| File: | dev/pci/drm/amd/display/modules/color/color_gamma.c |
| Warning: | line 883, column 20 Value stored to 'a' during its initialization is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* |
| 2 | * Copyright 2016 Advanced Micro Devices, Inc. |
| 3 | * |
| 4 | * Permission is hereby granted, free of charge, to any person obtaining a |
| 5 | * copy of this software and associated documentation files (the "Software"), |
| 6 | * to deal in the Software without restriction, including without limitation |
| 7 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| 8 | * and/or sell copies of the Software, and to permit persons to whom the |
| 9 | * Software is furnished to do so, subject to the following conditions: |
| 10 | * |
| 11 | * The above copyright notice and this permission notice shall be included in |
| 12 | * all copies or substantial portions of the Software. |
| 13 | * |
| 14 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 15 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 16 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| 17 | * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| 18 | * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| 19 | * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| 20 | * OTHER DEALINGS IN THE SOFTWARE. |
| 21 | * |
| 22 | * Authors: AMD |
| 23 | * |
| 24 | */ |
| 25 | |
| 26 | #include "dc.h" |
| 27 | #include "opp.h" |
| 28 | #include "color_gamma.h" |
| 29 | |
| 30 | /* When calculating LUT values the first region and at least one subsequent |
| 31 | * region are calculated with full precision. These defines are a demarcation |
| 32 | * of where the second region starts and ends. |
| 33 | * These are hardcoded values to avoid recalculating them in loops. |
| 34 | */ |
| 35 | #define PRECISE_LUT_REGION_START224 224 |
| 36 | #define PRECISE_LUT_REGION_END239 239 |
| 37 | |
| 38 | static struct hw_x_point coordinates_x[MAX_HW_POINTS(16*32) + 2]; |
| 39 | |
| 40 | // these are helpers for calculations to reduce stack usage |
| 41 | // do not depend on these being preserved across calls |
| 42 | |
| 43 | /* Helper to optimize gamma calculation, only use in translate_from_linear, in |
| 44 | * particular the dc_fixpt_pow function which is very expensive |
| 45 | * The idea is that our regions for X points are exponential and currently they all use |
| 46 | * the same number of points (NUM_PTS_IN_REGION) and in each region every point |
| 47 | * is exactly 2x the one at the same index in the previous region. In other words |
| 48 | * X[i] = 2 * X[i-NUM_PTS_IN_REGION] for i>=16 |
| 49 | * The other fact is that (2x)^gamma = 2^gamma * x^gamma |
| 50 | * So we compute and save x^gamma for the first 16 regions, and for every next region |
| 51 | * just multiply with 2^gamma which can be computed once, and save the result so we |
| 52 | * recursively compute all the values. |
| 53 | */ |
| 54 | |
| 55 | /* |
| 56 | * Regamma coefficients are used for both regamma and degamma. Degamma |
| 57 | * coefficients are calculated in our formula using the regamma coefficients. |
| 58 | */ |
| 59 | /*sRGB 709 2.2 2.4 P3*/ |
| 60 | static const int32_t numerator01[] = { 31308, 180000, 0, 0, 0}; |
| 61 | static const int32_t numerator02[] = { 12920, 4500, 0, 0, 0}; |
| 62 | static const int32_t numerator03[] = { 55, 99, 0, 0, 0}; |
| 63 | static const int32_t numerator04[] = { 55, 99, 0, 0, 0}; |
| 64 | static const int32_t numerator05[] = { 2400, 2200, 2200, 2400, 2600}; |
| 65 | |
| 66 | /* one-time setup of X points */ |
| 67 | void setup_x_points_distribution(void) |
| 68 | { |
| 69 | struct fixed31_32 region_size = dc_fixpt_from_int(128); |
| 70 | int32_t segment; |
| 71 | uint32_t seg_offset; |
| 72 | uint32_t index; |
| 73 | struct fixed31_32 increment; |
| 74 | |
| 75 | coordinates_x[MAX_HW_POINTS(16*32)].x = region_size; |
| 76 | coordinates_x[MAX_HW_POINTS(16*32) + 1].x = region_size; |
| 77 | |
| 78 | for (segment = 6; segment > (6 - NUM_REGIONS32); segment--) { |
| 79 | region_size = dc_fixpt_div_int(region_size, 2); |
| 80 | increment = dc_fixpt_div_int(region_size, |
| 81 | NUM_PTS_IN_REGION16); |
| 82 | seg_offset = (segment + (NUM_REGIONS32 - 7)) * NUM_PTS_IN_REGION16; |
| 83 | coordinates_x[seg_offset].x = region_size; |
| 84 | |
| 85 | for (index = seg_offset + 1; |
| 86 | index < seg_offset + NUM_PTS_IN_REGION16; |
| 87 | index++) { |
| 88 | coordinates_x[index].x = dc_fixpt_add |
| 89 | (coordinates_x[index-1].x, increment); |
| 90 | } |
| 91 | } |
| 92 | } |
| 93 | |
| 94 | void log_x_points_distribution(struct dal_logger *logger) |
| 95 | { |
| 96 | int i = 0; |
| 97 | |
| 98 | if (logger != NULL((void *)0)) { |
| 99 | LOG_GAMMA_WRITE("Log X Distribution\n"); |
| 100 | |
| 101 | for (i = 0; i < MAX_HW_POINTS(16*32); i++) |
| 102 | LOG_GAMMA_WRITE("%llu\n", coordinates_x[i].x.value); |
| 103 | } |
| 104 | } |
| 105 | |
| 106 | static void compute_pq(struct fixed31_32 in_x, struct fixed31_32 *out_y) |
| 107 | { |
| 108 | /* consts for PQ gamma formula. */ |
| 109 | const struct fixed31_32 m1 = |
| 110 | dc_fixpt_from_fraction(159301758, 1000000000); |
| 111 | const struct fixed31_32 m2 = |
| 112 | dc_fixpt_from_fraction(7884375, 100000); |
| 113 | const struct fixed31_32 c1 = |
| 114 | dc_fixpt_from_fraction(8359375, 10000000); |
| 115 | const struct fixed31_32 c2 = |
| 116 | dc_fixpt_from_fraction(188515625, 10000000); |
| 117 | const struct fixed31_32 c3 = |
| 118 | dc_fixpt_from_fraction(186875, 10000); |
| 119 | |
| 120 | struct fixed31_32 l_pow_m1; |
| 121 | struct fixed31_32 base; |
| 122 | |
| 123 | if (dc_fixpt_lt(in_x, dc_fixpt_zero)) |
| 124 | in_x = dc_fixpt_zero; |
| 125 | |
| 126 | l_pow_m1 = dc_fixpt_pow(in_x, m1); |
| 127 | base = dc_fixpt_div( |
| 128 | dc_fixpt_add(c1, |
| 129 | (dc_fixpt_mul(c2, l_pow_m1))), |
| 130 | dc_fixpt_add(dc_fixpt_one, |
| 131 | (dc_fixpt_mul(c3, l_pow_m1)))); |
| 132 | *out_y = dc_fixpt_pow(base, m2); |
| 133 | } |
| 134 | |
| 135 | static void compute_de_pq(struct fixed31_32 in_x, struct fixed31_32 *out_y) |
| 136 | { |
| 137 | /* consts for dePQ gamma formula. */ |
| 138 | const struct fixed31_32 m1 = |
| 139 | dc_fixpt_from_fraction(159301758, 1000000000); |
| 140 | const struct fixed31_32 m2 = |
| 141 | dc_fixpt_from_fraction(7884375, 100000); |
| 142 | const struct fixed31_32 c1 = |
| 143 | dc_fixpt_from_fraction(8359375, 10000000); |
| 144 | const struct fixed31_32 c2 = |
| 145 | dc_fixpt_from_fraction(188515625, 10000000); |
| 146 | const struct fixed31_32 c3 = |
| 147 | dc_fixpt_from_fraction(186875, 10000); |
| 148 | |
| 149 | struct fixed31_32 l_pow_m1; |
| 150 | struct fixed31_32 base, div; |
| 151 | struct fixed31_32 base2; |
| 152 | |
| 153 | |
| 154 | if (dc_fixpt_lt(in_x, dc_fixpt_zero)) |
| 155 | in_x = dc_fixpt_zero; |
| 156 | |
| 157 | l_pow_m1 = dc_fixpt_pow(in_x, |
| 158 | dc_fixpt_div(dc_fixpt_one, m2)); |
| 159 | base = dc_fixpt_sub(l_pow_m1, c1); |
| 160 | |
| 161 | div = dc_fixpt_sub(c2, dc_fixpt_mul(c3, l_pow_m1)); |
| 162 | |
| 163 | base2 = dc_fixpt_div(base, div); |
| 164 | // avoid complex numbers |
| 165 | if (dc_fixpt_lt(base2, dc_fixpt_zero)) |
| 166 | base2 = dc_fixpt_sub(dc_fixpt_zero, base2); |
| 167 | |
| 168 | |
| 169 | *out_y = dc_fixpt_pow(base2, dc_fixpt_div(dc_fixpt_one, m1)); |
| 170 | |
| 171 | } |
| 172 | |
| 173 | |
| 174 | /* de gamma, non-linear to linear */ |
| 175 | static void compute_hlg_eotf(struct fixed31_32 in_x, |
| 176 | struct fixed31_32 *out_y, |
| 177 | uint32_t sdr_white_level, uint32_t max_luminance_nits) |
| 178 | { |
| 179 | struct fixed31_32 a; |
| 180 | struct fixed31_32 b; |
| 181 | struct fixed31_32 c; |
| 182 | struct fixed31_32 threshold; |
| 183 | struct fixed31_32 x; |
| 184 | |
| 185 | struct fixed31_32 scaling_factor = |
| 186 | dc_fixpt_from_fraction(max_luminance_nits, sdr_white_level); |
| 187 | a = dc_fixpt_from_fraction(17883277, 100000000); |
| 188 | b = dc_fixpt_from_fraction(28466892, 100000000); |
| 189 | c = dc_fixpt_from_fraction(55991073, 100000000); |
| 190 | threshold = dc_fixpt_from_fraction(1, 2); |
| 191 | |
| 192 | if (dc_fixpt_lt(in_x, threshold)) { |
| 193 | x = dc_fixpt_mul(in_x, in_x); |
| 194 | x = dc_fixpt_div_int(x, 3); |
| 195 | } else { |
| 196 | x = dc_fixpt_sub(in_x, c); |
| 197 | x = dc_fixpt_div(x, a); |
| 198 | x = dc_fixpt_exp(x); |
| 199 | x = dc_fixpt_add(x, b); |
| 200 | x = dc_fixpt_div_int(x, 12); |
| 201 | } |
| 202 | *out_y = dc_fixpt_mul(x, scaling_factor); |
| 203 | |
| 204 | } |
| 205 | |
| 206 | /* re gamma, linear to non-linear */ |
| 207 | static void compute_hlg_oetf(struct fixed31_32 in_x, struct fixed31_32 *out_y, |
| 208 | uint32_t sdr_white_level, uint32_t max_luminance_nits) |
| 209 | { |
| 210 | struct fixed31_32 a; |
| 211 | struct fixed31_32 b; |
| 212 | struct fixed31_32 c; |
| 213 | struct fixed31_32 threshold; |
| 214 | struct fixed31_32 x; |
| 215 | |
| 216 | struct fixed31_32 scaling_factor = |
| 217 | dc_fixpt_from_fraction(sdr_white_level, max_luminance_nits); |
| 218 | a = dc_fixpt_from_fraction(17883277, 100000000); |
| 219 | b = dc_fixpt_from_fraction(28466892, 100000000); |
| 220 | c = dc_fixpt_from_fraction(55991073, 100000000); |
| 221 | threshold = dc_fixpt_from_fraction(1, 12); |
| 222 | x = dc_fixpt_mul(in_x, scaling_factor); |
| 223 | |
| 224 | |
| 225 | if (dc_fixpt_lt(x, threshold)) { |
| 226 | x = dc_fixpt_mul(x, dc_fixpt_from_fraction(3, 1)); |
| 227 | *out_y = dc_fixpt_pow(x, dc_fixpt_half); |
| 228 | } else { |
| 229 | x = dc_fixpt_mul(x, dc_fixpt_from_fraction(12, 1)); |
| 230 | x = dc_fixpt_sub(x, b); |
| 231 | x = dc_fixpt_log(x); |
| 232 | x = dc_fixpt_mul(a, x); |
| 233 | *out_y = dc_fixpt_add(x, c); |
| 234 | } |
| 235 | } |
| 236 | |
| 237 | |
| 238 | /* one-time pre-compute PQ values - only for sdr_white_level 80 */ |
| 239 | void precompute_pq(void) |
| 240 | { |
| 241 | int i; |
| 242 | struct fixed31_32 x; |
| 243 | const struct hw_x_point *coord_x = coordinates_x + 32; |
| 244 | struct fixed31_32 scaling_factor = |
| 245 | dc_fixpt_from_fraction(80, 10000); |
| 246 | |
| 247 | struct fixed31_32 *pq_table = mod_color_get_table(type_pq_table); |
| 248 | |
| 249 | /* pow function has problems with arguments too small */ |
| 250 | for (i = 0; i < 32; i++) |
| 251 | pq_table[i] = dc_fixpt_zero; |
| 252 | |
| 253 | for (i = 32; i <= MAX_HW_POINTS(16*32); i++) { |
| 254 | x = dc_fixpt_mul(coord_x->x, scaling_factor); |
| 255 | compute_pq(x, &pq_table[i]); |
| 256 | ++coord_x; |
