| File: | dev/pci/if_se.c |
| Warning: | line 527, column 16 Value stored to 'ifp' during its initialization is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* $OpenBSD: if_se.c,v 1.24 2023/11/10 15:51:20 bluhm Exp $ */ |
| 2 | |
| 3 | /*- |
| 4 | * Copyright (c) 2009, 2010 Christopher Zimmermann <madroach@zakweb.de> |
| 5 | * Copyright (c) 2008, 2009, 2010 Nikolay Denev <ndenev@gmail.com> |
| 6 | * Copyright (c) 2007, 2008 Alexander Pohoyda <alexander.pohoyda@gmx.net> |
| 7 | * Copyright (c) 1997, 1998, 1999 |
| 8 | * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. |
| 9 | * |
| 10 | * Redistribution and use in source and binary forms, with or without |
| 11 | * modification, are permitted provided that the following conditions |
| 12 | * are met: |
| 13 | * 1. Redistributions of source code must retain the above copyright |
| 14 | * notice, this list of conditions and the following disclaimer. |
| 15 | * 2. Redistributions in binary form must reproduce the above copyright |
| 16 | * notice, this list of conditions and the following disclaimer in the |
| 17 | * documentation and/or other materials provided with the distribution. |
| 18 | * 3. All advertising materials mentioning features or use of this software |
| 19 | * must display the following acknowledgement: |
| 20 | * This product includes software developed by Bill Paul. |
| 21 | * 4. Neither the name of the author nor the names of any co-contributors |
| 22 | * may be used to endorse or promote products derived from this software |
| 23 | * without specific prior written permission. |
| 24 | * |
| 25 | * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' |
| 26 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
| 27 | * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A |
| 28 | * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL AUTHORS OR |
| 29 | * THE VOICES IN THEIR HEADS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| 30 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 31 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| 32 | * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 33 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| 34 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 35 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| 36 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
| 37 | */ |
| 38 | |
| 39 | /* |
| 40 | * SiS 190/191 PCI Ethernet NIC driver. |
| 41 | * |
| 42 | * Adapted to SiS 190 NIC by Alexander Pohoyda based on the original |
| 43 | * SiS 900 driver by Bill Paul, using SiS 190/191 Solaris driver by |
| 44 | * Masayuki Murayama and SiS 190/191 GNU/Linux driver by K.M. Liu |
| 45 | * <kmliu@sis.com>. Thanks to Pyun YongHyeon <pyunyh@gmail.com> for |
| 46 | * review and very useful comments. |
| 47 | * |
| 48 | * Ported to OpenBSD by Christopher Zimmermann 2009/10 |
| 49 | * |
| 50 | * Adapted to SiS 191 NIC by Nikolay Denev with further ideas from the |
| 51 | * Linux and Solaris drivers. |
| 52 | */ |
| 53 | |
| 54 | #include "bpfilter.h" |
| 55 | |
| 56 | #include <sys/param.h> |
| 57 | #include <sys/systm.h> |
| 58 | #include <sys/device.h> |
| 59 | #include <sys/ioctl.h> |
| 60 | #include <sys/kernel.h> |
| 61 | #include <sys/mbuf.h> |
| 62 | #include <sys/socket.h> |
| 63 | #include <sys/sockio.h> |
| 64 | #include <sys/timeout.h> |
| 65 | |
| 66 | #include <net/if.h> |
| 67 | #include <net/if_media.h> |
| 68 | |
| 69 | #include <netinet/in.h> |
| 70 | #include <netinet/if_ether.h> |
| 71 | |
| 72 | #if NBPFILTER1 > 0 |
| 73 | #include <net/bpf.h> |
| 74 | #endif |
| 75 | |
| 76 | #include <dev/mii/miivar.h> |
| 77 | |
| 78 | #include <dev/pci/pcidevs.h> |
| 79 | #include <dev/pci/pcireg.h> |
| 80 | #include <dev/pci/pcivar.h> |
| 81 | |
| 82 | #include <dev/pci/if_sereg.h> |
| 83 | |
| 84 | #define SE_RX_RING_CNT256 256 /* [8, 1024] */ |
| 85 | #define SE_TX_RING_CNT256 256 /* [8, 8192] */ |
| 86 | #define SE_RX_BUF_ALIGNsizeof(uint64_t) sizeof(uint64_t) |
| 87 | |
| 88 | #define SE_RX_RING_SZ(256 * sizeof(struct se_desc)) (SE_RX_RING_CNT256 * sizeof(struct se_desc)) |
| 89 | #define SE_TX_RING_SZ(256 * sizeof(struct se_desc)) (SE_TX_RING_CNT256 * sizeof(struct se_desc)) |
| 90 | |
| 91 | struct se_list_data { |
| 92 | struct se_desc *se_rx_ring; |
| 93 | struct se_desc *se_tx_ring; |
| 94 | bus_dmamap_t se_rx_dmamap; |
| 95 | bus_dmamap_t se_tx_dmamap; |
| 96 | }; |
| 97 | |
| 98 | struct se_chain_data { |
| 99 | struct mbuf *se_rx_mbuf[SE_RX_RING_CNT256]; |
| 100 | struct mbuf *se_tx_mbuf[SE_TX_RING_CNT256]; |
| 101 | bus_dmamap_t se_rx_map[SE_RX_RING_CNT256]; |
| 102 | bus_dmamap_t se_tx_map[SE_TX_RING_CNT256]; |
| 103 | uint se_rx_prod; |
| 104 | uint se_tx_prod; |
| 105 | uint se_tx_cons; |
| 106 | uint se_tx_cnt; |
| 107 | }; |
| 108 | |
| 109 | struct se_softc { |
| 110 | struct device sc_dev; |
| 111 | void *sc_ih; |
| 112 | bus_space_tag_t sc_iot; |
| 113 | bus_space_handle_t sc_ioh; |
| 114 | bus_dma_tag_t sc_dmat; |
| 115 | |
| 116 | struct mii_data sc_mii; |
| 117 | struct arpcom sc_ac; |
| 118 | |
| 119 | struct se_list_data se_ldata; |
| 120 | struct se_chain_data se_cdata; |
| 121 | |
| 122 | struct timeout sc_tick_tmo; |
| 123 | |
| 124 | int sc_flags; |
| 125 | #define SE_FLAG_FASTETHER0x0001 0x0001 |
| 126 | #define SE_FLAG_RGMII0x0010 0x0010 |
| 127 | #define SE_FLAG_LINK0x8000 0x8000 |
| 128 | }; |
| 129 | |
| 130 | /* |
| 131 | * Various supported device vendors/types and their names. |
| 132 | */ |
| 133 | const struct pci_matchid se_devices[] = { |
| 134 | { PCI_VENDOR_SIS0x1039, PCI_PRODUCT_SIS_1900x0190 }, |
| 135 | { PCI_VENDOR_SIS0x1039, PCI_PRODUCT_SIS_1910x0191 } |
| 136 | }; |
| 137 | |
| 138 | int se_match(struct device *, void *, void *); |
| 139 | void se_attach(struct device *, struct device *, void *); |
| 140 | int se_activate(struct device *, int); |
| 141 | |
| 142 | const struct cfattach se_ca = { |
| 143 | sizeof(struct se_softc), |
| 144 | se_match, se_attach, NULL((void *)0), se_activate |
| 145 | }; |
| 146 | |
| 147 | struct cfdriver se_cd = { |
| 148 | 0, "se", DV_IFNET |
| 149 | }; |
| 150 | |
| 151 | uint32_t |
| 152 | se_miibus_cmd(struct se_softc *, uint32_t); |
| 153 | int se_miibus_readreg(struct device *, int, int); |
| 154 | void se_miibus_writereg(struct device *, int, int, int); |
| 155 | void se_miibus_statchg(struct device *); |
| 156 | |
| 157 | int se_newbuf(struct se_softc *, uint); |
| 158 | void se_discard_rxbuf(struct se_softc *, uint); |
| 159 | int se_encap(struct se_softc *, struct mbuf *, uint *); |
| 160 | void se_rxeof(struct se_softc *); |
| 161 | void se_txeof(struct se_softc *); |
| 162 | int se_intr(void *); |
| 163 | void se_tick(void *); |
| 164 | void se_start(struct ifnet *); |
| 165 | int se_ioctl(struct ifnet *, u_long, caddr_t); |
| 166 | int se_init(struct ifnet *); |
| 167 | void se_stop(struct se_softc *); |
| 168 | void se_watchdog(struct ifnet *); |
| 169 | int se_ifmedia_upd(struct ifnet *); |
| 170 | void se_ifmedia_sts(struct ifnet *, struct ifmediareq *); |
| 171 | |
| 172 | int se_pcib_match(struct pci_attach_args *); |
| 173 | int se_get_mac_addr_apc(struct se_softc *, uint8_t *); |
| 174 | int se_get_mac_addr_eeprom(struct se_softc *, uint8_t *); |
| 175 | uint16_t |
| 176 | se_read_eeprom(struct se_softc *, int); |
| 177 | |
| 178 | void se_iff(struct se_softc *); |
| 179 | void se_reset(struct se_softc *); |
| 180 | int se_list_rx_init(struct se_softc *); |
| 181 | int se_list_rx_free(struct se_softc *); |
| 182 | int se_list_tx_init(struct se_softc *); |
| 183 | int se_list_tx_free(struct se_softc *); |
| 184 | |
| 185 | /* |
| 186 | * Register space access macros. |
| 187 | */ |
| 188 | |
| 189 | #define CSR_WRITE_4(sc, reg, val)(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (reg), (val ))) \ |
| 190 | bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, reg, val)(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (reg), (val ))) |
| 191 | #define CSR_WRITE_2(sc, reg, val)(((sc)->sc_iot)->write_2(((sc)->sc_ioh), (reg), (val ))) \ |
| 192 | bus_space_write_2((sc)->sc_iot, (sc)->sc_ioh, reg, val)(((sc)->sc_iot)->write_2(((sc)->sc_ioh), (reg), (val ))) |
| 193 | #define CSR_WRITE_1(sc, reg, val)(((sc)->sc_iot)->write_1(((sc)->sc_ioh), (reg), (val ))) \ |
