| File: | kern/kern_sig.c |
| Warning: | line 1649, column 37 Although the value stored to 'error' is used in the enclosing expression, the value is never actually read from 'error' |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* $OpenBSD: kern_sig.c,v 1.320 2023/10/06 08:58:13 claudio Exp $ */ |
| 2 | /* $NetBSD: kern_sig.c,v 1.54 1996/04/22 01:38:32 christos Exp $ */ |
| 3 | |
| 4 | /* |
| 5 | * Copyright (c) 1997 Theo de Raadt. All rights reserved. |
| 6 | * Copyright (c) 1982, 1986, 1989, 1991, 1993 |
| 7 | * The Regents of the University of California. All rights reserved. |
| 8 | * (c) UNIX System Laboratories, Inc. |
| 9 | * All or some portions of this file are derived from material licensed |
| 10 | * to the University of California by American Telephone and Telegraph |
| 11 | * Co. or Unix System Laboratories, Inc. and are reproduced herein with |
| 12 | * the permission of UNIX System Laboratories, Inc. |
| 13 | * |
| 14 | * Redistribution and use in source and binary forms, with or without |
| 15 | * modification, are permitted provided that the following conditions |
| 16 | * are met: |
| 17 | * 1. Redistributions of source code must retain the above copyright |
| 18 | * notice, this list of conditions and the following disclaimer. |
| 19 | * 2. Redistributions in binary form must reproduce the above copyright |
| 20 | * notice, this list of conditions and the following disclaimer in the |
| 21 | * documentation and/or other materials provided with the distribution. |
| 22 | * 3. Neither the name of the University nor the names of its contributors |
| 23 | * may be used to endorse or promote products derived from this software |
| 24 | * without specific prior written permission. |
| 25 | * |
| 26 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 27 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 28 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 29 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 30 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 31 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 32 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 33 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 34 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 35 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 36 | * SUCH DAMAGE. |
| 37 | * |
| 38 | * @(#)kern_sig.c 8.7 (Berkeley) 4/18/94 |
| 39 | */ |
| 40 | |
| 41 | #include <sys/param.h> |
| 42 | #include <sys/signalvar.h> |
| 43 | #include <sys/queue.h> |
| 44 | #include <sys/namei.h> |
| 45 | #include <sys/vnode.h> |
| 46 | #include <sys/event.h> |
| 47 | #include <sys/proc.h> |
| 48 | #include <sys/systm.h> |
| 49 | #include <sys/acct.h> |
| 50 | #include <sys/fcntl.h> |
| 51 | #include <sys/filedesc.h> |
| 52 | #include <sys/wait.h> |
| 53 | #include <sys/ktrace.h> |
| 54 | #include <sys/stat.h> |
| 55 | #include <sys/malloc.h> |
| 56 | #include <sys/pool.h> |
| 57 | #include <sys/sched.h> |
| 58 | #include <sys/user.h> |
| 59 | #include <sys/syslog.h> |
| 60 | #include <sys/ttycom.h> |
| 61 | #include <sys/pledge.h> |
| 62 | #include <sys/witness.h> |
| 63 | #include <sys/exec_elf.h> |
| 64 | |
| 65 | #include <sys/mount.h> |
| 66 | #include <sys/syscallargs.h> |
| 67 | |
| 68 | #include <uvm/uvm_extern.h> |
| 69 | #include <machine/tcb.h> |
| 70 | |
| 71 | int nosuidcoredump = 1; |
| 72 | |
| 73 | int filt_sigattach(struct knote *kn); |
| 74 | void filt_sigdetach(struct knote *kn); |
| 75 | int filt_signal(struct knote *kn, long hint); |
| 76 | |
| 77 | const struct filterops sig_filtops = { |
| 78 | .f_flags = 0, |
| 79 | .f_attach = filt_sigattach, |
| 80 | .f_detach = filt_sigdetach, |
| 81 | .f_event = filt_signal, |
| 82 | }; |
| 83 | |
| 84 | /* |
| 85 | * The array below categorizes the signals and their default actions. |
| 86 | */ |
| 87 | const int sigprop[NSIG33] = { |
| 88 | 0, /* unused */ |
| 89 | SA_KILL0x01, /* SIGHUP */ |
| 90 | SA_KILL0x01, /* SIGINT */ |
| 91 | SA_KILL0x01|SA_CORE0x02, /* SIGQUIT */ |
| 92 | SA_KILL0x01|SA_CORE0x02, /* SIGILL */ |
| 93 | SA_KILL0x01|SA_CORE0x02, /* SIGTRAP */ |
| 94 | SA_KILL0x01|SA_CORE0x02, /* SIGABRT */ |
| 95 | SA_KILL0x01|SA_CORE0x02, /* SIGEMT */ |
| 96 | SA_KILL0x01|SA_CORE0x02, /* SIGFPE */ |
| 97 | SA_KILL0x01, /* SIGKILL */ |
| 98 | SA_KILL0x01|SA_CORE0x02, /* SIGBUS */ |
| 99 | SA_KILL0x01|SA_CORE0x02, /* SIGSEGV */ |
| 100 | SA_KILL0x01|SA_CORE0x02, /* SIGSYS */ |
| 101 | SA_KILL0x01, /* SIGPIPE */ |
| 102 | SA_KILL0x01, /* SIGALRM */ |
| 103 | SA_KILL0x01, /* SIGTERM */ |
| 104 | SA_IGNORE0x10, /* SIGURG */ |
| 105 | SA_STOP0x04, /* SIGSTOP */ |
| 106 | SA_STOP0x04|SA_TTYSTOP0x08, /* SIGTSTP */ |
| 107 | SA_IGNORE0x10|SA_CONT0x20, /* SIGCONT */ |
| 108 | SA_IGNORE0x10, /* SIGCHLD */ |
| 109 | SA_STOP0x04|SA_TTYSTOP0x08, /* SIGTTIN */ |
| 110 | SA_STOP0x04|SA_TTYSTOP0x08, /* SIGTTOU */ |
| 111 | SA_IGNORE0x10, /* SIGIO */ |
| 112 | SA_KILL0x01, /* SIGXCPU */ |
| 113 | SA_KILL0x01, /* SIGXFSZ */ |
| 114 | SA_KILL0x01, /* SIGVTALRM */ |
| 115 | SA_KILL0x01, /* SIGPROF */ |
| 116 | SA_IGNORE0x10, /* SIGWINCH */ |
| 117 | SA_IGNORE0x10, /* SIGINFO */ |
| 118 | SA_KILL0x01, /* SIGUSR1 */ |
| 119 | SA_KILL0x01, /* SIGUSR2 */ |
| 120 | SA_IGNORE0x10, /* SIGTHR */ |
| 121 | }; |
| 122 | |
| 123 | #define CONTSIGMASK((1U << ((19)-1))) (sigmask(SIGCONT)(1U << ((19)-1))) |
| 124 | #define STOPSIGMASK((1U << ((17)-1)) | (1U << ((18)-1)) | (1U << ((21)-1)) | (1U << ((22)-1))) (sigmask(SIGSTOP)(1U << ((17)-1)) | sigmask(SIGTSTP)(1U << ((18)-1)) | \ |
| 125 | sigmask(SIGTTIN)(1U << ((21)-1)) | sigmask(SIGTTOU)(1U << ((22)-1))) |
| 126 | |
| 127 | void setsigvec(struct proc *, int, struct sigaction *); |
| 128 | |
| 129 | void proc_stop(struct proc *p, int); |
| 130 | void proc_stop_sweep(void *); |
| 131 | void *proc_stop_si; |
| 132 | |
| 133 | void setsigctx(struct proc *, int, struct sigctx *); |
| 134 | void postsig_done(struct proc *, int, sigset_t, int); |
| 135 | void postsig(struct proc *, int, struct sigctx *); |
| 136 | int cansignal(struct proc *, struct process *, int); |
| 137 | |
| 138 | struct pool sigacts_pool; /* memory pool for sigacts structures */ |
| 139 | |
| 140 | void sigio_del(struct sigiolst *); |
| 141 | void sigio_unlink(struct sigio_ref *, struct sigiolst *); |
| 142 | struct mutex sigio_lock = MUTEX_INITIALIZER(IPL_HIGH){ ((void *)0), ((((0xd)) > 0x0 && ((0xd)) < 0x9 ) ? 0x9 : ((0xd))), 0x0 }; |
| 143 | |
| 144 | /* |
| 145 | * Can thread p, send the signal signum to process qr? |
| 146 | */ |
| 147 | int |
| 148 | cansignal(struct proc *p, struct process *qr, int signum) |
| 149 | { |
| 150 | struct process *pr = p->p_p; |
| 151 | struct ucred *uc = p->p_ucred; |
| 152 | struct ucred *quc = qr->ps_ucred; |
| 153 | |
| 154 | if (uc->cr_uid == 0) |
| 155 | return (1); /* root can always signal */ |
| 156 | |
| 157 | if (pr == qr) |
| 158 | return (1); /* process can always signal itself */ |
| 159 | |
| 160 | /* optimization: if the same creds then the tests below will pass */ |
| 161 | if (uc == quc) |
| 162 | return (1); |
| 163 | |
| 164 | if (signum == SIGCONT19 && qr->ps_sessionps_pgrp->pg_session == pr->ps_sessionps_pgrp->pg_session) |
| 165 | return (1); /* SIGCONT in session */ |
| 166 | |
| 167 | /* |
| 168 | * Using kill(), only certain signals can be sent to setugid |
| 169 | * child processes |
| 170 | */ |
| 171 | if (qr->ps_flags & PS_SUGID0x00000010) { |
| 172 | switch (signum) { |
| 173 | case 0: |
| 174 | case SIGKILL9: |
| 175 | case SIGINT2: |
| 176 | case SIGTERM15: |
| 177 | case SIGALRM14: |
| 178 | case SIGSTOP17: |
| 179 | case SIGTTIN21: |
| 180 | case SIGTTOU22: |
| 181 | case SIGTSTP18: |
| 182 | case SIGHUP1: |
| 183 | case SIGUSR130: |
| 184 | case SIGUSR231: |
| 185 | if (uc->cr_ruid == quc->cr_ruid || |
| 186 | uc->cr_uid == quc->cr_ruid) |
| 187 | return (1); |
| 188 | } |
| 189 | return (0); |
| 190 | } |
| 191 | |
| 192 | if (uc->cr_ruid == quc->cr_ruid || |
| 193 | uc->cr_ruid == quc->cr_svuid || |
| 194 | uc->cr_uid == quc->cr_ruid || |
| 195 | uc->cr_uid == quc->cr_svuid) |
| 196 | return (1); |
| 197 | return (0); |
| 198 | } |
| 199 | |
| 200 | /* |
| 201 | * Initialize signal-related data structures. |
| 202 | */ |
| 203 | void |
| 204 | signal_init(void) |
| 205 | { |
| 206 | proc_stop_si = softintr_establish(IPL_SOFTCLOCK0x1, proc_stop_sweep, |
| 207 | NULL((void *)0)); |
| 208 | if (proc_stop_si == NULL((void *)0)) |
| 209 | panic("signal_init failed to register softintr"); |
| 210 | |
| 211 | pool_init(&sigacts_pool, sizeof(struct sigacts), 0, IPL_NONE0x0, |
| 212 | PR_WAITOK0x0001, "sigapl", NULL((void *)0)); |
| 213 | } |
| 214 | |
| 215 | /* |
| 216 | * Initialize a new sigaltstack structure. |
| 217 | */ |
| 218 | void |
| 219 | sigstkinit(struct sigaltstack *ss) |
| 220 | { |
| 221 | ss->ss_flags = SS_DISABLE0x0004; |
| 222 | ss->ss_size = 0; |
| 223 | ss->ss_sp = NULL((void *)0); |
| 224 | } |
| 225 | |
| 226 | /* |
| 227 | * Create an initial sigacts structure, using the same signal state |
| 228 | * as pr. |
| 229 | */ |
| 230 | struct sigacts * |
| 231 | sigactsinit(struct process *pr) |
| 232 | { |
| 233 | struct sigacts *ps; |
| 234 | |
| 235 | ps = pool_get(&sigacts_pool, PR_WAITOK0x0001); |
| 236 | memcpy(ps, pr->ps_sigacts, sizeof(struct sigacts))__builtin_memcpy((ps), (pr->ps_sigacts), (sizeof(struct sigacts ))); |
| 237 | return (ps); |
| 238 | } |
| 239 | |
| 240 | /* |
| 241 | * Release a sigacts structure. |
| 242 | */ |
| 243 | void |
| 244 | sigactsfree(struct sigacts *ps) |
| 245 | { |
| 246 | pool_put(&sigacts_pool, ps); |
| 247 | } |
| 248 | |
| 249 | int |
| 250 | sys_sigaction(struct proc *p, void *v, register_t *retval) |
| 251 | { |
| 252 | struct sys_sigaction_args /* { |
| 253 | syscallarg(int) signum; |
| 254 | syscallarg(const struct sigaction *) nsa; |
| 255 | syscallarg(struct sigaction *) osa; |
| 256 | } */ *uap = v; |
| 257 | struct sigaction vec; |
| 258 | #ifdef KTRACE1 |
| 259 | struct sigaction ovec; |
| 260 | #endif |
| 261 | struct sigaction *sa; |
| 262 | const struct sigaction *nsa; |
| 263 | struct sigaction *osa; |
| 264 | struct sigacts *ps = p->p_p->ps_sigacts; |
| 265 | int signum; |
| 266 | int bit, error; |
| 267 | |
| 268 | signum = SCARG(uap, signum)((uap)->signum.le.datum); |
| 269 | nsa = SCARG(uap, nsa)((uap)->nsa.le.datum); |
| 270 | osa = SCARG(uap, osa)((uap)->osa.le.datum); |
| 271 | |
| 272 | if (signum <= 0 || signum >= NSIG33 || |
| 273 | (nsa && (signum == SIGKILL9 || signum == SIGSTOP17))) |
| 274 | return (EINVAL22); |
| 275 | sa = &vec; |
| 276 | if (osa) { |
| 277 | mtx_enter(&p->p_p->ps_mtx); |
| 278 | sa->sa_handler__sigaction_u.__sa_handler = ps->ps_sigact[signum]; |
| 279 | sa->sa_mask = ps->ps_catchmask[signum]; |
| 280 | bit = sigmask(signum)(1U << ((signum)-1)); |
| 281 | sa->sa_flags = 0; |
| 282 | if ((ps->ps_sigonstack & bit) != 0) |
| 283 | sa->sa_flags |= SA_ONSTACK0x0001; |
| 284 | if ((ps->ps_sigintr & bit) == 0) |
| 285 | sa->sa_flags |= SA_RESTART0x0002; |
| 286 | if ((ps->ps_sigreset & bit) != 0) |
| 287 | sa->sa_flags |= SA_RESETHAND0x0004; |
| 288 | if ((ps->ps_siginfo & bit) != 0) |
| 289 | sa->sa_flags |= SA_SIGINFO0x0040; |
| 290 | if (signum == SIGCHLD20) { |
| 291 | if ((ps->ps_sigflags & SAS_NOCLDSTOP0x01) != 0) |
| 292 | sa->sa_flags |= SA_NOCLDSTOP0x0008; |
| 293 | if ((ps->ps_sigflags & SAS_NOCLDWAIT0x02) != 0) |
| 294 | sa->sa_flags |= SA_NOCLDWAIT0x0020; |
| 295 | } |
| 296 | mtx_leave(&p->p_p->ps_mtx); |
| 297 | if ((sa->sa_mask & bit) == 0) |
| 298 | sa->sa_flags |= SA_NODEFER0x0010; |
| 299 | sa->sa_mask &= ~bit; |
| 300 | error = copyout(sa, osa, sizeof (vec)); |
| 301 | if (error) |
| 302 | return (error); |
| 303 | #ifdef KTRACE1 |
| 304 | if (KTRPOINT(p, KTR_STRUCT)((p)->p_p->ps_traceflag & (1<<(8)) && ((p)->p_flag & 0x00000001) == 0)) |
| 305 | ovec = vec; |
| 306 | #endif |
| 307 | } |
| 308 | if (nsa) { |
| 309 | error = copyin(nsa, sa, sizeof (vec)); |
| 310 | if (error) |
| 311 | return (error); |
| 312 | #ifdef KTRACE1 |
| 313 | if (KTRPOINT(p, KTR_STRUCT)((p)->p_p->ps_traceflag & (1<<(8)) && ((p)->p_flag & 0x00000001) == 0)) |
| 314 | ktrsigaction(p, sa)ktrstruct((p), "sigaction", (sa), sizeof(struct sigaction)); |
| 315 | #endif |
| 316 | setsigvec(p, signum, sa); |
| 317 | } |
| 318 | #ifdef KTRACE1 |
