| File: | dev/pci/if_iwm.c |
| Warning: | line 2511, column 2 Value stored to 'base' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* $OpenBSD: if_iwm.c,v 1.413 2023/12/20 07:32:05 stsp Exp $ */ |
| 2 | |
| 3 | /* |
| 4 | * Copyright (c) 2014, 2016 genua gmbh <info@genua.de> |
| 5 | * Author: Stefan Sperling <stsp@openbsd.org> |
| 6 | * Copyright (c) 2014 Fixup Software Ltd. |
| 7 | * Copyright (c) 2017 Stefan Sperling <stsp@openbsd.org> |
| 8 | * |
| 9 | * Permission to use, copy, modify, and distribute this software for any |
| 10 | * purpose with or without fee is hereby granted, provided that the above |
| 11 | * copyright notice and this permission notice appear in all copies. |
| 12 | * |
| 13 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| 14 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| 15 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| 16 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| 17 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| 18 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| 19 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| 20 | */ |
| 21 | |
| 22 | /*- |
| 23 | * Based on BSD-licensed source modules in the Linux iwlwifi driver, |
| 24 | * which were used as the reference documentation for this implementation. |
| 25 | * |
| 26 | *********************************************************************** |
| 27 | * |
| 28 | * This file is provided under a dual BSD/GPLv2 license. When using or |
| 29 | * redistributing this file, you may do so under either license. |
| 30 | * |
| 31 | * GPL LICENSE SUMMARY |
| 32 | * |
| 33 | * Copyright(c) 2007 - 2013 Intel Corporation. All rights reserved. |
| 34 | * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH |
| 35 | * Copyright(c) 2016 Intel Deutschland GmbH |
| 36 | * |
| 37 | * This program is free software; you can redistribute it and/or modify |
| 38 | * it under the terms of version 2 of the GNU General Public License as |
| 39 | * published by the Free Software Foundation. |
| 40 | * |
| 41 | * This program is distributed in the hope that it will be useful, but |
| 42 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 43 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 44 | * General Public License for more details. |
| 45 | * |
| 46 | * You should have received a copy of the GNU General Public License |
| 47 | * along with this program; if not, write to the Free Software |
| 48 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, |
| 49 | * USA |
| 50 | * |
| 51 | * The full GNU General Public License is included in this distribution |
| 52 | * in the file called COPYING. |
| 53 | * |
| 54 | * Contact Information: |
| 55 | * Intel Linux Wireless <ilw@linux.intel.com> |
| 56 | * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| 57 | * |
| 58 | * |
| 59 | * BSD LICENSE |
| 60 | * |
| 61 | * Copyright(c) 2005 - 2013 Intel Corporation. All rights reserved. |
| 62 | * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH |
| 63 | * Copyright(c) 2016 Intel Deutschland GmbH |
| 64 | * All rights reserved. |
| 65 | * |
| 66 | * Redistribution and use in source and binary forms, with or without |
| 67 | * modification, are permitted provided that the following conditions |
| 68 | * are met: |
| 69 | * |
| 70 | * * Redistributions of source code must retain the above copyright |
| 71 | * notice, this list of conditions and the following disclaimer. |
| 72 | * * Redistributions in binary form must reproduce the above copyright |
| 73 | * notice, this list of conditions and the following disclaimer in |
| 74 | * the documentation and/or other materials provided with the |
| 75 | * distribution. |
| 76 | * * Neither the name Intel Corporation nor the names of its |
| 77 | * contributors may be used to endorse or promote products derived |
| 78 | * from this software without specific prior written permission. |
| 79 | * |
| 80 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 81 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 82 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 83 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 84 | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 85 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 86 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 87 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 88 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 89 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 90 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 91 | */ |
| 92 | |
| 93 | /*- |
| 94 | * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr> |
| 95 | * |
| 96 | * Permission to use, copy, modify, and distribute this software for any |
| 97 | * purpose with or without fee is hereby granted, provided that the above |
| 98 | * copyright notice and this permission notice appear in all copies. |
| 99 | * |
| 100 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| 101 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| 102 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| 103 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| 104 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| 105 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| 106 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| 107 | */ |
| 108 | |
| 109 | #include "bpfilter.h" |
| 110 | |
| 111 | #include <sys/param.h> |
| 112 | #include <sys/conf.h> |
| 113 | #include <sys/kernel.h> |
| 114 | #include <sys/malloc.h> |
| 115 | #include <sys/mbuf.h> |
| 116 | #include <sys/mutex.h> |
| 117 | #include <sys/proc.h> |
| 118 | #include <sys/rwlock.h> |
| 119 | #include <sys/socket.h> |
| 120 | #include <sys/sockio.h> |
| 121 | #include <sys/systm.h> |
| 122 | #include <sys/endian.h> |
| 123 | |
| 124 | #include <sys/refcnt.h> |
| 125 | #include <sys/task.h> |
| 126 | #include <machine/bus.h> |
| 127 | #include <machine/intr.h> |
| 128 | |
| 129 | #include <dev/pci/pcireg.h> |
| 130 | #include <dev/pci/pcivar.h> |
| 131 | #include <dev/pci/pcidevs.h> |
| 132 | |
| 133 | #if NBPFILTER1 > 0 |
| 134 | #include <net/bpf.h> |
| 135 | #endif |
| 136 | #include <net/if.h> |
| 137 | #include <net/if_dl.h> |
| 138 | #include <net/if_media.h> |
| 139 | |
| 140 | #include <netinet/in.h> |
| 141 | #include <netinet/if_ether.h> |
| 142 | |
| 143 | #include <net80211/ieee80211_var.h> |
| 144 | #include <net80211/ieee80211_amrr.h> |
| 145 | #include <net80211/ieee80211_ra.h> |
| 146 | #include <net80211/ieee80211_ra_vht.h> |
| 147 | #include <net80211/ieee80211_radiotap.h> |
| 148 | #include <net80211/ieee80211_priv.h> /* for SEQ_LT */ |
| 149 | #undef DPRINTF /* defined in ieee80211_priv.h */ |
| 150 | |
| 151 | #define DEVNAME(_s)((_s)->sc_dev.dv_xname) ((_s)->sc_dev.dv_xname) |
| 152 | |
| 153 | #define IC2IFP(_ic_)(&(_ic_)->ic_ac.ac_if) (&(_ic_)->ic_ific_ac.ac_if) |
| 154 | |
| 155 | #define le16_to_cpup(_a_)(((__uint16_t)(*(const uint16_t *)(_a_)))) (le16toh(*(const uint16_t *)(_a_))((__uint16_t)(*(const uint16_t *)(_a_)))) |
| 156 | #define le32_to_cpup(_a_)(((__uint32_t)(*(const uint32_t *)(_a_)))) (le32toh(*(const uint32_t *)(_a_))((__uint32_t)(*(const uint32_t *)(_a_)))) |
| 157 | |
| 158 | #ifdef IWM_DEBUG |
| 159 | #define DPRINTF(x)do { ; } while (0) do { if (iwm_debug > 0) printf x; } while (0) |
| 160 | #define DPRINTFN(n, x)do { ; } while (0) do { if (iwm_debug >= (n)) printf x; } while (0) |
| 161 | int iwm_debug = 1; |
| 162 | #else |
| 163 | #define DPRINTF(x)do { ; } while (0) do { ; } while (0) |
| 164 | #define DPRINTFN(n, x)do { ; } while (0) do { ; } while (0) |
| 165 | #endif |
| 166 | |
| 167 | #include <dev/pci/if_iwmreg.h> |
| 168 | #include <dev/pci/if_iwmvar.h> |
| 169 | |
| 170 | const uint8_t iwm_nvm_channels[] = { |
| 171 | /* 2.4 GHz */ |
| 172 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, |
| 173 | /* 5 GHz */ |
| 174 | 36, 40, 44 , 48, 52, 56, 60, 64, |
| 175 | 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, |
| 176 | 149, 153, 157, 161, 165 |
| 177 | }; |
| 178 | |
| 179 | const uint8_t iwm_nvm_channels_8000[] = { |
| 180 | /* 2.4 GHz */ |
| 181 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, |
| 182 | /* 5 GHz */ |
| 183 | 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, |
| 184 | 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, |
| 185 | 149, 153, 157, 161, 165, 169, 173, 177, 181 |
| 186 | }; |
| 187 | |
| 188 | #define IWM_NUM_2GHZ_CHANNELS14 14 |
| 189 | |
| 190 | const struct iwm_rate { |
| 191 | uint16_t rate; |
| 192 | uint8_t plcp; |
| 193 | uint8_t ht_plcp; |
| 194 | } iwm_rates[] = { |
| 195 | /* Legacy */ /* HT */ |
| 196 | { 2, IWM_RATE_1M_PLCP10, IWM_RATE_HT_SISO_MCS_INV_PLCP0x20 }, |
| 197 | { 4, IWM_RATE_2M_PLCP20, IWM_RATE_HT_SISO_MCS_INV_PLCP0x20 }, |
| 198 | { 11, IWM_RATE_5M_PLCP55, IWM_RATE_HT_SISO_MCS_INV_PLCP0x20 }, |
| 199 | { 22, IWM_RATE_11M_PLCP110, IWM_RATE_HT_SISO_MCS_INV_PLCP0x20 }, |
| 200 | { 12, IWM_RATE_6M_PLCP13, IWM_RATE_HT_SISO_MCS_0_PLCP0 }, |
| 201 | { 18, IWM_RATE_9M_PLCP15, IWM_RATE_HT_SISO_MCS_INV_PLCP0x20 }, |
| 202 | { 24, IWM_RATE_12M_PLCP5, IWM_RATE_HT_SISO_MCS_1_PLCP1 }, |
| 203 | { 26, IWM_RATE_INVM_PLCP0xff, IWM_RATE_HT_MIMO2_MCS_8_PLCP0x8 }, |
| 204 | { 36, IWM_RATE_18M_PLCP7, IWM_RATE_HT_SISO_MCS_2_PLCP2 }, |
| 205 | { 48, IWM_RATE_24M_PLCP9, IWM_RATE_HT_SISO_MCS_3_PLCP3 }, |
| 206 | { 52, IWM_RATE_INVM_PLCP0xff, IWM_RATE_HT_MIMO2_MCS_9_PLCP0x9 }, |
| 207 | { 72, IWM_RATE_36M_PLCP11, IWM_RATE_HT_SISO_MCS_4_PLCP4 }, |
| 208 | { 78, IWM_RATE_INVM_PLCP0xff, IWM_RATE_HT_MIMO2_MCS_10_PLCP0xA }, |
| 209 | { 96, IWM_RATE_48M_PLCP1, IWM_RATE_HT_SISO_MCS_5_PLCP5 }, |
| 210 | { 104, IWM_RATE_INVM_PLCP0xff, IWM_RATE_HT_MIMO2_MCS_11_PLCP0xB }, |
| 211 | { 108, IWM_RATE_54M_PLCP3, IWM_RATE_HT_SISO_MCS_6_PLCP6 }, |
| 212 | { 128, IWM_RATE_INVM_PLCP0xff, IWM_RATE_HT_SISO_MCS_7_PLCP7 }, |
| 213 | { 156, IWM_RATE_INVM_PLCP0xff, IWM_RATE_HT_MIMO2_MCS_12_PLCP0xC }, |
| 214 | { 208, IWM_RATE_INVM_PLCP0xff, IWM_RATE_HT_MIMO2_MCS_13_PLCP0xD }, |
| 215 | { 234, IWM_RATE_INVM_PLCP0xff, IWM_RATE_HT_MIMO2_MCS_14_PLCP0xE }, |
| 216 | { 260, IWM_RATE_INVM_PLCP0xff, IWM_RATE_HT_MIMO2_MCS_15_PLCP0xF }, |
| 217 | }; |
| 218 | #define IWM_RIDX_CCK0 0 |
| 219 | #define IWM_RIDX_OFDM4 4 |
| 220 | #define IWM_RIDX_MAX((sizeof((iwm_rates)) / sizeof((iwm_rates)[0]))-1) (nitems(iwm_rates)(sizeof((iwm_rates)) / sizeof((iwm_rates)[0]))-1) |
| 221 | #define IWM_RIDX_IS_CCK(_i_)((_i_) < 4) ((_i_) < IWM_RIDX_OFDM4) |
| 222 | #define IWM_RIDX_IS_OFDM(_i_)((_i_) >= 4) ((_i_) >= IWM_RIDX_OFDM4) |
| 223 | #define IWM_RVAL_IS_OFDM(_i_)((_i_) >= 12 && (_i_) != 22) ((_i_) >= 12 && (_i_) != 22) |
| 224 | |
| 225 | /* Convert an MCS index into an iwm_rates[] index. */ |
| 226 | const int iwm_ht_mcs2ridx[] = { |
| 227 | IWM_RATE_MCS_0_INDEX, |
| 228 | IWM_RATE_MCS_1_INDEX, |
| 229 | IWM_RATE_MCS_2_INDEX, |
| 230 | IWM_RATE_MCS_3_INDEX, |
| 231 | IWM_RATE_MCS_4_INDEX, |
| 232 | IWM_RATE_MCS_5_INDEX, |
| 233 | IWM_RATE_MCS_6_INDEX, |
| 234 | IWM_RATE_MCS_7_INDEX, |
| 235 | IWM_RATE_MCS_8_INDEX, |
| 236 | IWM_RATE_MCS_9_INDEX, |
| 237 | IWM_RATE_MCS_10_INDEX, |
| 238 | IWM_RATE_MCS_11_INDEX, |
| 239 | IWM_RATE_MCS_12_INDEX, |
| 240 | IWM_RATE_MCS_13_INDEX, |
| 241 | IWM_RATE_MCS_14_INDEX, |
| 242 | IWM_RATE_MCS_15_INDEX, |
| 243 | }; |
| 244 | |
| 245 | struct iwm_nvm_section { |
| 246 | uint16_t length; |
| 247 | uint8_t *data; |
| 248 | }; |
| 249 | |
| 250 | int iwm_is_mimo_ht_plcp(uint8_t); |
| 251 | int iwm_is_mimo_ht_mcs(int); |
| 252 | int iwm_store_cscheme(struct iwm_softc *, uint8_t *, size_t); |
| 253 | int iwm_firmware_store_section(struct iwm_softc *, enum iwm_ucode_type, |
| 254 | uint8_t *, size_t); |
| 255 | int iwm_set_default_calib(struct iwm_softc *, const void *); |
| 256 | void iwm_fw_info_free(struct iwm_fw_info *); |
| 257 | void iwm_fw_version_str(char *, size_t, uint32_t, uint32_t, uint32_t); |
| 258 | int iwm_read_firmware(struct iwm_softc *); |
| 259 | uint32_t iwm_read_prph_unlocked(struct iwm_softc *, uint32_t); |
| 260 | uint32_t iwm_read_prph(struct iwm_softc *, uint32_t); |
| 261 | void iwm_write_prph_unlocked(struct iwm_softc *, uint32_t, uint32_t); |
| 262 | void iwm_write_prph(struct iwm_softc *, uint32_t, uint32_t); |
| 263 | int iwm_read_mem(struct iwm_softc *, uint32_t, void *, int); |
| 264 | int iwm_write_mem(struct iwm_softc *, uint32_t, const void *, int); |
| 265 | int iwm_write_mem32(struct iwm_softc *, uint32_t, uint32_t); |
| 266 | int iwm_poll_bit(struct iwm_softc *, int, uint32_t, uint32_t, int); |
| 267 | int iwm_nic_lock(struct iwm_softc *); |
| 268 | void iwm_nic_assert_locked(struct iwm_softc *); |
| 269 | void iwm_nic_unlock(struct iwm_softc *); |
| 270 | int iwm_set_bits_mask_prph(struct iwm_softc *, uint32_t, uint32_t, |
| 271 | uint32_t); |
| 272 | int iwm_set_bits_prph(struct iwm_softc *, uint32_t, uint32_t); |
| 273 | int iwm_clear_bits_prph(struct iwm_softc *, uint32_t, uint32_t); |
| 274 | int iwm_dma_contig_alloc(bus_dma_tag_t, struct iwm_dma_info *, bus_size_t, |
| 275 | bus_size_t); |
| 276 | void iwm_dma_contig_free(struct iwm_dma_info *); |
| 277 | int iwm_alloc_rx_ring(struct iwm_softc *, struct iwm_rx_ring *); |
| 278 | void iwm_disable_rx_dma(struct iwm_softc *); |
| 279 | void iwm_reset_rx_ring(struct iwm_softc *, struct iwm_rx_ring *); |
| 280 | void iwm_free_rx_ring(struct iwm_softc *, struct iwm_rx_ring *); |
| 281 | int iwm_alloc_tx_ring(struct iwm_softc *, struct iwm_tx_ring *, int); |
| 282 | void iwm_reset_tx_ring(struct iwm_softc *, struct iwm_tx_ring *); |
| 283 | void iwm_free_tx_ring(struct iwm_softc *, struct iwm_tx_ring *); |
| 284 | void iwm_enable_rfkill_int(struct iwm_softc *); |
| 285 | int iwm_check_rfkill(struct iwm_softc *); |
| 286 | void iwm_enable_interrupts(struct iwm_softc *); |
| 287 | void iwm_enable_fwload_interrupt(struct iwm_softc *); |
| 288 | void iwm_restore_interrupts(struct iwm_softc *); |
| 289 | void iwm_disable_interrupts(struct iwm_softc *); |
| 290 | void iwm_ict_reset(struct iwm_softc *); |
| 291 | int iwm_set_hw_ready(struct iwm_softc *); |
| 292 | int iwm_prepare_card_hw(struct iwm_softc *); |
| 293 | void iwm_apm_config(struct iwm_softc *); |
| 294 | int iwm_apm_init(struct iwm_softc *); |
| 295 | void iwm_apm_stop(struct iwm_softc *); |
| 296 | int iwm_allow_mcast(struct iwm_softc *); |
| 297 | void iwm_init_msix_hw(struct iwm_softc *); |
| 298 | void iwm_conf_msix_hw(struct iwm_softc *, int); |
| 299 | int iwm_clear_persistence_bit(struct iwm_softc *); |
| 300 | int iwm_start_hw(struct iwm_softc *); |
| 301 | void iwm_stop_device(struct iwm_softc *); |
| 302 | void iwm_nic_config(struct iwm_softc *); |
| 303 | int iwm_nic_rx_init(struct iwm_softc *); |
| 304 | int iwm_nic_rx_legacy_init(struct iwm_softc *); |
| 305 | int iwm_nic_rx_mq_init(struct iwm_softc *); |
| 306 | int iwm_nic_tx_init(struct iwm_softc *); |
| 307 | int iwm_nic_init(struct iwm_softc *); |
| 308 | int iwm_enable_ac_txq(struct iwm_softc *, int, int); |
| 309 | int iwm_enable_txq(struct iwm_softc *, int, int, int, int, uint8_t, |
| 310 | uint16_t); |
| 311 | int iwm_disable_txq(struct iwm_softc *, int, int, uint8_t); |
| 312 | int iwm_post_alive(struct iwm_softc *); |
| 313 | struct iwm_phy_db_entry *iwm_phy_db_get_section(struct iwm_softc *, uint16_t, |
| 314 | uint16_t); |
| 315 | int iwm_phy_db_set_section(struct iwm_softc *, |
| 316 | struct iwm_calib_res_notif_phy_db *); |
| 317 | int iwm_is_valid_channel(uint16_t); |
| 318 | uint8_t iwm_ch_id_to_ch_index(uint16_t); |
| 319 | uint16_t iwm_channel_id_to_papd(uint16_t); |
| 320 | uint16_t iwm_channel_id_to_txp(struct iwm_softc *, uint16_t); |
| 321 | int iwm_phy_db_get_section_data(struct iwm_softc *, uint32_t, uint8_t **, |
| 322 | uint16_t *, uint16_t); |
| 323 | int iwm_send_phy_db_cmd(struct iwm_softc *, uint16_t, uint16_t, void *); |
| 324 | int iwm_phy_db_send_all_channel_groups(struct iwm_softc *, uint16_t, |
| 325 | uint8_t); |
| 326 | int iwm_send_phy_db_data(struct iwm_softc *); |
| 327 | void iwm_protect_session(struct iwm_softc *, struct iwm_node *, uint32_t, |
| 328 | uint32_t); |
| 329 | void iwm_unprotect_session(struct iwm_softc *, struct iwm_node *); |
| 330 | int iwm_nvm_read_chunk(struct iwm_softc *, uint16_t, uint16_t, uint16_t, |
| 331 | uint8_t *, uint16_t *); |
| 332 | int iwm_nvm_read_section(struct iwm_softc *, uint16_t, uint8_t *, |
| 333 | uint16_t *, size_t); |
| 334 | uint8_t iwm_fw_valid_tx_ant(struct iwm_softc *); |
| 335 | uint8_t iwm_fw_valid_rx_ant(struct iwm_softc *); |
| 336 | int iwm_valid_siso_ant_rate_mask(struct iwm_softc *); |
| 337 | void iwm_init_channel_map(struct iwm_softc *, const uint16_t * const, |
| 338 | const uint8_t *nvm_channels, int nchan); |
| 339 | int iwm_mimo_enabled(struct iwm_softc *); |
| 340 | void iwm_setup_ht_rates(struct iwm_softc *); |
| 341 | void iwm_setup_vht_rates(struct iwm_softc *); |
| 342 | void iwm_mac_ctxt_task(void *); |
| 343 | void iwm_phy_ctxt_task(void *); |
| 344 | void iwm_updateprot(struct ieee80211com *); |
| 345 | void iwm_updateslot(struct ieee80211com *); |
| 346 | void iwm_updateedca(struct ieee80211com *); |
| 347 | void iwm_updatechan(struct ieee80211com *); |
| 348 | void iwm_updatedtim(struct ieee80211com *); |
| 349 | void iwm_init_reorder_buffer(struct iwm_reorder_buffer *, uint16_t, |
| 350 | uint16_t); |
| 351 | void iwm_clear_reorder_buffer(struct iwm_softc *, struct iwm_rxba_data *); |
| 352 | int iwm_ampdu_rx_start(struct ieee80211com *, struct ieee80211_node *, |
| 353 | uint8_t); |
| 354 | void iwm_ampdu_rx_stop(struct ieee80211com *, struct ieee80211_node *, |
| 355 | uint8_t); |
| 356 | void iwm_rx_ba_session_expired(void *); |
| 357 | void iwm_reorder_timer_expired(void *); |
| 358 | int iwm_sta_rx_agg(struct iwm_softc *, struct ieee80211_node *, uint8_t, |
| 359 | uint16_t, uint16_t, int, int); |
| 360 | int iwm_ampdu_tx_start(struct ieee80211com *, struct ieee80211_node *, |
| 361 | uint8_t); |
| 362 | void iwm_ampdu_tx_stop(struct ieee80211com *, struct ieee80211_node *, |
| 363 | uint8_t); |
| 364 | void iwm_ba_task(void *); |
| 365 | |
| 366 | int iwm_parse_nvm_data(struct iwm_softc *, const uint16_t *, |
| 367 | const uint16_t *, const uint16_t *, |
| 368 | const uint16_t *, const uint16_t *, |
| 369 | const uint16_t *, int); |
| 370 | void iwm_set_hw_address_8000(struct iwm_softc *, struct iwm_nvm_data *, |
| 371 | const uint16_t *, const uint16_t *); |
| 372 | int iwm_parse_nvm_sections(struct iwm_softc *, struct iwm_nvm_section *); |
| 373 | int iwm_nvm_init(struct iwm_softc *); |
| 374 | int iwm_firmware_load_sect(struct iwm_softc *, uint32_t, const uint8_t *, |
| 375 | uint32_t); |
| 376 | int iwm_firmware_load_chunk(struct iwm_softc *, uint32_t, const uint8_t *, |
| 377 | uint32_t); |
| 378 | int iwm_load_firmware_7000(struct iwm_softc *, enum iwm_ucode_type); |
| 379 | int iwm_load_cpu_sections_8000(struct iwm_softc *, struct iwm_fw_sects *, |
| 380 | int , int *); |
| 381 | int iwm_load_firmware_8000(struct iwm_softc *, enum iwm_ucode_type); |
| 382 | int iwm_load_firmware(struct iwm_softc *, enum iwm_ucode_type); |
| 383 | int iwm_start_fw(struct iwm_softc *, enum iwm_ucode_type); |
| 384 | int iwm_send_tx_ant_cfg(struct iwm_softc *, uint8_t); |
| 385 | int iwm_send_phy_cfg_cmd(struct iwm_softc *); |
| 386 | int iwm_load_ucode_wait_alive(struct iwm_softc *, enum iwm_ucode_type); |
| 387 | int iwm_send_dqa_cmd(struct iwm_softc *); |
| 388 | int iwm_run_init_mvm_ucode(struct iwm_softc *, int); |
| 389 | int iwm_config_ltr(struct iwm_softc *); |
| 390 | int iwm_rx_addbuf(struct iwm_softc *, int, int); |
| 391 | int iwm_get_signal_strength(struct iwm_softc *, struct iwm_rx_phy_info *); |
| 392 | int iwm_rxmq_get_signal_strength(struct iwm_softc *, struct iwm_rx_mpdu_desc *); |
| 393 | void iwm_rx_rx_phy_cmd(struct iwm_softc *, struct iwm_rx_packet *, |
| 394 | struct iwm_rx_data *); |
| 395 | int iwm_get_noise(const struct iwm_statistics_rx_non_phy *); |
| 396 | int iwm_rx_hwdecrypt(struct iwm_softc *, struct mbuf *, uint32_t, |
| 397 | struct ieee80211_rxinfo *); |
| 398 | int iwm_ccmp_decap(struct iwm_softc *, struct mbuf *, |
| 399 | struct ieee80211_node *, struct ieee80211_rxinfo *); |
| 400 | void iwm_rx_frame(struct iwm_softc *, struct mbuf *, int, uint32_t, int, int, |
| 401 | uint32_t, struct ieee80211_rxinfo *, struct mbuf_list *); |
| 402 | void iwm_ht_single_rate_control(struct iwm_softc *, struct ieee80211_node *, |
| 403 | int, uint8_t, int); |
| 404 | void iwm_vht_single_rate_control(struct iwm_softc *, struct ieee80211_node *, |
| 405 | int, int, uint8_t, int); |
| 406 | void iwm_rx_tx_cmd_single(struct iwm_softc *, struct iwm_rx_packet *, |
| 407 | struct iwm_node *, int, int); |
| 408 | void iwm_txd_done(struct iwm_softc *, struct iwm_tx_data *); |
| 409 | void iwm_txq_advance(struct iwm_softc *, struct iwm_tx_ring *, int); |
| 410 | void iwm_rx_tx_cmd(struct iwm_softc *, struct iwm_rx_packet *, |
| 411 | struct iwm_rx_data *); |
| 412 | void iwm_clear_oactive(struct iwm_softc *, struct iwm_tx_ring *); |
| 413 | void iwm_ampdu_rate_control(struct iwm_softc *, struct ieee80211_node *, |
| 414 | struct iwm_tx_ring *, int, uint16_t, uint16_t); |
| 415 | void iwm_rx_compressed_ba(struct iwm_softc *, struct iwm_rx_packet *); |
| 416 | void iwm_rx_bmiss(struct iwm_softc *, struct iwm_rx_packet *, |
| 417 | struct iwm_rx_data *); |
| 418 | int iwm_binding_cmd(struct iwm_softc *, struct iwm_node *, uint32_t); |
| 419 | uint8_t iwm_get_vht_ctrl_pos(struct ieee80211com *, struct ieee80211_channel *); |
| 420 | int iwm_phy_ctxt_cmd_uhb(struct iwm_softc *, struct iwm_phy_ctxt *, uint8_t, |
| 421 | uint8_t, uint32_t, uint32_t, uint8_t, uint8_t); |
| 422 | void iwm_phy_ctxt_cmd_hdr(struct iwm_softc *, struct iwm_phy_ctxt *, |
| 423 | struct iwm_phy_context_cmd *, uint32_t, uint32_t); |
| 424 | void iwm_phy_ctxt_cmd_data(struct iwm_softc *, struct iwm_phy_context_cmd *, |
| 425 | struct ieee80211_channel *, uint8_t, uint8_t, uint8_t, uint8_t); |
| 426 | int iwm_phy_ctxt_cmd(struct iwm_softc *, struct iwm_phy_ctxt *, uint8_t, |
| 427 | uint8_t, uint32_t, uint32_t, uint8_t, uint8_t); |
| 428 | int iwm_send_cmd(struct iwm_softc *, struct iwm_host_cmd *); |
| 429 | int iwm_send_cmd_pdu(struct iwm_softc *, uint32_t, uint32_t, uint16_t, |
| 430 | const void *); |
| 431 | int iwm_send_cmd_status(struct iwm_softc *, struct iwm_host_cmd *, |
| 432 | uint32_t *); |
| 433 | int iwm_send_cmd_pdu_status(struct iwm_softc *, uint32_t, uint16_t, |
| 434 | const void *, uint32_t *); |
| 435 | void iwm_free_resp(struct iwm_softc *, struct iwm_host_cmd *); |
| 436 | void iwm_cmd_done(struct iwm_softc *, int, int, int); |
| 437 | void iwm_update_sched(struct iwm_softc *, int, int, uint8_t, uint16_t); |
| 438 | void iwm_reset_sched(struct iwm_softc *, int, int, uint8_t); |
| 439 | uint8_t iwm_tx_fill_cmd(struct iwm_softc *, struct iwm_node *, |
| 440 | struct ieee80211_frame *, struct iwm_tx_cmd *); |
| 441 | int iwm_tx(struct iwm_softc *, struct mbuf *, struct ieee80211_node *, int); |
| 442 | int iwm_flush_tx_path(struct iwm_softc *, int); |
| 443 | int iwm_wait_tx_queues_empty(struct iwm_softc *); |
| 444 | void iwm_led_enable(struct iwm_softc *); |
| 445 | void iwm_led_disable(struct iwm_softc *); |
| 446 | int iwm_led_is_enabled(struct iwm_softc *); |
| 447 | void iwm_led_blink_timeout(void *); |
| 448 | void iwm_led_blink_start(struct iwm_softc *); |
| 449 | void iwm_led_blink_stop(struct iwm_softc *); |
| 450 | int iwm_beacon_filter_send_cmd(struct iwm_softc *, |
| 451 | struct iwm_beacon_filter_cmd *); |
| 452 | void iwm_beacon_filter_set_cqm_params(struct iwm_softc *, struct iwm_node *, |
| 453 | struct iwm_beacon_filter_cmd *); |
| 454 | int iwm_update_beacon_abort(struct iwm_softc *, struct iwm_node *, int); |
| 455 | void iwm_power_build_cmd(struct iwm_softc *, struct iwm_node *, |
| 456 | struct iwm_mac_power_cmd *); |
| 457 | int iwm_power_mac_update_mode(struct iwm_softc *, struct iwm_node *); |
| 458 | int iwm_power_update_device(struct iwm_softc *); |
| 459 | int iwm_enable_beacon_filter(struct iwm_softc *, struct iwm_node *); |
| 460 | int iwm_disable_beacon_filter(struct iwm_softc *); |
| 461 | int iwm_add_sta_cmd(struct iwm_softc *, struct iwm_node *, int); |
| 462 | int iwm_add_aux_sta(struct iwm_softc *); |
| 463 | int iwm_drain_sta(struct iwm_softc *sc, struct iwm_node *, int); |
| 464 | int iwm_flush_sta(struct iwm_softc *, struct iwm_node *); |
| 465 | int iwm_rm_sta_cmd(struct iwm_softc *, struct iwm_node *); |
| 466 | uint16_t iwm_scan_rx_chain(struct iwm_softc *); |
| 467 | uint32_t iwm_scan_rate_n_flags(struct iwm_softc *, int, int); |
| 468 | uint8_t iwm_lmac_scan_fill_channels(struct iwm_softc *, |
| 469 | struct iwm_scan_channel_cfg_lmac *, int, int); |
| 470 | int iwm_fill_probe_req(struct iwm_softc *, struct iwm_scan_probe_req *); |
| 471 | int iwm_lmac_scan(struct iwm_softc *, int); |
| 472 | int iwm_config_umac_scan(struct iwm_softc *); |
| 473 | int iwm_umac_scan(struct iwm_softc *, int); |
| 474 | void iwm_mcc_update(struct iwm_softc *, struct iwm_mcc_chub_notif *); |
| 475 | uint8_t iwm_ridx2rate(struct ieee80211_rateset *, int); |
| 476 | int iwm_rval2ridx(int); |
| 477 | void iwm_ack_rates(struct iwm_softc *, struct iwm_node *, int *, int *); |
| 478 | void iwm_mac_ctxt_cmd_common(struct iwm_softc *, struct iwm_node *, |
| 479 | struct iwm_mac_ctx_cmd *, uint32_t); |
| 480 | void iwm_mac_ctxt_cmd_fill_sta(struct iwm_softc *, struct iwm_node *, |
| 481 | struct iwm_mac_data_sta *, int); |
| 482 | int iwm_mac_ctxt_cmd(struct iwm_softc *, struct iwm_node *, uint32_t, int); |
| 483 | int iwm_update_quotas(struct iwm_softc *, struct iwm_node *, int); |
| 484 | void iwm_add_task(struct iwm_softc *, struct taskq *, struct task *); |
| 485 | void iwm_del_task(struct iwm_softc *, struct taskq *, struct task *); |
| 486 | int iwm_scan(struct iwm_softc *); |
| 487 | int iwm_bgscan(struct ieee80211com *); |
| 488 | void iwm_bgscan_done(struct ieee80211com *, |
| 489 | struct ieee80211_node_switch_bss_arg *, size_t); |
| 490 | void iwm_bgscan_done_task(void *); |
| 491 | int iwm_umac_scan_abort(struct iwm_softc *); |
| 492 | int iwm_lmac_scan_abort(struct iwm_softc *); |
| 493 | int iwm_scan_abort(struct iwm_softc *); |
| 494 | int iwm_phy_ctxt_update(struct iwm_softc *, struct iwm_phy_ctxt *, |
| 495 | struct ieee80211_channel *, uint8_t, uint8_t, uint32_t, uint8_t, |
| 496 | uint8_t); |
| 497 | int iwm_auth(struct iwm_softc *); |
| 498 | int iwm_deauth(struct iwm_softc *); |
| 499 | int iwm_run(struct iwm_softc *); |
| 500 | int iwm_run_stop(struct iwm_softc *); |
| 501 | struct ieee80211_node *iwm_node_alloc(struct ieee80211com *); |
| 502 | int iwm_set_key_v1(struct ieee80211com *, struct ieee80211_node *, |
| 503 | struct ieee80211_key *); |
| 504 | int iwm_set_key(struct ieee80211com *, struct ieee80211_node *, |
| 505 | struct ieee80211_key *); |
| 506 | void iwm_delete_key_v1(struct ieee80211com *, |
| 507 | struct ieee80211_node *, struct ieee80211_key *); |
| 508 | void iwm_delete_key(struct ieee80211com *, |
| 509 | struct ieee80211_node *, struct ieee80211_key *); |
| 510 | void iwm_calib_timeout(void *); |
| 511 | void iwm_set_rate_table_vht(struct iwm_node *, struct iwm_lq_cmd *); |
| 512 | void iwm_set_rate_table(struct iwm_node *, struct iwm_lq_cmd *); |
| 513 | void iwm_setrates(struct iwm_node *, int); |
| 514 | int iwm_media_change(struct ifnet *); |
| 515 | void iwm_newstate_task(void *); |
| 516 | int iwm_newstate(struct ieee80211com *, enum ieee80211_state, int); |
| 517 | void iwm_endscan(struct iwm_softc *); |
| 518 | void iwm_fill_sf_command(struct iwm_softc *, struct iwm_sf_cfg_cmd *, |
| 519 | struct ieee80211_node *); |
| 520 | int iwm_sf_config(struct iwm_softc *, int); |
| 521 | int iwm_send_bt_init_conf(struct iwm_softc *); |
| 522 | int iwm_send_soc_conf(struct iwm_softc *); |
| 523 | int iwm_send_update_mcc_cmd(struct iwm_softc *, const char *); |
