| File: | uvm/uvm_fault.c |
| Warning: | line 771, column 11 Although the value stored to 'nforw' is used in the enclosing expression, the value is never actually read from 'nforw' |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* $OpenBSD: uvm_fault.c,v 1.135 2023/09/05 05:08:26 guenther Exp $ */ |
| 2 | /* $NetBSD: uvm_fault.c,v 1.51 2000/08/06 00:22:53 thorpej Exp $ */ |
| 3 | |
| 4 | /* |
| 5 | * Copyright (c) 1997 Charles D. Cranor and Washington University. |
| 6 | * All rights reserved. |
| 7 | * |
| 8 | * Redistribution and use in source and binary forms, with or without |
| 9 | * modification, are permitted provided that the following conditions |
| 10 | * are met: |
| 11 | * 1. Redistributions of source code must retain the above copyright |
| 12 | * notice, this list of conditions and the following disclaimer. |
| 13 | * 2. Redistributions in binary form must reproduce the above copyright |
| 14 | * notice, this list of conditions and the following disclaimer in the |
| 15 | * documentation and/or other materials provided with the distribution. |
| 16 | * |
| 17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
| 18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
| 19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
| 20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
| 21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| 22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| 26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 | * |
| 28 | * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp |
| 29 | */ |
| 30 | |
| 31 | /* |
| 32 | * uvm_fault.c: fault handler |
| 33 | */ |
| 34 | |
| 35 | #include <sys/param.h> |
| 36 | #include <sys/systm.h> |
| 37 | #include <sys/kernel.h> |
| 38 | #include <sys/percpu.h> |
| 39 | #include <sys/proc.h> |
| 40 | #include <sys/malloc.h> |
| 41 | #include <sys/mman.h> |
| 42 | #include <sys/tracepoint.h> |
| 43 | |
| 44 | #include <uvm/uvm.h> |
| 45 | |
| 46 | /* |
| 47 | * |
| 48 | * a word on page faults: |
| 49 | * |
| 50 | * types of page faults we handle: |
| 51 | * |
| 52 | * CASE 1: upper layer faults CASE 2: lower layer faults |
| 53 | * |
| 54 | * CASE 1A CASE 1B CASE 2A CASE 2B |
| 55 | * read/write1 write>1 read/write +-cow_write/zero |
| 56 | * | | | | |
| 57 | * +--|--+ +--|--+ +-----+ + | + | +-----+ |
| 58 | * amap | V | | ---------> new | | | | ^ | |
| 59 | * +-----+ +-----+ +-----+ + | + | +--|--+ |
| 60 | * | | | |
| 61 | * +-----+ +-----+ +--|--+ | +--|--+ |
| 62 | * uobj | d/c | | d/c | | V | +----+ | |
| 63 | * +-----+ +-----+ +-----+ +-----+ |
| 64 | * |
| 65 | * d/c = don't care |
| 66 | * |
| 67 | * case [0]: layerless fault |
| 68 | * no amap or uobj is present. this is an error. |
| 69 | * |
| 70 | * case [1]: upper layer fault [anon active] |
| 71 | * 1A: [read] or [write with anon->an_ref == 1] |
| 72 | * I/O takes place in upper level anon and uobj is not touched. |
| 73 | * 1B: [write with anon->an_ref > 1] |
| 74 | * new anon is alloc'd and data is copied off ["COW"] |
| 75 | * |
| 76 | * case [2]: lower layer fault [uobj] |
| 77 | * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area] |
| 78 | * I/O takes place directly in object. |
| 79 | * 2B: [write to copy_on_write] or [read on NULL uobj] |
| 80 | * data is "promoted" from uobj to a new anon. |
| 81 | * if uobj is null, then we zero fill. |
| 82 | * |
| 83 | * we follow the standard UVM locking protocol ordering: |
| 84 | * |
| 85 | * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ) |
| 86 | * we hold a PG_BUSY page if we unlock for I/O |
| 87 | * |
| 88 | * |
| 89 | * the code is structured as follows: |
| 90 | * |
| 91 | * - init the "IN" params in the ufi structure |
| 92 | * ReFault: (ERESTART returned to the loop in uvm_fault) |
| 93 | * - do lookups [locks maps], check protection, handle needs_copy |
| 94 | * - check for case 0 fault (error) |
| 95 | * - establish "range" of fault |
| 96 | * - if we have an amap lock it and extract the anons |
| 97 | * - if sequential advice deactivate pages behind us |
| 98 | * - at the same time check pmap for unmapped areas and anon for pages |
| 99 | * that we could map in (and do map it if found) |
| 100 | * - check object for resident pages that we could map in |
| 101 | * - if (case 2) goto Case2 |
| 102 | * - >>> handle case 1 |
| 103 | * - ensure source anon is resident in RAM |
| 104 | * - if case 1B alloc new anon and copy from source |
| 105 | * - map the correct page in |
| 106 | * Case2: |
| 107 | * - >>> handle case 2 |
| 108 | * - ensure source page is resident (if uobj) |
| 109 | * - if case 2B alloc new anon and copy from source (could be zero |
| 110 | * fill if uobj == NULL) |
| 111 | * - map the correct page in |
| 112 | * - done! |
| 113 | * |
| 114 | * note on paging: |
| 115 | * if we have to do I/O we place a PG_BUSY page in the correct object, |
| 116 | * unlock everything, and do the I/O. when I/O is done we must reverify |
| 117 | * the state of the world before assuming that our data structures are |
| 118 | * valid. [because mappings could change while the map is unlocked] |
| 119 | * |
| 120 | * alternative 1: unbusy the page in question and restart the page fault |
| 121 | * from the top (ReFault). this is easy but does not take advantage |
| 122 | * of the information that we already have from our previous lookup, |
| 123 | * although it is possible that the "hints" in the vm_map will help here. |
| 124 | * |
| 125 | * alternative 2: the system already keeps track of a "version" number of |
| 126 | * a map. [i.e. every time you write-lock a map (e.g. to change a |
| 127 | * mapping) you bump the version number up by one...] so, we can save |
| 128 | * the version number of the map before we release the lock and start I/O. |
| 129 | * then when I/O is done we can relock and check the version numbers |
| 130 | * to see if anything changed. this might save us some over 1 because |
| 131 | * we don't have to unbusy the page and may be less compares(?). |
| 132 | * |
| 133 | * alternative 3: put in backpointers or a way to "hold" part of a map |
| 134 | * in place while I/O is in progress. this could be complex to |
| 135 | * implement (especially with structures like amap that can be referenced |
| 136 | * by multiple map entries, and figuring out what should wait could be |
| 137 | * complex as well...). |
| 138 | * |
| 139 | * we use alternative 2. given that we are multi-threaded now we may want |
| 140 | * to reconsider the choice. |
| 141 | */ |
| 142 | |
| 143 | /* |
| 144 | * local data structures |
| 145 | */ |
| 146 | struct uvm_advice { |
| 147 | int nback; |
| 148 | int nforw; |
| 149 | }; |
| 150 | |
| 151 | /* |
| 152 | * page range array: set up in uvmfault_init(). |
| 153 | */ |
| 154 | static struct uvm_advice uvmadvice[MADV_MASK0x7 + 1]; |
| 155 | |
| 156 | #define UVM_MAXRANGE16 16 /* must be max() of nback+nforw+1 */ |
| 157 | |
| 158 | /* |
| 159 | * private prototypes |
| 160 | */ |
| 161 | static void uvmfault_amapcopy(struct uvm_faultinfo *); |
| 162 | static inline void uvmfault_anonflush(struct vm_anon **, int); |
| 163 | void uvmfault_unlockmaps(struct uvm_faultinfo *, boolean_t); |
| 164 | void uvmfault_update_stats(struct uvm_faultinfo *); |
| 165 | |
| 166 | /* |
| 167 | * inline functions |
| 168 | */ |
| 169 | /* |
| 170 | * uvmfault_anonflush: try and deactivate pages in specified anons |
| 171 | * |
| 172 | * => does not have to deactivate page if it is busy |
| 173 | */ |
| 174 | static inline void |
| 175 | uvmfault_anonflush(struct vm_anon **anons, int n) |
| 176 | { |
| 177 | int lcv; |
| 178 | struct vm_page *pg; |
| 179 | |
| 180 | for (lcv = 0; lcv < n; lcv++) { |
| 181 | if (anons[lcv] == NULL((void *)0)) |
| 182 | continue; |
| 183 | KASSERT(rw_lock_held(anons[lcv]->an_lock))((rw_lock_held(anons[lcv]->an_lock)) ? (void)0 : __assert( "diagnostic ", "/usr/src/sys/uvm/uvm_fault.c", 183, "rw_lock_held(anons[lcv]->an_lock)" )); |
| 184 | pg = anons[lcv]->an_page; |
| 185 | if (pg && (pg->pg_flags & PG_BUSY0x00000001) == 0) { |
| 186 | uvm_lock_pageq()mtx_enter(&uvm.pageqlock); |
| 187 | if (pg->wire_count == 0) { |
| 188 | pmap_page_protect(pg, PROT_NONE0x00); |
| 189 | uvm_pagedeactivate(pg); |
| 190 | } |
| 191 | uvm_unlock_pageq()mtx_leave(&uvm.pageqlock); |
| 192 | } |
| 193 | } |
| 194 | } |
| 195 | |
| 196 | /* |
| 197 | * normal functions |
| 198 | */ |
| 199 | /* |
| 200 | * uvmfault_init: compute proper values for the uvmadvice[] array. |
| 201 | */ |
| 202 | void |
| 203 | uvmfault_init(void) |
| 204 | { |
| 205 | int npages; |
| 206 | |
| 207 | npages = atop(16384)((16384) >> 12); |
| 208 | if (npages > 0) { |
| 209 | KASSERT(npages <= UVM_MAXRANGE / 2)((npages <= 16 / 2) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/uvm/uvm_fault.c" , 209, "npages <= UVM_MAXRANGE / 2")); |
| 210 | uvmadvice[MADV_NORMAL0].nforw = npages; |
| 211 | uvmadvice[MADV_NORMAL0].nback = npages - 1; |
| 212 | } |
| 213 | |
| 214 | npages = atop(32768)((32768) >> 12); |
| 215 | if (npages > 0) { |
| 216 | KASSERT(npages <= UVM_MAXRANGE / 2)((npages <= 16 / 2) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/uvm/uvm_fault.c" , 216, "npages <= UVM_MAXRANGE / 2")); |
| 217 | uvmadvice[MADV_SEQUENTIAL2].nforw = npages - 1; |