| 319 | if (osa && KTRPOINT(p, KTR_STRUCT)((p)->p_p->ps_traceflag & (1<<(8)) && ((p)->p_flag & 0x00000001) == 0)) |
| 320 | ktrsigaction(p, &ovec)ktrstruct((p), "sigaction", (&ovec), sizeof(struct sigaction )); |
| 321 | #endif |
| 322 | return (0); |
| 323 | } |
| 324 | |
| 325 | void |
| 326 | setsigvec(struct proc *p, int signum, struct sigaction *sa) |
| 327 | { |
| 328 | struct sigacts *ps = p->p_p->ps_sigacts; |
| 329 | int bit; |
| 330 | |
| 331 | bit = sigmask(signum)(1U << ((signum)-1)); |
| 332 | |
| 333 | mtx_enter(&p->p_p->ps_mtx); |
| 334 | ps->ps_sigact[signum] = sa->sa_handler__sigaction_u.__sa_handler; |
| 335 | if ((sa->sa_flags & SA_NODEFER0x0010) == 0) |
| 336 | sa->sa_mask |= sigmask(signum)(1U << ((signum)-1)); |
| 337 | ps->ps_catchmask[signum] = sa->sa_mask &~ sigcantmask((1U << ((9)-1)) | (1U << ((17)-1))); |
| 338 | if (signum == SIGCHLD20) { |
| 339 | if (sa->sa_flags & SA_NOCLDSTOP0x0008) |
| 340 | atomic_setbits_intx86_atomic_setbits_u32(&ps->ps_sigflags, SAS_NOCLDSTOP0x01); |
| 341 | else |
| 342 | atomic_clearbits_intx86_atomic_clearbits_u32(&ps->ps_sigflags, SAS_NOCLDSTOP0x01); |
| 343 | /* |
| 344 | * If the SA_NOCLDWAIT flag is set or the handler |
| 345 | * is SIG_IGN we reparent the dying child to PID 1 |
| 346 | * (init) which will reap the zombie. Because we use |
| 347 | * init to do our dirty work we never set SAS_NOCLDWAIT |
| 348 | * for PID 1. |
| 349 | * XXX exit1 rework means this is unnecessary? |
| 350 | */ |
| 351 | if (initprocess->ps_sigacts != ps && |
| 352 | ((sa->sa_flags & SA_NOCLDWAIT0x0020) || |
| 353 | sa->sa_handler__sigaction_u.__sa_handler == SIG_IGN(void (*)(int))1)) |
| 354 | atomic_setbits_intx86_atomic_setbits_u32(&ps->ps_sigflags, SAS_NOCLDWAIT0x02); |
| 355 | else |
| 356 | atomic_clearbits_intx86_atomic_clearbits_u32(&ps->ps_sigflags, SAS_NOCLDWAIT0x02); |
| 357 | } |
| 358 | if ((sa->sa_flags & SA_RESETHAND0x0004) != 0) |
| 359 | ps->ps_sigreset |= bit; |
| 360 | else |
| 361 | ps->ps_sigreset &= ~bit; |
| 362 | if ((sa->sa_flags & SA_SIGINFO0x0040) != 0) |
| 363 | ps->ps_siginfo |= bit; |
| 364 | else |
| 365 | ps->ps_siginfo &= ~bit; |
| 366 | if ((sa->sa_flags & SA_RESTART0x0002) == 0) |
| 367 | ps->ps_sigintr |= bit; |
| 368 | else |
| 369 | ps->ps_sigintr &= ~bit; |
| 370 | if ((sa->sa_flags & SA_ONSTACK0x0001) != 0) |
| 371 | ps->ps_sigonstack |= bit; |
| 372 | else |
| 373 | ps->ps_sigonstack &= ~bit; |
| 374 | /* |
| 375 | * Set bit in ps_sigignore for signals that are set to SIG_IGN, |
| 376 | * and for signals set to SIG_DFL where the default is to ignore. |
| 377 | * However, don't put SIGCONT in ps_sigignore, |
| 378 | * as we have to restart the process. |
| 379 | */ |
| 380 | if (sa->sa_handler__sigaction_u.__sa_handler == SIG_IGN(void (*)(int))1 || |
| 381 | (sigprop[signum] & SA_IGNORE0x10 && sa->sa_handler__sigaction_u.__sa_handler == SIG_DFL(void (*)(int))0)) { |
| 382 | atomic_clearbits_intx86_atomic_clearbits_u32(&p->p_siglist, bit); |
| 383 | atomic_clearbits_intx86_atomic_clearbits_u32(&p->p_p->ps_siglist, bit); |
| 384 | if (signum != SIGCONT19) |
| 385 | ps->ps_sigignore |= bit; /* easier in psignal */ |
| 386 | ps->ps_sigcatch &= ~bit; |
| 387 | } else { |
| 388 | ps->ps_sigignore &= ~bit; |
| 389 | if (sa->sa_handler__sigaction_u.__sa_handler == SIG_DFL(void (*)(int))0) |
| 390 | ps->ps_sigcatch &= ~bit; |
| 391 | else |
| 392 | ps->ps_sigcatch |= bit; |
| 393 | } |
| 394 | mtx_leave(&p->p_p->ps_mtx); |
| 395 | } |
| 396 | |
| 397 | /* |
| 398 | * Initialize signal state for process 0; |
| 399 | * set to ignore signals that are ignored by default. |
| 400 | */ |
| 401 | void |
| 402 | siginit(struct sigacts *ps) |
| 403 | { |
| 404 | int i; |
| 405 | |
| 406 | for (i = 0; i < NSIG33; i++) |
| 407 | if (sigprop[i] & SA_IGNORE0x10 && i != SIGCONT19) |
| 408 | ps->ps_sigignore |= sigmask(i)(1U << ((i)-1)); |
| 409 | ps->ps_sigflags = SAS_NOCLDWAIT0x02 | SAS_NOCLDSTOP0x01; |
| 410 | } |
| 411 | |
| 412 | /* |
| 413 | * Reset signals for an exec by the specified thread. |
| 414 | */ |
| 415 | void |
| 416 | execsigs(struct proc *p) |
| 417 | { |
| 418 | struct sigacts *ps; |
| 419 | int nc, mask; |
| 420 | |
| 421 | ps = p->p_p->ps_sigacts; |
| 422 | mtx_enter(&p->p_p->ps_mtx); |
| 423 | |
| 424 | /* |
| 425 | * Reset caught signals. Held signals remain held |
| 426 | * through p_sigmask (unless they were caught, |
| 427 | * and are now ignored by default). |
| 428 | */ |
| 429 | while (ps->ps_sigcatch) { |
| 430 | nc = ffs((long)ps->ps_sigcatch); |
| 431 | mask = sigmask(nc)(1U << ((nc)-1)); |
| 432 | ps->ps_sigcatch &= ~mask; |
| 433 | if (sigprop[nc] & SA_IGNORE0x10) { |
| 434 | if (nc != SIGCONT19) |
| 435 | ps->ps_sigignore |= mask; |
| 436 | atomic_clearbits_intx86_atomic_clearbits_u32(&p->p_siglist, mask); |
| 437 | atomic_clearbits_intx86_atomic_clearbits_u32(&p->p_p->ps_siglist, mask); |
| 438 | } |
| 439 | ps->ps_sigact[nc] = SIG_DFL(void (*)(int))0; |
| 440 | } |
| 441 | /* |
| 442 | * Reset stack state to the user stack. |
| 443 | * Clear set of signals caught on the signal stack. |
| 444 | */ |
| 445 | sigstkinit(&p->p_sigstk); |
| 446 | atomic_clearbits_intx86_atomic_clearbits_u32(&ps->ps_sigflags, SAS_NOCLDWAIT0x02); |
| 447 | if (ps->ps_sigact[SIGCHLD20] == SIG_IGN(void (*)(int))1) |
| 448 | ps->ps_sigact[SIGCHLD20] = SIG_DFL(void (*)(int))0; |
| 449 | mtx_leave(&p->p_p->ps_mtx); |
| 450 | } |
| 451 | |
| 452 | /* |
| 453 | * Manipulate signal mask. |
| 454 | * Note that we receive new mask, not pointer, |
| 455 | * and return old mask as return value; |
| 456 | * the library stub does the rest. |
| 457 | */ |
| 458 | int |
| 459 | sys_sigprocmask(struct proc *p, void *v, register_t *retval) |
| 460 | { |
| 461 | struct sys_sigprocmask_args /* { |
| 462 | syscallarg(int) how; |
| 463 | syscallarg(sigset_t) mask; |
| 464 | } */ *uap = v; |
| 465 | int error = 0; |
| 466 | sigset_t mask; |
| 467 | |
| 468 | KASSERT(p == curproc)((p == ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self ))); __ci;})->ci_curproc) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/kern/kern_sig.c", 468, "p == curproc")); |
| 469 | |
| 470 | *retval = p->p_sigmask; |
| 471 | mask = SCARG(uap, mask)((uap)->mask.le.datum) &~ sigcantmask((1U << ((9)-1)) | (1U << ((17)-1))); |
| 472 | |
| 473 | switch (SCARG(uap, how)((uap)->how.le.datum)) { |
| 474 | case SIG_BLOCK1: |
| 475 | atomic_setbits_intx86_atomic_setbits_u32(&p->p_sigmask, mask); |
| 476 | break; |
| 477 | case SIG_UNBLOCK2: |
| 478 | atomic_clearbits_intx86_atomic_clearbits_u32(&p->p_sigmask, mask); |
| 479 | break; |
| 480 | case SIG_SETMASK3: |
| 481 | p->p_sigmask = mask; |
| 482 | break; |
| 483 | default: |
| 484 | error = EINVAL22; |
| 485 | break; |
| 486 | } |
| 487 | return (error); |
| 488 | } |
| 489 | |
| 490 | int |
| 491 | sys_sigpending(struct proc *p, void *v, register_t *retval) |
| 492 | { |
| 493 | *retval = p->p_siglist | p->p_p->ps_siglist; |
| 494 | return (0); |
| 495 | } |
| 496 | |
| 497 | /* |
| 498 | * Temporarily replace calling proc's signal mask for the duration of a |
| 499 | * system call. Original signal mask will be restored by userret(). |
| 500 | */ |
| 501 | void |
| 502 | dosigsuspend(struct proc *p, sigset_t newmask) |
| 503 | { |
| 504 | KASSERT(p == curproc)((p == ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self ))); __ci;})->ci_curproc) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/kern/kern_sig.c", 504, "p == curproc")); |
| 505 | |
| 506 | p->p_oldmask = p->p_sigmask; |
| 507 | atomic_setbits_intx86_atomic_setbits_u32(&p->p_flag, P_SIGSUSPEND0x00000008); |
| 508 | p->p_sigmask = newmask; |
| 509 | } |
| 510 | |
| 511 | /* |
| 512 | * Suspend thread until signal, providing mask to be set |
| 513 | * in the meantime. Note nonstandard calling convention: |
| 514 | * libc stub passes mask, not pointer, to save a copyin. |
| 515 | */ |
| 516 | int |
| 517 | sys_sigsuspend(struct proc *p, void *v, register_t *retval) |
| 518 | { |
| 519 | struct sys_sigsuspend_args /* { |
| 520 | syscallarg(int) mask; |
| 521 | } */ *uap = v; |
| 522 | |
| 523 | dosigsuspend(p, SCARG(uap, mask)((uap)->mask.le.datum) &~ sigcantmask((1U << ((9)-1)) | (1U << ((17)-1)))); |
| 524 | while (tsleep_nsec(&nowake, PPAUSE40|PCATCH0x100, "sigsusp", INFSLP0xffffffffffffffffULL) == 0) |
| 525 | continue; |
| 526 | /* always return EINTR rather than ERESTART... */ |
| 527 | return (EINTR4); |
| 528 | } |
| 529 | |
| 530 | int |
| 531 | sigonstack(size_t stack) |
| 532 | { |
| 533 | const struct sigaltstack *ss = &curproc({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_curproc->p_sigstk; |
| 534 | |
| 535 | return (ss->ss_flags & SS_DISABLE0x0004 ? 0 : |
| 536 | (stack - (size_t)ss->ss_sp < ss->ss_size)); |
| 537 | } |
| 538 | |
| 539 | int |
| 540 | sys_sigaltstack(struct proc *p, void *v, register_t *retval) |
| 541 | { |
| 542 | struct sys_sigaltstack_args /* { |
| 543 | syscallarg(const struct sigaltstack *) nss; |
| 544 | syscallarg(struct sigaltstack *) oss; |
| 545 | } */ *uap = v; |
| 546 | struct sigaltstack ss; |
| 547 | const struct sigaltstack *nss; |
| 548 | struct sigaltstack *oss; |
| 549 | int onstack = sigonstack(PROC_STACK(p)((p)->p_md.md_regs->tf_rsp)); |
| 550 | int error; |
| 551 | |
| 552 | nss = SCARG(uap, nss)((uap)->nss.le.datum); |
| 553 | oss = SCARG(uap, oss)((uap)->oss.le.datum); |
| 554 | |
| 555 | if (oss != NULL((void *)0)) { |
| 556 | ss = p->p_sigstk; |
| 557 | if (onstack) |
| 558 | ss.ss_flags |= SS_ONSTACK0x0001; |
| 559 | if ((error = copyout(&ss, oss, sizeof(ss)))) |
| 560 | return (error); |
| 561 | } |
| 562 | if (nss == NULL((void *)0)) |
| 563 | return (0); |
| 564 | error = copyin(nss, &ss, sizeof(ss)); |
| 565 | if (error) |
| 566 | return (error); |
| 567 | if (onstack) |
| 568 | return (EPERM1); |
| 569 | if (ss.ss_flags & ~SS_DISABLE0x0004) |
| 570 | return (EINVAL22); |
| 571 | if (ss.ss_flags & SS_DISABLE0x0004) { |
| 572 | p->p_sigstk.ss_flags = ss.ss_flags; |
| 573 | return (0); |
| 574 | } |
| 575 | if (ss.ss_size < MINSIGSTKSZ(3U << 12)) |
| 576 | return (ENOMEM12); |
| 577 | |
| 578 | error = uvm_map_remap_as_stack(p, (vaddr_t)ss.ss_sp, ss.ss_size); |
| 579 | if (error) |
| 580 | return (error); |
| 581 | |
| 582 | p->p_sigstk = ss; |
| 583 | return (0); |
| 584 | } |
| 585 | |
| 586 | int |
| 587 | sys_kill(struct proc *cp, void *v, register_t *retval) |
| 588 | { |
| 589 | struct sys_kill_args /* { |
| 590 | syscallarg(int) pid; |
| 591 | syscallarg(int) signum; |
| 592 | } */ *uap = v; |
| 593 | struct process *pr; |
| 594 | int pid = SCARG(uap, pid)((uap)->pid.le.datum); |
| 595 | int signum = SCARG(uap, signum)((uap)->signum.le.datum); |
| 596 | int error; |
| 597 | int zombie = 0; |
| 598 | |
| 599 | if ((error = pledge_kill(cp, pid)) != 0) |
| 600 | return (error); |
| 601 | if (((u_int)signum) >= NSIG33) |
| 602 | return (EINVAL22); |
| 603 | if (pid > 0) { |
| 604 | if ((pr = prfind(pid)) == NULL((void *)0)) { |
| 605 | if ((pr = zombiefind(pid)) == NULL((void *)0)) |
| 606 | return (ESRCH3); |
| 607 | else |
| 608 | zombie = 1; |
| 609 | } |
| 610 | if (!cansignal(cp, pr, signum)) |
| 611 | return (EPERM1); |
| 612 | |
| 613 | /* kill single process */ |
| 614 | if (signum && !zombie) |
| 615 | prsignal(pr, signum)ptsignal((pr)->ps_mainproc, (signum), SPROCESS); |
| 616 | return (0); |
| 617 | } |
| 618 | switch (pid) { |
| 619 | case -1: /* broadcast signal */ |
| 620 | return (killpg1(cp, signum, 0, 1)); |
| 621 | case 0: /* signal own process group */ |
| 622 | return (killpg1(cp, signum, 0, 0)); |
| 623 | default: /* negative explicit process group */ |
| 624 | return (killpg1(cp, signum, -pid, 0)); |
| 625 | } |
| 626 | } |
| 627 | |
| 628 | int |
| 629 | sys_thrkill(struct proc *cp, void *v, register_t *retval) |
| 630 | { |
| 631 | struct sys_thrkill_args /* { |
| 632 | syscallarg(pid_t) tid; |
| 633 | syscallarg(int) signum; |
| 634 | syscallarg(void *) tcb; |
| 635 | } */ *uap = v; |
| 636 | struct proc *p; |
| 637 | int tid = SCARG(uap, tid)((uap)->tid.le.datum); |
| 638 | int signum = SCARG(uap, signum)((uap)->signum.le.datum); |
| 639 | void *tcb; |
| 640 | |
| 641 | if (((u_int)signum) >= NSIG33) |
| 642 | return (EINVAL22); |
| 643 | |
| 644 | p = tid ? tfind_user(tid, cp->p_p) : cp; |
