| File: | kern/vfs_bio.c |
| Warning: | line 749, column 2 Access to field 'v_numoutput' results in a dereference of a null pointer (loaded from field 'b_vp') |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* $OpenBSD: vfs_bio.c,v 1.212 2023/04/26 15:13:52 beck Exp $ */ | |||
| 2 | /* $NetBSD: vfs_bio.c,v 1.44 1996/06/11 11:15:36 pk Exp $ */ | |||
| 3 | ||||
| 4 | /* | |||
| 5 | * Copyright (c) 1994 Christopher G. Demetriou | |||
| 6 | * Copyright (c) 1982, 1986, 1989, 1993 | |||
| 7 | * The Regents of the University of California. All rights reserved. | |||
| 8 | * (c) UNIX System Laboratories, Inc. | |||
| 9 | * All or some portions of this file are derived from material licensed | |||
| 10 | * to the University of California by American Telephone and Telegraph | |||
| 11 | * Co. or Unix System Laboratories, Inc. and are reproduced herein with | |||
| 12 | * the permission of UNIX System Laboratories, Inc. | |||
| 13 | * | |||
| 14 | * Redistribution and use in source and binary forms, with or without | |||
| 15 | * modification, are permitted provided that the following conditions | |||
| 16 | * are met: | |||
| 17 | * 1. Redistributions of source code must retain the above copyright | |||
| 18 | * notice, this list of conditions and the following disclaimer. | |||
| 19 | * 2. Redistributions in binary form must reproduce the above copyright | |||
| 20 | * notice, this list of conditions and the following disclaimer in the | |||
| 21 | * documentation and/or other materials provided with the distribution. | |||
| 22 | * 3. Neither the name of the University nor the names of its contributors | |||
| 23 | * may be used to endorse or promote products derived from this software | |||
| 24 | * without specific prior written permission. | |||
| 25 | * | |||
| 26 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |||
| 27 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |||
| 28 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |||
| 29 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |||
| 30 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |||
| 31 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |||
| 32 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |||
| 33 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |||
| 34 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |||
| 35 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |||
| 36 | * SUCH DAMAGE. | |||
| 37 | * | |||
| 38 | * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94 | |||
| 39 | */ | |||
| 40 | ||||
| 41 | /* | |||
| 42 | * Some references: | |||
| 43 | * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986) | |||
| 44 | * Leffler, et al.: The Design and Implementation of the 4.3BSD | |||
| 45 | * UNIX Operating System (Addison Welley, 1989) | |||
| 46 | */ | |||
| 47 | ||||
| 48 | #include <sys/param.h> | |||
| 49 | #include <sys/systm.h> | |||
| 50 | #include <sys/proc.h> | |||
| 51 | #include <sys/buf.h> | |||
| 52 | #include <sys/vnode.h> | |||
| 53 | #include <sys/mount.h> | |||
| 54 | #include <sys/malloc.h> | |||
| 55 | #include <sys/pool.h> | |||
| 56 | #include <sys/specdev.h> | |||
| 57 | #include <sys/tracepoint.h> | |||
| 58 | #include <uvm/uvm_extern.h> | |||
| 59 | ||||
| 60 | /* XXX Should really be in buf.h, but for uvm_constraint_range.. */ | |||
| 61 | int buf_realloc_pages(struct buf *, struct uvm_constraint_range *, int); | |||
| 62 | ||||
| 63 | struct uvm_constraint_range high_constraint; | |||
| 64 | int fliphigh; | |||
| 65 | ||||
| 66 | int nobuffers; | |||
| 67 | int needbuffer; | |||
| 68 | struct bio_ops bioops; | |||
| 69 | ||||
| 70 | /* private bufcache functions */ | |||
| 71 | void bufcache_init(void); | |||
| 72 | void bufcache_adjust(void); | |||
| 73 | struct buf *bufcache_gethighcleanbuf(void); | |||
| 74 | struct buf *bufcache_getdmacleanbuf(void); | |||
| 75 | ||||
| 76 | /* | |||
| 77 | * Buffer pool for I/O buffers. | |||
| 78 | */ | |||
| 79 | struct pool bufpool; | |||
| 80 | struct bufhead bufhead = LIST_HEAD_INITIALIZER(bufhead){ ((void *)0) }; | |||
| 81 | void buf_put(struct buf *); | |||
| 82 | ||||
| 83 | struct buf *bio_doread(struct vnode *, daddr_t, int, int); | |||
| 84 | struct buf *buf_get(struct vnode *, daddr_t, size_t); | |||
| 85 | void bread_cluster_callback(struct buf *); | |||
| 86 | int64_t bufcache_recover_dmapages(int discard, int64_t howmany); | |||
| 87 | static struct buf *incore_locked(struct vnode *vp, daddr_t blkno); | |||
| 88 | ||||
| 89 | struct bcachestats bcstats; /* counters */ | |||
| 90 | long lodirtypages; /* dirty page count low water mark */ | |||
| 91 | long hidirtypages; /* dirty page count high water mark */ | |||
| 92 | long targetpages; /* target number of pages for cache size */ | |||
| 93 | long buflowpages; /* smallest size cache allowed */ | |||
| 94 | long bufhighpages; /* largest size cache allowed */ | |||
| 95 | long bufbackpages; /* minimum number of pages we shrink when asked to */ | |||
| 96 | ||||
| 97 | vsize_t bufkvm; | |||
| 98 | ||||
| 99 | struct proc *cleanerproc; | |||
| 100 | int bd_req; /* Sleep point for cleaner daemon. */ | |||
| 101 | ||||
| 102 | #define NUM_CACHES2 2 | |||
| 103 | #define DMA_CACHE0 0 | |||
| 104 | struct bufcache cleancache[NUM_CACHES2]; | |||
| 105 | struct bufqueue dirtyqueue; | |||
| 106 | ||||
| 107 | void | |||
| 108 | buf_put(struct buf *bp) | |||
| 109 | { | |||
| 110 | splassert(IPL_BIO)do { if (splassert_ctl > 0) { splassert_check(0x3, __func__ ); } } while (0); | |||
| 111 | ||||
| 112 | #ifdef DIAGNOSTIC1 | |||
| 113 | if (bp->b_pobj != NULL((void *)0)) | |||
| 114 | KASSERT(bp->b_bufsize > 0)((bp->b_bufsize > 0) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/kern/vfs_bio.c", 114, "bp->b_bufsize > 0" )); | |||
| 115 | if (ISSET(bp->b_flags, B_DELWRI)((bp->b_flags) & (0x00000080))) | |||
| 116 | panic("buf_put: releasing dirty buffer"); | |||
| 117 | if (bp->b_freelist.tqe_next != NOLIST((struct buf *)0x87654321) && | |||
| 118 | bp->b_freelist.tqe_next != (void *)-1) | |||
| 119 | panic("buf_put: still on the free list"); | |||
| 120 | if (bp->b_vnbufs.le_next != NOLIST((struct buf *)0x87654321) && | |||
| 121 | bp->b_vnbufs.le_next != (void *)-1) | |||
| 122 | panic("buf_put: still on the vnode list"); | |||
| 123 | if (!LIST_EMPTY(&bp->b_dep)(((&bp->b_dep)->lh_first) == ((void *)0))) | |||
| 124 | panic("buf_put: b_dep is not empty"); | |||
| 125 | #endif | |||
| 126 | ||||
| 127 | LIST_REMOVE(bp, b_list)do { if ((bp)->b_list.le_next != ((void *)0)) (bp)->b_list .le_next->b_list.le_prev = (bp)->b_list.le_prev; *(bp)-> b_list.le_prev = (bp)->b_list.le_next; ((bp)->b_list.le_prev ) = ((void *)-1); ((bp)->b_list.le_next) = ((void *)-1); } while (0); | |||
| 128 | bcstats.numbufs--; | |||
| 129 | ||||
| 130 | if (buf_dealloc_mem(bp) != 0) | |||
| 131 | return; | |||
| 132 | pool_put(&bufpool, bp); | |||
| 133 | } | |||
| 134 | ||||
| 135 | /* | |||
| 136 | * Initialize buffers and hash links for buffers. | |||
| 137 | */ | |||
| 138 | void | |||
| 139 | bufinit(void) | |||
| 140 | { | |||
| 141 | u_int64_t dmapages; | |||
| 142 | u_int64_t highpages; | |||
| 143 | ||||
| 144 | dmapages = uvm_pagecount(&dma_constraint); | |||
| 145 | /* take away a guess at how much of this the kernel will consume */ | |||
| 146 | dmapages -= (atop(physmem)((physmem) >> 12) - atop(uvmexp.free)((uvmexp.free) >> 12)); | |||
| 147 | ||||
| 148 | /* See if we have memory above the dma accessible region. */ | |||
| 149 | high_constraint.ucr_low = dma_constraint.ucr_high; | |||
| 150 | high_constraint.ucr_high = no_constraint.ucr_high; | |||
| 151 | if (high_constraint.ucr_low != high_constraint.ucr_high) | |||
| 152 | high_constraint.ucr_low++; | |||
| 153 | highpages = uvm_pagecount(&high_constraint); | |||
| 154 | ||||
| 155 | /* | |||
| 156 | * Do we have any significant amount of high memory above | |||
| 157 | * the DMA region? if so enable moving buffers there, if not, | |||
| 158 | * don't bother. | |||
| 159 | */ | |||
| 160 | if (highpages > dmapages / 4) | |||
| 161 | fliphigh = 1; | |||
| 162 | else | |||
| 163 | fliphigh = 0; | |||
| 164 | ||||
| 165 | /* | |||
| 166 | * If MD code doesn't say otherwise, use up to 10% of DMA'able | |||
| 167 | * memory for buffers. | |||
| 168 | */ | |||
| 169 | if (bufcachepercent == 0) | |||
| 170 | bufcachepercent = 10; | |||
| 171 | ||||
| 172 | /* | |||
| 173 | * XXX these values and their same use in kern_sysctl | |||
| 174 | * need to move into buf.h | |||
| 175 | */ | |||
| 176 | KASSERT(bufcachepercent <= 90)((bufcachepercent <= 90) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/kern/vfs_bio.c", 176, "bufcachepercent <= 90" )); | |||
| 177 | KASSERT(bufcachepercent >= 5)((bufcachepercent >= 5) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/kern/vfs_bio.c", 177, "bufcachepercent >= 5" )); | |||
| 178 | if (bufpages == 0) | |||
| 179 | bufpages = dmapages * bufcachepercent / 100; | |||
| 180 | if (bufpages < BCACHE_MIN((4 * (64 * 1024) / (1 << 12)) * 2)) | |||
| 181 | bufpages = BCACHE_MIN((4 * (64 * 1024) / (1 << 12)) * 2); | |||
| 182 | KASSERT(bufpages < dmapages)((bufpages < dmapages) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/kern/vfs_bio.c", 182, "bufpages < dmapages" )); | |||
| 183 | ||||
| 184 | bufhighpages = bufpages; | |||
| 185 | ||||
| 186 | /* | |||
| 187 | * Set the base backoff level for the buffer cache. We will | |||
| 188 | * not allow uvm to steal back more than this number of pages. | |||
| 189 | */ | |||
| 190 | buflowpages = dmapages * 5 / 100; | |||
| 191 | if (buflowpages < BCACHE_MIN((4 * (64 * 1024) / (1 << 12)) * 2)) | |||
| 192 | buflowpages = BCACHE_MIN((4 * (64 * 1024) / (1 << 12)) * 2); | |||
| 193 | ||||
| 194 | /* | |||
| 195 | * set bufbackpages to 100 pages, or 10 percent of the low water mark | |||
| 196 | * if we don't have that many pages. | |||
| 197 | */ | |||
| 198 | ||||
| 199 | bufbackpages = buflowpages * 10 / 100; | |||
| 200 | if (bufbackpages > 100) | |||
| 201 | bufbackpages = 100; | |||
| 202 | ||||
| 203 | /* | |||
| 204 | * If the MD code does not say otherwise, reserve 10% of kva | |||
| 205 | * space for mapping buffers. | |||
| 206 | */ | |||
| 207 | if (bufkvm == 0) | |||
| 208 | bufkvm = VM_KERNEL_SPACE_SIZE(0xffff800100000000 - 0xffff800000000000) / 10; | |||
| 209 | ||||
| 210 | /* | |||
| 211 | * Don't use more than twice the amount of bufpages for mappings. | |||
| 212 | * It's twice since we map things sparsely. | |||
| 213 | */ | |||
| 214 | if (bufkvm > bufpages * PAGE_SIZE(1 << 12)) | |||
| 215 | bufkvm = bufpages * PAGE_SIZE(1 << 12); | |||
| 216 | /* | |||
| 217 | * Round bufkvm to MAXPHYS because we allocate chunks of va space | |||
