| File: | dev/pci/drm/amd/pm/powerplay/smumgr/vegam_smumgr.c |
| Warning: | line 1830, column 11 Value stored to 'hi_sidd' during its initialization is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* |
| 2 | * Copyright 2017 Advanced Micro Devices, Inc. |
| 3 | * |
| 4 | * Permission is hereby granted, free of charge, to any person obtaining a |
| 5 | * copy of this software and associated documentation files (the "Software"), |
| 6 | * to deal in the Software without restriction, including without limitation |
| 7 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| 8 | * and/or sell copies of the Software, and to permit persons to whom the |
| 9 | * Software is furnished to do so, subject to the following conditions: |
| 10 | * |
| 11 | * The above copyright notice and this permission notice shall be included in |
| 12 | * all copies or substantial portions of the Software. |
| 13 | * |
| 14 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 15 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 16 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| 17 | * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| 18 | * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| 19 | * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| 20 | * OTHER DEALINGS IN THE SOFTWARE. |
| 21 | * |
| 22 | */ |
| 23 | #include "pp_debug.h" |
| 24 | #include "smumgr.h" |
| 25 | #include "smu_ucode_xfer_vi.h" |
| 26 | #include "vegam_smumgr.h" |
| 27 | #include "smu/smu_7_1_3_d.h" |
| 28 | #include "smu/smu_7_1_3_sh_mask.h" |
| 29 | #include "gmc/gmc_8_1_d.h" |
| 30 | #include "gmc/gmc_8_1_sh_mask.h" |
| 31 | #include "oss/oss_3_0_d.h" |
| 32 | #include "gca/gfx_8_0_d.h" |
| 33 | #include "bif/bif_5_0_d.h" |
| 34 | #include "bif/bif_5_0_sh_mask.h" |
| 35 | #include "ppatomctrl.h" |
| 36 | #include "cgs_common.h" |
| 37 | #include "smu7_ppsmc.h" |
| 38 | |
| 39 | #include "smu7_dyn_defaults.h" |
| 40 | |
| 41 | #include "smu7_hwmgr.h" |
| 42 | #include "hardwaremanager.h" |
| 43 | #include "atombios.h" |
| 44 | #include "pppcielanes.h" |
| 45 | |
| 46 | #include "dce/dce_11_2_d.h" |
| 47 | #include "dce/dce_11_2_sh_mask.h" |
| 48 | |
| 49 | #define PPVEGAM_TARGETACTIVITY_DFLT50 50 |
| 50 | |
| 51 | #define VOLTAGE_VID_OFFSET_SCALE1625 625 |
| 52 | #define VOLTAGE_VID_OFFSET_SCALE2100 100 |
| 53 | #define POWERTUNE_DEFAULT_SET_MAX1 1 |
| 54 | #define VDDC_VDDCI_DELTA200 200 |
| 55 | #define MC_CG_ARB_FREQ_F10x0b 0x0b |
| 56 | |
| 57 | #define STRAP_ASIC_RO_LSB2168 2168 |
| 58 | #define STRAP_ASIC_RO_MSB2175 2175 |
| 59 | |
| 60 | #define PPSMC_MSG_ApplyAvfsCksOffVoltage((uint16_t) 0x415) ((uint16_t) 0x415) |
| 61 | #define PPSMC_MSG_EnableModeSwitchRLCNotification((uint16_t) 0x305) ((uint16_t) 0x305) |
| 62 | |
| 63 | static const struct vegam_pt_defaults |
| 64 | vegam_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX1] = { |
| 65 | /* sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt, |
| 66 | * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT */ |
| 67 | { 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000, |
| 68 | { 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61}, |
| 69 | { 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 } }, |
| 70 | }; |
| 71 | |
| 72 | static const sclkFcwRange_t Range_Table[NUM_SCLK_RANGE8] = { |
| 73 | {VCO_2_43, POSTDIV_DIV_BY_164, 75, 160, 112}, |
| 74 | {VCO_3_61, POSTDIV_DIV_BY_164, 112, 224, 160}, |
| 75 | {VCO_2_43, POSTDIV_DIV_BY_83, 75, 160, 112}, |
| 76 | {VCO_3_61, POSTDIV_DIV_BY_83, 112, 224, 160}, |
| 77 | {VCO_2_43, POSTDIV_DIV_BY_42, 75, 160, 112}, |
| 78 | {VCO_3_61, POSTDIV_DIV_BY_42, 112, 216, 160}, |
| 79 | {VCO_2_43, POSTDIV_DIV_BY_21, 75, 160, 108}, |
| 80 | {VCO_3_61, POSTDIV_DIV_BY_21, 112, 216, 160} }; |
| 81 | |
| 82 | static int vegam_smu_init(struct pp_hwmgr *hwmgr) |
| 83 | { |
| 84 | struct vegam_smumgr *smu_data; |
| 85 | |
| 86 | smu_data = kzalloc(sizeof(struct vegam_smumgr), GFP_KERNEL(0x0001 | 0x0004)); |
| 87 | if (smu_data == NULL((void *)0)) |
| 88 | return -ENOMEM12; |
| 89 | |
| 90 | hwmgr->smu_backend = smu_data; |
| 91 | |
| 92 | if (smu7_init(hwmgr)) { |
| 93 | kfree(smu_data); |
| 94 | return -EINVAL22; |
| 95 | } |
| 96 | |
| 97 | return 0; |
| 98 | } |
| 99 | |
| 100 | static int vegam_start_smu_in_protection_mode(struct pp_hwmgr *hwmgr) |
| 101 | { |
| 102 | int result = 0; |
| 103 | |
| 104 | /* Wait for smc boot up */ |
| 105 | /* PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(smumgr, SMC_IND, RCU_UC_EVENTS, boot_seq_done, 0) */ |
| 106 | |
| 107 | /* Assert reset */ |
| 108 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((1) << 0x0))))) |
| 109 | SMC_SYSCON_RESET_CNTL, rst_reg, 1)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((1) << 0x0))))); |
| 110 | |
| 111 | result = smu7_upload_smu_firmware_image(hwmgr); |
| 112 | if (result != 0) |
| 113 | return result; |
| 114 | |
| 115 | /* Clear status */ |
| 116 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMU_STATUS, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xe0003088,0)); |
| 117 | |
| 118 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000004,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000004))) & ~0x1) | (0x1 & ((0) << 0x0))))) |
| 119 | SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000004,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000004))) & ~0x1) | (0x1 & ((0) << 0x0))))); |
| 120 | |
| 121 | /* De-assert reset */ |
| 122 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((0) << 0x0))))) |
| 123 | SMC_SYSCON_RESET_CNTL, rst_reg, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((0) << 0x0))))); |
| 124 | |
| 125 | |
| 126 | PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS, INTERRUPTS_ENABLED, 1)phm_wait_on_indirect_register(hwmgr, 0x1AC, 0xc0000004, (1) << 0x10, 0x10000); |
| 127 | |
| 128 | |
| 129 | /* Call Test SMU message with 0x20000 offset to trigger SMU start */ |
| 130 | smu7_send_msg_to_smc_offset(hwmgr); |
| 131 | |
| 132 | /* Wait done bit to be set */ |
| 133 | /* Check pass/failed indicator */ |
| 134 | |
| 135 | PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, SMU_STATUS, SMU_DONE, 0)phm_wait_for_indirect_register_unequal(hwmgr, 0x1AC, 0xe0003088 , (0) << 0x0, 0x1); |
| 136 | |
| 137 | if (1 != PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xe0003088))) & 0x2) >> 0x1) |
| 138 | SMU_STATUS, SMU_PASS)((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xe0003088))) & 0x2) >> 0x1)) |
| 139 | PP_ASSERT_WITH_CODE(false, "SMU Firmware start failed!", return -1)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "SMU Firmware start failed!" ); return -1; } } while (0); |
| 140 | |
| 141 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixFIRMWARE_FLAGS, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x3f000,0)); |
| 142 | |
| 143 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((1) << 0x0))))) |
| 144 | SMC_SYSCON_RESET_CNTL, rst_reg, 1)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((1) << 0x0))))); |
| 145 | |
| 146 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((0) << 0x0))))) |
| 147 | SMC_SYSCON_RESET_CNTL, rst_reg, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((0) << 0x0))))); |
| 148 | |
| 149 | /* Wait for firmware to initialize */ |
| 150 | PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1)phm_wait_on_indirect_register(hwmgr, 0x1AC, 0x3f000, (1) << 0x0, 0x1); |
| 151 | |
| 152 | return result; |
| 153 | } |
| 154 | |
| 155 | static int vegam_start_smu_in_non_protection_mode(struct pp_hwmgr *hwmgr) |
| 156 | { |
| 157 | int result = 0; |
| 158 | |
| 159 | /* wait for smc boot up */ |
| 160 | PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, RCU_UC_EVENTS, boot_seq_done, 0)phm_wait_for_indirect_register_unequal(hwmgr, 0x1AC, 0xc0000004 , (0) << 0x7, 0x80); |
| 161 | |
| 162 | /* Clear firmware interrupt enable flag */ |
| 163 | /* PHM_WRITE_VFPF_INDIRECT_FIELD(pSmuMgr, SMC_IND, SMC_SYSCON_MISC_CNTL, pre_fetcher_en, 1); */ |
| 164 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x3f000,0)) |
| 165 | ixFIRMWARE_FLAGS, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x3f000,0)); |
| 166 | |
| 167 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((1) << 0x0))))) |
| 168 | SMC_SYSCON_RESET_CNTL,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((1) << 0x0))))) |
| 169 | rst_reg, 1)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((1) << 0x0))))); |
| 170 | |
| 171 | result = smu7_upload_smu_firmware_image(hwmgr); |
| 172 | if (result != 0) |
| 173 | return result; |
| 174 | |
| 175 | /* Set smc instruct start point at 0x0 */ |
| 176 | smu7_program_jump_on_start(hwmgr); |
| 177 | |
| 178 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000004,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000004))) & ~0x1) | (0x1 & ((0) << 0x0))))) |
| 179 | SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000004,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000004))) & ~0x1) | (0x1 & ((0) << 0x0))))); |
| 180 | |
| 181 | PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((0) << 0x0))))) |
| 182 | SMC_SYSCON_RESET_CNTL, rst_reg, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((0) << 0x0))))); |
| 183 | |
| 184 | /* Wait for firmware to initialize */ |
| 185 | |
| 186 | PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,phm_wait_on_indirect_register(hwmgr, 0x1AC, 0x3f000, (1) << 0x0, 0x1) |
| 187 | FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1)phm_wait_on_indirect_register(hwmgr, 0x1AC, 0x3f000, (1) << 0x0, 0x1); |
| 188 | |
| 189 | return result; |
| 190 | } |
| 191 | |
| 192 | static int vegam_start_smu(struct pp_hwmgr *hwmgr) |
| 193 | { |
| 194 | int result = 0; |
| 195 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| 196 | |
| 197 | /* Only start SMC if SMC RAM is not running */ |
| 198 | if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) { |
| 199 | smu_data->protected_mode = (uint8_t)(PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xe00030a4))) & 0x10000 ) >> 0x10) |
| 200 | CGS_IND_REG__SMC, SMU_FIRMWARE, SMU_MODE)((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xe00030a4))) & 0x10000 ) >> 0x10)); |
| 201 | smu_data->smu7_data.security_hard_key = (uint8_t)(PHM_READ_VFPF_INDIRECT_FIELD(((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xe00030a4))) & 0x20000 ) >> 0x11) |
| 202 | hwmgr->device, CGS_IND_REG__SMC, SMU_FIRMWARE, SMU_SEL)((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xe00030a4))) & 0x20000 ) >> 0x11)); |
| 203 | |
| 204 | /* Check if SMU is running in protected mode */ |
| 205 | if (smu_data->protected_mode == 0) |
| 206 | result = vegam_start_smu_in_non_protection_mode(hwmgr); |
| 207 | else |
| 208 | result = vegam_start_smu_in_protection_mode(hwmgr); |
| 209 | |
| 210 | if (result != 0) |
| 211 | PP_ASSERT_WITH_CODE(0, "Failed to load SMU ucode.", return result)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Failed to load SMU ucode." ); return result; } } while (0); |
| 212 | } |
| 213 | |
| 214 | /* Setup SoftRegsStart here for register lookup in case DummyBackEnd is used and ProcessFirmwareHeader is not executed */ |
| 215 | smu7_read_smc_sram_dword(hwmgr, |
| 216 | SMU7_FIRMWARE_HEADER_LOCATION0x20000 + offsetof(SMU75_Firmware_Header, SoftRegisters)__builtin_offsetof(SMU75_Firmware_Header, SoftRegisters), |
| 217 | &(smu_data->smu7_data.soft_regs_start), |
| 218 | 0x40000); |
| 219 | |
| 220 | result = smu7_request_smu_load_fw(hwmgr); |
| 221 | |
| 222 | return result; |
| 223 | } |
| 224 | |
| 225 | static int vegam_process_firmware_header(struct pp_hwmgr *hwmgr) |
| 226 | { |
| 227 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| 228 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 229 | uint32_t tmp; |
| 230 | int result; |
| 231 | bool_Bool error = false0; |
| 232 | |
| 233 | result = smu7_read_smc_sram_dword(hwmgr, |
| 234 | SMU7_FIRMWARE_HEADER_LOCATION0x20000 + |
| 235 | offsetof(SMU75_Firmware_Header, DpmTable)__builtin_offsetof(SMU75_Firmware_Header, DpmTable), |
| 236 | &tmp, SMC_RAM_END0x40000); |
| 237 | |
| 238 | if (0 == result) |
| 239 | smu_data->smu7_data.dpm_table_start = tmp; |
| 240 | |
| 241 | error |= (0 != result); |
| 242 | |
| 243 | result = smu7_read_smc_sram_dword(hwmgr, |
| 244 | SMU7_FIRMWARE_HEADER_LOCATION0x20000 + |
| 245 | offsetof(SMU75_Firmware_Header, SoftRegisters)__builtin_offsetof(SMU75_Firmware_Header, SoftRegisters), |
| 246 | &tmp, SMC_RAM_END0x40000); |
| 247 | |
| 248 | if (!result) { |
| 249 | data->soft_regs_start = tmp; |
| 250 | smu_data->smu7_data.soft_regs_start = tmp; |
| 251 | } |
| 252 | |
| 253 | error |= (0 != result); |
| 254 | |
| 255 | result = smu7_read_smc_sram_dword(hwmgr, |
| 256 | SMU7_FIRMWARE_HEADER_LOCATION0x20000 + |
| 257 | offsetof(SMU75_Firmware_Header, mcRegisterTable)__builtin_offsetof(SMU75_Firmware_Header, mcRegisterTable), |
| 258 | &tmp, SMC_RAM_END0x40000); |
| 259 | |
| 260 | if (!result) |
| 261 | smu_data->smu7_data.mc_reg_table_start = tmp; |
| 262 | |
| 263 | result = smu7_read_smc_sram_dword(hwmgr, |
| 264 | SMU7_FIRMWARE_HEADER_LOCATION0x20000 + |
| 265 | offsetof(SMU75_Firmware_Header, FanTable)__builtin_offsetof(SMU75_Firmware_Header, FanTable), |
| 266 | &tmp, SMC_RAM_END0x40000); |
| 267 | |
| 268 | if (!result) |
| 269 | smu_data->smu7_data.fan_table_start = tmp; |
| 270 | |
| 271 | error |= (0 != result); |
| 272 | |
| 273 | result = smu7_read_smc_sram_dword(hwmgr, |
| 274 | SMU7_FIRMWARE_HEADER_LOCATION0x20000 + |
| 275 | offsetof(SMU75_Firmware_Header, mcArbDramTimingTable)__builtin_offsetof(SMU75_Firmware_Header, mcArbDramTimingTable ), |
| 276 | &tmp, SMC_RAM_END0x40000); |
| 277 | |
| 278 | if (!result) |
| 279 | smu_data->smu7_data.arb_table_start = tmp; |
| 280 | |
| 281 | error |= (0 != result); |
| 282 | |
| 283 | result = smu7_read_smc_sram_dword(hwmgr, |
| 284 | SMU7_FIRMWARE_HEADER_LOCATION0x20000 + |
| 285 | offsetof(SMU75_Firmware_Header, Version)__builtin_offsetof(SMU75_Firmware_Header, Version), |
| 286 | &tmp, SMC_RAM_END0x40000); |
| 287 | |
| 288 | if (!result) |
| 289 | hwmgr->microcode_version_info.SMC = tmp; |
| 290 | |
| 291 | error |= (0 != result); |
| 292 | |
| 293 | return error ? -1 : 0; |
| 294 | } |
| 295 | |
| 296 | static bool_Bool vegam_is_dpm_running(struct pp_hwmgr *hwmgr) |
| 297 | { |
| 298 | return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x3f010))) & 0x2000) >> 0xd) |
| 299 | CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON)((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x3f010))) & 0x2000) >> 0xd)) |
| 300 | ? true1 : false0; |
| 301 | } |
| 302 | |
| 303 | static uint32_t vegam_get_mac_definition(uint32_t value) |
| 304 | { |
| 305 | switch (value) { |
| 306 | case SMU_MAX_LEVELS_GRAPHICS: |
| 307 | return SMU75_MAX_LEVELS_GRAPHICS8; |
| 308 | case SMU_MAX_LEVELS_MEMORY: |
| 309 | return SMU75_MAX_LEVELS_MEMORY4; |
| 310 | case SMU_MAX_LEVELS_LINK: |
| 311 | return SMU75_MAX_LEVELS_LINK8; |
| 312 | case SMU_MAX_ENTRIES_SMIO: |
| 313 | return SMU75_MAX_ENTRIES_SMIO32; |
| 314 | case SMU_MAX_LEVELS_VDDC: |
| 315 | return SMU75_MAX_LEVELS_VDDC16; |
| 316 | case SMU_MAX_LEVELS_VDDGFX: |
| 317 | return SMU75_MAX_LEVELS_VDDGFX16; |
| 318 | case SMU_MAX_LEVELS_VDDCI: |
| 319 | return SMU75_MAX_LEVELS_VDDCI8; |
| 320 | case SMU_MAX_LEVELS_MVDD: |
| 321 | return SMU75_MAX_LEVELS_MVDD4; |
| 322 | case SMU_UVD_MCLK_HANDSHAKE_DISABLE: |
| 323 | return SMU7_UVD_MCLK_HANDSHAKE_DISABLE0x00000100 | |
| 324 | SMU7_VCE_MCLK_HANDSHAKE_DISABLE0x00010000; |
| 325 | } |
| 326 | |
| 327 | pr_warn("can't get the mac of %x\n", value)printk("\0014" "amdgpu: " "can't get the mac of %x\n", value); |
| 328 | return 0; |
| 329 | } |
| 330 | |
| 331 | static int vegam_update_uvd_smc_table(struct pp_hwmgr *hwmgr) |
| 332 | { |
| 333 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| 334 | uint32_t mm_boot_level_offset, mm_boot_level_value; |
| 335 | struct phm_ppt_v1_information *table_info = |
| 336 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| 337 | |
| 338 | smu_data->smc_state_table.UvdBootLevel = 0; |
| 339 | if (table_info->mm_dep_table->count > 0) |
| 340 | smu_data->smc_state_table.UvdBootLevel = |
| 341 | (uint8_t) (table_info->mm_dep_table->count - 1); |
| 342 | mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU75_Discrete_DpmTable,__builtin_offsetof(SMU75_Discrete_DpmTable, UvdBootLevel) |
| 343 | UvdBootLevel)__builtin_offsetof(SMU75_Discrete_DpmTable, UvdBootLevel); |
| 344 | mm_boot_level_offset /= 4; |
| 345 | mm_boot_level_offset *= 4; |
| 346 | mm_boot_level_value = cgs_read_ind_register(hwmgr->device,(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset)) |
| 347 | CGS_IND_REG__SMC, mm_boot_level_offset)(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset)); |
| 348 | mm_boot_level_value &= 0x00FFFFFF; |
| 349 | mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24; |
| 350 | cgs_write_ind_register(hwmgr->device,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset,mm_boot_level_value )) |
| 351 | CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset,mm_boot_level_value )); |
| 352 | |
| 353 | if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| 354 | PHM_PlatformCaps_UVDDPM) || |
| 355 | phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| 356 | PHM_PlatformCaps_StablePState)) |
| 357 | smum_send_msg_to_smc_with_parameter(hwmgr, |
| 358 | PPSMC_MSG_UVDDPM_SetEnabledMask((uint16_t) 0x12D), |
| 359 | (uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel), |
| 360 | NULL((void *)0)); |
| 361 | return 0; |
| 362 | } |
| 363 | |
| 364 | static int vegam_update_vce_smc_table(struct pp_hwmgr *hwmgr) |
| 365 | { |
| 366 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| 367 | uint32_t mm_boot_level_offset, mm_boot_level_value; |
| 368 | struct phm_ppt_v1_information *table_info = |
| 369 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| 370 | |
| 371 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| 372 | PHM_PlatformCaps_StablePState)) |
| 373 | smu_data->smc_state_table.VceBootLevel = |
| 374 | (uint8_t) (table_info->mm_dep_table->count - 1); |
| 375 | else |
| 376 | smu_data->smc_state_table.VceBootLevel = 0; |
| 377 | |
| 378 | mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + |
| 379 | offsetof(SMU75_Discrete_DpmTable, VceBootLevel)__builtin_offsetof(SMU75_Discrete_DpmTable, VceBootLevel); |
| 380 | mm_boot_level_offset /= 4; |
| 381 | mm_boot_level_offset *= 4; |
| 382 | mm_boot_level_value = cgs_read_ind_register(hwmgr->device,(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset)) |
| 383 | CGS_IND_REG__SMC, mm_boot_level_offset)(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset)); |
| 384 | mm_boot_level_value &= 0xFF00FFFF; |
| 385 | mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16; |
| 386 | cgs_write_ind_register(hwmgr->device,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset,mm_boot_level_value )) |
| 387 | CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,mm_boot_level_offset,mm_boot_level_value )); |
| 388 | |
| 389 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) |
| 390 | smum_send_msg_to_smc_with_parameter(hwmgr, |
| 391 | PPSMC_MSG_VCEDPM_SetEnabledMask((uint16_t) 0x12E), |
| 392 | (uint32_t)1 << smu_data->smc_state_table.VceBootLevel, |
| 393 | NULL((void *)0)); |
| 394 | return 0; |
| 395 | } |
| 396 | |
| 397 | static int vegam_update_bif_smc_table(struct pp_hwmgr *hwmgr) |
| 398 | { |
| 399 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| 400 | struct phm_ppt_v1_information *table_info = |
| 401 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| 402 | struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table; |
| 403 | int max_entry, i; |
| 404 | |
| 405 | max_entry = (SMU75_MAX_LEVELS_LINK8 < pcie_table->count) ? |
| 406 | SMU75_MAX_LEVELS_LINK8 : |
| 407 | pcie_table->count; |
| 408 | /* Setup BIF_SCLK levels */ |
| 409 | for (i = 0; i < max_entry; i++) |
| 410 | smu_data->bif_sclk_table[i] = pcie_table->entries[i].pcie_sclk; |
| 411 | return 0; |
| 412 | } |
| 413 | |
| 414 | static int vegam_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type) |
| 415 | { |
| 416 | switch (type) { |
| 417 | case SMU_UVD_TABLE: |
| 418 | vegam_update_uvd_smc_table(hwmgr); |
| 419 | break; |
| 420 | case SMU_VCE_TABLE: |
| 421 | vegam_update_vce_smc_table(hwmgr); |
| 422 | break; |