| 194 | bus_space_write_1((sc)->sc_iot, (sc)->sc_ioh, reg, val)(((sc)->sc_iot)->write_1(((sc)->sc_ioh), (reg), (val ))) |
| 195 | |
| 196 | #define CSR_READ_4(sc, reg)(((sc)->sc_iot)->read_4(((sc)->sc_ioh), (reg))) \ |
| 197 | bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, reg)(((sc)->sc_iot)->read_4(((sc)->sc_ioh), (reg))) |
| 198 | #define CSR_READ_2(sc, reg)(((sc)->sc_iot)->read_2(((sc)->sc_ioh), (reg))) \ |
| 199 | bus_space_read_2((sc)->sc_iot, (sc)->sc_ioh, reg)(((sc)->sc_iot)->read_2(((sc)->sc_ioh), (reg))) |
| 200 | #define CSR_READ_1(sc, reg)(((sc)->sc_iot)->read_1(((sc)->sc_ioh), (reg))) \ |
| 201 | bus_space_read_1((sc)->sc_iot, (sc)->sc_ioh, reg)(((sc)->sc_iot)->read_1(((sc)->sc_ioh), (reg))) |
| 202 | |
| 203 | /* |
| 204 | * Read a sequence of words from the EEPROM. |
| 205 | */ |
| 206 | uint16_t |
| 207 | se_read_eeprom(struct se_softc *sc, int offset) |
| 208 | { |
| 209 | uint32_t val; |
| 210 | int i; |
| 211 | |
| 212 | KASSERT(offset <= EI_OFFSET)((offset <= 0x0000fc00) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/dev/pci/if_se.c", 212, "offset <= EI_OFFSET" )); |
| 213 | |
| 214 | CSR_WRITE_4(sc, ROMInterface,(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x3c), (0x00000080 | (2 << 8) | (offset << 10)))) |
| 215 | EI_REQ | EI_OP_RD | (offset << EI_OFFSET_SHIFT))(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x3c), (0x00000080 | (2 << 8) | (offset << 10)))); |
| 216 | DELAY(500)(*delay_func)(500); |
| 217 | for (i = 0; i < SE_TIMEOUT1000; i++) { |
| 218 | val = CSR_READ_4(sc, ROMInterface)(((sc)->sc_iot)->read_4(((sc)->sc_ioh), (0x3c))); |
| 219 | if ((val & EI_REQ0x00000080) == 0) |
| 220 | break; |
| 221 | DELAY(100)(*delay_func)(100); |
| 222 | } |
| 223 | if (i == SE_TIMEOUT1000) { |
| 224 | printf("%s: EEPROM read timeout: 0x%08x\n", |
| 225 | sc->sc_dev.dv_xname, val); |
| 226 | return 0xffff; |
| 227 | } |
| 228 | |
| 229 | return (val & EI_DATA0xffff0000) >> EI_DATA_SHIFT16; |
| 230 | } |
| 231 | |
| 232 | int |
| 233 | se_get_mac_addr_eeprom(struct se_softc *sc, uint8_t *dest) |
| 234 | { |
| 235 | uint16_t val; |
| 236 | int i; |
| 237 | |
| 238 | val = se_read_eeprom(sc, EEPROMSignature0x00); |
| 239 | if (val == 0xffff || val == 0x0000) { |
| 240 | printf("%s: invalid EEPROM signature : 0x%04x\n", |
| 241 | sc->sc_dev.dv_xname, val); |
| 242 | return (EINVAL22); |
| 243 | } |
| 244 | |
| 245 | for (i = 0; i < ETHER_ADDR_LEN6; i += 2) { |
| 246 | val = se_read_eeprom(sc, EEPROMMACAddr0x03 + i / 2); |
| 247 | dest[i + 0] = (uint8_t)val; |
| 248 | dest[i + 1] = (uint8_t)(val >> 8); |
| 249 | } |
| 250 | |
| 251 | if ((se_read_eeprom(sc, EEPROMInfo0x02) & 0x80) != 0) |
| 252 | sc->sc_flags |= SE_FLAG_RGMII0x0010; |
| 253 | return (0); |
| 254 | } |
| 255 | |
| 256 | /* |
| 257 | * For SiS96x, APC CMOS RAM is used to store Ethernet address. |
| 258 | * APC CMOS RAM is accessed through ISA bridge. |
| 259 | */ |
| 260 | #if defined(__amd64__1) || defined(__i386__) |
| 261 | int |
| 262 | se_pcib_match(struct pci_attach_args *pa) |
| 263 | { |
| 264 | const struct pci_matchid apc_devices[] = { |
| 265 | { PCI_VENDOR_SIS0x1039, PCI_PRODUCT_SIS_9650x0965 }, |
| 266 | { PCI_VENDOR_SIS0x1039, PCI_PRODUCT_SIS_9660x0966 }, |
| 267 | { PCI_VENDOR_SIS0x1039, PCI_PRODUCT_SIS_9680x0968 } |
| 268 | }; |
| 269 | |
| 270 | return pci_matchbyid(pa, apc_devices, nitems(apc_devices)(sizeof((apc_devices)) / sizeof((apc_devices)[0]))); |
| 271 | } |
| 272 | #endif |
| 273 | |
| 274 | int |
| 275 | se_get_mac_addr_apc(struct se_softc *sc, uint8_t *dest) |
| 276 | { |
| 277 | #if defined(__amd64__1) || defined(__i386__) |
| 278 | struct pci_attach_args pa; |
| 279 | pcireg_t reg; |
| 280 | bus_space_handle_t ioh; |
| 281 | int rc, i; |
| 282 | |
| 283 | if (pci_find_device(&pa, se_pcib_match) == 0) { |
| 284 | printf("\n%s: couldn't find PCI-ISA bridge\n", |
| 285 | sc->sc_dev.dv_xname); |
| 286 | return EINVAL22; |
| 287 | } |
| 288 | |
| 289 | /* Enable port 0x78 and 0x79 to access APC registers. */ |
| 290 | reg = pci_conf_read(pa.pa_pc, pa.pa_tag, 0x48); |
| 291 | pci_conf_write(pa.pa_pc, pa.pa_tag, 0x48, reg & ~0x02); |
| 292 | DELAY(50)(*delay_func)(50); |
| 293 | (void)pci_conf_read(pa.pa_pc, pa.pa_tag, 0x48); |
| 294 | |
| 295 | /* XXX this abuses bus_space implementation knowledge */ |
| 296 | rc = _bus_space_map(pa.pa_iot, 0x78, 2, 0, &ioh); |
| 297 | if (rc == 0) { |
| 298 | /* Read stored Ethernet address. */ |
| 299 | for (i = 0; i < ETHER_ADDR_LEN6; i++) { |
| 300 | bus_space_write_1(pa.pa_iot, ioh, 0, 0x09 + i)((pa.pa_iot)->write_1((ioh), (0), (0x09 + i))); |
| 301 | dest[i] = bus_space_read_1(pa.pa_iot, ioh, 1)((pa.pa_iot)->read_1((ioh), (1))); |
| 302 | } |
| 303 | bus_space_write_1(pa.pa_iot, ioh, 0, 0x12)((pa.pa_iot)->write_1((ioh), (0), (0x12))); |
| 304 | if ((bus_space_read_1(pa.pa_iot, ioh, 1)((pa.pa_iot)->read_1((ioh), (1))) & 0x80) != 0) |
| 305 | sc->sc_flags |= SE_FLAG_RGMII0x0010; |
| 306 | _bus_space_unmap(pa.pa_iot, ioh, 2, NULL((void *)0)); |
| 307 | } else |
| 308 | rc = EINVAL22; |
| 309 | |
| 310 | /* Restore access to APC registers. */ |
| 311 | pci_conf_write(pa.pa_pc, pa.pa_tag, 0x48, reg); |
| 312 | |
| 313 | return rc; |
| 314 | #endif |
| 315 | return EINVAL22; |
| 316 | } |
| 317 | |
| 318 | uint32_t |
| 319 | se_miibus_cmd(struct se_softc *sc, uint32_t ctrl) |
| 320 | { |
| 321 | int i; |
| 322 | uint32_t val; |
| 323 | |
| 324 | CSR_WRITE_4(sc, GMIIControl, ctrl)(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x44), (ctrl ))); |
| 325 | DELAY(10)(*delay_func)(10); |
| 326 | for (i = 0; i < SE_TIMEOUT1000; i++) { |
| 327 | val = CSR_READ_4(sc, GMIIControl)(((sc)->sc_iot)->read_4(((sc)->sc_ioh), (0x44))); |
| 328 | if ((val & GMI_REQ0x00000010) == 0) |
| 329 | return val; |
| 330 | DELAY(10)(*delay_func)(10); |
| 331 | } |
| 332 | |
| 333 | return GMI_REQ0x00000010; |
| 334 | } |
| 335 | |
| 336 | int |
| 337 | se_miibus_readreg(struct device *self, int phy, int reg) |
| 338 | { |
| 339 | struct se_softc *sc = (struct se_softc *)self; |
| 340 | uint32_t ctrl, val; |
| 341 | |
| 342 | ctrl = (phy << GMI_PHY_SHIFT6) | (reg << GMI_REG_SHIFT11) | |
| 343 | GMI_OP_RD0x00000000 | GMI_REQ0x00000010; |
| 344 | val = se_miibus_cmd(sc, ctrl); |
| 345 | if ((val & GMI_REQ0x00000010) != 0) { |
| 346 | printf("%s: PHY read timeout : %d\n", |
| 347 | sc->sc_dev.dv_xname, reg); |
| 348 | return 0; |
| 349 | } |
| 350 | return (val & GMI_DATA0xffff0000) >> GMI_DATA_SHIFT16; |
| 351 | } |
| 352 | |
| 353 | void |
| 354 | se_miibus_writereg(struct device *self, int phy, int reg, int data) |
| 355 | { |
| 356 | struct se_softc *sc = (struct se_softc *)self; |
| 357 | uint32_t ctrl, val; |
| 358 | |
| 359 | ctrl = (phy << GMI_PHY_SHIFT6) | (reg << GMI_REG_SHIFT11) | |
| 360 | GMI_OP_WR0x00000020 | (data << GMI_DATA_SHIFT16) | GMI_REQ0x00000010; |
| 361 | val = se_miibus_cmd(sc, ctrl); |
| 362 | if ((val & GMI_REQ0x00000010) != 0) { |
| 363 | printf("%s: PHY write timeout : %d\n", |
| 364 | sc->sc_dev.dv_xname, reg); |
| 365 | } |
| 366 | } |
| 367 | |
| 368 | void |
| 369 | se_miibus_statchg(struct device *self) |
| 370 | { |
| 371 | struct se_softc *sc = (struct se_softc *)self; |
| 372 | #ifdef SE_DEBUG |
| 373 | struct ifnet *ifp = &sc->sc_ac.ac_if; |
| 374 | #endif |
| 375 | struct mii_data *mii = &sc->sc_mii; |
| 376 | uint32_t ctl, speed; |
| 377 | |
| 378 | speed = 0; |
| 379 | sc->sc_flags &= ~SE_FLAG_LINK0x8000; |
| 380 | if ((mii->mii_media_status & (IFM_ACTIVE0x0000000000000002ULL | IFM_AVALID0x0000000000000001ULL)) == |
| 381 | (IFM_ACTIVE0x0000000000000002ULL | IFM_AVALID0x0000000000000001ULL)) { |
| 382 | switch (IFM_SUBTYPE(mii->mii_media_active)((mii->mii_media_active) & 0x00000000000000ffULL)) { |
| 383 | case IFM_10_T3: |
| 384 | #ifdef SE_DEBUG |
| 385 | if (ifp->if_flags & IFF_DEBUG0x4) |
| 386 | printf("%s: 10baseT link\n", ifp->if_xname); |
| 387 | #endif |
| 388 | sc->sc_flags |= SE_FLAG_LINK0x8000; |
| 389 | speed = SC_SPEED_100x00000400; |
| 390 | break; |
| 391 | case IFM_100_TX6: |
| 392 | #ifdef SE_DEBUG |
| 393 | if (ifp->if_flags & IFF_DEBUG0x4) |
| 394 | printf("%s: 100baseTX link\n", ifp->if_xname); |
| 395 | #endif |
| 396 | sc->sc_flags |= SE_FLAG_LINK0x8000; |
| 397 | speed = SC_SPEED_1000x00000800; |
| 398 | break; |
| 399 | case IFM_1000_T16: |
| 400 | #ifdef SE_DEBUG |
| 401 | if (ifp->if_flags & IFF_DEBUG0x4) |
