File: | dev/pci/if_em_hw.c |
Warning: | line 359, column 16 The left operand of '&' is a garbage value |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /******************************************************************************* | ||||
2 | |||||
3 | Copyright (c) 2001-2005, Intel Corporation | ||||
4 | All rights reserved. | ||||
5 | |||||
6 | Redistribution and use in source and binary forms, with or without | ||||
7 | modification, are permitted provided that the following conditions are met: | ||||
8 | |||||
9 | 1. Redistributions of source code must retain the above copyright notice, | ||||
10 | this list of conditions and the following disclaimer. | ||||
11 | |||||
12 | 2. Redistributions in binary form must reproduce the above copyright | ||||
13 | notice, this list of conditions and the following disclaimer in the | ||||
14 | documentation and/or other materials provided with the distribution. | ||||
15 | |||||
16 | 3. Neither the name of the Intel Corporation nor the names of its | ||||
17 | contributors may be used to endorse or promote products derived from | ||||
18 | this software without specific prior written permission. | ||||
19 | |||||
20 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | ||||
21 | AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||||
22 | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||||
23 | ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | ||||
24 | LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | ||||
25 | CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | ||||
26 | SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | ||||
27 | INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | ||||
28 | CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||||
29 | ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | ||||
30 | POSSIBILITY OF SUCH DAMAGE. | ||||
31 | |||||
32 | *******************************************************************************/ | ||||
33 | |||||
34 | /* $OpenBSD: if_em_hw.c,v 1.113 2022/01/09 05:42:50 jsg Exp $ */ | ||||
35 | /* | ||||
36 | * if_em_hw.c Shared functions for accessing and configuring the MAC | ||||
37 | */ | ||||
38 | |||||
39 | #include <sys/param.h> | ||||
40 | #include <sys/systm.h> | ||||
41 | #include <sys/sockio.h> | ||||
42 | #include <sys/mbuf.h> | ||||
43 | #include <sys/malloc.h> | ||||
44 | #include <sys/kernel.h> | ||||
45 | #include <sys/device.h> | ||||
46 | #include <sys/socket.h> | ||||
47 | #include <sys/kstat.h> | ||||
48 | |||||
49 | #include <net/if.h> | ||||
50 | #include <net/if_media.h> | ||||
51 | |||||
52 | #include <netinet/in.h> | ||||
53 | #include <netinet/if_ether.h> | ||||
54 | |||||
55 | #include <uvm/uvm_extern.h> | ||||
56 | |||||
57 | #include <dev/pci/pcireg.h> | ||||
58 | #include <dev/pci/pcivar.h> | ||||
59 | |||||
60 | #include <dev/pci/if_em.h> | ||||
61 | #include <dev/pci/if_em_hw.h> | ||||
62 | #include <dev/pci/if_em_soc.h> | ||||
63 | |||||
64 | #include <dev/mii/rgephyreg.h> | ||||
65 | |||||
66 | #define STATIC | ||||
67 | |||||
68 | static int32_t em_swfw_sync_acquire(struct em_hw *, uint16_t); | ||||
69 | static void em_swfw_sync_release(struct em_hw *, uint16_t); | ||||
70 | static int32_t em_read_kmrn_reg(struct em_hw *, uint32_t, uint16_t *); | ||||
71 | static int32_t em_write_kmrn_reg(struct em_hw *hw, uint32_t, uint16_t); | ||||
72 | static int32_t em_get_software_semaphore(struct em_hw *); | ||||
73 | static void em_release_software_semaphore(struct em_hw *); | ||||
74 | |||||
75 | static int32_t em_check_downshift(struct em_hw *); | ||||
76 | static void em_clear_vfta(struct em_hw *); | ||||
77 | void em_clear_vfta_i350(struct em_hw *); | ||||
78 | static int32_t em_commit_shadow_ram(struct em_hw *); | ||||
79 | static int32_t em_config_dsp_after_link_change(struct em_hw *, boolean_t); | ||||
80 | static int32_t em_config_fc_after_link_up(struct em_hw *); | ||||
81 | static int32_t em_match_gig_phy(struct em_hw *); | ||||
82 | static int32_t em_detect_gig_phy(struct em_hw *); | ||||
83 | static int32_t em_erase_ich8_4k_segment(struct em_hw *, uint32_t); | ||||
84 | static int32_t em_get_auto_rd_done(struct em_hw *); | ||||
85 | static int32_t em_get_cable_length(struct em_hw *, uint16_t *, uint16_t *); | ||||
86 | static int32_t em_get_hw_eeprom_semaphore(struct em_hw *); | ||||
87 | static int32_t em_get_phy_cfg_done(struct em_hw *); | ||||
88 | static int32_t em_get_software_flag(struct em_hw *); | ||||
89 | static int32_t em_ich8_cycle_init(struct em_hw *); | ||||
90 | static int32_t em_ich8_flash_cycle(struct em_hw *, uint32_t); | ||||
91 | static int32_t em_id_led_init(struct em_hw *); | ||||
92 | static int32_t em_init_lcd_from_nvm_config_region(struct em_hw *, uint32_t, | ||||
93 | uint32_t); | ||||
94 | static int32_t em_init_lcd_from_nvm(struct em_hw *); | ||||
95 | static int32_t em_phy_no_cable_workaround(struct em_hw *); | ||||
96 | static void em_init_rx_addrs(struct em_hw *); | ||||
97 | static void em_initialize_hardware_bits(struct em_softc *); | ||||
98 | static void em_toggle_lanphypc_pch_lpt(struct em_hw *); | ||||
99 | static int em_disable_ulp_lpt_lp(struct em_hw *hw, bool_Bool force); | ||||
100 | static boolean_t em_is_onboard_nvm_eeprom(struct em_hw *); | ||||
101 | static int32_t em_kumeran_lock_loss_workaround(struct em_hw *); | ||||
102 | static int32_t em_mng_enable_host_if(struct em_hw *); | ||||
103 | static int32_t em_read_eeprom_eerd(struct em_hw *, uint16_t, uint16_t, | ||||
104 | uint16_t *); | ||||
105 | static int32_t em_write_eeprom_eewr(struct em_hw *, uint16_t, uint16_t, | ||||
106 | uint16_t *data); | ||||
107 | static int32_t em_poll_eerd_eewr_done(struct em_hw *, int); | ||||
108 | static void em_put_hw_eeprom_semaphore(struct em_hw *); | ||||
109 | static int32_t em_read_ich8_byte(struct em_hw *, uint32_t, uint8_t *); | ||||
110 | static int32_t em_verify_write_ich8_byte(struct em_hw *, uint32_t, uint8_t); | ||||
111 | static int32_t em_write_ich8_byte(struct em_hw *, uint32_t, uint8_t); | ||||
112 | static int32_t em_read_ich8_word(struct em_hw *, uint32_t, uint16_t *); | ||||
113 | static int32_t em_read_ich8_dword(struct em_hw *, uint32_t, uint32_t *); | ||||
114 | static int32_t em_read_ich8_data(struct em_hw *, uint32_t, uint32_t, | ||||
115 | uint16_t *); | ||||
116 | static int32_t em_write_ich8_data(struct em_hw *, uint32_t, uint32_t, | ||||
117 | uint16_t); | ||||
118 | static int32_t em_read_eeprom_ich8(struct em_hw *, uint16_t, uint16_t, | ||||
119 | uint16_t *); | ||||
120 | static int32_t em_write_eeprom_ich8(struct em_hw *, uint16_t, uint16_t, | ||||
121 | uint16_t *); | ||||
122 | static int32_t em_read_invm_i210(struct em_hw *, uint16_t, uint16_t, | ||||
123 | uint16_t *); | ||||
124 | static int32_t em_read_invm_word_i210(struct em_hw *, uint16_t, uint16_t *); | ||||
125 | static void em_release_software_flag(struct em_hw *); | ||||
126 | static int32_t em_set_d3_lplu_state(struct em_hw *, boolean_t); | ||||
127 | static int32_t em_set_d0_lplu_state(struct em_hw *, boolean_t); | ||||
128 | static int32_t em_set_lplu_state_pchlan(struct em_hw *, boolean_t); | ||||
129 | static int32_t em_set_pci_ex_no_snoop(struct em_hw *, uint32_t); | ||||
130 | static void em_set_pci_express_master_disable(struct em_hw *); | ||||
131 | static int32_t em_wait_autoneg(struct em_hw *); | ||||
132 | static void em_write_reg_io(struct em_hw *, uint32_t, uint32_t); | ||||
133 | static int32_t em_set_phy_type(struct em_hw *); | ||||
134 | static void em_phy_init_script(struct em_hw *); | ||||
135 | static int32_t em_setup_copper_link(struct em_hw *); | ||||
136 | static int32_t em_setup_fiber_serdes_link(struct em_hw *); | ||||
137 | static int32_t em_adjust_serdes_amplitude(struct em_hw *); | ||||
138 | static int32_t em_phy_force_speed_duplex(struct em_hw *); | ||||
139 | static int32_t em_config_mac_to_phy(struct em_hw *); | ||||
140 | static void em_raise_mdi_clk(struct em_hw *, uint32_t *); | ||||
141 | static void em_lower_mdi_clk(struct em_hw *, uint32_t *); | ||||
142 | static void em_shift_out_mdi_bits(struct em_hw *, uint32_t, uint16_t); | ||||
143 | static uint16_t em_shift_in_mdi_bits(struct em_hw *); | ||||
144 | static int32_t em_phy_reset_dsp(struct em_hw *); | ||||
145 | static int32_t em_write_eeprom_spi(struct em_hw *, uint16_t, uint16_t, | ||||
146 | uint16_t *); | ||||
147 | static int32_t em_write_eeprom_microwire(struct em_hw *, uint16_t, uint16_t, | ||||
148 | uint16_t *); | ||||
149 | static int32_t em_spi_eeprom_ready(struct em_hw *); | ||||
150 | static void em_raise_ee_clk(struct em_hw *, uint32_t *); | ||||
151 | static void em_lower_ee_clk(struct em_hw *, uint32_t *); | ||||
152 | static void em_shift_out_ee_bits(struct em_hw *, uint16_t, uint16_t); | ||||
153 | static int32_t em_write_phy_reg_ex(struct em_hw *, uint32_t, uint16_t); | ||||
154 | static int32_t em_read_phy_reg_ex(struct em_hw *, uint32_t, uint16_t *); | ||||
155 | static uint16_t em_shift_in_ee_bits(struct em_hw *, uint16_t); | ||||
156 | static int32_t em_acquire_eeprom(struct em_hw *); | ||||
157 | static void em_release_eeprom(struct em_hw *); | ||||
158 | static void em_standby_eeprom(struct em_hw *); | ||||
159 | static int32_t em_set_vco_speed(struct em_hw *); | ||||
160 | static int32_t em_polarity_reversal_workaround(struct em_hw *); | ||||
161 | static int32_t em_set_phy_mode(struct em_hw *); | ||||
162 | static int32_t em_host_if_read_cookie(struct em_hw *, uint8_t *); | ||||
163 | static uint8_t em_calculate_mng_checksum(char *, uint32_t); | ||||
164 | static int32_t em_configure_kmrn_for_10_100(struct em_hw *, uint16_t); | ||||
165 | static int32_t em_configure_kmrn_for_1000(struct em_hw *); | ||||
166 | static int32_t em_set_pciex_completion_timeout(struct em_hw *hw); | ||||
167 | static int32_t em_set_mdio_slow_mode_hv(struct em_hw *); | ||||
168 | int32_t em_hv_phy_workarounds_ich8lan(struct em_hw *); | ||||
169 | int32_t em_lv_phy_workarounds_ich8lan(struct em_hw *); | ||||
170 | int32_t em_link_stall_workaround_hv(struct em_hw *); | ||||
171 | int32_t em_k1_gig_workaround_hv(struct em_hw *, boolean_t); | ||||
172 | int32_t em_k1_workaround_lv(struct em_hw *); | ||||
173 | int32_t em_k1_workaround_lpt_lp(struct em_hw *, boolean_t); | ||||
174 | int32_t em_configure_k1_ich8lan(struct em_hw *, boolean_t); | ||||
175 | void em_gate_hw_phy_config_ich8lan(struct em_hw *, boolean_t); | ||||
176 | int32_t em_access_phy_wakeup_reg_bm(struct em_hw *, uint32_t, | ||||
177 | uint16_t *, boolean_t); | ||||
178 | int32_t em_access_phy_debug_regs_hv(struct em_hw *, uint32_t, | ||||
179 | uint16_t *, boolean_t); | ||||
180 | int32_t em_access_phy_reg_hv(struct em_hw *, uint32_t, uint16_t *, | ||||
181 | boolean_t); | ||||
182 | int32_t em_oem_bits_config_pchlan(struct em_hw *, boolean_t); | ||||
183 | void em_power_up_serdes_link_82575(struct em_hw *); | ||||
184 | int32_t em_get_pcs_speed_and_duplex_82575(struct em_hw *, uint16_t *, | ||||
185 | uint16_t *); | ||||
186 | int32_t em_set_eee_i350(struct em_hw *); | ||||
187 | int32_t em_set_eee_pchlan(struct em_hw *); | ||||
188 | int32_t em_valid_nvm_bank_detect_ich8lan(struct em_hw *, uint32_t *); | ||||
189 | int32_t em_initialize_M88E1512_phy(struct em_hw *); | ||||
190 | |||||
191 | /* IGP cable length table */ | ||||
192 | static const uint16_t | ||||
193 | em_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE128] = | ||||
194 | {5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, | ||||
195 | 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, | ||||
196 | 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40, | ||||
197 | 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, | ||||
198 | 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90, | ||||
199 | 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, | ||||
200 | 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, | ||||
201 | 110, | ||||
202 | 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, | ||||
203 | 120}; | ||||
204 | |||||
205 | static const uint16_t | ||||
206 | em_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE113] = | ||||
207 | {0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, | ||||
208 | 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, | ||||
209 | 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, | ||||
210 | 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, | ||||
211 | 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, | ||||
212 | 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, | ||||
213 | 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, | ||||
214 | 121, 124}; | ||||
215 | |||||
216 | /****************************************************************************** | ||||
217 | * Set the phy type member in the hw struct. | ||||
218 | * | ||||
219 | * hw - Struct containing variables accessed by shared code | ||||
220 | *****************************************************************************/ | ||||
221 | STATIC int32_t | ||||
222 | em_set_phy_type(struct em_hw *hw) | ||||
223 | { | ||||
224 | DEBUGFUNC("em_set_phy_type");; | ||||
225 | |||||
226 | if (hw->mac_type == em_undefined) | ||||
227 | return -E1000_ERR_PHY_TYPE6; | ||||
228 | |||||
229 | switch (hw->phy_id) { | ||||
230 | case M88E1000_E_PHY_ID0x01410C50: | ||||
231 | case M88E1000_I_PHY_ID0x01410C30: | ||||
232 | case M88E1011_I_PHY_ID0x01410C20: | ||||
233 | case M88E1111_I_PHY_ID0x01410CC0: | ||||
234 | case M88E1112_E_PHY_ID0x01410C90: | ||||
235 | case M88E1543_E_PHY_ID0x01410EA0: | ||||
236 | case M88E1512_E_PHY_ID0x01410DD0: | ||||
237 | case I210_I_PHY_ID0x01410C00: | ||||
238 | case I347AT4_E_PHY_ID0x01410DC0: | ||||
239 | hw->phy_type = em_phy_m88; | ||||
240 | break; | ||||
241 | case IGP01E1000_I_PHY_ID0x02A80380: | ||||
242 | if (hw->mac_type == em_82541 || | ||||
243 | hw->mac_type == em_82541_rev_2 || | ||||
244 | hw->mac_type == em_82547 || | ||||
245 | hw->mac_type == em_82547_rev_2) { | ||||
246 | hw->phy_type = em_phy_igp; | ||||
247 | break; | ||||
248 | } | ||||
249 | case IGP03E1000_E_PHY_ID0x02A80390: | ||||
250 | case IGP04E1000_E_PHY_ID0x02A80391: | ||||
251 | hw->phy_type = em_phy_igp_3; | ||||
252 | break; | ||||
253 | case IFE_E_PHY_ID0x02A80330: | ||||
254 | case IFE_PLUS_E_PHY_ID0x02A80320: | ||||
255 | case IFE_C_E_PHY_ID0x02A80310: | ||||
256 | hw->phy_type = em_phy_ife; | ||||
257 | break; | ||||
258 | case M88E1141_E_PHY_ID0x01410CD0: | ||||
259 | hw->phy_type = em_phy_oem; | ||||
260 | break; | ||||
261 | case I82577_E_PHY_ID0x01540050: | ||||
262 | hw->phy_type = em_phy_82577; | ||||
263 | break; | ||||
264 | case I82578_E_PHY_ID0x004DD040: | ||||
265 | hw->phy_type = em_phy_82578; | ||||
266 | break; | ||||
267 | case I82579_E_PHY_ID0x01540090: | ||||
268 | hw->phy_type = em_phy_82579; | ||||
269 | break; | ||||
270 | case I217_E_PHY_ID0x015400A0: | ||||
271 | hw->phy_type = em_phy_i217; | ||||
272 | break; | ||||
273 | case I82580_I_PHY_ID0x015403A0: | ||||
274 | case I350_I_PHY_ID0x015403B0: | ||||
275 | hw->phy_type = em_phy_82580; | ||||
276 | break; | ||||
277 | case RTL8211_E_PHY_ID0x001CC912: | ||||
278 | hw->phy_type = em_phy_rtl8211; | ||||
279 | break; | ||||
280 | case BME1000_E_PHY_ID0x01410CB0: | ||||
281 | if (hw->phy_revision == 1) { | ||||
282 | hw->phy_type = em_phy_bm; | ||||
283 | break; | ||||
284 | } | ||||
285 | /* FALLTHROUGH */ | ||||
286 | case GG82563_E_PHY_ID0x01410CA0: | ||||
287 | if (hw->mac_type == em_80003es2lan) { | ||||
288 | hw->phy_type = em_phy_gg82563; | ||||
289 | break; | ||||
290 | } | ||||
291 | /* FALLTHROUGH */ | ||||
292 | default: | ||||
293 | /* Should never have loaded on this device */ | ||||
294 | hw->phy_type = em_phy_undefined; | ||||
295 | return -E1000_ERR_PHY_TYPE6; | ||||
296 | } | ||||
297 | |||||
298 | return E1000_SUCCESS0; | ||||
299 | } | ||||
300 | |||||
301 | /****************************************************************************** | ||||
302 | * IGP phy init script - initializes the GbE PHY | ||||
303 | * | ||||
304 | * hw - Struct containing variables accessed by shared code | ||||
305 | *****************************************************************************/ | ||||
306 | static void | ||||
307 | em_phy_init_script(struct em_hw *hw) | ||||
308 | { | ||||
309 | uint16_t phy_saved_data; | ||||
310 | DEBUGFUNC("em_phy_init_script");; | ||||
311 | |||||
312 | if (hw->phy_init_script) { | ||||
313 | msec_delay(20)(*delay_func)(1000*(20)); | ||||
314 | /* | ||||
315 | * Save off the current value of register 0x2F5B to be | ||||
316 | * restored at the end of this routine. | ||||
317 | */ | ||||
318 | em_read_phy_reg(hw, 0x2F5B, &phy_saved_data); | ||||
319 | |||||
320 | /* Disabled the PHY transmitter */ | ||||
321 | em_write_phy_reg(hw, 0x2F5B, 0x0003); | ||||
322 | msec_delay(20)(*delay_func)(1000*(20)); | ||||
323 | em_write_phy_reg(hw, 0x0000, 0x0140); | ||||
324 | msec_delay(5)(*delay_func)(1000*(5)); | ||||
325 | |||||
326 | switch (hw->mac_type) { | ||||
327 | case em_82541: | ||||
328 | case em_82547: | ||||
329 | em_write_phy_reg(hw, 0x1F95, 0x0001); | ||||
330 | em_write_phy_reg(hw, 0x1F71, 0xBD21); | ||||
331 | em_write_phy_reg(hw, 0x1F79, 0x0018); | ||||
332 | em_write_phy_reg(hw, 0x1F30, 0x1600); | ||||
333 | em_write_phy_reg(hw, 0x1F31, 0x0014); | ||||
334 | em_write_phy_reg(hw, 0x1F32, 0x161C); | ||||
335 | em_write_phy_reg(hw, 0x1F94, 0x0003); | ||||
336 | em_write_phy_reg(hw, 0x1F96, 0x003F); | ||||
337 | em_write_phy_reg(hw, 0x2010, 0x0008); | ||||
338 | break; | ||||
339 | case em_82541_rev_2: | ||||
340 | case em_82547_rev_2: | ||||
341 | em_write_phy_reg(hw, 0x1F73, 0x0099); | ||||
342 | break; | ||||
343 | default: | ||||
344 | break; | ||||
345 | } | ||||
346 | |||||
347 | em_write_phy_reg(hw, 0x0000, 0x3300); | ||||
348 | msec_delay(20)(*delay_func)(1000*(20)); | ||||
349 | |||||
350 | /* Now enable the transmitter */ | ||||
351 | em_write_phy_reg(hw, 0x2F5B, phy_saved_data); | ||||
352 | |||||
353 | if (hw->mac_type == em_82547) { | ||||
354 | uint16_t fused, fine, coarse; | ||||
355 | /* Move to analog registers page */ | ||||
356 | em_read_phy_reg(hw, | ||||
357 | IGP01E1000_ANALOG_SPARE_FUSE_STATUS0x20D1, &fused); | ||||
358 | |||||
359 | if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED0x0100)) { | ||||
| |||||
360 | em_read_phy_reg(hw, | ||||
361 | IGP01E1000_ANALOG_FUSE_STATUS0x20D0, &fused); | ||||
362 | |||||
363 | fine = fused & | ||||
364 | IGP01E1000_ANALOG_FUSE_FINE_MASK0x0F80; | ||||
365 | coarse = fused & | ||||
366 | IGP01E1000_ANALOG_FUSE_COARSE_MASK0x0070; | ||||
367 | |||||
368 | if (coarse > | ||||
369 | IGP01E1000_ANALOG_FUSE_COARSE_THRESH0x0040) { | ||||
370 | coarse -= | ||||
371 | IGP01E1000_ANALOG_FUSE_COARSE_100x0010; | ||||
372 | fine -= | ||||
373 | IGP01E1000_ANALOG_FUSE_FINE_10x0080; | ||||
374 | } else if (coarse == | ||||
375 | IGP01E1000_ANALOG_FUSE_COARSE_THRESH0x0040) | ||||
376 | fine -= IGP01E1000_ANALOG_FUSE_FINE_100x0500; | ||||
377 | |||||
378 | fused = (fused & | ||||
379 | IGP01E1000_ANALOG_FUSE_POLY_MASK0xF000) | | ||||
380 | (fine & | ||||
381 | IGP01E1000_ANALOG_FUSE_FINE_MASK0x0F80) | | ||||
382 | (coarse & | ||||
383 | IGP01E1000_ANALOG_FUSE_COARSE_MASK0x0070); | ||||
384 | |||||
385 | em_write_phy_reg(hw, | ||||
386 | IGP01E1000_ANALOG_FUSE_CONTROL0x20DC, | ||||
387 | fused); | ||||
388 | |||||
389 | em_write_phy_reg(hw, | ||||
390 | IGP01E1000_ANALOG_FUSE_BYPASS0x20DE, | ||||
391 | IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL0x0002); | ||||
392 | } | ||||
393 | } | ||||
394 | } | ||||
395 | } | ||||
396 | |||||
397 | /****************************************************************************** | ||||
398 | * Set the mac type member in the hw struct. | ||||
399 | * | ||||
400 | * hw - Struct containing variables accessed by shared code | ||||
401 | *****************************************************************************/ | ||||
402 | int32_t | ||||
403 | em_set_mac_type(struct em_hw *hw) | ||||
404 | { | ||||
405 | DEBUGFUNC("em_set_mac_type");; | ||||
406 | |||||
407 | switch (hw->device_id) { | ||||
408 | case E1000_DEV_ID_825420x1000: | ||||
409 | switch (hw->revision_id) { | ||||
410 | case E1000_82542_2_0_REV_ID2: | ||||
411 | hw->mac_type = em_82542_rev2_0; | ||||
412 | break; | ||||
413 | case E1000_82542_2_1_REV_ID3: | ||||
414 | hw->mac_type = em_82542_rev2_1; | ||||
415 | break; | ||||
416 | default: | ||||
417 | /* Invalid 82542 revision ID */ | ||||
418 | return -E1000_ERR_MAC_TYPE5; | ||||
419 | } | ||||
420 | break; | ||||
421 | case E1000_DEV_ID_82543GC_FIBER0x1001: | ||||
422 | case E1000_DEV_ID_82543GC_COPPER0x1004: | ||||
423 | hw->mac_type = em_82543; | ||||
424 | break; | ||||
425 | case E1000_DEV_ID_82544EI_COPPER0x1008: | ||||
426 | case E1000_DEV_ID_82544EI_FIBER0x1009: | ||||
427 | case E1000_DEV_ID_82544GC_COPPER0x100C: | ||||
428 | case E1000_DEV_ID_82544GC_LOM0x100D: | ||||
429 | hw->mac_type = em_82544; | ||||
430 | break; | ||||
431 | case E1000_DEV_ID_82540EM0x100E: | ||||
432 | case E1000_DEV_ID_82540EM_LOM0x1015: | ||||
433 | case E1000_DEV_ID_82540EP0x1017: | ||||
434 | case E1000_DEV_ID_82540EP_LOM0x1016: | ||||
435 | case E1000_DEV_ID_82540EP_LP0x101E: | ||||
436 | hw->mac_type = em_82540; | ||||
437 | break; | ||||
438 | case E1000_DEV_ID_82545EM_COPPER0x100F: | ||||
439 | case E1000_DEV_ID_82545EM_FIBER0x1011: | ||||
440 | hw->mac_type = em_82545; | ||||
441 | break; | ||||
442 | case E1000_DEV_ID_82545GM_COPPER0x1026: | ||||
443 | case E1000_DEV_ID_82545GM_FIBER0x1027: | ||||
444 | case E1000_DEV_ID_82545GM_SERDES0x1028: | ||||
445 | hw->mac_type = em_82545_rev_3; | ||||
446 | break; | ||||
447 | case E1000_DEV_ID_82546EB_COPPER0x1010: | ||||
448 | case E1000_DEV_ID_82546EB_FIBER0x1012: | ||||
449 | case E1000_DEV_ID_82546EB_QUAD_COPPER0x101D: | ||||
450 | hw->mac_type = em_82546; | ||||
451 | break; | ||||
452 | case E1000_DEV_ID_82546GB_COPPER0x1079: | ||||
453 | case E1000_DEV_ID_82546GB_FIBER0x107A: | ||||
454 | case E1000_DEV_ID_82546GB_SERDES0x107B: | ||||
455 | case E1000_DEV_ID_82546GB_PCIE0x108A: | ||||
456 | case E1000_DEV_ID_82546GB_QUAD_COPPER0x1099: | ||||
457 | case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP30x10B5: | ||||
458 | case E1000_DEV_ID_82546GB_20x109B: | ||||
459 | hw->mac_type = em_82546_rev_3; | ||||
460 | break; | ||||
461 | case E1000_DEV_ID_82541EI0x1013: | ||||
462 | case E1000_DEV_ID_82541EI_MOBILE0x1018: | ||||
463 | case E1000_DEV_ID_82541ER_LOM0x1014: | ||||
464 | hw->mac_type = em_82541; | ||||
465 | break; | ||||
466 | case E1000_DEV_ID_82541ER0x1078: | ||||
467 | case E1000_DEV_ID_82541GI0x1076: | ||||
468 | case E1000_DEV_ID_82541GI_LF0x107C: | ||||
469 | case E1000_DEV_ID_82541GI_MOBILE0x1077: | ||||
470 | hw->mac_type = em_82541_rev_2; | ||||
471 | break; | ||||
472 | case E1000_DEV_ID_82547EI0x1019: | ||||
473 | case E1000_DEV_ID_82547EI_MOBILE0x101A: | ||||
474 | hw->mac_type = em_82547; | ||||
475 | break; | ||||
476 | case E1000_DEV_ID_82547GI0x1075: | ||||
477 | hw->mac_type = em_82547_rev_2; | ||||
478 | break; | ||||
479 | case E1000_DEV_ID_82571EB_AF0x10A1: | ||||
480 | case E1000_DEV_ID_82571EB_AT0x10A0: | ||||
481 | case E1000_DEV_ID_82571EB_COPPER0x105E: | ||||
482 | case E1000_DEV_ID_82571EB_FIBER0x105F: | ||||
483 | case E1000_DEV_ID_82571EB_SERDES0x1060: | ||||
484 | case E1000_DEV_ID_82571EB_QUAD_COPPER0x10A4: | ||||
485 | case E1000_DEV_ID_82571EB_QUAD_FIBER0x10A5: | ||||
486 | case E1000_DEV_ID_82571EB_QUAD_COPPER_LP0x10BC: | ||||
487 | case E1000_DEV_ID_82571EB_SERDES_DUAL0x10D9: | ||||
488 | case E1000_DEV_ID_82571EB_SERDES_QUAD0x10DA: | ||||
489 | case E1000_DEV_ID_82571PT_QUAD_COPPER0x10D5: | ||||
490 | hw->mac_type = em_82571; | ||||
491 | break; | ||||
492 | case E1000_DEV_ID_82572EI_COPPER0x107D: | ||||
493 | case E1000_DEV_ID_82572EI_FIBER0x107E: | ||||
494 | case E1000_DEV_ID_82572EI_SERDES0x107F: | ||||
495 | case E1000_DEV_ID_82572EI0x10B9: | ||||
496 | hw->mac_type = em_82572; | ||||
497 | break; | ||||
498 | case E1000_DEV_ID_82573E0x108B: | ||||
499 | case E1000_DEV_ID_82573E_IAMT0x108C: | ||||
500 | case E1000_DEV_ID_82573E_PM0x10B3: | ||||
501 | case E1000_DEV_ID_82573L0x109A: | ||||
502 | case E1000_DEV_ID_82573L_PL_10x10B0: | ||||
503 | case E1000_DEV_ID_82573L_PL_20x10B4: | ||||
504 | case E1000_DEV_ID_82573V_PM0x10B2: | ||||
505 | hw->mac_type = em_82573; | ||||
506 | break; | ||||
507 | case E1000_DEV_ID_82574L0x10D3: | ||||
508 | case E1000_DEV_ID_82574LA0x10F6: | ||||
509 | case E1000_DEV_ID_82583V0x150C: | ||||
510 | hw->mac_type = em_82574; | ||||
511 | break; | ||||
512 | case E1000_DEV_ID_82575EB_PT0x10A7: | ||||
513 | case E1000_DEV_ID_82575EB_PF0x10A9: | ||||
514 | case E1000_DEV_ID_82575GB_QP0x10D6: | ||||
515 | case E1000_DEV_ID_82575GB_QP_PM0x10E2: | ||||
516 | hw->mac_type = em_82575; | ||||
517 | hw->initialize_hw_bits_disable = 1; | ||||
518 | break; | ||||
519 | case E1000_DEV_ID_825760x10C9: | ||||
520 | case E1000_DEV_ID_82576_FIBER0x10E6: | ||||
521 | case E1000_DEV_ID_82576_SERDES0x10E7: | ||||
522 | case E1000_DEV_ID_82576_QUAD_COPPER0x10E8: | ||||
523 | case E1000_DEV_ID_82576_QUAD_CU_ET20x1526: | ||||
524 | case E1000_DEV_ID_82576_NS0x150A: | ||||
525 | case E1000_DEV_ID_82576_NS_SERDES0x1518: | ||||
526 | case E1000_DEV_ID_82576_SERDES_QUAD0x150D: | ||||
527 | hw->mac_type = em_82576; | ||||
528 | hw->initialize_hw_bits_disable = 1; | ||||
529 | break; | ||||
530 | case E1000_DEV_ID_82580_COPPER0x150E: | ||||
531 | case E1000_DEV_ID_82580_FIBER0x150F: | ||||
532 | case E1000_DEV_ID_82580_QUAD_FIBER0x1527: | ||||
533 | case E1000_DEV_ID_82580_SERDES0x1510: | ||||
534 | case E1000_DEV_ID_82580_SGMII0x1511: | ||||
535 | case E1000_DEV_ID_82580_COPPER_DUAL0x1516: | ||||
536 | case E1000_DEV_ID_DH89XXCC_SGMII0x0438: | ||||
537 | case E1000_DEV_ID_DH89XXCC_SERDES0x043A: | ||||
538 | case E1000_DEV_ID_DH89XXCC_BACKPLANE0x043C: | ||||
539 | case E1000_DEV_ID_DH89XXCC_SFP0x0440: | ||||
540 | hw->mac_type = em_82580; | ||||
541 | hw->initialize_hw_bits_disable = 1; | ||||
542 | break; | ||||
543 | case E1000_DEV_ID_I210_COPPER0x1533: | ||||
544 | case E1000_DEV_ID_I210_COPPER_OEM10x1534: | ||||
545 | case E1000_DEV_ID_I210_COPPER_IT0x1535: | ||||
546 | case E1000_DEV_ID_I210_FIBER0x1536: | ||||
547 | case E1000_DEV_ID_I210_SERDES0x1537: | ||||
548 | case E1000_DEV_ID_I210_SGMII0x1538: | ||||
549 | case E1000_DEV_ID_I210_COPPER_FLASHLESS0x157B: | ||||
550 | case E1000_DEV_ID_I210_SERDES_FLASHLESS0x157C: | ||||
551 | case E1000_DEV_ID_I211_COPPER0x1539: | ||||
552 | hw->mac_type = em_i210; | ||||
553 | hw->initialize_hw_bits_disable = 1; | ||||
554 | hw->eee_enable = 1; | ||||
555 | break; | ||||
556 | case E1000_DEV_ID_I350_COPPER0x1521: | ||||
557 | case E1000_DEV_ID_I350_FIBER0x1522: | ||||
558 | case E1000_DEV_ID_I350_SERDES0x1523: | ||||
559 | case E1000_DEV_ID_I350_SGMII0x1524: | ||||
560 | case E1000_DEV_ID_I350_DA40x1546: | ||||
561 | case E1000_DEV_ID_I354_BACKPLANE_1GBPS0x1F40: | ||||
562 | case E1000_DEV_ID_I354_SGMII0x1F41: | ||||
563 | case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS0x1F45: | ||||
564 | hw->mac_type = em_i350; | ||||
565 | hw->initialize_hw_bits_disable = 1; | ||||
566 | hw->eee_enable = 1; | ||||
567 | break; | ||||
568 | case E1000_DEV_ID_80003ES2LAN_COPPER_SPT0x10BA: | ||||
569 | case E1000_DEV_ID_80003ES2LAN_SERDES_SPT0x10BB: | ||||
570 | case E1000_DEV_ID_80003ES2LAN_COPPER_DPT0x1096: | ||||
571 | case E1000_DEV_ID_80003ES2LAN_SERDES_DPT0x1098: | ||||
572 | hw->mac_type = em_80003es2lan; | ||||
573 | break; | ||||
574 | case E1000_DEV_ID_ICH8_IFE0x104C: | ||||
575 | case E1000_DEV_ID_ICH8_IFE_G0x10C5: | ||||
576 | case E1000_DEV_ID_ICH8_IFE_GT0x10C4: | ||||
577 | case E1000_DEV_ID_ICH8_IGP_AMT0x104A: | ||||
578 | case E1000_DEV_ID_ICH8_IGP_C0x104B: | ||||
579 | case E1000_DEV_ID_ICH8_IGP_M0x104D: | ||||
580 | case E1000_DEV_ID_ICH8_IGP_M_AMT0x1049: | ||||
581 | case E1000_DEV_ID_ICH8_82567V_30x1501: | ||||
582 | hw->mac_type = em_ich8lan; | ||||
583 | break; | ||||
584 | case E1000_DEV_ID_ICH9_BM0x10E5: | ||||
585 | case E1000_DEV_ID_ICH9_IFE0x10C0: | ||||
586 | case E1000_DEV_ID_ICH9_IFE_G0x10C2: | ||||
587 | case E1000_DEV_ID_ICH9_IFE_GT0x10C3: | ||||
588 | case E1000_DEV_ID_ICH9_IGP_AMT0x10BD: | ||||
589 | case E1000_DEV_ID_ICH9_IGP_C0x294C: | ||||
590 | case E1000_DEV_ID_ICH9_IGP_M0x10BF: | ||||
591 | case E1000_DEV_ID_ICH9_IGP_M_AMT0x10F5: | ||||
592 | case E1000_DEV_ID_ICH9_IGP_M_V0x10CB: | ||||
593 | case E1000_DEV_ID_ICH10_R_BM_LF0x10CD: | ||||
594 | case E1000_DEV_ID_ICH10_R_BM_LM0x10CC: | ||||
595 | case E1000_DEV_ID_ICH10_R_BM_V0x10CE: | ||||
596 | hw->mac_type = em_ich9lan; | ||||
597 | break; | ||||
598 | case E1000_DEV_ID_ICH10_D_BM_LF0x10DF: | ||||
599 | case E1000_DEV_ID_ICH10_D_BM_LM0x10DE: | ||||
600 | case E1000_DEV_ID_ICH10_D_BM_V0x1525: | ||||
601 | hw->mac_type = em_ich10lan; | ||||
602 | break; | ||||
603 | case E1000_DEV_ID_PCH_M_HV_LC0x10EB: | ||||
604 | case E1000_DEV_ID_PCH_M_HV_LM0x10EA: | ||||
605 | case E1000_DEV_ID_PCH_D_HV_DC0x10F0: | ||||
606 | case E1000_DEV_ID_PCH_D_HV_DM0x10EF: | ||||
607 | hw->mac_type = em_pchlan; | ||||
608 | hw->eee_enable = 1; | ||||
609 | break; | ||||
610 | case E1000_DEV_ID_PCH2_LV_LM0x1502: | ||||
611 | case E1000_DEV_ID_PCH2_LV_V0x1503: | ||||
612 | hw->mac_type = em_pch2lan; | ||||
613 | break; | ||||
614 | case E1000_DEV_ID_PCH_LPT_I217_LM0x153A: | ||||
615 | case E1000_DEV_ID_PCH_LPT_I217_V0x153B: | ||||
616 | case E1000_DEV_ID_PCH_LPTLP_I218_LM0x155A: | ||||
617 | case E1000_DEV_ID_PCH_LPTLP_I218_V0x1559: | ||||
618 | case E1000_DEV_ID_PCH_I218_LM20x15A0: | ||||
619 | case E1000_DEV_ID_PCH_I218_V20x15A1: | ||||
620 | case E1000_DEV_ID_PCH_I218_LM30x15A2: | ||||
621 | case E1000_DEV_ID_PCH_I218_V30x15A3: | ||||
622 | hw->mac_type = em_pch_lpt; | ||||
623 | break; | ||||
624 | case E1000_DEV_ID_PCH_SPT_I219_LM0x156F: | ||||
625 | case E1000_DEV_ID_PCH_SPT_I219_V0x1570: | ||||
626 | case E1000_DEV_ID_PCH_SPT_I219_LM20x15B7: | ||||
627 | case E1000_DEV_ID_PCH_SPT_I219_V20x15B8: | ||||
628 | case E1000_DEV_ID_PCH_LBG_I219_LM30x15B9: | ||||
629 | case E1000_DEV_ID_PCH_SPT_I219_LM40x15D7: | ||||
630 | case E1000_DEV_ID_PCH_SPT_I219_V40x15D8: | ||||
631 | case E1000_DEV_ID_PCH_SPT_I219_LM50x15E3: | ||||
632 | case E1000_DEV_ID_PCH_SPT_I219_V50x15D6: | ||||
633 | case E1000_DEV_ID_PCH_CMP_I219_LM120x0D53: | ||||
634 | case E1000_DEV_ID_PCH_CMP_I219_V120x0D55: | ||||
635 | hw->mac_type = em_pch_spt; | ||||
636 | break; | ||||
637 | case E1000_DEV_ID_PCH_CNP_I219_LM60x15BD: | ||||
638 | case E1000_DEV_ID_PCH_CNP_I219_V60x15BE: | ||||
639 | case E1000_DEV_ID_PCH_CNP_I219_LM70x15BB: | ||||
640 | case E1000_DEV_ID_PCH_CNP_I219_V70x15BC: | ||||
641 | case E1000_DEV_ID_PCH_ICP_I219_LM80x15DF: | ||||
642 | case E1000_DEV_ID_PCH_ICP_I219_V80x15E0: | ||||
643 | case E1000_DEV_ID_PCH_ICP_I219_LM90x15E1: | ||||
644 | case E1000_DEV_ID_PCH_ICP_I219_V90x15E2: | ||||
645 | case E1000_DEV_ID_PCH_CMP_I219_LM100x0D4E: | ||||
646 | case E1000_DEV_ID_PCH_CMP_I219_V100x0D4F: | ||||
647 | case E1000_DEV_ID_PCH_CMP_I219_LM110x0D4C: | ||||
648 | case E1000_DEV_ID_PCH_CMP_I219_V110x0D4D: | ||||
649 | case E1000_DEV_ID_PCH_TGP_I219_LM130x15FB: | ||||
650 | case E1000_DEV_ID_PCH_TGP_I219_V130x15FC: | ||||
651 | case E1000_DEV_ID_PCH_TGP_I219_LM140x15F9: | ||||
652 | case E1000_DEV_ID_PCH_TGP_I219_V140x15FA: | ||||
653 | case E1000_DEV_ID_PCH_TGP_I219_LM150x15F4: | ||||
654 | case E1000_DEV_ID_PCH_TGP_I219_V150x15F5: | ||||
655 | case E1000_DEV_ID_PCH_ADP_I219_LM160x1A1E: | ||||
656 | case E1000_DEV_ID_PCH_ADP_I219_V160x1A1F: | ||||
657 | case E1000_DEV_ID_PCH_ADP_I219_LM170x1A1C: | ||||
658 | case E1000_DEV_ID_PCH_ADP_I219_V170x1A1D: | ||||
659 | case E1000_DEV_ID_PCH_MTP_I219_LM180x550A: | ||||
660 | case E1000_DEV_ID_PCH_MTP_I219_V180x550B: | ||||
661 | case E1000_DEV_ID_PCH_MTP_I219_LM190x550C: | ||||
662 | case E1000_DEV_ID_PCH_MTP_I219_V190x550D: | ||||
663 | hw->mac_type = em_pch_cnp; | ||||
664 | break; | ||||
665 | case E1000_DEV_ID_EP80579_LAN_10x5040: | ||||
666 | hw->mac_type = em_icp_xxxx; | ||||
667 | hw->icp_xxxx_port_num = 0; | ||||
668 | break; | ||||
669 | case E1000_DEV_ID_EP80579_LAN_20x5044: | ||||
670 | case E1000_DEV_ID_EP80579_LAN_40x5041: | ||||
671 | hw->mac_type = em_icp_xxxx; | ||||
672 | hw->icp_xxxx_port_num = 1; | ||||
673 | break; | ||||
674 | case E1000_DEV_ID_EP80579_LAN_30x5048: | ||||
675 | case E1000_DEV_ID_EP80579_LAN_50x5045: | ||||
676 | hw->mac_type = em_icp_xxxx; | ||||
677 | hw->icp_xxxx_port_num = 2; | ||||
678 | break; | ||||
679 | case E1000_DEV_ID_EP80579_LAN_60x5049: | ||||
680 | hw->mac_type = em_icp_xxxx; | ||||
681 | hw->icp_xxxx_port_num = 3; | ||||
682 | break; | ||||
683 | default: | ||||
684 | /* Should never have loaded on this device */ | ||||
685 | return -E1000_ERR_MAC_TYPE5; | ||||
686 | } | ||||
687 | |||||
688 | switch (hw->mac_type) { | ||||
689 | case em_ich8lan: | ||||
690 | case em_ich9lan: | ||||
691 | case em_ich10lan: | ||||
692 | case em_pchlan: | ||||
693 | case em_pch2lan: | ||||
694 | case em_pch_lpt: | ||||
695 | case em_pch_spt: | ||||
696 | case em_pch_cnp: | ||||
697 | hw->swfwhw_semaphore_present = TRUE1; | ||||
698 | hw->asf_firmware_present = TRUE1; | ||||
699 | break; | ||||
700 | case em_80003es2lan: | ||||
701 | case em_82575: | ||||
702 | case em_82576: | ||||
703 | case em_82580: | ||||
704 | case em_i210: | ||||
705 | case em_i350: | ||||
706 | hw->swfw_sync_present = TRUE1; | ||||
707 | /* FALLTHROUGH */ | ||||
708 | case em_82571: | ||||
709 | case em_82572: | ||||
710 | case em_82573: | ||||
711 | case em_82574: | ||||
712 | hw->eeprom_semaphore_present = TRUE1; | ||||
713 | /* FALLTHROUGH */ | ||||
714 | case em_82541: | ||||
715 | case em_82547: | ||||
716 | case em_82541_rev_2: | ||||
717 | case em_82547_rev_2: | ||||
718 | hw->asf_firmware_present = TRUE1; | ||||
719 | break; | ||||
720 | default: | ||||
721 | break; | ||||
722 | } | ||||
723 | |||||
724 | return E1000_SUCCESS0; | ||||
725 | } | ||||
726 | |||||
727 | /** | ||||
728 | * em_set_sfp_media_type_82575 - derives SFP module media type. | ||||
729 | * @hw: pointer to the HW structure | ||||
730 | * | ||||
731 | * The media type is chosen based on SFP module. | ||||
732 | * compatibility flags retrieved from SFP ID EEPROM. | ||||
733 | **/ | ||||
734 | STATIC int32_t em_set_sfp_media_type_82575(struct em_hw *hw) | ||||
735 | { | ||||
736 | struct sfp_e1000_flags eth_flags; | ||||
737 | int32_t ret_val = E1000_ERR_CONFIG3; | ||||
738 | uint32_t ctrl_ext = 0; | ||||
739 | uint8_t transceiver_type = 0; | ||||
740 | int32_t timeout = 3; | ||||
741 | |||||
742 | /* Turn I2C interface ON and power on sfp cage */ | ||||
743 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))))); | ||||
744 | ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA0x00000080; | ||||
745 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))), (ctrl_ext | 0x02000000))); | ||||
746 | |||||
747 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
748 | |||||
749 | /* Read SFP module data */ | ||||
750 | while (timeout) { | ||||
751 | ret_val = em_read_sfp_data_byte(hw, | ||||
752 | E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET)(0x0000 + (0x00)), | ||||
753 | &transceiver_type); | ||||
754 | if (ret_val == E1000_SUCCESS0) | ||||
755 | break; | ||||
756 | msec_delay(100)(*delay_func)(1000*(100)); | ||||
757 | timeout--; | ||||
758 | } | ||||
759 | if (ret_val != E1000_SUCCESS0) | ||||
760 | goto out; | ||||
761 | |||||
762 | ret_val = em_read_sfp_data_byte(hw, | ||||
763 | E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET)(0x0000 + (0x06)), | ||||
764 | (uint8_t *)ð_flags); | ||||
765 | if (ret_val != E1000_SUCCESS0) | ||||
766 | goto out; | ||||
767 | |||||
768 | /* Check if there is some SFP module plugged and powered */ | ||||
769 | if ((transceiver_type == E1000_SFF_IDENTIFIER_SFP0x03) || | ||||
770 | (transceiver_type == E1000_SFF_IDENTIFIER_SFF0x02)) { | ||||
771 | if (eth_flags.e1000_base_lx || eth_flags.e1000_base_sx) { | ||||
772 | hw->media_type = em_media_type_internal_serdes; | ||||
773 | } else if (eth_flags.e100_base_fx || eth_flags.e100_base_lx) { | ||||
774 | hw->media_type = em_media_type_internal_serdes; | ||||
775 | hw->sgmii_active = TRUE1; | ||||
776 | } else if (eth_flags.e1000_base_t) { | ||||
777 | hw->media_type = em_media_type_copper; | ||||
778 | hw->sgmii_active = TRUE1; | ||||
779 | } else { | ||||
780 | DEBUGOUT("PHY module has not been recognized\n"); | ||||
781 | ret_val = E1000_ERR_CONFIG3; | ||||
782 | goto out; | ||||
783 | } | ||||
784 | } else { | ||||
785 | ret_val = E1000_ERR_CONFIG3; | ||||
786 | goto out; | ||||
787 | } | ||||
788 | ret_val = E1000_SUCCESS0; | ||||
789 | out: | ||||
790 | /* Restore I2C interface setting */ | ||||
791 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))), (ctrl_ext))); | ||||
792 | return ret_val; | ||||
793 | } | ||||
794 | |||||
795 | |||||
796 | /***************************************************************************** | ||||
797 | * Set media type and TBI compatibility. | ||||
798 | * | ||||
799 | * hw - Struct containing variables accessed by shared code | ||||
800 | * **************************************************************************/ | ||||
801 | void | ||||
802 | em_set_media_type(struct em_hw *hw) | ||||
803 | { | ||||
804 | uint32_t status, ctrl_ext, mdic; | ||||
805 | DEBUGFUNC("em_set_media_type");; | ||||
806 | |||||
807 | if (hw->mac_type != em_82543) { | ||||
808 | /* tbi_compatibility is only valid on 82543 */ | ||||
809 | hw->tbi_compatibility_en = FALSE0; | ||||
810 | } | ||||
811 | |||||
812 | if (hw->mac_type == em_82575 || hw->mac_type == em_82580 || | ||||
813 | hw->mac_type == em_82576 || | ||||
814 | hw->mac_type == em_i210 || hw->mac_type == em_i350) { | ||||
815 | hw->media_type = em_media_type_copper; | ||||
816 | hw->sgmii_active = FALSE0; | ||||
817 | |||||
818 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))))); | ||||
819 | switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK0x00C00000) { | ||||
820 | case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX0x00400000: | ||||
821 | hw->media_type = em_media_type_internal_serdes; | ||||
822 | ctrl_ext |= E1000_CTRL_I2C_ENA0x02000000; | ||||
823 | break; | ||||
824 | case E1000_CTRL_EXT_LINK_MODE_SGMII0x00800000: | ||||
825 | mdic = EM_READ_REG(hw, E1000_MDICNFG)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (0x00E04))); | ||||
826 | ctrl_ext |= E1000_CTRL_I2C_ENA0x02000000; | ||||
827 | if (mdic & E1000_MDICNFG_EXT_MDIO0x80000000) { | ||||
828 | hw->media_type = em_media_type_copper; | ||||
829 | hw->sgmii_active = TRUE1; | ||||
830 | break; | ||||
831 | } | ||||
832 | /* FALLTHROUGH */ | ||||
833 | case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES0x00C00000: | ||||
834 | ctrl_ext |= E1000_CTRL_I2C_ENA0x02000000; | ||||
835 | if (em_set_sfp_media_type_82575(hw) != 0) { | ||||
836 | hw->media_type = em_media_type_internal_serdes; | ||||
837 | if ((ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK0x00C00000) == | ||||
838 | E1000_CTRL_EXT_LINK_MODE_SGMII0x00800000) { | ||||
839 | hw->media_type = em_media_type_copper; | ||||
840 | hw->sgmii_active = TRUE1; | ||||
841 | } | ||||
842 | } | ||||
843 | |||||
844 | ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK0x00C00000; | ||||
845 | if (hw->sgmii_active) | ||||
846 | ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII0x00800000; | ||||
847 | else | ||||
848 | ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES0x00C00000; | ||||
849 | break; | ||||
850 | default: | ||||
851 | ctrl_ext &= ~E1000_CTRL_I2C_ENA0x02000000; | ||||
852 | break; | ||||
853 | } | ||||
854 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))), (ctrl_ext))); | ||||
855 | return; | ||||
856 | } | ||||
857 | |||||
858 | switch (hw->device_id) { | ||||
859 | case E1000_DEV_ID_82545GM_SERDES0x1028: | ||||
860 | case E1000_DEV_ID_82546GB_SERDES0x107B: | ||||
861 | case E1000_DEV_ID_82571EB_SERDES0x1060: | ||||
862 | case E1000_DEV_ID_82571EB_SERDES_DUAL0x10D9: | ||||
863 | case E1000_DEV_ID_82571EB_SERDES_QUAD0x10DA: | ||||
864 | case E1000_DEV_ID_82572EI_SERDES0x107F: | ||||
865 | case E1000_DEV_ID_80003ES2LAN_SERDES_DPT0x1098: | ||||
866 | hw->media_type = em_media_type_internal_serdes; | ||||
867 | break; | ||||
868 | case E1000_DEV_ID_EP80579_LAN_10x5040: | ||||
869 | case E1000_DEV_ID_EP80579_LAN_20x5044: | ||||
870 | case E1000_DEV_ID_EP80579_LAN_30x5048: | ||||
871 | case E1000_DEV_ID_EP80579_LAN_40x5041: | ||||
872 | case E1000_DEV_ID_EP80579_LAN_50x5045: | ||||
873 | case E1000_DEV_ID_EP80579_LAN_60x5049: | ||||
874 | hw->media_type = em_media_type_copper; | ||||
875 | break; | ||||
876 | default: | ||||
877 | switch (hw->mac_type) { | ||||
878 | case em_82542_rev2_0: | ||||
879 | case em_82542_rev2_1: | ||||
880 | hw->media_type = em_media_type_fiber; | ||||
881 | break; | ||||
882 | case em_ich8lan: | ||||
883 | case em_ich9lan: | ||||
884 | case em_ich10lan: | ||||
885 | case em_pchlan: | ||||
886 | case em_pch2lan: | ||||
887 | case em_pch_lpt: | ||||
888 | case em_pch_spt: | ||||
889 | case em_pch_cnp: | ||||
890 | case em_82573: | ||||
891 | case em_82574: | ||||
892 | /* | ||||
893 | * The STATUS_TBIMODE bit is reserved or reused for | ||||
894 | * the this device. | ||||
895 | */ | ||||
896 | hw->media_type = em_media_type_copper; | ||||
897 | break; | ||||
898 | default: | ||||
899 | status = E1000_READ_REG(hw, STATUS)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
900 | if (status & E1000_STATUS_TBIMODE0x00000020) { | ||||
901 | hw->media_type = em_media_type_fiber; | ||||
902 | /* tbi_compatibility not valid on fiber */ | ||||
903 | hw->tbi_compatibility_en = FALSE0; | ||||
904 | } else { | ||||
905 | hw->media_type = em_media_type_copper; | ||||
906 | } | ||||
907 | break; | ||||
908 | } | ||||
909 | } | ||||
910 | } | ||||
911 | /****************************************************************************** | ||||
912 | * Reset the transmit and receive units; mask and clear all interrupts. | ||||
913 | * | ||||
914 | * hw - Struct containing variables accessed by shared code | ||||
915 | *****************************************************************************/ | ||||
916 | int32_t | ||||
917 | em_reset_hw(struct em_hw *hw) | ||||
918 | { | ||||
919 | uint32_t ctrl; | ||||
920 | uint32_t ctrl_ext; | ||||
921 | uint32_t icr; | ||||
922 | uint32_t manc; | ||||
923 | uint32_t led_ctrl; | ||||
924 | uint32_t timeout; | ||||
925 | uint32_t extcnf_ctrl; | ||||
926 | int32_t ret_val; | ||||
927 | DEBUGFUNC("em_reset_hw");; | ||||
928 | |||||
929 | /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ | ||||
930 | if (hw->mac_type == em_82542_rev2_0) { | ||||
931 | DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); | ||||
932 | em_pci_clear_mwi(hw); | ||||
933 | } | ||||
934 | if (hw->bus_type == em_bus_type_pci_express) { | ||||
935 | /* | ||||
936 | * Prevent the PCI-E bus from sticking if there is no TLP | ||||
937 | * connection on the last TLP read/write transaction when MAC | ||||
938 | * is reset. | ||||
939 | */ | ||||
940 | if (em_disable_pciex_master(hw) != E1000_SUCCESS0) { | ||||
941 | DEBUGOUT("PCI-E Master disable polling has failed.\n"); | ||||
942 | } | ||||
943 | } | ||||
944 | |||||
945 | /* Set the completion timeout for 82575 chips */ | ||||
946 | if (hw->mac_type == em_82575 || hw->mac_type == em_82580 || | ||||
947 | hw->mac_type == em_82576 || | ||||
948 | hw->mac_type == em_i210 || hw->mac_type == em_i350) { | ||||
949 | ret_val = em_set_pciex_completion_timeout(hw); | ||||
950 | if (ret_val) { | ||||
951 | DEBUGOUT("PCI-E Set completion timeout has failed.\n"); | ||||
952 | } | ||||
953 | } | ||||
954 | |||||
955 | /* Clear interrupt mask to stop board from generating interrupts */ | ||||
956 | DEBUGOUT("Masking off all interrupts\n"); | ||||
957 | E1000_WRITE_REG(hw, IMC, 0xffffffff)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x000D8 : em_translate_82542_register (0x000D8))), (0xffffffff))); | ||||
958 | /* | ||||
959 | * Disable the Transmit and Receive units. Then delay to allow any | ||||
960 | * pending transactions to complete before we hit the MAC with the | ||||
961 | * global reset. | ||||
962 | */ | ||||
963 | E1000_WRITE_REG(hw, RCTL, 0)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00100 : em_translate_82542_register (0x00100))), (0))); | ||||
964 | E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00400 : em_translate_82542_register (0x00400))), (0x00000008))); | ||||
965 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
966 | /* | ||||
967 | * The tbi_compatibility_on Flag must be cleared when Rctl is | ||||
968 | * cleared. | ||||
969 | */ | ||||
970 | hw->tbi_compatibility_on = FALSE0; | ||||
971 | /* | ||||
972 | * Delay to allow any outstanding PCI transactions to complete before | ||||
973 | * resetting the device | ||||
974 | */ | ||||
975 | msec_delay(10)(*delay_func)(1000*(10)); | ||||
976 | |||||
977 | ctrl = E1000_READ_REG(hw, CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))))); | ||||
978 | |||||
979 | /* Must reset the PHY before resetting the MAC */ | ||||
980 | if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) { | ||||
981 | E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST))((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), ((ctrl | 0x80000000)))); | ||||
982 | msec_delay(5)(*delay_func)(1000*(5)); | ||||
983 | } | ||||
984 | /* | ||||
985 | * Must acquire the MDIO ownership before MAC reset. Ownership | ||||
986 | * defaults to firmware after a reset. | ||||
987 | */ | ||||
988 | if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) { | ||||
989 | timeout = 10; | ||||
990 | |||||
991 | extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F00 : em_translate_82542_register (0x00F00))))); | ||||
992 | extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP0x00000020; | ||||
993 | |||||
994 | do { | ||||
995 | E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F00 : em_translate_82542_register (0x00F00))), (extcnf_ctrl))); | ||||
996 | extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F00 : em_translate_82542_register (0x00F00))))); | ||||
997 | |||||
998 | if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP0x00000020) | ||||
999 | break; | ||||
1000 | else | ||||
1001 | extcnf_ctrl |= | ||||
1002 | E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP0x00000020; | ||||
1003 | |||||
1004 | msec_delay(2)(*delay_func)(1000*(2)); | ||||
1005 | timeout--; | ||||
1006 | } while (timeout); | ||||
1007 | } | ||||
1008 | /* Workaround for ICH8 bit corruption issue in FIFO memory */ | ||||
1009 | if (hw->mac_type == em_ich8lan) { | ||||
1010 | /* Set Tx and Rx buffer allocation to 8k apiece. */ | ||||
1011 | E1000_WRITE_REG(hw, PBA, E1000_PBA_8K)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x01000 : em_translate_82542_register (0x01000))), (0x0008))); | ||||
1012 | /* Set Packet Buffer Size to 16k. */ | ||||
1013 | E1000_WRITE_REG(hw, PBS, E1000_PBS_16K)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x01008 : em_translate_82542_register (0x01008))), (0x0010))); | ||||
1014 | } | ||||
1015 | /* | ||||
1016 | * Issue a global reset to the MAC. This will reset the chip's | ||||
1017 | * transmit, receive, DMA, and link units. It will not effect the | ||||
1018 | * current PCI configuration. The global reset bit is self- | ||||
1019 | * clearing, and should clear within a microsecond. | ||||
1020 | */ | ||||
1021 | DEBUGOUT("Issuing a global reset to MAC\n"); | ||||
1022 | |||||
1023 | switch (hw->mac_type) { | ||||
1024 | case em_82544: | ||||
1025 | case em_82540: | ||||
1026 | case em_82545: | ||||
1027 | case em_82546: | ||||
1028 | case em_82541: | ||||
1029 | case em_82541_rev_2: | ||||
1030 | /* | ||||
1031 | * These controllers can't ack the 64-bit write when issuing | ||||
1032 | * the reset, so use IO-mapping as a workaround to issue the | ||||
1033 | * reset | ||||
1034 | */ | ||||
1035 | E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST))em_write_reg_io((hw), 0x00000, (ctrl | 0x04000000)); | ||||
1036 | break; | ||||
1037 | case em_82545_rev_3: | ||||
1038 | case em_82546_rev_3: | ||||
1039 | /* Reset is performed on a shadow of the control register */ | ||||
1040 | E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST))((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00004 : em_translate_82542_register (0x00004))), ((ctrl | 0x04000000)))); | ||||
1041 | break; | ||||
1042 | case em_ich8lan: | ||||
1043 | case em_ich9lan: | ||||
1044 | case em_ich10lan: | ||||
1045 | case em_pchlan: | ||||
1046 | case em_pch2lan: | ||||
1047 | case em_pch_lpt: | ||||
1048 | case em_pch_spt: | ||||
1049 | case em_pch_cnp: | ||||
1050 | if (!hw->phy_reset_disable && | ||||
1051 | em_check_phy_reset_block(hw) == E1000_SUCCESS0) { | ||||
1052 | /* | ||||
1053 | * PHY HW reset requires MAC CORE reset at the same | ||||
1054 | * time to make sure the interface between MAC and | ||||
1055 | * the external PHY is reset. | ||||
1056 | */ | ||||
1057 | ctrl |= E1000_CTRL_PHY_RST0x80000000; | ||||
1058 | /* | ||||
1059 | * Gate automatic PHY configuration by hardware on | ||||
1060 | * non-managed 82579 | ||||
1061 | */ | ||||
1062 | if ((hw->mac_type == em_pch2lan) && | ||||
1063 | !(E1000_READ_REG(hw, FWSM)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B54 : em_translate_82542_register (0x05B54))))) & E1000_FWSM_FW_VALID0x00008000)) { | ||||
1064 | em_gate_hw_phy_config_ich8lan(hw, TRUE1); | ||||
1065 | } | ||||
1066 | } | ||||
1067 | em_get_software_flag(hw); | ||||
1068 | E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST))((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), ((ctrl | 0x04000000)))); | ||||
1069 | /* HW reset releases software_flag */ | ||||
1070 | hw->sw_flag = 0; | ||||
1071 | msec_delay(20)(*delay_func)(1000*(20)); | ||||
1072 | |||||
1073 | /* Ungate automatic PHY configuration on non-managed 82579 */ | ||||
1074 | if (hw->mac_type == em_pch2lan && !hw->phy_reset_disable && | ||||
1075 | !(E1000_READ_REG(hw, FWSM)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B54 : em_translate_82542_register (0x05B54))))) & E1000_FWSM_FW_VALID0x00008000)) { | ||||
1076 | msec_delay(10)(*delay_func)(1000*(10)); | ||||
1077 | em_gate_hw_phy_config_ich8lan(hw, FALSE0); | ||||
1078 | } | ||||
1079 | break; | ||||
1080 | default: | ||||
1081 | E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST))((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), ((ctrl | 0x04000000)))); | ||||
1082 | break; | ||||
1083 | } | ||||
1084 | |||||
1085 | if (em_check_phy_reset_block(hw) == E1000_SUCCESS0) { | ||||
1086 | if (hw->mac_type == em_pchlan) { | ||||
1087 | ret_val = em_hv_phy_workarounds_ich8lan(hw); | ||||
1088 | if (ret_val) | ||||
1089 | return ret_val; | ||||
1090 | } | ||||
1091 | else if (hw->mac_type == em_pch2lan) { | ||||
1092 | ret_val = em_lv_phy_workarounds_ich8lan(hw); | ||||
1093 | if (ret_val) | ||||
1094 | return ret_val; | ||||
1095 | } | ||||
1096 | } | ||||
1097 | |||||
1098 | /* | ||||
1099 | * After MAC reset, force reload of EEPROM to restore power-on | ||||
1100 | * settings to device. Later controllers reload the EEPROM | ||||
1101 | * automatically, so just wait for reload to complete. | ||||
1102 | */ | ||||
1103 | switch (hw->mac_type) { | ||||
1104 | case em_82542_rev2_0: | ||||
1105 | case em_82542_rev2_1: | ||||
1106 | case em_82543: | ||||
1107 | case em_82544: | ||||
1108 | /* Wait for reset to complete */ | ||||
1109 | usec_delay(10)(*delay_func)(10); | ||||
1110 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))))); | ||||
1111 | ctrl_ext |= E1000_CTRL_EXT_EE_RST0x00002000; | ||||
1112 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))), (ctrl_ext))); | ||||
1113 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
1114 | /* Wait for EEPROM reload */ | ||||
1115 | msec_delay(2)(*delay_func)(1000*(2)); | ||||
1116 | break; | ||||
1117 | case em_82541: | ||||
1118 | case em_82541_rev_2: | ||||
1119 | case em_82547: | ||||
1120 | case em_82547_rev_2: | ||||
1121 | /* Wait for EEPROM reload */ | ||||
1122 | msec_delay(20)(*delay_func)(1000*(20)); | ||||
1123 | break; | ||||
1124 | case em_82573: | ||||
1125 | case em_82574: | ||||
1126 | if (em_is_onboard_nvm_eeprom(hw) == FALSE0) { | ||||
1127 | usec_delay(10)(*delay_func)(10); | ||||
1128 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))))); | ||||
1129 | ctrl_ext |= E1000_CTRL_EXT_EE_RST0x00002000; | ||||
1130 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))), (ctrl_ext))); | ||||
1131 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
1132 | } | ||||
1133 | /* FALLTHROUGH */ | ||||
1134 | |||||
1135 | /* Auto read done will delay 5ms or poll based on mac type */ | ||||
1136 | ret_val = em_get_auto_rd_done(hw); | ||||
1137 | if (ret_val) | ||||
1138 | return ret_val; | ||||
1139 | break; | ||||
1140 | default: | ||||
1141 | /* Wait for EEPROM reload (it happens automatically) */ | ||||
1142 | msec_delay(5)(*delay_func)(1000*(5)); | ||||
1143 | break; | ||||
1144 | } | ||||
1145 | |||||
1146 | /* Disable HW ARPs on ASF enabled adapters */ | ||||
1147 | if (hw->mac_type >= em_82540 && hw->mac_type <= em_82547_rev_2 && | ||||
1148 | hw->mac_type != em_icp_xxxx) { | ||||
1149 | manc = E1000_READ_REG(hw, MANC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05820 : em_translate_82542_register (0x05820))))); | ||||
1150 | manc &= ~(E1000_MANC_ARP_EN0x00002000); | ||||
1151 | E1000_WRITE_REG(hw, MANC, manc)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05820 : em_translate_82542_register (0x05820))), (manc))); | ||||
1152 | } | ||||
1153 | if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) { | ||||
1154 | em_phy_init_script(hw); | ||||
1155 | |||||
1156 | /* Configure activity LED after PHY reset */ | ||||
1157 | led_ctrl = E1000_READ_REG(hw, LEDCTL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00E00 : em_translate_82542_register (0x00E00))))); | ||||
1158 | led_ctrl &= IGP_ACTIVITY_LED_MASK0xFFFFF0FF; | ||||
1159 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE0x0300 | IGP_LED3_MODE0x07000000); | ||||
1160 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00E00 : em_translate_82542_register (0x00E00))), (led_ctrl))); | ||||
1161 | } | ||||
1162 | |||||
1163 | /* | ||||
1164 | * For PCH, this write will make sure that any noise | ||||
1165 | * will be detected as a CRC error and be dropped rather than show up | ||||
1166 | * as a bad packet to the DMA engine. | ||||
1167 | */ | ||||
1168 | if (hw->mac_type == em_pchlan) | ||||
1169 | E1000_WRITE_REG(hw, CRC_OFFSET, 0x65656565)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05F50 : em_translate_82542_register (0x05F50))), (0x65656565))); | ||||
1170 | |||||
1171 | /* Clear interrupt mask to stop board from generating interrupts */ | ||||
1172 | DEBUGOUT("Masking off all interrupts\n"); | ||||
1173 | E1000_WRITE_REG(hw, IMC, 0xffffffff)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x000D8 : em_translate_82542_register (0x000D8))), (0xffffffff))); | ||||
1174 | |||||
1175 | /* Clear any pending interrupt events. */ | ||||
1176 | icr = E1000_READ_REG(hw, ICR)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x000C0 : em_translate_82542_register (0x000C0))))); | ||||
1177 | |||||
1178 | /* If MWI was previously enabled, reenable it. */ | ||||
1179 | if (hw->mac_type == em_82542_rev2_0) { | ||||
1180 | if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE0x0010) | ||||
1181 | em_pci_set_mwi(hw); | ||||
1182 | } | ||||
1183 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | ||||
1184 | uint32_t kab = E1000_READ_REG(hw, KABGTXD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x03004 : em_translate_82542_register (0x03004))))); | ||||
1185 | kab |= E1000_KABGTXD_BGSQLBIAS0x00050000; | ||||
1186 | E1000_WRITE_REG(hw, KABGTXD, kab)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x03004 : em_translate_82542_register (0x03004))), (kab))); | ||||
1187 | } | ||||
1188 | |||||
1189 | if (hw->mac_type == em_82580 || hw->mac_type == em_i350) { | ||||
1190 | uint32_t mdicnfg; | ||||
1191 | uint16_t nvm_data; | ||||
1192 | |||||
1193 | /* clear global device reset status bit */ | ||||
1194 | EM_WRITE_REG(hw, E1000_STATUS, E1000_STATUS_DEV_RST_SET)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (0x00008), (0x00100000))); | ||||
1195 | |||||
1196 | em_read_eeprom(hw, EEPROM_INIT_CONTROL3_PORT_A0x0024 + | ||||
1197 | NVM_82580_LAN_FUNC_OFFSET(hw->bus_func)(hw->bus_func ? (0x40 + (0x40 * hw->bus_func)) : 0), 1, | ||||
1198 | &nvm_data); | ||||
1199 | |||||
1200 | mdicnfg = EM_READ_REG(hw, E1000_MDICNFG)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (0x00E04))); | ||||
1201 | if (nvm_data & NVM_WORD24_EXT_MDIO0x0004) | ||||
1202 | mdicnfg |= E1000_MDICNFG_EXT_MDIO0x80000000; | ||||
1203 | if (nvm_data & NVM_WORD24_COM_MDIO0x0008) | ||||
1204 | mdicnfg |= E1000_MDICNFG_COM_MDIO0x40000000; | ||||
1205 | EM_WRITE_REG(hw, E1000_MDICNFG, mdicnfg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (0x00E04), (mdicnfg))); | ||||
1206 | } | ||||
1207 | |||||
1208 | if (hw->mac_type == em_i210 || hw->mac_type == em_i350) | ||||
1209 | em_set_eee_i350(hw); | ||||
1210 | |||||
1211 | return E1000_SUCCESS0; | ||||
1212 | } | ||||
1213 | |||||
1214 | /****************************************************************************** | ||||
1215 | * | ||||
1216 | * Initialize a number of hardware-dependent bits | ||||
1217 | * | ||||
1218 | * hw: Struct containing variables accessed by shared code | ||||
1219 | * | ||||
1220 | *****************************************************************************/ | ||||
1221 | STATIC void | ||||
1222 | em_initialize_hardware_bits(struct em_softc *sc) | ||||
1223 | { | ||||
1224 | struct em_hw *hw = &sc->hw; | ||||
1225 | struct em_queue *que; | ||||
1226 | |||||
1227 | DEBUGFUNC("em_initialize_hardware_bits");; | ||||
1228 | |||||
1229 | if ((hw->mac_type >= em_82571) && (!hw->initialize_hw_bits_disable)) { | ||||
1230 | /* Settings common to all silicon */ | ||||
1231 | uint32_t reg_ctrl, reg_ctrl_ext; | ||||
1232 | uint32_t reg_tarc0, reg_tarc1; | ||||
1233 | uint32_t reg_tctl; | ||||
1234 | uint32_t reg_txdctl; | ||||
1235 | reg_tarc0 = E1000_READ_REG(hw, TARC0)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x03840 : em_translate_82542_register (0x03840))))); | ||||
1236 | reg_tarc0 &= ~0x78000000; /* Clear bits 30, 29, 28, and | ||||
1237 | * 27 */ | ||||
1238 | FOREACH_QUEUE(sc, que)for ((que) = (sc)->queues; (que) < ((sc)->queues + ( sc)->num_queues); (que)++) { | ||||
1239 | reg_txdctl = E1000_READ_REG(hw, TXDCTL(que->me))((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? ((que->me) < 4 ? (0x03828 + ((que->me) * 0x100)) : (0x0E028 + ((que->me ) * 0x40))) : em_translate_82542_register(((que->me) < 4 ? (0x03828 + ((que->me) * 0x100)) : (0x0E028 + ((que-> me) * 0x40)))))))); | ||||
1240 | reg_txdctl |= E1000_TXDCTL_COUNT_DESC0x00400000; /* Set bit 22 */ | ||||
1241 | E1000_WRITE_REG(hw, TXDCTL(que->me), reg_txdctl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? ((que->me) < 4 ? (0x03828 + ((que->me) * 0x100)) : (0x0E028 + ((que->me ) * 0x40))) : em_translate_82542_register(((que->me) < 4 ? (0x03828 + ((que->me) * 0x100)) : (0x0E028 + ((que-> me) * 0x40)))))), (reg_txdctl))); | ||||
1242 | } | ||||
1243 | |||||
1244 | /* | ||||
1245 | * Old code always initialized queue 1, | ||||
1246 | * even when unused, keep behaviour | ||||
1247 | */ | ||||
1248 | if (sc->num_queues == 1) { | ||||
1249 | reg_txdctl = E1000_READ_REG(hw, TXDCTL(1))((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? ((1) < 4 ? (0x03828 + ((1) * 0x100)) : (0x0E028 + ((1) * 0x40))) : em_translate_82542_register (((1) < 4 ? (0x03828 + ((1) * 0x100)) : (0x0E028 + ((1) * 0x40 )))))))); | ||||
1250 | reg_txdctl |= E1000_TXDCTL_COUNT_DESC0x00400000; | ||||
1251 | E1000_WRITE_REG(hw, TXDCTL(1), reg_txdctl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? ((1) < 4 ? (0x03828 + ((1) * 0x100)) : (0x0E028 + ((1) * 0x40))) : em_translate_82542_register (((1) < 4 ? (0x03828 + ((1) * 0x100)) : (0x0E028 + ((1) * 0x40 )))))), (reg_txdctl))); | ||||
1252 | } | ||||
1253 | |||||
1254 | switch (hw->mac_type) { | ||||
1255 | case em_82571: | ||||
1256 | case em_82572: | ||||
1257 | reg_tarc1 = E1000_READ_REG(hw, TARC1)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x03940 : em_translate_82542_register (0x03940))))); | ||||
1258 | reg_tctl = E1000_READ_REG(hw, TCTL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00400 : em_translate_82542_register (0x00400))))); | ||||
1259 | |||||
1260 | /* Set the phy Tx compatible mode bits */ | ||||
1261 | reg_tarc1 &= ~0x60000000; /* Clear bits 30 and 29 */ | ||||
1262 | |||||
1263 | reg_tarc0 |= 0x07800000; /* Set TARC0 bits 23-26 */ | ||||
1264 | reg_tarc1 |= 0x07000000; /* Set TARC1 bits 24-26 */ | ||||
1265 | |||||
1266 | if (reg_tctl & E1000_TCTL_MULR0x10000000) | ||||
1267 | /* Clear bit 28 if MULR is 1b */ | ||||
1268 | reg_tarc1 &= ~0x10000000; | ||||
1269 | else | ||||
1270 | /* Set bit 28 if MULR is 0b */ | ||||
1271 | reg_tarc1 |= 0x10000000; | ||||
1272 | |||||
1273 | E1000_WRITE_REG(hw, TARC1, reg_tarc1)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x03940 : em_translate_82542_register (0x03940))), (reg_tarc1))); | ||||
1274 | break; | ||||
1275 | case em_82573: | ||||
1276 | case em_82574: | ||||
1277 | reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))))); | ||||
1278 | reg_ctrl = E1000_READ_REG(hw, CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))))); | ||||
1279 | |||||
1280 | reg_ctrl_ext &= ~0x00800000; /* Clear bit 23 */ | ||||
1281 | reg_ctrl_ext |= 0x00400000; /* Set bit 22 */ | ||||
1282 | reg_ctrl &= ~0x20000000; /* Clear bit 29 */ | ||||
1283 | |||||
1284 | E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))), (reg_ctrl_ext))); | ||||
1285 | E1000_WRITE_REG(hw, CTRL, reg_ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (reg_ctrl))); | ||||
1286 | break; | ||||
1287 | case em_80003es2lan: | ||||
1288 | if ((hw->media_type == em_media_type_fiber) || | ||||
1289 | (hw->media_type == em_media_type_internal_serdes)) { | ||||
1290 | /* Clear bit 20 */ | ||||
1291 | reg_tarc0 &= ~0x00100000; | ||||
1292 | } | ||||
1293 | reg_tctl = E1000_READ_REG(hw, TCTL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00400 : em_translate_82542_register (0x00400))))); | ||||
1294 | reg_tarc1 = E1000_READ_REG(hw, TARC1)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x03940 : em_translate_82542_register (0x03940))))); | ||||
1295 | if (reg_tctl & E1000_TCTL_MULR0x10000000) | ||||
1296 | /* Clear bit 28 if MULR is 1b */ | ||||
1297 | reg_tarc1 &= ~0x10000000; | ||||
1298 | else | ||||
1299 | /* Set bit 28 if MULR is 0b */ | ||||
1300 | reg_tarc1 |= 0x10000000; | ||||
1301 | |||||
1302 | E1000_WRITE_REG(hw, TARC1, reg_tarc1)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x03940 : em_translate_82542_register (0x03940))), (reg_tarc1))); | ||||
1303 | break; | ||||
1304 | case em_ich8lan: | ||||
1305 | case em_ich9lan: | ||||
1306 | case em_ich10lan: | ||||
1307 | case em_pchlan: | ||||
1308 | case em_pch2lan: | ||||
1309 | case em_pch_lpt: | ||||
1310 | case em_pch_spt: | ||||
1311 | case em_pch_cnp: | ||||
1312 | if (hw->mac_type == em_ich8lan) | ||||
1313 | /* Set TARC0 bits 29 and 28 */ | ||||
1314 | reg_tarc0 |= 0x30000000; | ||||
1315 | |||||
1316 | reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))))); | ||||
1317 | reg_ctrl_ext |= 0x00400000; /* Set bit 22 */ | ||||
1318 | /* Enable PHY low-power state when MAC is at D3 w/o WoL */ | ||||
1319 | if (hw->mac_type >= em_pchlan) | ||||
1320 | reg_ctrl_ext |= E1000_CTRL_EXT_PHYPDEN0x00100000; | ||||
1321 | E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))), (reg_ctrl_ext))); | ||||
1322 | |||||
1323 | reg_tarc0 |= 0x0d800000; /* Set TARC0 bits 23, | ||||
1324 | * 24, 26, 27 */ | ||||
1325 | |||||
1326 | reg_tarc1 = E1000_READ_REG(hw, TARC1)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x03940 : em_translate_82542_register (0x03940))))); | ||||
1327 | reg_tctl = E1000_READ_REG(hw, TCTL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00400 : em_translate_82542_register (0x00400))))); | ||||
1328 | |||||
1329 | if (reg_tctl & E1000_TCTL_MULR0x10000000) | ||||
1330 | /* Clear bit 28 if MULR is 1b */ | ||||
1331 | reg_tarc1 &= ~0x10000000; | ||||
1332 | else | ||||
1333 | /* Set bit 28 if MULR is 0b */ | ||||
1334 | reg_tarc1 |= 0x10000000; | ||||
1335 | |||||
1336 | reg_tarc1 |= 0x45000000; /* Set bit 24, 26 and | ||||
1337 | * 30 */ | ||||
1338 | |||||
1339 | E1000_WRITE_REG(hw, TARC1, reg_tarc1)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x03940 : em_translate_82542_register (0x03940))), (reg_tarc1))); | ||||
1340 | break; | ||||
1341 | default: | ||||
1342 | break; | ||||
1343 | } | ||||
1344 | |||||
1345 | E1000_WRITE_REG(hw, TARC0, reg_tarc0)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x03840 : em_translate_82542_register (0x03840))), (reg_tarc0))); | ||||
1346 | } | ||||
1347 | } | ||||
1348 | |||||
1349 | /** | ||||
1350 | * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value | ||||
1351 | * @hw: pointer to the HW structure | ||||
1352 | * | ||||
1353 | * Toggling the LANPHYPC pin value fully power-cycles the PHY and is | ||||
1354 | * used to reset the PHY to a quiescent state when necessary. | ||||
1355 | **/ | ||||
1356 | static void | ||||
1357 | em_toggle_lanphypc_pch_lpt(struct em_hw *hw) | ||||
1358 | { | ||||
1359 | uint32_t mac_reg; | ||||
1360 | |||||
1361 | DEBUGFUNC("e1000_toggle_lanphypc_pch_lpt");; | ||||
1362 | |||||
1363 | /* Set Phy Config Counter to 50msec */ | ||||
1364 | mac_reg = E1000_READ_REG(hw, FEXTNVM3)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x0003C : em_translate_82542_register (0x0003C))))); | ||||
1365 | mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK0x0C000000; | ||||
1366 | mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC0x08000000; | ||||
1367 | E1000_WRITE_REG(hw, FEXTNVM3, mac_reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x0003C : em_translate_82542_register (0x0003C))), (mac_reg))); | ||||
1368 | |||||
1369 | /* Toggle LANPHYPC Value bit */ | ||||
1370 | mac_reg = E1000_READ_REG(hw, CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))))); | ||||
1371 | mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE0x00010000; | ||||
1372 | mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE0x00020000; | ||||
1373 | E1000_WRITE_REG(hw, CTRL, mac_reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (mac_reg))); | ||||
1374 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
1375 | msec_delay(1)(*delay_func)(1000*(1)); | ||||
1376 | mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE0x00010000; | ||||
1377 | E1000_WRITE_REG(hw, CTRL, mac_reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (mac_reg))); | ||||
1378 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
1379 | |||||
1380 | if (hw->mac_type
| ||||
1381 | msec_delay(50)(*delay_func)(1000*(50)); | ||||
1382 | } else { | ||||
1383 | uint16_t count = 20; | ||||
1384 | |||||
1385 | do { | ||||
1386 | msec_delay(5)(*delay_func)(1000*(5)); | ||||
1387 | } while (!(E1000_READ_REG(hw, CTRL_EXT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))))) & | ||||
1388 | E1000_CTRL_EXT_LPCD0x00000004) && count--); | ||||
1389 | |||||
1390 | msec_delay(30)(*delay_func)(1000*(30)); | ||||
1391 | } | ||||
1392 | } | ||||
1393 | |||||
1394 | /** | ||||
1395 | * em_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP | ||||
1396 | * @hw: pointer to the HW structure | ||||
1397 | * @force: boolean indicating whether or not to force disabling ULP | ||||
1398 | * | ||||
1399 | * Un-configure ULP mode when link is up, the system is transitioned from | ||||
1400 | * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled | ||||
1401 | * system, poll for an indication from ME that ULP has been un-configured. | ||||
1402 | * If not on an ME enabled system, un-configure the ULP mode by software. | ||||
1403 | * | ||||
1404 | * During nominal operation, this function is called when link is acquired | ||||
1405 | * to disable ULP mode (force=FALSE); otherwise, for example when unloading | ||||
1406 | * the driver or during Sx->S0 transitions, this is called with force=TRUE | ||||
1407 | * to forcibly disable ULP. | ||||
1408 | */ | ||||
1409 | static int | ||||
1410 | em_disable_ulp_lpt_lp(struct em_hw *hw, bool_Bool force) | ||||
1411 | { | ||||
1412 | int ret_val = E1000_SUCCESS0; | ||||
1413 | uint32_t mac_reg; | ||||
1414 | uint16_t phy_reg; | ||||
1415 | int i = 0; | ||||
1416 | |||||
1417 | if ((hw->mac_type
| ||||
1418 | (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM0x153A) || | ||||
1419 | (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V0x153B) || | ||||
1420 | (hw->device_id == E1000_DEV_ID_PCH_I218_LM20x15A0) || | ||||
1421 | (hw->device_id == E1000_DEV_ID_PCH_I218_V20x15A1)) | ||||
1422 | return 0; | ||||
1423 | |||||
1424 | if (E1000_READ_REG(hw, FWSM)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B54 : em_translate_82542_register (0x05B54))))) & E1000_FWSM_FW_VALID0x00008000) { | ||||
1425 | if (force) { | ||||
1426 | /* Request ME un-configure ULP mode in the PHY */ | ||||
1427 | mac_reg = E1000_READ_REG(hw, H2ME)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B50 : em_translate_82542_register (0x05B50))))); | ||||
1428 | mac_reg &= ~E1000_H2ME_ULP0x00000800; | ||||
1429 | mac_reg |= E1000_H2ME_ENFORCE_SETTINGS0x00001000; | ||||
1430 | E1000_WRITE_REG(hw, H2ME, mac_reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B50 : em_translate_82542_register (0x05B50))), (mac_reg))); | ||||