| 423 | case SMU_BIF_TABLE: |
| 424 | vegam_update_bif_smc_table(hwmgr); |
| 425 | break; |
| 426 | default: |
| 427 | break; |
| 428 | } |
| 429 | return 0; |
| 430 | } |
| 431 | |
| 432 | static void vegam_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr) |
| 433 | { |
| 434 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| 435 | struct phm_ppt_v1_information *table_info = |
| 436 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| 437 | |
| 438 | if (table_info && |
| 439 | table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX1 && |
| 440 | table_info->cac_dtp_table->usPowerTuneDataSetID) |
| 441 | smu_data->power_tune_defaults = |
| 442 | &vegam_power_tune_data_set_array |
| 443 | [table_info->cac_dtp_table->usPowerTuneDataSetID - 1]; |
| 444 | else |
| 445 | smu_data->power_tune_defaults = &vegam_power_tune_data_set_array[0]; |
| 446 | |
| 447 | } |
| 448 | |
| 449 | static int vegam_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr, |
| 450 | SMU75_Discrete_DpmTable *table) |
| 451 | { |
| 452 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 453 | uint32_t count, level; |
| 454 | |
| 455 | if (SMU7_VOLTAGE_CONTROL_BY_GPIO0x1 == data->mvdd_control) { |
| 456 | count = data->mvdd_voltage_table.count; |
| 457 | if (count > SMU_MAX_SMIO_LEVELS4) |
| 458 | count = SMU_MAX_SMIO_LEVELS4; |
| 459 | for (level = 0; level < count; level++) { |
| 460 | table->SmioTable2.Pattern[level].Voltage = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(data->mvdd_voltage_table .entries[level].value * 4) ? (__uint16_t)(((__uint16_t)(data-> mvdd_voltage_table.entries[level].value * 4) & 0xffU) << 8 | ((__uint16_t)(data->mvdd_voltage_table.entries[level] .value * 4) & 0xff00U) >> 8) : __swap16md(data-> mvdd_voltage_table.entries[level].value * 4)) |
| 461 | data->mvdd_voltage_table.entries[level].value * VOLTAGE_SCALE)(__uint16_t)(__builtin_constant_p(data->mvdd_voltage_table .entries[level].value * 4) ? (__uint16_t)(((__uint16_t)(data-> mvdd_voltage_table.entries[level].value * 4) & 0xffU) << 8 | ((__uint16_t)(data->mvdd_voltage_table.entries[level] .value * 4) & 0xff00U) >> 8) : __swap16md(data-> mvdd_voltage_table.entries[level].value * 4)); |
| 462 | /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/ |
| 463 | table->SmioTable2.Pattern[level].Smio = |
| 464 | (uint8_t) level; |
| 465 | table->Smio[level] |= |
| 466 | data->mvdd_voltage_table.entries[level].smio_low; |
| 467 | } |
| 468 | table->SmioMask2 = data->mvdd_voltage_table.mask_low; |
| 469 | |
| 470 | table->MvddLevelCount = (uint32_t) PP_HOST_TO_SMC_UL(count)(__uint32_t)(__builtin_constant_p(count) ? (__uint32_t)(((__uint32_t )(count) & 0xff) << 24 | ((__uint32_t)(count) & 0xff00) << 8 | ((__uint32_t)(count) & 0xff0000) >> 8 | ((__uint32_t)(count) & 0xff000000) >> 24) : __swap32md (count)); |
| 471 | } |
| 472 | |
| 473 | return 0; |
| 474 | } |
| 475 | |
| 476 | static int vegam_populate_smc_vddci_table(struct pp_hwmgr *hwmgr, |
| 477 | struct SMU75_Discrete_DpmTable *table) |
| 478 | { |
| 479 | uint32_t count, level; |
| 480 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 481 | |
| 482 | count = data->vddci_voltage_table.count; |
| 483 | |
| 484 | if (SMU7_VOLTAGE_CONTROL_BY_GPIO0x1 == data->vddci_control) { |
| 485 | if (count > SMU_MAX_SMIO_LEVELS4) |
| 486 | count = SMU_MAX_SMIO_LEVELS4; |
| 487 | for (level = 0; level < count; ++level) { |
| 488 | table->SmioTable1.Pattern[level].Voltage = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(data->vddci_voltage_table .entries[level].value * 4) ? (__uint16_t)(((__uint16_t)(data-> vddci_voltage_table.entries[level].value * 4) & 0xffU) << 8 | ((__uint16_t)(data->vddci_voltage_table.entries[level ].value * 4) & 0xff00U) >> 8) : __swap16md(data-> vddci_voltage_table.entries[level].value * 4)) |
| 489 | data->vddci_voltage_table.entries[level].value * VOLTAGE_SCALE)(__uint16_t)(__builtin_constant_p(data->vddci_voltage_table .entries[level].value * 4) ? (__uint16_t)(((__uint16_t)(data-> vddci_voltage_table.entries[level].value * 4) & 0xffU) << 8 | ((__uint16_t)(data->vddci_voltage_table.entries[level ].value * 4) & 0xff00U) >> 8) : __swap16md(data-> vddci_voltage_table.entries[level].value * 4)); |
| 490 | table->SmioTable1.Pattern[level].Smio = (uint8_t) level; |
| 491 | |
| 492 | table->Smio[level] |= data->vddci_voltage_table.entries[level].smio_low; |
| 493 | } |
| 494 | } |
| 495 | |
| 496 | table->SmioMask1 = data->vddci_voltage_table.mask_low; |
| 497 | |
| 498 | return 0; |
| 499 | } |
| 500 | |
| 501 | static int vegam_populate_cac_table(struct pp_hwmgr *hwmgr, |
| 502 | struct SMU75_Discrete_DpmTable *table) |
| 503 | { |
| 504 | uint32_t count; |
| 505 | uint8_t index; |
| 506 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 507 | struct phm_ppt_v1_information *table_info = |
| 508 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| 509 | struct phm_ppt_v1_voltage_lookup_table *lookup_table = |
| 510 | table_info->vddc_lookup_table; |
| 511 | /* tables is already swapped, so in order to use the value from it, |
| 512 | * we need to swap it back. |
| 513 | * We are populating vddc CAC data to BapmVddc table |
| 514 | * in split and merged mode |
| 515 | */ |
| 516 | for (count = 0; count < lookup_table->count; count++) { |
| 517 | index = phm_get_voltage_index(lookup_table, |
| 518 | data->vddc_voltage_table.entries[count].value); |
| 519 | table->BapmVddcVidLoSidd[count] = |
| 520 | convert_to_vid(lookup_table->entries[index].us_cac_low); |
| 521 | table->BapmVddcVidHiSidd[count] = |
| 522 | convert_to_vid(lookup_table->entries[index].us_cac_mid); |
| 523 | table->BapmVddcVidHiSidd2[count] = |
| 524 | convert_to_vid(lookup_table->entries[index].us_cac_high); |
| 525 | } |
| 526 | |
| 527 | return 0; |
| 528 | } |
| 529 | |
| 530 | static int vegam_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr, |
| 531 | struct SMU75_Discrete_DpmTable *table) |
| 532 | { |
| 533 | vegam_populate_smc_vddci_table(hwmgr, table); |
| 534 | vegam_populate_smc_mvdd_table(hwmgr, table); |
| 535 | vegam_populate_cac_table(hwmgr, table); |
| 536 | |
| 537 | return 0; |
| 538 | } |
| 539 | |
| 540 | static int vegam_populate_ulv_level(struct pp_hwmgr *hwmgr, |
| 541 | struct SMU75_Discrete_Ulv *state) |
| 542 | { |
| 543 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 544 | struct phm_ppt_v1_information *table_info = |
| 545 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| 546 | |
| 547 | state->CcPwrDynRm = 0; |
| 548 | state->CcPwrDynRm1 = 0; |
| 549 | |
| 550 | state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset; |
| 551 | state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset * |
| 552 | VOLTAGE_VID_OFFSET_SCALE2100 / VOLTAGE_VID_OFFSET_SCALE1625); |
| 553 | |
| 554 | state->VddcPhase = data->vddc_phase_shed_control ^ 0x3; |
| 555 | |
| 556 | CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm)((state->CcPwrDynRm) = (__uint32_t)(__builtin_constant_p(state ->CcPwrDynRm) ? (__uint32_t)(((__uint32_t)(state->CcPwrDynRm ) & 0xff) << 24 | ((__uint32_t)(state->CcPwrDynRm ) & 0xff00) << 8 | ((__uint32_t)(state->CcPwrDynRm ) & 0xff0000) >> 8 | ((__uint32_t)(state->CcPwrDynRm ) & 0xff000000) >> 24) : __swap32md(state->CcPwrDynRm ))); |
| 557 | CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1)((state->CcPwrDynRm1) = (__uint32_t)(__builtin_constant_p( state->CcPwrDynRm1) ? (__uint32_t)(((__uint32_t)(state-> CcPwrDynRm1) & 0xff) << 24 | ((__uint32_t)(state-> CcPwrDynRm1) & 0xff00) << 8 | ((__uint32_t)(state-> CcPwrDynRm1) & 0xff0000) >> 8 | ((__uint32_t)(state ->CcPwrDynRm1) & 0xff000000) >> 24) : __swap32md (state->CcPwrDynRm1))); |
| 558 | CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset)((state->VddcOffset) = (__uint16_t)(__builtin_constant_p(state ->VddcOffset) ? (__uint16_t)(((__uint16_t)(state->VddcOffset ) & 0xffU) << 8 | ((__uint16_t)(state->VddcOffset ) & 0xff00U) >> 8) : __swap16md(state->VddcOffset ))); |
| 559 | |
| 560 | return 0; |
| 561 | } |
| 562 | |
| 563 | static int vegam_populate_ulv_state(struct pp_hwmgr *hwmgr, |
| 564 | struct SMU75_Discrete_DpmTable *table) |
| 565 | { |
| 566 | return vegam_populate_ulv_level(hwmgr, &table->Ulv); |
| 567 | } |
| 568 | |
| 569 | static int vegam_populate_smc_link_level(struct pp_hwmgr *hwmgr, |
| 570 | struct SMU75_Discrete_DpmTable *table) |
| 571 | { |
| 572 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 573 | struct vegam_smumgr *smu_data = |
| 574 | (struct vegam_smumgr *)(hwmgr->smu_backend); |
| 575 | struct smu7_dpm_table *dpm_table = &data->dpm_table; |
| 576 | int i; |
| 577 | |
| 578 | /* Index (dpm_table->pcie_speed_table.count) |
| 579 | * is reserved for PCIE boot level. */ |
| 580 | for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) { |
| 581 | table->LinkLevel[i].PcieGenSpeed = |
| 582 | (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value; |
| 583 | table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width( |
| 584 | dpm_table->pcie_speed_table.dpm_levels[i].param1); |
| 585 | table->LinkLevel[i].EnabledForActivity = 1; |
| 586 | table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff); |
| 587 | table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5)(__uint32_t)(__builtin_constant_p(5) ? (__uint32_t)(((__uint32_t )(5) & 0xff) << 24 | ((__uint32_t)(5) & 0xff00) << 8 | ((__uint32_t)(5) & 0xff0000) >> 8 | ( (__uint32_t)(5) & 0xff000000) >> 24) : __swap32md(5 )); |
| 588 | table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30)(__uint32_t)(__builtin_constant_p(30) ? (__uint32_t)(((__uint32_t )(30) & 0xff) << 24 | ((__uint32_t)(30) & 0xff00 ) << 8 | ((__uint32_t)(30) & 0xff0000) >> 8 | ((__uint32_t)(30) & 0xff000000) >> 24) : __swap32md (30)); |
| 589 | } |
| 590 | |
| 591 | smu_data->smc_state_table.LinkLevelCount = |
| 592 | (uint8_t)dpm_table->pcie_speed_table.count; |
| 593 | |
| 594 | /* To Do move to hwmgr */ |
| 595 | data->dpm_level_enable_mask.pcie_dpm_enable_mask = |
| 596 | phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table); |
| 597 | |
| 598 | return 0; |
| 599 | } |
| 600 | |
| 601 | static int vegam_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr, |
| 602 | struct phm_ppt_v1_clock_voltage_dependency_table *dep_table, |
| 603 | uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd) |
| 604 | { |
| 605 | uint32_t i; |
| 606 | uint16_t vddci; |
| 607 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 608 | |
| 609 | *voltage = *mvdd = 0; |
| 610 | |
| 611 | /* clock - voltage dependency table is empty table */ |
| 612 | if (dep_table->count == 0) |
| 613 | return -EINVAL22; |
| 614 | |
| 615 | for (i = 0; i < dep_table->count; i++) { |
| 616 | /* find first sclk bigger than request */ |
| 617 | if (dep_table->entries[i].clk >= clock) { |
| 618 | *voltage |= (dep_table->entries[i].vddc * |
| 619 | VOLTAGE_SCALE4) << VDDC_SHIFT0; |
| 620 | if (SMU7_VOLTAGE_CONTROL_NONE0x0 == data->vddci_control) |
| 621 | *voltage |= (data->vbios_boot_state.vddci_bootup_value * |
| 622 | VOLTAGE_SCALE4) << VDDCI_SHIFT15; |
| 623 | else if (dep_table->entries[i].vddci) |
| 624 | *voltage |= (dep_table->entries[i].vddci * |
| 625 | VOLTAGE_SCALE4) << VDDCI_SHIFT15; |
| 626 | else { |
| 627 | vddci = phm_find_closest_vddci(&(data->vddci_voltage_table), |
| 628 | (dep_table->entries[i].vddc - |
| 629 | (uint16_t)VDDC_VDDCI_DELTA200)); |
| 630 | *voltage |= (vddci * VOLTAGE_SCALE4) << VDDCI_SHIFT15; |
| 631 | } |
| 632 | |
| 633 | if (SMU7_VOLTAGE_CONTROL_NONE0x0 == data->mvdd_control) |
| 634 | *mvdd = data->vbios_boot_state.mvdd_bootup_value * |
| 635 | VOLTAGE_SCALE4; |
| 636 | else if (dep_table->entries[i].mvdd) |
| 637 | *mvdd = (uint32_t) dep_table->entries[i].mvdd * |
| 638 | VOLTAGE_SCALE4; |
| 639 | |
| 640 | *voltage |= 1 << PHASES_SHIFT30; |
| 641 | return 0; |
| 642 | } |
| 643 | } |
| 644 | |
| 645 | /* sclk is bigger than max sclk in the dependence table */ |
| 646 | *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE4) << VDDC_SHIFT0; |
| 647 | |
| 648 | if (SMU7_VOLTAGE_CONTROL_NONE0x0 == data->vddci_control) |
| 649 | *voltage |= (data->vbios_boot_state.vddci_bootup_value * |
| 650 | VOLTAGE_SCALE4) << VDDCI_SHIFT15; |
| 651 | else if (dep_table->entries[i - 1].vddci) |
| 652 | *voltage |= (dep_table->entries[i - 1].vddci * |
| 653 | VOLTAGE_SCALE4) << VDDC_SHIFT0; |
| 654 | else { |
| 655 | vddci = phm_find_closest_vddci(&(data->vddci_voltage_table), |
| 656 | (dep_table->entries[i - 1].vddc - |
| 657 | (uint16_t)VDDC_VDDCI_DELTA200)); |
| 658 | |
| 659 | *voltage |= (vddci * VOLTAGE_SCALE4) << VDDCI_SHIFT15; |
| 660 | } |
| 661 | |
| 662 | if (SMU7_VOLTAGE_CONTROL_NONE0x0 == data->mvdd_control) |
| 663 | *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE4; |
| 664 | else if (dep_table->entries[i].mvdd) |
| 665 | *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE4; |
| 666 | |
| 667 | return 0; |
| 668 | } |
| 669 | |
| 670 | static void vegam_get_sclk_range_table(struct pp_hwmgr *hwmgr, |
| 671 | SMU75_Discrete_DpmTable *table) |
| 672 | { |
| 673 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| 674 | uint32_t i, ref_clk; |
| 675 | |
| 676 | struct pp_atom_ctrl_sclk_range_table range_table_from_vbios = { { {0} } }; |
| 677 | |
| 678 | ref_clk = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev)((struct amdgpu_device *)hwmgr->adev)->asic_funcs->get_xclk (((struct amdgpu_device *)hwmgr->adev)); |
| 679 | |
| 680 | if (0 == atomctrl_get_smc_sclk_range_table(hwmgr, &range_table_from_vbios)) { |
| 681 | for (i = 0; i < NUM_SCLK_RANGE8; i++) { |
| 682 | table->SclkFcwRangeTable[i].vco_setting = |
| 683 | range_table_from_vbios.entry[i].ucVco_setting; |
| 684 | table->SclkFcwRangeTable[i].postdiv = |
| 685 | range_table_from_vbios.entry[i].ucPostdiv; |
| 686 | table->SclkFcwRangeTable[i].fcw_pcc = |
| 687 | range_table_from_vbios.entry[i].usFcw_pcc; |
| 688 | |
| 689 | table->SclkFcwRangeTable[i].fcw_trans_upper = |
| 690 | range_table_from_vbios.entry[i].usFcw_trans_upper; |
| 691 | table->SclkFcwRangeTable[i].fcw_trans_lower = |
| 692 | range_table_from_vbios.entry[i].usRcw_trans_lower; |
| 693 | |
| 694 | CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc)((table->SclkFcwRangeTable[i].fcw_pcc) = (__uint16_t)(__builtin_constant_p (table->SclkFcwRangeTable[i].fcw_pcc) ? (__uint16_t)(((__uint16_t )(table->SclkFcwRangeTable[i].fcw_pcc) & 0xffU) << 8 | ((__uint16_t)(table->SclkFcwRangeTable[i].fcw_pcc) & 0xff00U) >> 8) : __swap16md(table->SclkFcwRangeTable [i].fcw_pcc))); |
| 695 | CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper)((table->SclkFcwRangeTable[i].fcw_trans_upper) = (__uint16_t )(__builtin_constant_p(table->SclkFcwRangeTable[i].fcw_trans_upper ) ? (__uint16_t)(((__uint16_t)(table->SclkFcwRangeTable[i] .fcw_trans_upper) & 0xffU) << 8 | ((__uint16_t)(table ->SclkFcwRangeTable[i].fcw_trans_upper) & 0xff00U) >> 8) : __swap16md(table->SclkFcwRangeTable[i].fcw_trans_upper ))); |
| 696 | CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower)((table->SclkFcwRangeTable[i].fcw_trans_lower) = (__uint16_t )(__builtin_constant_p(table->SclkFcwRangeTable[i].fcw_trans_lower ) ? (__uint16_t)(((__uint16_t)(table->SclkFcwRangeTable[i] .fcw_trans_lower) & 0xffU) << 8 | ((__uint16_t)(table ->SclkFcwRangeTable[i].fcw_trans_lower) & 0xff00U) >> 8) : __swap16md(table->SclkFcwRangeTable[i].fcw_trans_lower ))); |
| 697 | } |
| 698 | return; |
| 699 | } |
| 700 | |
| 701 | for (i = 0; i < NUM_SCLK_RANGE8; i++) { |
| 702 | smu_data->range_table[i].trans_lower_frequency = |
| 703 | (ref_clk * Range_Table[i].fcw_trans_lower) >> Range_Table[i].postdiv; |
| 704 | smu_data->range_table[i].trans_upper_frequency = |
| 705 | (ref_clk * Range_Table[i].fcw_trans_upper) >> Range_Table[i].postdiv; |
| 706 | |
| 707 | table->SclkFcwRangeTable[i].vco_setting = Range_Table[i].vco_setting; |
| 708 | table->SclkFcwRangeTable[i].postdiv = Range_Table[i].postdiv; |
| 709 | table->SclkFcwRangeTable[i].fcw_pcc = Range_Table[i].fcw_pcc; |
| 710 | |
| 711 | table->SclkFcwRangeTable[i].fcw_trans_upper = Range_Table[i].fcw_trans_upper; |
| 712 | table->SclkFcwRangeTable[i].fcw_trans_lower = Range_Table[i].fcw_trans_lower; |
| 713 | |
| 714 | CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc)((table->SclkFcwRangeTable[i].fcw_pcc) = (__uint16_t)(__builtin_constant_p (table->SclkFcwRangeTable[i].fcw_pcc) ? (__uint16_t)(((__uint16_t )(table->SclkFcwRangeTable[i].fcw_pcc) & 0xffU) << 8 | ((__uint16_t)(table->SclkFcwRangeTable[i].fcw_pcc) & 0xff00U) >> 8) : __swap16md(table->SclkFcwRangeTable [i].fcw_pcc))); |
| 715 | CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper)((table->SclkFcwRangeTable[i].fcw_trans_upper) = (__uint16_t )(__builtin_constant_p(table->SclkFcwRangeTable[i].fcw_trans_upper ) ? (__uint16_t)(((__uint16_t)(table->SclkFcwRangeTable[i] .fcw_trans_upper) & 0xffU) << 8 | ((__uint16_t)(table ->SclkFcwRangeTable[i].fcw_trans_upper) & 0xff00U) >> 8) : __swap16md(table->SclkFcwRangeTable[i].fcw_trans_upper ))); |
| 716 | CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower)((table->SclkFcwRangeTable[i].fcw_trans_lower) = (__uint16_t )(__builtin_constant_p(table->SclkFcwRangeTable[i].fcw_trans_lower ) ? (__uint16_t)(((__uint16_t)(table->SclkFcwRangeTable[i] .fcw_trans_lower) & 0xffU) << 8 | ((__uint16_t)(table ->SclkFcwRangeTable[i].fcw_trans_lower) & 0xff00U) >> 8) : __swap16md(table->SclkFcwRangeTable[i].fcw_trans_lower ))); |
| 717 | } |
| 718 | } |
| 719 | |
| 720 | static int vegam_calculate_sclk_params(struct pp_hwmgr *hwmgr, |
| 721 | uint32_t clock, SMU_SclkSetting *sclk_setting) |
| 722 | { |
| 723 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| 724 | const SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table); |
| 725 | struct pp_atomctrl_clock_dividers_ai dividers; |
| 726 | uint32_t ref_clock; |
| 727 | uint32_t pcc_target_percent, pcc_target_freq, ss_target_percent, ss_target_freq; |
| 728 | uint8_t i; |
| 729 | int result; |
| 730 | uint64_t temp; |
| 731 | |
| 732 | sclk_setting->SclkFrequency = clock; |
| 733 | /* get the engine clock dividers for this clock value */ |
| 734 | result = atomctrl_get_engine_pll_dividers_ai(hwmgr, clock, ÷rs); |
| 735 | if (result == 0) { |
| 736 | sclk_setting->Fcw_int = dividers.usSclk_fcw_int; |
| 737 | sclk_setting->Fcw_frac = dividers.usSclk_fcw_frac; |
| 738 | sclk_setting->Pcc_fcw_int = dividers.usPcc_fcw_int; |
| 739 | sclk_setting->PllRange = dividers.ucSclkPllRange; |
| 740 | sclk_setting->Sclk_slew_rate = 0x400; |
| 741 | sclk_setting->Pcc_up_slew_rate = dividers.usPcc_fcw_slew_frac; |
| 742 | sclk_setting->Pcc_down_slew_rate = 0xffff; |
| 743 | sclk_setting->SSc_En = dividers.ucSscEnable; |
| 744 | sclk_setting->Fcw1_int = dividers.usSsc_fcw1_int; |
| 745 | sclk_setting->Fcw1_frac = dividers.usSsc_fcw1_frac; |
| 746 | sclk_setting->Sclk_ss_slew_rate = dividers.usSsc_fcw_slew_frac; |
| 747 | return result; |
| 748 | } |
| 749 | |
| 750 | ref_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev)((struct amdgpu_device *)hwmgr->adev)->asic_funcs->get_xclk (((struct amdgpu_device *)hwmgr->adev)); |
| 751 | |
| 752 | for (i = 0; i < NUM_SCLK_RANGE8; i++) { |
| 753 | if (clock > smu_data->range_table[i].trans_lower_frequency |
| 754 | && clock <= smu_data->range_table[i].trans_upper_frequency) { |
| 755 | sclk_setting->PllRange = i; |
| 756 | break; |
| 757 | } |
| 758 | } |
| 759 | |
| 760 | sclk_setting->Fcw_int = (uint16_t) |
| 761 | ((clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / |
| 762 | ref_clock); |
| 763 | temp = clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv; |
| 764 | temp <<= 0x10; |
| 765 | do_div(temp, ref_clock)({ uint32_t __base = (ref_clock); uint32_t __rem = ((uint64_t )(temp)) % __base; (temp) = ((uint64_t)(temp)) / __base; __rem ; }); |
| 766 | sclk_setting->Fcw_frac = temp & 0xffff; |
| 767 | |
| 768 | pcc_target_percent = 10; /* Hardcode 10% for now. */ |
| 769 | pcc_target_freq = clock - (clock * pcc_target_percent / 100); |
| 770 | sclk_setting->Pcc_fcw_int = (uint16_t) |
| 771 | ((pcc_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / |
| 772 | ref_clock); |
| 773 | |
| 774 | ss_target_percent = 2; /* Hardcode 2% for now. */ |
| 775 | sclk_setting->SSc_En = 0; |
| 776 | if (ss_target_percent) { |
| 777 | sclk_setting->SSc_En = 1; |
| 778 | ss_target_freq = clock - (clock * ss_target_percent / 100); |
