File: | dev/ic/acx.c |
Warning: | line 972, column 4 Value stored to 'eh' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* $OpenBSD: acx.c,v 1.126 2022/01/09 05:42:38 jsg Exp $ */ |
2 | |
3 | /* |
4 | * Copyright (c) 2006 Jonathan Gray <jsg@openbsd.org> |
5 | * |
6 | * Permission to use, copy, modify, and distribute this software for any |
7 | * purpose with or without fee is hereby granted, provided that the above |
8 | * copyright notice and this permission notice appear in all copies. |
9 | * |
10 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
11 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
12 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
13 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
14 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
15 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
16 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
17 | */ |
18 | |
19 | /* |
20 | * Copyright (c) 2006 The DragonFly Project. All rights reserved. |
21 | * |
22 | * This code is derived from software contributed to The DragonFly Project |
23 | * by Sepherosa Ziehau <sepherosa@gmail.com> |
24 | * |
25 | * Redistribution and use in source and binary forms, with or without |
26 | * modification, are permitted provided that the following conditions |
27 | * are met: |
28 | * |
29 | * 1. Redistributions of source code must retain the above copyright |
30 | * notice, this list of conditions and the following disclaimer. |
31 | * 2. Redistributions in binary form must reproduce the above copyright |
32 | * notice, this list of conditions and the following disclaimer in |
33 | * the documentation and/or other materials provided with the |
34 | * distribution. |
35 | * 3. Neither the name of The DragonFly Project nor the names of its |
36 | * contributors may be used to endorse or promote products derived |
37 | * from this software without specific, prior written permission. |
38 | * |
39 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
40 | * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
41 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
42 | * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
43 | * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
44 | * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, |
45 | * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
46 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
47 | * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
48 | * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT |
49 | * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
50 | * SUCH DAMAGE. |
51 | */ |
52 | |
53 | /* |
54 | * Copyright (c) 2003-2004 wlan.kewl.org Project |
55 | * All rights reserved. |
56 | * |
57 | * Redistribution and use in source and binary forms, with or without |
58 | * modification, are permitted provided that the following conditions |
59 | * are met: |
60 | * |
61 | * 1. Redistributions of source code must retain the above copyright |
62 | * notice, this list of conditions and the following disclaimer. |
63 | * |
64 | * 2. Redistributions in binary form must reproduce the above copyright |
65 | * notice, this list of conditions and the following disclaimer in the |
66 | * documentation and/or other materials provided with the distribution. |
67 | * |
68 | * 3. All advertising materials mentioning features or use of this software |
69 | * must display the following acknowledgement: |
70 | * |
71 | * This product includes software developed by the wlan.kewl.org Project. |
72 | * |
73 | * 4. Neither the name of the wlan.kewl.org Project nor the names of its |
74 | * contributors may be used to endorse or promote products derived from |
75 | * this software without specific prior written permission. |
76 | * |
77 | * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, |
78 | * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY |
79 | * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL |
80 | * THE wlan.kewl.org Project BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
81 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
82 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; |
83 | * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
84 | * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR |
85 | * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF |
86 | * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
87 | */ |
88 | |
89 | #include "bpfilter.h" |
90 | |
91 | #include <sys/param.h> |
92 | #include <sys/systm.h> |
93 | #include <sys/kernel.h> |
94 | #include <sys/malloc.h> |
95 | #include <sys/mbuf.h> |
96 | #include <sys/socket.h> |
97 | #include <sys/sockio.h> |
98 | #include <sys/ioctl.h> |
99 | #include <sys/errno.h> |
100 | #include <sys/device.h> |
101 | #include <sys/endian.h> |
102 | |
103 | #include <machine/bus.h> |
104 | #include <machine/intr.h> |
105 | |
106 | #include <net/if.h> |
107 | #include <net/if_media.h> |
108 | |
109 | #if NBPFILTER1 > 0 |
110 | #include <net/bpf.h> |
111 | #endif |
112 | |
113 | #include <netinet/in.h> |
114 | #include <netinet/if_ether.h> |
115 | |
116 | #include <net80211/ieee80211_var.h> |
117 | #include <net80211/ieee80211_amrr.h> |
118 | #include <net80211/ieee80211_radiotap.h> |
119 | |
120 | #include <dev/ic/acxvar.h> |
121 | #include <dev/ic/acxreg.h> |
122 | |
123 | #ifdef ACX_DEBUG |
124 | int acxdebug = 0; |
125 | #endif |
126 | |
127 | int acx_attach(struct acx_softc *); |
128 | int acx_detach(void *); |
129 | |
130 | int acx_init(struct ifnet *); |
131 | int acx_stop(struct acx_softc *); |
132 | void acx_init_info_reg(struct acx_softc *); |
133 | int acx_config(struct acx_softc *); |
134 | int acx_read_config(struct acx_softc *, struct acx_config *); |
135 | int acx_write_config(struct acx_softc *, struct acx_config *); |
136 | int acx_rx_config(struct acx_softc *); |
137 | int acx_set_crypt_keys(struct acx_softc *); |
138 | void acx_next_scan(void *); |
139 | |
140 | void acx_start(struct ifnet *); |
141 | void acx_watchdog(struct ifnet *); |
142 | |
143 | int acx_ioctl(struct ifnet *, u_long, caddr_t); |
144 | |
145 | int acx_intr(void *); |
146 | void acx_disable_intr(struct acx_softc *); |
147 | void acx_enable_intr(struct acx_softc *); |
148 | void acx_txeof(struct acx_softc *); |
149 | void acx_txerr(struct acx_softc *, uint8_t); |
150 | void acx_rxeof(struct acx_softc *); |
151 | |
152 | int acx_dma_alloc(struct acx_softc *); |
153 | void acx_dma_free(struct acx_softc *); |
154 | void acx_init_tx_ring(struct acx_softc *); |
155 | int acx_init_rx_ring(struct acx_softc *); |
156 | int acx_newbuf(struct acx_softc *, struct acx_rxbuf *, int); |
157 | int acx_encap(struct acx_softc *, struct acx_txbuf *, |
158 | struct mbuf *, struct ieee80211_node *, int); |
159 | |
160 | int acx_reset(struct acx_softc *); |
161 | |
162 | int acx_set_null_tmplt(struct acx_softc *); |
163 | int acx_set_probe_req_tmplt(struct acx_softc *, const char *, int); |
164 | #ifndef IEEE80211_STA_ONLY |
165 | int acx_set_probe_resp_tmplt(struct acx_softc *, struct ieee80211_node *); |
166 | int acx_beacon_locate(struct mbuf *, u_int8_t); |
167 | int acx_set_beacon_tmplt(struct acx_softc *, struct ieee80211_node *); |
168 | #endif |
169 | |
170 | int acx_read_eeprom(struct acx_softc *, uint32_t, uint8_t *); |
171 | int acx_read_phyreg(struct acx_softc *, uint32_t, uint8_t *); |
172 | const char * acx_get_rf(int); |
173 | int acx_get_maxrssi(int); |
174 | |
175 | int acx_load_firmware(struct acx_softc *, uint32_t, |
176 | const uint8_t *, int); |
177 | int acx_load_radio_firmware(struct acx_softc *, const char *); |
178 | int acx_load_base_firmware(struct acx_softc *, const char *); |
179 | |
180 | struct ieee80211_node |
181 | *acx_node_alloc(struct ieee80211com *); |
182 | int acx_newstate(struct ieee80211com *, enum ieee80211_state, int); |
183 | |
184 | void acx_init_cmd_reg(struct acx_softc *); |
185 | int acx_join_bss(struct acx_softc *, uint8_t, struct ieee80211_node *); |
186 | int acx_set_channel(struct acx_softc *, uint8_t); |
187 | int acx_init_radio(struct acx_softc *, uint32_t, uint32_t); |
188 | |
189 | void acx_iter_func(void *, struct ieee80211_node *); |
190 | void acx_amrr_timeout(void *); |
191 | void acx_newassoc(struct ieee80211com *, struct ieee80211_node *, int); |
192 | #ifndef IEEE80211_STA_ONLY |
193 | void acx_set_tim(struct ieee80211com *, int, int); |
194 | #endif |
195 | |
196 | int acx_beacon_intvl = 100; /* 100 TU */ |
197 | |
198 | /* |
199 | * Possible values for the second parameter of acx_join_bss() |
200 | */ |
201 | #define ACX_MODE_ADHOC0 0 |
202 | #define ACX_MODE_UNUSED1 1 |
203 | #define ACX_MODE_STA2 2 |
204 | #define ACX_MODE_AP3 3 |
205 | |
206 | struct cfdriver acx_cd = { |
207 | NULL((void *)0), "acx", DV_IFNET |
208 | }; |
209 | |
210 | int |
211 | acx_attach(struct acx_softc *sc) |
212 | { |
213 | struct ieee80211com *ic = &sc->sc_ic; |
214 | struct ifnet *ifp = &sc->sc_ic.ic_ific_ac.ac_if; |
215 | int i, error; |
216 | |
217 | /* Initialize channel scanning timer */ |
218 | timeout_set(&sc->sc_chanscan_timer, acx_next_scan, sc); |
219 | |
220 | /* Allocate busdma stuffs */ |
221 | error = acx_dma_alloc(sc); |
222 | if (error) { |
223 | printf("%s: attach failed, could not allocate DMA!\n", |
224 | sc->sc_dev.dv_xname); |
225 | return (error); |
226 | } |
227 | |
228 | /* Reset Hardware */ |
229 | error = acx_reset(sc); |
230 | if (error) { |
231 | printf("%s: attach failed, could not reset device!\n", |
232 | sc->sc_dev.dv_xname); |
233 | return (error); |
234 | } |
235 | |
236 | /* Disable interrupts before firmware is loaded */ |
237 | acx_disable_intr(sc); |
238 | |
239 | /* Get radio type and form factor */ |
240 | #define EEINFO_RETRY_MAX 50 |
241 | for (i = 0; i < EEINFO_RETRY_MAX; ++i) { |
242 | uint16_t ee_info; |
243 | |
244 | ee_info = CSR_READ_2(sc, ACXREG_EEPROM_INFO)(((sc)->sc_mem1_bt)->read_2(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(18)]))); |
245 | if (ACX_EEINFO_HAS_RADIO_TYPE(ee_info)((ee_info) & (0xff << 8))) { |
246 | sc->sc_form_factor = ACX_EEINFO_FORM_FACTOR(ee_info)((ee_info) & 0xff); |
247 | sc->sc_radio_type = ACX_EEINFO_RADIO_TYPE(ee_info)((ee_info) >> 8); |
248 | break; |
249 | } |
250 | DELAY(10000)(*delay_func)(10000); |
251 | } |
252 | if (i == EEINFO_RETRY_MAX) { |
253 | printf("%s: attach failed, could not get radio type!\n", |
254 | sc->sc_dev.dv_xname); |
255 | return (ENXIO6); |
256 | } |
257 | #undef EEINFO_RETRY_MAX |
258 | |
259 | #ifdef DUMP_EEPROM |
260 | for (i = 0; i < 0x40; ++i) { |
261 | uint8_t val; |
262 | |
263 | error = acx_read_eeprom(sc, i, &val); |
264 | if (error) |
265 | return (error); |
266 | if (i % 10 == 0) |
267 | printf("\n"); |
268 | printf("%02x ", val); |
269 | } |
270 | printf("\n"); |
271 | #endif /* DUMP_EEPROM */ |
272 | |
273 | /* Get EEPROM version */ |
274 | error = acx_read_eeprom(sc, ACX_EE_VERSION_OFS0x05, &sc->sc_eeprom_ver); |
275 | if (error) { |
276 | printf("%s: attach failed, could not get EEPROM version!\n", |
277 | sc->sc_dev.dv_xname); |
278 | return (error); |
279 | } |
280 | |
281 | ifp->if_softc = sc; |
282 | ifp->if_ioctl = acx_ioctl; |
283 | ifp->if_start = acx_start; |
284 | ifp->if_watchdog = acx_watchdog; |
285 | ifp->if_flags = IFF_SIMPLEX0x800 | IFF_BROADCAST0x2 | IFF_MULTICAST0x8000; |
286 | strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ16); |
287 | ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN)((&ifp->if_snd)->ifq_maxlen = (256)); |
288 | |
289 | /* Set channels */ |
290 | for (i = 1; i <= 14; ++i) { |
291 | ic->ic_channels[i].ic_freq = |
292 | ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ0x0080); |
293 | ic->ic_channels[i].ic_flags = sc->chip_chan_flags; |
294 | } |
295 | |
296 | ic->ic_opmode = IEEE80211_M_STA; |
297 | ic->ic_state = IEEE80211_S_INIT; |
298 | |
299 | /* |
300 | * NOTE: Don't overwrite ic_caps set by chip specific code |
301 | */ |
302 | ic->ic_caps = |
303 | IEEE80211_C_WEP0x00000001 | /* WEP */ |
304 | IEEE80211_C_MONITOR0x00000200 | /* Monitor mode */ |
305 | #ifndef IEEE80211_STA_ONLY |
306 | IEEE80211_C_IBSS0x00000002 | /* IBSS mode */ |
307 | IEEE80211_C_HOSTAP0x00000008 | /* Access Point */ |
308 | IEEE80211_C_APPMGT0x00000020 | /* AP Power Mgmt */ |
309 | #endif |
310 | IEEE80211_C_SHPREAMBLE0x00000100; /* Short preamble */ |
311 | |
312 | /* Get station id */ |
313 | for (i = 0; i < IEEE80211_ADDR_LEN6; ++i) { |
314 | error = acx_read_eeprom(sc, sc->chip_ee_eaddr_ofs - i, |
315 | &ic->ic_myaddr[i]); |
316 | if (error) { |
317 | printf("%s: attach failed, could not get station id\n", |
318 | sc->sc_dev.dv_xname); |
319 | return error; |
320 | } |
321 | } |
322 | |
323 | printf("%s: %s, radio %s (0x%02x), EEPROM ver %u, address %s\n", |
324 | sc->sc_dev.dv_xname, |
325 | (sc->sc_flags & ACX_FLAG_ACX1110x02) ? "ACX111" : "ACX100", |
326 | acx_get_rf(sc->sc_radio_type), sc->sc_radio_type, |
327 | sc->sc_eeprom_ver, ether_sprintf(ic->ic_myaddr)); |
328 | |
329 | if_attach(ifp); |
330 | ieee80211_ifattach(ifp); |
331 | |
332 | /* Override node alloc */ |
333 | ic->ic_node_alloc = acx_node_alloc; |
334 | ic->ic_newassoc = acx_newassoc; |
335 | |
336 | #ifndef IEEE80211_STA_ONLY |
337 | /* Override set TIM */ |
338 | ic->ic_set_tim = acx_set_tim; |
339 | #endif |
340 | |
341 | /* Override newstate */ |
342 | sc->sc_newstate = ic->ic_newstate; |
343 | ic->ic_newstate = acx_newstate; |
344 | |
345 | /* Set maximal rssi */ |
346 | ic->ic_max_rssi = acx_get_maxrssi(sc->sc_radio_type); |
347 | |
348 | ieee80211_media_init(ifp, ieee80211_media_change, |
349 | ieee80211_media_status); |
350 | |
351 | /* AMRR rate control */ |