| 257 | } |
| 258 | } |
| 259 | |
| 260 | /* one-time pre-compute dePQ values - only for max pixel value 125 FP16 */ |
| 261 | void precompute_de_pq(void) |
| 262 | { |
| 263 | int i; |
| 264 | struct fixed31_32 y; |
| 265 | uint32_t begin_index, end_index; |
| 266 | |
| 267 | struct fixed31_32 scaling_factor = dc_fixpt_from_int(125); |
| 268 | struct fixed31_32 *de_pq_table = mod_color_get_table(type_de_pq_table); |
| 269 | /* X points is 2^-25 to 2^7 |
| 270 | * De-gamma X is 2^-12 to 2^0 – we are skipping first -12-(-25) = 13 regions |
| 271 | */ |
| 272 | begin_index = 13 * NUM_PTS_IN_REGION16; |
| 273 | end_index = begin_index + 12 * NUM_PTS_IN_REGION16; |
| 274 | |
| 275 | for (i = 0; i <= begin_index; i++) |
| 276 | de_pq_table[i] = dc_fixpt_zero; |
| 277 | |
| 278 | for (; i <= end_index; i++) { |
| 279 | compute_de_pq(coordinates_x[i].x, &y); |
| 280 | de_pq_table[i] = dc_fixpt_mul(y, scaling_factor); |
| 281 | } |
| 282 | |
| 283 | for (; i <= MAX_HW_POINTS(16*32); i++) |
| 284 | de_pq_table[i] = de_pq_table[i-1]; |
| 285 | } |
| 286 | struct dividers { |
| 287 | struct fixed31_32 divider1; |
| 288 | struct fixed31_32 divider2; |
| 289 | struct fixed31_32 divider3; |
| 290 | }; |
| 291 | |
| 292 | |
| 293 | static bool_Bool build_coefficients(struct gamma_coefficients *coefficients, |
| 294 | enum dc_transfer_func_predefined type) |
| 295 | { |
| 296 | |
| 297 | uint32_t i = 0; |
| 298 | uint32_t index = 0; |
| 299 | bool_Bool ret = true1; |
| 300 | |
| 301 | if (type == TRANSFER_FUNCTION_SRGB) |
| 302 | index = 0; |
| 303 | else if (type == TRANSFER_FUNCTION_BT709) |
| 304 | index = 1; |
| 305 | else if (type == TRANSFER_FUNCTION_GAMMA22) |
| 306 | index = 2; |
| 307 | else if (type == TRANSFER_FUNCTION_GAMMA24) |
| 308 | index = 3; |
| 309 | else if (type == TRANSFER_FUNCTION_GAMMA26) |
| 310 | index = 4; |
| 311 | else { |
| 312 | ret = false0; |
| 313 | goto release; |
| 314 | } |
| 315 | |
| 316 | do { |
| 317 | coefficients->a0[i] = dc_fixpt_from_fraction( |
| 318 | numerator01[index], 10000000); |
| 319 | coefficients->a1[i] = dc_fixpt_from_fraction( |
| 320 | numerator02[index], 1000); |
| 321 | coefficients->a2[i] = dc_fixpt_from_fraction( |
| 322 | numerator03[index], 1000); |
| 323 | coefficients->a3[i] = dc_fixpt_from_fraction( |
| 324 | numerator04[index], 1000); |
| 325 | coefficients->user_gamma[i] = dc_fixpt_from_fraction( |
| 326 | numerator05[index], 1000); |
| 327 | |
| 328 | ++i; |
| 329 | } while (i != ARRAY_SIZE(coefficients->a0)(sizeof((coefficients->a0)) / sizeof((coefficients->a0) [0]))); |
| 330 | release: |
| 331 | return ret; |
| 332 | } |
| 333 | |
| 334 | static struct fixed31_32 translate_from_linear_space( |
| 335 | struct translate_from_linear_space_args *args) |
| 336 | { |
| 337 | const struct fixed31_32 one = dc_fixpt_from_int(1); |
| 338 | |
| 339 | struct fixed31_32 scratch_1, scratch_2; |
| 340 | struct calculate_buffer *cal_buffer = args->cal_buffer; |
| 341 | |
| 342 | if (dc_fixpt_le(one, args->arg)) |
| 343 | return one; |
| 344 | |
| 345 | if (dc_fixpt_le(args->arg, dc_fixpt_neg(args->a0))) { |
| 346 | scratch_1 = dc_fixpt_add(one, args->a3); |
| 347 | scratch_2 = dc_fixpt_pow( |
| 348 | dc_fixpt_neg(args->arg), |
| 349 | dc_fixpt_recip(args->gamma)); |
| 350 | scratch_1 = dc_fixpt_mul(scratch_1, scratch_2); |
| 351 | scratch_1 = dc_fixpt_sub(args->a2, scratch_1); |
| 352 | |
| 353 | return scratch_1; |
| 354 | } else if (dc_fixpt_le(args->a0, args->arg)) { |
| 355 | if (cal_buffer->buffer_index == 0) { |
| 356 | cal_buffer->gamma_of_2 = dc_fixpt_pow(dc_fixpt_from_int(2), |
| 357 | dc_fixpt_recip(args->gamma)); |
| 358 | } |
| 359 | scratch_1 = dc_fixpt_add(one, args->a3); |
| 360 | /* In the first region (first 16 points) and in the |
| 361 | * region delimited by START/END we calculate with |
| 362 | * full precision to avoid error accumulation. |
| 363 | */ |
| 364 | if ((cal_buffer->buffer_index >= PRECISE_LUT_REGION_START224 && |
| 365 | cal_buffer->buffer_index <= PRECISE_LUT_REGION_END239) || |
| 366 | (cal_buffer->buffer_index < 16)) |
| 367 | scratch_2 = dc_fixpt_pow(args->arg, |
| 368 | dc_fixpt_recip(args->gamma)); |
| 369 | else |
| 370 | scratch_2 = dc_fixpt_mul(cal_buffer->gamma_of_2, |
| 371 | cal_buffer->buffer[cal_buffer->buffer_index%16]); |
| 372 | |
| 373 | if (cal_buffer->buffer_index != -1) { |
| 374 | cal_buffer->buffer[cal_buffer->buffer_index%16] = scratch_2; |
| 375 | cal_buffer->buffer_index++; |
| 376 | } |
| 377 | |
| 378 | scratch_1 = dc_fixpt_mul(scratch_1, scratch_2); |
| 379 | scratch_1 = dc_fixpt_sub(scratch_1, args->a2); |
| 380 | |
| 381 | return scratch_1; |
| 382 | } |
| 383 | else |
| 384 | return dc_fixpt_mul(args->arg, args->a1); |
| 385 | } |
| 386 | |
| 387 | |
| 388 | static struct fixed31_32 translate_from_linear_space_long( |
| 389 | struct translate_from_linear_space_args *args) |
| 390 | { |
| 391 | const struct fixed31_32 one = dc_fixpt_from_int(1); |
| 392 | |
| 393 | if (dc_fixpt_lt(one, args->arg)) |
| 394 | return one; |
| 395 | |
| 396 | if (dc_fixpt_le(args->arg, dc_fixpt_neg(args->a0))) |
| 397 | return dc_fixpt_sub( |
| 398 | args->a2, |
| 399 | dc_fixpt_mul( |
| 400 | dc_fixpt_add( |
| 401 | one, |
| 402 | args->a3), |
| 403 | dc_fixpt_pow( |
| 404 | dc_fixpt_neg(args->arg), |
| 405 | dc_fixpt_recip(args->gamma)))); |
| 406 | else if (dc_fixpt_le(args->a0, args->arg)) |
| 407 | return dc_fixpt_sub( |
| 408 | dc_fixpt_mul( |
| 409 | dc_fixpt_add( |
| 410 | one, |
| 411 | args->a3), |
| 412 | dc_fixpt_pow( |
| 413 | args->arg, |
| 414 | dc_fixpt_recip(args->gamma))), |
| 415 | args->a2); |
| 416 | else |
| 417 | return dc_fixpt_mul(args->arg, args->a1); |
| 418 | } |
| 419 | |
| 420 | static struct fixed31_32 calculate_gamma22(struct fixed31_32 arg, bool_Bool use_eetf, struct calculate_buffer *cal_buffer) |
| 421 | { |
| 422 | struct fixed31_32 gamma = dc_fixpt_from_fraction(22, 10); |
| 423 | struct translate_from_linear_space_args scratch_gamma_args; |
| 424 | |
| 425 | scratch_gamma_args.arg = arg; |
| 426 | scratch_gamma_args.a0 = dc_fixpt_zero; |
| 427 | scratch_gamma_args.a1 = dc_fixpt_zero; |
| 428 | scratch_gamma_args.a2 = dc_fixpt_zero; |
| 429 | scratch_gamma_args.a3 = dc_fixpt_zero; |
| 430 | scratch_gamma_args.cal_buffer = cal_buffer; |
| 431 | scratch_gamma_args.gamma = gamma; |
| 432 | |
| 433 | if (use_eetf) |
| 434 | return translate_from_linear_space_long(&scratch_gamma_args); |
| 435 | |
| 436 | return translate_from_linear_space(&scratch_gamma_args); |
| 437 | } |
| 438 | |
| 439 | |
| 440 | static struct fixed31_32 translate_to_linear_space( |
| 441 | struct fixed31_32 arg, |
| 442 | struct fixed31_32 a0, |
| 443 | struct fixed31_32 a1, |
| 444 | struct fixed31_32 a2, |
| 445 | struct fixed31_32 a3, |
| 446 | struct fixed31_32 gamma) |
| 447 | { |
| 448 | struct fixed31_32 linear; |
| 449 | |
| 450 | a0 = dc_fixpt_mul(a0, a1); |
| 451 | if (dc_fixpt_le(arg, dc_fixpt_neg(a0))) |
| 452 | |
| 453 | linear = dc_fixpt_neg( |
| 454 | dc_fixpt_pow( |
| 455 | dc_fixpt_div( |
| 456 | dc_fixpt_sub(a2, arg), |
| 457 | dc_fixpt_add( |
| 458 | dc_fixpt_one, a3)), gamma)); |
| 459 | |
| 460 | else if (dc_fixpt_le(dc_fixpt_neg(a0), arg) && |
| 461 | dc_fixpt_le(arg, a0)) |
| 462 | linear = dc_fixpt_div(arg, a1); |
| 463 | else |
| 464 | linear = dc_fixpt_pow( |
| 465 | dc_fixpt_div( |
| 466 | dc_fixpt_add(a2, arg), |
| 467 | dc_fixpt_add( |
| 468 | dc_fixpt_one, a3)), gamma); |
| 469 | |
| 470 | return linear; |
| 471 | } |
| 472 | |
| 473 | static struct fixed31_32 translate_from_linear_space_ex( |
| 474 | struct fixed31_32 arg, |
| 475 | struct gamma_coefficients *coeff, |
| 476 | uint32_t color_index, |
| 477 | struct calculate_buffer *cal_buffer) |
| 478 | { |
| 479 | struct translate_from_linear_space_args scratch_gamma_args; |
| 480 | |
| 481 | scratch_gamma_args.arg = arg; |
| 482 | scratch_gamma_args.a0 = coeff->a0[color_index]; |
| 483 | scratch_gamma_args.a1 = coeff->a1[color_index]; |
| 484 | scratch_gamma_args.a2 = coeff->a2[color_index]; |
| 485 | scratch_gamma_args.a3 = coeff->a3[color_index]; |
| 486 | scratch_gamma_args.gamma = coeff->user_gamma[color_index]; |
| 487 | scratch_gamma_args.cal_buffer = cal_buffer; |
| 488 | |
| 489 | return translate_from_linear_space(&scratch_gamma_args); |
| 490 | } |
| 491 | |
| 492 | |
| 493 | static inline struct fixed31_32 translate_to_linear_space_ex( |
| 494 | struct fixed31_32 arg, |
| 495 | struct gamma_coefficients *coeff, |
| 496 | uint32_t color_index) |
| 497 | { |
| 498 | return translate_to_linear_space( |
| 499 | arg, |
| 500 | coeff->a0[color_index], |
| 501 | coeff->a1[color_index], |
| 502 | coeff->a2[color_index], |
| 503 | coeff->a3[color_index], |
| 504 | coeff->user_gamma[color_index]); |
| 505 | } |
| 506 | |
| 507 | |
| 508 | static bool_Bool find_software_points( |
| 509 | const struct dc_gamma *ramp, |
| 510 | const struct gamma_pixel *axis_x, |
| 511 | struct fixed31_32 hw_point, |
| 512 | enum channel_name channel, |
| 513 | uint32_t *index_to_start, |
| 514 | uint32_t *index_left, |
| 515 | uint32_t *index_right, |
| 516 | enum hw_point_position *pos) |
| 517 | { |
| 518 | const uint32_t max_number = ramp->num_entries + 3; |
| 519 | |
| 520 | struct fixed31_32 left, right; |
| 521 | |
| 522 | uint32_t i = *index_to_start; |
| 523 | |
| 524 | while (i < max_number) { |
| 525 | if (channel == CHANNEL_NAME_RED) { |
| 526 | left = axis_x[i].r; |
| 527 | |
| 528 | if (i < max_number - 1) |
| 529 | right = axis_x[i + 1].r; |
| 530 | else |
| 531 | right = axis_x[max_number - 1].r; |
| 532 | } else if (channel == CHANNEL_NAME_GREEN) { |
| 533 | left = axis_x[i].g; |
| 534 | |
| 535 | if (i < max_number - 1) |
| 536 | right = axis_x[i + 1].g; |
| 537 | else |
| 538 | right = axis_x[max_number - 1].g; |
| 539 | } else { |
| 540 | left = axis_x[i].b; |
| 541 | |
| 542 | if (i < max_number - 1) |
| 543 | right = axis_x[i + 1].b; |
| 544 | else |
| 545 | right = axis_x[max_number - 1].b; |
| 546 | } |
| 547 | |
| 548 | if (dc_fixpt_le(left, hw_point) && |
| 549 | dc_fixpt_le(hw_point, right)) { |
| 550 | *index_to_start = i; |
| 551 | *index_left = i; |
| 552 | |
| 553 | if (i < max_number - 1) |
| 554 | *index_right = i + 1; |
| 555 | else |
| 556 | *index_right = max_number - 1; |
| 557 | |
| 558 | *pos = HW_POINT_POSITION_MIDDLE; |
| 559 | |
| 560 | return true1; |
| 561 | } else if ((i == *index_to_start) && |
| 562 | dc_fixpt_le(hw_point, left)) { |