| 779 | sclk_setting->Fcw1_int = (uint16_t) |
| 780 | ((ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / |
| 781 | ref_clock); |
| 782 | temp = ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv; |
| 783 | temp <<= 0x10; |
| 784 | do_div(temp, ref_clock)({ uint32_t __base = (ref_clock); uint32_t __rem = ((uint64_t )(temp)) % __base; (temp) = ((uint64_t)(temp)) / __base; __rem ; }); |
| 785 | sclk_setting->Fcw1_frac = temp & 0xffff; |
| 786 | } |
| 787 | |
| 788 | return 0; |
| 789 | } |
| 790 | |
| 791 | static uint8_t vegam_get_sleep_divider_id_from_clock(uint32_t clock, |
| 792 | uint32_t clock_insr) |
| 793 | { |
| 794 | uint8_t i; |
| 795 | uint32_t temp; |
| 796 | uint32_t min = max(clock_insr, (uint32_t)SMU7_MINIMUM_ENGINE_CLOCK)(((clock_insr)>((uint32_t)2500))?(clock_insr):((uint32_t)2500 )); |
| 797 | |
| 798 | PP_ASSERT_WITH_CODE((clock >= min),do { if (!((clock >= min))) { printk("\0014" "amdgpu: " "%s\n" , "Engine clock can't satisfy stutter requirement!"); return 0 ; } } while (0) |
| 799 | "Engine clock can't satisfy stutter requirement!",do { if (!((clock >= min))) { printk("\0014" "amdgpu: " "%s\n" , "Engine clock can't satisfy stutter requirement!"); return 0 ; } } while (0) |
| 800 | return 0)do { if (!((clock >= min))) { printk("\0014" "amdgpu: " "%s\n" , "Engine clock can't satisfy stutter requirement!"); return 0 ; } } while (0); |
| 801 | for (i = 31; ; i--) { |
| 802 | temp = clock / (i + 1); |
| 803 | |
| 804 | if (temp >= min || i == 0) |
| 805 | break; |
| 806 | } |
| 807 | return i; |
| 808 | } |
| 809 | |
| 810 | static int vegam_populate_single_graphic_level(struct pp_hwmgr *hwmgr, |
| 811 | uint32_t clock, struct SMU75_Discrete_GraphicsLevel *level) |
| 812 | { |
| 813 | int result; |
| 814 | /* PP_Clocks minClocks; */ |
| 815 | uint32_t mvdd; |
| 816 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 817 | struct phm_ppt_v1_information *table_info = |
| 818 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| 819 | SMU_SclkSetting curr_sclk_setting = { 0 }; |
| 820 | |
| 821 | result = vegam_calculate_sclk_params(hwmgr, clock, &curr_sclk_setting); |
| 822 | |
| 823 | /* populate graphics levels */ |
| 824 | result = vegam_get_dependency_volt_by_clk(hwmgr, |
| 825 | table_info->vdd_dep_on_sclk, clock, |
| 826 | &level->MinVoltage, &mvdd); |
| 827 | |
| 828 | PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find VDDC voltage value for " "VDDC engine clock dependency table" ); return result; } } while (0) |
| 829 | "can not find VDDC voltage value for "do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find VDDC voltage value for " "VDDC engine clock dependency table" ); return result; } } while (0) |
| 830 | "VDDC engine clock dependency table",do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find VDDC voltage value for " "VDDC engine clock dependency table" ); return result; } } while (0) |
| 831 | return result)do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find VDDC voltage value for " "VDDC engine clock dependency table" ); return result; } } while (0); |
| 832 | level->ActivityLevel = (uint16_t)(SclkDPMTuning_VEGAM0x002d000a >> DPMTuning_Activity_Shift16); |
| 833 | |
| 834 | level->CcPwrDynRm = 0; |
| 835 | level->CcPwrDynRm1 = 0; |
| 836 | level->EnabledForActivity = 0; |
| 837 | level->EnabledForThrottle = 1; |
| 838 | level->VoltageDownHyst = 0; |
| 839 | level->PowerThrottle = 0; |
| 840 | data->display_timing.min_clock_in_sr = hwmgr->display_config->min_core_set_clock_in_sr; |
| 841 | |
| 842 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) |
| 843 | level->DeepSleepDivId = vegam_get_sleep_divider_id_from_clock(clock, |
| 844 | hwmgr->display_config->min_core_set_clock_in_sr); |
| 845 | |
| 846 | level->SclkSetting = curr_sclk_setting; |
| 847 | |
| 848 | CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage)((level->MinVoltage) = (__uint32_t)(__builtin_constant_p(level ->MinVoltage) ? (__uint32_t)(((__uint32_t)(level->MinVoltage ) & 0xff) << 24 | ((__uint32_t)(level->MinVoltage ) & 0xff00) << 8 | ((__uint32_t)(level->MinVoltage ) & 0xff0000) >> 8 | ((__uint32_t)(level->MinVoltage ) & 0xff000000) >> 24) : __swap32md(level->MinVoltage ))); |
| 849 | CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm)((level->CcPwrDynRm) = (__uint32_t)(__builtin_constant_p(level ->CcPwrDynRm) ? (__uint32_t)(((__uint32_t)(level->CcPwrDynRm ) & 0xff) << 24 | ((__uint32_t)(level->CcPwrDynRm ) & 0xff00) << 8 | ((__uint32_t)(level->CcPwrDynRm ) & 0xff0000) >> 8 | ((__uint32_t)(level->CcPwrDynRm ) & 0xff000000) >> 24) : __swap32md(level->CcPwrDynRm ))); |
| 850 | CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1)((level->CcPwrDynRm1) = (__uint32_t)(__builtin_constant_p( level->CcPwrDynRm1) ? (__uint32_t)(((__uint32_t)(level-> CcPwrDynRm1) & 0xff) << 24 | ((__uint32_t)(level-> CcPwrDynRm1) & 0xff00) << 8 | ((__uint32_t)(level-> CcPwrDynRm1) & 0xff0000) >> 8 | ((__uint32_t)(level ->CcPwrDynRm1) & 0xff000000) >> 24) : __swap32md (level->CcPwrDynRm1))); |
| 851 | CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel)((level->ActivityLevel) = (__uint16_t)(__builtin_constant_p (level->ActivityLevel) ? (__uint16_t)(((__uint16_t)(level-> ActivityLevel) & 0xffU) << 8 | ((__uint16_t)(level-> ActivityLevel) & 0xff00U) >> 8) : __swap16md(level-> ActivityLevel))); |
| 852 | CONVERT_FROM_HOST_TO_SMC_UL(level->SclkSetting.SclkFrequency)((level->SclkSetting.SclkFrequency) = (__uint32_t)(__builtin_constant_p (level->SclkSetting.SclkFrequency) ? (__uint32_t)(((__uint32_t )(level->SclkSetting.SclkFrequency) & 0xff) << 24 | ((__uint32_t)(level->SclkSetting.SclkFrequency) & 0xff00 ) << 8 | ((__uint32_t)(level->SclkSetting.SclkFrequency ) & 0xff0000) >> 8 | ((__uint32_t)(level->SclkSetting .SclkFrequency) & 0xff000000) >> 24) : __swap32md(level ->SclkSetting.SclkFrequency))); |
| 853 | CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_int)((level->SclkSetting.Fcw_int) = (__uint16_t)(__builtin_constant_p (level->SclkSetting.Fcw_int) ? (__uint16_t)(((__uint16_t)( level->SclkSetting.Fcw_int) & 0xffU) << 8 | ((__uint16_t )(level->SclkSetting.Fcw_int) & 0xff00U) >> 8) : __swap16md(level->SclkSetting.Fcw_int))); |
| 854 | CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_frac)((level->SclkSetting.Fcw_frac) = (__uint16_t)(__builtin_constant_p (level->SclkSetting.Fcw_frac) ? (__uint16_t)(((__uint16_t) (level->SclkSetting.Fcw_frac) & 0xffU) << 8 | (( __uint16_t)(level->SclkSetting.Fcw_frac) & 0xff00U) >> 8) : __swap16md(level->SclkSetting.Fcw_frac))); |
| 855 | CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_fcw_int)((level->SclkSetting.Pcc_fcw_int) = (__uint16_t)(__builtin_constant_p (level->SclkSetting.Pcc_fcw_int) ? (__uint16_t)(((__uint16_t )(level->SclkSetting.Pcc_fcw_int) & 0xffU) << 8 | ((__uint16_t)(level->SclkSetting.Pcc_fcw_int) & 0xff00U ) >> 8) : __swap16md(level->SclkSetting.Pcc_fcw_int) )); |
| 856 | CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_slew_rate)((level->SclkSetting.Sclk_slew_rate) = (__uint16_t)(__builtin_constant_p (level->SclkSetting.Sclk_slew_rate) ? (__uint16_t)(((__uint16_t )(level->SclkSetting.Sclk_slew_rate) & 0xffU) << 8 | ((__uint16_t)(level->SclkSetting.Sclk_slew_rate) & 0xff00U) >> 8) : __swap16md(level->SclkSetting.Sclk_slew_rate ))); |
| 857 | CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_up_slew_rate)((level->SclkSetting.Pcc_up_slew_rate) = (__uint16_t)(__builtin_constant_p (level->SclkSetting.Pcc_up_slew_rate) ? (__uint16_t)(((__uint16_t )(level->SclkSetting.Pcc_up_slew_rate) & 0xffU) << 8 | ((__uint16_t)(level->SclkSetting.Pcc_up_slew_rate) & 0xff00U) >> 8) : __swap16md(level->SclkSetting.Pcc_up_slew_rate ))); |
| 858 | CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_down_slew_rate)((level->SclkSetting.Pcc_down_slew_rate) = (__uint16_t)(__builtin_constant_p (level->SclkSetting.Pcc_down_slew_rate) ? (__uint16_t)(((__uint16_t )(level->SclkSetting.Pcc_down_slew_rate) & 0xffU) << 8 | ((__uint16_t)(level->SclkSetting.Pcc_down_slew_rate) & 0xff00U) >> 8) : __swap16md(level->SclkSetting.Pcc_down_slew_rate ))); |
| 859 | CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_int)((level->SclkSetting.Fcw1_int) = (__uint16_t)(__builtin_constant_p (level->SclkSetting.Fcw1_int) ? (__uint16_t)(((__uint16_t) (level->SclkSetting.Fcw1_int) & 0xffU) << 8 | (( __uint16_t)(level->SclkSetting.Fcw1_int) & 0xff00U) >> 8) : __swap16md(level->SclkSetting.Fcw1_int))); |
| 860 | CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_frac)((level->SclkSetting.Fcw1_frac) = (__uint16_t)(__builtin_constant_p (level->SclkSetting.Fcw1_frac) ? (__uint16_t)(((__uint16_t )(level->SclkSetting.Fcw1_frac) & 0xffU) << 8 | ( (__uint16_t)(level->SclkSetting.Fcw1_frac) & 0xff00U) >> 8) : __swap16md(level->SclkSetting.Fcw1_frac))); |
| 861 | CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_ss_slew_rate)((level->SclkSetting.Sclk_ss_slew_rate) = (__uint16_t)(__builtin_constant_p (level->SclkSetting.Sclk_ss_slew_rate) ? (__uint16_t)(((__uint16_t )(level->SclkSetting.Sclk_ss_slew_rate) & 0xffU) << 8 | ((__uint16_t)(level->SclkSetting.Sclk_ss_slew_rate) & 0xff00U) >> 8) : __swap16md(level->SclkSetting.Sclk_ss_slew_rate ))); |
| 862 | return 0; |
| 863 | } |
| 864 | |
| 865 | static int vegam_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) |
| 866 | { |
| 867 | struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 868 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| 869 | struct smu7_dpm_table *dpm_table = &hw_data->dpm_table; |
| 870 | struct phm_ppt_v1_information *table_info = |
| 871 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| 872 | struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table; |
| 873 | uint8_t pcie_entry_cnt = (uint8_t) hw_data->dpm_table.pcie_speed_table.count; |
| 874 | int result = 0; |
| 875 | uint32_t array = smu_data->smu7_data.dpm_table_start + |
| 876 | offsetof(SMU75_Discrete_DpmTable, GraphicsLevel)__builtin_offsetof(SMU75_Discrete_DpmTable, GraphicsLevel); |
| 877 | uint32_t array_size = sizeof(struct SMU75_Discrete_GraphicsLevel) * |
| 878 | SMU75_MAX_LEVELS_GRAPHICS8; |
| 879 | struct SMU75_Discrete_GraphicsLevel *levels = |
| 880 | smu_data->smc_state_table.GraphicsLevel; |
| 881 | uint32_t i, max_entry; |
| 882 | uint8_t hightest_pcie_level_enabled = 0, |
| 883 | lowest_pcie_level_enabled = 0, |
| 884 | mid_pcie_level_enabled = 0, |
| 885 | count = 0; |
| 886 | |
| 887 | vegam_get_sclk_range_table(hwmgr, &(smu_data->smc_state_table)); |
| 888 | |
| 889 | for (i = 0; i < dpm_table->sclk_table.count; i++) { |
| 890 | |
| 891 | result = vegam_populate_single_graphic_level(hwmgr, |
| 892 | dpm_table->sclk_table.dpm_levels[i].value, |
| 893 | &(smu_data->smc_state_table.GraphicsLevel[i])); |
| 894 | if (result) |
| 895 | return result; |
| 896 | |
| 897 | levels[i].UpHyst = (uint8_t) |
| 898 | (SclkDPMTuning_VEGAM0x002d000a >> DPMTuning_Uphyst_Shift0); |
| 899 | levels[i].DownHyst = (uint8_t) |
| 900 | (SclkDPMTuning_VEGAM0x002d000a >> DPMTuning_Downhyst_Shift8); |
| 901 | /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */ |
| 902 | if (i > 1) |
| 903 | levels[i].DeepSleepDivId = 0; |
| 904 | } |
| 905 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| 906 | PHM_PlatformCaps_SPLLShutdownSupport)) |
| 907 | smu_data->smc_state_table.GraphicsLevel[0].SclkSetting.SSc_En = 0; |
| 908 | |
| 909 | smu_data->smc_state_table.GraphicsDpmLevelCount = |
| 910 | (uint8_t)dpm_table->sclk_table.count; |
| 911 | hw_data->dpm_level_enable_mask.sclk_dpm_enable_mask = |
| 912 | phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table); |
| 913 | |
| 914 | for (i = 0; i < dpm_table->sclk_table.count; i++) |
| 915 | levels[i].EnabledForActivity = |
| 916 | (hw_data->dpm_level_enable_mask.sclk_dpm_enable_mask >> i) & 0x1; |
| 917 | |
| 918 | if (pcie_table != NULL((void *)0)) { |
| 919 | PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),do { if (!((1 <= pcie_entry_cnt))) { printk("\0014" "amdgpu: " "%s\n", "There must be 1 or more PCIE levels defined in PPTable." ); return -22; } } while (0) |
| 920 | "There must be 1 or more PCIE levels defined in PPTable.",do { if (!((1 <= pcie_entry_cnt))) { printk("\0014" "amdgpu: " "%s\n", "There must be 1 or more PCIE levels defined in PPTable." ); return -22; } } while (0) |
| 921 | return -EINVAL)do { if (!((1 <= pcie_entry_cnt))) { printk("\0014" "amdgpu: " "%s\n", "There must be 1 or more PCIE levels defined in PPTable." ); return -22; } } while (0); |
| 922 | max_entry = pcie_entry_cnt - 1; |
| 923 | for (i = 0; i < dpm_table->sclk_table.count; i++) |
| 924 | levels[i].pcieDpmLevel = |
| 925 | (uint8_t) ((i < max_entry) ? i : max_entry); |
| 926 | } else { |
| 927 | while (hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask && |
| 928 | ((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
| 929 | (1 << (hightest_pcie_level_enabled + 1))) != 0)) |
| 930 | hightest_pcie_level_enabled++; |
| 931 | |
| 932 | while (hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask && |
| 933 | ((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
| 934 | (1 << lowest_pcie_level_enabled)) == 0)) |
| 935 | lowest_pcie_level_enabled++; |
| 936 | |
| 937 | while ((count < hightest_pcie_level_enabled) && |
| 938 | ((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
| 939 | (1 << (lowest_pcie_level_enabled + 1 + count))) == 0)) |
| 940 | count++; |
| 941 | |
| 942 | mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) < |
| 943 | hightest_pcie_level_enabled ? |
| 944 | (lowest_pcie_level_enabled + 1 + count) : |
| 945 | hightest_pcie_level_enabled; |
| 946 | |
| 947 | /* set pcieDpmLevel to hightest_pcie_level_enabled */ |
| 948 | for (i = 2; i < dpm_table->sclk_table.count; i++) |
| 949 | levels[i].pcieDpmLevel = hightest_pcie_level_enabled; |
| 950 | |
| 951 | /* set pcieDpmLevel to lowest_pcie_level_enabled */ |
| 952 | levels[0].pcieDpmLevel = lowest_pcie_level_enabled; |
| 953 | |
| 954 | /* set pcieDpmLevel to mid_pcie_level_enabled */ |
| 955 | levels[1].pcieDpmLevel = mid_pcie_level_enabled; |
| 956 | } |
| 957 | /* level count will send to smc once at init smc table and never change */ |
| 958 | result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels, |
| 959 | (uint32_t)array_size, SMC_RAM_END0x40000); |
| 960 | |
| 961 | return result; |
| 962 | } |
| 963 | |
| 964 | static int vegam_calculate_mclk_params(struct pp_hwmgr *hwmgr, |
| 965 | uint32_t clock, struct SMU75_Discrete_MemoryLevel *mem_level) |
| 966 | { |
| 967 | struct pp_atomctrl_memory_clock_param_ai mpll_param; |
| 968 | |
| 969 | PP_ASSERT_WITH_CODE(!atomctrl_get_memory_pll_dividers_ai(hwmgr,do { if (!(!atomctrl_get_memory_pll_dividers_ai(hwmgr, clock, &mpll_param))) { printk("\0014" "amdgpu: " "%s\n", "Failed to retrieve memory pll parameter." ); return -22; } } while (0) |
| 970 | clock, &mpll_param),do { if (!(!atomctrl_get_memory_pll_dividers_ai(hwmgr, clock, &mpll_param))) { printk("\0014" "amdgpu: " "%s\n", "Failed to retrieve memory pll parameter." ); return -22; } } while (0) |
| 971 | "Failed to retrieve memory pll parameter.",do { if (!(!atomctrl_get_memory_pll_dividers_ai(hwmgr, clock, &mpll_param))) { printk("\0014" "amdgpu: " "%s\n", "Failed to retrieve memory pll parameter." ); return -22; } } while (0) |
| 972 | return -EINVAL)do { if (!(!atomctrl_get_memory_pll_dividers_ai(hwmgr, clock, &mpll_param))) { printk("\0014" "amdgpu: " "%s\n", "Failed to retrieve memory pll parameter." ); return -22; } } while (0); |
| 973 | |
| 974 | mem_level->MclkFrequency = (uint32_t)mpll_param.ulClock; |
| 975 | mem_level->Fcw_int = (uint16_t)mpll_param.ulMclk_fcw_int; |
| 976 | mem_level->Fcw_frac = (uint16_t)mpll_param.ulMclk_fcw_frac; |
| 977 | mem_level->Postdiv = (uint8_t)mpll_param.ulPostDiv; |
| 978 | |
| 979 | return 0; |
| 980 | } |
| 981 | |
| 982 | static int vegam_populate_single_memory_level(struct pp_hwmgr *hwmgr, |
| 983 | uint32_t clock, struct SMU75_Discrete_MemoryLevel *mem_level) |
| 984 | { |
| 985 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 986 | struct phm_ppt_v1_information *table_info = |
| 987 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| 988 | int result = 0; |
| 989 | uint32_t mclk_stutter_mode_threshold = 60000; |
| 990 | |
| 991 | |
| 992 | if (table_info->vdd_dep_on_mclk) { |
| 993 | result = vegam_get_dependency_volt_by_clk(hwmgr, |
| 994 | table_info->vdd_dep_on_mclk, clock, |
| 995 | &mem_level->MinVoltage, &mem_level->MinMvdd); |
| 996 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "can not find MinVddc voltage value from memory " "VDDC voltage dependency table"); return result; } } while ( 0) |
| 997 | "can not find MinVddc voltage value from memory "do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "can not find MinVddc voltage value from memory " "VDDC voltage dependency table"); return result; } } while ( 0) |
| 998 | "VDDC voltage dependency table", return result)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "can not find MinVddc voltage value from memory " "VDDC voltage dependency table"); return result; } } while ( 0); |
| 999 | } |
| 1000 | |
| 1001 | result = vegam_calculate_mclk_params(hwmgr, clock, mem_level); |
| 1002 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to calculate mclk params." ); return -22; } } while (0) |
| 1003 | "Failed to calculate mclk params.",do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to calculate mclk params." ); return -22; } } while (0) |
| 1004 | return -EINVAL)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to calculate mclk params." ); return -22; } } while (0); |
| 1005 | |
| 1006 | mem_level->EnabledForThrottle = 1; |
| 1007 | mem_level->EnabledForActivity = 0; |
| 1008 | mem_level->VoltageDownHyst = 0; |
| 1009 | mem_level->ActivityLevel = (uint16_t) |
| 1010 | (MemoryDPMTuning_VEGAM0x000f3c0a >> DPMTuning_Activity_Shift16); |
| 1011 | mem_level->StutterEnable = false0; |
| 1012 | mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW0; |
| 1013 | |
| 1014 | data->display_timing.num_existing_displays = hwmgr->display_config->num_display; |
| 1015 | data->display_timing.vrefresh = hwmgr->display_config->vrefresh; |
| 1016 | |
| 1017 | if (mclk_stutter_mode_threshold && |
| 1018 | (clock <= mclk_stutter_mode_threshold) && |
| 1019 | (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,((((((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0x1b35))) & 0x1) >> 0x0) |
| 1020 | STUTTER_ENABLE)((((((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0x1b35))) & 0x1) >> 0x0) & 0x1)) |
| 1021 | mem_level->StutterEnable = true1; |
| 1022 | |
| 1023 | if (!result) { |
| 1024 | CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd)((mem_level->MinMvdd) = (__uint32_t)(__builtin_constant_p( mem_level->MinMvdd) ? (__uint32_t)(((__uint32_t)(mem_level ->MinMvdd) & 0xff) << 24 | ((__uint32_t)(mem_level ->MinMvdd) & 0xff00) << 8 | ((__uint32_t)(mem_level ->MinMvdd) & 0xff0000) >> 8 | ((__uint32_t)(mem_level ->MinMvdd) & 0xff000000) >> 24) : __swap32md(mem_level ->MinMvdd))); |
| 1025 | CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency)((mem_level->MclkFrequency) = (__uint32_t)(__builtin_constant_p (mem_level->MclkFrequency) ? (__uint32_t)(((__uint32_t)(mem_level ->MclkFrequency) & 0xff) << 24 | ((__uint32_t)(mem_level ->MclkFrequency) & 0xff00) << 8 | ((__uint32_t)( mem_level->MclkFrequency) & 0xff0000) >> 8 | ((__uint32_t )(mem_level->MclkFrequency) & 0xff000000) >> 24) : __swap32md(mem_level->MclkFrequency))); |
| 1026 | CONVERT_FROM_HOST_TO_SMC_US(mem_level->Fcw_int)((mem_level->Fcw_int) = (__uint16_t)(__builtin_constant_p( mem_level->Fcw_int) ? (__uint16_t)(((__uint16_t)(mem_level ->Fcw_int) & 0xffU) << 8 | ((__uint16_t)(mem_level ->Fcw_int) & 0xff00U) >> 8) : __swap16md(mem_level ->Fcw_int))); |
| 1027 | CONVERT_FROM_HOST_TO_SMC_US(mem_level->Fcw_frac)((mem_level->Fcw_frac) = (__uint16_t)(__builtin_constant_p (mem_level->Fcw_frac) ? (__uint16_t)(((__uint16_t)(mem_level ->Fcw_frac) & 0xffU) << 8 | ((__uint16_t)(mem_level ->Fcw_frac) & 0xff00U) >> 8) : __swap16md(mem_level ->Fcw_frac))); |
| 1028 | CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel)((mem_level->ActivityLevel) = (__uint16_t)(__builtin_constant_p (mem_level->ActivityLevel) ? (__uint16_t)(((__uint16_t)(mem_level ->ActivityLevel) & 0xffU) << 8 | ((__uint16_t)(mem_level ->ActivityLevel) & 0xff00U) >> 8) : __swap16md(mem_level ->ActivityLevel))); |