| 524 | int iwm_send_temp_report_ths_cmd(struct iwm_softc *); |
| 525 | void iwm_tt_tx_backoff(struct iwm_softc *, uint32_t); |
| 526 | void iwm_free_fw_paging(struct iwm_softc *); |
| 527 | int iwm_save_fw_paging(struct iwm_softc *, const struct iwm_fw_sects *); |
| 528 | int iwm_send_paging_cmd(struct iwm_softc *, const struct iwm_fw_sects *); |
| 529 | int iwm_init_hw(struct iwm_softc *); |
| 530 | int iwm_init(struct ifnet *); |
| 531 | void iwm_start(struct ifnet *); |
| 532 | void iwm_stop(struct ifnet *); |
| 533 | void iwm_watchdog(struct ifnet *); |
| 534 | int iwm_ioctl(struct ifnet *, u_long, caddr_t); |
| 535 | const char *iwm_desc_lookup(uint32_t); |
| 536 | void iwm_nic_error(struct iwm_softc *); |
| 537 | void iwm_dump_driver_status(struct iwm_softc *); |
| 538 | void iwm_nic_umac_error(struct iwm_softc *); |
| 539 | void iwm_rx_mpdu(struct iwm_softc *, struct mbuf *, void *, size_t, |
| 540 | struct mbuf_list *); |
| 541 | void iwm_flip_address(uint8_t *); |
| 542 | int iwm_detect_duplicate(struct iwm_softc *, struct mbuf *, |
| 543 | struct iwm_rx_mpdu_desc *, struct ieee80211_rxinfo *); |
| 544 | int iwm_is_sn_less(uint16_t, uint16_t, uint16_t); |
| 545 | void iwm_release_frames(struct iwm_softc *, struct ieee80211_node *, |
| 546 | struct iwm_rxba_data *, struct iwm_reorder_buffer *, uint16_t, |
| 547 | struct mbuf_list *); |
| 548 | int iwm_oldsn_workaround(struct iwm_softc *, struct ieee80211_node *, |
| 549 | int, struct iwm_reorder_buffer *, uint32_t, uint32_t); |
| 550 | int iwm_rx_reorder(struct iwm_softc *, struct mbuf *, int, |
| 551 | struct iwm_rx_mpdu_desc *, int, int, uint32_t, |
| 552 | struct ieee80211_rxinfo *, struct mbuf_list *); |
| 553 | void iwm_rx_mpdu_mq(struct iwm_softc *, struct mbuf *, void *, size_t, |
| 554 | struct mbuf_list *); |
| 555 | int iwm_rx_pkt_valid(struct iwm_rx_packet *); |
| 556 | void iwm_rx_pkt(struct iwm_softc *, struct iwm_rx_data *, |
| 557 | struct mbuf_list *); |
| 558 | void iwm_notif_intr(struct iwm_softc *); |
| 559 | int iwm_intr(void *); |
| 560 | int iwm_intr_msix(void *); |
| 561 | int iwm_match(struct device *, void *, void *); |
| 562 | int iwm_preinit(struct iwm_softc *); |
| 563 | void iwm_attach_hook(struct device *); |
| 564 | void iwm_attach(struct device *, struct device *, void *); |
| 565 | void iwm_init_task(void *); |
| 566 | int iwm_activate(struct device *, int); |
| 567 | void iwm_resume(struct iwm_softc *); |
| 568 | int iwm_wakeup(struct iwm_softc *); |
| 569 | |
| 570 | #if NBPFILTER1 > 0 |
| 571 | void iwm_radiotap_attach(struct iwm_softc *); |
| 572 | #endif |
| 573 | |
| 574 | uint8_t |
| 575 | iwm_lookup_cmd_ver(struct iwm_softc *sc, uint8_t grp, uint8_t cmd) |
| 576 | { |
| 577 | const struct iwm_fw_cmd_version *entry; |
| 578 | int i; |
| 579 | |
| 580 | for (i = 0; i < sc->n_cmd_versions; i++) { |
| 581 | entry = &sc->cmd_versions[i]; |
| 582 | if (entry->group == grp && entry->cmd == cmd) |
| 583 | return entry->cmd_ver; |
| 584 | } |
| 585 | |
| 586 | return IWM_FW_CMD_VER_UNKNOWN99; |
| 587 | } |
| 588 | |
| 589 | int |
| 590 | iwm_is_mimo_ht_plcp(uint8_t ht_plcp) |
| 591 | { |
| 592 | return (ht_plcp != IWM_RATE_HT_SISO_MCS_INV_PLCP0x20 && |
| 593 | (ht_plcp & IWM_RATE_HT_MCS_NSS_MSK(3 << 3))); |
| 594 | } |
| 595 | |
| 596 | int |
| 597 | iwm_is_mimo_ht_mcs(int mcs) |
| 598 | { |
| 599 | int ridx = iwm_ht_mcs2ridx[mcs]; |
| 600 | return iwm_is_mimo_ht_plcp(iwm_rates[ridx].ht_plcp); |
| 601 | |
| 602 | } |
| 603 | |
| 604 | int |
| 605 | iwm_store_cscheme(struct iwm_softc *sc, uint8_t *data, size_t dlen) |
| 606 | { |
| 607 | struct iwm_fw_cscheme_list *l = (void *)data; |
| 608 | |
| 609 | if (dlen < sizeof(*l) || |
| 610 | dlen < sizeof(l->size) + l->size * sizeof(*l->cs)) |
| 611 | return EINVAL22; |
| 612 | |
| 613 | /* we don't actually store anything for now, always use s/w crypto */ |
| 614 | |
| 615 | return 0; |
| 616 | } |
| 617 | |
| 618 | int |
| 619 | iwm_firmware_store_section(struct iwm_softc *sc, enum iwm_ucode_type type, |
| 620 | uint8_t *data, size_t dlen) |
| 621 | { |
| 622 | struct iwm_fw_sects *fws; |
| 623 | struct iwm_fw_onesect *fwone; |
| 624 | |
| 625 | if (type >= IWM_UCODE_TYPE_MAX) |
| 626 | return EINVAL22; |
| 627 | if (dlen < sizeof(uint32_t)) |
| 628 | return EINVAL22; |
| 629 | |
| 630 | fws = &sc->sc_fw.fw_sects[type]; |
| 631 | if (fws->fw_count >= IWM_UCODE_SECT_MAX16) |
| 632 | return EINVAL22; |
| 633 | |
| 634 | fwone = &fws->fw_sect[fws->fw_count]; |
| 635 | |
| 636 | /* first 32bit are device load offset */ |
| 637 | memcpy(&fwone->fws_devoff, data, sizeof(uint32_t))__builtin_memcpy((&fwone->fws_devoff), (data), (sizeof (uint32_t))); |
| 638 | |
| 639 | /* rest is data */ |
| 640 | fwone->fws_data = data + sizeof(uint32_t); |
| 641 | fwone->fws_len = dlen - sizeof(uint32_t); |
| 642 | |
| 643 | fws->fw_count++; |
| 644 | fws->fw_totlen += fwone->fws_len; |
| 645 | |
| 646 | return 0; |
| 647 | } |
| 648 | |
| 649 | #define IWM_DEFAULT_SCAN_CHANNELS40 40 |
| 650 | /* Newer firmware might support more channels. Raise this value if needed. */ |
| 651 | #define IWM_MAX_SCAN_CHANNELS52 52 /* as of 8265-34 firmware image */ |
| 652 | |
| 653 | struct iwm_tlv_calib_data { |
| 654 | uint32_t ucode_type; |
| 655 | struct iwm_tlv_calib_ctrl calib; |
| 656 | } __packed__attribute__((__packed__)); |
| 657 | |
| 658 | int |
| 659 | iwm_set_default_calib(struct iwm_softc *sc, const void *data) |
| 660 | { |
| 661 | const struct iwm_tlv_calib_data *def_calib = data; |
| 662 | uint32_t ucode_type = le32toh(def_calib->ucode_type)((__uint32_t)(def_calib->ucode_type)); |
| 663 | |
| 664 | if (ucode_type >= IWM_UCODE_TYPE_MAX) |
| 665 | return EINVAL22; |
| 666 | |
| 667 | sc->sc_default_calib[ucode_type].flow_trigger = |
| 668 | def_calib->calib.flow_trigger; |
| 669 | sc->sc_default_calib[ucode_type].event_trigger = |
| 670 | def_calib->calib.event_trigger; |
| 671 | |
| 672 | return 0; |
| 673 | } |
| 674 | |
| 675 | void |
| 676 | iwm_fw_info_free(struct iwm_fw_info *fw) |
| 677 | { |
| 678 | free(fw->fw_rawdata, M_DEVBUF2, fw->fw_rawsize); |
| 679 | fw->fw_rawdata = NULL((void *)0); |
| 680 | fw->fw_rawsize = 0; |
| 681 | /* don't touch fw->fw_status */ |
| 682 | memset(fw->fw_sects, 0, sizeof(fw->fw_sects))__builtin_memset((fw->fw_sects), (0), (sizeof(fw->fw_sects ))); |
| 683 | } |
| 684 | |
| 685 | void |
| 686 | iwm_fw_version_str(char *buf, size_t bufsize, |
| 687 | uint32_t major, uint32_t minor, uint32_t api) |
| 688 | { |
| 689 | /* |
| 690 | * Starting with major version 35 the Linux driver prints the minor |
| 691 | * version in hexadecimal. |
| 692 | */ |
| 693 | if (major >= 35) |
| 694 | snprintf(buf, bufsize, "%u.%08x.%u", major, minor, api); |
| 695 | else |
| 696 | snprintf(buf, bufsize, "%u.%u.%u", major, minor, api); |
| 697 | } |
| 698 | |
| 699 | int |
| 700 | iwm_read_firmware(struct iwm_softc *sc) |
| 701 | { |
| 702 | struct iwm_fw_info *fw = &sc->sc_fw; |
| 703 | struct iwm_tlv_ucode_header *uhdr; |
| 704 | struct iwm_ucode_tlv tlv; |
| 705 | uint32_t tlv_type; |
| 706 | uint8_t *data; |
| 707 | uint32_t usniffer_img; |
| 708 | uint32_t paging_mem_size; |
| 709 | int err; |
| 710 | size_t len; |
| 711 | |
| 712 | if (fw->fw_status == IWM_FW_STATUS_DONE2) |
| 713 | return 0; |
| 714 | |
| 715 | while (fw->fw_status == IWM_FW_STATUS_INPROGRESS1) |
| 716 | tsleep_nsec(&sc->sc_fw, 0, "iwmfwp", INFSLP0xffffffffffffffffULL); |
| 717 | fw->fw_status = IWM_FW_STATUS_INPROGRESS1; |
| 718 | |
| 719 | if (fw->fw_rawdata != NULL((void *)0)) |
| 720 | iwm_fw_info_free(fw); |
| 721 | |
| 722 | err = loadfirmware(sc->sc_fwname, |
| 723 | (u_char **)&fw->fw_rawdata, &fw->fw_rawsize); |
| 724 | if (err) { |
| 725 | printf("%s: could not read firmware %s (error %d)\n", |
| 726 | DEVNAME(sc)((sc)->sc_dev.dv_xname), sc->sc_fwname, err); |
| 727 | goto out; |
| 728 | } |
| 729 | |
| 730 | sc->sc_capaflags = 0; |
| 731 | sc->sc_capa_n_scan_channels = IWM_DEFAULT_SCAN_CHANNELS40; |
| 732 | memset(sc->sc_enabled_capa, 0, sizeof(sc->sc_enabled_capa))__builtin_memset((sc->sc_enabled_capa), (0), (sizeof(sc-> sc_enabled_capa))); |
| 733 | memset(sc->sc_ucode_api, 0, sizeof(sc->sc_ucode_api))__builtin_memset((sc->sc_ucode_api), (0), (sizeof(sc->sc_ucode_api ))); |
| 734 | sc->n_cmd_versions = 0; |
| 735 | |
| 736 | uhdr = (void *)fw->fw_rawdata; |
| 737 | if (*(uint32_t *)fw->fw_rawdata != 0 |
| 738 | || le32toh(uhdr->magic)((__uint32_t)(uhdr->magic)) != IWM_TLV_UCODE_MAGIC0x0a4c5749) { |
| 739 | printf("%s: invalid firmware %s\n", |
| 740 | DEVNAME(sc)((sc)->sc_dev.dv_xname), sc->sc_fwname); |
| 741 | err = EINVAL22; |
| 742 | goto out; |
| 743 | } |
| 744 | |
| 745 | iwm_fw_version_str(sc->sc_fwver, sizeof(sc->sc_fwver), |
| 746 | IWM_UCODE_MAJOR(le32toh(uhdr->ver))(((((__uint32_t)(uhdr->ver))) & 0xFF000000) >> 24 ), |
| 747 | IWM_UCODE_MINOR(le32toh(uhdr->ver))(((((__uint32_t)(uhdr->ver))) & 0x00FF0000) >> 16 ), |
| 748 | IWM_UCODE_API(le32toh(uhdr->ver))(((((__uint32_t)(uhdr->ver))) & 0x0000FF00) >> 8 )); |
| 749 | |
| 750 | data = uhdr->data; |
| 751 | len = fw->fw_rawsize - sizeof(*uhdr); |
| 752 | |
| 753 | while (len >= sizeof(tlv)) { |
| 754 | size_t tlv_len; |
| 755 | void *tlv_data; |
| 756 | |
| 757 | memcpy(&tlv, data, sizeof(tlv))__builtin_memcpy((&tlv), (data), (sizeof(tlv))); |
| 758 | tlv_len = le32toh(tlv.length)((__uint32_t)(tlv.length)); |
| 759 | tlv_type = le32toh(tlv.type)((__uint32_t)(tlv.type)); |
| 760 | |
| 761 | len -= sizeof(tlv); |
| 762 | data += sizeof(tlv); |
| 763 | tlv_data = data; |
| 764 | |
| 765 | if (len < tlv_len) { |
| 766 | printf("%s: firmware too short: %zu bytes\n", |
| 767 | DEVNAME(sc)((sc)->sc_dev.dv_xname), len); |
| 768 | err = EINVAL22; |
| 769 | goto parse_out; |
| 770 | } |
| 771 | |
| 772 | switch (tlv_type) { |
| 773 | case IWM_UCODE_TLV_PROBE_MAX_LEN6: |
| 774 | if (tlv_len < sizeof(uint32_t)) { |
| 775 | err = EINVAL22; |
| 776 | goto parse_out; |
| 777 | } |
| 778 | sc->sc_capa_max_probe_len |
| 779 | = le32toh(*(uint32_t *)tlv_data)((__uint32_t)(*(uint32_t *)tlv_data)); |
| 780 | if (sc->sc_capa_max_probe_len > |
| 781 | IWM_SCAN_OFFLOAD_PROBE_REQ_SIZE512) { |
| 782 | err = EINVAL22; |
| 783 | goto parse_out; |
| 784 | } |
| 785 | break; |
| 786 | case IWM_UCODE_TLV_PAN7: |
| 787 | if (tlv_len) { |
| 788 | err = EINVAL22; |
| 789 | goto parse_out; |
| 790 | } |
| 791 | sc->sc_capaflags |= IWM_UCODE_TLV_FLAGS_PAN(1 << 0); |
| 792 | break; |
| 793 | case IWM_UCODE_TLV_FLAGS18: |
| 794 | if (tlv_len < sizeof(uint32_t)) { |
| 795 | err = EINVAL22; |
| 796 | goto parse_out; |
| 797 | } |
| 798 | /* |
| 799 | * Apparently there can be many flags, but Linux driver |
| 800 | * parses only the first one, and so do we. |
| 801 | * |
| 802 | * XXX: why does this override IWM_UCODE_TLV_PAN? |
| 803 | * Intentional or a bug? Observations from |
| 804 | * current firmware file: |
| 805 | * 1) TLV_PAN is parsed first |
| 806 | * 2) TLV_FLAGS contains TLV_FLAGS_PAN |
| 807 | * ==> this resets TLV_PAN to itself... hnnnk |
| 808 | */ |
| 809 | sc->sc_capaflags = le32toh(*(uint32_t *)tlv_data)((__uint32_t)(*(uint32_t *)tlv_data)); |
| 810 | break; |
| 811 | case IWM_UCODE_TLV_CSCHEME28: |
| 812 | err = iwm_store_cscheme(sc, tlv_data, tlv_len); |
| 813 | if (err) |
| 814 | goto parse_out; |
| 815 | break; |
| 816 | case IWM_UCODE_TLV_NUM_OF_CPU27: { |
| 817 | uint32_t num_cpu; |
| 818 | if (tlv_len != sizeof(uint32_t)) { |
| 819 | err = EINVAL22; |
| 820 | goto parse_out; |
| 821 | } |
| 822 | num_cpu = le32toh(*(uint32_t *)tlv_data)((__uint32_t)(*(uint32_t *)tlv_data)); |
| 823 | if (num_cpu < 1 || num_cpu > 2) { |
| 824 | err = EINVAL22; |
| 825 | goto parse_out; |
| 826 | } |
| 827 | break; |
| 828 | } |
| 829 | case IWM_UCODE_TLV_SEC_RT19: |
| 830 | err = iwm_firmware_store_section(sc, |
| 831 | IWM_UCODE_TYPE_REGULAR, tlv_data, tlv_len); |
| 832 | if (err) |
| 833 | goto parse_out; |
| 834 | break; |
| 835 | case IWM_UCODE_TLV_SEC_INIT20: |
| 836 | err = iwm_firmware_store_section(sc, |
| 837 | IWM_UCODE_TYPE_INIT, tlv_data, tlv_len); |
| 838 | if (err) |
| 839 | goto parse_out; |
| 840 | break; |
| 841 | case IWM_UCODE_TLV_SEC_WOWLAN21: |
| 842 | err = iwm_firmware_store_section(sc, |
| 843 | IWM_UCODE_TYPE_WOW, tlv_data, tlv_len); |
| 844 | if (err) |
| 845 | goto parse_out; |
| 846 | break; |
| 847 | case IWM_UCODE_TLV_DEF_CALIB22: |
| 848 | if (tlv_len != sizeof(struct iwm_tlv_calib_data)) { |
| 849 | err = EINVAL22; |
| 850 | goto parse_out; |
| 851 | } |
| 852 | err = iwm_set_default_calib(sc, tlv_data); |
| 853 | if (err) |
| 854 | goto parse_out; |
| 855 | break; |
| 856 | case IWM_UCODE_TLV_PHY_SKU23: |
| 857 | if (tlv_len != sizeof(uint32_t)) { |
| 858 | err = EINVAL22; |
| 859 | goto parse_out; |
| 860 | } |
| 861 | sc->sc_fw_phy_config = le32toh(*(uint32_t *)tlv_data)((__uint32_t)(*(uint32_t *)tlv_data)); |
| 862 | break; |
| 863 | |
| 864 | case IWM_UCODE_TLV_API_CHANGES_SET29: { |
| 865 | struct iwm_ucode_api *api; |
| 866 | int idx, i; |
| 867 | if (tlv_len != sizeof(*api)) { |
| 868 | err = EINVAL22; |
| 869 | goto parse_out; |
| 870 | } |
| 871 | api = (struct iwm_ucode_api *)tlv_data; |
| 872 | idx = le32toh(api->api_index)((__uint32_t)(api->api_index)); |
| 873 | if (idx >= howmany(IWM_NUM_UCODE_TLV_API, 32)(((128) + ((32) - 1)) / (32))) { |
| 874 | err = EINVAL22; |
| 875 | goto parse_out; |
| 876 | } |
| 877 | for (i = 0; i < 32; i++) { |
| 878 | if ((le32toh(api->api_flags)((__uint32_t)(api->api_flags)) & (1 << i)) == 0) |
| 879 | continue; |
| 880 | setbit(sc->sc_ucode_api, i + (32 * idx))((sc->sc_ucode_api)[(i + (32 * idx))>>3] |= 1<< ((i + (32 * idx))&(8 -1))); |
| 881 | } |
| 882 | break; |
| 883 | } |
| 884 | |
| 885 | case IWM_UCODE_TLV_ENABLED_CAPABILITIES30: { |
| 886 | struct iwm_ucode_capa *capa; |
| 887 | int idx, i; |
| 888 | if (tlv_len != sizeof(*capa)) { |
| 889 | err = EINVAL22; |
| 890 | goto parse_out; |
| 891 | } |
| 892 | capa = (struct iwm_ucode_capa *)tlv_data; |
| 893 | idx = le32toh(capa->api_index)((__uint32_t)(capa->api_index)); |
| 894 | if (idx >= howmany(IWM_NUM_UCODE_TLV_CAPA, 32)(((128) + ((32) - 1)) / (32))) { |
| 895 | goto parse_out; |
| 896 | } |
| 897 | for (i = 0; i < 32; i++) { |
| 898 | if ((le32toh(capa->api_capa)((__uint32_t)(capa->api_capa)) & (1 << i)) == 0) |
| 899 | continue; |
| 900 | setbit(sc->sc_enabled_capa, i + (32 * idx))((sc->sc_enabled_capa)[(i + (32 * idx))>>3] |= 1<< ((i + (32 * idx))&(8 -1))); |
| 901 | } |
| 902 | break; |
| 903 | } |
| 904 | |
| 905 | case IWM_UCODE_TLV_CMD_VERSIONS48: |
| 906 | if (tlv_len % sizeof(struct iwm_fw_cmd_version)) { |
| 907 | tlv_len /= sizeof(struct iwm_fw_cmd_version); |
| 908 | tlv_len *= sizeof(struct iwm_fw_cmd_version); |
| 909 | } |
| 910 | if (sc->n_cmd_versions != 0) { |
| 911 | err = EINVAL22; |
| 912 | goto parse_out; |
| 913 | } |
| 914 | if (tlv_len > sizeof(sc->cmd_versions)) { |
| 915 | err = EINVAL22; |
| 916 | goto parse_out; |
| 917 | } |
| 918 | memcpy(&sc->cmd_versions[0], tlv_data, tlv_len)__builtin_memcpy((&sc->cmd_versions[0]), (tlv_data), ( tlv_len)); |
| 919 | sc->n_cmd_versions = tlv_len / sizeof(struct iwm_fw_cmd_version); |
| 920 | break; |
| 921 | |
| 922 | case IWM_UCODE_TLV_SDIO_ADMA_ADDR35: |
| 923 | case IWM_UCODE_TLV_FW_GSCAN_CAPA50: |
| 924 | /* ignore, not used by current driver */ |
| 925 | break; |
| 926 | |
| 927 | case IWM_UCODE_TLV_SEC_RT_USNIFFER34: |
| 928 | err = iwm_firmware_store_section(sc, |
| 929 | IWM_UCODE_TYPE_REGULAR_USNIFFER, tlv_data, |
| 930 | tlv_len); |
| 931 | if (err) |
| 932 | goto parse_out; |
| 933 | break; |
| 934 | |
| 935 | case IWM_UCODE_TLV_PAGING32: |
| 936 | if (tlv_len != sizeof(uint32_t)) { |
| 937 | err = EINVAL22; |
| 938 | goto parse_out; |
| 939 | } |
| 940 | paging_mem_size = le32toh(*(const uint32_t *)tlv_data)((__uint32_t)(*(const uint32_t *)tlv_data)); |
| 941 | |
| 942 | DPRINTF(("%s: Paging: paging enabled (size = %u bytes)\n",do { ; } while (0) |
| 943 | DEVNAME(sc), paging_mem_size))do { ; } while (0); |
| 944 | if (paging_mem_size > IWM_MAX_PAGING_IMAGE_SIZE((1 << 5) * ((1 << 3) * (1 << 12)))) { |
| 945 | printf("%s: Driver only supports up to %u" |
| 946 | " bytes for paging image (%u requested)\n", |
| 947 | DEVNAME(sc)((sc)->sc_dev.dv_xname), IWM_MAX_PAGING_IMAGE_SIZE((1 << 5) * ((1 << 3) * (1 << 12))), |
| 948 | paging_mem_size); |
| 949 | err = EINVAL22; |
| 950 | goto out; |
| 951 | } |
| 952 | if (paging_mem_size & (IWM_FW_PAGING_SIZE(1 << 12) - 1)) { |
| 953 | printf("%s: Paging: image isn't multiple of %u\n", |
| 954 | DEVNAME(sc)((sc)->sc_dev.dv_xname), IWM_FW_PAGING_SIZE(1 << 12)); |
| 955 | err = EINVAL22; |
| 956 | goto out; |
| 957 | } |
| 958 | |
| 959 | fw->fw_sects[IWM_UCODE_TYPE_REGULAR].paging_mem_size = |
| 960 | paging_mem_size; |
| 961 | usniffer_img = IWM_UCODE_TYPE_REGULAR_USNIFFER; |
| 962 | fw->fw_sects[usniffer_img].paging_mem_size = |
| 963 | paging_mem_size; |
| 964 | break; |
| 965 | |
| 966 | case IWM_UCODE_TLV_N_SCAN_CHANNELS31: |
| 967 | if (tlv_len != sizeof(uint32_t)) { |
| 968 | err = EINVAL22; |
| 969 | goto parse_out; |
| 970 | } |
| 971 | sc->sc_capa_n_scan_channels = |
| 972 | le32toh(*(uint32_t *)tlv_data)((__uint32_t)(*(uint32_t *)tlv_data)); |
| 973 | if (sc->sc_capa_n_scan_channels > IWM_MAX_SCAN_CHANNELS52) { |
| 974 | err = ERANGE34; |
| 975 | goto parse_out; |
| 976 | } |
| 977 | break; |
| 978 | |
| 979 | case IWM_UCODE_TLV_FW_VERSION36: |
| 980 | if (tlv_len != sizeof(uint32_t) * 3) { |
| 981 | err = EINVAL22; |
| 982 | goto parse_out; |
| 983 | } |
| 984 | |
| 985 | iwm_fw_version_str(sc->sc_fwver, sizeof(sc->sc_fwver), |
| 986 | le32toh(((uint32_t *)tlv_data)[0])((__uint32_t)(((uint32_t *)tlv_data)[0])), |
| 987 | le32toh(((uint32_t *)tlv_data)[1])((__uint32_t)(((uint32_t *)tlv_data)[1])), |
| 988 | le32toh(((uint32_t *)tlv_data)[2])((__uint32_t)(((uint32_t *)tlv_data)[2]))); |
| 989 | break; |
| 990 | |
| 991 | case IWM_UCODE_TLV_FW_DBG_DEST38: |
| 992 | case IWM_UCODE_TLV_FW_DBG_CONF39: |
| 993 | case IWM_UCODE_TLV_UMAC_DEBUG_ADDRS54: |
| 994 | case IWM_UCODE_TLV_LMAC_DEBUG_ADDRS55: |
| 995 | case IWM_UCODE_TLV_TYPE_DEBUG_INFO(0x1000005 + 0): |
| 996 | case IWM_UCODE_TLV_TYPE_BUFFER_ALLOCATION(0x1000005 + 1): |
| 997 | case IWM_UCODE_TLV_TYPE_HCMD(0x1000005 + 2): |
| 998 | case IWM_UCODE_TLV_TYPE_REGIONS(0x1000005 + 3): |
| 999 | case IWM_UCODE_TLV_TYPE_TRIGGERS(0x1000005 + 4): |
| 1000 | break; |
| 1001 | |
| 1002 | case IWM_UCODE_TLV_HW_TYPE58: |
| 1003 | break; |
| 1004 | |
| 1005 | case IWM_UCODE_TLV_FW_MEM_SEG51: |
| 1006 | break; |
| 1007 | |
| 1008 | /* undocumented TLVs found in iwm-9000-43 image */ |
| 1009 | case 0x1000003: |
| 1010 | case 0x1000004: |
| 1011 | break; |
| 1012 | |
| 1013 | default: |
| 1014 | err = EINVAL22; |
| 1015 | goto parse_out; |
| 1016 | } |
| 1017 | |
| 1018 | /* |
| 1019 | * Check for size_t overflow and ignore missing padding at |
| 1020 | * end of firmware file. |
| 1021 | */ |
| 1022 | if (roundup(tlv_len, 4)((((tlv_len)+((4)-1))/(4))*(4)) > len) |
| 1023 | break; |
| 1024 | |
| 1025 | len -= roundup(tlv_len, 4)((((tlv_len)+((4)-1))/(4))*(4)); |
| 1026 | data += roundup(tlv_len, 4)((((tlv_len)+((4)-1))/(4))*(4)); |
| 1027 | } |
| 1028 | |
| 1029 | KASSERT(err == 0)((err == 0) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/dev/pci/if_iwm.c" , 1029, "err == 0")); |
| 1030 | |
| 1031 | parse_out: |
| 1032 | if (err) { |
| 1033 | printf("%s: firmware parse error %d, " |
| 1034 | "section type %d\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), err, tlv_type); |
| 1035 | } |
| 1036 | |
| 1037 | out: |
| 1038 | if (err) { |
| 1039 | fw->fw_status = IWM_FW_STATUS_NONE0; |
| 1040 | if (fw->fw_rawdata != NULL((void *)0)) |
| 1041 | iwm_fw_info_free(fw); |
| 1042 | } else |
| 1043 | fw->fw_status = IWM_FW_STATUS_DONE2; |
| 1044 | wakeup(&sc->sc_fw); |
| 1045 | |
| 1046 | return err; |
| 1047 | } |
| 1048 | |
| 1049 | uint32_t |
| 1050 | iwm_read_prph_unlocked(struct iwm_softc *sc, uint32_t addr) |
| 1051 | { |
| 1052 | IWM_WRITE(sc,(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x400)+0x048 ))), ((((addr & 0x000fffff) | (3 << 24)))))) |
| 1053 | IWM_HBUS_TARG_PRPH_RADDR, ((addr & 0x000fffff) | (3 << 24)))(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x400)+0x048 ))), ((((addr & 0x000fffff) | (3 << 24)))))); |
| 1054 | IWM_BARRIER_READ_WRITE(sc)bus_space_barrier((sc)->sc_st, (sc)->sc_sh, 0, (sc)-> sc_sz, 0x01 | 0x02); |
| 1055 | return IWM_READ(sc, IWM_HBUS_TARG_PRPH_RDAT)(((sc)->sc_st)->read_4(((sc)->sc_sh), ((((0x400)+0x050 ))))); |
| 1056 | } |
| 1057 | |
| 1058 | uint32_t |
| 1059 | iwm_read_prph(struct iwm_softc *sc, uint32_t addr) |
| 1060 | { |
| 1061 | iwm_nic_assert_locked(sc); |
| 1062 | return iwm_read_prph_unlocked(sc, addr); |
| 1063 | } |
| 1064 | |
| 1065 | void |
| 1066 | iwm_write_prph_unlocked(struct iwm_softc *sc, uint32_t addr, uint32_t val) |
| 1067 | { |
| 1068 | IWM_WRITE(sc,(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x400)+0x044 ))), ((((addr & 0x000fffff) | (3 << 24)))))) |
| 1069 | IWM_HBUS_TARG_PRPH_WADDR, ((addr & 0x000fffff) | (3 << 24)))(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x400)+0x044 ))), ((((addr & 0x000fffff) | (3 << 24)))))); |
| 1070 | IWM_BARRIER_WRITE(sc)bus_space_barrier((sc)->sc_st, (sc)->sc_sh, 0, (sc)-> sc_sz, 0x02); |
| 1071 | IWM_WRITE(sc, IWM_HBUS_TARG_PRPH_WDAT, val)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x400)+0x04c ))), ((val)))); |
| 1072 | } |
| 1073 | |
| 1074 | void |
| 1075 | iwm_write_prph(struct iwm_softc *sc, uint32_t addr, uint32_t val) |
| 1076 | { |
| 1077 | iwm_nic_assert_locked(sc); |
| 1078 | iwm_write_prph_unlocked(sc, addr, val); |
| 1079 | } |
| 1080 | |
| 1081 | void |
| 1082 | iwm_write_prph64(struct iwm_softc *sc, uint64_t addr, uint64_t val) |
| 1083 | { |
| 1084 | iwm_write_prph(sc, (uint32_t)addr, val & 0xffffffff); |
| 1085 | iwm_write_prph(sc, (uint32_t)addr + 4, val >> 32); |
| 1086 | } |
| 1087 | |
| 1088 | int |
| 1089 | iwm_read_mem(struct iwm_softc *sc, uint32_t addr, void *buf, int dwords) |
| 1090 | { |
| 1091 | int offs, err = 0; |
| 1092 | uint32_t *vals = buf; |
| 1093 | |
| 1094 | if (iwm_nic_lock(sc)) { |
| 1095 | IWM_WRITE(sc, IWM_HBUS_TARG_MEM_RADDR, addr)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x400)+0x00c ))), ((addr)))); |
| 1096 | for (offs = 0; offs < dwords; offs++) |
| 1097 | vals[offs] = IWM_READ(sc, IWM_HBUS_TARG_MEM_RDAT)(((sc)->sc_st)->read_4(((sc)->sc_sh), ((((0x400)+0x01c ))))); |
| 1098 | iwm_nic_unlock(sc); |
| 1099 | } else { |
| 1100 | err = EBUSY16; |
| 1101 | } |
| 1102 | return err; |
| 1103 | } |
| 1104 | |
| 1105 | int |
| 1106 | iwm_write_mem(struct iwm_softc *sc, uint32_t addr, const void *buf, int dwords) |
| 1107 | { |
| 1108 | int offs; |
| 1109 | const uint32_t *vals = buf; |
| 1110 | |
| 1111 | if (iwm_nic_lock(sc)) { |
| 1112 | IWM_WRITE(sc, IWM_HBUS_TARG_MEM_WADDR, addr)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x400)+0x010 ))), ((addr)))); |
| 1113 | /* WADDR auto-increments */ |
| 1114 | for (offs = 0; offs < dwords; offs++) { |
| 1115 | uint32_t val = vals ? vals[offs] : 0; |
| 1116 | IWM_WRITE(sc, IWM_HBUS_TARG_MEM_WDAT, val)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x400)+0x018 ))), ((val)))); |
| 1117 | } |
| 1118 | iwm_nic_unlock(sc); |
| 1119 | } else { |
| 1120 | return EBUSY16; |
| 1121 | } |
| 1122 | return 0; |
| 1123 | } |
| 1124 | |
| 1125 | int |
| 1126 | iwm_write_mem32(struct iwm_softc *sc, uint32_t addr, uint32_t val) |
| 1127 | { |
| 1128 | return iwm_write_mem(sc, addr, &val, 1); |
| 1129 | } |
| 1130 | |
| 1131 | int |
| 1132 | iwm_poll_bit(struct iwm_softc *sc, int reg, uint32_t bits, uint32_t mask, |
| 1133 | int timo) |
| 1134 | { |
| 1135 | for (;;) { |
| 1136 | if ((IWM_READ(sc, reg)(((sc)->sc_st)->read_4(((sc)->sc_sh), ((reg)))) & mask) == (bits & mask)) { |
| 1137 | return 1; |
| 1138 | } |
| 1139 | if (timo < 10) { |
| 1140 | return 0; |
| 1141 | } |
| 1142 | timo -= 10; |
| 1143 | DELAY(10)(*delay_func)(10); |
| 1144 | } |
| 1145 | } |
| 1146 | |
| 1147 | int |
| 1148 | iwm_nic_lock(struct iwm_softc *sc) |
| 1149 | { |
| 1150 | if (sc->sc_nic_locks > 0) { |
| 1151 | iwm_nic_assert_locked(sc); |
| 1152 | sc->sc_nic_locks++; |
| 1153 | return 1; /* already locked */ |
| 1154 | } |
| 1155 | |
| 1156 | IWM_SETBITS(sc, IWM_CSR_GP_CNTRL,(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x024))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x024))))) | ((0x00000008)))))) |
| 1157 | IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x024))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x024))))) | ((0x00000008)))))); |
| 1158 | |
| 1159 | if (sc->sc_device_family >= IWM_DEVICE_FAMILY_80002) |
| 1160 | DELAY(2)(*delay_func)(2); |
| 1161 | |
| 1162 | if (iwm_poll_bit(sc, IWM_CSR_GP_CNTRL(0x024), |
| 1163 | IWM_CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN(0x00000001), |
| 1164 | IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY(0x00000001) |
| 1165 | | IWM_CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP(0x00000010), 150000)) { |
| 1166 | sc->sc_nic_locks++; |
| 1167 | return 1; |
| 1168 | } |
| 1169 | |
| 1170 | printf("%s: acquiring device failed\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 1171 | return 0; |
| 1172 | } |
| 1173 | |
| 1174 | void |
| 1175 | iwm_nic_assert_locked(struct iwm_softc *sc) |
| 1176 | { |
| 1177 | if (sc->sc_nic_locks <= 0) |
| 1178 | panic("%s: nic locks counter %d", DEVNAME(sc)((sc)->sc_dev.dv_xname), sc->sc_nic_locks); |
| 1179 | } |
| 1180 | |
| 1181 | void |
| 1182 | iwm_nic_unlock(struct iwm_softc *sc) |
| 1183 | { |
| 1184 | if (sc->sc_nic_locks > 0) { |
| 1185 | if (--sc->sc_nic_locks == 0) |
| 1186 | IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x024))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x024))))) & ~((0x00000008)))))) |
| 1187 | IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x024))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x024))))) & ~((0x00000008)))))); |
| 1188 | } else |
| 1189 | printf("%s: NIC already unlocked\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 1190 | } |
| 1191 | |
| 1192 | int |
| 1193 | iwm_set_bits_mask_prph(struct iwm_softc *sc, uint32_t reg, uint32_t bits, |
| 1194 | uint32_t mask) |
| 1195 | { |
| 1196 | uint32_t val; |
| 1197 | |
| 1198 | if (iwm_nic_lock(sc)) { |
| 1199 | val = iwm_read_prph(sc, reg) & mask; |
| 1200 | val |= bits; |
| 1201 | iwm_write_prph(sc, reg, val); |
| 1202 | iwm_nic_unlock(sc); |
| 1203 | return 0; |
| 1204 | } |
| 1205 | return EBUSY16; |
| 1206 | } |
| 1207 | |
| 1208 | int |
| 1209 | iwm_set_bits_prph(struct iwm_softc *sc, uint32_t reg, uint32_t bits) |
| 1210 | { |
| 1211 | return iwm_set_bits_mask_prph(sc, reg, bits, ~0); |
| 1212 | } |
| 1213 | |
| 1214 | int |
| 1215 | iwm_clear_bits_prph(struct iwm_softc *sc, uint32_t reg, uint32_t bits) |
| 1216 | { |
| 1217 | return iwm_set_bits_mask_prph(sc, reg, 0, ~bits); |
| 1218 | } |
| 1219 | |
| 1220 | int |
| 1221 | iwm_dma_contig_alloc(bus_dma_tag_t tag, struct iwm_dma_info *dma, |
| 1222 | bus_size_t size, bus_size_t alignment) |
| 1223 | { |
| 1224 | int nsegs, err; |
| 1225 | caddr_t va; |
| 1226 | |
| 1227 | dma->tag = tag; |
| 1228 | dma->size = size; |
| 1229 | |
| 1230 | err = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,(*(tag)->_dmamap_create)((tag), (size), (1), (size), (0), ( 0x0001), (&dma->map)) |
| 1231 | &dma->map)(*(tag)->_dmamap_create)((tag), (size), (1), (size), (0), ( 0x0001), (&dma->map)); |
| 1232 | if (err) |
| 1233 | goto fail; |
| 1234 | |
| 1235 | err = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,(*(tag)->_dmamem_alloc)((tag), (size), (alignment), (0), ( &dma->seg), (1), (&nsegs), (0x0001)) |
| 1236 | BUS_DMA_NOWAIT)(*(tag)->_dmamem_alloc)((tag), (size), (alignment), (0), ( &dma->seg), (1), (&nsegs), (0x0001)); |
| 1237 | if (err) |
| 1238 | goto fail; |
| 1239 | |