| 645 | if (p == NULL((void *)0)) |
| 646 | return (ESRCH3); |
| 647 | |
| 648 | /* optionally require the target thread to have the given tcb addr */ |
| 649 | tcb = SCARG(uap, tcb)((uap)->tcb.le.datum); |
| 650 | if (tcb != NULL((void *)0) && tcb != TCB_GET(p)tcb_get(p)) |
| 651 | return (ESRCH3); |
| 652 | |
| 653 | if (signum) |
| 654 | ptsignal(p, signum, STHREAD); |
| 655 | return (0); |
| 656 | } |
| 657 | |
| 658 | /* |
| 659 | * Common code for kill process group/broadcast kill. |
| 660 | * cp is calling process. |
| 661 | */ |
| 662 | int |
| 663 | killpg1(struct proc *cp, int signum, int pgid, int all) |
| 664 | { |
| 665 | struct process *pr; |
| 666 | struct pgrp *pgrp; |
| 667 | int nfound = 0; |
| 668 | |
| 669 | if (all) { |
| 670 | /* |
| 671 | * broadcast |
| 672 | */ |
| 673 | LIST_FOREACH(pr, &allprocess, ps_list)for((pr) = ((&allprocess)->lh_first); (pr)!= ((void *) 0); (pr) = ((pr)->ps_list.le_next)) { |
| 674 | if (pr->ps_pid <= 1 || |
| 675 | pr->ps_flags & (PS_SYSTEM0x00010000 | PS_NOBROADCASTKILL0x00080000) || |
| 676 | pr == cp->p_p || !cansignal(cp, pr, signum)) |
| 677 | continue; |
| 678 | nfound++; |
| 679 | if (signum) |
| 680 | prsignal(pr, signum)ptsignal((pr)->ps_mainproc, (signum), SPROCESS); |
| 681 | } |
| 682 | } else { |
| 683 | if (pgid == 0) |
| 684 | /* |
| 685 | * zero pgid means send to my process group. |
| 686 | */ |
| 687 | pgrp = cp->p_p->ps_pgrp; |
| 688 | else { |
| 689 | pgrp = pgfind(pgid); |
| 690 | if (pgrp == NULL((void *)0)) |
| 691 | return (ESRCH3); |
| 692 | } |
| 693 | LIST_FOREACH(pr, &pgrp->pg_members, ps_pglist)for((pr) = ((&pgrp->pg_members)->lh_first); (pr)!= ( (void *)0); (pr) = ((pr)->ps_pglist.le_next)) { |
| 694 | if (pr->ps_pid <= 1 || pr->ps_flags & PS_SYSTEM0x00010000 || |
| 695 | !cansignal(cp, pr, signum)) |
| 696 | continue; |
| 697 | nfound++; |
| 698 | if (signum) |
| 699 | prsignal(pr, signum)ptsignal((pr)->ps_mainproc, (signum), SPROCESS); |
| 700 | } |
| 701 | } |
| 702 | return (nfound ? 0 : ESRCH3); |
| 703 | } |
| 704 | |
| 705 | #define CANDELIVER(uid, euid, pr)(euid == 0 || (uid) == (pr)->ps_ucred->cr_ruid || (uid) == (pr)->ps_ucred->cr_svuid || (uid) == (pr)->ps_ucred ->cr_uid || (euid) == (pr)->ps_ucred->cr_ruid || (euid ) == (pr)->ps_ucred->cr_svuid || (euid) == (pr)->ps_ucred ->cr_uid) \ |
| 706 | (euid == 0 || \ |
| 707 | (uid) == (pr)->ps_ucred->cr_ruid || \ |
| 708 | (uid) == (pr)->ps_ucred->cr_svuid || \ |
| 709 | (uid) == (pr)->ps_ucred->cr_uid || \ |
| 710 | (euid) == (pr)->ps_ucred->cr_ruid || \ |
| 711 | (euid) == (pr)->ps_ucred->cr_svuid || \ |
| 712 | (euid) == (pr)->ps_ucred->cr_uid) |
| 713 | |
| 714 | #define CANSIGIO(cr, pr)((cr)->cr_uid == 0 || ((cr)->cr_ruid) == ((pr))->ps_ucred ->cr_ruid || ((cr)->cr_ruid) == ((pr))->ps_ucred-> cr_svuid || ((cr)->cr_ruid) == ((pr))->ps_ucred->cr_uid || ((cr)->cr_uid) == ((pr))->ps_ucred->cr_ruid || ( (cr)->cr_uid) == ((pr))->ps_ucred->cr_svuid || ((cr) ->cr_uid) == ((pr))->ps_ucred->cr_uid) \ |
| 715 | CANDELIVER((cr)->cr_ruid, (cr)->cr_uid, (pr))((cr)->cr_uid == 0 || ((cr)->cr_ruid) == ((pr))->ps_ucred ->cr_ruid || ((cr)->cr_ruid) == ((pr))->ps_ucred-> cr_svuid || ((cr)->cr_ruid) == ((pr))->ps_ucred->cr_uid || ((cr)->cr_uid) == ((pr))->ps_ucred->cr_ruid || ( (cr)->cr_uid) == ((pr))->ps_ucred->cr_svuid || ((cr) ->cr_uid) == ((pr))->ps_ucred->cr_uid) |
| 716 | |
| 717 | /* |
| 718 | * Send a signal to a process group. If checktty is 1, |
| 719 | * limit to members which have a controlling terminal. |
| 720 | */ |
| 721 | void |
| 722 | pgsignal(struct pgrp *pgrp, int signum, int checkctty) |
| 723 | { |
| 724 | struct process *pr; |
| 725 | |
| 726 | if (pgrp) |
| 727 | LIST_FOREACH(pr, &pgrp->pg_members, ps_pglist)for((pr) = ((&pgrp->pg_members)->lh_first); (pr)!= ( (void *)0); (pr) = ((pr)->ps_pglist.le_next)) |
| 728 | if (checkctty == 0 || pr->ps_flags & PS_CONTROLT0x00000001) |
| 729 | prsignal(pr, signum)ptsignal((pr)->ps_mainproc, (signum), SPROCESS); |
| 730 | } |
| 731 | |
| 732 | /* |
| 733 | * Send a SIGIO or SIGURG signal to a process or process group using stored |
| 734 | * credentials rather than those of the current process. |
| 735 | */ |
| 736 | void |
| 737 | pgsigio(struct sigio_ref *sir, int sig, int checkctty) |
| 738 | { |
| 739 | struct process *pr; |
| 740 | struct sigio *sigio; |
| 741 | |
| 742 | if (sir->sir_sigio == NULL((void *)0)) |
| 743 | return; |
| 744 | |
| 745 | KERNEL_LOCK()_kernel_lock(); |
| 746 | mtx_enter(&sigio_lock); |
| 747 | sigio = sir->sir_sigio; |
| 748 | if (sigio == NULL((void *)0)) |
| 749 | goto out; |
| 750 | if (sigio->sio_pgid > 0) { |
| 751 | if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc)((sigio->sio_ucred)->cr_uid == 0 || ((sigio->sio_ucred )->cr_ruid) == ((sigio->sio_u.siu_proc))->ps_ucred-> cr_ruid || ((sigio->sio_ucred)->cr_ruid) == ((sigio-> sio_u.siu_proc))->ps_ucred->cr_svuid || ((sigio->sio_ucred )->cr_ruid) == ((sigio->sio_u.siu_proc))->ps_ucred-> cr_uid || ((sigio->sio_ucred)->cr_uid) == ((sigio->sio_u .siu_proc))->ps_ucred->cr_ruid || ((sigio->sio_ucred )->cr_uid) == ((sigio->sio_u.siu_proc))->ps_ucred-> cr_svuid || ((sigio->sio_ucred)->cr_uid) == ((sigio-> sio_u.siu_proc))->ps_ucred->cr_uid)) |
| 752 | prsignal(sigio->sio_proc, sig)ptsignal((sigio->sio_u.siu_proc)->ps_mainproc, (sig), SPROCESS ); |
| 753 | } else if (sigio->sio_pgid < 0) { |
| 754 | LIST_FOREACH(pr, &sigio->sio_pgrp->pg_members, ps_pglist)for((pr) = ((&sigio->sio_u.siu_pgrp->pg_members)-> lh_first); (pr)!= ((void *)0); (pr) = ((pr)->ps_pglist.le_next )) { |
| 755 | if (CANSIGIO(sigio->sio_ucred, pr)((sigio->sio_ucred)->cr_uid == 0 || ((sigio->sio_ucred )->cr_ruid) == ((pr))->ps_ucred->cr_ruid || ((sigio-> sio_ucred)->cr_ruid) == ((pr))->ps_ucred->cr_svuid || ((sigio->sio_ucred)->cr_ruid) == ((pr))->ps_ucred-> cr_uid || ((sigio->sio_ucred)->cr_uid) == ((pr))->ps_ucred ->cr_ruid || ((sigio->sio_ucred)->cr_uid) == ((pr))-> ps_ucred->cr_svuid || ((sigio->sio_ucred)->cr_uid) == ((pr))->ps_ucred->cr_uid) && |
| 756 | (checkctty == 0 || (pr->ps_flags & PS_CONTROLT0x00000001))) |
| 757 | prsignal(pr, sig)ptsignal((pr)->ps_mainproc, (sig), SPROCESS); |
| 758 | } |
| 759 | } |
| 760 | out: |
| 761 | mtx_leave(&sigio_lock); |
| 762 | KERNEL_UNLOCK()_kernel_unlock(); |
| 763 | } |
| 764 | |
| 765 | /* |
| 766 | * Recalculate the signal mask and reset the signal disposition after |
| 767 | * usermode frame for delivery is formed. |
| 768 | */ |
| 769 | void |
| 770 | postsig_done(struct proc *p, int signum, sigset_t catchmask, int reset) |
| 771 | { |
| 772 | p->p_ru.ru_nsignals++; |
| 773 | atomic_setbits_intx86_atomic_setbits_u32(&p->p_sigmask, catchmask); |
| 774 | if (reset != 0) { |
| 775 | sigset_t mask = sigmask(signum)(1U << ((signum)-1)); |
| 776 | struct sigacts *ps = p->p_p->ps_sigacts; |
| 777 | |
| 778 | mtx_enter(&p->p_p->ps_mtx); |
| 779 | ps->ps_sigcatch &= ~mask; |
| 780 | if (signum != SIGCONT19 && sigprop[signum] & SA_IGNORE0x10) |
| 781 | ps->ps_sigignore |= mask; |
| 782 | ps->ps_sigact[signum] = SIG_DFL(void (*)(int))0; |
| 783 | mtx_leave(&p->p_p->ps_mtx); |
| 784 | } |
| 785 | } |
| 786 | |
| 787 | /* |
| 788 | * Send a signal caused by a trap to the current thread |
| 789 | * If it will be caught immediately, deliver it with correct code. |
| 790 | * Otherwise, post it normally. |
| 791 | */ |
| 792 | void |
| 793 | trapsignal(struct proc *p, int signum, u_long trapno, int code, |
| 794 | union sigval sigval) |
| 795 | { |
| 796 | struct process *pr = p->p_p; |
| 797 | struct sigctx ctx; |
| 798 | int mask; |
| 799 | |
| 800 | switch (signum) { |
| 801 | case SIGILL4: |
| 802 | case SIGBUS10: |
| 803 | case SIGSEGV11: |
| 804 | pr->ps_acflag |= ATRAP0x00000040; |
| 805 | break; |
| 806 | } |
| 807 | |
| 808 | mask = sigmask(signum)(1U << ((signum)-1)); |
| 809 | setsigctx(p, signum, &ctx); |
| 810 | if ((pr->ps_flags & PS_TRACED0x00000200) == 0 && ctx.sig_catch != 0 && |
| 811 | (p->p_sigmask & mask) == 0) { |
| 812 | siginfo_t si; |
| 813 | |
| 814 | initsiginfo(&si, signum, trapno, code, sigval); |
| 815 | #ifdef KTRACE1 |
| 816 | if (KTRPOINT(p, KTR_PSIG)((p)->p_p->ps_traceflag & (1<<(5)) && ((p)->p_flag & 0x00000001) == 0)) { |
| 817 | ktrpsig(p, signum, ctx.sig_action, |
| 818 | p->p_sigmask, code, &si); |
| 819 | } |
| 820 | #endif |
| 821 | if (sendsig(ctx.sig_action, signum, p->p_sigmask, &si, |
| 822 | ctx.sig_info, ctx.sig_onstack)) { |
| 823 | KERNEL_LOCK()_kernel_lock(); |
| 824 | sigexit(p, SIGILL4); |
| 825 | /* NOTREACHED */ |
| 826 | } |
| 827 | postsig_done(p, signum, ctx.sig_catchmask, ctx.sig_reset); |
| 828 | } else { |
| 829 | p->p_sisig = signum; |
| 830 | p->p_sitrapno = trapno; /* XXX for core dump/debugger */ |
| 831 | p->p_sicode = code; |
| 832 | p->p_sigval = sigval; |
| 833 | |
| 834 | /* |
| 835 | * If traced, stop if signal is masked, and stay stopped |
| 836 | * until released by the debugger. If our parent process |
| 837 | * is waiting for us, don't hang as we could deadlock. |
| 838 | */ |
| 839 | if (((pr->ps_flags & (PS_TRACED0x00000200 | PS_PPWAIT0x00000040)) == PS_TRACED0x00000200) && |
| 840 | signum != SIGKILL9 && (p->p_sigmask & mask) != 0) { |
| 841 | int s; |
| 842 | |
| 843 | single_thread_set(p, SINGLE_SUSPEND0x01 | SINGLE_NOWAIT0x20); |
| 844 | pr->ps_xsig = signum; |
| 845 | |
| 846 | SCHED_LOCK(s)do { s = splraise(0xc); __mp_lock(&sched_lock); } while ( 0); |
| 847 | proc_stop(p, 1); |
| 848 | SCHED_UNLOCK(s)do { __mp_unlock(&sched_lock); spllower(s); } while ( 0); |
| 849 | |
| 850 | signum = pr->ps_xsig; |
| 851 | single_thread_clear(p, 0); |
| 852 | |
| 853 | /* |
| 854 | * If we are no longer being traced, or the parent |
| 855 | * didn't give us a signal, skip sending the signal. |
| 856 | */ |
| 857 | if ((pr->ps_flags & PS_TRACED0x00000200) == 0 || |
| 858 | signum == 0) |
| 859 | return; |
| 860 | |
| 861 | /* update signal info */ |
| 862 | p->p_sisig = signum; |
| 863 | mask = sigmask(signum)(1U << ((signum)-1)); |
| 864 | } |
| 865 | |
| 866 | /* |
| 867 | * Signals like SIGBUS and SIGSEGV should not, when |
| 868 | * generated by the kernel, be ignorable or blockable. |
| 869 | * If it is and we're not being traced, then just kill |
| 870 | * the process. |
| 871 | * After vfs_shutdown(9), init(8) cannot receive signals |
| 872 | * because new code pages of the signal handler cannot be |
| 873 | * mapped from halted storage. init(8) may not die or the |
| 874 | * kernel panics. Better loop between signal handler and |
| 875 | * page fault trap until the machine is halted. |
| 876 | */ |
| 877 | if ((pr->ps_flags & PS_TRACED0x00000200) == 0 && |
| 878 | (sigprop[signum] & SA_KILL0x01) && |
| 879 | ((p->p_sigmask & mask) || ctx.sig_ignore) && |
| 880 | pr->ps_pid != 1) { |
| 881 | KERNEL_LOCK()_kernel_lock(); |
| 882 | sigexit(p, signum); |
| 883 | /* NOTREACHED */ |
| 884 | } |
| 885 | KERNEL_LOCK()_kernel_lock(); |
| 886 | ptsignal(p, signum, STHREAD); |
| 887 | KERNEL_UNLOCK()_kernel_unlock(); |
| 888 | } |
| 889 | } |
| 890 | |
| 891 | /* |
| 892 | * Send the signal to the process. If the signal has an action, the action |
| 893 | * is usually performed by the target process rather than the caller; we add |
| 894 | * the signal to the set of pending signals for the process. |
| 895 | * |
| 896 | * Exceptions: |
| 897 | * o When a stop signal is sent to a sleeping process that takes the |
| 898 | * default action, the process is stopped without awakening it. |
| 899 | * o SIGCONT restarts stopped processes (or puts them back to sleep) |
| 900 | * regardless of the signal action (eg, blocked or ignored). |
| 901 | * |
| 902 | * Other ignored signals are discarded immediately. |
| 903 | */ |
| 904 | void |
| 905 | psignal(struct proc *p, int signum) |
| 906 | { |
| 907 | ptsignal(p, signum, SPROCESS); |
| 908 | } |
| 909 | |
| 910 | /* |
| 911 | * type = SPROCESS process signal, can be diverted (sigwait()) |
| 912 | * type = STHREAD thread signal, but should be propagated if unhandled |
| 913 | * type = SPROPAGATED propagated to this thread, so don't propagate again |
| 914 | */ |
| 915 | void |
| 916 | ptsignal(struct proc *p, int signum, enum signal_type type) |
| 917 | { |
| 918 | int s, prop; |
| 919 | sig_t action; |
| 920 | int mask; |
| 921 | int *siglist; |
| 922 | struct process *pr = p->p_p; |
| 923 | struct proc *q; |