| 563 | *index_to_start = i; |
| 564 | *index_left = i; |
| 565 | *index_right = i; |
| 566 | |
| 567 | *pos = HW_POINT_POSITION_LEFT; |
| 568 | |
| 569 | return true1; |
| 570 | } else if ((i == max_number - 1) && |
| 571 | dc_fixpt_le(right, hw_point)) { |
| 572 | *index_to_start = i; |
| 573 | *index_left = i; |
| 574 | *index_right = i; |
| 575 | |
| 576 | *pos = HW_POINT_POSITION_RIGHT; |
| 577 | |
| 578 | return true1; |
| 579 | } |
| 580 | |
| 581 | ++i; |
| 582 | } |
| 583 | |
| 584 | return false0; |
| 585 | } |
| 586 | |
| 587 | static bool_Bool build_custom_gamma_mapping_coefficients_worker( |
| 588 | const struct dc_gamma *ramp, |
| 589 | struct pixel_gamma_point *coeff, |
| 590 | const struct hw_x_point *coordinates_x, |
| 591 | const struct gamma_pixel *axis_x, |
| 592 | enum channel_name channel, |
| 593 | uint32_t number_of_points) |
| 594 | { |
| 595 | uint32_t i = 0; |
| 596 | |
| 597 | while (i <= number_of_points) { |
| 598 | struct fixed31_32 coord_x; |
| 599 | |
| 600 | uint32_t index_to_start = 0; |
| 601 | uint32_t index_left = 0; |
| 602 | uint32_t index_right = 0; |
| 603 | |
| 604 | enum hw_point_position hw_pos; |
| 605 | |
| 606 | struct gamma_point *point; |
| 607 | |
| 608 | struct fixed31_32 left_pos; |
| 609 | struct fixed31_32 right_pos; |
| 610 | |
| 611 | if (channel == CHANNEL_NAME_RED) |
| 612 | coord_x = coordinates_x[i].regamma_y_red; |
| 613 | else if (channel == CHANNEL_NAME_GREEN) |
| 614 | coord_x = coordinates_x[i].regamma_y_green; |
| 615 | else |
| 616 | coord_x = coordinates_x[i].regamma_y_blue; |
| 617 | |
| 618 | if (!find_software_points( |
| 619 | ramp, axis_x, coord_x, channel, |
| 620 | &index_to_start, &index_left, &index_right, &hw_pos)) { |
| 621 | BREAK_TO_DEBUGGER()do { ___drm_dbg(((void *)0), DRM_UT_DRIVER, "%s():%d\n", __func__ , 621); do {} while (0); } while (0); |
| 622 | return false0; |
| 623 | } |
| 624 | |
| 625 | if (index_left >= ramp->num_entries + 3) { |
| 626 | BREAK_TO_DEBUGGER()do { ___drm_dbg(((void *)0), DRM_UT_DRIVER, "%s():%d\n", __func__ , 626); do {} while (0); } while (0); |
| 627 | return false0; |
| 628 | } |
| 629 | |
| 630 | if (index_right >= ramp->num_entries + 3) { |
| 631 | BREAK_TO_DEBUGGER()do { ___drm_dbg(((void *)0), DRM_UT_DRIVER, "%s():%d\n", __func__ , 631); do {} while (0); } while (0); |
| 632 | return false0; |
| 633 | } |
| 634 | |
| 635 | if (channel == CHANNEL_NAME_RED) { |
| 636 | point = &coeff[i].r; |
| 637 | |
| 638 | left_pos = axis_x[index_left].r; |
| 639 | right_pos = axis_x[index_right].r; |
| 640 | } else if (channel == CHANNEL_NAME_GREEN) { |
| 641 | point = &coeff[i].g; |
| 642 | |
| 643 | left_pos = axis_x[index_left].g; |
| 644 | right_pos = axis_x[index_right].g; |
| 645 | } else { |
| 646 | point = &coeff[i].b; |
| 647 | |
| 648 | left_pos = axis_x[index_left].b; |
| 649 | right_pos = axis_x[index_right].b; |
| 650 | } |
| 651 | |
| 652 | if (hw_pos == HW_POINT_POSITION_MIDDLE) |
| 653 | point->coeff = dc_fixpt_div( |
| 654 | dc_fixpt_sub( |
| 655 | coord_x, |
| 656 | left_pos), |
| 657 | dc_fixpt_sub( |
| 658 | right_pos, |
| 659 | left_pos)); |
| 660 | else if (hw_pos == HW_POINT_POSITION_LEFT) |
| 661 | point->coeff = dc_fixpt_zero; |
| 662 | else if (hw_pos == HW_POINT_POSITION_RIGHT) |
| 663 | point->coeff = dc_fixpt_from_int(2); |
| 664 | else { |
| 665 | BREAK_TO_DEBUGGER()do { ___drm_dbg(((void *)0), DRM_UT_DRIVER, "%s():%d\n", __func__ , 665); do {} while (0); } while (0); |
| 666 | return false0; |
| 667 | } |
| 668 | |
| 669 | point->left_index = index_left; |
| 670 | point->right_index = index_right; |
| 671 | point->pos = hw_pos; |
| 672 | |
| 673 | ++i; |
| 674 | } |
| 675 | |
| 676 | return true1; |
| 677 | } |
| 678 | |
| 679 | static struct fixed31_32 calculate_mapped_value( |
| 680 | struct pwl_float_data *rgb, |
| 681 | const struct pixel_gamma_point *coeff, |
| 682 | enum channel_name channel, |
| 683 | uint32_t max_index) |
| 684 | { |
| 685 | const struct gamma_point *point; |
| 686 | |
| 687 | struct fixed31_32 result; |
| 688 | |
| 689 | if (channel == CHANNEL_NAME_RED) |
| 690 | point = &coeff->r; |
| 691 | else if (channel == CHANNEL_NAME_GREEN) |
| 692 | point = &coeff->g; |
| 693 | else |
| 694 | point = &coeff->b; |
| 695 | |
| 696 | if ((point->left_index < 0) || (point->left_index > max_index)) { |
| 697 | BREAK_TO_DEBUGGER()do { ___drm_dbg(((void *)0), DRM_UT_DRIVER, "%s():%d\n", __func__ , 697); do {} while (0); } while (0); |
| 698 | return dc_fixpt_zero; |
| 699 | } |
| 700 | |
| 701 | if ((point->right_index < 0) || (point->right_index > max_index)) { |
| 702 | BREAK_TO_DEBUGGER()do { ___drm_dbg(((void *)0), DRM_UT_DRIVER, "%s():%d\n", __func__ , 702); do {} while (0); } while (0); |
| 703 | return dc_fixpt_zero; |
| 704 | } |
| 705 | |
| 706 | if (point->pos == HW_POINT_POSITION_MIDDLE) |
| 707 | if (channel == CHANNEL_NAME_RED) |
| 708 | result = dc_fixpt_add( |
| 709 | dc_fixpt_mul( |
| 710 | point->coeff, |
| 711 | dc_fixpt_sub( |
| 712 | rgb[point->right_index].r, |
| 713 | rgb[point->left_index].r)), |
| 714 | rgb[point->left_index].r); |
| 715 | else if (channel == CHANNEL_NAME_GREEN) |
| 716 | result = dc_fixpt_add( |
| 717 | dc_fixpt_mul( |
| 718 | point->coeff, |
| 719 | dc_fixpt_sub( |
| 720 | rgb[point->right_index].g, |
| 721 | rgb[point->left_index].g)), |
| 722 | rgb[point->left_index].g); |
| 723 | else |
| 724 | result = dc_fixpt_add( |
| 725 | dc_fixpt_mul( |
| 726 | point->coeff, |
| 727 | dc_fixpt_sub( |
| 728 | rgb[point->right_index].b, |
| 729 | rgb[point->left_index].b)), |
| 730 | rgb[point->left_index].b); |
| 731 | else if (point->pos == HW_POINT_POSITION_LEFT) { |
| 732 | BREAK_TO_DEBUGGER()do { ___drm_dbg(((void *)0), DRM_UT_DRIVER, "%s():%d\n", __func__ , 732); do {} while (0); } while (0); |
| 733 | result = dc_fixpt_zero; |
| 734 | } else { |
| 735 | result = dc_fixpt_one; |
| 736 | } |
| 737 | |
| 738 | return result; |
| 739 | } |
| 740 | |
| 741 | static void build_pq(struct pwl_float_data_ex *rgb_regamma, |
| 742 | uint32_t hw_points_num, |
| 743 | const struct hw_x_point *coordinate_x, |
| 744 | uint32_t sdr_white_level) |
| 745 | { |
| 746 | uint32_t i, start_index; |
| 747 | |
| 748 | struct pwl_float_data_ex *rgb = rgb_regamma; |
| 749 | const struct hw_x_point *coord_x = coordinate_x; |
| 750 | struct fixed31_32 x; |
| 751 | struct fixed31_32 output; |
| 752 | struct fixed31_32 scaling_factor = |
| 753 | dc_fixpt_from_fraction(sdr_white_level, 10000); |
| 754 | struct fixed31_32 *pq_table = mod_color_get_table(type_pq_table); |
| 755 | |
| 756 | if (!mod_color_is_table_init(type_pq_table) && sdr_white_level == 80) { |
| 757 | precompute_pq(); |
| 758 | mod_color_set_table_init_state(type_pq_table, true1); |
| 759 | } |
| 760 | |
| 761 | /* TODO: start index is from segment 2^-24, skipping first segment |
| 762 | * due to x values too small for power calculations |
| 763 | */ |
| 764 | start_index = 32; |
| 765 | rgb += start_index; |
| 766 | coord_x += start_index; |
| 767 | |
| 768 | for (i = start_index; i <= hw_points_num; i++) { |
| 769 | /* Multiply 0.008 as regamma is 0-1 and FP16 input is 0-125. |
| 770 | * FP 1.0 = 80nits |
| 771 | */ |
| 772 | if (sdr_white_level == 80) { |
| 773 | output = pq_table[i]; |
| 774 | } else { |
| 775 | x = dc_fixpt_mul(coord_x->x, scaling_factor); |
| 776 | compute_pq(x, &output); |
| 777 | } |
| 778 | |
| 779 | /* should really not happen? */ |
| 780 | if (dc_fixpt_lt(output, dc_fixpt_zero)) |
| 781 | output = dc_fixpt_zero; |
| 782 | else if (dc_fixpt_lt(dc_fixpt_one, output)) |
| 783 | output = dc_fixpt_one; |
| 784 | |
| 785 | rgb->r = output; |
| 786 | rgb->g = output; |
| 787 | rgb->b = output; |
| 788 | |
| 789 | ++coord_x; |
| 790 | ++rgb; |
| 791 | } |
| 792 | } |
| 793 | |
| 794 | static void build_de_pq(struct pwl_float_data_ex *de_pq, |
| 795 | uint32_t hw_points_num, |
| 796 | const struct hw_x_point *coordinate_x) |
| 797 | { |
| 798 | uint32_t i; |
| 799 | struct fixed31_32 output; |
| 800 | struct fixed31_32 *de_pq_table = mod_color_get_table(type_de_pq_table); |
| 801 | struct fixed31_32 scaling_factor = dc_fixpt_from_int(125); |
| 802 | |
| 803 | if (!mod_color_is_table_init(type_de_pq_table)) { |
| 804 | precompute_de_pq(); |
| 805 | mod_color_set_table_init_state(type_de_pq_table, true1); |
| 806 | } |
| 807 | |
| 808 | |
| 809 | for (i = 0; i <= hw_points_num; i++) { |
| 810 | output = de_pq_table[i]; |
| 811 | /* should really not happen? */ |
| 812 | if (dc_fixpt_lt(output, dc_fixpt_zero)) |
| 813 | output = dc_fixpt_zero; |
| 814 | else if (dc_fixpt_lt(scaling_factor, output)) |
| 815 | output = scaling_factor; |
| 816 | de_pq[i].r = output; |
| 817 | de_pq[i].g = output; |
| 818 | de_pq[i].b = output; |
| 819 | } |
| 820 | } |
| 821 | |
| 822 | static bool_Bool build_regamma(struct pwl_float_data_ex *rgb_regamma, |
| 823 | uint32_t hw_points_num, |
| 824 | const struct hw_x_point *coordinate_x, |
| 825 | enum dc_transfer_func_predefined type, |
| 826 | struct calculate_buffer *cal_buffer) |
| 827 | { |
| 828 | uint32_t i; |
| 829 | bool_Bool ret = false0; |
| 830 | |
| 831 | struct gamma_coefficients *coeff; |
| 832 | struct pwl_float_data_ex *rgb = rgb_regamma; |
| 833 | const struct hw_x_point *coord_x = coordinate_x; |
| 834 | |
| 835 | coeff = kvzalloc(sizeof(*coeff), GFP_KERNEL(0x0001 | 0x0004)); |
| 836 | if (!coeff) |
| 837 | goto release; |
| 838 | |
| 839 | if (!build_coefficients(coeff, type)) |
| 840 | goto release; |
| 841 | |
| 842 | memset(cal_buffer->buffer, 0, NUM_PTS_IN_REGION * sizeof(struct fixed31_32))__builtin_memset((cal_buffer->buffer), (0), (16 * sizeof(struct fixed31_32))); |
| 843 | cal_buffer->buffer_index = 0; // see variable definition for more info |
| 844 | |
| 845 | i = 0; |
| 846 | while (i <= hw_points_num) { |
| 847 | /* TODO use y vs r,g,b */ |
| 848 | rgb->r = translate_from_linear_space_ex( |
| 849 | coord_x->x, coeff, 0, cal_buffer); |
| 850 | rgb->g = rgb->r; |
| 851 | rgb->b = rgb->r; |
| 852 | ++coord_x; |
| 853 | ++rgb; |
| 854 | ++i; |
| 855 | } |
| 856 | cal_buffer->buffer_index = -1; |
| 857 | ret = true1; |
| 858 | release: |
| 859 | kvfree(coeff); |
| 860 | return ret; |
| 861 | } |
| 862 | |
| 863 | static void hermite_spline_eetf(struct fixed31_32 input_x, |
| 864 | struct fixed31_32 max_display, |
| 865 | struct fixed31_32 min_display, |
| 866 | struct fixed31_32 max_content, |
| 867 | struct fixed31_32 *out_x) |
| 868 | { |