352 | sc->amrr.amrr_min_success_threshold = 1; |
353 | sc->amrr.amrr_max_success_threshold = 15; |
354 | timeout_set(&sc->amrr_ch, acx_amrr_timeout, sc); |
355 | |
356 | sc->sc_long_retry_limit = 4; |
357 | sc->sc_short_retry_limit = 7; |
358 | sc->sc_msdu_lifetime = 4096; |
359 | |
360 | #if NBPFILTER1 > 0 |
361 | bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO127, |
362 | sizeof(struct ieee80211_frame) + 64); |
363 | |
364 | sc->sc_rxtap_len = sizeof(sc->sc_rxtapu); |
365 | sc->sc_rxtapsc_rxtapu.th.wr_ihdr.it_len = htole16(sc->sc_rxtap_len)((__uint16_t)(sc->sc_rxtap_len)); |
366 | sc->sc_rxtapsc_rxtapu.th.wr_ihdr.it_present = htole32(ACX_RX_RADIOTAP_PRESENT)((__uint32_t)(((1 << IEEE80211_RADIOTAP_FLAGS) | (1 << IEEE80211_RADIOTAP_CHANNEL) | (1 << IEEE80211_RADIOTAP_RSSI )))); |
367 | |
368 | sc->sc_txtap_len = sizeof(sc->sc_txtapu); |
369 | sc->sc_txtapsc_txtapu.th.wt_ihdr.it_len = htole16(sc->sc_txtap_len)((__uint16_t)(sc->sc_txtap_len)); |
370 | sc->sc_txtapsc_txtapu.th.wt_ihdr.it_present = htole32(ACX_TX_RADIOTAP_PRESENT)((__uint32_t)(((1 << IEEE80211_RADIOTAP_FLAGS) | (1 << IEEE80211_RADIOTAP_RATE) | (1 << IEEE80211_RADIOTAP_CHANNEL )))); |
371 | #endif |
372 | |
373 | return (0); |
374 | } |
375 | |
376 | int |
377 | acx_detach(void *xsc) |
378 | { |
379 | struct acx_softc *sc = xsc; |
380 | struct ieee80211com *ic = &sc->sc_ic; |
381 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
382 | |
383 | acx_stop(sc); |
384 | ieee80211_ifdetach(ifp); |
385 | if_detach(ifp); |
386 | |
387 | acx_dma_free(sc); |
388 | |
389 | return (0); |
390 | } |
391 | |
392 | int |
393 | acx_init(struct ifnet *ifp) |
394 | { |
395 | struct acx_softc *sc = ifp->if_softc; |
396 | struct ieee80211com *ic = &sc->sc_ic; |
397 | char fname[] = "tiacx111c16"; |
398 | int error, combined = 0; |
399 | |
400 | error = acx_stop(sc); |
401 | if (error) |
402 | return (EIO5); |
403 | |
404 | /* enable card if possible */ |
405 | if (sc->sc_enable != NULL((void *)0)) { |
406 | error = (*sc->sc_enable)(sc); |
407 | if (error) |
408 | return (EIO5); |
409 | } |
410 | |
411 | acx_init_tx_ring(sc); |
412 | |
413 | error = acx_init_rx_ring(sc); |
414 | if (error) { |
415 | printf("%s: can't initialize RX ring\n", |
416 | sc->sc_dev.dv_xname); |
417 | goto back; |
418 | } |
419 | |
420 | if (sc->sc_flags & ACX_FLAG_ACX1110x02) { |
421 | snprintf(fname, sizeof(fname), "tiacx111c%02X", |
422 | sc->sc_radio_type); |
423 | error = acx_load_base_firmware(sc, fname); |
424 | |
425 | if (!error) |
426 | combined = 1; |
427 | } |
428 | |
429 | if (!combined) { |
430 | snprintf(fname, sizeof(fname), "tiacx%s", |
431 | (sc->sc_flags & ACX_FLAG_ACX1110x02) ? "111" : "100"); |
432 | error = acx_load_base_firmware(sc, fname); |
433 | } |
434 | |
435 | if (error) |
436 | goto back; |
437 | |
438 | /* |
439 | * Initialize command and information registers |
440 | * NOTE: This should be done after base firmware is loaded |
441 | */ |
442 | acx_init_cmd_reg(sc); |
443 | acx_init_info_reg(sc); |
444 | |
445 | sc->sc_flags |= ACX_FLAG_FW_LOADED0x01; |
446 | |
447 | if (!combined) { |
448 | snprintf(fname, sizeof(fname), "tiacx%sr%02X", |
449 | (sc->sc_flags & ACX_FLAG_ACX1110x02) ? "111" : "100", |
450 | sc->sc_radio_type); |
451 | error = acx_load_radio_firmware(sc, fname); |
452 | |
453 | if (error) |
454 | goto back; |
455 | } |
456 | |
457 | error = sc->chip_init(sc); |
458 | if (error) |
459 | goto back; |
460 | |
461 | /* Get and set device various configuration */ |
462 | error = acx_config(sc); |
463 | if (error) |
464 | goto back; |
465 | |
466 | /* Setup crypto stuffs */ |
467 | if (sc->sc_ic.ic_flags & IEEE80211_F_WEPON0x00000100) { |
468 | error = acx_set_crypt_keys(sc); |
469 | if (error) |
470 | goto back; |
471 | } |
472 | |
473 | /* Turn on power led */ |
474 | CSR_CLRB_2(sc, ACXREG_GPIO_OUT, sc->chip_gpio_pled)((((sc))->sc_mem1_bt)->write_2((((sc))->sc_mem1_bh), (((sc))->chip_ioreg[((23))]), (((((sc))->sc_mem1_bt)-> read_2((((sc))->sc_mem1_bh), (((sc))->chip_ioreg[((23)) ]))) & (~(sc->chip_gpio_pled))))); |
475 | |
476 | acx_enable_intr(sc); |
477 | |
478 | ifp->if_flags |= IFF_RUNNING0x40; |
479 | ifq_clr_oactive(&ifp->if_snd); |
480 | |
481 | if (ic->ic_opmode != IEEE80211_M_MONITOR) |
482 | /* start background scanning */ |
483 | ieee80211_new_state(ic, IEEE80211_S_SCAN, -1)(((ic)->ic_newstate)((ic), (IEEE80211_S_SCAN), (-1))); |
484 | else |
485 | /* in monitor mode change directly into run state */ |
486 | ieee80211_new_state(ic, IEEE80211_S_RUN, -1)(((ic)->ic_newstate)((ic), (IEEE80211_S_RUN), (-1))); |
487 | |
488 | return (0); |
489 | back: |
490 | acx_stop(sc); |
491 | return (error); |
492 | } |
493 | |
494 | void |
495 | acx_init_info_reg(struct acx_softc *sc) |
496 | { |
497 | sc->sc_info = CSR_READ_4(sc, ACXREG_INFO_REG_OFFSET)(((sc)->sc_mem1_bt)->read_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(25)]))); |
498 | sc->sc_info_param = sc->sc_info + ACX_INFO_REG_SIZE4; |
499 | } |
500 | |
501 | int |
502 | acx_set_crypt_keys(struct acx_softc *sc) |
503 | { |
504 | struct ieee80211com *ic = &sc->sc_ic; |
505 | struct acx_conf_wep_txkey wep_txkey; |
506 | int i, error, got_wk = 0; |
507 | |
508 | for (i = 0; i < IEEE80211_WEP_NKID4; ++i) { |
509 | struct ieee80211_key *k = &ic->ic_nw_keys[i]; |
510 | |
511 | if (k->k_len == 0) |
512 | continue; |
513 | |
514 | if (sc->chip_hw_crypt) { |
515 | error = sc->chip_set_wepkey(sc, k, i); |
516 | if (error) |
517 | return (error); |
518 | got_wk = 1; |
519 | } |
520 | } |
521 | |
522 | if (!got_wk) |
523 | return (0); |
524 | |
525 | /* Set current WEP key index */ |
526 | wep_txkey.wep_txkey = ic->ic_wep_txkeyic_def_txkey; |
527 | if (acx_set_conf(sc, ACX_CONF_WEP_TXKEY0x1010, &wep_txkey, |
528 | sizeof(wep_txkey)) != 0) { |
529 | printf("%s: set WEP txkey failed\n", sc->sc_dev.dv_xname); |
530 | return (ENXIO6); |
531 | } |
532 | |
533 | return (0); |
534 | } |
535 | |
536 | void |
537 | acx_next_scan(void *arg) |
538 | { |
539 | struct acx_softc *sc = arg; |
540 | struct ieee80211com *ic = &sc->sc_ic; |
541 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
542 | |
543 | if (ic->ic_state == IEEE80211_S_SCAN) |
544 | ieee80211_next_scan(ifp); |
545 | } |
546 | |
547 | int |
548 | acx_stop(struct acx_softc *sc) |
549 | { |
550 | struct ieee80211com *ic = &sc->sc_ic; |
551 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
552 | struct acx_buf_data *bd = &sc->sc_buf_data; |
553 | struct acx_ring_data *rd = &sc->sc_ring_data; |
554 | int i, error; |
555 | |
556 | sc->sc_firmware_ver = 0; |
557 | sc->sc_hardware_id = 0; |
558 | |
559 | /* Reset hardware */ |
560 | error = acx_reset(sc); |
561 | if (error) |
562 | return (error); |
563 | |
564 | /* Firmware no longer functions after hardware reset */ |
565 | sc->sc_flags &= ~ACX_FLAG_FW_LOADED0x01; |
566 | |
567 | acx_disable_intr(sc); |
568 | |
569 | /* Stop background scanning */ |
570 | timeout_del(&sc->sc_chanscan_timer); |
571 | |
572 | /* Turn off power led */ |
573 | CSR_SETB_2(sc, ACXREG_GPIO_OUT, sc->chip_gpio_pled)((((sc))->sc_mem1_bt)->write_2((((sc))->sc_mem1_bh), (((sc))->chip_ioreg[((23))]), (((((sc))->sc_mem1_bt)-> read_2((((sc))->sc_mem1_bh), (((sc))->chip_ioreg[((23)) ]))) | (sc->chip_gpio_pled)))); |
574 | |
575 | /* Free TX mbuf */ |
576 | for (i = 0; i < ACX_TX_DESC_CNT16; ++i) { |
577 | struct acx_txbuf *buf; |
578 | struct ieee80211_node *ni; |
579 | |
580 | buf = &bd->tx_buf[i]; |
581 | |
582 | if (buf->tb_mbuf != NULL((void *)0)) { |
583 | bus_dmamap_unload(sc->sc_dmat, buf->tb_mbuf_dmamap)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (buf ->tb_mbuf_dmamap)); |
584 | m_freem(buf->tb_mbuf); |
585 | buf->tb_mbuf = NULL((void *)0); |
586 | } |
587 | |
588 | ni = (struct ieee80211_node *)buf->tb_node; |
589 | if (ni != NULL((void *)0)) |
590 | ieee80211_release_node(ic, ni); |
591 | buf->tb_node = NULL((void *)0); |
592 | } |
593 | |
594 | /* Clear TX host descriptors */ |
595 | bzero(rd->tx_ring, ACX_TX_RING_SIZE)__builtin_bzero((rd->tx_ring), ((2 * 16 * sizeof(struct acx_host_desc )))); |
596 | |
597 | /* Free RX mbuf */ |
598 | for (i = 0; i < ACX_RX_DESC_CNT16; ++i) { |
599 | if (bd->rx_buf[i].rb_mbuf != NULL((void *)0)) { |
600 | bus_dmamap_unload(sc->sc_dmat,(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (bd-> rx_buf[i].rb_mbuf_dmamap)) |
601 | bd->rx_buf[i].rb_mbuf_dmamap)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (bd-> rx_buf[i].rb_mbuf_dmamap)); |
602 | m_freem(bd->rx_buf[i].rb_mbuf); |
603 | bd->rx_buf[i].rb_mbuf = NULL((void *)0); |
604 | } |
605 | } |
606 | |
607 | /* Clear RX host descriptors */ |
608 | bzero(rd->rx_ring, ACX_RX_RING_SIZE)__builtin_bzero((rd->rx_ring), ((16 * sizeof(struct acx_host_desc )))); |
609 | |
610 | sc->sc_txtimer = 0; |
611 | ifp->if_timer = 0; |
612 | ifp->if_flags &= ~IFF_RUNNING0x40; |
613 | ifq_clr_oactive(&ifp->if_snd); |
614 | ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1)(((&sc->sc_ic)->ic_newstate)((&sc->sc_ic), ( IEEE80211_S_INIT), (-1))); |
615 | |
616 | /* disable card if possible */ |
617 | if (sc->sc_disable != NULL((void *)0)) |
618 | (*sc->sc_disable)(sc); |
619 | |
620 | return (0); |
621 | } |
622 | |
623 | int |
624 | acx_config(struct acx_softc *sc) |
625 | { |
626 | struct acx_config conf; |
627 | int error; |
628 | |
629 | error = acx_read_config(sc, &conf); |
630 | if (error) |
631 | return (error); |
632 | |
633 | error = acx_write_config(sc, &conf); |
634 | if (error) |
635 | return (error); |
636 | |
637 | error = acx_rx_config(sc); |
638 | if (error) |
639 | return (error); |
640 | |
641 | if (acx_set_probe_req_tmplt(sc, "", 0) != 0) { |
642 | printf("%s: can't set probe req template " |
643 | "(empty ssid)\n", sc->sc_dev.dv_xname); |
644 | return (ENXIO6); |
645 | } |
646 | |
647 | /* XXX for PM?? */ |
648 | if (acx_set_null_tmplt(sc) != 0) { |
649 | printf("%s: can't set null data template\n", |
650 | sc->sc_dev.dv_xname); |
651 | return (ENXIO6); |
652 | } |
653 | |
654 | return (0); |
655 | } |
656 | |
657 | int |
658 | acx_read_config(struct acx_softc *sc, struct acx_config *conf) |
659 | { |
660 | struct acx_conf_regdom reg_dom; |
661 | struct acx_conf_antenna ant; |
662 | struct acx_conf_fwrev fw_rev; |
663 | uint32_t fw_rev_no; |
664 | uint8_t sen; |
665 | int error; |
666 | |
667 | /* Get region domain */ |
668 | if (acx_get_conf(sc, ACX_CONF_REGDOM0x100a, ®_dom, sizeof(reg_dom)) != 0) { |
669 | printf("%s: can't get region domain\n", sc->sc_dev.dv_xname); |
670 | return (ENXIO6); |
671 | } |
672 | conf->regdom = reg_dom.regdom; |
673 | DPRINTF(("%s: regdom %02x\n", sc->sc_dev.dv_xname, reg_dom.regdom)); |
674 | |
675 | /* Get antenna */ |
676 | if (acx_get_conf(sc, ACX_CONF_ANTENNA0x100b, &ant, sizeof(ant)) != 0) { |
677 | printf("%s: can't get antenna\n", sc->sc_dev.dv_xname); |
678 | return (ENXIO6); |
679 | } |
680 | conf->antenna = ant.antenna; |
681 | DPRINTF(("%s: antenna %02x\n", sc->sc_dev.dv_xname, ant.antenna)); |
682 | |
683 | /* Get sensitivity XXX not used */ |
684 | if (sc->sc_radio_type == ACX_RADIO_TYPE_MAXIM0x0d || |
685 | sc->sc_radio_type == ACX_RADIO_TYPE_RFMD0x11 || |
686 | sc->sc_radio_type == ACX_RADIO_TYPE_RALINK0x15) { |
687 | error = acx_read_phyreg(sc, ACXRV_PHYREG_SENSITIVITY0x30, &sen); |
688 | if (error) { |
689 | printf("%s: can't get sensitivity\n", |
690 | sc->sc_dev.dv_xname); |
691 | return (error); |
692 | } |
693 | } else |
694 | sen = 0; |
695 | DPRINTF(("%s: sensitivity %02x\n", sc->sc_dev.dv_xname, sen)); |
696 | |
697 | /* Get firmware revision */ |
698 | if (acx_get_conf(sc, ACX_CONF_FWREV0x000d, &fw_rev, sizeof(fw_rev)) != 0) { |
699 | printf("%s: can't get firmware revision\n", |
700 | sc->sc_dev.dv_xname); |
701 | return (ENXIO6); |
702 | } |
703 | |
704 | if (strncmp(fw_rev.fw_rev, "Rev ", 4) != 0) { |
705 | printf("%s: strange revision string -- %s\n", |
706 | sc->sc_dev.dv_xname, fw_rev.fw_rev); |
707 | fw_rev_no = 0x01090407; |
708 | } else { |
709 | /* |
710 | * 01234 |
711 | * "Rev xx.xx.xx.xx" |
712 | * ^ Start from here |
713 | */ |
714 | fw_rev_no = fw_rev.fw_rev[0] << 24; |
715 | fw_rev_no |= fw_rev.fw_rev[1] << 16; |
716 | fw_rev_no |= fw_rev.fw_rev[2] << 8; |
717 | fw_rev_no |= fw_rev.fw_rev[3]; |
718 | } |
719 | sc->sc_firmware_ver = fw_rev_no; |
720 | sc->sc_hardware_id = letoh32(fw_rev.hw_id)((__uint32_t)(fw_rev.hw_id)); |
721 | DPRINTF(("%s: fw rev %08x, hw id %08x\n", |
722 | sc->sc_dev.dv_xname, sc->sc_firmware_ver, sc->sc_hardware_id)); |
723 | |
724 | if (sc->chip_read_config != NULL((void *)0)) { |
725 | error = sc->chip_read_config(sc, conf); |
726 | if (error) |
727 | return (error); |
728 | } |
729 | |
730 | return (0); |
731 | } |
732 | |
733 | int |
734 | acx_write_config(struct acx_softc *sc, struct acx_config *conf) |
735 | { |
736 | struct acx_conf_nretry_short sretry; |
737 | struct acx_conf_nretry_long lretry; |
738 | struct acx_conf_msdu_lifetime msdu_lifetime; |
739 | struct acx_conf_rate_fallback rate_fb; |
740 | struct acx_conf_antenna ant; |
741 | struct acx_conf_regdom reg_dom; |
742 | struct ifnet *ifp = &sc->sc_ic.ic_ific_ac.ac_if; |
743 | int error; |
744 | |
745 | /* Set number of long/short retry */ |
746 | sretry.nretry = sc->sc_short_retry_limit; |
747 | if (acx_set_conf(sc, ACX_CONF_NRETRY_SHORT0x1005, &sretry, |
748 | sizeof(sretry)) != 0) { |
749 | printf("%s: can't set short retry limit\n", ifp->if_xname); |
750 | return (ENXIO6); |
751 | } |
752 | |
753 | lretry.nretry = sc->sc_long_retry_limit; |
754 | if (acx_set_conf(sc, ACX_CONF_NRETRY_LONG0x1006, &lretry, |
755 | sizeof(lretry)) != 0) { |
756 | printf("%s: can't set long retry limit\n", ifp->if_xname); |
757 | return (ENXIO6); |