| 218 | * in MAXPHYS chunks. | |||
| 219 | */ | |||
| 220 | bufkvm &= ~(MAXPHYS(64 * 1024) - 1); | |||
| 221 | ||||
| 222 | pool_init(&bufpool, sizeof(struct buf), 0, IPL_BIO0x3, 0, "bufpl", NULL((void *)0)); | |||
| 223 | ||||
| 224 | bufcache_init(); | |||
| 225 | ||||
| 226 | /* | |||
| 227 | * hmm - bufkvm is an argument because it's static, while | |||
| 228 | * bufpages is global because it can change while running. | |||
| 229 | */ | |||
| 230 | buf_mem_init(bufkvm); | |||
| 231 | ||||
| 232 | /* | |||
| 233 | * Set the dirty page high water mark to be less than the low | |||
| 234 | * water mark for pages in the buffer cache. This ensures we | |||
| 235 | * can always back off by throwing away clean pages, and give | |||
| 236 | * ourselves a chance to write out the dirty pages eventually. | |||
| 237 | */ | |||
| 238 | hidirtypages = (buflowpages / 4) * 3; | |||
| 239 | lodirtypages = buflowpages / 2; | |||
| 240 | ||||
| 241 | /* | |||
| 242 | * We are allowed to use up to the reserve. | |||
| 243 | */ | |||
| 244 | targetpages = bufpages - RESERVE_PAGES(4 * (64 * 1024) / (1 << 12)); | |||
| 245 | } | |||
| 246 | ||||
| 247 | /* | |||
| 248 | * Change cachepct | |||
| 249 | */ | |||
| 250 | void | |||
| 251 | bufadjust(int newbufpages) | |||
| 252 | { | |||
| 253 | int s; | |||
| 254 | int64_t npages; | |||
| 255 | ||||
| 256 | if (newbufpages < buflowpages) | |||
| 257 | newbufpages = buflowpages; | |||
| 258 | ||||
| 259 | s = splbio()splraise(0x3); | |||
| 260 | bufpages = newbufpages; | |||
| 261 | ||||
| 262 | /* | |||
| 263 | * We are allowed to use up to the reserve | |||
| 264 | */ | |||
| 265 | targetpages = bufpages - RESERVE_PAGES(4 * (64 * 1024) / (1 << 12)); | |||
| 266 | ||||
| 267 | npages = bcstats.dmapages - targetpages; | |||
| 268 | ||||
| 269 | /* | |||
| 270 | * Shrinking the cache happens here only if someone has manually | |||
| 271 | * adjusted bufcachepercent - or the pagedaemon has told us | |||
| 272 | * to give back memory *now* - so we give it all back. | |||
| 273 | */ | |||
| 274 | if (bcstats.dmapages > targetpages) | |||
| 275 | (void) bufcache_recover_dmapages(0, bcstats.dmapages - targetpages); | |||
| 276 | bufcache_adjust(); | |||
| 277 | ||||
| 278 | /* | |||
| 279 | * Wake up the cleaner if we have lots of dirty pages, | |||
| 280 | * or if we are getting low on buffer cache kva. | |||
| 281 | */ | |||
| 282 | if ((UNCLEAN_PAGES(bcstats.numbufpages - bcstats.numcleanpages) >= hidirtypages) || | |||
| 283 | bcstats.kvaslots_avail <= 2 * RESERVE_SLOTS4) | |||
| 284 | wakeup(&bd_req); | |||
| 285 | ||||
| 286 | splx(s)spllower(s); | |||
| 287 | } | |||
| 288 | ||||
| 289 | /* | |||
| 290 | * Make the buffer cache back off from cachepct. | |||
| 291 | */ | |||
| 292 | int | |||
| 293 | bufbackoff(struct uvm_constraint_range *range, long size) | |||
| 294 | { | |||
| 295 | /* | |||
| 296 | * Back off "size" buffer cache pages. Called by the page | |||
| 297 | * daemon to consume buffer cache pages rather than scanning. | |||
| 298 | * | |||
| 299 | * It returns 0 to the pagedaemon to indicate that it has | |||
| 300 | * succeeded in freeing enough pages. It returns -1 to | |||
| 301 | * indicate that it could not and the pagedaemon should take | |||
| 302 | * other measures. | |||
| 303 | * | |||
| 304 | */ | |||
| 305 | long pdelta, oldbufpages; | |||
| 306 | ||||
| 307 | /* | |||
| 308 | * If we will accept high memory for this backoff | |||
| 309 | * try to steal it from the high memory buffer cache. | |||
| 310 | */ | |||
| 311 | if (range != NULL((void *)0) && range->ucr_high > dma_constraint.ucr_high) { | |||
| 312 | struct buf *bp; | |||
| 313 | int64_t start = bcstats.numbufpages, recovered = 0; | |||
| 314 | int s = splbio()splraise(0x3); | |||
| 315 | ||||
| 316 | while ((recovered < size) && | |||
| 317 | (bp = bufcache_gethighcleanbuf())) { | |||
| 318 | bufcache_take(bp); | |||
| 319 | if (bp->b_vp) { | |||
| 320 | RBT_REMOVE(buf_rb_bufs,buf_rb_bufs_RBT_REMOVE(&bp->b_vp->v_bufs_tree, bp) | |||
| 321 | &bp->b_vp->v_bufs_tree, bp)buf_rb_bufs_RBT_REMOVE(&bp->b_vp->v_bufs_tree, bp); | |||
| 322 | brelvp(bp); | |||
| 323 | } | |||
| 324 | buf_put(bp); | |||
| 325 | recovered = start - bcstats.numbufpages; | |||
| 326 | } | |||
| 327 | bufcache_adjust(); | |||
| 328 | splx(s)spllower(s); | |||
| 329 | ||||
| 330 | /* If we got enough, return success */ | |||
| 331 | if (recovered >= size) | |||
| 332 | return 0; | |||
| 333 | ||||
| 334 | /* | |||
| 335 | * If we needed only memory above DMA, | |||
| 336 | * return failure | |||
| 337 | */ | |||
| 338 | if (range->ucr_low > dma_constraint.ucr_high) | |||
| 339 | return -1; | |||
| 340 | ||||
| 341 | /* Otherwise get the rest from DMA */ | |||
| 342 | size -= recovered; | |||
| 343 | } | |||
| 344 | ||||
| 345 | /* | |||
| 346 | * XXX Otherwise do the dma memory cache dance. this needs | |||
| 347 | * refactoring later to get rid of 'bufpages' | |||
| 348 | */ | |||
| 349 | ||||
| 350 | /* | |||
| 351 | * Back off by at least bufbackpages. If the page daemon gave us | |||
| 352 | * a larger size, back off by that much. | |||
| 353 | */ | |||
| 354 | pdelta = (size > bufbackpages) ? size : bufbackpages; | |||
| 355 | ||||
| 356 | if (bufpages <= buflowpages) | |||
| 357 | return(-1); | |||
| 358 | if (bufpages - pdelta < buflowpages) | |||
| 359 | pdelta = bufpages - buflowpages; | |||
| 360 | oldbufpages = bufpages; | |||
| 361 | bufadjust(bufpages - pdelta); | |||
| 362 | if (oldbufpages - bufpages < size) | |||
| 363 | return (-1); /* we did not free what we were asked */ | |||
| 364 | else | |||
| 365 | return(0); | |||
| 366 | } | |||
| 367 | ||||
| 368 | ||||
| 369 | /* | |||
| 370 | * Opportunistically flip a buffer into high memory. Will move the buffer | |||
| 371 | * if memory is available without sleeping, and return 0, otherwise will | |||
| 372 | * fail and return -1 with the buffer unchanged. | |||
| 373 | */ | |||
| 374 | ||||
| 375 | int | |||
| 376 | buf_flip_high(struct buf *bp) | |||
| 377 | { | |||
| 378 | int ret = -1; | |||
| 379 | ||||
| 380 | KASSERT(ISSET(bp->b_flags, B_BC))((((bp->b_flags) & (0x02000000))) ? (void)0 : __assert ("diagnostic ", "/usr/src/sys/kern/vfs_bio.c", 380, "ISSET(bp->b_flags, B_BC)" )); | |||
| 381 | KASSERT(ISSET(bp->b_flags, B_DMA))((((bp->b_flags) & (0x04000000))) ? (void)0 : __assert ("diagnostic ", "/usr/src/sys/kern/vfs_bio.c", 381, "ISSET(bp->b_flags, B_DMA)" )); | |||
| 382 | KASSERT(bp->cache == DMA_CACHE)((bp->cache == 0) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/kern/vfs_bio.c" , 382, "bp->cache == DMA_CACHE")); | |||
| 383 | KASSERT(fliphigh)((fliphigh) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/kern/vfs_bio.c" , 383, "fliphigh")); | |||
| 384 | ||||
| 385 | splassert(IPL_BIO)do { if (splassert_ctl > 0) { splassert_check(0x3, __func__ ); } } while (0); | |||
| 386 | ||||
| 387 | /* Attempt to move the buffer to high memory if we can */ | |||
| 388 | if (buf_realloc_pages(bp, &high_constraint, UVM_PLA_NOWAIT0x0002) == 0) { | |||
| 389 | KASSERT(!ISSET(bp->b_flags, B_DMA))((!((bp->b_flags) & (0x04000000))) ? (void)0 : __assert ("diagnostic ", "/usr/src/sys/kern/vfs_bio.c", 389, "!ISSET(bp->b_flags, B_DMA)" )); | |||
| 390 | bcstats.highflips++; | |||
| 391 | ret = 0; | |||
| 392 | } else | |||
| 393 | bcstats.highflops++; | |||
| 394 | ||||
| 395 | return ret; | |||
| 396 | } | |||
| 397 | ||||
| 398 | /* | |||
| 399 | * Flip a buffer to dma reachable memory, when we need it there for | |||
| 400 | * I/O. This can sleep since it will wait for memory allocation in the | |||
| 401 | * DMA reachable area since we have to have the buffer there to proceed. | |||
| 402 | */ | |||
| 403 | void | |||
| 404 | buf_flip_dma(struct buf *bp) | |||
| 405 | { | |||
| 406 | KASSERT(ISSET(bp->b_flags, B_BC))((((bp->b_flags) & (0x02000000))) ? (void)0 : __assert ("diagnostic ", "/usr/src/sys/kern/vfs_bio.c", 406, "ISSET(bp->b_flags, B_BC)" )); | |||
| 407 | KASSERT(ISSET(bp->b_flags, B_BUSY))((((bp->b_flags) & (0x00000010))) ? (void)0 : __assert ("diagnostic ", "/usr/src/sys/kern/vfs_bio.c", 407, "ISSET(bp->b_flags, B_BUSY)" )); | |||
| 408 | KASSERT(bp->cache < NUM_CACHES)((bp->cache < 2) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/kern/vfs_bio.c" , 408, "bp->cache < NUM_CACHES")); | |||
| 409 | ||||
| 410 | splassert(IPL_BIO)do { if (splassert_ctl > 0) { splassert_check(0x3, __func__ ); } } while (0); | |||
| 411 | ||||
| 412 | if (!ISSET(bp->b_flags, B_DMA)((bp->b_flags) & (0x04000000))) { | |||
| 413 | ||||
| 414 | /* move buf to dma reachable memory */ | |||
| 415 | (void) buf_realloc_pages(bp, &dma_constraint, UVM_PLA_WAITOK0x0001); | |||
| 416 | KASSERT(ISSET(bp->b_flags, B_DMA))((((bp->b_flags) & (0x04000000))) ? (void)0 : __assert ("diagnostic ", "/usr/src/sys/kern/vfs_bio.c", 416, "ISSET(bp->b_flags, B_DMA)" )); | |||
| 417 | bcstats.dmaflips++; | |||
| 418 | } | |||
| 419 | ||||
| 420 | if (bp->cache > DMA_CACHE0) { | |||
| 421 | CLR(bp->b_flags, B_COLD)((bp->b_flags) &= ~(0x01000000)); | |||
| 422 | CLR(bp->b_flags, B_WARM)((bp->b_flags) &= ~(0x00800000)); | |||
| 423 | bp->cache = DMA_CACHE0; | |||
| 424 | } | |||
| 425 | } | |||
| 426 | ||||
| 427 | struct buf * | |||
| 428 | bio_doread(struct vnode *vp, daddr_t blkno, int size, int async) | |||
| 429 | { | |||
| 430 | struct buf *bp; | |||
| 431 | struct mount *mp; | |||
| 432 | ||||
| 433 | bp = getblk(vp, blkno, size, 0, INFSLP0xffffffffffffffffULL); | |||
| 434 | ||||
| 435 | /* | |||
| 436 | * If buffer does not have valid data, start a read. | |||
| 437 | * Note that if buffer is B_INVAL, getblk() won't return it. | |||
| 438 | * Therefore, it's valid if its I/O has completed or been delayed. | |||
| 439 | */ | |||
| 440 | if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))((bp->b_flags) & ((0x00000100 | 0x00000080)))) { | |||
| 441 | SET(bp->b_flags, B_READ | async)((bp->b_flags) |= (0x00008000 | async)); | |||
| 442 | bcstats.pendingreads++; | |||
| 443 | bcstats.numreads++; | |||
| 444 | VOP_STRATEGY(bp->b_vp, bp); | |||
| 445 | /* Pay for the read. */ | |||
| 446 | curproc({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_curproc->p_ru.ru_inblock++; /* XXX */ | |||
| 447 | } else if (async) { | |||
| 448 | brelse(bp); | |||
| 449 | } | |||
| 450 | ||||
| 451 | mp = vp->v_type == VBLK ? vp->v_specmountpointv_un.vu_specinfo->si_mountpoint : vp->v_mount; | |||
| 452 | ||||
| 453 | /* | |||
| 454 | * Collect statistics on synchronous and asynchronous reads. | |||
| 455 | * Reads from block devices are charged to their associated | |||
| 456 | * filesystem (if any). | |||
| 457 | */ | |||
| 458 | if (mp != NULL((void *)0)) { | |||
| 459 | if (async == 0) | |||