| 402 | printf("%s: 1000baseT link\n", ifp->if_xname); |
| 403 | #endif |
| 404 | if ((sc->sc_flags & SE_FLAG_FASTETHER0x0001) == 0) { |
| 405 | sc->sc_flags |= SE_FLAG_LINK0x8000; |
| 406 | speed = SC_SPEED_10000x00000c00; |
| 407 | } |
| 408 | break; |
| 409 | default: |
| 410 | break; |
| 411 | } |
| 412 | } |
| 413 | if ((sc->sc_flags & SE_FLAG_LINK0x8000) == 0) { |
| 414 | #ifdef SE_DEBUG |
| 415 | if (ifp->if_flags & IFF_DEBUG0x4) |
| 416 | printf("%s: no link\n", ifp->if_xname); |
| 417 | #endif |
| 418 | return; |
| 419 | } |
| 420 | /* Reprogram MAC to resolved speed/duplex/flow-control parameters. */ |
| 421 | ctl = CSR_READ_4(sc, StationControl)(((sc)->sc_iot)->read_4(((sc)->sc_ioh), (0x40))); |
| 422 | ctl &= ~(0x0f000000 | SC_FDX0x00001000 | SC_SPEED_MASK0x00000c00); |
| 423 | if (speed == SC_SPEED_10000x00000c00) |
| 424 | ctl |= 0x07000000; |
| 425 | else |
| 426 | ctl |= 0x04000000; |
| 427 | #ifdef notyet |
| 428 | if ((sc->sc_flags & SE_FLAG_GMII) != 0) |
| 429 | ctl |= 0x03000000; |
| 430 | #endif |
| 431 | ctl |= speed; |
| 432 | if ((IFM_OPTIONS(mii->mii_media_active)((mii->mii_media_active) & (0x00000000ffff0000ULL|0x00ffff0000000000ULL )) & IFM_FDX0x0000010000000000ULL) != 0) |
| 433 | ctl |= SC_FDX0x00001000; |
| 434 | CSR_WRITE_4(sc, StationControl, ctl)(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x40), (ctl ))); |
| 435 | if ((sc->sc_flags & SE_FLAG_RGMII0x0010) != 0) { |
| 436 | CSR_WRITE_4(sc, RGMIIDelay, 0x0441)(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x58), (0x0441 ))); |
| 437 | CSR_WRITE_4(sc, RGMIIDelay, 0x0440)(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x58), (0x0440 ))); |
| 438 | } |
| 439 | } |
| 440 | |
| 441 | void |
| 442 | se_iff(struct se_softc *sc) |
| 443 | { |
| 444 | struct arpcom *ac = &sc->sc_ac; |
| 445 | struct ifnet *ifp = &ac->ac_if; |
| 446 | struct ether_multi *enm; |
| 447 | struct ether_multistep step; |
| 448 | uint32_t crc, hashes[2]; |
| 449 | uint16_t rxfilt; |
| 450 | |
| 451 | rxfilt = CSR_READ_2(sc, RxMacControl)(((sc)->sc_iot)->read_2(((sc)->sc_ioh), (0x60))); |
| 452 | rxfilt &= ~(AcceptAllPhys0x0100 | AcceptBroadcast0x0800 | AcceptMulticast0x0400); |
| 453 | ifp->if_flags &= ~IFF_ALLMULTI0x200; |
| 454 | |
| 455 | /* |
| 456 | * Always accept broadcast frames. |
| 457 | * Always accept frames destined to our station address. |
| 458 | */ |
| 459 | rxfilt |= AcceptBroadcast0x0800 | AcceptMyPhys0x0200; |
| 460 | |
| 461 | if (ifp->if_flags & IFF_PROMISC0x100 || ac->ac_multirangecnt > 0) { |
| 462 | ifp->if_flags |= IFF_ALLMULTI0x200; |
| 463 | if (ifp->if_flags & IFF_PROMISC0x100) |
| 464 | rxfilt |= AcceptAllPhys0x0100; |
| 465 | rxfilt |= AcceptMulticast0x0400; |
| 466 | hashes[0] = hashes[1] = 0xffffffff; |
| 467 | } else { |
| 468 | rxfilt |= AcceptMulticast0x0400; |
| 469 | hashes[0] = hashes[1] = 0; |
| 470 | |
| 471 | ETHER_FIRST_MULTI(step, ac, enm)do { (step).e_enm = ((&(ac)->ac_multiaddrs)->lh_first ); do { if ((((enm)) = ((step)).e_enm) != ((void *)0)) ((step )).e_enm = ((((enm)))->enm_list.le_next); } while ( 0); } while ( 0); |
| 472 | while (enm != NULL((void *)0)) { |
| 473 | crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN6); |
| 474 | |
| 475 | hashes[crc >> 31] |= 1 << ((crc >> 26) & 0x1f); |
| 476 | |
| 477 | ETHER_NEXT_MULTI(step, enm)do { if (((enm) = (step).e_enm) != ((void *)0)) (step).e_enm = (((enm))->enm_list.le_next); } while ( 0); |
| 478 | } |
| 479 | } |
| 480 | |
| 481 | CSR_WRITE_2(sc, RxMacControl, rxfilt)(((sc)->sc_iot)->write_2(((sc)->sc_ioh), (0x60), (rxfilt ))); |
| 482 | CSR_WRITE_4(sc, RxHashTable, hashes[0])(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x68), (hashes [0]))); |
| 483 | CSR_WRITE_4(sc, RxHashTable2, hashes[1])(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x6c), (hashes [1]))); |
| 484 | } |
| 485 | |
| 486 | void |
| 487 | se_reset(struct se_softc *sc) |
| 488 | { |
| 489 | CSR_WRITE_4(sc, IntrMask, 0)(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x24), (0) )); |
| 490 | CSR_WRITE_4(sc, IntrStatus, 0xffffffff)(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x20), (0xffffffff ))); |
| 491 | |
| 492 | /* Soft reset. */ |
| 493 | CSR_WRITE_4(sc, IntrControl, 0x8000)(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x28), (0x8000 ))); |
| 494 | CSR_READ_4(sc, IntrControl)(((sc)->sc_iot)->read_4(((sc)->sc_ioh), (0x28))); |
| 495 | DELAY(100)(*delay_func)(100); |
| 496 | CSR_WRITE_4(sc, IntrControl, 0)(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x28), (0) )); |
| 497 | /* Stop MAC. */ |
| 498 | CSR_WRITE_4(sc, TX_CTL, 0x1a00)(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x00), (0x1a00 ))); |
| 499 | CSR_WRITE_4(sc, RX_CTL, 0x1a00)(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x10), (0x1a00 ))); |
| 500 | |
| 501 | CSR_WRITE_4(sc, IntrMask, 0)(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x24), (0) )); |
| 502 | CSR_WRITE_4(sc, IntrStatus, 0xffffffff)(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x20), (0xffffffff ))); |
| 503 | |
| 504 | CSR_WRITE_4(sc, GMIIControl, 0)(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x44), (0) )); |
| 505 | } |
| 506 | |
| 507 | /* |
| 508 | * Probe for an SiS chip. Check the PCI vendor and device |
| 509 | * IDs against our list and return a device name if we find a match. |
| 510 | */ |
| 511 | int |
| 512 | se_match(struct device *parent, void *match, void *aux) |
| 513 | { |
| 514 | struct pci_attach_args *pa = (struct pci_attach_args *)aux; |
| 515 | |
| 516 | return pci_matchbyid(pa, se_devices, nitems(se_devices)(sizeof((se_devices)) / sizeof((se_devices)[0]))); |
| 517 | } |
| 518 | |
| 519 | /* |
| 520 | * Attach the interface. Do ifmedia setup and ethernet/BPF attach. |
| 521 | */ |
| 522 | void |
| 523 | se_attach(struct device *parent, struct device *self, void *aux) |
| 524 | { |
| 525 | struct se_softc *sc = (struct se_softc *)self; |
| 526 | struct arpcom *ac = &sc->sc_ac; |
| 527 | struct ifnet *ifp = &ac->ac_if; |
Value stored to 'ifp' during its initialization is never read | |
| 528 | struct pci_attach_args *pa = (struct pci_attach_args *)aux; |
| 529 | uint8_t eaddr[ETHER_ADDR_LEN6]; |
| 530 | const char *intrstr; |
| 531 | pci_intr_handle_t ih; |
| 532 | bus_size_t iosize; |
| 533 | bus_dma_segment_t seg; |
| 534 | struct se_list_data *ld; |
| 535 | struct se_chain_data *cd; |
| 536 | int nseg; |
| 537 | uint i; |
| 538 | int rc; |
| 539 | |
| 540 | printf(": "); |
| 541 | |
| 542 | /* |
| 543 | * Map control/status registers. |
| 544 | */ |
| 545 | |
| 546 | rc = pci_mapreg_map(pa, PCI_MAPREG_START0x10, PCI_MAPREG_TYPE_MEM0x00000000, 0, |
| 547 | &sc->sc_iot, &sc->sc_ioh, NULL((void *)0), &iosize, 0); |
| 548 | if (rc != 0) { |
| 549 | printf("can't map i/o space\n"); |
| 550 | return; |
| 551 | } |
| 552 | |
| 553 | if (pci_intr_map(pa, &ih)) { |
| 554 | printf("can't map interrupt\n"); |
| 555 | goto fail1; |
| 556 | } |
| 557 | intrstr = pci_intr_string(pa->pa_pc, ih); |
| 558 | sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_NET0x4, se_intr, sc, |
| 559 | self->dv_xname); |
| 560 | if (sc->sc_ih == NULL((void *)0)) { |
| 561 | printf("can't establish interrupt"); |
| 562 | if (intrstr != NULL((void *)0)) |
| 563 | printf(" at %s", intrstr); |
| 564 | printf("\n"); |
| 565 | goto fail1; |
| 566 | } |
| 567 | |
| 568 | printf("%s", intrstr); |
| 569 | |
| 570 | if (pa->pa_id == PCI_ID_CODE(PCI_VENDOR_SIS, PCI_PRODUCT_SIS_190)((((0x1039) & 0xffff) << 0) | (((0x0190) & 0xffff ) << 16))) |
| 571 | sc->sc_flags |= SE_FLAG_FASTETHER0x0001; |
| 572 | |
| 573 | /* Reset the adapter. */ |
| 574 | se_reset(sc); |
| 575 | |
| 576 | /* Get MAC address from the EEPROM. */ |
| 577 | if ((pci_conf_read(pa->pa_pc, pa->pa_tag, 0x70) & (0x01 << 24)) != 0) |
| 578 | se_get_mac_addr_apc(sc, eaddr); |
| 579 | else |
| 580 | se_get_mac_addr_eeprom(sc, eaddr); |
| 581 | printf(", address %s\n", ether_sprintf(eaddr)); |
| 582 | bcopy(eaddr, ac->ac_enaddr, ETHER_ADDR_LEN6); |
| 583 | |
| 584 | /* |
| 585 | * Now do all the DMA mapping stuff |
| 586 | */ |
| 587 | |
| 588 | sc->sc_dmat = pa->pa_dmat; |
| 589 | ld = &sc->se_ldata; |
| 590 | cd = &sc->se_cdata; |
| 591 | |
| 592 | /* First create TX/RX busdma maps. */ |
| 593 | for (i = 0; i < SE_RX_RING_CNT256; i++) { |