| 924 | int wakeparent = 0; |
| 925 | |
| 926 | KERNEL_ASSERT_LOCKED()((_kernel_lock_held()) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/kern/kern_sig.c" , 926, "_kernel_lock_held()")); |
| 927 | |
| 928 | #ifdef DIAGNOSTIC1 |
| 929 | if ((u_int)signum >= NSIG33 || signum == 0) |
| 930 | panic("psignal signal number"); |
| 931 | #endif |
| 932 | |
| 933 | /* Ignore signal if the target process is exiting */ |
| 934 | if (pr->ps_flags & PS_EXITING0x00000008) |
| 935 | return; |
| 936 | |
| 937 | mask = sigmask(signum)(1U << ((signum)-1)); |
| 938 | |
| 939 | if (type == SPROCESS) { |
| 940 | /* Accept SIGKILL to coredumping processes */ |
| 941 | if (pr->ps_flags & PS_COREDUMP0x00000800 && signum == SIGKILL9) { |
| 942 | atomic_setbits_intx86_atomic_setbits_u32(&pr->ps_siglist, mask); |
| 943 | return; |
| 944 | } |
| 945 | |
| 946 | /* |
| 947 | * If the current thread can process the signal |
| 948 | * immediately (it's unblocked) then have it take it. |
| 949 | */ |
| 950 | q = curproc({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_curproc; |
| 951 | if (q != NULL((void *)0) && q->p_p == pr && (q->p_flag & P_WEXIT0x00002000) == 0 && |
| 952 | (q->p_sigmask & mask) == 0) |
| 953 | p = q; |
| 954 | else { |
| 955 | /* |
| 956 | * A process-wide signal can be diverted to a |
| 957 | * different thread that's in sigwait() for this |
| 958 | * signal. If there isn't such a thread, then |
| 959 | * pick a thread that doesn't have it blocked so |
| 960 | * that the stop/kill consideration isn't |
| 961 | * delayed. Otherwise, mark it pending on the |
| 962 | * main thread. |
| 963 | */ |
| 964 | TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link)for((q) = ((&pr->ps_threads)->tqh_first); (q) != (( void *)0); (q) = ((q)->p_thr_link.tqe_next)) { |
| 965 | /* ignore exiting threads */ |
| 966 | if (q->p_flag & P_WEXIT0x00002000) |
| 967 | continue; |
| 968 | |
| 969 | /* skip threads that have the signal blocked */ |
| 970 | if ((q->p_sigmask & mask) != 0) |
| 971 | continue; |
| 972 | |
| 973 | /* okay, could send to this thread */ |
| 974 | p = q; |
| 975 | |
| 976 | /* |
| 977 | * sigsuspend, sigwait, ppoll/pselect, etc? |
| 978 | * Definitely go to this thread, as it's |
| 979 | * already blocked in the kernel. |
| 980 | */ |
| 981 | if (q->p_flag & P_SIGSUSPEND0x00000008) |
| 982 | break; |
| 983 | } |
| 984 | } |
| 985 | } |
| 986 | |
| 987 | if (type != SPROPAGATED) |
| 988 | knote_locked(&pr->ps_klist, NOTE_SIGNAL0x08000000 | signum); |
| 989 | |
| 990 | prop = sigprop[signum]; |
| 991 | |
| 992 | /* |
| 993 | * If proc is traced, always give parent a chance. |
| 994 | */ |
| 995 | if (pr->ps_flags & PS_TRACED0x00000200) { |
| 996 | action = SIG_DFL(void (*)(int))0; |
| 997 | } else { |
| 998 | sigset_t sigcatch, sigignore; |
| 999 | |
| 1000 | /* |
| 1001 | * If the signal is being ignored, |
| 1002 | * then we forget about it immediately. |
| 1003 | * (Note: we don't set SIGCONT in ps_sigignore, |
| 1004 | * and if it is set to SIG_IGN, |
| 1005 | * action will be SIG_DFL here.) |
| 1006 | */ |
| 1007 | mtx_enter(&pr->ps_mtx); |
| 1008 | sigignore = pr->ps_sigacts->ps_sigignore; |
| 1009 | sigcatch = pr->ps_sigacts->ps_sigcatch; |
| 1010 | mtx_leave(&pr->ps_mtx); |
| 1011 | |
| 1012 | if (sigignore & mask) |
| 1013 | return; |
| 1014 | if (p->p_sigmask & mask) { |
| 1015 | action = SIG_HOLD(void (*)(int))3; |
| 1016 | } else if (sigcatch & mask) { |
| 1017 | action = SIG_CATCH(void (*)(int))2; |
| 1018 | } else { |
| 1019 | action = SIG_DFL(void (*)(int))0; |
| 1020 | |
| 1021 | if (prop & SA_KILL0x01 && pr->ps_nice > NZERO20) |
| 1022 | pr->ps_nice = NZERO20; |
| 1023 | |
| 1024 | /* |
| 1025 | * If sending a tty stop signal to a member of an |
| 1026 | * orphaned process group, discard the signal here if |
| 1027 | * the action is default; don't stop the process below |
| 1028 | * if sleeping, and don't clear any pending SIGCONT. |
| 1029 | */ |
| 1030 | if (prop & SA_TTYSTOP0x08 && pr->ps_pgrp->pg_jobc == 0) |
| 1031 | return; |
| 1032 | } |
| 1033 | } |
| 1034 | /* |
| 1035 | * If delivered to process, mark as pending there. Continue and stop |
| 1036 | * signals will be propagated to all threads. So they are always |
| 1037 | * marked at thread level. |
| 1038 | */ |
| 1039 | siglist = (type == SPROCESS) ? &pr->ps_siglist : &p->p_siglist; |
| 1040 | if (prop & SA_CONT0x20) { |
| 1041 | siglist = &p->p_siglist; |
| 1042 | atomic_clearbits_intx86_atomic_clearbits_u32(siglist, STOPSIGMASK((1U << ((17)-1)) | (1U << ((18)-1)) | (1U << ((21)-1)) | (1U << ((22)-1)))); |
| 1043 | } |
| 1044 | if (prop & SA_STOP0x04) { |
| 1045 | siglist = &p->p_siglist; |
| 1046 | atomic_clearbits_intx86_atomic_clearbits_u32(siglist, CONTSIGMASK((1U << ((19)-1)))); |
| 1047 | atomic_clearbits_intx86_atomic_clearbits_u32(&p->p_flag, P_CONTINUED0x00800000); |
| 1048 | } |
| 1049 | |
| 1050 | /* |
| 1051 | * XXX delay processing of SA_STOP signals unless action == SIG_DFL? |
| 1052 | */ |
| 1053 | if (prop & (SA_CONT0x20 | SA_STOP0x04) && type != SPROPAGATED) |
| 1054 | TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link)for((q) = ((&pr->ps_threads)->tqh_first); (q) != (( void *)0); (q) = ((q)->p_thr_link.tqe_next)) |
| 1055 | if (q != p) |
| 1056 | ptsignal(q, signum, SPROPAGATED); |
| 1057 | |
| 1058 | /* |
| 1059 | * Defer further processing for signals which are held, |
| 1060 | * except that stopped processes must be continued by SIGCONT. |
| 1061 | */ |
| 1062 | if (action == SIG_HOLD(void (*)(int))3 && ((prop & SA_CONT0x20) == 0 || |
| 1063 | p->p_stat != SSTOP4)) { |
| 1064 | atomic_setbits_intx86_atomic_setbits_u32(siglist, mask); |
| 1065 | return; |
| 1066 | } |
| 1067 | |
| 1068 | SCHED_LOCK(s)do { s = splraise(0xc); __mp_lock(&sched_lock); } while ( 0); |
| 1069 | |
| 1070 | switch (p->p_stat) { |
| 1071 | |
| 1072 | case SSLEEP3: |
| 1073 | /* |
| 1074 | * If process is sleeping uninterruptibly |
| 1075 | * we can't interrupt the sleep... the signal will |
| 1076 | * be noticed when the process returns through |
| 1077 | * trap() or syscall(). |
| 1078 | */ |
| 1079 | if ((p->p_flag & P_SINTR0x00000080) == 0) |
| 1080 | goto out; |
| 1081 | /* |
| 1082 | * Process is sleeping and traced... make it runnable |
| 1083 | * so it can discover the signal in cursig() and stop |
| 1084 | * for the parent. |
| 1085 | */ |
| 1086 | if (pr->ps_flags & PS_TRACED0x00000200) |
| 1087 | goto run; |
| 1088 | /* |
| 1089 | * If SIGCONT is default (or ignored) and process is |
| 1090 | * asleep, we are finished; the process should not |
| 1091 | * be awakened. |
| 1092 | */ |
| 1093 | if ((prop & SA_CONT0x20) && action == SIG_DFL(void (*)(int))0) { |
| 1094 | mask = 0; |
| 1095 | goto out; |
| 1096 | } |
| 1097 | /* |
| 1098 | * When a sleeping process receives a stop |
| 1099 | * signal, process immediately if possible. |
| 1100 | */ |
| 1101 | if ((prop & SA_STOP0x04) && action == SIG_DFL(void (*)(int))0) { |
| 1102 | /* |
| 1103 | * If a child holding parent blocked, |
| 1104 | * stopping could cause deadlock. |
| 1105 | */ |
| 1106 | if (pr->ps_flags & PS_PPWAIT0x00000040) |
| 1107 | goto out; |
| 1108 | mask = 0; |
| 1109 | pr->ps_xsig = signum; |
| 1110 | proc_stop(p, 0); |
| 1111 | goto out; |
| 1112 | } |
| 1113 | /* |
| 1114 | * All other (caught or default) signals |
| 1115 | * cause the process to run. |
| 1116 | */ |
| 1117 | goto runfast; |
| 1118 | /* NOTREACHED */ |
| 1119 | |
| 1120 | case SSTOP4: |
| 1121 | /* |
| 1122 | * If traced process is already stopped, |
| 1123 | * then no further action is necessary. |
| 1124 | */ |
| 1125 | if (pr->ps_flags & PS_TRACED0x00000200) |
| 1126 | goto out; |
| 1127 | |
| 1128 | /* |
| 1129 | * Kill signal always sets processes running. |
| 1130 | */ |
| 1131 | if (signum == SIGKILL9) { |
| 1132 | atomic_clearbits_intx86_atomic_clearbits_u32(&p->p_flag, P_SUSPSIG0x08000000); |
| 1133 | goto runfast; |
| 1134 | } |
| 1135 | |
| 1136 | if (prop & SA_CONT0x20) { |
| 1137 | /* |
| 1138 | * If SIGCONT is default (or ignored), we continue the |
| 1139 | * process but don't leave the signal in p_siglist, as |
| 1140 | * it has no further action. If SIGCONT is held, we |
| 1141 | * continue the process and leave the signal in |
| 1142 | * p_siglist. If the process catches SIGCONT, let it |
| 1143 | * handle the signal itself. If it isn't waiting on |
| 1144 | * an event, then it goes back to run state. |
| 1145 | * Otherwise, process goes back to sleep state. |
| 1146 | */ |
| 1147 | atomic_setbits_intx86_atomic_setbits_u32(&p->p_flag, P_CONTINUED0x00800000); |
| 1148 | atomic_clearbits_intx86_atomic_clearbits_u32(&p->p_flag, P_SUSPSIG0x08000000); |
| 1149 | wakeparent = 1; |
| 1150 | if (action == SIG_DFL(void (*)(int))0) |
| 1151 | atomic_clearbits_intx86_atomic_clearbits_u32(siglist, mask); |
| 1152 | if (action == SIG_CATCH(void (*)(int))2) |
| 1153 | goto runfast; |
| 1154 | if (p->p_wchan == NULL((void *)0)) |
| 1155 | goto run; |
| 1156 | atomic_clearbits_intx86_atomic_clearbits_u32(&p->p_flag, P_WSLEEP0x00000020); |
| 1157 | p->p_stat = SSLEEP3; |
| 1158 | goto out; |
| 1159 | } |
| 1160 | |
| 1161 | if (prop & SA_STOP0x04) { |
| 1162 | /* |
| 1163 | * Already stopped, don't need to stop again. |
| 1164 | * (If we did the shell could get confused.) |
| 1165 | */ |
| 1166 | mask = 0; |
| 1167 | goto out; |
| 1168 | } |
| 1169 | |
| 1170 | /* |
| 1171 | * If process is sleeping interruptibly, then simulate a |
| 1172 | * wakeup so that when it is continued, it will be made |
| 1173 | * runnable and can look at the signal. But don't make |
| 1174 | * the process runnable, leave it stopped. |
| 1175 | */ |
| 1176 | if (p->p_flag & P_SINTR0x00000080) |
| 1177 | unsleep(p); |
| 1178 | goto out; |
| 1179 | |
| 1180 | case SONPROC7: |
| 1181 | /* set siglist before issuing the ast */ |
| 1182 | atomic_setbits_intx86_atomic_setbits_u32(siglist, mask); |
| 1183 | mask = 0; |
| 1184 | signotify(p); |
| 1185 | /* FALLTHROUGH */ |
| 1186 | default: |
| 1187 | /* |
| 1188 | * SRUN, SIDL, SDEAD do nothing with the signal, |
| 1189 | * other than kicking ourselves if we are running. |
| 1190 | * It will either never be noticed, or noticed very soon. |
| 1191 | */ |
| 1192 | goto out; |
| 1193 | } |
| 1194 | /* NOTREACHED */ |
| 1195 | |
| 1196 | runfast: |
| 1197 | /* |
| 1198 | * Raise priority to at least PUSER. |
| 1199 | */ |
| 1200 | if (p->p_usrpri > PUSER50) |
| 1201 | p->p_usrpri = PUSER50; |
| 1202 | run: |
| 1203 | setrunnable(p); |
| 1204 | out: |
| 1205 | /* finally adjust siglist */ |
| 1206 | if (mask) |
| 1207 | atomic_setbits_intx86_atomic_setbits_u32(siglist, mask); |
| 1208 | SCHED_UNLOCK(s)do { __mp_unlock(&sched_lock); spllower(s); } while ( 0); |
| 1209 | if (wakeparent) |
| 1210 | wakeup(pr->ps_pptr); |
| 1211 | } |
| 1212 | |
| 1213 | /* fill the signal context which should be used by postsig() and issignal() */ |
| 1214 | void |
| 1215 | setsigctx(struct proc *p, int signum, struct sigctx *sctx) |
| 1216 | { |
| 1217 | struct sigacts *ps = p->p_p->ps_sigacts; |
| 1218 | sigset_t mask; |
| 1219 | |
| 1220 | mtx_enter(&p->p_p->ps_mtx); |
| 1221 | mask = sigmask(signum)(1U << ((signum)-1)); |
| 1222 | sctx->sig_action = ps->ps_sigact[signum]; |
| 1223 | sctx->sig_catchmask = ps->ps_catchmask[signum]; |
| 1224 | sctx->sig_reset = (ps->ps_sigreset & mask) != 0; |
| 1225 | sctx->sig_info = (ps->ps_siginfo & mask) != 0; |
| 1226 | sctx->sig_intr = (ps->ps_sigintr & mask) != 0; |
| 1227 | sctx->sig_onstack = (ps->ps_sigonstack & mask) != 0; |
| 1228 | sctx->sig_ignore = (ps->ps_sigignore & mask) != 0; |
| 1229 | sctx->sig_catch = (ps->ps_sigcatch & mask) != 0; |
| 1230 | mtx_leave(&p->p_p->ps_mtx); |
| 1231 | } |
| 1232 | |
| 1233 | /* |
| 1234 | * Determine signal that should be delivered to process p, the current |
| 1235 | * process, 0 if none. |
| 1236 | * |
| 1237 | * If the current process has received a signal (should be caught or cause |
| 1238 | * termination, should interrupt current syscall), return the signal number. |
| 1239 | * Stop signals with default action are processed immediately, then cleared; |
| 1240 | * they aren't returned. This is checked after each entry to the system for |
| 1241 | * a syscall or trap. The normal call sequence is |
| 1242 | * |