| 460 | mp->mnt_stat.f_syncreads++; | |||
| 461 | else | |||
| 462 | mp->mnt_stat.f_asyncreads++; | |||
| 463 | } | |||
| 464 | ||||
| 465 | return (bp); | |||
| 466 | } | |||
| 467 | ||||
| 468 | /* | |||
| 469 | * Read a disk block. | |||
| 470 | * This algorithm described in Bach (p.54). | |||
| 471 | */ | |||
| 472 | int | |||
| 473 | bread(struct vnode *vp, daddr_t blkno, int size, struct buf **bpp) | |||
| 474 | { | |||
| 475 | struct buf *bp; | |||
| 476 | ||||
| 477 | /* Get buffer for block. */ | |||
| 478 | bp = *bpp = bio_doread(vp, blkno, size, 0); | |||
| 479 | ||||
| 480 | /* Wait for the read to complete, and return result. */ | |||
| 481 | return (biowait(bp)); | |||
| 482 | } | |||
| 483 | ||||
| 484 | /* | |||
| 485 | * Read-ahead multiple disk blocks. The first is sync, the rest async. | |||
| 486 | * Trivial modification to the breada algorithm presented in Bach (p.55). | |||
| 487 | */ | |||
| 488 | int | |||
| 489 | breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t rablks[], | |||
| 490 | int rasizes[], int nrablks, struct buf **bpp) | |||
| 491 | { | |||
| 492 | struct buf *bp; | |||
| 493 | int i; | |||
| 494 | ||||
| 495 | bp = *bpp = bio_doread(vp, blkno, size, 0); | |||
| 496 | ||||
| 497 | /* | |||
| 498 | * For each of the read-ahead blocks, start a read, if necessary. | |||
| 499 | */ | |||
| 500 | for (i = 0; i < nrablks; i++) { | |||
| 501 | /* If it's in the cache, just go on to next one. */ | |||
| 502 | if (incore(vp, rablks[i])) | |||
| 503 | continue; | |||
| 504 | ||||
| 505 | /* Get a buffer for the read-ahead block */ | |||
| 506 | (void) bio_doread(vp, rablks[i], rasizes[i], B_ASYNC0x00000004); | |||
| 507 | } | |||
| 508 | ||||
| 509 | /* Otherwise, we had to start a read for it; wait until it's valid. */ | |||
| 510 | return (biowait(bp)); | |||
| 511 | } | |||
| 512 | ||||
| 513 | /* | |||
| 514 | * Called from interrupt context. | |||
| 515 | */ | |||
| 516 | void | |||
| 517 | bread_cluster_callback(struct buf *bp) | |||
| 518 | { | |||
| 519 | struct buf **xbpp = bp->b_saveaddr; | |||
| 520 | int i; | |||
| 521 | ||||
| 522 | if (xbpp[1] != NULL((void *)0)) { | |||
| 523 | size_t newsize = xbpp[1]->b_bufsize; | |||
| 524 | ||||
| 525 | /* | |||
| 526 | * Shrink this buffer's mapping to only cover its part of | |||
| 527 | * the total I/O. | |||
| 528 | */ | |||
| 529 | buf_fix_mapping(bp, newsize); | |||
| 530 | bp->b_bcount = newsize; | |||
| 531 | } | |||
| 532 | ||||
| 533 | /* Invalidate read-ahead buffers if read short */ | |||
| 534 | if (bp->b_resid > 0) { | |||
| 535 | for (i = 1; xbpp[i] != NULL((void *)0); i++) | |||
| 536 | continue; | |||
| 537 | for (i = i - 1; i != 0; i--) { | |||
| 538 | if (xbpp[i]->b_bufsize <= bp->b_resid) { | |||
| 539 | bp->b_resid -= xbpp[i]->b_bufsize; | |||
| 540 | SET(xbpp[i]->b_flags, B_INVAL)((xbpp[i]->b_flags) |= (0x00000800)); | |||
| 541 | } else if (bp->b_resid > 0) { | |||
| 542 | bp->b_resid = 0; | |||
| 543 | SET(xbpp[i]->b_flags, B_INVAL)((xbpp[i]->b_flags) |= (0x00000800)); | |||
| 544 | } else | |||
| 545 | break; | |||
| 546 | } | |||
| 547 | } | |||
| 548 | ||||
| 549 | for (i = 1; xbpp[i] != NULL((void *)0); i++) { | |||
| 550 | if (ISSET(bp->b_flags, B_ERROR)((bp->b_flags) & (0x00000400))) | |||
| 551 | SET(xbpp[i]->b_flags, B_INVAL | B_ERROR)((xbpp[i]->b_flags) |= (0x00000800 | 0x00000400)); | |||
| 552 | /* | |||
| 553 | * Move the pages from the master buffer's uvm object | |||
| 554 | * into the individual buffer's uvm objects. | |||
| 555 | */ | |||
| 556 | struct uvm_object *newobj = &xbpp[i]->b_uobj; | |||
| 557 | struct uvm_object *oldobj = &bp->b_uobj; | |||
| 558 | int page; | |||
| 559 | ||||
| 560 | uvm_obj_init(newobj, &bufcache_pager, 1); | |||
| 561 | for (page = 0; page < atop(xbpp[i]->b_bufsize)((xbpp[i]->b_bufsize) >> 12); page++) { | |||
| 562 | struct vm_page *pg = uvm_pagelookup(oldobj, | |||
| 563 | xbpp[i]->b_poffs + ptoa(page)((paddr_t)(page) << 12)); | |||
| 564 | KASSERT(pg != NULL)((pg != ((void *)0)) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/kern/vfs_bio.c" , 564, "pg != NULL")); | |||
| 565 | KASSERT(pg->wire_count == 1)((pg->wire_count == 1) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/kern/vfs_bio.c", 565, "pg->wire_count == 1" )); | |||
| 566 | uvm_pagerealloc(pg, newobj, xbpp[i]->b_poffs + ptoa(page)((paddr_t)(page) << 12)); | |||
| 567 | } | |||
| 568 | xbpp[i]->b_pobj = newobj; | |||
| 569 | ||||
| 570 | biodone(xbpp[i]); | |||
| 571 | } | |||
| 572 | ||||
| 573 | free(xbpp, M_TEMP127, (i + 1) * sizeof(*xbpp)); | |||
| 574 | ||||
| 575 | if (ISSET(bp->b_flags, B_ASYNC)((bp->b_flags) & (0x00000004))) { | |||
| 576 | brelse(bp); | |||
| 577 | } else { | |||
| 578 | CLR(bp->b_flags, B_WANTED)((bp->b_flags) &= ~(0x00010000)); | |||
| 579 | wakeup(bp); | |||
| 580 | } | |||
| 581 | } | |||
| 582 | ||||
| 583 | /* | |||
| 584 | * Read-ahead multiple disk blocks, but make sure only one (big) I/O | |||
| 585 | * request is sent to the disk. | |||
| 586 | * XXX This should probably be dropped and breadn should instead be optimized | |||
| 587 | * XXX to do fewer I/O requests. | |||
| 588 | */ | |||
| 589 | int | |||
| 590 | bread_cluster(struct vnode *vp, daddr_t blkno, int size, struct buf **rbpp) | |||
| 591 | { | |||
| 592 | struct buf *bp, **xbpp; | |||
| 593 | int howmany, maxra, i, inc; | |||
| 594 | daddr_t sblkno; | |||
| 595 | ||||
| 596 | *rbpp = bio_doread(vp, blkno, size, 0); | |||
| 597 | ||||
| 598 | /* | |||
| 599 | * If the buffer is in the cache skip any I/O operation. | |||
| 600 | */ | |||
| 601 | if (ISSET((*rbpp)->b_flags, B_CACHE)(((*rbpp)->b_flags) & (0x00000020))) | |||
| 602 | goto out; | |||
| 603 | ||||
| 604 | if (size != round_page(size)(((size) + ((1 << 12) - 1)) & ~((1 << 12) - 1 ))) | |||
| 605 | goto out; | |||
| 606 | ||||
| 607 | if (VOP_BMAP(vp, blkno + 1, NULL((void *)0), &sblkno, &maxra)) | |||
| 608 | goto out; | |||
| 609 | ||||
| 610 | maxra++; | |||
| 611 | if (sblkno == -1 || maxra < 2) | |||
| 612 | goto out; | |||
| 613 | ||||
| 614 | howmany = MAXPHYS(64 * 1024) / size; | |||
| 615 | if (howmany > maxra) | |||
| 616 | howmany = maxra; | |||
| 617 | ||||
| 618 | xbpp = mallocarray(howmany + 1, sizeof(*xbpp), M_TEMP127, M_NOWAIT0x0002); | |||
| 619 | if (xbpp == NULL((void *)0)) | |||
| 620 | goto out; | |||
| 621 | ||||
| 622 | for (i = howmany - 1; i >= 0; i--) { | |||
| 623 | size_t sz; | |||
| 624 | ||||
| 625 | /* | |||
| 626 | * First buffer allocates big enough size to cover what | |||
| 627 | * all the other buffers need. | |||
| 628 | */ | |||
| 629 | sz = i == 0 ? howmany * size : 0; | |||
| 630 | ||||
| 631 | xbpp[i] = buf_get(vp, blkno + i + 1, sz); | |||
| 632 | if (xbpp[i] == NULL((void *)0)) { | |||
| 633 | for (++i; i < howmany; i++) { | |||
| 634 | SET(xbpp[i]->b_flags, B_INVAL)((xbpp[i]->b_flags) |= (0x00000800)); | |||
| 635 | brelse(xbpp[i]); | |||
| 636 | } | |||
| 637 | free(xbpp, M_TEMP127, (howmany + 1) * sizeof(*xbpp)); | |||
| 638 | goto out; | |||
| 639 | } | |||
| 640 | } | |||
| 641 | ||||
| 642 | bp = xbpp[0]; | |||
| 643 | ||||
| 644 | xbpp[howmany] = NULL((void *)0); | |||
| 645 | ||||
| 646 | inc = btodb(size)((size) >> 9); | |||
| 647 | ||||
| 648 | for (i = 1; i < howmany; i++) { | |||
| 649 | bcstats.pendingreads++; | |||
| 650 | bcstats.numreads++; | |||
| 651 | /* | |||
| 652 | * We set B_DMA here because bp above will be B_DMA, | |||
| 653 | * and we are playing buffer slice-n-dice games from | |||
| 654 | * the memory allocated in bp. | |||
| 655 | */ | |||
| 656 | SET(xbpp[i]->b_flags, B_DMA | B_READ | B_ASYNC)((xbpp[i]->b_flags) |= (0x04000000 | 0x00008000 | 0x00000004 )); | |||
| 657 | xbpp[i]->b_blkno = sblkno + (i * inc); | |||
| 658 | xbpp[i]->b_bufsize = xbpp[i]->b_bcount = size; | |||
| 659 | xbpp[i]->b_data = NULL((void *)0); | |||
| 660 | xbpp[i]->b_pobj = bp->b_pobj; | |||
| 661 | xbpp[i]->b_poffs = bp->b_poffs + (i * size); | |||
| 662 | } | |||
| 663 | ||||
| 664 | KASSERT(bp->b_lblkno == blkno + 1)((bp->b_lblkno == blkno + 1) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/kern/vfs_bio.c", 664, "bp->b_lblkno == blkno + 1" )); | |||
| 665 | KASSERT(bp->b_vp == vp)((bp->b_vp == vp) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/kern/vfs_bio.c" , 665, "bp->b_vp == vp")); | |||
| 666 | ||||
| 667 | bp->b_blkno = sblkno; | |||
| 668 | SET(bp->b_flags, B_READ | B_ASYNC | B_CALL)((bp->b_flags) |= (0x00008000 | 0x00000004 | 0x00000040)); | |||
| 669 | ||||
| 670 | bp->b_saveaddr = (void *)xbpp; | |||
| 671 | bp->b_iodone = bread_cluster_callback; | |||
| 672 | ||||
| 673 | bcstats.pendingreads++; | |||
| 674 | bcstats.numreads++; | |||
| 675 | VOP_STRATEGY(bp->b_vp, bp); | |||
| 676 | curproc({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_curproc->p_ru.ru_inblock++; | |||
| 677 | ||||
| 678 | out: | |||
| 679 | return (biowait(*rbpp)); | |||
| 680 | } | |||
| 681 | ||||
| 682 | /* | |||
| 683 | * Block write. Described in Bach (p.56) | |||
| 684 | */ | |||
| 685 | int | |||
| 686 | bwrite(struct buf *bp) | |||
| 687 | { | |||
| 688 | int rv, async, wasdelayed, s; | |||
| 689 | struct vnode *vp; | |||
| 690 | struct mount *mp; | |||
| 691 | ||||
| 692 | vp = bp->b_vp; | |||
| 693 | if (vp != NULL((void *)0)) | |||
| ||||
| 694 | mp = vp->v_type == VBLK? vp->v_specmountpointv_un.vu_specinfo->si_mountpoint : vp->v_mount; | |||
| 695 | else | |||
| 696 | mp = NULL((void *)0); | |||
| 697 | ||||
| 698 | /* | |||
| 699 | * Remember buffer type, to switch on it later. If the write was | |||
| 700 | * synchronous, but the file system was mounted with MNT_ASYNC, | |||
| 701 | * convert it to a delayed write. | |||
| 702 | * XXX note that this relies on delayed tape writes being converted | |||
| 703 | * to async, not sync writes (which is safe, but ugly). | |||
| 704 | */ | |||
| 705 | async = ISSET(bp->b_flags, B_ASYNC)((bp->b_flags) & (0x00000004)); | |||
| 706 | if (!async && mp && ISSET(mp->mnt_flag, MNT_ASYNC)((mp->mnt_flag) & (0x00000040))) { | |||
| 707 | /* | |||
| 708 | * Don't convert writes from VND on async filesystems | |||
| 709 | * that already have delayed writes in the upper layer. | |||
| 710 | */ | |||
| 711 | if (!ISSET(bp->b_flags, B_NOCACHE)((bp->b_flags) & (0x00001000))) { | |||
| 712 | bdwrite(bp); | |||
| 713 | return (0); | |||
| 714 | } | |||
| 715 | } | |||
| 716 | ||||
| 717 | /* | |||
| 718 | * Collect statistics on synchronous and asynchronous writes. | |||
| 719 | * Writes to block devices are charged to their associated | |||
| 720 | * filesystem (if any). | |||
| 721 | */ | |||
| 722 | if (mp
| |||
| 723 | if (async) | |||
| 724 | mp->mnt_stat.f_asyncwrites++; | |||
| 725 | else | |||
| 726 | mp->mnt_stat.f_syncwrites++; | |||
| 727 | } | |||
