582 | (hw->phy_type == em_phy_oem || | |||
3583 | (hw->phy_type == em_phy_82578))) { | |||
3584 | ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL0x10, | |||
3585 | &phy_data); | |||
3586 | if (ret_val) | |||
3587 | return ret_val; | |||
3588 | /* | |||
3589 | * Clear Auto-Crossover to force MDI manually. M88E1000 | |||
3590 | * requires MDI forced whenever speed are duplex are forced. | |||
3591 | */ | |||
3592 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE0x0060; | |||
3593 | ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL0x10, | |||
3594 | phy_data); | |||
3595 | if (ret_val) | |||
3596 | return ret_val; | |||
3597 | ||||
3598 | DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data); | |||
3599 | ||||
3600 | /* Need to reset the PHY or these changes will be ignored */ | |||
3601 | mii_ctrl_reg |= MII_CR_RESET0x8000; | |||
3602 | ||||
3603 | } | |||
3604 | else if (hw->phy_type == em_phy_rtl8211) { | |||
3605 | ret_val = em_read_phy_reg_ex(hw, RGEPHY_CR0x10, &phy_data); | |||
3606 | if(ret_val) { | |||
3607 | printf("Unable to read RGEPHY_CR register\n" | |||
3608 | ); | |||
3609 | return ret_val; | |||
3610 | } | |||
3611 | ||||
3612 | /* | |||
3613 | * Clear Auto-Crossover to force MDI manually. RTL8211 requires | |||
3614 | * MDI forced whenever speed are duplex are forced. | |||
3615 | */ | |||
3616 | ||||
3617 | phy_data |= RGEPHY_CR_MDI_MASK0x0060; // enable MDIX | |||
3618 | ret_val = em_write_phy_reg_ex(hw, RGEPHY_CR0x10, phy_data); | |||
3619 | if(ret_val) { | |||
3620 | printf("Unable to write RGEPHY_CR register\n"); | |||
3621 | return ret_val; | |||
3622 | } | |||
3623 | mii_ctrl_reg |= MII_CR_RESET0x8000; | |||
3624 | ||||
3625 | } | |||
3626 | /* Disable MDI-X support for 10/100 */ | |||
3627 | else if (hw->phy_type == em_phy_ife) { | |||
3628 | ret_val = em_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL0x1C, &phy_data); | |||
3629 | if (ret_val) | |||
3630 | return ret_val; | |||
3631 | ||||
3632 | phy_data &= ~IFE_PMC_AUTO_MDIX0x0080; | |||
3633 | phy_data &= ~IFE_PMC_FORCE_MDIX0x0040; | |||
3634 | ||||
3635 | ret_val = em_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL0x1C, phy_data); | |||
3636 | if (ret_val) | |||
3637 | return ret_val; | |||
3638 | } else { | |||
3639 | /* | |||
3640 | * Clear Auto-Crossover to force MDI manually. IGP requires | |||
3641 | * MDI forced whenever speed or duplex are forced. | |||
3642 | */ | |||
3643 | ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL0x12, | |||
3644 | &phy_data); | |||
3645 | if (ret_val) | |||
3646 | return ret_val; | |||
3647 | ||||
3648 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX0x1000; | |||
3649 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX0x2000; | |||
3650 | ||||
3651 | ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL0x12, | |||
3652 | phy_data); | |||
3653 | if (ret_val) | |||
3654 | return ret_val; | |||
3655 | } | |||
3656 | ||||
3657 | /* Write back the modified PHY MII control register. */ | |||
3658 | ret_val = em_write_phy_reg(hw, PHY_CTRL0x00, mii_ctrl_reg); | |||
3659 | if (ret_val) | |||
3660 | return ret_val; | |||
3661 | ||||
3662 | usec_delay(1)(*delay_func)(1); | |||
3663 | /* | |||
3664 | * The wait_autoneg_complete flag may be a little misleading here. | |||
3665 | * Since we are forcing speed and duplex, Auto-Neg is not enabled. | |||
3666 | * But we do want to delay for a period while forcing only so we | |||
3667 | * don't generate false No Link messages. So we will wait here only | |||
3668 | * if the user has set wait_autoneg_complete to 1, which is the | |||
3669 | * default. | |||
3670 | */ | |||
3671 | if (hw->wait_autoneg_complete) { | |||
3672 | /* We will wait for autoneg to complete. */ | |||
3673 | DEBUGOUT("Waiting for forced speed/duplex link.\n"); | |||
3674 | mii_status_reg = 0; | |||
3675 | /* | |||
3676 | * We will wait for autoneg to complete or 4.5 seconds to | |||
3677 | * expire. | |||
3678 | */ | |||
3679 | for (i = PHY_FORCE_TIME20; i > 0; i--) { | |||
3680 | /* | |||
3681 | * Read the MII Status Register and wait for Auto-Neg | |||
3682 | * Complete bit to be set. | |||
3683 | */ | |||
3684 | ret_val = em_read_phy_reg(hw, PHY_STATUS0x01, | |||
3685 | &mii_status_reg); | |||
3686 | if (ret_val) | |||
3687 | return ret_val; | |||
3688 | ||||
3689 | ret_val = em_read_phy_reg(hw, PHY_STATUS0x01, | |||
3690 | &mii_status_reg); | |||
3691 | if (ret_val) | |||
3692 | return ret_val; | |||
3693 | ||||
3694 | if (mii_status_reg & MII_SR_LINK_STATUS0x0004) | |||
3695 | break; | |||
3696 | msec_delay(100)(*delay_func)(1000*(100)); | |||
3697 | } | |||
3698 | if ((i == 0) && | |||
3699 | ((hw->phy_type == em_phy_m88) || | |||
3700 | (hw->phy_type == em_phy_gg82563) || | |||
3701 | (hw->phy_type == em_phy_bm))) { | |||
3702 | /* | |||
3703 | * We didn't get link. Reset the DSP and wait again | |||
3704 | * for link. | |||
3705 | */ | |||
3706 | ret_val = em_phy_reset_dsp(hw); | |||
3707 | if (ret_val) { | |||
3708 | DEBUGOUT("Error Resetting PHY DSP\n"); | |||
3709 | return ret_val; | |||
3710 | } | |||
3711 | } | |||
3712 | /* | |||
3713 | * This loop will early-out if the link condition has been | |||
3714 | * met. | |||
3715 | */ | |||
3716 | for (i = PHY_FORCE_TIME20; i > 0; i--) { | |||
3717 | if (mii_status_reg & MII_SR_LINK_STATUS0x0004) | |||
3718 | break; | |||
3719 | msec_delay(100)(*delay_func)(1000*(100)); | |||
3720 | /* | |||
3721 | * Read the MII Status Register and wait for Auto-Neg | |||
3722 | * Complete bit to be set. | |||
3723 | */ | |||
3724 | ret_val = em_read_phy_reg(hw, PHY_STATUS0x01, | |||
3725 | &mii_status_reg); | |||
3726 | if (ret_val) | |||
3727 | return ret_val; | |||
3728 | ||||
3729 | ret_val = em_read_phy_reg(hw, PHY_STATUS0x01, | |||
3730 | &mii_status_reg); | |||
3731 | if (ret_val) | |||
3732 | return ret_val; | |||
3733 | } | |||
3734 | } | |||
3735 | if (hw->phy_type == em_phy_m88 || | |||
3736 | hw->phy_type == em_phy_bm || | |||
3737 | hw->phy_type == em_phy_oem) { | |||
3738 | /* | |||
3739 | * Because we reset the PHY above, we need to re-force TX_CLK | |||
3740 | * in the Extended PHY Specific Control Register to 25MHz | |||
3741 | * clock. This value defaults back to a 2.5MHz clock when | |||
3742 | * the PHY is reset. | |||
3743 | */ | |||
3744 | ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL0x14, | |||
3745 | &phy_data); | |||
3746 | if (ret_val) | |||
3747 | return ret_val; | |||
3748 | ||||
3749 | phy_data |= M88E1000_EPSCR_TX_CLK_250x0070; | |||
3750 | ret_val = em_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL0x14, | |||
3751 | phy_data); | |||
3752 | if (ret_val) | |||
3753 | return ret_val; | |||
3754 | /* | |||
3755 | * In addition, because of the s/w reset above, we need to | |||
3756 | * enable CRS on TX. This must be set for both full and half | |||
3757 | * duplex operation. | |||
3758 | */ | |||
3759 | ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL0x10, | |||
3760 | &phy_data); | |||
3761 | if (ret_val) | |||
3762 | return ret_val; | |||
3763 | ||||
3764 | if (hw->phy_id == M88E1141_E_PHY_ID0x01410CD0) | |||
3765 | phy_data &= ~M88E1000_PSCR_ASSERT_CRS_ON_TX0x0800; | |||
3766 | else | |||
3767 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX0x0800; | |||
3768 | ||||
3769 | ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL0x10, | |||
3770 | phy_data); | |||
3771 | if (ret_val) | |||
3772 | return ret_val; | |||
3773 | ||||
3774 | if ((hw->mac_type == em_82544 || hw->mac_type == em_82543) && | |||
3775 | (!hw->autoneg) && (hw->forced_speed_duplex == em_10_full || | |||
3776 | hw->forced_speed_duplex == em_10_half)) { | |||
3777 | ret_val = em_polarity_reversal_workaround(hw); | |||
3778 | if (ret_val) | |||
3779 | return ret_val; | |||
3780 | } | |||
3781 | } else if (hw->phy_type == em_phy_rtl8211) { | |||
3782 | /* | |||
3783 | * In addition, because of the s/w reset above, we need to enable | |||
3784 | * CRX on TX. This must be set for both full and half duplex | |||
3785 | * operation. | |||
3786 | */ | |||
3787 | ||||
3788 | ret_val = em_read_phy_reg_ex(hw, RGEPHY_CR0x10, &phy_data); | |||
3789 | if(ret_val) { | |||
3790 | printf("Unable to read RGEPHY_CR register\n"); | |||
3791 | return ret_val; | |||
3792 | } | |||
3793 | ||||
3794 | phy_data &= ~RGEPHY_CR_ASSERT_CRS0x0800; | |||
3795 | ret_val = em_write_phy_reg_ex(hw, RGEPHY_CR0x10, phy_data); | |||
3796 | if(ret_val) { | |||
3797 | printf("Unable to write RGEPHY_CR register\n"); | |||
3798 | return ret_val; | |||
3799 | } | |||
3800 | } else if (hw->phy_type == em_phy_gg82563) { | |||
3801 | /* | |||
3802 | * The TX_CLK of the Extended PHY Specific Control Register | |||
3803 | * defaults to 2.5MHz on a reset. We need to re-force it | |||
3804 | * back to 25MHz, if we're not in a forced 10/duplex | |||
3805 | * configuration. | |||
3806 | */ | |||
3807 | ret_val = em_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL(((2) << 5) | ((21) & 0x1F)), | |||
3808 | &phy_data); | |||
3809 | if (ret_val) | |||
3810 | return ret_val; | |||
3811 | ||||
3812 | phy_data &= ~GG82563_MSCR_TX_CLK_MASK0x0007; | |||
3813 | if ((hw->forced_speed_duplex == em_10_full) || | |||
3814 | (hw->forced_speed_duplex == em_10_half)) | |||
3815 | phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ0x0004; | |||
3816 | else | |||
3817 | phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25MHZ0x0005; | |||
3818 | ||||
3819 | /* Also due to the reset, we need to enable CRS on Tx. */ | |||
3820 | phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX0x0010; | |||
3821 | ||||
3822 | ret_val = em_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL(((2) << 5) | ((21) & 0x1F)), | |||
3823 | phy_data); | |||
3824 | if (ret_val) | |||
3825 | return ret_val; | |||
3826 | } | |||
3827 | return E1000_SUCCESS0; | |||
3828 | } | |||
3829 | ||||
3830 | /****************************************************************************** | |||
3831 | * Sets the collision distance in the Transmit Control register | |||
3832 | * | |||
3833 | * hw - Struct containing variables accessed by shared code | |||
3834 | * | |||
3835 | * Link should have been established previously. Reads the speed and duplex | |||
3836 | * information from the Device Status register. | |||
3837 | *****************************************************************************/ | |||
3838 | void | |||
3839 | em_config_collision_dist(struct em_hw *hw) | |||
3840 | { | |||
3841 | uint32_t tctl, coll_dist; | |||
3842 | DEBUGFUNC("em_config_collision_dist");; | |||
3843 | ||||
3844 | if (hw->mac_type < em_82543) | |||
3845 | coll_dist = E1000_COLLISION_DISTANCE_8254264; | |||
3846 | else | |||
3847 | coll_dist = E1000_COLLISION_DISTANCE63; | |||
3848 | ||||
3849 | tctl = E1000_READ_REG(hw, TCTL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00400 : em_translate_82542_register (0x00400))))); | |||
3850 | ||||
3851 | tctl &= ~E1000_TCTL_COLD0x003ff000; | |||
3852 | tctl |= coll_dist << E1000_COLD_SHIFT12; | |||
3853 | ||||
3854 | E1000_WRITE_REG(hw, TCTL, tctl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00400 : em_translate_82542_register (0x00400))), (tctl))); | |||
3855 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
3856 | } | |||
3857 | ||||
3858 | /****************************************************************************** | |||
3859 | * Sets MAC speed and duplex settings to reflect the those in the PHY | |||
3860 | * | |||
3861 | * hw - Struct containing variables accessed by shared code | |||
3862 | * mii_reg - data to write to the MII control register | |||
3863 | * | |||
3864 | * The contents of the PHY register containing the needed information need to | |||
3865 | * be passed in. | |||
3866 | *****************************************************************************/ | |||
3867 | static int32_t | |||
3868 | em_config_mac_to_phy(struct em_hw *hw) | |||
3869 | { | |||
3870 | uint32_t ctrl; | |||
3871 | int32_t ret_val; | |||
3872 | uint16_t phy_data; | |||
3873 | DEBUGFUNC("em_config_mac_to_phy");; | |||
3874 | /* | |||
3875 | * 82544 or newer MAC, Auto Speed Detection takes care of MAC | |||
3876 | * speed/duplex configuration. | |||
3877 | */ | |||
3878 | if (hw->mac_type >= em_82544 | |||
3879 | && hw->mac_type != em_icp_xxxx) | |||
3880 | return E1000_SUCCESS0; | |||
3881 | /* | |||
3882 | * Read the Device Control Register and set the bits to Force Speed | |||
3883 | * and Duplex. | |||
3884 | */ | |||
3885 | ctrl = E1000_READ_REG(hw, CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))))); | |||
3886 | ctrl |= (E1000_CTRL_FRCSPD0x00000800 | E1000_CTRL_FRCDPX0x00001000); | |||
3887 | ctrl &= ~(E1000_CTRL_SPD_SEL0x00000300 | E1000_CTRL_ILOS0x00000080); | |||
3888 | /* | |||
3889 | * Set up duplex in the Device Control and Transmit Control registers | |||
3890 | * depending on negotiated values. | |||
3891 | */ | |||
3892 | ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS0x11, &phy_data); | |||
3893 | if (ret_val) | |||
3894 | return ret_val; | |||
3895 | ||||
3896 | if (phy_data & M88E1000_PSSR_DPLX0x2000) | |||
3897 | ctrl |= E1000_CTRL_FD0x00000001; | |||
3898 | else | |||
3899 | ctrl &= ~E1000_CTRL_FD0x00000001; | |||
3900 | ||||
3901 | em_config_collision_dist(hw); | |||
3902 | /* | |||
3903 | * Set up speed in the Device Control register depending on | |||
3904 | * negotiated values. | |||
3905 | */ | |||
3906 | if ((phy_data & M88E1000_PSSR_SPEED0xC000) == M88E1000_PSSR_1000MBS0x8000) | |||
3907 | ctrl |= E1000_CTRL_SPD_10000x00000200; | |||
3908 | else if ((phy_data & M88E1000_PSSR_SPEED0xC000) == M88E1000_PSSR_100MBS0x4000) | |||
3909 | ctrl |= E1000_CTRL_SPD_1000x00000100; | |||
3910 | ||||
3911 | /* Write the configured values back to the Device Control Reg. */ | |||
3912 | E1000_WRITE_REG(hw, CTRL, ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (ctrl))); | |||
3913 | return E1000_SUCCESS0; | |||
3914 | } | |||
3915 | ||||
3916 | /****************************************************************************** | |||
3917 | * Forces the MAC's flow control settings. | |||
3918 | * | |||
3919 | * hw - Struct containing variables accessed by shared code | |||
3920 | * | |||
3921 | * Sets the TFCE and RFCE bits in the device control register to reflect | |||
3922 | * the adapter settings. TFCE and RFCE need to be explicitly set by | |||
3923 | * software when a Copper PHY is used because autonegotiation is managed | |||
3924 | * by the PHY rather than the MAC. Software must also configure these | |||
3925 | * bits when link is forced on a fiber connection. | |||
3926 | *****************************************************************************/ | |||
3927 | int32_t | |||
3928 | em_force_mac_fc(struct em_hw *hw) | |||
3929 | { | |||
3930 | uint32_t ctrl; | |||
3931 | DEBUGFUNC("em_force_mac_fc");; | |||
3932 | ||||
3933 | /* Get the current configuration of the Device Control Register */ | |||
3934 | ctrl = E1000_READ_REG(hw, CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))))); | |||
3935 | /* | |||
3936 | * Because we didn't get link via the internal auto-negotiation | |||
3937 | * mechanism (we either forced link or we got link via PHY auto-neg), | |||
3938 | * we have to manually enable/disable transmit an receive flow | |||
3939 | * control. | |||
3940 | * | |||
3941 | * The "Case" statement below enables/disable flow control according to | |||
3942 | * the "hw->fc" parameter. | |||
3943 | * | |||
3944 | * The possible values of the "fc" parameter are: 0: Flow control is | |||
3945 | * completely disabled 1: Rx flow control is enabled (we can receive | |||
3946 | * pause frames but not send pause frames). 2: Tx flow control is | |||
3947 | * enabled (we can send pause frames frames but we do not receive | |||
3948 | * pause frames). 3: Both Rx and TX flow control (symmetric) is | |||
3949 | * enabled. other: No other values should be possible at this point. | |||
3950 | */ | |||
3951 | ||||
3952 | switch (hw->fc) { | |||
3953 | case E1000_FC_NONE0: | |||
3954 | ctrl &= (~(E1000_CTRL_TFCE0x10000000 | E1000_CTRL_RFCE0x08000000)); | |||
3955 | break; | |||
3956 | case E1000_FC_RX_PAUSE1: | |||
3957 | ctrl &= (~E1000_CTRL_TFCE0x10000000); | |||
3958 | ctrl |= E1000_CTRL_RFCE0x08000000; | |||
3959 | break; | |||
3960 | case E1000_FC_TX_PAUSE2: | |||
3961 | ctrl &= (~E1000_CTRL_RFCE0x08000000); | |||
3962 | ctrl |= E1000_CTRL_TFCE0x10000000; | |||
3963 | break; | |||
3964 | case E1000_FC_FULL3: | |||
3965 | ctrl |= (E1000_CTRL_TFCE0x10000000 | E1000_CTRL_RFCE0x08000000); | |||
3966 | break; | |||
3967 | default: | |||
3968 | DEBUGOUT("Flow control param set incorrectly\n"); | |||
3969 | return -E1000_ERR_CONFIG3; | |||
3970 | } | |||
3971 | ||||
3972 | /* Disable TX Flow Control for 82542 (rev 2.0) */ | |||
3973 | if (hw->mac_type == em_82542_rev2_0) | |||
3974 | ctrl &= (~E1000_CTRL_TFCE0x10000000); | |||
3975 | ||||
3976 | E1000_WRITE_REG(hw, CTRL, ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (ctrl))); | |||
3977 | return E1000_SUCCESS0; | |||
3978 | } | |||
3979 | /****************************************************************************** | |||
3980 | * Configures flow control settings after link is established | |||
3981 | * | |||
3982 | * hw - Struct containing variables accessed by shared code | |||
3983 | * | |||
3984 | * Should be called immediately after a valid link has been established. | |||
3985 | * Forces MAC flow control settings if link was forced. When in MII/GMII mode | |||
3986 | * and autonegotiation is enabled, the MAC flow control settings will be set | |||
3987 | * based on the flow control negotiated by the PHY. In TBI mode, the TFCE | |||
3988 | * and RFCE bits will be automatically set to the negotiated flow control mode. | |||
3989 | *****************************************************************************/ | |||
3990 | STATIC int32_t | |||
3991 | em_config_fc_after_link_up(struct em_hw *hw) | |||
3992 | { | |||
3993 | int32_t ret_val; | |||
3994 | uint16_t mii_status_reg; | |||
3995 | uint16_t mii_nway_adv_reg; | |||
3996 | uint16_t mii_nway_lp_ability_reg; | |||
3997 | uint16_t speed; | |||
3998 | uint16_t duplex; | |||
3999 | DEBUGFUNC("em_config_fc_after_link_up");; | |||
4000 | /* | |||
4001 | * Check for the case where we have fiber media and auto-neg failed | |||
4002 | * so we had to force link. In this case, we need to force the | |||
4003 | * configuration of the MAC to match the "fc" parameter. | |||
4004 | */ | |||
4005 | if (((hw->media_type == em_media_type_fiber) && (hw->autoneg_failed)) | |||
4006 | || ((hw->media_type == em_media_type_internal_serdes) && | |||
4007 | (hw->autoneg_failed)) || | |||
4008 | ((hw->media_type == em_media_type_copper) && (!hw->autoneg)) || | |||
4009 | ((hw->media_type == em_media_type_oem) && (!hw->autoneg))) { | |||
4010 | ret_val = em_force_mac_fc(hw); | |||
4011 | if (ret_val) { | |||
4012 | DEBUGOUT("Error forcing flow control settings\n"); | |||
4013 | return ret_val; | |||
4014 | } | |||
4015 | } | |||
4016 | /* | |||
4017 | * Check for the case where we have copper media and auto-neg is | |||
4018 | * enabled. In this case, we need to check and see if Auto-Neg has | |||
4019 | * completed, and if so, how the PHY and link partner has flow | |||
4020 | * control configured. | |||
4021 | */ | |||
4022 | if ((hw->media_type == em_media_type_copper || | |||
4023 | (hw->media_type == em_media_type_oem)) && | |||
4024 | hw->autoneg) { | |||
4025 | /* | |||
4026 | * Read the MII Status Register and check to see if AutoNeg | |||
4027 | * has completed. We read this twice because this reg has | |||
4028 | * some "sticky" (latched) bits. | |||
4029 | */ | |||
4030 | ret_val = em_read_phy_reg(hw, PHY_STATUS0x01, &mii_status_reg); | |||
4031 | if (ret_val) | |||
4032 | return ret_val; | |||
4033 | ret_val = em_read_phy_reg(hw, PHY_STATUS0x01, &mii_status_reg); | |||
4034 | if (ret_val) | |||
4035 | return ret_val; | |||
4036 | ||||
4037 | if (mii_status_reg & MII_SR_AUTONEG_COMPLETE0x0020) { | |||
4038 | /* | |||
4039 | * The AutoNeg process has completed, so we now need | |||
4040 | * to read both the Auto Negotiation Advertisement | |||
4041 | * Register (Address 4) and the Auto_Negotiation Base | |||
4042 | * Page Ability Register (Address 5) to determine how | |||
4043 | * flow control was negotiated. | |||
4044 | */ | |||
4045 | ret_val = em_read_phy_reg(hw, PHY_AUTONEG_ADV0x04, | |||
4046 | &mii_nway_adv_reg); | |||
4047 | if (ret_val) | |||
4048 | return ret_val; | |||
4049 | ret_val = em_read_phy_reg(hw, PHY_LP_ABILITY0x05, | |||
4050 | &mii_nway_lp_ability_reg); | |||
4051 | if (ret_val) | |||
4052 | return ret_val; | |||
4053 | /* | |||
4054 | * Two bits in the Auto Negotiation Advertisement | |||
4055 | * Register (Address 4) and two bits in the Auto | |||
4056 | * Negotiation Base Page Ability Register (Address 5) | |||
4057 | * determine flow control for both the PHY and the | |||
4058 | * link partner. The following table, taken out of | |||
4059 | * the IEEE 802.3ab/D6.0 dated March 25, 1999, | |||
4060 | * describes these PAUSE resolution bits and how flow | |||
4061 | * control is determined based upon these settings. | |||
4062 | * NOTE: DC = Don't Care | |||
4063 | * | |||
4064 | * LOCAL DEVICE | LINK PARTNER | | |||
4065 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution | |||
4066 | * -------|---------|-------|---------|--------------- | |||
4067 | * 0 | 0 | DC | DC | em_fc_none | |||
4068 | * 0 | 1 | 0 | DC | em_fc_none | |||
4069 | * 0 | 1 | 1 | 0 | em_fc_none | |||
4070 | * 0 | 1 | 1 | 1 | em_fc_tx_pause | |||
4071 | * 1 | 0 | 0 | DC | em_fc_none | |||
4072 | * 1 | DC | 1 | DC | em_fc_full | |||
4073 | * 1 | 1 | 0 | 0 | em_fc_none | |||
4074 | * 1 | 1 | 0 | 1 | em_fc_rx_pause | |||
4075 | * | |||
4076 | */ | |||
4077 | /* | |||
4078 | * Are both PAUSE bits set to 1? If so, this implies | |||
4079 | * Symmetric Flow Control is enabled at both ends. | |||
4080 | * The ASM_DIR bits are irrelevant per the spec. | |||
4081 | * | |||
4082 | * For Symmetric Flow Control: | |||
4083 | * | |||
4084 | * LOCAL DEVICE | LINK PARTNER | |||
4085 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | |||
4086 | * -------|---------|-------|---------|--------------- | |||
4087 | * 1 | DC | 1 | DC | em_fc_full | |||
4088 | * | |||
4089 | */ | |||
4090 | if ((mii_nway_adv_reg & NWAY_AR_PAUSE0x0400) && | |||
4091 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE0x0400)) { | |||
4092 | /* | |||
4093 | * Now we need to check if the user selected | |||
4094 | * RX ONLY of pause frames. In this case, we | |||
4095 | * had to advertise FULL flow control because | |||
4096 | * we could not advertise RX ONLY. Hence, we | |||
4097 | * must now check to see if we need to turn | |||
4098 | * OFF the TRANSMISSION of PAUSE frames. | |||
4099 | */ | |||
4100 | if (hw->original_fc == E1000_FC_FULL3) { | |||
4101 | hw->fc = E1000_FC_FULL3; | |||
4102 | DEBUGOUT("Flow Control = FULL.\n"); | |||
4103 | } else { | |||
4104 | hw->fc = E1000_FC_RX_PAUSE1; | |||
4105 | DEBUGOUT("Flow Control = RX PAUSE" | |||
4106 | " frames only.\n"); | |||
4107 | } | |||
4108 | } | |||
4109 | /* | |||
4110 | * For receiving PAUSE frames ONLY. | |||
4111 | * | |||
4112 | * LOCAL DEVICE | LINK PARTNER PAUSE | ASM_DIR | | |||
4113 | * PAUSE | ASM_DIR | Result | |||
4114 | * -------|---------|-------|---------|--------------- | |||
4115 | * ----- 0 | 1 | 1 | 1 | | |||
4116 | * em_fc_tx_pause | |||
4117 | * | |||
4118 | */ | |||
4119 | else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE0x0400) && | |||
4120 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR0x0800) && | |||
4121 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE0x0400) && | |||
4122 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR0x0800)) { | |||
4123 | hw->fc = E1000_FC_TX_PAUSE2; | |||
4124 | DEBUGOUT("Flow Control = TX PAUSE frames only." | |||
4125 | "\n"); | |||
4126 | } | |||
4127 | /* | |||
4128 | * For transmitting PAUSE frames ONLY. | |||
4129 | * | |||
4130 | * LOCAL DEVICE | LINK PARTNER | |||
4131 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | |||
4132 | * -------|---------|-------|---------|--------------- | |||
4133 | * 1 | 1 | 0 | 1 | em_fc_rx_pause | |||
4134 | * | |||
4135 | */ | |||
4136 | else if ((mii_nway_adv_reg & NWAY_AR_PAUSE0x0400) && | |||
4137 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR0x0800) && | |||
4138 | !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE0x0400) && | |||
4139 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR0x0800)) { | |||
4140 | hw->fc = E1000_FC_RX_PAUSE1; | |||
4141 | DEBUGOUT("Flow Control = RX PAUSE frames only." | |||
4142 | "\n"); | |||
4143 | } | |||
4144 | /* | |||
4145 | * Per the IEEE spec, at this point flow control | |||
4146 | * should be disabled. However, we want to consider | |||
4147 | * that we could be connected to a legacy switch that | |||
4148 | * doesn't advertise desired flow control, but can be | |||
4149 | * forced on the link partner. So if we advertised | |||
4150 | * no flow control, that is what we will resolve to. | |||
4151 | * If we advertised some kind of receive capability | |||
4152 | * (Rx Pause Only or Full Flow Control) and the link | |||
4153 | * partner advertised none, we will configure | |||
4154 | * ourselves to enable Rx Flow Control only. We can | |||
4155 | * do this safely for two reasons: If the link | |||
4156 | * partner really didn't want flow control enabled, | |||
4157 | * and we enable Rx, no harm done since we won't be | |||
4158 | * receiving any PAUSE frames anyway. If the intent | |||
4159 | * on the link partner was to have flow control | |||
4160 | * enabled, then by us enabling RX only, we can at | |||
4161 | * least receive pause frames and process them. This | |||
4162 | * is a good idea because in most cases, since we are | |||
4163 | * predominantly a server NIC, more times than not we | |||
4164 | * will be asked to delay transmission of packets | |||
4165 | * than asking our link partner to pause transmission | |||
4166 | * of frames. | |||
4167 | */ | |||
4168 | else if ((hw->original_fc == E1000_FC_NONE0 || | |||
4169 | hw->original_fc == E1000_FC_TX_PAUSE2) || | |||
4170 | hw->fc_strict_ieee) { | |||
4171 | hw->fc = E1000_FC_NONE0; | |||
4172 | DEBUGOUT("Flow Control = NONE.\n"); | |||
4173 | } else { | |||
4174 | hw->fc = E1000_FC_RX_PAUSE1; | |||
4175 | DEBUGOUT("Flow Control = RX PAUSE frames only." | |||
4176 | "\n"); | |||
4177 | } | |||
4178 | /* | |||
4179 | * Now we need to do one last check... If we auto- | |||
4180 | * negotiated to HALF DUPLEX, flow control should not | |||
4181 | * be enabled per IEEE 802.3 spec. | |||
4182 | */ | |||
4183 | ret_val = em_get_speed_and_duplex(hw, &speed, &duplex); | |||
4184 | if (ret_val) { | |||
4185 | DEBUGOUT("Error getting link speed and duplex" | |||
4186 | "\n"); | |||
4187 | return ret_val; | |||
4188 | } | |||
4189 | if (duplex == HALF_DUPLEX1) | |||
4190 | hw->fc = E1000_FC_NONE0; | |||
4191 | /* | |||
4192 | * Now we call a subroutine to actually force the MAC | |||
4193 | * controller to use the correct flow control | |||
4194 | * settings. | |||
4195 | */ | |||
4196 | ret_val = em_force_mac_fc(hw); | |||
4197 | if (ret_val) { | |||
4198 | DEBUGOUT("Error forcing flow control settings" | |||
4199 | "\n"); | |||
4200 | return ret_val; | |||
4201 | } | |||
4202 | } else { | |||
4203 | DEBUGOUT("Copper PHY and Auto Neg has not completed." | |||
4204 | "\n"); | |||
4205 | } | |||
4206 | } | |||
4207 | return E1000_SUCCESS0; | |||
4208 | } | |||
4209 | /****************************************************************************** | |||
4210 | * Checks to see if the link status of the hardware has changed. | |||
4211 | * | |||
4212 | * hw - Struct containing variables accessed by shared code | |||
4213 | * | |||
4214 | * Called by any function that needs to check the link status of the adapter. | |||
4215 | *****************************************************************************/ | |||
4216 | int32_t | |||
4217 | em_check_for_link(struct em_hw *hw) | |||
4218 | { | |||
4219 | uint32_t rxcw = 0; | |||
4220 | uint32_t ctrl; | |||
4221 | uint32_t status; | |||
4222 | uint32_t rctl; | |||
4223 | uint32_t icr; | |||
4224 | uint32_t signal = 0; | |||
4225 | int32_t ret_val; | |||
4226 | uint16_t phy_data; | |||
4227 | DEBUGFUNC("em_check_for_link");; | |||
4228 | uint16_t speed, duplex; | |||
4229 | ||||
4230 | if (hw->mac_type >= em_82575 && | |||
4231 | hw->media_type != em_media_type_copper) { | |||
4232 | ret_val = em_get_pcs_speed_and_duplex_82575(hw, &speed, | |||
4233 | &duplex); | |||
4234 | hw->get_link_status = hw->serdes_link_down; | |||
4235 | ||||
4236 | return (ret_val); | |||
4237 | } | |||
4238 | ||||
4239 | ctrl = E1000_READ_REG(hw, CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))))); | |||
4240 | status = E1000_READ_REG(hw, STATUS)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
4241 | /* | |||
4242 | * On adapters with a MAC newer than 82544, SW Defineable pin 1 will | |||
4243 | * be set when the optics detect a signal. On older adapters, it will | |||
4244 | * be cleared when there is a signal. This applies to fiber media | |||
4245 | * only. | |||
4246 | */ | |||
4247 | if ((hw->media_type == em_media_type_fiber) || | |||
4248 | (hw->media_type == em_media_type_internal_serdes)) { | |||
4249 | rxcw = E1000_READ_REG(hw, RXCW)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00180 : em_translate_82542_register (0x00180))))); | |||
4250 | ||||
4251 | if (hw->media_type == em_media_type_fiber) { | |||
4252 | signal = (hw->mac_type > em_82544) ? | |||
4253 | E1000_CTRL_SWDPIN10x00080000 : 0; | |||
4254 | if (status & E1000_STATUS_LU0x00000002) | |||
4255 | hw->get_link_status = FALSE0; | |||
4256 | } | |||
4257 | } | |||
4258 | /* | |||
4259 | * If we have a copper PHY then we only want to go out to the PHY | |||
4260 | * registers to see if Auto-Neg has completed and/or if our link | |||
4261 | * status has changed. The get_link_status flag will be set if we | |||
4262 | * receive a Link Status Change interrupt or we have Rx Sequence | |||
4263 | * Errors. | |||
4264 | */ | |||
4265 | if ((hw->media_type == em_media_type_copper || | |||
4266 | (hw->media_type == em_media_type_oem)) && | |||
4267 | hw->get_link_status) { | |||
4268 | /* | |||
4269 | * First we want to see if the MII Status Register reports | |||
4270 | * link. If so, then we want to get the current speed/duplex | |||
4271 | * of the PHY. Read the register twice since the link bit is | |||
4272 | * sticky. | |||
4273 | */ | |||
4274 | ret_val = em_read_phy_reg(hw, PHY_STATUS0x01, &phy_data); | |||
4275 | if (ret_val) | |||
4276 | return ret_val; | |||
4277 | ret_val = em_read_phy_reg(hw, PHY_STATUS0x01, &phy_data); | |||
4278 | if (ret_val) | |||
4279 | return ret_val; | |||
4280 | ||||
4281 | hw->icp_xxxx_is_link_up = (phy_data & MII_SR_LINK_STATUS0x0004) != 0; | |||
4282 | ||||
4283 | if (hw->mac_type == em_pchlan) { | |||
4284 | ret_val = em_k1_gig_workaround_hv(hw, | |||
4285 | hw->icp_xxxx_is_link_up); | |||
4286 | if (ret_val) | |||
4287 | return ret_val; | |||
4288 | } | |||
4289 | ||||
4290 | if (phy_data & MII_SR_LINK_STATUS0x0004) { | |||
4291 | hw->get_link_status = FALSE0; | |||
4292 | ||||
4293 | if (hw->phy_type == em_phy_82578) { | |||
4294 | ret_val = em_link_stall_workaround_hv(hw); | |||
4295 | if (ret_val) | |||
4296 | return ret_val; | |||
4297 | } | |||
4298 | ||||
4299 | if (hw->mac_type == em_pch2lan) { | |||
4300 | ret_val = em_k1_workaround_lv(hw); | |||
4301 | if (ret_val) | |||
4302 | return ret_val; | |||
4303 | } | |||
4304 | /* Work-around I218 hang issue */ | |||
4305 | if ((hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM0x155A) || | |||
4306 | (hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_V0x1559) || | |||
4307 | (hw->device_id == E1000_DEV_ID_PCH_I218_LM30x15A2) || | |||
4308 | (hw->device_id == E1000_DEV_ID_PCH_I218_V30x15A3)) { | |||
4309 | ret_val = em_k1_workaround_lpt_lp(hw, | |||
4310 | hw->icp_xxxx_is_link_up); | |||
4311 | if (ret_val) | |||
4312 | return ret_val; | |||
4313 | } | |||
4314 | ||||
4315 | /* | |||
4316 | * Check if there was DownShift, must be checked | |||
4317 | * immediately after link-up | |||
4318 | */ | |||
4319 | em_check_downshift(hw); | |||
4320 | ||||
4321 | /* Enable/Disable EEE after link up */ | |||
4322 | if (hw->mac_type == em_pch2lan || | |||
4323 | hw->mac_type == em_pch_lpt || | |||
4324 | hw->mac_type == em_pch_spt || | |||
4325 | hw->mac_type == em_pch_cnp) { | |||
4326 | ret_val = em_set_eee_pchlan(hw); | |||
4327 | if (ret_val) | |||
4328 | return ret_val; | |||
4329 | } | |||
4330 | ||||
4331 | /* | |||
4332 | * If we are on 82544 or 82543 silicon and | |||
4333 | * speed/duplex are forced to 10H or 10F, then we | |||
4334 | * will implement the polarity reversal workaround. | |||
4335 | * We disable interrupts first, and upon returning, | |||
4336 | * place the devices interrupt state to its previous | |||
4337 | * value except for the link status change interrupt | |||
4338 | * which will happen due to the execution of this | |||
4339 | * workaround. | |||
4340 | */ | |||
4341 | if ((hw->mac_type == em_82544 || | |||
4342 | hw->mac_type == em_82543) && (!hw->autoneg) && | |||
4343 | (hw->forced_speed_duplex == em_10_full || | |||
4344 | hw->forced_speed_duplex == em_10_half)) { | |||
4345 | E1000_WRITE_REG(hw, IMC, 0xffffffff)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x000D8 : em_translate_82542_register (0x000D8))), (0xffffffff))); | |||
4346 | ret_val = em_polarity_reversal_workaround(hw); | |||
4347 | icr = E1000_READ_REG(hw, ICR)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x000C0 : em_translate_82542_register (0x000C0))))); | |||
4348 | E1000_WRITE_REG(hw, ICS,((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x000C8 : em_translate_82542_register (0x000C8))), ((icr & ~0x00000004)))) | |||
4349 | (icr & ~E1000_ICS_LSC))((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x000C8 : em_translate_82542_register (0x000C8))), ((icr & ~0x00000004)))); | |||
4350 | E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x000D0 : em_translate_82542_register (0x000D0))), (( 0x00000080 | 0x00000001 | 0x00000010 | 0x00000008 | 0x00000040 | 0x00000004)))); | |||
4351 | } | |||
4352 | } else { | |||
4353 | /* No link detected */ | |||
4354 | em_config_dsp_after_link_change(hw, FALSE0); | |||
4355 | return 0; | |||
4356 | } | |||
4357 | /* | |||
4358 | * If we are forcing speed/duplex, then we simply return | |||
4359 | * since we have already determined whether we have link or | |||
4360 | * not. | |||
4361 | */ | |||
4362 | if (!hw->autoneg) | |||
4363 | return -E1000_ERR_CONFIG3; | |||
4364 | ||||
4365 | /* optimize the dsp settings for the igp phy */ | |||
4366 | em_config_dsp_after_link_change(hw, TRUE1); | |||
4367 | /* | |||
4368 | * We have a M88E1000 PHY and Auto-Neg is enabled. If we | |||
4369 | * have Si on board that is 82544 or newer, Auto Speed | |||
4370 | * Detection takes care of MAC speed/duplex configuration. | |||
4371 | * So we only need to configure Collision Distance in the | |||
4372 | * MAC. Otherwise, we need to force speed/duplex on the MAC | |||
4373 | * to the current PHY speed/duplex settings. | |||
4374 | */ | |||
4375 | if (hw->mac_type >= em_82544 && hw->mac_type != em_icp_xxxx) { | |||
4376 | em_config_collision_dist(hw); | |||
4377 | } else { | |||
4378 | ret_val = em_config_mac_to_phy(hw); | |||
4379 | if (ret_val) { | |||
4380 | DEBUGOUT("Error configuring MAC to PHY" | |||
4381 | " settings\n"); | |||
4382 | return ret_val; | |||
4383 | } | |||
4384 | } | |||
4385 | /* | |||
4386 | * Configure Flow Control now that Auto-Neg has completed. | |||
4387 | * First, we need to restore the desired flow control | |||
4388 | * settings because we may have had to re-autoneg with a | |||
4389 | * different link partner. | |||
4390 | */ | |||
4391 | ret_val = em_config_fc_after_link_up(hw); | |||
4392 | if (ret_val) { | |||
4393 | DEBUGOUT("Error configuring flow control\n"); | |||
4394 | return ret_val; | |||
4395 | } | |||
4396 | /* | |||
4397 | * At this point we know that we are on copper and we have | |||
4398 | * auto-negotiated link. These are conditions for checking | |||
4399 | * the link partner capability register. We use the link | |||
4400 | * speed to determine if TBI compatibility needs to be turned | |||
4401 | * on or off. If the link is not at gigabit speed, then TBI | |||
4402 | * compatibility is not needed. If we are at gigabit speed, | |||
4403 | * we turn on TBI compatibility. | |||
4404 | */ | |||
4405 | if (hw->tbi_compatibility_en) { | |||
4406 | uint16_t speed, duplex; | |||
4407 | ret_val = em_get_speed_and_duplex(hw, &speed, &duplex); | |||
4408 | if (ret_val) { | |||
4409 | DEBUGOUT("Error getting link speed and duplex" | |||
4410 | "\n"); | |||
4411 | return ret_val; | |||
4412 | } | |||
4413 | if (speed != SPEED_10001000) { | |||
4414 | /* | |||
4415 | * If link speed is not set to gigabit speed, | |||
4416 | * we do not need to enable TBI | |||
4417 | * compatibility. | |||
4418 | */ | |||
4419 | if (hw->tbi_compatibility_on) { | |||
4420 | /* | |||
4421 | * If we previously were in the mode, | |||
4422 | * turn it off. | |||
4423 | */ | |||
4424 | rctl = E1000_READ_REG(hw, RCTL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00100 : em_translate_82542_register (0x00100))))); | |||
4425 | rctl &= ~E1000_RCTL_SBP0x00000004; | |||
4426 | E1000_WRITE_REG(hw, RCTL, rctl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00100 : em_translate_82542_register (0x00100))), (rctl))); | |||
4427 | hw->tbi_compatibility_on = FALSE0; | |||
4428 | } | |||
4429 | } else { | |||
4430 | /* | |||
4431 | * If TBI compatibility is was previously | |||
4432 | * off, turn it on. For compatibility with a | |||
4433 | * TBI link partner, we will store bad | |||
4434 | * packets. Some frames have an additional | |||
4435 | * byte on the end and will look like CRC | |||
4436 | * errors to to the hardware. | |||
4437 | */ | |||
4438 | if (!hw->tbi_compatibility_on) { | |||
4439 | hw->tbi_compatibility_on = TRUE1; | |||
4440 | rctl = E1000_READ_REG(hw, RCTL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00100 : em_translate_82542_register (0x00100))))); | |||
4441 | rctl |= E1000_RCTL_SBP0x00000004; | |||
4442 | E1000_WRITE_REG(hw, RCTL, rctl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00100 : em_translate_82542_register (0x00100))), (rctl))); | |||
4443 | } | |||
4444 | } | |||
4445 | } | |||
4446 | } | |||
4447 | /* | |||
4448 | * If we don't have link (auto-negotiation failed or link partner | |||
4449 | * cannot auto-negotiate), the cable is plugged in (we have signal), | |||
4450 | * and our link partner is not trying to auto-negotiate with us (we | |||
4451 | * are receiving idles or data), we need to force link up. We also | |||
4452 | * need to give auto-negotiation time to complete, in case the cable | |||
4453 | * was just plugged in. The autoneg_failed flag does this. | |||
4454 | */ | |||
4455 | else if ((((hw->media_type == em_media_type_fiber) && | |||
4456 | ((ctrl & E1000_CTRL_SWDPIN10x00080000) == signal)) || | |||
4457 | (hw->media_type == em_media_type_internal_serdes)) && | |||
4458 | (!(status & E1000_STATUS_LU0x00000002)) && (!(rxcw & E1000_RXCW_C0x20000000))) { | |||
4459 | if (hw->autoneg_failed == 0) { | |||
4460 | hw->autoneg_failed = 1; | |||
4461 | return 0; | |||
4462 | } | |||
4463 | DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n"); | |||
4464 | ||||
4465 | /* Disable auto-negotiation in the TXCW register */ | |||
4466 | E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE))((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00178 : em_translate_82542_register (0x00178))), ((hw->txcw & ~0x80000000)))); | |||
4467 | ||||
4468 | /* Force link-up and also force full-duplex. */ | |||
4469 | ctrl = E1000_READ_REG(hw, CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))))); | |||
4470 | ctrl |= (E1000_CTRL_SLU0x00000040 | E1000_CTRL_FD0x00000001); | |||
4471 | E1000_WRITE_REG(hw, CTRL, ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (ctrl))); | |||
4472 | ||||
4473 | /* Configure Flow Control after forcing link up. */ | |||
4474 | ret_val = em_config_fc_after_link_up(hw); | |||
4475 | if (ret_val) { | |||
4476 | DEBUGOUT("Error configuring flow control\n"); | |||
4477 | return ret_val; | |||
4478 | } | |||
4479 | } | |||
4480 | /* | |||
4481 | * If we are forcing link and we are receiving /C/ ordered sets, | |||
4482 | * re-enable auto-negotiation in the TXCW register and disable forced | |||
4483 | * link in the Device Control register in an attempt to | |||
4484 | * auto-negotiate with our link partner. | |||
4485 | */ | |||
4486 | else if (((hw->media_type == em_media_type_fiber) || | |||
4487 | (hw->media_type == em_media_type_internal_serdes)) && | |||
4488 | (ctrl & E1000_CTRL_SLU0x00000040) && (rxcw & E1000_RXCW_C0x20000000)) { | |||
4489 | DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n"); | |||
4490 | E1000_WRITE_REG(hw, TXCW, hw->txcw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00178 : em_translate_82542_register (0x00178))), (hw->txcw))); | |||
4491 | E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU))((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), ((ctrl & ~0x00000040)))); | |||
4492 | ||||
4493 | hw->serdes_link_down = FALSE0; | |||
4494 | } | |||
4495 | /* | |||
4496 | * If we force link for non-auto-negotiation switch, check link | |||
4497 | * status based on MAC synchronization for internal serdes media | |||
4498 | * type. | |||
4499 | */ | |||
4500 | else if ((hw->media_type == em_media_type_internal_serdes) && | |||
4501 | !(E1000_TXCW_ANE0x80000000 & E1000_READ_REG(hw, TXCW)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00178 : em_translate_82542_register (0x00178))))))) { | |||
4502 | /* SYNCH bit and IV bit are sticky. */ | |||
4503 | usec_delay(10)(*delay_func)(10); | |||
4504 | if (E1000_RXCW_SYNCH0x40000000 & E1000_READ_REG(hw, RXCW)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00180 : em_translate_82542_register (0x00180)))))) { | |||
4505 | if (!(rxcw & E1000_RXCW_IV0x08000000)) { | |||
4506 | hw->serdes_link_down = FALSE0; | |||
4507 | DEBUGOUT("SERDES: Link is up.\n"); | |||
4508 | } | |||
4509 | } else { | |||
4510 | hw->serdes_link_down = TRUE1; | |||
4511 | DEBUGOUT("SERDES: Link is down.\n"); | |||
4512 | } | |||
4513 | } | |||
4514 | if ((hw->media_type == em_media_type_internal_serdes) && | |||
4515 | (E1000_TXCW_ANE0x80000000 & E1000_READ_REG(hw, TXCW)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00178 : em_translate_82542_register (0x00178))))))) { | |||
4516 | hw->serdes_link_down = !(E1000_STATUS_LU0x00000002 & | |||
4517 | E1000_READ_REG(hw, STATUS)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008)))))); | |||
4518 | } | |||
4519 | return E1000_SUCCESS0; | |||
4520 | } | |||
4521 | ||||
4522 | int32_t | |||
4523 | em_get_pcs_speed_and_duplex_82575(struct em_hw *hw, uint16_t *speed, | |||
4524 | uint16_t *duplex) | |||
4525 | { | |||
4526 | uint32_t pcs; | |||
4527 | ||||
4528 | hw->serdes_link_down = TRUE1; | |||
4529 | *speed = 0; | |||
4530 | *duplex = 0; | |||
4531 | ||||
4532 | /* | |||
4533 | * Read the PCS Status register for link state. For non-copper mode, | |||
4534 | * the status register is not accurate. The PCS status register is | |||
4535 | * used instead. | |||
4536 | */ | |||
4537 | pcs = E1000_READ_REG(hw, PCS_LSTAT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x0420C : em_translate_82542_register (0x0420C))))); | |||
4538 | ||||
4539 | /* | |||
4540 | * The link up bit determines when link is up on autoneg. The sync ok | |||
4541 | * gets set once both sides sync up and agree upon link. Stable link | |||
4542 | * can be determined by checking for both link up and link sync ok | |||
4543 | */ | |||
4544 | if ((pcs & E1000_PCS_LSTS_LINK_OK0x01) && (pcs & E1000_PCS_LSTS_SYNK_OK0x10)) { | |||
4545 | hw->serdes_link_down = FALSE0; | |||
4546 | ||||
4547 | /* Detect and store PCS speed */ | |||
4548 | if (pcs & E1000_PCS_LSTS_SPEED_10000x04) { | |||
4549 | *speed = SPEED_10001000; | |||
4550 | } else if (pcs & E1000_PCS_LSTS_SPEED_1000x02) { | |||
4551 | *speed = SPEED_100100; | |||
4552 | } else { | |||
4553 | *speed = SPEED_1010; | |||
4554 | } | |||
4555 | ||||
4556 | /* Detect and store PCS duplex */ | |||
4557 | if (pcs & E1000_PCS_LSTS_DUPLEX_FULL0x08) { | |||
4558 | *duplex = FULL_DUPLEX2; | |||
4559 | } else { | |||
4560 | *duplex = HALF_DUPLEX1; | |||
4561 | } | |||
4562 | } | |||
4563 | ||||
4564 | return (0); | |||
4565 | } | |||
4566 | ||||
4567 | ||||
4568 | /****************************************************************************** | |||
4569 | * Detects the current speed and duplex settings of the hardware. | |||
4570 | * | |||
4571 | * hw - Struct containing variables accessed by shared code | |||
4572 | * speed - Speed of the connection | |||
4573 | * duplex - Duplex setting of the connection | |||
4574 | *****************************************************************************/ | |||
4575 | int32_t | |||
4576 | em_get_speed_and_duplex(struct em_hw *hw, uint16_t *speed, uint16_t *duplex) | |||
4577 | { | |||
4578 | uint32_t status; | |||
4579 | int32_t ret_val; | |||
4580 | uint16_t phy_data; | |||
4581 | DEBUGFUNC("em_get_speed_and_duplex");; | |||
4582 | ||||
4583 | if (hw->mac_type >= em_82575 && hw->media_type != em_media_type_copper) | |||
4584 | return em_get_pcs_speed_and_duplex_82575(hw, speed, duplex); | |||
4585 | ||||
4586 | if (hw->mac_type >= em_82543) { | |||
4587 | status = E1000_READ_REG(hw, STATUS)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
4588 | if (status & E1000_STATUS_SPEED_10000x00000080) { | |||
4589 | *speed = SPEED_10001000; | |||
4590 | DEBUGOUT("1000 Mbs, "); | |||
4591 | } else if (status & E1000_STATUS_SPEED_1000x00000040) { | |||
4592 | *speed = SPEED_100100; | |||
4593 | DEBUGOUT("100 Mbs, "); | |||
4594 | } else { | |||
4595 | *speed = SPEED_1010; | |||
4596 | DEBUGOUT("10 Mbs, "); | |||
4597 | } | |||
4598 | ||||
4599 | if (status & E1000_STATUS_FD0x00000001) { | |||
4600 | *duplex = FULL_DUPLEX2; | |||
4601 | DEBUGOUT("Full Duplex\n"); | |||
4602 | } else { | |||
4603 | *duplex = HALF_DUPLEX1; | |||
4604 | DEBUGOUT(" Half Duplex\n"); | |||
4605 | } | |||
4606 | } else { | |||
4607 | DEBUGOUT("1000 Mbs, Full Duplex\n"); | |||
4608 | *speed = SPEED_10001000; | |||
4609 | *duplex = FULL_DUPLEX2; | |||
4610 | } | |||
4611 | /* | |||
4612 | * IGP01 PHY may advertise full duplex operation after speed | |||
4613 | * downgrade even if it is operating at half duplex. Here we set the | |||
4614 | * duplex settings to match the duplex in the link partner's | |||
4615 | * capabilities. | |||
4616 | */ | |||
4617 | if (hw->phy_type == em_phy_igp && hw->speed_downgraded) { | |||
4618 | ret_val = em_read_phy_reg(hw, PHY_AUTONEG_EXP0x06, &phy_data); | |||
4619 | if (ret_val) | |||
4620 | return ret_val; | |||
4621 | ||||
4622 | if (!(phy_data & NWAY_ER_LP_NWAY_CAPS0x0001)) | |||
4623 | *duplex = HALF_DUPLEX1; | |||