| 869 | struct fixed31_32 min_lum_pq; |
| 870 | struct fixed31_32 max_lum_pq; |
| 871 | struct fixed31_32 max_content_pq; |
| 872 | struct fixed31_32 ks; |
| 873 | struct fixed31_32 E1; |
| 874 | struct fixed31_32 E2; |
| 875 | struct fixed31_32 E3; |
| 876 | struct fixed31_32 t; |
| 877 | struct fixed31_32 t2; |
| 878 | struct fixed31_32 t3; |
| 879 | struct fixed31_32 two; |
| 880 | struct fixed31_32 three; |
| 881 | struct fixed31_32 temp1; |
| 882 | struct fixed31_32 temp2; |
| 883 | struct fixed31_32 a = dc_fixpt_from_fraction(15, 10); |
Value stored to 'a' during its initialization is never read | |
| 884 | struct fixed31_32 b = dc_fixpt_from_fraction(5, 10); |
| 885 | struct fixed31_32 epsilon = dc_fixpt_from_fraction(1, 1000000); // dc_fixpt_epsilon is a bit too small |
| 886 | |
| 887 | if (dc_fixpt_eq(max_content, dc_fixpt_zero)) { |
| 888 | *out_x = dc_fixpt_zero; |
| 889 | return; |
| 890 | } |
| 891 | |
| 892 | compute_pq(input_x, &E1); |
| 893 | compute_pq(dc_fixpt_div(min_display, max_content), &min_lum_pq); |
| 894 | compute_pq(dc_fixpt_div(max_display, max_content), &max_lum_pq); |
| 895 | compute_pq(dc_fixpt_one, &max_content_pq); // always 1? DAL2 code is weird |
| 896 | a = dc_fixpt_div(dc_fixpt_add(dc_fixpt_one, b), max_content_pq); // (1+b)/maxContent |
| 897 | ks = dc_fixpt_sub(dc_fixpt_mul(a, max_lum_pq), b); // a * max_lum_pq - b |
| 898 | |
| 899 | if (dc_fixpt_lt(E1, ks)) |
| 900 | E2 = E1; |
| 901 | else if (dc_fixpt_le(ks, E1) && dc_fixpt_le(E1, dc_fixpt_one)) { |
| 902 | if (dc_fixpt_lt(epsilon, dc_fixpt_sub(dc_fixpt_one, ks))) |
| 903 | // t = (E1 - ks) / (1 - ks) |
| 904 | t = dc_fixpt_div(dc_fixpt_sub(E1, ks), |
| 905 | dc_fixpt_sub(dc_fixpt_one, ks)); |
| 906 | else |
| 907 | t = dc_fixpt_zero; |
| 908 | |
| 909 | two = dc_fixpt_from_int(2); |
| 910 | three = dc_fixpt_from_int(3); |
| 911 | |
| 912 | t2 = dc_fixpt_mul(t, t); |
| 913 | t3 = dc_fixpt_mul(t2, t); |
| 914 | temp1 = dc_fixpt_mul(two, t3); |
| 915 | temp2 = dc_fixpt_mul(three, t2); |
| 916 | |
| 917 | // (2t^3 - 3t^2 + 1) * ks |
| 918 | E2 = dc_fixpt_mul(ks, dc_fixpt_add(dc_fixpt_one, |
| 919 | dc_fixpt_sub(temp1, temp2))); |
| 920 | |
| 921 | // (-2t^3 + 3t^2) * max_lum_pq |
| 922 | E2 = dc_fixpt_add(E2, dc_fixpt_mul(max_lum_pq, |
| 923 | dc_fixpt_sub(temp2, temp1))); |
| 924 | |
| 925 | temp1 = dc_fixpt_mul(two, t2); |
| 926 | temp2 = dc_fixpt_sub(dc_fixpt_one, ks); |
| 927 | |
| 928 | // (t^3 - 2t^2 + t) * (1-ks) |
| 929 | E2 = dc_fixpt_add(E2, dc_fixpt_mul(temp2, |
| 930 | dc_fixpt_add(t, dc_fixpt_sub(t3, temp1)))); |
| 931 | } else |
| 932 | E2 = dc_fixpt_one; |
| 933 | |
| 934 | temp1 = dc_fixpt_sub(dc_fixpt_one, E2); |
| 935 | temp2 = dc_fixpt_mul(temp1, temp1); |
| 936 | temp2 = dc_fixpt_mul(temp2, temp2); |
| 937 | // temp2 = (1-E2)^4 |
| 938 | |
| 939 | E3 = dc_fixpt_add(E2, dc_fixpt_mul(min_lum_pq, temp2)); |
| 940 | compute_de_pq(E3, out_x); |
| 941 | |
| 942 | *out_x = dc_fixpt_div(*out_x, dc_fixpt_div(max_display, max_content)); |
| 943 | } |
| 944 | |
| 945 | static bool_Bool build_freesync_hdr(struct pwl_float_data_ex *rgb_regamma, |
| 946 | uint32_t hw_points_num, |
| 947 | const struct hw_x_point *coordinate_x, |
| 948 | const struct hdr_tm_params *fs_params, |
| 949 | struct calculate_buffer *cal_buffer) |
| 950 | { |
| 951 | uint32_t i; |
| 952 | struct pwl_float_data_ex *rgb = rgb_regamma; |
| 953 | const struct hw_x_point *coord_x = coordinate_x; |
| 954 | const struct hw_x_point *prv_coord_x = coord_x; |
| 955 | struct fixed31_32 scaledX = dc_fixpt_zero; |
| 956 | struct fixed31_32 scaledX1 = dc_fixpt_zero; |
| 957 | struct fixed31_32 max_display; |
| 958 | struct fixed31_32 min_display; |
| 959 | struct fixed31_32 max_content; |
| 960 | struct fixed31_32 clip = dc_fixpt_one; |
| 961 | struct fixed31_32 output; |
| 962 | bool_Bool use_eetf = false0; |
| 963 | bool_Bool is_clipped = false0; |
| 964 | struct fixed31_32 sdr_white_level; |
| 965 | struct fixed31_32 coordX_diff; |
| 966 | struct fixed31_32 out_dist_max; |
| 967 | struct fixed31_32 bright_norm; |
| 968 | |
| 969 | if (fs_params->max_content == 0 || |
| 970 | fs_params->max_display == 0) |
| 971 | return false0; |
| 972 | |
| 973 | max_display = dc_fixpt_from_int(fs_params->max_display); |
| 974 | min_display = dc_fixpt_from_fraction(fs_params->min_display, 10000); |
| 975 | max_content = dc_fixpt_from_int(fs_params->max_content); |
| 976 | sdr_white_level = dc_fixpt_from_int(fs_params->sdr_white_level); |
| 977 | |
| 978 | if (fs_params->min_display > 1000) // cap at 0.1 at the bottom |
| 979 | min_display = dc_fixpt_from_fraction(1, 10); |
| 980 | if (fs_params->max_display < 100) // cap at 100 at the top |
| 981 | max_display = dc_fixpt_from_int(100); |
| 982 | |
| 983 | // only max used, we don't adjust min luminance |
| 984 | if (fs_params->max_content > fs_params->max_display) |
| 985 | use_eetf = true1; |
| 986 | else |
| 987 | max_content = max_display; |
| 988 | |
| 989 | if (!use_eetf) |
| 990 | cal_buffer->buffer_index = 0; // see var definition for more info |
| 991 | rgb += 32; // first 32 points have problems with fixed point, too small |
| 992 | coord_x += 32; |
| 993 | |
| 994 | for (i = 32; i <= hw_points_num; i++) { |
| 995 | if (!is_clipped) { |
| 996 | if (use_eetf) { |
| 997 | /* max content is equal 1 */ |
| 998 | scaledX1 = dc_fixpt_div(coord_x->x, |
| 999 | dc_fixpt_div(max_content, sdr_white_level)); |
| 1000 | hermite_spline_eetf(scaledX1, max_display, min_display, |
| 1001 | max_content, &scaledX); |
| 1002 | } else |
| 1003 | scaledX = dc_fixpt_div(coord_x->x, |
| 1004 | dc_fixpt_div(max_display, sdr_white_level)); |
| 1005 | |
| 1006 | if (dc_fixpt_lt(scaledX, clip)) { |
| 1007 | if (dc_fixpt_lt(scaledX, dc_fixpt_zero)) |
| 1008 | output = dc_fixpt_zero; |
| 1009 | else |
| 1010 | output = calculate_gamma22(scaledX, use_eetf, cal_buffer); |
| 1011 | |
| 1012 | // Ensure output respects reasonable boundaries |
| 1013 | output = dc_fixpt_clamp(output, dc_fixpt_zero, dc_fixpt_one); |
| 1014 | |
| 1015 | rgb->r = output; |
| 1016 | rgb->g = output; |
| 1017 | rgb->b = output; |
| 1018 | } else { |
| 1019 | /* Here clipping happens for the first time */ |
| 1020 | is_clipped = true1; |
| 1021 | |
| 1022 | /* The next few lines implement the equation |
| 1023 | * output = prev_out + |
| 1024 | * (coord_x->x - prev_coord_x->x) * |
| 1025 | * (1.0 - prev_out) / |
| 1026 | * (maxDisp/sdr_white_level - prevCoordX) |
| 1027 | * |
| 1028 | * This equation interpolates the first point |
| 1029 | * after max_display/80 so that the slope from |
| 1030 | * hw_x_before_max and hw_x_after_max is such |
| 1031 | * that we hit Y=1.0 at max_display/80. |
| 1032 | */ |
| 1033 | |
| 1034 | coordX_diff = dc_fixpt_sub(coord_x->x, prv_coord_x->x); |
| 1035 | out_dist_max = dc_fixpt_sub(dc_fixpt_one, output); |
| 1036 | bright_norm = dc_fixpt_div(max_display, sdr_white_level); |
| 1037 | |
| 1038 | output = dc_fixpt_add( |
| 1039 | output, dc_fixpt_mul( |
| 1040 | coordX_diff, dc_fixpt_div( |
| 1041 | out_dist_max, |
| 1042 | dc_fixpt_sub(bright_norm, prv_coord_x->x) |
| 1043 | ) |
| 1044 | ) |
| 1045 | ); |
| 1046 | |
| 1047 | /* Relaxing the maximum boundary to 1.07 (instead of 1.0) |
| 1048 | * because the last point in the curve must be such that |
| 1049 | * the maximum display pixel brightness interpolates to |
| 1050 | * exactly 1.0. The worst case scenario was calculated |
| 1051 | * around 1.057, so the limit of 1.07 leaves some safety |
| 1052 | * margin. |
| 1053 | */ |
| 1054 | output = dc_fixpt_clamp(output, dc_fixpt_zero, |
| 1055 | dc_fixpt_from_fraction(107, 100)); |
| 1056 | |
| 1057 | rgb->r = output; |
| 1058 | rgb->g = output; |
| 1059 | rgb->b = output; |
| 1060 | } |
| 1061 | } else { |
| 1062 | /* Every other clipping after the first |
| 1063 | * one is dealt with here |
| 1064 | */ |
| 1065 | rgb->r = clip; |
| 1066 | rgb->g = clip; |
| 1067 | rgb->b = clip; |
| 1068 | } |
| 1069 | |
| 1070 | prv_coord_x = coord_x; |
| 1071 | ++coord_x; |
| 1072 | ++rgb; |
| 1073 | } |
| 1074 | cal_buffer->buffer_index = -1; |
| 1075 | |
| 1076 | return true1; |
| 1077 | } |
| 1078 | |
| 1079 | static bool_Bool build_degamma(struct pwl_float_data_ex *curve, |
| 1080 | uint32_t hw_points_num, |
| 1081 | const struct hw_x_point *coordinate_x, enum dc_transfer_func_predefined type) |
| 1082 | { |
| 1083 | uint32_t i; |
| 1084 | struct gamma_coefficients coeff; |
| 1085 | uint32_t begin_index, end_index; |
| 1086 | bool_Bool ret = false0; |
| 1087 | |
| 1088 | if (!build_coefficients(&coeff, type)) |
| 1089 | goto release; |
| 1090 | |
| 1091 | i = 0; |
| 1092 | |
| 1093 | /* X points is 2^-25 to 2^7 |
| 1094 | * De-gamma X is 2^-12 to 2^0 – we are skipping first -12-(-25) = 13 regions |
| 1095 | */ |
| 1096 | begin_index = 13 * NUM_PTS_IN_REGION16; |
| 1097 | end_index = begin_index + 12 * NUM_PTS_IN_REGION16; |
| 1098 | |
| 1099 | while (i != begin_index) { |
| 1100 | curve[i].r = dc_fixpt_zero; |
| 1101 | curve[i].g = dc_fixpt_zero; |
| 1102 | curve[i].b = dc_fixpt_zero; |
| 1103 | i++; |
| 1104 | } |
| 1105 | |
| 1106 | while (i != end_index) { |
| 1107 | curve[i].r = translate_to_linear_space_ex( |
| 1108 | coordinate_x[i].x, &coeff, 0); |
| 1109 | curve[i].g = curve[i].r; |
| 1110 | curve[i].b = curve[i].r; |
| 1111 | i++; |
| 1112 | } |
| 1113 | while (i != hw_points_num + 1) { |
| 1114 | curve[i].r = dc_fixpt_one; |
| 1115 | curve[i].g = dc_fixpt_one; |
| 1116 | curve[i].b = dc_fixpt_one; |
| 1117 | i++; |
| 1118 | } |
| 1119 | ret = true1; |
| 1120 | release: |
| 1121 | return ret; |
| 1122 | } |
| 1123 | |
| 1124 | |
| 1125 | |
| 1126 | |
| 1127 | |
| 1128 | static void build_hlg_degamma(struct pwl_float_data_ex *degamma, |
| 1129 | uint32_t hw_points_num, |
| 1130 | const struct hw_x_point *coordinate_x, |
| 1131 | uint32_t sdr_white_level, uint32_t max_luminance_nits) |
| 1132 | { |
| 1133 | uint32_t i; |
| 1134 | |
| 1135 | struct pwl_float_data_ex *rgb = degamma; |
| 1136 | const struct hw_x_point *coord_x = coordinate_x; |
| 1137 | |
| 1138 | i = 0; |
| 1139 | // check when i == 434 |
| 1140 | while (i != hw_points_num + 1) { |
| 1141 | compute_hlg_eotf(coord_x->x, &rgb->r, sdr_white_level, max_luminance_nits); |
| 1142 | rgb->g = rgb->r; |
| 1143 | rgb->b = rgb->r; |
| 1144 | ++coord_x; |
| 1145 | ++rgb; |
| 1146 | ++i; |
| 1147 | } |
| 1148 | } |
| 1149 | |
| 1150 | |
| 1151 | static void build_hlg_regamma(struct pwl_float_data_ex *regamma, |