| 728 | bcstats.pendingwrites++; | |||
| 729 | bcstats.numwrites++; | |||
| 730 | ||||
| 731 | wasdelayed = ISSET(bp->b_flags, B_DELWRI)((bp->b_flags) & (0x00000080)); | |||
| 732 | CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI))((bp->b_flags) &= ~((0x00008000 | 0x00000100 | 0x00000400 | 0x00000080))); | |||
| 733 | ||||
| 734 | s = splbio()splraise(0x3); | |||
| 735 | ||||
| 736 | /* | |||
| 737 | * If not synchronous, pay for the I/O operation and make | |||
| 738 | * sure the buf is on the correct vnode queue. We have | |||
| 739 | * to do this now, because if we don't, the vnode may not | |||
| 740 | * be properly notified that its I/O has completed. | |||
| 741 | */ | |||
| 742 | if (wasdelayed) { | |||
| 743 | reassignbuf(bp); | |||
| 744 | } else | |||
| 745 | curproc({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_curproc->p_ru.ru_oublock++; | |||
| 746 | ||||
| 747 | ||||
| 748 | /* Initiate disk write. Make sure the appropriate party is charged. */ | |||
| 749 | bp->b_vp->v_numoutput++; | |||
| ||||
| 750 | buf_flip_dma(bp); | |||
| 751 | SET(bp->b_flags, B_WRITEINPROG)((bp->b_flags) |= (0x00020000)); | |||
| 752 | splx(s)spllower(s); | |||
| 753 | VOP_STRATEGY(bp->b_vp, bp); | |||
| 754 | ||||
| 755 | /* | |||
| 756 | * If the queue is above the high water mark, wait till | |||
| 757 | * the number of outstanding write bufs drops below the low | |||
| 758 | * water mark. | |||
| 759 | */ | |||
| 760 | if (bp->b_bq) | |||
| 761 | bufq_wait(bp->b_bq); | |||
| 762 | ||||
| 763 | if (async) | |||
| 764 | return (0); | |||
| 765 | ||||
| 766 | /* | |||
| 767 | * If I/O was synchronous, wait for it to complete. | |||
| 768 | */ | |||
| 769 | rv = biowait(bp); | |||
| 770 | ||||
| 771 | /* Release the buffer. */ | |||
| 772 | brelse(bp); | |||
| 773 | ||||
| 774 | return (rv); | |||
| 775 | } | |||
| 776 | ||||
| 777 | ||||
| 778 | /* | |||
| 779 | * Delayed write. | |||
| 780 | * | |||
| 781 | * The buffer is marked dirty, but is not queued for I/O. | |||
| 782 | * This routine should be used when the buffer is expected | |||
| 783 | * to be modified again soon, typically a small write that | |||
| 784 | * partially fills a buffer. | |||
| 785 | * | |||
| 786 | * NB: magnetic tapes cannot be delayed; they must be | |||
| 787 | * written in the order that the writes are requested. | |||
| 788 | * | |||
| 789 | * Described in Leffler, et al. (pp. 208-213). | |||
| 790 | */ | |||
| 791 | void | |||
| 792 | bdwrite(struct buf *bp) | |||
| 793 | { | |||
| 794 | int s; | |||
| 795 | ||||
| 796 | /* | |||
| 797 | * If the block hasn't been seen before: | |||
| 798 | * (1) Mark it as having been seen, | |||
| 799 | * (2) Charge for the write. | |||
| 800 | * (3) Make sure it's on its vnode's correct block list, | |||
| 801 | * (4) If a buffer is rewritten, move it to end of dirty list | |||
| 802 | */ | |||
| 803 | if (!ISSET(bp->b_flags, B_DELWRI)((bp->b_flags) & (0x00000080))) { | |||
| 804 | SET(bp->b_flags, B_DELWRI)((bp->b_flags) |= (0x00000080)); | |||
| 805 | s = splbio()splraise(0x3); | |||
| 806 | buf_flip_dma(bp); | |||
| 807 | reassignbuf(bp); | |||
| 808 | splx(s)spllower(s); | |||
| 809 | curproc({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_curproc->p_ru.ru_oublock++; /* XXX */ | |||
| 810 | } | |||
| 811 | ||||
| 812 | /* The "write" is done, so mark and release the buffer. */ | |||
| 813 | CLR(bp->b_flags, B_NEEDCOMMIT)((bp->b_flags) &= ~(0x00000002)); | |||
| 814 | CLR(bp->b_flags, B_NOCACHE)((bp->b_flags) &= ~(0x00001000)); /* Must cache delayed writes */ | |||
| 815 | SET(bp->b_flags, B_DONE)((bp->b_flags) |= (0x00000100)); | |||
| 816 | brelse(bp); | |||
| 817 | } | |||
| 818 | ||||
| 819 | /* | |||
| 820 | * Asynchronous block write; just an asynchronous bwrite(). | |||
| 821 | */ | |||
| 822 | void | |||
| 823 | bawrite(struct buf *bp) | |||
| 824 | { | |||
| 825 | ||||
| 826 | SET(bp->b_flags, B_ASYNC)((bp->b_flags) |= (0x00000004)); | |||
| 827 | VOP_BWRITE(bp); | |||
| 828 | } | |||
| 829 | ||||
| 830 | /* | |||
| 831 | * Must be called at splbio() | |||
| 832 | */ | |||
| 833 | void | |||
| 834 | buf_dirty(struct buf *bp) | |||
| 835 | { | |||
| 836 | splassert(IPL_BIO)do { if (splassert_ctl > 0) { splassert_check(0x3, __func__ ); } } while (0); | |||
| 837 | ||||
| 838 | #ifdef DIAGNOSTIC1 | |||
| 839 | if (!ISSET(bp->b_flags, B_BUSY)((bp->b_flags) & (0x00000010))) | |||
| 840 | panic("Trying to dirty buffer on freelist!"); | |||
| 841 | #endif | |||
| 842 | ||||
| 843 | if (ISSET(bp->b_flags, B_DELWRI)((bp->b_flags) & (0x00000080)) == 0) { | |||
| 844 | SET(bp->b_flags, B_DELWRI)((bp->b_flags) |= (0x00000080)); | |||
| 845 | buf_flip_dma(bp); | |||
| 846 | reassignbuf(bp); | |||
| 847 | } | |||
| 848 | } | |||
| 849 | ||||
| 850 | /* | |||
| 851 | * Must be called at splbio() | |||
| 852 | */ | |||
| 853 | void | |||
| 854 | buf_undirty(struct buf *bp) | |||
| 855 | { | |||
| 856 | splassert(IPL_BIO)do { if (splassert_ctl > 0) { splassert_check(0x3, __func__ ); } } while (0); | |||
| 857 | ||||
| 858 | #ifdef DIAGNOSTIC1 | |||
| 859 | if (!ISSET(bp->b_flags, B_BUSY)((bp->b_flags) & (0x00000010))) | |||
| 860 | panic("Trying to undirty buffer on freelist!"); | |||
| 861 | #endif | |||
| 862 | if (ISSET(bp->b_flags, B_DELWRI)((bp->b_flags) & (0x00000080))) { | |||
| 863 | CLR(bp->b_flags, B_DELWRI)((bp->b_flags) &= ~(0x00000080)); | |||
| 864 | reassignbuf(bp); | |||
| 865 | } | |||
| 866 | } | |||
| 867 | ||||
| 868 | /* | |||
| 869 | * Release a buffer on to the free lists. | |||
| 870 | * Described in Bach (p. 46). | |||
| 871 | */ | |||
| 872 | void | |||
| 873 | brelse(struct buf *bp) | |||
| 874 | { | |||
| 875 | int s; | |||
| 876 | ||||
| 877 | s = splbio()splraise(0x3); | |||
| 878 | ||||
| 879 | if (bp->b_data != NULL((void *)0)) | |||
| 880 | KASSERT(bp->b_bufsize > 0)((bp->b_bufsize > 0) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/kern/vfs_bio.c", 880, "bp->b_bufsize > 0" )); | |||
| 881 | ||||
| 882 | /* | |||
| 883 | * softdep is basically incompatible with not caching buffers | |||
| 884 | * that have dependencies, so this buffer must be cached | |||
| 885 | */ | |||
| 886 | if (LIST_FIRST(&bp->b_dep)((&bp->b_dep)->lh_first) != NULL((void *)0)) | |||
| 887 | CLR(bp->b_flags, B_NOCACHE)((bp->b_flags) &= ~(0x00001000)); | |||
| 888 | ||||
| 889 | /* | |||
| 890 | * Determine which queue the buffer should be on, then put it there. | |||
| 891 | */ | |||
| 892 | ||||
| 893 | /* If it's not cacheable, or an error, mark it invalid. */ | |||
| 894 | if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR))((bp->b_flags) & ((0x00001000|0x00000400)))) | |||
| 895 | SET(bp->b_flags, B_INVAL)((bp->b_flags) |= (0x00000800)); | |||
| 896 | /* If it's a write error, also mark the vnode as damaged. */ | |||
| 897 | if (ISSET(bp->b_flags, B_ERROR)((bp->b_flags) & (0x00000400)) && !ISSET(bp->b_flags, B_READ)((bp->b_flags) & (0x00008000))) { | |||
| 898 | if (bp->b_vp && bp->b_vp->v_type == VREG) | |||
| 899 | SET(bp->b_vp->v_bioflag, VBIOERROR)((bp->b_vp->v_bioflag) |= (0x0008)); | |||
| 900 | } | |||
| 901 | ||||
| 902 | if (ISSET(bp->b_flags, B_INVAL)((bp->b_flags) & (0x00000800))) { | |||
| 903 | /* | |||
| 904 | * If the buffer is invalid, free it now rather than leaving | |||
| 905 | * it in a queue and wasting memory. | |||
| 906 | */ | |||
| 907 | if (LIST_FIRST(&bp->b_dep)((&bp->b_dep)->lh_first) != NULL((void *)0)) | |||
| 908 | buf_deallocate(bp); | |||
| 909 | ||||
| 910 | if (ISSET(bp->b_flags, B_DELWRI)((bp->b_flags) & (0x00000080))) { | |||
| 911 | CLR(bp->b_flags, B_DELWRI)((bp->b_flags) &= ~(0x00000080)); | |||
| 912 | } | |||
| 913 | ||||
| 914 | if (bp->b_vp) { | |||
| 915 | RBT_REMOVE(buf_rb_bufs, &bp->b_vp->v_bufs_tree, bp)buf_rb_bufs_RBT_REMOVE(&bp->b_vp->v_bufs_tree, bp); | |||
| 916 | brelvp(bp); | |||
| 917 | } | |||
| 918 | bp->b_vp = NULL((void *)0); | |||
| 919 | ||||
| 920 | /* | |||
| 921 | * Wake up any processes waiting for _this_ buffer to | |||
| 922 | * become free. They are not allowed to grab it | |||
| 923 | * since it will be freed. But the only sleeper is | |||
| 924 | * getblk and it will restart the operation after | |||
| 925 | * sleep. | |||
| 926 | */ | |||
| 927 | if (ISSET(bp->b_flags, B_WANTED)((bp->b_flags) & (0x00010000))) { | |||
| 928 | CLR(bp->b_flags, B_WANTED)((bp->b_flags) &= ~(0x00010000)); | |||
| 929 | wakeup(bp); | |||
| 930 | } | |||
| 931 | buf_put(bp); | |||
| 932 | } else { | |||
| 933 | /* | |||
| 934 | * It has valid data. Put it on the end of the appropriate | |||
| 935 | * queue, so that it'll stick around for as long as possible. | |||
| 936 | */ | |||
| 937 | bufcache_release(bp); | |||
| 938 | ||||
| 939 | /* Unlock the buffer. */ | |||
| 940 | CLR(bp->b_flags, (B_AGE | B_ASYNC | B_NOCACHE | B_DEFERRED))((bp->b_flags) &= ~((0x00000001 | 0x00000004 | 0x00001000 | 0x00080000))); | |||
| 941 | buf_release(bp); | |||
| 942 | ||||
| 943 | /* Wake up any processes waiting for _this_ buffer to | |||
| 944 | * become free. */ | |||
| 945 | if (ISSET(bp->b_flags, B_WANTED)((bp->b_flags) & (0x00010000))) { | |||
| 946 | CLR(bp->b_flags, B_WANTED)((bp->b_flags) &= ~(0x00010000)); | |||
| 947 | wakeup(bp); | |||
| 948 | } | |||
| 949 | ||||
| 950 | if (bcstats.dmapages > targetpages) | |||
| 951 | (void) bufcache_recover_dmapages(0, | |||
| 952 | bcstats.dmapages - targetpages); | |||
| 953 | bufcache_adjust(); | |||
| 954 | } | |||
| 955 | ||||
| 956 | /* Wake up syncer and cleaner processes waiting for buffers. */ | |||
| 957 | if (nobuffers) { | |||
| 958 | nobuffers = 0; | |||
| 959 | wakeup(&nobuffers); | |||
| 960 | } | |||
| 961 | ||||
| 962 | /* Wake up any processes waiting for any buffer to become free. */ | |||
| 963 | if (needbuffer && bcstats.dmapages < targetpages && | |||
| 964 | bcstats.kvaslots_avail > RESERVE_SLOTS4) { | |||
| 965 | needbuffer = 0; | |||
| 966 | wakeup(&needbuffer); | |||
| 967 | } | |||
| 968 | ||||
| 969 | splx(s)spllower(s); | |||
| 970 | } | |||
| 971 | ||||
| 972 | /* | |||
| 973 | * Determine if a block is in the cache. Just look on what would be its hash | |||
| 974 | * chain. If it's there, return a pointer to it, unless it's marked invalid. | |||
| 975 | */ | |||
| 976 | static struct buf * | |||
| 977 | incore_locked(struct vnode *vp, daddr_t blkno) | |||
| 978 | { | |||
| 979 | struct buf *bp; | |||
| 980 | struct buf b; | |||
| 981 | ||||
| 982 | splassert(IPL_BIO)do { if (splassert_ctl > 0) { splassert_check(0x3, __func__ ); } } while (0); | |||
| 983 | ||||
| 984 | /* Search buf lookup tree */ | |||
| 985 | b.b_lblkno = blkno; | |||
| 986 | bp = RBT_FIND(buf_rb_bufs, &vp->v_bufs_tree, &b)buf_rb_bufs_RBT_FIND(&vp->v_bufs_tree, &b); | |||