4624 | else { | |||
4625 | ret_val = em_read_phy_reg(hw, PHY_LP_ABILITY0x05, | |||
4626 | &phy_data); | |||
4627 | if (ret_val) | |||
4628 | return ret_val; | |||
4629 | if ((*speed == SPEED_100100 && | |||
4630 | !(phy_data & NWAY_LPAR_100TX_FD_CAPS0x0100)) || | |||
4631 | (*speed == SPEED_1010 && | |||
4632 | !(phy_data & NWAY_LPAR_10T_FD_CAPS0x0040))) | |||
4633 | *duplex = HALF_DUPLEX1; | |||
4634 | } | |||
4635 | } | |||
4636 | if ((hw->mac_type == em_80003es2lan) && | |||
4637 | (hw->media_type == em_media_type_copper)) { | |||
4638 | if (*speed == SPEED_10001000) | |||
4639 | ret_val = em_configure_kmrn_for_1000(hw); | |||
4640 | else | |||
4641 | ret_val = em_configure_kmrn_for_10_100(hw, *duplex); | |||
4642 | if (ret_val) | |||
4643 | return ret_val; | |||
4644 | } | |||
4645 | if ((hw->mac_type == em_ich8lan) && | |||
4646 | (hw->phy_type == em_phy_igp_3) && | |||
4647 | (*speed == SPEED_10001000)) { | |||
4648 | ret_val = em_kumeran_lock_loss_workaround(hw); | |||
4649 | if (ret_val) | |||
4650 | return ret_val; | |||
4651 | } | |||
4652 | return E1000_SUCCESS0; | |||
4653 | } | |||
4654 | ||||
4655 | /****************************************************************************** | |||
4656 | * Blocks until autoneg completes or times out (~4.5 seconds) | |||
4657 | * | |||
4658 | * hw - Struct containing variables accessed by shared code | |||
4659 | *****************************************************************************/ | |||
4660 | STATIC int32_t | |||
4661 | em_wait_autoneg(struct em_hw *hw) | |||
4662 | { | |||
4663 | int32_t ret_val; | |||
4664 | uint16_t i; | |||
4665 | uint16_t phy_data; | |||
4666 | DEBUGFUNC("em_wait_autoneg");; | |||
4667 | DEBUGOUT("Waiting for Auto-Neg to complete.\n"); | |||
4668 | ||||
4669 | /* We will wait for autoneg to complete or 4.5 seconds to expire. */ | |||
4670 | for (i = PHY_AUTO_NEG_TIME45; i > 0; i--) { | |||
4671 | /* | |||
4672 | * Read the MII Status Register and wait for Auto-Neg | |||
4673 | * Complete bit to be set. | |||
4674 | */ | |||
4675 | ret_val = em_read_phy_reg(hw, PHY_STATUS0x01, &phy_data); | |||
4676 | if (ret_val) | |||
4677 | return ret_val; | |||
4678 | ret_val = em_read_phy_reg(hw, PHY_STATUS0x01, &phy_data); | |||
4679 | if (ret_val) | |||
4680 | return ret_val; | |||
4681 | if (phy_data & MII_SR_AUTONEG_COMPLETE0x0020) { | |||
4682 | return E1000_SUCCESS0; | |||
4683 | } | |||
4684 | msec_delay(100)(*delay_func)(1000*(100)); | |||
4685 | } | |||
4686 | return E1000_SUCCESS0; | |||
4687 | } | |||
4688 | ||||
4689 | /****************************************************************************** | |||
4690 | * Raises the Management Data Clock | |||
4691 | * | |||
4692 | * hw - Struct containing variables accessed by shared code | |||
4693 | * ctrl - Device control register's current value | |||
4694 | *****************************************************************************/ | |||
4695 | static void | |||
4696 | em_raise_mdi_clk(struct em_hw *hw, uint32_t *ctrl) | |||
4697 | { | |||
4698 | /* | |||
4699 | * Raise the clock input to the Management Data Clock (by setting the | |||
4700 | * MDC bit), and then delay 10 microseconds. | |||
4701 | */ | |||
4702 | E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC))((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), ((*ctrl | 0x00200000)))); | |||
4703 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
4704 | usec_delay(10)(*delay_func)(10); | |||
4705 | } | |||
4706 | ||||
4707 | /****************************************************************************** | |||
4708 | * Lowers the Management Data Clock | |||
4709 | * | |||
4710 | * hw - Struct containing variables accessed by shared code | |||
4711 | * ctrl - Device control register's current value | |||
4712 | *****************************************************************************/ | |||
4713 | static void | |||
4714 | em_lower_mdi_clk(struct em_hw *hw, uint32_t *ctrl) | |||
4715 | { | |||
4716 | /* | |||
4717 | * Lower the clock input to the Management Data Clock (by clearing | |||
4718 | * the MDC bit), and then delay 10 microseconds. | |||
4719 | */ | |||
4720 | E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC))((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), ((*ctrl & ~0x00200000)))); | |||
4721 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
4722 | usec_delay(10)(*delay_func)(10); | |||
4723 | } | |||
4724 | ||||
4725 | /****************************************************************************** | |||
4726 | * Shifts data bits out to the PHY | |||
4727 | * | |||
4728 | * hw - Struct containing variables accessed by shared code | |||
4729 | * data - Data to send out to the PHY | |||
4730 | * count - Number of bits to shift out | |||
4731 | * | |||
4732 | * Bits are shifted out in MSB to LSB order. | |||
4733 | *****************************************************************************/ | |||
4734 | static void | |||
4735 | em_shift_out_mdi_bits(struct em_hw *hw, uint32_t data, uint16_t count) | |||
4736 | { | |||
4737 | uint32_t ctrl; | |||
4738 | uint32_t mask; | |||
4739 | /* | |||
4740 | * We need to shift "count" number of bits out to the PHY. So, the | |||
4741 | * value in the "data" parameter will be shifted out to the PHY one | |||
4742 | * bit at a time. In order to do this, "data" must be broken down | |||
4743 | * into bits. | |||
4744 | */ | |||
4745 | mask = 0x01; | |||
4746 | mask <<= (count - 1); | |||
4747 | ||||
4748 | ctrl = E1000_READ_REG(hw, CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))))); | |||
4749 | ||||
4750 | /* Set MDIO_DIR and MDC_DIR direction bits to be used as output | |||
4751 | * pins. | |||
4752 | */ | |||
4753 | ctrl |= (E1000_CTRL_MDIO_DIR0x01000000 | E1000_CTRL_MDC_DIR0x02000000); | |||
4754 | ||||
4755 | while (mask) { | |||
4756 | /* | |||
4757 | * A "1" is shifted out to the PHY by setting the MDIO bit to | |||
4758 | * "1" and then raising and lowering the Management Data | |||
4759 | * Clock. A "0" is shifted out to the PHY by setting the MDIO | |||
4760 | * bit to "0" and then raising and lowering the clock. | |||
4761 | */ | |||
4762 | if (data & mask) | |||
4763 | ctrl |= E1000_CTRL_MDIO0x00100000; | |||
4764 | else | |||
4765 | ctrl &= ~E1000_CTRL_MDIO0x00100000; | |||
4766 | ||||
4767 | E1000_WRITE_REG(hw, CTRL, ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (ctrl))); | |||
4768 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
4769 | ||||
4770 | usec_delay(10)(*delay_func)(10); | |||
4771 | ||||
4772 | em_raise_mdi_clk(hw, &ctrl); | |||
4773 | em_lower_mdi_clk(hw, &ctrl); | |||
4774 | ||||
4775 | mask = mask >> 1; | |||
4776 | } | |||
4777 | } | |||
4778 | ||||
4779 | /****************************************************************************** | |||
4780 | * Shifts data bits in from the PHY | |||
4781 | * | |||
4782 | * hw - Struct containing variables accessed by shared code | |||
4783 | * | |||
4784 | * Bits are shifted in in MSB to LSB order. | |||
4785 | *****************************************************************************/ | |||
4786 | static uint16_t | |||
4787 | em_shift_in_mdi_bits(struct em_hw *hw) | |||
4788 | { | |||
4789 | uint32_t ctrl; | |||
4790 | uint16_t data = 0; | |||
4791 | uint8_t i; | |||
4792 | /* | |||
4793 | * In order to read a register from the PHY, we need to shift in a | |||
4794 | * total of 18 bits from the PHY. The first two bit (turnaround) | |||
4795 | * times are used to avoid contention on the MDIO pin when a read | |||
4796 | * operation is performed. These two bits are ignored by us and | |||
4797 | * thrown away. Bits are "shifted in" by raising the input to the | |||
4798 | * Management Data Clock (setting the MDC bit), and then reading the | |||
4799 | * value of the MDIO bit. | |||
4800 | */ | |||
4801 | ctrl = E1000_READ_REG(hw, CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))))); | |||
4802 | /* | |||
4803 | * Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as | |||
4804 | * input. | |||
4805 | */ | |||
4806 | ctrl &= ~E1000_CTRL_MDIO_DIR0x01000000; | |||
4807 | ctrl &= ~E1000_CTRL_MDIO0x00100000; | |||
4808 | ||||
4809 | E1000_WRITE_REG(hw, CTRL, ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (ctrl))); | |||
4810 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
4811 | /* | |||
4812 | * Raise and Lower the clock before reading in the data. This | |||
4813 | * accounts for the turnaround bits. The first clock occurred when we | |||
4814 | * clocked out the last bit of the Register Address. | |||
4815 | */ | |||
4816 | em_raise_mdi_clk(hw, &ctrl); | |||
4817 | em_lower_mdi_clk(hw, &ctrl); | |||
4818 | ||||
4819 | for (data = 0, i = 0; i < 16; i++) { | |||
4820 | data = data << 1; | |||
4821 | em_raise_mdi_clk(hw, &ctrl); | |||
4822 | ctrl = E1000_READ_REG(hw, CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))))); | |||
4823 | /* Check to see if we shifted in a "1". */ | |||
4824 | if (ctrl & E1000_CTRL_MDIO0x00100000) | |||
4825 | data |= 1; | |||
4826 | em_lower_mdi_clk(hw, &ctrl); | |||
4827 | } | |||
4828 | ||||
4829 | em_raise_mdi_clk(hw, &ctrl); | |||
4830 | em_lower_mdi_clk(hw, &ctrl); | |||
4831 | ||||
4832 | return data; | |||
4833 | } | |||
4834 | ||||
4835 | STATIC int32_t | |||
4836 | em_swfw_sync_acquire(struct em_hw *hw, uint16_t mask) | |||
4837 | { | |||
4838 | uint32_t swfw_sync = 0; | |||
4839 | uint32_t swmask = mask; | |||
4840 | uint32_t fwmask = mask << 16; | |||
4841 | int32_t timeout = 200; | |||
4842 | DEBUGFUNC("em_swfw_sync_acquire");; | |||
4843 | ||||
4844 | if (hw->swfwhw_semaphore_present) | |||
4845 | return em_get_software_flag(hw); | |||
4846 | ||||
4847 | if (!hw->swfw_sync_present) | |||
4848 | return em_get_hw_eeprom_semaphore(hw); | |||
4849 | ||||
4850 | while (timeout) { | |||
4851 | if (em_get_hw_eeprom_semaphore(hw)) | |||
4852 | return -E1000_ERR_SWFW_SYNC13; | |||
4853 | ||||
4854 | swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B5C : em_translate_82542_register (0x05B5C))))); | |||
4855 | if (!(swfw_sync & (fwmask | swmask))) { | |||
4856 | break; | |||
4857 | } | |||
4858 | /* | |||
4859 | * firmware currently using resource (fwmask) | |||
4860 | * or other software thread currently using resource (swmask) | |||
4861 | */ | |||
4862 | em_put_hw_eeprom_semaphore(hw); | |||
4863 | msec_delay_irq(5)(*delay_func)(1000*(5)); | |||
4864 | timeout--; | |||
4865 | } | |||
4866 | ||||
4867 | if (!timeout) { | |||
4868 | DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout." | |||
4869 | "\n"); | |||
4870 | return -E1000_ERR_SWFW_SYNC13; | |||
4871 | } | |||
4872 | swfw_sync |= swmask; | |||
4873 | E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B5C : em_translate_82542_register (0x05B5C))), (swfw_sync))); | |||
4874 | ||||
4875 | em_put_hw_eeprom_semaphore(hw); | |||
4876 | return E1000_SUCCESS0; | |||
4877 | } | |||
4878 | ||||
4879 | STATIC void | |||
4880 | em_swfw_sync_release(struct em_hw *hw, uint16_t mask) | |||
4881 | { | |||
4882 | uint32_t swfw_sync; | |||
4883 | uint32_t swmask = mask; | |||
4884 | DEBUGFUNC("em_swfw_sync_release");; | |||
4885 | ||||
4886 | if (hw->swfwhw_semaphore_present) { | |||
4887 | em_release_software_flag(hw); | |||
4888 | return; | |||
4889 | } | |||
4890 | if (!hw->swfw_sync_present) { | |||
4891 | em_put_hw_eeprom_semaphore(hw); | |||
4892 | return; | |||
4893 | } | |||
4894 | /* | |||
4895 | * if (em_get_hw_eeprom_semaphore(hw)) return -E1000_ERR_SWFW_SYNC; | |||
4896 | */ | |||
4897 | while (em_get_hw_eeprom_semaphore(hw) != E1000_SUCCESS0); | |||
4898 | /* empty */ | |||
4899 | ||||
4900 | swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B5C : em_translate_82542_register (0x05B5C))))); | |||
4901 | swfw_sync &= ~swmask; | |||
4902 | E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B5C : em_translate_82542_register (0x05B5C))), (swfw_sync))); | |||
4903 | ||||
4904 | em_put_hw_eeprom_semaphore(hw); | |||
4905 | } | |||
4906 | ||||
4907 | /**************************************************************************** | |||
4908 | * Read BM PHY wakeup register. It works as such: | |||
4909 | * 1) Set page 769, register 17, bit 2 = 1 | |||
4910 | * 2) Set page to 800 for host (801 if we were manageability) | |||
4911 | * 3) Write the address using the address opcode (0x11) | |||
4912 | * 4) Read or write the data using the data opcode (0x12) | |||
4913 | * 5) Restore 769_17.2 to its original value | |||
4914 | ****************************************************************************/ | |||
4915 | int32_t | |||
4916 | em_access_phy_wakeup_reg_bm(struct em_hw *hw, uint32_t reg_addr, | |||
4917 | uint16_t *phy_data, boolean_t read) | |||
4918 | { | |||
4919 | int32_t ret_val; | |||
4920 | uint16_t reg = BM_PHY_REG_NUM(reg_addr)((uint16_t)(((reg_addr) & 0x1F) | (((reg_addr) >> ( 21 - 5)) & ~0x1F))); | |||
4921 | uint16_t phy_reg = 0; | |||
4922 | ||||
4923 | /* All operations in this function are phy address 1 */ | |||
4924 | hw->phy_addr = 1; | |||
4925 | ||||
4926 | /* Set page 769 */ | |||
4927 | em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT0x1F, | |||
4928 | (BM_WUC_ENABLE_PAGE769 << PHY_PAGE_SHIFT5)); | |||
4929 | ||||
4930 | ret_val = em_read_phy_reg_ex(hw, BM_WUC_ENABLE_REG17, &phy_reg); | |||
4931 | if (ret_val) | |||
4932 | goto out; | |||
4933 | ||||
4934 | /* First clear bit 4 to avoid a power state change */ | |||
4935 | phy_reg &= ~(BM_WUC_HOST_WU_BIT(1 << 4)); | |||
4936 | ret_val = em_write_phy_reg_ex(hw, BM_WUC_ENABLE_REG17, phy_reg); | |||
4937 | if (ret_val) | |||
4938 | goto out; | |||
4939 | ||||
4940 | /* Write bit 2 = 1, and clear bit 4 to 769_17 */ | |||
4941 | ret_val = em_write_phy_reg_ex(hw, BM_WUC_ENABLE_REG17, | |||
4942 | phy_reg | BM_WUC_ENABLE_BIT(1 << 2)); | |||
4943 | if (ret_val) | |||
4944 | goto out; | |||
4945 | ||||
4946 | /* Select page 800 */ | |||
4947 | ret_val = em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT0x1F, | |||
4948 | (BM_WUC_PAGE800 << PHY_PAGE_SHIFT5)); | |||
4949 | ||||
4950 | /* Write the page 800 offset value using opcode 0x11 */ | |||
4951 | ret_val = em_write_phy_reg_ex(hw, BM_WUC_ADDRESS_OPCODE0x11, reg); | |||
4952 | if (ret_val) | |||
4953 | goto out; | |||
4954 | ||||
4955 | if (read) | |||
4956 | /* Read the page 800 value using opcode 0x12 */ | |||
4957 | ret_val = em_read_phy_reg_ex(hw, BM_WUC_DATA_OPCODE0x12, | |||
4958 | phy_data); | |||
4959 | else | |||
4960 | /* Write the page 800 value using opcode 0x12 */ | |||
4961 | ret_val = em_write_phy_reg_ex(hw, BM_WUC_DATA_OPCODE0x12, | |||
4962 | *phy_data); | |||
4963 | ||||
4964 | if (ret_val) | |||
4965 | goto out; | |||
4966 | ||||
4967 | /* | |||
4968 | * Restore 769_17.2 to its original value | |||
4969 | * Set page 769 | |||
4970 | */ | |||
4971 | em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT0x1F, | |||
4972 | (BM_WUC_ENABLE_PAGE769 << PHY_PAGE_SHIFT5)); | |||
4973 | ||||
4974 | /* Clear 769_17.2 */ | |||
4975 | ret_val = em_write_phy_reg_ex(hw, BM_WUC_ENABLE_REG17, phy_reg); | |||
4976 | if (ret_val) | |||
4977 | goto out; | |||
4978 | ||||
4979 | out: | |||
4980 | return ret_val; | |||
4981 | } | |||
4982 | ||||
4983 | /*************************************************************************** | |||
4984 | * Read HV PHY vendor specific high registers | |||
4985 | ***************************************************************************/ | |||
4986 | int32_t | |||
4987 | em_access_phy_debug_regs_hv(struct em_hw *hw, uint32_t reg_addr, | |||
4988 | uint16_t *phy_data, boolean_t read) | |||
4989 | { | |||
4990 | int32_t ret_val; | |||
4991 | uint32_t addr_reg = 0; | |||
4992 | uint32_t data_reg = 0; | |||
4993 | ||||
4994 | /* This takes care of the difference with desktop vs mobile phy */ | |||
4995 | addr_reg = (hw->phy_type == em_phy_82578) ? | |||
4996 | I82578_PHY_ADDR_REG29 : I82577_PHY_ADDR_REG16; | |||
4997 | data_reg = addr_reg + 1; | |||
4998 | ||||
4999 | /* All operations in this function are phy address 2 */ | |||
5000 | hw->phy_addr = 2; | |||
5001 | ||||
5002 | /* masking with 0x3F to remove the page from offset */ | |||
5003 | ret_val = em_write_phy_reg_ex(hw, addr_reg, (uint16_t)reg_addr & 0x3F); | |||
5004 | if (ret_val) { | |||
5005 | printf("Could not write PHY the HV address register\n"); | |||
5006 | goto out; | |||
5007 | } | |||
5008 | ||||
5009 | /* Read or write the data value next */ | |||
5010 | if (read) | |||
5011 | ret_val = em_read_phy_reg_ex(hw, data_reg, phy_data); | |||
5012 | else | |||
5013 | ret_val = em_write_phy_reg_ex(hw, data_reg, *phy_data); | |||
5014 | ||||
5015 | if (ret_val) { | |||
5016 | printf("Could not read data value from HV data register\n"); | |||
5017 | goto out; | |||
5018 | } | |||
5019 | ||||
5020 | out: | |||
5021 | return ret_val; | |||
5022 | } | |||
5023 | ||||
5024 | /****************************************************************************** | |||
5025 | * Reads or writes the value from a PHY register, if the value is on a specific | |||
5026 | * non zero page, sets the page first. | |||
5027 | * hw - Struct containing variables accessed by shared code | |||
5028 | * reg_addr - address of the PHY register to read | |||
5029 | *****************************************************************************/ | |||
5030 | int32_t | |||
5031 | em_access_phy_reg_hv(struct em_hw *hw, uint32_t reg_addr, uint16_t *phy_data, | |||
5032 | boolean_t read) | |||
5033 | { | |||
5034 | uint32_t ret_val; | |||
5035 | uint16_t swfw; | |||
5036 | uint16_t page = BM_PHY_REG_PAGE(reg_addr)((uint16_t)(((reg_addr) >> 5) & 0xFFFF)); | |||
5037 | uint16_t reg = BM_PHY_REG_NUM(reg_addr)((uint16_t)(((reg_addr) & 0x1F) | (((reg_addr) >> ( 21 - 5)) & ~0x1F))); | |||
5038 | ||||
5039 | DEBUGFUNC("em_access_phy_reg_hv");; | |||
5040 | ||||
5041 | swfw = E1000_SWFW_PHY0_SM0x0002; | |||
5042 | ||||
5043 | if (em_swfw_sync_acquire(hw, swfw)) | |||
5044 | return -E1000_ERR_SWFW_SYNC13; | |||
5045 | ||||
5046 | if (page == BM_WUC_PAGE800) { | |||
5047 | ret_val = em_access_phy_wakeup_reg_bm(hw, reg_addr, | |||
5048 | phy_data, read); | |||
5049 | goto release; | |||
5050 | } | |||
5051 | ||||
5052 | if (page >= HV_INTC_FC_PAGE_START768) | |||
5053 | hw->phy_addr = 1; | |||
5054 | else | |||
5055 | hw->phy_addr = 2; | |||
5056 | ||||
5057 | if (page == HV_INTC_FC_PAGE_START768) | |||
5058 | page = 0; | |||
5059 | ||||
5060 | /* | |||
5061 | * Workaround MDIO accesses being disabled after entering IEEE Power | |||
5062 | * Down (whenever bit 11 of the PHY Control register is set) | |||
5063 | */ | |||
5064 | if (!read && | |||
5065 | (hw->phy_type == em_phy_82578) && | |||
5066 | (hw->phy_revision >= 1) && | |||
5067 | (hw->phy_addr == 2) && | |||
5068 | ((MAX_PHY_REG_ADDRESS0x1F & reg) == 0) && | |||
5069 | (*phy_data & (1 << 11))) { | |||
5070 | uint16_t data2 = 0x7EFF; | |||
5071 | ||||
5072 | ret_val = em_access_phy_debug_regs_hv(hw, (1 << 6) | 0x3, | |||
5073 | &data2, FALSE0); | |||
5074 | if (ret_val) | |||
5075 | return ret_val; | |||
5076 | } | |||
5077 | ||||
5078 | if (reg_addr > MAX_PHY_MULTI_PAGE_REG0xF) { | |||
5079 | ret_val = em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT0x1F, | |||
5080 | (page << PHY_PAGE_SHIFT5)); | |||
5081 | if (ret_val) | |||
5082 | return ret_val; | |||
5083 | } | |||
5084 | if (read) | |||
5085 | ret_val = em_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS0x1F & reg, | |||
5086 | phy_data); | |||
5087 | else | |||
5088 | ret_val = em_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS0x1F & reg, | |||
5089 | *phy_data); | |||
5090 | release: | |||
5091 | em_swfw_sync_release(hw, swfw); | |||
5092 | return ret_val; | |||
5093 | } | |||
5094 | ||||
5095 | /****************************************************************************** | |||
5096 | * Reads the value from a PHY register, if the value is on a specific non zero | |||
5097 | * page, sets the page first. | |||
5098 | * hw - Struct containing variables accessed by shared code | |||
5099 | * reg_addr - address of the PHY register to read | |||
5100 | *****************************************************************************/ | |||
5101 | int32_t | |||
5102 | em_read_phy_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t *phy_data) | |||
5103 | { | |||
5104 | uint32_t ret_val; | |||
5105 | uint16_t swfw; | |||
5106 | DEBUGFUNC("em_read_phy_reg");; | |||
5107 | ||||
5108 | if (hw->mac_type == em_pchlan || | |||
5109 | hw->mac_type == em_pch2lan || | |||
5110 | hw->mac_type == em_pch_lpt || | |||
5111 | hw->mac_type == em_pch_spt || | |||
5112 | hw->mac_type == em_pch_cnp) | |||
5113 | return (em_access_phy_reg_hv(hw, reg_addr, phy_data, TRUE1)); | |||
5114 | ||||
5115 | if (((hw->mac_type == em_80003es2lan) || (hw->mac_type == em_82575) || | |||
5116 | (hw->mac_type == em_82576)) && | |||
5117 | (E1000_READ_REG(hw, STATUS)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))) & E1000_STATUS_FUNC_10x00000004)) { | |||
5118 | swfw = E1000_SWFW_PHY1_SM0x0004; | |||
5119 | } else { | |||
5120 | swfw = E1000_SWFW_PHY0_SM0x0002; | |||
5121 | } | |||
5122 | if (em_swfw_sync_acquire(hw, swfw)) | |||
5123 | return -E1000_ERR_SWFW_SYNC13; | |||
5124 | ||||
5125 | if ((hw->phy_type == em_phy_igp || | |||
5126 | hw->phy_type == em_phy_igp_3 || | |||
5127 | hw->phy_type == em_phy_igp_2) && | |||
5128 | (reg_addr > MAX_PHY_MULTI_PAGE_REG0xF)) { | |||
5129 | ret_val = em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT0x1F, | |||
5130 | (uint16_t) reg_addr); | |||
5131 | if (ret_val) { | |||
5132 | em_swfw_sync_release(hw, swfw); | |||
5133 | return ret_val; | |||
5134 | } | |||
5135 | } else if (hw->phy_type == em_phy_gg82563) { | |||
5136 | if (((reg_addr & MAX_PHY_REG_ADDRESS0x1F) > MAX_PHY_MULTI_PAGE_REG0xF) || | |||
5137 | (hw->mac_type == em_80003es2lan)) { | |||
5138 | /* Select Configuration Page */ | |||
5139 | if ((reg_addr & MAX_PHY_REG_ADDRESS0x1F) < | |||
5140 | GG82563_MIN_ALT_REG30) { | |||
5141 | ret_val = em_write_phy_reg_ex(hw, | |||
5142 | GG82563_PHY_PAGE_SELECT(((0) << 5) | ((22) & 0x1F)), | |||
5143 | (uint16_t) ((uint16_t) reg_addr >> | |||
5144 | GG82563_PAGE_SHIFT5)); | |||
5145 | } else { | |||
5146 | /* | |||
5147 | * Use Alternative Page Select register to | |||
5148 | * access registers 30 and 31 | |||
5149 | */ | |||
5150 | ret_val = em_write_phy_reg_ex(hw, | |||
5151 | GG82563_PHY_PAGE_SELECT_ALT(((0) << 5) | ((29) & 0x1F)), | |||
5152 | (uint16_t) ((uint16_t) reg_addr >> | |||
5153 | GG82563_PAGE_SHIFT5)); | |||
5154 | } | |||
5155 | ||||
5156 | if (ret_val) { | |||
5157 | em_swfw_sync_release(hw, swfw); | |||
5158 | return ret_val; | |||
5159 | } | |||
5160 | } | |||
5161 | } else if ((hw->phy_type == em_phy_bm) && (hw->phy_revision == 1)) { | |||
5162 | if (reg_addr > MAX_PHY_MULTI_PAGE_REG0xF) { | |||
5163 | ret_val = em_write_phy_reg_ex(hw, BM_PHY_PAGE_SELECT22, | |||
5164 | (uint16_t) ((uint16_t) reg_addr >> | |||
5165 | PHY_PAGE_SHIFT5)); | |||
5166 | if (ret_val) | |||
5167 | return ret_val; | |||
5168 | } | |||
5169 | } | |||
5170 | ret_val = em_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS0x1F & reg_addr, | |||
5171 | phy_data); | |||
5172 | ||||
5173 | em_swfw_sync_release(hw, swfw); | |||
5174 | return ret_val; | |||
5175 | } | |||
5176 | ||||
5177 | STATIC int32_t | |||
5178 | em_read_phy_reg_ex(struct em_hw *hw, uint32_t reg_addr, uint16_t *phy_data) | |||
5179 | { | |||
5180 | uint32_t i; | |||
5181 | uint32_t mdic = 0; | |||
5182 | DEBUGFUNC("em_read_phy_reg_ex");; | |||
5183 | ||||
5184 | /* SGMII active is only set on some specific chips */ | |||
5185 | if (hw->sgmii_active && !em_sgmii_uses_mdio_82575(hw)) { | |||
5186 | if (reg_addr > E1000_MAX_SGMII_PHY_REG_ADDR255) { | |||
5187 | DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); | |||
5188 | return -E1000_ERR_PARAM4; | |||
5189 | } | |||
5190 | return em_read_phy_reg_i2c(hw, reg_addr, phy_data); | |||
5191 | } | |||
5192 | if (reg_addr > MAX_PHY_REG_ADDRESS0x1F) { | |||
5193 | DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); | |||
5194 | return -E1000_ERR_PARAM4; | |||
5195 | } | |||
5196 | if (hw->mac_type == em_icp_xxxx) { | |||
5197 | *phy_data = gcu_miibus_readreg(hw, hw->icp_xxxx_port_num, | |||
5198 | reg_addr); | |||
5199 | return E1000_SUCCESS0; | |||
5200 | } | |||
5201 | if (hw->mac_type > em_82543) { | |||
5202 | /* | |||
5203 | * Set up Op-code, Phy Address, and register address in the | |||
5204 | * MDI Control register. The MAC will take care of | |||
5205 | * interfacing with the PHY to retrieve the desired data. | |||
5206 | */ | |||
5207 | mdic = ((reg_addr << E1000_MDIC_REG_SHIFT16) | | |||
5208 | (hw->phy_addr << E1000_MDIC_PHY_SHIFT21) | | |||
5209 | (E1000_MDIC_OP_READ0x08000000)); | |||
5210 | ||||
5211 | E1000_WRITE_REG(hw, MDIC, mdic)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00020 : em_translate_82542_register (0x00020))), (mdic))); | |||
5212 | ||||
5213 | /* | |||
5214 | * Poll the ready bit to see if the MDI read completed | |||
5215 | * Increasing the time out as testing showed failures with | |||
5216 | * the lower time out (from FreeBSD driver) | |||
5217 | */ | |||
5218 | for (i = 0; i < 1960; i++) { | |||
5219 | usec_delay(50)(*delay_func)(50); | |||
5220 | mdic = E1000_READ_REG(hw, MDIC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00020 : em_translate_82542_register (0x00020))))); | |||
5221 | if (mdic & E1000_MDIC_READY0x10000000) | |||
5222 | break; | |||
5223 | } | |||
5224 | if (!(mdic & E1000_MDIC_READY0x10000000)) { | |||
5225 | DEBUGOUT("MDI Read did not complete\n"); | |||
5226 | return -E1000_ERR_PHY2; | |||
5227 | } | |||
5228 | if (mdic & E1000_MDIC_ERROR0x40000000) { | |||
5229 | DEBUGOUT("MDI Error\n"); | |||
5230 | return -E1000_ERR_PHY2; | |||
5231 | } | |||
5232 | *phy_data = (uint16_t) mdic; | |||
5233 | ||||
5234 | if (hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || | |||
5235 | hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp) | |||
5236 | usec_delay(100)(*delay_func)(100); | |||
5237 | } else { | |||
5238 | /* | |||
5239 | * We must first send a preamble through the MDIO pin to | |||
5240 | * signal the beginning of an MII instruction. This is done | |||
5241 | * by sending 32 consecutive "1" bits. | |||
5242 | */ | |||
5243 | em_shift_out_mdi_bits(hw, PHY_PREAMBLE0xFFFFFFFF, PHY_PREAMBLE_SIZE32); | |||
5244 | /* | |||
5245 | * Now combine the next few fields that are required for a | |||
5246 | * read operation. We use this method instead of calling the | |||
5247 | * em_shift_out_mdi_bits routine five different times. The | |||
5248 | * format of a MII read instruction consists of a shift out | |||
5249 | * of 14 bits and is defined as follows: <Preamble><SOF><Op | |||
5250 | * Code><Phy Addr><Reg Addr> followed by a shift in of 18 | |||
5251 | * bits. This first two bits shifted in are TurnAround bits | |||
5252 | * used to avoid contention on the MDIO pin when a READ | |||
5253 | * operation is performed. These two bits are thrown away | |||
5254 | * followed by a shift in of 16 bits which contains the | |||
5255 | * desired data. | |||
5256 | */ | |||
5257 | mdic = ((reg_addr) | (hw->phy_addr << 5) | | |||
5258 | (PHY_OP_READ0x02 << 10) | (PHY_SOF0x01 << 12)); | |||
5259 | ||||
5260 | em_shift_out_mdi_bits(hw, mdic, 14); | |||
5261 | /* | |||
5262 | * Now that we've shifted out the read command to the MII, we | |||
5263 | * need to "shift in" the 16-bit value (18 total bits) of the | |||
5264 | * requested PHY register address. | |||
5265 | */ | |||
5266 | *phy_data = em_shift_in_mdi_bits(hw); | |||
5267 | } | |||
5268 | return E1000_SUCCESS0; | |||
5269 | } | |||
5270 | ||||
5271 | /****************************************************************************** | |||
5272 | * Writes a value to a PHY register | |||
5273 | * | |||
5274 | * hw - Struct containing variables accessed by shared code | |||
5275 | * reg_addr - address of the PHY register to write | |||
5276 | * data - data to write to the PHY | |||
5277 | *****************************************************************************/ | |||
5278 | int32_t | |||
5279 | em_write_phy_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t phy_data) | |||
5280 | { | |||
5281 | uint32_t ret_val; | |||
5282 | DEBUGFUNC("em_write_phy_reg");; | |||
5283 | ||||
5284 | if (hw->mac_type == em_pchlan || | |||
5285 | hw->mac_type == em_pch2lan || | |||
5286 | hw->mac_type == em_pch_lpt || | |||
5287 | hw->mac_type == em_pch_spt || | |||
5288 | hw->mac_type == em_pch_cnp) | |||
5289 | return (em_access_phy_reg_hv(hw, reg_addr, &phy_data, FALSE0)); | |||
5290 | ||||
5291 | if (em_swfw_sync_acquire(hw, hw->swfw)) | |||
5292 | return -E1000_ERR_SWFW_SYNC13; | |||
5293 | ||||
5294 | if ((hw->phy_type == em_phy_igp || | |||
5295 | hw->phy_type == em_phy_igp_3 || | |||
5296 | hw->phy_type == em_phy_igp_2) && | |||
5297 | (reg_addr > MAX_PHY_MULTI_PAGE_REG0xF)) { | |||
5298 | ret_val = em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT0x1F, | |||
5299 | (uint16_t) reg_addr); | |||
5300 | if (ret_val) { | |||
5301 | em_swfw_sync_release(hw, hw->swfw); | |||
5302 | return ret_val; | |||
5303 | } | |||
5304 | } else if (hw->phy_type == em_phy_gg82563) { | |||
5305 | if (((reg_addr & MAX_PHY_REG_ADDRESS0x1F) > MAX_PHY_MULTI_PAGE_REG0xF) || | |||
5306 | (hw->mac_type == em_80003es2lan)) { | |||
5307 | /* Select Configuration Page */ | |||
5308 | if ((reg_addr & MAX_PHY_REG_ADDRESS0x1F) < | |||
5309 | GG82563_MIN_ALT_REG30) { | |||
5310 | ret_val = em_write_phy_reg_ex(hw, | |||
5311 | GG82563_PHY_PAGE_SELECT(((0) << 5) | ((22) & 0x1F)), | |||
5312 | (uint16_t) ((uint16_t) reg_addr >> | |||
5313 | GG82563_PAGE_SHIFT5)); | |||
5314 | } else { | |||
5315 | /* | |||
5316 | * Use Alternative Page Select register to | |||
5317 | * access registers 30 and 31 | |||
5318 | */ | |||
5319 | ret_val = em_write_phy_reg_ex(hw, | |||
5320 | GG82563_PHY_PAGE_SELECT_ALT(((0) << 5) | ((29) & 0x1F)), | |||
5321 | (uint16_t) ((uint16_t) reg_addr >> | |||
5322 | GG82563_PAGE_SHIFT5)); | |||
5323 | } | |||
5324 | ||||
5325 | if (ret_val) { | |||
5326 | em_swfw_sync_release(hw, hw->swfw); | |||
5327 | return ret_val; | |||
5328 | } | |||
5329 | } | |||
5330 | } else if ((hw->phy_type == em_phy_bm) && (hw->phy_revision == 1)) { | |||
5331 | if (reg_addr > MAX_PHY_MULTI_PAGE_REG0xF) { | |||
5332 | ret_val = em_write_phy_reg_ex(hw, BM_PHY_PAGE_SELECT22, | |||
5333 | (uint16_t) ((uint16_t) reg_addr >> | |||
5334 | PHY_PAGE_SHIFT5)); | |||
5335 | if (ret_val) | |||
5336 | return ret_val; | |||
5337 | } | |||
5338 | } | |||
5339 | ret_val = em_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS0x1F & reg_addr, | |||
5340 | phy_data); | |||
5341 | ||||
5342 | em_swfw_sync_release(hw, hw->swfw); | |||
5343 | return ret_val; | |||
5344 | } | |||
5345 | ||||
5346 | STATIC int32_t | |||
5347 | em_write_phy_reg_ex(struct em_hw *hw, uint32_t reg_addr, uint16_t phy_data) | |||
5348 | { | |||
5349 | uint32_t i; | |||
5350 | uint32_t mdic = 0; | |||
5351 | DEBUGFUNC("em_write_phy_reg_ex");; | |||
5352 | ||||
5353 | /* SGMII active is only set on some specific chips */ | |||
5354 | if (hw->sgmii_active && !em_sgmii_uses_mdio_82575(hw)) { | |||
5355 | if (reg_addr > E1000_MAX_SGMII_PHY_REG_ADDR255) { | |||
5356 | DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); | |||
5357 | return -E1000_ERR_PARAM4; | |||
5358 | } | |||
5359 | return em_write_phy_reg_i2c(hw, reg_addr, phy_data); | |||
5360 | } | |||
5361 | if (reg_addr > MAX_PHY_REG_ADDRESS0x1F) { | |||
5362 | DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); | |||
5363 | return -E1000_ERR_PARAM4; | |||
5364 | } | |||
5365 | if (hw->mac_type == em_icp_xxxx) { | |||
5366 | gcu_miibus_writereg(hw, hw->icp_xxxx_port_num, | |||
5367 | reg_addr, phy_data); | |||
5368 | return E1000_SUCCESS0; | |||
5369 | } | |||
5370 | if (hw->mac_type > em_82543) { | |||
5371 | /* | |||
5372 | * Set up Op-code, Phy Address, register address, and data | |||
5373 | * intended for the PHY register in the MDI Control register. | |||
5374 | * The MAC will take care of interfacing with the PHY to send | |||
5375 | * the desired data. | |||
5376 | */ | |||
5377 | mdic = (((uint32_t) phy_data) | | |||
5378 | (reg_addr << E1000_MDIC_REG_SHIFT16) | | |||
5379 | (hw->phy_addr << E1000_MDIC_PHY_SHIFT21) | | |||
5380 | (E1000_MDIC_OP_WRITE0x04000000)); | |||
5381 | ||||
5382 | E1000_WRITE_REG(hw, MDIC, mdic)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00020 : em_translate_82542_register (0x00020))), (mdic))); | |||
5383 | ||||
5384 | /* Poll the ready bit to see if the MDI read completed */ | |||
5385 | for (i = 0; i < 641; i++) { | |||
5386 | usec_delay(5)(*delay_func)(5); | |||
5387 | mdic = E1000_READ_REG(hw, MDIC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00020 : em_translate_82542_register (0x00020))))); | |||
5388 | if (mdic & E1000_MDIC_READY0x10000000) | |||
5389 | break; | |||
5390 | } | |||
5391 | if (!(mdic & E1000_MDIC_READY0x10000000)) { | |||
5392 | DEBUGOUT("MDI Write did not complete\n"); | |||
5393 | return -E1000_ERR_PHY2; | |||
5394 | } | |||
5395 | ||||
5396 | if (hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || | |||
5397 | hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp) | |||
5398 | usec_delay(100)(*delay_func)(100); | |||
5399 | } else { | |||
5400 | /* | |||
5401 | * We'll need to use the SW defined pins to shift the write | |||
5402 | * command out to the PHY. We first send a preamble to the | |||
5403 | * PHY to signal the beginning of the MII instruction. This | |||
5404 | * is done by sending 32 consecutive "1" bits. | |||
5405 | */ | |||
5406 | em_shift_out_mdi_bits(hw, PHY_PREAMBLE0xFFFFFFFF, PHY_PREAMBLE_SIZE32); | |||
5407 | /* | |||
5408 | * Now combine the remaining required fields that will | |||
5409 | * indicate a write operation. We use this method instead of | |||
5410 | * calling the em_shift_out_mdi_bits routine for each field | |||
5411 | * in the command. The format of a MII write instruction is | |||
5412 | * as follows: <Preamble><SOF><Op Code><Phy Addr><Reg | |||
5413 | * Addr><Turnaround><Data>. | |||
5414 | */ | |||
5415 | mdic = ((PHY_TURNAROUND0x02) | (reg_addr << 2) | | |||
5416 | (hw->phy_addr << 7) | (PHY_OP_WRITE0x01 << 12) | | |||
5417 | (PHY_SOF0x01 << 14)); | |||
5418 | mdic <<= 16; | |||
5419 | mdic |= (uint32_t) phy_data; | |||
5420 | ||||
5421 | em_shift_out_mdi_bits(hw, mdic, 32); | |||
5422 | } | |||
5423 | ||||
5424 | return E1000_SUCCESS0; | |||
5425 | } | |||
5426 | ||||
5427 | STATIC int32_t | |||
5428 | em_read_kmrn_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t *data) | |||
5429 | { | |||
5430 | uint32_t reg_val; | |||
5431 | DEBUGFUNC("em_read_kmrn_reg");; | |||
5432 | ||||
5433 | if (em_swfw_sync_acquire(hw, hw->swfw)) | |||
5434 | return -E1000_ERR_SWFW_SYNC13; | |||
5435 | ||||
5436 | /* Write register address */ | |||
5437 | reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT16) & | |||
5438 | E1000_KUMCTRLSTA_OFFSET0x001F0000) | | |||
5439 | E1000_KUMCTRLSTA_REN0x00200000; | |||
5440 | ||||
5441 | E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00034 : em_translate_82542_register (0x00034))), (reg_val))); | |||
5442 | usec_delay(2)(*delay_func)(2); | |||
5443 | ||||
5444 | /* Read the data returned */ | |||
5445 | reg_val = E1000_READ_REG(hw, KUMCTRLSTA)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00034 : em_translate_82542_register (0x00034))))); | |||
5446 | *data = (uint16_t) reg_val; | |||
5447 | ||||
5448 | em_swfw_sync_release(hw, hw->swfw); | |||
5449 | return E1000_SUCCESS0; | |||
5450 | } | |||
5451 | ||||
5452 | STATIC int32_t | |||
5453 | em_write_kmrn_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t data) | |||
5454 | { | |||
5455 | uint32_t reg_val; | |||
5456 | DEBUGFUNC("em_write_kmrn_reg");; | |||
5457 | ||||
5458 | if (em_swfw_sync_acquire(hw, hw->swfw)) | |||
5459 | return -E1000_ERR_SWFW_SYNC13; | |||
5460 | ||||
5461 | reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT16) & | |||
5462 | E1000_KUMCTRLSTA_OFFSET0x001F0000) | data; | |||
5463 | ||||
5464 | E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00034 : em_translate_82542_register (0x00034))), (reg_val))); | |||
5465 | usec_delay(2)(*delay_func)(2); | |||
5466 | ||||
5467 | em_swfw_sync_release(hw, hw->swfw); | |||
5468 | return E1000_SUCCESS0; | |||
5469 | } | |||
5470 | ||||
5471 | /** | |||
5472 | * em_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO | |||
5473 | * @hw: pointer to the HW structure | |||
5474 | * | |||
5475 | * Called to determine if the I2C pins are being used for I2C or as an | |||
5476 | * external MDIO interface since the two options are mutually exclusive. | |||
5477 | **/ | |||
5478 | int em_sgmii_uses_mdio_82575(struct em_hw *hw) | |||
5479 | { | |||
5480 | uint32_t reg = 0; | |||
5481 | int ext_mdio = 0; | |||
5482 | ||||
5483 | DEBUGFUNC("em_sgmii_uses_mdio_82575");; | |||
5484 | ||||
5485 | switch (hw->mac_type) { | |||
5486 | case em_82575: | |||
5487 | case em_82576: | |||
5488 | reg = E1000_READ_REG(hw, MDIC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00020 : em_translate_82542_register (0x00020))))); | |||
5489 | ext_mdio = !!(reg & E1000_MDIC_DEST0x80000000); | |||
5490 | break; | |||
5491 | case em_82580: | |||
5492 | case em_i350: | |||
5493 | case em_i210: | |||
5494 | reg = E1000_READ_REG(hw, MDICNFG)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00E04 : em_translate_82542_register (0x00E04))))); | |||
5495 | ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO0x80000000); | |||
5496 | break; | |||
5497 | default: | |||
5498 | break; | |||
5499 | } | |||
5500 | return ext_mdio; | |||
5501 | } | |||
5502 | ||||
5503 | /** | |||
5504 | * em_read_phy_reg_i2c - Read PHY register using i2c | |||
5505 | * @hw: pointer to the HW structure | |||
5506 | * @offset: register offset to be read | |||
5507 | * @data: pointer to the read data | |||
5508 | * | |||
5509 | * Reads the PHY register at offset using the i2c interface and stores the | |||
5510 | * retrieved information in data. | |||
5511 | **/ | |||
5512 | int32_t em_read_phy_reg_i2c(struct em_hw *hw, uint32_t offset, uint16_t *data) | |||
5513 | { | |||
5514 | uint32_t i, i2ccmd = 0; | |||
5515 | ||||
5516 | DEBUGFUNC("em_read_phy_reg_i2c");; | |||
5517 | ||||
5518 | /* Set up Op-code, Phy Address, and register address in the I2CCMD | |||
5519 | * register. The MAC will take care of interfacing with the | |||
5520 | * PHY to retrieve the desired data. | |||
5521 | */ | |||
5522 | i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT16) | | |||
5523 | (hw->phy_addr << E1000_I2CCMD_PHY_ADDR_SHIFT24) | | |||
5524 | (E1000_I2CCMD_OPCODE_READ0x08000000)); | |||
5525 | ||||
5526 | E1000_WRITE_REG(hw, I2CCMD, i2ccmd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x01028 : em_translate_82542_register (0x01028))), (i2ccmd))); | |||
5527 | ||||
5528 | /* Poll the ready bit to see if the I2C read completed */ | |||
5529 | for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT200; i++) { | |||
5530 | usec_delay(50)(*delay_func)(50); | |||
5531 | i2ccmd = E1000_READ_REG(hw, I2CCMD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x01028 : em_translate_82542_register (0x01028))))); | |||
5532 | if (i2ccmd & E1000_I2CCMD_READY0x20000000) | |||
5533 | break; | |||
5534 | } | |||
5535 | if (!(i2ccmd & E1000_I2CCMD_READY0x20000000)) { | |||
5536 | DEBUGOUT("I2CCMD Read did not complete\n"); | |||
5537 | return -E1000_ERR_PHY2; | |||
5538 | } | |||
5539 | if (i2ccmd & E1000_I2CCMD_ERROR0x80000000) { | |||
5540 | DEBUGOUT("I2CCMD Error bit set\n"); | |||
5541 | return -E1000_ERR_PHY2; | |||
5542 | } | |||
5543 | ||||
5544 | /* Need to byte-swap the 16-bit value. */ | |||
5545 | *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00); | |||
5546 | ||||
5547 | return E1000_SUCCESS0; | |||
5548 | } | |||
5549 | ||||
5550 | /** | |||
5551 | * em_write_phy_reg_i2c - Write PHY register using i2c | |||
5552 | * @hw: pointer to the HW structure | |||
5553 | * @offset: register offset to write to | |||
5554 | * @data: data to write at register offset | |||
5555 | * | |||
5556 | * Writes the data to PHY register at the offset using the i2c interface. | |||
5557 | **/ | |||
5558 | int32_t em_write_phy_reg_i2c(struct em_hw *hw, uint32_t offset, uint16_t data) | |||
5559 | { | |||
5560 | uint32_t i, i2ccmd = 0; | |||
5561 | uint16_t phy_data_swapped; | |||
5562 | ||||
5563 | DEBUGFUNC("em_write_phy_reg_i2c");; | |||
5564 | ||||
5565 | /* Prevent overwriting SFP I2C EEPROM which is at A0 address.*/ | |||
5566 | if ((hw->phy_addr == 0) || (hw->phy_addr > 7)) { | |||
5567 | DEBUGOUT1("PHY I2C Address %d is out of range.\n", | |||
5568 | hw->phy_addr); | |||
5569 | return -E1000_ERR_CONFIG3; | |||
5570 | } | |||
5571 | ||||
5572 | /* Swap the data bytes for the I2C interface */ | |||
5573 | phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00); | |||
5574 | ||||
5575 | /* Set up Op-code, Phy Address, and register address in the I2CCMD | |||
5576 | * register. The MAC will take care of interfacing with the | |||
5577 | * PHY to retrieve the desired data. | |||
5578 | */ | |||
5579 | i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT16) | | |||
5580 | (hw->phy_addr << E1000_I2CCMD_PHY_ADDR_SHIFT24) | | |||
5581 | E1000_I2CCMD_OPCODE_WRITE0x00000000 | | |||
5582 | phy_data_swapped); | |||
5583 | ||||
5584 | E1000_WRITE_REG(hw, I2CCMD, i2ccmd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x01028 : em_translate_82542_register (0x01028))), (i2ccmd))); | |||
5585 | ||||
5586 | /* Poll the ready bit to see if the I2C read completed */ | |||
5587 | for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT200; i++) { | |||
5588 | usec_delay(50)(*delay_func)(50); | |||
5589 | i2ccmd = E1000_READ_REG(hw, I2CCMD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x01028 : em_translate_82542_register (0x01028))))); | |||
5590 | if (i2ccmd & E1000_I2CCMD_READY0x20000000) | |||
5591 | break; | |||
5592 | } | |||
5593 | if (!(i2ccmd & E1000_I2CCMD_READY0x20000000)) { | |||
5594 | DEBUGOUT("I2CCMD Write did not complete\n"); | |||
5595 | return -E1000_ERR_PHY2; | |||
5596 | } | |||
5597 | if (i2ccmd & E1000_I2CCMD_ERROR0x80000000) { | |||
5598 | DEBUGOUT("I2CCMD Error bit set\n"); | |||
5599 | return -E1000_ERR_PHY2; | |||
5600 | } | |||
5601 | ||||
5602 | return E1000_SUCCESS0; | |||
5603 | } | |||
5604 | ||||
5605 | /** | |||
5606 | * em_read_sfp_data_byte - Reads SFP module data. | |||
5607 | * @hw: pointer to the HW structure | |||
5608 | * @offset: byte location offset to be read | |||
5609 | * @data: read data buffer pointer | |||
5610 | * | |||
5611 | * Reads one byte from SFP module data stored | |||
5612 | * in SFP resided EEPROM memory or SFP diagnostic area. | |||
5613 | * Function should be called with | |||
5614 | * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access | |||
5615 | * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters | |||
5616 | * access | |||
5617 | **/ | |||
5618 | int32_t em_read_sfp_data_byte(struct em_hw *hw, uint16_t offset, uint8_t *data) | |||
5619 | { | |||
5620 | uint32_t i = 0; | |||
5621 | uint32_t i2ccmd = 0; | |||
5622 | uint32_t data_local = 0; | |||
5623 | ||||
5624 | DEBUGFUNC("em_read_sfp_data_byte");; | |||
5625 | ||||
5626 | if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)(0x0100 + (255))) { | |||
5627 | DEBUGOUT("I2CCMD command address exceeds upper limit\n"); | |||
5628 | return -E1000_ERR_PHY2; | |||
5629 | } | |||
5630 | ||||
5631 | /* Set up Op-code, EEPROM Address,in the I2CCMD | |||
5632 | * register. The MAC will take care of interfacing with the | |||
5633 | * EEPROM to retrieve the desired data. | |||
5634 | */ | |||
5635 | i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT16) | | |||
5636 | E1000_I2CCMD_OPCODE_READ0x08000000); | |||
5637 | ||||
5638 | E1000_WRITE_REG(hw, I2CCMD, i2ccmd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x01028 : em_translate_82542_register (0x01028))), (i2ccmd))); | |||
5639 | ||||
5640 | /* Poll the ready bit to see if the I2C read completed */ | |||
5641 | for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT200; i++) { | |||
5642 | usec_delay(50)(*delay_func)(50); | |||
5643 | data_local = E1000_READ_REG(hw, I2CCMD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x01028 : em_translate_82542_register (0x01028))))); | |||
5644 | if (data_local & E1000_I2CCMD_READY0x20000000) | |||
5645 | break; | |||
5646 | } | |||
5647 | if (!(data_local & E1000_I2CCMD_READY0x20000000)) { | |||
5648 | DEBUGOUT("I2CCMD Read did not complete\n"); | |||
5649 | return -E1000_ERR_PHY2; | |||
5650 | } | |||
5651 | if (data_local & E1000_I2CCMD_ERROR0x80000000) { | |||
5652 | DEBUGOUT("I2CCMD Error bit set\n"); | |||
5653 | return -E1000_ERR_PHY2; | |||
5654 | } | |||
5655 | *data = (uint8_t) data_local & 0xFF; | |||
5656 | ||||
5657 | return E1000_SUCCESS0; | |||
5658 | } | |||
5659 | ||||
5660 | /****************************************************************************** | |||
5661 | * Returns the PHY to the power-on reset state | |||
5662 | * | |||
5663 | * hw - Struct containing variables accessed by shared code | |||
5664 | *****************************************************************************/ | |||
5665 | int32_t | |||
5666 | em_phy_hw_reset(struct em_hw *hw) | |||
5667 | { | |||
5668 | uint32_t ctrl, ctrl_ext; | |||
5669 | uint32_t led_ctrl; | |||
5670 | int32_t ret_val; | |||
5671 | DEBUGFUNC("em_phy_hw_reset");; | |||
5672 | /* | |||
5673 | * In the case of the phy reset being blocked, it's not an error, we | |||
5674 | * simply return success without performing the reset. | |||
5675 | */ | |||
5676 | ret_val = em_check_phy_reset_block(hw); | |||
5677 | if (ret_val) | |||
5678 | return E1000_SUCCESS0; | |||
5679 | ||||
5680 | DEBUGOUT("Resetting Phy...\n"); | |||
5681 | ||||
5682 | if (hw->mac_type > em_82543 && hw->mac_type != em_icp_xxxx) { | |||
5683 | if (em_swfw_sync_acquire(hw, hw->swfw)) { | |||
5684 | DEBUGOUT("Unable to acquire swfw sync\n"); | |||
5685 | return -E1000_ERR_SWFW_SYNC13; | |||
5686 | } | |||
5687 | /* | |||
5688 | * Read the device control register and assert the | |||
5689 | * E1000_CTRL_PHY_RST bit. Then, take it out of reset. For | |||
5690 | * pre-em_82571 hardware, we delay for 10ms between the | |||
5691 | * assert and deassert. For em_82571 hardware and later, we | |||
5692 | * instead delay for 50us between and 10ms after the | |||
5693 | * deassertion. | |||
5694 | */ | |||
5695 | ctrl = E1000_READ_REG(hw, CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))))); | |||
5696 | E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (ctrl | 0x80000000))); | |||
5697 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
5698 | ||||
5699 | if (hw->mac_type < em_82571) | |||
5700 | msec_delay(10)(*delay_func)(1000*(10)); | |||
5701 | else | |||
5702 | usec_delay(100)(*delay_func)(100); | |||
5703 | ||||
5704 | E1000_WRITE_REG(hw, CTRL, ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (ctrl))); | |||
5705 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
5706 | ||||
5707 | if (hw->mac_type >= em_82571) | |||
5708 | msec_delay_irq(10)(*delay_func)(1000*(10)); | |||