758 | } |
759 | |
760 | /* Set MSDU lifetime */ |
761 | msdu_lifetime.lifetime = htole32(sc->sc_msdu_lifetime)((__uint32_t)(sc->sc_msdu_lifetime)); |
762 | if (acx_set_conf(sc, ACX_CONF_MSDU_LIFETIME0x1008, &msdu_lifetime, |
763 | sizeof(msdu_lifetime)) != 0) { |
764 | printf("%s: can't set MSDU lifetime\n", ifp->if_xname); |
765 | return (ENXIO6); |
766 | } |
767 | |
768 | /* Enable rate fallback */ |
769 | rate_fb.ratefb_enable = 1; |
770 | if (acx_set_conf(sc, ACX_CONF_RATE_FALLBACK0x0006, &rate_fb, |
771 | sizeof(rate_fb)) != 0) { |
772 | printf("%s: can't enable rate fallback\n", ifp->if_xname); |
773 | return (ENXIO6); |
774 | } |
775 | |
776 | /* Set antenna */ |
777 | ant.antenna = conf->antenna; |
778 | if (acx_set_conf(sc, ACX_CONF_ANTENNA0x100b, &ant, sizeof(ant)) != 0) { |
779 | printf("%s: can't set antenna\n", ifp->if_xname); |
780 | return (ENXIO6); |
781 | } |
782 | |
783 | /* Set region domain */ |
784 | reg_dom.regdom = conf->regdom; |
785 | if (acx_set_conf(sc, ACX_CONF_REGDOM0x100a, ®_dom, sizeof(reg_dom)) != 0) { |
786 | printf("%s: can't set region domain\n", ifp->if_xname); |
787 | return (ENXIO6); |
788 | } |
789 | |
790 | if (sc->chip_write_config != NULL((void *)0)) { |
791 | error = sc->chip_write_config(sc, conf); |
792 | if (error) |
793 | return (error); |
794 | } |
795 | |
796 | return (0); |
797 | } |
798 | |
799 | int |
800 | acx_rx_config(struct acx_softc *sc) |
801 | { |
802 | struct ieee80211com *ic = &sc->sc_ic; |
803 | struct acx_conf_rxopt rx_opt; |
804 | |
805 | /* tell the RX receiver what frames we want to have */ |
806 | rx_opt.opt1 = htole16(RXOPT1_INCL_RXBUF_HDR)((__uint16_t)(0x2000)); |
807 | rx_opt.opt2 = htole16(((__uint16_t)(0x0800 | 0x0400 | 0x0200 | 0x0100 | 0x0080 | 0x0040 | 0x0010 | 0x0008 | 0x0004 | 0x0001)) |
808 | RXOPT2_RECV_ASSOC_REQ |((__uint16_t)(0x0800 | 0x0400 | 0x0200 | 0x0100 | 0x0080 | 0x0040 | 0x0010 | 0x0008 | 0x0004 | 0x0001)) |
809 | RXOPT2_RECV_AUTH |((__uint16_t)(0x0800 | 0x0400 | 0x0200 | 0x0100 | 0x0080 | 0x0040 | 0x0010 | 0x0008 | 0x0004 | 0x0001)) |
810 | RXOPT2_RECV_BEACON |((__uint16_t)(0x0800 | 0x0400 | 0x0200 | 0x0100 | 0x0080 | 0x0040 | 0x0010 | 0x0008 | 0x0004 | 0x0001)) |
811 | RXOPT2_RECV_CF |((__uint16_t)(0x0800 | 0x0400 | 0x0200 | 0x0100 | 0x0080 | 0x0040 | 0x0010 | 0x0008 | 0x0004 | 0x0001)) |
812 | RXOPT2_RECV_CTRL |((__uint16_t)(0x0800 | 0x0400 | 0x0200 | 0x0100 | 0x0080 | 0x0040 | 0x0010 | 0x0008 | 0x0004 | 0x0001)) |
813 | RXOPT2_RECV_DATA |((__uint16_t)(0x0800 | 0x0400 | 0x0200 | 0x0100 | 0x0080 | 0x0040 | 0x0010 | 0x0008 | 0x0004 | 0x0001)) |
814 | RXOPT2_RECV_MGMT |((__uint16_t)(0x0800 | 0x0400 | 0x0200 | 0x0100 | 0x0080 | 0x0040 | 0x0010 | 0x0008 | 0x0004 | 0x0001)) |
815 | RXOPT2_RECV_PROBE_REQ |((__uint16_t)(0x0800 | 0x0400 | 0x0200 | 0x0100 | 0x0080 | 0x0040 | 0x0010 | 0x0008 | 0x0004 | 0x0001)) |
816 | RXOPT2_RECV_PROBE_RESP |((__uint16_t)(0x0800 | 0x0400 | 0x0200 | 0x0100 | 0x0080 | 0x0040 | 0x0010 | 0x0008 | 0x0004 | 0x0001)) |
817 | RXOPT2_RECV_OTHER)((__uint16_t)(0x0800 | 0x0400 | 0x0200 | 0x0100 | 0x0080 | 0x0040 | 0x0010 | 0x0008 | 0x0004 | 0x0001)); |
818 | |
819 | /* in monitor mode go promiscuous */ |
820 | if (ic->ic_opmode == IEEE80211_M_MONITOR) { |
821 | rx_opt.opt1 |= RXOPT1_PROMISC0x0008; |
822 | rx_opt.opt2 |= RXOPT2_RECV_BROKEN0x0020 | RXOPT2_RECV_ACK0x0002; |
823 | } else |
824 | rx_opt.opt1 |= RXOPT1_FILT_FDEST0x0010; |
825 | |
826 | /* finally set the RX options */ |
827 | if (acx_set_conf(sc, ACX_CONF_RXOPT0x0010, &rx_opt, sizeof(rx_opt)) != 0) { |
828 | printf("%s: can not set RX options!\n", sc->sc_dev.dv_xname); |
829 | return (ENXIO6); |
830 | } |
831 | |
832 | return (0); |
833 | } |
834 | |
835 | int |
836 | acx_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) |
837 | { |
838 | struct acx_softc *sc = ifp->if_softc; |
839 | struct ieee80211com *ic = &sc->sc_ic; |
840 | int s, error = 0; |
841 | uint8_t chan; |
842 | |
843 | s = splnet()splraise(0x7); |
844 | |
845 | switch (cmd) { |
846 | case SIOCSIFADDR((unsigned long)0x80000000 | ((sizeof(struct ifreq) & 0x1fff ) << 16) | ((('i')) << 8) | ((12))): |
847 | ifp->if_flags |= IFF_UP0x1; |
848 | /* FALLTHROUGH */ |
849 | case SIOCSIFFLAGS((unsigned long)0x80000000 | ((sizeof(struct ifreq) & 0x1fff ) << 16) | ((('i')) << 8) | ((16))): |
850 | if (ifp->if_flags & IFF_UP0x1) { |
851 | if ((ifp->if_flags & IFF_RUNNING0x40) == 0) |
852 | error = acx_init(ifp); |
853 | } else { |
854 | if (ifp->if_flags & IFF_RUNNING0x40) |
855 | error = acx_stop(sc); |
856 | } |
857 | break; |
858 | case SIOCS80211CHANNEL((unsigned long)0x80000000 | ((sizeof(struct ieee80211chanreq ) & 0x1fff) << 16) | ((('i')) << 8) | ((238)) ): |
859 | /* allow fast channel switching in monitor mode */ |
860 | error = ieee80211_ioctl(ifp, cmd, data); |
861 | if (error == ENETRESET52 && |
862 | ic->ic_opmode == IEEE80211_M_MONITOR) { |
863 | if ((ifp->if_flags & (IFF_UP0x1 | IFF_RUNNING0x40)) == |
864 | (IFF_UP0x1 | IFF_RUNNING0x40)) { |
865 | ic->ic_bss->ni_chan = ic->ic_ibss_chan; |
866 | chan = ieee80211_chan2ieee(ic, |
867 | ic->ic_bss->ni_chan); |
868 | (void)acx_set_channel(sc, chan); |
869 | } |
870 | error = 0; |
871 | } |
872 | break; |
873 | default: |
874 | error = ieee80211_ioctl(ifp, cmd, data); |
875 | break; |
876 | } |
877 | |
878 | if (error == ENETRESET52) { |
879 | if ((ifp->if_flags & (IFF_RUNNING0x40 | IFF_UP0x1)) == |
880 | (IFF_RUNNING0x40 | IFF_UP0x1)) |
881 | error = acx_init(ifp); |
882 | else |
883 | error = 0; |
884 | } |
885 | |
886 | splx(s)spllower(s); |
887 | |
888 | return (error); |
889 | } |
890 | |
891 | void |
892 | acx_start(struct ifnet *ifp) |
893 | { |
894 | struct acx_softc *sc = ifp->if_softc; |
895 | struct ieee80211com *ic = &sc->sc_ic; |
896 | struct acx_buf_data *bd = &sc->sc_buf_data; |
897 | struct acx_txbuf *buf; |
898 | int trans, idx; |
899 | |
900 | if ((sc->sc_flags & ACX_FLAG_FW_LOADED0x01) == 0 || |
901 | (ifp->if_flags & IFF_RUNNING0x40) == 0 || |
902 | ifq_is_oactive(&ifp->if_snd)) |
903 | return; |
904 | |
905 | /* |
906 | * NOTE: |
907 | * We can't start from a random position that TX descriptor |
908 | * is free, since hardware will be confused by that. |
909 | * We have to follow the order of the TX ring. |
910 | */ |
911 | idx = bd->tx_free_start; |
912 | trans = 0; |
913 | for (buf = &bd->tx_buf[idx]; buf->tb_mbuf == NULL((void *)0); |
914 | buf = &bd->tx_buf[idx]) { |
915 | struct ieee80211_frame *wh; |
916 | struct ieee80211_node *ni = NULL((void *)0); |
917 | struct mbuf *m; |
918 | int rate; |
919 | |
920 | m = mq_dequeue(&ic->ic_mgtq); |
921 | /* first dequeue management frames */ |
922 | if (m != NULL((void *)0)) { |
923 | ni = m->m_pkthdrM_dat.MH.MH_pkthdr.ph_cookie; |
924 | |
925 | /* |
926 | * probe response mgmt frames are handled by the |
927 | * firmware already. So, don't send them twice. |
928 | */ |
929 | wh = mtod(m, struct ieee80211_frame *)((struct ieee80211_frame *)((m)->m_hdr.mh_data)); |
930 | if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK0xf0) == |
931 | IEEE80211_FC0_SUBTYPE_PROBE_RESP0x50) { |
932 | if (ni != NULL((void *)0)) |
933 | ieee80211_release_node(ic, ni); |
934 | m_freem(m); |
935 | continue; |
936 | } |
937 | |
938 | /* |
939 | * mgmt frames are sent at the lowest available |
940 | * bit-rate. |
941 | */ |
942 | rate = ni->ni_rates.rs_rates[0]; |
943 | rate &= IEEE80211_RATE_VAL0x7f; |
944 | } else { |
945 | struct ether_header *eh; |
946 | |
947 | /* then dequeue packets on the powersave queue */ |
948 | m = mq_dequeue(&ic->ic_pwrsaveq); |
949 | if (m != NULL((void *)0)) { |
950 | ni = m->m_pkthdrM_dat.MH.MH_pkthdr.ph_cookie; |
951 | goto encapped; |
952 | } else { |
953 | m = ifq_dequeue(&ifp->if_snd); |
954 | if (m == NULL((void *)0)) |
955 | break; |
956 | } |
957 | if (ic->ic_state != IEEE80211_S_RUN) { |
958 | DPRINTF(("%s: data packet dropped due to " |
959 | "not RUN. Current state %d\n", |
960 | ifp->if_xname, ic->ic_state)); |
961 | m_freem(m); |
962 | break; |
963 | } |
964 | |
965 | if (m->m_lenm_hdr.mh_len < sizeof(struct ether_header)) { |
966 | m = m_pullup(m, sizeof(struct ether_header)); |
967 | if (m == NULL((void *)0)) { |
968 | ifp->if_oerrorsif_data.ifi_oerrors++; |
969 | continue; |
970 | } |
971 | } |
972 | eh = mtod(m, struct ether_header *)((struct ether_header *)((m)->m_hdr.mh_data)); |
Value stored to 'eh' is never read | |
973 | |
974 | /* TODO power save */ |
975 | |
976 | #if NBPFILTER1 > 0 |
977 | if (ifp->if_bpf != NULL((void *)0)) |
978 | bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT(1 << 1)); |
979 | #endif |
980 | |
981 | if ((m = ieee80211_encap(ifp, m, &ni)) == NULL((void *)0)) { |
982 | ifp->if_oerrorsif_data.ifi_oerrors++; |
983 | continue; |
984 | } |
985 | encapped: |
986 | if (ic->ic_fixed_rate != -1) { |
987 | rate = ic->ic_sup_rates[ic->ic_curmode]. |
988 | rs_rates[ic->ic_fixed_rate]; |
989 | } else |
990 | rate = ni->ni_rates.rs_rates[ni->ni_txrate]; |
991 | rate &= IEEE80211_RATE_VAL0x7f; |
992 | } |
993 | |
994 | #if NBPFILTER1 > 0 |
995 | if (ic->ic_rawbpf != NULL((void *)0)) |
996 | bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT(1 << 1)); |
997 | #endif |
998 | |
999 | wh = mtod(m, struct ieee80211_frame *)((struct ieee80211_frame *)((m)->m_hdr.mh_data)); |
1000 | if ((wh->i_fc[1] & IEEE80211_FC1_WEP0x40) && !sc->chip_hw_crypt) { |
1001 | struct ieee80211_key *k; |
1002 | |
1003 | k = ieee80211_get_txkey(ic, wh, ni); |
1004 | if ((m = ieee80211_encrypt(ic, m, k)) == NULL((void *)0)) { |
1005 | ieee80211_release_node(ic, ni); |
1006 | ifp->if_oerrorsif_data.ifi_oerrors++; |
1007 | continue; |
1008 | } |
1009 | } |
1010 | |
1011 | #if NBPFILTER1 > 0 |
1012 | if (sc->sc_drvbpf != NULL((void *)0)) { |
1013 | struct mbuf mb; |
1014 | struct acx_tx_radiotap_hdr *tap = &sc->sc_txtapsc_txtapu.th; |
1015 | |
1016 | tap->wt_flags = 0; |
1017 | tap->wt_rate = rate; |
1018 | tap->wt_chan_freq = |
1019 | htole16(ic->ic_bss->ni_chan->ic_freq)((__uint16_t)(ic->ic_bss->ni_chan->ic_freq)); |
1020 | tap->wt_chan_flags = |
1021 | htole16(ic->ic_bss->ni_chan->ic_flags)((__uint16_t)(ic->ic_bss->ni_chan->ic_flags)); |
1022 | |
1023 | mb.m_datam_hdr.mh_data = (caddr_t)tap; |
1024 | mb.m_lenm_hdr.mh_len = sc->sc_txtap_len; |
1025 | mb.m_nextm_hdr.mh_next = m; |
1026 | mb.m_nextpktm_hdr.mh_nextpkt = NULL((void *)0); |
1027 | mb.m_typem_hdr.mh_type = 0; |
1028 | mb.m_flagsm_hdr.mh_flags = 0; |
1029 | bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT(1 << 1)); |
1030 | } |
1031 | #endif |
1032 | |
1033 | if (acx_encap(sc, buf, m, ni, rate) != 0) { |
1034 | /* |
1035 | * NOTE: `m' will be freed in acx_encap() |
1036 | * if we reach here. |
1037 | */ |
1038 | if (ni != NULL((void *)0)) |
1039 | ieee80211_release_node(ic, ni); |
1040 | ifp->if_oerrorsif_data.ifi_oerrors++; |
1041 | continue; |
1042 | } |
1043 | |
1044 | /* |
1045 | * NOTE: |
1046 | * 1) `m' should not be touched after acx_encap() |
1047 | * 2) `node' will be used to do TX rate control during |
1048 | * acx_txeof(), so it is not freed here. acx_txeof() |
1049 | * will free it for us |
1050 | */ |
1051 | trans++; |
1052 | bd->tx_used_count++; |
1053 | idx = (idx + 1) % ACX_TX_DESC_CNT16; |
1054 | } |
1055 | bd->tx_free_start = idx; |
1056 | |
1057 | if (bd->tx_used_count == ACX_TX_DESC_CNT16) |
1058 | ifq_set_oactive(&ifp->if_snd); |
1059 | |
1060 | if (trans && sc->sc_txtimer == 0) |
1061 | sc->sc_txtimer = 5; |
1062 | ifp->if_timer = 1; |
1063 | } |
1064 | |
1065 | void |
1066 | acx_watchdog(struct ifnet *ifp) |
1067 | { |
1068 | struct acx_softc *sc = ifp->if_softc; |
1069 | |
1070 | ifp->if_timer = 0; |
1071 | |
1072 | if ((ifp->if_flags & IFF_RUNNING0x40) == 0) |
1073 | return; |
1074 | |
1075 | if (sc->sc_txtimer) { |
1076 | if (--sc->sc_txtimer == 0) { |
1077 | printf("%s: watchdog timeout\n", ifp->if_xname); |
1078 | acx_init(ifp); |
1079 | ifp->if_oerrorsif_data.ifi_oerrors++; |
1080 | return; |
1081 | } else |
1082 | ifp->if_timer = 1; |
1083 | } |
1084 | |
1085 | ieee80211_watchdog(ifp); |
1086 | } |
1087 | |
1088 | int |
1089 | acx_intr(void *arg) |
1090 | { |
1091 | struct acx_softc *sc = arg; |
1092 | uint16_t intr_status; |
1093 | |
1094 | if ((sc->sc_flags & ACX_FLAG_FW_LOADED0x01) == 0) |
1095 | return (0); |
1096 | |
1097 | intr_status = CSR_READ_2(sc, ACXREG_INTR_STATUS_CLR)(((sc)->sc_mem1_bt)->read_2(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(9)]))); |
1098 | if (intr_status == ACXRV_INTR_ALL0xffff) { |
1099 | /* not our interrupt */ |
1100 | return (0); |
1101 | } |
1102 | |
1103 | /* Acknowledge all interrupts */ |
1104 | CSR_WRITE_2(sc, ACXREG_INTR_ACK, intr_status)(((sc)->sc_mem1_bt)->write_2(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(10)]), (intr_status))); |
1105 | |
1106 | intr_status &= sc->chip_intr_enable; |
1107 | if (intr_status == 0) { |
1108 | /* not interrupts we care about */ |
1109 | return (1); |
1110 | } |
1111 | |
1112 | #ifndef IEEE80211_STA_ONLY |
1113 | if (intr_status & ACXRV_INTR_DTIM0x0010) |
1114 | ieee80211_notify_dtim(&sc->sc_ic); |
1115 | #endif |
1116 | |
1117 | if (intr_status & ACXRV_INTR_TX_FINI0x0002) |
1118 | acx_txeof(sc); |
1119 | |
1120 | if (intr_status & ACXRV_INTR_RX_FINI0x0008) |
1121 | acx_rxeof(sc); |
1122 | |
1123 | return (1); |
1124 | } |
1125 | |
1126 | void |
1127 | acx_disable_intr(struct acx_softc *sc) |
1128 | { |
1129 | CSR_WRITE_2(sc, ACXREG_INTR_MASK, sc->chip_intr_disable)(((sc)->sc_mem1_bt)->write_2(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(7)]), (sc->chip_intr_disable))); |
1130 | CSR_WRITE_2(sc, ACXREG_EVENT_MASK, 0)(((sc)->sc_mem1_bt)->write_2(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(5)]), (0))); |