1431 | } | ||||
1432 | |||||
1433 | /* Poll up to 300msec for ME to clear ULP_CFG_DONE. */ | ||||
1434 | while (E1000_READ_REG(hw, FWSM)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B54 : em_translate_82542_register (0x05B54))))) & E1000_FWSM_ULP_CFG_DONE0x00000400) { | ||||
1435 | if (i++ == 30) { | ||||
1436 | ret_val = -E1000_ERR_PHY2; | ||||
1437 | goto out; | ||||
1438 | } | ||||
1439 | |||||
1440 | msec_delay(10)(*delay_func)(1000*(10)); | ||||
1441 | } | ||||
1442 | DEBUGOUT1("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10); | ||||
1443 | |||||
1444 | if (force) { | ||||
1445 | mac_reg = E1000_READ_REG(hw, H2ME)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B50 : em_translate_82542_register (0x05B50))))); | ||||
1446 | mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS0x00001000; | ||||
1447 | E1000_WRITE_REG(hw, H2ME, mac_reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B50 : em_translate_82542_register (0x05B50))), (mac_reg))); | ||||
1448 | } else { | ||||
1449 | /* Clear H2ME.ULP after ME ULP configuration */ | ||||
1450 | mac_reg = E1000_READ_REG(hw, H2ME)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B50 : em_translate_82542_register (0x05B50))))); | ||||
1451 | mac_reg &= ~E1000_H2ME_ULP0x00000800; | ||||
1452 | E1000_WRITE_REG(hw, H2ME, mac_reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B50 : em_translate_82542_register (0x05B50))), (mac_reg))); | ||||
1453 | } | ||||
1454 | |||||
1455 | goto out; | ||||
1456 | } | ||||
1457 | |||||
1458 | ret_val = em_get_software_flag(hw); | ||||
1459 | if (ret_val) | ||||
1460 | goto out; | ||||
1461 | |||||
1462 | if (force
| ||||
1463 | /* Toggle LANPHYPC Value bit */ | ||||
1464 | em_toggle_lanphypc_pch_lpt(hw); | ||||
1465 | |||||
1466 | /* Unforce SMBus mode in PHY */ | ||||
1467 | ret_val = em_read_phy_reg(hw, CV_SMB_CTRL(((769) << 5) | ((23) & 0x1F)), &phy_reg); | ||||
1468 | if (ret_val
| ||||
1469 | /* The MAC might be in PCIe mode, so temporarily force to | ||||
1470 | * SMBus mode in order to access the PHY. | ||||
1471 | */ | ||||
1472 | mac_reg = E1000_READ_REG(hw, CTRL_EXT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))))); | ||||
1473 | mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS0x00000800; | ||||
1474 | E1000_WRITE_REG(hw, CTRL_EXT, mac_reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))), (mac_reg))); | ||||
1475 | |||||
1476 | msec_delay(50)(*delay_func)(1000*(50)); | ||||
1477 | |||||
1478 | ret_val = em_read_phy_reg(hw, CV_SMB_CTRL(((769) << 5) | ((23) & 0x1F)), &phy_reg); | ||||
1479 | if (ret_val) | ||||
1480 | goto release; | ||||
1481 | } | ||||
1482 | phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS0x0001; | ||||
1483 | em_write_phy_reg(hw, CV_SMB_CTRL(((769) << 5) | ((23) & 0x1F)), phy_reg); | ||||
1484 | |||||
1485 | /* Unforce SMBus mode in MAC */ | ||||
1486 | mac_reg = E1000_READ_REG(hw, CTRL_EXT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))))); | ||||
1487 | mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS0x00000800; | ||||
1488 | E1000_WRITE_REG(hw, CTRL_EXT, mac_reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))), (mac_reg))); | ||||
1489 | |||||
1490 | /* When ULP mode was previously entered, K1 was disabled by the | ||||
1491 | * hardware. Re-Enable K1 in the PHY when exiting ULP. | ||||
1492 | */ | ||||
1493 | ret_val = em_read_phy_reg(hw, HV_PM_CTRL(((770) << 5) | ((17) & 0x1F)), &phy_reg); | ||||
1494 | if (ret_val
| ||||
1495 | goto release; | ||||
1496 | phy_reg |= HV_PM_CTRL_K1_ENABLE0x4000; | ||||
1497 | em_write_phy_reg(hw, HV_PM_CTRL(((770) << 5) | ((17) & 0x1F)), phy_reg); | ||||
1498 | |||||
1499 | /* Clear ULP enabled configuration */ | ||||
1500 | ret_val = em_read_phy_reg(hw, I218_ULP_CONFIG1(((779) << 5) | ((16) & 0x1F)), &phy_reg); | ||||
1501 | if (ret_val
| ||||
1502 | goto release; | ||||
1503 | phy_reg &= ~(I218_ULP_CONFIG1_IND0x0004 | | ||||
1504 | I218_ULP_CONFIG1_STICKY_ULP0x0010 | | ||||
1505 | I218_ULP_CONFIG1_RESET_TO_SMBUS0x0100 | | ||||
1506 | I218_ULP_CONFIG1_WOL_HOST0x0040 | | ||||
1507 | I218_ULP_CONFIG1_INBAND_EXIT0x0020 | | ||||
1508 | I218_ULP_CONFIG1_EN_ULP_LANPHYPC0x0400 | | ||||
1509 | I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST0x0800 | | ||||
1510 | I218_ULP_CONFIG1_DISABLE_SMB_PERST0x1000); | ||||
1511 | em_write_phy_reg(hw, I218_ULP_CONFIG1(((779) << 5) | ((16) & 0x1F)), phy_reg); | ||||
1512 | |||||
1513 | /* Commit ULP changes by starting auto ULP configuration */ | ||||
1514 | phy_reg |= I218_ULP_CONFIG1_START0x0001; | ||||
1515 | em_write_phy_reg(hw, I218_ULP_CONFIG1(((779) << 5) | ((16) & 0x1F)), phy_reg); | ||||
1516 | |||||
1517 | /* Clear Disable SMBus Release on PERST# in MAC */ | ||||
1518 | mac_reg = E1000_READ_REG(hw, FEXTNVM7)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0xe4UL : em_translate_82542_register (0xe4UL))))); | ||||
1519 | mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST0x00000020; | ||||
1520 | E1000_WRITE_REG(hw, FEXTNVM7, mac_reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0xe4UL : em_translate_82542_register (0xe4UL))), (mac_reg))); | ||||
1521 | |||||
1522 | release: | ||||
1523 | em_release_software_flag(hw); | ||||
1524 | if (force
| ||||
1525 | em_phy_reset(hw); | ||||
1526 | msec_delay(50)(*delay_func)(1000*(50)); | ||||
1527 | } | ||||
1528 | out: | ||||
1529 | if (ret_val) | ||||
1530 | DEBUGOUT1("Error in ULP disable flow: %d\n", ret_val); | ||||
1531 | |||||
1532 | return ret_val; | ||||
1533 | } | ||||
1534 | |||||
1535 | /****************************************************************************** | ||||
1536 | * Performs basic configuration of the adapter. | ||||
1537 | * | ||||
1538 | * hw - Struct containing variables accessed by shared code | ||||
1539 | * | ||||
1540 | * Assumes that the controller has previously been reset and is in a | ||||
1541 | * post-reset uninitialized state. Initializes the receive address registers, | ||||
1542 | * multicast table, and VLAN filter table. Calls routines to setup link | ||||
1543 | * configuration and flow control settings. Clears all on-chip counters. Leaves | ||||
1544 | * the transmit and receive units disabled and uninitialized. | ||||
1545 | *****************************************************************************/ | ||||
1546 | int32_t | ||||
1547 | em_init_hw(struct em_softc *sc) | ||||
1548 | { | ||||
1549 | struct em_hw *hw = &sc->hw; | ||||
1550 | struct em_queue *que; | ||||
1551 | uint32_t ctrl; | ||||
1552 | uint32_t i; | ||||
1553 | int32_t ret_val; | ||||
1554 | uint16_t pcix_cmd_word; | ||||
1555 | uint16_t pcix_stat_hi_word; | ||||
1556 | uint16_t cmd_mmrbc; | ||||
1557 | uint16_t stat_mmrbc; | ||||
1558 | uint32_t mta_size; | ||||
1559 | uint32_t reg_data; | ||||
1560 | uint32_t ctrl_ext; | ||||
1561 | uint32_t snoop; | ||||
1562 | uint32_t fwsm; | ||||
1563 | DEBUGFUNC("em_init_hw");; | ||||
1564 | |||||
1565 | /* force full DMA clock frequency for ICH8 */ | ||||
1566 | if (hw->mac_type == em_ich8lan) { | ||||
| |||||
1567 | reg_data = E1000_READ_REG(hw, STATUS)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
1568 | reg_data &= ~0x80000000; | ||||
1569 | E1000_WRITE_REG(hw, STATUS, reg_data)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))), (reg_data))); | ||||
1570 | } | ||||
1571 | |||||
1572 | if (hw->mac_type == em_pchlan || | ||||
1573 | hw->mac_type == em_pch2lan || | ||||
1574 | hw->mac_type == em_pch_lpt || | ||||
1575 | hw->mac_type == em_pch_spt || | ||||
1576 | hw->mac_type == em_pch_cnp) { | ||||
1577 | /* | ||||
1578 | * The MAC-PHY interconnect may still be in SMBus mode | ||||
1579 | * after Sx->S0. Toggle the LANPHYPC Value bit to force | ||||
1580 | * the interconnect to PCIe mode, but only if there is no | ||||
1581 | * firmware present otherwise firmware will have done it. | ||||
1582 | */ | ||||
1583 | fwsm = E1000_READ_REG(hw, FWSM)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B54 : em_translate_82542_register (0x05B54))))); | ||||
1584 | if ((fwsm & E1000_FWSM_FW_VALID0x00008000) == 0) { | ||||
1585 | ctrl = E1000_READ_REG(hw, CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))))); | ||||
1586 | ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE0x00010000; | ||||
1587 | ctrl &= ~E1000_CTRL_LANPHYPC_VALUE0x00020000; | ||||
1588 | E1000_WRITE_REG(hw, CTRL, ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (ctrl))); | ||||
1589 | usec_delay(10)(*delay_func)(10); | ||||
1590 | ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE0x00010000; | ||||
1591 | E1000_WRITE_REG(hw, CTRL, ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (ctrl))); | ||||
1592 | msec_delay(50)(*delay_func)(1000*(50)); | ||||
1593 | } | ||||
1594 | |||||
1595 | /* Gate automatic PHY configuration on non-managed 82579 */ | ||||
1596 | if (hw->mac_type
| ||||
1597 | em_gate_hw_phy_config_ich8lan(hw, TRUE1); | ||||
1598 | |||||
1599 | em_disable_ulp_lpt_lp(hw, TRUE1); | ||||
1600 | /* | ||||
1601 | * Reset the PHY before any access to it. Doing so, | ||||
1602 | * ensures that the PHY is in a known good state before | ||||
1603 | * we read/write PHY registers. The generic reset is | ||||
1604 | * sufficient here, because we haven't determined | ||||
1605 | * the PHY type yet. | ||||
1606 | */ | ||||
1607 | em_phy_reset(hw); | ||||
1608 | |||||
1609 | /* Ungate automatic PHY configuration on non-managed 82579 */ | ||||
1610 | if (hw->mac_type == em_pch2lan && | ||||
1611 | (fwsm & E1000_FWSM_FW_VALID0x00008000) == 0) | ||||
1612 | em_gate_hw_phy_config_ich8lan(hw, FALSE0); | ||||
1613 | |||||
1614 | /* Set MDIO slow mode before any other MDIO access */ | ||||
1615 | ret_val = em_set_mdio_slow_mode_hv(hw); | ||||
1616 | if (ret_val) | ||||
1617 | return ret_val; | ||||
1618 | } | ||||
1619 | |||||
1620 | /* Initialize Identification LED */ | ||||
1621 | ret_val = em_id_led_init(hw); | ||||
1622 | if (ret_val) { | ||||
1623 | DEBUGOUT("Error Initializing Identification LED\n"); | ||||
1624 | return ret_val; | ||||
1625 | } | ||||
1626 | /* Set the media type and TBI compatibility */ | ||||
1627 | em_set_media_type(hw); | ||||
1628 | |||||
1629 | /* Magic delay that improves problems with i219LM on HP Elitebook */ | ||||
1630 | msec_delay(1)(*delay_func)(1000*(1)); | ||||
1631 | /* Must be called after em_set_media_type because media_type is used */ | ||||
1632 | em_initialize_hardware_bits(sc); | ||||
1633 | |||||
1634 | /* Disabling VLAN filtering. */ | ||||
1635 | DEBUGOUT("Initializing the IEEE VLAN\n"); | ||||
1636 | /* VET hardcoded to standard value and VFTA removed in ICH8/ICH9 LAN */ | ||||
1637 | if (!IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | ||||
1638 | if (hw->mac_type < em_82545_rev_3) | ||||
1639 | E1000_WRITE_REG(hw, VET, 0)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00038 : em_translate_82542_register (0x00038))), (0))); | ||||
1640 | if (hw->mac_type == em_i350) | ||||
1641 | em_clear_vfta_i350(hw); | ||||
1642 | else | ||||
1643 | em_clear_vfta(hw); | ||||
1644 | } | ||||
1645 | /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ | ||||
1646 | if (hw->mac_type == em_82542_rev2_0) { | ||||
1647 | DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); | ||||
1648 | em_pci_clear_mwi(hw); | ||||
1649 | E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00100 : em_translate_82542_register (0x00100))), (0x00000001))); | ||||
1650 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
1651 | msec_delay(5)(*delay_func)(1000*(5)); | ||||
1652 | } | ||||
1653 | /* | ||||
1654 | * Setup the receive address. This involves initializing all of the | ||||
1655 | * Receive Address Registers (RARs 0 - 15). | ||||
1656 | */ | ||||
1657 | em_init_rx_addrs(hw); | ||||
1658 | |||||
1659 | /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI*/ | ||||
1660 | if (hw->mac_type == em_82542_rev2_0) { | ||||
1661 | E1000_WRITE_REG(hw, RCTL, 0)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00100 : em_translate_82542_register (0x00100))), (0))); | ||||
1662 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
1663 | msec_delay(1)(*delay_func)(1000*(1)); | ||||
1664 | if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE0x0010) | ||||
1665 | em_pci_set_mwi(hw); | ||||
1666 | } | ||||
1667 | /* Zero out the Multicast HASH table */ | ||||
1668 | DEBUGOUT("Zeroing the MTA\n"); | ||||
1669 | mta_size = E1000_MC_TBL_SIZE128; | ||||
1670 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) | ||||
1671 | mta_size = E1000_MC_TBL_SIZE_ICH8LAN32; | ||||
1672 | for (i = 0; i < mta_size; i++) { | ||||
1673 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05200 : em_translate_82542_register (0x05200)) + ((i) << 2)), (0))); | ||||
1674 | /* | ||||
1675 | * use write flush to prevent Memory Write Block (MWB) from | ||||
1676 | * occurring when accessing our register space | ||||
1677 | */ | ||||
1678 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
1679 | } | ||||
1680 | /* | ||||
1681 | * Set the PCI priority bit correctly in the CTRL register. This | ||||
1682 | * determines if the adapter gives priority to receives, or if it | ||||
1683 | * gives equal priority to transmits and receives. Valid only on | ||||
1684 | * 82542 and 82543 silicon. | ||||
1685 | */ | ||||
1686 | if (hw->dma_fairness && hw->mac_type <= em_82543) { | ||||
1687 | ctrl = E1000_READ_REG(hw, CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))))); | ||||
1688 | E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (ctrl | 0x00000004))); | ||||
1689 | } | ||||
1690 | switch (hw->mac_type) { | ||||
1691 | case em_82545_rev_3: | ||||
1692 | case em_82546_rev_3: | ||||
1693 | break; | ||||
1694 | default: | ||||
1695 | /* | ||||
1696 | * Workaround for PCI-X problem when BIOS sets MMRBC | ||||
1697 | * incorrectly. | ||||
1698 | */ | ||||
1699 | if (hw->bus_type == em_bus_type_pcix) { | ||||
1700 | em_read_pci_cfg(hw, PCIX_COMMAND_REGISTER0xE6, | ||||
1701 | &pcix_cmd_word); | ||||
1702 | em_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI0xEA, | ||||
1703 | &pcix_stat_hi_word); | ||||
1704 | cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK0x000C) | ||||
1705 | >> PCIX_COMMAND_MMRBC_SHIFT0x2; | ||||
1706 | stat_mmrbc = (pcix_stat_hi_word & | ||||
1707 | PCIX_STATUS_HI_MMRBC_MASK0x0060) >> | ||||
1708 | PCIX_STATUS_HI_MMRBC_SHIFT0x5; | ||||
1709 | |||||
1710 | if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K0x3) | ||||
1711 | stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K0x2; | ||||
1712 | if (cmd_mmrbc > stat_mmrbc) { | ||||
1713 | pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK0x000C; | ||||
1714 | pcix_cmd_word |= stat_mmrbc << | ||||
1715 | PCIX_COMMAND_MMRBC_SHIFT0x2; | ||||
1716 | em_write_pci_cfg(hw, PCIX_COMMAND_REGISTER0xE6, | ||||
1717 | &pcix_cmd_word); | ||||
1718 | } | ||||
1719 | } | ||||
1720 | break; | ||||
1721 | } | ||||
1722 | |||||
1723 | /* More time needed for PHY to initialize */ | ||||
1724 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) | ||||
1725 | msec_delay(15)(*delay_func)(1000*(15)); | ||||
1726 | |||||
1727 | /* | ||||
1728 | * The 82578 Rx buffer will stall if wakeup is enabled in host and | ||||
1729 | * the ME. Reading the BM_WUC register will clear the host wakeup bit. | ||||
1730 | * Reset the phy after disabling host wakeup to reset the Rx buffer. | ||||
1731 | */ | ||||
1732 | if (hw->phy_type == em_phy_82578) { | ||||
1733 | em_read_phy_reg(hw, PHY_REG(BM_WUC_PAGE, 1)(((800) << 5) | ((1) & 0x1F)), | ||||
1734 | (uint16_t *)®_data); | ||||
1735 | ret_val = em_phy_reset(hw); | ||||
1736 | if (ret_val) | ||||
1737 | return ret_val; | ||||
1738 | } | ||||
1739 | |||||
1740 | /* Call a subroutine to configure the link and setup flow control. */ | ||||
1741 | ret_val = em_setup_link(hw); | ||||
1742 | |||||
1743 | /* Set the transmit descriptor write-back policy */ | ||||
1744 | if (hw->mac_type > em_82544) { | ||||
1745 | FOREACH_QUEUE(sc, que)for ((que) = (sc)->queues; (que) < ((sc)->queues + ( sc)->num_queues); (que)++) { | ||||
1746 | ctrl = E1000_READ_REG(hw, TXDCTL(que->me))((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? ((que->me) < 4 ? (0x03828 + ((que->me) * 0x100)) : (0x0E028 + ((que->me ) * 0x40))) : em_translate_82542_register(((que->me) < 4 ? (0x03828 + ((que->me) * 0x100)) : (0x0E028 + ((que-> me) * 0x40)))))))); | ||||
1747 | ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH0x00FF0000) | | ||||
1748 | E1000_TXDCTL_FULL_TX_DESC_WB0x01010000; | ||||
1749 | E1000_WRITE_REG(hw, TXDCTL(que->me), ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? ((que->me) < 4 ? (0x03828 + ((que->me) * 0x100)) : (0x0E028 + ((que->me ) * 0x40))) : em_translate_82542_register(((que->me) < 4 ? (0x03828 + ((que->me) * 0x100)) : (0x0E028 + ((que-> me) * 0x40)))))), (ctrl))); | ||||
1750 | } | ||||
1751 | } | ||||
1752 | if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) { | ||||
1753 | em_enable_tx_pkt_filtering(hw); | ||||
1754 | } | ||||
1755 | switch (hw->mac_type) { | ||||
1756 | default: | ||||
1757 | break; | ||||
1758 | case em_80003es2lan: | ||||
1759 | /* Enable retransmit on late collisions */ | ||||
1760 | reg_data = E1000_READ_REG(hw, TCTL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00400 : em_translate_82542_register (0x00400))))); | ||||
1761 | reg_data |= E1000_TCTL_RTLC0x01000000; | ||||
1762 | E1000_WRITE_REG(hw, TCTL, reg_data)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00400 : em_translate_82542_register (0x00400))), (reg_data))); | ||||
1763 | |||||
1764 | /* Configure Gigabit Carry Extend Padding */ | ||||
1765 | reg_data = E1000_READ_REG(hw, TCTL_EXT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00404 : em_translate_82542_register (0x00404))))); | ||||
1766 | reg_data &= ~E1000_TCTL_EXT_GCEX_MASK0x000FFC00; | ||||
1767 | reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX0x00010000; | ||||
1768 | E1000_WRITE_REG(hw, TCTL_EXT, reg_data)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00404 : em_translate_82542_register (0x00404))), (reg_data))); | ||||
1769 | |||||
1770 | /* Configure Transmit Inter-Packet Gap */ | ||||
1771 | reg_data = E1000_READ_REG(hw, TIPG)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00410 : em_translate_82542_register (0x00410))))); | ||||
1772 | reg_data &= ~E1000_TIPG_IPGT_MASK0x000003FF; | ||||
1773 | reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_10000x00000008; | ||||
1774 | E1000_WRITE_REG(hw, TIPG, reg_data)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00410 : em_translate_82542_register (0x00410))), (reg_data))); | ||||
1775 | |||||
1776 | reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05F00 : em_translate_82542_register (0x05F00)) + ((0x0001) << 2)))); | ||||
1777 | reg_data &= ~0x00100000; | ||||
1778 | E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05F00 : em_translate_82542_register (0x05F00)) + ((0x0001) << 2)), (reg_data))); | ||||
1779 | /* FALLTHROUGH */ | ||||
1780 | case em_82571: | ||||
1781 | case em_82572: | ||||
1782 | case em_82575: | ||||
1783 | case em_82576: | ||||
1784 | case em_82580: | ||||
1785 | case em_i210: | ||||
1786 | case em_i350: | ||||
1787 | case em_ich8lan: | ||||
1788 | case em_ich9lan: | ||||
1789 | case em_ich10lan: | ||||
1790 | case em_pchlan: | ||||
1791 | case em_pch2lan: | ||||
1792 | case em_pch_lpt: | ||||
1793 | case em_pch_spt: | ||||
1794 | case em_pch_cnp: | ||||
1795 | /* | ||||
1796 | * Old code always initialized queue 1, | ||||
1797 | * even when unused, keep behaviour | ||||
1798 | */ | ||||
1799 | if (sc->num_queues == 1) { | ||||
1800 | ctrl = E1000_READ_REG(hw, TXDCTL(1))((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? ((1) < 4 ? (0x03828 + ((1) * 0x100)) : (0x0E028 + ((1) * 0x40))) : em_translate_82542_register (((1) < 4 ? (0x03828 + ((1) * 0x100)) : (0x0E028 + ((1) * 0x40 )))))))); | ||||
1801 | ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH0x00FF0000) | | ||||
1802 | E1000_TXDCTL_FULL_TX_DESC_WB0x01010000; | ||||
1803 | E1000_WRITE_REG(hw, TXDCTL(1), ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? ((1) < 4 ? (0x03828 + ((1) * 0x100)) : (0x0E028 + ((1) * 0x40))) : em_translate_82542_register (((1) < 4 ? (0x03828 + ((1) * 0x100)) : (0x0E028 + ((1) * 0x40 )))))), (ctrl))); | ||||
1804 | } | ||||
1805 | break; | ||||
1806 | } | ||||
1807 | |||||
1808 | if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) { | ||||
1809 | uint32_t gcr = E1000_READ_REG(hw, GCR)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B00 : em_translate_82542_register (0x05B00))))); | ||||
1810 | gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX0x08000000; | ||||
1811 | E1000_WRITE_REG(hw, GCR, gcr)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B00 : em_translate_82542_register (0x05B00))), (gcr))); | ||||
1812 | } | ||||
1813 | /* | ||||
1814 | * Clear all of the statistics registers (clear on read). It is | ||||
1815 | * important that we do this after we have tried to establish link | ||||
1816 | * because the symbol error count will increment wildly if there is | ||||
1817 | * no link. | ||||
1818 | */ | ||||
1819 | em_clear_hw_cntrs(hw); | ||||
1820 | /* | ||||
1821 | * ICH8 No-snoop bits are opposite polarity. Set to snoop by default | ||||
1822 | * after reset. | ||||
1823 | */ | ||||
1824 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | ||||
1825 | if (hw->mac_type == em_ich8lan) | ||||
1826 | snoop = PCI_EX_82566_SNOOP_ALL(0x00000001 | 0x00000002 | 0x00000004 | 0x00000008 | 0x00000010 | 0x00000020); | ||||
1827 | else | ||||
1828 | snoop = (u_int32_t) ~ (PCI_EX_NO_SNOOP_ALL(0x00000001 | 0x00000002 | 0x00000004 | 0x00000008 | 0x00000010 | 0x00000020)); | ||||
1829 | |||||
1830 | em_set_pci_ex_no_snoop(hw, snoop); | ||||
1831 | } | ||||
1832 | |||||
1833 | if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER0x1099 || | ||||
1834 | hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP30x10B5) { | ||||
1835 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))))); | ||||
1836 | /* | ||||
1837 | * Relaxed ordering must be disabled to avoid a parity error | ||||
1838 | * crash in a PCI slot. | ||||
1839 | */ | ||||
1840 | ctrl_ext |= E1000_CTRL_EXT_RO_DIS0x00020000; | ||||
1841 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))), (ctrl_ext))); | ||||
1842 | } | ||||
1843 | return ret_val; | ||||
1844 | } | ||||
1845 | |||||
1846 | /****************************************************************************** | ||||
1847 | * Adjust SERDES output amplitude based on EEPROM setting. | ||||
1848 | * | ||||
1849 | * hw - Struct containing variables accessed by shared code. | ||||
1850 | *****************************************************************************/ | ||||
1851 | static int32_t | ||||
1852 | em_adjust_serdes_amplitude(struct em_hw *hw) | ||||
1853 | { | ||||
1854 | uint16_t eeprom_data; | ||||
1855 | int32_t ret_val; | ||||
1856 | DEBUGFUNC("em_adjust_serdes_amplitude");; | ||||
1857 | |||||
1858 | if (hw->media_type != em_media_type_internal_serdes || | ||||
1859 | hw->mac_type >= em_82575) | ||||
1860 | return E1000_SUCCESS0; | ||||
1861 | |||||
1862 | switch (hw->mac_type) { | ||||
1863 | case em_82545_rev_3: | ||||
1864 | case em_82546_rev_3: | ||||
1865 | break; | ||||
1866 | default: | ||||
1867 | return E1000_SUCCESS0; | ||||
1868 | } | ||||
1869 | |||||
1870 | ret_val = em_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE0x0006, 1, &eeprom_data); | ||||
1871 | if (ret_val) { | ||||
1872 | return ret_val; | ||||
1873 | } | ||||
1874 | if (eeprom_data != EEPROM_RESERVED_WORD0xFFFF) { | ||||
1875 | /* Adjust SERDES output amplitude only. */ | ||||
1876 | eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK0x000F; | ||||
1877 | ret_val = em_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL0x1A, | ||||
1878 | eeprom_data); | ||||
1879 | if (ret_val) | ||||
1880 | return ret_val; | ||||
1881 | } | ||||
1882 | return E1000_SUCCESS0; | ||||
1883 | } | ||||
1884 | |||||
1885 | /****************************************************************************** | ||||
1886 | * Configures flow control and link settings. | ||||
1887 | * | ||||
1888 | * hw - Struct containing variables accessed by shared code | ||||
1889 | * | ||||
1890 | * Determines which flow control settings to use. Calls the appropriate media- | ||||
1891 | * specific link configuration function. Configures the flow control settings. | ||||
1892 | * Assuming the adapter has a valid link partner, a valid link should be | ||||
1893 | * established. Assumes the hardware has previously been reset and the | ||||
1894 | * transmitter and receiver are not enabled. | ||||
1895 | *****************************************************************************/ | ||||
1896 | int32_t | ||||
1897 | em_setup_link(struct em_hw *hw) | ||||
1898 | { | ||||
1899 | uint32_t ctrl_ext; | ||||
1900 | int32_t ret_val; | ||||
1901 | uint16_t eeprom_data; | ||||
1902 | uint16_t eeprom_control2_reg_offset; | ||||
1903 | DEBUGFUNC("em_setup_link");; | ||||
1904 | |||||
1905 | eeprom_control2_reg_offset = | ||||
1906 | (hw->mac_type != em_icp_xxxx) | ||||
1907 | ? EEPROM_INIT_CONTROL2_REG0x000F | ||||
1908 | : EEPROM_INIT_CONTROL3_ICP_xxxx(hw->icp_xxxx_port_num)((((hw->icp_xxxx_port_num) + 1) << 4) + 1); | ||||
1909 | /* | ||||
1910 | * In the case of the phy reset being blocked, we already have a | ||||
1911 | * link. We do not have to set it up again. | ||||
1912 | */ | ||||
1913 | if (em_check_phy_reset_block(hw)) | ||||
1914 | return E1000_SUCCESS0; | ||||
1915 | /* | ||||
1916 | * Read and store word 0x0F of the EEPROM. This word contains bits | ||||
1917 | * that determine the hardware's default PAUSE (flow control) mode, a | ||||
1918 | * bit that determines whether the HW defaults to enabling or | ||||
1919 | * disabling auto-negotiation, and the direction of the SW defined | ||||
1920 | * pins. If there is no SW over-ride of the flow control setting, | ||||
1921 | * then the variable hw->fc will be initialized based on a value in | ||||
1922 | * the EEPROM. | ||||
1923 | */ | ||||
1924 | if (hw->fc == E1000_FC_DEFAULT0xFF) { | ||||
1925 | switch (hw->mac_type) { | ||||
1926 | case em_ich8lan: | ||||
1927 | case em_ich9lan: | ||||
1928 | case em_ich10lan: | ||||
1929 | case em_pchlan: | ||||
1930 | case em_pch2lan: | ||||
1931 | case em_pch_lpt: | ||||
1932 | case em_pch_spt: | ||||
1933 | case em_pch_cnp: | ||||
1934 | case em_82573: | ||||
1935 | case em_82574: | ||||
1936 | hw->fc = E1000_FC_FULL3; | ||||
1937 | break; | ||||
1938 | default: | ||||
1939 | ret_val = em_read_eeprom(hw, | ||||
1940 | eeprom_control2_reg_offset, 1, &eeprom_data); | ||||
1941 | if (ret_val) { | ||||
1942 | DEBUGOUT("EEPROM Read Error\n"); | ||||
1943 | return -E1000_ERR_EEPROM1; | ||||
1944 | } | ||||
1945 | if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK0x3000) == 0) | ||||
1946 | hw->fc = E1000_FC_NONE0; | ||||
1947 | else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK0x3000) == | ||||
1948 | EEPROM_WORD0F_ASM_DIR0x2000) | ||||
1949 | hw->fc = E1000_FC_TX_PAUSE2; | ||||
1950 | else | ||||
1951 | hw->fc = E1000_FC_FULL3; | ||||
1952 | break; | ||||
1953 | } | ||||
1954 | } | ||||
1955 | /* | ||||
1956 | * We want to save off the original Flow Control configuration just | ||||
1957 | * in case we get disconnected and then reconnected into a different | ||||
1958 | * hub or switch with different Flow Control capabilities. | ||||
1959 | */ | ||||
1960 | if (hw->mac_type == em_82542_rev2_0) | ||||
1961 | hw->fc &= (~E1000_FC_TX_PAUSE2); | ||||
1962 | |||||
1963 | if ((hw->mac_type < em_82543) && (hw->report_tx_early == 1)) | ||||
1964 | hw->fc &= (~E1000_FC_RX_PAUSE1); | ||||
1965 | |||||
1966 | hw->original_fc = hw->fc; | ||||
1967 | |||||
1968 | DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc); | ||||
1969 | /* | ||||
1970 | * Take the 4 bits from EEPROM word 0x0F that determine the initial | ||||
1971 | * polarity value for the SW controlled pins, and setup the Extended | ||||
1972 | * Device Control reg with that info. This is needed because one of | ||||
1973 | * the SW controlled pins is used for signal detection. So this | ||||
1974 | * should be done before em_setup_pcs_link() or em_phy_setup() is | ||||
1975 | * called. | ||||
1976 | */ | ||||
1977 | if (hw->mac_type == em_82543) { | ||||
1978 | ret_val = em_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG0x000F, | ||||
1979 | 1, &eeprom_data); | ||||
1980 | if (ret_val) { | ||||
1981 | DEBUGOUT("EEPROM Read Error\n"); | ||||
1982 | return -E1000_ERR_EEPROM1; | ||||
1983 | } | ||||
1984 | ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT0x00F0) << | ||||
1985 | SWDPIO__EXT_SHIFT4); | ||||
1986 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))), (ctrl_ext))); | ||||
1987 | } | ||||
1988 | /* Make sure we have a valid PHY */ | ||||
1989 | ret_val = em_detect_gig_phy(hw); | ||||
1990 | if (ret_val) { | ||||
1991 | DEBUGOUT("Error, did not detect valid phy.\n"); | ||||
1992 | if (hw->mac_type == em_icp_xxxx) | ||||
1993 | return E1000_DEFER_INIT15; | ||||
1994 | else | ||||
1995 | return ret_val; | ||||
1996 | } | ||||
1997 | DEBUGOUT1("Phy ID = %x \n", hw->phy_id); | ||||
1998 | |||||
1999 | /* Call the necessary subroutine to configure the link. */ | ||||
2000 | switch (hw->media_type) { | ||||
2001 | case em_media_type_copper: | ||||
2002 | case em_media_type_oem: | ||||
2003 | ret_val = em_setup_copper_link(hw); | ||||
2004 | break; | ||||
2005 | default: | ||||
2006 | ret_val = em_setup_fiber_serdes_link(hw); | ||||
2007 | break; | ||||
2008 | } | ||||
2009 | /* | ||||
2010 | * Initialize the flow control address, type, and PAUSE timer | ||||
2011 | * registers to their default values. This is done even if flow | ||||
2012 | * control is disabled, because it does not hurt anything to | ||||
2013 | * initialize these registers. | ||||
2014 | */ | ||||
2015 | DEBUGOUT("Initializing the Flow Control address, type and timer regs\n" | ||||
2016 | ); | ||||
2017 | |||||
2018 | /* | ||||
2019 | * FCAL/H and FCT are hardcoded to standard values in | ||||
2020 | * em_ich8lan / em_ich9lan / em_ich10lan. | ||||
2021 | */ | ||||
2022 | if (!IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | ||||
2023 | E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00030 : em_translate_82542_register (0x00030))), (0x8808))); | ||||
2024 | E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x0002C : em_translate_82542_register (0x0002C))), (0x00000100))); | ||||
2025 | E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00028 : em_translate_82542_register (0x00028))), (0x00C28001))); | ||||
2026 | } | ||||
2027 | E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00170 : em_translate_82542_register (0x00170))), (hw->fc_pause_time))); | ||||
2028 | |||||
2029 | if (hw->phy_type == em_phy_82577 || | ||||
2030 | hw->phy_type == em_phy_82578 || | ||||
2031 | hw->phy_type == em_phy_82579 || | ||||
2032 | hw->phy_type == em_phy_i217) { | ||||
2033 | E1000_WRITE_REG(hw, FCRTV_PCH, 0x1000)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05F40 : em_translate_82542_register (0x05F40))), (0x1000))); | ||||
2034 | em_write_phy_reg(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27)(((769) << 5) | ((27) & 0x1F)), | ||||
2035 | hw->fc_pause_time); | ||||
2036 | } | ||||
2037 | |||||
2038 | /* | ||||
2039 | * Set the flow control receive threshold registers. Normally, these | ||||
2040 | * registers will be set to a default threshold that may be adjusted | ||||
2041 | * later by the driver's runtime code. However, if the ability to | ||||
2042 | * transmit pause frames in not enabled, then these registers will be | ||||
2043 | * set to 0. | ||||
2044 | */ | ||||
2045 | if (!(hw->fc & E1000_FC_TX_PAUSE2)) { | ||||
2046 | E1000_WRITE_REG(hw, FCRTL, 0)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x02160 : em_translate_82542_register (0x02160))), (0))); | ||||
2047 | E1000_WRITE_REG(hw, FCRTH, 0)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x02168 : em_translate_82542_register (0x02168))), (0))); | ||||
2048 | } else { | ||||
2049 | /* | ||||
2050 | * We need to set up the Receive Threshold high and low water | ||||
2051 | * marks as well as (optionally) enabling the transmission of | ||||
2052 | * XON frames. | ||||
2053 | */ | ||||
2054 | if (hw->fc_send_xon) { | ||||
2055 | E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x02160 : em_translate_82542_register (0x02160))), ((hw->fc_low_water | 0x80000000)))) | ||||
2056 | | E1000_FCRTL_XONE))((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x02160 : em_translate_82542_register (0x02160))), ((hw->fc_low_water | 0x80000000)))); | ||||
2057 | E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x02168 : em_translate_82542_register (0x02168))), (hw->fc_high_water))); | ||||
2058 | } else { | ||||
2059 | E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x02160 : em_translate_82542_register (0x02160))), (hw->fc_low_water))); | ||||
2060 | E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x02168 : em_translate_82542_register (0x02168))), (hw->fc_high_water))); | ||||
2061 | } | ||||
2062 | } | ||||
2063 | return ret_val; | ||||
2064 | } | ||||
2065 | |||||
2066 | void | ||||
2067 | em_power_up_serdes_link_82575(struct em_hw *hw) | ||||
2068 | { | ||||
2069 | uint32_t reg; | ||||
2070 | |||||
2071 | if (hw->media_type != em_media_type_internal_serdes && | ||||
2072 | hw->sgmii_active == FALSE0) | ||||
2073 | return; | ||||
2074 | |||||
2075 | /* Enable PCS to turn on link */ | ||||
2076 | reg = E1000_READ_REG(hw, PCS_CFG0)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04200 : em_translate_82542_register (0x04200))))); | ||||
2077 | reg |= E1000_PCS_CFG_PCS_EN8; | ||||
2078 | E1000_WRITE_REG(hw, PCS_CFG0, reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04200 : em_translate_82542_register (0x04200))), (reg))); | ||||
2079 | |||||
2080 | /* Power up the laser */ | ||||
2081 | reg = E1000_READ_REG(hw, CTRL_EXT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))))); | ||||
2082 | reg &= ~E1000_CTRL_EXT_SDP3_DATA0x00000080; | ||||
2083 | E1000_WRITE_REG(hw, CTRL_EXT, reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))), (reg))); | ||||
2084 | |||||
2085 | /* flush the write to verify completion */ | ||||
2086 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
2087 | delay(5)(*delay_func)(5); | ||||
2088 | } | ||||
2089 | |||||
2090 | /****************************************************************************** | ||||
2091 | * Sets up link for a fiber based or serdes based adapter | ||||
2092 | * | ||||
2093 | * hw - Struct containing variables accessed by shared code | ||||
2094 | * | ||||
2095 | * Manipulates Physical Coding Sublayer functions in order to configure | ||||
2096 | * link. Assumes the hardware has been previously reset and the transmitter | ||||
2097 | * and receiver are not enabled. | ||||
2098 | *****************************************************************************/ | ||||
2099 | static int32_t | ||||
2100 | em_setup_fiber_serdes_link(struct em_hw *hw) | ||||
2101 | { | ||||
2102 | uint32_t ctrl, ctrl_ext, reg; | ||||
2103 | uint32_t status; | ||||
2104 | uint32_t txcw = 0; | ||||
2105 | uint32_t i; | ||||
2106 | uint32_t signal = 0; | ||||
2107 | int32_t ret_val; | ||||
2108 | DEBUGFUNC("em_setup_fiber_serdes_link");; | ||||
2109 | |||||
2110 | if (hw->media_type != em_media_type_internal_serdes && | ||||
2111 | hw->sgmii_active == FALSE0) | ||||
2112 | return -E1000_ERR_CONFIG3; | ||||
2113 | |||||
2114 | /* | ||||
2115 | * On 82571 and 82572 Fiber connections, SerDes loopback mode | ||||
2116 | * persists until explicitly turned off or a power cycle is | ||||
2117 | * performed. A read to the register does not indicate its status. | ||||
2118 | * Therefore, we ensure loopback mode is disabled during | ||||
2119 | * initialization. | ||||
2120 | */ | ||||
2121 | if (hw->mac_type == em_82571 || hw->mac_type == em_82572 || | ||||
2122 | hw->mac_type >= em_82575) | ||||
2123 | E1000_WRITE_REG(hw, SCTL, E1000_DISABLE_SERDES_LOOPBACK)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00024 : em_translate_82542_register (0x00024))), (0x0400))); | ||||
2124 | |||||
2125 | if (hw->mac_type >= em_82575) | ||||
2126 | em_power_up_serdes_link_82575(hw); | ||||
2127 | |||||
2128 | /* | ||||
2129 | * On adapters with a MAC newer than 82544, SWDP 1 will be set when | ||||
2130 | * the optics detect a signal. On older adapters, it will be cleared | ||||
2131 | * when there is a signal. This applies to fiber media only. If | ||||
2132 | * we're on serdes media, adjust the output amplitude to value set in | ||||
2133 | * the EEPROM. | ||||
2134 | */ | ||||
2135 | ctrl = E1000_READ_REG(hw, CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))))); | ||||
2136 | if (hw->media_type == em_media_type_fiber) | ||||
2137 | signal = (hw->mac_type > em_82544) ? E1000_CTRL_SWDPIN10x00080000 : 0; | ||||
2138 | |||||
2139 | ret_val = em_adjust_serdes_amplitude(hw); | ||||
2140 | if (ret_val) | ||||
2141 | return ret_val; | ||||
2142 | |||||
2143 | /* Take the link out of reset */ | ||||
2144 | ctrl &= ~(E1000_CTRL_LRST0x00000008); | ||||
2145 | |||||
2146 | if (hw->mac_type >= em_82575) { | ||||
2147 | /* set both sw defined pins on 82575/82576*/ | ||||
2148 | ctrl |= E1000_CTRL_SWDPIN00x00040000 | E1000_CTRL_SWDPIN10x00080000; | ||||
2149 | |||||
2150 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))))); | ||||
2151 | switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK0x00C00000) { | ||||
2152 | case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX0x00400000: | ||||
2153 | case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES0x00C00000: | ||||
2154 | /* the backplane is always connected */ | ||||
2155 | reg = E1000_READ_REG(hw, PCS_LCTL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04208 : em_translate_82542_register (0x04208))))); | ||||
2156 | reg |= E1000_PCS_LCTL_FORCE_FCTRL0x80; | ||||
2157 | reg |= E1000_PCS_LCTL_FSV_10004 | E1000_PCS_LCTL_FDV_FULL8; | ||||
2158 | reg |= E1000_PCS_LCTL_FSD0x10; /* Force Speed */ | ||||
2159 | DEBUGOUT("Configuring Forced Link\n"); | ||||
2160 | E1000_WRITE_REG(hw, PCS_LCTL, reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04208 : em_translate_82542_register (0x04208))), (reg))); | ||||
2161 | em_force_mac_fc(hw); | ||||
2162 | hw->autoneg_failed = 0; | ||||
2163 | return E1000_SUCCESS0; | ||||
2164 | break; | ||||
2165 | default: | ||||
2166 | /* Set switch control to serdes energy detect */ | ||||
2167 | reg = E1000_READ_REG(hw, CONNSW)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00034 : em_translate_82542_register (0x00034))))); | ||||
2168 | reg |= E1000_CONNSW_ENRGSRC0x4; | ||||
2169 | E1000_WRITE_REG(hw, CONNSW, reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00034 : em_translate_82542_register (0x00034))), (reg))); | ||||
2170 | break; | ||||
2171 | } | ||||
2172 | } | ||||
2173 | |||||
2174 | /* Adjust VCO speed to improve BER performance */ | ||||
2175 | ret_val = em_set_vco_speed(hw); | ||||
2176 | if (ret_val) | ||||
2177 | return ret_val; | ||||
2178 | |||||
2179 | em_config_collision_dist(hw); | ||||
2180 | /* | ||||
2181 | * Check for a software override of the flow control settings, and | ||||
2182 | * setup the device accordingly. If auto-negotiation is enabled, | ||||
2183 | * then software will have to set the "PAUSE" bits to the correct | ||||
2184 | * value in the Tranmsit Config Word Register (TXCW) and re-start | ||||
2185 | * auto-negotiation. However, if auto-negotiation is disabled, then | ||||
2186 | * software will have to manually configure the two flow control | ||||
2187 | * enable bits in the CTRL register. | ||||
2188 | * | ||||
2189 | * The possible values of the "fc" parameter are: 0: Flow control is | ||||
2190 | * completely disabled 1: Rx flow control is enabled (we can receive | ||||
2191 | * pause frames, but not send pause frames). 2: Tx flow control is | ||||
2192 | * enabled (we can send pause frames but we do not support receiving | ||||
2193 | * pause frames). 3: Both Rx and TX flow control (symmetric) are | ||||
2194 | * enabled. | ||||
2195 | */ | ||||
2196 | switch (hw->fc) { | ||||
2197 | case E1000_FC_NONE0: | ||||
2198 | /* | ||||
2199 | * Flow control is completely disabled by a software | ||||
2200 | * over-ride. | ||||
2201 | */ | ||||
2202 | txcw = (E1000_TXCW_ANE0x80000000 | E1000_TXCW_FD0x00000020); | ||||
2203 | break; | ||||
2204 | case E1000_FC_RX_PAUSE1: | ||||
2205 | /* | ||||
2206 | * RX Flow control is enabled and TX Flow control is disabled | ||||
2207 | * by a software over-ride. Since there really isn't a way to | ||||
2208 | * advertise that we are capable of RX Pause ONLY, we will | ||||
2209 | * advertise that we support both symmetric and asymmetric RX | ||||
2210 | * PAUSE. Later, we will disable the adapter's ability to | ||||
2211 | * send PAUSE frames. | ||||
2212 | */ | ||||
2213 | txcw = (E1000_TXCW_ANE0x80000000 | E1000_TXCW_FD0x00000020 | | ||||
2214 | E1000_TXCW_PAUSE_MASK0x00000180); | ||||
2215 | break; | ||||
2216 | case E1000_FC_TX_PAUSE2: | ||||
2217 | /* | ||||
2218 | * TX Flow control is enabled, and RX Flow control is | ||||
2219 | * disabled, by a software over-ride. | ||||
2220 | */ | ||||
2221 | txcw = (E1000_TXCW_ANE0x80000000 | E1000_TXCW_FD0x00000020 | E1000_TXCW_ASM_DIR0x00000100); | ||||
2222 | break; | ||||
2223 | case E1000_FC_FULL3: | ||||
2224 | /* | ||||
2225 | * Flow control (both RX and TX) is enabled by a software | ||||
2226 | * over-ride. | ||||
2227 | */ | ||||
2228 | txcw = (E1000_TXCW_ANE0x80000000 | E1000_TXCW_FD0x00000020 | | ||||
2229 | E1000_TXCW_PAUSE_MASK0x00000180); | ||||
2230 | break; | ||||
2231 | default: | ||||
2232 | DEBUGOUT("Flow control param set incorrectly\n"); | ||||
2233 | return -E1000_ERR_CONFIG3; | ||||
2234 | break; | ||||
2235 | } | ||||
2236 | /* | ||||
2237 | * Since auto-negotiation is enabled, take the link out of reset (the | ||||
2238 | * link will be in reset, because we previously reset the chip). This | ||||
2239 | * will restart auto-negotiation. If auto-negotiation is successful | ||||
2240 | * then the link-up status bit will be set and the flow control | ||||
2241 | * enable bits (RFCE and TFCE) will be set according to their | ||||
2242 | * negotiated value. | ||||
2243 | */ | ||||
2244 | DEBUGOUT("Auto-negotiation enabled\n"); | ||||
2245 | |||||
2246 | E1000_WRITE_REG(hw, TXCW, txcw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00178 : em_translate_82542_register (0x00178))), (txcw))); | ||||
2247 | E1000_WRITE_REG(hw, CTRL, ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (ctrl))); | ||||
2248 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
2249 | |||||
2250 | hw->txcw = txcw; | ||||
2251 | msec_delay(1)(*delay_func)(1000*(1)); | ||||
2252 | /* | ||||
2253 | * If we have a signal (the cable is plugged in) then poll for a | ||||
2254 | * "Link-Up" indication in the Device Status Register. Time-out if a | ||||
2255 | * link isn't seen in 500 milliseconds seconds (Auto-negotiation | ||||
2256 | * should complete in less than 500 milliseconds even if the other | ||||
2257 | * end is doing it in SW). For internal serdes, we just assume a | ||||
2258 | * signal is present, then poll. | ||||
2259 | */ | ||||
2260 | if (hw->media_type == em_media_type_internal_serdes || | ||||
2261 | (E1000_READ_REG(hw, CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))))) & E1000_CTRL_SWDPIN10x00080000) == signal) { | ||||
2262 | DEBUGOUT("Looking for Link\n"); | ||||
2263 | for (i = 0; i < (LINK_UP_TIMEOUT500 / 10); i++) { | ||||
2264 | msec_delay(10)(*delay_func)(1000*(10)); | ||||
2265 | status = E1000_READ_REG(hw, STATUS)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
2266 | if (status & E1000_STATUS_LU0x00000002) | ||||
2267 | break; | ||||
2268 | } | ||||
2269 | if (i == (LINK_UP_TIMEOUT500 / 10)) { | ||||
2270 | DEBUGOUT("Never got a valid link from auto-neg!!!\n"); | ||||
2271 | hw->autoneg_failed = 1; | ||||
2272 | /* | ||||
2273 | * AutoNeg failed to achieve a link, so we'll call | ||||
2274 | * em_check_for_link. This routine will force the | ||||
2275 | * link up if we detect a signal. This will allow us | ||||
2276 | * to communicate with non-autonegotiating link | ||||
2277 | * partners. | ||||
2278 | */ | ||||
2279 | ret_val = em_check_for_link(hw); | ||||
2280 | if (ret_val) { | ||||
2281 | DEBUGOUT("Error while checking for link\n"); | ||||
2282 | return ret_val; | ||||
2283 | } | ||||
2284 | hw->autoneg_failed = 0; | ||||
2285 | } else { | ||||
2286 | hw->autoneg_failed = 0; | ||||
2287 | DEBUGOUT("Valid Link Found\n"); | ||||
2288 | } | ||||
2289 | } else { | ||||
2290 | DEBUGOUT("No Signal Detected\n"); | ||||
2291 | } | ||||
2292 | return E1000_SUCCESS0; | ||||
2293 | } | ||||
2294 | |||||
2295 | /****************************************************************************** | ||||
2296 | * Make sure we have a valid PHY and change PHY mode before link setup. | ||||
2297 | * | ||||
2298 | * hw - Struct containing variables accessed by shared code | ||||
2299 | *****************************************************************************/ | ||||
2300 | static int32_t | ||||
2301 | em_copper_link_preconfig(struct em_hw *hw) | ||||
2302 | { | ||||
2303 | uint32_t ctrl; | ||||
2304 | int32_t ret_val; | ||||
2305 | uint16_t phy_data; | ||||
2306 | DEBUGFUNC("em_copper_link_preconfig");; | ||||
2307 | |||||
2308 | ctrl = E1000_READ_REG(hw, CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))))); | ||||
2309 | /* | ||||
2310 | * With 82543, we need to force speed and duplex on the MAC equal to | ||||
2311 | * what the PHY speed and duplex configuration is. In addition, we | ||||
2312 | * need to perform a hardware reset on the PHY to take it out of | ||||
2313 | * reset. | ||||
2314 | */ | ||||
2315 | if (hw->mac_type > em_82543) { | ||||
2316 | ctrl |= E1000_CTRL_SLU0x00000040; | ||||
2317 | ctrl &= ~(E1000_CTRL_FRCSPD0x00000800 | E1000_CTRL_FRCDPX0x00001000); | ||||
2318 | E1000_WRITE_REG(hw, CTRL, ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (ctrl))); | ||||
2319 | } else { | ||||
2320 | ctrl |= (E1000_CTRL_FRCSPD0x00000800 | E1000_CTRL_FRCDPX0x00001000 | | ||||
2321 | E1000_CTRL_SLU0x00000040); | ||||
2322 | E1000_WRITE_REG(hw, CTRL, ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (ctrl))); | ||||
2323 | ret_val = em_phy_hw_reset(hw); | ||||
2324 | if (ret_val) | ||||
2325 | return ret_val; | ||||
2326 | } | ||||
2327 | |||||
2328 | /* Set PHY to class A mode (if necessary) */ | ||||
2329 | ret_val = em_set_phy_mode(hw); | ||||
2330 | if (ret_val) | ||||
2331 | return ret_val; | ||||
2332 | |||||
2333 | if ((hw->mac_type == em_82545_rev_3) || | ||||
2334 | (hw->mac_type == em_82546_rev_3)) { | ||||
2335 | ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL0x10, | ||||
2336 | &phy_data); | ||||
2337 | phy_data |= 0x00000008; | ||||
2338 | ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL0x10, | ||||
2339 | phy_data); | ||||
2340 | } | ||||
2341 | if (hw->mac_type <= em_82543 || | ||||
2342 | hw->mac_type == em_82541 || hw->mac_type == em_82547 || | ||||
2343 | hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2) | ||||
2344 | hw->phy_reset_disable = FALSE0; | ||||
2345 | if ((hw->mac_type == em_82575 || hw->mac_type == em_82580 || | ||||
2346 | hw->mac_type == em_82576 || | ||||
2347 | hw->mac_type == em_i210 || hw->mac_type == em_i350) && | ||||
2348 | hw->sgmii_active) { | ||||
2349 | /* allow time for SFP cage time to power up phy */ | ||||
2350 | msec_delay(300)(*delay_func)(1000*(300)); | ||||
2351 | |||||
2352 | /* | ||||
2353 | * SFP documentation requires the following to configure the SFP module | ||||
2354 | * to work on SGMII. No further documentation is given. | ||||
2355 | */ | ||||
2356 | em_write_phy_reg(hw, 0x1B, 0x8084); | ||||
2357 | em_phy_hw_reset(hw); | ||||
2358 | } | ||||
2359 | |||||
2360 | return E1000_SUCCESS0; | ||||
2361 | } | ||||
2362 | |||||
2363 | /****************************************************************************** | ||||
2364 | * Copper link setup for em_phy_igp series. | ||||
2365 | * | ||||
2366 | * hw - Struct containing variables accessed by shared code | ||||
2367 | *****************************************************************************/ | ||||
2368 | static int32_t | ||||
2369 | em_copper_link_igp_setup(struct em_hw *hw) | ||||
2370 | { | ||||
2371 | uint32_t led_ctrl; | ||||
2372 | int32_t ret_val; | ||||
2373 | uint16_t phy_data; | ||||
2374 | DEBUGFUNC("em_copper_link_igp_setup");; | ||||
2375 | |||||
2376 | if (hw->phy_reset_disable) | ||||
2377 | return E1000_SUCCESS0; | ||||
2378 | |||||
2379 | ret_val = em_phy_reset(hw); | ||||
2380 | if (ret_val) { | ||||
2381 | DEBUGOUT("Error Resetting the PHY\n"); | ||||
2382 | return ret_val; | ||||
2383 | } | ||||
2384 | /* Wait 15ms for MAC to configure PHY from eeprom settings */ | ||||
2385 | msec_delay(15)(*delay_func)(1000*(15)); | ||||
2386 | if (hw->mac_type != em_ich8lan && | ||||
2387 | hw->mac_type != em_ich9lan && | ||||
2388 | hw->mac_type != em_ich10lan) { | ||||
2389 | /* Configure activity LED after PHY reset */ | ||||
2390 | led_ctrl = E1000_READ_REG(hw, LEDCTL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00E00 : em_translate_82542_register (0x00E00))))); | ||||
2391 | led_ctrl &= IGP_ACTIVITY_LED_MASK0xFFFFF0FF; | ||||
2392 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE0x0300 | IGP_LED3_MODE0x07000000); | ||||
2393 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00E00 : em_translate_82542_register (0x00E00))), (led_ctrl))); | ||||
2394 | } | ||||
2395 | /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */ | ||||
2396 | if (hw->phy_type == em_phy_igp) { | ||||
2397 | /* disable lplu d3 during driver init */ | ||||
2398 | ret_val = em_set_d3_lplu_state(hw, FALSE0); | ||||
2399 | if (ret_val) { | ||||
2400 | DEBUGOUT("Error Disabling LPLU D3\n"); | ||||
2401 | return ret_val; | ||||
2402 | } | ||||
2403 | } | ||||
2404 | /* disable lplu d0 during driver init */ | ||||
2405 | if (hw->mac_type == em_pchlan || | ||||
2406 | hw->mac_type == em_pch2lan || | ||||
2407 | hw->mac_type == em_pch_lpt || | ||||
2408 | hw->mac_type == em_pch_spt || | ||||
2409 | hw->mac_type == em_pch_cnp) | ||||
2410 | ret_val = em_set_lplu_state_pchlan(hw, FALSE0); | ||||
2411 | else | ||||
2412 | ret_val = em_set_d0_lplu_state(hw, FALSE0); | ||||
2413 | if (ret_val) { | ||||
2414 | DEBUGOUT("Error Disabling LPLU D0\n"); | ||||
2415 | return ret_val; | ||||
2416 | } | ||||
2417 | /* Configure mdi-mdix settings */ | ||||
2418 | ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL0x12, &phy_data); | ||||
2419 | if (ret_val) | ||||
2420 | return ret_val; | ||||
2421 | |||||
2422 | if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) { | ||||
2423 | hw->dsp_config_state = em_dsp_config_disabled; | ||||
2424 | /* Force MDI for earlier revs of the IGP PHY */ | ||||
2425 | phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX0x1000 | | ||||
2426 | IGP01E1000_PSCR_FORCE_MDI_MDIX0x2000); | ||||
2427 | hw->mdix = 1; | ||||
2428 | |||||
2429 | } else { | ||||
2430 | hw->dsp_config_state = em_dsp_config_enabled; | ||||
2431 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX0x1000; | ||||
2432 | |||||
2433 | switch (hw->mdix) { | ||||
2434 | case 1: | ||||
2435 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX0x2000; | ||||
2436 | break; | ||||
2437 | case 2: | ||||
2438 | phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX0x2000; | ||||
2439 | break; | ||||
2440 | case 0: | ||||
2441 | default: | ||||
2442 | phy_data |= IGP01E1000_PSCR_AUTO_MDIX0x1000; | ||||
2443 | break; | ||||
2444 | } | ||||
2445 | } | ||||
2446 | ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL0x12, phy_data); | ||||
2447 | if (ret_val) | ||||
2448 | return ret_val; | ||||
2449 | |||||
2450 | /* set auto-master slave resolution settings */ | ||||
2451 | if (hw->autoneg) { | ||||
2452 | em_ms_type phy_ms_setting = hw->master_slave; | ||||
2453 | if (hw->ffe_config_state == em_ffe_config_active) | ||||
2454 | hw->ffe_config_state = em_ffe_config_enabled; | ||||
2455 | |||||
2456 | if (hw->dsp_config_state == em_dsp_config_activated) | ||||
2457 | hw->dsp_config_state = em_dsp_config_enabled; | ||||
2458 | /* | ||||
2459 | * when autonegotiation advertisement is only 1000Mbps then | ||||
2460 | * we should disable SmartSpeed and enable Auto MasterSlave | ||||
2461 | * resolution as hardware default. | ||||
2462 | */ | ||||
2463 | if (hw->autoneg_advertised == ADVERTISE_1000_FULL0x0020) { | ||||
2464 | /* Disable SmartSpeed */ | ||||
2465 | ret_val = em_read_phy_reg(hw, | ||||
2466 | IGP01E1000_PHY_PORT_CONFIG0x10, &phy_data); | ||||
2467 | if (ret_val) | ||||
2468 | return ret_val; | ||||
2469 | |||||
2470 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED0x0080; | ||||
2471 | ret_val = em_write_phy_reg(hw, | ||||
2472 | IGP01E1000_PHY_PORT_CONFIG0x10, phy_data); | ||||
2473 | if (ret_val) | ||||
2474 | return ret_val; | ||||
2475 | /* Set auto Master/Slave resolution process */ | ||||
2476 | ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL0x09, | ||||
2477 | &phy_data); | ||||
2478 | if (ret_val) | ||||
2479 | return ret_val; | ||||
2480 | |||||
2481 | phy_data &= ~CR_1000T_MS_ENABLE0x1000; | ||||
2482 | ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL0x09, | ||||
2483 | phy_data); | ||||
2484 | if (ret_val) | ||||
2485 | return ret_val; | ||||
2486 | } | ||||
2487 | ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL0x09, &phy_data); | ||||
2488 | if (ret_val) | ||||
2489 | return ret_val; | ||||
2490 | |||||
2491 | /* load defaults for future use */ | ||||
2492 | hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE0x1000) ? | ||||
2493 | ((phy_data & CR_1000T_MS_VALUE0x0800) ? em_ms_force_master : | ||||
2494 | em_ms_force_slave) : em_ms_auto; | ||||
2495 | |||||
2496 | switch (phy_ms_setting) { | ||||
2497 | case em_ms_force_master: | ||||
2498 | phy_data |= (CR_1000T_MS_ENABLE0x1000 | CR_1000T_MS_VALUE0x0800); | ||||
2499 | break; | ||||
2500 | case em_ms_force_slave: | ||||
2501 | phy_data |= CR_1000T_MS_ENABLE0x1000; | ||||
2502 | phy_data &= ~(CR_1000T_MS_VALUE0x0800); | ||||
2503 | break; | ||||
2504 | case em_ms_auto: | ||||
2505 | phy_data &= ~CR_1000T_MS_ENABLE0x1000; | ||||
2506 | break; | ||||
2507 | default: | ||||
2508 | break; | ||||
2509 | } | ||||
2510 | ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL0x09, phy_data); | ||||
2511 | if (ret_val) | ||||
2512 | return ret_val; | ||||
2513 | } | ||||
2514 | return E1000_SUCCESS0; | ||||
2515 | } | ||||
2516 | |||||
2517 | /****************************************************************************** | ||||
2518 | * Copper link setup for em_phy_gg82563 series. | ||||
2519 | * | ||||
2520 | * hw - Struct containing variables accessed by shared code | ||||
2521 | *****************************************************************************/ | ||||
2522 | static int32_t | ||||
2523 | em_copper_link_ggp_setup(struct em_hw *hw) | ||||
2524 | { | ||||
2525 | int32_t ret_val; | ||||
2526 | uint16_t phy_data; | ||||
2527 | uint32_t reg_data; | ||||
2528 | DEBUGFUNC("em_copper_link_ggp_setup");; | ||||
2529 | |||||
2530 | if (!hw->phy_reset_disable) { | ||||
2531 | |||||
2532 | /* Enable CRS on TX for half-duplex operation. */ | ||||
2533 | ret_val = em_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL(((2) << 5) | ((21) & 0x1F)), | ||||
2534 | &phy_data); | ||||
2535 | if (ret_val) | ||||
2536 | return ret_val; | ||||
2537 | |||||
2538 | phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX0x0010; | ||||
2539 | /* Use 25MHz for both link down and 1000BASE-T for Tx clock */ | ||||
2540 | phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ0x0007; | ||||
2541 | |||||
2542 | ret_val = em_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL(((2) << 5) | ((21) & 0x1F)), | ||||
2543 | phy_data); | ||||
2544 | if (ret_val) | ||||
2545 | return ret_val; | ||||
2546 | /* | ||||
2547 | * Options: MDI/MDI-X = 0 (default) 0 - Auto for all speeds 1 | ||||
2548 | * - MDI mode 2 - MDI-X mode 3 - Auto for 1000Base-T only | ||||
2549 | * (MDI-X for 10/100Base-T modes) | ||||
2550 | */ | ||||
2551 | ret_val = em_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL(((0) << 5) | ((16) & 0x1F)), | ||||
2552 | &phy_data); | ||||
2553 | |||||
2554 | if (ret_val) | ||||
2555 | return ret_val; | ||||
2556 | |||||
2557 | phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK0x0060; | ||||
2558 | |||||
2559 | switch (hw->mdix) { | ||||
2560 | case 1: | ||||
2561 | phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI0x0000; | ||||
2562 | break; | ||||
2563 | case 2: | ||||
2564 | phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX0x0020; | ||||
2565 | break; | ||||
2566 | case 0: | ||||
2567 | default: | ||||
2568 | phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO0x0060; | ||||
2569 | break; | ||||
2570 | } | ||||
2571 | /* | ||||
2572 | * Options: disable_polarity_correction = 0 (default) | ||||
2573 | * Automatic Correction for Reversed Cable Polarity 0 - | ||||
2574 | * Disabled 1 - Enabled | ||||
2575 | */ | ||||
2576 | phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE0x0002; | ||||
2577 | if (hw->disable_polarity_correction == 1) | ||||
2578 | phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE0x0002; | ||||
2579 | ret_val = em_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL(((0) << 5) | ((16) & 0x1F)), | ||||
2580 | phy_data); | ||||
2581 | |||||
2582 | if (ret_val) | ||||
2583 | return ret_val; | ||||
2584 | |||||
2585 | /* SW Reset the PHY so all changes take effect */ | ||||
2586 | ret_val = em_phy_reset(hw); | ||||
2587 | if (ret_val) { | ||||
2588 | DEBUGOUT("Error Resetting the PHY\n"); | ||||
2589 | return ret_val; | ||||
2590 | } | ||||
2591 | } /* phy_reset_disable */ | ||||
2592 | if (hw->mac_type == em_80003es2lan) { | ||||
2593 | /* Bypass RX and TX FIFO's */ | ||||
2594 | ret_val = em_write_kmrn_reg(hw, | ||||
2595 | E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL0x00000000, | ||||
2596 | E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS0x00000008 | | ||||
2597 | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS0x00000800); | ||||
2598 | if (ret_val) | ||||
2599 | return ret_val; | ||||
2600 | |||||
2601 | ret_val = em_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2(((0) << 5) | ((26) & 0x1F)), | ||||
2602 | &phy_data); | ||||
2603 | if (ret_val) | ||||
2604 | return ret_val; | ||||
2605 | |||||
2606 | phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG0x2000; | ||||
2607 | ret_val = em_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2(((0) << 5) | ((26) & 0x1F)), | ||||
2608 | phy_data); | ||||
2609 | |||||
2610 | if (ret_val) | ||||
2611 | return ret_val; | ||||
2612 | |||||
2613 | reg_data = E1000_READ_REG(hw, CTRL_EXT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))))); | ||||
2614 | reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK0x00C00000); | ||||
2615 | E1000_WRITE_REG(hw, CTRL_EXT, reg_data)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))), (reg_data))); | ||||
2616 | |||||
2617 | ret_val = em_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL(((193) << 5) | ((20) & 0x1F)), | ||||
2618 | &phy_data); | ||||
2619 | if (ret_val) | ||||
2620 | return ret_val; | ||||
2621 | /* | ||||
2622 | * Do not init these registers when the HW is in IAMT mode, | ||||
2623 | * since the firmware will have already initialized them. We | ||||
2624 | * only initialize them if the HW is not in IAMT mode. | ||||
2625 | */ | ||||
2626 | if (em_check_mng_mode(hw) == FALSE0) { | ||||
2627 | /* Enable Electrical Idle on the PHY */ | ||||
2628 | phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE0x0001; | ||||
2629 | ret_val = em_write_phy_reg(hw, | ||||
2630 | GG82563_PHY_PWR_MGMT_CTRL(((193) << 5) | ((20) & 0x1F)), phy_data); | ||||
2631 | if (ret_val) | ||||
2632 | return ret_val; | ||||
2633 | |||||
2634 | ret_val = em_read_phy_reg(hw, | ||||
2635 | GG82563_PHY_KMRN_MODE_CTRL(((193) << 5) | ((16) & 0x1F)), &phy_data); | ||||
2636 | if (ret_val) | ||||
2637 | return ret_val; | ||||
2638 | |||||
2639 | phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER0x0800; | ||||
2640 | ret_val = em_write_phy_reg(hw, | ||||
2641 | GG82563_PHY_KMRN_MODE_CTRL(((193) << 5) | ((16) & 0x1F)), phy_data); | ||||
2642 | |||||
2643 | if (ret_val) | ||||
2644 | return ret_val; | ||||
2645 | } | ||||
2646 | /* | ||||
2647 | * Workaround: Disable padding in Kumeran interface in the | ||||
2648 | * MAC and in the PHY to avoid CRC errors. | ||||
2649 | */ | ||||
2650 | ret_val = em_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL(((194) << 5) | ((18) & 0x1F)), | ||||
2651 | &phy_data); | ||||
2652 | if (ret_val) | ||||
2653 | return ret_val; | ||||
2654 | phy_data |= GG82563_ICR_DIS_PADDING0x0010; | ||||
2655 | ret_val = em_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL(((194) << 5) | ((18) & 0x1F)), | ||||
2656 | phy_data); | ||||
2657 | if (ret_val) | ||||
2658 | return ret_val; | ||||
2659 | } | ||||
2660 | return E1000_SUCCESS0; | ||||
2661 | } | ||||
2662 | |||||
2663 | /****************************************************************************** | ||||
2664 | * Copper link setup for em_phy_m88 series. | ||||
2665 | * | ||||
2666 | * hw - Struct containing variables accessed by shared code | ||||
2667 | *****************************************************************************/ | ||||
2668 | static int32_t | ||||
2669 | em_copper_link_mgp_setup(struct em_hw *hw) | ||||
2670 | { | ||||
2671 | int32_t ret_val; | ||||
2672 | uint16_t phy_data; | ||||
2673 | DEBUGFUNC("em_copper_link_mgp_setup");; | ||||
2674 | |||||
2675 | if (hw->phy_reset_disable) | ||||
2676 | return E1000_SUCCESS0; | ||||
2677 | |||||
2678 | /* disable lplu d0 during driver init */ | ||||
2679 | if (hw->mac_type == em_pchlan || | ||||
2680 | hw->mac_type == em_pch2lan || | ||||
2681 | hw->mac_type == em_pch_lpt || | ||||
2682 | hw->mac_type == em_pch_spt || | ||||
2683 | hw->mac_type == em_pch_cnp) | ||||
2684 | ret_val = em_set_lplu_state_pchlan(hw, FALSE0); | ||||
2685 | |||||
2686 | /* Enable CRS on TX. This must be set for half-duplex operation. */ | ||||
2687 | ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL0x10, &phy_data); | ||||
2688 | if (ret_val) | ||||
2689 | return ret_val; | ||||
2690 | |||||
2691 | if (hw->phy_id == M88E1141_E_PHY_ID0x01410CD0) { | ||||
2692 | phy_data |= 0x00000008; | ||||
2693 | ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL0x10, | ||||
2694 | phy_data); | ||||
2695 | if (ret_val) | ||||
2696 | return ret_val; | ||||
2697 | |||||
2698 | ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL0x10, | ||||
2699 | &phy_data); | ||||
2700 | if (ret_val) | ||||
2701 | return ret_val; | ||||
2702 | |||||
2703 | phy_data &= ~M88E1000_PSCR_ASSERT_CRS_ON_TX0x0800; | ||||
2704 | |||||
2705 | } | ||||
2706 | /* For BM PHY this bit is downshift enable */ | ||||
2707 | else if (hw->phy_type != em_phy_bm) | ||||
2708 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX0x0800; | ||||
2709 | /* | ||||
2710 | * Options: MDI/MDI-X = 0 (default) 0 - Auto for all speeds 1 - MDI | ||||
2711 | * mode 2 - MDI-X mode 3 - Auto for 1000Base-T only (MDI-X for | ||||
2712 | * 10/100Base-T modes) | ||||
2713 | */ | ||||
2714 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE0x0060; | ||||
2715 | |||||
2716 | switch (hw->mdix) { | ||||
2717 | case 1: | ||||
2718 | phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE0x0000; | ||||
2719 | break; | ||||
2720 | case 2: | ||||
2721 | phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE0x0020; | ||||
2722 | break; | ||||
2723 | case 3: | ||||
2724 | phy_data |= M88E1000_PSCR_AUTO_X_1000T0x0040; | ||||
2725 | break; | ||||
2726 | case 0: | ||||
2727 | default: | ||||
2728 | phy_data |= M88E1000_PSCR_AUTO_X_MODE0x0060; | ||||
2729 | break; | ||||
2730 | } | ||||
2731 | /* | ||||
2732 | * Options: disable_polarity_correction = 0 (default) Automatic | ||||
2733 | * Correction for Reversed Cable Polarity 0 - Disabled 1 - Enabled | ||||
2734 | */ | ||||
2735 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL0x0002; | ||||
2736 | if (hw->disable_polarity_correction == 1) | ||||
2737 | phy_data |= M88E1000_PSCR_POLARITY_REVERSAL0x0002; | ||||
2738 | |||||
2739 | /* Enable downshift on BM (disabled by default) */ | ||||
2740 | if (hw->phy_type == em_phy_bm) | ||||
2741 | phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT0x0800; | ||||
2742 | |||||
2743 | ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL0x10, phy_data); | ||||
2744 | if (ret_val) | ||||
2745 | return ret_val; | ||||
2746 | |||||
2747 | if (((hw->phy_type == em_phy_m88) && | ||||
2748 | (hw->phy_revision < M88E1011_I_REV_40x04) && | ||||
2749 | (hw->phy_id != BME1000_E_PHY_ID0x01410CB0)) || | ||||
2750 | (hw->phy_type == em_phy_oem)) { | ||||
2751 | /* | ||||
2752 | * Force TX_CLK in the Extended PHY Specific Control Register | ||||
2753 | * to 25MHz clock. | ||||
2754 | */ | ||||
2755 | ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL0x14, | ||||
2756 | &phy_data); | ||||
2757 | if (ret_val) | ||||
2758 | return ret_val; | ||||
2759 | |||||
2760 | if (hw->phy_type == em_phy_oem) { | ||||
2761 | phy_data |= M88E1000_EPSCR_TX_TIME_CTRL0x0002; | ||||
2762 | phy_data |= M88E1000_EPSCR_RX_TIME_CTRL0x0080; | ||||
2763 | } | ||||
2764 | phy_data |= M88E1000_EPSCR_TX_CLK_250x0070; | ||||
2765 | |||||
2766 | if ((hw->phy_revision == E1000_REVISION_22) && | ||||
2767 | (hw->phy_id == M88E1111_I_PHY_ID0x01410CC0)) { | ||||
2768 | /* Vidalia Phy, set the downshift counter to 5x */ | ||||
2769 | phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK0x0E00); | ||||
2770 | phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X0x0800; | ||||
2771 | ret_val = em_write_phy_reg(hw, | ||||
2772 | M88E1000_EXT_PHY_SPEC_CTRL0x14, phy_data); | ||||
2773 | if (ret_val) | ||||
2774 | return ret_val; | ||||
2775 | } else { | ||||
2776 | /* Configure Master and Slave downshift values */ | ||||
2777 | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK0x0C00 | | ||||
2778 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK0x0300); | ||||
2779 | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X0x0000 | | ||||
2780 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X0x0100); | ||||
2781 | ret_val = em_write_phy_reg(hw, | ||||
2782 | M88E1000_EXT_PHY_SPEC_CTRL0x14, phy_data); | ||||
2783 | if (ret_val) | ||||
2784 | return ret_val; | ||||
2785 | } | ||||
2786 | } | ||||
2787 | if ((hw->phy_type == em_phy_bm) && (hw->phy_revision == 1)) { | ||||
2788 | /* | ||||
2789 | * Set PHY page 0, register 29 to 0x0003 | ||||
2790 | * The next two writes are supposed to lower BER for gig | ||||
2791 | * connection | ||||
2792 | */ | ||||
2793 | ret_val = em_write_phy_reg(hw, BM_REG_BIAS129, 0x0003); | ||||
2794 | if (ret_val) | ||||
2795 | return ret_val; | ||||
2796 | |||||
2797 | /* Set PHY page 0, register 30 to 0x0000 */ | ||||
2798 | ret_val = em_write_phy_reg(hw, BM_REG_BIAS230, 0x0000); | ||||
2799 | if (ret_val) | ||||
2800 | return ret_val; | ||||
2801 | } | ||||
2802 | if (hw->phy_type == em_phy_82578) { | ||||
2803 | ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL0x14, | ||||
2804 | &phy_data); | ||||
2805 | if (ret_val) | ||||
2806 | return ret_val; | ||||
2807 | |||||
2808 | /* 82578 PHY - set the downshift count to 1x. */ | ||||
2809 | phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE0x0020; | ||||
2810 | phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK0x001C; | ||||
2811 | ret_val = em_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL0x14, | ||||
2812 | phy_data); | ||||
2813 | if (ret_val) | ||||
2814 | return ret_val; | ||||
2815 | } | ||||
2816 | /* SW Reset the PHY so all changes take effect */ | ||||
2817 | ret_val = em_phy_reset(hw); | ||||
2818 | if (ret_val) { | ||||
2819 | DEBUGOUT("Error Resetting the PHY\n"); | ||||
2820 | return ret_val; | ||||
2821 | } | ||||
2822 | return E1000_SUCCESS0; | ||||
2823 | } | ||||
2824 | |||||
2825 | /****************************************************************************** | ||||
2826 | * Copper link setup for em_phy_82577 series. | ||||
2827 | * | ||||
2828 | * hw - Struct containing variables accessed by shared code | ||||
2829 | *****************************************************************************/ | ||||
2830 | static int32_t | ||||
2831 | em_copper_link_82577_setup(struct em_hw *hw) | ||||
2832 | { | ||||
2833 | int32_t ret_val; | ||||
2834 | uint16_t phy_data; | ||||
2835 | uint32_t led_ctl; | ||||
2836 | DEBUGFUNC("em_copper_link_82577_setup");; | ||||
2837 | |||||
2838 | if (hw->phy_reset_disable) | ||||
2839 | return E1000_SUCCESS0; | ||||
2840 | |||||
2841 | /* Enable CRS on TX for half-duplex operation. */ | ||||
2842 | ret_val = em_read_phy_reg(hw, I82577_PHY_CFG_REG22, &phy_data); | ||||
2843 | if (ret_val) | ||||
2844 | return ret_val; | ||||
2845 | |||||
2846 | phy_data |= I82577_PHY_CFG_ENABLE_CRS_ON_TX(1 << 15) | | ||||
2847 | I82577_PHY_CFG_ENABLE_DOWNSHIFT((1 << 10) + (1 << 11)); | ||||
2848 | |||||
2849 | ret_val = em_write_phy_reg(hw, I82577_PHY_CFG_REG22, phy_data); | ||||
2850 | if (ret_val) | ||||
2851 | return ret_val; | ||||
2852 | |||||
2853 | /* Wait 15ms for MAC to configure PHY from eeprom settings */ | ||||
2854 | msec_delay(15)(*delay_func)(1000*(15)); | ||||
2855 | led_ctl = hw->ledctl_mode1; | ||||
2856 | |||||
2857 | /* disable lplu d0 during driver init */ | ||||
2858 | ret_val = em_set_lplu_state_pchlan(hw, FALSE0); | ||||