| 218 | uvmadvice[MADV_SEQUENTIAL2].nback = npages; |
| 219 | } |
| 220 | } |
| 221 | |
| 222 | /* |
| 223 | * uvmfault_amapcopy: clear "needs_copy" in a map. |
| 224 | * |
| 225 | * => called with VM data structures unlocked (usually, see below) |
| 226 | * => we get a write lock on the maps and clear needs_copy for a VA |
| 227 | * => if we are out of RAM we sleep (waiting for more) |
| 228 | */ |
| 229 | static void |
| 230 | uvmfault_amapcopy(struct uvm_faultinfo *ufi) |
| 231 | { |
| 232 | for (;;) { |
| 233 | /* |
| 234 | * no mapping? give up. |
| 235 | */ |
| 236 | if (uvmfault_lookup(ufi, TRUE1) == FALSE0) |
| 237 | return; |
| 238 | |
| 239 | /* |
| 240 | * copy if needed. |
| 241 | */ |
| 242 | if (UVM_ET_ISNEEDSCOPY(ufi->entry)(((ufi->entry)->etype & 0x0008) != 0)) |
| 243 | amap_copy(ufi->map, ufi->entry, M_NOWAIT0x0002, |
| 244 | UVM_ET_ISSTACK(ufi->entry)(((ufi->entry)->etype & 0x0040) != 0) ? FALSE0 : TRUE1, |
| 245 | ufi->orig_rvaddr, ufi->orig_rvaddr + 1); |
| 246 | |
| 247 | /* |
| 248 | * didn't work? must be out of RAM. unlock and sleep. |
| 249 | */ |
| 250 | if (UVM_ET_ISNEEDSCOPY(ufi->entry)(((ufi->entry)->etype & 0x0008) != 0)) { |
| 251 | uvmfault_unlockmaps(ufi, TRUE1); |
| 252 | uvm_wait("fltamapcopy"); |
| 253 | continue; |
| 254 | } |
| 255 | |
| 256 | /* |
| 257 | * got it! unlock and return. |
| 258 | */ |
| 259 | uvmfault_unlockmaps(ufi, TRUE1); |
| 260 | return; |
| 261 | } |
| 262 | /*NOTREACHED*/ |
| 263 | } |
| 264 | |
| 265 | /* |
| 266 | * uvmfault_anonget: get data in an anon into a non-busy, non-released |
| 267 | * page in that anon. |
| 268 | * |
| 269 | * => Map, amap and thus anon should be locked by caller. |
| 270 | * => If we fail, we unlock everything and error is returned. |
| 271 | * => If we are successful, return with everything still locked. |
| 272 | * => We do not move the page on the queues [gets moved later]. If we |
| 273 | * allocate a new page [we_own], it gets put on the queues. Either way, |
| 274 | * the result is that the page is on the queues at return time |
| 275 | */ |
| 276 | int |
| 277 | uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap, |
| 278 | struct vm_anon *anon) |
| 279 | { |
| 280 | struct vm_page *pg; |
| 281 | int error; |
| 282 | |
| 283 | KASSERT(rw_lock_held(anon->an_lock))((rw_lock_held(anon->an_lock)) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/uvm/uvm_fault.c", 283, "rw_lock_held(anon->an_lock)" )); |
| 284 | KASSERT(anon->an_lock == amap->am_lock)((anon->an_lock == amap->am_lock) ? (void)0 : __assert( "diagnostic ", "/usr/src/sys/uvm/uvm_fault.c", 284, "anon->an_lock == amap->am_lock" )); |
| 285 | |
| 286 | /* Increment the counters.*/ |
| 287 | counters_inc(uvmexp_counters, flt_anget); |
| 288 | if (anon->an_page) { |
| 289 | curproc({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_curproc->p_ru.ru_minflt++; |
| 290 | } else { |
| 291 | curproc({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_curproc->p_ru.ru_majflt++; |
| 292 | } |
| 293 | error = 0; |
| 294 | |
| 295 | /* |
| 296 | * Loop until we get the anon data, or fail. |
| 297 | */ |
| 298 | for (;;) { |
| 299 | boolean_t we_own, locked; |
| 300 | /* |
| 301 | * Note: 'we_own' will become true if we set PG_BUSY on a page. |
| 302 | */ |
| 303 | we_own = FALSE0; |
| 304 | pg = anon->an_page; |
| 305 | |
| 306 | /* |
| 307 | * Is page resident? Make sure it is not busy/released. |
| 308 | */ |
| 309 | if (pg) { |
| 310 | KASSERT(pg->pg_flags & PQ_ANON)((pg->pg_flags & 0x00100000) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/uvm/uvm_fault.c", 310, "pg->pg_flags & PQ_ANON" )); |
| 311 | KASSERT(pg->uanon == anon)((pg->uanon == anon) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/uvm/uvm_fault.c" , 311, "pg->uanon == anon")); |
| 312 | |
| 313 | /* |
| 314 | * if the page is busy, we drop all the locks and |
| 315 | * try again. |
| 316 | */ |
| 317 | if ((pg->pg_flags & (PG_BUSY0x00000001|PG_RELEASED0x00000020)) == 0) |
| 318 | return (VM_PAGER_OK0); |
| 319 | atomic_setbits_intx86_atomic_setbits_u32(&pg->pg_flags, PG_WANTED0x00000002); |
| 320 | counters_inc(uvmexp_counters, flt_pgwait); |
| 321 | |
| 322 | /* |
| 323 | * The last unlock must be an atomic unlock and wait |
| 324 | * on the owner of page. |
| 325 | */ |
| 326 | if (pg->uobject) { |
| 327 | /* Owner of page is UVM object. */ |
| 328 | uvmfault_unlockall(ufi, amap, NULL((void *)0)); |
| 329 | rwsleep_nsec(pg, pg->uobject->vmobjlock, |
| 330 | PVM4 | PNORELOCK0x200, "anonget1", INFSLP0xffffffffffffffffULL); |
| 331 | } else { |
| 332 | /* Owner of page is anon. */ |
| 333 | uvmfault_unlockall(ufi, NULL((void *)0), NULL((void *)0)); |
| 334 | rwsleep_nsec(pg, anon->an_lock, PVM4 | PNORELOCK0x200, |
| 335 | "anonget2", INFSLP0xffffffffffffffffULL); |
| 336 | } |
| 337 | } else { |
| 338 | /* |
| 339 | * No page, therefore allocate one. |
| 340 | */ |
| 341 | pg = uvm_pagealloc(NULL((void *)0), 0, anon, 0); |
| 342 | if (pg == NULL((void *)0)) { |
| 343 | /* Out of memory. Wait a little. */ |
| 344 | uvmfault_unlockall(ufi, amap, NULL((void *)0)); |
| 345 | counters_inc(uvmexp_counters, flt_noram); |
| 346 | uvm_wait("flt_noram1"); |
| 347 | } else { |
| 348 | /* PG_BUSY bit is set. */ |
| 349 | we_own = TRUE1; |
| 350 | uvmfault_unlockall(ufi, amap, NULL((void *)0)); |
| 351 | |
| 352 | /* |
| 353 | * Pass a PG_BUSY+PG_FAKE+PG_CLEAN page into |
| 354 | * the uvm_swap_get() function with all data |
| 355 | * structures unlocked. Note that it is OK |
| 356 | * to read an_swslot here, because we hold |
| 357 | * PG_BUSY on the page. |
| 358 | */ |
| 359 | counters_inc(uvmexp_counters, pageins); |
| 360 | error = uvm_swap_get(pg, anon->an_swslot, |
| 361 | PGO_SYNCIO0x002); |
| 362 | |
| 363 | /* |
| 364 | * We clean up after the I/O below in the |
| 365 | * 'we_own' case. |
| 366 | */ |
| 367 | } |
| 368 | } |
| 369 | |
| 370 | /* |
| 371 | * Re-lock the map and anon. |
| 372 | */ |
| 373 | locked = uvmfault_relock(ufi); |
| 374 | if (locked || we_own) { |
| 375 | rw_enter(anon->an_lock, RW_WRITE0x0001UL); |
| 376 | } |
| 377 | |
| 378 | /* |
| 379 | * If we own the page (i.e. we set PG_BUSY), then we need |
| 380 | * to clean up after the I/O. There are three cases to |
| 381 | * consider: |
| 382 | * |
| 383 | * 1) Page was released during I/O: free anon and ReFault. |
| 384 | * 2) I/O not OK. Free the page and cause the fault to fail. |
| 385 | * 3) I/O OK! Activate the page and sync with the non-we_own |
| 386 | * case (i.e. drop anon lock if not locked). |
| 387 | */ |
| 388 | if (we_own) { |
| 389 | if (pg->pg_flags & PG_WANTED0x00000002) { |
| 390 | wakeup(pg); |
| 391 | } |
| 392 | |
| 393 | /* |
| 394 | * if we were RELEASED during I/O, then our anon is |
| 395 | * no longer part of an amap. we need to free the |
| 396 | * anon and try again. |
| 397 | */ |
| 398 | if (pg->pg_flags & PG_RELEASED0x00000020) { |
| 399 | KASSERT(anon->an_ref == 0)((anon->an_ref == 0) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/uvm/uvm_fault.c" , 399, "anon->an_ref == 0")); |
| 400 | /* |
| 401 | * Released while we had unlocked amap. |
| 402 | */ |
| 403 | if (locked) |
| 404 | uvmfault_unlockall(ufi, NULL((void *)0), NULL((void *)0)); |
| 405 | uvm_anon_release(anon); /* frees page for us */ |
| 406 | counters_inc(uvmexp_counters, flt_pgrele); |
| 407 | return (VM_PAGER_REFAULT7); /* refault! */ |
| 408 | } |
| 409 | |
| 410 | if (error != VM_PAGER_OK0) { |
| 411 | KASSERT(error != VM_PAGER_PEND)((error != 3) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/uvm/uvm_fault.c" , 411, "error != VM_PAGER_PEND")); |
| 412 | |
| 413 | /* remove page from anon */ |
| 414 | anon->an_page = NULL((void *)0); |
| 415 | |
| 416 | /* |
| 417 | * Remove the swap slot from the anon and |
| 418 | * mark the anon as having no real slot. |
| 419 | * Do not free the swap slot, thus preventing |
| 420 | * it from being used again. |
| 421 | */ |
| 422 | uvm_swap_markbad(anon->an_swslot, 1); |
| 423 | anon->an_swslot = SWSLOT_BAD(-1); |
| 424 | |
| 425 | /* |
| 426 | * Note: page was never !PG_BUSY, so it |
| 427 | * cannot be mapped and thus no need to |
| 428 | * pmap_page_protect() it. |
| 429 | */ |
| 430 | uvm_lock_pageq()mtx_enter(&uvm.pageqlock); |
| 431 | uvm_pagefree(pg); |
| 432 | uvm_unlock_pageq()mtx_leave(&uvm.pageqlock); |
| 433 | |
| 434 | if (locked) { |
| 435 | uvmfault_unlockall(ufi, NULL((void *)0), NULL((void *)0)); |
| 436 | } |
| 437 | rw_exit(anon->an_lock); |
| 438 | return (VM_PAGER_ERROR4); |
| 439 | } |
| 440 | |
| 441 | /* |
| 442 | * We have successfully read the page, activate it. |
| 443 | */ |
| 444 | pmap_clear_modify(pg)pmap_clear_attrs(pg, 0x0000000000000040UL); |
| 445 | uvm_lock_pageq()mtx_enter(&uvm.pageqlock); |
| 446 | uvm_pageactivate(pg); |
| 447 | uvm_unlock_pageq()mtx_leave(&uvm.pageqlock); |
| 448 | atomic_clearbits_intx86_atomic_clearbits_u32(&pg->pg_flags, |
| 449 | PG_WANTED0x00000002|PG_BUSY0x00000001|PG_FAKE0x00000040); |
| 450 | UVM_PAGE_OWN(pg, NULL); |
| 451 | } |
| 452 | |
| 453 | /* |
| 454 | * We were not able to re-lock the map - restart the fault. |
| 455 | */ |
| 456 | if (!locked) { |
| 457 | if (we_own) { |
| 458 | rw_exit(anon->an_lock); |
| 459 | } |
| 460 | return (VM_PAGER_REFAULT7); |
| 461 | } |
| 462 | |
| 463 | /* |