| 594 | rc = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((1 << 11)), (1), ((1 << 11)), (0), (0x0001), (&cd->se_rx_map [i])) |
| 595 | 0, BUS_DMA_NOWAIT, &cd->se_rx_map[i])(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((1 << 11)), (1), ((1 << 11)), (0), (0x0001), (&cd->se_rx_map [i])); |
| 596 | if (rc != 0) { |
| 597 | printf("%s: cannot init the RX map array\n", |
| 598 | self->dv_xname); |
| 599 | goto fail2; |
| 600 | } |
| 601 | } |
| 602 | |
| 603 | for (i = 0; i < SE_TX_RING_CNT256; i++) { |
| 604 | rc = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((1 << 11)), (1), ((1 << 11)), (0), (0x0001), (&cd->se_tx_map [i])) |
| 605 | 0, BUS_DMA_NOWAIT, &cd->se_tx_map[i])(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((1 << 11)), (1), ((1 << 11)), (0), (0x0001), (&cd->se_tx_map [i])); |
| 606 | if (rc != 0) { |
| 607 | printf("%s: cannot init the TX map array\n", |
| 608 | self->dv_xname); |
| 609 | goto fail2; |
| 610 | } |
| 611 | } |
| 612 | |
| 613 | /* |
| 614 | * Now allocate a chunk of DMA-able memory for RX and TX ring |
| 615 | * descriptors, as a contiguous block of memory. |
| 616 | * XXX fix deallocation upon error |
| 617 | */ |
| 618 | |
| 619 | /* RX */ |
| 620 | rc = bus_dmamem_alloc(sc->sc_dmat, SE_RX_RING_SZ, PAGE_SIZE, 0,(*(sc->sc_dmat)->_dmamem_alloc)((sc->sc_dmat), ((256 * sizeof(struct se_desc))), ((1 << 12)), (0), (&seg ), (1), (&nseg), (0x0001)) |
| 621 | &seg, 1, &nseg, BUS_DMA_NOWAIT)(*(sc->sc_dmat)->_dmamem_alloc)((sc->sc_dmat), ((256 * sizeof(struct se_desc))), ((1 << 12)), (0), (&seg ), (1), (&nseg), (0x0001)); |
| 622 | if (rc != 0) { |
| 623 | printf("%s: no memory for RX descriptors\n", self->dv_xname); |
| 624 | goto fail2; |
| 625 | } |
| 626 | |
| 627 | rc = bus_dmamem_map(sc->sc_dmat, &seg, nseg, SE_RX_RING_SZ,(*(sc->sc_dmat)->_dmamem_map)((sc->sc_dmat), (&seg ), (nseg), ((256 * sizeof(struct se_desc))), ((caddr_t *)& ld->se_rx_ring), (0x0001)) |
| 628 | (caddr_t *)&ld->se_rx_ring, BUS_DMA_NOWAIT)(*(sc->sc_dmat)->_dmamem_map)((sc->sc_dmat), (&seg ), (nseg), ((256 * sizeof(struct se_desc))), ((caddr_t *)& ld->se_rx_ring), (0x0001)); |
| 629 | if (rc != 0) { |
| 630 | printf("%s: can't map RX descriptors\n", self->dv_xname); |
| 631 | goto fail2; |
| 632 | } |
| 633 | |
| 634 | rc = bus_dmamap_create(sc->sc_dmat, SE_RX_RING_SZ, 1,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((256 * sizeof(struct se_desc))), (1), ((256 * sizeof(struct se_desc ))), (0), (0x0001), (&ld->se_rx_dmamap)) |
| 635 | SE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &ld->se_rx_dmamap)(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((256 * sizeof(struct se_desc))), (1), ((256 * sizeof(struct se_desc ))), (0), (0x0001), (&ld->se_rx_dmamap)); |
| 636 | if (rc != 0) { |
| 637 | printf("%s: can't alloc RX DMA map\n", self->dv_xname); |
| 638 | goto fail2; |
| 639 | } |
| 640 | |
| 641 | rc = bus_dmamap_load(sc->sc_dmat, ld->se_rx_dmamap,(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (ld-> se_rx_dmamap), ((caddr_t)ld->se_rx_ring), ((256 * sizeof(struct se_desc))), (((void *)0)), (0x0001)) |
| 642 | (caddr_t)ld->se_rx_ring, SE_RX_RING_SZ, NULL, BUS_DMA_NOWAIT)(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (ld-> se_rx_dmamap), ((caddr_t)ld->se_rx_ring), ((256 * sizeof(struct se_desc))), (((void *)0)), (0x0001)); |
| 643 | if (rc != 0) { |
| 644 | printf("%s: can't load RX DMA map\n", self->dv_xname); |
| 645 | bus_dmamem_unmap(sc->sc_dmat,(*(sc->sc_dmat)->_dmamem_unmap)((sc->sc_dmat), ((caddr_t )ld->se_rx_ring), ((256 * sizeof(struct se_desc)))) |
| 646 | (caddr_t)ld->se_rx_ring, SE_RX_RING_SZ)(*(sc->sc_dmat)->_dmamem_unmap)((sc->sc_dmat), ((caddr_t )ld->se_rx_ring), ((256 * sizeof(struct se_desc)))); |
| 647 | bus_dmamap_destroy(sc->sc_dmat, ld->se_rx_dmamap)(*(sc->sc_dmat)->_dmamap_destroy)((sc->sc_dmat), (ld ->se_rx_dmamap)); |
| 648 | bus_dmamem_free(sc->sc_dmat, &seg, nseg)(*(sc->sc_dmat)->_dmamem_free)((sc->sc_dmat), (& seg), (nseg)); |
| 649 | goto fail2; |
| 650 | } |
| 651 | |
| 652 | /* TX */ |
| 653 | rc = bus_dmamem_alloc(sc->sc_dmat, SE_TX_RING_SZ, PAGE_SIZE, 0,(*(sc->sc_dmat)->_dmamem_alloc)((sc->sc_dmat), ((256 * sizeof(struct se_desc))), ((1 << 12)), (0), (&seg ), (1), (&nseg), (0x0001)) |
| 654 | &seg, 1, &nseg, BUS_DMA_NOWAIT)(*(sc->sc_dmat)->_dmamem_alloc)((sc->sc_dmat), ((256 * sizeof(struct se_desc))), ((1 << 12)), (0), (&seg ), (1), (&nseg), (0x0001)); |
| 655 | if (rc != 0) { |
| 656 | printf("%s: no memory for TX descriptors\n", self->dv_xname); |
| 657 | goto fail2; |
| 658 | } |
| 659 | |
| 660 | rc = bus_dmamem_map(sc->sc_dmat, &seg, nseg, SE_TX_RING_SZ,(*(sc->sc_dmat)->_dmamem_map)((sc->sc_dmat), (&seg ), (nseg), ((256 * sizeof(struct se_desc))), ((caddr_t *)& ld->se_tx_ring), (0x0001)) |
| 661 | (caddr_t *)&ld->se_tx_ring, BUS_DMA_NOWAIT)(*(sc->sc_dmat)->_dmamem_map)((sc->sc_dmat), (&seg ), (nseg), ((256 * sizeof(struct se_desc))), ((caddr_t *)& ld->se_tx_ring), (0x0001)); |
| 662 | if (rc != 0) { |
| 663 | printf("%s: can't map TX descriptors\n", self->dv_xname); |
| 664 | goto fail2; |
| 665 | } |
| 666 | |
| 667 | rc = bus_dmamap_create(sc->sc_dmat, SE_TX_RING_SZ, 1,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((256 * sizeof(struct se_desc))), (1), ((256 * sizeof(struct se_desc ))), (0), (0x0001), (&ld->se_tx_dmamap)) |
| 668 | SE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &ld->se_tx_dmamap)(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((256 * sizeof(struct se_desc))), (1), ((256 * sizeof(struct se_desc ))), (0), (0x0001), (&ld->se_tx_dmamap)); |
| 669 | if (rc != 0) { |
| 670 | printf("%s: can't alloc TX DMA map\n", self->dv_xname); |
| 671 | goto fail2; |
| 672 | } |
| 673 | |
| 674 | rc = bus_dmamap_load(sc->sc_dmat, ld->se_tx_dmamap,(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (ld-> se_tx_dmamap), ((caddr_t)ld->se_tx_ring), ((256 * sizeof(struct se_desc))), (((void *)0)), (0x0001)) |
| 675 | (caddr_t)ld->se_tx_ring, SE_TX_RING_SZ, NULL, BUS_DMA_NOWAIT)(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (ld-> se_tx_dmamap), ((caddr_t)ld->se_tx_ring), ((256 * sizeof(struct se_desc))), (((void *)0)), (0x0001)); |
| 676 | if (rc != 0) { |
| 677 | printf("%s: can't load TX DMA map\n", self->dv_xname); |
| 678 | bus_dmamem_unmap(sc->sc_dmat,(*(sc->sc_dmat)->_dmamem_unmap)((sc->sc_dmat), ((caddr_t )ld->se_tx_ring), ((256 * sizeof(struct se_desc)))) |
| 679 | (caddr_t)ld->se_tx_ring, SE_TX_RING_SZ)(*(sc->sc_dmat)->_dmamem_unmap)((sc->sc_dmat), ((caddr_t )ld->se_tx_ring), ((256 * sizeof(struct se_desc)))); |
| 680 | bus_dmamap_destroy(sc->sc_dmat, ld->se_tx_dmamap)(*(sc->sc_dmat)->_dmamap_destroy)((sc->sc_dmat), (ld ->se_tx_dmamap)); |
| 681 | bus_dmamem_free(sc->sc_dmat, &seg, nseg)(*(sc->sc_dmat)->_dmamem_free)((sc->sc_dmat), (& seg), (nseg)); |
| 682 | goto fail2; |
| 683 | } |
| 684 | |
| 685 | timeout_set(&sc->sc_tick_tmo, se_tick, sc); |
| 686 | |
| 687 | ifp = &sc->sc_ac.ac_if; |
| 688 | ifp->if_softc = sc; |
| 689 | ifp->if_flags = IFF_BROADCAST0x2 | IFF_SIMPLEX0x800 | IFF_MULTICAST0x8000; |
| 690 | ifp->if_ioctl = se_ioctl; |
| 691 | ifp->if_start = se_start; |
| 692 | ifp->if_watchdog = se_watchdog; |
| 693 | ifq_init_maxlen(&ifp->if_snd, SE_TX_RING_CNT256 - 1); |
| 694 | bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ16); |
| 695 | |
| 696 | ifp->if_capabilitiesif_data.ifi_capabilities = IFCAP_VLAN_MTU0x00000010; |
| 697 | |
| 698 | /* |
| 699 | * Do MII setup. |
| 700 | */ |
| 701 | |
| 702 | sc->sc_mii.mii_ifp = ifp; |
| 703 | sc->sc_mii.mii_readreg = se_miibus_readreg; |
| 704 | sc->sc_mii.mii_writereg = se_miibus_writereg; |
| 705 | sc->sc_mii.mii_statchg = se_miibus_statchg; |
| 706 | ifmedia_init(&sc->sc_mii.mii_media, 0, se_ifmedia_upd, |
| 707 | se_ifmedia_sts); |
| 708 | mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY-1, |
| 709 | MII_OFFSET_ANY-1, 0); |
| 710 | |
| 711 | if (LIST_FIRST(&sc->sc_mii.mii_phys)((&sc->sc_mii.mii_phys)->lh_first) == NULL((void *)0)) { |
| 712 | /* No PHY attached */ |
| 713 | ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER0x0000000000000100ULL | IFM_MANUAL1ULL, |
| 714 | 0, NULL((void *)0)); |
| 715 | ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER0x0000000000000100ULL | IFM_MANUAL1ULL); |
| 716 | } else |
| 717 | ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER0x0000000000000100ULL | IFM_AUTO0ULL); |