2859 | if (ret_val) { | ||||
2860 | DEBUGOUT("Error Disabling LPLU D0\n"); | ||||
2861 | return ret_val; | ||||
2862 | } | ||||
2863 | |||||
2864 | E1000_WRITE_REG(hw, LEDCTL, led_ctl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00E00 : em_translate_82542_register (0x00E00))), (led_ctl))); | ||||
2865 | |||||
2866 | return E1000_SUCCESS0; | ||||
2867 | } | ||||
2868 | |||||
2869 | static int32_t | ||||
2870 | em_copper_link_82580_setup(struct em_hw *hw) | ||||
2871 | { | ||||
2872 | int32_t ret_val; | ||||
2873 | uint16_t phy_data; | ||||
2874 | |||||
2875 | if (hw->phy_reset_disable) | ||||
2876 | return E1000_SUCCESS0; | ||||
2877 | |||||
2878 | ret_val = em_phy_reset(hw); | ||||
2879 | if (ret_val) | ||||
2880 | goto out; | ||||
2881 | |||||
2882 | /* Enable CRS on TX. This must be set for half-duplex operation. */ | ||||
2883 | ret_val = em_read_phy_reg(hw, I82580_CFG_REG22, &phy_data); | ||||
2884 | if (ret_val) | ||||
2885 | goto out; | ||||
2886 | |||||
2887 | phy_data |= I82580_CFG_ASSERT_CRS_ON_TX(1 << 15) | | ||||
2888 | I82580_CFG_ENABLE_DOWNSHIFT(3 << 10); | ||||
2889 | |||||
2890 | ret_val = em_write_phy_reg(hw, I82580_CFG_REG22, phy_data); | ||||
2891 | |||||
2892 | out: | ||||
2893 | return ret_val; | ||||
2894 | } | ||||
2895 | |||||
2896 | static int32_t | ||||
2897 | em_copper_link_rtl8211_setup(struct em_hw *hw) | ||||
2898 | { | ||||
2899 | int32_t ret_val; | ||||
2900 | uint16_t phy_data; | ||||
2901 | |||||
2902 | DEBUGFUNC("em_copper_link_rtl8211_setup: begin");; | ||||
2903 | |||||
2904 | if (!hw) { | ||||
2905 | return -1; | ||||
2906 | } | ||||
2907 | /* SW Reset the PHY so all changes take effect */ | ||||
2908 | em_phy_hw_reset(hw); | ||||
2909 | |||||
2910 | /* Enable CRS on TX. This must be set for half-duplex operation. */ | ||||
2911 | phy_data = 0; | ||||
2912 | |||||
2913 | ret_val = em_read_phy_reg_ex(hw, RGEPHY_CR0x10, &phy_data); | ||||
2914 | if (ret_val) { | ||||
2915 | printf("Unable to read RGEPHY_CR register\n"); | ||||
2916 | return ret_val; | ||||
2917 | } | ||||
2918 | DEBUGOUT3("RTL8211: Rx phy_id=%X addr=%X SPEC_CTRL=%X\n", hw->phy_id, | ||||
2919 | hw->phy_addr, phy_data); | ||||
2920 | phy_data |= RGEPHY_CR_ASSERT_CRS0x0800; | ||||
2921 | |||||
2922 | ret_val = em_write_phy_reg_ex(hw, RGEPHY_CR0x10, phy_data); | ||||
2923 | if (ret_val) { | ||||
2924 | printf("Unable to write RGEPHY_CR register\n"); | ||||
2925 | return ret_val; | ||||
2926 | } | ||||
2927 | |||||
2928 | phy_data = 0; /* LED Control Register 0x18 */ | ||||
2929 | ret_val = em_read_phy_reg_ex(hw, RGEPHY_LC0x18, &phy_data); | ||||
2930 | if (ret_val) { | ||||
2931 | printf("Unable to read RGEPHY_LC register\n"); | ||||
2932 | return ret_val; | ||||
2933 | } | ||||
2934 | |||||
2935 | phy_data &= 0x80FF; /* bit-15=0 disable, clear bit 8-10 */ | ||||
2936 | ret_val = em_write_phy_reg_ex(hw, RGEPHY_LC0x18, phy_data); | ||||
2937 | if (ret_val) { | ||||
2938 | printf("Unable to write RGEPHY_LC register\n"); | ||||
2939 | return ret_val; | ||||
2940 | } | ||||
2941 | /* LED Control and Definition Register 0x11, PHY spec status reg */ | ||||
2942 | phy_data = 0; | ||||
2943 | ret_val = em_read_phy_reg_ex(hw, RGEPHY_SR0x11, &phy_data); | ||||
2944 | if (ret_val) { | ||||
2945 | printf("Unable to read RGEPHY_SR register\n"); | ||||
2946 | return ret_val; | ||||
2947 | } | ||||
2948 | |||||
2949 | phy_data |= 0x0010; /* LED active Low */ | ||||
2950 | ret_val = em_write_phy_reg_ex(hw, RGEPHY_SR0x11, phy_data); | ||||
2951 | if (ret_val) { | ||||
2952 | printf("Unable to write RGEPHY_SR register\n"); | ||||
2953 | return ret_val; | ||||
2954 | } | ||||
2955 | |||||
2956 | phy_data = 0; | ||||
2957 | ret_val = em_read_phy_reg_ex(hw, RGEPHY_SR0x11, &phy_data); | ||||
2958 | if (ret_val) { | ||||
2959 | printf("Unable to read RGEPHY_SR register\n"); | ||||
2960 | return ret_val; | ||||
2961 | } | ||||
2962 | |||||
2963 | /* Switch to Page2 */ | ||||
2964 | phy_data = RGEPHY_PS_PAGE_20x0002; | ||||
2965 | ret_val = em_write_phy_reg_ex(hw, RGEPHY_PS0x1F, phy_data); | ||||
2966 | if (ret_val) { | ||||
2967 | printf("Unable to write PHY RGEPHY_PS register\n"); | ||||
2968 | return ret_val; | ||||
2969 | } | ||||
2970 | |||||
2971 | phy_data = 0x0000; | ||||
2972 | ret_val = em_write_phy_reg_ex(hw, RGEPHY_LC_P20x1A, phy_data); | ||||
2973 | if (ret_val) { | ||||
2974 | printf("Unable to write RGEPHY_LC_P2 register\n"); | ||||
2975 | return ret_val; | ||||
2976 | } | ||||
2977 | usec_delay(5)(*delay_func)(5); | ||||
2978 | |||||
2979 | |||||
2980 | /* LED Configuration Control Reg for setting for 0x1A Register */ | ||||
2981 | phy_data = 0; | ||||
2982 | ret_val = em_read_phy_reg_ex(hw, RGEPHY_LC_P20x1A, &phy_data); | ||||
2983 | if (ret_val) { | ||||
2984 | printf("Unable to read RGEPHY_LC_P2 register\n"); | ||||
2985 | return ret_val; | ||||
2986 | } | ||||
2987 | |||||
2988 | phy_data &= 0xF000; | ||||
2989 | phy_data |= 0x0F24; | ||||
2990 | ret_val = em_write_phy_reg_ex(hw, RGEPHY_LC_P20x1A, phy_data); | ||||
2991 | if (ret_val) { | ||||
2992 | printf("Unable to write RGEPHY_LC_P2 register\n"); | ||||
2993 | return ret_val; | ||||
2994 | } | ||||
2995 | phy_data = 0; | ||||
2996 | ret_val= em_read_phy_reg_ex(hw, RGEPHY_LC_P20x1A, &phy_data); | ||||
2997 | if (ret_val) { | ||||
2998 | printf("Unable to read RGEPHY_LC_P2 register\n"); | ||||
2999 | return ret_val; | ||||
3000 | } | ||||
3001 | DEBUGOUT1("RTL8211:ReadBack for check, LED_CFG->data=%X\n", phy_data); | ||||
3002 | |||||
3003 | |||||
3004 | /* After setting Page2, go back to Page 0 */ | ||||
3005 | phy_data = 0; | ||||
3006 | ret_val = em_write_phy_reg_ex(hw, RGEPHY_PS0x1F, phy_data); | ||||
3007 | if (ret_val) { | ||||
3008 | printf("Unable to write PHY RGEPHY_PS register\n"); | ||||
3009 | return ret_val; | ||||
3010 | } | ||||
3011 | |||||
3012 | /* pulse streching= 42-84ms, blink rate=84mm */ | ||||
3013 | phy_data = 0x140 | RGEPHY_LC_PULSE_42MS0x2000 | RGEPHY_LC_LINK0x0008 | | ||||
3014 | RGEPHY_LC_DUPLEX0x0004 | RGEPHY_LC_RX0x0002; | ||||
3015 | |||||
3016 | ret_val = em_write_phy_reg_ex(hw, RGEPHY_LC0x18, phy_data); | ||||
3017 | if (ret_val) { | ||||
3018 | printf("Unable to write RGEPHY_LC register\n"); | ||||
3019 | return ret_val; | ||||
3020 | } | ||||
3021 | return E1000_SUCCESS0; | ||||
3022 | } | ||||
3023 | |||||
3024 | /****************************************************************************** | ||||
3025 | * Setup auto-negotiation and flow control advertisements, | ||||
3026 | * and then perform auto-negotiation. | ||||
3027 | * | ||||
3028 | * hw - Struct containing variables accessed by shared code | ||||
3029 | *****************************************************************************/ | ||||
3030 | int32_t | ||||
3031 | em_copper_link_autoneg(struct em_hw *hw) | ||||
3032 | { | ||||
3033 | int32_t ret_val; | ||||
3034 | uint16_t phy_data; | ||||
3035 | DEBUGFUNC("em_copper_link_autoneg");; | ||||
3036 | /* | ||||
3037 | * Perform some bounds checking on the hw->autoneg_advertised | ||||
3038 | * parameter. If this variable is zero, then set it to the default. | ||||
3039 | */ | ||||
3040 | hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT0x002F; | ||||
3041 | /* | ||||
3042 | * If autoneg_advertised is zero, we assume it was not defaulted by | ||||
3043 | * the calling code so we set to advertise full capability. | ||||
3044 | */ | ||||
3045 | if (hw->autoneg_advertised == 0) | ||||
3046 | hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT0x002F; | ||||
3047 | |||||
3048 | /* IFE phy only supports 10/100 */ | ||||
3049 | if (hw->phy_type == em_phy_ife) | ||||
3050 | hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL0x000F; | ||||
3051 | |||||
3052 | DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); | ||||
3053 | ret_val = em_phy_setup_autoneg(hw); | ||||
3054 | if (ret_val) { | ||||
3055 | DEBUGOUT("Error Setting up Auto-Negotiation\n"); | ||||
3056 | return ret_val; | ||||
3057 | } | ||||
3058 | DEBUGOUT("Restarting Auto-Neg\n"); | ||||
3059 | /* | ||||
3060 | * Restart auto-negotiation by setting the Auto Neg Enable bit and | ||||
3061 | * the Auto Neg Restart bit in the PHY control register. | ||||
3062 | */ | ||||
3063 | ret_val = em_read_phy_reg(hw, PHY_CTRL0x00, &phy_data); | ||||
3064 | if (ret_val) | ||||
3065 | return ret_val; | ||||
3066 | |||||
3067 | phy_data |= (MII_CR_AUTO_NEG_EN0x1000 | MII_CR_RESTART_AUTO_NEG0x0200); | ||||
3068 | ret_val = em_write_phy_reg(hw, PHY_CTRL0x00, phy_data); | ||||
3069 | if (ret_val) | ||||
3070 | return ret_val; | ||||
3071 | /* | ||||
3072 | * Does the user want to wait for Auto-Neg to complete here, or check | ||||
3073 | * at a later time (for example, callback routine). | ||||
3074 | */ | ||||
3075 | if (hw->wait_autoneg_complete) { | ||||
3076 | ret_val = em_wait_autoneg(hw); | ||||
3077 | if (ret_val) { | ||||
3078 | DEBUGOUT("Error while waiting for autoneg to complete\n" | ||||
3079 | ); | ||||
3080 | return ret_val; | ||||
3081 | } | ||||
3082 | } | ||||
3083 | hw->get_link_status = TRUE1; | ||||
3084 | |||||
3085 | return E1000_SUCCESS0; | ||||
3086 | } | ||||
3087 | |||||
3088 | /****************************************************************************** | ||||
3089 | * Config the MAC and the PHY after link is up. | ||||
3090 | * 1) Set up the MAC to the current PHY speed/duplex | ||||
3091 | * if we are on 82543. If we | ||||
3092 | * are on newer silicon, we only need to configure | ||||
3093 | * collision distance in the Transmit Control Register. | ||||
3094 | * 2) Set up flow control on the MAC to that established with | ||||
3095 | * the link partner. | ||||
3096 | * 3) Config DSP to improve Gigabit link quality for some PHY revisions. | ||||
3097 | * | ||||
3098 | * hw - Struct containing variables accessed by shared code | ||||
3099 | *****************************************************************************/ | ||||
3100 | int32_t | ||||
3101 | em_copper_link_postconfig(struct em_hw *hw) | ||||
3102 | { | ||||
3103 | int32_t ret_val; | ||||
3104 | DEBUGFUNC("em_copper_link_postconfig");; | ||||
3105 | |||||
3106 | if (hw->mac_type >= em_82544 && | ||||
3107 | hw->mac_type != em_icp_xxxx) { | ||||
3108 | em_config_collision_dist(hw); | ||||
3109 | } else { | ||||
3110 | ret_val = em_config_mac_to_phy(hw); | ||||
3111 | if (ret_val) { | ||||
3112 | DEBUGOUT("Error configuring MAC to PHY settings\n"); | ||||
3113 | return ret_val; | ||||
3114 | } | ||||
3115 | } | ||||
3116 | ret_val = em_config_fc_after_link_up(hw); | ||||
3117 | if (ret_val) { | ||||
3118 | DEBUGOUT("Error Configuring Flow Control\n"); | ||||
3119 | return ret_val; | ||||
3120 | } | ||||
3121 | /* Config DSP to improve Giga link quality */ | ||||
3122 | if (hw->phy_type == em_phy_igp) { | ||||
3123 | ret_val = em_config_dsp_after_link_change(hw, TRUE1); | ||||
3124 | if (ret_val) { | ||||
3125 | DEBUGOUT("Error Configuring DSP after link up\n"); | ||||
3126 | return ret_val; | ||||
3127 | } | ||||
3128 | } | ||||
3129 | return E1000_SUCCESS0; | ||||
3130 | } | ||||
3131 | |||||
3132 | /****************************************************************************** | ||||
3133 | * Detects which PHY is present and setup the speed and duplex | ||||
3134 | * | ||||
3135 | * hw - Struct containing variables accessed by shared code | ||||
3136 | *****************************************************************************/ | ||||
3137 | static int32_t | ||||
3138 | em_setup_copper_link(struct em_hw *hw) | ||||
3139 | { | ||||
3140 | int32_t ret_val; | ||||
3141 | uint16_t i; | ||||
3142 | uint16_t phy_data; | ||||
3143 | uint16_t reg_data; | ||||
3144 | DEBUGFUNC("em_setup_copper_link");; | ||||
3145 | |||||
3146 | switch (hw->mac_type) { | ||||
3147 | case em_80003es2lan: | ||||
3148 | case em_ich8lan: | ||||
3149 | case em_ich9lan: | ||||
3150 | case em_ich10lan: | ||||
3151 | case em_pchlan: | ||||
3152 | case em_pch2lan: | ||||
3153 | case em_pch_lpt: | ||||
3154 | case em_pch_spt: | ||||
3155 | case em_pch_cnp: | ||||
3156 | /* | ||||
3157 | * Set the mac to wait the maximum time between each | ||||
3158 | * iteration and increase the max iterations when polling the | ||||
3159 | * phy; this fixes erroneous timeouts at 10Mbps. | ||||
3160 | */ | ||||
3161 | ret_val = em_write_kmrn_reg(hw, GG82563_REG(0x34, 4)(((0x34) << 5) | ((4) & 0x1F)), 0xFFFF); | ||||
3162 | if (ret_val) | ||||
3163 | return ret_val; | ||||
3164 | ret_val = em_read_kmrn_reg(hw, GG82563_REG(0x34, 9)(((0x34) << 5) | ((9) & 0x1F)), | ||||
3165 | ®_data); | ||||
3166 | if (ret_val) | ||||
3167 | return ret_val; | ||||
3168 | reg_data |= 0x3F; | ||||
3169 | ret_val = em_write_kmrn_reg(hw, GG82563_REG(0x34, 9)(((0x34) << 5) | ((9) & 0x1F)), | ||||
3170 | reg_data); | ||||
3171 | if (ret_val) | ||||
3172 | return ret_val; | ||||
3173 | default: | ||||
3174 | break; | ||||
3175 | } | ||||
3176 | |||||
3177 | /* Check if it is a valid PHY and set PHY mode if necessary. */ | ||||
3178 | ret_val = em_copper_link_preconfig(hw); | ||||
3179 | if (ret_val) | ||||
3180 | return ret_val; | ||||
3181 | |||||
3182 | switch (hw->mac_type) { | ||||
3183 | case em_80003es2lan: | ||||
3184 | /* Kumeran registers are written-only */ | ||||
3185 | reg_data = | ||||
3186 | E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT0x00000500; | ||||
3187 | reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING0x00000010; | ||||
3188 | ret_val = em_write_kmrn_reg(hw, | ||||
3189 | E1000_KUMCTRLSTA_OFFSET_INB_CTRL0x00000002, reg_data); | ||||
3190 | if (ret_val) | ||||
3191 | return ret_val; | ||||
3192 | break; | ||||
3193 | default: | ||||
3194 | break; | ||||
3195 | } | ||||
3196 | |||||
3197 | if (hw->phy_type == em_phy_igp || | ||||
3198 | hw->phy_type == em_phy_igp_3 || | ||||
3199 | hw->phy_type == em_phy_igp_2) { | ||||
3200 | ret_val = em_copper_link_igp_setup(hw); | ||||
3201 | if (ret_val) | ||||
3202 | return ret_val; | ||||
3203 | } else if (hw->phy_type == em_phy_m88 || | ||||
3204 | hw->phy_type == em_phy_bm || | ||||
3205 | hw->phy_type == em_phy_oem || | ||||
3206 | hw->phy_type == em_phy_82578) { | ||||
3207 | ret_val = em_copper_link_mgp_setup(hw); | ||||
3208 | if (ret_val) | ||||
3209 | return ret_val; | ||||
3210 | } else if (hw->phy_type == em_phy_gg82563) { | ||||
3211 | ret_val = em_copper_link_ggp_setup(hw); | ||||
3212 | if (ret_val) | ||||
3213 | return ret_val; | ||||
3214 | } else if (hw->phy_type == em_phy_82577 || | ||||
3215 | hw->phy_type == em_phy_82579 || | ||||
3216 | hw->phy_type == em_phy_i217) { | ||||
3217 | ret_val = em_copper_link_82577_setup(hw); | ||||
3218 | if (ret_val) | ||||
3219 | return ret_val; | ||||
3220 | } else if (hw->phy_type == em_phy_82580) { | ||||
3221 | ret_val = em_copper_link_82580_setup(hw); | ||||
3222 | if (ret_val) | ||||
3223 | return ret_val; | ||||
3224 | } else if (hw->phy_type == em_phy_rtl8211) { | ||||
3225 | ret_val = em_copper_link_rtl8211_setup(hw); | ||||
3226 | if (ret_val) | ||||
3227 | return ret_val; | ||||
3228 | } | ||||
3229 | if (hw->autoneg) { | ||||
3230 | /* | ||||
3231 | * Setup autoneg and flow control advertisement and perform | ||||
3232 | * autonegotiation | ||||
3233 | */ | ||||
3234 | ret_val = em_copper_link_autoneg(hw); | ||||
3235 | if (ret_val) | ||||
3236 | return ret_val; | ||||
3237 | } else { | ||||
3238 | /* | ||||
3239 | * PHY will be set to 10H, 10F, 100H,or 100F depending on | ||||
3240 | * value from forced_speed_duplex. | ||||
3241 | */ | ||||
3242 | DEBUGOUT("Forcing speed and duplex\n"); | ||||
3243 | ret_val = em_phy_force_speed_duplex(hw); | ||||
3244 | if (ret_val) { | ||||
3245 | DEBUGOUT("Error Forcing Speed and Duplex\n"); | ||||
3246 | return ret_val; | ||||
3247 | } | ||||
3248 | } | ||||
3249 | /* | ||||
3250 | * Check link status. Wait up to 100 microseconds for link to become | ||||
3251 | * valid. | ||||
3252 | */ | ||||
3253 | for (i = 0; i < 10; i++) { | ||||
3254 | ret_val = em_read_phy_reg(hw, PHY_STATUS0x01, &phy_data); | ||||
3255 | if (ret_val) | ||||
3256 | return ret_val; | ||||
3257 | ret_val = em_read_phy_reg(hw, PHY_STATUS0x01, &phy_data); | ||||
3258 | if (ret_val) | ||||
3259 | return ret_val; | ||||
3260 | |||||
3261 | hw->icp_xxxx_is_link_up = (phy_data & MII_SR_LINK_STATUS0x0004) != 0; | ||||
3262 | |||||
3263 | if (phy_data & MII_SR_LINK_STATUS0x0004) { | ||||
3264 | /* Config the MAC and PHY after link is up */ | ||||
3265 | ret_val = em_copper_link_postconfig(hw); | ||||
3266 | if (ret_val) | ||||
3267 | return ret_val; | ||||
3268 | |||||
3269 | DEBUGOUT("Valid link established!!!\n"); | ||||
3270 | return E1000_SUCCESS0; | ||||
3271 | } | ||||
3272 | usec_delay(10)(*delay_func)(10); | ||||
3273 | } | ||||
3274 | |||||
3275 | DEBUGOUT("Unable to establish link!!!\n"); | ||||
3276 | return E1000_SUCCESS0; | ||||
3277 | } | ||||
3278 | |||||
3279 | /****************************************************************************** | ||||
3280 | * Configure the MAC-to-PHY interface for 10/100Mbps | ||||
3281 | * | ||||
3282 | * hw - Struct containing variables accessed by shared code | ||||
3283 | *****************************************************************************/ | ||||
3284 | static int32_t | ||||
3285 | em_configure_kmrn_for_10_100(struct em_hw *hw, uint16_t duplex) | ||||
3286 | { | ||||
3287 | int32_t ret_val = E1000_SUCCESS0; | ||||
3288 | uint32_t tipg; | ||||
3289 | uint16_t reg_data; | ||||
3290 | DEBUGFUNC("em_configure_kmrn_for_10_100");; | ||||
3291 | |||||
3292 | reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT0x00000004; | ||||
3293 | ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL0x00000010, | ||||
3294 | reg_data); | ||||
3295 | if (ret_val) | ||||
3296 | return ret_val; | ||||
3297 | |||||
3298 | /* Configure Transmit Inter-Packet Gap */ | ||||
3299 | tipg = E1000_READ_REG(hw, TIPG)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00410 : em_translate_82542_register (0x00410))))); | ||||
3300 | tipg &= ~E1000_TIPG_IPGT_MASK0x000003FF; | ||||
3301 | tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_1000x00000009; | ||||
3302 | E1000_WRITE_REG(hw, TIPG, tipg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00410 : em_translate_82542_register (0x00410))), (tipg))); | ||||
3303 | |||||
3304 | ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL(((193) << 5) | ((16) & 0x1F)), ®_data); | ||||
3305 | |||||
3306 | if (ret_val) | ||||
3307 | return ret_val; | ||||
3308 | |||||
3309 | if (duplex == HALF_DUPLEX1) | ||||
3310 | reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER0x0800; | ||||
3311 | else | ||||
3312 | reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER0x0800; | ||||
3313 | |||||
3314 | ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL(((193) << 5) | ((16) & 0x1F)), reg_data); | ||||
3315 | |||||
3316 | return ret_val; | ||||
3317 | } | ||||
3318 | |||||
3319 | static int32_t | ||||
3320 | em_configure_kmrn_for_1000(struct em_hw *hw) | ||||
3321 | { | ||||
3322 | int32_t ret_val = E1000_SUCCESS0; | ||||
3323 | uint16_t reg_data; | ||||
3324 | uint32_t tipg; | ||||
3325 | DEBUGFUNC("em_configure_kmrn_for_1000");; | ||||
3326 | |||||
3327 | reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT0x00000000; | ||||
3328 | ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL0x00000010, | ||||
3329 | reg_data); | ||||
3330 | if (ret_val) | ||||
3331 | return ret_val; | ||||
3332 | |||||
3333 | /* Configure Transmit Inter-Packet Gap */ | ||||
3334 | tipg = E1000_READ_REG(hw, TIPG)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00410 : em_translate_82542_register (0x00410))))); | ||||
3335 | tipg &= ~E1000_TIPG_IPGT_MASK0x000003FF; | ||||
3336 | tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10000x00000008; | ||||
3337 | E1000_WRITE_REG(hw, TIPG, tipg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00410 : em_translate_82542_register (0x00410))), (tipg))); | ||||
3338 | |||||
3339 | ret_val = em_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL(((193) << 5) | ((16) & 0x1F)), ®_data); | ||||
3340 | |||||
3341 | if (ret_val) | ||||
3342 | return ret_val; | ||||
3343 | |||||
3344 | reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER0x0800; | ||||
3345 | ret_val = em_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL(((193) << 5) | ((16) & 0x1F)), reg_data); | ||||
3346 | |||||
3347 | return ret_val; | ||||
3348 | } | ||||
3349 | |||||
3350 | /****************************************************************************** | ||||
3351 | * Configures PHY autoneg and flow control advertisement settings | ||||
3352 | * | ||||
3353 | * hw - Struct containing variables accessed by shared code | ||||
3354 | *****************************************************************************/ | ||||
3355 | int32_t | ||||
3356 | em_phy_setup_autoneg(struct em_hw *hw) | ||||
3357 | { | ||||
3358 | int32_t ret_val; | ||||
3359 | uint16_t mii_autoneg_adv_reg; | ||||
3360 | uint16_t mii_1000t_ctrl_reg; | ||||
3361 | DEBUGFUNC("em_phy_setup_autoneg");; | ||||
3362 | |||||
3363 | /* Read the MII Auto-Neg Advertisement Register (Address 4). */ | ||||
3364 | ret_val = em_read_phy_reg(hw, PHY_AUTONEG_ADV0x04, &mii_autoneg_adv_reg); | ||||
3365 | if (ret_val) | ||||
3366 | return ret_val; | ||||
3367 | |||||
3368 | if (hw->phy_type != em_phy_ife) { | ||||
3369 | /* Read the MII 1000Base-T Control Register (Address 9). */ | ||||
3370 | ret_val = em_read_phy_reg(hw, PHY_1000T_CTRL0x09, | ||||
3371 | &mii_1000t_ctrl_reg); | ||||
3372 | if (ret_val) | ||||
3373 | return ret_val; | ||||
3374 | } else | ||||
3375 | mii_1000t_ctrl_reg = 0; | ||||
3376 | /* | ||||
3377 | * Need to parse both autoneg_advertised and fc and set up the | ||||
3378 | * appropriate PHY registers. First we will parse for | ||||
3379 | * autoneg_advertised software override. Since we can advertise a | ||||
3380 | * plethora of combinations, we need to check each bit individually. | ||||
3381 | */ | ||||
3382 | /* | ||||
3383 | * First we clear all the 10/100 mb speed bits in the Auto-Neg | ||||
3384 | * Advertisement Register (Address 4) and the 1000 mb speed bits in | ||||
3385 | * the 1000Base-T Control Register (Address 9). | ||||
3386 | */ | ||||
3387 | mii_autoneg_adv_reg &= ~REG4_SPEED_MASK0x01E0; | ||||
3388 | mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK0x0300; | ||||
3389 | |||||
3390 | DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised); | ||||
3391 | |||||
3392 | /* Do we want to advertise 10 Mb Half Duplex? */ | ||||
3393 | if (hw->autoneg_advertised & ADVERTISE_10_HALF0x0001) { | ||||
3394 | DEBUGOUT("Advertise 10mb Half duplex\n"); | ||||
3395 | mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS0x0020; | ||||
3396 | } | ||||
3397 | /* Do we want to advertise 10 Mb Full Duplex? */ | ||||
3398 | if (hw->autoneg_advertised & ADVERTISE_10_FULL0x0002) { | ||||
3399 | DEBUGOUT("Advertise 10mb Full duplex\n"); | ||||
3400 | mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS0x0040; | ||||
3401 | } | ||||
3402 | /* Do we want to advertise 100 Mb Half Duplex? */ | ||||
3403 | if (hw->autoneg_advertised & ADVERTISE_100_HALF0x0004) { | ||||
3404 | DEBUGOUT("Advertise 100mb Half duplex\n"); | ||||
3405 | mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS0x0080; | ||||
3406 | } | ||||
3407 | /* Do we want to advertise 100 Mb Full Duplex? */ | ||||
3408 | if (hw->autoneg_advertised & ADVERTISE_100_FULL0x0008) { | ||||
3409 | DEBUGOUT("Advertise 100mb Full duplex\n"); | ||||
3410 | mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS0x0100; | ||||
3411 | } | ||||
3412 | /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ | ||||
3413 | if (hw->autoneg_advertised & ADVERTISE_1000_HALF0x0010) { | ||||
3414 | DEBUGOUT("Advertise 1000mb Half duplex requested, request" | ||||
3415 | " denied!\n"); | ||||
3416 | } | ||||
3417 | /* Do we want to advertise 1000 Mb Full Duplex? */ | ||||
3418 | if (hw->autoneg_advertised & ADVERTISE_1000_FULL0x0020) { | ||||
3419 | DEBUGOUT("Advertise 1000mb Full duplex\n"); | ||||
3420 | mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS0x0200; | ||||
3421 | if (hw->phy_type == em_phy_ife) { | ||||
3422 | DEBUGOUT("em_phy_ife is a 10/100 PHY. Gigabit speed is" | ||||
3423 | " not supported.\n"); | ||||
3424 | } | ||||
3425 | } | ||||
3426 | /* | ||||
3427 | * Check for a software override of the flow control settings, and | ||||
3428 | * setup the PHY advertisement registers accordingly. If | ||||
3429 | * auto-negotiation is enabled, then software will have to set the | ||||
3430 | * "PAUSE" bits to the correct value in the Auto-Negotiation | ||||
3431 | * Advertisement Register (PHY_AUTONEG_ADV) and re-start | ||||
3432 | * auto-negotiation. | ||||
3433 | * | ||||
3434 | * The possible values of the "fc" parameter are: 0: Flow control is | ||||
3435 | * completely disabled 1: Rx flow control is enabled (we can receive | ||||
3436 | * pause frames but not send pause frames). 2: Tx flow control is | ||||
3437 | * enabled (we can send pause frames but we do not support receiving | ||||
3438 | * pause frames). 3: Both Rx and TX flow control (symmetric) are | ||||
3439 | * enabled. other: No software override. The flow control | ||||
3440 | * configuration in the EEPROM is used. | ||||
3441 | */ | ||||
3442 | switch (hw->fc) { | ||||
3443 | case E1000_FC_NONE0: /* 0 */ | ||||
3444 | /* | ||||
3445 | * Flow control (RX & TX) is completely disabled by a | ||||
3446 | * software over-ride. | ||||
3447 | */ | ||||
3448 | mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR0x0800 | NWAY_AR_PAUSE0x0400); | ||||
3449 | break; | ||||
3450 | case E1000_FC_RX_PAUSE1:/* 1 */ | ||||
3451 | /* | ||||
3452 | * RX Flow control is enabled, and TX Flow control is | ||||
3453 | * disabled, by a software over-ride. | ||||
3454 | */ | ||||
3455 | /* | ||||
3456 | * Since there really isn't a way to advertise that we are | ||||
3457 | * capable of RX Pause ONLY, we will advertise that we | ||||
3458 | * support both symmetric and asymmetric RX PAUSE. Later (in | ||||
3459 | * em_config_fc_after_link_up) we will disable the hw's | ||||
3460 | * ability to send PAUSE frames. | ||||
3461 | */ | ||||
3462 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR0x0800 | NWAY_AR_PAUSE0x0400); | ||||
3463 | break; | ||||
3464 | case E1000_FC_TX_PAUSE2:/* 2 */ | ||||
3465 | /* | ||||
3466 | * TX Flow control is enabled, and RX Flow control is | ||||
3467 | * disabled, by a software over-ride. | ||||
3468 | */ | ||||
3469 | mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR0x0800; | ||||
3470 | mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE0x0400; | ||||
3471 | break; | ||||
3472 | case E1000_FC_FULL3: /* 3 */ | ||||
3473 | /* | ||||
3474 | * Flow control (both RX and TX) is enabled by a software | ||||
3475 | * over-ride. | ||||
3476 | */ | ||||
3477 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR0x0800 | NWAY_AR_PAUSE0x0400); | ||||
3478 | break; | ||||
3479 | default: | ||||
3480 | DEBUGOUT("Flow control param set incorrectly\n"); | ||||
3481 | return -E1000_ERR_CONFIG3; | ||||
3482 | } | ||||
3483 | |||||
3484 | ret_val = em_write_phy_reg(hw, PHY_AUTONEG_ADV0x04, mii_autoneg_adv_reg); | ||||
3485 | if (ret_val) | ||||
3486 | return ret_val; | ||||
3487 | |||||
3488 | DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); | ||||
3489 | |||||
3490 | if (hw->phy_type != em_phy_ife) { | ||||
3491 | ret_val = em_write_phy_reg(hw, PHY_1000T_CTRL0x09, | ||||
3492 | mii_1000t_ctrl_reg); | ||||
3493 | if (ret_val) | ||||
3494 | return ret_val; | ||||
3495 | } | ||||
3496 | return E1000_SUCCESS0; | ||||
3497 | } | ||||
3498 | /****************************************************************************** | ||||
3499 | * Force PHY speed and duplex settings to hw->forced_speed_duplex | ||||
3500 | * | ||||
3501 | * hw - Struct containing variables accessed by shared code | ||||
3502 | *****************************************************************************/ | ||||
3503 | static int32_t | ||||
3504 | em_phy_force_speed_duplex(struct em_hw *hw) | ||||
3505 | { | ||||
3506 | uint32_t ctrl; | ||||
3507 | int32_t ret_val; | ||||
3508 | uint16_t mii_ctrl_reg; | ||||
3509 | uint16_t mii_status_reg; | ||||
3510 | uint16_t phy_data; | ||||
3511 | uint16_t i; | ||||
3512 | DEBUGFUNC("em_phy_force_speed_duplex");; | ||||
3513 | |||||
3514 | /* Turn off Flow control if we are forcing speed and duplex. */ | ||||
3515 | hw->fc = E1000_FC_NONE0; | ||||
3516 | |||||
3517 | DEBUGOUT1("hw->fc = %d\n", hw->fc); | ||||
3518 | |||||
3519 | /* Read the Device Control Register. */ | ||||
3520 | ctrl = E1000_READ_REG(hw, CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))))); | ||||
3521 | |||||
3522 | /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */ | ||||
3523 | ctrl |= (E1000_CTRL_FRCSPD0x00000800 | E1000_CTRL_FRCDPX0x00001000); | ||||
3524 | ctrl &= ~(DEVICE_SPEED_MASK0x00000300); | ||||
3525 | |||||
3526 | /* Clear the Auto Speed Detect Enable bit. */ | ||||
3527 | ctrl &= ~E1000_CTRL_ASDE0x00000020; | ||||
3528 | |||||
3529 | /* Read the MII Control Register. */ | ||||
3530 | ret_val = em_read_phy_reg(hw, PHY_CTRL0x00, &mii_ctrl_reg); | ||||
3531 | if (ret_val) | ||||
3532 | return ret_val; | ||||
3533 | |||||
3534 | /* We need to disable autoneg in order to force link and duplex. */ | ||||
3535 | |||||
3536 | mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN0x1000; | ||||
3537 | |||||
3538 | /* Are we forcing Full or Half Duplex? */ | ||||
3539 | if (hw->forced_speed_duplex == em_100_full || | ||||
3540 | hw->forced_speed_duplex == em_10_full) { | ||||
3541 | /* | ||||
3542 | * We want to force full duplex so we SET the full duplex | ||||
3543 | * bits in the Device and MII Control Registers. | ||||
3544 | */ | ||||
3545 | ctrl |= E1000_CTRL_FD0x00000001; | ||||
3546 | mii_ctrl_reg |= MII_CR_FULL_DUPLEX0x0100; | ||||
3547 | DEBUGOUT("Full Duplex\n"); | ||||
3548 | } else { | ||||
3549 | /* | ||||
3550 | * We want to force half duplex so we CLEAR the full duplex | ||||
3551 | * bits in the Device and MII Control Registers. | ||||
3552 | */ | ||||
3553 | ctrl &= ~E1000_CTRL_FD0x00000001; | ||||
3554 | mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX0x0100; | ||||
3555 | DEBUGOUT("Half Duplex\n"); | ||||
3556 | } | ||||
3557 | |||||
3558 | /* Are we forcing 100Mbps??? */ | ||||
3559 | if (hw->forced_speed_duplex == em_100_full || | ||||
3560 | hw->forced_speed_duplex == em_100_half) { | ||||
3561 | /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */ | ||||
3562 | ctrl |= E1000_CTRL_SPD_1000x00000100; | ||||
3563 | mii_ctrl_reg |= MII_CR_SPEED_1000x2000; | ||||
3564 | mii_ctrl_reg &= ~(MII_CR_SPEED_10000x0040 | MII_CR_SPEED_100x0000); | ||||
3565 | DEBUGOUT("Forcing 100mb "); | ||||
3566 | } else { | ||||
3567 | /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */ | ||||
3568 | ctrl &= ~(E1000_CTRL_SPD_10000x00000200 | E1000_CTRL_SPD_1000x00000100); | ||||
3569 | mii_ctrl_reg |= MII_CR_SPEED_100x0000; | ||||
3570 | mii_ctrl_reg &= ~(MII_CR_SPEED_10000x0040 | MII_CR_SPEED_1000x2000); | ||||
3571 | DEBUGOUT("Forcing 10mb "); | ||||
3572 | } | ||||
3573 | |||||
3574 | em_config_collision_dist(hw); | ||||
3575 | |||||
3576 | /* Write the configured values back to the Device Control Reg. */ | ||||
3577 | E1000_WRITE_REG(hw, CTRL, ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (ctrl))); | ||||
3578 | |||||
3579 | if ((hw->phy_type == em_phy_m88) || | ||||
3580 | (hw->phy_type == em_phy_gg82563) || | ||||
3581 | (hw->phy_type == em_phy_bm) || | ||||
3582 | (hw->phy_type == em_phy_oem || | ||||
3583 | (hw->phy_type == em_phy_82578))) { | ||||
3584 | ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL0x10, | ||||
3585 | &phy_data); | ||||
3586 | if (ret_val) | ||||
3587 | return ret_val; | ||||
3588 | /* | ||||
3589 | * Clear Auto-Crossover to force MDI manually. M88E1000 | ||||
3590 | * requires MDI forced whenever speed are duplex are forced. | ||||
3591 | */ | ||||
3592 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE0x0060; | ||||
3593 | ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL0x10, | ||||
3594 | phy_data); | ||||
3595 | if (ret_val) | ||||
3596 | return ret_val; | ||||
3597 | |||||
3598 | DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data); | ||||
3599 | |||||
3600 | /* Need to reset the PHY or these changes will be ignored */ | ||||
3601 | mii_ctrl_reg |= MII_CR_RESET0x8000; | ||||
3602 | |||||
3603 | } | ||||
3604 | else if (hw->phy_type == em_phy_rtl8211) { | ||||
3605 | ret_val = em_read_phy_reg_ex(hw, RGEPHY_CR0x10, &phy_data); | ||||
3606 | if(ret_val) { | ||||
3607 | printf("Unable to read RGEPHY_CR register\n" | ||||
3608 | ); | ||||
3609 | return ret_val; | ||||
3610 | } | ||||
3611 | |||||
3612 | /* | ||||
3613 | * Clear Auto-Crossover to force MDI manually. RTL8211 requires | ||||
3614 | * MDI forced whenever speed are duplex are forced. | ||||
3615 | */ | ||||
3616 | |||||
3617 | phy_data |= RGEPHY_CR_MDI_MASK0x0060; // enable MDIX | ||||
3618 | ret_val = em_write_phy_reg_ex(hw, RGEPHY_CR0x10, phy_data); | ||||
3619 | if(ret_val) { | ||||
3620 | printf("Unable to write RGEPHY_CR register\n"); | ||||
3621 | return ret_val; | ||||
3622 | } | ||||
3623 | mii_ctrl_reg |= MII_CR_RESET0x8000; | ||||
3624 | |||||
3625 | } | ||||
3626 | /* Disable MDI-X support for 10/100 */ | ||||
3627 | else if (hw->phy_type == em_phy_ife) { | ||||
3628 | ret_val = em_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL0x1C, &phy_data); | ||||
3629 | if (ret_val) | ||||
3630 | return ret_val; | ||||
3631 | |||||
3632 | phy_data &= ~IFE_PMC_AUTO_MDIX0x0080; | ||||
3633 | phy_data &= ~IFE_PMC_FORCE_MDIX0x0040; | ||||
3634 | |||||
3635 | ret_val = em_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL0x1C, phy_data); | ||||
3636 | if (ret_val) | ||||
3637 | return ret_val; | ||||
3638 | } else { | ||||
3639 | /* | ||||
3640 | * Clear Auto-Crossover to force MDI manually. IGP requires | ||||
3641 | * MDI forced whenever speed or duplex are forced. | ||||
3642 | */ | ||||
3643 | ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL0x12, | ||||
3644 | &phy_data); | ||||
3645 | if (ret_val) | ||||
3646 | return ret_val; | ||||
3647 | |||||
3648 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX0x1000; | ||||
3649 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX0x2000; | ||||
3650 | |||||
3651 | ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL0x12, | ||||
3652 | phy_data); | ||||
3653 | if (ret_val) | ||||
3654 | return ret_val; | ||||
3655 | } | ||||
3656 | |||||
3657 | /* Write back the modified PHY MII control register. */ | ||||
3658 | ret_val = em_write_phy_reg(hw, PHY_CTRL0x00, mii_ctrl_reg); | ||||
3659 | if (ret_val) | ||||
3660 | return ret_val; | ||||
3661 | |||||
3662 | usec_delay(1)(*delay_func)(1); | ||||
3663 | /* | ||||
3664 | * The wait_autoneg_complete flag may be a little misleading here. | ||||
3665 | * Since we are forcing speed and duplex, Auto-Neg is not enabled. | ||||
3666 | * But we do want to delay for a period while forcing only so we | ||||
3667 | * don't generate false No Link messages. So we will wait here only | ||||
3668 | * if the user has set wait_autoneg_complete to 1, which is the | ||||
3669 | * default. | ||||
3670 | */ | ||||
3671 | if (hw->wait_autoneg_complete) { | ||||
3672 | /* We will wait for autoneg to complete. */ | ||||
3673 | DEBUGOUT("Waiting for forced speed/duplex link.\n"); | ||||
3674 | mii_status_reg = 0; | ||||
3675 | /* | ||||
3676 | * We will wait for autoneg to complete or 4.5 seconds to | ||||
3677 | * expire. | ||||
3678 | */ | ||||
3679 | for (i = PHY_FORCE_TIME20; i > 0; i--) { | ||||
3680 | /* | ||||
3681 | * Read the MII Status Register and wait for Auto-Neg | ||||
3682 | * Complete bit to be set. | ||||
3683 | */ | ||||
3684 | ret_val = em_read_phy_reg(hw, PHY_STATUS0x01, | ||||
3685 | &mii_status_reg); | ||||
3686 | if (ret_val) | ||||
3687 | return ret_val; | ||||
3688 | |||||
3689 | ret_val = em_read_phy_reg(hw, PHY_STATUS0x01, | ||||
3690 | &mii_status_reg); | ||||
3691 | if (ret_val) | ||||
3692 | return ret_val; | ||||
3693 | |||||
3694 | if (mii_status_reg & MII_SR_LINK_STATUS0x0004) | ||||
3695 | break; | ||||
3696 | msec_delay(100)(*delay_func)(1000*(100)); | ||||
3697 | } | ||||
3698 | if ((i == 0) && | ||||
3699 | ((hw->phy_type == em_phy_m88) || | ||||
3700 | (hw->phy_type == em_phy_gg82563) || | ||||
3701 | (hw->phy_type == em_phy_bm))) { | ||||
3702 | /* | ||||
3703 | * We didn't get link. Reset the DSP and wait again | ||||
3704 | * for link. | ||||
3705 | */ | ||||
3706 | ret_val = em_phy_reset_dsp(hw); | ||||
3707 | if (ret_val) { | ||||
3708 | DEBUGOUT("Error Resetting PHY DSP\n"); | ||||
3709 | return ret_val; | ||||
3710 | } | ||||
3711 | } | ||||
3712 | /* | ||||
3713 | * This loop will early-out if the link condition has been | ||||
3714 | * met. | ||||
3715 | */ | ||||
3716 | for (i = PHY_FORCE_TIME20; i > 0; i--) { | ||||
3717 | if (mii_status_reg & MII_SR_LINK_STATUS0x0004) | ||||
3718 | break; | ||||
3719 | msec_delay(100)(*delay_func)(1000*(100)); | ||||
3720 | /* | ||||
3721 | * Read the MII Status Register and wait for Auto-Neg | ||||
3722 | * Complete bit to be set. | ||||
3723 | */ | ||||
3724 | ret_val = em_read_phy_reg(hw, PHY_STATUS0x01, | ||||
3725 | &mii_status_reg); | ||||
3726 | if (ret_val) | ||||
3727 | return ret_val; | ||||
3728 | |||||
3729 | ret_val = em_read_phy_reg(hw, PHY_STATUS0x01, | ||||
3730 | &mii_status_reg); | ||||
3731 | if (ret_val) | ||||
3732 | return ret_val; | ||||
3733 | } | ||||
3734 | } | ||||
3735 | if (hw->phy_type == em_phy_m88 || | ||||
3736 | hw->phy_type == em_phy_bm || | ||||
3737 | hw->phy_type == em_phy_oem) { | ||||
3738 | /* | ||||
3739 | * Because we reset the PHY above, we need to re-force TX_CLK | ||||
3740 | * in the Extended PHY Specific Control Register to 25MHz | ||||
3741 | * clock. This value defaults back to a 2.5MHz clock when | ||||
3742 | * the PHY is reset. | ||||
3743 | */ | ||||
3744 | ret_val = em_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL0x14, | ||||
3745 | &phy_data); | ||||
3746 | if (ret_val) | ||||
3747 | return ret_val; | ||||
3748 | |||||
3749 | phy_data |= M88E1000_EPSCR_TX_CLK_250x0070; | ||||
3750 | ret_val = em_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL0x14, | ||||
3751 | phy_data); | ||||
3752 | if (ret_val) | ||||
3753 | return ret_val; | ||||
3754 | /* | ||||
3755 | * In addition, because of the s/w reset above, we need to | ||||
3756 | * enable CRS on TX. This must be set for both full and half | ||||
3757 | * duplex operation. | ||||
3758 | */ | ||||
3759 | ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL0x10, | ||||
3760 | &phy_data); | ||||
3761 | if (ret_val) | ||||
3762 | return ret_val; | ||||
3763 | |||||
3764 | if (hw->phy_id == M88E1141_E_PHY_ID0x01410CD0) | ||||
3765 | phy_data &= ~M88E1000_PSCR_ASSERT_CRS_ON_TX0x0800; | ||||
3766 | else | ||||
3767 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX0x0800; | ||||
3768 | |||||
3769 | ret_val = em_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL0x10, | ||||
3770 | phy_data); | ||||
3771 | if (ret_val) | ||||
3772 | return ret_val; | ||||
3773 | |||||
3774 | if ((hw->mac_type == em_82544 || hw->mac_type == em_82543) && | ||||
3775 | (!hw->autoneg) && (hw->forced_speed_duplex == em_10_full || | ||||
3776 | hw->forced_speed_duplex == em_10_half)) { | ||||
3777 | ret_val = em_polarity_reversal_workaround(hw); | ||||
3778 | if (ret_val) | ||||
3779 | return ret_val; | ||||
3780 | } | ||||
3781 | } else if (hw->phy_type == em_phy_rtl8211) { | ||||
3782 | /* | ||||
3783 | * In addition, because of the s/w reset above, we need to enable | ||||
3784 | * CRX on TX. This must be set for both full and half duplex | ||||
3785 | * operation. | ||||
3786 | */ | ||||
3787 | |||||
3788 | ret_val = em_read_phy_reg_ex(hw, RGEPHY_CR0x10, &phy_data); | ||||
3789 | if(ret_val) { | ||||
3790 | printf("Unable to read RGEPHY_CR register\n"); | ||||
3791 | return ret_val; | ||||
3792 | } | ||||
3793 | |||||
3794 | phy_data &= ~RGEPHY_CR_ASSERT_CRS0x0800; | ||||
3795 | ret_val = em_write_phy_reg_ex(hw, RGEPHY_CR0x10, phy_data); | ||||
3796 | if(ret_val) { | ||||
3797 | printf("Unable to write RGEPHY_CR register\n"); | ||||
3798 | return ret_val; | ||||
3799 | } | ||||
3800 | } else if (hw->phy_type == em_phy_gg82563) { | ||||
3801 | /* | ||||
3802 | * The TX_CLK of the Extended PHY Specific Control Register | ||||
3803 | * defaults to 2.5MHz on a reset. We need to re-force it | ||||
3804 | * back to 25MHz, if we're not in a forced 10/duplex | ||||
3805 | * configuration. | ||||
3806 | */ | ||||
3807 | ret_val = em_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL(((2) << 5) | ((21) & 0x1F)), | ||||
3808 | &phy_data); | ||||
3809 | if (ret_val) | ||||
3810 | return ret_val; | ||||
3811 | |||||
3812 | phy_data &= ~GG82563_MSCR_TX_CLK_MASK0x0007; | ||||
3813 | if ((hw->forced_speed_duplex == em_10_full) || | ||||
3814 | (hw->forced_speed_duplex == em_10_half)) | ||||
3815 | phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ0x0004; | ||||
3816 | else | ||||
3817 | phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25MHZ0x0005; | ||||
3818 | |||||
3819 | /* Also due to the reset, we need to enable CRS on Tx. */ | ||||
3820 | phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX0x0010; | ||||
3821 | |||||
3822 | ret_val = em_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL(((2) << 5) | ((21) & 0x1F)), | ||||
3823 | phy_data); | ||||
3824 | if (ret_val) | ||||
3825 | return ret_val; | ||||
3826 | } | ||||
3827 | return E1000_SUCCESS0; | ||||
3828 | } | ||||
3829 | |||||
3830 | /****************************************************************************** | ||||
3831 | * Sets the collision distance in the Transmit Control register | ||||
3832 | * | ||||
3833 | * hw - Struct containing variables accessed by shared code | ||||
3834 | * | ||||
3835 | * Link should have been established previously. Reads the speed and duplex | ||||
3836 | * information from the Device Status register. | ||||
3837 | *****************************************************************************/ | ||||
3838 | void | ||||
3839 | em_config_collision_dist(struct em_hw *hw) | ||||
3840 | { | ||||
3841 | uint32_t tctl, coll_dist; | ||||
3842 | DEBUGFUNC("em_config_collision_dist");; | ||||
3843 | |||||
3844 | if (hw->mac_type < em_82543) | ||||
3845 | coll_dist = E1000_COLLISION_DISTANCE_8254264; | ||||
3846 | else | ||||
3847 | coll_dist = E1000_COLLISION_DISTANCE63; | ||||
3848 | |||||
3849 | tctl = E1000_READ_REG(hw, TCTL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00400 : em_translate_82542_register (0x00400))))); | ||||
3850 | |||||
3851 | tctl &= ~E1000_TCTL_COLD0x003ff000; | ||||
3852 | tctl |= coll_dist << E1000_COLD_SHIFT12; | ||||
3853 | |||||
3854 | E1000_WRITE_REG(hw, TCTL, tctl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00400 : em_translate_82542_register (0x00400))), (tctl))); | ||||
3855 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
3856 | } | ||||
3857 | |||||
3858 | /****************************************************************************** | ||||
3859 | * Sets MAC speed and duplex settings to reflect the those in the PHY | ||||
3860 | * | ||||
3861 | * hw - Struct containing variables accessed by shared code | ||||
3862 | * mii_reg - data to write to the MII control register | ||||
3863 | * | ||||
3864 | * The contents of the PHY register containing the needed information need to | ||||
3865 | * be passed in. | ||||
3866 | *****************************************************************************/ | ||||
3867 | static int32_t | ||||
3868 | em_config_mac_to_phy(struct em_hw *hw) | ||||
3869 | { | ||||
3870 | uint32_t ctrl; | ||||
3871 | int32_t ret_val; | ||||
3872 | uint16_t phy_data; | ||||
3873 | DEBUGFUNC("em_config_mac_to_phy");; | ||||
3874 | /* | ||||
3875 | * 82544 or newer MAC, Auto Speed Detection takes care of MAC | ||||
3876 | * speed/duplex configuration. | ||||
3877 | */ | ||||
3878 | if (hw->mac_type >= em_82544 | ||||
3879 | && hw->mac_type != em_icp_xxxx) | ||||
3880 | return E1000_SUCCESS0; | ||||
3881 | /* | ||||
3882 | * Read the Device Control Register and set the bits to Force Speed | ||||
3883 | * and Duplex. | ||||
3884 | */ | ||||
3885 | ctrl = E1000_READ_REG(hw, CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))))); | ||||
3886 | ctrl |= (E1000_CTRL_FRCSPD0x00000800 | E1000_CTRL_FRCDPX0x00001000); | ||||
3887 | ctrl &= ~(E1000_CTRL_SPD_SEL0x00000300 | E1000_CTRL_ILOS0x00000080); | ||||
3888 | /* | ||||
3889 | * Set up duplex in the Device Control and Transmit Control registers | ||||
3890 | * depending on negotiated values. | ||||
3891 | */ | ||||
3892 | ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS0x11, &phy_data); | ||||
3893 | if (ret_val) | ||||
3894 | return ret_val; | ||||
3895 | |||||
3896 | if (phy_data & M88E1000_PSSR_DPLX0x2000) | ||||
3897 | ctrl |= E1000_CTRL_FD0x00000001; | ||||
3898 | else | ||||
3899 | ctrl &= ~E1000_CTRL_FD0x00000001; | ||||
3900 | |||||
3901 | em_config_collision_dist(hw); | ||||
3902 | /* | ||||
3903 | * Set up speed in the Device Control register depending on | ||||
3904 | * negotiated values. | ||||
3905 | */ | ||||
3906 | if ((phy_data & M88E1000_PSSR_SPEED0xC000) == M88E1000_PSSR_1000MBS0x8000) | ||||
3907 | ctrl |= E1000_CTRL_SPD_10000x00000200; | ||||
3908 | else if ((phy_data & M88E1000_PSSR_SPEED0xC000) == M88E1000_PSSR_100MBS0x4000) | ||||
3909 | ctrl |= E1000_CTRL_SPD_1000x00000100; | ||||
3910 | |||||
3911 | /* Write the configured values back to the Device Control Reg. */ | ||||
3912 | E1000_WRITE_REG(hw, CTRL, ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (ctrl))); | ||||
3913 | return E1000_SUCCESS0; | ||||
3914 | } | ||||
3915 | |||||
3916 | /****************************************************************************** | ||||
3917 | * Forces the MAC's flow control settings. | ||||
3918 | * | ||||
3919 | * hw - Struct containing variables accessed by shared code | ||||
3920 | * | ||||
3921 | * Sets the TFCE and RFCE bits in the device control register to reflect | ||||
3922 | * the adapter settings. TFCE and RFCE need to be explicitly set by | ||||
3923 | * software when a Copper PHY is used because autonegotiation is managed | ||||
3924 | * by the PHY rather than the MAC. Software must also configure these | ||||
3925 | * bits when link is forced on a fiber connection. | ||||
3926 | *****************************************************************************/ | ||||
3927 | int32_t | ||||
3928 | em_force_mac_fc(struct em_hw *hw) | ||||
3929 | { | ||||
3930 | uint32_t ctrl; | ||||
3931 | DEBUGFUNC("em_force_mac_fc");; | ||||
3932 | |||||
3933 | /* Get the current configuration of the Device Control Register */ | ||||
3934 | ctrl = E1000_READ_REG(hw, CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))))); | ||||
3935 | /* | ||||
3936 | * Because we didn't get link via the internal auto-negotiation | ||||
3937 | * mechanism (we either forced link or we got link via PHY auto-neg), | ||||
3938 | * we have to manually enable/disable transmit an receive flow | ||||
3939 | * control. | ||||
3940 | * | ||||
3941 | * The "Case" statement below enables/disable flow control according to | ||||
3942 | * the "hw->fc" parameter. | ||||
3943 | * | ||||
3944 | * The possible values of the "fc" parameter are: 0: Flow control is | ||||
3945 | * completely disabled 1: Rx flow control is enabled (we can receive | ||||
3946 | * pause frames but not send pause frames). 2: Tx flow control is | ||||
3947 | * enabled (we can send pause frames frames but we do not receive | ||||
3948 | * pause frames). 3: Both Rx and TX flow control (symmetric) is | ||||
3949 | * enabled. other: No other values should be possible at this point. | ||||
3950 | */ | ||||
3951 | |||||
3952 | switch (hw->fc) { | ||||
3953 | case E1000_FC_NONE0: | ||||
3954 | ctrl &= (~(E1000_CTRL_TFCE0x10000000 | E1000_CTRL_RFCE0x08000000)); | ||||
3955 | break; | ||||
3956 | case E1000_FC_RX_PAUSE1: | ||||
3957 | ctrl &= (~E1000_CTRL_TFCE0x10000000); | ||||
3958 | ctrl |= E1000_CTRL_RFCE0x08000000; | ||||
3959 | break; | ||||
3960 | case E1000_FC_TX_PAUSE2: | ||||
3961 | ctrl &= (~E1000_CTRL_RFCE0x08000000); | ||||
3962 | ctrl |= E1000_CTRL_TFCE0x10000000; | ||||
3963 | break; | ||||
3964 | case E1000_FC_FULL3: | ||||
3965 | ctrl |= (E1000_CTRL_TFCE0x10000000 | E1000_CTRL_RFCE0x08000000); | ||||
3966 | break; | ||||
3967 | default: | ||||
3968 | DEBUGOUT("Flow control param set incorrectly\n"); | ||||
3969 | return -E1000_ERR_CONFIG3; | ||||
3970 | } | ||||
3971 | |||||
3972 | /* Disable TX Flow Control for 82542 (rev 2.0) */ | ||||
3973 | if (hw->mac_type == em_82542_rev2_0) | ||||
3974 | ctrl &= (~E1000_CTRL_TFCE0x10000000); | ||||
3975 | |||||
3976 | E1000_WRITE_REG(hw, CTRL, ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (ctrl))); | ||||
3977 | return E1000_SUCCESS0; | ||||
3978 | } | ||||
3979 | /****************************************************************************** | ||||
3980 | * Configures flow control settings after link is established | ||||
3981 | * | ||||
3982 | * hw - Struct containing variables accessed by shared code | ||||
3983 | * | ||||
3984 | * Should be called immediately after a valid link has been established. | ||||
3985 | * Forces MAC flow control settings if link was forced. When in MII/GMII mode | ||||
3986 | * and autonegotiation is enabled, the MAC flow control settings will be set | ||||
3987 | * based on the flow control negotiated by the PHY. In TBI mode, the TFCE | ||||
3988 | * and RFCE bits will be automatically set to the negotiated flow control mode. | ||||
3989 | *****************************************************************************/ | ||||
3990 | STATIC int32_t | ||||
3991 | em_config_fc_after_link_up(struct em_hw *hw) | ||||
3992 | { | ||||
3993 | int32_t ret_val; | ||||
3994 | uint16_t mii_status_reg; | ||||
3995 | uint16_t mii_nway_adv_reg; | ||||
3996 | uint16_t mii_nway_lp_ability_reg; | ||||
3997 | uint16_t speed; | ||||
3998 | uint16_t duplex; | ||||
3999 | DEBUGFUNC("em_config_fc_after_link_up");; | ||||
4000 | /* | ||||
4001 | * Check for the case where we have fiber media and auto-neg failed | ||||
4002 | * so we had to force link. In this case, we need to force the | ||||
4003 | * configuration of the MAC to match the "fc" parameter. | ||||
4004 | */ | ||||
4005 | if (((hw->media_type == em_media_type_fiber) && (hw->autoneg_failed)) | ||||
4006 | || ((hw->media_type == em_media_type_internal_serdes) && | ||||
4007 | (hw->autoneg_failed)) || | ||||
4008 | ((hw->media_type == em_media_type_copper) && (!hw->autoneg)) || | ||||
4009 | ((hw->media_type == em_media_type_oem) && (!hw->autoneg))) { | ||||
4010 | ret_val = em_force_mac_fc(hw); | ||||
4011 | if (ret_val) { | ||||
4012 | DEBUGOUT("Error forcing flow control settings\n"); | ||||
4013 | return ret_val; | ||||
4014 | } | ||||
4015 | } | ||||
4016 | /* | ||||
4017 | * Check for the case where we have copper media and auto-neg is | ||||
4018 | * enabled. In this case, we need to check and see if Auto-Neg has | ||||
4019 | * completed, and if so, how the PHY and link partner has flow | ||||
4020 | * control configured. | ||||
4021 | */ | ||||
4022 | if ((hw->media_type == em_media_type_copper || | ||||
4023 | (hw->media_type == em_media_type_oem)) && | ||||
4024 | hw->autoneg) { | ||||
4025 | /* | ||||
4026 | * Read the MII Status Register and check to see if AutoNeg | ||||
4027 | * has completed. We read this twice because this reg has | ||||
4028 | * some "sticky" (latched) bits. | ||||
4029 | */ | ||||
4030 | ret_val = em_read_phy_reg(hw, PHY_STATUS0x01, &mii_status_reg); | ||||
4031 | if (ret_val) | ||||
4032 | return ret_val; | ||||
4033 | ret_val = em_read_phy_reg(hw, PHY_STATUS0x01, &mii_status_reg); | ||||
4034 | if (ret_val) | ||||
4035 | return ret_val; | ||||
4036 | |||||
4037 | if (mii_status_reg & MII_SR_AUTONEG_COMPLETE0x0020) { | ||||
4038 | /* | ||||
4039 | * The AutoNeg process has completed, so we now need | ||||
4040 | * to read both the Auto Negotiation Advertisement | ||||
4041 | * Register (Address 4) and the Auto_Negotiation Base | ||||
4042 | * Page Ability Register (Address 5) to determine how | ||||
4043 | * flow control was negotiated. | ||||
4044 | */ | ||||
4045 | ret_val = em_read_phy_reg(hw, PHY_AUTONEG_ADV0x04, | ||||
4046 | &mii_nway_adv_reg); | ||||
4047 | if (ret_val) | ||||
4048 | return ret_val; | ||||
4049 | ret_val = em_read_phy_reg(hw, PHY_LP_ABILITY0x05, | ||||
4050 | &mii_nway_lp_ability_reg); | ||||
4051 | if (ret_val) | ||||
4052 | return ret_val; | ||||
4053 | /* | ||||
4054 | * Two bits in the Auto Negotiation Advertisement | ||||
4055 | * Register (Address 4) and two bits in the Auto | ||||
4056 | * Negotiation Base Page Ability Register (Address 5) | ||||
4057 | * determine flow control for both the PHY and the | ||||
4058 | * link partner. The following table, taken out of | ||||
4059 | * the IEEE 802.3ab/D6.0 dated March 25, 1999, | ||||
4060 | * describes these PAUSE resolution bits and how flow | ||||
4061 | * control is determined based upon these settings. | ||||
4062 | * NOTE: DC = Don't Care | ||||
4063 | * | ||||
4064 | * LOCAL DEVICE | LINK PARTNER | | ||||
4065 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution | ||||
4066 | * -------|---------|-------|---------|--------------- | ||||
4067 | * 0 | 0 | DC | DC | em_fc_none | ||||
4068 | * 0 | 1 | 0 | DC | em_fc_none | ||||
4069 | * 0 | 1 | 1 | 0 | em_fc_none | ||||
4070 | * 0 | 1 | 1 | 1 | em_fc_tx_pause | ||||
4071 | * 1 | 0 | 0 | DC | em_fc_none | ||||
4072 | * 1 | DC | 1 | DC | em_fc_full | ||||
4073 | * 1 | 1 | 0 | 0 | em_fc_none | ||||
4074 | * 1 | 1 | 0 | 1 | em_fc_rx_pause | ||||
4075 | * | ||||
4076 | */ | ||||
4077 | /* | ||||
4078 | * Are both PAUSE bits set to 1? If so, this implies | ||||
4079 | * Symmetric Flow Control is enabled at both ends. | ||||
4080 | * The ASM_DIR bits are irrelevant per the spec. | ||||
4081 | * | ||||
4082 | * For Symmetric Flow Control: | ||||
4083 | * | ||||
4084 | * LOCAL DEVICE | LINK PARTNER | ||||
4085 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | ||||
4086 | * -------|---------|-------|---------|--------------- | ||||
4087 | * 1 | DC | 1 | DC | em_fc_full | ||||
4088 | * | ||||
4089 | */ | ||||
4090 | if ((mii_nway_adv_reg & NWAY_AR_PAUSE0x0400) && | ||||
4091 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE0x0400)) { | ||||
4092 | /* | ||||
4093 | * Now we need to check if the user selected | ||||
4094 | * RX ONLY of pause frames. In this case, we | ||||
4095 | * had to advertise FULL flow control because | ||||
4096 | * we could not advertise RX ONLY. Hence, we | ||||
4097 | * must now check to see if we need to turn | ||||
4098 | * OFF the TRANSMISSION of PAUSE frames. | ||||
4099 | */ | ||||
4100 | if (hw->original_fc == E1000_FC_FULL3) { | ||||
4101 | hw->fc = E1000_FC_FULL3; | ||||
4102 | DEBUGOUT("Flow Control = FULL.\n"); | ||||
4103 | } else { | ||||
4104 | hw->fc = E1000_FC_RX_PAUSE1; | ||||
4105 | DEBUGOUT("Flow Control = RX PAUSE" | ||||
4106 | " frames only.\n"); | ||||
4107 | } | ||||
4108 | } | ||||
4109 | /* | ||||
4110 | * For receiving PAUSE frames ONLY. | ||||
4111 | * | ||||
4112 | * LOCAL DEVICE | LINK PARTNER PAUSE | ASM_DIR | | ||||
4113 | * PAUSE | ASM_DIR | Result | ||||
4114 | * -------|---------|-------|---------|--------------- | ||||
4115 | * ----- 0 | 1 | 1 | 1 | | ||||
4116 | * em_fc_tx_pause | ||||
4117 | * | ||||
4118 | */ | ||||
4119 | else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE0x0400) && | ||||
4120 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR0x0800) && | ||||
4121 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE0x0400) && | ||||
4122 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR0x0800)) { | ||||
4123 | hw->fc = E1000_FC_TX_PAUSE2; | ||||
4124 | DEBUGOUT("Flow Control = TX PAUSE frames only." | ||||
4125 | "\n"); | ||||
4126 | } | ||||
4127 | /* | ||||
4128 | * For transmitting PAUSE frames ONLY. | ||||
4129 | * | ||||
4130 | * LOCAL DEVICE | LINK PARTNER | ||||
4131 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | ||||
4132 | * -------|---------|-------|---------|--------------- | ||||
4133 | * 1 | 1 | 0 | 1 | em_fc_rx_pause | ||||
4134 | * | ||||
4135 | */ | ||||
4136 | else if ((mii_nway_adv_reg & NWAY_AR_PAUSE0x0400) && | ||||
4137 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR0x0800) && | ||||
4138 | !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE0x0400) && | ||||
4139 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR0x0800)) { | ||||
4140 | hw->fc = E1000_FC_RX_PAUSE1; | ||||
4141 | DEBUGOUT("Flow Control = RX PAUSE frames only." | ||||
4142 | "\n"); | ||||
4143 | } | ||||
4144 | /* | ||||
4145 | * Per the IEEE spec, at this point flow control | ||||
4146 | * should be disabled. However, we want to consider | ||||
4147 | * that we could be connected to a legacy switch that | ||||
4148 | * doesn't advertise desired flow control, but can be | ||||
4149 | * forced on the link partner. So if we advertised | ||||
4150 | * no flow control, that is what we will resolve to. | ||||
4151 | * If we advertised some kind of receive capability | ||||
4152 | * (Rx Pause Only or Full Flow Control) and the link | ||||
4153 | * partner advertised none, we will configure | ||||
4154 | * ourselves to enable Rx Flow Control only. We can | ||||
4155 | * do this safely for two reasons: If the link | ||||
4156 | * partner really didn't want flow control enabled, | ||||
4157 | * and we enable Rx, no harm done since we won't be | ||||
4158 | * receiving any PAUSE frames anyway. If the intent | ||||
4159 | * on the link partner was to have flow control | ||||
4160 | * enabled, then by us enabling RX only, we can at | ||||
4161 | * least receive pause frames and process them. This | ||||
4162 | * is a good idea because in most cases, since we are | ||||
4163 | * predominantly a server NIC, more times than not we | ||||
4164 | * will be asked to delay transmission of packets | ||||
4165 | * than asking our link partner to pause transmission | ||||
4166 | * of frames. | ||||
4167 | */ | ||||
4168 | else if ((hw->original_fc == E1000_FC_NONE0 || | ||||
4169 | hw->original_fc == E1000_FC_TX_PAUSE2) || | ||||
4170 | hw->fc_strict_ieee) { | ||||
4171 | hw->fc = E1000_FC_NONE0; | ||||
4172 | DEBUGOUT("Flow Control = NONE.\n"); | ||||
4173 | } else { | ||||
4174 | hw->fc = E1000_FC_RX_PAUSE1; | ||||
4175 | DEBUGOUT("Flow Control = RX PAUSE frames only." | ||||
4176 | "\n"); | ||||
4177 | } | ||||
4178 | /* | ||||
4179 | * Now we need to do one last check... If we auto- | ||||
4180 | * negotiated to HALF DUPLEX, flow control should not | ||||
4181 | * be enabled per IEEE 802.3 spec. | ||||
4182 | */ | ||||
4183 | ret_val = em_get_speed_and_duplex(hw, &speed, &duplex); | ||||
4184 | if (ret_val) { | ||||
4185 | DEBUGOUT("Error getting link speed and duplex" | ||||
4186 | "\n"); | ||||
4187 | return ret_val; | ||||
4188 | } | ||||
4189 | if (duplex == HALF_DUPLEX1) | ||||
4190 | hw->fc = E1000_FC_NONE0; | ||||
4191 | /* | ||||
4192 | * Now we call a subroutine to actually force the MAC | ||||
4193 | * controller to use the correct flow control | ||||
4194 | * settings. | ||||
4195 | */ | ||||
4196 | ret_val = em_force_mac_fc(hw); | ||||
4197 | if (ret_val) { | ||||
4198 | DEBUGOUT("Error forcing flow control settings" | ||||
4199 | "\n"); | ||||
4200 | return ret_val; | ||||
4201 | } | ||||
4202 | } else { | ||||
4203 | DEBUGOUT("Copper PHY and Auto Neg has not completed." | ||||
4204 | "\n"); | ||||
4205 | } | ||||
4206 | } | ||||
4207 | return E1000_SUCCESS0; | ||||
4208 | } | ||||
4209 | /****************************************************************************** | ||||
4210 | * Checks to see if the link status of the hardware has changed. | ||||
4211 | * | ||||
4212 | * hw - Struct containing variables accessed by shared code | ||||
4213 | * | ||||
4214 | * Called by any function that needs to check the link status of the adapter. | ||||
4215 | *****************************************************************************/ | ||||
4216 | int32_t | ||||
4217 | em_check_for_link(struct em_hw *hw) | ||||
4218 | { | ||||
4219 | uint32_t rxcw = 0; | ||||
4220 | uint32_t ctrl; | ||||
4221 | uint32_t status; | ||||
4222 | uint32_t rctl; | ||||
4223 | uint32_t icr; | ||||
4224 | uint32_t signal = 0; | ||||
4225 | int32_t ret_val; | ||||
4226 | uint16_t phy_data; | ||||
4227 | DEBUGFUNC("em_check_for_link");; | ||||
4228 | uint16_t speed, duplex; | ||||
4229 | |||||
4230 | if (hw->mac_type >= em_82575 && | ||||
4231 | hw->media_type != em_media_type_copper) { | ||||
4232 | ret_val = em_get_pcs_speed_and_duplex_82575(hw, &speed, | ||||
4233 | &duplex); | ||||
4234 | hw->get_link_status = hw->serdes_link_down; | ||||
4235 | |||||
4236 | return (ret_val); | ||||
4237 | } | ||||
4238 | |||||
4239 | ctrl = E1000_READ_REG(hw, CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))))); | ||||
4240 | status = E1000_READ_REG(hw, STATUS)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
4241 | /* | ||||
4242 | * On adapters with a MAC newer than 82544, SW Defineable pin 1 will | ||||
4243 | * be set when the optics detect a signal. On older adapters, it will | ||||
4244 | * be cleared when there is a signal. This applies to fiber media | ||||
4245 | * only. | ||||
4246 | */ | ||||
4247 | if ((hw->media_type == em_media_type_fiber) || | ||||
4248 | (hw->media_type == em_media_type_internal_serdes)) { | ||||
4249 | rxcw = E1000_READ_REG(hw, RXCW)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00180 : em_translate_82542_register (0x00180))))); | ||||
4250 | |||||
4251 | if (hw->media_type == em_media_type_fiber) { | ||||
4252 | signal = (hw->mac_type > em_82544) ? | ||||
4253 | E1000_CTRL_SWDPIN10x00080000 : 0; | ||||
4254 | if (status & E1000_STATUS_LU0x00000002) | ||||
4255 | hw->get_link_status = FALSE0; | ||||
4256 | } | ||||
4257 | } | ||||
4258 | /* | ||||
4259 | * If we have a copper PHY then we only want to go out to the PHY | ||||
4260 | * registers to see if Auto-Neg has completed and/or if our link | ||||
4261 | * status has changed. The get_link_status flag will be set if we | ||||
4262 | * receive a Link Status Change interrupt or we have Rx Sequence | ||||
4263 | * Errors. | ||||
4264 | */ | ||||
4265 | if ((hw->media_type == em_media_type_copper || | ||||
4266 | (hw->media_type == em_media_type_oem)) && | ||||
4267 | hw->get_link_status) { | ||||
4268 | /* | ||||
4269 | * First we want to see if the MII Status Register reports | ||||
4270 | * link. If so, then we want to get the current speed/duplex | ||||
4271 | * of the PHY. Read the register twice since the link bit is | ||||
4272 | * sticky. | ||||
4273 | */ | ||||
4274 | ret_val = em_read_phy_reg(hw, PHY_STATUS0x01, &phy_data); | ||||
4275 | if (ret_val) | ||||
4276 | return ret_val; | ||||
4277 | ret_val = em_read_phy_reg(hw, PHY_STATUS0x01, &phy_data); | ||||
4278 | if (ret_val) | ||||
4279 | return ret_val; | ||||
4280 | |||||
4281 | hw->icp_xxxx_is_link_up = (phy_data & MII_SR_LINK_STATUS0x0004) != 0; | ||||
4282 | |||||
4283 | if (hw->mac_type == em_pchlan) { | ||||
4284 | ret_val = em_k1_gig_workaround_hv(hw, | ||||
4285 | hw->icp_xxxx_is_link_up); | ||||
4286 | if (ret_val) | ||||
4287 | return ret_val; | ||||
4288 | } | ||||
4289 | |||||
4290 | if (phy_data & MII_SR_LINK_STATUS0x0004) { | ||||
4291 | hw->get_link_status = FALSE0; | ||||
4292 | |||||
4293 | if (hw->phy_type == em_phy_82578) { | ||||
4294 | ret_val = em_link_stall_workaround_hv(hw); | ||||
4295 | if (ret_val) | ||||
4296 | return ret_val; | ||||
4297 | } | ||||
4298 | |||||
4299 | if (hw->mac_type == em_pch2lan) { | ||||
4300 | ret_val = em_k1_workaround_lv(hw); | ||||
4301 | if (ret_val) | ||||
4302 | return ret_val; | ||||
4303 | } | ||||
4304 | /* Work-around I218 hang issue */ | ||||
4305 | if ((hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM0x155A) || | ||||
4306 | (hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_V0x1559) || | ||||
4307 | (hw->device_id == E1000_DEV_ID_PCH_I218_LM30x15A2) || | ||||
4308 | (hw->device_id == E1000_DEV_ID_PCH_I218_V30x15A3)) { | ||||
4309 | ret_val = em_k1_workaround_lpt_lp(hw, | ||||
4310 | hw->icp_xxxx_is_link_up); | ||||
4311 | if (ret_val) | ||||
4312 | return ret_val; | ||||
4313 | } | ||||
4314 | |||||
4315 | /* | ||||
4316 | * Check if there was DownShift, must be checked | ||||
4317 | * immediately after link-up | ||||
4318 | */ | ||||
4319 | em_check_downshift(hw); | ||||
4320 | |||||
4321 | /* Enable/Disable EEE after link up */ | ||||
4322 | if (hw->mac_type == em_pch2lan || | ||||
4323 | hw->mac_type == em_pch_lpt || | ||||
4324 | hw->mac_type == em_pch_spt || | ||||
4325 | hw->mac_type == em_pch_cnp) { | ||||
4326 | ret_val = em_set_eee_pchlan(hw); | ||||
4327 | if (ret_val) | ||||
4328 | return ret_val; | ||||
4329 | } | ||||
4330 | |||||
4331 | /* | ||||
4332 | * If we are on 82544 or 82543 silicon and | ||||
4333 | * speed/duplex are forced to 10H or 10F, then we | ||||
4334 | * will implement the polarity reversal workaround. | ||||
4335 | * We disable interrupts first, and upon returning, | ||||
4336 | * place the devices interrupt state to its previous | ||||
4337 | * value except for the link status change interrupt | ||||
4338 | * which will happen due to the execution of this | ||||
4339 | * workaround. | ||||
4340 | */ | ||||
4341 | if ((hw->mac_type == em_82544 || | ||||
4342 | hw->mac_type == em_82543) && (!hw->autoneg) && | ||||
4343 | (hw->forced_speed_duplex == em_10_full || | ||||
4344 | hw->forced_speed_duplex == em_10_half)) { | ||||
4345 | E1000_WRITE_REG(hw, IMC, 0xffffffff)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x000D8 : em_translate_82542_register (0x000D8))), (0xffffffff))); | ||||
4346 | ret_val = em_polarity_reversal_workaround(hw); | ||||
4347 | icr = E1000_READ_REG(hw, ICR)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x000C0 : em_translate_82542_register (0x000C0))))); | ||||
4348 | E1000_WRITE_REG(hw, ICS,((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x000C8 : em_translate_82542_register (0x000C8))), ((icr & ~0x00000004)))) | ||||
4349 | (icr & ~E1000_ICS_LSC))((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x000C8 : em_translate_82542_register (0x000C8))), ((icr & ~0x00000004)))); | ||||
4350 | E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x000D0 : em_translate_82542_register (0x000D0))), (( 0x00000080 | 0x00000001 | 0x00000010 | 0x00000008 | 0x00000040 | 0x00000004)))); | ||||
4351 | } | ||||
4352 | } else { | ||||
4353 | /* No link detected */ | ||||
4354 | em_config_dsp_after_link_change(hw, FALSE0); | ||||
4355 | return 0; | ||||
4356 | } | ||||
4357 | /* | ||||
4358 | * If we are forcing speed/duplex, then we simply return | ||||
4359 | * since we have already determined whether we have link or | ||||
4360 | * not. | ||||
4361 | */ | ||||
4362 | if (!hw->autoneg) | ||||
4363 | return -E1000_ERR_CONFIG3; | ||||
4364 | |||||
4365 | /* optimize the dsp settings for the igp phy */ | ||||
4366 | em_config_dsp_after_link_change(hw, TRUE1); | ||||
4367 | /* | ||||
4368 | * We have a M88E1000 PHY and Auto-Neg is enabled. If we | ||||
4369 | * have Si on board that is 82544 or newer, Auto Speed | ||||
4370 | * Detection takes care of MAC speed/duplex configuration. | ||||
4371 | * So we only need to configure Collision Distance in the | ||||
4372 | * MAC. Otherwise, we need to force speed/duplex on the MAC | ||||
4373 | * to the current PHY speed/duplex settings. | ||||
4374 | */ | ||||
4375 | if (hw->mac_type >= em_82544 && hw->mac_type != em_icp_xxxx) { | ||||
4376 | em_config_collision_dist(hw); | ||||
4377 | } else { | ||||
4378 | ret_val = em_config_mac_to_phy(hw); | ||||
4379 | if (ret_val) { | ||||
4380 | DEBUGOUT("Error configuring MAC to PHY" | ||||
4381 | " settings\n"); | ||||
4382 | return ret_val; | ||||
4383 | } | ||||
4384 | } | ||||
4385 | /* | ||||
4386 | * Configure Flow Control now that Auto-Neg has completed. | ||||
4387 | * First, we need to restore the desired flow control | ||||
4388 | * settings because we may have had to re-autoneg with a | ||||
4389 | * different link partner. | ||||
4390 | */ | ||||
4391 | ret_val = em_config_fc_after_link_up(hw); | ||||
4392 | if (ret_val) { | ||||
4393 | DEBUGOUT("Error configuring flow control\n"); | ||||
4394 | return ret_val; | ||||
4395 | } | ||||
4396 | /* | ||||
4397 | * At this point we know that we are on copper and we have | ||||
4398 | * auto-negotiated link. These are conditions for checking | ||||
4399 | * the link partner capability register. We use the link | ||||
4400 | * speed to determine if TBI compatibility needs to be turned | ||||
4401 | * on or off. If the link is not at gigabit speed, then TBI | ||||
4402 | * compatibility is not needed. If we are at gigabit speed, | ||||
4403 | * we turn on TBI compatibility. | ||||
4404 | */ | ||||
4405 | if (hw->tbi_compatibility_en) { | ||||
4406 | uint16_t speed, duplex; | ||||
4407 | ret_val = em_get_speed_and_duplex(hw, &speed, &duplex); | ||||
4408 | if (ret_val) { | ||||
4409 | DEBUGOUT("Error getting link speed and duplex" | ||||
4410 | "\n"); | ||||
4411 | return ret_val; | ||||
4412 | } | ||||
4413 | if (speed != SPEED_10001000) { | ||||
4414 | /* | ||||
4415 | * If link speed is not set to gigabit speed, | ||||
4416 | * we do not need to enable TBI | ||||
4417 | * compatibility. | ||||
4418 | */ | ||||
4419 | if (hw->tbi_compatibility_on) { | ||||
4420 | /* | ||||
4421 | * If we previously were in the mode, | ||||
4422 | * turn it off. | ||||
4423 | */ | ||||