| 1029 | CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage)((mem_level->MinVoltage) = (__uint32_t)(__builtin_constant_p (mem_level->MinVoltage) ? (__uint32_t)(((__uint32_t)(mem_level ->MinVoltage) & 0xff) << 24 | ((__uint32_t)(mem_level ->MinVoltage) & 0xff00) << 8 | ((__uint32_t)(mem_level ->MinVoltage) & 0xff0000) >> 8 | ((__uint32_t)(mem_level ->MinVoltage) & 0xff000000) >> 24) : __swap32md( mem_level->MinVoltage))); |
| 1030 | } |
| 1031 | |
| 1032 | return result; |
| 1033 | } |
| 1034 | |
| 1035 | static int vegam_populate_all_memory_levels(struct pp_hwmgr *hwmgr) |
| 1036 | { |
| 1037 | struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 1038 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| 1039 | struct smu7_dpm_table *dpm_table = &hw_data->dpm_table; |
| 1040 | int result; |
| 1041 | /* populate MCLK dpm table to SMU7 */ |
| 1042 | uint32_t array = smu_data->smu7_data.dpm_table_start + |
| 1043 | offsetof(SMU75_Discrete_DpmTable, MemoryLevel)__builtin_offsetof(SMU75_Discrete_DpmTable, MemoryLevel); |
| 1044 | uint32_t array_size = sizeof(SMU75_Discrete_MemoryLevel) * |
| 1045 | SMU75_MAX_LEVELS_MEMORY4; |
| 1046 | struct SMU75_Discrete_MemoryLevel *levels = |
| 1047 | smu_data->smc_state_table.MemoryLevel; |
| 1048 | uint32_t i; |
| 1049 | |
| 1050 | for (i = 0; i < dpm_table->mclk_table.count; i++) { |
| 1051 | PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),do { if (!((0 != dpm_table->mclk_table.dpm_levels[i].value ))) { printk("\0014" "amdgpu: " "%s\n", "can not populate memory level as memory clock is zero" ); return -22; } } while (0) |
| 1052 | "can not populate memory level as memory clock is zero",do { if (!((0 != dpm_table->mclk_table.dpm_levels[i].value ))) { printk("\0014" "amdgpu: " "%s\n", "can not populate memory level as memory clock is zero" ); return -22; } } while (0) |
| 1053 | return -EINVAL)do { if (!((0 != dpm_table->mclk_table.dpm_levels[i].value ))) { printk("\0014" "amdgpu: " "%s\n", "can not populate memory level as memory clock is zero" ); return -22; } } while (0); |
| 1054 | result = vegam_populate_single_memory_level(hwmgr, |
| 1055 | dpm_table->mclk_table.dpm_levels[i].value, |
| 1056 | &levels[i]); |
| 1057 | |
| 1058 | if (result) |
| 1059 | return result; |
| 1060 | |
| 1061 | levels[i].UpHyst = (uint8_t) |
| 1062 | (MemoryDPMTuning_VEGAM0x000f3c0a >> DPMTuning_Uphyst_Shift0); |
| 1063 | levels[i].DownHyst = (uint8_t) |
| 1064 | (MemoryDPMTuning_VEGAM0x000f3c0a >> DPMTuning_Downhyst_Shift8); |
| 1065 | } |
| 1066 | |
| 1067 | smu_data->smc_state_table.MemoryDpmLevelCount = |
| 1068 | (uint8_t)dpm_table->mclk_table.count; |
| 1069 | hw_data->dpm_level_enable_mask.mclk_dpm_enable_mask = |
| 1070 | phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table); |
| 1071 | |
| 1072 | for (i = 0; i < dpm_table->mclk_table.count; i++) |
| 1073 | levels[i].EnabledForActivity = |
| 1074 | (hw_data->dpm_level_enable_mask.mclk_dpm_enable_mask >> i) & 0x1; |
| 1075 | |
| 1076 | levels[dpm_table->mclk_table.count - 1].DisplayWatermark = |
| 1077 | PPSMC_DISPLAY_WATERMARK_HIGH1; |
| 1078 | |
| 1079 | /* level count will send to smc once at init smc table and never change */ |
| 1080 | result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels, |
| 1081 | (uint32_t)array_size, SMC_RAM_END0x40000); |
| 1082 | |
| 1083 | return result; |
| 1084 | } |
| 1085 | |
| 1086 | static int vegam_populate_mvdd_value(struct pp_hwmgr *hwmgr, |
| 1087 | uint32_t mclk, SMIO_Pattern *smio_pat) |
| 1088 | { |
| 1089 | const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 1090 | struct phm_ppt_v1_information *table_info = |
| 1091 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| 1092 | uint32_t i = 0; |
| 1093 | |
| 1094 | if (SMU7_VOLTAGE_CONTROL_NONE0x0 != data->mvdd_control) { |
| 1095 | /* find mvdd value which clock is more than request */ |
| 1096 | for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) { |
| 1097 | if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) { |
| 1098 | smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value; |
| 1099 | break; |
| 1100 | } |
| 1101 | } |
| 1102 | PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,do { if (!(i < table_info->vdd_dep_on_mclk->count)) { printk("\0014" "amdgpu: " "%s\n", "MVDD Voltage is outside the supported range." ); return -22; } } while (0) |
| 1103 | "MVDD Voltage is outside the supported range.",do { if (!(i < table_info->vdd_dep_on_mclk->count)) { printk("\0014" "amdgpu: " "%s\n", "MVDD Voltage is outside the supported range." ); return -22; } } while (0) |
| 1104 | return -EINVAL)do { if (!(i < table_info->vdd_dep_on_mclk->count)) { printk("\0014" "amdgpu: " "%s\n", "MVDD Voltage is outside the supported range." ); return -22; } } while (0); |
| 1105 | } else |
| 1106 | return -EINVAL22; |
| 1107 | |
| 1108 | return 0; |
| 1109 | } |
| 1110 | |
| 1111 | static int vegam_populate_smc_acpi_level(struct pp_hwmgr *hwmgr, |
| 1112 | SMU75_Discrete_DpmTable *table) |
| 1113 | { |
| 1114 | int result = 0; |
| 1115 | uint32_t sclk_frequency; |
| 1116 | const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 1117 | struct phm_ppt_v1_information *table_info = |
| 1118 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| 1119 | SMIO_Pattern vol_level; |
| 1120 | uint32_t mvdd; |
| 1121 | |
| 1122 | table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC0x01; |
| 1123 | |
| 1124 | /* Get MinVoltage and Frequency from DPM0, |
| 1125 | * already converted to SMC_UL */ |
| 1126 | sclk_frequency = data->vbios_boot_state.sclk_bootup_value; |
| 1127 | result = vegam_get_dependency_volt_by_clk(hwmgr, |
| 1128 | table_info->vdd_dep_on_sclk, |
| 1129 | sclk_frequency, |
| 1130 | &table->ACPILevel.MinVoltage, &mvdd); |
| 1131 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Cannot find ACPI VDDC voltage value " "in Clock Dependency Table"); ; } } while (0) |
| 1132 | "Cannot find ACPI VDDC voltage value "do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Cannot find ACPI VDDC voltage value " "in Clock Dependency Table"); ; } } while (0) |
| 1133 | "in Clock Dependency Table",do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Cannot find ACPI VDDC voltage value " "in Clock Dependency Table"); ; } } while (0) |
| 1134 | )do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Cannot find ACPI VDDC voltage value " "in Clock Dependency Table"); ; } } while (0); |
| 1135 | |
| 1136 | result = vegam_calculate_sclk_params(hwmgr, sclk_frequency, |
| 1137 | &(table->ACPILevel.SclkSetting)); |
| 1138 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Error retrieving Engine Clock dividers from VBIOS." ); return result; } } while (0) |
| 1139 | "Error retrieving Engine Clock dividers from VBIOS.",do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Error retrieving Engine Clock dividers from VBIOS." ); return result; } } while (0) |
| 1140 | return result)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Error retrieving Engine Clock dividers from VBIOS." ); return result; } } while (0); |
| 1141 | |
| 1142 | table->ACPILevel.DeepSleepDivId = 0; |
| 1143 | table->ACPILevel.CcPwrDynRm = 0; |
| 1144 | table->ACPILevel.CcPwrDynRm1 = 0; |
| 1145 | |
| 1146 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags)((table->ACPILevel.Flags) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.Flags) ? (__uint32_t)(((__uint32_t)(table ->ACPILevel.Flags) & 0xff) << 24 | ((__uint32_t) (table->ACPILevel.Flags) & 0xff00) << 8 | ((__uint32_t )(table->ACPILevel.Flags) & 0xff0000) >> 8 | ((__uint32_t )(table->ACPILevel.Flags) & 0xff000000) >> 24) : __swap32md(table->ACPILevel.Flags))); |
| 1147 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage)((table->ACPILevel.MinVoltage) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.MinVoltage) ? (__uint32_t)(((__uint32_t) (table->ACPILevel.MinVoltage) & 0xff) << 24 | (( __uint32_t)(table->ACPILevel.MinVoltage) & 0xff00) << 8 | ((__uint32_t)(table->ACPILevel.MinVoltage) & 0xff0000 ) >> 8 | ((__uint32_t)(table->ACPILevel.MinVoltage) & 0xff000000) >> 24) : __swap32md(table->ACPILevel.MinVoltage ))); |
| 1148 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm)((table->ACPILevel.CcPwrDynRm) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.CcPwrDynRm) ? (__uint32_t)(((__uint32_t) (table->ACPILevel.CcPwrDynRm) & 0xff) << 24 | (( __uint32_t)(table->ACPILevel.CcPwrDynRm) & 0xff00) << 8 | ((__uint32_t)(table->ACPILevel.CcPwrDynRm) & 0xff0000 ) >> 8 | ((__uint32_t)(table->ACPILevel.CcPwrDynRm) & 0xff000000) >> 24) : __swap32md(table->ACPILevel.CcPwrDynRm ))); |
| 1149 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1)((table->ACPILevel.CcPwrDynRm1) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.CcPwrDynRm1) ? (__uint32_t)(((__uint32_t )(table->ACPILevel.CcPwrDynRm1) & 0xff) << 24 | ( (__uint32_t)(table->ACPILevel.CcPwrDynRm1) & 0xff00) << 8 | ((__uint32_t)(table->ACPILevel.CcPwrDynRm1) & 0xff0000 ) >> 8 | ((__uint32_t)(table->ACPILevel.CcPwrDynRm1) & 0xff000000) >> 24) : __swap32md(table->ACPILevel .CcPwrDynRm1))); |
| 1150 | |
| 1151 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkSetting.SclkFrequency)((table->ACPILevel.SclkSetting.SclkFrequency) = (__uint32_t )(__builtin_constant_p(table->ACPILevel.SclkSetting.SclkFrequency ) ? (__uint32_t)(((__uint32_t)(table->ACPILevel.SclkSetting .SclkFrequency) & 0xff) << 24 | ((__uint32_t)(table ->ACPILevel.SclkSetting.SclkFrequency) & 0xff00) << 8 | ((__uint32_t)(table->ACPILevel.SclkSetting.SclkFrequency ) & 0xff0000) >> 8 | ((__uint32_t)(table->ACPILevel .SclkSetting.SclkFrequency) & 0xff000000) >> 24) : __swap32md (table->ACPILevel.SclkSetting.SclkFrequency))); |
| 1152 | CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_int)((table->ACPILevel.SclkSetting.Fcw_int) = (__uint16_t)(__builtin_constant_p (table->ACPILevel.SclkSetting.Fcw_int) ? (__uint16_t)(((__uint16_t )(table->ACPILevel.SclkSetting.Fcw_int) & 0xffU) << 8 | ((__uint16_t)(table->ACPILevel.SclkSetting.Fcw_int) & 0xff00U) >> 8) : __swap16md(table->ACPILevel.SclkSetting .Fcw_int))); |
| 1153 | CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_frac)((table->ACPILevel.SclkSetting.Fcw_frac) = (__uint16_t)(__builtin_constant_p (table->ACPILevel.SclkSetting.Fcw_frac) ? (__uint16_t)(((__uint16_t )(table->ACPILevel.SclkSetting.Fcw_frac) & 0xffU) << 8 | ((__uint16_t)(table->ACPILevel.SclkSetting.Fcw_frac) & 0xff00U) >> 8) : __swap16md(table->ACPILevel.SclkSetting .Fcw_frac))); |
| 1154 | CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_fcw_int)((table->ACPILevel.SclkSetting.Pcc_fcw_int) = (__uint16_t) (__builtin_constant_p(table->ACPILevel.SclkSetting.Pcc_fcw_int ) ? (__uint16_t)(((__uint16_t)(table->ACPILevel.SclkSetting .Pcc_fcw_int) & 0xffU) << 8 | ((__uint16_t)(table-> ACPILevel.SclkSetting.Pcc_fcw_int) & 0xff00U) >> 8) : __swap16md(table->ACPILevel.SclkSetting.Pcc_fcw_int))); |
| 1155 | CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_slew_rate)((table->ACPILevel.SclkSetting.Sclk_slew_rate) = (__uint16_t )(__builtin_constant_p(table->ACPILevel.SclkSetting.Sclk_slew_rate ) ? (__uint16_t)(((__uint16_t)(table->ACPILevel.SclkSetting .Sclk_slew_rate) & 0xffU) << 8 | ((__uint16_t)(table ->ACPILevel.SclkSetting.Sclk_slew_rate) & 0xff00U) >> 8) : __swap16md(table->ACPILevel.SclkSetting.Sclk_slew_rate ))); |
| 1156 | CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_up_slew_rate)((table->ACPILevel.SclkSetting.Pcc_up_slew_rate) = (__uint16_t )(__builtin_constant_p(table->ACPILevel.SclkSetting.Pcc_up_slew_rate ) ? (__uint16_t)(((__uint16_t)(table->ACPILevel.SclkSetting .Pcc_up_slew_rate) & 0xffU) << 8 | ((__uint16_t)(table ->ACPILevel.SclkSetting.Pcc_up_slew_rate) & 0xff00U) >> 8) : __swap16md(table->ACPILevel.SclkSetting.Pcc_up_slew_rate ))); |
| 1157 | CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_down_slew_rate)((table->ACPILevel.SclkSetting.Pcc_down_slew_rate) = (__uint16_t )(__builtin_constant_p(table->ACPILevel.SclkSetting.Pcc_down_slew_rate ) ? (__uint16_t)(((__uint16_t)(table->ACPILevel.SclkSetting .Pcc_down_slew_rate) & 0xffU) << 8 | ((__uint16_t)( table->ACPILevel.SclkSetting.Pcc_down_slew_rate) & 0xff00U ) >> 8) : __swap16md(table->ACPILevel.SclkSetting.Pcc_down_slew_rate ))); |
| 1158 | CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_int)((table->ACPILevel.SclkSetting.Fcw1_int) = (__uint16_t)(__builtin_constant_p (table->ACPILevel.SclkSetting.Fcw1_int) ? (__uint16_t)(((__uint16_t )(table->ACPILevel.SclkSetting.Fcw1_int) & 0xffU) << 8 | ((__uint16_t)(table->ACPILevel.SclkSetting.Fcw1_int) & 0xff00U) >> 8) : __swap16md(table->ACPILevel.SclkSetting .Fcw1_int))); |
| 1159 | CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_frac)((table->ACPILevel.SclkSetting.Fcw1_frac) = (__uint16_t)(__builtin_constant_p (table->ACPILevel.SclkSetting.Fcw1_frac) ? (__uint16_t)((( __uint16_t)(table->ACPILevel.SclkSetting.Fcw1_frac) & 0xffU ) << 8 | ((__uint16_t)(table->ACPILevel.SclkSetting. Fcw1_frac) & 0xff00U) >> 8) : __swap16md(table-> ACPILevel.SclkSetting.Fcw1_frac))); |
| 1160 | CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_ss_slew_rate)((table->ACPILevel.SclkSetting.Sclk_ss_slew_rate) = (__uint16_t )(__builtin_constant_p(table->ACPILevel.SclkSetting.Sclk_ss_slew_rate ) ? (__uint16_t)(((__uint16_t)(table->ACPILevel.SclkSetting .Sclk_ss_slew_rate) & 0xffU) << 8 | ((__uint16_t)(table ->ACPILevel.SclkSetting.Sclk_ss_slew_rate) & 0xff00U) >> 8) : __swap16md(table->ACPILevel.SclkSetting.Sclk_ss_slew_rate ))); |
| 1161 | |
| 1162 | |
| 1163 | /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */ |
| 1164 | table->MemoryACPILevel.MclkFrequency = data->vbios_boot_state.mclk_bootup_value; |
| 1165 | result = vegam_get_dependency_volt_by_clk(hwmgr, |
| 1166 | table_info->vdd_dep_on_mclk, |
| 1167 | table->MemoryACPILevel.MclkFrequency, |
| 1168 | &table->MemoryACPILevel.MinVoltage, &mvdd); |
| 1169 | PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "Cannot find ACPI VDDCI voltage value " "in Clock Dependency Table" ); ; } } while (0) |
| 1170 | "Cannot find ACPI VDDCI voltage value "do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "Cannot find ACPI VDDCI voltage value " "in Clock Dependency Table" ); ; } } while (0) |
| 1171 | "in Clock Dependency Table",do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "Cannot find ACPI VDDCI voltage value " "in Clock Dependency Table" ); ; } } while (0) |
| 1172 | )do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "Cannot find ACPI VDDCI voltage value " "in Clock Dependency Table" ); ; } } while (0); |
| 1173 | |
| 1174 | if (!vegam_populate_mvdd_value(hwmgr, 0, &vol_level)) |
| 1175 | table->MemoryACPILevel.MinMvdd = PP_HOST_TO_SMC_UL(vol_level.Voltage)(__uint32_t)(__builtin_constant_p(vol_level.Voltage) ? (__uint32_t )(((__uint32_t)(vol_level.Voltage) & 0xff) << 24 | ( (__uint32_t)(vol_level.Voltage) & 0xff00) << 8 | (( __uint32_t)(vol_level.Voltage) & 0xff0000) >> 8 | ( (__uint32_t)(vol_level.Voltage) & 0xff000000) >> 24 ) : __swap32md(vol_level.Voltage)); |
| 1176 | else |
| 1177 | table->MemoryACPILevel.MinMvdd = 0; |
| 1178 | |
| 1179 | table->MemoryACPILevel.StutterEnable = false0; |
| 1180 | |
| 1181 | table->MemoryACPILevel.EnabledForThrottle = 0; |
| 1182 | table->MemoryACPILevel.EnabledForActivity = 0; |
| 1183 | table->MemoryACPILevel.UpHyst = 0; |
| 1184 | table->MemoryACPILevel.DownHyst = 100; |
| 1185 | table->MemoryACPILevel.VoltageDownHyst = 0; |
| 1186 | table->MemoryACPILevel.ActivityLevel = |
| 1187 | PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity)(__uint16_t)(__builtin_constant_p(data->current_profile_setting .mclk_activity) ? (__uint16_t)(((__uint16_t)(data->current_profile_setting .mclk_activity) & 0xffU) << 8 | ((__uint16_t)(data-> current_profile_setting.mclk_activity) & 0xff00U) >> 8) : __swap16md(data->current_profile_setting.mclk_activity )); |
| 1188 | |
| 1189 | CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency)((table->MemoryACPILevel.MclkFrequency) = (__uint32_t)(__builtin_constant_p (table->MemoryACPILevel.MclkFrequency) ? (__uint32_t)(((__uint32_t )(table->MemoryACPILevel.MclkFrequency) & 0xff) << 24 | ((__uint32_t)(table->MemoryACPILevel.MclkFrequency) & 0xff00) << 8 | ((__uint32_t)(table->MemoryACPILevel .MclkFrequency) & 0xff0000) >> 8 | ((__uint32_t)(table ->MemoryACPILevel.MclkFrequency) & 0xff000000) >> 24) : __swap32md(table->MemoryACPILevel.MclkFrequency))); |
| 1190 | CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage)((table->MemoryACPILevel.MinVoltage) = (__uint32_t)(__builtin_constant_p (table->MemoryACPILevel.MinVoltage) ? (__uint32_t)(((__uint32_t )(table->MemoryACPILevel.MinVoltage) & 0xff) << 24 | ((__uint32_t)(table->MemoryACPILevel.MinVoltage) & 0xff00 ) << 8 | ((__uint32_t)(table->MemoryACPILevel.MinVoltage ) & 0xff0000) >> 8 | ((__uint32_t)(table->MemoryACPILevel .MinVoltage) & 0xff000000) >> 24) : __swap32md(table ->MemoryACPILevel.MinVoltage))); |
| 1191 | |
| 1192 | return result; |
| 1193 | } |
| 1194 | |
| 1195 | static int vegam_populate_smc_vce_level(struct pp_hwmgr *hwmgr, |
| 1196 | SMU75_Discrete_DpmTable *table) |
| 1197 | { |
| 1198 | int result = -EINVAL22; |
| 1199 | uint8_t count; |
| 1200 | struct pp_atomctrl_clock_dividers_vi dividers; |
| 1201 | struct phm_ppt_v1_information *table_info = |
| 1202 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| 1203 | struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = |
| 1204 | table_info->mm_dep_table; |
| 1205 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 1206 | uint32_t vddci; |
| 1207 | |
| 1208 | table->VceLevelCount = (uint8_t)(mm_table->count); |
| 1209 | table->VceBootLevel = 0; |
| 1210 | |
| 1211 | for (count = 0; count < table->VceLevelCount; count++) { |
| 1212 | table->VceLevel[count].Frequency = mm_table->entries[count].eclk; |
| 1213 | table->VceLevel[count].MinVoltage = 0; |
| 1214 | table->VceLevel[count].MinVoltage |= |
| 1215 | (mm_table->entries[count].vddc * VOLTAGE_SCALE4) << VDDC_SHIFT0; |
| 1216 | |
| 1217 | if (SMU7_VOLTAGE_CONTROL_BY_GPIO0x1 == data->vddci_control) |
| 1218 | vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table), |
| 1219 | mm_table->entries[count].vddc - VDDC_VDDCI_DELTA200); |
| 1220 | else if (SMU7_VOLTAGE_CONTROL_BY_SVID20x2 == data->vddci_control) |
| 1221 | vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA200; |
| 1222 | else |
| 1223 | vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE4) << VDDCI_SHIFT15; |
| 1224 | |
| 1225 | |
| 1226 | table->VceLevel[count].MinVoltage |= |
| 1227 | (vddci * VOLTAGE_SCALE4) << VDDCI_SHIFT15; |
| 1228 | table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT30; |
| 1229 | |
| 1230 | /*retrieve divider value for VBIOS */ |
| 1231 | result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
| 1232 | table->VceLevel[count].Frequency, ÷rs); |
| 1233 | PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find divide id for VCE engine clock"); return result ; } } while (0) |
| 1234 | "can not find divide id for VCE engine clock",do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find divide id for VCE engine clock"); return result ; } } while (0) |
| 1235 | return result)do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find divide id for VCE engine clock"); return result ; } } while (0); |
| 1236 | |
| 1237 | table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider; |
| 1238 | |
| 1239 | CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency)((table->VceLevel[count].Frequency) = (__uint32_t)(__builtin_constant_p (table->VceLevel[count].Frequency) ? (__uint32_t)(((__uint32_t )(table->VceLevel[count].Frequency) & 0xff) << 24 | ((__uint32_t)(table->VceLevel[count].Frequency) & 0xff00 ) << 8 | ((__uint32_t)(table->VceLevel[count].Frequency ) & 0xff0000) >> 8 | ((__uint32_t)(table->VceLevel [count].Frequency) & 0xff000000) >> 24) : __swap32md (table->VceLevel[count].Frequency))); |
| 1240 | CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage)((table->VceLevel[count].MinVoltage) = (__uint32_t)(__builtin_constant_p (table->VceLevel[count].MinVoltage) ? (__uint32_t)(((__uint32_t )(table->VceLevel[count].MinVoltage) & 0xff) << 24 | ((__uint32_t)(table->VceLevel[count].MinVoltage) & 0xff00 ) << 8 | ((__uint32_t)(table->VceLevel[count].MinVoltage ) & 0xff0000) >> 8 | ((__uint32_t)(table->VceLevel [count].MinVoltage) & 0xff000000) >> 24) : __swap32md (table->VceLevel[count].MinVoltage))); |