| 1152 | uint32_t hw_points_num, |
| 1153 | const struct hw_x_point *coordinate_x, |
| 1154 | uint32_t sdr_white_level, uint32_t max_luminance_nits) |
| 1155 | { |
| 1156 | uint32_t i; |
| 1157 | |
| 1158 | struct pwl_float_data_ex *rgb = regamma; |
| 1159 | const struct hw_x_point *coord_x = coordinate_x; |
| 1160 | |
| 1161 | i = 0; |
| 1162 | |
| 1163 | // when i == 471 |
| 1164 | while (i != hw_points_num + 1) { |
| 1165 | compute_hlg_oetf(coord_x->x, &rgb->r, sdr_white_level, max_luminance_nits); |
| 1166 | rgb->g = rgb->r; |
| 1167 | rgb->b = rgb->r; |
| 1168 | ++coord_x; |
| 1169 | ++rgb; |
| 1170 | ++i; |
| 1171 | } |
| 1172 | } |
| 1173 | |
| 1174 | static void scale_gamma(struct pwl_float_data *pwl_rgb, |
| 1175 | const struct dc_gamma *ramp, |
| 1176 | struct dividers dividers) |
| 1177 | { |
| 1178 | const struct fixed31_32 max_driver = dc_fixpt_from_int(0xFFFF); |
| 1179 | const struct fixed31_32 max_os = dc_fixpt_from_int(0xFF00); |
| 1180 | struct fixed31_32 scaler = max_os; |
| 1181 | uint32_t i; |
| 1182 | struct pwl_float_data *rgb = pwl_rgb; |
| 1183 | struct pwl_float_data *rgb_last = rgb + ramp->num_entries - 1; |
| 1184 | |
| 1185 | i = 0; |
| 1186 | |
| 1187 | do { |
| 1188 | if (dc_fixpt_lt(max_os, ramp->entries.red[i]) || |
| 1189 | dc_fixpt_lt(max_os, ramp->entries.green[i]) || |
| 1190 | dc_fixpt_lt(max_os, ramp->entries.blue[i])) { |
| 1191 | scaler = max_driver; |
| 1192 | break; |
| 1193 | } |
| 1194 | ++i; |
| 1195 | } while (i != ramp->num_entries); |
| 1196 | |
| 1197 | i = 0; |
| 1198 | |
| 1199 | do { |
| 1200 | rgb->r = dc_fixpt_div( |
| 1201 | ramp->entries.red[i], scaler); |
| 1202 | rgb->g = dc_fixpt_div( |
| 1203 | ramp->entries.green[i], scaler); |
| 1204 | rgb->b = dc_fixpt_div( |
| 1205 | ramp->entries.blue[i], scaler); |
| 1206 | |
| 1207 | ++rgb; |
| 1208 | ++i; |
| 1209 | } while (i != ramp->num_entries); |
| 1210 | |
| 1211 | rgb->r = dc_fixpt_mul(rgb_last->r, |
| 1212 | dividers.divider1); |
| 1213 | rgb->g = dc_fixpt_mul(rgb_last->g, |
| 1214 | dividers.divider1); |
| 1215 | rgb->b = dc_fixpt_mul(rgb_last->b, |
| 1216 | dividers.divider1); |
| 1217 | |
| 1218 | ++rgb; |
| 1219 | |
| 1220 | rgb->r = dc_fixpt_mul(rgb_last->r, |
| 1221 | dividers.divider2); |
| 1222 | rgb->g = dc_fixpt_mul(rgb_last->g, |
| 1223 | dividers.divider2); |
| 1224 | rgb->b = dc_fixpt_mul(rgb_last->b, |
| 1225 | dividers.divider2); |
| 1226 | |
| 1227 | ++rgb; |
| 1228 | |
| 1229 | rgb->r = dc_fixpt_mul(rgb_last->r, |
| 1230 | dividers.divider3); |
| 1231 | rgb->g = dc_fixpt_mul(rgb_last->g, |
| 1232 | dividers.divider3); |
| 1233 | rgb->b = dc_fixpt_mul(rgb_last->b, |
| 1234 | dividers.divider3); |
| 1235 | } |
| 1236 | |
| 1237 | static void scale_gamma_dx(struct pwl_float_data *pwl_rgb, |
| 1238 | const struct dc_gamma *ramp, |
| 1239 | struct dividers dividers) |
| 1240 | { |
| 1241 | uint32_t i; |
| 1242 | struct fixed31_32 min = dc_fixpt_zero; |
| 1243 | struct fixed31_32 max = dc_fixpt_one; |
| 1244 | |
| 1245 | struct fixed31_32 delta = dc_fixpt_zero; |
| 1246 | struct fixed31_32 offset = dc_fixpt_zero; |
| 1247 | |
| 1248 | for (i = 0 ; i < ramp->num_entries; i++) { |
| 1249 | if (dc_fixpt_lt(ramp->entries.red[i], min)) |
| 1250 | min = ramp->entries.red[i]; |
| 1251 | |
| 1252 | if (dc_fixpt_lt(ramp->entries.green[i], min)) |
| 1253 | min = ramp->entries.green[i]; |
| 1254 | |
| 1255 | if (dc_fixpt_lt(ramp->entries.blue[i], min)) |
| 1256 | min = ramp->entries.blue[i]; |
| 1257 | |
| 1258 | if (dc_fixpt_lt(max, ramp->entries.red[i])) |
| 1259 | max = ramp->entries.red[i]; |
| 1260 | |
| 1261 | if (dc_fixpt_lt(max, ramp->entries.green[i])) |
| 1262 | max = ramp->entries.green[i]; |
| 1263 | |
| 1264 | if (dc_fixpt_lt(max, ramp->entries.blue[i])) |
| 1265 | max = ramp->entries.blue[i]; |
| 1266 | } |
| 1267 | |
| 1268 | if (dc_fixpt_lt(min, dc_fixpt_zero)) |
| 1269 | delta = dc_fixpt_neg(min); |
| 1270 | |
| 1271 | offset = dc_fixpt_add(min, max); |
| 1272 | |
| 1273 | for (i = 0 ; i < ramp->num_entries; i++) { |
| 1274 | pwl_rgb[i].r = dc_fixpt_div( |
| 1275 | dc_fixpt_add( |
| 1276 | ramp->entries.red[i], delta), offset); |
| 1277 | pwl_rgb[i].g = dc_fixpt_div( |
| 1278 | dc_fixpt_add( |
| 1279 | ramp->entries.green[i], delta), offset); |
| 1280 | pwl_rgb[i].b = dc_fixpt_div( |
| 1281 | dc_fixpt_add( |
| 1282 | ramp->entries.blue[i], delta), offset); |
| 1283 | |
| 1284 | } |
| 1285 | |
| 1286 | pwl_rgb[i].r = dc_fixpt_sub(dc_fixpt_mul_int( |
| 1287 | pwl_rgb[i-1].r, 2), pwl_rgb[i-2].r); |
| 1288 | pwl_rgb[i].g = dc_fixpt_sub(dc_fixpt_mul_int( |
| 1289 | pwl_rgb[i-1].g, 2), pwl_rgb[i-2].g); |
| 1290 | pwl_rgb[i].b = dc_fixpt_sub(dc_fixpt_mul_int( |
| 1291 | pwl_rgb[i-1].b, 2), pwl_rgb[i-2].b); |
| 1292 | ++i; |
| 1293 | pwl_rgb[i].r = dc_fixpt_sub(dc_fixpt_mul_int( |
| 1294 | pwl_rgb[i-1].r, 2), pwl_rgb[i-2].r); |
| 1295 | pwl_rgb[i].g = dc_fixpt_sub(dc_fixpt_mul_int( |
| 1296 | pwl_rgb[i-1].g, 2), pwl_rgb[i-2].g); |
| 1297 | pwl_rgb[i].b = dc_fixpt_sub(dc_fixpt_mul_int( |
| 1298 | pwl_rgb[i-1].b, 2), pwl_rgb[i-2].b); |
| 1299 | } |
| 1300 | |
| 1301 | /* todo: all these scale_gamma functions are inherently the same but |
| 1302 | * take different structures as params or different format for ramp |
| 1303 | * values. We could probably implement it in a more generic fashion |
| 1304 | */ |
| 1305 | static void scale_user_regamma_ramp(struct pwl_float_data *pwl_rgb, |
| 1306 | const struct regamma_ramp *ramp, |
| 1307 | struct dividers dividers) |
| 1308 | { |
| 1309 | unsigned short max_driver = 0xFFFF; |
| 1310 | unsigned short max_os = 0xFF00; |
| 1311 | unsigned short scaler = max_os; |
| 1312 | uint32_t i; |
| 1313 | struct pwl_float_data *rgb = pwl_rgb; |
| 1314 | struct pwl_float_data *rgb_last = rgb + GAMMA_RGB_256_ENTRIES - 1; |
| 1315 | |
| 1316 | i = 0; |
| 1317 | do { |
| 1318 | if (ramp->gamma[i] > max_os || |
| 1319 | ramp->gamma[i + 256] > max_os || |
| 1320 | ramp->gamma[i + 512] > max_os) { |
| 1321 | scaler = max_driver; |
| 1322 | break; |
| 1323 | } |
| 1324 | i++; |
| 1325 | } while (i != GAMMA_RGB_256_ENTRIES); |
| 1326 | |
| 1327 | i = 0; |
| 1328 | do { |
| 1329 | rgb->r = dc_fixpt_from_fraction( |
| 1330 | ramp->gamma[i], scaler); |
| 1331 | rgb->g = dc_fixpt_from_fraction( |
| 1332 | ramp->gamma[i + 256], scaler); |
| 1333 | rgb->b = dc_fixpt_from_fraction( |
| 1334 | ramp->gamma[i + 512], scaler); |
| 1335 | |
| 1336 | ++rgb; |
| 1337 | ++i; |
| 1338 | } while (i != GAMMA_RGB_256_ENTRIES); |
| 1339 | |
| 1340 | rgb->r = dc_fixpt_mul(rgb_last->r, |
| 1341 | dividers.divider1); |
| 1342 | rgb->g = dc_fixpt_mul(rgb_last->g, |
| 1343 | dividers.divider1); |
| 1344 | rgb->b = dc_fixpt_mul(rgb_last->b, |
| 1345 | dividers.divider1); |
| 1346 | |
| 1347 | ++rgb; |
| 1348 | |
| 1349 | rgb->r = dc_fixpt_mul(rgb_last->r, |
| 1350 | dividers.divider2); |
| 1351 | rgb->g = dc_fixpt_mul(rgb_last->g, |
| 1352 | dividers.divider2); |
| 1353 | rgb->b = dc_fixpt_mul(rgb_last->b, |
| 1354 | dividers.divider2); |
| 1355 | |
| 1356 | ++rgb; |
| 1357 | |
| 1358 | rgb->r = dc_fixpt_mul(rgb_last->r, |
| 1359 | dividers.divider3); |
| 1360 | rgb->g = dc_fixpt_mul(rgb_last->g, |
| 1361 | dividers.divider3); |
| 1362 | rgb->b = dc_fixpt_mul(rgb_last->b, |
| 1363 | dividers.divider3); |
| 1364 | } |
| 1365 | |
| 1366 | /* |
| 1367 | * RS3+ color transform DDI - 1D LUT adjustment is composed with regamma here |
| 1368 | * Input is evenly distributed in the output color space as specified in |
| 1369 | * SetTimings |
| 1370 | * |
| 1371 | * Interpolation details: |
| 1372 | * 1D LUT has 4096 values which give curve correction in 0-1 float range |
| 1373 | * for evenly spaced points in 0-1 range. lut1D[index] gives correction |
| 1374 | * for index/4095. |
| 1375 | * First we find index for which: |
| 1376 | * index/4095 < regamma_y < (index+1)/4095 => |
| 1377 | * index < 4095*regamma_y < index + 1 |
| 1378 | * norm_y = 4095*regamma_y, and index is just truncating to nearest integer |
| 1379 | * lut1 = lut1D[index], lut2 = lut1D[index+1] |
| 1380 | * |
| 1381 | * adjustedY is then linearly interpolating regamma Y between lut1 and lut2 |
| 1382 | * |
| 1383 | * Custom degamma on Linux uses the same interpolation math, so is handled here |
| 1384 | */ |
| 1385 | static void apply_lut_1d( |
| 1386 | const struct dc_gamma *ramp, |
| 1387 | uint32_t num_hw_points, |
| 1388 | struct dc_transfer_func_distributed_points *tf_pts) |
| 1389 | { |
| 1390 | int i = 0; |
| 1391 | int color = 0; |
| 1392 | struct fixed31_32 *regamma_y; |
| 1393 | struct fixed31_32 norm_y; |
| 1394 | struct fixed31_32 lut1; |
| 1395 | struct fixed31_32 lut2; |
| 1396 | const int max_lut_index = 4095; |
| 1397 | const struct fixed31_32 penult_lut_index_f = |
| 1398 | dc_fixpt_from_int(max_lut_index-1); |
| 1399 | const struct fixed31_32 max_lut_index_f = |
| 1400 | dc_fixpt_from_int(max_lut_index); |
| 1401 | int32_t index = 0, index_next = 0; |
| 1402 | struct fixed31_32 index_f; |
| 1403 | struct fixed31_32 delta_lut; |
| 1404 | struct fixed31_32 delta_index; |
| 1405 | |
| 1406 | if (ramp->type != GAMMA_CS_TFM_1D && ramp->type != GAMMA_CUSTOM) |
| 1407 | return; // this is not expected |
| 1408 | |
| 1409 | for (i = 0; i < num_hw_points; i++) { |
| 1410 | for (color = 0; color < 3; color++) { |
| 1411 | if (color == 0) |
| 1412 | regamma_y = &tf_pts->red[i]; |
| 1413 | else if (color == 1) |
| 1414 | regamma_y = &tf_pts->green[i]; |
| 1415 | else |
| 1416 | regamma_y = &tf_pts->blue[i]; |
| 1417 | |
| 1418 | norm_y = dc_fixpt_mul(max_lut_index_f, |
| 1419 | *regamma_y); |
| 1420 | index = dc_fixpt_floor(norm_y); |
| 1421 | index_f = dc_fixpt_from_int(index); |
| 1422 | |
| 1423 | if (index < 0) |
| 1424 | continue; |
| 1425 | |
| 1426 | if (index <= max_lut_index) |
| 1427 | index_next = (index == max_lut_index) ? index : index+1; |
| 1428 | else { |
| 1429 | /* Here we are dealing with the last point in the curve, |
| 1430 | * which in some cases might exceed the range given by |
| 1431 | * max_lut_index. So we interpolate the value using |
| 1432 | * max_lut_index and max_lut_index - 1. |
| 1433 | */ |
| 1434 | index = max_lut_index - 1; |
| 1435 | index_next = max_lut_index; |
| 1436 | index_f = penult_lut_index_f; |
| 1437 | } |
| 1438 | |
| 1439 | if (color == 0) { |
| 1440 | lut1 = ramp->entries.red[index]; |
| 1441 | lut2 = ramp->entries.red[index_next]; |
| 1442 | } else if (color == 1) { |
| 1443 | lut1 = ramp->entries.green[index]; |
