| File: | dev/ic/adwlib.c |
| Warning: | line 539, column 2 Value stored to 'error_code' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* $OpenBSD: adwlib.c,v 1.29 2022/08/29 06:08:03 jsg Exp $ */ |
| 2 | /* $NetBSD: adwlib.c,v 1.20 2000/07/04 04:17:03 itojun Exp $ */ |
| 3 | |
| 4 | /* |
| 5 | * Low level routines for the Advanced Systems Inc. SCSI controllers chips |
| 6 | * |
| 7 | * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc. |
| 8 | * All rights reserved. |
| 9 | * |
| 10 | * Author: Baldassare Dante Profeta <dante@mclink.it> |
| 11 | * |
| 12 | * Redistribution and use in source and binary forms, with or without |
| 13 | * modification, are permitted provided that the following conditions |
| 14 | * are met: |
| 15 | * 1. Redistributions of source code must retain the above copyright |
| 16 | * notice, this list of conditions and the following disclaimer. |
| 17 | * 2. Redistributions in binary form must reproduce the above copyright |
| 18 | * notice, this list of conditions and the following disclaimer in the |
| 19 | * documentation and/or other materials provided with the distribution. |
| 20 | * |
| 21 | * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS |
| 22 | * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
| 23 | * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 24 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS |
| 25 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 26 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 27 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 28 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 29 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 30 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 31 | * POSSIBILITY OF SUCH DAMAGE. |
| 32 | */ |
| 33 | /* |
| 34 | * Ported from: |
| 35 | */ |
| 36 | /* |
| 37 | * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters |
| 38 | * |
| 39 | * Copyright (c) 1995-2000 Advanced System Products, Inc. |
| 40 | * All Rights Reserved. |
| 41 | * |
| 42 | * Redistribution and use in source and binary forms, with or without |
| 43 | * modification, are permitted provided that redistributions of source |
| 44 | * code retain the above copyright notice and this comment without |
| 45 | * modification. |
| 46 | */ |
| 47 | |
| 48 | #include <sys/param.h> |
| 49 | #include <sys/systm.h> |
| 50 | #include <sys/malloc.h> |
| 51 | #include <sys/kernel.h> |
| 52 | #include <sys/queue.h> |
| 53 | #include <sys/device.h> |
| 54 | |
| 55 | #include <machine/bus.h> |
| 56 | #include <machine/intr.h> |
| 57 | |
| 58 | #include <scsi/scsi_all.h> |
| 59 | #include <scsi/scsiconf.h> |
| 60 | |
| 61 | #include <dev/pci/pcidevs.h> |
| 62 | |
| 63 | #include <dev/ic/adwlib.h> |
| 64 | #include <dev/microcode/adw/adwmcode.h> |
| 65 | #include <dev/ic/adw.h> |
| 66 | |
| 67 | |
| 68 | int AdwRamSelfTest(bus_space_tag_t, bus_space_handle_t, u_int8_t); |
| 69 | int AdwLoadMCode(bus_space_tag_t, bus_space_handle_t, u_int16_t *, |
| 70 | u_int8_t); |
| 71 | int AdwASC3550Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *); |
| 72 | int AdwASC38C0800Cabling(bus_space_tag_t, bus_space_handle_t, |
| 73 | ADW_DVC_CFG *); |
| 74 | int AdwASC38C1600Cabling(bus_space_tag_t, bus_space_handle_t, |
| 75 | ADW_DVC_CFG *); |
| 76 | |
| 77 | u_int16_t AdwGetEEPROMConfig(bus_space_tag_t, bus_space_handle_t, |
| 78 | ADW_EEPROM *); |
| 79 | void AdwSetEEPROMConfig(bus_space_tag_t, bus_space_handle_t, |
| 80 | ADW_EEPROM *); |
| 81 | u_int16_t AdwReadEEPWord(bus_space_tag_t, bus_space_handle_t, int); |
| 82 | void AdwWaitEEPCmd(bus_space_tag_t, bus_space_handle_t); |
| 83 | |
| 84 | void AdwInquiryHandling(ADW_SOFTC *, ADW_SCSI_REQ_Q *); |
| 85 | |
| 86 | void AdwSleepMilliSecond(u_int32_t); |
| 87 | void AdwDelayMicroSecond(u_int32_t); |
| 88 | |
| 89 | |
| 90 | /* |
| 91 | * EEPROM Configuration. |
| 92 | * |
| 93 | * All drivers should use this structure to set the default EEPROM |
| 94 | * configuration. The BIOS now uses this structure when it is built. |
| 95 | * Additional structure information can be found in adwlib.h where |
| 96 | * the structure is defined. |
| 97 | */ |
| 98 | static const ADW_EEPROM adw_3550_Default_EEPROM = { |
| 99 | ADW_EEPROM_BIOS_ENABLE0x4000, /* 00 cfg_lsw */ |
| 100 | 0x0000, /* 01 cfg_msw */ |
| 101 | 0xFFFF, /* 02 disc_enable */ |
| 102 | 0xFFFF, /* 03 wdtr_able */ |
| 103 | { 0xFFFF }, /* 04 sdtr_able */ |
| 104 | 0xFFFF, /* 05 start_motor */ |
| 105 | 0xFFFF, /* 06 tagqng_able */ |
| 106 | 0xFFFF, /* 07 bios_scan */ |
| 107 | 0, /* 08 scam_tolerant */ |
| 108 | 7, /* 09 adapter_scsi_id */ |
| 109 | 0, /* bios_boot_delay */ |
| 110 | 3, /* 10 scsi_reset_delay */ |
| 111 | 0, /* bios_id_lun */ |
| 112 | 0, /* 11 termination */ |
| 113 | 0, /* reserved1 */ |
| 114 | 0xFFE7, /* 12 bios_ctrl */ |
| 115 | { 0xFFFF }, /* 13 ultra_able */ |
| 116 | { 0 }, /* 14 reserved2 */ |
| 117 | ADW_DEF_MAX_HOST_QNG0xFD, /* 15 max_host_qng */ |
| 118 | ADW_DEF_MAX_DVC_QNG0x3F, /* max_dvc_qng */ |
| 119 | 0, /* 16 dvc_cntl */ |
| 120 | { 0 }, /* 17 bug_fix */ |
| 121 | { 0,0,0 }, /* 18-20 serial_number[3] */ |
| 122 | 0, /* 21 check_sum */ |
| 123 | { /* 22-29 oem_name[16] */ |
| 124 | 0,0,0,0,0,0,0,0, |
| 125 | 0,0,0,0,0,0,0,0 |
| 126 | }, |
| 127 | 0, /* 30 dvc_err_code */ |
| 128 | 0, /* 31 adw_err_code */ |
| 129 | 0, /* 32 adw_err_addr */ |
| 130 | 0, /* 33 saved_dvc_err_code */ |
| 131 | 0, /* 34 saved_adw_err_code */ |
| 132 | 0 /* 35 saved_adw_err_addr */ |
| 133 | }; |
| 134 | |
| 135 | static const ADW_EEPROM adw_38C0800_Default_EEPROM = { |
| 136 | ADW_EEPROM_BIOS_ENABLE0x4000, /* 00 cfg_lsw */ |
| 137 | 0x0000, /* 01 cfg_msw */ |
| 138 | 0xFFFF, /* 02 disc_enable */ |
| 139 | 0xFFFF, /* 03 wdtr_able */ |
| 140 | { 0x4444 }, /* 04 sdtr_speed1 */ |
| 141 | 0xFFFF, /* 05 start_motor */ |
| 142 | 0xFFFF, /* 06 tagqng_able */ |
| 143 | 0xFFFF, /* 07 bios_scan */ |
| 144 | 0, /* 08 scam_tolerant */ |
| 145 | 7, /* 09 adapter_scsi_id */ |
| 146 | 0, /* bios_boot_delay */ |
| 147 | 3, /* 10 scsi_reset_delay */ |
| 148 | 0, /* bios_id_lun */ |
| 149 | 0, /* 11 termination_se */ |
| 150 | 0, /* termination_lvd */ |
| 151 | 0xFFE7, /* 12 bios_ctrl */ |
| 152 | { 0x4444 }, /* 13 sdtr_speed2 */ |
| 153 | { 0x4444 }, /* 14 sdtr_speed3 */ |
| 154 | ADW_DEF_MAX_HOST_QNG0xFD, /* 15 max_host_qng */ |
| 155 | ADW_DEF_MAX_DVC_QNG0x3F, /* max_dvc_qng */ |
| 156 | 0, /* 16 dvc_cntl */ |
| 157 | { 0x4444 }, /* 17 sdtr_speed4 */ |
| 158 | { 0,0,0 }, /* 18-20 serial_number[3] */ |
| 159 | 0, /* 21 check_sum */ |
| 160 | { /* 22-29 oem_name[16] */ |
| 161 | 0,0,0,0,0,0,0,0, |
| 162 | 0,0,0,0,0,0,0,0 |
| 163 | }, |
| 164 | 0, /* 30 dvc_err_code */ |
| 165 | 0, /* 31 adw_err_code */ |
| 166 | 0, /* 32 adw_err_addr */ |
| 167 | 0, /* 33 saved_dvc_err_code */ |
| 168 | 0, /* 34 saved_adw_err_code */ |
| 169 | 0, /* 35 saved_adw_err_addr */ |
| 170 | { /* 36-55 reserved1[16] */ |
| 171 | 0,0,0,0,0,0,0,0,0,0, |
| 172 | 0,0,0,0,0,0,0,0,0,0 |
| 173 | }, |
| 174 | 0, /* 56 cisptr_lsw */ |
| 175 | 0, /* 57 cisprt_msw */ |
| 176 | PCI_VENDOR_ADVSYS0x10cd, /* 58 subsysvid */ |
| 177 | PCI_PRODUCT_ADVSYS_U2W0x2500, /* 59 subsysid */ |
| 178 | { 0,0,0,0 } /* 60-63 reserved2[4] */ |
| 179 | }; |
| 180 | |
| 181 | static const ADW_EEPROM adw_38C1600_Default_EEPROM = { |
| 182 | ADW_EEPROM_BIOS_ENABLE0x4000, /* 00 cfg_lsw */ |
| 183 | 0x0000, /* 01 cfg_msw */ |
| 184 | 0xFFFF, /* 02 disc_enable */ |
| 185 | 0xFFFF, /* 03 wdtr_able */ |
| 186 | { 0x5555 }, /* 04 sdtr_speed1 */ |
| 187 | 0xFFFF, /* 05 start_motor */ |
| 188 | 0xFFFF, /* 06 tagqng_able */ |
| 189 | 0xFFFF, /* 07 bios_scan */ |
| 190 | 0, /* 08 scam_tolerant */ |
| 191 | 7, /* 09 adapter_scsi_id */ |
| 192 | 0, /* bios_boot_delay */ |
| 193 | 3, /* 10 scsi_reset_delay */ |
| 194 | 0, /* bios_id_lun */ |
| 195 | 0, /* 11 termination_se */ |
| 196 | 0, /* termination_lvd */ |
| 197 | 0xFFE7, /* 12 bios_ctrl */ |
| 198 | { 0x5555 }, /* 13 sdtr_speed2 */ |
| 199 | { 0x5555 }, /* 14 sdtr_speed3 */ |
| 200 | ADW_DEF_MAX_HOST_QNG0xFD, /* 15 max_host_qng */ |
| 201 | ADW_DEF_MAX_DVC_QNG0x3F, /* max_dvc_qng */ |
| 202 | 0, /* 16 dvc_cntl */ |
| 203 | { 0x5555 }, /* 17 sdtr_speed4 */ |
| 204 | { 0,0,0 }, /* 18-20 serial_number[3] */ |
| 205 | 0, /* 21 check_sum */ |
| 206 | { /* 22-29 oem_name[16] */ |
| 207 | 0,0,0,0,0,0,0,0, |
| 208 | 0,0,0,0,0,0,0,0 |
| 209 | }, |
| 210 | 0, /* 30 dvc_err_code */ |
| 211 | 0, /* 31 adw_err_code */ |
| 212 | 0, /* 32 adw_err_addr */ |
| 213 | 0, /* 33 saved_dvc_err_code */ |
| 214 | 0, /* 34 saved_adw_err_code */ |
| 215 | 0, /* 35 saved_adw_err_addr */ |
| 216 | { /* 36-55 reserved1[16] */ |
| 217 | 0,0,0,0,0,0,0,0,0,0, |
| 218 | 0,0,0,0,0,0,0,0,0,0 |
| 219 | }, |
| 220 | 0, /* 56 cisptr_lsw */ |
| 221 | 0, /* 57 cisprt_msw */ |
| 222 | PCI_VENDOR_ADVSYS0x10cd, /* 58 subsysvid */ |
| 223 | PCI_PRODUCT_ADVSYS_U3W0x2700, /* 59 subsysid */ |
| 224 | { 0,0,0,0 } /* 60-63 reserved2[4] */ |
| 225 | }; |
| 226 | |
| 227 | |
| 228 | /* |
| 229 | * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and |
| 230 | * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while |
| 231 | * all of this is done. |
| 232 | * |
| 233 | * For a non-fatal error return a warning code. If there are no warnings |
| 234 | * then 0 is returned. |
| 235 | * |
| 236 | * Note: Chip is stopped on entry. |
| 237 | */ |
| 238 | int |
| 239 | AdwInitFromEEPROM(ADW_SOFTC *sc) |
| 240 | { |
| 241 | bus_space_tag_t iot = sc->sc_iot; |
| 242 | bus_space_handle_t ioh = sc->sc_ioh; |
| 243 | ADW_EEPROM eep_config; |
| 244 | u_int16_t warn_code; |
| 245 | u_int16_t sdtr_speed = 0; |
| 246 | u_int8_t tid, termination; |
| 247 | int i, j; |
| 248 | |
| 249 | |
| 250 | warn_code = 0; |
| 251 | |
| 252 | /* |
| 253 | * Read the board's EEPROM configuration. |
| 254 | * |
| 255 | * Set default values if a bad checksum is found. |
| 256 | * |
| 257 | * XXX - Don't handle big-endian access to EEPROM yet. |
| 258 | */ |
| 259 | if (AdwGetEEPROMConfig(iot, ioh, &eep_config) != eep_config.check_sum) { |
| 260 | warn_code |= ADW_WARN_EEPROM_CHKSUM0x0002; |
| 261 | |
| 262 | /* |
| 263 | * Set EEPROM default values. |
| 264 | */ |
| 265 | switch(sc->chip_type) { |
| 266 | case ADW_CHIP_ASC35500x01: |
| 267 | eep_config = adw_3550_Default_EEPROM; |
| 268 | break; |
| 269 | case ADW_CHIP_ASC38C08000x02: |
| 270 | eep_config = adw_38C0800_Default_EEPROM; |
| 271 | break; |
| 272 | case ADW_CHIP_ASC38C16000x03: |
| 273 | eep_config = adw_38C1600_Default_EEPROM; |
| 274 | |
| 275 | // XXX TODO!!! if (ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) { |
| 276 | if (sc->cfg.pci_slot_info != 0) { |
| 277 | u_int8_t lsw_msb; |
| 278 | |
| 279 | lsw_msb = eep_config.cfg_lsw >> 8; |
| 280 | /* |
| 281 | * Set Function 1 EEPROM Word 0 MSB |
| 282 | * |
| 283 | * Clear the BIOS_ENABLE (bit 14) and |
| 284 | * INTAB (bit 11) EEPROM bits. |
| 285 | * |
| 286 | * Disable Bit 14 (BIOS_ENABLE) to fix |
| 287 | * SPARC Ultra 60 and old Mac system booting |
| 288 | * problem. The Expansion ROM must |
| 289 | * be disabled in Function 1 for these systems. |
| 290 | */ |
| 291 | lsw_msb &= ~(((ADW_EEPROM_BIOS_ENABLE0x4000 | |
| 292 | ADW_EEPROM_INTAB0x0800) >> 8) & 0xFF); |
| 293 | /* |
| 294 | * Set the INTAB (bit 11) if the GPIO 0 input |
| 295 | * indicates the Function 1 interrupt line is |
| 296 | * wired to INTA. |
| 297 | * |
| 298 | * Set/Clear Bit 11 (INTAB) from |
| 299 | * the GPIO bit 0 input: |
| 300 | * 1 - Function 1 intr line wired to INT A. |
| 301 | * 0 - Function 1 intr line wired to INT B. |
| 302 | * |
| 303 | * Note: Adapter boards always have Function 0 |
| 304 | * wired to INTA. |
| 305 | * Put all 5 GPIO bits in input mode and then |
| 306 | * read their input values. |
| 307 | */ |
| 308 | ADW_WRITE_BYTE_REGISTER(iot, ioh,(((iot))->write_1(((ioh)), ((0x16)), ((0)))) |
| 309 | IOPB_GPIO_CNTL, 0)(((iot))->write_1(((ioh)), ((0x16)), ((0)))); |
| 310 | if (ADW_READ_BYTE_REGISTER(iot, ioh,(((iot))->read_1(((ioh)), ((0x12)))) |
| 311 | IOPB_GPIO_DATA)(((iot))->read_1(((ioh)), ((0x12)))) & 0x01) { |
| 312 | /* |
| 313 | * Function 1 interrupt wired to INTA; |
| 314 | * Set EEPROM bit. |
| 315 | */ |
| 316 | lsw_msb |= (ADW_EEPROM_INTAB0x0800 >> 8) |
| 317 | & 0xFF; |
| 318 | } |
| 319 | eep_config.cfg_lsw &= 0x00FF; |
| 320 | eep_config.cfg_lsw |= lsw_msb << 8; |
| 321 | } |
| 322 | break; |
| 323 | } |
| 324 | |
| 325 | /* |
| 326 | * Assume the 6 byte board serial number that was read |
| 327 | * from EEPROM is correct even if the EEPROM checksum |
| 328 | * failed. |
| 329 | */ |
| 330 | for (i = 2, j = 1; i >= 0; i--, j++) { |
| 331 | eep_config.serial_number[i] = |
| 332 | AdwReadEEPWord(iot, ioh, ADW_EEP_DVC_CFG_END(0x15) - j); |
| 333 | } |
| 334 | |
| 335 | AdwSetEEPROMConfig(iot, ioh, &eep_config); |
| 336 | } |
| 337 | /* |
| 338 | * Set sc and sc->cfg variables from the EEPROM configuration |
| 339 | * that was read. |
| 340 | * |
| 341 | * This is the mapping of EEPROM fields to Adw Library fields. |
| 342 | */ |
| 343 | sc->wdtr_able = eep_config.wdtr_able; |
| 344 | if (sc->chip_type == ADW_CHIP_ASC35500x01) { |
| 345 | sc->sdtr_able = eep_config.sdtr1.sdtr_able; |
| 346 | sc->ultra_able = eep_config.sdtr2.ultra_able; |
| 347 | } else { |
| 348 | sc->sdtr_speed1 = eep_config.sdtr1.sdtr_speed1; |
| 349 | sc->sdtr_speed2 = eep_config.sdtr2.sdtr_speed2; |
| 350 | sc->sdtr_speed3 = eep_config.sdtr3.sdtr_speed3; |
| 351 | sc->sdtr_speed4 = eep_config.sdtr4.sdtr_speed4; |
| 352 | } |
| 353 | sc->ppr_able = 0; |
| 354 | sc->tagqng_able = eep_config.tagqng_able; |
| 355 | sc->cfg.disc_enable = eep_config.disc_enable; |
| 356 | sc->max_host_qng = eep_config.max_host_qng; |
| 357 | sc->max_dvc_qng = eep_config.max_dvc_qng; |
