Bug Summary

File:dev/pci/drm/amd/pm/powerplay/smumgr/fiji_smumgr.c
Warning:line 1615, column 2
Value stored to 'result' is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name fiji_smumgr.c -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model static -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -ffreestanding -mcmodel=kernel -target-cpu x86-64 -target-feature +retpoline-indirect-calls -target-feature +retpoline-indirect-branches -target-feature -sse2 -target-feature -sse -target-feature -3dnow -target-feature -mmx -target-feature +save-args -disable-red-zone -no-implicit-float -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/sys/arch/amd64/compile/GENERIC.MP/obj -nostdsysteminc -nobuiltininc -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/sys -I /usr/src/sys/arch/amd64/compile/GENERIC.MP/obj -I /usr/src/sys/arch -I /usr/src/sys/dev/pci/drm/include -I /usr/src/sys/dev/pci/drm/include/uapi -I /usr/src/sys/dev/pci/drm/amd/include/asic_reg -I /usr/src/sys/dev/pci/drm/amd/include -I /usr/src/sys/dev/pci/drm/amd/amdgpu -I /usr/src/sys/dev/pci/drm/amd/display -I /usr/src/sys/dev/pci/drm/amd/display/include -I /usr/src/sys/dev/pci/drm/amd/display/dc -I /usr/src/sys/dev/pci/drm/amd/display/amdgpu_dm -I /usr/src/sys/dev/pci/drm/amd/pm/inc -I /usr/src/sys/dev/pci/drm/amd/pm/swsmu -I /usr/src/sys/dev/pci/drm/amd/pm/swsmu/smu11 -I /usr/src/sys/dev/pci/drm/amd/pm/swsmu/smu12 -I /usr/src/sys/dev/pci/drm/amd/pm/powerplay -I /usr/src/sys/dev/pci/drm/amd/pm/powerplay/hwmgr -I /usr/src/sys/dev/pci/drm/amd/pm/powerplay/smumgr -I /usr/src/sys/dev/pci/drm/amd/display/dc/inc -I /usr/src/sys/dev/pci/drm/amd/display/dc/inc/hw -I /usr/src/sys/dev/pci/drm/amd/display/dc/clk_mgr -I /usr/src/sys/dev/pci/drm/amd/display/modules/inc -I /usr/src/sys/dev/pci/drm/amd/display/modules/hdcp -I /usr/src/sys/dev/pci/drm/amd/display/dmub/inc -I /usr/src/sys/dev/pci/drm/i915 -D DDB -D DIAGNOSTIC -D KTRACE -D ACCOUNTING -D KMEMSTATS -D PTRACE -D POOL_DEBUG -D CRYPTO -D SYSVMSG -D SYSVSEM -D SYSVSHM -D UVM_SWAP_ENCRYPT -D FFS -D FFS2 -D FFS_SOFTUPDATES -D UFS_DIRHASH -D QUOTA -D EXT2FS -D MFS -D NFSCLIENT -D NFSSERVER -D CD9660 -D UDF -D MSDOSFS -D FIFO -D FUSE -D SOCKET_SPLICE -D TCP_ECN -D TCP_SIGNATURE -D INET6 -D IPSEC -D PPP_BSDCOMP -D PPP_DEFLATE -D PIPEX -D MROUTING -D MPLS -D BOOT_CONFIG -D USER_PCICONF -D APERTURE -D MTRR -D NTFS -D HIBERNATE -D PCIVERBOSE -D USBVERBOSE -D WSDISPLAY_COMPAT_USL -D WSDISPLAY_COMPAT_RAWKBD -D WSDISPLAY_DEFAULTSCREENS=6 -D X86EMU -D ONEWIREVERBOSE -D MULTIPROCESSOR -D MAXUSERS=80 -D _KERNEL -D CONFIG_DRM_AMD_DC_DCN3_0 -O2 -Wno-pointer-sign -Wno-address-of-packed-member -Wno-constant-conversion -Wno-unused-but-set-variable -Wno-gnu-folding-constant -fdebug-compilation-dir=/usr/src/sys/arch/amd64/compile/GENERIC.MP/obj -ferror-limit 19 -fwrapv -D_RET_PROTECTOR -ret-protector -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -o /usr/obj/sys/arch/amd64/compile/GENERIC.MP/scan-build/2022-01-12-131800-47421-1 -x c /usr/src/sys/dev/pci/drm/amd/pm/powerplay/smumgr/fiji_smumgr.c
1/*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23
24#include "pp_debug.h"
25#include "smumgr.h"
26#include "smu7_dyn_defaults.h"
27#include "smu73.h"
28#include "smu_ucode_xfer_vi.h"
29#include "fiji_smumgr.h"
30#include "fiji_ppsmc.h"
31#include "smu73_discrete.h"
32#include "ppatomctrl.h"
33#include "smu/smu_7_1_3_d.h"
34#include "smu/smu_7_1_3_sh_mask.h"
35#include "gmc/gmc_8_1_d.h"
36#include "gmc/gmc_8_1_sh_mask.h"
37#include "oss/oss_3_0_d.h"
38#include "gca/gfx_8_0_d.h"
39#include "bif/bif_5_0_d.h"
40#include "bif/bif_5_0_sh_mask.h"
41#include "dce/dce_10_0_d.h"
42#include "dce/dce_10_0_sh_mask.h"
43#include "hardwaremanager.h"
44#include "cgs_common.h"
45#include "atombios.h"
46#include "pppcielanes.h"
47#include "hwmgr.h"
48#include "smu7_hwmgr.h"
49
50
51#define AVFS_EN_MSB1568 1568
52#define AVFS_EN_LSB1568 1568
53
54#define FIJI_SMC_SIZE0x20000 0x20000
55
56#define POWERTUNE_DEFAULT_SET_MAX1 1
57#define VDDC_VDDCI_DELTA300 300
58#define MC_CG_ARB_FREQ_F10x0b 0x0b
59
60/* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs
61 * not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ]
62 */
63static const uint16_t fiji_clock_stretcher_lookup_table[2][4] = {
64 {600, 1050, 3, 0}, {600, 1050, 6, 1} };
65
66/* [FF, SS] type, [] 4 voltage ranges, and
67 * [Floor Freq, Boundary Freq, VID min , VID max]
68 */
69static const uint32_t fiji_clock_stretcher_ddt_table[2][4][4] = {
70 { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
71 { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
72
73/* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%]
74 * (coming from PWR_CKS_CNTL.stretch_amount reg spec)
75 */
76static const uint8_t fiji_clock_stretch_amount_conversion[2][6] = {
77 {0, 1, 3, 2, 4, 5}, {0, 2, 4, 5, 6, 5} };
78
79static const struct fiji_pt_defaults fiji_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX1] = {
80 /*sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc */
81 {1, 0xF, 0xFD,
82 /* TDC_MAWt, TdcWaterfallCtl, DTEAmbientTempBase */
83 0x19, 5, 45}
84};
85
86static const struct SMU73_Discrete_GraphicsLevel avfs_graphics_level[8] = {
87 /* Min Sclk pcie DeepSleep Activity CgSpll CgSpll spllSpread SpllSpread CcPwr CcPwr Sclk Display Enabled Enabled Voltage Power */
88 /* Voltage, Frequency, DpmLevel, DivId, Level, FuncCntl3, FuncCntl4, Spectrum, Spectrum2, DynRm, DynRm1 Did, Watermark, ForActivity, ForThrottle, UpHyst, DownHyst, DownHyst, Throttle */
89 { 0x3c0fd047, 0x30750000, 0x00, 0x03, 0x1e00, 0x00200410, 0x87020000, 0x21680000, 0x0c000000, 0, 0, 0x16, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
90 { 0xa00fd047, 0x409c0000, 0x01, 0x04, 0x1e00, 0x00800510, 0x87020000, 0x21680000, 0x11000000, 0, 0, 0x16, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
91 { 0x0410d047, 0x50c30000, 0x01, 0x00, 0x1e00, 0x00600410, 0x87020000, 0x21680000, 0x0d000000, 0, 0, 0x0e, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
92 { 0x6810d047, 0x60ea0000, 0x01, 0x00, 0x1e00, 0x00800410, 0x87020000, 0x21680000, 0x0e000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
93 { 0xcc10d047, 0xe8fd0000, 0x01, 0x00, 0x1e00, 0x00e00410, 0x87020000, 0x21680000, 0x0f000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
94 { 0x3011d047, 0x70110100, 0x01, 0x00, 0x1e00, 0x00400510, 0x87020000, 0x21680000, 0x10000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
95 { 0x9411d047, 0xf8240100, 0x01, 0x00, 0x1e00, 0x00a00510, 0x87020000, 0x21680000, 0x11000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
96 { 0xf811d047, 0x80380100, 0x01, 0x00, 0x1e00, 0x00000610, 0x87020000, 0x21680000, 0x12000000, 0, 0, 0x0c, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 }
97};
98
99static int fiji_start_smu_in_protection_mode(struct pp_hwmgr *hwmgr)
100{
101 int result = 0;
102
103 /* Wait for smc boot up */
104 /* PHM_WAIT_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
105 RCU_UC_EVENTS, boot_seq_done, 0); */
106
107 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device
*)hwmgr->device)->ops->read_ind_register(hwmgr->
device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 &
((1) << 0x0)))))
108 SMC_SYSCON_RESET_CNTL, rst_reg, 1)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device
*)hwmgr->device)->ops->read_ind_register(hwmgr->
device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 &
((1) << 0x0)))))
;
109
110 result = smu7_upload_smu_firmware_image(hwmgr);
111 if (result)
112 return result;
113
114 /* Clear status */
115 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0xe0003088,0))
116 ixSMU_STATUS, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0xe0003088,0))
;
117
118 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0x80000004,((((((struct cgs_device
*)hwmgr->device)->ops->read_ind_register(hwmgr->
device,CGS_IND_REG__SMC,0x80000004))) & ~0x1) | (0x1 &
((0) << 0x0)))))
119 SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0x80000004,((((((struct cgs_device
*)hwmgr->device)->ops->read_ind_register(hwmgr->
device,CGS_IND_REG__SMC,0x80000004))) & ~0x1) | (0x1 &
((0) << 0x0)))))
;
120
121 /* De-assert reset */
122 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device
*)hwmgr->device)->ops->read_ind_register(hwmgr->
device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 &
((0) << 0x0)))))
123 SMC_SYSCON_RESET_CNTL, rst_reg, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device
*)hwmgr->device)->ops->read_ind_register(hwmgr->
device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 &
((0) << 0x0)))))
;
124
125 /* Wait for ROM firmware to initialize interrupt hendler */
126 /*SMUM_WAIT_VFPF_INDIRECT_REGISTER(hwmgr, SMC_IND,
127 SMC_INTR_CNTL_MASK_0, 0x10040, 0xFFFFFFFF); */
128
129 /* Set SMU Auto Start */
130 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0xe00030b8,((((((struct cgs_device
*)hwmgr->device)->ops->read_ind_register(hwmgr->
device,CGS_IND_REG__SMC,0xe00030b8))) & ~0x80000000) | (0x80000000
& ((1) << 0x1f)))))
131 SMU_INPUT_DATA, AUTO_START, 1)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0xe00030b8,((((((struct cgs_device
*)hwmgr->device)->ops->read_ind_register(hwmgr->
device,CGS_IND_REG__SMC,0xe00030b8))) & ~0x80000000) | (0x80000000
& ((1) << 0x1f)))))
;
132
133 /* Clear firmware interrupt enable flag */
134 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0x3f000,0))
135 ixFIRMWARE_FLAGS, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0x3f000,0))
;
136
137 PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS,phm_wait_on_indirect_register(hwmgr, 0x1AC, 0xc0000004, (1) <<
0x10, 0x10000)
138 INTERRUPTS_ENABLED, 1)phm_wait_on_indirect_register(hwmgr, 0x1AC, 0xc0000004, (1) <<
0x10, 0x10000)
;
139
140 smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_Test((uint16_t) 0x100), 0x20000, NULL((void *)0));
141
142 /* Wait for done bit to be set */
143 PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,phm_wait_for_indirect_register_unequal(hwmgr, 0x1AC, 0xe0003088
, (0) << 0x0, 0x1)
144 SMU_STATUS, SMU_DONE, 0)phm_wait_for_indirect_register_unequal(hwmgr, 0x1AC, 0xe0003088
, (0) << 0x0, 0x1)
;
145
146 /* Check pass/failed indicator */
147 if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0xe0003088))) & 0x2) >>
0x1)
148 SMU_STATUS, SMU_PASS)((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0xe0003088))) & 0x2) >>
0x1)
!= 1) {
149 PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "SMU Firmware start failed!"
); return -1; } } while (0)
150 "SMU Firmware start failed!", return -1)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "SMU Firmware start failed!"
); return -1; } } while (0)
;
151 }
152
153 /* Wait for firmware to initialize */
154 PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,phm_wait_on_indirect_register(hwmgr, 0x1AC, 0x3f000, (1) <<
0x0, 0x1)
155 FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1)phm_wait_on_indirect_register(hwmgr, 0x1AC, 0x3f000, (1) <<
0x0, 0x1)
;
156
157 return result;
158}
159
160static int fiji_start_smu_in_non_protection_mode(struct pp_hwmgr *hwmgr)
161{
162 int result = 0;
163
164 /* wait for smc boot up */
165 PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,phm_wait_for_indirect_register_unequal(hwmgr, 0x1AC, 0xc0000004
, (0) << 0x7, 0x80)
166 RCU_UC_EVENTS, boot_seq_done, 0)phm_wait_for_indirect_register_unequal(hwmgr, 0x1AC, 0xc0000004
, (0) << 0x7, 0x80)
;
167
168 /* Clear firmware interrupt enable flag */
169 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0x3f000,0))
170 ixFIRMWARE_FLAGS, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0x3f000,0))
;
171
172 /* Assert reset */
173 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device
*)hwmgr->device)->ops->read_ind_register(hwmgr->
device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 &
((1) << 0x0)))))
174 SMC_SYSCON_RESET_CNTL, rst_reg, 1)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device
*)hwmgr->device)->ops->read_ind_register(hwmgr->
device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 &
((1) << 0x0)))))
;
175
176 result = smu7_upload_smu_firmware_image(hwmgr);
177 if (result)
178 return result;
179
180 /* Set smc instruct start point at 0x0 */
181 smu7_program_jump_on_start(hwmgr);
182
183 /* Enable clock */
184 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0x80000004,((((((struct cgs_device
*)hwmgr->device)->ops->read_ind_register(hwmgr->
device,CGS_IND_REG__SMC,0x80000004))) & ~0x1) | (0x1 &
((0) << 0x0)))))
185 SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0x80000004,((((((struct cgs_device
*)hwmgr->device)->ops->read_ind_register(hwmgr->
device,CGS_IND_REG__SMC,0x80000004))) & ~0x1) | (0x1 &
((0) << 0x0)))))
;
186
187 /* De-assert reset */
188 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device
*)hwmgr->device)->ops->read_ind_register(hwmgr->
device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 &
((0) << 0x0)))))
189 SMC_SYSCON_RESET_CNTL, rst_reg, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device
*)hwmgr->device)->ops->read_ind_register(hwmgr->
device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 &
((0) << 0x0)))))
;
190
191 /* Wait for firmware to initialize */
192 PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,phm_wait_on_indirect_register(hwmgr, 0x1AC, 0x3f000, (1) <<
0x0, 0x1)
193 FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1)phm_wait_on_indirect_register(hwmgr, 0x1AC, 0x3f000, (1) <<
0x0, 0x1)
;
194
195 return result;
196}
197
198static int fiji_start_avfs_btc(struct pp_hwmgr *hwmgr)
199{
200 int result = 0;
201 struct smu7_smumgr *smu_data = (struct smu7_smumgr *)(hwmgr->smu_backend);
202
203 if (0 != smu_data->avfs_btc_param) {
204 if (0 != smum_send_msg_to_smc_with_parameter(hwmgr,
205 PPSMC_MSG_PerformBtc((uint16_t) 0x26C), smu_data->avfs_btc_param,
206 NULL((void *)0))) {
207 pr_info("[AVFS][Fiji_PerformBtc] PerformBTC SMU msg failed")do { } while(0);
208 result = -EINVAL22;
209 }
210 }
211 /* Soft-Reset to reset the engine before loading uCode */
212 /* halt */
213 cgs_write_register(hwmgr->device, mmCP_MEC_CNTL, 0x50000000)(((struct cgs_device *)hwmgr->device)->ops->write_register
(hwmgr->device,0x208d,0x50000000))
;
214 /* reset everything */
215 cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0xffffffff)(((struct cgs_device *)hwmgr->device)->ops->write_register
(hwmgr->device,0x2008,0xffffffff))
;
216 /* clear reset */
217 cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0)(((struct cgs_device *)hwmgr->device)->ops->write_register
(hwmgr->device,0x2008,0))
;
218
219 return result;
220}
221
222static int fiji_setup_graphics_level_structure(struct pp_hwmgr *hwmgr)
223{
224 int32_t vr_config;
225 uint32_t table_start;
226 uint32_t level_addr, vr_config_addr;
227 uint32_t level_size = sizeof(avfs_graphics_level);
228
229 PP_ASSERT_WITH_CODE(0 == smu7_read_smc_sram_dword(hwmgr,do { if (!(0 == smu7_read_smc_sram_dword(hwmgr, 0x20000 + __builtin_offsetof
(SMU73_Firmware_Header, DpmTable), &table_start, 0x40000)
)) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Fiji_SetupGfxLvlStruct] SMU could not "
"communicate starting address of DPM table"); return -1;; } }
while (0)
230 SMU7_FIRMWARE_HEADER_LOCATION +do { if (!(0 == smu7_read_smc_sram_dword(hwmgr, 0x20000 + __builtin_offsetof
(SMU73_Firmware_Header, DpmTable), &table_start, 0x40000)
)) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Fiji_SetupGfxLvlStruct] SMU could not "
"communicate starting address of DPM table"); return -1;; } }
while (0)
231 offsetof(SMU73_Firmware_Header, DpmTable),do { if (!(0 == smu7_read_smc_sram_dword(hwmgr, 0x20000 + __builtin_offsetof
(SMU73_Firmware_Header, DpmTable), &table_start, 0x40000)
)) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Fiji_SetupGfxLvlStruct] SMU could not "
"communicate starting address of DPM table"); return -1;; } }
while (0)
232 &table_start, 0x40000),do { if (!(0 == smu7_read_smc_sram_dword(hwmgr, 0x20000 + __builtin_offsetof
(SMU73_Firmware_Header, DpmTable), &table_start, 0x40000)
)) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Fiji_SetupGfxLvlStruct] SMU could not "
"communicate starting address of DPM table"); return -1;; } }
while (0)
233 "[AVFS][Fiji_SetupGfxLvlStruct] SMU could not "do { if (!(0 == smu7_read_smc_sram_dword(hwmgr, 0x20000 + __builtin_offsetof
(SMU73_Firmware_Header, DpmTable), &table_start, 0x40000)
)) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Fiji_SetupGfxLvlStruct] SMU could not "
"communicate starting address of DPM table"); return -1;; } }
while (0)
234 "communicate starting address of DPM table",do { if (!(0 == smu7_read_smc_sram_dword(hwmgr, 0x20000 + __builtin_offsetof
(SMU73_Firmware_Header, DpmTable), &table_start, 0x40000)
)) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Fiji_SetupGfxLvlStruct] SMU could not "
"communicate starting address of DPM table"); return -1;; } }
while (0)
235 return -1;)do { if (!(0 == smu7_read_smc_sram_dword(hwmgr, 0x20000 + __builtin_offsetof
(SMU73_Firmware_Header, DpmTable), &table_start, 0x40000)
)) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Fiji_SetupGfxLvlStruct] SMU could not "
"communicate starting address of DPM table"); return -1;; } }
while (0)
;
236
237 /* Default value for vr_config =
238 * VR_MERGED_WITH_VDDC + VR_STATIC_VOLTAGE(VDDCI) */
239 vr_config = 0x01000500; /* Real value:0x50001 */
240
241 vr_config_addr = table_start +
242 offsetof(SMU73_Discrete_DpmTable, VRConfig)__builtin_offsetof(SMU73_Discrete_DpmTable, VRConfig);
243
244 PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, vr_config_addr,do { if (!(0 == smu7_copy_bytes_to_smc(hwmgr, vr_config_addr,
(uint8_t *)&vr_config, sizeof(int32_t), 0x40000))) { printk
("\0014" "amdgpu: " "%s\n", "[AVFS][Fiji_SetupGfxLvlStruct] Problems copying "
"vr_config value over to SMC"); return -1;; } } while (0)
245 (uint8_t *)&vr_config, sizeof(int32_t), 0x40000),do { if (!(0 == smu7_copy_bytes_to_smc(hwmgr, vr_config_addr,
(uint8_t *)&vr_config, sizeof(int32_t), 0x40000))) { printk
("\0014" "amdgpu: " "%s\n", "[AVFS][Fiji_SetupGfxLvlStruct] Problems copying "
"vr_config value over to SMC"); return -1;; } } while (0)
246 "[AVFS][Fiji_SetupGfxLvlStruct] Problems copying "do { if (!(0 == smu7_copy_bytes_to_smc(hwmgr, vr_config_addr,
(uint8_t *)&vr_config, sizeof(int32_t), 0x40000))) { printk
("\0014" "amdgpu: " "%s\n", "[AVFS][Fiji_SetupGfxLvlStruct] Problems copying "
"vr_config value over to SMC"); return -1;; } } while (0)
247 "vr_config value over to SMC",do { if (!(0 == smu7_copy_bytes_to_smc(hwmgr, vr_config_addr,
(uint8_t *)&vr_config, sizeof(int32_t), 0x40000))) { printk
("\0014" "amdgpu: " "%s\n", "[AVFS][Fiji_SetupGfxLvlStruct] Problems copying "
"vr_config value over to SMC"); return -1;; } } while (0)
248 return -1;)do { if (!(0 == smu7_copy_bytes_to_smc(hwmgr, vr_config_addr,
(uint8_t *)&vr_config, sizeof(int32_t), 0x40000))) { printk
("\0014" "amdgpu: " "%s\n", "[AVFS][Fiji_SetupGfxLvlStruct] Problems copying "
"vr_config value over to SMC"); return -1;; } } while (0)
;
249
250 level_addr = table_start + offsetof(SMU73_Discrete_DpmTable, GraphicsLevel)__builtin_offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
251
252 PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, level_addr,do { if (!(0 == smu7_copy_bytes_to_smc(hwmgr, level_addr, (uint8_t
*)(&avfs_graphics_level), level_size, 0x40000))) { printk
("\0014" "amdgpu: " "%s\n", "[AVFS][Fiji_SetupGfxLvlStruct] Copying of DPM table failed!"
); return -1;; } } while (0)
253 (uint8_t *)(&avfs_graphics_level), level_size, 0x40000),do { if (!(0 == smu7_copy_bytes_to_smc(hwmgr, level_addr, (uint8_t
*)(&avfs_graphics_level), level_size, 0x40000))) { printk
("\0014" "amdgpu: " "%s\n", "[AVFS][Fiji_SetupGfxLvlStruct] Copying of DPM table failed!"
); return -1;; } } while (0)
254 "[AVFS][Fiji_SetupGfxLvlStruct] Copying of DPM table failed!",do { if (!(0 == smu7_copy_bytes_to_smc(hwmgr, level_addr, (uint8_t
*)(&avfs_graphics_level), level_size, 0x40000))) { printk
("\0014" "amdgpu: " "%s\n", "[AVFS][Fiji_SetupGfxLvlStruct] Copying of DPM table failed!"
); return -1;; } } while (0)
255 return -1;)do { if (!(0 == smu7_copy_bytes_to_smc(hwmgr, level_addr, (uint8_t
*)(&avfs_graphics_level), level_size, 0x40000))) { printk
("\0014" "amdgpu: " "%s\n", "[AVFS][Fiji_SetupGfxLvlStruct] Copying of DPM table failed!"