4424 | rctl = E1000_READ_REG(hw, RCTL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00100 : em_translate_82542_register (0x00100))))); | ||||
4425 | rctl &= ~E1000_RCTL_SBP0x00000004; | ||||
4426 | E1000_WRITE_REG(hw, RCTL, rctl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00100 : em_translate_82542_register (0x00100))), (rctl))); | ||||
4427 | hw->tbi_compatibility_on = FALSE0; | ||||
4428 | } | ||||
4429 | } else { | ||||
4430 | /* | ||||
4431 | * If TBI compatibility is was previously | ||||
4432 | * off, turn it on. For compatibility with a | ||||
4433 | * TBI link partner, we will store bad | ||||
4434 | * packets. Some frames have an additional | ||||
4435 | * byte on the end and will look like CRC | ||||
4436 | * errors to to the hardware. | ||||
4437 | */ | ||||
4438 | if (!hw->tbi_compatibility_on) { | ||||
4439 | hw->tbi_compatibility_on = TRUE1; | ||||
4440 | rctl = E1000_READ_REG(hw, RCTL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00100 : em_translate_82542_register (0x00100))))); | ||||
4441 | rctl |= E1000_RCTL_SBP0x00000004; | ||||
4442 | E1000_WRITE_REG(hw, RCTL, rctl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00100 : em_translate_82542_register (0x00100))), (rctl))); | ||||
4443 | } | ||||
4444 | } | ||||
4445 | } | ||||
4446 | } | ||||
4447 | /* | ||||
4448 | * If we don't have link (auto-negotiation failed or link partner | ||||
4449 | * cannot auto-negotiate), the cable is plugged in (we have signal), | ||||
4450 | * and our link partner is not trying to auto-negotiate with us (we | ||||
4451 | * are receiving idles or data), we need to force link up. We also | ||||
4452 | * need to give auto-negotiation time to complete, in case the cable | ||||
4453 | * was just plugged in. The autoneg_failed flag does this. | ||||
4454 | */ | ||||
4455 | else if ((((hw->media_type == em_media_type_fiber) && | ||||
4456 | ((ctrl & E1000_CTRL_SWDPIN10x00080000) == signal)) || | ||||
4457 | (hw->media_type == em_media_type_internal_serdes)) && | ||||
4458 | (!(status & E1000_STATUS_LU0x00000002)) && (!(rxcw & E1000_RXCW_C0x20000000))) { | ||||
4459 | if (hw->autoneg_failed == 0) { | ||||
4460 | hw->autoneg_failed = 1; | ||||
4461 | return 0; | ||||
4462 | } | ||||
4463 | DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n"); | ||||
4464 | |||||
4465 | /* Disable auto-negotiation in the TXCW register */ | ||||
4466 | E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE))((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00178 : em_translate_82542_register (0x00178))), ((hw->txcw & ~0x80000000)))); | ||||
4467 | |||||
4468 | /* Force link-up and also force full-duplex. */ | ||||
4469 | ctrl = E1000_READ_REG(hw, CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))))); | ||||
4470 | ctrl |= (E1000_CTRL_SLU0x00000040 | E1000_CTRL_FD0x00000001); | ||||
4471 | E1000_WRITE_REG(hw, CTRL, ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (ctrl))); | ||||
4472 | |||||
4473 | /* Configure Flow Control after forcing link up. */ | ||||
4474 | ret_val = em_config_fc_after_link_up(hw); | ||||
4475 | if (ret_val) { | ||||
4476 | DEBUGOUT("Error configuring flow control\n"); | ||||
4477 | return ret_val; | ||||
4478 | } | ||||
4479 | } | ||||
4480 | /* | ||||
4481 | * If we are forcing link and we are receiving /C/ ordered sets, | ||||
4482 | * re-enable auto-negotiation in the TXCW register and disable forced | ||||
4483 | * link in the Device Control register in an attempt to | ||||
4484 | * auto-negotiate with our link partner. | ||||
4485 | */ | ||||
4486 | else if (((hw->media_type == em_media_type_fiber) || | ||||
4487 | (hw->media_type == em_media_type_internal_serdes)) && | ||||
4488 | (ctrl & E1000_CTRL_SLU0x00000040) && (rxcw & E1000_RXCW_C0x20000000)) { | ||||
4489 | DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n"); | ||||
4490 | E1000_WRITE_REG(hw, TXCW, hw->txcw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00178 : em_translate_82542_register (0x00178))), (hw->txcw))); | ||||
4491 | E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU))((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), ((ctrl & ~0x00000040)))); | ||||
4492 | |||||
4493 | hw->serdes_link_down = FALSE0; | ||||
4494 | } | ||||
4495 | /* | ||||
4496 | * If we force link for non-auto-negotiation switch, check link | ||||
4497 | * status based on MAC synchronization for internal serdes media | ||||
4498 | * type. | ||||
4499 | */ | ||||
4500 | else if ((hw->media_type == em_media_type_internal_serdes) && | ||||
4501 | !(E1000_TXCW_ANE0x80000000 & E1000_READ_REG(hw, TXCW)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00178 : em_translate_82542_register (0x00178))))))) { | ||||
4502 | /* SYNCH bit and IV bit are sticky. */ | ||||
4503 | usec_delay(10)(*delay_func)(10); | ||||
4504 | if (E1000_RXCW_SYNCH0x40000000 & E1000_READ_REG(hw, RXCW)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00180 : em_translate_82542_register (0x00180)))))) { | ||||
4505 | if (!(rxcw & E1000_RXCW_IV0x08000000)) { | ||||
4506 | hw->serdes_link_down = FALSE0; | ||||
4507 | DEBUGOUT("SERDES: Link is up.\n"); | ||||
4508 | } | ||||
4509 | } else { | ||||
4510 | hw->serdes_link_down = TRUE1; | ||||
4511 | DEBUGOUT("SERDES: Link is down.\n"); | ||||
4512 | } | ||||
4513 | } | ||||
4514 | if ((hw->media_type == em_media_type_internal_serdes) && | ||||
4515 | (E1000_TXCW_ANE0x80000000 & E1000_READ_REG(hw, TXCW)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00178 : em_translate_82542_register (0x00178))))))) { | ||||
4516 | hw->serdes_link_down = !(E1000_STATUS_LU0x00000002 & | ||||
4517 | E1000_READ_REG(hw, STATUS)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008)))))); | ||||
4518 | } | ||||
4519 | return E1000_SUCCESS0; | ||||
4520 | } | ||||
4521 | |||||
4522 | int32_t | ||||
4523 | em_get_pcs_speed_and_duplex_82575(struct em_hw *hw, uint16_t *speed, | ||||
4524 | uint16_t *duplex) | ||||
4525 | { | ||||
4526 | uint32_t pcs; | ||||
4527 | |||||
4528 | hw->serdes_link_down = TRUE1; | ||||
4529 | *speed = 0; | ||||
4530 | *duplex = 0; | ||||
4531 | |||||
4532 | /* | ||||
4533 | * Read the PCS Status register for link state. For non-copper mode, | ||||
4534 | * the status register is not accurate. The PCS status register is | ||||
4535 | * used instead. | ||||
4536 | */ | ||||
4537 | pcs = E1000_READ_REG(hw, PCS_LSTAT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x0420C : em_translate_82542_register (0x0420C))))); | ||||
4538 | |||||
4539 | /* | ||||
4540 | * The link up bit determines when link is up on autoneg. The sync ok | ||||
4541 | * gets set once both sides sync up and agree upon link. Stable link | ||||
4542 | * can be determined by checking for both link up and link sync ok | ||||
4543 | */ | ||||
4544 | if ((pcs & E1000_PCS_LSTS_LINK_OK0x01) && (pcs & E1000_PCS_LSTS_SYNK_OK0x10)) { | ||||
4545 | hw->serdes_link_down = FALSE0; | ||||
4546 | |||||
4547 | /* Detect and store PCS speed */ | ||||
4548 | if (pcs & E1000_PCS_LSTS_SPEED_10000x04) { | ||||
4549 | *speed = SPEED_10001000; | ||||
4550 | } else if (pcs & E1000_PCS_LSTS_SPEED_1000x02) { | ||||
4551 | *speed = SPEED_100100; | ||||
4552 | } else { | ||||
4553 | *speed = SPEED_1010; | ||||
4554 | } | ||||
4555 | |||||
4556 | /* Detect and store PCS duplex */ | ||||
4557 | if (pcs & E1000_PCS_LSTS_DUPLEX_FULL0x08) { | ||||
4558 | *duplex = FULL_DUPLEX2; | ||||
4559 | } else { | ||||
4560 | *duplex = HALF_DUPLEX1; | ||||
4561 | } | ||||
4562 | } | ||||
4563 | |||||
4564 | return (0); | ||||
4565 | } | ||||
4566 | |||||
4567 | |||||
4568 | /****************************************************************************** | ||||
4569 | * Detects the current speed and duplex settings of the hardware. | ||||
4570 | * | ||||
4571 | * hw - Struct containing variables accessed by shared code | ||||
4572 | * speed - Speed of the connection | ||||
4573 | * duplex - Duplex setting of the connection | ||||
4574 | *****************************************************************************/ | ||||
4575 | int32_t | ||||
4576 | em_get_speed_and_duplex(struct em_hw *hw, uint16_t *speed, uint16_t *duplex) | ||||
4577 | { | ||||
4578 | uint32_t status; | ||||
4579 | int32_t ret_val; | ||||
4580 | uint16_t phy_data; | ||||
4581 | DEBUGFUNC("em_get_speed_and_duplex");; | ||||
4582 | |||||
4583 | if (hw->mac_type >= em_82575 && hw->media_type != em_media_type_copper) | ||||
4584 | return em_get_pcs_speed_and_duplex_82575(hw, speed, duplex); | ||||
4585 | |||||
4586 | if (hw->mac_type >= em_82543) { | ||||
4587 | status = E1000_READ_REG(hw, STATUS)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
4588 | if (status & E1000_STATUS_SPEED_10000x00000080) { | ||||
4589 | *speed = SPEED_10001000; | ||||
4590 | DEBUGOUT("1000 Mbs, "); | ||||
4591 | } else if (status & E1000_STATUS_SPEED_1000x00000040) { | ||||
4592 | *speed = SPEED_100100; | ||||
4593 | DEBUGOUT("100 Mbs, "); | ||||
4594 | } else { | ||||
4595 | *speed = SPEED_1010; | ||||
4596 | DEBUGOUT("10 Mbs, "); | ||||
4597 | } | ||||
4598 | |||||
4599 | if (status & E1000_STATUS_FD0x00000001) { | ||||
4600 | *duplex = FULL_DUPLEX2; | ||||
4601 | DEBUGOUT("Full Duplex\n"); | ||||
4602 | } else { | ||||
4603 | *duplex = HALF_DUPLEX1; | ||||
4604 | DEBUGOUT(" Half Duplex\n"); | ||||
4605 | } | ||||
4606 | } else { | ||||
4607 | DEBUGOUT("1000 Mbs, Full Duplex\n"); | ||||
4608 | *speed = SPEED_10001000; | ||||
4609 | *duplex = FULL_DUPLEX2; | ||||
4610 | } | ||||
4611 | /* | ||||
4612 | * IGP01 PHY may advertise full duplex operation after speed | ||||
4613 | * downgrade even if it is operating at half duplex. Here we set the | ||||
4614 | * duplex settings to match the duplex in the link partner's | ||||
4615 | * capabilities. | ||||
4616 | */ | ||||
4617 | if (hw->phy_type == em_phy_igp && hw->speed_downgraded) { | ||||
4618 | ret_val = em_read_phy_reg(hw, PHY_AUTONEG_EXP0x06, &phy_data); | ||||
4619 | if (ret_val) | ||||
4620 | return ret_val; | ||||
4621 | |||||
4622 | if (!(phy_data & NWAY_ER_LP_NWAY_CAPS0x0001)) | ||||
4623 | *duplex = HALF_DUPLEX1; | ||||
4624 | else { | ||||
4625 | ret_val = em_read_phy_reg(hw, PHY_LP_ABILITY0x05, | ||||
4626 | &phy_data); | ||||
4627 | if (ret_val) | ||||
4628 | return ret_val; | ||||
4629 | if ((*speed == SPEED_100100 && | ||||
4630 | !(phy_data & NWAY_LPAR_100TX_FD_CAPS0x0100)) || | ||||
4631 | (*speed == SPEED_1010 && | ||||
4632 | !(phy_data & NWAY_LPAR_10T_FD_CAPS0x0040))) | ||||
4633 | *duplex = HALF_DUPLEX1; | ||||
4634 | } | ||||
4635 | } | ||||
4636 | if ((hw->mac_type == em_80003es2lan) && | ||||
4637 | (hw->media_type == em_media_type_copper)) { | ||||
4638 | if (*speed == SPEED_10001000) | ||||
4639 | ret_val = em_configure_kmrn_for_1000(hw); | ||||
4640 | else | ||||
4641 | ret_val = em_configure_kmrn_for_10_100(hw, *duplex); | ||||
4642 | if (ret_val) | ||||
4643 | return ret_val; | ||||
4644 | } | ||||
4645 | if ((hw->mac_type == em_ich8lan) && | ||||
4646 | (hw->phy_type == em_phy_igp_3) && | ||||
4647 | (*speed == SPEED_10001000)) { | ||||
4648 | ret_val = em_kumeran_lock_loss_workaround(hw); | ||||
4649 | if (ret_val) | ||||
4650 | return ret_val; | ||||
4651 | } | ||||
4652 | return E1000_SUCCESS0; | ||||
4653 | } | ||||
4654 | |||||
4655 | /****************************************************************************** | ||||
4656 | * Blocks until autoneg completes or times out (~4.5 seconds) | ||||
4657 | * | ||||
4658 | * hw - Struct containing variables accessed by shared code | ||||
4659 | *****************************************************************************/ | ||||
4660 | STATIC int32_t | ||||
4661 | em_wait_autoneg(struct em_hw *hw) | ||||
4662 | { | ||||
4663 | int32_t ret_val; | ||||
4664 | uint16_t i; | ||||
4665 | uint16_t phy_data; | ||||
4666 | DEBUGFUNC("em_wait_autoneg");; | ||||
4667 | DEBUGOUT("Waiting for Auto-Neg to complete.\n"); | ||||
4668 | |||||
4669 | /* We will wait for autoneg to complete or 4.5 seconds to expire. */ | ||||
4670 | for (i = PHY_AUTO_NEG_TIME45; i > 0; i--) { | ||||
4671 | /* | ||||
4672 | * Read the MII Status Register and wait for Auto-Neg | ||||
4673 | * Complete bit to be set. | ||||
4674 | */ | ||||
4675 | ret_val = em_read_phy_reg(hw, PHY_STATUS0x01, &phy_data); | ||||
4676 | if (ret_val) | ||||
4677 | return ret_val; | ||||
4678 | ret_val = em_read_phy_reg(hw, PHY_STATUS0x01, &phy_data); | ||||
4679 | if (ret_val) | ||||
4680 | return ret_val; | ||||
4681 | if (phy_data & MII_SR_AUTONEG_COMPLETE0x0020) { | ||||
4682 | return E1000_SUCCESS0; | ||||
4683 | } | ||||
4684 | msec_delay(100)(*delay_func)(1000*(100)); | ||||
4685 | } | ||||
4686 | return E1000_SUCCESS0; | ||||
4687 | } | ||||
4688 | |||||
4689 | /****************************************************************************** | ||||
4690 | * Raises the Management Data Clock | ||||
4691 | * | ||||
4692 | * hw - Struct containing variables accessed by shared code | ||||
4693 | * ctrl - Device control register's current value | ||||
4694 | *****************************************************************************/ | ||||
4695 | static void | ||||
4696 | em_raise_mdi_clk(struct em_hw *hw, uint32_t *ctrl) | ||||
4697 | { | ||||
4698 | /* | ||||
4699 | * Raise the clock input to the Management Data Clock (by setting the | ||||
4700 | * MDC bit), and then delay 10 microseconds. | ||||
4701 | */ | ||||
4702 | E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC))((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), ((*ctrl | 0x00200000)))); | ||||
4703 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
4704 | usec_delay(10)(*delay_func)(10); | ||||
4705 | } | ||||
4706 | |||||
4707 | /****************************************************************************** | ||||
4708 | * Lowers the Management Data Clock | ||||
4709 | * | ||||
4710 | * hw - Struct containing variables accessed by shared code | ||||
4711 | * ctrl - Device control register's current value | ||||
4712 | *****************************************************************************/ | ||||
4713 | static void | ||||
4714 | em_lower_mdi_clk(struct em_hw *hw, uint32_t *ctrl) | ||||
4715 | { | ||||
4716 | /* | ||||
4717 | * Lower the clock input to the Management Data Clock (by clearing | ||||
4718 | * the MDC bit), and then delay 10 microseconds. | ||||
4719 | */ | ||||
4720 | E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC))((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), ((*ctrl & ~0x00200000)))); | ||||
4721 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
4722 | usec_delay(10)(*delay_func)(10); | ||||
4723 | } | ||||
4724 | |||||
4725 | /****************************************************************************** | ||||
4726 | * Shifts data bits out to the PHY | ||||
4727 | * | ||||
4728 | * hw - Struct containing variables accessed by shared code | ||||
4729 | * data - Data to send out to the PHY | ||||
4730 | * count - Number of bits to shift out | ||||
4731 | * | ||||
4732 | * Bits are shifted out in MSB to LSB order. | ||||
4733 | *****************************************************************************/ | ||||
4734 | static void | ||||
4735 | em_shift_out_mdi_bits(struct em_hw *hw, uint32_t data, uint16_t count) | ||||
4736 | { | ||||
4737 | uint32_t ctrl; | ||||
4738 | uint32_t mask; | ||||
4739 | /* | ||||
4740 | * We need to shift "count" number of bits out to the PHY. So, the | ||||
4741 | * value in the "data" parameter will be shifted out to the PHY one | ||||
4742 | * bit at a time. In order to do this, "data" must be broken down | ||||
4743 | * into bits. | ||||
4744 | */ | ||||
4745 | mask = 0x01; | ||||
4746 | mask <<= (count - 1); | ||||
4747 | |||||
4748 | ctrl = E1000_READ_REG(hw, CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))))); | ||||
4749 | |||||
4750 | /* Set MDIO_DIR and MDC_DIR direction bits to be used as output | ||||
4751 | * pins. | ||||
4752 | */ | ||||
4753 | ctrl |= (E1000_CTRL_MDIO_DIR0x01000000 | E1000_CTRL_MDC_DIR0x02000000); | ||||
4754 | |||||
4755 | while (mask) { | ||||
4756 | /* | ||||
4757 | * A "1" is shifted out to the PHY by setting the MDIO bit to | ||||
4758 | * "1" and then raising and lowering the Management Data | ||||
4759 | * Clock. A "0" is shifted out to the PHY by setting the MDIO | ||||
4760 | * bit to "0" and then raising and lowering the clock. | ||||
4761 | */ | ||||
4762 | if (data & mask) | ||||
4763 | ctrl |= E1000_CTRL_MDIO0x00100000; | ||||
4764 | else | ||||
4765 | ctrl &= ~E1000_CTRL_MDIO0x00100000; | ||||
4766 | |||||
4767 | E1000_WRITE_REG(hw, CTRL, ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (ctrl))); | ||||
4768 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
4769 | |||||
4770 | usec_delay(10)(*delay_func)(10); | ||||
4771 | |||||
4772 | em_raise_mdi_clk(hw, &ctrl); | ||||
4773 | em_lower_mdi_clk(hw, &ctrl); | ||||
4774 | |||||
4775 | mask = mask >> 1; | ||||
4776 | } | ||||
4777 | } | ||||
4778 | |||||
4779 | /****************************************************************************** | ||||
4780 | * Shifts data bits in from the PHY | ||||
4781 | * | ||||
4782 | * hw - Struct containing variables accessed by shared code | ||||
4783 | * | ||||
4784 | * Bits are shifted in in MSB to LSB order. | ||||
4785 | *****************************************************************************/ | ||||
4786 | static uint16_t | ||||
4787 | em_shift_in_mdi_bits(struct em_hw *hw) | ||||
4788 | { | ||||
4789 | uint32_t ctrl; | ||||
4790 | uint16_t data = 0; | ||||
4791 | uint8_t i; | ||||
4792 | /* | ||||
4793 | * In order to read a register from the PHY, we need to shift in a | ||||
4794 | * total of 18 bits from the PHY. The first two bit (turnaround) | ||||
4795 | * times are used to avoid contention on the MDIO pin when a read | ||||
4796 | * operation is performed. These two bits are ignored by us and | ||||
4797 | * thrown away. Bits are "shifted in" by raising the input to the | ||||
4798 | * Management Data Clock (setting the MDC bit), and then reading the | ||||
4799 | * value of the MDIO bit. | ||||
4800 | */ | ||||
4801 | ctrl = E1000_READ_REG(hw, CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))))); | ||||
4802 | /* | ||||
4803 | * Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as | ||||
4804 | * input. | ||||
4805 | */ | ||||
4806 | ctrl &= ~E1000_CTRL_MDIO_DIR0x01000000; | ||||
4807 | ctrl &= ~E1000_CTRL_MDIO0x00100000; | ||||
4808 | |||||
4809 | E1000_WRITE_REG(hw, CTRL, ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (ctrl))); | ||||
4810 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
4811 | /* | ||||
4812 | * Raise and Lower the clock before reading in the data. This | ||||
4813 | * accounts for the turnaround bits. The first clock occurred when we | ||||
4814 | * clocked out the last bit of the Register Address. | ||||
4815 | */ | ||||
4816 | em_raise_mdi_clk(hw, &ctrl); | ||||
4817 | em_lower_mdi_clk(hw, &ctrl); | ||||
4818 | |||||
4819 | for (data = 0, i = 0; i < 16; i++) { | ||||
4820 | data = data << 1; | ||||
4821 | em_raise_mdi_clk(hw, &ctrl); | ||||
4822 | ctrl = E1000_READ_REG(hw, CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))))); | ||||
4823 | /* Check to see if we shifted in a "1". */ | ||||
4824 | if (ctrl & E1000_CTRL_MDIO0x00100000) | ||||
4825 | data |= 1; | ||||
4826 | em_lower_mdi_clk(hw, &ctrl); | ||||
4827 | } | ||||
4828 | |||||
4829 | em_raise_mdi_clk(hw, &ctrl); | ||||
4830 | em_lower_mdi_clk(hw, &ctrl); | ||||
4831 | |||||
4832 | return data; | ||||
4833 | } | ||||
4834 | |||||
4835 | STATIC int32_t | ||||
4836 | em_swfw_sync_acquire(struct em_hw *hw, uint16_t mask) | ||||
4837 | { | ||||
4838 | uint32_t swfw_sync = 0; | ||||
4839 | uint32_t swmask = mask; | ||||
4840 | uint32_t fwmask = mask << 16; | ||||
4841 | int32_t timeout = 200; | ||||
4842 | DEBUGFUNC("em_swfw_sync_acquire");; | ||||
4843 | |||||
4844 | if (hw->swfwhw_semaphore_present) | ||||
4845 | return em_get_software_flag(hw); | ||||
4846 | |||||
4847 | if (!hw->swfw_sync_present) | ||||
4848 | return em_get_hw_eeprom_semaphore(hw); | ||||
4849 | |||||
4850 | while (timeout) { | ||||
4851 | if (em_get_hw_eeprom_semaphore(hw)) | ||||
4852 | return -E1000_ERR_SWFW_SYNC13; | ||||
4853 | |||||
4854 | swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B5C : em_translate_82542_register (0x05B5C))))); | ||||
4855 | if (!(swfw_sync & (fwmask | swmask))) { | ||||
4856 | break; | ||||
4857 | } | ||||
4858 | /* | ||||
4859 | * firmware currently using resource (fwmask) | ||||
4860 | * or other software thread currently using resource (swmask) | ||||
4861 | */ | ||||
4862 | em_put_hw_eeprom_semaphore(hw); | ||||
4863 | msec_delay_irq(5)(*delay_func)(1000*(5)); | ||||
4864 | timeout--; | ||||
4865 | } | ||||
4866 | |||||
4867 | if (!timeout) { | ||||
4868 | DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout." | ||||
4869 | "\n"); | ||||
4870 | return -E1000_ERR_SWFW_SYNC13; | ||||
4871 | } | ||||
4872 | swfw_sync |= swmask; | ||||
4873 | E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B5C : em_translate_82542_register (0x05B5C))), (swfw_sync))); | ||||
4874 | |||||
4875 | em_put_hw_eeprom_semaphore(hw); | ||||
4876 | return E1000_SUCCESS0; | ||||
4877 | } | ||||
4878 | |||||
4879 | STATIC void | ||||
4880 | em_swfw_sync_release(struct em_hw *hw, uint16_t mask) | ||||
4881 | { | ||||
4882 | uint32_t swfw_sync; | ||||
4883 | uint32_t swmask = mask; | ||||
4884 | DEBUGFUNC("em_swfw_sync_release");; | ||||
4885 | |||||
4886 | if (hw->swfwhw_semaphore_present) { | ||||
4887 | em_release_software_flag(hw); | ||||
4888 | return; | ||||
4889 | } | ||||
4890 | if (!hw->swfw_sync_present) { | ||||
4891 | em_put_hw_eeprom_semaphore(hw); | ||||
4892 | return; | ||||
4893 | } | ||||
4894 | /* | ||||
4895 | * if (em_get_hw_eeprom_semaphore(hw)) return -E1000_ERR_SWFW_SYNC; | ||||
4896 | */ | ||||
4897 | while (em_get_hw_eeprom_semaphore(hw) != E1000_SUCCESS0); | ||||
4898 | /* empty */ | ||||
4899 | |||||
4900 | swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B5C : em_translate_82542_register (0x05B5C))))); | ||||
4901 | swfw_sync &= ~swmask; | ||||
4902 | E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B5C : em_translate_82542_register (0x05B5C))), (swfw_sync))); | ||||
4903 | |||||
4904 | em_put_hw_eeprom_semaphore(hw); | ||||
4905 | } | ||||
4906 | |||||
4907 | /**************************************************************************** | ||||
4908 | * Read BM PHY wakeup register. It works as such: | ||||
4909 | * 1) Set page 769, register 17, bit 2 = 1 | ||||
4910 | * 2) Set page to 800 for host (801 if we were manageability) | ||||
4911 | * 3) Write the address using the address opcode (0x11) | ||||
4912 | * 4) Read or write the data using the data opcode (0x12) | ||||
4913 | * 5) Restore 769_17.2 to its original value | ||||
4914 | ****************************************************************************/ | ||||
4915 | int32_t | ||||
4916 | em_access_phy_wakeup_reg_bm(struct em_hw *hw, uint32_t reg_addr, | ||||
4917 | uint16_t *phy_data, boolean_t read) | ||||
4918 | { | ||||
4919 | int32_t ret_val; | ||||
4920 | uint16_t reg = BM_PHY_REG_NUM(reg_addr)((uint16_t)(((reg_addr) & 0x1F) | (((reg_addr) >> ( 21 - 5)) & ~0x1F))); | ||||
4921 | uint16_t phy_reg = 0; | ||||
4922 | |||||
4923 | /* All operations in this function are phy address 1 */ | ||||
4924 | hw->phy_addr = 1; | ||||
4925 | |||||
4926 | /* Set page 769 */ | ||||
4927 | em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT0x1F, | ||||
4928 | (BM_WUC_ENABLE_PAGE769 << PHY_PAGE_SHIFT5)); | ||||
4929 | |||||
4930 | ret_val = em_read_phy_reg_ex(hw, BM_WUC_ENABLE_REG17, &phy_reg); | ||||
4931 | if (ret_val) | ||||
4932 | goto out; | ||||
4933 | |||||
4934 | /* First clear bit 4 to avoid a power state change */ | ||||
4935 | phy_reg &= ~(BM_WUC_HOST_WU_BIT(1 << 4)); | ||||
4936 | ret_val = em_write_phy_reg_ex(hw, BM_WUC_ENABLE_REG17, phy_reg); | ||||
4937 | if (ret_val) | ||||
4938 | goto out; | ||||
4939 | |||||
4940 | /* Write bit 2 = 1, and clear bit 4 to 769_17 */ | ||||
4941 | ret_val = em_write_phy_reg_ex(hw, BM_WUC_ENABLE_REG17, | ||||
4942 | phy_reg | BM_WUC_ENABLE_BIT(1 << 2)); | ||||
4943 | if (ret_val) | ||||
4944 | goto out; | ||||
4945 | |||||
4946 | /* Select page 800 */ | ||||
4947 | ret_val = em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT0x1F, | ||||
4948 | (BM_WUC_PAGE800 << PHY_PAGE_SHIFT5)); | ||||
4949 | |||||
4950 | /* Write the page 800 offset value using opcode 0x11 */ | ||||
4951 | ret_val = em_write_phy_reg_ex(hw, BM_WUC_ADDRESS_OPCODE0x11, reg); | ||||
4952 | if (ret_val) | ||||
4953 | goto out; | ||||
4954 | |||||
4955 | if (read) | ||||
4956 | /* Read the page 800 value using opcode 0x12 */ | ||||
4957 | ret_val = em_read_phy_reg_ex(hw, BM_WUC_DATA_OPCODE0x12, | ||||
4958 | phy_data); | ||||
4959 | else | ||||
4960 | /* Write the page 800 value using opcode 0x12 */ | ||||
4961 | ret_val = em_write_phy_reg_ex(hw, BM_WUC_DATA_OPCODE0x12, | ||||
4962 | *phy_data); | ||||
4963 | |||||
4964 | if (ret_val) | ||||
4965 | goto out; | ||||
4966 | |||||
4967 | /* | ||||
4968 | * Restore 769_17.2 to its original value | ||||
4969 | * Set page 769 | ||||
4970 | */ | ||||
4971 | em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT0x1F, | ||||
4972 | (BM_WUC_ENABLE_PAGE769 << PHY_PAGE_SHIFT5)); | ||||
4973 | |||||
4974 | /* Clear 769_17.2 */ | ||||
4975 | ret_val = em_write_phy_reg_ex(hw, BM_WUC_ENABLE_REG17, phy_reg); | ||||
4976 | if (ret_val) | ||||
4977 | goto out; | ||||
4978 | |||||
4979 | out: | ||||
4980 | return ret_val; | ||||
4981 | } | ||||
4982 | |||||
4983 | /*************************************************************************** | ||||
4984 | * Read HV PHY vendor specific high registers | ||||
4985 | ***************************************************************************/ | ||||
4986 | int32_t | ||||
4987 | em_access_phy_debug_regs_hv(struct em_hw *hw, uint32_t reg_addr, | ||||
4988 | uint16_t *phy_data, boolean_t read) | ||||
4989 | { | ||||
4990 | int32_t ret_val; | ||||
4991 | uint32_t addr_reg = 0; | ||||
4992 | uint32_t data_reg = 0; | ||||
4993 | |||||
4994 | /* This takes care of the difference with desktop vs mobile phy */ | ||||
4995 | addr_reg = (hw->phy_type == em_phy_82578) ? | ||||
4996 | I82578_PHY_ADDR_REG29 : I82577_PHY_ADDR_REG16; | ||||
4997 | data_reg = addr_reg + 1; | ||||
4998 | |||||
4999 | /* All operations in this function are phy address 2 */ | ||||
5000 | hw->phy_addr = 2; | ||||
5001 | |||||
5002 | /* masking with 0x3F to remove the page from offset */ | ||||
5003 | ret_val = em_write_phy_reg_ex(hw, addr_reg, (uint16_t)reg_addr & 0x3F); | ||||
5004 | if (ret_val) { | ||||
5005 | printf("Could not write PHY the HV address register\n"); | ||||
5006 | goto out; | ||||
5007 | } | ||||
5008 | |||||
5009 | /* Read or write the data value next */ | ||||
5010 | if (read) | ||||
5011 | ret_val = em_read_phy_reg_ex(hw, data_reg, phy_data); | ||||
5012 | else | ||||
5013 | ret_val = em_write_phy_reg_ex(hw, data_reg, *phy_data); | ||||
5014 | |||||
5015 | if (ret_val) { | ||||
5016 | printf("Could not read data value from HV data register\n"); | ||||
5017 | goto out; | ||||
5018 | } | ||||
5019 | |||||
5020 | out: | ||||
5021 | return ret_val; | ||||
5022 | } | ||||
5023 | |||||
5024 | /****************************************************************************** | ||||
5025 | * Reads or writes the value from a PHY register, if the value is on a specific | ||||
5026 | * non zero page, sets the page first. | ||||
5027 | * hw - Struct containing variables accessed by shared code | ||||
5028 | * reg_addr - address of the PHY register to read | ||||
5029 | *****************************************************************************/ | ||||
5030 | int32_t | ||||
5031 | em_access_phy_reg_hv(struct em_hw *hw, uint32_t reg_addr, uint16_t *phy_data, | ||||
5032 | boolean_t read) | ||||
5033 | { | ||||
5034 | uint32_t ret_val; | ||||
5035 | uint16_t swfw; | ||||
5036 | uint16_t page = BM_PHY_REG_PAGE(reg_addr)((uint16_t)(((reg_addr) >> 5) & 0xFFFF)); | ||||
5037 | uint16_t reg = BM_PHY_REG_NUM(reg_addr)((uint16_t)(((reg_addr) & 0x1F) | (((reg_addr) >> ( 21 - 5)) & ~0x1F))); | ||||
5038 | |||||
5039 | DEBUGFUNC("em_access_phy_reg_hv");; | ||||
5040 | |||||
5041 | swfw = E1000_SWFW_PHY0_SM0x0002; | ||||
5042 | |||||
5043 | if (em_swfw_sync_acquire(hw, swfw)) | ||||
5044 | return -E1000_ERR_SWFW_SYNC13; | ||||
5045 | |||||
5046 | if (page == BM_WUC_PAGE800) { | ||||
5047 | ret_val = em_access_phy_wakeup_reg_bm(hw, reg_addr, | ||||
5048 | phy_data, read); | ||||
5049 | goto release; | ||||
5050 | } | ||||
5051 | |||||
5052 | if (page >= HV_INTC_FC_PAGE_START768) | ||||
5053 | hw->phy_addr = 1; | ||||
5054 | else | ||||
5055 | hw->phy_addr = 2; | ||||
5056 | |||||
5057 | if (page == HV_INTC_FC_PAGE_START768) | ||||
5058 | page = 0; | ||||
5059 | |||||
5060 | /* | ||||
5061 | * Workaround MDIO accesses being disabled after entering IEEE Power | ||||
5062 | * Down (whenever bit 11 of the PHY Control register is set) | ||||
5063 | */ | ||||
5064 | if (!read && | ||||
5065 | (hw->phy_type == em_phy_82578) && | ||||
5066 | (hw->phy_revision >= 1) && | ||||
5067 | (hw->phy_addr == 2) && | ||||
5068 | ((MAX_PHY_REG_ADDRESS0x1F & reg) == 0) && | ||||
5069 | (*phy_data & (1 << 11))) { | ||||
5070 | uint16_t data2 = 0x7EFF; | ||||
5071 | |||||
5072 | ret_val = em_access_phy_debug_regs_hv(hw, (1 << 6) | 0x3, | ||||
5073 | &data2, FALSE0); | ||||
5074 | if (ret_val) | ||||
5075 | return ret_val; | ||||
5076 | } | ||||
5077 | |||||
5078 | if (reg_addr > MAX_PHY_MULTI_PAGE_REG0xF) { | ||||
5079 | ret_val = em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT0x1F, | ||||
5080 | (page << PHY_PAGE_SHIFT5)); | ||||
5081 | if (ret_val) | ||||
5082 | return ret_val; | ||||
5083 | } | ||||
5084 | if (read) | ||||
5085 | ret_val = em_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS0x1F & reg, | ||||
5086 | phy_data); | ||||
5087 | else | ||||
5088 | ret_val = em_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS0x1F & reg, | ||||
5089 | *phy_data); | ||||
5090 | release: | ||||
5091 | em_swfw_sync_release(hw, swfw); | ||||
5092 | return ret_val; | ||||
5093 | } | ||||
5094 | |||||
5095 | /****************************************************************************** | ||||
5096 | * Reads the value from a PHY register, if the value is on a specific non zero | ||||
5097 | * page, sets the page first. | ||||
5098 | * hw - Struct containing variables accessed by shared code | ||||
5099 | * reg_addr - address of the PHY register to read | ||||
5100 | *****************************************************************************/ | ||||
5101 | int32_t | ||||
5102 | em_read_phy_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t *phy_data) | ||||
5103 | { | ||||
5104 | uint32_t ret_val; | ||||
5105 | uint16_t swfw; | ||||
5106 | DEBUGFUNC("em_read_phy_reg");; | ||||
5107 | |||||
5108 | if (hw->mac_type
| ||||
5109 | hw->mac_type
| ||||
5110 | hw->mac_type
| ||||
5111 | hw->mac_type
| ||||
5112 | hw->mac_type
| ||||
5113 | return (em_access_phy_reg_hv(hw, reg_addr, phy_data, TRUE1)); | ||||
5114 | |||||
5115 | if (((hw->mac_type
| ||||
5116 | (hw->mac_type
| ||||
5117 | (E1000_READ_REG(hw, STATUS)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))) & E1000_STATUS_FUNC_10x00000004)) { | ||||
5118 | swfw = E1000_SWFW_PHY1_SM0x0004; | ||||
5119 | } else { | ||||
5120 | swfw = E1000_SWFW_PHY0_SM0x0002; | ||||
5121 | } | ||||
5122 | if (em_swfw_sync_acquire(hw, swfw)) | ||||
5123 | return -E1000_ERR_SWFW_SYNC13; | ||||
5124 | |||||
5125 | if ((hw->phy_type == em_phy_igp || | ||||
5126 | hw->phy_type == em_phy_igp_3 || | ||||
5127 | hw->phy_type == em_phy_igp_2) && | ||||
5128 | (reg_addr > MAX_PHY_MULTI_PAGE_REG0xF)) { | ||||
5129 | ret_val = em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT0x1F, | ||||
5130 | (uint16_t) reg_addr); | ||||
5131 | if (ret_val) { | ||||
5132 | em_swfw_sync_release(hw, swfw); | ||||
5133 | return ret_val; | ||||
5134 | } | ||||
5135 | } else if (hw->phy_type == em_phy_gg82563) { | ||||
5136 | if (((reg_addr & MAX_PHY_REG_ADDRESS0x1F) > MAX_PHY_MULTI_PAGE_REG0xF) || | ||||
5137 | (hw->mac_type == em_80003es2lan)) { | ||||
5138 | /* Select Configuration Page */ | ||||
5139 | if ((reg_addr & MAX_PHY_REG_ADDRESS0x1F) < | ||||
5140 | GG82563_MIN_ALT_REG30) { | ||||
5141 | ret_val = em_write_phy_reg_ex(hw, | ||||
5142 | GG82563_PHY_PAGE_SELECT(((0) << 5) | ((22) & 0x1F)), | ||||
5143 | (uint16_t) ((uint16_t) reg_addr >> | ||||
5144 | GG82563_PAGE_SHIFT5)); | ||||
5145 | } else { | ||||
5146 | /* | ||||
5147 | * Use Alternative Page Select register to | ||||
5148 | * access registers 30 and 31 | ||||
5149 | */ | ||||
5150 | ret_val = em_write_phy_reg_ex(hw, | ||||
5151 | GG82563_PHY_PAGE_SELECT_ALT(((0) << 5) | ((29) & 0x1F)), | ||||
5152 | (uint16_t) ((uint16_t) reg_addr >> | ||||
5153 | GG82563_PAGE_SHIFT5)); | ||||
5154 | } | ||||
5155 | |||||
5156 | if (ret_val) { | ||||
5157 | em_swfw_sync_release(hw, swfw); | ||||
5158 | return ret_val; | ||||
5159 | } | ||||
5160 | } | ||||
5161 | } else if ((hw->phy_type == em_phy_bm) && (hw->phy_revision == 1)) { | ||||
5162 | if (reg_addr > MAX_PHY_MULTI_PAGE_REG0xF) { | ||||
5163 | ret_val = em_write_phy_reg_ex(hw, BM_PHY_PAGE_SELECT22, | ||||
5164 | (uint16_t) ((uint16_t) reg_addr >> | ||||
5165 | PHY_PAGE_SHIFT5)); | ||||
5166 | if (ret_val) | ||||
5167 | return ret_val; | ||||
5168 | } | ||||
5169 | } | ||||
5170 | ret_val = em_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS0x1F & reg_addr, | ||||
5171 | phy_data); | ||||
5172 | |||||
5173 | em_swfw_sync_release(hw, swfw); | ||||
5174 | return ret_val; | ||||
5175 | } | ||||
5176 | |||||
5177 | STATIC int32_t | ||||
5178 | em_read_phy_reg_ex(struct em_hw *hw, uint32_t reg_addr, uint16_t *phy_data) | ||||
5179 | { | ||||
5180 | uint32_t i; | ||||
5181 | uint32_t mdic = 0; | ||||
5182 | DEBUGFUNC("em_read_phy_reg_ex");; | ||||
5183 | |||||
5184 | /* SGMII active is only set on some specific chips */ | ||||
5185 | if (hw->sgmii_active && !em_sgmii_uses_mdio_82575(hw)) { | ||||
5186 | if (reg_addr > E1000_MAX_SGMII_PHY_REG_ADDR255) { | ||||
5187 | DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); | ||||
5188 | return -E1000_ERR_PARAM4; | ||||
5189 | } | ||||
5190 | return em_read_phy_reg_i2c(hw, reg_addr, phy_data); | ||||
5191 | } | ||||
5192 | if (reg_addr > MAX_PHY_REG_ADDRESS0x1F) { | ||||
5193 | DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); | ||||
5194 | return -E1000_ERR_PARAM4; | ||||
5195 | } | ||||
5196 | if (hw->mac_type == em_icp_xxxx) { | ||||
5197 | *phy_data = gcu_miibus_readreg(hw, hw->icp_xxxx_port_num, | ||||
5198 | reg_addr); | ||||
5199 | return E1000_SUCCESS0; | ||||
5200 | } | ||||
5201 | if (hw->mac_type > em_82543) { | ||||
5202 | /* | ||||
5203 | * Set up Op-code, Phy Address, and register address in the | ||||
5204 | * MDI Control register. The MAC will take care of | ||||
5205 | * interfacing with the PHY to retrieve the desired data. | ||||
5206 | */ | ||||
5207 | mdic = ((reg_addr << E1000_MDIC_REG_SHIFT16) | | ||||
5208 | (hw->phy_addr << E1000_MDIC_PHY_SHIFT21) | | ||||
5209 | (E1000_MDIC_OP_READ0x08000000)); | ||||
5210 | |||||
5211 | E1000_WRITE_REG(hw, MDIC, mdic)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00020 : em_translate_82542_register (0x00020))), (mdic))); | ||||
5212 | |||||
5213 | /* | ||||
5214 | * Poll the ready bit to see if the MDI read completed | ||||
5215 | * Increasing the time out as testing showed failures with | ||||
5216 | * the lower time out (from FreeBSD driver) | ||||
5217 | */ | ||||
5218 | for (i = 0; i < 1960; i++) { | ||||
5219 | usec_delay(50)(*delay_func)(50); | ||||
5220 | mdic = E1000_READ_REG(hw, MDIC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00020 : em_translate_82542_register (0x00020))))); | ||||
5221 | if (mdic & E1000_MDIC_READY0x10000000) | ||||
5222 | break; | ||||
5223 | } | ||||
5224 | if (!(mdic & E1000_MDIC_READY0x10000000)) { | ||||
5225 | DEBUGOUT("MDI Read did not complete\n"); | ||||
5226 | return -E1000_ERR_PHY2; | ||||
5227 | } | ||||
5228 | if (mdic & E1000_MDIC_ERROR0x40000000) { | ||||
5229 | DEBUGOUT("MDI Error\n"); | ||||
5230 | return -E1000_ERR_PHY2; | ||||
5231 | } | ||||
5232 | *phy_data = (uint16_t) mdic; | ||||
5233 | |||||
5234 | if (hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || | ||||
5235 | hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp) | ||||
5236 | usec_delay(100)(*delay_func)(100); | ||||
5237 | } else { | ||||
5238 | /* | ||||
5239 | * We must first send a preamble through the MDIO pin to | ||||
5240 | * signal the beginning of an MII instruction. This is done | ||||
5241 | * by sending 32 consecutive "1" bits. | ||||
5242 | */ | ||||
5243 | em_shift_out_mdi_bits(hw, PHY_PREAMBLE0xFFFFFFFF, PHY_PREAMBLE_SIZE32); | ||||
5244 | /* | ||||
5245 | * Now combine the next few fields that are required for a | ||||
5246 | * read operation. We use this method instead of calling the | ||||
5247 | * em_shift_out_mdi_bits routine five different times. The | ||||
5248 | * format of a MII read instruction consists of a shift out | ||||
5249 | * of 14 bits and is defined as follows: <Preamble><SOF><Op | ||||
5250 | * Code><Phy Addr><Reg Addr> followed by a shift in of 18 | ||||
5251 | * bits. This first two bits shifted in are TurnAround bits | ||||
5252 | * used to avoid contention on the MDIO pin when a READ | ||||
5253 | * operation is performed. These two bits are thrown away | ||||
5254 | * followed by a shift in of 16 bits which contains the | ||||
5255 | * desired data. | ||||
5256 | */ | ||||
5257 | mdic = ((reg_addr) | (hw->phy_addr << 5) | | ||||
5258 | (PHY_OP_READ0x02 << 10) | (PHY_SOF0x01 << 12)); | ||||
5259 | |||||
5260 | em_shift_out_mdi_bits(hw, mdic, 14); | ||||
5261 | /* | ||||
5262 | * Now that we've shifted out the read command to the MII, we | ||||
5263 | * need to "shift in" the 16-bit value (18 total bits) of the | ||||
5264 | * requested PHY register address. | ||||
5265 | */ | ||||
5266 | *phy_data = em_shift_in_mdi_bits(hw); | ||||
5267 | } | ||||
5268 | return E1000_SUCCESS0; | ||||
5269 | } | ||||
5270 | |||||
5271 | /****************************************************************************** | ||||
5272 | * Writes a value to a PHY register | ||||
5273 | * | ||||
5274 | * hw - Struct containing variables accessed by shared code | ||||
5275 | * reg_addr - address of the PHY register to write | ||||
5276 | * data - data to write to the PHY | ||||
5277 | *****************************************************************************/ | ||||
5278 | int32_t | ||||
5279 | em_write_phy_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t phy_data) | ||||
5280 | { | ||||
5281 | uint32_t ret_val; | ||||
5282 | DEBUGFUNC("em_write_phy_reg");; | ||||
5283 | |||||
5284 | if (hw->mac_type == em_pchlan || | ||||
5285 | hw->mac_type == em_pch2lan || | ||||
5286 | hw->mac_type == em_pch_lpt || | ||||
5287 | hw->mac_type == em_pch_spt || | ||||
5288 | hw->mac_type == em_pch_cnp) | ||||
5289 | return (em_access_phy_reg_hv(hw, reg_addr, &phy_data, FALSE0)); | ||||
5290 | |||||
5291 | if (em_swfw_sync_acquire(hw, hw->swfw)) | ||||
5292 | return -E1000_ERR_SWFW_SYNC13; | ||||
5293 | |||||
5294 | if ((hw->phy_type == em_phy_igp || | ||||
5295 | hw->phy_type == em_phy_igp_3 || | ||||
5296 | hw->phy_type == em_phy_igp_2) && | ||||
5297 | (reg_addr > MAX_PHY_MULTI_PAGE_REG0xF)) { | ||||
5298 | ret_val = em_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT0x1F, | ||||
5299 | (uint16_t) reg_addr); | ||||
5300 | if (ret_val) { | ||||
5301 | em_swfw_sync_release(hw, hw->swfw); | ||||
5302 | return ret_val; | ||||
5303 | } | ||||
5304 | } else if (hw->phy_type == em_phy_gg82563) { | ||||
5305 | if (((reg_addr & MAX_PHY_REG_ADDRESS0x1F) > MAX_PHY_MULTI_PAGE_REG0xF) || | ||||
5306 | (hw->mac_type == em_80003es2lan)) { | ||||
5307 | /* Select Configuration Page */ | ||||
5308 | if ((reg_addr & MAX_PHY_REG_ADDRESS0x1F) < | ||||
5309 | GG82563_MIN_ALT_REG30) { | ||||
5310 | ret_val = em_write_phy_reg_ex(hw, | ||||
5311 | GG82563_PHY_PAGE_SELECT(((0) << 5) | ((22) & 0x1F)), | ||||
5312 | (uint16_t) ((uint16_t) reg_addr >> | ||||
5313 | GG82563_PAGE_SHIFT5)); | ||||
5314 | } else { | ||||
5315 | /* | ||||
5316 | * Use Alternative Page Select register to | ||||
5317 | * access registers 30 and 31 | ||||
5318 | */ | ||||
5319 | ret_val = em_write_phy_reg_ex(hw, | ||||
5320 | GG82563_PHY_PAGE_SELECT_ALT(((0) << 5) | ((29) & 0x1F)), | ||||
5321 | (uint16_t) ((uint16_t) reg_addr >> | ||||
5322 | GG82563_PAGE_SHIFT5)); | ||||
5323 | } | ||||
5324 | |||||
5325 | if (ret_val) { | ||||
5326 | em_swfw_sync_release(hw, hw->swfw); | ||||
5327 | return ret_val; | ||||
5328 | } | ||||
5329 | } | ||||
5330 | } else if ((hw->phy_type == em_phy_bm) && (hw->phy_revision == 1)) { | ||||
5331 | if (reg_addr > MAX_PHY_MULTI_PAGE_REG0xF) { | ||||
5332 | ret_val = em_write_phy_reg_ex(hw, BM_PHY_PAGE_SELECT22, | ||||
5333 | (uint16_t) ((uint16_t) reg_addr >> | ||||
5334 | PHY_PAGE_SHIFT5)); | ||||
5335 | if (ret_val) | ||||
5336 | return ret_val; | ||||
5337 | } | ||||
5338 | } | ||||
5339 | ret_val = em_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS0x1F & reg_addr, | ||||
5340 | phy_data); | ||||
5341 | |||||
5342 | em_swfw_sync_release(hw, hw->swfw); | ||||
5343 | return ret_val; | ||||
5344 | } | ||||
5345 | |||||
5346 | STATIC int32_t | ||||
5347 | em_write_phy_reg_ex(struct em_hw *hw, uint32_t reg_addr, uint16_t phy_data) | ||||
5348 | { | ||||
5349 | uint32_t i; | ||||
5350 | uint32_t mdic = 0; | ||||
5351 | DEBUGFUNC("em_write_phy_reg_ex");; | ||||
5352 | |||||
5353 | /* SGMII active is only set on some specific chips */ | ||||
5354 | if (hw->sgmii_active && !em_sgmii_uses_mdio_82575(hw)) { | ||||
5355 | if (reg_addr > E1000_MAX_SGMII_PHY_REG_ADDR255) { | ||||
5356 | DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); | ||||
5357 | return -E1000_ERR_PARAM4; | ||||
5358 | } | ||||
5359 | return em_write_phy_reg_i2c(hw, reg_addr, phy_data); | ||||
5360 | } | ||||
5361 | if (reg_addr > MAX_PHY_REG_ADDRESS0x1F) { | ||||
5362 | DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); | ||||
5363 | return -E1000_ERR_PARAM4; | ||||
5364 | } | ||||
5365 | if (hw->mac_type == em_icp_xxxx) { | ||||
5366 | gcu_miibus_writereg(hw, hw->icp_xxxx_port_num, | ||||
5367 | reg_addr, phy_data); | ||||
5368 | return E1000_SUCCESS0; | ||||
5369 | } | ||||
5370 | if (hw->mac_type > em_82543) { | ||||
5371 | /* | ||||
5372 | * Set up Op-code, Phy Address, register address, and data | ||||
5373 | * intended for the PHY register in the MDI Control register. | ||||
5374 | * The MAC will take care of interfacing with the PHY to send | ||||
5375 | * the desired data. | ||||
5376 | */ | ||||
5377 | mdic = (((uint32_t) phy_data) | | ||||
5378 | (reg_addr << E1000_MDIC_REG_SHIFT16) | | ||||
5379 | (hw->phy_addr << E1000_MDIC_PHY_SHIFT21) | | ||||
5380 | (E1000_MDIC_OP_WRITE0x04000000)); | ||||
5381 | |||||
5382 | E1000_WRITE_REG(hw, MDIC, mdic)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00020 : em_translate_82542_register (0x00020))), (mdic))); | ||||
5383 | |||||
5384 | /* Poll the ready bit to see if the MDI read completed */ | ||||
5385 | for (i = 0; i < 641; i++) { | ||||
5386 | usec_delay(5)(*delay_func)(5); | ||||
5387 | mdic = E1000_READ_REG(hw, MDIC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00020 : em_translate_82542_register (0x00020))))); | ||||
5388 | if (mdic & E1000_MDIC_READY0x10000000) | ||||
5389 | break; | ||||
5390 | } | ||||
5391 | if (!(mdic & E1000_MDIC_READY0x10000000)) { | ||||
5392 | DEBUGOUT("MDI Write did not complete\n"); | ||||
5393 | return -E1000_ERR_PHY2; | ||||
5394 | } | ||||
5395 | |||||
5396 | if (hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || | ||||
5397 | hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp) | ||||
5398 | usec_delay(100)(*delay_func)(100); | ||||
5399 | } else { | ||||
5400 | /* | ||||
5401 | * We'll need to use the SW defined pins to shift the write | ||||
5402 | * command out to the PHY. We first send a preamble to the | ||||
5403 | * PHY to signal the beginning of the MII instruction. This | ||||
5404 | * is done by sending 32 consecutive "1" bits. | ||||
5405 | */ | ||||
5406 | em_shift_out_mdi_bits(hw, PHY_PREAMBLE0xFFFFFFFF, PHY_PREAMBLE_SIZE32); | ||||
5407 | /* | ||||
5408 | * Now combine the remaining required fields that will | ||||
5409 | * indicate a write operation. We use this method instead of | ||||
5410 | * calling the em_shift_out_mdi_bits routine for each field | ||||
5411 | * in the command. The format of a MII write instruction is | ||||
5412 | * as follows: <Preamble><SOF><Op Code><Phy Addr><Reg | ||||
5413 | * Addr><Turnaround><Data>. | ||||
5414 | */ | ||||
5415 | mdic = ((PHY_TURNAROUND0x02) | (reg_addr << 2) | | ||||
5416 | (hw->phy_addr << 7) | (PHY_OP_WRITE0x01 << 12) | | ||||
5417 | (PHY_SOF0x01 << 14)); | ||||
5418 | mdic <<= 16; | ||||
5419 | mdic |= (uint32_t) phy_data; | ||||
5420 | |||||
5421 | em_shift_out_mdi_bits(hw, mdic, 32); | ||||
5422 | } | ||||
5423 | |||||
5424 | return E1000_SUCCESS0; | ||||
5425 | } | ||||
5426 | |||||
5427 | STATIC int32_t | ||||
5428 | em_read_kmrn_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t *data) | ||||
5429 | { | ||||
5430 | uint32_t reg_val; | ||||
5431 | DEBUGFUNC("em_read_kmrn_reg");; | ||||
5432 | |||||
5433 | if (em_swfw_sync_acquire(hw, hw->swfw)) | ||||
5434 | return -E1000_ERR_SWFW_SYNC13; | ||||
5435 | |||||
5436 | /* Write register address */ | ||||
5437 | reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT16) & | ||||
5438 | E1000_KUMCTRLSTA_OFFSET0x001F0000) | | ||||
5439 | E1000_KUMCTRLSTA_REN0x00200000; | ||||
5440 | |||||
5441 | E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00034 : em_translate_82542_register (0x00034))), (reg_val))); | ||||
5442 | usec_delay(2)(*delay_func)(2); | ||||
5443 | |||||
5444 | /* Read the data returned */ | ||||
5445 | reg_val = E1000_READ_REG(hw, KUMCTRLSTA)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00034 : em_translate_82542_register (0x00034))))); | ||||
5446 | *data = (uint16_t) reg_val; | ||||
5447 | |||||
5448 | em_swfw_sync_release(hw, hw->swfw); | ||||
5449 | return E1000_SUCCESS0; | ||||
5450 | } | ||||
5451 | |||||
5452 | STATIC int32_t | ||||
5453 | em_write_kmrn_reg(struct em_hw *hw, uint32_t reg_addr, uint16_t data) | ||||
5454 | { | ||||
5455 | uint32_t reg_val; | ||||
5456 | DEBUGFUNC("em_write_kmrn_reg");; | ||||
5457 | |||||
5458 | if (em_swfw_sync_acquire(hw, hw->swfw)) | ||||
5459 | return -E1000_ERR_SWFW_SYNC13; | ||||
5460 | |||||
5461 | reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT16) & | ||||
5462 | E1000_KUMCTRLSTA_OFFSET0x001F0000) | data; | ||||
5463 | |||||
5464 | E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00034 : em_translate_82542_register (0x00034))), (reg_val))); | ||||
5465 | usec_delay(2)(*delay_func)(2); | ||||
5466 | |||||
5467 | em_swfw_sync_release(hw, hw->swfw); | ||||
5468 | return E1000_SUCCESS0; | ||||
5469 | } | ||||
5470 | |||||
5471 | /** | ||||
5472 | * em_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO | ||||
5473 | * @hw: pointer to the HW structure | ||||
5474 | * | ||||
5475 | * Called to determine if the I2C pins are being used for I2C or as an | ||||
5476 | * external MDIO interface since the two options are mutually exclusive. | ||||
5477 | **/ | ||||
5478 | int em_sgmii_uses_mdio_82575(struct em_hw *hw) | ||||
5479 | { | ||||
5480 | uint32_t reg = 0; | ||||
5481 | int ext_mdio = 0; | ||||
5482 | |||||
5483 | DEBUGFUNC("em_sgmii_uses_mdio_82575");; | ||||
5484 | |||||
5485 | switch (hw->mac_type) { | ||||
5486 | case em_82575: | ||||
5487 | case em_82576: | ||||
5488 | reg = E1000_READ_REG(hw, MDIC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00020 : em_translate_82542_register (0x00020))))); | ||||
5489 | ext_mdio = !!(reg & E1000_MDIC_DEST0x80000000); | ||||
5490 | break; | ||||
5491 | case em_82580: | ||||
5492 | case em_i350: | ||||
5493 | case em_i210: | ||||
5494 | reg = E1000_READ_REG(hw, MDICNFG)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00E04 : em_translate_82542_register (0x00E04))))); | ||||
5495 | ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO0x80000000); | ||||
5496 | break; | ||||
5497 | default: | ||||
5498 | break; | ||||
5499 | } | ||||
5500 | return ext_mdio; | ||||
5501 | } | ||||
5502 | |||||
5503 | /** | ||||
5504 | * em_read_phy_reg_i2c - Read PHY register using i2c | ||||
5505 | * @hw: pointer to the HW structure | ||||
5506 | * @offset: register offset to be read | ||||
5507 | * @data: pointer to the read data | ||||
5508 | * | ||||
5509 | * Reads the PHY register at offset using the i2c interface and stores the | ||||
5510 | * retrieved information in data. | ||||
5511 | **/ | ||||
5512 | int32_t em_read_phy_reg_i2c(struct em_hw *hw, uint32_t offset, uint16_t *data) | ||||
5513 | { | ||||
5514 | uint32_t i, i2ccmd = 0; | ||||
5515 | |||||
5516 | DEBUGFUNC("em_read_phy_reg_i2c");; | ||||
5517 | |||||
5518 | /* Set up Op-code, Phy Address, and register address in the I2CCMD | ||||
5519 | * register. The MAC will take care of interfacing with the | ||||
5520 | * PHY to retrieve the desired data. | ||||
5521 | */ | ||||
5522 | i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT16) | | ||||
5523 | (hw->phy_addr << E1000_I2CCMD_PHY_ADDR_SHIFT24) | | ||||
5524 | (E1000_I2CCMD_OPCODE_READ0x08000000)); | ||||
5525 | |||||
5526 | E1000_WRITE_REG(hw, I2CCMD, i2ccmd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x01028 : em_translate_82542_register (0x01028))), (i2ccmd))); | ||||
5527 | |||||
5528 | /* Poll the ready bit to see if the I2C read completed */ | ||||
5529 | for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT200; i++) { | ||||
5530 | usec_delay(50)(*delay_func)(50); | ||||
5531 | i2ccmd = E1000_READ_REG(hw, I2CCMD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x01028 : em_translate_82542_register (0x01028))))); | ||||
5532 | if (i2ccmd & E1000_I2CCMD_READY0x20000000) | ||||
5533 | break; | ||||
5534 | } | ||||
5535 | if (!(i2ccmd & E1000_I2CCMD_READY0x20000000)) { | ||||
5536 | DEBUGOUT("I2CCMD Read did not complete\n"); | ||||
5537 | return -E1000_ERR_PHY2; | ||||
5538 | } | ||||
5539 | if (i2ccmd & E1000_I2CCMD_ERROR0x80000000) { | ||||
5540 | DEBUGOUT("I2CCMD Error bit set\n"); | ||||
5541 | return -E1000_ERR_PHY2; | ||||
5542 | } | ||||
5543 | |||||
5544 | /* Need to byte-swap the 16-bit value. */ | ||||
5545 | *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00); | ||||
5546 | |||||
5547 | return E1000_SUCCESS0; | ||||
5548 | } | ||||
5549 | |||||
5550 | /** | ||||
5551 | * em_write_phy_reg_i2c - Write PHY register using i2c | ||||
5552 | * @hw: pointer to the HW structure | ||||
5553 | * @offset: register offset to write to | ||||
5554 | * @data: data to write at register offset | ||||
5555 | * | ||||
5556 | * Writes the data to PHY register at the offset using the i2c interface. | ||||
5557 | **/ | ||||
5558 | int32_t em_write_phy_reg_i2c(struct em_hw *hw, uint32_t offset, uint16_t data) | ||||
5559 | { | ||||
5560 | uint32_t i, i2ccmd = 0; | ||||
5561 | uint16_t phy_data_swapped; | ||||
5562 | |||||
5563 | DEBUGFUNC("em_write_phy_reg_i2c");; | ||||
5564 | |||||
5565 | /* Prevent overwriting SFP I2C EEPROM which is at A0 address.*/ | ||||
5566 | if ((hw->phy_addr == 0) || (hw->phy_addr > 7)) { | ||||
5567 | DEBUGOUT1("PHY I2C Address %d is out of range.\n", | ||||
5568 | hw->phy_addr); | ||||
5569 | return -E1000_ERR_CONFIG3; | ||||
5570 | } | ||||
5571 | |||||
5572 | /* Swap the data bytes for the I2C interface */ | ||||
5573 | phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00); | ||||
5574 | |||||
5575 | /* Set up Op-code, Phy Address, and register address in the I2CCMD | ||||
5576 | * register. The MAC will take care of interfacing with the | ||||
5577 | * PHY to retrieve the desired data. | ||||
5578 | */ | ||||
5579 | i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT16) | | ||||
5580 | (hw->phy_addr << E1000_I2CCMD_PHY_ADDR_SHIFT24) | | ||||
5581 | E1000_I2CCMD_OPCODE_WRITE0x00000000 | | ||||
5582 | phy_data_swapped); | ||||
5583 | |||||
5584 | E1000_WRITE_REG(hw, I2CCMD, i2ccmd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x01028 : em_translate_82542_register (0x01028))), (i2ccmd))); | ||||
5585 | |||||
5586 | /* Poll the ready bit to see if the I2C read completed */ | ||||
5587 | for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT200; i++) { | ||||
5588 | usec_delay(50)(*delay_func)(50); | ||||
5589 | i2ccmd = E1000_READ_REG(hw, I2CCMD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x01028 : em_translate_82542_register (0x01028))))); | ||||
5590 | if (i2ccmd & E1000_I2CCMD_READY0x20000000) | ||||
5591 | break; | ||||
5592 | } | ||||
5593 | if (!(i2ccmd & E1000_I2CCMD_READY0x20000000)) { | ||||
5594 | DEBUGOUT("I2CCMD Write did not complete\n"); | ||||
5595 | return -E1000_ERR_PHY2; | ||||
5596 | } | ||||
5597 | if (i2ccmd & E1000_I2CCMD_ERROR0x80000000) { | ||||
5598 | DEBUGOUT("I2CCMD Error bit set\n"); | ||||
5599 | return -E1000_ERR_PHY2; | ||||
5600 | } | ||||
5601 | |||||
5602 | return E1000_SUCCESS0; | ||||
5603 | } | ||||
5604 | |||||
5605 | /** | ||||
5606 | * em_read_sfp_data_byte - Reads SFP module data. | ||||
5607 | * @hw: pointer to the HW structure | ||||
5608 | * @offset: byte location offset to be read | ||||
5609 | * @data: read data buffer pointer | ||||
5610 | * | ||||
5611 | * Reads one byte from SFP module data stored | ||||
5612 | * in SFP resided EEPROM memory or SFP diagnostic area. | ||||
5613 | * Function should be called with | ||||
5614 | * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access | ||||
5615 | * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters | ||||
5616 | * access | ||||
5617 | **/ | ||||
5618 | int32_t em_read_sfp_data_byte(struct em_hw *hw, uint16_t offset, uint8_t *data) | ||||
5619 | { | ||||
5620 | uint32_t i = 0; | ||||
5621 | uint32_t i2ccmd = 0; | ||||
5622 | uint32_t data_local = 0; | ||||
5623 | |||||
5624 | DEBUGFUNC("em_read_sfp_data_byte");; | ||||
5625 | |||||
5626 | if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)(0x0100 + (255))) { | ||||
5627 | DEBUGOUT("I2CCMD command address exceeds upper limit\n"); | ||||
5628 | return -E1000_ERR_PHY2; | ||||
5629 | } | ||||
5630 | |||||
5631 | /* Set up Op-code, EEPROM Address,in the I2CCMD | ||||
5632 | * register. The MAC will take care of interfacing with the | ||||
5633 | * EEPROM to retrieve the desired data. | ||||
5634 | */ | ||||
5635 | i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT16) | | ||||
5636 | E1000_I2CCMD_OPCODE_READ0x08000000); | ||||
5637 | |||||
5638 | E1000_WRITE_REG(hw, I2CCMD, i2ccmd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x01028 : em_translate_82542_register (0x01028))), (i2ccmd))); | ||||
5639 | |||||
5640 | /* Poll the ready bit to see if the I2C read completed */ | ||||
5641 | for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT200; i++) { | ||||
5642 | usec_delay(50)(*delay_func)(50); | ||||
5643 | data_local = E1000_READ_REG(hw, I2CCMD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x01028 : em_translate_82542_register (0x01028))))); | ||||
5644 | if (data_local & E1000_I2CCMD_READY0x20000000) | ||||
5645 | break; | ||||
5646 | } | ||||
5647 | if (!(data_local & E1000_I2CCMD_READY0x20000000)) { | ||||
5648 | DEBUGOUT("I2CCMD Read did not complete\n"); | ||||
5649 | return -E1000_ERR_PHY2; | ||||
5650 | } | ||||
5651 | if (data_local & E1000_I2CCMD_ERROR0x80000000) { | ||||
5652 | DEBUGOUT("I2CCMD Error bit set\n"); | ||||
5653 | return -E1000_ERR_PHY2; | ||||
5654 | } | ||||
5655 | *data = (uint8_t) data_local & 0xFF; | ||||
5656 | |||||
5657 | return E1000_SUCCESS0; | ||||
5658 | } | ||||
5659 | |||||
5660 | /****************************************************************************** | ||||
5661 | * Returns the PHY to the power-on reset state | ||||
5662 | * | ||||
5663 | * hw - Struct containing variables accessed by shared code | ||||
5664 | *****************************************************************************/ | ||||
5665 | int32_t | ||||
5666 | em_phy_hw_reset(struct em_hw *hw) | ||||
5667 | { | ||||
5668 | uint32_t ctrl, ctrl_ext; | ||||
5669 | uint32_t led_ctrl; | ||||
5670 | int32_t ret_val; | ||||
5671 | DEBUGFUNC("em_phy_hw_reset");; | ||||
5672 | /* | ||||
5673 | * In the case of the phy reset being blocked, it's not an error, we | ||||
5674 | * simply return success without performing the reset. | ||||
5675 | */ | ||||
5676 | ret_val = em_check_phy_reset_block(hw); | ||||
5677 | if (ret_val) | ||||
5678 | return E1000_SUCCESS0; | ||||
5679 | |||||
5680 | DEBUGOUT("Resetting Phy...\n"); | ||||
5681 | |||||
5682 | if (hw->mac_type > em_82543 && hw->mac_type != em_icp_xxxx) { | ||||
5683 | if (em_swfw_sync_acquire(hw, hw->swfw)) { | ||||
5684 | DEBUGOUT("Unable to acquire swfw sync\n"); | ||||
5685 | return -E1000_ERR_SWFW_SYNC13; | ||||
5686 | } | ||||
5687 | /* | ||||
5688 | * Read the device control register and assert the | ||||
5689 | * E1000_CTRL_PHY_RST bit. Then, take it out of reset. For | ||||
5690 | * pre-em_82571 hardware, we delay for 10ms between the | ||||
5691 | * assert and deassert. For em_82571 hardware and later, we | ||||
5692 | * instead delay for 50us between and 10ms after the | ||||
5693 | * deassertion. | ||||
5694 | */ | ||||
5695 | ctrl = E1000_READ_REG(hw, CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))))); | ||||
5696 | E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (ctrl | 0x80000000))); | ||||
5697 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
5698 | |||||
5699 | if (hw->mac_type < em_82571) | ||||
5700 | msec_delay(10)(*delay_func)(1000*(10)); | ||||
5701 | else | ||||
5702 | usec_delay(100)(*delay_func)(100); | ||||
5703 | |||||
5704 | E1000_WRITE_REG(hw, CTRL, ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (ctrl))); | ||||
5705 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
5706 | |||||
5707 | if (hw->mac_type >= em_82571) | ||||
5708 | msec_delay_irq(10)(*delay_func)(1000*(10)); | ||||
5709 | em_swfw_sync_release(hw, hw->swfw); | ||||
5710 | /* | ||||
5711 | * the M88E1141_E_PHY_ID might need reset here, but nothing | ||||
5712 | * proves it | ||||
5713 | */ | ||||
5714 | } else { | ||||
5715 | /* | ||||
5716 | * Read the Extended Device Control Register, assert the | ||||
5717 | * PHY_RESET_DIR bit to put the PHY into reset. Then, take it | ||||
5718 | * out of reset. | ||||
5719 | */ | ||||
5720 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))))); | ||||
5721 | ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR0x00000100; | ||||
5722 | ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA0x00000010; | ||||
5723 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))), (ctrl_ext))); | ||||
5724 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
5725 | msec_delay(10)(*delay_func)(1000*(10)); | ||||
5726 | ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA0x00000010; | ||||
5727 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))), (ctrl_ext))); | ||||
5728 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
5729 | } | ||||
5730 | usec_delay(150)(*delay_func)(150); | ||||
5731 | |||||
5732 | if ((hw->mac_type == em_82541) || (hw->mac_type == em_82547)) { | ||||
5733 | /* Configure activity LED after PHY reset */ | ||||
5734 | led_ctrl = E1000_READ_REG(hw, LEDCTL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00E00 : em_translate_82542_register (0x00E00))))); | ||||
5735 | led_ctrl &= IGP_ACTIVITY_LED_MASK0xFFFFF0FF; | ||||
5736 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE0x0300 | IGP_LED3_MODE0x07000000); | ||||
5737 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00E00 : em_translate_82542_register (0x00E00))), (led_ctrl))); | ||||
5738 | } | ||||
5739 | /* Wait for FW to finish PHY configuration. */ | ||||
5740 | ret_val = em_get_phy_cfg_done(hw); | ||||
5741 | if (ret_val != E1000_SUCCESS0) | ||||
5742 | return ret_val; | ||||
5743 | em_release_software_semaphore(hw); | ||||
5744 | |||||
5745 | if ((hw->mac_type == em_ich8lan) && (hw->phy_type == em_phy_igp_3)) | ||||
5746 | ret_val = em_init_lcd_from_nvm(hw); | ||||
5747 | |||||
5748 | return ret_val; | ||||
5749 | } | ||||
5750 | |||||
5751 | /***************************************************************************** | ||||
5752 | * SW-based LCD Configuration. | ||||
5753 | * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are | ||||
5754 | * collectively called OEM bits. The OEM Write Enable bit and SW Config bit | ||||
5755 | * in NVM determines whether HW should configure LPLU and Gbe Disable. | ||||
5756 | *****************************************************************************/ | ||||
5757 | int32_t | ||||
5758 | em_oem_bits_config_pchlan(struct em_hw *hw, boolean_t d0_state) | ||||
5759 | { | ||||
5760 | int32_t ret_val = E1000_SUCCESS0; | ||||
5761 | uint32_t mac_reg; | ||||
5762 | uint16_t oem_reg; | ||||
5763 | uint16_t swfw = E1000_SWFW_PHY0_SM0x0002; | ||||
5764 | |||||
5765 | if (hw->mac_type < em_pchlan) | ||||
5766 | return ret_val; | ||||
5767 | |||||
5768 | ret_val = em_swfw_sync_acquire(hw, swfw); | ||||
5769 | if (ret_val) | ||||
5770 | return ret_val; | ||||
5771 | |||||
5772 | if (hw->mac_type == em_pchlan) { | ||||
5773 | mac_reg = E1000_READ_REG(hw, EXTCNF_CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F00 : em_translate_82542_register (0x00F00))))); | ||||
5774 | if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE0x00000008) | ||||
5775 | goto out; | ||||
5776 | } | ||||
5777 | |||||
5778 | mac_reg = E1000_READ_REG(hw, FEXTNVM)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00028 : em_translate_82542_register (0x00028))))); | ||||
5779 | if (!(mac_reg & FEXTNVM_SW_CONFIG_ICH8M(1 << 27))) | ||||
5780 | goto out; | ||||
5781 | |||||
5782 | mac_reg = E1000_READ_REG(hw, PHY_CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F10 : em_translate_82542_register (0x00F10))))); | ||||
5783 | |||||
5784 | ret_val = em_read_phy_reg(hw, HV_OEM_BITS(((768) << 5) | ((25) & 0x1F)), &oem_reg); | ||||
5785 | if (ret_val) | ||||
5786 | goto out; | ||||
5787 | |||||
5788 | oem_reg &= ~(HV_OEM_BITS_GBE_DIS0x0040 | HV_OEM_BITS_LPLU0x0004); | ||||
5789 | |||||
5790 | if (d0_state) { | ||||
5791 | if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE0x00000040) | ||||
5792 | oem_reg |= HV_OEM_BITS_GBE_DIS0x0040; | ||||
5793 | |||||
5794 | if (mac_reg & E1000_PHY_CTRL_D0A_LPLU0x00000002) | ||||
5795 | oem_reg |= HV_OEM_BITS_LPLU0x0004; | ||||
5796 | /* Restart auto-neg to activate the bits */ | ||||
5797 | if (!em_check_phy_reset_block(hw)) | ||||
5798 | oem_reg |= HV_OEM_BITS_RESTART_AN0x0400; | ||||
5799 | |||||
5800 | } else { | ||||
5801 | if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE0x00000040 | | ||||
5802 | E1000_PHY_CTRL_NOND0A_GBE_DISABLE0x00000008)) | ||||
5803 | oem_reg |= HV_OEM_BITS_GBE_DIS0x0040; | ||||
5804 | |||||
5805 | if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU0x00000002 | | ||||
5806 | E1000_PHY_CTRL_NOND0A_LPLU0x00000004)) | ||||
5807 | oem_reg |= HV_OEM_BITS_LPLU0x0004; | ||||
5808 | } | ||||
5809 | |||||
5810 | ret_val = em_write_phy_reg(hw, HV_OEM_BITS(((768) << 5) | ((25) & 0x1F)), oem_reg); | ||||
5811 | |||||
5812 | out: | ||||
5813 | em_swfw_sync_release(hw, swfw); | ||||
5814 | |||||
5815 | return ret_val; | ||||
5816 | } | ||||
5817 | |||||
5818 | |||||
5819 | /****************************************************************************** | ||||
5820 | * Resets the PHY | ||||
5821 | * | ||||
5822 | * hw - Struct containing variables accessed by shared code | ||||
5823 | * | ||||
5824 | * Sets bit 15 of the MII Control register | ||||
5825 | *****************************************************************************/ | ||||
5826 | int32_t | ||||
5827 | em_phy_reset(struct em_hw *hw) | ||||
5828 | { | ||||
5829 | int32_t ret_val; | ||||
5830 | uint16_t phy_data; | ||||
5831 | DEBUGFUNC("em_phy_reset");; | ||||
5832 | /* | ||||
5833 | * In the case of the phy reset being blocked, it's not an error, we | ||||
5834 | * simply return success without performing the reset. | ||||
5835 | */ | ||||
5836 | ret_val = em_check_phy_reset_block(hw); | ||||
5837 | if (ret_val
| ||||
5838 | return E1000_SUCCESS0; | ||||
5839 | |||||
5840 | switch (hw->phy_type) { | ||||
5841 | case em_phy_igp: | ||||
5842 | case em_phy_igp_2: | ||||
5843 | case em_phy_igp_3: | ||||
5844 | case em_phy_ife: | ||||
5845 | ret_val = em_phy_hw_reset(hw); | ||||
5846 | if (ret_val) | ||||
5847 | return ret_val; | ||||
5848 | break; | ||||
5849 | default: | ||||
5850 | ret_val = em_read_phy_reg(hw, PHY_CTRL0x00, &phy_data); | ||||
5851 | if (ret_val
| ||||
5852 | return ret_val; | ||||
5853 | |||||
5854 | phy_data |= MII_CR_RESET0x8000; | ||||
5855 | ret_val = em_write_phy_reg(hw, PHY_CTRL0x00, phy_data); | ||||
5856 | if (ret_val
| ||||
5857 | return ret_val; | ||||
5858 | |||||
5859 | usec_delay(1)(*delay_func)(1); | ||||
5860 | break; | ||||
5861 | } | ||||
5862 | |||||
5863 | /* Allow time for h/w to get to a quiescent state after reset */ | ||||
5864 | msec_delay(10)(*delay_func)(1000*(10)); | ||||
5865 | |||||
5866 | if (hw->phy_type == em_phy_igp || hw->phy_type == em_phy_igp_2) | ||||
5867 | em_phy_init_script(hw); | ||||
5868 | |||||
5869 | if (hw->mac_type == em_pchlan) { | ||||
5870 | ret_val = em_hv_phy_workarounds_ich8lan(hw); | ||||
5871 | if (ret_val) | ||||
5872 | return ret_val; | ||||
5873 | } else if (hw->mac_type == em_pch2lan) { | ||||
5874 | ret_val = em_lv_phy_workarounds_ich8lan(hw); | ||||
5875 | if (ret_val) | ||||
5876 | return ret_val; | ||||
5877 | } | ||||
5878 | |||||
5879 | if (hw->mac_type >= em_pchlan) { | ||||
5880 | ret_val = em_oem_bits_config_pchlan(hw, TRUE1); | ||||
5881 | if (ret_val) | ||||
5882 | return ret_val; | ||||
5883 | } | ||||
5884 | |||||
5885 | /* Ungate automatic PHY configuration on non-managed 82579 */ | ||||
5886 | if ((hw->mac_type == em_pch2lan) && | ||||
5887 | !(E1000_READ_REG(hw, FWSM)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B54 : em_translate_82542_register (0x05B54))))) & E1000_FWSM_FW_VALID0x00008000)) { | ||||
5888 | msec_delay(10)(*delay_func)(1000*(10)); | ||||
5889 | em_gate_hw_phy_config_ich8lan(hw, FALSE0); | ||||
5890 | } | ||||
5891 | |||||
5892 | if (hw->phy_id == M88E1512_E_PHY_ID0x01410DD0) { | ||||
5893 | ret_val = em_initialize_M88E1512_phy(hw); | ||||
5894 | if (ret_val) | ||||
5895 | return ret_val; | ||||
5896 | } | ||||
5897 | |||||
5898 | return E1000_SUCCESS0; | ||||
5899 | } | ||||
5900 | |||||
5901 | /****************************************************************************** | ||||
5902 | * Work-around for 82566 Kumeran PCS lock loss: | ||||
5903 | * On link status change (i.e. PCI reset, speed change) and link is up and | ||||
5904 | * speed is gigabit- | ||||
5905 | * 0) if workaround is optionally disabled do nothing | ||||
5906 | * 1) wait 1ms for Kumeran link to come up | ||||
5907 | * 2) check Kumeran Diagnostic register PCS lock loss bit | ||||
5908 | * 3) if not set the link is locked (all is good), otherwise... | ||||
5909 | * 4) reset the PHY | ||||
5910 | * 5) repeat up to 10 times | ||||
5911 | * Note: this is only called for IGP3 copper when speed is 1gb. | ||||
5912 | * | ||||
5913 | * hw - struct containing variables accessed by shared code | ||||
5914 | *****************************************************************************/ | ||||
5915 | STATIC int32_t | ||||
5916 | em_kumeran_lock_loss_workaround(struct em_hw *hw) | ||||
5917 | { | ||||
5918 | int32_t ret_val; | ||||
5919 | int32_t reg; | ||||
5920 | int32_t cnt; | ||||
5921 | uint16_t phy_data; | ||||
5922 | if (hw->kmrn_lock_loss_workaround_disabled) | ||||
5923 | return E1000_SUCCESS0; | ||||
5924 | /* | ||||
5925 | * Make sure link is up before proceeding. If not just return. | ||||
5926 | * Attempting this while link is negotiating fouled up link stability | ||||
5927 | */ | ||||
5928 | ret_val = em_read_phy_reg(hw, PHY_STATUS0x01, &phy_data); | ||||
5929 | ret_val = em_read_phy_reg(hw, PHY_STATUS0x01, &phy_data); | ||||
5930 | |||||
5931 | if (phy_data & MII_SR_LINK_STATUS0x0004) { | ||||
5932 | for (cnt = 0; cnt < 10; cnt++) { | ||||
5933 | /* read once to clear */ | ||||
5934 | ret_val = em_read_phy_reg(hw, IGP3_KMRN_DIAG(((770) << 5) | ((19) & 0x1F)), | ||||
5935 | &phy_data); | ||||
5936 | if (ret_val) | ||||
5937 | return ret_val; | ||||
5938 | /* and again to get new status */ | ||||
5939 | ret_val = em_read_phy_reg(hw, IGP3_KMRN_DIAG(((770) << 5) | ((19) & 0x1F)), &phy_data); | ||||
5940 | if (ret_val) | ||||
5941 | return ret_val; | ||||
5942 | |||||
5943 | /* check for PCS lock */ | ||||
5944 | if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS0x0002)) | ||||
5945 | return E1000_SUCCESS0; | ||||
5946 | |||||
5947 | /* Issue PHY reset */ | ||||
5948 | em_phy_hw_reset(hw); | ||||
5949 | msec_delay_irq(5)(*delay_func)(1000*(5)); | ||||
5950 | } | ||||
5951 | /* Disable GigE link negotiation */ | ||||
5952 | reg = E1000_READ_REG(hw, PHY_CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F10 : em_translate_82542_register (0x00F10))))); | ||||
5953 | E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F10 : em_translate_82542_register (0x00F10))), (reg | 0x00000040 | 0x00000008))) | ||||
5954 | | E1000_PHY_CTRL_NOND0A_GBE_DISABLE)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F10 : em_translate_82542_register (0x00F10))), (reg | 0x00000040 | 0x00000008))); | ||||
5955 | |||||
5956 | /* unable to acquire PCS lock */ | ||||
