File: | dev/pci/drm/amd/pm/powerplay/smumgr/fiji_smumgr.c |
Warning: | line 1188, column 22 Dereference of null pointer |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* | |||
2 | * Copyright 2015 Advanced Micro Devices, Inc. | |||
3 | * | |||
4 | * Permission is hereby granted, free of charge, to any person obtaining a | |||
5 | * copy of this software and associated documentation files (the "Software"), | |||
6 | * to deal in the Software without restriction, including without limitation | |||
7 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, | |||
8 | * and/or sell copies of the Software, and to permit persons to whom the | |||
9 | * Software is furnished to do so, subject to the following conditions: | |||
10 | * | |||
11 | * The above copyright notice and this permission notice shall be included in | |||
12 | * all copies or substantial portions of the Software. | |||
13 | * | |||
14 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |||
15 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |||
16 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |||
17 | * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR | |||
18 | * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, | |||
19 | * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR | |||
20 | * OTHER DEALINGS IN THE SOFTWARE. | |||
21 | * | |||
22 | */ | |||
23 | ||||
24 | #include "pp_debug.h" | |||
25 | #include "smumgr.h" | |||
26 | #include "smu7_dyn_defaults.h" | |||
27 | #include "smu73.h" | |||
28 | #include "smu_ucode_xfer_vi.h" | |||
29 | #include "fiji_smumgr.h" | |||
30 | #include "fiji_ppsmc.h" | |||
31 | #include "smu73_discrete.h" | |||
32 | #include "ppatomctrl.h" | |||
33 | #include "smu/smu_7_1_3_d.h" | |||
34 | #include "smu/smu_7_1_3_sh_mask.h" | |||
35 | #include "gmc/gmc_8_1_d.h" | |||
36 | #include "gmc/gmc_8_1_sh_mask.h" | |||
37 | #include "oss/oss_3_0_d.h" | |||
38 | #include "gca/gfx_8_0_d.h" | |||
39 | #include "bif/bif_5_0_d.h" | |||
40 | #include "bif/bif_5_0_sh_mask.h" | |||
41 | #include "dce/dce_10_0_d.h" | |||
42 | #include "dce/dce_10_0_sh_mask.h" | |||
43 | #include "hardwaremanager.h" | |||
44 | #include "cgs_common.h" | |||
45 | #include "atombios.h" | |||
46 | #include "pppcielanes.h" | |||
47 | #include "hwmgr.h" | |||
48 | #include "smu7_hwmgr.h" | |||
49 | ||||
50 | ||||
51 | #define AVFS_EN_MSB1568 1568 | |||
52 | #define AVFS_EN_LSB1568 1568 | |||
53 | ||||
54 | #define FIJI_SMC_SIZE0x20000 0x20000 | |||
55 | ||||
56 | #define POWERTUNE_DEFAULT_SET_MAX1 1 | |||
57 | #define VDDC_VDDCI_DELTA300 300 | |||
58 | #define MC_CG_ARB_FREQ_F10x0b 0x0b | |||
59 | ||||
60 | /* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs | |||
61 | * not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ] | |||
62 | */ | |||
63 | static const uint16_t fiji_clock_stretcher_lookup_table[2][4] = { | |||
64 | {600, 1050, 3, 0}, {600, 1050, 6, 1} }; | |||
65 | ||||
66 | /* [FF, SS] type, [] 4 voltage ranges, and | |||
67 | * [Floor Freq, Boundary Freq, VID min , VID max] | |||
68 | */ | |||
69 | static const uint32_t fiji_clock_stretcher_ddt_table[2][4][4] = { | |||
70 | { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} }, | |||
71 | { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } }; | |||
72 | ||||
73 | /* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] | |||
74 | * (coming from PWR_CKS_CNTL.stretch_amount reg spec) | |||
75 | */ | |||
76 | static const uint8_t fiji_clock_stretch_amount_conversion[2][6] = { | |||
77 | {0, 1, 3, 2, 4, 5}, {0, 2, 4, 5, 6, 5} }; | |||
78 | ||||
79 | static const struct fiji_pt_defaults fiji_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX1] = { | |||
80 | /*sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc */ | |||
81 | {1, 0xF, 0xFD, | |||
82 | /* TDC_MAWt, TdcWaterfallCtl, DTEAmbientTempBase */ | |||
83 | 0x19, 5, 45} | |||
84 | }; | |||
85 | ||||
86 | static const struct SMU73_Discrete_GraphicsLevel avfs_graphics_level[8] = { | |||
87 | /* Min Sclk pcie DeepSleep Activity CgSpll CgSpll spllSpread SpllSpread CcPwr CcPwr Sclk Display Enabled Enabled Voltage Power */ | |||
88 | /* Voltage, Frequency, DpmLevel, DivId, Level, FuncCntl3, FuncCntl4, Spectrum, Spectrum2, DynRm, DynRm1 Did, Watermark, ForActivity, ForThrottle, UpHyst, DownHyst, DownHyst, Throttle */ | |||
89 | { 0x3c0fd047, 0x30750000, 0x00, 0x03, 0x1e00, 0x00200410, 0x87020000, 0x21680000, 0x0c000000, 0, 0, 0x16, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 }, | |||
90 | { 0xa00fd047, 0x409c0000, 0x01, 0x04, 0x1e00, 0x00800510, 0x87020000, 0x21680000, 0x11000000, 0, 0, 0x16, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 }, | |||
91 | { 0x0410d047, 0x50c30000, 0x01, 0x00, 0x1e00, 0x00600410, 0x87020000, 0x21680000, 0x0d000000, 0, 0, 0x0e, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 }, | |||
92 | { 0x6810d047, 0x60ea0000, 0x01, 0x00, 0x1e00, 0x00800410, 0x87020000, 0x21680000, 0x0e000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 }, | |||
93 | { 0xcc10d047, 0xe8fd0000, 0x01, 0x00, 0x1e00, 0x00e00410, 0x87020000, 0x21680000, 0x0f000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 }, | |||
94 | { 0x3011d047, 0x70110100, 0x01, 0x00, 0x1e00, 0x00400510, 0x87020000, 0x21680000, 0x10000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 }, | |||
95 | { 0x9411d047, 0xf8240100, 0x01, 0x00, 0x1e00, 0x00a00510, 0x87020000, 0x21680000, 0x11000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 }, | |||
96 | { 0xf811d047, 0x80380100, 0x01, 0x00, 0x1e00, 0x00000610, 0x87020000, 0x21680000, 0x12000000, 0, 0, 0x0c, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 } | |||
97 | }; | |||
98 | ||||
99 | static int fiji_start_smu_in_protection_mode(struct pp_hwmgr *hwmgr) | |||
100 | { | |||
101 | int result = 0; | |||
102 | ||||
103 | /* Wait for smc boot up */ | |||
104 | /* PHM_WAIT_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, | |||
105 | RCU_UC_EVENTS, boot_seq_done, 0); */ | |||
106 | ||||
107 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((1) << 0x0))))) | |||
108 | SMC_SYSCON_RESET_CNTL, rst_reg, 1)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((1) << 0x0))))); | |||
109 | ||||
110 | result = smu7_upload_smu_firmware_image(hwmgr); | |||
111 | if (result) | |||
112 | return result; | |||
113 | ||||
114 | /* Clear status */ | |||
115 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xe0003088,0)) | |||
116 | ixSMU_STATUS, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xe0003088,0)); | |||
117 | ||||
118 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000004,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000004))) & ~0x1) | (0x1 & ((0) << 0x0))))) | |||
119 | SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000004,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000004))) & ~0x1) | (0x1 & ((0) << 0x0))))); | |||
120 | ||||
121 | /* De-assert reset */ | |||
122 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((0) << 0x0))))) | |||
123 | SMC_SYSCON_RESET_CNTL, rst_reg, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((0) << 0x0))))); | |||
124 | ||||
125 | /* Wait for ROM firmware to initialize interrupt hendler */ | |||
126 | /*SMUM_WAIT_VFPF_INDIRECT_REGISTER(hwmgr, SMC_IND, | |||
127 | SMC_INTR_CNTL_MASK_0, 0x10040, 0xFFFFFFFF); */ | |||
128 | ||||
129 | /* Set SMU Auto Start */ | |||
130 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xe00030b8,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0xe00030b8))) & ~0x80000000) | (0x80000000 & ((1) << 0x1f))))) | |||
131 | SMU_INPUT_DATA, AUTO_START, 1)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xe00030b8,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0xe00030b8))) & ~0x80000000) | (0x80000000 & ((1) << 0x1f))))); | |||
132 | ||||
133 | /* Clear firmware interrupt enable flag */ | |||
134 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x3f000,0)) | |||
135 | ixFIRMWARE_FLAGS, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x3f000,0)); | |||
136 | ||||
137 | PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS,phm_wait_on_indirect_register(hwmgr, 0x1AC, 0xc0000004, (1) << 0x10, 0x10000) | |||
138 | INTERRUPTS_ENABLED, 1)phm_wait_on_indirect_register(hwmgr, 0x1AC, 0xc0000004, (1) << 0x10, 0x10000); | |||
139 | ||||
140 | smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_Test((uint16_t) 0x100), 0x20000, NULL((void *)0)); | |||
141 | ||||
142 | /* Wait for done bit to be set */ | |||
143 | PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,phm_wait_for_indirect_register_unequal(hwmgr, 0x1AC, 0xe0003088 , (0) << 0x0, 0x1) | |||
144 | SMU_STATUS, SMU_DONE, 0)phm_wait_for_indirect_register_unequal(hwmgr, 0x1AC, 0xe0003088 , (0) << 0x0, 0x1); | |||
145 | ||||
146 | /* Check pass/failed indicator */ | |||
147 | if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xe0003088))) & 0x2) >> 0x1) | |||
148 | SMU_STATUS, SMU_PASS)((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xe0003088))) & 0x2) >> 0x1) != 1) { | |||
149 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "SMU Firmware start failed!" ); return -1; } } while (0) | |||
150 | "SMU Firmware start failed!", return -1)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "SMU Firmware start failed!" ); return -1; } } while (0); | |||
151 | } | |||
152 | ||||
153 | /* Wait for firmware to initialize */ | |||
154 | PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,phm_wait_on_indirect_register(hwmgr, 0x1AC, 0x3f000, (1) << 0x0, 0x1) | |||
155 | FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1)phm_wait_on_indirect_register(hwmgr, 0x1AC, 0x3f000, (1) << 0x0, 0x1); | |||
156 | ||||
157 | return result; | |||
158 | } | |||
159 | ||||
160 | static int fiji_start_smu_in_non_protection_mode(struct pp_hwmgr *hwmgr) | |||
161 | { | |||
162 | int result = 0; | |||
163 | ||||
164 | /* wait for smc boot up */ | |||
165 | PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,phm_wait_for_indirect_register_unequal(hwmgr, 0x1AC, 0xc0000004 , (0) << 0x7, 0x80) | |||
166 | RCU_UC_EVENTS, boot_seq_done, 0)phm_wait_for_indirect_register_unequal(hwmgr, 0x1AC, 0xc0000004 , (0) << 0x7, 0x80); | |||
167 | ||||
168 | /* Clear firmware interrupt enable flag */ | |||
169 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x3f000,0)) | |||
170 | ixFIRMWARE_FLAGS, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x3f000,0)); | |||
171 | ||||
172 | /* Assert reset */ | |||
173 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((1) << 0x0))))) | |||
174 | SMC_SYSCON_RESET_CNTL, rst_reg, 1)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((1) << 0x0))))); | |||
175 | ||||
176 | result = smu7_upload_smu_firmware_image(hwmgr); | |||
177 | if (result) | |||
178 | return result; | |||
179 | ||||
180 | /* Set smc instruct start point at 0x0 */ | |||
181 | smu7_program_jump_on_start(hwmgr); | |||
182 | ||||
183 | /* Enable clock */ | |||
184 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000004,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000004))) & ~0x1) | (0x1 & ((0) << 0x0))))) | |||
185 | SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000004,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000004))) & ~0x1) | (0x1 & ((0) << 0x0))))); | |||
186 | ||||
187 | /* De-assert reset */ | |||
188 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((0) << 0x0))))) | |||
189 | SMC_SYSCON_RESET_CNTL, rst_reg, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((0) << 0x0))))); | |||
190 | ||||
191 | /* Wait for firmware to initialize */ | |||
192 | PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,phm_wait_on_indirect_register(hwmgr, 0x1AC, 0x3f000, (1) << 0x0, 0x1) | |||
193 | FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1)phm_wait_on_indirect_register(hwmgr, 0x1AC, 0x3f000, (1) << 0x0, 0x1); | |||
194 | ||||
195 | return result; | |||
196 | } | |||
197 | ||||
198 | static int fiji_start_avfs_btc(struct pp_hwmgr *hwmgr) | |||
199 | { | |||
200 | int result = 0; | |||
201 | struct smu7_smumgr *smu_data = (struct smu7_smumgr *)(hwmgr->smu_backend); | |||
202 | ||||
203 | if (0 != smu_data->avfs_btc_param) { | |||
204 | if (0 != smum_send_msg_to_smc_with_parameter(hwmgr, | |||
205 | PPSMC_MSG_PerformBtc((uint16_t) 0x26C), smu_data->avfs_btc_param, | |||
206 | NULL((void *)0))) { | |||
207 | pr_info("[AVFS][Fiji_PerformBtc] PerformBTC SMU msg failed")do { } while(0); | |||
208 | result = -EINVAL22; | |||
209 | } | |||
210 | } | |||
211 | /* Soft-Reset to reset the engine before loading uCode */ | |||
212 | /* halt */ | |||
213 | cgs_write_register(hwmgr->device, mmCP_MEC_CNTL, 0x50000000)(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0x208d,0x50000000)); | |||
214 | /* reset everything */ | |||
215 | cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0xffffffff)(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0x2008,0xffffffff)); | |||
216 | /* clear reset */ | |||
217 | cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0)(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0x2008,0)); | |||
218 | ||||
219 | return result; | |||
220 | } | |||
221 | ||||
222 | static int fiji_setup_graphics_level_structure(struct pp_hwmgr *hwmgr) | |||
223 | { | |||
224 | int32_t vr_config; | |||
225 | uint32_t table_start; | |||
226 | uint32_t level_addr, vr_config_addr; | |||
227 | uint32_t level_size = sizeof(avfs_graphics_level); | |||
228 | ||||
229 | PP_ASSERT_WITH_CODE(0 == smu7_read_smc_sram_dword(hwmgr,do { if (!(0 == smu7_read_smc_sram_dword(hwmgr, 0x20000 + __builtin_offsetof (SMU73_Firmware_Header, DpmTable), &table_start, 0x40000) )) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Fiji_SetupGfxLvlStruct] SMU could not " "communicate starting address of DPM table"); return -1;; } } while (0) | |||
230 | SMU7_FIRMWARE_HEADER_LOCATION +do { if (!(0 == smu7_read_smc_sram_dword(hwmgr, 0x20000 + __builtin_offsetof (SMU73_Firmware_Header, DpmTable), &table_start, 0x40000) )) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Fiji_SetupGfxLvlStruct] SMU could not " "communicate starting address of DPM table"); return -1;; } } while (0) | |||
231 | offsetof(SMU73_Firmware_Header, DpmTable),do { if (!(0 == smu7_read_smc_sram_dword(hwmgr, 0x20000 + __builtin_offsetof (SMU73_Firmware_Header, DpmTable), &table_start, 0x40000) )) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Fiji_SetupGfxLvlStruct] SMU could not " "communicate starting address of DPM table"); return -1;; } } while (0) | |||
232 | &table_start, 0x40000),do { if (!(0 == smu7_read_smc_sram_dword(hwmgr, 0x20000 + __builtin_offsetof (SMU73_Firmware_Header, DpmTable), &table_start, 0x40000) )) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Fiji_SetupGfxLvlStruct] SMU could not " "communicate starting address of DPM table"); return -1;; } } while (0) | |||
233 | "[AVFS][Fiji_SetupGfxLvlStruct] SMU could not "do { if (!(0 == smu7_read_smc_sram_dword(hwmgr, 0x20000 + __builtin_offsetof (SMU73_Firmware_Header, DpmTable), &table_start, 0x40000) )) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Fiji_SetupGfxLvlStruct] SMU could not " "communicate starting address of DPM table"); return -1;; } } while (0) | |||
234 | "communicate starting address of DPM table",do { if (!(0 == smu7_read_smc_sram_dword(hwmgr, 0x20000 + __builtin_offsetof (SMU73_Firmware_Header, DpmTable), &table_start, 0x40000) )) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Fiji_SetupGfxLvlStruct] SMU could not " "communicate starting address of DPM table"); return -1;; } } while (0) | |||
235 | return -1;)do { if (!(0 == smu7_read_smc_sram_dword(hwmgr, 0x20000 + __builtin_offsetof (SMU73_Firmware_Header, DpmTable), &table_start, 0x40000) )) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][Fiji_SetupGfxLvlStruct] SMU could not " "communicate starting address of DPM table"); return -1;; } } while (0); | |||
236 | ||||
237 | /* Default value for vr_config = | |||
238 | * VR_MERGED_WITH_VDDC + VR_STATIC_VOLTAGE(VDDCI) */ | |||
239 | vr_config = 0x01000500; /* Real value:0x50001 */ | |||
240 | ||||
241 | vr_config_addr = table_start + | |||
242 | offsetof(SMU73_Discrete_DpmTable, VRConfig)__builtin_offsetof(SMU73_Discrete_DpmTable, VRConfig); | |||
243 | ||||
244 | PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, vr_config_addr,do { if (!(0 == smu7_copy_bytes_to_smc(hwmgr, vr_config_addr, (uint8_t *)&vr_config, sizeof(int32_t), 0x40000))) { printk ("\0014" "amdgpu: " "%s\n", "[AVFS][Fiji_SetupGfxLvlStruct] Problems copying " "vr_config value over to SMC"); return -1;; } } while (0) | |||
245 | (uint8_t *)&vr_config, sizeof(int32_t), 0x40000),do { if (!(0 == smu7_copy_bytes_to_smc(hwmgr, vr_config_addr, (uint8_t *)&vr_config, sizeof(int32_t), 0x40000))) { printk ("\0014" "amdgpu: " "%s\n", "[AVFS][Fiji_SetupGfxLvlStruct] Problems copying " "vr_config value over to SMC"); return -1;; } } while (0) | |||
246 | "[AVFS][Fiji_SetupGfxLvlStruct] Problems copying "do { if (!(0 == smu7_copy_bytes_to_smc(hwmgr, vr_config_addr, (uint8_t *)&vr_config, sizeof(int32_t), 0x40000))) { printk ("\0014" "amdgpu: " "%s\n", "[AVFS][Fiji_SetupGfxLvlStruct] Problems copying " "vr_config value over to SMC"); return -1;; } } while (0) | |||
247 | "vr_config value over to SMC",do { if (!(0 == smu7_copy_bytes_to_smc(hwmgr, vr_config_addr, (uint8_t *)&vr_config, sizeof(int32_t), 0x40000))) { printk ("\0014" "amdgpu: " "%s\n", "[AVFS][Fiji_SetupGfxLvlStruct] Problems copying " "vr_config value over to SMC"); return -1;; } } while (0) | |||
248 | return -1;)do { if (!(0 == smu7_copy_bytes_to_smc(hwmgr, vr_config_addr, (uint8_t *)&vr_config, sizeof(int32_t), 0x40000))) { printk ("\0014" "amdgpu: " "%s\n", "[AVFS][Fiji_SetupGfxLvlStruct] Problems copying " "vr_config value over to SMC"); return -1;; } } while (0); | |||
249 | ||||
250 | level_addr = table_start + offsetof(SMU73_Discrete_DpmTable, GraphicsLevel)__builtin_offsetof(SMU73_Discrete_DpmTable, GraphicsLevel); | |||
251 | ||||
252 | PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, level_addr,do { if (!(0 == smu7_copy_bytes_to_smc(hwmgr, level_addr, (uint8_t *)(&avfs_graphics_level), level_size, 0x40000))) { printk ("\0014" "amdgpu: " "%s\n", "[AVFS][Fiji_SetupGfxLvlStruct] Copying of DPM table failed!" ); return -1;; } } while (0) | |||
253 | (uint8_t *)(&avfs_graphics_level), level_size, 0x40000),do { if (!(0 == smu7_copy_bytes_to_smc(hwmgr, level_addr, (uint8_t *)(&avfs_graphics_level), level_size, 0x40000))) { printk ("\0014" "amdgpu: " "%s\n", "[AVFS][Fiji_SetupGfxLvlStruct] Copying of DPM table failed!" ); return -1;; } } while (0) | |||
254 | "[AVFS][Fiji_SetupGfxLvlStruct] Copying of DPM table failed!",do { if (!(0 == smu7_copy_bytes_to_smc(hwmgr, level_addr, (uint8_t *)(&avfs_graphics_level), level_size, 0x40000))) { printk ("\0014" "amdgpu: " "%s\n", "[AVFS][Fiji_SetupGfxLvlStruct] Copying of DPM table failed!" ); return -1;; } } while (0) | |||
255 | return -1;)do { if (!(0 == smu7_copy_bytes_to_smc(hwmgr, level_addr, (uint8_t *)(&avfs_graphics_level), level_size, 0x40000))) { printk ("\0014" "amdgpu: " "%s\n", "[AVFS][Fiji_SetupGfxLvlStruct] Copying of DPM table failed!" ); return -1;; } } while (0); | |||
256 | ||||
257 | return 0; | |||
258 | } | |||
259 | ||||
260 | static int fiji_avfs_event_mgr(struct pp_hwmgr *hwmgr) | |||
261 | { | |||
262 | if (!hwmgr->avfs_supported) | |||
263 | return 0; | |||
264 | ||||
265 | PP_ASSERT_WITH_CODE(0 == fiji_setup_graphics_level_structure(hwmgr),do { if (!(0 == fiji_setup_graphics_level_structure(hwmgr))) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][fiji_avfs_event_mgr] Could not Copy Graphics Level" " table over to SMU"); return -22; } } while (0) | |||
266 | "[AVFS][fiji_avfs_event_mgr] Could not Copy Graphics Level"do { if (!(0 == fiji_setup_graphics_level_structure(hwmgr))) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][fiji_avfs_event_mgr] Could not Copy Graphics Level" " table over to SMU"); return -22; } } while (0) | |||
267 | " table over to SMU",do { if (!(0 == fiji_setup_graphics_level_structure(hwmgr))) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][fiji_avfs_event_mgr] Could not Copy Graphics Level" " table over to SMU"); return -22; } } while (0) | |||
268 | return -EINVAL)do { if (!(0 == fiji_setup_graphics_level_structure(hwmgr))) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][fiji_avfs_event_mgr] Could not Copy Graphics Level" " table over to SMU"); return -22; } } while (0); | |||
269 | PP_ASSERT_WITH_CODE(0 == smu7_setup_pwr_virus(hwmgr),do { if (!(0 == smu7_setup_pwr_virus(hwmgr))) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][fiji_avfs_event_mgr] Could not setup " "Pwr Virus for AVFS "); return -22; } } while (0) | |||
270 | "[AVFS][fiji_avfs_event_mgr] Could not setup "do { if (!(0 == smu7_setup_pwr_virus(hwmgr))) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][fiji_avfs_event_mgr] Could not setup " "Pwr Virus for AVFS "); return -22; } } while (0) | |||
271 | "Pwr Virus for AVFS ",do { if (!(0 == smu7_setup_pwr_virus(hwmgr))) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][fiji_avfs_event_mgr] Could not setup " "Pwr Virus for AVFS "); return -22; } } while (0) | |||
272 | return -EINVAL)do { if (!(0 == smu7_setup_pwr_virus(hwmgr))) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][fiji_avfs_event_mgr] Could not setup " "Pwr Virus for AVFS "); return -22; } } while (0); | |||
273 | PP_ASSERT_WITH_CODE(0 == fiji_start_avfs_btc(hwmgr),do { if (!(0 == fiji_start_avfs_btc(hwmgr))) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][fiji_avfs_event_mgr] Failure at " "fiji_start_avfs_btc. AVFS Disabled"); return -22; } } while (0) | |||
274 | "[AVFS][fiji_avfs_event_mgr] Failure at "do { if (!(0 == fiji_start_avfs_btc(hwmgr))) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][fiji_avfs_event_mgr] Failure at " "fiji_start_avfs_btc. AVFS Disabled"); return -22; } } while (0) | |||
275 | "fiji_start_avfs_btc. AVFS Disabled",do { if (!(0 == fiji_start_avfs_btc(hwmgr))) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][fiji_avfs_event_mgr] Failure at " "fiji_start_avfs_btc. AVFS Disabled"); return -22; } } while (0) | |||
276 | return -EINVAL)do { if (!(0 == fiji_start_avfs_btc(hwmgr))) { printk("\0014" "amdgpu: " "%s\n", "[AVFS][fiji_avfs_event_mgr] Failure at " "fiji_start_avfs_btc. AVFS Disabled"); return -22; } } while (0); | |||
277 | ||||
278 | return 0; | |||
279 | } | |||
280 | ||||
281 | static int fiji_start_smu(struct pp_hwmgr *hwmgr) | |||
282 | { | |||
283 | int result = 0; | |||
284 | struct fiji_smumgr *priv = (struct fiji_smumgr *)(hwmgr->smu_backend); | |||
285 | ||||
286 | /* Only start SMC if SMC RAM is not running */ | |||
287 | if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) { | |||
288 | /* Check if SMU is running in protected mode */ | |||
289 | if (0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xe00030a4))) & 0x10000 ) >> 0x10) | |||
290 | CGS_IND_REG__SMC,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xe00030a4))) & 0x10000 ) >> 0x10) | |||
291 | SMU_FIRMWARE, SMU_MODE)((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xe00030a4))) & 0x10000 ) >> 0x10)) { | |||
292 | result = fiji_start_smu_in_non_protection_mode(hwmgr); | |||
293 | if (result) | |||
294 | return result; | |||
295 | } else { | |||
296 | result = fiji_start_smu_in_protection_mode(hwmgr); | |||
297 | if (result) | |||
298 | return result; | |||
299 | } | |||
300 | if (fiji_avfs_event_mgr(hwmgr)) | |||
301 | hwmgr->avfs_supported = false0; | |||
302 | } | |||
303 | ||||
304 | /* Setup SoftRegsStart here for register lookup in case | |||
305 | * DummyBackEnd is used and ProcessFirmwareHeader is not executed | |||
306 | */ | |||
307 | smu7_read_smc_sram_dword(hwmgr, | |||
308 | SMU7_FIRMWARE_HEADER_LOCATION0x20000 + | |||
309 | offsetof(SMU73_Firmware_Header, SoftRegisters)__builtin_offsetof(SMU73_Firmware_Header, SoftRegisters), | |||
310 | &(priv->smu7_data.soft_regs_start), 0x40000); | |||
311 | ||||
312 | result = smu7_request_smu_load_fw(hwmgr); | |||
313 | ||||
314 | return result; | |||
315 | } | |||
316 | ||||
317 | static bool_Bool fiji_is_hw_avfs_present(struct pp_hwmgr *hwmgr) | |||
318 | { | |||
319 | ||||
320 | uint32_t efuse = 0; | |||
321 | uint32_t mask = (1 << ((AVFS_EN_MSB1568 - AVFS_EN_LSB1568) + 1)) - 1; | |||
322 | ||||
323 | if (!hwmgr->not_vf) | |||
324 | return false0; | |||
325 | ||||
326 | if (!atomctrl_read_efuse(hwmgr, AVFS_EN_LSB1568, AVFS_EN_MSB1568, | |||
327 | mask, &efuse)) { | |||
328 | if (efuse) | |||
329 | return true1; | |||
330 | } | |||
331 | return false0; | |||
332 | } | |||
333 | ||||
334 | static int fiji_smu_init(struct pp_hwmgr *hwmgr) | |||
335 | { | |||
336 | struct fiji_smumgr *fiji_priv = NULL((void *)0); | |||
337 | ||||
338 | fiji_priv = kzalloc(sizeof(struct fiji_smumgr), GFP_KERNEL(0x0001 | 0x0004)); | |||
339 | ||||
340 | if (fiji_priv == NULL((void *)0)) | |||
341 | return -ENOMEM12; | |||
342 | ||||
343 | hwmgr->smu_backend = fiji_priv; | |||
344 | ||||
345 | if (smu7_init(hwmgr)) { | |||
346 | kfree(fiji_priv); | |||
347 | return -EINVAL22; | |||
348 | } | |||
349 | ||||
350 | return 0; | |||
351 | } | |||
352 | ||||
353 | static int fiji_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr, | |||