5709 | em_swfw_sync_release(hw, hw->swfw); | |||
5710 | /* | |||
5711 | * the M88E1141_E_PHY_ID might need reset here, but nothing | |||
5712 | * proves it | |||
5713 | */ | |||
5714 | } else { | |||
5715 | /* | |||
5716 | * Read the Extended Device Control Register, assert the | |||
5717 | * PHY_RESET_DIR bit to put the PHY into reset. Then, take it | |||
5718 | * out of reset. | |||
5719 | */ | |||
5720 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))))); | |||
5721 | ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR0x00000100; | |||
5722 | ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA0x00000010; | |||
5723 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))), (ctrl_ext))); | |||
5724 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
5725 | msec_delay(10)(*delay_func)(1000*(10)); | |||
5726 | ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA0x00000010; | |||
5727 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))), (ctrl_ext))); | |||
5728 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
5729 | } | |||
5730 | usec_delay(150)(*delay_func)(150); | |||
5731 | ||||
5732 | if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) { | |||
5733 | /* Configure activity LED after PHY reset */ | |||
5734 | led_ctrl = E1000_READ_REG(hw, LEDCTL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00E00 : em_translate_82542_register (0x00E00))))); | |||
5735 | led_ctrl &= IGP_ACTIVITY_LED_MASK0xFFFFF0FF; | |||
5736 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE0x0300 | IGP_LED3_MODE0x07000000); | |||
5737 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00E00 : em_translate_82542_register (0x00E00))), (led_ctrl))); | |||
5738 | } | |||
5739 | /* Wait for FW to finish PHY configuration. */ | |||
5740 | ret_val = em_get_phy_cfg_done(hw); | |||
5741 | if (ret_val != E1000_SUCCESS0) | |||
5742 | return ret_val; | |||
5743 | em_release_software_semaphore(hw); | |||
5744 | ||||
5745 | if ((hw->mac_type == em_ich8lan) && (hw->phy_type == em_phy_igp_3)) | |||
5746 | ret_val = em_init_lcd_from_nvm(hw); | |||
5747 | ||||
5748 | return ret_val; | |||
5749 | } | |||
5750 | ||||
5751 | /***************************************************************************** | |||
5752 | * SW-based LCD Configuration. | |||
5753 | * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are | |||
5754 | * collectively called OEM bits. The OEM Write Enable bit and SW Config bit | |||
5755 | * in NVM determines whether HW should configure LPLU and Gbe Disable. | |||
5756 | *****************************************************************************/ | |||
5757 | int32_t | |||
5758 | em_oem_bits_config_pchlan(struct em_hw *hw, boolean_t d0_state) | |||
5759 | { | |||
5760 | int32_t ret_val = E1000_SUCCESS0; | |||
5761 | uint32_t mac_reg; | |||
5762 | uint16_t oem_reg; | |||
5763 | uint16_t swfw = E1000_SWFW_PHY0_SM0x0002; | |||
5764 | ||||
5765 | if (hw->mac_type < em_pchlan) | |||
5766 | return ret_val; | |||
5767 | ||||
5768 | ret_val = em_swfw_sync_acquire(hw, swfw); | |||
5769 | if (ret_val) | |||
5770 | return ret_val; | |||
5771 | ||||
5772 | if (hw->mac_type == em_pchlan) { | |||
5773 | mac_reg = E1000_READ_REG(hw, EXTCNF_CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F00 : em_translate_82542_register (0x00F00))))); | |||
5774 | if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE0x00000008) | |||
5775 | goto out; | |||
5776 | } | |||
5777 | ||||
5778 | mac_reg = E1000_READ_REG(hw, FEXTNVM)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00028 : em_translate_82542_register (0x00028))))); | |||
5779 | if (!(mac_reg & FEXTNVM_SW_CONFIG_ICH8M(1 << 27))) | |||
5780 | goto out; | |||
5781 | ||||
5782 | mac_reg = E1000_READ_REG(hw, PHY_CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F10 : em_translate_82542_register (0x00F10))))); | |||
5783 | ||||
5784 | ret_val = em_read_phy_reg(hw, HV_OEM_BITS(((768) << 5) | ((25) & 0x1F)), &oem_reg); | |||
5785 | if (ret_val) | |||
5786 | goto out; | |||
5787 | ||||
5788 | oem_reg &= ~(HV_OEM_BITS_GBE_DIS0x0040 | HV_OEM_BITS_LPLU0x0004); | |||
5789 | ||||
5790 | if (d0_state) { | |||
5791 | if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE0x00000040) | |||
5792 | oem_reg |= HV_OEM_BITS_GBE_DIS0x0040; | |||
5793 | ||||
5794 | if (mac_reg & E1000_PHY_CTRL_D0A_LPLU0x00000002) | |||
5795 | oem_reg |= HV_OEM_BITS_LPLU0x0004; | |||
5796 | /* Restart auto-neg to activate the bits */ | |||
5797 | if (!em_check_phy_reset_block(hw)) | |||
5798 | oem_reg |= HV_OEM_BITS_RESTART_AN0x0400; | |||
5799 | ||||
5800 | } else { | |||
5801 | if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE0x00000040 | | |||
5802 | E1000_PHY_CTRL_NOND0A_GBE_DISABLE0x00000008)) | |||
5803 | oem_reg |= HV_OEM_BITS_GBE_DIS0x0040; | |||
5804 | ||||
5805 | if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU0x00000002 | | |||
5806 | E1000_PHY_CTRL_NOND0A_LPLU0x00000004)) | |||
5807 | oem_reg |= HV_OEM_BITS_LPLU0x0004; | |||
5808 | } | |||
5809 | ||||
5810 | ret_val = em_write_phy_reg(hw, HV_OEM_BITS(((768) << 5) | ((25) & 0x1F)), oem_reg); | |||
5811 | ||||
5812 | out: | |||
5813 | em_swfw_sync_release(hw, swfw); | |||
5814 | ||||
5815 | return ret_val; | |||
5816 | } | |||
5817 | ||||
5818 | ||||
5819 | /****************************************************************************** | |||
5820 | * Resets the PHY | |||
5821 | * | |||
5822 | * hw - Struct containing variables accessed by shared code | |||
5823 | * | |||
5824 | * Sets bit 15 of the MII Control register | |||
5825 | *****************************************************************************/ | |||
5826 | int32_t | |||
5827 | em_phy_reset(struct em_hw *hw) | |||
5828 | { | |||
5829 | int32_t ret_val; | |||
5830 | uint16_t phy_data; | |||
5831 | DEBUGFUNC("em_phy_reset");; | |||
5832 | /* | |||
5833 | * In the case of the phy reset being blocked, it's not an error, we | |||
5834 | * simply return success without performing the reset. | |||
5835 | */ | |||
5836 | ret_val = em_check_phy_reset_block(hw); | |||
5837 | if (ret_val) | |||
5838 | return E1000_SUCCESS0; | |||
5839 | ||||
5840 | switch (hw->phy_type) { | |||
5841 | case em_phy_igp: | |||
5842 | case em_phy_igp_2: | |||
5843 | case em_phy_igp_3: | |||
5844 | case em_phy_ife: | |||
5845 | ret_val = em_phy_hw_reset(hw); | |||
5846 | if (ret_val) | |||
5847 | return ret_val; | |||
5848 | break; | |||
5849 | default: | |||
5850 | ret_val = em_read_phy_reg(hw, PHY_CTRL0x00, &phy_data); | |||
5851 | if (ret_val) | |||
5852 | return ret_val; | |||
5853 | ||||
5854 | phy_data |= MII_CR_RESET0x8000; | |||
5855 | ret_val = em_write_phy_reg(hw, PHY_CTRL0x00, phy_data); | |||
5856 | if (ret_val) | |||
5857 | return ret_val; | |||
5858 | ||||
5859 | usec_delay(1)(*delay_func)(1); | |||
5860 | break; | |||
5861 | } | |||
5862 | ||||
5863 | /* Allow time for h/w to get to a quiescent state after reset */ | |||
5864 | msec_delay(10)(*delay_func)(1000*(10)); | |||
5865 | ||||
5866 | if (hw->phy_type == em_phy_igp || hw->phy_type == em_phy_igp_2) | |||
5867 | em_phy_init_script(hw); | |||
5868 | ||||
5869 | if (hw->mac_type == em_pchlan) { | |||
5870 | ret_val = em_hv_phy_workarounds_ich8lan(hw); | |||
5871 | if (ret_val) | |||
5872 | return ret_val; | |||
5873 | } else if (hw->mac_type == em_pch2lan) { | |||
5874 | ret_val = em_lv_phy_workarounds_ich8lan(hw); | |||
5875 | if (ret_val) | |||
5876 | return ret_val; | |||
5877 | } | |||
5878 | ||||
5879 | if (hw->mac_type >= em_pchlan) { | |||
5880 | ret_val = em_oem_bits_config_pchlan(hw, TRUE1); | |||
5881 | if (ret_val) | |||
5882 | return ret_val; | |||
5883 | } | |||
5884 | ||||
5885 | /* Ungate automatic PHY configuration on non-managed 82579 */ | |||
5886 | if ((hw->mac_type == em_pch2lan) && | |||
5887 | !(E1000_READ_REG(hw, FWSM)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B54 : em_translate_82542_register (0x05B54))))) & E1000_FWSM_FW_VALID0x00008000)) { | |||
5888 | msec_delay(10)(*delay_func)(1000*(10)); | |||
5889 | em_gate_hw_phy_config_ich8lan(hw, FALSE0); | |||
5890 | } | |||
5891 | ||||
5892 | if (hw->phy_id == M88E1512_E_PHY_ID0x01410DD0) { | |||
5893 | ret_val = em_initialize_M88E1512_phy(hw); | |||
5894 | if (ret_val) | |||
5895 | return ret_val; | |||
5896 | } | |||
5897 | ||||
5898 | return E1000_SUCCESS0; | |||
5899 | } | |||
5900 | ||||
5901 | /****************************************************************************** | |||
5902 | * Work-around for 82566 Kumeran PCS lock loss: | |||
5903 | * On link status change (i.e. PCI reset, speed change) and link is up and | |||
5904 | * speed is gigabit- | |||
5905 | * 0) if workaround is optionally disabled do nothing | |||
5906 | * 1) wait 1ms for Kumeran link to come up | |||
5907 | * 2) check Kumeran Diagnostic register PCS lock loss bit | |||
5908 | * 3) if not set the link is locked (all is good), otherwise... | |||
5909 | * 4) reset the PHY | |||
5910 | * 5) repeat up to 10 times | |||
5911 | * Note: this is only called for IGP3 copper when speed is 1gb. | |||
5912 | * | |||
5913 | * hw - struct containing variables accessed by shared code | |||
5914 | *****************************************************************************/ | |||
5915 | STATIC int32_t | |||
5916 | em_kumeran_lock_loss_workaround(struct em_hw *hw) | |||
5917 | { | |||
5918 | int32_t ret_val; | |||
5919 | int32_t reg; | |||
5920 | int32_t cnt; | |||
5921 | uint16_t phy_data; | |||
5922 | if (hw->kmrn_lock_loss_workaround_disabled) | |||
5923 | return E1000_SUCCESS0; | |||
5924 | /* | |||
5925 | * Make sure link is up before proceeding. If not just return. | |||
5926 | * Attempting this while link is negotiating fouled up link stability | |||
5927 | */ | |||
5928 | ret_val = em_read_phy_reg(hw, PHY_STATUS0x01, &phy_data); | |||
5929 | ret_val = em_read_phy_reg(hw, PHY_STATUS0x01, &phy_data); | |||
5930 | ||||
5931 | if (phy_data & MII_SR_LINK_STATUS0x0004) { | |||
5932 | for (cnt = 0; cnt < 10; cnt++) { | |||
5933 | /* read once to clear */ | |||
5934 | ret_val = em_read_phy_reg(hw, IGP3_KMRN_DIAG(((770) << 5) | ((19) & 0x1F)), | |||
5935 | &phy_data); | |||
5936 | if (ret_val) | |||
5937 | return ret_val; | |||
5938 | /* and again to get new status */ | |||
5939 | ret_val = em_read_phy_reg(hw, IGP3_KMRN_DIAG(((770) << 5) | ((19) & 0x1F)), &phy_data); | |||
5940 | if (ret_val) | |||
5941 | return ret_val; | |||
5942 | ||||
5943 | /* check for PCS lock */ | |||
5944 | if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS0x0002)) | |||
5945 | return E1000_SUCCESS0; | |||
5946 | ||||
5947 | /* Issue PHY reset */ | |||
5948 | em_phy_hw_reset(hw); | |||
5949 | msec_delay_irq(5)(*delay_func)(1000*(5)); | |||
5950 | } | |||
5951 | /* Disable GigE link negotiation */ | |||
5952 | reg = E1000_READ_REG(hw, PHY_CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F10 : em_translate_82542_register (0x00F10))))); | |||
5953 | E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F10 : em_translate_82542_register (0x00F10))), (reg | 0x00000040 | 0x00000008))) | |||
5954 | | E1000_PHY_CTRL_NOND0A_GBE_DISABLE)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F10 : em_translate_82542_register (0x00F10))), (reg | 0x00000040 | 0x00000008))); | |||
5955 | ||||
5956 | /* unable to acquire PCS lock */ | |||
5957 | return E1000_ERR_PHY2; | |||
5958 | } | |||
5959 | return E1000_SUCCESS0; | |||
5960 | } | |||
5961 | ||||
5962 | /****************************************************************************** | |||
5963 | * Reads and matches the expected PHY address for known PHY IDs | |||
5964 | * | |||
5965 | * hw - Struct containing variables accessed by shared code | |||
5966 | *****************************************************************************/ | |||
5967 | STATIC int32_t | |||
5968 | em_match_gig_phy(struct em_hw *hw) | |||
5969 | { | |||
5970 | int32_t phy_init_status, ret_val; | |||
5971 | uint16_t phy_id_high, phy_id_low; | |||
5972 | boolean_t match = FALSE0; | |||
5973 | DEBUGFUNC("em_match_gig_phy");; | |||
5974 | ||||
5975 | ret_val = em_read_phy_reg(hw, PHY_ID10x02, &phy_id_high); | |||
5976 | if (ret_val) | |||
5977 | return ret_val; | |||
5978 | ||||
5979 | hw->phy_id = (uint32_t) (phy_id_high << 16); | |||
5980 | usec_delay(20)(*delay_func)(20); | |||
5981 | ret_val = em_read_phy_reg(hw, PHY_ID20x03, &phy_id_low); | |||
5982 | if (ret_val) | |||
5983 | return ret_val; | |||
5984 | ||||
5985 | hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK0xFFFFFFF0); | |||
5986 | hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK0xFFFFFFF0; | |||
5987 | ||||
5988 | switch (hw->mac_type) { | |||
5989 | case em_82543: | |||
5990 | if (hw->phy_id == M88E1000_E_PHY_ID0x01410C50) | |||
5991 | match = TRUE1; | |||
5992 | break; | |||
5993 | case em_82544: | |||
5994 | if (hw->phy_id == M88E1000_I_PHY_ID0x01410C30) | |||
5995 | match = TRUE1; | |||
5996 | break; | |||
5997 | case em_82540: | |||
5998 | case em_82545: | |||
5999 | case em_82545_rev_3: | |||
6000 | case em_82546: | |||
6001 | case em_82546_rev_3: | |||
6002 | if (hw->phy_id == M88E1011_I_PHY_ID0x01410C20) | |||
6003 | match = TRUE1; | |||
6004 | break; | |||
6005 | case em_82541: | |||
6006 | case em_82541_rev_2: | |||
6007 | case em_82547: | |||
6008 | case em_82547_rev_2: | |||
6009 | if (hw->phy_id == IGP01E1000_I_PHY_ID0x02A80380) | |||
6010 | match = TRUE1; | |||
6011 | break; | |||
6012 | case em_82573: | |||
6013 | if (hw->phy_id == M88E1111_I_PHY_ID0x01410CC0) | |||
6014 | match = TRUE1; | |||
6015 | break; | |||
6016 | case em_82574: | |||
6017 | if (hw->phy_id == BME1000_E_PHY_ID0x01410CB0) | |||
6018 | match = TRUE1; | |||
6019 | break; | |||
6020 | case em_82575: | |||
6021 | case em_82576: | |||
6022 | if (hw->phy_id == M88E1000_E_PHY_ID0x01410C50) | |||
6023 | match = TRUE1; | |||
6024 | if (hw->phy_id == IGP01E1000_I_PHY_ID0x02A80380) | |||
6025 | match = TRUE1; | |||
6026 | if (hw->phy_id == IGP03E1000_E_PHY_ID0x02A80390) | |||
6027 | match = TRUE1; | |||
6028 | break; | |||
6029 | case em_82580: | |||
6030 | case em_i210: | |||
6031 | case em_i350: | |||
6032 | if (hw->phy_id == I82580_I_PHY_ID0x015403A0 || | |||
6033 | hw->phy_id == I210_I_PHY_ID0x01410C00 || | |||
6034 | hw->phy_id == I347AT4_E_PHY_ID0x01410DC0 || | |||
6035 | hw->phy_id == I350_I_PHY_ID0x015403B0 || | |||
6036 | hw->phy_id == M88E1111_I_PHY_ID0x01410CC0 || | |||
6037 | hw->phy_id == M88E1112_E_PHY_ID0x01410C90 || | |||
6038 | hw->phy_id == M88E1543_E_PHY_ID0x01410EA0 || | |||
6039 | hw->phy_id == M88E1512_E_PHY_ID0x01410DD0) { | |||
6040 | uint32_t mdic; | |||
6041 | ||||
6042 | mdic = EM_READ_REG(hw, E1000_MDICNFG)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (0x00E04))); | |||
6043 | if (mdic & E1000_MDICNFG_EXT_MDIO0x80000000) { | |||
6044 | mdic &= E1000_MDICNFG_PHY_MASK0x03E00000; | |||
6045 | hw->phy_addr = mdic >> E1000_MDICNFG_PHY_SHIFT21; | |||
6046 | DEBUGOUT1("MDICNFG PHY ADDR %d", | |||
6047 | mdic >> E1000_MDICNFG_PHY_SHIFT); | |||
6048 | } | |||
6049 | match = TRUE1; | |||
6050 | } | |||
6051 | break; | |||
6052 | case em_80003es2lan: | |||
6053 | if (hw->phy_id == GG82563_E_PHY_ID0x01410CA0) | |||
6054 | match = TRUE1; | |||
6055 | break; | |||
6056 | case em_ich8lan: | |||
6057 | case em_ich9lan: | |||
6058 | case em_ich10lan: | |||
6059 | case em_pchlan: | |||
6060 | case em_pch2lan: | |||
6061 | if (hw->phy_id == IGP03E1000_E_PHY_ID0x02A80390) | |||
6062 | match = TRUE1; | |||
6063 | if (hw->phy_id == IFE_E_PHY_ID0x02A80330) | |||
6064 | match = TRUE1; | |||
6065 | if (hw->phy_id == IFE_PLUS_E_PHY_ID0x02A80320) | |||
6066 | match = TRUE1; | |||
6067 | if (hw->phy_id == IFE_C_E_PHY_ID0x02A80310) | |||
6068 | match = TRUE1; | |||
6069 | if (hw->phy_id == BME1000_E_PHY_ID0x01410CB0) | |||
6070 | match = TRUE1; | |||
6071 | if (hw->phy_id == I82577_E_PHY_ID0x01540050) | |||
6072 | match = TRUE1; | |||
6073 | if (hw->phy_id == I82578_E_PHY_ID0x004DD040) | |||
6074 | match = TRUE1; | |||
6075 | if (hw->phy_id == I82579_E_PHY_ID0x01540090) | |||
6076 | match = TRUE1; | |||
6077 | break; | |||
6078 | case em_pch_lpt: | |||
6079 | case em_pch_spt: | |||
6080 | case em_pch_cnp: | |||
6081 | if (hw->phy_id == I217_E_PHY_ID0x015400A0) | |||
6082 | match = TRUE1; | |||
6083 | break; | |||
6084 | case em_icp_xxxx: | |||
6085 | if (hw->phy_id == M88E1141_E_PHY_ID0x01410CD0) | |||
6086 | match = TRUE1; | |||
6087 | if (hw->phy_id == RTL8211_E_PHY_ID0x001CC912) | |||
6088 | match = TRUE1; | |||
6089 | break; | |||
6090 | default: | |||
6091 | DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); | |||
6092 | return -E1000_ERR_CONFIG3; | |||
6093 | } | |||
6094 | phy_init_status = em_set_phy_type(hw); | |||
6095 | ||||
6096 | if ((match) && (phy_init_status == E1000_SUCCESS0)) { | |||
6097 | DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id); | |||
6098 | return E1000_SUCCESS0; | |||
6099 | } | |||
6100 | DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id); | |||
6101 | return -E1000_ERR_PHY2; | |||
6102 | } | |||
6103 | ||||
6104 | /****************************************************************************** | |||
6105 | * Probes the expected PHY address for known PHY IDs | |||
6106 | * | |||
6107 | * hw - Struct containing variables accessed by shared code | |||
6108 | *****************************************************************************/ | |||
6109 | STATIC int32_t | |||
6110 | em_detect_gig_phy(struct em_hw *hw) | |||
6111 | { | |||
6112 | int32_t ret_val, i; | |||
6113 | DEBUGFUNC("em_detect_gig_phy");; | |||
6114 | ||||
6115 | if (hw->phy_id != 0) | |||
6116 | return E1000_SUCCESS0; | |||
6117 | ||||
6118 | /* default phy address, most phys reside here, but not all (ICH10) */ | |||
6119 | if (hw->mac_type != em_icp_xxxx) | |||
6120 | hw->phy_addr = 1; | |||
6121 | else | |||
6122 | hw->phy_addr = 0; /* There is a phy at phy_addr 0 on EP80579 */ | |||
6123 | ||||
6124 | /* | |||
6125 | * The 82571 firmware may still be configuring the PHY. In this | |||
6126 | * case, we cannot access the PHY until the configuration is done. | |||
6127 | * So we explicitly set the PHY values. | |||
6128 | */ | |||
6129 | if (hw->mac_type == em_82571 || | |||
6130 | hw->mac_type == em_82572) { | |||
6131 | hw->phy_id = IGP01E1000_I_PHY_ID0x02A80380; | |||
6132 | hw->phy_type = em_phy_igp_2; | |||
6133 | return E1000_SUCCESS0; | |||
6134 | } | |||
6135 | ||||
6136 | /* | |||
6137 | * Some of the fiber cards dont have a phy, so we must exit cleanly | |||
6138 | * here | |||
6139 | */ | |||
6140 | if ((hw->media_type == em_media_type_fiber) && | |||
6141 | (hw->mac_type == em_82542_rev2_0 || | |||
6142 | hw->mac_type == em_82542_rev2_1 || | |||
6143 | hw->mac_type == em_82543 || | |||
6144 | hw->mac_type == em_82573 || | |||
6145 | hw->mac_type == em_82574 || | |||
6146 | hw->mac_type == em_80003es2lan)) { | |||
6147 | hw->phy_type = em_phy_undefined; | |||
6148 | return E1000_SUCCESS0; | |||
6149 | } | |||
6150 | ||||
6151 | if ((hw->media_type == em_media_type_internal_serdes || | |||
6152 | hw->media_type == em_media_type_fiber) && | |||
6153 | hw->mac_type >= em_82575) { | |||
6154 | hw->phy_type = em_phy_undefined; | |||
6155 | return E1000_SUCCESS0; | |||
6156 | } | |||
6157 | ||||
6158 | /* | |||
6159 | * Up to 82543 (incl), we need reset the phy, or it might not get | |||
6160 | * detected | |||
6161 | */ | |||
6162 | if (hw->mac_type <= em_82543) { | |||
6163 | ret_val = em_phy_hw_reset(hw); | |||
6164 | if (ret_val) | |||
6165 | return ret_val; | |||
6166 | } | |||
6167 | /* | |||
6168 | * ESB-2 PHY reads require em_phy_gg82563 to be set because of a | |||
6169 | * work- around that forces PHY page 0 to be set or the reads fail. | |||
6170 | * The rest of the code in this routine uses em_read_phy_reg to read | |||
6171 | * the PHY ID. So for ESB-2 we need to have this set so our reads | |||
6172 | * won't fail. If the attached PHY is not a em_phy_gg82563, the | |||
6173 | * routines below will figure this out as well. | |||
6174 | */ | |||
6175 | if (hw->mac_type == em_80003es2lan) | |||
6176 | hw->phy_type = em_phy_gg82563; | |||
6177 | ||||
6178 | /* Power on SGMII phy if it is disabled */ | |||
6179 | if (hw->mac_type == em_82580 || hw->mac_type == em_i210 || | |||
6180 | hw->mac_type == em_i350) { | |||
6181 | uint32_t ctrl_ext = EM_READ_REG(hw, E1000_CTRL_EXT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (0x00018))); | |||
6182 | EM_WRITE_REG(hw, E1000_CTRL_EXT,((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (0x00018), (ctrl_ext & ~0x00000080))) | |||
6183 | ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (0x00018), (ctrl_ext & ~0x00000080))); | |||
6184 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
6185 | msec_delay(300)(*delay_func)(1000*(300)); | |||
6186 | } | |||
6187 | ||||
6188 | /* Read the PHY ID Registers to identify which PHY is onboard. */ | |||
6189 | for (i = 1; i < 8; i++) { | |||
6190 | /* | |||
6191 | * hw->phy_addr may be modified down in the call stack, | |||
6192 | * we can't use it as loop variable. | |||
6193 | */ | |||
6194 | hw->phy_addr = i; | |||
6195 | ret_val = em_match_gig_phy(hw); | |||
6196 | if (ret_val == E1000_SUCCESS0) | |||
6197 | return E1000_SUCCESS0; | |||
6198 | } | |||
6199 | return -E1000_ERR_PHY2; | |||
6200 | } | |||
6201 | ||||
6202 | /****************************************************************************** | |||
6203 | * Resets the PHY's DSP | |||
6204 | * | |||
6205 | * hw - Struct containing variables accessed by shared code | |||
6206 | *****************************************************************************/ | |||
6207 | static int32_t | |||
6208 | em_phy_reset_dsp(struct em_hw *hw) | |||
6209 | { | |||
6210 | int32_t ret_val; | |||
6211 | DEBUGFUNC("em_phy_reset_dsp");; | |||
6212 | ||||
6213 | do { | |||
6214 | if (hw->phy_type != em_phy_gg82563) { | |||
6215 | ret_val = em_write_phy_reg(hw, 29, 0x001d); | |||
6216 | if (ret_val) | |||
6217 | break; | |||
6218 | } | |||
6219 | ret_val = em_write_phy_reg(hw, 30, 0x00c1); | |||
6220 | if (ret_val) | |||
6221 | break; | |||
6222 | ret_val = em_write_phy_reg(hw, 30, 0x0000); | |||
6223 | if (ret_val) | |||
6224 | break; | |||
6225 | ret_val = E1000_SUCCESS0; | |||
6226 | } while (0); | |||
6227 | ||||
6228 | return ret_val; | |||
6229 | } | |||
6230 | ||||
6231 | /****************************************************************************** | |||
6232 | * Sets up eeprom variables in the hw struct. Must be called after mac_type | |||
6233 | * is configured. Additionally, if this is ICH8, the flash controller GbE | |||
6234 | * registers must be mapped, or this will crash. | |||
6235 | * | |||
6236 | * hw - Struct containing variables accessed by shared code | |||
6237 | *****************************************************************************/ | |||
6238 | int32_t | |||
6239 | em_init_eeprom_params(struct em_hw *hw) | |||
6240 | { | |||
6241 | struct em_eeprom_info *eeprom = &hw->eeprom; | |||
6242 | uint32_t eecd = E1000_READ_REG(hw, EECD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))))); | |||
6243 | int32_t ret_val = E1000_SUCCESS0; | |||
6244 | uint16_t eeprom_size; | |||
6245 | DEBUGFUNC("em_init_eeprom_params");; | |||
6246 | ||||
6247 | switch (hw->mac_type) { | |||
6248 | case em_82542_rev2_0: | |||
6249 | case em_82542_rev2_1: | |||
6250 | case em_82543: | |||
6251 | case em_82544: | |||
6252 | eeprom->type = em_eeprom_microwire; | |||
6253 | eeprom->word_size = 64; | |||
6254 | eeprom->opcode_bits = 3; | |||
6255 | eeprom->address_bits = 6; | |||
6256 | eeprom->delay_usec = 50; | |||
6257 | eeprom->use_eerd = FALSE0; | |||
6258 | eeprom->use_eewr = FALSE0; | |||
6259 | break; | |||
6260 | case em_82540: | |||
6261 | case em_82545: | |||
6262 | case em_82545_rev_3: | |||
6263 | case em_icp_xxxx: | |||
6264 | case em_82546: | |||
6265 | case em_82546_rev_3: | |||
6266 | eeprom->type = em_eeprom_microwire; | |||
6267 | eeprom->opcode_bits = 3; | |||
6268 | eeprom->delay_usec = 50; | |||
6269 | if (eecd & E1000_EECD_SIZE0x00000200) { | |||
6270 | eeprom->word_size = 256; | |||
6271 | eeprom->address_bits = 8; | |||
6272 | } else { | |||
6273 | eeprom->word_size = 64; | |||
6274 | eeprom->address_bits = 6; | |||
6275 | } | |||
6276 | eeprom->use_eerd = FALSE0; | |||
6277 | eeprom->use_eewr = FALSE0; | |||
6278 | break; | |||
6279 | case em_82541: | |||
6280 | case em_82541_rev_2: | |||
6281 | case em_82547: | |||
6282 | case em_82547_rev_2: | |||
6283 | if (eecd & E1000_EECD_TYPE0x00002000) { | |||
6284 | eeprom->type = em_eeprom_spi; | |||
6285 | eeprom->opcode_bits = 8; | |||
6286 | eeprom->delay_usec = 1; | |||
6287 | if (eecd & E1000_EECD_ADDR_BITS0x00000400) { | |||
6288 | eeprom->page_size = 32; | |||
6289 | eeprom->address_bits = 16; | |||
6290 | } else { | |||
6291 | eeprom->page_size = 8; | |||
6292 | eeprom->address_bits = 8; | |||
6293 | } | |||
6294 | } else { | |||
6295 | eeprom->type = em_eeprom_microwire; | |||
6296 | eeprom->opcode_bits = 3; | |||
6297 | eeprom->delay_usec = 50; | |||
6298 | if (eecd & E1000_EECD_ADDR_BITS0x00000400) { | |||
6299 | eeprom->word_size = 256; | |||
6300 | eeprom->address_bits = 8; | |||
6301 | } else { | |||
6302 | eeprom->word_size = 64; | |||
6303 | eeprom->address_bits = 6; | |||
6304 | } | |||
6305 | } | |||
6306 | eeprom->use_eerd = FALSE0; | |||
6307 | eeprom->use_eewr = FALSE0; | |||
6308 | break; | |||
6309 | case em_82571: | |||
6310 | case em_82572: | |||
6311 | eeprom->type = em_eeprom_spi; | |||
6312 | eeprom->opcode_bits = 8; | |||
6313 | eeprom->delay_usec = 1; | |||
6314 | if (eecd & E1000_EECD_ADDR_BITS0x00000400) { | |||
6315 | eeprom->page_size = 32; | |||
6316 | eeprom->address_bits = 16; | |||
6317 | } else { | |||
6318 | eeprom->page_size = 8; | |||
6319 | eeprom->address_bits = 8; | |||
6320 | } | |||
6321 | eeprom->use_eerd = FALSE0; | |||
6322 | eeprom->use_eewr = FALSE0; | |||
6323 | break; | |||
6324 | case em_82573: | |||
6325 | case em_82574: | |||
6326 | case em_82575: | |||
6327 | case em_82576: | |||
6328 | case em_82580: | |||
6329 | case em_i210: | |||
6330 | case em_i350: | |||
6331 | eeprom->type = em_eeprom_spi; | |||
6332 | eeprom->opcode_bits = 8; | |||
6333 | eeprom->delay_usec = 1; | |||
6334 | if (eecd & E1000_EECD_ADDR_BITS0x00000400) { | |||
6335 | eeprom->page_size = 32; | |||
6336 | eeprom->address_bits = 16; | |||
6337 | } else { | |||
6338 | eeprom->page_size = 8; | |||
6339 | eeprom->address_bits = 8; | |||
6340 | } | |||
6341 | eeprom->use_eerd = TRUE1; | |||
6342 | eeprom->use_eewr = TRUE1; | |||
6343 | if (em_is_onboard_nvm_eeprom(hw) == FALSE0) { | |||
6344 | eeprom->type = em_eeprom_flash; | |||
6345 | eeprom->word_size = 2048; | |||
6346 | /* | |||
6347 | * Ensure that the Autonomous FLASH update bit is | |||
6348 | * cleared due to Flash update issue on parts which | |||
6349 | * use a FLASH for NVM. | |||
6350 | */ | |||
6351 | eecd &= ~E1000_EECD_AUPDEN0x00100000; | |||
6352 | E1000_WRITE_REG(hw, EECD, eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd))); | |||
6353 | } | |||
6354 | if (em_get_flash_presence_i210(hw) == FALSE0) { | |||
6355 | eeprom->type = em_eeprom_invm; | |||
6356 | eeprom->word_size = INVM_SIZE64; | |||
6357 | eeprom->use_eerd = FALSE0; | |||
6358 | eeprom->use_eewr = FALSE0; | |||
6359 | } | |||
6360 | break; | |||
6361 | case em_80003es2lan: | |||
6362 | eeprom->type = em_eeprom_spi; | |||
6363 | eeprom->opcode_bits = 8; | |||
6364 | eeprom->delay_usec = 1; | |||
6365 | if (eecd & E1000_EECD_ADDR_BITS0x00000400) { | |||
6366 | eeprom->page_size = 32; | |||
6367 | eeprom->address_bits = 16; | |||
6368 | } else { | |||
6369 | eeprom->page_size = 8; | |||
6370 | eeprom->address_bits = 8; | |||
6371 | } | |||
6372 | eeprom->use_eerd = TRUE1; | |||
6373 | eeprom->use_eewr = FALSE0; | |||
6374 | break; | |||
6375 | case em_ich8lan: | |||
6376 | case em_ich9lan: | |||
6377 | case em_ich10lan: | |||
6378 | case em_pchlan: | |||
6379 | case em_pch2lan: | |||
6380 | case em_pch_lpt: | |||
6381 | { | |||
6382 | int32_t i = 0; | |||
6383 | uint32_t flash_size = | |||
6384 | E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_GFPREG)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0000 ))); | |||
6385 | eeprom->type = em_eeprom_ich8; | |||
6386 | eeprom->use_eerd = FALSE0; | |||
6387 | eeprom->use_eewr = FALSE0; | |||
6388 | eeprom->word_size = E1000_SHADOW_RAM_WORDS2048; | |||
6389 | /* | |||
6390 | * Zero the shadow RAM structure. But don't load it | |||
6391 | * from NVM so as to save time for driver init | |||
6392 | */ | |||
6393 | if (hw->eeprom_shadow_ram != NULL((void *)0)) { | |||
6394 | for (i = 0; i < E1000_SHADOW_RAM_WORDS2048; i++) { | |||
6395 | hw->eeprom_shadow_ram[i].modified = | |||
6396 | FALSE0; | |||
6397 | hw->eeprom_shadow_ram[i].eeprom_word = | |||
6398 | 0xFFFF; | |||
6399 | } | |||
6400 | } | |||
6401 | hw->flash_base_addr = (flash_size & | |||
6402 | ICH_GFPREG_BASE_MASK0x1FFF) * ICH_FLASH_SECTOR_SIZE4096; | |||
6403 | ||||
6404 | hw->flash_bank_size = ((flash_size >> 16) & | |||
6405 | ICH_GFPREG_BASE_MASK0x1FFF) + 1; | |||
6406 | hw->flash_bank_size -= (flash_size & | |||
6407 | ICH_GFPREG_BASE_MASK0x1FFF); | |||
6408 | ||||
6409 | hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE4096; | |||
6410 | ||||
6411 | hw->flash_bank_size /= 2 * sizeof(uint16_t); | |||
6412 | ||||
6413 | break; | |||
6414 | } | |||
6415 | case em_pch_spt: | |||
6416 | case em_pch_cnp: | |||
6417 | { | |||
6418 | int32_t i = 0; | |||
6419 | uint32_t flash_size = EM_READ_REG(hw, 0xc /* STRAP */)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (0xc))); | |||
6420 | ||||
6421 | eeprom->type = em_eeprom_ich8; | |||
6422 | eeprom->use_eerd = FALSE0; | |||
6423 | eeprom->use_eewr = FALSE0; | |||
6424 | eeprom->word_size = E1000_SHADOW_RAM_WORDS2048; | |||
6425 | /* | |||
6426 | * Zero the shadow RAM structure. But don't load it | |||
6427 | * from NVM so as to save time for driver init | |||
6428 | */ | |||
6429 | if (hw->eeprom_shadow_ram != NULL((void *)0)) { | |||
6430 | for (i = 0; i < E1000_SHADOW_RAM_WORDS2048; i++) { | |||
6431 | hw->eeprom_shadow_ram[i].modified = | |||
6432 | FALSE0; | |||
6433 | hw->eeprom_shadow_ram[i].eeprom_word = | |||
6434 | 0xFFFF; | |||
6435 | } | |||
6436 | } | |||
6437 | hw->flash_base_addr = 0; | |||
6438 | flash_size = ((flash_size >> 1) & 0x1f) + 1; | |||
6439 | flash_size *= 4096; | |||
6440 | hw->flash_bank_size = flash_size / 4; | |||
6441 | } | |||
6442 | break; | |||
6443 | default: | |||
6444 | break; | |||
6445 | } | |||
6446 | ||||
6447 | if (eeprom->type == em_eeprom_spi) { | |||
6448 | /* | |||
6449 | * eeprom_size will be an enum [0..8] that maps to eeprom | |||
6450 | * sizes 128B to 32KB (incremented by powers of 2). | |||
6451 | */ | |||
6452 | if (hw->mac_type <= em_82547_rev_2) { | |||
6453 | /* Set to default value for initial eeprom read. */ | |||
6454 | eeprom->word_size = 64; | |||
6455 | ret_val = em_read_eeprom(hw, EEPROM_CFG0x0012, 1, | |||
6456 | &eeprom_size); | |||
6457 | if (ret_val) | |||
6458 | return ret_val; | |||
6459 | eeprom_size = (eeprom_size & EEPROM_SIZE_MASK0x1C00) >> | |||
6460 | EEPROM_SIZE_SHIFT10; | |||
6461 | /* | |||
6462 | * 256B eeprom size was not supported in earlier | |||
6463 | * hardware, so we bump eeprom_size up one to ensure | |||
6464 | * that "1" (which maps to 256B) is never the result | |||
6465 | * used in the shifting logic below. | |||
6466 | */ | |||
6467 | if (eeprom_size) | |||
6468 | eeprom_size++; | |||
6469 | } else { | |||
6470 | eeprom_size = (uint16_t) ( | |||
6471 | (eecd & E1000_EECD_SIZE_EX_MASK0x00007800) >> | |||
6472 | E1000_EECD_SIZE_EX_SHIFT11); | |||
6473 | } | |||
6474 | ||||
6475 | /* EEPROM access above 16k is unsupported */ | |||
6476 | if (eeprom_size + EEPROM_WORD_SIZE_SHIFT6 > | |||
6477 | EEPROM_WORD_SIZE_SHIFT_MAX14) { | |||
6478 | eeprom->word_size = 1 << EEPROM_WORD_SIZE_SHIFT_MAX14; | |||
6479 | } else { | |||
6480 | eeprom->word_size = 1 << | |||
6481 | (eeprom_size + EEPROM_WORD_SIZE_SHIFT6); | |||
6482 | } | |||
6483 | } | |||
6484 | return ret_val; | |||
6485 | } | |||
6486 | ||||
6487 | /****************************************************************************** | |||
6488 | * Raises the EEPROM's clock input. | |||
6489 | * | |||
6490 | * hw - Struct containing variables accessed by shared code | |||
6491 | * eecd - EECD's current value | |||
6492 | *****************************************************************************/ | |||
6493 | static void | |||
6494 | em_raise_ee_clk(struct em_hw *hw, uint32_t *eecd) | |||
6495 | { | |||
6496 | /* | |||
6497 | * Raise the clock input to the EEPROM (by setting the SK bit), and | |||
6498 | * then wait <delay> microseconds. | |||
6499 | */ | |||
6500 | *eecd = *eecd | E1000_EECD_SK0x00000001; | |||
6501 | E1000_WRITE_REG(hw, EECD, *eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (*eecd))); | |||
6502 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
6503 | usec_delay(hw->eeprom.delay_usec)(*delay_func)(hw->eeprom.delay_usec); | |||
6504 | } | |||
6505 | ||||
6506 | /****************************************************************************** | |||
6507 | * Lowers the EEPROM's clock input. | |||
6508 | * | |||
6509 | * hw - Struct containing variables accessed by shared code | |||
6510 | * eecd - EECD's current value | |||
6511 | *****************************************************************************/ | |||
6512 | static void | |||
6513 | em_lower_ee_clk(struct em_hw *hw, uint32_t *eecd) | |||
6514 | { | |||
6515 | /* | |||
6516 | * Lower the clock input to the EEPROM (by clearing the SK bit), and | |||
6517 | * then wait 50 microseconds. | |||
6518 | */ | |||
6519 | *eecd = *eecd & ~E1000_EECD_SK0x00000001; | |||
6520 | E1000_WRITE_REG(hw, EECD, *eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (*eecd))); | |||
6521 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
6522 | usec_delay(hw->eeprom.delay_usec)(*delay_func)(hw->eeprom.delay_usec); | |||
6523 | } | |||
6524 | ||||
6525 | /****************************************************************************** | |||
6526 | * Shift data bits out to the EEPROM. | |||
6527 | * | |||
6528 | * hw - Struct containing variables accessed by shared code | |||
6529 | * data - data to send to the EEPROM | |||
6530 | * count - number of bits to shift out | |||
6531 | *****************************************************************************/ | |||
6532 | static void | |||
6533 | em_shift_out_ee_bits(struct em_hw *hw, uint16_t data, uint16_t count) | |||
6534 | { | |||
6535 | struct em_eeprom_info *eeprom = &hw->eeprom; | |||
6536 | uint32_t eecd; | |||
6537 | uint32_t mask; | |||
6538 | /* | |||
6539 | * We need to shift "count" bits out to the EEPROM. So, value in the | |||
6540 | * "data" parameter will be shifted out to the EEPROM one bit at a | |||
6541 | * time. In order to do this, "data" must be broken down into bits. | |||
6542 | */ | |||
6543 | mask = 0x01 << (count - 1); | |||
6544 | eecd = E1000_READ_REG(hw, EECD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))))); | |||
6545 | if (eeprom->type == em_eeprom_microwire) { | |||
6546 | eecd &= ~E1000_EECD_DO0x00000008; | |||
6547 | } else if (eeprom->type == em_eeprom_spi) { | |||
6548 | eecd |= E1000_EECD_DO0x00000008; | |||
6549 | } | |||
6550 | do { | |||
6551 | /* | |||
6552 | * A "1" is shifted out to the EEPROM by setting bit "DI" to | |||
6553 | * a "1", and then raising and then lowering the clock (the | |||
6554 | * SK bit controls the clock input to the EEPROM). A "0" is | |||
6555 | * shifted out to the EEPROM by setting "DI" to "0" and then | |||
6556 | * raising and then lowering the clock. | |||
6557 | */ | |||
6558 | eecd &= ~E1000_EECD_DI0x00000004; | |||
6559 | ||||
6560 | if (data & mask) | |||
6561 | eecd |= E1000_EECD_DI0x00000004; | |||
6562 | ||||
6563 | E1000_WRITE_REG(hw, EECD, eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd))); | |||
6564 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
6565 | ||||
6566 | usec_delay(eeprom->delay_usec)(*delay_func)(eeprom->delay_usec); | |||
6567 | ||||
6568 | em_raise_ee_clk(hw, &eecd); | |||
6569 | em_lower_ee_clk(hw, &eecd); | |||
6570 | ||||
6571 | mask = mask >> 1; | |||
6572 | ||||
6573 | } while (mask); | |||
6574 | ||||
6575 | /* We leave the "DI" bit set to "0" when we leave this routine. */ | |||
6576 | eecd &= ~E1000_EECD_DI0x00000004; | |||
6577 | E1000_WRITE_REG(hw, EECD, eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd))); | |||
6578 | } | |||
6579 | ||||
6580 | /****************************************************************************** | |||
6581 | * Shift data bits in from the EEPROM | |||
6582 | * | |||
6583 | * hw - Struct containing variables accessed by shared code | |||
6584 | *****************************************************************************/ | |||
6585 | static uint16_t | |||
6586 | em_shift_in_ee_bits(struct em_hw *hw, uint16_t count) | |||
6587 | { | |||
6588 | uint32_t eecd; | |||
6589 | uint32_t i; | |||
6590 | uint16_t data; | |||
6591 | /* | |||
6592 | * In order to read a register from the EEPROM, we need to shift | |||
6593 | * 'count' bits in from the EEPROM. Bits are "shifted in" by raising | |||
6594 | * the clock input to the EEPROM (setting the SK bit), and then | |||
6595 | * reading the value of the "DO" bit. During this "shifting in" | |||
6596 | * process the "DI" bit should always be clear. | |||
6597 | */ | |||
6598 | ||||
6599 | eecd = E1000_READ_REG(hw, EECD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))))); | |||
6600 | ||||
6601 | eecd &= ~(E1000_EECD_DO0x00000008 | E1000_EECD_DI0x00000004); | |||
6602 | data = 0; | |||
6603 | ||||
6604 | for (i = 0; i < count; i++) { | |||
6605 | data = data << 1; | |||
6606 | em_raise_ee_clk(hw, &eecd); | |||
6607 | ||||
6608 | eecd = E1000_READ_REG(hw, EECD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))))); | |||
6609 | ||||
6610 | eecd &= ~(E1000_EECD_DI0x00000004); | |||
6611 | if (eecd & E1000_EECD_DO0x00000008) | |||
6612 | data |= 1; | |||
6613 | ||||
6614 | em_lower_ee_clk(hw, &eecd); | |||
6615 | } | |||
6616 | ||||
6617 | return data; | |||
6618 | } | |||
6619 | /****************************************************************************** | |||
6620 | * Prepares EEPROM for access | |||
6621 | * | |||
6622 | * hw - Struct containing variables accessed by shared code | |||
6623 | * | |||
6624 | * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This | |||
6625 | * function should be called before issuing a command to the EEPROM. | |||
6626 | *****************************************************************************/ | |||
6627 | static int32_t | |||
6628 | em_acquire_eeprom(struct em_hw *hw) | |||
6629 | { | |||
6630 | struct em_eeprom_info *eeprom = &hw->eeprom; | |||
6631 | uint32_t eecd, i = 0; | |||
6632 | DEBUGFUNC("em_acquire_eeprom");; | |||
6633 | ||||
6634 | if (em_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM0x0001)) | |||
6635 | return -E1000_ERR_SWFW_SYNC13; | |||
6636 | eecd = E1000_READ_REG(hw, EECD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))))); | |||
6637 | ||||
6638 | if ((hw->mac_type != em_82573) && (hw->mac_type != em_82574)) { | |||
6639 | /* Request EEPROM Access */ | |||
6640 | if (hw->mac_type > em_82544) { | |||
6641 | eecd |= E1000_EECD_REQ0x00000040; | |||
6642 | E1000_WRITE_REG(hw, EECD, eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd))); | |||
6643 | eecd = E1000_READ_REG(hw, EECD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))))); | |||
6644 | while ((!(eecd & E1000_EECD_GNT0x00000080)) && | |||
6645 | (i < E1000_EEPROM_GRANT_ATTEMPTS1000)) { | |||
6646 | i++; | |||
6647 | usec_delay(5)(*delay_func)(5); | |||
6648 | eecd = E1000_READ_REG(hw, EECD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))))); | |||
6649 | } | |||
6650 | if (!(eecd & E1000_EECD_GNT0x00000080)) { | |||
6651 | eecd &= ~E1000_EECD_REQ0x00000040; | |||
6652 | E1000_WRITE_REG(hw, EECD, eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd))); | |||
6653 | DEBUGOUT("Could not acquire EEPROM grant\n"); | |||
6654 | em_swfw_sync_release(hw, E1000_SWFW_EEP_SM0x0001); | |||
6655 | return -E1000_ERR_EEPROM1; | |||
6656 | } | |||
6657 | } | |||
6658 | } | |||
6659 | ||||
6660 | /* Setup EEPROM for Read/Write */ | |||
6661 | if (eeprom->type == em_eeprom_microwire) { | |||
6662 | /* Clear SK and DI */ | |||
6663 | eecd &= ~(E1000_EECD_DI0x00000004 | E1000_EECD_SK0x00000001); | |||
6664 | E1000_WRITE_REG(hw, EECD, eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd))); | |||
6665 | ||||
6666 | /* Set CS */ | |||
6667 | eecd |= E1000_EECD_CS0x00000002; | |||
6668 | E1000_WRITE_REG(hw, EECD, eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd))); | |||
6669 | } else if (eeprom->type == em_eeprom_spi) { | |||
6670 | /* Clear SK and CS */ | |||
6671 | eecd &= ~(E1000_EECD_CS0x00000002 | E1000_EECD_SK0x00000001); | |||
6672 | E1000_WRITE_REG(hw, EECD, eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd))); | |||
6673 | usec_delay(1)(*delay_func)(1); | |||
6674 | } | |||
6675 | return E1000_SUCCESS0; | |||
6676 | } | |||
6677 | ||||
6678 | /****************************************************************************** | |||
6679 | * Returns EEPROM to a "standby" state | |||
6680 | * | |||
6681 | * hw - Struct containing variables accessed by shared code | |||
6682 | *****************************************************************************/ | |||
6683 | static void | |||
6684 | em_standby_eeprom(struct em_hw *hw) | |||
6685 | { | |||
6686 | struct em_eeprom_info *eeprom = &hw->eeprom; | |||
6687 | uint32_t eecd; | |||
6688 | eecd = E1000_READ_REG(hw, EECD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))))); | |||
6689 | ||||
6690 | if (eeprom->type == em_eeprom_microwire) { | |||
6691 | eecd &= ~(E1000_EECD_CS0x00000002 | E1000_EECD_SK0x00000001); | |||
6692 | E1000_WRITE_REG(hw, EECD, eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd))); | |||
6693 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
6694 | usec_delay(eeprom->delay_usec)(*delay_func)(eeprom->delay_usec); | |||
6695 | ||||
6696 | /* Clock high */ | |||
6697 | eecd |= E1000_EECD_SK0x00000001; | |||
6698 | E1000_WRITE_REG(hw, EECD, eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd))); | |||
6699 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
6700 | usec_delay(eeprom->delay_usec)(*delay_func)(eeprom->delay_usec); | |||
6701 | ||||
6702 | /* Select EEPROM */ | |||
6703 | eecd |= E1000_EECD_CS0x00000002; | |||
6704 | E1000_WRITE_REG(hw, EECD, eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd))); | |||
6705 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
6706 | usec_delay(eeprom->delay_usec)(*delay_func)(eeprom->delay_usec); | |||
6707 | ||||
6708 | /* Clock low */ | |||
6709 | eecd &= ~E1000_EECD_SK0x00000001; | |||
6710 | E1000_WRITE_REG(hw, EECD, eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd))); | |||
6711 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
6712 | usec_delay(eeprom->delay_usec)(*delay_func)(eeprom->delay_usec); | |||
6713 | } else if (eeprom->type == em_eeprom_spi) { | |||
6714 | /* Toggle CS to flush commands */ | |||
6715 | eecd |= E1000_EECD_CS0x00000002; | |||
6716 | E1000_WRITE_REG(hw, EECD, eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd))); | |||
6717 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
6718 | usec_delay(eeprom->delay_usec)(*delay_func)(eeprom->delay_usec); | |||
6719 | eecd &= ~E1000_EECD_CS0x00000002; | |||
6720 | E1000_WRITE_REG(hw, EECD, eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd))); | |||
6721 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
6722 | usec_delay(eeprom->delay_usec)(*delay_func)(eeprom->delay_usec); | |||
6723 | } | |||
6724 | } | |||
6725 | ||||
6726 | /****************************************************************************** | |||
6727 | * Terminates a command by inverting the EEPROM's chip select pin | |||
6728 | * | |||
6729 | * hw - Struct containing variables accessed by shared code | |||
6730 | *****************************************************************************/ | |||
6731 | static void | |||
6732 | em_release_eeprom(struct em_hw *hw) | |||
6733 | { | |||
6734 | uint32_t eecd; | |||
6735 | DEBUGFUNC("em_release_eeprom");; | |||
6736 | ||||
6737 | eecd = E1000_READ_REG(hw, EECD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))))); | |||
6738 | ||||
6739 | if (hw->eeprom.type == em_eeprom_spi) { | |||
6740 | eecd |= E1000_EECD_CS0x00000002; /* Pull CS high */ | |||
6741 | eecd &= ~E1000_EECD_SK0x00000001; /* Lower SCK */ | |||
6742 | ||||
6743 | E1000_WRITE_REG(hw, EECD, eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd))); | |||
6744 | ||||
6745 | usec_delay(hw->eeprom.delay_usec)(*delay_func)(hw->eeprom.delay_usec); | |||
6746 | } else if (hw->eeprom.type == em_eeprom_microwire) { | |||
6747 | /* cleanup eeprom */ | |||
6748 | ||||
6749 | /* CS on Microwire is active-high */ | |||
6750 | eecd &= ~(E1000_EECD_CS0x00000002 | E1000_EECD_DI0x00000004); | |||
6751 | ||||
6752 | E1000_WRITE_REG(hw, EECD, eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd))); | |||
6753 | ||||
6754 | /* Rising edge of clock */ | |||
6755 | eecd |= E1000_EECD_SK0x00000001; | |||
6756 | E1000_WRITE_REG(hw, EECD, eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd))); | |||
6757 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
6758 | usec_delay(hw->eeprom.delay_usec)(*delay_func)(hw->eeprom.delay_usec); | |||
6759 | ||||
6760 | /* Falling edge of clock */ | |||
6761 | eecd &= ~E1000_EECD_SK0x00000001; | |||
6762 | E1000_WRITE_REG(hw, EECD, eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd))); | |||
6763 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
6764 | usec_delay(hw->eeprom.delay_usec)(*delay_func)(hw->eeprom.delay_usec); | |||
6765 | } | |||
6766 | /* Stop requesting EEPROM access */ | |||
6767 | if (hw->mac_type > em_82544) { | |||
6768 | eecd &= ~E1000_EECD_REQ0x00000040; | |||
6769 | E1000_WRITE_REG(hw, EECD, eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd))); | |||
6770 | } | |||
6771 | em_swfw_sync_release(hw, E1000_SWFW_EEP_SM0x0001); | |||
6772 | } | |||
6773 | ||||
6774 | /****************************************************************************** | |||
6775 | * Reads a 16 bit word from the EEPROM. | |||
6776 | * | |||
6777 | * hw - Struct containing variables accessed by shared code | |||
6778 | *****************************************************************************/ | |||
6779 | STATIC int32_t | |||
6780 | em_spi_eeprom_ready(struct em_hw *hw) | |||
6781 | { | |||
6782 | uint16_t retry_count = 0; | |||
6783 | uint8_t spi_stat_reg; | |||
6784 | DEBUGFUNC("em_spi_eeprom_ready");; | |||
6785 | /* | |||
6786 | * Read "Status Register" repeatedly until the LSB is cleared. The | |||
6787 | * EEPROM will signal that the command has been completed by clearing | |||
6788 | * bit 0 of the internal status register. If it's not cleared within | |||
6789 | * 5 milliseconds, then error out. | |||
6790 | */ | |||
6791 | retry_count = 0; | |||
6792 | do { | |||
6793 | em_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI0x05, | |||