5957 | return E1000_ERR_PHY2; | ||||
5958 | } | ||||
5959 | return E1000_SUCCESS0; | ||||
5960 | } | ||||
5961 | |||||
5962 | /****************************************************************************** | ||||
5963 | * Reads and matches the expected PHY address for known PHY IDs | ||||
5964 | * | ||||
5965 | * hw - Struct containing variables accessed by shared code | ||||
5966 | *****************************************************************************/ | ||||
5967 | STATIC int32_t | ||||
5968 | em_match_gig_phy(struct em_hw *hw) | ||||
5969 | { | ||||
5970 | int32_t phy_init_status, ret_val; | ||||
5971 | uint16_t phy_id_high, phy_id_low; | ||||
5972 | boolean_t match = FALSE0; | ||||
5973 | DEBUGFUNC("em_match_gig_phy");; | ||||
5974 | |||||
5975 | ret_val = em_read_phy_reg(hw, PHY_ID10x02, &phy_id_high); | ||||
5976 | if (ret_val) | ||||
5977 | return ret_val; | ||||
5978 | |||||
5979 | hw->phy_id = (uint32_t) (phy_id_high << 16); | ||||
5980 | usec_delay(20)(*delay_func)(20); | ||||
5981 | ret_val = em_read_phy_reg(hw, PHY_ID20x03, &phy_id_low); | ||||
5982 | if (ret_val) | ||||
5983 | return ret_val; | ||||
5984 | |||||
5985 | hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK0xFFFFFFF0); | ||||
5986 | hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK0xFFFFFFF0; | ||||
5987 | |||||
5988 | switch (hw->mac_type) { | ||||
5989 | case em_82543: | ||||
5990 | if (hw->phy_id == M88E1000_E_PHY_ID0x01410C50) | ||||
5991 | match = TRUE1; | ||||
5992 | break; | ||||
5993 | case em_82544: | ||||
5994 | if (hw->phy_id == M88E1000_I_PHY_ID0x01410C30) | ||||
5995 | match = TRUE1; | ||||
5996 | break; | ||||
5997 | case em_82540: | ||||
5998 | case em_82545: | ||||
5999 | case em_82545_rev_3: | ||||
6000 | case em_82546: | ||||
6001 | case em_82546_rev_3: | ||||
6002 | if (hw->phy_id == M88E1011_I_PHY_ID0x01410C20) | ||||
6003 | match = TRUE1; | ||||
6004 | break; | ||||
6005 | case em_82541: | ||||
6006 | case em_82541_rev_2: | ||||
6007 | case em_82547: | ||||
6008 | case em_82547_rev_2: | ||||
6009 | if (hw->phy_id == IGP01E1000_I_PHY_ID0x02A80380) | ||||
6010 | match = TRUE1; | ||||
6011 | break; | ||||
6012 | case em_82573: | ||||
6013 | if (hw->phy_id == M88E1111_I_PHY_ID0x01410CC0) | ||||
6014 | match = TRUE1; | ||||
6015 | break; | ||||
6016 | case em_82574: | ||||
6017 | if (hw->phy_id == BME1000_E_PHY_ID0x01410CB0) | ||||
6018 | match = TRUE1; | ||||
6019 | break; | ||||
6020 | case em_82575: | ||||
6021 | case em_82576: | ||||
6022 | if (hw->phy_id == M88E1000_E_PHY_ID0x01410C50) | ||||
6023 | match = TRUE1; | ||||
6024 | if (hw->phy_id == IGP01E1000_I_PHY_ID0x02A80380) | ||||
6025 | match = TRUE1; | ||||
6026 | if (hw->phy_id == IGP03E1000_E_PHY_ID0x02A80390) | ||||
6027 | match = TRUE1; | ||||
6028 | break; | ||||
6029 | case em_82580: | ||||
6030 | case em_i210: | ||||
6031 | case em_i350: | ||||
6032 | if (hw->phy_id == I82580_I_PHY_ID0x015403A0 || | ||||
6033 | hw->phy_id == I210_I_PHY_ID0x01410C00 || | ||||
6034 | hw->phy_id == I347AT4_E_PHY_ID0x01410DC0 || | ||||
6035 | hw->phy_id == I350_I_PHY_ID0x015403B0 || | ||||
6036 | hw->phy_id == M88E1111_I_PHY_ID0x01410CC0 || | ||||
6037 | hw->phy_id == M88E1112_E_PHY_ID0x01410C90 || | ||||
6038 | hw->phy_id == M88E1543_E_PHY_ID0x01410EA0 || | ||||
6039 | hw->phy_id == M88E1512_E_PHY_ID0x01410DD0) { | ||||
6040 | uint32_t mdic; | ||||
6041 | |||||
6042 | mdic = EM_READ_REG(hw, E1000_MDICNFG)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (0x00E04))); | ||||
6043 | if (mdic & E1000_MDICNFG_EXT_MDIO0x80000000) { | ||||
6044 | mdic &= E1000_MDICNFG_PHY_MASK0x03E00000; | ||||
6045 | hw->phy_addr = mdic >> E1000_MDICNFG_PHY_SHIFT21; | ||||
6046 | DEBUGOUT1("MDICNFG PHY ADDR %d", | ||||
6047 | mdic >> E1000_MDICNFG_PHY_SHIFT); | ||||
6048 | } | ||||
6049 | match = TRUE1; | ||||
6050 | } | ||||
6051 | break; | ||||
6052 | case em_80003es2lan: | ||||
6053 | if (hw->phy_id == GG82563_E_PHY_ID0x01410CA0) | ||||
6054 | match = TRUE1; | ||||
6055 | break; | ||||
6056 | case em_ich8lan: | ||||
6057 | case em_ich9lan: | ||||
6058 | case em_ich10lan: | ||||
6059 | case em_pchlan: | ||||
6060 | case em_pch2lan: | ||||
6061 | if (hw->phy_id == IGP03E1000_E_PHY_ID0x02A80390) | ||||
6062 | match = TRUE1; | ||||
6063 | if (hw->phy_id == IFE_E_PHY_ID0x02A80330) | ||||
6064 | match = TRUE1; | ||||
6065 | if (hw->phy_id == IFE_PLUS_E_PHY_ID0x02A80320) | ||||
6066 | match = TRUE1; | ||||
6067 | if (hw->phy_id == IFE_C_E_PHY_ID0x02A80310) | ||||
6068 | match = TRUE1; | ||||
6069 | if (hw->phy_id == BME1000_E_PHY_ID0x01410CB0) | ||||
6070 | match = TRUE1; | ||||
6071 | if (hw->phy_id == I82577_E_PHY_ID0x01540050) | ||||
6072 | match = TRUE1; | ||||
6073 | if (hw->phy_id == I82578_E_PHY_ID0x004DD040) | ||||
6074 | match = TRUE1; | ||||
6075 | if (hw->phy_id == I82579_E_PHY_ID0x01540090) | ||||
6076 | match = TRUE1; | ||||
6077 | break; | ||||
6078 | case em_pch_lpt: | ||||
6079 | case em_pch_spt: | ||||
6080 | case em_pch_cnp: | ||||
6081 | if (hw->phy_id == I217_E_PHY_ID0x015400A0) | ||||
6082 | match = TRUE1; | ||||
6083 | break; | ||||
6084 | case em_icp_xxxx: | ||||
6085 | if (hw->phy_id == M88E1141_E_PHY_ID0x01410CD0) | ||||
6086 | match = TRUE1; | ||||
6087 | if (hw->phy_id == RTL8211_E_PHY_ID0x001CC912) | ||||
6088 | match = TRUE1; | ||||
6089 | break; | ||||
6090 | default: | ||||
6091 | DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); | ||||
6092 | return -E1000_ERR_CONFIG3; | ||||
6093 | } | ||||
6094 | phy_init_status = em_set_phy_type(hw); | ||||
6095 | |||||
6096 | if ((match) && (phy_init_status == E1000_SUCCESS0)) { | ||||
6097 | DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id); | ||||
6098 | return E1000_SUCCESS0; | ||||
6099 | } | ||||
6100 | DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id); | ||||
6101 | return -E1000_ERR_PHY2; | ||||
6102 | } | ||||
6103 | |||||
6104 | /****************************************************************************** | ||||
6105 | * Probes the expected PHY address for known PHY IDs | ||||
6106 | * | ||||
6107 | * hw - Struct containing variables accessed by shared code | ||||
6108 | *****************************************************************************/ | ||||
6109 | STATIC int32_t | ||||
6110 | em_detect_gig_phy(struct em_hw *hw) | ||||
6111 | { | ||||
6112 | int32_t ret_val, i; | ||||
6113 | DEBUGFUNC("em_detect_gig_phy");; | ||||
6114 | |||||
6115 | if (hw->phy_id != 0) | ||||
6116 | return E1000_SUCCESS0; | ||||
6117 | |||||
6118 | /* default phy address, most phys reside here, but not all (ICH10) */ | ||||
6119 | if (hw->mac_type != em_icp_xxxx) | ||||
6120 | hw->phy_addr = 1; | ||||
6121 | else | ||||
6122 | hw->phy_addr = 0; /* There is a phy at phy_addr 0 on EP80579 */ | ||||
6123 | |||||
6124 | /* | ||||
6125 | * The 82571 firmware may still be configuring the PHY. In this | ||||
6126 | * case, we cannot access the PHY until the configuration is done. | ||||
6127 | * So we explicitly set the PHY values. | ||||
6128 | */ | ||||
6129 | if (hw->mac_type == em_82571 || | ||||
6130 | hw->mac_type == em_82572) { | ||||
6131 | hw->phy_id = IGP01E1000_I_PHY_ID0x02A80380; | ||||
6132 | hw->phy_type = em_phy_igp_2; | ||||
6133 | return E1000_SUCCESS0; | ||||
6134 | } | ||||
6135 | |||||
6136 | /* | ||||
6137 | * Some of the fiber cards dont have a phy, so we must exit cleanly | ||||
6138 | * here | ||||
6139 | */ | ||||
6140 | if ((hw->media_type == em_media_type_fiber) && | ||||
6141 | (hw->mac_type == em_82542_rev2_0 || | ||||
6142 | hw->mac_type == em_82542_rev2_1 || | ||||
6143 | hw->mac_type == em_82543 || | ||||
6144 | hw->mac_type == em_82573 || | ||||
6145 | hw->mac_type == em_82574 || | ||||
6146 | hw->mac_type == em_80003es2lan)) { | ||||
6147 | hw->phy_type = em_phy_undefined; | ||||
6148 | return E1000_SUCCESS0; | ||||
6149 | } | ||||
6150 | |||||
6151 | if ((hw->media_type == em_media_type_internal_serdes || | ||||
6152 | hw->media_type == em_media_type_fiber) && | ||||
6153 | hw->mac_type >= em_82575) { | ||||
6154 | hw->phy_type = em_phy_undefined; | ||||
6155 | return E1000_SUCCESS0; | ||||
6156 | } | ||||
6157 | |||||
6158 | /* | ||||
6159 | * Up to 82543 (incl), we need reset the phy, or it might not get | ||||
6160 | * detected | ||||
6161 | */ | ||||
6162 | if (hw->mac_type <= em_82543) { | ||||
6163 | ret_val = em_phy_hw_reset(hw); | ||||
6164 | if (ret_val) | ||||
6165 | return ret_val; | ||||
6166 | } | ||||
6167 | /* | ||||
6168 | * ESB-2 PHY reads require em_phy_gg82563 to be set because of a | ||||
6169 | * work- around that forces PHY page 0 to be set or the reads fail. | ||||
6170 | * The rest of the code in this routine uses em_read_phy_reg to read | ||||
6171 | * the PHY ID. So for ESB-2 we need to have this set so our reads | ||||
6172 | * won't fail. If the attached PHY is not a em_phy_gg82563, the | ||||
6173 | * routines below will figure this out as well. | ||||
6174 | */ | ||||
6175 | if (hw->mac_type == em_80003es2lan) | ||||
6176 | hw->phy_type = em_phy_gg82563; | ||||
6177 | |||||
6178 | /* Power on SGMII phy if it is disabled */ | ||||
6179 | if (hw->mac_type == em_82580 || hw->mac_type == em_i210 || | ||||
6180 | hw->mac_type == em_i350) { | ||||
6181 | uint32_t ctrl_ext = EM_READ_REG(hw, E1000_CTRL_EXT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (0x00018))); | ||||
6182 | EM_WRITE_REG(hw, E1000_CTRL_EXT,((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (0x00018), (ctrl_ext & ~0x00000080))) | ||||
6183 | ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (0x00018), (ctrl_ext & ~0x00000080))); | ||||
6184 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
6185 | msec_delay(300)(*delay_func)(1000*(300)); | ||||
6186 | } | ||||
6187 | |||||
6188 | /* Read the PHY ID Registers to identify which PHY is onboard. */ | ||||
6189 | for (i = 1; i < 8; i++) { | ||||
6190 | /* | ||||
6191 | * hw->phy_addr may be modified down in the call stack, | ||||
6192 | * we can't use it as loop variable. | ||||
6193 | */ | ||||
6194 | hw->phy_addr = i; | ||||
6195 | ret_val = em_match_gig_phy(hw); | ||||
6196 | if (ret_val == E1000_SUCCESS0) | ||||
6197 | return E1000_SUCCESS0; | ||||
6198 | } | ||||
6199 | return -E1000_ERR_PHY2; | ||||
6200 | } | ||||
6201 | |||||
6202 | /****************************************************************************** | ||||
6203 | * Resets the PHY's DSP | ||||
6204 | * | ||||
6205 | * hw - Struct containing variables accessed by shared code | ||||
6206 | *****************************************************************************/ | ||||
6207 | static int32_t | ||||
6208 | em_phy_reset_dsp(struct em_hw *hw) | ||||
6209 | { | ||||
6210 | int32_t ret_val; | ||||
6211 | DEBUGFUNC("em_phy_reset_dsp");; | ||||
6212 | |||||
6213 | do { | ||||
6214 | if (hw->phy_type != em_phy_gg82563) { | ||||
6215 | ret_val = em_write_phy_reg(hw, 29, 0x001d); | ||||
6216 | if (ret_val) | ||||
6217 | break; | ||||
6218 | } | ||||
6219 | ret_val = em_write_phy_reg(hw, 30, 0x00c1); | ||||
6220 | if (ret_val) | ||||
6221 | break; | ||||
6222 | ret_val = em_write_phy_reg(hw, 30, 0x0000); | ||||
6223 | if (ret_val) | ||||
6224 | break; | ||||
6225 | ret_val = E1000_SUCCESS0; | ||||
6226 | } while (0); | ||||
6227 | |||||
6228 | return ret_val; | ||||
6229 | } | ||||
6230 | |||||
6231 | /****************************************************************************** | ||||
6232 | * Sets up eeprom variables in the hw struct. Must be called after mac_type | ||||
6233 | * is configured. Additionally, if this is ICH8, the flash controller GbE | ||||
6234 | * registers must be mapped, or this will crash. | ||||
6235 | * | ||||
6236 | * hw - Struct containing variables accessed by shared code | ||||
6237 | *****************************************************************************/ | ||||
6238 | int32_t | ||||
6239 | em_init_eeprom_params(struct em_hw *hw) | ||||
6240 | { | ||||
6241 | struct em_eeprom_info *eeprom = &hw->eeprom; | ||||
6242 | uint32_t eecd = E1000_READ_REG(hw, EECD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))))); | ||||
6243 | int32_t ret_val = E1000_SUCCESS0; | ||||
6244 | uint16_t eeprom_size; | ||||
6245 | DEBUGFUNC("em_init_eeprom_params");; | ||||
6246 | |||||
6247 | switch (hw->mac_type) { | ||||
6248 | case em_82542_rev2_0: | ||||
6249 | case em_82542_rev2_1: | ||||
6250 | case em_82543: | ||||
6251 | case em_82544: | ||||
6252 | eeprom->type = em_eeprom_microwire; | ||||
6253 | eeprom->word_size = 64; | ||||
6254 | eeprom->opcode_bits = 3; | ||||
6255 | eeprom->address_bits = 6; | ||||
6256 | eeprom->delay_usec = 50; | ||||
6257 | eeprom->use_eerd = FALSE0; | ||||
6258 | eeprom->use_eewr = FALSE0; | ||||
6259 | break; | ||||
6260 | case em_82540: | ||||
6261 | case em_82545: | ||||
6262 | case em_82545_rev_3: | ||||
6263 | case em_icp_xxxx: | ||||
6264 | case em_82546: | ||||
6265 | case em_82546_rev_3: | ||||
6266 | eeprom->type = em_eeprom_microwire; | ||||
6267 | eeprom->opcode_bits = 3; | ||||
6268 | eeprom->delay_usec = 50; | ||||
6269 | if (eecd & E1000_EECD_SIZE0x00000200) { | ||||
6270 | eeprom->word_size = 256; | ||||
6271 | eeprom->address_bits = 8; | ||||
6272 | } else { | ||||
6273 | eeprom->word_size = 64; | ||||
6274 | eeprom->address_bits = 6; | ||||
6275 | } | ||||
6276 | eeprom->use_eerd = FALSE0; | ||||
6277 | eeprom->use_eewr = FALSE0; | ||||
6278 | break; | ||||
6279 | case em_82541: | ||||
6280 | case em_82541_rev_2: | ||||
6281 | case em_82547: | ||||
6282 | case em_82547_rev_2: | ||||
6283 | if (eecd & E1000_EECD_TYPE0x00002000) { | ||||
6284 | eeprom->type = em_eeprom_spi; | ||||
6285 | eeprom->opcode_bits = 8; | ||||
6286 | eeprom->delay_usec = 1; | ||||
6287 | if (eecd & E1000_EECD_ADDR_BITS0x00000400) { | ||||
6288 | eeprom->page_size = 32; | ||||
6289 | eeprom->address_bits = 16; | ||||
6290 | } else { | ||||
6291 | eeprom->page_size = 8; | ||||
6292 | eeprom->address_bits = 8; | ||||
6293 | } | ||||
6294 | } else { | ||||
6295 | eeprom->type = em_eeprom_microwire; | ||||
6296 | eeprom->opcode_bits = 3; | ||||
6297 | eeprom->delay_usec = 50; | ||||
6298 | if (eecd & E1000_EECD_ADDR_BITS0x00000400) { | ||||
6299 | eeprom->word_size = 256; | ||||
6300 | eeprom->address_bits = 8; | ||||
6301 | } else { | ||||
6302 | eeprom->word_size = 64; | ||||
6303 | eeprom->address_bits = 6; | ||||
6304 | } | ||||
6305 | } | ||||
6306 | eeprom->use_eerd = FALSE0; | ||||
6307 | eeprom->use_eewr = FALSE0; | ||||
6308 | break; | ||||
6309 | case em_82571: | ||||
6310 | case em_82572: | ||||
6311 | eeprom->type = em_eeprom_spi; | ||||
6312 | eeprom->opcode_bits = 8; | ||||
6313 | eeprom->delay_usec = 1; | ||||
6314 | if (eecd & E1000_EECD_ADDR_BITS0x00000400) { | ||||
6315 | eeprom->page_size = 32; | ||||
6316 | eeprom->address_bits = 16; | ||||
6317 | } else { | ||||
6318 | eeprom->page_size = 8; | ||||
6319 | eeprom->address_bits = 8; | ||||
6320 | } | ||||
6321 | eeprom->use_eerd = FALSE0; | ||||
6322 | eeprom->use_eewr = FALSE0; | ||||
6323 | break; | ||||
6324 | case em_82573: | ||||
6325 | case em_82574: | ||||
6326 | case em_82575: | ||||
6327 | case em_82576: | ||||
6328 | case em_82580: | ||||
6329 | case em_i210: | ||||
6330 | case em_i350: | ||||
6331 | eeprom->type = em_eeprom_spi; | ||||
6332 | eeprom->opcode_bits = 8; | ||||
6333 | eeprom->delay_usec = 1; | ||||
6334 | if (eecd & E1000_EECD_ADDR_BITS0x00000400) { | ||||
6335 | eeprom->page_size = 32; | ||||
6336 | eeprom->address_bits = 16; | ||||
6337 | } else { | ||||
6338 | eeprom->page_size = 8; | ||||
6339 | eeprom->address_bits = 8; | ||||
6340 | } | ||||
6341 | eeprom->use_eerd = TRUE1; | ||||
6342 | eeprom->use_eewr = TRUE1; | ||||
6343 | if (em_is_onboard_nvm_eeprom(hw) == FALSE0) { | ||||
6344 | eeprom->type = em_eeprom_flash; | ||||
6345 | eeprom->word_size = 2048; | ||||
6346 | /* | ||||
6347 | * Ensure that the Autonomous FLASH update bit is | ||||
6348 | * cleared due to Flash update issue on parts which | ||||
6349 | * use a FLASH for NVM. | ||||
6350 | */ | ||||
6351 | eecd &= ~E1000_EECD_AUPDEN0x00100000; | ||||
6352 | E1000_WRITE_REG(hw, EECD, eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd))); | ||||
6353 | } | ||||
6354 | if (em_get_flash_presence_i210(hw) == FALSE0) { | ||||
6355 | eeprom->type = em_eeprom_invm; | ||||
6356 | eeprom->word_size = INVM_SIZE64; | ||||
6357 | eeprom->use_eerd = FALSE0; | ||||
6358 | eeprom->use_eewr = FALSE0; | ||||
6359 | } | ||||
6360 | break; | ||||
6361 | case em_80003es2lan: | ||||
6362 | eeprom->type = em_eeprom_spi; | ||||
6363 | eeprom->opcode_bits = 8; | ||||
6364 | eeprom->delay_usec = 1; | ||||
6365 | if (eecd & E1000_EECD_ADDR_BITS0x00000400) { | ||||
6366 | eeprom->page_size = 32; | ||||
6367 | eeprom->address_bits = 16; | ||||
6368 | } else { | ||||
6369 | eeprom->page_size = 8; | ||||
6370 | eeprom->address_bits = 8; | ||||
6371 | } | ||||
6372 | eeprom->use_eerd = TRUE1; | ||||
6373 | eeprom->use_eewr = FALSE0; | ||||
6374 | break; | ||||
6375 | case em_ich8lan: | ||||
6376 | case em_ich9lan: | ||||
6377 | case em_ich10lan: | ||||
6378 | case em_pchlan: | ||||
6379 | case em_pch2lan: | ||||
6380 | case em_pch_lpt: | ||||
6381 | { | ||||
6382 | int32_t i = 0; | ||||
6383 | uint32_t flash_size = | ||||
6384 | E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_GFPREG)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0000 ))); | ||||
6385 | eeprom->type = em_eeprom_ich8; | ||||
6386 | eeprom->use_eerd = FALSE0; | ||||
6387 | eeprom->use_eewr = FALSE0; | ||||
6388 | eeprom->word_size = E1000_SHADOW_RAM_WORDS2048; | ||||
6389 | /* | ||||
6390 | * Zero the shadow RAM structure. But don't load it | ||||
6391 | * from NVM so as to save time for driver init | ||||
6392 | */ | ||||
6393 | if (hw->eeprom_shadow_ram != NULL((void *)0)) { | ||||
6394 | for (i = 0; i < E1000_SHADOW_RAM_WORDS2048; i++) { | ||||
6395 | hw->eeprom_shadow_ram[i].modified = | ||||
6396 | FALSE0; | ||||
6397 | hw->eeprom_shadow_ram[i].eeprom_word = | ||||
6398 | 0xFFFF; | ||||
6399 | } | ||||
6400 | } | ||||
6401 | hw->flash_base_addr = (flash_size & | ||||
6402 | ICH_GFPREG_BASE_MASK0x1FFF) * ICH_FLASH_SECTOR_SIZE4096; | ||||
6403 | |||||
6404 | hw->flash_bank_size = ((flash_size >> 16) & | ||||
6405 | ICH_GFPREG_BASE_MASK0x1FFF) + 1; | ||||
6406 | hw->flash_bank_size -= (flash_size & | ||||
6407 | ICH_GFPREG_BASE_MASK0x1FFF); | ||||
6408 | |||||
6409 | hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE4096; | ||||
6410 | |||||
6411 | hw->flash_bank_size /= 2 * sizeof(uint16_t); | ||||
6412 | |||||
6413 | break; | ||||
6414 | } | ||||
6415 | case em_pch_spt: | ||||
6416 | case em_pch_cnp: | ||||
6417 | { | ||||
6418 | int32_t i = 0; | ||||
6419 | uint32_t flash_size = EM_READ_REG(hw, 0xc /* STRAP */)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (0xc))); | ||||
6420 | |||||
6421 | eeprom->type = em_eeprom_ich8; | ||||
6422 | eeprom->use_eerd = FALSE0; | ||||
6423 | eeprom->use_eewr = FALSE0; | ||||
6424 | eeprom->word_size = E1000_SHADOW_RAM_WORDS2048; | ||||
6425 | /* | ||||
6426 | * Zero the shadow RAM structure. But don't load it | ||||
6427 | * from NVM so as to save time for driver init | ||||
6428 | */ | ||||
6429 | if (hw->eeprom_shadow_ram != NULL((void *)0)) { | ||||
6430 | for (i = 0; i < E1000_SHADOW_RAM_WORDS2048; i++) { | ||||
6431 | hw->eeprom_shadow_ram[i].modified = | ||||
6432 | FALSE0; | ||||
6433 | hw->eeprom_shadow_ram[i].eeprom_word = | ||||
6434 | 0xFFFF; | ||||
6435 | } | ||||
6436 | } | ||||
6437 | hw->flash_base_addr = 0; | ||||
6438 | flash_size = ((flash_size >> 1) & 0x1f) + 1; | ||||
6439 | flash_size *= 4096; | ||||
6440 | hw->flash_bank_size = flash_size / 4; | ||||
6441 | } | ||||
6442 | break; | ||||
6443 | default: | ||||
6444 | break; | ||||
6445 | } | ||||
6446 | |||||
6447 | if (eeprom->type == em_eeprom_spi) { | ||||
6448 | /* | ||||
6449 | * eeprom_size will be an enum [0..8] that maps to eeprom | ||||
6450 | * sizes 128B to 32KB (incremented by powers of 2). | ||||
6451 | */ | ||||
6452 | if (hw->mac_type <= em_82547_rev_2) { | ||||
6453 | /* Set to default value for initial eeprom read. */ | ||||
6454 | eeprom->word_size = 64; | ||||
6455 | ret_val = em_read_eeprom(hw, EEPROM_CFG0x0012, 1, | ||||
6456 | &eeprom_size); | ||||
6457 | if (ret_val) | ||||
6458 | return ret_val; | ||||
6459 | eeprom_size = (eeprom_size & EEPROM_SIZE_MASK0x1C00) >> | ||||
6460 | EEPROM_SIZE_SHIFT10; | ||||
6461 | /* | ||||
6462 | * 256B eeprom size was not supported in earlier | ||||
6463 | * hardware, so we bump eeprom_size up one to ensure | ||||
6464 | * that "1" (which maps to 256B) is never the result | ||||
6465 | * used in the shifting logic below. | ||||
6466 | */ | ||||
6467 | if (eeprom_size) | ||||
6468 | eeprom_size++; | ||||
6469 | } else { | ||||
6470 | eeprom_size = (uint16_t) ( | ||||
6471 | (eecd & E1000_EECD_SIZE_EX_MASK0x00007800) >> | ||||
6472 | E1000_EECD_SIZE_EX_SHIFT11); | ||||
6473 | } | ||||
6474 | |||||
6475 | /* EEPROM access above 16k is unsupported */ | ||||
6476 | if (eeprom_size + EEPROM_WORD_SIZE_SHIFT6 > | ||||
6477 | EEPROM_WORD_SIZE_SHIFT_MAX14) { | ||||
6478 | eeprom->word_size = 1 << EEPROM_WORD_SIZE_SHIFT_MAX14; | ||||
6479 | } else { | ||||
6480 | eeprom->word_size = 1 << | ||||
6481 | (eeprom_size + EEPROM_WORD_SIZE_SHIFT6); | ||||
6482 | } | ||||
6483 | } | ||||
6484 | return ret_val; | ||||
6485 | } | ||||
6486 | |||||
6487 | /****************************************************************************** | ||||
6488 | * Raises the EEPROM's clock input. | ||||
6489 | * | ||||
6490 | * hw - Struct containing variables accessed by shared code | ||||
6491 | * eecd - EECD's current value | ||||
6492 | *****************************************************************************/ | ||||
6493 | static void | ||||
6494 | em_raise_ee_clk(struct em_hw *hw, uint32_t *eecd) | ||||
6495 | { | ||||
6496 | /* | ||||
6497 | * Raise the clock input to the EEPROM (by setting the SK bit), and | ||||
6498 | * then wait <delay> microseconds. | ||||
6499 | */ | ||||
6500 | *eecd = *eecd | E1000_EECD_SK0x00000001; | ||||
6501 | E1000_WRITE_REG(hw, EECD, *eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (*eecd))); | ||||
6502 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
6503 | usec_delay(hw->eeprom.delay_usec)(*delay_func)(hw->eeprom.delay_usec); | ||||
6504 | } | ||||
6505 | |||||
6506 | /****************************************************************************** | ||||
6507 | * Lowers the EEPROM's clock input. | ||||
6508 | * | ||||
6509 | * hw - Struct containing variables accessed by shared code | ||||
6510 | * eecd - EECD's current value | ||||
6511 | *****************************************************************************/ | ||||
6512 | static void | ||||
6513 | em_lower_ee_clk(struct em_hw *hw, uint32_t *eecd) | ||||
6514 | { | ||||
6515 | /* | ||||
6516 | * Lower the clock input to the EEPROM (by clearing the SK bit), and | ||||
6517 | * then wait 50 microseconds. | ||||
6518 | */ | ||||
6519 | *eecd = *eecd & ~E1000_EECD_SK0x00000001; | ||||
6520 | E1000_WRITE_REG(hw, EECD, *eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (*eecd))); | ||||
6521 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
6522 | usec_delay(hw->eeprom.delay_usec)(*delay_func)(hw->eeprom.delay_usec); | ||||
6523 | } | ||||
6524 | |||||
6525 | /****************************************************************************** | ||||
6526 | * Shift data bits out to the EEPROM. | ||||
6527 | * | ||||
6528 | * hw - Struct containing variables accessed by shared code | ||||
6529 | * data - data to send to the EEPROM | ||||
6530 | * count - number of bits to shift out | ||||
6531 | *****************************************************************************/ | ||||
6532 | static void | ||||
6533 | em_shift_out_ee_bits(struct em_hw *hw, uint16_t data, uint16_t count) | ||||
6534 | { | ||||
6535 | struct em_eeprom_info *eeprom = &hw->eeprom; | ||||
6536 | uint32_t eecd; | ||||
6537 | uint32_t mask; | ||||
6538 | /* | ||||
6539 | * We need to shift "count" bits out to the EEPROM. So, value in the | ||||
6540 | * "data" parameter will be shifted out to the EEPROM one bit at a | ||||
6541 | * time. In order to do this, "data" must be broken down into bits. | ||||
6542 | */ | ||||
6543 | mask = 0x01 << (count - 1); | ||||
6544 | eecd = E1000_READ_REG(hw, EECD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))))); | ||||
6545 | if (eeprom->type == em_eeprom_microwire) { | ||||
6546 | eecd &= ~E1000_EECD_DO0x00000008; | ||||
6547 | } else if (eeprom->type == em_eeprom_spi) { | ||||
6548 | eecd |= E1000_EECD_DO0x00000008; | ||||
6549 | } | ||||
6550 | do { | ||||
6551 | /* | ||||
6552 | * A "1" is shifted out to the EEPROM by setting bit "DI" to | ||||
6553 | * a "1", and then raising and then lowering the clock (the | ||||
6554 | * SK bit controls the clock input to the EEPROM). A "0" is | ||||
6555 | * shifted out to the EEPROM by setting "DI" to "0" and then | ||||
6556 | * raising and then lowering the clock. | ||||
6557 | */ | ||||
6558 | eecd &= ~E1000_EECD_DI0x00000004; | ||||
6559 | |||||
6560 | if (data & mask) | ||||
6561 | eecd |= E1000_EECD_DI0x00000004; | ||||
6562 | |||||
6563 | E1000_WRITE_REG(hw, EECD, eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd))); | ||||
6564 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
6565 | |||||
6566 | usec_delay(eeprom->delay_usec)(*delay_func)(eeprom->delay_usec); | ||||
6567 | |||||
6568 | em_raise_ee_clk(hw, &eecd); | ||||
6569 | em_lower_ee_clk(hw, &eecd); | ||||
6570 | |||||
6571 | mask = mask >> 1; | ||||
6572 | |||||
6573 | } while (mask); | ||||
6574 | |||||
6575 | /* We leave the "DI" bit set to "0" when we leave this routine. */ | ||||
6576 | eecd &= ~E1000_EECD_DI0x00000004; | ||||
6577 | E1000_WRITE_REG(hw, EECD, eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd))); | ||||
6578 | } | ||||
6579 | |||||
6580 | /****************************************************************************** | ||||
6581 | * Shift data bits in from the EEPROM | ||||
6582 | * | ||||
6583 | * hw - Struct containing variables accessed by shared code | ||||
6584 | *****************************************************************************/ | ||||
6585 | static uint16_t | ||||
6586 | em_shift_in_ee_bits(struct em_hw *hw, uint16_t count) | ||||
6587 | { | ||||
6588 | uint32_t eecd; | ||||
6589 | uint32_t i; | ||||
6590 | uint16_t data; | ||||
6591 | /* | ||||
6592 | * In order to read a register from the EEPROM, we need to shift | ||||
6593 | * 'count' bits in from the EEPROM. Bits are "shifted in" by raising | ||||
6594 | * the clock input to the EEPROM (setting the SK bit), and then | ||||
6595 | * reading the value of the "DO" bit. During this "shifting in" | ||||
6596 | * process the "DI" bit should always be clear. | ||||
6597 | */ | ||||
6598 | |||||
6599 | eecd = E1000_READ_REG(hw, EECD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))))); | ||||
6600 | |||||
6601 | eecd &= ~(E1000_EECD_DO0x00000008 | E1000_EECD_DI0x00000004); | ||||
6602 | data = 0; | ||||
6603 | |||||
6604 | for (i = 0; i < count; i++) { | ||||
6605 | data = data << 1; | ||||
6606 | em_raise_ee_clk(hw, &eecd); | ||||
6607 | |||||
6608 | eecd = E1000_READ_REG(hw, EECD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))))); | ||||
6609 | |||||
6610 | eecd &= ~(E1000_EECD_DI0x00000004); | ||||
6611 | if (eecd & E1000_EECD_DO0x00000008) | ||||
6612 | data |= 1; | ||||
6613 | |||||
6614 | em_lower_ee_clk(hw, &eecd); | ||||
6615 | } | ||||
6616 | |||||
6617 | return data; | ||||
6618 | } | ||||
6619 | /****************************************************************************** | ||||
6620 | * Prepares EEPROM for access | ||||
6621 | * | ||||
6622 | * hw - Struct containing variables accessed by shared code | ||||
6623 | * | ||||
6624 | * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This | ||||
6625 | * function should be called before issuing a command to the EEPROM. | ||||
6626 | *****************************************************************************/ | ||||
6627 | static int32_t | ||||
6628 | em_acquire_eeprom(struct em_hw *hw) | ||||
6629 | { | ||||
6630 | struct em_eeprom_info *eeprom = &hw->eeprom; | ||||
6631 | uint32_t eecd, i = 0; | ||||
6632 | DEBUGFUNC("em_acquire_eeprom");; | ||||
6633 | |||||
6634 | if (em_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM0x0001)) | ||||
6635 | return -E1000_ERR_SWFW_SYNC13; | ||||
6636 | eecd = E1000_READ_REG(hw, EECD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))))); | ||||
6637 | |||||
6638 | if ((hw->mac_type != em_82573) && (hw->mac_type != em_82574)) { | ||||
6639 | /* Request EEPROM Access */ | ||||
6640 | if (hw->mac_type > em_82544) { | ||||
6641 | eecd |= E1000_EECD_REQ0x00000040; | ||||
6642 | E1000_WRITE_REG(hw, EECD, eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd))); | ||||
6643 | eecd = E1000_READ_REG(hw, EECD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))))); | ||||
6644 | while ((!(eecd & E1000_EECD_GNT0x00000080)) && | ||||
6645 | (i < E1000_EEPROM_GRANT_ATTEMPTS1000)) { | ||||
6646 | i++; | ||||
6647 | usec_delay(5)(*delay_func)(5); | ||||
6648 | eecd = E1000_READ_REG(hw, EECD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))))); | ||||
6649 | } | ||||
6650 | if (!(eecd & E1000_EECD_GNT0x00000080)) { | ||||
6651 | eecd &= ~E1000_EECD_REQ0x00000040; | ||||
6652 | E1000_WRITE_REG(hw, EECD, eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd))); | ||||
6653 | DEBUGOUT("Could not acquire EEPROM grant\n"); | ||||
6654 | em_swfw_sync_release(hw, E1000_SWFW_EEP_SM0x0001); | ||||
6655 | return -E1000_ERR_EEPROM1; | ||||
6656 | } | ||||
6657 | } | ||||
6658 | } | ||||
6659 | |||||
6660 | /* Setup EEPROM for Read/Write */ | ||||
6661 | if (eeprom->type == em_eeprom_microwire) { | ||||
6662 | /* Clear SK and DI */ | ||||
6663 | eecd &= ~(E1000_EECD_DI0x00000004 | E1000_EECD_SK0x00000001); | ||||
6664 | E1000_WRITE_REG(hw, EECD, eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd))); | ||||
6665 | |||||
6666 | /* Set CS */ | ||||
6667 | eecd |= E1000_EECD_CS0x00000002; | ||||
6668 | E1000_WRITE_REG(hw, EECD, eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd))); | ||||
6669 | } else if (eeprom->type == em_eeprom_spi) { | ||||
6670 | /* Clear SK and CS */ | ||||
6671 | eecd &= ~(E1000_EECD_CS0x00000002 | E1000_EECD_SK0x00000001); | ||||
6672 | E1000_WRITE_REG(hw, EECD, eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd))); | ||||
6673 | usec_delay(1)(*delay_func)(1); | ||||
6674 | } | ||||
6675 | return E1000_SUCCESS0; | ||||
6676 | } | ||||
6677 | |||||
6678 | /****************************************************************************** | ||||
6679 | * Returns EEPROM to a "standby" state | ||||
6680 | * | ||||
6681 | * hw - Struct containing variables accessed by shared code | ||||
6682 | *****************************************************************************/ | ||||
6683 | static void | ||||
6684 | em_standby_eeprom(struct em_hw *hw) | ||||
6685 | { | ||||
6686 | struct em_eeprom_info *eeprom = &hw->eeprom; | ||||
6687 | uint32_t eecd; | ||||
6688 | eecd = E1000_READ_REG(hw, EECD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))))); | ||||
6689 | |||||
6690 | if (eeprom->type == em_eeprom_microwire) { | ||||
6691 | eecd &= ~(E1000_EECD_CS0x00000002 | E1000_EECD_SK0x00000001); | ||||
6692 | E1000_WRITE_REG(hw, EECD, eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd))); | ||||
6693 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
6694 | usec_delay(eeprom->delay_usec)(*delay_func)(eeprom->delay_usec); | ||||
6695 | |||||
6696 | /* Clock high */ | ||||
6697 | eecd |= E1000_EECD_SK0x00000001; | ||||
6698 | E1000_WRITE_REG(hw, EECD, eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd))); | ||||
6699 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
6700 | usec_delay(eeprom->delay_usec)(*delay_func)(eeprom->delay_usec); | ||||
6701 | |||||
6702 | /* Select EEPROM */ | ||||
6703 | eecd |= E1000_EECD_CS0x00000002; | ||||
6704 | E1000_WRITE_REG(hw, EECD, eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd))); | ||||
6705 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
6706 | usec_delay(eeprom->delay_usec)(*delay_func)(eeprom->delay_usec); | ||||
6707 | |||||
6708 | /* Clock low */ | ||||
6709 | eecd &= ~E1000_EECD_SK0x00000001; | ||||
6710 | E1000_WRITE_REG(hw, EECD, eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd))); | ||||
6711 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
6712 | usec_delay(eeprom->delay_usec)(*delay_func)(eeprom->delay_usec); | ||||
6713 | } else if (eeprom->type == em_eeprom_spi) { | ||||
6714 | /* Toggle CS to flush commands */ | ||||
6715 | eecd |= E1000_EECD_CS0x00000002; | ||||
6716 | E1000_WRITE_REG(hw, EECD, eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd))); | ||||
6717 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
6718 | usec_delay(eeprom->delay_usec)(*delay_func)(eeprom->delay_usec); | ||||
6719 | eecd &= ~E1000_EECD_CS0x00000002; | ||||
6720 | E1000_WRITE_REG(hw, EECD, eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd))); | ||||
6721 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
6722 | usec_delay(eeprom->delay_usec)(*delay_func)(eeprom->delay_usec); | ||||
6723 | } | ||||
6724 | } | ||||
6725 | |||||
6726 | /****************************************************************************** | ||||
6727 | * Terminates a command by inverting the EEPROM's chip select pin | ||||
6728 | * | ||||
6729 | * hw - Struct containing variables accessed by shared code | ||||
6730 | *****************************************************************************/ | ||||
6731 | static void | ||||
6732 | em_release_eeprom(struct em_hw *hw) | ||||
6733 | { | ||||
6734 | uint32_t eecd; | ||||
6735 | DEBUGFUNC("em_release_eeprom");; | ||||
6736 | |||||
6737 | eecd = E1000_READ_REG(hw, EECD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))))); | ||||
6738 | |||||
6739 | if (hw->eeprom.type == em_eeprom_spi) { | ||||
6740 | eecd |= E1000_EECD_CS0x00000002; /* Pull CS high */ | ||||
6741 | eecd &= ~E1000_EECD_SK0x00000001; /* Lower SCK */ | ||||
6742 | |||||
6743 | E1000_WRITE_REG(hw, EECD, eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd))); | ||||
6744 | |||||
6745 | usec_delay(hw->eeprom.delay_usec)(*delay_func)(hw->eeprom.delay_usec); | ||||
6746 | } else if (hw->eeprom.type == em_eeprom_microwire) { | ||||
6747 | /* cleanup eeprom */ | ||||
6748 | |||||
6749 | /* CS on Microwire is active-high */ | ||||
6750 | eecd &= ~(E1000_EECD_CS0x00000002 | E1000_EECD_DI0x00000004); | ||||
6751 | |||||
6752 | E1000_WRITE_REG(hw, EECD, eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd))); | ||||
6753 | |||||
6754 | /* Rising edge of clock */ | ||||
6755 | eecd |= E1000_EECD_SK0x00000001; | ||||
6756 | E1000_WRITE_REG(hw, EECD, eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd))); | ||||
6757 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
6758 | usec_delay(hw->eeprom.delay_usec)(*delay_func)(hw->eeprom.delay_usec); | ||||
6759 | |||||
6760 | /* Falling edge of clock */ | ||||
6761 | eecd &= ~E1000_EECD_SK0x00000001; | ||||
6762 | E1000_WRITE_REG(hw, EECD, eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd))); | ||||
6763 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
6764 | usec_delay(hw->eeprom.delay_usec)(*delay_func)(hw->eeprom.delay_usec); | ||||
6765 | } | ||||
6766 | /* Stop requesting EEPROM access */ | ||||
6767 | if (hw->mac_type > em_82544) { | ||||
6768 | eecd &= ~E1000_EECD_REQ0x00000040; | ||||
6769 | E1000_WRITE_REG(hw, EECD, eecd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd))); | ||||
6770 | } | ||||
6771 | em_swfw_sync_release(hw, E1000_SWFW_EEP_SM0x0001); | ||||
6772 | } | ||||
6773 | |||||
6774 | /****************************************************************************** | ||||
6775 | * Reads a 16 bit word from the EEPROM. | ||||
6776 | * | ||||
6777 | * hw - Struct containing variables accessed by shared code | ||||
6778 | *****************************************************************************/ | ||||
6779 | STATIC int32_t | ||||
6780 | em_spi_eeprom_ready(struct em_hw *hw) | ||||
6781 | { | ||||
6782 | uint16_t retry_count = 0; | ||||
6783 | uint8_t spi_stat_reg; | ||||
6784 | DEBUGFUNC("em_spi_eeprom_ready");; | ||||
6785 | /* | ||||
6786 | * Read "Status Register" repeatedly until the LSB is cleared. The | ||||
6787 | * EEPROM will signal that the command has been completed by clearing | ||||
6788 | * bit 0 of the internal status register. If it's not cleared within | ||||
6789 | * 5 milliseconds, then error out. | ||||
6790 | */ | ||||
6791 | retry_count = 0; | ||||
6792 | do { | ||||
6793 | em_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI0x05, | ||||
6794 | hw->eeprom.opcode_bits); | ||||
6795 | spi_stat_reg = (uint8_t) em_shift_in_ee_bits(hw, 8); | ||||
6796 | if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI0x01)) | ||||
6797 | break; | ||||
6798 | |||||
6799 | usec_delay(5)(*delay_func)(5); | ||||
6800 | retry_count += 5; | ||||
6801 | |||||
6802 | em_standby_eeprom(hw); | ||||
6803 | } while (retry_count < EEPROM_MAX_RETRY_SPI5000); | ||||
6804 | /* | ||||
6805 | * ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and | ||||
6806 | * only 0-5mSec on 5V devices) | ||||
6807 | */ | ||||
6808 | if (retry_count >= EEPROM_MAX_RETRY_SPI5000) { | ||||
6809 | DEBUGOUT("SPI EEPROM Status error\n"); | ||||
6810 | return -E1000_ERR_EEPROM1; | ||||
6811 | } | ||||
6812 | return E1000_SUCCESS0; | ||||
6813 | } | ||||
6814 | |||||
6815 | /****************************************************************************** | ||||
6816 | * Reads a 16 bit word from the EEPROM. | ||||
6817 | * | ||||
6818 | * hw - Struct containing variables accessed by shared code | ||||
6819 | * offset - offset of word in the EEPROM to read | ||||
6820 | * data - word read from the EEPROM | ||||
6821 | * words - number of words to read | ||||
6822 | *****************************************************************************/ | ||||
6823 | int32_t | ||||
6824 | em_read_eeprom(struct em_hw *hw, uint16_t offset, uint16_t words, | ||||
6825 | uint16_t *data) | ||||
6826 | { | ||||
6827 | struct em_eeprom_info *eeprom = &hw->eeprom; | ||||
6828 | uint32_t i = 0; | ||||
6829 | DEBUGFUNC("em_read_eeprom");; | ||||
6830 | |||||
6831 | /* If eeprom is not yet detected, do so now */ | ||||
6832 | if (eeprom->word_size == 0) | ||||
6833 | em_init_eeprom_params(hw); | ||||
6834 | /* | ||||
6835 | * A check for invalid values: offset too large, too many words, and | ||||
6836 | * not enough words. | ||||
6837 | */ | ||||
6838 | if ((offset >= eeprom->word_size) || | ||||
6839 | (words > eeprom->word_size - offset) || | ||||
6840 | (words == 0)) { | ||||
6841 | DEBUGOUT2("\"words\" parameter out of bounds. Words = %d," | ||||
6842 | " size = %d\n", offset, eeprom->word_size); | ||||
6843 | return -E1000_ERR_EEPROM1; | ||||
6844 | } | ||||
6845 | /* | ||||
6846 | * EEPROM's that don't use EERD to read require us to bit-bang the | ||||
6847 | * SPI directly. In this case, we need to acquire the EEPROM so that | ||||
6848 | * FW or other port software does not interrupt. | ||||
6849 | */ | ||||
6850 | if (em_is_onboard_nvm_eeprom(hw) == TRUE1 && | ||||
6851 | em_get_flash_presence_i210(hw) == TRUE1 && | ||||
6852 | hw->eeprom.use_eerd == FALSE0) { | ||||
6853 | /* Prepare the EEPROM for bit-bang reading */ | ||||
6854 | if (em_acquire_eeprom(hw) != E1000_SUCCESS0) | ||||
6855 | return -E1000_ERR_EEPROM1; | ||||
6856 | } | ||||
6857 | /* Eerd register EEPROM access requires no eeprom acquire/release */ | ||||
6858 | if (eeprom->use_eerd == TRUE1) | ||||
6859 | return em_read_eeprom_eerd(hw, offset, words, data); | ||||
6860 | |||||
6861 | /* ICH EEPROM access is done via the ICH flash controller */ | ||||
6862 | if (eeprom->type == em_eeprom_ich8) | ||||
6863 | return em_read_eeprom_ich8(hw, offset, words, data); | ||||
6864 | |||||
6865 | /* Some i210/i211 have a special OTP chip */ | ||||
6866 | if (eeprom->type == em_eeprom_invm) | ||||
6867 | return em_read_invm_i210(hw, offset, words, data); | ||||
6868 | |||||
6869 | /* | ||||
6870 | * Set up the SPI or Microwire EEPROM for bit-bang reading. We have | ||||
6871 | * acquired the EEPROM at this point, so any returns should release it | ||||
6872 | */ | ||||
6873 | if (eeprom->type == em_eeprom_spi) { | ||||
6874 | uint16_t word_in; | ||||
6875 | uint8_t read_opcode = EEPROM_READ_OPCODE_SPI0x03; | ||||
6876 | if (em_spi_eeprom_ready(hw)) { | ||||
6877 | em_release_eeprom(hw); | ||||
6878 | return -E1000_ERR_EEPROM1; | ||||
6879 | } | ||||
6880 | em_standby_eeprom(hw); | ||||
6881 | /* | ||||
6882 | * Some SPI eeproms use the 8th address bit embedded in the | ||||
6883 | * opcode | ||||
6884 | */ | ||||
6885 | if ((eeprom->address_bits == 8) && (offset >= 128)) | ||||
6886 | read_opcode |= EEPROM_A8_OPCODE_SPI0x08; | ||||
6887 | |||||
6888 | /* Send the READ command (opcode + addr) */ | ||||
6889 | em_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits); | ||||
6890 | em_shift_out_ee_bits(hw, (uint16_t) (offset * 2), | ||||
6891 | eeprom->address_bits); | ||||
6892 | /* | ||||
6893 | * Read the data. The address of the eeprom internally | ||||
6894 | * increments with each byte (spi) being read, saving on the | ||||
6895 | * overhead of eeprom setup and tear-down. The address | ||||
6896 | * counter will roll over if reading beyond the size of the | ||||
6897 | * eeprom, thus allowing the entire memory to be read | ||||
6898 | * starting from any offset. | ||||
6899 | */ | ||||
6900 | for (i = 0; i < words; i++) { | ||||
6901 | word_in = em_shift_in_ee_bits(hw, 16); | ||||
6902 | data[i] = (word_in >> 8) | (word_in << 8); | ||||
6903 | } | ||||
6904 | } else if (eeprom->type == em_eeprom_microwire) { | ||||
6905 | for (i = 0; i < words; i++) { | ||||
6906 | /* Send the READ command (opcode + addr) */ | ||||
6907 | em_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE0x6, | ||||
6908 | eeprom->opcode_bits); | ||||
6909 | em_shift_out_ee_bits(hw, (uint16_t) (offset + i), | ||||
6910 | eeprom->address_bits); | ||||
6911 | /* | ||||
6912 | * Read the data. For microwire, each word requires | ||||
6913 | * the overhead of eeprom setup and tear-down. | ||||
6914 | */ | ||||
6915 | data[i] = em_shift_in_ee_bits(hw, 16); | ||||
6916 | em_standby_eeprom(hw); | ||||
6917 | } | ||||
6918 | } | ||||
6919 | /* End this read operation */ | ||||
6920 | em_release_eeprom(hw); | ||||
6921 | |||||
6922 | return E1000_SUCCESS0; | ||||
6923 | } | ||||
6924 | |||||
6925 | /****************************************************************************** | ||||
6926 | * Reads a 16 bit word from the EEPROM using the EERD register. | ||||
6927 | * | ||||
6928 | * hw - Struct containing variables accessed by shared code | ||||
6929 | * offset - offset of word in the EEPROM to read | ||||
6930 | * data - word read from the EEPROM | ||||
6931 | * words - number of words to read | ||||
6932 | *****************************************************************************/ | ||||
6933 | STATIC int32_t | ||||
6934 | em_read_eeprom_eerd(struct em_hw *hw, uint16_t offset, uint16_t words, | ||||
6935 | uint16_t *data) | ||||
6936 | { | ||||
6937 | uint32_t i, eerd = 0; | ||||
6938 | int32_t error = 0; | ||||
6939 | for (i = 0; i < words; i++) { | ||||
6940 | eerd = ((offset + i) << E1000_EEPROM_RW_ADDR_SHIFT2) + | ||||
6941 | E1000_EEPROM_RW_REG_START1; | ||||
6942 | |||||
6943 | E1000_WRITE_REG(hw, EERD, eerd)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00014 : em_translate_82542_register (0x00014))), (eerd))); | ||||
6944 | error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ0); | ||||
6945 | |||||
6946 | if (error) { | ||||
6947 | break; | ||||
6948 | } | ||||
6949 | data[i] = (E1000_READ_REG(hw, EERD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00014 : em_translate_82542_register (0x00014))))) >> | ||||
6950 | E1000_EEPROM_RW_REG_DATA16); | ||||
6951 | |||||
6952 | } | ||||
6953 | |||||
6954 | return error; | ||||
6955 | } | ||||
6956 | |||||
6957 | /****************************************************************************** | ||||
6958 | * Writes a 16 bit word from the EEPROM using the EEWR register. | ||||
6959 | * | ||||
6960 | * hw - Struct containing variables accessed by shared code | ||||
6961 | * offset - offset of word in the EEPROM to read | ||||
6962 | * data - word read from the EEPROM | ||||
6963 | * words - number of words to read | ||||
6964 | *****************************************************************************/ | ||||
6965 | STATIC int32_t | ||||
6966 | em_write_eeprom_eewr(struct em_hw *hw, uint16_t offset, uint16_t words, | ||||
6967 | uint16_t *data) | ||||
6968 | { | ||||
6969 | uint32_t register_value = 0; | ||||
6970 | uint32_t i = 0; | ||||
6971 | int32_t error = 0; | ||||
6972 | if (em_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM0x0001)) | ||||
6973 | return -E1000_ERR_SWFW_SYNC13; | ||||
6974 | |||||
6975 | for (i = 0; i < words; i++) { | ||||
6976 | register_value = (data[i] << E1000_EEPROM_RW_REG_DATA16) | | ||||
6977 | ((offset + i) << E1000_EEPROM_RW_ADDR_SHIFT2) | | ||||
6978 | E1000_EEPROM_RW_REG_START1; | ||||
6979 | |||||
6980 | error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE1); | ||||
6981 | if (error) { | ||||
6982 | break; | ||||
6983 | } | ||||
6984 | E1000_WRITE_REG(hw, EEWR, register_value)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x0102C : em_translate_82542_register (0x0102C))), (register_value))); | ||||
6985 | |||||
6986 | error = em_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE1); | ||||
6987 | |||||
6988 | if (error) { | ||||
6989 | break; | ||||
6990 | } | ||||
6991 | } | ||||
6992 | |||||
6993 | em_swfw_sync_release(hw, E1000_SWFW_EEP_SM0x0001); | ||||
6994 | return error; | ||||
6995 | } | ||||
6996 | |||||
6997 | /****************************************************************************** | ||||
6998 | * Polls the status bit (bit 1) of the EERD to determine when the read is done. | ||||
6999 | * | ||||
7000 | * hw - Struct containing variables accessed by shared code | ||||
7001 | *****************************************************************************/ | ||||
7002 | STATIC int32_t | ||||
7003 | em_poll_eerd_eewr_done(struct em_hw *hw, int eerd) | ||||
7004 | { | ||||
7005 | uint32_t attempts = 100000; | ||||
7006 | uint32_t i, reg = 0; | ||||
7007 | int32_t done = E1000_ERR_EEPROM1; | ||||
7008 | for (i = 0; i < attempts; i++) { | ||||
7009 | if (eerd == E1000_EEPROM_POLL_READ0) | ||||
7010 | reg = E1000_READ_REG(hw, EERD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00014 : em_translate_82542_register (0x00014))))); | ||||
7011 | else | ||||
7012 | reg = E1000_READ_REG(hw, EEWR)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x0102C : em_translate_82542_register (0x0102C))))); | ||||
7013 | |||||
7014 | if (reg & E1000_EEPROM_RW_REG_DONE2) { | ||||
7015 | done = E1000_SUCCESS0; | ||||
7016 | break; | ||||
7017 | } | ||||
7018 | usec_delay(5)(*delay_func)(5); | ||||
7019 | } | ||||
7020 | |||||
7021 | return done; | ||||
7022 | } | ||||
7023 | |||||
7024 | /****************************************************************************** | ||||
7025 | * Description: Determines if the onboard NVM is FLASH or EEPROM. | ||||
7026 | * | ||||
7027 | * hw - Struct containing variables accessed by shared code | ||||
7028 | *****************************************************************************/ | ||||
7029 | STATIC boolean_t | ||||
7030 | em_is_onboard_nvm_eeprom(struct em_hw *hw) | ||||
7031 | { | ||||
7032 | uint32_t eecd = 0; | ||||
7033 | DEBUGFUNC("em_is_onboard_nvm_eeprom");; | ||||
7034 | |||||
7035 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) | ||||
7036 | return FALSE0; | ||||
7037 | |||||
7038 | if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) { | ||||
7039 | eecd = E1000_READ_REG(hw, EECD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))))); | ||||
7040 | |||||
7041 | /* Isolate bits 15 & 16 */ | ||||
7042 | eecd = ((eecd >> 15) & 0x03); | ||||
7043 | |||||
7044 | /* If both bits are set, device is Flash type */ | ||||
7045 | if (eecd == 0x03) { | ||||
7046 | return FALSE0; | ||||
7047 | } | ||||
7048 | } | ||||
7049 | return TRUE1; | ||||
7050 | } | ||||
7051 | |||||
7052 | /****************************************************************************** | ||||
7053 | * Check if flash device is detected. | ||||
7054 | * | ||||
7055 | * hw - Struct containing variables accessed by shared code | ||||
7056 | *****************************************************************************/ | ||||
7057 | boolean_t | ||||
7058 | em_get_flash_presence_i210(struct em_hw *hw) | ||||
7059 | { | ||||
7060 | uint32_t eecd; | ||||
7061 | DEBUGFUNC("em_get_flash_presence_i210");; | ||||
7062 | |||||
7063 | if (hw->mac_type != em_i210) | ||||
7064 | return TRUE1; | ||||
7065 | |||||
7066 | eecd = E1000_READ_REG(hw, EECD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))))); | ||||
7067 | |||||
7068 | if (eecd & E1000_EECD_FLUPD0x00080000) | ||||
7069 | return TRUE1; | ||||
7070 | |||||
7071 | return FALSE0; | ||||
7072 | } | ||||
7073 | |||||
7074 | /****************************************************************************** | ||||
7075 | * Verifies that the EEPROM has a valid checksum | ||||
7076 | * | ||||
7077 | * hw - Struct containing variables accessed by shared code | ||||
7078 | * | ||||
7079 | * Reads the first 64 16 bit words of the EEPROM and sums the values read. | ||||
7080 | * If the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is | ||||
7081 | * valid. | ||||
7082 | *****************************************************************************/ | ||||
7083 | int32_t | ||||
7084 | em_validate_eeprom_checksum(struct em_hw *hw) | ||||
7085 | { | ||||
7086 | uint16_t checksum = 0; | ||||
7087 | uint16_t i, eeprom_data; | ||||
7088 | uint16_t checksum_reg; | ||||
7089 | DEBUGFUNC("em_validate_eeprom_checksum");; | ||||
7090 | |||||
7091 | checksum_reg = hw->mac_type != em_icp_xxxx ? | ||||
7092 | EEPROM_CHECKSUM_REG0x003F : | ||||
7093 | EEPROM_CHECKSUM_REG_ICP_xxxx0x003F; | ||||
7094 | |||||
7095 | if (((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) && | ||||
7096 | (em_is_onboard_nvm_eeprom(hw) == FALSE0)) { | ||||
7097 | /* | ||||
7098 | * Check bit 4 of word 10h. If it is 0, firmware is done | ||||
7099 | * updating 10h-12h. Checksum may need to be fixed. | ||||
7100 | */ | ||||
7101 | em_read_eeprom(hw, 0x10, 1, &eeprom_data); | ||||
7102 | if ((eeprom_data & 0x10) == 0) { | ||||
7103 | /* | ||||
7104 | * Read 0x23 and check bit 15. This bit is a 1 when | ||||
7105 | * the checksum has already been fixed. If the | ||||
7106 | * checksum is still wrong and this bit is a 1, we | ||||
7107 | * need to return bad checksum. Otherwise, we need | ||||
7108 | * to set this bit to a 1 and update the checksum. | ||||
7109 | */ | ||||
7110 | em_read_eeprom(hw, 0x23, 1, &eeprom_data); | ||||
7111 | if ((eeprom_data & 0x8000) == 0) { | ||||
7112 | eeprom_data |= 0x8000; | ||||
7113 | em_write_eeprom(hw, 0x23, 1, &eeprom_data); | ||||
7114 | em_update_eeprom_checksum(hw); | ||||
7115 | } | ||||
7116 | } | ||||
7117 | } | ||||
7118 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | ||||
7119 | uint16_t word; | ||||
7120 | uint16_t valid_csum_mask; | ||||
7121 | |||||
7122 | /* | ||||
7123 | * Drivers must allocate the shadow ram structure for the | ||||
7124 | * EEPROM checksum to be updated. Otherwise, this bit as | ||||
7125 | * well as the checksum must both be set correctly for this | ||||
7126 | * validation to pass. | ||||
7127 | */ | ||||
7128 | switch (hw->mac_type) { | ||||
7129 | case em_pch_lpt: | ||||
7130 | case em_pch_spt: | ||||
7131 | case em_pch_cnp: | ||||
7132 | word = EEPROM_COMPAT0x0003; | ||||
7133 | valid_csum_mask = EEPROM_COMPAT_VALID_CSUM0x0001; | ||||
7134 | break; | ||||
7135 | default: | ||||
7136 | word = EEPROM_FUTURE_INIT_WORD10x0019; | ||||
7137 | valid_csum_mask = EEPROM_FUTURE_INIT_WORD1_VALID_CSUM0x0040; | ||||
7138 | break; | ||||
7139 | } | ||||
7140 | em_read_eeprom(hw, word, 1, &eeprom_data); | ||||
7141 | if ((eeprom_data & valid_csum_mask) == 0) { | ||||
7142 | eeprom_data |= valid_csum_mask; | ||||
7143 | em_write_eeprom(hw, word, 1, &eeprom_data); | ||||
7144 | em_update_eeprom_checksum(hw); | ||||
7145 | } | ||||
7146 | } | ||||
7147 | for (i = 0; i < (checksum_reg + 1); i++) { | ||||
7148 | if (em_read_eeprom(hw, i, 1, &eeprom_data) < 0) { | ||||
7149 | DEBUGOUT("EEPROM Read Error\n"); | ||||
7150 | return -E1000_ERR_EEPROM1; | ||||
7151 | } | ||||
7152 | checksum += eeprom_data; | ||||
7153 | } | ||||
7154 | |||||
7155 | if (checksum == (uint16_t) EEPROM_SUM0xBABA) | ||||
7156 | return E1000_SUCCESS0; | ||||
7157 | else { | ||||
7158 | DEBUGOUT("EEPROM Checksum Invalid\n"); | ||||
7159 | return -E1000_ERR_EEPROM1; | ||||
7160 | } | ||||
7161 | } | ||||
7162 | |||||
7163 | /****************************************************************************** | ||||
7164 | * Calculates the EEPROM checksum and writes it to the EEPROM | ||||
7165 | * | ||||
7166 | * hw - Struct containing variables accessed by shared code | ||||
7167 | * | ||||
7168 | * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA. | ||||
7169 | * Writes the difference to word offset 63 of the EEPROM. | ||||
7170 | *****************************************************************************/ | ||||
7171 | int32_t | ||||
7172 | em_update_eeprom_checksum(struct em_hw *hw) | ||||
7173 | { | ||||
7174 | uint32_t ctrl_ext; | ||||
7175 | uint16_t checksum = 0; | ||||
7176 | uint16_t i, eeprom_data; | ||||
7177 | DEBUGFUNC("em_update_eeprom_checksum");; | ||||
7178 | |||||
7179 | for (i = 0; i < EEPROM_CHECKSUM_REG0x003F; i++) { | ||||
7180 | if (em_read_eeprom(hw, i, 1, &eeprom_data) < 0) { | ||||
7181 | DEBUGOUT("EEPROM Read Error\n"); | ||||
7182 | return -E1000_ERR_EEPROM1; | ||||
7183 | } | ||||
7184 | checksum += eeprom_data; | ||||
7185 | } | ||||
7186 | checksum = (uint16_t) EEPROM_SUM0xBABA - checksum; | ||||
7187 | if (em_write_eeprom(hw, EEPROM_CHECKSUM_REG0x003F, 1, &checksum) < 0) { | ||||
7188 | DEBUGOUT("EEPROM Write Error\n"); | ||||
7189 | return -E1000_ERR_EEPROM1; | ||||
7190 | } else if (hw->eeprom.type == em_eeprom_flash) { | ||||
7191 | em_commit_shadow_ram(hw); | ||||
7192 | } else if (hw->eeprom.type == em_eeprom_ich8) { | ||||
7193 | em_commit_shadow_ram(hw); | ||||
7194 | /* | ||||
7195 | * Reload the EEPROM, or else modifications will not appear | ||||
7196 | * until after next adapter reset. | ||||
7197 | */ | ||||
7198 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))))); | ||||
7199 | ctrl_ext |= E1000_CTRL_EXT_EE_RST0x00002000; | ||||
7200 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))), (ctrl_ext))); | ||||
7201 | msec_delay(10)(*delay_func)(1000*(10)); | ||||
7202 | } | ||||
7203 | return E1000_SUCCESS0; | ||||
7204 | } | ||||
7205 | |||||
7206 | /****************************************************************************** | ||||
7207 | * Parent function for writing words to the different EEPROM types. | ||||
7208 | * | ||||
7209 | * hw - Struct containing variables accessed by shared code | ||||
7210 | * offset - offset within the EEPROM to be written to | ||||
7211 | * words - number of words to write | ||||
7212 | * data - 16 bit word to be written to the EEPROM | ||||
7213 | * | ||||
7214 | * If em_update_eeprom_checksum is not called after this function, the | ||||
7215 | * EEPROM will most likely contain an invalid checksum. | ||||
7216 | *****************************************************************************/ | ||||
7217 | int32_t | ||||
7218 | em_write_eeprom(struct em_hw *hw, uint16_t offset, uint16_t words, | ||||
7219 | uint16_t *data) | ||||
7220 | { | ||||
7221 | struct em_eeprom_info *eeprom = &hw->eeprom; | ||||
7222 | int32_t status = 0; | ||||
7223 | DEBUGFUNC("em_write_eeprom");; | ||||
7224 | |||||
7225 | /* If eeprom is not yet detected, do so now */ | ||||
7226 | if (eeprom->word_size == 0) | ||||
7227 | em_init_eeprom_params(hw); | ||||
7228 | /* | ||||
7229 | * A check for invalid values: offset too large, too many words, and | ||||
7230 | * not enough words. | ||||
7231 | */ | ||||
7232 | if ((offset >= eeprom->word_size) || | ||||
7233 | (words > eeprom->word_size - offset) || | ||||
7234 | (words == 0)) { | ||||
7235 | DEBUGOUT("\"words\" parameter out of bounds\n"); | ||||
7236 | return -E1000_ERR_EEPROM1; | ||||
7237 | } | ||||
7238 | /* 82573/4 writes only through eewr */ | ||||
7239 | if (eeprom->use_eewr == TRUE1) | ||||
7240 | return em_write_eeprom_eewr(hw, offset, words, data); | ||||
7241 | |||||
7242 | if (eeprom->type == em_eeprom_ich8) | ||||
7243 | return em_write_eeprom_ich8(hw, offset, words, data); | ||||
7244 | |||||
7245 | /* Prepare the EEPROM for writing */ | ||||
7246 | if (em_acquire_eeprom(hw) != E1000_SUCCESS0) | ||||
7247 | return -E1000_ERR_EEPROM1; | ||||
7248 | |||||
7249 | if (eeprom->type == em_eeprom_microwire) { | ||||
7250 | status = em_write_eeprom_microwire(hw, offset, words, data); | ||||
7251 | } else { | ||||
7252 | status = em_write_eeprom_spi(hw, offset, words, data); | ||||
7253 | msec_delay(10)(*delay_func)(1000*(10)); | ||||
7254 | } | ||||
7255 | |||||
7256 | /* Done with writing */ | ||||
7257 | em_release_eeprom(hw); | ||||
7258 | |||||
7259 | return status; | ||||
7260 | } | ||||
7261 | |||||
7262 | /****************************************************************************** | ||||
7263 | * Writes a 16 bit word to a given offset in an SPI EEPROM. | ||||
7264 | * | ||||
7265 | * hw - Struct containing variables accessed by shared code | ||||
7266 | * offset - offset within the EEPROM to be written to | ||||
7267 | * words - number of words to write | ||||
7268 | * data - pointer to array of 8 bit words to be written to the EEPROM | ||||
7269 | * | ||||
7270 | *****************************************************************************/ | ||||
7271 | STATIC int32_t | ||||
7272 | em_write_eeprom_spi(struct em_hw *hw, uint16_t offset, uint16_t words, | ||||
7273 | uint16_t *data) | ||||
7274 | { | ||||
7275 | struct em_eeprom_info *eeprom = &hw->eeprom; | ||||
7276 | uint16_t widx = 0; | ||||
7277 | DEBUGFUNC("em_write_eeprom_spi");; | ||||
7278 | |||||
7279 | while (widx < words) { | ||||
7280 | uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI0x02; | ||||
7281 | if (em_spi_eeprom_ready(hw)) | ||||
7282 | return -E1000_ERR_EEPROM1; | ||||
7283 | |||||
7284 | em_standby_eeprom(hw); | ||||
7285 | |||||
7286 | /* Send the WRITE ENABLE command (8 bit opcode ) */ | ||||
7287 | em_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI0x06, | ||||
7288 | eeprom->opcode_bits); | ||||
7289 | |||||
7290 | em_standby_eeprom(hw); | ||||
7291 | /* | ||||
7292 | * Some SPI eeproms use the 8th address bit embedded in the | ||||
7293 | * opcode | ||||
7294 | */ | ||||
7295 | if ((eeprom->address_bits == 8) && (offset >= 128)) | ||||
7296 | write_opcode |= EEPROM_A8_OPCODE_SPI0x08; | ||||
7297 | |||||
7298 | /* Send the Write command (8-bit opcode + addr) */ | ||||
7299 | em_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits); | ||||
7300 | |||||
7301 | em_shift_out_ee_bits(hw, (uint16_t) ((offset + widx) * 2), | ||||
7302 | eeprom->address_bits); | ||||
7303 | |||||
7304 | /* Send the data */ | ||||
7305 | /* | ||||
7306 | * Loop to allow for up to whole page write (32 bytes) of | ||||
7307 | * eeprom | ||||
7308 | */ | ||||
7309 | while (widx < words) { | ||||
7310 | uint16_t word_out = data[widx]; | ||||
7311 | word_out = (word_out >> 8) | (word_out << 8); | ||||
7312 | em_shift_out_ee_bits(hw, word_out, 16); | ||||
7313 | widx++; | ||||
7314 | /* | ||||
7315 | * Some larger eeprom sizes are capable of a 32-byte | ||||
7316 | * PAGE WRITE operation, while the smaller eeproms | ||||
7317 | * are capable of an 8-byte PAGE WRITE operation. | ||||
7318 | * Break the inner loop to pass new address | ||||
7319 | */ | ||||
7320 | if ((((offset + widx) * 2) % eeprom->page_size) == 0) { | ||||
7321 | em_standby_eeprom(hw); | ||||
7322 | break; | ||||
7323 | } | ||||
7324 | } | ||||
7325 | } | ||||
7326 | |||||
7327 | return E1000_SUCCESS0; | ||||
7328 | } | ||||
7329 | |||||
7330 | /****************************************************************************** | ||||
7331 | * Writes a 16 bit word to a given offset in a Microwire EEPROM. | ||||
7332 | * | ||||
7333 | * hw - Struct containing variables accessed by shared code | ||||
7334 | * offset - offset within the EEPROM to be written to | ||||
7335 | * words - number of words to write | ||||
7336 | * data - pointer to array of 16 bit words to be written to the EEPROM | ||||
7337 | * | ||||
7338 | *****************************************************************************/ | ||||
7339 | STATIC int32_t | ||||
7340 | em_write_eeprom_microwire(struct em_hw *hw, uint16_t offset, uint16_t words, | ||||
7341 | uint16_t *data) | ||||
7342 | { | ||||
7343 | struct em_eeprom_info *eeprom = &hw->eeprom; | ||||
7344 | uint32_t eecd; | ||||
7345 | uint16_t words_written = 0; | ||||
7346 | uint16_t i = 0; | ||||
7347 | DEBUGFUNC("em_write_eeprom_microwire");; | ||||
7348 | /* | ||||
7349 | * Send the write enable command to the EEPROM (3-bit opcode plus | ||||
7350 | * 6/8-bit dummy address beginning with 11). It's less work to | ||||
7351 | * include the 11 of the dummy address as part of the opcode than it | ||||
7352 | * is to shift it over the correct number of bits for the address. | ||||
7353 | * This puts the EEPROM into write/erase mode. | ||||
7354 | */ | ||||
7355 | em_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE0x13, | ||||
7356 | (uint16_t) (eeprom->opcode_bits + 2)); | ||||
7357 | |||||
7358 | em_shift_out_ee_bits(hw, 0, (uint16_t) (eeprom->address_bits - 2)); | ||||
7359 | |||||
7360 | /* Prepare the EEPROM */ | ||||
7361 | em_standby_eeprom(hw); | ||||
7362 | |||||
7363 | while (words_written < words) { | ||||
7364 | /* Send the Write command (3-bit opcode + addr) */ | ||||
7365 | em_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE0x5, | ||||
7366 | eeprom->opcode_bits); | ||||
7367 | |||||
7368 | em_shift_out_ee_bits(hw, (uint16_t) (offset + words_written), | ||||
7369 | eeprom->address_bits); | ||||
7370 | |||||
7371 | /* Send the data */ | ||||
7372 | em_shift_out_ee_bits(hw, data[words_written], 16); | ||||
7373 | /* | ||||
7374 | * Toggle the CS line. This in effect tells the EEPROM to | ||||
7375 | * execute the previous command. | ||||
7376 | */ | ||||
7377 | em_standby_eeprom(hw); | ||||
7378 | /* | ||||
7379 | * Read DO repeatedly until it is high (equal to '1'). The | ||||
7380 | * EEPROM will signal that the command has been completed by | ||||
7381 | * raising the DO signal. If DO does not go high in 10 | ||||
7382 | * milliseconds, then error out. | ||||
7383 | */ | ||||
7384 | for (i = 0; i < 200; i++) { | ||||
7385 | eecd = E1000_READ_REG(hw, EECD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))))); | ||||
7386 | if (eecd & E1000_EECD_DO0x00000008) | ||||
7387 | break; | ||||
7388 | usec_delay(50)(*delay_func)(50); | ||||
7389 | } | ||||
7390 | if (i == 200) { | ||||
7391 | DEBUGOUT("EEPROM Write did not complete\n"); | ||||
7392 | return -E1000_ERR_EEPROM1; | ||||
7393 | } | ||||
7394 | /* Recover from write */ | ||||
7395 | em_standby_eeprom(hw); | ||||
7396 | |||||
7397 | words_written++; | ||||
7398 | } | ||||
7399 | /* | ||||
7400 | * Send the write disable command to the EEPROM (3-bit opcode plus | ||||
7401 | * 6/8-bit dummy address beginning with 10). It's less work to | ||||
7402 | * include the 10 of the dummy address as part of the opcode than it | ||||
7403 | * is to shift it over the correct number of bits for the address. | ||||
7404 | * This takes the EEPROM out of write/erase mode. | ||||
7405 | */ | ||||
7406 | em_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE0x10, | ||||
7407 | (uint16_t) (eeprom->opcode_bits + 2)); | ||||
7408 | |||||
7409 | em_shift_out_ee_bits(hw, 0, (uint16_t) (eeprom->address_bits - 2)); | ||||
7410 | |||||
7411 | return E1000_SUCCESS0; | ||||
7412 | } | ||||
7413 | |||||
7414 | /****************************************************************************** | ||||
7415 | * Flushes the cached eeprom to NVM. This is done by saving the modified values | ||||
7416 | * in the eeprom cache and the non modified values in the currently active bank | ||||
7417 | * to the new bank. | ||||
7418 | * | ||||
7419 | * hw - Struct containing variables accessed by shared code | ||||
7420 | * offset - offset of word in the EEPROM to read | ||||
7421 | * data - word read from the EEPROM | ||||
7422 | * words - number of words to read | ||||
7423 | *****************************************************************************/ | ||||
7424 | STATIC int32_t | ||||
7425 | em_commit_shadow_ram(struct em_hw *hw) | ||||
7426 | { | ||||
7427 | uint32_t attempts = 100000; | ||||
7428 | uint32_t eecd = 0; | ||||
7429 | uint32_t flop = 0; | ||||
7430 | uint32_t i = 0; | ||||
7431 | int32_t error = E1000_SUCCESS0; | ||||
7432 | uint32_t old_bank_offset = 0; | ||||
7433 | uint32_t new_bank_offset = 0; | ||||
7434 | uint8_t low_byte = 0; | ||||
7435 | uint8_t high_byte = 0; | ||||
7436 | boolean_t sector_write_failed = FALSE0; | ||||
7437 | if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) { | ||||
7438 | /* | ||||
7439 | * The flop register will be used to determine if flash type | ||||
7440 | * is STM | ||||
7441 | */ | ||||
7442 | flop = E1000_READ_REG(hw, FLOP)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x0103C : em_translate_82542_register (0x0103C))))); | ||||
7443 | for (i = 0; i < attempts; i++) { | ||||
7444 | eecd = E1000_READ_REG(hw, EECD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))))); | ||||
7445 | if ((eecd & E1000_EECD_FLUPD0x00080000) == 0) { | ||||
7446 | break; | ||||
7447 | } | ||||
7448 | usec_delay(5)(*delay_func)(5); | ||||
7449 | } | ||||
7450 | |||||
7451 | if (i == attempts) { | ||||
7452 | return -E1000_ERR_EEPROM1; | ||||
7453 | } | ||||
7454 | /* | ||||
7455 | * If STM opcode located in bits 15:8 of flop, reset firmware | ||||
7456 | */ | ||||
7457 | if ((flop & 0xFF00) == E1000_STM_OPCODE0xDB00) { | ||||
7458 | E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x08F00 : em_translate_82542_register (0x08F00))), (0xC0))); | ||||
7459 | } | ||||
7460 | /* Perform the flash update */ | ||||
7461 | E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (eecd | 0x00080000))); | ||||
7462 | |||||
7463 | for (i = 0; i < attempts; i++) { | ||||
7464 | eecd = E1000_READ_REG(hw, EECD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))))); | ||||
7465 | if ((eecd & E1000_EECD_FLUPD0x00080000) == 0) { | ||||
7466 | break; | ||||
7467 | } | ||||
7468 | usec_delay(5)(*delay_func)(5); | ||||
7469 | } | ||||
7470 | |||||
7471 | if (i == attempts) { | ||||
7472 | return -E1000_ERR_EEPROM1; | ||||
7473 | } | ||||
7474 | } | ||||
7475 | if ((hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan) && | ||||
7476 | hw->eeprom_shadow_ram != NULL((void *)0)) { | ||||
7477 | /* | ||||
7478 | * We're writing to the opposite bank so if we're on bank 1, | ||||
7479 | * write to bank 0 etc. We also need to erase the segment | ||||
7480 | * that is going to be written | ||||
7481 | */ | ||||
7482 | if (!(E1000_READ_REG(hw, EECD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))))) & E1000_EECD_SEC1VAL0x00400000)) { | ||||
7483 | new_bank_offset = hw->flash_bank_size * 2; | ||||
7484 | old_bank_offset = 0; | ||||
7485 | em_erase_ich8_4k_segment(hw, 1); | ||||
7486 | } else { | ||||
7487 | old_bank_offset = hw->flash_bank_size * 2; | ||||
7488 | new_bank_offset = 0; | ||||
7489 | em_erase_ich8_4k_segment(hw, 0); | ||||
7490 | } | ||||
7491 | |||||
7492 | sector_write_failed = FALSE0; | ||||
7493 | /* | ||||
7494 | * Loop for every byte in the shadow RAM, which is in units | ||||
7495 | * of words. | ||||
7496 | */ | ||||
7497 | for (i = 0; i < E1000_SHADOW_RAM_WORDS2048; i++) { | ||||
7498 | /* | ||||
7499 | * Determine whether to write the value stored in the | ||||
7500 | * other NVM bank or a modified value stored in the | ||||
7501 | * shadow RAM | ||||
7502 | */ | ||||
7503 | if (hw->eeprom_shadow_ram[i].modified == TRUE1) { | ||||
7504 | low_byte = (uint8_t) | ||||
7505 | hw->eeprom_shadow_ram[i].eeprom_word; | ||||
7506 | usec_delay(100)(*delay_func)(100); | ||||
7507 | error = em_verify_write_ich8_byte(hw, | ||||
7508 | (i << 1) + new_bank_offset, low_byte); | ||||
7509 | |||||
7510 | if (error != E1000_SUCCESS0) | ||||
7511 | sector_write_failed = TRUE1; | ||||
7512 | else { | ||||
7513 | high_byte = (uint8_t) | ||||
7514 | (hw->eeprom_shadow_ram | ||||
7515 | [i].eeprom_word >> 8); | ||||
7516 | usec_delay(100)(*delay_func)(100); | ||||
7517 | } | ||||
7518 | } else { | ||||
7519 | em_read_ich8_byte(hw, (i << 1) + | ||||
7520 | old_bank_offset, &low_byte); | ||||
7521 | usec_delay(100)(*delay_func)(100); | ||||
7522 | error = em_verify_write_ich8_byte(hw, | ||||
7523 | (i << 1) + new_bank_offset, low_byte); | ||||
7524 | |||||
7525 | if (error != E1000_SUCCESS0) | ||||
7526 | sector_write_failed = TRUE1; | ||||
7527 | else { | ||||
7528 | em_read_ich8_byte(hw, (i << 1) + | ||||
7529 | old_bank_offset + 1, &high_byte); | ||||
7530 | usec_delay(100)(*delay_func)(100); | ||||
7531 | } | ||||
7532 | } | ||||
7533 | /* | ||||
7534 | * If the write of the low byte was successful, go | ||||
7535 | * ahread and write the high byte while checking to | ||||
7536 | * make sure that if it is the signature byte, then | ||||