354 | struct phm_ppt_v1_clock_voltage_dependency_table *dep_table, | |||
355 | uint32_t clock, uint32_t *voltage, uint32_t *mvdd) | |||
356 | { | |||
357 | uint32_t i; | |||
358 | uint16_t vddci; | |||
359 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | |||
360 | *voltage = *mvdd = 0; | |||
361 | ||||
362 | ||||
363 | /* clock - voltage dependency table is empty table */ | |||
364 | if (dep_table->count == 0) | |||
365 | return -EINVAL22; | |||
366 | ||||
367 | for (i = 0; i < dep_table->count; i++) { | |||
368 | /* find first sclk bigger than request */ | |||
369 | if (dep_table->entries[i].clk >= clock) { | |||
370 | *voltage |= (dep_table->entries[i].vddc * | |||
371 | VOLTAGE_SCALE4) << VDDC_SHIFT0; | |||
372 | if (SMU7_VOLTAGE_CONTROL_NONE0x0 == data->vddci_control) | |||
373 | *voltage |= (data->vbios_boot_state.vddci_bootup_value * | |||
374 | VOLTAGE_SCALE4) << VDDCI_SHIFT15; | |||
375 | else if (dep_table->entries[i].vddci) | |||
376 | *voltage |= (dep_table->entries[i].vddci * | |||
377 | VOLTAGE_SCALE4) << VDDCI_SHIFT15; | |||
378 | else { | |||
379 | vddci = phm_find_closest_vddci(&(data->vddci_voltage_table), | |||
380 | (dep_table->entries[i].vddc - | |||
381 | VDDC_VDDCI_DELTA300)); | |||
382 | *voltage |= (vddci * VOLTAGE_SCALE4) << VDDCI_SHIFT15; | |||
383 | } | |||
384 | ||||
385 | if (SMU7_VOLTAGE_CONTROL_NONE0x0 == data->mvdd_control) | |||
386 | *mvdd = data->vbios_boot_state.mvdd_bootup_value * | |||
387 | VOLTAGE_SCALE4; | |||
388 | else if (dep_table->entries[i].mvdd) | |||
389 | *mvdd = (uint32_t) dep_table->entries[i].mvdd * | |||
390 | VOLTAGE_SCALE4; | |||
391 | ||||
392 | *voltage |= 1 << PHASES_SHIFT30; | |||
393 | return 0; | |||
394 | } | |||
395 | } | |||
396 | ||||
397 | /* sclk is bigger than max sclk in the dependence table */ | |||
398 | *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE4) << VDDC_SHIFT0; | |||
399 | ||||
400 | if (SMU7_VOLTAGE_CONTROL_NONE0x0 == data->vddci_control) | |||
401 | *voltage |= (data->vbios_boot_state.vddci_bootup_value * | |||
402 | VOLTAGE_SCALE4) << VDDCI_SHIFT15; | |||
403 | else if (dep_table->entries[i-1].vddci) { | |||
404 | vddci = phm_find_closest_vddci(&(data->vddci_voltage_table), | |||
405 | (dep_table->entries[i].vddc - | |||
406 | VDDC_VDDCI_DELTA300)); | |||
407 | *voltage |= (vddci * VOLTAGE_SCALE4) << VDDCI_SHIFT15; | |||
408 | } | |||
409 | ||||
410 | if (SMU7_VOLTAGE_CONTROL_NONE0x0 == data->mvdd_control) | |||
411 | *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE4; | |||
412 | else if (dep_table->entries[i].mvdd) | |||
413 | *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE4; | |||
414 | ||||
415 | return 0; | |||
416 | } | |||
417 | ||||
418 | ||||
419 | static uint16_t scale_fan_gain_settings(uint16_t raw_setting) | |||
420 | { | |||
421 | uint32_t tmp; | |||
422 | tmp = raw_setting * 4096 / 100; | |||
423 | return (uint16_t)tmp; | |||
424 | } | |||
425 | ||||
426 | static void get_scl_sda_value(uint8_t line, uint8_t *scl, uint8_t *sda) | |||
427 | { | |||
428 | switch (line) { | |||
429 | case SMU7_I2CLineID_DDC1: | |||
430 | *scl = SMU7_I2C_DDC1CLK1; | |||
431 | *sda = SMU7_I2C_DDC1DATA0; | |||
432 | break; | |||
433 | case SMU7_I2CLineID_DDC2: | |||
434 | *scl = SMU7_I2C_DDC2CLK3; | |||
435 | *sda = SMU7_I2C_DDC2DATA2; | |||
436 | break; | |||
437 | case SMU7_I2CLineID_DDC3: | |||
438 | *scl = SMU7_I2C_DDC3CLK5; | |||
439 | *sda = SMU7_I2C_DDC3DATA4; | |||
440 | break; | |||
441 | case SMU7_I2CLineID_DDC4: | |||
442 | *scl = SMU7_I2C_DDC4CLK66; | |||
443 | *sda = SMU7_I2C_DDC4DATA65; | |||
444 | break; | |||
445 | case SMU7_I2CLineID_DDC5: | |||
446 | *scl = SMU7_I2C_DDC5CLK0x49; | |||
447 | *sda = SMU7_I2C_DDC5DATA0x48; | |||
448 | break; | |||
449 | case SMU7_I2CLineID_DDC6: | |||
450 | *scl = SMU7_I2C_DDC6CLK0x4b; | |||
451 | *sda = SMU7_I2C_DDC6DATA0x4a; | |||
452 | break; | |||
453 | case SMU7_I2CLineID_SCLSDA: | |||
454 | *scl = SMU7_I2C_SCL41; | |||
455 | *sda = SMU7_I2C_SDA40; | |||
456 | break; | |||
457 | case SMU7_I2CLineID_DDCVGA: | |||
458 | *scl = SMU7_I2C_DDCVGACLK0x4d; | |||
459 | *sda = SMU7_I2C_DDCVGADATA0x4c; | |||
460 | break; | |||
461 | default: | |||
462 | *scl = 0; | |||
463 | *sda = 0; | |||
464 | break; | |||
465 | } | |||
466 | } | |||
467 | ||||
468 | static void fiji_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr) | |||
469 | { | |||
470 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); | |||
471 | struct phm_ppt_v1_information *table_info = | |||
472 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | |||
473 | ||||
474 | if (table_info && | |||
475 | table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX1 && | |||
476 | table_info->cac_dtp_table->usPowerTuneDataSetID) | |||
477 | smu_data->power_tune_defaults = | |||
478 | &fiji_power_tune_data_set_array | |||
479 | [table_info->cac_dtp_table->usPowerTuneDataSetID - 1]; | |||
480 | else | |||
481 | smu_data->power_tune_defaults = &fiji_power_tune_data_set_array[0]; | |||
482 | ||||
483 | } | |||
484 | ||||
485 | static int fiji_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr) | |||
486 | { | |||
487 | ||||
488 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); | |||
489 | const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults; | |||
490 | ||||
491 | SMU73_Discrete_DpmTable *dpm_table = &(smu_data->smc_state_table); | |||
492 | ||||
493 | struct phm_ppt_v1_information *table_info = | |||
494 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | |||
495 | struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table; | |||
496 | struct pp_advance_fan_control_parameters *fan_table = | |||
497 | &hwmgr->thermal_controller.advanceFanControlParameters; | |||
498 | uint8_t uc_scl, uc_sda; | |||
499 | ||||
500 | /* TDP number of fraction bits are changed from 8 to 7 for Fiji | |||
501 | * as requested by SMC team | |||
502 | */ | |||
503 | dpm_table->DefaultTdp = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p((uint16_t)(cac_dtp_table-> usTDP * 128)) ? (__uint16_t)(((__uint16_t)((uint16_t)(cac_dtp_table ->usTDP * 128)) & 0xffU) << 8 | ((__uint16_t)((uint16_t )(cac_dtp_table->usTDP * 128)) & 0xff00U) >> 8) : __swap16md((uint16_t)(cac_dtp_table->usTDP * 128))) | |||
504 | (uint16_t)(cac_dtp_table->usTDP * 128))(__uint16_t)(__builtin_constant_p((uint16_t)(cac_dtp_table-> usTDP * 128)) ? (__uint16_t)(((__uint16_t)((uint16_t)(cac_dtp_table ->usTDP * 128)) & 0xffU) << 8 | ((__uint16_t)((uint16_t )(cac_dtp_table->usTDP * 128)) & 0xff00U) >> 8) : __swap16md((uint16_t)(cac_dtp_table->usTDP * 128))); | |||
505 | dpm_table->TargetTdp = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p((uint16_t)(cac_dtp_table-> usTDP * 128)) ? (__uint16_t)(((__uint16_t)((uint16_t)(cac_dtp_table ->usTDP * 128)) & 0xffU) << 8 | ((__uint16_t)((uint16_t )(cac_dtp_table->usTDP * 128)) & 0xff00U) >> 8) : __swap16md((uint16_t)(cac_dtp_table->usTDP * 128))) | |||
506 | (uint16_t)(cac_dtp_table->usTDP * 128))(__uint16_t)(__builtin_constant_p((uint16_t)(cac_dtp_table-> usTDP * 128)) ? (__uint16_t)(((__uint16_t)((uint16_t)(cac_dtp_table ->usTDP * 128)) & 0xffU) << 8 | ((__uint16_t)((uint16_t )(cac_dtp_table->usTDP * 128)) & 0xff00U) >> 8) : __swap16md((uint16_t)(cac_dtp_table->usTDP * 128))); | |||
507 | ||||
508 | PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,do { if (!(cac_dtp_table->usTargetOperatingTemp <= 255) ) { printk("\0014" "amdgpu: " "%s\n", "Target Operating Temp is out of Range!" ); ; } } while (0) | |||
509 | "Target Operating Temp is out of Range!",do { if (!(cac_dtp_table->usTargetOperatingTemp <= 255) ) { printk("\0014" "amdgpu: " "%s\n", "Target Operating Temp is out of Range!" ); ; } } while (0) | |||
510 | )do { if (!(cac_dtp_table->usTargetOperatingTemp <= 255) ) { printk("\0014" "amdgpu: " "%s\n", "Target Operating Temp is out of Range!" ); ; } } while (0); | |||
511 | ||||
512 | dpm_table->GpuTjMax = (uint8_t)(cac_dtp_table->usTargetOperatingTemp); | |||
513 | dpm_table->GpuTjHyst = 8; | |||
514 | ||||
515 | dpm_table->DTEAmbientTempBase = defaults->DTEAmbientTempBase; | |||
516 | ||||
517 | /* The following are for new Fiji Multi-input fan/thermal control */ | |||
518 | dpm_table->TemperatureLimitEdge = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(cac_dtp_table->usTargetOperatingTemp * 256) ? (__uint16_t)(((__uint16_t)(cac_dtp_table->usTargetOperatingTemp * 256) & 0xffU) << 8 | ((__uint16_t)(cac_dtp_table ->usTargetOperatingTemp * 256) & 0xff00U) >> 8) : __swap16md(cac_dtp_table->usTargetOperatingTemp * 256)) | |||
519 | cac_dtp_table->usTargetOperatingTemp * 256)(__uint16_t)(__builtin_constant_p(cac_dtp_table->usTargetOperatingTemp * 256) ? (__uint16_t)(((__uint16_t)(cac_dtp_table->usTargetOperatingTemp * 256) & 0xffU) << 8 | ((__uint16_t)(cac_dtp_table ->usTargetOperatingTemp * 256) & 0xff00U) >> 8) : __swap16md(cac_dtp_table->usTargetOperatingTemp * 256)); | |||
520 | dpm_table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(cac_dtp_table->usTemperatureLimitHotspot * 256) ? (__uint16_t)(((__uint16_t)(cac_dtp_table->usTemperatureLimitHotspot * 256) & 0xffU) << 8 | ((__uint16_t)(cac_dtp_table ->usTemperatureLimitHotspot * 256) & 0xff00U) >> 8) : __swap16md(cac_dtp_table->usTemperatureLimitHotspot * 256)) | |||
521 | cac_dtp_table->usTemperatureLimitHotspot * 256)(__uint16_t)(__builtin_constant_p(cac_dtp_table->usTemperatureLimitHotspot * 256) ? (__uint16_t)(((__uint16_t)(cac_dtp_table->usTemperatureLimitHotspot * 256) & 0xffU) << 8 | ((__uint16_t)(cac_dtp_table ->usTemperatureLimitHotspot * 256) & 0xff00U) >> 8) : __swap16md(cac_dtp_table->usTemperatureLimitHotspot * 256)); | |||
522 | dpm_table->TemperatureLimitLiquid1 = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(cac_dtp_table->usTemperatureLimitLiquid1 * 256) ? (__uint16_t)(((__uint16_t)(cac_dtp_table->usTemperatureLimitLiquid1 * 256) & 0xffU) << 8 | ((__uint16_t)(cac_dtp_table ->usTemperatureLimitLiquid1 * 256) & 0xff00U) >> 8) : __swap16md(cac_dtp_table->usTemperatureLimitLiquid1 * 256)) | |||
523 | cac_dtp_table->usTemperatureLimitLiquid1 * 256)(__uint16_t)(__builtin_constant_p(cac_dtp_table->usTemperatureLimitLiquid1 * 256) ? (__uint16_t)(((__uint16_t)(cac_dtp_table->usTemperatureLimitLiquid1 * 256) & 0xffU) << 8 | ((__uint16_t)(cac_dtp_table ->usTemperatureLimitLiquid1 * 256) & 0xff00U) >> 8) : __swap16md(cac_dtp_table->usTemperatureLimitLiquid1 * 256)); | |||
524 | dpm_table->TemperatureLimitLiquid2 = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(cac_dtp_table->usTemperatureLimitLiquid2 * 256) ? (__uint16_t)(((__uint16_t)(cac_dtp_table->usTemperatureLimitLiquid2 * 256) & 0xffU) << 8 | ((__uint16_t)(cac_dtp_table ->usTemperatureLimitLiquid2 * 256) & 0xff00U) >> 8) : __swap16md(cac_dtp_table->usTemperatureLimitLiquid2 * 256)) | |||
525 | cac_dtp_table->usTemperatureLimitLiquid2 * 256)(__uint16_t)(__builtin_constant_p(cac_dtp_table->usTemperatureLimitLiquid2 * 256) ? (__uint16_t)(((__uint16_t)(cac_dtp_table->usTemperatureLimitLiquid2 * 256) & 0xffU) << 8 | ((__uint16_t)(cac_dtp_table ->usTemperatureLimitLiquid2 * 256) & 0xff00U) >> 8) : __swap16md(cac_dtp_table->usTemperatureLimitLiquid2 * 256)); | |||
526 | dpm_table->TemperatureLimitVrVddc = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(cac_dtp_table->usTemperatureLimitVrVddc * 256) ? (__uint16_t)(((__uint16_t)(cac_dtp_table->usTemperatureLimitVrVddc * 256) & 0xffU) << 8 | ((__uint16_t)(cac_dtp_table ->usTemperatureLimitVrVddc * 256) & 0xff00U) >> 8 ) : __swap16md(cac_dtp_table->usTemperatureLimitVrVddc * 256 )) | |||
527 | cac_dtp_table->usTemperatureLimitVrVddc * 256)(__uint16_t)(__builtin_constant_p(cac_dtp_table->usTemperatureLimitVrVddc * 256) ? (__uint16_t)(((__uint16_t)(cac_dtp_table->usTemperatureLimitVrVddc * 256) & 0xffU) << 8 | ((__uint16_t)(cac_dtp_table ->usTemperatureLimitVrVddc * 256) & 0xff00U) >> 8 ) : __swap16md(cac_dtp_table->usTemperatureLimitVrVddc * 256 )); | |||
528 | dpm_table->TemperatureLimitVrMvdd = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(cac_dtp_table->usTemperatureLimitVrMvdd * 256) ? (__uint16_t)(((__uint16_t)(cac_dtp_table->usTemperatureLimitVrMvdd * 256) & 0xffU) << 8 | ((__uint16_t)(cac_dtp_table ->usTemperatureLimitVrMvdd * 256) & 0xff00U) >> 8 ) : __swap16md(cac_dtp_table->usTemperatureLimitVrMvdd * 256 )) | |||
529 | cac_dtp_table->usTemperatureLimitVrMvdd * 256)(__uint16_t)(__builtin_constant_p(cac_dtp_table->usTemperatureLimitVrMvdd * 256) ? (__uint16_t)(((__uint16_t)(cac_dtp_table->usTemperatureLimitVrMvdd * 256) & 0xffU) << 8 | ((__uint16_t)(cac_dtp_table ->usTemperatureLimitVrMvdd * 256) & 0xff00U) >> 8 ) : __swap16md(cac_dtp_table->usTemperatureLimitVrMvdd * 256 )); | |||
530 | dpm_table->TemperatureLimitPlx = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(cac_dtp_table->usTemperatureLimitPlx * 256) ? (__uint16_t)(((__uint16_t)(cac_dtp_table->usTemperatureLimitPlx * 256) & 0xffU) << 8 | ((__uint16_t)(cac_dtp_table ->usTemperatureLimitPlx * 256) & 0xff00U) >> 8) : __swap16md(cac_dtp_table->usTemperatureLimitPlx * 256)) | |||
531 | cac_dtp_table->usTemperatureLimitPlx * 256)(__uint16_t)(__builtin_constant_p(cac_dtp_table->usTemperatureLimitPlx * 256) ? (__uint16_t)(((__uint16_t)(cac_dtp_table->usTemperatureLimitPlx * 256) & 0xffU) << 8 | ((__uint16_t)(cac_dtp_table ->usTemperatureLimitPlx * 256) & 0xff00U) >> 8) : __swap16md(cac_dtp_table->usTemperatureLimitPlx * 256)); | |||
532 | ||||
533 | dpm_table->FanGainEdge = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(scale_fan_gain_settings(fan_table ->usFanGainEdge)) ? (__uint16_t)(((__uint16_t)(scale_fan_gain_settings (fan_table->usFanGainEdge)) & 0xffU) << 8 | ((__uint16_t )(scale_fan_gain_settings(fan_table->usFanGainEdge)) & 0xff00U) >> 8) : __swap16md(scale_fan_gain_settings(fan_table ->usFanGainEdge))) | |||
534 | scale_fan_gain_settings(fan_table->usFanGainEdge))(__uint16_t)(__builtin_constant_p(scale_fan_gain_settings(fan_table ->usFanGainEdge)) ? (__uint16_t)(((__uint16_t)(scale_fan_gain_settings (fan_table->usFanGainEdge)) & 0xffU) << 8 | ((__uint16_t )(scale_fan_gain_settings(fan_table->usFanGainEdge)) & 0xff00U) >> 8) : __swap16md(scale_fan_gain_settings(fan_table ->usFanGainEdge))); | |||
535 | dpm_table->FanGainHotspot = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(scale_fan_gain_settings(fan_table ->usFanGainHotspot)) ? (__uint16_t)(((__uint16_t)(scale_fan_gain_settings (fan_table->usFanGainHotspot)) & 0xffU) << 8 | ( (__uint16_t)(scale_fan_gain_settings(fan_table->usFanGainHotspot )) & 0xff00U) >> 8) : __swap16md(scale_fan_gain_settings (fan_table->usFanGainHotspot))) | |||
536 | scale_fan_gain_settings(fan_table->usFanGainHotspot))(__uint16_t)(__builtin_constant_p(scale_fan_gain_settings(fan_table ->usFanGainHotspot)) ? (__uint16_t)(((__uint16_t)(scale_fan_gain_settings (fan_table->usFanGainHotspot)) & 0xffU) << 8 | ( (__uint16_t)(scale_fan_gain_settings(fan_table->usFanGainHotspot )) & 0xff00U) >> 8) : __swap16md(scale_fan_gain_settings (fan_table->usFanGainHotspot))); | |||
537 | dpm_table->FanGainLiquid = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(scale_fan_gain_settings(fan_table ->usFanGainLiquid)) ? (__uint16_t)(((__uint16_t)(scale_fan_gain_settings (fan_table->usFanGainLiquid)) & 0xffU) << 8 | (( __uint16_t)(scale_fan_gain_settings(fan_table->usFanGainLiquid )) & 0xff00U) >> 8) : __swap16md(scale_fan_gain_settings (fan_table->usFanGainLiquid))) | |||
538 | scale_fan_gain_settings(fan_table->usFanGainLiquid))(__uint16_t)(__builtin_constant_p(scale_fan_gain_settings(fan_table ->usFanGainLiquid)) ? (__uint16_t)(((__uint16_t)(scale_fan_gain_settings (fan_table->usFanGainLiquid)) & 0xffU) << 8 | (( __uint16_t)(scale_fan_gain_settings(fan_table->usFanGainLiquid )) & 0xff00U) >> 8) : __swap16md(scale_fan_gain_settings (fan_table->usFanGainLiquid))); | |||
539 | dpm_table->FanGainVrVddc = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(scale_fan_gain_settings(fan_table ->usFanGainVrVddc)) ? (__uint16_t)(((__uint16_t)(scale_fan_gain_settings (fan_table->usFanGainVrVddc)) & 0xffU) << 8 | (( __uint16_t)(scale_fan_gain_settings(fan_table->usFanGainVrVddc )) & 0xff00U) >> 8) : __swap16md(scale_fan_gain_settings (fan_table->usFanGainVrVddc))) | |||
540 | scale_fan_gain_settings(fan_table->usFanGainVrVddc))(__uint16_t)(__builtin_constant_p(scale_fan_gain_settings(fan_table ->usFanGainVrVddc)) ? (__uint16_t)(((__uint16_t)(scale_fan_gain_settings (fan_table->usFanGainVrVddc)) & 0xffU) << 8 | (( __uint16_t)(scale_fan_gain_settings(fan_table->usFanGainVrVddc )) & 0xff00U) >> 8) : __swap16md(scale_fan_gain_settings (fan_table->usFanGainVrVddc))); | |||
541 | dpm_table->FanGainVrMvdd = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(scale_fan_gain_settings(fan_table ->usFanGainVrMvdd)) ? (__uint16_t)(((__uint16_t)(scale_fan_gain_settings (fan_table->usFanGainVrMvdd)) & 0xffU) << 8 | (( __uint16_t)(scale_fan_gain_settings(fan_table->usFanGainVrMvdd )) & 0xff00U) >> 8) : __swap16md(scale_fan_gain_settings (fan_table->usFanGainVrMvdd))) | |||
542 | scale_fan_gain_settings(fan_table->usFanGainVrMvdd))(__uint16_t)(__builtin_constant_p(scale_fan_gain_settings(fan_table ->usFanGainVrMvdd)) ? (__uint16_t)(((__uint16_t)(scale_fan_gain_settings (fan_table->usFanGainVrMvdd)) & 0xffU) << 8 | (( __uint16_t)(scale_fan_gain_settings(fan_table->usFanGainVrMvdd )) & 0xff00U) >> 8) : __swap16md(scale_fan_gain_settings (fan_table->usFanGainVrMvdd))); | |||
543 | dpm_table->FanGainPlx = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(scale_fan_gain_settings(fan_table ->usFanGainPlx)) ? (__uint16_t)(((__uint16_t)(scale_fan_gain_settings (fan_table->usFanGainPlx)) & 0xffU) << 8 | ((__uint16_t )(scale_fan_gain_settings(fan_table->usFanGainPlx)) & 0xff00U ) >> 8) : __swap16md(scale_fan_gain_settings(fan_table-> usFanGainPlx))) | |||
544 | scale_fan_gain_settings(fan_table->usFanGainPlx))(__uint16_t)(__builtin_constant_p(scale_fan_gain_settings(fan_table ->usFanGainPlx)) ? (__uint16_t)(((__uint16_t)(scale_fan_gain_settings (fan_table->usFanGainPlx)) & 0xffU) << 8 | ((__uint16_t )(scale_fan_gain_settings(fan_table->usFanGainPlx)) & 0xff00U ) >> 8) : __swap16md(scale_fan_gain_settings(fan_table-> usFanGainPlx))); | |||
545 | dpm_table->FanGainHbm = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(scale_fan_gain_settings(fan_table ->usFanGainHbm)) ? (__uint16_t)(((__uint16_t)(scale_fan_gain_settings (fan_table->usFanGainHbm)) & 0xffU) << 8 | ((__uint16_t )(scale_fan_gain_settings(fan_table->usFanGainHbm)) & 0xff00U ) >> 8) : __swap16md(scale_fan_gain_settings(fan_table-> usFanGainHbm))) | |||
546 | scale_fan_gain_settings(fan_table->usFanGainHbm))(__uint16_t)(__builtin_constant_p(scale_fan_gain_settings(fan_table ->usFanGainHbm)) ? (__uint16_t)(((__uint16_t)(scale_fan_gain_settings (fan_table->usFanGainHbm)) & 0xffU) << 8 | ((__uint16_t )(scale_fan_gain_settings(fan_table->usFanGainHbm)) & 0xff00U ) >> 8) : __swap16md(scale_fan_gain_settings(fan_table-> usFanGainHbm))); | |||
547 | ||||
548 | dpm_table->Liquid1_I2C_address = cac_dtp_table->ucLiquid1_I2C_address; | |||
549 | dpm_table->Liquid2_I2C_address = cac_dtp_table->ucLiquid2_I2C_address; | |||
550 | dpm_table->Vr_I2C_address = cac_dtp_table->ucVr_I2C_address; | |||
551 | dpm_table->Plx_I2C_address = cac_dtp_table->ucPlx_I2C_address; | |||
552 | ||||
553 | get_scl_sda_value(cac_dtp_table->ucLiquid_I2C_Line, &uc_scl, &uc_sda); | |||
554 | dpm_table->Liquid_I2C_LineSCL = uc_scl; | |||
555 | dpm_table->Liquid_I2C_LineSDA = uc_sda; | |||
556 | ||||
557 | get_scl_sda_value(cac_dtp_table->ucVr_I2C_Line, &uc_scl, &uc_sda); | |||
558 | dpm_table->Vr_I2C_LineSCL = uc_scl; | |||
559 | dpm_table->Vr_I2C_LineSDA = uc_sda; | |||
560 | ||||
561 | get_scl_sda_value(cac_dtp_table->ucPlx_I2C_Line, &uc_scl, &uc_sda); | |||
562 | dpm_table->Plx_I2C_LineSCL = uc_scl; | |||
563 | dpm_table->Plx_I2C_LineSDA = uc_sda; | |||
564 | ||||
565 | return 0; | |||
566 | } | |||
567 | ||||
568 | ||||
569 | static int fiji_populate_svi_load_line(struct pp_hwmgr *hwmgr) | |||
570 | { | |||
571 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); | |||
572 | const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults; | |||
573 | ||||
574 | smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn; | |||
575 | smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC; | |||
576 | smu_data->power_tune_table.SviLoadLineTrimVddC = 3; | |||
577 | smu_data->power_tune_table.SviLoadLineOffsetVddC = 0; | |||
578 | ||||
579 | return 0; | |||
580 | } | |||
581 | ||||
582 | ||||
583 | static int fiji_populate_tdc_limit(struct pp_hwmgr *hwmgr) | |||
584 | { | |||
585 | uint16_t tdc_limit; | |||
586 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); | |||
587 | struct phm_ppt_v1_information *table_info = | |||
588 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | |||
589 | const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults; | |||
590 | ||||
591 | /* TDC number of fraction bits are changed from 8 to 7 | |||
592 | * for Fiji as requested by SMC team | |||
593 | */ | |||
594 | tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128); | |||
595 | smu_data->power_tune_table.TDC_VDDC_PkgLimit = | |||
596 | CONVERT_FROM_HOST_TO_SMC_US(tdc_limit)((tdc_limit) = (__uint16_t)(__builtin_constant_p(tdc_limit) ? (__uint16_t)(((__uint16_t)(tdc_limit) & 0xffU) << 8 | ((__uint16_t)(tdc_limit) & 0xff00U) >> 8) : __swap16md (tdc_limit))); | |||
597 | smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc = | |||
598 | defaults->TDC_VDDC_ThrottleReleaseLimitPerc; | |||
599 | smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt; | |||
600 | ||||
601 | return 0; | |||
602 | } | |||
603 | ||||
604 | static int fiji_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset) | |||
605 | { | |||
606 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); | |||
607 | const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults; | |||
608 | uint32_t temp; | |||
609 | ||||
610 | if (smu7_read_smc_sram_dword(hwmgr, | |||
611 | fuse_table_offset + | |||
612 | offsetof(SMU73_Discrete_PmFuses, TdcWaterfallCtl)__builtin_offsetof(SMU73_Discrete_PmFuses, TdcWaterfallCtl), | |||
613 | (uint32_t *)&temp, SMC_RAM_END0x40000)) | |||
614 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!" ); return -22; } } while (0) | |||
615 | "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!" ); return -22; } } while (0) | |||
616 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!" ); return -22; } } while (0); | |||
617 | else { | |||
618 | smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl; | |||
619 | smu_data->power_tune_table.LPMLTemperatureMin = | |||
620 | (uint8_t)((temp >> 16) & 0xff); | |||
621 | smu_data->power_tune_table.LPMLTemperatureMax = | |||
622 | (uint8_t)((temp >> 8) & 0xff); | |||
623 | smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff); | |||
624 | } | |||
625 | return 0; | |||
626 | } | |||
627 | ||||
628 | static int fiji_populate_temperature_scaler(struct pp_hwmgr *hwmgr) | |||
629 | { | |||
630 | int i; | |||
631 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); | |||
632 | ||||
633 | /* Currently not used. Set all to zero. */ | |||
634 | for (i = 0; i < 16; i++) | |||
635 | smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0; | |||
636 | ||||
637 | return 0; | |||
638 | } | |||
639 | ||||
640 | static int fiji_populate_fuzzy_fan(struct pp_hwmgr *hwmgr) | |||
641 | { | |||
642 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); | |||
643 | ||||
644 | if ((hwmgr->thermal_controller.advanceFanControlParameters. | |||
645 | usFanOutputSensitivity & (1 << 15)) || | |||
646 | 0 == hwmgr->thermal_controller.advanceFanControlParameters. | |||
647 | usFanOutputSensitivity) | |||
648 | hwmgr->thermal_controller.advanceFanControlParameters. | |||
649 | usFanOutputSensitivity = hwmgr->thermal_controller. | |||
650 | advanceFanControlParameters.usDefaultFanOutputSensitivity; | |||
651 | ||||
652 | smu_data->power_tune_table.FuzzyFan_PwmSetDelta = | |||
653 | PP_HOST_TO_SMC_US(hwmgr->thermal_controller.(__uint16_t)(__builtin_constant_p(hwmgr->thermal_controller . advanceFanControlParameters.usFanOutputSensitivity) ? (__uint16_t )(((__uint16_t)(hwmgr->thermal_controller. advanceFanControlParameters .usFanOutputSensitivity) & 0xffU) << 8 | ((__uint16_t )(hwmgr->thermal_controller. advanceFanControlParameters.usFanOutputSensitivity ) & 0xff00U) >> 8) : __swap16md(hwmgr->thermal_controller . advanceFanControlParameters.usFanOutputSensitivity)) | |||
654 | advanceFanControlParameters.usFanOutputSensitivity)(__uint16_t)(__builtin_constant_p(hwmgr->thermal_controller . advanceFanControlParameters.usFanOutputSensitivity) ? (__uint16_t )(((__uint16_t)(hwmgr->thermal_controller. advanceFanControlParameters .usFanOutputSensitivity) & 0xffU) << 8 | ((__uint16_t )(hwmgr->thermal_controller. advanceFanControlParameters.usFanOutputSensitivity ) & 0xff00U) >> 8) : __swap16md(hwmgr->thermal_controller . advanceFanControlParameters.usFanOutputSensitivity)); | |||
655 | return 0; | |||
656 | } | |||
657 | ||||
658 | static int fiji_populate_gnb_lpml(struct pp_hwmgr *hwmgr) | |||
659 | { | |||
660 | int i; | |||
661 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); | |||
662 | ||||
663 | /* Currently not used. Set all to zero. */ | |||
664 | for (i = 0; i < 16; i++) | |||