6794 | hw->eeprom.opcode_bits); | |||
6795 | spi_stat_reg = (uint8_t) em_shift_in_ee_bits(hw, 8); | |||
6796 | if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI0x01)) | |||
6797 | break; | |||
6798 | ||||
6799 | usec_delay(5)(*delay_func)(5); | |||
6800 | retry_count += 5; | |||
6801 | ||||
6802 | em_standby_eeprom(hw); | |||
6803 | } while (retry_count < EEPROM_MAX_RETRY_SPI5000); | |||
6804 | /* | |||
6805 | * ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and | |||
6806 | * only 0-5mSec on 5V devices) | |||
6807 | */ | |||
6808 | if (retry_count >= EEPROM_MAX_RETRY_SPI5000) { | |||
6809 | DEBUGOUT("SPI EEPROM Status error\n"); | |||
6810 | return -E1000_ERR_EEPROM1; | |||
6811 | } | |||
6812 | return E1000_SUCCESS0; | |||
6813 | } | |||
6814 | ||||
6815 | /****************************************************************************** | |||
6816 | * Reads a 16 bit word from the EEPROM. | |||
6817 | * | |||
6818 | * hw - Struct containing variables accessed by shared code | |||
6819 | * offset - offset of word in the EEPROM to read | |||
6820 | * data - word read from the EEPROM | |||
6821 | * words - number of words to read | |||
6822 | *****************************************************************************/ | |||
6823 | int32_t | |||
6824 | em_read_eeprom(struct em_hw *hw, uint16_t offset, uint16_t words, | |||
6825 | uint16_t *data) | |||
6826 | { | |||
6827 | struct em_eeprom_info *eeprom = &hw->eeprom; | |||
6828 | uint32_t i = 0; | |||
6829 | DEBUGFUNC("em_read_eeprom");; | |||
6830 | ||||
6831 | /* If eeprom is not yet detected, do so now */ | |||
6832 | if (eeprom->word_size == 0) | |||
6833 | em_init_eeprom_params(hw); | |||
6834 | /* | |||
6835 | * A check for invalid values: offset too large, too many words, and | |||
6836 | * not enough words. | |||
6837 | */ | |||
6838 | if ((offset
| |||
6839 | (words > eeprom->word_size - offset) || | |||
6840 | (words
| |||
6841 | DEBUGOUT2("\"words\" parameter out of bounds. Words = %d," | |||
6842 | " size = %d\n", offset, eeprom->word_size); | |||
6843 | return -E1000_ERR_EEPROM1; | |||
6844 | } | |||
6845 | /* | |||
6846 | * EEPROM's that don't use EERD to read require us to bit-bang the | |||
6847 | * SPI directly. In this case, we need to acquire the EEPROM so that | |||
6848 | * FW or other port software does not interrupt. | |||
6849 | */ | |||
6850 | if (em_is_onboard_nvm_eeprom(hw) == TRUE1 && | |||
6851 | em_get_flash_presence_i210(hw) == TRUE1 && | |||
6852 | hw->eeprom.use_eerd == FALSE0) { | |||
6853 | /* Prepare the EEPROM for bit-bang reading */ | |||
6854 | if (em_acquire_eeprom(hw) != E1000_SUCCESS0) | |||
6855 | return -E1000_ERR_EEPROM1; | |||
6856 | } | |||
6857 | /* Eerd register EEPROM access requires no eeprom acquire/release */ | |||
6858 | if (eeprom->use_eerd == TRUE1) | |||
6859 | return em_read_eeprom_eerd(hw, offset, words, data); | |||
6860 | ||||
6861 | /* ICH EEPROM access is done via the ICH flash controller */ | |||
6862 | if (eeprom->type == em_eeprom_ich8) | |||
6863 | return em_read_eeprom_ich8(hw, offset, words, data); | |||
6864 | ||||
6865 | /* Some i210/i211 have a special OTP chip */ | |||
6866 | if (eeprom->type == em_eeprom_invm) | |||
6867 | return em_read_invm_i210(hw, offset, words, data); | |||
6868 | ||||
6869 | /* | |||
6870 | * Set up the SPI or Microwire EEPROM for bit-bang reading. We have | |||
6871 | * acquired the EEPROM at this point, so any returns should release it | |||
6872 | */ | |||
6873 | if (eeprom->type == em_eeprom_spi) { | |||
6874 | uint16_t word_in; | |||
6875 | uint8_t read_opcode = EEPROM_READ_OPCODE_SPI0x03; | |||
6876 | if (em_spi_eeprom_ready(hw)) { | |||
6877 | em_release_eeprom(hw); | |||
6878 | return -E1000_ERR_EEPROM1; | |||
6879 | } | |||
6880 | em_standby_eeprom(hw); | |||
6881 | /* | |||
6882 | * Some SPI eeproms use the 8th address bit embedded in the | |||
6883 | * opcode | |||
6884 | */ | |||
6885 | if ((eeprom->address_bits == 8) && (offset >= 128)) | |||
6886 | read_opcode |= EEPROM_A8_OPCODE_SPI0x08; | |||
6887 | ||||
6888 | /* Send the READ command (opcode + addr) */ | |||
6889 | em_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits); | |||
6890 | em_shift_out_ee_bits(hw, (uint16_t) (offset * 2), | |||
6891 | eeprom->address_bits); | |||
6892 | /* | |||
6893 | * Read the data. The address of the eeprom internally | |||
6894 | * increments with each byte (spi) being read, saving on the | |||
6895 | * overhead of eeprom setup and tear-down. The address | |||
6896 | * counter will roll over if reading beyond the size of the | |||
6897 | * eeprom, thus allowing the entire memory to be read | |||
6898 | * starting from any offset. | |||
6899 | */ | |||
6900 | for (i = 0; i < words; i++) { | |||
6901 | word_in = em_shift_in_ee_bits(hw, 16); | |||
6902 | data[i] = (word_in >> 8) | (word_in << 8); | |||
6903 | } | |||
6904 | } else if (eeprom->type == em_eeprom_microwire) { | |||
6905 | for (i = 0; i < words; i++) { | |||
6906 | /* Send the READ command (opcode + addr) */ | |||
6907 | em_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE0x6, | |||
6908 | eeprom->opcode_bits); | |||
6909 | em_shift_out_ee_bits(hw, (uint16_t) (offset + i), | |||
6910 | eeprom->address_bits); | |||
6911 | /* | |||
6912 | * Read the data. For microwire, each word requires | |||
6913 | * the overhead of eeprom setup and tear-down. | |||
6914 | */ | |||
6915 | data[i] = em_shift_in_ee_bits(hw, 16); | |||
6916 | em_standby_eeprom(hw); | |||
6917 | } | |||
6918 | } | |||
6919 | /* End this read operation */ | |||
6920 | em_release_eeprom(hw); | |||
6921 | ||||
6922 | return E1000_SUCCESS0; | |||
6923 | } | |||
6924 | ||||
6925 | /****************************************************************************** | |||
6926 | * Reads a 16 bit word from the EEPROM using the EERD register. | |||
6927 | * | |||
6928 | * hw - Struct containing variables accessed by shared code | |||
6929 | * offset - offset of word in the EEPROM to read | |||
6930 | * data - word read from the EEPROM | |||
6931 | * words - number of words to read | |||
6932 | *****************************************************************************/ | |||
6933 | STATIC int32_t | |||
6934 | em_read_eeprom_eerd(struct em_hw *hw, uint16_t offset, uint16_t words, | |||
6935 | uint16_t *data) | |||
6936 | { | |||
6937 | uint32_t i, eerd = 0; | |||
6938 | int32_t error = 0; | |||
6939 | for (i = 0; i < words; i++) { | |||
6940 | eerd = ((offset + i) << E1000_EEPROM_RW_ADDR_SHIFT2) + | |||
6941 | E1000_EEPROM_RW_REG_START1; | |||
6942 | ||||
6943 | E1000_WRITE_REG(hw, EERD, eerd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00014 : em_translate_82542_register (0x00014))), (eerd))); | |||
6944 | error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ0); | |||
6945 | ||||
6946 | if (error) { | |||
6947 | break; | |||
6948 | } | |||
6949 | data[i] = (E1000_READ_REG(hw, EERD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00014 : em_translate_82542_register (0x00014))))) >> | |||
6950 | E1000_EEPROM_RW_REG_DATA16); | |||
6951 | ||||
6952 | } | |||
6953 | ||||
6954 | return error; | |||
6955 | } | |||
6956 | ||||
6957 | /****************************************************************************** | |||
6958 | * Writes a 16 bit word from the EEPROM using the EEWR register. | |||
6959 | * | |||
6960 | * hw - Struct containing variables accessed by shared code | |||
6961 | * offset - offset of word in the EEPROM to read | |||
6962 | * data - word read from the EEPROM | |||
6963 | * words - number of words to read | |||
6964 | *****************************************************************************/ | |||
6965 | STATIC int32_t | |||
6966 | em_write_eeprom_eewr(struct em_hw *hw, uint16_t offset, uint16_t words, | |||
6967 | uint16_t *data) | |||
6968 | { | |||
6969 | uint32_t register_value = 0; | |||
6970 | uint32_t i = 0; | |||
6971 | int32_t error = 0; | |||
6972 | if (em_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM0x0001)) | |||
6973 | return -E1000_ERR_SWFW_SYNC13; | |||
6974 | ||||
6975 | for (i = 0; i < words; i++) { | |||
6976 | register_value = (data[i] << E1000_EEPROM_RW_REG_DATA16) | | |||
6977 | ((offset + i) << E1000_EEPROM_RW_ADDR_SHIFT2) | | |||
6978 | E1000_EEPROM_RW_REG_START1; | |||
6979 | ||||
6980 | error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE1); | |||
6981 | if (error) { | |||
6982 | break; | |||
6983 | } | |||
6984 | E1000_WRITE_REG(hw, EEWR, register_value)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x0102C : em_translate_82542_register (0x0102C))), (register_value))); | |||
6985 | ||||
6986 | error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE1); | |||
6987 | ||||
6988 | if (error) { | |||
6989 | break; | |||
6990 | } | |||
6991 | } | |||
6992 | ||||
6993 | em_swfw_sync_release(hw, E1000_SWFW_EEP_SM0x0001); | |||
6994 | return error; | |||
6995 | } | |||
6996 | ||||
6997 | /****************************************************************************** | |||
6998 | * Polls the status bit (bit 1) of the EERD to determine when the read is done. | |||
6999 | * | |||
7000 | * hw - Struct containing variables accessed by shared code | |||
7001 | *****************************************************************************/ | |||
7002 | STATIC int32_t | |||
7003 | em_poll_eerd_eewr_done(struct em_hw *hw, int eerd) | |||
7004 | { | |||
7005 | uint32_t attempts = 100000; | |||
7006 | uint32_t i, reg = 0; | |||
7007 | int32_t done = E1000_ERR_EEPROM1; | |||
7008 | for (i = 0; i < attempts; i++) { | |||
7009 | if (eerd == E1000_EEPROM_POLL_READ0) | |||
7010 | reg = E1000_READ_REG(hw, EERD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00014 : em_translate_82542_register (0x00014))))); | |||
7011 | else | |||
7012 | reg = E1000_READ_REG(hw, EEWR)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x0102C : em_translate_82542_register (0x0102C))))); | |||
7013 | ||||
7014 | if (reg & E1000_EEPROM_RW_REG_DONE2) { | |||
7015 | done = E1000_SUCCESS0; | |||
7016 | break; | |||
7017 | } | |||
7018 | usec_delay(5)(*delay_func)(5); | |||
7019 | } | |||
7020 | ||||
7021 | return done; | |||
7022 | } | |||
7023 | ||||
7024 | /****************************************************************************** | |||
7025 | * Description: Determines if the onboard NVM is FLASH or EEPROM. | |||
7026 | * | |||
7027 | * hw - Struct containing variables accessed by shared code | |||
7028 | *****************************************************************************/ | |||
7029 | STATIC boolean_t | |||
7030 | em_is_onboard_nvm_eeprom(struct em_hw *hw) | |||
7031 | { | |||
7032 | uint32_t eecd = 0; | |||
7033 | DEBUGFUNC("em_is_onboard_nvm_eeprom");; | |||
7034 | ||||
7035 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) | |||
7036 | return FALSE0; | |||
7037 | ||||
7038 | if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) { | |||
7039 | eecd = E1000_READ_REG(hw, EECD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))))); | |||
7040 | ||||
7041 | /* Isolate bits 15 & 16 */ | |||
7042 | eecd = ((eecd >> 15) & 0x03); | |||
7043 | ||||
7044 | /* If both bits are set, device is Flash type */ | |||
7045 | if (eecd == 0x03) { | |||
7046 | return FALSE0; | |||
7047 | } | |||
7048 | } | |||
7049 | return TRUE1; | |||
7050 | } | |||
7051 | ||||
7052 | /****************************************************************************** | |||
7053 | * Check if flash device is detected. | |||
7054 | * | |||
7055 | * hw - Struct containing variables accessed by shared code | |||
7056 | *****************************************************************************/ | |||
7057 | boolean_t | |||
7058 | em_get_flash_presence_i210(struct em_hw *hw) | |||
7059 | { | |||
7060 | uint32_t eecd; | |||
7061 | DEBUGFUNC("em_get_flash_presence_i210");; | |||
7062 | ||||
7063 | if (hw->mac_type != em_i210) | |||
7064 | return TRUE1; | |||
7065 | ||||
7066 | eecd = E1000_READ_REG(hw, EECD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))))); | |||
7067 | ||||
7068 | if (eecd & E1000_EECD_FLUPD0x00080000) | |||
7069 | return TRUE1; | |||
7070 | ||||
7071 | return FALSE0; | |||
7072 | } | |||
7073 | ||||
7074 | /****************************************************************************** | |||
7075 | * Verifies that the EEPROM has a valid checksum | |||
7076 | * | |||
7077 | * hw - Struct containing variables accessed by shared code | |||
7078 | * | |||
7079 | * Reads the first 64 16 bit words of the EEPROM and sums the values read. | |||
7080 | * If the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is | |||
7081 | * valid. | |||
7082 | *****************************************************************************/ | |||
7083 | int32_t | |||
7084 | em_validate_eeprom_checksum(struct em_hw *hw) | |||
7085 | { | |||
7086 | uint16_t checksum = 0; | |||
7087 | uint16_t i, eeprom_data; | |||
7088 | uint16_t checksum_reg; | |||
7089 | DEBUGFUNC("em_validate_eeprom_checksum");; | |||
7090 | ||||
7091 | checksum_reg = hw->mac_type != em_icp_xxxx ? | |||
7092 | EEPROM_CHECKSUM_REG0x003F : | |||
7093 | EEPROM_CHECKSUM_REG_ICP_xxxx0x003F; | |||
7094 | ||||
7095 | if (((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) && | |||
7096 | (em_is_onboard_nvm_eeprom(hw) == FALSE0)) { | |||
7097 | /* | |||
7098 | * Check bit 4 of word 10h. If it is 0, firmware is done | |||
7099 | * updating 10h-12h. Checksum may need to be fixed. | |||
7100 | */ | |||
7101 | em_read_eeprom(hw, 0x10, 1, &eeprom_data); | |||
7102 | if ((eeprom_data & 0x10) == 0) { | |||
7103 | /* | |||
7104 | * Read 0x23 and check bit 15. This bit is a 1 when | |||
7105 | * the checksum has already been fixed. If the | |||
7106 | * checksum is still wrong and this bit is a 1, we | |||
7107 | * need to return bad checksum. Otherwise, we need | |||
7108 | * to set this bit to a 1 and update the checksum. | |||
7109 | */ | |||
7110 | em_read_eeprom(hw, 0x23, 1, &eeprom_data); | |||
7111 | if ((eeprom_data & 0x8000) == 0) { | |||
7112 | eeprom_data |= 0x8000; | |||
7113 | em_write_eeprom(hw, 0x23, 1, &eeprom_data); | |||
7114 | em_update_eeprom_checksum(hw); | |||
7115 | } | |||
7116 | } | |||
7117 | } | |||
7118 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | |||
7119 | uint16_t word; | |||
7120 | uint16_t valid_csum_mask; | |||
7121 | ||||
7122 | /* | |||
7123 | * Drivers must allocate the shadow ram structure for the | |||
7124 | * EEPROM checksum to be updated. Otherwise, this bit as | |||
7125 | * well as the checksum must both be set correctly for this | |||
7126 | * validation to pass. | |||
7127 | */ | |||
7128 | switch (hw->mac_type) { | |||
7129 | case em_pch_lpt: | |||
7130 | case em_pch_spt: | |||
7131 | case em_pch_cnp: | |||
7132 | word = EEPROM_COMPAT0x0003; | |||
7133 | valid_csum_mask = EEPROM_COMPAT_VALID_CSUM0x0001; | |||
7134 | break; | |||
7135 | default: | |||
7136 | word = EEPROM_FUTURE_INIT_WORD10x0019; | |||
7137 | valid_csum_mask = EEPROM_FUTURE_INIT_WORD1_VALID_CSUM0x0040; | |||
7138 | break; | |||
7139 | } | |||
7140 | em_read_eeprom(hw, word, 1, &eeprom_data); | |||
7141 | if ((eeprom_data & valid_csum_mask) == 0) { | |||
7142 | eeprom_data |= valid_csum_mask; | |||
7143 | em_write_eeprom(hw, word, 1, &eeprom_data); | |||
7144 | em_update_eeprom_checksum(hw); | |||
7145 | } | |||
7146 | } | |||
7147 | for (i = 0; i < (checksum_reg + 1); i++) { | |||
7148 | if (em_read_eeprom(hw, i, 1, &eeprom_data) < 0) { | |||
7149 | DEBUGOUT("EEPROM Read Error\n"); | |||
7150 | return -E1000_ERR_EEPROM1; | |||
7151 | } | |||
7152 | checksum += eeprom_data; | |||
7153 | } | |||
7154 | ||||
7155 | if (checksum == (uint16_t) EEPROM_SUM0xBABA) | |||
7156 | return E1000_SUCCESS0; | |||
7157 | else { | |||
7158 | DEBUGOUT("EEPROM Checksum Invalid\n"); | |||
7159 | return -E1000_ERR_EEPROM1; | |||
7160 | } | |||
7161 | } | |||
7162 | ||||
7163 | /****************************************************************************** | |||
7164 | * Calculates the EEPROM checksum and writes it to the EEPROM | |||
7165 | * | |||
7166 | * hw - Struct containing variables accessed by shared code | |||
7167 | * | |||
7168 | * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA. | |||
7169 | * Writes the difference to word offset 63 of the EEPROM. | |||
7170 | *****************************************************************************/ | |||
7171 | int32_t | |||
7172 | em_update_eeprom_checksum(struct em_hw *hw) | |||
7173 | { | |||
7174 | uint32_t ctrl_ext; | |||
7175 | uint16_t checksum = 0; | |||
7176 | uint16_t i, eeprom_data; | |||
7177 | DEBUGFUNC("em_update_eeprom_checksum");; | |||
7178 | ||||
7179 | for (i = 0; i < EEPROM_CHECKSUM_REG0x003F; i++) { | |||
7180 | if (em_read_eeprom(hw, i, 1, &eeprom_data) < 0) { | |||
7181 | DEBUGOUT("EEPROM Read Error\n"); | |||
7182 | return -E1000_ERR_EEPROM1; | |||
7183 | } | |||
7184 | checksum += eeprom_data; | |||
7185 | } | |||
7186 | checksum = (uint16_t) EEPROM_SUM0xBABA - checksum; | |||
7187 | if (em_write_eeprom(hw, EEPROM_CHECKSUM_REG0x003F, 1, &checksum) < 0) { | |||
7188 | DEBUGOUT("EEPROM Write Error\n"); | |||
7189 | return -E1000_ERR_EEPROM1; | |||
7190 | } else if (hw->eeprom.type == em_eeprom_flash) { | |||
7191 | em_commit_shadow_ram(hw); | |||
7192 | } else if (hw->eeprom.type == em_eeprom_ich8) { | |||
7193 | em_commit_shadow_ram(hw); | |||
7194 | /* | |||
7195 | * Reload the EEPROM, or else modifications will not appear | |||
7196 | * until after next adapter reset. | |||
7197 | */ | |||
7198 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))))); | |||
7199 | ctrl_ext |= E1000_CTRL_EXT_EE_RST0x00002000; | |||
7200 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))), (ctrl_ext))); | |||
7201 | msec_delay(10)(*delay_func)(1000*(10)); | |||
7202 | } | |||
7203 | return E1000_SUCCESS0; | |||
7204 | } | |||
7205 | ||||
7206 | /****************************************************************************** | |||
7207 | * Parent function for writing words to the different EEPROM types. | |||
7208 | * | |||
7209 | * hw - Struct containing variables accessed by shared code | |||
7210 | * offset - offset within the EEPROM to be written to | |||
7211 | * words - number of words to write | |||
7212 | * data - 16 bit word to be written to the EEPROM | |||
7213 | * | |||
7214 | * If em_update_eeprom_checksum is not called after this function, the | |||
7215 | * EEPROM will most likely contain an invalid checksum. | |||
7216 | *****************************************************************************/ | |||
7217 | int32_t | |||
7218 | em_write_eeprom(struct em_hw *hw, uint16_t offset, uint16_t words, | |||
7219 | uint16_t *data) | |||
7220 | { | |||
7221 | struct em_eeprom_info *eeprom = &hw->eeprom; | |||
7222 | int32_t status = 0; | |||
7223 | DEBUGFUNC("em_write_eeprom");; | |||
7224 | ||||
7225 | /* If eeprom is not yet detected, do so now */ | |||
7226 | if (eeprom->word_size == 0) | |||
7227 | em_init_eeprom_params(hw); | |||
7228 | /* | |||
7229 | * A check for invalid values: offset too large, too many words, and | |||
7230 | * not enough words. | |||
7231 | */ | |||
7232 | if ((offset >= eeprom->word_size) || | |||
7233 | (words > eeprom->word_size - offset) || | |||
7234 | (words == 0)) { | |||
7235 | DEBUGOUT("\"words\" parameter out of bounds\n"); | |||
7236 | return -E1000_ERR_EEPROM1; | |||
7237 | } | |||
7238 | /* 82573/4 writes only through eewr */ | |||
7239 | if (eeprom->use_eewr == TRUE1) | |||
7240 | return em_write_eeprom_eewr(hw, offset, words, data); | |||
7241 | ||||
7242 | if (eeprom->type == em_eeprom_ich8) | |||
7243 | return em_write_eeprom_ich8(hw, offset, words, data); | |||
7244 | ||||
7245 | /* Prepare the EEPROM for writing */ | |||
7246 | if (em_acquire_eeprom(hw) != E1000_SUCCESS0) | |||
7247 | return -E1000_ERR_EEPROM1; | |||
7248 | ||||
7249 | if (eeprom->type == em_eeprom_microwire) { | |||
7250 | status = em_write_eeprom_microwire(hw, offset, words, data); | |||
7251 | } else { | |||
7252 | status = em_write_eeprom_spi(hw, offset, words, data); | |||
7253 | msec_delay(10)(*delay_func)(1000*(10)); | |||
7254 | } | |||
7255 | ||||
7256 | /* Done with writing */ | |||
7257 | em_release_eeprom(hw); | |||
7258 | ||||
7259 | return status; | |||
7260 | } | |||
7261 | ||||
7262 | /****************************************************************************** | |||
7263 | * Writes a 16 bit word to a given offset in an SPI EEPROM. | |||
7264 | * | |||
7265 | * hw - Struct containing variables accessed by shared code | |||
7266 | * offset - offset within the EEPROM to be written to | |||
7267 | * words - number of words to write | |||
7268 | * data - pointer to array of 8 bit words to be written to the EEPROM | |||
7269 | * | |||
7270 | *****************************************************************************/ | |||
7271 | STATIC int32_t | |||
7272 | em_write_eeprom_spi(struct em_hw *hw, uint16_t offset, uint16_t words, | |||
7273 | uint16_t *data) | |||
7274 | { | |||
7275 | struct em_eeprom_info *eeprom = &hw->eeprom; | |||
7276 | uint16_t widx = 0; | |||
7277 | DEBUGFUNC("em_write_eeprom_spi");; | |||
7278 | ||||
7279 | while (widx < words) { | |||
7280 | uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI0x02; | |||
7281 | if (em_spi_eeprom_ready(hw)) | |||
7282 | return -E1000_ERR_EEPROM1; | |||
7283 | ||||
7284 | em_standby_eeprom(hw); | |||
7285 | ||||
7286 | /* Send the WRITE ENABLE command (8 bit opcode ) */ | |||
7287 | em_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI0x06, | |||
7288 | eeprom->opcode_bits); | |||
7289 | ||||
7290 | em_standby_eeprom(hw); | |||
7291 | /* | |||
7292 | * Some SPI eeproms use the 8th address bit embedded in the | |||
7293 | * opcode | |||
7294 | */ | |||
7295 | if ((eeprom->address_bits == 8) && (offset >= 128)) | |||
7296 | write_opcode |= EEPROM_A8_OPCODE_SPI0x08; | |||
7297 | ||||
7298 | /* Send the Write command (8-bit opcode + addr) */ | |||
7299 | em_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits); | |||
7300 | ||||
7301 | em_shift_out_ee_bits(hw, (uint16_t) ((offset + widx) * 2), | |||
7302 | eeprom->address_bits); | |||
7303 | ||||
7304 | /* Send the data */ | |||
7305 | /* | |||
7306 | * Loop to allow for up to whole page write (32 bytes) of | |||
7307 | * eeprom | |||
7308 | */ | |||
7309 | while (widx < words) { | |||
7310 | uint16_t word_out = data[widx]; | |||
7311 | word_out = (word_out >> 8) | (word_out << 8); | |||
7312 | em_shift_out_ee_bits(hw, word_out, 16); | |||
7313 | widx++; | |||
7314 | /* | |||
7315 | * Some larger eeprom sizes are capable of a 32-byte | |||
7316 | * PAGE WRITE operation, while the smaller eeproms | |||
7317 | * are capable of an 8-byte PAGE WRITE operation. | |||
7318 | * Break the inner loop to pass new address | |||
7319 | */ | |||
7320 | if ((((offset + widx) * 2) % eeprom->page_size) == 0) { | |||
7321 | em_standby_eeprom(hw); | |||
7322 | break; | |||
7323 | } | |||
7324 | } | |||
7325 | } | |||
7326 | ||||
7327 | return E1000_SUCCESS0; | |||
7328 | } | |||
7329 | ||||
7330 | /****************************************************************************** | |||
7331 | * Writes a 16 bit word to a given offset in a Microwire EEPROM. | |||
7332 | * | |||
7333 | * hw - Struct containing variables accessed by shared code | |||
7334 | * offset - offset within the EEPROM to be written to | |||
7335 | * words - number of words to write | |||
7336 | * data - pointer to array of 16 bit words to be written to the EEPROM | |||
7337 | * | |||
7338 | *****************************************************************************/ | |||
7339 | STATIC int32_t | |||
7340 | em_write_eeprom_microwire(struct em_hw *hw, uint16_t offset, uint16_t words, | |||
7341 | uint16_t *data) | |||
7342 | { | |||
7343 | struct em_eeprom_info *eeprom = &hw->eeprom; | |||
7344 | uint32_t eecd; | |||
7345 | uint16_t words_written = 0; | |||
7346 | uint16_t i = 0; | |||
7347 | DEBUGFUNC("em_write_eeprom_microwire");; | |||
7348 | /* | |||
7349 | * Send the write enable command to the EEPROM (3-bit opcode plus | |||
7350 | * 6/8-bit dummy address beginning with 11). It's less work to | |||
7351 | * include the 11 of the dummy address as part of the opcode than it | |||
7352 | * is to shift it over the correct number of bits for the address. | |||
7353 | * This puts the EEPROM into write/erase mode. | |||
7354 | */ | |||
7355 | em_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE0x13, | |||
7356 | (uint16_t) (eeprom->opcode_bits + 2)); | |||
7357 | ||||
7358 | em_shift_out_ee_bits(hw, 0, (uint16_t) (eeprom->address_bits - 2)); | |||
7359 | ||||
7360 | /* Prepare the EEPROM */ | |||
7361 | em_standby_eeprom(hw); | |||
7362 | ||||
7363 | while (words_written < words) { | |||
7364 | /* Send the Write command (3-bit opcode + addr) */ | |||
7365 | em_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE0x5, | |||
7366 | eeprom->opcode_bits); | |||
7367 | ||||
7368 | em_shift_out_ee_bits(hw, (uint16_t) (offset + words_written), | |||
7369 | eeprom->address_bits); | |||
7370 | ||||
7371 | /* Send the data */ | |||
7372 | em_shift_out_ee_bits(hw, data[words_written], 16); | |||
7373 | /* | |||
7374 | * Toggle the CS line. This in effect tells the EEPROM to | |||
7375 | * execute the previous command. | |||
7376 | */ | |||
7377 | em_standby_eeprom(hw); | |||
7378 | /* | |||
7379 | * Read DO repeatedly until it is high (equal to '1'). The | |||
7380 | * EEPROM will signal that the command has been completed by | |||
7381 | * raising the DO signal. If DO does not go high in 10 | |||
7382 | * milliseconds, then error out. | |||
7383 | */ | |||
7384 | for (i = 0; i < 200; i++) { | |||
7385 | eecd = E1000_READ_REG(hw, EECD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))))); | |||
7386 | if (eecd & E1000_EECD_DO0x00000008) | |||
7387 | break; | |||
7388 | usec_delay(50)(*delay_func)(50); | |||
7389 | } | |||
7390 | if (i == 200) { | |||
7391 | DEBUGOUT("EEPROM Write did not complete\n"); | |||
7392 | return -E1000_ERR_EEPROM1; | |||
7393 | } | |||
7394 | /* Recover from write */ | |||
7395 | em_standby_eeprom(hw); | |||
7396 | ||||
7397 | words_written++; | |||
7398 | } | |||
7399 | /* | |||
7400 | * Send the write disable command to the EEPROM (3-bit opcode plus | |||
7401 | * 6/8-bit dummy address beginning with 10). It's less work to | |||
7402 | * include the 10 of the dummy address as part of the opcode than it | |||
7403 | * is to shift it over the correct number of bits for the address. | |||
7404 | * This takes the EEPROM out of write/erase mode. | |||
7405 | */ | |||
7406 | em_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE0x10, | |||
7407 | (uint16_t) (eeprom->opcode_bits + 2)); | |||
7408 | ||||
7409 | em_shift_out_ee_bits(hw, 0, (uint16_t) (eeprom->address_bits - 2)); | |||
7410 | ||||
7411 | return E1000_SUCCESS0; | |||
7412 | } | |||
7413 | ||||
7414 | /****************************************************************************** | |||
7415 | * Flushes the cached eeprom to NVM. This is done by saving the modified values | |||
7416 | * in the eeprom cache and the non modified values in the currently active bank | |||
7417 | * to the new bank. | |||
7418 | * | |||
7419 | * hw - Struct containing variables accessed by shared code | |||
7420 | * offset - offset of word in the EEPROM to read | |||
7421 | * data - word read from the EEPROM | |||
7422 | * words - number of words to read | |||
7423 | *****************************************************************************/ | |||
7424 | STATIC int32_t | |||
7425 | em_commit_shadow_ram(struct em_hw *hw) | |||
7426 | { | |||
7427 | uint32_t attempts = 100000; | |||
7428 | uint32_t eecd = 0; | |||
7429 | uint32_t flop = 0; | |||
7430 | uint32_t i = 0; | |||
7431 | int32_t error = E1000_SUCCESS0; | |||
7432 | uint32_t old_bank_offset = 0; | |||
7433 | uint32_t new_bank_offset = 0; | |||
7434 | uint8_t low_byte = 0; | |||
7435 | uint8_t high_byte = 0; | |||
7436 | boolean_t sector_write_failed = FALSE0; | |||
7437 | if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) { | |||
7438 | /* | |||
7439 | * The flop register will be used to determine if flash type | |||
7440 | * is STM | |||
7441 | */ | |||
7442 | flop = E1000_READ_REG(hw, FLOP)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x0103C : em_translate_82542_register (0x0103C))))); | |||
7443 | for (i = 0; i < attempts; i++) { | |||
7444 | eecd = E1000_READ_REG(hw, EECD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))))); | |||
7445 | if ((eecd & E1000_EECD_FLUPD0x00080000) == 0) { | |||
7446 | break; | |||
7447 | } | |||
7448 | usec_delay(5)(*delay_func)(5); | |||
7449 | } | |||
7450 | ||||
7451 | if (i == attempts) { | |||
7452 | return -E1000_ERR_EEPROM1; | |||
7453 | } | |||
7454 | /* | |||
7455 | * If STM opcode located in bits 15:8 of flop, reset firmware | |||
7456 | */ | |||
7457 | if ((flop & 0xFF00) == E1000_STM_OPCODE0xDB00) { | |||
7458 | E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x08F00 : em_translate_82542_register (0x08F00))), (0xC0))); | |||
7459 | } | |||
7460 | /* Perform the flash update */ | |||
7461 | E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd | 0x00080000))); | |||
7462 | ||||
7463 | for (i = 0; i < attempts; i++) { | |||
7464 | eecd = E1000_READ_REG(hw, EECD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))))); | |||
7465 | if ((eecd & E1000_EECD_FLUPD0x00080000) == 0) { | |||
7466 | break; | |||
7467 | } | |||
7468 | usec_delay(5)(*delay_func)(5); | |||
7469 | } | |||
7470 | ||||
7471 | if (i == attempts) { | |||
7472 | return -E1000_ERR_EEPROM1; | |||
7473 | } | |||
7474 | } | |||
7475 | if ((hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan) && | |||
7476 | hw->eeprom_shadow_ram != NULL((void *)0)) { | |||
7477 | /* | |||
7478 | * We're writing to the opposite bank so if we're on bank 1, | |||
7479 | * write to bank 0 etc. We also need to erase the segment | |||
7480 | * that is going to be written | |||
7481 | */ | |||
7482 | if (!(E1000_READ_REG(hw, EECD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))))) & E1000_EECD_SEC1VAL0x00400000)) { | |||
7483 | new_bank_offset = hw->flash_bank_size * 2; | |||
7484 | old_bank_offset = 0; | |||
7485 | em_erase_ich8_4k_segment(hw, 1); | |||
7486 | } else { | |||
7487 | old_bank_offset = hw->flash_bank_size * 2; | |||
7488 | new_bank_offset = 0; | |||
7489 | em_erase_ich8_4k_segment(hw, 0); | |||
7490 | } | |||
7491 | ||||
7492 | sector_write_failed = FALSE0; | |||
7493 | /* | |||
7494 | * Loop for every byte in the shadow RAM, which is in units | |||
7495 | * of words. | |||
7496 | */ | |||
7497 | for (i = 0; i < E1000_SHADOW_RAM_WORDS2048; i++) { | |||
7498 | /* | |||
7499 | * Determine whether to write the value stored in the | |||
7500 | * other NVM bank or a modified value stored in the | |||
7501 | * shadow RAM | |||
7502 | */ | |||
7503 | if (hw->eeprom_shadow_ram[i].modified == TRUE1) { | |||
7504 | low_byte = (uint8_t) | |||
7505 | hw->eeprom_shadow_ram[i].eeprom_word; | |||
7506 | usec_delay(100)(*delay_func)(100); | |||
7507 | error = em_verify_write_ich8_byte(hw, | |||
7508 | (i << 1) + new_bank_offset, low_byte); | |||
7509 | ||||
7510 | if (error != E1000_SUCCESS0) | |||
7511 | sector_write_failed = TRUE1; | |||
7512 | else { | |||
7513 | high_byte = (uint8_t) | |||
7514 | (hw->eeprom_shadow_ram | |||
7515 | [i].eeprom_word >> 8); | |||
7516 | usec_delay(100)(*delay_func)(100); | |||
7517 | } | |||
7518 | } else { | |||
7519 | em_read_ich8_byte(hw, (i << 1) + | |||
7520 | old_bank_offset, &low_byte); | |||
7521 | usec_delay(100)(*delay_func)(100); | |||
7522 | error = em_verify_write_ich8_byte(hw, | |||
7523 | (i << 1) + new_bank_offset, low_byte); | |||
7524 | ||||
7525 | if (error != E1000_SUCCESS0) | |||
7526 | sector_write_failed = TRUE1; | |||
7527 | else { | |||
7528 | em_read_ich8_byte(hw, (i << 1) + | |||
7529 | old_bank_offset + 1, &high_byte); | |||
7530 | usec_delay(100)(*delay_func)(100); | |||
7531 | } | |||
7532 | } | |||
7533 | /* | |||
7534 | * If the write of the low byte was successful, go | |||
7535 | * ahread and write the high byte while checking to | |||
7536 | * make sure that if it is the signature byte, then | |||
7537 | * it is handled properly | |||
7538 | */ | |||
7539 | if (sector_write_failed == FALSE0) { | |||
7540 | /* | |||
7541 | * If the word is 0x13, then make sure the | |||
7542 | * signature bits (15:14) are 11b until the | |||
7543 | * commit has completed. This will allow us | |||
7544 | * to write 10b which indicates the signature | |||
7545 | * is valid. We want to do this after the | |||
7546 | * write has completed so that we don't mark | |||
7547 | * the segment valid while the write is still | |||
7548 | * in progress | |||
7549 | */ | |||
7550 | if (i == E1000_ICH_NVM_SIG_WORD0x13) | |||
7551 | high_byte = E1000_ICH_NVM_VALID_SIG_MASK0xC0 | | |||
7552 | high_byte; | |||
7553 | ||||
7554 | error = em_verify_write_ich8_byte(hw, (i << 1) | |||
7555 | + new_bank_offset + 1, high_byte); | |||
7556 | if (error != E1000_SUCCESS0) | |||
7557 | sector_write_failed = TRUE1; | |||
7558 | ||||
7559 | } else { | |||
7560 | /* | |||
7561 | * If the write failed then break from the | |||
7562 | * loop and return an error | |||
7563 | */ | |||
7564 | break; | |||
7565 | } | |||
7566 | } | |||
7567 | /* | |||
7568 | * Don't bother writing the segment valid bits if sector | |||
7569 | * programming failed. | |||
7570 | */ | |||
7571 | if (sector_write_failed == FALSE0) { | |||
7572 | /* | |||
7573 | * Finally validate the new segment by setting bit | |||
7574 | * 15:14 to 10b in word 0x13 , this can be done | |||
7575 | * without an erase as well since these bits are 11 | |||
7576 | * to start with and we need to change bit 14 to 0b | |||
7577 | */ | |||
7578 | em_read_ich8_byte(hw, E1000_ICH_NVM_SIG_WORD0x13 * 2 + 1 + | |||
7579 | new_bank_offset, &high_byte); | |||
7580 | high_byte &= 0xBF; | |||
7581 | error = em_verify_write_ich8_byte(hw, | |||
7582 | E1000_ICH_NVM_SIG_WORD0x13 * 2 + 1 + new_bank_offset, | |||
7583 | high_byte); | |||
7584 | /* | |||
7585 | * And invalidate the previously valid segment by | |||
7586 | * setting its signature word (0x13) high_byte to 0b. | |||
7587 | * This can be done without an erase because flash | |||
7588 | * erase sets all bits to 1's. We can write 1's to | |||
7589 | * 0's without an erase | |||
7590 | */ | |||
7591 | if (error == E1000_SUCCESS0) { | |||
7592 | error = em_verify_write_ich8_byte(hw, | |||
7593 | E1000_ICH_NVM_SIG_WORD0x13 * 2 + 1 + | |||
7594 | old_bank_offset, 0); | |||
7595 | } | |||
7596 | /* Clear the now not used entry in the cache */ | |||
7597 | for (i = 0; i < E1000_SHADOW_RAM_WORDS2048; i++) { | |||
7598 | hw->eeprom_shadow_ram[i].modified = FALSE0; | |||
7599 | hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF; | |||
7600 | } | |||
7601 | } | |||
7602 | } | |||
7603 | return error; | |||
7604 | } | |||
7605 | ||||
7606 | /****************************************************************************** | |||
7607 | * Reads the adapter's part number from the EEPROM | |||
7608 | * | |||
7609 | * hw - Struct containing variables accessed by shared code | |||
7610 | * part_num - Adapter's part number | |||
7611 | *****************************************************************************/ | |||
7612 | int32_t | |||
7613 | em_read_part_num(struct em_hw *hw, uint32_t *part_num) | |||
7614 | { | |||
7615 | uint16_t offset = EEPROM_PBA_BYTE_18; | |||
7616 | uint16_t eeprom_data; | |||
7617 | DEBUGFUNC("em_read_part_num");; | |||
7618 | ||||
7619 | /* Get word 0 from EEPROM */ | |||
7620 | if (em_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { | |||
7621 | DEBUGOUT("EEPROM Read Error\n"); | |||
7622 | return -E1000_ERR_EEPROM1; | |||
7623 | } | |||
7624 | /* Save word 0 in upper half of part_num */ | |||
7625 | *part_num = (uint32_t) (eeprom_data << 16); | |||
7626 | ||||
7627 | /* Get word 1 from EEPROM */ | |||
7628 | if (em_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) { | |||
7629 | DEBUGOUT("EEPROM Read Error\n"); | |||
7630 | return -E1000_ERR_EEPROM1; | |||
7631 | } | |||
7632 | /* Save word 1 in lower half of part_num */ | |||
7633 | *part_num |= eeprom_data; | |||
7634 | ||||
7635 | return E1000_SUCCESS0; | |||
7636 | } | |||
7637 | ||||
7638 | /****************************************************************************** | |||
7639 | * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the | |||
7640 | * second function of dual function devices | |||
7641 | * | |||
7642 | * hw - Struct containing variables accessed by shared code | |||
7643 | *****************************************************************************/ | |||
7644 | int32_t | |||
7645 | em_read_mac_addr(struct em_hw *hw) | |||
7646 | { | |||
7647 | uint16_t offset; | |||
7648 | uint16_t eeprom_data, i; | |||
| ||||
7649 | uint16_t ia_base_addr = 0; | |||
7650 | DEBUGFUNC("em_read_mac_addr");; | |||
7651 | ||||
7652 | if (hw->mac_type == em_icp_xxxx) { | |||
7653 | ia_base_addr = (uint16_t) | |||
7654 | EEPROM_IA_START_ICP_xxxx(hw->icp_xxxx_port_num)((((hw->icp_xxxx_port_num) + 1) << 4) + 2); | |||
7655 | } else if (hw->mac_type == em_82580 || hw->mac_type == em_i350) { | |||
7656 | ia_base_addr = NVM_82580_LAN_FUNC_OFFSET(hw->bus_func)(hw->bus_func ? (0x40 + (0x40 * hw->bus_func)) : 0); | |||
7657 | } | |||
7658 | for (i = 0; i < NODE_ADDRESS_SIZE6; i += 2) { | |||
7659 | offset = i >> 1; | |||
7660 | if (em_read_eeprom(hw, offset + ia_base_addr, 1, &eeprom_data) | |||
7661 | < 0) { | |||
7662 | DEBUGOUT("EEPROM Read Error\n"); | |||
7663 | return -E1000_ERR_EEPROM1; | |||
7664 | } | |||
7665 | hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF); | |||
| ||||
7666 | hw->perm_mac_addr[i + 1] = (uint8_t) (eeprom_data >> 8); | |||
7667 | } | |||
7668 | ||||
7669 | switch (hw->mac_type) { | |||
7670 | default: | |||
7671 | break; | |||
7672 | case em_82546: | |||
7673 | case em_82546_rev_3: | |||
7674 | case em_82571: | |||
7675 | case em_82575: | |||
7676 | case em_82576: | |||
7677 | case em_80003es2lan: | |||
7678 | if (E1000_READ_REG(hw, STATUS)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))) & E1000_STATUS_FUNC_10x00000004) | |||
7679 | hw->perm_mac_addr[5] ^= 0x01; | |||
7680 | break; | |||
7681 | } | |||
7682 | ||||
7683 | for (i = 0; i < NODE_ADDRESS_SIZE6; i++) | |||
7684 | hw->mac_addr[i] = hw->perm_mac_addr[i]; | |||
7685 | return E1000_SUCCESS0; | |||
7686 | } | |||
7687 | ||||
7688 | /****************************************************************************** | |||
7689 | * Explicitly disables jumbo frames and resets some PHY registers back to hw- | |||
7690 | * defaults. This is necessary in case the ethernet cable was inserted AFTER | |||
7691 | * the firmware initialized the PHY. Otherwise it is left in a state where | |||
7692 | * it is possible to transmit but not receive packets. Observed on I217-LM and | |||
7693 | * fixed in FreeBSD's sys/dev/e1000/e1000_ich8lan.c. | |||
7694 | * | |||
7695 | * hw - Struct containing variables accessed by shared code | |||
7696 | *****************************************************************************/ | |||
7697 | STATIC int32_t | |||
7698 | em_phy_no_cable_workaround(struct em_hw *hw) { | |||
7699 | int32_t ret_val, dft_ret_val; | |||
7700 | uint32_t mac_reg; | |||
7701 | uint16_t data, phy_reg; | |||
7702 | ||||
7703 | /* disable Rx path while enabling workaround */ | |||
7704 | em_read_phy_reg(hw, I2_DFT_CTRL(((769) << 5) | ((20) & 0x1F)), &phy_reg); | |||
7705 | ret_val = em_write_phy_reg(hw, I2_DFT_CTRL(((769) << 5) | ((20) & 0x1F)), phy_reg | (1 << 14)); | |||
7706 | if (ret_val) | |||
7707 | return ret_val; | |||
7708 | ||||
7709 | /* Write MAC register values back to h/w defaults */ | |||
7710 | mac_reg = E1000_READ_REG(hw, FFLT_DBG)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05F04 : em_translate_82542_register (0x05F04))))); | |||
7711 | mac_reg &= ~(0xF << 14); | |||
7712 | E1000_WRITE_REG(hw, FFLT_DBG, mac_reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05F04 : em_translate_82542_register (0x05F04))), (mac_reg))); | |||
7713 | ||||
7714 | mac_reg = E1000_READ_REG(hw, RCTL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00100 : em_translate_82542_register (0x00100))))); | |||
7715 | mac_reg &= ~E1000_RCTL_SECRC0x04000000; | |||
7716 | E1000_WRITE_REG(hw, RCTL, mac_reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00100 : em_translate_82542_register (0x00100))), (mac_reg))); | |||
7717 | ||||
7718 | ret_val = em_read_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_CTRL0x00000001, &data); | |||
7719 | if (ret_val) | |||
7720 | goto out; | |||
7721 | ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_CTRL0x00000001, | |||
7722 | data & ~(1 << 0)); | |||
7723 | if (ret_val) | |||
7724 | goto out; | |||
7725 | ||||
7726 | ret_val = em_read_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL0x00000010, &data); | |||
7727 | if (ret_val) | |||
7728 | goto out; | |||
7729 | ||||
7730 | data &= ~(0xF << 8); | |||
7731 | data |= (0xB << 8); | |||
7732 | ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL0x00000010, data); | |||
7733 | if (ret_val) | |||
7734 | goto out; | |||
7735 | ||||
7736 | /* Write PHY register values back to h/w defaults */ | |||
7737 | em_read_phy_reg(hw, I2_SMBUS_CTRL(((769) << 5) | ((23) & 0x1F)), &data); | |||
7738 | data &= ~(0x7F << 5); | |||
7739 | ret_val = em_write_phy_reg(hw, I2_SMBUS_CTRL(((769) << 5) | ((23) & 0x1F)), data); | |||
7740 | if (ret_val) | |||
7741 | goto out; | |||
7742 | ||||
7743 | em_read_phy_reg(hw, I2_MODE_CTRL(((769) << 5) | ((16) & 0x1F)), &data); | |||
7744 | data |= (1 << 13); | |||
7745 | ret_val = em_write_phy_reg(hw, I2_MODE_CTRL(((769) << 5) | ((16) & 0x1F)), data); | |||
7746 | if (ret_val) | |||
7747 | goto out; | |||
7748 | ||||
7749 | /* | |||
7750 | * 776.20 and 776.23 are not documented in | |||
7751 | * i217-ethernet-controller-datasheet.pdf... | |||
7752 | */ | |||
7753 | em_read_phy_reg(hw, PHY_REG(776, 20)(((776) << 5) | ((20) & 0x1F)), &data); | |||
7754 | data &= ~(0x3FF << 2); | |||
7755 | data |= (0x8 << 2); | |||
7756 | ret_val = em_write_phy_reg(hw, PHY_REG(776, 20)(((776) << 5) | ((20) & 0x1F)), data); | |||
7757 | if (ret_val) | |||
7758 | goto out; | |||
7759 | ||||
7760 | ret_val = em_write_phy_reg(hw, PHY_REG(776, 23)(((776) << 5) | ((23) & 0x1F)), 0x7E00); | |||
7761 | if (ret_val) | |||
7762 | goto out; | |||
7763 | ||||
7764 | em_read_phy_reg(hw, I2_PCIE_POWER_CTRL(((770) << 5) | ((17) & 0x1F)), &data); | |||
7765 | ret_val = em_write_phy_reg(hw, I2_PCIE_POWER_CTRL(((770) << 5) | ((17) & 0x1F)), data & ~(1 << 10)); | |||
7766 | if (ret_val) | |||
7767 | goto out; | |||
7768 | ||||
7769 | out: | |||
7770 | /* re-enable Rx path after enabling workaround */ | |||
7771 | dft_ret_val = em_write_phy_reg(hw, I2_DFT_CTRL(((769) << 5) | ((20) & 0x1F)), phy_reg & ~(1 << 14)); | |||
7772 | if (ret_val) | |||
7773 | return ret_val; | |||
7774 | else | |||
7775 | return dft_ret_val; | |||
7776 | } | |||
7777 | ||||
7778 | /****************************************************************************** | |||
7779 | * Initializes receive address filters. | |||
7780 | * | |||
7781 | * hw - Struct containing variables accessed by shared code | |||
7782 | * | |||
7783 | * Places the MAC address in receive address register 0 and clears the rest | |||
7784 | * of the receive address registers. Clears the multicast table. Assumes | |||
7785 | * the receiver is in reset when the routine is called. | |||
7786 | *****************************************************************************/ | |||
7787 | STATIC void | |||
7788 | em_init_rx_addrs(struct em_hw *hw) | |||
7789 | { | |||
7790 | uint32_t i; | |||
7791 | uint32_t rar_num; | |||
7792 | DEBUGFUNC("em_init_rx_addrs");; | |||
7793 | ||||
7794 | if (hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || | |||
7795 | hw->mac_type == em_pch_cnp || hw->mac_type == em_pch2lan) | |||
7796 | if (em_phy_no_cable_workaround(hw)) | |||
7797 | printf(" ...failed to apply em_phy_no_cable_" | |||
7798 | "workaround.\n"); | |||
7799 | ||||
7800 | /* Setup the receive address. */ | |||
7801 | DEBUGOUT("Programming MAC Address into RAR[0]\n"); | |||
7802 | ||||
7803 | em_rar_set(hw, hw->mac_addr, 0); | |||
7804 | ||||
7805 | rar_num = E1000_RAR_ENTRIES15; | |||
7806 | /* | |||
7807 | * Reserve a spot for the Locally Administered Address to work around | |||
7808 | * an 82571 issue in which a reset on one port will reload the MAC on | |||
7809 | * the other port. | |||
7810 | */ | |||
7811 | if ((hw->mac_type == em_82571) && (hw->laa_is_present == TRUE1)) | |||
7812 | rar_num -= 1; | |||
7813 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) | |||
7814 | rar_num = E1000_RAR_ENTRIES_ICH8LAN7; | |||
7815 | if (hw->mac_type == em_ich8lan) | |||
7816 | rar_num -= 1; | |||
7817 | if (hw->mac_type == em_82580) | |||
7818 | rar_num = E1000_RAR_ENTRIES_8258024; | |||
7819 | if (hw->mac_type == em_i210) | |||
7820 | rar_num = E1000_RAR_ENTRIES_8257516; | |||
7821 | if (hw->mac_type == em_i350) | |||
7822 | rar_num = E1000_RAR_ENTRIES_I35032; | |||
7823 | ||||
7824 | /* Zero out the other 15 receive addresses. */ | |||
7825 | DEBUGOUT("Clearing RAR[1-15]\n"); | |||
7826 | for (i = 1; i < rar_num; i++) { | |||
7827 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05400 : em_translate_82542_register (0x05400)) + (((i << 1)) << 2)), (0))); | |||
7828 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
7829 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05400 : em_translate_82542_register (0x05400)) + ((((i << 1) + 1)) << 2)), (0))); | |||
7830 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
7831 | } | |||
7832 | } | |||
7833 | ||||
7834 | /****************************************************************************** | |||
7835 | * Updates the MAC's list of multicast addresses. | |||
7836 | * | |||
7837 | * hw - Struct containing variables accessed by shared code | |||
7838 | * mc_addr_list - the list of new multicast addresses | |||
7839 | * mc_addr_count - number of addresses | |||
7840 | * pad - number of bytes between addresses in the list | |||
7841 | * rar_used_count - offset where to start adding mc addresses into the RAR's | |||
7842 | * | |||
7843 | * The given list replaces any existing list. Clears the last 15 receive | |||
7844 | * address registers and the multicast table. Uses receive address registers | |||
7845 | * for the first 15 multicast addresses, and hashes the rest into the | |||
7846 | * multicast table. | |||
7847 | *****************************************************************************/ | |||
7848 | void | |||
7849 | em_mc_addr_list_update(struct em_hw *hw, uint8_t *mc_addr_list, | |||
7850 | uint32_t mc_addr_count, uint32_t pad, uint32_t rar_used_count) | |||
7851 | { | |||
7852 | uint32_t hash_value; | |||
7853 | uint32_t i; | |||
7854 | uint32_t num_rar_entry; | |||
7855 | uint32_t num_mta_entry; | |||
7856 | DEBUGFUNC("em_mc_addr_list_update");; | |||
7857 | /* | |||
7858 | * Set the new number of MC addresses that we are being requested to | |||
7859 | * use. | |||
7860 | */ | |||
7861 | hw->num_mc_addrs = mc_addr_count; | |||