| 718 | |
| 719 | /* |
| 720 | * Call MI attach routine. |
| 721 | */ |
| 722 | if_attach(ifp); |
| 723 | ether_ifattach(ifp); |
| 724 | |
| 725 | return; |
| 726 | |
| 727 | fail2: |
| 728 | pci_intr_disestablish(pa->pa_pc, sc->sc_ih); |
| 729 | fail1: |
| 730 | bus_space_unmap(sc->sc_iot, sc->sc_ioh, iosize); |
| 731 | } |
| 732 | |
| 733 | int |
| 734 | se_activate(struct device *self, int act) |
| 735 | { |
| 736 | struct se_softc *sc = (struct se_softc *)self; |
| 737 | struct ifnet *ifp = &sc->sc_ac.ac_if; |
| 738 | int rv = 0; |
| 739 | |
| 740 | switch (act) { |
| 741 | case DVACT_SUSPEND3: |
| 742 | if (ifp->if_flags & IFF_RUNNING0x40) |
| 743 | se_stop(sc); |
| 744 | rv = config_activate_children(self, act); |
| 745 | break; |
| 746 | case DVACT_RESUME4: |
| 747 | if (ifp->if_flags & IFF_UP0x1) |
| 748 | (void)se_init(ifp); |
| 749 | break; |
| 750 | default: |
| 751 | rv = config_activate_children(self, act); |
| 752 | break; |
| 753 | } |
| 754 | |
| 755 | return (rv); |
| 756 | } |
| 757 | |
| 758 | /* |
| 759 | * Initialize the TX descriptors. |
| 760 | */ |
| 761 | int |
| 762 | se_list_tx_init(struct se_softc *sc) |
| 763 | { |
| 764 | struct se_list_data *ld = &sc->se_ldata; |
| 765 | struct se_chain_data *cd = &sc->se_cdata; |
| 766 | |
| 767 | bzero(ld->se_tx_ring, SE_TX_RING_SZ)__builtin_bzero((ld->se_tx_ring), ((256 * sizeof(struct se_desc )))); |
| 768 | ld->se_tx_ring[SE_TX_RING_CNT256 - 1].se_flags = htole32(RING_END)((__uint32_t)(0x80000000)); |
| 769 | bus_dmamap_sync(sc->sc_dmat, ld->se_tx_dmamap, 0, SE_TX_RING_SZ,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ld-> se_tx_dmamap), (0), ((256 * sizeof(struct se_desc))), (0x01 | 0x04)) |
| 770 | BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ld-> se_tx_dmamap), (0), ((256 * sizeof(struct se_desc))), (0x01 | 0x04)); |
| 771 | cd->se_tx_prod = 0; |
| 772 | cd->se_tx_cons = 0; |
| 773 | cd->se_tx_cnt = 0; |
| 774 | |
| 775 | return 0; |
| 776 | } |
| 777 | |
| 778 | int |
| 779 | se_list_tx_free(struct se_softc *sc) |
| 780 | { |
| 781 | struct se_chain_data *cd = &sc->se_cdata; |
| 782 | uint i; |
| 783 | |
| 784 | for (i = 0; i < SE_TX_RING_CNT256; i++) { |
| 785 | if (cd->se_tx_mbuf[i] != NULL((void *)0)) { |
| 786 | bus_dmamap_unload(sc->sc_dmat, cd->se_tx_map[i])(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (cd-> se_tx_map[i])); |
| 787 | m_free(cd->se_tx_mbuf[i]); |
| 788 | cd->se_tx_mbuf[i] = NULL((void *)0); |
| 789 | } |
| 790 | } |
| 791 | |
| 792 | return 0; |
| 793 | } |
| 794 | |
| 795 | /* |
| 796 | * Initialize the RX descriptors and allocate mbufs for them. |
| 797 | */ |
| 798 | int |
| 799 | se_list_rx_init(struct se_softc *sc) |
| 800 | { |
| 801 | struct se_list_data *ld = &sc->se_ldata; |
| 802 | struct se_chain_data *cd = &sc->se_cdata; |
| 803 | uint i; |
| 804 | |
| 805 | bzero(ld->se_rx_ring, SE_RX_RING_SZ)__builtin_bzero((ld->se_rx_ring), ((256 * sizeof(struct se_desc )))); |
| 806 | bus_dmamap_sync(sc->sc_dmat, ld->se_rx_dmamap, 0, SE_RX_RING_SZ,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ld-> se_rx_dmamap), (0), ((256 * sizeof(struct se_desc))), (0x01 | 0x04)) |
| 807 | BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ld-> se_rx_dmamap), (0), ((256 * sizeof(struct se_desc))), (0x01 | 0x04)); |
| 808 | for (i = 0; i < SE_RX_RING_CNT256; i++) { |
| 809 | if (se_newbuf(sc, i) != 0) |
| 810 | return ENOBUFS55; |
| 811 | } |
| 812 | |
| 813 | cd->se_rx_prod = 0; |
| 814 | |
| 815 | return 0; |
| 816 | } |
| 817 | |
| 818 | int |
| 819 | se_list_rx_free(struct se_softc *sc) |
| 820 | { |
| 821 | struct se_chain_data *cd = &sc->se_cdata; |
| 822 | uint i; |
| 823 | |
| 824 | for (i = 0; i < SE_RX_RING_CNT256; i++) { |
| 825 | if (cd->se_rx_mbuf[i] != NULL((void *)0)) { |
| 826 | bus_dmamap_unload(sc->sc_dmat, cd->se_rx_map[i])(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (cd-> se_rx_map[i])); |
| 827 | m_free(cd->se_rx_mbuf[i]); |
| 828 | cd->se_rx_mbuf[i] = NULL((void *)0); |
| 829 | } |
| 830 | } |
| 831 | |
| 832 | return 0; |
| 833 | } |
| 834 | |
| 835 | /* |
| 836 | * Initialize an RX descriptor and attach an MBUF cluster. |
| 837 | */ |
| 838 | int |
| 839 | se_newbuf(struct se_softc *sc, uint i) |
| 840 | { |
| 841 | #ifdef SE_DEBUG |
| 842 | struct ifnet *ifp = &sc->sc_ac.ac_if; |
| 843 | #endif |
| 844 | struct se_list_data *ld = &sc->se_ldata; |
| 845 | struct se_chain_data *cd = &sc->se_cdata; |
| 846 | struct se_desc *desc; |
| 847 | struct mbuf *m; |
| 848 | int rc; |
| 849 | |
| 850 | m = MCLGETL(NULL, M_DONTWAIT, MCLBYTES)m_clget((((void *)0)), (0x0002), ((1 << 11))); |
| 851 | if (m == NULL((void *)0)) { |
| 852 | #ifdef SE_DEBUG |
| 853 | if (ifp->if_flags & IFF_DEBUG0x4) |
| 854 | printf("%s: MCLGETL failed\n", ifp->if_xname); |
| 855 | #endif |
| 856 | return ENOBUFS55; |
| 857 | } |
| 858 | m->m_lenm_hdr.mh_len = m->m_pkthdrM_dat.MH.MH_pkthdr.len = MCLBYTES(1 << 11); |
| 859 | m_adj(m, SE_RX_BUF_ALIGNsizeof(uint64_t)); |
| 860 | |
| 861 | rc = bus_dmamap_load_mbuf(sc->sc_dmat, cd->se_rx_map[i],(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( cd->se_rx_map[i]), (m), (0x0001)) |
| 862 | m, BUS_DMA_NOWAIT)(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( cd->se_rx_map[i]), (m), (0x0001)); |
| 863 | KASSERT(cd->se_rx_map[i]->dm_nsegs == 1)((cd->se_rx_map[i]->dm_nsegs == 1) ? (void)0 : __assert ("diagnostic ", "/usr/src/sys/dev/pci/if_se.c", 863, "cd->se_rx_map[i]->dm_nsegs == 1" )); |
| 864 | if (rc != 0) { |
| 865 | m_freem(m); |
| 866 | return ENOBUFS55; |
| 867 | } |
| 868 | bus_dmamap_sync(sc->sc_dmat, cd->se_rx_map[i], 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (cd-> se_rx_map[i]), (0), (cd->se_rx_map[i]->dm_mapsize), (0x01 )) |
| 869 | cd->se_rx_map[i]->dm_mapsize, BUS_DMASYNC_PREREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (cd-> se_rx_map[i]), (0), (cd->se_rx_map[i]->dm_mapsize), (0x01 )); |
| 870 | |
| 871 | cd->se_rx_mbuf[i] = m; |
| 872 | desc = &ld->se_rx_ring[i]; |
| 873 | desc->se_sts_size = 0; |
| 874 | desc->se_cmdsts = htole32(RDC_OWN | RDC_INTR)((__uint32_t)(0x80000000 | 0x40000000)); |
| 875 | desc->se_ptr = htole32((uint32_t)cd->se_rx_map[i]->dm_segs[0].ds_addr)((__uint32_t)((uint32_t)cd->se_rx_map[i]->dm_segs[0].ds_addr )); |
| 876 | desc->se_flags = htole32(cd->se_rx_map[i]->dm_segs[0].ds_len)((__uint32_t)(cd->se_rx_map[i]->dm_segs[0].ds_len)); |
| 877 | if (i == SE_RX_RING_CNT256 - 1) |
| 878 | desc->se_flags |= htole32(RING_END)((__uint32_t)(0x80000000)); |
| 879 | bus_dmamap_sync(sc->sc_dmat, ld->se_rx_dmamap, i * sizeof(*desc),(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ld-> se_rx_dmamap), (i * sizeof(*desc)), (sizeof(*desc)), (0x01 | 0x04 )) |
| 880 | sizeof(*desc), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ld-> se_rx_dmamap), (i * sizeof(*desc)), (sizeof(*desc)), (0x01 | 0x04 )); |
| 881 | |
| 882 | return 0; |
| 883 | } |
| 884 | |
| 885 | void |
| 886 | se_discard_rxbuf(struct se_softc *sc, uint i) |
| 887 | { |
| 888 | struct se_list_data *ld = &sc->se_ldata; |
| 889 | struct se_desc *desc; |
| 890 | |
| 891 | desc = &ld->se_rx_ring[i]; |
| 892 | desc->se_sts_size = 0; |
| 893 | desc->se_cmdsts = htole32(RDC_OWN | RDC_INTR)((__uint32_t)(0x80000000 | 0x40000000)); |
| 894 | desc->se_flags = htole32(MCLBYTES - SE_RX_BUF_ALIGN)((__uint32_t)((1 << 11) - sizeof(uint64_t))); |
| 895 | if (i == SE_RX_RING_CNT256 - 1) |
| 896 | desc->se_flags |= htole32(RING_END)((__uint32_t)(0x80000000)); |
| 897 | bus_dmamap_sync(sc->sc_dmat, ld->se_rx_dmamap, i * sizeof(*desc),(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ld-> se_rx_dmamap), (i * sizeof(*desc)), (sizeof(*desc)), (0x01 | 0x04 )) |
| 898 | sizeof(*desc), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ld-> se_rx_dmamap), (i * sizeof(*desc)), (sizeof(*desc)), (0x01 | 0x04 )); |
| 899 | } |
| 900 | |
| 901 | /* |
| 902 | * A frame has been uploaded: pass the resulting mbuf chain up to |
| 903 | * the higher level protocols. |
| 904 | */ |
| 905 | void |
| 906 | se_rxeof(struct se_softc *sc) |
| 907 | { |
| 908 | struct mbuf *m; |
| 909 | struct mbuf_list ml = MBUF_LIST_INITIALIZER(){ ((void *)0), ((void *)0), 0 }; |
| 910 | struct ifnet *ifp = &sc->sc_ac.ac_if; |
| 911 | struct se_list_data *ld = &sc->se_ldata; |
| 912 | struct se_chain_data *cd = &sc->se_cdata; |