); return -1;; } } while (0)
;
256
257 return 0;
258}
259
260static int fiji_avfs_event_mgr(struct pp_hwmgr *hwmgr)
261{
262 if (!hwmgr->avfs_supported)
263 return 0;
264
265 PP_ASSERT_WITH_CODE(0 == fiji_setup_graphics_level_structure(hwmgr),do { if (!(0 == fiji_setup_graphics_level_structure(hwmgr))) {
printk("\0014" "amdgpu: " "%s\n", "[AVFS][fiji_avfs_event_mgr] Could not Copy Graphics Level"
" table over to SMU"); return -22; } } while (0)
266 "[AVFS][fiji_avfs_event_mgr] Could not Copy Graphics Level"do { if (!(0 == fiji_setup_graphics_level_structure(hwmgr))) {
printk("\0014" "amdgpu: " "%s\n", "[AVFS][fiji_avfs_event_mgr] Could not Copy Graphics Level"
" table over to SMU"); return -22; } } while (0)
267 " table over to SMU",do { if (!(0 == fiji_setup_graphics_level_structure(hwmgr))) {
printk("\0014" "amdgpu: " "%s\n", "[AVFS][fiji_avfs_event_mgr] Could not Copy Graphics Level"
" table over to SMU"); return -22; } } while (0)
268 return -EINVAL)do { if (!(0 == fiji_setup_graphics_level_structure(hwmgr))) {
printk("\0014" "amdgpu: " "%s\n", "[AVFS][fiji_avfs_event_mgr] Could not Copy Graphics Level"
" table over to SMU"); return -22; } } while (0)
;
269 PP_ASSERT_WITH_CODE(0 == smu7_setup_pwr_virus(hwmgr),do { if (!(0 == smu7_setup_pwr_virus(hwmgr))) { printk("\0014"
"amdgpu: " "%s\n", "[AVFS][fiji_avfs_event_mgr] Could not setup "
"Pwr Virus for AVFS "); return -22; } } while (0)
270 "[AVFS][fiji_avfs_event_mgr] Could not setup "do { if (!(0 == smu7_setup_pwr_virus(hwmgr))) { printk("\0014"
"amdgpu: " "%s\n", "[AVFS][fiji_avfs_event_mgr] Could not setup "
"Pwr Virus for AVFS "); return -22; } } while (0)
271 "Pwr Virus for AVFS ",do { if (!(0 == smu7_setup_pwr_virus(hwmgr))) { printk("\0014"
"amdgpu: " "%s\n", "[AVFS][fiji_avfs_event_mgr] Could not setup "
"Pwr Virus for AVFS "); return -22; } } while (0)
272 return -EINVAL)do { if (!(0 == smu7_setup_pwr_virus(hwmgr))) { printk("\0014"
"amdgpu: " "%s\n", "[AVFS][fiji_avfs_event_mgr] Could not setup "
"Pwr Virus for AVFS "); return -22; } } while (0)
;
273 PP_ASSERT_WITH_CODE(0 == fiji_start_avfs_btc(hwmgr),do { if (!(0 == fiji_start_avfs_btc(hwmgr))) { printk("\0014"
"amdgpu: " "%s\n", "[AVFS][fiji_avfs_event_mgr] Failure at "
"fiji_start_avfs_btc. AVFS Disabled"); return -22; } } while
(0)
274 "[AVFS][fiji_avfs_event_mgr] Failure at "do { if (!(0 == fiji_start_avfs_btc(hwmgr))) { printk("\0014"
"amdgpu: " "%s\n", "[AVFS][fiji_avfs_event_mgr] Failure at "
"fiji_start_avfs_btc. AVFS Disabled"); return -22; } } while
(0)
275 "fiji_start_avfs_btc. AVFS Disabled",do { if (!(0 == fiji_start_avfs_btc(hwmgr))) { printk("\0014"
"amdgpu: " "%s\n", "[AVFS][fiji_avfs_event_mgr] Failure at "
"fiji_start_avfs_btc. AVFS Disabled"); return -22; } } while
(0)
276 return -EINVAL)do { if (!(0 == fiji_start_avfs_btc(hwmgr))) { printk("\0014"
"amdgpu: " "%s\n", "[AVFS][fiji_avfs_event_mgr] Failure at "
"fiji_start_avfs_btc. AVFS Disabled"); return -22; } } while
(0)
;
277
278 return 0;
279}
280
281static int fiji_start_smu(struct pp_hwmgr *hwmgr)
282{
283 int result = 0;
284 struct fiji_smumgr *priv = (struct fiji_smumgr *)(hwmgr->smu_backend);
285
286 /* Only start SMC if SMC RAM is not running */
287 if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) {
288 /* Check if SMU is running in protected mode */
289 if (0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0xe00030a4))) & 0x10000
) >> 0x10)
290 CGS_IND_REG__SMC,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0xe00030a4))) & 0x10000
) >> 0x10)
291 SMU_FIRMWARE, SMU_MODE)((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0xe00030a4))) & 0x10000
) >> 0x10)
) {
292 result = fiji_start_smu_in_non_protection_mode(hwmgr);
293 if (result)
294 return result;
295 } else {
296 result = fiji_start_smu_in_protection_mode(hwmgr);
297 if (result)
298 return result;
299 }
300 if (fiji_avfs_event_mgr(hwmgr))
301 hwmgr->avfs_supported = false0;
302 }
303
304 /* Setup SoftRegsStart here for register lookup in case
305 * DummyBackEnd is used and ProcessFirmwareHeader is not executed
306 */
307 smu7_read_smc_sram_dword(hwmgr,
308 SMU7_FIRMWARE_HEADER_LOCATION0x20000 +
309 offsetof(SMU73_Firmware_Header, SoftRegisters)__builtin_offsetof(SMU73_Firmware_Header, SoftRegisters),
310 &(priv->smu7_data.soft_regs_start), 0x40000);
311
312 result = smu7_request_smu_load_fw(hwmgr);
313
314 return result;
315}
316
317static bool_Bool fiji_is_hw_avfs_present(struct pp_hwmgr *hwmgr)
318{
319
320 uint32_t efuse = 0;
321 uint32_t mask = (1 << ((AVFS_EN_MSB1568 - AVFS_EN_LSB1568) + 1)) - 1;
322
323 if (!hwmgr->not_vf)
324 return false0;
325
326 if (!atomctrl_read_efuse(hwmgr, AVFS_EN_LSB1568, AVFS_EN_MSB1568,
327 mask, &efuse)) {
328 if (efuse)
329 return true1;
330 }
331 return false0;
332}
333
334static int fiji_smu_init(struct pp_hwmgr *hwmgr)
335{
336 struct fiji_smumgr *fiji_priv = NULL((void *)0);
337
338 fiji_priv = kzalloc(sizeof(struct fiji_smumgr), GFP_KERNEL(0x0001 | 0x0004));
339
340 if (fiji_priv == NULL((void *)0))
341 return -ENOMEM12;
342
343 hwmgr->smu_backend = fiji_priv;
344
345 if (smu7_init(hwmgr)) {
346 kfree(fiji_priv);
347 return -EINVAL22;
348 }
349
350 return 0;
351}
352
353static int fiji_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
354 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table,
355 uint32_t clock, uint32_t *voltage, uint32_t *mvdd)
356{
357 uint32_t i;
358 uint16_t vddci;
359 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
360 *voltage = *mvdd = 0;
361
362
363 /* clock - voltage dependency table is empty table */
364 if (dep_table->count == 0)
365 return -EINVAL22;
366
367 for (i = 0; i < dep_table->count; i++) {
368 /* find first sclk bigger than request */
369 if (dep_table->entries[i].clk >= clock) {
370 *voltage |= (dep_table->entries[i].vddc *
371 VOLTAGE_SCALE4) << VDDC_SHIFT0;
372 if (SMU7_VOLTAGE_CONTROL_NONE0x0 == data->vddci_control)
373 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
374 VOLTAGE_SCALE4) << VDDCI_SHIFT15;
375 else if (dep_table->entries[i].vddci)
376 *voltage |= (dep_table->entries[i].vddci *
377 VOLTAGE_SCALE4) << VDDCI_SHIFT15;
378 else {
379 vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
380 (dep_table->entries[i].vddc -
381 VDDC_VDDCI_DELTA300));
382 *voltage |= (vddci * VOLTAGE_SCALE4) << VDDCI_SHIFT15;
383 }
384
385 if (SMU7_VOLTAGE_CONTROL_NONE0x0 == data->mvdd_control)
386 *mvdd = data->vbios_boot_state.mvdd_bootup_value *
387 VOLTAGE_SCALE4;
388 else if (dep_table->entries[i].mvdd)
389 *mvdd = (uint32_t) dep_table->entries[i].mvdd *
390 VOLTAGE_SCALE4;
391
392 *voltage |= 1 << PHASES_SHIFT30;
393 return 0;
394 }
395 }
396
397 /* sclk is bigger than max sclk in the dependence table */
398 *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE4) << VDDC_SHIFT0;
399
400 if (SMU7_VOLTAGE_CONTROL_NONE0x0 == data->vddci_control)
401 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
402 VOLTAGE_SCALE4) << VDDCI_SHIFT15;
403 else if (dep_table->entries[i-1].vddci) {
404 vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
405 (dep_table->entries[i].vddc -
406 VDDC_VDDCI_DELTA300));
407 *voltage |= (vddci * VOLTAGE_SCALE4) << VDDCI_SHIFT15;
408 }
409
410 if (SMU7_VOLTAGE_CONTROL_NONE0x0 == data->mvdd_control)
411 *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE4;
412 else if (dep_table->entries[i].mvdd)
413 *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE4;
414
415 return 0;
416}
417
418
419static uint16_t scale_fan_gain_settings(uint16_t raw_setting)
420{
421 uint32_t tmp;
422 tmp = raw_setting * 4096 / 100;
423 return (uint16_t)tmp;
424}
425
426static void get_scl_sda_value(uint8_t line, uint8_t *scl, uint8_t *sda)
427{
428 switch (line) {
429 case SMU7_I2CLineID_DDC1:
430 *scl = SMU7_I2C_DDC1CLK1;
431 *sda = SMU7_I2C_DDC1DATA0;
432 break;
433 case SMU7_I2CLineID_DDC2:
434 *scl = SMU7_I2C_DDC2CLK3;
435 *sda = SMU7_I2C_DDC2DATA2;
436 break;
437 case SMU7_I2CLineID_DDC3:
438 *scl = SMU7_I2C_DDC3CLK5;
439 *sda = SMU7_I2C_DDC3DATA4;
440 break;
441 case SMU7_I2CLineID_DDC4:
442 *scl = SMU7_I2C_DDC4CLK66;
443 *sda = SMU7_I2C_DDC4DATA65;
444 break;
445 case SMU7_I2CLineID_DDC5:
446 *scl = SMU7_I2C_DDC5CLK0x49;
447 *sda = SMU7_I2C_DDC5DATA0x48;
448 break;
449 case SMU7_I2CLineID_DDC6:
450 *scl = SMU7_I2C_DDC6CLK0x4b;
451 *sda = SMU7_I2C_DDC6DATA0x4a;
452 break;
453 case SMU7_I2CLineID_SCLSDA:
454 *scl = SMU7_I2C_SCL41;
455 *sda = SMU7_I2C_SDA40;
456 break;
457 case SMU7_I2CLineID_DDCVGA:
458 *scl = SMU7_I2C_DDCVGACLK0x4d;
459 *sda = SMU7_I2C_DDCVGADATA0x4c;
460 break;
461 default:
462 *scl = 0;
463 *sda = 0;
464 break;
465 }
466}
467
468static void fiji_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
469{
470 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
471 struct phm_ppt_v1_information *table_info =
472 (struct phm_ppt_v1_information *)(hwmgr->pptable);
473
474 if (table_info &&
475 table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX1 &&
476 table_info->cac_dtp_table->usPowerTuneDataSetID)
477 smu_data->power_tune_defaults =
478 &fiji_power_tune_data_set_array
479 [table_info->cac_dtp_table->usPowerTuneDataSetID - 1];
480 else
481 smu_data->power_tune_defaults = &fiji_power_tune_data_set_array[0];
482
483}
484
485static int fiji_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
486{
487
488 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
489 const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
490
491 SMU73_Discrete_DpmTable *dpm_table = &(smu_data->smc_state_table);
492
493 struct phm_ppt_v1_information *table_info =
494 (struct phm_ppt_v1_information *)(hwmgr->pptable);
495 struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table;
496 struct pp_advance_fan_control_parameters *fan_table =
497 &hwmgr->thermal_controller.advanceFanControlParameters;
498 uint8_t uc_scl, uc_sda;
499
500 /* TDP number of fraction bits are changed from 8 to 7 for Fiji
501 * as requested by SMC team
502 */
503 dpm_table->DefaultTdp = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p((uint16_t)(cac_dtp_table->
usTDP * 128)) ? (__uint16_t)(((__uint16_t)((uint16_t)(cac_dtp_table
->usTDP * 128)) & 0xffU) << 8 | ((__uint16_t)((uint16_t
)(cac_dtp_table->usTDP * 128)) & 0xff00U) >> 8) :
__swap16md((uint16_t)(cac_dtp_table->usTDP * 128)))
504 (uint16_t)(cac_dtp_table->usTDP * 128))(__uint16_t)(__builtin_constant_p((uint16_t)(cac_dtp_table->
usTDP * 128)) ? (__uint16_t)(((__uint16_t)((uint16_t)(cac_dtp_table
->usTDP * 128)) & 0xffU) << 8 | ((__uint16_t)((uint16_t
)(cac_dtp_table->usTDP * 128)) & 0xff00U) >> 8) :
__swap16md((uint16_t)(cac_dtp_table->usTDP * 128)))
;
505 dpm_table->TargetTdp = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p((uint16_t)(cac_dtp_table->
usTDP * 128)) ? (__uint16_t)(((__uint16_t)((uint16_t)(cac_dtp_table
->usTDP * 128)) & 0xffU) << 8 | ((__uint16_t)((uint16_t
)(cac_dtp_table->usTDP * 128)) & 0xff00U) >> 8) :
__swap16md((uint16_t)(cac_dtp_table->usTDP * 128)))
506 (uint16_t)(cac_dtp_table->usTDP * 128))(__uint16_t)(__builtin_constant_p((uint16_t)(cac_dtp_table->
usTDP * 128)) ? (__uint16_t)(((__uint16_t)((uint16_t)(cac_dtp_table
->usTDP * 128)) & 0xffU) << 8 | ((__uint16_t)((uint16_t
)(cac_dtp_table->usTDP * 128)) & 0xff00U) >> 8) :
__swap16md((uint16_t)(cac_dtp_table->usTDP * 128)))
;
507
508 PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,do { if (!(cac_dtp_table->usTargetOperatingTemp <= 255)
) { printk("\0014" "amdgpu: " "%s\n", "Target Operating Temp is out of Range!"
); ; } } while (0)
509 "Target Operating Temp is out of Range!",do { if (!(cac_dtp_table->usTargetOperatingTemp <= 255)
) { printk("\0014" "amdgpu: " "%s\n", "Target Operating Temp is out of Range!"
); ; } } while (0)
510 )do { if (!(cac_dtp_table->usTargetOperatingTemp <= 255)
) { printk("\0014" "amdgpu: " "%s\n", "Target Operating Temp is out of Range!"
); ; } } while (0)
;
511
512 dpm_table->GpuTjMax = (uint8_t)(cac_dtp_table->usTargetOperatingTemp);
513 dpm_table->GpuTjHyst = 8;
514
515 dpm_table->DTEAmbientTempBase = defaults->DTEAmbientTempBase;
516
517 /* The following are for new Fiji Multi-input fan/thermal control */
518 dpm_table->TemperatureLimitEdge = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(cac_dtp_table->usTargetOperatingTemp
* 256) ? (__uint16_t)(((__uint16_t)(cac_dtp_table->usTargetOperatingTemp
* 256) & 0xffU) << 8 | ((__uint16_t)(cac_dtp_table
->usTargetOperatingTemp * 256) & 0xff00U) >> 8) :
__swap16md(cac_dtp_table->usTargetOperatingTemp * 256))
519 cac_dtp_table->usTargetOperatingTemp * 256)(__uint16_t)(__builtin_constant_p(cac_dtp_table->usTargetOperatingTemp
* 256) ? (__uint16_t)(((__uint16_t)(cac_dtp_table->usTargetOperatingTemp
* 256) & 0xffU) << 8 | ((__uint16_t)(cac_dtp_table
->usTargetOperatingTemp * 256) & 0xff00U) >> 8) :
__swap16md(cac_dtp_table->usTargetOperatingTemp * 256))
;
520 dpm_table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(cac_dtp_table->usTemperatureLimitHotspot
* 256) ? (__uint16_t)(((__uint16_t)(cac_dtp_table->usTemperatureLimitHotspot
* 256) & 0xffU) << 8 | ((__uint16_t)(cac_dtp_table
->usTemperatureLimitHotspot * 256) & 0xff00U) >>
8) : __swap16md(cac_dtp_table->usTemperatureLimitHotspot *
256))
521 cac_dtp_table->usTemperatureLimitHotspot * 256)(__uint16_t)(__builtin_constant_p(cac_dtp_table->usTemperatureLimitHotspot
* 256) ? (__uint16_t)(((__uint16_t)(cac_dtp_table->usTemperatureLimitHotspot
* 256) & 0xffU) << 8 | ((__uint16_t)(cac_dtp_table
->usTemperatureLimitHotspot * 256) & 0xff00U) >>
8) : __swap16md(cac_dtp_table->usTemperatureLimitHotspot *
256))
;
522 dpm_table->TemperatureLimitLiquid1 = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(cac_dtp_table->usTemperatureLimitLiquid1
* 256) ? (__uint16_t)(((__uint16_t)(cac_dtp_table->usTemperatureLimitLiquid1
* 256) & 0xffU) << 8 | ((__uint16_t)(cac_dtp_table
->usTemperatureLimitLiquid1 * 256) & 0xff00U) >>
8) : __swap16md(cac_dtp_table->usTemperatureLimitLiquid1 *
256))
523 cac_dtp_table->usTemperatureLimitLiquid1 * 256)(__uint16_t)(__builtin_constant_p(cac_dtp_table->usTemperatureLimitLiquid1
* 256) ? (__uint16_t)(((__uint16_t)(cac_dtp_table->usTemperatureLimitLiquid1
* 256) & 0xffU) << 8 | ((__uint16_t)(cac_dtp_table
->usTemperatureLimitLiquid1 * 256) & 0xff00U) >>
8) : __swap16md(cac_dtp_table->usTemperatureLimitLiquid1 *
256))
;
524 dpm_table->TemperatureLimitLiquid2 = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(cac_dtp_table->usTemperatureLimitLiquid2
* 256) ? (__uint16_t)(((__uint16_t)(cac_dtp_table->usTemperatureLimitLiquid2
* 256) & 0xffU) << 8 | ((__uint16_t)(cac_dtp_table
->usTemperatureLimitLiquid2 * 256) & 0xff00U) >>
8) : __swap16md(cac_dtp_table->usTemperatureLimitLiquid2 *
256))
525 cac_dtp_table->usTemperatureLimitLiquid2 * 256)(__uint16_t)(__builtin_constant_p(cac_dtp_table->usTemperatureLimitLiquid2
* 256) ? (__uint16_t)(((__uint16_t)(cac_dtp_table->usTemperatureLimitLiquid2
* 256) & 0xffU) << 8 | ((__uint16_t)(cac_dtp_table
->usTemperatureLimitLiquid2 * 256) & 0xff00U) >>
8) : __swap16md(cac_dtp_table->usTemperatureLimitLiquid2 *
256))
;
526 dpm_table->TemperatureLimitVrVddc = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(cac_dtp_table->usTemperatureLimitVrVddc
* 256) ? (__uint16_t)(((__uint16_t)(cac_dtp_table->usTemperatureLimitVrVddc
* 256) & 0xffU) << 8 | ((__uint16_t)(cac_dtp_table
->usTemperatureLimitVrVddc * 256) & 0xff00U) >> 8
) : __swap16md(cac_dtp_table->usTemperatureLimitVrVddc * 256
))
527 cac_dtp_table->usTemperatureLimitVrVddc * 256)(__uint16_t)(__builtin_constant_p(cac_dtp_table->usTemperatureLimitVrVddc
* 256) ? (__uint16_t)(((__uint16_t)(cac_dtp_table->usTemperatureLimitVrVddc
* 256) & 0xffU) << 8 | ((__uint16_t)(cac_dtp_table
->usTemperatureLimitVrVddc * 256) & 0xff00U) >> 8
) : __swap16md(cac_dtp_table->usTemperatureLimitVrVddc * 256
))
;
528 dpm_table->TemperatureLimitVrMvdd = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(cac_dtp_table->usTemperatureLimitVrMvdd
* 256) ? (__uint16_t)(((__uint16_t)(cac_dtp_table->usTemperatureLimitVrMvdd
* 256) & 0xffU) << 8 | ((__uint16_t)(cac_dtp_table
->usTemperatureLimitVrMvdd * 256) & 0xff00U) >> 8
) : __swap16md(cac_dtp_table->usTemperatureLimitVrMvdd * 256
))
529 cac_dtp_table->usTemperatureLimitVrMvdd * 256)(__uint16_t)(__builtin_constant_p(cac_dtp_table->usTemperatureLimitVrMvdd
* 256) ? (__uint16_t)(((__uint16_t)(cac_dtp_table->usTemperatureLimitVrMvdd
* 256) & 0xffU) << 8 | ((__uint16_t)(cac_dtp_table
->usTemperatureLimitVrMvdd * 256) & 0xff00U) >> 8
) : __swap16md(cac_dtp_table->usTemperatureLimitVrMvdd * 256
))
;
530 dpm_table->TemperatureLimitPlx = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(cac_dtp_table->usTemperatureLimitPlx
* 256) ? (__uint16_t)(((__uint16_t)(cac_dtp_table->usTemperatureLimitPlx
* 256) & 0xffU) << 8 | ((__uint16_t)(cac_dtp_table
->usTemperatureLimitPlx * 256) & 0xff00U) >> 8) :
__swap16md(cac_dtp_table->usTemperatureLimitPlx * 256))
531 cac_dtp_table->usTemperatureLimitPlx * 256)(__uint16_t)(__builtin_constant_p(cac_dtp_table->usTemperatureLimitPlx
* 256) ? (__uint16_t)(((__uint16_t)(cac_dtp_table->usTemperatureLimitPlx
* 256) & 0xffU) << 8 | ((__uint16_t)(cac_dtp_table
->usTemperatureLimitPlx * 256) & 0xff00U) >> 8) :
__swap16md(cac_dtp_table->usTemperatureLimitPlx * 256))
;
532
533 dpm_table->FanGainEdge = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(scale_fan_gain_settings(fan_table
->usFanGainEdge)) ? (__uint16_t)(((__uint16_t)(scale_fan_gain_settings
(fan_table->usFanGainEdge)) & 0xffU) << 8 | ((__uint16_t
)(scale_fan_gain_settings(fan_table->usFanGainEdge)) &
0xff00U) >> 8) : __swap16md(scale_fan_gain_settings(fan_table
->usFanGainEdge)))
534 scale_fan_gain_settings(fan_table->usFanGainEdge))(__uint16_t)(__builtin_constant_p(scale_fan_gain_settings(fan_table
->usFanGainEdge)) ? (__uint16_t)(((__uint16_t)(scale_fan_gain_settings
(fan_table->usFanGainEdge)) & 0xffU) << 8 | ((__uint16_t
)(scale_fan_gain_settings(fan_table->usFanGainEdge)) &
0xff00U) >> 8) : __swap16md(scale_fan_gain_settings(fan_table
->usFanGainEdge)))
;
535 dpm_table->FanGainHotspot = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(scale_fan_gain_settings(fan_table
->usFanGainHotspot)) ? (__uint16_t)(((__uint16_t)(scale_fan_gain_settings
(fan_table->usFanGainHotspot)) & 0xffU) << 8 | (
(__uint16_t)(scale_fan_gain_settings(fan_table->usFanGainHotspot
)) & 0xff00U) >> 8) : __swap16md(scale_fan_gain_settings
(fan_table->usFanGainHotspot)))
536 scale_fan_gain_settings(fan_table->usFanGainHotspot))(__uint16_t)(__builtin_constant_p(scale_fan_gain_settings(fan_table
->usFanGainHotspot)) ? (__uint16_t)(((__uint16_t)(scale_fan_gain_settings
(fan_table->usFanGainHotspot)) & 0xffU) << 8 | (
(__uint16_t)(scale_fan_gain_settings(fan_table->usFanGainHotspot
)) & 0xff00U) >> 8) : __swap16md(scale_fan_gain_settings
(fan_table->usFanGainHotspot)))
;
537 dpm_table->FanGainLiquid = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(scale_fan_gain_settings(fan_table
->usFanGainLiquid)) ? (__uint16_t)(((__uint16_t)(scale_fan_gain_settings
(fan_table->usFanGainLiquid)) & 0xffU) << 8 | ((
__uint16_t)(scale_fan_gain_settings(fan_table->usFanGainLiquid
)) & 0xff00U) >> 8) : __swap16md(scale_fan_gain_settings
(fan_table->usFanGainLiquid)))
538 scale_fan_gain_settings(fan_table->usFanGainLiquid))(__uint16_t)(__builtin_constant_p(scale_fan_gain_settings(fan_table
->usFanGainLiquid)) ? (__uint16_t)(((__uint16_t)(scale_fan_gain_settings
(fan_table->usFanGainLiquid)) & 0xffU) << 8 | ((
__uint16_t)(scale_fan_gain_settings(fan_table->usFanGainLiquid
)) & 0xff00U) >> 8) : __swap16md(scale_fan_gain_settings
(fan_table->usFanGainLiquid)))
;
539 dpm_table->FanGainVrVddc = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(scale_fan_gain_settings(fan_table
->usFanGainVrVddc)) ? (__uint16_t)(((__uint16_t)(scale_fan_gain_settings
(fan_table->usFanGainVrVddc)) & 0xffU) << 8 | ((
__uint16_t)(scale_fan_gain_settings(fan_table->usFanGainVrVddc
)) & 0xff00U) >> 8) : __swap16md(scale_fan_gain_settings
(fan_table->usFanGainVrVddc)))
540 scale_fan_gain_settings(fan_table->usFanGainVrVddc))(__uint16_t)(__builtin_constant_p(scale_fan_gain_settings(fan_table
->usFanGainVrVddc)) ? (__uint16_t)(((__uint16_t)(scale_fan_gain_settings
(fan_table->usFanGainVrVddc)) & 0xffU) << 8 | ((
__uint16_t)(scale_fan_gain_settings(fan_table->usFanGainVrVddc
)) & 0xff00U) >> 8) : __swap16md(scale_fan_gain_settings
(fan_table->usFanGainVrVddc)))
;
541 dpm_table->FanGainVrMvdd = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(scale_fan_gain_settings(fan_table
->usFanGainVrMvdd)) ? (__uint16_t)(((__uint16_t)(scale_fan_gain_settings
(fan_table->usFanGainVrMvdd)) & 0xffU) << 8 | ((
__uint16_t)(scale_fan_gain_settings(fan_table->usFanGainVrMvdd
)) & 0xff00U) >> 8) : __swap16md(scale_fan_gain_settings
(fan_table->usFanGainVrMvdd)))
542 scale_fan_gain_settings(fan_table->usFanGainVrMvdd))(__uint16_t)(__builtin_constant_p(scale_fan_gain_settings(fan_table
->usFanGainVrMvdd)) ? (__uint16_t)(((__uint16_t)(scale_fan_gain_settings
(fan_table->usFanGainVrMvdd)) & 0xffU) << 8 | ((
__uint16_t)(scale_fan_gain_settings(fan_table->usFanGainVrMvdd
)) & 0xff00U) >> 8) : __swap16md(scale_fan_gain_settings
(fan_table->usFanGainVrMvdd)))
;
543 dpm_table->FanGainPlx = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(scale_fan_gain_settings(fan_table
->usFanGainPlx)) ? (__uint16_t)(((__uint16_t)(scale_fan_gain_settings
(fan_table->usFanGainPlx)) & 0xffU) << 8 | ((__uint16_t
)(scale_fan_gain_settings(fan_table->usFanGainPlx)) & 0xff00U
) >> 8) : __swap16md(scale_fan_gain_settings(fan_table->
usFanGainPlx)))
544 scale_fan_gain_settings(fan_table->usFanGainPlx))(__uint16_t)(__builtin_constant_p(scale_fan_gain_settings(fan_table
->usFanGainPlx)) ? (__uint16_t)(((__uint16_t)(scale_fan_gain_settings
(fan_table->usFanGainPlx)) & 0xffU) << 8 | ((__uint16_t
)(scale_fan_gain_settings(fan_table->usFanGainPlx)) & 0xff00U
) >> 8) : __swap16md(scale_fan_gain_settings(fan_table->
usFanGainPlx)))
;
545 dpm_table->FanGainHbm = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(scale_fan_gain_settings(fan_table
->usFanGainHbm)) ? (__uint16_t)(((__uint16_t)(scale_fan_gain_settings
(fan_table->usFanGainHbm)) & 0xffU) << 8 | ((__uint16_t
)(scale_fan_gain_settings(fan_table->usFanGainHbm)) & 0xff00U
) >> 8) : __swap16md(scale_fan_gain_settings(fan_table->
usFanGainHbm)))
546 scale_fan_gain_settings(fan_table->usFanGainHbm))(__uint16_t)(__builtin_constant_p(scale_fan_gain_settings(fan_table
->usFanGainHbm)) ? (__uint16_t)(((__uint16_t)(scale_fan_gain_settings
(fan_table->usFanGainHbm)) & 0xffU) << 8 | ((__uint16_t
)(scale_fan_gain_settings(fan_table->usFanGainHbm)) & 0xff00U
) >> 8) : __swap16md(scale_fan_gain_settings(fan_table->
usFanGainHbm)))
;
547
548 dpm_table->Liquid1_I2C_address = cac_dtp_table->ucLiquid1_I2C_address;
549 dpm_table->Liquid2_I2C_address = cac_dtp_table->ucLiquid2_I2C_address;
550 dpm_table->Vr_I2C_address = cac_dtp_table->ucVr_I2C_address;
551 dpm_table->Plx_I2C_address = cac_dtp_table->ucPlx_I2C_address;
552
553 get_scl_sda_value(cac_dtp_table->ucLiquid_I2C_Line, &uc_scl, &uc_sda);
554 dpm_table->Liquid_I2C_LineSCL = uc_scl;
555 dpm_table->Liquid_I2C_LineSDA = uc_sda;
556
557 get_scl_sda_value(cac_dtp_table->ucVr_I2C_Line, &uc_scl, &uc_sda);
558 dpm_table->Vr_I2C_LineSCL = uc_scl;
559 dpm_table->Vr_I2C_LineSDA = uc_sda;
560
561 get_scl_sda_value(cac_dtp_table->ucPlx_I2C_Line, &uc_scl, &uc_sda);
562 dpm_table->Plx_I2C_LineSCL = uc_scl;
563 dpm_table->Plx_I2C_LineSDA = uc_sda;
564
565 return 0;
566}
567
568
569static int fiji_populate_svi_load_line(struct pp_hwmgr *hwmgr)
570{
571 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
572 const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
573
574 smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn;
575 smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC;
576 smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
577 smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
578
579 return 0;
580}
581
582
583static int fiji_populate_tdc_limit(struct pp_hwmgr *hwmgr)
584{
585 uint16_t tdc_limit;
586 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
587 struct phm_ppt_v1_information *table_info =
588 (struct phm_ppt_v1_information *)(hwmgr->pptable);
589 const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
590
591 /* TDC number of fraction bits are changed from 8 to 7
592 * for Fiji as requested by SMC team
593 */
594 tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128);