| 358 | sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID15); |
| 359 | sc->start_motor = eep_config.start_motor; |
| 360 | sc->scsi_reset_wait = eep_config.scsi_reset_delay; |
| 361 | sc->bios_ctrl = eep_config.bios_ctrl; |
| 362 | sc->no_scam = eep_config.scam_tolerant; |
| 363 | sc->cfg.serial1 = eep_config.serial_number[0]; |
| 364 | sc->cfg.serial2 = eep_config.serial_number[1]; |
| 365 | sc->cfg.serial3 = eep_config.serial_number[2]; |
| 366 | |
| 367 | if (sc->chip_type == ADW_CHIP_ASC38C08000x02 || |
| 368 | sc->chip_type == ADW_CHIP_ASC38C16000x03) { |
| 369 | sc->sdtr_able = 0; |
| 370 | for (tid = 0; tid <= ADW_MAX_TID15; tid++) { |
| 371 | if (tid == 0) { |
| 372 | sdtr_speed = sc->sdtr_speed1; |
| 373 | } else if (tid == 4) { |
| 374 | sdtr_speed = sc->sdtr_speed2; |
| 375 | } else if (tid == 8) { |
| 376 | sdtr_speed = sc->sdtr_speed3; |
| 377 | } else if (tid == 12) { |
| 378 | sdtr_speed = sc->sdtr_speed4; |
| 379 | } |
| 380 | if (sdtr_speed & ADW_MAX_TID15) { |
| 381 | sc->sdtr_able |= (1 << tid); |
| 382 | } |
| 383 | sdtr_speed >>= 4; |
| 384 | } |
| 385 | } |
| 386 | |
| 387 | /* |
| 388 | * Set the host maximum queuing (max. 253, min. 16) and the per device |
| 389 | * maximum queuing (max. 63, min. 4). |
| 390 | */ |
| 391 | if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG0xFD) { |
| 392 | eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG0xFD; |
| 393 | } else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG0x10) |
| 394 | { |
| 395 | /* If the value is zero, assume it is uninitialized. */ |
| 396 | if (eep_config.max_host_qng == 0) { |
| 397 | eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG0xFD; |
| 398 | } else { |
| 399 | eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG0x10; |
| 400 | } |
| 401 | } |
| 402 | |
| 403 | if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG0x3F) { |
| 404 | eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG0x3F; |
| 405 | } else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG0x04) { |
| 406 | /* If the value is zero, assume it is uninitialized. */ |
| 407 | if (eep_config.max_dvc_qng == 0) { |
| 408 | eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG0x3F; |
| 409 | } else { |
| 410 | eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG0x04; |
| 411 | } |
| 412 | } |
| 413 | |
| 414 | /* |
| 415 | * If 'max_dvc_qng' is greater than 'max_host_qng', then |
| 416 | * set 'max_dvc_qng' to 'max_host_qng'. |
| 417 | */ |
| 418 | if (eep_config.max_dvc_qng > eep_config.max_host_qng) { |
| 419 | eep_config.max_dvc_qng = eep_config.max_host_qng; |
| 420 | } |
| 421 | |
| 422 | /* |
| 423 | * Set ADW_SOFTC 'max_host_qng' and 'max_dvc_qng' |
| 424 | * values based on possibly adjusted EEPROM values. |
| 425 | */ |
| 426 | sc->max_host_qng = eep_config.max_host_qng; |
| 427 | sc->max_dvc_qng = eep_config.max_dvc_qng; |
| 428 | |
| 429 | |
| 430 | /* |
| 431 | * If the EEPROM 'termination' field is set to automatic (0), then set |
| 432 | * the ADW_SOFTC.cfg 'termination' field to automatic also. |
| 433 | * |
| 434 | * If the termination is specified with a non-zero 'termination' |
| 435 | * value check that a legal value is set and set the ADW_SOFTC.cfg |
| 436 | * 'termination' field appropriately. |
| 437 | */ |
| 438 | |
| 439 | switch(sc->chip_type) { |
| 440 | case ADW_CHIP_ASC35500x01: |
| 441 | sc->cfg.termination = 0; /* auto termination */ |
| 442 | switch(eep_config.termination_se) { |
| 443 | case 3: |
| 444 | /* Enable manual control with low on / high on. */ |
| 445 | sc->cfg.termination |= ADW_TERM_CTL_L0x0010; |
| 446 | case 2: |
| 447 | /* Enable manual control with low off / high on. */ |
| 448 | sc->cfg.termination |= ADW_TERM_CTL_H0x0020; |
| 449 | case 1: |
| 450 | /* Enable manual control with low off / high off. */ |
| 451 | sc->cfg.termination |= ADW_TERM_CTL_SEL0x0040; |
| 452 | case 0: |
| 453 | break; |
| 454 | default: |
| 455 | warn_code |= ADW_WARN_EEPROM_TERMINATION0x0004; |
| 456 | } |
| 457 | break; |
| 458 | |
| 459 | case ADW_CHIP_ASC38C08000x02: |
| 460 | case ADW_CHIP_ASC38C16000x03: |
| 461 | switch(eep_config.termination_se) { |
| 462 | case 0: |
| 463 | /* auto termination for SE */ |
| 464 | termination = 0; |
| 465 | break; |
| 466 | case 1: |
| 467 | /* Enable manual control with low off / high off. */ |
| 468 | termination = 0; |
| 469 | break; |
| 470 | case 2: |
| 471 | /* Enable manual control with low off / high on. */ |
| 472 | termination = ADW_TERM_SE_HI0x0020; |
| 473 | break; |
| 474 | case 3: |
| 475 | /* Enable manual control with low on / high on. */ |
| 476 | termination = ADW_TERM_SE0x0030; |
| 477 | break; |
| 478 | default: |
| 479 | /* |
| 480 | * The EEPROM 'termination_se' field contains a |
| 481 | * bad value. Use automatic termination instead. |
| 482 | */ |
| 483 | termination = 0; |
| 484 | warn_code |= ADW_WARN_EEPROM_TERMINATION0x0004; |
| 485 | } |
| 486 | |
| 487 | switch(eep_config.termination_lvd) { |
| 488 | case 0: |
| 489 | /* auto termination for LVD */ |
| 490 | sc->cfg.termination = termination; |
| 491 | break; |
| 492 | case 1: |
| 493 | /* Enable manual control with low off / high off. */ |
| 494 | sc->cfg.termination = termination; |
| 495 | break; |
| 496 | case 2: |
| 497 | /* Enable manual control with low off / high on. */ |
| 498 | sc->cfg.termination = termination | ADW_TERM_LVD_HI0x0080; |
| 499 | break; |
| 500 | case 3: |
| 501 | /* Enable manual control with low on / high on. */ |
| 502 | sc->cfg.termination = termination | ADW_TERM_LVD0x00C0; |
| 503 | break; |
| 504 | default: |
| 505 | /* |
| 506 | * The EEPROM 'termination_lvd' field contains a |
| 507 | * bad value. Use automatic termination instead. |
| 508 | */ |
| 509 | sc->cfg.termination = termination; |
| 510 | warn_code |= ADW_WARN_EEPROM_TERMINATION0x0004; |
| 511 | } |
| 512 | break; |
| 513 | } |
| 514 | |
| 515 | return warn_code; |
| 516 | } |
| 517 | |
| 518 | |
| 519 | /* |
| 520 | * Initialize the ASC-3550/ASC-38C0800/ASC-38C1600. |
| 521 | * |
| 522 | * On failure return the error code. |
| 523 | */ |
| 524 | int |
| 525 | AdwInitDriver(ADW_SOFTC *sc) |
| 526 | { |
| 527 | bus_space_tag_t iot = sc->sc_iot; |
| 528 | bus_space_handle_t ioh = sc->sc_ioh; |
| 529 | u_int16_t error_code; |
| 530 | int word; |
| 531 | int i; |
| 532 | u_int16_t bios_mem[ADW_MC_BIOSLEN0x0050/2]; /* BIOS RISC Memory |
| 533 | 0x40-0x8F. */ |
| 534 | u_int16_t wdtr_able = 0, sdtr_able, ppr_able, tagqng_able; |
| 535 | u_int8_t max_cmd[ADW_MAX_TID15 + 1]; |
| 536 | u_int8_t tid; |
| 537 | |
| 538 | |
| 539 | error_code = 0; |
Value stored to 'error_code' is never read | |
| 540 | |
| 541 | /* |
| 542 | * Save the RISC memory BIOS region before writing the microcode. |
| 543 | * The BIOS may already be loaded and using its RISC LRAM region |
| 544 | * so its region must be saved and restored. |
| 545 | * |
| 546 | * Note: This code makes the assumption, which is currently true, |
| 547 | * that a chip reset does not clear RISC LRAM. |
| 548 | */ |
| 549 | for (i = 0; i < ADW_MC_BIOSLEN0x0050/2; i++) { |
| 550 | ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i])do { (((iot))->write_2(((ioh)), (0x04), ((0x0040 +(2*i)))) ); (bios_mem[i]) = (((iot))->read_2(((ioh)), (0x06))); } while (0); |
| 551 | } |
| 552 | |
| 553 | /* |
| 554 | * Save current per TID negotiated values. |
| 555 | */ |
| 556 | switch (sc->chip_type) { |
| 557 | case ADW_CHIP_ASC35500x01: |
| 558 | if (bios_mem[(ADW_MC_BIOS_SIGNATURE0x0058-ADW_MC_BIOSMEM0x0040)/2]==0x55AA){ |
| 559 | |
| 560 | u_int16_t bios_version, major, minor; |
| 561 | |
| 562 | bios_version = bios_mem[(ADW_MC_BIOS_VERSION0x005A - |
| 563 | ADW_MC_BIOSMEM0x0040) / 2]; |
| 564 | major = (bios_version >> 12) & 0xF; |
| 565 | minor = (bios_version >> 8) & 0xF; |
| 566 | if (major < 3 || (major == 3 && minor == 1)) { |
| 567 | /* |
| 568 | * BIOS 3.1 and earlier location of |
| 569 | * 'wdtr_able' variable. |
| 570 | */ |
| 571 | ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able)do { (((iot))->write_2(((ioh)), (0x04), ((0x120)))); (wdtr_able ) = (((iot))->read_2(((ioh)), (0x06))); } while (0); |
| 572 | } else { |
| 573 | ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,do { (((iot))->write_2(((ioh)), (0x04), ((0x009C)))); (wdtr_able ) = (((iot))->read_2(((ioh)), (0x06))); } while (0) |
| 574 | wdtr_able)do { (((iot))->write_2(((ioh)), (0x04), ((0x009C)))); (wdtr_able ) = (((iot))->read_2(((ioh)), (0x06))); } while (0); |
| 575 | } |
| 576 | } |
| 577 | break; |
| 578 | |
| 579 | case ADW_CHIP_ASC38C16000x03: |
| 580 | ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able)do { (((iot))->write_2(((ioh)), (0x04), ((0x017A)))); (ppr_able ) = (((iot))->read_2(((ioh)), (0x06))); } while (0); |
| 581 | /* FALLTHROUGH */ |
| 582 | case ADW_CHIP_ASC38C08000x02: |
| 583 | ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able)do { (((iot))->write_2(((ioh)), (0x04), ((0x009C)))); (wdtr_able ) = (((iot))->read_2(((ioh)), (0x06))); } while (0); |
| 584 | break; |
| 585 | } |
| 586 | ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able)do { (((iot))->write_2(((ioh)), (0x04), ((0x009E)))); (sdtr_able ) = (((iot))->read_2(((ioh)), (0x06))); } while (0); |
| 587 | ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able)do { (((iot))->write_2(((ioh)), (0x04), ((0x00A0)))); (tagqng_able ) = (((iot))->read_2(((ioh)), (0x06))); } while (0); |
| 588 | for (tid = 0; tid <= ADW_MAX_TID15; tid++) { |
| 589 | ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,do { (((iot))->write_2(((ioh)), (0x04), ((0x00D0 + tid)))) ; (max_cmd[tid]) = (((iot))->read_1(((ioh)), (0x06))); } while (0) |
| 590 | max_cmd[tid])do { (((iot))->write_2(((ioh)), (0x04), ((0x00D0 + tid)))) ; (max_cmd[tid]) = (((iot))->read_1(((ioh)), (0x06))); } while (0); |
| 591 | } |
| 592 | |
| 593 | /* |
| 594 | * Perform a RAM Built-In Self Test |
| 595 | */ |
| 596 | if((error_code = AdwRamSelfTest(iot, ioh, sc->chip_type))) { |
| 597 | return error_code; |
| 598 | } |
| 599 | |
| 600 | /* |
| 601 | * Load the Microcode |
| 602 | */ |
| 603 | ; |
| 604 | if((error_code = AdwLoadMCode(iot, ioh, bios_mem, sc->chip_type))) { |
| 605 | return error_code; |
| 606 | } |
| 607 | |
| 608 | /* |
| 609 | * Read microcode version and date. |
| 610 | */ |
| 611 | ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE, sc->cfg.mcode_date)do { (((iot))->write_2(((ioh)), (0x04), ((0x0038)))); (sc-> cfg.mcode_date) = (((iot))->read_2(((ioh)), (0x06))); } while (0); |
| 612 | ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM, sc->cfg.mcode_version)do { (((iot))->write_2(((ioh)), (0x04), ((0x003A)))); (sc-> cfg.mcode_version) = (((iot))->read_2(((ioh)), (0x06))); } while (0); |
| 613 | |
| 614 | /* |
| 615 | * If the PCI Configuration Command Register "Parity Error Response |
| 616 | * Control" Bit was clear (0), then set the microcode variable |
| 617 | * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode |
| 618 | * to ignore DMA parity errors. |
| 619 | */ |
| 620 | if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR0x0001) { |
| 621 | ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word)do { (((iot))->write_2(((ioh)), (0x04), ((0x0122)))); (word ) = (((iot))->read_2(((ioh)), (0x06))); } while (0); |
| 622 | ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,do { (((iot))->write_2(((ioh)), (0x04), ((0x0122)))); (((iot ))->write_2(((ioh)), (0x06), ((word | 0x0001)))); } while ( 0) |
| 623 | word | CONTROL_FLAG_IGNORE_PERR)do { (((iot))->write_2(((ioh)), (0x04), ((0x0122)))); (((iot ))->write_2(((ioh)), (0x06), ((word | 0x0001)))); } while ( 0); |
| 624 | } |
| 625 | |
| 626 | switch (sc->chip_type) { |
| 627 | case ADW_CHIP_ASC35500x01: |
| 628 | /* |
| 629 | * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a |
| 630 | * FIFO threshold of 128 bytes. |
| 631 | * This register is only accessible to the host. |
| 632 | */ |
| 633 | ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,(((iot))->write_1(((ioh)), ((0x20)), ((0x0C | 0x03)))) |
| 634 | START_CTL_EMFU | READ_CMD_MRM)(((iot))->write_1(((ioh)), ((0x20)), ((0x0C | 0x03)))); |
| 635 | break; |
| 636 | |
| 637 | case ADW_CHIP_ASC38C08000x02: |
| 638 | /* |
| 639 | * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register. |
| 640 | * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current |
| 641 | * cable detection and then we are able to read C_DET[3:0]. |
| 642 | * |
| 643 | * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1 |
| 644 | * Microcode Default Value' section below. |
| 645 | */ |
| 646 | ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,(((iot))->write_2(((ioh)), ((0x0E)), (((((iot))->read_2 (((ioh)), ((0x0E)))) | 0x4000)))) |
| 647 | ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)(((iot))->write_2(((ioh)), ((0x0E)), (((((iot))->read_2 (((ioh)), ((0x0E)))) | 0x4000)))) |
| 648 | | ADW_DIS_TERM_DRV)(((iot))->write_2(((ioh)), ((0x0E)), (((((iot))->read_2 (((ioh)), ((0x0E)))) | 0x4000)))); |
| 649 | |
| 650 | /* |
| 651 | * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and |
| 652 | * START_CTL_TH [3:2] bits for the default FIFO threshold. |
| 653 | * |
| 654 | * Note: ASC-38C0800 FIFO threshold has been changed to |
| 655 | * 256 bytes. |
| 656 | * |
| 657 | * For DMA Errata #4 set the BC_THRESH_ENB bit. |
| 658 | */ |
| 659 | ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,(((iot))->write_1(((ioh)), ((0x20)), ((0x80 | 0x50 | 0x00 | 0x03)))) |
| 660 | BC_THRESH_ENB | FIFO_THRESH_80B(((iot))->write_1(((ioh)), ((0x20)), ((0x80 | 0x50 | 0x00 | 0x03)))) |
| 661 | | START_CTL_TH | READ_CMD_MRM)(((iot))->write_1(((ioh)), ((0x20)), ((0x80 | 0x50 | 0x00 | 0x03)))); |
| 662 | break; |
| 663 | |
| 664 | case ADW_CHIP_ASC38C16000x03: |