| 987 | if (bp != NULL((void *)0) && ISSET(bp->b_flags, B_INVAL)((bp->b_flags) & (0x00000800))) | |||
| 988 | bp = NULL((void *)0); | |||
| 989 | ||||
| 990 | return (bp); | |||
| 991 | } | |||
| 992 | struct buf * | |||
| 993 | incore(struct vnode *vp, daddr_t blkno) | |||
| 994 | { | |||
| 995 | struct buf *bp; | |||
| 996 | int s; | |||
| 997 | ||||
| 998 | s = splbio()splraise(0x3); | |||
| 999 | bp = incore_locked(vp, blkno); | |||
| 1000 | splx(s)spllower(s); | |||
| 1001 | ||||
| 1002 | return (bp); | |||
| 1003 | } | |||
| 1004 | ||||
| 1005 | /* | |||
| 1006 | * Get a block of requested size that is associated with | |||
| 1007 | * a given vnode and block offset. If it is found in the | |||
| 1008 | * block cache, mark it as having been found, make it busy | |||
| 1009 | * and return it. Otherwise, return an empty block of the | |||
| 1010 | * correct size. It is up to the caller to ensure that the | |||
| 1011 | * cached blocks be of the correct size. | |||
| 1012 | */ | |||
| 1013 | struct buf * | |||
| 1014 | getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, | |||
| 1015 | uint64_t slptimeo) | |||
| 1016 | { | |||
| 1017 | struct buf *bp; | |||
| 1018 | struct buf b; | |||
| 1019 | int s, error; | |||
| 1020 | ||||
| 1021 | /* | |||
| 1022 | * XXX | |||
| 1023 | * The following is an inlined version of 'incore()', but with | |||
| 1024 | * the 'invalid' test moved to after the 'busy' test. It's | |||
| 1025 | * necessary because there are some cases in which the NFS | |||
| 1026 | * code sets B_INVAL prior to writing data to the server, but | |||
| 1027 | * in which the buffers actually contain valid data. In this | |||
| 1028 | * case, we can't allow the system to allocate a new buffer for | |||
| 1029 | * the block until the write is finished. | |||
| 1030 | */ | |||
| 1031 | start: | |||
| 1032 | s = splbio()splraise(0x3); | |||
| 1033 | b.b_lblkno = blkno; | |||
| 1034 | bp = RBT_FIND(buf_rb_bufs, &vp->v_bufs_tree, &b)buf_rb_bufs_RBT_FIND(&vp->v_bufs_tree, &b); | |||
| 1035 | if (bp != NULL((void *)0)) { | |||
| 1036 | if (ISSET(bp->b_flags, B_BUSY)((bp->b_flags) & (0x00000010))) { | |||
| 1037 | SET(bp->b_flags, B_WANTED)((bp->b_flags) |= (0x00010000)); | |||
| 1038 | error = tsleep_nsec(bp, slpflag | (PRIBIO16 + 1), | |||
| 1039 | "getblk", slptimeo); | |||
| 1040 | splx(s)spllower(s); | |||
| 1041 | if (error) | |||
| 1042 | return (NULL((void *)0)); | |||
| 1043 | goto start; | |||
| 1044 | } | |||
| 1045 | ||||
| 1046 | if (!ISSET(bp->b_flags, B_INVAL)((bp->b_flags) & (0x00000800))) { | |||
| 1047 | bcstats.cachehits++; | |||
| 1048 | SET(bp->b_flags, B_CACHE)((bp->b_flags) |= (0x00000020)); | |||
| 1049 | bufcache_take(bp); | |||
| 1050 | buf_acquire(bp); | |||
| 1051 | splx(s)spllower(s); | |||
| 1052 | return (bp); | |||
| 1053 | } | |||
| 1054 | } | |||
| 1055 | splx(s)spllower(s); | |||
| 1056 | ||||
| 1057 | if ((bp = buf_get(vp, blkno, size)) == NULL((void *)0)) | |||
| 1058 | goto start; | |||
| 1059 | ||||
| 1060 | return (bp); | |||
| 1061 | } | |||
| 1062 | ||||
| 1063 | /* | |||
| 1064 | * Get an empty, disassociated buffer of given size. | |||
| 1065 | */ | |||
| 1066 | struct buf * | |||
| 1067 | geteblk(size_t size) | |||
| 1068 | { | |||
| 1069 | struct buf *bp; | |||
| 1070 | ||||
| 1071 | while ((bp = buf_get(NULL((void *)0), 0, size)) == NULL((void *)0)) | |||
| 1072 | continue; | |||
| 1073 | ||||
| 1074 | return (bp); | |||
| 1075 | } | |||
| 1076 | ||||
| 1077 | /* | |||
| 1078 | * Allocate a buffer. | |||
| 1079 | * If vp is given, put it into the buffer cache for that vnode. | |||
| 1080 | * If size != 0, allocate memory and call buf_map(). | |||
| 1081 | * If there is already a buffer for the given vnode/blkno, return NULL. | |||
| 1082 | */ | |||
| 1083 | struct buf * | |||
| 1084 | buf_get(struct vnode *vp, daddr_t blkno, size_t size) | |||
| 1085 | { | |||
| 1086 | struct buf *bp; | |||
| 1087 | int poolwait = size == 0 ? PR_NOWAIT0x0002 : PR_WAITOK0x0001; | |||
| 1088 | int npages; | |||
| 1089 | int s; | |||
| 1090 | ||||
| 1091 | s = splbio()splraise(0x3); | |||
| 1092 | if (size) { | |||
| 1093 | /* | |||
| 1094 | * Wake up the cleaner if we have lots of dirty pages, | |||
| 1095 | * or if we are getting low on buffer cache kva. | |||
| 1096 | */ | |||
| 1097 | if (UNCLEAN_PAGES(bcstats.numbufpages - bcstats.numcleanpages) >= hidirtypages || | |||
| 1098 | bcstats.kvaslots_avail <= 2 * RESERVE_SLOTS4) | |||
| 1099 | wakeup(&bd_req); | |||
| 1100 | ||||
| 1101 | npages = atop(round_page(size))(((((size) + ((1 << 12) - 1)) & ~((1 << 12) - 1))) >> 12); | |||
| 1102 | ||||
| 1103 | /* | |||
| 1104 | * if our cache has been previously shrunk, | |||
| 1105 | * allow it to grow again with use up to | |||
| 1106 | * bufhighpages (cachepercent) | |||
| 1107 | */ | |||
| 1108 | if (bufpages < bufhighpages) | |||
| 1109 | bufadjust(bufhighpages); | |||
| 1110 | ||||
| 1111 | /* | |||
| 1112 | * If we would go over the page target with our | |||
| 1113 | * new allocation, free enough buffers first | |||
| 1114 | * to stay at the target with our new allocation. | |||
| 1115 | */ | |||
| 1116 | if (bcstats.dmapages + npages > targetpages) { | |||
| 1117 | (void) bufcache_recover_dmapages(0, npages); | |||
| 1118 | bufcache_adjust(); | |||
| 1119 | } | |||
| 1120 | ||||
| 1121 | /* | |||
| 1122 | * If we get here, we tried to free the world down | |||
| 1123 | * above, and couldn't get down - Wake the cleaner | |||
| 1124 | * and wait for it to push some buffers out. | |||
| 1125 | */ | |||
| 1126 | if ((bcstats.dmapages + npages > targetpages || | |||
| 1127 | bcstats.kvaslots_avail <= RESERVE_SLOTS4) && | |||
| 1128 | curproc({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_curproc != syncerproc && curproc({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_curproc != cleanerproc) { | |||
| 1129 | wakeup(&bd_req); | |||
| 1130 | needbuffer++; | |||
| 1131 | tsleep_nsec(&needbuffer, PRIBIO16, "needbuffer", INFSLP0xffffffffffffffffULL); | |||
| 1132 | splx(s)spllower(s); | |||
| 1133 | return (NULL((void *)0)); | |||
| 1134 | } | |||
| 1135 | if (bcstats.dmapages + npages > bufpages) { | |||
| 1136 | /* cleaner or syncer */ | |||
| 1137 | nobuffers = 1; | |||
| 1138 | tsleep_nsec(&nobuffers, PRIBIO16, "nobuffers", INFSLP0xffffffffffffffffULL); | |||
| 1139 | splx(s)spllower(s); | |||
| 1140 | return (NULL((void *)0)); | |||
| 1141 | } | |||
| 1142 | } | |||
| 1143 | ||||
| 1144 | bp = pool_get(&bufpool, poolwait|PR_ZERO0x0008); | |||
| 1145 | ||||
| 1146 | if (bp == NULL((void *)0)) { | |||
| 1147 | splx(s)spllower(s); | |||
| 1148 | return (NULL((void *)0)); | |||
| 1149 | } | |||
| 1150 | ||||
| 1151 | bp->b_freelist.tqe_next = NOLIST((struct buf *)0x87654321); | |||
| 1152 | bp->b_dev = NODEV(dev_t)(-1); | |||
| 1153 | LIST_INIT(&bp->b_dep)do { ((&bp->b_dep)->lh_first) = ((void *)0); } while (0); | |||
| 1154 | bp->b_bcount = size; | |||
| 1155 | ||||
| 1156 | buf_acquire_nomap(bp); | |||
| 1157 | ||||
| 1158 | if (vp != NULL((void *)0)) { | |||
| 1159 | /* | |||
| 1160 | * We insert the buffer into the hash with B_BUSY set | |||
| 1161 | * while we allocate pages for it. This way any getblk | |||
| 1162 | * that happens while we allocate pages will wait for | |||
| 1163 | * this buffer instead of starting its own buf_get. | |||
| 1164 | * | |||
| 1165 | * But first, we check if someone beat us to it. | |||
| 1166 | */ | |||
| 1167 | if (incore_locked(vp, blkno)) { | |||
| 1168 | pool_put(&bufpool, bp); | |||
| 1169 | splx(s)spllower(s); | |||
| 1170 | return (NULL((void *)0)); | |||
| 1171 | } | |||
| 1172 | ||||
| 1173 | bp->b_blkno = bp->b_lblkno = blkno; | |||
| 1174 | bgetvp(vp, bp); | |||
| 1175 | if (RBT_INSERT(buf_rb_bufs, &vp->v_bufs_tree, bp)buf_rb_bufs_RBT_INSERT(&vp->v_bufs_tree, bp)) | |||
| 1176 | panic("buf_get: dup lblk vp %p bp %p", vp, bp); | |||
| 1177 | } else { | |||
| 1178 | bp->b_vnbufs.le_next = NOLIST((struct buf *)0x87654321); | |||
| 1179 | SET(bp->b_flags, B_INVAL)((bp->b_flags) |= (0x00000800)); | |||
| 1180 | bp->b_vp = NULL((void *)0); | |||
| 1181 | } | |||
| 1182 | ||||
| 1183 | LIST_INSERT_HEAD(&bufhead, bp, b_list)do { if (((bp)->b_list.le_next = (&bufhead)->lh_first ) != ((void *)0)) (&bufhead)->lh_first->b_list.le_prev = &(bp)->b_list.le_next; (&bufhead)->lh_first = (bp); (bp)->b_list.le_prev = &(&bufhead)->lh_first ; } while (0); | |||
| 1184 | bcstats.numbufs++; | |||
| 1185 | ||||
| 1186 | if (size) { | |||
| 1187 | buf_alloc_pages(bp, round_page(size)(((size) + ((1 << 12) - 1)) & ~((1 << 12) - 1 ))); | |||
| 1188 | KASSERT(ISSET(bp->b_flags, B_DMA))((((bp->b_flags) & (0x04000000))) ? (void)0 : __assert ("diagnostic ", "/usr/src/sys/kern/vfs_bio.c", 1188, "ISSET(bp->b_flags, B_DMA)" )); | |||
| 1189 | buf_map(bp); | |||
| 1190 | } | |||
| 1191 | ||||
| 1192 | SET(bp->b_flags, B_BC)((bp->b_flags) |= (0x02000000)); | |||
| 1193 | splx(s)spllower(s); | |||
| 1194 | ||||
| 1195 | return (bp); | |||
| 1196 | } | |||
| 1197 | ||||
| 1198 | /* | |||
| 1199 | * Buffer cleaning daemon. | |||
| 1200 | */ | |||
| 1201 | void | |||
| 1202 | buf_daemon(void *arg) | |||
| 1203 | { | |||
| 1204 | struct buf *bp = NULL((void *)0); | |||
| 1205 | int s, pushed = 0; | |||
| 1206 | ||||
| 1207 | s = splbio()splraise(0x3); | |||
| 1208 | for (;;) { | |||
| 1209 | if (bp == NULL((void *)0) || (pushed >= 16 && | |||
| 1210 | UNCLEAN_PAGES(bcstats.numbufpages - bcstats.numcleanpages) < hidirtypages && | |||
| 1211 | bcstats.kvaslots_avail > 2 * RESERVE_SLOTS4)){ | |||
| 1212 | pushed = 0; | |||
| 1213 | /* | |||
| 1214 | * Wake up anyone who was waiting for buffers | |||
| 1215 | * to be released. | |||
| 1216 | */ | |||
| 1217 | if (needbuffer) { | |||
| 1218 | needbuffer = 0; | |||
| 1219 | wakeup(&needbuffer); | |||
| 1220 | } | |||
| 1221 | tsleep_nsec(&bd_req, PRIBIO16 - 7, "cleaner", INFSLP0xffffffffffffffffULL); | |||
| 1222 | } | |||
| 1223 | ||||
| 1224 | while ((bp = bufcache_getdirtybuf())) { | |||
| 1225 | TRACEPOINT(vfs, cleaner, bp->b_flags, pushed,do { extern struct dt_probe (dt_static_vfs_cleaner); struct dt_probe *dtp = &(dt_static_vfs_cleaner); if (__builtin_expect((( dt_tracing) != 0), 0) && __builtin_expect(((dtp->dtp_recording ) != 0), 0)) { struct dt_provider *dtpv = dtp->dtp_prov; dtpv ->dtpv_enter(dtpv, dtp, bp->b_flags, pushed, lodirtypages , hidirtypages); } } while (0) | |||
| 1226 | lodirtypages, hidirtypages)do { extern struct dt_probe (dt_static_vfs_cleaner); struct dt_probe *dtp = &(dt_static_vfs_cleaner); if (__builtin_expect((( dt_tracing) != 0), 0) && __builtin_expect(((dtp->dtp_recording ) != 0), 0)) { struct dt_provider *dtpv = dtp->dtp_prov; dtpv ->dtpv_enter(dtpv, dtp, bp->b_flags, pushed, lodirtypages , hidirtypages); } } while (0); | |||