595 smu_data->power_tune_table.TDC_VDDC_PkgLimit =
596 CONVERT_FROM_HOST_TO_SMC_US(tdc_limit)((tdc_limit) = (__uint16_t)(__builtin_constant_p(tdc_limit) ?
(__uint16_t)(((__uint16_t)(tdc_limit) & 0xffU) << 8
| ((__uint16_t)(tdc_limit) & 0xff00U) >> 8) : __swap16md
(tdc_limit)))
;
597 smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
598 defaults->TDC_VDDC_ThrottleReleaseLimitPerc;
599 smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt;
600
601 return 0;
602}
603
604static int fiji_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
605{
606 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
607 const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
608 uint32_t temp;
609
610 if (smu7_read_smc_sram_dword(hwmgr,
611 fuse_table_offset +
612 offsetof(SMU73_Discrete_PmFuses, TdcWaterfallCtl)__builtin_offsetof(SMU73_Discrete_PmFuses, TdcWaterfallCtl),
613 (uint32_t *)&temp, SMC_RAM_END0x40000))
614 PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!"
); return -22; } } while (0)
615 "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!"
); return -22; } } while (0)
616 return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!"
); return -22; } } while (0)
;
617 else {
618 smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl;
619 smu_data->power_tune_table.LPMLTemperatureMin =
620 (uint8_t)((temp >> 16) & 0xff);
621 smu_data->power_tune_table.LPMLTemperatureMax =
622 (uint8_t)((temp >> 8) & 0xff);
623 smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff);
624 }
625 return 0;
626}
627
628static int fiji_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
629{
630 int i;
631 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
632
633 /* Currently not used. Set all to zero. */
634 for (i = 0; i < 16; i++)
635 smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0;
636
637 return 0;
638}
639
640static int fiji_populate_fuzzy_fan(struct pp_hwmgr *hwmgr)
641{
642 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
643
644 if ((hwmgr->thermal_controller.advanceFanControlParameters.
645 usFanOutputSensitivity & (1 << 15)) ||
646 0 == hwmgr->thermal_controller.advanceFanControlParameters.
647 usFanOutputSensitivity)
648 hwmgr->thermal_controller.advanceFanControlParameters.
649 usFanOutputSensitivity = hwmgr->thermal_controller.
650 advanceFanControlParameters.usDefaultFanOutputSensitivity;
651
652 smu_data->power_tune_table.FuzzyFan_PwmSetDelta =
653 PP_HOST_TO_SMC_US(hwmgr->thermal_controller.(__uint16_t)(__builtin_constant_p(hwmgr->thermal_controller
. advanceFanControlParameters.usFanOutputSensitivity) ? (__uint16_t
)(((__uint16_t)(hwmgr->thermal_controller. advanceFanControlParameters
.usFanOutputSensitivity) & 0xffU) << 8 | ((__uint16_t
)(hwmgr->thermal_controller. advanceFanControlParameters.usFanOutputSensitivity
) & 0xff00U) >> 8) : __swap16md(hwmgr->thermal_controller
. advanceFanControlParameters.usFanOutputSensitivity))
654 advanceFanControlParameters.usFanOutputSensitivity)(__uint16_t)(__builtin_constant_p(hwmgr->thermal_controller
. advanceFanControlParameters.usFanOutputSensitivity) ? (__uint16_t
)(((__uint16_t)(hwmgr->thermal_controller. advanceFanControlParameters
.usFanOutputSensitivity) & 0xffU) << 8 | ((__uint16_t
)(hwmgr->thermal_controller. advanceFanControlParameters.usFanOutputSensitivity
) & 0xff00U) >> 8) : __swap16md(hwmgr->thermal_controller
. advanceFanControlParameters.usFanOutputSensitivity))
;
655 return 0;
656}
657
658static int fiji_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
659{
660 int i;
661 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
662
663 /* Currently not used. Set all to zero. */
664 for (i = 0; i < 16; i++)
665 smu_data->power_tune_table.GnbLPML[i] = 0;
666
667 return 0;
668}
669
670static int fiji_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
671{
672 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
673 struct phm_ppt_v1_information *table_info =
674 (struct phm_ppt_v1_information *)(hwmgr->pptable);
675 uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
676 uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
677 struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table;
678
679 HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
680 LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
681
682 smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
683 CONVERT_FROM_HOST_TO_SMC_US(HiSidd)((HiSidd) = (__uint16_t)(__builtin_constant_p(HiSidd) ? (__uint16_t
)(((__uint16_t)(HiSidd) & 0xffU) << 8 | ((__uint16_t
)(HiSidd) & 0xff00U) >> 8) : __swap16md(HiSidd)))
;
684 smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
685 CONVERT_FROM_HOST_TO_SMC_US(LoSidd)((LoSidd) = (__uint16_t)(__builtin_constant_p(LoSidd) ? (__uint16_t
)(((__uint16_t)(LoSidd) & 0xffU) << 8 | ((__uint16_t
)(LoSidd) & 0xff00U) >> 8) : __swap16md(LoSidd)))
;
686
687 return 0;
688}
689
690static int fiji_populate_pm_fuses(struct pp_hwmgr *hwmgr)
691{
692 uint32_t pm_fuse_table_offset;
693 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
694
695 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
696 PHM_PlatformCaps_PowerContainment)) {
697 if (smu7_read_smc_sram_dword(hwmgr,
698 SMU7_FIRMWARE_HEADER_LOCATION0x20000 +
699 offsetof(SMU73_Firmware_Header, PmFuseTable)__builtin_offsetof(SMU73_Firmware_Header, PmFuseTable),
700 &pm_fuse_table_offset, SMC_RAM_END0x40000))
701 PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to get pm_fuse_table_offset Failed!"
); return -22; } } while (0)
702 "Attempt to get pm_fuse_table_offset Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to get pm_fuse_table_offset Failed!"
); return -22; } } while (0)
703 return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to get pm_fuse_table_offset Failed!"
); return -22; } } while (0)
;
704
705 /* DW6 */
706 if (fiji_populate_svi_load_line(hwmgr))
707 PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate SviLoadLine Failed!"
); return -22; } } while (0)
708 "Attempt to populate SviLoadLine Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate SviLoadLine Failed!"
); return -22; } } while (0)
709 return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate SviLoadLine Failed!"
); return -22; } } while (0)
;
710 /* DW7 */
711 if (fiji_populate_tdc_limit(hwmgr))
712 PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate TDCLimit Failed!"
); return -22; } } while (0)
713 "Attempt to populate TDCLimit Failed!", return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate TDCLimit Failed!"
); return -22; } } while (0)
;
714 /* DW8 */
715 if (fiji_populate_dw8(hwmgr, pm_fuse_table_offset))
716 PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate TdcWaterfallCtl, "
"LPMLTemperature Min and Max Failed!"); return -22; } } while
(0)
717 "Attempt to populate TdcWaterfallCtl, "do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate TdcWaterfallCtl, "
"LPMLTemperature Min and Max Failed!"); return -22; } } while
(0)
718 "LPMLTemperature Min and Max Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate TdcWaterfallCtl, "
"LPMLTemperature Min and Max Failed!"); return -22; } } while
(0)
719 return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate TdcWaterfallCtl, "
"LPMLTemperature Min and Max Failed!"); return -22; } } while
(0)
;
720
721 /* DW9-DW12 */
722 if (0 != fiji_populate_temperature_scaler(hwmgr))
723 PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate LPMLTemperatureScaler Failed!"
); return -22; } } while (0)
724 "Attempt to populate LPMLTemperatureScaler Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate LPMLTemperatureScaler Failed!"
); return -22; } } while (0)
725 return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate LPMLTemperatureScaler Failed!"
); return -22; } } while (0)
;
726
727 /* DW13-DW14 */
728 if (fiji_populate_fuzzy_fan(hwmgr))
729 PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate Fuzzy Fan Control parameters Failed!"
); return -22; } } while (0)
730 "Attempt to populate Fuzzy Fan Control parameters Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate Fuzzy Fan Control parameters Failed!"
); return -22; } } while (0)
731 return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate Fuzzy Fan Control parameters Failed!"
); return -22; } } while (0)
;
732
733 /* DW15-DW18 */
734 if (fiji_populate_gnb_lpml(hwmgr))
735 PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate GnbLPML Failed!"
); return -22; } } while (0)
736 "Attempt to populate GnbLPML Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate GnbLPML Failed!"
); return -22; } } while (0)
737 return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate GnbLPML Failed!"
); return -22; } } while (0)
;
738
739 /* DW20 */
740 if (fiji_populate_bapm_vddc_base_leakage_sidd(hwmgr))
741 PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate BapmVddCBaseLeakage Hi and Lo "
"Sidd Failed!"); return -22; } } while (0)
742 "Attempt to populate BapmVddCBaseLeakage Hi and Lo "do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate BapmVddCBaseLeakage Hi and Lo "
"Sidd Failed!"); return -22; } } while (0)
743 "Sidd Failed!", return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate BapmVddCBaseLeakage Hi and Lo "
"Sidd Failed!"); return -22; } } while (0)
;
744
745 if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
746 (uint8_t *)&smu_data->power_tune_table,
747 sizeof(struct SMU73_Discrete_PmFuses), SMC_RAM_END0x40000))
748 PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to download PmFuseTable Failed!"
); return -22; } } while (0)
749 "Attempt to download PmFuseTable Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to download PmFuseTable Failed!"
); return -22; } } while (0)
750 return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to download PmFuseTable Failed!"
); return -22; } } while (0)
;
751 }
752 return 0;
753}
754
755static int fiji_populate_cac_table(struct pp_hwmgr *hwmgr,
756 struct SMU73_Discrete_DpmTable *table)
757{
758 uint32_t count;
759 uint8_t index;
760 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
761 struct phm_ppt_v1_information *table_info =
762 (struct phm_ppt_v1_information *)(hwmgr->pptable);
763 struct phm_ppt_v1_voltage_lookup_table *lookup_table =
764 table_info->vddc_lookup_table;
765 /* tables is already swapped, so in order to use the value from it,
766 * we need to swap it back.
767 * We are populating vddc CAC data to BapmVddc table
768 * in split and merged mode
769 */
770
771 for (count = 0; count < lookup_table->count; count++) {
772 index = phm_get_voltage_index(lookup_table,
773 data->vddc_voltage_table.entries[count].value);
774 table->BapmVddcVidLoSidd[count] =
775 convert_to_vid(lookup_table->entries[index].us_cac_low);
776 table->BapmVddcVidHiSidd[count] =
777 convert_to_vid(lookup_table->entries[index].us_cac_high);
778 }
779
780 return 0;
781}
782
783static int fiji_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
784 struct SMU73_Discrete_DpmTable *table)
785{
786 int result;
787
788 result = fiji_populate_cac_table(hwmgr, table);
789 PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "can not populate CAC voltage tables to SMC"
); return -22; } } while (0)
790 "can not populate CAC voltage tables to SMC",do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "can not populate CAC voltage tables to SMC"
); return -22; } } while (0)
791 return -EINVAL)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "can not populate CAC voltage tables to SMC"
); return -22; } } while (0)
;
792
793 return 0;
794}
795
796static int fiji_populate_ulv_level(struct pp_hwmgr *hwmgr,
797 struct SMU73_Discrete_Ulv *state)
798{
799 int result = 0;
800
801 struct phm_ppt_v1_information *table_info =
802 (struct phm_ppt_v1_information *)(hwmgr->pptable);
803
804 state->CcPwrDynRm = 0;
805 state->CcPwrDynRm1 = 0;
806
807 state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
808 state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
809 VOLTAGE_VID_OFFSET_SCALE2100 / VOLTAGE_VID_OFFSET_SCALE1625);
810
811 state->VddcPhase = 1;
812
813 if (!result) {
814 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm)((state->CcPwrDynRm) = (__uint32_t)(__builtin_constant_p(state
->CcPwrDynRm) ? (__uint32_t)(((__uint32_t)(state->CcPwrDynRm
) & 0xff) << 24 | ((__uint32_t)(state->CcPwrDynRm
) & 0xff00) << 8 | ((__uint32_t)(state->CcPwrDynRm
) & 0xff0000) >> 8 | ((__uint32_t)(state->CcPwrDynRm
) & 0xff000000) >> 24) : __swap32md(state->CcPwrDynRm
)))
;
815 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1)((state->CcPwrDynRm1) = (__uint32_t)(__builtin_constant_p(
state->CcPwrDynRm1) ? (__uint32_t)(((__uint32_t)(state->
CcPwrDynRm1) & 0xff) << 24 | ((__uint32_t)(state->
CcPwrDynRm1) & 0xff00) << 8 | ((__uint32_t)(state->
CcPwrDynRm1) & 0xff0000) >> 8 | ((__uint32_t)(state
->CcPwrDynRm1) & 0xff000000) >> 24) : __swap32md
(state->CcPwrDynRm1)))
;
816 CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset)((state->VddcOffset) = (__uint16_t)(__builtin_constant_p(state
->VddcOffset) ? (__uint16_t)(((__uint16_t)(state->VddcOffset
) & 0xffU) << 8 | ((__uint16_t)(state->VddcOffset
) & 0xff00U) >> 8) : __swap16md(state->VddcOffset
)))
;
817 }
818 return result;
819}
820
821static int fiji_populate_ulv_state(struct pp_hwmgr *hwmgr,
822 struct SMU73_Discrete_DpmTable *table)
823{
824 return fiji_populate_ulv_level(hwmgr, &table->Ulv);
825}
826
827static int fiji_populate_smc_link_level(struct pp_hwmgr *hwmgr,
828 struct SMU73_Discrete_DpmTable *table)
829{
830 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
831 struct smu7_dpm_table *dpm_table = &data->dpm_table;
832 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
833 int i;
834
835 /* Index (dpm_table->pcie_speed_table.count)
836 * is reserved for PCIE boot level. */
837 for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
838 table->LinkLevel[i].PcieGenSpeed =
839 (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
840 table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
841 dpm_table->pcie_speed_table.dpm_levels[i].param1);
842 table->LinkLevel[i].EnabledForActivity = 1;
843 table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
844 table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5)(__uint32_t)(__builtin_constant_p(5) ? (__uint32_t)(((__uint32_t
)(5) & 0xff) << 24 | ((__uint32_t)(5) & 0xff00)
<< 8 | ((__uint32_t)(5) & 0xff0000) >> 8 | (
(__uint32_t)(5) & 0xff000000) >> 24) : __swap32md(5
))
;
845 table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30)(__uint32_t)(__builtin_constant_p(30) ? (__uint32_t)(((__uint32_t
)(30) & 0xff) << 24 | ((__uint32_t)(30) & 0xff00
) << 8 | ((__uint32_t)(30) & 0xff0000) >> 8 |
((__uint32_t)(30) & 0xff000000) >> 24) : __swap32md
(30))
;
846 }
847
848 smu_data->smc_state_table.LinkLevelCount =
849 (uint8_t)dpm_table->pcie_speed_table.count;
850 data->dpm_level_enable_mask.pcie_dpm_enable_mask =
851 phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
852
853 return 0;
854}
855
856static int fiji_calculate_sclk_params(struct pp_hwmgr *hwmgr,
857 uint32_t clock, struct SMU73_Discrete_GraphicsLevel *sclk)
858{
859 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
860 struct pp_atomctrl_clock_dividers_vi dividers;
861 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
862 uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
863 uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
864 uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
865 uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
866 uint32_t ref_clock;
867 uint32_t ref_divider;
868 uint32_t fbdiv;
869 int result;
870
871 /* get the engine clock dividers for this clock value */
872 result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock, &dividers);
873
874 PP_ASSERT_WITH_CODE(result == 0,do { if (!(result == 0)) { printk("\0014" "amdgpu: " "%s\n", "Error retrieving Engine Clock dividers from VBIOS."
); return result; } } while (0)
875 "Error retrieving Engine Clock dividers from VBIOS.",do { if (!(result == 0)) { printk("\0014" "amdgpu: " "%s\n", "Error retrieving Engine Clock dividers from VBIOS."
); return result; } } while (0)
876 return result)do { if (!(result == 0)) { printk("\0014" "amdgpu: " "%s\n", "Error retrieving Engine Clock dividers from VBIOS."
); return result; } } while (0)
;
877
878 /* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
879 ref_clock = atomctrl_get_reference_clock(hwmgr);
880 ref_divider = 1 + dividers.uc_pll_ref_div;
881
882 /* low 14 bits is fraction and high 12 bits is divider */
883 fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
884
885 /* SPLL_FUNC_CNTL setup */
886 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,(((spll_func_cntl) & ~0x7e0) | (0x7e0 & ((dividers.uc_pll_ref_div
) << 0x5)))
887 SPLL_REF_DIV, dividers.uc_pll_ref_div)(((spll_func_cntl) & ~0x7e0) | (0x7e0 & ((dividers.uc_pll_ref_div
) << 0x5)))
;
888 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,(((spll_func_cntl) & ~0x7f00000) | (0x7f00000 & ((dividers
.uc_pll_post_div) << 0x14)))
889 SPLL_PDIV_A, dividers.uc_pll_post_div)(((spll_func_cntl) & ~0x7f00000) | (0x7f00000 & ((dividers
.uc_pll_post_div) << 0x14)))
;
890
891 /* SPLL_FUNC_CNTL_3 setup*/
892 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,(((spll_func_cntl_3) & ~0x3ffffff) | (0x3ffffff & ((fbdiv
) << 0x0)))
893 SPLL_FB_DIV, fbdiv)(((spll_func_cntl_3) & ~0x3ffffff) | (0x3ffffff & ((fbdiv
) << 0x0)))
;
894
895 /* set to use fractional accumulation*/
896 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,(((spll_func_cntl_3) & ~0x10000000) | (0x10000000 & (
(1) << 0x1c)))
897 SPLL_DITHEN, 1)(((spll_func_cntl_3) & ~0x10000000) | (0x10000000 & (
(1) << 0x1c)))
;
898
899 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
900 PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
901 struct pp_atomctrl_internal_ss_info ssInfo;
902
903 uint32_t vco_freq = clock * dividers.uc_pll_post_div;
904 if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
905 vco_freq, &ssInfo)) {
906 /*
907 * ss_info.speed_spectrum_percentage -- in unit of 0.01%
908 * ss_info.speed_spectrum_rate -- in unit of khz
909 *
910 * clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2
911 */
912 uint32_t clk_s = ref_clock * 5 /
913 (ref_divider * ssInfo.speed_spectrum_rate);
914 /* clkv = 2 * D * fbdiv / NS */
915 uint32_t clk_v = 4 * ssInfo.speed_spectrum_percentage *
916 fbdiv / (clk_s * 10000);
917
918 cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,(((cg_spll_spread_spectrum) & ~0xfff0) | (0xfff0 & ((
clk_s) << 0x4)))
919 CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s)(((cg_spll_spread_spectrum) & ~0xfff0) | (0xfff0 & ((
clk_s) << 0x4)))
;
920 cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,(((cg_spll_spread_spectrum) & ~0x1) | (0x1 & ((1) <<
0x0)))
921 CG_SPLL_SPREAD_SPECTRUM, SSEN, 1)(((cg_spll_spread_spectrum) & ~0x1) | (0x1 & ((1) <<
0x0)))
;
922 cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,(((cg_spll_spread_spectrum_2) & ~0x3ffffff) | (0x3ffffff &
((clk_v) << 0x0)))
923 CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v)(((cg_spll_spread_spectrum_2) & ~0x3ffffff) | (0x3ffffff &
((clk_v) << 0x0)))
;
924 }
925 }
926
927 sclk->SclkFrequency = clock;
928 sclk->CgSpllFuncCntl3 = spll_func_cntl_3;
929 sclk->CgSpllFuncCntl4 = spll_func_cntl_4;
930 sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum;
931 sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2;
932 sclk->SclkDid = (uint8_t)dividers.pll_post_divider;
933
934 return 0;
935}
936
937static int fiji_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
938 uint32_t clock, struct SMU73_Discrete_GraphicsLevel *level)
939{
940 int result;
941 /* PP_Clocks minClocks; */
942 uint32_t mvdd;
943 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
944 struct phm_ppt_v1_information *table_info =
945 (struct phm_ppt_v1_information *)(hwmgr->pptable);
946 phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL((void *)0);
947
948 result = fiji_calculate_sclk_params(hwmgr, clock, level);
949
950 if (hwmgr->od_enabled)
951 vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_sclk;
952 else
953 vdd_dep_table = table_info->vdd_dep_on_sclk;
954
955 /* populate graphics levels */
956 result = fiji_get_dependency_volt_by_clk(hwmgr,
957 vdd_dep_table, clock,
958 (uint32_t *)(&level->MinVoltage), &mvdd);
959 PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n"
, "can not find VDDC voltage value for " "VDDC engine clock dependency table"
); return result; } } while (0)
960 "can not find VDDC voltage value for "do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n"
, "can not find VDDC voltage value for " "VDDC engine clock dependency table"
); return result; } } while (0)
961 "VDDC engine clock dependency table",do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n"
, "can not find VDDC voltage value for " "VDDC engine clock dependency table"
); return result; } } while (0)
962 return result)do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n"
, "can not find VDDC voltage value for " "VDDC engine clock dependency table"
); return result; } } while (0)
;
963
964 level->SclkFrequency = clock;
965 level->ActivityLevel = data->current_profile_setting.sclk_activity;
966 level->CcPwrDynRm = 0;
967 level->CcPwrDynRm1 = 0;
968 level->EnabledForActivity = 0;
969 level->EnabledForThrottle = 1;
970 level->UpHyst = data->current_profile_setting.sclk_up_hyst;
971 level->DownHyst = data->current_profile_setting.sclk_down_hyst;
972 level->VoltageDownHyst = 0;
973 level->PowerThrottle = 0;
974
975 data->display_timing.min_clock_in_sr = hwmgr->display_config->min_core_set_clock_in_sr;
976
977 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
978 level->DeepSleepDivId = smu7_get_sleep_divider_id_from_clock(clock,
979 hwmgr->display_config->min_core_set_clock_in_sr);
980
981
982 /* Default to slow, highest DPM level will be
983 * set to PPSMC_DISPLAY_WATERMARK_LOW later.