| 665 | /* |
| 666 | * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register. |
| 667 | * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current |
| 668 | * cable detection and then we are able to read C_DET[3:0]. |
| 669 | * |
| 670 | * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1 |
| 671 | * Microcode Default Value' section below. |
| 672 | */ |
| 673 | ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,(((iot))->write_2(((ioh)), ((0x0E)), (((((iot))->read_2 (((ioh)), ((0x0E)))) | 0x4000)))) |
| 674 | ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)(((iot))->write_2(((ioh)), ((0x0E)), (((((iot))->read_2 (((ioh)), ((0x0E)))) | 0x4000)))) |
| 675 | | ADW_DIS_TERM_DRV)(((iot))->write_2(((ioh)), ((0x0E)), (((((iot))->read_2 (((ioh)), ((0x0E)))) | 0x4000)))); |
| 676 | |
| 677 | /* |
| 678 | * If the BIOS control flag AIPP (Asynchronous Information |
| 679 | * Phase Protection) disable bit is not set, then set the |
| 680 | * firmware 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to |
| 681 | * enable AIPP checking and encoding. |
| 682 | */ |
| 683 | if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS0x2000) == 0) { |
| 684 | ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word)do { (((iot))->write_2(((ioh)), (0x04), ((0x0122)))); (word ) = (((iot))->read_2(((ioh)), (0x06))); } while (0); |
| 685 | ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,do { (((iot))->write_2(((ioh)), (0x04), ((0x0122)))); (((iot ))->write_2(((ioh)), (0x06), ((word | 0x0002)))); } while ( 0) |
| 686 | word | CONTROL_FLAG_ENABLE_AIPP)do { (((iot))->write_2(((ioh)), (0x04), ((0x0122)))); (((iot ))->write_2(((ioh)), (0x06), ((word | 0x0002)))); } while ( 0); |
| 687 | } |
| 688 | |
| 689 | /* |
| 690 | * For ASC-38C1600 use DMA_CFG0 default values: |
| 691 | * FIFO_THRESH_80B [6:4], and START_CTL_TH [3:2]. |
| 692 | */ |
| 693 | ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,(((iot))->write_1(((ioh)), ((0x20)), ((0x50 | 0x00 | 0x03) ))) |
| 694 | FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM)(((iot))->write_1(((ioh)), ((0x20)), ((0x50 | 0x00 | 0x03) ))); |
| 695 | break; |
| 696 | } |
| 697 | |
| 698 | /* |
| 699 | * Microcode operating variables for WDTR, SDTR, and command tag |
| 700 | * queuing will be set in AdwInquiryHandling() based on what a |
| 701 | * device reports it is capable of in Inquiry byte 7. |
| 702 | * |
| 703 | * If SCSI Bus Resets have been disabled, then directly set |
| 704 | * SDTR and WDTR from the EEPROM configuration. This will allow |
| 705 | * the BIOS and warm boot to work without a SCSI bus hang on |
| 706 | * the Inquiry caused by host and target mismatched DTR values. |
| 707 | * Without the SCSI Bus Reset, before an Inquiry a device can't |
| 708 | * be assumed to be in Asynchronous, Narrow mode. |
| 709 | */ |
| 710 | if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS0x0200) == 0) { |
| 711 | ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able)do { (((iot))->write_2(((ioh)), (0x04), ((0x009C)))); (((iot ))->write_2(((ioh)), (0x06), ((sc->wdtr_able)))); } while (0); |
| 712 | ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able)do { (((iot))->write_2(((ioh)), (0x04), ((0x009E)))); (((iot ))->write_2(((ioh)), (0x06), ((sc->sdtr_able)))); } while (0); |
| 713 | } |
| 714 | |
| 715 | /* |
| 716 | * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2, |
| 717 | * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID |
| 718 | * bitmask. These values determine the maximum SDTR speed negotiated |
| 719 | * with a device. |
| 720 | * |
| 721 | * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2, |
| 722 | * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them |
| 723 | * without determining here whether the device supports SDTR. |
| 724 | */ |
| 725 | switch (sc->chip_type) { |
| 726 | case ADW_CHIP_ASC35500x01: |
| 727 | word = 0; |
| 728 | for (tid = 0; tid <= ADW_MAX_TID15; tid++) { |
| 729 | if (ADW_TID_TO_TIDMASK(tid)(0x01 << ((tid) & 15)) & sc->ultra_able) { |
| 730 | /* Set Ultra speed for TID 'tid'. */ |
| 731 | word |= (0x3 << (4 * (tid % 4))); |
| 732 | } else { |
| 733 | /* Set Fast speed for TID 'tid'. */ |
| 734 | word |= (0x2 << (4 * (tid % 4))); |
| 735 | } |
| 736 | /* Check if done with sdtr_speed1. */ |
| 737 | if (tid == 3) { |
| 738 | ADW_WRITE_WORD_LRAM(iot, ioh,do { (((iot))->write_2(((ioh)), (0x04), ((0x0090)))); (((iot ))->write_2(((ioh)), (0x06), ((word)))); } while (0) |
| 739 | ADW_MC_SDTR_SPEED1, word)do { (((iot))->write_2(((ioh)), (0x04), ((0x0090)))); (((iot ))->write_2(((ioh)), (0x06), ((word)))); } while (0); |
| 740 | word = 0; |
| 741 | /* Check if done with sdtr_speed2. */ |
| 742 | } else if (tid == 7) { |
| 743 | ADW_WRITE_WORD_LRAM(iot, ioh,do { (((iot))->write_2(((ioh)), (0x04), ((0x0092)))); (((iot ))->write_2(((ioh)), (0x06), ((word)))); } while (0) |
| 744 | ADW_MC_SDTR_SPEED2, word)do { (((iot))->write_2(((ioh)), (0x04), ((0x0092)))); (((iot ))->write_2(((ioh)), (0x06), ((word)))); } while (0); |
| 745 | word = 0; |
| 746 | /* Check if done with sdtr_speed3. */ |
| 747 | } else if (tid == 11) { |
| 748 | ADW_WRITE_WORD_LRAM(iot, ioh,do { (((iot))->write_2(((ioh)), (0x04), ((0x0094)))); (((iot ))->write_2(((ioh)), (0x06), ((word)))); } while (0) |
| 749 | ADW_MC_SDTR_SPEED3, word)do { (((iot))->write_2(((ioh)), (0x04), ((0x0094)))); (((iot ))->write_2(((ioh)), (0x06), ((word)))); } while (0); |
| 750 | word = 0; |
| 751 | /* Check if done with sdtr_speed4. */ |
| 752 | } else if (tid == 15) { |
| 753 | ADW_WRITE_WORD_LRAM(iot, ioh,do { (((iot))->write_2(((ioh)), (0x04), ((0x0096)))); (((iot ))->write_2(((ioh)), (0x06), ((word)))); } while (0) |
| 754 | ADW_MC_SDTR_SPEED4, word)do { (((iot))->write_2(((ioh)), (0x04), ((0x0096)))); (((iot ))->write_2(((ioh)), (0x06), ((word)))); } while (0); |
| 755 | /* End of loop. */ |
| 756 | } |
| 757 | } |
| 758 | |
| 759 | /* |
| 760 | * Set microcode operating variable for the |
| 761 | * disconnect per TID bitmask. |
| 762 | */ |
| 763 | ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,do { (((iot))->write_2(((ioh)), (0x04), ((0x00A2)))); (((iot ))->write_2(((ioh)), (0x06), ((sc->cfg.disc_enable)))); } while (0) |
| 764 | sc->cfg.disc_enable)do { (((iot))->write_2(((ioh)), (0x04), ((0x00A2)))); (((iot ))->write_2(((ioh)), (0x06), ((sc->cfg.disc_enable)))); } while (0); |
| 765 | break; |
| 766 | |
| 767 | case ADW_CHIP_ASC38C08000x02: |
| 768 | /* FALLTHROUGH */ |
| 769 | case ADW_CHIP_ASC38C16000x03: |
| 770 | ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,do { (((iot))->write_2(((ioh)), (0x04), ((0x00A2)))); (((iot ))->write_2(((ioh)), (0x06), ((sc->cfg.disc_enable)))); } while (0) |
| 771 | sc->cfg.disc_enable)do { (((iot))->write_2(((ioh)), (0x04), ((0x00A2)))); (((iot ))->write_2(((ioh)), (0x06), ((sc->cfg.disc_enable)))); } while (0); |
| 772 | ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1,do { (((iot))->write_2(((ioh)), (0x04), ((0x0090)))); (((iot ))->write_2(((ioh)), (0x06), ((sc->sdtr_speed1)))); } while (0) |
| 773 | sc->sdtr_speed1)do { (((iot))->write_2(((ioh)), (0x04), ((0x0090)))); (((iot ))->write_2(((ioh)), (0x06), ((sc->sdtr_speed1)))); } while (0); |
| 774 | ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2,do { (((iot))->write_2(((ioh)), (0x04), ((0x0092)))); (((iot ))->write_2(((ioh)), (0x06), ((sc->sdtr_speed2)))); } while (0) |
| 775 | sc->sdtr_speed2)do { (((iot))->write_2(((ioh)), (0x04), ((0x0092)))); (((iot ))->write_2(((ioh)), (0x06), ((sc->sdtr_speed2)))); } while (0); |
| 776 | ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3,do { (((iot))->write_2(((ioh)), (0x04), ((0x0094)))); (((iot ))->write_2(((ioh)), (0x06), ((sc->sdtr_speed3)))); } while (0) |
| 777 | sc->sdtr_speed3)do { (((iot))->write_2(((ioh)), (0x04), ((0x0094)))); (((iot ))->write_2(((ioh)), (0x06), ((sc->sdtr_speed3)))); } while (0); |
| 778 | ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4,do { (((iot))->write_2(((ioh)), (0x04), ((0x0096)))); (((iot ))->write_2(((ioh)), (0x06), ((sc->sdtr_speed4)))); } while (0) |
| 779 | sc->sdtr_speed4)do { (((iot))->write_2(((ioh)), (0x04), ((0x0096)))); (((iot ))->write_2(((ioh)), (0x06), ((sc->sdtr_speed4)))); } while (0); |
| 780 | break; |
| 781 | } |
| 782 | |
| 783 | |
| 784 | /* |
| 785 | * Set SCSI_CFG0 Microcode Default Value. |
| 786 | * |
| 787 | * The microcode will set the SCSI_CFG0 register using this value |
| 788 | * after it is started below. |
| 789 | */ |
| 790 | ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,do { (((iot))->write_2(((ioh)), (0x04), ((0x00AC)))); (((iot ))->write_2(((ioh)), (0x06), ((0x2000 | 0x0400 | 0x0040 | 0x0010 | sc->chip_scsi_id)))); } while (0) |
| 791 | ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |do { (((iot))->write_2(((ioh)), (0x04), ((0x00AC)))); (((iot ))->write_2(((ioh)), (0x06), ((0x2000 | 0x0400 | 0x0040 | 0x0010 | sc->chip_scsi_id)))); } while (0) |
| 792 | ADW_OUR_ID_EN | sc->chip_scsi_id)do { (((iot))->write_2(((ioh)), (0x04), ((0x00AC)))); (((iot ))->write_2(((ioh)), (0x06), ((0x2000 | 0x0400 | 0x0040 | 0x0010 | sc->chip_scsi_id)))); } while (0); |
| 793 | |
| 794 | |
| 795 | switch(sc->chip_type) { |
| 796 | case ADW_CHIP_ASC35500x01: |
| 797 | error_code = AdwASC3550Cabling(iot, ioh, &sc->cfg); |
| 798 | break; |
| 799 | |
| 800 | case ADW_CHIP_ASC38C08000x02: |
| 801 | error_code = AdwASC38C0800Cabling(iot, ioh, &sc->cfg); |
| 802 | break; |
| 803 | |
| 804 | case ADW_CHIP_ASC38C16000x03: |
| 805 | error_code = AdwASC38C1600Cabling(iot, ioh, &sc->cfg); |
| 806 | break; |
| 807 | } |
| 808 | if(error_code) { |
| 809 | return error_code; |
| 810 | } |
| 811 | |
| 812 | /* |
| 813 | * Set SEL_MASK Microcode Default Value |
| 814 | * |
| 815 | * The microcode will set the SEL_MASK register using this value |
| 816 | * after it is started below. |
| 817 | */ |
| 818 | ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,do { (((iot))->write_2(((ioh)), (0x04), ((0x00B2)))); (((iot ))->write_2(((ioh)), (0x06), (((0x01 << ((sc->chip_scsi_id ) & 15)))))); } while (0) |
| 819 | ADW_TID_TO_TIDMASK(sc->chip_scsi_id))do { (((iot))->write_2(((ioh)), (0x04), ((0x00B2)))); (((iot ))->write_2(((ioh)), (0x06), (((0x01 << ((sc->chip_scsi_id ) & 15)))))); } while (0); |
| 820 | |
| 821 | /* |
| 822 | * Create and Initialize Host->RISC Carrier lists |
| 823 | */ |
| 824 | sc->carr_freelist = AdwInitCarriers(sc->sc_dmamap_carrier, |
| 825 | sc->sc_control->carriers); |
| 826 | |
| 827 | /* |
| 828 | * Set-up the Host->RISC Initiator Command Queue (ICQ). |
| 829 | */ |
| 830 | |
| 831 | if ((sc->icq_sp = sc->carr_freelist) == NULL((void *)0)) { |
| 832 | return ADW_IERR_NO_CARRIER0x0004; |
| 833 | } |
| 834 | sc->carr_freelist = ADW_CARRIER_VADDR(sc,((ADW_CARRIER *) (((u_int8_t *)(sc)->sc_control->carriers ) + ((u_long)((sc->icq_sp->next_ba) & 0xFFFFFFF0)) - (sc)->sc_dmamap_carrier->dm_segs[0].ds_addr)) |
| 835 | ADW_GET_CARRP(sc->icq_sp->next_ba))((ADW_CARRIER *) (((u_int8_t *)(sc)->sc_control->carriers ) + ((u_long)((sc->icq_sp->next_ba) & 0xFFFFFFF0)) - (sc)->sc_dmamap_carrier->dm_segs[0].ds_addr)); |
| 836 | |
| 837 | /* |
| 838 | * The first command issued will be placed in the stopper carrier. |
| 839 | */ |
| 840 | sc->icq_sp->next_ba = ADW_CQ_STOPPER0x00000000; |
| 841 | |
| 842 | /* |
| 843 | * Set RISC ICQ physical address start value. |
| 844 | */ |
| 845 | ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, sc->icq_sp->carr_ba)do { (((iot))->write_2(((ioh)), (0x04), ((0x0160)))); (((iot ))->write_2(((ioh)), (0x06), ((u_int16_t) ((sc->icq_sp-> carr_ba) & 0xFFFF)))); (((iot))->write_2(((ioh)), (0x04 ), ((0x0160) + 2))); (((iot))->write_2(((ioh)), (0x06), (( u_int16_t) ((sc->icq_sp->carr_ba >> 16) & 0xFFFF )))); } while (0); |
| 846 | |
| 847 | /* |
| 848 | * Initialize the COMMA register to the same value otherwise |
| 849 | * the RISC will prematurely detect a command is available. |
| 850 | */ |
| 851 | if(sc->chip_type == ADW_CHIP_ASC38C16000x03) { |
| 852 | ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,(((iot))->write_4(((ioh)), ((0x14)), ((sc->icq_sp->carr_ba )))) |
| 853 | sc->icq_sp->carr_ba)(((iot))->write_4(((ioh)), ((0x14)), ((sc->icq_sp->carr_ba )))); |
| 854 | } |
| 855 | |
| 856 | /* |
| 857 | * Set-up the RISC->Host Initiator Response Queue (IRQ). |
| 858 | */ |
| 859 | if ((sc->irq_sp = sc->carr_freelist) == NULL((void *)0)) { |
| 860 | return ADW_IERR_NO_CARRIER0x0004; |
| 861 | } |
| 862 | sc->carr_freelist = ADW_CARRIER_VADDR(sc,((ADW_CARRIER *) (((u_int8_t *)(sc)->sc_control->carriers ) + ((u_long)((sc->irq_sp->next_ba) & 0xFFFFFFF0)) - (sc)->sc_dmamap_carrier->dm_segs[0].ds_addr)) |
| 863 | ADW_GET_CARRP(sc->irq_sp->next_ba))((ADW_CARRIER *) (((u_int8_t *)(sc)->sc_control->carriers ) + ((u_long)((sc->irq_sp->next_ba) & 0xFFFFFFF0)) - (sc)->sc_dmamap_carrier->dm_segs[0].ds_addr)); |
| 864 | |
| 865 | /* |
| 866 | * The first command completed by the RISC will be placed in |
| 867 | * the stopper. |
| 868 | * |
| 869 | * Note: Set 'next_ba' to ADW_CQ_STOPPER. When the request is |
| 870 | * completed the RISC will set the ADW_RQ_DONE bit. |
| 871 | */ |
| 872 | sc->irq_sp->next_ba = ADW_CQ_STOPPER0x00000000; |
| 873 | |
| 874 | /* |
| 875 | * Set RISC IRQ physical address start value. |
| 876 | */ |
| 877 | ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, sc->irq_sp->carr_ba)do { (((iot))->write_2(((ioh)), (0x04), ((0x0164)))); (((iot ))->write_2(((ioh)), (0x06), ((u_int16_t) ((sc->irq_sp-> carr_ba) & 0xFFFF)))); (((iot))->write_2(((ioh)), (0x04 ), ((0x0164) + 2))); (((iot))->write_2(((ioh)), (0x06), (( u_int16_t) ((sc->irq_sp->carr_ba >> 16) & 0xFFFF )))); } while (0); |
| 878 | sc->carr_pending_cnt = 0; |
| 879 | |