| 1243 | * while (signum = cursig(curproc, &ctx)) |
| 1244 | * postsig(signum, &ctx); |
| 1245 | * |
| 1246 | * Assumes that if the P_SINTR flag is set, we're holding both the |
| 1247 | * kernel and scheduler locks. |
| 1248 | */ |
| 1249 | int |
| 1250 | cursig(struct proc *p, struct sigctx *sctx) |
| 1251 | { |
| 1252 | struct process *pr = p->p_p; |
| 1253 | int signum, mask, prop; |
| 1254 | sigset_t ps_siglist; |
| 1255 | int s; |
| 1256 | |
| 1257 | KASSERT(p == curproc)((p == ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self ))); __ci;})->ci_curproc) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/kern/kern_sig.c", 1257, "p == curproc")); |
| 1258 | |
| 1259 | for (;;) { |
| 1260 | ps_siglist = READ_ONCE(pr->ps_siglist)({ typeof(pr->ps_siglist) __tmp = *(volatile typeof(pr-> ps_siglist) *)&(pr->ps_siglist); membar_datadep_consumer (); __tmp; }); |
| 1261 | membar_consumer()do { __asm volatile("" ::: "memory"); } while (0); |
| 1262 | mask = SIGPENDING(p)(((p)->p_siglist | (p)->p_p->ps_siglist) & ~(p)-> p_sigmask); |
| 1263 | if (pr->ps_flags & PS_PPWAIT0x00000040) |
| 1264 | mask &= ~STOPSIGMASK((1U << ((17)-1)) | (1U << ((18)-1)) | (1U << ((21)-1)) | (1U << ((22)-1))); |
| 1265 | if (mask == 0) /* no signal to send */ |
| 1266 | return (0); |
| 1267 | signum = ffs((long)mask); |
| 1268 | mask = sigmask(signum)(1U << ((signum)-1)); |
| 1269 | |
| 1270 | /* take the signal! */ |
| 1271 | if (atomic_cas_uint(&pr->ps_siglist, ps_siglist,_atomic_cas_uint((&pr->ps_siglist), (ps_siglist), (ps_siglist & ~mask)) |
| 1272 | ps_siglist & ~mask)_atomic_cas_uint((&pr->ps_siglist), (ps_siglist), (ps_siglist & ~mask)) != ps_siglist) { |
| 1273 | /* lost race taking the process signal, restart */ |
| 1274 | continue; |
| 1275 | } |
| 1276 | atomic_clearbits_intx86_atomic_clearbits_u32(&p->p_siglist, mask); |
| 1277 | setsigctx(p, signum, sctx); |
| 1278 | |
| 1279 | /* |
| 1280 | * We should see pending but ignored signals |
| 1281 | * only if PS_TRACED was on when they were posted. |
| 1282 | */ |
| 1283 | if (sctx->sig_ignore && (pr->ps_flags & PS_TRACED0x00000200) == 0) |
| 1284 | continue; |
| 1285 | |
| 1286 | /* |
| 1287 | * If traced, always stop, and stay stopped until released |
| 1288 | * by the debugger. If our parent process is waiting for |
| 1289 | * us, don't hang as we could deadlock. |
| 1290 | */ |
| 1291 | if (((pr->ps_flags & (PS_TRACED0x00000200 | PS_PPWAIT0x00000040)) == PS_TRACED0x00000200) && |
| 1292 | signum != SIGKILL9) { |
| 1293 | single_thread_set(p, SINGLE_SUSPEND0x01 | SINGLE_NOWAIT0x20); |
| 1294 | pr->ps_xsig = signum; |
| 1295 | |
| 1296 | SCHED_LOCK(s)do { s = splraise(0xc); __mp_lock(&sched_lock); } while ( 0); |
| 1297 | proc_stop(p, 1); |
| 1298 | SCHED_UNLOCK(s)do { __mp_unlock(&sched_lock); spllower(s); } while ( 0); |
| 1299 | |
| 1300 | /* |
| 1301 | * re-take the signal before releasing |
| 1302 | * the other threads. Must check the continue |
| 1303 | * conditions below and only take the signal if |
| 1304 | * those are not true. |
| 1305 | */ |
| 1306 | signum = pr->ps_xsig; |
| 1307 | mask = sigmask(signum)(1U << ((signum)-1)); |
| 1308 | setsigctx(p, signum, sctx); |
| 1309 | if (!((pr->ps_flags & PS_TRACED0x00000200) == 0 || |
| 1310 | signum == 0 || |
| 1311 | (p->p_sigmask & mask) != 0)) { |
| 1312 | atomic_clearbits_intx86_atomic_clearbits_u32(&p->p_siglist, mask); |
| 1313 | atomic_clearbits_intx86_atomic_clearbits_u32(&pr->ps_siglist, mask); |
| 1314 | } |
| 1315 | |
| 1316 | single_thread_clear(p, 0); |
| 1317 | |
| 1318 | /* |
| 1319 | * If we are no longer being traced, or the parent |
| 1320 | * didn't give us a signal, look for more signals. |
| 1321 | */ |
| 1322 | if ((pr->ps_flags & PS_TRACED0x00000200) == 0 || |
| 1323 | signum == 0) |
| 1324 | continue; |
| 1325 | |
| 1326 | /* |
| 1327 | * If the new signal is being masked, look for other |
| 1328 | * signals. |
| 1329 | */ |
| 1330 | if ((p->p_sigmask & mask) != 0) |
| 1331 | continue; |
| 1332 | |
| 1333 | } |
| 1334 | |
| 1335 | prop = sigprop[signum]; |
| 1336 | |
| 1337 | /* |
| 1338 | * Decide whether the signal should be returned. |
| 1339 | * Return the signal's number, or fall through |
| 1340 | * to clear it from the pending mask. |
| 1341 | */ |
| 1342 | switch ((long)sctx->sig_action) { |
| 1343 | case (long)SIG_DFL(void (*)(int))0: |
| 1344 | /* |
| 1345 | * Don't take default actions on system processes. |
| 1346 | */ |
| 1347 | if (pr->ps_pid <= 1) { |
| 1348 | #ifdef DIAGNOSTIC1 |
| 1349 | /* |
| 1350 | * Are you sure you want to ignore SIGSEGV |
| 1351 | * in init? XXX |
| 1352 | */ |
| 1353 | printf("Process (pid %d) got signal" |
| 1354 | " %d\n", pr->ps_pid, signum); |
| 1355 | #endif |
| 1356 | break; /* == ignore */ |
| 1357 | } |
| 1358 | /* |
| 1359 | * If there is a pending stop signal to process |
| 1360 | * with default action, stop here, |
| 1361 | * then clear the signal. However, |
| 1362 | * if process is member of an orphaned |
| 1363 | * process group, ignore tty stop signals. |
| 1364 | */ |
| 1365 | if (prop & SA_STOP0x04) { |
| 1366 | if (pr->ps_flags & PS_TRACED0x00000200 || |
| 1367 | (pr->ps_pgrp->pg_jobc == 0 && |
| 1368 | prop & SA_TTYSTOP0x08)) |
| 1369 | break; /* == ignore */ |
| 1370 | pr->ps_xsig = signum; |
| 1371 | SCHED_LOCK(s)do { s = splraise(0xc); __mp_lock(&sched_lock); } while ( 0); |
| 1372 | proc_stop(p, 1); |
| 1373 | SCHED_UNLOCK(s)do { __mp_unlock(&sched_lock); spllower(s); } while ( 0); |
| 1374 | break; |
| 1375 | } else if (prop & SA_IGNORE0x10) { |
| 1376 | /* |
| 1377 | * Except for SIGCONT, shouldn't get here. |
| 1378 | * Default action is to ignore; drop it. |
| 1379 | */ |
| 1380 | break; /* == ignore */ |
| 1381 | } else |
| 1382 | goto keep; |
| 1383 | /* NOTREACHED */ |
| 1384 | case (long)SIG_IGN(void (*)(int))1: |
| 1385 | /* |
| 1386 | * Masking above should prevent us ever trying |
| 1387 | * to take action on an ignored signal other |
| 1388 | * than SIGCONT, unless process is traced. |
| 1389 | */ |
| 1390 | if ((prop & SA_CONT0x20) == 0 && |
| 1391 | (pr->ps_flags & PS_TRACED0x00000200) == 0) |
| 1392 | printf("%s\n", __func__); |
| 1393 | break; /* == ignore */ |
| 1394 | default: |
| 1395 | /* |
| 1396 | * This signal has an action, let |
| 1397 | * postsig() process it. |
| 1398 | */ |
| 1399 | goto keep; |
| 1400 | } |
| 1401 | } |
| 1402 | /* NOTREACHED */ |
| 1403 | |
| 1404 | keep: |
| 1405 | atomic_setbits_intx86_atomic_setbits_u32(&p->p_siglist, mask); /*leave the signal for later */ |
| 1406 | return (signum); |
| 1407 | } |
| 1408 | |
| 1409 | /* |
| 1410 | * Put the argument process into the stopped state and notify the parent |
| 1411 | * via wakeup. Signals are handled elsewhere. The process must not be |
| 1412 | * on the run queue. |
| 1413 | */ |
| 1414 | void |
| 1415 | proc_stop(struct proc *p, int sw) |
| 1416 | { |
| 1417 | struct process *pr = p->p_p; |
| 1418 | |
| 1419 | #ifdef MULTIPROCESSOR1 |
| 1420 | SCHED_ASSERT_LOCKED()do { do { if (splassert_ctl > 0) { splassert_check(0xc, __func__ ); } } while (0); ((__mp_lock_held(&sched_lock, ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof (struct cpu_info, ci_self))); __ci;}))) ? (void)0 : __assert( "diagnostic ", "/usr/src/sys/kern/kern_sig.c", 1420, "__mp_lock_held(&sched_lock, curcpu())" )); } while (0); |
| 1421 | #endif |
| 1422 | |
| 1423 | p->p_stat = SSTOP4; |
| 1424 | atomic_clearbits_intx86_atomic_clearbits_u32(&pr->ps_flags, PS_WAITED0x00000400); |
| 1425 | atomic_setbits_intx86_atomic_setbits_u32(&pr->ps_flags, PS_STOPPED0x00008000); |
| 1426 | atomic_setbits_intx86_atomic_setbits_u32(&p->p_flag, P_SUSPSIG0x08000000); |
| 1427 | /* |
| 1428 | * We need this soft interrupt to be handled fast. |
| 1429 | * Extra calls to softclock don't hurt. |
| 1430 | */ |
| 1431 | softintr_schedule(proc_stop_si)do { struct x86_soft_intrhand *__sih = (proc_stop_si); struct x86_soft_intr *__si = __sih->sih_intrhead; mtx_enter(& __si->softintr_lock); if (__sih->sih_pending == 0) { do { (__sih)->sih_q.tqe_next = ((void *)0); (__sih)->sih_q .tqe_prev = (&__si->softintr_q)->tqh_last; *(&__si ->softintr_q)->tqh_last = (__sih); (&__si->softintr_q )->tqh_last = &(__sih)->sih_q.tqe_next; } while (0) ; __sih->sih_pending = 1; softintr(__si->softintr_ssir) ; } mtx_leave(&__si->softintr_lock); } while ( 0); |
| 1432 | if (sw) |
| 1433 | mi_switch(); |
| 1434 | } |
| 1435 | |
| 1436 | /* |
| 1437 | * Called from a soft interrupt to send signals to the parents of stopped |
| 1438 | * processes. |
| 1439 | * We can't do this in proc_stop because it's called with nasty locks held |
| 1440 | * and we would need recursive scheduler lock to deal with that. |
| 1441 | */ |
| 1442 | void |
| 1443 | proc_stop_sweep(void *v) |
| 1444 | { |
| 1445 | struct process *pr; |
| 1446 | |
| 1447 | LIST_FOREACH(pr, &allprocess, ps_list)for((pr) = ((&allprocess)->lh_first); (pr)!= ((void *) 0); (pr) = ((pr)->ps_list.le_next)) { |
| 1448 | if ((pr->ps_flags & PS_STOPPED0x00008000) == 0) |
| 1449 | continue; |
| 1450 | atomic_clearbits_intx86_atomic_clearbits_u32(&pr->ps_flags, PS_STOPPED0x00008000); |
| 1451 | |
| 1452 | if ((pr->ps_pptr->ps_sigacts->ps_sigflags & SAS_NOCLDSTOP0x01) == 0) |
| 1453 | prsignal(pr->ps_pptr, SIGCHLD)ptsignal((pr->ps_pptr)->ps_mainproc, (20), SPROCESS); |
| 1454 | wakeup(pr->ps_pptr); |
| 1455 | } |
| 1456 | } |
| 1457 | |
| 1458 | /* |
| 1459 | * Take the action for the specified signal |
| 1460 | * from the current set of pending signals. |
| 1461 | */ |
| 1462 | void |
| 1463 | postsig(struct proc *p, int signum, struct sigctx *sctx) |
| 1464 | { |
| 1465 | u_long trapno; |
| 1466 | int mask, returnmask; |
| 1467 | siginfo_t si; |
| 1468 | union sigval sigval; |
| 1469 | int code; |
| 1470 | |
| 1471 | KASSERT(signum != 0)((signum != 0) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/kern/kern_sig.c" , 1471, "signum != 0")); |
| 1472 | |
| 1473 | mask = sigmask(signum)(1U << ((signum)-1)); |
| 1474 | atomic_clearbits_intx86_atomic_clearbits_u32(&p->p_siglist, mask); |
| 1475 | sigval.sival_ptr = NULL((void *)0); |
| 1476 | |
| 1477 | if (p->p_sisig != signum) { |
| 1478 | trapno = 0; |
| 1479 | code = SI_USER0; |
| 1480 | sigval.sival_ptr = NULL((void *)0); |
| 1481 | } else { |
| 1482 | trapno = p->p_sitrapno; |
| 1483 | code = p->p_sicode; |
| 1484 | sigval = p->p_sigval; |
| 1485 | } |
| 1486 | initsiginfo(&si, signum, trapno, code, sigval); |
| 1487 | |
| 1488 | #ifdef KTRACE1 |
| 1489 | if (KTRPOINT(p, KTR_PSIG)((p)->p_p->ps_traceflag & (1<<(5)) && ((p)->p_flag & 0x00000001) == 0)) { |
| 1490 | ktrpsig(p, signum, sctx->sig_action, p->p_flag & P_SIGSUSPEND0x00000008 ? |
| 1491 | p->p_oldmask : p->p_sigmask, code, &si); |
| 1492 | } |
| 1493 | #endif |
| 1494 | if (sctx->sig_action == SIG_DFL(void (*)(int))0) { |
| 1495 | /* |
| 1496 | * Default action, where the default is to kill |
| 1497 | * the process. (Other cases were ignored above.) |
| 1498 | */ |
| 1499 | KERNEL_LOCK()_kernel_lock(); |
| 1500 | sigexit(p, signum); |
| 1501 | /* NOTREACHED */ |
| 1502 | } else { |
| 1503 | /* |
| 1504 | * If we get here, the signal must be caught. |
| 1505 | */ |
| 1506 | #ifdef DIAGNOSTIC1 |
| 1507 | if (sctx->sig_action == SIG_IGN(void (*)(int))1 || (p->p_sigmask & mask)) |
| 1508 | panic("postsig action"); |
| 1509 | #endif |
| 1510 | /* |
| 1511 | * Set the new mask value and also defer further |
| 1512 | * occurrences of this signal. |
| 1513 | * |
| 1514 | * Special case: user has done a sigpause. Here the |
| 1515 | * current mask is not of interest, but rather the |
| 1516 | * mask from before the sigpause is what we want |
| 1517 | * restored after the signal processing is completed. |
| 1518 | */ |
| 1519 | if (p->p_flag & P_SIGSUSPEND0x00000008) { |
| 1520 | atomic_clearbits_intx86_atomic_clearbits_u32(&p->p_flag, P_SIGSUSPEND0x00000008); |
| 1521 | returnmask = p->p_oldmask; |
| 1522 | } else { |
| 1523 | returnmask = p->p_sigmask; |
| 1524 | } |
| 1525 | if (p->p_sisig == signum) { |
| 1526 | p->p_sisig = 0; |
| 1527 | p->p_sitrapno = 0; |
| 1528 | p->p_sicode = SI_USER0; |
| 1529 | p->p_sigval.sival_ptr = NULL((void *)0); |
| 1530 | } |
| 1531 | |
| 1532 | if (sendsig(sctx->sig_action, signum, returnmask, &si, |
| 1533 | sctx->sig_info, sctx->sig_onstack)) { |
| 1534 | KERNEL_LOCK()_kernel_lock(); |