| 464 | * Verify that no one has touched the amap and moved |
| 465 | * the anon on us. |
| 466 | */ |
| 467 | if (ufi != NULL((void *)0) && amap_lookup(&ufi->entry->aref, |
| 468 | ufi->orig_rvaddr - ufi->entry->start) != anon) { |
| 469 | |
| 470 | uvmfault_unlockall(ufi, amap, NULL((void *)0)); |
| 471 | return (VM_PAGER_REFAULT7); |
| 472 | } |
| 473 | |
| 474 | /* |
| 475 | * Retry.. |
| 476 | */ |
| 477 | counters_inc(uvmexp_counters, flt_anretry); |
| 478 | continue; |
| 479 | |
| 480 | } |
| 481 | /*NOTREACHED*/ |
| 482 | } |
| 483 | |
| 484 | /* |
| 485 | * Update statistics after fault resolution. |
| 486 | * - maxrss |
| 487 | */ |
| 488 | void |
| 489 | uvmfault_update_stats(struct uvm_faultinfo *ufi) |
| 490 | { |
| 491 | struct vm_map *map; |
| 492 | struct proc *p; |
| 493 | vsize_t res; |
| 494 | |
| 495 | map = ufi->orig_map; |
| 496 | |
| 497 | /* |
| 498 | * If this is a nested pmap (eg, a virtual machine pmap managed |
| 499 | * by vmm(4) on amd64/i386), don't do any updating, just return. |
| 500 | * |
| 501 | * pmap_nested() on other archs is #defined to 0, so this is a |
| 502 | * no-op. |
| 503 | */ |
| 504 | if (pmap_nested(map->pmap)((map->pmap)->pm_type != 1)) |
| 505 | return; |
| 506 | |
| 507 | /* Update the maxrss for the process. */ |
| 508 | if (map->flags & VM_MAP_ISVMSPACE0x40) { |
| 509 | p = curproc({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_curproc; |
| 510 | KASSERT(p != NULL && &p->p_vmspace->vm_map == map)((p != ((void *)0) && &p->p_vmspace->vm_map == map) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/uvm/uvm_fault.c" , 510, "p != NULL && &p->p_vmspace->vm_map == map" )); |
| 511 | |
| 512 | res = pmap_resident_count(map->pmap)((map->pmap)->pm_stats.resident_count); |
| 513 | /* Convert res from pages to kilobytes. */ |
| 514 | res <<= (PAGE_SHIFT12 - 10); |
| 515 | |
| 516 | if (p->p_ru.ru_maxrss < res) |
| 517 | p->p_ru.ru_maxrss = res; |
| 518 | } |
| 519 | } |
| 520 | |
| 521 | /* |
| 522 | * F A U L T - m a i n e n t r y p o i n t |
| 523 | */ |
| 524 | |
| 525 | /* |
| 526 | * uvm_fault: page fault handler |
| 527 | * |
| 528 | * => called from MD code to resolve a page fault |
| 529 | * => VM data structures usually should be unlocked. however, it is |
| 530 | * possible to call here with the main map locked if the caller |
| 531 | * gets a write lock, sets it recursive, and then calls us (c.f. |
| 532 | * uvm_map_pageable). this should be avoided because it keeps |
| 533 | * the map locked off during I/O. |
| 534 | * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT |
| 535 | */ |
| 536 | #define MASK(entry)((((entry)->etype & 0x0004) != 0) ? ~0x02 : (0x01 | 0x02 | 0x04)) (UVM_ET_ISCOPYONWRITE(entry)(((entry)->etype & 0x0004) != 0) ? \ |
| 537 | ~PROT_WRITE0x02 : PROT_MASK(0x01 | 0x02 | 0x04)) |
| 538 | struct uvm_faultctx { |
| 539 | /* |
| 540 | * the following members are set up by uvm_fault_check() and |
| 541 | * read-only after that. |
| 542 | */ |
| 543 | vm_prot_t enter_prot; |
| 544 | vm_prot_t access_type; |
| 545 | vaddr_t startva; |
| 546 | int npages; |
| 547 | int centeridx; |
| 548 | boolean_t narrow; |
| 549 | boolean_t wired; |
| 550 | paddr_t pa_flags; |
| 551 | }; |
| 552 | |
| 553 | int uvm_fault_check( |
| 554 | struct uvm_faultinfo *, struct uvm_faultctx *, |
| 555 | struct vm_anon ***); |
| 556 | |
| 557 | int uvm_fault_upper( |
| 558 | struct uvm_faultinfo *, struct uvm_faultctx *, |
| 559 | struct vm_anon **, vm_fault_t); |
| 560 | boolean_t uvm_fault_upper_lookup( |
| 561 | struct uvm_faultinfo *, const struct uvm_faultctx *, |
| 562 | struct vm_anon **, struct vm_page **); |
| 563 | |
| 564 | int uvm_fault_lower( |
| 565 | struct uvm_faultinfo *, struct uvm_faultctx *, |
| 566 | struct vm_page **, vm_fault_t); |
| 567 | |
| 568 | int |
| 569 | uvm_fault(vm_map_t orig_map, vaddr_t vaddr, vm_fault_t fault_type, |
| 570 | vm_prot_t access_type) |
| 571 | { |
| 572 | struct uvm_faultinfo ufi; |
| 573 | struct uvm_faultctx flt; |
| 574 | boolean_t shadowed; |
| 575 | struct vm_anon *anons_store[UVM_MAXRANGE16], **anons; |
| 576 | struct vm_page *pages[UVM_MAXRANGE16]; |
| 577 | int error; |
| 578 | |
| 579 | counters_inc(uvmexp_counters, faults); |
| 580 | TRACEPOINT(uvm, fault, vaddr, fault_type, access_type, NULL)do { extern struct dt_probe (dt_static_uvm_fault); struct dt_probe *dtp = &(dt_static_uvm_fault); if (__builtin_expect(((dt_tracing ) != 0), 0) && __builtin_expect(((dtp->dtp_recording ) != 0), 0)) { struct dt_provider *dtpv = dtp->dtp_prov; dtpv ->dtpv_enter(dtpv, dtp, vaddr, fault_type, access_type, (( void *)0)); } } while (0); |
| 581 | |
| 582 | /* |
| 583 | * init the IN parameters in the ufi |
| 584 | */ |
| 585 | ufi.orig_map = orig_map; |
| 586 | ufi.orig_rvaddr = trunc_page(vaddr)((vaddr) & ~((1 << 12) - 1)); |
| 587 | ufi.orig_size = PAGE_SIZE(1 << 12); /* can't get any smaller than this */ |
| 588 | if (fault_type == VM_FAULT_WIRE((vm_fault_t) 0x2)) |
| 589 | flt.narrow = TRUE1; /* don't look for neighborhood |
| 590 | * pages on wire */ |
| 591 | else |
| 592 | flt.narrow = FALSE0; /* normal fault */ |
| 593 | flt.access_type = access_type; |
| 594 | |
| 595 | |
| 596 | error = ERESTART-1; |
| 597 | while (error == ERESTART-1) { /* ReFault: */ |
| 598 | anons = anons_store; |
| 599 | |
| 600 | error = uvm_fault_check(&ufi, &flt, &anons); |
| 601 | if (error != 0) |
| 602 | continue; |
| 603 | |
| 604 | /* True if there is an anon at the faulting address */ |
| 605 | shadowed = uvm_fault_upper_lookup(&ufi, &flt, anons, pages); |
| 606 | if (shadowed == TRUE1) { |
| 607 | /* case 1: fault on an anon in our amap */ |
| 608 | error = uvm_fault_upper(&ufi, &flt, anons, fault_type); |
| 609 | } else { |
| 610 | struct uvm_object *uobj = ufi.entry->object.uvm_obj; |
| 611 | |
| 612 | /* |
| 613 | * if the desired page is not shadowed by the amap and |
| 614 | * we have a backing object, then we check to see if |
| 615 | * the backing object would prefer to handle the fault |
| 616 | * itself (rather than letting us do it with the usual |
| 617 | * pgo_get hook). the backing object signals this by |
| 618 | * providing a pgo_fault routine. |
| 619 | */ |
| 620 | if (uobj != NULL((void *)0) && uobj->pgops->pgo_fault != NULL((void *)0)) { |
| 621 | KERNEL_LOCK()_kernel_lock(); |
| 622 | rw_enter(uobj->vmobjlock, RW_WRITE0x0001UL); |
| 623 | error = uobj->pgops->pgo_fault(&ufi, |
| 624 | flt.startva, pages, flt.npages, |
| 625 | flt.centeridx, fault_type, flt.access_type, |
| 626 | PGO_LOCKED0x040); |
| 627 | KERNEL_UNLOCK()_kernel_unlock(); |
| 628 | |
| 629 | if (error == VM_PAGER_OK0) |
| 630 | error = 0; |
| 631 | else if (error == VM_PAGER_REFAULT7) |
| 632 | error = ERESTART-1; |
| 633 | else |
| 634 | error = EACCES13; |
| 635 | } else { |
| 636 | /* case 2: fault on backing obj or zero fill */ |
| 637 | error = uvm_fault_lower(&ufi, &flt, pages, |
| 638 | fault_type); |
| 639 | } |
| 640 | } |
| 641 | } |
| 642 | |
| 643 | return error; |
| 644 | } |
| 645 | |
| 646 | /* |
| 647 | * uvm_fault_check: check prot, handle needs-copy, etc. |
| 648 | * |
| 649 | * 1. lookup entry. |
| 650 | * 2. check protection. |
| 651 | * 3. adjust fault condition (mainly for simulated fault). |
| 652 | * 4. handle needs-copy (lazy amap copy). |
| 653 | * 5. establish range of interest for neighbor fault (aka pre-fault). |
| 654 | * 6. look up anons (if amap exists). |
| 655 | * 7. flush pages (if MADV_SEQUENTIAL) |
| 656 | * |
| 657 | * => called with nothing locked. |
| 658 | * => if we fail (result != 0) we unlock everything. |
| 659 | * => initialize/adjust many members of flt. |
| 660 | */ |
| 661 | int |
| 662 | uvm_fault_check(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, |
| 663 | struct vm_anon ***ranons) |
| 664 | { |
| 665 | struct vm_amap *amap; |
| 666 | struct uvm_object *uobj; |
| 667 | int nback, nforw; |
| 668 | |
| 669 | /* |
| 670 | * lookup and lock the maps |
| 671 | */ |
| 672 | if (uvmfault_lookup(ufi, FALSE0) == FALSE0) { |
| 673 | return EFAULT14; |
| 674 | } |
| 675 | /* locked: maps(read) */ |
| 676 | |
| 677 | #ifdef DIAGNOSTIC1 |
| 678 | if ((ufi->map->flags & VM_MAP_PAGEABLE0x01) == 0) |
| 679 | panic("uvm_fault: fault on non-pageable map (%p, 0x%lx)", |
| 680 | ufi->map, ufi->orig_rvaddr); |
| 681 | #endif |
| 682 | |
| 683 | /* |
| 684 | * check protection |
| 685 | */ |
| 686 | if ((ufi->entry->protection & flt->access_type) != flt->access_type) { |
| 687 | uvmfault_unlockmaps(ufi, FALSE0); |
| 688 | return EACCES13; |
| 689 | } |
| 690 | |
| 691 | /* |
| 692 | * "enter_prot" is the protection we want to enter the page in at. |
| 693 | * for certain pages (e.g. copy-on-write pages) this protection can |
| 694 | * be more strict than ufi->entry->protection. "wired" means either |
| 695 | * the entry is wired or we are fault-wiring the pg. |
| 696 | */ |
| 697 | |
| 698 | flt->enter_prot = ufi->entry->protection; |
| 699 | flt->pa_flags = UVM_ET_ISWC(ufi->entry)(((ufi->entry)->etype & 0x0080) != 0) ? PMAP_WC0x2 : 0; |
| 700 | flt->wired = VM_MAPENT_ISWIRED(ufi->entry)((ufi->entry)->wired_count != 0) || (flt->narrow == TRUE1); |
| 701 | if (flt->wired) |
| 702 | flt->access_type = flt->enter_prot; /* full access for wired */ |
| 703 | |
| 704 | /* handle "needs_copy" case. */ |