1131 | } |
1132 | |
1133 | void |
1134 | acx_enable_intr(struct acx_softc *sc) |
1135 | { |
1136 | /* Mask out interrupts that are not in the enable set */ |
1137 | CSR_WRITE_2(sc, ACXREG_INTR_MASK, ~sc->chip_intr_enable)(((sc)->sc_mem1_bt)->write_2(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(7)]), (~sc->chip_intr_enable))); |
1138 | CSR_WRITE_2(sc, ACXREG_EVENT_MASK, ACXRV_EVENT_DISABLE)(((sc)->sc_mem1_bt)->write_2(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(5)]), (0x8000))); |
1139 | } |
1140 | |
1141 | void |
1142 | acx_txeof(struct acx_softc *sc) |
1143 | { |
1144 | struct acx_buf_data *bd; |
1145 | struct acx_txbuf *buf; |
1146 | struct ifnet *ifp; |
1147 | int idx; |
1148 | |
1149 | ifp = &sc->sc_ic.ic_ific_ac.ac_if; |
1150 | |
1151 | bd = &sc->sc_buf_data; |
1152 | idx = bd->tx_used_start; |
1153 | for (buf = &bd->tx_buf[idx]; buf->tb_mbuf != NULL((void *)0); |
1154 | buf = &bd->tx_buf[idx]) { |
1155 | uint8_t ctrl, error; |
1156 | |
1157 | ctrl = FW_TXDESC_GETFIELD_1(sc, buf, f_tx_ctrl)(((sc)->sc_mem2_bt)->read_1(((sc)->sc_mem2_bh), ((buf )->tb_fwdesc_ofs + __builtin_offsetof(struct acx_fw_txdesc , f_tx_ctrl)))); |
1158 | if ((ctrl & (DESC_CTRL_HOSTOWN0x80 | DESC_CTRL_ACXDONE0x40)) != |
1159 | (DESC_CTRL_HOSTOWN0x80 | DESC_CTRL_ACXDONE0x40)) |
1160 | break; |
1161 | |
1162 | bus_dmamap_unload(sc->sc_dmat, buf->tb_mbuf_dmamap)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (buf ->tb_mbuf_dmamap)); |
1163 | m_freem(buf->tb_mbuf); |
1164 | buf->tb_mbuf = NULL((void *)0); |
1165 | |
1166 | error = FW_TXDESC_GETFIELD_1(sc, buf, f_tx_error)(((sc)->sc_mem2_bt)->read_1(((sc)->sc_mem2_bh), ((buf )->tb_fwdesc_ofs + __builtin_offsetof(struct acx_fw_txdesc , f_tx_error)))); |
1167 | if (error) { |
1168 | acx_txerr(sc, error); |
1169 | ifp->if_oerrorsif_data.ifi_oerrors++; |
1170 | } |
1171 | |
1172 | /* Update rate control statistics for the node */ |
1173 | if (buf->tb_node != NULL((void *)0)) { |
1174 | struct ieee80211com *ic; |
1175 | struct ieee80211_node *ni; |
1176 | struct acx_node *wn; |
1177 | int ntries; |
1178 | |
1179 | ic = &sc->sc_ic; |
1180 | ni = (struct ieee80211_node *)buf->tb_node; |
1181 | wn = (struct acx_node *)ni; |
1182 | ntries = FW_TXDESC_GETFIELD_1(sc, buf, f_tx_rts_fail)(((sc)->sc_mem2_bt)->read_1(((sc)->sc_mem2_bh), ((buf )->tb_fwdesc_ofs + __builtin_offsetof(struct acx_fw_txdesc , f_tx_rts_fail)))) + |
1183 | FW_TXDESC_GETFIELD_1(sc, buf, f_tx_ack_fail)(((sc)->sc_mem2_bt)->read_1(((sc)->sc_mem2_bh), ((buf )->tb_fwdesc_ofs + __builtin_offsetof(struct acx_fw_txdesc , f_tx_ack_fail)))); |
1184 | |
1185 | wn->amn.amn_txcnt++; |
1186 | if (ntries > 0) { |
1187 | DPRINTFN(2, ("%s: tx intr ntries %d\n", |
1188 | sc->sc_dev.dv_xname, ntries)); |
1189 | wn->amn.amn_retrycnt++; |
1190 | } |
1191 | |
1192 | ieee80211_release_node(ic, ni); |
1193 | buf->tb_node = NULL((void *)0); |
1194 | } |
1195 | |
1196 | FW_TXDESC_SETFIELD_1(sc, buf, f_tx_ctrl, DESC_CTRL_HOSTOWN)(((sc)->sc_mem2_bt)->write_1(((sc)->sc_mem2_bh), ((buf )->tb_fwdesc_ofs + __builtin_offsetof(struct acx_fw_txdesc , f_tx_ctrl)), ((0x80)))); |
1197 | |
1198 | bd->tx_used_count--; |
1199 | |
1200 | idx = (idx + 1) % ACX_TX_DESC_CNT16; |
1201 | } |
1202 | bd->tx_used_start = idx; |
1203 | |
1204 | sc->sc_txtimer = bd->tx_used_count == 0 ? 0 : 5; |
1205 | |
1206 | if (bd->tx_used_count != ACX_TX_DESC_CNT16) { |
1207 | ifq_clr_oactive(&ifp->if_snd); |
1208 | acx_start(ifp); |
1209 | } |
1210 | } |
1211 | |
1212 | void |
1213 | acx_txerr(struct acx_softc *sc, uint8_t err) |
1214 | { |
1215 | struct ifnet *ifp = &sc->sc_ic.ic_ific_ac.ac_if; |
1216 | struct acx_stats *stats = &sc->sc_stats; |
1217 | |
1218 | if (err == DESC_ERR_EXCESSIVE_RETRY0x20) { |
1219 | /* |
1220 | * This a common error (see comment below), |
1221 | * so print it using DPRINTF(). |
1222 | */ |
1223 | DPRINTF(("%s: TX failed -- excessive retry\n", |
1224 | sc->sc_dev.dv_xname)); |
1225 | } else |
1226 | printf("%s: TX failed -- ", ifp->if_xname); |
1227 | |
1228 | /* |
1229 | * Although `err' looks like bitmask, it never |
1230 | * has multiple bits set. |
1231 | */ |
1232 | switch (err) { |
1233 | #if 0 |
1234 | case DESC_ERR_OTHER_FRAG0x01: |
1235 | /* XXX what's this */ |
1236 | printf("error in other fragment\n"); |
1237 | stats->err_oth_frag++; |
1238 | break; |
1239 | #endif |
1240 | case DESC_ERR_ABORT0x02: |
1241 | printf("aborted\n"); |
1242 | stats->err_abort++; |
1243 | break; |
1244 | case DESC_ERR_PARAM0x04: |
1245 | printf("wrong parameters in descriptor\n"); |
1246 | stats->err_param++; |
1247 | break; |
1248 | case DESC_ERR_NO_WEPKEY0x08: |
1249 | printf("WEP key missing\n"); |
1250 | stats->err_no_wepkey++; |
1251 | break; |
1252 | case DESC_ERR_MSDU_TIMEOUT0x10: |
1253 | printf("MSDU life timeout\n"); |
1254 | stats->err_msdu_timeout++; |
1255 | break; |
1256 | case DESC_ERR_EXCESSIVE_RETRY0x20: |
1257 | /* |
1258 | * Possible causes: |
1259 | * 1) Distance is too long |
1260 | * 2) Transmit failed (e.g. no MAC level ACK) |
1261 | * 3) Chip overheated (this should be rare) |
1262 | */ |
1263 | stats->err_ex_retry++; |
1264 | break; |
1265 | case DESC_ERR_BUF_OVERFLOW0x40: |
1266 | printf("buffer overflow\n"); |
1267 | stats->err_buf_oflow++; |
1268 | break; |
1269 | case DESC_ERR_DMA0x80: |
1270 | printf("DMA error\n"); |
1271 | stats->err_dma++; |
1272 | break; |
1273 | default: |
1274 | printf("unknown error %d\n", err); |
1275 | stats->err_unkn++; |
1276 | break; |
1277 | } |
1278 | } |
1279 | |
1280 | void |
1281 | acx_rxeof(struct acx_softc *sc) |
1282 | { |
1283 | struct ieee80211com *ic = &sc->sc_ic; |
1284 | struct acx_ring_data *rd = &sc->sc_ring_data; |
1285 | struct acx_buf_data *bd = &sc->sc_buf_data; |
1286 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
1287 | int idx, ready; |
1288 | |
1289 | bus_dmamap_sync(sc->sc_dmat, rd->rx_ring_dmamap, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (rd-> rx_ring_dmamap), (0), (rd->rx_ring_dmamap->dm_mapsize), (0x02)) |
1290 | rd->rx_ring_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (rd-> rx_ring_dmamap), (0), (rd->rx_ring_dmamap->dm_mapsize), (0x02)); |
1291 | |
1292 | /* |
1293 | * Locate first "ready" rx buffer, |
1294 | * start from last stopped position. |
1295 | */ |
1296 | idx = bd->rx_scan_start; |
1297 | ready = 0; |
1298 | do { |
1299 | struct acx_rxbuf *buf; |
1300 | |
1301 | buf = &bd->rx_buf[idx]; |
1302 | if ((buf->rb_desc->h_ctrl & htole16(DESC_CTRL_HOSTOWN)((__uint16_t)(0x80))) && |
1303 | (buf->rb_desc->h_status & htole32(DESC_STATUS_FULL)((__uint32_t)(0x80000000)))) { |
1304 | ready = 1; |
1305 | break; |
1306 | } |
1307 | idx = (idx + 1) % ACX_RX_DESC_CNT16; |
1308 | } while (idx != bd->rx_scan_start); |
1309 | |
1310 | if (!ready) |
1311 | return; |
1312 | |
1313 | /* |
1314 | * NOTE: don't mess up `idx' here, it will |
1315 | * be used in the following code. |
1316 | */ |
1317 | do { |
1318 | struct acx_rxbuf_hdr *head; |
1319 | struct acx_rxbuf *buf; |
1320 | struct mbuf *m; |
1321 | struct ieee80211_rxinfo rxi; |
1322 | uint32_t desc_status; |
1323 | uint16_t desc_ctrl; |
1324 | int len, error; |
1325 | |
1326 | buf = &bd->rx_buf[idx]; |
1327 | |
1328 | desc_ctrl = letoh16(buf->rb_desc->h_ctrl)((__uint16_t)(buf->rb_desc->h_ctrl)); |
1329 | desc_status = letoh32(buf->rb_desc->h_status)((__uint32_t)(buf->rb_desc->h_status)); |
1330 | if (!(desc_ctrl & DESC_CTRL_HOSTOWN0x80) || |
1331 | !(desc_status & DESC_STATUS_FULL0x80000000)) |
1332 | break; |
1333 | |
1334 | bus_dmamap_sync(sc->sc_dmat, buf->rb_mbuf_dmamap, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (buf-> rb_mbuf_dmamap), (0), (buf->rb_mbuf_dmamap->dm_mapsize) , (0x02)) |
1335 | buf->rb_mbuf_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (buf-> rb_mbuf_dmamap), (0), (buf->rb_mbuf_dmamap->dm_mapsize) , (0x02)); |
1336 | |
1337 | m = buf->rb_mbuf; |
1338 | |
1339 | error = acx_newbuf(sc, buf, 0); |
1340 | if (error) { |
1341 | ifp->if_ierrorsif_data.ifi_ierrors++; |
1342 | goto next; |
1343 | } |
1344 | |
1345 | head = mtod(m, struct acx_rxbuf_hdr *)((struct acx_rxbuf_hdr *)((m)->m_hdr.mh_data)); |
1346 | |
1347 | len = letoh16(head->rbh_len)((__uint16_t)(head->rbh_len)) & ACX_RXBUF_LEN_MASK0xfff; |
1348 | if (len >= sizeof(struct ieee80211_frame_min) && |
1349 | len < MCLBYTES(1 << 11)) { |
1350 | struct ieee80211_frame *wh; |
1351 | struct ieee80211_node *ni; |
1352 | |
1353 | m_adj(m, sizeof(struct acx_rxbuf_hdr) + |
1354 | sc->chip_rxbuf_exhdr); |
1355 | wh = mtod(m, struct ieee80211_frame *)((struct ieee80211_frame *)((m)->m_hdr.mh_data)); |
1356 | |
1357 | rxi.rxi_flags = 0; |
1358 | if ((wh->i_fc[1] & IEEE80211_FC1_WEP0x40) && |
1359 | sc->chip_hw_crypt) { |
1360 | /* Short circuit software WEP */ |
1361 | wh->i_fc[1] &= ~IEEE80211_FC1_WEP0x40; |
1362 | |
1363 | /* Do chip specific RX buffer processing */ |
1364 | if (sc->chip_proc_wep_rxbuf != NULL((void *)0)) { |
1365 | sc->chip_proc_wep_rxbuf(sc, m, &len); |
1366 | wh = mtod(m, struct ieee80211_frame *)((struct ieee80211_frame *)((m)->m_hdr.mh_data)); |
1367 | } |
1368 | rxi.rxi_flags |= IEEE80211_RXI_HWDEC0x00000001; |
1369 | } |
1370 | |
1371 | m->m_lenm_hdr.mh_len = m->m_pkthdrM_dat.MH.MH_pkthdr.len = len; |
1372 | |
1373 | #if NBPFILTER1 > 0 |
1374 | if (sc->sc_drvbpf != NULL((void *)0)) { |
1375 | struct mbuf mb; |
1376 | struct acx_rx_radiotap_hdr *tap = &sc->sc_rxtapsc_rxtapu.th; |
1377 | |
1378 | tap->wr_flags = 0; |
1379 | tap->wr_chan_freq = |
1380 | htole16(ic->ic_bss->ni_chan->ic_freq)((__uint16_t)(ic->ic_bss->ni_chan->ic_freq)); |
1381 | tap->wr_chan_flags = |
1382 | htole16(ic->ic_bss->ni_chan->ic_flags)((__uint16_t)(ic->ic_bss->ni_chan->ic_flags)); |
1383 | tap->wr_rssi = head->rbh_level; |
1384 | tap->wr_max_rssi = ic->ic_max_rssi; |
1385 | |
1386 | mb.m_datam_hdr.mh_data = (caddr_t)tap; |
1387 | mb.m_lenm_hdr.mh_len = sc->sc_rxtap_len; |
1388 | mb.m_nextm_hdr.mh_next = m; |
1389 | mb.m_nextpktm_hdr.mh_nextpkt = NULL((void *)0); |
1390 | mb.m_typem_hdr.mh_type = 0; |
1391 | mb.m_flagsm_hdr.mh_flags = 0; |
1392 | bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN(1 << 0)); |
1393 | } |
1394 | #endif |
1395 | |
1396 | ni = ieee80211_find_rxnode(ic, wh); |
1397 | |
1398 | rxi.rxi_rssi = head->rbh_level; |
1399 | rxi.rxi_tstamp = letoh32(head->rbh_time)((__uint32_t)(head->rbh_time)); |
1400 | ieee80211_input(ifp, m, ni, &rxi); |
1401 | |
1402 | ieee80211_release_node(ic, ni); |
1403 | } else { |
1404 | m_freem(m); |
1405 | ifp->if_ierrorsif_data.ifi_ierrors++; |
1406 | } |
1407 | |
1408 | next: |
1409 | buf->rb_desc->h_ctrl = htole16(desc_ctrl & ~DESC_CTRL_HOSTOWN)((__uint16_t)(desc_ctrl & ~0x80)); |
1410 | buf->rb_desc->h_status = 0; |
1411 | bus_dmamap_sync(sc->sc_dmat, rd->rx_ring_dmamap, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (rd-> rx_ring_dmamap), (0), (rd->rx_ring_dmamap->dm_mapsize), (0x04)) |
1412 | rd->rx_ring_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (rd-> rx_ring_dmamap), (0), (rd->rx_ring_dmamap->dm_mapsize), (0x04)); |
1413 | |
1414 | idx = (idx + 1) % ACX_RX_DESC_CNT16; |
1415 | } while (idx != bd->rx_scan_start); |
1416 | |
1417 | /* |
1418 | * Record the position so that next |
1419 | * time we can start from it. |
1420 | */ |
1421 | bd->rx_scan_start = idx; |
1422 | } |
1423 | |
1424 | int |
1425 | acx_reset(struct acx_softc *sc) |
1426 | { |
1427 | uint16_t reg; |
1428 | |
1429 | /* Halt ECPU */ |
1430 | CSR_SETB_2(sc, ACXREG_ECPU_CTRL, ACXRV_ECPU_HALT)((((sc))->sc_mem1_bt)->write_2((((sc))->sc_mem1_bh), (((sc))->chip_ioreg[((27))]), (((((sc))->sc_mem1_bt)-> read_2((((sc))->sc_mem1_bh), (((sc))->chip_ioreg[((27)) ]))) | (0x1)))); |
1431 | |
1432 | /* Software reset */ |
1433 | reg = CSR_READ_2(sc, ACXREG_SOFT_RESET)(((sc)->sc_mem1_bt)->read_2(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(0)]))); |
1434 | CSR_WRITE_2(sc, ACXREG_SOFT_RESET, reg | ACXRV_SOFT_RESET)(((sc)->sc_mem1_bt)->write_2(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(0)]), (reg | 0x1))); |
1435 | DELAY(100)(*delay_func)(100); |
1436 | CSR_WRITE_2(sc, ACXREG_SOFT_RESET, reg)(((sc)->sc_mem1_bt)->write_2(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(0)]), (reg))); |
1437 | |
1438 | /* Initialize EEPROM */ |
1439 | CSR_SETB_2(sc, ACXREG_EEPROM_INIT, ACXRV_EEPROM_INIT)((((sc))->sc_mem1_bt)->write_2((((sc))->sc_mem1_bh), (((sc))->chip_ioreg[((13))]), (((((sc))->sc_mem1_bt)-> read_2((((sc))->sc_mem1_bh), (((sc))->chip_ioreg[((13)) ]))) | (0x1)))); |
1440 | DELAY(50000)(*delay_func)(50000); |
1441 | |
1442 | /* Test whether ECPU is stopped */ |
1443 | reg = CSR_READ_2(sc, ACXREG_ECPU_CTRL)(((sc)->sc_mem1_bt)->read_2(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(27)]))); |
1444 | if (!(reg & ACXRV_ECPU_HALT0x1)) { |
1445 | printf("%s: can't halt ECPU\n", sc->sc_dev.dv_xname); |
1446 | return (ENXIO6); |
1447 | } |
1448 | |
1449 | return (0); |
1450 | } |
1451 | |
1452 | int |
1453 | acx_read_eeprom(struct acx_softc *sc, uint32_t offset, uint8_t *val) |
1454 | { |
1455 | int i; |
1456 | |
1457 | CSR_WRITE_4(sc, ACXREG_EEPROM_CONF, 0)(((sc)->sc_mem1_bt)->write_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(17)]), (0))); |
1458 | CSR_WRITE_4(sc, ACXREG_EEPROM_ADDR, offset)(((sc)->sc_mem1_bt)->write_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(15)]), (offset))); |
1459 | CSR_WRITE_4(sc, ACXREG_EEPROM_CTRL, ACXRV_EEPROM_READ)(((sc)->sc_mem1_bt)->write_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(14)]), (0x2))); |
1460 | |
1461 | #define EE_READ_RETRY_MAX 100 |
1462 | for (i = 0; i < EE_READ_RETRY_MAX; ++i) { |
1463 | if (CSR_READ_2(sc, ACXREG_EEPROM_CTRL)(((sc)->sc_mem1_bt)->read_2(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(14)]))) == 0) |