| 880 | ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,(((iot))->write_1(((ioh)), ((0x02)), (((0x01 | 0x80))))) |
| 881 | (ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR))(((iot))->write_1(((ioh)), ((0x02)), (((0x01 | 0x80))))); |
| 882 | ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word)do { (((iot))->write_2(((ioh)), (0x04), ((0x0028)))); (word ) = (((iot))->read_2(((ioh)), (0x06))); } while (0); |
| 883 | ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word)(((iot))->write_2(((ioh)), ((0x2A)), ((word)))); |
| 884 | |
| 885 | /* finally, finally, gentlemen, start your engine */ |
| 886 | ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN)(((iot))->write_2(((ioh)), ((0x0A)), (((0x4000))))); |
| 887 | |
| 888 | /* |
| 889 | * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus |
| 890 | * Resets should be performed. The RISC has to be running |
| 891 | * to issue a SCSI Bus Reset. |
| 892 | */ |
| 893 | if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS0x0200) |
| 894 | { |
| 895 | /* |
| 896 | * If the BIOS Signature is present in memory, restore the |
| 897 | * BIOS Handshake Configuration Table and do not perform |
| 898 | * a SCSI Bus Reset. |
| 899 | */ |
| 900 | if (bios_mem[(ADW_MC_BIOS_SIGNATURE0x0058 - ADW_MC_BIOSMEM0x0040)/2] == |
| 901 | 0x55AA) { |
| 902 | /* |
| 903 | * Restore per TID negotiated values. |
| 904 | */ |
| 905 | ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,do { (((iot))->write_2(((ioh)), (0x04), ((0x009C)))); (((iot ))->write_2(((ioh)), (0x06), ((wdtr_able)))); } while (0) |
| 906 | wdtr_able)do { (((iot))->write_2(((ioh)), (0x04), ((0x009C)))); (((iot ))->write_2(((ioh)), (0x06), ((wdtr_able)))); } while (0); |
| 907 | ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,do { (((iot))->write_2(((ioh)), (0x04), ((0x009E)))); (((iot ))->write_2(((ioh)), (0x06), ((sdtr_able)))); } while (0) |
| 908 | sdtr_able)do { (((iot))->write_2(((ioh)), (0x04), ((0x009E)))); (((iot ))->write_2(((ioh)), (0x06), ((sdtr_able)))); } while (0); |
| 909 | ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,do { (((iot))->write_2(((ioh)), (0x04), ((0x00A0)))); (((iot ))->write_2(((ioh)), (0x06), ((tagqng_able)))); } while (0 ) |
| 910 | tagqng_able)do { (((iot))->write_2(((ioh)), (0x04), ((0x00A0)))); (((iot ))->write_2(((ioh)), (0x06), ((tagqng_able)))); } while (0 ); |
| 911 | for (tid = 0; tid <= ADW_MAX_TID15; tid++) { |
| 912 | ADW_WRITE_BYTE_LRAM(iot, ioh,do { (((iot))->write_2(((ioh)), (0x04), ((0x00D0 + tid)))) ; (((iot))->write_1(((ioh)), (0x06), ((max_cmd[tid])))); } while (0) |
| 913 | ADW_MC_NUMBER_OF_MAX_CMD + tid,do { (((iot))->write_2(((ioh)), (0x04), ((0x00D0 + tid)))) ; (((iot))->write_1(((ioh)), (0x06), ((max_cmd[tid])))); } while (0) |
| 914 | max_cmd[tid])do { (((iot))->write_2(((ioh)), (0x04), ((0x00D0 + tid)))) ; (((iot))->write_1(((ioh)), (0x06), ((max_cmd[tid])))); } while (0); |
| 915 | } |
| 916 | } else { |
| 917 | if (AdwResetCCB(sc) != ADW_TRUE1) { |
| 918 | error_code = ADW_WARN_BUSRESET_ERROR0x0001; |
| 919 | } |
| 920 | } |
| 921 | } |
| 922 | |
| 923 | return error_code; |
| 924 | } |
| 925 | |
| 926 | |
| 927 | int |
| 928 | AdwRamSelfTest(bus_space_tag_t iot, bus_space_handle_t ioh, u_int8_t chip_type) |
| 929 | { |
| 930 | int i; |
| 931 | u_int8_t byte; |
| 932 | |
| 933 | |
| 934 | if ((chip_type == ADW_CHIP_ASC38C08000x02) || |
| 935 | (chip_type == ADW_CHIP_ASC38C16000x03)) { |
| 936 | /* |
| 937 | * RAM BIST (RAM Built-In Self Test) |
| 938 | * |
| 939 | * Address : I/O base + offset 0x38h register (byte). |
| 940 | * Function: Bit 7-6(RW) : RAM mode |
| 941 | * Normal Mode : 0x00 |
| 942 | * Pre-test Mode : 0x40 |
| 943 | * RAM Test Mode : 0x80 |
| 944 | * Bit 5 : unused |
| 945 | * Bit 4(RO) : Done bit |
| 946 | * Bit 3-0(RO) : Status |
| 947 | * Host Error : 0x08 |
| 948 | * Int_RAM Error : 0x04 |
| 949 | * RISC Error : 0x02 |
| 950 | * SCSI Error : 0x01 |
| 951 | * No Error : 0x00 |
| 952 | * |
| 953 | * Note: RAM BIST code should be put right here, before loading |
| 954 | * the microcode and after saving the RISC memory BIOS region. |
| 955 | */ |
| 956 | |
| 957 | /* |
| 958 | * LRAM Pre-test |
| 959 | * |
| 960 | * Write PRE_TEST_MODE (0x40) to register and wait for |
| 961 | * 10 milliseconds. |
| 962 | * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), |
| 963 | * return an error. Reset to NORMAL_MODE (0x00) and do again. |
| 964 | * If cannot reset to NORMAL_MODE, return an error too. |
| 965 | */ |
| 966 | for (i = 0; i < 2; i++) { |
| 967 | ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,(((iot))->write_1(((ioh)), ((0x38)), ((0x40)))) |
| 968 | PRE_TEST_MODE)(((iot))->write_1(((ioh)), ((0x38)), ((0x40)))); |
| 969 | /* Wait for 10ms before reading back. */ |
| 970 | AdwSleepMilliSecond(10); |
| 971 | byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)(((iot))->read_1(((ioh)), ((0x38)))); |
| 972 | if ((byte & RAM_TEST_DONE0x10) == 0 || (byte & 0x0F) != |
| 973 | PRE_TEST_VALUE0x05) { |
| 974 | return ADW_IERR_BIST_PRE_TEST0x2000; |
| 975 | } |
| 976 | |
| 977 | ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,(((iot))->write_1(((ioh)), ((0x38)), ((0x00)))) |
| 978 | NORMAL_MODE)(((iot))->write_1(((ioh)), ((0x38)), ((0x00)))); |
| 979 | /* Wait for 10ms before reading back. */ |
| 980 | AdwSleepMilliSecond(10); |
| 981 | if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)(((iot))->read_1(((ioh)), ((0x38)))) |
| 982 | != NORMAL_VALUE0x00) { |
| 983 | return ADW_IERR_BIST_PRE_TEST0x2000; |
| 984 | } |
| 985 | } |
| 986 | |
| 987 | /* |
| 988 | * LRAM Test - It takes about 1.5 ms to run through the test. |
| 989 | * |
| 990 | * Write RAM_TEST_MODE (0x80) to register and wait for |
| 991 | * 10 milliseconds. |
| 992 | * If Done bit not set or Status not 0, save register byte, |
| 993 | * set the err_code, and return an error. |
| 994 | */ |
| 995 | ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE)(((iot))->write_1(((ioh)), ((0x38)), ((0x80)))); |
| 996 | /* Wait for 10ms before checking status. */ |
| 997 | AdwSleepMilliSecond(10); |
| 998 | |
| 999 | byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)(((iot))->read_1(((ioh)), ((0x38)))); |
| 1000 | if ((byte & RAM_TEST_DONE0x10)==0 || (byte & RAM_TEST_STATUS0x0F)!=0) { |
| 1001 | /* Get here if Done bit not set or Status not 0. */ |
| 1002 | return ADW_IERR_BIST_RAM_TEST0x4000; |
| 1003 | } |
| 1004 | |
| 1005 | /* We need to reset back to normal mode after LRAM test passes*/ |
| 1006 | ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE)(((iot))->write_1(((ioh)), ((0x38)), ((0x00)))); |
| 1007 | } |
| 1008 | |
| 1009 | return 0; |
| 1010 | } |
| 1011 | |
| 1012 | |
| 1013 | int |
| 1014 | AdwLoadMCode(bus_space_tag_t iot, bus_space_handle_t ioh, u_int16_t *bios_mem, |
| 1015 | u_int8_t chip_type) |
| 1016 | { |
| 1017 | u_int8_t *mcode_data = NULL((void *)0); |
| 1018 | u_int32_t mcode_chksum = 0; |
| 1019 | u_int16_t mcode_size = 0; |
| 1020 | u_int32_t sum; |
| 1021 | u_int16_t code_sum; |
| 1022 | int begin_addr; |
| 1023 | int end_addr; |
| 1024 | int word; |
| 1025 | int adw_memsize = 0; |
| 1026 | int adw_mcode_expanded_size; |
| 1027 | int i, j; |
| 1028 | |
| 1029 | |
| 1030 | switch(chip_type) { |
| 1031 | case ADW_CHIP_ASC35500x01: |
| 1032 | mcode_data = (u_int8_t *)adw_asc3550_mcode_data.mcode_data; |
| 1033 | mcode_chksum = (u_int32_t)adw_asc3550_mcode_data.mcode_chksum; |
| 1034 | mcode_size = (u_int16_t)adw_asc3550_mcode_data.mcode_size; |
| 1035 | adw_memsize = ADW_3550_MEMSIZE0x2000; |
| 1036 | break; |
| 1037 | |
| 1038 | case ADW_CHIP_ASC38C08000x02: |
| 1039 | mcode_data = (u_int8_t *)adw_asc38C0800_mcode_data.mcode_data; |
| 1040 | mcode_chksum =(u_int32_t)adw_asc38C0800_mcode_data.mcode_chksum; |
| 1041 | mcode_size = (u_int16_t)adw_asc38C0800_mcode_data.mcode_size; |
| 1042 | adw_memsize = ADW_38C0800_MEMSIZE0x4000; |
| 1043 | break; |
| 1044 | |
| 1045 | case ADW_CHIP_ASC38C16000x03: |
| 1046 | mcode_data = (u_int8_t *)adw_asc38C1600_mcode_data.mcode_data; |
| 1047 | mcode_chksum =(u_int32_t)adw_asc38C1600_mcode_data.mcode_chksum; |
| 1048 | mcode_size = (u_int16_t)adw_asc38C1600_mcode_data.mcode_size; |
| 1049 | adw_memsize = ADW_38C1600_MEMSIZE0x8000; |
| 1050 | break; |
| 1051 | } |
| 1052 | |
| 1053 | /* |
| 1054 | * Write the microcode image to RISC memory starting at address 0. |
| 1055 | */ |
| 1056 | ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0)(((iot))->write_2(((ioh)), ((0x04)), ((0)))); |
| 1057 | |
| 1058 | /* Assume the following compressed format of the microcode buffer: |
| 1059 | * |
| 1060 | * 254 word (508 byte) table indexed by byte code followed |
| 1061 | * by the following byte codes: |
| 1062 | * |
| 1063 | * 1-Byte Code: |
| 1064 | * 00: Emit word 0 in table. |
| 1065 | * 01: Emit word 1 in table. |
| 1066 | * . |
| 1067 | * FD: Emit word 253 in table. |
| 1068 | * |
| 1069 | * Multi-Byte Code: |
| 1070 | * FE WW WW: (3 byte code) Word to emit is the next word WW WW. |
| 1071 | * FF BB WW WW: (4 byte code) Emit BB count times next word WW WW. |
| 1072 | */ |
| 1073 | word = 0; |
| 1074 | for (i = 253 * 2; i < mcode_size; i++) { |
| 1075 | if (mcode_data[i] == 0xff) { |
| 1076 | for (j = 0; j < mcode_data[i + 1]; j++) { |
| 1077 | ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,(((iot))->write_2(((ioh)), (0x06), (((((u_int16_t)mcode_data [i + 3] << 8) | mcode_data[i + 2]))))) |
| 1078 | (((u_int16_t)mcode_data[i + 3] << 8) |(((iot))->write_2(((ioh)), (0x06), (((((u_int16_t)mcode_data [i + 3] << 8) | mcode_data[i + 2]))))) |
| 1079 | mcode_data[i + 2]))(((iot))->write_2(((ioh)), (0x06), (((((u_int16_t)mcode_data [i + 3] << 8) | mcode_data[i + 2]))))); |
| 1080 | word++; |
| 1081 | } |
| 1082 | i += 3; |
| 1083 | } else if (mcode_data[i] == 0xfe) { |
| 1084 | ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,(((iot))->write_2(((ioh)), (0x06), (((((u_int16_t)mcode_data [i + 2] << 8) | mcode_data[i + 1]))))) |
| 1085 | (((u_int16_t)mcode_data[i + 2] << 8) |(((iot))->write_2(((ioh)), (0x06), (((((u_int16_t)mcode_data [i + 2] << 8) | mcode_data[i + 1]))))) |
| 1086 | mcode_data[i + 1]))(((iot))->write_2(((ioh)), (0x06), (((((u_int16_t)mcode_data [i + 2] << 8) | mcode_data[i + 1]))))); |
| 1087 | i += 2; |
| 1088 | word++; |
| 1089 | } else { |
| 1090 | ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)(((iot))->write_2(((ioh)), (0x06), (((((u_int16_t) mcode_data [(mcode_data[i] * 2) + 1] <<8) | mcode_data[mcode_data[ i] * 2]))))) |
| 1091 | mcode_data[(mcode_data[i] * 2) + 1] <<8) |(((iot))->write_2(((ioh)), (0x06), (((((u_int16_t) mcode_data [(mcode_data[i] * 2) + 1] <<8) | mcode_data[mcode_data[ i] * 2]))))) |
| 1092 | mcode_data[mcode_data[i] * 2]))(((iot))->write_2(((ioh)), (0x06), (((((u_int16_t) mcode_data [(mcode_data[i] * 2) + 1] <<8) | mcode_data[mcode_data[ i] * 2]))))); |
| 1093 | word++; |
| 1094 | } |
| 1095 | } |
| 1096 | |
| 1097 | /* |
| 1098 | * Set 'word' for later use to clear the rest of memory and save |
| 1099 | * the expanded mcode size. |
| 1100 | */ |
| 1101 | word *= 2; |
| 1102 | adw_mcode_expanded_size = word; |
| 1103 | |
| 1104 | /* |
| 1105 | * Clear the rest of the Internal RAM. |
| 1106 | */ |
| 1107 | for (; word < adw_memsize; word += 2) { |
| 1108 | ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0)(((iot))->write_2(((ioh)), (0x06), ((0)))); |
| 1109 | } |
| 1110 | |
| 1111 | /* |
| 1112 | * Verify the microcode checksum. |
| 1113 | */ |
| 1114 | sum = 0; |
| 1115 | ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0)(((iot))->write_2(((ioh)), ((0x04)), ((0)))); |
| 1116 | |
| 1117 | for (word = 0; word < adw_mcode_expanded_size; word += 2) { |
| 1118 | sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh)(((iot))->read_2(((ioh)), (0x06))); |
| 1119 | } |
| 1120 | |
| 1121 | if (sum != mcode_chksum) { |
| 1122 | return ADW_IERR_MCODE_CHKSUM0x0002; |
| 1123 | } |
| 1124 | |
| 1125 | /* |
| 1126 | * Restore the RISC memory BIOS region. |
| 1127 | */ |
| 1128 | for (i = 0; i < ADW_MC_BIOSLEN0x0050/2; i++) { |
| 1129 | if(chip_type == ADW_CHIP_ASC35500x01) { |
| 1130 | ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),do { (((iot))->write_2(((ioh)), (0x04), ((0x0040 + (2 * i) )))); (((iot))->write_1(((ioh)), (0x06), ((bios_mem[i])))) ; } while (0) |
| 1131 | bios_mem[i])do { (((iot))->write_2(((ioh)), (0x04), ((0x0040 + (2 * i) )))); (((iot))->write_1(((ioh)), (0x06), ((bios_mem[i])))) ; } while (0); |
| 1132 | } else { |
| 1133 | ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),do { (((iot))->write_2(((ioh)), (0x04), ((0x0040 + (2 * i) )))); (((iot))->write_2(((ioh)), (0x06), ((bios_mem[i])))) ; } while (0) |
| 1134 | bios_mem[i])do { (((iot))->write_2(((ioh)), (0x04), ((0x0040 + (2 * i) )))); (((iot))->write_2(((ioh)), (0x06), ((bios_mem[i])))) ; } while (0); |
| 1135 | } |
| 1136 | } |
| 1137 | |
| 1138 | /* |
| 1139 | * Calculate and write the microcode code checksum to the microcode |
| 1140 | * code checksum location ADW_MC_CODE_CHK_SUM (0x2C). |
| 1141 | */ |
| 1142 | ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr)do { (((iot))->write_2(((ioh)), (0x04), ((0x0028)))); (begin_addr ) = (((iot))->read_2(((ioh)), (0x06))); } while (0); |
| 1143 | ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr)do { (((iot))->write_2(((ioh)), (0x04), ((0x002A)))); (end_addr ) = (((iot))->read_2(((ioh)), (0x06))); } while (0); |
| 1144 | code_sum = 0; |
| 1145 | ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr)(((iot))->write_2(((ioh)), ((0x04)), ((begin_addr)))); |
| 1146 | for (word = begin_addr; word < end_addr; word += 2) { |
| 1147 | code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh)(((iot))->read_2(((ioh)), (0x06))); |
| 1148 | } |