| 705 | if (UVM_ET_ISNEEDSCOPY(ufi->entry)(((ufi->entry)->etype & 0x0008) != 0)) { |
| 706 | if ((flt->access_type & PROT_WRITE0x02) || |
| 707 | (ufi->entry->object.uvm_obj == NULL((void *)0))) { |
| 708 | /* need to clear */ |
| 709 | uvmfault_unlockmaps(ufi, FALSE0); |
| 710 | uvmfault_amapcopy(ufi); |
| 711 | counters_inc(uvmexp_counters, flt_amcopy); |
| 712 | return ERESTART-1; |
| 713 | } else { |
| 714 | /* |
| 715 | * ensure that we pmap_enter page R/O since |
| 716 | * needs_copy is still true |
| 717 | */ |
| 718 | flt->enter_prot &= ~PROT_WRITE0x02; |
| 719 | } |
| 720 | } |
| 721 | |
| 722 | /* |
| 723 | * identify the players |
| 724 | */ |
| 725 | amap = ufi->entry->aref.ar_amap; /* upper layer */ |
| 726 | uobj = ufi->entry->object.uvm_obj; /* lower layer */ |
| 727 | |
| 728 | /* |
| 729 | * check for a case 0 fault. if nothing backing the entry then |
| 730 | * error now. |
| 731 | */ |
| 732 | if (amap == NULL((void *)0) && uobj == NULL((void *)0)) { |
| 733 | uvmfault_unlockmaps(ufi, FALSE0); |
| 734 | return EFAULT14; |
| 735 | } |
| 736 | |
| 737 | /* |
| 738 | * for a case 2B fault waste no time on adjacent pages because |
| 739 | * they are likely already entered. |
| 740 | */ |
| 741 | if (uobj != NULL((void *)0) && amap != NULL((void *)0) && |
| 742 | (flt->access_type & PROT_WRITE0x02) != 0) { |
| 743 | /* wide fault (!narrow) */ |
| 744 | flt->narrow = TRUE1; |
| 745 | } |
| 746 | |
| 747 | /* |
| 748 | * establish range of interest based on advice from mapper |
| 749 | * and then clip to fit map entry. note that we only want |
| 750 | * to do this the first time through the fault. if we |
| 751 | * ReFault we will disable this by setting "narrow" to true. |
| 752 | */ |
| 753 | if (flt->narrow == FALSE0) { |
| 754 | |
| 755 | /* wide fault (!narrow) */ |
| 756 | nback = min(uvmadvice[ufi->entry->advice].nback, |
| 757 | (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT12); |
| 758 | flt->startva = ufi->orig_rvaddr - ((vsize_t)nback << PAGE_SHIFT12); |
| 759 | nforw = min(uvmadvice[ufi->entry->advice].nforw, |
| 760 | ((ufi->entry->end - ufi->orig_rvaddr) >> PAGE_SHIFT12) - 1); |
| 761 | /* |
| 762 | * note: "-1" because we don't want to count the |
| 763 | * faulting page as forw |
| 764 | */ |
| 765 | flt->npages = nback + nforw + 1; |
| 766 | flt->centeridx = nback; |
| 767 | |
| 768 | flt->narrow = TRUE1; /* ensure only once per-fault */ |
| 769 | } else { |
| 770 | /* narrow fault! */ |
| 771 | nback = nforw = 0; |
Although the value stored to 'nforw' is used in the enclosing expression, the value is never actually read from 'nforw' | |
| 772 | flt->startva = ufi->orig_rvaddr; |
| 773 | flt->npages = 1; |
| 774 | flt->centeridx = 0; |
| 775 | } |
| 776 | |
| 777 | /* |
| 778 | * if we've got an amap then lock it and extract current anons. |
| 779 | */ |
| 780 | if (amap) { |
| 781 | amap_lock(amap)rw_enter_write((amap)->am_lock); |
| 782 | amap_lookups(&ufi->entry->aref, |
| 783 | flt->startva - ufi->entry->start, *ranons, flt->npages); |
| 784 | } else { |
| 785 | *ranons = NULL((void *)0); /* to be safe */ |
| 786 | } |
| 787 | |
| 788 | /* |
| 789 | * for MADV_SEQUENTIAL mappings we want to deactivate the back pages |
| 790 | * now and then forget about them (for the rest of the fault). |
| 791 | */ |
| 792 | if (ufi->entry->advice == MADV_SEQUENTIAL2 && nback != 0) { |
| 793 | /* flush back-page anons? */ |
| 794 | if (amap) |
| 795 | uvmfault_anonflush(*ranons, nback); |
| 796 | |
| 797 | /* |
| 798 | * flush object? |
| 799 | */ |
| 800 | if (uobj) { |
| 801 | voff_t uoff; |
| 802 | |
| 803 | uoff = (flt->startva - ufi->entry->start) + ufi->entry->offset; |
| 804 | rw_enter(uobj->vmobjlock, RW_WRITE0x0001UL); |
| 805 | (void) uobj->pgops->pgo_flush(uobj, uoff, uoff + |
| 806 | ((vsize_t)nback << PAGE_SHIFT12), PGO_DEACTIVATE0x004); |
| 807 | rw_exit(uobj->vmobjlock); |
| 808 | } |
| 809 | |
| 810 | /* now forget about the backpages */ |
| 811 | if (amap) |
| 812 | *ranons += nback; |
| 813 | flt->startva += ((vsize_t)nback << PAGE_SHIFT12); |
| 814 | flt->npages -= nback; |
| 815 | flt->centeridx = 0; |
| 816 | } |
| 817 | |
| 818 | return 0; |
| 819 | } |
| 820 | |
| 821 | /* |
| 822 | * uvm_fault_upper_lookup: look up existing h/w mapping and amap. |
| 823 | * |
| 824 | * iterate range of interest: |
| 825 | * 1. check if h/w mapping exists. if yes, we don't care |
| 826 | * 2. check if anon exists. if not, page is lower. |
| 827 | * 3. if anon exists, enter h/w mapping for neighbors. |
| 828 | * |
| 829 | * => called with amap locked (if exists). |
| 830 | */ |
| 831 | boolean_t |
| 832 | uvm_fault_upper_lookup(struct uvm_faultinfo *ufi, |
| 833 | const struct uvm_faultctx *flt, struct vm_anon **anons, |
| 834 | struct vm_page **pages) |
| 835 | { |
| 836 | struct vm_amap *amap = ufi->entry->aref.ar_amap; |
| 837 | struct vm_anon *anon; |
| 838 | boolean_t shadowed; |
| 839 | vaddr_t currva; |
| 840 | paddr_t pa; |
| 841 | int lcv; |
| 842 | |
| 843 | /* locked: maps(read), amap(if there) */ |
| 844 | KASSERT(amap == NULL ||((amap == ((void *)0) || rw_write_held(amap->am_lock)) ? ( void)0 : __assert("diagnostic ", "/usr/src/sys/uvm/uvm_fault.c" , 845, "amap == NULL || rw_write_held(amap->am_lock)")) |
| 845 | rw_write_held(amap->am_lock))((amap == ((void *)0) || rw_write_held(amap->am_lock)) ? ( void)0 : __assert("diagnostic ", "/usr/src/sys/uvm/uvm_fault.c" , 845, "amap == NULL || rw_write_held(amap->am_lock)")); |
| 846 | |
| 847 | /* |
| 848 | * map in the backpages and frontpages we found in the amap in hopes |
| 849 | * of preventing future faults. we also init the pages[] array as |
| 850 | * we go. |
| 851 | */ |
| 852 | currva = flt->startva; |
| 853 | shadowed = FALSE0; |
| 854 | for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE(1 << 12)) { |
| 855 | /* |
| 856 | * dont play with VAs that are already mapped |
| 857 | * except for center) |
| 858 | */ |
| 859 | if (lcv != flt->centeridx && |
| 860 | pmap_extract(ufi->orig_map->pmap, currva, &pa)) { |
| 861 | pages[lcv] = PGO_DONTCARE((struct vm_page *) -1L); |
| 862 | continue; |
| 863 | } |
| 864 | |
| 865 | /* |
| 866 | * unmapped or center page. check if any anon at this level. |
| 867 | */ |
| 868 | if (amap == NULL((void *)0) || anons[lcv] == NULL((void *)0)) { |
| 869 | pages[lcv] = NULL((void *)0); |
| 870 | continue; |
| 871 | } |
| 872 | |
| 873 | /* |
| 874 | * check for present page and map if possible. |
| 875 | */ |
| 876 | pages[lcv] = PGO_DONTCARE((struct vm_page *) -1L); |
| 877 | if (lcv == flt->centeridx) { /* save center for later! */ |
| 878 | shadowed = TRUE1; |
| 879 | continue; |
| 880 | } |
| 881 | anon = anons[lcv]; |
| 882 | KASSERT(anon->an_lock == amap->am_lock)((anon->an_lock == amap->am_lock) ? (void)0 : __assert( "diagnostic ", "/usr/src/sys/uvm/uvm_fault.c", 882, "anon->an_lock == amap->am_lock" )); |
| 883 | if (anon->an_page && |
| 884 | (anon->an_page->pg_flags & (PG_RELEASED0x00000020|PG_BUSY0x00000001)) == 0) { |
| 885 | uvm_lock_pageq()mtx_enter(&uvm.pageqlock); |
| 886 | uvm_pageactivate(anon->an_page); /* reactivate */ |
| 887 | uvm_unlock_pageq()mtx_leave(&uvm.pageqlock); |
| 888 | counters_inc(uvmexp_counters, flt_namap); |
| 889 | |
| 890 | /* |
| 891 | * Since this isn't the page that's actually faulting, |
| 892 | * ignore pmap_enter() failures; it's not critical |
| 893 | * that we enter these right now. |
| 894 | */ |
| 895 | (void) pmap_enter(ufi->orig_map->pmap, currva, |
| 896 | VM_PAGE_TO_PHYS(anon->an_page)((anon->an_page)->phys_addr) | flt->pa_flags, |
| 897 | (anon->an_ref > 1) ? |
| 898 | (flt->enter_prot & ~PROT_WRITE0x02) : flt->enter_prot, |
| 899 | PMAP_CANFAIL0x00000020 | |
| 900 | (VM_MAPENT_ISWIRED(ufi->entry)((ufi->entry)->wired_count != 0) ? PMAP_WIRED0x00000010 : 0)); |
| 901 | } |
| 902 | } |
| 903 | if (flt->npages > 1) |
| 904 | pmap_update(ufi->orig_map->pmap); |
| 905 | |
| 906 | return shadowed; |
| 907 | } |
| 908 | |
| 909 | /* |
| 910 | * uvm_fault_upper: handle upper fault. |
| 911 | * |
| 912 | * 1. acquire anon lock. |
| 913 | * 2. get anon. let uvmfault_anonget do the dirty work. |
| 914 | * 3. if COW, promote data to new anon |
| 915 | * 4. enter h/w mapping |
| 916 | */ |
| 917 | int |
| 918 | uvm_fault_upper(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, |
| 919 | struct vm_anon **anons, vm_fault_t fault_type) |
| 920 | { |
| 921 | struct vm_amap *amap = ufi->entry->aref.ar_amap; |
| 922 | struct vm_anon *oanon, *anon = anons[flt->centeridx]; |
| 923 | struct vm_page *pg = NULL((void *)0); |
| 924 | int error, ret; |
| 925 | |
| 926 | /* locked: maps(read), amap, anon */ |
| 927 | KASSERT(rw_write_held(amap->am_lock))((rw_write_held(amap->am_lock)) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/uvm/uvm_fault.c", 927, "rw_write_held(amap->am_lock)" )); |
| 928 | KASSERT(anon->an_lock == amap->am_lock)((anon->an_lock == amap->am_lock) ? (void)0 : __assert( "diagnostic ", "/usr/src/sys/uvm/uvm_fault.c", 928, "anon->an_lock == amap->am_lock" )); |
| 929 | |
| 930 | /* |
| 931 | * no matter if we have case 1A or case 1B we are going to need to |
| 932 | * have the anon's memory resident. ensure that now. |
| 933 | */ |
| 934 | /* |
| 935 | * let uvmfault_anonget do the dirty work. |
| 936 | * if it fails (!OK) it will unlock everything for us. |