1464 | break; |
1465 | DELAY(10000)(*delay_func)(10000); |
1466 | } |
1467 | if (i == EE_READ_RETRY_MAX) { |
1468 | printf("%s: can't read EEPROM offset %x (timeout)\n", |
1469 | sc->sc_dev.dv_xname, offset); |
1470 | return (ETIMEDOUT60); |
1471 | } |
1472 | #undef EE_READ_RETRY_MAX |
1473 | |
1474 | *val = CSR_READ_1(sc, ACXREG_EEPROM_DATA)(((sc)->sc_mem1_bt)->read_1(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(16)]))); |
1475 | |
1476 | return (0); |
1477 | } |
1478 | |
1479 | int |
1480 | acx_read_phyreg(struct acx_softc *sc, uint32_t reg, uint8_t *val) |
1481 | { |
1482 | struct ifnet *ifp = &sc->sc_ic.ic_ific_ac.ac_if; |
1483 | int i; |
1484 | |
1485 | CSR_WRITE_4(sc, ACXREG_PHY_ADDR, reg)(((sc)->sc_mem1_bt)->write_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(19)]), (reg))); |
1486 | CSR_WRITE_4(sc, ACXREG_PHY_CTRL, ACXRV_PHY_READ)(((sc)->sc_mem1_bt)->write_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(21)]), (0x2))); |
1487 | |
1488 | #define PHY_READ_RETRY_MAX 100 |
1489 | for (i = 0; i < PHY_READ_RETRY_MAX; ++i) { |
1490 | if (CSR_READ_4(sc, ACXREG_PHY_CTRL)(((sc)->sc_mem1_bt)->read_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(21)]))) == 0) |
1491 | break; |
1492 | DELAY(10000)(*delay_func)(10000); |
1493 | } |
1494 | if (i == PHY_READ_RETRY_MAX) { |
1495 | printf("%s: can't read phy reg %x (timeout)\n", |
1496 | ifp->if_xname, reg); |
1497 | return (ETIMEDOUT60); |
1498 | } |
1499 | #undef PHY_READ_RETRY_MAX |
1500 | |
1501 | *val = CSR_READ_1(sc, ACXREG_PHY_DATA)(((sc)->sc_mem1_bt)->read_1(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(20)]))); |
1502 | |
1503 | return (0); |
1504 | } |
1505 | |
1506 | void |
1507 | acx_write_phyreg(struct acx_softc *sc, uint32_t reg, uint8_t val) |
1508 | { |
1509 | CSR_WRITE_4(sc, ACXREG_PHY_DATA, val)(((sc)->sc_mem1_bt)->write_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(20)]), (val))); |
1510 | CSR_WRITE_4(sc, ACXREG_PHY_ADDR, reg)(((sc)->sc_mem1_bt)->write_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(19)]), (reg))); |
1511 | CSR_WRITE_4(sc, ACXREG_PHY_CTRL, ACXRV_PHY_WRITE)(((sc)->sc_mem1_bt)->write_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(21)]), (0x1))); |
1512 | } |
1513 | |
1514 | int |
1515 | acx_load_base_firmware(struct acx_softc *sc, const char *name) |
1516 | { |
1517 | struct ifnet *ifp = &sc->sc_ic.ic_ific_ac.ac_if; |
1518 | int i, error; |
1519 | uint8_t *ucode; |
1520 | size_t size; |
1521 | |
1522 | error = loadfirmware(name, &ucode, &size); |
1523 | |
1524 | if (error != 0) { |
1525 | printf("%s: error %d, could not read firmware %s\n", |
1526 | ifp->if_xname, error, name); |
1527 | return (EIO5); |
1528 | } |
1529 | |
1530 | /* Load base firmware */ |
1531 | error = acx_load_firmware(sc, 0, ucode, size); |
1532 | |
1533 | free(ucode, M_DEVBUF2, size); |
1534 | |
1535 | if (error) { |
1536 | printf("%s: can't load base firmware\n", ifp->if_xname); |
1537 | return error; |
1538 | } |
1539 | DPRINTF(("%s: base firmware loaded\n", sc->sc_dev.dv_xname)); |
1540 | |
1541 | /* Start ECPU */ |
1542 | CSR_WRITE_2(sc, ACXREG_ECPU_CTRL, ACXRV_ECPU_START)(((sc)->sc_mem1_bt)->write_2(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(27)]), (0x0))); |
1543 | |
1544 | /* Wait for ECPU to be up */ |
1545 | for (i = 0; i < 500; ++i) { |
1546 | uint16_t reg; |
1547 | |
1548 | reg = CSR_READ_2(sc, ACXREG_INTR_STATUS)(((sc)->sc_mem1_bt)->read_2(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(8)]))); |
1549 | if (reg & ACXRV_INTR_FCS_THRESH0x4000) { |
1550 | CSR_WRITE_2(sc, ACXREG_INTR_ACK, ACXRV_INTR_FCS_THRESH)(((sc)->sc_mem1_bt)->write_2(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(10)]), (0x4000))); |
1551 | return (0); |
1552 | } |
1553 | DELAY(10000)(*delay_func)(10000); |
1554 | } |
1555 | |
1556 | printf("%s: can't initialize ECPU (timeout)\n", ifp->if_xname); |
1557 | |
1558 | return (ENXIO6); |
1559 | } |
1560 | |
1561 | int |
1562 | acx_load_radio_firmware(struct acx_softc *sc, const char *name) |
1563 | { |
1564 | struct ifnet *ifp = &sc->sc_ic.ic_ific_ac.ac_if; |
1565 | struct acx_conf_mmap mem_map; |
1566 | uint32_t radio_fw_ofs; |
1567 | int error; |
1568 | uint8_t *ucode; |
1569 | size_t size; |
1570 | |
1571 | error = loadfirmware(name, &ucode, &size); |
1572 | |
1573 | if (error != 0) { |
1574 | printf("%s: error %d, could not read firmware %s\n", |
1575 | ifp->if_xname, error, name); |
1576 | return (EIO5); |
1577 | } |
1578 | |
1579 | /* |
1580 | * Get the position, where base firmware is loaded, so that |
1581 | * radio firmware can be loaded after it. |
1582 | */ |
1583 | if (acx_get_conf(sc, ACX_CONF_MMAP0x0008, &mem_map, sizeof(mem_map)) != 0) { |
1584 | free(ucode, M_DEVBUF2, size); |
1585 | return (ENXIO6); |
1586 | } |
1587 | radio_fw_ofs = letoh32(mem_map.code_end)((__uint32_t)(mem_map.code_end)); |
1588 | |
1589 | /* Put ECPU into sleeping state, before loading radio firmware */ |
1590 | if (acx_exec_command(sc, ACXCMD_SLEEP0x0f, NULL((void *)0), 0, NULL((void *)0), 0) != 0) { |
1591 | free(ucode, M_DEVBUF2, size); |
1592 | return (ENXIO6); |
1593 | } |
1594 | |
1595 | /* Load radio firmware */ |
1596 | error = acx_load_firmware(sc, radio_fw_ofs, ucode, size); |
1597 | |
1598 | free(ucode, M_DEVBUF2, size); |
1599 | |
1600 | if (error) { |
1601 | printf("%s: can't load radio firmware\n", ifp->if_xname); |
1602 | return (ENXIO6); |
1603 | } |
1604 | DPRINTF(("%s: radio firmware loaded\n", sc->sc_dev.dv_xname)); |
1605 | |
1606 | /* Wake up sleeping ECPU, after radio firmware is loaded */ |
1607 | if (acx_exec_command(sc, ACXCMD_WAKEUP0x10, NULL((void *)0), 0, NULL((void *)0), 0) != 0) |
1608 | return (ENXIO6); |
1609 | |
1610 | /* Initialize radio */ |
1611 | if (acx_init_radio(sc, radio_fw_ofs, size) != 0) |
1612 | return (ENXIO6); |
1613 | |
1614 | /* Verify radio firmware's loading position */ |
1615 | if (acx_get_conf(sc, ACX_CONF_MMAP0x0008, &mem_map, sizeof(mem_map)) != 0) |
1616 | return (ENXIO6); |
1617 | |
1618 | if (letoh32(mem_map.code_end)((__uint32_t)(mem_map.code_end)) != radio_fw_ofs + size) { |
1619 | printf("%s: loaded radio firmware position mismatch\n", |
1620 | ifp->if_xname); |
1621 | return (ENXIO6); |
1622 | } |
1623 | |
1624 | DPRINTF(("%s: radio firmware initialized\n", sc->sc_dev.dv_xname)); |
1625 | |
1626 | return (0); |
1627 | } |
1628 | |
1629 | int |
1630 | acx_load_firmware(struct acx_softc *sc, uint32_t offset, const uint8_t *data, |
1631 | int data_len) |
1632 | { |
1633 | struct ifnet *ifp = &sc->sc_ic.ic_ific_ac.ac_if; |
1634 | const uint32_t *fw; |
1635 | u_int32_t csum = 0; |
1636 | int i, fw_len; |
1637 | |
1638 | for (i = 4; i < data_len; i++) |
1639 | csum += data[i]; |
1640 | |
1641 | fw = (const uint32_t *)data; |
1642 | |
1643 | if (*fw != htole32(csum)((__uint32_t)(csum))) { |
1644 | printf("%s: firmware checksum 0x%x does not match 0x%x!\n", |
1645 | ifp->if_xname, *fw, htole32(csum)((__uint32_t)(csum))); |
1646 | return (ENXIO6); |
1647 | } |
1648 | |
1649 | /* skip csum + length */ |
1650 | data += 8; |
1651 | data_len -= 8; |
1652 | |
1653 | fw = (const uint32_t *)data; |
1654 | fw_len = data_len / sizeof(uint32_t); |
1655 | |
1656 | /* |
1657 | * LOADFW_AUTO_INC only works with some older firmware: |
1658 | * 1) acx100's firmware |
1659 | * 2) acx111's firmware whose rev is 0x00010011 |
1660 | */ |
1661 | |
1662 | /* Load firmware */ |
1663 | CSR_WRITE_4(sc, ACXREG_FWMEM_START, ACXRV_FWMEM_START_OP)(((sc)->sc_mem1_bt)->write_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(4)]), (0x0))); |
1664 | #ifndef LOADFW_AUTO_INC |
1665 | CSR_WRITE_4(sc, ACXREG_FWMEM_CTRL, 0)(((sc)->sc_mem1_bt)->write_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(3)]), (0))); |
1666 | #else |
1667 | CSR_WRITE_4(sc, ACXREG_FWMEM_CTRL, ACXRV_FWMEM_ADDR_AUTOINC)(((sc)->sc_mem1_bt)->write_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(3)]), (0x10000))); |
1668 | CSR_WRITE_4(sc, ACXREG_FWMEM_ADDR, offset)(((sc)->sc_mem1_bt)->write_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(1)]), (offset))); |
1669 | #endif |
1670 | |
1671 | for (i = 0; i < fw_len; ++i) { |
1672 | #ifndef LOADFW_AUTO_INC |
1673 | CSR_WRITE_4(sc, ACXREG_FWMEM_ADDR, offset + (i * 4))(((sc)->sc_mem1_bt)->write_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(1)]), (offset + (i * 4)))); |
1674 | #endif |
1675 | CSR_WRITE_4(sc, ACXREG_FWMEM_DATA, betoh32(fw[i]))(((sc)->sc_mem1_bt)->write_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(2)]), ((__uint32_t)(__builtin_constant_p(fw [i]) ? (__uint32_t)(((__uint32_t)(fw[i]) & 0xff) << 24 | ((__uint32_t)(fw[i]) & 0xff00) << 8 | ((__uint32_t )(fw[i]) & 0xff0000) >> 8 | ((__uint32_t)(fw[i]) & 0xff000000) >> 24) : __swap32md(fw[i]))))); |
1676 | } |
1677 | |
1678 | /* Verify firmware */ |
1679 | CSR_WRITE_4(sc, ACXREG_FWMEM_START, ACXRV_FWMEM_START_OP)(((sc)->sc_mem1_bt)->write_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(4)]), (0x0))); |
1680 | #ifndef LOADFW_AUTO_INC |
1681 | CSR_WRITE_4(sc, ACXREG_FWMEM_CTRL, 0)(((sc)->sc_mem1_bt)->write_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(3)]), (0))); |
1682 | #else |
1683 | CSR_WRITE_4(sc, ACXREG_FWMEM_CTRL, ACXRV_FWMEM_ADDR_AUTOINC)(((sc)->sc_mem1_bt)->write_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(3)]), (0x10000))); |
1684 | CSR_WRITE_4(sc, ACXREG_FWMEM_ADDR, offset)(((sc)->sc_mem1_bt)->write_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(1)]), (offset))); |
1685 | #endif |
1686 | |
1687 | for (i = 0; i < fw_len; ++i) { |
1688 | uint32_t val; |
1689 | |
1690 | #ifndef LOADFW_AUTO_INC |
1691 | CSR_WRITE_4(sc, ACXREG_FWMEM_ADDR, offset + (i * 4))(((sc)->sc_mem1_bt)->write_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(1)]), (offset + (i * 4)))); |
1692 | #endif |
1693 | val = CSR_READ_4(sc, ACXREG_FWMEM_DATA)(((sc)->sc_mem1_bt)->read_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(2)]))); |
1694 | if (betoh32(fw[i])(__uint32_t)(__builtin_constant_p(fw[i]) ? (__uint32_t)(((__uint32_t )(fw[i]) & 0xff) << 24 | ((__uint32_t)(fw[i]) & 0xff00) << 8 | ((__uint32_t)(fw[i]) & 0xff0000) >> 8 | ((__uint32_t)(fw[i]) & 0xff000000) >> 24) : __swap32md (fw[i])) != val) { |
1695 | printf("%s: firmware mismatch fw %08x loaded %08x\n", |
1696 | ifp->if_xname, fw[i], val); |
1697 | return (ENXIO6); |
1698 | } |
1699 | } |
1700 | |
1701 | return (0); |
1702 | } |
1703 | |
1704 | struct ieee80211_node * |
1705 | acx_node_alloc(struct ieee80211com *ic) |
1706 | { |
1707 | struct acx_node *wn; |
1708 | |
1709 | wn = malloc(sizeof(*wn), M_DEVBUF2, M_NOWAIT0x0002 | M_ZERO0x0008); |
1710 | if (wn == NULL((void *)0)) |
1711 | return (NULL((void *)0)); |
1712 | |
1713 | return ((struct ieee80211_node *)wn); |
1714 | } |
1715 | |
1716 | int |
1717 | acx_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) |
1718 | { |
1719 | struct acx_softc *sc = ic->ic_ific_ac.ac_if.if_softc; |
1720 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
1721 | int error = 0; |
1722 | |
1723 | timeout_del(&sc->amrr_ch); |
1724 | |
1725 | switch (nstate) { |
1726 | case IEEE80211_S_INIT: |
1727 | break; |
1728 | case IEEE80211_S_SCAN: { |
1729 | uint8_t chan; |
1730 | |
1731 | chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan); |
1732 | if (acx_set_channel(sc, chan) != 0) { |
1733 | error = 1; |
1734 | goto back; |
1735 | } |
1736 | |
1737 | /* 200ms => 5 channels per second */ |
1738 | timeout_add_msec(&sc->sc_chanscan_timer, 200); |
1739 | } |
1740 | break; |
1741 | case IEEE80211_S_AUTH: |
1742 | if (ic->ic_opmode == IEEE80211_M_STA) { |
1743 | struct ieee80211_node *ni; |
1744 | #ifdef ACX_DEBUG |
1745 | int i; |
1746 | #endif |
1747 | |
1748 | ni = ic->ic_bss; |
1749 | |
1750 | if (acx_join_bss(sc, ACX_MODE_STA2, ni) != 0) { |
1751 | printf("%s: join BSS failed\n", ifp->if_xname); |
1752 | error = 1; |
1753 | goto back; |
1754 | } |
1755 | |
1756 | DPRINTF(("%s: join BSS\n", sc->sc_dev.dv_xname)); |
1757 | if (ic->ic_state == IEEE80211_S_ASSOC) { |
1758 | DPRINTF(("%s: change from assoc to run\n", |
1759 | sc->sc_dev.dv_xname)); |
1760 | ic->ic_state = IEEE80211_S_RUN; |
1761 | } |
1762 | |
1763 | #ifdef ACX_DEBUG |
1764 | printf("%s: AP rates: ", sc->sc_dev.dv_xname); |
1765 | for (i = 0; i < ni->ni_rates.rs_nrates; ++i) |
1766 | printf("%d ", ni->ni_rates.rs_rates[i]); |
1767 | ieee80211_print_essid(ni->ni_essid, ni->ni_esslen); |
1768 | printf(" %s\n", ether_sprintf(ni->ni_bssid)); |
1769 | #endif |
1770 | } |
1771 | break; |
1772 | case IEEE80211_S_RUN: |
1773 | #ifndef IEEE80211_STA_ONLY |
1774 | if (ic->ic_opmode == IEEE80211_M_IBSS || |
1775 | ic->ic_opmode == IEEE80211_M_HOSTAP) { |
1776 | struct ieee80211_node *ni; |
1777 | uint8_t chan; |
1778 | |
1779 | ni = ic->ic_bss; |
1780 | chan = ieee80211_chan2ieee(ic, ni->ni_chan); |
1781 | |
1782 | error = 1; |
1783 | |
1784 | if (acx_set_channel(sc, chan) != 0) |
1785 | goto back; |
1786 | |
1787 | if (acx_set_beacon_tmplt(sc, ni) != 0) { |
1788 | printf("%s: set beacon template failed\n", |
1789 | ifp->if_xname); |
1790 | goto back; |
1791 | } |
1792 | |
1793 | if (acx_set_probe_resp_tmplt(sc, ni) != 0) { |
1794 | printf("%s: set probe response template " |
1795 | "failed\n", ifp->if_xname); |
1796 | goto back; |
1797 | } |
1798 | |
1799 | if (ic->ic_opmode == IEEE80211_M_IBSS) { |
1800 | if (acx_join_bss(sc, ACX_MODE_ADHOC0, ni) != 0) { |
1801 | printf("%s: join IBSS failed\n", |
1802 | ifp->if_xname); |
1803 | goto back; |
1804 | } |
1805 | } else { |
1806 | if (acx_join_bss(sc, ACX_MODE_AP3, ni) != 0) { |
1807 | printf("%s: join HOSTAP failed\n", |
1808 | ifp->if_xname); |
1809 | goto back; |
1810 | } |
1811 | } |