| 1149 | ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum)do { (((iot))->write_2(((ioh)), (0x04), ((0x002C)))); (((iot ))->write_2(((ioh)), (0x06), ((code_sum)))); } while (0); |
| 1150 | |
| 1151 | /* |
| 1152 | * Set the chip type. |
| 1153 | */ |
| 1154 | ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, chip_type)do { (((iot))->write_2(((ioh)), (0x04), ((0x009A)))); (((iot ))->write_2(((ioh)), (0x06), ((chip_type)))); } while (0); |
| 1155 | |
| 1156 | return 0; |
| 1157 | } |
| 1158 | |
| 1159 | |
| 1160 | int |
| 1161 | AdwASC3550Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg) |
| 1162 | { |
| 1163 | u_int16_t scsi_cfg1; |
| 1164 | |
| 1165 | |
| 1166 | /* |
| 1167 | * Determine SCSI_CFG1 Microcode Default Value. |
| 1168 | * |
| 1169 | * The microcode will set the SCSI_CFG1 register using this value |
| 1170 | * after it is started below. |
| 1171 | */ |
| 1172 | |
| 1173 | /* Read current SCSI_CFG1 Register value. */ |
| 1174 | scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)(((iot))->read_2(((ioh)), ((0x0E)))); |
| 1175 | |
| 1176 | /* |
| 1177 | * If all three connectors are in use in ASC3550, return an error. |
| 1178 | */ |
| 1179 | if ((scsi_cfg1 & CABLE_ILLEGAL_A0x7) == 0 || |
| 1180 | (scsi_cfg1 & CABLE_ILLEGAL_B0xB) == 0) { |
| 1181 | return ADW_IERR_ILLEGAL_CONNECTION0x0400; |
| 1182 | } |
| 1183 | |
| 1184 | /* |
| 1185 | * If the cable is reversed all of the SCSI_CTRL register signals |
| 1186 | * will be set. Check for and return an error if this condition is |
| 1187 | * found. |
| 1188 | */ |
| 1189 | if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL)(((iot))->read_2(((ioh)), ((0x34)))) & 0x3F07)==0x3F07){ |
| 1190 | return ADW_IERR_REVERSED_CABLE0x1000; |
| 1191 | } |
| 1192 | |
| 1193 | /* |
| 1194 | * If this is a differential board and a single-ended device |
| 1195 | * is attached to one of the connectors, return an error. |
| 1196 | */ |
| 1197 | if ((scsi_cfg1 & ADW_DIFF_MODE0x0100) && |
| 1198 | (scsi_cfg1 & ADW_DIFF_SENSE0x0080) == 0) { |
| 1199 | return ADW_IERR_SINGLE_END_DEVICE0x0800; |
| 1200 | } |
| 1201 | |
| 1202 | /* |
| 1203 | * If automatic termination control is enabled, then set the |
| 1204 | * termination value based on a table listed in a_condor.h. |
| 1205 | * |
| 1206 | * If manual termination was specified with an EEPROM setting |
| 1207 | * then 'termination' was set-up in AdwInitFromEEPROM() and |
| 1208 | * is ready to be 'ored' into SCSI_CFG1. |
| 1209 | */ |
| 1210 | if (cfg->termination == 0) { |
| 1211 | /* |
| 1212 | * The software always controls termination by setting |
| 1213 | * TERM_CTL_SEL. |
| 1214 | * If TERM_CTL_SEL were set to 0, the hardware would set |
| 1215 | * termination. |
| 1216 | */ |
| 1217 | cfg->termination |= ADW_TERM_CTL_SEL0x0040; |
| 1218 | |
| 1219 | switch(scsi_cfg1 & ADW_CABLE_DETECT0x000F) { |
| 1220 | /* TERM_CTL_H: on, TERM_CTL_L: on */ |
| 1221 | case 0x3: case 0x7: case 0xB: |
| 1222 | case 0xD: case 0xE: case 0xF: |
| 1223 | cfg->termination |= |
| 1224 | (ADW_TERM_CTL_H0x0020 | ADW_TERM_CTL_L0x0010); |
| 1225 | break; |
| 1226 | |
| 1227 | /* TERM_CTL_H: on, TERM_CTL_L: off */ |
| 1228 | case 0x1: case 0x5: case 0x9: |
| 1229 | case 0xA: case 0xC: |
| 1230 | cfg->termination |= ADW_TERM_CTL_H0x0020; |
| 1231 | break; |
| 1232 | |
| 1233 | /* TERM_CTL_H: off, TERM_CTL_L: off */ |
| 1234 | case 0x2: case 0x6: |
| 1235 | break; |
| 1236 | } |
| 1237 | } |
| 1238 | |
| 1239 | /* |
| 1240 | * Clear any set TERM_CTL_H and TERM_CTL_L bits. |
| 1241 | */ |
| 1242 | scsi_cfg1 &= ~ADW_TERM_CTL0x0030; |
| 1243 | |
| 1244 | /* |
| 1245 | * Invert the TERM_CTL_H and TERM_CTL_L bits and then |
| 1246 | * set 'scsi_cfg1'. The TERM_POL bit does not need to be |
| 1247 | * referenced, because the hardware internally inverts |
| 1248 | * the Termination High and Low bits if TERM_POL is set. |
| 1249 | */ |
| 1250 | scsi_cfg1 |= (ADW_TERM_CTL_SEL0x0040 | (~cfg->termination & ADW_TERM_CTL0x0030)); |
| 1251 | |
| 1252 | /* |
| 1253 | * Set SCSI_CFG1 Microcode Default Value |
| 1254 | * |
| 1255 | * Set filter value and possibly modified termination control |
| 1256 | * bits in the Microcode SCSI_CFG1 Register Value. |
| 1257 | * |
| 1258 | * The microcode will set the SCSI_CFG1 register using this value |
| 1259 | * after it is started below. |
| 1260 | */ |
| 1261 | ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1,do { (((iot))->write_2(((ioh)), (0x04), ((0x00AE)))); (((iot ))->write_2(((ioh)), (0x06), ((0x0000 | scsi_cfg1)))); } while (0) |
| 1262 | ADW_FLTR_DISABLE | scsi_cfg1)do { (((iot))->write_2(((ioh)), (0x04), ((0x00AE)))); (((iot ))->write_2(((ioh)), (0x06), ((0x0000 | scsi_cfg1)))); } while (0); |
| 1263 | |
| 1264 | /* |
| 1265 | * Set MEM_CFG Microcode Default Value |
| 1266 | * |
| 1267 | * The microcode will set the MEM_CFG register using this value |
| 1268 | * after it is started below. |
| 1269 | * |
| 1270 | * MEM_CFG may be accessed as a word or byte, but only bits 0-7 |
| 1271 | * are defined. |
| 1272 | * |
| 1273 | * ASC-3550 has 8KB internal memory. |
| 1274 | */ |
| 1275 | ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,do { (((iot))->write_2(((ioh)), (0x04), ((0x00B0)))); (((iot ))->write_2(((ioh)), (0x06), ((0x40 | 0x08)))); } while (0 ) |
| 1276 | ADW_BIOS_EN | ADW_RAM_SZ_8KB)do { (((iot))->write_2(((ioh)), (0x04), ((0x00B0)))); (((iot ))->write_2(((ioh)), (0x06), ((0x40 | 0x08)))); } while (0 ); |
| 1277 | |
| 1278 | return 0; |
| 1279 | } |
| 1280 | |
| 1281 | |
| 1282 | int |
| 1283 | AdwASC38C0800Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, |
| 1284 | ADW_DVC_CFG *cfg) |
| 1285 | { |
| 1286 | u_int16_t scsi_cfg1; |
| 1287 | |
| 1288 | |
| 1289 | /* |
| 1290 | * Determine SCSI_CFG1 Microcode Default Value. |
| 1291 | * |
| 1292 | * The microcode will set the SCSI_CFG1 register using this value |
| 1293 | * after it is started below. |
| 1294 | */ |
| 1295 | |
| 1296 | /* Read current SCSI_CFG1 Register value. */ |
| 1297 | scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)(((iot))->read_2(((ioh)), ((0x0E)))); |
| 1298 | |
| 1299 | /* |
| 1300 | * If the cable is reversed all of the SCSI_CTRL register signals |
| 1301 | * will be set. Check for and return an error if this condition is |
| 1302 | * found. |
| 1303 | */ |
| 1304 | if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL)(((iot))->read_2(((ioh)), ((0x34)))) & 0x3F07)==0x3F07){ |
| 1305 | return ADW_IERR_REVERSED_CABLE0x1000; |
| 1306 | } |
| 1307 | |
| 1308 | /* |
| 1309 | * All kind of combinations of devices attached to one of four |
| 1310 | * connectors are acceptable except HVD device attached. |
| 1311 | * For example, LVD device can be attached to SE connector while |
| 1312 | * SE device attached to LVD connector. |
| 1313 | * If LVD device attached to SE connector, it only runs up to |
| 1314 | * Ultra speed. |
| 1315 | * |
| 1316 | * If an HVD device is attached to one of LVD connectors, return |
| 1317 | * an error. |
| 1318 | * However, there is no way to detect HVD device attached to |
| 1319 | * SE connectors. |
| 1320 | */ |
| 1321 | if (scsi_cfg1 & ADW_HVD0x1000) { |
| 1322 | return ADW_IERR_HVD_DEVICE0x0100; |
| 1323 | } |
| 1324 | |
| 1325 | /* |
| 1326 | * If either SE or LVD automatic termination control is enabled, then |
| 1327 | * set the termination value based on a table listed in a_condor.h. |
| 1328 | * |
| 1329 | * If manual termination was specified with an EEPROM setting then |
| 1330 | * 'termination' was set-up in AdwInitFromEEPROM() and is ready |
| 1331 | * to be 'ored' into SCSI_CFG1. |
| 1332 | */ |
| 1333 | if ((cfg->termination & ADW_TERM_SE0x0030) == 0) { |
| 1334 | /* SE automatic termination control is enabled. */ |
| 1335 | switch(scsi_cfg1 & ADW_C_DET_SE0x0003) { |
| 1336 | /* TERM_SE_HI: on, TERM_SE_LO: on */ |
| 1337 | case 0x1: case 0x2: case 0x3: |
| 1338 | cfg->termination |= ADW_TERM_SE0x0030; |
| 1339 | break; |
| 1340 | |
| 1341 | /* TERM_SE_HI: on, TERM_SE_LO: off */ |
| 1342 | case 0x0: |
| 1343 | cfg->termination |= ADW_TERM_SE_HI0x0020; |
| 1344 | break; |
| 1345 | } |
| 1346 | } |
| 1347 | |
| 1348 | if ((cfg->termination & ADW_TERM_LVD0x00C0) == 0) { |
| 1349 | /* LVD automatic termination control is enabled. */ |
| 1350 | switch(scsi_cfg1 & ADW_C_DET_LVD0x000C) { |
| 1351 | /* TERM_LVD_HI: on, TERM_LVD_LO: on */ |
| 1352 | case 0x4: case 0x8: case 0xC: |
| 1353 | cfg->termination |= ADW_TERM_LVD0x00C0; |
| 1354 | break; |
| 1355 | |
| 1356 | /* TERM_LVD_HI: off, TERM_LVD_LO: off */ |
| 1357 | case 0x0: |
| 1358 | break; |
| 1359 | } |
| 1360 | } |
| 1361 | |
| 1362 | /* |
| 1363 | * Clear any set TERM_SE and TERM_LVD bits. |
| 1364 | */ |
| 1365 | scsi_cfg1 &= (~ADW_TERM_SE0x0030 & ~ADW_TERM_LVD0x00C0); |
| 1366 | |
| 1367 | /* |
| 1368 | * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'. |
| 1369 | */ |
| 1370 | scsi_cfg1 |= (~cfg->termination & 0xF0); |
| 1371 | |
| 1372 | /* |
| 1373 | * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and |
| 1374 | * HVD/LVD/SE bits and set possibly modified termination control bits |
| 1375 | * in the Microcode SCSI_CFG1 Register Value. |
| 1376 | */ |
| 1377 | scsi_cfg1 &= (~ADW_BIG_ENDIAN0x8000 & ~ADW_DIS_TERM_DRV0x4000 & |
| 1378 | ~ADW_TERM_POL0x2000 & ~ADW_HVD_LVD_SE0x1C00); |
| 1379 | |
| 1380 | /* |
| 1381 | * Set SCSI_CFG1 Microcode Default Value |
| 1382 | * |
| 1383 | * Set possibly modified termination control and reset DIS_TERM_DRV |
| 1384 | * bits in the Microcode SCSI_CFG1 Register Value. |
| 1385 | * |
| 1386 | * The microcode will set the SCSI_CFG1 register using this value |
| 1387 | * after it is started below. |
| 1388 | */ |
| 1389 | ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1)do { (((iot))->write_2(((ioh)), (0x04), ((0x00AE)))); (((iot ))->write_2(((ioh)), (0x06), ((scsi_cfg1)))); } while (0); |
| 1390 | |
| 1391 | /* |
| 1392 | * Set MEM_CFG Microcode Default Value |
| 1393 | * |
| 1394 | * The microcode will set the MEM_CFG register using this value |
| 1395 | * after it is started below. |
| 1396 | * |
| 1397 | * MEM_CFG may be accessed as a word or byte, but only bits 0-7 |
| 1398 | * are defined. |
| 1399 | * |
| 1400 | * ASC-38C0800 has 16KB internal memory. |
| 1401 | */ |
| 1402 | ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,do { (((iot))->write_2(((ioh)), (0x04), ((0x00B0)))); (((iot ))->write_2(((ioh)), (0x06), ((0x40 | 0x0C)))); } while (0 ) |
| 1403 | ADW_BIOS_EN | ADW_RAM_SZ_16KB)do { (((iot))->write_2(((ioh)), (0x04), ((0x00B0)))); (((iot ))->write_2(((ioh)), (0x06), ((0x40 | 0x0C)))); } while (0 ); |
| 1404 | |
| 1405 | return 0; |
| 1406 | } |
| 1407 | |
| 1408 | |
| 1409 | int |
| 1410 | AdwASC38C1600Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, |
| 1411 | ADW_DVC_CFG *cfg) |
| 1412 | { |
| 1413 | u_int16_t scsi_cfg1; |
| 1414 | |
| 1415 | |
| 1416 | /* |
| 1417 | * Determine SCSI_CFG1 Microcode Default Value. |
| 1418 | * |
| 1419 | * The microcode will set the SCSI_CFG1 register using this value |
| 1420 | * after it is started below. |
| 1421 | * Each ASC-38C1600 function has only two cable detect bits. |
| 1422 | * The bus mode override bits are in IOPB_SOFT_OVER_WR. |
| 1423 | */ |
| 1424 | |
| 1425 | /* Read current SCSI_CFG1 Register value. */ |
| 1426 | scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)(((iot))->read_2(((ioh)), ((0x0E)))); |
| 1427 | |
| 1428 | /* |
| 1429 | * If the cable is reversed all of the SCSI_CTRL register signals |
| 1430 | * will be set. Check for and return an error if this condition is |
| 1431 | * found. |
| 1432 | */ |
| 1433 | if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL)(((iot))->read_2(((ioh)), ((0x34)))) & 0x3F07)==0x3F07){ |
| 1434 | return ADW_IERR_REVERSED_CABLE0x1000; |
| 1435 | } |
| 1436 | |
| 1437 | /* |
| 1438 | * Each ASC-38C1600 function has two connectors. Only an HVD device |
| 1439 | * cannot be connected to either connector. An LVD device or SE device |
| 1440 | * may be connected to either connector. If an SE device is connected, |
| 1441 | * then at most Ultra speed (20 MHz) can be used on both connectors. |
| 1442 | * |
| 1443 | * If an HVD device is attached, return an error. |
| 1444 | */ |
| 1445 | if (scsi_cfg1 & ADW_HVD0x1000) { |
| 1446 | return ADW_IERR_HVD_DEVICE0x0100; |
| 1447 | } |
| 1448 | |
| 1449 | /* |
| 1450 | * Each function in the ASC-38C1600 uses only the SE cable detect and |
| 1451 | * termination because there are two connectors for each function. |
| 1452 | * Each function may use either LVD or SE mode. |
| 1453 | * Corresponding the SE automatic termination control EEPROM bits are |
| 1454 | * used for each function. |
| 1455 | * Each function has its own EEPROM. If SE automatic control is enabled |
| 1456 | * for the function, then set the termination value based on a table |
| 1457 | * listed in adwlib.h. |
| 1458 | * |
| 1459 | * If manual termination is specified in the EEPROM for the function, |
| 1460 | * then 'termination' was set-up in AdwInitFromEEPROM() and is |
| 1461 | * ready to be 'ored' into SCSI_CFG1. |
| 1462 | */ |
| 1463 | if ((cfg->termination & ADW_TERM_SE0x0030) == 0) { |
| 1464 | /* SE automatic termination control is enabled. */ |
| 1465 | switch(scsi_cfg1 & ADW_C_DET_SE0x0003) { |
| 1466 | /* TERM_SE_HI: on, TERM_SE_LO: on */ |
| 1467 | case 0x1: case 0x2: case 0x3: |
| 1468 | cfg->termination |= ADW_TERM_SE0x0030; |
| 1469 | break; |
| 1470 | |
| 1471 | case 0x0: |
| 1472 | /* !!!!TODO!!!! */ |
| 1473 | // if (ASC_PCI_ID2FUNC(cfg->pci_slot_info) == 0) { |
| 1474 | /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */ |
| 1475 | // } |
| 1476 | // else |
| 1477 | // { |
| 1478 | /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */ |
| 1479 | cfg->termination |= ADW_TERM_SE_HI0x0020; |