| 913 | struct se_desc *cur_rx; |
| 914 | uint32_t rxinfo, rxstat; |
| 915 | uint i; |
| 916 | |
| 917 | bus_dmamap_sync(sc->sc_dmat, ld->se_rx_dmamap, 0, SE_RX_RING_SZ,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ld-> se_rx_dmamap), (0), ((256 * sizeof(struct se_desc))), (0x02 | 0x08)) |
| 918 | BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ld-> se_rx_dmamap), (0), ((256 * sizeof(struct se_desc))), (0x02 | 0x08)); |
| 919 | for (i = cd->se_rx_prod; ; SE_INC(i, SE_RX_RING_CNT)(i) = (((i) + 1) % 256)) { |
| 920 | cur_rx = &ld->se_rx_ring[i]; |
| 921 | rxinfo = letoh32(cur_rx->se_cmdsts)((__uint32_t)(cur_rx->se_cmdsts)); |
| 922 | if ((rxinfo & RDC_OWN0x80000000) != 0) |
| 923 | break; |
| 924 | rxstat = letoh32(cur_rx->se_sts_size)((__uint32_t)(cur_rx->se_sts_size)); |
| 925 | |
| 926 | /* |
| 927 | * If an error occurs, update stats, clear the |
| 928 | * status word and leave the mbuf cluster in place: |
| 929 | * it should simply get re-used next time this descriptor |
| 930 | * comes up in the ring. |
| 931 | */ |
| 932 | if ((rxstat & RDS_CRCOK0x00010000) == 0 || SE_RX_ERROR(rxstat)((rxstat) & (0x00020000 | 0x00040000 | 0x00080000 | 0x00100000 | 0x00200000 | 0x00400000 | 0x00800000)) != 0 || |
| 933 | SE_RX_NSEGS(rxstat)(((rxstat) & 0x3f000000) >> 24) != 1) { |
| 934 | /* XXX We don't support multi-segment frames yet. */ |
| 935 | if (ifp->if_flags & IFF_DEBUG0x4) |
| 936 | printf("%s: rx error %b\n", |
| 937 | ifp->if_xname, rxstat, RX_ERR_BITS"\20" "\21CRCOK\22COLON\23NIBON\24OVRUN" "\25MIIER\26LIMIT\27SHORT\30ABORT" "\40VLAN"); |
| 938 | se_discard_rxbuf(sc, i); |
| 939 | ifp->if_ierrorsif_data.ifi_ierrors++; |
| 940 | continue; |
| 941 | } |
| 942 | |
| 943 | /* No errors; receive the packet. */ |
| 944 | bus_dmamap_sync(sc->sc_dmat, cd->se_rx_map[i], 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (cd-> se_rx_map[i]), (0), (cd->se_rx_map[i]->dm_mapsize), (0x02 )) |
| 945 | cd->se_rx_map[i]->dm_mapsize, BUS_DMASYNC_POSTREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (cd-> se_rx_map[i]), (0), (cd->se_rx_map[i]->dm_mapsize), (0x02 )); |
| 946 | m = cd->se_rx_mbuf[i]; |
| 947 | if (se_newbuf(sc, i) != 0) { |
| 948 | se_discard_rxbuf(sc, i); |
| 949 | ifp->if_iqdropsif_data.ifi_iqdrops++; |
| 950 | continue; |
| 951 | } |
| 952 | /* |
| 953 | * Account for 10 bytes auto padding which is used |
| 954 | * to align IP header on a 32bit boundary. Also note, |
| 955 | * CRC bytes are automatically removed by the hardware. |
| 956 | */ |
| 957 | m->m_datam_hdr.mh_data += SE_RX_PAD_BYTES10; |
| 958 | m->m_pkthdrM_dat.MH.MH_pkthdr.len = m->m_lenm_hdr.mh_len = |
| 959 | SE_RX_BYTES(rxstat)((rxstat) & 0xFFFF) - SE_RX_PAD_BYTES10; |
| 960 | |
| 961 | ml_enqueue(&ml, m); |
| 962 | } |
| 963 | |
| 964 | if_input(ifp, &ml); |
| 965 | |
| 966 | cd->se_rx_prod = i; |
| 967 | } |
| 968 | |
| 969 | /* |
| 970 | * A frame was downloaded to the chip. It's safe for us to clean up |
| 971 | * the list buffers. |
| 972 | */ |
| 973 | |
| 974 | void |
| 975 | se_txeof(struct se_softc *sc) |
| 976 | { |
| 977 | struct ifnet *ifp = &sc->sc_ac.ac_if; |
| 978 | struct se_list_data *ld = &sc->se_ldata; |
| 979 | struct se_chain_data *cd = &sc->se_cdata; |
| 980 | struct se_desc *cur_tx; |
| 981 | uint32_t txstat; |
| 982 | uint i; |
| 983 | |
| 984 | /* |
| 985 | * Go through our tx list and free mbufs for those |
| 986 | * frames that have been transmitted. |
| 987 | */ |
| 988 | bus_dmamap_sync(sc->sc_dmat, ld->se_tx_dmamap, 0, SE_TX_RING_SZ,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ld-> se_tx_dmamap), (0), ((256 * sizeof(struct se_desc))), (0x02 | 0x08)) |
| 989 | BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ld-> se_tx_dmamap), (0), ((256 * sizeof(struct se_desc))), (0x02 | 0x08)); |
| 990 | for (i = cd->se_tx_cons; cd->se_tx_cnt > 0; |
| 991 | cd->se_tx_cnt--, SE_INC(i, SE_TX_RING_CNT)(i) = (((i) + 1) % 256)) { |
| 992 | cur_tx = &ld->se_tx_ring[i]; |
| 993 | txstat = letoh32(cur_tx->se_cmdsts)((__uint32_t)(cur_tx->se_cmdsts)); |
| 994 | if ((txstat & TDC_OWN0x80000000) != 0) |
| 995 | break; |
| 996 | |
| 997 | ifq_clr_oactive(&ifp->if_snd); |
| 998 | |
| 999 | if (SE_TX_ERROR(txstat)((txstat) & (0x00080000 | 0x00040000 | 0x00020000 | 0x00010000 )) != 0) { |
| 1000 | if (ifp->if_flags & IFF_DEBUG0x4) |
| 1001 | printf("%s: tx error %b\n", |
| 1002 | ifp->if_xname, txstat, TX_ERR_BITS"\20" "\21CRS\22FIFO\23ABT\24OWC"); |
| 1003 | ifp->if_oerrorsif_data.ifi_oerrors++; |
| 1004 | /* TODO: better error differentiation */ |
| 1005 | } |
| 1006 | |
| 1007 | if (cd->se_tx_mbuf[i] != NULL((void *)0)) { |
| 1008 | bus_dmamap_sync(sc->sc_dmat, cd->se_tx_map[i], 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (cd-> se_tx_map[i]), (0), (cd->se_tx_map[i]->dm_mapsize), (0x08 )) |
| 1009 | cd->se_tx_map[i]->dm_mapsize,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (cd-> se_tx_map[i]), (0), (cd->se_tx_map[i]->dm_mapsize), (0x08 )) |
| 1010 | BUS_DMASYNC_POSTWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (cd-> se_tx_map[i]), (0), (cd->se_tx_map[i]->dm_mapsize), (0x08 )); |
| 1011 | bus_dmamap_unload(sc->sc_dmat, cd->se_tx_map[i])(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (cd-> se_tx_map[i])); |
| 1012 | m_free(cd->se_tx_mbuf[i]); |
| 1013 | cd->se_tx_mbuf[i] = NULL((void *)0); |
| 1014 | } |
| 1015 | |
| 1016 | cur_tx->se_sts_size = 0; |
| 1017 | cur_tx->se_cmdsts = 0; |
| 1018 | cur_tx->se_ptr = 0; |
| 1019 | cur_tx->se_flags &= htole32(RING_END)((__uint32_t)(0x80000000)); |
| 1020 | bus_dmamap_sync(sc->sc_dmat, ld->se_tx_dmamap,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ld-> se_tx_dmamap), (i * sizeof(*cur_tx)), (sizeof(*cur_tx)), (0x01 | 0x04)) |
| 1021 | i * sizeof(*cur_tx), sizeof(*cur_tx),(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ld-> se_tx_dmamap), (i * sizeof(*cur_tx)), (sizeof(*cur_tx)), (0x01 | 0x04)) |
| 1022 | BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ld-> se_tx_dmamap), (i * sizeof(*cur_tx)), (sizeof(*cur_tx)), (0x01 | 0x04)); |
| 1023 | } |
| 1024 | |
| 1025 | cd->se_tx_cons = i; |
| 1026 | if (cd->se_tx_cnt == 0) |
| 1027 | ifp->if_timer = 0; |
| 1028 | } |
| 1029 | |
| 1030 | void |
| 1031 | se_tick(void *xsc) |
| 1032 | { |
| 1033 | struct se_softc *sc = xsc; |
| 1034 | struct mii_data *mii; |
| 1035 | struct ifnet *ifp = &sc->sc_ac.ac_if; |
| 1036 | int s; |
| 1037 | |
| 1038 | s = splnet()splraise(0x4); |
| 1039 | mii = &sc->sc_mii; |
| 1040 | mii_tick(mii); |
| 1041 | if ((sc->sc_flags & SE_FLAG_LINK0x8000) == 0) { |
| 1042 | se_miibus_statchg(&sc->sc_dev); |
| 1043 | if ((sc->sc_flags & SE_FLAG_LINK0x8000) != 0 && |
| 1044 | !ifq_empty(&ifp->if_snd)(({ typeof((&ifp->if_snd)->ifq_len) __tmp = *(volatile typeof((&ifp->if_snd)->ifq_len) *)&((&ifp-> if_snd)->ifq_len); membar_datadep_consumer(); __tmp; }) == 0)) |
| 1045 | se_start(ifp); |
| 1046 | } |
| 1047 | splx(s)spllower(s); |
| 1048 | |
| 1049 | timeout_add_sec(&sc->sc_tick_tmo, 1); |
| 1050 | } |
| 1051 | |
| 1052 | int |
| 1053 | se_intr(void *arg) |
| 1054 | { |
| 1055 | struct se_softc *sc = arg; |
| 1056 | struct ifnet *ifp = &sc->sc_ac.ac_if; |
| 1057 | uint32_t status; |
| 1058 | |
| 1059 | status = CSR_READ_4(sc, IntrStatus)(((sc)->sc_iot)->read_4(((sc)->sc_ioh), (0x20))); |
| 1060 | if (status == 0xffffffff || (status & SE_INTRS(0x00000080 | 0x00000040 | 0x00000020 | 0x00000010 |0x00000008 | 0x00000004 | 0x00000001 | 0x00000002)) == 0) { |
| 1061 | /* Not ours. */ |
| 1062 | return 0; |
| 1063 | } |
| 1064 | /* Ack interrupts/ */ |
| 1065 | CSR_WRITE_4(sc, IntrStatus, status)(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x20), (status ))); |
| 1066 | /* Disable further interrupts. */ |
| 1067 | CSR_WRITE_4(sc, IntrMask, 0)(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x24), (0) )); |
| 1068 | |
| 1069 | for (;;) { |
| 1070 | if ((ifp->if_flags & IFF_RUNNING0x40) == 0) |
| 1071 | break; |
| 1072 | if ((status & (INTR_RX_DONE0x00000040 | INTR_RX_IDLE0x00000080)) != 0) { |
| 1073 | se_rxeof(sc); |
| 1074 | /* Wakeup Rx MAC. */ |
| 1075 | if ((status & INTR_RX_IDLE0x00000080) != 0) |
| 1076 | CSR_WRITE_4(sc, RX_CTL,(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x10), (0x1a00 | 0x000c | 0x00000010 | 0x00000001))) |