| 937 | * if it succeeds, locks are still valid and locked. |
| 938 | * also, if it is OK, then the anon's page is on the queues. |
| 939 | * if the page is on loan from a uvm_object, then anonget will |
| 940 | * lock that object for us if it does not fail. |
| 941 | */ |
| 942 | error = uvmfault_anonget(ufi, amap, anon); |
| 943 | switch (error) { |
| 944 | case VM_PAGER_OK0: |
| 945 | break; |
| 946 | |
| 947 | case VM_PAGER_REFAULT7: |
| 948 | return ERESTART-1; |
| 949 | |
| 950 | case VM_PAGER_ERROR4: |
| 951 | /* |
| 952 | * An error occurred while trying to bring in the |
| 953 | * page -- this is the only error we return right |
| 954 | * now. |
| 955 | */ |
| 956 | return EACCES13; /* XXX */ |
| 957 | default: |
| 958 | #ifdef DIAGNOSTIC1 |
| 959 | panic("uvm_fault: uvmfault_anonget -> %d", error); |
| 960 | #else |
| 961 | return EACCES13; |
| 962 | #endif |
| 963 | } |
| 964 | |
| 965 | KASSERT(rw_write_held(amap->am_lock))((rw_write_held(amap->am_lock)) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/uvm/uvm_fault.c", 965, "rw_write_held(amap->am_lock)" )); |
| 966 | KASSERT(anon->an_lock == amap->am_lock)((anon->an_lock == amap->am_lock) ? (void)0 : __assert( "diagnostic ", "/usr/src/sys/uvm/uvm_fault.c", 966, "anon->an_lock == amap->am_lock" )); |
| 967 | |
| 968 | /* |
| 969 | * if we are case 1B then we will need to allocate a new blank |
| 970 | * anon to transfer the data into. note that we have a lock |
| 971 | * on anon, so no one can busy or release the page until we are done. |
| 972 | * also note that the ref count can't drop to zero here because |
| 973 | * it is > 1 and we are only dropping one ref. |
| 974 | * |
| 975 | * in the (hopefully very rare) case that we are out of RAM we |
| 976 | * will unlock, wait for more RAM, and refault. |
| 977 | * |
| 978 | * if we are out of anon VM we wait for RAM to become available. |
| 979 | */ |
| 980 | |
| 981 | if ((flt->access_type & PROT_WRITE0x02) != 0 && anon->an_ref > 1) { |
| 982 | counters_inc(uvmexp_counters, flt_acow); |
| 983 | oanon = anon; /* oanon = old */ |
| 984 | anon = uvm_analloc(); |
| 985 | if (anon) { |
| 986 | anon->an_lock = amap->am_lock; |
| 987 | pg = uvm_pagealloc(NULL((void *)0), 0, anon, 0); |
| 988 | } |
| 989 | |
| 990 | /* check for out of RAM */ |
| 991 | if (anon == NULL((void *)0) || pg == NULL((void *)0)) { |
| 992 | uvmfault_unlockall(ufi, amap, NULL((void *)0)); |
| 993 | if (anon == NULL((void *)0)) |
| 994 | counters_inc(uvmexp_counters, flt_noanon); |
| 995 | else { |
| 996 | anon->an_lock = NULL((void *)0); |
| 997 | anon->an_ref--; |
| 998 | uvm_anfree(anon)uvm_anfree_list((anon), ((void *)0)); |
| 999 | counters_inc(uvmexp_counters, flt_noram); |
| 1000 | } |
| 1001 | |
| 1002 | if (uvm_swapisfull()) |
| 1003 | return ENOMEM12; |
| 1004 | |
| 1005 | /* out of RAM, wait for more */ |
| 1006 | if (anon == NULL((void *)0)) |
| 1007 | uvm_anwait(); |
| 1008 | else |
| 1009 | uvm_wait("flt_noram3"); |
| 1010 | return ERESTART-1; |
| 1011 | } |
| 1012 | |
| 1013 | /* got all resources, replace anon with nanon */ |
| 1014 | uvm_pagecopy(oanon->an_page, pg); /* pg now !PG_CLEAN */ |
| 1015 | /* un-busy! new page */ |
| 1016 | atomic_clearbits_intx86_atomic_clearbits_u32(&pg->pg_flags, PG_BUSY0x00000001|PG_FAKE0x00000040); |
| 1017 | UVM_PAGE_OWN(pg, NULL); |
| 1018 | ret = amap_add(&ufi->entry->aref, |
| 1019 | ufi->orig_rvaddr - ufi->entry->start, anon, 1); |
| 1020 | KASSERT(ret == 0)((ret == 0) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/uvm/uvm_fault.c" , 1020, "ret == 0")); |
| 1021 | |
| 1022 | /* deref: can not drop to zero here by defn! */ |
| 1023 | oanon->an_ref--; |
| 1024 | |
| 1025 | #if defined(MULTIPROCESSOR1) && !defined(__HAVE_PMAP_MPSAFE_ENTER_COW) |
| 1026 | /* |
| 1027 | * If there are multiple threads, either uvm or the |
| 1028 | * pmap has to make sure no threads see the old RO |
| 1029 | * mapping once any have seen the new RW mapping. |
| 1030 | * uvm does it by inserting the new mapping RO and |
| 1031 | * letting it fault again. |
| 1032 | * This is only a problem on MP systems. |
| 1033 | */ |
| 1034 | if (P_HASSIBLING(curproc)((({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_curproc)->p_p->ps_threadcnt > 1)) { |
| 1035 | flt->enter_prot &= ~PROT_WRITE0x02; |
| 1036 | flt->access_type &= ~PROT_WRITE0x02; |
| 1037 | } |
| 1038 | #endif |
| 1039 | |
| 1040 | /* |
| 1041 | * note: anon is _not_ locked, but we have the sole references |
| 1042 | * to in from amap. |
| 1043 | * thus, no one can get at it until we are done with it. |
| 1044 | */ |
| 1045 | } else { |
| 1046 | counters_inc(uvmexp_counters, flt_anon); |
| 1047 | oanon = anon; |
| 1048 | pg = anon->an_page; |
| 1049 | if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */ |
| 1050 | flt->enter_prot = flt->enter_prot & ~PROT_WRITE0x02; |
| 1051 | } |
| 1052 | |
| 1053 | /* |
| 1054 | * now map the page in . |
| 1055 | */ |
| 1056 | if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, |
| 1057 | VM_PAGE_TO_PHYS(pg)((pg)->phys_addr) | flt->pa_flags, flt->enter_prot, |
| 1058 | flt->access_type | PMAP_CANFAIL0x00000020 | (flt->wired ? PMAP_WIRED0x00000010 : 0)) != 0) { |
| 1059 | /* |
| 1060 | * No need to undo what we did; we can simply think of |
| 1061 | * this as the pmap throwing away the mapping information. |
| 1062 | * |
| 1063 | * We do, however, have to go through the ReFault path, |
| 1064 | * as the map may change while we're asleep. |
| 1065 | */ |
| 1066 | uvmfault_unlockall(ufi, amap, NULL((void *)0)); |
| 1067 | if (uvm_swapisfull()) { |
| 1068 | /* XXX instrumentation */ |
| 1069 | return ENOMEM12; |
| 1070 | } |
| 1071 | /* XXX instrumentation */ |
| 1072 | uvm_wait("flt_pmfail1"); |
| 1073 | return ERESTART-1; |
| 1074 | } |
| 1075 | |
| 1076 | /* |
| 1077 | * ... update the page queues. |
| 1078 | */ |
| 1079 | uvm_lock_pageq()mtx_enter(&uvm.pageqlock); |
| 1080 | |
| 1081 | if (fault_type == VM_FAULT_WIRE((vm_fault_t) 0x2)) { |
| 1082 | uvm_pagewire(pg); |
| 1083 | /* |
| 1084 | * since the now-wired page cannot be paged out, |
| 1085 | * release its swap resources for others to use. |
| 1086 | * since an anon with no swap cannot be PG_CLEAN, |
| 1087 | * clear its clean flag now. |
| 1088 | */ |
| 1089 | atomic_clearbits_intx86_atomic_clearbits_u32(&pg->pg_flags, PG_CLEAN0x00000008); |
| 1090 | uvm_anon_dropswap(anon); |
| 1091 | } else { |
| 1092 | /* activate it */ |
| 1093 | uvm_pageactivate(pg); |
| 1094 | } |
| 1095 | |
| 1096 | uvm_unlock_pageq()mtx_leave(&uvm.pageqlock); |
| 1097 | |
| 1098 | /* |
| 1099 | * done case 1! finish up by unlocking everything and returning success |
| 1100 | */ |
| 1101 | uvmfault_unlockall(ufi, amap, NULL((void *)0)); |
| 1102 | pmap_update(ufi->orig_map->pmap); |
| 1103 | return 0; |
| 1104 | } |
| 1105 | |
| 1106 | /* |
| 1107 | * uvm_fault_lower_lookup: look up on-memory uobj pages. |
| 1108 | * |
| 1109 | * 1. get on-memory pages. |
| 1110 | * 2. if failed, give up (get only center page later). |
| 1111 | * 3. if succeeded, enter h/w mapping of neighbor pages. |
| 1112 | */ |
| 1113 | |
| 1114 | struct vm_page * |
| 1115 | uvm_fault_lower_lookup( |
| 1116 | struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt, |
| 1117 | struct vm_page **pages) |
| 1118 | { |
| 1119 | struct uvm_object *uobj = ufi->entry->object.uvm_obj; |
| 1120 | struct vm_page *uobjpage = NULL((void *)0); |
| 1121 | int lcv, gotpages; |
| 1122 | vaddr_t currva; |
| 1123 | |
| 1124 | rw_enter(uobj->vmobjlock, RW_WRITE0x0001UL); |
| 1125 | |
| 1126 | counters_inc(uvmexp_counters, flt_lget); |
| 1127 | gotpages = flt->npages; |
| 1128 | (void) uobj->pgops->pgo_get(uobj, |
| 1129 | ufi->entry->offset + (flt->startva - ufi->entry->start), |
| 1130 | pages, &gotpages, flt->centeridx, |
| 1131 | flt->access_type & MASK(ufi->entry)((((ufi->entry)->etype & 0x0004) != 0) ? ~0x02 : (0x01 | 0x02 | 0x04)), ufi->entry->advice, |
| 1132 | PGO_LOCKED0x040); |
| 1133 | |
| 1134 | /* |
| 1135 | * check for pages to map, if we got any |
| 1136 | */ |
| 1137 | if (gotpages == 0) { |
| 1138 | return NULL((void *)0); |
| 1139 | } |
| 1140 | |
| 1141 | currva = flt->startva; |
| 1142 | for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE(1 << 12)) { |
| 1143 | if (pages[lcv] == NULL((void *)0) || |
| 1144 | pages[lcv] == PGO_DONTCARE((struct vm_page *) -1L)) |
| 1145 | continue; |
| 1146 | |
| 1147 | KASSERT((pages[lcv]->pg_flags & PG_RELEASED) == 0)(((pages[lcv]->pg_flags & 0x00000020) == 0) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/uvm/uvm_fault.c", 1147 , "(pages[lcv]->pg_flags & PG_RELEASED) == 0")); |
| 1148 | |
| 1149 | /* |
| 1150 | * if center page is resident and not |
| 1151 | * PG_BUSY, then pgo_get made it PG_BUSY |
| 1152 | * for us and gave us a handle to it. |
| 1153 | * remember this page as "uobjpage." |
| 1154 | * (for later use). |
| 1155 | */ |
| 1156 | if (lcv == flt->centeridx) { |
| 1157 | uobjpage = pages[lcv]; |
| 1158 | continue; |
| 1159 | } |
| 1160 | |
| 1161 | /* |
| 1162 | * note: calling pgo_get with locked data |
| 1163 | * structures returns us pages which are |
| 1164 | * neither busy nor released, so we don't |
| 1165 | * need to check for this. we can just |
| 1166 | * directly enter the page (after moving it |