1812 | |
1813 | DPRINTF(("%s: join IBSS\n", sc->sc_dev.dv_xname)); |
1814 | error = 0; |
1815 | } |
1816 | #endif |
1817 | /* fake a join to init the tx rate */ |
1818 | if (ic->ic_opmode == IEEE80211_M_STA) |
1819 | acx_newassoc(ic, ic->ic_bss, 1); |
1820 | |
1821 | /* start automatic rate control timer */ |
1822 | if (ic->ic_fixed_rate == -1) |
1823 | timeout_add_msec(&sc->amrr_ch, 500); |
1824 | break; |
1825 | default: |
1826 | break; |
1827 | } |
1828 | |
1829 | back: |
1830 | if (error) { |
1831 | /* XXX */ |
1832 | nstate = IEEE80211_S_INIT; |
1833 | arg = -1; |
1834 | } |
1835 | |
1836 | return (sc->sc_newstate(ic, nstate, arg)); |
1837 | } |
1838 | |
1839 | int |
1840 | acx_init_tmplt_ordered(struct acx_softc *sc) |
1841 | { |
1842 | union { |
1843 | struct acx_tmplt_beacon beacon; |
1844 | struct acx_tmplt_null_data null; |
1845 | struct acx_tmplt_probe_req preq; |
1846 | struct acx_tmplt_probe_resp presp; |
1847 | struct acx_tmplt_tim tim; |
1848 | } data; |
1849 | |
1850 | bzero(&data, sizeof(data))__builtin_bzero((&data), (sizeof(data))); |
1851 | /* |
1852 | * NOTE: |
1853 | * Order of templates initialization: |
1854 | * 1) Probe request |
1855 | * 2) NULL data |
1856 | * 3) Beacon |
1857 | * 4) TIM |
1858 | * 5) Probe response |
1859 | * Above order is critical to get a correct memory map. |
1860 | */ |
1861 | if (acx_set_tmplt(sc, ACXCMD_TMPLT_PROBE_REQ0x16, &data.preq, |
1862 | sizeof(data.preq)) != 0) |
1863 | return (1); |
1864 | |
1865 | if (acx_set_tmplt(sc, ACXCMD_TMPLT_NULL_DATA0x15, &data.null, |
1866 | sizeof(data.null)) != 0) |
1867 | return (1); |
1868 | |
1869 | if (acx_set_tmplt(sc, ACXCMD_TMPLT_BEACON0x13, &data.beacon, |
1870 | sizeof(data.beacon)) != 0) |
1871 | return (1); |
1872 | |
1873 | if (acx_set_tmplt(sc, ACXCMD_TMPLT_TIM0x0a, &data.tim, |
1874 | sizeof(data.tim)) != 0) |
1875 | return (1); |
1876 | |
1877 | if (acx_set_tmplt(sc, ACXCMD_TMPLT_PROBE_RESP0x14, &data.presp, |
1878 | sizeof(data.presp)) != 0) |
1879 | return (1); |
1880 | |
1881 | return (0); |
1882 | } |
1883 | |
1884 | int |
1885 | acx_dma_alloc(struct acx_softc *sc) |
1886 | { |
1887 | struct acx_ring_data *rd = &sc->sc_ring_data; |
1888 | struct acx_buf_data *bd = &sc->sc_buf_data; |
1889 | int i, error, nsegs; |
1890 | |
1891 | /* Allocate DMA stuffs for RX descriptors */ |
1892 | error = bus_dmamap_create(sc->sc_dmat, ACX_RX_RING_SIZE, 1,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((16 * sizeof(struct acx_host_desc))), (1), ((16 * sizeof(struct acx_host_desc ))), (0), (0x0001), (&rd->rx_ring_dmamap)) |
1893 | ACX_RX_RING_SIZE, 0, BUS_DMA_NOWAIT, &rd->rx_ring_dmamap)(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((16 * sizeof(struct acx_host_desc))), (1), ((16 * sizeof(struct acx_host_desc ))), (0), (0x0001), (&rd->rx_ring_dmamap)); |
1894 | |
1895 | if (error) { |
1896 | printf("%s: can't create rx ring dma tag\n", |
1897 | sc->sc_dev.dv_xname); |
1898 | return (error); |
1899 | } |
1900 | |
1901 | error = bus_dmamem_alloc(sc->sc_dmat, ACX_RX_RING_SIZE, PAGE_SIZE,(*(sc->sc_dmat)->_dmamem_alloc)((sc->sc_dmat), ((16 * sizeof(struct acx_host_desc))), ((1 << 12)), (0), (& rd->rx_ring_seg), (1), (&nsegs), (0x0001)) |
1902 | 0, &rd->rx_ring_seg, 1, &nsegs, BUS_DMA_NOWAIT)(*(sc->sc_dmat)->_dmamem_alloc)((sc->sc_dmat), ((16 * sizeof(struct acx_host_desc))), ((1 << 12)), (0), (& rd->rx_ring_seg), (1), (&nsegs), (0x0001)); |
1903 | |
1904 | if (error != 0) { |
1905 | printf("%s: can't allocate rx ring dma memory\n", |
1906 | sc->sc_dev.dv_xname); |
1907 | return (error); |
1908 | } |
1909 | |
1910 | error = bus_dmamem_map(sc->sc_dmat, &rd->rx_ring_seg, nsegs,(*(sc->sc_dmat)->_dmamem_map)((sc->sc_dmat), (&rd ->rx_ring_seg), (nsegs), ((16 * sizeof(struct acx_host_desc ))), ((caddr_t *)&rd->rx_ring), (0x0001)) |
1911 | ACX_RX_RING_SIZE, (caddr_t *)&rd->rx_ring,(*(sc->sc_dmat)->_dmamem_map)((sc->sc_dmat), (&rd ->rx_ring_seg), (nsegs), ((16 * sizeof(struct acx_host_desc ))), ((caddr_t *)&rd->rx_ring), (0x0001)) |
1912 | BUS_DMA_NOWAIT)(*(sc->sc_dmat)->_dmamem_map)((sc->sc_dmat), (&rd ->rx_ring_seg), (nsegs), ((16 * sizeof(struct acx_host_desc ))), ((caddr_t *)&rd->rx_ring), (0x0001)); |
1913 | |
1914 | if (error != 0) { |
1915 | printf("%s: can't map rx desc DMA memory\n", |
1916 | sc->sc_dev.dv_xname); |
1917 | return (error); |
1918 | } |
1919 | |
1920 | error = bus_dmamap_load(sc->sc_dmat, rd->rx_ring_dmamap,(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (rd-> rx_ring_dmamap), (rd->rx_ring), ((16 * sizeof(struct acx_host_desc ))), (((void *)0)), (0x0000)) |
1921 | rd->rx_ring, ACX_RX_RING_SIZE, NULL, BUS_DMA_WAITOK)(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (rd-> rx_ring_dmamap), (rd->rx_ring), ((16 * sizeof(struct acx_host_desc ))), (((void *)0)), (0x0000)); |
1922 | |
1923 | if (error) { |
1924 | printf("%s: can't get rx ring dma address\n", |
1925 | sc->sc_dev.dv_xname); |
1926 | bus_dmamem_free(sc->sc_dmat, &rd->rx_ring_seg, 1)(*(sc->sc_dmat)->_dmamem_free)((sc->sc_dmat), (& rd->rx_ring_seg), (1)); |
1927 | return (error); |
1928 | } |
1929 | |
1930 | rd->rx_ring_paddr = rd->rx_ring_dmamap->dm_segs[0].ds_addr; |
1931 | |
1932 | /* Allocate DMA stuffs for TX descriptors */ |
1933 | error = bus_dmamap_create(sc->sc_dmat, ACX_TX_RING_SIZE, 1,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((2 * 16 * sizeof(struct acx_host_desc))), (1), ((2 * 16 * sizeof( struct acx_host_desc))), (0), (0x0001), (&rd->tx_ring_dmamap )) |
1934 | ACX_TX_RING_SIZE, 0, BUS_DMA_NOWAIT, &rd->tx_ring_dmamap)(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((2 * 16 * sizeof(struct acx_host_desc))), (1), ((2 * 16 * sizeof( struct acx_host_desc))), (0), (0x0001), (&rd->tx_ring_dmamap )); |
1935 | |
1936 | if (error) { |
1937 | printf("%s: can't create tx ring dma tag\n", |
1938 | sc->sc_dev.dv_xname); |
1939 | return (error); |
1940 | } |
1941 | |
1942 | error = bus_dmamem_alloc(sc->sc_dmat, ACX_TX_RING_SIZE, PAGE_SIZE,(*(sc->sc_dmat)->_dmamem_alloc)((sc->sc_dmat), ((2 * 16 * sizeof(struct acx_host_desc))), ((1 << 12)), (0), (&rd->tx_ring_seg), (1), (&nsegs), (0x0001)) |
1943 | 0, &rd->tx_ring_seg, 1, &nsegs, BUS_DMA_NOWAIT)(*(sc->sc_dmat)->_dmamem_alloc)((sc->sc_dmat), ((2 * 16 * sizeof(struct acx_host_desc))), ((1 << 12)), (0), (&rd->tx_ring_seg), (1), (&nsegs), (0x0001)); |
1944 | |
1945 | if (error) { |
1946 | printf("%s: can't allocate tx ring dma memory\n", |
1947 | sc->sc_dev.dv_xname); |
1948 | return (error); |
1949 | } |
1950 | |
1951 | error = bus_dmamem_map(sc->sc_dmat, &rd->tx_ring_seg, nsegs,(*(sc->sc_dmat)->_dmamem_map)((sc->sc_dmat), (&rd ->tx_ring_seg), (nsegs), ((2 * 16 * sizeof(struct acx_host_desc ))), ((caddr_t *)&rd->tx_ring), (0x0001)) |
1952 | ACX_TX_RING_SIZE, (caddr_t *)&rd->tx_ring, BUS_DMA_NOWAIT)(*(sc->sc_dmat)->_dmamem_map)((sc->sc_dmat), (&rd ->tx_ring_seg), (nsegs), ((2 * 16 * sizeof(struct acx_host_desc ))), ((caddr_t *)&rd->tx_ring), (0x0001)); |
1953 | |
1954 | if (error != 0) { |
1955 | printf("%s: can't map tx desc DMA memory\n", |
1956 | sc->sc_dev.dv_xname); |
1957 | return (error); |
1958 | } |
1959 | |
1960 | error = bus_dmamap_load(sc->sc_dmat, rd->tx_ring_dmamap,(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (rd-> tx_ring_dmamap), (rd->tx_ring), ((2 * 16 * sizeof(struct acx_host_desc ))), (((void *)0)), (0x0000)) |
1961 | rd->tx_ring, ACX_TX_RING_SIZE, NULL, BUS_DMA_WAITOK)(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (rd-> tx_ring_dmamap), (rd->tx_ring), ((2 * 16 * sizeof(struct acx_host_desc ))), (((void *)0)), (0x0000)); |
1962 | |
1963 | if (error) { |
1964 | printf("%s: can't get tx ring dma address\n", |
1965 | sc->sc_dev.dv_xname); |
1966 | bus_dmamem_free(sc->sc_dmat, &rd->tx_ring_seg, 1)(*(sc->sc_dmat)->_dmamem_free)((sc->sc_dmat), (& rd->tx_ring_seg), (1)); |
1967 | return (error); |
1968 | } |
1969 | |
1970 | rd->tx_ring_paddr = rd->tx_ring_dmamap->dm_segs[0].ds_addr; |
1971 | |
1972 | /* Create a spare RX DMA map */ |
1973 | error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((1 << 11)), (1), ((1 << 11)), (0), (0), (&bd->mbuf_tmp_dmamap )) |
1974 | 0, 0, &bd->mbuf_tmp_dmamap)(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((1 << 11)), (1), ((1 << 11)), (0), (0), (&bd->mbuf_tmp_dmamap )); |
1975 | |
1976 | if (error) { |
1977 | printf("%s: can't create tmp mbuf dma map\n", |
1978 | sc->sc_dev.dv_xname); |
1979 | return (error); |
1980 | } |
1981 | |
1982 | /* Create DMA map for RX mbufs */ |
1983 | for (i = 0; i < ACX_RX_DESC_CNT16; ++i) { |
1984 | error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((1 << 11)), (1), ((1 << 11)), (0), (0), (&bd->rx_buf[ i].rb_mbuf_dmamap)) |
1985 | MCLBYTES, 0, 0, &bd->rx_buf[i].rb_mbuf_dmamap)(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((1 << 11)), (1), ((1 << 11)), (0), (0), (&bd->rx_buf[ i].rb_mbuf_dmamap)); |
1986 | if (error) { |
1987 | printf("%s: can't create rx mbuf dma map (%d)\n", |
1988 | sc->sc_dev.dv_xname, i); |
1989 | return (error); |
1990 | } |
1991 | bd->rx_buf[i].rb_desc = &rd->rx_ring[i]; |
1992 | } |
1993 | |
1994 | /* Create DMA map for TX mbufs */ |
1995 | for (i = 0; i < ACX_TX_DESC_CNT16; ++i) { |
1996 | error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((1 << 11)), (1), ((1 << 11)), (0), (0), (&bd->tx_buf[ i].tb_mbuf_dmamap)) |
1997 | MCLBYTES, 0, 0, &bd->tx_buf[i].tb_mbuf_dmamap)(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((1 << 11)), (1), ((1 << 11)), (0), (0), (&bd->tx_buf[ i].tb_mbuf_dmamap)); |
1998 | if (error) { |
1999 | printf("%s: can't create tx mbuf dma map (%d)\n", |
2000 | sc->sc_dev.dv_xname, i); |
2001 | return (error); |
2002 | } |
2003 | bd->tx_buf[i].tb_desc1 = &rd->tx_ring[i * 2]; |
2004 | bd->tx_buf[i].tb_desc2 = &rd->tx_ring[(i * 2) + 1]; |
2005 | } |
2006 | |
2007 | return (0); |
2008 | } |
2009 | |
2010 | void |
2011 | acx_dma_free(struct acx_softc *sc) |
2012 | { |
2013 | struct acx_ring_data *rd = &sc->sc_ring_data; |
2014 | struct acx_buf_data *bd = &sc->sc_buf_data; |
2015 | int i; |
2016 | |
2017 | if (rd->rx_ring != NULL((void *)0)) { |
2018 | bus_dmamap_unload(sc->sc_dmat, rd->rx_ring_dmamap)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (rd-> rx_ring_dmamap)); |
2019 | bus_dmamem_free(sc->sc_dmat, &rd->rx_ring_seg, 1)(*(sc->sc_dmat)->_dmamem_free)((sc->sc_dmat), (& rd->rx_ring_seg), (1)); |
2020 | } |
2021 | |
2022 | if (rd->tx_ring != NULL((void *)0)) { |
2023 | bus_dmamap_unload(sc->sc_dmat, rd->tx_ring_dmamap)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (rd-> tx_ring_dmamap)); |
2024 | bus_dmamem_free(sc->sc_dmat, &rd->tx_ring_seg, 1)(*(sc->sc_dmat)->_dmamem_free)((sc->sc_dmat), (& rd->tx_ring_seg), (1)); |
2025 | } |
2026 | |
2027 | for (i = 0; i < ACX_RX_DESC_CNT16; ++i) { |
2028 | if (bd->rx_buf[i].rb_desc != NULL((void *)0)) { |
2029 | if (bd->rx_buf[i].rb_mbuf != NULL((void *)0)) { |
2030 | bus_dmamap_unload(sc->sc_dmat,(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (bd-> rx_buf[i].rb_mbuf_dmamap)) |
2031 | bd->rx_buf[i].rb_mbuf_dmamap)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (bd-> rx_buf[i].rb_mbuf_dmamap)); |
2032 | m_freem(bd->rx_buf[i].rb_mbuf); |
2033 | } |
2034 | bus_dmamap_destroy(sc->sc_dmat,(*(sc->sc_dmat)->_dmamap_destroy)((sc->sc_dmat), (bd ->rx_buf[i].rb_mbuf_dmamap)) |
2035 | bd->rx_buf[i].rb_mbuf_dmamap)(*(sc->sc_dmat)->_dmamap_destroy)((sc->sc_dmat), (bd ->rx_buf[i].rb_mbuf_dmamap)); |
2036 | } |
2037 | } |
2038 | |
2039 | for (i = 0; i < ACX_TX_DESC_CNT16; ++i) { |
2040 | if (bd->tx_buf[i].tb_desc1 != NULL((void *)0)) { |
2041 | if (bd->tx_buf[i].tb_mbuf != NULL((void *)0)) { |
2042 | bus_dmamap_unload(sc->sc_dmat,(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (bd-> tx_buf[i].tb_mbuf_dmamap)) |
2043 | bd->tx_buf[i].tb_mbuf_dmamap)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (bd-> tx_buf[i].tb_mbuf_dmamap)); |
2044 | m_freem(bd->tx_buf[i].tb_mbuf); |
2045 | } |
2046 | bus_dmamap_destroy(sc->sc_dmat,(*(sc->sc_dmat)->_dmamap_destroy)((sc->sc_dmat), (bd ->tx_buf[i].tb_mbuf_dmamap)) |
2047 | bd->tx_buf[i].tb_mbuf_dmamap)(*(sc->sc_dmat)->_dmamap_destroy)((sc->sc_dmat), (bd ->tx_buf[i].tb_mbuf_dmamap)); |
2048 | } |
2049 | } |
2050 | |
2051 | if (bd->mbuf_tmp_dmamap != NULL((void *)0)) |
2052 | bus_dmamap_destroy(sc->sc_dmat, bd->mbuf_tmp_dmamap)(*(sc->sc_dmat)->_dmamap_destroy)((sc->sc_dmat), (bd ->mbuf_tmp_dmamap)); |
2053 | } |
2054 | |
2055 | void |
2056 | acx_init_tx_ring(struct acx_softc *sc) |
2057 | { |
2058 | struct acx_ring_data *rd; |
2059 | struct acx_buf_data *bd; |
2060 | uint32_t paddr; |
2061 | int i; |
2062 | |
2063 | rd = &sc->sc_ring_data; |
2064 | paddr = rd->tx_ring_paddr; |
2065 | for (i = 0; i < (ACX_TX_DESC_CNT16 * 2) - 1; ++i) { |
2066 | paddr += sizeof(struct acx_host_desc); |
2067 | |
2068 | bzero(&rd->tx_ring[i], sizeof(struct acx_host_desc))__builtin_bzero((&rd->tx_ring[i]), (sizeof(struct acx_host_desc ))); |
2069 | rd->tx_ring[i].h_ctrl = htole16(DESC_CTRL_HOSTOWN)((__uint16_t)(0x80)); |
2070 | |
2071 | if (i == (ACX_TX_DESC_CNT16 * 2) - 1) |
2072 | rd->tx_ring[i].h_next_desc = htole32(rd->tx_ring_paddr)((__uint32_t)(rd->tx_ring_paddr)); |
2073 | else |
2074 | rd->tx_ring[i].h_next_desc = htole32(paddr)((__uint32_t)(paddr)); |
2075 | } |
2076 | |
2077 | bus_dmamap_sync(sc->sc_dmat, rd->tx_ring_dmamap, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (rd-> tx_ring_dmamap), (0), (rd->tx_ring_dmamap->dm_mapsize), (0x04)) |
2078 | rd->tx_ring_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (rd-> tx_ring_dmamap), (0), (rd->tx_ring_dmamap->dm_mapsize), (0x04)); |
2079 | |
2080 | bd = &sc->sc_buf_data; |
2081 | bd->tx_free_start = 0; |
2082 | bd->tx_used_start = 0; |