7862 | ||||
7863 | /* Clear RAR[1-15] */ | |||
7864 | DEBUGOUT(" Clearing RAR[1-15]\n"); | |||
7865 | num_rar_entry = E1000_RAR_ENTRIES15; | |||
7866 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) | |||
7867 | num_rar_entry = E1000_RAR_ENTRIES_ICH8LAN7; | |||
7868 | if (hw->mac_type == em_ich8lan) | |||
7869 | num_rar_entry -= 1; | |||
7870 | /* | |||
7871 | * Reserve a spot for the Locally Administered Address to work around | |||
7872 | * an 82571 issue in which a reset on one port will reload the MAC on | |||
7873 | * the other port. | |||
7874 | */ | |||
7875 | if ((hw->mac_type == em_82571) && (hw->laa_is_present == TRUE1)) | |||
7876 | num_rar_entry -= 1; | |||
7877 | ||||
7878 | for (i = rar_used_count; i < num_rar_entry; i++) { | |||
7879 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05400 : em_translate_82542_register (0x05400)) + (((i << 1)) << 2)), (0))); | |||
7880 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
7881 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05400 : em_translate_82542_register (0x05400)) + ((((i << 1) + 1)) << 2)), (0))); | |||
7882 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
7883 | } | |||
7884 | ||||
7885 | /* Clear the MTA */ | |||
7886 | DEBUGOUT(" Clearing MTA\n"); | |||
7887 | num_mta_entry = E1000_NUM_MTA_REGISTERS128; | |||
7888 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) | |||
7889 | num_mta_entry = E1000_NUM_MTA_REGISTERS_ICH8LAN32; | |||
7890 | ||||
7891 | for (i = 0; i < num_mta_entry; i++) { | |||
7892 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05200 : em_translate_82542_register (0x05200)) + ((i) << 2)), (0))); | |||
7893 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
7894 | } | |||
7895 | ||||
7896 | /* Add the new addresses */ | |||
7897 | for (i = 0; i < mc_addr_count; i++) { | |||
7898 | DEBUGOUT(" Adding the multicast addresses:\n"); | |||
7899 | DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i, | |||
7900 | mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)], | |||
7901 | mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1], | |||
7902 | mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2], | |||
7903 | mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3], | |||
7904 | mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4], | |||
7905 | mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]); | |||
7906 | ||||
7907 | hash_value = em_hash_mc_addr(hw, mc_addr_list + | |||
7908 | (i * (ETH_LENGTH_OF_ADDRESS6 + pad))); | |||
7909 | ||||
7910 | DEBUGOUT1(" Hash value = 0x%03X\n", hash_value); | |||
7911 | /* | |||
7912 | * Place this multicast address in the RAR if there is room, * | |||
7913 | * else put it in the MTA | |||
7914 | */ | |||
7915 | if (rar_used_count < num_rar_entry) { | |||
7916 | em_rar_set(hw, mc_addr_list + | |||
7917 | (i * (ETH_LENGTH_OF_ADDRESS6 + pad)), | |||
7918 | rar_used_count); | |||
7919 | rar_used_count++; | |||
7920 | } else { | |||
7921 | em_mta_set(hw, hash_value); | |||
7922 | } | |||
7923 | } | |||
7924 | DEBUGOUT("MC Update Complete\n"); | |||
7925 | } | |||
7926 | ||||
7927 | /****************************************************************************** | |||
7928 | * Hashes an address to determine its location in the multicast table | |||
7929 | * | |||
7930 | * hw - Struct containing variables accessed by shared code | |||
7931 | * mc_addr - the multicast address to hash | |||
7932 | *****************************************************************************/ | |||
7933 | uint32_t | |||
7934 | em_hash_mc_addr(struct em_hw *hw, uint8_t *mc_addr) | |||
7935 | { | |||
7936 | uint32_t hash_value = 0; | |||
7937 | /* | |||
7938 | * The portion of the address that is used for the hash table is | |||
7939 | * determined by the mc_filter_type setting. | |||
7940 | */ | |||
7941 | switch (hw->mc_filter_type) { | |||
7942 | /* | |||
7943 | * [0] [1] [2] [3] [4] [5] 01 AA 00 12 34 56 LSB | |||
7944 | * MSB | |||
7945 | */ | |||
7946 | case 0: | |||
7947 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | |||
7948 | /* [47:38] i.e. 0x158 for above example address */ | |||
7949 | hash_value = ((mc_addr[4] >> 6) | | |||
7950 | (((uint16_t) mc_addr[5]) << 2)); | |||
7951 | } else { | |||
7952 | /* [47:36] i.e. 0x563 for above example address */ | |||
7953 | hash_value = ((mc_addr[4] >> 4) | | |||
7954 | (((uint16_t) mc_addr[5]) << 4)); | |||
7955 | } | |||
7956 | break; | |||
7957 | case 1: | |||
7958 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | |||
7959 | /* [46:37] i.e. 0x2B1 for above example address */ | |||
7960 | hash_value = ((mc_addr[4] >> 5) | | |||
7961 | (((uint16_t) mc_addr[5]) << 3)); | |||
7962 | } else { | |||
7963 | /* [46:35] i.e. 0xAC6 for above example address */ | |||
7964 | hash_value = ((mc_addr[4] >> 3) | | |||
7965 | (((uint16_t) mc_addr[5]) << 5)); | |||
7966 | } | |||
7967 | break; | |||
7968 | case 2: | |||
7969 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | |||
7970 | /* [45:36] i.e. 0x163 for above example address */ | |||
7971 | hash_value = ((mc_addr[4] >> 4) | | |||
7972 | (((uint16_t) mc_addr[5]) << 4)); | |||
7973 | } else { | |||
7974 | /* [45:34] i.e. 0x5D8 for above example address */ | |||
7975 | hash_value = ((mc_addr[4] >> 2) | | |||
7976 | (((uint16_t) mc_addr[5]) << 6)); | |||
7977 | } | |||
7978 | break; | |||
7979 | case 3: | |||
7980 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | |||
7981 | /* [43:34] i.e. 0x18D for above example address */ | |||
7982 | hash_value = ((mc_addr[4] >> 2) | | |||
7983 | (((uint16_t) mc_addr[5]) << 6)); | |||
7984 | } else { | |||
7985 | /* [43:32] i.e. 0x634 for above example address */ | |||
7986 | hash_value = ((mc_addr[4]) | | |||
7987 | (((uint16_t) mc_addr[5]) << 8)); | |||
7988 | } | |||
7989 | break; | |||
7990 | } | |||
7991 | ||||
7992 | hash_value &= 0xFFF; | |||
7993 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) | |||
7994 | hash_value &= 0x3FF; | |||
7995 | ||||
7996 | return hash_value; | |||
7997 | } | |||
7998 | ||||
7999 | /****************************************************************************** | |||
8000 | * Sets the bit in the multicast table corresponding to the hash value. | |||
8001 | * | |||
8002 | * hw - Struct containing variables accessed by shared code | |||
8003 | * hash_value - Multicast address hash value | |||
8004 | *****************************************************************************/ | |||
8005 | void | |||
8006 | em_mta_set(struct em_hw *hw, uint32_t hash_value) | |||
8007 | { | |||
8008 | uint32_t hash_bit, hash_reg; | |||
8009 | uint32_t mta; | |||
8010 | uint32_t temp; | |||
8011 | /* | |||
8012 | * The MTA is a register array of 128 32-bit registers. It is treated | |||
8013 | * like an array of 4096 bits. We want to set bit | |||
8014 | * BitArray[hash_value]. So we figure out what register the bit is | |||
8015 | * in, read it, OR in the new bit, then write back the new value. | |||
8016 | * The register is determined by the upper 7 bits of the hash value | |||
8017 | * and the bit within that register are determined by the lower 5 | |||
8018 | * bits of the value. | |||
8019 | */ | |||
8020 | hash_reg = (hash_value >> 5) & 0x7F; | |||
8021 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) | |||
8022 | hash_reg &= 0x1F; | |||
8023 | ||||
8024 | hash_bit = hash_value & 0x1F; | |||
8025 | ||||
8026 | mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05200 : em_translate_82542_register (0x05200)) + ((hash_reg) << 2)))); | |||
8027 | ||||
8028 | mta |= (1 << hash_bit); | |||
8029 | /* | |||
8030 | * If we are on an 82544 and we are trying to write an odd offset in | |||
8031 | * the MTA, save off the previous entry before writing and restore | |||
8032 | * the old value after writing. | |||
8033 | */ | |||
8034 | if ((hw->mac_type == em_82544) && ((hash_reg & 0x1) == 1)) { | |||
8035 | temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1))((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05200 : em_translate_82542_register (0x05200)) + (((hash_reg - 1)) << 2)))); | |||
8036 | E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05200 : em_translate_82542_register (0x05200)) + ((hash_reg) << 2)), (mta))); | |||
8037 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
8038 | E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05200 : em_translate_82542_register (0x05200)) + (((hash_reg - 1)) << 2)), (temp))); | |||
8039 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
8040 | } else { | |||
8041 | E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05200 : em_translate_82542_register (0x05200)) + ((hash_reg) << 2)), (mta))); | |||
8042 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
8043 | } | |||
8044 | } | |||
8045 | ||||
8046 | /****************************************************************************** | |||
8047 | * Puts an ethernet address into a receive address register. | |||
8048 | * | |||
8049 | * hw - Struct containing variables accessed by shared code | |||
8050 | * addr - Address to put into receive address register | |||
8051 | * index - Receive address register to write | |||
8052 | *****************************************************************************/ | |||
8053 | void | |||
8054 | em_rar_set(struct em_hw *hw, uint8_t *addr, uint32_t index) | |||
8055 | { | |||
8056 | uint32_t rar_low, rar_high; | |||
8057 | /* | |||
8058 | * HW expects these in little endian so we reverse the byte order | |||
8059 | * from network order (big endian) to little endian | |||
8060 | */ | |||
8061 | rar_low = ((uint32_t) addr[0] | ((uint32_t) addr[1] << 8) | | |||
8062 | ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24)); | |||
8063 | rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8)); | |||
8064 | /* | |||
8065 | * Disable Rx and flush all Rx frames before enabling RSS to avoid Rx | |||
8066 | * unit hang. | |||
8067 | * | |||
8068 | * Description: If there are any Rx frames queued up or otherwise | |||
8069 | * present in the HW before RSS is enabled, and then we enable RSS, | |||
8070 | * the HW Rx unit will hang. To work around this issue, we have to | |||
8071 | * disable receives and flush out all Rx frames before we enable RSS. | |||
8072 | * To do so, we modify we redirect all Rx traffic to manageability | |||
8073 | * and then reset the HW. This flushes away Rx frames, and (since the | |||
8074 | * redirections to manageability persists across resets) keeps new | |||
8075 | * ones from coming in while we work. Then, we clear the Address | |||
8076 | * Valid AV bit for all MAC addresses and undo the re-direction to | |||
8077 | * manageability. Now, frames are coming in again, but the MAC won't | |||
8078 | * accept them, so far so good. We now proceed to initialize RSS (if | |||
8079 | * necessary) and configure the Rx unit. Last, we re-enable the AV | |||
8080 | * bits and continue on our merry way. | |||
8081 | */ | |||
8082 | switch (hw->mac_type) { | |||
8083 | case em_82571: | |||
8084 | case em_82572: | |||
8085 | case em_80003es2lan: | |||
8086 | if (hw->leave_av_bit_off == TRUE1) | |||
8087 | break; | |||
8088 | default: | |||
8089 | /* Indicate to hardware the Address is Valid. */ | |||
8090 | rar_high |= E1000_RAH_AV0x80000000; | |||
8091 | break; | |||
8092 | } | |||
8093 | ||||
8094 | E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05400 : em_translate_82542_register (0x05400)) + (((index << 1)) << 2)), (rar_low))); | |||
8095 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
8096 | E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05400 : em_translate_82542_register (0x05400)) + ((((index << 1) + 1)) << 2)), (rar_high ))); | |||
8097 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
8098 | } | |||
8099 | ||||
8100 | /****************************************************************************** | |||
8101 | * Clears the VLAN filer table | |||
8102 | * | |||
8103 | * hw - Struct containing variables accessed by shared code | |||
8104 | *****************************************************************************/ | |||
8105 | STATIC void | |||
8106 | em_clear_vfta(struct em_hw *hw) | |||
8107 | { | |||
8108 | uint32_t offset; | |||
8109 | uint32_t vfta_value = 0; | |||
8110 | uint32_t vfta_offset = 0; | |||
8111 | uint32_t vfta_bit_in_reg = 0; | |||
8112 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) | |||
8113 | return; | |||
8114 | ||||
8115 | if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) { | |||
8116 | if (hw->mng_cookie.vlan_id != 0) { | |||
8117 | /* | |||
8118 | * The VFTA is a 4096b bit-field, each identifying a | |||
8119 | * single VLAN ID. The following operations | |||
8120 | * determine which 32b entry (i.e. offset) into the | |||
8121 | * array we want to set the VLAN ID (i.e. bit) of the | |||
8122 | * manageability unit. | |||
8123 | */ | |||
8124 | vfta_offset = (hw->mng_cookie.vlan_id >> | |||
8125 | E1000_VFTA_ENTRY_SHIFT0x5) & E1000_VFTA_ENTRY_MASK0x7F; | |||
8126 | ||||
8127 | vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id & | |||
8128 | E1000_VFTA_ENTRY_BIT_SHIFT_MASK0x1F); | |||
8129 | } | |||
8130 | } | |||
8131 | for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE128; offset++) { | |||
8132 | /* | |||
8133 | * If the offset we want to clear is the same offset of the | |||
8134 | * manageability VLAN ID, then clear all bits except that of | |||
8135 | * the manageability unit | |||
8136 | */ | |||
8137 | vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; | |||
8138 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05600 : em_translate_82542_register (0x05600)) + ((offset) << 2)), (vfta_value))); | |||
8139 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
8140 | } | |||
8141 | } | |||
8142 | ||||
8143 | /* | |||
8144 | * Due to hw errata, if the host tries to configure the VFTA register | |||
8145 | * while performing queries from the BMC or DMA, then the VFTA in some | |||
8146 | * cases won't be written. | |||
8147 | */ | |||
8148 | void | |||
8149 | em_clear_vfta_i350(struct em_hw *hw) | |||
8150 | { | |||
8151 | uint32_t offset; | |||
8152 | int i; | |||
8153 | ||||
8154 | for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE128; offset++) { | |||
8155 | for (i = 0; i < 10; i++) | |||
8156 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05600 : em_translate_82542_register (0x05600)) + ((offset) << 2)), (0))); | |||
8157 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
8158 | } | |||
8159 | } | |||
8160 | ||||
8161 | STATIC int32_t | |||
8162 | em_id_led_init(struct em_hw *hw) | |||
8163 | { | |||
8164 | uint32_t ledctl; | |||
8165 | const uint32_t ledctl_mask = 0x000000FF; | |||
8166 | const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON0xE; | |||
8167 | const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF0xF; | |||
8168 | uint16_t eeprom_data, i, temp; | |||
8169 | const uint16_t led_mask = 0x0F; | |||
8170 | DEBUGFUNC("em_id_led_init");; | |||
8171 | ||||
8172 | if (hw->mac_type < em_82540 || hw->mac_type == em_icp_xxxx) { | |||
8173 | /* Nothing to do */ | |||
8174 | return E1000_SUCCESS0; | |||
8175 | } | |||
8176 | ledctl = E1000_READ_REG(hw, LEDCTL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00E00 : em_translate_82542_register (0x00E00))))); | |||
8177 | hw->ledctl_default = ledctl; | |||
8178 | hw->ledctl_mode1 = hw->ledctl_default; | |||
8179 | hw->ledctl_mode2 = hw->ledctl_default; | |||
8180 | ||||
8181 | if (em_read_eeprom(hw, EEPROM_ID_LED_SETTINGS0x0004, 1, &eeprom_data) < 0) { | |||
8182 | DEBUGOUT("EEPROM Read Error\n"); | |||
8183 | return -E1000_ERR_EEPROM1; | |||
8184 | } | |||
8185 | if ((hw->mac_type == em_82573) && | |||
8186 | (eeprom_data == ID_LED_RESERVED_825730xF746)) | |||
8187 | eeprom_data = ID_LED_DEFAULT_825730x1811; | |||
8188 | else if ((eeprom_data == ID_LED_RESERVED_00000x0000) || | |||
8189 | (eeprom_data == ID_LED_RESERVED_FFFF0xFFFF)) { | |||
8190 | if (hw->mac_type == em_ich8lan || | |||
8191 | hw->mac_type == em_ich9lan || | |||
8192 | hw->mac_type == em_ich10lan) // XXX | |||
8193 | eeprom_data = ID_LED_DEFAULT_ICH8LAN((0x1 << 12) | (0x3 << 8) | (0x2 << 4) | (0x1 )); | |||
8194 | else | |||
8195 | eeprom_data = ID_LED_DEFAULT((0x8 << 12) | (0x9 << 8) | (0x1 << 4) | (0x1 )); | |||
8196 | } | |||
8197 | for (i = 0; i < 4; i++) { | |||
8198 | temp = (eeprom_data >> (i << 2)) & led_mask; | |||
8199 | switch (temp) { | |||
8200 | case ID_LED_ON1_DEF20x4: | |||
8201 | case ID_LED_ON1_ON20x5: | |||
8202 | case ID_LED_ON1_OFF20x6: | |||
8203 | hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | |||
8204 | hw->ledctl_mode1 |= ledctl_on << (i << 3); | |||
8205 | break; | |||
8206 | case ID_LED_OFF1_DEF20x7: | |||
8207 | case ID_LED_OFF1_ON20x8: | |||
8208 | case ID_LED_OFF1_OFF20x9: | |||
8209 | hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | |||
8210 | hw->ledctl_mode1 |= ledctl_off << (i << 3); | |||
8211 | break; | |||
8212 | default: | |||
8213 | /* Do nothing */ | |||
8214 | break; | |||
8215 | } | |||
8216 | switch (temp) { | |||
8217 | case ID_LED_DEF1_ON20x2: | |||
8218 | case ID_LED_ON1_ON20x5: | |||
8219 | case ID_LED_OFF1_ON20x8: | |||
8220 | hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | |||
8221 | hw->ledctl_mode2 |= ledctl_on << (i << 3); | |||
8222 | break; | |||
8223 | case ID_LED_DEF1_OFF20x3: | |||
8224 | case ID_LED_ON1_OFF20x6: | |||
8225 | case ID_LED_OFF1_OFF20x9: | |||
8226 | hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | |||
8227 | hw->ledctl_mode2 |= ledctl_off << (i << 3); | |||
8228 | break; | |||
8229 | default: | |||
8230 | /* Do nothing */ | |||
8231 | break; | |||
8232 | } | |||
8233 | } | |||
8234 | return E1000_SUCCESS0; | |||
8235 | } | |||
8236 | ||||
8237 | /****************************************************************************** | |||
8238 | * Clears all hardware statistics counters. | |||
8239 | * | |||
8240 | * hw - Struct containing variables accessed by shared code | |||
8241 | *****************************************************************************/ | |||
8242 | void | |||
8243 | em_clear_hw_cntrs(struct em_hw *hw) | |||
8244 | { | |||
8245 | volatile uint32_t temp; | |||
8246 | temp = E1000_READ_REG(hw, CRCERRS)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04000 : em_translate_82542_register (0x04000))))); | |||
8247 | temp = E1000_READ_REG(hw, SYMERRS)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04008 : em_translate_82542_register (0x04008))))); | |||
8248 | temp = E1000_READ_REG(hw, MPC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04010 : em_translate_82542_register (0x04010))))); | |||
8249 | temp = E1000_READ_REG(hw, SCC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04014 : em_translate_82542_register (0x04014))))); | |||
8250 | temp = E1000_READ_REG(hw, ECOL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04018 : em_translate_82542_register (0x04018))))); | |||
8251 | temp = E1000_READ_REG(hw, MCC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x0401C : em_translate_82542_register (0x0401C))))); | |||
8252 | temp = E1000_READ_REG(hw, LATECOL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04020 : em_translate_82542_register (0x04020))))); | |||
8253 | temp = E1000_READ_REG(hw, COLC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04028 : em_translate_82542_register (0x04028))))); | |||
8254 | temp = E1000_READ_REG(hw, DC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04030 : em_translate_82542_register (0x04030))))); | |||
8255 | temp = E1000_READ_REG(hw, SEC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04038 : em_translate_82542_register (0x04038))))); | |||
8256 | temp = E1000_READ_REG(hw, RLEC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04040 : em_translate_82542_register (0x04040))))); | |||
8257 | temp = E1000_READ_REG(hw, XONRXC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04048 : em_translate_82542_register (0x04048))))); | |||
8258 | temp = E1000_READ_REG(hw, XONTXC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x0404C : em_translate_82542_register (0x0404C))))); | |||
8259 | temp = E1000_READ_REG(hw, XOFFRXC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04050 : em_translate_82542_register (0x04050))))); | |||
8260 | temp = E1000_READ_REG(hw, XOFFTXC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04054 : em_translate_82542_register (0x04054))))); | |||
8261 | temp = E1000_READ_REG(hw, FCRUC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04058 : em_translate_82542_register (0x04058))))); | |||
8262 | ||||
8263 | if (!IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | |||
8264 | temp = E1000_READ_REG(hw, PRC64)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x0405C : em_translate_82542_register (0x0405C))))); | |||
8265 | temp = E1000_READ_REG(hw, PRC127)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04060 : em_translate_82542_register (0x04060))))); | |||
8266 | temp = E1000_READ_REG(hw, PRC255)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04064 : em_translate_82542_register (0x04064))))); | |||
8267 | temp = E1000_READ_REG(hw, PRC511)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04068 : em_translate_82542_register (0x04068))))); | |||
8268 | temp = E1000_READ_REG(hw, PRC1023)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x0406C : em_translate_82542_register (0x0406C))))); | |||
8269 | temp = E1000_READ_REG(hw, PRC1522)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04070 : em_translate_82542_register (0x04070))))); | |||
8270 | } | |||
8271 | temp = E1000_READ_REG(hw, GPRC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04074 : em_translate_82542_register (0x04074))))); | |||
8272 | temp = E1000_READ_REG(hw, BPRC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04078 : em_translate_82542_register (0x04078))))); | |||
8273 | temp = E1000_READ_REG(hw, MPRC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x0407C : em_translate_82542_register (0x0407C))))); | |||
8274 | temp = E1000_READ_REG(hw, GPTC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04080 : em_translate_82542_register (0x04080))))); | |||
8275 | temp = E1000_READ_REG(hw, GORCL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04088 : em_translate_82542_register (0x04088))))); | |||
8276 | temp = E1000_READ_REG(hw, GORCH)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x0408C : em_translate_82542_register (0x0408C))))); | |||
8277 | temp = E1000_READ_REG(hw, GOTCL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04090 : em_translate_82542_register (0x04090))))); | |||
8278 | temp = E1000_READ_REG(hw, GOTCH)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04094 : em_translate_82542_register (0x04094))))); | |||
8279 | temp = E1000_READ_REG(hw, RNBC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040A0 : em_translate_82542_register (0x040A0))))); | |||
8280 | temp = E1000_READ_REG(hw, RUC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040A4 : em_translate_82542_register (0x040A4))))); | |||
8281 | temp = E1000_READ_REG(hw, RFC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040A8 : em_translate_82542_register (0x040A8))))); | |||
8282 | temp = E1000_READ_REG(hw, ROC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040AC : em_translate_82542_register (0x040AC))))); | |||
8283 | temp = E1000_READ_REG(hw, RJC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040B0 : em_translate_82542_register (0x040B0))))); | |||
8284 | temp = E1000_READ_REG(hw, TORL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040C0 : em_translate_82542_register (0x040C0))))); | |||
8285 | temp = E1000_READ_REG(hw, TORH)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040C4 : em_translate_82542_register (0x040C4))))); | |||
8286 | temp = E1000_READ_REG(hw, TOTL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040C8 : em_translate_82542_register (0x040C8))))); | |||
8287 | temp = E1000_READ_REG(hw, TOTH)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040CC : em_translate_82542_register (0x040CC))))); | |||
8288 | temp = E1000_READ_REG(hw, TPR)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040D0 : em_translate_82542_register (0x040D0))))); | |||
8289 | temp = E1000_READ_REG(hw, TPT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040D4 : em_translate_82542_register (0x040D4))))); | |||
8290 | ||||
8291 | if (!IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | |||
8292 | temp = E1000_READ_REG(hw, PTC64)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040D8 : em_translate_82542_register (0x040D8))))); | |||
8293 | temp = E1000_READ_REG(hw, PTC127)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040DC : em_translate_82542_register (0x040DC))))); | |||
8294 | temp = E1000_READ_REG(hw, PTC255)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040E0 : em_translate_82542_register (0x040E0))))); | |||
8295 | temp = E1000_READ_REG(hw, PTC511)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040E4 : em_translate_82542_register (0x040E4))))); | |||
8296 | temp = E1000_READ_REG(hw, PTC1023)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040E8 : em_translate_82542_register (0x040E8))))); | |||
8297 | temp = E1000_READ_REG(hw, PTC1522)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040EC : em_translate_82542_register (0x040EC))))); | |||
8298 | } | |||
8299 | temp = E1000_READ_REG(hw, MPTC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040F0 : em_translate_82542_register (0x040F0))))); | |||
8300 | temp = E1000_READ_REG(hw, BPTC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040F4 : em_translate_82542_register (0x040F4))))); | |||
8301 | ||||
8302 | if (hw->mac_type < em_82543) | |||
8303 | return; | |||
8304 | ||||
8305 | temp = E1000_READ_REG(hw, ALGNERRC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04004 : em_translate_82542_register (0x04004))))); | |||
8306 | temp = E1000_READ_REG(hw, RXERRC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x0400C : em_translate_82542_register (0x0400C))))); | |||
8307 | temp = E1000_READ_REG(hw, TNCRS)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04034 : em_translate_82542_register (0x04034))))); | |||
8308 | temp = E1000_READ_REG(hw, CEXTERR)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x0403C : em_translate_82542_register (0x0403C))))); | |||
8309 | temp = E1000_READ_REG(hw, TSCTC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040F8 : em_translate_82542_register (0x040F8))))); | |||
8310 | temp = E1000_READ_REG(hw, TSCTFC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040FC : em_translate_82542_register (0x040FC))))); | |||
8311 | ||||
8312 | if (hw->mac_type <= em_82544 | |||
8313 | || hw->mac_type == em_icp_xxxx) | |||
8314 | return; | |||
8315 | ||||
8316 | temp = E1000_READ_REG(hw, MGTPRC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040B4 : em_translate_82542_register (0x040B4))))); | |||
8317 | temp = E1000_READ_REG(hw, MGTPDC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040B8 : em_translate_82542_register (0x040B8))))); | |||
8318 | temp = E1000_READ_REG(hw, MGTPTC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040BC : em_translate_82542_register (0x040BC))))); | |||
8319 | ||||
8320 | if (hw->mac_type <= em_82547_rev_2) | |||
8321 | return; | |||
8322 | ||||
8323 | temp = E1000_READ_REG(hw, IAC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04100 : em_translate_82542_register (0x04100))))); | |||
8324 | temp = E1000_READ_REG(hw, ICRXOC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04124 : em_translate_82542_register (0x04124))))); | |||
8325 | ||||
8326 | if (hw->phy_type == em_phy_82577 || | |||
8327 | hw->phy_type == em_phy_82578 || | |||
8328 | hw->phy_type == em_phy_82579 || | |||
8329 | hw->phy_type == em_phy_i217) { | |||
8330 | uint16_t phy_data; | |||
8331 | ||||
8332 | em_read_phy_reg(hw, HV_SCC_UPPER(((778) << 5) | ((16) & 0x1F)), &phy_data); | |||
8333 | em_read_phy_reg(hw, HV_SCC_LOWER(((778) << 5) | ((17) & 0x1F)), &phy_data); | |||
8334 | em_read_phy_reg(hw, HV_ECOL_UPPER(((778) << 5) | ((18) & 0x1F)), &phy_data); | |||
8335 | em_read_phy_reg(hw, HV_ECOL_LOWER(((778) << 5) | ((19) & 0x1F)), &phy_data); | |||
8336 | em_read_phy_reg(hw, HV_MCC_UPPER(((778) << 5) | ((20) & 0x1F)), &phy_data); | |||
8337 | em_read_phy_reg(hw, HV_MCC_LOWER(((778) << 5) | ((21) & 0x1F)), &phy_data); | |||
8338 | em_read_phy_reg(hw, HV_LATECOL_UPPER(((778) << 5) | ((23) & 0x1F)), &phy_data); | |||
8339 | em_read_phy_reg(hw, HV_LATECOL_LOWER(((778) << 5) | ((24) & 0x1F)), &phy_data); | |||
8340 | em_read_phy_reg(hw, HV_COLC_UPPER(((778) << 5) | ((25) & 0x1F)), &phy_data); | |||
8341 | em_read_phy_reg(hw, HV_COLC_LOWER(((778) << 5) | ((26) & 0x1F)), &phy_data); | |||
8342 | em_read_phy_reg(hw, HV_DC_UPPER(((778) << 5) | ((27) & 0x1F)), &phy_data); | |||
8343 | em_read_phy_reg(hw, HV_DC_LOWER(((778) << 5) | ((28) & 0x1F)), &phy_data); | |||
8344 | em_read_phy_reg(hw, HV_TNCRS_UPPER(((778) << 5) | ((29) & 0x1F)), &phy_data); | |||
8345 | em_read_phy_reg(hw, HV_TNCRS_LOWER(((778) << 5) | ((30) & 0x1F)), &phy_data); | |||
8346 | } | |||
8347 | ||||
8348 | if (hw->mac_type == em_ich8lan || | |||
8349 | hw->mac_type == em_ich9lan || | |||
8350 | hw->mac_type == em_ich10lan || | |||
8351 | hw->mac_type == em_pchlan || | |||
8352 | (hw->mac_type != em_pch2lan && hw->mac_type != em_pch_lpt && | |||
8353 | hw->mac_type != em_pch_spt && hw->mac_type != em_pch_cnp)) | |||
8354 | return; | |||
8355 | ||||
8356 | temp = E1000_READ_REG(hw, ICRXPTC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04104 : em_translate_82542_register (0x04104))))); | |||
8357 | temp = E1000_READ_REG(hw, ICRXATC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04108 : em_translate_82542_register (0x04108))))); | |||
8358 | temp = E1000_READ_REG(hw, ICTXPTC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x0410C : em_translate_82542_register (0x0410C))))); | |||
8359 | temp = E1000_READ_REG(hw, ICTXATC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04110 : em_translate_82542_register (0x04110))))); | |||
8360 | temp = E1000_READ_REG(hw, ICTXQEC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04118 : em_translate_82542_register (0x04118))))); | |||
8361 | temp = E1000_READ_REG(hw, ICTXQMTC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x0411C : em_translate_82542_register (0x0411C))))); | |||
8362 | temp = E1000_READ_REG(hw, ICRXDMTC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04120 : em_translate_82542_register (0x04120))))); | |||
8363 | } | |||
8364 | ||||
8365 | /****************************************************************************** | |||
8366 | * Gets the current PCI bus type, speed, and width of the hardware | |||
8367 | * | |||
8368 | * hw - Struct containing variables accessed by shared code | |||
8369 | *****************************************************************************/ | |||
8370 | void | |||
8371 | em_get_bus_info(struct em_hw *hw) | |||
8372 | { | |||
8373 | int32_t ret_val; | |||
8374 | uint16_t pci_ex_link_status; | |||
8375 | uint32_t status; | |||
8376 | switch (hw->mac_type) { | |||
8377 | case em_82542_rev2_0: | |||
8378 | case em_82542_rev2_1: | |||
8379 | hw->bus_type = em_bus_type_unknown; | |||
8380 | hw->bus_speed = em_bus_speed_unknown; | |||
8381 | hw->bus_width = em_bus_width_unknown; | |||
8382 | break; | |||
8383 | case em_icp_xxxx: | |||
8384 | hw->bus_type = em_bus_type_cpp; | |||
8385 | hw->bus_speed = em_bus_speed_unknown; | |||
8386 | hw->bus_width = em_bus_width_unknown; | |||
8387 | break; | |||
8388 | case em_82571: | |||
8389 | case em_82572: | |||
8390 | case em_82573: | |||
8391 | case em_82574: | |||
8392 | case em_82575: | |||
8393 | case em_82576: | |||
8394 | case em_82580: | |||
8395 | case em_80003es2lan: | |||
8396 | case em_i210: | |||
8397 | case em_i350: | |||
8398 | hw->bus_type = em_bus_type_pci_express; | |||
8399 | hw->bus_speed = em_bus_speed_2500; | |||
8400 | ret_val = em_read_pcie_cap_reg(hw, PCI_EX_LINK_STATUS0x12, | |||
8401 | &pci_ex_link_status); | |||
8402 | if (ret_val) | |||
8403 | hw->bus_width = em_bus_width_unknown; | |||
8404 | else | |||
8405 | hw->bus_width = (pci_ex_link_status & | |||
8406 | PCI_EX_LINK_WIDTH_MASK0x3F0) >> PCI_EX_LINK_WIDTH_SHIFT4; | |||
8407 | break; | |||
8408 | case em_ich8lan: | |||
8409 | case em_ich9lan: | |||
8410 | case em_ich10lan: | |||
8411 | case em_pchlan: | |||
8412 | case em_pch2lan: | |||
8413 | case em_pch_lpt: | |||
8414 | case em_pch_spt: | |||
8415 | case em_pch_cnp: | |||
8416 | hw->bus_type = em_bus_type_pci_express; | |||
8417 | hw->bus_speed = em_bus_speed_2500; | |||
8418 | hw->bus_width = em_bus_width_pciex_1; | |||
8419 | break; | |||
8420 | default: | |||
8421 | status = E1000_READ_REG(hw, STATUS)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
8422 | hw->bus_type = (status & E1000_STATUS_PCIX_MODE0x00002000) ? | |||
8423 | em_bus_type_pcix : em_bus_type_pci; | |||
8424 | ||||
8425 | if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER0x101D) { | |||
8426 | hw->bus_speed = (hw->bus_type == em_bus_type_pci) ? | |||
8427 | em_bus_speed_66 : em_bus_speed_120; | |||
8428 | } else if (hw->bus_type == em_bus_type_pci) { | |||
8429 | hw->bus_speed = (status & E1000_STATUS_PCI660x00000800) ? | |||
8430 | em_bus_speed_66 : em_bus_speed_33; | |||
8431 | } else { | |||
8432 | switch (status & E1000_STATUS_PCIX_SPEED0x0000C000) { | |||
8433 | case E1000_STATUS_PCIX_SPEED_660x00000000: | |||
8434 | hw->bus_speed = em_bus_speed_66; | |||
8435 | break; | |||
8436 | case E1000_STATUS_PCIX_SPEED_1000x00004000: | |||
8437 | hw->bus_speed = em_bus_speed_100; | |||
8438 | break; | |||
8439 | case E1000_STATUS_PCIX_SPEED_1330x00008000: | |||
8440 | hw->bus_speed = em_bus_speed_133; | |||
8441 | break; | |||
8442 | default: | |||
8443 | hw->bus_speed = em_bus_speed_reserved; | |||
8444 | break; | |||
8445 | } | |||
8446 | } | |||
8447 | hw->bus_width = (status & E1000_STATUS_BUS640x00001000) ? | |||
8448 | em_bus_width_64 : em_bus_width_32; | |||
8449 | break; | |||
8450 | } | |||
8451 | } | |||
8452 | ||||
8453 | /****************************************************************************** | |||
8454 | * Writes a value to one of the devices registers using port I/O (as opposed to | |||
8455 | * memory mapped I/O). Only 82544 and newer devices support port I/O. | |||
8456 | * | |||
8457 | * hw - Struct containing variables accessed by shared code | |||
8458 | * offset - offset to write to | |||
8459 | * value - value to write | |||
8460 | *****************************************************************************/ | |||
8461 | STATIC void | |||
8462 | em_write_reg_io(struct em_hw *hw, uint32_t offset, uint32_t value) | |||
8463 | { | |||
8464 | unsigned long io_addr = hw->io_base; | |||
8465 | unsigned long io_data = hw->io_base + 4; | |||
8466 | em_io_write(hw, io_addr, offset)((((struct em_osdep *)(hw)->back)->io_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->io_bus_space_handle ), ((io_addr)), ((offset)))); | |||
8467 | em_io_write(hw, io_data, value)((((struct em_osdep *)(hw)->back)->io_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->io_bus_space_handle ), ((io_data)), ((value)))); | |||
8468 | } | |||
8469 | ||||
8470 | /****************************************************************************** | |||
8471 | * Estimates the cable length. | |||
8472 | * | |||
8473 | * hw - Struct containing variables accessed by shared code | |||
8474 | * min_length - The estimated minimum length | |||
8475 | * max_length - The estimated maximum length | |||
8476 | * | |||
8477 | * returns: - E1000_ERR_XXX | |||
8478 | * E1000_SUCCESS | |||
8479 | * | |||
8480 | * This function always returns a ranged length (minimum & maximum). | |||
8481 | * So for M88 phy's, this function interprets the one value returned from the | |||
8482 | * register to the minimum and maximum range. | |||
8483 | * For IGP phy's, the function calculates the range by the AGC registers. | |||
8484 | *****************************************************************************/ | |||
8485 | STATIC int32_t | |||
8486 | em_get_cable_length(struct em_hw *hw, uint16_t *min_length, | |||
8487 | uint16_t *max_length) | |||
8488 | { | |||
8489 | int32_t ret_val; | |||
8490 | uint16_t agc_value = 0; | |||
8491 | uint16_t i, phy_data; | |||
8492 | uint16_t cable_length; | |||
8493 | DEBUGFUNC("em_get_cable_length");; | |||
8494 | ||||
8495 | *min_length = *max_length = 0; | |||
8496 | ||||
8497 | /* Use old method for Phy older than IGP */ | |||
8498 | if (hw->phy_type == em_phy_m88 || | |||
8499 | hw->phy_type == em_phy_oem || | |||
8500 | hw->phy_type == em_phy_82578) { | |||
8501 | ||||
8502 | ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS0x11, | |||
8503 | &phy_data); | |||
8504 | if (ret_val) | |||
8505 | return ret_val; | |||
8506 | cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH0x0380) >> | |||
8507 | M88E1000_PSSR_CABLE_LENGTH_SHIFT7; | |||
8508 | ||||
8509 | /* Convert the enum value to ranged values */ | |||
8510 | switch (cable_length) { | |||
8511 | case em_cable_length_50: | |||
8512 | *min_length = 0; | |||
8513 | *max_length = em_igp_cable_length_50; | |||
8514 | break; | |||
8515 | case em_cable_length_50_80: | |||
8516 | *min_length = em_igp_cable_length_50; | |||
8517 | *max_length = em_igp_cable_length_80; | |||
8518 | break; | |||
8519 | case em_cable_length_80_110: | |||
8520 | *min_length = em_igp_cable_length_80; | |||
8521 | *max_length = em_igp_cable_length_110; | |||
8522 | break; | |||
8523 | case em_cable_length_110_140: | |||
8524 | *min_length = em_igp_cable_length_110; | |||
8525 | *max_length = em_igp_cable_length_140; | |||
8526 | break; | |||
8527 | case em_cable_length_140: | |||
8528 | *min_length = em_igp_cable_length_140; | |||
8529 | *max_length = em_igp_cable_length_170; | |||
8530 | break; | |||
8531 | default: | |||
8532 | return -E1000_ERR_PHY2; | |||
8533 | break; | |||
8534 | } | |||
8535 | } else if (hw->phy_type == em_phy_rtl8211) { | |||
8536 | /* no cable length info on RTL8211, fake */ | |||
8537 | *min_length = 0; | |||
8538 | *max_length = em_igp_cable_length_50; | |||
8539 | } else if (hw->phy_type == em_phy_gg82563) { | |||
8540 | ret_val = em_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE(((5) << 5) | ((26) & 0x1F)), | |||
8541 | &phy_data); | |||
8542 | if (ret_val) | |||
8543 | return ret_val; | |||
8544 | cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH0x0007; | |||
8545 | ||||
8546 | switch (cable_length) { | |||
8547 | case em_gg_cable_length_60: | |||
8548 | *min_length = 0; | |||
8549 | *max_length = em_igp_cable_length_60; | |||
8550 | break; | |||
8551 | case em_gg_cable_length_60_115: | |||
8552 | *min_length = em_igp_cable_length_60; | |||
8553 | *max_length = em_igp_cable_length_115; | |||
8554 | break; | |||
8555 | case em_gg_cable_length_115_150: | |||
8556 | *min_length = em_igp_cable_length_115; | |||
8557 | *max_length = em_igp_cable_length_150; | |||
8558 | break; | |||
8559 | case em_gg_cable_length_150: | |||
8560 | *min_length = em_igp_cable_length_150; | |||
8561 | *max_length = em_igp_cable_length_180; | |||
8562 | break; | |||
8563 | default: | |||
8564 | return -E1000_ERR_PHY2; | |||
8565 | break; | |||
8566 | } | |||
8567 | } else if (hw->phy_type == em_phy_igp) { /* For IGP PHY */ | |||
8568 | uint16_t cur_agc_value; | |||
8569 | uint16_t min_agc_value = | |||
8570 | IGP01E1000_AGC_LENGTH_TABLE_SIZE128; | |||
8571 | uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM4] = | |||
8572 | {IGP01E1000_PHY_AGC_A0x1172, IGP01E1000_PHY_AGC_B0x1272, | |||
8573 | IGP01E1000_PHY_AGC_C0x1472, IGP01E1000_PHY_AGC_D0x1872}; | |||
8574 | ||||
8575 | /* Read the AGC registers for all channels */ | |||
8576 | for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM4; i++) { | |||
8577 | ret_val = em_read_phy_reg(hw, agc_reg_array[i], | |||
8578 | &phy_data); | |||
8579 | if (ret_val) | |||
8580 | return ret_val; | |||
8581 | ||||
8582 | cur_agc_value = phy_data >> | |||
8583 | IGP01E1000_AGC_LENGTH_SHIFT7; | |||
8584 | ||||
8585 | /* Value bound check. */ | |||
8586 | if ((cur_agc_value >= | |||
8587 | IGP01E1000_AGC_LENGTH_TABLE_SIZE128 - 1) || | |||
8588 | (cur_agc_value == 0)) | |||
8589 | return -E1000_ERR_PHY2; | |||
8590 | ||||
8591 | agc_value += cur_agc_value; | |||
8592 | ||||
8593 | /* Update minimal AGC value. */ | |||
8594 | if (min_agc_value > cur_agc_value) | |||
8595 | min_agc_value = cur_agc_value; | |||
8596 | } | |||
8597 | ||||
8598 | /* Remove the minimal AGC result for length < 50m */ | |||
8599 | if (agc_value < IGP01E1000_PHY_CHANNEL_NUM4 * | |||
8600 | em_igp_cable_length_50) { | |||
8601 | agc_value -= min_agc_value; | |||
8602 | ||||
8603 | /* | |||
8604 | * Get the average length of the remaining 3 channels | |||
8605 | */ | |||
8606 | agc_value /= (IGP01E1000_PHY_CHANNEL_NUM4 - 1); | |||
8607 | } else { | |||
8608 | /* Get the average length of all the 4 channels. */ | |||
8609 | agc_value /= IGP01E1000_PHY_CHANNEL_NUM4; | |||
8610 | } | |||
8611 | ||||
8612 | /* Set the range of the calculated length. */ | |||
8613 | *min_length = ((em_igp_cable_length_table[agc_value] - | |||
8614 | IGP01E1000_AGC_RANGE10) > 0) ? | |||
8615 | (em_igp_cable_length_table[agc_value] - | |||
8616 | IGP01E1000_AGC_RANGE10) : 0; | |||
8617 | *max_length = em_igp_cable_length_table[agc_value] + | |||
8618 | IGP01E1000_AGC_RANGE10; | |||
8619 | } else if (hw->phy_type == em_phy_igp_2 || | |||
8620 | hw->phy_type == em_phy_igp_3) { | |||
8621 | uint16_t cur_agc_index, max_agc_index = 0; | |||
8622 | uint16_t min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE113 - 1; | |||
8623 | uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM4] = | |||
8624 | {IGP02E1000_PHY_AGC_A0x11B1, IGP02E1000_PHY_AGC_B0x12B1, | |||
8625 | IGP02E1000_PHY_AGC_C0x14B1, IGP02E1000_PHY_AGC_D0x18B1}; | |||
8626 | /* Read the AGC registers for all channels */ | |||
8627 | for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM4; i++) { | |||
8628 | ret_val = em_read_phy_reg(hw, agc_reg_array[i], | |||
8629 | &phy_data); | |||
8630 | if (ret_val) | |||
8631 | return ret_val; | |||
8632 | /* | |||
8633 | * Getting bits 15:9, which represent the combination | |||
8634 | * of course and fine gain values. The result is a | |||
8635 | * number that can be put into the lookup table to | |||
8636 | * obtain the approximate cable length. | |||
8637 | */ | |||
8638 | cur_agc_index = (phy_data >> | |||
8639 | IGP02E1000_AGC_LENGTH_SHIFT9) & | |||
8640 | IGP02E1000_AGC_LENGTH_MASK0x7F; | |||
8641 | ||||
8642 | /* Array index bound check. */ | |||
8643 | if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE113) | |||
8644 | || (cur_agc_index == 0)) | |||
8645 | return -E1000_ERR_PHY2; | |||
8646 | ||||
8647 | /* Remove min & max AGC values from calculation. */ | |||
8648 | if (em_igp_2_cable_length_table[min_agc_index] > | |||
8649 | em_igp_2_cable_length_table[cur_agc_index]) | |||
8650 | min_agc_index = cur_agc_index; | |||
8651 | if (em_igp_2_cable_length_table[max_agc_index] < | |||
8652 | em_igp_2_cable_length_table[cur_agc_index]) | |||
8653 | max_agc_index = cur_agc_index; | |||
8654 | ||||
8655 | agc_value += em_igp_2_cable_length_table | |||
8656 | [cur_agc_index]; | |||
8657 | } | |||
8658 | ||||
8659 | agc_value -= (em_igp_2_cable_length_table[min_agc_index] + | |||
8660 | em_igp_2_cable_length_table[max_agc_index]); | |||
8661 | agc_value /= (IGP02E1000_PHY_CHANNEL_NUM4 - 2); | |||
8662 | /* | |||
8663 | * Calculate cable length with the error range of +/- 10 | |||
8664 | * meters. | |||
8665 | */ | |||
8666 | *min_length = ((agc_value - IGP02E1000_AGC_RANGE15) > 0) ? | |||
8667 | (agc_value - IGP02E1000_AGC_RANGE15) : 0; | |||
8668 | *max_length = agc_value + IGP02E1000_AGC_RANGE15; | |||
8669 | } | |||
8670 | return E1000_SUCCESS0; | |||
8671 | } | |||
8672 | ||||
8673 | /****************************************************************************** | |||
8674 | * Check if Downshift occurred | |||
8675 | * | |||
8676 | * hw - Struct containing variables accessed by shared code | |||
8677 | * downshift - output parameter : 0 - No Downshift occurred. | |||
8678 | * 1 - Downshift occurred. | |||
8679 | * | |||
8680 | * returns: - E1000_ERR_XXX | |||
8681 | * E1000_SUCCESS | |||
8682 | * | |||
8683 | * For phy's older then IGP, this function reads the Downshift bit in the Phy | |||
8684 | * Specific Status register. For IGP phy's, it reads the Downgrade bit in the | |||
8685 | * Link Health register. In IGP this bit is latched high, so the driver must | |||
8686 | * read it immediately after link is established. | |||
8687 | *****************************************************************************/ | |||
8688 | STATIC int32_t | |||
8689 | em_check_downshift(struct em_hw *hw) | |||
8690 | { | |||
8691 | int32_t ret_val; | |||
8692 | uint16_t phy_data; | |||
8693 | DEBUGFUNC("em_check_downshift");; | |||
8694 | ||||
8695 | if (hw->phy_type == em_phy_igp || | |||
8696 | hw->phy_type == em_phy_igp_3 || | |||
8697 | hw->phy_type == em_phy_igp_2) { | |||
8698 | ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH0x13, | |||
8699 | &phy_data); | |||
8700 | if (ret_val) | |||
8701 | return ret_val; | |||
8702 | ||||
8703 | hw->speed_downgraded = (phy_data & | |||
8704 | IGP01E1000_PLHR_SS_DOWNGRADE0x8000) ? 1 : 0; | |||
8705 | } else if ((hw->phy_type == em_phy_m88) || | |||
8706 | (hw->phy_type == em_phy_gg82563) || | |||
8707 | (hw->phy_type == em_phy_oem) || | |||
8708 | (hw->phy_type == em_phy_82578)) { | |||
8709 | ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS0x11, | |||
8710 | &phy_data); | |||
8711 | if (ret_val) | |||
8712 | return ret_val; | |||
8713 | ||||
8714 | hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT0x0020) >> | |||
8715 | M88E1000_PSSR_DOWNSHIFT_SHIFT5; | |||
8716 | } else if (hw->phy_type == em_phy_ife) { | |||
8717 | /* em_phy_ife supports 10/100 speed only */ | |||
8718 | hw->speed_downgraded = FALSE0; | |||
8719 | } | |||
8720 | return E1000_SUCCESS0; | |||
8721 | } | |||
8722 | ||||
8723 | /***************************************************************************** | |||
8724 | * | |||
8725 | * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a | |||
8726 | * gigabit link is achieved to improve link quality. | |||
8727 | * | |||
8728 | * hw: Struct containing variables accessed by shared code | |||
8729 | * | |||
8730 | * returns: - E1000_ERR_PHY if fail to read/write the PHY | |||
8731 | * E1000_SUCCESS at any other case. | |||
8732 | * | |||
8733 | ****************************************************************************/ | |||
8734 | STATIC int32_t | |||
8735 | em_config_dsp_after_link_change(struct em_hw *hw, boolean_t link_up) | |||
8736 | { | |||
8737 | int32_t ret_val; | |||
8738 | uint16_t phy_data, phy_saved_data, speed, duplex, i; | |||
8739 | uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM4] = | |||
8740 | {IGP01E1000_PHY_AGC_PARAM_A0x1171, IGP01E1000_PHY_AGC_PARAM_B0x1271, | |||
8741 | IGP01E1000_PHY_AGC_PARAM_C0x1471, IGP01E1000_PHY_AGC_PARAM_D0x1871}; | |||
8742 | uint16_t min_length, max_length; | |||