984 */
985 level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW0;
986
987 CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage)((level->MinVoltage) = (__uint32_t)(__builtin_constant_p(level
->MinVoltage) ? (__uint32_t)(((__uint32_t)(level->MinVoltage
) & 0xff) << 24 | ((__uint32_t)(level->MinVoltage
) & 0xff00) << 8 | ((__uint32_t)(level->MinVoltage
) & 0xff0000) >> 8 | ((__uint32_t)(level->MinVoltage
) & 0xff000000) >> 24) : __swap32md(level->MinVoltage
)))
;
988 CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency)((level->SclkFrequency) = (__uint32_t)(__builtin_constant_p
(level->SclkFrequency) ? (__uint32_t)(((__uint32_t)(level->
SclkFrequency) & 0xff) << 24 | ((__uint32_t)(level->
SclkFrequency) & 0xff00) << 8 | ((__uint32_t)(level
->SclkFrequency) & 0xff0000) >> 8 | ((__uint32_t
)(level->SclkFrequency) & 0xff000000) >> 24) : __swap32md
(level->SclkFrequency)))
;
989 CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel)((level->ActivityLevel) = (__uint16_t)(__builtin_constant_p
(level->ActivityLevel) ? (__uint16_t)(((__uint16_t)(level->
ActivityLevel) & 0xffU) << 8 | ((__uint16_t)(level->
ActivityLevel) & 0xff00U) >> 8) : __swap16md(level->
ActivityLevel)))
;
990 CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3)((level->CgSpllFuncCntl3) = (__uint32_t)(__builtin_constant_p
(level->CgSpllFuncCntl3) ? (__uint32_t)(((__uint32_t)(level
->CgSpllFuncCntl3) & 0xff) << 24 | ((__uint32_t)
(level->CgSpllFuncCntl3) & 0xff00) << 8 | ((__uint32_t
)(level->CgSpllFuncCntl3) & 0xff0000) >> 8 | ((__uint32_t
)(level->CgSpllFuncCntl3) & 0xff000000) >> 24) :
__swap32md(level->CgSpllFuncCntl3)))
;
991 CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4)((level->CgSpllFuncCntl4) = (__uint32_t)(__builtin_constant_p
(level->CgSpllFuncCntl4) ? (__uint32_t)(((__uint32_t)(level
->CgSpllFuncCntl4) & 0xff) << 24 | ((__uint32_t)
(level->CgSpllFuncCntl4) & 0xff00) << 8 | ((__uint32_t
)(level->CgSpllFuncCntl4) & 0xff0000) >> 8 | ((__uint32_t
)(level->CgSpllFuncCntl4) & 0xff000000) >> 24) :
__swap32md(level->CgSpllFuncCntl4)))
;
992 CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum)((level->SpllSpreadSpectrum) = (__uint32_t)(__builtin_constant_p
(level->SpllSpreadSpectrum) ? (__uint32_t)(((__uint32_t)(level
->SpllSpreadSpectrum) & 0xff) << 24 | ((__uint32_t
)(level->SpllSpreadSpectrum) & 0xff00) << 8 | ((
__uint32_t)(level->SpllSpreadSpectrum) & 0xff0000) >>
8 | ((__uint32_t)(level->SpllSpreadSpectrum) & 0xff000000
) >> 24) : __swap32md(level->SpllSpreadSpectrum)))
;
993 CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2)((level->SpllSpreadSpectrum2) = (__uint32_t)(__builtin_constant_p
(level->SpllSpreadSpectrum2) ? (__uint32_t)(((__uint32_t)(
level->SpllSpreadSpectrum2) & 0xff) << 24 | ((__uint32_t
)(level->SpllSpreadSpectrum2) & 0xff00) << 8 | (
(__uint32_t)(level->SpllSpreadSpectrum2) & 0xff0000) >>
8 | ((__uint32_t)(level->SpllSpreadSpectrum2) & 0xff000000
) >> 24) : __swap32md(level->SpllSpreadSpectrum2)))
;
994 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm)((level->CcPwrDynRm) = (__uint32_t)(__builtin_constant_p(level
->CcPwrDynRm) ? (__uint32_t)(((__uint32_t)(level->CcPwrDynRm
) & 0xff) << 24 | ((__uint32_t)(level->CcPwrDynRm
) & 0xff00) << 8 | ((__uint32_t)(level->CcPwrDynRm
) & 0xff0000) >> 8 | ((__uint32_t)(level->CcPwrDynRm
) & 0xff000000) >> 24) : __swap32md(level->CcPwrDynRm
)))
;
995 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1)((level->CcPwrDynRm1) = (__uint32_t)(__builtin_constant_p(
level->CcPwrDynRm1) ? (__uint32_t)(((__uint32_t)(level->
CcPwrDynRm1) & 0xff) << 24 | ((__uint32_t)(level->
CcPwrDynRm1) & 0xff00) << 8 | ((__uint32_t)(level->
CcPwrDynRm1) & 0xff0000) >> 8 | ((__uint32_t)(level
->CcPwrDynRm1) & 0xff000000) >> 24) : __swap32md
(level->CcPwrDynRm1)))
;
996
997 return 0;
998}
999
1000static int fiji_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
1001{
1002 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1003 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1004
1005 struct smu7_dpm_table *dpm_table = &data->dpm_table;
1006 struct phm_ppt_v1_information *table_info =
1007 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1008 struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
1009 uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count;
1010 int result = 0;
1011 uint32_t array = smu_data->smu7_data.dpm_table_start +
1012 offsetof(SMU73_Discrete_DpmTable, GraphicsLevel)__builtin_offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
1013 uint32_t array_size = sizeof(struct SMU73_Discrete_GraphicsLevel) *
1014 SMU73_MAX_LEVELS_GRAPHICS8;
1015 struct SMU73_Discrete_GraphicsLevel *levels =
1016 smu_data->smc_state_table.GraphicsLevel;
1017 uint32_t i, max_entry;
1018 uint8_t hightest_pcie_level_enabled = 0,
1019 lowest_pcie_level_enabled = 0,
1020 mid_pcie_level_enabled = 0,
1021 count = 0;
1022
1023 for (i = 0; i < dpm_table->sclk_table.count; i++) {
1024 result = fiji_populate_single_graphic_level(hwmgr,
1025 dpm_table->sclk_table.dpm_levels[i].value,
1026 &levels[i]);
1027 if (result)
1028 return result;
1029
1030 /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
1031 if (i > 1)
1032 levels[i].DeepSleepDivId = 0;
1033 }
1034
1035 /* Only enable level 0 for now.*/
1036 levels[0].EnabledForActivity = 1;
1037
1038 /* set highest level watermark to high */
1039 levels[dpm_table->sclk_table.count - 1].DisplayWatermark =
1040 PPSMC_DISPLAY_WATERMARK_HIGH1;
1041
1042 smu_data->smc_state_table.GraphicsDpmLevelCount =
1043 (uint8_t)dpm_table->sclk_table.count;
1044 data->dpm_level_enable_mask.sclk_dpm_enable_mask =
1045 phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
1046
1047 if (pcie_table != NULL((void *)0)) {
1048 PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),do { if (!((1 <= pcie_entry_cnt))) { printk("\0014" "amdgpu: "
"%s\n", "There must be 1 or more PCIE levels defined in PPTable."
); return -22; } } while (0)
1049 "There must be 1 or more PCIE levels defined in PPTable.",do { if (!((1 <= pcie_entry_cnt))) { printk("\0014" "amdgpu: "
"%s\n", "There must be 1 or more PCIE levels defined in PPTable."
); return -22; } } while (0)
1050 return -EINVAL)do { if (!((1 <= pcie_entry_cnt))) { printk("\0014" "amdgpu: "
"%s\n", "There must be 1 or more PCIE levels defined in PPTable."
); return -22; } } while (0)
;
1051 max_entry = pcie_entry_cnt - 1;
1052 for (i = 0; i < dpm_table->sclk_table.count; i++)
1053 levels[i].pcieDpmLevel =
1054 (uint8_t) ((i < max_entry) ? i : max_entry);
1055 } else {
1056 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
1057 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1058 (1 << (hightest_pcie_level_enabled + 1))) != 0))
1059 hightest_pcie_level_enabled++;
1060
1061 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
1062 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1063 (1 << lowest_pcie_level_enabled)) == 0))
1064 lowest_pcie_level_enabled++;
1065
1066 while ((count < hightest_pcie_level_enabled) &&
1067 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1068 (1 << (lowest_pcie_level_enabled + 1 + count))) == 0))
1069 count++;
1070
1071 mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) <
1072 hightest_pcie_level_enabled ?
1073 (lowest_pcie_level_enabled + 1 + count) :
1074 hightest_pcie_level_enabled;
1075
1076 /* set pcieDpmLevel to hightest_pcie_level_enabled */
1077 for (i = 2; i < dpm_table->sclk_table.count; i++)
1078 levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
1079
1080 /* set pcieDpmLevel to lowest_pcie_level_enabled */
1081 levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
1082
1083 /* set pcieDpmLevel to mid_pcie_level_enabled */
1084 levels[1].pcieDpmLevel = mid_pcie_level_enabled;
1085 }
1086 /* level count will send to smc once at init smc table and never change */
1087 result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
1088 (uint32_t)array_size, SMC_RAM_END0x40000);
1089
1090 return result;
1091}
1092
1093
1094/**
1095 * MCLK Frequency Ratio
1096 * SEQ_CG_RESP Bit[31:24] - 0x0
1097 * Bit[27:24] \96 DDR3 Frequency ratio
1098 * 0x0 <= 100MHz, 450 < 0x8 <= 500MHz
1099 * 100 < 0x1 <= 150MHz, 500 < 0x9 <= 550MHz
1100 * 150 < 0x2 <= 200MHz, 550 < 0xA <= 600MHz
1101 * 200 < 0x3 <= 250MHz, 600 < 0xB <= 650MHz
1102 * 250 < 0x4 <= 300MHz, 650 < 0xC <= 700MHz
1103 * 300 < 0x5 <= 350MHz, 700 < 0xD <= 750MHz
1104 * 350 < 0x6 <= 400MHz, 750 < 0xE <= 800MHz
1105 * 400 < 0x7 <= 450MHz, 800 < 0xF
1106 */
1107static uint8_t fiji_get_mclk_frequency_ratio(uint32_t mem_clock)
1108{
1109 if (mem_clock <= 10000)
1110 return 0x0;
1111 if (mem_clock <= 15000)
1112 return 0x1;
1113 if (mem_clock <= 20000)
1114 return 0x2;
1115 if (mem_clock <= 25000)
1116 return 0x3;
1117 if (mem_clock <= 30000)
1118 return 0x4;
1119 if (mem_clock <= 35000)
1120 return 0x5;
1121 if (mem_clock <= 40000)
1122 return 0x6;
1123 if (mem_clock <= 45000)
1124 return 0x7;
1125 if (mem_clock <= 50000)
1126 return 0x8;
1127 if (mem_clock <= 55000)
1128 return 0x9;
1129 if (mem_clock <= 60000)
1130 return 0xa;
1131 if (mem_clock <= 65000)
1132 return 0xb;
1133 if (mem_clock <= 70000)
1134 return 0xc;
1135 if (mem_clock <= 75000)
1136 return 0xd;
1137 if (mem_clock <= 80000)
1138 return 0xe;
1139 /* mem_clock > 800MHz */
1140 return 0xf;
1141}
1142
1143static int fiji_calculate_mclk_params(struct pp_hwmgr *hwmgr,
1144 uint32_t clock, struct SMU73_Discrete_MemoryLevel *mclk)
1145{
1146 struct pp_atomctrl_memory_clock_param mem_param;
1147 int result;
1148
1149 result = atomctrl_get_memory_pll_dividers_vi(hwmgr, clock, &mem_param);
1150 PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n"
, "Failed to get Memory PLL Dividers."); ; } } while (0)
1151 "Failed to get Memory PLL Dividers.",do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n"
, "Failed to get Memory PLL Dividers."); ; } } while (0)
1152 )do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n"
, "Failed to get Memory PLL Dividers."); ; } } while (0)
;
1153
1154 /* Save the result data to outpupt memory level structure */
1155 mclk->MclkFrequency = clock;
1156 mclk->MclkDivider = (uint8_t)mem_param.mpll_post_divider;
1157 mclk->FreqRange = fiji_get_mclk_frequency_ratio(clock);
1158
1159 return result;
1160}
1161
1162static int fiji_populate_single_memory_level(struct pp_hwmgr *hwmgr,
1163 uint32_t clock, struct SMU73_Discrete_MemoryLevel *mem_level)
1164{
1165 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1166 struct phm_ppt_v1_information *table_info =
1167 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1168 int result = 0;
1169 uint32_t mclk_stutter_mode_threshold = 60000;
1170 phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL((void *)0);
1171
1172 if (hwmgr->od_enabled)
1173 vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_mclk;
1174 else
1175 vdd_dep_table = table_info->vdd_dep_on_mclk;
1176
1177 if (vdd_dep_table) {
1178 result = fiji_get_dependency_volt_by_clk(hwmgr,
1179 vdd_dep_table, clock,
1180 (uint32_t *)(&mem_level->MinVoltage), &mem_level->MinMvdd);
1181 PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n"
, "can not find MinVddc voltage value from memory " "VDDC voltage dependency table"
); return result; } } while (0)
1182 "can not find MinVddc voltage value from memory "do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n"
, "can not find MinVddc voltage value from memory " "VDDC voltage dependency table"
); return result; } } while (0)
1183 "VDDC voltage dependency table", return result)do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n"
, "can not find MinVddc voltage value from memory " "VDDC voltage dependency table"
); return result; } } while (0)
;
1184 }
1185
1186 mem_level->EnabledForThrottle = 1;
1187 mem_level->EnabledForActivity = 0;
1188 mem_level->UpHyst = data->current_profile_setting.mclk_up_hyst;
1189 mem_level->DownHyst = data->current_profile_setting.mclk_down_hyst;
1190 mem_level->VoltageDownHyst = 0;
1191 mem_level->ActivityLevel = data->current_profile_setting.mclk_activity;
1192 mem_level->StutterEnable = false0;
1193
1194 mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW0;
1195
1196 /* enable stutter mode if all the follow condition applied
1197 * PECI_GetNumberOfActiveDisplays(hwmgr->pPECI,
1198 * &(data->DisplayTiming.numExistingDisplays));
1199 */
1200 data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1201 data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
1202
1203 if (mclk_stutter_mode_threshold &&
1204 (clock <= mclk_stutter_mode_threshold) &&
1205 (!data->is_uvd_enabled) &&
1206 (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,((((((struct cgs_device *)hwmgr->device)->ops->read_register
(hwmgr->device,0x1b35))) & 0x1) >> 0x0)
1207 STUTTER_ENABLE)((((((struct cgs_device *)hwmgr->device)->ops->read_register
(hwmgr->device,0x1b35))) & 0x1) >> 0x0)
& 0x1))
1208 mem_level->StutterEnable = true1;
1209
1210 result = fiji_calculate_mclk_params(hwmgr, clock, mem_level);
1211 if (!result) {
1212 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd)((mem_level->MinMvdd) = (__uint32_t)(__builtin_constant_p(
mem_level->MinMvdd) ? (__uint32_t)(((__uint32_t)(mem_level
->MinMvdd) & 0xff) << 24 | ((__uint32_t)(mem_level
->MinMvdd) & 0xff00) << 8 | ((__uint32_t)(mem_level
->MinMvdd) & 0xff0000) >> 8 | ((__uint32_t)(mem_level
->MinMvdd) & 0xff000000) >> 24) : __swap32md(mem_level
->MinMvdd)))
;
1213 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency)((mem_level->MclkFrequency) = (__uint32_t)(__builtin_constant_p
(mem_level->MclkFrequency) ? (__uint32_t)(((__uint32_t)(mem_level
->MclkFrequency) & 0xff) << 24 | ((__uint32_t)(mem_level
->MclkFrequency) & 0xff00) << 8 | ((__uint32_t)(
mem_level->MclkFrequency) & 0xff0000) >> 8 | ((__uint32_t
)(mem_level->MclkFrequency) & 0xff000000) >> 24)
: __swap32md(mem_level->MclkFrequency)))
;
1214 CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel)((mem_level->ActivityLevel) = (__uint16_t)(__builtin_constant_p
(mem_level->ActivityLevel) ? (__uint16_t)(((__uint16_t)(mem_level
->ActivityLevel) & 0xffU) << 8 | ((__uint16_t)(mem_level
->ActivityLevel) & 0xff00U) >> 8) : __swap16md(mem_level
->ActivityLevel)))
;
1215 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage)((mem_level->MinVoltage) = (__uint32_t)(__builtin_constant_p
(mem_level->MinVoltage) ? (__uint32_t)(((__uint32_t)(mem_level
->MinVoltage) & 0xff) << 24 | ((__uint32_t)(mem_level
->MinVoltage) & 0xff00) << 8 | ((__uint32_t)(mem_level
->MinVoltage) & 0xff0000) >> 8 | ((__uint32_t)(mem_level
->MinVoltage) & 0xff000000) >> 24) : __swap32md(
mem_level->MinVoltage)))
;
1216 }
1217 return result;
1218}
1219
1220static int fiji_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1221{
1222 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1223 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1224 struct smu7_dpm_table *dpm_table = &data->dpm_table;
1225 int result;
1226 /* populate MCLK dpm table to SMU7 */
1227 uint32_t array = smu_data->smu7_data.dpm_table_start +
1228 offsetof(SMU73_Discrete_DpmTable, MemoryLevel)__builtin_offsetof(SMU73_Discrete_DpmTable, MemoryLevel);
1229 uint32_t array_size = sizeof(SMU73_Discrete_MemoryLevel) *
1230 SMU73_MAX_LEVELS_MEMORY4;
1231 struct SMU73_Discrete_MemoryLevel *levels =
1232 smu_data->smc_state_table.MemoryLevel;
1233 uint32_t i;
1234
1235 for (i = 0; i < dpm_table->mclk_table.count; i++) {
1236 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),do { if (!((0 != dpm_table->mclk_table.dpm_levels[i].value
))) { printk("\0014" "amdgpu: " "%s\n", "can not populate memory level as memory clock is zero"
); return -22; } } while (0)
1237 "can not populate memory level as memory clock is zero",do { if (!((0 != dpm_table->mclk_table.dpm_levels[i].value
))) { printk("\0014" "amdgpu: " "%s\n", "can not populate memory level as memory clock is zero"
); return -22; } } while (0)
1238 return -EINVAL)do { if (!((0 != dpm_table->mclk_table.dpm_levels[i].value
))) { printk("\0014" "amdgpu: " "%s\n", "can not populate memory level as memory clock is zero"
); return -22; } } while (0)
;
1239 result = fiji_populate_single_memory_level(hwmgr,
1240 dpm_table->mclk_table.dpm_levels[i].value,
1241 &levels[i]);
1242 if (result)
1243 return result;
1244 }
1245
1246 /* Only enable level 0 for now. */
1247 levels[0].EnabledForActivity = 1;
1248
1249 /* in order to prevent MC activity from stutter mode to push DPM up.
1250 * the UVD change complements this by putting the MCLK in
1251 * a higher state by default such that we are not effected by
1252 * up threshold or and MCLK DPM latency.
1253 */
1254 levels[0].ActivityLevel = (uint16_t)data->mclk_dpm0_activity_target;
1255 CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel)((levels[0].ActivityLevel) = (__uint16_t)(__builtin_constant_p
(levels[0].ActivityLevel) ? (__uint16_t)(((__uint16_t)(levels
[0].ActivityLevel) & 0xffU) << 8 | ((__uint16_t)(levels
[0].ActivityLevel) & 0xff00U) >> 8) : __swap16md(levels
[0].ActivityLevel)))
;
1256
1257 smu_data->smc_state_table.MemoryDpmLevelCount =
1258 (uint8_t)dpm_table->mclk_table.count;
1259 data->dpm_level_enable_mask.mclk_dpm_enable_mask =
1260 phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1261 /* set highest level watermark to high */
1262 levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
1263 PPSMC_DISPLAY_WATERMARK_HIGH1;
1264
1265 /* level count will send to smc once at init smc table and never change */
1266 result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
1267 (uint32_t)array_size, SMC_RAM_END0x40000);
1268
1269 return result;
1270}
1271
1272static int fiji_populate_mvdd_value(struct pp_hwmgr *hwmgr,
1273 uint32_t mclk, SMIO_Pattern *smio_pat)
1274{
1275 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1276 struct phm_ppt_v1_information *table_info =
1277 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1278 uint32_t i = 0;
1279
1280 if (SMU7_VOLTAGE_CONTROL_NONE0x0 != data->mvdd_control) {
1281 /* find mvdd value which clock is more than request */
1282 for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
1283 if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
1284 smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
1285 break;
1286 }
1287 }
1288 PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,do { if (!(i < table_info->vdd_dep_on_mclk->count)) {
printk("\0014" "amdgpu: " "%s\n", "MVDD Voltage is outside the supported range."
); return -22; } } while (0)
1289 "MVDD Voltage is outside the supported range.",do { if (!(i < table_info->vdd_dep_on_mclk->count)) {
printk("\0014" "amdgpu: " "%s\n", "MVDD Voltage is outside the supported range."
); return -22; } } while (0)
1290 return -EINVAL)do { if (!(i < table_info->vdd_dep_on_mclk->count)) {
printk("\0014" "amdgpu: " "%s\n", "MVDD Voltage is outside the supported range."
); return -22; } } while (0)
;
1291 } else
1292 return -EINVAL22;
1293
1294 return 0;
1295}
1296
1297static int fiji_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1298 SMU73_Discrete_DpmTable *table)
1299{
1300 int result = 0;
1301 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1302 struct phm_ppt_v1_information *table_info =
1303 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1304 struct pp_atomctrl_clock_dividers_vi dividers;
1305 SMIO_Pattern vol_level;
1306 uint32_t mvdd;
1307 uint16_t us_mvdd;
1308 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1309 uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
1310
1311 table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC0x01;
1312
1313 if (!data->sclk_dpm_key_disabled) {
1314 /* Get MinVoltage and Frequency from DPM0,
1315 * already converted to SMC_UL */
1316 table->ACPILevel.SclkFrequency =
1317 data->dpm_table.sclk_table.dpm_levels[0].value;
1318 result = fiji_get_dependency_volt_by_clk(hwmgr,
1319 table_info->vdd_dep_on_sclk,
1320 table->ACPILevel.SclkFrequency,
1321 (uint32_t *)(&table->ACPILevel.MinVoltage), &mvdd);
1322 PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n"
, "Cannot find ACPI VDDC voltage value " "in Clock Dependency Table"
); ; } } while (0)
1323 "Cannot find ACPI VDDC voltage value " \do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n"
, "Cannot find ACPI VDDC voltage value " "in Clock Dependency Table"
); ; } } while (0)
1324 "in Clock Dependency Table",do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n"
, "Cannot find ACPI VDDC voltage value " "in Clock Dependency Table"
); ; } } while (0)
1325 )do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n"
, "Cannot find ACPI VDDC voltage value " "in Clock Dependency Table"
); ; } } while (0)
;
1326 } else {
1327 table->ACPILevel.SclkFrequency =
1328 data->vbios_boot_state.sclk_bootup_value;
1329 table->ACPILevel.MinVoltage =
1330 data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE4;
1331 }
1332
1333 /* get the engine clock dividers for this clock value */
1334 result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
1335 table->ACPILevel.SclkFrequency, &dividers);
1336 PP_ASSERT_WITH_CODE(result == 0,do { if (!(result == 0)) { printk("\0014" "amdgpu: " "%s\n", "Error retrieving Engine Clock dividers from VBIOS."
); return result; } } while (0)
1337 "Error retrieving Engine Clock dividers from VBIOS.",do { if (!(result == 0)) { printk("\0014" "amdgpu: " "%s\n", "Error retrieving Engine Clock dividers from VBIOS."
); return result; } } while (0)
1338 return result)do { if (!(result == 0)) { printk("\0014" "amdgpu: " "%s\n", "Error retrieving Engine Clock dividers from VBIOS."