| 1227 | ||||
| 1228 | if (UNCLEAN_PAGES(bcstats.numbufpages - bcstats.numcleanpages) < lodirtypages && | |||
| 1229 | bcstats.kvaslots_avail > 2 * RESERVE_SLOTS4 && | |||
| 1230 | pushed >= 16) | |||
| 1231 | break; | |||
| 1232 | ||||
| 1233 | bufcache_take(bp); | |||
| 1234 | buf_acquire(bp); | |||
| 1235 | splx(s)spllower(s); | |||
| 1236 | ||||
| 1237 | if (ISSET(bp->b_flags, B_INVAL)((bp->b_flags) & (0x00000800))) { | |||
| 1238 | brelse(bp); | |||
| 1239 | s = splbio()splraise(0x3); | |||
| 1240 | continue; | |||
| 1241 | } | |||
| 1242 | #ifdef DIAGNOSTIC1 | |||
| 1243 | if (!ISSET(bp->b_flags, B_DELWRI)((bp->b_flags) & (0x00000080))) | |||
| 1244 | panic("Clean buffer on dirty queue"); | |||
| 1245 | #endif | |||
| 1246 | if (LIST_FIRST(&bp->b_dep)((&bp->b_dep)->lh_first) != NULL((void *)0) && | |||
| 1247 | !ISSET(bp->b_flags, B_DEFERRED)((bp->b_flags) & (0x00080000)) && | |||
| 1248 | buf_countdeps(bp, 0, 0)) { | |||
| 1249 | SET(bp->b_flags, B_DEFERRED)((bp->b_flags) |= (0x00080000)); | |||
| 1250 | s = splbio()splraise(0x3); | |||
| 1251 | bufcache_release(bp); | |||
| 1252 | buf_release(bp); | |||
| 1253 | continue; | |||
| 1254 | } | |||
| 1255 | ||||
| 1256 | bawrite(bp); | |||
| 1257 | pushed++; | |||
| 1258 | ||||
| 1259 | sched_pause(yield)do { if (({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self ))); __ci;})->ci_schedstate.spc_schedflags & 0x0002) yield (); } while (0); | |||
| 1260 | ||||
| 1261 | s = splbio()splraise(0x3); | |||
| 1262 | } | |||
| 1263 | } | |||
| 1264 | } | |||
| 1265 | ||||
| 1266 | /* | |||
| 1267 | * Wait for operations on the buffer to complete. | |||
| 1268 | * When they do, extract and return the I/O's error value. | |||
| 1269 | */ | |||
| 1270 | int | |||
| 1271 | biowait(struct buf *bp) | |||
| 1272 | { | |||
| 1273 | int s; | |||
| 1274 | ||||
| 1275 | KASSERT(!(bp->b_flags & B_ASYNC))((!(bp->b_flags & 0x00000004)) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/kern/vfs_bio.c", 1275, "!(bp->b_flags & B_ASYNC)" )); | |||
| 1276 | ||||
| 1277 | s = splbio()splraise(0x3); | |||
| 1278 | while (!ISSET(bp->b_flags, B_DONE)((bp->b_flags) & (0x00000100))) | |||
| 1279 | tsleep_nsec(bp, PRIBIO16 + 1, "biowait", INFSLP0xffffffffffffffffULL); | |||
| 1280 | splx(s)spllower(s); | |||
| 1281 | ||||
| 1282 | /* check for interruption of I/O (e.g. via NFS), then errors. */ | |||
| 1283 | if (ISSET(bp->b_flags, B_EINTR)((bp->b_flags) & (0x00000200))) { | |||
| 1284 | CLR(bp->b_flags, B_EINTR)((bp->b_flags) &= ~(0x00000200)); | |||
| 1285 | return (EINTR4); | |||
| 1286 | } | |||
| 1287 | ||||
| 1288 | if (ISSET(bp->b_flags, B_ERROR)((bp->b_flags) & (0x00000400))) | |||
| 1289 | return (bp->b_error ? bp->b_error : EIO5); | |||
| 1290 | else | |||
| 1291 | return (0); | |||
| 1292 | } | |||
| 1293 | ||||
| 1294 | /* | |||
| 1295 | * Mark I/O complete on a buffer. | |||
| 1296 | * | |||
| 1297 | * If a callback has been requested, e.g. the pageout | |||
| 1298 | * daemon, do so. Otherwise, awaken waiting processes. | |||
| 1299 | * | |||
| 1300 | * [ Leffler, et al., says on p.247: | |||
| 1301 | * "This routine wakes up the blocked process, frees the buffer | |||
| 1302 | * for an asynchronous write, or, for a request by the pagedaemon | |||
| 1303 | * process, invokes a procedure specified in the buffer structure" ] | |||
| 1304 | * | |||
| 1305 | * In real life, the pagedaemon (or other system processes) wants | |||
| 1306 | * to do async stuff to, and doesn't want the buffer brelse()'d. | |||
| 1307 | * (for swap pager, that puts swap buffers on the free lists (!!!), | |||
| 1308 | * for the vn device, that puts malloc'd buffers on the free lists!) | |||
| 1309 | * | |||
| 1310 | * Must be called at splbio(). | |||
| 1311 | */ | |||
| 1312 | void | |||
| 1313 | biodone(struct buf *bp) | |||
| 1314 | { | |||
| 1315 | splassert(IPL_BIO)do { if (splassert_ctl > 0) { splassert_check(0x3, __func__ ); } } while (0); | |||
| 1316 | ||||
| 1317 | if (ISSET(bp->b_flags, B_DONE)((bp->b_flags) & (0x00000100))) | |||
| 1318 | panic("biodone already"); | |||
| 1319 | SET(bp->b_flags, B_DONE)((bp->b_flags) |= (0x00000100)); /* note that it's done */ | |||
| 1320 | ||||
| 1321 | if (bp->b_bq) | |||
| 1322 | bufq_done(bp->b_bq, bp); | |||
| 1323 | ||||
| 1324 | if (LIST_FIRST(&bp->b_dep)((&bp->b_dep)->lh_first) != NULL((void *)0)) | |||
| 1325 | buf_complete(bp); | |||
| 1326 | ||||
| 1327 | if (!ISSET(bp->b_flags, B_READ)((bp->b_flags) & (0x00008000))) { | |||
| 1328 | CLR(bp->b_flags, B_WRITEINPROG)((bp->b_flags) &= ~(0x00020000)); | |||
| 1329 | vwakeup(bp->b_vp); | |||
| 1330 | } | |||
| 1331 | if (bcstats.numbufs && | |||
| 1332 | (!(ISSET(bp->b_flags, B_RAW)((bp->b_flags) & (0x00004000)) || ISSET(bp->b_flags, B_PHYS)((bp->b_flags) & (0x00002000))))) { | |||
| 1333 | if (!ISSET(bp->b_flags, B_READ)((bp->b_flags) & (0x00008000))) { | |||
| 1334 | bcstats.pendingwrites--; | |||
| 1335 | } else | |||
| 1336 | bcstats.pendingreads--; | |||
| 1337 | } | |||
| 1338 | if (ISSET(bp->b_flags, B_CALL)((bp->b_flags) & (0x00000040))) { /* if necessary, call out */ | |||
| 1339 | CLR(bp->b_flags, B_CALL)((bp->b_flags) &= ~(0x00000040)); /* but note callout done */ | |||
| 1340 | (*bp->b_iodone)(bp); | |||
| 1341 | } else { | |||
| 1342 | if (ISSET(bp->b_flags, B_ASYNC)((bp->b_flags) & (0x00000004))) {/* if async, release it */ | |||
| 1343 | brelse(bp); | |||
| 1344 | } else { /* or just wakeup the buffer */ | |||
| 1345 | CLR(bp->b_flags, B_WANTED)((bp->b_flags) &= ~(0x00010000)); | |||
| 1346 | wakeup(bp); | |||
| 1347 | } | |||
| 1348 | } | |||
| 1349 | } | |||
| 1350 | ||||
| 1351 | #ifdef DDB1 | |||
| 1352 | void bcstats_print(int (*)(const char *, ...) | |||
| 1353 | __attribute__((__format__(__kprintf__,1,2)))); | |||
| 1354 | /* | |||
| 1355 | * bcstats_print: ddb hook to print interesting buffer cache counters | |||
| 1356 | */ | |||
| 1357 | void | |||
| 1358 | bcstats_print( | |||
| 1359 | int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2)))) | |||
| 1360 | { | |||
| 1361 | (*pr)("Current Buffer Cache status:\n"); | |||
| 1362 | (*pr)("numbufs %lld busymapped %lld, delwri %lld\n", | |||
| 1363 | bcstats.numbufs, bcstats.busymapped, bcstats.delwribufs); | |||
| 1364 | (*pr)("kvaslots %lld avail kva slots %lld\n", | |||
| 1365 | bcstats.kvaslots, bcstats.kvaslots_avail); | |||
| 1366 | (*pr)("bufpages %lld, dmapages %lld, dirtypages %lld\n", | |||
| 1367 | bcstats.numbufpages, bcstats.dmapages, bcstats.numdirtypages); | |||
| 1368 | (*pr)("pendingreads %lld, pendingwrites %lld\n", | |||
| 1369 | bcstats.pendingreads, bcstats.pendingwrites); | |||
| 1370 | (*pr)("highflips %lld, highflops %lld, dmaflips %lld\n", | |||
| 1371 | bcstats.highflips, bcstats.highflops, bcstats.dmaflips); | |||
| 1372 | } | |||
| 1373 | #endif | |||
| 1374 | ||||
| 1375 | void | |||
| 1376 | buf_adjcnt(struct buf *bp, long ncount) | |||
| 1377 | { | |||
| 1378 | KASSERT(ncount <= bp->b_bufsize)((ncount <= bp->b_bufsize) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/kern/vfs_bio.c", 1378, "ncount <= bp->b_bufsize" )); | |||
| 1379 | bp->b_bcount = ncount; | |||
| 1380 | } | |||
| 1381 | ||||
| 1382 | /* bufcache freelist code below */ | |||
| 1383 | /* | |||
| 1384 | * Copyright (c) 2014 Ted Unangst <tedu@openbsd.org> | |||
| 1385 | * | |||
| 1386 | * Permission to use, copy, modify, and distribute this software for any | |||
| 1387 | * purpose with or without fee is hereby granted, provided that the above | |||
| 1388 | * copyright notice and this permission notice appear in all copies. | |||
| 1389 | * | |||
| 1390 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | |||
| 1391 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | |||
| 1392 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | |||
| 1393 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | |||
| 1394 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | |||
| 1395 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | |||
| 1396 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | |||
| 1397 | */ | |||
| 1398 | ||||
| 1399 | /* | |||
| 1400 | * The code below implements a variant of the 2Q buffer cache algorithm by | |||
| 1401 | * Johnson and Shasha. | |||
| 1402 | * | |||
| 1403 | * General Outline | |||
| 1404 | * We divide the buffer cache into three working sets: current, previous, | |||
| 1405 | * and long term. Each list is itself LRU and buffers get promoted and moved | |||
| 1406 | * around between them. A buffer starts its life in the current working set. | |||
| 1407 | * As time passes and newer buffers push it out, it will turn into the previous | |||
| 1408 | * working set and is subject to recycling. But if it's accessed again from | |||
| 1409 | * the previous working set, that's an indication that it's actually in the | |||
| 1410 | * long term working set, so we promote it there. The separation of current | |||
| 1411 | * and previous working sets prevents us from promoting a buffer that's only | |||
| 1412 | * temporarily hot to the long term cache. | |||
| 1413 | * | |||
| 1414 | * The objective is to provide scan resistance by making the long term | |||
| 1415 | * working set ineligible for immediate recycling, even as the current | |||
| 1416 | * working set is rapidly turned over. | |||
| 1417 | * | |||
| 1418 | * Implementation | |||
| 1419 | * The code below identifies the current, previous, and long term sets as | |||
| 1420 | * hotqueue, coldqueue, and warmqueue. The hot and warm queues are capped at | |||
| 1421 | * 1/3 of the total clean pages, after which point they start pushing their | |||
| 1422 | * oldest buffers into coldqueue. | |||
| 1423 | * A buf always starts out with neither WARM or COLD flags set (implying HOT). | |||
| 1424 | * When released, it will be returned to the tail of the hotqueue list. | |||
| 1425 | * When the hotqueue gets too large, the oldest hot buf will be moved to the | |||
| 1426 | * coldqueue, with the B_COLD flag set. When a cold buf is released, we set | |||
| 1427 | * the B_WARM flag and put it onto the warmqueue. Warm bufs are also | |||
| 1428 | * directly returned to the end of the warmqueue. As with the hotqueue, when | |||
| 1429 | * the warmqueue grows too large, B_WARM bufs are moved onto the coldqueue. | |||
| 1430 | * | |||
| 1431 | * Note that this design does still support large working sets, greater | |||
| 1432 | * than the cap of hotqueue or warmqueue would imply. The coldqueue is still | |||
| 1433 | * cached and has no maximum length. The hot and warm queues form a Y feeding | |||
| 1434 | * into the coldqueue. Moving bufs between queues is constant time, so this | |||
| 1435 | * design decays to one long warm->cold queue. | |||