| 1241 | } |
| 1242 | return result; |
| 1243 | } |
| 1244 | |
| 1245 | static int vegam_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr, |
| 1246 | int32_t eng_clock, int32_t mem_clock, |
| 1247 | SMU75_Discrete_MCArbDramTimingTableEntry *arb_regs) |
| 1248 | { |
| 1249 | uint32_t dram_timing; |
| 1250 | uint32_t dram_timing2; |
| 1251 | uint32_t burst_time; |
| 1252 | uint32_t rfsh_rate; |
| 1253 | uint32_t misc3; |
| 1254 | |
| 1255 | int result; |
| 1256 | |
| 1257 | result = atomctrl_set_engine_dram_timings_rv770(hwmgr, |
| 1258 | eng_clock, mem_clock); |
| 1259 | PP_ASSERT_WITH_CODE(result == 0,do { if (!(result == 0)) { printk("\0014" "amdgpu: " "%s\n", "Error calling VBIOS to set DRAM_TIMING." ); return result; } } while (0) |
| 1260 | "Error calling VBIOS to set DRAM_TIMING.",do { if (!(result == 0)) { printk("\0014" "amdgpu: " "%s\n", "Error calling VBIOS to set DRAM_TIMING." ); return result; } } while (0) |
| 1261 | return result)do { if (!(result == 0)) { printk("\0014" "amdgpu: " "%s\n", "Error calling VBIOS to set DRAM_TIMING." ); return result; } } while (0); |
| 1262 | |
| 1263 | dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0x9dd)); |
| 1264 | dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0x9de)); |
| 1265 | burst_time = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0xa02)); |
| 1266 | rfsh_rate = cgs_read_register(hwmgr->device, mmMC_ARB_RFSH_RATE)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0x9ec)); |
| 1267 | misc3 = cgs_read_register(hwmgr->device, mmMC_ARB_MISC3)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0x9cd)); |
| 1268 | |
| 1269 | arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dram_timing)(__uint32_t)(__builtin_constant_p(dram_timing) ? (__uint32_t) (((__uint32_t)(dram_timing) & 0xff) << 24 | ((__uint32_t )(dram_timing) & 0xff00) << 8 | ((__uint32_t)(dram_timing ) & 0xff0000) >> 8 | ((__uint32_t)(dram_timing) & 0xff000000) >> 24) : __swap32md(dram_timing)); |
| 1270 | arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2)(__uint32_t)(__builtin_constant_p(dram_timing2) ? (__uint32_t )(((__uint32_t)(dram_timing2) & 0xff) << 24 | ((__uint32_t )(dram_timing2) & 0xff00) << 8 | ((__uint32_t)(dram_timing2 ) & 0xff0000) >> 8 | ((__uint32_t)(dram_timing2) & 0xff000000) >> 24) : __swap32md(dram_timing2)); |
| 1271 | arb_regs->McArbBurstTime = PP_HOST_TO_SMC_UL(burst_time)(__uint32_t)(__builtin_constant_p(burst_time) ? (__uint32_t)( ((__uint32_t)(burst_time) & 0xff) << 24 | ((__uint32_t )(burst_time) & 0xff00) << 8 | ((__uint32_t)(burst_time ) & 0xff0000) >> 8 | ((__uint32_t)(burst_time) & 0xff000000) >> 24) : __swap32md(burst_time)); |
| 1272 | arb_regs->McArbRfshRate = PP_HOST_TO_SMC_UL(rfsh_rate)(__uint32_t)(__builtin_constant_p(rfsh_rate) ? (__uint32_t)(( (__uint32_t)(rfsh_rate) & 0xff) << 24 | ((__uint32_t )(rfsh_rate) & 0xff00) << 8 | ((__uint32_t)(rfsh_rate ) & 0xff0000) >> 8 | ((__uint32_t)(rfsh_rate) & 0xff000000) >> 24) : __swap32md(rfsh_rate)); |
| 1273 | arb_regs->McArbMisc3 = PP_HOST_TO_SMC_UL(misc3)(__uint32_t)(__builtin_constant_p(misc3) ? (__uint32_t)(((__uint32_t )(misc3) & 0xff) << 24 | ((__uint32_t)(misc3) & 0xff00) << 8 | ((__uint32_t)(misc3) & 0xff0000) >> 8 | ((__uint32_t)(misc3) & 0xff000000) >> 24) : __swap32md (misc3)); |
| 1274 | |
| 1275 | return 0; |
| 1276 | } |
| 1277 | |
| 1278 | static int vegam_program_memory_timing_parameters(struct pp_hwmgr *hwmgr) |
| 1279 | { |
| 1280 | struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 1281 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| 1282 | struct SMU75_Discrete_MCArbDramTimingTable arb_regs; |
| 1283 | uint32_t i, j; |
| 1284 | int result = 0; |
| 1285 | |
| 1286 | memset(&arb_regs, 0, sizeof(SMU75_Discrete_MCArbDramTimingTable))__builtin_memset((&arb_regs), (0), (sizeof(SMU75_Discrete_MCArbDramTimingTable ))); |
| 1287 | |
| 1288 | for (i = 0; i < hw_data->dpm_table.sclk_table.count; i++) { |
| 1289 | for (j = 0; j < hw_data->dpm_table.mclk_table.count; j++) { |
| 1290 | result = vegam_populate_memory_timing_parameters(hwmgr, |
| 1291 | hw_data->dpm_table.sclk_table.dpm_levels[i].value, |
| 1292 | hw_data->dpm_table.mclk_table.dpm_levels[j].value, |
| 1293 | &arb_regs.entries[i][j]); |
| 1294 | if (result) |
| 1295 | return result; |
| 1296 | } |
| 1297 | } |
| 1298 | |
| 1299 | result = smu7_copy_bytes_to_smc( |
| 1300 | hwmgr, |
| 1301 | smu_data->smu7_data.arb_table_start, |
| 1302 | (uint8_t *)&arb_regs, |
| 1303 | sizeof(SMU75_Discrete_MCArbDramTimingTable), |
| 1304 | SMC_RAM_END0x40000); |
| 1305 | return result; |
| 1306 | } |
| 1307 | |
| 1308 | static int vegam_populate_smc_uvd_level(struct pp_hwmgr *hwmgr, |
| 1309 | struct SMU75_Discrete_DpmTable *table) |
| 1310 | { |
| 1311 | int result = -EINVAL22; |
| 1312 | uint8_t count; |
| 1313 | struct pp_atomctrl_clock_dividers_vi dividers; |
| 1314 | struct phm_ppt_v1_information *table_info = |
| 1315 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| 1316 | struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = |
| 1317 | table_info->mm_dep_table; |
| 1318 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 1319 | uint32_t vddci; |
| 1320 | |
| 1321 | table->UvdLevelCount = (uint8_t)(mm_table->count); |
| 1322 | table->UvdBootLevel = 0; |
| 1323 | |
| 1324 | for (count = 0; count < table->UvdLevelCount; count++) { |
| 1325 | table->UvdLevel[count].MinVoltage = 0; |
| 1326 | table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk; |
| 1327 | table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk; |
| 1328 | table->UvdLevel[count].MinVoltage |= |
| 1329 | (mm_table->entries[count].vddc * VOLTAGE_SCALE4) << VDDC_SHIFT0; |
| 1330 | |
| 1331 | if (SMU7_VOLTAGE_CONTROL_BY_GPIO0x1 == data->vddci_control) |
| 1332 | vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table), |
| 1333 | mm_table->entries[count].vddc - VDDC_VDDCI_DELTA200); |
| 1334 | else if (SMU7_VOLTAGE_CONTROL_BY_SVID20x2 == data->vddci_control) |
| 1335 | vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA200; |
| 1336 | else |
| 1337 | vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE4) << VDDCI_SHIFT15; |
| 1338 | |
| 1339 | table->UvdLevel[count].MinVoltage |= (vddci * VOLTAGE_SCALE4) << VDDCI_SHIFT15; |
| 1340 | table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT30; |
| 1341 | |
| 1342 | /* retrieve divider value for VBIOS */ |
| 1343 | result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
| 1344 | table->UvdLevel[count].VclkFrequency, ÷rs); |
| 1345 | PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find divide id for Vclk clock"); return result; } } while (0) |
| 1346 | "can not find divide id for Vclk clock", return result)do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find divide id for Vclk clock"); return result; } } while (0); |
| 1347 | |
| 1348 | table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider; |
| 1349 | |
| 1350 | result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
| 1351 | table->UvdLevel[count].DclkFrequency, ÷rs); |
| 1352 | PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find divide id for Dclk clock"); return result; } } while (0) |
| 1353 | "can not find divide id for Dclk clock", return result)do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find divide id for Dclk clock"); return result; } } while (0); |
| 1354 | |
| 1355 | table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider; |
| 1356 | |
| 1357 | CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency)((table->UvdLevel[count].VclkFrequency) = (__uint32_t)(__builtin_constant_p (table->UvdLevel[count].VclkFrequency) ? (__uint32_t)(((__uint32_t )(table->UvdLevel[count].VclkFrequency) & 0xff) << 24 | ((__uint32_t)(table->UvdLevel[count].VclkFrequency) & 0xff00) << 8 | ((__uint32_t)(table->UvdLevel[count] .VclkFrequency) & 0xff0000) >> 8 | ((__uint32_t)(table ->UvdLevel[count].VclkFrequency) & 0xff000000) >> 24) : __swap32md(table->UvdLevel[count].VclkFrequency))); |
| 1358 | CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency)((table->UvdLevel[count].DclkFrequency) = (__uint32_t)(__builtin_constant_p (table->UvdLevel[count].DclkFrequency) ? (__uint32_t)(((__uint32_t )(table->UvdLevel[count].DclkFrequency) & 0xff) << 24 | ((__uint32_t)(table->UvdLevel[count].DclkFrequency) & 0xff00) << 8 | ((__uint32_t)(table->UvdLevel[count] .DclkFrequency) & 0xff0000) >> 8 | ((__uint32_t)(table ->UvdLevel[count].DclkFrequency) & 0xff000000) >> 24) : __swap32md(table->UvdLevel[count].DclkFrequency))); |
| 1359 | CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage)((table->UvdLevel[count].MinVoltage) = (__uint32_t)(__builtin_constant_p (table->UvdLevel[count].MinVoltage) ? (__uint32_t)(((__uint32_t )(table->UvdLevel[count].MinVoltage) & 0xff) << 24 | ((__uint32_t)(table->UvdLevel[count].MinVoltage) & 0xff00 ) << 8 | ((__uint32_t)(table->UvdLevel[count].MinVoltage ) & 0xff0000) >> 8 | ((__uint32_t)(table->UvdLevel [count].MinVoltage) & 0xff000000) >> 24) : __swap32md (table->UvdLevel[count].MinVoltage))); |
| 1360 | } |
| 1361 | |
| 1362 | return result; |
| 1363 | } |
| 1364 | |
| 1365 | static int vegam_populate_smc_boot_level(struct pp_hwmgr *hwmgr, |
| 1366 | struct SMU75_Discrete_DpmTable *table) |
| 1367 | { |
| 1368 | int result = 0; |
| 1369 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 1370 | |
| 1371 | table->GraphicsBootLevel = 0; |
| 1372 | table->MemoryBootLevel = 0; |
| 1373 | |
| 1374 | /* find boot level from dpm table */ |
| 1375 | result = phm_find_boot_level(&(data->dpm_table.sclk_table), |
| 1376 | data->vbios_boot_state.sclk_bootup_value, |
| 1377 | (uint32_t *)&(table->GraphicsBootLevel)); |
| 1378 | if (result) |
| 1379 | return result; |
| 1380 | |
| 1381 | result = phm_find_boot_level(&(data->dpm_table.mclk_table), |
| 1382 | data->vbios_boot_state.mclk_bootup_value, |
| 1383 | (uint32_t *)&(table->MemoryBootLevel)); |
| 1384 | |
| 1385 | if (result) |
| 1386 | return result; |
| 1387 | |
| 1388 | table->BootVddc = data->vbios_boot_state.vddc_bootup_value * |
| 1389 | VOLTAGE_SCALE4; |
| 1390 | table->BootVddci = data->vbios_boot_state.vddci_bootup_value * |
| 1391 | VOLTAGE_SCALE4; |
| 1392 | table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value * |
| 1393 | VOLTAGE_SCALE4; |
| 1394 | |
| 1395 | CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc)((table->BootVddc) = (__uint16_t)(__builtin_constant_p(table ->BootVddc) ? (__uint16_t)(((__uint16_t)(table->BootVddc ) & 0xffU) << 8 | ((__uint16_t)(table->BootVddc) & 0xff00U) >> 8) : __swap16md(table->BootVddc)) ); |
| 1396 | CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci)((table->BootVddci) = (__uint16_t)(__builtin_constant_p(table ->BootVddci) ? (__uint16_t)(((__uint16_t)(table->BootVddci ) & 0xffU) << 8 | ((__uint16_t)(table->BootVddci ) & 0xff00U) >> 8) : __swap16md(table->BootVddci ))); |
| 1397 | CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd)((table->BootMVdd) = (__uint16_t)(__builtin_constant_p(table ->BootMVdd) ? (__uint16_t)(((__uint16_t)(table->BootMVdd ) & 0xffU) << 8 | ((__uint16_t)(table->BootMVdd) & 0xff00U) >> 8) : __swap16md(table->BootMVdd)) ); |
| 1398 | |
| 1399 | return 0; |
| 1400 | } |
| 1401 | |
| 1402 | static int vegam_populate_smc_initial_state(struct pp_hwmgr *hwmgr) |
| 1403 | { |
| 1404 | struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 1405 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| 1406 | struct phm_ppt_v1_information *table_info = |
| 1407 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| 1408 | uint8_t count, level; |
| 1409 | |
| 1410 | count = (uint8_t)(table_info->vdd_dep_on_sclk->count); |
| 1411 | |
| 1412 | for (level = 0; level < count; level++) { |
| 1413 | if (table_info->vdd_dep_on_sclk->entries[level].clk >= |
| 1414 | hw_data->vbios_boot_state.sclk_bootup_value) { |
| 1415 | smu_data->smc_state_table.GraphicsBootLevel = level; |
| 1416 | break; |
| 1417 | } |
| 1418 | } |
| 1419 | |
| 1420 | count = (uint8_t)(table_info->vdd_dep_on_mclk->count); |
| 1421 | for (level = 0; level < count; level++) { |
| 1422 | if (table_info->vdd_dep_on_mclk->entries[level].clk >= |
| 1423 | hw_data->vbios_boot_state.mclk_bootup_value) { |
| 1424 | smu_data->smc_state_table.MemoryBootLevel = level; |
| 1425 | break; |
| 1426 | } |
| 1427 | } |
| 1428 | |
| 1429 | return 0; |
| 1430 | } |
| 1431 | |
| 1432 | static uint16_t scale_fan_gain_settings(uint16_t raw_setting) |
| 1433 | { |
| 1434 | uint32_t tmp; |
| 1435 | tmp = raw_setting * 4096 / 100; |
| 1436 | return (uint16_t)tmp; |
| 1437 | } |
| 1438 | |
| 1439 | static int vegam_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr) |
| 1440 | { |
| 1441 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| 1442 | |
| 1443 | const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults; |
| 1444 | SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table); |
| 1445 | struct phm_ppt_v1_information *table_info = |
| 1446 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| 1447 | struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table; |
| 1448 | struct pp_advance_fan_control_parameters *fan_table = |
| 1449 | &hwmgr->thermal_controller.advanceFanControlParameters; |
| 1450 | int i, j, k; |
| 1451 | const uint16_t *pdef1; |
| 1452 | const uint16_t *pdef2; |
| 1453 | |
| 1454 | table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128))(__uint16_t)(__builtin_constant_p((uint16_t)(cac_dtp_table-> usTDP * 128)) ? (__uint16_t)(((__uint16_t)((uint16_t)(cac_dtp_table ->usTDP * 128)) & 0xffU) << 8 | ((__uint16_t)((uint16_t )(cac_dtp_table->usTDP * 128)) & 0xff00U) >> 8) : __swap16md((uint16_t)(cac_dtp_table->usTDP * 128))); |
| 1455 | table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128))(__uint16_t)(__builtin_constant_p((uint16_t)(cac_dtp_table-> usTDP * 128)) ? (__uint16_t)(((__uint16_t)((uint16_t)(cac_dtp_table ->usTDP * 128)) & 0xffU) << 8 | ((__uint16_t)((uint16_t )(cac_dtp_table->usTDP * 128)) & 0xff00U) >> 8) : __swap16md((uint16_t)(cac_dtp_table->usTDP * 128))); |
| 1456 | |
| 1457 | PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,do { if (!(cac_dtp_table->usTargetOperatingTemp <= 255) ) { printk("\0014" "amdgpu: " "%s\n", "Target Operating Temp is out of Range!" ); ; } } while (0) |
| 1458 | "Target Operating Temp is out of Range!",do { if (!(cac_dtp_table->usTargetOperatingTemp <= 255) ) { printk("\0014" "amdgpu: " "%s\n", "Target Operating Temp is out of Range!" ); ; } } while (0) |
| 1459 | )do { if (!(cac_dtp_table->usTargetOperatingTemp <= 255) ) { printk("\0014" "amdgpu: " "%s\n", "Target Operating Temp is out of Range!" ); ; } } while (0); |
| 1460 | |
| 1461 | table->TemperatureLimitEdge = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(cac_dtp_table->usTargetOperatingTemp * 256) ? (__uint16_t)(((__uint16_t)(cac_dtp_table->usTargetOperatingTemp * 256) & 0xffU) << 8 | ((__uint16_t)(cac_dtp_table ->usTargetOperatingTemp * 256) & 0xff00U) >> 8) : __swap16md(cac_dtp_table->usTargetOperatingTemp * 256)) |
| 1462 | cac_dtp_table->usTargetOperatingTemp * 256)(__uint16_t)(__builtin_constant_p(cac_dtp_table->usTargetOperatingTemp * 256) ? (__uint16_t)(((__uint16_t)(cac_dtp_table->usTargetOperatingTemp * 256) & 0xffU) << 8 | ((__uint16_t)(cac_dtp_table ->usTargetOperatingTemp * 256) & 0xff00U) >> 8) : __swap16md(cac_dtp_table->usTargetOperatingTemp * 256)); |
| 1463 | table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(cac_dtp_table->usTemperatureLimitHotspot * 256) ? (__uint16_t)(((__uint16_t)(cac_dtp_table->usTemperatureLimitHotspot * 256) & 0xffU) << 8 | ((__uint16_t)(cac_dtp_table ->usTemperatureLimitHotspot * 256) & 0xff00U) >> 8) : __swap16md(cac_dtp_table->usTemperatureLimitHotspot * 256)) |
| 1464 | cac_dtp_table->usTemperatureLimitHotspot * 256)(__uint16_t)(__builtin_constant_p(cac_dtp_table->usTemperatureLimitHotspot * 256) ? (__uint16_t)(((__uint16_t)(cac_dtp_table->usTemperatureLimitHotspot * 256) & 0xffU) << 8 | ((__uint16_t)(cac_dtp_table ->usTemperatureLimitHotspot * 256) & 0xff00U) >> 8) : __swap16md(cac_dtp_table->usTemperatureLimitHotspot * 256)); |
| 1465 | table->FanGainEdge = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(scale_fan_gain_settings(fan_table ->usFanGainEdge)) ? (__uint16_t)(((__uint16_t)(scale_fan_gain_settings (fan_table->usFanGainEdge)) & 0xffU) << 8 | ((__uint16_t )(scale_fan_gain_settings(fan_table->usFanGainEdge)) & 0xff00U) >> 8) : __swap16md(scale_fan_gain_settings(fan_table ->usFanGainEdge))) |
| 1466 | scale_fan_gain_settings(fan_table->usFanGainEdge))(__uint16_t)(__builtin_constant_p(scale_fan_gain_settings(fan_table ->usFanGainEdge)) ? (__uint16_t)(((__uint16_t)(scale_fan_gain_settings (fan_table->usFanGainEdge)) & 0xffU) << 8 | ((__uint16_t )(scale_fan_gain_settings(fan_table->usFanGainEdge)) & 0xff00U) >> 8) : __swap16md(scale_fan_gain_settings(fan_table ->usFanGainEdge))); |
| 1467 | table->FanGainHotspot = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(scale_fan_gain_settings(fan_table ->usFanGainHotspot)) ? (__uint16_t)(((__uint16_t)(scale_fan_gain_settings (fan_table->usFanGainHotspot)) & 0xffU) << 8 | ( (__uint16_t)(scale_fan_gain_settings(fan_table->usFanGainHotspot )) & 0xff00U) >> 8) : __swap16md(scale_fan_gain_settings (fan_table->usFanGainHotspot))) |
| 1468 | scale_fan_gain_settings(fan_table->usFanGainHotspot))(__uint16_t)(__builtin_constant_p(scale_fan_gain_settings(fan_table ->usFanGainHotspot)) ? (__uint16_t)(((__uint16_t)(scale_fan_gain_settings (fan_table->usFanGainHotspot)) & 0xffU) << 8 | ( (__uint16_t)(scale_fan_gain_settings(fan_table->usFanGainHotspot )) & 0xff00U) >> 8) : __swap16md(scale_fan_gain_settings (fan_table->usFanGainHotspot))); |
| 1469 | |
| 1470 | pdef1 = defaults->BAPMTI_R; |
| 1471 | pdef2 = defaults->BAPMTI_RC; |
| 1472 | |
| 1473 | for (i = 0; i < SMU75_DTE_ITERATIONS5; i++) { |
| 1474 | for (j = 0; j < SMU75_DTE_SOURCES3; j++) { |
| 1475 | for (k = 0; k < SMU75_DTE_SINKS1; k++) { |
| 1476 | table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*pdef1)(__uint16_t)(__builtin_constant_p(*pdef1) ? (__uint16_t)(((__uint16_t )(*pdef1) & 0xffU) << 8 | ((__uint16_t)(*pdef1) & 0xff00U) >> 8) : __swap16md(*pdef1)); |
| 1477 | table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*pdef2)(__uint16_t)(__builtin_constant_p(*pdef2) ? (__uint16_t)(((__uint16_t )(*pdef2) & 0xffU) << 8 | ((__uint16_t)(*pdef2) & 0xff00U) >> 8) : __swap16md(*pdef2)); |
| 1478 | pdef1++; |
| 1479 | pdef2++; |
| 1480 | } |
| 1481 | } |
| 1482 | } |
| 1483 | |
| 1484 | return 0; |
| 1485 | } |
| 1486 | |
| 1487 | static int vegam_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr) |
| 1488 | { |
| 1489 | uint32_t ro, efuse, volt_without_cks, volt_with_cks, value, max, min; |
| 1490 | struct vegam_smumgr *smu_data = |
| 1491 | (struct vegam_smumgr *)(hwmgr->smu_backend); |
| 1492 | |
| 1493 | uint8_t i, stretch_amount, volt_offset = 0; |
| 1494 | struct phm_ppt_v1_information *table_info = |
| 1495 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| 1496 | struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = |
| 1497 | table_info->vdd_dep_on_sclk; |
| 1498 | |
| 1499 | stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount; |
| 1500 | |
| 1501 | atomctrl_read_efuse(hwmgr, STRAP_ASIC_RO_LSB2168, STRAP_ASIC_RO_MSB2175, |
| 1502 | &efuse); |
| 1503 | |
| 1504 | min = 1200; |
| 1505 | max = 2500; |
| 1506 | |
| 1507 | ro = efuse * (max - min) / 255 + min; |
| 1508 | |
| 1509 | /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */ |
| 1510 | for (i = 0; i < sclk_table->count; i++) { |
| 1511 | smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |= |
| 1512 | sclk_table->entries[i].cks_enable << i; |
| 1513 | volt_without_cks = (uint32_t)((2753594000U + (sclk_table->entries[i].clk/100) * |
| 1514 | 136418 - (ro - 70) * 1000000) / |
| 1515 | (2424180 - (sclk_table->entries[i].clk/100) * 1132925/1000)); |
| 1516 | volt_with_cks = (uint32_t)((2797202000U + sclk_table->entries[i].clk/100 * |
| 1517 | 3232 - (ro - 65) * 1000000) / |
| 1518 | (2522480 - sclk_table->entries[i].clk/100 * 115764/100)); |
| 1519 | |
| 1520 | if (volt_without_cks >= volt_with_cks) |
| 1521 | volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks + |
| 1522 | sclk_table->entries[i].cks_voffset) * 100 + 624) / 625); |