7537 | * it is handled properly | ||||
7538 | */ | ||||
7539 | if (sector_write_failed == FALSE0) { | ||||
7540 | /* | ||||
7541 | * If the word is 0x13, then make sure the | ||||
7542 | * signature bits (15:14) are 11b until the | ||||
7543 | * commit has completed. This will allow us | ||||
7544 | * to write 10b which indicates the signature | ||||
7545 | * is valid. We want to do this after the | ||||
7546 | * write has completed so that we don't mark | ||||
7547 | * the segment valid while the write is still | ||||
7548 | * in progress | ||||
7549 | */ | ||||
7550 | if (i == E1000_ICH_NVM_SIG_WORD0x13) | ||||
7551 | high_byte = E1000_ICH_NVM_VALID_SIG_MASK0xC0 | | ||||
7552 | high_byte; | ||||
7553 | |||||
7554 | error = em_verify_write_ich8_byte(hw, (i << 1) | ||||
7555 | + new_bank_offset + 1, high_byte); | ||||
7556 | if (error != E1000_SUCCESS0) | ||||
7557 | sector_write_failed = TRUE1; | ||||
7558 | |||||
7559 | } else { | ||||
7560 | /* | ||||
7561 | * If the write failed then break from the | ||||
7562 | * loop and return an error | ||||
7563 | */ | ||||
7564 | break; | ||||
7565 | } | ||||
7566 | } | ||||
7567 | /* | ||||
7568 | * Don't bother writing the segment valid bits if sector | ||||
7569 | * programming failed. | ||||
7570 | */ | ||||
7571 | if (sector_write_failed == FALSE0) { | ||||
7572 | /* | ||||
7573 | * Finally validate the new segment by setting bit | ||||
7574 | * 15:14 to 10b in word 0x13 , this can be done | ||||
7575 | * without an erase as well since these bits are 11 | ||||
7576 | * to start with and we need to change bit 14 to 0b | ||||
7577 | */ | ||||
7578 | em_read_ich8_byte(hw, E1000_ICH_NVM_SIG_WORD0x13 * 2 + 1 + | ||||
7579 | new_bank_offset, &high_byte); | ||||
7580 | high_byte &= 0xBF; | ||||
7581 | error = em_verify_write_ich8_byte(hw, | ||||
7582 | E1000_ICH_NVM_SIG_WORD0x13 * 2 + 1 + new_bank_offset, | ||||
7583 | high_byte); | ||||
7584 | /* | ||||
7585 | * And invalidate the previously valid segment by | ||||
7586 | * setting its signature word (0x13) high_byte to 0b. | ||||
7587 | * This can be done without an erase because flash | ||||
7588 | * erase sets all bits to 1's. We can write 1's to | ||||
7589 | * 0's without an erase | ||||
7590 | */ | ||||
7591 | if (error == E1000_SUCCESS0) { | ||||
7592 | error = em_verify_write_ich8_byte(hw, | ||||
7593 | E1000_ICH_NVM_SIG_WORD0x13 * 2 + 1 + | ||||
7594 | old_bank_offset, 0); | ||||
7595 | } | ||||
7596 | /* Clear the now not used entry in the cache */ | ||||
7597 | for (i = 0; i < E1000_SHADOW_RAM_WORDS2048; i++) { | ||||
7598 | hw->eeprom_shadow_ram[i].modified = FALSE0; | ||||
7599 | hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF; | ||||
7600 | } | ||||
7601 | } | ||||
7602 | } | ||||
7603 | return error; | ||||
7604 | } | ||||
7605 | |||||
7606 | /****************************************************************************** | ||||
7607 | * Reads the adapter's part number from the EEPROM | ||||
7608 | * | ||||
7609 | * hw - Struct containing variables accessed by shared code | ||||
7610 | * part_num - Adapter's part number | ||||
7611 | *****************************************************************************/ | ||||
7612 | int32_t | ||||
7613 | em_read_part_num(struct em_hw *hw, uint32_t *part_num) | ||||
7614 | { | ||||
7615 | uint16_t offset = EEPROM_PBA_BYTE_18; | ||||
7616 | uint16_t eeprom_data; | ||||
7617 | DEBUGFUNC("em_read_part_num");; | ||||
7618 | |||||
7619 | /* Get word 0 from EEPROM */ | ||||
7620 | if (em_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { | ||||
7621 | DEBUGOUT("EEPROM Read Error\n"); | ||||
7622 | return -E1000_ERR_EEPROM1; | ||||
7623 | } | ||||
7624 | /* Save word 0 in upper half of part_num */ | ||||
7625 | *part_num = (uint32_t) (eeprom_data << 16); | ||||
7626 | |||||
7627 | /* Get word 1 from EEPROM */ | ||||
7628 | if (em_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) { | ||||
7629 | DEBUGOUT("EEPROM Read Error\n"); | ||||
7630 | return -E1000_ERR_EEPROM1; | ||||
7631 | } | ||||
7632 | /* Save word 1 in lower half of part_num */ | ||||
7633 | *part_num |= eeprom_data; | ||||
7634 | |||||
7635 | return E1000_SUCCESS0; | ||||
7636 | } | ||||
7637 | |||||
7638 | /****************************************************************************** | ||||
7639 | * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the | ||||
7640 | * second function of dual function devices | ||||
7641 | * | ||||
7642 | * hw - Struct containing variables accessed by shared code | ||||
7643 | *****************************************************************************/ | ||||
7644 | int32_t | ||||
7645 | em_read_mac_addr(struct em_hw *hw) | ||||
7646 | { | ||||
7647 | uint16_t offset; | ||||
7648 | uint16_t eeprom_data, i; | ||||
7649 | uint16_t ia_base_addr = 0; | ||||
7650 | DEBUGFUNC("em_read_mac_addr");; | ||||
7651 | |||||
7652 | if (hw->mac_type == em_icp_xxxx) { | ||||
7653 | ia_base_addr = (uint16_t) | ||||
7654 | EEPROM_IA_START_ICP_xxxx(hw->icp_xxxx_port_num)((((hw->icp_xxxx_port_num) + 1) << 4) + 2); | ||||
7655 | } else if (hw->mac_type == em_82580 || hw->mac_type == em_i350) { | ||||
7656 | ia_base_addr = NVM_82580_LAN_FUNC_OFFSET(hw->bus_func)(hw->bus_func ? (0x40 + (0x40 * hw->bus_func)) : 0); | ||||
7657 | } | ||||
7658 | for (i = 0; i < NODE_ADDRESS_SIZE6; i += 2) { | ||||
7659 | offset = i >> 1; | ||||
7660 | if (em_read_eeprom(hw, offset + ia_base_addr, 1, &eeprom_data) | ||||
7661 | < 0) { | ||||
7662 | DEBUGOUT("EEPROM Read Error\n"); | ||||
7663 | return -E1000_ERR_EEPROM1; | ||||
7664 | } | ||||
7665 | hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF); | ||||
7666 | hw->perm_mac_addr[i + 1] = (uint8_t) (eeprom_data >> 8); | ||||
7667 | } | ||||
7668 | |||||
7669 | switch (hw->mac_type) { | ||||
7670 | default: | ||||
7671 | break; | ||||
7672 | case em_82546: | ||||
7673 | case em_82546_rev_3: | ||||
7674 | case em_82571: | ||||
7675 | case em_82575: | ||||
7676 | case em_82576: | ||||
7677 | case em_80003es2lan: | ||||
7678 | if (E1000_READ_REG(hw, STATUS)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))) & E1000_STATUS_FUNC_10x00000004) | ||||
7679 | hw->perm_mac_addr[5] ^= 0x01; | ||||
7680 | break; | ||||
7681 | } | ||||
7682 | |||||
7683 | for (i = 0; i < NODE_ADDRESS_SIZE6; i++) | ||||
7684 | hw->mac_addr[i] = hw->perm_mac_addr[i]; | ||||
7685 | return E1000_SUCCESS0; | ||||
7686 | } | ||||
7687 | |||||
7688 | /****************************************************************************** | ||||
7689 | * Explicitly disables jumbo frames and resets some PHY registers back to hw- | ||||
7690 | * defaults. This is necessary in case the ethernet cable was inserted AFTER | ||||
7691 | * the firmware initialized the PHY. Otherwise it is left in a state where | ||||
7692 | * it is possible to transmit but not receive packets. Observed on I217-LM and | ||||
7693 | * fixed in FreeBSD's sys/dev/e1000/e1000_ich8lan.c. | ||||
7694 | * | ||||
7695 | * hw - Struct containing variables accessed by shared code | ||||
7696 | *****************************************************************************/ | ||||
7697 | STATIC int32_t | ||||
7698 | em_phy_no_cable_workaround(struct em_hw *hw) { | ||||
7699 | int32_t ret_val, dft_ret_val; | ||||
7700 | uint32_t mac_reg; | ||||
7701 | uint16_t data, phy_reg; | ||||
7702 | |||||
7703 | /* disable Rx path while enabling workaround */ | ||||
7704 | em_read_phy_reg(hw, I2_DFT_CTRL(((769) << 5) | ((20) & 0x1F)), &phy_reg); | ||||
7705 | ret_val = em_write_phy_reg(hw, I2_DFT_CTRL(((769) << 5) | ((20) & 0x1F)), phy_reg | (1 << 14)); | ||||
7706 | if (ret_val) | ||||
7707 | return ret_val; | ||||
7708 | |||||
7709 | /* Write MAC register values back to h/w defaults */ | ||||
7710 | mac_reg = E1000_READ_REG(hw, FFLT_DBG)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05F04 : em_translate_82542_register (0x05F04))))); | ||||
7711 | mac_reg &= ~(0xF << 14); | ||||
7712 | E1000_WRITE_REG(hw, FFLT_DBG, mac_reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05F04 : em_translate_82542_register (0x05F04))), (mac_reg))); | ||||
7713 | |||||
7714 | mac_reg = E1000_READ_REG(hw, RCTL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00100 : em_translate_82542_register (0x00100))))); | ||||
7715 | mac_reg &= ~E1000_RCTL_SECRC0x04000000; | ||||
7716 | E1000_WRITE_REG(hw, RCTL, mac_reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00100 : em_translate_82542_register (0x00100))), (mac_reg))); | ||||
7717 | |||||
7718 | ret_val = em_read_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_CTRL0x00000001, &data); | ||||
7719 | if (ret_val) | ||||
7720 | goto out; | ||||
7721 | ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_CTRL0x00000001, | ||||
7722 | data & ~(1 << 0)); | ||||
7723 | if (ret_val) | ||||
7724 | goto out; | ||||
7725 | |||||
7726 | ret_val = em_read_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL0x00000010, &data); | ||||
7727 | if (ret_val) | ||||
7728 | goto out; | ||||
7729 | |||||
7730 | data &= ~(0xF << 8); | ||||
7731 | data |= (0xB << 8); | ||||
7732 | ret_val = em_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL0x00000010, data); | ||||
7733 | if (ret_val) | ||||
7734 | goto out; | ||||
7735 | |||||
7736 | /* Write PHY register values back to h/w defaults */ | ||||
7737 | em_read_phy_reg(hw, I2_SMBUS_CTRL(((769) << 5) | ((23) & 0x1F)), &data); | ||||
7738 | data &= ~(0x7F << 5); | ||||
7739 | ret_val = em_write_phy_reg(hw, I2_SMBUS_CTRL(((769) << 5) | ((23) & 0x1F)), data); | ||||
7740 | if (ret_val) | ||||
7741 | goto out; | ||||
7742 | |||||
7743 | em_read_phy_reg(hw, I2_MODE_CTRL(((769) << 5) | ((16) & 0x1F)), &data); | ||||
7744 | data |= (1 << 13); | ||||
7745 | ret_val = em_write_phy_reg(hw, I2_MODE_CTRL(((769) << 5) | ((16) & 0x1F)), data); | ||||
7746 | if (ret_val) | ||||
7747 | goto out; | ||||
7748 | |||||
7749 | /* | ||||
7750 | * 776.20 and 776.23 are not documented in | ||||
7751 | * i217-ethernet-controller-datasheet.pdf... | ||||
7752 | */ | ||||
7753 | em_read_phy_reg(hw, PHY_REG(776, 20)(((776) << 5) | ((20) & 0x1F)), &data); | ||||
7754 | data &= ~(0x3FF << 2); | ||||
7755 | data |= (0x8 << 2); | ||||
7756 | ret_val = em_write_phy_reg(hw, PHY_REG(776, 20)(((776) << 5) | ((20) & 0x1F)), data); | ||||
7757 | if (ret_val) | ||||
7758 | goto out; | ||||
7759 | |||||
7760 | ret_val = em_write_phy_reg(hw, PHY_REG(776, 23)(((776) << 5) | ((23) & 0x1F)), 0x7E00); | ||||
7761 | if (ret_val) | ||||
7762 | goto out; | ||||
7763 | |||||
7764 | em_read_phy_reg(hw, I2_PCIE_POWER_CTRL(((770) << 5) | ((17) & 0x1F)), &data); | ||||
7765 | ret_val = em_write_phy_reg(hw, I2_PCIE_POWER_CTRL(((770) << 5) | ((17) & 0x1F)), data & ~(1 << 10)); | ||||
7766 | if (ret_val) | ||||
7767 | goto out; | ||||
7768 | |||||
7769 | out: | ||||
7770 | /* re-enable Rx path after enabling workaround */ | ||||
7771 | dft_ret_val = em_write_phy_reg(hw, I2_DFT_CTRL(((769) << 5) | ((20) & 0x1F)), phy_reg & ~(1 << 14)); | ||||
7772 | if (ret_val) | ||||
7773 | return ret_val; | ||||
7774 | else | ||||
7775 | return dft_ret_val; | ||||
7776 | } | ||||
7777 | |||||
7778 | /****************************************************************************** | ||||
7779 | * Initializes receive address filters. | ||||
7780 | * | ||||
7781 | * hw - Struct containing variables accessed by shared code | ||||
7782 | * | ||||
7783 | * Places the MAC address in receive address register 0 and clears the rest | ||||
7784 | * of the receive address registers. Clears the multicast table. Assumes | ||||
7785 | * the receiver is in reset when the routine is called. | ||||
7786 | *****************************************************************************/ | ||||
7787 | STATIC void | ||||
7788 | em_init_rx_addrs(struct em_hw *hw) | ||||
7789 | { | ||||
7790 | uint32_t i; | ||||
7791 | uint32_t rar_num; | ||||
7792 | DEBUGFUNC("em_init_rx_addrs");; | ||||
7793 | |||||
7794 | if (hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || | ||||
7795 | hw->mac_type == em_pch_cnp || hw->mac_type == em_pch2lan) | ||||
7796 | if (em_phy_no_cable_workaround(hw)) | ||||
7797 | printf(" ...failed to apply em_phy_no_cable_" | ||||
7798 | "workaround.\n"); | ||||
7799 | |||||
7800 | /* Setup the receive address. */ | ||||
7801 | DEBUGOUT("Programming MAC Address into RAR[0]\n"); | ||||
7802 | |||||
7803 | em_rar_set(hw, hw->mac_addr, 0); | ||||
7804 | |||||
7805 | rar_num = E1000_RAR_ENTRIES15; | ||||
7806 | /* | ||||
7807 | * Reserve a spot for the Locally Administered Address to work around | ||||
7808 | * an 82571 issue in which a reset on one port will reload the MAC on | ||||
7809 | * the other port. | ||||
7810 | */ | ||||
7811 | if ((hw->mac_type == em_82571) && (hw->laa_is_present == TRUE1)) | ||||
7812 | rar_num -= 1; | ||||
7813 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) | ||||
7814 | rar_num = E1000_RAR_ENTRIES_ICH8LAN7; | ||||
7815 | if (hw->mac_type == em_ich8lan) | ||||
7816 | rar_num -= 1; | ||||
7817 | if (hw->mac_type == em_82580) | ||||
7818 | rar_num = E1000_RAR_ENTRIES_8258024; | ||||
7819 | if (hw->mac_type == em_i210) | ||||
7820 | rar_num = E1000_RAR_ENTRIES_8257516; | ||||
7821 | if (hw->mac_type == em_i350) | ||||
7822 | rar_num = E1000_RAR_ENTRIES_I35032; | ||||
7823 | |||||
7824 | /* Zero out the other 15 receive addresses. */ | ||||
7825 | DEBUGOUT("Clearing RAR[1-15]\n"); | ||||
7826 | for (i = 1; i < rar_num; i++) { | ||||
7827 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05400 : em_translate_82542_register (0x05400)) + (((i << 1)) << 2)), (0))); | ||||
7828 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
7829 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05400 : em_translate_82542_register (0x05400)) + ((((i << 1) + 1)) << 2)), (0))); | ||||
7830 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
7831 | } | ||||
7832 | } | ||||
7833 | |||||
7834 | /****************************************************************************** | ||||
7835 | * Updates the MAC's list of multicast addresses. | ||||
7836 | * | ||||
7837 | * hw - Struct containing variables accessed by shared code | ||||
7838 | * mc_addr_list - the list of new multicast addresses | ||||
7839 | * mc_addr_count - number of addresses | ||||
7840 | * pad - number of bytes between addresses in the list | ||||
7841 | * rar_used_count - offset where to start adding mc addresses into the RAR's | ||||
7842 | * | ||||
7843 | * The given list replaces any existing list. Clears the last 15 receive | ||||
7844 | * address registers and the multicast table. Uses receive address registers | ||||
7845 | * for the first 15 multicast addresses, and hashes the rest into the | ||||
7846 | * multicast table. | ||||
7847 | *****************************************************************************/ | ||||
7848 | void | ||||
7849 | em_mc_addr_list_update(struct em_hw *hw, uint8_t *mc_addr_list, | ||||
7850 | uint32_t mc_addr_count, uint32_t pad, uint32_t rar_used_count) | ||||
7851 | { | ||||
7852 | uint32_t hash_value; | ||||
7853 | uint32_t i; | ||||
7854 | uint32_t num_rar_entry; | ||||
7855 | uint32_t num_mta_entry; | ||||
7856 | DEBUGFUNC("em_mc_addr_list_update");; | ||||
7857 | /* | ||||
7858 | * Set the new number of MC addresses that we are being requested to | ||||
7859 | * use. | ||||
7860 | */ | ||||
7861 | hw->num_mc_addrs = mc_addr_count; | ||||
7862 | |||||
7863 | /* Clear RAR[1-15] */ | ||||
7864 | DEBUGOUT(" Clearing RAR[1-15]\n"); | ||||
7865 | num_rar_entry = E1000_RAR_ENTRIES15; | ||||
7866 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) | ||||
7867 | num_rar_entry = E1000_RAR_ENTRIES_ICH8LAN7; | ||||
7868 | if (hw->mac_type == em_ich8lan) | ||||
7869 | num_rar_entry -= 1; | ||||
7870 | /* | ||||
7871 | * Reserve a spot for the Locally Administered Address to work around | ||||
7872 | * an 82571 issue in which a reset on one port will reload the MAC on | ||||
7873 | * the other port. | ||||
7874 | */ | ||||
7875 | if ((hw->mac_type == em_82571) && (hw->laa_is_present == TRUE1)) | ||||
7876 | num_rar_entry -= 1; | ||||
7877 | |||||
7878 | for (i = rar_used_count; i < num_rar_entry; i++) { | ||||
7879 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05400 : em_translate_82542_register (0x05400)) + (((i << 1)) << 2)), (0))); | ||||
7880 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
7881 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05400 : em_translate_82542_register (0x05400)) + ((((i << 1) + 1)) << 2)), (0))); | ||||
7882 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
7883 | } | ||||
7884 | |||||
7885 | /* Clear the MTA */ | ||||
7886 | DEBUGOUT(" Clearing MTA\n"); | ||||
7887 | num_mta_entry = E1000_NUM_MTA_REGISTERS128; | ||||
7888 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) | ||||
7889 | num_mta_entry = E1000_NUM_MTA_REGISTERS_ICH8LAN32; | ||||
7890 | |||||
7891 | for (i = 0; i < num_mta_entry; i++) { | ||||
7892 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05200 : em_translate_82542_register (0x05200)) + ((i) << 2)), (0))); | ||||
7893 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
7894 | } | ||||
7895 | |||||
7896 | /* Add the new addresses */ | ||||
7897 | for (i = 0; i < mc_addr_count; i++) { | ||||
7898 | DEBUGOUT(" Adding the multicast addresses:\n"); | ||||
7899 | DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i, | ||||
7900 | mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)], | ||||
7901 | mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1], | ||||
7902 | mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2], | ||||
7903 | mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3], | ||||
7904 | mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4], | ||||
7905 | mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]); | ||||
7906 | |||||
7907 | hash_value = em_hash_mc_addr(hw, mc_addr_list + | ||||
7908 | (i * (ETH_LENGTH_OF_ADDRESS6 + pad))); | ||||
7909 | |||||
7910 | DEBUGOUT1(" Hash value = 0x%03X\n", hash_value); | ||||
7911 | /* | ||||
7912 | * Place this multicast address in the RAR if there is room, * | ||||
7913 | * else put it in the MTA | ||||
7914 | */ | ||||
7915 | if (rar_used_count < num_rar_entry) { | ||||
7916 | em_rar_set(hw, mc_addr_list + | ||||
7917 | (i * (ETH_LENGTH_OF_ADDRESS6 + pad)), | ||||
7918 | rar_used_count); | ||||
7919 | rar_used_count++; | ||||
7920 | } else { | ||||
7921 | em_mta_set(hw, hash_value); | ||||
7922 | } | ||||
7923 | } | ||||
7924 | DEBUGOUT("MC Update Complete\n"); | ||||
7925 | } | ||||
7926 | |||||
7927 | /****************************************************************************** | ||||
7928 | * Hashes an address to determine its location in the multicast table | ||||
7929 | * | ||||
7930 | * hw - Struct containing variables accessed by shared code | ||||
7931 | * mc_addr - the multicast address to hash | ||||
7932 | *****************************************************************************/ | ||||
7933 | uint32_t | ||||
7934 | em_hash_mc_addr(struct em_hw *hw, uint8_t *mc_addr) | ||||
7935 | { | ||||
7936 | uint32_t hash_value = 0; | ||||
7937 | /* | ||||
7938 | * The portion of the address that is used for the hash table is | ||||
7939 | * determined by the mc_filter_type setting. | ||||
7940 | */ | ||||
7941 | switch (hw->mc_filter_type) { | ||||
7942 | /* | ||||
7943 | * [0] [1] [2] [3] [4] [5] 01 AA 00 12 34 56 LSB | ||||
7944 | * MSB | ||||
7945 | */ | ||||
7946 | case 0: | ||||
7947 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | ||||
7948 | /* [47:38] i.e. 0x158 for above example address */ | ||||
7949 | hash_value = ((mc_addr[4] >> 6) | | ||||
7950 | (((uint16_t) mc_addr[5]) << 2)); | ||||
7951 | } else { | ||||
7952 | /* [47:36] i.e. 0x563 for above example address */ | ||||
7953 | hash_value = ((mc_addr[4] >> 4) | | ||||
7954 | (((uint16_t) mc_addr[5]) << 4)); | ||||
7955 | } | ||||
7956 | break; | ||||
7957 | case 1: | ||||
7958 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | ||||
7959 | /* [46:37] i.e. 0x2B1 for above example address */ | ||||
7960 | hash_value = ((mc_addr[4] >> 5) | | ||||
7961 | (((uint16_t) mc_addr[5]) << 3)); | ||||
7962 | } else { | ||||
7963 | /* [46:35] i.e. 0xAC6 for above example address */ | ||||
7964 | hash_value = ((mc_addr[4] >> 3) | | ||||
7965 | (((uint16_t) mc_addr[5]) << 5)); | ||||
7966 | } | ||||
7967 | break; | ||||
7968 | case 2: | ||||
7969 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | ||||
7970 | /* [45:36] i.e. 0x163 for above example address */ | ||||
7971 | hash_value = ((mc_addr[4] >> 4) | | ||||
7972 | (((uint16_t) mc_addr[5]) << 4)); | ||||
7973 | } else { | ||||
7974 | /* [45:34] i.e. 0x5D8 for above example address */ | ||||
7975 | hash_value = ((mc_addr[4] >> 2) | | ||||
7976 | (((uint16_t) mc_addr[5]) << 6)); | ||||
7977 | } | ||||
7978 | break; | ||||
7979 | case 3: | ||||
7980 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | ||||
7981 | /* [43:34] i.e. 0x18D for above example address */ | ||||
7982 | hash_value = ((mc_addr[4] >> 2) | | ||||
7983 | (((uint16_t) mc_addr[5]) << 6)); | ||||
7984 | } else { | ||||
7985 | /* [43:32] i.e. 0x634 for above example address */ | ||||
7986 | hash_value = ((mc_addr[4]) | | ||||
7987 | (((uint16_t) mc_addr[5]) << 8)); | ||||
7988 | } | ||||
7989 | break; | ||||
7990 | } | ||||
7991 | |||||
7992 | hash_value &= 0xFFF; | ||||
7993 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) | ||||
7994 | hash_value &= 0x3FF; | ||||
7995 | |||||
7996 | return hash_value; | ||||
7997 | } | ||||
7998 | |||||
7999 | /****************************************************************************** | ||||
8000 | * Sets the bit in the multicast table corresponding to the hash value. | ||||
8001 | * | ||||
8002 | * hw - Struct containing variables accessed by shared code | ||||
8003 | * hash_value - Multicast address hash value | ||||
8004 | *****************************************************************************/ | ||||
8005 | void | ||||
8006 | em_mta_set(struct em_hw *hw, uint32_t hash_value) | ||||
8007 | { | ||||
8008 | uint32_t hash_bit, hash_reg; | ||||
8009 | uint32_t mta; | ||||
8010 | uint32_t temp; | ||||
8011 | /* | ||||
8012 | * The MTA is a register array of 128 32-bit registers. It is treated | ||||
8013 | * like an array of 4096 bits. We want to set bit | ||||
8014 | * BitArray[hash_value]. So we figure out what register the bit is | ||||
8015 | * in, read it, OR in the new bit, then write back the new value. | ||||
8016 | * The register is determined by the upper 7 bits of the hash value | ||||
8017 | * and the bit within that register are determined by the lower 5 | ||||
8018 | * bits of the value. | ||||
8019 | */ | ||||
8020 | hash_reg = (hash_value >> 5) & 0x7F; | ||||
8021 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) | ||||
8022 | hash_reg &= 0x1F; | ||||
8023 | |||||
8024 | hash_bit = hash_value & 0x1F; | ||||
8025 | |||||
8026 | mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05200 : em_translate_82542_register (0x05200)) + ((hash_reg) << 2)))); | ||||
8027 | |||||
8028 | mta |= (1 << hash_bit); | ||||
8029 | /* | ||||
8030 | * If we are on an 82544 and we are trying to write an odd offset in | ||||
8031 | * the MTA, save off the previous entry before writing and restore | ||||
8032 | * the old value after writing. | ||||
8033 | */ | ||||
8034 | if ((hw->mac_type == em_82544) && ((hash_reg & 0x1) == 1)) { | ||||
8035 | temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1))((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05200 : em_translate_82542_register (0x05200)) + (((hash_reg - 1)) << 2)))); | ||||
8036 | E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05200 : em_translate_82542_register (0x05200)) + ((hash_reg) << 2)), (mta))); | ||||
8037 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
8038 | E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05200 : em_translate_82542_register (0x05200)) + (((hash_reg - 1)) << 2)), (temp))); | ||||
8039 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
8040 | } else { | ||||
8041 | E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05200 : em_translate_82542_register (0x05200)) + ((hash_reg) << 2)), (mta))); | ||||
8042 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
8043 | } | ||||
8044 | } | ||||
8045 | |||||
8046 | /****************************************************************************** | ||||
8047 | * Puts an ethernet address into a receive address register. | ||||
8048 | * | ||||
8049 | * hw - Struct containing variables accessed by shared code | ||||
8050 | * addr - Address to put into receive address register | ||||
8051 | * index - Receive address register to write | ||||
8052 | *****************************************************************************/ | ||||
8053 | void | ||||
8054 | em_rar_set(struct em_hw *hw, uint8_t *addr, uint32_t index) | ||||
8055 | { | ||||
8056 | uint32_t rar_low, rar_high; | ||||
8057 | /* | ||||
8058 | * HW expects these in little endian so we reverse the byte order | ||||
8059 | * from network order (big endian) to little endian | ||||
8060 | */ | ||||
8061 | rar_low = ((uint32_t) addr[0] | ((uint32_t) addr[1] << 8) | | ||||
8062 | ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24)); | ||||
8063 | rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8)); | ||||
8064 | /* | ||||
8065 | * Disable Rx and flush all Rx frames before enabling RSS to avoid Rx | ||||
8066 | * unit hang. | ||||
8067 | * | ||||
8068 | * Description: If there are any Rx frames queued up or otherwise | ||||
8069 | * present in the HW before RSS is enabled, and then we enable RSS, | ||||
8070 | * the HW Rx unit will hang. To work around this issue, we have to | ||||
8071 | * disable receives and flush out all Rx frames before we enable RSS. | ||||
8072 | * To do so, we modify we redirect all Rx traffic to manageability | ||||
8073 | * and then reset the HW. This flushes away Rx frames, and (since the | ||||
8074 | * redirections to manageability persists across resets) keeps new | ||||
8075 | * ones from coming in while we work. Then, we clear the Address | ||||
8076 | * Valid AV bit for all MAC addresses and undo the re-direction to | ||||
8077 | * manageability. Now, frames are coming in again, but the MAC won't | ||||
8078 | * accept them, so far so good. We now proceed to initialize RSS (if | ||||
8079 | * necessary) and configure the Rx unit. Last, we re-enable the AV | ||||
8080 | * bits and continue on our merry way. | ||||
8081 | */ | ||||
8082 | switch (hw->mac_type) { | ||||
8083 | case em_82571: | ||||
8084 | case em_82572: | ||||
8085 | case em_80003es2lan: | ||||
8086 | if (hw->leave_av_bit_off == TRUE1) | ||||
8087 | break; | ||||
8088 | default: | ||||
8089 | /* Indicate to hardware the Address is Valid. */ | ||||
8090 | rar_high |= E1000_RAH_AV0x80000000; | ||||
8091 | break; | ||||
8092 | } | ||||
8093 | |||||
8094 | E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05400 : em_translate_82542_register (0x05400)) + (((index << 1)) << 2)), (rar_low))); | ||||
8095 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
8096 | E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05400 : em_translate_82542_register (0x05400)) + ((((index << 1) + 1)) << 2)), (rar_high ))); | ||||
8097 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
8098 | } | ||||
8099 | |||||
8100 | /****************************************************************************** | ||||
8101 | * Clears the VLAN filer table | ||||
8102 | * | ||||
8103 | * hw - Struct containing variables accessed by shared code | ||||
8104 | *****************************************************************************/ | ||||
8105 | STATIC void | ||||
8106 | em_clear_vfta(struct em_hw *hw) | ||||
8107 | { | ||||
8108 | uint32_t offset; | ||||
8109 | uint32_t vfta_value = 0; | ||||
8110 | uint32_t vfta_offset = 0; | ||||
8111 | uint32_t vfta_bit_in_reg = 0; | ||||
8112 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) | ||||
8113 | return; | ||||
8114 | |||||
8115 | if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) { | ||||
8116 | if (hw->mng_cookie.vlan_id != 0) { | ||||
8117 | /* | ||||
8118 | * The VFTA is a 4096b bit-field, each identifying a | ||||
8119 | * single VLAN ID. The following operations | ||||
8120 | * determine which 32b entry (i.e. offset) into the | ||||
8121 | * array we want to set the VLAN ID (i.e. bit) of the | ||||
8122 | * manageability unit. | ||||
8123 | */ | ||||
8124 | vfta_offset = (hw->mng_cookie.vlan_id >> | ||||
8125 | E1000_VFTA_ENTRY_SHIFT0x5) & E1000_VFTA_ENTRY_MASK0x7F; | ||||
8126 | |||||
8127 | vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id & | ||||
8128 | E1000_VFTA_ENTRY_BIT_SHIFT_MASK0x1F); | ||||
8129 | } | ||||
8130 | } | ||||
8131 | for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE128; offset++) { | ||||
8132 | /* | ||||
8133 | * If the offset we want to clear is the same offset of the | ||||
8134 | * manageability VLAN ID, then clear all bits except that of | ||||
8135 | * the manageability unit | ||||
8136 | */ | ||||
8137 | vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; | ||||
8138 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05600 : em_translate_82542_register (0x05600)) + ((offset) << 2)), (vfta_value))); | ||||
8139 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
8140 | } | ||||
8141 | } | ||||
8142 | |||||
8143 | /* | ||||
8144 | * Due to hw errata, if the host tries to configure the VFTA register | ||||
8145 | * while performing queries from the BMC or DMA, then the VFTA in some | ||||
8146 | * cases won't be written. | ||||
8147 | */ | ||||
8148 | void | ||||
8149 | em_clear_vfta_i350(struct em_hw *hw) | ||||
8150 | { | ||||
8151 | uint32_t offset; | ||||
8152 | int i; | ||||
8153 | |||||
8154 | for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE128; offset++) { | ||||
8155 | for (i = 0; i < 10; i++) | ||||
8156 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05600 : em_translate_82542_register (0x05600)) + ((offset) << 2)), (0))); | ||||
8157 | E1000_WRITE_FLUSH(hw)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
8158 | } | ||||
8159 | } | ||||
8160 | |||||
8161 | STATIC int32_t | ||||
8162 | em_id_led_init(struct em_hw *hw) | ||||
8163 | { | ||||
8164 | uint32_t ledctl; | ||||
8165 | const uint32_t ledctl_mask = 0x000000FF; | ||||
8166 | const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON0xE; | ||||
8167 | const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF0xF; | ||||
8168 | uint16_t eeprom_data, i, temp; | ||||
8169 | const uint16_t led_mask = 0x0F; | ||||
8170 | DEBUGFUNC("em_id_led_init");; | ||||
8171 | |||||
8172 | if (hw->mac_type < em_82540 || hw->mac_type == em_icp_xxxx) { | ||||
8173 | /* Nothing to do */ | ||||
8174 | return E1000_SUCCESS0; | ||||
8175 | } | ||||
8176 | ledctl = E1000_READ_REG(hw, LEDCTL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00E00 : em_translate_82542_register (0x00E00))))); | ||||
8177 | hw->ledctl_default = ledctl; | ||||
8178 | hw->ledctl_mode1 = hw->ledctl_default; | ||||
8179 | hw->ledctl_mode2 = hw->ledctl_default; | ||||
8180 | |||||
8181 | if (em_read_eeprom(hw, EEPROM_ID_LED_SETTINGS0x0004, 1, &eeprom_data) < 0) { | ||||
8182 | DEBUGOUT("EEPROM Read Error\n"); | ||||
8183 | return -E1000_ERR_EEPROM1; | ||||
8184 | } | ||||
8185 | if ((hw->mac_type == em_82573) && | ||||
8186 | (eeprom_data == ID_LED_RESERVED_825730xF746)) | ||||
8187 | eeprom_data = ID_LED_DEFAULT_825730x1811; | ||||
8188 | else if ((eeprom_data == ID_LED_RESERVED_00000x0000) || | ||||
8189 | (eeprom_data == ID_LED_RESERVED_FFFF0xFFFF)) { | ||||
8190 | if (hw->mac_type == em_ich8lan || | ||||
8191 | hw->mac_type == em_ich9lan || | ||||
8192 | hw->mac_type == em_ich10lan) // XXX | ||||
8193 | eeprom_data = ID_LED_DEFAULT_ICH8LAN((0x1 << 12) | (0x3 << 8) | (0x2 << 4) | (0x1 )); | ||||
8194 | else | ||||
8195 | eeprom_data = ID_LED_DEFAULT((0x8 << 12) | (0x9 << 8) | (0x1 << 4) | (0x1 )); | ||||
8196 | } | ||||
8197 | for (i = 0; i < 4; i++) { | ||||
8198 | temp = (eeprom_data >> (i << 2)) & led_mask; | ||||
8199 | switch (temp) { | ||||
8200 | case ID_LED_ON1_DEF20x4: | ||||
8201 | case ID_LED_ON1_ON20x5: | ||||
8202 | case ID_LED_ON1_OFF20x6: | ||||
8203 | hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | ||||
8204 | hw->ledctl_mode1 |= ledctl_on << (i << 3); | ||||
8205 | break; | ||||
8206 | case ID_LED_OFF1_DEF20x7: | ||||
8207 | case ID_LED_OFF1_ON20x8: | ||||
8208 | case ID_LED_OFF1_OFF20x9: | ||||
8209 | hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | ||||
8210 | hw->ledctl_mode1 |= ledctl_off << (i << 3); | ||||
8211 | break; | ||||
8212 | default: | ||||
8213 | /* Do nothing */ | ||||
8214 | break; | ||||
8215 | } | ||||
8216 | switch (temp) { | ||||
8217 | case ID_LED_DEF1_ON20x2: | ||||
8218 | case ID_LED_ON1_ON20x5: | ||||
8219 | case ID_LED_OFF1_ON20x8: | ||||
8220 | hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | ||||
8221 | hw->ledctl_mode2 |= ledctl_on << (i << 3); | ||||
8222 | break; | ||||
8223 | case ID_LED_DEF1_OFF20x3: | ||||
8224 | case ID_LED_ON1_OFF20x6: | ||||
8225 | case ID_LED_OFF1_OFF20x9: | ||||
8226 | hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | ||||
8227 | hw->ledctl_mode2 |= ledctl_off << (i << 3); | ||||
8228 | break; | ||||
8229 | default: | ||||
8230 | /* Do nothing */ | ||||
8231 | break; | ||||
8232 | } | ||||
8233 | } | ||||
8234 | return E1000_SUCCESS0; | ||||
8235 | } | ||||
8236 | |||||
8237 | /****************************************************************************** | ||||
8238 | * Clears all hardware statistics counters. | ||||
8239 | * | ||||
8240 | * hw - Struct containing variables accessed by shared code | ||||
8241 | *****************************************************************************/ | ||||
8242 | void | ||||
8243 | em_clear_hw_cntrs(struct em_hw *hw) | ||||
8244 | { | ||||
8245 | volatile uint32_t temp; | ||||
8246 | temp = E1000_READ_REG(hw, CRCERRS)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04000 : em_translate_82542_register (0x04000))))); | ||||
8247 | temp = E1000_READ_REG(hw, SYMERRS)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04008 : em_translate_82542_register (0x04008))))); | ||||
8248 | temp = E1000_READ_REG(hw, MPC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04010 : em_translate_82542_register (0x04010))))); | ||||
8249 | temp = E1000_READ_REG(hw, SCC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04014 : em_translate_82542_register (0x04014))))); | ||||
8250 | temp = E1000_READ_REG(hw, ECOL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04018 : em_translate_82542_register (0x04018))))); | ||||
8251 | temp = E1000_READ_REG(hw, MCC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x0401C : em_translate_82542_register (0x0401C))))); | ||||
8252 | temp = E1000_READ_REG(hw, LATECOL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04020 : em_translate_82542_register (0x04020))))); | ||||
8253 | temp = E1000_READ_REG(hw, COLC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04028 : em_translate_82542_register (0x04028))))); | ||||
8254 | temp = E1000_READ_REG(hw, DC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04030 : em_translate_82542_register (0x04030))))); | ||||
8255 | temp = E1000_READ_REG(hw, SEC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04038 : em_translate_82542_register (0x04038))))); | ||||
8256 | temp = E1000_READ_REG(hw, RLEC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04040 : em_translate_82542_register (0x04040))))); | ||||
8257 | temp = E1000_READ_REG(hw, XONRXC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04048 : em_translate_82542_register (0x04048))))); | ||||
8258 | temp = E1000_READ_REG(hw, XONTXC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x0404C : em_translate_82542_register (0x0404C))))); | ||||
8259 | temp = E1000_READ_REG(hw, XOFFRXC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04050 : em_translate_82542_register (0x04050))))); | ||||
8260 | temp = E1000_READ_REG(hw, XOFFTXC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04054 : em_translate_82542_register (0x04054))))); | ||||
8261 | temp = E1000_READ_REG(hw, FCRUC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04058 : em_translate_82542_register (0x04058))))); | ||||
8262 | |||||
8263 | if (!IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | ||||
8264 | temp = E1000_READ_REG(hw, PRC64)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x0405C : em_translate_82542_register (0x0405C))))); | ||||
8265 | temp = E1000_READ_REG(hw, PRC127)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04060 : em_translate_82542_register (0x04060))))); | ||||
8266 | temp = E1000_READ_REG(hw, PRC255)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04064 : em_translate_82542_register (0x04064))))); | ||||
8267 | temp = E1000_READ_REG(hw, PRC511)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04068 : em_translate_82542_register (0x04068))))); | ||||
8268 | temp = E1000_READ_REG(hw, PRC1023)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x0406C : em_translate_82542_register (0x0406C))))); | ||||
8269 | temp = E1000_READ_REG(hw, PRC1522)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04070 : em_translate_82542_register (0x04070))))); | ||||
8270 | } | ||||
8271 | temp = E1000_READ_REG(hw, GPRC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04074 : em_translate_82542_register (0x04074))))); | ||||
8272 | temp = E1000_READ_REG(hw, BPRC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04078 : em_translate_82542_register (0x04078))))); | ||||
8273 | temp = E1000_READ_REG(hw, MPRC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x0407C : em_translate_82542_register (0x0407C))))); | ||||
8274 | temp = E1000_READ_REG(hw, GPTC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04080 : em_translate_82542_register (0x04080))))); | ||||
8275 | temp = E1000_READ_REG(hw, GORCL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04088 : em_translate_82542_register (0x04088))))); | ||||
8276 | temp = E1000_READ_REG(hw, GORCH)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x0408C : em_translate_82542_register (0x0408C))))); | ||||
8277 | temp = E1000_READ_REG(hw, GOTCL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04090 : em_translate_82542_register (0x04090))))); | ||||
8278 | temp = E1000_READ_REG(hw, GOTCH)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04094 : em_translate_82542_register (0x04094))))); | ||||
8279 | temp = E1000_READ_REG(hw, RNBC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040A0 : em_translate_82542_register (0x040A0))))); | ||||
8280 | temp = E1000_READ_REG(hw, RUC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040A4 : em_translate_82542_register (0x040A4))))); | ||||
8281 | temp = E1000_READ_REG(hw, RFC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040A8 : em_translate_82542_register (0x040A8))))); | ||||
8282 | temp = E1000_READ_REG(hw, ROC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040AC : em_translate_82542_register (0x040AC))))); | ||||
8283 | temp = E1000_READ_REG(hw, RJC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040B0 : em_translate_82542_register (0x040B0))))); | ||||
8284 | temp = E1000_READ_REG(hw, TORL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040C0 : em_translate_82542_register (0x040C0))))); | ||||
8285 | temp = E1000_READ_REG(hw, TORH)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040C4 : em_translate_82542_register (0x040C4))))); | ||||
8286 | temp = E1000_READ_REG(hw, TOTL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040C8 : em_translate_82542_register (0x040C8))))); | ||||
8287 | temp = E1000_READ_REG(hw, TOTH)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040CC : em_translate_82542_register (0x040CC))))); | ||||
8288 | temp = E1000_READ_REG(hw, TPR)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040D0 : em_translate_82542_register (0x040D0))))); | ||||
8289 | temp = E1000_READ_REG(hw, TPT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040D4 : em_translate_82542_register (0x040D4))))); | ||||
8290 | |||||
8291 | if (!IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | ||||
8292 | temp = E1000_READ_REG(hw, PTC64)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040D8 : em_translate_82542_register (0x040D8))))); | ||||
8293 | temp = E1000_READ_REG(hw, PTC127)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040DC : em_translate_82542_register (0x040DC))))); | ||||
8294 | temp = E1000_READ_REG(hw, PTC255)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040E0 : em_translate_82542_register (0x040E0))))); | ||||
8295 | temp = E1000_READ_REG(hw, PTC511)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040E4 : em_translate_82542_register (0x040E4))))); | ||||
8296 | temp = E1000_READ_REG(hw, PTC1023)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040E8 : em_translate_82542_register (0x040E8))))); | ||||
8297 | temp = E1000_READ_REG(hw, PTC1522)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040EC : em_translate_82542_register (0x040EC))))); | ||||
8298 | } | ||||
8299 | temp = E1000_READ_REG(hw, MPTC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040F0 : em_translate_82542_register (0x040F0))))); | ||||
8300 | temp = E1000_READ_REG(hw, BPTC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040F4 : em_translate_82542_register (0x040F4))))); | ||||
8301 | |||||
8302 | if (hw->mac_type < em_82543) | ||||
8303 | return; | ||||
8304 | |||||
8305 | temp = E1000_READ_REG(hw, ALGNERRC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04004 : em_translate_82542_register (0x04004))))); | ||||
8306 | temp = E1000_READ_REG(hw, RXERRC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x0400C : em_translate_82542_register (0x0400C))))); | ||||
8307 | temp = E1000_READ_REG(hw, TNCRS)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04034 : em_translate_82542_register (0x04034))))); | ||||
8308 | temp = E1000_READ_REG(hw, CEXTERR)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x0403C : em_translate_82542_register (0x0403C))))); | ||||
8309 | temp = E1000_READ_REG(hw, TSCTC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040F8 : em_translate_82542_register (0x040F8))))); | ||||
8310 | temp = E1000_READ_REG(hw, TSCTFC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040FC : em_translate_82542_register (0x040FC))))); | ||||
8311 | |||||
8312 | if (hw->mac_type <= em_82544 | ||||
8313 | || hw->mac_type == em_icp_xxxx) | ||||
8314 | return; | ||||
8315 | |||||
8316 | temp = E1000_READ_REG(hw, MGTPRC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040B4 : em_translate_82542_register (0x040B4))))); | ||||
8317 | temp = E1000_READ_REG(hw, MGTPDC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040B8 : em_translate_82542_register (0x040B8))))); | ||||
8318 | temp = E1000_READ_REG(hw, MGTPTC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x040BC : em_translate_82542_register (0x040BC))))); | ||||
8319 | |||||
8320 | if (hw->mac_type <= em_82547_rev_2) | ||||
8321 | return; | ||||
8322 | |||||
8323 | temp = E1000_READ_REG(hw, IAC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04100 : em_translate_82542_register (0x04100))))); | ||||
8324 | temp = E1000_READ_REG(hw, ICRXOC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04124 : em_translate_82542_register (0x04124))))); | ||||
8325 | |||||
8326 | if (hw->phy_type == em_phy_82577 || | ||||
8327 | hw->phy_type == em_phy_82578 || | ||||
8328 | hw->phy_type == em_phy_82579 || | ||||
8329 | hw->phy_type == em_phy_i217) { | ||||
8330 | uint16_t phy_data; | ||||
8331 | |||||
8332 | em_read_phy_reg(hw, HV_SCC_UPPER(((778) << 5) | ((16) & 0x1F)), &phy_data); | ||||
8333 | em_read_phy_reg(hw, HV_SCC_LOWER(((778) << 5) | ((17) & 0x1F)), &phy_data); | ||||
8334 | em_read_phy_reg(hw, HV_ECOL_UPPER(((778) << 5) | ((18) & 0x1F)), &phy_data); | ||||
8335 | em_read_phy_reg(hw, HV_ECOL_LOWER(((778) << 5) | ((19) & 0x1F)), &phy_data); | ||||
8336 | em_read_phy_reg(hw, HV_MCC_UPPER(((778) << 5) | ((20) & 0x1F)), &phy_data); | ||||
8337 | em_read_phy_reg(hw, HV_MCC_LOWER(((778) << 5) | ((21) & 0x1F)), &phy_data); | ||||
8338 | em_read_phy_reg(hw, HV_LATECOL_UPPER(((778) << 5) | ((23) & 0x1F)), &phy_data); | ||||
8339 | em_read_phy_reg(hw, HV_LATECOL_LOWER(((778) << 5) | ((24) & 0x1F)), &phy_data); | ||||
8340 | em_read_phy_reg(hw, HV_COLC_UPPER(((778) << 5) | ((25) & 0x1F)), &phy_data); | ||||
8341 | em_read_phy_reg(hw, HV_COLC_LOWER(((778) << 5) | ((26) & 0x1F)), &phy_data); | ||||
8342 | em_read_phy_reg(hw, HV_DC_UPPER(((778) << 5) | ((27) & 0x1F)), &phy_data); | ||||
8343 | em_read_phy_reg(hw, HV_DC_LOWER(((778) << 5) | ((28) & 0x1F)), &phy_data); | ||||
8344 | em_read_phy_reg(hw, HV_TNCRS_UPPER(((778) << 5) | ((29) & 0x1F)), &phy_data); | ||||
8345 | em_read_phy_reg(hw, HV_TNCRS_LOWER(((778) << 5) | ((30) & 0x1F)), &phy_data); | ||||
8346 | } | ||||
8347 | |||||
8348 | if (hw->mac_type == em_ich8lan || | ||||
8349 | hw->mac_type == em_ich9lan || | ||||
8350 | hw->mac_type == em_ich10lan || | ||||
8351 | hw->mac_type == em_pchlan || | ||||
8352 | (hw->mac_type != em_pch2lan && hw->mac_type != em_pch_lpt && | ||||
8353 | hw->mac_type != em_pch_spt && hw->mac_type != em_pch_cnp)) | ||||
8354 | return; | ||||
8355 | |||||
8356 | temp = E1000_READ_REG(hw, ICRXPTC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04104 : em_translate_82542_register (0x04104))))); | ||||
8357 | temp = E1000_READ_REG(hw, ICRXATC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04108 : em_translate_82542_register (0x04108))))); | ||||
8358 | temp = E1000_READ_REG(hw, ICTXPTC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x0410C : em_translate_82542_register (0x0410C))))); | ||||
8359 | temp = E1000_READ_REG(hw, ICTXATC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04110 : em_translate_82542_register (0x04110))))); | ||||
8360 | temp = E1000_READ_REG(hw, ICTXQEC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04118 : em_translate_82542_register (0x04118))))); | ||||
8361 | temp = E1000_READ_REG(hw, ICTXQMTC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x0411C : em_translate_82542_register (0x0411C))))); | ||||
8362 | temp = E1000_READ_REG(hw, ICRXDMTC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x04120 : em_translate_82542_register (0x04120))))); | ||||
8363 | } | ||||
8364 | |||||
8365 | /****************************************************************************** | ||||
8366 | * Gets the current PCI bus type, speed, and width of the hardware | ||||
8367 | * | ||||
8368 | * hw - Struct containing variables accessed by shared code | ||||
8369 | *****************************************************************************/ | ||||
8370 | void | ||||
8371 | em_get_bus_info(struct em_hw *hw) | ||||
8372 | { | ||||
8373 | int32_t ret_val; | ||||
8374 | uint16_t pci_ex_link_status; | ||||
8375 | uint32_t status; | ||||
8376 | switch (hw->mac_type) { | ||||
8377 | case em_82542_rev2_0: | ||||
8378 | case em_82542_rev2_1: | ||||
8379 | hw->bus_type = em_bus_type_unknown; | ||||
8380 | hw->bus_speed = em_bus_speed_unknown; | ||||
8381 | hw->bus_width = em_bus_width_unknown; | ||||
8382 | break; | ||||
8383 | case em_icp_xxxx: | ||||
8384 | hw->bus_type = em_bus_type_cpp; | ||||
8385 | hw->bus_speed = em_bus_speed_unknown; | ||||
8386 | hw->bus_width = em_bus_width_unknown; | ||||
8387 | break; | ||||
8388 | case em_82571: | ||||
8389 | case em_82572: | ||||
8390 | case em_82573: | ||||
8391 | case em_82574: | ||||
8392 | case em_82575: | ||||
8393 | case em_82576: | ||||
8394 | case em_82580: | ||||
8395 | case em_80003es2lan: | ||||
8396 | case em_i210: | ||||
8397 | case em_i350: | ||||
8398 | hw->bus_type = em_bus_type_pci_express; | ||||
8399 | hw->bus_speed = em_bus_speed_2500; | ||||
8400 | ret_val = em_read_pcie_cap_reg(hw, PCI_EX_LINK_STATUS0x12, | ||||
8401 | &pci_ex_link_status); | ||||
8402 | if (ret_val) | ||||
8403 | hw->bus_width = em_bus_width_unknown; | ||||
8404 | else | ||||
8405 | hw->bus_width = (pci_ex_link_status & | ||||
8406 | PCI_EX_LINK_WIDTH_MASK0x3F0) >> PCI_EX_LINK_WIDTH_SHIFT4; | ||||
8407 | break; | ||||
8408 | case em_ich8lan: | ||||
8409 | case em_ich9lan: | ||||
8410 | case em_ich10lan: | ||||
8411 | case em_pchlan: | ||||
8412 | case em_pch2lan: | ||||
8413 | case em_pch_lpt: | ||||
8414 | case em_pch_spt: | ||||
8415 | case em_pch_cnp: | ||||
8416 | hw->bus_type = em_bus_type_pci_express; | ||||
8417 | hw->bus_speed = em_bus_speed_2500; | ||||
8418 | hw->bus_width = em_bus_width_pciex_1; | ||||
8419 | break; | ||||
8420 | default: | ||||
8421 | status = E1000_READ_REG(hw, STATUS)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
8422 | hw->bus_type = (status & E1000_STATUS_PCIX_MODE0x00002000) ? | ||||
8423 | em_bus_type_pcix : em_bus_type_pci; | ||||
8424 | |||||
8425 | if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER0x101D) { | ||||
8426 | hw->bus_speed = (hw->bus_type == em_bus_type_pci) ? | ||||
8427 | em_bus_speed_66 : em_bus_speed_120; | ||||
8428 | } else if (hw->bus_type == em_bus_type_pci) { | ||||
8429 | hw->bus_speed = (status & E1000_STATUS_PCI660x00000800) ? | ||||
8430 | em_bus_speed_66 : em_bus_speed_33; | ||||
8431 | } else { | ||||
8432 | switch (status & E1000_STATUS_PCIX_SPEED0x0000C000) { | ||||
8433 | case E1000_STATUS_PCIX_SPEED_660x00000000: | ||||
8434 | hw->bus_speed = em_bus_speed_66; | ||||
8435 | break; | ||||
8436 | case E1000_STATUS_PCIX_SPEED_1000x00004000: | ||||
8437 | hw->bus_speed = em_bus_speed_100; | ||||
8438 | break; | ||||
8439 | case E1000_STATUS_PCIX_SPEED_1330x00008000: | ||||
8440 | hw->bus_speed = em_bus_speed_133; | ||||
8441 | break; | ||||
8442 | default: | ||||
8443 | hw->bus_speed = em_bus_speed_reserved; | ||||
8444 | break; | ||||
8445 | } | ||||
8446 | } | ||||
8447 | hw->bus_width = (status & E1000_STATUS_BUS640x00001000) ? | ||||
8448 | em_bus_width_64 : em_bus_width_32; | ||||
8449 | break; | ||||
8450 | } | ||||
8451 | } | ||||
8452 | |||||
8453 | /****************************************************************************** | ||||
8454 | * Writes a value to one of the devices registers using port I/O (as opposed to | ||||
8455 | * memory mapped I/O). Only 82544 and newer devices support port I/O. | ||||
8456 | * | ||||
8457 | * hw - Struct containing variables accessed by shared code | ||||
8458 | * offset - offset to write to | ||||
8459 | * value - value to write | ||||
8460 | *****************************************************************************/ | ||||
8461 | STATIC void | ||||
8462 | em_write_reg_io(struct em_hw *hw, uint32_t offset, uint32_t value) | ||||
8463 | { | ||||
8464 | unsigned long io_addr = hw->io_base; | ||||
8465 | unsigned long io_data = hw->io_base + 4; | ||||
8466 | em_io_write(hw, io_addr, offset)((((struct em_osdep *)(hw)->back)->io_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->io_bus_space_handle ), ((io_addr)), ((offset)))); | ||||
8467 | em_io_write(hw, io_data, value)((((struct em_osdep *)(hw)->back)->io_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->io_bus_space_handle ), ((io_data)), ((value)))); | ||||
8468 | } | ||||
8469 | |||||
8470 | /****************************************************************************** | ||||
8471 | * Estimates the cable length. | ||||
8472 | * | ||||
8473 | * hw - Struct containing variables accessed by shared code | ||||
8474 | * min_length - The estimated minimum length | ||||
8475 | * max_length - The estimated maximum length | ||||
8476 | * | ||||
8477 | * returns: - E1000_ERR_XXX | ||||
8478 | * E1000_SUCCESS | ||||
8479 | * | ||||
8480 | * This function always returns a ranged length (minimum & maximum). | ||||
8481 | * So for M88 phy's, this function interprets the one value returned from the | ||||
8482 | * register to the minimum and maximum range. | ||||
8483 | * For IGP phy's, the function calculates the range by the AGC registers. | ||||
8484 | *****************************************************************************/ | ||||
8485 | STATIC int32_t | ||||
8486 | em_get_cable_length(struct em_hw *hw, uint16_t *min_length, | ||||
8487 | uint16_t *max_length) | ||||
8488 | { | ||||
8489 | int32_t ret_val; | ||||
8490 | uint16_t agc_value = 0; | ||||
8491 | uint16_t i, phy_data; | ||||
8492 | uint16_t cable_length; | ||||
8493 | DEBUGFUNC("em_get_cable_length");; | ||||
8494 | |||||
8495 | *min_length = *max_length = 0; | ||||
8496 | |||||
8497 | /* Use old method for Phy older than IGP */ | ||||
8498 | if (hw->phy_type == em_phy_m88 || | ||||
8499 | hw->phy_type == em_phy_oem || | ||||
8500 | hw->phy_type == em_phy_82578) { | ||||
8501 | |||||
8502 | ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS0x11, | ||||
8503 | &phy_data); | ||||
8504 | if (ret_val) | ||||
8505 | return ret_val; | ||||
8506 | cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH0x0380) >> | ||||
8507 | M88E1000_PSSR_CABLE_LENGTH_SHIFT7; | ||||
8508 | |||||
8509 | /* Convert the enum value to ranged values */ | ||||
8510 | switch (cable_length) { | ||||
8511 | case em_cable_length_50: | ||||
8512 | *min_length = 0; | ||||
8513 | *max_length = em_igp_cable_length_50; | ||||
8514 | break; | ||||
8515 | case em_cable_length_50_80: | ||||
8516 | *min_length = em_igp_cable_length_50; | ||||
8517 | *max_length = em_igp_cable_length_80; | ||||
8518 | break; | ||||
8519 | case em_cable_length_80_110: | ||||
8520 | *min_length = em_igp_cable_length_80; | ||||
8521 | *max_length = em_igp_cable_length_110; | ||||
8522 | break; | ||||
8523 | case em_cable_length_110_140: | ||||
8524 | *min_length = em_igp_cable_length_110; | ||||
8525 | *max_length = em_igp_cable_length_140; | ||||
8526 | break; | ||||
8527 | case em_cable_length_140: | ||||
8528 | *min_length = em_igp_cable_length_140; | ||||
8529 | *max_length = em_igp_cable_length_170; | ||||
8530 | break; | ||||
8531 | default: | ||||
8532 | return -E1000_ERR_PHY2; | ||||
8533 | break; | ||||
8534 | } | ||||
8535 | } else if (hw->phy_type == em_phy_rtl8211) { | ||||
8536 | /* no cable length info on RTL8211, fake */ | ||||
8537 | *min_length = 0; | ||||
8538 | *max_length = em_igp_cable_length_50; | ||||
8539 | } else if (hw->phy_type == em_phy_gg82563) { | ||||
8540 | ret_val = em_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE(((5) << 5) | ((26) & 0x1F)), | ||||
8541 | &phy_data); | ||||
8542 | if (ret_val) | ||||
8543 | return ret_val; | ||||
8544 | cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH0x0007; | ||||
8545 | |||||
8546 | switch (cable_length) { | ||||
8547 | case em_gg_cable_length_60: | ||||
8548 | *min_length = 0; | ||||
8549 | *max_length = em_igp_cable_length_60; | ||||
8550 | break; | ||||
8551 | case em_gg_cable_length_60_115: | ||||
8552 | *min_length = em_igp_cable_length_60; | ||||
8553 | *max_length = em_igp_cable_length_115; | ||||
8554 | break; | ||||
8555 | case em_gg_cable_length_115_150: | ||||
8556 | *min_length = em_igp_cable_length_115; | ||||
8557 | *max_length = em_igp_cable_length_150; | ||||
8558 | break; | ||||
8559 | case em_gg_cable_length_150: | ||||
8560 | *min_length = em_igp_cable_length_150; | ||||
8561 | *max_length = em_igp_cable_length_180; | ||||
8562 | break; | ||||
8563 | default: | ||||
8564 | return -E1000_ERR_PHY2; | ||||
8565 | break; | ||||
8566 | } | ||||
8567 | } else if (hw->phy_type == em_phy_igp) { /* For IGP PHY */ | ||||
8568 | uint16_t cur_agc_value; | ||||
8569 | uint16_t min_agc_value = | ||||
8570 | IGP01E1000_AGC_LENGTH_TABLE_SIZE128; | ||||
8571 | uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM4] = | ||||
8572 | {IGP01E1000_PHY_AGC_A0x1172, IGP01E1000_PHY_AGC_B0x1272, | ||||
8573 | IGP01E1000_PHY_AGC_C0x1472, IGP01E1000_PHY_AGC_D0x1872}; | ||||
8574 | |||||
8575 | /* Read the AGC registers for all channels */ | ||||
8576 | for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM4; i++) { | ||||
8577 | ret_val = em_read_phy_reg(hw, agc_reg_array[i], | ||||
8578 | &phy_data); | ||||
8579 | if (ret_val) | ||||
8580 | return ret_val; | ||||
8581 | |||||
8582 | cur_agc_value = phy_data >> | ||||
8583 | IGP01E1000_AGC_LENGTH_SHIFT7; | ||||
8584 | |||||
8585 | /* Value bound check. */ | ||||
8586 | if ((cur_agc_value >= | ||||
8587 | IGP01E1000_AGC_LENGTH_TABLE_SIZE128 - 1) || | ||||
8588 | (cur_agc_value == 0)) | ||||
8589 | return -E1000_ERR_PHY2; | ||||
8590 | |||||
8591 | agc_value += cur_agc_value; | ||||
8592 | |||||
8593 | /* Update minimal AGC value. */ | ||||
8594 | if (min_agc_value > cur_agc_value) | ||||
8595 | min_agc_value = cur_agc_value; | ||||
8596 | } | ||||
8597 | |||||
8598 | /* Remove the minimal AGC result for length < 50m */ | ||||
8599 | if (agc_value < IGP01E1000_PHY_CHANNEL_NUM4 * | ||||
8600 | em_igp_cable_length_50) { | ||||
8601 | agc_value -= min_agc_value; | ||||
8602 | |||||
8603 | /* | ||||
8604 | * Get the average length of the remaining 3 channels | ||||
8605 | */ | ||||
8606 | agc_value /= (IGP01E1000_PHY_CHANNEL_NUM4 - 1); | ||||
8607 | } else { | ||||
8608 | /* Get the average length of all the 4 channels. */ | ||||
8609 | agc_value /= IGP01E1000_PHY_CHANNEL_NUM4; | ||||
8610 | } | ||||
8611 | |||||
8612 | /* Set the range of the calculated length. */ | ||||
8613 | *min_length = ((em_igp_cable_length_table[agc_value] - | ||||
8614 | IGP01E1000_AGC_RANGE10) > 0) ? | ||||
8615 | (em_igp_cable_length_table[agc_value] - | ||||
8616 | IGP01E1000_AGC_RANGE10) : 0; | ||||
8617 | *max_length = em_igp_cable_length_table[agc_value] + | ||||
8618 | IGP01E1000_AGC_RANGE10; | ||||
8619 | } else if (hw->phy_type == em_phy_igp_2 || | ||||
8620 | hw->phy_type == em_phy_igp_3) { | ||||
8621 | uint16_t cur_agc_index, max_agc_index = 0; | ||||
8622 | uint16_t min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE113 - 1; | ||||
8623 | uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM4] = | ||||
8624 | {IGP02E1000_PHY_AGC_A0x11B1, IGP02E1000_PHY_AGC_B0x12B1, | ||||
8625 | IGP02E1000_PHY_AGC_C0x14B1, IGP02E1000_PHY_AGC_D0x18B1}; | ||||
8626 | /* Read the AGC registers for all channels */ | ||||
8627 | for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM4; i++) { | ||||
8628 | ret_val = em_read_phy_reg(hw, agc_reg_array[i], | ||||
8629 | &phy_data); | ||||
8630 | if (ret_val) | ||||
8631 | return ret_val; | ||||
8632 | /* | ||||
8633 | * Getting bits 15:9, which represent the combination | ||||
8634 | * of course and fine gain values. The result is a | ||||
8635 | * number that can be put into the lookup table to | ||||
8636 | * obtain the approximate cable length. | ||||
8637 | */ | ||||
8638 | cur_agc_index = (phy_data >> | ||||
8639 | IGP02E1000_AGC_LENGTH_SHIFT9) & | ||||
8640 | IGP02E1000_AGC_LENGTH_MASK0x7F; | ||||
8641 | |||||
8642 | /* Array index bound check. */ | ||||
8643 | if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE113) | ||||
8644 | || (cur_agc_index == 0)) | ||||
8645 | return -E1000_ERR_PHY2; | ||||
8646 | |||||
8647 | /* Remove min & max AGC values from calculation. */ | ||||
8648 | if (em_igp_2_cable_length_table[min_agc_index] > | ||||
8649 | em_igp_2_cable_length_table[cur_agc_index]) | ||||
8650 | min_agc_index = cur_agc_index; | ||||
8651 | if (em_igp_2_cable_length_table[max_agc_index] < | ||||
8652 | em_igp_2_cable_length_table[cur_agc_index]) | ||||
8653 | max_agc_index = cur_agc_index; | ||||
8654 | |||||
8655 | agc_value += em_igp_2_cable_length_table | ||||
8656 | [cur_agc_index]; | ||||
8657 | } | ||||
8658 | |||||
8659 | agc_value -= (em_igp_2_cable_length_table[min_agc_index] + | ||||
8660 | em_igp_2_cable_length_table[max_agc_index]); | ||||
8661 | agc_value /= (IGP02E1000_PHY_CHANNEL_NUM4 - 2); | ||||
8662 | /* | ||||
8663 | * Calculate cable length with the error range of +/- 10 | ||||
8664 | * meters. | ||||
8665 | */ | ||||
8666 | *min_length = ((agc_value - IGP02E1000_AGC_RANGE15) > 0) ? | ||||
8667 | (agc_value - IGP02E1000_AGC_RANGE15) : 0; | ||||
8668 | *max_length = agc_value + IGP02E1000_AGC_RANGE15; | ||||
8669 | } | ||||
8670 | return E1000_SUCCESS0; | ||||
8671 | } | ||||
8672 | |||||
8673 | /****************************************************************************** | ||||
8674 | * Check if Downshift occurred | ||||
8675 | * | ||||
8676 | * hw - Struct containing variables accessed by shared code | ||||
8677 | * downshift - output parameter : 0 - No Downshift occurred. | ||||
8678 | * 1 - Downshift occurred. | ||||
8679 | * | ||||
8680 | * returns: - E1000_ERR_XXX | ||||
8681 | * E1000_SUCCESS | ||||
8682 | * | ||||
8683 | * For phy's older then IGP, this function reads the Downshift bit in the Phy | ||||
8684 | * Specific Status register. For IGP phy's, it reads the Downgrade bit in the | ||||
8685 | * Link Health register. In IGP this bit is latched high, so the driver must | ||||
8686 | * read it immediately after link is established. | ||||
8687 | *****************************************************************************/ | ||||
8688 | STATIC int32_t | ||||
8689 | em_check_downshift(struct em_hw *hw) | ||||
8690 | { | ||||
8691 | int32_t ret_val; | ||||
8692 | uint16_t phy_data; | ||||
8693 | DEBUGFUNC("em_check_downshift");; | ||||
8694 | |||||
8695 | if (hw->phy_type == em_phy_igp || | ||||
8696 | hw->phy_type == em_phy_igp_3 || | ||||
8697 | hw->phy_type == em_phy_igp_2) { | ||||
8698 | ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH0x13, | ||||
8699 | &phy_data); | ||||
8700 | if (ret_val) | ||||
8701 | return ret_val; | ||||
8702 | |||||
8703 | hw->speed_downgraded = (phy_data & | ||||
8704 | IGP01E1000_PLHR_SS_DOWNGRADE0x8000) ? 1 : 0; | ||||
8705 | } else if ((hw->phy_type == em_phy_m88) || | ||||
8706 | (hw->phy_type == em_phy_gg82563) || | ||||
8707 | (hw->phy_type == em_phy_oem) || | ||||
8708 | (hw->phy_type == em_phy_82578)) { | ||||
8709 | ret_val = em_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS0x11, | ||||
8710 | &phy_data); | ||||
8711 | if (ret_val) | ||||
8712 | return ret_val; | ||||
8713 | |||||
8714 | hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT0x0020) >> | ||||
8715 | M88E1000_PSSR_DOWNSHIFT_SHIFT5; | ||||
8716 | } else if (hw->phy_type == em_phy_ife) { | ||||
8717 | /* em_phy_ife supports 10/100 speed only */ | ||||
8718 | hw->speed_downgraded = FALSE0; | ||||
8719 | } | ||||
8720 | return E1000_SUCCESS0; | ||||
8721 | } | ||||
8722 | |||||
8723 | /***************************************************************************** | ||||
8724 | * | ||||
8725 | * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a | ||||
8726 | * gigabit link is achieved to improve link quality. | ||||
8727 | * | ||||
8728 | * hw: Struct containing variables accessed by shared code | ||||
8729 | * | ||||
8730 | * returns: - E1000_ERR_PHY if fail to read/write the PHY | ||||
8731 | * E1000_SUCCESS at any other case. | ||||
8732 | * | ||||
8733 | ****************************************************************************/ | ||||
8734 | STATIC int32_t | ||||
8735 | em_config_dsp_after_link_change(struct em_hw *hw, boolean_t link_up) | ||||
8736 | { | ||||
8737 | int32_t ret_val; | ||||
8738 | uint16_t phy_data, phy_saved_data, speed, duplex, i; | ||||
8739 | uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM4] = | ||||
8740 | {IGP01E1000_PHY_AGC_PARAM_A0x1171, IGP01E1000_PHY_AGC_PARAM_B0x1271, | ||||
8741 | IGP01E1000_PHY_AGC_PARAM_C0x1471, IGP01E1000_PHY_AGC_PARAM_D0x1871}; | ||||
8742 | uint16_t min_length, max_length; | ||||
8743 | DEBUGFUNC("em_config_dsp_after_link_change");; | ||||
8744 | |||||
8745 | if (hw->phy_type != em_phy_igp) | ||||
8746 | return E1000_SUCCESS0; | ||||
8747 | |||||
8748 | if (link_up) { | ||||
8749 | ret_val = em_get_speed_and_duplex(hw, &speed, &duplex); | ||||
8750 | if (ret_val) { | ||||
8751 | DEBUGOUT("Error getting link speed and duplex\n"); | ||||
8752 | return ret_val; | ||||
8753 | } | ||||
8754 | if (speed == SPEED_10001000) { | ||||
8755 | |||||
8756 | ret_val = em_get_cable_length(hw, &min_length, &max_length); | ||||
8757 | if (ret_val) | ||||
8758 | return ret_val; | ||||
8759 | |||||
8760 | if ((hw->dsp_config_state == em_dsp_config_enabled) && | ||||
8761 | min_length >= em_igp_cable_length_50) { | ||||
8762 | |||||
8763 | for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM4; | ||||
8764 | i++) { | ||||
8765 | ret_val = em_read_phy_reg(hw, | ||||
8766 | dsp_reg_array[i], &phy_data); | ||||
8767 | if (ret_val) | ||||
8768 | return ret_val; | ||||
8769 | |||||
8770 | phy_data &= | ||||
8771 | ~IGP01E1000_PHY_EDAC_MU_INDEX0xC000; | ||||
8772 | |||||
8773 | ret_val = em_write_phy_reg(hw, | ||||
8774 | dsp_reg_array[i], phy_data); | ||||
8775 | if (ret_val) | ||||
8776 | return ret_val; | ||||
8777 | } | ||||
8778 | hw->dsp_config_state = em_dsp_config_activated; | ||||
8779 | } | ||||
8780 | if ((hw->ffe_config_state == em_ffe_config_enabled) && | ||||
8781 | (min_length < em_igp_cable_length_50)) { | ||||
8782 | |||||
8783 | uint16_t ffe_idle_err_timeout = | ||||
8784 | FFE_IDLE_ERR_COUNT_TIMEOUT_2020; | ||||
8785 | uint32_t idle_errs = 0; | ||||
8786 | /* clear previous idle error counts */ | ||||
8787 | ret_val = em_read_phy_reg(hw, PHY_1000T_STATUS0x0A, | ||||
8788 | &phy_data); | ||||
8789 | if (ret_val) | ||||
8790 | return ret_val; | ||||
8791 | |||||
8792 | for (i = 0; i < ffe_idle_err_timeout; i++) { | ||||
8793 | usec_delay(1000)(*delay_func)(1000); | ||||
8794 | ret_val = em_read_phy_reg(hw, | ||||
8795 | PHY_1000T_STATUS0x0A, &phy_data); | ||||
8796 | if (ret_val) | ||||
8797 | return ret_val; | ||||
8798 | |||||
8799 | idle_errs += (phy_data & | ||||
8800 | SR_1000T_IDLE_ERROR_CNT0x00FF); | ||||
8801 | if (idle_errs > | ||||
8802 | SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT5) { | ||||
8803 | hw->ffe_config_state = | ||||
8804 | em_ffe_config_active; | ||||
8805 | |||||
8806 | ret_val = em_write_phy_reg(hw, | ||||
8807 | IGP01E1000_PHY_DSP_FFE0x1F35, | ||||
8808 | IGP01E1000_PHY_DSP_FFE_CM_CP0x0069); | ||||
8809 | if (ret_val) | ||||
8810 | return ret_val; | ||||
8811 | break; | ||||
8812 | } | ||||
8813 | if (idle_errs) | ||||
8814 | ffe_idle_err_timeout = | ||||
8815 | FFE_IDLE_ERR_COUNT_TIMEOUT_100100; | ||||
8816 | } | ||||
8817 | } | ||||
8818 | } | ||||
8819 | } else { | ||||
8820 | if (hw->dsp_config_state == em_dsp_config_activated) { | ||||
8821 | /* | ||||
8822 | * Save off the current value of register 0x2F5B to | ||||
8823 | * be restored at the end of the routines. | ||||
8824 | */ | ||||
8825 | ret_val = em_read_phy_reg(hw, 0x2F5B, &phy_saved_data); | ||||
8826 | |||||
8827 | if (ret_val) | ||||
8828 | return ret_val; | ||||
8829 | |||||
8830 | /* Disable the PHY transmitter */ | ||||
8831 | ret_val = em_write_phy_reg(hw, 0x2F5B, 0x0003); | ||||
8832 | |||||
8833 | if (ret_val) | ||||
8834 | return ret_val; | ||||
8835 | |||||
8836 | msec_delay_irq(20)(*delay_func)(1000*(20)); | ||||
8837 | |||||
8838 | ret_val = em_write_phy_reg(hw, 0x0000, | ||||
8839 | IGP01E1000_IEEE_FORCE_GIGA0x0140); | ||||
8840 | if (ret_val) | ||||
8841 | return ret_val; | ||||
8842 | for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM4; i++) { | ||||
8843 | ret_val = em_read_phy_reg(hw, dsp_reg_array[i], | ||||
8844 | &phy_data); | ||||
8845 | if (ret_val) | ||||
8846 | return ret_val; | ||||
8847 | |||||
8848 | phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX0xC000; | ||||
8849 | phy_data |= | ||||
8850 | IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS0x8000; | ||||
8851 | |||||
8852 | ret_val = em_write_phy_reg(hw, | ||||
8853 | dsp_reg_array[i], phy_data); | ||||
8854 | if (ret_val) | ||||
8855 | return ret_val; | ||||
8856 | } | ||||
8857 | |||||
8858 | ret_val = em_write_phy_reg(hw, 0x0000, | ||||
8859 | IGP01E1000_IEEE_RESTART_AUTONEG0x3300); | ||||
8860 | if (ret_val) | ||||
8861 | return ret_val; | ||||
8862 | |||||
8863 | msec_delay_irq(20)(*delay_func)(1000*(20)); | ||||
8864 | |||||
8865 | /* Now enable the transmitter */ | ||||
8866 | ret_val = em_write_phy_reg(hw, 0x2F5B, phy_saved_data); | ||||
8867 | |||||
8868 | if (ret_val) | ||||
8869 | return ret_val; | ||||
8870 | |||||
8871 | hw->dsp_config_state = em_dsp_config_enabled; | ||||
8872 | } | ||||
8873 | if (hw->ffe_config_state == em_ffe_config_active) { | ||||
8874 | /* | ||||
8875 | * Save off the current value of register 0x2F5B to | ||||
8876 | * be restored at the end of the routines. | ||||
8877 | */ | ||||
8878 | ret_val = em_read_phy_reg(hw, 0x2F5B, &phy_saved_data); | ||||
8879 | |||||
8880 | if (ret_val) | ||||
8881 | return ret_val; | ||||
8882 | |||||
8883 | /* Disable the PHY transmitter */ | ||||
8884 | ret_val = em_write_phy_reg(hw, 0x2F5B, 0x0003); | ||||
8885 | |||||
8886 | if (ret_val) | ||||
8887 | return ret_val; | ||||
8888 | |||||
8889 | msec_delay_irq(20)(*delay_func)(1000*(20)); | ||||
8890 | |||||
8891 | ret_val = em_write_phy_reg(hw, 0x0000, | ||||
8892 | IGP01E1000_IEEE_FORCE_GIGA0x0140); | ||||
8893 | if (ret_val) | ||||
8894 | return ret_val; | ||||
8895 | ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE0x1F35, | ||||
8896 | IGP01E1000_PHY_DSP_FFE_DEFAULT0x002A); | ||||
8897 | if (ret_val) | ||||
8898 | return ret_val; | ||||
8899 | |||||
8900 | ret_val = em_write_phy_reg(hw, 0x0000, | ||||
8901 | IGP01E1000_IEEE_RESTART_AUTONEG0x3300); | ||||
8902 | if (ret_val) | ||||
8903 | return ret_val; | ||||
8904 | |||||
8905 | msec_delay_irq(20)(*delay_func)(1000*(20)); | ||||
8906 | |||||
8907 | /* Now enable the transmitter */ | ||||
8908 | ret_val = em_write_phy_reg(hw, 0x2F5B, phy_saved_data); | ||||
8909 | |||||
8910 | if (ret_val) | ||||
8911 | return ret_val; | ||||
8912 | |||||
8913 | hw->ffe_config_state = em_ffe_config_enabled; | ||||
8914 | } | ||||
8915 | } | ||||
8916 | return E1000_SUCCESS0; | ||||