| 1436 | * | |||
| 1437 | * In the 2Q paper, hotqueue and coldqueue are A1in and A1out. The warmqueue | |||
| 1438 | * is Am. We always cache pages, as opposed to pointers to pages for A1. | |||
| 1439 | * | |||
| 1440 | * This implementation adds support for multiple 2q caches. | |||
| 1441 | * | |||
| 1442 | * If we have more than one 2q cache, as bufs fall off the cold queue | |||
| 1443 | * for recycling, bufs that have been warm before (which retain the | |||
| 1444 | * B_WARM flag in addition to B_COLD) can be put into the hot queue of | |||
| 1445 | * a second level 2Q cache. buffers which are only B_COLD are | |||
| 1446 | * recycled. Bufs falling off the last cache's cold queue are always | |||
| 1447 | * recycled. | |||
| 1448 | * | |||
| 1449 | */ | |||
| 1450 | ||||
| 1451 | /* | |||
| 1452 | * this function is called when a hot or warm queue may have exceeded its | |||
| 1453 | * size limit. it will move a buf to the coldqueue. | |||
| 1454 | */ | |||
| 1455 | int chillbufs(struct | |||
| 1456 | bufcache *cache, struct bufqueue *queue, int64_t *queuepages); | |||
| 1457 | ||||
| 1458 | void | |||
| 1459 | bufcache_init(void) | |||
| 1460 | { | |||
| 1461 | int i; | |||
| 1462 | ||||
| 1463 | for (i = 0; i < NUM_CACHES2; i++) { | |||
| 1464 | TAILQ_INIT(&cleancache[i].hotqueue)do { (&cleancache[i].hotqueue)->tqh_first = ((void *)0 ); (&cleancache[i].hotqueue)->tqh_last = &(&cleancache [i].hotqueue)->tqh_first; } while (0); | |||
| 1465 | TAILQ_INIT(&cleancache[i].coldqueue)do { (&cleancache[i].coldqueue)->tqh_first = ((void *) 0); (&cleancache[i].coldqueue)->tqh_last = &(& cleancache[i].coldqueue)->tqh_first; } while (0); | |||
| 1466 | TAILQ_INIT(&cleancache[i].warmqueue)do { (&cleancache[i].warmqueue)->tqh_first = ((void *) 0); (&cleancache[i].warmqueue)->tqh_last = &(& cleancache[i].warmqueue)->tqh_first; } while (0); | |||
| 1467 | } | |||
| 1468 | TAILQ_INIT(&dirtyqueue)do { (&dirtyqueue)->tqh_first = ((void *)0); (&dirtyqueue )->tqh_last = &(&dirtyqueue)->tqh_first; } while (0); | |||
| 1469 | } | |||
| 1470 | ||||
| 1471 | /* | |||
| 1472 | * if the buffer caches have shrunk, we may need to rebalance our queues. | |||
| 1473 | */ | |||
| 1474 | void | |||
| 1475 | bufcache_adjust(void) | |||
| 1476 | { | |||
| 1477 | int i; | |||
| 1478 | ||||
| 1479 | for (i = 0; i < NUM_CACHES2; i++) { | |||
| 1480 | while (chillbufs(&cleancache[i], &cleancache[i].warmqueue, | |||
| 1481 | &cleancache[i].warmbufpages) || | |||
| 1482 | chillbufs(&cleancache[i], &cleancache[i].hotqueue, | |||
| 1483 | &cleancache[i].hotbufpages)) | |||
| 1484 | continue; | |||
| 1485 | } | |||
| 1486 | } | |||
| 1487 | ||||
| 1488 | /* | |||
| 1489 | * Get a clean buffer from the cache. if "discard" is set do not promote | |||
| 1490 | * previously warm buffers as normal, because we are tossing everything | |||
| 1491 | * away such as in a hibernation | |||
| 1492 | */ | |||
| 1493 | struct buf * | |||
| 1494 | bufcache_getcleanbuf(int cachenum, int discard) | |||
| 1495 | { | |||
| 1496 | struct buf *bp = NULL((void *)0); | |||
| 1497 | struct bufcache *cache = &cleancache[cachenum]; | |||
| 1498 | struct bufqueue * queue; | |||
| 1499 | ||||
| 1500 | splassert(IPL_BIO)do { if (splassert_ctl > 0) { splassert_check(0x3, __func__ ); } } while (0); | |||
| 1501 | ||||
| 1502 | /* try cold queue */ | |||
| 1503 | while ((bp = TAILQ_FIRST(&cache->coldqueue)((&cache->coldqueue)->tqh_first)) || | |||
| 1504 | (bp = TAILQ_FIRST(&cache->warmqueue)((&cache->warmqueue)->tqh_first)) || | |||
| 1505 | (bp = TAILQ_FIRST(&cache->hotqueue)((&cache->hotqueue)->tqh_first))) { | |||
| 1506 | int64_t pages = atop(bp->b_bufsize)((bp->b_bufsize) >> 12); | |||
| 1507 | struct bufcache *newcache; | |||
| 1508 | ||||
| 1509 | if (discard || cachenum >= NUM_CACHES2 - 1) { | |||
| 1510 | /* Victim selected, give it up */ | |||
| 1511 | return bp; | |||
| 1512 | } | |||
| 1513 | KASSERT(bp->cache == cachenum)((bp->cache == cachenum) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/kern/vfs_bio.c", 1513, "bp->cache == cachenum" )); | |||
| 1514 | ||||
| 1515 | /* | |||
| 1516 | * If this buffer was warm before, move it to | |||
| 1517 | * the hot queue in the next cache | |||
| 1518 | */ | |||
| 1519 | ||||
| 1520 | if (fliphigh) { | |||
| 1521 | /* | |||
| 1522 | * If we are in the DMA cache, try to flip the | |||
| 1523 | * buffer up high to move it on to the other | |||
| 1524 | * caches. if we can't move the buffer to high | |||
| 1525 | * memory without sleeping, we give it up and | |||
| 1526 | * return it rather than fight for more memory | |||
| 1527 | * against non buffer cache competitors. | |||
| 1528 | */ | |||
| 1529 | SET(bp->b_flags, B_BUSY)((bp->b_flags) |= (0x00000010)); | |||
| 1530 | if (bp->cache == 0 && buf_flip_high(bp) == -1) { | |||
| 1531 | CLR(bp->b_flags, B_BUSY)((bp->b_flags) &= ~(0x00000010)); | |||
| 1532 | return bp; | |||
| 1533 | } | |||
| 1534 | CLR(bp->b_flags, B_BUSY)((bp->b_flags) &= ~(0x00000010)); | |||
| 1535 | } | |||
| 1536 | ||||
| 1537 | /* Move the buffer to the hot queue in the next cache */ | |||
| 1538 | if (ISSET(bp->b_flags, B_COLD)((bp->b_flags) & (0x01000000))) { | |||
| 1539 | queue = &cache->coldqueue; | |||
| 1540 | } else if (ISSET(bp->b_flags, B_WARM)((bp->b_flags) & (0x00800000))) { | |||
| 1541 | queue = &cache->warmqueue; | |||
| 1542 | cache->warmbufpages -= pages; | |||
| 1543 | } else { | |||
| 1544 | queue = &cache->hotqueue; | |||
| 1545 | cache->hotbufpages -= pages; | |||
| 1546 | } | |||
| 1547 | TAILQ_REMOVE(queue, bp, b_freelist)do { if (((bp)->b_freelist.tqe_next) != ((void *)0)) (bp)-> b_freelist.tqe_next->b_freelist.tqe_prev = (bp)->b_freelist .tqe_prev; else (queue)->tqh_last = (bp)->b_freelist.tqe_prev ; *(bp)->b_freelist.tqe_prev = (bp)->b_freelist.tqe_next ; ((bp)->b_freelist.tqe_prev) = ((void *)-1); ((bp)->b_freelist .tqe_next) = ((void *)-1); } while (0); | |||
| 1548 | cache->cachepages -= pages; | |||
| 1549 | CLR(bp->b_flags, B_WARM)((bp->b_flags) &= ~(0x00800000)); | |||
| 1550 | CLR(bp->b_flags, B_COLD)((bp->b_flags) &= ~(0x01000000)); | |||
| 1551 | bp->cache++; | |||
| 1552 | newcache= &cleancache[bp->cache]; | |||
| 1553 | newcache->cachepages += pages; | |||
| 1554 | newcache->hotbufpages += pages; | |||
| 1555 | chillbufs(newcache, &newcache->hotqueue, | |||
| 1556 | &newcache->hotbufpages); | |||
| 1557 | TAILQ_INSERT_TAIL(&newcache->hotqueue, bp, b_freelist)do { (bp)->b_freelist.tqe_next = ((void *)0); (bp)->b_freelist .tqe_prev = (&newcache->hotqueue)->tqh_last; *(& newcache->hotqueue)->tqh_last = (bp); (&newcache-> hotqueue)->tqh_last = &(bp)->b_freelist.tqe_next; } while (0); | |||
| 1558 | } | |||
| 1559 | return bp; | |||
| 1560 | } | |||
| 1561 | ||||
| 1562 | ||||
| 1563 | void | |||
| 1564 | discard_buffer(struct buf *bp) | |||
| 1565 | { | |||
| 1566 | splassert(IPL_BIO)do { if (splassert_ctl > 0) { splassert_check(0x3, __func__ ); } } while (0); | |||
| 1567 | ||||
| 1568 | bufcache_take(bp); | |||
| 1569 | if (bp->b_vp) { | |||
| 1570 | RBT_REMOVE(buf_rb_bufs,buf_rb_bufs_RBT_REMOVE(&bp->b_vp->v_bufs_tree, bp) | |||
| 1571 | &bp->b_vp->v_bufs_tree, bp)buf_rb_bufs_RBT_REMOVE(&bp->b_vp->v_bufs_tree, bp); | |||
| 1572 | brelvp(bp); | |||
| 1573 | } | |||
| 1574 | buf_put(bp); | |||
| 1575 | } | |||
| 1576 | ||||
| 1577 | int64_t | |||
| 1578 | bufcache_recover_dmapages(int discard, int64_t howmany) | |||
| 1579 | { | |||
| 1580 | struct buf *bp = NULL((void *)0); | |||
| 1581 | struct bufcache *cache = &cleancache[DMA_CACHE0]; | |||
| 1582 | struct bufqueue * queue; | |||
| 1583 | int64_t recovered = 0; | |||
| 1584 | ||||
| 1585 | splassert(IPL_BIO)do { if (splassert_ctl > 0) { splassert_check(0x3, __func__ ); } } while (0); | |||
| 1586 | ||||
| 1587 | while ((recovered < howmany) && | |||
| 1588 | ((bp = TAILQ_FIRST(&cache->coldqueue)((&cache->coldqueue)->tqh_first)) || | |||
| 1589 | (bp = TAILQ_FIRST(&cache->warmqueue)((&cache->warmqueue)->tqh_first)) || | |||
| 1590 | (bp = TAILQ_FIRST(&cache->hotqueue)((&cache->hotqueue)->tqh_first)))) { | |||
| 1591 | int64_t pages = atop(bp->b_bufsize)((bp->b_bufsize) >> 12); | |||
| 1592 | struct bufcache *newcache; | |||
| 1593 | ||||
| 1594 | if (discard || DMA_CACHE0 >= NUM_CACHES2 - 1) { | |||
| 1595 | discard_buffer(bp); | |||
| 1596 | continue; | |||
| 1597 | } | |||
| 1598 | KASSERT(bp->cache == DMA_CACHE)((bp->cache == 0) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/kern/vfs_bio.c" , 1598, "bp->cache == DMA_CACHE")); | |||
| 1599 | ||||
| 1600 | /* | |||
| 1601 | * If this buffer was warm before, move it to | |||
| 1602 | * the hot queue in the next cache | |||
| 1603 | */ | |||
| 1604 | ||||
| 1605 | /* | |||
| 1606 | * One way or another, the pages for this | |||
| 1607 | * buffer are leaving DMA memory | |||
| 1608 | */ | |||
| 1609 | recovered += pages; | |||
| 1610 | ||||
| 1611 | if (!fliphigh) { | |||
| 1612 | discard_buffer(bp); | |||
| 1613 | continue; | |||
| 1614 | } | |||
| 1615 | ||||
| 1616 | /* | |||
| 1617 | * If we are in the DMA cache, try to flip the | |||
| 1618 | * buffer up high to move it on to the other | |||
| 1619 | * caches. if we can't move the buffer to high | |||
| 1620 | * memory without sleeping, we give it up | |||
| 1621 | * now rather than fight for more memory | |||
| 1622 | * against non buffer cache competitors. | |||
| 1623 | */ | |||
| 1624 | SET(bp->b_flags, B_BUSY)((bp->b_flags) |= (0x00000010)); | |||
| 1625 | if (bp->cache == 0 && buf_flip_high(bp) == -1) { | |||
| 1626 | CLR(bp->b_flags, B_BUSY)((bp->b_flags) &= ~(0x00000010)); | |||
| 1627 | discard_buffer(bp); | |||
| 1628 | continue; | |||
| 1629 | } | |||
| 1630 | CLR(bp->b_flags, B_BUSY)((bp->b_flags) &= ~(0x00000010)); | |||
| 1631 | ||||
| 1632 | /* | |||
| 1633 | * Move the buffer to the hot queue in the next cache | |||
| 1634 | */ | |||
| 1635 | if (ISSET(bp->b_flags, B_COLD)((bp->b_flags) & (0x01000000))) { | |||
| 1636 | queue = &cache->coldqueue; | |||
| 1637 | } else if (ISSET(bp->b_flags, B_WARM)((bp->b_flags) & (0x00800000))) { | |||
| 1638 | queue = &cache->warmqueue; | |||
| 1639 | cache->warmbufpages -= pages; | |||
| 1640 | } else { | |||
| 1641 | queue = &cache->hotqueue; | |||
| 1642 | cache->hotbufpages -= pages; | |||
| 1643 | } | |||
| 1644 | TAILQ_REMOVE(queue, bp, b_freelist)do { if (((bp)->b_freelist.tqe_next) != ((void *)0)) (bp)-> b_freelist.tqe_next->b_freelist.tqe_prev = (bp)->b_freelist .tqe_prev; else (queue)->tqh_last = (bp)->b_freelist.tqe_prev ; *(bp)->b_freelist.tqe_prev = (bp)->b_freelist.tqe_next ; ((bp)->b_freelist.tqe_prev) = ((void *)-1); ((bp)->b_freelist .tqe_next) = ((void *)-1); } while (0); | |||
| 1645 | cache->cachepages -= pages; | |||