| 1240 | err = bus_dmamem_map(tag, &dma->seg, 1, size, &va,(*(tag)->_dmamem_map)((tag), (&dma->seg), (1), (size ), (&va), (0x0001)) |
| 1241 | BUS_DMA_NOWAIT)(*(tag)->_dmamem_map)((tag), (&dma->seg), (1), (size ), (&va), (0x0001)); |
| 1242 | if (err) |
| 1243 | goto fail; |
| 1244 | dma->vaddr = va; |
| 1245 | |
| 1246 | err = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,(*(tag)->_dmamap_load)((tag), (dma->map), (dma->vaddr ), (size), (((void *)0)), (0x0001)) |
| 1247 | BUS_DMA_NOWAIT)(*(tag)->_dmamap_load)((tag), (dma->map), (dma->vaddr ), (size), (((void *)0)), (0x0001)); |
| 1248 | if (err) |
| 1249 | goto fail; |
| 1250 | |
| 1251 | memset(dma->vaddr, 0, size)__builtin_memset((dma->vaddr), (0), (size)); |
| 1252 | bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE)(*(tag)->_dmamap_sync)((tag), (dma->map), (0), (size), ( 0x04)); |
| 1253 | dma->paddr = dma->map->dm_segs[0].ds_addr; |
| 1254 | |
| 1255 | return 0; |
| 1256 | |
| 1257 | fail: iwm_dma_contig_free(dma); |
| 1258 | return err; |
| 1259 | } |
| 1260 | |
| 1261 | void |
| 1262 | iwm_dma_contig_free(struct iwm_dma_info *dma) |
| 1263 | { |
| 1264 | if (dma->map != NULL((void *)0)) { |
| 1265 | if (dma->vaddr != NULL((void *)0)) { |
| 1266 | bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,(*(dma->tag)->_dmamap_sync)((dma->tag), (dma->map ), (0), (dma->size), (0x02 | 0x08)) |
| 1267 | BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)(*(dma->tag)->_dmamap_sync)((dma->tag), (dma->map ), (0), (dma->size), (0x02 | 0x08)); |
| 1268 | bus_dmamap_unload(dma->tag, dma->map)(*(dma->tag)->_dmamap_unload)((dma->tag), (dma->map )); |
| 1269 | bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size)(*(dma->tag)->_dmamem_unmap)((dma->tag), (dma->vaddr ), (dma->size)); |
| 1270 | bus_dmamem_free(dma->tag, &dma->seg, 1)(*(dma->tag)->_dmamem_free)((dma->tag), (&dma-> seg), (1)); |
| 1271 | dma->vaddr = NULL((void *)0); |
| 1272 | } |
| 1273 | bus_dmamap_destroy(dma->tag, dma->map)(*(dma->tag)->_dmamap_destroy)((dma->tag), (dma-> map)); |
| 1274 | dma->map = NULL((void *)0); |
| 1275 | } |
| 1276 | } |
| 1277 | |
| 1278 | int |
| 1279 | iwm_alloc_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring) |
| 1280 | { |
| 1281 | bus_size_t size; |
| 1282 | size_t descsz; |
| 1283 | int count, i, err; |
| 1284 | |
| 1285 | ring->cur = 0; |
| 1286 | |
| 1287 | if (sc->sc_mqrx_supported) { |
| 1288 | count = IWM_RX_MQ_RING_COUNT512; |
| 1289 | descsz = sizeof(uint64_t); |
| 1290 | } else { |
| 1291 | count = IWM_RX_RING_COUNT256; |
| 1292 | descsz = sizeof(uint32_t); |
| 1293 | } |
| 1294 | |
| 1295 | /* Allocate RX descriptors (256-byte aligned). */ |
| 1296 | size = count * descsz; |
| 1297 | err = iwm_dma_contig_alloc(sc->sc_dmat, &ring->free_desc_dma, size, 256); |
| 1298 | if (err) { |
| 1299 | printf("%s: could not allocate RX ring DMA memory\n", |
| 1300 | DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 1301 | goto fail; |
| 1302 | } |
| 1303 | ring->desc = ring->free_desc_dma.vaddr; |
| 1304 | |
| 1305 | /* Allocate RX status area (16-byte aligned). */ |
| 1306 | err = iwm_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma, |
| 1307 | sizeof(*ring->stat), 16); |
| 1308 | if (err) { |
| 1309 | printf("%s: could not allocate RX status DMA memory\n", |
| 1310 | DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 1311 | goto fail; |
| 1312 | } |
| 1313 | ring->stat = ring->stat_dma.vaddr; |
| 1314 | |
| 1315 | if (sc->sc_mqrx_supported) { |
| 1316 | size = count * sizeof(uint32_t); |
| 1317 | err = iwm_dma_contig_alloc(sc->sc_dmat, &ring->used_desc_dma, |
| 1318 | size, 256); |
| 1319 | if (err) { |
| 1320 | printf("%s: could not allocate RX ring DMA memory\n", |
| 1321 | DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 1322 | goto fail; |
| 1323 | } |
| 1324 | } |
| 1325 | |
| 1326 | for (i = 0; i < count; i++) { |
| 1327 | struct iwm_rx_data *data = &ring->data[i]; |
| 1328 | |
| 1329 | memset(data, 0, sizeof(*data))__builtin_memset((data), (0), (sizeof(*data))); |
| 1330 | err = bus_dmamap_create(sc->sc_dmat, IWM_RBUF_SIZE, 1,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), (4096 ), (1), (4096), (0), (0x0001 | 0x0002), (&data->map)) |
| 1331 | IWM_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), (4096 ), (1), (4096), (0), (0x0001 | 0x0002), (&data->map)) |
| 1332 | &data->map)(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), (4096 ), (1), (4096), (0), (0x0001 | 0x0002), (&data->map)); |
| 1333 | if (err) { |
| 1334 | printf("%s: could not create RX buf DMA map\n", |
| 1335 | DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 1336 | goto fail; |
| 1337 | } |
| 1338 | |
| 1339 | err = iwm_rx_addbuf(sc, IWM_RBUF_SIZE4096, i); |
| 1340 | if (err) |
| 1341 | goto fail; |
| 1342 | } |
| 1343 | return 0; |
| 1344 | |
| 1345 | fail: iwm_free_rx_ring(sc, ring); |
| 1346 | return err; |
| 1347 | } |
| 1348 | |
| 1349 | void |
| 1350 | iwm_disable_rx_dma(struct iwm_softc *sc) |
| 1351 | { |
| 1352 | int ntries; |
| 1353 | |
| 1354 | if (iwm_nic_lock(sc)) { |
| 1355 | if (sc->sc_mqrx_supported) { |
| 1356 | iwm_write_prph(sc, IWM_RFH_RXF_DMA_CFG0xA09820, 0); |
| 1357 | for (ntries = 0; ntries < 1000; ntries++) { |
| 1358 | if (iwm_read_prph(sc, IWM_RFH_GEN_STATUS0xA09808) & |
| 1359 | IWM_RXF_DMA_IDLE(1U << 31)) |
| 1360 | break; |
| 1361 | DELAY(10)(*delay_func)(10); |
| 1362 | } |
| 1363 | } else { |
| 1364 | IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG, 0)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((((0x1000) + 0xC00))))), ((0)))); |
| 1365 | for (ntries = 0; ntries < 1000; ntries++) { |
| 1366 | if (IWM_READ(sc, IWM_FH_MEM_RSSR_RX_STATUS_REG)(((sc)->sc_st)->read_4(((sc)->sc_sh), (((((0x1000) + 0xC40) + 0x004)))))& |
| 1367 | IWM_FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE(0x01000000)) |
| 1368 | break; |
| 1369 | DELAY(10)(*delay_func)(10); |
| 1370 | } |
| 1371 | } |
| 1372 | iwm_nic_unlock(sc); |
| 1373 | } |
| 1374 | } |
| 1375 | |
| 1376 | void |
| 1377 | iwm_reset_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring) |
| 1378 | { |
| 1379 | ring->cur = 0; |
| 1380 | bus_dmamap_sync(sc->sc_dmat, ring->stat_dma.map, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> stat_dma.map), (0), (ring->stat_dma.size), (0x04)) |
| 1381 | ring->stat_dma.size, BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> stat_dma.map), (0), (ring->stat_dma.size), (0x04)); |
| 1382 | memset(ring->stat, 0, sizeof(*ring->stat))__builtin_memset((ring->stat), (0), (sizeof(*ring->stat ))); |
| 1383 | bus_dmamap_sync(sc->sc_dmat, ring->stat_dma.map, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> stat_dma.map), (0), (ring->stat_dma.size), (0x08)) |
| 1384 | ring->stat_dma.size, BUS_DMASYNC_POSTWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> stat_dma.map), (0), (ring->stat_dma.size), (0x08)); |
| 1385 | |
| 1386 | } |
| 1387 | |
| 1388 | void |
| 1389 | iwm_free_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring) |
| 1390 | { |
| 1391 | int count, i; |
| 1392 | |
| 1393 | iwm_dma_contig_free(&ring->free_desc_dma); |
| 1394 | iwm_dma_contig_free(&ring->stat_dma); |
| 1395 | iwm_dma_contig_free(&ring->used_desc_dma); |
| 1396 | |
| 1397 | if (sc->sc_mqrx_supported) |
| 1398 | count = IWM_RX_MQ_RING_COUNT512; |
| 1399 | else |
| 1400 | count = IWM_RX_RING_COUNT256; |
| 1401 | |
| 1402 | for (i = 0; i < count; i++) { |
| 1403 | struct iwm_rx_data *data = &ring->data[i]; |
| 1404 | |
| 1405 | if (data->m != NULL((void *)0)) { |
| 1406 | bus_dmamap_sync(sc->sc_dmat, data->map, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (0), (data->map->dm_mapsize), (0x02)) |
| 1407 | data->map->dm_mapsize, BUS_DMASYNC_POSTREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (0), (data->map->dm_mapsize), (0x02)); |
| 1408 | bus_dmamap_unload(sc->sc_dmat, data->map)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (data ->map)); |
| 1409 | m_freem(data->m); |
| 1410 | data->m = NULL((void *)0); |
| 1411 | } |
| 1412 | if (data->map != NULL((void *)0)) |
| 1413 | bus_dmamap_destroy(sc->sc_dmat, data->map)(*(sc->sc_dmat)->_dmamap_destroy)((sc->sc_dmat), (data ->map)); |
| 1414 | } |
| 1415 | } |
| 1416 | |
| 1417 | int |
| 1418 | iwm_alloc_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring, int qid) |
| 1419 | { |
| 1420 | bus_addr_t paddr; |
| 1421 | bus_size_t size; |
| 1422 | int i, err; |
| 1423 | |
| 1424 | ring->qid = qid; |
| 1425 | ring->queued = 0; |
| 1426 | ring->cur = 0; |
| 1427 | ring->tail = 0; |
| 1428 | |
| 1429 | /* Allocate TX descriptors (256-byte aligned). */ |
| 1430 | size = IWM_TX_RING_COUNT256 * sizeof (struct iwm_tfd); |
| 1431 | err = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256); |
| 1432 | if (err) { |
| 1433 | printf("%s: could not allocate TX ring DMA memory\n", |
| 1434 | DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 1435 | goto fail; |
| 1436 | } |
| 1437 | ring->desc = ring->desc_dma.vaddr; |
| 1438 | |
| 1439 | /* |
| 1440 | * There is no need to allocate DMA buffers for unused rings. |
| 1441 | * 7k/8k/9k hardware supports up to 31 Tx rings which is more |
| 1442 | * than we currently need. |
| 1443 | * |
| 1444 | * In DQA mode we use 1 command queue + 4 DQA mgmt/data queues. |
| 1445 | * The command is queue 0 (sc->txq[0]), and 4 mgmt/data frame queues |
| 1446 | * are sc->tqx[IWM_DQA_MIN_MGMT_QUEUE + ac], i.e. sc->txq[5:8], |
| 1447 | * in order to provide one queue per EDCA category. |
| 1448 | * Tx aggregation requires additional queues, one queue per TID for |
| 1449 | * which aggregation is enabled. We map TID 0-7 to sc->txq[10:17]. |
| 1450 | * |
| 1451 | * In non-DQA mode, we use rings 0 through 9 (0-3 are EDCA, 9 is cmd), |
| 1452 | * and Tx aggregation is not supported. |
| 1453 | * |
| 1454 | * Unfortunately, we cannot tell if DQA will be used until the |
| 1455 | * firmware gets loaded later, so just allocate sufficient rings |
| 1456 | * in order to satisfy both cases. |
| 1457 | */ |
| 1458 | if (qid > IWM_LAST_AGG_TX_QUEUE(10 + 8 - 1)) |
| 1459 | return 0; |
| 1460 | |
| 1461 | size = IWM_TX_RING_COUNT256 * sizeof(struct iwm_device_cmd); |
| 1462 | err = iwm_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, size, 4); |
| 1463 | if (err) { |
| 1464 | printf("%s: could not allocate cmd DMA memory\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 1465 | goto fail; |
| 1466 | } |
| 1467 | ring->cmd = ring->cmd_dma.vaddr; |
| 1468 | |
| 1469 | paddr = ring->cmd_dma.paddr; |
| 1470 | for (i = 0; i < IWM_TX_RING_COUNT256; i++) { |
| 1471 | struct iwm_tx_data *data = &ring->data[i]; |
| 1472 | size_t mapsize; |
| 1473 | |
| 1474 | data->cmd_paddr = paddr; |
| 1475 | data->scratch_paddr = paddr + sizeof(struct iwm_cmd_header) |
| 1476 | + offsetof(struct iwm_tx_cmd, scratch)__builtin_offsetof(struct iwm_tx_cmd, scratch); |
| 1477 | paddr += sizeof(struct iwm_device_cmd); |
| 1478 | |
| 1479 | /* FW commands may require more mapped space than packets. */ |
| 1480 | if (qid == IWM_CMD_QUEUE9 || qid == IWM_DQA_CMD_QUEUE0) |
| 1481 | mapsize = (sizeof(struct iwm_cmd_header) + |
| 1482 | IWM_MAX_CMD_PAYLOAD_SIZE((4096 - 4) - sizeof(struct iwm_cmd_header))); |
| 1483 | else |
| 1484 | mapsize = MCLBYTES(1 << 11); |
| 1485 | err = bus_dmamap_create(sc->sc_dmat, mapsize,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), (mapsize ), (20 - 2), (mapsize), (0), (0x0001), (&data->map)) |
| 1486 | IWM_NUM_OF_TBS - 2, mapsize, 0, BUS_DMA_NOWAIT,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), (mapsize ), (20 - 2), (mapsize), (0), (0x0001), (&data->map)) |
| 1487 | &data->map)(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), (mapsize ), (20 - 2), (mapsize), (0), (0x0001), (&data->map)); |
| 1488 | if (err) { |
| 1489 | printf("%s: could not create TX buf DMA map\n", |
| 1490 | DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 1491 | goto fail; |
| 1492 | } |
| 1493 | } |
| 1494 | KASSERT(paddr == ring->cmd_dma.paddr + size)((paddr == ring->cmd_dma.paddr + size) ? (void)0 : __assert ("diagnostic ", "/usr/src/sys/dev/pci/if_iwm.c", 1494, "paddr == ring->cmd_dma.paddr + size" )); |
| 1495 | return 0; |
| 1496 | |
| 1497 | fail: iwm_free_tx_ring(sc, ring); |
| 1498 | return err; |
| 1499 | } |
| 1500 | |
| 1501 | void |
| 1502 | iwm_reset_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring) |
| 1503 | { |
| 1504 | int i; |
| 1505 | |
| 1506 | for (i = 0; i < IWM_TX_RING_COUNT256; i++) { |
| 1507 | struct iwm_tx_data *data = &ring->data[i]; |
| 1508 | |
| 1509 | if (data->m != NULL((void *)0)) { |
| 1510 | bus_dmamap_sync(sc->sc_dmat, data->map, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (0), (data->map->dm_mapsize), (0x08)) |
| 1511 | data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (0), (data->map->dm_mapsize), (0x08)); |
| 1512 | bus_dmamap_unload(sc->sc_dmat, data->map)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (data ->map)); |
| 1513 | m_freem(data->m); |
| 1514 | data->m = NULL((void *)0); |
| 1515 | } |
| 1516 | } |
| 1517 | /* Clear TX descriptors. */ |
| 1518 | memset(ring->desc, 0, ring->desc_dma.size)__builtin_memset((ring->desc), (0), (ring->desc_dma.size )); |
| 1519 | bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> desc_dma.map), (0), (ring->desc_dma.size), (0x04)) |
| 1520 | ring->desc_dma.size, BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> desc_dma.map), (0), (ring->desc_dma.size), (0x04)); |
| 1521 | sc->qfullmsk &= ~(1 << ring->qid); |
| 1522 | sc->qenablemsk &= ~(1 << ring->qid); |
| 1523 | /* 7000 family NICs are locked while commands are in progress. */ |
| 1524 | if (ring->qid == sc->cmdqid && ring->queued > 0) { |
| 1525 | if (sc->sc_device_family == IWM_DEVICE_FAMILY_70001) |
| 1526 | iwm_nic_unlock(sc); |
| 1527 | } |
| 1528 | ring->queued = 0; |
| 1529 | ring->cur = 0; |
| 1530 | ring->tail = 0; |
| 1531 | } |
| 1532 | |
| 1533 | void |
| 1534 | iwm_free_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring) |
| 1535 | { |
| 1536 | int i; |
| 1537 | |
| 1538 | iwm_dma_contig_free(&ring->desc_dma); |
| 1539 | iwm_dma_contig_free(&ring->cmd_dma); |
| 1540 | |
| 1541 | for (i = 0; i < IWM_TX_RING_COUNT256; i++) { |
| 1542 | struct iwm_tx_data *data = &ring->data[i]; |
| 1543 | |
| 1544 | if (data->m != NULL((void *)0)) { |
| 1545 | bus_dmamap_sync(sc->sc_dmat, data->map, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (0), (data->map->dm_mapsize), (0x08)) |
| 1546 | data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (0), (data->map->dm_mapsize), (0x08)); |
| 1547 | bus_dmamap_unload(sc->sc_dmat, data->map)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (data ->map)); |
| 1548 | m_freem(data->m); |
| 1549 | data->m = NULL((void *)0); |
| 1550 | } |
| 1551 | if (data->map != NULL((void *)0)) |
| 1552 | bus_dmamap_destroy(sc->sc_dmat, data->map)(*(sc->sc_dmat)->_dmamap_destroy)((sc->sc_dmat), (data ->map)); |
| 1553 | } |
| 1554 | } |
| 1555 | |
| 1556 | void |
| 1557 | iwm_enable_rfkill_int(struct iwm_softc *sc) |
| 1558 | { |
| 1559 | if (!sc->sc_msix) { |
| 1560 | sc->sc_intmask = IWM_CSR_INT_BIT_RF_KILL(1 << 7); |
| 1561 | IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x00c))), ( (sc->sc_intmask)))); |
| 1562 | } else { |
| 1563 | IWM_WRITE(sc, IWM_CSR_MSIX_FH_INT_MASK_AD,(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x804))), ((sc->sc_fh_init_mask)))) |
| 1564 | sc->sc_fh_init_mask)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x804))), ((sc->sc_fh_init_mask)))); |
| 1565 | IWM_WRITE(sc, IWM_CSR_MSIX_HW_INT_MASK_AD,(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x80C))), ((~IWM_MSIX_HW_INT_CAUSES_REG_RF_KILL)))) |
| 1566 | ~IWM_MSIX_HW_INT_CAUSES_REG_RF_KILL)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x80C))), ((~IWM_MSIX_HW_INT_CAUSES_REG_RF_KILL)))); |
| 1567 | sc->sc_hw_mask = IWM_MSIX_HW_INT_CAUSES_REG_RF_KILL; |
| 1568 | } |
| 1569 | |
| 1570 | if (sc->sc_device_family >= IWM_DEVICE_FAMILY_90003) |
| 1571 | IWM_SETBITS(sc, IWM_CSR_GP_CNTRL,(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x024))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x024))))) | ((0x04000000)))))) |
| 1572 | IWM_CSR_GP_CNTRL_REG_FLAG_RFKILL_WAKE_L1A_EN)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x024))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x024))))) | ((0x04000000)))))); |
| 1573 | } |
| 1574 | |
| 1575 | int |
| 1576 | iwm_check_rfkill(struct iwm_softc *sc) |
| 1577 | { |
| 1578 | uint32_t v; |
| 1579 | int rv; |
| 1580 | |
| 1581 | /* |
| 1582 | * "documentation" is not really helpful here: |
| 1583 | * 27: HW_RF_KILL_SW |
| 1584 | * Indicates state of (platform's) hardware RF-Kill switch |
| 1585 | * |
| 1586 | * But apparently when it's off, it's on ... |
| 1587 | */ |
| 1588 | v = IWM_READ(sc, IWM_CSR_GP_CNTRL)(((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x024))))); |
| 1589 | rv = (v & IWM_CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW(0x08000000)) == 0; |
| 1590 | if (rv) { |
| 1591 | sc->sc_flags |= IWM_FLAG_RFKILL0x02; |
| 1592 | } else { |
| 1593 | sc->sc_flags &= ~IWM_FLAG_RFKILL0x02; |
| 1594 | } |
| 1595 | |
| 1596 | return rv; |
| 1597 | } |
| 1598 | |
| 1599 | void |
| 1600 | iwm_enable_interrupts(struct iwm_softc *sc) |
| 1601 | { |
| 1602 | if (!sc->sc_msix) { |
| 1603 | sc->sc_intmask = IWM_CSR_INI_SET_MASK((1U << 31) | (1 << 29) | (1 << 27) | (1 << 25) | (1 << 7) | (1 << 3) | (1 << 1) | (1 << 0) | (1 << 28)); |
| 1604 | IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x00c))), ( (sc->sc_intmask)))); |
| 1605 | } else { |
| 1606 | /* |
| 1607 | * fh/hw_mask keeps all the unmasked causes. |
| 1608 | * Unlike msi, in msix cause is enabled when it is unset. |
| 1609 | */ |
| 1610 | sc->sc_hw_mask = sc->sc_hw_init_mask; |
| 1611 | sc->sc_fh_mask = sc->sc_fh_init_mask; |
| 1612 | IWM_WRITE(sc, IWM_CSR_MSIX_FH_INT_MASK_AD,(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x804))), ((~sc->sc_fh_mask)))) |
| 1613 | ~sc->sc_fh_mask)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x804))), ((~sc->sc_fh_mask)))); |
| 1614 | IWM_WRITE(sc, IWM_CSR_MSIX_HW_INT_MASK_AD,(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x80C))), ((~sc->sc_hw_mask)))) |
| 1615 | ~sc->sc_hw_mask)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x80C))), ((~sc->sc_hw_mask)))); |
| 1616 | } |
| 1617 | } |
| 1618 | |
| 1619 | void |
| 1620 | iwm_enable_fwload_interrupt(struct iwm_softc *sc) |
| 1621 | { |
| 1622 | if (!sc->sc_msix) { |
| 1623 | sc->sc_intmask = IWM_CSR_INT_BIT_FH_TX(1 << 27); |
| 1624 | IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x00c))), ( (sc->sc_intmask)))); |
| 1625 | } else { |
| 1626 | IWM_WRITE(sc, IWM_CSR_MSIX_HW_INT_MASK_AD,(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x80C))), ((sc->sc_hw_init_mask)))) |
| 1627 | sc->sc_hw_init_mask)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x80C))), ((sc->sc_hw_init_mask)))); |
| 1628 | IWM_WRITE(sc, IWM_CSR_MSIX_FH_INT_MASK_AD,(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x804))), ((~IWM_MSIX_FH_INT_CAUSES_D2S_CH0_NUM)))) |
| 1629 | ~IWM_MSIX_FH_INT_CAUSES_D2S_CH0_NUM)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x804))), ((~IWM_MSIX_FH_INT_CAUSES_D2S_CH0_NUM)))); |
| 1630 | sc->sc_fh_mask = IWM_MSIX_FH_INT_CAUSES_D2S_CH0_NUM; |
| 1631 | } |
| 1632 | } |
| 1633 | |
| 1634 | void |
| 1635 | iwm_restore_interrupts(struct iwm_softc *sc) |
| 1636 | { |
| 1637 | IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x00c))), ( (sc->sc_intmask)))); |
| 1638 | } |
| 1639 | |
| 1640 | void |
| 1641 | iwm_disable_interrupts(struct iwm_softc *sc) |
| 1642 | { |
| 1643 | if (!sc->sc_msix) { |
| 1644 | IWM_WRITE(sc, IWM_CSR_INT_MASK, 0)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x00c))), ( (0)))); |
| 1645 | |
| 1646 | /* acknowledge all interrupts */ |
| 1647 | IWM_WRITE(sc, IWM_CSR_INT, ~0)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x008))), ( (~0)))); |
| 1648 | IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, ~0)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x010))), ( (~0)))); |
| 1649 | } else { |
| 1650 | IWM_WRITE(sc, IWM_CSR_MSIX_FH_INT_MASK_AD,(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x804))), ((sc->sc_fh_init_mask)))) |
| 1651 | sc->sc_fh_init_mask)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x804))), ((sc->sc_fh_init_mask)))); |
| 1652 | IWM_WRITE(sc, IWM_CSR_MSIX_HW_INT_MASK_AD,(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x80C))), ((sc->sc_hw_init_mask)))) |
| 1653 | sc->sc_hw_init_mask)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x80C))), ((sc->sc_hw_init_mask)))); |
| 1654 | } |
| 1655 | } |
| 1656 | |
| 1657 | void |
| 1658 | iwm_ict_reset(struct iwm_softc *sc) |
| 1659 | { |
| 1660 | iwm_disable_interrupts(sc); |
| 1661 | |
| 1662 | memset(sc->ict_dma.vaddr, 0, IWM_ICT_SIZE)__builtin_memset((sc->ict_dma.vaddr), (0), (4096)); |
| 1663 | sc->ict_cur = 0; |
| 1664 | |
| 1665 | /* Set physical address of ICT (4KB aligned). */ |
| 1666 | IWM_WRITE(sc, IWM_CSR_DRAM_INT_TBL_REG,(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x0A0))), ( ((1U << 31) | (1 << 27) | (1 << 28) | sc-> ict_dma.paddr >> 12)))) |
| 1667 | IWM_CSR_DRAM_INT_TBL_ENABLE(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x0A0))), ( ((1U << 31) | (1 << 27) | (1 << 28) | sc-> ict_dma.paddr >> 12)))) |
| 1668 | | IWM_CSR_DRAM_INIT_TBL_WRAP_CHECK(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x0A0))), ( ((1U << 31) | (1 << 27) | (1 << 28) | sc-> ict_dma.paddr >> 12)))) |
| 1669 | | IWM_CSR_DRAM_INIT_TBL_WRITE_POINTER(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x0A0))), ( ((1U << 31) | (1 << 27) | (1 << 28) | sc-> ict_dma.paddr >> 12)))) |
| 1670 | | sc->ict_dma.paddr >> IWM_ICT_PADDR_SHIFT)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x0A0))), ( ((1U << 31) | (1 << 27) | (1 << 28) | sc-> ict_dma.paddr >> 12)))); |
| 1671 | |
| 1672 | /* Switch to ICT interrupt mode in driver. */ |
| 1673 | sc->sc_flags |= IWM_FLAG_USE_ICT0x01; |
| 1674 | |
| 1675 | IWM_WRITE(sc, IWM_CSR_INT, ~0)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x008))), ( (~0)))); |
| 1676 | iwm_enable_interrupts(sc); |
| 1677 | } |
| 1678 | |
| 1679 | #define IWM_HW_READY_TIMEOUT 50 |
| 1680 | int |
| 1681 | iwm_set_hw_ready(struct iwm_softc *sc) |
| 1682 | { |
| 1683 | int ready; |
| 1684 | |
| 1685 | IWM_SETBITS(sc, IWM_CSR_HW_IF_CONFIG_REG,(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x000))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x000))))) | ((0x00400000)))))) |
| 1686 | IWM_CSR_HW_IF_CONFIG_REG_BIT_NIC_READY)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x000))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x000))))) | ((0x00400000)))))); |
| 1687 | |
| 1688 | ready = iwm_poll_bit(sc, IWM_CSR_HW_IF_CONFIG_REG(0x000), |
| 1689 | IWM_CSR_HW_IF_CONFIG_REG_BIT_NIC_READY(0x00400000), |
| 1690 | IWM_CSR_HW_IF_CONFIG_REG_BIT_NIC_READY(0x00400000), |
| 1691 | IWM_HW_READY_TIMEOUT); |
| 1692 | if (ready) |
| 1693 | IWM_SETBITS(sc, IWM_CSR_MBOX_SET_REG,(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x088))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x088))))) | (0x20))))) |
| 1694 | IWM_CSR_MBOX_SET_REG_OS_ALIVE)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x088))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x088))))) | (0x20))))); |
| 1695 | |
| 1696 | return ready; |
| 1697 | } |
| 1698 | #undef IWM_HW_READY_TIMEOUT |
| 1699 | |
| 1700 | int |
| 1701 | iwm_prepare_card_hw(struct iwm_softc *sc) |
| 1702 | { |
| 1703 | int t = 0; |
| 1704 | int ntries; |
| 1705 | |
| 1706 | if (iwm_set_hw_ready(sc)) |
| 1707 | return 0; |
| 1708 | |
| 1709 | IWM_SETBITS(sc, IWM_CSR_DBG_LINK_PWR_MGMT_REG,(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x250))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x250))))) | ((0x80000000)))))) |
| 1710 | IWM_CSR_RESET_LINK_PWR_MGMT_DISABLED)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x250))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x250))))) | ((0x80000000)))))); |
| 1711 | DELAY(1000)(*delay_func)(1000); |
| 1712 | |
| 1713 | for (ntries = 0; ntries < 10; ntries++) { |
| 1714 | /* If HW is not ready, prepare the conditions to check again */ |
| 1715 | IWM_SETBITS(sc, IWM_CSR_HW_IF_CONFIG_REG,(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x000))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x000))))) | ((0x08000000)))))) |
| 1716 | IWM_CSR_HW_IF_CONFIG_REG_PREPARE)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x000))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x000))))) | ((0x08000000)))))); |
| 1717 | |
| 1718 | do { |
| 1719 | if (iwm_set_hw_ready(sc)) |
| 1720 | return 0; |
| 1721 | DELAY(200)(*delay_func)(200); |
| 1722 | t += 200; |
| 1723 | } while (t < 150000); |
| 1724 | DELAY(25000)(*delay_func)(25000); |
| 1725 | } |
| 1726 | |
| 1727 | return ETIMEDOUT60; |
| 1728 | } |
| 1729 | |
| 1730 | void |
| 1731 | iwm_apm_config(struct iwm_softc *sc) |
| 1732 | { |
| 1733 | pcireg_t lctl, cap; |
| 1734 | |
| 1735 | /* |
| 1736 | * HW bug W/A for instability in PCIe bus L0S->L1 transition. |
| 1737 | * Check if BIOS (or OS) enabled L1-ASPM on this device. |
| 1738 | * If so (likely), disable L0S, so device moves directly L0->L1; |
| 1739 | * costs negligible amount of power savings. |
| 1740 | * If not (unlikely), enable L0S, so there is at least some |
| 1741 | * power savings, even without L1. |
| 1742 | */ |
| 1743 | lctl = pci_conf_read(sc->sc_pct, sc->sc_pcitag, |
| 1744 | sc->sc_cap_off + PCI_PCIE_LCSR0x10); |
| 1745 | if (lctl & PCI_PCIE_LCSR_ASPM_L10x00000002) { |
| 1746 | IWM_SETBITS(sc, IWM_CSR_GIO_REG,(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x03C))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x03C))))) | ((0x00000002)))))) |
| 1747 | IWM_CSR_GIO_REG_VAL_L0S_ENABLED)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x03C))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x03C))))) | ((0x00000002)))))); |
| 1748 | } else { |
| 1749 | IWM_CLRBITS(sc, IWM_CSR_GIO_REG,(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x03C))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x03C))))) & ~((0x00000002)))))) |
| 1750 | IWM_CSR_GIO_REG_VAL_L0S_ENABLED)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x03C))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x03C))))) & ~((0x00000002)))))); |
| 1751 | } |
| 1752 | |
| 1753 | cap = pci_conf_read(sc->sc_pct, sc->sc_pcitag, |
| 1754 | sc->sc_cap_off + PCI_PCIE_DCSR20x28); |
| 1755 | sc->sc_ltr_enabled = (cap & PCI_PCIE_DCSR2_LTREN0x00000400) ? 1 : 0; |
| 1756 | DPRINTF(("%s: L1 %sabled - LTR %sabled\n",do { ; } while (0) |
| 1757 | DEVNAME(sc),do { ; } while (0) |
| 1758 | (lctl & PCI_PCIE_LCSR_ASPM_L1) ? "En" : "Dis",do { ; } while (0) |
| 1759 | sc->sc_ltr_enabled ? "En" : "Dis"))do { ; } while (0); |
| 1760 | } |
| 1761 | |
| 1762 | /* |
| 1763 | * Start up NIC's basic functionality after it has been reset |
| 1764 | * e.g. after platform boot or shutdown. |
| 1765 | * NOTE: This does not load uCode nor start the embedded processor |
| 1766 | */ |
| 1767 | int |
| 1768 | iwm_apm_init(struct iwm_softc *sc) |
| 1769 | { |
| 1770 | int err = 0; |
| 1771 | |
| 1772 | /* Disable L0S exit timer (platform NMI workaround) */ |
| 1773 | if (sc->sc_device_family < IWM_DEVICE_FAMILY_80002) |
| 1774 | IWM_SETBITS(sc, IWM_CSR_GIO_CHICKEN_BITS,(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x100))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x100))))) | ((0x20000000)))))) |
| 1775 | IWM_CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x100))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x100))))) | ((0x20000000)))))); |
| 1776 | |
| 1777 | /* |
| 1778 | * Disable L0s without affecting L1; |
| 1779 | * don't wait for ICH L0s (ICH bug W/A) |
| 1780 | */ |
| 1781 | IWM_SETBITS(sc, IWM_CSR_GIO_CHICKEN_BITS,(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x100))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x100))))) | ((0x00800000)))))) |