| 1480 | // } |
| 1481 | break; |
| 1482 | } |
| 1483 | } |
| 1484 | |
| 1485 | /* |
| 1486 | * Clear any set TERM_SE bits. |
| 1487 | */ |
| 1488 | scsi_cfg1 &= ~ADW_TERM_SE0x0030; |
| 1489 | |
| 1490 | /* |
| 1491 | * Invert the TERM_SE bits and then set 'scsi_cfg1'. |
| 1492 | */ |
| 1493 | scsi_cfg1 |= (~cfg->termination & ADW_TERM_SE0x0030); |
| 1494 | |
| 1495 | /* |
| 1496 | * Clear Big Endian and Terminator Polarity bits and set possibly |
| 1497 | * modified termination control bits in the Microcode SCSI_CFG1 |
| 1498 | * Register Value. |
| 1499 | */ |
| 1500 | scsi_cfg1 &= (~ADW_BIG_ENDIAN0x8000 & ~ADW_DIS_TERM_DRV0x4000 & ~ADW_TERM_POL0x2000); |
| 1501 | |
| 1502 | /* |
| 1503 | * Set SCSI_CFG1 Microcode Default Value |
| 1504 | * |
| 1505 | * Set possibly modified termination control bits in the Microcode |
| 1506 | * SCSI_CFG1 Register Value. |
| 1507 | * |
| 1508 | * The microcode will set the SCSI_CFG1 register using this value |
| 1509 | * after it is started below. |
| 1510 | */ |
| 1511 | ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1)do { (((iot))->write_2(((ioh)), (0x04), ((0x00AE)))); (((iot ))->write_2(((ioh)), (0x06), ((scsi_cfg1)))); } while (0); |
| 1512 | |
| 1513 | /* |
| 1514 | * Set MEM_CFG Microcode Default Value |
| 1515 | * |
| 1516 | * The microcode will set the MEM_CFG register using this value |
| 1517 | * after it is started below. |
| 1518 | * |
| 1519 | * MEM_CFG may be accessed as a word or byte, but only bits 0-7 |
| 1520 | * are defined. |
| 1521 | * |
| 1522 | * ASC-38C1600 has 32KB internal memory. |
| 1523 | */ |
| 1524 | ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,do { (((iot))->write_2(((ioh)), (0x04), ((0x00B0)))); (((iot ))->write_2(((ioh)), (0x06), ((0x40 | 0x10)))); } while (0 ) |
| 1525 | ADW_BIOS_EN | ADW_RAM_SZ_32KB)do { (((iot))->write_2(((ioh)), (0x04), ((0x00B0)))); (((iot ))->write_2(((ioh)), (0x06), ((0x40 | 0x10)))); } while (0 ); |
| 1526 | |
| 1527 | return 0; |
| 1528 | } |
| 1529 | |
| 1530 | |
| 1531 | /* |
| 1532 | * Read EEPROM configuration into the specified buffer. |
| 1533 | * |
| 1534 | * Return a checksum based on the EEPROM configuration read. |
| 1535 | */ |
| 1536 | u_int16_t |
| 1537 | AdwGetEEPROMConfig(bus_space_tag_t iot, bus_space_handle_t ioh, |
| 1538 | ADW_EEPROM *cfg_buf) |
| 1539 | { |
| 1540 | u_int16_t wval, chksum; |
| 1541 | u_int16_t *wbuf; |
| 1542 | int eep_addr; |
| 1543 | |
| 1544 | |
| 1545 | wbuf = (u_int16_t *) cfg_buf; |
| 1546 | chksum = 0; |
| 1547 | |
| 1548 | for (eep_addr = ADW_EEP_DVC_CFG_BEGIN(0x00); |
| 1549 | eep_addr < ADW_EEP_DVC_CFG_END(0x15); |
| 1550 | eep_addr++, wbuf++) { |
| 1551 | wval = AdwReadEEPWord(iot, ioh, eep_addr); |
| 1552 | chksum += wval; |
| 1553 | *wbuf = wval; |
| 1554 | } |
| 1555 | |
| 1556 | *wbuf = AdwReadEEPWord(iot, ioh, eep_addr); |
| 1557 | wbuf++; |
| 1558 | for (eep_addr = ADW_EEP_DVC_CTL_BEGIN(0x16); |
| 1559 | eep_addr < ADW_EEP_MAX_WORD_ADDR(0x1E); |
| 1560 | eep_addr++, wbuf++) { |
| 1561 | *wbuf = AdwReadEEPWord(iot, ioh, eep_addr); |
| 1562 | } |
| 1563 | |
| 1564 | return chksum; |
| 1565 | } |
| 1566 | |
| 1567 | |
| 1568 | /* |
| 1569 | * Read the EEPROM from specified location |
| 1570 | */ |
| 1571 | u_int16_t |
| 1572 | AdwReadEEPWord(bus_space_tag_t iot, bus_space_handle_t ioh, int eep_word_addr) |
| 1573 | { |
| 1574 | ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,(((iot))->write_2(((ioh)), ((0x1A)), ((0x80 | eep_word_addr )))) |
| 1575 | ADW_EEP_CMD_READ | eep_word_addr)(((iot))->write_2(((ioh)), ((0x1A)), ((0x80 | eep_word_addr )))); |
| 1576 | AdwWaitEEPCmd(iot, ioh); |
| 1577 | |
| 1578 | return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA)(((iot))->read_2(((ioh)), ((0x1C)))); |
| 1579 | } |
| 1580 | |
| 1581 | |
| 1582 | /* |
| 1583 | * Wait for EEPROM command to complete |
| 1584 | */ |
| 1585 | void |
| 1586 | AdwWaitEEPCmd(bus_space_tag_t iot, bus_space_handle_t ioh) |
| 1587 | { |
| 1588 | int eep_delay_ms; |
| 1589 | |
| 1590 | |
| 1591 | for (eep_delay_ms = 0; eep_delay_ms < ADW_EEP_DELAY_MS100; eep_delay_ms++){ |
| 1592 | if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD)(((iot))->read_2(((ioh)), ((0x1A)))) & |
| 1593 | ADW_EEP_CMD_DONE0x0200) { |
| 1594 | break; |
| 1595 | } |
| 1596 | AdwSleepMilliSecond(1); |
| 1597 | } |
| 1598 | |
| 1599 | ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD)(((iot))->read_2(((ioh)), ((0x1A)))); |
| 1600 | } |
| 1601 | |
| 1602 | |
| 1603 | /* |
| 1604 | * Write the EEPROM from 'cfg_buf'. |
| 1605 | */ |
| 1606 | void |
| 1607 | AdwSetEEPROMConfig(bus_space_tag_t iot, bus_space_handle_t ioh, |
| 1608 | ADW_EEPROM *cfg_buf) |
| 1609 | { |
| 1610 | u_int16_t *wbuf; |
| 1611 | u_int16_t addr, chksum; |
| 1612 | |
| 1613 | |
| 1614 | wbuf = (u_int16_t *) cfg_buf; |
| 1615 | chksum = 0; |
| 1616 | |
| 1617 | ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ADW_EEP_CMD_WRITE_ABLE)(((iot))->write_2(((ioh)), ((0x1A)), ((0x30)))); |
| 1618 | AdwWaitEEPCmd(iot, ioh); |
| 1619 | |
| 1620 | /* |
| 1621 | * Write EEPROM from word 0 to word 20 |
| 1622 | */ |
| 1623 | for (addr = ADW_EEP_DVC_CFG_BEGIN(0x00); |
| 1624 | addr < ADW_EEP_DVC_CFG_END(0x15); addr++, wbuf++) { |
| 1625 | chksum += *wbuf; |
| 1626 | ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf)(((iot))->write_2(((ioh)), ((0x1C)), ((*wbuf)))); |
| 1627 | ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,(((iot))->write_2(((ioh)), ((0x1A)), ((0x40 | addr)))) |
| 1628 | ADW_EEP_CMD_WRITE | addr)(((iot))->write_2(((ioh)), ((0x1A)), ((0x40 | addr)))); |
| 1629 | AdwWaitEEPCmd(iot, ioh); |
| 1630 | AdwSleepMilliSecond(ADW_EEP_DELAY_MS100); |
| 1631 | } |
| 1632 | |
| 1633 | /* |
| 1634 | * Write EEPROM checksum at word 21 |
| 1635 | */ |
| 1636 | ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum)(((iot))->write_2(((ioh)), ((0x1C)), ((chksum)))); |
| 1637 | ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,(((iot))->write_2(((ioh)), ((0x1A)), ((0x40 | addr)))) |
| 1638 | ADW_EEP_CMD_WRITE | addr)(((iot))->write_2(((ioh)), ((0x1A)), ((0x40 | addr)))); |
| 1639 | AdwWaitEEPCmd(iot, ioh); |
| 1640 | wbuf++; /* skip over check_sum */ |
| 1641 | |
| 1642 | /* |
| 1643 | * Write EEPROM OEM name at words 22 to 29 |
| 1644 | */ |
| 1645 | for (addr = ADW_EEP_DVC_CTL_BEGIN(0x16); |
| 1646 | addr < ADW_EEP_MAX_WORD_ADDR(0x1E); addr++, wbuf++) { |
| 1647 | ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf)(((iot))->write_2(((ioh)), ((0x1C)), ((*wbuf)))); |
| 1648 | ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,(((iot))->write_2(((ioh)), ((0x1A)), ((0x40 | addr)))) |
| 1649 | ADW_EEP_CMD_WRITE | addr)(((iot))->write_2(((ioh)), ((0x1A)), ((0x40 | addr)))); |
| 1650 | AdwWaitEEPCmd(iot, ioh); |
| 1651 | } |
| 1652 | |
| 1653 | ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,(((iot))->write_2(((ioh)), ((0x1A)), ((0x00)))) |
| 1654 | ADW_EEP_CMD_WRITE_DISABLE)(((iot))->write_2(((ioh)), ((0x1A)), ((0x00)))); |
| 1655 | AdwWaitEEPCmd(iot, ioh); |
| 1656 | |
| 1657 | return; |
| 1658 | } |
| 1659 | |
| 1660 | |
| 1661 | /* |
| 1662 | * AdwExeScsiQueue() - Send a request to the RISC microcode program. |
| 1663 | * |
| 1664 | * Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q, |
| 1665 | * add the carrier to the ICQ (Initiator Command Queue), and tickle the |
| 1666 | * RISC to notify it a new command is ready to be executed. |
| 1667 | * |
| 1668 | * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be |
| 1669 | * set to SCSI_MAX_RETRY. |
| 1670 | * |
| 1671 | * Return: |
| 1672 | * ADW_SUCCESS(1) - The request was successfully queued. |
| 1673 | * ADW_BUSY(0) - Resource unavailable; Retry again after pending |
| 1674 | * request completes. |
| 1675 | * ADW_ERROR(-1) - Invalid ADW_SCSI_REQ_Q request structure |
| 1676 | * host IC error. |
| 1677 | */ |
| 1678 | int |
| 1679 | AdwExeScsiQueue(ADW_SOFTC *sc, ADW_SCSI_REQ_Q *scsiq) |
| 1680 | { |
| 1681 | bus_space_tag_t iot = sc->sc_iot; |
| 1682 | bus_space_handle_t ioh = sc->sc_ioh; |
| 1683 | ADW_CCB *ccb; |
| 1684 | long req_size; |
| 1685 | u_int32_t req_paddr; |
| 1686 | ADW_CARRIER *new_carrp; |
| 1687 | |
| 1688 | /* |
| 1689 | * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID. |
| 1690 | */ |
| 1691 | if (scsiq->target_id > ADW_MAX_TID15) { |
| 1692 | scsiq->host_status = QHSTA_M_INVALID_DEVICE0x45; |
| 1693 | scsiq->done_status = QD_WITH_ERROR0x04; |
| 1694 | return ADW_ERROR(-1); |
| 1695 | } |
| 1696 | |
| 1697 | /* |
| 1698 | * Beginning of CRITICAL SECTION: ASSUME splbio() in effect |
| 1699 | */ |
| 1700 | |
| 1701 | ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr); |
| 1702 | |
| 1703 | /* |
| 1704 | * Allocate a carrier and initialize fields. |
| 1705 | */ |
| 1706 | if ((new_carrp = sc->carr_freelist) == NULL((void *)0)) { |
| 1707 | return ADW_BUSY0; |
| 1708 | } |
| 1709 | sc->carr_freelist = ADW_CARRIER_VADDR(sc,((ADW_CARRIER *) (((u_int8_t *)(sc)->sc_control->carriers ) + ((u_long)((new_carrp->next_ba) & 0xFFFFFFF0)) - (sc )->sc_dmamap_carrier->dm_segs[0].ds_addr)) |
| 1710 | ADW_GET_CARRP(new_carrp->next_ba))((ADW_CARRIER *) (((u_int8_t *)(sc)->sc_control->carriers ) + ((u_long)((new_carrp->next_ba) & 0xFFFFFFF0)) - (sc )->sc_dmamap_carrier->dm_segs[0].ds_addr)); |
| 1711 | sc->carr_pending_cnt++; |
| 1712 | |
| 1713 | /* |
| 1714 | * Set the carrier to be a stopper by setting 'next_ba' |
| 1715 | * to the stopper value. The current stopper will be changed |
| 1716 | * below to point to the new stopper. |
| 1717 | */ |
| 1718 | new_carrp->next_ba = ADW_CQ_STOPPER0x00000000; |
| 1719 | |
| 1720 | req_size = sizeof(ADW_SCSI_REQ_Q); |
| 1721 | req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr + |
| 1722 | ADW_CCB_OFF(ccb)(__builtin_offsetof(struct adw_control, ccbs[0]) + (((u_long) (ccb)) - ((u_long)&sc->sc_control->ccbs[0]))) + offsetof(struct adw_ccb, scsiq)__builtin_offsetof(struct adw_ccb, scsiq); |
| 1723 | |
| 1724 | /* Save physical address of ADW_SCSI_REQ_Q and Carrier. */ |
| 1725 | scsiq->scsiq_rptr = req_paddr; |
| 1726 | |
| 1727 | /* |
| 1728 | * Every ADW_SCSI_REQ_Q.carr_ba is byte swapped to little-endian |
| 1729 | * order during initialization. |
| 1730 | */ |
| 1731 | scsiq->carr_ba = sc->icq_sp->carr_ba; |
| 1732 | scsiq->carr_va = sc->icq_sp->carr_ba; |
| 1733 | |
| 1734 | /* |
| 1735 | * Use the current stopper to send the ADW_SCSI_REQ_Q command to |
| 1736 | * the microcode. The newly allocated stopper will become the new |
| 1737 | * stopper. |
| 1738 | */ |
| 1739 | sc->icq_sp->areq_ba = req_paddr; |
| 1740 | |
| 1741 | /* |
| 1742 | * Set the 'next_ba' pointer for the old stopper to be the |
| 1743 | * physical address of the new stopper. The RISC can only |
| 1744 | * follow physical addresses. |
| 1745 | */ |
| 1746 | sc->icq_sp->next_ba = new_carrp->carr_ba; |
| 1747 | |
| 1748 | #if ADW_DEBUG |
| 1749 | printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n", |
| 1750 | sc->icq_sp->carr_id, |
| 1751 | sc->icq_sp->carr_ba, |
| 1752 | sc->icq_sp->areq_ba, |
| 1753 | sc->icq_sp->next_ba); |
| 1754 | #endif |
| 1755 | /* |
| 1756 | * Set the host adapter stopper pointer to point to the new carrier. |
| 1757 | */ |
| 1758 | sc->icq_sp = new_carrp; |
| 1759 | |
| 1760 | if (sc->chip_type == ADW_CHIP_ASC35500x01 || |
| 1761 | sc->chip_type == ADW_CHIP_ASC38C08000x02) { |
| 1762 | /* |
| 1763 | * Tickle the RISC to tell it to read its Command Queue Head |
| 1764 | * pointer. |
| 1765 | */ |
| 1766 | ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_A)(((iot))->write_1(((ioh)), ((0x22)), ((0x01)))); |
| 1767 | if (sc->chip_type == ADW_CHIP_ASC35500x01) { |
| 1768 | /* |
| 1769 | * Clear the tickle value. In the ASC-3550 the RISC flag |
| 1770 | * command 'clr_tickle_a' does not work unless the host |
| 1771 | * value is cleared. |
| 1772 | */ |
| 1773 | ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,(((iot))->write_1(((ioh)), ((0x22)), ((0x00)))) |
| 1774 | ADW_TICKLE_NOP)(((iot))->write_1(((ioh)), ((0x22)), ((0x00)))); |
| 1775 | } |
| 1776 | } else if (sc->chip_type == ADW_CHIP_ASC38C16000x03) { |
| 1777 | /* |
| 1778 | * Notify the RISC a carrier is ready by writing the physical |
| 1779 | * address of the new carrier stopper to the COMMA register. |
| 1780 | */ |
| 1781 | ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,(((iot))->write_4(((ioh)), ((0x14)), ((new_carrp->carr_ba )))) |
| 1782 | new_carrp->carr_ba)(((iot))->write_4(((ioh)), ((0x14)), ((new_carrp->carr_ba )))); |
| 1783 | } |
| 1784 | |
| 1785 | /* |
| 1786 | * End of CRITICAL SECTION: Must be protected within splbio/splx pair |
| 1787 | */ |
| 1788 | |
| 1789 | return ADW_SUCCESS1; |
| 1790 | } |
| 1791 | |
| 1792 | |
| 1793 | void |
| 1794 | AdwResetChip(bus_space_tag_t iot, bus_space_handle_t ioh) |
| 1795 | { |
| 1796 | |
| 1797 | /* |
| 1798 | * Reset Chip. |
| 1799 | */ |
| 1800 | ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,(((iot))->write_2(((ioh)), ((0x02)), ((0x00C6)))) |
| 1801 | ADW_CTRL_REG_CMD_RESET)(((iot))->write_2(((ioh)), ((0x02)), ((0x00C6)))); |
| 1802 | AdwSleepMilliSecond(100); |
| 1803 | ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,(((iot))->write_2(((ioh)), ((0x02)), ((0x00C5)))) |
| 1804 | ADW_CTRL_REG_CMD_WR_IO_REG)(((iot))->write_2(((ioh)), ((0x02)), ((0x00C5)))); |
| 1805 | } |
| 1806 | |
| 1807 | |
| 1808 | /* |
| 1809 | * Reset SCSI Bus and purge all outstanding requests. |
| 1810 | * |
| 1811 | * Return Value: |
| 1812 | * ADW_TRUE(1) - All requests are purged and SCSI Bus is reset. |
| 1813 | * ADW_FALSE(0) - Microcode command failed. |
| 1814 | * ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC |
| 1815 | * may be hung which requires driver recovery. |
| 1816 | */ |
| 1817 | int |
| 1818 | AdwResetCCB(ADW_SOFTC *sc) |