665 | smu_data->power_tune_table.GnbLPML[i] = 0; | |||
666 | ||||
667 | return 0; | |||
668 | } | |||
669 | ||||
670 | static int fiji_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr) | |||
671 | { | |||
672 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); | |||
673 | struct phm_ppt_v1_information *table_info = | |||
674 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | |||
675 | uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd; | |||
676 | uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd; | |||
677 | struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table; | |||
678 | ||||
679 | HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256); | |||
680 | LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256); | |||
681 | ||||
682 | smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd = | |||
683 | CONVERT_FROM_HOST_TO_SMC_US(HiSidd)((HiSidd) = (__uint16_t)(__builtin_constant_p(HiSidd) ? (__uint16_t )(((__uint16_t)(HiSidd) & 0xffU) << 8 | ((__uint16_t )(HiSidd) & 0xff00U) >> 8) : __swap16md(HiSidd))); | |||
684 | smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd = | |||
685 | CONVERT_FROM_HOST_TO_SMC_US(LoSidd)((LoSidd) = (__uint16_t)(__builtin_constant_p(LoSidd) ? (__uint16_t )(((__uint16_t)(LoSidd) & 0xffU) << 8 | ((__uint16_t )(LoSidd) & 0xff00U) >> 8) : __swap16md(LoSidd))); | |||
686 | ||||
687 | return 0; | |||
688 | } | |||
689 | ||||
690 | static int fiji_populate_pm_fuses(struct pp_hwmgr *hwmgr) | |||
691 | { | |||
692 | uint32_t pm_fuse_table_offset; | |||
693 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); | |||
694 | ||||
695 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | |||
696 | PHM_PlatformCaps_PowerContainment)) { | |||
697 | if (smu7_read_smc_sram_dword(hwmgr, | |||
698 | SMU7_FIRMWARE_HEADER_LOCATION0x20000 + | |||
699 | offsetof(SMU73_Firmware_Header, PmFuseTable)__builtin_offsetof(SMU73_Firmware_Header, PmFuseTable), | |||
700 | &pm_fuse_table_offset, SMC_RAM_END0x40000)) | |||
701 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to get pm_fuse_table_offset Failed!" ); return -22; } } while (0) | |||
702 | "Attempt to get pm_fuse_table_offset Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to get pm_fuse_table_offset Failed!" ); return -22; } } while (0) | |||
703 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to get pm_fuse_table_offset Failed!" ); return -22; } } while (0); | |||
704 | ||||
705 | /* DW6 */ | |||
706 | if (fiji_populate_svi_load_line(hwmgr)) | |||
707 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate SviLoadLine Failed!" ); return -22; } } while (0) | |||
708 | "Attempt to populate SviLoadLine Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate SviLoadLine Failed!" ); return -22; } } while (0) | |||
709 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate SviLoadLine Failed!" ); return -22; } } while (0); | |||
710 | /* DW7 */ | |||
711 | if (fiji_populate_tdc_limit(hwmgr)) | |||
712 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate TDCLimit Failed!" ); return -22; } } while (0) | |||
713 | "Attempt to populate TDCLimit Failed!", return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate TDCLimit Failed!" ); return -22; } } while (0); | |||
714 | /* DW8 */ | |||
715 | if (fiji_populate_dw8(hwmgr, pm_fuse_table_offset)) | |||
716 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate TdcWaterfallCtl, " "LPMLTemperature Min and Max Failed!"); return -22; } } while (0) | |||
717 | "Attempt to populate TdcWaterfallCtl, "do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate TdcWaterfallCtl, " "LPMLTemperature Min and Max Failed!"); return -22; } } while (0) | |||
718 | "LPMLTemperature Min and Max Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate TdcWaterfallCtl, " "LPMLTemperature Min and Max Failed!"); return -22; } } while (0) | |||
719 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate TdcWaterfallCtl, " "LPMLTemperature Min and Max Failed!"); return -22; } } while (0); | |||
720 | ||||
721 | /* DW9-DW12 */ | |||
722 | if (0 != fiji_populate_temperature_scaler(hwmgr)) | |||
723 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate LPMLTemperatureScaler Failed!" ); return -22; } } while (0) | |||
724 | "Attempt to populate LPMLTemperatureScaler Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate LPMLTemperatureScaler Failed!" ); return -22; } } while (0) | |||
725 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate LPMLTemperatureScaler Failed!" ); return -22; } } while (0); | |||
726 | ||||
727 | /* DW13-DW14 */ | |||
728 | if (fiji_populate_fuzzy_fan(hwmgr)) | |||
729 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate Fuzzy Fan Control parameters Failed!" ); return -22; } } while (0) | |||
730 | "Attempt to populate Fuzzy Fan Control parameters Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate Fuzzy Fan Control parameters Failed!" ); return -22; } } while (0) | |||
731 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate Fuzzy Fan Control parameters Failed!" ); return -22; } } while (0); | |||
732 | ||||
733 | /* DW15-DW18 */ | |||
734 | if (fiji_populate_gnb_lpml(hwmgr)) | |||
735 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate GnbLPML Failed!" ); return -22; } } while (0) | |||
736 | "Attempt to populate GnbLPML Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate GnbLPML Failed!" ); return -22; } } while (0) | |||
737 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate GnbLPML Failed!" ); return -22; } } while (0); | |||
738 | ||||
739 | /* DW20 */ | |||
740 | if (fiji_populate_bapm_vddc_base_leakage_sidd(hwmgr)) | |||
741 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate BapmVddCBaseLeakage Hi and Lo " "Sidd Failed!"); return -22; } } while (0) | |||
742 | "Attempt to populate BapmVddCBaseLeakage Hi and Lo "do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate BapmVddCBaseLeakage Hi and Lo " "Sidd Failed!"); return -22; } } while (0) | |||
743 | "Sidd Failed!", return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate BapmVddCBaseLeakage Hi and Lo " "Sidd Failed!"); return -22; } } while (0); | |||
744 | ||||
745 | if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset, | |||
746 | (uint8_t *)&smu_data->power_tune_table, | |||
747 | sizeof(struct SMU73_Discrete_PmFuses), SMC_RAM_END0x40000)) | |||
748 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to download PmFuseTable Failed!" ); return -22; } } while (0) | |||
749 | "Attempt to download PmFuseTable Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to download PmFuseTable Failed!" ); return -22; } } while (0) | |||
750 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to download PmFuseTable Failed!" ); return -22; } } while (0); | |||
751 | } | |||
752 | return 0; | |||
753 | } | |||
754 | ||||
755 | static int fiji_populate_cac_table(struct pp_hwmgr *hwmgr, | |||
756 | struct SMU73_Discrete_DpmTable *table) | |||
757 | { | |||
758 | uint32_t count; | |||
759 | uint8_t index; | |||
760 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | |||
761 | struct phm_ppt_v1_information *table_info = | |||
762 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | |||
763 | struct phm_ppt_v1_voltage_lookup_table *lookup_table = | |||
764 | table_info->vddc_lookup_table; | |||
765 | /* tables is already swapped, so in order to use the value from it, | |||
766 | * we need to swap it back. | |||
767 | * We are populating vddc CAC data to BapmVddc table | |||
768 | * in split and merged mode | |||
769 | */ | |||
770 | ||||
771 | for (count = 0; count < lookup_table->count; count++) { | |||
772 | index = phm_get_voltage_index(lookup_table, | |||
773 | data->vddc_voltage_table.entries[count].value); | |||
774 | table->BapmVddcVidLoSidd[count] = | |||
775 | convert_to_vid(lookup_table->entries[index].us_cac_low); | |||
776 | table->BapmVddcVidHiSidd[count] = | |||
777 | convert_to_vid(lookup_table->entries[index].us_cac_high); | |||
778 | } | |||
779 | ||||
780 | return 0; | |||
781 | } | |||
782 | ||||
783 | static int fiji_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr, | |||
784 | struct SMU73_Discrete_DpmTable *table) | |||
785 | { | |||
786 | int result; | |||
787 | ||||
788 | result = fiji_populate_cac_table(hwmgr, table); | |||
789 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "can not populate CAC voltage tables to SMC" ); return -22; } } while (0) | |||
790 | "can not populate CAC voltage tables to SMC",do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "can not populate CAC voltage tables to SMC" ); return -22; } } while (0) | |||
791 | return -EINVAL)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "can not populate CAC voltage tables to SMC" ); return -22; } } while (0); | |||
792 | ||||
793 | return 0; | |||
794 | } | |||
795 | ||||
796 | static int fiji_populate_ulv_level(struct pp_hwmgr *hwmgr, | |||
797 | struct SMU73_Discrete_Ulv *state) | |||
798 | { | |||
799 | int result = 0; | |||
800 | ||||
801 | struct phm_ppt_v1_information *table_info = | |||
802 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | |||
803 | ||||
804 | state->CcPwrDynRm = 0; | |||
805 | state->CcPwrDynRm1 = 0; | |||
806 | ||||
807 | state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset; | |||
808 | state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset * | |||
809 | VOLTAGE_VID_OFFSET_SCALE2100 / VOLTAGE_VID_OFFSET_SCALE1625); | |||
810 | ||||
811 | state->VddcPhase = 1; | |||
812 | ||||
813 | if (!result) { | |||
814 | CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm)((state->CcPwrDynRm) = (__uint32_t)(__builtin_constant_p(state ->CcPwrDynRm) ? (__uint32_t)(((__uint32_t)(state->CcPwrDynRm ) & 0xff) << 24 | ((__uint32_t)(state->CcPwrDynRm ) & 0xff00) << 8 | ((__uint32_t)(state->CcPwrDynRm ) & 0xff0000) >> 8 | ((__uint32_t)(state->CcPwrDynRm ) & 0xff000000) >> 24) : __swap32md(state->CcPwrDynRm ))); | |||
815 | CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1)((state->CcPwrDynRm1) = (__uint32_t)(__builtin_constant_p( state->CcPwrDynRm1) ? (__uint32_t)(((__uint32_t)(state-> CcPwrDynRm1) & 0xff) << 24 | ((__uint32_t)(state-> CcPwrDynRm1) & 0xff00) << 8 | ((__uint32_t)(state-> CcPwrDynRm1) & 0xff0000) >> 8 | ((__uint32_t)(state ->CcPwrDynRm1) & 0xff000000) >> 24) : __swap32md (state->CcPwrDynRm1))); | |||
816 | CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset)((state->VddcOffset) = (__uint16_t)(__builtin_constant_p(state ->VddcOffset) ? (__uint16_t)(((__uint16_t)(state->VddcOffset ) & 0xffU) << 8 | ((__uint16_t)(state->VddcOffset ) & 0xff00U) >> 8) : __swap16md(state->VddcOffset ))); | |||
817 | } | |||
818 | return result; | |||
819 | } | |||
820 | ||||
821 | static int fiji_populate_ulv_state(struct pp_hwmgr *hwmgr, | |||
822 | struct SMU73_Discrete_DpmTable *table) | |||
823 | { | |||
824 | return fiji_populate_ulv_level(hwmgr, &table->Ulv); | |||
825 | } | |||
826 | ||||
827 | static int fiji_populate_smc_link_level(struct pp_hwmgr *hwmgr, | |||
828 | struct SMU73_Discrete_DpmTable *table) | |||
829 | { | |||
830 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | |||
831 | struct smu7_dpm_table *dpm_table = &data->dpm_table; | |||
832 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); | |||
833 | int i; | |||
834 | ||||
835 | /* Index (dpm_table->pcie_speed_table.count) | |||
836 | * is reserved for PCIE boot level. */ | |||
837 | for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) { | |||
838 | table->LinkLevel[i].PcieGenSpeed = | |||
839 | (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value; | |||
840 | table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width( | |||
841 | dpm_table->pcie_speed_table.dpm_levels[i].param1); | |||
842 | table->LinkLevel[i].EnabledForActivity = 1; | |||
843 | table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff); | |||
844 | table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5)(__uint32_t)(__builtin_constant_p(5) ? (__uint32_t)(((__uint32_t )(5) & 0xff) << 24 | ((__uint32_t)(5) & 0xff00) << 8 | ((__uint32_t)(5) & 0xff0000) >> 8 | ( (__uint32_t)(5) & 0xff000000) >> 24) : __swap32md(5 )); | |||
845 | table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30)(__uint32_t)(__builtin_constant_p(30) ? (__uint32_t)(((__uint32_t )(30) & 0xff) << 24 | ((__uint32_t)(30) & 0xff00 ) << 8 | ((__uint32_t)(30) & 0xff0000) >> 8 | ((__uint32_t)(30) & 0xff000000) >> 24) : __swap32md (30)); | |||
846 | } | |||
847 | ||||
848 | smu_data->smc_state_table.LinkLevelCount = | |||
849 | (uint8_t)dpm_table->pcie_speed_table.count; | |||
850 | data->dpm_level_enable_mask.pcie_dpm_enable_mask = | |||
851 | phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table); | |||
852 | ||||
853 | return 0; | |||
854 | } | |||
855 | ||||
856 | static int fiji_calculate_sclk_params(struct pp_hwmgr *hwmgr, | |||
857 | uint32_t clock, struct SMU73_Discrete_GraphicsLevel *sclk) | |||
858 | { | |||
859 | const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | |||
860 | struct pp_atomctrl_clock_dividers_vi dividers; | |||
861 | uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; | |||
862 | uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; | |||
863 | uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; | |||
864 | uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; | |||
865 | uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; | |||
866 | uint32_t ref_clock; | |||
867 | uint32_t ref_divider; | |||
868 | uint32_t fbdiv; | |||
869 | int result; | |||
870 | ||||
871 | /* get the engine clock dividers for this clock value */ | |||
872 | result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock, ÷rs); | |||
873 | ||||
874 | PP_ASSERT_WITH_CODE(result == 0,do { if (!(result == 0)) { printk("\0014" "amdgpu: " "%s\n", "Error retrieving Engine Clock dividers from VBIOS." ); return result; } } while (0) | |||
875 | "Error retrieving Engine Clock dividers from VBIOS.",do { if (!(result == 0)) { printk("\0014" "amdgpu: " "%s\n", "Error retrieving Engine Clock dividers from VBIOS." ); return result; } } while (0) | |||
876 | return result)do { if (!(result == 0)) { printk("\0014" "amdgpu: " "%s\n", "Error retrieving Engine Clock dividers from VBIOS." ); return result; } } while (0); | |||
877 | ||||
878 | /* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */ | |||
879 | ref_clock = atomctrl_get_reference_clock(hwmgr); | |||
880 | ref_divider = 1 + dividers.uc_pll_ref_div; | |||
881 | ||||
882 | /* low 14 bits is fraction and high 12 bits is divider */ | |||
883 | fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF; | |||
884 | ||||
885 | /* SPLL_FUNC_CNTL setup */ | |||
886 | spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,(((spll_func_cntl) & ~0x7e0) | (0x7e0 & ((dividers.uc_pll_ref_div ) << 0x5))) | |||
887 | SPLL_REF_DIV, dividers.uc_pll_ref_div)(((spll_func_cntl) & ~0x7e0) | (0x7e0 & ((dividers.uc_pll_ref_div ) << 0x5))); | |||
888 | spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,(((spll_func_cntl) & ~0x7f00000) | (0x7f00000 & ((dividers .uc_pll_post_div) << 0x14))) | |||
889 | SPLL_PDIV_A, dividers.uc_pll_post_div)(((spll_func_cntl) & ~0x7f00000) | (0x7f00000 & ((dividers .uc_pll_post_div) << 0x14))); | |||
890 | ||||
891 | /* SPLL_FUNC_CNTL_3 setup*/ | |||
892 | spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,(((spll_func_cntl_3) & ~0x3ffffff) | (0x3ffffff & ((fbdiv ) << 0x0))) | |||
893 | SPLL_FB_DIV, fbdiv)(((spll_func_cntl_3) & ~0x3ffffff) | (0x3ffffff & ((fbdiv ) << 0x0))); | |||
894 | ||||
895 | /* set to use fractional accumulation*/ | |||
896 | spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,(((spll_func_cntl_3) & ~0x10000000) | (0x10000000 & ( (1) << 0x1c))) | |||
897 | SPLL_DITHEN, 1)(((spll_func_cntl_3) & ~0x10000000) | (0x10000000 & ( (1) << 0x1c))); | |||
898 | ||||
899 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | |||
900 | PHM_PlatformCaps_EngineSpreadSpectrumSupport)) { | |||
901 | struct pp_atomctrl_internal_ss_info ssInfo; | |||
902 | ||||
903 | uint32_t vco_freq = clock * dividers.uc_pll_post_div; | |||
904 | if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr, | |||
905 | vco_freq, &ssInfo)) { | |||
906 | /* | |||
907 | * ss_info.speed_spectrum_percentage -- in unit of 0.01% | |||
908 | * ss_info.speed_spectrum_rate -- in unit of khz | |||
909 | * | |||
910 | * clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 | |||
911 | */ | |||
912 | uint32_t clk_s = ref_clock * 5 / | |||
913 | (ref_divider * ssInfo.speed_spectrum_rate); | |||
914 | /* clkv = 2 * D * fbdiv / NS */ | |||
915 | uint32_t clk_v = 4 * ssInfo.speed_spectrum_percentage * | |||
916 | fbdiv / (clk_s * 10000); | |||
917 | ||||
918 | cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,(((cg_spll_spread_spectrum) & ~0xfff0) | (0xfff0 & (( clk_s) << 0x4))) | |||
919 | CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s)(((cg_spll_spread_spectrum) & ~0xfff0) | (0xfff0 & (( clk_s) << 0x4))); | |||
920 | cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,(((cg_spll_spread_spectrum) & ~0x1) | (0x1 & ((1) << 0x0))) | |||
921 | CG_SPLL_SPREAD_SPECTRUM, SSEN, 1)(((cg_spll_spread_spectrum) & ~0x1) | (0x1 & ((1) << 0x0))); | |||
922 | cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,(((cg_spll_spread_spectrum_2) & ~0x3ffffff) | (0x3ffffff & ((clk_v) << 0x0))) | |||
923 | CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v)(((cg_spll_spread_spectrum_2) & ~0x3ffffff) | (0x3ffffff & ((clk_v) << 0x0))); | |||
924 | } | |||
925 | } | |||
926 | ||||
927 | sclk->SclkFrequency = clock; | |||
928 | sclk->CgSpllFuncCntl3 = spll_func_cntl_3; | |||
929 | sclk->CgSpllFuncCntl4 = spll_func_cntl_4; | |||
930 | sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum; | |||
931 | sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2; | |||
932 | sclk->SclkDid = (uint8_t)dividers.pll_post_divider; | |||
933 | ||||
934 | return 0; | |||
935 | } | |||
936 | ||||
937 | static int fiji_populate_single_graphic_level(struct pp_hwmgr *hwmgr, | |||
938 | uint32_t clock, struct SMU73_Discrete_GraphicsLevel *level) | |||
939 | { | |||
940 | int result; | |||
941 | /* PP_Clocks minClocks; */ | |||
942 | uint32_t mvdd; | |||
943 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | |||
944 | struct phm_ppt_v1_information *table_info = | |||
945 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | |||
946 | phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL((void *)0); | |||
947 | ||||
948 | result = fiji_calculate_sclk_params(hwmgr, clock, level); | |||
949 | ||||
950 | if (hwmgr->od_enabled) | |||
951 | vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_sclk; | |||
952 | else | |||
953 | vdd_dep_table = table_info->vdd_dep_on_sclk; | |||
954 | ||||
955 | /* populate graphics levels */ | |||
956 | result = fiji_get_dependency_volt_by_clk(hwmgr, | |||
957 | vdd_dep_table, clock, | |||
958 | (uint32_t *)(&level->MinVoltage), &mvdd); | |||
959 | PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find VDDC voltage value for " "VDDC engine clock dependency table" ); return result; } } while (0) | |||
960 | "can not find VDDC voltage value for "do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find VDDC voltage value for " "VDDC engine clock dependency table" ); return result; } } while (0) | |||
961 | "VDDC engine clock dependency table",do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find VDDC voltage value for " "VDDC engine clock dependency table" ); return result; } } while (0) | |||
962 | return result)do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find VDDC voltage value for " "VDDC engine clock dependency table" ); return result; } } while (0); | |||
963 | ||||
964 | level->SclkFrequency = clock; | |||
965 | level->ActivityLevel = data->current_profile_setting.sclk_activity; | |||
966 | level->CcPwrDynRm = 0; | |||
967 | level->CcPwrDynRm1 = 0; | |||
968 | level->EnabledForActivity = 0; | |||
969 | level->EnabledForThrottle = 1; | |||
970 | level->UpHyst = data->current_profile_setting.sclk_up_hyst; | |||
971 | level->DownHyst = data->current_profile_setting.sclk_down_hyst; | |||
972 | level->VoltageDownHyst = 0; | |||
973 | level->PowerThrottle = 0; | |||
974 | ||||
975 | data->display_timing.min_clock_in_sr = hwmgr->display_config->min_core_set_clock_in_sr; | |||
976 | ||||
977 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) | |||
978 | level->DeepSleepDivId = smu7_get_sleep_divider_id_from_clock(clock, | |||
979 | hwmgr->display_config->min_core_set_clock_in_sr); | |||
980 | ||||
981 | ||||
982 | /* Default to slow, highest DPM level will be | |||
983 | * set to PPSMC_DISPLAY_WATERMARK_LOW later. | |||
984 | */ | |||
985 | level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW0; | |||
986 | ||||
987 | CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage)((level->MinVoltage) = (__uint32_t)(__builtin_constant_p(level ->MinVoltage) ? (__uint32_t)(((__uint32_t)(level->MinVoltage ) & 0xff) << 24 | ((__uint32_t)(level->MinVoltage ) & 0xff00) << 8 | ((__uint32_t)(level->MinVoltage ) & 0xff0000) >> 8 | ((__uint32_t)(level->MinVoltage ) & 0xff000000) >> 24) : __swap32md(level->MinVoltage ))); | |||
988 | CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency)((level->SclkFrequency) = (__uint32_t)(__builtin_constant_p (level->SclkFrequency) ? (__uint32_t)(((__uint32_t)(level-> SclkFrequency) & 0xff) << 24 | ((__uint32_t)(level-> SclkFrequency) & 0xff00) << 8 | ((__uint32_t)(level ->SclkFrequency) & 0xff0000) >> 8 | ((__uint32_t )(level->SclkFrequency) & 0xff000000) >> 24) : __swap32md (level->SclkFrequency))); | |||
989 | CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel)((level->ActivityLevel) = (__uint16_t)(__builtin_constant_p (level->ActivityLevel) ? (__uint16_t)(((__uint16_t)(level-> ActivityLevel) & 0xffU) << 8 | ((__uint16_t)(level-> ActivityLevel) & 0xff00U) >> 8) : __swap16md(level-> ActivityLevel))); | |||
990 | CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3)((level->CgSpllFuncCntl3) = (__uint32_t)(__builtin_constant_p (level->CgSpllFuncCntl3) ? (__uint32_t)(((__uint32_t)(level ->CgSpllFuncCntl3) & 0xff) << 24 | ((__uint32_t) (level->CgSpllFuncCntl3) & 0xff00) << 8 | ((__uint32_t )(level->CgSpllFuncCntl3) & 0xff0000) >> 8 | ((__uint32_t )(level->CgSpllFuncCntl3) & 0xff000000) >> 24) : __swap32md(level->CgSpllFuncCntl3))); | |||
991 | CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4)((level->CgSpllFuncCntl4) = (__uint32_t)(__builtin_constant_p (level->CgSpllFuncCntl4) ? (__uint32_t)(((__uint32_t)(level ->CgSpllFuncCntl4) & 0xff) << 24 | ((__uint32_t) (level->CgSpllFuncCntl4) & 0xff00) << 8 | ((__uint32_t )(level->CgSpllFuncCntl4) & 0xff0000) >> 8 | ((__uint32_t )(level->CgSpllFuncCntl4) & 0xff000000) >> 24) : __swap32md(level->CgSpllFuncCntl4))); | |||
992 | CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum)((level->SpllSpreadSpectrum) = (__uint32_t)(__builtin_constant_p (level->SpllSpreadSpectrum) ? (__uint32_t)(((__uint32_t)(level ->SpllSpreadSpectrum) & 0xff) << 24 | ((__uint32_t )(level->SpllSpreadSpectrum) & 0xff00) << 8 | (( __uint32_t)(level->SpllSpreadSpectrum) & 0xff0000) >> 8 | ((__uint32_t)(level->SpllSpreadSpectrum) & 0xff000000 ) >> 24) : __swap32md(level->SpllSpreadSpectrum))); | |||
993 | CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2)((level->SpllSpreadSpectrum2) = (__uint32_t)(__builtin_constant_p (level->SpllSpreadSpectrum2) ? (__uint32_t)(((__uint32_t)( level->SpllSpreadSpectrum2) & 0xff) << 24 | ((__uint32_t )(level->SpllSpreadSpectrum2) & 0xff00) << 8 | ( (__uint32_t)(level->SpllSpreadSpectrum2) & 0xff0000) >> 8 | ((__uint32_t)(level->SpllSpreadSpectrum2) & 0xff000000 ) >> 24) : __swap32md(level->SpllSpreadSpectrum2))); | |||
994 | CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm)((level->CcPwrDynRm) = (__uint32_t)(__builtin_constant_p(level ->CcPwrDynRm) ? (__uint32_t)(((__uint32_t)(level->CcPwrDynRm ) & 0xff) << 24 | ((__uint32_t)(level->CcPwrDynRm ) & 0xff00) << 8 | ((__uint32_t)(level->CcPwrDynRm ) & 0xff0000) >> 8 | ((__uint32_t)(level->CcPwrDynRm ) & 0xff000000) >> 24) : __swap32md(level->CcPwrDynRm ))); | |||
995 | CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1)((level->CcPwrDynRm1) = (__uint32_t)(__builtin_constant_p( level->CcPwrDynRm1) ? (__uint32_t)(((__uint32_t)(level-> CcPwrDynRm1) & 0xff) << 24 | ((__uint32_t)(level-> CcPwrDynRm1) & 0xff00) << 8 | ((__uint32_t)(level-> CcPwrDynRm1) & 0xff0000) >> 8 | ((__uint32_t)(level ->CcPwrDynRm1) & 0xff000000) >> 24) : __swap32md (level->CcPwrDynRm1))); | |||
996 | ||||
997 | return 0; | |||
998 | } | |||
999 | ||||
1000 | static int fiji_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) | |||
1001 | { | |||
1002 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | |||
1003 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); | |||
1004 | ||||
1005 | struct smu7_dpm_table *dpm_table = &data->dpm_table; | |||
1006 | struct phm_ppt_v1_information *table_info = | |||
1007 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | |||
1008 | struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table; | |||
1009 | uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count; | |||
1010 | int result = 0; | |||
1011 | uint32_t array = smu_data->smu7_data.dpm_table_start + | |||