8743 | DEBUGFUNC("em_config_dsp_after_link_change");; | |||
8744 | ||||
8745 | if (hw->phy_type != em_phy_igp) | |||
8746 | return E1000_SUCCESS0; | |||
8747 | ||||
8748 | if (link_up) { | |||
8749 | ret_val = em_get_speed_and_duplex(hw, &speed, &duplex); | |||
8750 | if (ret_val) { | |||
8751 | DEBUGOUT("Error getting link speed and duplex\n"); | |||
8752 | return ret_val; | |||
8753 | } | |||
8754 | if (speed == SPEED_10001000) { | |||
8755 | ||||
8756 | ret_val = em_get_cable_length(hw, &min_length, &max_length); | |||
8757 | if (ret_val) | |||
8758 | return ret_val; | |||
8759 | ||||
8760 | if ((hw->dsp_config_state == em_dsp_config_enabled) && | |||
8761 | min_length >= em_igp_cable_length_50) { | |||
8762 | ||||
8763 | for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM4; | |||
8764 | i++) { | |||
8765 | ret_val = em_read_phy_reg(hw, | |||
8766 | dsp_reg_array[i], &phy_data); | |||
8767 | if (ret_val) | |||
8768 | return ret_val; | |||
8769 | ||||
8770 | phy_data &= | |||
8771 | ~IGP01E1000_PHY_EDAC_MU_INDEX0xC000; | |||
8772 | ||||
8773 | ret_val = em_write_phy_reg(hw, | |||
8774 | dsp_reg_array[i], phy_data); | |||
8775 | if (ret_val) | |||
8776 | return ret_val; | |||
8777 | } | |||
8778 | hw->dsp_config_state = em_dsp_config_activated; | |||
8779 | } | |||
8780 | if ((hw->ffe_config_state == em_ffe_config_enabled) && | |||
8781 | (min_length < em_igp_cable_length_50)) { | |||
8782 | ||||
8783 | uint16_t ffe_idle_err_timeout = | |||
8784 | FFE_IDLE_ERR_COUNT_TIMEOUT_2020; | |||
8785 | uint32_t idle_errs = 0; | |||
8786 | /* clear previous idle error counts */ | |||
8787 | ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS0x0A, | |||
8788 | &phy_data); | |||
8789 | if (ret_val) | |||
8790 | return ret_val; | |||
8791 | ||||
8792 | for (i = 0; i < ffe_idle_err_timeout; i++) { | |||
8793 | usec_delay(1000)(*delay_func)(1000); | |||
8794 | ret_val = em_read_phy_reg(hw, | |||
8795 | PHY_1000T_STATUS0x0A, &phy_data); | |||
8796 | if (ret_val) | |||
8797 | return ret_val; | |||
8798 | ||||
8799 | idle_errs += (phy_data & | |||
8800 | SR_1000T_IDLE_ERROR_CNT0x00FF); | |||
8801 | if (idle_errs > | |||
8802 | SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT5) { | |||
8803 | hw->ffe_config_state = | |||
8804 | em_ffe_config_active; | |||
8805 | ||||
8806 | ret_val = em_write_phy_reg(hw, | |||
8807 | IGP01E1000_PHY_DSP_FFE0x1F35, | |||
8808 | IGP01E1000_PHY_DSP_FFE_CM_CP0x0069); | |||
8809 | if (ret_val) | |||
8810 | return ret_val; | |||
8811 | break; | |||
8812 | } | |||
8813 | if (idle_errs) | |||
8814 | ffe_idle_err_timeout = | |||
8815 | FFE_IDLE_ERR_COUNT_TIMEOUT_100100; | |||
8816 | } | |||
8817 | } | |||
8818 | } | |||
8819 | } else { | |||
8820 | if (hw->dsp_config_state == em_dsp_config_activated) { | |||
8821 | /* | |||
8822 | * Save off the current value of register 0x2F5B to | |||
8823 | * be restored at the end of the routines. | |||
8824 | */ | |||
8825 | ret_val = em_read_phy_reg(hw, 0x2F5B, &phy_saved_data); | |||
8826 | ||||
8827 | if (ret_val) | |||
8828 | return ret_val; | |||
8829 | ||||
8830 | /* Disable the PHY transmitter */ | |||
8831 | ret_val = em_write_phy_reg(hw, 0x2F5B, 0x0003); | |||
8832 | ||||
8833 | if (ret_val) | |||
8834 | return ret_val; | |||
8835 | ||||
8836 | msec_delay_irq(20)(*delay_func)(1000*(20)); | |||
8837 | ||||
8838 | ret_val = em_write_phy_reg(hw, 0x0000, | |||
8839 | IGP01E1000_IEEE_FORCE_GIGA0x0140); | |||
8840 | if (ret_val) | |||
8841 | return ret_val; | |||
8842 | for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM4; i++) { | |||
8843 | ret_val = em_read_phy_reg(hw, dsp_reg_array[i], | |||
8844 | &phy_data); | |||
8845 | if (ret_val) | |||
8846 | return ret_val; | |||
8847 | ||||
8848 | phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX0xC000; | |||
8849 | phy_data |= | |||
8850 | IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS0x8000; | |||
8851 | ||||
8852 | ret_val = em_write_phy_reg(hw, | |||
8853 | dsp_reg_array[i], phy_data); | |||
8854 | if (ret_val) | |||
8855 | return ret_val; | |||
8856 | } | |||
8857 | ||||
8858 | ret_val = em_write_phy_reg(hw, 0x0000, | |||
8859 | IGP01E1000_IEEE_RESTART_AUTONEG0x3300); | |||
8860 | if (ret_val) | |||
8861 | return ret_val; | |||
8862 | ||||
8863 | msec_delay_irq(20)(*delay_func)(1000*(20)); | |||
8864 | ||||
8865 | /* Now enable the transmitter */ | |||
8866 | ret_val = em_write_phy_reg(hw, 0x2F5B, phy_saved_data); | |||
8867 | ||||
8868 | if (ret_val) | |||
8869 | return ret_val; | |||
8870 | ||||
8871 | hw->dsp_config_state = em_dsp_config_enabled; | |||
8872 | } | |||
8873 | if (hw->ffe_config_state == em_ffe_config_active) { | |||
8874 | /* | |||
8875 | * Save off the current value of register 0x2F5B to | |||
8876 | * be restored at the end of the routines. | |||
8877 | */ | |||
8878 | ret_val = em_read_phy_reg(hw, 0x2F5B, &phy_saved_data); | |||
8879 | ||||
8880 | if (ret_val) | |||
8881 | return ret_val; | |||
8882 | ||||
8883 | /* Disable the PHY transmitter */ | |||
8884 | ret_val = em_write_phy_reg(hw, 0x2F5B, 0x0003); | |||
8885 | ||||
8886 | if (ret_val) | |||
8887 | return ret_val; | |||
8888 | ||||
8889 | msec_delay_irq(20)(*delay_func)(1000*(20)); | |||
8890 | ||||
8891 | ret_val = em_write_phy_reg(hw, 0x0000, | |||
8892 | IGP01E1000_IEEE_FORCE_GIGA0x0140); | |||
8893 | if (ret_val) | |||
8894 | return ret_val; | |||
8895 | ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE0x1F35, | |||
8896 | IGP01E1000_PHY_DSP_FFE_DEFAULT0x002A); | |||
8897 | if (ret_val) | |||
8898 | return ret_val; | |||
8899 | ||||
8900 | ret_val = em_write_phy_reg(hw, 0x0000, | |||
8901 | IGP01E1000_IEEE_RESTART_AUTONEG0x3300); | |||
8902 | if (ret_val) | |||
8903 | return ret_val; | |||
8904 | ||||
8905 | msec_delay_irq(20)(*delay_func)(1000*(20)); | |||
8906 | ||||
8907 | /* Now enable the transmitter */ | |||
8908 | ret_val = em_write_phy_reg(hw, 0x2F5B, phy_saved_data); | |||
8909 | ||||
8910 | if (ret_val) | |||
8911 | return ret_val; | |||
8912 | ||||
8913 | hw->ffe_config_state = em_ffe_config_enabled; | |||
8914 | } | |||
8915 | } | |||
8916 | return E1000_SUCCESS0; | |||
8917 | } | |||
8918 | ||||
8919 | /***************************************************************************** | |||
8920 | * Set PHY to class A mode | |||
8921 | * Assumes the following operations will follow to enable the new class mode. | |||
8922 | * 1. Do a PHY soft reset | |||
8923 | * 2. Restart auto-negotiation or force link. | |||
8924 | * | |||
8925 | * hw - Struct containing variables accessed by shared code | |||
8926 | ****************************************************************************/ | |||
8927 | static int32_t | |||
8928 | em_set_phy_mode(struct em_hw *hw) | |||
8929 | { | |||
8930 | int32_t ret_val; | |||
8931 | uint16_t eeprom_data; | |||
8932 | DEBUGFUNC("em_set_phy_mode");; | |||
8933 | ||||
8934 | if ((hw->mac_type == em_82545_rev_3) && | |||
8935 | (hw->media_type == em_media_type_copper)) { | |||
8936 | ret_val = em_read_eeprom(hw, EEPROM_PHY_CLASS_WORD0x0007, 1, | |||
8937 | &eeprom_data); | |||
8938 | if (ret_val) { | |||
8939 | return ret_val; | |||
8940 | } | |||
8941 | if ((eeprom_data != EEPROM_RESERVED_WORD0xFFFF) && | |||
8942 | (eeprom_data & EEPROM_PHY_CLASS_A0x8000)) { | |||
8943 | ret_val = em_write_phy_reg(hw, | |||
8944 | M88E1000_PHY_PAGE_SELECT0x1D, 0x000B); | |||
8945 | if (ret_val) | |||
8946 | return ret_val; | |||
8947 | ret_val = em_write_phy_reg(hw, | |||
8948 | M88E1000_PHY_GEN_CONTROL0x1E, 0x8104); | |||
8949 | if (ret_val) | |||
8950 | return ret_val; | |||
8951 | ||||
8952 | hw->phy_reset_disable = FALSE0; | |||
8953 | } | |||
8954 | } | |||
8955 | return E1000_SUCCESS0; | |||
8956 | } | |||
8957 | ||||
8958 | /***************************************************************************** | |||
8959 | * | |||
8960 | * This function sets the lplu state according to the active flag. When | |||
8961 | * activating lplu this function also disables smart speed and vise versa. | |||
8962 | * lplu will not be activated unless the device autonegotiation advertisement | |||
8963 | * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. | |||
8964 | * hw: Struct containing variables accessed by shared code | |||
8965 | * active - true to enable lplu false to disable lplu. | |||
8966 | * | |||
8967 | * returns: - E1000_ERR_PHY if fail to read/write the PHY | |||
8968 | * E1000_SUCCESS at any other case. | |||
8969 | * | |||
8970 | ****************************************************************************/ | |||
8971 | STATIC int32_t | |||
8972 | em_set_d3_lplu_state(struct em_hw *hw, boolean_t active) | |||
8973 | { | |||
8974 | uint32_t phy_ctrl = 0; | |||
8975 | int32_t ret_val; | |||
8976 | uint16_t phy_data; | |||
8977 | DEBUGFUNC("em_set_d3_lplu_state");; | |||
8978 | ||||
8979 | if (hw->phy_type != em_phy_igp && hw->phy_type != em_phy_igp_2 | |||
8980 | && hw->phy_type != em_phy_igp_3) | |||
8981 | return E1000_SUCCESS0; | |||
8982 | /* | |||
8983 | * During driver activity LPLU should not be used or it will attain | |||
8984 | * link from the lowest speeds starting from 10Mbps. The capability | |||
8985 | * is used for Dx transitions and states | |||
8986 | */ | |||
8987 | if (hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2) { | |||
8988 | ret_val = em_read_phy_reg(hw, IGP01E1000_GMII_FIFO0x14, &phy_data); | |||
8989 | if (ret_val) | |||
8990 | return ret_val; | |||
8991 | } else if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | |||
8992 | /* | |||
8993 | * MAC writes into PHY register based on the state transition | |||
8994 | * and start auto-negotiation. SW driver can overwrite the | |||
8995 | * settings in CSR PHY power control E1000_PHY_CTRL register. | |||
8996 | */ | |||
8997 | phy_ctrl = E1000_READ_REG(hw, PHY_CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F10 : em_translate_82542_register (0x00F10))))); | |||
8998 | } else { | |||
8999 | ret_val = em_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT0x19, | |||
9000 | &phy_data); | |||
9001 | if (ret_val) | |||
9002 | return ret_val; | |||
9003 | } | |||
9004 | ||||
9005 | if (!active) { | |||
9006 | if (hw->mac_type == em_82541_rev_2 || | |||
9007 | hw->mac_type == em_82547_rev_2) { | |||
9008 | phy_data &= ~IGP01E1000_GMII_FLEX_SPD0x10; | |||
9009 | ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO0x14, | |||
9010 | phy_data); | |||
9011 | if (ret_val) | |||
9012 | return ret_val; | |||
9013 | } else { | |||
9014 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | |||
9015 | phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU0x00000004; | |||
9016 | E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F10 : em_translate_82542_register (0x00F10))), (phy_ctrl))); | |||
9017 | } else { | |||
9018 | phy_data &= ~IGP02E1000_PM_D3_LPLU0x0004; | |||
9019 | ret_val = em_write_phy_reg(hw, | |||
9020 | IGP02E1000_PHY_POWER_MGMT0x19, phy_data); | |||
9021 | if (ret_val) | |||
9022 | return ret_val; | |||
9023 | } | |||
9024 | } | |||
9025 | /* | |||
9026 | * LPLU and SmartSpeed are mutually exclusive. LPLU is used | |||
9027 | * during Dx states where the power conservation is most | |||
9028 | * important. During driver activity we should enable | |||
9029 | * SmartSpeed, so performance is maintained. | |||
9030 | */ | |||
9031 | if (hw->smart_speed == em_smart_speed_on) { | |||
9032 | ret_val = em_read_phy_reg(hw, | |||
9033 | IGP01E1000_PHY_PORT_CONFIG0x10, &phy_data); | |||
9034 | if (ret_val) | |||
9035 | return ret_val; | |||
9036 | ||||
9037 | phy_data |= IGP01E1000_PSCFR_SMART_SPEED0x0080; | |||
9038 | ret_val = em_write_phy_reg(hw, | |||
9039 | IGP01E1000_PHY_PORT_CONFIG0x10, phy_data); | |||
9040 | if (ret_val) | |||
9041 | return ret_val; | |||
9042 | } else if (hw->smart_speed == em_smart_speed_off) { | |||
9043 | ret_val = em_read_phy_reg(hw, | |||
9044 | IGP01E1000_PHY_PORT_CONFIG0x10, &phy_data); | |||
9045 | if (ret_val) | |||
9046 | return ret_val; | |||
9047 | ||||
9048 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED0x0080; | |||
9049 | ret_val = em_write_phy_reg(hw, | |||
9050 | IGP01E1000_PHY_PORT_CONFIG0x10, phy_data); | |||
9051 | if (ret_val) | |||
9052 | return ret_val; | |||
9053 | } | |||
9054 | } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT0x002F) | |||
9055 | || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL0x0003) || | |||
9056 | (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL0x000F)) { | |||
9057 | ||||
9058 | if (hw->mac_type == em_82541_rev_2 || | |||
9059 | hw->mac_type == em_82547_rev_2) { | |||
9060 | phy_data |= IGP01E1000_GMII_FLEX_SPD0x10; | |||
9061 | ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO0x14, | |||
9062 | phy_data); | |||
9063 | if (ret_val) | |||
9064 | return ret_val; | |||
9065 | } else { | |||
9066 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | |||
9067 | phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU0x00000004; | |||
9068 | E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F10 : em_translate_82542_register (0x00F10))), (phy_ctrl))); | |||
9069 | } else { | |||
9070 | phy_data |= IGP02E1000_PM_D3_LPLU0x0004; | |||
9071 | ret_val = em_write_phy_reg(hw, | |||
9072 | IGP02E1000_PHY_POWER_MGMT0x19, phy_data); | |||
9073 | if (ret_val) | |||
9074 | return ret_val; | |||
9075 | } | |||
9076 | } | |||
9077 | ||||
9078 | /* When LPLU is enabled we should disable SmartSpeed */ | |||
9079 | ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG0x10, | |||
9080 | &phy_data); | |||
9081 | if (ret_val) | |||
9082 | return ret_val; | |||
9083 | ||||
9084 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED0x0080; | |||
9085 | ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG0x10, | |||
9086 | phy_data); | |||
9087 | if (ret_val) | |||
9088 | return ret_val; | |||
9089 | ||||
9090 | } | |||
9091 | return E1000_SUCCESS0; | |||
9092 | } | |||
9093 | ||||
9094 | /***************************************************************************** | |||
9095 | * | |||
9096 | * This function sets the lplu d0 state according to the active flag. When | |||
9097 | * activating lplu this function also disables smart speed and vise versa. | |||
9098 | * lplu will not be activated unless the device autonegotiation advertisement | |||
9099 | * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. | |||
9100 | * hw: Struct containing variables accessed by shared code | |||
9101 | * active - true to enable lplu false to disable lplu. | |||
9102 | * | |||
9103 | * returns: - E1000_ERR_PHY if fail to read/write the PHY | |||
9104 | * E1000_SUCCESS at any other case. | |||
9105 | * | |||
9106 | ****************************************************************************/ | |||
9107 | STATIC int32_t | |||
9108 | em_set_d0_lplu_state(struct em_hw *hw, boolean_t active) | |||
9109 | { | |||
9110 | uint32_t phy_ctrl = 0; | |||
9111 | int32_t ret_val; | |||
9112 | uint16_t phy_data; | |||
9113 | DEBUGFUNC("em_set_d0_lplu_state");; | |||
9114 | ||||
9115 | if (hw->mac_type <= em_82547_rev_2) | |||
9116 | return E1000_SUCCESS0; | |||
9117 | ||||
9118 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | |||
9119 | phy_ctrl = E1000_READ_REG(hw, PHY_CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F10 : em_translate_82542_register (0x00F10))))); | |||
9120 | } else { | |||
9121 | ret_val = em_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT0x19, | |||
9122 | &phy_data); | |||
9123 | if (ret_val) | |||
9124 | return ret_val; | |||
9125 | } | |||
9126 | ||||
9127 | if (!active) { | |||
9128 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | |||
9129 | phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU0x00000002; | |||
9130 | E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F10 : em_translate_82542_register (0x00F10))), (phy_ctrl))); | |||
9131 | } else { | |||
9132 | phy_data &= ~IGP02E1000_PM_D0_LPLU0x0002; | |||
9133 | ret_val = em_write_phy_reg(hw, | |||
9134 | IGP02E1000_PHY_POWER_MGMT0x19, phy_data); | |||
9135 | if (ret_val) | |||
9136 | return ret_val; | |||
9137 | } | |||
9138 | /* | |||
9139 | * LPLU and SmartSpeed are mutually exclusive. LPLU is used | |||
9140 | * during Dx states where the power conservation is most | |||
9141 | * important. During driver activity we should enable | |||
9142 | * SmartSpeed, so performance is maintained. | |||
9143 | */ | |||
9144 | if (hw->smart_speed == em_smart_speed_on) { | |||
9145 | ret_val = em_read_phy_reg(hw, | |||
9146 | IGP01E1000_PHY_PORT_CONFIG0x10, &phy_data); | |||
9147 | if (ret_val) | |||
9148 | return ret_val; | |||
9149 | ||||
9150 | phy_data |= IGP01E1000_PSCFR_SMART_SPEED0x0080; | |||
9151 | ret_val = em_write_phy_reg(hw, | |||
9152 | IGP01E1000_PHY_PORT_CONFIG0x10, phy_data); | |||
9153 | if (ret_val) | |||
9154 | return ret_val; | |||
9155 | } else if (hw->smart_speed == em_smart_speed_off) { | |||
9156 | ret_val = em_read_phy_reg(hw, | |||
9157 | IGP01E1000_PHY_PORT_CONFIG0x10, &phy_data); | |||
9158 | if (ret_val) | |||
9159 | return ret_val; | |||
9160 | ||||
9161 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED0x0080; | |||
9162 | ret_val = em_write_phy_reg(hw, | |||
9163 | IGP01E1000_PHY_PORT_CONFIG0x10, phy_data); | |||
9164 | if (ret_val) | |||
9165 | return ret_val; | |||
9166 | } | |||
9167 | } else { | |||
9168 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | |||
9169 | phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU0x00000002; | |||
9170 | E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F10 : em_translate_82542_register (0x00F10))), (phy_ctrl))); | |||
9171 | } else { | |||
9172 | phy_data |= IGP02E1000_PM_D0_LPLU0x0002; | |||
9173 | ret_val = em_write_phy_reg(hw, | |||
9174 | IGP02E1000_PHY_POWER_MGMT0x19, phy_data); | |||
9175 | if (ret_val) | |||
9176 | return ret_val; | |||
9177 | } | |||
9178 | ||||
9179 | /* When LPLU is enabled we should disable SmartSpeed */ | |||
9180 | ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG0x10, | |||
9181 | &phy_data); | |||
9182 | if (ret_val) | |||
9183 | return ret_val; | |||
9184 | ||||
9185 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED0x0080; | |||
9186 | ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG0x10, | |||
9187 | phy_data); | |||
9188 | if (ret_val) | |||
9189 | return ret_val; | |||
9190 | ||||
9191 | } | |||
9192 | return E1000_SUCCESS0; | |||
9193 | } | |||
9194 | ||||
9195 | /*************************************************************************** | |||
9196 | * Set Low Power Link Up state | |||
9197 | * | |||
9198 | * Sets the LPLU state according to the active flag. For PCH, if OEM write | |||
9199 | * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set | |||
9200 | * the phy speed. This function will manually set the LPLU bit and restart | |||
9201 | * auto-neg as hw would do. D3 and D0 LPLU will call the same function | |||
9202 | * since it configures the same bit. | |||
9203 | ***************************************************************************/ | |||
9204 | int32_t | |||
9205 | em_set_lplu_state_pchlan(struct em_hw *hw, boolean_t active) | |||
9206 | { | |||
9207 | int32_t ret_val = E1000_SUCCESS0; | |||
9208 | uint16_t oem_reg; | |||
9209 | ||||
9210 | DEBUGFUNC("e1000_set_lplu_state_pchlan");; | |||
9211 | ||||
9212 | ret_val = em_read_phy_reg(hw, HV_OEM_BITS(((768) << 5) | ((25) & 0x1F)), &oem_reg); | |||
9213 | if (ret_val) | |||
9214 | goto out; | |||
9215 | ||||
9216 | if (active) | |||
9217 | oem_reg |= HV_OEM_BITS_LPLU0x0004; | |||
9218 | else | |||
9219 | oem_reg &= ~HV_OEM_BITS_LPLU0x0004; | |||
9220 | ||||
9221 | oem_reg |= HV_OEM_BITS_RESTART_AN0x0400; | |||
9222 | ret_val = em_write_phy_reg(hw, HV_OEM_BITS(((768) << 5) | ((25) & 0x1F)), oem_reg); | |||
9223 | ||||
9224 | out: | |||
9225 | return ret_val; | |||
9226 | } | |||
9227 | ||||
9228 | /****************************************************************************** | |||
9229 | * Change VCO speed register to improve Bit Error Rate performance of SERDES. | |||
9230 | * | |||
9231 | * hw - Struct containing variables accessed by shared code | |||
9232 | *****************************************************************************/ | |||
9233 | static int32_t | |||
9234 | em_set_vco_speed(struct em_hw *hw) | |||
9235 | { | |||
9236 | int32_t ret_val; | |||
9237 | uint16_t default_page = 0; | |||
9238 | uint16_t phy_data; | |||
9239 | DEBUGFUNC("em_set_vco_speed");; | |||
9240 | ||||
9241 | switch (hw->mac_type) { | |||
9242 | case em_82545_rev_3: | |||
9243 | case em_82546_rev_3: | |||
9244 | break; | |||
9245 | default: | |||
9246 | return E1000_SUCCESS0; | |||
9247 | } | |||
9248 | ||||
9249 | /* Set PHY register 30, page 5, bit 8 to 0 */ | |||
9250 | ||||
9251 | ret_val = em_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT0x1D, &default_page); | |||
9252 | if (ret_val) | |||
9253 | return ret_val; | |||
9254 | ||||
9255 | ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT0x1D, 0x0005); | |||
9256 | if (ret_val) | |||
9257 | return ret_val; | |||
9258 | ||||
9259 | ret_val = em_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL0x1E, &phy_data); | |||
9260 | if (ret_val) | |||
9261 | return ret_val; | |||
9262 | ||||
9263 | phy_data &= ~M88E1000_PHY_VCO_REG_BIT80x100; | |||
9264 | ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL0x1E, phy_data); | |||
9265 | if (ret_val) | |||
9266 | return ret_val; | |||
9267 | ||||
9268 | /* Set PHY register 30, page 4, bit 11 to 1 */ | |||
9269 | ||||
9270 | ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT0x1D, 0x0004); | |||
9271 | if (ret_val) | |||
9272 | return ret_val; | |||
9273 | ||||
9274 | ret_val = em_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL0x1E, &phy_data); | |||
9275 | if (ret_val) | |||
9276 | return ret_val; | |||
9277 | ||||
9278 | phy_data |= M88E1000_PHY_VCO_REG_BIT110x800; | |||
9279 | ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL0x1E, phy_data); | |||
9280 | if (ret_val) | |||
9281 | return ret_val; | |||
9282 | ||||
9283 | ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT0x1D, default_page); | |||
9284 | if (ret_val) | |||
9285 | return ret_val; | |||
9286 | ||||
9287 | return E1000_SUCCESS0; | |||
9288 | } | |||
9289 | ||||
9290 | /***************************************************************************** | |||
9291 | * This function reads the cookie from ARC ram. | |||
9292 | * | |||
9293 | * returns: - E1000_SUCCESS . | |||
9294 | ****************************************************************************/ | |||
9295 | STATIC int32_t | |||
9296 | em_host_if_read_cookie(struct em_hw *hw, uint8_t *buffer) | |||
9297 | { | |||
9298 | uint8_t i; | |||
9299 | uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET0x6F0; | |||
9300 | uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH0x10; | |||
9301 | length = (length >> 2); | |||
9302 | offset = (offset >> 2); | |||
9303 | ||||
9304 | for (i = 0; i < length; i++) { | |||
9305 | *((uint32_t *) buffer + i) = | |||
9306 | E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x08800 : em_translate_82542_register (0x08800)) + ((offset + i) << 2)))); | |||
9307 | } | |||
9308 | return E1000_SUCCESS0; | |||
9309 | } | |||
9310 | ||||
9311 | /***************************************************************************** | |||
9312 | * This function checks whether the HOST IF is enabled for command operation | |||
9313 | * and also checks whether the previous command is completed. | |||
9314 | * It busy waits in case of previous command is not completed. | |||
9315 | * | |||
9316 | * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or | |||
9317 | * timeout | |||
9318 | * - E1000_SUCCESS for success. | |||
9319 | ****************************************************************************/ | |||
9320 | STATIC int32_t | |||
9321 | em_mng_enable_host_if(struct em_hw *hw) | |||
9322 | { | |||
9323 | uint32_t hicr; | |||
9324 | uint8_t i; | |||
9325 | /* Check that the host interface is enabled. */ | |||
9326 | hicr = E1000_READ_REG(hw, HICR)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x08F00 : em_translate_82542_register (0x08F00))))); | |||
9327 | if ((hicr & E1000_HICR_EN0x00000001) == 0) { | |||
9328 | DEBUGOUT("E1000_HOST_EN bit disabled.\n"); | |||
9329 | return -E1000_ERR_HOST_INTERFACE_COMMAND11; | |||
9330 | } | |||
9331 | /* check the previous command is completed */ | |||
9332 | for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT10; i++) { | |||
9333 | hicr = E1000_READ_REG(hw, HICR)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x08F00 : em_translate_82542_register (0x08F00))))); | |||
9334 | if (!(hicr & E1000_HICR_C0x00000002)) | |||
9335 | break; | |||
9336 | msec_delay_irq(1)(*delay_func)(1000*(1)); | |||
9337 | } | |||
9338 | ||||
9339 | if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT10) { | |||
9340 | DEBUGOUT("Previous command timeout failed .\n"); | |||
9341 | return -E1000_ERR_HOST_INTERFACE_COMMAND11; | |||
9342 | } | |||
9343 | return E1000_SUCCESS0; | |||
9344 | } | |||
9345 | ||||
9346 | /***************************************************************************** | |||
9347 | * This function checks the mode of the firmware. | |||
9348 | * | |||
9349 | * returns - TRUE when the mode is IAMT or FALSE. | |||
9350 | ****************************************************************************/ | |||
9351 | boolean_t | |||
9352 | em_check_mng_mode(struct em_hw *hw) | |||
9353 | { | |||
9354 | uint32_t fwsm; | |||
9355 | fwsm = E1000_READ_REG(hw, FWSM)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B54 : em_translate_82542_register (0x05B54))))); | |||
9356 | ||||
9357 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | |||
9358 | if ((fwsm & E1000_FWSM_MODE_MASK0x0000000E) == | |||
9359 | (E1000_MNG_ICH_IAMT_MODE0x2 << E1000_FWSM_MODE_SHIFT1)) | |||
9360 | return TRUE1; | |||
9361 | } else if ((fwsm & E1000_FWSM_MODE_MASK0x0000000E) == | |||
9362 | (E1000_MNG_IAMT_MODE0x3 << E1000_FWSM_MODE_SHIFT1)) | |||
9363 | return TRUE1; | |||
9364 | ||||
9365 | return FALSE0; | |||
9366 | } | |||
9367 | ||||
9368 | /***************************************************************************** | |||
9369 | * This function calculates the checksum. | |||
9370 | * | |||
9371 | * returns - checksum of buffer contents. | |||
9372 | ****************************************************************************/ | |||
9373 | STATIC uint8_t | |||
9374 | em_calculate_mng_checksum(char *buffer, uint32_t length) | |||
9375 | { | |||
9376 | uint8_t sum = 0; | |||
9377 | uint32_t i; | |||
9378 | if (!buffer) | |||
9379 | return 0; | |||
9380 | ||||
9381 | for (i = 0; i < length; i++) | |||
9382 | sum += buffer[i]; | |||
9383 | ||||
9384 | return (uint8_t) (0 - sum); | |||
9385 | } | |||
9386 | ||||
9387 | /***************************************************************************** | |||
9388 | * This function checks whether tx pkt filtering needs to be enabled or not. | |||
9389 | * | |||
9390 | * returns - TRUE for packet filtering or FALSE. | |||
9391 | ****************************************************************************/ | |||
9392 | boolean_t | |||
9393 | em_enable_tx_pkt_filtering(struct em_hw *hw) | |||
9394 | { | |||
9395 | /* called in init as well as watchdog timer functions */ | |||
9396 | int32_t ret_val, checksum; | |||
9397 | boolean_t tx_filter = FALSE0; | |||
9398 | struct em_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie); | |||
9399 | uint8_t *buffer = (uint8_t *) & (hw->mng_cookie); | |||
9400 | if (em_check_mng_mode(hw)) { | |||
9401 | ret_val = em_mng_enable_host_if(hw); | |||
9402 | if (ret_val == E1000_SUCCESS0) { | |||
9403 | ret_val = em_host_if_read_cookie(hw, buffer); | |||
9404 | if (ret_val == E1000_SUCCESS0) { | |||
9405 | checksum = hdr->checksum; | |||
9406 | hdr->checksum = 0; | |||
9407 | if ((hdr->signature == E1000_IAMT_SIGNATURE0x544D4149) && | |||
9408 | checksum == em_calculate_mng_checksum( | |||
9409 | (char *) buffer, | |||
9410 | E1000_MNG_DHCP_COOKIE_LENGTH0x10)) { | |||
9411 | if (hdr->status & | |||
9412 | E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT0x1) | |||
9413 | tx_filter = TRUE1; | |||
9414 | } else | |||
9415 | tx_filter = TRUE1; | |||
9416 | } else | |||
9417 | tx_filter = TRUE1; | |||
9418 | } | |||
9419 | } | |||
9420 | hw->tx_pkt_filtering = tx_filter; | |||
9421 | return tx_filter; | |||
9422 | } | |||
9423 | ||||
9424 | static int32_t | |||
9425 | em_polarity_reversal_workaround(struct em_hw *hw) | |||
9426 | { | |||
9427 | int32_t ret_val; | |||
9428 | uint16_t mii_status_reg; | |||
9429 | uint16_t i; | |||
9430 | /* Polarity reversal workaround for forced 10F/10H links. */ | |||
9431 | ||||
9432 | /* Disable the transmitter on the PHY */ | |||
9433 | ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT0x1D, 0x0019); | |||
9434 | if (ret_val) | |||
9435 | return ret_val; | |||
9436 | ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL0x1E, 0xFFFF); | |||
9437 | if (ret_val) | |||
9438 | return ret_val; | |||
9439 | ||||
9440 | ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT0x1D, 0x0000); | |||
9441 | if (ret_val) | |||
9442 | return ret_val; | |||
9443 | ||||
9444 | /* This loop will early-out if the NO link condition has been met. */ | |||
9445 | for (i = PHY_FORCE_TIME20; i > 0; i--) { | |||
9446 | /* | |||
9447 | * Read the MII Status Register and wait for Link Status bit | |||
9448 | * to be clear. | |||
9449 | */ | |||
9450 | ||||
9451 | ret_val = em_read_phy_reg(hw, PHY_STATUS0x01, &mii_status_reg); | |||
9452 | if (ret_val) | |||
9453 | return ret_val; | |||
9454 | ||||
9455 | ret_val = em_read_phy_reg(hw, PHY_STATUS0x01, &mii_status_reg); | |||
9456 | if (ret_val) | |||
9457 | return ret_val; | |||
9458 | ||||
9459 | if ((mii_status_reg & ~MII_SR_LINK_STATUS0x0004) == 0) | |||
9460 | break; | |||
9461 | msec_delay_irq(100)(*delay_func)(1000*(100)); | |||
9462 | } | |||
9463 | ||||
9464 | /* Recommended delay time after link has been lost */ | |||
9465 | msec_delay_irq(1000)(*delay_func)(1000*(1000)); | |||
9466 | ||||
9467 | /* Now we will re-enable the transmitter on the PHY */ | |||
9468 | ||||
9469 | ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT0x1D, 0x0019); | |||
9470 | if (ret_val) | |||
9471 | return ret_val; | |||
9472 | msec_delay_irq(50)(*delay_func)(1000*(50)); | |||
9473 | ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL0x1E, 0xFFF0); | |||
9474 | if (ret_val) | |||
9475 | return ret_val; | |||
9476 | msec_delay_irq(50)(*delay_func)(1000*(50)); | |||
9477 | ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL0x1E, 0xFF00); | |||
9478 | if (ret_val) | |||
9479 | return ret_val; | |||
9480 | msec_delay_irq(50)(*delay_func)(1000*(50)); | |||
9481 | ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL0x1E, 0x0000); | |||
9482 | if (ret_val) | |||
9483 | return ret_val; | |||
9484 | ||||
9485 | ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT0x1D, 0x0000); | |||
9486 | if (ret_val) | |||
9487 | return ret_val; | |||
9488 | ||||
9489 | /* This loop will early-out if the link condition has been met. */ | |||
9490 | for (i = PHY_FORCE_TIME20; i > 0; i--) { | |||
9491 | /* | |||
9492 | * Read the MII Status Register and wait for Link Status bit | |||
9493 | * to be set. | |||
9494 | */ | |||
9495 | ||||
9496 | ret_val = em_read_phy_reg(hw, PHY_STATUS0x01, &mii_status_reg); | |||
9497 | if (ret_val) | |||
9498 | return ret_val; | |||
9499 | ||||
9500 | ret_val = em_read_phy_reg(hw, PHY_STATUS0x01, &mii_status_reg); | |||
9501 | if (ret_val) | |||
9502 | return ret_val; | |||
9503 | ||||
9504 | if (mii_status_reg & MII_SR_LINK_STATUS0x0004) | |||
9505 | break; | |||
9506 | msec_delay_irq(100)(*delay_func)(1000*(100)); | |||
9507 | } | |||
9508 | return E1000_SUCCESS0; | |||
9509 | } | |||
9510 | ||||
9511 | /****************************************************************************** | |||
9512 | * | |||
9513 | * Disables PCI-Express master access. | |||
9514 | * | |||
9515 | * hw: Struct containing variables accessed by shared code | |||
9516 | * | |||
9517 | * returns: - none. | |||
9518 | * | |||
9519 | *****************************************************************************/ | |||
9520 | STATIC void | |||
9521 | em_set_pci_express_master_disable(struct em_hw *hw) | |||
9522 | { | |||
9523 | uint32_t ctrl; | |||
9524 | DEBUGFUNC("em_set_pci_express_master_disable");; | |||
9525 | ||||
9526 | if (hw->bus_type != em_bus_type_pci_express) | |||
9527 | return; | |||
9528 | ||||
9529 | ctrl = E1000_READ_REG(hw, CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))))); | |||
9530 | ctrl |= E1000_CTRL_GIO_MASTER_DISABLE0x00000004; | |||
9531 | E1000_WRITE_REG(hw, CTRL, ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (ctrl))); | |||
9532 | } | |||
9533 | ||||
9534 | /****************************************************************************** | |||
9535 | * | |||
9536 | * Disables PCI-Express master access and verifies there are no pending | |||
9537 | * requests | |||
9538 | * | |||
9539 | * hw: Struct containing variables accessed by shared code | |||
9540 | * | |||
9541 | * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't | |||
9542 | * caused the master requests to be disabled. | |||
9543 | * E1000_SUCCESS master requests disabled. | |||
9544 | * | |||
9545 | ******************************************************************************/ | |||
9546 | int32_t | |||
9547 | em_disable_pciex_master(struct em_hw *hw) | |||
9548 | { | |||
9549 | int32_t timeout = MASTER_DISABLE_TIMEOUT800; /* 80ms */ | |||
9550 | DEBUGFUNC("em_disable_pciex_master");; | |||
9551 | ||||
9552 | if (hw->bus_type != em_bus_type_pci_express) | |||
9553 | return E1000_SUCCESS0; | |||
9554 | ||||
9555 | em_set_pci_express_master_disable(hw); | |||
9556 | ||||
9557 | while (timeout) { | |||
9558 | if (!(E1000_READ_REG(hw, STATUS)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))) & | |||
9559 | E1000_STATUS_GIO_MASTER_ENABLE0x00080000)) | |||
9560 | break; | |||
9561 | else | |||
9562 | usec_delay(100)(*delay_func)(100); | |||
9563 | timeout--; | |||
9564 | } | |||
9565 | ||||
9566 | if (!timeout) { | |||
9567 | DEBUGOUT("Master requests are pending.\n"); | |||
9568 | return -E1000_ERR_MASTER_REQUESTS_PENDING10; | |||
9569 | } | |||
9570 | return E1000_SUCCESS0; | |||
9571 | } | |||
9572 | ||||
9573 | /****************************************************************************** | |||
9574 | * | |||
9575 | * Check for EEPROM Auto Read bit done. | |||
9576 | * | |||
9577 | * hw: Struct containing variables accessed by shared code | |||
9578 | * | |||
9579 | * returns: - E1000_ERR_RESET if fail to reset MAC | |||
9580 | * E1000_SUCCESS at any other case. | |||
9581 | * | |||
9582 | ******************************************************************************/ | |||
9583 | STATIC int32_t | |||
9584 | em_get_auto_rd_done(struct em_hw *hw) | |||
9585 | { | |||
9586 | int32_t timeout = AUTO_READ_DONE_TIMEOUT10; | |||
9587 | DEBUGFUNC("em_get_auto_rd_done");; | |||
9588 | ||||
9589 | switch (hw->mac_type) { | |||
9590 | default: | |||
9591 | msec_delay(5)(*delay_func)(1000*(5)); | |||
9592 | break; | |||
9593 | case em_82571: | |||
9594 | case em_82572: | |||
9595 | case em_82573: | |||
9596 | case em_82574: | |||
9597 | case em_82575: | |||
9598 | case em_82576: | |||
9599 | case em_82580: | |||
9600 | case em_80003es2lan: | |||
9601 | case em_i210: | |||
9602 | case em_i350: | |||
9603 | case em_ich8lan: | |||
9604 | case em_ich9lan: | |||
9605 | case em_ich10lan: | |||
9606 | case em_pchlan: | |||
9607 | case em_pch2lan: | |||
9608 | case em_pch_lpt: | |||
9609 | case em_pch_spt: | |||
9610 | case em_pch_cnp: | |||
9611 | while (timeout) { | |||
9612 | if (E1000_READ_REG(hw, EECD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))))) & E1000_EECD_AUTO_RD0x00000200) | |||
9613 | break; | |||
9614 | else | |||
9615 | msec_delay(1)(*delay_func)(1000*(1)); | |||
9616 | timeout--; | |||
9617 | } | |||
9618 | ||||
9619 | if (!timeout) { | |||
9620 | DEBUGOUT("Auto read by HW from EEPROM has not" | |||
9621 | " completed.\n"); | |||
9622 | return -E1000_ERR_RESET9; | |||
9623 | } | |||
9624 | break; | |||
9625 | } | |||
9626 | /* | |||
9627 | * PHY configuration from NVM just starts after EECD_AUTO_RD sets to | |||
9628 | * high. Need to wait for PHY configuration completion before | |||
9629 | * accessing NVM and PHY. | |||
9630 | */ | |||
9631 | if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) | |||
9632 | msec_delay(25)(*delay_func)(1000*(25)); | |||
9633 | ||||
9634 | return E1000_SUCCESS0; | |||
9635 | } | |||
9636 | ||||
9637 | /*************************************************************************** | |||
9638 | * Checks if the PHY configuration is done | |||
9639 | * | |||
9640 | * hw: Struct containing variables accessed by shared code | |||
9641 | * | |||
9642 | * returns: - E1000_ERR_RESET if fail to reset MAC | |||
9643 | * E1000_SUCCESS at any other case. | |||
9644 | * | |||
9645 | ***************************************************************************/ | |||
9646 | STATIC int32_t | |||
9647 | em_get_phy_cfg_done(struct em_hw *hw) | |||
9648 | { | |||
9649 | int32_t timeout = PHY_CFG_TIMEOUT100; | |||
9650 | uint32_t cfg_mask = E1000_NVM_CFG_DONE_PORT_00x040000; | |||
9651 | DEBUGFUNC("em_get_phy_cfg_done");; | |||
9652 | ||||
9653 | switch (hw->mac_type) { | |||
9654 | default: | |||
9655 | msec_delay_irq(10)(*delay_func)(1000*(10)); | |||
9656 | break; | |||
9657 | case em_80003es2lan: | |||
9658 | case em_82575: | |||
9659 | case em_82576: | |||
9660 | case em_82580: | |||
9661 | case em_i350: | |||
9662 | switch (hw->bus_func) { | |||
9663 | case 1: | |||
9664 | cfg_mask = E1000_NVM_CFG_DONE_PORT_10x080000; | |||
9665 | break; | |||
9666 | case 2: | |||
9667 | cfg_mask = E1000_NVM_CFG_DONE_PORT_20x100000; | |||
9668 | break; | |||
9669 | case 3: | |||
9670 | cfg_mask = E1000_NVM_CFG_DONE_PORT_30x200000; | |||
9671 | break; | |||
9672 | } | |||
9673 | /* FALLTHROUGH */ | |||
9674 | case em_82571: | |||
9675 | case em_82572: | |||
9676 | while (timeout) { | |||
9677 | if (E1000_READ_REG(hw, EEMNGCTL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x01010 : em_translate_82542_register (0x01010))))) & cfg_mask) | |||
9678 | break; | |||
9679 | else | |||
9680 | msec_delay(1)(*delay_func)(1000*(1)); | |||
9681 | timeout--; | |||
9682 | } | |||
9683 | if (!timeout) { | |||
9684 | DEBUGOUT("MNG configuration cycle has not completed." | |||
9685 | "\n"); | |||
9686 | } | |||
9687 | break; | |||
9688 | } | |||
9689 | ||||
9690 | return E1000_SUCCESS0; | |||
9691 | } | |||
9692 | ||||
9693 | /*************************************************************************** | |||
9694 | * | |||
9695 | * Using the combination of SMBI and SWESMBI semaphore bits when resetting | |||
9696 | * adapter or Eeprom access. | |||
9697 | * | |||
9698 | * hw: Struct containing variables accessed by shared code | |||
9699 | * | |||
9700 | * returns: - E1000_ERR_EEPROM if fail to access EEPROM. | |||
9701 | * E1000_SUCCESS at any other case. | |||
9702 | * | |||
9703 | ***************************************************************************/ | |||
9704 | STATIC int32_t | |||
9705 | em_get_hw_eeprom_semaphore(struct em_hw *hw) | |||
9706 | { | |||
9707 | int32_t timeout; | |||
9708 | uint32_t swsm; | |||
9709 | DEBUGFUNC("em_get_hw_eeprom_semaphore");; | |||
9710 | ||||
9711 | if (!hw->eeprom_semaphore_present) | |||
9712 | return E1000_SUCCESS0; | |||
9713 | ||||
9714 | if (hw->mac_type == em_80003es2lan) { | |||
9715 | /* Get the SW semaphore. */ | |||
9716 | if (em_get_software_semaphore(hw) != E1000_SUCCESS0) | |||
9717 | return -E1000_ERR_EEPROM1; | |||
9718 | } | |||
9719 | /* Get the FW semaphore. */ | |||
9720 | timeout = hw->eeprom.word_size + 1; | |||
9721 | while (timeout) { | |||
9722 | swsm = E1000_READ_REG(hw, SWSM)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B50 : em_translate_82542_register (0x05B50))))); | |||
9723 | swsm |= E1000_SWSM_SWESMBI0x00000002; | |||
9724 | E1000_WRITE_REG(hw, SWSM, swsm)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B50 : em_translate_82542_register (0x05B50))), (swsm))); | |||
9725 | /* if we managed to set the bit we got the semaphore. */ | |||
9726 | swsm = E1000_READ_REG(hw, SWSM)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B50 : em_translate_82542_register (0x05B50))))); | |||
9727 | if (swsm & E1000_SWSM_SWESMBI0x00000002) | |||
9728 | break; | |||
9729 | ||||
9730 | usec_delay(50)(*delay_func)(50); | |||
9731 | timeout--; | |||
9732 | } | |||
9733 | ||||
9734 | if (!timeout) { | |||
9735 | /* Release semaphores */ | |||
9736 | em_put_hw_eeprom_semaphore(hw); | |||
9737 | DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set." | |||
9738 | "\n"); | |||
9739 | return -E1000_ERR_EEPROM1; | |||
9740 | } | |||
9741 | return E1000_SUCCESS0; | |||
9742 | } | |||
9743 | ||||
9744 | /*************************************************************************** | |||
9745 | * This function clears HW semaphore bits. | |||
9746 | * | |||
9747 | * hw: Struct containing variables accessed by shared code | |||
9748 | * | |||
9749 | * returns: - None. | |||
9750 | * | |||
9751 | ***************************************************************************/ | |||
9752 | STATIC void | |||
9753 | em_put_hw_eeprom_semaphore(struct em_hw *hw) | |||
9754 | { | |||
9755 | uint32_t swsm; | |||
9756 | DEBUGFUNC("em_put_hw_eeprom_semaphore");; | |||
9757 | ||||
9758 | if (!hw->eeprom_semaphore_present) | |||
9759 | return; | |||
9760 | ||||
9761 | swsm = E1000_READ_REG(hw, SWSM)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B50 : em_translate_82542_register (0x05B50))))); | |||
9762 | if (hw->mac_type == em_80003es2lan) { | |||
9763 | /* Release both semaphores. */ | |||
9764 | swsm &= ~(E1000_SWSM_SMBI0x00000001 | E1000_SWSM_SWESMBI0x00000002); | |||
9765 | } else | |||
9766 | swsm &= ~(E1000_SWSM_SWESMBI0x00000002); | |||
9767 | E1000_WRITE_REG(hw, SWSM, swsm)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B50 : em_translate_82542_register (0x05B50))), (swsm))); | |||
9768 | } | |||
9769 | ||||
9770 | /*************************************************************************** | |||
9771 | * | |||
9772 | * Obtaining software semaphore bit (SMBI) before resetting PHY. | |||
9773 | * | |||
9774 | * hw: Struct containing variables accessed by shared code | |||
9775 | * | |||
9776 | * returns: - E1000_ERR_RESET if fail to obtain semaphore. | |||
9777 | * E1000_SUCCESS at any other case. | |||
9778 | * | |||
9779 | ***************************************************************************/ | |||
9780 | STATIC int32_t | |||
9781 | em_get_software_semaphore(struct em_hw *hw) | |||
9782 | { | |||
9783 | int32_t timeout = hw->eeprom.word_size + 1; | |||
9784 | uint32_t swsm; | |||
9785 | DEBUGFUNC("em_get_software_semaphore");; | |||
9786 | ||||
9787 | if (hw->mac_type != em_80003es2lan) | |||
9788 | return E1000_SUCCESS0; | |||
9789 | ||||
9790 | while (timeout) { | |||
9791 | swsm = E1000_READ_REG(hw, SWSM)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B50 : em_translate_82542_register (0x05B50))))); | |||
9792 | /* | |||
9793 | * If SMBI bit cleared, it is now set and we hold the | |||
9794 | * semaphore | |||
9795 | */ | |||
9796 | if (!(swsm & E1000_SWSM_SMBI0x00000001)) | |||
9797 | break; | |||
9798 | msec_delay_irq(1)(*delay_func)(1000*(1)); | |||
9799 | timeout--; | |||
9800 | } | |||
9801 | ||||
9802 | if (!timeout) { | |||
9803 | DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); | |||
9804 | return -E1000_ERR_RESET9; | |||
9805 | } | |||
9806 | return E1000_SUCCESS0; | |||
9807 | } | |||
9808 | ||||
9809 | /*************************************************************************** | |||
9810 | * | |||
9811 | * Release semaphore bit (SMBI). | |||
9812 | * | |||
9813 | * hw: Struct containing variables accessed by shared code | |||
9814 | * | |||
9815 | ***************************************************************************/ | |||
9816 | STATIC void | |||
9817 | em_release_software_semaphore(struct em_hw *hw) | |||
9818 | { | |||
9819 | uint32_t swsm; | |||
9820 | DEBUGFUNC("em_release_software_semaphore");; | |||
9821 | ||||
9822 | if (hw->mac_type != em_80003es2lan) | |||
9823 | return; | |||
9824 | ||||
9825 | swsm = E1000_READ_REG(hw, SWSM)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B50 : em_translate_82542_register (0x05B50))))); | |||
9826 | /* Release the SW semaphores. */ | |||
9827 | swsm &= ~E1000_SWSM_SMBI0x00000001; | |||
9828 | E1000_WRITE_REG(hw, SWSM, swsm)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B50 : em_translate_82542_register (0x05B50))), (swsm))); | |||
9829 | } | |||
9830 | ||||
9831 | /****************************************************************************** | |||
9832 | * Checks if PHY reset is blocked due to SOL/IDER session, for example. | |||
9833 | * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to | |||
9834 | * the caller to figure out how to deal with it. | |||
9835 | * | |||
9836 | * hw - Struct containing variables accessed by shared code | |||
9837 | * | |||
9838 | * returns: - E1000_BLK_PHY_RESET | |||
9839 | * E1000_SUCCESS | |||
9840 | * | |||
9841 | *****************************************************************************/ | |||
9842 | int32_t | |||
9843 | em_check_phy_reset_block(struct em_hw *hw) | |||
9844 | { | |||
9845 | uint32_t manc = 0; | |||
9846 | uint32_t fwsm = 0; | |||
9847 | DEBUGFUNC("em_check_phy_reset_block\n");; | |||
9848 | ||||
9849 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | |||
9850 | int i = 0; | |||
9851 | int blocked = 0; | |||
9852 | do { | |||
9853 | fwsm = E1000_READ_REG(hw, FWSM)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B54 : em_translate_82542_register (0x05B54))))); | |||
9854 | if (!(fwsm & E1000_FWSM_RSPCIPHY0x00000040)) { | |||
9855 | blocked = 1; | |||
9856 | msec_delay(10)(*delay_func)(1000*(10)); | |||
9857 | continue; | |||
9858 | } | |||
9859 | blocked = 0; | |||
9860 | } while (blocked && (i++ < 30)); | |||
9861 | return blocked ? E1000_BLK_PHY_RESET12 : E1000_SUCCESS0; | |||
9862 | } | |||
9863 | if (hw->mac_type > em_82547_rev_2) | |||
9864 | manc = E1000_READ_REG(hw, MANC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05820 : em_translate_82542_register (0x05820))))); | |||
9865 | return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE0x00040000) ? | |||
9866 | E1000_BLK_PHY_RESET12 : E1000_SUCCESS0; | |||
9867 | } | |||
9868 | ||||
9869 | /****************************************************************************** | |||
9870 | * Configure PCI-Ex no-snoop | |||
9871 | * | |||
9872 | * hw - Struct containing variables accessed by shared code. | |||
9873 | * no_snoop - Bitmap of no-snoop events. | |||
9874 | * | |||
9875 | * returns: E1000_SUCCESS | |||
9876 | * | |||
9877 | *****************************************************************************/ | |||
9878 | STATIC int32_t | |||
9879 | em_set_pci_ex_no_snoop(struct em_hw *hw, uint32_t no_snoop) | |||
9880 | { | |||
9881 | uint32_t gcr_reg = 0; | |||
9882 | DEBUGFUNC("em_set_pci_ex_no_snoop");; | |||
9883 | ||||
9884 | if (hw->bus_type == em_bus_type_unknown) | |||