| 1646 | CLR(bp->b_flags, B_WARM)((bp->b_flags) &= ~(0x00800000)); | |||
| 1647 | CLR(bp->b_flags, B_COLD)((bp->b_flags) &= ~(0x01000000)); | |||
| 1648 | bp->cache++; | |||
| 1649 | newcache= &cleancache[bp->cache]; | |||
| 1650 | newcache->cachepages += pages; | |||
| 1651 | newcache->hotbufpages += pages; | |||
| 1652 | chillbufs(newcache, &newcache->hotqueue, | |||
| 1653 | &newcache->hotbufpages); | |||
| 1654 | TAILQ_INSERT_TAIL(&newcache->hotqueue, bp, b_freelist)do { (bp)->b_freelist.tqe_next = ((void *)0); (bp)->b_freelist .tqe_prev = (&newcache->hotqueue)->tqh_last; *(& newcache->hotqueue)->tqh_last = (bp); (&newcache-> hotqueue)->tqh_last = &(bp)->b_freelist.tqe_next; } while (0); | |||
| 1655 | } | |||
| 1656 | return recovered; | |||
| 1657 | } | |||
| 1658 | ||||
| 1659 | struct buf * | |||
| 1660 | bufcache_getcleanbuf_range(int start, int end, int discard) | |||
| 1661 | { | |||
| 1662 | int i, j = start, q = end; | |||
| 1663 | struct buf *bp = NULL((void *)0); | |||
| 1664 | ||||
| 1665 | /* | |||
| 1666 | * XXX in theory we could promote warm buffers into a previous queue | |||
| 1667 | * so in the pathological case of where we go through all the caches | |||
| 1668 | * without getting a buffer we have to start at the beginning again. | |||
| 1669 | */ | |||
| 1670 | while (j <= q) { | |||
| 1671 | for (i = q; i >= j; i--) | |||
| 1672 | if ((bp = bufcache_getcleanbuf(i, discard))) | |||
| 1673 | return (bp); | |||
| 1674 | j++; | |||
| 1675 | } | |||
| 1676 | return bp; | |||
| 1677 | } | |||
| 1678 | ||||
| 1679 | struct buf * | |||
| 1680 | bufcache_gethighcleanbuf(void) | |||
| 1681 | { | |||
| 1682 | if (!fliphigh) | |||
| 1683 | return NULL((void *)0); | |||
| 1684 | return bufcache_getcleanbuf_range(DMA_CACHE0 + 1, NUM_CACHES2 - 1, 0); | |||
| 1685 | } | |||
| 1686 | ||||
| 1687 | ||||
| 1688 | struct buf * | |||
| 1689 | bufcache_getdmacleanbuf(void) | |||
| 1690 | { | |||
| 1691 | if (fliphigh) | |||
| 1692 | return bufcache_getcleanbuf_range(DMA_CACHE0, DMA_CACHE0, 0); | |||
| 1693 | return bufcache_getcleanbuf_range(DMA_CACHE0, NUM_CACHES2 - 1, 0); | |||
| 1694 | } | |||
| 1695 | ||||
| 1696 | ||||
| 1697 | struct buf * | |||
| 1698 | bufcache_getdirtybuf(void) | |||
| 1699 | { | |||
| 1700 | return TAILQ_FIRST(&dirtyqueue)((&dirtyqueue)->tqh_first); | |||
| 1701 | } | |||
| 1702 | ||||
| 1703 | void | |||
| 1704 | bufcache_take(struct buf *bp) | |||
| 1705 | { | |||
| 1706 | struct bufqueue *queue; | |||
| 1707 | int64_t pages; | |||
| 1708 | ||||
| 1709 | splassert(IPL_BIO)do { if (splassert_ctl > 0) { splassert_check(0x3, __func__ ); } } while (0); | |||
| 1710 | KASSERT(ISSET(bp->b_flags, B_BC))((((bp->b_flags) & (0x02000000))) ? (void)0 : __assert ("diagnostic ", "/usr/src/sys/kern/vfs_bio.c", 1710, "ISSET(bp->b_flags, B_BC)" )); | |||
| 1711 | KASSERT(bp->cache >= DMA_CACHE)((bp->cache >= 0) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/kern/vfs_bio.c" , 1711, "bp->cache >= DMA_CACHE")); | |||
| 1712 | KASSERT((bp->cache < NUM_CACHES))(((bp->cache < 2)) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/kern/vfs_bio.c" , 1712, "(bp->cache < NUM_CACHES)")); | |||
| 1713 | ||||
| 1714 | pages = atop(bp->b_bufsize)((bp->b_bufsize) >> 12); | |||
| 1715 | ||||
| 1716 | TRACEPOINT(vfs, bufcache_take, bp->b_flags, bp->cache, pages)do { extern struct dt_probe (dt_static_vfs_bufcache_take); struct dt_probe *dtp = &(dt_static_vfs_bufcache_take); if (__builtin_expect (((dt_tracing) != 0), 0) && __builtin_expect(((dtp-> dtp_recording) != 0), 0)) { struct dt_provider *dtpv = dtp-> dtp_prov; dtpv->dtpv_enter(dtpv, dtp, bp->b_flags, bp-> cache, pages); } } while (0); | |||
| 1717 | ||||
| 1718 | struct bufcache *cache = &cleancache[bp->cache]; | |||
| 1719 | if (!ISSET(bp->b_flags, B_DELWRI)((bp->b_flags) & (0x00000080))) { | |||
| 1720 | if (ISSET(bp->b_flags, B_COLD)((bp->b_flags) & (0x01000000))) { | |||
| 1721 | queue = &cache->coldqueue; | |||
| 1722 | } else if (ISSET(bp->b_flags, B_WARM)((bp->b_flags) & (0x00800000))) { | |||
| 1723 | queue = &cache->warmqueue; | |||
| 1724 | cache->warmbufpages -= pages; | |||
| 1725 | } else { | |||
| 1726 | queue = &cache->hotqueue; | |||
| 1727 | cache->hotbufpages -= pages; | |||
| 1728 | } | |||
| 1729 | bcstats.numcleanpages -= pages; | |||
| 1730 | cache->cachepages -= pages; | |||
| 1731 | } else { | |||
| 1732 | queue = &dirtyqueue; | |||
| 1733 | bcstats.numdirtypages -= pages; | |||
| 1734 | bcstats.delwribufs--; | |||
| 1735 | } | |||
| 1736 | TAILQ_REMOVE(queue, bp, b_freelist)do { if (((bp)->b_freelist.tqe_next) != ((void *)0)) (bp)-> b_freelist.tqe_next->b_freelist.tqe_prev = (bp)->b_freelist .tqe_prev; else (queue)->tqh_last = (bp)->b_freelist.tqe_prev ; *(bp)->b_freelist.tqe_prev = (bp)->b_freelist.tqe_next ; ((bp)->b_freelist.tqe_prev) = ((void *)-1); ((bp)->b_freelist .tqe_next) = ((void *)-1); } while (0); | |||
| 1737 | } | |||
| 1738 | ||||
| 1739 | /* move buffers from a hot or warm queue to a cold queue in a cache */ | |||
| 1740 | int | |||
| 1741 | chillbufs(struct bufcache *cache, struct bufqueue *queue, int64_t *queuepages) | |||
| 1742 | { | |||
| 1743 | struct buf *bp; | |||
| 1744 | int64_t limit, pages; | |||
| 1745 | ||||
| 1746 | /* | |||
| 1747 | * We limit the hot queue to be small, with a max of 4096 pages. | |||
| 1748 | * We limit the warm queue to half the cache size. | |||
| 1749 | * | |||
| 1750 | * We impose a minimum size of 96 to prevent too much "wobbling". | |||
| 1751 | */ | |||
| 1752 | if (queue == &cache->hotqueue) | |||
| 1753 | limit = min(cache->cachepages / 20, 4096); | |||
| 1754 | else if (queue == &cache->warmqueue) | |||
| 1755 | limit = (cache->cachepages / 2); | |||
| 1756 | else | |||
| 1757 | panic("chillbufs: invalid queue"); | |||
| 1758 | ||||
| 1759 | if (*queuepages > 96 && *queuepages > limit) { | |||
| 1760 | bp = TAILQ_FIRST(queue)((queue)->tqh_first); | |||
| 1761 | if (!bp) | |||
| 1762 | panic("inconsistent bufpage counts"); | |||
| 1763 | pages = atop(bp->b_bufsize)((bp->b_bufsize) >> 12); | |||
| 1764 | *queuepages -= pages; | |||
| 1765 | TAILQ_REMOVE(queue, bp, b_freelist)do { if (((bp)->b_freelist.tqe_next) != ((void *)0)) (bp)-> b_freelist.tqe_next->b_freelist.tqe_prev = (bp)->b_freelist .tqe_prev; else (queue)->tqh_last = (bp)->b_freelist.tqe_prev ; *(bp)->b_freelist.tqe_prev = (bp)->b_freelist.tqe_next ; ((bp)->b_freelist.tqe_prev) = ((void *)-1); ((bp)->b_freelist .tqe_next) = ((void *)-1); } while (0); | |||
| 1766 | /* we do not clear B_WARM */ | |||
| 1767 | SET(bp->b_flags, B_COLD)((bp->b_flags) |= (0x01000000)); | |||
| 1768 | TAILQ_INSERT_TAIL(&cache->coldqueue, bp, b_freelist)do { (bp)->b_freelist.tqe_next = ((void *)0); (bp)->b_freelist .tqe_prev = (&cache->coldqueue)->tqh_last; *(&cache ->coldqueue)->tqh_last = (bp); (&cache->coldqueue )->tqh_last = &(bp)->b_freelist.tqe_next; } while ( 0); | |||
| 1769 | return 1; | |||
| 1770 | } | |||
| 1771 | return 0; | |||
| 1772 | } | |||
| 1773 | ||||
| 1774 | void | |||
| 1775 | bufcache_release(struct buf *bp) | |||
| 1776 | { | |||
| 1777 | struct bufqueue *queue; | |||
| 1778 | int64_t pages; | |||
| 1779 | struct bufcache *cache = &cleancache[bp->cache]; | |||
| 1780 | ||||
| 1781 | KASSERT(ISSET(bp->b_flags, B_BC))((((bp->b_flags) & (0x02000000))) ? (void)0 : __assert ("diagnostic ", "/usr/src/sys/kern/vfs_bio.c", 1781, "ISSET(bp->b_flags, B_BC)" )); | |||
| 1782 | pages = atop(bp->b_bufsize)((bp->b_bufsize) >> 12); | |||
| 1783 | ||||
| 1784 | TRACEPOINT(vfs, bufcache_rel, bp->b_flags, bp->cache, pages)do { extern struct dt_probe (dt_static_vfs_bufcache_rel); struct dt_probe *dtp = &(dt_static_vfs_bufcache_rel); if (__builtin_expect (((dt_tracing) != 0), 0) && __builtin_expect(((dtp-> dtp_recording) != 0), 0)) { struct dt_provider *dtpv = dtp-> dtp_prov; dtpv->dtpv_enter(dtpv, dtp, bp->b_flags, bp-> cache, pages); } } while (0); | |||
| 1785 | ||||
| 1786 | if (fliphigh) { | |||
| 1787 | if (ISSET(bp->b_flags, B_DMA)((bp->b_flags) & (0x04000000)) && bp->cache > 0) | |||
| 1788 | panic("B_DMA buffer release from cache %d", | |||
| 1789 | bp->cache); | |||
| 1790 | else if ((!ISSET(bp->b_flags, B_DMA)((bp->b_flags) & (0x04000000))) && bp->cache == 0) | |||
| 1791 | panic("Non B_DMA buffer release from cache %d", | |||
| 1792 | bp->cache); | |||
| 1793 | } | |||
| 1794 | ||||
| 1795 | if (!ISSET(bp->b_flags, B_DELWRI)((bp->b_flags) & (0x00000080))) { | |||
| 1796 | int64_t *queuepages; | |||
| 1797 | if (ISSET(bp->b_flags, B_WARM | B_COLD)((bp->b_flags) & (0x00800000 | 0x01000000))) { | |||
| 1798 | SET(bp->b_flags, B_WARM)((bp->b_flags) |= (0x00800000)); | |||
| 1799 | CLR(bp->b_flags, B_COLD)((bp->b_flags) &= ~(0x01000000)); | |||
| 1800 | queue = &cache->warmqueue; | |||
| 1801 | queuepages = &cache->warmbufpages; | |||
| 1802 | } else { | |||
| 1803 | queue = &cache->hotqueue; | |||
| 1804 | queuepages = &cache->hotbufpages; | |||
| 1805 | } | |||
| 1806 | *queuepages += pages; | |||
| 1807 | bcstats.numcleanpages += pages; | |||
| 1808 | cache->cachepages += pages; | |||
| 1809 | chillbufs(cache, queue, queuepages); | |||
| 1810 | } else { | |||
| 1811 | queue = &dirtyqueue; | |||
| 1812 | bcstats.numdirtypages += pages; | |||
| 1813 | bcstats.delwribufs++; | |||
| 1814 | } | |||
| 1815 | TAILQ_INSERT_TAIL(queue, bp, b_freelist)do { (bp)->b_freelist.tqe_next = ((void *)0); (bp)->b_freelist .tqe_prev = (queue)->tqh_last; *(queue)->tqh_last = (bp ); (queue)->tqh_last = &(bp)->b_freelist.tqe_next; } while (0); | |||
| 1816 | } | |||
| 1817 | ||||
| 1818 | #ifdef HIBERNATE1 | |||
| 1819 | /* | |||
| 1820 | * Nuke the buffer cache from orbit when hibernating. We do not want to save | |||
| 1821 | * any clean cache pages to swap and read them back. the original disk files | |||
| 1822 | * are just as good. | |||
| 1823 | */ | |||
| 1824 | void | |||
| 1825 | hibernate_suspend_bufcache(void) | |||
| 1826 | { | |||
| 1827 | struct buf *bp; | |||
| 1828 | int s; | |||
| 1829 | ||||
| 1830 | s = splbio()splraise(0x3); | |||
| 1831 | /* Chuck away all the cache pages.. discard bufs, do not promote */ | |||
| 1832 | while ((bp = bufcache_getcleanbuf_range(DMA_CACHE0, NUM_CACHES2 - 1, 1))) { | |||
| 1833 | bufcache_take(bp); | |||
| 1834 | if (bp->b_vp) { | |||
| 1835 | RBT_REMOVE(buf_rb_bufs, &bp->b_vp->v_bufs_tree, bp)buf_rb_bufs_RBT_REMOVE(&bp->b_vp->v_bufs_tree, bp); | |||
| 1836 | brelvp(bp); | |||
| 1837 | } | |||
| 1838 | buf_put(bp); | |||
| 1839 | } | |||
| 1840 | splx(s)spllower(s); | |||
| 1841 | } | |||
| 1842 | ||||
| 1843 | void | |||
| 1844 | hibernate_resume_bufcache(void) | |||
| 1845 | { | |||
| 1846 | /* XXX Nothing needed here for now */ | |||
| 1847 | } | |||
| 1848 | #endif /* HIBERNATE */ |