1012 | offsetof(SMU73_Discrete_DpmTable, GraphicsLevel)__builtin_offsetof(SMU73_Discrete_DpmTable, GraphicsLevel); | |||
1013 | uint32_t array_size = sizeof(struct SMU73_Discrete_GraphicsLevel) * | |||
1014 | SMU73_MAX_LEVELS_GRAPHICS8; | |||
1015 | struct SMU73_Discrete_GraphicsLevel *levels = | |||
1016 | smu_data->smc_state_table.GraphicsLevel; | |||
1017 | uint32_t i, max_entry; | |||
1018 | uint8_t hightest_pcie_level_enabled = 0, | |||
1019 | lowest_pcie_level_enabled = 0, | |||
1020 | mid_pcie_level_enabled = 0, | |||
1021 | count = 0; | |||
1022 | ||||
1023 | for (i = 0; i < dpm_table->sclk_table.count; i++) { | |||
1024 | result = fiji_populate_single_graphic_level(hwmgr, | |||
1025 | dpm_table->sclk_table.dpm_levels[i].value, | |||
1026 | &levels[i]); | |||
1027 | if (result) | |||
1028 | return result; | |||
1029 | ||||
1030 | /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */ | |||
1031 | if (i > 1) | |||
1032 | levels[i].DeepSleepDivId = 0; | |||
1033 | } | |||
1034 | ||||
1035 | /* Only enable level 0 for now.*/ | |||
1036 | levels[0].EnabledForActivity = 1; | |||
1037 | ||||
1038 | /* set highest level watermark to high */ | |||
1039 | levels[dpm_table->sclk_table.count - 1].DisplayWatermark = | |||
1040 | PPSMC_DISPLAY_WATERMARK_HIGH1; | |||
1041 | ||||
1042 | smu_data->smc_state_table.GraphicsDpmLevelCount = | |||
1043 | (uint8_t)dpm_table->sclk_table.count; | |||
1044 | data->dpm_level_enable_mask.sclk_dpm_enable_mask = | |||
1045 | phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table); | |||
1046 | ||||
1047 | if (pcie_table != NULL((void *)0)) { | |||
1048 | PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),do { if (!((1 <= pcie_entry_cnt))) { printk("\0014" "amdgpu: " "%s\n", "There must be 1 or more PCIE levels defined in PPTable." ); return -22; } } while (0) | |||
1049 | "There must be 1 or more PCIE levels defined in PPTable.",do { if (!((1 <= pcie_entry_cnt))) { printk("\0014" "amdgpu: " "%s\n", "There must be 1 or more PCIE levels defined in PPTable." ); return -22; } } while (0) | |||
1050 | return -EINVAL)do { if (!((1 <= pcie_entry_cnt))) { printk("\0014" "amdgpu: " "%s\n", "There must be 1 or more PCIE levels defined in PPTable." ); return -22; } } while (0); | |||
1051 | max_entry = pcie_entry_cnt - 1; | |||
1052 | for (i = 0; i < dpm_table->sclk_table.count; i++) | |||
1053 | levels[i].pcieDpmLevel = | |||
1054 | (uint8_t) ((i < max_entry) ? i : max_entry); | |||
1055 | } else { | |||
1056 | while (data->dpm_level_enable_mask.pcie_dpm_enable_mask && | |||
1057 | ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & | |||
1058 | (1 << (hightest_pcie_level_enabled + 1))) != 0)) | |||
1059 | hightest_pcie_level_enabled++; | |||
1060 | ||||
1061 | while (data->dpm_level_enable_mask.pcie_dpm_enable_mask && | |||
1062 | ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & | |||
1063 | (1 << lowest_pcie_level_enabled)) == 0)) | |||
1064 | lowest_pcie_level_enabled++; | |||
1065 | ||||
1066 | while ((count < hightest_pcie_level_enabled) && | |||
1067 | ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & | |||
1068 | (1 << (lowest_pcie_level_enabled + 1 + count))) == 0)) | |||
1069 | count++; | |||
1070 | ||||
1071 | mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) < | |||
1072 | hightest_pcie_level_enabled ? | |||
1073 | (lowest_pcie_level_enabled + 1 + count) : | |||
1074 | hightest_pcie_level_enabled; | |||
1075 | ||||
1076 | /* set pcieDpmLevel to hightest_pcie_level_enabled */ | |||
1077 | for (i = 2; i < dpm_table->sclk_table.count; i++) | |||
1078 | levels[i].pcieDpmLevel = hightest_pcie_level_enabled; | |||
1079 | ||||
1080 | /* set pcieDpmLevel to lowest_pcie_level_enabled */ | |||
1081 | levels[0].pcieDpmLevel = lowest_pcie_level_enabled; | |||
1082 | ||||
1083 | /* set pcieDpmLevel to mid_pcie_level_enabled */ | |||
1084 | levels[1].pcieDpmLevel = mid_pcie_level_enabled; | |||
1085 | } | |||
1086 | /* level count will send to smc once at init smc table and never change */ | |||
1087 | result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels, | |||
1088 | (uint32_t)array_size, SMC_RAM_END0x40000); | |||
1089 | ||||
1090 | return result; | |||
1091 | } | |||
1092 | ||||
1093 | ||||
1094 | /** | |||
1095 | * MCLK Frequency Ratio | |||
1096 | * SEQ_CG_RESP Bit[31:24] - 0x0 | |||
1097 | * Bit[27:24] \96 DDR3 Frequency ratio | |||
1098 | * 0x0 <= 100MHz, 450 < 0x8 <= 500MHz | |||
1099 | * 100 < 0x1 <= 150MHz, 500 < 0x9 <= 550MHz | |||
1100 | * 150 < 0x2 <= 200MHz, 550 < 0xA <= 600MHz | |||
1101 | * 200 < 0x3 <= 250MHz, 600 < 0xB <= 650MHz | |||
1102 | * 250 < 0x4 <= 300MHz, 650 < 0xC <= 700MHz | |||
1103 | * 300 < 0x5 <= 350MHz, 700 < 0xD <= 750MHz | |||
1104 | * 350 < 0x6 <= 400MHz, 750 < 0xE <= 800MHz | |||
1105 | * 400 < 0x7 <= 450MHz, 800 < 0xF | |||
1106 | */ | |||
1107 | static uint8_t fiji_get_mclk_frequency_ratio(uint32_t mem_clock) | |||
1108 | { | |||
1109 | if (mem_clock <= 10000) | |||
1110 | return 0x0; | |||
1111 | if (mem_clock <= 15000) | |||
1112 | return 0x1; | |||
1113 | if (mem_clock <= 20000) | |||
1114 | return 0x2; | |||
1115 | if (mem_clock <= 25000) | |||
1116 | return 0x3; | |||
1117 | if (mem_clock <= 30000) | |||
1118 | return 0x4; | |||
1119 | if (mem_clock <= 35000) | |||
1120 | return 0x5; | |||
1121 | if (mem_clock <= 40000) | |||
1122 | return 0x6; | |||
1123 | if (mem_clock <= 45000) | |||
1124 | return 0x7; | |||
1125 | if (mem_clock <= 50000) | |||
1126 | return 0x8; | |||
1127 | if (mem_clock <= 55000) | |||
1128 | return 0x9; | |||
1129 | if (mem_clock <= 60000) | |||
1130 | return 0xa; | |||
1131 | if (mem_clock <= 65000) | |||
1132 | return 0xb; | |||
1133 | if (mem_clock <= 70000) | |||
1134 | return 0xc; | |||
1135 | if (mem_clock <= 75000) | |||
1136 | return 0xd; | |||
1137 | if (mem_clock <= 80000) | |||
1138 | return 0xe; | |||
1139 | /* mem_clock > 800MHz */ | |||
1140 | return 0xf; | |||
1141 | } | |||
1142 | ||||
1143 | static int fiji_calculate_mclk_params(struct pp_hwmgr *hwmgr, | |||
1144 | uint32_t clock, struct SMU73_Discrete_MemoryLevel *mclk) | |||
1145 | { | |||
1146 | struct pp_atomctrl_memory_clock_param mem_param; | |||
1147 | int result; | |||
1148 | ||||
1149 | result = atomctrl_get_memory_pll_dividers_vi(hwmgr, clock, &mem_param); | |||
1150 | PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "Failed to get Memory PLL Dividers."); ; } } while (0) | |||
1151 | "Failed to get Memory PLL Dividers.",do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "Failed to get Memory PLL Dividers."); ; } } while (0) | |||
1152 | )do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "Failed to get Memory PLL Dividers."); ; } } while (0); | |||
1153 | ||||
1154 | /* Save the result data to outpupt memory level structure */ | |||
1155 | mclk->MclkFrequency = clock; | |||
1156 | mclk->MclkDivider = (uint8_t)mem_param.mpll_post_divider; | |||
1157 | mclk->FreqRange = fiji_get_mclk_frequency_ratio(clock); | |||
1158 | ||||
1159 | return result; | |||
1160 | } | |||
1161 | ||||
1162 | static int fiji_populate_single_memory_level(struct pp_hwmgr *hwmgr, | |||
1163 | uint32_t clock, struct SMU73_Discrete_MemoryLevel *mem_level) | |||
1164 | { | |||
1165 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | |||
1166 | struct phm_ppt_v1_information *table_info = | |||
1167 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | |||
1168 | int result = 0; | |||
1169 | uint32_t mclk_stutter_mode_threshold = 60000; | |||
1170 | phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL((void *)0); | |||
1171 | ||||
1172 | if (hwmgr->od_enabled) | |||
1173 | vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_mclk; | |||
1174 | else | |||
1175 | vdd_dep_table = table_info->vdd_dep_on_mclk; | |||
1176 | ||||
1177 | if (vdd_dep_table) { | |||
1178 | result = fiji_get_dependency_volt_by_clk(hwmgr, | |||
1179 | vdd_dep_table, clock, | |||
1180 | (uint32_t *)(&mem_level->MinVoltage), &mem_level->MinMvdd); | |||
1181 | PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find MinVddc voltage value from memory " "VDDC voltage dependency table" ); return result; } } while (0) | |||
1182 | "can not find MinVddc voltage value from memory "do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find MinVddc voltage value from memory " "VDDC voltage dependency table" ); return result; } } while (0) | |||
1183 | "VDDC voltage dependency table", return result)do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find MinVddc voltage value from memory " "VDDC voltage dependency table" ); return result; } } while (0); | |||
1184 | } | |||
1185 | ||||
1186 | mem_level->EnabledForThrottle = 1; | |||
1187 | mem_level->EnabledForActivity = 0; | |||
1188 | mem_level->UpHyst = data->current_profile_setting.mclk_up_hyst; | |||
| ||||
1189 | mem_level->DownHyst = data->current_profile_setting.mclk_down_hyst; | |||
1190 | mem_level->VoltageDownHyst = 0; | |||
1191 | mem_level->ActivityLevel = data->current_profile_setting.mclk_activity; | |||
1192 | mem_level->StutterEnable = false0; | |||
1193 | ||||
1194 | mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW0; | |||
1195 | ||||
1196 | /* enable stutter mode if all the follow condition applied | |||
1197 | * PECI_GetNumberOfActiveDisplays(hwmgr->pPECI, | |||
1198 | * &(data->DisplayTiming.numExistingDisplays)); | |||
1199 | */ | |||
1200 | data->display_timing.num_existing_displays = hwmgr->display_config->num_display; | |||
1201 | data->display_timing.vrefresh = hwmgr->display_config->vrefresh; | |||
1202 | ||||
1203 | if (mclk_stutter_mode_threshold
| |||
1204 | (clock <= mclk_stutter_mode_threshold) && | |||
1205 | (!data->is_uvd_enabled) && | |||
1206 | (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,((((((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0x1b35))) & 0x1) >> 0x0) | |||
1207 | STUTTER_ENABLE)((((((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0x1b35))) & 0x1) >> 0x0) & 0x1)) | |||
1208 | mem_level->StutterEnable = true1; | |||
1209 | ||||
1210 | result = fiji_calculate_mclk_params(hwmgr, clock, mem_level); | |||
1211 | if (!result
| |||
1212 | CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd)((mem_level->MinMvdd) = (__uint32_t)(__builtin_constant_p( mem_level->MinMvdd) ? (__uint32_t)(((__uint32_t)(mem_level ->MinMvdd) & 0xff) << 24 | ((__uint32_t)(mem_level ->MinMvdd) & 0xff00) << 8 | ((__uint32_t)(mem_level ->MinMvdd) & 0xff0000) >> 8 | ((__uint32_t)(mem_level ->MinMvdd) & 0xff000000) >> 24) : __swap32md(mem_level ->MinMvdd))); | |||
1213 | CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency)((mem_level->MclkFrequency) = (__uint32_t)(__builtin_constant_p (mem_level->MclkFrequency) ? (__uint32_t)(((__uint32_t)(mem_level ->MclkFrequency) & 0xff) << 24 | ((__uint32_t)(mem_level ->MclkFrequency) & 0xff00) << 8 | ((__uint32_t)( mem_level->MclkFrequency) & 0xff0000) >> 8 | ((__uint32_t )(mem_level->MclkFrequency) & 0xff000000) >> 24) : __swap32md(mem_level->MclkFrequency))); | |||
1214 | CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel)((mem_level->ActivityLevel) = (__uint16_t)(__builtin_constant_p (mem_level->ActivityLevel) ? (__uint16_t)(((__uint16_t)(mem_level ->ActivityLevel) & 0xffU) << 8 | ((__uint16_t)(mem_level ->ActivityLevel) & 0xff00U) >> 8) : __swap16md(mem_level ->ActivityLevel))); | |||
1215 | CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage)((mem_level->MinVoltage) = (__uint32_t)(__builtin_constant_p (mem_level->MinVoltage) ? (__uint32_t)(((__uint32_t)(mem_level ->MinVoltage) & 0xff) << 24 | ((__uint32_t)(mem_level ->MinVoltage) & 0xff00) << 8 | ((__uint32_t)(mem_level ->MinVoltage) & 0xff0000) >> 8 | ((__uint32_t)(mem_level ->MinVoltage) & 0xff000000) >> 24) : __swap32md( mem_level->MinVoltage))); | |||
1216 | } | |||
1217 | return result; | |||
1218 | } | |||
1219 | ||||
1220 | static int fiji_populate_all_memory_levels(struct pp_hwmgr *hwmgr) | |||
1221 | { | |||
1222 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | |||
1223 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); | |||
1224 | struct smu7_dpm_table *dpm_table = &data->dpm_table; | |||
1225 | int result; | |||
1226 | /* populate MCLK dpm table to SMU7 */ | |||
1227 | uint32_t array = smu_data->smu7_data.dpm_table_start + | |||
1228 | offsetof(SMU73_Discrete_DpmTable, MemoryLevel)__builtin_offsetof(SMU73_Discrete_DpmTable, MemoryLevel); | |||
1229 | uint32_t array_size = sizeof(SMU73_Discrete_MemoryLevel) * | |||
1230 | SMU73_MAX_LEVELS_MEMORY4; | |||
1231 | struct SMU73_Discrete_MemoryLevel *levels = | |||
1232 | smu_data->smc_state_table.MemoryLevel; | |||
1233 | uint32_t i; | |||
1234 | ||||
1235 | for (i = 0; i < dpm_table->mclk_table.count; i++) { | |||
1236 | PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),do { if (!((0 != dpm_table->mclk_table.dpm_levels[i].value ))) { printk("\0014" "amdgpu: " "%s\n", "can not populate memory level as memory clock is zero" ); return -22; } } while (0) | |||
1237 | "can not populate memory level as memory clock is zero",do { if (!((0 != dpm_table->mclk_table.dpm_levels[i].value ))) { printk("\0014" "amdgpu: " "%s\n", "can not populate memory level as memory clock is zero" ); return -22; } } while (0) | |||
1238 | return -EINVAL)do { if (!((0 != dpm_table->mclk_table.dpm_levels[i].value ))) { printk("\0014" "amdgpu: " "%s\n", "can not populate memory level as memory clock is zero" ); return -22; } } while (0); | |||
1239 | result = fiji_populate_single_memory_level(hwmgr, | |||
1240 | dpm_table->mclk_table.dpm_levels[i].value, | |||
1241 | &levels[i]); | |||
1242 | if (result
| |||
1243 | return result; | |||
1244 | } | |||
1245 | ||||
1246 | /* Only enable level 0 for now. */ | |||
1247 | levels[0].EnabledForActivity = 1; | |||
1248 | ||||
1249 | /* in order to prevent MC activity from stutter mode to push DPM up. | |||
1250 | * the UVD change complements this by putting the MCLK in | |||
1251 | * a higher state by default such that we are not effected by | |||
1252 | * up threshold or and MCLK DPM latency. | |||
1253 | */ | |||
1254 | levels[0].ActivityLevel = (uint16_t)data->mclk_dpm0_activity_target; | |||
1255 | CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel)((levels[0].ActivityLevel) = (__uint16_t)(__builtin_constant_p (levels[0].ActivityLevel) ? (__uint16_t)(((__uint16_t)(levels [0].ActivityLevel) & 0xffU) << 8 | ((__uint16_t)(levels [0].ActivityLevel) & 0xff00U) >> 8) : __swap16md(levels [0].ActivityLevel))); | |||
1256 | ||||
1257 | smu_data->smc_state_table.MemoryDpmLevelCount = | |||
1258 | (uint8_t)dpm_table->mclk_table.count; | |||
1259 | data->dpm_level_enable_mask.mclk_dpm_enable_mask = | |||
1260 | phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table); | |||
1261 | /* set highest level watermark to high */ | |||
1262 | levels[dpm_table->mclk_table.count - 1].DisplayWatermark = | |||
1263 | PPSMC_DISPLAY_WATERMARK_HIGH1; | |||
1264 | ||||
1265 | /* level count will send to smc once at init smc table and never change */ | |||
1266 | result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels, | |||
1267 | (uint32_t)array_size, SMC_RAM_END0x40000); | |||
1268 | ||||
1269 | return result; | |||
1270 | } | |||
1271 | ||||
1272 | static int fiji_populate_mvdd_value(struct pp_hwmgr *hwmgr, | |||
1273 | uint32_t mclk, SMIO_Pattern *smio_pat) | |||
1274 | { | |||
1275 | const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | |||
1276 | struct phm_ppt_v1_information *table_info = | |||
1277 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | |||
1278 | uint32_t i = 0; | |||
1279 | ||||
1280 | if (SMU7_VOLTAGE_CONTROL_NONE0x0 != data->mvdd_control) { | |||
1281 | /* find mvdd value which clock is more than request */ | |||
1282 | for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) { | |||
1283 | if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) { | |||
1284 | smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value; | |||
1285 | break; | |||
1286 | } | |||
1287 | } | |||
1288 | PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,do { if (!(i < table_info->vdd_dep_on_mclk->count)) { printk("\0014" "amdgpu: " "%s\n", "MVDD Voltage is outside the supported range." ); return -22; } } while (0) | |||
1289 | "MVDD Voltage is outside the supported range.",do { if (!(i < table_info->vdd_dep_on_mclk->count)) { printk("\0014" "amdgpu: " "%s\n", "MVDD Voltage is outside the supported range." ); return -22; } } while (0) | |||
1290 | return -EINVAL)do { if (!(i < table_info->vdd_dep_on_mclk->count)) { printk("\0014" "amdgpu: " "%s\n", "MVDD Voltage is outside the supported range." ); return -22; } } while (0); | |||
1291 | } else | |||
1292 | return -EINVAL22; | |||
1293 | ||||
1294 | return 0; | |||
1295 | } | |||
1296 | ||||
1297 | static int fiji_populate_smc_acpi_level(struct pp_hwmgr *hwmgr, | |||
1298 | SMU73_Discrete_DpmTable *table) | |||
1299 | { | |||
1300 | int result = 0; | |||
1301 | const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | |||
1302 | struct phm_ppt_v1_information *table_info = | |||
1303 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | |||
1304 | struct pp_atomctrl_clock_dividers_vi dividers; | |||
1305 | SMIO_Pattern vol_level; | |||
1306 | uint32_t mvdd; | |||
1307 | uint16_t us_mvdd; | |||
1308 | uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; | |||
1309 | uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2; | |||
1310 | ||||
1311 | table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC0x01; | |||
1312 | ||||
1313 | if (!data->sclk_dpm_key_disabled) { | |||
1314 | /* Get MinVoltage and Frequency from DPM0, | |||
1315 | * already converted to SMC_UL */ | |||
1316 | table->ACPILevel.SclkFrequency = | |||
1317 | data->dpm_table.sclk_table.dpm_levels[0].value; | |||
1318 | result = fiji_get_dependency_volt_by_clk(hwmgr, | |||
1319 | table_info->vdd_dep_on_sclk, | |||
1320 | table->ACPILevel.SclkFrequency, | |||
1321 | (uint32_t *)(&table->ACPILevel.MinVoltage), &mvdd); | |||
1322 | PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "Cannot find ACPI VDDC voltage value " "in Clock Dependency Table" ); ; } } while (0) | |||
1323 | "Cannot find ACPI VDDC voltage value " \do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "Cannot find ACPI VDDC voltage value " "in Clock Dependency Table" ); ; } } while (0) | |||
1324 | "in Clock Dependency Table",do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "Cannot find ACPI VDDC voltage value " "in Clock Dependency Table" ); ; } } while (0) | |||
1325 | )do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "Cannot find ACPI VDDC voltage value " "in Clock Dependency Table" ); ; } } while (0); | |||
1326 | } else { | |||
1327 | table->ACPILevel.SclkFrequency = | |||
1328 | data->vbios_boot_state.sclk_bootup_value; | |||
1329 | table->ACPILevel.MinVoltage = | |||
1330 | data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE4; | |||
1331 | } | |||
1332 | ||||
1333 | /* get the engine clock dividers for this clock value */ | |||
1334 | result = atomctrl_get_engine_pll_dividers_vi(hwmgr, | |||
1335 | table->ACPILevel.SclkFrequency, ÷rs); | |||
1336 | PP_ASSERT_WITH_CODE(result == 0,do { if (!(result == 0)) { printk("\0014" "amdgpu: " "%s\n", "Error retrieving Engine Clock dividers from VBIOS." ); return result; } } while (0) | |||
1337 | "Error retrieving Engine Clock dividers from VBIOS.",do { if (!(result == 0)) { printk("\0014" "amdgpu: " "%s\n", "Error retrieving Engine Clock dividers from VBIOS." ); return result; } } while (0) | |||
1338 | return result)do { if (!(result == 0)) { printk("\0014" "amdgpu: " "%s\n", "Error retrieving Engine Clock dividers from VBIOS." ); return result; } } while (0); | |||
1339 | ||||
1340 | table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider; | |||
1341 | table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW0; | |||
1342 | table->ACPILevel.DeepSleepDivId = 0; | |||
1343 | ||||
1344 | spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,(((spll_func_cntl) & ~0x2) | (0x2 & ((0) << 0x1 ))) | |||
1345 | SPLL_PWRON, 0)(((spll_func_cntl) & ~0x2) | (0x2 & ((0) << 0x1 ))); | |||
1346 | spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,(((spll_func_cntl) & ~0x1) | (0x1 & ((1) << 0x0 ))) | |||
1347 | SPLL_RESET, 1)(((spll_func_cntl) & ~0x1) | (0x1 & ((1) << 0x0 ))); | |||
1348 | spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2,(((spll_func_cntl_2) & ~0x1ff) | (0x1ff & ((4) << 0x0))) | |||
1349 | SCLK_MUX_SEL, 4)(((spll_func_cntl_2) & ~0x1ff) | (0x1ff & ((4) << 0x0))); | |||
1350 | ||||
1351 | table->ACPILevel.CgSpllFuncCntl = spll_func_cntl; | |||
1352 | table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2; | |||
1353 | table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; | |||
1354 | table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; | |||
1355 | table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; | |||
1356 | table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; | |||
1357 | table->ACPILevel.CcPwrDynRm = 0; | |||
1358 | table->ACPILevel.CcPwrDynRm1 = 0; | |||
1359 | ||||
1360 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags)((table->ACPILevel.Flags) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.Flags) ? (__uint32_t)(((__uint32_t)(table ->ACPILevel.Flags) & 0xff) << 24 | ((__uint32_t) (table->ACPILevel.Flags) & 0xff00) << 8 | ((__uint32_t )(table->ACPILevel.Flags) & 0xff0000) >> 8 | ((__uint32_t )(table->ACPILevel.Flags) & 0xff000000) >> 24) : __swap32md(table->ACPILevel.Flags))); | |||
1361 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency)((table->ACPILevel.SclkFrequency) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.SclkFrequency) ? (__uint32_t)(((__uint32_t )(table->ACPILevel.SclkFrequency) & 0xff) << 24 | ((__uint32_t)(table->ACPILevel.SclkFrequency) & 0xff00 ) << 8 | ((__uint32_t)(table->ACPILevel.SclkFrequency ) & 0xff0000) >> 8 | ((__uint32_t)(table->ACPILevel .SclkFrequency) & 0xff000000) >> 24) : __swap32md(table ->ACPILevel.SclkFrequency))); | |||
1362 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage)((table->ACPILevel.MinVoltage) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.MinVoltage) ? (__uint32_t)(((__uint32_t) (table->ACPILevel.MinVoltage) & 0xff) << 24 | (( __uint32_t)(table->ACPILevel.MinVoltage) & 0xff00) << 8 | ((__uint32_t)(table->ACPILevel.MinVoltage) & 0xff0000 ) >> 8 | ((__uint32_t)(table->ACPILevel.MinVoltage) & 0xff000000) >> 24) : __swap32md(table->ACPILevel.MinVoltage ))); | |||
1363 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl)((table->ACPILevel.CgSpllFuncCntl) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.CgSpllFuncCntl) ? (__uint32_t)(((__uint32_t )(table->ACPILevel.CgSpllFuncCntl) & 0xff) << 24 | ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl) & 0xff00 ) << 8 | ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl ) & 0xff0000) >> 8 | ((__uint32_t)(table->ACPILevel .CgSpllFuncCntl) & 0xff000000) >> 24) : __swap32md( table->ACPILevel.CgSpllFuncCntl))); | |||
1364 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2)((table->ACPILevel.CgSpllFuncCntl2) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.CgSpllFuncCntl2) ? (__uint32_t)(((__uint32_t )(table->ACPILevel.CgSpllFuncCntl2) & 0xff) << 24 | ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl2) & 0xff00 ) << 8 | ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl2 ) & 0xff0000) >> 8 | ((__uint32_t)(table->ACPILevel .CgSpllFuncCntl2) & 0xff000000) >> 24) : __swap32md (table->ACPILevel.CgSpllFuncCntl2))); | |||
1365 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3)((table->ACPILevel.CgSpllFuncCntl3) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.CgSpllFuncCntl3) ? (__uint32_t)(((__uint32_t )(table->ACPILevel.CgSpllFuncCntl3) & 0xff) << 24 | ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl3) & 0xff00 ) << 8 | ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl3 ) & 0xff0000) >> 8 | ((__uint32_t)(table->ACPILevel .CgSpllFuncCntl3) & 0xff000000) >> 24) : __swap32md (table->ACPILevel.CgSpllFuncCntl3))); | |||
1366 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4)((table->ACPILevel.CgSpllFuncCntl4) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.CgSpllFuncCntl4) ? (__uint32_t)(((__uint32_t )(table->ACPILevel.CgSpllFuncCntl4) & 0xff) << 24 | ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl4) & 0xff00 ) << 8 | ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl4 ) & 0xff0000) >> 8 | ((__uint32_t)(table->ACPILevel .CgSpllFuncCntl4) & 0xff000000) >> 24) : __swap32md (table->ACPILevel.CgSpllFuncCntl4))); | |||
1367 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum)((table->ACPILevel.SpllSpreadSpectrum) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.SpllSpreadSpectrum) ? (__uint32_t)(((__uint32_t )(table->ACPILevel.SpllSpreadSpectrum) & 0xff) << 24 | ((__uint32_t)(table->ACPILevel.SpllSpreadSpectrum) & 0xff00) << 8 | ((__uint32_t)(table->ACPILevel.SpllSpreadSpectrum ) & 0xff0000) >> 8 | ((__uint32_t)(table->ACPILevel .SpllSpreadSpectrum) & 0xff000000) >> 24) : __swap32md (table->ACPILevel.SpllSpreadSpectrum))); | |||