| 1077 | 0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB)(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x10), (0x1a00 | 0x000c | 0x00000010 | 0x00000001))); |
| 1078 | } |
| 1079 | if ((status & (INTR_TX_DONE0x00000004 | INTR_TX_IDLE0x00000008)) != 0) |
| 1080 | se_txeof(sc); |
| 1081 | status = CSR_READ_4(sc, IntrStatus)(((sc)->sc_iot)->read_4(((sc)->sc_ioh), (0x20))); |
| 1082 | if ((status & SE_INTRS(0x00000080 | 0x00000040 | 0x00000020 | 0x00000010 |0x00000008 | 0x00000004 | 0x00000001 | 0x00000002)) == 0) |
| 1083 | break; |
| 1084 | /* Ack interrupts. */ |
| 1085 | CSR_WRITE_4(sc, IntrStatus, status)(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x20), (status ))); |
| 1086 | } |
| 1087 | |
| 1088 | if ((ifp->if_flags & IFF_RUNNING0x40) != 0) { |
| 1089 | /* Re-enable interrupts */ |
| 1090 | CSR_WRITE_4(sc, IntrMask, SE_INTRS)(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x24), ((0x00000080 | 0x00000040 | 0x00000020 | 0x00000010 |0x00000008 | 0x00000004 | 0x00000001 | 0x00000002)))); |
| 1091 | if (!ifq_empty(&ifp->if_snd)(({ typeof((&ifp->if_snd)->ifq_len) __tmp = *(volatile typeof((&ifp->if_snd)->ifq_len) *)&((&ifp-> if_snd)->ifq_len); membar_datadep_consumer(); __tmp; }) == 0)) |
| 1092 | se_start(ifp); |
| 1093 | } |
| 1094 | |
| 1095 | return 1; |
| 1096 | } |
| 1097 | |
| 1098 | /* |
| 1099 | * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data |
| 1100 | * pointers to the fragment pointers. |
| 1101 | */ |
| 1102 | int |
| 1103 | se_encap(struct se_softc *sc, struct mbuf *m_head, uint32_t *txidx) |
| 1104 | { |
| 1105 | #ifdef SE_DEBUG |
| 1106 | struct ifnet *ifp = &sc->sc_ac.ac_if; |
| 1107 | #endif |
| 1108 | struct mbuf *m; |
| 1109 | struct se_list_data *ld = &sc->se_ldata; |
| 1110 | struct se_chain_data *cd = &sc->se_cdata; |
| 1111 | struct se_desc *desc; |
| 1112 | uint i, cnt = 0; |
| 1113 | int rc; |
| 1114 | |
| 1115 | /* |
| 1116 | * If there's no way we can send any packets, return now. |
| 1117 | */ |
| 1118 | if (SE_TX_RING_CNT256 - cd->se_tx_cnt < 2) { |
| 1119 | #ifdef SE_DEBUG |
| 1120 | if (ifp->if_flags & IFF_DEBUG0x4) |
| 1121 | printf("%s: encap failed, not enough TX desc\n", |
| 1122 | ifp->if_xname); |
| 1123 | #endif |
| 1124 | return ENOBUFS55; |
| 1125 | } |
| 1126 | |
| 1127 | if (m_defrag(m_head, M_DONTWAIT0x0002) != 0) { |
| 1128 | #ifdef SE_DEBUG |
| 1129 | if (ifp->if_flags & IFF_DEBUG0x4) |
| 1130 | printf("%s: m_defrag failed\n", ifp->if_xname); |
| 1131 | #endif |
| 1132 | return ENOBUFS55; /* XXX should not be fatal */ |
| 1133 | } |
| 1134 | |
| 1135 | /* |
| 1136 | * Start packing the mbufs in this chain into |
| 1137 | * the fragment pointers. Stop when we run out |
| 1138 | * of fragments or hit the end of the mbuf chain. |
| 1139 | */ |
| 1140 | i = *txidx; |
| 1141 | |
| 1142 | for (m = m_head; m != NULL((void *)0); m = m->m_nextm_hdr.mh_next) { |
| 1143 | if (m->m_lenm_hdr.mh_len == 0) |
| 1144 | continue; |
| 1145 | if ((SE_TX_RING_CNT256 - (cd->se_tx_cnt + cnt)) < 2) { |
| 1146 | #ifdef SE_DEBUG |
| 1147 | if (ifp->if_flags & IFF_DEBUG0x4) |
| 1148 | printf("%s: encap failed, not enough TX desc\n", |
| 1149 | ifp->if_xname); |
| 1150 | #endif |
| 1151 | return ENOBUFS55; |
| 1152 | } |
| 1153 | cd->se_tx_mbuf[i] = m; |
| 1154 | rc = bus_dmamap_load_mbuf(sc->sc_dmat, cd->se_tx_map[i],(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( cd->se_tx_map[i]), (m), (0x0001)) |
| 1155 | m, BUS_DMA_NOWAIT)(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( cd->se_tx_map[i]), (m), (0x0001)); |
| 1156 | if (rc != 0) |
| 1157 | return ENOBUFS55; |
| 1158 | KASSERT(cd->se_tx_map[i]->dm_nsegs == 1)((cd->se_tx_map[i]->dm_nsegs == 1) ? (void)0 : __assert ("diagnostic ", "/usr/src/sys/dev/pci/if_se.c", 1158, "cd->se_tx_map[i]->dm_nsegs == 1" )); |
| 1159 | bus_dmamap_sync(sc->sc_dmat, cd->se_tx_map[i], 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (cd-> se_tx_map[i]), (0), (cd->se_tx_map[i]->dm_mapsize), (0x04 )) |
| 1160 | cd->se_tx_map[i]->dm_mapsize, BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (cd-> se_tx_map[i]), (0), (cd->se_tx_map[i]->dm_mapsize), (0x04 )); |
| 1161 | |
| 1162 | desc = &ld->se_tx_ring[i]; |
| 1163 | desc->se_sts_size = htole32(cd->se_tx_map[i]->dm_segs->ds_len)((__uint32_t)(cd->se_tx_map[i]->dm_segs->ds_len)); |
| 1164 | desc->se_ptr = |
| 1165 | htole32((uint32_t)cd->se_tx_map[i]->dm_segs->ds_addr)((__uint32_t)((uint32_t)cd->se_tx_map[i]->dm_segs->ds_addr )); |
| 1166 | desc->se_flags = htole32(cd->se_tx_map[i]->dm_segs->ds_len)((__uint32_t)(cd->se_tx_map[i]->dm_segs->ds_len)); |
| 1167 | if (i == SE_TX_RING_CNT256 - 1) |
| 1168 | desc->se_flags |= htole32(RING_END)((__uint32_t)(0x80000000)); |
| 1169 | desc->se_cmdsts = htole32(TDC_OWN | TDC_INTR | TDC_DEF |((__uint32_t)(0x80000000 | 0x40000000 | 0x00200000 | 0x00020000 | 0x00010000 | 0x00800000)) |
| 1170 | TDC_CRC | TDC_PAD | TDC_BST)((__uint32_t)(0x80000000 | 0x40000000 | 0x00200000 | 0x00020000 | 0x00010000 | 0x00800000)); |
| 1171 | bus_dmamap_sync(sc->sc_dmat, ld->se_tx_dmamap,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ld-> se_tx_dmamap), (i * sizeof(*desc)), (sizeof(*desc)), (0x01 | 0x04 )) |
| 1172 | i * sizeof(*desc), sizeof(*desc),(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ld-> se_tx_dmamap), (i * sizeof(*desc)), (sizeof(*desc)), (0x01 | 0x04 )) |
| 1173 | BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ld-> se_tx_dmamap), (i * sizeof(*desc)), (sizeof(*desc)), (0x01 | 0x04 )); |
| 1174 | |
| 1175 | SE_INC(i, SE_TX_RING_CNT)(i) = (((i) + 1) % 256); |
| 1176 | cnt++; |
| 1177 | } |
| 1178 | |
| 1179 | /* can't happen */ |
| 1180 | if (m != NULL((void *)0)) |
| 1181 | return ENOBUFS55; |
| 1182 | |
| 1183 | cd->se_tx_cnt += cnt; |
| 1184 | *txidx = i; |
| 1185 | |
| 1186 | return 0; |
| 1187 | } |
| 1188 | |
| 1189 | /* |
| 1190 | * Main transmit routine. To avoid having to do mbuf copies, we put pointers |
| 1191 | * to the mbuf data regions directly in the transmit lists. We also save a |
| 1192 | * copy of the pointers since the transmit list fragment pointers are |
| 1193 | * physical addresses. |
| 1194 | */ |
| 1195 | void |
| 1196 | se_start(struct ifnet *ifp) |
| 1197 | { |
| 1198 | struct se_softc *sc = ifp->if_softc; |
| 1199 | struct mbuf *m_head = NULL((void *)0); |
| 1200 | struct se_chain_data *cd = &sc->se_cdata; |
| 1201 | uint i, queued = 0; |
| 1202 | |
| 1203 | if ((sc->sc_flags & SE_FLAG_LINK0x8000) == 0 || |
| 1204 | !(ifp->if_flags & IFF_RUNNING0x40) || ifq_is_oactive(&ifp->if_snd)) { |
| 1205 | #ifdef SE_DEBUG |
| 1206 | if (ifp->if_flags & IFF_DEBUG0x4) |
| 1207 | printf("%s: can't tx, flags 0x%x 0x%04x\n", |
| 1208 | ifp->if_xname, sc->sc_flags, (uint)ifp->if_flags); |
| 1209 | #endif |
| 1210 | return; |
| 1211 | } |
| 1212 | |
| 1213 | i = cd->se_tx_prod; |
| 1214 | |
| 1215 | while (cd->se_tx_mbuf[i] == NULL((void *)0)) { |
| 1216 | m_head = ifq_deq_begin(&ifp->if_snd); |
| 1217 | if (m_head == NULL((void *)0)) |
| 1218 | break; |
| 1219 | |
| 1220 | if (se_encap(sc, m_head, &i) != 0) { |
| 1221 | ifq_deq_rollback(&ifp->if_snd, m_head); |
| 1222 | ifq_set_oactive(&ifp->if_snd); |
| 1223 | break; |
| 1224 | } |
| 1225 | |
| 1226 | /* now we are committed to transmit the packet */ |
| 1227 | ifq_deq_commit(&ifp->if_snd, m_head); |
| 1228 | queued++; |
| 1229 | |
| 1230 | /* |
| 1231 | * If there's a BPF listener, bounce a copy of this frame |
| 1232 | * to him. |
| 1233 | */ |
| 1234 | #if NBPFILTER1 > 0 |
| 1235 | if (ifp->if_bpf) |
| 1236 | bpf_mtap(ifp->if_bpf, m_head, BPF_DIRECTION_OUT(1 << 1)); |
| 1237 | #endif |
| 1238 | } |
| 1239 | |
| 1240 | if (queued > 0) { |
| 1241 | /* Transmit */ |
| 1242 | cd->se_tx_prod = i; |
| 1243 | CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB | TX_CTL_POLL)(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x00), (0x1a00 | 0x00000001 | 0x00000010))); |
| 1244 | ifp->if_timer = 5; |
| 1245 | } |
| 1246 | } |
| 1247 | |
| 1248 | int |
| 1249 | se_init(struct ifnet *ifp) |
| 1250 | { |
| 1251 | struct se_softc *sc = ifp->if_softc; |
| 1252 | uint16_t rxfilt; |
| 1253 | int i; |
| 1254 | |
| 1255 | splassert(IPL_NET)do { if (splassert_ctl > 0) { splassert_check(0x4, __func__ ); } } while (0); |
| 1256 | |
| 1257 | /* |
| 1258 | * Cancel pending I/O and free all RX/TX buffers. |
| 1259 | */ |
| 1260 | se_stop(sc); |
| 1261 | se_reset(sc); |