2083 | bd->tx_used_count = 0; |
2084 | } |
2085 | |
2086 | int |
2087 | acx_init_rx_ring(struct acx_softc *sc) |
2088 | { |
2089 | struct acx_ring_data *rd; |
2090 | struct acx_buf_data *bd; |
2091 | uint32_t paddr; |
2092 | int i; |
2093 | |
2094 | bd = &sc->sc_buf_data; |
2095 | rd = &sc->sc_ring_data; |
2096 | paddr = rd->rx_ring_paddr; |
2097 | |
2098 | for (i = 0; i < ACX_RX_DESC_CNT16; ++i) { |
2099 | int error; |
2100 | |
2101 | paddr += sizeof(struct acx_host_desc); |
2102 | bzero(&rd->rx_ring[i], sizeof(struct acx_host_desc))__builtin_bzero((&rd->rx_ring[i]), (sizeof(struct acx_host_desc ))); |
2103 | |
2104 | error = acx_newbuf(sc, &bd->rx_buf[i], 1); |
2105 | if (error) |
2106 | return (error); |
2107 | |
2108 | if (i == ACX_RX_DESC_CNT16 - 1) |
2109 | rd->rx_ring[i].h_next_desc = htole32(rd->rx_ring_paddr)((__uint32_t)(rd->rx_ring_paddr)); |
2110 | else |
2111 | rd->rx_ring[i].h_next_desc = htole32(paddr)((__uint32_t)(paddr)); |
2112 | } |
2113 | |
2114 | bus_dmamap_sync(sc->sc_dmat, rd->rx_ring_dmamap, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (rd-> rx_ring_dmamap), (0), (rd->rx_ring_dmamap->dm_mapsize), (0x04)) |
2115 | rd->rx_ring_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (rd-> rx_ring_dmamap), (0), (rd->rx_ring_dmamap->dm_mapsize), (0x04)); |
2116 | |
2117 | bd->rx_scan_start = 0; |
2118 | |
2119 | return (0); |
2120 | } |
2121 | |
2122 | int |
2123 | acx_newbuf(struct acx_softc *sc, struct acx_rxbuf *rb, int wait) |
2124 | { |
2125 | struct acx_buf_data *bd; |
2126 | struct mbuf *m; |
2127 | bus_dmamap_t map; |
2128 | uint32_t paddr; |
2129 | int error; |
2130 | |
2131 | bd = &sc->sc_buf_data; |
2132 | |
2133 | MGETHDR(m, wait ? M_WAITOK : M_DONTWAIT, MT_DATA)m = m_gethdr((wait ? 0x0001 : 0x0002), (1)); |
2134 | if (m == NULL((void *)0)) |
2135 | return (ENOBUFS55); |
2136 | |
2137 | MCLGET(m, wait ? M_WAITOK : M_DONTWAIT)(void) m_clget((m), (wait ? 0x0001 : 0x0002), (1 << 11) ); |
2138 | if (!(m->m_flagsm_hdr.mh_flags & M_EXT0x0001)) { |
2139 | m_freem(m); |
2140 | return (ENOBUFS55); |
2141 | } |
2142 | |
2143 | m->m_lenm_hdr.mh_len = m->m_pkthdrM_dat.MH.MH_pkthdr.len = MCLBYTES(1 << 11); |
2144 | |
2145 | error = bus_dmamap_load_mbuf(sc->sc_dmat, bd->mbuf_tmp_dmamap, m,(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( bd->mbuf_tmp_dmamap), (m), (wait ? 0x0000 : 0x0001)) |
2146 | wait ? BUS_DMA_WAITOK : BUS_DMA_NOWAIT)(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( bd->mbuf_tmp_dmamap), (m), (wait ? 0x0000 : 0x0001)); |
2147 | if (error) { |
2148 | m_freem(m); |
2149 | printf("%s: can't map rx mbuf %d\n", |
2150 | sc->sc_dev.dv_xname, error); |
2151 | return (error); |
2152 | } |
2153 | |
2154 | /* Unload originally mapped mbuf */ |
2155 | if (rb->rb_mbuf != NULL((void *)0)) |
2156 | bus_dmamap_unload(sc->sc_dmat, rb->rb_mbuf_dmamap)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (rb-> rb_mbuf_dmamap)); |
2157 | |
2158 | /* Swap this dmamap with tmp dmamap */ |
2159 | map = rb->rb_mbuf_dmamap; |
2160 | rb->rb_mbuf_dmamap = bd->mbuf_tmp_dmamap; |
2161 | bd->mbuf_tmp_dmamap = map; |
2162 | paddr = rb->rb_mbuf_dmamap->dm_segs[0].ds_addr; |
2163 | |
2164 | rb->rb_mbuf = m; |
2165 | rb->rb_desc->h_data_paddr = htole32(paddr)((__uint32_t)(paddr)); |
2166 | rb->rb_desc->h_data_len = htole16(m->m_len)((__uint16_t)(m->m_hdr.mh_len)); |
2167 | |
2168 | bus_dmamap_sync(sc->sc_dmat, rb->rb_mbuf_dmamap, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (rb-> rb_mbuf_dmamap), (0), (rb->rb_mbuf_dmamap->dm_mapsize), (0x01)) |
2169 | rb->rb_mbuf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (rb-> rb_mbuf_dmamap), (0), (rb->rb_mbuf_dmamap->dm_mapsize), (0x01)); |
2170 | |
2171 | return (0); |
2172 | } |
2173 | |
2174 | int |
2175 | acx_encap(struct acx_softc *sc, struct acx_txbuf *txbuf, struct mbuf *m, |
2176 | struct ieee80211_node *ni, int rate) |
2177 | { |
2178 | struct acx_ring_data *rd = &sc->sc_ring_data; |
2179 | struct acx_node *node = (struct acx_node *)ni; |
2180 | struct ifnet *ifp = &sc->sc_ic.ic_ific_ac.ac_if; |
2181 | uint32_t paddr; |
2182 | uint8_t ctrl; |
2183 | int error; |
2184 | |
2185 | if (txbuf->tb_mbuf != NULL((void *)0)) |
2186 | panic("free TX buf has mbuf installed"); |
2187 | |
2188 | if (m->m_pkthdrM_dat.MH.MH_pkthdr.len > MCLBYTES(1 << 11)) { |
2189 | printf("%s: mbuf too big\n", ifp->if_xname); |
2190 | error = E2BIG7; |
2191 | goto back; |
2192 | } else if (m->m_pkthdrM_dat.MH.MH_pkthdr.len < ACX_FRAME_HDRLENsizeof(struct ieee80211_frame)) { |
2193 | printf("%s: mbuf too small\n", ifp->if_xname); |
2194 | error = EINVAL22; |
2195 | goto back; |
2196 | } |
2197 | |
2198 | error = bus_dmamap_load_mbuf(sc->sc_dmat, txbuf->tb_mbuf_dmamap, m,(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( txbuf->tb_mbuf_dmamap), (m), (0x0001)) |
2199 | BUS_DMA_NOWAIT)(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( txbuf->tb_mbuf_dmamap), (m), (0x0001)); |
2200 | |
2201 | if (error && error != EFBIG27) { |
2202 | printf("%s: can't map tx mbuf1 %d\n", |
2203 | sc->sc_dev.dv_xname, error); |
2204 | goto back; |
2205 | } |
2206 | |
2207 | if (error) { /* error == EFBIG */ |
2208 | /* too many fragments, linearize */ |
2209 | if (m_defrag(m, M_DONTWAIT0x0002)) { |
2210 | printf("%s: can't defrag tx mbuf\n", ifp->if_xname); |
2211 | goto back; |
2212 | } |
2213 | error = bus_dmamap_load_mbuf(sc->sc_dmat,(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( txbuf->tb_mbuf_dmamap), (m), (0x0001)) |
2214 | txbuf->tb_mbuf_dmamap, m, BUS_DMA_NOWAIT)(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( txbuf->tb_mbuf_dmamap), (m), (0x0001)); |
2215 | if (error) { |
2216 | printf("%s: can't map tx mbuf2 %d\n", |
2217 | sc->sc_dev.dv_xname, error); |
2218 | goto back; |
2219 | } |
2220 | } |
2221 | |
2222 | error = 0; |
2223 | |
2224 | bus_dmamap_sync(sc->sc_dmat, txbuf->tb_mbuf_dmamap, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (txbuf ->tb_mbuf_dmamap), (0), (txbuf->tb_mbuf_dmamap->dm_mapsize ), (0x04)) |
2225 | txbuf->tb_mbuf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (txbuf ->tb_mbuf_dmamap), (0), (txbuf->tb_mbuf_dmamap->dm_mapsize ), (0x04)); |
2226 | |
2227 | txbuf->tb_mbuf = m; |
2228 | txbuf->tb_node = node; |
2229 | txbuf->tb_rate = rate; |
2230 | |
2231 | /* |
2232 | * TX buffers are accessed in following way: |
2233 | * acx_fw_txdesc -> acx_host_desc -> buffer |
2234 | * |
2235 | * It is quite strange that acx also queries acx_host_desc next to |
2236 | * the one we have assigned to acx_fw_txdesc even if first one's |
2237 | * acx_host_desc.h_data_len == acx_fw_txdesc.f_tx_len |
2238 | * |
2239 | * So we allocate two acx_host_desc for one acx_fw_txdesc and |
2240 | * assign the first acx_host_desc to acx_fw_txdesc |
2241 | * |
2242 | * For acx111 |
2243 | * host_desc1.h_data_len = buffer_len |
2244 | * host_desc2.h_data_len = buffer_len - mac_header_len |
2245 | * |
2246 | * For acx100 |
2247 | * host_desc1.h_data_len = mac_header_len |
2248 | * host_desc2.h_data_len = buffer_len - mac_header_len |
2249 | */ |
2250 | paddr = txbuf->tb_mbuf_dmamap->dm_segs[0].ds_addr; |
2251 | txbuf->tb_desc1->h_data_paddr = htole32(paddr)((__uint32_t)(paddr)); |
2252 | txbuf->tb_desc2->h_data_paddr = htole32(paddr + ACX_FRAME_HDRLEN)((__uint32_t)(paddr + sizeof(struct ieee80211_frame))); |
2253 | |
2254 | txbuf->tb_desc1->h_data_len = |
2255 | htole16(sc->chip_txdesc1_len ? sc->chip_txdesc1_len((__uint16_t)(sc->chip_txdesc1_len ? sc->chip_txdesc1_len : m->M_dat.MH.MH_pkthdr.len)) |
2256 | : m->m_pkthdr.len)((__uint16_t)(sc->chip_txdesc1_len ? sc->chip_txdesc1_len : m->M_dat.MH.MH_pkthdr.len)); |
2257 | txbuf->tb_desc2->h_data_len = |
2258 | htole16(m->m_pkthdr.len - ACX_FRAME_HDRLEN)((__uint16_t)(m->M_dat.MH.MH_pkthdr.len - sizeof(struct ieee80211_frame ))); |
2259 | |
2260 | /* |
2261 | * NOTE: |
2262 | * We can't simply assign f_tx_ctrl, we will first read it back |
2263 | * and change it bit by bit |
2264 | */ |
2265 | ctrl = FW_TXDESC_GETFIELD_1(sc, txbuf, f_tx_ctrl)(((sc)->sc_mem2_bt)->read_1(((sc)->sc_mem2_bh), ((txbuf )->tb_fwdesc_ofs + __builtin_offsetof(struct acx_fw_txdesc , f_tx_ctrl)))); |
2266 | ctrl |= sc->chip_fw_txdesc_ctrl; /* extra chip specific flags */ |
2267 | ctrl &= ~(DESC_CTRL_HOSTOWN0x80 | DESC_CTRL_ACXDONE0x40); |
2268 | |
2269 | FW_TXDESC_SETFIELD_2(sc, txbuf, f_tx_len, m->m_pkthdr.len)(((sc)->sc_mem2_bt)->write_2(((sc)->sc_mem2_bh), ((txbuf )->tb_fwdesc_ofs + __builtin_offsetof(struct acx_fw_txdesc , f_tx_len)), ((m->M_dat.MH.MH_pkthdr.len)))); |
2270 | FW_TXDESC_SETFIELD_1(sc, txbuf, f_tx_error, 0)(((sc)->sc_mem2_bt)->write_1(((sc)->sc_mem2_bh), ((txbuf )->tb_fwdesc_ofs + __builtin_offsetof(struct acx_fw_txdesc , f_tx_error)), ((0)))); |
2271 | FW_TXDESC_SETFIELD_1(sc, txbuf, f_tx_ack_fail, 0)(((sc)->sc_mem2_bt)->write_1(((sc)->sc_mem2_bh), ((txbuf )->tb_fwdesc_ofs + __builtin_offsetof(struct acx_fw_txdesc , f_tx_ack_fail)), ((0)))); |
2272 | FW_TXDESC_SETFIELD_1(sc, txbuf, f_tx_rts_fail, 0)(((sc)->sc_mem2_bt)->write_1(((sc)->sc_mem2_bh), ((txbuf )->tb_fwdesc_ofs + __builtin_offsetof(struct acx_fw_txdesc , f_tx_rts_fail)), ((0)))); |
2273 | FW_TXDESC_SETFIELD_1(sc, txbuf, f_tx_rts_ok, 0)(((sc)->sc_mem2_bt)->write_1(((sc)->sc_mem2_bh), ((txbuf )->tb_fwdesc_ofs + __builtin_offsetof(struct acx_fw_txdesc , f_tx_rts_ok)), ((0)))); |
2274 | sc->chip_set_fw_txdesc_rate(sc, txbuf, rate); |
2275 | |
2276 | txbuf->tb_desc1->h_ctrl = 0; |
2277 | txbuf->tb_desc2->h_ctrl = 0; |
2278 | bus_dmamap_sync(sc->sc_dmat, rd->tx_ring_dmamap, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (rd-> tx_ring_dmamap), (0), (rd->tx_ring_dmamap->dm_mapsize), (0x04)) |
2279 | rd->tx_ring_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (rd-> tx_ring_dmamap), (0), (rd->tx_ring_dmamap->dm_mapsize), (0x04)); |
2280 | |
2281 | FW_TXDESC_SETFIELD_1(sc, txbuf, f_tx_ctrl2, 0)(((sc)->sc_mem2_bt)->write_1(((sc)->sc_mem2_bh), ((txbuf )->tb_fwdesc_ofs + __builtin_offsetof(struct acx_fw_txdesc , f_tx_ctrl2)), ((0)))); |
2282 | FW_TXDESC_SETFIELD_1(sc, txbuf, f_tx_ctrl, ctrl)(((sc)->sc_mem2_bt)->write_1(((sc)->sc_mem2_bh), ((txbuf )->tb_fwdesc_ofs + __builtin_offsetof(struct acx_fw_txdesc , f_tx_ctrl)), ((ctrl)))); |
2283 | |
2284 | /* Tell chip to inform us about TX completion */ |
2285 | CSR_WRITE_2(sc, ACXREG_INTR_TRIG, ACXRV_TRIG_TX_FINI)(((sc)->sc_mem1_bt)->write_2(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(6)]), (0x0004))); |
2286 | back: |
2287 | if (error) |
2288 | m_freem(m); |
2289 | |
2290 | return (error); |
2291 | } |
2292 | |
2293 | int |
2294 | acx_set_null_tmplt(struct acx_softc *sc) |
2295 | { |
2296 | struct ieee80211com *ic = &sc->sc_ic; |
2297 | struct acx_tmplt_null_data n; |
2298 | struct ieee80211_frame *wh; |
2299 | |
2300 | bzero(&n, sizeof(n))__builtin_bzero((&n), (sizeof(n))); |
2301 | |
2302 | wh = &n.data; |
2303 | wh->i_fc[0] = IEEE80211_FC0_VERSION_00x00 | IEEE80211_FC0_TYPE_DATA0x08 | |
2304 | IEEE80211_FC0_SUBTYPE_NODATA0x40; |
2305 | wh->i_fc[1] = IEEE80211_FC1_DIR_NODS0x00; |
2306 | IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr)__builtin_memcpy((wh->i_addr1), (etherbroadcastaddr), (6)); |
2307 | IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr)__builtin_memcpy((wh->i_addr2), (ic->ic_myaddr), (6)); |
2308 | IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr)__builtin_memcpy((wh->i_addr3), (etherbroadcastaddr), (6)); |
2309 | |
2310 | return (acx_set_tmplt(sc, ACXCMD_TMPLT_NULL_DATA0x15, &n, sizeof(n))); |
2311 | } |
2312 | |
2313 | int |
2314 | acx_set_probe_req_tmplt(struct acx_softc *sc, const char *ssid, int ssid_len) |
2315 | { |
2316 | struct ieee80211com *ic = &sc->sc_ic; |
2317 | struct acx_tmplt_probe_req req; |
2318 | struct ieee80211_frame *wh; |
2319 | struct ieee80211_rateset *rs; |
2320 | uint8_t *frm; |
2321 | int len; |
2322 | |
2323 | bzero(&req, sizeof(req))__builtin_bzero((&req), (sizeof(req))); |
2324 | |
2325 | wh = &req.data.u_data.f; |
2326 | wh->i_fc[0] = IEEE80211_FC0_VERSION_00x00 | IEEE80211_FC0_TYPE_MGT0x00 | |
2327 | IEEE80211_FC0_SUBTYPE_PROBE_REQ0x40; |
2328 | wh->i_fc[1] = IEEE80211_FC1_DIR_NODS0x00; |
2329 | IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr)__builtin_memcpy((wh->i_addr1), (etherbroadcastaddr), (6)); |
2330 | IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr)__builtin_memcpy((wh->i_addr2), (ic->ic_myaddr), (6)); |
2331 | IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr)__builtin_memcpy((wh->i_addr3), (etherbroadcastaddr), (6)); |
2332 | |
2333 | frm = req.data.u_data.var; |
2334 | frm = ieee80211_add_ssid(frm, ssid, ssid_len); |
2335 | rs = &ic->ic_sup_rates[sc->chip_phymode]; |
2336 | frm = ieee80211_add_rates(frm, rs); |
2337 | if (rs->rs_nrates > IEEE80211_RATE_SIZE8) |
2338 | frm = ieee80211_add_xrates(frm, rs); |
2339 | len = frm - req.data.u_data.var; |
2340 | |
2341 | return (acx_set_tmplt(sc, ACXCMD_TMPLT_PROBE_REQ0x16, &req, |
2342 | ACX_TMPLT_PROBE_REQ_SIZ(len)(sizeof(uint16_t) + sizeof(struct ieee80211_frame) + (len)))); |
2343 | } |
2344 | |
2345 | #ifndef IEEE80211_STA_ONLY |
2346 | struct mbuf *ieee80211_get_probe_resp(struct ieee80211com *, |
2347 | struct ieee80211_node *); |
2348 | |
2349 | int |
2350 | acx_set_probe_resp_tmplt(struct acx_softc *sc, struct ieee80211_node *ni) |
2351 | { |
2352 | struct ieee80211com *ic = &sc->sc_ic; |
2353 | struct acx_tmplt_probe_resp resp; |
2354 | struct ieee80211_frame *wh; |
2355 | struct mbuf *m; |
2356 | int len; |
2357 | |
2358 | bzero(&resp, sizeof(resp))__builtin_bzero((&resp), (sizeof(resp))); |
2359 | |
2360 | m = ieee80211_get_probe_resp(ic, ni); |
2361 | if (m == NULL((void *)0)) |
2362 | return (1); |