8917 | } | ||||
8918 | |||||
8919 | /***************************************************************************** | ||||
8920 | * Set PHY to class A mode | ||||
8921 | * Assumes the following operations will follow to enable the new class mode. | ||||
8922 | * 1. Do a PHY soft reset | ||||
8923 | * 2. Restart auto-negotiation or force link. | ||||
8924 | * | ||||
8925 | * hw - Struct containing variables accessed by shared code | ||||
8926 | ****************************************************************************/ | ||||
8927 | static int32_t | ||||
8928 | em_set_phy_mode(struct em_hw *hw) | ||||
8929 | { | ||||
8930 | int32_t ret_val; | ||||
8931 | uint16_t eeprom_data; | ||||
8932 | DEBUGFUNC("em_set_phy_mode");; | ||||
8933 | |||||
8934 | if ((hw->mac_type == em_82545_rev_3) && | ||||
8935 | (hw->media_type == em_media_type_copper)) { | ||||
8936 | ret_val = em_read_eeprom(hw, EEPROM_PHY_CLASS_WORD0x0007, 1, | ||||
8937 | &eeprom_data); | ||||
8938 | if (ret_val) { | ||||
8939 | return ret_val; | ||||
8940 | } | ||||
8941 | if ((eeprom_data != EEPROM_RESERVED_WORD0xFFFF) && | ||||
8942 | (eeprom_data & EEPROM_PHY_CLASS_A0x8000)) { | ||||
8943 | ret_val = em_write_phy_reg(hw, | ||||
8944 | M88E1000_PHY_PAGE_SELECT0x1D, 0x000B); | ||||
8945 | if (ret_val) | ||||
8946 | return ret_val; | ||||
8947 | ret_val = em_write_phy_reg(hw, | ||||
8948 | M88E1000_PHY_GEN_CONTROL0x1E, 0x8104); | ||||
8949 | if (ret_val) | ||||
8950 | return ret_val; | ||||
8951 | |||||
8952 | hw->phy_reset_disable = FALSE0; | ||||
8953 | } | ||||
8954 | } | ||||
8955 | return E1000_SUCCESS0; | ||||
8956 | } | ||||
8957 | |||||
8958 | /***************************************************************************** | ||||
8959 | * | ||||
8960 | * This function sets the lplu state according to the active flag. When | ||||
8961 | * activating lplu this function also disables smart speed and vise versa. | ||||
8962 | * lplu will not be activated unless the device autonegotiation advertisement | ||||
8963 | * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. | ||||
8964 | * hw: Struct containing variables accessed by shared code | ||||
8965 | * active - true to enable lplu false to disable lplu. | ||||
8966 | * | ||||
8967 | * returns: - E1000_ERR_PHY if fail to read/write the PHY | ||||
8968 | * E1000_SUCCESS at any other case. | ||||
8969 | * | ||||
8970 | ****************************************************************************/ | ||||
8971 | STATIC int32_t | ||||
8972 | em_set_d3_lplu_state(struct em_hw *hw, boolean_t active) | ||||
8973 | { | ||||
8974 | uint32_t phy_ctrl = 0; | ||||
8975 | int32_t ret_val; | ||||
8976 | uint16_t phy_data; | ||||
8977 | DEBUGFUNC("em_set_d3_lplu_state");; | ||||
8978 | |||||
8979 | if (hw->phy_type != em_phy_igp && hw->phy_type != em_phy_igp_2 | ||||
8980 | && hw->phy_type != em_phy_igp_3) | ||||
8981 | return E1000_SUCCESS0; | ||||
8982 | /* | ||||
8983 | * During driver activity LPLU should not be used or it will attain | ||||
8984 | * link from the lowest speeds starting from 10Mbps. The capability | ||||
8985 | * is used for Dx transitions and states | ||||
8986 | */ | ||||
8987 | if (hw->mac_type == em_82541_rev_2 || hw->mac_type == em_82547_rev_2) { | ||||
8988 | ret_val = em_read_phy_reg(hw, IGP01E1000_GMII_FIFO0x14, &phy_data); | ||||
8989 | if (ret_val) | ||||
8990 | return ret_val; | ||||
8991 | } else if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | ||||
8992 | /* | ||||
8993 | * MAC writes into PHY register based on the state transition | ||||
8994 | * and start auto-negotiation. SW driver can overwrite the | ||||
8995 | * settings in CSR PHY power control E1000_PHY_CTRL register. | ||||
8996 | */ | ||||
8997 | phy_ctrl = E1000_READ_REG(hw, PHY_CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F10 : em_translate_82542_register (0x00F10))))); | ||||
8998 | } else { | ||||
8999 | ret_val = em_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT0x19, | ||||
9000 | &phy_data); | ||||
9001 | if (ret_val) | ||||
9002 | return ret_val; | ||||
9003 | } | ||||
9004 | |||||
9005 | if (!active) { | ||||
9006 | if (hw->mac_type == em_82541_rev_2 || | ||||
9007 | hw->mac_type == em_82547_rev_2) { | ||||
9008 | phy_data &= ~IGP01E1000_GMII_FLEX_SPD0x10; | ||||
9009 | ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO0x14, | ||||
9010 | phy_data); | ||||
9011 | if (ret_val) | ||||
9012 | return ret_val; | ||||
9013 | } else { | ||||
9014 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | ||||
9015 | phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU0x00000004; | ||||
9016 | E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F10 : em_translate_82542_register (0x00F10))), (phy_ctrl))); | ||||
9017 | } else { | ||||
9018 | phy_data &= ~IGP02E1000_PM_D3_LPLU0x0004; | ||||
9019 | ret_val = em_write_phy_reg(hw, | ||||
9020 | IGP02E1000_PHY_POWER_MGMT0x19, phy_data); | ||||
9021 | if (ret_val) | ||||
9022 | return ret_val; | ||||
9023 | } | ||||
9024 | } | ||||
9025 | /* | ||||
9026 | * LPLU and SmartSpeed are mutually exclusive. LPLU is used | ||||
9027 | * during Dx states where the power conservation is most | ||||
9028 | * important. During driver activity we should enable | ||||
9029 | * SmartSpeed, so performance is maintained. | ||||
9030 | */ | ||||
9031 | if (hw->smart_speed == em_smart_speed_on) { | ||||
9032 | ret_val = em_read_phy_reg(hw, | ||||
9033 | IGP01E1000_PHY_PORT_CONFIG0x10, &phy_data); | ||||
9034 | if (ret_val) | ||||
9035 | return ret_val; | ||||
9036 | |||||
9037 | phy_data |= IGP01E1000_PSCFR_SMART_SPEED0x0080; | ||||
9038 | ret_val = em_write_phy_reg(hw, | ||||
9039 | IGP01E1000_PHY_PORT_CONFIG0x10, phy_data); | ||||
9040 | if (ret_val) | ||||
9041 | return ret_val; | ||||
9042 | } else if (hw->smart_speed == em_smart_speed_off) { | ||||
9043 | ret_val = em_read_phy_reg(hw, | ||||
9044 | IGP01E1000_PHY_PORT_CONFIG0x10, &phy_data); | ||||
9045 | if (ret_val) | ||||
9046 | return ret_val; | ||||
9047 | |||||
9048 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED0x0080; | ||||
9049 | ret_val = em_write_phy_reg(hw, | ||||
9050 | IGP01E1000_PHY_PORT_CONFIG0x10, phy_data); | ||||
9051 | if (ret_val) | ||||
9052 | return ret_val; | ||||
9053 | } | ||||
9054 | } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT0x002F) | ||||
9055 | || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL0x0003) || | ||||
9056 | (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL0x000F)) { | ||||
9057 | |||||
9058 | if (hw->mac_type == em_82541_rev_2 || | ||||
9059 | hw->mac_type == em_82547_rev_2) { | ||||
9060 | phy_data |= IGP01E1000_GMII_FLEX_SPD0x10; | ||||
9061 | ret_val = em_write_phy_reg(hw, IGP01E1000_GMII_FIFO0x14, | ||||
9062 | phy_data); | ||||
9063 | if (ret_val) | ||||
9064 | return ret_val; | ||||
9065 | } else { | ||||
9066 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | ||||
9067 | phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU0x00000004; | ||||
9068 | E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F10 : em_translate_82542_register (0x00F10))), (phy_ctrl))); | ||||
9069 | } else { | ||||
9070 | phy_data |= IGP02E1000_PM_D3_LPLU0x0004; | ||||
9071 | ret_val = em_write_phy_reg(hw, | ||||
9072 | IGP02E1000_PHY_POWER_MGMT0x19, phy_data); | ||||
9073 | if (ret_val) | ||||
9074 | return ret_val; | ||||
9075 | } | ||||
9076 | } | ||||
9077 | |||||
9078 | /* When LPLU is enabled we should disable SmartSpeed */ | ||||
9079 | ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG0x10, | ||||
9080 | &phy_data); | ||||
9081 | if (ret_val) | ||||
9082 | return ret_val; | ||||
9083 | |||||
9084 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED0x0080; | ||||
9085 | ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG0x10, | ||||
9086 | phy_data); | ||||
9087 | if (ret_val) | ||||
9088 | return ret_val; | ||||
9089 | |||||
9090 | } | ||||
9091 | return E1000_SUCCESS0; | ||||
9092 | } | ||||
9093 | |||||
9094 | /***************************************************************************** | ||||
9095 | * | ||||
9096 | * This function sets the lplu d0 state according to the active flag. When | ||||
9097 | * activating lplu this function also disables smart speed and vise versa. | ||||
9098 | * lplu will not be activated unless the device autonegotiation advertisement | ||||
9099 | * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. | ||||
9100 | * hw: Struct containing variables accessed by shared code | ||||
9101 | * active - true to enable lplu false to disable lplu. | ||||
9102 | * | ||||
9103 | * returns: - E1000_ERR_PHY if fail to read/write the PHY | ||||
9104 | * E1000_SUCCESS at any other case. | ||||
9105 | * | ||||
9106 | ****************************************************************************/ | ||||
9107 | STATIC int32_t | ||||
9108 | em_set_d0_lplu_state(struct em_hw *hw, boolean_t active) | ||||
9109 | { | ||||
9110 | uint32_t phy_ctrl = 0; | ||||
9111 | int32_t ret_val; | ||||
9112 | uint16_t phy_data; | ||||
9113 | DEBUGFUNC("em_set_d0_lplu_state");; | ||||
9114 | |||||
9115 | if (hw->mac_type <= em_82547_rev_2) | ||||
9116 | return E1000_SUCCESS0; | ||||
9117 | |||||
9118 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | ||||
9119 | phy_ctrl = E1000_READ_REG(hw, PHY_CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F10 : em_translate_82542_register (0x00F10))))); | ||||
9120 | } else { | ||||
9121 | ret_val = em_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT0x19, | ||||
9122 | &phy_data); | ||||
9123 | if (ret_val) | ||||
9124 | return ret_val; | ||||
9125 | } | ||||
9126 | |||||
9127 | if (!active) { | ||||
9128 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | ||||
9129 | phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU0x00000002; | ||||
9130 | E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F10 : em_translate_82542_register (0x00F10))), (phy_ctrl))); | ||||
9131 | } else { | ||||
9132 | phy_data &= ~IGP02E1000_PM_D0_LPLU0x0002; | ||||
9133 | ret_val = em_write_phy_reg(hw, | ||||
9134 | IGP02E1000_PHY_POWER_MGMT0x19, phy_data); | ||||
9135 | if (ret_val) | ||||
9136 | return ret_val; | ||||
9137 | } | ||||
9138 | /* | ||||
9139 | * LPLU and SmartSpeed are mutually exclusive. LPLU is used | ||||
9140 | * during Dx states where the power conservation is most | ||||
9141 | * important. During driver activity we should enable | ||||
9142 | * SmartSpeed, so performance is maintained. | ||||
9143 | */ | ||||
9144 | if (hw->smart_speed == em_smart_speed_on) { | ||||
9145 | ret_val = em_read_phy_reg(hw, | ||||
9146 | IGP01E1000_PHY_PORT_CONFIG0x10, &phy_data); | ||||
9147 | if (ret_val) | ||||
9148 | return ret_val; | ||||
9149 | |||||
9150 | phy_data |= IGP01E1000_PSCFR_SMART_SPEED0x0080; | ||||
9151 | ret_val = em_write_phy_reg(hw, | ||||
9152 | IGP01E1000_PHY_PORT_CONFIG0x10, phy_data); | ||||
9153 | if (ret_val) | ||||
9154 | return ret_val; | ||||
9155 | } else if (hw->smart_speed == em_smart_speed_off) { | ||||
9156 | ret_val = em_read_phy_reg(hw, | ||||
9157 | IGP01E1000_PHY_PORT_CONFIG0x10, &phy_data); | ||||
9158 | if (ret_val) | ||||
9159 | return ret_val; | ||||
9160 | |||||
9161 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED0x0080; | ||||
9162 | ret_val = em_write_phy_reg(hw, | ||||
9163 | IGP01E1000_PHY_PORT_CONFIG0x10, phy_data); | ||||
9164 | if (ret_val) | ||||
9165 | return ret_val; | ||||
9166 | } | ||||
9167 | } else { | ||||
9168 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | ||||
9169 | phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU0x00000002; | ||||
9170 | E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F10 : em_translate_82542_register (0x00F10))), (phy_ctrl))); | ||||
9171 | } else { | ||||
9172 | phy_data |= IGP02E1000_PM_D0_LPLU0x0002; | ||||
9173 | ret_val = em_write_phy_reg(hw, | ||||
9174 | IGP02E1000_PHY_POWER_MGMT0x19, phy_data); | ||||
9175 | if (ret_val) | ||||
9176 | return ret_val; | ||||
9177 | } | ||||
9178 | |||||
9179 | /* When LPLU is enabled we should disable SmartSpeed */ | ||||
9180 | ret_val = em_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG0x10, | ||||
9181 | &phy_data); | ||||
9182 | if (ret_val) | ||||
9183 | return ret_val; | ||||
9184 | |||||
9185 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED0x0080; | ||||
9186 | ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG0x10, | ||||
9187 | phy_data); | ||||
9188 | if (ret_val) | ||||
9189 | return ret_val; | ||||
9190 | |||||
9191 | } | ||||
9192 | return E1000_SUCCESS0; | ||||
9193 | } | ||||
9194 | |||||
9195 | /*************************************************************************** | ||||
9196 | * Set Low Power Link Up state | ||||
9197 | * | ||||
9198 | * Sets the LPLU state according to the active flag. For PCH, if OEM write | ||||
9199 | * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set | ||||
9200 | * the phy speed. This function will manually set the LPLU bit and restart | ||||
9201 | * auto-neg as hw would do. D3 and D0 LPLU will call the same function | ||||
9202 | * since it configures the same bit. | ||||
9203 | ***************************************************************************/ | ||||
9204 | int32_t | ||||
9205 | em_set_lplu_state_pchlan(struct em_hw *hw, boolean_t active) | ||||
9206 | { | ||||
9207 | int32_t ret_val = E1000_SUCCESS0; | ||||
9208 | uint16_t oem_reg; | ||||
9209 | |||||
9210 | DEBUGFUNC("e1000_set_lplu_state_pchlan");; | ||||
9211 | |||||
9212 | ret_val = em_read_phy_reg(hw, HV_OEM_BITS(((768) << 5) | ((25) & 0x1F)), &oem_reg); | ||||
9213 | if (ret_val) | ||||
9214 | goto out; | ||||
9215 | |||||
9216 | if (active) | ||||
9217 | oem_reg |= HV_OEM_BITS_LPLU0x0004; | ||||
9218 | else | ||||
9219 | oem_reg &= ~HV_OEM_BITS_LPLU0x0004; | ||||
9220 | |||||
9221 | oem_reg |= HV_OEM_BITS_RESTART_AN0x0400; | ||||
9222 | ret_val = em_write_phy_reg(hw, HV_OEM_BITS(((768) << 5) | ((25) & 0x1F)), oem_reg); | ||||
9223 | |||||
9224 | out: | ||||
9225 | return ret_val; | ||||
9226 | } | ||||
9227 | |||||
9228 | /****************************************************************************** | ||||
9229 | * Change VCO speed register to improve Bit Error Rate performance of SERDES. | ||||
9230 | * | ||||
9231 | * hw - Struct containing variables accessed by shared code | ||||
9232 | *****************************************************************************/ | ||||
9233 | static int32_t | ||||
9234 | em_set_vco_speed(struct em_hw *hw) | ||||
9235 | { | ||||
9236 | int32_t ret_val; | ||||
9237 | uint16_t default_page = 0; | ||||
9238 | uint16_t phy_data; | ||||
9239 | DEBUGFUNC("em_set_vco_speed");; | ||||
9240 | |||||
9241 | switch (hw->mac_type) { | ||||
9242 | case em_82545_rev_3: | ||||
9243 | case em_82546_rev_3: | ||||
9244 | break; | ||||
9245 | default: | ||||
9246 | return E1000_SUCCESS0; | ||||
9247 | } | ||||
9248 | |||||
9249 | /* Set PHY register 30, page 5, bit 8 to 0 */ | ||||
9250 | |||||
9251 | ret_val = em_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT0x1D, &default_page); | ||||
9252 | if (ret_val) | ||||
9253 | return ret_val; | ||||
9254 | |||||
9255 | ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT0x1D, 0x0005); | ||||
9256 | if (ret_val) | ||||
9257 | return ret_val; | ||||
9258 | |||||
9259 | ret_val = em_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL0x1E, &phy_data); | ||||
9260 | if (ret_val) | ||||
9261 | return ret_val; | ||||
9262 | |||||
9263 | phy_data &= ~M88E1000_PHY_VCO_REG_BIT80x100; | ||||
9264 | ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL0x1E, phy_data); | ||||
9265 | if (ret_val) | ||||
9266 | return ret_val; | ||||
9267 | |||||
9268 | /* Set PHY register 30, page 4, bit 11 to 1 */ | ||||
9269 | |||||
9270 | ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT0x1D, 0x0004); | ||||
9271 | if (ret_val) | ||||
9272 | return ret_val; | ||||
9273 | |||||
9274 | ret_val = em_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL0x1E, &phy_data); | ||||
9275 | if (ret_val) | ||||
9276 | return ret_val; | ||||
9277 | |||||
9278 | phy_data |= M88E1000_PHY_VCO_REG_BIT110x800; | ||||
9279 | ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL0x1E, phy_data); | ||||
9280 | if (ret_val) | ||||
9281 | return ret_val; | ||||
9282 | |||||
9283 | ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT0x1D, default_page); | ||||
9284 | if (ret_val) | ||||
9285 | return ret_val; | ||||
9286 | |||||
9287 | return E1000_SUCCESS0; | ||||
9288 | } | ||||
9289 | |||||
9290 | /***************************************************************************** | ||||
9291 | * This function reads the cookie from ARC ram. | ||||
9292 | * | ||||
9293 | * returns: - E1000_SUCCESS . | ||||
9294 | ****************************************************************************/ | ||||
9295 | STATIC int32_t | ||||
9296 | em_host_if_read_cookie(struct em_hw *hw, uint8_t *buffer) | ||||
9297 | { | ||||
9298 | uint8_t i; | ||||
9299 | uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET0x6F0; | ||||
9300 | uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH0x10; | ||||
9301 | length = (length >> 2); | ||||
9302 | offset = (offset >> 2); | ||||
9303 | |||||
9304 | for (i = 0; i < length; i++) { | ||||
9305 | *((uint32_t *) buffer + i) = | ||||
9306 | E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x08800 : em_translate_82542_register (0x08800)) + ((offset + i) << 2)))); | ||||
9307 | } | ||||
9308 | return E1000_SUCCESS0; | ||||
9309 | } | ||||
9310 | |||||
9311 | /***************************************************************************** | ||||
9312 | * This function checks whether the HOST IF is enabled for command operation | ||||
9313 | * and also checks whether the previous command is completed. | ||||
9314 | * It busy waits in case of previous command is not completed. | ||||
9315 | * | ||||
9316 | * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or | ||||
9317 | * timeout | ||||
9318 | * - E1000_SUCCESS for success. | ||||
9319 | ****************************************************************************/ | ||||
9320 | STATIC int32_t | ||||
9321 | em_mng_enable_host_if(struct em_hw *hw) | ||||
9322 | { | ||||
9323 | uint32_t hicr; | ||||
9324 | uint8_t i; | ||||
9325 | /* Check that the host interface is enabled. */ | ||||
9326 | hicr = E1000_READ_REG(hw, HICR)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x08F00 : em_translate_82542_register (0x08F00))))); | ||||
9327 | if ((hicr & E1000_HICR_EN0x00000001) == 0) { | ||||
9328 | DEBUGOUT("E1000_HOST_EN bit disabled.\n"); | ||||
9329 | return -E1000_ERR_HOST_INTERFACE_COMMAND11; | ||||
9330 | } | ||||
9331 | /* check the previous command is completed */ | ||||
9332 | for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT10; i++) { | ||||
9333 | hicr = E1000_READ_REG(hw, HICR)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x08F00 : em_translate_82542_register (0x08F00))))); | ||||
9334 | if (!(hicr & E1000_HICR_C0x00000002)) | ||||
9335 | break; | ||||
9336 | msec_delay_irq(1)(*delay_func)(1000*(1)); | ||||
9337 | } | ||||
9338 | |||||
9339 | if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT10) { | ||||
9340 | DEBUGOUT("Previous command timeout failed .\n"); | ||||
9341 | return -E1000_ERR_HOST_INTERFACE_COMMAND11; | ||||
9342 | } | ||||
9343 | return E1000_SUCCESS0; | ||||
9344 | } | ||||
9345 | |||||
9346 | /***************************************************************************** | ||||
9347 | * This function checks the mode of the firmware. | ||||
9348 | * | ||||
9349 | * returns - TRUE when the mode is IAMT or FALSE. | ||||
9350 | ****************************************************************************/ | ||||
9351 | boolean_t | ||||
9352 | em_check_mng_mode(struct em_hw *hw) | ||||
9353 | { | ||||
9354 | uint32_t fwsm; | ||||
9355 | fwsm = E1000_READ_REG(hw, FWSM)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B54 : em_translate_82542_register (0x05B54))))); | ||||
9356 | |||||
9357 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | ||||
9358 | if ((fwsm & E1000_FWSM_MODE_MASK0x0000000E) == | ||||
9359 | (E1000_MNG_ICH_IAMT_MODE0x2 << E1000_FWSM_MODE_SHIFT1)) | ||||
9360 | return TRUE1; | ||||
9361 | } else if ((fwsm & E1000_FWSM_MODE_MASK0x0000000E) == | ||||
9362 | (E1000_MNG_IAMT_MODE0x3 << E1000_FWSM_MODE_SHIFT1)) | ||||
9363 | return TRUE1; | ||||
9364 | |||||
9365 | return FALSE0; | ||||
9366 | } | ||||
9367 | |||||
9368 | /***************************************************************************** | ||||
9369 | * This function calculates the checksum. | ||||
9370 | * | ||||
9371 | * returns - checksum of buffer contents. | ||||
9372 | ****************************************************************************/ | ||||
9373 | STATIC uint8_t | ||||
9374 | em_calculate_mng_checksum(char *buffer, uint32_t length) | ||||
9375 | { | ||||
9376 | uint8_t sum = 0; | ||||
9377 | uint32_t i; | ||||
9378 | if (!buffer) | ||||
9379 | return 0; | ||||
9380 | |||||
9381 | for (i = 0; i < length; i++) | ||||
9382 | sum += buffer[i]; | ||||
9383 | |||||
9384 | return (uint8_t) (0 - sum); | ||||
9385 | } | ||||
9386 | |||||
9387 | /***************************************************************************** | ||||
9388 | * This function checks whether tx pkt filtering needs to be enabled or not. | ||||
9389 | * | ||||
9390 | * returns - TRUE for packet filtering or FALSE. | ||||
9391 | ****************************************************************************/ | ||||
9392 | boolean_t | ||||
9393 | em_enable_tx_pkt_filtering(struct em_hw *hw) | ||||
9394 | { | ||||
9395 | /* called in init as well as watchdog timer functions */ | ||||
9396 | int32_t ret_val, checksum; | ||||
9397 | boolean_t tx_filter = FALSE0; | ||||
9398 | struct em_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie); | ||||
9399 | uint8_t *buffer = (uint8_t *) & (hw->mng_cookie); | ||||
9400 | if (em_check_mng_mode(hw)) { | ||||
9401 | ret_val = em_mng_enable_host_if(hw); | ||||
9402 | if (ret_val == E1000_SUCCESS0) { | ||||
9403 | ret_val = em_host_if_read_cookie(hw, buffer); | ||||
9404 | if (ret_val == E1000_SUCCESS0) { | ||||
9405 | checksum = hdr->checksum; | ||||
9406 | hdr->checksum = 0; | ||||
9407 | if ((hdr->signature == E1000_IAMT_SIGNATURE0x544D4149) && | ||||
9408 | checksum == em_calculate_mng_checksum( | ||||
9409 | (char *) buffer, | ||||
9410 | E1000_MNG_DHCP_COOKIE_LENGTH0x10)) { | ||||
9411 | if (hdr->status & | ||||
9412 | E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT0x1) | ||||
9413 | tx_filter = TRUE1; | ||||
9414 | } else | ||||
9415 | tx_filter = TRUE1; | ||||
9416 | } else | ||||
9417 | tx_filter = TRUE1; | ||||
9418 | } | ||||
9419 | } | ||||
9420 | hw->tx_pkt_filtering = tx_filter; | ||||
9421 | return tx_filter; | ||||
9422 | } | ||||
9423 | |||||
9424 | static int32_t | ||||
9425 | em_polarity_reversal_workaround(struct em_hw *hw) | ||||
9426 | { | ||||
9427 | int32_t ret_val; | ||||
9428 | uint16_t mii_status_reg; | ||||
9429 | uint16_t i; | ||||
9430 | /* Polarity reversal workaround for forced 10F/10H links. */ | ||||
9431 | |||||
9432 | /* Disable the transmitter on the PHY */ | ||||
9433 | ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT0x1D, 0x0019); | ||||
9434 | if (ret_val) | ||||
9435 | return ret_val; | ||||
9436 | ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL0x1E, 0xFFFF); | ||||
9437 | if (ret_val) | ||||
9438 | return ret_val; | ||||
9439 | |||||
9440 | ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT0x1D, 0x0000); | ||||
9441 | if (ret_val) | ||||
9442 | return ret_val; | ||||
9443 | |||||
9444 | /* This loop will early-out if the NO link condition has been met. */ | ||||
9445 | for (i = PHY_FORCE_TIME20; i > 0; i--) { | ||||
9446 | /* | ||||
9447 | * Read the MII Status Register and wait for Link Status bit | ||||
9448 | * to be clear. | ||||
9449 | */ | ||||
9450 | |||||
9451 | ret_val = em_read_phy_reg(hw, PHY_STATUS0x01, &mii_status_reg); | ||||
9452 | if (ret_val) | ||||
9453 | return ret_val; | ||||
9454 | |||||
9455 | ret_val = em_read_phy_reg(hw, PHY_STATUS0x01, &mii_status_reg); | ||||
9456 | if (ret_val) | ||||
9457 | return ret_val; | ||||
9458 | |||||
9459 | if ((mii_status_reg & ~MII_SR_LINK_STATUS0x0004) == 0) | ||||
9460 | break; | ||||
9461 | msec_delay_irq(100)(*delay_func)(1000*(100)); | ||||
9462 | } | ||||
9463 | |||||
9464 | /* Recommended delay time after link has been lost */ | ||||
9465 | msec_delay_irq(1000)(*delay_func)(1000*(1000)); | ||||
9466 | |||||
9467 | /* Now we will re-enable the transmitter on the PHY */ | ||||
9468 | |||||
9469 | ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT0x1D, 0x0019); | ||||
9470 | if (ret_val) | ||||
9471 | return ret_val; | ||||
9472 | msec_delay_irq(50)(*delay_func)(1000*(50)); | ||||
9473 | ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL0x1E, 0xFFF0); | ||||
9474 | if (ret_val) | ||||
9475 | return ret_val; | ||||
9476 | msec_delay_irq(50)(*delay_func)(1000*(50)); | ||||
9477 | ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL0x1E, 0xFF00); | ||||
9478 | if (ret_val) | ||||
9479 | return ret_val; | ||||
9480 | msec_delay_irq(50)(*delay_func)(1000*(50)); | ||||
9481 | ret_val = em_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL0x1E, 0x0000); | ||||
9482 | if (ret_val) | ||||
9483 | return ret_val; | ||||
9484 | |||||
9485 | ret_val = em_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT0x1D, 0x0000); | ||||
9486 | if (ret_val) | ||||
9487 | return ret_val; | ||||
9488 | |||||
9489 | /* This loop will early-out if the link condition has been met. */ | ||||
9490 | for (i = PHY_FORCE_TIME20; i > 0; i--) { | ||||
9491 | /* | ||||
9492 | * Read the MII Status Register and wait for Link Status bit | ||||
9493 | * to be set. | ||||
9494 | */ | ||||
9495 | |||||
9496 | ret_val = em_read_phy_reg(hw, PHY_STATUS0x01, &mii_status_reg); | ||||
9497 | if (ret_val) | ||||
9498 | return ret_val; | ||||
9499 | |||||
9500 | ret_val = em_read_phy_reg(hw, PHY_STATUS0x01, &mii_status_reg); | ||||
9501 | if (ret_val) | ||||
9502 | return ret_val; | ||||
9503 | |||||
9504 | if (mii_status_reg & MII_SR_LINK_STATUS0x0004) | ||||
9505 | break; | ||||
9506 | msec_delay_irq(100)(*delay_func)(1000*(100)); | ||||
9507 | } | ||||
9508 | return E1000_SUCCESS0; | ||||
9509 | } | ||||
9510 | |||||
9511 | /****************************************************************************** | ||||
9512 | * | ||||
9513 | * Disables PCI-Express master access. | ||||
9514 | * | ||||
9515 | * hw: Struct containing variables accessed by shared code | ||||
9516 | * | ||||
9517 | * returns: - none. | ||||
9518 | * | ||||
9519 | *****************************************************************************/ | ||||
9520 | STATIC void | ||||
9521 | em_set_pci_express_master_disable(struct em_hw *hw) | ||||
9522 | { | ||||
9523 | uint32_t ctrl; | ||||
9524 | DEBUGFUNC("em_set_pci_express_master_disable");; | ||||
9525 | |||||
9526 | if (hw->bus_type != em_bus_type_pci_express) | ||||
9527 | return; | ||||
9528 | |||||
9529 | ctrl = E1000_READ_REG(hw, CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))))); | ||||
9530 | ctrl |= E1000_CTRL_GIO_MASTER_DISABLE0x00000004; | ||||
9531 | E1000_WRITE_REG(hw, CTRL, ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (ctrl))); | ||||
9532 | } | ||||
9533 | |||||
9534 | /****************************************************************************** | ||||
9535 | * | ||||
9536 | * Disables PCI-Express master access and verifies there are no pending | ||||
9537 | * requests | ||||
9538 | * | ||||
9539 | * hw: Struct containing variables accessed by shared code | ||||
9540 | * | ||||
9541 | * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't | ||||
9542 | * caused the master requests to be disabled. | ||||
9543 | * E1000_SUCCESS master requests disabled. | ||||
9544 | * | ||||
9545 | ******************************************************************************/ | ||||
9546 | int32_t | ||||
9547 | em_disable_pciex_master(struct em_hw *hw) | ||||
9548 | { | ||||
9549 | int32_t timeout = MASTER_DISABLE_TIMEOUT800; /* 80ms */ | ||||
9550 | DEBUGFUNC("em_disable_pciex_master");; | ||||
9551 | |||||
9552 | if (hw->bus_type != em_bus_type_pci_express) | ||||
9553 | return E1000_SUCCESS0; | ||||
9554 | |||||
9555 | em_set_pci_express_master_disable(hw); | ||||
9556 | |||||
9557 | while (timeout) { | ||||
9558 | if (!(E1000_READ_REG(hw, STATUS)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))) & | ||||
9559 | E1000_STATUS_GIO_MASTER_ENABLE0x00080000)) | ||||
9560 | break; | ||||
9561 | else | ||||
9562 | usec_delay(100)(*delay_func)(100); | ||||
9563 | timeout--; | ||||
9564 | } | ||||
9565 | |||||
9566 | if (!timeout) { | ||||
9567 | DEBUGOUT("Master requests are pending.\n"); | ||||
9568 | return -E1000_ERR_MASTER_REQUESTS_PENDING10; | ||||
9569 | } | ||||
9570 | return E1000_SUCCESS0; | ||||
9571 | } | ||||
9572 | |||||
9573 | /****************************************************************************** | ||||
9574 | * | ||||
9575 | * Check for EEPROM Auto Read bit done. | ||||
9576 | * | ||||
9577 | * hw: Struct containing variables accessed by shared code | ||||
9578 | * | ||||
9579 | * returns: - E1000_ERR_RESET if fail to reset MAC | ||||
9580 | * E1000_SUCCESS at any other case. | ||||
9581 | * | ||||
9582 | ******************************************************************************/ | ||||
9583 | STATIC int32_t | ||||
9584 | em_get_auto_rd_done(struct em_hw *hw) | ||||
9585 | { | ||||
9586 | int32_t timeout = AUTO_READ_DONE_TIMEOUT10; | ||||
9587 | DEBUGFUNC("em_get_auto_rd_done");; | ||||
9588 | |||||
9589 | switch (hw->mac_type) { | ||||
9590 | default: | ||||
9591 | msec_delay(5)(*delay_func)(1000*(5)); | ||||
9592 | break; | ||||
9593 | case em_82571: | ||||
9594 | case em_82572: | ||||
9595 | case em_82573: | ||||
9596 | case em_82574: | ||||
9597 | case em_82575: | ||||
9598 | case em_82576: | ||||
9599 | case em_82580: | ||||
9600 | case em_80003es2lan: | ||||
9601 | case em_i210: | ||||
9602 | case em_i350: | ||||
9603 | case em_ich8lan: | ||||
9604 | case em_ich9lan: | ||||
9605 | case em_ich10lan: | ||||
9606 | case em_pchlan: | ||||
9607 | case em_pch2lan: | ||||
9608 | case em_pch_lpt: | ||||
9609 | case em_pch_spt: | ||||
9610 | case em_pch_cnp: | ||||
9611 | while (timeout) { | ||||
9612 | if (E1000_READ_REG(hw, EECD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))))) & E1000_EECD_AUTO_RD0x00000200) | ||||
9613 | break; | ||||
9614 | else | ||||
9615 | msec_delay(1)(*delay_func)(1000*(1)); | ||||
9616 | timeout--; | ||||
9617 | } | ||||
9618 | |||||
9619 | if (!timeout) { | ||||
9620 | DEBUGOUT("Auto read by HW from EEPROM has not" | ||||
9621 | " completed.\n"); | ||||
9622 | return -E1000_ERR_RESET9; | ||||
9623 | } | ||||
9624 | break; | ||||
9625 | } | ||||
9626 | /* | ||||
9627 | * PHY configuration from NVM just starts after EECD_AUTO_RD sets to | ||||
9628 | * high. Need to wait for PHY configuration completion before | ||||
9629 | * accessing NVM and PHY. | ||||
9630 | */ | ||||
9631 | if ((hw->mac_type == em_82573) || (hw->mac_type == em_82574)) | ||||
9632 | msec_delay(25)(*delay_func)(1000*(25)); | ||||
9633 | |||||
9634 | return E1000_SUCCESS0; | ||||
9635 | } | ||||
9636 | |||||
9637 | /*************************************************************************** | ||||
9638 | * Checks if the PHY configuration is done | ||||
9639 | * | ||||
9640 | * hw: Struct containing variables accessed by shared code | ||||
9641 | * | ||||
9642 | * returns: - E1000_ERR_RESET if fail to reset MAC | ||||
9643 | * E1000_SUCCESS at any other case. | ||||
9644 | * | ||||
9645 | ***************************************************************************/ | ||||
9646 | STATIC int32_t | ||||
9647 | em_get_phy_cfg_done(struct em_hw *hw) | ||||
9648 | { | ||||
9649 | int32_t timeout = PHY_CFG_TIMEOUT100; | ||||
9650 | uint32_t cfg_mask = E1000_NVM_CFG_DONE_PORT_00x040000; | ||||
9651 | DEBUGFUNC("em_get_phy_cfg_done");; | ||||
9652 | |||||
9653 | switch (hw->mac_type) { | ||||
9654 | default: | ||||
9655 | msec_delay_irq(10)(*delay_func)(1000*(10)); | ||||
9656 | break; | ||||
9657 | case em_80003es2lan: | ||||
9658 | case em_82575: | ||||
9659 | case em_82576: | ||||
9660 | case em_82580: | ||||
9661 | case em_i350: | ||||
9662 | switch (hw->bus_func) { | ||||
9663 | case 1: | ||||
9664 | cfg_mask = E1000_NVM_CFG_DONE_PORT_10x080000; | ||||
9665 | break; | ||||
9666 | case 2: | ||||
9667 | cfg_mask = E1000_NVM_CFG_DONE_PORT_20x100000; | ||||
9668 | break; | ||||
9669 | case 3: | ||||
9670 | cfg_mask = E1000_NVM_CFG_DONE_PORT_30x200000; | ||||
9671 | break; | ||||
9672 | } | ||||
9673 | /* FALLTHROUGH */ | ||||
9674 | case em_82571: | ||||
9675 | case em_82572: | ||||
9676 | while (timeout) { | ||||
9677 | if (E1000_READ_REG(hw, EEMNGCTL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x01010 : em_translate_82542_register (0x01010))))) & cfg_mask) | ||||
9678 | break; | ||||
9679 | else | ||||
9680 | msec_delay(1)(*delay_func)(1000*(1)); | ||||
9681 | timeout--; | ||||
9682 | } | ||||
9683 | if (!timeout) { | ||||
9684 | DEBUGOUT("MNG configuration cycle has not completed." | ||||
9685 | "\n"); | ||||
9686 | } | ||||
9687 | break; | ||||
9688 | } | ||||
9689 | |||||
9690 | return E1000_SUCCESS0; | ||||
9691 | } | ||||
9692 | |||||
9693 | /*************************************************************************** | ||||
9694 | * | ||||
9695 | * Using the combination of SMBI and SWESMBI semaphore bits when resetting | ||||
9696 | * adapter or Eeprom access. | ||||
9697 | * | ||||
9698 | * hw: Struct containing variables accessed by shared code | ||||
9699 | * | ||||
9700 | * returns: - E1000_ERR_EEPROM if fail to access EEPROM. | ||||
9701 | * E1000_SUCCESS at any other case. | ||||
9702 | * | ||||
9703 | ***************************************************************************/ | ||||
9704 | STATIC int32_t | ||||
9705 | em_get_hw_eeprom_semaphore(struct em_hw *hw) | ||||
9706 | { | ||||
9707 | int32_t timeout; | ||||
9708 | uint32_t swsm; | ||||
9709 | DEBUGFUNC("em_get_hw_eeprom_semaphore");; | ||||
9710 | |||||
9711 | if (!hw->eeprom_semaphore_present) | ||||
9712 | return E1000_SUCCESS0; | ||||
9713 | |||||
9714 | if (hw->mac_type == em_80003es2lan) { | ||||
9715 | /* Get the SW semaphore. */ | ||||
9716 | if (em_get_software_semaphore(hw) != E1000_SUCCESS0) | ||||
9717 | return -E1000_ERR_EEPROM1; | ||||
9718 | } | ||||
9719 | /* Get the FW semaphore. */ | ||||
9720 | timeout = hw->eeprom.word_size + 1; | ||||
9721 | while (timeout) { | ||||
9722 | swsm = E1000_READ_REG(hw, SWSM)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B50 : em_translate_82542_register (0x05B50))))); | ||||
9723 | swsm |= E1000_SWSM_SWESMBI0x00000002; | ||||
9724 | E1000_WRITE_REG(hw, SWSM, swsm)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B50 : em_translate_82542_register (0x05B50))), (swsm))); | ||||
9725 | /* if we managed to set the bit we got the semaphore. */ | ||||
9726 | swsm = E1000_READ_REG(hw, SWSM)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B50 : em_translate_82542_register (0x05B50))))); | ||||
9727 | if (swsm & E1000_SWSM_SWESMBI0x00000002) | ||||
9728 | break; | ||||
9729 | |||||
9730 | usec_delay(50)(*delay_func)(50); | ||||
9731 | timeout--; | ||||
9732 | } | ||||
9733 | |||||
9734 | if (!timeout) { | ||||
9735 | /* Release semaphores */ | ||||
9736 | em_put_hw_eeprom_semaphore(hw); | ||||
9737 | DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set." | ||||
9738 | "\n"); | ||||
9739 | return -E1000_ERR_EEPROM1; | ||||
9740 | } | ||||
9741 | return E1000_SUCCESS0; | ||||
9742 | } | ||||
9743 | |||||
9744 | /*************************************************************************** | ||||
9745 | * This function clears HW semaphore bits. | ||||
9746 | * | ||||
9747 | * hw: Struct containing variables accessed by shared code | ||||
9748 | * | ||||
9749 | * returns: - None. | ||||
9750 | * | ||||
9751 | ***************************************************************************/ | ||||
9752 | STATIC void | ||||
9753 | em_put_hw_eeprom_semaphore(struct em_hw *hw) | ||||
9754 | { | ||||
9755 | uint32_t swsm; | ||||
9756 | DEBUGFUNC("em_put_hw_eeprom_semaphore");; | ||||
9757 | |||||
9758 | if (!hw->eeprom_semaphore_present) | ||||
9759 | return; | ||||
9760 | |||||
9761 | swsm = E1000_READ_REG(hw, SWSM)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B50 : em_translate_82542_register (0x05B50))))); | ||||
9762 | if (hw->mac_type == em_80003es2lan) { | ||||
9763 | /* Release both semaphores. */ | ||||
9764 | swsm &= ~(E1000_SWSM_SMBI0x00000001 | E1000_SWSM_SWESMBI0x00000002); | ||||
9765 | } else | ||||
9766 | swsm &= ~(E1000_SWSM_SWESMBI0x00000002); | ||||
9767 | E1000_WRITE_REG(hw, SWSM, swsm)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B50 : em_translate_82542_register (0x05B50))), (swsm))); | ||||
9768 | } | ||||
9769 | |||||
9770 | /*************************************************************************** | ||||
9771 | * | ||||
9772 | * Obtaining software semaphore bit (SMBI) before resetting PHY. | ||||
9773 | * | ||||
9774 | * hw: Struct containing variables accessed by shared code | ||||
9775 | * | ||||
9776 | * returns: - E1000_ERR_RESET if fail to obtain semaphore. | ||||
9777 | * E1000_SUCCESS at any other case. | ||||
9778 | * | ||||
9779 | ***************************************************************************/ | ||||
9780 | STATIC int32_t | ||||
9781 | em_get_software_semaphore(struct em_hw *hw) | ||||
9782 | { | ||||
9783 | int32_t timeout = hw->eeprom.word_size + 1; | ||||
9784 | uint32_t swsm; | ||||
9785 | DEBUGFUNC("em_get_software_semaphore");; | ||||
9786 | |||||
9787 | if (hw->mac_type != em_80003es2lan) | ||||
9788 | return E1000_SUCCESS0; | ||||
9789 | |||||
9790 | while (timeout) { | ||||
9791 | swsm = E1000_READ_REG(hw, SWSM)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B50 : em_translate_82542_register (0x05B50))))); | ||||
9792 | /* | ||||
9793 | * If SMBI bit cleared, it is now set and we hold the | ||||
9794 | * semaphore | ||||
9795 | */ | ||||
9796 | if (!(swsm & E1000_SWSM_SMBI0x00000001)) | ||||
9797 | break; | ||||
9798 | msec_delay_irq(1)(*delay_func)(1000*(1)); | ||||
9799 | timeout--; | ||||
9800 | } | ||||
9801 | |||||
9802 | if (!timeout) { | ||||
9803 | DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); | ||||
9804 | return -E1000_ERR_RESET9; | ||||
9805 | } | ||||
9806 | return E1000_SUCCESS0; | ||||
9807 | } | ||||
9808 | |||||
9809 | /*************************************************************************** | ||||
9810 | * | ||||
9811 | * Release semaphore bit (SMBI). | ||||
9812 | * | ||||
9813 | * hw: Struct containing variables accessed by shared code | ||||
9814 | * | ||||
9815 | ***************************************************************************/ | ||||
9816 | STATIC void | ||||
9817 | em_release_software_semaphore(struct em_hw *hw) | ||||
9818 | { | ||||
9819 | uint32_t swsm; | ||||
9820 | DEBUGFUNC("em_release_software_semaphore");; | ||||
9821 | |||||
9822 | if (hw->mac_type != em_80003es2lan) | ||||
9823 | return; | ||||
9824 | |||||
9825 | swsm = E1000_READ_REG(hw, SWSM)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B50 : em_translate_82542_register (0x05B50))))); | ||||
9826 | /* Release the SW semaphores. */ | ||||
9827 | swsm &= ~E1000_SWSM_SMBI0x00000001; | ||||
9828 | E1000_WRITE_REG(hw, SWSM, swsm)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B50 : em_translate_82542_register (0x05B50))), (swsm))); | ||||
9829 | } | ||||
9830 | |||||
9831 | /****************************************************************************** | ||||
9832 | * Checks if PHY reset is blocked due to SOL/IDER session, for example. | ||||
9833 | * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to | ||||
9834 | * the caller to figure out how to deal with it. | ||||
9835 | * | ||||
9836 | * hw - Struct containing variables accessed by shared code | ||||
9837 | * | ||||
9838 | * returns: - E1000_BLK_PHY_RESET | ||||
9839 | * E1000_SUCCESS | ||||
9840 | * | ||||
9841 | *****************************************************************************/ | ||||
9842 | int32_t | ||||
9843 | em_check_phy_reset_block(struct em_hw *hw) | ||||
9844 | { | ||||
9845 | uint32_t manc = 0; | ||||
9846 | uint32_t fwsm = 0; | ||||
9847 | DEBUGFUNC("em_check_phy_reset_block\n");; | ||||
9848 | |||||
9849 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | ||||
9850 | int i = 0; | ||||
9851 | int blocked = 0; | ||||
9852 | do { | ||||
9853 | fwsm = E1000_READ_REG(hw, FWSM)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B54 : em_translate_82542_register (0x05B54))))); | ||||
9854 | if (!(fwsm & E1000_FWSM_RSPCIPHY0x00000040)) { | ||||
9855 | blocked = 1; | ||||
9856 | msec_delay(10)(*delay_func)(1000*(10)); | ||||
9857 | continue; | ||||
9858 | } | ||||
9859 | blocked = 0; | ||||
9860 | } while (blocked && (i++ < 30)); | ||||
9861 | return blocked ? E1000_BLK_PHY_RESET12 : E1000_SUCCESS0; | ||||
9862 | } | ||||
9863 | if (hw->mac_type > em_82547_rev_2) | ||||
9864 | manc = E1000_READ_REG(hw, MANC)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05820 : em_translate_82542_register (0x05820))))); | ||||
9865 | return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE0x00040000) ? | ||||
9866 | E1000_BLK_PHY_RESET12 : E1000_SUCCESS0; | ||||
9867 | } | ||||
9868 | |||||
9869 | /****************************************************************************** | ||||
9870 | * Configure PCI-Ex no-snoop | ||||
9871 | * | ||||
9872 | * hw - Struct containing variables accessed by shared code. | ||||
9873 | * no_snoop - Bitmap of no-snoop events. | ||||
9874 | * | ||||
9875 | * returns: E1000_SUCCESS | ||||
9876 | * | ||||
9877 | *****************************************************************************/ | ||||
9878 | STATIC int32_t | ||||
9879 | em_set_pci_ex_no_snoop(struct em_hw *hw, uint32_t no_snoop) | ||||
9880 | { | ||||
9881 | uint32_t gcr_reg = 0; | ||||
9882 | DEBUGFUNC("em_set_pci_ex_no_snoop");; | ||||
9883 | |||||
9884 | if (hw->bus_type == em_bus_type_unknown) | ||||
9885 | em_get_bus_info(hw); | ||||
9886 | |||||
9887 | if (hw->bus_type != em_bus_type_pci_express) | ||||
9888 | return E1000_SUCCESS0; | ||||
9889 | |||||
9890 | if (no_snoop) { | ||||
9891 | gcr_reg = E1000_READ_REG(hw, GCR)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B00 : em_translate_82542_register (0x05B00))))); | ||||
9892 | gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL(0x00000001 | 0x00000002 | 0x00000004 | 0x00000008 | 0x00000010 | 0x00000020)); | ||||
9893 | gcr_reg |= no_snoop; | ||||
9894 | E1000_WRITE_REG(hw, GCR, gcr_reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B00 : em_translate_82542_register (0x05B00))), (gcr_reg))); | ||||
9895 | } | ||||
9896 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | ||||
9897 | uint32_t ctrl_ext; | ||||
9898 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))))); | ||||
9899 | ctrl_ext |= E1000_CTRL_EXT_RO_DIS0x00020000; | ||||
9900 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))), (ctrl_ext))); | ||||
9901 | } | ||||
9902 | return E1000_SUCCESS0; | ||||
9903 | } | ||||
9904 | |||||
9905 | /*************************************************************************** | ||||
9906 | * | ||||
9907 | * Get software semaphore FLAG bit (SWFLAG). | ||||
9908 | * SWFLAG is used to synchronize the access to all shared resource between | ||||
9909 | * SW, FW and HW. | ||||
9910 | * | ||||
9911 | * hw: Struct containing variables accessed by shared code | ||||
9912 | * | ||||
9913 | ***************************************************************************/ | ||||
9914 | STATIC int32_t | ||||
9915 | em_get_software_flag(struct em_hw *hw) | ||||
9916 | { | ||||
9917 | int32_t timeout = PHY_CFG_TIMEOUT100; | ||||
9918 | uint32_t extcnf_ctrl; | ||||
9919 | DEBUGFUNC("em_get_software_flag");; | ||||
9920 | |||||
9921 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | ||||
9922 | if (hw->sw_flag) { | ||||
9923 | hw->sw_flag++; | ||||
9924 | return E1000_SUCCESS0; | ||||
9925 | } | ||||
9926 | while (timeout) { | ||||
9927 | extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F00 : em_translate_82542_register (0x00F00))))); | ||||
9928 | if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG0x00000020)) | ||||
9929 | break; | ||||
9930 | msec_delay_irq(1)(*delay_func)(1000*(1)); | ||||
9931 | timeout--; | ||||
9932 | } | ||||
9933 | if (!timeout) { | ||||
9934 | printf("%s: SW has already locked the resource?\n", | ||||
9935 | __func__); | ||||
9936 | return -E1000_ERR_CONFIG3; | ||||
9937 | } | ||||
9938 | timeout = SW_FLAG_TIMEOUT1000; | ||||
9939 | extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG0x00000020; | ||||
9940 | E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F00 : em_translate_82542_register (0x00F00))), (extcnf_ctrl))); | ||||
9941 | |||||
9942 | while (timeout) { | ||||
9943 | extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F00 : em_translate_82542_register (0x00F00))))); | ||||
9944 | if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG0x00000020) | ||||
9945 | break; | ||||
9946 | msec_delay_irq(1)(*delay_func)(1000*(1)); | ||||
9947 | timeout--; | ||||
9948 | } | ||||
9949 | |||||
9950 | if (!timeout) { | ||||
9951 | printf("Failed to acquire the semaphore, FW or HW " | ||||
9952 | "has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n", | ||||
9953 | E1000_READ_REG(hw, FWSM)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B54 : em_translate_82542_register (0x05B54))))), extcnf_ctrl); | ||||
9954 | extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG0x00000020; | ||||
9955 | E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F00 : em_translate_82542_register (0x00F00))), (extcnf_ctrl))); | ||||
9956 | return -E1000_ERR_CONFIG3; | ||||
9957 | } | ||||
9958 | } | ||||
9959 | hw->sw_flag++; | ||||
9960 | return E1000_SUCCESS0; | ||||
9961 | } | ||||
9962 | |||||
9963 | /*************************************************************************** | ||||
9964 | * | ||||
9965 | * Release software semaphore FLAG bit (SWFLAG). | ||||
9966 | * SWFLAG is used to synchronize the access to all shared resource between | ||||
9967 | * SW, FW and HW. | ||||
9968 | * | ||||
9969 | * hw: Struct containing variables accessed by shared code | ||||
9970 | * | ||||
9971 | ***************************************************************************/ | ||||
9972 | STATIC void | ||||
9973 | em_release_software_flag(struct em_hw *hw) | ||||
9974 | { | ||||
9975 | uint32_t extcnf_ctrl; | ||||
9976 | DEBUGFUNC("em_release_software_flag");; | ||||
9977 | |||||
9978 | if (IS_ICH8(hw->mac_type)(hw->mac_type == em_ich8lan || hw->mac_type == em_ich9lan || hw->mac_type == em_ich10lan || hw->mac_type == em_pchlan || hw->mac_type == em_pch2lan || hw->mac_type == em_pch_lpt || hw->mac_type == em_pch_spt || hw->mac_type == em_pch_cnp )) { | ||||
9979 | KASSERT(hw->sw_flag > 0)((hw->sw_flag > 0) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/dev/pci/if_em_hw.c" , 9979, "hw->sw_flag > 0")); | ||||
9980 | if (--hw->sw_flag > 0) | ||||
9981 | return; | ||||
9982 | extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F00 : em_translate_82542_register (0x00F00))))); | ||||
9983 | extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG0x00000020; | ||||
9984 | E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F00 : em_translate_82542_register (0x00F00))), (extcnf_ctrl))); | ||||
9985 | } | ||||
9986 | return; | ||||
9987 | } | ||||
9988 | |||||
9989 | /** | ||||
9990 | * em_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1 | ||||
9991 | * @hw: pointer to the HW structure | ||||
9992 | * @bank: pointer to the variable that returns the active bank | ||||
9993 | * | ||||
9994 | * Reads signature byte from the NVM using the flash access registers. | ||||
9995 | * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank. | ||||
9996 | **/ | ||||
9997 | int32_t | ||||
9998 | em_valid_nvm_bank_detect_ich8lan(struct em_hw *hw, uint32_t *bank) | ||||
9999 | { | ||||
10000 | uint32_t eecd; | ||||
10001 | uint32_t bank1_offset = hw->flash_bank_size * sizeof(uint16_t); | ||||
10002 | uint32_t act_offset = E1000_ICH_NVM_SIG_WORD0x13 * 2 + 1; | ||||
10003 | uint32_t nvm_dword = 0; | ||||
10004 | uint8_t sig_byte = 0; | ||||
10005 | int32_t ret_val; | ||||
10006 | |||||
10007 | DEBUGFUNC("em_valid_nvm_bank_detect_ich8lan");; | ||||
10008 | |||||
10009 | switch (hw->mac_type) { | ||||
10010 | case em_pch_spt: | ||||
10011 | case em_pch_cnp: | ||||
10012 | bank1_offset = hw->flash_bank_size * 2; | ||||
10013 | act_offset = E1000_ICH_NVM_SIG_WORD0x13 * 2; | ||||
10014 | |||||
10015 | /* set bank to 0 in case flash read fails. */ | ||||
10016 | *bank = 0; | ||||
10017 | |||||
10018 | /* Check bank 0 */ | ||||
10019 | ret_val = em_read_ich8_dword(hw, act_offset, &nvm_dword); | ||||
10020 | if (ret_val) | ||||
10021 | return ret_val; | ||||
10022 | sig_byte = (uint8_t)((nvm_dword & 0xFF00) >> 8); | ||||
10023 | if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK0xC0) == | ||||
10024 | E1000_ICH_NVM_SIG_VALUE0x80) { | ||||
10025 | *bank = 0; | ||||
10026 | return 0; | ||||
10027 | } | ||||
10028 | |||||
10029 | /* Check bank 1 */ | ||||
10030 | ret_val = em_read_ich8_dword(hw, act_offset + bank1_offset, | ||||
10031 | &nvm_dword); | ||||
10032 | if (ret_val) | ||||
10033 | return ret_val; | ||||
10034 | sig_byte = (uint8_t)((nvm_dword & 0xFF00) >> 8); | ||||
10035 | if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK0xC0) == | ||||
10036 | E1000_ICH_NVM_SIG_VALUE0x80) { | ||||
10037 | *bank = 1; | ||||
10038 | return 0; | ||||
10039 | } | ||||
10040 | |||||
10041 | DEBUGOUT("ERROR: No valid NVM bank present\n"); | ||||
10042 | return -1; | ||||
10043 | case em_ich8lan: | ||||
10044 | case em_ich9lan: | ||||
10045 | eecd = E1000_READ_REG(hw, EECD)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))))); | ||||
10046 | if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK(0x00000200 | 0x00000100)) == | ||||
10047 | E1000_EECD_SEC1VAL_VALID_MASK(0x00000200 | 0x00000100)) { | ||||
10048 | if (eecd & E1000_EECD_SEC1VAL0x00400000) | ||||
10049 | *bank = 1; | ||||
10050 | else | ||||
10051 | *bank = 0; | ||||
10052 | |||||
10053 | return E1000_SUCCESS0; | ||||
10054 | } | ||||
10055 | DEBUGOUT("Unable to determine valid NVM bank via EEC - reading flash signature\n"); | ||||
10056 | /* fall-thru */ | ||||
10057 | default: | ||||
10058 | /* set bank to 0 in case flash read fails */ | ||||
10059 | *bank = 0; | ||||
10060 | |||||
10061 | /* Check bank 0 */ | ||||
10062 | ret_val = em_read_ich8_byte(hw, act_offset, | ||||
10063 | &sig_byte); | ||||
10064 | if (ret_val) | ||||
10065 | return ret_val; | ||||
10066 | if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK0xC0) == | ||||
10067 | E1000_ICH_NVM_SIG_VALUE0x80) { | ||||
10068 | *bank = 0; | ||||
10069 | return E1000_SUCCESS0; | ||||
10070 | } | ||||
10071 | |||||
10072 | /* Check bank 1 */ | ||||
10073 | ret_val = em_read_ich8_byte(hw, act_offset + | ||||
10074 | bank1_offset, | ||||
10075 | &sig_byte); | ||||
10076 | if (ret_val) | ||||
10077 | return ret_val; | ||||
10078 | if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK0xC0) == | ||||
10079 | E1000_ICH_NVM_SIG_VALUE0x80) { | ||||
10080 | *bank = 1; | ||||
10081 | return E1000_SUCCESS0; | ||||
10082 | } | ||||
10083 | |||||
10084 | DEBUGOUT("ERROR: No valid NVM bank present\n"); | ||||
10085 | return -1; | ||||
10086 | } | ||||
10087 | } | ||||
10088 | |||||
10089 | STATIC int32_t | ||||
10090 | em_read_eeprom_spt(struct em_hw *hw, uint16_t offset, uint16_t words, | ||||
10091 | uint16_t *data) | ||||
10092 | { | ||||
10093 | int32_t error = E1000_SUCCESS0; | ||||
10094 | uint32_t flash_bank = 0; | ||||
10095 | uint32_t act_offset = 0; | ||||
10096 | uint32_t bank_offset = 0; | ||||
10097 | uint32_t dword = 0; | ||||
10098 | uint16_t i = 0, add; | ||||
10099 | |||||
10100 | /* | ||||
10101 | * We need to know which is the valid flash bank. In the event that | ||||
10102 | * we didn't allocate eeprom_shadow_ram, we may not be managing | ||||
10103 | * flash_bank. So it cannot be trusted and needs to be updated with | ||||
10104 | * each read. | ||||
10105 | */ | ||||
10106 | |||||
10107 | if (hw->mac_type < em_pch_spt) | ||||
10108 | return -E1000_ERR_EEPROM1; | ||||
10109 | |||||
10110 | error = em_get_software_flag(hw); | ||||
10111 | if (error != E1000_SUCCESS0) | ||||
10112 | return error; | ||||
10113 | |||||
10114 | error = em_valid_nvm_bank_detect_ich8lan(hw, &flash_bank); | ||||
10115 | if (error != E1000_SUCCESS0) { | ||||
10116 | DEBUGOUT("Could not detect valid bank, assuming bank 0\n"); | ||||
10117 | flash_bank = 0; | ||||
10118 | } | ||||
10119 | |||||
10120 | /* | ||||
10121 | * Adjust offset appropriately if we're on bank 1 - adjust for word | ||||
10122 | * size | ||||
10123 | */ | ||||
10124 | bank_offset = flash_bank * (hw->flash_bank_size * 2); | ||||
10125 | |||||
10126 | for (i = add = 0; i < words; i += add) { | ||||
10127 | if ((offset + i) % 2) { | ||||
10128 | add = 1; | ||||
10129 | if (hw->eeprom_shadow_ram != NULL((void *)0) | ||||
10130 | && hw->eeprom_shadow_ram[offset + i].modified) { | ||||
10131 | data[i] = | ||||
10132 | hw->eeprom_shadow_ram[offset+i].eeprom_word; | ||||
10133 | continue; | ||||
10134 | } | ||||
10135 | act_offset = bank_offset + (offset + i - 1) * 2; | ||||
10136 | } else { | ||||
10137 | add = 2; | ||||
10138 | if (hw->eeprom_shadow_ram != NULL((void *)0) | ||||
10139 | && hw->eeprom_shadow_ram[offset+i].modified | ||||
10140 | && hw->eeprom_shadow_ram[offset+i+1].modified) { | ||||
10141 | data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word; | ||||
10142 | data[i+1] = hw->eeprom_shadow_ram[offset+i+1].eeprom_word; | ||||
10143 | continue; | ||||
10144 | } | ||||
10145 | act_offset = bank_offset + (offset + i) * 2; | ||||
10146 | } | ||||
10147 | error = em_read_ich8_dword(hw, act_offset, &dword); | ||||
10148 | if (error != E1000_SUCCESS0) | ||||
10149 | break; | ||||
10150 | if (hw->eeprom_shadow_ram != NULL((void *)0) | ||||
10151 | && hw->eeprom_shadow_ram[offset+i].modified) { | ||||
10152 | data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word; | ||||
10153 | } else { | ||||
10154 | if (add == 1) | ||||
10155 | data[i] = dword >> 16; | ||||
10156 | else | ||||
10157 | data[i] = dword & 0xFFFFUL; | ||||
10158 | } | ||||
10159 | if (add == 1 || words-i == 1) | ||||
10160 | continue; | ||||
10161 | if (hw->eeprom_shadow_ram != NULL((void *)0) | ||||
10162 | && hw->eeprom_shadow_ram[offset+i+1].modified) { | ||||
10163 | data[i+1] = | ||||
10164 | hw->eeprom_shadow_ram[offset+i+1].eeprom_word; | ||||
10165 | } else { | ||||
10166 | data[i+1] = dword >> 16; | ||||
10167 | } | ||||
10168 | } | ||||
10169 | |||||
10170 | em_release_software_flag(hw); | ||||
10171 | |||||
10172 | return error; | ||||
10173 | } | ||||
10174 | |||||
10175 | /****************************************************************************** | ||||
10176 | * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access | ||||
10177 | * register. | ||||
10178 | * | ||||
10179 | * hw - Struct containing variables accessed by shared code | ||||
10180 | * offset - offset of word in the EEPROM to read | ||||
10181 | * data - word read from the EEPROM | ||||
10182 | * words - number of words to read | ||||
10183 | *****************************************************************************/ | ||||
10184 | STATIC int32_t | ||||
10185 | em_read_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words, | ||||
10186 | uint16_t *data) | ||||
10187 | { | ||||
10188 | int32_t error = E1000_SUCCESS0; | ||||
10189 | uint32_t flash_bank = 0; | ||||
10190 | uint32_t act_offset = 0; | ||||
10191 | uint32_t bank_offset = 0; | ||||
10192 | uint16_t word = 0; | ||||
10193 | uint16_t i = 0; | ||||
10194 | /* | ||||
10195 | * We need to know which is the valid flash bank. In the event that | ||||
10196 | * we didn't allocate eeprom_shadow_ram, we may not be managing | ||||
10197 | * flash_bank. So it cannot be trusted and needs to be updated with | ||||
10198 | * each read. | ||||
10199 | */ | ||||
10200 | |||||
10201 | if (hw->mac_type >= em_pch_spt) | ||||
10202 | return em_read_eeprom_spt(hw, offset, words, data); | ||||
10203 | |||||
10204 | error = em_get_software_flag(hw); | ||||
10205 | if (error != E1000_SUCCESS0) | ||||
10206 | return error; | ||||
10207 | |||||
10208 | error = em_valid_nvm_bank_detect_ich8lan(hw, &flash_bank); | ||||
10209 | if (error != E1000_SUCCESS0) { | ||||
10210 | DEBUGOUT("Could not detect valid bank, assuming bank 0\n"); | ||||
10211 | flash_bank = 0; | ||||
10212 | } | ||||
10213 | |||||
10214 | /* | ||||
10215 | * Adjust offset appropriately if we're on bank 1 - adjust for word | ||||
10216 | * size | ||||
10217 | */ | ||||
10218 | bank_offset = flash_bank * (hw->flash_bank_size * 2); | ||||
10219 | |||||
10220 | for (i = 0; i < words; i++) { | ||||
10221 | if (hw->eeprom_shadow_ram != NULL((void *)0) && | ||||
10222 | hw->eeprom_shadow_ram[offset + i].modified == TRUE1) { | ||||
10223 | data[i] = | ||||
10224 | hw->eeprom_shadow_ram[offset + i].eeprom_word; | ||||
10225 | } else { | ||||
10226 | /* The NVM part needs a byte offset, hence * 2 */ | ||||
10227 | act_offset = bank_offset + ((offset + i) * 2); | ||||
10228 | error = em_read_ich8_word(hw, act_offset, &word); | ||||
10229 | if (error != E1000_SUCCESS0) | ||||
10230 | break; | ||||
10231 | data[i] = word; | ||||
10232 | } | ||||
10233 | } | ||||
10234 | |||||
10235 | em_release_software_flag(hw); | ||||
10236 | |||||
10237 | return error; | ||||
10238 | } | ||||
10239 | |||||
10240 | /****************************************************************************** | ||||
10241 | * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access | ||||
10242 | * register. Actually, writes are written to the shadow ram cache in the hw | ||||
10243 | * structure hw->em_shadow_ram. em_commit_shadow_ram flushes this to | ||||
10244 | * the NVM, which occurs when the NVM checksum is updated. | ||||
10245 | * | ||||
10246 | * hw - Struct containing variables accessed by shared code | ||||
10247 | * offset - offset of word in the EEPROM to write | ||||
10248 | * words - number of words to write | ||||
10249 | * data - words to write to the EEPROM | ||||
10250 | *****************************************************************************/ | ||||
10251 | STATIC int32_t | ||||
10252 | em_write_eeprom_ich8(struct em_hw *hw, uint16_t offset, uint16_t words, | ||||
10253 | uint16_t *data) | ||||
10254 | { | ||||
10255 | uint32_t i = 0; | ||||
10256 | int32_t error = E1000_SUCCESS0; | ||||
10257 | error = em_get_software_flag(hw); | ||||
10258 | if (error != E1000_SUCCESS0) | ||||
10259 | return error; | ||||
10260 | /* | ||||
10261 | * A driver can write to the NVM only if it has eeprom_shadow_ram | ||||
10262 | * allocated. Subsequent reads to the modified words are read from | ||||
10263 | * this cached structure as well. Writes will only go into this | ||||
10264 | * cached structure unless it's followed by a call to | ||||
10265 | * em_update_eeprom_checksum() where it will commit the changes and | ||||
10266 | * clear the "modified" field. | ||||
10267 | */ | ||||
10268 | if (hw->eeprom_shadow_ram != NULL((void *)0)) { | ||||
10269 | for (i = 0; i < words; i++) { | ||||
10270 | if ((offset + i) < E1000_SHADOW_RAM_WORDS2048) { | ||||
10271 | hw->eeprom_shadow_ram[offset + i].modified = | ||||
10272 | TRUE1; | ||||
10273 | hw->eeprom_shadow_ram[offset + i].eeprom_word = | ||||
10274 | data[i]; | ||||
10275 | } else { | ||||
10276 | error = -E1000_ERR_EEPROM1; | ||||
10277 | break; | ||||
10278 | } | ||||
10279 | } | ||||
10280 | } else { | ||||
10281 | /* | ||||
10282 | * Drivers have the option to not allocate eeprom_shadow_ram | ||||
10283 | * as long as they don't perform any NVM writes. An attempt | ||||
10284 | * in doing so will result in this error. | ||||
10285 | */ | ||||
10286 | error = -E1000_ERR_EEPROM1; | ||||
10287 | } | ||||
10288 | |||||
10289 | em_release_software_flag(hw); | ||||
10290 | |||||
10291 | return error; | ||||
10292 | } | ||||
10293 | |||||
10294 | /****************************************************************************** | ||||
10295 | * This function does initial flash setup so that a new read/write/erase cycle | ||||
10296 | * can be started. | ||||
10297 | * | ||||
10298 | * hw - The pointer to the hw structure | ||||
10299 | ****************************************************************************/ | ||||
10300 | STATIC int32_t | ||||
10301 | em_ich8_cycle_init(struct em_hw *hw) | ||||
10302 | { | ||||
10303 | union ich8_hws_flash_status hsfsts; | ||||
10304 | int32_t error = E1000_ERR_EEPROM1; | ||||
10305 | int32_t i = 0; | ||||
10306 | DEBUGFUNC("em_ich8_cycle_init");; | ||||
10307 | |||||
10308 | if (hw->mac_type >= em_pch_spt) | ||||
10309 | hsfsts.regval = E1000_READ_ICH_FLASH_REG32(hw,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))) | ||||
10310 | ICH_FLASH_HSFSTS)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))) & 0xFFFFUL; | ||||
10311 | else | ||||
10312 | hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))) | ||||
10313 | ICH_FLASH_HSFSTS)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))); | ||||
10314 | |||||
10315 | /* May be check the Flash Des Valid bit in Hw status */ | ||||
10316 | if (hsfsts.hsf_status.fldesvalid == 0) { | ||||
10317 | DEBUGOUT("Flash descriptor invalid. SW Sequencing must be" | ||||
10318 | " used."); | ||||
10319 | return error; | ||||
10320 | } | ||||
10321 | /* Clear FCERR in Hw status by writing 1 */ | ||||
10322 | /* Clear DAEL in Hw status by writing a 1 */ | ||||
10323 | hsfsts.hsf_status.flcerr = 1; | ||||
10324 | hsfsts.hsf_status.dael = 1; | ||||
10325 | if (hw->mac_type >= em_pch_spt) | ||||
10326 | E1000_WRITE_ICH_FLASH_REG32(hw, ICH_FLASH_HSFSTS,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ), (hsfsts.regval & 0xFFFFUL))) | ||||
10327 | hsfsts.regval & 0xFFFFUL)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ), (hsfsts.regval & 0xFFFFUL))); | ||||
10328 | else | ||||
10329 | E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ), (hsfsts.regval))) | ||||
10330 | hsfsts.regval)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ), (hsfsts.regval))); | ||||
10331 | /* | ||||
10332 | * Either we should have a hardware SPI cycle in progress bit to | ||||
10333 | * check against, in order to start a new cycle or FDONE bit should | ||||
10334 | * be changed in the hardware so that it is 1 after hardware reset, | ||||
10335 | * which can then be used as an indication whether a cycle is in | ||||
10336 | * progress or has been completed .. we should also have some | ||||
10337 | * software semaphore mechanism to guard FDONE or the cycle in | ||||
10338 | * progress bit so that two threads access to those bits can be | ||||
10339 | * sequentiallized or a way so that 2 threads dont start the cycle at | ||||
10340 | * the same time | ||||
10341 | */ | ||||
10342 | |||||
10343 | if (hsfsts.hsf_status.flcinprog == 0) { | ||||
10344 | /* | ||||
10345 | * There is no cycle running at present, so we can start a | ||||
10346 | * cycle | ||||
10347 | */ | ||||
10348 | /* Begin by setting Flash Cycle Done. */ | ||||
10349 | hsfsts.hsf_status.flcdone = 1; | ||||
10350 | if (hw->mac_type >= em_pch_spt) | ||||
10351 | E1000_WRITE_ICH_FLASH_REG32(hw, ICH_FLASH_HSFSTS,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ), (hsfsts.regval & 0xFFFFUL))) | ||||
10352 | hsfsts.regval & 0xFFFFUL)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ), (hsfsts.regval & 0xFFFFUL))); | ||||
10353 | else | ||||
10354 | E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ), (hsfsts.regval))) | ||||
10355 | hsfsts.regval)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ), (hsfsts.regval))); | ||||
10356 | error = E1000_SUCCESS0; | ||||
10357 | } else { | ||||
10358 | /* | ||||
10359 | * otherwise poll for sometime so the current cycle has a | ||||
10360 | * chance to end before giving up. | ||||
10361 | */ | ||||
10362 | for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT5000; i++) { | ||||
10363 | if (hw->mac_type >= em_pch_spt) | ||||
10364 | hsfsts.regval = E1000_READ_ICH_FLASH_REG32(((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))) | ||||
10365 | hw, ICH_FLASH_HSFSTS)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))) & 0xFFFFUL; | ||||
10366 | else | ||||
10367 | hsfsts.regval = E1000_READ_ICH_FLASH_REG16(((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))) | ||||
10368 | hw, ICH_FLASH_HSFSTS)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))); | ||||
10369 | if (hsfsts.hsf_status.flcinprog == 0) { | ||||
10370 | error = E1000_SUCCESS0; | ||||
10371 | break; | ||||
10372 | } | ||||
10373 | usec_delay(1)(*delay_func)(1); | ||||
10374 | } | ||||
10375 | if (error == E1000_SUCCESS0) { | ||||
10376 | /* | ||||
10377 | * Successful in waiting for previous cycle to | ||||
10378 | * timeout, now set the Flash Cycle Done. | ||||
10379 | */ | ||||
10380 | hsfsts.hsf_status.flcdone = 1; | ||||
10381 | if (hw->mac_type >= em_pch_spt) | ||||
10382 | E1000_WRITE_ICH_FLASH_REG32(hw,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ), (hsfsts.regval & 0xFFFFUL))) | ||||
10383 | ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFFUL)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ), (hsfsts.regval & 0xFFFFUL))); | ||||
10384 | else | ||||
10385 | E1000_WRITE_ICH_FLASH_REG16(hw,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ), (hsfsts.regval))) | ||||
10386 | ICH_FLASH_HSFSTS, hsfsts.regval)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ), (hsfsts.regval))); | ||||
10387 | } else { | ||||
10388 | DEBUGOUT("Flash controller busy, cannot get access"); | ||||
10389 | } | ||||
10390 | } | ||||
10391 | return error; | ||||
10392 | } | ||||
10393 | |||||
10394 | /****************************************************************************** | ||||
10395 | * This function starts a flash cycle and waits for its completion | ||||
10396 | * | ||||
10397 | * hw - The pointer to the hw structure | ||||
10398 | *****************************************************************************/ | ||||
10399 | STATIC int32_t | ||||
10400 | em_ich8_flash_cycle(struct em_hw *hw, uint32_t timeout) | ||||
10401 | { | ||||
10402 | union ich8_hws_flash_ctrl hsflctl; | ||||
10403 | union ich8_hws_flash_status hsfsts; | ||||
10404 | int32_t error = E1000_ERR_EEPROM1; | ||||
10405 | uint32_t i = 0; | ||||
10406 | |||||
10407 | /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ | ||||
10408 | if (hw->mac_type >= em_pch_spt) | ||||
10409 | hsflctl.regval = E1000_READ_ICH_FLASH_REG32(hw,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))) | ||||
10410 | ICH_FLASH_HSFSTS)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))) >> 16; | ||||
10411 | else | ||||
10412 | hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0006 ))) | ||||
10413 | ICH_FLASH_HSFCTL)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0006 ))); | ||||
10414 | hsflctl.hsf_ctrl.flcgo = 1; | ||||
10415 | |||||
10416 | if (hw->mac_type >= em_pch_spt) | ||||
10417 | E1000_WRITE_ICH_FLASH_REG32(hw, ICH_FLASH_HSFSTS,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ), ((uint32_t)hsflctl.regval << 16))) | ||||
10418 | (uint32_t)hsflctl.regval << 16)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ), ((uint32_t)hsflctl.regval << 16))); | ||||
10419 | else | ||||
10420 | E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0006 ), (hsflctl.regval))) | ||||
10421 | hsflctl.regval)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0006 ), (hsflctl.regval))); | ||||
10422 | |||||
10423 | /* wait till FDONE bit is set to 1 */ | ||||
10424 | do { | ||||
10425 | if (hw->mac_type >= em_pch_spt) | ||||
10426 | hsfsts.regval = E1000_READ_ICH_FLASH_REG32(hw,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))) | ||||
10427 | ICH_FLASH_HSFSTS)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))) & 0xFFFFUL; | ||||
10428 | else | ||||
10429 | hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))) | ||||
10430 | ICH_FLASH_HSFSTS)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))); | ||||
10431 | if (hsfsts.hsf_status.flcdone == 1) | ||||
10432 | break; | ||||
10433 | usec_delay(1)(*delay_func)(1); | ||||
10434 | i++; | ||||
10435 | } while (i < timeout); | ||||
10436 | if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) { | ||||
10437 | error = E1000_SUCCESS0; | ||||
10438 | } | ||||
10439 | return error; | ||||
10440 | } | ||||
10441 | |||||
10442 | /****************************************************************************** | ||||
10443 | * Reads a byte or word from the NVM using the ICH8 flash access registers. | ||||
10444 | * | ||||
10445 | * hw - The pointer to the hw structure | ||||
10446 | * index - The index of the byte or word to read. | ||||
10447 | * size - Size of data to read, 1=byte 2=word | ||||
10448 | * data - Pointer to the word to store the value read. | ||||
10449 | *****************************************************************************/ | ||||
10450 | STATIC int32_t | ||||
10451 | em_read_ich8_data(struct em_hw *hw, uint32_t index, uint32_t size, | ||||
10452 | uint16_t *data) | ||||
10453 | { | ||||
10454 | union ich8_hws_flash_status hsfsts; | ||||
10455 | union ich8_hws_flash_ctrl hsflctl; | ||||
10456 | uint32_t flash_linear_address; | ||||
10457 | uint32_t flash_data = 0; | ||||
10458 | int32_t error = -E1000_ERR_EEPROM1; | ||||
10459 | int32_t count = 0; | ||||
10460 | DEBUGFUNC("em_read_ich8_data");; | ||||