| 1819 | { |
| 1820 | int status; |
| 1821 | |
| 1822 | /* |
| 1823 | * Send the SCSI Bus Reset idle start idle command which asserts |
| 1824 | * the SCSI Bus Reset signal. |
| 1825 | */ |
| 1826 | status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START0x0020, 0L); |
| 1827 | if (status != ADW_TRUE1) { |
| 1828 | return status; |
| 1829 | } |
| 1830 | |
| 1831 | /* |
| 1832 | * Delay for the specified SCSI Bus Reset hold time. |
| 1833 | * |
| 1834 | * The hold time delay is done on the host because the RISC has no |
| 1835 | * microsecond accurate timer. |
| 1836 | */ |
| 1837 | AdwDelayMicroSecond((u_int16_t) ADW_SCSI_RESET_HOLD_TIME_US60); |
| 1838 | |
| 1839 | /* |
| 1840 | * Send the SCSI Bus Reset end idle command which de-asserts |
| 1841 | * the SCSI Bus Reset signal and purges any pending requests. |
| 1842 | */ |
| 1843 | status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END0x0040, 0L); |
| 1844 | if (status != ADW_TRUE1) { |
| 1845 | return status; |
| 1846 | } |
| 1847 | |
| 1848 | AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000); |
| 1849 | |
| 1850 | return status; |
| 1851 | } |
| 1852 | |
| 1853 | |
| 1854 | /* |
| 1855 | * Reset chip and SCSI Bus. |
| 1856 | * |
| 1857 | * Return Value: |
| 1858 | * ADW_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful. |
| 1859 | * ADW_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure. |
| 1860 | */ |
| 1861 | int |
| 1862 | AdwResetSCSIBus(ADW_SOFTC *sc) |
| 1863 | { |
| 1864 | bus_space_tag_t iot = sc->sc_iot; |
| 1865 | bus_space_handle_t ioh = sc->sc_ioh; |
| 1866 | int status; |
| 1867 | u_int16_t wdtr_able, sdtr_able, ppr_able = 0, tagqng_able; |
| 1868 | u_int8_t tid, max_cmd[ADW_MAX_TID15 + 1]; |
| 1869 | u_int16_t bios_sig; |
| 1870 | |
| 1871 | |
| 1872 | /* |
| 1873 | * Save current per TID negotiated values. |
| 1874 | */ |
| 1875 | ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able)do { (((iot))->write_2(((ioh)), (0x04), ((0x009C)))); (wdtr_able ) = (((iot))->read_2(((ioh)), (0x06))); } while (0); |
| 1876 | ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able)do { (((iot))->write_2(((ioh)), (0x04), ((0x009E)))); (sdtr_able ) = (((iot))->read_2(((ioh)), (0x06))); } while (0); |
| 1877 | if (sc->chip_type == ADW_CHIP_ASC38C16000x03) { |
| 1878 | ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able)do { (((iot))->write_2(((ioh)), (0x04), ((0x017A)))); (ppr_able ) = (((iot))->read_2(((ioh)), (0x06))); } while (0); |
| 1879 | } |
| 1880 | ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able)do { (((iot))->write_2(((ioh)), (0x04), ((0x00A0)))); (tagqng_able ) = (((iot))->read_2(((ioh)), (0x06))); } while (0); |
| 1881 | for (tid = 0; tid <= ADW_MAX_TID15; tid++) { |
| 1882 | ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,do { (((iot))->write_2(((ioh)), (0x04), ((0x00D0 + tid)))) ; (max_cmd[tid]) = (((iot))->read_1(((ioh)), (0x06))); } while (0) |
| 1883 | max_cmd[tid])do { (((iot))->write_2(((ioh)), (0x04), ((0x00D0 + tid)))) ; (max_cmd[tid]) = (((iot))->read_1(((ioh)), (0x06))); } while (0); |
| 1884 | } |
| 1885 | |
| 1886 | /* |
| 1887 | * Force the AdwInitAscDriver() function to perform a SCSI Bus Reset |
| 1888 | * by clearing the BIOS signature word. |
| 1889 | * The initialization functions assumes a SCSI Bus Reset is not |
| 1890 | * needed if the BIOS signature word is present. |
| 1891 | */ |
| 1892 | ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig)do { (((iot))->write_2(((ioh)), (0x04), ((0x0058)))); (bios_sig ) = (((iot))->read_2(((ioh)), (0x06))); } while (0); |
| 1893 | ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0)do { (((iot))->write_2(((ioh)), (0x04), ((0x0058)))); (((iot ))->write_2(((ioh)), (0x06), ((0)))); } while (0); |
| 1894 | |
| 1895 | /* |
| 1896 | * Stop chip and reset it. |
| 1897 | */ |
| 1898 | ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP)(((iot))->write_2(((ioh)), ((0x0A)), (((0x0000))))); |
| 1899 | ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,(((iot))->write_2(((ioh)), ((0x02)), ((0x00C6)))) |
| 1900 | ADW_CTRL_REG_CMD_RESET)(((iot))->write_2(((ioh)), ((0x02)), ((0x00C6)))); |
| 1901 | AdwSleepMilliSecond(100); |
| 1902 | ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,(((iot))->write_2(((ioh)), ((0x02)), ((0x00C5)))) |
| 1903 | ADW_CTRL_REG_CMD_WR_IO_REG)(((iot))->write_2(((ioh)), ((0x02)), ((0x00C5)))); |
| 1904 | |
| 1905 | /* |
| 1906 | * Reset Adw Library error code, if any, and try |
| 1907 | * re-initializing the chip. |
| 1908 | * Then translate initialization return value to status value. |
| 1909 | */ |
| 1910 | status = (AdwInitDriver(sc) == 0)? ADW_TRUE1 : ADW_FALSE0; |
| 1911 | |
| 1912 | /* |
| 1913 | * Restore the BIOS signature word. |
| 1914 | */ |
| 1915 | ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig)do { (((iot))->write_2(((ioh)), (0x04), ((0x0058)))); (((iot ))->write_2(((ioh)), (0x06), ((bios_sig)))); } while (0); |
| 1916 | |
| 1917 | /* |
| 1918 | * Restore per TID negotiated values. |
| 1919 | */ |
| 1920 | ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able)do { (((iot))->write_2(((ioh)), (0x04), ((0x009C)))); (((iot ))->write_2(((ioh)), (0x06), ((wdtr_able)))); } while (0); |
| 1921 | ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able)do { (((iot))->write_2(((ioh)), (0x04), ((0x009E)))); (((iot ))->write_2(((ioh)), (0x06), ((sdtr_able)))); } while (0); |
| 1922 | if (sc->chip_type == ADW_CHIP_ASC38C16000x03) { |
| 1923 | ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able)do { (((iot))->write_2(((ioh)), (0x04), ((0x017A)))); (((iot ))->write_2(((ioh)), (0x06), ((ppr_able)))); } while (0); |
| 1924 | } |
| 1925 | ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able)do { (((iot))->write_2(((ioh)), (0x04), ((0x00A0)))); (((iot ))->write_2(((ioh)), (0x06), ((tagqng_able)))); } while (0 ); |
| 1926 | for (tid = 0; tid <= ADW_MAX_TID15; tid++) { |
| 1927 | ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,do { (((iot))->write_2(((ioh)), (0x04), ((0x00D0 + tid)))) ; (((iot))->write_1(((ioh)), (0x06), ((max_cmd[tid])))); } while (0) |
| 1928 | max_cmd[tid])do { (((iot))->write_2(((ioh)), (0x04), ((0x00D0 + tid)))) ; (((iot))->write_1(((ioh)), (0x06), ((max_cmd[tid])))); } while (0); |
| 1929 | } |
| 1930 | |
| 1931 | return status; |
| 1932 | } |
| 1933 | |
| 1934 | |
| 1935 | /* |
| 1936 | * Adw Library Interrupt Service Routine |
| 1937 | * |
| 1938 | * This function is called by a driver's interrupt service routine. |
| 1939 | * The function disables and re-enables interrupts. |
| 1940 | * |
| 1941 | * Note: AdwISR() can be called when interrupts are disabled or even |
| 1942 | * when there is no hardware interrupt condition present. It will |
| 1943 | * always check for completed idle commands and microcode requests. |
| 1944 | * This is an important feature that shouldn't be changed because it |
| 1945 | * allows commands to be completed from polling mode loops. |
| 1946 | * |
| 1947 | * Return: |
| 1948 | * ADW_TRUE(1) - interrupt was pending |
| 1949 | * ADW_FALSE(0) - no interrupt was pending |
| 1950 | */ |
| 1951 | int |
| 1952 | AdwISR(ADW_SOFTC *sc) |
| 1953 | { |
| 1954 | bus_space_tag_t iot = sc->sc_iot; |
| 1955 | bus_space_handle_t ioh = sc->sc_ioh; |
| 1956 | u_int8_t int_stat; |
| 1957 | u_int16_t target_bit; |
| 1958 | ADW_CARRIER *free_carrp/*, *ccb_carr*/; |
| 1959 | u_int32_t irq_next_pa; |
| 1960 | ADW_SCSI_REQ_Q *scsiq; |
| 1961 | ADW_CCB *ccb; |
| 1962 | int s; |
| 1963 | |
| 1964 | |
| 1965 | s = splbio()splraise(0x3); |
| 1966 | |
| 1967 | /* Reading the register clears the interrupt. */ |
| 1968 | int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG)(((iot))->read_1(((ioh)), ((0x00)))); |
| 1969 | |
| 1970 | if ((int_stat & (ADW_INTR_STATUS_INTRA0x01 | ADW_INTR_STATUS_INTRB0x02 | |
| 1971 | ADW_INTR_STATUS_INTRC0x04)) == 0) { |
| 1972 | splx(s)spllower(s); |
| 1973 | return ADW_FALSE0; |
| 1974 | } |
| 1975 | |
| 1976 | /* |
| 1977 | * Notify the driver of an asynchronous microcode condition by |
| 1978 | * calling the ADW_SOFTC.async_callback function. The function |
| 1979 | * is passed the microcode ADW_MC_INTRB_CODE byte value. |
| 1980 | */ |
| 1981 | if (int_stat & ADW_INTR_STATUS_INTRB0x02) { |
| 1982 | u_int8_t intrb_code; |
| 1983 | |
| 1984 | ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code)do { (((iot))->write_2(((ioh)), (0x04), ((0x009B)))); (intrb_code ) = (((iot))->read_1(((ioh)), (0x06))); } while (0); |
| 1985 | |
| 1986 | if (sc->chip_type == ADW_CHIP_ASC35500x01 || |
| 1987 | sc->chip_type == ADW_CHIP_ASC38C08000x02) { |
| 1988 | if (intrb_code == ADW_ASYNC_CARRIER_READY_FAILURE0x03 && |
| 1989 | sc->carr_pending_cnt != 0) { |
| 1990 | ADW_WRITE_BYTE_REGISTER(iot, ioh,(((iot))->write_1(((ioh)), ((0x22)), ((0x01)))) |
| 1991 | IOPB_TICKLE, ADW_TICKLE_A)(((iot))->write_1(((ioh)), ((0x22)), ((0x01)))); |
| 1992 | if (sc->chip_type == ADW_CHIP_ASC35500x01) { |
| 1993 | ADW_WRITE_BYTE_REGISTER(iot, ioh,(((iot))->write_1(((ioh)), ((0x22)), ((0x00)))) |
| 1994 | IOPB_TICKLE, ADW_TICKLE_NOP)(((iot))->write_1(((ioh)), ((0x22)), ((0x00)))); |
| 1995 | } |
| 1996 | } |
| 1997 | } |
| 1998 | |
| 1999 | if (sc->async_callback != 0) { |
| 2000 | (*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code); |
| 2001 | } |
| 2002 | } |
| 2003 | |
| 2004 | /* |
| 2005 | * Check if the IRQ stopper carrier contains a completed request. |
| 2006 | */ |
| 2007 | while (((irq_next_pa = sc->irq_sp->next_ba) & ADW_RQ_DONE0x00000001) != 0) |
| 2008 | { |
| 2009 | #if ADW_DEBUG |
| 2010 | printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n", |
| 2011 | sc->irq_sp->carr_id, |
| 2012 | sc->irq_sp->carr_ba, |
| 2013 | sc->irq_sp->areq_ba, |
| 2014 | sc->irq_sp->next_ba); |
| 2015 | #endif |
| 2016 | /* |
| 2017 | * Get a pointer to the newly completed ADW_SCSI_REQ_Q |
| 2018 | * structure. |
| 2019 | * The RISC will have set 'areq_ba' to a virtual address. |
| 2020 | * |
| 2021 | * The firmware will have copied the ADW_SCSI_REQ_Q.ccb_ptr |
| 2022 | * field to the carrier ADW_CARRIER.areq_ba field. |
| 2023 | * The conversion below complements the conversion of |
| 2024 | * ADW_SCSI_REQ_Q.ccb_ptr' in AdwExeScsiQueue(). |
| 2025 | */ |
| 2026 | ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba); |
| 2027 | scsiq = &ccb->scsiq; |
| 2028 | scsiq->ccb_ptr = sc->irq_sp->areq_ba; |
| 2029 | |
| 2030 | /* |
| 2031 | * Request finished with good status and the queue was not |
| 2032 | * DMAed to host memory by the firmware. Set all status fields |
| 2033 | * to indicate good status. |
| 2034 | */ |
| 2035 | if ((irq_next_pa & ADW_RQ_GOOD0x00000002) != 0) { |
| 2036 | scsiq->done_status = QD_NO_ERROR0x01; |
| 2037 | scsiq->host_status = scsiq->scsi_status = 0; |
| 2038 | scsiq->data_cnt = 0L; |
| 2039 | } |
| 2040 | |
| 2041 | /* |
| 2042 | * Advance the stopper pointer to the next carrier |
| 2043 | * ignoring the lower four bits. Free the previous |
| 2044 | * stopper carrier. |
| 2045 | */ |
| 2046 | free_carrp = sc->irq_sp; |
| 2047 | sc->irq_sp = ADW_CARRIER_VADDR(sc, ADW_GET_CARRP(irq_next_pa))((ADW_CARRIER *) (((u_int8_t *)(sc)->sc_control->carriers ) + ((u_long)((irq_next_pa) & 0xFFFFFFF0)) - (sc)->sc_dmamap_carrier ->dm_segs[0].ds_addr)); |
| 2048 | |
| 2049 | free_carrp->next_ba = (sc->carr_freelist == NULL((void *)0)) ? 0 |
| 2050 | : sc->carr_freelist->carr_ba; |
| 2051 | sc->carr_freelist = free_carrp; |
| 2052 | sc->carr_pending_cnt--; |
| 2053 | |
| 2054 | target_bit = ADW_TID_TO_TIDMASK(scsiq->target_id)(0x01 << ((scsiq->target_id) & 15)); |
| 2055 | |
| 2056 | /* |
| 2057 | * Clear request microcode control flag. |
| 2058 | */ |
| 2059 | scsiq->cntl = 0; |
| 2060 | |
| 2061 | /* |
| 2062 | * Check Condition handling |
| 2063 | */ |
| 2064 | /* |
| 2065 | * If the command that completed was a SCSI INQUIRY and |
| 2066 | * LUN 0 was sent the command, then process the INQUIRY |
| 2067 | * command information for the device. |
| 2068 | */ |
| 2069 | if (scsiq->done_status == QD_NO_ERROR0x01 && |
| 2070 | scsiq->cdb[0] == INQUIRY0x12 && |
| 2071 | scsiq->target_lun == 0) { |
| 2072 | AdwInquiryHandling(sc, scsiq); |
| 2073 | } |
| 2074 | |
| 2075 | /* |
| 2076 | * Notify the driver of the completed request by passing |
| 2077 | * the ADW_SCSI_REQ_Q pointer to its callback function. |
| 2078 | */ |
| 2079 | (*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq); |
| 2080 | /* |
| 2081 | * Note: After the driver callback function is called, 'scsiq' |
| 2082 | * can no longer be referenced. |
| 2083 | * |
| 2084 | * Fall through and continue processing other completed |
| 2085 | * requests... |
| 2086 | */ |
| 2087 | } |
| 2088 | |
| 2089 | splx(s)spllower(s); |
| 2090 | |
| 2091 | return ADW_TRUE1; |
| 2092 | } |
| 2093 | |
| 2094 | |
| 2095 | /* |
| 2096 | * Send an idle command to the chip and wait for completion. |
| 2097 | * |
| 2098 | * Command completion is polled for once per microsecond. |
| 2099 | * |
| 2100 | * The function can be called from anywhere including an interrupt handler. |
| 2101 | * But the function is not re-entrant, so it uses the splbio/splx() |
| 2102 | * functions to prevent reentrancy. |
| 2103 | * |
| 2104 | * Return Values: |
| 2105 | * ADW_TRUE - command completed successfully |
| 2106 | * ADW_FALSE - command failed |
| 2107 | * ADW_ERROR - command timed out |
| 2108 | */ |
| 2109 | int |
| 2110 | AdwSendIdleCmd(ADW_SOFTC *sc, u_int16_t idle_cmd, u_int32_t idle_cmd_parameter) |
| 2111 | { |
| 2112 | bus_space_tag_t iot = sc->sc_iot; |
| 2113 | bus_space_handle_t ioh = sc->sc_ioh; |
| 2114 | u_int16_t result; |
| 2115 | u_int32_t i, j, s; |
| 2116 | |
| 2117 | s = splbio()splraise(0x3); |
| 2118 | |
| 2119 | /* |