| 1167 | * to the head of the active queue [useful?]). |
| 1168 | */ |
| 1169 | |
| 1170 | uvm_lock_pageq()mtx_enter(&uvm.pageqlock); |
| 1171 | uvm_pageactivate(pages[lcv]); /* reactivate */ |
| 1172 | uvm_unlock_pageq()mtx_leave(&uvm.pageqlock); |
| 1173 | counters_inc(uvmexp_counters, flt_nomap); |
| 1174 | |
| 1175 | /* |
| 1176 | * Since this page isn't the page that's |
| 1177 | * actually faulting, ignore pmap_enter() |
| 1178 | * failures; it's not critical that we |
| 1179 | * enter these right now. |
| 1180 | */ |
| 1181 | (void) pmap_enter(ufi->orig_map->pmap, currva, |
| 1182 | VM_PAGE_TO_PHYS(pages[lcv])((pages[lcv])->phys_addr) | flt->pa_flags, |
| 1183 | flt->enter_prot & MASK(ufi->entry)((((ufi->entry)->etype & 0x0004) != 0) ? ~0x02 : (0x01 | 0x02 | 0x04)), |
| 1184 | PMAP_CANFAIL0x00000020 | |
| 1185 | (flt->wired ? PMAP_WIRED0x00000010 : 0)); |
| 1186 | |
| 1187 | /* |
| 1188 | * NOTE: page can't be PG_WANTED because |
| 1189 | * we've held the lock the whole time |
| 1190 | * we've had the handle. |
| 1191 | */ |
| 1192 | atomic_clearbits_intx86_atomic_clearbits_u32(&pages[lcv]->pg_flags, PG_BUSY0x00000001); |
| 1193 | UVM_PAGE_OWN(pages[lcv], NULL); |
| 1194 | } |
| 1195 | pmap_update(ufi->orig_map->pmap); |
| 1196 | |
| 1197 | return uobjpage; |
| 1198 | } |
| 1199 | |
| 1200 | /* |
| 1201 | * uvm_fault_lower: handle lower fault. |
| 1202 | * |
| 1203 | */ |
| 1204 | int |
| 1205 | uvm_fault_lower(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, |
| 1206 | struct vm_page **pages, vm_fault_t fault_type) |
| 1207 | { |
| 1208 | struct vm_amap *amap = ufi->entry->aref.ar_amap; |
| 1209 | struct uvm_object *uobj = ufi->entry->object.uvm_obj; |
| 1210 | boolean_t promote, locked; |
| 1211 | int result; |
| 1212 | struct vm_page *uobjpage, *pg = NULL((void *)0); |
| 1213 | struct vm_anon *anon = NULL((void *)0); |
| 1214 | voff_t uoff; |
| 1215 | |
| 1216 | /* |
| 1217 | * now, if the desired page is not shadowed by the amap and we have |
| 1218 | * a backing object that does not have a special fault routine, then |
| 1219 | * we ask (with pgo_get) the object for resident pages that we care |
| 1220 | * about and attempt to map them in. we do not let pgo_get block |
| 1221 | * (PGO_LOCKED). |
| 1222 | */ |
| 1223 | if (uobj == NULL((void *)0)) { |
| 1224 | /* zero fill; don't care neighbor pages */ |
| 1225 | uobjpage = NULL((void *)0); |
| 1226 | } else { |
| 1227 | uobjpage = uvm_fault_lower_lookup(ufi, flt, pages); |
| 1228 | } |
| 1229 | |
| 1230 | /* |
| 1231 | * note that at this point we are done with any front or back pages. |
| 1232 | * we are now going to focus on the center page (i.e. the one we've |
| 1233 | * faulted on). if we have faulted on the bottom (uobj) |
| 1234 | * layer [i.e. case 2] and the page was both present and available, |
| 1235 | * then we've got a pointer to it as "uobjpage" and we've already |
| 1236 | * made it BUSY. |
| 1237 | */ |
| 1238 | |
| 1239 | /* |
| 1240 | * locked: |
| 1241 | */ |
| 1242 | KASSERT(amap == NULL ||((amap == ((void *)0) || rw_write_held(amap->am_lock)) ? ( void)0 : __assert("diagnostic ", "/usr/src/sys/uvm/uvm_fault.c" , 1243, "amap == NULL || rw_write_held(amap->am_lock)")) |
| 1243 | rw_write_held(amap->am_lock))((amap == ((void *)0) || rw_write_held(amap->am_lock)) ? ( void)0 : __assert("diagnostic ", "/usr/src/sys/uvm/uvm_fault.c" , 1243, "amap == NULL || rw_write_held(amap->am_lock)")); |
| 1244 | KASSERT(uobj == NULL ||((uobj == ((void *)0) || rw_write_held(uobj->vmobjlock)) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/uvm/uvm_fault.c" , 1245, "uobj == NULL || rw_write_held(uobj->vmobjlock)")) |
| 1245 | rw_write_held(uobj->vmobjlock))((uobj == ((void *)0) || rw_write_held(uobj->vmobjlock)) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/uvm/uvm_fault.c" , 1245, "uobj == NULL || rw_write_held(uobj->vmobjlock)")); |
| 1246 | |
| 1247 | /* |
| 1248 | * note that uobjpage can not be PGO_DONTCARE at this point. we now |
| 1249 | * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we |
| 1250 | * have a backing object, check and see if we are going to promote |
| 1251 | * the data up to an anon during the fault. |
| 1252 | */ |
| 1253 | if (uobj == NULL((void *)0)) { |
| 1254 | uobjpage = PGO_DONTCARE((struct vm_page *) -1L); |
| 1255 | promote = TRUE1; /* always need anon here */ |
| 1256 | } else { |
| 1257 | KASSERT(uobjpage != PGO_DONTCARE)((uobjpage != ((struct vm_page *) -1L)) ? (void)0 : __assert( "diagnostic ", "/usr/src/sys/uvm/uvm_fault.c", 1257, "uobjpage != PGO_DONTCARE" )); |
| 1258 | promote = (flt->access_type & PROT_WRITE0x02) && |
| 1259 | UVM_ET_ISCOPYONWRITE(ufi->entry)(((ufi->entry)->etype & 0x0004) != 0); |
| 1260 | } |
| 1261 | |
| 1262 | /* |
| 1263 | * if uobjpage is not null then we do not need to do I/O to get the |
| 1264 | * uobjpage. |
| 1265 | * |
| 1266 | * if uobjpage is null, then we need to ask the pager to |
| 1267 | * get the data for us. once we have the data, we need to reverify |
| 1268 | * the state the world. we are currently not holding any resources. |
| 1269 | */ |
| 1270 | if (uobjpage) { |
| 1271 | /* update rusage counters */ |
| 1272 | curproc({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_curproc->p_ru.ru_minflt++; |
| 1273 | } else { |
| 1274 | int gotpages; |
| 1275 | |
| 1276 | /* update rusage counters */ |
| 1277 | curproc({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_curproc->p_ru.ru_majflt++; |
| 1278 | |
| 1279 | uvmfault_unlockall(ufi, amap, NULL((void *)0)); |
| 1280 | |
| 1281 | counters_inc(uvmexp_counters, flt_get); |
| 1282 | gotpages = 1; |
| 1283 | uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset; |
| 1284 | result = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages, |
| 1285 | 0, flt->access_type & MASK(ufi->entry)((((ufi->entry)->etype & 0x0004) != 0) ? ~0x02 : (0x01 | 0x02 | 0x04)), ufi->entry->advice, |
| 1286 | PGO_SYNCIO0x002); |
| 1287 | |
| 1288 | /* |
| 1289 | * recover from I/O |
| 1290 | */ |
| 1291 | if (result != VM_PAGER_OK0) { |
| 1292 | KASSERT(result != VM_PAGER_PEND)((result != 3) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/uvm/uvm_fault.c" , 1292, "result != VM_PAGER_PEND")); |
| 1293 | |
| 1294 | if (result == VM_PAGER_AGAIN5) { |
| 1295 | tsleep_nsec(&nowake, PVM4, "fltagain2", |
| 1296 | MSEC_TO_NSEC(5)); |
| 1297 | return ERESTART-1; |
| 1298 | } |
| 1299 | |
| 1300 | if (!UVM_ET_ISNOFAULT(ufi->entry)(((ufi->entry)->etype & 0x0020) != 0)) |
| 1301 | return (EIO5); |
| 1302 | |
| 1303 | uobjpage = PGO_DONTCARE((struct vm_page *) -1L); |
| 1304 | uobj = NULL((void *)0); |
| 1305 | promote = TRUE1; |
| 1306 | } |
| 1307 | |
| 1308 | /* re-verify the state of the world. */ |
| 1309 | locked = uvmfault_relock(ufi); |
| 1310 | if (locked && amap != NULL((void *)0)) |
| 1311 | amap_lock(amap)rw_enter_write((amap)->am_lock); |
| 1312 | |
| 1313 | /* might be changed */ |
| 1314 | if (uobjpage != PGO_DONTCARE((struct vm_page *) -1L)) { |
| 1315 | uobj = uobjpage->uobject; |
| 1316 | rw_enter(uobj->vmobjlock, RW_WRITE0x0001UL); |
| 1317 | } |
| 1318 | |
| 1319 | /* |
| 1320 | * Re-verify that amap slot is still free. if there is |
| 1321 | * a problem, we clean up. |
| 1322 | */ |
| 1323 | if (locked && amap && amap_lookup(&ufi->entry->aref, |
| 1324 | ufi->orig_rvaddr - ufi->entry->start)) { |
| 1325 | if (locked) |
| 1326 | uvmfault_unlockall(ufi, amap, NULL((void *)0)); |
| 1327 | locked = FALSE0; |
| 1328 | } |
| 1329 | |
| 1330 | /* didn't get the lock? release the page and retry. */ |
| 1331 | if (locked == FALSE0 && uobjpage != PGO_DONTCARE((struct vm_page *) -1L)) { |
| 1332 | uvm_lock_pageq()mtx_enter(&uvm.pageqlock); |
| 1333 | /* make sure it is in queues */ |
| 1334 | uvm_pageactivate(uobjpage); |
| 1335 | uvm_unlock_pageq()mtx_leave(&uvm.pageqlock); |
| 1336 | |
| 1337 | if (uobjpage->pg_flags & PG_WANTED0x00000002) |
| 1338 | /* still holding object lock */ |
| 1339 | wakeup(uobjpage); |
| 1340 | atomic_clearbits_intx86_atomic_clearbits_u32(&uobjpage->pg_flags, |
| 1341 | PG_BUSY0x00000001|PG_WANTED0x00000002); |
| 1342 | UVM_PAGE_OWN(uobjpage, NULL); |
| 1343 | } |
| 1344 | |
| 1345 | if (locked == FALSE0) { |
| 1346 | if (uobjpage != PGO_DONTCARE((struct vm_page *) -1L)) |
| 1347 | rw_exit(uobj->vmobjlock); |
| 1348 | return ERESTART-1; |
| 1349 | } |
| 1350 | |
| 1351 | /* |
| 1352 | * we have the data in uobjpage which is PG_BUSY |
| 1353 | */ |
| 1354 | } |
| 1355 | |
| 1356 | /* |
| 1357 | * notes: |
| 1358 | * - at this point uobjpage can not be NULL |
| 1359 | * - at this point uobjpage could be PG_WANTED (handle later) |
| 1360 | */ |
| 1361 | if (promote == FALSE0) { |
| 1362 | /* |
| 1363 | * we are not promoting. if the mapping is COW ensure that we |
| 1364 | * don't give more access than we should (e.g. when doing a read |
| 1365 | * fault on a COPYONWRITE mapping we want to map the COW page in |
| 1366 | * R/O even though the entry protection could be R/W). |
| 1367 | * |
| 1368 | * set "pg" to the page we want to map in (uobjpage, usually) |
| 1369 | */ |
| 1370 | counters_inc(uvmexp_counters, flt_obj); |
| 1371 | if (UVM_ET_ISCOPYONWRITE(ufi->entry)(((ufi->entry)->etype & 0x0004) != 0)) |
| 1372 | flt->enter_prot &= ~PROT_WRITE0x02; |
| 1373 | pg = uobjpage; /* map in the actual object */ |