1368 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2)((table->ACPILevel.SpllSpreadSpectrum2) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.SpllSpreadSpectrum2) ? (__uint32_t)(((__uint32_t )(table->ACPILevel.SpllSpreadSpectrum2) & 0xff) << 24 | ((__uint32_t)(table->ACPILevel.SpllSpreadSpectrum2) & 0xff00) << 8 | ((__uint32_t)(table->ACPILevel.SpllSpreadSpectrum2 ) & 0xff0000) >> 8 | ((__uint32_t)(table->ACPILevel .SpllSpreadSpectrum2) & 0xff000000) >> 24) : __swap32md (table->ACPILevel.SpllSpreadSpectrum2))); | |||
1369 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm)((table->ACPILevel.CcPwrDynRm) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.CcPwrDynRm) ? (__uint32_t)(((__uint32_t) (table->ACPILevel.CcPwrDynRm) & 0xff) << 24 | (( __uint32_t)(table->ACPILevel.CcPwrDynRm) & 0xff00) << 8 | ((__uint32_t)(table->ACPILevel.CcPwrDynRm) & 0xff0000 ) >> 8 | ((__uint32_t)(table->ACPILevel.CcPwrDynRm) & 0xff000000) >> 24) : __swap32md(table->ACPILevel.CcPwrDynRm ))); | |||
1370 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1)((table->ACPILevel.CcPwrDynRm1) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.CcPwrDynRm1) ? (__uint32_t)(((__uint32_t )(table->ACPILevel.CcPwrDynRm1) & 0xff) << 24 | ( (__uint32_t)(table->ACPILevel.CcPwrDynRm1) & 0xff00) << 8 | ((__uint32_t)(table->ACPILevel.CcPwrDynRm1) & 0xff0000 ) >> 8 | ((__uint32_t)(table->ACPILevel.CcPwrDynRm1) & 0xff000000) >> 24) : __swap32md(table->ACPILevel .CcPwrDynRm1))); | |||
1371 | ||||
1372 | if (!data->mclk_dpm_key_disabled) { | |||
1373 | /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */ | |||
1374 | table->MemoryACPILevel.MclkFrequency = | |||
1375 | data->dpm_table.mclk_table.dpm_levels[0].value; | |||
1376 | result = fiji_get_dependency_volt_by_clk(hwmgr, | |||
1377 | table_info->vdd_dep_on_mclk, | |||
1378 | table->MemoryACPILevel.MclkFrequency, | |||
1379 | (uint32_t *)(&table->MemoryACPILevel.MinVoltage), &mvdd); | |||
1380 | PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "Cannot find ACPI VDDCI voltage value in Clock Dependency Table" ); ; } } while (0) | |||
1381 | "Cannot find ACPI VDDCI voltage value in Clock Dependency Table",do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "Cannot find ACPI VDDCI voltage value in Clock Dependency Table" ); ; } } while (0) | |||
1382 | )do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "Cannot find ACPI VDDCI voltage value in Clock Dependency Table" ); ; } } while (0); | |||
1383 | } else { | |||
1384 | table->MemoryACPILevel.MclkFrequency = | |||
1385 | data->vbios_boot_state.mclk_bootup_value; | |||
1386 | table->MemoryACPILevel.MinVoltage = | |||
1387 | data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE4; | |||
1388 | } | |||
1389 | ||||
1390 | us_mvdd = 0; | |||
1391 | if ((SMU7_VOLTAGE_CONTROL_NONE0x0 == data->mvdd_control) || | |||
1392 | (data->mclk_dpm_key_disabled)) | |||
1393 | us_mvdd = data->vbios_boot_state.mvdd_bootup_value; | |||
1394 | else { | |||
1395 | if (!fiji_populate_mvdd_value(hwmgr, | |||
1396 | data->dpm_table.mclk_table.dpm_levels[0].value, | |||
1397 | &vol_level)) | |||
1398 | us_mvdd = vol_level.Voltage; | |||
1399 | } | |||
1400 | ||||
1401 | table->MemoryACPILevel.MinMvdd = | |||
1402 | PP_HOST_TO_SMC_UL(us_mvdd * VOLTAGE_SCALE)(__uint32_t)(__builtin_constant_p(us_mvdd * 4) ? (__uint32_t) (((__uint32_t)(us_mvdd * 4) & 0xff) << 24 | ((__uint32_t )(us_mvdd * 4) & 0xff00) << 8 | ((__uint32_t)(us_mvdd * 4) & 0xff0000) >> 8 | ((__uint32_t)(us_mvdd * 4) & 0xff000000) >> 24) : __swap32md(us_mvdd * 4)); | |||
1403 | ||||
1404 | table->MemoryACPILevel.EnabledForThrottle = 0; | |||
1405 | table->MemoryACPILevel.EnabledForActivity = 0; | |||
1406 | table->MemoryACPILevel.UpHyst = 0; | |||
1407 | table->MemoryACPILevel.DownHyst = 100; | |||
1408 | table->MemoryACPILevel.VoltageDownHyst = 0; | |||
1409 | table->MemoryACPILevel.ActivityLevel = | |||
1410 | PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity)(__uint16_t)(__builtin_constant_p(data->current_profile_setting .mclk_activity) ? (__uint16_t)(((__uint16_t)(data->current_profile_setting .mclk_activity) & 0xffU) << 8 | ((__uint16_t)(data-> current_profile_setting.mclk_activity) & 0xff00U) >> 8) : __swap16md(data->current_profile_setting.mclk_activity )); | |||
1411 | ||||
1412 | table->MemoryACPILevel.StutterEnable = false0; | |||
1413 | CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency)((table->MemoryACPILevel.MclkFrequency) = (__uint32_t)(__builtin_constant_p (table->MemoryACPILevel.MclkFrequency) ? (__uint32_t)(((__uint32_t )(table->MemoryACPILevel.MclkFrequency) & 0xff) << 24 | ((__uint32_t)(table->MemoryACPILevel.MclkFrequency) & 0xff00) << 8 | ((__uint32_t)(table->MemoryACPILevel .MclkFrequency) & 0xff0000) >> 8 | ((__uint32_t)(table ->MemoryACPILevel.MclkFrequency) & 0xff000000) >> 24) : __swap32md(table->MemoryACPILevel.MclkFrequency))); | |||
1414 | CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage)((table->MemoryACPILevel.MinVoltage) = (__uint32_t)(__builtin_constant_p (table->MemoryACPILevel.MinVoltage) ? (__uint32_t)(((__uint32_t )(table->MemoryACPILevel.MinVoltage) & 0xff) << 24 | ((__uint32_t)(table->MemoryACPILevel.MinVoltage) & 0xff00 ) << 8 | ((__uint32_t)(table->MemoryACPILevel.MinVoltage ) & 0xff0000) >> 8 | ((__uint32_t)(table->MemoryACPILevel .MinVoltage) & 0xff000000) >> 24) : __swap32md(table ->MemoryACPILevel.MinVoltage))); | |||
1415 | ||||
1416 | return result; | |||
1417 | } | |||
1418 | ||||
1419 | static int fiji_populate_smc_vce_level(struct pp_hwmgr *hwmgr, | |||
1420 | SMU73_Discrete_DpmTable *table) | |||
1421 | { | |||
1422 | int result = -EINVAL22; | |||
1423 | uint8_t count; | |||
1424 | struct pp_atomctrl_clock_dividers_vi dividers; | |||
1425 | struct phm_ppt_v1_information *table_info = | |||
1426 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | |||
1427 | struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = | |||
1428 | table_info->mm_dep_table; | |||
1429 | ||||
1430 | table->VceLevelCount = (uint8_t)(mm_table->count); | |||
1431 | table->VceBootLevel = 0; | |||
1432 | ||||
1433 | for (count = 0; count < table->VceLevelCount; count++) { | |||
1434 | table->VceLevel[count].Frequency = mm_table->entries[count].eclk; | |||
1435 | table->VceLevel[count].MinVoltage = 0; | |||
1436 | table->VceLevel[count].MinVoltage |= | |||
1437 | (mm_table->entries[count].vddc * VOLTAGE_SCALE4) << VDDC_SHIFT0; | |||
1438 | table->VceLevel[count].MinVoltage |= | |||
1439 | ((mm_table->entries[count].vddc - VDDC_VDDCI_DELTA300) * | |||
1440 | VOLTAGE_SCALE4) << VDDCI_SHIFT15; | |||
1441 | table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT30; | |||
1442 | ||||
1443 | /*retrieve divider value for VBIOS */ | |||
1444 | result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, | |||
1445 | table->VceLevel[count].Frequency, ÷rs); | |||
1446 | PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find divide id for VCE engine clock"); return result ; } } while (0) | |||
1447 | "can not find divide id for VCE engine clock",do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find divide id for VCE engine clock"); return result ; } } while (0) | |||
1448 | return result)do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find divide id for VCE engine clock"); return result ; } } while (0); | |||
1449 | ||||
1450 | table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider; | |||
1451 | ||||
1452 | CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency)((table->VceLevel[count].Frequency) = (__uint32_t)(__builtin_constant_p (table->VceLevel[count].Frequency) ? (__uint32_t)(((__uint32_t )(table->VceLevel[count].Frequency) & 0xff) << 24 | ((__uint32_t)(table->VceLevel[count].Frequency) & 0xff00 ) << 8 | ((__uint32_t)(table->VceLevel[count].Frequency ) & 0xff0000) >> 8 | ((__uint32_t)(table->VceLevel [count].Frequency) & 0xff000000) >> 24) : __swap32md (table->VceLevel[count].Frequency))); | |||
1453 | CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage)((table->VceLevel[count].MinVoltage) = (__uint32_t)(__builtin_constant_p (table->VceLevel[count].MinVoltage) ? (__uint32_t)(((__uint32_t )(table->VceLevel[count].MinVoltage) & 0xff) << 24 | ((__uint32_t)(table->VceLevel[count].MinVoltage) & 0xff00 ) << 8 | ((__uint32_t)(table->VceLevel[count].MinVoltage ) & 0xff0000) >> 8 | ((__uint32_t)(table->VceLevel [count].MinVoltage) & 0xff000000) >> 24) : __swap32md (table->VceLevel[count].MinVoltage))); | |||
1454 | } | |||
1455 | return result; | |||
1456 | } | |||
1457 | ||||
1458 | static int fiji_populate_smc_acp_level(struct pp_hwmgr *hwmgr, | |||
1459 | SMU73_Discrete_DpmTable *table) | |||
1460 | { | |||
1461 | int result = -EINVAL22; | |||
1462 | uint8_t count; | |||
1463 | struct pp_atomctrl_clock_dividers_vi dividers; | |||
1464 | struct phm_ppt_v1_information *table_info = | |||
1465 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | |||
1466 | struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = | |||
1467 | table_info->mm_dep_table; | |||
1468 | ||||
1469 | table->AcpLevelCount = (uint8_t)(mm_table->count); | |||
1470 | table->AcpBootLevel = 0; | |||
1471 | ||||
1472 | for (count = 0; count < table->AcpLevelCount; count++) { | |||
1473 | table->AcpLevel[count].Frequency = mm_table->entries[count].aclk; | |||
1474 | table->AcpLevel[count].MinVoltage |= (mm_table->entries[count].vddc * | |||
1475 | VOLTAGE_SCALE4) << VDDC_SHIFT0; | |||
1476 | table->AcpLevel[count].MinVoltage |= ((mm_table->entries[count].vddc - | |||
1477 | VDDC_VDDCI_DELTA300) * VOLTAGE_SCALE4) << VDDCI_SHIFT15; | |||
1478 | table->AcpLevel[count].MinVoltage |= 1 << PHASES_SHIFT30; | |||
1479 | ||||
1480 | /* retrieve divider value for VBIOS */ | |||
1481 | result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, | |||
1482 | table->AcpLevel[count].Frequency, ÷rs); | |||
1483 | PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find divide id for engine clock"); return result; } } while (0) | |||
1484 | "can not find divide id for engine clock", return result)do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find divide id for engine clock"); return result; } } while (0); | |||
1485 | ||||
1486 | table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider; | |||
1487 | ||||
1488 | CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency)((table->AcpLevel[count].Frequency) = (__uint32_t)(__builtin_constant_p (table->AcpLevel[count].Frequency) ? (__uint32_t)(((__uint32_t )(table->AcpLevel[count].Frequency) & 0xff) << 24 | ((__uint32_t)(table->AcpLevel[count].Frequency) & 0xff00 ) << 8 | ((__uint32_t)(table->AcpLevel[count].Frequency ) & 0xff0000) >> 8 | ((__uint32_t)(table->AcpLevel [count].Frequency) & 0xff000000) >> 24) : __swap32md (table->AcpLevel[count].Frequency))); | |||
1489 | CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].MinVoltage)((table->AcpLevel[count].MinVoltage) = (__uint32_t)(__builtin_constant_p (table->AcpLevel[count].MinVoltage) ? (__uint32_t)(((__uint32_t )(table->AcpLevel[count].MinVoltage) & 0xff) << 24 | ((__uint32_t)(table->AcpLevel[count].MinVoltage) & 0xff00 ) << 8 | ((__uint32_t)(table->AcpLevel[count].MinVoltage ) & 0xff0000) >> 8 | ((__uint32_t)(table->AcpLevel [count].MinVoltage) & 0xff000000) >> 24) : __swap32md (table->AcpLevel[count].MinVoltage))); | |||
1490 | } | |||
1491 | return result; | |||
1492 | } | |||
1493 | ||||
1494 | static int fiji_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr, | |||
1495 | int32_t eng_clock, int32_t mem_clock, | |||
1496 | struct SMU73_Discrete_MCArbDramTimingTableEntry *arb_regs) | |||
1497 | { | |||
1498 | uint32_t dram_timing; | |||
1499 | uint32_t dram_timing2; | |||
1500 | uint32_t burstTime; | |||
1501 | ULONG trrds, trrdl; | |||
1502 | int result; | |||
1503 | ||||
1504 | result = atomctrl_set_engine_dram_timings_rv770(hwmgr, | |||
1505 | eng_clock, mem_clock); | |||
1506 | PP_ASSERT_WITH_CODE(result == 0,do { if (!(result == 0)) { printk("\0014" "amdgpu: " "%s\n", "Error calling VBIOS to set DRAM_TIMING." ); return result; } } while (0) | |||
1507 | "Error calling VBIOS to set DRAM_TIMING.", return result)do { if (!(result == 0)) { printk("\0014" "amdgpu: " "%s\n", "Error calling VBIOS to set DRAM_TIMING." ); return result; } } while (0); | |||
1508 | ||||
1509 | dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0x9dd)); | |||
1510 | dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0x9de)); | |||
1511 | burstTime = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0xa02)); | |||
1512 | ||||
1513 | trrds = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDS0)(((burstTime) & 0x7c00) >> 0xa); | |||
1514 | trrdl = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDL0)(((burstTime) & 0x1f00000) >> 0x14); | |||
1515 | ||||
1516 | arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dram_timing)(__uint32_t)(__builtin_constant_p(dram_timing) ? (__uint32_t) (((__uint32_t)(dram_timing) & 0xff) << 24 | ((__uint32_t )(dram_timing) & 0xff00) << 8 | ((__uint32_t)(dram_timing ) & 0xff0000) >> 8 | ((__uint32_t)(dram_timing) & 0xff000000) >> 24) : __swap32md(dram_timing)); | |||
1517 | arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2)(__uint32_t)(__builtin_constant_p(dram_timing2) ? (__uint32_t )(((__uint32_t)(dram_timing2) & 0xff) << 24 | ((__uint32_t )(dram_timing2) & 0xff00) << 8 | ((__uint32_t)(dram_timing2 ) & 0xff0000) >> 8 | ((__uint32_t)(dram_timing2) & 0xff000000) >> 24) : __swap32md(dram_timing2)); | |||
1518 | arb_regs->McArbBurstTime = (uint8_t)burstTime; | |||
1519 | arb_regs->TRRDS = (uint8_t)trrds; | |||
1520 | arb_regs->TRRDL = (uint8_t)trrdl; | |||
1521 | ||||
1522 | return 0; | |||
1523 | } | |||
1524 | ||||
1525 | static int fiji_program_memory_timing_parameters(struct pp_hwmgr *hwmgr) | |||
1526 | { | |||
1527 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | |||
1528 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); | |||
1529 | struct SMU73_Discrete_MCArbDramTimingTable arb_regs; | |||
1530 | uint32_t i, j; | |||
1531 | int result = 0; | |||
1532 | ||||
1533 | for (i = 0; i < data->dpm_table.sclk_table.count; i++) { | |||
1534 | for (j = 0; j < data->dpm_table.mclk_table.count; j++) { | |||
1535 | result = fiji_populate_memory_timing_parameters(hwmgr, | |||
1536 | data->dpm_table.sclk_table.dpm_levels[i].value, | |||
1537 | data->dpm_table.mclk_table.dpm_levels[j].value, | |||
1538 | &arb_regs.entries[i][j]); | |||
1539 | if (result) | |||
1540 | break; | |||
1541 | } | |||
1542 | } | |||
1543 | ||||
1544 | if (!result) | |||
1545 | result = smu7_copy_bytes_to_smc( | |||
1546 | hwmgr, | |||
1547 | smu_data->smu7_data.arb_table_start, | |||
1548 | (uint8_t *)&arb_regs, | |||
1549 | sizeof(SMU73_Discrete_MCArbDramTimingTable), | |||
1550 | SMC_RAM_END0x40000); | |||
1551 | return result; | |||
1552 | } | |||
1553 | ||||
1554 | static int fiji_populate_smc_uvd_level(struct pp_hwmgr *hwmgr, | |||
1555 | struct SMU73_Discrete_DpmTable *table) | |||
1556 | { | |||
1557 | int result = -EINVAL22; | |||
1558 | uint8_t count; | |||
1559 | struct pp_atomctrl_clock_dividers_vi dividers; | |||
1560 | struct phm_ppt_v1_information *table_info = | |||
1561 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | |||
1562 | struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = | |||
1563 | table_info->mm_dep_table; | |||
1564 | ||||
1565 | table->UvdLevelCount = (uint8_t)(mm_table->count); | |||
1566 | table->UvdBootLevel = 0; | |||
1567 | ||||
1568 | for (count = 0; count < table->UvdLevelCount; count++) { | |||
1569 | table->UvdLevel[count].MinVoltage = 0; | |||
1570 | table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk; | |||
1571 | table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk; | |||
1572 | table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc * | |||
1573 | VOLTAGE_SCALE4) << VDDC_SHIFT0; | |||
1574 | table->UvdLevel[count].MinVoltage |= ((mm_table->entries[count].vddc - | |||
1575 | VDDC_VDDCI_DELTA300) * VOLTAGE_SCALE4) << VDDCI_SHIFT15; | |||
1576 | table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT30; | |||
1577 | ||||
1578 | /* retrieve divider value for VBIOS */ | |||
1579 | result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, | |||
1580 | table->UvdLevel[count].VclkFrequency, ÷rs); | |||
1581 | PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find divide id for Vclk clock"); return result; } } while (0) | |||
1582 | "can not find divide id for Vclk clock", return result)do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find divide id for Vclk clock"); return result; } } while (0); | |||
1583 | ||||
1584 | table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider; | |||
1585 | ||||
1586 | result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, | |||
1587 | table->UvdLevel[count].DclkFrequency, ÷rs); | |||
1588 | PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find divide id for Dclk clock"); return result; } } while (0) | |||
1589 | "can not find divide id for Dclk clock", return result)do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find divide id for Dclk clock"); return result; } } while (0); | |||
1590 | ||||
1591 | table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider; | |||
1592 | ||||
1593 | CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency)((table->UvdLevel[count].VclkFrequency) = (__uint32_t)(__builtin_constant_p (table->UvdLevel[count].VclkFrequency) ? (__uint32_t)(((__uint32_t )(table->UvdLevel[count].VclkFrequency) & 0xff) << 24 | ((__uint32_t)(table->UvdLevel[count].VclkFrequency) & 0xff00) << 8 | ((__uint32_t)(table->UvdLevel[count] .VclkFrequency) & 0xff0000) >> 8 | ((__uint32_t)(table ->UvdLevel[count].VclkFrequency) & 0xff000000) >> 24) : __swap32md(table->UvdLevel[count].VclkFrequency))); | |||
1594 | CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency)((table->UvdLevel[count].DclkFrequency) = (__uint32_t)(__builtin_constant_p (table->UvdLevel[count].DclkFrequency) ? (__uint32_t)(((__uint32_t )(table->UvdLevel[count].DclkFrequency) & 0xff) << 24 | ((__uint32_t)(table->UvdLevel[count].DclkFrequency) & 0xff00) << 8 | ((__uint32_t)(table->UvdLevel[count] .DclkFrequency) & 0xff0000) >> 8 | ((__uint32_t)(table ->UvdLevel[count].DclkFrequency) & 0xff000000) >> 24) : __swap32md(table->UvdLevel[count].DclkFrequency))); | |||
1595 | CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage)((table->UvdLevel[count].MinVoltage) = (__uint32_t)(__builtin_constant_p (table->UvdLevel[count].MinVoltage) ? (__uint32_t)(((__uint32_t )(table->UvdLevel[count].MinVoltage) & 0xff) << 24 | ((__uint32_t)(table->UvdLevel[count].MinVoltage) & 0xff00 ) << 8 | ((__uint32_t)(table->UvdLevel[count].MinVoltage ) & 0xff0000) >> 8 | ((__uint32_t)(table->UvdLevel [count].MinVoltage) & 0xff000000) >> 24) : __swap32md (table->UvdLevel[count].MinVoltage))); | |||
1596 | ||||
1597 | } | |||
1598 | return result; | |||
1599 | } | |||
1600 | ||||
1601 | static int fiji_populate_smc_boot_level(struct pp_hwmgr *hwmgr, | |||
1602 | struct SMU73_Discrete_DpmTable *table) | |||
1603 | { | |||
1604 | int result = 0; | |||
1605 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | |||
1606 | ||||
1607 | table->GraphicsBootLevel = 0; | |||
1608 | table->MemoryBootLevel = 0; | |||
1609 | ||||
1610 | /* find boot level from dpm table */ | |||
1611 | result = phm_find_boot_level(&(data->dpm_table.sclk_table), | |||
1612 | data->vbios_boot_state.sclk_bootup_value, | |||
1613 | (uint32_t *)&(table->GraphicsBootLevel)); | |||
1614 | ||||
1615 | result = phm_find_boot_level(&(data->dpm_table.mclk_table), | |||
1616 | data->vbios_boot_state.mclk_bootup_value, | |||
1617 | (uint32_t *)&(table->MemoryBootLevel)); | |||
1618 | ||||
1619 | table->BootVddc = data->vbios_boot_state.vddc_bootup_value * | |||
1620 | VOLTAGE_SCALE4; | |||
1621 | table->BootVddci = data->vbios_boot_state.vddci_bootup_value * | |||
1622 | VOLTAGE_SCALE4; | |||
1623 | table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value * | |||
1624 | VOLTAGE_SCALE4; | |||
1625 | ||||
1626 | CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc)((table->BootVddc) = (__uint16_t)(__builtin_constant_p(table ->BootVddc) ? (__uint16_t)(((__uint16_t)(table->BootVddc ) & 0xffU) << 8 | ((__uint16_t)(table->BootVddc) & 0xff00U) >> 8) : __swap16md(table->BootVddc)) ); | |||
1627 | CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci)((table->BootVddci) = (__uint16_t)(__builtin_constant_p(table ->BootVddci) ? (__uint16_t)(((__uint16_t)(table->BootVddci ) & 0xffU) << 8 | ((__uint16_t)(table->BootVddci ) & 0xff00U) >> 8) : __swap16md(table->BootVddci ))); | |||
1628 | CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd)((table->BootMVdd) = (__uint16_t)(__builtin_constant_p(table ->BootMVdd) ? (__uint16_t)(((__uint16_t)(table->BootMVdd ) & 0xffU) << 8 | ((__uint16_t)(table->BootMVdd) & 0xff00U) >> 8) : __swap16md(table->BootMVdd)) ); | |||
1629 | ||||
1630 | return 0; | |||
1631 | } | |||
1632 | ||||
1633 | static int fiji_populate_smc_initailial_state(struct pp_hwmgr *hwmgr) | |||
1634 | { | |||
1635 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | |||
1636 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); | |||
1637 | struct phm_ppt_v1_information *table_info = | |||
1638 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | |||
1639 | uint8_t count, level; | |||
1640 | ||||
1641 | count = (uint8_t)(table_info->vdd_dep_on_sclk->count); | |||
1642 | for (level = 0; level < count; level++) { | |||
1643 | if (table_info->vdd_dep_on_sclk->entries[level].clk >= | |||
1644 | data->vbios_boot_state.sclk_bootup_value) { | |||
1645 | smu_data->smc_state_table.GraphicsBootLevel = level; | |||
1646 | break; | |||
1647 | } | |||
1648 | } | |||
1649 | ||||
1650 | count = (uint8_t)(table_info->vdd_dep_on_mclk->count); | |||
1651 | for (level = 0; level < count; level++) { | |||
1652 | if (table_info->vdd_dep_on_mclk->entries[level].clk >= | |||
1653 | data->vbios_boot_state.mclk_bootup_value) { | |||
1654 | smu_data->smc_state_table.MemoryBootLevel = level; | |||
1655 | break; | |||
1656 | } | |||
1657 | } | |||
1658 | ||||
1659 | return 0; | |||
1660 | } | |||
1661 | ||||
1662 | static int fiji_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr) | |||
1663 | { | |||
1664 | uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks, | |||
1665 | volt_with_cks, value; | |||
1666 | uint16_t clock_freq_u16; | |||
1667 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); | |||
1668 | uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2, | |||
1669 | volt_offset = 0; | |||
1670 | struct phm_ppt_v1_information *table_info = | |||
1671 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | |||
1672 | struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = | |||
1673 | table_info->vdd_dep_on_sclk; | |||
1674 | ||||
1675 | stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount; | |||
1676 | ||||
1677 | /* Read SMU_Eefuse to read and calculate RO and determine | |||
1678 | * if the part is SS or FF. if RO >= 1660MHz, part is FF. | |||
1679 | */ | |||
1680 | efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0100000 + (146 * 4))) | |||
1681 | ixSMU_EFUSE_0 + (146 * 4))(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0100000 + (146 * 4))); | |||
1682 | efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0100000 + (148 * 4))) | |||
1683 | ixSMU_EFUSE_0 + (148 * 4))(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0100000 + (148 * 4))); | |||
1684 | efuse &= 0xFF000000; | |||
1685 | efuse = efuse >> 24; | |||
1686 | efuse2 &= 0xF; | |||
1687 | ||||
1688 | if (efuse2 == 1) | |||
1689 | ro = (2300 - 1350) * efuse / 255 + 1350; | |||
1690 | else | |||
1691 | ro = (2500 - 1000) * efuse / 255 + 1000; | |||
1692 | ||||
1693 | if (ro >= 1660) | |||
1694 | type = 0; | |||
1695 | else | |||
1696 | type = 1; | |||
1697 | ||||
1698 | /* Populate Stretch amount */ | |||
1699 | smu_data->smc_state_table.ClockStretcherAmount = stretch_amount; | |||
1700 | ||||
1701 | /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */ | |||
1702 | for (i = 0; i < sclk_table->count; i++) { | |||
1703 | smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |= | |||
1704 | sclk_table->entries[i].cks_enable << i; | |||
1705 | volt_without_cks = (uint32_t)((14041 * | |||
1706 | (sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 / | |||
1707 | (4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000))); | |||
1708 | volt_with_cks = (uint32_t)((13946 * | |||
1709 | (sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 / | |||
1710 | (3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000))); | |||
1711 | if (volt_without_cks >= volt_with_cks) | |||
1712 | volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks + | |||
1713 | sclk_table->entries[i].cks_voffset) * 100 / 625) + 1); | |||
1714 | smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset; | |||
1715 | } | |||
1716 | ||||
1717 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc020034c,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0xc020034c))) & ~0x1) | (0x1 & ((0x0) << 0x0))))) | |||
1718 | STRETCH_ENABLE, 0x0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc020034c,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0xc020034c))) & ~0x1) | (0x1 & ((0x0) << 0x0))))); | |||
1719 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc020034c,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0xc020034c))) & ~0x2) | (0x2 & ((0x1) << 0x1))))) | |||