| 1262 | |
| 1263 | /* Init circular RX list. */ |
| 1264 | if (se_list_rx_init(sc) == ENOBUFS55) { |
| 1265 | se_stop(sc); /* XXX necessary? */ |
| 1266 | return ENOBUFS55; |
| 1267 | } |
| 1268 | |
| 1269 | /* Init TX descriptors. */ |
| 1270 | se_list_tx_init(sc); |
| 1271 | |
| 1272 | /* |
| 1273 | * Load the address of the RX and TX lists. |
| 1274 | */ |
| 1275 | CSR_WRITE_4(sc, TX_DESC,(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x04), ((uint32_t )sc->se_ldata.se_tx_dmamap->dm_segs[0].ds_addr))) |
| 1276 | (uint32_t)sc->se_ldata.se_tx_dmamap->dm_segs[0].ds_addr)(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x04), ((uint32_t )sc->se_ldata.se_tx_dmamap->dm_segs[0].ds_addr))); |
| 1277 | CSR_WRITE_4(sc, RX_DESC,(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x14), ((uint32_t )sc->se_ldata.se_rx_dmamap->dm_segs[0].ds_addr))) |
| 1278 | (uint32_t)sc->se_ldata.se_rx_dmamap->dm_segs[0].ds_addr)(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x14), ((uint32_t )sc->se_ldata.se_rx_dmamap->dm_segs[0].ds_addr))); |
| 1279 | |
| 1280 | CSR_WRITE_4(sc, TxMacControl, 0x60)(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x50), (0x60 ))); |
| 1281 | CSR_WRITE_4(sc, RxWakeOnLan, 0)(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x70), (0) )); |
| 1282 | CSR_WRITE_4(sc, RxWakeOnLanData, 0)(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x74), (0) )); |
| 1283 | CSR_WRITE_2(sc, RxMPSControl, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN +(((sc)->sc_iot)->write_2(((sc)->sc_ioh), (0x78), (1518 + 4 + 10))) |
| 1284 | SE_RX_PAD_BYTES)(((sc)->sc_iot)->write_2(((sc)->sc_ioh), (0x78), (1518 + 4 + 10))); |
| 1285 | |
| 1286 | for (i = 0; i < ETHER_ADDR_LEN6; i++) |
| 1287 | CSR_WRITE_1(sc, RxMacAddr + i, sc->sc_ac.ac_enaddr[i])(((sc)->sc_iot)->write_1(((sc)->sc_ioh), (0x62 + i), (sc->sc_ac.ac_enaddr[i]))); |
| 1288 | /* Configure RX MAC. */ |
| 1289 | rxfilt = RXMAC_STRIP_FCS0x0010 | RXMAC_PAD_ENB0x0004 | RXMAC_CSUM_ENB0x0002; |
| 1290 | CSR_WRITE_2(sc, RxMacControl, rxfilt)(((sc)->sc_iot)->write_2(((sc)->sc_ioh), (0x60), (rxfilt ))); |
| 1291 | |
| 1292 | /* Program promiscuous mode and multicast filters. */ |
| 1293 | se_iff(sc); |
| 1294 | |
| 1295 | /* |
| 1296 | * Clear and enable interrupts. |
| 1297 | */ |
| 1298 | CSR_WRITE_4(sc, IntrStatus, 0xFFFFFFFF)(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x20), (0xFFFFFFFF ))); |
| 1299 | CSR_WRITE_4(sc, IntrMask, SE_INTRS)(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x24), ((0x00000080 | 0x00000040 | 0x00000020 | 0x00000010 |0x00000008 | 0x00000004 | 0x00000001 | 0x00000002)))); |
| 1300 | |
| 1301 | /* Enable receiver and transmitter. */ |
| 1302 | CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB)(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x00), (0x1a00 | 0x00000001))); |
| 1303 | CSR_WRITE_4(sc, RX_CTL, 0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB)(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x10), (0x1a00 | 0x000c | 0x00000010 | 0x00000001))); |
| 1304 | |
| 1305 | ifp->if_flags |= IFF_RUNNING0x40; |
| 1306 | ifq_clr_oactive(&ifp->if_snd); |
| 1307 | |
| 1308 | sc->sc_flags &= ~SE_FLAG_LINK0x8000; |
| 1309 | mii_mediachg(&sc->sc_mii); |
| 1310 | timeout_add_sec(&sc->sc_tick_tmo, 1); |
| 1311 | |
| 1312 | return 0; |
| 1313 | } |
| 1314 | |
| 1315 | /* |
| 1316 | * Set media options. |
| 1317 | */ |
| 1318 | int |
| 1319 | se_ifmedia_upd(struct ifnet *ifp) |
| 1320 | { |
| 1321 | struct se_softc *sc = ifp->if_softc; |
| 1322 | struct mii_data *mii; |
| 1323 | |
| 1324 | mii = &sc->sc_mii; |
| 1325 | sc->sc_flags &= ~SE_FLAG_LINK0x8000; |
| 1326 | if (mii->mii_instance) { |
| 1327 | struct mii_softc *miisc; |
| 1328 | LIST_FOREACH(miisc, &mii->mii_phys, mii_list)for((miisc) = ((&mii->mii_phys)->lh_first); (miisc) != ((void *)0); (miisc) = ((miisc)->mii_list.le_next)) |
| 1329 | mii_phy_reset(miisc); |
| 1330 | } |
| 1331 | return mii_mediachg(mii); |
| 1332 | } |
| 1333 | |
| 1334 | /* |
| 1335 | * Report current media status. |
| 1336 | */ |
| 1337 | void |
| 1338 | se_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) |
| 1339 | { |
| 1340 | struct se_softc *sc = ifp->if_softc; |
| 1341 | struct mii_data *mii; |
| 1342 | |
| 1343 | mii = &sc->sc_mii; |
| 1344 | mii_pollstat(mii); |
| 1345 | ifmr->ifm_active = mii->mii_media_active; |
| 1346 | ifmr->ifm_status = mii->mii_media_status; |
| 1347 | } |
| 1348 | |
| 1349 | int |
| 1350 | se_ioctl(struct ifnet *ifp, u_long command, caddr_t data) |
| 1351 | { |
| 1352 | struct se_softc *sc = ifp->if_softc; |
| 1353 | struct ifreq *ifr = (struct ifreq *) data; |
| 1354 | int s, rc = 0; |
| 1355 | |
| 1356 | s = splnet()splraise(0x4); |
| 1357 | |
| 1358 | switch (command) { |
| 1359 | case SIOCSIFADDR((unsigned long)0x80000000 | ((sizeof(struct ifreq) & 0x1fff ) << 16) | ((('i')) << 8) | ((12))): |
| 1360 | ifp->if_flags |= IFF_UP0x1; |
| 1361 | if ((ifp->if_flags & IFF_RUNNING0x40) == 0) |
| 1362 | rc = se_init(ifp); |
| 1363 | break; |
| 1364 | case SIOCSIFFLAGS((unsigned long)0x80000000 | ((sizeof(struct ifreq) & 0x1fff ) << 16) | ((('i')) << 8) | ((16))): |
| 1365 | if (ifp->if_flags & IFF_UP0x1) { |
| 1366 | if (ifp->if_flags & IFF_RUNNING0x40) |
| 1367 | rc = ENETRESET52; |
| 1368 | else |
| 1369 | rc = se_init(ifp); |
| 1370 | } else { |
| 1371 | if (ifp->if_flags & IFF_RUNNING0x40) |
| 1372 | se_stop(sc); |
| 1373 | } |
| 1374 | break; |
| 1375 | case SIOCGIFMEDIA(((unsigned long)0x80000000|(unsigned long)0x40000000) | ((sizeof (struct ifmediareq) & 0x1fff) << 16) | ((('i')) << 8) | ((56))): |
| 1376 | case SIOCSIFMEDIA(((unsigned long)0x80000000|(unsigned long)0x40000000) | ((sizeof (struct ifreq) & 0x1fff) << 16) | ((('i')) << 8) | ((55))): |
| 1377 | rc = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command); |
| 1378 | break; |
| 1379 | default: |
| 1380 | rc = ether_ioctl(ifp, &sc->sc_ac, command, data); |
| 1381 | break; |
| 1382 | } |
| 1383 | |
| 1384 | if (rc == ENETRESET52) { |
| 1385 | if (ifp->if_flags & IFF_RUNNING0x40) |
| 1386 | se_iff(sc); |
| 1387 | rc = 0; |
| 1388 | } |
| 1389 | |
| 1390 | splx(s)spllower(s); |
| 1391 | return rc; |
| 1392 | } |
| 1393 | |
| 1394 | void |
| 1395 | se_watchdog(struct ifnet *ifp) |
| 1396 | { |
| 1397 | struct se_softc *sc = ifp->if_softc; |
| 1398 | int s; |
| 1399 | |
| 1400 | printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname); |
| 1401 | ifp->if_oerrorsif_data.ifi_oerrors++; |
| 1402 | |
| 1403 | s = splnet()splraise(0x4); |
| 1404 | se_init(ifp); |
| 1405 | if (!ifq_empty(&ifp->if_snd)(({ typeof((&ifp->if_snd)->ifq_len) __tmp = *(volatile typeof((&ifp->if_snd)->ifq_len) *)&((&ifp-> if_snd)->ifq_len); membar_datadep_consumer(); __tmp; }) == 0)) |
| 1406 | se_start(ifp); |
| 1407 | splx(s)spllower(s); |
| 1408 | } |
| 1409 | |
| 1410 | /* |
| 1411 | * Stop the adapter and free any mbufs allocated to the |
| 1412 | * RX and TX lists. |
| 1413 | */ |
| 1414 | void |
| 1415 | se_stop(struct se_softc *sc) |
| 1416 | { |
| 1417 | struct ifnet *ifp = &sc->sc_ac.ac_if; |
| 1418 | |
| 1419 | ifp->if_timer = 0; |
| 1420 | ifp->if_flags &= ~IFF_RUNNING0x40; |
| 1421 | ifq_clr_oactive(&ifp->if_snd); |
| 1422 | timeout_del(&sc->sc_tick_tmo); |
| 1423 | mii_down(&sc->sc_mii); |
| 1424 | |
| 1425 | CSR_WRITE_4(sc, IntrMask, 0)(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x24), (0) )); |
| 1426 | CSR_READ_4(sc, IntrMask)(((sc)->sc_iot)->read_4(((sc)->sc_ioh), (0x24))); |
| 1427 | CSR_WRITE_4(sc, IntrStatus, 0xffffffff)(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x20), (0xffffffff ))); |
| 1428 | /* Stop TX/RX MAC. */ |
| 1429 | CSR_WRITE_4(sc, TX_CTL, 0x1a00)(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x00), (0x1a00 ))); |
| 1430 | CSR_WRITE_4(sc, RX_CTL, 0x1a00)(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x10), (0x1a00 ))); |
| 1431 | /* XXX Can we assume active DMA cycles gone? */ |
| 1432 | DELAY(2000)(*delay_func)(2000); |
| 1433 | CSR_WRITE_4(sc, IntrMask, 0)(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x24), (0) )); |
| 1434 | CSR_WRITE_4(sc, IntrStatus, 0xffffffff)(((sc)->sc_iot)->write_4(((sc)->sc_ioh), (0x20), (0xffffffff ))); |
| 1435 | |
| 1436 | sc->sc_flags &= ~SE_FLAG_LINK0x8000; |
| 1437 | se_list_rx_free(sc); |
| 1438 | se_list_tx_free(sc); |
| 1439 | } |