2363 | M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT)(m) = m_prepend((m), (sizeof(struct ieee80211_frame)), (0x0002 )); |
2364 | if (m == NULL((void *)0)) |
2365 | return (1); |
2366 | wh = mtod(m, struct ieee80211_frame *)((struct ieee80211_frame *)((m)->m_hdr.mh_data)); |
2367 | wh->i_fc[0] = IEEE80211_FC0_VERSION_00x00 | IEEE80211_FC0_TYPE_MGT0x00 | |
2368 | IEEE80211_FC0_SUBTYPE_PROBE_RESP0x50; |
2369 | wh->i_fc[1] = IEEE80211_FC1_DIR_NODS0x00; |
2370 | *(u_int16_t *)&wh->i_dur[0] = 0; |
2371 | IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr)__builtin_memcpy((wh->i_addr1), (ni->ni_macaddr), (6)); |
2372 | IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr)__builtin_memcpy((wh->i_addr2), (ic->ic_myaddr), (6)); |
2373 | IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid)__builtin_memcpy((wh->i_addr3), (ni->ni_bssid), (6)); |
2374 | *(u_int16_t *)wh->i_seq = 0; |
2375 | |
2376 | m_copydata(m, 0, m->m_pkthdrM_dat.MH.MH_pkthdr.len, &resp.data); |
2377 | len = m->m_pkthdrM_dat.MH.MH_pkthdr.len + sizeof(resp.size); |
2378 | m_freem(m); |
2379 | |
2380 | return (acx_set_tmplt(sc, ACXCMD_TMPLT_PROBE_RESP0x14, &resp, len)); |
2381 | } |
2382 | |
2383 | int |
2384 | acx_beacon_locate(struct mbuf *m, u_int8_t type) |
2385 | { |
2386 | int off; |
2387 | u_int8_t *frm; |
2388 | /* |
2389 | * beacon frame format |
2390 | * [8] time stamp |
2391 | * [2] beacon interval |
2392 | * [2] capability information |
2393 | * from here on [tlv] values |
2394 | */ |
2395 | |
2396 | if (m->m_lenm_hdr.mh_len != m->m_pkthdrM_dat.MH.MH_pkthdr.len) |
2397 | panic("beacon not in contiguous mbuf"); |
2398 | |
2399 | off = sizeof(struct ieee80211_frame) + 8 + 2 + 2; |
2400 | frm = mtod(m, u_int8_t *)((u_int8_t *)((m)->m_hdr.mh_data)); |
2401 | for (; off + 1 < m->m_lenm_hdr.mh_len; off += frm[off + 1] + 2) { |
2402 | if (frm[off] == type) |
2403 | return (off); |
2404 | } |
2405 | return (-1); |
2406 | } |
2407 | |
2408 | int |
2409 | acx_set_beacon_tmplt(struct acx_softc *sc, struct ieee80211_node *ni) |
2410 | { |
2411 | struct ieee80211com *ic = &sc->sc_ic; |
2412 | struct acx_tmplt_beacon beacon; |
2413 | struct acx_tmplt_tim tim; |
2414 | struct mbuf *m; |
2415 | int len, off; |
2416 | |
2417 | bzero(&beacon, sizeof(beacon))__builtin_bzero((&beacon), (sizeof(beacon))); |
2418 | bzero(&tim, sizeof(tim))__builtin_bzero((&tim), (sizeof(tim))); |
2419 | |
2420 | m = ieee80211_beacon_alloc(ic, ni); |
2421 | if (m == NULL((void *)0)) |
2422 | return (1); |
2423 | |
2424 | off = acx_beacon_locate(m, IEEE80211_ELEMID_TIM); |
2425 | if (off < 0) { |
2426 | m_free(m); |
2427 | return (1); |
2428 | } |
2429 | |
2430 | m_copydata(m, 0, off, &beacon.data); |
2431 | len = off + sizeof(beacon.size); |
2432 | |
2433 | if (acx_set_tmplt(sc, ACXCMD_TMPLT_BEACON0x13, &beacon, len) != 0) { |
2434 | m_freem(m); |
2435 | return (1); |
2436 | } |
2437 | |
2438 | len = m->m_pkthdrM_dat.MH.MH_pkthdr.len - off; |
2439 | if (len == 0) { |
2440 | /* no TIM field */ |
2441 | m_freem(m); |
2442 | return (0); |
2443 | } |
2444 | |
2445 | m_copydata(m, off, len, &tim.data); |
2446 | len += sizeof(beacon.size); |
2447 | m_freem(m); |
2448 | |
2449 | return (acx_set_tmplt(sc, ACXCMD_TMPLT_TIM0x0a, &tim, len)); |
2450 | } |
2451 | #endif /* IEEE80211_STA_ONLY */ |
2452 | |
2453 | void |
2454 | acx_init_cmd_reg(struct acx_softc *sc) |
2455 | { |
2456 | sc->sc_cmd = CSR_READ_4(sc, ACXREG_CMD_REG_OFFSET)(((sc)->sc_mem1_bt)->read_4(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(24)]))); |
2457 | sc->sc_cmd_param = sc->sc_cmd + ACX_CMD_REG_SIZE4; |
2458 | |
2459 | /* Clear command & status */ |
2460 | CMD_WRITE_4(sc, 0)(((sc)->sc_mem2_bt)->write_4(((sc)->sc_mem2_bh), ((sc )->sc_cmd), ((0)))); |
2461 | } |
2462 | |
2463 | int |
2464 | acx_join_bss(struct acx_softc *sc, uint8_t mode, struct ieee80211_node *node) |
2465 | { |
2466 | uint8_t bj_buf[BSS_JOIN_BUFLEN(sizeof(struct bss_join_hdr) + 32 - 1)]; |
2467 | struct bss_join_hdr *bj; |
2468 | int i, dtim_intvl; |
2469 | |
2470 | bzero(bj_buf, sizeof(bj_buf))__builtin_bzero((bj_buf), (sizeof(bj_buf))); |
2471 | bj = (struct bss_join_hdr *)bj_buf; |
2472 | |
2473 | for (i = 0; i < IEEE80211_ADDR_LEN6; ++i) |
2474 | bj->bssid[i] = node->ni_bssid[IEEE80211_ADDR_LEN6 - i - 1]; |
2475 | |
2476 | bj->beacon_intvl = htole16(acx_beacon_intvl)((__uint16_t)(acx_beacon_intvl)); |
2477 | |
2478 | /* TODO tunable */ |
2479 | #ifndef IEEE80211_STA_ONLY |
2480 | if (sc->sc_ic.ic_opmode == IEEE80211_M_IBSS) |
2481 | dtim_intvl = 1; |
2482 | else |
2483 | #endif |
2484 | dtim_intvl = 10; |
2485 | sc->chip_set_bss_join_param(sc, bj->chip_spec, dtim_intvl); |
2486 | |
2487 | bj->ndata_txrate = ACX_NDATA_TXRATE_110; |
2488 | bj->ndata_txopt = 0; |
2489 | bj->mode = mode; |
2490 | bj->channel = ieee80211_chan2ieee(&sc->sc_ic, node->ni_chan); |
2491 | bj->esslen = node->ni_esslen; |
2492 | bcopy(node->ni_essid, bj->essid, node->ni_esslen); |
2493 | |
2494 | DPRINTF(("%s: join BSS/IBSS on channel %d\n", sc->sc_dev.dv_xname, |
2495 | bj->channel)); |
2496 | return (acx_exec_command(sc, ACXCMD_JOIN_BSS0x0b, |
2497 | bj, BSS_JOIN_PARAM_SIZE(bj)(sizeof(struct bss_join_hdr) + (bj)->esslen - 1), NULL((void *)0), 0)); |
2498 | } |
2499 | |
2500 | int |
2501 | acx_set_channel(struct acx_softc *sc, uint8_t chan) |
2502 | { |
2503 | if (acx_exec_command(sc, ACXCMD_ENABLE_TXCHAN0x04, &chan, sizeof(chan), |
2504 | NULL((void *)0), 0) != 0) { |
2505 | DPRINTF(("%s: setting TX channel %d failed\n", |
2506 | sc->sc_dev.dv_xname, chan)); |
2507 | return (ENXIO6); |
2508 | } |
2509 | |
2510 | if (acx_exec_command(sc, ACXCMD_ENABLE_RXCHAN0x03, &chan, sizeof(chan), |
2511 | NULL((void *)0), 0) != 0) { |
2512 | DPRINTF(("%s: setting RX channel %d failed\n", |
2513 | sc->sc_dev.dv_xname, chan)); |
2514 | return (ENXIO6); |
2515 | } |
2516 | |
2517 | return (0); |
2518 | } |
2519 | |
2520 | int |
2521 | acx_get_conf(struct acx_softc *sc, uint16_t conf_id, void *conf, |
2522 | uint16_t conf_len) |
2523 | { |
2524 | struct acx_conf *confcom; |
2525 | |
2526 | if (conf_len < sizeof(*confcom)) { |
2527 | printf("%s: %s configure data is too short\n", |
2528 | sc->sc_dev.dv_xname, __func__); |
2529 | return (1); |
2530 | } |
2531 | |
2532 | confcom = conf; |
2533 | confcom->conf_id = htole16(conf_id)((__uint16_t)(conf_id)); |
2534 | confcom->conf_data_len = htole16(conf_len - sizeof(*confcom))((__uint16_t)(conf_len - sizeof(*confcom))); |
2535 | |
2536 | return (acx_exec_command(sc, ACXCMD_GET_CONF0x01, confcom, sizeof(*confcom), |
2537 | conf, conf_len)); |
2538 | } |
2539 | |
2540 | int |
2541 | acx_set_conf(struct acx_softc *sc, uint16_t conf_id, void *conf, |
2542 | uint16_t conf_len) |
2543 | { |
2544 | struct acx_conf *confcom; |
2545 | |
2546 | if (conf_len < sizeof(*confcom)) { |
2547 | printf("%s: %s configure data is too short\n", |
2548 | sc->sc_dev.dv_xname, __func__); |
2549 | return (1); |
2550 | } |
2551 | |
2552 | confcom = conf; |
2553 | confcom->conf_id = htole16(conf_id)((__uint16_t)(conf_id)); |
2554 | confcom->conf_data_len = htole16(conf_len - sizeof(*confcom))((__uint16_t)(conf_len - sizeof(*confcom))); |
2555 | |
2556 | return (acx_exec_command(sc, ACXCMD_SET_CONF0x02, conf, conf_len, NULL((void *)0), 0)); |
2557 | } |
2558 | |
2559 | int |
2560 | acx_set_tmplt(struct acx_softc *sc, uint16_t cmd, void *tmplt, |
2561 | uint16_t tmplt_len) |
2562 | { |
2563 | uint16_t *size; |
2564 | |
2565 | if (tmplt_len < sizeof(*size)) { |
2566 | printf("%s: %s template is too short\n", |
2567 | sc->sc_dev.dv_xname, __func__); |
2568 | return (1); |
2569 | } |
2570 | |
2571 | size = tmplt; |
2572 | *size = htole16(tmplt_len - sizeof(*size))((__uint16_t)(tmplt_len - sizeof(*size))); |
2573 | |
2574 | return (acx_exec_command(sc, cmd, tmplt, tmplt_len, NULL((void *)0), 0)); |
2575 | } |
2576 | |
2577 | int |
2578 | acx_init_radio(struct acx_softc *sc, uint32_t radio_ofs, uint32_t radio_len) |
2579 | { |
2580 | struct radio_init r; |
2581 | |
2582 | r.radio_ofs = htole32(radio_ofs)((__uint32_t)(radio_ofs)); |
2583 | r.radio_len = htole32(radio_len)((__uint32_t)(radio_len)); |
2584 | |
2585 | return (acx_exec_command(sc, ACXCMD_INIT_RADIO0x18, &r, sizeof(r), NULL((void *)0), |
2586 | 0)); |
2587 | } |
2588 | |
2589 | int |
2590 | acx_exec_command(struct acx_softc *sc, uint16_t cmd, void *param, |
2591 | uint16_t param_len, void *result, uint16_t result_len) |
2592 | { |
2593 | uint16_t status; |
2594 | int i, ret; |
2595 | |
2596 | if ((sc->sc_flags & ACX_FLAG_FW_LOADED0x01) == 0) { |
2597 | printf("%s: cmd 0x%04x failed (base firmware not loaded)\n", |
2598 | sc->sc_dev.dv_xname, cmd); |
2599 | return (1); |
2600 | } |
2601 | |
2602 | ret = 0; |
2603 | |
2604 | if (param != NULL((void *)0) && param_len != 0) { |
2605 | /* Set command param */ |
2606 | CMDPRM_WRITE_REGION_1(sc, param, param_len)(((sc)->sc_mem2_bt)->write_region_1(((sc)->sc_mem2_bh ), ((sc)->sc_cmd_param), ((const uint8_t *)(param)), ((param_len )))); |
2607 | } |
2608 | |
2609 | /* Set command */ |
2610 | CMD_WRITE_4(sc, cmd)(((sc)->sc_mem2_bt)->write_4(((sc)->sc_mem2_bh), ((sc )->sc_cmd), ((cmd)))); |
2611 | |
2612 | /* Exec command */ |
2613 | CSR_WRITE_2(sc, ACXREG_INTR_TRIG, ACXRV_TRIG_CMD_FINI)(((sc)->sc_mem1_bt)->write_2(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(6)]), (0x0001))); |
2614 | DELAY(50)(*delay_func)(50); |
2615 | |
2616 | /* Wait for command to complete */ |
2617 | if (cmd == ACXCMD_INIT_RADIO0x18) { |
2618 | /* radio initialization is extremely long */ |
2619 | tsleep_nsec(&cmd, 0, "rdinit", MSEC_TO_NSEC(300)); |
2620 | } |
2621 | |
2622 | #define CMDWAIT_RETRY_MAX 1000 |
2623 | for (i = 0; i < CMDWAIT_RETRY_MAX; ++i) { |
2624 | uint16_t reg; |
2625 | |
2626 | reg = CSR_READ_2(sc, ACXREG_INTR_STATUS)(((sc)->sc_mem1_bt)->read_2(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(8)]))); |
2627 | if (reg & ACXRV_INTR_CMD_FINI0x0200) { |
2628 | CSR_WRITE_2(sc, ACXREG_INTR_ACK, ACXRV_INTR_CMD_FINI)(((sc)->sc_mem1_bt)->write_2(((sc)->sc_mem1_bh), ((sc )->chip_ioreg[(10)]), (0x0200))); |
2629 | break; |
2630 | } |
2631 | DELAY(50)(*delay_func)(50); |
2632 | } |
2633 | if (i == CMDWAIT_RETRY_MAX) { |
2634 | printf("%s: cmd %04x failed (timeout)\n", |
2635 | sc->sc_dev.dv_xname, cmd); |
2636 | ret = 1; |
2637 | goto back; |
2638 | } |
2639 | #undef CMDWAIT_RETRY_MAX |
2640 | |
2641 | /* Get command exec status */ |
2642 | status = (CMD_READ_4(sc)(((sc)->sc_mem2_bt)->read_4(((sc)->sc_mem2_bh), ((sc )->sc_cmd))) >> ACX_CMD_STATUS_SHIFT16); |
2643 | if (status != ACX_CMD_STATUS_OK1) { |
2644 | DPRINTF(("%s: cmd %04x failed\n", sc->sc_dev.dv_xname, cmd)); |
2645 | ret = 1; |
2646 | goto back; |
2647 | } |
2648 | |
2649 | if (result != NULL((void *)0) && result_len != 0) { |
2650 | /* Get command result */ |
2651 | CMDPRM_READ_REGION_1(sc, result, result_len)(((sc)->sc_mem2_bt)->read_region_1(((sc)->sc_mem2_bh ), ((sc)->sc_cmd_param), ((uint8_t *)(result)), ((result_len )))); |
2652 | } |
2653 | |
2654 | back: |
2655 | CMD_WRITE_4(sc, 0)(((sc)->sc_mem2_bt)->write_4(((sc)->sc_mem2_bh), ((sc )->sc_cmd), ((0)))); |
2656 | |
2657 | return (ret); |
2658 | } |
2659 | |
2660 | const char * |
2661 | acx_get_rf(int rev) |
2662 | { |
2663 | switch (rev) { |
2664 | case ACX_RADIO_TYPE_MAXIM0x0d: return "MAX2820"; |
2665 | case ACX_RADIO_TYPE_RFMD0x11: return "RFMD"; |
2666 | case ACX_RADIO_TYPE_RALINK0x15: return "Ralink"; |
2667 | case ACX_RADIO_TYPE_RADIA0x16: return "Radia"; |
2668 | default: return "unknown"; |
2669 | } |
2670 | } |
2671 | |
2672 | int |
2673 | acx_get_maxrssi(int radio) |
2674 | { |
2675 | switch (radio) { |
2676 | case ACX_RADIO_TYPE_MAXIM0x0d: return ACX_RADIO_RSSI_MAXIM120; |
2677 | case ACX_RADIO_TYPE_RFMD0x11: return ACX_RADIO_RSSI_RFMD215; |
2678 | case ACX_RADIO_TYPE_RALINK0x15: return ACX_RADIO_RSSI_RALINK0; |
2679 | case ACX_RADIO_TYPE_RADIA0x16: return ACX_RADIO_RSSI_RADIA78; |
2680 | default: return ACX_RADIO_RSSI_UNKN0; |
2681 | } |
2682 | } |
2683 | |
2684 | void |
2685 | acx_iter_func(void *arg, struct ieee80211_node *ni) |
2686 | { |
2687 | struct acx_softc *sc = arg; |
2688 | struct acx_node *wn = (struct acx_node *)ni; |
2689 | |
2690 | ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn); |
2691 | } |
2692 | |
2693 | void |
2694 | acx_amrr_timeout(void *arg) |
2695 | { |
2696 | struct acx_softc *sc = arg; |
2697 | struct ieee80211com *ic = &sc->sc_ic; |
2698 | |
2699 | if (ic->ic_opmode == IEEE80211_M_STA) |
2700 | acx_iter_func(sc, ic->ic_bss); |
2701 | else |
2702 | ieee80211_iterate_nodes(ic, acx_iter_func, sc); |
2703 | |
2704 | timeout_add_msec(&sc->amrr_ch, 500); |
2705 | } |
2706 | |
2707 | void |
2708 | acx_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) |
2709 | { |
2710 | struct acx_softc *sc = ic->ic_ific_ac.ac_if.if_softc; |
2711 | int i; |
2712 | |
2713 | ieee80211_amrr_node_init(&sc->amrr, &((struct acx_node *)ni)->amn); |
2714 | |
2715 | /* set rate to some reasonable initial value */ |
2716 | for (i = ni->ni_rates.rs_nrates - 1; |
2717 | i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL0x7f) > 72; |
2718 | i--); |
2719 | ni->ni_txrate = i; |
2720 | } |
2721 | |
2722 | #ifndef IEEE80211_STA_ONLY |
2723 | void |
2724 | acx_set_tim(struct ieee80211com *ic, int aid, int set) |
2725 | { |
2726 | struct acx_softc *sc = ic->ic_ific_ac.ac_if.if_softc; |
2727 | struct acx_tmplt_tim tim; |
2728 | u_int8_t *ep; |
2729 | |
2730 | ieee80211_set_tim(ic, aid, set); |
2731 | |
2732 | bzero(&tim, sizeof(tim))__builtin_bzero((&tim), (sizeof(tim))); |
2733 | ep = ieee80211_add_tim(tim.data.u_mem, ic); |
2734 | |
2735 | acx_set_tmplt(sc, ACXCMD_TMPLT_TIM0x0a, &tim, ep - (u_int8_t *)&tim); |
2736 | } |
2737 | #endif |