); return result; } } while (0)
;
1339
1340 table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
1341 table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW0;
1342 table->ACPILevel.DeepSleepDivId = 0;
1343
1344 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,(((spll_func_cntl) & ~0x2) | (0x2 & ((0) << 0x1
)))
1345 SPLL_PWRON, 0)(((spll_func_cntl) & ~0x2) | (0x2 & ((0) << 0x1
)))
;
1346 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,(((spll_func_cntl) & ~0x1) | (0x1 & ((1) << 0x0
)))
1347 SPLL_RESET, 1)(((spll_func_cntl) & ~0x1) | (0x1 & ((1) << 0x0
)))
;
1348 spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2,(((spll_func_cntl_2) & ~0x1ff) | (0x1ff & ((4) <<
0x0)))
1349 SCLK_MUX_SEL, 4)(((spll_func_cntl_2) & ~0x1ff) | (0x1ff & ((4) <<
0x0)))
;
1350
1351 table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
1352 table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
1353 table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1354 table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1355 table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1356 table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1357 table->ACPILevel.CcPwrDynRm = 0;
1358 table->ACPILevel.CcPwrDynRm1 = 0;
1359
1360 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags)((table->ACPILevel.Flags) = (__uint32_t)(__builtin_constant_p
(table->ACPILevel.Flags) ? (__uint32_t)(((__uint32_t)(table
->ACPILevel.Flags) & 0xff) << 24 | ((__uint32_t)
(table->ACPILevel.Flags) & 0xff00) << 8 | ((__uint32_t
)(table->ACPILevel.Flags) & 0xff0000) >> 8 | ((__uint32_t
)(table->ACPILevel.Flags) & 0xff000000) >> 24) :
__swap32md(table->ACPILevel.Flags)))
;
1361 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency)((table->ACPILevel.SclkFrequency) = (__uint32_t)(__builtin_constant_p
(table->ACPILevel.SclkFrequency) ? (__uint32_t)(((__uint32_t
)(table->ACPILevel.SclkFrequency) & 0xff) << 24 |
((__uint32_t)(table->ACPILevel.SclkFrequency) & 0xff00
) << 8 | ((__uint32_t)(table->ACPILevel.SclkFrequency
) & 0xff0000) >> 8 | ((__uint32_t)(table->ACPILevel
.SclkFrequency) & 0xff000000) >> 24) : __swap32md(table
->ACPILevel.SclkFrequency)))
;
1362 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage)((table->ACPILevel.MinVoltage) = (__uint32_t)(__builtin_constant_p
(table->ACPILevel.MinVoltage) ? (__uint32_t)(((__uint32_t)
(table->ACPILevel.MinVoltage) & 0xff) << 24 | ((
__uint32_t)(table->ACPILevel.MinVoltage) & 0xff00) <<
8 | ((__uint32_t)(table->ACPILevel.MinVoltage) & 0xff0000
) >> 8 | ((__uint32_t)(table->ACPILevel.MinVoltage) &
0xff000000) >> 24) : __swap32md(table->ACPILevel.MinVoltage
)))
;
1363 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl)((table->ACPILevel.CgSpllFuncCntl) = (__uint32_t)(__builtin_constant_p
(table->ACPILevel.CgSpllFuncCntl) ? (__uint32_t)(((__uint32_t
)(table->ACPILevel.CgSpllFuncCntl) & 0xff) << 24
| ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl) & 0xff00
) << 8 | ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl
) & 0xff0000) >> 8 | ((__uint32_t)(table->ACPILevel
.CgSpllFuncCntl) & 0xff000000) >> 24) : __swap32md(
table->ACPILevel.CgSpllFuncCntl)))
;
1364 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2)((table->ACPILevel.CgSpllFuncCntl2) = (__uint32_t)(__builtin_constant_p
(table->ACPILevel.CgSpllFuncCntl2) ? (__uint32_t)(((__uint32_t
)(table->ACPILevel.CgSpllFuncCntl2) & 0xff) << 24
| ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl2) & 0xff00
) << 8 | ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl2
) & 0xff0000) >> 8 | ((__uint32_t)(table->ACPILevel
.CgSpllFuncCntl2) & 0xff000000) >> 24) : __swap32md
(table->ACPILevel.CgSpllFuncCntl2)))
;
1365 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3)((table->ACPILevel.CgSpllFuncCntl3) = (__uint32_t)(__builtin_constant_p
(table->ACPILevel.CgSpllFuncCntl3) ? (__uint32_t)(((__uint32_t
)(table->ACPILevel.CgSpllFuncCntl3) & 0xff) << 24
| ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl3) & 0xff00
) << 8 | ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl3
) & 0xff0000) >> 8 | ((__uint32_t)(table->ACPILevel
.CgSpllFuncCntl3) & 0xff000000) >> 24) : __swap32md
(table->ACPILevel.CgSpllFuncCntl3)))
;
1366 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4)((table->ACPILevel.CgSpllFuncCntl4) = (__uint32_t)(__builtin_constant_p
(table->ACPILevel.CgSpllFuncCntl4) ? (__uint32_t)(((__uint32_t
)(table->ACPILevel.CgSpllFuncCntl4) & 0xff) << 24
| ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl4) & 0xff00
) << 8 | ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl4
) & 0xff0000) >> 8 | ((__uint32_t)(table->ACPILevel
.CgSpllFuncCntl4) & 0xff000000) >> 24) : __swap32md
(table->ACPILevel.CgSpllFuncCntl4)))
;
1367 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum)((table->ACPILevel.SpllSpreadSpectrum) = (__uint32_t)(__builtin_constant_p
(table->ACPILevel.SpllSpreadSpectrum) ? (__uint32_t)(((__uint32_t
)(table->ACPILevel.SpllSpreadSpectrum) & 0xff) <<
24 | ((__uint32_t)(table->ACPILevel.SpllSpreadSpectrum) &
0xff00) << 8 | ((__uint32_t)(table->ACPILevel.SpllSpreadSpectrum
) & 0xff0000) >> 8 | ((__uint32_t)(table->ACPILevel
.SpllSpreadSpectrum) & 0xff000000) >> 24) : __swap32md
(table->ACPILevel.SpllSpreadSpectrum)))
;
1368 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2)((table->ACPILevel.SpllSpreadSpectrum2) = (__uint32_t)(__builtin_constant_p
(table->ACPILevel.SpllSpreadSpectrum2) ? (__uint32_t)(((__uint32_t
)(table->ACPILevel.SpllSpreadSpectrum2) & 0xff) <<
24 | ((__uint32_t)(table->ACPILevel.SpllSpreadSpectrum2) &
0xff00) << 8 | ((__uint32_t)(table->ACPILevel.SpllSpreadSpectrum2
) & 0xff0000) >> 8 | ((__uint32_t)(table->ACPILevel
.SpllSpreadSpectrum2) & 0xff000000) >> 24) : __swap32md
(table->ACPILevel.SpllSpreadSpectrum2)))
;
1369 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm)((table->ACPILevel.CcPwrDynRm) = (__uint32_t)(__builtin_constant_p
(table->ACPILevel.CcPwrDynRm) ? (__uint32_t)(((__uint32_t)
(table->ACPILevel.CcPwrDynRm) & 0xff) << 24 | ((
__uint32_t)(table->ACPILevel.CcPwrDynRm) & 0xff00) <<
8 | ((__uint32_t)(table->ACPILevel.CcPwrDynRm) & 0xff0000
) >> 8 | ((__uint32_t)(table->ACPILevel.CcPwrDynRm) &
0xff000000) >> 24) : __swap32md(table->ACPILevel.CcPwrDynRm
)))
;
1370 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1)((table->ACPILevel.CcPwrDynRm1) = (__uint32_t)(__builtin_constant_p
(table->ACPILevel.CcPwrDynRm1) ? (__uint32_t)(((__uint32_t
)(table->ACPILevel.CcPwrDynRm1) & 0xff) << 24 | (
(__uint32_t)(table->ACPILevel.CcPwrDynRm1) & 0xff00) <<
8 | ((__uint32_t)(table->ACPILevel.CcPwrDynRm1) & 0xff0000
) >> 8 | ((__uint32_t)(table->ACPILevel.CcPwrDynRm1)
& 0xff000000) >> 24) : __swap32md(table->ACPILevel
.CcPwrDynRm1)))
;
1371
1372 if (!data->mclk_dpm_key_disabled) {
1373 /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
1374 table->MemoryACPILevel.MclkFrequency =
1375 data->dpm_table.mclk_table.dpm_levels[0].value;
1376 result = fiji_get_dependency_volt_by_clk(hwmgr,
1377 table_info->vdd_dep_on_mclk,
1378 table->MemoryACPILevel.MclkFrequency,
1379 (uint32_t *)(&table->MemoryACPILevel.MinVoltage), &mvdd);
1380 PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n"
, "Cannot find ACPI VDDCI voltage value in Clock Dependency Table"
); ; } } while (0)
1381 "Cannot find ACPI VDDCI voltage value in Clock Dependency Table",do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n"
, "Cannot find ACPI VDDCI voltage value in Clock Dependency Table"
); ; } } while (0)
1382 )do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n"
, "Cannot find ACPI VDDCI voltage value in Clock Dependency Table"
); ; } } while (0)
;
1383 } else {
1384 table->MemoryACPILevel.MclkFrequency =
1385 data->vbios_boot_state.mclk_bootup_value;
1386 table->MemoryACPILevel.MinVoltage =
1387 data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE4;
1388 }
1389
1390 us_mvdd = 0;
1391 if ((SMU7_VOLTAGE_CONTROL_NONE0x0 == data->mvdd_control) ||
1392 (data->mclk_dpm_key_disabled))
1393 us_mvdd = data->vbios_boot_state.mvdd_bootup_value;
1394 else {
1395 if (!fiji_populate_mvdd_value(hwmgr,
1396 data->dpm_table.mclk_table.dpm_levels[0].value,
1397 &vol_level))
1398 us_mvdd = vol_level.Voltage;
1399 }
1400
1401 table->MemoryACPILevel.MinMvdd =
1402 PP_HOST_TO_SMC_UL(us_mvdd * VOLTAGE_SCALE)(__uint32_t)(__builtin_constant_p(us_mvdd * 4) ? (__uint32_t)
(((__uint32_t)(us_mvdd * 4) & 0xff) << 24 | ((__uint32_t
)(us_mvdd * 4) & 0xff00) << 8 | ((__uint32_t)(us_mvdd
* 4) & 0xff0000) >> 8 | ((__uint32_t)(us_mvdd * 4)
& 0xff000000) >> 24) : __swap32md(us_mvdd * 4))
;
1403
1404 table->MemoryACPILevel.EnabledForThrottle = 0;
1405 table->MemoryACPILevel.EnabledForActivity = 0;
1406 table->MemoryACPILevel.UpHyst = 0;
1407 table->MemoryACPILevel.DownHyst = 100;
1408 table->MemoryACPILevel.VoltageDownHyst = 0;
1409 table->MemoryACPILevel.ActivityLevel =
1410 PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity)(__uint16_t)(__builtin_constant_p(data->current_profile_setting
.mclk_activity) ? (__uint16_t)(((__uint16_t)(data->current_profile_setting
.mclk_activity) & 0xffU) << 8 | ((__uint16_t)(data->
current_profile_setting.mclk_activity) & 0xff00U) >>
8) : __swap16md(data->current_profile_setting.mclk_activity
))
;
1411
1412 table->MemoryACPILevel.StutterEnable = false0;
1413 CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency)((table->MemoryACPILevel.MclkFrequency) = (__uint32_t)(__builtin_constant_p
(table->MemoryACPILevel.MclkFrequency) ? (__uint32_t)(((__uint32_t
)(table->MemoryACPILevel.MclkFrequency) & 0xff) <<
24 | ((__uint32_t)(table->MemoryACPILevel.MclkFrequency) &
0xff00) << 8 | ((__uint32_t)(table->MemoryACPILevel
.MclkFrequency) & 0xff0000) >> 8 | ((__uint32_t)(table
->MemoryACPILevel.MclkFrequency) & 0xff000000) >>
24) : __swap32md(table->MemoryACPILevel.MclkFrequency)))
;
1414 CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage)((table->MemoryACPILevel.MinVoltage) = (__uint32_t)(__builtin_constant_p
(table->MemoryACPILevel.MinVoltage) ? (__uint32_t)(((__uint32_t
)(table->MemoryACPILevel.MinVoltage) & 0xff) << 24
| ((__uint32_t)(table->MemoryACPILevel.MinVoltage) & 0xff00
) << 8 | ((__uint32_t)(table->MemoryACPILevel.MinVoltage
) & 0xff0000) >> 8 | ((__uint32_t)(table->MemoryACPILevel
.MinVoltage) & 0xff000000) >> 24) : __swap32md(table
->MemoryACPILevel.MinVoltage)))
;
1415
1416 return result;
1417}
1418
1419static int fiji_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1420 SMU73_Discrete_DpmTable *table)
1421{
1422 int result = -EINVAL22;
1423 uint8_t count;
1424 struct pp_atomctrl_clock_dividers_vi dividers;
1425 struct phm_ppt_v1_information *table_info =
1426 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1427 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1428 table_info->mm_dep_table;
1429
1430 table->VceLevelCount = (uint8_t)(mm_table->count);
1431 table->VceBootLevel = 0;
1432
1433 for (count = 0; count < table->VceLevelCount; count++) {
1434 table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
1435 table->VceLevel[count].MinVoltage = 0;
1436 table->VceLevel[count].MinVoltage |=
1437 (mm_table->entries[count].vddc * VOLTAGE_SCALE4) << VDDC_SHIFT0;
1438 table->VceLevel[count].MinVoltage |=
1439 ((mm_table->entries[count].vddc - VDDC_VDDCI_DELTA300) *
1440 VOLTAGE_SCALE4) << VDDCI_SHIFT15;
1441 table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT30;
1442
1443 /*retrieve divider value for VBIOS */
1444 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1445 table->VceLevel[count].Frequency, &dividers);
1446 PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n"
, "can not find divide id for VCE engine clock"); return result
; } } while (0)
1447 "can not find divide id for VCE engine clock",do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n"
, "can not find divide id for VCE engine clock"); return result
; } } while (0)
1448 return result)do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n"
, "can not find divide id for VCE engine clock"); return result
; } } while (0)
;
1449
1450 table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1451
1452 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency)((table->VceLevel[count].Frequency) = (__uint32_t)(__builtin_constant_p
(table->VceLevel[count].Frequency) ? (__uint32_t)(((__uint32_t
)(table->VceLevel[count].Frequency) & 0xff) << 24
| ((__uint32_t)(table->VceLevel[count].Frequency) & 0xff00
) << 8 | ((__uint32_t)(table->VceLevel[count].Frequency
) & 0xff0000) >> 8 | ((__uint32_t)(table->VceLevel
[count].Frequency) & 0xff000000) >> 24) : __swap32md
(table->VceLevel[count].Frequency)))
;
1453 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage)((table->VceLevel[count].MinVoltage) = (__uint32_t)(__builtin_constant_p
(table->VceLevel[count].MinVoltage) ? (__uint32_t)(((__uint32_t
)(table->VceLevel[count].MinVoltage) & 0xff) << 24
| ((__uint32_t)(table->VceLevel[count].MinVoltage) & 0xff00
) << 8 | ((__uint32_t)(table->VceLevel[count].MinVoltage
) & 0xff0000) >> 8 | ((__uint32_t)(table->VceLevel
[count].MinVoltage) & 0xff000000) >> 24) : __swap32md
(table->VceLevel[count].MinVoltage)))
;
1454 }
1455 return result;
1456}
1457
1458static int fiji_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1459 SMU73_Discrete_DpmTable *table)
1460{
1461 int result = -EINVAL22;
1462 uint8_t count;
1463 struct pp_atomctrl_clock_dividers_vi dividers;
1464 struct phm_ppt_v1_information *table_info =
1465 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1466 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1467 table_info->mm_dep_table;
1468
1469 table->AcpLevelCount = (uint8_t)(mm_table->count);
1470 table->AcpBootLevel = 0;
1471
1472 for (count = 0; count < table->AcpLevelCount; count++) {
1473 table->AcpLevel[count].Frequency = mm_table->entries[count].aclk;
1474 table->AcpLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
1475 VOLTAGE_SCALE4) << VDDC_SHIFT0;
1476 table->AcpLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
1477 VDDC_VDDCI_DELTA300) * VOLTAGE_SCALE4) << VDDCI_SHIFT15;
1478 table->AcpLevel[count].MinVoltage |= 1 << PHASES_SHIFT30;
1479
1480 /* retrieve divider value for VBIOS */
1481 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1482 table->AcpLevel[count].Frequency, &dividers);
1483 PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n"
, "can not find divide id for engine clock"); return result; }
} while (0)
1484 "can not find divide id for engine clock", return result)do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n"
, "can not find divide id for engine clock"); return result; }
} while (0)
;
1485
1486 table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1487
1488 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency)((table->AcpLevel[count].Frequency) = (__uint32_t)(__builtin_constant_p
(table->AcpLevel[count].Frequency) ? (__uint32_t)(((__uint32_t
)(table->AcpLevel[count].Frequency) & 0xff) << 24
| ((__uint32_t)(table->AcpLevel[count].Frequency) & 0xff00
) << 8 | ((__uint32_t)(table->AcpLevel[count].Frequency
) & 0xff0000) >> 8 | ((__uint32_t)(table->AcpLevel
[count].Frequency) & 0xff000000) >> 24) : __swap32md
(table->AcpLevel[count].Frequency)))
;
1489 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].MinVoltage)((table->AcpLevel[count].MinVoltage) = (__uint32_t)(__builtin_constant_p
(table->AcpLevel[count].MinVoltage) ? (__uint32_t)(((__uint32_t
)(table->AcpLevel[count].MinVoltage) & 0xff) << 24
| ((__uint32_t)(table->AcpLevel[count].MinVoltage) & 0xff00
) << 8 | ((__uint32_t)(table->AcpLevel[count].MinVoltage
) & 0xff0000) >> 8 | ((__uint32_t)(table->AcpLevel
[count].MinVoltage) & 0xff000000) >> 24) : __swap32md
(table->AcpLevel[count].MinVoltage)))
;
1490 }
1491 return result;
1492}
1493
1494static int fiji_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
1495 int32_t eng_clock, int32_t mem_clock,
1496 struct SMU73_Discrete_MCArbDramTimingTableEntry *arb_regs)
1497{
1498 uint32_t dram_timing;
1499 uint32_t dram_timing2;
1500 uint32_t burstTime;
1501 ULONG trrds, trrdl;
1502 int result;
1503
1504 result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1505 eng_clock, mem_clock);
1506 PP_ASSERT_WITH_CODE(result == 0,do { if (!(result == 0)) { printk("\0014" "amdgpu: " "%s\n", "Error calling VBIOS to set DRAM_TIMING."
); return result; } } while (0)
1507 "Error calling VBIOS to set DRAM_TIMING.", return result)do { if (!(result == 0)) { printk("\0014" "amdgpu: " "%s\n", "Error calling VBIOS to set DRAM_TIMING."
); return result; } } while (0)
;
1508
1509 dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING)(((struct cgs_device *)hwmgr->device)->ops->read_register
(hwmgr->device,0x9dd))
;
1510 dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2)(((struct cgs_device *)hwmgr->device)->ops->read_register
(hwmgr->device,0x9de))
;
1511 burstTime = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME)(((struct cgs_device *)hwmgr->device)->ops->read_register
(hwmgr->device,0xa02))
;
1512
1513 trrds = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDS0)(((burstTime) & 0x7c00) >> 0xa);
1514 trrdl = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDL0)(((burstTime) & 0x1f00000) >> 0x14);
1515
1516 arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dram_timing)(__uint32_t)(__builtin_constant_p(dram_timing) ? (__uint32_t)
(((__uint32_t)(dram_timing) & 0xff) << 24 | ((__uint32_t
)(dram_timing) & 0xff00) << 8 | ((__uint32_t)(dram_timing
) & 0xff0000) >> 8 | ((__uint32_t)(dram_timing) &
0xff000000) >> 24) : __swap32md(dram_timing))
;
1517 arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2)(__uint32_t)(__builtin_constant_p(dram_timing2) ? (__uint32_t
)(((__uint32_t)(dram_timing2) & 0xff) << 24 | ((__uint32_t
)(dram_timing2) & 0xff00) << 8 | ((__uint32_t)(dram_timing2
) & 0xff0000) >> 8 | ((__uint32_t)(dram_timing2) &
0xff000000) >> 24) : __swap32md(dram_timing2))
;
1518 arb_regs->McArbBurstTime = (uint8_t)burstTime;
1519 arb_regs->TRRDS = (uint8_t)trrds;
1520 arb_regs->TRRDL = (uint8_t)trrdl;
1521
1522 return 0;
1523}
1524
1525static int fiji_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1526{
1527 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1528 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1529 struct SMU73_Discrete_MCArbDramTimingTable arb_regs;
1530 uint32_t i, j;
1531 int result = 0;
1532
1533 for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1534 for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1535 result = fiji_populate_memory_timing_parameters(hwmgr,
1536 data->dpm_table.sclk_table.dpm_levels[i].value,
1537 data->dpm_table.mclk_table.dpm_levels[j].value,
1538 &arb_regs.entries[i][j]);
1539 if (result)
1540 break;
1541 }
1542 }
1543
1544 if (!result)
1545 result = smu7_copy_bytes_to_smc(
1546 hwmgr,
1547 smu_data->smu7_data.arb_table_start,
1548 (uint8_t *)&arb_regs,
1549 sizeof(SMU73_Discrete_MCArbDramTimingTable),
1550 SMC_RAM_END0x40000);
1551 return result;
1552}
1553
1554static int fiji_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1555 struct SMU73_Discrete_DpmTable *table)
1556{
1557 int result = -EINVAL22;
1558 uint8_t count;
1559 struct pp_atomctrl_clock_dividers_vi dividers;
1560 struct phm_ppt_v1_information *table_info =
1561 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1562 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1563 table_info->mm_dep_table;
1564
1565 table->UvdLevelCount = (uint8_t)(mm_table->count);
1566 table->UvdBootLevel = 0;
1567
1568 for (count = 0; count < table->UvdLevelCount; count++) {
1569 table->UvdLevel[count].MinVoltage = 0;
1570 table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
1571 table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
1572 table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
1573 VOLTAGE_SCALE4) << VDDC_SHIFT0;
1574 table->UvdLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
1575 VDDC_VDDCI_DELTA300) * VOLTAGE_SCALE4) << VDDCI_SHIFT15;
1576 table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT30;
1577
1578 /* retrieve divider value for VBIOS */
1579 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1580 table->UvdLevel[count].VclkFrequency, &dividers);
1581 PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n"
, "can not find divide id for Vclk clock"); return result; } }
while (0)
1582 "can not find divide id for Vclk clock", return result)do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n"
, "can not find divide id for Vclk clock"); return result; } }
while (0)
;
1583
1584 table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1585
1586 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1587 table->UvdLevel[count].DclkFrequency, &dividers);
1588 PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n"
, "can not find divide id for Dclk clock"); return result; } }
while (0)
1589 "can not find divide id for Dclk clock", return result)do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n"
, "can not find divide id for Dclk clock"); return result; } }
while (0)
;
1590
1591 table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1592
1593 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency)((table->UvdLevel[count].VclkFrequency) = (__uint32_t)(__builtin_constant_p
(table->UvdLevel[count].VclkFrequency) ? (__uint32_t)(((__uint32_t
)(table->UvdLevel[count].VclkFrequency) & 0xff) <<
24 | ((__uint32_t)(table->UvdLevel[count].VclkFrequency) &
0xff00) << 8 | ((__uint32_t)(table->UvdLevel[count]
.VclkFrequency) & 0xff0000) >> 8 | ((__uint32_t)(table
->UvdLevel[count].VclkFrequency) & 0xff000000) >>
24) : __swap32md(table->UvdLevel[count].VclkFrequency)))
;
1594 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency)((table->UvdLevel[count].DclkFrequency) = (__uint32_t)(__builtin_constant_p
(table->UvdLevel[count].DclkFrequency) ? (__uint32_t)(((__uint32_t
)(table->UvdLevel[count].DclkFrequency) & 0xff) <<
24 | ((__uint32_t)(table->UvdLevel[count].DclkFrequency) &
0xff00) << 8 | ((__uint32_t)(table->UvdLevel[count]
.DclkFrequency) & 0xff0000) >> 8 | ((__uint32_t)(table
->UvdLevel[count].DclkFrequency) & 0xff000000) >>
24) : __swap32md(table->UvdLevel[count].DclkFrequency)))
;
1595 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage)((table->UvdLevel[count].MinVoltage) = (__uint32_t)(__builtin_constant_p
(table->UvdLevel[count].MinVoltage) ? (__uint32_t)(((__uint32_t
)(table->UvdLevel[count].MinVoltage) & 0xff) << 24
| ((__uint32_t)(table->UvdLevel[count].MinVoltage) & 0xff00
) << 8 | ((__uint32_t)(table->UvdLevel[count].MinVoltage
) & 0xff0000) >> 8 | ((__uint32_t)(table->UvdLevel
[count].MinVoltage) & 0xff000000) >> 24) : __swap32md
(table->UvdLevel[count].MinVoltage)))
;
1596
1597 }
1598 return result;
1599}
1600
1601static int fiji_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1602 struct SMU73_Discrete_DpmTable *table)
1603{
1604 int result = 0;
1605 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1606
1607 table->GraphicsBootLevel = 0;
1608 table->MemoryBootLevel = 0;
1609
1610 /* find boot level from dpm table */
1611 result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1612 data->vbios_boot_state.sclk_bootup_value,
1613 (uint32_t *)&(table->GraphicsBootLevel));
1614
1615 result = phm_find_boot_level(&(data->dpm_table.mclk_table),
Value stored to 'result' is never read
1616 data->vbios_boot_state.mclk_bootup_value,
1617 (uint32_t *)&(table->MemoryBootLevel));
1618
1619 table->BootVddc = data->vbios_boot_state.vddc_bootup_value *
1620 VOLTAGE_SCALE4;
1621 table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
1622 VOLTAGE_SCALE4;
1623 table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value *
1624 VOLTAGE_SCALE4;
1625
1626 CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc)((table->BootVddc) = (__uint16_t)(__builtin_constant_p(table
->BootVddc) ? (__uint16_t)(((__uint16_t)(table->BootVddc
) & 0xffU) << 8 | ((__uint16_t)(table->BootVddc)
& 0xff00U) >> 8) : __swap16md(table->BootVddc))
)
;
1627 CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci)((table->BootVddci) = (__uint16_t)(__builtin_constant_p(table
->BootVddci) ? (__uint16_t)(((__uint16_t)(table->BootVddci
) & 0xffU) << 8 | ((__uint16_t)(table->BootVddci
) & 0xff00U) >> 8) : __swap16md(table->BootVddci
)))
;
1628 CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd)((table->BootMVdd) = (__uint16_t)(__builtin_constant_p(table
->BootMVdd) ? (__uint16_t)(((__uint16_t)(table->BootMVdd
) & 0xffU) << 8 | ((__uint16_t)(table->BootMVdd)
& 0xff00U) >> 8) : __swap16md(table->BootMVdd))
)
;
1629
1630 return 0;
1631}
1632
1633static int fiji_populate_smc_initailial_state(struct pp_hwmgr *hwmgr)
1634{
1635 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1636 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1637 struct phm_ppt_v1_information *table_info =
1638 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1639 uint8_t count, level;
1640
1641 count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
1642 for (level = 0; level < count; level++) {
1643 if (table_info->vdd_dep_on_sclk->entries[level].clk >=
1644 data->vbios_boot_state.sclk_bootup_value) {
1645 smu_data->smc_state_table.GraphicsBootLevel = level;
1646 break;
1647 }
1648 }
1649
1650 count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
1651 for (level = 0; level < count; level++) {
1652 if (table_info->vdd_dep_on_mclk->entries[level].clk >=
1653 data->vbios_boot_state.mclk_bootup_value) {
1654 smu_data->smc_state_table.MemoryBootLevel = level;
1655 break;
1656 }
1657 }
1658
1659 return 0;
1660}
1661
1662static int fiji_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
1663{
1664 uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
1665 volt_with_cks, value;
1666 uint16_t clock_freq_u16;
1667 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1668 uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2,
1669 volt_offset = 0;
1670 struct phm_ppt_v1_information *table_info =
1671 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1672 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1673 table_info->vdd_dep_on_sclk;
1674
1675 stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
1676
1677 /* Read SMU_Eefuse to read and calculate RO and determine
1678 * if the part is SS or FF. if RO >= 1660MHz, part is FF.