| 1535 | sigexit(p, SIGILL4); |
| 1536 | /* NOTREACHED */ |
| 1537 | } |
| 1538 | postsig_done(p, signum, sctx->sig_catchmask, sctx->sig_reset); |
| 1539 | } |
| 1540 | } |
| 1541 | |
| 1542 | /* |
| 1543 | * Force the current process to exit with the specified signal, dumping core |
| 1544 | * if appropriate. We bypass the normal tests for masked and caught signals, |
| 1545 | * allowing unrecoverable failures to terminate the process without changing |
| 1546 | * signal state. Mark the accounting record with the signal termination. |
| 1547 | * If dumping core, save the signal number for the debugger. Calls exit and |
| 1548 | * does not return. |
| 1549 | */ |
| 1550 | void |
| 1551 | sigexit(struct proc *p, int signum) |
| 1552 | { |
| 1553 | /* Mark process as going away */ |
| 1554 | atomic_setbits_intx86_atomic_setbits_u32(&p->p_flag, P_WEXIT0x00002000); |
| 1555 | |
| 1556 | p->p_p->ps_acflag |= AXSIG0x00000010; |
| 1557 | if (sigprop[signum] & SA_CORE0x02) { |
| 1558 | p->p_sisig = signum; |
| 1559 | |
| 1560 | /* if there are other threads, pause them */ |
| 1561 | if (P_HASSIBLING(p)((p)->p_p->ps_threadcnt > 1)) |
| 1562 | single_thread_set(p, SINGLE_UNWIND0x02); |
| 1563 | |
| 1564 | if (coredump(p) == 0) |
| 1565 | signum |= WCOREFLAG0200; |
| 1566 | } |
| 1567 | exit1(p, 0, signum, EXIT_NORMAL0x00000001); |
| 1568 | /* NOTREACHED */ |
| 1569 | } |
| 1570 | |
| 1571 | /* |
| 1572 | * Send uncatchable SIGABRT for coredump. |
| 1573 | */ |
| 1574 | void |
| 1575 | sigabort(struct proc *p) |
| 1576 | { |
| 1577 | struct sigaction sa; |
| 1578 | |
| 1579 | memset(&sa, 0, sizeof sa)__builtin_memset((&sa), (0), (sizeof sa)); |
| 1580 | sa.sa_handler__sigaction_u.__sa_handler = SIG_DFL(void (*)(int))0; |
| 1581 | setsigvec(p, SIGABRT6, &sa); |
| 1582 | atomic_clearbits_intx86_atomic_clearbits_u32(&p->p_sigmask, sigmask(SIGABRT)(1U << ((6)-1))); |
| 1583 | psignal(p, SIGABRT6); |
| 1584 | } |
| 1585 | |
| 1586 | /* |
| 1587 | * Return 1 if `sig', a given signal, is ignored or masked for `p', a given |
| 1588 | * thread, and 0 otherwise. |
| 1589 | */ |
| 1590 | int |
| 1591 | sigismasked(struct proc *p, int sig) |
| 1592 | { |
| 1593 | struct process *pr = p->p_p; |
| 1594 | int rv; |
| 1595 | |
| 1596 | mtx_enter(&pr->ps_mtx); |
| 1597 | rv = (pr->ps_sigacts->ps_sigignore & sigmask(sig)(1U << ((sig)-1))) || |
| 1598 | (p->p_sigmask & sigmask(sig)(1U << ((sig)-1))); |
| 1599 | mtx_leave(&pr->ps_mtx); |
| 1600 | |
| 1601 | return !!rv; |
| 1602 | } |
| 1603 | |
| 1604 | struct coredump_iostate { |
| 1605 | struct proc *io_proc; |
| 1606 | struct vnode *io_vp; |
| 1607 | struct ucred *io_cred; |
| 1608 | off_t io_offset; |
| 1609 | }; |
| 1610 | |
| 1611 | /* |
| 1612 | * Dump core, into a file named "progname.core", unless the process was |
| 1613 | * setuid/setgid. |
| 1614 | */ |
| 1615 | int |
| 1616 | coredump(struct proc *p) |
| 1617 | { |
| 1618 | #ifdef SMALL_KERNEL |
| 1619 | return EPERM1; |
| 1620 | #else |
| 1621 | struct process *pr = p->p_p; |
| 1622 | struct vnode *vp; |
| 1623 | struct ucred *cred = p->p_ucred; |
| 1624 | struct vmspace *vm = p->p_vmspace; |
| 1625 | struct nameidata nd; |
| 1626 | struct vattr vattr; |
| 1627 | struct coredump_iostate io; |
| 1628 | int error, len, incrash = 0; |
| 1629 | char *name; |
| 1630 | const char *dir = "/var/crash"; |
| 1631 | |
| 1632 | atomic_setbits_intx86_atomic_setbits_u32(&pr->ps_flags, PS_COREDUMP0x00000800); |
| 1633 | |
| 1634 | #ifdef PMAP_CHECK_COPYIN(pg_xo == 0) |
| 1635 | /* disable copyin checks, so we can write out text sections if needed */ |
| 1636 | p->p_vmspace->vm_map.check_copyin_count = 0; |
| 1637 | #endif |
| 1638 | |
| 1639 | /* Don't dump if will exceed file size limit. */ |
| 1640 | if (USPACE(6 * (1 << 12)) + ptoa(vm->vm_dsize + vm->vm_ssize)((paddr_t)(vm->vm_dsize + vm->vm_ssize) << 12) >= lim_cur(RLIMIT_CORE4)) |
| 1641 | return (EFBIG27); |
| 1642 | |
| 1643 | name = pool_get(&namei_pool, PR_WAITOK0x0001); |
| 1644 | |
| 1645 | /* |
| 1646 | * If the process has inconsistent uids, nosuidcoredump |
| 1647 | * determines coredump placement policy. |
| 1648 | */ |
| 1649 | if (((pr->ps_flags & PS_SUGID0x00000010) && (error = suser(p))) || |
Although the value stored to 'error' is used in the enclosing expression, the value is never actually read from 'error' | |
| 1650 | ((pr->ps_flags & PS_SUGID0x00000010) && nosuidcoredump)) { |
| 1651 | if (nosuidcoredump == 3) { |
| 1652 | /* |
| 1653 | * If the program directory does not exist, dumps of |
| 1654 | * that core will silently fail. |
| 1655 | */ |
| 1656 | len = snprintf(name, MAXPATHLEN1024, "%s/%s/%u.core", |
| 1657 | dir, pr->ps_comm, pr->ps_pid); |
| 1658 | incrash = KERNELPATH0x800000; |
| 1659 | } else if (nosuidcoredump == 2) { |
| 1660 | len = snprintf(name, MAXPATHLEN1024, "%s/%s.core", |
| 1661 | dir, pr->ps_comm); |
| 1662 | incrash = KERNELPATH0x800000; |
| 1663 | } else { |
| 1664 | pool_put(&namei_pool, name); |
| 1665 | return (EPERM1); |
| 1666 | } |
| 1667 | } else |
| 1668 | len = snprintf(name, MAXPATHLEN1024, "%s.core", pr->ps_comm); |
| 1669 | |
| 1670 | if (len >= MAXPATHLEN1024) { |
| 1671 | pool_put(&namei_pool, name); |
| 1672 | return (EACCES13); |
| 1673 | } |
| 1674 | |
| 1675 | /* |
| 1676 | * Control the UID used to write out. The normal case uses |
| 1677 | * the real UID. If the sugid case is going to write into the |
| 1678 | * controlled directory, we do so as root. |
| 1679 | */ |
| 1680 | if (incrash == 0) { |
| 1681 | cred = crdup(cred); |
| 1682 | cred->cr_uid = cred->cr_ruid; |
| 1683 | cred->cr_gid = cred->cr_rgid; |
| 1684 | } else { |
| 1685 | if (p->p_fd->fd_rdir) { |
| 1686 | vrele(p->p_fd->fd_rdir); |
| 1687 | p->p_fd->fd_rdir = NULL((void *)0); |
| 1688 | } |
| 1689 | p->p_ucred = crdup(p->p_ucred); |
| 1690 | crfree(cred); |
| 1691 | cred = p->p_ucred; |
| 1692 | crhold(cred); |
| 1693 | cred->cr_uid = 0; |
| 1694 | cred->cr_gid = 0; |
| 1695 | } |
| 1696 | |
| 1697 | /* incrash should be 0 or KERNELPATH only */ |
| 1698 | NDINIT(&nd, 0, BYPASSUNVEIL | incrash, UIO_SYSSPACE, name, p)ndinitat(&nd, 0, 0x400000 | incrash, UIO_SYSSPACE, -100, name , p); |
| 1699 | |
| 1700 | error = vn_open(&nd, O_CREAT0x0200 | FWRITE0x0002 | O_NOFOLLOW0x0100 | O_NONBLOCK0x0004, |
| 1701 | S_IRUSR0000400 | S_IWUSR0000200); |
| 1702 | |
| 1703 | if (error) |
| 1704 | goto out; |
| 1705 | |
| 1706 | /* |
| 1707 | * Don't dump to non-regular files, files with links, or files |
| 1708 | * owned by someone else. |
| 1709 | */ |
| 1710 | vp = nd.ni_vp; |
| 1711 | if ((error = VOP_GETATTR(vp, &vattr, cred, p)) != 0) { |
| 1712 | VOP_UNLOCK(vp); |
| 1713 | vn_close(vp, FWRITE0x0002, cred, p); |
| 1714 | goto out; |
| 1715 | } |
| 1716 | if (vp->v_type != VREG || vattr.va_nlink != 1 || |
| 1717 | vattr.va_mode & ((VREAD00400 | VWRITE00200) >> 3 | (VREAD00400 | VWRITE00200) >> 6) || |
| 1718 | vattr.va_uid != cred->cr_uid) { |
| 1719 | error = EACCES13; |
| 1720 | VOP_UNLOCK(vp); |
| 1721 | vn_close(vp, FWRITE0x0002, cred, p); |
| 1722 | goto out; |
| 1723 | } |
| 1724 | VATTR_NULL(&vattr)vattr_null(&vattr); |
| 1725 | vattr.va_size = 0; |
| 1726 | VOP_SETATTR(vp, &vattr, cred, p); |
| 1727 | pr->ps_acflag |= ACORE0x00000008; |
| 1728 | |
| 1729 | io.io_proc = p; |
| 1730 | io.io_vp = vp; |
| 1731 | io.io_cred = cred; |
| 1732 | io.io_offset = 0; |
| 1733 | VOP_UNLOCK(vp); |
| 1734 | vref(vp); |
| 1735 | error = vn_close(vp, FWRITE0x0002, cred, p); |
| 1736 | if (error == 0) |
| 1737 | error = coredump_elf(p, &io); |
| 1738 | vrele(vp); |
| 1739 | out: |
| 1740 | crfree(cred); |
| 1741 | pool_put(&namei_pool, name); |
| 1742 | return (error); |
| 1743 | #endif |
| 1744 | } |
| 1745 | |
| 1746 | #ifndef SMALL_KERNEL |
| 1747 | int |
| 1748 | coredump_write(void *cookie, enum uio_seg segflg, const void *data, size_t len) |
| 1749 | { |
| 1750 | struct coredump_iostate *io = cookie; |
| 1751 | off_t coffset = 0; |
| 1752 | size_t csize; |
| 1753 | int chunk, error; |
| 1754 | |
| 1755 | csize = len; |
| 1756 | do { |
| 1757 | if (sigmask(SIGKILL)(1U << ((9)-1)) & |
| 1758 | (io->io_proc->p_siglist | io->io_proc->p_p->ps_siglist)) |
| 1759 | return (EINTR4); |
| 1760 | |
| 1761 | /* Rest of the loop sleeps with lock held, so... */ |
| 1762 | yield(); |
| 1763 | |
| 1764 | chunk = MIN(csize, MAXPHYS)(((csize)<((64 * 1024)))?(csize):((64 * 1024))); |
| 1765 | error = vn_rdwr(UIO_WRITE, io->io_vp, |
| 1766 | (caddr_t)data + coffset, chunk, |
| 1767 | io->io_offset + coffset, segflg, |
| 1768 | IO_UNIT0x01, io->io_cred, NULL((void *)0), io->io_proc); |
| 1769 | if (error) { |
| 1770 | struct process *pr = io->io_proc->p_p; |
| 1771 | |
| 1772 | if (error == ENOSPC28) |
| 1773 | log(LOG_ERR3, |
| 1774 | "coredump of %s(%d) failed, filesystem full\n", |
| 1775 | pr->ps_comm, pr->ps_pid); |
| 1776 | else |
| 1777 | log(LOG_ERR3, |
| 1778 | "coredump of %s(%d), write failed: errno %d\n", |
| 1779 | pr->ps_comm, pr->ps_pid, error); |
| 1780 | return (error); |
| 1781 | } |
| 1782 | |
| 1783 | coffset += chunk; |
| 1784 | csize -= chunk; |
| 1785 | } while (csize > 0); |
| 1786 | |
| 1787 | io->io_offset += len; |
| 1788 | return (0); |
| 1789 | } |
| 1790 | |
| 1791 | void |
| 1792 | coredump_unmap(void *cookie, vaddr_t start, vaddr_t end) |
| 1793 | { |
| 1794 | struct coredump_iostate *io = cookie; |
| 1795 | |
| 1796 | uvm_unmap(&io->io_proc->p_vmspace->vm_map, start, end); |
| 1797 | } |
| 1798 | |
| 1799 | #endif /* !SMALL_KERNEL */ |
| 1800 | |
| 1801 | /* |
| 1802 | * Nonexistent system call-- signal process (may want to handle it). |
| 1803 | * Flag error in case process won't see signal immediately (blocked or ignored). |
| 1804 | */ |
| 1805 | int |
| 1806 | sys_nosys(struct proc *p, void *v, register_t *retval) |
| 1807 | { |
| 1808 | ptsignal(p, SIGSYS12, STHREAD); |
| 1809 | return (ENOSYS78); |
| 1810 | } |
| 1811 | |
| 1812 | int |
| 1813 | sys___thrsigdivert(struct proc *p, void *v, register_t *retval) |
| 1814 | { |
| 1815 | struct sys___thrsigdivert_args /* { |
| 1816 | syscallarg(sigset_t) sigmask; |
| 1817 | syscallarg(siginfo_t *) info; |
| 1818 | syscallarg(const struct timespec *) timeout; |
| 1819 | } */ *uap = v; |
| 1820 | struct sigctx ctx; |
| 1821 | sigset_t mask = SCARG(uap, sigmask)((uap)->sigmask.le.datum) &~ sigcantmask((1U << ((9)-1)) | (1U << ((17)-1))); |
| 1822 | siginfo_t si; |
| 1823 | uint64_t nsecs = INFSLP0xffffffffffffffffULL; |
| 1824 | int timeinvalid = 0; |
| 1825 | int error = 0; |
| 1826 | |
| 1827 | memset(&si, 0, sizeof(si))__builtin_memset((&si), (0), (sizeof(si))); |
| 1828 | |
| 1829 | if (SCARG(uap, timeout)((uap)->timeout.le.datum) != NULL((void *)0)) { |
| 1830 | struct timespec ts; |
| 1831 | if ((error = copyin(SCARG(uap, timeout)((uap)->timeout.le.datum), &ts, sizeof(ts))) != 0) |
| 1832 | return (error); |
| 1833 | #ifdef KTRACE1 |
| 1834 | if (KTRPOINT(p, KTR_STRUCT)((p)->p_p->ps_traceflag & (1<<(8)) && ((p)->p_flag & 0x00000001) == 0)) |
| 1835 | ktrreltimespec(p, &ts)ktrstruct((p), "reltimespec", (&ts), sizeof(struct timespec )); |
| 1836 | #endif |
| 1837 | if (!timespecisvalid(&ts)((&ts)->tv_nsec >= 0 && (&ts)->tv_nsec < 1000000000L)) |
| 1838 | timeinvalid = 1; |
| 1839 | else |
| 1840 | nsecs = TIMESPEC_TO_NSEC(&ts); |
| 1841 | } |
| 1842 | |
| 1843 | dosigsuspend(p, p->p_sigmask &~ mask); |
| 1844 | for (;;) { |
| 1845 | si.si_signo = cursig(p, &ctx); |
| 1846 | if (si.si_signo != 0) { |
| 1847 | sigset_t smask = sigmask(si.si_signo)(1U << ((si.si_signo)-1)); |
| 1848 | if (smask & mask) { |
| 1849 | atomic_clearbits_intx86_atomic_clearbits_u32(&p->p_siglist, smask); |
| 1850 | error = 0; |
| 1851 | break; |
| 1852 | } |
| 1853 | } |
| 1854 | |
| 1855 | /* per-POSIX, delay this error until after the above */ |
| 1856 | if (timeinvalid) |
| 1857 | error = EINVAL22; |
| 1858 | /* per-POSIX, return immediately if timeout is zero-valued */ |
| 1859 | if (nsecs == 0) |
| 1860 | error = EAGAIN35; |
| 1861 | |
| 1862 | if (error != 0) |
| 1863 | break; |
| 1864 | |
| 1865 | error = tsleep_nsec(&nowake, PPAUSE40|PCATCH0x100, "sigwait", nsecs); |
| 1866 | } |
| 1867 | |
| 1868 | if (error == 0) { |
| 1869 | *retval = si.si_signo; |
| 1870 | if (SCARG(uap, info)((uap)->info.le.datum) != NULL((void *)0)) { |