1720 | masterReset, 0x1)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc020034c,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0xc020034c))) & ~0x2) | (0x2 & ((0x1) << 0x1))))); | |||
1721 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc020034c,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0xc020034c))) & ~0x4) | (0x4 & ((0x1) << 0x2))))) | |||
1722 | staticEnable, 0x1)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc020034c,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0xc020034c))) & ~0x4) | (0x4 & ((0x1) << 0x2))))); | |||
1723 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc020034c,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0xc020034c))) & ~0x2) | (0x2 & ((0x0) << 0x1))))) | |||
1724 | masterReset, 0x0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc020034c,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0xc020034c))) & ~0x2) | (0x2 & ((0x0) << 0x1))))); | |||
1725 | ||||
1726 | /* Populate CKS Lookup Table */ | |||
1727 | if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5) | |||
1728 | stretch_amount2 = 0; | |||
1729 | else if (stretch_amount == 3 || stretch_amount == 4) | |||
1730 | stretch_amount2 = 1; | |||
1731 | else { | |||
1732 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, | |||
1733 | PHM_PlatformCaps_ClockStretcher); | |||
1734 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Stretch Amount in PPTable not supported" ); return -22; } } while (0) | |||
1735 | "Stretch Amount in PPTable not supported",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Stretch Amount in PPTable not supported" ); return -22; } } while (0) | |||
1736 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Stretch Amount in PPTable not supported" ); return -22; } } while (0); | |||
1737 | } | |||
1738 | ||||
1739 | value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0200350)) | |||
1740 | ixPWR_CKS_CNTL)(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0200350)); | |||
1741 | value &= 0xFFC2FF87; | |||
1742 | smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq = | |||
1743 | fiji_clock_stretcher_lookup_table[stretch_amount2][0]; | |||
1744 | smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq = | |||
1745 | fiji_clock_stretcher_lookup_table[stretch_amount2][1]; | |||
1746 | clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(smu_data->smc_state_table.(__uint32_t)(__builtin_constant_p(smu_data->smc_state_table . GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1]. SclkFrequency) ? (__uint32_t)(((__uint32_t)(smu_data-> smc_state_table. GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1]. SclkFrequency) & 0xff) << 24 | ((__uint32_t) (smu_data->smc_state_table. GraphicsLevel[smu_data->smc_state_table .GraphicsDpmLevelCount - 1]. SclkFrequency) & 0xff00) << 8 | ((__uint32_t)(smu_data->smc_state_table. GraphicsLevel [smu_data->smc_state_table.GraphicsDpmLevelCount - 1]. SclkFrequency ) & 0xff0000) >> 8 | ((__uint32_t)(smu_data->smc_state_table . GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1]. SclkFrequency) & 0xff000000) >> 24) : __swap32md (smu_data->smc_state_table. GraphicsLevel[smu_data->smc_state_table .GraphicsDpmLevelCount - 1]. SclkFrequency)) | |||
1747 | GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1].(__uint32_t)(__builtin_constant_p(smu_data->smc_state_table . GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1]. SclkFrequency) ? (__uint32_t)(((__uint32_t)(smu_data-> smc_state_table. GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1]. SclkFrequency) & 0xff) << 24 | ((__uint32_t) (smu_data->smc_state_table. GraphicsLevel[smu_data->smc_state_table .GraphicsDpmLevelCount - 1]. SclkFrequency) & 0xff00) << 8 | ((__uint32_t)(smu_data->smc_state_table. GraphicsLevel [smu_data->smc_state_table.GraphicsDpmLevelCount - 1]. SclkFrequency ) & 0xff0000) >> 8 | ((__uint32_t)(smu_data->smc_state_table . GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1]. SclkFrequency) & 0xff000000) >> 24) : __swap32md (smu_data->smc_state_table. GraphicsLevel[smu_data->smc_state_table .GraphicsDpmLevelCount - 1]. SclkFrequency)) | |||
1748 | SclkFrequency)(__uint32_t)(__builtin_constant_p(smu_data->smc_state_table . GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1]. SclkFrequency) ? (__uint32_t)(((__uint32_t)(smu_data-> smc_state_table. GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1]. SclkFrequency) & 0xff) << 24 | ((__uint32_t) (smu_data->smc_state_table. GraphicsLevel[smu_data->smc_state_table .GraphicsDpmLevelCount - 1]. SclkFrequency) & 0xff00) << 8 | ((__uint32_t)(smu_data->smc_state_table. GraphicsLevel [smu_data->smc_state_table.GraphicsDpmLevelCount - 1]. SclkFrequency ) & 0xff0000) >> 8 | ((__uint32_t)(smu_data->smc_state_table . GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1]. SclkFrequency) & 0xff000000) >> 24) : __swap32md (smu_data->smc_state_table. GraphicsLevel[smu_data->smc_state_table .GraphicsDpmLevelCount - 1]. SclkFrequency)) / 100); | |||
1749 | if (fiji_clock_stretcher_lookup_table[stretch_amount2][0] < | |||
1750 | clock_freq_u16 && | |||
1751 | fiji_clock_stretcher_lookup_table[stretch_amount2][1] > | |||
1752 | clock_freq_u16) { | |||
1753 | /* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */ | |||
1754 | value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 16; | |||
1755 | /* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */ | |||
1756 | value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][2]) << 18; | |||
1757 | /* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */ | |||
1758 | value |= (fiji_clock_stretch_amount_conversion | |||
1759 | [fiji_clock_stretcher_lookup_table[stretch_amount2][3]] | |||
1760 | [stretch_amount]) << 3; | |||
1761 | } | |||
1762 | CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.((smu_data->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry [0].minFreq) = (__uint16_t)(__builtin_constant_p(smu_data-> smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry[0].minFreq ) ? (__uint16_t)(((__uint16_t)(smu_data->smc_state_table.CKS_LOOKUPTable . CKS_LOOKUPTableEntry[0].minFreq) & 0xffU) << 8 | ( (__uint16_t)(smu_data->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry [0].minFreq) & 0xff00U) >> 8) : __swap16md(smu_data ->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry[0] .minFreq))) | |||
1763 | CKS_LOOKUPTableEntry[0].minFreq)((smu_data->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry [0].minFreq) = (__uint16_t)(__builtin_constant_p(smu_data-> smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry[0].minFreq ) ? (__uint16_t)(((__uint16_t)(smu_data->smc_state_table.CKS_LOOKUPTable . CKS_LOOKUPTableEntry[0].minFreq) & 0xffU) << 8 | ( (__uint16_t)(smu_data->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry [0].minFreq) & 0xff00U) >> 8) : __swap16md(smu_data ->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry[0] .minFreq))); | |||
1764 | CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.((smu_data->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry [0].maxFreq) = (__uint16_t)(__builtin_constant_p(smu_data-> smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry[0].maxFreq ) ? (__uint16_t)(((__uint16_t)(smu_data->smc_state_table.CKS_LOOKUPTable . CKS_LOOKUPTableEntry[0].maxFreq) & 0xffU) << 8 | ( (__uint16_t)(smu_data->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry [0].maxFreq) & 0xff00U) >> 8) : __swap16md(smu_data ->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry[0] .maxFreq))) | |||
1765 | CKS_LOOKUPTableEntry[0].maxFreq)((smu_data->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry [0].maxFreq) = (__uint16_t)(__builtin_constant_p(smu_data-> smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry[0].maxFreq ) ? (__uint16_t)(((__uint16_t)(smu_data->smc_state_table.CKS_LOOKUPTable . CKS_LOOKUPTableEntry[0].maxFreq) & 0xffU) << 8 | ( (__uint16_t)(smu_data->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry [0].maxFreq) & 0xff00U) >> 8) : __swap16md(smu_data ->smc_state_table.CKS_LOOKUPTable. CKS_LOOKUPTableEntry[0] .maxFreq))); | |||
1766 | smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting = | |||
1767 | fiji_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F; | |||
1768 | smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |= | |||
1769 | (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 7; | |||
1770 | ||||
1771 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0200350,value)) | |||
1772 | ixPWR_CKS_CNTL, value)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0200350,value)); | |||
1773 | ||||
1774 | /* Populate DDT Lookup Table */ | |||
1775 | for (i = 0; i < 4; i++) { | |||
1776 | /* Assign the minimum and maximum VID stored | |||
1777 | * in the last row of Clock Stretcher Voltage Table. | |||
1778 | */ | |||
1779 | smu_data->smc_state_table.ClockStretcherDataTable. | |||
1780 | ClockStretcherDataTableEntry[i].minVID = | |||
1781 | (uint8_t) fiji_clock_stretcher_ddt_table[type][i][2]; | |||
1782 | smu_data->smc_state_table.ClockStretcherDataTable. | |||
1783 | ClockStretcherDataTableEntry[i].maxVID = | |||
1784 | (uint8_t) fiji_clock_stretcher_ddt_table[type][i][3]; | |||
1785 | /* Loop through each SCLK and check the frequency | |||
1786 | * to see if it lies within the frequency for clock stretcher. | |||
1787 | */ | |||
1788 | for (j = 0; j < smu_data->smc_state_table.GraphicsDpmLevelCount; j++) { | |||
1789 | cks_setting = 0; | |||
1790 | clock_freq = PP_SMC_TO_HOST_UL((__uint32_t)(__builtin_constant_p(smu_data->smc_state_table .GraphicsLevel[j].SclkFrequency) ? (__uint32_t)(((__uint32_t) (smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency) & 0xff) << 24 | ((__uint32_t)(smu_data->smc_state_table .GraphicsLevel[j].SclkFrequency) & 0xff00) << 8 | ( (__uint32_t)(smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency ) & 0xff0000) >> 8 | ((__uint32_t)(smu_data->smc_state_table .GraphicsLevel[j].SclkFrequency) & 0xff000000) >> 24 ) : __swap32md(smu_data->smc_state_table.GraphicsLevel[j]. SclkFrequency)) | |||
1791 | smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency)(__uint32_t)(__builtin_constant_p(smu_data->smc_state_table .GraphicsLevel[j].SclkFrequency) ? (__uint32_t)(((__uint32_t) (smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency) & 0xff) << 24 | ((__uint32_t)(smu_data->smc_state_table .GraphicsLevel[j].SclkFrequency) & 0xff00) << 8 | ( (__uint32_t)(smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency ) & 0xff0000) >> 8 | ((__uint32_t)(smu_data->smc_state_table .GraphicsLevel[j].SclkFrequency) & 0xff000000) >> 24 ) : __swap32md(smu_data->smc_state_table.GraphicsLevel[j]. SclkFrequency)); | |||
1792 | /* Check the allowed frequency against the sclk level[j]. | |||
1793 | * Sclk's endianness has already been converted, | |||
1794 | * and it's in 10Khz unit, | |||
1795 | * as opposed to Data table, which is in Mhz unit. | |||
1796 | */ | |||
1797 | if (clock_freq >= | |||
1798 | (fiji_clock_stretcher_ddt_table[type][i][0]) * 100) { | |||
1799 | cks_setting |= 0x2; | |||
1800 | if (clock_freq < | |||
1801 | (fiji_clock_stretcher_ddt_table[type][i][1]) * 100) | |||
1802 | cks_setting |= 0x1; | |||
1803 | } | |||
1804 | smu_data->smc_state_table.ClockStretcherDataTable. | |||
1805 | ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2); | |||
1806 | } | |||
1807 | CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.((smu_data->smc_state_table. ClockStretcherDataTable. ClockStretcherDataTableEntry [i].setting) = (__uint16_t)(__builtin_constant_p(smu_data-> smc_state_table. ClockStretcherDataTable. ClockStretcherDataTableEntry [i].setting) ? (__uint16_t)(((__uint16_t)(smu_data->smc_state_table . ClockStretcherDataTable. ClockStretcherDataTableEntry[i].setting ) & 0xffU) << 8 | ((__uint16_t)(smu_data->smc_state_table . ClockStretcherDataTable. ClockStretcherDataTableEntry[i].setting ) & 0xff00U) >> 8) : __swap16md(smu_data->smc_state_table . ClockStretcherDataTable. ClockStretcherDataTableEntry[i].setting ))) | |||
1808 | ClockStretcherDataTable.((smu_data->smc_state_table. ClockStretcherDataTable. ClockStretcherDataTableEntry [i].setting) = (__uint16_t)(__builtin_constant_p(smu_data-> smc_state_table. ClockStretcherDataTable. ClockStretcherDataTableEntry [i].setting) ? (__uint16_t)(((__uint16_t)(smu_data->smc_state_table . ClockStretcherDataTable. ClockStretcherDataTableEntry[i].setting ) & 0xffU) << 8 | ((__uint16_t)(smu_data->smc_state_table . ClockStretcherDataTable. ClockStretcherDataTableEntry[i].setting ) & 0xff00U) >> 8) : __swap16md(smu_data->smc_state_table . ClockStretcherDataTable. ClockStretcherDataTableEntry[i].setting ))) | |||
1809 | ClockStretcherDataTableEntry[i].setting)((smu_data->smc_state_table. ClockStretcherDataTable. ClockStretcherDataTableEntry [i].setting) = (__uint16_t)(__builtin_constant_p(smu_data-> smc_state_table. ClockStretcherDataTable. ClockStretcherDataTableEntry [i].setting) ? (__uint16_t)(((__uint16_t)(smu_data->smc_state_table . ClockStretcherDataTable. ClockStretcherDataTableEntry[i].setting ) & 0xffU) << 8 | ((__uint16_t)(smu_data->smc_state_table . ClockStretcherDataTable. ClockStretcherDataTableEntry[i].setting ) & 0xff00U) >> 8) : __swap16md(smu_data->smc_state_table . ClockStretcherDataTable. ClockStretcherDataTableEntry[i].setting ))); | |||
1810 | } | |||
1811 | ||||
1812 | value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL)(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0200350)); | |||
1813 | value &= 0xFFFFFFFE; | |||
1814 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0200350,value)); | |||
1815 | ||||
1816 | return 0; | |||
1817 | } | |||
1818 | ||||
1819 | static int fiji_populate_vr_config(struct pp_hwmgr *hwmgr, | |||
1820 | struct SMU73_Discrete_DpmTable *table) | |||
1821 | { | |||
1822 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | |||
1823 | uint16_t config; | |||
1824 | ||||
1825 | config = VR_MERGED_WITH_VDDC0; | |||
1826 | table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT8); | |||
1827 | ||||
1828 | /* Set Vddc Voltage Controller */ | |||
1829 | if (SMU7_VOLTAGE_CONTROL_BY_SVID20x2 == data->voltage_control) { | |||
1830 | config = VR_SVI2_PLANE_11; | |||
1831 | table->VRConfig |= config; | |||
1832 | } else { | |||
1833 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "VDDC should be on SVI2 control in merged mode!" ); ; } } while (0) | |||
1834 | "VDDC should be on SVI2 control in merged mode!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "VDDC should be on SVI2 control in merged mode!" ); ; } } while (0) | |||
1835 | )do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "VDDC should be on SVI2 control in merged mode!" ); ; } } while (0); | |||
1836 | } | |||
1837 | /* Set Vddci Voltage Controller */ | |||
1838 | if (SMU7_VOLTAGE_CONTROL_BY_SVID20x2 == data->vddci_control) { | |||
1839 | config = VR_SVI2_PLANE_22; /* only in merged mode */ | |||
1840 | table->VRConfig |= (config << VRCONF_VDDCI_SHIFT16); | |||
1841 | } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO0x1 == data->vddci_control) { | |||
1842 | config = VR_SMIO_PATTERN_13; | |||
1843 | table->VRConfig |= (config << VRCONF_VDDCI_SHIFT16); | |||
1844 | } else { | |||
1845 | config = VR_STATIC_VOLTAGE5; | |||
1846 | table->VRConfig |= (config << VRCONF_VDDCI_SHIFT16); | |||
1847 | } | |||
1848 | /* Set Mvdd Voltage Controller */ | |||
1849 | if (SMU7_VOLTAGE_CONTROL_BY_SVID20x2 == data->mvdd_control) { | |||
1850 | config = VR_SVI2_PLANE_22; | |||
1851 | table->VRConfig |= (config << VRCONF_MVDD_SHIFT24); | |||
1852 | } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO0x1 == data->mvdd_control) { | |||
1853 | config = VR_SMIO_PATTERN_24; | |||
1854 | table->VRConfig |= (config << VRCONF_MVDD_SHIFT24); | |||
1855 | } else { | |||
1856 | config = VR_STATIC_VOLTAGE5; | |||
1857 | table->VRConfig |= (config << VRCONF_MVDD_SHIFT24); | |||
1858 | } | |||
1859 | ||||
1860 | return 0; | |||
1861 | } | |||
1862 | ||||
1863 | static int fiji_init_arb_table_index(struct pp_hwmgr *hwmgr) | |||
1864 | { | |||
1865 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); | |||
1866 | uint32_t tmp; | |||
1867 | int result; | |||
1868 | ||||
1869 | /* This is a read-modify-write on the first byte of the ARB table. | |||
1870 | * The first byte in the SMU73_Discrete_MCArbDramTimingTable structure | |||
1871 | * is the field 'current'. | |||
1872 | * This solution is ugly, but we never write the whole table only | |||
1873 | * individual fields in it. | |||
1874 | * In reality this field should not be in that structure | |||
1875 | * but in a soft register. | |||
1876 | */ | |||
1877 | result = smu7_read_smc_sram_dword(hwmgr, | |||
1878 | smu_data->smu7_data.arb_table_start, &tmp, SMC_RAM_END0x40000); | |||
1879 | ||||
1880 | if (result) | |||
1881 | return result; | |||
1882 | ||||
1883 | tmp &= 0x00FFFFFF; | |||
1884 | tmp |= ((uint32_t)MC_CG_ARB_FREQ_F10x0b) << 24; | |||
1885 | ||||
1886 | return smu7_write_smc_sram_dword(hwmgr, | |||
1887 | smu_data->smu7_data.arb_table_start, tmp, SMC_RAM_END0x40000); | |||
1888 | } | |||
1889 | ||||
1890 | static int fiji_setup_dpm_led_config(struct pp_hwmgr *hwmgr) | |||
1891 | { | |||
1892 | pp_atomctrl_voltage_table param_led_dpm; | |||
1893 | int result = 0; | |||
1894 | u32 mask = 0; | |||
1895 | ||||
1896 | result = atomctrl_get_voltage_table_v3(hwmgr, | |||
1897 | VOLTAGE_TYPE_LEDDPM8, VOLTAGE_OBJ_GPIO_LUT0, | |||
1898 | ¶m_led_dpm); | |||
1899 | if (result == 0) { | |||
1900 | int i, j; | |||
1901 | u32 tmp = param_led_dpm.mask_low; | |||
1902 | ||||
1903 | for (i = 0, j = 0; i < 32; i++) { | |||
1904 | if (tmp & 1) { | |||
1905 | mask |= (i << (8 * j)); | |||
1906 | if (++j >= 3) | |||
1907 | break; | |||
1908 | } | |||
1909 | tmp >>= 1; | |||
1910 | } | |||
1911 | } | |||
1912 | if (mask) | |||
1913 | smum_send_msg_to_smc_with_parameter(hwmgr, | |||
1914 | PPSMC_MSG_LedConfig((uint16_t) 0x274), | |||
1915 | mask, | |||
1916 | NULL((void *)0)); | |||
1917 | return 0; | |||
1918 | } | |||
1919 | ||||
1920 | static int fiji_init_smc_table(struct pp_hwmgr *hwmgr) | |||
1921 | { | |||
1922 | int result; | |||
1923 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | |||
1924 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); | |||
1925 | struct phm_ppt_v1_information *table_info = | |||
1926 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | |||
1927 | struct SMU73_Discrete_DpmTable *table = &(smu_data->smc_state_table); | |||
1928 | uint8_t i; | |||
1929 | struct pp_atomctrl_gpio_pin_assignment gpio_pin; | |||
1930 | ||||
1931 | fiji_initialize_power_tune_defaults(hwmgr); | |||
| ||||
1932 | ||||
1933 | if (SMU7_VOLTAGE_CONTROL_NONE0x0 != data->voltage_control) | |||
1934 | fiji_populate_smc_voltage_tables(hwmgr, table); | |||
1935 | ||||
1936 | table->SystemFlags = 0; | |||
1937 | ||||
1938 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | |||
1939 | PHM_PlatformCaps_AutomaticDCTransition)) | |||
1940 | table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC0x01; | |||
1941 | ||||
1942 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | |||
1943 | PHM_PlatformCaps_StepVddc)) | |||
1944 | table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC0x02; | |||
1945 | ||||
1946 | if (data->is_memory_gddr5) | |||
1947 | table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR50x04; | |||
1948 | ||||
1949 | if (data->ulv_supported && table_info->us_ulv_voltage_offset) { | |||
1950 | result = fiji_populate_ulv_state(hwmgr, table); | |||
1951 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize ULV state!" ); return result; } } while (0) | |||
1952 | "Failed to initialize ULV state!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize ULV state!" ); return result; } } while (0); | |||
1953 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc020015c,0x40035)) | |||
1954 | ixCG_ULV_PARAMETER, 0x40035)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc020015c,0x40035)); | |||
1955 | } | |||
1956 | ||||
1957 | result = fiji_populate_smc_link_level(hwmgr, table); | |||
1958 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Link Level!" ); return result; } } while (0) | |||
1959 | "Failed to initialize Link Level!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Link Level!" ); return result; } } while (0); | |||
1960 | ||||
1961 | result = fiji_populate_all_graphic_levels(hwmgr); | |||
1962 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Graphics Level!" ); return result; } } while (0) | |||
1963 | "Failed to initialize Graphics Level!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Graphics Level!" ); return result; } } while (0); | |||
1964 | ||||
1965 | result = fiji_populate_all_memory_levels(hwmgr); | |||
1966 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Memory Level!" ); return result; } } while (0) | |||
1967 | "Failed to initialize Memory Level!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Memory Level!" ); return result; } } while (0); | |||
1968 | ||||
1969 | result = fiji_populate_smc_acpi_level(hwmgr, table); | |||
1970 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize ACPI Level!" ); return result; } } while (0) | |||
1971 | "Failed to initialize ACPI Level!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize ACPI Level!" ); return result; } } while (0); | |||
1972 | ||||
1973 | result = fiji_populate_smc_vce_level(hwmgr, table); | |||
1974 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize VCE Level!" ); return result; } } while (0) | |||
1975 | "Failed to initialize VCE Level!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize VCE Level!" ); return result; } } while (0); | |||
1976 | ||||
1977 | result = fiji_populate_smc_acp_level(hwmgr, table); | |||
1978 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize ACP Level!" ); return result; } } while (0) | |||
1979 | "Failed to initialize ACP Level!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize ACP Level!" ); return result; } } while (0); | |||
1980 | ||||
1981 | /* Since only the initial state is completely set up at this point | |||
1982 | * (the other states are just copies of the boot state) we only | |||
1983 | * need to populate the ARB settings for the initial state. | |||
1984 | */ | |||
1985 | result = fiji_program_memory_timing_parameters(hwmgr); | |||
1986 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to Write ARB settings for the initial state." ); return result; } } while (0) | |||
1987 | "Failed to Write ARB settings for the initial state.", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to Write ARB settings for the initial state." ); return result; } } while (0); | |||
1988 | ||||
1989 | result = fiji_populate_smc_uvd_level(hwmgr, table); | |||
1990 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize UVD Level!" ); return result; } } while (0) | |||
1991 | "Failed to initialize UVD Level!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize UVD Level!" ); return result; } } while (0); | |||
1992 | ||||
1993 | result = fiji_populate_smc_boot_level(hwmgr, table); | |||
1994 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Boot Level!" ); return result; } } while (0) | |||
1995 | "Failed to initialize Boot Level!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Boot Level!" ); return result; } } while (0); | |||
1996 | ||||
1997 | result = fiji_populate_smc_initailial_state(hwmgr); | |||
1998 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Boot State!" ); return result; } } while (0) | |||
1999 | "Failed to initialize Boot State!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Boot State!" ); return result; } } while (0); | |||
2000 | ||||
2001 | result = fiji_populate_bapm_parameters_in_dpm_table(hwmgr); | |||
2002 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate BAPM Parameters!" ); return result; } } while (0) | |||
2003 | "Failed to populate BAPM Parameters!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate BAPM Parameters!" ); return result; } } while (0); | |||
2004 | ||||
2005 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | |||
2006 | PHM_PlatformCaps_ClockStretcher)) { | |||
2007 | result = fiji_populate_clock_stretcher_data_table(hwmgr); | |||
2008 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate Clock Stretcher Data Table!" ); return result; } } while (0) | |||
2009 | "Failed to populate Clock Stretcher Data Table!",do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate Clock Stretcher Data Table!" ); return result; } } while (0) | |||
2010 | return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate Clock Stretcher Data Table!" ); return result; } } while (0); | |||
2011 | } | |||
2012 | ||||
2013 | table->GraphicsVoltageChangeEnable = 1; | |||
2014 | table->GraphicsThermThrottleEnable = 1; | |||
2015 | table->GraphicsInterval = 1; | |||
2016 | table->VoltageInterval = 1; | |||
2017 | table->ThermalInterval = 1; | |||
2018 | table->TemperatureLimitHigh = | |||
2019 | table_info->cac_dtp_table->usTargetOperatingTemp * | |||
2020 | SMU7_Q88_FORMAT_CONVERSION_UNIT256; | |||
2021 | table->TemperatureLimitLow = | |||
2022 | (table_info->cac_dtp_table->usTargetOperatingTemp - 1) * | |||
2023 | SMU7_Q88_FORMAT_CONVERSION_UNIT256; | |||
2024 | table->MemoryVoltageChangeEnable = 1; | |||
2025 | table->MemoryInterval = 1; | |||