| 1444 | lut2 = ramp->entries.green[index_next]; |
| 1445 | } else { |
| 1446 | lut1 = ramp->entries.blue[index]; |
| 1447 | lut2 = ramp->entries.blue[index_next]; |
| 1448 | } |
| 1449 | |
| 1450 | // we have everything now, so interpolate |
| 1451 | delta_lut = dc_fixpt_sub(lut2, lut1); |
| 1452 | delta_index = dc_fixpt_sub(norm_y, index_f); |
| 1453 | |
| 1454 | *regamma_y = dc_fixpt_add(lut1, |
| 1455 | dc_fixpt_mul(delta_index, delta_lut)); |
| 1456 | } |
| 1457 | } |
| 1458 | } |
| 1459 | |
| 1460 | static void build_evenly_distributed_points( |
| 1461 | struct gamma_pixel *points, |
| 1462 | uint32_t numberof_points, |
| 1463 | struct dividers dividers) |
| 1464 | { |
| 1465 | struct gamma_pixel *p = points; |
| 1466 | struct gamma_pixel *p_last; |
| 1467 | |
| 1468 | uint32_t i = 0; |
| 1469 | |
| 1470 | // This function should not gets called with 0 as a parameter |
| 1471 | ASSERT(numberof_points > 0)do { if (({ static int __warned; int __ret = !!(!(numberof_points > 0)); if (__ret && !__warned) { printf("WARNING %s failed at %s:%d\n" , "!(numberof_points > 0)", "/usr/src/sys/dev/pci/drm/amd/display/modules/color/color_gamma.c" , 1471); __warned = 1; } __builtin_expect(!!(__ret), 0); })) do {} while (0); } while (0); |
| 1472 | p_last = p + numberof_points - 1; |
| 1473 | |
| 1474 | do { |
| 1475 | struct fixed31_32 value = dc_fixpt_from_fraction(i, |
| 1476 | numberof_points - 1); |
| 1477 | |
| 1478 | p->r = value; |
| 1479 | p->g = value; |
| 1480 | p->b = value; |
| 1481 | |
| 1482 | ++p; |
| 1483 | ++i; |
| 1484 | } while (i < numberof_points); |
| 1485 | |
| 1486 | p->r = dc_fixpt_div(p_last->r, dividers.divider1); |
| 1487 | p->g = dc_fixpt_div(p_last->g, dividers.divider1); |
| 1488 | p->b = dc_fixpt_div(p_last->b, dividers.divider1); |
| 1489 | |
| 1490 | ++p; |
| 1491 | |
| 1492 | p->r = dc_fixpt_div(p_last->r, dividers.divider2); |
| 1493 | p->g = dc_fixpt_div(p_last->g, dividers.divider2); |
| 1494 | p->b = dc_fixpt_div(p_last->b, dividers.divider2); |
| 1495 | |
| 1496 | ++p; |
| 1497 | |
| 1498 | p->r = dc_fixpt_div(p_last->r, dividers.divider3); |
| 1499 | p->g = dc_fixpt_div(p_last->g, dividers.divider3); |
| 1500 | p->b = dc_fixpt_div(p_last->b, dividers.divider3); |
| 1501 | } |
| 1502 | |
| 1503 | static inline void copy_rgb_regamma_to_coordinates_x( |
| 1504 | struct hw_x_point *coordinates_x, |
| 1505 | uint32_t hw_points_num, |
| 1506 | const struct pwl_float_data_ex *rgb_ex) |
| 1507 | { |
| 1508 | struct hw_x_point *coords = coordinates_x; |
| 1509 | uint32_t i = 0; |
| 1510 | const struct pwl_float_data_ex *rgb_regamma = rgb_ex; |
| 1511 | |
| 1512 | while (i <= hw_points_num + 1) { |
| 1513 | coords->regamma_y_red = rgb_regamma->r; |
| 1514 | coords->regamma_y_green = rgb_regamma->g; |
| 1515 | coords->regamma_y_blue = rgb_regamma->b; |
| 1516 | |
| 1517 | ++coords; |
| 1518 | ++rgb_regamma; |
| 1519 | ++i; |
| 1520 | } |
| 1521 | } |
| 1522 | |
| 1523 | static bool_Bool calculate_interpolated_hardware_curve( |
| 1524 | const struct dc_gamma *ramp, |
| 1525 | struct pixel_gamma_point *coeff128, |
| 1526 | struct pwl_float_data *rgb_user, |
| 1527 | const struct hw_x_point *coordinates_x, |
| 1528 | const struct gamma_pixel *axis_x, |
| 1529 | uint32_t number_of_points, |
| 1530 | struct dc_transfer_func_distributed_points *tf_pts) |
| 1531 | { |
| 1532 | |
| 1533 | const struct pixel_gamma_point *coeff = coeff128; |
| 1534 | uint32_t max_entries = 3 - 1; |
| 1535 | |
| 1536 | uint32_t i = 0; |
| 1537 | |
| 1538 | for (i = 0; i < 3; i++) { |
| 1539 | if (!build_custom_gamma_mapping_coefficients_worker( |
| 1540 | ramp, coeff128, coordinates_x, axis_x, i, |
| 1541 | number_of_points)) |
| 1542 | return false0; |
| 1543 | } |
| 1544 | |
| 1545 | i = 0; |
| 1546 | max_entries += ramp->num_entries; |
| 1547 | |
| 1548 | /* TODO: float point case */ |
| 1549 | |
| 1550 | while (i <= number_of_points) { |
| 1551 | tf_pts->red[i] = calculate_mapped_value( |
| 1552 | rgb_user, coeff, CHANNEL_NAME_RED, max_entries); |
| 1553 | tf_pts->green[i] = calculate_mapped_value( |
| 1554 | rgb_user, coeff, CHANNEL_NAME_GREEN, max_entries); |
| 1555 | tf_pts->blue[i] = calculate_mapped_value( |
| 1556 | rgb_user, coeff, CHANNEL_NAME_BLUE, max_entries); |
| 1557 | |
| 1558 | ++coeff; |
| 1559 | ++i; |
| 1560 | } |
| 1561 | |
| 1562 | return true1; |
| 1563 | } |
| 1564 | |
| 1565 | /* The "old" interpolation uses a complicated scheme to build an array of |
| 1566 | * coefficients while also using an array of 0-255 normalized to 0-1 |
| 1567 | * Then there's another loop using both of the above + new scaled user ramp |
| 1568 | * and we concatenate them. It also searches for points of interpolation and |
| 1569 | * uses enums for positions. |
| 1570 | * |
| 1571 | * This function uses a different approach: |
| 1572 | * user ramp is always applied on X with 0/255, 1/255, 2/255, ..., 255/255 |
| 1573 | * To find index for hwX , we notice the following: |
| 1574 | * i/255 <= hwX < (i+1)/255 <=> i <= 255*hwX < i+1 |
| 1575 | * See apply_lut_1d which is the same principle, but on 4K entry 1D LUT |
| 1576 | * |
| 1577 | * Once the index is known, combined Y is simply: |
| 1578 | * user_ramp(index) + (hwX-index/255)*(user_ramp(index+1) - user_ramp(index) |
| 1579 | * |
| 1580 | * We should switch to this method in all cases, it's simpler and faster |
| 1581 | * ToDo one day - for now this only applies to ADL regamma to avoid regression |
| 1582 | * for regular use cases (sRGB and PQ) |
| 1583 | */ |
| 1584 | static void interpolate_user_regamma(uint32_t hw_points_num, |
| 1585 | struct pwl_float_data *rgb_user, |
| 1586 | bool_Bool apply_degamma, |
| 1587 | struct dc_transfer_func_distributed_points *tf_pts) |
| 1588 | { |
| 1589 | uint32_t i; |
| 1590 | uint32_t color = 0; |
| 1591 | int32_t index; |
| 1592 | int32_t index_next; |
| 1593 | struct fixed31_32 *tf_point; |
| 1594 | struct fixed31_32 hw_x; |
| 1595 | struct fixed31_32 norm_factor = |
| 1596 | dc_fixpt_from_int(255); |
| 1597 | struct fixed31_32 norm_x; |
| 1598 | struct fixed31_32 index_f; |
| 1599 | struct fixed31_32 lut1; |
| 1600 | struct fixed31_32 lut2; |
| 1601 | struct fixed31_32 delta_lut; |
| 1602 | struct fixed31_32 delta_index; |
| 1603 | const struct fixed31_32 one = dc_fixpt_from_int(1); |
| 1604 | |
| 1605 | i = 0; |
| 1606 | /* fixed_pt library has problems handling too small values */ |
| 1607 | while (i != 32) { |
| 1608 | tf_pts->red[i] = dc_fixpt_zero; |
| 1609 | tf_pts->green[i] = dc_fixpt_zero; |
| 1610 | tf_pts->blue[i] = dc_fixpt_zero; |
| 1611 | ++i; |
| 1612 | } |
| 1613 | while (i <= hw_points_num + 1) { |
| 1614 | for (color = 0; color < 3; color++) { |
| 1615 | if (color == 0) |
| 1616 | tf_point = &tf_pts->red[i]; |
| 1617 | else if (color == 1) |
| 1618 | tf_point = &tf_pts->green[i]; |
| 1619 | else |
| 1620 | tf_point = &tf_pts->blue[i]; |
| 1621 | |
| 1622 | if (apply_degamma) { |
| 1623 | if (color == 0) |
| 1624 | hw_x = coordinates_x[i].regamma_y_red; |
| 1625 | else if (color == 1) |
| 1626 | hw_x = coordinates_x[i].regamma_y_green; |
| 1627 | else |
| 1628 | hw_x = coordinates_x[i].regamma_y_blue; |
| 1629 | } else |
| 1630 | hw_x = coordinates_x[i].x; |
| 1631 | |
| 1632 | if (dc_fixpt_le(one, hw_x)) |
| 1633 | hw_x = one; |
| 1634 | |
| 1635 | norm_x = dc_fixpt_mul(norm_factor, hw_x); |
| 1636 | index = dc_fixpt_floor(norm_x); |
| 1637 | if (index < 0 || index > 255) |
| 1638 | continue; |
| 1639 | |
| 1640 | index_f = dc_fixpt_from_int(index); |
| 1641 | index_next = (index == 255) ? index : index + 1; |
| 1642 | |
| 1643 | if (color == 0) { |
| 1644 | lut1 = rgb_user[index].r; |
| 1645 | lut2 = rgb_user[index_next].r; |
| 1646 | } else if (color == 1) { |
| 1647 | lut1 = rgb_user[index].g; |
| 1648 | lut2 = rgb_user[index_next].g; |
| 1649 | } else { |
| 1650 | lut1 = rgb_user[index].b; |
| 1651 | lut2 = rgb_user[index_next].b; |
| 1652 | } |
| 1653 | |
| 1654 | // we have everything now, so interpolate |
| 1655 | delta_lut = dc_fixpt_sub(lut2, lut1); |
| 1656 | delta_index = dc_fixpt_sub(norm_x, index_f); |
| 1657 | |
| 1658 | *tf_point = dc_fixpt_add(lut1, |
| 1659 | dc_fixpt_mul(delta_index, delta_lut)); |
| 1660 | } |
| 1661 | ++i; |
| 1662 | } |
| 1663 | } |
| 1664 | |
| 1665 | static void build_new_custom_resulted_curve( |
| 1666 | uint32_t hw_points_num, |
| 1667 | struct dc_transfer_func_distributed_points *tf_pts) |
| 1668 | { |
| 1669 | uint32_t i = 0; |
| 1670 | |
| 1671 | while (i != hw_points_num + 1) { |
| 1672 | tf_pts->red[i] = dc_fixpt_clamp( |
| 1673 | tf_pts->red[i], dc_fixpt_zero, |
| 1674 | dc_fixpt_one); |
| 1675 | tf_pts->green[i] = dc_fixpt_clamp( |
| 1676 | tf_pts->green[i], dc_fixpt_zero, |
| 1677 | dc_fixpt_one); |
| 1678 | tf_pts->blue[i] = dc_fixpt_clamp( |
| 1679 | tf_pts->blue[i], dc_fixpt_zero, |
| 1680 | dc_fixpt_one); |
| 1681 | |
| 1682 | ++i; |
| 1683 | } |
| 1684 | } |
| 1685 | |
| 1686 | static void apply_degamma_for_user_regamma(struct pwl_float_data_ex *rgb_regamma, |
| 1687 | uint32_t hw_points_num, struct calculate_buffer *cal_buffer) |
| 1688 | { |
| 1689 | uint32_t i; |
| 1690 | |
| 1691 | struct gamma_coefficients coeff; |
| 1692 | struct pwl_float_data_ex *rgb = rgb_regamma; |
| 1693 | const struct hw_x_point *coord_x = coordinates_x; |
| 1694 | |
| 1695 | build_coefficients(&coeff, TRANSFER_FUNCTION_SRGB); |
| 1696 | |
| 1697 | i = 0; |
| 1698 | while (i != hw_points_num + 1) { |
| 1699 | rgb->r = translate_from_linear_space_ex( |
| 1700 | coord_x->x, &coeff, 0, cal_buffer); |
| 1701 | rgb->g = rgb->r; |
| 1702 | rgb->b = rgb->r; |
| 1703 | ++coord_x; |
| 1704 | ++rgb; |
| 1705 | ++i; |
| 1706 | } |
| 1707 | } |
| 1708 | |
| 1709 | static bool_Bool map_regamma_hw_to_x_user( |
| 1710 | const struct dc_gamma *ramp, |
| 1711 | struct pixel_gamma_point *coeff128, |
| 1712 | struct pwl_float_data *rgb_user, |
| 1713 | struct hw_x_point *coords_x, |
| 1714 | const struct gamma_pixel *axis_x, |
| 1715 | const struct pwl_float_data_ex *rgb_regamma, |
| 1716 | uint32_t hw_points_num, |
| 1717 | struct dc_transfer_func_distributed_points *tf_pts, |
| 1718 | bool_Bool mapUserRamp, |
| 1719 | bool_Bool doClamping) |
| 1720 | { |
| 1721 | /* setup to spare calculated ideal regamma values */ |
| 1722 | |
| 1723 | int i = 0; |
| 1724 | struct hw_x_point *coords = coords_x; |
| 1725 | const struct pwl_float_data_ex *regamma = rgb_regamma; |
| 1726 | |
| 1727 | if (ramp && mapUserRamp) { |