| 1871 | error = copyout(&si, SCARG(uap, info)((uap)->info.le.datum), sizeof(si)); |
| 1872 | #ifdef KTRACE1 |
| 1873 | if (error == 0 && KTRPOINT(p, KTR_STRUCT)((p)->p_p->ps_traceflag & (1<<(8)) && ((p)->p_flag & 0x00000001) == 0)) |
| 1874 | ktrsiginfo(p, &si)ktrstruct(p, "siginfo", (&si), sizeof(siginfo_t)); |
| 1875 | #endif |
| 1876 | } |
| 1877 | } else if (error == ERESTART-1 && SCARG(uap, timeout)((uap)->timeout.le.datum) != NULL((void *)0)) { |
| 1878 | /* |
| 1879 | * Restarting is wrong if there's a timeout, as it'll be |
| 1880 | * for the same interval again |
| 1881 | */ |
| 1882 | error = EINTR4; |
| 1883 | } |
| 1884 | |
| 1885 | return (error); |
| 1886 | } |
| 1887 | |
| 1888 | void |
| 1889 | initsiginfo(siginfo_t *si, int sig, u_long trapno, int code, union sigval val) |
| 1890 | { |
| 1891 | memset(si, 0, sizeof(*si))__builtin_memset((si), (0), (sizeof(*si))); |
| 1892 | |
| 1893 | si->si_signo = sig; |
| 1894 | si->si_code = code; |
| 1895 | if (code == SI_USER0) { |
| 1896 | si->si_value_data._proc._pdata._kill._value = val; |
| 1897 | } else { |
| 1898 | switch (sig) { |
| 1899 | case SIGSEGV11: |
| 1900 | case SIGILL4: |
| 1901 | case SIGBUS10: |
| 1902 | case SIGFPE8: |
| 1903 | si->si_addr_data._fault._addr = val.sival_ptr; |
| 1904 | si->si_trapno_data._fault._trapno = trapno; |
| 1905 | break; |
| 1906 | case SIGXFSZ25: |
| 1907 | break; |
| 1908 | } |
| 1909 | } |
| 1910 | } |
| 1911 | |
| 1912 | int |
| 1913 | filt_sigattach(struct knote *kn) |
| 1914 | { |
| 1915 | struct process *pr = curproc({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_curproc->p_p; |
| 1916 | int s; |
| 1917 | |
| 1918 | if (kn->kn_idkn_kevent.ident >= NSIG33) |
| 1919 | return EINVAL22; |
| 1920 | |
| 1921 | kn->kn_ptr.p_process = pr; |
| 1922 | kn->kn_flagskn_kevent.flags |= EV_CLEAR0x0020; /* automatically set */ |
| 1923 | |
| 1924 | s = splhigh()splraise(0xd); |
| 1925 | klist_insert_locked(&pr->ps_klist, kn); |
| 1926 | splx(s)spllower(s); |
| 1927 | |
| 1928 | return (0); |
| 1929 | } |
| 1930 | |
| 1931 | void |
| 1932 | filt_sigdetach(struct knote *kn) |
| 1933 | { |
| 1934 | struct process *pr = kn->kn_ptr.p_process; |
| 1935 | int s; |
| 1936 | |
| 1937 | s = splhigh()splraise(0xd); |
| 1938 | klist_remove_locked(&pr->ps_klist, kn); |
| 1939 | splx(s)spllower(s); |
| 1940 | } |
| 1941 | |
| 1942 | /* |
| 1943 | * signal knotes are shared with proc knotes, so we apply a mask to |
| 1944 | * the hint in order to differentiate them from process hints. This |
| 1945 | * could be avoided by using a signal-specific knote list, but probably |
| 1946 | * isn't worth the trouble. |
| 1947 | */ |
| 1948 | int |
| 1949 | filt_signal(struct knote *kn, long hint) |
| 1950 | { |
| 1951 | |
| 1952 | if (hint & NOTE_SIGNAL0x08000000) { |
| 1953 | hint &= ~NOTE_SIGNAL0x08000000; |
| 1954 | |
| 1955 | if (kn->kn_idkn_kevent.ident == hint) |
| 1956 | kn->kn_datakn_kevent.data++; |
| 1957 | } |
| 1958 | return (kn->kn_datakn_kevent.data != 0); |
| 1959 | } |
| 1960 | |
| 1961 | void |
| 1962 | userret(struct proc *p) |
| 1963 | { |
| 1964 | struct sigctx ctx; |
| 1965 | int signum; |
| 1966 | |
| 1967 | if (p->p_flag & P_SUSPSINGLE0x00080000) |
| 1968 | single_thread_check(p, 0); |
| 1969 | |
| 1970 | /* send SIGPROF or SIGVTALRM if their timers interrupted this thread */ |
| 1971 | if (p->p_flag & P_PROFPEND0x00000002) { |
| 1972 | atomic_clearbits_intx86_atomic_clearbits_u32(&p->p_flag, P_PROFPEND0x00000002); |
| 1973 | KERNEL_LOCK()_kernel_lock(); |
| 1974 | psignal(p, SIGPROF27); |
| 1975 | KERNEL_UNLOCK()_kernel_unlock(); |
| 1976 | } |
| 1977 | if (p->p_flag & P_ALRMPEND0x00000004) { |
| 1978 | atomic_clearbits_intx86_atomic_clearbits_u32(&p->p_flag, P_ALRMPEND0x00000004); |
| 1979 | KERNEL_LOCK()_kernel_lock(); |
| 1980 | psignal(p, SIGVTALRM26); |
| 1981 | KERNEL_UNLOCK()_kernel_unlock(); |
| 1982 | } |
| 1983 | |
| 1984 | if (SIGPENDING(p)(((p)->p_siglist | (p)->p_p->ps_siglist) & ~(p)-> p_sigmask) != 0) { |
| 1985 | while ((signum = cursig(p, &ctx)) != 0) |
| 1986 | postsig(p, signum, &ctx); |
| 1987 | } |
| 1988 | |
| 1989 | /* |
| 1990 | * If P_SIGSUSPEND is still set here, then we still need to restore |
| 1991 | * the original sigmask before returning to userspace. Also, this |
| 1992 | * might unmask some pending signals, so we need to check a second |
| 1993 | * time for signals to post. |
| 1994 | */ |
| 1995 | if (p->p_flag & P_SIGSUSPEND0x00000008) { |
| 1996 | atomic_clearbits_intx86_atomic_clearbits_u32(&p->p_flag, P_SIGSUSPEND0x00000008); |
| 1997 | p->p_sigmask = p->p_oldmask; |
| 1998 | |
| 1999 | while ((signum = cursig(p, &ctx)) != 0) |
| 2000 | postsig(p, signum, &ctx); |
| 2001 | } |
| 2002 | |
| 2003 | WITNESS_WARN(WARN_PANIC, NULL, "userret: returning")(void)0; |
| 2004 | |
| 2005 | p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri; |
| 2006 | } |
| 2007 | |
| 2008 | int |
| 2009 | single_thread_check_locked(struct proc *p, int deep, int s) |
| 2010 | { |
| 2011 | struct process *pr = p->p_p; |
| 2012 | |
| 2013 | SCHED_ASSERT_LOCKED()do { do { if (splassert_ctl > 0) { splassert_check(0xc, __func__ ); } } while (0); ((__mp_lock_held(&sched_lock, ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof (struct cpu_info, ci_self))); __ci;}))) ? (void)0 : __assert( "diagnostic ", "/usr/src/sys/kern/kern_sig.c", 2013, "__mp_lock_held(&sched_lock, curcpu())" )); } while (0); |
| 2014 | |
| 2015 | if (pr->ps_single == NULL((void *)0) || pr->ps_single == p) |
| 2016 | return (0); |
| 2017 | |
| 2018 | do { |
| 2019 | /* if we're in deep, we need to unwind to the edge */ |
| 2020 | if (deep) { |
| 2021 | if (pr->ps_flags & PS_SINGLEUNWIND0x00002000) |
| 2022 | return (ERESTART-1); |
| 2023 | if (pr->ps_flags & PS_SINGLEEXIT0x00001000) |
| 2024 | return (EINTR4); |
| 2025 | } |
| 2026 | |
| 2027 | if (atomic_dec_int_nv(&pr->ps_singlecount)_atomic_sub_int_nv((&pr->ps_singlecount), 1) == 0) |
| 2028 | wakeup(&pr->ps_singlecount); |
| 2029 | |
| 2030 | if (pr->ps_flags & PS_SINGLEEXIT0x00001000) { |
| 2031 | SCHED_UNLOCK(s)do { __mp_unlock(&sched_lock); spllower(s); } while ( 0); |
| 2032 | KERNEL_LOCK()_kernel_lock(); |
| 2033 | exit1(p, 0, 0, EXIT_THREAD_NOCHECK0x00000003); |
| 2034 | /* NOTREACHED */ |
| 2035 | } |
| 2036 | |
| 2037 | /* not exiting and don't need to unwind, so suspend */ |
| 2038 | p->p_stat = SSTOP4; |
| 2039 | mi_switch(); |
| 2040 | } while (pr->ps_single != NULL((void *)0)); |
| 2041 | |
| 2042 | return (0); |
| 2043 | } |
| 2044 | |
| 2045 | int |
| 2046 | single_thread_check(struct proc *p, int deep) |
| 2047 | { |
| 2048 | int s, error; |
| 2049 | |
| 2050 | SCHED_LOCK(s)do { s = splraise(0xc); __mp_lock(&sched_lock); } while ( 0); |
| 2051 | error = single_thread_check_locked(p, deep, s); |
| 2052 | SCHED_UNLOCK(s)do { __mp_unlock(&sched_lock); spllower(s); } while ( 0); |
| 2053 | |
| 2054 | return error; |
| 2055 | } |
| 2056 | |
| 2057 | /* |
| 2058 | * Stop other threads in the process. The mode controls how and |
| 2059 | * where the other threads should stop: |
| 2060 | * - SINGLE_SUSPEND: stop wherever they are, will later be released (via |
| 2061 | * single_thread_clear()) |
| 2062 | * - SINGLE_UNWIND: just unwind to kernel boundary, will be told to exit |
| 2063 | * (by setting to SINGLE_EXIT) or released as with SINGLE_SUSPEND |
| 2064 | * - SINGLE_EXIT: unwind to kernel boundary and exit |
| 2065 | */ |
| 2066 | int |
| 2067 | single_thread_set(struct proc *p, int flags) |
| 2068 | { |
| 2069 | struct process *pr = p->p_p; |
| 2070 | struct proc *q; |
| 2071 | int error, s, mode = flags & SINGLE_MASK0x0f; |
| 2072 | |
| 2073 | KASSERT(curproc == p)((({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_curproc == p) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/kern/kern_sig.c", 2073, "curproc == p")); |
| 2074 | |
| 2075 | SCHED_LOCK(s)do { s = splraise(0xc); __mp_lock(&sched_lock); } while ( 0); |
| 2076 | error = single_thread_check_locked(p, flags & SINGLE_DEEP0x10, s); |
| 2077 | if (error) { |
| 2078 | SCHED_UNLOCK(s)do { __mp_unlock(&sched_lock); spllower(s); } while ( 0); |
| 2079 | return error; |
| 2080 | } |
| 2081 | |
| 2082 | switch (mode) { |
| 2083 | case SINGLE_SUSPEND0x01: |
| 2084 | break; |
| 2085 | case SINGLE_UNWIND0x02: |
| 2086 | atomic_setbits_intx86_atomic_setbits_u32(&pr->ps_flags, PS_SINGLEUNWIND0x00002000); |
| 2087 | break; |
| 2088 | case SINGLE_EXIT0x03: |
| 2089 | atomic_setbits_intx86_atomic_setbits_u32(&pr->ps_flags, PS_SINGLEEXIT0x00001000); |
| 2090 | atomic_clearbits_intx86_atomic_clearbits_u32(&pr->ps_flags, PS_SINGLEUNWIND0x00002000); |
| 2091 | break; |
| 2092 | #ifdef DIAGNOSTIC1 |
| 2093 | default: |
| 2094 | panic("single_thread_mode = %d", mode); |
| 2095 | #endif |
| 2096 | } |
| 2097 | pr->ps_singlecount = 0; |
| 2098 | membar_producer()do { __asm volatile("" ::: "memory"); } while (0); |
| 2099 | pr->ps_single = p; |
| 2100 | TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link)for((q) = ((&pr->ps_threads)->tqh_first); (q) != (( void *)0); (q) = ((q)->p_thr_link.tqe_next)) { |
| 2101 | if (q == p) |
| 2102 | continue; |
| 2103 | if (q->p_flag & P_WEXIT0x00002000) { |
| 2104 | if (mode == SINGLE_EXIT0x03) { |
| 2105 | if (q->p_stat == SSTOP4) { |
| 2106 | setrunnable(q); |
| 2107 | atomic_inc_int(&pr->ps_singlecount)_atomic_inc_int(&pr->ps_singlecount); |
| 2108 | } |
| 2109 | } |
| 2110 | continue; |
| 2111 | } |
| 2112 | atomic_setbits_intx86_atomic_setbits_u32(&q->p_flag, P_SUSPSINGLE0x00080000); |
| 2113 | switch (q->p_stat) { |
| 2114 | case SIDL1: |
| 2115 | case SRUN2: |
| 2116 | atomic_inc_int(&pr->ps_singlecount)_atomic_inc_int(&pr->ps_singlecount); |
| 2117 | break; |
| 2118 | case SSLEEP3: |
| 2119 | /* if it's not interruptible, then just have to wait */ |
| 2120 | if (q->p_flag & P_SINTR0x00000080) { |
| 2121 | /* merely need to suspend? just stop it */ |
| 2122 | if (mode == SINGLE_SUSPEND0x01) { |
| 2123 | q->p_stat = SSTOP4; |
| 2124 | break; |
| 2125 | } |
| 2126 | /* need to unwind or exit, so wake it */ |
| 2127 | setrunnable(q); |
| 2128 | } |
| 2129 | atomic_inc_int(&pr->ps_singlecount)_atomic_inc_int(&pr->ps_singlecount); |
| 2130 | break; |
| 2131 | case SSTOP4: |
| 2132 | if (mode == SINGLE_EXIT0x03) { |
| 2133 | setrunnable(q); |
| 2134 | atomic_inc_int(&pr->ps_singlecount)_atomic_inc_int(&pr->ps_singlecount); |
| 2135 | } |
| 2136 | break; |
| 2137 | case SDEAD6: |
| 2138 | break; |
| 2139 | case SONPROC7: |
| 2140 | atomic_inc_int(&pr->ps_singlecount)_atomic_inc_int(&pr->ps_singlecount); |
| 2141 | signotify(q); |
| 2142 | break; |
| 2143 | } |
| 2144 | } |
| 2145 | SCHED_UNLOCK(s)do { __mp_unlock(&sched_lock); spllower(s); } while ( 0); |
| 2146 | |
| 2147 | if ((flags & SINGLE_NOWAIT0x20) == 0) |
| 2148 | single_thread_wait(pr, 1); |
| 2149 | |
| 2150 | return 0; |
| 2151 | } |
| 2152 | |
| 2153 | /* |
| 2154 | * Wait for other threads to stop. If recheck is false then the function |
| 2155 | * returns non-zero if the caller needs to restart the check else 0 is |
| 2156 | * returned. If recheck is true the return value is always 0. |
| 2157 | */ |
| 2158 | int |
| 2159 | single_thread_wait(struct process *pr, int recheck) |
| 2160 | { |
| 2161 | int wait; |
| 2162 | |
| 2163 | /* wait until they're all suspended */ |
| 2164 | wait = pr->ps_singlecount > 0; |
| 2165 | while (wait) { |
| 2166 | sleep_setup(&pr->ps_singlecount, PWAIT32, "suspend"); |
| 2167 | wait = pr->ps_singlecount > 0; |
| 2168 | sleep_finish(0, wait); |
| 2169 | if (!recheck) |
| 2170 | break; |
| 2171 | } |
| 2172 | |
| 2173 | return wait; |
| 2174 | } |
| 2175 | |
| 2176 | void |
| 2177 | single_thread_clear(struct proc *p, int flag) |
| 2178 | { |
| 2179 | struct process *pr = p->p_p; |
| 2180 | struct proc *q; |
| 2181 | int s; |
| 2182 | |
| 2183 | KASSERT(pr->ps_single == p)((pr->ps_single == p) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/kern/kern_sig.c" , 2183, "pr->ps_single == p")); |
| 2184 | KASSERT(curproc == p)((({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_curproc == p) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/kern/kern_sig.c", 2184, "curproc == p")); |
| 2185 | |
| 2186 | SCHED_LOCK(s)do { s = splraise(0xc); __mp_lock(&sched_lock); } while ( 0); |
| 2187 | pr->ps_single = NULL((void *)0); |