| 1782 | IWM_CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x100))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x100))))) | ((0x00800000)))))); |
| 1783 | |
| 1784 | /* Set FH wait threshold to maximum (HW error during stress W/A) */ |
| 1785 | IWM_SETBITS(sc, IWM_CSR_DBG_HPET_MEM_REG, IWM_CSR_DBG_HPET_MEM_REG_VAL)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x240))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x240))))) | ((0xFFFF0000)))))); |
| 1786 | |
| 1787 | /* |
| 1788 | * Enable HAP INTA (interrupt from management bus) to |
| 1789 | * wake device's PCI Express link L1a -> L0s |
| 1790 | */ |
| 1791 | IWM_SETBITS(sc, IWM_CSR_HW_IF_CONFIG_REG,(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x000))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x000))))) | ((0x00080000)))))) |
| 1792 | IWM_CSR_HW_IF_CONFIG_REG_BIT_HAP_WAKE_L1A)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x000))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x000))))) | ((0x00080000)))))); |
| 1793 | |
| 1794 | iwm_apm_config(sc); |
| 1795 | |
| 1796 | #if 0 /* not for 7k/8k */ |
| 1797 | /* Configure analog phase-lock-loop before activating to D0A */ |
| 1798 | if (trans->cfg->base_params->pll_cfg_val) |
| 1799 | IWM_SETBITS(trans, IWM_CSR_ANA_PLL_CFG,(((trans)->sc_st)->write_4(((trans)->sc_sh), (((0x20c ))), (((((trans)->sc_st)->read_4(((trans)->sc_sh), ( ((0x20c))))) | (trans->cfg->base_params->pll_cfg_val ))))) |
| 1800 | trans->cfg->base_params->pll_cfg_val)(((trans)->sc_st)->write_4(((trans)->sc_sh), (((0x20c ))), (((((trans)->sc_st)->read_4(((trans)->sc_sh), ( ((0x20c))))) | (trans->cfg->base_params->pll_cfg_val ))))); |
| 1801 | #endif |
| 1802 | |
| 1803 | /* |
| 1804 | * Set "initialization complete" bit to move adapter from |
| 1805 | * D0U* --> D0A* (powered-up active) state. |
| 1806 | */ |
| 1807 | IWM_SETBITS(sc, IWM_CSR_GP_CNTRL, IWM_CSR_GP_CNTRL_REG_FLAG_INIT_DONE)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x024))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x024))))) | ((0x00000004)))))); |
| 1808 | |
| 1809 | /* |
| 1810 | * Wait for clock stabilization; once stabilized, access to |
| 1811 | * device-internal resources is supported, e.g. iwm_write_prph() |
| 1812 | * and accesses to uCode SRAM. |
| 1813 | */ |
| 1814 | if (!iwm_poll_bit(sc, IWM_CSR_GP_CNTRL(0x024), |
| 1815 | IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY(0x00000001), |
| 1816 | IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY(0x00000001), 25000)) { |
| 1817 | printf("%s: timeout waiting for clock stabilization\n", |
| 1818 | DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 1819 | err = ETIMEDOUT60; |
| 1820 | goto out; |
| 1821 | } |
| 1822 | |
| 1823 | if (sc->host_interrupt_operation_mode) { |
| 1824 | /* |
| 1825 | * This is a bit of an abuse - This is needed for 7260 / 3160 |
| 1826 | * only check host_interrupt_operation_mode even if this is |
| 1827 | * not related to host_interrupt_operation_mode. |
| 1828 | * |
| 1829 | * Enable the oscillator to count wake up time for L1 exit. This |
| 1830 | * consumes slightly more power (100uA) - but allows to be sure |
| 1831 | * that we wake up from L1 on time. |
| 1832 | * |
| 1833 | * This looks weird: read twice the same register, discard the |
| 1834 | * value, set a bit, and yet again, read that same register |
| 1835 | * just to discard the value. But that's the way the hardware |
| 1836 | * seems to like it. |
| 1837 | */ |
| 1838 | if (iwm_nic_lock(sc)) { |
| 1839 | iwm_read_prph(sc, IWM_OSC_CLK(0xa04068)); |
| 1840 | iwm_read_prph(sc, IWM_OSC_CLK(0xa04068)); |
| 1841 | iwm_nic_unlock(sc); |
| 1842 | } |
| 1843 | err = iwm_set_bits_prph(sc, IWM_OSC_CLK(0xa04068), |
| 1844 | IWM_OSC_CLK_FORCE_CONTROL(0x8)); |
| 1845 | if (err) |
| 1846 | goto out; |
| 1847 | if (iwm_nic_lock(sc)) { |
| 1848 | iwm_read_prph(sc, IWM_OSC_CLK(0xa04068)); |
| 1849 | iwm_read_prph(sc, IWM_OSC_CLK(0xa04068)); |
| 1850 | iwm_nic_unlock(sc); |
| 1851 | } |
| 1852 | } |
| 1853 | |
| 1854 | /* |
| 1855 | * Enable DMA clock and wait for it to stabilize. |
| 1856 | * |
| 1857 | * Write to "CLK_EN_REG"; "1" bits enable clocks, while "0" bits |
| 1858 | * do not disable clocks. This preserves any hardware bits already |
| 1859 | * set by default in "CLK_CTRL_REG" after reset. |
| 1860 | */ |
| 1861 | if (sc->sc_device_family == IWM_DEVICE_FAMILY_70001) { |
| 1862 | if (iwm_nic_lock(sc)) { |
| 1863 | iwm_write_prph(sc, IWM_APMG_CLK_EN_REG(((0x00000) + 0x3000) + 0x0004), |
| 1864 | IWM_APMG_CLK_VAL_DMA_CLK_RQT(0x00000200)); |
| 1865 | iwm_nic_unlock(sc); |
| 1866 | } |
| 1867 | DELAY(20)(*delay_func)(20); |
| 1868 | |
| 1869 | /* Disable L1-Active */ |
| 1870 | err = iwm_set_bits_prph(sc, IWM_APMG_PCIDEV_STT_REG(((0x00000) + 0x3000) + 0x0010), |
| 1871 | IWM_APMG_PCIDEV_STT_VAL_L1_ACT_DIS(0x00000800)); |
| 1872 | if (err) |
| 1873 | goto out; |
| 1874 | |
| 1875 | /* Clear the interrupt in APMG if the NIC is in RFKILL */ |
| 1876 | if (iwm_nic_lock(sc)) { |
| 1877 | iwm_write_prph(sc, IWM_APMG_RTC_INT_STT_REG(((0x00000) + 0x3000) + 0x001c), |
| 1878 | IWM_APMG_RTC_INT_STT_RFKILL(0x10000000)); |
| 1879 | iwm_nic_unlock(sc); |
| 1880 | } |
| 1881 | } |
| 1882 | out: |
| 1883 | if (err) |
| 1884 | printf("%s: apm init error %d\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), err); |
| 1885 | return err; |
| 1886 | } |
| 1887 | |
| 1888 | void |
| 1889 | iwm_apm_stop(struct iwm_softc *sc) |
| 1890 | { |
| 1891 | IWM_SETBITS(sc, IWM_CSR_DBG_LINK_PWR_MGMT_REG,(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x250))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x250))))) | ((0x80000000)))))) |
| 1892 | IWM_CSR_RESET_LINK_PWR_MGMT_DISABLED)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x250))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x250))))) | ((0x80000000)))))); |
| 1893 | IWM_SETBITS(sc, IWM_CSR_HW_IF_CONFIG_REG,(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x000))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x000))))) | ((0x08000000) | (0x10000000)))))) |
| 1894 | IWM_CSR_HW_IF_CONFIG_REG_PREPARE |(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x000))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x000))))) | ((0x08000000) | (0x10000000)))))) |
| 1895 | IWM_CSR_HW_IF_CONFIG_REG_ENABLE_PME)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x000))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x000))))) | ((0x08000000) | (0x10000000)))))); |
| 1896 | DELAY(1000)(*delay_func)(1000); |
| 1897 | IWM_CLRBITS(sc, IWM_CSR_DBG_LINK_PWR_MGMT_REG,(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x250))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x250))))) & ~((0x80000000)))))) |
| 1898 | IWM_CSR_RESET_LINK_PWR_MGMT_DISABLED)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x250))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x250))))) & ~((0x80000000)))))); |
| 1899 | DELAY(5000)(*delay_func)(5000); |
| 1900 | |
| 1901 | /* stop device's busmaster DMA activity */ |
| 1902 | IWM_SETBITS(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_STOP_MASTER)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x020))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x020))))) | ((0x00000200)))))); |
| 1903 | |
| 1904 | if (!iwm_poll_bit(sc, IWM_CSR_RESET(0x020), |
| 1905 | IWM_CSR_RESET_REG_FLAG_MASTER_DISABLED(0x00000100), |
| 1906 | IWM_CSR_RESET_REG_FLAG_MASTER_DISABLED(0x00000100), 100)) |
| 1907 | printf("%s: timeout waiting for master\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 1908 | |
| 1909 | /* |
| 1910 | * Clear "initialization complete" bit to move adapter from |
| 1911 | * D0A* (powered-up Active) --> D0U* (Uninitialized) state. |
| 1912 | */ |
| 1913 | IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x024))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x024))))) & ~((0x00000004)))))) |
| 1914 | IWM_CSR_GP_CNTRL_REG_FLAG_INIT_DONE)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x024))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x024))))) & ~((0x00000004)))))); |
| 1915 | } |
| 1916 | |
| 1917 | void |
| 1918 | iwm_init_msix_hw(struct iwm_softc *sc) |
| 1919 | { |
| 1920 | iwm_conf_msix_hw(sc, 0); |
| 1921 | |
| 1922 | if (!sc->sc_msix) |
| 1923 | return; |
| 1924 | |
| 1925 | sc->sc_fh_init_mask = ~IWM_READ(sc, IWM_CSR_MSIX_FH_INT_MASK_AD)(((sc)->sc_st)->read_4(((sc)->sc_sh), ((((0x2000) + 0x804 ))))); |
| 1926 | sc->sc_fh_mask = sc->sc_fh_init_mask; |
| 1927 | sc->sc_hw_init_mask = ~IWM_READ(sc, IWM_CSR_MSIX_HW_INT_MASK_AD)(((sc)->sc_st)->read_4(((sc)->sc_sh), ((((0x2000) + 0x80C ))))); |
| 1928 | sc->sc_hw_mask = sc->sc_hw_init_mask; |
| 1929 | } |
| 1930 | |
| 1931 | void |
| 1932 | iwm_conf_msix_hw(struct iwm_softc *sc, int stopped) |
| 1933 | { |
| 1934 | int vector = 0; |
| 1935 | |
| 1936 | if (!sc->sc_msix) { |
| 1937 | /* Newer chips default to MSIX. */ |
| 1938 | if (sc->sc_mqrx_supported && !stopped && iwm_nic_lock(sc)) { |
| 1939 | iwm_write_prph(sc, IWM_UREG_CHICK0xa05c00, |
| 1940 | IWM_UREG_CHICK_MSI_ENABLE(1 << 24)); |
| 1941 | iwm_nic_unlock(sc); |
| 1942 | } |
| 1943 | return; |
| 1944 | } |
| 1945 | |
| 1946 | if (!stopped && iwm_nic_lock(sc)) { |
| 1947 | iwm_write_prph(sc, IWM_UREG_CHICK0xa05c00, IWM_UREG_CHICK_MSIX_ENABLE(1 << 25)); |
| 1948 | iwm_nic_unlock(sc); |
| 1949 | } |
| 1950 | |
| 1951 | /* Disable all interrupts */ |
| 1952 | IWM_WRITE(sc, IWM_CSR_MSIX_FH_INT_MASK_AD, ~0)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x804))), ((~0)))); |
| 1953 | IWM_WRITE(sc, IWM_CSR_MSIX_HW_INT_MASK_AD, ~0)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x80C))), ((~0)))); |
| 1954 | |
| 1955 | /* Map fallback-queue (command/mgmt) to a single vector */ |
| 1956 | IWM_WRITE_1(sc, IWM_CSR_MSIX_RX_IVAR(0),(((sc)->sc_st)->write_1(((sc)->sc_sh), (((((0x2000) + 0x880) + (0)))), ((vector | (1 << 7))))) |
| 1957 | vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE)(((sc)->sc_st)->write_1(((sc)->sc_sh), (((((0x2000) + 0x880) + (0)))), ((vector | (1 << 7))))); |
| 1958 | /* Map RSS queue (data) to the same vector */ |
| 1959 | IWM_WRITE_1(sc, IWM_CSR_MSIX_RX_IVAR(1),(((sc)->sc_st)->write_1(((sc)->sc_sh), (((((0x2000) + 0x880) + (1)))), ((vector | (1 << 7))))) |
| 1960 | vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE)(((sc)->sc_st)->write_1(((sc)->sc_sh), (((((0x2000) + 0x880) + (1)))), ((vector | (1 << 7))))); |
| 1961 | |
| 1962 | /* Enable the RX queues cause interrupts */ |
| 1963 | IWM_CLRBITS(sc, IWM_CSR_MSIX_FH_INT_MASK_AD,(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x804))), (((((sc)->sc_st)->read_4(((sc)->sc_sh), ( (((0x2000) + 0x804))))) & ~(IWM_MSIX_FH_INT_CAUSES_Q0 | IWM_MSIX_FH_INT_CAUSES_Q1 ))))) |
| 1964 | IWM_MSIX_FH_INT_CAUSES_Q0 | IWM_MSIX_FH_INT_CAUSES_Q1)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x804))), (((((sc)->sc_st)->read_4(((sc)->sc_sh), ( (((0x2000) + 0x804))))) & ~(IWM_MSIX_FH_INT_CAUSES_Q0 | IWM_MSIX_FH_INT_CAUSES_Q1 ))))); |
| 1965 | |
| 1966 | /* Map non-RX causes to the same vector */ |
| 1967 | IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_D2S_CH0_NUM),(((sc)->sc_st)->write_1(((sc)->sc_sh), (((((0x2000) + 0x890) + (IWM_MSIX_IVAR_CAUSE_D2S_CH0_NUM)))), ((vector | (1 << 7))))) |
| 1968 | vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE)(((sc)->sc_st)->write_1(((sc)->sc_sh), (((((0x2000) + 0x890) + (IWM_MSIX_IVAR_CAUSE_D2S_CH0_NUM)))), ((vector | (1 << 7))))); |
| 1969 | IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_D2S_CH1_NUM),(((sc)->sc_st)->write_1(((sc)->sc_sh), (((((0x2000) + 0x890) + (IWM_MSIX_IVAR_CAUSE_D2S_CH1_NUM)))), ((vector | (1 << 7))))) |
| 1970 | vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE)(((sc)->sc_st)->write_1(((sc)->sc_sh), (((((0x2000) + 0x890) + (IWM_MSIX_IVAR_CAUSE_D2S_CH1_NUM)))), ((vector | (1 << 7))))); |
| 1971 | IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_S2D),(((sc)->sc_st)->write_1(((sc)->sc_sh), (((((0x2000) + 0x890) + (IWM_MSIX_IVAR_CAUSE_S2D)))), ((vector | (1 << 7))))) |
| 1972 | vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE)(((sc)->sc_st)->write_1(((sc)->sc_sh), (((((0x2000) + 0x890) + (IWM_MSIX_IVAR_CAUSE_S2D)))), ((vector | (1 << 7))))); |
| 1973 | IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_FH_ERR),(((sc)->sc_st)->write_1(((sc)->sc_sh), (((((0x2000) + 0x890) + (IWM_MSIX_IVAR_CAUSE_FH_ERR)))), ((vector | (1 << 7))))) |
| 1974 | vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE)(((sc)->sc_st)->write_1(((sc)->sc_sh), (((((0x2000) + 0x890) + (IWM_MSIX_IVAR_CAUSE_FH_ERR)))), ((vector | (1 << 7))))); |
| 1975 | IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_REG_ALIVE),(((sc)->sc_st)->write_1(((sc)->sc_sh), (((((0x2000) + 0x890) + (IWM_MSIX_IVAR_CAUSE_REG_ALIVE)))), ((vector | (1 << 7))))) |
| 1976 | vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE)(((sc)->sc_st)->write_1(((sc)->sc_sh), (((((0x2000) + 0x890) + (IWM_MSIX_IVAR_CAUSE_REG_ALIVE)))), ((vector | (1 << 7))))); |
| 1977 | IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_REG_WAKEUP),(((sc)->sc_st)->write_1(((sc)->sc_sh), (((((0x2000) + 0x890) + (IWM_MSIX_IVAR_CAUSE_REG_WAKEUP)))), ((vector | (1 << 7))))) |
| 1978 | vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE)(((sc)->sc_st)->write_1(((sc)->sc_sh), (((((0x2000) + 0x890) + (IWM_MSIX_IVAR_CAUSE_REG_WAKEUP)))), ((vector | (1 << 7))))); |
| 1979 | IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_REG_IML),(((sc)->sc_st)->write_1(((sc)->sc_sh), (((((0x2000) + 0x890) + (IWM_MSIX_IVAR_CAUSE_REG_IML)))), ((vector | (1 << 7))))) |
| 1980 | vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE)(((sc)->sc_st)->write_1(((sc)->sc_sh), (((((0x2000) + 0x890) + (IWM_MSIX_IVAR_CAUSE_REG_IML)))), ((vector | (1 << 7))))); |
| 1981 | IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_REG_CT_KILL),(((sc)->sc_st)->write_1(((sc)->sc_sh), (((((0x2000) + 0x890) + (IWM_MSIX_IVAR_CAUSE_REG_CT_KILL)))), ((vector | (1 << 7))))) |
| 1982 | vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE)(((sc)->sc_st)->write_1(((sc)->sc_sh), (((((0x2000) + 0x890) + (IWM_MSIX_IVAR_CAUSE_REG_CT_KILL)))), ((vector | (1 << 7))))); |
| 1983 | IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_REG_RF_KILL),(((sc)->sc_st)->write_1(((sc)->sc_sh), (((((0x2000) + 0x890) + (IWM_MSIX_IVAR_CAUSE_REG_RF_KILL)))), ((vector | (1 << 7))))) |
| 1984 | vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE)(((sc)->sc_st)->write_1(((sc)->sc_sh), (((((0x2000) + 0x890) + (IWM_MSIX_IVAR_CAUSE_REG_RF_KILL)))), ((vector | (1 << 7))))); |
| 1985 | IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_REG_PERIODIC),(((sc)->sc_st)->write_1(((sc)->sc_sh), (((((0x2000) + 0x890) + (IWM_MSIX_IVAR_CAUSE_REG_PERIODIC)))), ((vector | ( 1 << 7))))) |
| 1986 | vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE)(((sc)->sc_st)->write_1(((sc)->sc_sh), (((((0x2000) + 0x890) + (IWM_MSIX_IVAR_CAUSE_REG_PERIODIC)))), ((vector | ( 1 << 7))))); |
| 1987 | IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_REG_SW_ERR),(((sc)->sc_st)->write_1(((sc)->sc_sh), (((((0x2000) + 0x890) + (IWM_MSIX_IVAR_CAUSE_REG_SW_ERR)))), ((vector | (1 << 7))))) |
| 1988 | vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE)(((sc)->sc_st)->write_1(((sc)->sc_sh), (((((0x2000) + 0x890) + (IWM_MSIX_IVAR_CAUSE_REG_SW_ERR)))), ((vector | (1 << 7))))); |
| 1989 | IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_REG_SCD),(((sc)->sc_st)->write_1(((sc)->sc_sh), (((((0x2000) + 0x890) + (IWM_MSIX_IVAR_CAUSE_REG_SCD)))), ((vector | (1 << 7))))) |
| 1990 | vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE)(((sc)->sc_st)->write_1(((sc)->sc_sh), (((((0x2000) + 0x890) + (IWM_MSIX_IVAR_CAUSE_REG_SCD)))), ((vector | (1 << 7))))); |
| 1991 | IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_REG_FH_TX),(((sc)->sc_st)->write_1(((sc)->sc_sh), (((((0x2000) + 0x890) + (IWM_MSIX_IVAR_CAUSE_REG_FH_TX)))), ((vector | (1 << 7))))) |
| 1992 | vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE)(((sc)->sc_st)->write_1(((sc)->sc_sh), (((((0x2000) + 0x890) + (IWM_MSIX_IVAR_CAUSE_REG_FH_TX)))), ((vector | (1 << 7))))); |
| 1993 | IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_REG_HW_ERR),(((sc)->sc_st)->write_1(((sc)->sc_sh), (((((0x2000) + 0x890) + (IWM_MSIX_IVAR_CAUSE_REG_HW_ERR)))), ((vector | (1 << 7))))) |
| 1994 | vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE)(((sc)->sc_st)->write_1(((sc)->sc_sh), (((((0x2000) + 0x890) + (IWM_MSIX_IVAR_CAUSE_REG_HW_ERR)))), ((vector | (1 << 7))))); |
| 1995 | IWM_WRITE_1(sc, IWM_CSR_MSIX_IVAR(IWM_MSIX_IVAR_CAUSE_REG_HAP),(((sc)->sc_st)->write_1(((sc)->sc_sh), (((((0x2000) + 0x890) + (IWM_MSIX_IVAR_CAUSE_REG_HAP)))), ((vector | (1 << 7))))) |
| 1996 | vector | IWM_MSIX_NON_AUTO_CLEAR_CAUSE)(((sc)->sc_st)->write_1(((sc)->sc_sh), (((((0x2000) + 0x890) + (IWM_MSIX_IVAR_CAUSE_REG_HAP)))), ((vector | (1 << 7))))); |
| 1997 | |
| 1998 | /* Enable non-RX causes interrupts */ |
| 1999 | IWM_CLRBITS(sc, IWM_CSR_MSIX_FH_INT_MASK_AD,(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x804))), (((((sc)->sc_st)->read_4(((sc)->sc_sh), ( (((0x2000) + 0x804))))) & ~(IWM_MSIX_FH_INT_CAUSES_D2S_CH0_NUM | IWM_MSIX_FH_INT_CAUSES_D2S_CH1_NUM | IWM_MSIX_FH_INT_CAUSES_S2D | IWM_MSIX_FH_INT_CAUSES_FH_ERR))))) |
| 2000 | IWM_MSIX_FH_INT_CAUSES_D2S_CH0_NUM |(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x804))), (((((sc)->sc_st)->read_4(((sc)->sc_sh), ( (((0x2000) + 0x804))))) & ~(IWM_MSIX_FH_INT_CAUSES_D2S_CH0_NUM | IWM_MSIX_FH_INT_CAUSES_D2S_CH1_NUM | IWM_MSIX_FH_INT_CAUSES_S2D | IWM_MSIX_FH_INT_CAUSES_FH_ERR))))) |
| 2001 | IWM_MSIX_FH_INT_CAUSES_D2S_CH1_NUM |(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x804))), (((((sc)->sc_st)->read_4(((sc)->sc_sh), ( (((0x2000) + 0x804))))) & ~(IWM_MSIX_FH_INT_CAUSES_D2S_CH0_NUM | IWM_MSIX_FH_INT_CAUSES_D2S_CH1_NUM | IWM_MSIX_FH_INT_CAUSES_S2D | IWM_MSIX_FH_INT_CAUSES_FH_ERR))))) |
| 2002 | IWM_MSIX_FH_INT_CAUSES_S2D |(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x804))), (((((sc)->sc_st)->read_4(((sc)->sc_sh), ( (((0x2000) + 0x804))))) & ~(IWM_MSIX_FH_INT_CAUSES_D2S_CH0_NUM | IWM_MSIX_FH_INT_CAUSES_D2S_CH1_NUM | IWM_MSIX_FH_INT_CAUSES_S2D | IWM_MSIX_FH_INT_CAUSES_FH_ERR))))) |
| 2003 | IWM_MSIX_FH_INT_CAUSES_FH_ERR)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x804))), (((((sc)->sc_st)->read_4(((sc)->sc_sh), ( (((0x2000) + 0x804))))) & ~(IWM_MSIX_FH_INT_CAUSES_D2S_CH0_NUM | IWM_MSIX_FH_INT_CAUSES_D2S_CH1_NUM | IWM_MSIX_FH_INT_CAUSES_S2D | IWM_MSIX_FH_INT_CAUSES_FH_ERR))))); |
| 2004 | IWM_CLRBITS(sc, IWM_CSR_MSIX_HW_INT_MASK_AD,(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x80C))), (((((sc)->sc_st)->read_4(((sc)->sc_sh), ( (((0x2000) + 0x80C))))) & ~(IWM_MSIX_HW_INT_CAUSES_REG_ALIVE | IWM_MSIX_HW_INT_CAUSES_REG_WAKEUP | IWM_MSIX_HW_INT_CAUSES_REG_IML | IWM_MSIX_HW_INT_CAUSES_REG_CT_KILL | IWM_MSIX_HW_INT_CAUSES_REG_RF_KILL | IWM_MSIX_HW_INT_CAUSES_REG_PERIODIC | IWM_MSIX_HW_INT_CAUSES_REG_SW_ERR | IWM_MSIX_HW_INT_CAUSES_REG_SCD | IWM_MSIX_HW_INT_CAUSES_REG_FH_TX | IWM_MSIX_HW_INT_CAUSES_REG_HW_ERR | IWM_MSIX_HW_INT_CAUSES_REG_HAP ))))) |
| 2005 | IWM_MSIX_HW_INT_CAUSES_REG_ALIVE |(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x80C))), (((((sc)->sc_st)->read_4(((sc)->sc_sh), ( (((0x2000) + 0x80C))))) & ~(IWM_MSIX_HW_INT_CAUSES_REG_ALIVE | IWM_MSIX_HW_INT_CAUSES_REG_WAKEUP | IWM_MSIX_HW_INT_CAUSES_REG_IML | IWM_MSIX_HW_INT_CAUSES_REG_CT_KILL | IWM_MSIX_HW_INT_CAUSES_REG_RF_KILL | IWM_MSIX_HW_INT_CAUSES_REG_PERIODIC | IWM_MSIX_HW_INT_CAUSES_REG_SW_ERR | IWM_MSIX_HW_INT_CAUSES_REG_SCD | IWM_MSIX_HW_INT_CAUSES_REG_FH_TX | IWM_MSIX_HW_INT_CAUSES_REG_HW_ERR | IWM_MSIX_HW_INT_CAUSES_REG_HAP ))))) |
| 2006 | IWM_MSIX_HW_INT_CAUSES_REG_WAKEUP |(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x80C))), (((((sc)->sc_st)->read_4(((sc)->sc_sh), ( (((0x2000) + 0x80C))))) & ~(IWM_MSIX_HW_INT_CAUSES_REG_ALIVE | IWM_MSIX_HW_INT_CAUSES_REG_WAKEUP | IWM_MSIX_HW_INT_CAUSES_REG_IML | IWM_MSIX_HW_INT_CAUSES_REG_CT_KILL | IWM_MSIX_HW_INT_CAUSES_REG_RF_KILL | IWM_MSIX_HW_INT_CAUSES_REG_PERIODIC | IWM_MSIX_HW_INT_CAUSES_REG_SW_ERR | IWM_MSIX_HW_INT_CAUSES_REG_SCD | IWM_MSIX_HW_INT_CAUSES_REG_FH_TX | IWM_MSIX_HW_INT_CAUSES_REG_HW_ERR | IWM_MSIX_HW_INT_CAUSES_REG_HAP ))))) |
| 2007 | IWM_MSIX_HW_INT_CAUSES_REG_IML |(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x80C))), (((((sc)->sc_st)->read_4(((sc)->sc_sh), ( (((0x2000) + 0x80C))))) & ~(IWM_MSIX_HW_INT_CAUSES_REG_ALIVE | IWM_MSIX_HW_INT_CAUSES_REG_WAKEUP | IWM_MSIX_HW_INT_CAUSES_REG_IML | IWM_MSIX_HW_INT_CAUSES_REG_CT_KILL | IWM_MSIX_HW_INT_CAUSES_REG_RF_KILL | IWM_MSIX_HW_INT_CAUSES_REG_PERIODIC | IWM_MSIX_HW_INT_CAUSES_REG_SW_ERR | IWM_MSIX_HW_INT_CAUSES_REG_SCD | IWM_MSIX_HW_INT_CAUSES_REG_FH_TX | IWM_MSIX_HW_INT_CAUSES_REG_HW_ERR | IWM_MSIX_HW_INT_CAUSES_REG_HAP ))))) |
| 2008 | IWM_MSIX_HW_INT_CAUSES_REG_CT_KILL |(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x80C))), (((((sc)->sc_st)->read_4(((sc)->sc_sh), ( (((0x2000) + 0x80C))))) & ~(IWM_MSIX_HW_INT_CAUSES_REG_ALIVE | IWM_MSIX_HW_INT_CAUSES_REG_WAKEUP | IWM_MSIX_HW_INT_CAUSES_REG_IML | IWM_MSIX_HW_INT_CAUSES_REG_CT_KILL | IWM_MSIX_HW_INT_CAUSES_REG_RF_KILL | IWM_MSIX_HW_INT_CAUSES_REG_PERIODIC | IWM_MSIX_HW_INT_CAUSES_REG_SW_ERR | IWM_MSIX_HW_INT_CAUSES_REG_SCD | IWM_MSIX_HW_INT_CAUSES_REG_FH_TX | IWM_MSIX_HW_INT_CAUSES_REG_HW_ERR | IWM_MSIX_HW_INT_CAUSES_REG_HAP ))))) |
| 2009 | IWM_MSIX_HW_INT_CAUSES_REG_RF_KILL |(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x80C))), (((((sc)->sc_st)->read_4(((sc)->sc_sh), ( (((0x2000) + 0x80C))))) & ~(IWM_MSIX_HW_INT_CAUSES_REG_ALIVE | IWM_MSIX_HW_INT_CAUSES_REG_WAKEUP | IWM_MSIX_HW_INT_CAUSES_REG_IML | IWM_MSIX_HW_INT_CAUSES_REG_CT_KILL | IWM_MSIX_HW_INT_CAUSES_REG_RF_KILL | IWM_MSIX_HW_INT_CAUSES_REG_PERIODIC | IWM_MSIX_HW_INT_CAUSES_REG_SW_ERR | IWM_MSIX_HW_INT_CAUSES_REG_SCD | IWM_MSIX_HW_INT_CAUSES_REG_FH_TX | IWM_MSIX_HW_INT_CAUSES_REG_HW_ERR | IWM_MSIX_HW_INT_CAUSES_REG_HAP ))))) |
| 2010 | IWM_MSIX_HW_INT_CAUSES_REG_PERIODIC |(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x80C))), (((((sc)->sc_st)->read_4(((sc)->sc_sh), ( (((0x2000) + 0x80C))))) & ~(IWM_MSIX_HW_INT_CAUSES_REG_ALIVE | IWM_MSIX_HW_INT_CAUSES_REG_WAKEUP | IWM_MSIX_HW_INT_CAUSES_REG_IML | IWM_MSIX_HW_INT_CAUSES_REG_CT_KILL | IWM_MSIX_HW_INT_CAUSES_REG_RF_KILL | IWM_MSIX_HW_INT_CAUSES_REG_PERIODIC | IWM_MSIX_HW_INT_CAUSES_REG_SW_ERR | IWM_MSIX_HW_INT_CAUSES_REG_SCD | IWM_MSIX_HW_INT_CAUSES_REG_FH_TX | IWM_MSIX_HW_INT_CAUSES_REG_HW_ERR | IWM_MSIX_HW_INT_CAUSES_REG_HAP ))))) |
| 2011 | IWM_MSIX_HW_INT_CAUSES_REG_SW_ERR |(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x80C))), (((((sc)->sc_st)->read_4(((sc)->sc_sh), ( (((0x2000) + 0x80C))))) & ~(IWM_MSIX_HW_INT_CAUSES_REG_ALIVE | IWM_MSIX_HW_INT_CAUSES_REG_WAKEUP | IWM_MSIX_HW_INT_CAUSES_REG_IML | IWM_MSIX_HW_INT_CAUSES_REG_CT_KILL | IWM_MSIX_HW_INT_CAUSES_REG_RF_KILL | IWM_MSIX_HW_INT_CAUSES_REG_PERIODIC | IWM_MSIX_HW_INT_CAUSES_REG_SW_ERR | IWM_MSIX_HW_INT_CAUSES_REG_SCD | IWM_MSIX_HW_INT_CAUSES_REG_FH_TX | IWM_MSIX_HW_INT_CAUSES_REG_HW_ERR | IWM_MSIX_HW_INT_CAUSES_REG_HAP ))))) |
| 2012 | IWM_MSIX_HW_INT_CAUSES_REG_SCD |(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x80C))), (((((sc)->sc_st)->read_4(((sc)->sc_sh), ( (((0x2000) + 0x80C))))) & ~(IWM_MSIX_HW_INT_CAUSES_REG_ALIVE | IWM_MSIX_HW_INT_CAUSES_REG_WAKEUP | IWM_MSIX_HW_INT_CAUSES_REG_IML | IWM_MSIX_HW_INT_CAUSES_REG_CT_KILL | IWM_MSIX_HW_INT_CAUSES_REG_RF_KILL | IWM_MSIX_HW_INT_CAUSES_REG_PERIODIC | IWM_MSIX_HW_INT_CAUSES_REG_SW_ERR | IWM_MSIX_HW_INT_CAUSES_REG_SCD | IWM_MSIX_HW_INT_CAUSES_REG_FH_TX | IWM_MSIX_HW_INT_CAUSES_REG_HW_ERR | IWM_MSIX_HW_INT_CAUSES_REG_HAP ))))) |
| 2013 | IWM_MSIX_HW_INT_CAUSES_REG_FH_TX |(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x80C))), (((((sc)->sc_st)->read_4(((sc)->sc_sh), ( (((0x2000) + 0x80C))))) & ~(IWM_MSIX_HW_INT_CAUSES_REG_ALIVE | IWM_MSIX_HW_INT_CAUSES_REG_WAKEUP | IWM_MSIX_HW_INT_CAUSES_REG_IML | IWM_MSIX_HW_INT_CAUSES_REG_CT_KILL | IWM_MSIX_HW_INT_CAUSES_REG_RF_KILL | IWM_MSIX_HW_INT_CAUSES_REG_PERIODIC | IWM_MSIX_HW_INT_CAUSES_REG_SW_ERR | IWM_MSIX_HW_INT_CAUSES_REG_SCD | IWM_MSIX_HW_INT_CAUSES_REG_FH_TX | IWM_MSIX_HW_INT_CAUSES_REG_HW_ERR | IWM_MSIX_HW_INT_CAUSES_REG_HAP ))))) |
| 2014 | IWM_MSIX_HW_INT_CAUSES_REG_HW_ERR |(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x80C))), (((((sc)->sc_st)->read_4(((sc)->sc_sh), ( (((0x2000) + 0x80C))))) & ~(IWM_MSIX_HW_INT_CAUSES_REG_ALIVE | IWM_MSIX_HW_INT_CAUSES_REG_WAKEUP | IWM_MSIX_HW_INT_CAUSES_REG_IML | IWM_MSIX_HW_INT_CAUSES_REG_CT_KILL | IWM_MSIX_HW_INT_CAUSES_REG_RF_KILL | IWM_MSIX_HW_INT_CAUSES_REG_PERIODIC | IWM_MSIX_HW_INT_CAUSES_REG_SW_ERR | IWM_MSIX_HW_INT_CAUSES_REG_SCD | IWM_MSIX_HW_INT_CAUSES_REG_FH_TX | IWM_MSIX_HW_INT_CAUSES_REG_HW_ERR | IWM_MSIX_HW_INT_CAUSES_REG_HAP ))))) |
| 2015 | IWM_MSIX_HW_INT_CAUSES_REG_HAP)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x80C))), (((((sc)->sc_st)->read_4(((sc)->sc_sh), ( (((0x2000) + 0x80C))))) & ~(IWM_MSIX_HW_INT_CAUSES_REG_ALIVE | IWM_MSIX_HW_INT_CAUSES_REG_WAKEUP | IWM_MSIX_HW_INT_CAUSES_REG_IML | IWM_MSIX_HW_INT_CAUSES_REG_CT_KILL | IWM_MSIX_HW_INT_CAUSES_REG_RF_KILL | IWM_MSIX_HW_INT_CAUSES_REG_PERIODIC | IWM_MSIX_HW_INT_CAUSES_REG_SW_ERR | IWM_MSIX_HW_INT_CAUSES_REG_SCD | IWM_MSIX_HW_INT_CAUSES_REG_FH_TX | IWM_MSIX_HW_INT_CAUSES_REG_HW_ERR | IWM_MSIX_HW_INT_CAUSES_REG_HAP ))))); |
| 2016 | } |
| 2017 | |
| 2018 | int |
| 2019 | iwm_clear_persistence_bit(struct iwm_softc *sc) |
| 2020 | { |
| 2021 | uint32_t hpm, wprot; |
| 2022 | |
| 2023 | hpm = iwm_read_prph_unlocked(sc, IWM_HPM_DEBUG0xa03440); |
| 2024 | if (hpm != 0xa5a5a5a0 && (hpm & IWM_HPM_PERSISTENCE_BIT(1 << 12))) { |
| 2025 | wprot = iwm_read_prph_unlocked(sc, IWM_PREG_PRPH_WPROT_90000xa04ce0); |
| 2026 | if (wprot & IWM_PREG_WFPM_ACCESS(1 << 12)) { |
| 2027 | printf("%s: cannot clear persistence bit\n", |
| 2028 | DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 2029 | return EPERM1; |
| 2030 | } |
| 2031 | iwm_write_prph_unlocked(sc, IWM_HPM_DEBUG0xa03440, |
| 2032 | hpm & ~IWM_HPM_PERSISTENCE_BIT(1 << 12)); |
| 2033 | } |
| 2034 | |
| 2035 | return 0; |
| 2036 | } |
| 2037 | |
| 2038 | int |
| 2039 | iwm_start_hw(struct iwm_softc *sc) |
| 2040 | { |
| 2041 | int err; |
| 2042 | |
| 2043 | err = iwm_prepare_card_hw(sc); |
| 2044 | if (err) |
| 2045 | return err; |
| 2046 | |
| 2047 | if (sc->sc_device_family == IWM_DEVICE_FAMILY_90003) { |
| 2048 | err = iwm_clear_persistence_bit(sc); |
| 2049 | if (err) |
| 2050 | return err; |
| 2051 | } |
| 2052 | |
| 2053 | /* Reset the entire device */ |
| 2054 | IWM_WRITE(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_SW_RESET)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x020))), ( ((0x00000080))))); |
| 2055 | DELAY(5000)(*delay_func)(5000); |
| 2056 | |
| 2057 | err = iwm_apm_init(sc); |
| 2058 | if (err) |
| 2059 | return err; |
| 2060 | |
| 2061 | iwm_init_msix_hw(sc); |
| 2062 | |
| 2063 | iwm_enable_rfkill_int(sc); |
| 2064 | iwm_check_rfkill(sc); |
| 2065 | |
| 2066 | return 0; |
| 2067 | } |
| 2068 | |
| 2069 | |
| 2070 | void |
| 2071 | iwm_stop_device(struct iwm_softc *sc) |
| 2072 | { |
| 2073 | int chnl, ntries; |
| 2074 | int qid; |
| 2075 | |
| 2076 | iwm_disable_interrupts(sc); |
| 2077 | sc->sc_flags &= ~IWM_FLAG_USE_ICT0x01; |
| 2078 | |
| 2079 | /* Stop all DMA channels. */ |
| 2080 | if (iwm_nic_lock(sc)) { |
| 2081 | /* Deactivate TX scheduler. */ |
| 2082 | iwm_write_prph(sc, IWM_SCD_TXFACT(((0x00000) + 0xa02c00) + 0x10), 0); |
| 2083 | |
| 2084 | for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM(8); chnl++) { |
| 2085 | IWM_WRITE(sc,(((sc)->sc_st)->write_4(((sc)->sc_sh), (((((0x1000) + 0xD00) + 0x20 * (chnl)))), ((0)))) |