1679 */
1680 efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->read_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0xc0100000 + (146 * 4)))
1681 ixSMU_EFUSE_0 + (146 * 4))(((struct cgs_device *)hwmgr->device)->ops->read_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0xc0100000 + (146 * 4)))
;
1682 efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->read_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0xc0100000 + (148 * 4)))
1683 ixSMU_EFUSE_0 + (148 * 4))(((struct cgs_device *)hwmgr->device)->ops->read_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0xc0100000 + (148 * 4)))
;
1684 efuse &= 0xFF000000;
1685 efuse = efuse >> 24;
1686 efuse2 &= 0xF;
1687
1688 if (efuse2 == 1)
1689 ro = (2300 - 1350) * efuse / 255 + 1350;
1690 else
1691 ro = (2500 - 1000) * efuse / 255 + 1000;
1692
1693 if (ro >= 1660)
1694 type = 0;
1695 else
1696 type = 1;
1697
1698 /* Populate Stretch amount */
1699 smu_data->smc_state_table.ClockStretcherAmount = stretch_amount;
1700
1701 /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
1702 for (i = 0; i < sclk_table->count; i++) {
1703 smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |=
1704 sclk_table->entries[i].cks_enable << i;
1705 volt_without_cks = (uint32_t)((14041 *
1706 (sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 /
1707 (4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000)));
1708 volt_with_cks = (uint32_t)((13946 *
1709 (sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 /
1710 (3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000)));
1711 if (volt_without_cks >= volt_with_cks)
1712 volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
1713 sclk_table->entries[i].cks_voffset) * 100 / 625) + 1);
1714 smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
1715 }
1716
1717 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0xc020034c,((((((struct cgs_device
*)hwmgr->device)->ops->read_ind_register(hwmgr->
device,CGS_IND_REG__SMC,0xc020034c))) & ~0x1) | (0x1 &
((0x0) << 0x0)))))
1718 STRETCH_ENABLE, 0x0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0xc020034c,((((((struct cgs_device
*)hwmgr->device)->ops->read_ind_register(hwmgr->
device,CGS_IND_REG__SMC,0xc020034c))) & ~0x1) | (0x1 &
((0x0) << 0x0)))))
;
1719 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0xc020034c,((((((struct cgs_device
*)hwmgr->device)->ops->read_ind_register(hwmgr->
device,CGS_IND_REG__SMC,0xc020034c))) & ~0x2) | (0x2 &
((0x1) << 0x1)))))
1720 masterReset, 0x1)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0xc020034c,((((((struct cgs_device
*)hwmgr->device)->ops->read_ind_register(hwmgr->
device,CGS_IND_REG__SMC,0xc020034c))) & ~0x2) | (0x2 &
((0x1) << 0x1)))))
;
1721 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0xc020034c,((((((struct cgs_device
*)hwmgr->device)->ops->read_ind_register(hwmgr->
device,CGS_IND_REG__SMC,0xc020034c))) & ~0x4) | (0x4 &
((0x1) << 0x2)))))
1722 staticEnable, 0x1)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0xc020034c,((((((struct cgs_device
*)hwmgr->device)->ops->read_ind_register(hwmgr->
device,CGS_IND_REG__SMC,0xc020034c))) & ~0x4) | (0x4 &
((0x1) << 0x2)))))
;
1723 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0xc020034c,((((((struct cgs_device
*)hwmgr->device)->ops->read_ind_register(hwmgr->
device,CGS_IND_REG__SMC,0xc020034c))) & ~0x2) | (0x2 &
((0x0) << 0x1)))))
1724 masterReset, 0x0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0xc020034c,((((((struct cgs_device
*)hwmgr->device)->ops->read_ind_register(hwmgr->
device,CGS_IND_REG__SMC,0xc020034c))) & ~0x2) | (0x2 &
((0x0) << 0x1)))))
;
1725
1726 /* Populate CKS Lookup Table */
1727 if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
1728 stretch_amount2 = 0;
1729 else if (stretch_amount == 3 || stretch_amount == 4)
1730 stretch_amount2 = 1;
1731 else {
1732 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1733 PHM_PlatformCaps_ClockStretcher);
1734 PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Stretch Amount in PPTable not supported"
); return -22; } } while (0)
1735 "Stretch Amount in PPTable not supported",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Stretch Amount in PPTable not supported"
); return -22; } } while (0)
1736 return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Stretch Amount in PPTable not supported"
); return -22; } } while (0)
;
1737 }
1738
1739 value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->read_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0xc0200350))
1740 ixPWR_CKS_CNTL)(((struct cgs_device *)hwmgr->device)->ops->read_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0xc0200350))
;
1741 value &= 0xFFC2FF87;
1742 smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq =
1743 fiji_clock_stretcher_lookup_table[stretch_amount2][0];
1744 smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq =
1745 fiji_clock_stretcher_lookup_table[stretch_amount2][1];
1746 clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(smu_data->smc_state_table.(__uint32_t)(__builtin_constant_p(smu_data->smc_state_table
. GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount
- 1]. SclkFrequency) ? (__uint32_t)(((__uint32_t)(smu_data->
smc_state_table. GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount
- 1]. SclkFrequency) & 0xff) << 24 | ((__uint32_t)
(smu_data->smc_state_table. GraphicsLevel[smu_data->smc_state_table
.GraphicsDpmLevelCount - 1]. SclkFrequency) & 0xff00) <<
8 | ((__uint32_t)(smu_data->smc_state_table. GraphicsLevel
[smu_data->smc_state_table.GraphicsDpmLevelCount - 1]. SclkFrequency
) & 0xff0000) >> 8 | ((__uint32_t)(smu_data->smc_state_table
. GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount
- 1]. SclkFrequency) & 0xff000000) >> 24) : __swap32md
(smu_data->smc_state_table. GraphicsLevel[smu_data->smc_state_table
.GraphicsDpmLevelCount - 1]. SclkFrequency))
1747 GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1].(__uint32_t)(__builtin_constant_p(smu_data->smc_state_table
. GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount
- 1]. SclkFrequency) ? (__uint32_t)(((__uint32_t)(smu_data->
smc_state_table. GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount
- 1]. SclkFrequency) & 0xff) << 24 | ((__uint32_t)
(smu_data->smc_state_table. GraphicsLevel[smu_data->smc_state_table
.GraphicsDpmLevelCount - 1]. SclkFrequency) & 0xff00) <<
8 | ((__uint32_t)(smu_data->smc_state_table. GraphicsLevel
[smu_data->smc_state_table.GraphicsDpmLevelCount - 1]. SclkFrequency
) & 0xff0000) >> 8 | ((__uint32_t)(smu_data->smc_state_table
. GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount
- 1]. SclkFrequency) & 0xff000000) >> 24) : __swap32md
(smu_data->smc_state_table. GraphicsLevel[smu_data->smc_state_table
.GraphicsDpmLevelCount - 1]. SclkFrequency))
1748 SclkFrequency)(__uint32_t)(__builtin_constant_p(smu_data->smc_state_table
. GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount
- 1]. SclkFrequency) ? (__uint32_t)(((__uint32_t)(smu_data->
smc_state_table. GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount
- 1]. SclkFrequency) & 0xff) << 24 | ((__uint32_t)
(smu_data->smc_state_table. GraphicsLevel[smu_data->smc_state_table
.GraphicsDpmLevelCount - 1]. SclkFrequency) & 0xff00) <<
8 | ((__uint32_t)(smu_data->smc_state_table. GraphicsLevel
[smu_data->smc_state_table.GraphicsDpmLevelCount - 1]. SclkFrequency
) & 0xff0000) >> 8 | ((__uint32_t)(smu_data->smc_state_table
. GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount
- 1]. SclkFrequency) & 0xff000000) >> 24) : __swap32md
(smu_data->smc_state_table. GraphicsLevel[smu_data->smc_state_table
.GraphicsDpmLevelCount - 1]. SclkFrequency))
/ 100);
1749 if (fiji_clock_stretcher_lookup_table[stretch_amount2][0] <
1750 clock_freq_u16 &&
1751 fiji_clock_stretcher_lookup_table[stretch_amount2][1] >
1752 clock_freq_u16) {
1753 /* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
1754 value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
1755 /* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */
1756 value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][2]) << 18;
1757 /* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */
1758 value |= (fiji_clock_stretch_amount_conversion
1759 [fiji_clock_stretcher_lookup_table[stretch_amount2][3]]
1760 [stretch_amount]) << 3;
1761 }
1762 CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.((smu_data->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry
[0].minFreq) = (__uint16_t)(__builtin_constant_p(smu_data->
smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry[0].minFreq
) ? (__uint16_t)(((__uint16_t)(smu_data->smc_state_table.CKS_LOOKUPTable
. CKS_LOOKUPTableEntry[0].minFreq) & 0xffU) << 8 | (
(__uint16_t)(smu_data->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry
[0].minFreq) & 0xff00U) >> 8) : __swap16md(smu_data
->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry[0]
.minFreq)))
1763 CKS_LOOKUPTableEntry[0].minFreq)((smu_data->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry
[0].minFreq) = (__uint16_t)(__builtin_constant_p(smu_data->
smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry[0].minFreq
) ? (__uint16_t)(((__uint16_t)(smu_data->smc_state_table.CKS_LOOKUPTable
. CKS_LOOKUPTableEntry[0].minFreq) & 0xffU) << 8 | (
(__uint16_t)(smu_data->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry
[0].minFreq) & 0xff00U) >> 8) : __swap16md(smu_data
->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry[0]
.minFreq)))
;
1764 CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.((smu_data->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry
[0].maxFreq) = (__uint16_t)(__builtin_constant_p(smu_data->
smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry[0].maxFreq
) ? (__uint16_t)(((__uint16_t)(smu_data->smc_state_table.CKS_LOOKUPTable
. CKS_LOOKUPTableEntry[0].maxFreq) & 0xffU) << 8 | (
(__uint16_t)(smu_data->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry
[0].maxFreq) & 0xff00U) >> 8) : __swap16md(smu_data
->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry[0]
.maxFreq)))
1765 CKS_LOOKUPTableEntry[0].maxFreq)((smu_data->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry
[0].maxFreq) = (__uint16_t)(__builtin_constant_p(smu_data->
smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry[0].maxFreq
) ? (__uint16_t)(((__uint16_t)(smu_data->smc_state_table.CKS_LOOKUPTable
. CKS_LOOKUPTableEntry[0].maxFreq) & 0xffU) << 8 | (
(__uint16_t)(smu_data->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry
[0].maxFreq) & 0xff00U) >> 8) : __swap16md(smu_data
->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry[0]
.maxFreq)))
;
1766 smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting =
1767 fiji_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F;
1768 smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |=
1769 (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 7;
1770
1771 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0xc0200350,value))
1772 ixPWR_CKS_CNTL, value)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0xc0200350,value))
;
1773
1774 /* Populate DDT Lookup Table */
1775 for (i = 0; i < 4; i++) {
1776 /* Assign the minimum and maximum VID stored
1777 * in the last row of Clock Stretcher Voltage Table.
1778 */
1779 smu_data->smc_state_table.ClockStretcherDataTable.
1780 ClockStretcherDataTableEntry[i].minVID =
1781 (uint8_t) fiji_clock_stretcher_ddt_table[type][i][2];
1782 smu_data->smc_state_table.ClockStretcherDataTable.
1783 ClockStretcherDataTableEntry[i].maxVID =
1784 (uint8_t) fiji_clock_stretcher_ddt_table[type][i][3];
1785 /* Loop through each SCLK and check the frequency
1786 * to see if it lies within the frequency for clock stretcher.
1787 */
1788 for (j = 0; j < smu_data->smc_state_table.GraphicsDpmLevelCount; j++) {
1789 cks_setting = 0;
1790 clock_freq = PP_SMC_TO_HOST_UL((__uint32_t)(__builtin_constant_p(smu_data->smc_state_table
.GraphicsLevel[j].SclkFrequency) ? (__uint32_t)(((__uint32_t)
(smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency)
& 0xff) << 24 | ((__uint32_t)(smu_data->smc_state_table
.GraphicsLevel[j].SclkFrequency) & 0xff00) << 8 | (
(__uint32_t)(smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency
) & 0xff0000) >> 8 | ((__uint32_t)(smu_data->smc_state_table
.GraphicsLevel[j].SclkFrequency) & 0xff000000) >> 24
) : __swap32md(smu_data->smc_state_table.GraphicsLevel[j].
SclkFrequency))
1791 smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency)(__uint32_t)(__builtin_constant_p(smu_data->smc_state_table
.GraphicsLevel[j].SclkFrequency) ? (__uint32_t)(((__uint32_t)
(smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency)
& 0xff) << 24 | ((__uint32_t)(smu_data->smc_state_table
.GraphicsLevel[j].SclkFrequency) & 0xff00) << 8 | (
(__uint32_t)(smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency
) & 0xff0000) >> 8 | ((__uint32_t)(smu_data->smc_state_table
.GraphicsLevel[j].SclkFrequency) & 0xff000000) >> 24
) : __swap32md(smu_data->smc_state_table.GraphicsLevel[j].
SclkFrequency))
;
1792 /* Check the allowed frequency against the sclk level[j].
1793 * Sclk's endianness has already been converted,
1794 * and it's in 10Khz unit,
1795 * as opposed to Data table, which is in Mhz unit.
1796 */
1797 if (clock_freq >=
1798 (fiji_clock_stretcher_ddt_table[type][i][0]) * 100) {
1799 cks_setting |= 0x2;
1800 if (clock_freq <
1801 (fiji_clock_stretcher_ddt_table[type][i][1]) * 100)
1802 cks_setting |= 0x1;
1803 }
1804 smu_data->smc_state_table.ClockStretcherDataTable.
1805 ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2);
1806 }
1807 CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.((smu_data->smc_state_table. ClockStretcherDataTable. ClockStretcherDataTableEntry
[i].setting) = (__uint16_t)(__builtin_constant_p(smu_data->
smc_state_table. ClockStretcherDataTable. ClockStretcherDataTableEntry
[i].setting) ? (__uint16_t)(((__uint16_t)(smu_data->smc_state_table
. ClockStretcherDataTable. ClockStretcherDataTableEntry[i].setting
) & 0xffU) << 8 | ((__uint16_t)(smu_data->smc_state_table
. ClockStretcherDataTable. ClockStretcherDataTableEntry[i].setting
) & 0xff00U) >> 8) : __swap16md(smu_data->smc_state_table
. ClockStretcherDataTable. ClockStretcherDataTableEntry[i].setting
)))
1808 ClockStretcherDataTable.((smu_data->smc_state_table. ClockStretcherDataTable. ClockStretcherDataTableEntry
[i].setting) = (__uint16_t)(__builtin_constant_p(smu_data->
smc_state_table. ClockStretcherDataTable. ClockStretcherDataTableEntry
[i].setting) ? (__uint16_t)(((__uint16_t)(smu_data->smc_state_table
. ClockStretcherDataTable. ClockStretcherDataTableEntry[i].setting
) & 0xffU) << 8 | ((__uint16_t)(smu_data->smc_state_table
. ClockStretcherDataTable. ClockStretcherDataTableEntry[i].setting
) & 0xff00U) >> 8) : __swap16md(smu_data->smc_state_table
. ClockStretcherDataTable. ClockStretcherDataTableEntry[i].setting
)))
1809 ClockStretcherDataTableEntry[i].setting)((smu_data->smc_state_table. ClockStretcherDataTable. ClockStretcherDataTableEntry
[i].setting) = (__uint16_t)(__builtin_constant_p(smu_data->
smc_state_table. ClockStretcherDataTable. ClockStretcherDataTableEntry
[i].setting) ? (__uint16_t)(((__uint16_t)(smu_data->smc_state_table
. ClockStretcherDataTable. ClockStretcherDataTableEntry[i].setting
) & 0xffU) << 8 | ((__uint16_t)(smu_data->smc_state_table
. ClockStretcherDataTable. ClockStretcherDataTableEntry[i].setting
) & 0xff00U) >> 8) : __swap16md(smu_data->smc_state_table
. ClockStretcherDataTable. ClockStretcherDataTableEntry[i].setting
)))
;
1810 }
1811
1812 value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL)(((struct cgs_device *)hwmgr->device)->ops->read_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0xc0200350))
;
1813 value &= 0xFFFFFFFE;
1814 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0xc0200350,value))
;
1815
1816 return 0;
1817}
1818
1819static int fiji_populate_vr_config(struct pp_hwmgr *hwmgr,
1820 struct SMU73_Discrete_DpmTable *table)
1821{
1822 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1823 uint16_t config;
1824
1825 config = VR_MERGED_WITH_VDDC0;
1826 table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT8);
1827
1828 /* Set Vddc Voltage Controller */
1829 if (SMU7_VOLTAGE_CONTROL_BY_SVID20x2 == data->voltage_control) {
1830 config = VR_SVI2_PLANE_11;
1831 table->VRConfig |= config;
1832 } else {
1833 PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "VDDC should be on SVI2 control in merged mode!"
); ; } } while (0)
1834 "VDDC should be on SVI2 control in merged mode!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "VDDC should be on SVI2 control in merged mode!"
); ; } } while (0)
1835 )do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "VDDC should be on SVI2 control in merged mode!"
); ; } } while (0)
;
1836 }
1837 /* Set Vddci Voltage Controller */
1838 if (SMU7_VOLTAGE_CONTROL_BY_SVID20x2 == data->vddci_control) {
1839 config = VR_SVI2_PLANE_22; /* only in merged mode */
1840 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT16);
1841 } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO0x1 == data->vddci_control) {
1842 config = VR_SMIO_PATTERN_13;
1843 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT16);
1844 } else {
1845 config = VR_STATIC_VOLTAGE5;
1846 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT16);
1847 }
1848 /* Set Mvdd Voltage Controller */
1849 if (SMU7_VOLTAGE_CONTROL_BY_SVID20x2 == data->mvdd_control) {
1850 config = VR_SVI2_PLANE_22;
1851 table->VRConfig |= (config << VRCONF_MVDD_SHIFT24);
1852 } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO0x1 == data->mvdd_control) {
1853 config = VR_SMIO_PATTERN_24;
1854 table->VRConfig |= (config << VRCONF_MVDD_SHIFT24);
1855 } else {
1856 config = VR_STATIC_VOLTAGE5;
1857 table->VRConfig |= (config << VRCONF_MVDD_SHIFT24);
1858 }
1859
1860 return 0;
1861}
1862
1863static int fiji_init_arb_table_index(struct pp_hwmgr *hwmgr)
1864{
1865 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1866 uint32_t tmp;
1867 int result;
1868
1869 /* This is a read-modify-write on the first byte of the ARB table.
1870 * The first byte in the SMU73_Discrete_MCArbDramTimingTable structure
1871 * is the field 'current'.
1872 * This solution is ugly, but we never write the whole table only
1873 * individual fields in it.
1874 * In reality this field should not be in that structure
1875 * but in a soft register.
1876 */
1877 result = smu7_read_smc_sram_dword(hwmgr,
1878 smu_data->smu7_data.arb_table_start, &tmp, SMC_RAM_END0x40000);
1879
1880 if (result)
1881 return result;
1882
1883 tmp &= 0x00FFFFFF;
1884 tmp |= ((uint32_t)MC_CG_ARB_FREQ_F10x0b) << 24;
1885
1886 return smu7_write_smc_sram_dword(hwmgr,
1887 smu_data->smu7_data.arb_table_start, tmp, SMC_RAM_END0x40000);
1888}
1889
1890static int fiji_setup_dpm_led_config(struct pp_hwmgr *hwmgr)
1891{
1892 pp_atomctrl_voltage_table param_led_dpm;
1893 int result = 0;
1894 u32 mask = 0;
1895
1896 result = atomctrl_get_voltage_table_v3(hwmgr,
1897 VOLTAGE_TYPE_LEDDPM8, VOLTAGE_OBJ_GPIO_LUT0,
1898 &param_led_dpm);
1899 if (result == 0) {
1900 int i, j;
1901 u32 tmp = param_led_dpm.mask_low;
1902
1903 for (i = 0, j = 0; i < 32; i++) {
1904 if (tmp & 1) {
1905 mask |= (i << (8 * j));
1906 if (++j >= 3)
1907 break;
1908 }
1909 tmp >>= 1;
1910 }
1911 }
1912 if (mask)
1913 smum_send_msg_to_smc_with_parameter(hwmgr,
1914 PPSMC_MSG_LedConfig((uint16_t) 0x274),
1915 mask,
1916 NULL((void *)0));
1917 return 0;
1918}
1919
1920static int fiji_init_smc_table(struct pp_hwmgr *hwmgr)
1921{
1922 int result;
1923 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1924 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1925 struct phm_ppt_v1_information *table_info =
1926 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1927 struct SMU73_Discrete_DpmTable *table = &(smu_data->smc_state_table);
1928 uint8_t i;
1929 struct pp_atomctrl_gpio_pin_assignment gpio_pin;
1930
1931 fiji_initialize_power_tune_defaults(hwmgr);
1932
1933 if (SMU7_VOLTAGE_CONTROL_NONE0x0 != data->voltage_control)
1934 fiji_populate_smc_voltage_tables(hwmgr, table);
1935
1936 table->SystemFlags = 0;
1937
1938 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1939 PHM_PlatformCaps_AutomaticDCTransition))
1940 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC0x01;
1941
1942 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1943 PHM_PlatformCaps_StepVddc))
1944 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC0x02;
1945
1946 if (data->is_memory_gddr5)
1947 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR50x04;
1948
1949 if (data->ulv_supported && table_info->us_ulv_voltage_offset) {
1950 result = fiji_populate_ulv_state(hwmgr, table);
1951 PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize ULV state!"
); return result; } } while (0)
1952 "Failed to initialize ULV state!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize ULV state!"
); return result; } } while (0)
;
1953 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0xc020015c,0x40035))
1954 ixCG_ULV_PARAMETER, 0x40035)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0xc020015c,0x40035))
;
1955 }
1956
1957 result = fiji_populate_smc_link_level(hwmgr, table);
1958 PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Link Level!"
); return result; } } while (0)
1959 "Failed to initialize Link Level!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Link Level!"
); return result; } } while (0)
;
1960
1961 result = fiji_populate_all_graphic_levels(hwmgr);
1962 PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Graphics Level!"
); return result; } } while (0)
1963 "Failed to initialize Graphics Level!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Graphics Level!"
); return result; } } while (0)
;
1964
1965 result = fiji_populate_all_memory_levels(hwmgr);
1966 PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Memory Level!"
); return result; } } while (0)
1967 "Failed to initialize Memory Level!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Memory Level!"
); return result; } } while (0)
;
1968
1969 result = fiji_populate_smc_acpi_level(hwmgr, table);
1970 PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize ACPI Level!"
); return result; } } while (0)
1971 "Failed to initialize ACPI Level!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize ACPI Level!"
); return result; } } while (0)
;
1972
1973 result = fiji_populate_smc_vce_level(hwmgr, table);
1974 PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize VCE Level!"
); return result; } } while (0)
1975 "Failed to initialize VCE Level!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize VCE Level!"
); return result; } } while (0)
;
1976
1977 result = fiji_populate_smc_acp_level(hwmgr, table);
1978 PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize ACP Level!"
); return result; } } while (0)
1979 "Failed to initialize ACP Level!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize ACP Level!"
); return result; } } while (0)
;
1980
1981 /* Since only the initial state is completely set up at this point
1982 * (the other states are just copies of the boot state) we only
1983 * need to populate the ARB settings for the initial state.
1984 */
1985 result = fiji_program_memory_timing_parameters(hwmgr);
1986 PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to Write ARB settings for the initial state."
); return result; } } while (0)
1987 "Failed to Write ARB settings for the initial state.", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to Write ARB settings for the initial state."
); return result; } } while (0)
;
1988
1989 result = fiji_populate_smc_uvd_level(hwmgr, table);
1990 PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize UVD Level!"
); return result; } } while (0)
1991 "Failed to initialize UVD Level!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize UVD Level!"
); return result; } } while (0)
;
1992
1993 result = fiji_populate_smc_boot_level(hwmgr, table);
1994 PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Boot Level!"
); return result; } } while (0)
1995 "Failed to initialize Boot Level!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Boot Level!"
); return result; } } while (0)
;
1996
1997 result = fiji_populate_smc_initailial_state(hwmgr);
1998 PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Boot State!"
); return result; } } while (0)
1999 "Failed to initialize Boot State!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Boot State!"
); return result; } } while (0)
;
2000
2001 result = fiji_populate_bapm_parameters_in_dpm_table(hwmgr);
2002 PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate BAPM Parameters!"
); return result; } } while (0)
2003 "Failed to populate BAPM Parameters!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate BAPM Parameters!"
); return result; } } while (0)
;
2004
2005 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2006 PHM_PlatformCaps_ClockStretcher)) {
2007 result = fiji_populate_clock_stretcher_data_table(hwmgr);
2008 PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate Clock Stretcher Data Table!"
); return result; } } while (0)
2009 "Failed to populate Clock Stretcher Data Table!",do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate Clock Stretcher Data Table!"
); return result; } } while (0)
2010 return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate Clock Stretcher Data Table!"
); return result; } } while (0)
;
2011 }
2012
2013 table->GraphicsVoltageChangeEnable = 1;
2014 table->GraphicsThermThrottleEnable = 1;
2015 table->GraphicsInterval = 1;
2016 table->VoltageInterval = 1;
2017 table->ThermalInterval = 1;
2018 table->TemperatureLimitHigh =
2019 table_info->cac_dtp_table->usTargetOperatingTemp *
2020 SMU7_Q88_FORMAT_CONVERSION_UNIT256;
2021 table->TemperatureLimitLow =
2022 (table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
2023 SMU7_Q88_FORMAT_CONVERSION_UNIT256;
2024 table->MemoryVoltageChangeEnable = 1;
2025 table->MemoryInterval = 1;
2026 table->VoltageResponseTime = 0;
2027 table->PhaseResponseTime = 0;
2028 table->MemoryThermThrottleEnable = 1;
2029 table->PCIeBootLinkLevel = 0; /* 0:Gen1 1:Gen2 2:Gen3*/
2030 table->PCIeGenInterval = 1;
2031 table->VRConfig = 0;
2032
2033 result = fiji_populate_vr_config(hwmgr, table);
2034 PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate VRConfig setting!"
); return result; } } while (0)
2035 "Failed to populate VRConfig setting!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate VRConfig setting!"