| 1374 | |
| 1375 | /* assert(uobjpage != PGO_DONTCARE) */ |
| 1376 | |
| 1377 | /* |
| 1378 | * we are faulting directly on the page. |
| 1379 | */ |
| 1380 | } else { |
| 1381 | /* |
| 1382 | * if we are going to promote the data to an anon we |
| 1383 | * allocate a blank anon here and plug it into our amap. |
| 1384 | */ |
| 1385 | #ifdef DIAGNOSTIC1 |
| 1386 | if (amap == NULL((void *)0)) |
| 1387 | panic("uvm_fault: want to promote data, but no anon"); |
| 1388 | #endif |
| 1389 | |
| 1390 | anon = uvm_analloc(); |
| 1391 | if (anon) { |
| 1392 | /* |
| 1393 | * In `Fill in data...' below, if |
| 1394 | * uobjpage == PGO_DONTCARE, we want |
| 1395 | * a zero'd, dirty page, so have |
| 1396 | * uvm_pagealloc() do that for us. |
| 1397 | */ |
| 1398 | anon->an_lock = amap->am_lock; |
| 1399 | pg = uvm_pagealloc(NULL((void *)0), 0, anon, |
| 1400 | (uobjpage == PGO_DONTCARE((struct vm_page *) -1L)) ? UVM_PGA_ZERO0x0002 : 0); |
| 1401 | } |
| 1402 | |
| 1403 | /* |
| 1404 | * out of memory resources? |
| 1405 | */ |
| 1406 | if (anon == NULL((void *)0) || pg == NULL((void *)0)) { |
| 1407 | /* |
| 1408 | * arg! must unbusy our page and fail or sleep. |
| 1409 | */ |
| 1410 | if (uobjpage != PGO_DONTCARE((struct vm_page *) -1L)) { |
| 1411 | uvm_lock_pageq()mtx_enter(&uvm.pageqlock); |
| 1412 | uvm_pageactivate(uobjpage); |
| 1413 | uvm_unlock_pageq()mtx_leave(&uvm.pageqlock); |
| 1414 | |
| 1415 | if (uobjpage->pg_flags & PG_WANTED0x00000002) |
| 1416 | wakeup(uobjpage); |
| 1417 | atomic_clearbits_intx86_atomic_clearbits_u32(&uobjpage->pg_flags, |
| 1418 | PG_BUSY0x00000001|PG_WANTED0x00000002); |
| 1419 | UVM_PAGE_OWN(uobjpage, NULL); |
| 1420 | } |
| 1421 | |
| 1422 | /* unlock and fail ... */ |
| 1423 | uvmfault_unlockall(ufi, amap, uobj); |
| 1424 | if (anon == NULL((void *)0)) |
| 1425 | counters_inc(uvmexp_counters, flt_noanon); |
| 1426 | else { |
| 1427 | anon->an_lock = NULL((void *)0); |
| 1428 | anon->an_ref--; |
| 1429 | uvm_anfree(anon)uvm_anfree_list((anon), ((void *)0)); |
| 1430 | counters_inc(uvmexp_counters, flt_noram); |
| 1431 | } |
| 1432 | |
| 1433 | if (uvm_swapisfull()) |
| 1434 | return (ENOMEM12); |
| 1435 | |
| 1436 | /* out of RAM, wait for more */ |
| 1437 | if (anon == NULL((void *)0)) |
| 1438 | uvm_anwait(); |
| 1439 | else |
| 1440 | uvm_wait("flt_noram5"); |
| 1441 | return ERESTART-1; |
| 1442 | } |
| 1443 | |
| 1444 | /* |
| 1445 | * fill in the data |
| 1446 | */ |
| 1447 | if (uobjpage != PGO_DONTCARE((struct vm_page *) -1L)) { |
| 1448 | counters_inc(uvmexp_counters, flt_prcopy); |
| 1449 | /* copy page [pg now dirty] */ |
| 1450 | uvm_pagecopy(uobjpage, pg); |
| 1451 | |
| 1452 | /* |
| 1453 | * promote to shared amap? make sure all sharing |
| 1454 | * procs see it |
| 1455 | */ |
| 1456 | if ((amap_flags(amap)((amap)->am_flags) & AMAP_SHARED0x1) != 0) { |
| 1457 | pmap_page_protect(uobjpage, PROT_NONE0x00); |
| 1458 | } |
| 1459 | #if defined(MULTIPROCESSOR1) && !defined(__HAVE_PMAP_MPSAFE_ENTER_COW) |
| 1460 | /* |
| 1461 | * Otherwise: |
| 1462 | * If there are multiple threads, either uvm or the |
| 1463 | * pmap has to make sure no threads see the old RO |
| 1464 | * mapping once any have seen the new RW mapping. |
| 1465 | * uvm does it here by forcing it to PROT_NONE before |
| 1466 | * inserting the new mapping. |
| 1467 | */ |
| 1468 | else if (P_HASSIBLING(curproc)((({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_curproc)->p_p->ps_threadcnt > 1)) { |
| 1469 | pmap_page_protect(uobjpage, PROT_NONE0x00); |
| 1470 | } |
| 1471 | #endif |
| 1472 | |
| 1473 | /* dispose of uobjpage. drop handle to uobj as well. */ |
| 1474 | if (uobjpage->pg_flags & PG_WANTED0x00000002) |
| 1475 | wakeup(uobjpage); |
| 1476 | atomic_clearbits_intx86_atomic_clearbits_u32(&uobjpage->pg_flags, |
| 1477 | PG_BUSY0x00000001|PG_WANTED0x00000002); |
| 1478 | UVM_PAGE_OWN(uobjpage, NULL); |
| 1479 | uvm_lock_pageq()mtx_enter(&uvm.pageqlock); |
| 1480 | uvm_pageactivate(uobjpage); |
| 1481 | uvm_unlock_pageq()mtx_leave(&uvm.pageqlock); |
| 1482 | rw_exit(uobj->vmobjlock); |
| 1483 | uobj = NULL((void *)0); |
| 1484 | } else { |
| 1485 | counters_inc(uvmexp_counters, flt_przero); |
| 1486 | /* |
| 1487 | * Page is zero'd and marked dirty by uvm_pagealloc() |
| 1488 | * above. |
| 1489 | */ |
| 1490 | } |
| 1491 | |
| 1492 | if (amap_add(&ufi->entry->aref, |
| 1493 | ufi->orig_rvaddr - ufi->entry->start, anon, 0)) { |
| 1494 | uvmfault_unlockall(ufi, amap, uobj); |
| 1495 | uvm_anfree(anon)uvm_anfree_list((anon), ((void *)0)); |
| 1496 | counters_inc(uvmexp_counters, flt_noamap); |
| 1497 | |
| 1498 | if (uvm_swapisfull()) |
| 1499 | return (ENOMEM12); |
| 1500 | |
| 1501 | amap_populate(&ufi->entry->aref, |
| 1502 | ufi->orig_rvaddr - ufi->entry->start); |
| 1503 | return ERESTART-1; |
| 1504 | } |
| 1505 | } |
| 1506 | |
| 1507 | /* note: pg is either the uobjpage or the new page in the new anon */ |
| 1508 | /* |
| 1509 | * all resources are present. we can now map it in and free our |
| 1510 | * resources. |
| 1511 | */ |
| 1512 | if (amap == NULL((void *)0)) |
| 1513 | KASSERT(anon == NULL)((anon == ((void *)0)) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/uvm/uvm_fault.c" , 1513, "anon == NULL")); |
| 1514 | else { |
| 1515 | KASSERT(rw_write_held(amap->am_lock))((rw_write_held(amap->am_lock)) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/uvm/uvm_fault.c", 1515, "rw_write_held(amap->am_lock)" )); |
| 1516 | KASSERT(anon == NULL || anon->an_lock == amap->am_lock)((anon == ((void *)0) || anon->an_lock == amap->am_lock ) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/uvm/uvm_fault.c" , 1516, "anon == NULL || anon->an_lock == amap->am_lock" )); |
| 1517 | } |
| 1518 | if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, |
| 1519 | VM_PAGE_TO_PHYS(pg)((pg)->phys_addr) | flt->pa_flags, flt->enter_prot, |
| 1520 | flt->access_type | PMAP_CANFAIL0x00000020 | (flt->wired ? PMAP_WIRED0x00000010 : 0)) != 0) { |
| 1521 | /* |
| 1522 | * No need to undo what we did; we can simply think of |
| 1523 | * this as the pmap throwing away the mapping information. |
| 1524 | * |
| 1525 | * We do, however, have to go through the ReFault path, |
| 1526 | * as the map may change while we're asleep. |
| 1527 | */ |
| 1528 | if (pg->pg_flags & PG_WANTED0x00000002) |
| 1529 | wakeup(pg); |
| 1530 | |
| 1531 | atomic_clearbits_intx86_atomic_clearbits_u32(&pg->pg_flags, PG_BUSY0x00000001|PG_FAKE0x00000040|PG_WANTED0x00000002); |
| 1532 | UVM_PAGE_OWN(pg, NULL); |
| 1533 | uvmfault_unlockall(ufi, amap, uobj); |
| 1534 | if (uvm_swapisfull()) { |
| 1535 | /* XXX instrumentation */ |
| 1536 | return (ENOMEM12); |
| 1537 | } |
| 1538 | /* XXX instrumentation */ |
| 1539 | uvm_wait("flt_pmfail2"); |
| 1540 | return ERESTART-1; |
| 1541 | } |
| 1542 | |
| 1543 | if (fault_type == VM_FAULT_WIRE((vm_fault_t) 0x2)) { |
| 1544 | uvm_lock_pageq()mtx_enter(&uvm.pageqlock); |
| 1545 | uvm_pagewire(pg); |
| 1546 | uvm_unlock_pageq()mtx_leave(&uvm.pageqlock); |
| 1547 | if (pg->pg_flags & PQ_AOBJ0x00200000) { |
| 1548 | /* |
| 1549 | * since the now-wired page cannot be paged out, |
| 1550 | * release its swap resources for others to use. |
| 1551 | * since an aobj page with no swap cannot be clean, |
| 1552 | * mark it dirty now. |
| 1553 | * |
| 1554 | * use pg->uobject here. if the page is from a |
| 1555 | * tmpfs vnode, the pages are backed by its UAO and |
| 1556 | * not the vnode. |
| 1557 | */ |
| 1558 | KASSERT(uobj != NULL)((uobj != ((void *)0)) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/uvm/uvm_fault.c" , 1558, "uobj != NULL")); |
| 1559 | KASSERT(uobj->vmobjlock == pg->uobject->vmobjlock)((uobj->vmobjlock == pg->uobject->vmobjlock) ? (void )0 : __assert("diagnostic ", "/usr/src/sys/uvm/uvm_fault.c", 1559 , "uobj->vmobjlock == pg->uobject->vmobjlock")); |
| 1560 | atomic_clearbits_intx86_atomic_clearbits_u32(&pg->pg_flags, PG_CLEAN0x00000008); |
| 1561 | uao_dropswap(uobj, pg->offset >> PAGE_SHIFT12); |
| 1562 | } |
| 1563 | } else { |
| 1564 | /* activate it */ |
| 1565 | uvm_lock_pageq()mtx_enter(&uvm.pageqlock); |
| 1566 | uvm_pageactivate(pg); |
| 1567 | uvm_unlock_pageq()mtx_leave(&uvm.pageqlock); |
| 1568 | } |
| 1569 | |
| 1570 | if (pg->pg_flags & PG_WANTED0x00000002) |
| 1571 | wakeup(pg); |
| 1572 | |
| 1573 | atomic_clearbits_intx86_atomic_clearbits_u32(&pg->pg_flags, PG_BUSY0x00000001|PG_FAKE0x00000040|PG_WANTED0x00000002); |
| 1574 | UVM_PAGE_OWN(pg, NULL); |
| 1575 | uvmfault_unlockall(ufi, amap, uobj); |
| 1576 | pmap_update(ufi->orig_map->pmap); |
| 1577 | |
| 1578 | return (0); |
| 1579 | } |
| 1580 | |
| 1581 | |
| 1582 | /* |
| 1583 | * uvm_fault_wire: wire down a range of virtual addresses in a map. |
| 1584 | * |
| 1585 | * => map may be read-locked by caller, but MUST NOT be write-locked. |
| 1586 | * => if map is read-locked, any operations which may cause map to |
| 1587 | * be write-locked in uvm_fault() must be taken care of by |
| 1588 | * the caller. See uvm_map_pageable(). |
| 1589 | */ |
| 1590 | int |
| 1591 | uvm_fault_wire(vm_map_t map, vaddr_t start, vaddr_t end, vm_prot_t access_type) |
| 1592 | { |
| 1593 | vaddr_t va; |
| 1594 | int rv; |
| 1595 | |
| 1596 | /* |
| 1597 | * now fault it in a page at a time. if the fault fails then we have |