| 1728 | copy_rgb_regamma_to_coordinates_x(coords, |
| 1729 | hw_points_num, |
| 1730 | rgb_regamma); |
| 1731 | |
| 1732 | calculate_interpolated_hardware_curve( |
| 1733 | ramp, coeff128, rgb_user, coords, axis_x, |
| 1734 | hw_points_num, tf_pts); |
| 1735 | } else { |
| 1736 | /* just copy current rgb_regamma into tf_pts */ |
| 1737 | while (i <= hw_points_num) { |
| 1738 | tf_pts->red[i] = regamma->r; |
| 1739 | tf_pts->green[i] = regamma->g; |
| 1740 | tf_pts->blue[i] = regamma->b; |
| 1741 | |
| 1742 | ++regamma; |
| 1743 | ++i; |
| 1744 | } |
| 1745 | } |
| 1746 | |
| 1747 | if (doClamping) { |
| 1748 | /* this should be named differently, all it does is clamp to 0-1 */ |
| 1749 | build_new_custom_resulted_curve(hw_points_num, tf_pts); |
| 1750 | } |
| 1751 | |
| 1752 | return true1; |
| 1753 | } |
| 1754 | |
| 1755 | #define _EXTRA_POINTS3 3 |
| 1756 | |
| 1757 | bool_Bool calculate_user_regamma_coeff(struct dc_transfer_func *output_tf, |
| 1758 | const struct regamma_lut *regamma, |
| 1759 | struct calculate_buffer *cal_buffer, |
| 1760 | const struct dc_gamma *ramp) |
| 1761 | { |
| 1762 | struct gamma_coefficients coeff; |
| 1763 | const struct hw_x_point *coord_x = coordinates_x; |
| 1764 | uint32_t i = 0; |
| 1765 | |
| 1766 | do { |
| 1767 | coeff.a0[i] = dc_fixpt_from_fraction( |
| 1768 | regamma->coeff.A0[i], 10000000); |
| 1769 | coeff.a1[i] = dc_fixpt_from_fraction( |
| 1770 | regamma->coeff.A1[i], 1000); |
| 1771 | coeff.a2[i] = dc_fixpt_from_fraction( |
| 1772 | regamma->coeff.A2[i], 1000); |
| 1773 | coeff.a3[i] = dc_fixpt_from_fraction( |
| 1774 | regamma->coeff.A3[i], 1000); |
| 1775 | coeff.user_gamma[i] = dc_fixpt_from_fraction( |
| 1776 | regamma->coeff.gamma[i], 1000); |
| 1777 | |
| 1778 | ++i; |
| 1779 | } while (i != 3); |
| 1780 | |
| 1781 | i = 0; |
| 1782 | /* fixed_pt library has problems handling too small values */ |
| 1783 | while (i != 32) { |
| 1784 | output_tf->tf_pts.red[i] = dc_fixpt_zero; |
| 1785 | output_tf->tf_pts.green[i] = dc_fixpt_zero; |
| 1786 | output_tf->tf_pts.blue[i] = dc_fixpt_zero; |
| 1787 | ++coord_x; |
| 1788 | ++i; |
| 1789 | } |
| 1790 | while (i != MAX_HW_POINTS(16*32) + 1) { |
| 1791 | output_tf->tf_pts.red[i] = translate_from_linear_space_ex( |
| 1792 | coord_x->x, &coeff, 0, cal_buffer); |
| 1793 | output_tf->tf_pts.green[i] = translate_from_linear_space_ex( |
| 1794 | coord_x->x, &coeff, 1, cal_buffer); |
| 1795 | output_tf->tf_pts.blue[i] = translate_from_linear_space_ex( |
| 1796 | coord_x->x, &coeff, 2, cal_buffer); |
| 1797 | ++coord_x; |
| 1798 | ++i; |
| 1799 | } |
| 1800 | |
| 1801 | if (ramp && ramp->type == GAMMA_CS_TFM_1D) |
| 1802 | apply_lut_1d(ramp, MAX_HW_POINTS(16*32), &output_tf->tf_pts); |
| 1803 | |
| 1804 | // this function just clamps output to 0-1 |
| 1805 | build_new_custom_resulted_curve(MAX_HW_POINTS(16*32), &output_tf->tf_pts); |
| 1806 | output_tf->type = TF_TYPE_DISTRIBUTED_POINTS; |
| 1807 | |
| 1808 | return true1; |
| 1809 | } |
| 1810 | |
| 1811 | bool_Bool calculate_user_regamma_ramp(struct dc_transfer_func *output_tf, |
| 1812 | const struct regamma_lut *regamma, |
| 1813 | struct calculate_buffer *cal_buffer, |
| 1814 | const struct dc_gamma *ramp) |
| 1815 | { |
| 1816 | struct dc_transfer_func_distributed_points *tf_pts = &output_tf->tf_pts; |
| 1817 | struct dividers dividers; |
| 1818 | |
| 1819 | struct pwl_float_data *rgb_user = NULL((void *)0); |
| 1820 | struct pwl_float_data_ex *rgb_regamma = NULL((void *)0); |
| 1821 | bool_Bool ret = false0; |
| 1822 | |
| 1823 | if (regamma == NULL((void *)0)) |
| 1824 | return false0; |
| 1825 | |
| 1826 | output_tf->type = TF_TYPE_DISTRIBUTED_POINTS; |
| 1827 | |
| 1828 | rgb_user = kcalloc(GAMMA_RGB_256_ENTRIES + _EXTRA_POINTS3, |
| 1829 | sizeof(*rgb_user), |
| 1830 | GFP_KERNEL(0x0001 | 0x0004)); |
| 1831 | if (!rgb_user) |
| 1832 | goto rgb_user_alloc_fail; |
| 1833 | |
| 1834 | rgb_regamma = kcalloc(MAX_HW_POINTS(16*32) + _EXTRA_POINTS3, |
| 1835 | sizeof(*rgb_regamma), |
| 1836 | GFP_KERNEL(0x0001 | 0x0004)); |
| 1837 | if (!rgb_regamma) |
| 1838 | goto rgb_regamma_alloc_fail; |
| 1839 | |
| 1840 | dividers.divider1 = dc_fixpt_from_fraction(3, 2); |
| 1841 | dividers.divider2 = dc_fixpt_from_int(2); |
| 1842 | dividers.divider3 = dc_fixpt_from_fraction(5, 2); |
| 1843 | |
| 1844 | scale_user_regamma_ramp(rgb_user, ®amma->ramp, dividers); |
| 1845 | |
| 1846 | if (regamma->flags.bits.applyDegamma == 1) { |
| 1847 | apply_degamma_for_user_regamma(rgb_regamma, MAX_HW_POINTS(16*32), cal_buffer); |
| 1848 | copy_rgb_regamma_to_coordinates_x(coordinates_x, |
| 1849 | MAX_HW_POINTS(16*32), rgb_regamma); |
| 1850 | } |
| 1851 | |
| 1852 | interpolate_user_regamma(MAX_HW_POINTS(16*32), rgb_user, |
| 1853 | regamma->flags.bits.applyDegamma, tf_pts); |
| 1854 | |
| 1855 | // no custom HDR curves! |
| 1856 | tf_pts->end_exponent = 0; |
| 1857 | tf_pts->x_point_at_y1_red = 1; |
| 1858 | tf_pts->x_point_at_y1_green = 1; |
| 1859 | tf_pts->x_point_at_y1_blue = 1; |
| 1860 | |
| 1861 | if (ramp && ramp->type == GAMMA_CS_TFM_1D) |
| 1862 | apply_lut_1d(ramp, MAX_HW_POINTS(16*32), &output_tf->tf_pts); |
| 1863 | |
| 1864 | // this function just clamps output to 0-1 |
| 1865 | build_new_custom_resulted_curve(MAX_HW_POINTS(16*32), tf_pts); |
| 1866 | |
| 1867 | ret = true1; |
| 1868 | |
| 1869 | kfree(rgb_regamma); |
| 1870 | rgb_regamma_alloc_fail: |
| 1871 | kfree(rgb_user); |
| 1872 | rgb_user_alloc_fail: |
| 1873 | return ret; |
| 1874 | } |
| 1875 | |
| 1876 | bool_Bool mod_color_calculate_degamma_params(struct dc_color_caps *dc_caps, |
| 1877 | struct dc_transfer_func *input_tf, |
| 1878 | const struct dc_gamma *ramp, bool_Bool mapUserRamp) |
| 1879 | { |
| 1880 | struct dc_transfer_func_distributed_points *tf_pts = &input_tf->tf_pts; |
| 1881 | struct dividers dividers; |
| 1882 | struct pwl_float_data *rgb_user = NULL((void *)0); |
| 1883 | struct pwl_float_data_ex *curve = NULL((void *)0); |
| 1884 | struct gamma_pixel *axis_x = NULL((void *)0); |
| 1885 | struct pixel_gamma_point *coeff = NULL((void *)0); |
| 1886 | enum dc_transfer_func_predefined tf = TRANSFER_FUNCTION_SRGB; |
| 1887 | uint32_t i; |
| 1888 | bool_Bool ret = false0; |
| 1889 | |
| 1890 | if (input_tf->type == TF_TYPE_BYPASS) |
| 1891 | return false0; |
| 1892 | |
| 1893 | /* we can use hardcoded curve for plain SRGB TF |
| 1894 | * If linear, it's bypass if on user ramp |
| 1895 | */ |
| 1896 | if (input_tf->type == TF_TYPE_PREDEFINED) { |
| 1897 | if ((input_tf->tf == TRANSFER_FUNCTION_SRGB || |
| 1898 | input_tf->tf == TRANSFER_FUNCTION_LINEAR) && |
| 1899 | !mapUserRamp) |
| 1900 | return true1; |
| 1901 | |
| 1902 | if (dc_caps != NULL((void *)0) && |
| 1903 | dc_caps->dpp.dcn_arch == 1) { |
| 1904 | |
| 1905 | if (input_tf->tf == TRANSFER_FUNCTION_PQ && |
| 1906 | dc_caps->dpp.dgam_rom_caps.pq == 1) |
| 1907 | return true1; |
| 1908 | |
| 1909 | if (input_tf->tf == TRANSFER_FUNCTION_GAMMA22 && |
| 1910 | dc_caps->dpp.dgam_rom_caps.gamma2_2 == 1) |
| 1911 | return true1; |
| 1912 | |
| 1913 | // HLG OOTF not accounted for |
| 1914 | if (input_tf->tf == TRANSFER_FUNCTION_HLG && |
| 1915 | dc_caps->dpp.dgam_rom_caps.hlg == 1) |
| 1916 | return true1; |
| 1917 | } |
| 1918 | } |
| 1919 | |
| 1920 | input_tf->type = TF_TYPE_DISTRIBUTED_POINTS; |
| 1921 | |
| 1922 | if (mapUserRamp && ramp && ramp->type == GAMMA_RGB_256) { |
| 1923 | rgb_user = kvcalloc(ramp->num_entries + _EXTRA_POINTS3, |
| 1924 | sizeof(*rgb_user), |
| 1925 | GFP_KERNEL(0x0001 | 0x0004)); |
| 1926 | if (!rgb_user) |
| 1927 | goto rgb_user_alloc_fail; |
| 1928 | |
| 1929 | axis_x = kvcalloc(ramp->num_entries + _EXTRA_POINTS3, sizeof(*axis_x), |
| 1930 | GFP_KERNEL(0x0001 | 0x0004)); |
| 1931 | if (!axis_x) |
| 1932 | goto axis_x_alloc_fail; |
| 1933 | |
| 1934 | dividers.divider1 = dc_fixpt_from_fraction(3, 2); |
| 1935 | dividers.divider2 = dc_fixpt_from_int(2); |
| 1936 | dividers.divider3 = dc_fixpt_from_fraction(5, 2); |
| 1937 | |
| 1938 | build_evenly_distributed_points( |
| 1939 | axis_x, |
| 1940 | ramp->num_entries, |
| 1941 | dividers); |
| 1942 | |
| 1943 | scale_gamma(rgb_user, ramp, dividers); |
| 1944 | } |
| 1945 | |
| 1946 | curve = kvcalloc(MAX_HW_POINTS(16*32) + _EXTRA_POINTS3, sizeof(*curve), |
| 1947 | GFP_KERNEL(0x0001 | 0x0004)); |
| 1948 | if (!curve) |
| 1949 | goto curve_alloc_fail; |
| 1950 | |
| 1951 | coeff = kvcalloc(MAX_HW_POINTS(16*32) + _EXTRA_POINTS3, sizeof(*coeff), |
| 1952 | GFP_KERNEL(0x0001 | 0x0004)); |
| 1953 | if (!coeff) |
| 1954 | goto coeff_alloc_fail; |
| 1955 | |
| 1956 | tf = input_tf->tf; |
| 1957 | |
| 1958 | if (tf == TRANSFER_FUNCTION_PQ) |
| 1959 | build_de_pq(curve, |
| 1960 | MAX_HW_POINTS(16*32), |
| 1961 | coordinates_x); |
| 1962 | else if (tf == TRANSFER_FUNCTION_SRGB || |
| 1963 | tf == TRANSFER_FUNCTION_BT709 || |
| 1964 | tf == TRANSFER_FUNCTION_GAMMA22 || |
| 1965 | tf == TRANSFER_FUNCTION_GAMMA24 || |
| 1966 | tf == TRANSFER_FUNCTION_GAMMA26) |
| 1967 | build_degamma(curve, |
| 1968 | MAX_HW_POINTS(16*32), |
| 1969 | coordinates_x, |
| 1970 | tf); |
| 1971 | else if (tf == TRANSFER_FUNCTION_HLG) |
| 1972 | build_hlg_degamma(curve, |
| 1973 | MAX_HW_POINTS(16*32), |
| 1974 | coordinates_x, |
| 1975 | 80, 1000); |
| 1976 | else if (tf == TRANSFER_FUNCTION_LINEAR) { |
| 1977 | // just copy coordinates_x into curve |
| 1978 | i = 0; |
| 1979 | while (i != MAX_HW_POINTS(16*32) + 1) { |
| 1980 | curve[i].r = coordinates_x[i].x; |
| 1981 | curve[i].g = curve[i].r; |
| 1982 | curve[i].b = curve[i].r; |
| 1983 | i++; |
| 1984 | } |
| 1985 | } else |
| 1986 | goto invalid_tf_fail; |
| 1987 | |
| 1988 | tf_pts->end_exponent = 0; |
| 1989 | tf_pts->x_point_at_y1_red = 1; |
| 1990 | tf_pts->x_point_at_y1_green = 1; |
| 1991 | tf_pts->x_point_at_y1_blue = 1; |
| 1992 | |
| 1993 | if (input_tf->tf == TRANSFER_FUNCTION_PQ) { |
| 1994 | /* just copy current rgb_regamma into tf_pts */ |
| 1995 | struct pwl_float_data_ex *curvePt = curve; |
| 1996 | int i = 0; |
| 1997 | |
| 1998 | while (i <= MAX_HW_POINTS(16*32)) { |
| 1999 | tf_pts->red[i] = curvePt->r; |
| 2000 | tf_pts->green[i] = curvePt->g; |
| 2001 | tf_pts->blue[i] = curvePt->b; |
| 2002 | ++curvePt; |
| 2003 | ++i; |
| 2004 | } |
| 2005 | } else { |
| 2006 | // clamps to 0-1 |
| 2007 | map_regamma_hw_to_x_user(ramp, coeff, rgb_user, |
| 2008 | coordinates_x, axis_x, curve, |
| 2009 | MAX_HW_POINTS(16*32), tf_pts, |
| 2010 | mapUserRamp && ramp && ramp->type == GAMMA_RGB_256, |