| 1523 | |
| 1524 | smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset; |
| 1525 | } |
| 1526 | |
| 1527 | smu_data->smc_state_table.LdoRefSel = |
| 1528 | (table_info->cac_dtp_table->ucCKS_LDO_REFSEL != 0) ? |
| 1529 | table_info->cac_dtp_table->ucCKS_LDO_REFSEL : 5; |
| 1530 | /* Populate CKS Lookup Table */ |
| 1531 | if (!(stretch_amount == 1 || stretch_amount == 2 || |
| 1532 | stretch_amount == 5 || stretch_amount == 3 || |
| 1533 | stretch_amount == 4)) { |
| 1534 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| 1535 | PHM_PlatformCaps_ClockStretcher); |
| 1536 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Stretch Amount in PPTable not supported\n" ); return -22; } } while (0) |
| 1537 | "Stretch Amount in PPTable not supported\n",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Stretch Amount in PPTable not supported\n" ); return -22; } } while (0) |
| 1538 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Stretch Amount in PPTable not supported\n" ); return -22; } } while (0); |
| 1539 | } |
| 1540 | |
| 1541 | value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL)(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0200350)); |
| 1542 | value &= 0xFFFFFFFE; |
| 1543 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0200350,value)); |
| 1544 | |
| 1545 | return 0; |
| 1546 | } |
| 1547 | |
| 1548 | static bool_Bool vegam_is_hw_avfs_present(struct pp_hwmgr *hwmgr) |
| 1549 | { |
| 1550 | uint32_t efuse; |
| 1551 | |
| 1552 | efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0100000 + (49 * 4))) |
| 1553 | ixSMU_EFUSE_0 + (49 * 4))(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0100000 + (49 * 4))); |
| 1554 | efuse &= 0x00000001; |
| 1555 | |
| 1556 | if (efuse) |
| 1557 | return true1; |
| 1558 | |
| 1559 | return false0; |
| 1560 | } |
| 1561 | |
| 1562 | static int vegam_populate_avfs_parameters(struct pp_hwmgr *hwmgr) |
| 1563 | { |
| 1564 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 1565 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| 1566 | |
| 1567 | SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table); |
| 1568 | int result = 0; |
| 1569 | struct pp_atom_ctrl__avfs_parameters avfs_params = {0}; |
| 1570 | AVFS_meanNsigma_t AVFS_meanNsigma = { {0} }; |
| 1571 | AVFS_Sclk_Offset_t AVFS_SclkOffset = { {0} }; |
| 1572 | uint32_t tmp, i; |
| 1573 | |
| 1574 | struct phm_ppt_v1_information *table_info = |
| 1575 | (struct phm_ppt_v1_information *)hwmgr->pptable; |
| 1576 | struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = |
| 1577 | table_info->vdd_dep_on_sclk; |
| 1578 | |
| 1579 | if (!hwmgr->avfs_supported) |
| 1580 | return 0; |
| 1581 | |
| 1582 | result = atomctrl_get_avfs_information(hwmgr, &avfs_params); |
| 1583 | |
| 1584 | if (0 == result) { |
| 1585 | table->BTCGB_VDROOP_TABLE[0].a0 = |
| 1586 | PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a0)(__uint32_t)(__builtin_constant_p(avfs_params.ulGB_VDROOP_TABLE_CKSON_a0 ) ? (__uint32_t)(((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSON_a0 ) & 0xff) << 24 | ((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSON_a0 ) & 0xff00) << 8 | ((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSON_a0 ) & 0xff0000) >> 8 | ((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSON_a0 ) & 0xff000000) >> 24) : __swap32md(avfs_params.ulGB_VDROOP_TABLE_CKSON_a0 )); |
| 1587 | table->BTCGB_VDROOP_TABLE[0].a1 = |
| 1588 | PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a1)(__uint32_t)(__builtin_constant_p(avfs_params.ulGB_VDROOP_TABLE_CKSON_a1 ) ? (__uint32_t)(((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSON_a1 ) & 0xff) << 24 | ((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSON_a1 ) & 0xff00) << 8 | ((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSON_a1 ) & 0xff0000) >> 8 | ((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSON_a1 ) & 0xff000000) >> 24) : __swap32md(avfs_params.ulGB_VDROOP_TABLE_CKSON_a1 )); |
| 1589 | table->BTCGB_VDROOP_TABLE[0].a2 = |
| 1590 | PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a2)(__uint32_t)(__builtin_constant_p(avfs_params.ulGB_VDROOP_TABLE_CKSON_a2 ) ? (__uint32_t)(((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSON_a2 ) & 0xff) << 24 | ((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSON_a2 ) & 0xff00) << 8 | ((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSON_a2 ) & 0xff0000) >> 8 | ((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSON_a2 ) & 0xff000000) >> 24) : __swap32md(avfs_params.ulGB_VDROOP_TABLE_CKSON_a2 )); |
| 1591 | table->BTCGB_VDROOP_TABLE[1].a0 = |
| 1592 | PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0)(__uint32_t)(__builtin_constant_p(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0 ) ? (__uint32_t)(((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0 ) & 0xff) << 24 | ((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0 ) & 0xff00) << 8 | ((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0 ) & 0xff0000) >> 8 | ((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0 ) & 0xff000000) >> 24) : __swap32md(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0 )); |
| 1593 | table->BTCGB_VDROOP_TABLE[1].a1 = |
| 1594 | PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1)(__uint32_t)(__builtin_constant_p(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1 ) ? (__uint32_t)(((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1 ) & 0xff) << 24 | ((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1 ) & 0xff00) << 8 | ((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1 ) & 0xff0000) >> 8 | ((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1 ) & 0xff000000) >> 24) : __swap32md(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1 )); |
| 1595 | table->BTCGB_VDROOP_TABLE[1].a2 = |
| 1596 | PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2)(__uint32_t)(__builtin_constant_p(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2 ) ? (__uint32_t)(((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2 ) & 0xff) << 24 | ((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2 ) & 0xff00) << 8 | ((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2 ) & 0xff0000) >> 8 | ((__uint32_t)(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2 ) & 0xff000000) >> 24) : __swap32md(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2 )); |
| 1597 | table->AVFSGB_FUSE_TABLE[0].m1 = |
| 1598 | PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_m1)(__uint32_t)(__builtin_constant_p(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_m1 ) ? (__uint32_t)(((__uint32_t)(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_m1 ) & 0xff) << 24 | ((__uint32_t)(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_m1 ) & 0xff00) << 8 | ((__uint32_t)(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_m1 ) & 0xff0000) >> 8 | ((__uint32_t)(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_m1 ) & 0xff000000) >> 24) : __swap32md(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_m1 )); |
| 1599 | table->AVFSGB_FUSE_TABLE[0].m2 = |
| 1600 | PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSON_m2)(__uint16_t)(__builtin_constant_p(avfs_params.usAVFSGB_FUSE_TABLE_CKSON_m2 ) ? (__uint16_t)(((__uint16_t)(avfs_params.usAVFSGB_FUSE_TABLE_CKSON_m2 ) & 0xffU) << 8 | ((__uint16_t)(avfs_params.usAVFSGB_FUSE_TABLE_CKSON_m2 ) & 0xff00U) >> 8) : __swap16md(avfs_params.usAVFSGB_FUSE_TABLE_CKSON_m2 )); |
| 1601 | table->AVFSGB_FUSE_TABLE[0].b = |
| 1602 | PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_b)(__uint32_t)(__builtin_constant_p(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_b ) ? (__uint32_t)(((__uint32_t)(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_b ) & 0xff) << 24 | ((__uint32_t)(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_b ) & 0xff00) << 8 | ((__uint32_t)(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_b ) & 0xff0000) >> 8 | ((__uint32_t)(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_b ) & 0xff000000) >> 24) : __swap32md(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_b )); |
| 1603 | table->AVFSGB_FUSE_TABLE[0].m1_shift = 24; |
| 1604 | table->AVFSGB_FUSE_TABLE[0].m2_shift = 12; |
| 1605 | table->AVFSGB_FUSE_TABLE[1].m1 = |
| 1606 | PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1)(__uint32_t)(__builtin_constant_p(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1 ) ? (__uint32_t)(((__uint32_t)(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1 ) & 0xff) << 24 | ((__uint32_t)(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1 ) & 0xff00) << 8 | ((__uint32_t)(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1 ) & 0xff0000) >> 8 | ((__uint32_t)(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1 ) & 0xff000000) >> 24) : __swap32md(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1 )); |
| 1607 | table->AVFSGB_FUSE_TABLE[1].m2 = |
| 1608 | PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSOFF_m2)(__uint16_t)(__builtin_constant_p(avfs_params.usAVFSGB_FUSE_TABLE_CKSOFF_m2 ) ? (__uint16_t)(((__uint16_t)(avfs_params.usAVFSGB_FUSE_TABLE_CKSOFF_m2 ) & 0xffU) << 8 | ((__uint16_t)(avfs_params.usAVFSGB_FUSE_TABLE_CKSOFF_m2 ) & 0xff00U) >> 8) : __swap16md(avfs_params.usAVFSGB_FUSE_TABLE_CKSOFF_m2 )); |
| 1609 | table->AVFSGB_FUSE_TABLE[1].b = |
| 1610 | PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b)(__uint32_t)(__builtin_constant_p(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b ) ? (__uint32_t)(((__uint32_t)(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b ) & 0xff) << 24 | ((__uint32_t)(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b ) & 0xff00) << 8 | ((__uint32_t)(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b ) & 0xff0000) >> 8 | ((__uint32_t)(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b ) & 0xff000000) >> 24) : __swap32md(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b )); |
| 1611 | table->AVFSGB_FUSE_TABLE[1].m1_shift = 24; |
| 1612 | table->AVFSGB_FUSE_TABLE[1].m2_shift = 12; |
| 1613 | table->MaxVoltage = PP_HOST_TO_SMC_US(avfs_params.usMaxVoltage_0_25mv)(__uint16_t)(__builtin_constant_p(avfs_params.usMaxVoltage_0_25mv ) ? (__uint16_t)(((__uint16_t)(avfs_params.usMaxVoltage_0_25mv ) & 0xffU) << 8 | ((__uint16_t)(avfs_params.usMaxVoltage_0_25mv ) & 0xff00U) >> 8) : __swap16md(avfs_params.usMaxVoltage_0_25mv )); |
| 1614 | AVFS_meanNsigma.Aconstant[0] = |
| 1615 | PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant0)(__uint32_t)(__builtin_constant_p(avfs_params.ulAVFS_meanNsigma_Acontant0 ) ? (__uint32_t)(((__uint32_t)(avfs_params.ulAVFS_meanNsigma_Acontant0 ) & 0xff) << 24 | ((__uint32_t)(avfs_params.ulAVFS_meanNsigma_Acontant0 ) & 0xff00) << 8 | ((__uint32_t)(avfs_params.ulAVFS_meanNsigma_Acontant0 ) & 0xff0000) >> 8 | ((__uint32_t)(avfs_params.ulAVFS_meanNsigma_Acontant0 ) & 0xff000000) >> 24) : __swap32md(avfs_params.ulAVFS_meanNsigma_Acontant0 )); |
| 1616 | AVFS_meanNsigma.Aconstant[1] = |
| 1617 | PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant1)(__uint32_t)(__builtin_constant_p(avfs_params.ulAVFS_meanNsigma_Acontant1 ) ? (__uint32_t)(((__uint32_t)(avfs_params.ulAVFS_meanNsigma_Acontant1 ) & 0xff) << 24 | ((__uint32_t)(avfs_params.ulAVFS_meanNsigma_Acontant1 ) & 0xff00) << 8 | ((__uint32_t)(avfs_params.ulAVFS_meanNsigma_Acontant1 ) & 0xff0000) >> 8 | ((__uint32_t)(avfs_params.ulAVFS_meanNsigma_Acontant1 ) & 0xff000000) >> 24) : __swap32md(avfs_params.ulAVFS_meanNsigma_Acontant1 )); |
| 1618 | AVFS_meanNsigma.Aconstant[2] = |
| 1619 | PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant2)(__uint32_t)(__builtin_constant_p(avfs_params.ulAVFS_meanNsigma_Acontant2 ) ? (__uint32_t)(((__uint32_t)(avfs_params.ulAVFS_meanNsigma_Acontant2 ) & 0xff) << 24 | ((__uint32_t)(avfs_params.ulAVFS_meanNsigma_Acontant2 ) & 0xff00) << 8 | ((__uint32_t)(avfs_params.ulAVFS_meanNsigma_Acontant2 ) & 0xff0000) >> 8 | ((__uint32_t)(avfs_params.ulAVFS_meanNsigma_Acontant2 ) & 0xff000000) >> 24) : __swap32md(avfs_params.ulAVFS_meanNsigma_Acontant2 )); |
| 1620 | AVFS_meanNsigma.DC_tol_sigma = |
| 1621 | PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_DC_tol_sigma)(__uint16_t)(__builtin_constant_p(avfs_params.usAVFS_meanNsigma_DC_tol_sigma ) ? (__uint16_t)(((__uint16_t)(avfs_params.usAVFS_meanNsigma_DC_tol_sigma ) & 0xffU) << 8 | ((__uint16_t)(avfs_params.usAVFS_meanNsigma_DC_tol_sigma ) & 0xff00U) >> 8) : __swap16md(avfs_params.usAVFS_meanNsigma_DC_tol_sigma )); |
| 1622 | AVFS_meanNsigma.Platform_mean = |
| 1623 | PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_mean)(__uint16_t)(__builtin_constant_p(avfs_params.usAVFS_meanNsigma_Platform_mean ) ? (__uint16_t)(((__uint16_t)(avfs_params.usAVFS_meanNsigma_Platform_mean ) & 0xffU) << 8 | ((__uint16_t)(avfs_params.usAVFS_meanNsigma_Platform_mean ) & 0xff00U) >> 8) : __swap16md(avfs_params.usAVFS_meanNsigma_Platform_mean )); |
| 1624 | AVFS_meanNsigma.PSM_Age_CompFactor = |
| 1625 | PP_HOST_TO_SMC_US(avfs_params.usPSM_Age_ComFactor)(__uint16_t)(__builtin_constant_p(avfs_params.usPSM_Age_ComFactor ) ? (__uint16_t)(((__uint16_t)(avfs_params.usPSM_Age_ComFactor ) & 0xffU) << 8 | ((__uint16_t)(avfs_params.usPSM_Age_ComFactor ) & 0xff00U) >> 8) : __swap16md(avfs_params.usPSM_Age_ComFactor )); |
| 1626 | AVFS_meanNsigma.Platform_sigma = |
| 1627 | PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_sigma)(__uint16_t)(__builtin_constant_p(avfs_params.usAVFS_meanNsigma_Platform_sigma ) ? (__uint16_t)(((__uint16_t)(avfs_params.usAVFS_meanNsigma_Platform_sigma ) & 0xffU) << 8 | ((__uint16_t)(avfs_params.usAVFS_meanNsigma_Platform_sigma ) & 0xff00U) >> 8) : __swap16md(avfs_params.usAVFS_meanNsigma_Platform_sigma )); |
| 1628 | |
| 1629 | for (i = 0; i < sclk_table->count; i++) { |
| 1630 | AVFS_meanNsigma.Static_Voltage_Offset[i] = |
| 1631 | (uint8_t)(sclk_table->entries[i].cks_voffset * 100 / 625); |
| 1632 | AVFS_SclkOffset.Sclk_Offset[i] = |
| 1633 | PP_HOST_TO_SMC_US((uint16_t)(__uint16_t)(__builtin_constant_p((uint16_t) (sclk_table-> entries[i].sclk_offset) / 100) ? (__uint16_t)(((__uint16_t)(( uint16_t) (sclk_table->entries[i].sclk_offset) / 100) & 0xffU) << 8 | ((__uint16_t)((uint16_t) (sclk_table-> entries[i].sclk_offset) / 100) & 0xff00U) >> 8) : __swap16md ((uint16_t) (sclk_table->entries[i].sclk_offset) / 100)) |
| 1634 | (sclk_table->entries[i].sclk_offset) / 100)(__uint16_t)(__builtin_constant_p((uint16_t) (sclk_table-> entries[i].sclk_offset) / 100) ? (__uint16_t)(((__uint16_t)(( uint16_t) (sclk_table->entries[i].sclk_offset) / 100) & 0xffU) << 8 | ((__uint16_t)((uint16_t) (sclk_table-> entries[i].sclk_offset) / 100) & 0xff00U) >> 8) : __swap16md ((uint16_t) (sclk_table->entries[i].sclk_offset) / 100)); |
| 1635 | } |
| 1636 | |
| 1637 | result = smu7_read_smc_sram_dword(hwmgr, |
| 1638 | SMU7_FIRMWARE_HEADER_LOCATION0x20000 + |
| 1639 | offsetof(SMU75_Firmware_Header, AvfsMeanNSigma)__builtin_offsetof(SMU75_Firmware_Header, AvfsMeanNSigma), |
| 1640 | &tmp, SMC_RAM_END0x40000); |
| 1641 | smu7_copy_bytes_to_smc(hwmgr, |
| 1642 | tmp, |
| 1643 | (uint8_t *)&AVFS_meanNsigma, |
| 1644 | sizeof(AVFS_meanNsigma_t), |
| 1645 | SMC_RAM_END0x40000); |
| 1646 | |
| 1647 | result = smu7_read_smc_sram_dword(hwmgr, |
| 1648 | SMU7_FIRMWARE_HEADER_LOCATION0x20000 + |
| 1649 | offsetof(SMU75_Firmware_Header, AvfsSclkOffsetTable)__builtin_offsetof(SMU75_Firmware_Header, AvfsSclkOffsetTable ), |
| 1650 | &tmp, SMC_RAM_END0x40000); |
| 1651 | smu7_copy_bytes_to_smc(hwmgr, |
| 1652 | tmp, |
| 1653 | (uint8_t *)&AVFS_SclkOffset, |
| 1654 | sizeof(AVFS_Sclk_Offset_t), |
| 1655 | SMC_RAM_END0x40000); |
| 1656 | |
| 1657 | data->avfs_vdroop_override_setting = |
| 1658 | (avfs_params.ucEnableGB_VDROOP_TABLE_CKSON << BTCGB0_Vdroop_Enable_SHIFT0) | |
| 1659 | (avfs_params.ucEnableGB_VDROOP_TABLE_CKSOFF << BTCGB1_Vdroop_Enable_SHIFT1) | |
| 1660 | (avfs_params.ucEnableGB_FUSE_TABLE_CKSON << AVFSGB0_Vdroop_Enable_SHIFT2) | |
| 1661 | (avfs_params.ucEnableGB_FUSE_TABLE_CKSOFF << AVFSGB1_Vdroop_Enable_SHIFT3); |
| 1662 | data->apply_avfs_cks_off_voltage = |
| 1663 | (avfs_params.ucEnableApplyAVFS_CKS_OFF_Voltage == 1) ? true1 : false0; |
| 1664 | } |
| 1665 | return result; |
| 1666 | } |
| 1667 | |
| 1668 | static int vegam_populate_vr_config(struct pp_hwmgr *hwmgr, |
| 1669 | struct SMU75_Discrete_DpmTable *table) |
| 1670 | { |
| 1671 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 1672 | struct vegam_smumgr *smu_data = |
| 1673 | (struct vegam_smumgr *)(hwmgr->smu_backend); |
| 1674 | uint16_t config; |
| 1675 | |
| 1676 | config = VR_MERGED_WITH_VDDC0; |
| 1677 | table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT8); |
| 1678 | |
| 1679 | /* Set Vddc Voltage Controller */ |
| 1680 | if (SMU7_VOLTAGE_CONTROL_BY_SVID20x2 == data->voltage_control) { |
| 1681 | config = VR_SVI2_PLANE_11; |
| 1682 | table->VRConfig |= config; |
| 1683 | } else { |
| 1684 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "VDDC should be on SVI2 control in merged mode!" ); ; } } while (0) |
| 1685 | "VDDC should be on SVI2 control in merged mode!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "VDDC should be on SVI2 control in merged mode!" ); ; } } while (0) |
| 1686 | )do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "VDDC should be on SVI2 control in merged mode!" ); ; } } while (0); |
| 1687 | } |
| 1688 | /* Set Vddci Voltage Controller */ |
| 1689 | if (SMU7_VOLTAGE_CONTROL_BY_SVID20x2 == data->vddci_control) { |
| 1690 | config = VR_SVI2_PLANE_22; /* only in merged mode */ |
| 1691 | table->VRConfig |= (config << VRCONF_VDDCI_SHIFT16); |
| 1692 | } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO0x1 == data->vddci_control) { |
| 1693 | config = VR_SMIO_PATTERN_13; |
| 1694 | table->VRConfig |= (config << VRCONF_VDDCI_SHIFT16); |
| 1695 | } else { |
| 1696 | config = VR_STATIC_VOLTAGE5; |
| 1697 | table->VRConfig |= (config << VRCONF_VDDCI_SHIFT16); |
| 1698 | } |
| 1699 | /* Set Mvdd Voltage Controller */ |
| 1700 | if (SMU7_VOLTAGE_CONTROL_BY_SVID20x2 == data->mvdd_control) { |
| 1701 | if (config != VR_SVI2_PLANE_22) { |
| 1702 | config = VR_SVI2_PLANE_22; |
| 1703 | table->VRConfig |= (config << VRCONF_MVDD_SHIFT24); |
| 1704 | cgs_write_ind_register(hwmgr->device,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,smu_data->smu7_data.soft_regs_start + __builtin_offsetof(SMU75_SoftRegisters, AllowMvddSwitch),0x1 )) |
| 1705 | CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,smu_data->smu7_data.soft_regs_start + __builtin_offsetof(SMU75_SoftRegisters, AllowMvddSwitch),0x1 )) |
| 1706 | smu_data->smu7_data.soft_regs_start +(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,smu_data->smu7_data.soft_regs_start + __builtin_offsetof(SMU75_SoftRegisters, AllowMvddSwitch),0x1 )) |
| 1707 | offsetof(SMU75_SoftRegisters, AllowMvddSwitch),(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,smu_data->smu7_data.soft_regs_start + __builtin_offsetof(SMU75_SoftRegisters, AllowMvddSwitch),0x1 )) |
| 1708 | 0x1)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,smu_data->smu7_data.soft_regs_start + __builtin_offsetof(SMU75_SoftRegisters, AllowMvddSwitch),0x1 )); |
| 1709 | } else { |
| 1710 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "SVI2 Plane 2 is already taken, set MVDD as Static" ); ; } } while (0) |
| 1711 | "SVI2 Plane 2 is already taken, set MVDD as Static",)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "SVI2 Plane 2 is already taken, set MVDD as Static" ); ; } } while (0); |
| 1712 | config = VR_STATIC_VOLTAGE5; |
| 1713 | table->VRConfig = (config << VRCONF_MVDD_SHIFT24); |
| 1714 | } |
| 1715 | } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO0x1 == data->mvdd_control) { |
| 1716 | config = VR_SMIO_PATTERN_24; |
| 1717 | table->VRConfig = (config << VRCONF_MVDD_SHIFT24); |
| 1718 | cgs_write_ind_register(hwmgr->device,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,smu_data->smu7_data.soft_regs_start + __builtin_offsetof(SMU75_SoftRegisters, AllowMvddSwitch),0x1 )) |
| 1719 | CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,smu_data->smu7_data.soft_regs_start + __builtin_offsetof(SMU75_SoftRegisters, AllowMvddSwitch),0x1 )) |
| 1720 | smu_data->smu7_data.soft_regs_start +(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,smu_data->smu7_data.soft_regs_start + __builtin_offsetof(SMU75_SoftRegisters, AllowMvddSwitch),0x1 )) |