| 2086 | IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl), 0)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((((0x1000) + 0xD00) + 0x20 * (chnl)))), ((0)))); |
| 2087 | for (ntries = 0; ntries < 200; ntries++) { |
| 2088 | uint32_t r; |
| 2089 | |
| 2090 | r = IWM_READ(sc, IWM_FH_TSSR_TX_STATUS_REG)(((sc)->sc_st)->read_4(((sc)->sc_sh), (((((0x1000) + 0xEA0) + 0x010))))); |
| 2091 | if (r & IWM_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(((1 << (chnl)) << 16) |
| 2092 | chnl)((1 << (chnl)) << 16)) |
| 2093 | break; |
| 2094 | DELAY(20)(*delay_func)(20); |
| 2095 | } |
| 2096 | } |
| 2097 | iwm_nic_unlock(sc); |
| 2098 | } |
| 2099 | iwm_disable_rx_dma(sc); |
| 2100 | |
| 2101 | iwm_reset_rx_ring(sc, &sc->rxq); |
| 2102 | |
| 2103 | for (qid = 0; qid < nitems(sc->txq)(sizeof((sc->txq)) / sizeof((sc->txq)[0])); qid++) |
| 2104 | iwm_reset_tx_ring(sc, &sc->txq[qid]); |
| 2105 | |
| 2106 | if (sc->sc_device_family == IWM_DEVICE_FAMILY_70001) { |
| 2107 | if (iwm_nic_lock(sc)) { |
| 2108 | /* Power-down device's busmaster DMA clocks */ |
| 2109 | iwm_write_prph(sc, IWM_APMG_CLK_DIS_REG(((0x00000) + 0x3000) + 0x0008), |
| 2110 | IWM_APMG_CLK_VAL_DMA_CLK_RQT(0x00000200)); |
| 2111 | iwm_nic_unlock(sc); |
| 2112 | } |
| 2113 | DELAY(5)(*delay_func)(5); |
| 2114 | } |
| 2115 | |
| 2116 | /* Make sure (redundant) we've released our request to stay awake */ |
| 2117 | IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x024))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x024))))) & ~((0x00000008)))))) |
| 2118 | IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x024))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x024))))) & ~((0x00000008)))))); |
| 2119 | if (sc->sc_nic_locks > 0) |
| 2120 | printf("%s: %d active NIC locks forcefully cleared\n", |
| 2121 | DEVNAME(sc)((sc)->sc_dev.dv_xname), sc->sc_nic_locks); |
| 2122 | sc->sc_nic_locks = 0; |
| 2123 | |
| 2124 | /* Stop the device, and put it in low power state */ |
| 2125 | iwm_apm_stop(sc); |
| 2126 | |
| 2127 | /* Reset the on-board processor. */ |
| 2128 | IWM_WRITE(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_SW_RESET)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x020))), ( ((0x00000080))))); |
| 2129 | DELAY(5000)(*delay_func)(5000); |
| 2130 | |
| 2131 | /* |
| 2132 | * Upon stop, the IVAR table gets erased, so msi-x won't |
| 2133 | * work. This causes a bug in RF-KILL flows, since the interrupt |
| 2134 | * that enables radio won't fire on the correct irq, and the |
| 2135 | * driver won't be able to handle the interrupt. |
| 2136 | * Configure the IVAR table again after reset. |
| 2137 | */ |
| 2138 | iwm_conf_msix_hw(sc, 1); |
| 2139 | |
| 2140 | /* |
| 2141 | * Upon stop, the APM issues an interrupt if HW RF kill is set. |
| 2142 | * Clear the interrupt again. |
| 2143 | */ |
| 2144 | iwm_disable_interrupts(sc); |
| 2145 | |
| 2146 | /* Even though we stop the HW we still want the RF kill interrupt. */ |
| 2147 | iwm_enable_rfkill_int(sc); |
| 2148 | iwm_check_rfkill(sc); |
| 2149 | |
| 2150 | iwm_prepare_card_hw(sc); |
| 2151 | } |
| 2152 | |
| 2153 | void |
| 2154 | iwm_nic_config(struct iwm_softc *sc) |
| 2155 | { |
| 2156 | uint8_t radio_cfg_type, radio_cfg_step, radio_cfg_dash; |
| 2157 | uint32_t mask, val, reg_val = 0; |
| 2158 | |
| 2159 | radio_cfg_type = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_TYPE(0x3 << 0)) >> |
| 2160 | IWM_FW_PHY_CFG_RADIO_TYPE_POS0; |
| 2161 | radio_cfg_step = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_STEP(0x3 << 2)) >> |
| 2162 | IWM_FW_PHY_CFG_RADIO_STEP_POS2; |
| 2163 | radio_cfg_dash = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_DASH(0x3 << 4)) >> |
| 2164 | IWM_FW_PHY_CFG_RADIO_DASH_POS4; |
| 2165 | |
| 2166 | reg_val |= IWM_CSR_HW_REV_STEP(sc->sc_hw_rev)(((sc->sc_hw_rev) & 0x000000C) >> 2) << |
| 2167 | IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_STEP(2); |
| 2168 | reg_val |= IWM_CSR_HW_REV_DASH(sc->sc_hw_rev)(((sc->sc_hw_rev) & 0x0000003) >> 0) << |
| 2169 | IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_DASH(0); |
| 2170 | |
| 2171 | /* radio configuration */ |
| 2172 | reg_val |= radio_cfg_type << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_TYPE(10); |
| 2173 | reg_val |= radio_cfg_step << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_STEP(14); |
| 2174 | reg_val |= radio_cfg_dash << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_DASH(12); |
| 2175 | |
| 2176 | mask = IWM_CSR_HW_IF_CONFIG_REG_MSK_MAC_DASH(0x00000003) | |
| 2177 | IWM_CSR_HW_IF_CONFIG_REG_MSK_MAC_STEP(0x0000000C) | |
| 2178 | IWM_CSR_HW_IF_CONFIG_REG_MSK_PHY_STEP(0x0000C000) | |
| 2179 | IWM_CSR_HW_IF_CONFIG_REG_MSK_PHY_DASH(0x00003000) | |
| 2180 | IWM_CSR_HW_IF_CONFIG_REG_MSK_PHY_TYPE(0x00000C00) | |
| 2181 | IWM_CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI(0x00000200) | |
| 2182 | IWM_CSR_HW_IF_CONFIG_REG_BIT_MAC_SI(0x00000100); |
| 2183 | |
| 2184 | val = IWM_READ(sc, IWM_CSR_HW_IF_CONFIG_REG)(((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x000))))); |
| 2185 | val &= ~mask; |
| 2186 | val |= reg_val; |
| 2187 | IWM_WRITE(sc, IWM_CSR_HW_IF_CONFIG_REG, val)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x000))), ( (val)))); |
| 2188 | |
| 2189 | /* |
| 2190 | * W/A : NIC is stuck in a reset state after Early PCIe power off |
| 2191 | * (PCIe power is lost before PERST# is asserted), causing ME FW |
| 2192 | * to lose ownership and not being able to obtain it back. |
| 2193 | */ |
| 2194 | if (sc->sc_device_family == IWM_DEVICE_FAMILY_70001) |
| 2195 | iwm_set_bits_mask_prph(sc, IWM_APMG_PS_CTRL_REG(((0x00000) + 0x3000) + 0x000c), |
| 2196 | IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS(0x00400000), |
| 2197 | ~IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS(0x00400000)); |
| 2198 | } |
| 2199 | |
| 2200 | int |
| 2201 | iwm_nic_rx_init(struct iwm_softc *sc) |
| 2202 | { |
| 2203 | if (sc->sc_mqrx_supported) |
| 2204 | return iwm_nic_rx_mq_init(sc); |
| 2205 | else |
| 2206 | return iwm_nic_rx_legacy_init(sc); |
| 2207 | } |
| 2208 | |
| 2209 | int |
| 2210 | iwm_nic_rx_mq_init(struct iwm_softc *sc) |
| 2211 | { |
| 2212 | int enabled; |
| 2213 | |
| 2214 | if (!iwm_nic_lock(sc)) |
| 2215 | return EBUSY16; |
| 2216 | |
| 2217 | /* Stop RX DMA. */ |
| 2218 | iwm_write_prph(sc, IWM_RFH_RXF_DMA_CFG0xA09820, 0); |
| 2219 | /* Disable RX used and free queue operation. */ |
| 2220 | iwm_write_prph(sc, IWM_RFH_RXF_RXQ_ACTIVE0xA0980C, 0); |
| 2221 | |
| 2222 | iwm_write_prph64(sc, IWM_RFH_Q0_FRBDCB_BA_LSB0xA08000, |
| 2223 | sc->rxq.free_desc_dma.paddr); |
| 2224 | iwm_write_prph64(sc, IWM_RFH_Q0_URBDCB_BA_LSB0xA08100, |
| 2225 | sc->rxq.used_desc_dma.paddr); |
| 2226 | iwm_write_prph64(sc, IWM_RFH_Q0_URBD_STTS_WPTR_LSB0xA08200, |
| 2227 | sc->rxq.stat_dma.paddr); |
| 2228 | iwm_write_prph(sc, IWM_RFH_Q0_FRBDCB_WIDX0xA08080, 0); |
| 2229 | iwm_write_prph(sc, IWM_RFH_Q0_FRBDCB_RIDX0xA080C0, 0); |
| 2230 | iwm_write_prph(sc, IWM_RFH_Q0_URBDCB_WIDX0xA08180, 0); |
| 2231 | |
| 2232 | /* We configure only queue 0 for now. */ |
| 2233 | enabled = ((1 << 0) << 16) | (1 << 0); |
| 2234 | |
| 2235 | /* Enable RX DMA, 4KB buffer size. */ |
| 2236 | iwm_write_prph(sc, IWM_RFH_RXF_DMA_CFG0xA09820, |
| 2237 | IWM_RFH_DMA_EN_ENABLE_VAL(1U << 31) | |
| 2238 | IWM_RFH_RXF_DMA_RB_SIZE_4K(0x4 << 16) | |
| 2239 | IWM_RFH_RXF_DMA_MIN_RB_4_8(3 << 24) | |
| 2240 | IWM_RFH_RXF_DMA_DROP_TOO_LARGE_MASK(0x04000000) | |
| 2241 | IWM_RFH_RXF_DMA_RBDCB_SIZE_512(0x9 << 20)); |
| 2242 | |
| 2243 | /* Enable RX DMA snooping. */ |
| 2244 | iwm_write_prph(sc, IWM_RFH_GEN_CFG0xA09800, |
| 2245 | IWM_RFH_GEN_CFG_RFH_DMA_SNOOP(1 << 1) | |
| 2246 | IWM_RFH_GEN_CFG_SERVICE_DMA_SNOOP(1 << 0) | |
| 2247 | (sc->sc_integrated ? IWM_RFH_GEN_CFG_RB_CHUNK_SIZE_640x00000000 : |
| 2248 | IWM_RFH_GEN_CFG_RB_CHUNK_SIZE_1280x00000010)); |
| 2249 | |
| 2250 | /* Enable the configured queue(s). */ |
| 2251 | iwm_write_prph(sc, IWM_RFH_RXF_RXQ_ACTIVE0xA0980C, enabled); |
| 2252 | |
| 2253 | iwm_nic_unlock(sc); |
| 2254 | |
| 2255 | IWM_WRITE_1(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_TIMEOUT_DEF)(((sc)->sc_st)->write_1(((sc)->sc_sh), (((0x004))), ( ((0x40))))); |
| 2256 | |
| 2257 | IWM_WRITE(sc, IWM_RFH_Q0_FRBDCB_WIDX_TRG, 8)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x1C80)), ( (8)))); |
| 2258 | |
| 2259 | return 0; |
| 2260 | } |
| 2261 | |
| 2262 | int |
| 2263 | iwm_nic_rx_legacy_init(struct iwm_softc *sc) |
| 2264 | { |
| 2265 | memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat))__builtin_memset((sc->rxq.stat), (0), (sizeof(*sc->rxq. stat))); |
| 2266 | |
| 2267 | iwm_disable_rx_dma(sc); |
| 2268 | |
| 2269 | if (!iwm_nic_lock(sc)) |
| 2270 | return EBUSY16; |
| 2271 | |
| 2272 | /* reset and flush pointers */ |
| 2273 | IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((((0x1000) + 0xC00)) + 0x8))), ((0)))); |
| 2274 | IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((((0x1000) + 0xC00)) + 0x10))), ((0)))); |
| 2275 | IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RDPTR, 0)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((((0x1000) + 0xBC0)) + 0x00c))), ((0)))); |
| 2276 | IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((((0x1000) + 0xBC0)) + 0x008))), ((0)))); |
| 2277 | |
| 2278 | /* Set physical address of RX ring (256-byte aligned). */ |
| 2279 | IWM_WRITE(sc,(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((((0x1000) + 0xBC0)) + 0x004))), ((sc->rxq.free_desc_dma.paddr >> 8)))) |
| 2280 | IWM_FH_RSCSR_CHNL0_RBDCB_BASE_REG, sc->rxq.free_desc_dma.paddr >> 8)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((((0x1000) + 0xBC0)) + 0x004))), ((sc->rxq.free_desc_dma.paddr >> 8)))); |
| 2281 | |
| 2282 | /* Set physical address of RX status (16-byte aligned). */ |
| 2283 | IWM_WRITE(sc,(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((((0x1000) + 0xBC0))))), ((sc->rxq.stat_dma.paddr >> 4)))) |
| 2284 | IWM_FH_RSCSR_CHNL0_STTS_WPTR_REG, sc->rxq.stat_dma.paddr >> 4)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((((0x1000) + 0xBC0))))), ((sc->rxq.stat_dma.paddr >> 4)))); |
| 2285 | |
| 2286 | /* Enable RX. */ |
| 2287 | IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG,(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((((0x1000) + 0xC00))))), (((0x80000000) | (0x00000004) | (0x00001000) | ((0x11) << (4)) | (0x00000000) | 8 << (20))))) |
| 2288 | IWM_FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((((0x1000) + 0xC00))))), (((0x80000000) | (0x00000004) | (0x00001000) | ((0x11) << (4)) | (0x00000000) | 8 << (20))))) |
| 2289 | IWM_FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY | /* HW bug */(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((((0x1000) + 0xC00))))), (((0x80000000) | (0x00000004) | (0x00001000) | ((0x11) << (4)) | (0x00000000) | 8 << (20))))) |
| 2290 | IWM_FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((((0x1000) + 0xC00))))), (((0x80000000) | (0x00000004) | (0x00001000) | ((0x11) << (4)) | (0x00000000) | 8 << (20))))) |
| 2291 | (IWM_RX_RB_TIMEOUT << IWM_FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((((0x1000) + 0xC00))))), (((0x80000000) | (0x00000004) | (0x00001000) | ((0x11) << (4)) | (0x00000000) | 8 << (20))))) |
| 2292 | IWM_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K |(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((((0x1000) + 0xC00))))), (((0x80000000) | (0x00000004) | (0x00001000) | ((0x11) << (4)) | (0x00000000) | 8 << (20))))) |
| 2293 | IWM_RX_QUEUE_SIZE_LOG << IWM_FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((((0x1000) + 0xC00))))), (((0x80000000) | (0x00000004) | (0x00001000) | ((0x11) << (4)) | (0x00000000) | 8 << (20))))); |
| 2294 | |
| 2295 | IWM_WRITE_1(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_TIMEOUT_DEF)(((sc)->sc_st)->write_1(((sc)->sc_sh), (((0x004))), ( ((0x40))))); |
| 2296 | |
| 2297 | /* W/A for interrupt coalescing bug in 7260 and 3160 */ |
| 2298 | if (sc->host_interrupt_operation_mode) |
| 2299 | IWM_SETBITS(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_OPER_MODE)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x004))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x004))))) | ((1U << 31)))))); |
| 2300 | |
| 2301 | iwm_nic_unlock(sc); |
| 2302 | |
| 2303 | /* |
| 2304 | * This value should initially be 0 (before preparing any RBs), |
| 2305 | * and should be 8 after preparing the first 8 RBs (for example). |
| 2306 | */ |
| 2307 | IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, 8)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((((((0x1000 ) + 0xBC0)) + 0x008)))), ((8)))); |
| 2308 | |
| 2309 | return 0; |
| 2310 | } |
| 2311 | |
| 2312 | int |
| 2313 | iwm_nic_tx_init(struct iwm_softc *sc) |
| 2314 | { |
| 2315 | int qid, err; |
| 2316 | |
| 2317 | if (!iwm_nic_lock(sc)) |
| 2318 | return EBUSY16; |
| 2319 | |
| 2320 | /* Deactivate TX scheduler. */ |
| 2321 | iwm_write_prph(sc, IWM_SCD_TXFACT(((0x00000) + 0xa02c00) + 0x10), 0); |
| 2322 | |
| 2323 | /* Set physical address of "keep warm" page (16-byte aligned). */ |
| 2324 | IWM_WRITE(sc, IWM_FH_KW_MEM_ADDR_REG, sc->kw_dma.paddr >> 4)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x1000) + 0x97C))), ((sc->kw_dma.paddr >> 4)))); |
| 2325 | |
| 2326 | for (qid = 0; qid < nitems(sc->txq)(sizeof((sc->txq)) / sizeof((sc->txq)[0])); qid++) { |
| 2327 | struct iwm_tx_ring *txq = &sc->txq[qid]; |
| 2328 | |
| 2329 | /* Set physical address of TX ring (256-byte aligned). */ |
| 2330 | IWM_WRITE(sc, IWM_FH_MEM_CBBC_QUEUE(qid),(((sc)->sc_st)->write_4(((sc)->sc_sh), ((IWM_FH_MEM_CBBC_QUEUE (qid))), ((txq->desc_dma.paddr >> 8)))) |
| 2331 | txq->desc_dma.paddr >> 8)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((IWM_FH_MEM_CBBC_QUEUE (qid))), ((txq->desc_dma.paddr >> 8)))); |
| 2332 | } |
| 2333 | |
| 2334 | err = iwm_set_bits_prph(sc, IWM_SCD_GP_CTRL(((0x00000) + 0xa02c00) + 0x1a8), |
| 2335 | IWM_SCD_GP_CTRL_AUTO_ACTIVE_MODE(1 << 18) | |
| 2336 | IWM_SCD_GP_CTRL_ENABLE_31_QUEUES(1 << 0)); |
| 2337 | |
| 2338 | iwm_nic_unlock(sc); |
| 2339 | |
| 2340 | return err; |
| 2341 | } |
| 2342 | |
| 2343 | int |
| 2344 | iwm_nic_init(struct iwm_softc *sc) |
| 2345 | { |
| 2346 | int err; |
| 2347 | |
| 2348 | iwm_apm_init(sc); |
| 2349 | if (sc->sc_device_family == IWM_DEVICE_FAMILY_70001) |
| 2350 | iwm_set_bits_mask_prph(sc, IWM_APMG_PS_CTRL_REG(((0x00000) + 0x3000) + 0x000c), |
| 2351 | IWM_APMG_PS_CTRL_VAL_PWR_SRC_VMAIN(0x00000000), |
| 2352 | ~IWM_APMG_PS_CTRL_MSK_PWR_SRC(0x03000000)); |
| 2353 | |
| 2354 | iwm_nic_config(sc); |
| 2355 | |
| 2356 | err = iwm_nic_rx_init(sc); |
| 2357 | if (err) |
| 2358 | return err; |
| 2359 | |
| 2360 | err = iwm_nic_tx_init(sc); |
| 2361 | if (err) |
| 2362 | return err; |
| 2363 | |
| 2364 | IWM_SETBITS(sc, IWM_CSR_MAC_SHADOW_REG_CTRL, 0x800fffff)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x0A8))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x0A8))))) | (0x800fffff))))); |
| 2365 | |
| 2366 | return 0; |
| 2367 | } |
| 2368 | |
| 2369 | /* Map a TID to an ieee80211_edca_ac category. */ |
| 2370 | const uint8_t iwm_tid_to_ac[IWM_MAX_TID_COUNT8] = { |
| 2371 | EDCA_AC_BE, |
| 2372 | EDCA_AC_BK, |
| 2373 | EDCA_AC_BK, |
| 2374 | EDCA_AC_BE, |
| 2375 | EDCA_AC_VI, |
| 2376 | EDCA_AC_VI, |
| 2377 | EDCA_AC_VO, |
| 2378 | EDCA_AC_VO, |
| 2379 | }; |
| 2380 | |
| 2381 | /* Map ieee80211_edca_ac categories to firmware Tx FIFO. */ |
| 2382 | const uint8_t iwm_ac_to_tx_fifo[] = { |
| 2383 | IWM_TX_FIFO_BE1, |
| 2384 | IWM_TX_FIFO_BK0, |
| 2385 | IWM_TX_FIFO_VI2, |
| 2386 | IWM_TX_FIFO_VO3, |
| 2387 | }; |
| 2388 | |
| 2389 | int |
| 2390 | iwm_enable_ac_txq(struct iwm_softc *sc, int qid, int fifo) |
| 2391 | { |
| 2392 | int err; |
| 2393 | iwm_nic_assert_locked(sc); |
| 2394 | |
| 2395 | IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, qid << 8 | 0)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x400)+0x060 ))), ((qid << 8 | 0)))); |
| 2396 | |
| 2397 | iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid), |
| 2398 | (0 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE(3)) |
| 2399 | | (1 << IWM_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN(19))); |
| 2400 | |
| 2401 | err = iwm_clear_bits_prph(sc, IWM_SCD_AGGR_SEL(((0x00000) + 0xa02c00) + 0x248), (1 << qid)); |
| 2402 | if (err) { |
| 2403 | return err; |
| 2404 | } |
| 2405 | |
| 2406 | iwm_write_prph(sc, IWM_SCD_QUEUE_RDPTR(qid), 0); |
| 2407 | |
| 2408 | iwm_write_mem32(sc, |
| 2409 | sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid)(((0x0000) + 0x600) + ((qid) * 8)), 0); |
| 2410 | |
| 2411 | /* Set scheduler window size and frame limit. */ |
| 2412 | iwm_write_mem32(sc, |
| 2413 | sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid)(((0x0000) + 0x600) + ((qid) * 8)) + |
| 2414 | sizeof(uint32_t), |
| 2415 | ((IWM_FRAME_LIMIT64 << IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS(0)) & |
| 2416 | IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK(0x0000007F)) | |
| 2417 | ((IWM_FRAME_LIMIT64 |
| 2418 | << IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS(16)) & |
| 2419 | IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK(0x007F0000))); |
| 2420 | |
| 2421 | iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid), |
| 2422 | (1 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE(3)) | |
| 2423 | (fifo << IWM_SCD_QUEUE_STTS_REG_POS_TXF(0)) | |
| 2424 | (1 << IWM_SCD_QUEUE_STTS_REG_POS_WSL(4)) | |
| 2425 | IWM_SCD_QUEUE_STTS_REG_MSK(0x017F0000)); |
| 2426 | |
| 2427 | if (qid == sc->cmdqid) |
| 2428 | iwm_write_prph(sc, IWM_SCD_EN_CTRL(((0x00000) + 0xa02c00) + 0x254), |
| 2429 | iwm_read_prph(sc, IWM_SCD_EN_CTRL(((0x00000) + 0xa02c00) + 0x254)) | (1 << qid)); |
| 2430 | |
| 2431 | return 0; |
| 2432 | } |
| 2433 | |
| 2434 | int |
| 2435 | iwm_enable_txq(struct iwm_softc *sc, int sta_id, int qid, int fifo, |
| 2436 | int aggregate, uint8_t tid, uint16_t ssn) |
| 2437 | { |
| 2438 | struct iwm_tx_ring *ring = &sc->txq[qid]; |
| 2439 | struct iwm_scd_txq_cfg_cmd cmd; |
| 2440 | int err, idx, scd_bug; |
| 2441 | |
| 2442 | iwm_nic_assert_locked(sc); |
| 2443 | |
| 2444 | /* |
| 2445 | * If we need to move the SCD write pointer by steps of |
| 2446 | * 0x40, 0x80 or 0xc0, it gets stuck. |
| 2447 | * This is really ugly, but this is the easiest way out for |
| 2448 | * this sad hardware issue. |
| 2449 | * This bug has been fixed on devices 9000 and up. |
| 2450 | */ |
| 2451 | scd_bug = !sc->sc_mqrx_supported && |
| 2452 | !((ssn - ring->cur) & 0x3f) && |
| 2453 | (ssn != ring->cur); |
| 2454 | if (scd_bug) |
| 2455 | ssn = (ssn + 1) & 0xfff; |
| 2456 | |
| 2457 | idx = IWM_AGG_SSN_TO_TXQ_IDX(ssn)((ssn) & (256 - 1)); |
| 2458 | IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, qid << 8 | idx)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x400)+0x060 ))), ((qid << 8 | idx)))); |
| 2459 | ring->cur = idx; |
| 2460 | ring->tail = idx; |
| 2461 | |
| 2462 | memset(&cmd, 0, sizeof(cmd))__builtin_memset((&cmd), (0), (sizeof(cmd))); |
| 2463 | cmd.tid = tid; |
| 2464 | cmd.scd_queue = qid; |
| 2465 | cmd.enable = 1; |
| 2466 | cmd.sta_id = sta_id; |
| 2467 | cmd.tx_fifo = fifo; |
| 2468 | cmd.aggregate = aggregate; |
| 2469 | cmd.ssn = htole16(ssn)((__uint16_t)(ssn)); |
| 2470 | cmd.window = IWM_FRAME_LIMIT64; |
| 2471 | |
| 2472 | err = iwm_send_cmd_pdu(sc, IWM_SCD_QUEUE_CFG0x1d, 0, |
| 2473 | sizeof(cmd), &cmd); |
| 2474 | if (err) |
| 2475 | return err; |
| 2476 | |
| 2477 | sc->qenablemsk |= (1 << qid); |
| 2478 | return 0; |
| 2479 | } |
| 2480 | |
| 2481 | int |
| 2482 | iwm_disable_txq(struct iwm_softc *sc, int sta_id, int qid, uint8_t tid) |
| 2483 | { |
| 2484 | struct iwm_scd_txq_cfg_cmd cmd; |
| 2485 | int err; |
| 2486 | |
| 2487 | memset(&cmd, 0, sizeof(cmd))__builtin_memset((&cmd), (0), (sizeof(cmd))); |
| 2488 | cmd.tid = tid; |
| 2489 | cmd.scd_queue = qid; |
| 2490 | cmd.enable = 0; |
| 2491 | cmd.sta_id = sta_id; |
| 2492 | |
| 2493 | err = iwm_send_cmd_pdu(sc, IWM_SCD_QUEUE_CFG0x1d, 0, sizeof(cmd), &cmd); |
| 2494 | if (err) |
| 2495 | return err; |
| 2496 | |
| 2497 | sc->qenablemsk &= ~(1 << qid); |
| 2498 | return 0; |
| 2499 | } |
| 2500 | |
| 2501 | int |
| 2502 | iwm_post_alive(struct iwm_softc *sc) |
| 2503 | { |
| 2504 | int nwords; |
| 2505 | int err, chnl; |
| 2506 | uint32_t base; |
| 2507 | |
| 2508 | if (!iwm_nic_lock(sc)) |
| 2509 | return EBUSY16; |
| 2510 | |
| 2511 | base = iwm_read_prph(sc, IWM_SCD_SRAM_BASE_ADDR(((0x00000) + 0xa02c00) + 0x0)); |
Value stored to 'base' is never read | |
| 2512 | |
| 2513 | iwm_ict_reset(sc); |
| 2514 | |
| 2515 | iwm_nic_unlock(sc); |
| 2516 | |
| 2517 | /* Clear TX scheduler state in SRAM. */ |
| 2518 | nwords = (IWM_SCD_TRANS_TBL_MEM_UPPER_BOUND((0x0000) + 0x808) - |
| 2519 | IWM_SCD_CONTEXT_MEM_LOWER_BOUND((0x0000) + 0x600)) |
| 2520 | / sizeof(uint32_t); |
| 2521 | err = iwm_write_mem(sc, |
| 2522 | sc->sched_base + IWM_SCD_CONTEXT_MEM_LOWER_BOUND((0x0000) + 0x600), |
| 2523 | NULL((void *)0), nwords); |
| 2524 | if (err) |
| 2525 | return err; |
| 2526 | |
| 2527 | if (!iwm_nic_lock(sc)) |
| 2528 | return EBUSY16; |
| 2529 | |
| 2530 | /* Set physical address of TX scheduler rings (1KB aligned). */ |
| 2531 | iwm_write_prph(sc, IWM_SCD_DRAM_BASE_ADDR(((0x00000) + 0xa02c00) + 0x8), sc->sched_dma.paddr >> 10); |
| 2532 | |
| 2533 | iwm_write_prph(sc, IWM_SCD_CHAINEXT_EN(((0x00000) + 0xa02c00) + 0x244), 0); |
| 2534 | |
| 2535 | /* enable command channel */ |
| 2536 | err = iwm_enable_ac_txq(sc, sc->cmdqid, IWM_TX_FIFO_CMD7); |
| 2537 | if (err) { |
| 2538 | iwm_nic_unlock(sc); |
| 2539 | return err; |
| 2540 | } |
| 2541 | |
| 2542 | /* Activate TX scheduler. */ |
| 2543 | iwm_write_prph(sc, IWM_SCD_TXFACT(((0x00000) + 0xa02c00) + 0x10), 0xff); |
| 2544 | |
| 2545 | /* Enable DMA channels. */ |
| 2546 | for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM(8); chnl++) { |
| 2547 | IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl),(((sc)->sc_st)->write_4(((sc)->sc_sh), (((((0x1000) + 0xD00) + 0x20 * (chnl)))), (((0x80000000) | (0x00000008))))) |
| 2548 | IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |(((sc)->sc_st)->write_4(((sc)->sc_sh), (((((0x1000) + 0xD00) + 0x20 * (chnl)))), (((0x80000000) | (0x00000008))))) |
| 2549 | IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((((0x1000) + 0xD00) + 0x20 * (chnl)))), (((0x80000000) | (0x00000008))))); |
| 2550 | } |
| 2551 | |
| 2552 | IWM_SETBITS(sc, IWM_FH_TX_CHICKEN_BITS_REG,(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x1000) + 0xE98))), (((((sc)->sc_st)->read_4(((sc)->sc_sh), ( (((0x1000) + 0xE98))))) | ((0x00000002)))))) |
| 2553 | IWM_FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x1000) + 0xE98))), (((((sc)->sc_st)->read_4(((sc)->sc_sh), ( (((0x1000) + 0xE98))))) | ((0x00000002)))))); |
| 2554 | |
| 2555 | iwm_nic_unlock(sc); |
| 2556 | |
| 2557 | /* Enable L1-Active */ |
| 2558 | if (sc->sc_device_family < IWM_DEVICE_FAMILY_80002) { |
| 2559 | err = iwm_clear_bits_prph(sc, IWM_APMG_PCIDEV_STT_REG(((0x00000) + 0x3000) + 0x0010), |
| 2560 | IWM_APMG_PCIDEV_STT_VAL_L1_ACT_DIS(0x00000800)); |
| 2561 | } |
| 2562 | |
| 2563 | return err; |
| 2564 | } |
| 2565 | |
| 2566 | struct iwm_phy_db_entry * |
| 2567 | iwm_phy_db_get_section(struct iwm_softc *sc, uint16_t type, uint16_t chg_id) |
| 2568 | { |
| 2569 | struct iwm_phy_db *phy_db = &sc->sc_phy_db; |
| 2570 | |
| 2571 | if (type >= IWM_PHY_DB_MAX6) |
| 2572 | return NULL((void *)0); |
| 2573 | |
| 2574 | switch (type) { |
| 2575 | case IWM_PHY_DB_CFG1: |
| 2576 | return &phy_db->cfg; |
| 2577 | case IWM_PHY_DB_CALIB_NCH2: |
| 2578 | return &phy_db->calib_nch; |
| 2579 | case IWM_PHY_DB_CALIB_CHG_PAPD4: |
| 2580 | if (chg_id >= IWM_NUM_PAPD_CH_GROUPS9) |
| 2581 | return NULL((void *)0); |
| 2582 | return &phy_db->calib_ch_group_papd[chg_id]; |
| 2583 | case IWM_PHY_DB_CALIB_CHG_TXP5: |
| 2584 | if (chg_id >= IWM_NUM_TXP_CH_GROUPS9) |
| 2585 | return NULL((void *)0); |
| 2586 | return &phy_db->calib_ch_group_txp[chg_id]; |
| 2587 | default: |
| 2588 | return NULL((void *)0); |
| 2589 | } |
| 2590 | return NULL((void *)0); |
| 2591 | } |
| 2592 | |
| 2593 | int |
| 2594 | iwm_phy_db_set_section(struct iwm_softc *sc, |
| 2595 | struct iwm_calib_res_notif_phy_db *phy_db_notif) |
| 2596 | { |
| 2597 | uint16_t type = le16toh(phy_db_notif->type)((__uint16_t)(phy_db_notif->type)); |
| 2598 | uint16_t size = le16toh(phy_db_notif->length)((__uint16_t)(phy_db_notif->length)); |
| 2599 | struct iwm_phy_db_entry *entry; |
| 2600 | uint16_t chg_id = 0; |
| 2601 | |
| 2602 | if (type == IWM_PHY_DB_CALIB_CHG_PAPD4 || |
| 2603 | type == IWM_PHY_DB_CALIB_CHG_TXP5) |
| 2604 | chg_id = le16toh(*(uint16_t *)phy_db_notif->data)((__uint16_t)(*(uint16_t *)phy_db_notif->data)); |
| 2605 | |
| 2606 | entry = iwm_phy_db_get_section(sc, type, chg_id); |
| 2607 | if (!entry) |
| 2608 | return EINVAL22; |
| 2609 | |
| 2610 | if (entry->data) |
| 2611 | free(entry->data, M_DEVBUF2, entry->size); |
| 2612 | entry->data = malloc(size, M_DEVBUF2, M_NOWAIT0x0002); |
| 2613 | if (!entry->data) { |
| 2614 | entry->size = 0; |
| 2615 | return ENOMEM12; |
| 2616 | } |
| 2617 | memcpy(entry->data, phy_db_notif->data, size)__builtin_memcpy((entry->data), (phy_db_notif->data), ( size)); |
| 2618 | entry->size = size; |
| 2619 | |
| 2620 | return 0; |
| 2621 | } |
| 2622 | |
| 2623 | int |
| 2624 | iwm_is_valid_channel(uint16_t ch_id) |
| 2625 | { |
| 2626 | if (ch_id <= 14 || |
| 2627 | (36 <= ch_id && ch_id <= 64 && ch_id % 4 == 0) || |
| 2628 | (100 <= ch_id && ch_id <= 140 && ch_id % 4 == 0) || |
| 2629 | (145 <= ch_id && ch_id <= 165 && ch_id % 4 == 1)) |
| 2630 | return 1; |
| 2631 | return 0; |
| 2632 | } |
| 2633 | |
| 2634 | uint8_t |
| 2635 | iwm_ch_id_to_ch_index(uint16_t ch_id) |
| 2636 | { |
| 2637 | if (!iwm_is_valid_channel(ch_id)) |
| 2638 | return 0xff; |
| 2639 | |
| 2640 | if (ch_id <= 14) |
| 2641 | return ch_id - 1; |
| 2642 | if (ch_id <= 64) |
| 2643 | return (ch_id + 20) / 4; |
| 2644 | if (ch_id <= 140) |
| 2645 | return (ch_id - 12) / 4; |
| 2646 | return (ch_id - 13) / 4; |
| 2647 | } |
| 2648 | |
| 2649 | |
| 2650 | uint16_t |
| 2651 | iwm_channel_id_to_papd(uint16_t ch_id) |
| 2652 | { |
| 2653 | if (!iwm_is_valid_channel(ch_id)) |
| 2654 | return 0xff; |
| 2655 | |
| 2656 | if (1 <= ch_id && ch_id <= 14) |
| 2657 | return 0; |
| 2658 | if (36 <= ch_id && ch_id <= 64) |
| 2659 | return 1; |
| 2660 | if (100 <= ch_id && ch_id <= 140) |
| 2661 | return 2; |
| 2662 | return 3; |
| 2663 | } |
| 2664 | |
| 2665 | uint16_t |
| 2666 | iwm_channel_id_to_txp(struct iwm_softc *sc, uint16_t ch_id) |
| 2667 | { |
| 2668 | struct iwm_phy_db *phy_db = &sc->sc_phy_db; |
| 2669 | struct iwm_phy_db_chg_txp *txp_chg; |
| 2670 | int i; |
| 2671 | uint8_t ch_index = iwm_ch_id_to_ch_index(ch_id); |
| 2672 | |
| 2673 | if (ch_index == 0xff) |
| 2674 | return 0xff; |
| 2675 | |
| 2676 | for (i = 0; i < IWM_NUM_TXP_CH_GROUPS9; i++) { |
| 2677 | txp_chg = (void *)phy_db->calib_ch_group_txp[i].data; |
| 2678 | if (!txp_chg) |
| 2679 | return 0xff; |
| 2680 | /* |
| 2681 | * Looking for the first channel group the max channel |
| 2682 | * of which is higher than the requested channel. |
| 2683 | */ |
| 2684 | if (le16toh(txp_chg->max_channel_idx)((__uint16_t)(txp_chg->max_channel_idx)) >= ch_index) |
| 2685 | return i; |
| 2686 | } |
| 2687 | return 0xff; |
| 2688 | } |
| 2689 | |
| 2690 | int |
| 2691 | iwm_phy_db_get_section_data(struct iwm_softc *sc, uint32_t type, uint8_t **data, |
| 2692 | uint16_t *size, uint16_t ch_id) |
| 2693 | { |
| 2694 | struct iwm_phy_db_entry *entry; |
| 2695 | uint16_t ch_group_id = 0; |
| 2696 | |
| 2697 | if (type == IWM_PHY_DB_CALIB_CHG_PAPD4) |
| 2698 | ch_group_id = iwm_channel_id_to_papd(ch_id); |
| 2699 | else if (type == IWM_PHY_DB_CALIB_CHG_TXP5) |
| 2700 | ch_group_id = iwm_channel_id_to_txp(sc, ch_id); |
| 2701 | |
| 2702 | entry = iwm_phy_db_get_section(sc, type, ch_group_id); |
| 2703 | if (!entry) |