| 2120 | * Clear the idle command status which is set by the microcode |
| 2121 | * to a non-zero value to indicate when the command is completed. |
| 2122 | */ |
| 2123 | ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0)do { (((iot))->write_2(((ioh)), (0x04), ((0x00A4)))); (((iot ))->write_2(((ioh)), (0x06), (((u_int16_t) 0)))); } while ( 0); |
| 2124 | |
| 2125 | /* |
| 2126 | * Write the idle command value after the idle command parameter |
| 2127 | * has been written to avoid a race condition. If the order is not |
| 2128 | * followed, the microcode may process the idle command before the |
| 2129 | * parameters have been written to LRAM. |
| 2130 | */ |
| 2131 | ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER,do { (((iot))->write_2(((ioh)), (0x04), ((0x00A8)))); (((iot ))->write_2(((ioh)), (0x06), ((u_int16_t) ((idle_cmd_parameter ) & 0xFFFF)))); (((iot))->write_2(((ioh)), (0x04), ((0x00A8 ) + 2))); (((iot))->write_2(((ioh)), (0x06), ((u_int16_t) ( (idle_cmd_parameter >> 16) & 0xFFFF)))); } while (0 ) |
| 2132 | idle_cmd_parameter)do { (((iot))->write_2(((ioh)), (0x04), ((0x00A8)))); (((iot ))->write_2(((ioh)), (0x06), ((u_int16_t) ((idle_cmd_parameter ) & 0xFFFF)))); (((iot))->write_2(((ioh)), (0x04), ((0x00A8 ) + 2))); (((iot))->write_2(((ioh)), (0x06), ((u_int16_t) ( (idle_cmd_parameter >> 16) & 0xFFFF)))); } while (0 ); |
| 2133 | ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd)do { (((iot))->write_2(((ioh)), (0x04), ((0x00A6)))); (((iot ))->write_2(((ioh)), (0x06), ((idle_cmd)))); } while (0); |
| 2134 | |
| 2135 | /* |
| 2136 | * Tickle the RISC to tell it to process the idle command. |
| 2137 | */ |
| 2138 | ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_B)(((iot))->write_1(((ioh)), ((0x22)), ((0x02)))); |
| 2139 | if (sc->chip_type == ADW_CHIP_ASC35500x01) { |
| 2140 | /* |
| 2141 | * Clear the tickle value. In the ASC-3550 the RISC flag |
| 2142 | * command 'clr_tickle_b' does not work unless the host |
| 2143 | * value is cleared. |
| 2144 | */ |
| 2145 | ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_NOP)(((iot))->write_1(((ioh)), ((0x22)), ((0x00)))); |
| 2146 | } |
| 2147 | |
| 2148 | /* Wait for up to 100 millisecond for the idle command to timeout. */ |
| 2149 | for (i = 0; i < SCSI_WAIT_100_MSEC100UL; i++) { |
| 2150 | /* Poll once each microsecond for command completion. */ |
| 2151 | for (j = 0; j < SCSI_US_PER_MSEC1000; j++) { |
| 2152 | ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS,do { (((iot))->write_2(((ioh)), (0x04), ((0x00A4)))); (result ) = (((iot))->read_2(((ioh)), (0x06))); } while (0) |
| 2153 | result)do { (((iot))->write_2(((ioh)), (0x04), ((0x00A4)))); (result ) = (((iot))->read_2(((ioh)), (0x06))); } while (0); |
| 2154 | if (result != 0) { |
| 2155 | splx(s)spllower(s); |
| 2156 | return result; |
| 2157 | } |
| 2158 | AdwDelayMicroSecond(1); |
| 2159 | } |
| 2160 | } |
| 2161 | |
| 2162 | splx(s)spllower(s); |
| 2163 | return ADW_ERROR(-1); |
| 2164 | } |
| 2165 | |
| 2166 | |
| 2167 | /* |
| 2168 | * Inquiry Information Byte 7 Handling |
| 2169 | * |
| 2170 | * Handle SCSI Inquiry Command information for a device by setting |
| 2171 | * microcode operating variables that affect WDTR, SDTR, and Tag |
| 2172 | * Queuing. |
| 2173 | */ |
| 2174 | void |
| 2175 | AdwInquiryHandling(ADW_SOFTC *sc, ADW_SCSI_REQ_Q *scsiq) |
| 2176 | { |
| 2177 | #ifndef FAILSAFE |
| 2178 | bus_space_tag_t iot = sc->sc_iot; |
| 2179 | bus_space_handle_t ioh = sc->sc_ioh; |
| 2180 | u_int8_t tid; |
| 2181 | ADW_SCSI_INQUIRY *inq; |
| 2182 | u_int16_t tidmask; |
| 2183 | u_int16_t cfg_word; |
| 2184 | |
| 2185 | |
| 2186 | /* |
| 2187 | * AdwInquiryHandling() requires up to INQUIRY information Byte 7 |
| 2188 | * to be available. |
| 2189 | * |
| 2190 | * If less than 8 bytes of INQUIRY information were requested or less |
| 2191 | * than 8 bytes were transferred, then return. cdb[4] is the request |
| 2192 | * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the |
| 2193 | * microcode to the transfer residual count. |
| 2194 | */ |
| 2195 | |
| 2196 | if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) { |
| 2197 | return; |
| 2198 | } |
| 2199 | |
| 2200 | tid = scsiq->target_id; |
| 2201 | |
| 2202 | inq = (ADW_SCSI_INQUIRY *) scsiq->vdata_addr; |
| 2203 | |
| 2204 | /* |
| 2205 | * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices. |
| 2206 | */ |
| 2207 | if ((inq->rsp_data_fmt < 2) /*SCSI-1 | CCS*/ && |
| 2208 | (inq->ansi_apr_ver < 2)) { |
| 2209 | return; |
| 2210 | } else { |
| 2211 | /* |
| 2212 | * INQUIRY Byte 7 Handling |
| 2213 | * |
| 2214 | * Use a device's INQUIRY byte 7 to determine whether it |
| 2215 | * supports WDTR, SDTR, and Tag Queuing. If the feature |
| 2216 | * is enabled in the EEPROM and the device supports the |
| 2217 | * feature, then enable it in the microcode. |
| 2218 | */ |
| 2219 | |
| 2220 | tidmask = ADW_TID_TO_TIDMASK(tid)(0x01 << ((tid) & 15)); |
| 2221 | |
| 2222 | /* |
| 2223 | * Wide Transfers |
| 2224 | * |
| 2225 | * If the EEPROM enabled WDTR for the device and the device |
| 2226 | * supports wide bus (16 bit) transfers, then turn on the |
| 2227 | * device's 'wdtr_able' bit and write the new value to the |
| 2228 | * microcode. |
| 2229 | */ |
| 2230 | #ifdef SCSI_ADW_WDTR_DISABLE |
| 2231 | if(!(tidmask & SCSI_ADW_WDTR_DISABLE)) |
| 2232 | #endif /* SCSI_ADW_WDTR_DISABLE */ |
| 2233 | if ((sc->wdtr_able & tidmask) && inq->WBus16) { |
| 2234 | ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,do { (((iot))->write_2(((ioh)), (0x04), ((0x009C)))); (cfg_word ) = (((iot))->read_2(((ioh)), (0x06))); } while (0) |
| 2235 | cfg_word)do { (((iot))->write_2(((ioh)), (0x04), ((0x009C)))); (cfg_word ) = (((iot))->read_2(((ioh)), (0x06))); } while (0); |
| 2236 | if ((cfg_word & tidmask) == 0) { |
| 2237 | cfg_word |= tidmask; |
| 2238 | ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,do { (((iot))->write_2(((ioh)), (0x04), ((0x009C)))); (((iot ))->write_2(((ioh)), (0x06), ((cfg_word)))); } while (0) |
| 2239 | cfg_word)do { (((iot))->write_2(((ioh)), (0x04), ((0x009C)))); (((iot ))->write_2(((ioh)), (0x06), ((cfg_word)))); } while (0); |
| 2240 | |
| 2241 | /* |
| 2242 | * Clear the microcode "SDTR negotiation" and |
| 2243 | * "WDTR negotiation" done indicators for the |
| 2244 | * target to cause it to negotiate with the new |
| 2245 | * setting set above. |
| 2246 | * WDTR when accepted causes the target to enter |
| 2247 | * asynchronous mode, so SDTR must be negotiated |
| 2248 | */ |
| 2249 | ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,do { (((iot))->write_2(((ioh)), (0x04), ((0x00B6)))); (cfg_word ) = (((iot))->read_2(((ioh)), (0x06))); } while (0) |
| 2250 | cfg_word)do { (((iot))->write_2(((ioh)), (0x04), ((0x00B6)))); (cfg_word ) = (((iot))->read_2(((ioh)), (0x06))); } while (0); |
| 2251 | cfg_word &= ~tidmask; |
| 2252 | ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,do { (((iot))->write_2(((ioh)), (0x04), ((0x00B6)))); (((iot ))->write_2(((ioh)), (0x06), ((cfg_word)))); } while (0) |
| 2253 | cfg_word)do { (((iot))->write_2(((ioh)), (0x04), ((0x00B6)))); (((iot ))->write_2(((ioh)), (0x06), ((cfg_word)))); } while (0); |
| 2254 | ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,do { (((iot))->write_2(((ioh)), (0x04), ((0x0124)))); (cfg_word ) = (((iot))->read_2(((ioh)), (0x06))); } while (0) |
| 2255 | cfg_word)do { (((iot))->write_2(((ioh)), (0x04), ((0x0124)))); (cfg_word ) = (((iot))->read_2(((ioh)), (0x06))); } while (0); |
| 2256 | cfg_word &= ~tidmask; |
| 2257 | ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,do { (((iot))->write_2(((ioh)), (0x04), ((0x0124)))); (((iot ))->write_2(((ioh)), (0x06), ((cfg_word)))); } while (0) |
| 2258 | cfg_word)do { (((iot))->write_2(((ioh)), (0x04), ((0x0124)))); (((iot ))->write_2(((ioh)), (0x06), ((cfg_word)))); } while (0); |
| 2259 | } |
| 2260 | } |
| 2261 | |
| 2262 | /* |
| 2263 | * Synchronous Transfers |
| 2264 | * |
| 2265 | * If the EEPROM enabled SDTR for the device and the device |
| 2266 | * supports synchronous transfers, then turn on the device's |
| 2267 | * 'sdtr_able' bit. Write the new value to the microcode. |
| 2268 | */ |
| 2269 | #ifdef SCSI_ADW_SDTR_DISABLE |
| 2270 | if(!(tidmask & SCSI_ADW_SDTR_DISABLE)) |
| 2271 | #endif /* SCSI_ADW_SDTR_DISABLE */ |
| 2272 | if ((sc->sdtr_able & tidmask) && inq->Sync) { |
| 2273 | ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,cfg_word)do { (((iot))->write_2(((ioh)), (0x04), ((0x009E)))); (cfg_word ) = (((iot))->read_2(((ioh)), (0x06))); } while (0); |
| 2274 | if ((cfg_word & tidmask) == 0) { |
| 2275 | cfg_word |= tidmask; |
| 2276 | ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,do { (((iot))->write_2(((ioh)), (0x04), ((0x009E)))); (((iot ))->write_2(((ioh)), (0x06), ((cfg_word)))); } while (0) |
| 2277 | cfg_word)do { (((iot))->write_2(((ioh)), (0x04), ((0x009E)))); (((iot ))->write_2(((ioh)), (0x06), ((cfg_word)))); } while (0); |
| 2278 | |
| 2279 | /* |
| 2280 | * Clear the microcode "SDTR negotiation" |
| 2281 | * done indicator for the target to cause it |
| 2282 | * to negotiate with the new setting set above. |
| 2283 | */ |
| 2284 | ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,do { (((iot))->write_2(((ioh)), (0x04), ((0x00B6)))); (cfg_word ) = (((iot))->read_2(((ioh)), (0x06))); } while (0) |
| 2285 | cfg_word)do { (((iot))->write_2(((ioh)), (0x04), ((0x00B6)))); (cfg_word ) = (((iot))->read_2(((ioh)), (0x06))); } while (0); |
| 2286 | cfg_word &= ~tidmask; |
| 2287 | ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,do { (((iot))->write_2(((ioh)), (0x04), ((0x00B6)))); (((iot ))->write_2(((ioh)), (0x06), ((cfg_word)))); } while (0) |
| 2288 | cfg_word)do { (((iot))->write_2(((ioh)), (0x04), ((0x00B6)))); (((iot ))->write_2(((ioh)), (0x06), ((cfg_word)))); } while (0); |
| 2289 | } |
| 2290 | } |
| 2291 | /* |
| 2292 | * If the Inquiry data included enough space for the SPI-3 |
| 2293 | * Clocking field, then check if DT mode is supported. |
| 2294 | */ |
| 2295 | if (sc->chip_type == ADW_CHIP_ASC38C16000x03 && |
| 2296 | (scsiq->cdb[4] >= 57 || |
| 2297 | (scsiq->cdb[4] - scsiq->data_cnt) >= 57)) { |
| 2298 | /* |
| 2299 | * PPR (Parallel Protocol Request) Capable |
| 2300 | * |
| 2301 | * If the device supports DT mode, then it must be |
| 2302 | * PPR capable. |
| 2303 | * The PPR message will be used in place of the SDTR |
| 2304 | * and WDTR messages to negotiate synchronous speed |
| 2305 | * and offset, transfer width, and protocol options. |
| 2306 | */ |
| 2307 | if((inq->Clocking) & INQ_CLOCKING_DT_ONLY0x1){ |
| 2308 | ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,do { (((iot))->write_2(((ioh)), (0x04), ((0x017A)))); (sc-> ppr_able) = (((iot))->read_2(((ioh)), (0x06))); } while (0 ) |
| 2309 | sc->ppr_able)do { (((iot))->write_2(((ioh)), (0x04), ((0x017A)))); (sc-> ppr_able) = (((iot))->read_2(((ioh)), (0x06))); } while (0 ); |
| 2310 | sc->ppr_able |= tidmask; |
| 2311 | ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,do { (((iot))->write_2(((ioh)), (0x04), ((0x017A)))); (((iot ))->write_2(((ioh)), (0x06), ((sc->ppr_able)))); } while (0) |
| 2312 | sc->ppr_able)do { (((iot))->write_2(((ioh)), (0x04), ((0x017A)))); (((iot ))->write_2(((ioh)), (0x06), ((sc->ppr_able)))); } while (0); |
| 2313 | } |
| 2314 | } |
| 2315 | |
| 2316 | /* |
| 2317 | * If the EEPROM enabled Tag Queuing for the device and the |
| 2318 | * device supports Tag Queueing, then turn on the device's |
| 2319 | * 'tagqng_enable' bit in the microcode and set the microcode |
| 2320 | * maximum command count to the ADW_SOFTC 'max_dvc_qng' |
| 2321 | * value. |
| 2322 | * |
| 2323 | * Tag Queuing is disabled for the BIOS which runs in polled |
| 2324 | * mode and would see no benefit from Tag Queuing. Also by |
| 2325 | * disabling Tag Queuing in the BIOS devices with Tag Queuing |
| 2326 | * bugs will at least work with the BIOS. |
| 2327 | */ |
| 2328 | #ifdef SCSI_ADW_TAGQ_DISABLE |
| 2329 | if(!(tidmask & SCSI_ADW_TAGQ_DISABLE)) |
| 2330 | #endif /* SCSI_ADW_TAGQ_DISABLE */ |
| 2331 | if ((sc->tagqng_able & tidmask) && inq->CmdQue) { |
| 2332 | ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,do { (((iot))->write_2(((ioh)), (0x04), ((0x00A0)))); (cfg_word ) = (((iot))->read_2(((ioh)), (0x06))); } while (0) |
| 2333 | cfg_word)do { (((iot))->write_2(((ioh)), (0x04), ((0x00A0)))); (cfg_word ) = (((iot))->read_2(((ioh)), (0x06))); } while (0); |
| 2334 | cfg_word |= tidmask; |
| 2335 | ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,do { (((iot))->write_2(((ioh)), (0x04), ((0x00A0)))); (((iot ))->write_2(((ioh)), (0x06), ((cfg_word)))); } while (0) |
| 2336 | cfg_word)do { (((iot))->write_2(((ioh)), (0x04), ((0x00A0)))); (((iot ))->write_2(((ioh)), (0x06), ((cfg_word)))); } while (0); |
| 2337 | |
| 2338 | ADW_WRITE_BYTE_LRAM(iot, ioh,do { (((iot))->write_2(((ioh)), (0x04), ((0x00D0 + tid)))) ; (((iot))->write_1(((ioh)), (0x06), ((sc->max_dvc_qng) ))); } while (0) |
| 2339 | ADW_MC_NUMBER_OF_MAX_CMD + tid,do { (((iot))->write_2(((ioh)), (0x04), ((0x00D0 + tid)))) ; (((iot))->write_1(((ioh)), (0x06), ((sc->max_dvc_qng) ))); } while (0) |
| 2340 | sc->max_dvc_qng)do { (((iot))->write_2(((ioh)), (0x04), ((0x00D0 + tid)))) ; (((iot))->write_1(((ioh)), (0x06), ((sc->max_dvc_qng) ))); } while (0); |
| 2341 | } |
| 2342 | } |
| 2343 | #endif /* FAILSAFE */ |
| 2344 | } |
| 2345 | |
| 2346 | |
| 2347 | void |
| 2348 | AdwSleepMilliSecond(u_int32_t n) |
| 2349 | { |
| 2350 | |
| 2351 | DELAY(n * 1000)(*delay_func)(n * 1000); |
| 2352 | } |
| 2353 | |
| 2354 | |
| 2355 | void |
| 2356 | AdwDelayMicroSecond(u_int32_t n) |
| 2357 | { |
| 2358 | |
| 2359 | DELAY(n)(*delay_func)(n); |
| 2360 | } |
| 2361 |