2026 | table->VoltageResponseTime = 0; | |||
2027 | table->PhaseResponseTime = 0; | |||
2028 | table->MemoryThermThrottleEnable = 1; | |||
2029 | table->PCIeBootLinkLevel = 0; /* 0:Gen1 1:Gen2 2:Gen3*/ | |||
2030 | table->PCIeGenInterval = 1; | |||
2031 | table->VRConfig = 0; | |||
2032 | ||||
2033 | result = fiji_populate_vr_config(hwmgr, table); | |||
2034 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate VRConfig setting!" ); return result; } } while (0) | |||
2035 | "Failed to populate VRConfig setting!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate VRConfig setting!" ); return result; } } while (0); | |||
2036 | data->vr_config = table->VRConfig; | |||
2037 | table->ThermGpio = 17; | |||
2038 | table->SclkStepSize = 0x4000; | |||
2039 | ||||
2040 | if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID61, &gpio_pin)) { | |||
2041 | table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift; | |||
2042 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, | |||
2043 | PHM_PlatformCaps_RegulatorHot); | |||
2044 | } else { | |||
2045 | table->VRHotGpio = SMU7_UNUSED_GPIO_PIN0x7F; | |||
2046 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, | |||
2047 | PHM_PlatformCaps_RegulatorHot); | |||
2048 | } | |||
2049 | ||||
2050 | if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID60, | |||
2051 | &gpio_pin)) { | |||
2052 | table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift; | |||
2053 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, | |||
2054 | PHM_PlatformCaps_AutomaticDCTransition); | |||
2055 | } else { | |||
2056 | table->AcDcGpio = SMU7_UNUSED_GPIO_PIN0x7F; | |||
2057 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, | |||
2058 | PHM_PlatformCaps_AutomaticDCTransition); | |||
2059 | } | |||
2060 | ||||
2061 | /* Thermal Output GPIO */ | |||
2062 | if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID65, | |||
2063 | &gpio_pin)) { | |||
2064 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, | |||
2065 | PHM_PlatformCaps_ThermalOutGPIO); | |||
2066 | ||||
2067 | table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift; | |||
2068 | ||||
2069 | /* For porlarity read GPIOPAD_A with assigned Gpio pin | |||
2070 | * since VBIOS will program this register to set 'inactive state', | |||
2071 | * driver can then determine 'active state' from this and | |||
2072 | * program SMU with correct polarity | |||
2073 | */ | |||
2074 | table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0x183)) & | |||
2075 | (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0; | |||
2076 | table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY0x1; | |||
2077 | ||||
2078 | /* if required, combine VRHot/PCC with thermal out GPIO */ | |||
2079 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | |||
2080 | PHM_PlatformCaps_RegulatorHot) && | |||
2081 | phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | |||
2082 | PHM_PlatformCaps_CombinePCCWithThermalSignal)) | |||
2083 | table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT0x2; | |||
2084 | } else { | |||
2085 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, | |||
2086 | PHM_PlatformCaps_ThermalOutGPIO); | |||
2087 | table->ThermOutGpio = 17; | |||
2088 | table->ThermOutPolarity = 1; | |||
2089 | table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE0x0; | |||
2090 | } | |||
2091 | ||||
2092 | for (i = 0; i < SMU73_MAX_ENTRIES_SMIO32; i++) | |||
2093 | table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i])(__uint32_t)(__builtin_constant_p(table->Smio[i]) ? (__uint32_t )(((__uint32_t)(table->Smio[i]) & 0xff) << 24 | ( (__uint32_t)(table->Smio[i]) & 0xff00) << 8 | (( __uint32_t)(table->Smio[i]) & 0xff0000) >> 8 | ( (__uint32_t)(table->Smio[i]) & 0xff000000) >> 24 ) : __swap32md(table->Smio[i])); | |||
2094 | ||||
2095 | CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags)((table->SystemFlags) = (__uint32_t)(__builtin_constant_p( table->SystemFlags) ? (__uint32_t)(((__uint32_t)(table-> SystemFlags) & 0xff) << 24 | ((__uint32_t)(table-> SystemFlags) & 0xff00) << 8 | ((__uint32_t)(table-> SystemFlags) & 0xff0000) >> 8 | ((__uint32_t)(table ->SystemFlags) & 0xff000000) >> 24) : __swap32md (table->SystemFlags))); | |||
2096 | CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig)((table->VRConfig) = (__uint32_t)(__builtin_constant_p(table ->VRConfig) ? (__uint32_t)(((__uint32_t)(table->VRConfig ) & 0xff) << 24 | ((__uint32_t)(table->VRConfig) & 0xff00) << 8 | ((__uint32_t)(table->VRConfig) & 0xff0000) >> 8 | ((__uint32_t)(table->VRConfig ) & 0xff000000) >> 24) : __swap32md(table->VRConfig ))); | |||
2097 | CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1)((table->SmioMask1) = (__uint32_t)(__builtin_constant_p(table ->SmioMask1) ? (__uint32_t)(((__uint32_t)(table->SmioMask1 ) & 0xff) << 24 | ((__uint32_t)(table->SmioMask1 ) & 0xff00) << 8 | ((__uint32_t)(table->SmioMask1 ) & 0xff0000) >> 8 | ((__uint32_t)(table->SmioMask1 ) & 0xff000000) >> 24) : __swap32md(table->SmioMask1 ))); | |||
2098 | CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2)((table->SmioMask2) = (__uint32_t)(__builtin_constant_p(table ->SmioMask2) ? (__uint32_t)(((__uint32_t)(table->SmioMask2 ) & 0xff) << 24 | ((__uint32_t)(table->SmioMask2 ) & 0xff00) << 8 | ((__uint32_t)(table->SmioMask2 ) & 0xff0000) >> 8 | ((__uint32_t)(table->SmioMask2 ) & 0xff000000) >> 24) : __swap32md(table->SmioMask2 ))); | |||
2099 | CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize)((table->SclkStepSize) = (__uint32_t)(__builtin_constant_p (table->SclkStepSize) ? (__uint32_t)(((__uint32_t)(table-> SclkStepSize) & 0xff) << 24 | ((__uint32_t)(table-> SclkStepSize) & 0xff00) << 8 | ((__uint32_t)(table-> SclkStepSize) & 0xff0000) >> 8 | ((__uint32_t)(table ->SclkStepSize) & 0xff000000) >> 24) : __swap32md (table->SclkStepSize))); | |||
2100 | CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh)((table->TemperatureLimitHigh) = (__uint16_t)(__builtin_constant_p (table->TemperatureLimitHigh) ? (__uint16_t)(((__uint16_t) (table->TemperatureLimitHigh) & 0xffU) << 8 | (( __uint16_t)(table->TemperatureLimitHigh) & 0xff00U) >> 8) : __swap16md(table->TemperatureLimitHigh))); | |||
2101 | CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow)((table->TemperatureLimitLow) = (__uint16_t)(__builtin_constant_p (table->TemperatureLimitLow) ? (__uint16_t)(((__uint16_t)( table->TemperatureLimitLow) & 0xffU) << 8 | ((__uint16_t )(table->TemperatureLimitLow) & 0xff00U) >> 8) : __swap16md(table->TemperatureLimitLow))); | |||
2102 | CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime)((table->VoltageResponseTime) = (__uint16_t)(__builtin_constant_p (table->VoltageResponseTime) ? (__uint16_t)(((__uint16_t)( table->VoltageResponseTime) & 0xffU) << 8 | ((__uint16_t )(table->VoltageResponseTime) & 0xff00U) >> 8) : __swap16md(table->VoltageResponseTime))); | |||
2103 | CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime)((table->PhaseResponseTime) = (__uint16_t)(__builtin_constant_p (table->PhaseResponseTime) ? (__uint16_t)(((__uint16_t)(table ->PhaseResponseTime) & 0xffU) << 8 | ((__uint16_t )(table->PhaseResponseTime) & 0xff00U) >> 8) : __swap16md (table->PhaseResponseTime))); | |||
2104 | ||||
2105 | /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */ | |||
2106 | result = smu7_copy_bytes_to_smc(hwmgr, | |||
2107 | smu_data->smu7_data.dpm_table_start + | |||
2108 | offsetof(SMU73_Discrete_DpmTable, SystemFlags)__builtin_offsetof(SMU73_Discrete_DpmTable, SystemFlags), | |||
2109 | (uint8_t *)&(table->SystemFlags), | |||
2110 | sizeof(SMU73_Discrete_DpmTable) - 3 * sizeof(SMU73_PIDController), | |||
2111 | SMC_RAM_END0x40000); | |||
2112 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to upload dpm data to SMC memory!" ); return result; } } while (0) | |||
2113 | "Failed to upload dpm data to SMC memory!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to upload dpm data to SMC memory!" ); return result; } } while (0); | |||
2114 | ||||
2115 | result = fiji_init_arb_table_index(hwmgr); | |||
2116 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to upload arb data to SMC memory!" ); return result; } } while (0) | |||
2117 | "Failed to upload arb data to SMC memory!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to upload arb data to SMC memory!" ); return result; } } while (0); | |||
2118 | ||||
2119 | result = fiji_populate_pm_fuses(hwmgr); | |||
2120 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate PM fuses to SMC memory!" ); return result; } } while (0) | |||
2121 | "Failed to populate PM fuses to SMC memory!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate PM fuses to SMC memory!" ); return result; } } while (0); | |||
2122 | ||||
2123 | result = fiji_setup_dpm_led_config(hwmgr); | |||
2124 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to setup dpm led config" ); return result; } } while (0) | |||
2125 | "Failed to setup dpm led config", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to setup dpm led config" ); return result; } } while (0); | |||
2126 | ||||
2127 | return 0; | |||
2128 | } | |||
2129 | ||||
2130 | static int fiji_thermal_setup_fan_table(struct pp_hwmgr *hwmgr) | |||
2131 | { | |||
2132 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); | |||
2133 | ||||
2134 | SMU73_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE0 }; | |||
2135 | uint32_t duty100; | |||
2136 | uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2; | |||
2137 | uint16_t fdo_min, slope1, slope2; | |||
2138 | uint32_t reference_clock; | |||
2139 | int res; | |||
2140 | uint64_t tmp64; | |||
2141 | ||||
2142 | if (hwmgr->thermal_controller.fanInfo.bNoFan) { | |||
2143 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, | |||
2144 | PHM_PlatformCaps_MicrocodeFanControl); | |||
2145 | return 0; | |||
2146 | } | |||
2147 | ||||
2148 | if (smu_data->smu7_data.fan_table_start == 0) { | |||
2149 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, | |||
2150 | PHM_PlatformCaps_MicrocodeFanControl); | |||
2151 | return 0; | |||
2152 | } | |||
2153 | ||||
2154 | duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0300068))) & 0xff) >> 0x0) | |||
2155 | CG_FDO_CTRL1, FMAX_DUTY100)((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0300068))) & 0xff) >> 0x0); | |||
2156 | ||||
2157 | if (duty100 == 0) { | |||
2158 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, | |||
2159 | PHM_PlatformCaps_MicrocodeFanControl); | |||
2160 | return 0; | |||
2161 | } | |||
2162 | ||||
2163 | tmp64 = hwmgr->thermal_controller.advanceFanControlParameters. | |||
2164 | usPWMMin * duty100; | |||
2165 | do_div(tmp64, 10000)({ uint32_t __base = (10000); uint32_t __rem = ((uint64_t)(tmp64 )) % __base; (tmp64) = ((uint64_t)(tmp64)) / __base; __rem; } ); | |||
2166 | fdo_min = (uint16_t)tmp64; | |||
2167 | ||||
2168 | t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - | |||
2169 | hwmgr->thermal_controller.advanceFanControlParameters.usTMin; | |||
2170 | t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - | |||
2171 | hwmgr->thermal_controller.advanceFanControlParameters.usTMed; | |||
2172 | ||||
2173 | pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - | |||
2174 | hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin; | |||
2175 | pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - | |||
2176 | hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed; | |||
2177 | ||||
2178 | slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100); | |||
2179 | slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100); | |||
2180 | ||||
2181 | fan_table.TempMin = cpu_to_be16((50 + hwmgr->(__uint16_t)(__builtin_constant_p((50 + hwmgr-> thermal_controller .advanceFanControlParameters.usTMin) / 100) ? (__uint16_t)((( __uint16_t)((50 + hwmgr-> thermal_controller.advanceFanControlParameters .usTMin) / 100) & 0xffU) << 8 | ((__uint16_t)((50 + hwmgr-> thermal_controller.advanceFanControlParameters.usTMin ) / 100) & 0xff00U) >> 8) : __swap16md((50 + hwmgr-> thermal_controller.advanceFanControlParameters.usTMin) / 100 )) | |||
2182 | thermal_controller.advanceFanControlParameters.usTMin) / 100)(__uint16_t)(__builtin_constant_p((50 + hwmgr-> thermal_controller .advanceFanControlParameters.usTMin) / 100) ? (__uint16_t)((( __uint16_t)((50 + hwmgr-> thermal_controller.advanceFanControlParameters .usTMin) / 100) & 0xffU) << 8 | ((__uint16_t)((50 + hwmgr-> thermal_controller.advanceFanControlParameters.usTMin ) / 100) & 0xff00U) >> 8) : __swap16md((50 + hwmgr-> thermal_controller.advanceFanControlParameters.usTMin) / 100 )); | |||
2183 | fan_table.TempMed = cpu_to_be16((50 + hwmgr->(__uint16_t)(__builtin_constant_p((50 + hwmgr-> thermal_controller .advanceFanControlParameters.usTMed) / 100) ? (__uint16_t)((( __uint16_t)((50 + hwmgr-> thermal_controller.advanceFanControlParameters .usTMed) / 100) & 0xffU) << 8 | ((__uint16_t)((50 + hwmgr-> thermal_controller.advanceFanControlParameters.usTMed ) / 100) & 0xff00U) >> 8) : __swap16md((50 + hwmgr-> thermal_controller.advanceFanControlParameters.usTMed) / 100 )) | |||
2184 | thermal_controller.advanceFanControlParameters.usTMed) / 100)(__uint16_t)(__builtin_constant_p((50 + hwmgr-> thermal_controller .advanceFanControlParameters.usTMed) / 100) ? (__uint16_t)((( __uint16_t)((50 + hwmgr-> thermal_controller.advanceFanControlParameters .usTMed) / 100) & 0xffU) << 8 | ((__uint16_t)((50 + hwmgr-> thermal_controller.advanceFanControlParameters.usTMed ) / 100) & 0xff00U) >> 8) : __swap16md((50 + hwmgr-> thermal_controller.advanceFanControlParameters.usTMed) / 100 )); | |||
2185 | fan_table.TempMax = cpu_to_be16((50 + hwmgr->(__uint16_t)(__builtin_constant_p((50 + hwmgr-> thermal_controller .advanceFanControlParameters.usTMax) / 100) ? (__uint16_t)((( __uint16_t)((50 + hwmgr-> thermal_controller.advanceFanControlParameters .usTMax) / 100) & 0xffU) << 8 | ((__uint16_t)((50 + hwmgr-> thermal_controller.advanceFanControlParameters.usTMax ) / 100) & 0xff00U) >> 8) : __swap16md((50 + hwmgr-> thermal_controller.advanceFanControlParameters.usTMax) / 100 )) | |||
2186 | thermal_controller.advanceFanControlParameters.usTMax) / 100)(__uint16_t)(__builtin_constant_p((50 + hwmgr-> thermal_controller .advanceFanControlParameters.usTMax) / 100) ? (__uint16_t)((( __uint16_t)((50 + hwmgr-> thermal_controller.advanceFanControlParameters .usTMax) / 100) & 0xffU) << 8 | ((__uint16_t)((50 + hwmgr-> thermal_controller.advanceFanControlParameters.usTMax ) / 100) & 0xff00U) >> 8) : __swap16md((50 + hwmgr-> thermal_controller.advanceFanControlParameters.usTMax) / 100 )); | |||
2187 | ||||
2188 | fan_table.Slope1 = cpu_to_be16(slope1)(__uint16_t)(__builtin_constant_p(slope1) ? (__uint16_t)(((__uint16_t )(slope1) & 0xffU) << 8 | ((__uint16_t)(slope1) & 0xff00U) >> 8) : __swap16md(slope1)); | |||
2189 | fan_table.Slope2 = cpu_to_be16(slope2)(__uint16_t)(__builtin_constant_p(slope2) ? (__uint16_t)(((__uint16_t )(slope2) & 0xffU) << 8 | ((__uint16_t)(slope2) & 0xff00U) >> 8) : __swap16md(slope2)); | |||
2190 | ||||
2191 | fan_table.FdoMin = cpu_to_be16(fdo_min)(__uint16_t)(__builtin_constant_p(fdo_min) ? (__uint16_t)(((__uint16_t )(fdo_min) & 0xffU) << 8 | ((__uint16_t)(fdo_min) & 0xff00U) >> 8) : __swap16md(fdo_min)); | |||
2192 | ||||
2193 | fan_table.HystDown = cpu_to_be16(hwmgr->(__uint16_t)(__builtin_constant_p(hwmgr-> thermal_controller .advanceFanControlParameters.ucTHyst) ? (__uint16_t)(((__uint16_t )(hwmgr-> thermal_controller.advanceFanControlParameters.ucTHyst ) & 0xffU) << 8 | ((__uint16_t)(hwmgr-> thermal_controller .advanceFanControlParameters.ucTHyst) & 0xff00U) >> 8) : __swap16md(hwmgr-> thermal_controller.advanceFanControlParameters .ucTHyst)) | |||
2194 | thermal_controller.advanceFanControlParameters.ucTHyst)(__uint16_t)(__builtin_constant_p(hwmgr-> thermal_controller .advanceFanControlParameters.ucTHyst) ? (__uint16_t)(((__uint16_t )(hwmgr-> thermal_controller.advanceFanControlParameters.ucTHyst ) & 0xffU) << 8 | ((__uint16_t)(hwmgr-> thermal_controller .advanceFanControlParameters.ucTHyst) & 0xff00U) >> 8) : __swap16md(hwmgr-> thermal_controller.advanceFanControlParameters .ucTHyst)); | |||
2195 | ||||
2196 | fan_table.HystUp = cpu_to_be16(1)(__uint16_t)(__builtin_constant_p(1) ? (__uint16_t)(((__uint16_t )(1) & 0xffU) << 8 | ((__uint16_t)(1) & 0xff00U ) >> 8) : __swap16md(1)); | |||
2197 | ||||
2198 | fan_table.HystSlope = cpu_to_be16(1)(__uint16_t)(__builtin_constant_p(1) ? (__uint16_t)(((__uint16_t )(1) & 0xffU) << 8 | ((__uint16_t)(1) & 0xff00U ) >> 8) : __swap16md(1)); | |||
2199 | ||||
2200 | fan_table.TempRespLim = cpu_to_be16(5)(__uint16_t)(__builtin_constant_p(5) ? (__uint16_t)(((__uint16_t )(5) & 0xffU) << 8 | ((__uint16_t)(5) & 0xff00U ) >> 8) : __swap16md(5)); | |||
2201 | ||||
2202 | reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev)((struct amdgpu_device *)hwmgr->adev)->asic_funcs->get_xclk (((struct amdgpu_device *)hwmgr->adev)); | |||
2203 | ||||
2204 | fan_table.RefreshPeriod = cpu_to_be32((hwmgr->(__uint32_t)(__builtin_constant_p((hwmgr-> thermal_controller .advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) ? (__uint32_t)(((__uint32_t)((hwmgr-> thermal_controller .advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) & 0xff) << 24 | ((__uint32_t)((hwmgr-> thermal_controller .advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) & 0xff00) << 8 | ((__uint32_t)((hwmgr-> thermal_controller .advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) & 0xff0000) >> 8 | ((__uint32_t)((hwmgr-> thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) & 0xff000000) >> 24) : __swap32md ((hwmgr-> thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600)) | |||
2205 | thermal_controller.advanceFanControlParameters.ulCycleDelay *(__uint32_t)(__builtin_constant_p((hwmgr-> thermal_controller .advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) ? (__uint32_t)(((__uint32_t)((hwmgr-> thermal_controller .advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) & 0xff) << 24 | ((__uint32_t)((hwmgr-> thermal_controller .advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) & 0xff00) << 8 | ((__uint32_t)((hwmgr-> thermal_controller .advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) & 0xff0000) >> 8 | ((__uint32_t)((hwmgr-> thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) & 0xff000000) >> 24) : __swap32md ((hwmgr-> thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600)) | |||
2206 | reference_clock) / 1600)(__uint32_t)(__builtin_constant_p((hwmgr-> thermal_controller .advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) ? (__uint32_t)(((__uint32_t)((hwmgr-> thermal_controller .advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) & 0xff) << 24 | ((__uint32_t)((hwmgr-> thermal_controller .advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) & 0xff00) << 8 | ((__uint32_t)((hwmgr-> thermal_controller .advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) & 0xff0000) >> 8 | ((__uint32_t)((hwmgr-> thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) & 0xff000000) >> 24) : __swap32md ((hwmgr-> thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600)); | |||
2207 | ||||
2208 | fan_table.FdoMax = cpu_to_be16((uint16_t)duty100)(__uint16_t)(__builtin_constant_p((uint16_t)duty100) ? (__uint16_t )(((__uint16_t)((uint16_t)duty100) & 0xffU) << 8 | ( (__uint16_t)((uint16_t)duty100) & 0xff00U) >> 8) : __swap16md ((uint16_t)duty100)); | |||
2209 | ||||
2210 | fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0300010))) & 0xff00000 ) >> 0x14) | |||
2211 | hwmgr->device, CGS_IND_REG__SMC,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0300010))) & 0xff00000 ) >> 0x14) | |||
2212 | CG_MULT_THERMAL_CTRL, TEMP_SEL)((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0300010))) & 0xff00000 ) >> 0x14); | |||
2213 | ||||
2214 | res = smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.fan_table_start, | |||
2215 | (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), | |||
2216 | SMC_RAM_END0x40000); | |||
2217 | ||||
2218 | if (!res && hwmgr->thermal_controller. | |||
2219 | advanceFanControlParameters.ucMinimumPWMLimit) | |||
2220 | res = smum_send_msg_to_smc_with_parameter(hwmgr, | |||
2221 | PPSMC_MSG_SetFanMinPwm((uint16_t) 0x209), | |||
2222 | hwmgr->thermal_controller. | |||
2223 | advanceFanControlParameters.ucMinimumPWMLimit, | |||
2224 | NULL((void *)0)); | |||
2225 | ||||
2226 | if (!res && hwmgr->thermal_controller. | |||
2227 | advanceFanControlParameters.ulMinFanSCLKAcousticLimit) | |||
2228 | res = smum_send_msg_to_smc_with_parameter(hwmgr, | |||
2229 | PPSMC_MSG_SetFanSclkTarget((uint16_t) 0x206), | |||
2230 | hwmgr->thermal_controller. | |||
2231 | advanceFanControlParameters.ulMinFanSCLKAcousticLimit, | |||
2232 | NULL((void *)0)); | |||
2233 | ||||
2234 | if (res) | |||
2235 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, | |||
2236 | PHM_PlatformCaps_MicrocodeFanControl); | |||
2237 | ||||
2238 | return 0; | |||
2239 | } | |||
2240 | ||||
2241 | ||||
2242 | static int fiji_thermal_avfs_enable(struct pp_hwmgr *hwmgr) | |||
2243 | { | |||
2244 | if (!hwmgr->avfs_supported) | |||
2245 | return 0; | |||
2246 | ||||
2247 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAvfs((uint16_t) 0x26A), NULL((void *)0)); | |||
2248 | ||||
2249 | return 0; | |||
2250 | } | |||
2251 | ||||
2252 | static int fiji_program_mem_timing_parameters(struct pp_hwmgr *hwmgr) | |||
2253 | { | |||
2254 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | |||
2255 | ||||
2256 | if (data->need_update_smu7_dpm_table & | |||
2257 | (DPMTABLE_OD_UPDATE_SCLK0x00000001 + DPMTABLE_OD_UPDATE_MCLK0x00000002)) | |||
2258 | return fiji_program_memory_timing_parameters(hwmgr); | |||
2259 | ||||
2260 | return 0; | |||
2261 | } | |||
2262 | ||||
2263 | static int fiji_update_sclk_threshold(struct pp_hwmgr *hwmgr) | |||
2264 | { | |||
2265 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | |||
2266 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); | |||
2267 | ||||
2268 | int result = 0; | |||
2269 | uint32_t low_sclk_interrupt_threshold = 0; | |||
2270 | ||||
2271 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | |||
2272 | PHM_PlatformCaps_SclkThrottleLowNotification) | |||
2273 | && (data->low_sclk_interrupt_threshold != 0)) { | |||
2274 | low_sclk_interrupt_threshold = | |||
2275 | data->low_sclk_interrupt_threshold; | |||
2276 | ||||
2277 | CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold)((low_sclk_interrupt_threshold) = (__uint32_t)(__builtin_constant_p (low_sclk_interrupt_threshold) ? (__uint32_t)(((__uint32_t)(low_sclk_interrupt_threshold ) & 0xff) << 24 | ((__uint32_t)(low_sclk_interrupt_threshold ) & 0xff00) << 8 | ((__uint32_t)(low_sclk_interrupt_threshold ) & 0xff0000) >> 8 | ((__uint32_t)(low_sclk_interrupt_threshold ) & 0xff000000) >> 24) : __swap32md(low_sclk_interrupt_threshold ))); | |||
2278 | ||||
2279 | result = smu7_copy_bytes_to_smc( | |||
2280 | hwmgr, | |||
2281 | smu_data->smu7_data.dpm_table_start + | |||
2282 | offsetof(SMU73_Discrete_DpmTable,__builtin_offsetof(SMU73_Discrete_DpmTable, LowSclkInterruptThreshold ) | |||
2283 | LowSclkInterruptThreshold)__builtin_offsetof(SMU73_Discrete_DpmTable, LowSclkInterruptThreshold ), | |||
2284 | (uint8_t *)&low_sclk_interrupt_threshold, | |||
2285 | sizeof(uint32_t), | |||
2286 | SMC_RAM_END0x40000); | |||
2287 | } | |||
2288 | result = fiji_program_mem_timing_parameters(hwmgr); | |||
2289 | PP_ASSERT_WITH_CODE((result == 0),do { if (!((result == 0))) { printk("\0014" "amdgpu: " "%s\n" , "Failed to program memory timing parameters!"); ; } } while (0) | |||
2290 | "Failed to program memory timing parameters!",do { if (!((result == 0))) { printk("\0014" "amdgpu: " "%s\n" , "Failed to program memory timing parameters!"); ; } } while (0) | |||
2291 | )do { if (!((result == 0))) { printk("\0014" "amdgpu: " "%s\n" , "Failed to program memory timing parameters!"); ; } } while (0); | |||
2292 | return result; | |||
2293 | } | |||
2294 | ||||
2295 | static uint32_t fiji_get_offsetof(uint32_t type, uint32_t member) | |||
2296 | { | |||
2297 | switch (type) { | |||
2298 | case SMU_SoftRegisters: | |||
2299 | switch (member) { | |||
2300 | case HandshakeDisables: | |||
2301 | return offsetof(SMU73_SoftRegisters, HandshakeDisables)__builtin_offsetof(SMU73_SoftRegisters, HandshakeDisables); | |||
2302 | case VoltageChangeTimeout: | |||
2303 | return offsetof(SMU73_SoftRegisters, VoltageChangeTimeout)__builtin_offsetof(SMU73_SoftRegisters, VoltageChangeTimeout); | |||
2304 | case AverageGraphicsActivity: | |||
2305 | return offsetof(SMU73_SoftRegisters, AverageGraphicsActivity)__builtin_offsetof(SMU73_SoftRegisters, AverageGraphicsActivity ); | |||
2306 | case AverageMemoryActivity: | |||
2307 | return offsetof(SMU73_SoftRegisters, AverageMemoryActivity)__builtin_offsetof(SMU73_SoftRegisters, AverageMemoryActivity ); | |||
2308 | case PreVBlankGap: | |||
2309 | return offsetof(SMU73_SoftRegisters, PreVBlankGap)__builtin_offsetof(SMU73_SoftRegisters, PreVBlankGap); | |||
2310 | case VBlankTimeout: | |||
2311 | return offsetof(SMU73_SoftRegisters, VBlankTimeout)__builtin_offsetof(SMU73_SoftRegisters, VBlankTimeout); | |||
2312 | case UcodeLoadStatus: | |||