| 2011 | true1); |
| 2012 | } |
| 2013 | |
| 2014 | |
| 2015 | |
| 2016 | if (ramp && ramp->type == GAMMA_CUSTOM) |
| 2017 | apply_lut_1d(ramp, MAX_HW_POINTS(16*32), tf_pts); |
| 2018 | |
| 2019 | ret = true1; |
| 2020 | |
| 2021 | invalid_tf_fail: |
| 2022 | kvfree(coeff); |
| 2023 | coeff_alloc_fail: |
| 2024 | kvfree(curve); |
| 2025 | curve_alloc_fail: |
| 2026 | kvfree(axis_x); |
| 2027 | axis_x_alloc_fail: |
| 2028 | kvfree(rgb_user); |
| 2029 | rgb_user_alloc_fail: |
| 2030 | |
| 2031 | return ret; |
| 2032 | } |
| 2033 | |
| 2034 | static bool_Bool calculate_curve(enum dc_transfer_func_predefined trans, |
| 2035 | struct dc_transfer_func_distributed_points *points, |
| 2036 | struct pwl_float_data_ex *rgb_regamma, |
| 2037 | const struct hdr_tm_params *fs_params, |
| 2038 | uint32_t sdr_ref_white_level, |
| 2039 | struct calculate_buffer *cal_buffer) |
| 2040 | { |
| 2041 | uint32_t i; |
| 2042 | bool_Bool ret = false0; |
| 2043 | |
| 2044 | if (trans == TRANSFER_FUNCTION_UNITY || |
| 2045 | trans == TRANSFER_FUNCTION_LINEAR) { |
| 2046 | points->end_exponent = 0; |
| 2047 | points->x_point_at_y1_red = 1; |
| 2048 | points->x_point_at_y1_green = 1; |
| 2049 | points->x_point_at_y1_blue = 1; |
| 2050 | |
| 2051 | for (i = 0; i <= MAX_HW_POINTS(16*32) ; i++) { |
| 2052 | rgb_regamma[i].r = coordinates_x[i].x; |
| 2053 | rgb_regamma[i].g = coordinates_x[i].x; |
| 2054 | rgb_regamma[i].b = coordinates_x[i].x; |
| 2055 | } |
| 2056 | |
| 2057 | ret = true1; |
| 2058 | } else if (trans == TRANSFER_FUNCTION_PQ) { |
| 2059 | points->end_exponent = 7; |
| 2060 | points->x_point_at_y1_red = 125; |
| 2061 | points->x_point_at_y1_green = 125; |
| 2062 | points->x_point_at_y1_blue = 125; |
| 2063 | |
| 2064 | build_pq(rgb_regamma, |
| 2065 | MAX_HW_POINTS(16*32), |
| 2066 | coordinates_x, |
| 2067 | sdr_ref_white_level); |
| 2068 | |
| 2069 | ret = true1; |
| 2070 | } else if (trans == TRANSFER_FUNCTION_GAMMA22 && |
| 2071 | fs_params != NULL((void *)0) && fs_params->skip_tm == 0) { |
| 2072 | build_freesync_hdr(rgb_regamma, |
| 2073 | MAX_HW_POINTS(16*32), |
| 2074 | coordinates_x, |
| 2075 | fs_params, |
| 2076 | cal_buffer); |
| 2077 | |
| 2078 | ret = true1; |
| 2079 | } else if (trans == TRANSFER_FUNCTION_HLG) { |
| 2080 | points->end_exponent = 4; |
| 2081 | points->x_point_at_y1_red = 12; |
| 2082 | points->x_point_at_y1_green = 12; |
| 2083 | points->x_point_at_y1_blue = 12; |
| 2084 | |
| 2085 | build_hlg_regamma(rgb_regamma, |
| 2086 | MAX_HW_POINTS(16*32), |
| 2087 | coordinates_x, |
| 2088 | 80, 1000); |
| 2089 | |
| 2090 | ret = true1; |
| 2091 | } else { |
| 2092 | // trans == TRANSFER_FUNCTION_SRGB |
| 2093 | // trans == TRANSFER_FUNCTION_BT709 |
| 2094 | // trans == TRANSFER_FUNCTION_GAMMA22 |
| 2095 | // trans == TRANSFER_FUNCTION_GAMMA24 |
| 2096 | // trans == TRANSFER_FUNCTION_GAMMA26 |
| 2097 | points->end_exponent = 0; |
| 2098 | points->x_point_at_y1_red = 1; |
| 2099 | points->x_point_at_y1_green = 1; |
| 2100 | points->x_point_at_y1_blue = 1; |
| 2101 | |
| 2102 | build_regamma(rgb_regamma, |
| 2103 | MAX_HW_POINTS(16*32), |
| 2104 | coordinates_x, |
| 2105 | trans, |
| 2106 | cal_buffer); |
| 2107 | |
| 2108 | ret = true1; |
| 2109 | } |
| 2110 | |
| 2111 | return ret; |
| 2112 | } |
| 2113 | |
| 2114 | bool_Bool mod_color_calculate_regamma_params(struct dc_transfer_func *output_tf, |
| 2115 | const struct dc_gamma *ramp, bool_Bool mapUserRamp, bool_Bool canRomBeUsed, |
| 2116 | const struct hdr_tm_params *fs_params, |
| 2117 | struct calculate_buffer *cal_buffer) |
| 2118 | { |
| 2119 | struct dc_transfer_func_distributed_points *tf_pts = &output_tf->tf_pts; |
| 2120 | struct dividers dividers; |
| 2121 | |
| 2122 | struct pwl_float_data *rgb_user = NULL((void *)0); |
| 2123 | struct pwl_float_data_ex *rgb_regamma = NULL((void *)0); |
| 2124 | struct gamma_pixel *axis_x = NULL((void *)0); |
| 2125 | struct pixel_gamma_point *coeff = NULL((void *)0); |
| 2126 | enum dc_transfer_func_predefined tf = TRANSFER_FUNCTION_SRGB; |
| 2127 | bool_Bool doClamping = true1; |
| 2128 | bool_Bool ret = false0; |
| 2129 | |
| 2130 | if (output_tf->type == TF_TYPE_BYPASS) |
| 2131 | return false0; |
| 2132 | |
| 2133 | /* we can use hardcoded curve for plain SRGB TF */ |
| 2134 | if (output_tf->type == TF_TYPE_PREDEFINED && canRomBeUsed == true1 && |
| 2135 | output_tf->tf == TRANSFER_FUNCTION_SRGB) { |
| 2136 | if (ramp == NULL((void *)0)) |
| 2137 | return true1; |
| 2138 | if ((ramp->is_identity && ramp->type != GAMMA_CS_TFM_1D) || |
| 2139 | (!mapUserRamp && ramp->type == GAMMA_RGB_256)) |
| 2140 | return true1; |
| 2141 | } |
| 2142 | |
| 2143 | output_tf->type = TF_TYPE_DISTRIBUTED_POINTS; |
| 2144 | |
| 2145 | if (ramp && ramp->type != GAMMA_CS_TFM_1D && |
| 2146 | (mapUserRamp || ramp->type != GAMMA_RGB_256)) { |
| 2147 | rgb_user = kvcalloc(ramp->num_entries + _EXTRA_POINTS3, |
| 2148 | sizeof(*rgb_user), |
| 2149 | GFP_KERNEL(0x0001 | 0x0004)); |
| 2150 | if (!rgb_user) |
| 2151 | goto rgb_user_alloc_fail; |
| 2152 | |
| 2153 | axis_x = kvcalloc(ramp->num_entries + 3, sizeof(*axis_x), |
| 2154 | GFP_KERNEL(0x0001 | 0x0004)); |
| 2155 | if (!axis_x) |
| 2156 | goto axis_x_alloc_fail; |
| 2157 | |
| 2158 | dividers.divider1 = dc_fixpt_from_fraction(3, 2); |
| 2159 | dividers.divider2 = dc_fixpt_from_int(2); |
| 2160 | dividers.divider3 = dc_fixpt_from_fraction(5, 2); |
| 2161 | |
| 2162 | build_evenly_distributed_points( |
| 2163 | axis_x, |
| 2164 | ramp->num_entries, |
| 2165 | dividers); |
| 2166 | |
| 2167 | if (ramp->type == GAMMA_RGB_256 && mapUserRamp) |
| 2168 | scale_gamma(rgb_user, ramp, dividers); |
| 2169 | else if (ramp->type == GAMMA_RGB_FLOAT_1024) |
| 2170 | scale_gamma_dx(rgb_user, ramp, dividers); |
| 2171 | } |
| 2172 | |
| 2173 | rgb_regamma = kvcalloc(MAX_HW_POINTS(16*32) + _EXTRA_POINTS3, |
| 2174 | sizeof(*rgb_regamma), |
| 2175 | GFP_KERNEL(0x0001 | 0x0004)); |
| 2176 | if (!rgb_regamma) |
| 2177 | goto rgb_regamma_alloc_fail; |
| 2178 | |
| 2179 | coeff = kvcalloc(MAX_HW_POINTS(16*32) + _EXTRA_POINTS3, sizeof(*coeff), |
| 2180 | GFP_KERNEL(0x0001 | 0x0004)); |
| 2181 | if (!coeff) |
| 2182 | goto coeff_alloc_fail; |
| 2183 | |
| 2184 | tf = output_tf->tf; |
| 2185 | |
| 2186 | ret = calculate_curve(tf, |
| 2187 | tf_pts, |
| 2188 | rgb_regamma, |
| 2189 | fs_params, |
| 2190 | output_tf->sdr_ref_white_level, |
| 2191 | cal_buffer); |
| 2192 | |
| 2193 | if (ret) { |
| 2194 | doClamping = !(output_tf->tf == TRANSFER_FUNCTION_GAMMA22 && |
| 2195 | fs_params != NULL((void *)0) && fs_params->skip_tm == 0); |
| 2196 | |
| 2197 | map_regamma_hw_to_x_user(ramp, coeff, rgb_user, |
| 2198 | coordinates_x, axis_x, rgb_regamma, |
| 2199 | MAX_HW_POINTS(16*32), tf_pts, |
| 2200 | (mapUserRamp || (ramp && ramp->type != GAMMA_RGB_256)) && |
| 2201 | (ramp && ramp->type != GAMMA_CS_TFM_1D), |
| 2202 | doClamping); |
| 2203 | |
| 2204 | if (ramp && ramp->type == GAMMA_CS_TFM_1D) |
| 2205 | apply_lut_1d(ramp, MAX_HW_POINTS(16*32), tf_pts); |
| 2206 | } |
| 2207 | |
| 2208 | kvfree(coeff); |
| 2209 | coeff_alloc_fail: |
| 2210 | kvfree(rgb_regamma); |
| 2211 | rgb_regamma_alloc_fail: |
| 2212 | kvfree(axis_x); |
| 2213 | axis_x_alloc_fail: |
| 2214 | kvfree(rgb_user); |
| 2215 | rgb_user_alloc_fail: |
| 2216 | return ret; |
| 2217 | } |
| 2218 | |
| 2219 | bool_Bool mod_color_calculate_degamma_curve(enum dc_transfer_func_predefined trans, |
| 2220 | struct dc_transfer_func_distributed_points *points) |
| 2221 | { |
| 2222 | uint32_t i; |
| 2223 | bool_Bool ret = false0; |
| 2224 | struct pwl_float_data_ex *rgb_degamma = NULL((void *)0); |
| 2225 | |
| 2226 | if (trans == TRANSFER_FUNCTION_UNITY || |
| 2227 | trans == TRANSFER_FUNCTION_LINEAR) { |
| 2228 | |
| 2229 | for (i = 0; i <= MAX_HW_POINTS(16*32) ; i++) { |
| 2230 | points->red[i] = coordinates_x[i].x; |
| 2231 | points->green[i] = coordinates_x[i].x; |
| 2232 | points->blue[i] = coordinates_x[i].x; |
| 2233 | } |
| 2234 | ret = true1; |
| 2235 | } else if (trans == TRANSFER_FUNCTION_PQ) { |
| 2236 | rgb_degamma = kvcalloc(MAX_HW_POINTS(16*32) + _EXTRA_POINTS3, |
| 2237 | sizeof(*rgb_degamma), |
| 2238 | GFP_KERNEL(0x0001 | 0x0004)); |
| 2239 | if (!rgb_degamma) |
| 2240 | goto rgb_degamma_alloc_fail; |
| 2241 | |
| 2242 | |
| 2243 | build_de_pq(rgb_degamma, |
| 2244 | MAX_HW_POINTS(16*32), |
| 2245 | coordinates_x); |
| 2246 | for (i = 0; i <= MAX_HW_POINTS(16*32) ; i++) { |
| 2247 | points->red[i] = rgb_degamma[i].r; |
| 2248 | points->green[i] = rgb_degamma[i].g; |
| 2249 | points->blue[i] = rgb_degamma[i].b; |
| 2250 | } |
| 2251 | ret = true1; |
| 2252 | |
| 2253 | kvfree(rgb_degamma); |
| 2254 | } else if (trans == TRANSFER_FUNCTION_SRGB || |
| 2255 | trans == TRANSFER_FUNCTION_BT709 || |
| 2256 | trans == TRANSFER_FUNCTION_GAMMA22 || |
| 2257 | trans == TRANSFER_FUNCTION_GAMMA24 || |
| 2258 | trans == TRANSFER_FUNCTION_GAMMA26) { |
| 2259 | rgb_degamma = kvcalloc(MAX_HW_POINTS(16*32) + _EXTRA_POINTS3, |
| 2260 | sizeof(*rgb_degamma), |
| 2261 | GFP_KERNEL(0x0001 | 0x0004)); |
| 2262 | if (!rgb_degamma) |
| 2263 | goto rgb_degamma_alloc_fail; |
| 2264 | |
| 2265 | build_degamma(rgb_degamma, |
| 2266 | MAX_HW_POINTS(16*32), |
| 2267 | coordinates_x, |
| 2268 | trans); |
| 2269 | for (i = 0; i <= MAX_HW_POINTS(16*32) ; i++) { |
| 2270 | points->red[i] = rgb_degamma[i].r; |
| 2271 | points->green[i] = rgb_degamma[i].g; |
| 2272 | points->blue[i] = rgb_degamma[i].b; |
| 2273 | } |
| 2274 | ret = true1; |
| 2275 | |
| 2276 | kvfree(rgb_degamma); |
| 2277 | } else if (trans == TRANSFER_FUNCTION_HLG) { |
| 2278 | rgb_degamma = kvcalloc(MAX_HW_POINTS(16*32) + _EXTRA_POINTS3, |
| 2279 | sizeof(*rgb_degamma), |
| 2280 | GFP_KERNEL(0x0001 | 0x0004)); |
| 2281 | if (!rgb_degamma) |
| 2282 | goto rgb_degamma_alloc_fail; |
| 2283 | |
| 2284 | build_hlg_degamma(rgb_degamma, |
| 2285 | MAX_HW_POINTS(16*32), |
| 2286 | coordinates_x, |
| 2287 | 80, 1000); |
| 2288 | for (i = 0; i <= MAX_HW_POINTS(16*32) ; i++) { |
| 2289 | points->red[i] = rgb_degamma[i].r; |
| 2290 | points->green[i] = rgb_degamma[i].g; |
| 2291 | points->blue[i] = rgb_degamma[i].b; |
| 2292 | } |
| 2293 | ret = true1; |
| 2294 | kvfree(rgb_degamma); |
| 2295 | } |
| 2296 | points->end_exponent = 0; |
| 2297 | points->x_point_at_y1_red = 1; |
| 2298 | points->x_point_at_y1_green = 1; |
| 2299 | points->x_point_at_y1_blue = 1; |
| 2300 | |
| 2301 | rgb_degamma_alloc_fail: |
| 2302 | return ret; |
| 2303 | } |