| 1598 | * to undo what we have done. note that in uvm_fault PROT_NONE |
| 1599 | * is replaced with the max protection if fault_type is VM_FAULT_WIRE. |
| 1600 | */ |
| 1601 | for (va = start ; va < end ; va += PAGE_SIZE(1 << 12)) { |
| 1602 | rv = uvm_fault(map, va, VM_FAULT_WIRE((vm_fault_t) 0x2), access_type); |
| 1603 | if (rv) { |
| 1604 | if (va != start) { |
| 1605 | uvm_fault_unwire(map, start, va); |
| 1606 | } |
| 1607 | return (rv); |
| 1608 | } |
| 1609 | } |
| 1610 | |
| 1611 | return (0); |
| 1612 | } |
| 1613 | |
| 1614 | /* |
| 1615 | * uvm_fault_unwire(): unwire range of virtual space. |
| 1616 | */ |
| 1617 | void |
| 1618 | uvm_fault_unwire(vm_map_t map, vaddr_t start, vaddr_t end) |
| 1619 | { |
| 1620 | |
| 1621 | vm_map_lock_read(map)vm_map_lock_read_ln(map, "/usr/src/sys/uvm/uvm_fault.c", 1621 ); |
| 1622 | uvm_fault_unwire_locked(map, start, end); |
| 1623 | vm_map_unlock_read(map)vm_map_unlock_read_ln(map, "/usr/src/sys/uvm/uvm_fault.c", 1623 ); |
| 1624 | } |
| 1625 | |
| 1626 | /* |
| 1627 | * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire(). |
| 1628 | * |
| 1629 | * => map must be at least read-locked. |
| 1630 | */ |
| 1631 | void |
| 1632 | uvm_fault_unwire_locked(vm_map_t map, vaddr_t start, vaddr_t end) |
| 1633 | { |
| 1634 | vm_map_entry_t entry, oentry = NULL((void *)0), next; |
| 1635 | pmap_t pmap = vm_map_pmap(map)((map)->pmap); |
| 1636 | vaddr_t va; |
| 1637 | paddr_t pa; |
| 1638 | struct vm_page *pg; |
| 1639 | |
| 1640 | KASSERT((map->flags & VM_MAP_INTRSAFE) == 0)(((map->flags & 0x02) == 0) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/uvm/uvm_fault.c", 1640, "(map->flags & VM_MAP_INTRSAFE) == 0" )); |
| 1641 | vm_map_assert_anylock(map)vm_map_assert_anylock_ln(map, "/usr/src/sys/uvm/uvm_fault.c", 1641); |
| 1642 | |
| 1643 | /* |
| 1644 | * we assume that the area we are unwiring has actually been wired |
| 1645 | * in the first place. this means that we should be able to extract |
| 1646 | * the PAs from the pmap. |
| 1647 | */ |
| 1648 | |
| 1649 | /* |
| 1650 | * find the beginning map entry for the region. |
| 1651 | */ |
| 1652 | KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map))((start >= ((map)->min_offset) && end <= ((map )->max_offset)) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/uvm/uvm_fault.c" , 1652, "start >= vm_map_min(map) && end <= vm_map_max(map)" )); |
| 1653 | if (uvm_map_lookup_entry(map, start, &entry) == FALSE0) |
| 1654 | panic("uvm_fault_unwire_locked: address not in map"); |
| 1655 | |
| 1656 | for (va = start; va < end ; va += PAGE_SIZE(1 << 12)) { |
| 1657 | if (pmap_extract(pmap, va, &pa) == FALSE0) |
| 1658 | continue; |
| 1659 | |
| 1660 | /* |
| 1661 | * find the map entry for the current address. |
| 1662 | */ |
| 1663 | KASSERT(va >= entry->start)((va >= entry->start) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/uvm/uvm_fault.c", 1663, "va >= entry->start" )); |
| 1664 | while (entry && va >= entry->end) { |
| 1665 | next = RBT_NEXT(uvm_map_addr, entry)uvm_map_addr_RBT_NEXT(entry); |
| 1666 | entry = next; |
| 1667 | } |
| 1668 | |
| 1669 | if (entry == NULL((void *)0)) |
| 1670 | return; |
| 1671 | if (va < entry->start) |
| 1672 | continue; |
| 1673 | |
| 1674 | /* |
| 1675 | * lock it. |
| 1676 | */ |
| 1677 | if (entry != oentry) { |
| 1678 | if (oentry != NULL((void *)0)) { |
| 1679 | uvm_map_unlock_entry(oentry); |
| 1680 | } |
| 1681 | uvm_map_lock_entry(entry); |
| 1682 | oentry = entry; |
| 1683 | } |
| 1684 | |
| 1685 | /* |
| 1686 | * if the entry is no longer wired, tell the pmap. |
| 1687 | */ |
| 1688 | if (VM_MAPENT_ISWIRED(entry)((entry)->wired_count != 0) == 0) |
| 1689 | pmap_unwire(pmap, va); |
| 1690 | |
| 1691 | pg = PHYS_TO_VM_PAGE(pa); |
| 1692 | if (pg) { |
| 1693 | uvm_lock_pageq()mtx_enter(&uvm.pageqlock); |
| 1694 | uvm_pageunwire(pg); |
| 1695 | uvm_unlock_pageq()mtx_leave(&uvm.pageqlock); |
| 1696 | } |
| 1697 | } |
| 1698 | |
| 1699 | if (oentry != NULL((void *)0)) { |
| 1700 | uvm_map_unlock_entry(oentry); |
| 1701 | } |
| 1702 | } |
| 1703 | |
| 1704 | /* |
| 1705 | * uvmfault_unlockmaps: unlock the maps |
| 1706 | */ |
| 1707 | void |
| 1708 | uvmfault_unlockmaps(struct uvm_faultinfo *ufi, boolean_t write_locked) |
| 1709 | { |
| 1710 | /* |
| 1711 | * ufi can be NULL when this isn't really a fault, |
| 1712 | * but merely paging in anon data. |
| 1713 | */ |
| 1714 | if (ufi == NULL((void *)0)) { |
| 1715 | return; |
| 1716 | } |
| 1717 | |
| 1718 | uvmfault_update_stats(ufi); |
| 1719 | if (write_locked) { |
| 1720 | vm_map_unlock(ufi->map)vm_map_unlock_ln(ufi->map, "/usr/src/sys/uvm/uvm_fault.c", 1720); |
| 1721 | } else { |
| 1722 | vm_map_unlock_read(ufi->map)vm_map_unlock_read_ln(ufi->map, "/usr/src/sys/uvm/uvm_fault.c" , 1722); |
| 1723 | } |
| 1724 | } |
| 1725 | |
| 1726 | /* |
| 1727 | * uvmfault_unlockall: unlock everything passed in. |
| 1728 | * |
| 1729 | * => maps must be read-locked (not write-locked). |
| 1730 | */ |
| 1731 | void |
| 1732 | uvmfault_unlockall(struct uvm_faultinfo *ufi, struct vm_amap *amap, |
| 1733 | struct uvm_object *uobj) |
| 1734 | { |
| 1735 | if (uobj) |
| 1736 | rw_exit(uobj->vmobjlock); |
| 1737 | if (amap != NULL((void *)0)) |
| 1738 | amap_unlock(amap)rw_exit_write((amap)->am_lock); |
| 1739 | uvmfault_unlockmaps(ufi, FALSE0); |
| 1740 | } |
| 1741 | |
| 1742 | /* |
| 1743 | * uvmfault_lookup: lookup a virtual address in a map |
| 1744 | * |
| 1745 | * => caller must provide a uvm_faultinfo structure with the IN |
| 1746 | * params properly filled in |
| 1747 | * => we will lookup the map entry (handling submaps) as we go |
| 1748 | * => if the lookup is a success we will return with the maps locked |
| 1749 | * => if "write_lock" is TRUE, we write_lock the map, otherwise we only |
| 1750 | * get a read lock. |
| 1751 | * => note that submaps can only appear in the kernel and they are |
| 1752 | * required to use the same virtual addresses as the map they |
| 1753 | * are referenced by (thus address translation between the main |
| 1754 | * map and the submap is unnecessary). |
| 1755 | */ |
| 1756 | |
| 1757 | boolean_t |
| 1758 | uvmfault_lookup(struct uvm_faultinfo *ufi, boolean_t write_lock) |
| 1759 | { |
| 1760 | vm_map_t tmpmap; |
| 1761 | |
| 1762 | /* |
| 1763 | * init ufi values for lookup. |
| 1764 | */ |
| 1765 | ufi->map = ufi->orig_map; |
| 1766 | ufi->size = ufi->orig_size; |
| 1767 | |
| 1768 | /* |
| 1769 | * keep going down levels until we are done. note that there can |
| 1770 | * only be two levels so we won't loop very long. |
| 1771 | */ |
| 1772 | while (1) { |
| 1773 | if (ufi->orig_rvaddr < ufi->map->min_offset || |
| 1774 | ufi->orig_rvaddr >= ufi->map->max_offset) |
| 1775 | return FALSE0; |
| 1776 | |
| 1777 | /* lock map */ |
| 1778 | if (write_lock) { |
| 1779 | vm_map_lock(ufi->map)vm_map_lock_ln(ufi->map, "/usr/src/sys/uvm/uvm_fault.c", 1779 ); |
| 1780 | } else { |
| 1781 | vm_map_lock_read(ufi->map)vm_map_lock_read_ln(ufi->map, "/usr/src/sys/uvm/uvm_fault.c" , 1781); |
| 1782 | } |
| 1783 | |
| 1784 | /* lookup */ |
| 1785 | if (!uvm_map_lookup_entry(ufi->map, ufi->orig_rvaddr, |
| 1786 | &ufi->entry)) { |
| 1787 | uvmfault_unlockmaps(ufi, write_lock); |
| 1788 | return FALSE0; |
| 1789 | } |
| 1790 | |
| 1791 | /* reduce size if necessary */ |
| 1792 | if (ufi->entry->end - ufi->orig_rvaddr < ufi->size) |
| 1793 | ufi->size = ufi->entry->end - ufi->orig_rvaddr; |
| 1794 | |
| 1795 | /* |
| 1796 | * submap? replace map with the submap and lookup again. |
| 1797 | * note: VAs in submaps must match VAs in main map. |
| 1798 | */ |
| 1799 | if (UVM_ET_ISSUBMAP(ufi->entry)(((ufi->entry)->etype & 0x0002) != 0)) { |
| 1800 | tmpmap = ufi->entry->object.sub_map; |
| 1801 | uvmfault_unlockmaps(ufi, write_lock); |
| 1802 | ufi->map = tmpmap; |
| 1803 | continue; |
| 1804 | } |
| 1805 | |
| 1806 | /* |
| 1807 | * got it! |
| 1808 | */ |
| 1809 | ufi->mapv = ufi->map->timestamp; |
| 1810 | return TRUE1; |
| 1811 | |
| 1812 | } /* while loop */ |
| 1813 | |
| 1814 | /*NOTREACHED*/ |
| 1815 | } |
| 1816 | |
| 1817 | /* |
| 1818 | * uvmfault_relock: attempt to relock the same version of the map |
| 1819 | * |
| 1820 | * => fault data structures should be unlocked before calling. |
| 1821 | * => if a success (TRUE) maps will be locked after call. |
| 1822 | */ |
| 1823 | boolean_t |
| 1824 | uvmfault_relock(struct uvm_faultinfo *ufi) |
| 1825 | { |
| 1826 | /* |
| 1827 | * ufi can be NULL when this isn't really a fault, |
| 1828 | * but merely paging in anon data. |
| 1829 | */ |
| 1830 | if (ufi == NULL((void *)0)) { |
| 1831 | return TRUE1; |
| 1832 | } |
| 1833 | |
| 1834 | counters_inc(uvmexp_counters, flt_relck); |
| 1835 | |
| 1836 | /* |
| 1837 | * relock map. fail if version mismatch (in which case nothing |
| 1838 | * gets locked). |
| 1839 | */ |
| 1840 | vm_map_lock_read(ufi->map)vm_map_lock_read_ln(ufi->map, "/usr/src/sys/uvm/uvm_fault.c" , 1840); |
| 1841 | if (ufi->mapv != ufi->map->timestamp) { |
| 1842 | vm_map_unlock_read(ufi->map)vm_map_unlock_read_ln(ufi->map, "/usr/src/sys/uvm/uvm_fault.c" , 1842); |
| 1843 | return FALSE0; |
| 1844 | } |
| 1845 | |
| 1846 | counters_inc(uvmexp_counters, flt_relckok); |
| 1847 | return TRUE1; /* got it! */ |
| 1848 | } |