2313 | return offsetof(SMU73_SoftRegisters, UcodeLoadStatus)__builtin_offsetof(SMU73_SoftRegisters, UcodeLoadStatus); | |||
2314 | case DRAM_LOG_ADDR_H: | |||
2315 | return offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_H)__builtin_offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_H); | |||
2316 | case DRAM_LOG_ADDR_L: | |||
2317 | return offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_L)__builtin_offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_L); | |||
2318 | case DRAM_LOG_PHY_ADDR_H: | |||
2319 | return offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_H)__builtin_offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_H); | |||
2320 | case DRAM_LOG_PHY_ADDR_L: | |||
2321 | return offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_L)__builtin_offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_L); | |||
2322 | case DRAM_LOG_BUFF_SIZE: | |||
2323 | return offsetof(SMU73_SoftRegisters, DRAM_LOG_BUFF_SIZE)__builtin_offsetof(SMU73_SoftRegisters, DRAM_LOG_BUFF_SIZE); | |||
2324 | } | |||
2325 | break; | |||
2326 | case SMU_Discrete_DpmTable: | |||
2327 | switch (member) { | |||
2328 | case UvdBootLevel: | |||
2329 | return offsetof(SMU73_Discrete_DpmTable, UvdBootLevel)__builtin_offsetof(SMU73_Discrete_DpmTable, UvdBootLevel); | |||
2330 | case VceBootLevel: | |||
2331 | return offsetof(SMU73_Discrete_DpmTable, VceBootLevel)__builtin_offsetof(SMU73_Discrete_DpmTable, VceBootLevel); | |||
2332 | case LowSclkInterruptThreshold: | |||
2333 | return offsetof(SMU73_Discrete_DpmTable, LowSclkInterruptThreshold)__builtin_offsetof(SMU73_Discrete_DpmTable, LowSclkInterruptThreshold ); | |||
2334 | } | |||
2335 | break; | |||
2336 | } | |||
2337 | pr_warn("can't get the offset of type %x member %x\n", type, member)printk("\0014" "amdgpu: " "can't get the offset of type %x member %x\n" , type, member); | |||
2338 | return 0; | |||
2339 | } | |||
2340 | ||||
2341 | static uint32_t fiji_get_mac_definition(uint32_t value) | |||
2342 | { | |||
2343 | switch (value) { | |||
2344 | case SMU_MAX_LEVELS_GRAPHICS: | |||
2345 | return SMU73_MAX_LEVELS_GRAPHICS8; | |||
2346 | case SMU_MAX_LEVELS_MEMORY: | |||
2347 | return SMU73_MAX_LEVELS_MEMORY4; | |||
2348 | case SMU_MAX_LEVELS_LINK: | |||
2349 | return SMU73_MAX_LEVELS_LINK8; | |||
2350 | case SMU_MAX_ENTRIES_SMIO: | |||
2351 | return SMU73_MAX_ENTRIES_SMIO32; | |||
2352 | case SMU_MAX_LEVELS_VDDC: | |||
2353 | return SMU73_MAX_LEVELS_VDDC16; | |||
2354 | case SMU_MAX_LEVELS_VDDGFX: | |||
2355 | return SMU73_MAX_LEVELS_VDDGFX16; | |||
2356 | case SMU_MAX_LEVELS_VDDCI: | |||
2357 | return SMU73_MAX_LEVELS_VDDCI8; | |||
2358 | case SMU_MAX_LEVELS_MVDD: | |||
2359 | return SMU73_MAX_LEVELS_MVDD4; | |||
2360 | } | |||
2361 | ||||
2362 | pr_warn("can't get the mac of %x\n", value)printk("\0014" "amdgpu: " "can't get the mac of %x\n", value); | |||
2363 | return 0; | |||
2364 | } | |||
2365 | ||||
2366 | ||||
2367 | static int fiji_update_uvd_smc_table(struct pp_hwmgr *hwmgr) | |||
2368 | { | |||
2369 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); | |||
2370 | uint32_t mm_boot_level_offset, mm_boot_level_value; | |||
2371 | struct phm_ppt_v1_information *table_info = | |||
2372 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | |||
2373 | ||||
2374 | smu_data->smc_state_table.UvdBootLevel = 0; | |||
2375 | if (table_info->mm_dep_table->count > 0) | |||
2376 | smu_data->smc_state_table.UvdBootLevel = | |||
2377 | (uint8_t) (table_info->mm_dep_table->count - 1); | |||
2378 | mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU73_Discrete_DpmTable,__builtin_offsetof(SMU73_Discrete_DpmTable, UvdBootLevel) | |||
2379 | UvdBootLevel)__builtin_offsetof(SMU73_Discrete_DpmTable, UvdBootLevel); | |||
2380 | mm_boot_level_offset /= 4; | |||
2381 | mm_boot_level_offset *= 4; | |||
2382 | mm_boot_level_value = cgs_read_ind_register(hwmgr->device,(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset)) | |||
2383 | CGS_IND_REG__SMC, mm_boot_level_offset)(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset)); | |||
2384 | mm_boot_level_value &= 0x00FFFFFF; | |||
2385 | mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24; | |||
2386 | cgs_write_ind_register(hwmgr->device,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset,mm_boot_level_value )) | |||
2387 | CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset,mm_boot_level_value )); | |||
2388 | ||||
2389 | if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | |||
2390 | PHM_PlatformCaps_UVDDPM) || | |||
2391 | phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | |||
2392 | PHM_PlatformCaps_StablePState)) | |||
2393 | smum_send_msg_to_smc_with_parameter(hwmgr, | |||
2394 | PPSMC_MSG_UVDDPM_SetEnabledMask((uint16_t) 0x12D), | |||
2395 | (uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel), | |||
2396 | NULL((void *)0)); | |||
2397 | return 0; | |||
2398 | } | |||
2399 | ||||
2400 | static int fiji_update_vce_smc_table(struct pp_hwmgr *hwmgr) | |||
2401 | { | |||
2402 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); | |||
2403 | uint32_t mm_boot_level_offset, mm_boot_level_value; | |||
2404 | struct phm_ppt_v1_information *table_info = | |||
2405 | (struct phm_ppt_v1_information *)(hwmgr->pptable); | |||
2406 | ||||
2407 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, | |||
2408 | PHM_PlatformCaps_StablePState)) | |||
2409 | smu_data->smc_state_table.VceBootLevel = | |||
2410 | (uint8_t) (table_info->mm_dep_table->count - 1); | |||
2411 | else | |||
2412 | smu_data->smc_state_table.VceBootLevel = 0; | |||
2413 | ||||
2414 | mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + | |||
2415 | offsetof(SMU73_Discrete_DpmTable, VceBootLevel)__builtin_offsetof(SMU73_Discrete_DpmTable, VceBootLevel); | |||
2416 | mm_boot_level_offset /= 4; | |||
2417 | mm_boot_level_offset *= 4; | |||
2418 | mm_boot_level_value = cgs_read_ind_register(hwmgr->device,(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset)) | |||
2419 | CGS_IND_REG__SMC, mm_boot_level_offset)(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset)); | |||
2420 | mm_boot_level_value &= 0xFF00FFFF; | |||
2421 | mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16; | |||
2422 | cgs_write_ind_register(hwmgr->device,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset,mm_boot_level_value )) | |||
2423 | CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset,mm_boot_level_value )); | |||
2424 | ||||
2425 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) | |||
2426 | smum_send_msg_to_smc_with_parameter(hwmgr, | |||
2427 | PPSMC_MSG_VCEDPM_SetEnabledMask((uint16_t) 0x12E), | |||
2428 | (uint32_t)1 << smu_data->smc_state_table.VceBootLevel, | |||
2429 | NULL((void *)0)); | |||
2430 | return 0; | |||
2431 | } | |||
2432 | ||||
2433 | static int fiji_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type) | |||
2434 | { | |||
2435 | switch (type) { | |||
2436 | case SMU_UVD_TABLE: | |||
2437 | fiji_update_uvd_smc_table(hwmgr); | |||
2438 | break; | |||
2439 | case SMU_VCE_TABLE: | |||
2440 | fiji_update_vce_smc_table(hwmgr); | |||
2441 | break; | |||
2442 | default: | |||
2443 | break; | |||
2444 | } | |||
2445 | return 0; | |||
2446 | } | |||
2447 | ||||
2448 | static int fiji_process_firmware_header(struct pp_hwmgr *hwmgr) | |||
2449 | { | |||
2450 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | |||
2451 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); | |||
2452 | uint32_t tmp; | |||
2453 | int result; | |||
2454 | bool_Bool error = false0; | |||
2455 | ||||
2456 | result = smu7_read_smc_sram_dword(hwmgr, | |||
2457 | SMU7_FIRMWARE_HEADER_LOCATION0x20000 + | |||
2458 | offsetof(SMU73_Firmware_Header, DpmTable)__builtin_offsetof(SMU73_Firmware_Header, DpmTable), | |||
2459 | &tmp, SMC_RAM_END0x40000); | |||
2460 | ||||
2461 | if (0 == result) | |||
2462 | smu_data->smu7_data.dpm_table_start = tmp; | |||
2463 | ||||
2464 | error |= (0 != result); | |||
2465 | ||||
2466 | result = smu7_read_smc_sram_dword(hwmgr, | |||
2467 | SMU7_FIRMWARE_HEADER_LOCATION0x20000 + | |||
2468 | offsetof(SMU73_Firmware_Header, SoftRegisters)__builtin_offsetof(SMU73_Firmware_Header, SoftRegisters), | |||
2469 | &tmp, SMC_RAM_END0x40000); | |||
2470 | ||||
2471 | if (!result) { | |||
2472 | data->soft_regs_start = tmp; | |||
2473 | smu_data->smu7_data.soft_regs_start = tmp; | |||
2474 | } | |||
2475 | ||||
2476 | error |= (0 != result); | |||
2477 | ||||
2478 | result = smu7_read_smc_sram_dword(hwmgr, | |||
2479 | SMU7_FIRMWARE_HEADER_LOCATION0x20000 + | |||
2480 | offsetof(SMU73_Firmware_Header, mcRegisterTable)__builtin_offsetof(SMU73_Firmware_Header, mcRegisterTable), | |||
2481 | &tmp, SMC_RAM_END0x40000); | |||
2482 | ||||
2483 | if (!result) | |||
2484 | smu_data->smu7_data.mc_reg_table_start = tmp; | |||
2485 | ||||
2486 | result = smu7_read_smc_sram_dword(hwmgr, | |||
2487 | SMU7_FIRMWARE_HEADER_LOCATION0x20000 + | |||
2488 | offsetof(SMU73_Firmware_Header, FanTable)__builtin_offsetof(SMU73_Firmware_Header, FanTable), | |||
2489 | &tmp, SMC_RAM_END0x40000); | |||
2490 | ||||
2491 | if (!result) | |||
2492 | smu_data->smu7_data.fan_table_start = tmp; | |||
2493 | ||||
2494 | error |= (0 != result); | |||
2495 | ||||
2496 | result = smu7_read_smc_sram_dword(hwmgr, | |||
2497 | SMU7_FIRMWARE_HEADER_LOCATION0x20000 + | |||
2498 | offsetof(SMU73_Firmware_Header, mcArbDramTimingTable)__builtin_offsetof(SMU73_Firmware_Header, mcArbDramTimingTable ), | |||
2499 | &tmp, SMC_RAM_END0x40000); | |||
2500 | ||||
2501 | if (!result) | |||
2502 | smu_data->smu7_data.arb_table_start = tmp; | |||
2503 | ||||
2504 | error |= (0 != result); | |||
2505 | ||||
2506 | result = smu7_read_smc_sram_dword(hwmgr, | |||
2507 | SMU7_FIRMWARE_HEADER_LOCATION0x20000 + | |||
2508 | offsetof(SMU73_Firmware_Header, Version)__builtin_offsetof(SMU73_Firmware_Header, Version), | |||
2509 | &tmp, SMC_RAM_END0x40000); | |||
2510 | ||||
2511 | if (!result) | |||
2512 | hwmgr->microcode_version_info.SMC = tmp; | |||
2513 | ||||
2514 | error |= (0 != result); | |||
2515 | ||||
2516 | return error ? -1 : 0; | |||
2517 | } | |||
2518 | ||||
2519 | static int fiji_initialize_mc_reg_table(struct pp_hwmgr *hwmgr) | |||
2520 | { | |||
2521 | ||||
2522 | /* Program additional LP registers | |||
2523 | * that are no longer programmed by VBIOS | |||
2524 | */ | |||
2525 | cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP,(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xa9b,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa28)))) | |||
2526 | cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xa9b,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa28)))); | |||
2527 | cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP,(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xa9c,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa29)))) | |||
2528 | cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xa9c,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa29)))); | |||
2529 | cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP,(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xa9e,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa2b)))) | |||
2530 | cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xa9e,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa2b)))); | |||
2531 | cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP,(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xaa0,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa30)))) | |||
2532 | cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xaa0,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa30)))); | |||
2533 | cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP,(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xac7,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa2d)))) | |||
2534 | cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xac7,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa2d)))); | |||
2535 | cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP,(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xac8,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa2e)))) | |||
2536 | cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xac8,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa2e)))); | |||
2537 | cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP,(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xad3,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa2c)))) | |||
2538 | cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xad3,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa2c)))); | |||
2539 | ||||
2540 | return 0; | |||
2541 | } | |||
2542 | ||||
2543 | static bool_Bool fiji_is_dpm_running(struct pp_hwmgr *hwmgr) | |||
2544 | { | |||
2545 | return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x3f010))) & 0x2000) >> 0xd) | |||
2546 | CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON)((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x3f010))) & 0x2000) >> 0xd)) | |||
2547 | ? true1 : false0; | |||
2548 | } | |||
2549 | ||||
2550 | static int fiji_update_dpm_settings(struct pp_hwmgr *hwmgr, | |||
2551 | void *profile_setting) | |||
2552 | { | |||
2553 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); | |||
2554 | struct fiji_smumgr *smu_data = (struct fiji_smumgr *) | |||
2555 | (hwmgr->smu_backend); | |||
2556 | struct profile_mode_setting *setting; | |||
2557 | struct SMU73_Discrete_GraphicsLevel *levels = | |||
2558 | smu_data->smc_state_table.GraphicsLevel; | |||
2559 | uint32_t array = smu_data->smu7_data.dpm_table_start + | |||
2560 | offsetof(SMU73_Discrete_DpmTable, GraphicsLevel)__builtin_offsetof(SMU73_Discrete_DpmTable, GraphicsLevel); | |||
2561 | ||||
2562 | uint32_t mclk_array = smu_data->smu7_data.dpm_table_start + | |||
2563 | offsetof(SMU73_Discrete_DpmTable, MemoryLevel)__builtin_offsetof(SMU73_Discrete_DpmTable, MemoryLevel); | |||
2564 | struct SMU73_Discrete_MemoryLevel *mclk_levels = | |||
2565 | smu_data->smc_state_table.MemoryLevel; | |||
2566 | uint32_t i; | |||
2567 | uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp; | |||
2568 | ||||
2569 | if (profile_setting == NULL((void *)0)) | |||
2570 | return -EINVAL22; | |||
2571 | ||||
2572 | setting = (struct profile_mode_setting *)profile_setting; | |||
2573 | ||||
2574 | if (setting->bupdate_sclk) { | |||
2575 | if (!data->sclk_dpm_key_disabled) | |||
2576 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel((uint16_t) 0x189), NULL((void *)0)); | |||
2577 | for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) { | |||
2578 | if (levels[i].ActivityLevel != | |||
2579 | cpu_to_be16(setting->sclk_activity)(__uint16_t)(__builtin_constant_p(setting->sclk_activity) ? (__uint16_t)(((__uint16_t)(setting->sclk_activity) & 0xffU ) << 8 | ((__uint16_t)(setting->sclk_activity) & 0xff00U) >> 8) : __swap16md(setting->sclk_activity) )) { | |||
2580 | levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity)(__uint16_t)(__builtin_constant_p(setting->sclk_activity) ? (__uint16_t)(((__uint16_t)(setting->sclk_activity) & 0xffU ) << 8 | ((__uint16_t)(setting->sclk_activity) & 0xff00U) >> 8) : __swap16md(setting->sclk_activity) ); | |||
2581 | ||||
2582 | clk_activity_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i) | |||
2583 | + offsetof(SMU73_Discrete_GraphicsLevel, ActivityLevel)__builtin_offsetof(SMU73_Discrete_GraphicsLevel, ActivityLevel ); | |||
2584 | offset = clk_activity_offset & ~0x3; | |||
2585 | tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset))(__uint32_t)(__builtin_constant_p((((struct cgs_device *)hwmgr ->device)->ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC ,offset))) ? (__uint32_t)(((__uint32_t)((((struct cgs_device * )hwmgr->device)->ops->read_ind_register(hwmgr->device ,CGS_IND_REG__SMC,offset))) & 0xff) << 24 | ((__uint32_t )((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,offset))) & 0xff00) << 8 | ((__uint32_t)((((struct cgs_device *)hwmgr->device)-> ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset ))) & 0xff0000) >> 8 | ((__uint32_t)((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,offset))) & 0xff000000) >> 24 ) : __swap32md((((struct cgs_device *)hwmgr->device)->ops ->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset )))); | |||
2586 | tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t)); | |||
2587 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp))(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,offset,(__uint32_t)(__builtin_constant_p (tmp) ? (__uint32_t)(((__uint32_t)(tmp) & 0xff) << 24 | ((__uint32_t)(tmp) & 0xff00) << 8 | ((__uint32_t )(tmp) & 0xff0000) >> 8 | ((__uint32_t)(tmp) & 0xff000000 ) >> 24) : __swap32md(tmp)))); | |||
2588 | ||||
2589 | } | |||
2590 | if (levels[i].UpHyst != setting->sclk_up_hyst || | |||
2591 | levels[i].DownHyst != setting->sclk_down_hyst) { | |||
2592 | levels[i].UpHyst = setting->sclk_up_hyst; | |||
2593 | levels[i].DownHyst = setting->sclk_down_hyst; | |||
2594 | up_hyst_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i) | |||
2595 | + offsetof(SMU73_Discrete_GraphicsLevel, UpHyst)__builtin_offsetof(SMU73_Discrete_GraphicsLevel, UpHyst); | |||
2596 | down_hyst_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i) | |||
2597 | + offsetof(SMU73_Discrete_GraphicsLevel, DownHyst)__builtin_offsetof(SMU73_Discrete_GraphicsLevel, DownHyst); | |||
2598 | offset = up_hyst_offset & ~0x3; | |||
2599 | tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset))(__uint32_t)(__builtin_constant_p((((struct cgs_device *)hwmgr ->device)->ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC ,offset))) ? (__uint32_t)(((__uint32_t)((((struct cgs_device * )hwmgr->device)->ops->read_ind_register(hwmgr->device ,CGS_IND_REG__SMC,offset))) & 0xff) << 24 | ((__uint32_t )((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,offset))) & 0xff00) << 8 | ((__uint32_t)((((struct cgs_device *)hwmgr->device)-> ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset ))) & 0xff0000) >> 8 | ((__uint32_t)((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,offset))) & 0xff000000) >> 24 ) : __swap32md((((struct cgs_device *)hwmgr->device)->ops ->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset )))); | |||
2600 | tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpHyst, sizeof(uint8_t)); | |||
2601 | tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownHyst, sizeof(uint8_t)); | |||
2602 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp))(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,offset,(__uint32_t)(__builtin_constant_p (tmp) ? (__uint32_t)(((__uint32_t)(tmp) & 0xff) << 24 | ((__uint32_t)(tmp) & 0xff00) << 8 | ((__uint32_t )(tmp) & 0xff0000) >> 8 | ((__uint32_t)(tmp) & 0xff000000 ) >> 24) : __swap32md(tmp)))); | |||
2603 | } | |||
2604 | } | |||
2605 | if (!data->sclk_dpm_key_disabled) | |||
2606 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel((uint16_t) 0x18A), NULL((void *)0)); | |||
2607 | } | |||
2608 | ||||
2609 | if (setting->bupdate_mclk) { | |||
2610 | if (!data->mclk_dpm_key_disabled) | |||
2611 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel((uint16_t) 0x18B), NULL((void *)0)); | |||
2612 | for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) { | |||
2613 | if (mclk_levels[i].ActivityLevel != | |||
2614 | cpu_to_be16(setting->mclk_activity)(__uint16_t)(__builtin_constant_p(setting->mclk_activity) ? (__uint16_t)(((__uint16_t)(setting->mclk_activity) & 0xffU ) << 8 | ((__uint16_t)(setting->mclk_activity) & 0xff00U) >> 8) : __swap16md(setting->mclk_activity) )) { | |||
2615 | mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity)(__uint16_t)(__builtin_constant_p(setting->mclk_activity) ? (__uint16_t)(((__uint16_t)(setting->mclk_activity) & 0xffU ) << 8 | ((__uint16_t)(setting->mclk_activity) & 0xff00U) >> 8) : __swap16md(setting->mclk_activity) ); | |||
2616 | ||||
2617 | clk_activity_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i) | |||
2618 | + offsetof(SMU73_Discrete_MemoryLevel, ActivityLevel)__builtin_offsetof(SMU73_Discrete_MemoryLevel, ActivityLevel); | |||
2619 | offset = clk_activity_offset & ~0x3; | |||
2620 | tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset))(__uint32_t)(__builtin_constant_p((((struct cgs_device *)hwmgr ->device)->ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC ,offset))) ? (__uint32_t)(((__uint32_t)((((struct cgs_device * )hwmgr->device)->ops->read_ind_register(hwmgr->device ,CGS_IND_REG__SMC,offset))) & 0xff) << 24 | ((__uint32_t )((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,offset))) & 0xff00) << 8 | ((__uint32_t)((((struct cgs_device *)hwmgr->device)-> ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset ))) & 0xff0000) >> 8 | ((__uint32_t)((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,offset))) & 0xff000000) >> 24 ) : __swap32md((((struct cgs_device *)hwmgr->device)->ops ->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset )))); | |||
2621 | tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t)); | |||
2622 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp))(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,offset,(__uint32_t)(__builtin_constant_p (tmp) ? (__uint32_t)(((__uint32_t)(tmp) & 0xff) << 24 | ((__uint32_t)(tmp) & 0xff00) << 8 | ((__uint32_t )(tmp) & 0xff0000) >> 8 | ((__uint32_t)(tmp) & 0xff000000 ) >> 24) : __swap32md(tmp)))); | |||
2623 | ||||
2624 | } | |||
2625 | if (mclk_levels[i].UpHyst != setting->mclk_up_hyst || | |||
2626 | mclk_levels[i].DownHyst != setting->mclk_down_hyst) { | |||
2627 | mclk_levels[i].UpHyst = setting->mclk_up_hyst; | |||
2628 | mclk_levels[i].DownHyst = setting->mclk_down_hyst; | |||
2629 | up_hyst_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i) | |||
2630 | + offsetof(SMU73_Discrete_MemoryLevel, UpHyst)__builtin_offsetof(SMU73_Discrete_MemoryLevel, UpHyst); | |||
2631 | down_hyst_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i) | |||
2632 | + offsetof(SMU73_Discrete_MemoryLevel, DownHyst)__builtin_offsetof(SMU73_Discrete_MemoryLevel, DownHyst); | |||
2633 | offset = up_hyst_offset & ~0x3; | |||
2634 | tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset))(__uint32_t)(__builtin_constant_p((((struct cgs_device *)hwmgr ->device)->ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC ,offset))) ? (__uint32_t)(((__uint32_t)((((struct cgs_device * )hwmgr->device)->ops->read_ind_register(hwmgr->device ,CGS_IND_REG__SMC,offset))) & 0xff) << 24 | ((__uint32_t )((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,offset))) & 0xff00) << 8 | ((__uint32_t)((((struct cgs_device *)hwmgr->device)-> ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset ))) & 0xff0000) >> 8 | ((__uint32_t)((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,offset))) & 0xff000000) >> 24 ) : __swap32md((((struct cgs_device *)hwmgr->device)->ops ->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset )))); | |||
2635 | tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpHyst, sizeof(uint8_t)); | |||
2636 | tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownHyst, sizeof(uint8_t)); | |||
2637 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp))(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,offset,(__uint32_t)(__builtin_constant_p (tmp) ? (__uint32_t)(((__uint32_t)(tmp) & 0xff) << 24 | ((__uint32_t)(tmp) & 0xff00) << 8 | ((__uint32_t )(tmp) & 0xff0000) >> 8 | ((__uint32_t)(tmp) & 0xff000000 ) >> 24) : __swap32md(tmp)))); | |||
2638 | } | |||
2639 | } | |||
2640 | if (!data->mclk_dpm_key_disabled) | |||
2641 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel((uint16_t) 0x18C), NULL((void *)0)); | |||
2642 | } | |||
2643 | return 0; | |||
2644 | } | |||
2645 | ||||
2646 | const struct pp_smumgr_func fiji_smu_funcs = { | |||
2647 | .name = "fiji_smu", | |||
2648 | .smu_init = &fiji_smu_init, | |||
2649 | .smu_fini = &smu7_smu_fini, | |||
2650 | .start_smu = &fiji_start_smu, | |||
2651 | .check_fw_load_finish = &smu7_check_fw_load_finish, | |||
2652 | .request_smu_load_fw = &smu7_reload_firmware, | |||
2653 | .request_smu_load_specific_fw = NULL((void *)0), | |||
2654 | .send_msg_to_smc = &smu7_send_msg_to_smc, | |||
2655 | .send_msg_to_smc_with_parameter = &smu7_send_msg_to_smc_with_parameter, | |||
2656 | .get_argument = smu7_get_argument, | |||
2657 | .download_pptable_settings = NULL((void *)0), | |||
2658 | .upload_pptable_settings = NULL((void *)0), | |||
2659 | .update_smc_table = fiji_update_smc_table, | |||
2660 | .get_offsetof = fiji_get_offsetof, | |||
2661 | .process_firmware_header = fiji_process_firmware_header, | |||
2662 | .init_smc_table = fiji_init_smc_table, | |||
2663 | .update_sclk_threshold = fiji_update_sclk_threshold, | |||
2664 | .thermal_setup_fan_table = fiji_thermal_setup_fan_table, | |||
2665 | .thermal_avfs_enable = fiji_thermal_avfs_enable, | |||
2666 | .populate_all_graphic_levels = fiji_populate_all_graphic_levels, | |||
2667 | .populate_all_memory_levels = fiji_populate_all_memory_levels, | |||
2668 | .get_mac_definition = fiji_get_mac_definition, | |||
2669 | .initialize_mc_reg_table = fiji_initialize_mc_reg_table, | |||
2670 | .is_dpm_running = fiji_is_dpm_running, | |||
2671 | .is_hw_avfs_present = fiji_is_hw_avfs_present, | |||
2672 | .update_dpm_settings = fiji_update_dpm_settings, | |||
2673 | }; |