| 1721 | offsetof(SMU75_SoftRegisters, AllowMvddSwitch),(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,smu_data->smu7_data.soft_regs_start + __builtin_offsetof(SMU75_SoftRegisters, AllowMvddSwitch),0x1 )) |
| 1722 | 0x1)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,smu_data->smu7_data.soft_regs_start + __builtin_offsetof(SMU75_SoftRegisters, AllowMvddSwitch),0x1 )); |
| 1723 | } else { |
| 1724 | config = VR_STATIC_VOLTAGE5; |
| 1725 | table->VRConfig |= (config << VRCONF_MVDD_SHIFT24); |
| 1726 | } |
| 1727 | |
| 1728 | return 0; |
| 1729 | } |
| 1730 | |
| 1731 | static int vegam_populate_svi_load_line(struct pp_hwmgr *hwmgr) |
| 1732 | { |
| 1733 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| 1734 | const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults; |
| 1735 | |
| 1736 | smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn; |
| 1737 | smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC; |
| 1738 | smu_data->power_tune_table.SviLoadLineTrimVddC = 3; |
| 1739 | smu_data->power_tune_table.SviLoadLineOffsetVddC = 0; |
| 1740 | |
| 1741 | return 0; |
| 1742 | } |
| 1743 | |
| 1744 | static int vegam_populate_tdc_limit(struct pp_hwmgr *hwmgr) |
| 1745 | { |
| 1746 | uint16_t tdc_limit; |
| 1747 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| 1748 | struct phm_ppt_v1_information *table_info = |
| 1749 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| 1750 | const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults; |
| 1751 | |
| 1752 | tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128); |
| 1753 | smu_data->power_tune_table.TDC_VDDC_PkgLimit = |
| 1754 | CONVERT_FROM_HOST_TO_SMC_US(tdc_limit)((tdc_limit) = (__uint16_t)(__builtin_constant_p(tdc_limit) ? (__uint16_t)(((__uint16_t)(tdc_limit) & 0xffU) << 8 | ((__uint16_t)(tdc_limit) & 0xff00U) >> 8) : __swap16md (tdc_limit))); |
| 1755 | smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc = |
| 1756 | defaults->TDC_VDDC_ThrottleReleaseLimitPerc; |
| 1757 | smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt; |
| 1758 | |
| 1759 | return 0; |
| 1760 | } |
| 1761 | |
| 1762 | static int vegam_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset) |
| 1763 | { |
| 1764 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| 1765 | const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults; |
| 1766 | uint32_t temp; |
| 1767 | |
| 1768 | if (smu7_read_smc_sram_dword(hwmgr, |
| 1769 | fuse_table_offset + |
| 1770 | offsetof(SMU75_Discrete_PmFuses, TdcWaterfallCtl)__builtin_offsetof(SMU75_Discrete_PmFuses, TdcWaterfallCtl), |
| 1771 | (uint32_t *)&temp, SMC_RAM_END0x40000)) |
| 1772 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!" ); return -22; } } while (0) |
| 1773 | "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!" ); return -22; } } while (0) |
| 1774 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!" ); return -22; } } while (0); |
| 1775 | else { |
| 1776 | smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl; |
| 1777 | smu_data->power_tune_table.LPMLTemperatureMin = |
| 1778 | (uint8_t)((temp >> 16) & 0xff); |
| 1779 | smu_data->power_tune_table.LPMLTemperatureMax = |
| 1780 | (uint8_t)((temp >> 8) & 0xff); |
| 1781 | smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff); |
| 1782 | } |
| 1783 | return 0; |
| 1784 | } |
| 1785 | |
| 1786 | static int vegam_populate_temperature_scaler(struct pp_hwmgr *hwmgr) |
| 1787 | { |
| 1788 | int i; |
| 1789 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| 1790 | |
| 1791 | /* Currently not used. Set all to zero. */ |
| 1792 | for (i = 0; i < 16; i++) |
| 1793 | smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0; |
| 1794 | |
| 1795 | return 0; |
| 1796 | } |
| 1797 | |
| 1798 | static int vegam_populate_fuzzy_fan(struct pp_hwmgr *hwmgr) |
| 1799 | { |
| 1800 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| 1801 | |
| 1802 | /* TO DO move to hwmgr */ |
| 1803 | if ((hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity & (1 << 15)) |
| 1804 | || 0 == hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity) |
| 1805 | hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity = |
| 1806 | hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity; |
| 1807 | |
| 1808 | smu_data->power_tune_table.FuzzyFan_PwmSetDelta = PP_HOST_TO_SMC_US((__uint16_t)(__builtin_constant_p(hwmgr->thermal_controller .advanceFanControlParameters.usFanOutputSensitivity) ? (__uint16_t )(((__uint16_t)(hwmgr->thermal_controller.advanceFanControlParameters .usFanOutputSensitivity) & 0xffU) << 8 | ((__uint16_t )(hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity ) & 0xff00U) >> 8) : __swap16md(hwmgr->thermal_controller .advanceFanControlParameters.usFanOutputSensitivity)) |
| 1809 | hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity)(__uint16_t)(__builtin_constant_p(hwmgr->thermal_controller .advanceFanControlParameters.usFanOutputSensitivity) ? (__uint16_t )(((__uint16_t)(hwmgr->thermal_controller.advanceFanControlParameters .usFanOutputSensitivity) & 0xffU) << 8 | ((__uint16_t )(hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity ) & 0xff00U) >> 8) : __swap16md(hwmgr->thermal_controller .advanceFanControlParameters.usFanOutputSensitivity)); |
| 1810 | return 0; |
| 1811 | } |
| 1812 | |
| 1813 | static int vegam_populate_gnb_lpml(struct pp_hwmgr *hwmgr) |
| 1814 | { |
| 1815 | int i; |
| 1816 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| 1817 | |
| 1818 | /* Currently not used. Set all to zero. */ |
| 1819 | for (i = 0; i < 16; i++) |
| 1820 | smu_data->power_tune_table.GnbLPML[i] = 0; |
| 1821 | |
| 1822 | return 0; |
| 1823 | } |
| 1824 | |
| 1825 | static int vegam_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr) |
| 1826 | { |
| 1827 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| 1828 | struct phm_ppt_v1_information *table_info = |
| 1829 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| 1830 | uint16_t hi_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd; |
Value stored to 'hi_sidd' during its initialization is never read | |
| 1831 | uint16_t lo_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd; |
| 1832 | struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table; |
| 1833 | |
| 1834 | hi_sidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256); |
| 1835 | lo_sidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256); |
| 1836 | |
| 1837 | smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd = |
| 1838 | CONVERT_FROM_HOST_TO_SMC_US(hi_sidd)((hi_sidd) = (__uint16_t)(__builtin_constant_p(hi_sidd) ? (__uint16_t )(((__uint16_t)(hi_sidd) & 0xffU) << 8 | ((__uint16_t )(hi_sidd) & 0xff00U) >> 8) : __swap16md(hi_sidd))); |
| 1839 | smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd = |
| 1840 | CONVERT_FROM_HOST_TO_SMC_US(lo_sidd)((lo_sidd) = (__uint16_t)(__builtin_constant_p(lo_sidd) ? (__uint16_t )(((__uint16_t)(lo_sidd) & 0xffU) << 8 | ((__uint16_t )(lo_sidd) & 0xff00U) >> 8) : __swap16md(lo_sidd))); |
| 1841 | |
| 1842 | return 0; |
| 1843 | } |
| 1844 | |
| 1845 | static int vegam_populate_pm_fuses(struct pp_hwmgr *hwmgr) |
| 1846 | { |
| 1847 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| 1848 | uint32_t pm_fuse_table_offset; |
| 1849 | |
| 1850 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| 1851 | PHM_PlatformCaps_PowerContainment)) { |
| 1852 | if (smu7_read_smc_sram_dword(hwmgr, |
| 1853 | SMU7_FIRMWARE_HEADER_LOCATION0x20000 + |
| 1854 | offsetof(SMU75_Firmware_Header, PmFuseTable)__builtin_offsetof(SMU75_Firmware_Header, PmFuseTable), |
| 1855 | &pm_fuse_table_offset, SMC_RAM_END0x40000)) |
| 1856 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to get pm_fuse_table_offset Failed!" ); return -22; } } while (0) |
| 1857 | "Attempt to get pm_fuse_table_offset Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to get pm_fuse_table_offset Failed!" ); return -22; } } while (0) |
| 1858 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to get pm_fuse_table_offset Failed!" ); return -22; } } while (0); |
| 1859 | |
| 1860 | if (vegam_populate_svi_load_line(hwmgr)) |
| 1861 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate SviLoadLine Failed!" ); return -22; } } while (0) |
| 1862 | "Attempt to populate SviLoadLine Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate SviLoadLine Failed!" ); return -22; } } while (0) |
| 1863 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate SviLoadLine Failed!" ); return -22; } } while (0); |
| 1864 | |
| 1865 | if (vegam_populate_tdc_limit(hwmgr)) |
| 1866 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate TDCLimit Failed!" ); return -22; } } while (0) |
| 1867 | "Attempt to populate TDCLimit Failed!", return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate TDCLimit Failed!" ); return -22; } } while (0); |
| 1868 | |
| 1869 | if (vegam_populate_dw8(hwmgr, pm_fuse_table_offset)) |
| 1870 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate TdcWaterfallCtl, " "LPMLTemperature Min and Max Failed!"); return -22; } } while (0) |
| 1871 | "Attempt to populate TdcWaterfallCtl, "do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate TdcWaterfallCtl, " "LPMLTemperature Min and Max Failed!"); return -22; } } while (0) |
| 1872 | "LPMLTemperature Min and Max Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate TdcWaterfallCtl, " "LPMLTemperature Min and Max Failed!"); return -22; } } while (0) |
| 1873 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate TdcWaterfallCtl, " "LPMLTemperature Min and Max Failed!"); return -22; } } while (0); |
| 1874 | |
| 1875 | if (0 != vegam_populate_temperature_scaler(hwmgr)) |
| 1876 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate LPMLTemperatureScaler Failed!" ); return -22; } } while (0) |
| 1877 | "Attempt to populate LPMLTemperatureScaler Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate LPMLTemperatureScaler Failed!" ); return -22; } } while (0) |
| 1878 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate LPMLTemperatureScaler Failed!" ); return -22; } } while (0); |
| 1879 | |
| 1880 | if (vegam_populate_fuzzy_fan(hwmgr)) |
| 1881 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate Fuzzy Fan Control parameters Failed!" ); return -22; } } while (0) |
| 1882 | "Attempt to populate Fuzzy Fan Control parameters Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate Fuzzy Fan Control parameters Failed!" ); return -22; } } while (0) |
| 1883 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate Fuzzy Fan Control parameters Failed!" ); return -22; } } while (0); |
| 1884 | |
| 1885 | if (vegam_populate_gnb_lpml(hwmgr)) |
| 1886 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate GnbLPML Failed!" ); return -22; } } while (0) |
| 1887 | "Attempt to populate GnbLPML Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate GnbLPML Failed!" ); return -22; } } while (0) |
| 1888 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate GnbLPML Failed!" ); return -22; } } while (0); |
| 1889 | |
| 1890 | if (vegam_populate_bapm_vddc_base_leakage_sidd(hwmgr)) |
| 1891 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate BapmVddCBaseLeakage Hi and Lo " "Sidd Failed!"); return -22; } } while (0) |
| 1892 | "Attempt to populate BapmVddCBaseLeakage Hi and Lo "do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate BapmVddCBaseLeakage Hi and Lo " "Sidd Failed!"); return -22; } } while (0) |
| 1893 | "Sidd Failed!", return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate BapmVddCBaseLeakage Hi and Lo " "Sidd Failed!"); return -22; } } while (0); |
| 1894 | |
| 1895 | if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset, |
| 1896 | (uint8_t *)&smu_data->power_tune_table, |
| 1897 | (sizeof(struct SMU75_Discrete_PmFuses) - PMFUSES_AVFSSIZE104), |
| 1898 | SMC_RAM_END0x40000)) |
| 1899 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to download PmFuseTable Failed!" ); return -22; } } while (0) |
| 1900 | "Attempt to download PmFuseTable Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to download PmFuseTable Failed!" ); return -22; } } while (0) |
| 1901 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to download PmFuseTable Failed!" ); return -22; } } while (0); |
| 1902 | } |
| 1903 | return 0; |
| 1904 | } |
| 1905 | |
| 1906 | static int vegam_enable_reconfig_cus(struct pp_hwmgr *hwmgr) |
| 1907 | { |
| 1908 | struct amdgpu_device *adev = hwmgr->adev; |
| 1909 | |
| 1910 | smum_send_msg_to_smc_with_parameter(hwmgr, |
| 1911 | PPSMC_MSG_EnableModeSwitchRLCNotification((uint16_t) 0x305), |
| 1912 | adev->gfx.cu_info.number, |
| 1913 | NULL((void *)0)); |
| 1914 | |
| 1915 | return 0; |
| 1916 | } |
| 1917 | |
| 1918 | static int vegam_init_smc_table(struct pp_hwmgr *hwmgr) |
| 1919 | { |
| 1920 | int result; |
| 1921 | struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 1922 | struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| 1923 | |
| 1924 | struct phm_ppt_v1_information *table_info = |
| 1925 | (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| 1926 | struct SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table); |
| 1927 | uint8_t i; |
| 1928 | struct pp_atomctrl_gpio_pin_assignment gpio_pin; |
| 1929 | struct phm_ppt_v1_gpio_table *gpio_table = |
| 1930 | (struct phm_ppt_v1_gpio_table *)table_info->gpio_table; |
| 1931 | pp_atomctrl_clock_dividers_vi dividers; |
| 1932 | |
| 1933 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| 1934 | PHM_PlatformCaps_AutomaticDCTransition); |
| 1935 | |
| 1936 | vegam_initialize_power_tune_defaults(hwmgr); |
| 1937 | |
| 1938 | if (SMU7_VOLTAGE_CONTROL_NONE0x0 != hw_data->voltage_control) |
| 1939 | vegam_populate_smc_voltage_tables(hwmgr, table); |
| 1940 | |
| 1941 | table->SystemFlags = 0; |
| 1942 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| 1943 | PHM_PlatformCaps_AutomaticDCTransition)) |
| 1944 | table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC0x01; |
| 1945 | |
| 1946 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| 1947 | PHM_PlatformCaps_StepVddc)) |
| 1948 | table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC0x02; |
| 1949 | |
| 1950 | if (hw_data->is_memory_gddr5) |
| 1951 | table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR50x04; |
| 1952 | |
| 1953 | if (hw_data->ulv_supported && table_info->us_ulv_voltage_offset) { |
| 1954 | result = vegam_populate_ulv_state(hwmgr, table); |
| 1955 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize ULV state!" ); return result; } } while (0) |
| 1956 | "Failed to initialize ULV state!", return result)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize ULV state!" ); return result; } } while (0); |
| 1957 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc020015c,0x00040035)) |
| 1958 | ixCG_ULV_PARAMETER, SMU7_CGULVPARAMETER_DFLT)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc020015c,0x00040035)); |
| 1959 | } |
| 1960 | |
| 1961 | result = vegam_populate_smc_link_level(hwmgr, table); |
| 1962 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Link Level!" ); return result; } } while (0) |
| 1963 | "Failed to initialize Link Level!", return result)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Link Level!" ); return result; } } while (0); |
| 1964 | |
| 1965 | result = vegam_populate_all_graphic_levels(hwmgr); |
| 1966 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Graphics Level!" ); return result; } } while (0) |
| 1967 | "Failed to initialize Graphics Level!", return result)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Graphics Level!" ); return result; } } while (0); |
| 1968 | |
| 1969 | result = vegam_populate_all_memory_levels(hwmgr); |
| 1970 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Memory Level!" ); return result; } } while (0) |
| 1971 | "Failed to initialize Memory Level!", return result)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Memory Level!" ); return result; } } while (0); |
| 1972 | |
| 1973 | result = vegam_populate_smc_acpi_level(hwmgr, table); |
| 1974 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize ACPI Level!" ); return result; } } while (0) |
| 1975 | "Failed to initialize ACPI Level!", return result)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize ACPI Level!" ); return result; } } while (0); |
| 1976 | |
| 1977 | result = vegam_populate_smc_vce_level(hwmgr, table); |
| 1978 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize VCE Level!" ); return result; } } while (0) |
| 1979 | "Failed to initialize VCE Level!", return result)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize VCE Level!" ); return result; } } while (0); |
| 1980 | |
| 1981 | /* Since only the initial state is completely set up at this point |
| 1982 | * (the other states are just copies of the boot state) we only |
| 1983 | * need to populate the ARB settings for the initial state. |
| 1984 | */ |
| 1985 | result = vegam_program_memory_timing_parameters(hwmgr); |
| 1986 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to Write ARB settings for the initial state." ); return result; } } while (0) |
| 1987 | "Failed to Write ARB settings for the initial state.", return result)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to Write ARB settings for the initial state." ); return result; } } while (0); |
| 1988 | |
| 1989 | result = vegam_populate_smc_uvd_level(hwmgr, table); |
| 1990 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize UVD Level!" ); return result; } } while (0) |
| 1991 | "Failed to initialize UVD Level!", return result)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize UVD Level!" ); return result; } } while (0); |
| 1992 | |
| 1993 | result = vegam_populate_smc_boot_level(hwmgr, table); |
| 1994 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Boot Level!" ); return result; } } while (0) |
| 1995 | "Failed to initialize Boot Level!", return result)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Boot Level!" ); return result; } } while (0); |
| 1996 | |
| 1997 | result = vegam_populate_smc_initial_state(hwmgr); |
| 1998 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Boot State!" ); return result; } } while (0) |
| 1999 | "Failed to initialize Boot State!", return result)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Boot State!" ); return result; } } while (0); |
| 2000 | |
| 2001 | result = vegam_populate_bapm_parameters_in_dpm_table(hwmgr); |
| 2002 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate BAPM Parameters!" ); return result; } } while (0) |
| 2003 | "Failed to populate BAPM Parameters!", return result)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate BAPM Parameters!" ); return result; } } while (0); |
| 2004 | |
| 2005 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| 2006 | PHM_PlatformCaps_ClockStretcher)) { |
| 2007 | result = vegam_populate_clock_stretcher_data_table(hwmgr); |
| 2008 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate Clock Stretcher Data Table!" ); return result; } } while (0) |
| 2009 | "Failed to populate Clock Stretcher Data Table!",do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate Clock Stretcher Data Table!" ); return result; } } while (0) |
| 2010 | return result)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate Clock Stretcher Data Table!" ); return result; } } while (0); |
| 2011 | } |
| 2012 | |
| 2013 | result = vegam_populate_avfs_parameters(hwmgr); |
| 2014 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate AVFS Parameters!" ); return result;; } } while (0) |
| 2015 | "Failed to populate AVFS Parameters!", return result;)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate AVFS Parameters!" ); return result;; } } while (0); |
| 2016 | |
| 2017 | table->CurrSclkPllRange = 0xff; |
| 2018 | table->GraphicsVoltageChangeEnable = 1; |
| 2019 | table->GraphicsThermThrottleEnable = 1; |
| 2020 | table->GraphicsInterval = 1; |
| 2021 | table->VoltageInterval = 1; |
| 2022 | table->ThermalInterval = 1; |
| 2023 | table->TemperatureLimitHigh = |
| 2024 | table_info->cac_dtp_table->usTargetOperatingTemp * |
| 2025 | SMU7_Q88_FORMAT_CONVERSION_UNIT256; |
| 2026 | table->TemperatureLimitLow = |
| 2027 | (table_info->cac_dtp_table->usTargetOperatingTemp - 1) * |
| 2028 | SMU7_Q88_FORMAT_CONVERSION_UNIT256; |