); return result; } } while (0)
;
2036 data->vr_config = table->VRConfig;
2037 table->ThermGpio = 17;
2038 table->SclkStepSize = 0x4000;
2039
2040 if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID61, &gpio_pin)) {
2041 table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
2042 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2043 PHM_PlatformCaps_RegulatorHot);
2044 } else {
2045 table->VRHotGpio = SMU7_UNUSED_GPIO_PIN0x7F;
2046 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2047 PHM_PlatformCaps_RegulatorHot);
2048 }
2049
2050 if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID60,
2051 &gpio_pin)) {
2052 table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
2053 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2054 PHM_PlatformCaps_AutomaticDCTransition);
2055 } else {
2056 table->AcDcGpio = SMU7_UNUSED_GPIO_PIN0x7F;
2057 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2058 PHM_PlatformCaps_AutomaticDCTransition);
2059 }
2060
2061 /* Thermal Output GPIO */
2062 if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID65,
2063 &gpio_pin)) {
2064 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2065 PHM_PlatformCaps_ThermalOutGPIO);
2066
2067 table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
2068
2069 /* For porlarity read GPIOPAD_A with assigned Gpio pin
2070 * since VBIOS will program this register to set 'inactive state',
2071 * driver can then determine 'active state' from this and
2072 * program SMU with correct polarity
2073 */
2074 table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A)(((struct cgs_device *)hwmgr->device)->ops->read_register
(hwmgr->device,0x183))
&
2075 (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
2076 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY0x1;
2077
2078 /* if required, combine VRHot/PCC with thermal out GPIO */
2079 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2080 PHM_PlatformCaps_RegulatorHot) &&
2081 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2082 PHM_PlatformCaps_CombinePCCWithThermalSignal))
2083 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT0x2;
2084 } else {
2085 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2086 PHM_PlatformCaps_ThermalOutGPIO);
2087 table->ThermOutGpio = 17;
2088 table->ThermOutPolarity = 1;
2089 table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE0x0;
2090 }
2091
2092 for (i = 0; i < SMU73_MAX_ENTRIES_SMIO32; i++)
2093 table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i])(__uint32_t)(__builtin_constant_p(table->Smio[i]) ? (__uint32_t
)(((__uint32_t)(table->Smio[i]) & 0xff) << 24 | (
(__uint32_t)(table->Smio[i]) & 0xff00) << 8 | ((
__uint32_t)(table->Smio[i]) & 0xff0000) >> 8 | (
(__uint32_t)(table->Smio[i]) & 0xff000000) >> 24
) : __swap32md(table->Smio[i]))
;
2094
2095 CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags)((table->SystemFlags) = (__uint32_t)(__builtin_constant_p(
table->SystemFlags) ? (__uint32_t)(((__uint32_t)(table->
SystemFlags) & 0xff) << 24 | ((__uint32_t)(table->
SystemFlags) & 0xff00) << 8 | ((__uint32_t)(table->
SystemFlags) & 0xff0000) >> 8 | ((__uint32_t)(table
->SystemFlags) & 0xff000000) >> 24) : __swap32md
(table->SystemFlags)))
;
2096 CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig)((table->VRConfig) = (__uint32_t)(__builtin_constant_p(table
->VRConfig) ? (__uint32_t)(((__uint32_t)(table->VRConfig
) & 0xff) << 24 | ((__uint32_t)(table->VRConfig)
& 0xff00) << 8 | ((__uint32_t)(table->VRConfig)
& 0xff0000) >> 8 | ((__uint32_t)(table->VRConfig
) & 0xff000000) >> 24) : __swap32md(table->VRConfig
)))
;
2097 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1)((table->SmioMask1) = (__uint32_t)(__builtin_constant_p(table
->SmioMask1) ? (__uint32_t)(((__uint32_t)(table->SmioMask1
) & 0xff) << 24 | ((__uint32_t)(table->SmioMask1
) & 0xff00) << 8 | ((__uint32_t)(table->SmioMask1
) & 0xff0000) >> 8 | ((__uint32_t)(table->SmioMask1
) & 0xff000000) >> 24) : __swap32md(table->SmioMask1
)))
;
2098 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2)((table->SmioMask2) = (__uint32_t)(__builtin_constant_p(table
->SmioMask2) ? (__uint32_t)(((__uint32_t)(table->SmioMask2
) & 0xff) << 24 | ((__uint32_t)(table->SmioMask2
) & 0xff00) << 8 | ((__uint32_t)(table->SmioMask2
) & 0xff0000) >> 8 | ((__uint32_t)(table->SmioMask2
) & 0xff000000) >> 24) : __swap32md(table->SmioMask2
)))
;
2099 CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize)((table->SclkStepSize) = (__uint32_t)(__builtin_constant_p
(table->SclkStepSize) ? (__uint32_t)(((__uint32_t)(table->
SclkStepSize) & 0xff) << 24 | ((__uint32_t)(table->
SclkStepSize) & 0xff00) << 8 | ((__uint32_t)(table->
SclkStepSize) & 0xff0000) >> 8 | ((__uint32_t)(table
->SclkStepSize) & 0xff000000) >> 24) : __swap32md
(table->SclkStepSize)))
;
2100 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh)((table->TemperatureLimitHigh) = (__uint16_t)(__builtin_constant_p
(table->TemperatureLimitHigh) ? (__uint16_t)(((__uint16_t)
(table->TemperatureLimitHigh) & 0xffU) << 8 | ((
__uint16_t)(table->TemperatureLimitHigh) & 0xff00U) >>
8) : __swap16md(table->TemperatureLimitHigh)))
;
2101 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow)((table->TemperatureLimitLow) = (__uint16_t)(__builtin_constant_p
(table->TemperatureLimitLow) ? (__uint16_t)(((__uint16_t)(
table->TemperatureLimitLow) & 0xffU) << 8 | ((__uint16_t
)(table->TemperatureLimitLow) & 0xff00U) >> 8) :
__swap16md(table->TemperatureLimitLow)))
;
2102 CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime)((table->VoltageResponseTime) = (__uint16_t)(__builtin_constant_p
(table->VoltageResponseTime) ? (__uint16_t)(((__uint16_t)(
table->VoltageResponseTime) & 0xffU) << 8 | ((__uint16_t
)(table->VoltageResponseTime) & 0xff00U) >> 8) :
__swap16md(table->VoltageResponseTime)))
;
2103 CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime)((table->PhaseResponseTime) = (__uint16_t)(__builtin_constant_p
(table->PhaseResponseTime) ? (__uint16_t)(((__uint16_t)(table
->PhaseResponseTime) & 0xffU) << 8 | ((__uint16_t
)(table->PhaseResponseTime) & 0xff00U) >> 8) : __swap16md
(table->PhaseResponseTime)))
;
2104
2105 /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2106 result = smu7_copy_bytes_to_smc(hwmgr,
2107 smu_data->smu7_data.dpm_table_start +
2108 offsetof(SMU73_Discrete_DpmTable, SystemFlags)__builtin_offsetof(SMU73_Discrete_DpmTable, SystemFlags),
2109 (uint8_t *)&(table->SystemFlags),
2110 sizeof(SMU73_Discrete_DpmTable) - 3 * sizeof(SMU73_PIDController),
2111 SMC_RAM_END0x40000);
2112 PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to upload dpm data to SMC memory!"
); return result; } } while (0)
2113 "Failed to upload dpm data to SMC memory!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to upload dpm data to SMC memory!"
); return result; } } while (0)
;
2114
2115 result = fiji_init_arb_table_index(hwmgr);
2116 PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to upload arb data to SMC memory!"
); return result; } } while (0)
2117 "Failed to upload arb data to SMC memory!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to upload arb data to SMC memory!"
); return result; } } while (0)
;
2118
2119 result = fiji_populate_pm_fuses(hwmgr);
2120 PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate PM fuses to SMC memory!"
); return result; } } while (0)
2121 "Failed to populate PM fuses to SMC memory!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate PM fuses to SMC memory!"
); return result; } } while (0)
;
2122
2123 result = fiji_setup_dpm_led_config(hwmgr);
2124 PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to setup dpm led config"
); return result; } } while (0)
2125 "Failed to setup dpm led config", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to setup dpm led config"
); return result; } } while (0)
;
2126
2127 return 0;
2128}
2129
2130static int fiji_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2131{
2132 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2133
2134 SMU73_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE0 };
2135 uint32_t duty100;
2136 uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
2137 uint16_t fdo_min, slope1, slope2;
2138 uint32_t reference_clock;
2139 int res;
2140 uint64_t tmp64;
2141
2142 if (hwmgr->thermal_controller.fanInfo.bNoFan) {
2143 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2144 PHM_PlatformCaps_MicrocodeFanControl);
2145 return 0;
2146 }
2147
2148 if (smu_data->smu7_data.fan_table_start == 0) {
2149 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2150 PHM_PlatformCaps_MicrocodeFanControl);
2151 return 0;
2152 }
2153
2154 duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0xc0300068))) & 0xff) >>
0x0)
2155 CG_FDO_CTRL1, FMAX_DUTY100)((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0xc0300068))) & 0xff) >>
0x0)
;
2156
2157 if (duty100 == 0) {
2158 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2159 PHM_PlatformCaps_MicrocodeFanControl);
2160 return 0;
2161 }
2162
2163 tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.
2164 usPWMMin * duty100;
2165 do_div(tmp64, 10000)({ uint32_t __base = (10000); uint32_t __rem = ((uint64_t)(tmp64
)) % __base; (tmp64) = ((uint64_t)(tmp64)) / __base; __rem; }
)
;
2166 fdo_min = (uint16_t)tmp64;
2167
2168 t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed -
2169 hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
2170 t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh -
2171 hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
2172
2173 pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed -
2174 hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
2175 pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh -
2176 hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
2177
2178 slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
2179 slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
2180
2181 fan_table.TempMin = cpu_to_be16((50 + hwmgr->(__uint16_t)(__builtin_constant_p((50 + hwmgr-> thermal_controller
.advanceFanControlParameters.usTMin) / 100) ? (__uint16_t)(((
__uint16_t)((50 + hwmgr-> thermal_controller.advanceFanControlParameters
.usTMin) / 100) & 0xffU) << 8 | ((__uint16_t)((50 +
hwmgr-> thermal_controller.advanceFanControlParameters.usTMin
) / 100) & 0xff00U) >> 8) : __swap16md((50 + hwmgr->
thermal_controller.advanceFanControlParameters.usTMin) / 100
))
2182 thermal_controller.advanceFanControlParameters.usTMin) / 100)(__uint16_t)(__builtin_constant_p((50 + hwmgr-> thermal_controller
.advanceFanControlParameters.usTMin) / 100) ? (__uint16_t)(((
__uint16_t)((50 + hwmgr-> thermal_controller.advanceFanControlParameters
.usTMin) / 100) & 0xffU) << 8 | ((__uint16_t)((50 +
hwmgr-> thermal_controller.advanceFanControlParameters.usTMin
) / 100) & 0xff00U) >> 8) : __swap16md((50 + hwmgr->
thermal_controller.advanceFanControlParameters.usTMin) / 100
))
;
2183 fan_table.TempMed = cpu_to_be16((50 + hwmgr->(__uint16_t)(__builtin_constant_p((50 + hwmgr-> thermal_controller
.advanceFanControlParameters.usTMed) / 100) ? (__uint16_t)(((
__uint16_t)((50 + hwmgr-> thermal_controller.advanceFanControlParameters
.usTMed) / 100) & 0xffU) << 8 | ((__uint16_t)((50 +
hwmgr-> thermal_controller.advanceFanControlParameters.usTMed
) / 100) & 0xff00U) >> 8) : __swap16md((50 + hwmgr->
thermal_controller.advanceFanControlParameters.usTMed) / 100
))
2184 thermal_controller.advanceFanControlParameters.usTMed) / 100)(__uint16_t)(__builtin_constant_p((50 + hwmgr-> thermal_controller
.advanceFanControlParameters.usTMed) / 100) ? (__uint16_t)(((
__uint16_t)((50 + hwmgr-> thermal_controller.advanceFanControlParameters
.usTMed) / 100) & 0xffU) << 8 | ((__uint16_t)((50 +
hwmgr-> thermal_controller.advanceFanControlParameters.usTMed
) / 100) & 0xff00U) >> 8) : __swap16md((50 + hwmgr->
thermal_controller.advanceFanControlParameters.usTMed) / 100
))
;
2185 fan_table.TempMax = cpu_to_be16((50 + hwmgr->(__uint16_t)(__builtin_constant_p((50 + hwmgr-> thermal_controller
.advanceFanControlParameters.usTMax) / 100) ? (__uint16_t)(((
__uint16_t)((50 + hwmgr-> thermal_controller.advanceFanControlParameters
.usTMax) / 100) & 0xffU) << 8 | ((__uint16_t)((50 +
hwmgr-> thermal_controller.advanceFanControlParameters.usTMax
) / 100) & 0xff00U) >> 8) : __swap16md((50 + hwmgr->
thermal_controller.advanceFanControlParameters.usTMax) / 100
))
2186 thermal_controller.advanceFanControlParameters.usTMax) / 100)(__uint16_t)(__builtin_constant_p((50 + hwmgr-> thermal_controller
.advanceFanControlParameters.usTMax) / 100) ? (__uint16_t)(((
__uint16_t)((50 + hwmgr-> thermal_controller.advanceFanControlParameters
.usTMax) / 100) & 0xffU) << 8 | ((__uint16_t)((50 +
hwmgr-> thermal_controller.advanceFanControlParameters.usTMax
) / 100) & 0xff00U) >> 8) : __swap16md((50 + hwmgr->
thermal_controller.advanceFanControlParameters.usTMax) / 100
))
;
2187
2188 fan_table.Slope1 = cpu_to_be16(slope1)(__uint16_t)(__builtin_constant_p(slope1) ? (__uint16_t)(((__uint16_t
)(slope1) & 0xffU) << 8 | ((__uint16_t)(slope1) &
0xff00U) >> 8) : __swap16md(slope1))
;
2189 fan_table.Slope2 = cpu_to_be16(slope2)(__uint16_t)(__builtin_constant_p(slope2) ? (__uint16_t)(((__uint16_t
)(slope2) & 0xffU) << 8 | ((__uint16_t)(slope2) &
0xff00U) >> 8) : __swap16md(slope2))
;
2190
2191 fan_table.FdoMin = cpu_to_be16(fdo_min)(__uint16_t)(__builtin_constant_p(fdo_min) ? (__uint16_t)(((__uint16_t
)(fdo_min) & 0xffU) << 8 | ((__uint16_t)(fdo_min) &
0xff00U) >> 8) : __swap16md(fdo_min))
;
2192
2193 fan_table.HystDown = cpu_to_be16(hwmgr->(__uint16_t)(__builtin_constant_p(hwmgr-> thermal_controller
.advanceFanControlParameters.ucTHyst) ? (__uint16_t)(((__uint16_t
)(hwmgr-> thermal_controller.advanceFanControlParameters.ucTHyst
) & 0xffU) << 8 | ((__uint16_t)(hwmgr-> thermal_controller
.advanceFanControlParameters.ucTHyst) & 0xff00U) >>
8) : __swap16md(hwmgr-> thermal_controller.advanceFanControlParameters
.ucTHyst))
2194 thermal_controller.advanceFanControlParameters.ucTHyst)(__uint16_t)(__builtin_constant_p(hwmgr-> thermal_controller
.advanceFanControlParameters.ucTHyst) ? (__uint16_t)(((__uint16_t
)(hwmgr-> thermal_controller.advanceFanControlParameters.ucTHyst
) & 0xffU) << 8 | ((__uint16_t)(hwmgr-> thermal_controller
.advanceFanControlParameters.ucTHyst) & 0xff00U) >>
8) : __swap16md(hwmgr-> thermal_controller.advanceFanControlParameters
.ucTHyst))
;
2195
2196 fan_table.HystUp = cpu_to_be16(1)(__uint16_t)(__builtin_constant_p(1) ? (__uint16_t)(((__uint16_t
)(1) & 0xffU) << 8 | ((__uint16_t)(1) & 0xff00U
) >> 8) : __swap16md(1))
;
2197
2198 fan_table.HystSlope = cpu_to_be16(1)(__uint16_t)(__builtin_constant_p(1) ? (__uint16_t)(((__uint16_t
)(1) & 0xffU) << 8 | ((__uint16_t)(1) & 0xff00U
) >> 8) : __swap16md(1))
;
2199
2200 fan_table.TempRespLim = cpu_to_be16(5)(__uint16_t)(__builtin_constant_p(5) ? (__uint16_t)(((__uint16_t
)(5) & 0xffU) << 8 | ((__uint16_t)(5) & 0xff00U
) >> 8) : __swap16md(5))
;
2201
2202 reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev)((struct amdgpu_device *)hwmgr->adev)->asic_funcs->get_xclk
(((struct amdgpu_device *)hwmgr->adev))
;
2203
2204 fan_table.RefreshPeriod = cpu_to_be32((hwmgr->(__uint32_t)(__builtin_constant_p((hwmgr-> thermal_controller
.advanceFanControlParameters.ulCycleDelay * reference_clock) /
1600) ? (__uint32_t)(((__uint32_t)((hwmgr-> thermal_controller
.advanceFanControlParameters.ulCycleDelay * reference_clock) /
1600) & 0xff) << 24 | ((__uint32_t)((hwmgr-> thermal_controller
.advanceFanControlParameters.ulCycleDelay * reference_clock) /
1600) & 0xff00) << 8 | ((__uint32_t)((hwmgr-> thermal_controller
.advanceFanControlParameters.ulCycleDelay * reference_clock) /
1600) & 0xff0000) >> 8 | ((__uint32_t)((hwmgr->
thermal_controller.advanceFanControlParameters.ulCycleDelay *
reference_clock) / 1600) & 0xff000000) >> 24) : __swap32md
((hwmgr-> thermal_controller.advanceFanControlParameters.ulCycleDelay
* reference_clock) / 1600))
2205 thermal_controller.advanceFanControlParameters.ulCycleDelay *(__uint32_t)(__builtin_constant_p((hwmgr-> thermal_controller
.advanceFanControlParameters.ulCycleDelay * reference_clock) /
1600) ? (__uint32_t)(((__uint32_t)((hwmgr-> thermal_controller
.advanceFanControlParameters.ulCycleDelay * reference_clock) /
1600) & 0xff) << 24 | ((__uint32_t)((hwmgr-> thermal_controller
.advanceFanControlParameters.ulCycleDelay * reference_clock) /
1600) & 0xff00) << 8 | ((__uint32_t)((hwmgr-> thermal_controller
.advanceFanControlParameters.ulCycleDelay * reference_clock) /
1600) & 0xff0000) >> 8 | ((__uint32_t)((hwmgr->
thermal_controller.advanceFanControlParameters.ulCycleDelay *
reference_clock) / 1600) & 0xff000000) >> 24) : __swap32md
((hwmgr-> thermal_controller.advanceFanControlParameters.ulCycleDelay
* reference_clock) / 1600))
2206 reference_clock) / 1600)(__uint32_t)(__builtin_constant_p((hwmgr-> thermal_controller
.advanceFanControlParameters.ulCycleDelay * reference_clock) /
1600) ? (__uint32_t)(((__uint32_t)((hwmgr-> thermal_controller
.advanceFanControlParameters.ulCycleDelay * reference_clock) /
1600) & 0xff) << 24 | ((__uint32_t)((hwmgr-> thermal_controller
.advanceFanControlParameters.ulCycleDelay * reference_clock) /
1600) & 0xff00) << 8 | ((__uint32_t)((hwmgr-> thermal_controller
.advanceFanControlParameters.ulCycleDelay * reference_clock) /
1600) & 0xff0000) >> 8 | ((__uint32_t)((hwmgr->
thermal_controller.advanceFanControlParameters.ulCycleDelay *
reference_clock) / 1600) & 0xff000000) >> 24) : __swap32md
((hwmgr-> thermal_controller.advanceFanControlParameters.ulCycleDelay
* reference_clock) / 1600))
;
2207
2208 fan_table.FdoMax = cpu_to_be16((uint16_t)duty100)(__uint16_t)(__builtin_constant_p((uint16_t)duty100) ? (__uint16_t
)(((__uint16_t)((uint16_t)duty100) & 0xffU) << 8 | (
(__uint16_t)((uint16_t)duty100) & 0xff00U) >> 8) : __swap16md
((uint16_t)duty100))
;
2209
2210 fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0xc0300010))) & 0xff00000
) >> 0x14)
2211 hwmgr->device, CGS_IND_REG__SMC,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0xc0300010))) & 0xff00000
) >> 0x14)
2212 CG_MULT_THERMAL_CTRL, TEMP_SEL)((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0xc0300010))) & 0xff00000
) >> 0x14)
;
2213
2214 res = smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.fan_table_start,
2215 (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table),
2216 SMC_RAM_END0x40000);
2217
2218 if (!res && hwmgr->thermal_controller.
2219 advanceFanControlParameters.ucMinimumPWMLimit)
2220 res = smum_send_msg_to_smc_with_parameter(hwmgr,
2221 PPSMC_MSG_SetFanMinPwm((uint16_t) 0x209),
2222 hwmgr->thermal_controller.
2223 advanceFanControlParameters.ucMinimumPWMLimit,
2224 NULL((void *)0));
2225
2226 if (!res && hwmgr->thermal_controller.
2227 advanceFanControlParameters.ulMinFanSCLKAcousticLimit)
2228 res = smum_send_msg_to_smc_with_parameter(hwmgr,
2229 PPSMC_MSG_SetFanSclkTarget((uint16_t) 0x206),
2230 hwmgr->thermal_controller.