| 2704 | return EINVAL22; |
| 2705 | |
| 2706 | *data = entry->data; |
| 2707 | *size = entry->size; |
| 2708 | |
| 2709 | return 0; |
| 2710 | } |
| 2711 | |
| 2712 | int |
| 2713 | iwm_send_phy_db_cmd(struct iwm_softc *sc, uint16_t type, uint16_t length, |
| 2714 | void *data) |
| 2715 | { |
| 2716 | struct iwm_phy_db_cmd phy_db_cmd; |
| 2717 | struct iwm_host_cmd cmd = { |
| 2718 | .id = IWM_PHY_DB_CMD0x6c, |
| 2719 | .flags = IWM_CMD_ASYNC, |
| 2720 | }; |
| 2721 | |
| 2722 | phy_db_cmd.type = le16toh(type)((__uint16_t)(type)); |
| 2723 | phy_db_cmd.length = le16toh(length)((__uint16_t)(length)); |
| 2724 | |
| 2725 | cmd.data[0] = &phy_db_cmd; |
| 2726 | cmd.len[0] = sizeof(struct iwm_phy_db_cmd); |
| 2727 | cmd.data[1] = data; |
| 2728 | cmd.len[1] = length; |
| 2729 | |
| 2730 | return iwm_send_cmd(sc, &cmd); |
| 2731 | } |
| 2732 | |
| 2733 | int |
| 2734 | iwm_phy_db_send_all_channel_groups(struct iwm_softc *sc, uint16_t type, |
| 2735 | uint8_t max_ch_groups) |
| 2736 | { |
| 2737 | uint16_t i; |
| 2738 | int err; |
| 2739 | struct iwm_phy_db_entry *entry; |
| 2740 | |
| 2741 | for (i = 0; i < max_ch_groups; i++) { |
| 2742 | entry = iwm_phy_db_get_section(sc, type, i); |
| 2743 | if (!entry) |
| 2744 | return EINVAL22; |
| 2745 | |
| 2746 | if (!entry->size) |
| 2747 | continue; |
| 2748 | |
| 2749 | err = iwm_send_phy_db_cmd(sc, type, entry->size, entry->data); |
| 2750 | if (err) |
| 2751 | return err; |
| 2752 | |
| 2753 | DELAY(1000)(*delay_func)(1000); |
| 2754 | } |
| 2755 | |
| 2756 | return 0; |
| 2757 | } |
| 2758 | |
| 2759 | int |
| 2760 | iwm_send_phy_db_data(struct iwm_softc *sc) |
| 2761 | { |
| 2762 | uint8_t *data = NULL((void *)0); |
| 2763 | uint16_t size = 0; |
| 2764 | int err; |
| 2765 | |
| 2766 | err = iwm_phy_db_get_section_data(sc, IWM_PHY_DB_CFG1, &data, &size, 0); |
| 2767 | if (err) |
| 2768 | return err; |
| 2769 | |
| 2770 | err = iwm_send_phy_db_cmd(sc, IWM_PHY_DB_CFG1, size, data); |
| 2771 | if (err) |
| 2772 | return err; |
| 2773 | |
| 2774 | err = iwm_phy_db_get_section_data(sc, IWM_PHY_DB_CALIB_NCH2, |
| 2775 | &data, &size, 0); |
| 2776 | if (err) |
| 2777 | return err; |
| 2778 | |
| 2779 | err = iwm_send_phy_db_cmd(sc, IWM_PHY_DB_CALIB_NCH2, size, data); |
| 2780 | if (err) |
| 2781 | return err; |
| 2782 | |
| 2783 | err = iwm_phy_db_send_all_channel_groups(sc, |
| 2784 | IWM_PHY_DB_CALIB_CHG_PAPD4, IWM_NUM_PAPD_CH_GROUPS9); |
| 2785 | if (err) |
| 2786 | return err; |
| 2787 | |
| 2788 | err = iwm_phy_db_send_all_channel_groups(sc, |
| 2789 | IWM_PHY_DB_CALIB_CHG_TXP5, IWM_NUM_TXP_CH_GROUPS9); |
| 2790 | if (err) |
| 2791 | return err; |
| 2792 | |
| 2793 | return 0; |
| 2794 | } |
| 2795 | |
| 2796 | /* |
| 2797 | * For the high priority TE use a time event type that has similar priority to |
| 2798 | * the FW's action scan priority. |
| 2799 | */ |
| 2800 | #define IWM_ROC_TE_TYPE_NORMAL4 IWM_TE_P2P_DEVICE_DISCOVERABLE4 |
| 2801 | #define IWM_ROC_TE_TYPE_MGMT_TX9 IWM_TE_P2P_CLIENT_ASSOC9 |
| 2802 | |
| 2803 | int |
| 2804 | iwm_send_time_event_cmd(struct iwm_softc *sc, |
| 2805 | const struct iwm_time_event_cmd *cmd) |
| 2806 | { |
| 2807 | struct iwm_rx_packet *pkt; |
| 2808 | struct iwm_time_event_resp *resp; |
| 2809 | struct iwm_host_cmd hcmd = { |
| 2810 | .id = IWM_TIME_EVENT_CMD0x29, |
| 2811 | .flags = IWM_CMD_WANT_RESP, |
| 2812 | .resp_pkt_len = sizeof(*pkt) + sizeof(*resp), |
| 2813 | }; |
| 2814 | uint32_t resp_len; |
| 2815 | int err; |
| 2816 | |
| 2817 | hcmd.data[0] = cmd; |
| 2818 | hcmd.len[0] = sizeof(*cmd); |
| 2819 | err = iwm_send_cmd(sc, &hcmd); |
| 2820 | if (err) |
| 2821 | return err; |
| 2822 | |
| 2823 | pkt = hcmd.resp_pkt; |
| 2824 | if (!pkt || (pkt->hdr.flags & IWM_CMD_FAILED_MSK0x40)) { |
| 2825 | err = EIO5; |
| 2826 | goto out; |
| 2827 | } |
| 2828 | |
| 2829 | resp_len = iwm_rx_packet_payload_len(pkt); |
| 2830 | if (resp_len != sizeof(*resp)) { |
| 2831 | err = EIO5; |
| 2832 | goto out; |
| 2833 | } |
| 2834 | |
| 2835 | resp = (void *)pkt->data; |
| 2836 | if (le32toh(resp->status)((__uint32_t)(resp->status)) == 0) |
| 2837 | sc->sc_time_event_uid = le32toh(resp->unique_id)((__uint32_t)(resp->unique_id)); |
| 2838 | else |
| 2839 | err = EIO5; |
| 2840 | out: |
| 2841 | iwm_free_resp(sc, &hcmd); |
| 2842 | return err; |
| 2843 | } |
| 2844 | |
| 2845 | void |
| 2846 | iwm_protect_session(struct iwm_softc *sc, struct iwm_node *in, |
| 2847 | uint32_t duration, uint32_t max_delay) |
| 2848 | { |
| 2849 | struct iwm_time_event_cmd time_cmd; |
| 2850 | |
| 2851 | /* Do nothing if a time event is already scheduled. */ |
| 2852 | if (sc->sc_flags & IWM_FLAG_TE_ACTIVE0x40) |
| 2853 | return; |
| 2854 | |
| 2855 | memset(&time_cmd, 0, sizeof(time_cmd))__builtin_memset((&time_cmd), (0), (sizeof(time_cmd))); |
| 2856 | |
| 2857 | time_cmd.action = htole32(IWM_FW_CTXT_ACTION_ADD)((__uint32_t)(1)); |
| 2858 | time_cmd.id_and_color = |
| 2859 | htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color))((__uint32_t)(((in->in_id << (0)) | (in->in_color << (8))))); |
| 2860 | time_cmd.id = htole32(IWM_TE_BSS_STA_AGGRESSIVE_ASSOC)((__uint32_t)(0)); |
| 2861 | |
| 2862 | time_cmd.apply_time = htole32(0)((__uint32_t)(0)); |
| 2863 | |
| 2864 | time_cmd.max_frags = IWM_TE_V2_FRAG_NONE0; |
| 2865 | time_cmd.max_delay = htole32(max_delay)((__uint32_t)(max_delay)); |
| 2866 | /* TODO: why do we need to interval = bi if it is not periodic? */ |
| 2867 | time_cmd.interval = htole32(1)((__uint32_t)(1)); |
| 2868 | time_cmd.duration = htole32(duration)((__uint32_t)(duration)); |
| 2869 | time_cmd.repeat = 1; |
| 2870 | time_cmd.policy |
| 2871 | = htole16(IWM_TE_V2_NOTIF_HOST_EVENT_START |((__uint16_t)((1 << 0) | (1 << 1) | (1 << 11 ))) |
| 2872 | IWM_TE_V2_NOTIF_HOST_EVENT_END |((__uint16_t)((1 << 0) | (1 << 1) | (1 << 11 ))) |
| 2873 | IWM_T2_V2_START_IMMEDIATELY)((__uint16_t)((1 << 0) | (1 << 1) | (1 << 11 ))); |
| 2874 | |
| 2875 | if (iwm_send_time_event_cmd(sc, &time_cmd) == 0) |
| 2876 | sc->sc_flags |= IWM_FLAG_TE_ACTIVE0x40; |
| 2877 | |
| 2878 | DELAY(100)(*delay_func)(100); |
| 2879 | } |
| 2880 | |
| 2881 | void |
| 2882 | iwm_unprotect_session(struct iwm_softc *sc, struct iwm_node *in) |
| 2883 | { |
| 2884 | struct iwm_time_event_cmd time_cmd; |
| 2885 | |
| 2886 | /* Do nothing if the time event has already ended. */ |
| 2887 | if ((sc->sc_flags & IWM_FLAG_TE_ACTIVE0x40) == 0) |
| 2888 | return; |
| 2889 | |
| 2890 | memset(&time_cmd, 0, sizeof(time_cmd))__builtin_memset((&time_cmd), (0), (sizeof(time_cmd))); |
| 2891 | |
| 2892 | time_cmd.action = htole32(IWM_FW_CTXT_ACTION_REMOVE)((__uint32_t)(3)); |
| 2893 | time_cmd.id_and_color = |
| 2894 | htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color))((__uint32_t)(((in->in_id << (0)) | (in->in_color << (8))))); |
| 2895 | time_cmd.id = htole32(sc->sc_time_event_uid)((__uint32_t)(sc->sc_time_event_uid)); |
| 2896 | |
| 2897 | if (iwm_send_time_event_cmd(sc, &time_cmd) == 0) |
| 2898 | sc->sc_flags &= ~IWM_FLAG_TE_ACTIVE0x40; |
| 2899 | |
| 2900 | DELAY(100)(*delay_func)(100); |
| 2901 | } |
| 2902 | |
| 2903 | /* |
| 2904 | * NVM read access and content parsing. We do not support |
| 2905 | * external NVM or writing NVM. |
| 2906 | */ |
| 2907 | |
| 2908 | /* list of NVM sections we are allowed/need to read */ |
| 2909 | const int iwm_nvm_to_read[] = { |
| 2910 | IWM_NVM_SECTION_TYPE_HW0, |
| 2911 | IWM_NVM_SECTION_TYPE_SW1, |
| 2912 | IWM_NVM_SECTION_TYPE_REGULATORY3, |
| 2913 | IWM_NVM_SECTION_TYPE_CALIBRATION4, |
| 2914 | IWM_NVM_SECTION_TYPE_PRODUCTION5, |
| 2915 | IWM_NVM_SECTION_TYPE_REGULATORY_SDP8, |
| 2916 | IWM_NVM_SECTION_TYPE_HW_800010, |
| 2917 | IWM_NVM_SECTION_TYPE_MAC_OVERRIDE11, |
| 2918 | IWM_NVM_SECTION_TYPE_PHY_SKU12, |
| 2919 | }; |
| 2920 | |
| 2921 | #define IWM_NVM_DEFAULT_CHUNK_SIZE(2*1024) (2*1024) |
| 2922 | |
| 2923 | #define IWM_NVM_WRITE_OPCODE1 1 |
| 2924 | #define IWM_NVM_READ_OPCODE0 0 |
| 2925 | |
| 2926 | int |
| 2927 | iwm_nvm_read_chunk(struct iwm_softc *sc, uint16_t section, uint16_t offset, |
| 2928 | uint16_t length, uint8_t *data, uint16_t *len) |
| 2929 | { |
| 2930 | offset = 0; |
| 2931 | struct iwm_nvm_access_cmd nvm_access_cmd = { |
| 2932 | .offset = htole16(offset)((__uint16_t)(offset)), |
| 2933 | .length = htole16(length)((__uint16_t)(length)), |
| 2934 | .type = htole16(section)((__uint16_t)(section)), |
| 2935 | .op_code = IWM_NVM_READ_OPCODE0, |
| 2936 | }; |
| 2937 | struct iwm_nvm_access_resp *nvm_resp; |
| 2938 | struct iwm_rx_packet *pkt; |
| 2939 | struct iwm_host_cmd cmd = { |
| 2940 | .id = IWM_NVM_ACCESS_CMD0x88, |
| 2941 | .flags = (IWM_CMD_WANT_RESP | IWM_CMD_SEND_IN_RFKILL), |
| 2942 | .resp_pkt_len = IWM_CMD_RESP_MAX(1 << 12), |
| 2943 | .data = { &nvm_access_cmd, }, |
| 2944 | }; |
| 2945 | int err, offset_read; |
| 2946 | size_t bytes_read; |
| 2947 | uint8_t *resp_data; |
| 2948 | |
| 2949 | cmd.len[0] = sizeof(struct iwm_nvm_access_cmd); |
| 2950 | |
| 2951 | err = iwm_send_cmd(sc, &cmd); |
| 2952 | if (err) |
| 2953 | return err; |
| 2954 | |
| 2955 | pkt = cmd.resp_pkt; |
| 2956 | if (pkt->hdr.flags & IWM_CMD_FAILED_MSK0x40) { |
| 2957 | err = EIO5; |
| 2958 | goto exit; |
| 2959 | } |
| 2960 | |
| 2961 | /* Extract NVM response */ |
| 2962 | nvm_resp = (void *)pkt->data; |
| 2963 | if (nvm_resp == NULL((void *)0)) |
| 2964 | return EIO5; |
| 2965 | |
| 2966 | err = le16toh(nvm_resp->status)((__uint16_t)(nvm_resp->status)); |
| 2967 | bytes_read = le16toh(nvm_resp->length)((__uint16_t)(nvm_resp->length)); |
| 2968 | offset_read = le16toh(nvm_resp->offset)((__uint16_t)(nvm_resp->offset)); |
| 2969 | resp_data = nvm_resp->data; |
| 2970 | if (err) { |
| 2971 | err = EINVAL22; |
| 2972 | goto exit; |
| 2973 | } |
| 2974 | |
| 2975 | if (offset_read != offset) { |
| 2976 | err = EINVAL22; |
| 2977 | goto exit; |
| 2978 | } |
| 2979 | |
| 2980 | if (bytes_read > length) { |
| 2981 | err = EINVAL22; |
| 2982 | goto exit; |
| 2983 | } |
| 2984 | |
| 2985 | memcpy(data + offset, resp_data, bytes_read)__builtin_memcpy((data + offset), (resp_data), (bytes_read)); |
| 2986 | *len = bytes_read; |
| 2987 | |
| 2988 | exit: |
| 2989 | iwm_free_resp(sc, &cmd); |
| 2990 | return err; |
| 2991 | } |
| 2992 | |
| 2993 | /* |
| 2994 | * Reads an NVM section completely. |
| 2995 | * NICs prior to 7000 family doesn't have a real NVM, but just read |
| 2996 | * section 0 which is the EEPROM. Because the EEPROM reading is unlimited |
| 2997 | * by uCode, we need to manually check in this case that we don't |
| 2998 | * overflow and try to read more than the EEPROM size. |
| 2999 | */ |
| 3000 | int |
| 3001 | iwm_nvm_read_section(struct iwm_softc *sc, uint16_t section, uint8_t *data, |
| 3002 | uint16_t *len, size_t max_len) |
| 3003 | { |
| 3004 | uint16_t chunklen, seglen; |
| 3005 | int err = 0; |
| 3006 | |
| 3007 | chunklen = seglen = IWM_NVM_DEFAULT_CHUNK_SIZE(2*1024); |
| 3008 | *len = 0; |
| 3009 | |
| 3010 | /* Read NVM chunks until exhausted (reading less than requested) */ |
| 3011 | while (seglen == chunklen && *len < max_len) { |
| 3012 | err = iwm_nvm_read_chunk(sc, |
| 3013 | section, *len, chunklen, data, &seglen); |
| 3014 | if (err) |
| 3015 | return err; |
| 3016 | |
| 3017 | *len += seglen; |
| 3018 | } |
| 3019 | |
| 3020 | return err; |
| 3021 | } |
| 3022 | |
| 3023 | uint8_t |
| 3024 | iwm_fw_valid_tx_ant(struct iwm_softc *sc) |
| 3025 | { |
| 3026 | uint8_t tx_ant; |
| 3027 | |
| 3028 | tx_ant = ((sc->sc_fw_phy_config & IWM_FW_PHY_CFG_TX_CHAIN(0xf << 16)) |
| 3029 | >> IWM_FW_PHY_CFG_TX_CHAIN_POS16); |
| 3030 | |
| 3031 | if (sc->sc_nvm.valid_tx_ant) |
| 3032 | tx_ant &= sc->sc_nvm.valid_tx_ant; |
| 3033 | |
| 3034 | return tx_ant; |
| 3035 | } |
| 3036 | |
| 3037 | uint8_t |
| 3038 | iwm_fw_valid_rx_ant(struct iwm_softc *sc) |
| 3039 | { |
| 3040 | uint8_t rx_ant; |
| 3041 | |
| 3042 | rx_ant = ((sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RX_CHAIN(0xf << 20)) |
| 3043 | >> IWM_FW_PHY_CFG_RX_CHAIN_POS20); |
| 3044 | |
| 3045 | if (sc->sc_nvm.valid_rx_ant) |
| 3046 | rx_ant &= sc->sc_nvm.valid_rx_ant; |
| 3047 | |
| 3048 | return rx_ant; |
| 3049 | } |
| 3050 | |
| 3051 | int |
| 3052 | iwm_valid_siso_ant_rate_mask(struct iwm_softc *sc) |
| 3053 | { |
| 3054 | uint8_t valid_tx_ant = iwm_fw_valid_tx_ant(sc); |
| 3055 | |
| 3056 | /* |
| 3057 | * According to the Linux driver, antenna B should be preferred |
| 3058 | * on 9k devices since it is not shared with bluetooth. However, |
| 3059 | * there are 9k devices which do not support antenna B at all. |
| 3060 | */ |
| 3061 | if (sc->sc_device_family == IWM_DEVICE_FAMILY_90003 && |
| 3062 | (valid_tx_ant & IWM_ANT_B(1 << 1))) |
| 3063 | return IWM_RATE_MCS_ANT_B_MSK(2 << 14); |
| 3064 | |
| 3065 | return IWM_RATE_MCS_ANT_A_MSK(1 << 14); |
| 3066 | } |
| 3067 | |
| 3068 | void |
| 3069 | iwm_init_channel_map(struct iwm_softc *sc, const uint16_t * const nvm_ch_flags, |
| 3070 | const uint8_t *nvm_channels, int nchan) |
| 3071 | { |
| 3072 | struct ieee80211com *ic = &sc->sc_ic; |
| 3073 | struct iwm_nvm_data *data = &sc->sc_nvm; |
| 3074 | int ch_idx; |
| 3075 | struct ieee80211_channel *channel; |
| 3076 | uint16_t ch_flags; |
| 3077 | int is_5ghz; |
| 3078 | int flags, hw_value; |
| 3079 | |
| 3080 | for (ch_idx = 0; ch_idx < nchan; ch_idx++) { |
| 3081 | ch_flags = le16_to_cpup(nvm_ch_flags + ch_idx)(((__uint16_t)(*(const uint16_t *)(nvm_ch_flags + ch_idx)))); |
| 3082 | |
| 3083 | if (ch_idx >= IWM_NUM_2GHZ_CHANNELS14 && |
| 3084 | !data->sku_cap_band_52GHz_enable) |
| 3085 | ch_flags &= ~IWM_NVM_CHANNEL_VALID(1 << 0); |
| 3086 | |
| 3087 | if (!(ch_flags & IWM_NVM_CHANNEL_VALID(1 << 0))) |
| 3088 | continue; |
| 3089 | |
| 3090 | hw_value = nvm_channels[ch_idx]; |
| 3091 | channel = &ic->ic_channels[hw_value]; |
| 3092 | |
| 3093 | is_5ghz = ch_idx >= IWM_NUM_2GHZ_CHANNELS14; |
| 3094 | if (!is_5ghz) { |
| 3095 | flags = IEEE80211_CHAN_2GHZ0x0080; |
| 3096 | channel->ic_flags |
| 3097 | = IEEE80211_CHAN_CCK0x0020 |
| 3098 | | IEEE80211_CHAN_OFDM0x0040 |
| 3099 | | IEEE80211_CHAN_DYN0x0400 |
| 3100 | | IEEE80211_CHAN_2GHZ0x0080; |
| 3101 | } else { |
| 3102 | flags = IEEE80211_CHAN_5GHZ0x0100; |
| 3103 | channel->ic_flags = |
| 3104 | IEEE80211_CHAN_A(0x0100 | 0x0040); |
| 3105 | } |
| 3106 | channel->ic_freq = ieee80211_ieee2mhz(hw_value, flags); |
| 3107 | |
| 3108 | if (!(ch_flags & IWM_NVM_CHANNEL_ACTIVE(1 << 3))) |
| 3109 | channel->ic_flags |= IEEE80211_CHAN_PASSIVE0x0200; |
| 3110 | |
| 3111 | if (data->sku_cap_11n_enable) { |
| 3112 | channel->ic_flags |= IEEE80211_CHAN_HT0x2000; |
| 3113 | if (ch_flags & IWM_NVM_CHANNEL_40MHZ(1 << 9)) |
| 3114 | channel->ic_flags |= IEEE80211_CHAN_40MHZ0x8000; |
| 3115 | } |
| 3116 | |
| 3117 | if (is_5ghz && data->sku_cap_11ac_enable) { |
| 3118 | channel->ic_flags |= IEEE80211_CHAN_VHT0x4000; |
| 3119 | if (ch_flags & IWM_NVM_CHANNEL_80MHZ(1 << 10)) |
| 3120 | channel->ic_xflags |= IEEE80211_CHANX_80MHZ0x00000001; |
| 3121 | } |
| 3122 | } |
| 3123 | } |
| 3124 | |
| 3125 | int |
| 3126 | iwm_mimo_enabled(struct iwm_softc *sc) |
| 3127 | { |
| 3128 | struct ieee80211com *ic = &sc->sc_ic; |
| 3129 | |
| 3130 | return !sc->sc_nvm.sku_cap_mimo_disable && |
| 3131 | (ic->ic_userflags & IEEE80211_F_NOMIMO0x00000008) == 0; |
| 3132 | } |
| 3133 | |
| 3134 | void |
| 3135 | iwm_setup_ht_rates(struct iwm_softc *sc) |
| 3136 | { |
| 3137 | struct ieee80211com *ic = &sc->sc_ic; |
| 3138 | uint8_t rx_ant; |
| 3139 | |
| 3140 | /* TX is supported with the same MCS as RX. */ |
| 3141 | ic->ic_tx_mcs_set = IEEE80211_TX_MCS_SET_DEFINED0x01; |
| 3142 | |
| 3143 | memset(ic->ic_sup_mcs, 0, sizeof(ic->ic_sup_mcs))__builtin_memset((ic->ic_sup_mcs), (0), (sizeof(ic->ic_sup_mcs ))); |
| 3144 | ic->ic_sup_mcs[0] = 0xff; /* MCS 0-7 */ |
| 3145 | |
| 3146 | if (!iwm_mimo_enabled(sc)) |
| 3147 | return; |
| 3148 | |
| 3149 | rx_ant = iwm_fw_valid_rx_ant(sc); |
| 3150 | if ((rx_ant & IWM_ANT_AB((1 << 0) | (1 << 1))) == IWM_ANT_AB((1 << 0) | (1 << 1)) || |
| 3151 | (rx_ant & IWM_ANT_BC((1 << 1) | (1 << 2))) == IWM_ANT_BC((1 << 1) | (1 << 2))) |
| 3152 | ic->ic_sup_mcs[1] = 0xff; /* MCS 8-15 */ |
| 3153 | } |
| 3154 | |
| 3155 | void |
| 3156 | iwm_setup_vht_rates(struct iwm_softc *sc) |
| 3157 | { |
| 3158 | struct ieee80211com *ic = &sc->sc_ic; |
| 3159 | uint8_t rx_ant = iwm_fw_valid_rx_ant(sc); |
| 3160 | int n; |
| 3161 | |
| 3162 | ic->ic_vht_rxmcs = (IEEE80211_VHT_MCS_0_92 << |
| 3163 | IEEE80211_VHT_MCS_FOR_SS_SHIFT(1)(2*((1)-1))); |
| 3164 | |
| 3165 | if (iwm_mimo_enabled(sc) && |
| 3166 | ((rx_ant & IWM_ANT_AB((1 << 0) | (1 << 1))) == IWM_ANT_AB((1 << 0) | (1 << 1)) || |
| 3167 | (rx_ant & IWM_ANT_BC((1 << 1) | (1 << 2))) == IWM_ANT_BC((1 << 1) | (1 << 2)))) { |
| 3168 | ic->ic_vht_rxmcs |= (IEEE80211_VHT_MCS_0_92 << |
| 3169 | IEEE80211_VHT_MCS_FOR_SS_SHIFT(2)(2*((2)-1))); |
| 3170 | } else { |
| 3171 | ic->ic_vht_rxmcs |= (IEEE80211_VHT_MCS_SS_NOT_SUPP3 << |
| 3172 | IEEE80211_VHT_MCS_FOR_SS_SHIFT(2)(2*((2)-1))); |
| 3173 | } |
| 3174 | |
| 3175 | for (n = 3; n <= IEEE80211_VHT_NUM_SS8; n++) { |
| 3176 | ic->ic_vht_rxmcs |= (IEEE80211_VHT_MCS_SS_NOT_SUPP3 << |
| 3177 | IEEE80211_VHT_MCS_FOR_SS_SHIFT(n)(2*((n)-1))); |
| 3178 | } |
| 3179 | |
| 3180 | ic->ic_vht_txmcs = ic->ic_vht_rxmcs; |
| 3181 | } |
| 3182 | |
| 3183 | void |
| 3184 | iwm_init_reorder_buffer(struct iwm_reorder_buffer *reorder_buf, |
| 3185 | uint16_t ssn, uint16_t buf_size) |
| 3186 | { |
| 3187 | reorder_buf->head_sn = ssn; |
| 3188 | reorder_buf->num_stored = 0; |
| 3189 | reorder_buf->buf_size = buf_size; |
| 3190 | reorder_buf->last_amsdu = 0; |
| 3191 | reorder_buf->last_sub_index = 0; |
| 3192 | reorder_buf->removed = 0; |
| 3193 | reorder_buf->valid = 0; |
| 3194 | reorder_buf->consec_oldsn_drops = 0; |
| 3195 | reorder_buf->consec_oldsn_ampdu_gp2 = 0; |
| 3196 | reorder_buf->consec_oldsn_prev_drop = 0; |
| 3197 | } |
| 3198 | |
| 3199 | void |
| 3200 | iwm_clear_reorder_buffer(struct iwm_softc *sc, struct iwm_rxba_data *rxba) |
| 3201 | { |
| 3202 | int i; |
| 3203 | struct iwm_reorder_buffer *reorder_buf = &rxba->reorder_buf; |
| 3204 | struct iwm_reorder_buf_entry *entry; |
| 3205 | |
| 3206 | for (i = 0; i < reorder_buf->buf_size; i++) { |
| 3207 | entry = &rxba->entries[i]; |
| 3208 | ml_purge(&entry->frames); |
| 3209 | timerclear(&entry->reorder_time)(&entry->reorder_time)->tv_sec = (&entry->reorder_time )->tv_usec = 0; |
| 3210 | } |
| 3211 | |
| 3212 | reorder_buf->removed = 1; |
| 3213 | timeout_del(&reorder_buf->reorder_timer); |
| 3214 | timerclear(&rxba->last_rx)(&rxba->last_rx)->tv_sec = (&rxba->last_rx)-> tv_usec = 0; |
| 3215 | timeout_del(&rxba->session_timer); |
| 3216 | rxba->baid = IWM_RX_REORDER_DATA_INVALID_BAID0x7f; |
| 3217 | } |
| 3218 | |
| 3219 | #define RX_REORDER_BUF_TIMEOUT_MQ_USEC(100000ULL) (100000ULL) |
| 3220 | |
| 3221 | void |
| 3222 | iwm_rx_ba_session_expired(void *arg) |
| 3223 | { |
| 3224 | struct iwm_rxba_data *rxba = arg; |
| 3225 | struct iwm_softc *sc = rxba->sc; |
| 3226 | struct ieee80211com *ic = &sc->sc_ic; |
| 3227 | struct ieee80211_node *ni = ic->ic_bss; |
| 3228 | struct timeval now, timeout, expiry; |
| 3229 | int s; |
| 3230 | |
| 3231 | s = splnet()splraise(0x4); |
| 3232 | if ((sc->sc_flags & IWM_FLAG_SHUTDOWN0x100) == 0 && |
| 3233 | ic->ic_state == IEEE80211_S_RUN && |
| 3234 | rxba->baid != IWM_RX_REORDER_DATA_INVALID_BAID0x7f) { |
| 3235 | getmicrouptime(&now); |
| 3236 | USEC_TO_TIMEVAL(RX_REORDER_BUF_TIMEOUT_MQ_USEC(100000ULL), &timeout); |
| 3237 | timeradd(&rxba->last_rx, &timeout, &expiry)do { (&expiry)->tv_sec = (&rxba->last_rx)->tv_sec + (&timeout)->tv_sec; (&expiry)->tv_usec = (& rxba->last_rx)->tv_usec + (&timeout)->tv_usec; if ((&expiry)->tv_usec >= 1000000) { (&expiry)-> tv_sec++; (&expiry)->tv_usec -= 1000000; } } while (0); |
| 3238 | if (timercmp(&now, &expiry, <)(((&now)->tv_sec == (&expiry)->tv_sec) ? ((& now)->tv_usec < (&expiry)->tv_usec) : ((&now )->tv_sec < (&expiry)->tv_sec))) { |
| 3239 | timeout_add_usec(&rxba->session_timer, rxba->timeout); |
| 3240 | } else { |
| 3241 | ic->ic_stats.is_ht_rx_ba_timeout++; |
| 3242 | ieee80211_delba_request(ic, ni, |
| 3243 | IEEE80211_REASON_TIMEOUT, 0, rxba->tid); |
| 3244 | } |
| 3245 | } |
| 3246 | splx(s)spllower(s); |
| 3247 | } |
| 3248 | |
| 3249 | void |
| 3250 | iwm_reorder_timer_expired(void *arg) |
| 3251 | { |
| 3252 | struct mbuf_list ml = MBUF_LIST_INITIALIZER(){ ((void *)0), ((void *)0), 0 }; |
| 3253 | struct iwm_reorder_buffer *buf = arg; |
| 3254 | struct iwm_rxba_data *rxba = iwm_rxba_data_from_reorder_buf(buf); |
| 3255 | struct iwm_reorder_buf_entry *entries = &rxba->entries[0]; |
| 3256 | struct iwm_softc *sc = rxba->sc; |
| 3257 | struct ieee80211com *ic = &sc->sc_ic; |
| 3258 | struct ieee80211_node *ni = ic->ic_bss; |
| 3259 | int i, s; |
| 3260 | uint16_t sn = 0, index = 0; |
| 3261 | int expired = 0; |
| 3262 | int cont = 0; |
| 3263 | struct timeval now, timeout, expiry; |
| 3264 | |
| 3265 | if (!buf->num_stored || buf->removed) |
| 3266 | return; |
| 3267 | |
| 3268 | s = splnet()splraise(0x4); |
| 3269 | getmicrouptime(&now); |
| 3270 | USEC_TO_TIMEVAL(RX_REORDER_BUF_TIMEOUT_MQ_USEC(100000ULL), &timeout); |
| 3271 | |
| 3272 | for (i = 0; i < buf->buf_size ; i++) { |
| 3273 | index = (buf->head_sn + i) % buf->buf_size; |
| 3274 | |
| 3275 | if (ml_empty(&entries[index].frames)((&entries[index].frames)->ml_len == 0)) { |
| 3276 | /* |
| 3277 | * If there is a hole and the next frame didn't expire |
| 3278 | * we want to break and not advance SN. |
| 3279 | */ |
| 3280 | cont = 0; |
| 3281 | continue; |
| 3282 | } |
| 3283 | timeradd(&entries[index].reorder_time, &timeout, &expiry)do { (&expiry)->tv_sec = (&entries[index].reorder_time )->tv_sec + (&timeout)->tv_sec; (&expiry)->tv_usec = (&entries[index].reorder_time)->tv_usec + (&timeout )->tv_usec; if ((&expiry)->tv_usec >= 1000000) { (&expiry)->tv_sec++; (&expiry)->tv_usec -= 1000000 ; } } while (0); |
| 3284 | if (!cont && timercmp(&now, &expiry, <)(((&now)->tv_sec == (&expiry)->tv_sec) ? ((& now)->tv_usec < (&expiry)->tv_usec) : ((&now )->tv_sec < (&expiry)->tv_sec))) |
| 3285 | break; |
| 3286 | |
| 3287 | expired = 1; |
| 3288 | /* continue until next hole after this expired frame */ |
| 3289 | cont = 1; |
| 3290 | sn = (buf->head_sn + (i + 1)) & 0xfff; |
| 3291 | } |
| 3292 | |
| 3293 | if (expired) { |
| 3294 | /* SN is set to the last expired frame + 1 */ |
| 3295 | iwm_release_frames(sc, ni, rxba, buf, sn, &ml); |
| 3296 | if_input(&sc->sc_ic.ic_ific_ac.ac_if, &ml); |
| 3297 | ic->ic_stats.is_ht_rx_ba_window_gap_timeout++; |
| 3298 | } else { |
| 3299 | /* |
| 3300 | * If no frame expired and there are stored frames, index is now |
| 3301 | * pointing to the first unexpired frame - modify reorder timeout |
| 3302 | * accordingly. |
| 3303 | */ |
| 3304 | timeout_add_usec(&buf->reorder_timer, |
| 3305 | RX_REORDER_BUF_TIMEOUT_MQ_USEC(100000ULL)); |
| 3306 | } |
| 3307 | |
| 3308 | splx(s)spllower(s); |
| 3309 | } |
| 3310 | |
| 3311 | #define IWM_MAX_RX_BA_SESSIONS16 16 |
| 3312 | |
| 3313 | int |
| 3314 | iwm_sta_rx_agg(struct iwm_softc *sc, struct ieee80211_node *ni, uint8_t tid, |
| 3315 | uint16_t ssn, uint16_t winsize, int timeout_val, int start) |
| 3316 | { |
| 3317 | struct ieee80211com *ic = &sc->sc_ic; |
| 3318 | struct iwm_add_sta_cmd cmd; |
| 3319 | struct iwm_node *in = (void *)ni; |
| 3320 | int err, s; |
| 3321 | uint32_t status; |
| 3322 | size_t cmdsize; |
| 3323 | struct iwm_rxba_data *rxba = NULL((void *)0); |
| 3324 | uint8_t baid = 0; |
| 3325 | |
| 3326 | s = splnet()splraise(0x4); |
| 3327 | |
| 3328 | if (start && sc->sc_rx_ba_sessions >= IWM_MAX_RX_BA_SESSIONS16) { |
| 3329 | ieee80211_addba_req_refuse(ic, ni, tid); |
| 3330 | splx(s)spllower(s); |
| 3331 | return 0; |
| 3332 | } |
| 3333 | |
| 3334 | memset(&cmd, 0, sizeof(cmd))__builtin_memset((&cmd), (0), (sizeof(cmd))); |
| 3335 | |
| 3336 | cmd.sta_id = IWM_STATION_ID0; |
| 3337 | cmd.mac_id_n_color |
| 3338 | = htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color))((__uint32_t)(((in->in_id << (0)) | (in->in_color << (8))))); |
| 3339 | cmd.add_modify = IWM_STA_MODE_MODIFY1; |
| 3340 | |
| 3341 | if (start) { |
| 3342 | cmd.add_immediate_ba_tid = (uint8_t)tid; |
| 3343 | cmd.add_immediate_ba_ssn = ssn; |
| 3344 | cmd.rx_ba_window = winsize; |
| 3345 | } else { |
| 3346 | cmd.remove_immediate_ba_tid = (uint8_t)tid; |
| 3347 | } |
| 3348 | cmd.modify_mask = start ? IWM_STA_MODIFY_ADD_BA_TID(1 << 3) : |
| 3349 | IWM_STA_MODIFY_REMOVE_BA_TID(1 << 4); |
| 3350 | |
| 3351 | status = IWM_ADD_STA_SUCCESS0x1; |
| 3352 | if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_STA_TYPE)((sc->sc_ucode_api)[(30)>>3] & (1<<((30)& (8 -1))))) |
| 3353 | cmdsize = sizeof(cmd); |
| 3354 | else |
| 3355 | cmdsize = sizeof(struct iwm_add_sta_cmd_v7); |
| 3356 | err = iwm_send_cmd_pdu_status(sc, IWM_ADD_STA0x18, cmdsize, &cmd, |
| 3357 | &status); |
| 3358 | if (!err && (status & IWM_ADD_STA_STATUS_MASK0xFF) != IWM_ADD_STA_SUCCESS0x1) |
| 3359 | err = EIO5; |
| 3360 | if (err) { |
| 3361 | if (start) |
| 3362 | ieee80211_addba_req_refuse(ic, ni, tid); |
| 3363 | splx(s)spllower(s); |
| 3364 | return err; |
| 3365 | } |
| 3366 | |
| 3367 | if (sc->sc_mqrx_supported) { |
| 3368 | /* Deaggregation is done in hardware. */ |
| 3369 | if (start) { |
| 3370 | if (!(status & IWM_ADD_STA_BAID_VALID_MASK0x8000)) { |
| 3371 | ieee80211_addba_req_refuse(ic, ni, tid); |
| 3372 | splx(s)spllower(s); |
| 3373 | return EIO5; |
| 3374 | } |
| 3375 | baid = (status & IWM_ADD_STA_BAID_MASK0x7F00) >> |
| 3376 | IWM_ADD_STA_BAID_SHIFT8; |
| 3377 | if (baid == IWM_RX_REORDER_DATA_INVALID_BAID0x7f || |
| 3378 | baid >= nitems(sc->sc_rxba_data)(sizeof((sc->sc_rxba_data)) / sizeof((sc->sc_rxba_data) [0]))) { |
| 3379 | ieee80211_addba_req_refuse(ic, ni, tid); |
| 3380 | splx(s)spllower(s); |
| 3381 | return EIO5; |
| 3382 | } |
| 3383 | rxba = &sc->sc_rxba_data[baid]; |
| 3384 | if (rxba->baid != IWM_RX_REORDER_DATA_INVALID_BAID0x7f) { |
| 3385 | ieee80211_addba_req_refuse(ic, ni, tid); |
| 3386 | splx(s)spllower(s); |
| 3387 | return 0; |
| 3388 | } |
| 3389 | rxba->sta_id = IWM_STATION_ID0; |
| 3390 | rxba->tid = tid; |
| 3391 | rxba->baid = baid; |
| 3392 | rxba->timeout = timeout_val; |
| 3393 | getmicrouptime(&rxba->last_rx); |
| 3394 | iwm_init_reorder_buffer(&rxba->reorder_buf, ssn, |
| 3395 | winsize); |
| 3396 | if (timeout_val != 0) { |
| 3397 | struct ieee80211_rx_ba *ba; |
| 3398 | timeout_add_usec(&rxba->session_timer, |
| 3399 | timeout_val); |
| 3400 | /* XXX disable net80211's BA timeout handler */ |
| 3401 | ba = &ni->ni_rx_ba[tid]; |
| 3402 | ba->ba_timeout_val = 0; |
| 3403 | } |
| 3404 | } else { |
| 3405 | int i; |
| 3406 | for (i = 0; i < nitems(sc->sc_rxba_data)(sizeof((sc->sc_rxba_data)) / sizeof((sc->sc_rxba_data) [0])); i++) { |
| 3407 | rxba = &sc->sc_rxba_data[i]; |
| 3408 | if (rxba->baid == |
| 3409 | IWM_RX_REORDER_DATA_INVALID_BAID0x7f) |
| 3410 | continue; |
| 3411 | if (rxba->tid != tid) |
| 3412 | continue; |
| 3413 | iwm_clear_reorder_buffer(sc, rxba); |
| 3414 | break; |
| 3415 | } |
| 3416 | } |
| 3417 | } |
| 3418 | |
| 3419 | if (start) { |
| 3420 | sc->sc_rx_ba_sessions++; |
| 3421 | ieee80211_addba_req_accept(ic, ni, tid); |
| 3422 | } else if (sc->sc_rx_ba_sessions > 0) |
| 3423 | sc->sc_rx_ba_sessions--; |
| 3424 | |
| 3425 | splx(s)spllower(s); |
| 3426 | return 0; |
| 3427 | } |
| 3428 | |
| 3429 | void |
| 3430 | iwm_mac_ctxt_task(void *arg) |
| 3431 | { |
| 3432 | struct iwm_softc *sc = arg; |
| 3433 | struct ieee80211com *ic = &sc->sc_ic; |
| 3434 | struct iwm_node *in = (void *)ic->ic_bss; |
| 3435 | int err, s = splnet()splraise(0x4); |
| 3436 | |
| 3437 | if ((sc->sc_flags & IWM_FLAG_SHUTDOWN0x100) || |
| 3438 | ic->ic_state != IEEE80211_S_RUN) { |
| 3439 | refcnt_rele_wake(&sc->task_refs); |
| 3440 | splx(s)spllower(s); |
| 3441 | return; |
| 3442 | } |
| 3443 | |