| 2029 | table->MemoryVoltageChangeEnable = 1; |
| 2030 | table->MemoryInterval = 1; |
| 2031 | table->VoltageResponseTime = 0; |
| 2032 | table->PhaseResponseTime = 0; |
| 2033 | table->MemoryThermThrottleEnable = 1; |
| 2034 | |
| 2035 | PP_ASSERT_WITH_CODE(hw_data->dpm_table.pcie_speed_table.count >= 1,do { if (!(hw_data->dpm_table.pcie_speed_table.count >= 1)) { printk("\0014" "amdgpu: " "%s\n", "There must be 1 or more PCIE levels defined in PPTable." ); return -22; } } while (0) |
| 2036 | "There must be 1 or more PCIE levels defined in PPTable.",do { if (!(hw_data->dpm_table.pcie_speed_table.count >= 1)) { printk("\0014" "amdgpu: " "%s\n", "There must be 1 or more PCIE levels defined in PPTable." ); return -22; } } while (0) |
| 2037 | return -EINVAL)do { if (!(hw_data->dpm_table.pcie_speed_table.count >= 1)) { printk("\0014" "amdgpu: " "%s\n", "There must be 1 or more PCIE levels defined in PPTable." ); return -22; } } while (0); |
| 2038 | table->PCIeBootLinkLevel = |
| 2039 | hw_data->dpm_table.pcie_speed_table.count; |
| 2040 | table->PCIeGenInterval = 1; |
| 2041 | table->VRConfig = 0; |
| 2042 | |
| 2043 | result = vegam_populate_vr_config(hwmgr, table); |
| 2044 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate VRConfig setting!" ); return result; } } while (0) |
| 2045 | "Failed to populate VRConfig setting!", return result)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate VRConfig setting!" ); return result; } } while (0); |
| 2046 | |
| 2047 | table->ThermGpio = 17; |
| 2048 | table->SclkStepSize = 0x4000; |
| 2049 | |
| 2050 | if (atomctrl_get_pp_assign_pin(hwmgr, |
| 2051 | VDDC_VRHOT_GPIO_PINID61, &gpio_pin)) { |
| 2052 | table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift; |
| 2053 | if (gpio_table) |
| 2054 | table->VRHotLevel = |
| 2055 | table_info->gpio_table->vrhot_triggered_sclk_dpm_index; |
| 2056 | } else { |
| 2057 | table->VRHotGpio = SMU7_UNUSED_GPIO_PIN0x7F; |
| 2058 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| 2059 | PHM_PlatformCaps_RegulatorHot); |
| 2060 | } |
| 2061 | |
| 2062 | if (atomctrl_get_pp_assign_pin(hwmgr, |
| 2063 | PP_AC_DC_SWITCH_GPIO_PINID60, &gpio_pin)) { |
| 2064 | table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift; |
| 2065 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| 2066 | PHM_PlatformCaps_AutomaticDCTransition) && |
| 2067 | !smum_send_msg_to_smc(hwmgr, PPSMC_MSG_UseNewGPIOScheme((uint16_t) 0x277), NULL((void *)0))) |
| 2068 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| 2069 | PHM_PlatformCaps_SMCtoPPLIBAcdcGpioScheme); |
| 2070 | } else { |
| 2071 | table->AcDcGpio = SMU7_UNUSED_GPIO_PIN0x7F; |
| 2072 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| 2073 | PHM_PlatformCaps_AutomaticDCTransition); |
| 2074 | } |
| 2075 | |
| 2076 | /* Thermal Output GPIO */ |
| 2077 | if (atomctrl_get_pp_assign_pin(hwmgr, |
| 2078 | THERMAL_INT_OUTPUT_GPIO_PINID65, &gpio_pin)) { |
| 2079 | table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift; |
| 2080 | |
| 2081 | /* For porlarity read GPIOPAD_A with assigned Gpio pin |
| 2082 | * since VBIOS will program this register to set 'inactive state', |
| 2083 | * driver can then determine 'active state' from this and |
| 2084 | * program SMU with correct polarity |
| 2085 | */ |
| 2086 | table->ThermOutPolarity = |
| 2087 | (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0x183)) & |
| 2088 | (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0; |
| 2089 | table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY0x1; |
| 2090 | |
| 2091 | /* if required, combine VRHot/PCC with thermal out GPIO */ |
| 2092 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| 2093 | PHM_PlatformCaps_RegulatorHot) && |
| 2094 | phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| 2095 | PHM_PlatformCaps_CombinePCCWithThermalSignal)) |
| 2096 | table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT0x2; |
| 2097 | } else { |
| 2098 | table->ThermOutGpio = 17; |
| 2099 | table->ThermOutPolarity = 1; |
| 2100 | table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE0x0; |
| 2101 | } |
| 2102 | |
| 2103 | /* Populate BIF_SCLK levels into SMC DPM table */ |
| 2104 | for (i = 0; i <= hw_data->dpm_table.pcie_speed_table.count; i++) { |
| 2105 | result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
| 2106 | smu_data->bif_sclk_table[i], ÷rs); |
| 2107 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Can not find DFS divide id for Sclk" ); return result; } } while (0) |
| 2108 | "Can not find DFS divide id for Sclk",do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Can not find DFS divide id for Sclk" ); return result; } } while (0) |
| 2109 | return result)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Can not find DFS divide id for Sclk" ); return result; } } while (0); |
| 2110 | |
| 2111 | if (i == 0) |
| 2112 | table->Ulv.BifSclkDfs = |
| 2113 | PP_HOST_TO_SMC_US((uint16_t)(dividers.pll_post_divider))(__uint16_t)(__builtin_constant_p((uint16_t)(dividers.pll_post_divider )) ? (__uint16_t)(((__uint16_t)((uint16_t)(dividers.pll_post_divider )) & 0xffU) << 8 | ((__uint16_t)((uint16_t)(dividers .pll_post_divider)) & 0xff00U) >> 8) : __swap16md(( uint16_t)(dividers.pll_post_divider))); |
| 2114 | else |
| 2115 | table->LinkLevel[i - 1].BifSclkDfs = |
| 2116 | PP_HOST_TO_SMC_US((uint16_t)(dividers.pll_post_divider))(__uint16_t)(__builtin_constant_p((uint16_t)(dividers.pll_post_divider )) ? (__uint16_t)(((__uint16_t)((uint16_t)(dividers.pll_post_divider )) & 0xffU) << 8 | ((__uint16_t)((uint16_t)(dividers .pll_post_divider)) & 0xff00U) >> 8) : __swap16md(( uint16_t)(dividers.pll_post_divider))); |
| 2117 | } |
| 2118 | |
| 2119 | for (i = 0; i < SMU75_MAX_ENTRIES_SMIO32; i++) |
| 2120 | table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i])(__uint32_t)(__builtin_constant_p(table->Smio[i]) ? (__uint32_t )(((__uint32_t)(table->Smio[i]) & 0xff) << 24 | ( (__uint32_t)(table->Smio[i]) & 0xff00) << 8 | (( __uint32_t)(table->Smio[i]) & 0xff0000) >> 8 | ( (__uint32_t)(table->Smio[i]) & 0xff000000) >> 24 ) : __swap32md(table->Smio[i])); |
| 2121 | |
| 2122 | CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags)((table->SystemFlags) = (__uint32_t)(__builtin_constant_p( table->SystemFlags) ? (__uint32_t)(((__uint32_t)(table-> SystemFlags) & 0xff) << 24 | ((__uint32_t)(table-> SystemFlags) & 0xff00) << 8 | ((__uint32_t)(table-> SystemFlags) & 0xff0000) >> 8 | ((__uint32_t)(table ->SystemFlags) & 0xff000000) >> 24) : __swap32md (table->SystemFlags))); |
| 2123 | CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig)((table->VRConfig) = (__uint32_t)(__builtin_constant_p(table ->VRConfig) ? (__uint32_t)(((__uint32_t)(table->VRConfig ) & 0xff) << 24 | ((__uint32_t)(table->VRConfig) & 0xff00) << 8 | ((__uint32_t)(table->VRConfig) & 0xff0000) >> 8 | ((__uint32_t)(table->VRConfig ) & 0xff000000) >> 24) : __swap32md(table->VRConfig ))); |
| 2124 | CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1)((table->SmioMask1) = (__uint32_t)(__builtin_constant_p(table ->SmioMask1) ? (__uint32_t)(((__uint32_t)(table->SmioMask1 ) & 0xff) << 24 | ((__uint32_t)(table->SmioMask1 ) & 0xff00) << 8 | ((__uint32_t)(table->SmioMask1 ) & 0xff0000) >> 8 | ((__uint32_t)(table->SmioMask1 ) & 0xff000000) >> 24) : __swap32md(table->SmioMask1 ))); |
| 2125 | CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2)((table->SmioMask2) = (__uint32_t)(__builtin_constant_p(table ->SmioMask2) ? (__uint32_t)(((__uint32_t)(table->SmioMask2 ) & 0xff) << 24 | ((__uint32_t)(table->SmioMask2 ) & 0xff00) << 8 | ((__uint32_t)(table->SmioMask2 ) & 0xff0000) >> 8 | ((__uint32_t)(table->SmioMask2 ) & 0xff000000) >> 24) : __swap32md(table->SmioMask2 ))); |
| 2126 | CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize)((table->SclkStepSize) = (__uint32_t)(__builtin_constant_p (table->SclkStepSize) ? (__uint32_t)(((__uint32_t)(table-> SclkStepSize) & 0xff) << 24 | ((__uint32_t)(table-> SclkStepSize) & 0xff00) << 8 | ((__uint32_t)(table-> SclkStepSize) & 0xff0000) >> 8 | ((__uint32_t)(table ->SclkStepSize) & 0xff000000) >> 24) : __swap32md (table->SclkStepSize))); |
| 2127 | CONVERT_FROM_HOST_TO_SMC_UL(table->CurrSclkPllRange)((table->CurrSclkPllRange) = (__uint32_t)(__builtin_constant_p (table->CurrSclkPllRange) ? (__uint32_t)(((__uint32_t)(table ->CurrSclkPllRange) & 0xff) << 24 | ((__uint32_t )(table->CurrSclkPllRange) & 0xff00) << 8 | ((__uint32_t )(table->CurrSclkPllRange) & 0xff0000) >> 8 | (( __uint32_t)(table->CurrSclkPllRange) & 0xff000000) >> 24) : __swap32md(table->CurrSclkPllRange))); |
| 2128 | CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh)((table->TemperatureLimitHigh) = (__uint16_t)(__builtin_constant_p (table->TemperatureLimitHigh) ? (__uint16_t)(((__uint16_t) (table->TemperatureLimitHigh) & 0xffU) << 8 | (( __uint16_t)(table->TemperatureLimitHigh) & 0xff00U) >> 8) : __swap16md(table->TemperatureLimitHigh))); |
| 2129 | CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow)((table->TemperatureLimitLow) = (__uint16_t)(__builtin_constant_p (table->TemperatureLimitLow) ? (__uint16_t)(((__uint16_t)( table->TemperatureLimitLow) & 0xffU) << 8 | ((__uint16_t )(table->TemperatureLimitLow) & 0xff00U) >> 8) : __swap16md(table->TemperatureLimitLow))); |
| 2130 | CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime)((table->VoltageResponseTime) = (__uint16_t)(__builtin_constant_p (table->VoltageResponseTime) ? (__uint16_t)(((__uint16_t)( table->VoltageResponseTime) & 0xffU) << 8 | ((__uint16_t )(table->VoltageResponseTime) & 0xff00U) >> 8) : __swap16md(table->VoltageResponseTime))); |
| 2131 | CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime)((table->PhaseResponseTime) = (__uint16_t)(__builtin_constant_p (table->PhaseResponseTime) ? (__uint16_t)(((__uint16_t)(table ->PhaseResponseTime) & 0xffU) << 8 | ((__uint16_t )(table->PhaseResponseTime) & 0xff00U) >> 8) : __swap16md (table->PhaseResponseTime))); |
| 2132 | |
| 2133 | /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */ |
| 2134 | result = smu7_copy_bytes_to_smc(hwmgr, |
| 2135 | smu_data->smu7_data.dpm_table_start + |
| 2136 | offsetof(SMU75_Discrete_DpmTable, SystemFlags)__builtin_offsetof(SMU75_Discrete_DpmTable, SystemFlags), |
| 2137 | (uint8_t *)&(table->SystemFlags), |
| 2138 | sizeof(SMU75_Discrete_DpmTable) - 3 * sizeof(SMU75_PIDController), |
| 2139 | SMC_RAM_END0x40000); |
| 2140 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to upload dpm data to SMC memory!" ); return result; } } while (0) |
| 2141 | "Failed to upload dpm data to SMC memory!", return result)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to upload dpm data to SMC memory!" ); return result; } } while (0); |
| 2142 | |
| 2143 | result = vegam_populate_pm_fuses(hwmgr); |
| 2144 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate PM fuses to SMC memory!" ); return result; } } while (0) |
| 2145 | "Failed to populate PM fuses to SMC memory!", return result)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate PM fuses to SMC memory!" ); return result; } } while (0); |
| 2146 | |
| 2147 | result = vegam_enable_reconfig_cus(hwmgr); |
| 2148 | PP_ASSERT_WITH_CODE(!result,do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to enable reconfigurable CUs!" ); return result; } } while (0) |
| 2149 | "Failed to enable reconfigurable CUs!", return result)do { if (!(!result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to enable reconfigurable CUs!" ); return result; } } while (0); |
| 2150 | |
| 2151 | return 0; |
| 2152 | } |
| 2153 | |
| 2154 | static uint32_t vegam_get_offsetof(uint32_t type, uint32_t member) |
| 2155 | { |
| 2156 | switch (type) { |
| 2157 | case SMU_SoftRegisters: |
| 2158 | switch (member) { |
| 2159 | case HandshakeDisables: |
| 2160 | return offsetof(SMU75_SoftRegisters, HandshakeDisables)__builtin_offsetof(SMU75_SoftRegisters, HandshakeDisables); |
| 2161 | case VoltageChangeTimeout: |
| 2162 | return offsetof(SMU75_SoftRegisters, VoltageChangeTimeout)__builtin_offsetof(SMU75_SoftRegisters, VoltageChangeTimeout); |
| 2163 | case AverageGraphicsActivity: |
| 2164 | return offsetof(SMU75_SoftRegisters, AverageGraphicsActivity)__builtin_offsetof(SMU75_SoftRegisters, AverageGraphicsActivity ); |
| 2165 | case AverageMemoryActivity: |
| 2166 | return offsetof(SMU75_SoftRegisters, AverageMemoryActivity)__builtin_offsetof(SMU75_SoftRegisters, AverageMemoryActivity ); |
| 2167 | case PreVBlankGap: |
| 2168 | return offsetof(SMU75_SoftRegisters, PreVBlankGap)__builtin_offsetof(SMU75_SoftRegisters, PreVBlankGap); |
| 2169 | case VBlankTimeout: |
| 2170 | return offsetof(SMU75_SoftRegisters, VBlankTimeout)__builtin_offsetof(SMU75_SoftRegisters, VBlankTimeout); |
| 2171 | case UcodeLoadStatus: |
| 2172 | return offsetof(SMU75_SoftRegisters, UcodeLoadStatus)__builtin_offsetof(SMU75_SoftRegisters, UcodeLoadStatus); |
| 2173 | case DRAM_LOG_ADDR_H: |
| 2174 | return offsetof(SMU75_SoftRegisters, DRAM_LOG_ADDR_H)__builtin_offsetof(SMU75_SoftRegisters, DRAM_LOG_ADDR_H); |
| 2175 | case DRAM_LOG_ADDR_L: |
| 2176 | return offsetof(SMU75_SoftRegisters, DRAM_LOG_ADDR_L)__builtin_offsetof(SMU75_SoftRegisters, DRAM_LOG_ADDR_L); |
| 2177 | case DRAM_LOG_PHY_ADDR_H: |
| 2178 | return offsetof(SMU75_SoftRegisters, DRAM_LOG_PHY_ADDR_H)__builtin_offsetof(SMU75_SoftRegisters, DRAM_LOG_PHY_ADDR_H); |
| 2179 | case DRAM_LOG_PHY_ADDR_L: |
| 2180 | return offsetof(SMU75_SoftRegisters, DRAM_LOG_PHY_ADDR_L)__builtin_offsetof(SMU75_SoftRegisters, DRAM_LOG_PHY_ADDR_L); |
| 2181 | case DRAM_LOG_BUFF_SIZE: |
| 2182 | return offsetof(SMU75_SoftRegisters, DRAM_LOG_BUFF_SIZE)__builtin_offsetof(SMU75_SoftRegisters, DRAM_LOG_BUFF_SIZE); |
| 2183 | } |
| 2184 | break; |
| 2185 | case SMU_Discrete_DpmTable: |
| 2186 | switch (member) { |
| 2187 | case UvdBootLevel: |
| 2188 | return offsetof(SMU75_Discrete_DpmTable, UvdBootLevel)__builtin_offsetof(SMU75_Discrete_DpmTable, UvdBootLevel); |
| 2189 | case VceBootLevel: |
| 2190 | return offsetof(SMU75_Discrete_DpmTable, VceBootLevel)__builtin_offsetof(SMU75_Discrete_DpmTable, VceBootLevel); |
| 2191 | case LowSclkInterruptThreshold: |
| 2192 | return offsetof(SMU75_Discrete_DpmTable, LowSclkInterruptThreshold)__builtin_offsetof(SMU75_Discrete_DpmTable, LowSclkInterruptThreshold ); |
| 2193 | } |
| 2194 | break; |
| 2195 | } |
| 2196 | pr_warn("can't get the offset of type %x member %x\n", type, member)printk("\0014" "amdgpu: " "can't get the offset of type %x member %x\n" , type, member); |
| 2197 | return 0; |
| 2198 | } |
| 2199 | |
| 2200 | static int vegam_program_mem_timing_parameters(struct pp_hwmgr *hwmgr) |
| 2201 | { |
| 2202 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 2203 | |
| 2204 | if (data->need_update_smu7_dpm_table & |
| 2205 | (DPMTABLE_OD_UPDATE_SCLK0x00000001 + |
| 2206 | DPMTABLE_UPDATE_SCLK0x00000004 + |
| 2207 | DPMTABLE_UPDATE_MCLK0x00000008)) |
| 2208 | return vegam_program_memory_timing_parameters(hwmgr); |
| 2209 | |
| 2210 | return 0; |
| 2211 | } |
| 2212 | |
| 2213 | static int vegam_update_sclk_threshold(struct pp_hwmgr *hwmgr) |
| 2214 | { |
| 2215 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 2216 | struct vegam_smumgr *smu_data = |
| 2217 | (struct vegam_smumgr *)(hwmgr->smu_backend); |
| 2218 | int result = 0; |
| 2219 | uint32_t low_sclk_interrupt_threshold = 0; |
| 2220 | |
| 2221 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| 2222 | PHM_PlatformCaps_SclkThrottleLowNotification) |
| 2223 | && (data->low_sclk_interrupt_threshold != 0)) { |
| 2224 | low_sclk_interrupt_threshold = |
| 2225 | data->low_sclk_interrupt_threshold; |
| 2226 | |
| 2227 | CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold)((low_sclk_interrupt_threshold) = (__uint32_t)(__builtin_constant_p (low_sclk_interrupt_threshold) ? (__uint32_t)(((__uint32_t)(low_sclk_interrupt_threshold ) & 0xff) << 24 | ((__uint32_t)(low_sclk_interrupt_threshold ) & 0xff00) << 8 | ((__uint32_t)(low_sclk_interrupt_threshold ) & 0xff0000) >> 8 | ((__uint32_t)(low_sclk_interrupt_threshold ) & 0xff000000) >> 24) : __swap32md(low_sclk_interrupt_threshold ))); |
| 2228 | |
| 2229 | result = smu7_copy_bytes_to_smc( |
| 2230 | hwmgr, |
| 2231 | smu_data->smu7_data.dpm_table_start + |
| 2232 | offsetof(SMU75_Discrete_DpmTable,__builtin_offsetof(SMU75_Discrete_DpmTable, LowSclkInterruptThreshold ) |
| 2233 | LowSclkInterruptThreshold)__builtin_offsetof(SMU75_Discrete_DpmTable, LowSclkInterruptThreshold ), |
| 2234 | (uint8_t *)&low_sclk_interrupt_threshold, |
| 2235 | sizeof(uint32_t), |
| 2236 | SMC_RAM_END0x40000); |
| 2237 | } |
| 2238 | PP_ASSERT_WITH_CODE((result == 0),do { if (!((result == 0))) { printk("\0014" "amdgpu: " "%s\n" , "Failed to update SCLK threshold!"); return result; } } while (0) |
| 2239 | "Failed to update SCLK threshold!", return result)do { if (!((result == 0))) { printk("\0014" "amdgpu: " "%s\n" , "Failed to update SCLK threshold!"); return result; } } while (0); |
| 2240 | |
| 2241 | result = vegam_program_mem_timing_parameters(hwmgr); |
| 2242 | PP_ASSERT_WITH_CODE((result == 0),do { if (!((result == 0))) { printk("\0014" "amdgpu: " "%s\n" , "Failed to program memory timing parameters!"); ; } } while (0) |
| 2243 | "Failed to program memory timing parameters!",do { if (!((result == 0))) { printk("\0014" "amdgpu: " "%s\n" , "Failed to program memory timing parameters!"); ; } } while (0) |
| 2244 | )do { if (!((result == 0))) { printk("\0014" "amdgpu: " "%s\n" , "Failed to program memory timing parameters!"); ; } } while (0); |
| 2245 | |
| 2246 | return result; |
| 2247 | } |
| 2248 | |
| 2249 | static int vegam_thermal_avfs_enable(struct pp_hwmgr *hwmgr) |
| 2250 | { |
| 2251 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 2252 | int ret; |
| 2253 | |
| 2254 | if (!hwmgr->avfs_supported) |
| 2255 | return 0; |
| 2256 | |
| 2257 | ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAvfs((uint16_t) 0x26A), NULL((void *)0)); |
| 2258 | if (!ret) { |
| 2259 | if (data->apply_avfs_cks_off_voltage) |
| 2260 | ret = smum_send_msg_to_smc(hwmgr, |
| 2261 | PPSMC_MSG_ApplyAvfsCksOffVoltage((uint16_t) 0x415), |
| 2262 | NULL((void *)0)); |
| 2263 | } |
| 2264 | |
| 2265 | return ret; |
| 2266 | } |
| 2267 | |
| 2268 | static int vegam_thermal_setup_fan_table(struct pp_hwmgr *hwmgr) |
| 2269 | { |
| 2270 | PP_ASSERT_WITH_CODE(hwmgr->thermal_controller.fanInfo.bNoFan,do { if (!(hwmgr->thermal_controller.fanInfo.bNoFan)) { printk ("\0014" "amdgpu: " "%s\n", "VBIOS fan info is not correct!") ; ; } } while (0) |
| 2271 | "VBIOS fan info is not correct!",do { if (!(hwmgr->thermal_controller.fanInfo.bNoFan)) { printk ("\0014" "amdgpu: " "%s\n", "VBIOS fan info is not correct!") ; ; } } while (0) |
| 2272 | )do { if (!(hwmgr->thermal_controller.fanInfo.bNoFan)) { printk ("\0014" "amdgpu: " "%s\n", "VBIOS fan info is not correct!") ; ; } } while (0); |
| 2273 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| 2274 | PHM_PlatformCaps_MicrocodeFanControl); |
| 2275 | return 0; |
| 2276 | } |
| 2277 | |
| 2278 | const struct pp_smumgr_func vegam_smu_funcs = { |
| 2279 | .name = "vegam_smu", |
| 2280 | .smu_init = vegam_smu_init, |
| 2281 | .smu_fini = smu7_smu_fini, |
| 2282 | .start_smu = vegam_start_smu, |
| 2283 | .check_fw_load_finish = smu7_check_fw_load_finish, |
| 2284 | .request_smu_load_fw = smu7_reload_firmware, |
| 2285 | .request_smu_load_specific_fw = NULL((void *)0), |
| 2286 | .send_msg_to_smc = smu7_send_msg_to_smc, |
| 2287 | .send_msg_to_smc_with_parameter = smu7_send_msg_to_smc_with_parameter, |
| 2288 | .get_argument = smu7_get_argument, |
| 2289 | .process_firmware_header = vegam_process_firmware_header, |
| 2290 | .is_dpm_running = vegam_is_dpm_running, |
| 2291 | .get_mac_definition = vegam_get_mac_definition, |
| 2292 | .update_smc_table = vegam_update_smc_table, |
| 2293 | .init_smc_table = vegam_init_smc_table, |
| 2294 | .get_offsetof = vegam_get_offsetof, |
| 2295 | .populate_all_graphic_levels = vegam_populate_all_graphic_levels, |
| 2296 | .populate_all_memory_levels = vegam_populate_all_memory_levels, |
| 2297 | .update_sclk_threshold = vegam_update_sclk_threshold, |
| 2298 | .is_hw_avfs_present = vegam_is_hw_avfs_present, |
| 2299 | .thermal_avfs_enable = vegam_thermal_avfs_enable, |
| 2300 | .thermal_setup_fan_table = vegam_thermal_setup_fan_table, |
| 2301 | }; |