| 2188 | atomic_clearbits_intx86_atomic_clearbits_u32(&pr->ps_flags, PS_SINGLEUNWIND0x00002000 | PS_SINGLEEXIT0x00001000); |
| 2189 | TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link)for((q) = ((&pr->ps_threads)->tqh_first); (q) != (( void *)0); (q) = ((q)->p_thr_link.tqe_next)) { |
| 2190 | if (q == p || (q->p_flag & P_SUSPSINGLE0x00080000) == 0) |
| 2191 | continue; |
| 2192 | atomic_clearbits_intx86_atomic_clearbits_u32(&q->p_flag, P_SUSPSINGLE0x00080000); |
| 2193 | |
| 2194 | /* |
| 2195 | * if the thread was only stopped for single threading |
| 2196 | * then clearing that either makes it runnable or puts |
| 2197 | * it back into some sleep queue |
| 2198 | */ |
| 2199 | if (q->p_stat == SSTOP4 && (q->p_flag & flag) == 0) { |
| 2200 | if (q->p_wchan == NULL((void *)0)) |
| 2201 | setrunnable(q); |
| 2202 | else { |
| 2203 | atomic_clearbits_intx86_atomic_clearbits_u32(&q->p_flag, P_WSLEEP0x00000020); |
| 2204 | q->p_stat = SSLEEP3; |
| 2205 | } |
| 2206 | } |
| 2207 | } |
| 2208 | SCHED_UNLOCK(s)do { __mp_unlock(&sched_lock); spllower(s); } while ( 0); |
| 2209 | } |
| 2210 | |
| 2211 | void |
| 2212 | sigio_del(struct sigiolst *rmlist) |
| 2213 | { |
| 2214 | struct sigio *sigio; |
| 2215 | |
| 2216 | while ((sigio = LIST_FIRST(rmlist)((rmlist)->lh_first)) != NULL((void *)0)) { |
| 2217 | LIST_REMOVE(sigio, sio_pgsigio)do { if ((sigio)->sio_pgsigio.le_next != ((void *)0)) (sigio )->sio_pgsigio.le_next->sio_pgsigio.le_prev = (sigio)-> sio_pgsigio.le_prev; *(sigio)->sio_pgsigio.le_prev = (sigio )->sio_pgsigio.le_next; ((sigio)->sio_pgsigio.le_prev) = ((void *)-1); ((sigio)->sio_pgsigio.le_next) = ((void *)- 1); } while (0); |
| 2218 | crfree(sigio->sio_ucred); |
| 2219 | free(sigio, M_SIGIO40, sizeof(*sigio)); |
| 2220 | } |
| 2221 | } |
| 2222 | |
| 2223 | void |
| 2224 | sigio_unlink(struct sigio_ref *sir, struct sigiolst *rmlist) |
| 2225 | { |
| 2226 | struct sigio *sigio; |
| 2227 | |
| 2228 | MUTEX_ASSERT_LOCKED(&sigio_lock)do { if (((&sigio_lock)->mtx_owner != ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof (struct cpu_info, ci_self))); __ci;})) && !(panicstr || db_active)) panic("mutex %p not held in %s", (&sigio_lock ), __func__); } while (0); |
| 2229 | |
| 2230 | sigio = sir->sir_sigio; |
| 2231 | if (sigio != NULL((void *)0)) { |
| 2232 | KASSERT(sigio->sio_myref == sir)((sigio->sio_myref == sir) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/kern/kern_sig.c", 2232, "sigio->sio_myref == sir" )); |
| 2233 | sir->sir_sigio = NULL((void *)0); |
| 2234 | |
| 2235 | if (sigio->sio_pgid > 0) |
| 2236 | sigio->sio_procsio_u.siu_proc = NULL((void *)0); |
| 2237 | else |
| 2238 | sigio->sio_pgrpsio_u.siu_pgrp = NULL((void *)0); |
| 2239 | LIST_REMOVE(sigio, sio_pgsigio)do { if ((sigio)->sio_pgsigio.le_next != ((void *)0)) (sigio )->sio_pgsigio.le_next->sio_pgsigio.le_prev = (sigio)-> sio_pgsigio.le_prev; *(sigio)->sio_pgsigio.le_prev = (sigio )->sio_pgsigio.le_next; ((sigio)->sio_pgsigio.le_prev) = ((void *)-1); ((sigio)->sio_pgsigio.le_next) = ((void *)- 1); } while (0); |
| 2240 | |
| 2241 | LIST_INSERT_HEAD(rmlist, sigio, sio_pgsigio)do { if (((sigio)->sio_pgsigio.le_next = (rmlist)->lh_first ) != ((void *)0)) (rmlist)->lh_first->sio_pgsigio.le_prev = &(sigio)->sio_pgsigio.le_next; (rmlist)->lh_first = (sigio); (sigio)->sio_pgsigio.le_prev = &(rmlist)-> lh_first; } while (0); |
| 2242 | } |
| 2243 | } |
| 2244 | |
| 2245 | void |
| 2246 | sigio_free(struct sigio_ref *sir) |
| 2247 | { |
| 2248 | struct sigiolst rmlist; |
| 2249 | |
| 2250 | if (sir->sir_sigio == NULL((void *)0)) |
| 2251 | return; |
| 2252 | |
| 2253 | LIST_INIT(&rmlist)do { ((&rmlist)->lh_first) = ((void *)0); } while (0); |
| 2254 | |
| 2255 | mtx_enter(&sigio_lock); |
| 2256 | sigio_unlink(sir, &rmlist); |
| 2257 | mtx_leave(&sigio_lock); |
| 2258 | |
| 2259 | sigio_del(&rmlist); |
| 2260 | } |
| 2261 | |
| 2262 | void |
| 2263 | sigio_freelist(struct sigiolst *sigiolst) |
| 2264 | { |
| 2265 | struct sigiolst rmlist; |
| 2266 | struct sigio *sigio; |
| 2267 | |
| 2268 | if (LIST_EMPTY(sigiolst)(((sigiolst)->lh_first) == ((void *)0))) |
| 2269 | return; |
| 2270 | |
| 2271 | LIST_INIT(&rmlist)do { ((&rmlist)->lh_first) = ((void *)0); } while (0); |
| 2272 | |
| 2273 | mtx_enter(&sigio_lock); |
| 2274 | while ((sigio = LIST_FIRST(sigiolst)((sigiolst)->lh_first)) != NULL((void *)0)) |
| 2275 | sigio_unlink(sigio->sio_myref, &rmlist); |
| 2276 | mtx_leave(&sigio_lock); |
| 2277 | |
| 2278 | sigio_del(&rmlist); |
| 2279 | } |
| 2280 | |
| 2281 | int |
| 2282 | sigio_setown(struct sigio_ref *sir, u_long cmd, caddr_t data) |
| 2283 | { |
| 2284 | struct sigiolst rmlist; |
| 2285 | struct proc *p = curproc({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_curproc; |
| 2286 | struct pgrp *pgrp = NULL((void *)0); |
| 2287 | struct process *pr = NULL((void *)0); |
| 2288 | struct sigio *sigio; |
| 2289 | int error; |
| 2290 | pid_t pgid = *(int *)data; |
| 2291 | |
| 2292 | if (pgid == 0) { |
| 2293 | sigio_free(sir); |
| 2294 | return (0); |
| 2295 | } |
| 2296 | |
| 2297 | if (cmd == TIOCSPGRP((unsigned long)0x80000000 | ((sizeof(int) & 0x1fff) << 16) | ((('t')) << 8) | ((118)))) { |
| 2298 | if (pgid < 0) |
| 2299 | return (EINVAL22); |
| 2300 | pgid = -pgid; |
| 2301 | } |
| 2302 | |
| 2303 | sigio = malloc(sizeof(*sigio), M_SIGIO40, M_WAITOK0x0001); |
| 2304 | sigio->sio_pgid = pgid; |
| 2305 | sigio->sio_ucred = crhold(p->p_ucred); |
| 2306 | sigio->sio_myref = sir; |
| 2307 | |
| 2308 | LIST_INIT(&rmlist)do { ((&rmlist)->lh_first) = ((void *)0); } while (0); |
| 2309 | |
| 2310 | /* |
| 2311 | * The kernel lock, and not sleeping between prfind()/pgfind() and |
| 2312 | * linking of the sigio ensure that the process or process group does |
| 2313 | * not disappear unexpectedly. |
| 2314 | */ |
| 2315 | KERNEL_LOCK()_kernel_lock(); |
| 2316 | mtx_enter(&sigio_lock); |
| 2317 | |
| 2318 | if (pgid > 0) { |
| 2319 | pr = prfind(pgid); |
| 2320 | if (pr == NULL((void *)0)) { |
| 2321 | error = ESRCH3; |
| 2322 | goto fail; |
| 2323 | } |
| 2324 | |
| 2325 | /* |
| 2326 | * Policy - Don't allow a process to FSETOWN a process |
| 2327 | * in another session. |
| 2328 | * |
| 2329 | * Remove this test to allow maximum flexibility or |
| 2330 | * restrict FSETOWN to the current process or process |
| 2331 | * group for maximum safety. |
| 2332 | */ |
| 2333 | if (pr->ps_sessionps_pgrp->pg_session != p->p_p->ps_sessionps_pgrp->pg_session) { |
| 2334 | error = EPERM1; |
| 2335 | goto fail; |
| 2336 | } |
| 2337 | |
| 2338 | if ((pr->ps_flags & PS_EXITING0x00000008) != 0) { |
| 2339 | error = ESRCH3; |
| 2340 | goto fail; |
| 2341 | } |
| 2342 | } else /* if (pgid < 0) */ { |
| 2343 | pgrp = pgfind(-pgid); |
| 2344 | if (pgrp == NULL((void *)0)) { |
| 2345 | error = ESRCH3; |
| 2346 | goto fail; |
| 2347 | } |
| 2348 | |
| 2349 | /* |
| 2350 | * Policy - Don't allow a process to FSETOWN a process |
| 2351 | * in another session. |
| 2352 | * |
| 2353 | * Remove this test to allow maximum flexibility or |
| 2354 | * restrict FSETOWN to the current process or process |
| 2355 | * group for maximum safety. |
| 2356 | */ |
| 2357 | if (pgrp->pg_session != p->p_p->ps_sessionps_pgrp->pg_session) { |
| 2358 | error = EPERM1; |
| 2359 | goto fail; |
| 2360 | } |
| 2361 | } |
| 2362 | |
| 2363 | if (pgid > 0) { |
| 2364 | sigio->sio_procsio_u.siu_proc = pr; |
| 2365 | LIST_INSERT_HEAD(&pr->ps_sigiolst, sigio, sio_pgsigio)do { if (((sigio)->sio_pgsigio.le_next = (&pr->ps_sigiolst )->lh_first) != ((void *)0)) (&pr->ps_sigiolst)-> lh_first->sio_pgsigio.le_prev = &(sigio)->sio_pgsigio .le_next; (&pr->ps_sigiolst)->lh_first = (sigio); ( sigio)->sio_pgsigio.le_prev = &(&pr->ps_sigiolst )->lh_first; } while (0); |
| 2366 | } else { |
| 2367 | sigio->sio_pgrpsio_u.siu_pgrp = pgrp; |
| 2368 | LIST_INSERT_HEAD(&pgrp->pg_sigiolst, sigio, sio_pgsigio)do { if (((sigio)->sio_pgsigio.le_next = (&pgrp->pg_sigiolst )->lh_first) != ((void *)0)) (&pgrp->pg_sigiolst)-> lh_first->sio_pgsigio.le_prev = &(sigio)->sio_pgsigio .le_next; (&pgrp->pg_sigiolst)->lh_first = (sigio); (sigio)->sio_pgsigio.le_prev = &(&pgrp->pg_sigiolst )->lh_first; } while (0); |
| 2369 | } |
| 2370 | |
| 2371 | sigio_unlink(sir, &rmlist); |
| 2372 | sir->sir_sigio = sigio; |
| 2373 | |
| 2374 | mtx_leave(&sigio_lock); |
| 2375 | KERNEL_UNLOCK()_kernel_unlock(); |
| 2376 | |
| 2377 | sigio_del(&rmlist); |
| 2378 | |
| 2379 | return (0); |
| 2380 | |
| 2381 | fail: |
| 2382 | mtx_leave(&sigio_lock); |
| 2383 | KERNEL_UNLOCK()_kernel_unlock(); |
| 2384 | |
| 2385 | crfree(sigio->sio_ucred); |
| 2386 | free(sigio, M_SIGIO40, sizeof(*sigio)); |
| 2387 | |
| 2388 | return (error); |
| 2389 | } |
| 2390 | |
| 2391 | void |
| 2392 | sigio_getown(struct sigio_ref *sir, u_long cmd, caddr_t data) |
| 2393 | { |
| 2394 | struct sigio *sigio; |
| 2395 | pid_t pgid = 0; |
| 2396 | |
| 2397 | mtx_enter(&sigio_lock); |
| 2398 | sigio = sir->sir_sigio; |
| 2399 | if (sigio != NULL((void *)0)) |
| 2400 | pgid = sigio->sio_pgid; |
| 2401 | mtx_leave(&sigio_lock); |
| 2402 | |
| 2403 | if (cmd == TIOCGPGRP((unsigned long)0x40000000 | ((sizeof(int) & 0x1fff) << 16) | ((('t')) << 8) | ((119)))) |
| 2404 | pgid = -pgid; |
| 2405 | |
| 2406 | *(int *)data = pgid; |
| 2407 | } |
| 2408 | |
| 2409 | void |
| 2410 | sigio_copy(struct sigio_ref *dst, struct sigio_ref *src) |
| 2411 | { |
| 2412 | struct sigiolst rmlist; |
| 2413 | struct sigio *newsigio, *sigio; |
| 2414 | |
| 2415 | sigio_free(dst); |
| 2416 | |
| 2417 | if (src->sir_sigio == NULL((void *)0)) |
| 2418 | return; |
| 2419 | |
| 2420 | newsigio = malloc(sizeof(*newsigio), M_SIGIO40, M_WAITOK0x0001); |
| 2421 | LIST_INIT(&rmlist)do { ((&rmlist)->lh_first) = ((void *)0); } while (0); |
| 2422 | |
| 2423 | mtx_enter(&sigio_lock); |
| 2424 | |
| 2425 | sigio = src->sir_sigio; |
| 2426 | if (sigio == NULL((void *)0)) { |
| 2427 | mtx_leave(&sigio_lock); |
| 2428 | free(newsigio, M_SIGIO40, sizeof(*newsigio)); |
| 2429 | return; |
| 2430 | } |
| 2431 | |
| 2432 | newsigio->sio_pgid = sigio->sio_pgid; |
| 2433 | newsigio->sio_ucred = crhold(sigio->sio_ucred); |
| 2434 | newsigio->sio_myref = dst; |
| 2435 | if (newsigio->sio_pgid > 0) { |
| 2436 | newsigio->sio_procsio_u.siu_proc = sigio->sio_procsio_u.siu_proc; |
| 2437 | LIST_INSERT_HEAD(&newsigio->sio_proc->ps_sigiolst, newsigio,do { if (((newsigio)->sio_pgsigio.le_next = (&newsigio ->sio_u.siu_proc->ps_sigiolst)->lh_first) != ((void * )0)) (&newsigio->sio_u.siu_proc->ps_sigiolst)->lh_first ->sio_pgsigio.le_prev = &(newsigio)->sio_pgsigio.le_next ; (&newsigio->sio_u.siu_proc->ps_sigiolst)->lh_first = (newsigio); (newsigio)->sio_pgsigio.le_prev = &(& newsigio->sio_u.siu_proc->ps_sigiolst)->lh_first; } while (0) |
| 2438 | sio_pgsigio)do { if (((newsigio)->sio_pgsigio.le_next = (&newsigio ->sio_u.siu_proc->ps_sigiolst)->lh_first) != ((void * )0)) (&newsigio->sio_u.siu_proc->ps_sigiolst)->lh_first ->sio_pgsigio.le_prev = &(newsigio)->sio_pgsigio.le_next ; (&newsigio->sio_u.siu_proc->ps_sigiolst)->lh_first = (newsigio); (newsigio)->sio_pgsigio.le_prev = &(& newsigio->sio_u.siu_proc->ps_sigiolst)->lh_first; } while (0); |
| 2439 | } else { |
| 2440 | newsigio->sio_pgrpsio_u.siu_pgrp = sigio->sio_pgrpsio_u.siu_pgrp; |
| 2441 | LIST_INSERT_HEAD(&newsigio->sio_pgrp->pg_sigiolst, newsigio,do { if (((newsigio)->sio_pgsigio.le_next = (&newsigio ->sio_u.siu_pgrp->pg_sigiolst)->lh_first) != ((void * )0)) (&newsigio->sio_u.siu_pgrp->pg_sigiolst)->lh_first ->sio_pgsigio.le_prev = &(newsigio)->sio_pgsigio.le_next ; (&newsigio->sio_u.siu_pgrp->pg_sigiolst)->lh_first = (newsigio); (newsigio)->sio_pgsigio.le_prev = &(& newsigio->sio_u.siu_pgrp->pg_sigiolst)->lh_first; } while (0) |
| 2442 | sio_pgsigio)do { if (((newsigio)->sio_pgsigio.le_next = (&newsigio ->sio_u.siu_pgrp->pg_sigiolst)->lh_first) != ((void * )0)) (&newsigio->sio_u.siu_pgrp->pg_sigiolst)->lh_first ->sio_pgsigio.le_prev = &(newsigio)->sio_pgsigio.le_next ; (&newsigio->sio_u.siu_pgrp->pg_sigiolst)->lh_first = (newsigio); (newsigio)->sio_pgsigio.le_prev = &(& newsigio->sio_u.siu_pgrp->pg_sigiolst)->lh_first; } while (0); |
| 2443 | } |
| 2444 | |
| 2445 | sigio_unlink(dst, &rmlist); |
| 2446 | dst->sir_sigio = newsigio; |
| 2447 | |
| 2448 | mtx_leave(&sigio_lock); |
| 2449 | |
| 2450 | sigio_del(&rmlist); |
| 2451 | } |