| 3444 | err = iwm_mac_ctxt_cmd(sc, in, IWM_FW_CTXT_ACTION_MODIFY2, 1); |
| 3445 | if (err) |
| 3446 | printf("%s: failed to update MAC\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 3447 | |
| 3448 | iwm_unprotect_session(sc, in); |
| 3449 | |
| 3450 | refcnt_rele_wake(&sc->task_refs); |
| 3451 | splx(s)spllower(s); |
| 3452 | } |
| 3453 | |
| 3454 | void |
| 3455 | iwm_updateprot(struct ieee80211com *ic) |
| 3456 | { |
| 3457 | struct iwm_softc *sc = ic->ic_softcic_ac.ac_if.if_softc; |
| 3458 | |
| 3459 | if (ic->ic_state == IEEE80211_S_RUN && |
| 3460 | !task_pending(&sc->newstate_task)((&sc->newstate_task)->t_flags & 1)) |
| 3461 | iwm_add_task(sc, systq, &sc->mac_ctxt_task); |
| 3462 | } |
| 3463 | |
| 3464 | void |
| 3465 | iwm_updateslot(struct ieee80211com *ic) |
| 3466 | { |
| 3467 | struct iwm_softc *sc = ic->ic_softcic_ac.ac_if.if_softc; |
| 3468 | |
| 3469 | if (ic->ic_state == IEEE80211_S_RUN && |
| 3470 | !task_pending(&sc->newstate_task)((&sc->newstate_task)->t_flags & 1)) |
| 3471 | iwm_add_task(sc, systq, &sc->mac_ctxt_task); |
| 3472 | } |
| 3473 | |
| 3474 | void |
| 3475 | iwm_updateedca(struct ieee80211com *ic) |
| 3476 | { |
| 3477 | struct iwm_softc *sc = ic->ic_softcic_ac.ac_if.if_softc; |
| 3478 | |
| 3479 | if (ic->ic_state == IEEE80211_S_RUN && |
| 3480 | !task_pending(&sc->newstate_task)((&sc->newstate_task)->t_flags & 1)) |
| 3481 | iwm_add_task(sc, systq, &sc->mac_ctxt_task); |
| 3482 | } |
| 3483 | |
| 3484 | void |
| 3485 | iwm_phy_ctxt_task(void *arg) |
| 3486 | { |
| 3487 | struct iwm_softc *sc = arg; |
| 3488 | struct ieee80211com *ic = &sc->sc_ic; |
| 3489 | struct iwm_node *in = (void *)ic->ic_bss; |
| 3490 | struct ieee80211_node *ni = &in->in_ni; |
| 3491 | uint8_t chains, sco, vht_chan_width; |
| 3492 | int err, s = splnet()splraise(0x4); |
| 3493 | |
| 3494 | if ((sc->sc_flags & IWM_FLAG_SHUTDOWN0x100) || |
| 3495 | ic->ic_state != IEEE80211_S_RUN || |
| 3496 | in->in_phyctxt == NULL((void *)0)) { |
| 3497 | refcnt_rele_wake(&sc->task_refs); |
| 3498 | splx(s)spllower(s); |
| 3499 | return; |
| 3500 | } |
| 3501 | |
| 3502 | chains = iwm_mimo_enabled(sc) ? 2 : 1; |
| 3503 | if ((ni->ni_flags & IEEE80211_NODE_HT0x0400) && |
| 3504 | IEEE80211_CHAN_40MHZ_ALLOWED(ni->ni_chan)(((ni->ni_chan)->ic_flags & 0x8000) != 0) && |
| 3505 | ieee80211_node_supports_ht_chan40(ni)) |
| 3506 | sco = (ni->ni_htop0 & IEEE80211_HTOP0_SCO_MASK0x03); |
| 3507 | else |
| 3508 | sco = IEEE80211_HTOP0_SCO_SCN0; |
| 3509 | if ((ni->ni_flags & IEEE80211_NODE_VHT0x10000) && |
| 3510 | IEEE80211_CHAN_80MHZ_ALLOWED(in->in_ni.ni_chan)(((in->in_ni.ni_chan)->ic_xflags & 0x00000001) != 0 ) && |
| 3511 | ieee80211_node_supports_vht_chan80(ni)) |
| 3512 | vht_chan_width = IEEE80211_VHTOP0_CHAN_WIDTH_801; |
| 3513 | else |
| 3514 | vht_chan_width = IEEE80211_VHTOP0_CHAN_WIDTH_HT0; |
| 3515 | if (in->in_phyctxt->sco != sco || |
| 3516 | in->in_phyctxt->vht_chan_width != vht_chan_width) { |
| 3517 | err = iwm_phy_ctxt_update(sc, in->in_phyctxt, |
| 3518 | in->in_phyctxt->channel, chains, chains, 0, sco, |
| 3519 | vht_chan_width); |
| 3520 | if (err) |
| 3521 | printf("%s: failed to update PHY\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 3522 | iwm_setrates(in, 0); |
| 3523 | } |
| 3524 | |
| 3525 | refcnt_rele_wake(&sc->task_refs); |
| 3526 | splx(s)spllower(s); |
| 3527 | } |
| 3528 | |
| 3529 | void |
| 3530 | iwm_updatechan(struct ieee80211com *ic) |
| 3531 | { |
| 3532 | struct iwm_softc *sc = ic->ic_softcic_ac.ac_if.if_softc; |
| 3533 | |
| 3534 | if (ic->ic_state == IEEE80211_S_RUN && |
| 3535 | !task_pending(&sc->newstate_task)((&sc->newstate_task)->t_flags & 1)) |
| 3536 | iwm_add_task(sc, systq, &sc->phy_ctxt_task); |
| 3537 | } |
| 3538 | |
| 3539 | void |
| 3540 | iwm_updatedtim(struct ieee80211com *ic) |
| 3541 | { |
| 3542 | struct iwm_softc *sc = ic->ic_softcic_ac.ac_if.if_softc; |
| 3543 | |
| 3544 | if (ic->ic_state == IEEE80211_S_RUN && |
| 3545 | !task_pending(&sc->newstate_task)((&sc->newstate_task)->t_flags & 1)) |
| 3546 | iwm_add_task(sc, systq, &sc->mac_ctxt_task); |
| 3547 | } |
| 3548 | |
| 3549 | int |
| 3550 | iwm_sta_tx_agg(struct iwm_softc *sc, struct ieee80211_node *ni, uint8_t tid, |
| 3551 | uint16_t ssn, uint16_t winsize, int start) |
| 3552 | { |
| 3553 | struct iwm_add_sta_cmd cmd; |
| 3554 | struct ieee80211com *ic = &sc->sc_ic; |
| 3555 | struct iwm_node *in = (void *)ni; |
| 3556 | int qid = IWM_FIRST_AGG_TX_QUEUE10 + tid; |
| 3557 | struct iwm_tx_ring *ring; |
| 3558 | enum ieee80211_edca_ac ac; |
| 3559 | int fifo; |
| 3560 | uint32_t status; |
| 3561 | int err; |
| 3562 | size_t cmdsize; |
| 3563 | |
| 3564 | /* Ensure we can map this TID to an aggregation queue. */ |
| 3565 | if (tid >= IWM_MAX_TID_COUNT8 || qid > IWM_LAST_AGG_TX_QUEUE(10 + 8 - 1)) |
| 3566 | return ENOSPC28; |
| 3567 | |
| 3568 | if (start) { |
| 3569 | if ((sc->tx_ba_queue_mask & (1 << qid)) != 0) |
| 3570 | return 0; |
| 3571 | } else { |
| 3572 | if ((sc->tx_ba_queue_mask & (1 << qid)) == 0) |
| 3573 | return 0; |
| 3574 | } |
| 3575 | |
| 3576 | ring = &sc->txq[qid]; |
| 3577 | ac = iwm_tid_to_ac[tid]; |
| 3578 | fifo = iwm_ac_to_tx_fifo[ac]; |
| 3579 | |
| 3580 | memset(&cmd, 0, sizeof(cmd))__builtin_memset((&cmd), (0), (sizeof(cmd))); |
| 3581 | |
| 3582 | cmd.sta_id = IWM_STATION_ID0; |
| 3583 | cmd.mac_id_n_color = htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id,((__uint32_t)(((in->in_id << (0)) | (in->in_color << (8))))) |
| 3584 | in->in_color))((__uint32_t)(((in->in_id << (0)) | (in->in_color << (8))))); |
| 3585 | cmd.add_modify = IWM_STA_MODE_MODIFY1; |
| 3586 | |
| 3587 | if (start) { |
| 3588 | /* Enable Tx aggregation for this queue. */ |
| 3589 | in->tid_disable_ampdu &= ~(1 << tid); |
| 3590 | in->tfd_queue_msk |= (1 << qid); |
| 3591 | } else { |
| 3592 | in->tid_disable_ampdu |= (1 << tid); |
| 3593 | /* |
| 3594 | * Queue remains enabled in the TFD queue mask |
| 3595 | * until we leave RUN state. |
| 3596 | */ |
| 3597 | err = iwm_flush_sta(sc, in); |
| 3598 | if (err) |
| 3599 | return err; |
| 3600 | } |
| 3601 | |
| 3602 | cmd.tfd_queue_msk |= htole32(in->tfd_queue_msk)((__uint32_t)(in->tfd_queue_msk)); |
| 3603 | cmd.tid_disable_tx = htole16(in->tid_disable_ampdu)((__uint16_t)(in->tid_disable_ampdu)); |
| 3604 | cmd.modify_mask = (IWM_STA_MODIFY_QUEUES(1 << 7) | |
| 3605 | IWM_STA_MODIFY_TID_DISABLE_TX(1 << 1)); |
| 3606 | |
| 3607 | if (start && (sc->qenablemsk & (1 << qid)) == 0) { |
| 3608 | if (!iwm_nic_lock(sc)) { |
| 3609 | if (start) |
| 3610 | ieee80211_addba_resp_refuse(ic, ni, tid, |
| 3611 | IEEE80211_STATUS_UNSPECIFIED); |
| 3612 | return EBUSY16; |
| 3613 | } |
| 3614 | err = iwm_enable_txq(sc, IWM_STATION_ID0, qid, fifo, 1, tid, |
| 3615 | ssn); |
| 3616 | iwm_nic_unlock(sc); |
| 3617 | if (err) { |
| 3618 | printf("%s: could not enable Tx queue %d (error %d)\n", |
| 3619 | DEVNAME(sc)((sc)->sc_dev.dv_xname), qid, err); |
| 3620 | if (start) |
| 3621 | ieee80211_addba_resp_refuse(ic, ni, tid, |
| 3622 | IEEE80211_STATUS_UNSPECIFIED); |
| 3623 | return err; |
| 3624 | } |
| 3625 | /* |
| 3626 | * If iwm_enable_txq() employed the SCD hardware bug |
| 3627 | * workaround we must skip the frame with seqnum SSN. |
| 3628 | */ |
| 3629 | if (ring->cur != IWM_AGG_SSN_TO_TXQ_IDX(ssn)((ssn) & (256 - 1))) { |
| 3630 | ssn = (ssn + 1) & 0xfff; |
| 3631 | KASSERT(ring->cur == IWM_AGG_SSN_TO_TXQ_IDX(ssn))((ring->cur == ((ssn) & (256 - 1))) ? (void)0 : __assert ("diagnostic ", "/usr/src/sys/dev/pci/if_iwm.c", 3631, "ring->cur == IWM_AGG_SSN_TO_TXQ_IDX(ssn)" )); |
| 3632 | ieee80211_output_ba_move_window(ic, ni, tid, ssn); |
| 3633 | ni->ni_qos_txseqs[tid] = ssn; |
| 3634 | } |
| 3635 | } |
| 3636 | |
| 3637 | if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_STA_TYPE)((sc->sc_ucode_api)[(30)>>3] & (1<<((30)& (8 -1))))) |
| 3638 | cmdsize = sizeof(cmd); |
| 3639 | else |
| 3640 | cmdsize = sizeof(struct iwm_add_sta_cmd_v7); |
| 3641 | |
| 3642 | status = 0; |
| 3643 | err = iwm_send_cmd_pdu_status(sc, IWM_ADD_STA0x18, cmdsize, &cmd, &status); |
| 3644 | if (!err && (status & IWM_ADD_STA_STATUS_MASK0xFF) != IWM_ADD_STA_SUCCESS0x1) |
| 3645 | err = EIO5; |
| 3646 | if (err) { |
| 3647 | printf("%s: could not update sta (error %d)\n", |
| 3648 | DEVNAME(sc)((sc)->sc_dev.dv_xname), err); |
| 3649 | if (start) |
| 3650 | ieee80211_addba_resp_refuse(ic, ni, tid, |
| 3651 | IEEE80211_STATUS_UNSPECIFIED); |
| 3652 | return err; |
| 3653 | } |
| 3654 | |
| 3655 | if (start) { |
| 3656 | sc->tx_ba_queue_mask |= (1 << qid); |
| 3657 | ieee80211_addba_resp_accept(ic, ni, tid); |
| 3658 | } else { |
| 3659 | sc->tx_ba_queue_mask &= ~(1 << qid); |
| 3660 | |
| 3661 | /* |
| 3662 | * Clear pending frames but keep the queue enabled. |
| 3663 | * Firmware panics if we disable the queue here. |
| 3664 | */ |
| 3665 | iwm_txq_advance(sc, ring, ring->cur); |
| 3666 | iwm_clear_oactive(sc, ring); |
| 3667 | } |
| 3668 | |
| 3669 | return 0; |
| 3670 | } |
| 3671 | |
| 3672 | void |
| 3673 | iwm_ba_task(void *arg) |
| 3674 | { |
| 3675 | struct iwm_softc *sc = arg; |
| 3676 | struct ieee80211com *ic = &sc->sc_ic; |
| 3677 | struct ieee80211_node *ni = ic->ic_bss; |
| 3678 | int s = splnet()splraise(0x4); |
| 3679 | int tid, err = 0; |
| 3680 | |
| 3681 | if ((sc->sc_flags & IWM_FLAG_SHUTDOWN0x100) || |
| 3682 | ic->ic_state != IEEE80211_S_RUN) { |
| 3683 | refcnt_rele_wake(&sc->task_refs); |
| 3684 | splx(s)spllower(s); |
| 3685 | return; |
| 3686 | } |
| 3687 | |
| 3688 | for (tid = 0; tid < IWM_MAX_TID_COUNT8 && !err; tid++) { |
| 3689 | if (sc->sc_flags & IWM_FLAG_SHUTDOWN0x100) |
| 3690 | break; |
| 3691 | if (sc->ba_rx.start_tidmask & (1 << tid)) { |
| 3692 | struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid]; |
| 3693 | err = iwm_sta_rx_agg(sc, ni, tid, ba->ba_winstart, |
| 3694 | ba->ba_winsize, ba->ba_timeout_val, 1); |
| 3695 | sc->ba_rx.start_tidmask &= ~(1 << tid); |
| 3696 | } else if (sc->ba_rx.stop_tidmask & (1 << tid)) { |
| 3697 | err = iwm_sta_rx_agg(sc, ni, tid, 0, 0, 0, 0); |
| 3698 | sc->ba_rx.stop_tidmask &= ~(1 << tid); |
| 3699 | } |
| 3700 | } |
| 3701 | |
| 3702 | for (tid = 0; tid < IWM_MAX_TID_COUNT8 && !err; tid++) { |
| 3703 | if (sc->sc_flags & IWM_FLAG_SHUTDOWN0x100) |
| 3704 | break; |
| 3705 | if (sc->ba_tx.start_tidmask & (1 << tid)) { |
| 3706 | struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid]; |
| 3707 | err = iwm_sta_tx_agg(sc, ni, tid, ba->ba_winstart, |
| 3708 | ba->ba_winsize, 1); |
| 3709 | sc->ba_tx.start_tidmask &= ~(1 << tid); |
| 3710 | } else if (sc->ba_tx.stop_tidmask & (1 << tid)) { |
| 3711 | err = iwm_sta_tx_agg(sc, ni, tid, 0, 0, 0); |
| 3712 | sc->ba_tx.stop_tidmask &= ~(1 << tid); |
| 3713 | } |
| 3714 | } |
| 3715 | |
| 3716 | /* |
| 3717 | * We "recover" from failure to start or stop a BA session |
| 3718 | * by resetting the device. |
| 3719 | */ |
| 3720 | if (err && (sc->sc_flags & IWM_FLAG_SHUTDOWN0x100) == 0) |
| 3721 | task_add(systq, &sc->init_task); |
| 3722 | |
| 3723 | refcnt_rele_wake(&sc->task_refs); |
| 3724 | splx(s)spllower(s); |
| 3725 | } |
| 3726 | |
| 3727 | /* |
| 3728 | * This function is called by upper layer when an ADDBA request is received |
| 3729 | * from another STA and before the ADDBA response is sent. |
| 3730 | */ |
| 3731 | int |
| 3732 | iwm_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni, |
| 3733 | uint8_t tid) |
| 3734 | { |
| 3735 | struct iwm_softc *sc = IC2IFP(ic)(&(ic)->ic_ac.ac_if)->if_softc; |
| 3736 | |
| 3737 | if (sc->sc_rx_ba_sessions >= IWM_MAX_RX_BA_SESSIONS16 || |
| 3738 | tid > IWM_MAX_TID_COUNT8) |
| 3739 | return ENOSPC28; |
| 3740 | |
| 3741 | if (sc->ba_rx.start_tidmask & (1 << tid)) |
| 3742 | return EBUSY16; |
| 3743 | |
| 3744 | sc->ba_rx.start_tidmask |= (1 << tid); |
| 3745 | iwm_add_task(sc, systq, &sc->ba_task); |
| 3746 | |
| 3747 | return EBUSY16; |
| 3748 | } |
| 3749 | |
| 3750 | /* |
| 3751 | * This function is called by upper layer on teardown of an HT-immediate |
| 3752 | * Block Ack agreement (eg. upon receipt of a DELBA frame). |
| 3753 | */ |
| 3754 | void |
| 3755 | iwm_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni, |
| 3756 | uint8_t tid) |
| 3757 | { |
| 3758 | struct iwm_softc *sc = IC2IFP(ic)(&(ic)->ic_ac.ac_if)->if_softc; |
| 3759 | |
| 3760 | if (tid > IWM_MAX_TID_COUNT8 || sc->ba_rx.stop_tidmask & (1 << tid)) |
| 3761 | return; |
| 3762 | |
| 3763 | sc->ba_rx.stop_tidmask |= (1 << tid); |
| 3764 | iwm_add_task(sc, systq, &sc->ba_task); |
| 3765 | } |
| 3766 | |
| 3767 | int |
| 3768 | iwm_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni, |
| 3769 | uint8_t tid) |
| 3770 | { |
| 3771 | struct iwm_softc *sc = IC2IFP(ic)(&(ic)->ic_ac.ac_if)->if_softc; |
| 3772 | struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid]; |
| 3773 | int qid = IWM_FIRST_AGG_TX_QUEUE10 + tid; |
| 3774 | |
| 3775 | /* We only implement Tx aggregation with DQA-capable firmware. */ |
| 3776 | if (!isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_DQA_SUPPORT)((sc->sc_enabled_capa)[(12)>>3] & (1<<((12 )&(8 -1))))) |
| 3777 | return ENOTSUP91; |
| 3778 | |
| 3779 | /* Ensure we can map this TID to an aggregation queue. */ |
| 3780 | if (tid >= IWM_MAX_TID_COUNT8) |
| 3781 | return EINVAL22; |
| 3782 | |
| 3783 | /* We only support a fixed Tx aggregation window size, for now. */ |
| 3784 | if (ba->ba_winsize != IWM_FRAME_LIMIT64) |
| 3785 | return ENOTSUP91; |
| 3786 | |
| 3787 | /* Is firmware already using Tx aggregation on this queue? */ |
| 3788 | if ((sc->tx_ba_queue_mask & (1 << qid)) != 0) |
| 3789 | return ENOSPC28; |
| 3790 | |
| 3791 | /* Are we already processing an ADDBA request? */ |
| 3792 | if (sc->ba_tx.start_tidmask & (1 << tid)) |
| 3793 | return EBUSY16; |
| 3794 | |
| 3795 | sc->ba_tx.start_tidmask |= (1 << tid); |
| 3796 | iwm_add_task(sc, systq, &sc->ba_task); |
| 3797 | |
| 3798 | return EBUSY16; |
| 3799 | } |
| 3800 | |
| 3801 | void |
| 3802 | iwm_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni, |
| 3803 | uint8_t tid) |
| 3804 | { |
| 3805 | struct iwm_softc *sc = IC2IFP(ic)(&(ic)->ic_ac.ac_if)->if_softc; |
| 3806 | int qid = IWM_FIRST_AGG_TX_QUEUE10 + tid; |
| 3807 | |
| 3808 | if (tid > IWM_MAX_TID_COUNT8 || sc->ba_tx.stop_tidmask & (1 << tid)) |
| 3809 | return; |
| 3810 | |
| 3811 | /* Is firmware currently using Tx aggregation on this queue? */ |
| 3812 | if ((sc->tx_ba_queue_mask & (1 << qid)) == 0) |
| 3813 | return; |
| 3814 | |
| 3815 | sc->ba_tx.stop_tidmask |= (1 << tid); |
| 3816 | iwm_add_task(sc, systq, &sc->ba_task); |
| 3817 | } |
| 3818 | |
| 3819 | void |
| 3820 | iwm_set_hw_address_8000(struct iwm_softc *sc, struct iwm_nvm_data *data, |
| 3821 | const uint16_t *mac_override, const uint16_t *nvm_hw) |
| 3822 | { |
| 3823 | const uint8_t *hw_addr; |
| 3824 | |
| 3825 | if (mac_override) { |
| 3826 | static const uint8_t reserved_mac[] = { |
| 3827 | 0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00 |
| 3828 | }; |
| 3829 | |
| 3830 | hw_addr = (const uint8_t *)(mac_override + |
| 3831 | IWM_MAC_ADDRESS_OVERRIDE_80001); |
| 3832 | |
| 3833 | /* |
| 3834 | * Store the MAC address from MAO section. |
| 3835 | * No byte swapping is required in MAO section |
| 3836 | */ |
| 3837 | memcpy(data->hw_addr, hw_addr, ETHER_ADDR_LEN)__builtin_memcpy((data->hw_addr), (hw_addr), (6)); |
| 3838 | |
| 3839 | /* |
| 3840 | * Force the use of the OTP MAC address in case of reserved MAC |
| 3841 | * address in the NVM, or if address is given but invalid. |
| 3842 | */ |
| 3843 | if (memcmp(reserved_mac, hw_addr, ETHER_ADDR_LEN)__builtin_memcmp((reserved_mac), (hw_addr), (6)) != 0 && |
| 3844 | (memcmp(etherbroadcastaddr, data->hw_addr,__builtin_memcmp((etherbroadcastaddr), (data->hw_addr), (sizeof (etherbroadcastaddr))) |
| 3845 | sizeof(etherbroadcastaddr))__builtin_memcmp((etherbroadcastaddr), (data->hw_addr), (sizeof (etherbroadcastaddr))) != 0) && |
| 3846 | (memcmp(etheranyaddr, data->hw_addr,__builtin_memcmp((etheranyaddr), (data->hw_addr), (sizeof( etheranyaddr))) |
| 3847 | sizeof(etheranyaddr))__builtin_memcmp((etheranyaddr), (data->hw_addr), (sizeof( etheranyaddr))) != 0) && |
| 3848 | !ETHER_IS_MULTICAST(data->hw_addr)(*(data->hw_addr) & 0x01)) |
| 3849 | return; |
| 3850 | } |
| 3851 | |
| 3852 | if (nvm_hw) { |
| 3853 | /* Read the mac address from WFMP registers. */ |
| 3854 | uint32_t mac_addr0, mac_addr1; |
| 3855 | |
| 3856 | if (!iwm_nic_lock(sc)) |
| 3857 | goto out; |
| 3858 | mac_addr0 = htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_0))((__uint32_t)(iwm_read_prph(sc, 0xa03080))); |
| 3859 | mac_addr1 = htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_1))((__uint32_t)(iwm_read_prph(sc, 0xa03084))); |
| 3860 | iwm_nic_unlock(sc); |
| 3861 | |
| 3862 | hw_addr = (const uint8_t *)&mac_addr0; |
| 3863 | data->hw_addr[0] = hw_addr[3]; |
| 3864 | data->hw_addr[1] = hw_addr[2]; |
| 3865 | data->hw_addr[2] = hw_addr[1]; |
| 3866 | data->hw_addr[3] = hw_addr[0]; |
| 3867 | |
| 3868 | hw_addr = (const uint8_t *)&mac_addr1; |
| 3869 | data->hw_addr[4] = hw_addr[1]; |
| 3870 | data->hw_addr[5] = hw_addr[0]; |
| 3871 | |
| 3872 | return; |
| 3873 | } |
| 3874 | out: |
| 3875 | printf("%s: mac address not found\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 3876 | memset(data->hw_addr, 0, sizeof(data->hw_addr))__builtin_memset((data->hw_addr), (0), (sizeof(data->hw_addr ))); |
| 3877 | } |
| 3878 | |
| 3879 | int |
| 3880 | iwm_parse_nvm_data(struct iwm_softc *sc, const uint16_t *nvm_hw, |
| 3881 | const uint16_t *nvm_sw, const uint16_t *nvm_calib, |
| 3882 | const uint16_t *mac_override, const uint16_t *phy_sku, |
| 3883 | const uint16_t *regulatory, int n_regulatory) |
| 3884 | { |
| 3885 | struct iwm_nvm_data *data = &sc->sc_nvm; |
| 3886 | uint8_t hw_addr[ETHER_ADDR_LEN6]; |
| 3887 | uint32_t sku; |
| 3888 | uint16_t lar_config; |
| 3889 | |
| 3890 | data->nvm_version = le16_to_cpup(nvm_sw + IWM_NVM_VERSION)(((__uint16_t)(*(const uint16_t *)(nvm_sw + 0)))); |
| 3891 | |
| 3892 | if (sc->sc_device_family == IWM_DEVICE_FAMILY_70001) { |
| 3893 | uint16_t radio_cfg = le16_to_cpup(nvm_sw + IWM_RADIO_CFG)(((__uint16_t)(*(const uint16_t *)(nvm_sw + 1)))); |
| 3894 | data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK(radio_cfg)((radio_cfg >> 4) & 0x3); |
| 3895 | data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK(radio_cfg)((radio_cfg >> 2) & 0x3); |
| 3896 | data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK(radio_cfg)(radio_cfg & 0x3); |
| 3897 | data->radio_cfg_pnum = IWM_NVM_RF_CFG_PNUM_MSK(radio_cfg)((radio_cfg >> 6) & 0x3); |
| 3898 | |
| 3899 | sku = le16_to_cpup(nvm_sw + IWM_SKU)(((__uint16_t)(*(const uint16_t *)(nvm_sw + 2)))); |
| 3900 | } else { |
| 3901 | uint32_t radio_cfg = |
| 3902 | le32_to_cpup((uint32_t *)(phy_sku + IWM_RADIO_CFG_8000))(((__uint32_t)(*(const uint32_t *)((uint32_t *)(phy_sku + 0)) ))); |
| 3903 | data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK_8000(radio_cfg)((radio_cfg >> 12) & 0xFFF); |
| 3904 | data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK_8000(radio_cfg)((radio_cfg >> 8) & 0xF); |
| 3905 | data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK_8000(radio_cfg)((radio_cfg >> 4) & 0xF); |
| 3906 | data->radio_cfg_pnum = IWM_NVM_RF_CFG_PNUM_MSK_8000(radio_cfg)(radio_cfg & 0xF); |
| 3907 | data->valid_tx_ant = IWM_NVM_RF_CFG_TX_ANT_MSK_8000(radio_cfg)((radio_cfg >> 24) & 0xF); |
| 3908 | data->valid_rx_ant = IWM_NVM_RF_CFG_RX_ANT_MSK_8000(radio_cfg)((radio_cfg >> 28) & 0xF); |
| 3909 | |
| 3910 | sku = le32_to_cpup((uint32_t *)(phy_sku + IWM_SKU_8000))(((__uint32_t)(*(const uint32_t *)((uint32_t *)(phy_sku + 2)) ))); |
| 3911 | } |
| 3912 | |
| 3913 | data->sku_cap_band_24GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_24GHZ(1 << 0); |
| 3914 | data->sku_cap_band_52GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_52GHZ(1 << 1); |
| 3915 | data->sku_cap_11n_enable = sku & IWM_NVM_SKU_CAP_11N_ENABLE(1 << 2); |
| 3916 | data->sku_cap_11ac_enable = sku & IWM_NVM_SKU_CAP_11AC_ENABLE(1 << 3); |
| 3917 | data->sku_cap_mimo_disable = sku & IWM_NVM_SKU_CAP_MIMO_DISABLE(1 << 5); |
| 3918 | |
| 3919 | if (sc->sc_device_family >= IWM_DEVICE_FAMILY_80002) { |
| 3920 | uint16_t lar_offset = data->nvm_version < 0xE39 ? |
| 3921 | IWM_NVM_LAR_OFFSET_8000_OLD0x4C7 : |
| 3922 | IWM_NVM_LAR_OFFSET_80000x507; |
| 3923 | |
| 3924 | lar_config = le16_to_cpup(regulatory + lar_offset)(((__uint16_t)(*(const uint16_t *)(regulatory + lar_offset))) ); |
| 3925 | data->lar_enabled = !!(lar_config & |
| 3926 | IWM_NVM_LAR_ENABLED_80000x7); |
| 3927 | data->n_hw_addrs = le16_to_cpup(nvm_sw + IWM_N_HW_ADDRS_8000)(((__uint16_t)(*(const uint16_t *)(nvm_sw + 3)))); |
| 3928 | } else |
| 3929 | data->n_hw_addrs = le16_to_cpup(nvm_sw + IWM_N_HW_ADDRS)(((__uint16_t)(*(const uint16_t *)(nvm_sw + 3)))); |
| 3930 | |
| 3931 | |
| 3932 | /* The byte order is little endian 16 bit, meaning 214365 */ |
| 3933 | if (sc->sc_device_family == IWM_DEVICE_FAMILY_70001) { |
| 3934 | memcpy(hw_addr, nvm_hw + IWM_HW_ADDR, ETHER_ADDR_LEN)__builtin_memcpy((hw_addr), (nvm_hw + 0x15), (6)); |
| 3935 | data->hw_addr[0] = hw_addr[1]; |
| 3936 | data->hw_addr[1] = hw_addr[0]; |
| 3937 | data->hw_addr[2] = hw_addr[3]; |
| 3938 | data->hw_addr[3] = hw_addr[2]; |
| 3939 | data->hw_addr[4] = hw_addr[5]; |
| 3940 | data->hw_addr[5] = hw_addr[4]; |
| 3941 | } else |
| 3942 | iwm_set_hw_address_8000(sc, data, mac_override, nvm_hw); |
| 3943 | |
| 3944 | if (sc->sc_device_family == IWM_DEVICE_FAMILY_70001) { |
| 3945 | if (sc->nvm_type == IWM_NVM_SDP) { |
| 3946 | iwm_init_channel_map(sc, regulatory, iwm_nvm_channels, |
| 3947 | MIN(n_regulatory, nitems(iwm_nvm_channels))(((n_regulatory)<((sizeof((iwm_nvm_channels)) / sizeof((iwm_nvm_channels )[0]))))?(n_regulatory):((sizeof((iwm_nvm_channels)) / sizeof ((iwm_nvm_channels)[0]))))); |
| 3948 | } else { |
| 3949 | iwm_init_channel_map(sc, &nvm_sw[IWM_NVM_CHANNELS0x1E0 - 0x1C0], |
| 3950 | iwm_nvm_channels, nitems(iwm_nvm_channels)(sizeof((iwm_nvm_channels)) / sizeof((iwm_nvm_channels)[0]))); |
| 3951 | } |
| 3952 | } else |
| 3953 | iwm_init_channel_map(sc, ®ulatory[IWM_NVM_CHANNELS_80000], |
| 3954 | iwm_nvm_channels_8000, |
| 3955 | MIN(n_regulatory, nitems(iwm_nvm_channels_8000))(((n_regulatory)<((sizeof((iwm_nvm_channels_8000)) / sizeof ((iwm_nvm_channels_8000)[0]))))?(n_regulatory):((sizeof((iwm_nvm_channels_8000 )) / sizeof((iwm_nvm_channels_8000)[0]))))); |
| 3956 | |
| 3957 | data->calib_version = 255; /* TODO: |
| 3958 | this value will prevent some checks from |
| 3959 | failing, we need to check if this |
| 3960 | field is still needed, and if it does, |
| 3961 | where is it in the NVM */ |
| 3962 | |
| 3963 | return 0; |
| 3964 | } |
| 3965 | |
| 3966 | int |
| 3967 | iwm_parse_nvm_sections(struct iwm_softc *sc, struct iwm_nvm_section *sections) |
| 3968 | { |
| 3969 | const uint16_t *hw, *sw, *calib, *mac_override = NULL((void *)0), *phy_sku = NULL((void *)0); |
| 3970 | const uint16_t *regulatory = NULL((void *)0); |
| 3971 | int n_regulatory = 0; |
| 3972 | |
| 3973 | /* Checking for required sections */ |
| 3974 | if (sc->sc_device_family == IWM_DEVICE_FAMILY_70001) { |
| 3975 | if (!sections[IWM_NVM_SECTION_TYPE_SW1].data || |
| 3976 | !sections[IWM_NVM_SECTION_TYPE_HW0].data) { |
| 3977 | return ENOENT2; |
| 3978 | } |
| 3979 | |
| 3980 | hw = (const uint16_t *) sections[IWM_NVM_SECTION_TYPE_HW0].data; |
| 3981 | |
| 3982 | if (sc->nvm_type == IWM_NVM_SDP) { |
| 3983 | if (!sections[IWM_NVM_SECTION_TYPE_REGULATORY_SDP8].data) |
| 3984 | return ENOENT2; |
| 3985 | regulatory = (const uint16_t *) |
| 3986 | sections[IWM_NVM_SECTION_TYPE_REGULATORY_SDP8].data; |
| 3987 | n_regulatory = |
| 3988 | sections[IWM_NVM_SECTION_TYPE_REGULATORY_SDP8].length; |
| 3989 | } |
| 3990 | } else if (sc->sc_device_family >= IWM_DEVICE_FAMILY_80002) { |
| 3991 | /* SW and REGULATORY sections are mandatory */ |
| 3992 | if (!sections[IWM_NVM_SECTION_TYPE_SW1].data || |
| 3993 | !sections[IWM_NVM_SECTION_TYPE_REGULATORY3].data) { |
| 3994 | return ENOENT2; |
| 3995 | } |
| 3996 | /* MAC_OVERRIDE or at least HW section must exist */ |
| 3997 | if (!sections[IWM_NVM_SECTION_TYPE_HW_800010].data && |
| 3998 | !sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE11].data) { |
| 3999 | return ENOENT2; |
| 4000 | } |
| 4001 | |
| 4002 | /* PHY_SKU section is mandatory in B0 */ |
| 4003 | if (!sections[IWM_NVM_SECTION_TYPE_PHY_SKU12].data) { |
| 4004 | return ENOENT2; |
| 4005 | } |
| 4006 | |
| 4007 | regulatory = (const uint16_t *) |
| 4008 | sections[IWM_NVM_SECTION_TYPE_REGULATORY3].data; |
| 4009 | n_regulatory = sections[IWM_NVM_SECTION_TYPE_REGULATORY3].length; |
| 4010 | hw = (const uint16_t *) |
| 4011 | sections[IWM_NVM_SECTION_TYPE_HW_800010].data; |
| 4012 | mac_override = |
| 4013 | (const uint16_t *) |
| 4014 | sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE11].data; |
| 4015 | phy_sku = (const uint16_t *) |
| 4016 | sections[IWM_NVM_SECTION_TYPE_PHY_SKU12].data; |
| 4017 | } else { |
| 4018 | panic("unknown device family %d", sc->sc_device_family); |
| 4019 | } |
| 4020 | |
| 4021 | sw = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_SW1].data; |
| 4022 | calib = (const uint16_t *) |
| 4023 | sections[IWM_NVM_SECTION_TYPE_CALIBRATION4].data; |
| 4024 | |
| 4025 | /* XXX should pass in the length of every section */ |
| 4026 | return iwm_parse_nvm_data(sc, hw, sw, calib, mac_override, |
| 4027 | phy_sku, regulatory, n_regulatory); |
| 4028 | } |
| 4029 | |
| 4030 | int |
| 4031 | iwm_nvm_init(struct iwm_softc *sc) |
| 4032 | { |
| 4033 | struct iwm_nvm_section nvm_sections[IWM_NVM_NUM_OF_SECTIONS13]; |
| 4034 | int i, section, err; |
| 4035 | uint16_t len; |
| 4036 | uint8_t *buf; |
| 4037 | const size_t bufsz = sc->sc_nvm_max_section_size; |
| 4038 | |
| 4039 | memset(nvm_sections, 0, sizeof(nvm_sections))__builtin_memset((nvm_sections), (0), (sizeof(nvm_sections))); |
| 4040 | |
| 4041 | buf = malloc(bufsz, M_DEVBUF2, M_WAIT0x0001); |
| 4042 | if (buf == NULL((void *)0)) |
| 4043 | return ENOMEM12; |
| 4044 | |
| 4045 | for (i = 0; i < nitems(iwm_nvm_to_read)(sizeof((iwm_nvm_to_read)) / sizeof((iwm_nvm_to_read)[0])); i++) { |
| 4046 | section = iwm_nvm_to_read[i]; |
| 4047 | KASSERT(section <= nitems(nvm_sections))((section <= (sizeof((nvm_sections)) / sizeof((nvm_sections )[0]))) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/dev/pci/if_iwm.c" , 4047, "section <= nitems(nvm_sections)")); |
| 4048 | |
| 4049 | err = iwm_nvm_read_section(sc, section, buf, &len, bufsz); |
| 4050 | if (err) { |
| 4051 | err = 0; |
| 4052 | continue; |
| 4053 | } |
| 4054 | nvm_sections[section].data = malloc(len, M_DEVBUF2, M_WAIT0x0001); |
| 4055 | if (nvm_sections[section].data == NULL((void *)0)) { |
| 4056 | err = ENOMEM12; |
| 4057 | break; |
| 4058 | } |
| 4059 | memcpy(nvm_sections[section].data, buf, len)__builtin_memcpy((nvm_sections[section].data), (buf), (len)); |
| 4060 | nvm_sections[section].length = len; |
| 4061 | } |
| 4062 | free(buf, M_DEVBUF2, bufsz); |
| 4063 | if (err == 0) |
| 4064 | err = iwm_parse_nvm_sections(sc, nvm_sections); |
| 4065 | |
| 4066 | for (i = 0; i < IWM_NVM_NUM_OF_SECTIONS13; i++) { |
| 4067 | if (nvm_sections[i].data != NULL((void *)0)) |
| 4068 | free(nvm_sections[i].data, M_DEVBUF2, |
| 4069 | nvm_sections[i].length); |
| 4070 | } |
| 4071 | |
| 4072 | return err; |
| 4073 | } |
| 4074 | |
| 4075 | int |
| 4076 | iwm_firmware_load_sect(struct iwm_softc *sc, uint32_t dst_addr, |
| 4077 | const uint8_t *section, uint32_t byte_cnt) |
| 4078 | { |
| 4079 | int err = EINVAL22; |
| 4080 | uint32_t chunk_sz, offset; |
| 4081 | |
| 4082 | chunk_sz = MIN(IWM_FH_MEM_TB_MAX_LENGTH, byte_cnt)(((0x20000)<(byte_cnt))?(0x20000):(byte_cnt)); |
| 4083 | |
| 4084 | for (offset = 0; offset < byte_cnt; offset += chunk_sz) { |
| 4085 | uint32_t addr, len; |
| 4086 | const uint8_t *data; |
| 4087 | |