9885 | em_get_bus_info(hw); | |||
9886 | ||||
9887 | if (hw->bus_type != em_bus_type_pci_express) | |||
9888 | return E1000_SUCCESS0; | |||
9889 | ||||
9890 | if (no_snoop) { | |||
9891 | gcr_reg = E1000_READ_REG(hw, GCR)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B00 : em_translate_82542_register (0x05B00))))); | |||
9892 | gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL(0x00000001 | 0x00000002 | 0x00000004 | 0x00000008 | 0x00000010 | 0x00000020)); | |||
9893 | gcr_reg |= no_snoop; | |||
9894 | E1000_WRITE_REG(hw, GCR, gcr_reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B00 : em_translate_82542_register (0x05B00))), (gcr_reg))); | |||
9895 | } | |||
9896 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | |||
9897 | uint32_t ctrl_ext; | |||
9898 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))))); | |||
9899 | ctrl_ext |= E1000_CTRL_EXT_RO_DIS0x00020000; | |||
9900 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))), (ctrl_ext))); | |||
9901 | } | |||
9902 | return E1000_SUCCESS0; | |||
9903 | } | |||
9904 | ||||
9905 | /*************************************************************************** | |||
9906 | * | |||
9907 | * Get software semaphore FLAG bit (SWFLAG). | |||
9908 | * SWFLAG is used to synchronize the access to all shared resource between | |||
9909 | * SW, FW and HW. | |||
9910 | * | |||
9911 | * hw: Struct containing variables accessed by shared code | |||
9912 | * | |||
9913 | ***************************************************************************/ | |||
9914 | STATIC int32_t | |||
9915 | em_get_software_flag(struct em_hw *hw) | |||
9916 | { | |||
9917 | int32_t timeout = PHY_CFG_TIMEOUT100; | |||
9918 | uint32_t extcnf_ctrl; | |||
9919 | DEBUGFUNC("em_get_software_flag");; | |||
9920 | ||||
9921 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | |||
9922 | if (hw->sw_flag) { | |||
9923 | hw->sw_flag++; | |||
9924 | return E1000_SUCCESS0; | |||
9925 | } | |||
9926 | while (timeout) { | |||
9927 | extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F00 : em_translate_82542_register (0x00F00))))); | |||
9928 | if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG0x00000020)) | |||
9929 | break; | |||
9930 | msec_delay_irq(1)(*delay_func)(1000*(1)); | |||
9931 | timeout--; | |||
9932 | } | |||
9933 | if (!timeout) { | |||
9934 | printf("%s: SW has already locked the resource?\n", | |||
9935 | __func__); | |||
9936 | return -E1000_ERR_CONFIG3; | |||
9937 | } | |||
9938 | timeout = SW_FLAG_TIMEOUT1000; | |||
9939 | extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG0x00000020; | |||
9940 | E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F00 : em_translate_82542_register (0x00F00))), (extcnf_ctrl))); | |||
9941 | ||||
9942 | while (timeout) { | |||
9943 | extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F00 : em_translate_82542_register (0x00F00))))); | |||
9944 | if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG0x00000020) | |||
9945 | break; | |||
9946 | msec_delay_irq(1)(*delay_func)(1000*(1)); | |||
9947 | timeout--; | |||
9948 | } | |||
9949 | ||||
9950 | if (!timeout) { | |||
9951 | printf("Failed to acquire the semaphore, FW or HW " | |||
9952 | "has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n", | |||
9953 | E1000_READ_REG(hw, FWSM)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B54 : em_translate_82542_register (0x05B54))))), extcnf_ctrl); | |||
9954 | extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG0x00000020; | |||
9955 | E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F00 : em_translate_82542_register (0x00F00))), (extcnf_ctrl))); | |||
9956 | return -E1000_ERR_CONFIG3; | |||
9957 | } | |||
9958 | } | |||
9959 | hw->sw_flag++; | |||
9960 | return E1000_SUCCESS0; | |||
9961 | } | |||
9962 | ||||
9963 | /*************************************************************************** | |||
9964 | * | |||
9965 | * Release software semaphore FLAG bit (SWFLAG). | |||
9966 | * SWFLAG is used to synchronize the access to all shared resource between | |||
9967 | * SW, FW and HW. | |||
9968 | * | |||
9969 | * hw: Struct containing variables accessed by shared code | |||
9970 | * | |||
9971 | ***************************************************************************/ | |||
9972 | STATIC void | |||
9973 | em_release_software_flag(struct em_hw *hw) | |||
9974 | { | |||
9975 | uint32_t extcnf_ctrl; | |||
9976 | DEBUGFUNC("em_release_software_flag");; | |||
9977 | ||||
9978 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | |||
9979 | KASSERT(hw->sw_flag > 0)((hw->sw_flag > 0) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/dev/pci/if_em_hw.c" , 9979, "hw->sw_flag > 0")); | |||
9980 | if (--hw->sw_flag > 0) | |||
9981 | return; | |||
9982 | extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F00 : em_translate_82542_register (0x00F00))))); | |||
9983 | extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG0x00000020; | |||
9984 | E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F00 : em_translate_82542_register (0x00F00))), (extcnf_ctrl))); | |||
9985 | } | |||
9986 | return; | |||
9987 | } | |||
9988 | ||||
9989 | /** | |||
9990 | * em_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1 | |||
9991 | * @hw: pointer to the HW structure | |||
9992 | * @bank: pointer to the variable that returns the active bank | |||
9993 | * | |||
9994 | * Reads signature byte from the NVM using the flash access registers. | |||
9995 | * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank. | |||
9996 | **/ | |||
9997 | int32_t | |||
9998 | em_valid_nvm_bank_detect_ich8lan(struct em_hw *hw, uint32_t *bank) | |||
9999 | { | |||
10000 | uint32_t eecd; | |||
10001 | uint32_t bank1_offset = hw->flash_bank_size * sizeof(uint16_t); | |||
10002 | uint32_t act_offset = E1000_ICH_NVM_SIG_WORD0x13 * 2 + 1; | |||
10003 | uint32_t nvm_dword = 0; | |||
10004 | uint8_t sig_byte = 0; | |||
10005 | int32_t ret_val; | |||
10006 | ||||
10007 | DEBUGFUNC("em_valid_nvm_bank_detect_ich8lan");; | |||
10008 | ||||
10009 | switch (hw->mac_type) { | |||
10010 | case em_pch_spt: | |||
10011 | case em_pch_cnp: | |||
10012 | bank1_offset = hw->flash_bank_size * 2; | |||
10013 | act_offset = E1000_ICH_NVM_SIG_WORD0x13 * 2; | |||
10014 | ||||
10015 | /* set bank to 0 in case flash read fails. */ | |||
10016 | *bank = 0; | |||
10017 | ||||
10018 | /* Check bank 0 */ | |||
10019 | ret_val = em_read_ich8_dword(hw, act_offset, &nvm_dword); | |||
10020 | if (ret_val) | |||
10021 | return ret_val; | |||
10022 | sig_byte = (uint8_t)((nvm_dword & 0xFF00) >> 8); | |||
10023 | if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK0xC0) == | |||
10024 | E1000_ICH_NVM_SIG_VALUE0x80) { | |||
10025 | *bank = 0; | |||
10026 | return 0; | |||
10027 | } | |||
10028 | ||||
10029 | /* Check bank 1 */ | |||
10030 | ret_val = em_read_ich8_dword(hw, act_offset + bank1_offset, | |||
10031 | &nvm_dword); | |||
10032 | if (ret_val) | |||
10033 | return ret_val; | |||
10034 | sig_byte = (uint8_t)((nvm_dword & 0xFF00) >> 8); | |||
10035 | if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK0xC0) == | |||
10036 | E1000_ICH_NVM_SIG_VALUE0x80) { | |||
10037 | *bank = 1; | |||
10038 | return 0; | |||
10039 | } | |||
10040 | ||||
10041 | DEBUGOUT("ERROR: No valid NVM bank present\n"); | |||
10042 | return -1; | |||
10043 | case em_ich8lan: | |||
10044 | case em_ich9lan: | |||
10045 | eecd = E1000_READ_REG(hw, EECD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))))); | |||
10046 | if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK(0x00000200 | 0x00000100)) == | |||
10047 | E1000_EECD_SEC1VAL_VALID_MASK(0x00000200 | 0x00000100)) { | |||
10048 | if (eecd & E1000_EECD_SEC1VAL0x00400000) | |||
10049 | *bank = 1; | |||
10050 | else | |||
10051 | *bank = 0; | |||
10052 | ||||
10053 | return E1000_SUCCESS0; | |||
10054 | } | |||
10055 | DEBUGOUT("Unable to determine valid NVM bank via EEC - reading flash signature\n"); | |||
10056 | /* fall-thru */ | |||
10057 | default: | |||
10058 | /* set bank to 0 in case flash read fails */ | |||
10059 | *bank = 0; | |||
10060 | ||||
10061 | /* Check bank 0 */ | |||
10062 | ret_val = em_read_ich8_byte(hw, act_offset, | |||
10063 | &sig_byte); | |||
10064 | if (ret_val) | |||
10065 | return ret_val; | |||
10066 | if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK0xC0) == | |||
10067 | E1000_ICH_NVM_SIG_VALUE0x80) { | |||
10068 | *bank = 0; | |||
10069 | return E1000_SUCCESS0; | |||
10070 | } | |||
10071 | ||||
10072 | /* Check bank 1 */ | |||
10073 | ret_val = em_read_ich8_byte(hw, act_offset + | |||
10074 | bank1_offset, | |||
10075 | &sig_byte); | |||
10076 | if (ret_val) | |||
10077 | return ret_val; | |||
10078 | if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK0xC0) == | |||
10079 | E1000_ICH_NVM_SIG_VALUE0x80) { | |||
10080 | *bank = 1; | |||
10081 | return E1000_SUCCESS0; | |||
10082 | } | |||
10083 | ||||
10084 | DEBUGOUT("ERROR: No valid NVM bank present\n"); | |||
10085 | return -1; | |||
10086 | } | |||
10087 | } | |||
10088 | ||||
10089 | STATIC int32_t | |||
10090 | em_read_eeprom_spt(struct em_hw *hw, uint16_t offset, uint16_t words, | |||
10091 | uint16_t *data) | |||
10092 | { | |||
10093 | int32_t error = E1000_SUCCESS0; | |||
10094 | uint32_t flash_bank = 0; | |||
10095 | uint32_t act_offset = 0; | |||
10096 | uint32_t bank_offset = 0; | |||
10097 | uint32_t dword = 0; | |||
10098 | uint16_t i = 0, add; | |||
10099 | ||||
10100 | /* | |||
10101 | * We need to know which is the valid flash bank. In the event that | |||
10102 | * we didn't allocate eeprom_shadow_ram, we may not be managing | |||
10103 | * flash_bank. So it cannot be trusted and needs to be updated with | |||
10104 | * each read. | |||
10105 | */ | |||
10106 | ||||
10107 | if (hw->mac_type < em_pch_spt) | |||
10108 | return -E1000_ERR_EEPROM1; | |||
10109 | ||||
10110 | error = em_get_software_flag(hw); | |||
10111 | if (error != E1000_SUCCESS0) | |||
10112 | return error; | |||
10113 | ||||
10114 | error = em_valid_nvm_bank_detect_ich8lan(hw, &flash_bank); | |||
10115 | if (error != E1000_SUCCESS0) { | |||
10116 | DEBUGOUT("Could not detect valid bank, assuming bank 0\n"); | |||
10117 | flash_bank = 0; | |||
10118 | } | |||
10119 | ||||
10120 | /* | |||
10121 | * Adjust offset appropriately if we're on bank 1 - adjust for word | |||
10122 | * size | |||
10123 | */ | |||
10124 | bank_offset = flash_bank * (hw->flash_bank_size * 2); | |||
10125 | ||||
10126 | for (i = add = 0; i < words; i += add) { | |||
10127 | if ((offset + i) % 2) { | |||
10128 | add = 1; | |||
10129 | if (hw->eeprom_shadow_ram != NULL((void *)0) | |||
10130 | && hw->eeprom_shadow_ram[offset + i].modified) { | |||
10131 | data[i] = | |||
10132 | hw->eeprom_shadow_ram[offset+i].eeprom_word; | |||
10133 | continue; | |||
10134 | } | |||
10135 | act_offset = bank_offset + (offset + i - 1) * 2; | |||
10136 | } else { | |||
10137 | add = 2; | |||
10138 | if (hw->eeprom_shadow_ram != NULL((void *)0) | |||
10139 | && hw->eeprom_shadow_ram[offset+i].modified | |||
10140 | && hw->eeprom_shadow_ram[offset+i+1].modified) { | |||
10141 | data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word; | |||
10142 | data[i+1] = hw->eeprom_shadow_ram[offset+i+1].eeprom_word; | |||
10143 | continue; | |||
10144 | } | |||
10145 | act_offset = bank_offset + (offset + i) * 2; | |||
10146 | } | |||
10147 | error = em_read_ich8_dword(hw, act_offset, &dword); | |||
10148 | if (error != E1000_SUCCESS0) | |||
10149 | break; | |||
10150 | if (hw->eeprom_shadow_ram != NULL((void *)0) | |||
10151 | && hw->eeprom_shadow_ram[offset+i].modified) { | |||
10152 | data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word; | |||
10153 | } else { | |||
10154 | if (add == 1) | |||
10155 | data[i] = dword >> 16; | |||
10156 | else | |||
10157 | data[i] = dword & 0xFFFFUL; | |||
10158 | } | |||
10159 | if (add == 1 || words-i == 1) | |||
10160 | continue; | |||
10161 | if (hw->eeprom_shadow_ram != NULL((void *)0) | |||
10162 | && hw->eeprom_shadow_ram[offset+i+1].modified) { | |||
10163 | data[i+1] = | |||
10164 | hw->eeprom_shadow_ram[offset+i+1].eeprom_word; | |||
10165 | } else { | |||
10166 | data[i+1] = dword >> 16; | |||
10167 | } | |||
10168 | } | |||
10169 | ||||
10170 | em_release_software_flag(hw); | |||
10171 | ||||
10172 | return error; | |||
10173 | } | |||
10174 | ||||
10175 | /****************************************************************************** | |||
10176 | * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access | |||
10177 | * register. | |||
10178 | * | |||
10179 | * hw - Struct containing variables accessed by shared code | |||
10180 | * offset - offset of word in the EEPROM to read | |||
10181 | * data - word read from the EEPROM | |||
10182 | * words - number of words to read | |||
10183 | *****************************************************************************/ | |||
10184 | STATIC int32_t | |||
10185 | em_read_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words, | |||
10186 | uint16_t *data) | |||
10187 | { | |||
10188 | int32_t error = E1000_SUCCESS0; | |||
10189 | uint32_t flash_bank = 0; | |||
10190 | uint32_t act_offset = 0; | |||
10191 | uint32_t bank_offset = 0; | |||
10192 | uint16_t word = 0; | |||
10193 | uint16_t i = 0; | |||
10194 | /* | |||
10195 | * We need to know which is the valid flash bank. In the event that | |||
10196 | * we didn't allocate eeprom_shadow_ram, we may not be managing | |||
10197 | * flash_bank. So it cannot be trusted and needs to be updated with | |||
10198 | * each read. | |||
10199 | */ | |||
10200 | ||||
10201 | if (hw->mac_type >= em_pch_spt) | |||
10202 | return em_read_eeprom_spt(hw, offset, words, data); | |||
10203 | ||||
10204 | error = em_get_software_flag(hw); | |||
10205 | if (error != E1000_SUCCESS0) | |||
10206 | return error; | |||
10207 | ||||
10208 | error = em_valid_nvm_bank_detect_ich8lan(hw, &flash_bank); | |||
10209 | if (error != E1000_SUCCESS0) { | |||
10210 | DEBUGOUT("Could not detect valid bank, assuming bank 0\n"); | |||
10211 | flash_bank = 0; | |||
10212 | } | |||
10213 | ||||
10214 | /* | |||
10215 | * Adjust offset appropriately if we're on bank 1 - adjust for word | |||
10216 | * size | |||
10217 | */ | |||
10218 | bank_offset = flash_bank * (hw->flash_bank_size * 2); | |||
10219 | ||||
10220 | for (i = 0; i < words; i++) { | |||
10221 | if (hw->eeprom_shadow_ram != NULL((void *)0) && | |||
10222 | hw->eeprom_shadow_ram[offset + i].modified == TRUE1) { | |||
10223 | data[i] = | |||
10224 | hw->eeprom_shadow_ram[offset + i].eeprom_word; | |||
10225 | } else { | |||
10226 | /* The NVM part needs a byte offset, hence * 2 */ | |||
10227 | act_offset = bank_offset + ((offset + i) * 2); | |||
10228 | error = em_read_ich8_word(hw, act_offset, &word); | |||
10229 | if (error != E1000_SUCCESS0) | |||
10230 | break; | |||
10231 | data[i] = word; | |||
10232 | } | |||
10233 | } | |||
10234 | ||||
10235 | em_release_software_flag(hw); | |||
10236 | ||||
10237 | return error; | |||
10238 | } | |||
10239 | ||||
10240 | /****************************************************************************** | |||
10241 | * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access | |||
10242 | * register. Actually, writes are written to the shadow ram cache in the hw | |||
10243 | * structure hw->em_shadow_ram. em_commit_shadow_ram flushes this to | |||
10244 | * the NVM, which occurs when the NVM checksum is updated. | |||
10245 | * | |||
10246 | * hw - Struct containing variables accessed by shared code | |||
10247 | * offset - offset of word in the EEPROM to write | |||
10248 | * words - number of words to write | |||
10249 | * data - words to write to the EEPROM | |||
10250 | *****************************************************************************/ | |||
10251 | STATIC int32_t | |||
10252 | em_write_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words, | |||
10253 | uint16_t *data) | |||
10254 | { | |||
10255 | uint32_t i = 0; | |||
10256 | int32_t error = E1000_SUCCESS0; | |||
10257 | error = em_get_software_flag(hw); | |||
10258 | if (error != E1000_SUCCESS0) | |||
10259 | return error; | |||
10260 | /* | |||
10261 | * A driver can write to the NVM only if it has eeprom_shadow_ram | |||
10262 | * allocated. Subsequent reads to the modified words are read from | |||
10263 | * this cached structure as well. Writes will only go into this | |||
10264 | * cached structure unless it's followed by a call to | |||
10265 | * em_update_eeprom_checksum() where it will commit the changes and | |||
10266 | * clear the "modified" field. | |||
10267 | */ | |||
10268 | if (hw->eeprom_shadow_ram != NULL((void *)0)) { | |||
10269 | for (i = 0; i < words; i++) { | |||
10270 | if ((offset + i) < E1000_SHADOW_RAM_WORDS2048) { | |||
10271 | hw->eeprom_shadow_ram[offset + i].modified = | |||
10272 | TRUE1; | |||
10273 | hw->eeprom_shadow_ram[offset + i].eeprom_word = | |||
10274 | data[i]; | |||
10275 | } else { | |||
10276 | error = -E1000_ERR_EEPROM1; | |||
10277 | break; | |||
10278 | } | |||
10279 | } | |||
10280 | } else { | |||
10281 | /* | |||
10282 | * Drivers have the option to not allocate eeprom_shadow_ram | |||
10283 | * as long as they don't perform any NVM writes. An attempt | |||
10284 | * in doing so will result in this error. | |||
10285 | */ | |||
10286 | error = -E1000_ERR_EEPROM1; | |||
10287 | } | |||
10288 | ||||
10289 | em_release_software_flag(hw); | |||
10290 | ||||
10291 | return error; | |||
10292 | } | |||
10293 | ||||
10294 | /****************************************************************************** | |||
10295 | * This function does initial flash setup so that a new read/write/erase cycle | |||
10296 | * can be started. | |||
10297 | * | |||
10298 | * hw - The pointer to the hw structure | |||
10299 | ****************************************************************************/ | |||
10300 | STATIC int32_t | |||
10301 | em_ich8_cycle_init(struct em_hw *hw) | |||
10302 | { | |||
10303 | union ich8_hws_flash_status hsfsts; | |||
10304 | int32_t error = E1000_ERR_EEPROM1; | |||
10305 | int32_t i = 0; | |||
10306 | DEBUGFUNC("em_ich8_cycle_init");; | |||
10307 | ||||
10308 | if (hw->mac_type >= em_pch_spt) | |||
10309 | hsfsts.regval = E1000_READ_ICH_FLASH_REG32(hw,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))) | |||
10310 | ICH_FLASH_HSFSTS)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))) & 0xFFFFUL; | |||
10311 | else | |||
10312 | hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))) | |||
10313 | ICH_FLASH_HSFSTS)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))); | |||
10314 | ||||
10315 | /* May be check the Flash Des Valid bit in Hw status */ | |||
10316 | if (hsfsts.hsf_status.fldesvalid == 0) { | |||
10317 | DEBUGOUT("Flash descriptor invalid. SW Sequencing must be" | |||
10318 | " used."); | |||
10319 | return error; | |||
10320 | } | |||
10321 | /* Clear FCERR in Hw status by writing 1 */ | |||
10322 | /* Clear DAEL in Hw status by writing a 1 */ | |||
10323 | hsfsts.hsf_status.flcerr = 1; | |||
10324 | hsfsts.hsf_status.dael = 1; | |||
10325 | if (hw->mac_type >= em_pch_spt) | |||
10326 | E1000_WRITE_ICH_FLASH_REG32(hw, ICH_FLASH_HSFSTS,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ), (hsfsts.regval & 0xFFFFUL))) | |||
10327 | hsfsts.regval & 0xFFFFUL)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ), (hsfsts.regval & 0xFFFFUL))); | |||
10328 | else | |||
10329 | E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ), (hsfsts.regval))) | |||
10330 | hsfsts.regval)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ), (hsfsts.regval))); | |||
10331 | /* | |||
10332 | * Either we should have a hardware SPI cycle in progress bit to | |||
10333 | * check against, in order to start a new cycle or FDONE bit should | |||
10334 | * be changed in the hardware so that it is 1 after hardware reset, | |||
10335 | * which can then be used as an indication whether a cycle is in | |||
10336 | * progress or has been completed .. we should also have some | |||
10337 | * software semaphore mechanism to guard FDONE or the cycle in | |||
10338 | * progress bit so that two threads access to those bits can be | |||
10339 | * sequentiallized or a way so that 2 threads dont start the cycle at | |||
10340 | * the same time | |||
10341 | */ | |||
10342 | ||||
10343 | if (hsfsts.hsf_status.flcinprog == 0) { | |||
10344 | /* | |||
10345 | * There is no cycle running at present, so we can start a | |||
10346 | * cycle | |||
10347 | */ | |||
10348 | /* Begin by setting Flash Cycle Done. */ | |||
10349 | hsfsts.hsf_status.flcdone = 1; | |||
10350 | if (hw->mac_type >= em_pch_spt) | |||
10351 | E1000_WRITE_ICH_FLASH_REG32(hw, ICH_FLASH_HSFSTS,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ), (hsfsts.regval & 0xFFFFUL))) | |||
10352 | hsfsts.regval & 0xFFFFUL)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ), (hsfsts.regval & 0xFFFFUL))); | |||
10353 | else | |||
10354 | E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ), (hsfsts.regval))) | |||
10355 | hsfsts.regval)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ), (hsfsts.regval))); | |||
10356 | error = E1000_SUCCESS0; | |||
10357 | } else { | |||
10358 | /* | |||
10359 | * otherwise poll for sometime so the current cycle has a | |||
10360 | * chance to end before giving up. | |||
10361 | */ | |||
10362 | for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT5000; i++) { | |||
10363 | if (hw->mac_type >= em_pch_spt) | |||
10364 | hsfsts.regval = E1000_READ_ICH_FLASH_REG32(((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))) | |||
10365 | hw, ICH_FLASH_HSFSTS)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))) & 0xFFFFUL; | |||
10366 | else | |||
10367 | hsfsts.regval = E1000_READ_ICH_FLASH_REG16(((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))) | |||
10368 | hw, ICH_FLASH_HSFSTS)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))); | |||
10369 | if (hsfsts.hsf_status.flcinprog == 0) { | |||
10370 | error = E1000_SUCCESS0; | |||
10371 | break; | |||
10372 | } | |||
10373 | usec_delay(1)(*delay_func)(1); | |||
10374 | } | |||
10375 | if (error == E1000_SUCCESS0) { | |||
10376 | /* | |||
10377 | * Successful in waiting for previous cycle to | |||
10378 | * timeout, now set the Flash Cycle Done. | |||
10379 | */ | |||
10380 | hsfsts.hsf_status.flcdone = 1; | |||
10381 | if (hw->mac_type >= em_pch_spt) | |||
10382 | E1000_WRITE_ICH_FLASH_REG32(hw,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ), (hsfsts.regval & 0xFFFFUL))) | |||
10383 | ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFFUL)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ), (hsfsts.regval & 0xFFFFUL))); | |||
10384 | else | |||
10385 | E1000_WRITE_ICH_FLASH_REG16(hw,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ), (hsfsts.regval))) | |||
10386 | ICH_FLASH_HSFSTS, hsfsts.regval)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ), (hsfsts.regval))); | |||
10387 | } else { | |||
10388 | DEBUGOUT("Flash controller busy, cannot get access"); | |||
10389 | } | |||
10390 | } | |||
10391 | return error; | |||
10392 | } | |||
10393 | ||||
10394 | /****************************************************************************** | |||
10395 | * This function starts a flash cycle and waits for its completion | |||
10396 | * | |||
10397 | * hw - The pointer to the hw structure | |||
10398 | *****************************************************************************/ | |||
10399 | STATIC int32_t | |||
10400 | em_ich8_flash_cycle(struct em_hw *hw, uint32_t timeout) | |||
10401 | { | |||
10402 | union ich8_hws_flash_ctrl hsflctl; | |||
10403 | union ich8_hws_flash_status hsfsts; | |||
10404 | int32_t error = E1000_ERR_EEPROM1; | |||
10405 | uint32_t i = 0; | |||
10406 | ||||
10407 | /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ | |||
10408 | if (hw->mac_type >= em_pch_spt) | |||
10409 | hsflctl.regval = E1000_READ_ICH_FLASH_REG32(hw,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))) | |||
10410 | ICH_FLASH_HSFSTS)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))) >> 16; | |||
10411 | else | |||
10412 | hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0006 ))) | |||
10413 | ICH_FLASH_HSFCTL)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0006 ))); | |||
10414 | hsflctl.hsf_ctrl.flcgo = 1; | |||
10415 | ||||
10416 | if (hw->mac_type >= em_pch_spt) | |||
10417 | E1000_WRITE_ICH_FLASH_REG32(hw, ICH_FLASH_HSFSTS,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ), ((uint32_t)hsflctl.regval << 16))) | |||
10418 | (uint32_t)hsflctl.regval << 16)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ), ((uint32_t)hsflctl.regval << 16))); | |||
10419 | else | |||
10420 | E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0006 ), (hsflctl.regval))) | |||
10421 | hsflctl.regval)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0006 ), (hsflctl.regval))); | |||
10422 | ||||
10423 | /* wait till FDONE bit is set to 1 */ | |||
10424 | do { | |||
10425 | if (hw->mac_type >= em_pch_spt) | |||
10426 | hsfsts.regval = E1000_READ_ICH_FLASH_REG32(hw,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))) | |||
10427 | ICH_FLASH_HSFSTS)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))) & 0xFFFFUL; | |||
10428 | else | |||
10429 | hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))) | |||
10430 | ICH_FLASH_HSFSTS)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))); | |||
10431 | if (hsfsts.hsf_status.flcdone == 1) | |||
10432 | break; | |||
10433 | usec_delay(1)(*delay_func)(1); | |||
10434 | i++; | |||
10435 | } while (i < timeout); | |||
10436 | if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) { | |||
10437 | error = E1000_SUCCESS0; | |||
10438 | } | |||
10439 | return error; | |||
10440 | } | |||
10441 | ||||
10442 | /****************************************************************************** | |||
10443 | * Reads a byte or word from the NVM using the ICH8 flash access registers. | |||
10444 | * | |||
10445 | * hw - The pointer to the hw structure | |||
10446 | * index - The index of the byte or word to read. | |||
10447 | * size - Size of data to read, 1=byte 2=word | |||
10448 | * data - Pointer to the word to store the value read. | |||
10449 | *****************************************************************************/ | |||
10450 | STATIC int32_t | |||
10451 | em_read_ich8_data(struct em_hw *hw, uint32_t index, uint32_t size, | |||
10452 | uint16_t *data) | |||
10453 | { | |||
10454 | union ich8_hws_flash_status hsfsts; | |||
10455 | union ich8_hws_flash_ctrl hsflctl; | |||
10456 | uint32_t flash_linear_address; | |||
10457 | uint32_t flash_data = 0; | |||
10458 | int32_t error = -E1000_ERR_EEPROM1; | |||
10459 | int32_t count = 0; | |||
10460 | DEBUGFUNC("em_read_ich8_data");; | |||
10461 | ||||
10462 | if (size < 1 || size > 2 || data == 0x0 || | |||
10463 | index > ICH_FLASH_LINEAR_ADDR_MASK0x00FFFFFF) | |||
10464 | return error; | |||
10465 | ||||
10466 | flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK0x00FFFFFF & index) + | |||
10467 | hw->flash_base_addr; | |||
10468 | ||||
10469 | do { | |||
10470 | usec_delay(1)(*delay_func)(1); | |||
10471 | /* Steps */ | |||
10472 | error = em_ich8_cycle_init(hw); | |||
10473 | if (error != E1000_SUCCESS0) | |||
10474 | break; | |||
10475 | ||||
10476 | hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0006 ))) | |||
10477 | ICH_FLASH_HSFCTL)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0006 ))); | |||
10478 | /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ | |||
10479 | hsflctl.hsf_ctrl.fldbcount = size - 1; | |||
10480 | hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ0x0; | |||
10481 | E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0006 ), (hsflctl.regval))) | |||
10482 | hsflctl.regval)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0006 ), (hsflctl.regval))); | |||
10483 | /* | |||
10484 | * Write the last 24 bits of index into Flash Linear address | |||
10485 | * field in Flash Address | |||
10486 | */ | |||
10487 | /* TODO: TBD maybe check the index against the size of flash */ | |||
10488 | ||||
10489 | E1000_WRITE_ICH_FLASH_REG32(hw, ICH_FLASH_FADDR,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0008 ), (flash_linear_address))) | |||
10490 | flash_linear_address)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0008 ), (flash_linear_address))); | |||
10491 | ||||
10492 | error = em_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT5000); | |||
10493 | /* | |||
10494 | * Check if FCERR is set to 1, if set to 1, clear it and try | |||
10495 | * the whole sequence a few more times, else read in (shift | |||
10496 | * in) the Flash Data0, the order is least significant byte | |||
10497 | * first msb to lsb | |||
10498 | */ | |||
10499 | if (error == E1000_SUCCESS0) { | |||
10500 | flash_data = E1000_READ_ICH_FLASH_REG(hw,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0010 ))) | |||
10501 | ICH_FLASH_FDATA0)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0010 ))); | |||
10502 | if (size == 1) { | |||
10503 | *data = (uint8_t) (flash_data & 0x000000FF); | |||
10504 | } else if (size == 2) { | |||
10505 | *data = (uint16_t) (flash_data & 0x0000FFFF); | |||
10506 | } | |||
10507 | break; | |||
10508 | } else { | |||
10509 | /* | |||
10510 | * If we've gotten here, then things are probably | |||
10511 | * completely hosed, but if the error condition is | |||
10512 | * detected, it won't hurt to give it another | |||
10513 | * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. | |||
10514 | */ | |||
10515 | hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))) | |||
10516 | ICH_FLASH_HSFSTS)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))); | |||
10517 | if (hsfsts.hsf_status.flcerr == 1) { | |||
10518 | /* Repeat for some time before giving up. */ | |||
10519 | continue; | |||
10520 | } else if (hsfsts.hsf_status.flcdone == 0) { | |||
10521 | DEBUGOUT("Timeout error - flash cycle did not" | |||
10522 | " complete."); | |||
10523 | break; | |||
10524 | } | |||
10525 | } | |||
10526 | } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT10); | |||
10527 | ||||
10528 | return error; | |||
10529 | } | |||
10530 | ||||
10531 | STATIC int32_t | |||
10532 | em_read_ich8_data32(struct em_hw *hw, uint32_t offset, uint32_t *data) | |||
10533 | { | |||
10534 | union ich8_hws_flash_status hsfsts; | |||
10535 | union ich8_hws_flash_ctrl hsflctl; | |||
10536 | uint32_t flash_linear_address; | |||
10537 | int32_t error = -E1000_ERR_EEPROM1; | |||
10538 | uint32_t count = 0; | |||
10539 | DEBUGFUNC("em_read_ich8_data32");; | |||
10540 | ||||
10541 | if (hw->mac_type < em_pch_spt) | |||
10542 | return error; | |||
10543 | if (offset > ICH_FLASH_LINEAR_ADDR_MASK0x00FFFFFF) | |||
10544 | return error; | |||
10545 | flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK0x00FFFFFF & offset) + | |||
10546 | hw->flash_base_addr; | |||
10547 | ||||
10548 | do { | |||
10549 | usec_delay(1)(*delay_func)(1); | |||
10550 | /* Steps */ | |||
10551 | error = em_ich8_cycle_init(hw); | |||
10552 | if (error != E1000_SUCCESS0) | |||
10553 | break; | |||
10554 | ||||
10555 | /* 32 bit accesses in SPT. */ | |||
10556 | hsflctl.regval = E1000_READ_ICH_FLASH_REG32(hw,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))) | |||
10557 | ICH_FLASH_HSFSTS)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))) >> 16; | |||
10558 | ||||
10559 | hsflctl.hsf_ctrl.fldbcount = sizeof(uint32_t) - 1; | |||
10560 | hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ0x0; | |||
10561 | ||||
10562 | E1000_WRITE_ICH_FLASH_REG32(hw, ICH_FLASH_HSFSTS,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ), ((uint32_t)hsflctl.regval << 16))) | |||
10563 | (uint32_t)hsflctl.regval << 16)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ), ((uint32_t)hsflctl.regval << 16))); | |||
10564 | /* | |||
10565 | * Write the last 24 bits of offset into Flash Linear address | |||
10566 | * field in Flash Address | |||
10567 | */ | |||
10568 | /* TODO: TBD maybe check the offset against the size of flash */ | |||
10569 | ||||
10570 | E1000_WRITE_ICH_FLASH_REG32(hw, ICH_FLASH_FADDR,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0008 ), (flash_linear_address))) | |||
10571 | flash_linear_address)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0008 ), (flash_linear_address))); | |||
10572 | ||||
10573 | error = em_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT5000); | |||
10574 | /* | |||
10575 | * Check if FCERR is set to 1, if set to 1, clear it and try | |||
10576 | * the whole sequence a few more times, else read in (shift | |||
10577 | * in) the Flash Data0, the order is least significant byte | |||
10578 | * first msb to lsb | |||
10579 | */ | |||
10580 | if (error == E1000_SUCCESS0) { | |||
10581 | (*data) = (uint32_t)E1000_READ_ICH_FLASH_REG32(hw,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0010 ))) | |||
10582 | ICH_FLASH_FDATA0)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0010 ))); | |||
10583 | break; | |||
10584 | } else { | |||
10585 | /* | |||
10586 | * If we've gotten here, then things are probably | |||
10587 | * completely hosed, but if the error condition is | |||
10588 | * detected, it won't hurt to give it another | |||
10589 | * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. | |||
10590 | */ | |||
10591 | hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))) | |||
10592 | ICH_FLASH_HSFSTS)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))); | |||
10593 | if (hsfsts.hsf_status.flcerr == 1) { | |||
10594 | /* Repeat for some time before giving up. */ | |||
10595 | continue; | |||
10596 | } else if (hsfsts.hsf_status.flcdone == 0) { | |||
10597 | DEBUGOUT("Timeout error - flash cycle did not" | |||
10598 | " complete."); | |||
10599 | break; | |||
10600 | } | |||
10601 | } | |||
10602 | } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT10); | |||
10603 | ||||
10604 | return error; | |||
10605 | } | |||
10606 | ||||
10607 | ||||
10608 | /****************************************************************************** | |||
10609 | * Writes One /two bytes to the NVM using the ICH8 flash access registers. | |||
10610 | * | |||
10611 | * hw - The pointer to the hw structure | |||
10612 | * index - The index of the byte/word to write. | |||
10613 | * size - Size of data to read, 1=byte 2=word | |||
10614 | * data - The byte(s) to write to the NVM. | |||
10615 | *****************************************************************************/ | |||
10616 | STATIC int32_t | |||
10617 | em_write_ich8_data(struct em_hw *hw, uint32_t index, uint32_t size, | |||
10618 | uint16_t data) | |||
10619 | { | |||
10620 | union ich8_hws_flash_status hsfsts; | |||
10621 | union ich8_hws_flash_ctrl hsflctl; | |||
10622 | uint32_t flash_linear_address; | |||
10623 | uint32_t flash_data = 0; | |||
10624 | int32_t error = -E1000_ERR_EEPROM1; | |||
10625 | int32_t count = 0; | |||
10626 | DEBUGFUNC("em_write_ich8_data");; | |||
10627 | ||||
10628 | if (hw->mac_type >= em_pch_spt) | |||
10629 | return -E1000_ERR_EEPROM1; | |||
10630 | if (size < 1 || size > 2 || data > size * 0xff || | |||
10631 | index > ICH_FLASH_LINEAR_ADDR_MASK0x00FFFFFF) | |||
10632 | return error; | |||
10633 | ||||
10634 | flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK0x00FFFFFF & index) + | |||
10635 | hw->flash_base_addr; | |||
10636 | ||||
10637 | do { | |||
10638 | usec_delay(1)(*delay_func)(1); | |||
10639 | /* Steps */ | |||
10640 | error = em_ich8_cycle_init(hw); | |||
10641 | if (error != E1000_SUCCESS0) | |||
10642 | break; | |||
10643 | ||||
10644 | hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0006 ))) | |||
10645 | ICH_FLASH_HSFCTL)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0006 ))); | |||
10646 | /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ | |||
10647 | hsflctl.hsf_ctrl.fldbcount = size - 1; | |||
10648 | hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE0x2; | |||
10649 | E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0006 ), (hsflctl.regval))) | |||
10650 | hsflctl.regval)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0006 ), (hsflctl.regval))); | |||
10651 | /* | |||
10652 | * Write the last 24 bits of index into Flash Linear address | |||
10653 | * field in Flash Address | |||
10654 | */ | |||
10655 | E1000_WRITE_ICH_FLASH_REG32(hw, ICH_FLASH_FADDR,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0008 ), (flash_linear_address))) | |||
10656 | flash_linear_address)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0008 ), (flash_linear_address))); | |||
10657 | ||||
10658 | if (size == 1) | |||
10659 | flash_data = (uint32_t) data & 0x00FF; | |||
10660 | else | |||
10661 | flash_data = (uint32_t) data; | |||
10662 | ||||
10663 | E1000_WRITE_ICH_FLASH_REG32(hw, ICH_FLASH_FDATA0, flash_data)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0010 ), (flash_data))); | |||
10664 | /* | |||
10665 | * check if FCERR is set to 1 , if set to 1, clear it and try | |||
10666 | * the whole sequence a few more times else done | |||
10667 | */ | |||
10668 | error = em_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT5000); | |||
10669 | if (error == E1000_SUCCESS0) { | |||
10670 | break; | |||
10671 | } else { | |||
10672 | /* | |||
10673 | * If we're here, then things are most likely | |||
10674 | * completely hosed, but if the error condition is | |||
10675 | * detected, it won't hurt to give it another | |||
10676 | * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. | |||
10677 | */ | |||
10678 | hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))) | |||
10679 | ICH_FLASH_HSFSTS)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))); | |||
10680 | if (hsfsts.hsf_status.flcerr == 1) { | |||
10681 | /* Repeat for some time before giving up. */ | |||
10682 | continue; | |||
10683 | } else if (hsfsts.hsf_status.flcdone == 0) { | |||
10684 | DEBUGOUT("Timeout error - flash cycle did not" | |||
10685 | " complete."); | |||
10686 | break; | |||
10687 | } | |||
10688 | } | |||
10689 | } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT10); | |||
10690 | ||||
10691 | return error; | |||
10692 | } | |||
10693 | ||||
10694 | /****************************************************************************** | |||
10695 | * Reads a single byte from the NVM using the ICH8 flash access registers. | |||
10696 | * | |||
10697 | * hw - pointer to em_hw structure | |||
10698 | * index - The index of the byte to read. | |||
10699 | * data - Pointer to a byte to store the value read. | |||
10700 | *****************************************************************************/ | |||
10701 | STATIC int32_t | |||
10702 | em_read_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t *data) | |||
10703 | { | |||
10704 | int32_t status = E1000_SUCCESS0; | |||
10705 | uint16_t word = 0; | |||
10706 | ||||
10707 | if (hw->mac_type >= em_pch_spt) | |||
10708 | return -E1000_ERR_EEPROM1; | |||
10709 | else | |||
10710 | status = em_read_ich8_data(hw, index, 1, &word); | |||
10711 | if (status == E1000_SUCCESS0) { | |||
10712 | *data = (uint8_t) word; | |||
10713 | } | |||
10714 | return status; | |||
10715 | } | |||
10716 | ||||
10717 | /****************************************************************************** | |||
10718 | * Writes a single byte to the NVM using the ICH8 flash access registers. | |||
10719 | * Performs verification by reading back the value and then going through | |||
10720 | * a retry algorithm before giving up. | |||
10721 | * | |||
10722 | * hw - pointer to em_hw structure | |||
10723 | * index - The index of the byte to write. | |||
10724 | * byte - The byte to write to the NVM. | |||
10725 | *****************************************************************************/ | |||
10726 | STATIC int32_t | |||
10727 | em_verify_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t byte) | |||
10728 | { | |||
10729 | int32_t error = E1000_SUCCESS0; | |||
10730 | int32_t program_retries = 0; | |||
10731 | DEBUGOUT2("Byte := %2.2X Offset := %d\n", byte, index); | |||
10732 | ||||
10733 | error = em_write_ich8_byte(hw, index, byte); | |||
10734 | ||||
10735 | if (error != E1000_SUCCESS0) { | |||
10736 | for (program_retries = 0; program_retries < 100; | |||
10737 | program_retries++) { | |||
10738 | DEBUGOUT2("Retrying \t Byte := %2.2X Offset := %d\n", | |||
10739 | byte, index); | |||
10740 | error = em_write_ich8_byte(hw, index, byte); | |||
10741 | usec_delay(100)(*delay_func)(100); | |||
10742 | if (error == E1000_SUCCESS0) | |||
10743 | break; | |||
10744 | } | |||
10745 | } | |||
10746 | if (program_retries == 100) | |||
10747 | error = E1000_ERR_EEPROM1; | |||
10748 | ||||
10749 | return error; | |||
10750 | } | |||
10751 | ||||
10752 | /****************************************************************************** | |||
10753 | * Writes a single byte to the NVM using the ICH8 flash access registers. | |||
10754 | * | |||
10755 | * hw - pointer to em_hw structure | |||
10756 | * index - The index of the byte to read. | |||
10757 | * data - The byte to write to the NVM. | |||
10758 | *****************************************************************************/ | |||
10759 | STATIC int32_t | |||
10760 | em_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t data) | |||
10761 | { | |||
10762 | int32_t status = E1000_SUCCESS0; | |||
10763 | uint16_t word = (uint16_t) data; | |||
10764 | status = em_write_ich8_data(hw, index, 1, word); | |||
10765 | ||||
10766 | return status; | |||
10767 | } | |||
10768 | ||||
10769 | /****************************************************************************** | |||
10770 | * Reads a dword from the NVM using the ICH8 flash access registers. | |||
10771 | * | |||
10772 | * hw - pointer to em_hw structure | |||
10773 | * index - The starting BYTE index of the word to read. | |||
10774 | * data - Pointer to a word to store the value read. | |||
10775 | *****************************************************************************/ | |||
10776 | STATIC int32_t | |||
10777 | em_read_ich8_dword(struct em_hw *hw, uint32_t index, uint32_t *data) | |||
10778 | { | |||
10779 | int32_t status = E1000_SUCCESS0; | |||
10780 | status = em_read_ich8_data32(hw, index, data); | |||
10781 | return status; | |||
10782 | } | |||
10783 | ||||
10784 | /****************************************************************************** | |||
10785 | * Reads a word from the NVM using the ICH8 flash access registers. | |||
10786 | * | |||
10787 | * hw - pointer to em_hw structure | |||
10788 | * index - The starting byte index of the word to read. | |||
10789 | * data - Pointer to a word to store the value read. | |||
10790 | *****************************************************************************/ | |||
10791 | STATIC int32_t | |||
10792 | em_read_ich8_word(struct em_hw *hw, uint32_t index, uint16_t *data) | |||
10793 | { | |||
10794 | int32_t status = E1000_SUCCESS0; | |||
10795 | status = em_read_ich8_data(hw, index, 2, data); | |||
10796 | return status; | |||
10797 | } | |||
10798 | ||||
10799 | /****************************************************************************** | |||
10800 | * Erases the bank specified. Each bank may be a 4, 8 or 64k block. Banks are 0 | |||
10801 | * based. | |||
10802 | * | |||
10803 | * hw - pointer to em_hw structure | |||
10804 | * bank - 0 for first bank, 1 for second bank | |||
10805 | * | |||
10806 | * Note that this function may actually erase as much as 8 or 64 KBytes. The | |||
10807 | * amount of NVM used in each bank is a *minimum* of 4 KBytes, but in fact the | |||
10808 | * bank size may be 4, 8 or 64 KBytes | |||
10809 | *****************************************************************************/ | |||
10810 | int32_t | |||
10811 | em_erase_ich8_4k_segment(struct em_hw *hw, uint32_t bank) | |||
10812 | { | |||
10813 | union ich8_hws_flash_status hsfsts; | |||
10814 | union ich8_hws_flash_ctrl hsflctl; | |||
10815 | uint32_t flash_linear_address; | |||
10816 | int32_t count = 0; | |||
10817 | int32_t error = E1000_ERR_EEPROM1; | |||
10818 | int32_t iteration; | |||
10819 | int32_t sub_sector_size = 0; | |||
10820 | int32_t bank_size; | |||
10821 | int32_t j = 0; | |||
10822 | int32_t error_flag = 0; | |||
10823 | hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))); | |||
10824 | /* | |||
10825 | * Determine HW Sector size: Read BERASE bits of Hw flash Status | |||
10826 | * register | |||
10827 | */ | |||
10828 | /* | |||
10829 | * 00: The Hw sector is 256 bytes, hence we need to erase 16 | |||
10830 | * consecutive sectors. The start index for the nth Hw sector can be | |||
10831 | * calculated as bank * 4096 + n * 256 01: The Hw sector is 4K bytes, | |||
10832 | * hence we need to erase 1 sector. The start index for the nth Hw | |||
10833 | * sector can be calculated as bank * 4096 10: The HW sector is 8K | |||
10834 | * bytes 11: The Hw sector size is 64K bytes | |||
10835 | */ | |||
10836 | if (hsfsts.hsf_status.berasesz == 0x0) { | |||
10837 | /* Hw sector size 256 */ | |||
10838 | sub_sector_size = ICH_FLASH_SEG_SIZE_256256; | |||
10839 | bank_size = ICH_FLASH_SECTOR_SIZE4096; | |||
10840 | iteration = ICH_FLASH_SECTOR_SIZE4096 / ICH_FLASH_SEG_SIZE_256256; | |||
10841 | } else if (hsfsts.hsf_status.berasesz == 0x1) { | |||
10842 | bank_size = ICH_FLASH_SEG_SIZE_4K4096; | |||
10843 | iteration = 1; | |||
10844 | } else if (hsfsts.hsf_status.berasesz == 0x2) { | |||
10845 | if (hw->mac_type == em_ich9lan) { | |||
10846 | uint32_t gfpreg, sector_base_addr, sector_end_addr; | |||
10847 | gfpreg = E1000_READ_ICH_FLASH_REG(hw,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0000 ))) | |||
10848 | ICH_FLASH_GFPREG)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0000 ))); | |||
10849 | /* | |||
10850 | * sector_X_addr is a "sector"-aligned address (4096 bytes) | |||
10851 | * Add 1 to sector_end_addr since this sector is included in | |||
10852 | * the overall size. | |||
10853 | */ | |||
10854 | sector_base_addr = gfpreg & ICH_GFPREG_BASE_MASK0x1FFF; | |||
10855 | sector_end_addr = | |||
10856 | ((gfpreg >> 16) & ICH_GFPREG_BASE_MASK0x1FFF) + 1; | |||
10857 | ||||
10858 | /* | |||
10859 | * find total size of the NVM, then cut in half since the total | |||
10860 | * size represents two separate NVM banks. | |||
10861 | */ | |||
10862 | bank_size = (sector_end_addr - sector_base_addr) | |||
10863 | << ICH_FLASH_SECT_ADDR_SHIFT12; | |||
10864 | bank_size /= 2; | |||
10865 | /* Word align */ | |||
10866 | bank_size = | |||
10867 | (bank_size / sizeof(uint16_t)) * sizeof(uint16_t); | |||
10868 | ||||
10869 | sub_sector_size = ICH_FLASH_SEG_SIZE_8K8192; | |||
10870 | iteration = bank_size / ICH_FLASH_SEG_SIZE_8K8192; | |||
10871 | } else { | |||
10872 | return error; | |||
10873 | } | |||
10874 | } else if (hsfsts.hsf_status.berasesz == 0x3) { | |||
10875 | bank_size = ICH_FLASH_SEG_SIZE_64K65536; | |||
10876 | iteration = 1; | |||
10877 | } else { | |||
10878 | return error; | |||
10879 | } | |||
10880 | ||||
10881 | for (j = 0; j < iteration; j++) { | |||
10882 | do { | |||
10883 | count++; | |||
10884 | /* Steps */ | |||