10461 | |||||
10462 | if (size < 1 || size > 2 || data == 0x0 || | ||||
10463 | index > ICH_FLASH_LINEAR_ADDR_MASK0x00FFFFFF) | ||||
10464 | return error; | ||||
10465 | |||||
10466 | flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK0x00FFFFFF & index) + | ||||
10467 | hw->flash_base_addr; | ||||
10468 | |||||
10469 | do { | ||||
10470 | usec_delay(1)(*delay_func)(1); | ||||
10471 | /* Steps */ | ||||
10472 | error = em_ich8_cycle_init(hw); | ||||
10473 | if (error != E1000_SUCCESS0) | ||||
10474 | break; | ||||
10475 | |||||
10476 | hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0006 ))) | ||||
10477 | ICH_FLASH_HSFCTL)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0006 ))); | ||||
10478 | /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ | ||||
10479 | hsflctl.hsf_ctrl.fldbcount = size - 1; | ||||
10480 | hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ0x0; | ||||
10481 | E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0006 ), (hsflctl.regval))) | ||||
10482 | hsflctl.regval)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0006 ), (hsflctl.regval))); | ||||
10483 | /* | ||||
10484 | * Write the last 24 bits of index into Flash Linear address | ||||
10485 | * field in Flash Address | ||||
10486 | */ | ||||
10487 | /* TODO: TBD maybe check the index against the size of flash */ | ||||
10488 | |||||
10489 | E1000_WRITE_ICH_FLASH_REG32(hw, ICH_FLASH_FADDR,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0008 ), (flash_linear_address))) | ||||
10490 | flash_linear_address)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0008 ), (flash_linear_address))); | ||||
10491 | |||||
10492 | error = em_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT5000); | ||||
10493 | /* | ||||
10494 | * Check if FCERR is set to 1, if set to 1, clear it and try | ||||
10495 | * the whole sequence a few more times, else read in (shift | ||||
10496 | * in) the Flash Data0, the order is least significant byte | ||||
10497 | * first msb to lsb | ||||
10498 | */ | ||||
10499 | if (error == E1000_SUCCESS0) { | ||||
10500 | flash_data = E1000_READ_ICH_FLASH_REG(hw,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0010 ))) | ||||
10501 | ICH_FLASH_FDATA0)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0010 ))); | ||||
10502 | if (size == 1) { | ||||
10503 | *data = (uint8_t) (flash_data & 0x000000FF); | ||||
10504 | } else if (size == 2) { | ||||
10505 | *data = (uint16_t) (flash_data & 0x0000FFFF); | ||||
10506 | } | ||||
10507 | break; | ||||
10508 | } else { | ||||
10509 | /* | ||||
10510 | * If we've gotten here, then things are probably | ||||
10511 | * completely hosed, but if the error condition is | ||||
10512 | * detected, it won't hurt to give it another | ||||
10513 | * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. | ||||
10514 | */ | ||||
10515 | hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))) | ||||
10516 | ICH_FLASH_HSFSTS)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))); | ||||
10517 | if (hsfsts.hsf_status.flcerr == 1) { | ||||
10518 | /* Repeat for some time before giving up. */ | ||||
10519 | continue; | ||||
10520 | } else if (hsfsts.hsf_status.flcdone == 0) { | ||||
10521 | DEBUGOUT("Timeout error - flash cycle did not" | ||||
10522 | " complete."); | ||||
10523 | break; | ||||
10524 | } | ||||
10525 | } | ||||
10526 | } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT10); | ||||
10527 | |||||
10528 | return error; | ||||
10529 | } | ||||
10530 | |||||
10531 | STATIC int32_t | ||||
10532 | em_read_ich8_data32(struct em_hw *hw, uint32_t offset, uint32_t *data) | ||||
10533 | { | ||||
10534 | union ich8_hws_flash_status hsfsts; | ||||
10535 | union ich8_hws_flash_ctrl hsflctl; | ||||
10536 | uint32_t flash_linear_address; | ||||
10537 | int32_t error = -E1000_ERR_EEPROM1; | ||||
10538 | uint32_t count = 0; | ||||
10539 | DEBUGFUNC("em_read_ich8_data32");; | ||||
10540 | |||||
10541 | if (hw->mac_type < em_pch_spt) | ||||
10542 | return error; | ||||
10543 | if (offset > ICH_FLASH_LINEAR_ADDR_MASK0x00FFFFFF) | ||||
10544 | return error; | ||||
10545 | flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK0x00FFFFFF & offset) + | ||||
10546 | hw->flash_base_addr; | ||||
10547 | |||||
10548 | do { | ||||
10549 | usec_delay(1)(*delay_func)(1); | ||||
10550 | /* Steps */ | ||||
10551 | error = em_ich8_cycle_init(hw); | ||||
10552 | if (error != E1000_SUCCESS0) | ||||
10553 | break; | ||||
10554 | |||||
10555 | /* 32 bit accesses in SPT. */ | ||||
10556 | hsflctl.regval = E1000_READ_ICH_FLASH_REG32(hw,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))) | ||||
10557 | ICH_FLASH_HSFSTS)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))) >> 16; | ||||
10558 | |||||
10559 | hsflctl.hsf_ctrl.fldbcount = sizeof(uint32_t) - 1; | ||||
10560 | hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ0x0; | ||||
10561 | |||||
10562 | E1000_WRITE_ICH_FLASH_REG32(hw, ICH_FLASH_HSFSTS,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ), ((uint32_t)hsflctl.regval << 16))) | ||||
10563 | (uint32_t)hsflctl.regval << 16)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ), ((uint32_t)hsflctl.regval << 16))); | ||||
10564 | /* | ||||
10565 | * Write the last 24 bits of offset into Flash Linear address | ||||
10566 | * field in Flash Address | ||||
10567 | */ | ||||
10568 | /* TODO: TBD maybe check the offset against the size of flash */ | ||||
10569 | |||||
10570 | E1000_WRITE_ICH_FLASH_REG32(hw, ICH_FLASH_FADDR,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0008 ), (flash_linear_address))) | ||||
10571 | flash_linear_address)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0008 ), (flash_linear_address))); | ||||
10572 | |||||
10573 | error = em_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT5000); | ||||
10574 | /* | ||||
10575 | * Check if FCERR is set to 1, if set to 1, clear it and try | ||||
10576 | * the whole sequence a few more times, else read in (shift | ||||
10577 | * in) the Flash Data0, the order is least significant byte | ||||
10578 | * first msb to lsb | ||||
10579 | */ | ||||
10580 | if (error == E1000_SUCCESS0) { | ||||
10581 | (*data) = (uint32_t)E1000_READ_ICH_FLASH_REG32(hw,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0010 ))) | ||||
10582 | ICH_FLASH_FDATA0)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0010 ))); | ||||
10583 | break; | ||||
10584 | } else { | ||||
10585 | /* | ||||
10586 | * If we've gotten here, then things are probably | ||||
10587 | * completely hosed, but if the error condition is | ||||
10588 | * detected, it won't hurt to give it another | ||||
10589 | * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. | ||||
10590 | */ | ||||
10591 | hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))) | ||||
10592 | ICH_FLASH_HSFSTS)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))); | ||||
10593 | if (hsfsts.hsf_status.flcerr == 1) { | ||||
10594 | /* Repeat for some time before giving up. */ | ||||
10595 | continue; | ||||
10596 | } else if (hsfsts.hsf_status.flcdone == 0) { | ||||
10597 | DEBUGOUT("Timeout error - flash cycle did not" | ||||
10598 | " complete."); | ||||
10599 | break; | ||||
10600 | } | ||||
10601 | } | ||||
10602 | } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT10); | ||||
10603 | |||||
10604 | return error; | ||||
10605 | } | ||||
10606 | |||||
10607 | |||||
10608 | /****************************************************************************** | ||||
10609 | * Writes One /two bytes to the NVM using the ICH8 flash access registers. | ||||
10610 | * | ||||
10611 | * hw - The pointer to the hw structure | ||||
10612 | * index - The index of the byte/word to write. | ||||
10613 | * size - Size of data to read, 1=byte 2=word | ||||
10614 | * data - The byte(s) to write to the NVM. | ||||
10615 | *****************************************************************************/ | ||||
10616 | STATIC int32_t | ||||
10617 | em_write_ich8_data(struct em_hw *hw, uint32_t index, uint32_t size, | ||||
10618 | uint16_t data) | ||||
10619 | { | ||||
10620 | union ich8_hws_flash_status hsfsts; | ||||
10621 | union ich8_hws_flash_ctrl hsflctl; | ||||
10622 | uint32_t flash_linear_address; | ||||
10623 | uint32_t flash_data = 0; | ||||
10624 | int32_t error = -E1000_ERR_EEPROM1; | ||||
10625 | int32_t count = 0; | ||||
10626 | DEBUGFUNC("em_write_ich8_data");; | ||||
10627 | |||||
10628 | if (hw->mac_type >= em_pch_spt) | ||||
10629 | return -E1000_ERR_EEPROM1; | ||||
10630 | if (size < 1 || size > 2 || data > size * 0xff || | ||||
10631 | index > ICH_FLASH_LINEAR_ADDR_MASK0x00FFFFFF) | ||||
10632 | return error; | ||||
10633 | |||||
10634 | flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK0x00FFFFFF & index) + | ||||
10635 | hw->flash_base_addr; | ||||
10636 | |||||
10637 | do { | ||||
10638 | usec_delay(1)(*delay_func)(1); | ||||
10639 | /* Steps */ | ||||
10640 | error = em_ich8_cycle_init(hw); | ||||
10641 | if (error != E1000_SUCCESS0) | ||||
10642 | break; | ||||
10643 | |||||
10644 | hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0006 ))) | ||||
10645 | ICH_FLASH_HSFCTL)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0006 ))); | ||||
10646 | /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ | ||||
10647 | hsflctl.hsf_ctrl.fldbcount = size - 1; | ||||
10648 | hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE0x2; | ||||
10649 | E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0006 ), (hsflctl.regval))) | ||||
10650 | hsflctl.regval)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0006 ), (hsflctl.regval))); | ||||
10651 | /* | ||||
10652 | * Write the last 24 bits of index into Flash Linear address | ||||
10653 | * field in Flash Address | ||||
10654 | */ | ||||
10655 | E1000_WRITE_ICH_FLASH_REG32(hw, ICH_FLASH_FADDR,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0008 ), (flash_linear_address))) | ||||
10656 | flash_linear_address)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0008 ), (flash_linear_address))); | ||||
10657 | |||||
10658 | if (size == 1) | ||||
10659 | flash_data = (uint32_t) data & 0x00FF; | ||||
10660 | else | ||||
10661 | flash_data = (uint32_t) data; | ||||
10662 | |||||
10663 | E1000_WRITE_ICH_FLASH_REG32(hw, ICH_FLASH_FDATA0, flash_data)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0010 ), (flash_data))); | ||||
10664 | /* | ||||
10665 | * check if FCERR is set to 1 , if set to 1, clear it and try | ||||
10666 | * the whole sequence a few more times else done | ||||
10667 | */ | ||||
10668 | error = em_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT5000); | ||||
10669 | if (error == E1000_SUCCESS0) { | ||||
10670 | break; | ||||
10671 | } else { | ||||
10672 | /* | ||||
10673 | * If we're here, then things are most likely | ||||
10674 | * completely hosed, but if the error condition is | ||||
10675 | * detected, it won't hurt to give it another | ||||
10676 | * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. | ||||
10677 | */ | ||||
10678 | hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))) | ||||
10679 | ICH_FLASH_HSFSTS)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))); | ||||
10680 | if (hsfsts.hsf_status.flcerr == 1) { | ||||
10681 | /* Repeat for some time before giving up. */ | ||||
10682 | continue; | ||||
10683 | } else if (hsfsts.hsf_status.flcdone == 0) { | ||||
10684 | DEBUGOUT("Timeout error - flash cycle did not" | ||||
10685 | " complete."); | ||||
10686 | break; | ||||
10687 | } | ||||
10688 | } | ||||
10689 | } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT10); | ||||
10690 | |||||
10691 | return error; | ||||
10692 | } | ||||
10693 | |||||
10694 | /****************************************************************************** | ||||
10695 | * Reads a single byte from the NVM using the ICH8 flash access registers. | ||||
10696 | * | ||||
10697 | * hw - pointer to em_hw structure | ||||
10698 | * index - The index of the byte to read. | ||||
10699 | * data - Pointer to a byte to store the value read. | ||||
10700 | *****************************************************************************/ | ||||
10701 | STATIC int32_t | ||||
10702 | em_read_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t *data) | ||||
10703 | { | ||||
10704 | int32_t status = E1000_SUCCESS0; | ||||
10705 | uint16_t word = 0; | ||||
10706 | |||||
10707 | if (hw->mac_type >= em_pch_spt) | ||||
10708 | return -E1000_ERR_EEPROM1; | ||||
10709 | else | ||||
10710 | status = em_read_ich8_data(hw, index, 1, &word); | ||||
10711 | if (status == E1000_SUCCESS0) { | ||||
10712 | *data = (uint8_t) word; | ||||
10713 | } | ||||
10714 | return status; | ||||
10715 | } | ||||
10716 | |||||
10717 | /****************************************************************************** | ||||
10718 | * Writes a single byte to the NVM using the ICH8 flash access registers. | ||||
10719 | * Performs verification by reading back the value and then going through | ||||
10720 | * a retry algorithm before giving up. | ||||
10721 | * | ||||
10722 | * hw - pointer to em_hw structure | ||||
10723 | * index - The index of the byte to write. | ||||
10724 | * byte - The byte to write to the NVM. | ||||
10725 | *****************************************************************************/ | ||||
10726 | STATIC int32_t | ||||
10727 | em_verify_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t byte) | ||||
10728 | { | ||||
10729 | int32_t error = E1000_SUCCESS0; | ||||
10730 | int32_t program_retries = 0; | ||||
10731 | DEBUGOUT2("Byte := %2.2X Offset := %d\n", byte, index); | ||||
10732 | |||||
10733 | error = em_write_ich8_byte(hw, index, byte); | ||||
10734 | |||||
10735 | if (error != E1000_SUCCESS0) { | ||||
10736 | for (program_retries = 0; program_retries < 100; | ||||
10737 | program_retries++) { | ||||
10738 | DEBUGOUT2("Retrying \t Byte := %2.2X Offset := %d\n", | ||||
10739 | byte, index); | ||||
10740 | error = em_write_ich8_byte(hw, index, byte); | ||||
10741 | usec_delay(100)(*delay_func)(100); | ||||
10742 | if (error == E1000_SUCCESS0) | ||||
10743 | break; | ||||
10744 | } | ||||
10745 | } | ||||
10746 | if (program_retries == 100) | ||||
10747 | error = E1000_ERR_EEPROM1; | ||||
10748 | |||||
10749 | return error; | ||||
10750 | } | ||||
10751 | |||||
10752 | /****************************************************************************** | ||||
10753 | * Writes a single byte to the NVM using the ICH8 flash access registers. | ||||
10754 | * | ||||
10755 | * hw - pointer to em_hw structure | ||||
10756 | * index - The index of the byte to read. | ||||
10757 | * data - The byte to write to the NVM. | ||||
10758 | *****************************************************************************/ | ||||
10759 | STATIC int32_t | ||||
10760 | em_write_ich8_byte(struct em_hw *hw, uint32_t index, uint8_t data) | ||||
10761 | { | ||||
10762 | int32_t status = E1000_SUCCESS0; | ||||
10763 | uint16_t word = (uint16_t) data; | ||||
10764 | status = em_write_ich8_data(hw, index, 1, word); | ||||
10765 | |||||
10766 | return status; | ||||
10767 | } | ||||
10768 | |||||
10769 | /****************************************************************************** | ||||
10770 | * Reads a dword from the NVM using the ICH8 flash access registers. | ||||
10771 | * | ||||
10772 | * hw - pointer to em_hw structure | ||||
10773 | * index - The starting BYTE index of the word to read. | ||||
10774 | * data - Pointer to a word to store the value read. | ||||
10775 | *****************************************************************************/ | ||||
10776 | STATIC int32_t | ||||
10777 | em_read_ich8_dword(struct em_hw *hw, uint32_t index, uint32_t *data) | ||||
10778 | { | ||||
10779 | int32_t status = E1000_SUCCESS0; | ||||
10780 | status = em_read_ich8_data32(hw, index, data); | ||||
10781 | return status; | ||||
10782 | } | ||||
10783 | |||||
10784 | /****************************************************************************** | ||||
10785 | * Reads a word from the NVM using the ICH8 flash access registers. | ||||
10786 | * | ||||
10787 | * hw - pointer to em_hw structure | ||||
10788 | * index - The starting byte index of the word to read. | ||||
10789 | * data - Pointer to a word to store the value read. | ||||
10790 | *****************************************************************************/ | ||||
10791 | STATIC int32_t | ||||
10792 | em_read_ich8_word(struct em_hw *hw, uint32_t index, uint16_t *data) | ||||
10793 | { | ||||
10794 | int32_t status = E1000_SUCCESS0; | ||||
10795 | status = em_read_ich8_data(hw, index, 2, data); | ||||
10796 | return status; | ||||
10797 | } | ||||
10798 | |||||
10799 | /****************************************************************************** | ||||
10800 | * Erases the bank specified. Each bank may be a 4, 8 or 64k block. Banks are 0 | ||||
10801 | * based. | ||||
10802 | * | ||||
10803 | * hw - pointer to em_hw structure | ||||
10804 | * bank - 0 for first bank, 1 for second bank | ||||
10805 | * | ||||
10806 | * Note that this function may actually erase as much as 8 or 64 KBytes. The | ||||
10807 | * amount of NVM used in each bank is a *minimum* of 4 KBytes, but in fact the | ||||
10808 | * bank size may be 4, 8 or 64 KBytes | ||||
10809 | *****************************************************************************/ | ||||
10810 | int32_t | ||||
10811 | em_erase_ich8_4k_segment(struct em_hw *hw, uint32_t bank) | ||||
10812 | { | ||||
10813 | union ich8_hws_flash_status hsfsts; | ||||
10814 | union ich8_hws_flash_ctrl hsflctl; | ||||
10815 | uint32_t flash_linear_address; | ||||
10816 | int32_t count = 0; | ||||
10817 | int32_t error = E1000_ERR_EEPROM1; | ||||
10818 | int32_t iteration; | ||||
10819 | int32_t sub_sector_size = 0; | ||||
10820 | int32_t bank_size; | ||||
10821 | int32_t j = 0; | ||||
10822 | int32_t error_flag = 0; | ||||
10823 | hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))); | ||||
10824 | /* | ||||
10825 | * Determine HW Sector size: Read BERASE bits of Hw flash Status | ||||
10826 | * register | ||||
10827 | */ | ||||
10828 | /* | ||||
10829 | * 00: The Hw sector is 256 bytes, hence we need to erase 16 | ||||
10830 | * consecutive sectors. The start index for the nth Hw sector can be | ||||
10831 | * calculated as bank * 4096 + n * 256 01: The Hw sector is 4K bytes, | ||||
10832 | * hence we need to erase 1 sector. The start index for the nth Hw | ||||
10833 | * sector can be calculated as bank * 4096 10: The HW sector is 8K | ||||
10834 | * bytes 11: The Hw sector size is 64K bytes | ||||
10835 | */ | ||||
10836 | if (hsfsts.hsf_status.berasesz == 0x0) { | ||||
10837 | /* Hw sector size 256 */ | ||||
10838 | sub_sector_size = ICH_FLASH_SEG_SIZE_256256; | ||||
10839 | bank_size = ICH_FLASH_SECTOR_SIZE4096; | ||||
10840 | iteration = ICH_FLASH_SECTOR_SIZE4096 / ICH_FLASH_SEG_SIZE_256256; | ||||
10841 | } else if (hsfsts.hsf_status.berasesz == 0x1) { | ||||
10842 | bank_size = ICH_FLASH_SEG_SIZE_4K4096; | ||||
10843 | iteration = 1; | ||||
10844 | } else if (hsfsts.hsf_status.berasesz == 0x2) { | ||||
10845 | if (hw->mac_type == em_ich9lan) { | ||||
10846 | uint32_t gfpreg, sector_base_addr, sector_end_addr; | ||||
10847 | gfpreg = E1000_READ_ICH_FLASH_REG(hw,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0000 ))) | ||||
10848 | ICH_FLASH_GFPREG)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0000 ))); | ||||
10849 | /* | ||||
10850 | * sector_X_addr is a "sector"-aligned address (4096 bytes) | ||||
10851 | * Add 1 to sector_end_addr since this sector is included in | ||||
10852 | * the overall size. | ||||
10853 | */ | ||||
10854 | sector_base_addr = gfpreg & ICH_GFPREG_BASE_MASK0x1FFF; | ||||
10855 | sector_end_addr = | ||||
10856 | ((gfpreg >> 16) & ICH_GFPREG_BASE_MASK0x1FFF) + 1; | ||||
10857 | |||||
10858 | /* | ||||
10859 | * find total size of the NVM, then cut in half since the total | ||||
10860 | * size represents two separate NVM banks. | ||||
10861 | */ | ||||
10862 | bank_size = (sector_end_addr - sector_base_addr) | ||||
10863 | << ICH_FLASH_SECT_ADDR_SHIFT12; | ||||
10864 | bank_size /= 2; | ||||
10865 | /* Word align */ | ||||
10866 | bank_size = | ||||
10867 | (bank_size / sizeof(uint16_t)) * sizeof(uint16_t); | ||||
10868 | |||||
10869 | sub_sector_size = ICH_FLASH_SEG_SIZE_8K8192; | ||||
10870 | iteration = bank_size / ICH_FLASH_SEG_SIZE_8K8192; | ||||
10871 | } else { | ||||
10872 | return error; | ||||
10873 | } | ||||
10874 | } else if (hsfsts.hsf_status.berasesz == 0x3) { | ||||
10875 | bank_size = ICH_FLASH_SEG_SIZE_64K65536; | ||||
10876 | iteration = 1; | ||||
10877 | } else { | ||||
10878 | return error; | ||||
10879 | } | ||||
10880 | |||||
10881 | for (j = 0; j < iteration; j++) { | ||||
10882 | do { | ||||
10883 | count++; | ||||
10884 | /* Steps */ | ||||
10885 | error = em_ich8_cycle_init(hw); | ||||
10886 | if (error != E1000_SUCCESS0) { | ||||
10887 | error_flag = 1; | ||||
10888 | break; | ||||
10889 | } | ||||
10890 | /* | ||||
10891 | * Write a value 11 (block Erase) in Flash Cycle | ||||
10892 | * field in Hw flash Control | ||||
10893 | */ | ||||
10894 | hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0006 ))) | ||||
10895 | ICH_FLASH_HSFCTL)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0006 ))); | ||||
10896 | hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE0x3; | ||||
10897 | E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0006 ), (hsflctl.regval))) | ||||
10898 | hsflctl.regval)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0006 ), (hsflctl.regval))); | ||||
10899 | /* | ||||
10900 | * Write the last 24 bits of an index within the | ||||
10901 | * block into Flash Linear address field in Flash | ||||
10902 | * Address. This probably needs to be calculated | ||||
10903 | * here based off the on-chip erase sector size and | ||||
10904 | * the software bank size (4, 8 or 64 KBytes) | ||||
10905 | */ | ||||
10906 | flash_linear_address = | ||||
10907 | bank * bank_size + j * sub_sector_size; | ||||
10908 | flash_linear_address += hw->flash_base_addr; | ||||
10909 | flash_linear_address &= ICH_FLASH_LINEAR_ADDR_MASK0x00FFFFFF; | ||||
10910 | |||||
10911 | E1000_WRITE_ICH_FLASH_REG32(hw, ICH_FLASH_FADDR,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0008 ), (flash_linear_address))) | ||||
10912 | flash_linear_address)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->write_4((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0008 ), (flash_linear_address))); | ||||
10913 | |||||
10914 | error = | ||||
10915 | em_ich8_flash_cycle(hw, ICH_FLASH_ERASE_TIMEOUT3000000); | ||||
10916 | /* | ||||
10917 | * Check if FCERR is set to 1. If 1, clear it and | ||||
10918 | * try the whole sequence a few more times else Done | ||||
10919 | */ | ||||
10920 | if (error == E1000_SUCCESS0) { | ||||
10921 | break; | ||||
10922 | } else { | ||||
10923 | hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw,((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))) | ||||
10924 | ICH_FLASH_HSFSTS)((((struct em_osdep *)(hw)->back)->flash_bus_space_tag) ->read_2((((struct em_osdep *)(hw)->back)->flash_bus_space_handle ), (((struct em_osdep *)(hw)->back)->em_flashoffset + 0x0004 ))); | ||||
10925 | if (hsfsts.hsf_status.flcerr == 1) { | ||||
10926 | /* | ||||
10927 | * repeat for some time before giving | ||||
10928 | * up | ||||
10929 | */ | ||||
10930 | continue; | ||||
10931 | } else if (hsfsts.hsf_status.flcdone == 0) { | ||||
10932 | error_flag = 1; | ||||
10933 | break; | ||||
10934 | } | ||||
10935 | } | ||||
10936 | } while ((count < ICH_FLASH_CYCLE_REPEAT_COUNT10) && !error_flag); | ||||
10937 | if (error_flag == 1) | ||||
10938 | break; | ||||
10939 | } | ||||
10940 | if (error_flag != 1) | ||||
10941 | error = E1000_SUCCESS0; | ||||
10942 | return error; | ||||
10943 | } | ||||
10944 | |||||
10945 | /****************************************************************************** | ||||
10946 | * Reads 16-bit words from the OTP. Return error when the word is not | ||||
10947 | * stored in OTP. | ||||
10948 | * | ||||
10949 | * hw - Struct containing variables accessed by shared code | ||||
10950 | * offset - offset of word in the OTP to read | ||||
10951 | * data - word read from the OTP | ||||
10952 | * words - number of words to read | ||||
10953 | *****************************************************************************/ | ||||
10954 | STATIC int32_t | ||||
10955 | em_read_invm_i210(struct em_hw *hw, uint16_t offset, uint16_t words, | ||||
10956 | uint16_t *data) | ||||
10957 | { | ||||
10958 | int32_t ret_val = E1000_SUCCESS0; | ||||
10959 | |||||
10960 | switch (offset) | ||||
10961 | { | ||||
10962 | case EEPROM_MAC_ADDR_WORD00x0000: | ||||
10963 | case EEPROM_MAC_ADDR_WORD10x0001: | ||||
10964 | case EEPROM_MAC_ADDR_WORD20x0002: | ||||
10965 | /* Generate random MAC address if there's none. */ | ||||
10966 | ret_val = em_read_invm_word_i210(hw, offset, data); | ||||
10967 | if (ret_val != E1000_SUCCESS0) { | ||||
10968 | DEBUGOUT("MAC Addr not found in iNVM\n"); | ||||
10969 | *data = 0xFFFF; | ||||
10970 | ret_val = E1000_SUCCESS0; | ||||
10971 | } | ||||
10972 | break; | ||||
10973 | case EEPROM_INIT_CONTROL2_REG0x000F: | ||||
10974 | ret_val = em_read_invm_word_i210(hw, offset, data); | ||||
10975 | if (ret_val != E1000_SUCCESS0) { | ||||
10976 | *data = NVM_INIT_CTRL_2_DEFAULT_I2110x7243; | ||||
10977 | ret_val = E1000_SUCCESS0; | ||||
10978 | } | ||||
10979 | break; | ||||
10980 | case EEPROM_INIT_CONTROL4_REG0x0013: | ||||
10981 | ret_val = em_read_invm_word_i210(hw, offset, data); | ||||
10982 | if (ret_val != E1000_SUCCESS0) { | ||||
10983 | *data = NVM_INIT_CTRL_4_DEFAULT_I2110x00C1; | ||||
10984 | ret_val = E1000_SUCCESS0; | ||||
10985 | } | ||||
10986 | break; | ||||
10987 | case EEPROM_LED_1_CFG0x001C: | ||||
10988 | ret_val = em_read_invm_word_i210(hw, offset, data); | ||||
10989 | if (ret_val != E1000_SUCCESS0) { | ||||
10990 | *data = NVM_LED_1_CFG_DEFAULT_I2110x0184; | ||||
10991 | ret_val = E1000_SUCCESS0; | ||||
10992 | } | ||||
10993 | break; | ||||
10994 | case EEPROM_LED_0_2_CFG0x001F: | ||||
10995 | ret_val = em_read_invm_word_i210(hw, offset, data); | ||||
10996 | if (ret_val != E1000_SUCCESS0) { | ||||
10997 | *data = NVM_LED_0_2_CFG_DEFAULT_I2110x200C; | ||||
10998 | ret_val = E1000_SUCCESS0; | ||||
10999 | } | ||||
11000 | break; | ||||
11001 | case EEPROM_ID_LED_SETTINGS0x0004: | ||||
11002 | ret_val = em_read_invm_word_i210(hw, offset, data); | ||||
11003 | if (ret_val != E1000_SUCCESS0) { | ||||
11004 | *data = ID_LED_RESERVED_FFFF0xFFFF; | ||||
11005 | ret_val = E1000_SUCCESS0; | ||||
11006 | } | ||||
11007 | break; | ||||
11008 | default: | ||||
11009 | DEBUGOUT1("NVM word 0x%02x is not mapped.\n", offset); | ||||
11010 | *data = NVM_RESERVED_WORD0xFFFF; | ||||
11011 | break; | ||||
11012 | } | ||||
11013 | |||||
11014 | return ret_val; | ||||
11015 | } | ||||
11016 | |||||
11017 | /****************************************************************************** | ||||
11018 | * Reads 16-bit words from the OTP. Return error when the word is not | ||||
11019 | * stored in OTP. | ||||
11020 | * | ||||
11021 | * hw - Struct containing variables accessed by shared code | ||||
11022 | * offset - offset of word in the OTP to read | ||||
11023 | * data - word read from the OTP | ||||
11024 | *****************************************************************************/ | ||||
11025 | STATIC int32_t | ||||
11026 | em_read_invm_word_i210(struct em_hw *hw, uint16_t address, uint16_t *data) | ||||
11027 | { | ||||
11028 | int32_t error = -E1000_NOT_IMPLEMENTED14; | ||||
11029 | uint32_t invm_dword; | ||||
11030 | uint16_t i; | ||||
11031 | uint8_t record_type, word_address; | ||||
11032 | |||||
11033 | for (i = 0; i < INVM_SIZE64; i++) { | ||||
11034 | invm_dword = EM_READ_REG(hw, E1000_INVM_DATA_REG(i))((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), ((0x12120 + 4*(i))))); | ||||
11035 | /* Get record type */ | ||||
11036 | record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword)((invm_dword) & 0x7); | ||||
11037 | if (record_type == INVM_UNINITIALIZED_STRUCTURE0x0) | ||||
11038 | break; | ||||
11039 | if (record_type == INVM_CSR_AUTOLOAD_STRUCTURE0x2) | ||||
11040 | i += INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS1; | ||||
11041 | if (record_type == INVM_RSA_KEY_SHA256_STRUCTURE0x4) | ||||
11042 | i += INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS8; | ||||
11043 | if (record_type == INVM_WORD_AUTOLOAD_STRUCTURE0x1) { | ||||
11044 | word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword)(((invm_dword) & 0x0000FE00) >> 9); | ||||
11045 | if (word_address == address) { | ||||
11046 | *data = INVM_DWORD_TO_WORD_DATA(invm_dword)(((invm_dword) & 0xFFFF0000) >> 16); | ||||
11047 | error = E1000_SUCCESS0; | ||||
11048 | break; | ||||
11049 | } | ||||
11050 | } | ||||
11051 | } | ||||
11052 | |||||
11053 | return error; | ||||
11054 | } | ||||
11055 | |||||
11056 | STATIC int32_t | ||||
11057 | em_init_lcd_from_nvm_config_region(struct em_hw *hw, uint32_t cnf_base_addr, | ||||
11058 | uint32_t cnf_size) | ||||
11059 | { | ||||
11060 | uint32_t ret_val = E1000_SUCCESS0; | ||||
11061 | uint16_t word_addr, reg_data, reg_addr; | ||||
11062 | uint16_t i; | ||||
11063 | /* cnf_base_addr is in DWORD */ | ||||
11064 | word_addr = (uint16_t) (cnf_base_addr << 1); | ||||
11065 | |||||
11066 | /* cnf_size is returned in size of dwords */ | ||||
11067 | for (i = 0; i < cnf_size; i++) { | ||||
11068 | ret_val = | ||||
11069 | em_read_eeprom(hw, (word_addr + i * 2), 1, ®_data); | ||||
11070 | if (ret_val) | ||||
11071 | return ret_val; | ||||
11072 | |||||
11073 | ret_val = | ||||
11074 | em_read_eeprom(hw, (word_addr + i * 2 + 1), 1, ®_addr); | ||||
11075 | if (ret_val) | ||||
11076 | return ret_val; | ||||
11077 | |||||
11078 | ret_val = em_get_software_flag(hw); | ||||
11079 | if (ret_val != E1000_SUCCESS0) | ||||
11080 | return ret_val; | ||||
11081 | |||||
11082 | ret_val = | ||||
11083 | em_write_phy_reg_ex(hw, (uint32_t) reg_addr, reg_data); | ||||
11084 | |||||
11085 | em_release_software_flag(hw); | ||||
11086 | } | ||||
11087 | |||||
11088 | return ret_val; | ||||
11089 | } | ||||
11090 | |||||
11091 | /****************************************************************************** | ||||
11092 | * This function initializes the PHY from the NVM on ICH8 platforms. This | ||||
11093 | * is needed due to an issue where the NVM configuration is not properly | ||||
11094 | * autoloaded after power transitions. Therefore, after each PHY reset, we | ||||
11095 | * will load the configuration data out of the NVM manually. | ||||
11096 | * | ||||
11097 | * hw: Struct containing variables accessed by shared code | ||||
11098 | *****************************************************************************/ | ||||
11099 | STATIC int32_t | ||||
11100 | em_init_lcd_from_nvm(struct em_hw *hw) | ||||
11101 | { | ||||
11102 | uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop, sw_cfg_mask; | ||||
11103 | if (hw->phy_type != em_phy_igp_3) | ||||
11104 | return E1000_SUCCESS0; | ||||
11105 | |||||
11106 | /* Check if SW needs configure the PHY */ | ||||
11107 | if (hw->device_id == E1000_DEV_ID_ICH8_IGP_M_AMT0x1049 || | ||||
11108 | hw->device_id == E1000_DEV_ID_ICH8_IGP_M0x104D || | ||||
11109 | hw->mac_type == em_pchlan || | ||||
11110 | hw->mac_type == em_pch2lan || | ||||
11111 | hw->mac_type == em_pch_lpt || | ||||
11112 | hw->mac_type == em_pch_spt || | ||||
11113 | hw->mac_type == em_pch_cnp) | ||||
11114 | sw_cfg_mask = FEXTNVM_SW_CONFIG_ICH8M(1 << 27); | ||||
11115 | else | ||||
11116 | sw_cfg_mask = FEXTNVM_SW_CONFIG1; | ||||
11117 | |||||
11118 | reg_data = E1000_READ_REG(hw, FEXTNVM)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00028 : em_translate_82542_register (0x00028))))); | ||||
11119 | if (!(reg_data & sw_cfg_mask)) | ||||
11120 | return E1000_SUCCESS0; | ||||
11121 | |||||
11122 | /* Wait for basic configuration completes before proceeding */ | ||||
11123 | loop = 0; | ||||
11124 | do { | ||||
11125 | reg_data = | ||||
11126 | E1000_READ_REG(hw, STATUS)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))) & E1000_STATUS_LAN_INIT_DONE0x00000200; | ||||
11127 | usec_delay(100)(*delay_func)(100); | ||||
11128 | loop++; | ||||
11129 | } while ((!reg_data) && (loop < 50)); | ||||
11130 | |||||
11131 | /* Clear the Init Done bit for the next init event */ | ||||
11132 | reg_data = E1000_READ_REG(hw, STATUS)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
11133 | reg_data &= ~E1000_STATUS_LAN_INIT_DONE0x00000200; | ||||
11134 | E1000_WRITE_REG(hw, STATUS, reg_data)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))), (reg_data))); | ||||
11135 | /* | ||||
11136 | * Make sure HW does not configure LCD from PHY extended | ||||
11137 | * configuration before SW configuration | ||||
11138 | */ | ||||
11139 | reg_data = E1000_READ_REG(hw, EXTCNF_CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F00 : em_translate_82542_register (0x00F00))))); | ||||
11140 | if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE0x00000001) == 0x0000) { | ||||
11141 | reg_data = E1000_READ_REG(hw, EXTCNF_SIZE)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F08 : em_translate_82542_register (0x00F08))))); | ||||
11142 | cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH0x00FF0000; | ||||
11143 | cnf_size >>= 16; | ||||
11144 | if (cnf_size) { | ||||
11145 | reg_data = E1000_READ_REG(hw, EXTCNF_CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F00 : em_translate_82542_register (0x00F00))))); | ||||
11146 | cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER0x0FFF0000; | ||||
11147 | /* cnf_base_addr is in DWORD */ | ||||
11148 | cnf_base_addr >>= 16; | ||||
11149 | |||||
11150 | /* Configure LCD from extended configuration region. */ | ||||
11151 | ret_val = em_init_lcd_from_nvm_config_region(hw, | ||||
11152 | cnf_base_addr, cnf_size); | ||||
11153 | if (ret_val) | ||||
11154 | return ret_val; | ||||
11155 | } | ||||
11156 | } | ||||
11157 | return E1000_SUCCESS0; | ||||
11158 | } | ||||
11159 | |||||
11160 | /****************************************************************************** | ||||
11161 | * em_set_pciex_completion_timeout - set pci-e completion timeout | ||||
11162 | * | ||||
11163 | * The defaults for 82575 and 82576 should be in the range of 50us to 50ms, | ||||
11164 | * however the hardware default for these parts is 500us to 1ms which is less | ||||
11165 | * than the 10ms recommended by the pci-e spec. To address this we need to | ||||
11166 | * increase the value to either 10ms to 200ms for capability version 1 config, | ||||
11167 | * or 16ms to 55ms for version 2. | ||||
11168 | * | ||||
11169 | * * hw - pointer to em_hw structure | ||||
11170 | *****************************************************************************/ | ||||
11171 | int32_t | ||||
11172 | em_set_pciex_completion_timeout(struct em_hw *hw) | ||||
11173 | { | ||||
11174 | uint32_t gcr = E1000_READ_REG(hw, GCR)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B00 : em_translate_82542_register (0x05B00))))); | ||||
11175 | int32_t ret_val = E1000_SUCCESS0; | ||||
11176 | |||||
11177 | /* Only take action if timeout value is not set by system BIOS */ | ||||
11178 | if (gcr & E1000_GCR_CMPL_TMOUT_MASK0x0000F000) | ||||
11179 | goto out; | ||||
11180 | |||||
11181 | DEBUGOUT("PCIe completion timeout not set by system BIOS."); | ||||
11182 | |||||
11183 | /* | ||||
11184 | * If capabilities version is type 1 we can write the | ||||
11185 | * timeout of 10ms to 200ms through the GCR register | ||||
11186 | */ | ||||
11187 | |||||
11188 | if (!(gcr & E1000_GCR_CAP_VER20x00040000)) { | ||||
11189 | gcr |= E1000_GCR_CMPL_TMOUT_10ms0x00001000; | ||||
11190 | DEBUGOUT("PCIe capability version 1 detected, setting \ | ||||
11191 | completion timeout to 10ms."); | ||||
11192 | goto out; | ||||
11193 | } | ||||
11194 | |||||
11195 | /* | ||||
11196 | * For version 2 capabilities we need to write the config space | ||||
11197 | * directly in order to set the completion timeout value for | ||||
11198 | * 16ms to 55ms | ||||
11199 | * | ||||
11200 | * XXX: Implement em_*_pcie_cap_reg() first. | ||||
11201 | */ | ||||
11202 | #if 0 | ||||
11203 | ret_val = em_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, | ||||
11204 | &pciex_devctl2); | ||||
11205 | |||||
11206 | if (ret_val) | ||||
11207 | goto out; | ||||
11208 | |||||
11209 | pciex_devctl2 |= PCIE_DEVICE_CONTROL2_16ms; | ||||
11210 | |||||
11211 | ret_val = em_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, | ||||
11212 | &pciex_devctl2); | ||||
11213 | #endif | ||||
11214 | |||||
11215 | out: | ||||
11216 | |||||
11217 | /* Disable completion timeout resend */ | ||||
11218 | gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND0x00010000; | ||||
11219 | |||||
11220 | DEBUGOUT("PCIe completion timeout resend disabled."); | ||||
11221 | |||||
11222 | E1000_WRITE_REG(hw, GCR, gcr)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x05B00 : em_translate_82542_register (0x05B00))), (gcr))); | ||||
11223 | return ret_val; | ||||
11224 | } | ||||
11225 | |||||
11226 | /*************************************************************************** | ||||
11227 | * Set slow MDIO access mode | ||||
11228 | ***************************************************************************/ | ||||
11229 | static int32_t | ||||
11230 | em_set_mdio_slow_mode_hv(struct em_hw *hw) | ||||
11231 | { | ||||
11232 | int32_t ret_val; | ||||
11233 | uint16_t data; | ||||
11234 | DEBUGFUNC("em_set_mdio_slow_mode_hv");; | ||||
11235 | |||||
11236 | ret_val = em_read_phy_reg(hw, HV_KMRN_MODE_CTRL(((769) << 5) | ((16) & 0x1F)), &data); | ||||
11237 | if (ret_val) | ||||
11238 | return ret_val; | ||||
11239 | |||||
11240 | data |= HV_KMRN_MDIO_SLOW0x0400; | ||||
11241 | |||||
11242 | ret_val = em_write_phy_reg(hw, HV_KMRN_MODE_CTRL(((769) << 5) | ((16) & 0x1F)), data); | ||||
11243 | |||||
11244 | return ret_val; | ||||
11245 | } | ||||
11246 | |||||
11247 | /*************************************************************************** | ||||
11248 | * A series of Phy workarounds to be done after every PHY reset. | ||||
11249 | ***************************************************************************/ | ||||
11250 | int32_t | ||||
11251 | em_hv_phy_workarounds_ich8lan(struct em_hw *hw) | ||||
11252 | { | ||||
11253 | int32_t ret_val = E1000_SUCCESS0; | ||||
11254 | uint16_t phy_data; | ||||
11255 | uint16_t swfw; | ||||
11256 | DEBUGFUNC("em_hv_phy_workarounds_ich8lan");; | ||||
11257 | |||||
11258 | if (hw->mac_type != em_pchlan) | ||||
11259 | goto out; | ||||
11260 | |||||
11261 | swfw = E1000_SWFW_PHY0_SM0x0002; | ||||
11262 | |||||
11263 | /* Set MDIO slow mode before any other MDIO access */ | ||||
11264 | if (hw->phy_type == em_phy_82577 || | ||||
11265 | hw->phy_type == em_phy_82578) { | ||||
11266 | ret_val = em_set_mdio_slow_mode_hv(hw); | ||||
11267 | if (ret_val) | ||||
11268 | goto out; | ||||
11269 | } | ||||
11270 | |||||
11271 | /* Hanksville M Phy init for IEEE. */ | ||||
11272 | if ((hw->revision_id == 2) && | ||||
11273 | (hw->phy_type == em_phy_82577) && | ||||
11274 | ((hw->phy_revision == 2) || (hw->phy_revision == 3))) { | ||||
11275 | em_write_phy_reg(hw, 0x10, 0x8823); | ||||
11276 | em_write_phy_reg(hw, 0x11, 0x0018); | ||||
11277 | em_write_phy_reg(hw, 0x10, 0x8824); | ||||
11278 | em_write_phy_reg(hw, 0x11, 0x0016); | ||||
11279 | em_write_phy_reg(hw, 0x10, 0x8825); | ||||
11280 | em_write_phy_reg(hw, 0x11, 0x001A); | ||||
11281 | em_write_phy_reg(hw, 0x10, 0x888C); | ||||
11282 | em_write_phy_reg(hw, 0x11, 0x0007); | ||||
11283 | em_write_phy_reg(hw, 0x10, 0x888D); | ||||
11284 | em_write_phy_reg(hw, 0x11, 0x0007); | ||||
11285 | em_write_phy_reg(hw, 0x10, 0x888E); | ||||
11286 | em_write_phy_reg(hw, 0x11, 0x0007); | ||||
11287 | em_write_phy_reg(hw, 0x10, 0x8827); | ||||
11288 | em_write_phy_reg(hw, 0x11, 0x0001); | ||||
11289 | em_write_phy_reg(hw, 0x10, 0x8835); | ||||
11290 | em_write_phy_reg(hw, 0x11, 0x0001); | ||||
11291 | em_write_phy_reg(hw, 0x10, 0x8834); | ||||
11292 | em_write_phy_reg(hw, 0x11, 0x0001); | ||||
11293 | em_write_phy_reg(hw, 0x10, 0x8833); | ||||
11294 | em_write_phy_reg(hw, 0x11, 0x0002); | ||||
11295 | } | ||||
11296 | |||||
11297 | if (((hw->phy_type == em_phy_82577) && | ||||
11298 | ((hw->phy_revision == 1) || (hw->phy_revision == 2))) || | ||||
11299 | ((hw->phy_type == em_phy_82578) && (hw->phy_revision == 1))) { | ||||
11300 | /* Disable generation of early preamble */ | ||||
11301 | ret_val = em_write_phy_reg(hw, PHY_REG(769, 25)(((769) << 5) | ((25) & 0x1F)), 0x4431); | ||||
11302 | if (ret_val) | ||||
11303 | goto out; | ||||
11304 | |||||
11305 | /* Preamble tuning for SSC */ | ||||
11306 | ret_val = em_write_phy_reg(hw, PHY_REG(770, 16)(((770) << 5) | ((16) & 0x1F)), 0xA204); | ||||
11307 | if (ret_val) | ||||
11308 | goto out; | ||||
11309 | } | ||||
11310 | |||||
11311 | if (hw->phy_type == em_phy_82578) { | ||||
11312 | /* | ||||
11313 | * Return registers to default by doing a soft reset then | ||||
11314 | * writing 0x3140 to the control register. | ||||
11315 | */ | ||||
11316 | if (hw->phy_revision < 2) { | ||||
11317 | em_phy_reset(hw); | ||||
11318 | ret_val = em_write_phy_reg(hw, PHY_CTRL0x00, 0x3140); | ||||
11319 | } | ||||
11320 | } | ||||
11321 | |||||
11322 | if ((hw->revision_id == 2) && | ||||
11323 | (hw->phy_type == em_phy_82577) && | ||||
11324 | ((hw->phy_revision == 2) || (hw->phy_revision == 3))) { | ||||
11325 | /* | ||||
11326 | * Workaround for OEM (GbE) not operating after reset - | ||||
11327 | * restart AN (twice) | ||||
11328 | */ | ||||
11329 | ret_val = em_write_phy_reg(hw, PHY_REG(0, 25)(((0) << 5) | ((25) & 0x1F)), 0x0400); | ||||
11330 | if (ret_val) | ||||
11331 | goto out; | ||||
11332 | ret_val = em_write_phy_reg(hw, PHY_REG(0, 25)(((0) << 5) | ((25) & 0x1F)), 0x0400); | ||||
11333 | if (ret_val) | ||||
11334 | goto out; | ||||
11335 | } | ||||
11336 | |||||
11337 | /* Select page 0 */ | ||||
11338 | ret_val = em_swfw_sync_acquire(hw, swfw); | ||||
11339 | if (ret_val) | ||||
11340 | goto out; | ||||
11341 | |||||
11342 | hw->phy_addr = 1; | ||||
11343 | ret_val = em_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT0x1F, 0); | ||||
11344 | em_swfw_sync_release(hw, swfw); | ||||
11345 | if (ret_val) | ||||
11346 | goto out; | ||||
11347 | |||||
11348 | /* Workaround for link disconnects on a busy hub in half duplex */ | ||||
11349 | ret_val = em_read_phy_reg(hw, | ||||
11350 | PHY_REG(BM_PORT_CTRL_PAGE, 17)(((769) << 5) | ((17) & 0x1F)), | ||||
11351 | &phy_data); | ||||
11352 | if (ret_val) | ||||
11353 | goto release; | ||||
11354 | ret_val = em_write_phy_reg(hw, | ||||
11355 | PHY_REG(BM_PORT_CTRL_PAGE, 17)(((769) << 5) | ((17) & 0x1F)), | ||||
11356 | phy_data & 0x00FF); | ||||
11357 | release: | ||||
11358 | out: | ||||
11359 | return ret_val; | ||||
11360 | } | ||||
11361 | |||||
11362 | |||||
11363 | /*************************************************************************** | ||||
11364 | * Si workaround | ||||
11365 | * | ||||
11366 | * This function works around a Si bug where the link partner can get | ||||
11367 | * a link up indication before the PHY does. If small packets are sent | ||||
11368 | * by the link partner they can be placed in the packet buffer without | ||||
11369 | * being properly accounted for by the PHY and will stall preventing | ||||
11370 | * further packets from being received. The workaround is to clear the | ||||
11371 | * packet buffer after the PHY detects link up. | ||||
11372 | ***************************************************************************/ | ||||
11373 | int32_t | ||||
11374 | em_link_stall_workaround_hv(struct em_hw *hw) | ||||
11375 | { | ||||
11376 | int32_t ret_val = E1000_SUCCESS0; | ||||
11377 | uint16_t phy_data; | ||||
11378 | |||||
11379 | if (hw->phy_type != em_phy_82578) | ||||
11380 | goto out; | ||||
11381 | |||||
11382 | /* Do not apply workaround if in PHY loopback bit 14 set */ | ||||
11383 | em_read_phy_reg(hw, PHY_CTRL0x00, &phy_data); | ||||
11384 | if (phy_data & E1000_PHY_CTRL_LOOPBACK0x00004000) | ||||
11385 | goto out; | ||||
11386 | |||||
11387 | /* check if link is up and at 1Gbps */ | ||||
11388 | ret_val = em_read_phy_reg(hw, BM_CS_STATUS17, &phy_data); | ||||
11389 | if (ret_val) | ||||
11390 | goto out; | ||||
11391 | |||||
11392 | phy_data &= BM_CS_STATUS_LINK_UP0x0400 | | ||||
11393 | BM_CS_STATUS_RESOLVED0x0800 | | ||||
11394 | BM_CS_STATUS_SPEED_MASK0xC000; | ||||
11395 | |||||
11396 | if (phy_data != (BM_CS_STATUS_LINK_UP0x0400 | | ||||
11397 | BM_CS_STATUS_RESOLVED0x0800 | | ||||
11398 | BM_CS_STATUS_SPEED_10000x8000)) | ||||
11399 | goto out; | ||||
11400 | |||||
11401 | msec_delay(200)(*delay_func)(1000*(200)); | ||||
11402 | |||||
11403 | /* flush the packets in the fifo buffer */ | ||||
11404 | ret_val = em_write_phy_reg(hw, HV_MUX_DATA_CTRL(((776) << 5) | ((16) & 0x1F)), | ||||
11405 | HV_MUX_DATA_CTRL_GEN_TO_MAC0x0400 | HV_MUX_DATA_CTRL_FORCE_SPEED0x0004); | ||||
11406 | if (ret_val) | ||||
11407 | goto out; | ||||
11408 | |||||
11409 | ret_val = em_write_phy_reg(hw, HV_MUX_DATA_CTRL(((776) << 5) | ((16) & 0x1F)), | ||||
11410 | HV_MUX_DATA_CTRL_GEN_TO_MAC0x0400); | ||||
11411 | |||||
11412 | out: | ||||
11413 | return ret_val; | ||||
11414 | } | ||||
11415 | |||||
11416 | /**************************************************************************** | ||||
11417 | * K1 Si workaround | ||||
11418 | * | ||||
11419 | * If K1 is enabled for 1Gbps, the MAC might stall when transitioning | ||||
11420 | * from a lower speed. This workaround disables K1 whenever link is at 1Gig. | ||||
11421 | * If link is down, the function will restore the default K1 setting located | ||||
11422 | * in the NVM. | ||||
11423 | ****************************************************************************/ | ||||
11424 | int32_t | ||||
11425 | em_k1_gig_workaround_hv(struct em_hw *hw, boolean_t link) | ||||
11426 | { | ||||
11427 | int32_t ret_val; | ||||
11428 | uint16_t phy_data; | ||||
11429 | boolean_t k1_enable; | ||||
11430 | |||||
11431 | DEBUGFUNC("em_k1_gig_workaround_hv");; | ||||
11432 | |||||
11433 | if (hw->mac_type != em_pchlan) | ||||
11434 | return E1000_SUCCESS0; | ||||
11435 | |||||
11436 | ret_val = em_read_eeprom_ich8(hw, E1000_NVM_K1_CONFIG0x1B, 1, &phy_data); | ||||
11437 | if (ret_val) | ||||
11438 | return ret_val; | ||||
11439 | |||||
11440 | k1_enable = phy_data & E1000_NVM_K1_ENABLE0x1 ? TRUE1 : FALSE0; | ||||
11441 | |||||
11442 | /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */ | ||||
11443 | if (link) { | ||||
11444 | if (hw->phy_type == em_phy_82578) { | ||||
11445 | ret_val = em_read_phy_reg(hw, BM_CS_STATUS17, | ||||
11446 | &phy_data); | ||||
11447 | if (ret_val) | ||||
11448 | return ret_val; | ||||
11449 | |||||
11450 | phy_data &= BM_CS_STATUS_LINK_UP0x0400 | | ||||
11451 | BM_CS_STATUS_RESOLVED0x0800 | | ||||
11452 | BM_CS_STATUS_SPEED_MASK0xC000; | ||||
11453 | |||||
11454 | if (phy_data == (BM_CS_STATUS_LINK_UP0x0400 | | ||||
11455 | BM_CS_STATUS_RESOLVED0x0800 | | ||||
11456 | BM_CS_STATUS_SPEED_10000x8000)) | ||||
11457 | k1_enable = FALSE0; | ||||
11458 | } | ||||
11459 | |||||
11460 | if (hw->phy_type == em_phy_82577) { | ||||
11461 | ret_val = em_read_phy_reg(hw, HV_M_STATUS26, | ||||
11462 | &phy_data); | ||||
11463 | if (ret_val) | ||||
11464 | return ret_val; | ||||
11465 | |||||
11466 | phy_data &= HV_M_STATUS_LINK_UP0x0040 | | ||||
11467 | HV_M_STATUS_AUTONEG_COMPLETE0x1000 | | ||||
11468 | HV_M_STATUS_SPEED_MASK0x0300; | ||||
11469 | |||||
11470 | if (phy_data == (HV_M_STATUS_LINK_UP0x0040 | | ||||
11471 | HV_M_STATUS_AUTONEG_COMPLETE0x1000 | | ||||
11472 | HV_M_STATUS_SPEED_10000x0200)) | ||||
11473 | k1_enable = FALSE0; | ||||
11474 | } | ||||
11475 | |||||
11476 | /* Link stall fix for link up */ | ||||
11477 | ret_val = em_write_phy_reg(hw, PHY_REG(770, 19)(((770) << 5) | ((19) & 0x1F)), | ||||
11478 | 0x0100); | ||||
11479 | if (ret_val) | ||||
11480 | return ret_val; | ||||
11481 | |||||
11482 | } else { | ||||
11483 | /* Link stall fix for link down */ | ||||
11484 | ret_val = em_write_phy_reg(hw, PHY_REG(770, 19)(((770) << 5) | ((19) & 0x1F)), | ||||
11485 | 0x4100); | ||||
11486 | if (ret_val) | ||||
11487 | return ret_val; | ||||
11488 | } | ||||
11489 | |||||
11490 | ret_val = em_configure_k1_ich8lan(hw, k1_enable); | ||||
11491 | |||||
11492 | return ret_val; | ||||
11493 | } | ||||
11494 | |||||
11495 | /* Workaround to set the K1 beacon duration for 82579 parts */ | ||||
11496 | int32_t | ||||
11497 | em_k1_workaround_lv(struct em_hw *hw) | ||||
11498 | { | ||||
11499 | int32_t ret_val; | ||||
11500 | uint16_t phy_data; | ||||
11501 | uint32_t mac_reg; | ||||
11502 | |||||
11503 | ret_val = em_read_phy_reg(hw, BM_CS_STATUS17, &phy_data); | ||||
11504 | if (ret_val) | ||||
11505 | return ret_val; | ||||
11506 | |||||
11507 | if ((phy_data & (HV_M_STATUS_LINK_UP0x0040 | HV_M_STATUS_AUTONEG_COMPLETE0x1000)) | ||||
11508 | == (HV_M_STATUS_LINK_UP0x0040 | HV_M_STATUS_AUTONEG_COMPLETE0x1000)) { | ||||
11509 | mac_reg = E1000_READ_REG(hw, FEXTNVM4)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00024 : em_translate_82542_register (0x00024))))); | ||||
11510 | mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK0x7; | ||||
11511 | |||||
11512 | if (phy_data & HV_M_STATUS_SPEED_10000x0200) | ||||
11513 | mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC0x7; | ||||
11514 | else | ||||
11515 | mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC0x3; | ||||
11516 | |||||
11517 | E1000_WRITE_REG(hw, FEXTNVM4, mac_reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00024 : em_translate_82542_register (0x00024))), (mac_reg))); | ||||
11518 | } | ||||
11519 | |||||
11520 | return E1000_SUCCESS0; | ||||
11521 | } | ||||
11522 | |||||
11523 | /** | ||||
11524 | * em_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP | ||||
11525 | * | ||||
11526 | * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications | ||||
11527 | * preventing further DMA write requests. Workaround the issue by disabling | ||||
11528 | * the de-assertion of the clock request when in 1Gbps mode. | ||||
11529 | * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link | ||||
11530 | * speeds in order to avoid Tx hangs. | ||||
11531 | **/ | ||||
11532 | int32_t | ||||
11533 | em_k1_workaround_lpt_lp(struct em_hw *hw, boolean_t link) | ||||
11534 | { | ||||
11535 | uint32_t fextnvm6 = E1000_READ_REG(hw, FEXTNVM6)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))))); | ||||
11536 | uint32_t status = E1000_READ_REG(hw, STATUS)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00008 : em_translate_82542_register (0x00008))))); | ||||
11537 | int32_t ret_val = E1000_SUCCESS0; | ||||
11538 | uint16_t reg; | ||||
11539 | |||||
11540 | if (link && (status & E1000_STATUS_SPEED_10000x00000080)) { | ||||
11541 | ret_val = em_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_K1_CONFIG0x7, | ||||
11542 | ®); | ||||
11543 | if (ret_val) | ||||
11544 | return ret_val; | ||||
11545 | |||||
11546 | ret_val = em_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_K1_CONFIG0x7, | ||||
11547 | reg & ~E1000_KMRNCTRLSTA_K1_ENABLE0x0002); | ||||
11548 | if (ret_val) | ||||
11549 | return ret_val; | ||||
11550 | |||||
11551 | usec_delay(10)(*delay_func)(10); | ||||
11552 | |||||
11553 | E1000_WRITE_REG(hw, FEXTNVM6,((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (fextnvm6 | 0x00000100))) | ||||
11554 | fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (fextnvm6 | 0x00000100))); | ||||
11555 | |||||
11556 | ret_val = em_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_K1_CONFIG0x7, | ||||
11557 | reg); | ||||
11558 | } else { | ||||
11559 | /* clear FEXTNVM6 bit 8 on link down or 10/100 */ | ||||
11560 | fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK0x00000100; | ||||
11561 | |||||
11562 | if (!link || ((status & E1000_STATUS_SPEED_1000x00000040) && | ||||
11563 | (status & E1000_STATUS_FD0x00000001))) | ||||
11564 | goto update_fextnvm6; | ||||
11565 | |||||
11566 | ret_val = em_read_phy_reg(hw, I217_INBAND_CTRL(((770) << 5) | ((18) & 0x1F)), ®); | ||||
11567 | if (ret_val) | ||||
11568 | return ret_val; | ||||
11569 | |||||
11570 | /* Clear link status transmit timeout */ | ||||
11571 | reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK0x3F00; | ||||
11572 | |||||
11573 | if (status & E1000_STATUS_SPEED_1000x00000040) { | ||||
11574 | /* Set inband Tx timeout to 5x10us for 100Half */ | ||||
11575 | reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT8; | ||||
11576 | |||||
11577 | /* Do not extend the K1 entry latency for 100Half */ | ||||
11578 | fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION0x00000200; | ||||
11579 | } else { | ||||
11580 | /* Set inband Tx timeout to 50x10us for 10Full/Half */ | ||||
11581 | reg |= 50 << | ||||
11582 | I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT8; | ||||
11583 | |||||
11584 | /* Extend the K1 entry latency for 10 Mbps */ | ||||
11585 | fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION0x00000200; | ||||
11586 | } | ||||
11587 | |||||
11588 | ret_val = em_write_phy_reg(hw, I217_INBAND_CTRL(((770) << 5) | ((18) & 0x1F)), reg); | ||||
11589 | if (ret_val) | ||||
11590 | return ret_val; | ||||
11591 | |||||
11592 | update_fextnvm6: | ||||
11593 | E1000_WRITE_REG(hw, FEXTNVM6, fextnvm6)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00010 : em_translate_82542_register (0x00010))), (fextnvm6))); | ||||
11594 | } | ||||
11595 | |||||
11596 | return ret_val; | ||||
11597 | |||||
11598 | } | ||||
11599 | |||||
11600 | |||||
11601 | /*************************************************************************** | ||||
11602 | * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware | ||||
11603 | * @hw: pointer to the HW structure | ||||
11604 | * @gate: boolean set to TRUE to gate, FALSE to ungate | ||||
11605 | * | ||||
11606 | * Gate/ungate the automatic PHY configuration via hardware; perform | ||||
11607 | * the configuration via software instead. | ||||
11608 | ***************************************************************************/ | ||||
11609 | void | ||||
11610 | em_gate_hw_phy_config_ich8lan(struct em_hw *hw, boolean_t gate) | ||||
11611 | { | ||||
11612 | uint32_t extcnf_ctrl; | ||||
11613 | |||||
11614 | DEBUGFUNC("em_gate_hw_phy_config_ich8lan");; | ||||
11615 | |||||
11616 | if (hw->mac_type != em_pch2lan) | ||||
11617 | return; | ||||
11618 | |||||
11619 | extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F00 : em_translate_82542_register (0x00F00))))); | ||||
11620 | |||||
11621 | if (gate) | ||||
11622 | extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG0x00000080; | ||||
11623 | else | ||||
11624 | extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG0x00000080; | ||||
11625 | |||||
11626 | E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00F00 : em_translate_82542_register (0x00F00))), (extcnf_ctrl))); | ||||
11627 | } | ||||
11628 | |||||
11629 | /*************************************************************************** | ||||
11630 | * Configure K1 power state | ||||
11631 | * | ||||
11632 | * Configure the K1 power state based on the provided parameter. | ||||
11633 | * Assumes semaphore already acquired. | ||||
11634 | * | ||||
11635 | * Success returns 0, Failure returns -E1000_ERR_PHY (-2) | ||||
11636 | ***************************************************************************/ | ||||
11637 | int32_t | ||||
11638 | em_configure_k1_ich8lan(struct em_hw *hw, boolean_t k1_enable) | ||||
11639 | { | ||||
11640 | int32_t ret_val = E1000_SUCCESS0; | ||||
11641 | uint32_t ctrl_reg = 0; | ||||
11642 | uint32_t ctrl_ext = 0; | ||||
11643 | uint32_t reg = 0; | ||||
11644 | uint16_t kmrn_reg = 0; | ||||
11645 | |||||
11646 | ret_val = em_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_K1_CONFIG0x7, | ||||
11647 | &kmrn_reg); | ||||
11648 | if (ret_val) | ||||
11649 | goto out; | ||||
11650 | |||||
11651 | if (k1_enable) | ||||
11652 | kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE0x0002; | ||||
11653 | else | ||||
11654 | kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE0x0002; | ||||
11655 | |||||
11656 | ret_val = em_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_K1_CONFIG0x7, | ||||
11657 | kmrn_reg); | ||||
11658 | if (ret_val) | ||||
11659 | goto out; | ||||
11660 | |||||
11661 | usec_delay(20)(*delay_func)(20); | ||||
11662 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))))); | ||||
11663 | ctrl_reg = E1000_READ_REG(hw, CTRL)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))))); | ||||
11664 | |||||
11665 | reg = ctrl_reg & ~(E1000_CTRL_SPD_10000x00000200 | E1000_CTRL_SPD_1000x00000100); | ||||
11666 | reg |= E1000_CTRL_FRCSPD0x00000800; | ||||
11667 | E1000_WRITE_REG(hw, CTRL, reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (reg))); | ||||
11668 | |||||
11669 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))), (ctrl_ext | 0x00008000))); | ||||
11670 | usec_delay(20)(*delay_func)(20); | ||||
11671 | E1000_WRITE_REG(hw, CTRL, ctrl_reg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00000 : em_translate_82542_register (0x00000))), (ctrl_reg))); | ||||
11672 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (((hw)->mac_type >= em_82543 ? 0x00018 : em_translate_82542_register (0x00018))), (ctrl_ext))); | ||||
11673 | usec_delay(20)(*delay_func)(20); | ||||
11674 | |||||
11675 | out: | ||||
11676 | return ret_val; | ||||
11677 | } | ||||
11678 | |||||
11679 | /*************************************************************************** | ||||
11680 | * em_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be | ||||
11681 | * done after every PHY reset. | ||||
11682 | ***************************************************************************/ | ||||
11683 | int32_t | ||||
11684 | em_lv_phy_workarounds_ich8lan(struct em_hw *hw) | ||||
11685 | { | ||||
11686 | int32_t ret_val = E1000_SUCCESS0; | ||||
11687 | uint16_t swfw; | ||||
11688 | |||||
11689 | DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan");; | ||||
11690 | |||||
11691 | if (hw->mac_type != em_pch2lan) | ||||
11692 | goto out; | ||||
11693 | |||||
11694 | /* Set MDIO slow mode before any other MDIO access */ | ||||
11695 | ret_val = em_set_mdio_slow_mode_hv(hw); | ||||
11696 | |||||
11697 | swfw = E1000_SWFW_PHY0_SM0x0002; | ||||
11698 | ret_val = em_swfw_sync_acquire(hw, swfw); | ||||
11699 | if (ret_val) | ||||
11700 | goto out; | ||||
11701 | ret_val = em_write_phy_reg(hw, I82579_EMI_ADDR0x10, | ||||
11702 | I82579_MSE_THRESHOLD0x084F); | ||||
11703 | if (ret_val) | ||||
11704 | goto release; | ||||
11705 | /* set MSE higher to enable link to stay up when noise is high */ | ||||
11706 | ret_val = em_write_phy_reg(hw, I82579_EMI_DATA0x11, | ||||
11707 | 0x0034); | ||||
11708 | if (ret_val) | ||||
11709 | goto release; | ||||
11710 | ret_val = em_write_phy_reg(hw, I82579_EMI_ADDR0x10, | ||||
11711 | I82579_MSE_LINK_DOWN0x2411); | ||||
11712 | if (ret_val) | ||||
11713 | goto release; | ||||
11714 | /* drop link after 5 times MSE threshold was reached */ | ||||
11715 | ret_val = em_write_phy_reg(hw, I82579_EMI_DATA0x11, | ||||
11716 | 0x0005); | ||||
11717 | release: | ||||
11718 | em_swfw_sync_release(hw, swfw); | ||||
11719 | |||||
11720 | out: | ||||
11721 | return ret_val; | ||||
11722 | } | ||||
11723 | |||||
11724 | int32_t | ||||
11725 | em_set_eee_i350(struct em_hw *hw) | ||||
11726 | { | ||||
11727 | int32_t ret_val = E1000_SUCCESS0; | ||||
11728 | uint32_t ipcnfg, eeer; | ||||
11729 | |||||
11730 | if ((hw->mac_type < em_i350) || | ||||
11731 | (hw->media_type != em_media_type_copper)) | ||||
11732 | goto out; | ||||
11733 | ipcnfg = EM_READ_REG(hw, E1000_IPCNFG)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (0x0E38))); | ||||
11734 | eeer = EM_READ_REG(hw, E1000_EEER)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (0x0E30))); | ||||
11735 | |||||
11736 | if (hw->eee_enable) { | ||||
11737 | ipcnfg |= (E1000_IPCNFG_EEE_1G_AN0x00000008 | E1000_IPCNFG_EEE_100M_AN0x00000004); | ||||
11738 | eeer |= (E1000_EEER_TX_LPI_EN0x00010000 | E1000_EEER_RX_LPI_EN0x00020000 | | ||||
11739 | E1000_EEER_LPI_FC0x00040000); | ||||
11740 | } else { | ||||
11741 | ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN0x00000008 | E1000_IPCNFG_EEE_100M_AN0x00000004); | ||||
11742 | eeer &= ~(E1000_EEER_TX_LPI_EN0x00010000 | E1000_EEER_RX_LPI_EN0x00020000 | | ||||
11743 | E1000_EEER_LPI_FC0x00040000); | ||||
11744 | } | ||||
11745 | EM_WRITE_REG(hw, E1000_IPCNFG, ipcnfg)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (0x0E38), (ipcnfg))); | ||||
11746 | EM_WRITE_REG(hw, E1000_EEER, eeer)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> write_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (0x0E30), (eeer))); | ||||
11747 | EM_READ_REG(hw, E1000_IPCNFG)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (0x0E38))); | ||||
11748 | EM_READ_REG(hw, E1000_EEER)((((struct em_osdep *)(hw)->back)->mem_bus_space_tag)-> read_4((((struct em_osdep *)(hw)->back)->mem_bus_space_handle ), (0x0E30))); | ||||
11749 | out: | ||||
11750 | return ret_val; | ||||
11751 | } | ||||
11752 | |||||
11753 | /*************************************************************************** | ||||
11754 | * em_set_eee_pchlan - Enable/disable EEE support | ||||
11755 | * @hw: pointer to the HW structure | ||||
11756 | * | ||||
11757 | * Enable/disable EEE based on setting in dev_spec structure. The bits in | ||||
11758 | * the LPI Control register will remain set only if/when link is up. | ||||
11759 | ***************************************************************************/ | ||||
11760 | int32_t | ||||
11761 | em_set_eee_pchlan(struct em_hw *hw) | ||||
11762 | { | ||||
11763 | int32_t ret_val = E1000_SUCCESS0; | ||||
11764 | uint16_t phy_reg; | ||||
11765 | |||||
11766 | DEBUGFUNC("em_set_eee_pchlan");; | ||||
11767 | |||||
11768 | if (hw->phy_type != em_phy_82579 && | ||||
11769 | hw->phy_type != em_phy_i217) | ||||
11770 | goto out; | ||||
11771 | |||||
11772 | ret_val = em_read_phy_reg(hw, I82579_LPI_CTRL(((772) << 5) | ((20) & 0x1F)), &phy_reg); | ||||
11773 | if (ret_val) | ||||
11774 | goto out; | ||||
11775 | |||||
11776 | if (hw->eee_enable) | ||||
11777 | phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK0x6000; | ||||
11778 | else | ||||
11779 | phy_reg |= I82579_LPI_CTRL_ENABLE_MASK0x6000; | ||||
11780 | |||||
11781 | ret_val = em_write_phy_reg(hw, I82579_LPI_CTRL(((772) << 5) | ((20) & 0x1F)), phy_reg); | ||||
11782 | out: | ||||
11783 | return ret_val; | ||||
11784 | } | ||||
11785 | |||||
11786 | /** | ||||
11787 | * em_initialize_M88E1512_phy - Initialize M88E1512 PHY | ||||
11788 | * @hw: pointer to the HW structure | ||||
11789 | * | ||||
11790 | * Initialize Marvell 1512 to work correctly with Avoton. | ||||
11791 | **/ | ||||
11792 | int32_t | ||||
11793 | em_initialize_M88E1512_phy(struct em_hw *hw) | ||||
11794 | { | ||||
11795 | int32_t ret_val = E1000_SUCCESS0; | ||||
11796 | |||||
11797 | DEBUGFUNC("e1000_initialize_M88E1512_phy");; | ||||
11798 | |||||
11799 | /* Check if this is correct PHY. */ | ||||
11800 | if (hw->phy_id != M88E1512_E_PHY_ID0x01410DD0) | ||||
11801 | goto out; | ||||
11802 | |||||
11803 | /* Switch to PHY page 0xFF. */ | ||||
11804 | ret_val = em_write_phy_reg(hw, M88E1543_PAGE_ADDR0x16, 0x00FF); | ||||
11805 | if (ret_val) | ||||
11806 | goto out; | ||||
11807 | |||||
11808 | ret_val = em_write_phy_reg(hw, M88E1512_CFG_REG_20x0011, 0x214B); | ||||
11809 | if (ret_val) | ||||
11810 | goto out; | ||||
11811 | |||||
11812 | ret_val = em_write_phy_reg(hw, M88E1512_CFG_REG_10x0010, 0x2144); | ||||
11813 | if (ret_val) | ||||
11814 | goto out; | ||||
11815 | |||||
11816 | ret_val = em_write_phy_reg(hw, M88E1512_CFG_REG_20x0011, 0x0C28); | ||||
11817 | if (ret_val) | ||||
11818 | goto out; | ||||
11819 | |||||
11820 | ret_val = em_write_phy_reg(hw, M88E1512_CFG_REG_10x0010, 0x2146); | ||||
11821 | if (ret_val) | ||||
11822 | goto out; | ||||
11823 | |||||
11824 | ret_val = em_write_phy_reg(hw, M88E1512_CFG_REG_20x0011, 0xB233); | ||||
11825 | if (ret_val) | ||||
11826 | goto out; | ||||
11827 | |||||
11828 | ret_val = em_write_phy_reg(hw, M88E1512_CFG_REG_10x0010, 0x214D); | ||||
11829 | if (ret_val) | ||||
11830 | goto out; | ||||
11831 | |||||
11832 | ret_val = em_write_phy_reg(hw, M88E1512_CFG_REG_20x0011, 0xCC0C); | ||||
11833 | if (ret_val) | ||||
11834 | goto out; | ||||
11835 | |||||
11836 | ret_val = em_write_phy_reg(hw, M88E1512_CFG_REG_10x0010, 0x2159); | ||||
11837 | if (ret_val) | ||||
11838 | goto out; | ||||
11839 | |||||
11840 | /* Switch to PHY page 0xFB. */ | ||||
11841 | ret_val = em_write_phy_reg(hw, M88E1543_PAGE_ADDR0x16, 0x00FB); | ||||
11842 | if (ret_val) | ||||
11843 | goto out; | ||||
11844 | |||||
11845 | ret_val = em_write_phy_reg(hw, M88E1512_CFG_REG_30x0007, 0x000D); | ||||
11846 | if (ret_val) | ||||
11847 | goto out; | ||||
11848 | |||||
11849 | /* Switch to PHY page 0x12. */ | ||||
11850 | ret_val = em_write_phy_reg(hw, M88E1543_PAGE_ADDR0x16, 0x12); | ||||
11851 | if (ret_val) | ||||
11852 | goto out; | ||||
11853 | |||||
11854 | /* Change mode to SGMII-to-Copper */ | ||||
11855 | ret_val = em_write_phy_reg(hw, M88E1512_MODE0x0014, 0x8001); | ||||
11856 | if (ret_val) | ||||
11857 | goto out; | ||||
11858 | |||||
11859 | /* Return the PHY to page 0. */ | ||||
11860 | ret_val = em_write_phy_reg(hw, M88E1543_PAGE_ADDR0x16, 0); | ||||
11861 | if (ret_val) | ||||
11862 | goto out; | ||||
11863 | |||||
11864 | ret_val = em_phy_hw_reset(hw); | ||||
11865 | if (ret_val) { | ||||
11866 | DEBUGOUT("Error committing the PHY changes\n"); | ||||
11867 | return ret_val; | ||||
11868 | } | ||||
11869 | |||||
11870 | msec_delay(1000)(*delay_func)(1000*(1000)); | ||||
11871 | out: | ||||
11872 | return ret_val; | ||||
11873 | } | ||||
11874 | |||||
11875 | uint32_t | ||||
11876 | em_translate_82542_register(uint32_t reg) | ||||
11877 | { | ||||
11878 | /* | ||||
11879 | * Some of the 82542 registers are located at different | ||||
11880 | * offsets than they are in newer adapters. | ||||
11881 | * Despite the difference in location, the registers | ||||
11882 | * function in the same manner. | ||||
11883 | */ | ||||
11884 | switch (reg) { | ||||
11885 | case E1000_RA0x05400: | ||||
11886 | reg = 0x00040; | ||||
11887 | break; | ||||
11888 | case E1000_RDTR0x02820: | ||||
11889 | reg = 0x00108; | ||||
11890 | break; | ||||
11891 | case E1000_RDBAL(0)((0) < 4 ? (0x02800 + ((0) * 0x100)) : (0x0C000 + ((0) * 0x40 ))): | ||||
11892 | reg = 0x00110; | ||||
11893 | break; | ||||
11894 | case E1000_RDBAH(0)((0) < 4 ? (0x02804 + ((0) * 0x100)) : (0x0C004 + ((0) * 0x40 ))): | ||||
11895 | reg = 0x00114; | ||||
11896 | break; | ||||
11897 | case E1000_RDLEN(0)((0) < 4 ? (0x02808 + ((0) * 0x100)) : (0x0C008 + ((0) * 0x40 ))): | ||||
11898 | reg = 0x00118; | ||||
11899 | break; | ||||
11900 | case E1000_RDH(0)((0) < 4 ? (0x02810 + ((0) * 0x100)) : (0x0C010 + ((0) * 0x40 ))): | ||||
11901 | reg = 0x00120; | ||||
11902 | break; | ||||
11903 | case E1000_RDT(0)((0) < 4 ? (0x02818 + ((0) * 0x100)) : (0x0C018 + ((0) * 0x40 ))): | ||||
11904 | reg = 0x00128; | ||||
11905 | break; | ||||
11906 | case E1000_RDBAL(1)((1) < 4 ? (0x02800 + ((1) * 0x100)) : (0x0C000 + ((1) * 0x40 ))): | ||||
11907 | reg = 0x00138; | ||||
11908 | break; | ||||
11909 | case E1000_RDBAH(1)((1) < 4 ? (0x02804 + ((1) * 0x100)) : (0x0C004 + ((1) * 0x40 ))): | ||||
11910 | reg = 0x0013C; | ||||
11911 | break; | ||||
11912 | case E1000_RDLEN(1)((1) < 4 ? (0x02808 + ((1) * 0x100)) : (0x0C008 + ((1) * 0x40 ))): | ||||
11913 | reg = 0x00140; | ||||
11914 | break; | ||||
11915 | case E1000_RDH(1)((1) < 4 ? (0x02810 + ((1) * 0x100)) : (0x0C010 + ((1) * 0x40 ))): | ||||
11916 | reg = 0x00148; | ||||
11917 | break; | ||||
11918 | case E1000_RDT(1)((1) < 4 ? (0x02818 + ((1) * 0x100)) : (0x0C018 + ((1) * 0x40 ))): | ||||
11919 | reg = 0x00150; | ||||
11920 | break; | ||||
11921 | case E1000_FCRTH0x02168: | ||||
11922 | reg = 0x00160; | ||||
11923 | break; | ||||
11924 | case E1000_FCRTL0x02160: | ||||
11925 | reg = 0x00168; | ||||
11926 | break; | ||||
11927 | case E1000_MTA0x05200: | ||||
11928 | reg = 0x00200; | ||||
11929 | break; | ||||
11930 | case E1000_TDBAL(0)((0) < 4 ? (0x03800 + ((0) * 0x100)) : (0x0E000 + ((0) * 0x40 ))): | ||||
11931 | reg = 0x00420; | ||||
11932 | break; | ||||
11933 | case E1000_TDBAH(0)((0) < 4 ? (0x03804 + ((0) * 0x100)) : (0x0E004 + ((0) * 0x40 ))): | ||||
11934 | reg = 0x00424; | ||||
11935 | break; | ||||
11936 | case E1000_TDLEN(0)((0) < 4 ? (0x03808 + ((0) * 0x100)) : (0x0E008 + ((0) * 0x40 ))): | ||||
11937 | reg = 0x00428; | ||||
11938 | break; | ||||
11939 | case E1000_TDH(0)((0) < 4 ? (0x03810 + ((0) * 0x100)) : (0x0E010 + ((0) * 0x40 ))): | ||||
11940 | reg = 0x00430; | ||||
11941 | break; | ||||
11942 | case E1000_TDT(0)((0) < 4 ? (0x03818 + ((0) * 0x100)) : (0x0E018 + ((0) * 0x40 ))): | ||||
11943 | reg = 0x00438; | ||||
11944 | break; | ||||
11945 | case E1000_TIDV0x03820: | ||||
11946 | reg = 0x00440; | ||||
11947 | break; | ||||
11948 | case E1000_VFTA0x05600: | ||||
11949 | reg = 0x00600; | ||||
11950 | break; | ||||
11951 | case E1000_TDFH0x03410: | ||||
11952 | reg = 0x08010; | ||||
11953 | break; | ||||
11954 | case E1000_TDFT0x03418: | ||||
11955 | reg = 0x08018; | ||||
11956 | break; | ||||
11957 | default: | ||||
11958 | break; | ||||
11959 | } | ||||
11960 | |||||
11961 | return (reg); | ||||
11962 | } |