2231 advanceFanControlParameters.ulMinFanSCLKAcousticLimit,
2232 NULL((void *)0));
2233
2234 if (res)
2235 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2236 PHM_PlatformCaps_MicrocodeFanControl);
2237
2238 return 0;
2239}
2240
2241
2242static int fiji_thermal_avfs_enable(struct pp_hwmgr *hwmgr)
2243{
2244 if (!hwmgr->avfs_supported)
2245 return 0;
2246
2247 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAvfs((uint16_t) 0x26A), NULL((void *)0));
2248
2249 return 0;
2250}
2251
2252static int fiji_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2253{
2254 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2255
2256 if (data->need_update_smu7_dpm_table &
2257 (DPMTABLE_OD_UPDATE_SCLK0x00000001 + DPMTABLE_OD_UPDATE_MCLK0x00000002))
2258 return fiji_program_memory_timing_parameters(hwmgr);
2259
2260 return 0;
2261}
2262
2263static int fiji_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2264{
2265 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2266 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2267
2268 int result = 0;
2269 uint32_t low_sclk_interrupt_threshold = 0;
2270
2271 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2272 PHM_PlatformCaps_SclkThrottleLowNotification)
2273 && (data->low_sclk_interrupt_threshold != 0)) {
2274 low_sclk_interrupt_threshold =
2275 data->low_sclk_interrupt_threshold;
2276
2277 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold)((low_sclk_interrupt_threshold) = (__uint32_t)(__builtin_constant_p
(low_sclk_interrupt_threshold) ? (__uint32_t)(((__uint32_t)(low_sclk_interrupt_threshold
) & 0xff) << 24 | ((__uint32_t)(low_sclk_interrupt_threshold
) & 0xff00) << 8 | ((__uint32_t)(low_sclk_interrupt_threshold
) & 0xff0000) >> 8 | ((__uint32_t)(low_sclk_interrupt_threshold
) & 0xff000000) >> 24) : __swap32md(low_sclk_interrupt_threshold
)))
;
2278
2279 result = smu7_copy_bytes_to_smc(
2280 hwmgr,
2281 smu_data->smu7_data.dpm_table_start +
2282 offsetof(SMU73_Discrete_DpmTable,__builtin_offsetof(SMU73_Discrete_DpmTable, LowSclkInterruptThreshold
)
2283 LowSclkInterruptThreshold)__builtin_offsetof(SMU73_Discrete_DpmTable, LowSclkInterruptThreshold
)
,
2284 (uint8_t *)&low_sclk_interrupt_threshold,
2285 sizeof(uint32_t),
2286 SMC_RAM_END0x40000);
2287 }
2288 result = fiji_program_mem_timing_parameters(hwmgr);
2289 PP_ASSERT_WITH_CODE((result == 0),do { if (!((result == 0))) { printk("\0014" "amdgpu: " "%s\n"
, "Failed to program memory timing parameters!"); ; } } while
(0)
2290 "Failed to program memory timing parameters!",do { if (!((result == 0))) { printk("\0014" "amdgpu: " "%s\n"
, "Failed to program memory timing parameters!"); ; } } while
(0)
2291 )do { if (!((result == 0))) { printk("\0014" "amdgpu: " "%s\n"
, "Failed to program memory timing parameters!"); ; } } while
(0)
;
2292 return result;
2293}
2294
2295static uint32_t fiji_get_offsetof(uint32_t type, uint32_t member)
2296{
2297 switch (type) {
2298 case SMU_SoftRegisters:
2299 switch (member) {
2300 case HandshakeDisables:
2301 return offsetof(SMU73_SoftRegisters, HandshakeDisables)__builtin_offsetof(SMU73_SoftRegisters, HandshakeDisables);
2302 case VoltageChangeTimeout:
2303 return offsetof(SMU73_SoftRegisters, VoltageChangeTimeout)__builtin_offsetof(SMU73_SoftRegisters, VoltageChangeTimeout);
2304 case AverageGraphicsActivity:
2305 return offsetof(SMU73_SoftRegisters, AverageGraphicsActivity)__builtin_offsetof(SMU73_SoftRegisters, AverageGraphicsActivity
)
;
2306 case AverageMemoryActivity:
2307 return offsetof(SMU73_SoftRegisters, AverageMemoryActivity)__builtin_offsetof(SMU73_SoftRegisters, AverageMemoryActivity
)
;
2308 case PreVBlankGap:
2309 return offsetof(SMU73_SoftRegisters, PreVBlankGap)__builtin_offsetof(SMU73_SoftRegisters, PreVBlankGap);
2310 case VBlankTimeout:
2311 return offsetof(SMU73_SoftRegisters, VBlankTimeout)__builtin_offsetof(SMU73_SoftRegisters, VBlankTimeout);
2312 case UcodeLoadStatus:
2313 return offsetof(SMU73_SoftRegisters, UcodeLoadStatus)__builtin_offsetof(SMU73_SoftRegisters, UcodeLoadStatus);
2314 case DRAM_LOG_ADDR_H:
2315 return offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_H)__builtin_offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_H);
2316 case DRAM_LOG_ADDR_L:
2317 return offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_L)__builtin_offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_L);
2318 case DRAM_LOG_PHY_ADDR_H:
2319 return offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_H)__builtin_offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2320 case DRAM_LOG_PHY_ADDR_L:
2321 return offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_L)__builtin_offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2322 case DRAM_LOG_BUFF_SIZE:
2323 return offsetof(SMU73_SoftRegisters, DRAM_LOG_BUFF_SIZE)__builtin_offsetof(SMU73_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2324 }
2325 break;
2326 case SMU_Discrete_DpmTable:
2327 switch (member) {
2328 case UvdBootLevel:
2329 return offsetof(SMU73_Discrete_DpmTable, UvdBootLevel)__builtin_offsetof(SMU73_Discrete_DpmTable, UvdBootLevel);
2330 case VceBootLevel:
2331 return offsetof(SMU73_Discrete_DpmTable, VceBootLevel)__builtin_offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
2332 case LowSclkInterruptThreshold:
2333 return offsetof(SMU73_Discrete_DpmTable, LowSclkInterruptThreshold)__builtin_offsetof(SMU73_Discrete_DpmTable, LowSclkInterruptThreshold
)
;
2334 }
2335 break;
2336 }
2337 pr_warn("can't get the offset of type %x member %x\n", type, member)printk("\0014" "amdgpu: " "can't get the offset of type %x member %x\n"
, type, member)
;
2338 return 0;
2339}
2340
2341static uint32_t fiji_get_mac_definition(uint32_t value)
2342{
2343 switch (value) {
2344 case SMU_MAX_LEVELS_GRAPHICS:
2345 return SMU73_MAX_LEVELS_GRAPHICS8;
2346 case SMU_MAX_LEVELS_MEMORY:
2347 return SMU73_MAX_LEVELS_MEMORY4;
2348 case SMU_MAX_LEVELS_LINK:
2349 return SMU73_MAX_LEVELS_LINK8;
2350 case SMU_MAX_ENTRIES_SMIO:
2351 return SMU73_MAX_ENTRIES_SMIO32;
2352 case SMU_MAX_LEVELS_VDDC:
2353 return SMU73_MAX_LEVELS_VDDC16;
2354 case SMU_MAX_LEVELS_VDDGFX:
2355 return SMU73_MAX_LEVELS_VDDGFX16;
2356 case SMU_MAX_LEVELS_VDDCI:
2357 return SMU73_MAX_LEVELS_VDDCI8;
2358 case SMU_MAX_LEVELS_MVDD:
2359 return SMU73_MAX_LEVELS_MVDD4;
2360 }
2361
2362 pr_warn("can't get the mac of %x\n", value)printk("\0014" "amdgpu: " "can't get the mac of %x\n", value);
2363 return 0;
2364}
2365
2366
2367static int fiji_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
2368{
2369 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2370 uint32_t mm_boot_level_offset, mm_boot_level_value;
2371 struct phm_ppt_v1_information *table_info =
2372 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2373
2374 smu_data->smc_state_table.UvdBootLevel = 0;
2375 if (table_info->mm_dep_table->count > 0)
2376 smu_data->smc_state_table.UvdBootLevel =
2377 (uint8_t) (table_info->mm_dep_table->count - 1);
2378 mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU73_Discrete_DpmTable,__builtin_offsetof(SMU73_Discrete_DpmTable, UvdBootLevel)
2379 UvdBootLevel)__builtin_offsetof(SMU73_Discrete_DpmTable, UvdBootLevel);
2380 mm_boot_level_offset /= 4;
2381 mm_boot_level_offset *= 4;
2382 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,(((struct cgs_device *)hwmgr->device)->ops->read_ind_register
(hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset))
2383 CGS_IND_REG__SMC, mm_boot_level_offset)(((struct cgs_device *)hwmgr->device)->ops->read_ind_register
(hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset))
;
2384 mm_boot_level_value &= 0x00FFFFFF;
2385 mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24;
2386 cgs_write_ind_register(hwmgr->device,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset,mm_boot_level_value
))
2387 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset,mm_boot_level_value
))
;
2388
2389 if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2390 PHM_PlatformCaps_UVDDPM) ||
2391 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2392 PHM_PlatformCaps_StablePState))
2393 smum_send_msg_to_smc_with_parameter(hwmgr,
2394 PPSMC_MSG_UVDDPM_SetEnabledMask((uint16_t) 0x12D),
2395 (uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel),
2396 NULL((void *)0));
2397 return 0;
2398}
2399
2400static int fiji_update_vce_smc_table(struct pp_hwmgr *hwmgr)
2401{
2402 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2403 uint32_t mm_boot_level_offset, mm_boot_level_value;
2404 struct phm_ppt_v1_information *table_info =
2405 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2406
2407 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2408 PHM_PlatformCaps_StablePState))
2409 smu_data->smc_state_table.VceBootLevel =
2410 (uint8_t) (table_info->mm_dep_table->count - 1);
2411 else
2412 smu_data->smc_state_table.VceBootLevel = 0;
2413
2414 mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
2415 offsetof(SMU73_Discrete_DpmTable, VceBootLevel)__builtin_offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
2416 mm_boot_level_offset /= 4;
2417 mm_boot_level_offset *= 4;
2418 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,(((struct cgs_device *)hwmgr->device)->ops->read_ind_register
(hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset))
2419 CGS_IND_REG__SMC, mm_boot_level_offset)(((struct cgs_device *)hwmgr->device)->ops->read_ind_register
(hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset))
;
2420 mm_boot_level_value &= 0xFF00FFFF;
2421 mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16;
2422 cgs_write_ind_register(hwmgr->device,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset,mm_boot_level_value
))
2423 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset,mm_boot_level_value
))
;
2424
2425 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
2426 smum_send_msg_to_smc_with_parameter(hwmgr,
2427 PPSMC_MSG_VCEDPM_SetEnabledMask((uint16_t) 0x12E),
2428 (uint32_t)1 << smu_data->smc_state_table.VceBootLevel,
2429 NULL((void *)0));
2430 return 0;
2431}
2432
2433static int fiji_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
2434{
2435 switch (type) {
2436 case SMU_UVD_TABLE:
2437 fiji_update_uvd_smc_table(hwmgr);
2438 break;
2439 case SMU_VCE_TABLE:
2440 fiji_update_vce_smc_table(hwmgr);
2441 break;
2442 default:
2443 break;
2444 }
2445 return 0;
2446}
2447
2448static int fiji_process_firmware_header(struct pp_hwmgr *hwmgr)
2449{
2450 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2451 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2452 uint32_t tmp;
2453 int result;
2454 bool_Bool error = false0;
2455
2456 result = smu7_read_smc_sram_dword(hwmgr,
2457 SMU7_FIRMWARE_HEADER_LOCATION0x20000 +
2458 offsetof(SMU73_Firmware_Header, DpmTable)__builtin_offsetof(SMU73_Firmware_Header, DpmTable),
2459 &tmp, SMC_RAM_END0x40000);
2460
2461 if (0 == result)
2462 smu_data->smu7_data.dpm_table_start = tmp;
2463
2464 error |= (0 != result);
2465
2466 result = smu7_read_smc_sram_dword(hwmgr,
2467 SMU7_FIRMWARE_HEADER_LOCATION0x20000 +
2468 offsetof(SMU73_Firmware_Header, SoftRegisters)__builtin_offsetof(SMU73_Firmware_Header, SoftRegisters),
2469 &tmp, SMC_RAM_END0x40000);
2470
2471 if (!result) {
2472 data->soft_regs_start = tmp;
2473 smu_data->smu7_data.soft_regs_start = tmp;
2474 }
2475
2476 error |= (0 != result);
2477
2478 result = smu7_read_smc_sram_dword(hwmgr,
2479 SMU7_FIRMWARE_HEADER_LOCATION0x20000 +
2480 offsetof(SMU73_Firmware_Header, mcRegisterTable)__builtin_offsetof(SMU73_Firmware_Header, mcRegisterTable),
2481 &tmp, SMC_RAM_END0x40000);
2482
2483 if (!result)
2484 smu_data->smu7_data.mc_reg_table_start = tmp;
2485
2486 result = smu7_read_smc_sram_dword(hwmgr,
2487 SMU7_FIRMWARE_HEADER_LOCATION0x20000 +
2488 offsetof(SMU73_Firmware_Header, FanTable)__builtin_offsetof(SMU73_Firmware_Header, FanTable),
2489 &tmp, SMC_RAM_END0x40000);
2490
2491 if (!result)
2492 smu_data->smu7_data.fan_table_start = tmp;
2493
2494 error |= (0 != result);
2495
2496 result = smu7_read_smc_sram_dword(hwmgr,
2497 SMU7_FIRMWARE_HEADER_LOCATION0x20000 +
2498 offsetof(SMU73_Firmware_Header, mcArbDramTimingTable)__builtin_offsetof(SMU73_Firmware_Header, mcArbDramTimingTable
)
,
2499 &tmp, SMC_RAM_END0x40000);
2500
2501 if (!result)
2502 smu_data->smu7_data.arb_table_start = tmp;
2503
2504 error |= (0 != result);
2505
2506 result = smu7_read_smc_sram_dword(hwmgr,
2507 SMU7_FIRMWARE_HEADER_LOCATION0x20000 +
2508 offsetof(SMU73_Firmware_Header, Version)__builtin_offsetof(SMU73_Firmware_Header, Version),
2509 &tmp, SMC_RAM_END0x40000);
2510
2511 if (!result)
2512 hwmgr->microcode_version_info.SMC = tmp;
2513
2514 error |= (0 != result);
2515
2516 return error ? -1 : 0;
2517}
2518
2519static int fiji_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
2520{
2521
2522 /* Program additional LP registers
2523 * that are no longer programmed by VBIOS
2524 */
2525 cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP,(((struct cgs_device *)hwmgr->device)->ops->write_register
(hwmgr->device,0xa9b,(((struct cgs_device *)hwmgr->device
)->ops->read_register(hwmgr->device,0xa28))))
2526 cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING))(((struct cgs_device *)hwmgr->device)->ops->write_register
(hwmgr->device,0xa9b,(((struct cgs_device *)hwmgr->device
)->ops->read_register(hwmgr->device,0xa28))))
;
2527 cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP,(((struct cgs_device *)hwmgr->device)->ops->write_register
(hwmgr->device,0xa9c,(((struct cgs_device *)hwmgr->device
)->ops->read_register(hwmgr->device,0xa29))))
2528 cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING))(((struct cgs_device *)hwmgr->device)->ops->write_register
(hwmgr->device,0xa9c,(((struct cgs_device *)hwmgr->device
)->ops->read_register(hwmgr->device,0xa29))))
;
2529 cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP,(((struct cgs_device *)hwmgr->device)->ops->write_register
(hwmgr->device,0xa9e,(((struct cgs_device *)hwmgr->device
)->ops->read_register(hwmgr->device,0xa2b))))
2530 cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2))(((struct cgs_device *)hwmgr->device)->ops->write_register
(hwmgr->device,0xa9e,(((struct cgs_device *)hwmgr->device
)->ops->read_register(hwmgr->device,0xa2b))))
;
2531 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP,(((struct cgs_device *)hwmgr->device)->ops->write_register
(hwmgr->device,0xaa0,(((struct cgs_device *)hwmgr->device
)->ops->read_register(hwmgr->device,0xa30))))
2532 cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1))(((struct cgs_device *)hwmgr->device)->ops->write_register
(hwmgr->device,0xaa0,(((struct cgs_device *)hwmgr->device
)->ops->read_register(hwmgr->device,0xa30))))
;
2533 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP,(((struct cgs_device *)hwmgr->device)->ops->write_register
(hwmgr->device,0xac7,(((struct cgs_device *)hwmgr->device
)->ops->read_register(hwmgr->device,0xa2d))))
2534 cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0))(((struct cgs_device *)hwmgr->device)->ops->write_register
(hwmgr->device,0xac7,(((struct cgs_device *)hwmgr->device
)->ops->read_register(hwmgr->device,0xa2d))))
;
2535 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP,(((struct cgs_device *)hwmgr->device)->ops->write_register
(hwmgr->device,0xac8,(((struct cgs_device *)hwmgr->device
)->ops->read_register(hwmgr->device,0xa2e))))
2536 cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1))(((struct cgs_device *)hwmgr->device)->ops->write_register
(hwmgr->device,0xac8,(((struct cgs_device *)hwmgr->device
)->ops->read_register(hwmgr->device,0xa2e))))
;
2537 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP,(((struct cgs_device *)hwmgr->device)->ops->write_register
(hwmgr->device,0xad3,(((struct cgs_device *)hwmgr->device
)->ops->read_register(hwmgr->device,0xa2c))))
2538 cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING))(((struct cgs_device *)hwmgr->device)->ops->write_register
(hwmgr->device,0xad3,(((struct cgs_device *)hwmgr->device
)->ops->read_register(hwmgr->device,0xa2c))))
;
2539
2540 return 0;
2541}
2542
2543static bool_Bool fiji_is_dpm_running(struct pp_hwmgr *hwmgr)
2544{
2545 return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0x3f010))) & 0x2000) >>
0xd)
2546 CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON)((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register
(hwmgr->device,CGS_IND_REG__SMC,0x3f010))) & 0x2000) >>
0xd)
)
2547 ? true1 : false0;
2548}
2549
2550static int fiji_update_dpm_settings(struct pp_hwmgr *hwmgr,
2551 void *profile_setting)
2552{
2553 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2554 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)
2555 (hwmgr->smu_backend);
2556 struct profile_mode_setting *setting;
2557 struct SMU73_Discrete_GraphicsLevel *levels =
2558 smu_data->smc_state_table.GraphicsLevel;
2559 uint32_t array = smu_data->smu7_data.dpm_table_start +
2560 offsetof(SMU73_Discrete_DpmTable, GraphicsLevel)__builtin_offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
2561
2562 uint32_t mclk_array = smu_data->smu7_data.dpm_table_start +
2563 offsetof(SMU73_Discrete_DpmTable, MemoryLevel)__builtin_offsetof(SMU73_Discrete_DpmTable, MemoryLevel);
2564 struct SMU73_Discrete_MemoryLevel *mclk_levels =
2565 smu_data->smc_state_table.MemoryLevel;
2566 uint32_t i;
2567 uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp;
2568
2569 if (profile_setting == NULL((void *)0))
2570 return -EINVAL22;
2571
2572 setting = (struct profile_mode_setting *)profile_setting;
2573
2574 if (setting->bupdate_sclk) {
2575 if (!data->sclk_dpm_key_disabled)
2576 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel((uint16_t) 0x189), NULL((void *)0));
2577 for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) {
2578 if (levels[i].ActivityLevel !=
2579 cpu_to_be16(setting->sclk_activity)(__uint16_t)(__builtin_constant_p(setting->sclk_activity) ?
(__uint16_t)(((__uint16_t)(setting->sclk_activity) & 0xffU
) << 8 | ((__uint16_t)(setting->sclk_activity) &
0xff00U) >> 8) : __swap16md(setting->sclk_activity)
)
) {
2580 levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity)(__uint16_t)(__builtin_constant_p(setting->sclk_activity) ?
(__uint16_t)(((__uint16_t)(setting->sclk_activity) & 0xffU
) << 8 | ((__uint16_t)(setting->sclk_activity) &
0xff00U) >> 8) : __swap16md(setting->sclk_activity)
)
;
2581
2582 clk_activity_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i)
2583 + offsetof(SMU73_Discrete_GraphicsLevel, ActivityLevel)__builtin_offsetof(SMU73_Discrete_GraphicsLevel, ActivityLevel
)
;
2584 offset = clk_activity_offset & ~0x3;
2585 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset))(__uint32_t)(__builtin_constant_p((((struct cgs_device *)hwmgr
->device)->ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC
,offset))) ? (__uint32_t)(((__uint32_t)((((struct cgs_device *
)hwmgr->device)->ops->read_ind_register(hwmgr->device
,CGS_IND_REG__SMC,offset))) & 0xff) << 24 | ((__uint32_t
)((((struct cgs_device *)hwmgr->device)->ops->read_ind_register
(hwmgr->device,CGS_IND_REG__SMC,offset))) & 0xff00) <<
8 | ((__uint32_t)((((struct cgs_device *)hwmgr->device)->
ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset
))) & 0xff0000) >> 8 | ((__uint32_t)((((struct cgs_device
*)hwmgr->device)->ops->read_ind_register(hwmgr->
device,CGS_IND_REG__SMC,offset))) & 0xff000000) >> 24
) : __swap32md((((struct cgs_device *)hwmgr->device)->ops
->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset
))))
;
2586 tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t));
2587 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp))(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,offset,(__uint32_t)(__builtin_constant_p
(tmp) ? (__uint32_t)(((__uint32_t)(tmp) & 0xff) << 24
| ((__uint32_t)(tmp) & 0xff00) << 8 | ((__uint32_t
)(tmp) & 0xff0000) >> 8 | ((__uint32_t)(tmp) & 0xff000000
) >> 24) : __swap32md(tmp))))
;
2588
2589 }
2590 if (levels[i].UpHyst != setting->sclk_up_hyst ||
2591 levels[i].DownHyst != setting->sclk_down_hyst) {
2592 levels[i].UpHyst = setting->sclk_up_hyst;
2593 levels[i].DownHyst = setting->sclk_down_hyst;
2594 up_hyst_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i)
2595 + offsetof(SMU73_Discrete_GraphicsLevel, UpHyst)__builtin_offsetof(SMU73_Discrete_GraphicsLevel, UpHyst);
2596 down_hyst_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i)
2597 + offsetof(SMU73_Discrete_GraphicsLevel, DownHyst)__builtin_offsetof(SMU73_Discrete_GraphicsLevel, DownHyst);
2598 offset = up_hyst_offset & ~0x3;
2599 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset))(__uint32_t)(__builtin_constant_p((((struct cgs_device *)hwmgr
->device)->ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC
,offset))) ? (__uint32_t)(((__uint32_t)((((struct cgs_device *
)hwmgr->device)->ops->read_ind_register(hwmgr->device
,CGS_IND_REG__SMC,offset))) & 0xff) << 24 | ((__uint32_t
)((((struct cgs_device *)hwmgr->device)->ops->read_ind_register
(hwmgr->device,CGS_IND_REG__SMC,offset))) & 0xff00) <<
8 | ((__uint32_t)((((struct cgs_device *)hwmgr->device)->
ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset
))) & 0xff0000) >> 8 | ((__uint32_t)((((struct cgs_device
*)hwmgr->device)->ops->read_ind_register(hwmgr->
device,CGS_IND_REG__SMC,offset))) & 0xff000000) >> 24
) : __swap32md((((struct cgs_device *)hwmgr->device)->ops
->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset
))))
;
2600 tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpHyst, sizeof(uint8_t));
2601 tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownHyst, sizeof(uint8_t));
2602 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp))(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,offset,(__uint32_t)(__builtin_constant_p
(tmp) ? (__uint32_t)(((__uint32_t)(tmp) & 0xff) << 24
| ((__uint32_t)(tmp) & 0xff00) << 8 | ((__uint32_t
)(tmp) & 0xff0000) >> 8 | ((__uint32_t)(tmp) & 0xff000000
) >> 24) : __swap32md(tmp))))
;
2603 }
2604 }
2605 if (!data->sclk_dpm_key_disabled)
2606 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel((uint16_t) 0x18A), NULL((void *)0));
2607 }
2608
2609 if (setting->bupdate_mclk) {
2610 if (!data->mclk_dpm_key_disabled)
2611 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel((uint16_t) 0x18B), NULL((void *)0));
2612 for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) {
2613 if (mclk_levels[i].ActivityLevel !=
2614 cpu_to_be16(setting->mclk_activity)(__uint16_t)(__builtin_constant_p(setting->mclk_activity) ?
(__uint16_t)(((__uint16_t)(setting->mclk_activity) & 0xffU
) << 8 | ((__uint16_t)(setting->mclk_activity) &
0xff00U) >> 8) : __swap16md(setting->mclk_activity)
)
) {
2615 mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity)(__uint16_t)(__builtin_constant_p(setting->mclk_activity) ?
(__uint16_t)(((__uint16_t)(setting->mclk_activity) & 0xffU
) << 8 | ((__uint16_t)(setting->mclk_activity) &
0xff00U) >> 8) : __swap16md(setting->mclk_activity)
)
;
2616
2617 clk_activity_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i)
2618 + offsetof(SMU73_Discrete_MemoryLevel, ActivityLevel)__builtin_offsetof(SMU73_Discrete_MemoryLevel, ActivityLevel);
2619 offset = clk_activity_offset & ~0x3;
2620 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset))(__uint32_t)(__builtin_constant_p((((struct cgs_device *)hwmgr
->device)->ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC
,offset))) ? (__uint32_t)(((__uint32_t)((((struct cgs_device *
)hwmgr->device)->ops->read_ind_register(hwmgr->device
,CGS_IND_REG__SMC,offset))) & 0xff) << 24 | ((__uint32_t
)((((struct cgs_device *)hwmgr->device)->ops->read_ind_register
(hwmgr->device,CGS_IND_REG__SMC,offset))) & 0xff00) <<
8 | ((__uint32_t)((((struct cgs_device *)hwmgr->device)->
ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset
))) & 0xff0000) >> 8 | ((__uint32_t)((((struct cgs_device
*)hwmgr->device)->ops->read_ind_register(hwmgr->
device,CGS_IND_REG__SMC,offset))) & 0xff000000) >> 24
) : __swap32md((((struct cgs_device *)hwmgr->device)->ops
->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset
))))
;
2621 tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t));
2622 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp))(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,offset,(__uint32_t)(__builtin_constant_p
(tmp) ? (__uint32_t)(((__uint32_t)(tmp) & 0xff) << 24
| ((__uint32_t)(tmp) & 0xff00) << 8 | ((__uint32_t
)(tmp) & 0xff0000) >> 8 | ((__uint32_t)(tmp) & 0xff000000
) >> 24) : __swap32md(tmp))))
;
2623
2624 }
2625 if (mclk_levels[i].UpHyst != setting->mclk_up_hyst ||
2626 mclk_levels[i].DownHyst != setting->mclk_down_hyst) {
2627 mclk_levels[i].UpHyst = setting->mclk_up_hyst;
2628 mclk_levels[i].DownHyst = setting->mclk_down_hyst;
2629 up_hyst_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i)
2630 + offsetof(SMU73_Discrete_MemoryLevel, UpHyst)__builtin_offsetof(SMU73_Discrete_MemoryLevel, UpHyst);
2631 down_hyst_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i)
2632 + offsetof(SMU73_Discrete_MemoryLevel, DownHyst)__builtin_offsetof(SMU73_Discrete_MemoryLevel, DownHyst);
2633 offset = up_hyst_offset & ~0x3;
2634 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset))(__uint32_t)(__builtin_constant_p((((struct cgs_device *)hwmgr
->device)->ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC
,offset))) ? (__uint32_t)(((__uint32_t)((((struct cgs_device *
)hwmgr->device)->ops->read_ind_register(hwmgr->device
,CGS_IND_REG__SMC,offset))) & 0xff) << 24 | ((__uint32_t
)((((struct cgs_device *)hwmgr->device)->ops->read_ind_register
(hwmgr->device,CGS_IND_REG__SMC,offset))) & 0xff00) <<
8 | ((__uint32_t)((((struct cgs_device *)hwmgr->device)->
ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset
))) & 0xff0000) >> 8 | ((__uint32_t)((((struct cgs_device
*)hwmgr->device)->ops->read_ind_register(hwmgr->
device,CGS_IND_REG__SMC,offset))) & 0xff000000) >> 24
) : __swap32md((((struct cgs_device *)hwmgr->device)->ops
->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset
))))
;
2635 tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpHyst, sizeof(uint8_t));
2636 tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownHyst, sizeof(uint8_t));
2637 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp))(((struct cgs_device *)hwmgr->device)->ops->write_ind_register
(hwmgr->device,CGS_IND_REG__SMC,offset,(__uint32_t)(__builtin_constant_p
(tmp) ? (__uint32_t)(((__uint32_t)(tmp) & 0xff) << 24
| ((__uint32_t)(tmp) & 0xff00) << 8 | ((__uint32_t
)(tmp) & 0xff0000) >> 8 | ((__uint32_t)(tmp) & 0xff000000
) >> 24) : __swap32md(tmp))))
;
2638 }
2639 }
2640 if (!data->mclk_dpm_key_disabled)
2641 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel((uint16_t) 0x18C), NULL((void *)0));
2642 }
2643 return 0;
2644}
2645
2646const struct pp_smumgr_func fiji_smu_funcs = {
2647 .name = "fiji_smu",
2648 .smu_init = &fiji_smu_init,
2649 .smu_fini = &smu7_smu_fini,
2650 .start_smu = &fiji_start_smu,
2651 .check_fw_load_finish = &smu7_check_fw_load_finish,
2652 .request_smu_load_fw = &smu7_reload_firmware,
2653 .request_smu_load_specific_fw = NULL((void *)0),
2654 .send_msg_to_smc = &smu7_send_msg_to_smc,
2655 .send_msg_to_smc_with_parameter = &smu7_send_msg_to_smc_with_parameter,
2656 .get_argument = smu7_get_argument,
2657 .download_pptable_settings = NULL((void *)0),
2658 .upload_pptable_settings = NULL((void *)0),
2659 .update_smc_table = fiji_update_smc_table,
2660 .get_offsetof = fiji_get_offsetof,
2661 .process_firmware_header = fiji_process_firmware_header,
2662 .init_smc_table = fiji_init_smc_table,
2663 .update_sclk_threshold = fiji_update_sclk_threshold,
2664 .thermal_setup_fan_table = fiji_thermal_setup_fan_table,
2665 .thermal_avfs_enable = fiji_thermal_avfs_enable,
2666 .populate_all_graphic_levels = fiji_populate_all_graphic_levels,
2667 .populate_all_memory_levels = fiji_populate_all_memory_levels,
2668 .get_mac_definition = fiji_get_mac_definition,
2669 .initialize_mc_reg_table = fiji_initialize_mc_reg_table,
2670 .is_dpm_running = fiji_is_dpm_running,
2671 .is_hw_avfs_present = fiji_is_hw_avfs_present,
2672 .update_dpm_settings = fiji_update_dpm_settings,
2673};