10885 | error = em_ich8_cycle_init(hw); | |||
10886 | if (error != E1000_SUCCESS0) { | |||
10887 | error_flag = 1; | |||
10888 | break; | |||
10889 | } | |||
10890 | /* | |||
10891 | * Write a value 11 (block Erase) in Flash Cycle | |||
10892 | * field in Hw flash Control | |||
10893 | */ | |||
10894 | hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0006 ))) | |||
10895 | ICH_FLASH_HSFCTL)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0006 ))); | |||
10896 | hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE0x3; | |||
10897 | E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0006 ), (hsflctl.regval))) | |||
10898 | hsflctl.regval)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0006 ), (hsflctl.regval))); | |||
10899 | /* | |||
10900 | * Write the last 24 bits of an index within the | |||
10901 | * block into Flash Linear address field in Flash | |||
10902 | * Address. This probably needs to be calculated | |||
10903 | * here based off the on-chip erase sector size and | |||
10904 | * the software bank size (4, 8 or 64 KBytes) | |||
10905 | */ | |||
10906 | flash_linear_address = | |||
10907 | bank * bank_size + j * sub_sector_size; | |||
10908 | flash_linear_address += hw->flash_base_addr; | |||
10909 | flash_linear_address &= ICH_FLASH_LINEAR_ADDR_MASK0x00FFFFFF; | |||
10910 | ||||
10911 | E1000_WRITE_ICH_FLASH_REG32(hw, ICH_FLASH_FADDR,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0008 ), (flash_linear_address))) | |||
10912 | flash_linear_address)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0008 ), (flash_linear_address))); | |||
10913 | ||||
10914 | error = | |||
10915 | em_ich8_flash_cycle(hw, ICH_FLASH_ERASE_TIMEOUT3000000); | |||
10916 | /* | |||
10917 | * Check if FCERR is set to 1. If 1, clear it and | |||
10918 | * try the whole sequence a few more times else Done | |||
10919 | */ | |||
10920 | if (error == E1000_SUCCESS0) { | |||
10921 | break; | |||
10922 | } else { | |||
10923 | hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))) | |||
10924 | ICH_FLASH_HSFSTS)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))); | |||
10925 | if (hsfsts.hsf_status.flcerr == 1) { | |||
10926 | /* | |||
10927 | * repeat for some time before giving | |||
10928 | * up | |||
10929 | */ | |||
10930 | continue; | |||
10931 | } else if (hsfsts.hsf_status.flcdone == 0) { | |||
10932 | error_flag = 1; | |||
10933 | break; | |||
10934 | } | |||
10935 | } | |||
10936 | } while ((count < ICH_FLASH_CYCLE_REPEAT_COUNT10) && !error_flag); | |||
10937 | if (error_flag == 1) | |||
10938 | break; | |||
10939 | } | |||
10940 | if (error_flag != 1) | |||
10941 | error = E1000_SUCCESS0; | |||
10942 | return error; | |||
10943 | } | |||
10944 | ||||
10945 | /****************************************************************************** | |||
10946 | * Reads 16-bit words from the OTP. Return error when the word is not | |||
10947 | * stored in OTP. | |||
10948 | * | |||
10949 | * hw - Struct containing variables accessed by shared code | |||
10950 | * offset - offset of word in the OTP to read | |||
10951 | * data - word read from the OTP | |||
10952 | * words - number of words to read | |||
10953 | *****************************************************************************/ | |||
10954 | STATIC int32_t | |||
10955 | em_read_invm_i210(struct em_hw *hw, uint16_t offset, uint16_t words, | |||
10956 | uint16_t *data) | |||
10957 | { | |||
10958 | int32_t ret_val = E1000_SUCCESS0; | |||
10959 | ||||
10960 | switch (offset) | |||
10961 | { | |||
10962 | case EEPROM_MAC_ADDR_WORD00x0000: | |||
10963 | case EEPROM_MAC_ADDR_WORD10x0001: | |||
10964 | case EEPROM_MAC_ADDR_WORD20x0002: | |||
10965 | /* Generate random MAC address if there's none. */ | |||
10966 | ret_val = em_read_invm_word_i210(hw, offset, data); | |||
10967 | if (ret_val != E1000_SUCCESS0) { | |||
10968 | DEBUGOUT("MAC Addr not found in iNVM\n"); | |||
10969 | *data = 0xFFFF; | |||
10970 | ret_val = E1000_SUCCESS0; | |||
10971 | } | |||
10972 | break; | |||
10973 | case EEPROM_INIT_CONTROL2_REG0x000F: | |||
10974 | ret_val = em_read_invm_word_i210(hw, offset, data); | |||
10975 | if (ret_val != E1000_SUCCESS0) { | |||
10976 | *data = NVM_INIT_CTRL_2_DEFAULT_I2110x7243; | |||
10977 | ret_val = E1000_SUCCESS0; | |||
10978 | } | |||
10979 | break; | |||
10980 | case EEPROM_INIT_CONTROL4_REG0x0013: | |||
10981 | ret_val = em_read_invm_word_i210(hw, offset, data); | |||
10982 | if (ret_val != E1000_SUCCESS0) { | |||
10983 | *data = NVM_INIT_CTRL_4_DEFAULT_I2110x00C1; | |||
10984 | ret_val = E1000_SUCCESS0; | |||
10985 | } | |||
10986 | break; | |||
10987 | case EEPROM_LED_1_CFG0x001C: | |||
10988 | ret_val = em_read_invm_word_i210(hw, offset, data); | |||
10989 | if (ret_val != E1000_SUCCESS0) { | |||
10990 | *data = NVM_LED_1_CFG_DEFAULT_I2110x0184; | |||
10991 | ret_val = E1000_SUCCESS0; | |||
10992 | } | |||
10993 | break; | |||
10994 | case EEPROM_LED_0_2_CFG0x001F: | |||
10995 | ret_val = em_read_invm_word_i210(hw, offset, data); | |||
10996 | if (ret_val != E1000_SUCCESS0) { | |||
10997 | *data = NVM_LED_0_2_CFG_DEFAULT_I2110x200C; | |||
10998 | ret_val = E1000_SUCCESS0; | |||
10999 | } | |||
11000 | break; | |||
11001 | case EEPROM_ID_LED_SETTINGS0x0004: | |||
11002 | ret_val = em_read_invm_word_i210(hw, offset, data); | |||
11003 | if (ret_val != E1000_SUCCESS0) { | |||
11004 | *data = ID_LED_RESERVED_FFFF0xFFFF; | |||
11005 | ret_val = E1000_SUCCESS0; | |||
11006 | } | |||
11007 | break; | |||
11008 | default: | |||
11009 | DEBUGOUT1("NVM word 0x%02x is not mapped.\n", offset); | |||
11010 | *data = NVM_RESERVED_WORD0xFFFF; | |||
11011 | break; | |||
11012 | } | |||
11013 | ||||
11014 | return ret_val; | |||
11015 | } | |||
11016 | ||||
11017 | /****************************************************************************** | |||
11018 | * Reads 16-bit words from the OTP. Return error when the word is not | |||
11019 | * stored in OTP. | |||
11020 | * | |||
11021 | * hw - Struct containing variables accessed by shared code | |||
11022 | * offset - offset of word in the OTP to read | |||
11023 | * data - word read from the OTP | |||
11024 | *****************************************************************************/ | |||
11025 | STATIC int32_t | |||
11026 | em_read_invm_word_i210(struct em_hw *hw, uint16_t address, uint16_t *data) | |||
11027 | { | |||
11028 | int32_t error = -E1000_NOT_IMPLEMENTED14; | |||
11029 | uint32_t invm_dword; | |||
11030 | uint16_t i; | |||
11031 | uint8_t record_type, word_address; | |||
11032 | ||||
11033 | for (i = 0; i < INVM_SIZE64; i++) { | |||
11034 | invm_dword = EM_READ_REG(hw, E1000_INVM_DATA_REG(i))((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), ((0x12120 + 4*(i))))); | |||
11035 | /* Get record type */ | |||
11036 | record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword)((invm_dword) & 0x7); | |||
11037 | if (record_type == INVM_UNINITIALIZED_STRUCTURE0x0) | |||
11038 | break; | |||
11039 | if (record_type == INVM_CSR_AUTOLOAD_STRUCTURE0x2) | |||
11040 | i += INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS1; | |||
11041 | if (record_type == INVM_RSA_KEY_SHA256_STRUCTURE0x4) | |||
11042 | i += INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS8; | |||
11043 | if (record_type == INVM_WORD_AUTOLOAD_STRUCTURE0x1) { | |||
11044 | word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword)(((invm_dword) & 0x0000FE00) >> 9); | |||
11045 | if (word_address == address) { | |||
11046 | *data = INVM_DWORD_TO_WORD_DATA(invm_dword)(((invm_dword) & 0xFFFF0000) >> 16); | |||
11047 | error = E1000_SUCCESS0; | |||
11048 | break; | |||
11049 | } | |||
11050 | } | |||
11051 | } | |||
11052 | ||||
11053 | return error; | |||
11054 | } | |||
11055 | ||||
11056 | STATIC int32_t | |||
11057 | em_init_lcd_from_nvm_config_region(struct em_hw *hw, uint32_t cnf_base_addr, | |||
11058 | uint32_t cnf_size) | |||
11059 | { | |||
11060 | uint32_t ret_val = E1000_SUCCESS0; | |||
11061 | uint16_t word_addr, reg_data, reg_addr; | |||
11062 | uint16_t i; | |||
11063 | /* cnf_base_addr is in DWORD */ | |||
11064 | word_addr = (uint16_t) (cnf_base_addr << 1); | |||
11065 | ||||
11066 | /* cnf_size is returned in size of dwords */ | |||
11067 | for (i = 0; i < cnf_size; i++) { | |||
11068 | ret_val = | |||
11069 | em_read_eeprom(hw, (word_addr + i * 2), 1, ®_data); | |||
11070 | if (ret_val) | |||
11071 | return ret_val; | |||
11072 | ||||
11073 | ret_val = | |||
11074 | em_read_eeprom(hw, (word_addr + i * 2 + 1), 1, ®_addr); | |||
11075 | if (ret_val) | |||
11076 | return ret_val; | |||
11077 | ||||
11078 | ret_val = em_get_software_flag(hw); | |||
11079 | if (ret_val != E1000_SUCCESS0) | |||
11080 | return ret_val; | |||
11081 | ||||
11082 | ret_val = | |||
11083 | em_write_phy_reg_ex(hw, (uint32_t) reg_addr, reg_data); | |||
11084 | ||||
11085 | em_release_software_flag(hw); | |||
11086 | } | |||
11087 | ||||
11088 | return ret_val; | |||
11089 | } | |||
11090 | ||||
11091 | /****************************************************************************** | |||
11092 | * This function initializes the PHY from the NVM on ICH8 platforms. This | |||
11093 | * is needed due to an issue where the NVM configuration is not properly | |||
11094 | * autoloaded after power transitions. Therefore, after each PHY reset, we | |||
11095 | * will load the configuration data out of the NVM manually. | |||
11096 | * | |||
11097 | * hw: Struct containing variables accessed by shared code | |||
11098 | *****************************************************************************/ | |||
11099 | STATIC int32_t | |||
11100 | em_init_lcd_from_nvm(struct em_hw *hw) | |||
11101 | { | |||
11102 | uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop, sw_cfg_mask; | |||
11103 | if (hw->phy_type != em_phy_igp_3) | |||
11104 | return E1000_SUCCESS0; | |||
11105 | ||||
11106 | /* Check if SW needs configure the PHY */ | |||
11107 | if (hw->device_id == E1000_DEV_ID_ICH8_IGP_M_AMT0x1049 || | |||
11108 | hw->device_id == E1000_DEV_ID_ICH8_IGP_M0x104D || | |||
11109 | hw->mac_type == em_pchlan || | |||
11110 | hw->mac_type == em_pch2lan || | |||
11111 | hw->mac_type == em_pch_lpt || | |||
11112 | hw->mac_type == em_pch_spt || | |||
11113 | hw->mac_type == em_pch_cnp) | |||
11114 | sw_cfg_mask = FEXTNVM_SW_CONFIG_ICH8M(1 << 27); | |||
11115 | else | |||
11116 | sw_cfg_mask = FEXTNVM_SW_CONFIG1; | |||
11117 | ||||
11118 | reg_data = E1000_READ_REG(hw, FEXTNVM)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00028 : em_translate_82542_register (0x00028))))); | |||
11119 | if (!(reg_data & sw_cfg_mask)) | |||
11120 | return E1000_SUCCESS0; | |||
11121 | ||||
11122 | /* Wait for basic configuration completes before proceeding */ | |||
11123 | loop = 0; | |||
11124 | do { | |||
11125 | reg_data = | |||
11126 | E1000_READ_REG(hw, STATUS)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))) & E1000_STATUS_LAN_INIT_DONE0x00000200; | |||
11127 | usec_delay(100)(*delay_func)(100); | |||
11128 | loop++; | |||
11129 | } while ((!reg_data) && (loop < 50)); | |||
11130 | ||||
11131 | /* Clear the Init Done bit for the next init event */ | |||
11132 | reg_data = E1000_READ_REG(hw, STATUS)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
11133 | reg_data &= ~E1000_STATUS_LAN_INIT_DONE0x00000200; | |||
11134 | E1000_WRITE_REG(hw, STATUS, reg_data)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))), (reg_data))); | |||
11135 | /* | |||
11136 | * Make sure HW does not configure LCD from PHY extended | |||
11137 | * configuration before SW configuration | |||
11138 | */ | |||
11139 | reg_data = E1000_READ_REG(hw, EXTCNF_CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F00 : em_translate_82542_register (0x00F00))))); | |||
11140 | if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE0x00000001) == 0x0000) { | |||
11141 | reg_data = E1000_READ_REG(hw, EXTCNF_SIZE)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F08 : em_translate_82542_register (0x00F08))))); | |||
11142 | cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH0x00FF0000; | |||
11143 | cnf_size >>= 16; | |||
11144 | if (cnf_size) { | |||
11145 | reg_data = E1000_READ_REG(hw, EXTCNF_CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F00 : em_translate_82542_register (0x00F00))))); | |||
11146 | cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER0x0FFF0000; | |||
11147 | /* cnf_base_addr is in DWORD */ | |||
11148 | cnf_base_addr >>= 16; | |||
11149 | ||||
11150 | /* Configure LCD from extended configuration region. */ | |||
11151 | ret_val = em_init_lcd_from_nvm_config_region(hw, | |||
11152 | cnf_base_addr, cnf_size); | |||
11153 | if (ret_val) | |||
11154 | return ret_val; | |||
11155 | } | |||
11156 | } | |||
11157 | return E1000_SUCCESS0; | |||
11158 | } | |||
11159 | ||||
11160 | /****************************************************************************** | |||
11161 | * em_set_pciex_completion_timeout - set pci-e completion timeout | |||
11162 | * | |||
11163 | * The defaults for 82575 and 82576 should be in the range of 50us to 50ms, | |||
11164 | * however the hardware default for these parts is 500us to 1ms which is less | |||
11165 | * than the 10ms recommended by the pci-e spec. To address this we need to | |||
11166 | * increase the value to either 10ms to 200ms for capability version 1 config, | |||
11167 | * or 16ms to 55ms for version 2. | |||
11168 | * | |||
11169 | * * hw - pointer to em_hw structure | |||
11170 | *****************************************************************************/ | |||
11171 | int32_t | |||
11172 | em_set_pciex_completion_timeout(struct em_hw *hw) | |||
11173 | { | |||
11174 | uint32_t gcr = E1000_READ_REG(hw, GCR)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B00 : em_translate_82542_register (0x05B00))))); | |||
11175 | int32_t ret_val = E1000_SUCCESS0; | |||
11176 | ||||
11177 | /* Only take action if timeout value is not set by system BIOS */ | |||
11178 | if (gcr & E1000_GCR_CMPL_TMOUT_MASK0x0000F000) | |||
11179 | goto out; | |||
11180 | ||||
11181 | DEBUGOUT("PCIe completion timeout not set by system BIOS."); | |||
11182 | ||||
11183 | /* | |||
11184 | * If capabilities version is type 1 we can write the | |||
11185 | * timeout of 10ms to 200ms through the GCR register | |||
11186 | */ | |||
11187 | ||||
11188 | if (!(gcr & E1000_GCR_CAP_VER20x00040000)) { | |||
11189 | gcr |= E1000_GCR_CMPL_TMOUT_10ms0x00001000; | |||
11190 | DEBUGOUT("PCIe capability version 1 detected, setting \ | |||
11191 | completion timeout to 10ms."); | |||
11192 | goto out; | |||
11193 | } | |||
11194 | ||||
11195 | /* | |||
11196 | * For version 2 capabilities we need to write the config space | |||
11197 | * directly in order to set the completion timeout value for | |||
11198 | * 16ms to 55ms | |||
11199 | * | |||
11200 | * XXX: Implement em_*_pcie_cap_reg() first. | |||
11201 | */ | |||
11202 | #if 0 | |||
11203 | ret_val = em_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, | |||
11204 | &pciex_devctl2); | |||
11205 | ||||
11206 | if (ret_val) | |||
11207 | goto out; | |||
11208 | ||||
11209 | pciex_devctl2 |= PCIE_DEVICE_CONTROL2_16ms; | |||
11210 | ||||
11211 | ret_val = em_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, | |||
11212 | &pciex_devctl2); | |||
11213 | #endif | |||
11214 | ||||
11215 | out: | |||
11216 | ||||
11217 | /* Disable completion timeout resend */ | |||
11218 | gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND0x00010000; | |||
11219 | ||||
11220 | DEBUGOUT("PCIe completion timeout resend disabled."); | |||
11221 | ||||
11222 | E1000_WRITE_REG(hw, GCR, gcr)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B00 : em_translate_82542_register (0x05B00))), (gcr))); | |||
11223 | return ret_val; | |||
11224 | } | |||
11225 | ||||
11226 | /*************************************************************************** | |||
11227 | * Set slow MDIO access mode | |||
11228 | ***************************************************************************/ | |||
11229 | static int32_t | |||
11230 | em_set_mdio_slow_mode_hv(struct em_hw *hw) | |||
11231 | { | |||
11232 | int32_t ret_val; | |||
11233 | uint16_t data; | |||
11234 | DEBUGFUNC("em_set_mdio_slow_mode_hv");; | |||
11235 | ||||
11236 | ret_val = em_read_phy_reg(hw, HV_KMRN_MODE_CTRL(((769) << 5) | ((16) & 0x1F)), &data); | |||
11237 | if (ret_val) | |||
11238 | return ret_val; | |||
11239 | ||||
11240 | data |= HV_KMRN_MDIO_SLOW0x0400; | |||
11241 | ||||
11242 | ret_val = em_write_phy_reg(hw, HV_KMRN_MODE_CTRL(((769) << 5) | ((16) & 0x1F)), data); | |||
11243 | ||||
11244 | return ret_val; | |||
11245 | } | |||
11246 | ||||
11247 | /*************************************************************************** | |||
11248 | * A series of Phy workarounds to be done after every PHY reset. | |||
11249 | ***************************************************************************/ | |||
11250 | int32_t | |||
11251 | em_hv_phy_workarounds_ich8lan(struct em_hw *hw) | |||
11252 | { | |||
11253 | int32_t ret_val = E1000_SUCCESS0; | |||
11254 | uint16_t phy_data; | |||
11255 | uint16_t swfw; | |||
11256 | DEBUGFUNC("em_hv_phy_workarounds_ich8lan");; | |||
11257 | ||||
11258 | if (hw->mac_type != em_pchlan) | |||
11259 | goto out; | |||
11260 | ||||
11261 | swfw = E1000_SWFW_PHY0_SM0x0002; | |||
11262 | ||||
11263 | /* Set MDIO slow mode before any other MDIO access */ | |||
11264 | if (hw->phy_type == em_phy_82577 || | |||
11265 | hw->phy_type == em_phy_82578) { | |||
11266 | ret_val = em_set_mdio_slow_mode_hv(hw); | |||
11267 | if (ret_val) | |||
11268 | goto out; | |||
11269 | } | |||
11270 | ||||
11271 | /* Hanksville M Phy init for IEEE. */ | |||
11272 | if ((hw->revision_id == 2) && | |||
11273 | (hw->phy_type == em_phy_82577) && | |||
11274 | ((hw->phy_revision == 2) || (hw->phy_revision == 3))) { | |||
11275 | em_write_phy_reg(hw, 0x10, 0x8823); | |||
11276 | em_write_phy_reg(hw, 0x11, 0x0018); | |||
11277 | em_write_phy_reg(hw, 0x10, 0x8824); | |||
11278 | em_write_phy_reg(hw, 0x11, 0x0016); | |||
11279 | em_write_phy_reg(hw, 0x10, 0x8825); | |||
11280 | em_write_phy_reg(hw, 0x11, 0x001A); | |||
11281 | em_write_phy_reg(hw, 0x10, 0x888C); | |||
11282 | em_write_phy_reg(hw, 0x11, 0x0007); | |||
11283 | em_write_phy_reg(hw, 0x10, 0x888D); | |||
11284 | em_write_phy_reg(hw, 0x11, 0x0007); | |||
11285 | em_write_phy_reg(hw, 0x10, 0x888E); | |||
11286 | em_write_phy_reg(hw, 0x11, 0x0007); | |||
11287 | em_write_phy_reg(hw, 0x10, 0x8827); | |||
11288 | em_write_phy_reg(hw, 0x11, 0x0001); | |||
11289 | em_write_phy_reg(hw, 0x10, 0x8835); | |||
11290 | em_write_phy_reg(hw, 0x11, 0x0001); | |||
11291 | em_write_phy_reg(hw, 0x10, 0x8834); | |||
11292 | em_write_phy_reg(hw, 0x11, 0x0001); | |||
11293 | em_write_phy_reg(hw, 0x10, 0x8833); | |||
11294 | em_write_phy_reg(hw, 0x11, 0x0002); | |||
11295 | } | |||
11296 | ||||
11297 | if (((hw->phy_type == em_phy_82577) && | |||
11298 | ((hw->phy_revision == 1) || (hw->phy_revision == 2))) || | |||
11299 | ((hw->phy_type == em_phy_82578) && (hw->phy_revision == 1))) { | |||
11300 | /* Disable generation of early preamble */ | |||
11301 | ret_val = em_write_phy_reg(hw, PHY_REG(769, 25)(((769) << 5) | ((25) & 0x1F)), 0x4431); | |||
11302 | if (ret_val) | |||
11303 | goto out; | |||
11304 | ||||
11305 | /* Preamble tuning for SSC */ | |||
11306 | ret_val = em_write_phy_reg(hw, PHY_REG(770, 16)(((770) << 5) | ((16) & 0x1F)), 0xA204); | |||
11307 | if (ret_val) | |||
11308 | goto out; | |||
11309 | } | |||
11310 | ||||
11311 | if (hw->phy_type == em_phy_82578) { | |||
11312 | /* | |||
11313 | * Return registers to default by doing a soft reset then | |||
11314 | * writing 0x3140 to the control register. | |||
11315 | */ | |||
11316 | if (hw->phy_revision < 2) { | |||
11317 | em_phy_reset(hw); | |||
11318 | ret_val = em_write_phy_reg(hw, PHY_CTRL0x00, 0x3140); | |||
11319 | } | |||
11320 | } | |||
11321 | ||||
11322 | if ((hw->revision_id == 2) && | |||
11323 | (hw->phy_type == em_phy_82577) && | |||
11324 | ((hw->phy_revision == 2) || (hw->phy_revision == 3))) { | |||
11325 | /* | |||
11326 | * Workaround for OEM (GbE) not operating after reset - | |||
11327 | * restart AN (twice) | |||
11328 | */ | |||
11329 | ret_val = em_write_phy_reg(hw, PHY_REG(0, 25)(((0) << 5) | ((25) & 0x1F)), 0x0400); | |||
11330 | if (ret_val) | |||
11331 | goto out; | |||
11332 | ret_val = em_write_phy_reg(hw, PHY_REG(0, 25)(((0) << 5) | ((25) & 0x1F)), 0x0400); | |||
11333 | if (ret_val) | |||
11334 | goto out; | |||
11335 | } | |||
11336 | ||||
11337 | /* Select page 0 */ | |||
11338 | ret_val = em_swfw_sync_acquire(hw, swfw); | |||
11339 | if (ret_val) | |||
11340 | goto out; | |||
11341 | ||||
11342 | hw->phy_addr = 1; | |||
11343 | ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT0x1F, 0); | |||
11344 | em_swfw_sync_release(hw, swfw); | |||
11345 | if (ret_val) | |||
11346 | goto out; | |||
11347 | ||||
11348 | /* Workaround for link disconnects on a busy hub in half duplex */ | |||
11349 | ret_val = em_read_phy_reg(hw, | |||
11350 | PHY_REG(BM_PORT_CTRL_PAGE, 17)(((769) << 5) | ((17) & 0x1F)), | |||
11351 | &phy_data); | |||
11352 | if (ret_val) | |||
11353 | goto release; | |||
11354 | ret_val = em_write_phy_reg(hw, | |||
11355 | PHY_REG(BM_PORT_CTRL_PAGE, 17)(((769) << 5) | ((17) & 0x1F)), | |||
11356 | phy_data & 0x00FF); | |||
11357 | release: | |||
11358 | out: | |||
11359 | return ret_val; | |||
11360 | } | |||
11361 | ||||
11362 | ||||
11363 | /*************************************************************************** | |||
11364 | * Si workaround | |||
11365 | * | |||
11366 | * This function works around a Si bug where the link partner can get | |||
11367 | * a link up indication before the PHY does. If small packets are sent | |||
11368 | * by the link partner they can be placed in the packet buffer without | |||
11369 | * being properly accounted for by the PHY and will stall preventing | |||
11370 | * further packets from being received. The workaround is to clear the | |||
11371 | * packet buffer after the PHY detects link up. | |||
11372 | ***************************************************************************/ | |||
11373 | int32_t | |||
11374 | em_link_stall_workaround_hv(struct em_hw *hw) | |||
11375 | { | |||
11376 | int32_t ret_val = E1000_SUCCESS0; | |||
11377 | uint16_t phy_data; | |||
11378 | ||||
11379 | if (hw->phy_type != em_phy_82578) | |||
11380 | goto out; | |||
11381 | ||||
11382 | /* Do not apply workaround if in PHY loopback bit 14 set */ | |||
11383 | em_read_phy_reg(hw, PHY_CTRL0x00, &phy_data); | |||
11384 | if (phy_data & E1000_PHY_CTRL_LOOPBACK0x00004000) | |||
11385 | goto out; | |||
11386 | ||||
11387 | /* check if link is up and at 1Gbps */ | |||
11388 | ret_val = em_read_phy_reg(hw, BM_CS_STATUS17, &phy_data); | |||
11389 | if (ret_val) | |||
11390 | goto out; | |||
11391 | ||||
11392 | phy_data &= BM_CS_STATUS_LINK_UP0x0400 | | |||
11393 | BM_CS_STATUS_RESOLVED0x0800 | | |||
11394 | BM_CS_STATUS_SPEED_MASK0xC000; | |||
11395 | ||||
11396 | if (phy_data != (BM_CS_STATUS_LINK_UP0x0400 | | |||
11397 | BM_CS_STATUS_RESOLVED0x0800 | | |||
11398 | BM_CS_STATUS_SPEED_10000x8000)) | |||
11399 | goto out; | |||
11400 | ||||
11401 | msec_delay(200)(*delay_func)(1000*(200)); | |||
11402 | ||||
11403 | /* flush the packets in the fifo buffer */ | |||
11404 | ret_val = em_write_phy_reg(hw, HV_MUX_DATA_CTRL(((776) << 5) | ((16) & 0x1F)), | |||
11405 | HV_MUX_DATA_CTRL_GEN_TO_MAC0x0400 | HV_MUX_DATA_CTRL_FORCE_SPEED0x0004); | |||
11406 | if (ret_val) | |||
11407 | goto out; | |||
11408 | ||||
11409 | ret_val = em_write_phy_reg(hw, HV_MUX_DATA_CTRL(((776) << 5) | ((16) & 0x1F)), | |||
11410 | HV_MUX_DATA_CTRL_GEN_TO_MAC0x0400); | |||
11411 | ||||
11412 | out: | |||
11413 | return ret_val; | |||
11414 | } | |||
11415 | ||||
11416 | /**************************************************************************** | |||
11417 | * K1 Si workaround | |||
11418 | * | |||
11419 | * If K1 is enabled for 1Gbps, the MAC might stall when transitioning | |||
11420 | * from a lower speed. This workaround disables K1 whenever link is at 1Gig. | |||
11421 | * If link is down, the function will restore the default K1 setting located | |||
11422 | * in the NVM. | |||
11423 | ****************************************************************************/ | |||
11424 | int32_t | |||
11425 | em_k1_gig_workaround_hv(struct em_hw *hw, boolean_t link) | |||
11426 | { | |||
11427 | int32_t ret_val; | |||
11428 | uint16_t phy_data; | |||
11429 | boolean_t k1_enable; | |||
11430 | ||||
11431 | DEBUGFUNC("em_k1_gig_workaround_hv");; | |||
11432 | ||||
11433 | if (hw->mac_type != em_pchlan) | |||
11434 | return E1000_SUCCESS0; | |||
11435 | ||||
11436 | ret_val = em_read_eeprom_ich8(hw, E1000_NVM_K1_CONFIG0x1B, 1, &phy_data); | |||
11437 | if (ret_val) | |||
11438 | return ret_val; | |||
11439 | ||||
11440 | k1_enable = phy_data & E1000_NVM_K1_ENABLE0x1 ? TRUE1 : FALSE0; | |||
11441 | ||||
11442 | /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */ | |||
11443 | if (link) { | |||
11444 | if (hw->phy_type == em_phy_82578) { | |||
11445 | ret_val = em_read_phy_reg(hw, BM_CS_STATUS17, | |||
11446 | &phy_data); | |||
11447 | if (ret_val) | |||
11448 | return ret_val; | |||
11449 | ||||
11450 | phy_data &= BM_CS_STATUS_LINK_UP0x0400 | | |||
11451 | BM_CS_STATUS_RESOLVED0x0800 | | |||
11452 | BM_CS_STATUS_SPEED_MASK0xC000; | |||
11453 | ||||
11454 | if (phy_data == (BM_CS_STATUS_LINK_UP0x0400 | | |||
11455 | BM_CS_STATUS_RESOLVED0x0800 | | |||
11456 | BM_CS_STATUS_SPEED_10000x8000)) | |||
11457 | k1_enable = FALSE0; | |||
11458 | } | |||
11459 | ||||
11460 | if (hw->phy_type == em_phy_82577) { | |||
11461 | ret_val = em_read_phy_reg(hw, HV_M_STATUS26, | |||
11462 | &phy_data); | |||
11463 | if (ret_val) | |||
11464 | return ret_val; | |||
11465 | ||||
11466 | phy_data &= HV_M_STATUS_LINK_UP0x0040 | | |||
11467 | HV_M_STATUS_AUTONEG_COMPLETE0x1000 | | |||
11468 | HV_M_STATUS_SPEED_MASK0x0300; | |||
11469 | ||||
11470 | if (phy_data == (HV_M_STATUS_LINK_UP0x0040 | | |||
11471 | HV_M_STATUS_AUTONEG_COMPLETE0x1000 | | |||
11472 | HV_M_STATUS_SPEED_10000x0200)) | |||
11473 | k1_enable = FALSE0; | |||
11474 | } | |||
11475 | ||||
11476 | /* Link stall fix for link up */ | |||
11477 | ret_val = em_write_phy_reg(hw, PHY_REG(770, 19)(((770) << 5) | ((19) & 0x1F)), | |||
11478 | 0x0100); | |||
11479 | if (ret_val) | |||
11480 | return ret_val; | |||
11481 | ||||
11482 | } else { | |||
11483 | /* Link stall fix for link down */ | |||
11484 | ret_val = em_write_phy_reg(hw, PHY_REG(770, 19)(((770) << 5) | ((19) & 0x1F)), | |||
11485 | 0x4100); | |||
11486 | if (ret_val) | |||
11487 | return ret_val; | |||
11488 | } | |||
11489 | ||||
11490 | ret_val = em_configure_k1_ich8lan(hw, k1_enable); | |||
11491 | ||||
11492 | return ret_val; | |||
11493 | } | |||
11494 | ||||
11495 | /* Workaround to set the K1 beacon duration for 82579 parts */ | |||
11496 | int32_t | |||
11497 | em_k1_workaround_lv(struct em_hw *hw) | |||
11498 | { | |||
11499 | int32_t ret_val; | |||
11500 | uint16_t phy_data; | |||
11501 | uint32_t mac_reg; | |||
11502 | ||||
11503 | ret_val = em_read_phy_reg(hw, BM_CS_STATUS17, &phy_data); | |||
11504 | if (ret_val) | |||
11505 | return ret_val; | |||
11506 | ||||
11507 | if ((phy_data & (HV_M_STATUS_LINK_UP0x0040 | HV_M_STATUS_AUTONEG_COMPLETE0x1000)) | |||
11508 | == (HV_M_STATUS_LINK_UP0x0040 | HV_M_STATUS_AUTONEG_COMPLETE0x1000)) { | |||
11509 | mac_reg = E1000_READ_REG(hw, FEXTNVM4)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00024 : em_translate_82542_register (0x00024))))); | |||
11510 | mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK0x7; | |||
11511 | ||||
11512 | if (phy_data & HV_M_STATUS_SPEED_10000x0200) | |||
11513 | mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC0x7; | |||
11514 | else | |||
11515 | mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC0x3; | |||
11516 | ||||
11517 | E1000_WRITE_REG(hw, FEXTNVM4, mac_reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00024 : em_translate_82542_register (0x00024))), (mac_reg))); | |||
11518 | } | |||
11519 | ||||
11520 | return E1000_SUCCESS0; | |||
11521 | } | |||
11522 | ||||
11523 | /** | |||
11524 | * em_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP | |||
11525 | * | |||
11526 | * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications | |||
11527 | * preventing further DMA write requests. Workaround the issue by disabling | |||
11528 | * the de-assertion of the clock request when in 1Gbps mode. | |||
11529 | * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link | |||
11530 | * speeds in order to avoid Tx hangs. | |||
11531 | **/ | |||
11532 | int32_t | |||
11533 | em_k1_workaround_lpt_lp(struct em_hw *hw, boolean_t link) | |||
11534 | { | |||
11535 | uint32_t fextnvm6 = E1000_READ_REG(hw, FEXTNVM6)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))))); | |||
11536 | uint32_t status = E1000_READ_REG(hw, STATUS)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | |||
11537 | int32_t ret_val = E1000_SUCCESS0; | |||
11538 | uint16_t reg; | |||
11539 | ||||
11540 | if (link && (status & E1000_STATUS_SPEED_10000x00000080)) { | |||
11541 | ret_val = em_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_K1_CONFIG0x7, | |||
11542 | ®); | |||
11543 | if (ret_val) | |||
11544 | return ret_val; | |||
11545 | ||||
11546 | ret_val = em_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_K1_CONFIG0x7, | |||
11547 | reg & ~E1000_KMRNCTRLSTA_K1_ENABLE0x0002); | |||
11548 | if (ret_val) | |||
11549 | return ret_val; | |||
11550 | ||||
11551 | usec_delay(10)(*delay_func)(10); | |||
11552 | ||||
11553 | E1000_WRITE_REG(hw, FEXTNVM6,((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (fextnvm6 | 0x00000100))) | |||
11554 | fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (fextnvm6 | 0x00000100))); | |||
11555 | ||||
11556 | ret_val = em_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_K1_CONFIG0x7, | |||
11557 | reg); | |||
11558 | } else { | |||
11559 | /* clear FEXTNVM6 bit 8 on link down or 10/100 */ | |||
11560 | fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK0x00000100; | |||
11561 | ||||
11562 | if (!link || ((status & E1000_STATUS_SPEED_1000x00000040) && | |||
11563 | (status & E1000_STATUS_FD0x00000001))) | |||
11564 | goto update_fextnvm6; | |||
11565 | ||||
11566 | ret_val = em_read_phy_reg(hw, I217_INBAND_CTRL(((770) << 5) | ((18) & 0x1F)), ®); | |||
11567 | if (ret_val) | |||
11568 | return ret_val; | |||
11569 | ||||
11570 | /* Clear link status transmit timeout */ | |||
11571 | reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK0x3F00; | |||
11572 | ||||
11573 | if (status & E1000_STATUS_SPEED_1000x00000040) { | |||
11574 | /* Set inband Tx timeout to 5x10us for 100Half */ | |||
11575 | reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT8; | |||
11576 | ||||
11577 | /* Do not extend the K1 entry latency for 100Half */ | |||
11578 | fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION0x00000200; | |||
11579 | } else { | |||
11580 | /* Set inband Tx timeout to 50x10us for 10Full/Half */ | |||
11581 | reg |= 50 << | |||
11582 | I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT8; | |||
11583 | ||||
11584 | /* Extend the K1 entry latency for 10 Mbps */ | |||
11585 | fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION0x00000200; | |||
11586 | } | |||
11587 | ||||
11588 | ret_val = em_write_phy_reg(hw, I217_INBAND_CTRL(((770) << 5) | ((18) & 0x1F)), reg); | |||
11589 | if (ret_val) | |||
11590 | return ret_val; | |||
11591 | ||||
11592 | update_fextnvm6: | |||
11593 | E1000_WRITE_REG(hw, FEXTNVM6, fextnvm6)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (fextnvm6))); | |||
11594 | } | |||
11595 | ||||
11596 | return ret_val; | |||
11597 | ||||
11598 | } | |||
11599 | ||||
11600 | ||||
11601 | /*************************************************************************** | |||
11602 | * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware | |||
11603 | * @hw: pointer to the HW structure | |||
11604 | * @gate: boolean set to TRUE to gate, FALSE to ungate | |||
11605 | * | |||
11606 | * Gate/ungate the automatic PHY configuration via hardware; perform | |||
11607 | * the configuration via software instead. | |||
11608 | ***************************************************************************/ | |||
11609 | void | |||
11610 | em_gate_hw_phy_config_ich8lan(struct em_hw *hw, boolean_t gate) | |||
11611 | { | |||
11612 | uint32_t extcnf_ctrl; | |||
11613 | ||||
11614 | DEBUGFUNC("em_gate_hw_phy_config_ich8lan");; | |||
11615 | ||||
11616 | if (hw->mac_type != em_pch2lan) | |||
11617 | return; | |||
11618 | ||||
11619 | extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F00 : em_translate_82542_register (0x00F00))))); | |||
11620 | ||||
11621 | if (gate) | |||
11622 | extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG0x00000080; | |||
11623 | else | |||
11624 | extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG0x00000080; | |||
11625 | ||||
11626 | E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F00 : em_translate_82542_register (0x00F00))), (extcnf_ctrl))); | |||
11627 | } | |||
11628 | ||||
11629 | /*************************************************************************** | |||
11630 | * Configure K1 power state | |||
11631 | * | |||
11632 | * Configure the K1 power state based on the provided parameter. | |||
11633 | * Assumes semaphore already acquired. | |||
11634 | * | |||
11635 | * Success returns 0, Failure returns -E1000_ERR_PHY (-2) | |||
11636 | ***************************************************************************/ | |||
11637 | int32_t | |||
11638 | em_configure_k1_ich8lan(struct em_hw *hw, boolean_t k1_enable) | |||
11639 | { | |||
11640 | int32_t ret_val = E1000_SUCCESS0; | |||
11641 | uint32_t ctrl_reg = 0; | |||
11642 | uint32_t ctrl_ext = 0; | |||
11643 | uint32_t reg = 0; | |||
11644 | uint16_t kmrn_reg = 0; | |||
11645 | ||||
11646 | ret_val = em_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_K1_CONFIG0x7, | |||
11647 | &kmrn_reg); | |||
11648 | if (ret_val) | |||
11649 | goto out; | |||
11650 | ||||
11651 | if (k1_enable) | |||
11652 | kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE0x0002; | |||
11653 | else | |||
11654 | kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE0x0002; | |||
11655 | ||||
11656 | ret_val = em_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_K1_CONFIG0x7, | |||
11657 | kmrn_reg); | |||
11658 | if (ret_val) | |||
11659 | goto out; | |||
11660 | ||||
11661 | usec_delay(20)(*delay_func)(20); | |||
11662 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))))); | |||
11663 | ctrl_reg = E1000_READ_REG(hw, CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))))); | |||
11664 | ||||
11665 | reg = ctrl_reg & ~(E1000_CTRL_SPD_10000x00000200 | E1000_CTRL_SPD_1000x00000100); | |||
11666 | reg |= E1000_CTRL_FRCSPD0x00000800; | |||
11667 | E1000_WRITE_REG(hw, CTRL, reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (reg))); | |||
11668 | ||||
11669 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))), (ctrl_ext | 0x00008000))); | |||
11670 | usec_delay(20)(*delay_func)(20); | |||
11671 | E1000_WRITE_REG(hw, CTRL, ctrl_reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (ctrl_reg))); | |||
11672 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))), (ctrl_ext))); | |||
11673 | usec_delay(20)(*delay_func)(20); | |||
11674 | ||||
11675 | out: | |||
11676 | return ret_val; | |||
11677 | } | |||
11678 | ||||
11679 | /*************************************************************************** | |||
11680 | * em_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be | |||
11681 | * done after every PHY reset. | |||
11682 | ***************************************************************************/ | |||
11683 | int32_t | |||
11684 | em_lv_phy_workarounds_ich8lan(struct em_hw *hw) | |||
11685 | { | |||
11686 | int32_t ret_val = E1000_SUCCESS0; | |||
11687 | uint16_t swfw; | |||
11688 | ||||
11689 | DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan");; | |||
11690 | ||||
11691 | if (hw->mac_type != em_pch2lan) | |||
11692 | goto out; | |||
11693 | ||||
11694 | /* Set MDIO slow mode before any other MDIO access */ | |||
11695 | ret_val = em_set_mdio_slow_mode_hv(hw); | |||
11696 | ||||
11697 | swfw = E1000_SWFW_PHY0_SM0x0002; | |||
11698 | ret_val = em_swfw_sync_acquire(hw, swfw); | |||
11699 | if (ret_val) | |||
11700 | goto out; | |||
11701 | ret_val = em_write_phy_reg(hw, I82579_EMI_ADDR0x10, | |||
11702 | I82579_MSE_THRESHOLD0x084F); | |||
11703 | if (ret_val) | |||
11704 | goto release; | |||
11705 | /* set MSE higher to enable link to stay up when noise is high */ | |||
11706 | ret_val = em_write_phy_reg(hw, I82579_EMI_DATA0x11, | |||
11707 | 0x0034); | |||
11708 | if (ret_val) | |||
11709 | goto release; | |||
11710 | ret_val = em_write_phy_reg(hw, I82579_EMI_ADDR0x10, | |||
11711 | I82579_MSE_LINK_DOWN0x2411); | |||
11712 | if (ret_val) | |||
11713 | goto release; | |||
11714 | /* drop link after 5 times MSE threshold was reached */ | |||
11715 | ret_val = em_write_phy_reg(hw, I82579_EMI_DATA0x11, | |||
11716 | 0x0005); | |||
11717 | release: | |||
11718 | em_swfw_sync_release(hw, swfw); | |||
11719 | ||||
11720 | out: | |||
11721 | return ret_val; | |||
11722 | } | |||
11723 | ||||
11724 | int32_t | |||
11725 | em_set_eee_i350(struct em_hw *hw) | |||
11726 | { | |||
11727 | int32_t ret_val = E1000_SUCCESS0; | |||
11728 | uint32_t ipcnfg, eeer; | |||
11729 | ||||
11730 | if ((hw->mac_type < em_i350) || | |||
11731 | (hw->media_type != em_media_type_copper)) | |||
11732 | goto out; | |||
11733 | ipcnfg = EM_READ_REG(hw, E1000_IPCNFG)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (0x0E38))); | |||
11734 | eeer = EM_READ_REG(hw, E1000_EEER)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (0x0E30))); | |||
11735 | ||||
11736 | if (hw->eee_enable) { | |||
11737 | ipcnfg |= (E1000_IPCNFG_EEE_1G_AN0x00000008 | E1000_IPCNFG_EEE_100M_AN0x00000004); | |||
11738 | eeer |= (E1000_EEER_TX_LPI_EN0x00010000 | E1000_EEER_RX_LPI_EN0x00020000 | | |||
11739 | E1000_EEER_LPI_FC0x00040000); | |||
11740 | } else { | |||
11741 | ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN0x00000008 | E1000_IPCNFG_EEE_100M_AN0x00000004); | |||
11742 | eeer &= ~(E1000_EEER_TX_LPI_EN0x00010000 | E1000_EEER_RX_LPI_EN0x00020000 | | |||
11743 | E1000_EEER_LPI_FC0x00040000); | |||
11744 | } | |||
11745 | EM_WRITE_REG(hw, E1000_IPCNFG, ipcnfg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (0x0E38), (ipcnfg))); | |||
11746 | EM_WRITE_REG(hw, E1000_EEER, eeer)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (0x0E30), (eeer))); | |||
11747 | EM_READ_REG(hw, E1000_IPCNFG)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (0x0E38))); | |||
11748 | EM_READ_REG(hw, E1000_EEER)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (0x0E30))); | |||
11749 | out: | |||
11750 | return ret_val; | |||
11751 | } | |||
11752 | ||||
11753 | /*************************************************************************** | |||
11754 | * em_set_eee_pchlan - Enable/disable EEE support | |||
11755 | * @hw: pointer to the HW structure | |||
11756 | * | |||
11757 | * Enable/disable EEE based on setting in dev_spec structure. The bits in | |||
11758 | * the LPI Control register will remain set only if/when link is up. | |||
11759 | ***************************************************************************/ | |||
11760 | int32_t | |||
11761 | em_set_eee_pchlan(struct em_hw *hw) | |||
11762 | { | |||
11763 | int32_t ret_val = E1000_SUCCESS0; | |||
11764 | uint16_t phy_reg; | |||
11765 | ||||
11766 | DEBUGFUNC("em_set_eee_pchlan");; | |||
11767 | ||||
11768 | if (hw->phy_type != em_phy_82579 && | |||
11769 | hw->phy_type != em_phy_i217) | |||
11770 | goto out; | |||
11771 | ||||
11772 | ret_val = em_read_phy_reg(hw, I82579_LPI_CTRL(((772) << 5) | ((20) & 0x1F)), &phy_reg); | |||
11773 | if (ret_val) | |||
11774 | goto out; | |||
11775 | ||||
11776 | if (hw->eee_enable) | |||
11777 | phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK0x6000; | |||
11778 | else | |||
11779 | phy_reg |= I82579_LPI_CTRL_ENABLE_MASK0x6000; | |||
11780 | ||||
11781 | ret_val = em_write_phy_reg(hw, I82579_LPI_CTRL(((772) << 5) | ((20) & 0x1F)), phy_reg); | |||
11782 | out: | |||
11783 | return ret_val; | |||
11784 | } | |||
11785 | ||||
11786 | /** | |||
11787 | * em_initialize_M88E1512_phy - Initialize M88E1512 PHY | |||
11788 | * @hw: pointer to the HW structure | |||
11789 | * | |||
11790 | * Initialize Marvell 1512 to work correctly with Avoton. | |||
11791 | **/ | |||
11792 | int32_t | |||
11793 | em_initialize_M88E1512_phy(struct em_hw *hw) | |||
11794 | { | |||
11795 | int32_t ret_val = E1000_SUCCESS0; | |||
11796 | ||||
11797 | DEBUGFUNC("e1000_initialize_M88E1512_phy");; | |||
11798 | ||||
11799 | /* Check if this is correct PHY. */ | |||
11800 | if (hw->phy_id != M88E1512_E_PHY_ID0x01410DD0) | |||
11801 | goto out; | |||
11802 | ||||
11803 | /* Switch to PHY page 0xFF. */ | |||
11804 | ret_val = em_write_phy_reg(hw, M88E1543_PAGE_ADDR0x16, 0x00FF); | |||
11805 | if (ret_val) | |||
11806 | goto out; | |||
11807 | ||||
11808 | ret_val = em_write_phy_reg(hw, M88E1512_CFG_REG_20x0011, 0x214B); | |||
11809 | if (ret_val) | |||
11810 | goto out; | |||
11811 | ||||
11812 | ret_val = em_write_phy_reg(hw, M88E1512_CFG_REG_10x0010, 0x2144); | |||
11813 | if (ret_val) | |||
11814 | goto out; | |||
11815 | ||||
11816 | ret_val = em_write_phy_reg(hw, M88E1512_CFG_REG_20x0011, 0x0C28); | |||
11817 | if (ret_val) | |||
11818 | goto out; | |||
11819 | ||||
11820 | ret_val = em_write_phy_reg(hw, M88E1512_CFG_REG_10x0010, 0x2146); | |||
11821 | if (ret_val) | |||
11822 | goto out; | |||
11823 | ||||
11824 | ret_val = em_write_phy_reg(hw, M88E1512_CFG_REG_20x0011, 0xB233); | |||
11825 | if (ret_val) | |||
11826 | goto out; | |||
11827 | ||||
11828 | ret_val = em_write_phy_reg(hw, M88E1512_CFG_REG_10x0010, 0x214D); | |||
11829 | if (ret_val) | |||
11830 | goto out; | |||
11831 | ||||
11832 | ret_val = em_write_phy_reg(hw, M88E1512_CFG_REG_20x0011, 0xCC0C); | |||
11833 | if (ret_val) | |||
11834 | goto out; | |||
11835 | ||||
11836 | ret_val = em_write_phy_reg(hw, M88E1512_CFG_REG_10x0010, 0x2159); | |||
11837 | if (ret_val) | |||
11838 | goto out; | |||
11839 | ||||
11840 | /* Switch to PHY page 0xFB. */ | |||
11841 | ret_val = em_write_phy_reg(hw, M88E1543_PAGE_ADDR0x16, 0x00FB); | |||
11842 | if (ret_val) | |||
11843 | goto out; | |||
11844 | ||||
11845 | ret_val = em_write_phy_reg(hw, M88E1512_CFG_REG_30x0007, 0x000D); | |||
11846 | if (ret_val) | |||
11847 | goto out; | |||
11848 | ||||
11849 | /* Switch to PHY page 0x12. */ | |||
11850 | ret_val = em_write_phy_reg(hw, M88E1543_PAGE_ADDR0x16, 0x12); | |||
11851 | if (ret_val) | |||
11852 | goto out; | |||
11853 | ||||
11854 | /* Change mode to SGMII-to-Copper */ | |||
11855 | ret_val = em_write_phy_reg(hw, M88E1512_MODE0x0014, 0x8001); | |||
11856 | if (ret_val) | |||
11857 | goto out; | |||
11858 | ||||
11859 | /* Return the PHY to page 0. */ | |||
11860 | ret_val = em_write_phy_reg(hw, M88E1543_PAGE_ADDR0x16, 0); | |||
11861 | if (ret_val) | |||
11862 | goto out; | |||
11863 | ||||
11864 | ret_val = em_phy_hw_reset(hw); | |||
11865 | if (ret_val) { | |||
11866 | DEBUGOUT("Error committing the PHY changes\n"); | |||
11867 | return ret_val; | |||
11868 | } | |||
11869 | ||||
11870 | msec_delay(1000)(*delay_func)(1000*(1000)); | |||
11871 | out: | |||
11872 | return ret_val; | |||
11873 | } | |||
11874 | ||||
11875 | uint32_t | |||
11876 | em_translate_82542_register(uint32_t reg) | |||
11877 | { | |||
11878 | /* | |||
11879 | * Some of the 82542 registers are located at different | |||
11880 | * offsets than they are in newer adapters. | |||
11881 | * Despite the difference in location, the registers | |||
11882 | * function in the same manner. | |||
11883 | */ | |||
11884 | switch (reg) { | |||
11885 | case E1000_RA0x05400: | |||
11886 | reg = 0x00040; | |||
11887 | break; | |||
11888 | case E1000_RDTR0x02820: | |||
11889 | reg = 0x00108; | |||
11890 | break; | |||
11891 | case E1000_RDBAL(0)((0) < 4 ? (0x02800 + ((0) * 0x100)) : (0x0C000 + ((0) * 0x40 ))): | |||
11892 | reg = 0x00110; | |||
11893 | break; | |||
11894 | case E1000_RDBAH(0)((0) < 4 ? (0x02804 + ((0) * 0x100)) : (0x0C004 + ((0) * 0x40 ))): | |||
11895 | reg = 0x00114; | |||
11896 | break; | |||
11897 | case E1000_RDLEN(0)((0) < 4 ? (0x02808 + ((0) * 0x100)) : (0x0C008 + ((0) * 0x40 ))): | |||
11898 | reg = 0x00118; | |||
11899 | break; | |||
11900 | case E1000_RDH(0)((0) < 4 ? (0x02810 + ((0) * 0x100)) : (0x0C010 + ((0) * 0x40 ))): | |||
11901 | reg = 0x00120; | |||
11902 | break; | |||
11903 | case E1000_RDT(0)((0) < 4 ? (0x02818 + ((0) * 0x100)) : (0x0C018 + ((0) * 0x40 ))): | |||
11904 | reg = 0x00128; | |||
11905 | break; | |||
11906 | case E1000_RDBAL(1)((1) < 4 ? (0x02800 + ((1) * 0x100)) : (0x0C000 + ((1) * 0x40 ))): | |||
11907 | reg = 0x00138; | |||
11908 | break; | |||
11909 | case E1000_RDBAH(1)((1) < 4 ? (0x02804 + ((1) * 0x100)) : (0x0C004 + ((1) * 0x40 ))): | |||
11910 | reg = 0x0013C; | |||
11911 | break; | |||
11912 | case E1000_RDLEN(1)((1) < 4 ? (0x02808 + ((1) * 0x100)) : (0x0C008 + ((1) * 0x40 ))): | |||
11913 | reg = 0x00140; | |||
11914 | break; | |||
11915 | case E1000_RDH(1)((1) < 4 ? (0x02810 + ((1) * 0x100)) : (0x0C010 + ((1) * 0x40 ))): | |||
11916 | reg = 0x00148; | |||
11917 | break; | |||
11918 | case E1000_RDT(1)((1) < 4 ? (0x02818 + ((1) * 0x100)) : (0x0C018 + ((1) * 0x40 ))): | |||
11919 | reg = 0x00150; | |||
11920 | break; | |||
11921 | case E1000_FCRTH0x02168: | |||
11922 | reg = 0x00160; | |||
11923 | break; | |||
11924 | case E1000_FCRTL0x02160: | |||
11925 | reg = 0x00168; | |||
11926 | break; | |||
11927 | case E1000_MTA0x05200: | |||
11928 | reg = 0x00200; | |||
11929 | break; | |||
11930 | case E1000_TDBAL(0)((0) < 4 ? (0x03800 + ((0) * 0x100)) : (0x0E000 + ((0) * 0x40 ))): | |||
11931 | reg = 0x00420; | |||
11932 | break; | |||
11933 | case E1000_TDBAH(0)((0) < 4 ? (0x03804 + ((0) * 0x100)) : (0x0E004 + ((0) * 0x40 ))): | |||
11934 | reg = 0x00424; | |||
11935 | break; | |||
11936 | case E1000_TDLEN(0)((0) < 4 ? (0x03808 + ((0) * 0x100)) : (0x0E008 + ((0) * 0x40 ))): | |||
11937 | reg = 0x00428; | |||
11938 | break; | |||
11939 | case E1000_TDH(0)((0) < 4 ? (0x03810 + ((0) * 0x100)) : (0x0E010 + ((0) * 0x40 ))): | |||
11940 | reg = 0x00430; | |||
11941 | break; | |||
11942 | case E1000_TDT(0)((0) < 4 ? (0x03818 + ((0) * 0x100)) : (0x0E018 + ((0) * 0x40 ))): | |||
11943 | reg = 0x00438; | |||
11944 | break; | |||
11945 | case E1000_TIDV0x03820: | |||
11946 | reg = 0x00440; | |||
11947 | break; | |||
11948 | case E1000_VFTA0x05600: | |||
11949 | reg = 0x00600; | |||
11950 | break; | |||
11951 | case E1000_TDFH0x03410: | |||
11952 | reg = 0x08010; | |||
11953 | break; | |||
11954 | case E1000_TDFT0x03418: | |||
11955 | reg = 0x08018; | |||
11956 | break; | |||
11957 | default: | |||
11958 | break; | |||
11959 | } | |||
11960 | ||||
11961 | return (reg); | |||
11962 | } |