| 4088 | addr = dst_addr + offset; |
| 4089 | len = MIN(chunk_sz, byte_cnt - offset)(((chunk_sz)<(byte_cnt - offset))?(chunk_sz):(byte_cnt - offset )); |
| 4090 | data = section + offset; |
| 4091 | |
| 4092 | err = iwm_firmware_load_chunk(sc, addr, data, len); |
| 4093 | if (err) |
| 4094 | break; |
| 4095 | } |
| 4096 | |
| 4097 | return err; |
| 4098 | } |
| 4099 | |
| 4100 | int |
| 4101 | iwm_firmware_load_chunk(struct iwm_softc *sc, uint32_t dst_addr, |
| 4102 | const uint8_t *chunk, uint32_t byte_cnt) |
| 4103 | { |
| 4104 | struct iwm_dma_info *dma = &sc->fw_dma; |
| 4105 | int err; |
| 4106 | |
| 4107 | /* Copy firmware chunk into pre-allocated DMA-safe memory. */ |
| 4108 | memcpy(dma->vaddr, chunk, byte_cnt)__builtin_memcpy((dma->vaddr), (chunk), (byte_cnt)); |
| 4109 | bus_dmamap_sync(sc->sc_dmat,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (dma-> map), (0), (byte_cnt), (0x04)) |
| 4110 | dma->map, 0, byte_cnt, BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (dma-> map), (0), (byte_cnt), (0x04)); |
| 4111 | |
| 4112 | if (dst_addr >= IWM_FW_MEM_EXTENDED_START0x40000 && |
| 4113 | dst_addr <= IWM_FW_MEM_EXTENDED_END0x57FFF) { |
| 4114 | err = iwm_set_bits_prph(sc, IWM_LMPM_CHICK0xa01ff8, |
| 4115 | IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE0x01); |
| 4116 | if (err) |
| 4117 | return err; |
| 4118 | } |
| 4119 | |
| 4120 | sc->sc_fw_chunk_done = 0; |
| 4121 | |
| 4122 | if (!iwm_nic_lock(sc)) |
| 4123 | return EBUSY16; |
| 4124 | |
| 4125 | IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),(((sc)->sc_st)->write_4(((sc)->sc_sh), (((((0x1000) + 0xD00) + 0x20 * ((9))))), (((0x00000000))))) |
| 4126 | IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((((0x1000) + 0xD00) + 0x20 * ((9))))), (((0x00000000))))); |
| 4127 | IWM_WRITE(sc, IWM_FH_SRVC_CHNL_SRAM_ADDR_REG(IWM_FH_SRVC_CHNL),(((sc)->sc_st)->write_4(((sc)->sc_sh), (((((0x1000) + 0x9C8) + (((9)) - 9) * 0x4))), ((dst_addr)))) |
| 4128 | dst_addr)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((((0x1000) + 0x9C8) + (((9)) - 9) * 0x4))), ((dst_addr)))); |
| 4129 | IWM_WRITE(sc, IWM_FH_TFDIB_CTRL0_REG(IWM_FH_SRVC_CHNL),(((sc)->sc_st)->write_4(((sc)->sc_sh), (((((0x1000) + 0x900) + 0x8 * ((9))))), ((dma->paddr & (0xFFFFFFFF)) ))) |
| 4130 | dma->paddr & IWM_FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((((0x1000) + 0x900) + 0x8 * ((9))))), ((dma->paddr & (0xFFFFFFFF)) ))); |
| 4131 | IWM_WRITE(sc, IWM_FH_TFDIB_CTRL1_REG(IWM_FH_SRVC_CHNL),(((sc)->sc_st)->write_4(((sc)->sc_sh), (((((0x1000) + 0x900) + 0x8 * ((9)) + 0x4))), (((iwm_get_dma_hi_addr(dma-> paddr) << 28) | byte_cnt)))) |
| 4132 | (iwm_get_dma_hi_addr(dma->paddr)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((((0x1000) + 0x900) + 0x8 * ((9)) + 0x4))), (((iwm_get_dma_hi_addr(dma-> paddr) << 28) | byte_cnt)))) |
| 4133 | << IWM_FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((((0x1000) + 0x900) + 0x8 * ((9)) + 0x4))), (((iwm_get_dma_hi_addr(dma-> paddr) << 28) | byte_cnt)))); |
| 4134 | IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_BUF_STS_REG(IWM_FH_SRVC_CHNL),(((sc)->sc_st)->write_4(((sc)->sc_sh), (((((0x1000) + 0xD00) + 0x20 * ((9)) + 0x8))), ((1 << (20) | 1 << (12) | (0x00000003))))) |
| 4135 | 1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM |(((sc)->sc_st)->write_4(((sc)->sc_sh), (((((0x1000) + 0xD00) + 0x20 * ((9)) + 0x8))), ((1 << (20) | 1 << (12) | (0x00000003))))) |
| 4136 | 1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX |(((sc)->sc_st)->write_4(((sc)->sc_sh), (((((0x1000) + 0xD00) + 0x20 * ((9)) + 0x8))), ((1 << (20) | 1 << (12) | (0x00000003))))) |
| 4137 | IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((((0x1000) + 0xD00) + 0x20 * ((9)) + 0x8))), ((1 << (20) | 1 << (12) | (0x00000003))))); |
| 4138 | IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),(((sc)->sc_st)->write_4(((sc)->sc_sh), (((((0x1000) + 0xD00) + 0x20 * ((9))))), (((0x80000000) | (0x00000000) | (0x00100000 ))))) |
| 4139 | IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |(((sc)->sc_st)->write_4(((sc)->sc_sh), (((((0x1000) + 0xD00) + 0x20 * ((9))))), (((0x80000000) | (0x00000000) | (0x00100000 ))))) |
| 4140 | IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE |(((sc)->sc_st)->write_4(((sc)->sc_sh), (((((0x1000) + 0xD00) + 0x20 * ((9))))), (((0x80000000) | (0x00000000) | (0x00100000 ))))) |
| 4141 | IWM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((((0x1000) + 0xD00) + 0x20 * ((9))))), (((0x80000000) | (0x00000000) | (0x00100000 ))))); |
| 4142 | |
| 4143 | iwm_nic_unlock(sc); |
| 4144 | |
| 4145 | /* Wait for this segment to load. */ |
| 4146 | err = 0; |
| 4147 | while (!sc->sc_fw_chunk_done) { |
| 4148 | err = tsleep_nsec(&sc->sc_fw, 0, "iwmfw", SEC_TO_NSEC(1)); |
| 4149 | if (err) |
| 4150 | break; |
| 4151 | } |
| 4152 | |
| 4153 | if (!sc->sc_fw_chunk_done) |
| 4154 | printf("%s: fw chunk addr 0x%x len %d failed to load\n", |
| 4155 | DEVNAME(sc)((sc)->sc_dev.dv_xname), dst_addr, byte_cnt); |
| 4156 | |
| 4157 | if (dst_addr >= IWM_FW_MEM_EXTENDED_START0x40000 && |
| 4158 | dst_addr <= IWM_FW_MEM_EXTENDED_END0x57FFF) { |
| 4159 | int err2 = iwm_clear_bits_prph(sc, IWM_LMPM_CHICK0xa01ff8, |
| 4160 | IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE0x01); |
| 4161 | if (!err) |
| 4162 | err = err2; |
| 4163 | } |
| 4164 | |
| 4165 | return err; |
| 4166 | } |
| 4167 | |
| 4168 | int |
| 4169 | iwm_load_firmware_7000(struct iwm_softc *sc, enum iwm_ucode_type ucode_type) |
| 4170 | { |
| 4171 | struct iwm_fw_sects *fws; |
| 4172 | int err, i; |
| 4173 | void *data; |
| 4174 | uint32_t dlen; |
| 4175 | uint32_t offset; |
| 4176 | |
| 4177 | fws = &sc->sc_fw.fw_sects[ucode_type]; |
| 4178 | for (i = 0; i < fws->fw_count; i++) { |
| 4179 | data = fws->fw_sect[i].fws_data; |
| 4180 | dlen = fws->fw_sect[i].fws_len; |
| 4181 | offset = fws->fw_sect[i].fws_devoff; |
| 4182 | if (dlen > sc->sc_fwdmasegsz) { |
| 4183 | err = EFBIG27; |
| 4184 | } else |
| 4185 | err = iwm_firmware_load_sect(sc, offset, data, dlen); |
| 4186 | if (err) { |
| 4187 | printf("%s: could not load firmware chunk %u of %u\n", |
| 4188 | DEVNAME(sc)((sc)->sc_dev.dv_xname), i, fws->fw_count); |
| 4189 | return err; |
| 4190 | } |
| 4191 | } |
| 4192 | |
| 4193 | iwm_enable_interrupts(sc); |
| 4194 | |
| 4195 | IWM_WRITE(sc, IWM_CSR_RESET, 0)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x020))), ( (0)))); |
| 4196 | |
| 4197 | return 0; |
| 4198 | } |
| 4199 | |
| 4200 | int |
| 4201 | iwm_load_cpu_sections_8000(struct iwm_softc *sc, struct iwm_fw_sects *fws, |
| 4202 | int cpu, int *first_ucode_section) |
| 4203 | { |
| 4204 | int shift_param; |
| 4205 | int i, err = 0, sec_num = 0x1; |
| 4206 | uint32_t val, last_read_idx = 0; |
| 4207 | void *data; |
| 4208 | uint32_t dlen; |
| 4209 | uint32_t offset; |
| 4210 | |
| 4211 | if (cpu == 1) { |
| 4212 | shift_param = 0; |
| 4213 | *first_ucode_section = 0; |
| 4214 | } else { |
| 4215 | shift_param = 16; |
| 4216 | (*first_ucode_section)++; |
| 4217 | } |
| 4218 | |
| 4219 | for (i = *first_ucode_section; i < IWM_UCODE_SECT_MAX16; i++) { |
| 4220 | last_read_idx = i; |
| 4221 | data = fws->fw_sect[i].fws_data; |
| 4222 | dlen = fws->fw_sect[i].fws_len; |
| 4223 | offset = fws->fw_sect[i].fws_devoff; |
| 4224 | |
| 4225 | /* |
| 4226 | * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between |
| 4227 | * CPU1 to CPU2. |
| 4228 | * PAGING_SEPARATOR_SECTION delimiter - separate between |
| 4229 | * CPU2 non paged to CPU2 paging sec. |
| 4230 | */ |
| 4231 | if (!data || offset == IWM_CPU1_CPU2_SEPARATOR_SECTION0xFFFFCCCC || |
| 4232 | offset == IWM_PAGING_SEPARATOR_SECTION0xAAAABBBB) |
| 4233 | break; |
| 4234 | |
| 4235 | if (dlen > sc->sc_fwdmasegsz) { |
| 4236 | err = EFBIG27; |
| 4237 | } else |
| 4238 | err = iwm_firmware_load_sect(sc, offset, data, dlen); |
| 4239 | if (err) { |
| 4240 | printf("%s: could not load firmware chunk %d " |
| 4241 | "(error %d)\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), i, err); |
| 4242 | return err; |
| 4243 | } |
| 4244 | |
| 4245 | /* Notify the ucode of the loaded section number and status */ |
| 4246 | if (iwm_nic_lock(sc)) { |
| 4247 | val = IWM_READ(sc, IWM_FH_UCODE_LOAD_STATUS)(((sc)->sc_st)->read_4(((sc)->sc_sh), ((0x1af0)))); |
| 4248 | val = val | (sec_num << shift_param); |
| 4249 | IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, val)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x1af0)), ( (val)))); |
| 4250 | sec_num = (sec_num << 1) | 0x1; |
| 4251 | iwm_nic_unlock(sc); |
| 4252 | } else { |
| 4253 | err = EBUSY16; |
| 4254 | printf("%s: could not load firmware chunk %d " |
| 4255 | "(error %d)\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), i, err); |
| 4256 | return err; |
| 4257 | } |
| 4258 | } |
| 4259 | |
| 4260 | *first_ucode_section = last_read_idx; |
| 4261 | |
| 4262 | if (iwm_nic_lock(sc)) { |
| 4263 | if (cpu == 1) |
| 4264 | IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFF)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x1af0)), ( (0xFFFF)))); |
| 4265 | else |
| 4266 | IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFFFFFF)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((0x1af0)), ( (0xFFFFFFFF)))); |
| 4267 | iwm_nic_unlock(sc); |
| 4268 | } else { |
| 4269 | err = EBUSY16; |
| 4270 | printf("%s: could not finalize firmware loading (error %d)\n", |
| 4271 | DEVNAME(sc)((sc)->sc_dev.dv_xname), err); |
| 4272 | return err; |
| 4273 | } |
| 4274 | |
| 4275 | return 0; |
| 4276 | } |
| 4277 | |
| 4278 | int |
| 4279 | iwm_load_firmware_8000(struct iwm_softc *sc, enum iwm_ucode_type ucode_type) |
| 4280 | { |
| 4281 | struct iwm_fw_sects *fws; |
| 4282 | int err = 0; |
| 4283 | int first_ucode_section; |
| 4284 | |
| 4285 | fws = &sc->sc_fw.fw_sects[ucode_type]; |
| 4286 | |
| 4287 | /* configure the ucode to be ready to get the secured image */ |
| 4288 | /* release CPU reset */ |
| 4289 | if (iwm_nic_lock(sc)) { |
| 4290 | iwm_write_prph(sc, IWM_RELEASE_CPU_RESET0x300c, |
| 4291 | IWM_RELEASE_CPU_RESET_BIT0x1000000); |
| 4292 | iwm_nic_unlock(sc); |
| 4293 | } |
| 4294 | |
| 4295 | /* load to FW the binary Secured sections of CPU1 */ |
| 4296 | err = iwm_load_cpu_sections_8000(sc, fws, 1, &first_ucode_section); |
| 4297 | if (err) |
| 4298 | return err; |
| 4299 | |
| 4300 | /* load to FW the binary sections of CPU2 */ |
| 4301 | err = iwm_load_cpu_sections_8000(sc, fws, 2, &first_ucode_section); |
| 4302 | if (err) |
| 4303 | return err; |
| 4304 | |
| 4305 | iwm_enable_interrupts(sc); |
| 4306 | return 0; |
| 4307 | } |
| 4308 | |
| 4309 | int |
| 4310 | iwm_load_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type) |
| 4311 | { |
| 4312 | int err; |
| 4313 | |
| 4314 | splassert(IPL_NET)do { if (splassert_ctl > 0) { splassert_check(0x4, __func__ ); } } while (0); |
| 4315 | |
| 4316 | sc->sc_uc.uc_intr = 0; |
| 4317 | sc->sc_uc.uc_ok = 0; |
| 4318 | |
| 4319 | if (sc->sc_device_family >= IWM_DEVICE_FAMILY_80002) |
| 4320 | err = iwm_load_firmware_8000(sc, ucode_type); |
| 4321 | else |
| 4322 | err = iwm_load_firmware_7000(sc, ucode_type); |
| 4323 | |
| 4324 | if (err) |
| 4325 | return err; |
| 4326 | |
| 4327 | /* wait for the firmware to load */ |
| 4328 | err = tsleep_nsec(&sc->sc_uc, 0, "iwmuc", SEC_TO_NSEC(1)); |
| 4329 | if (err || !sc->sc_uc.uc_ok) |
| 4330 | printf("%s: could not load firmware\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 4331 | |
| 4332 | return err; |
| 4333 | } |
| 4334 | |
| 4335 | int |
| 4336 | iwm_start_fw(struct iwm_softc *sc, enum iwm_ucode_type ucode_type) |
| 4337 | { |
| 4338 | int err; |
| 4339 | |
| 4340 | IWM_WRITE(sc, IWM_CSR_INT, ~0)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x008))), ( (~0)))); |
| 4341 | |
| 4342 | err = iwm_nic_init(sc); |
| 4343 | if (err) { |
| 4344 | printf("%s: unable to init nic\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 4345 | return err; |
| 4346 | } |
| 4347 | |
| 4348 | /* make sure rfkill handshake bits are cleared */ |
| 4349 | IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x05c))), ( ((0x00000002))))); |
| 4350 | IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR,(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x05c))), ( ((0x00000004))))) |
| 4351 | IWM_CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x05c))), ( ((0x00000004))))); |
| 4352 | |
| 4353 | /* clear (again), then enable firmware load interrupt */ |
| 4354 | IWM_WRITE(sc, IWM_CSR_INT, ~0)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x008))), ( (~0)))); |
| 4355 | iwm_enable_fwload_interrupt(sc); |
| 4356 | |
| 4357 | /* really make sure rfkill handshake bits are cleared */ |
| 4358 | /* maybe we should write a few times more? just to make sure */ |
| 4359 | IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x05c))), ( ((0x00000002))))); |
| 4360 | IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x05c))), ( ((0x00000002))))); |
| 4361 | |
| 4362 | return iwm_load_firmware(sc, ucode_type); |
| 4363 | } |
| 4364 | |
| 4365 | int |
| 4366 | iwm_send_tx_ant_cfg(struct iwm_softc *sc, uint8_t valid_tx_ant) |
| 4367 | { |
| 4368 | struct iwm_tx_ant_cfg_cmd tx_ant_cmd = { |
| 4369 | .valid = htole32(valid_tx_ant)((__uint32_t)(valid_tx_ant)), |
| 4370 | }; |
| 4371 | |
| 4372 | return iwm_send_cmd_pdu(sc, IWM_TX_ANT_CONFIGURATION_CMD0x98, |
| 4373 | 0, sizeof(tx_ant_cmd), &tx_ant_cmd); |
| 4374 | } |
| 4375 | |
| 4376 | int |
| 4377 | iwm_send_phy_cfg_cmd(struct iwm_softc *sc) |
| 4378 | { |
| 4379 | struct iwm_phy_cfg_cmd phy_cfg_cmd; |
| 4380 | enum iwm_ucode_type ucode_type = sc->sc_uc_current; |
| 4381 | |
| 4382 | phy_cfg_cmd.phy_cfg = htole32(sc->sc_fw_phy_config |((__uint32_t)(sc->sc_fw_phy_config | sc->sc_extra_phy_config )) |
| 4383 | sc->sc_extra_phy_config)((__uint32_t)(sc->sc_fw_phy_config | sc->sc_extra_phy_config )); |
| 4384 | phy_cfg_cmd.calib_control.event_trigger = |
| 4385 | sc->sc_default_calib[ucode_type].event_trigger; |
| 4386 | phy_cfg_cmd.calib_control.flow_trigger = |
| 4387 | sc->sc_default_calib[ucode_type].flow_trigger; |
| 4388 | |
| 4389 | return iwm_send_cmd_pdu(sc, IWM_PHY_CONFIGURATION_CMD0x6a, 0, |
| 4390 | sizeof(phy_cfg_cmd), &phy_cfg_cmd); |
| 4391 | } |
| 4392 | |
| 4393 | int |
| 4394 | iwm_send_dqa_cmd(struct iwm_softc *sc) |
| 4395 | { |
| 4396 | struct iwm_dqa_enable_cmd dqa_cmd = { |
| 4397 | .cmd_queue = htole32(IWM_DQA_CMD_QUEUE)((__uint32_t)(0)), |
| 4398 | }; |
| 4399 | uint32_t cmd_id; |
| 4400 | |
| 4401 | cmd_id = iwm_cmd_id(IWM_DQA_ENABLE_CMD0x00, IWM_DATA_PATH_GROUP0x5, 0); |
| 4402 | return iwm_send_cmd_pdu(sc, cmd_id, 0, sizeof(dqa_cmd), &dqa_cmd); |
| 4403 | } |
| 4404 | |
| 4405 | int |
| 4406 | iwm_load_ucode_wait_alive(struct iwm_softc *sc, |
| 4407 | enum iwm_ucode_type ucode_type) |
| 4408 | { |
| 4409 | enum iwm_ucode_type old_type = sc->sc_uc_current; |
| 4410 | struct iwm_fw_sects *fw = &sc->sc_fw.fw_sects[ucode_type]; |
| 4411 | int err; |
| 4412 | |
| 4413 | err = iwm_read_firmware(sc); |
| 4414 | if (err) |
| 4415 | return err; |
| 4416 | |
| 4417 | if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_DQA_SUPPORT)((sc->sc_enabled_capa)[(12)>>3] & (1<<((12 )&(8 -1))))) |
| 4418 | sc->cmdqid = IWM_DQA_CMD_QUEUE0; |
| 4419 | else |
| 4420 | sc->cmdqid = IWM_CMD_QUEUE9; |
| 4421 | |
| 4422 | sc->sc_uc_current = ucode_type; |
| 4423 | err = iwm_start_fw(sc, ucode_type); |
| 4424 | if (err) { |
| 4425 | sc->sc_uc_current = old_type; |
| 4426 | return err; |
| 4427 | } |
| 4428 | |
| 4429 | err = iwm_post_alive(sc); |
| 4430 | if (err) |
| 4431 | return err; |
| 4432 | |
| 4433 | /* |
| 4434 | * configure and operate fw paging mechanism. |
| 4435 | * driver configures the paging flow only once, CPU2 paging image |
| 4436 | * included in the IWM_UCODE_INIT image. |
| 4437 | */ |
| 4438 | if (fw->paging_mem_size) { |
| 4439 | err = iwm_save_fw_paging(sc, fw); |
| 4440 | if (err) { |
| 4441 | printf("%s: failed to save the FW paging image\n", |
| 4442 | DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 4443 | return err; |
| 4444 | } |
| 4445 | |
| 4446 | err = iwm_send_paging_cmd(sc, fw); |
| 4447 | if (err) { |
| 4448 | printf("%s: failed to send the paging cmd\n", |
| 4449 | DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 4450 | iwm_free_fw_paging(sc); |
| 4451 | return err; |
| 4452 | } |
| 4453 | } |
| 4454 | |
| 4455 | return 0; |
| 4456 | } |
| 4457 | |
| 4458 | int |
| 4459 | iwm_run_init_mvm_ucode(struct iwm_softc *sc, int justnvm) |
| 4460 | { |
| 4461 | const int wait_flags = (IWM_INIT_COMPLETE0x01 | IWM_CALIB_COMPLETE0x02); |
| 4462 | int err, s; |
| 4463 | |
| 4464 | if ((sc->sc_flags & IWM_FLAG_RFKILL0x02) && !justnvm) { |
| 4465 | printf("%s: radio is disabled by hardware switch\n", |
| 4466 | DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 4467 | return EPERM1; |
| 4468 | } |
| 4469 | |
| 4470 | s = splnet()splraise(0x4); |
| 4471 | sc->sc_init_complete = 0; |
| 4472 | err = iwm_load_ucode_wait_alive(sc, IWM_UCODE_TYPE_INIT); |
| 4473 | if (err) { |
| 4474 | printf("%s: failed to load init firmware\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 4475 | splx(s)spllower(s); |
| 4476 | return err; |
| 4477 | } |
| 4478 | |
| 4479 | if (sc->sc_device_family < IWM_DEVICE_FAMILY_80002) { |
| 4480 | err = iwm_send_bt_init_conf(sc); |
| 4481 | if (err) { |
| 4482 | printf("%s: could not init bt coex (error %d)\n", |
| 4483 | DEVNAME(sc)((sc)->sc_dev.dv_xname), err); |
| 4484 | splx(s)spllower(s); |
| 4485 | return err; |
| 4486 | } |
| 4487 | } |
| 4488 | |
| 4489 | if (justnvm) { |
| 4490 | err = iwm_nvm_init(sc); |
| 4491 | if (err) { |
| 4492 | printf("%s: failed to read nvm\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 4493 | splx(s)spllower(s); |
| 4494 | return err; |
| 4495 | } |
| 4496 | |
| 4497 | if (IEEE80211_ADDR_EQ(etheranyaddr, sc->sc_ic.ic_myaddr)(__builtin_memcmp((etheranyaddr), (sc->sc_ic.ic_myaddr), ( 6)) == 0)) |
| 4498 | IEEE80211_ADDR_COPY(sc->sc_ic.ic_myaddr,__builtin_memcpy((sc->sc_ic.ic_myaddr), (sc->sc_nvm.hw_addr ), (6)) |
| 4499 | sc->sc_nvm.hw_addr)__builtin_memcpy((sc->sc_ic.ic_myaddr), (sc->sc_nvm.hw_addr ), (6)); |
| 4500 | |
| 4501 | splx(s)spllower(s); |
| 4502 | return 0; |
| 4503 | } |
| 4504 | |
| 4505 | err = iwm_sf_config(sc, IWM_SF_INIT_OFF3); |
| 4506 | if (err) { |
| 4507 | splx(s)spllower(s); |
| 4508 | return err; |
| 4509 | } |
| 4510 | |
| 4511 | /* Send TX valid antennas before triggering calibrations */ |
| 4512 | err = iwm_send_tx_ant_cfg(sc, iwm_fw_valid_tx_ant(sc)); |
| 4513 | if (err) { |
| 4514 | splx(s)spllower(s); |
| 4515 | return err; |
| 4516 | } |
| 4517 | |
| 4518 | /* |
| 4519 | * Send phy configurations command to init uCode |
| 4520 | * to start the 16.0 uCode init image internal calibrations. |
| 4521 | */ |
| 4522 | err = iwm_send_phy_cfg_cmd(sc); |
| 4523 | if (err) { |
| 4524 | splx(s)spllower(s); |
| 4525 | return err; |
| 4526 | } |
| 4527 | |
| 4528 | /* |
| 4529 | * Nothing to do but wait for the init complete and phy DB |
| 4530 | * notifications from the firmware. |
| 4531 | */ |
| 4532 | while ((sc->sc_init_complete & wait_flags) != wait_flags) { |
| 4533 | err = tsleep_nsec(&sc->sc_init_complete, 0, "iwminit", |
| 4534 | SEC_TO_NSEC(2)); |
| 4535 | if (err) |
| 4536 | break; |
| 4537 | } |
| 4538 | |
| 4539 | splx(s)spllower(s); |
| 4540 | return err; |
| 4541 | } |
| 4542 | |
| 4543 | int |
| 4544 | iwm_config_ltr(struct iwm_softc *sc) |
| 4545 | { |
| 4546 | struct iwm_ltr_config_cmd cmd = { |
| 4547 | .flags = htole32(IWM_LTR_CFG_FLAG_FEATURE_ENABLE)((__uint32_t)(0x00000001)), |
| 4548 | }; |
| 4549 | |
| 4550 | if (!sc->sc_ltr_enabled) |
| 4551 | return 0; |
| 4552 | |
| 4553 | return iwm_send_cmd_pdu(sc, IWM_LTR_CONFIG0xee, 0, sizeof(cmd), &cmd); |
| 4554 | } |
| 4555 | |
| 4556 | int |
| 4557 | iwm_rx_addbuf(struct iwm_softc *sc, int size, int idx) |
| 4558 | { |
| 4559 | struct iwm_rx_ring *ring = &sc->rxq; |
| 4560 | struct iwm_rx_data *data = &ring->data[idx]; |
| 4561 | struct mbuf *m; |
| 4562 | int err; |
| 4563 | int fatal = 0; |
| 4564 | |
| 4565 | m = m_gethdr(M_DONTWAIT0x0002, MT_DATA1); |
| 4566 | if (m == NULL((void *)0)) |
| 4567 | return ENOBUFS55; |
| 4568 | |
| 4569 | if (size <= MCLBYTES(1 << 11)) { |
| 4570 | MCLGET(m, M_DONTWAIT)(void) m_clget((m), (0x0002), (1 << 11)); |
| 4571 | } else { |
| 4572 | MCLGETL(m, M_DONTWAIT, IWM_RBUF_SIZE)m_clget((m), (0x0002), (4096)); |
| 4573 | } |
| 4574 | if ((m->m_flagsm_hdr.mh_flags & M_EXT0x0001) == 0) { |
| 4575 | m_freem(m); |
| 4576 | return ENOBUFS55; |
| 4577 | } |
| 4578 | |
| 4579 | if (data->m != NULL((void *)0)) { |
| 4580 | bus_dmamap_unload(sc->sc_dmat, data->map)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (data ->map)); |
| 4581 | fatal = 1; |
| 4582 | } |
| 4583 | |
| 4584 | m->m_lenm_hdr.mh_len = m->m_pkthdrM_dat.MH.MH_pkthdr.len = m->m_extM_dat.MH.MH_dat.MH_ext.ext_size; |
| 4585 | err = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( data->map), (m), (0x0200|0x0001)) |
| 4586 | BUS_DMA_READ|BUS_DMA_NOWAIT)(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( data->map), (m), (0x0200|0x0001)); |
| 4587 | if (err) { |
| 4588 | /* XXX */ |
| 4589 | if (fatal) |
| 4590 | panic("iwm: could not load RX mbuf"); |
| 4591 | m_freem(m); |
| 4592 | return err; |
| 4593 | } |
| 4594 | data->m = m; |
| 4595 | bus_dmamap_sync(sc->sc_dmat, data->map, 0, size, BUS_DMASYNC_PREREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (0), (size), (0x01)); |
| 4596 | |
| 4597 | /* Update RX descriptor. */ |
| 4598 | if (sc->sc_mqrx_supported) { |
| 4599 | ((uint64_t *)ring->desc)[idx] = |
| 4600 | htole64(data->map->dm_segs[0].ds_addr)((__uint64_t)(data->map->dm_segs[0].ds_addr)); |
| 4601 | bus_dmamap_sync(sc->sc_dmat, ring->free_desc_dma.map,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> free_desc_dma.map), (idx * sizeof(uint64_t)), (sizeof(uint64_t )), (0x04)) |
| 4602 | idx * sizeof(uint64_t), sizeof(uint64_t),(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> free_desc_dma.map), (idx * sizeof(uint64_t)), (sizeof(uint64_t )), (0x04)) |
| 4603 | BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> free_desc_dma.map), (idx * sizeof(uint64_t)), (sizeof(uint64_t )), (0x04)); |
| 4604 | } else { |
| 4605 | ((uint32_t *)ring->desc)[idx] = |
| 4606 | htole32(data->map->dm_segs[0].ds_addr >> 8)((__uint32_t)(data->map->dm_segs[0].ds_addr >> 8) ); |
| 4607 | bus_dmamap_sync(sc->sc_dmat, ring->free_desc_dma.map,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> free_desc_dma.map), (idx * sizeof(uint32_t)), (sizeof(uint32_t )), (0x04)) |
| 4608 | idx * sizeof(uint32_t), sizeof(uint32_t),(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> free_desc_dma.map), (idx * sizeof(uint32_t)), (sizeof(uint32_t )), (0x04)) |
| 4609 | BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> free_desc_dma.map), (idx * sizeof(uint32_t)), (sizeof(uint32_t )), (0x04)); |
| 4610 | } |
| 4611 | |
| 4612 | return 0; |
| 4613 | } |
| 4614 | |
| 4615 | /* |
| 4616 | * RSSI values are reported by the FW as positive values - need to negate |
| 4617 | * to obtain their dBM. Account for missing antennas by replacing 0 |
| 4618 | * values by -256dBm: practically 0 power and a non-feasible 8 bit value. |
| 4619 | */ |
| 4620 | int |
| 4621 | iwm_get_signal_strength(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info) |
| 4622 | { |
| 4623 | int energy_a, energy_b, energy_c, max_energy; |
| 4624 | uint32_t val; |
| 4625 | |
| 4626 | val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_ENERGY_ANT_ABC_IDX])((__uint32_t)(phy_info->non_cfg_phy[1])); |
| 4627 | energy_a = (val & IWM_RX_INFO_ENERGY_ANT_A_MSK0x000000ff) >> |
| 4628 | IWM_RX_INFO_ENERGY_ANT_A_POS0; |
| 4629 | energy_a = energy_a ? -energy_a : -256; |
| 4630 | energy_b = (val & IWM_RX_INFO_ENERGY_ANT_B_MSK0x0000ff00) >> |
| 4631 | IWM_RX_INFO_ENERGY_ANT_B_POS8; |
| 4632 | energy_b = energy_b ? -energy_b : -256; |
| 4633 | energy_c = (val & IWM_RX_INFO_ENERGY_ANT_C_MSK0x00ff0000) >> |
| 4634 | IWM_RX_INFO_ENERGY_ANT_C_POS16; |
| 4635 | energy_c = energy_c ? -energy_c : -256; |
| 4636 | max_energy = MAX(energy_a, energy_b)(((energy_a)>(energy_b))?(energy_a):(energy_b)); |
| 4637 | max_energy = MAX(max_energy, energy_c)(((max_energy)>(energy_c))?(max_energy):(energy_c)); |
| 4638 | |
| 4639 | return max_energy; |
| 4640 | } |
| 4641 | |
| 4642 | int |
| 4643 | iwm_rxmq_get_signal_strength(struct iwm_softc *sc, |
| 4644 | struct iwm_rx_mpdu_desc *desc) |
| 4645 | { |
| 4646 | int energy_a, energy_b; |
| 4647 | |
| 4648 | energy_a = desc->v1.energy_a; |
| 4649 | energy_b = desc->v1.energy_b; |
| 4650 | energy_a = energy_a ? -energy_a : -256; |
| 4651 | energy_b = energy_b ? -energy_b : -256; |
| 4652 | return MAX(energy_a, energy_b)(((energy_a)>(energy_b))?(energy_a):(energy_b)); |
| 4653 | } |
| 4654 | |
| 4655 | void |
| 4656 | iwm_rx_rx_phy_cmd(struct iwm_softc *sc, struct iwm_rx_packet *pkt, |
| 4657 | struct iwm_rx_data *data) |
| 4658 | { |
| 4659 | struct iwm_rx_phy_info *phy_info = (void *)pkt->data; |
| 4660 | |
| 4661 | bus_dmamap_sync(sc->sc_dmat, data->map, sizeof(*pkt),(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (sizeof(*pkt)), (sizeof(*phy_info)), (0x02)) |
| 4662 | sizeof(*phy_info), BUS_DMASYNC_POSTREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (sizeof(*pkt)), (sizeof(*phy_info)), (0x02)); |
| 4663 | |
| 4664 | memcpy(&sc->sc_last_phy_info, phy_info, sizeof(sc->sc_last_phy_info))__builtin_memcpy((&sc->sc_last_phy_info), (phy_info), ( sizeof(sc->sc_last_phy_info))); |
| 4665 | } |
| 4666 | |
| 4667 | /* |
| 4668 | * Retrieve the average noise (in dBm) among receivers. |
| 4669 | */ |
| 4670 | int |
| 4671 | iwm_get_noise(const struct iwm_statistics_rx_non_phy *stats) |
| 4672 | { |
| 4673 | int i, total, nbant, noise; |
| 4674 | |
| 4675 | total = nbant = noise = 0; |
| 4676 | for (i = 0; i < 3; i++) { |
| 4677 | noise = letoh32(stats->beacon_silence_rssi[i])((__uint32_t)(stats->beacon_silence_rssi[i])) & 0xff; |
| 4678 | if (noise) { |
| 4679 | total += noise; |
| 4680 | nbant++; |
| 4681 | } |
| 4682 | } |
| 4683 | |
| 4684 | /* There should be at least one antenna but check anyway. */ |
| 4685 | return (nbant == 0) ? -127 : (total / nbant) - 107; |
| 4686 | } |
| 4687 | |
| 4688 | int |
| 4689 | iwm_ccmp_decap(struct iwm_softc *sc, struct mbuf *m, struct ieee80211_node *ni, |
| 4690 | struct ieee80211_rxinfo *rxi) |
| 4691 | { |
| 4692 | struct ieee80211com *ic = &sc->sc_ic; |
| 4693 | struct ieee80211_key *k = &ni->ni_pairwise_key; |
| 4694 | struct ieee80211_frame *wh; |
| 4695 | uint64_t pn, *prsc; |
| 4696 | uint8_t *ivp; |
| 4697 | uint8_t tid; |
| 4698 | int hdrlen, hasqos; |
| 4699 | |
| 4700 | wh = mtod(m, struct ieee80211_frame *)((struct ieee80211_frame *)((m)->m_hdr.mh_data)); |
| 4701 | hdrlen = ieee80211_get_hdrlen(wh); |
| 4702 | ivp = (uint8_t *)wh + hdrlen; |
| 4703 | |
| 4704 | /* Check that ExtIV bit is set. */ |
| 4705 | if (!(ivp[3] & IEEE80211_WEP_EXTIV0x20)) |
| 4706 | return 1; |
| 4707 | |
| 4708 | hasqos = ieee80211_has_qos(wh); |
| 4709 | tid = hasqos ? ieee80211_get_qos(wh) & IEEE80211_QOS_TID0x000f : 0; |
| 4710 | prsc = &k->k_rsc[tid]; |
| 4711 | |
| 4712 | /* Extract the 48-bit PN from the CCMP header. */ |
| 4713 | pn = (uint64_t)ivp[0] | |
| 4714 | (uint64_t)ivp[1] << 8 | |
| 4715 | (uint64_t)ivp[4] << 16 | |
| 4716 | (uint64_t)ivp[5] << 24 | |
| 4717 | (uint64_t)ivp[6] << 32 | |
| 4718 | (uint64_t)ivp[7] << 40; |
| 4719 | if (rxi->rxi_flags & IEEE80211_RXI_HWDEC_SAME_PN0x00000004) { |
| 4720 | if (pn < *prsc) { |
| 4721 | ic->ic_stats.is_ccmp_replays++; |
| 4722 | return 1; |
| 4723 | } |
| 4724 | } else if (pn <= *prsc) { |
| 4725 | ic->ic_stats.is_ccmp_replays++; |
| 4726 | return 1; |
| 4727 | } |
| 4728 | /* Last seen packet number is updated in ieee80211_inputm(). */ |
| 4729 | |
| 4730 | /* |
| 4731 | * Some firmware versions strip the MIC, and some don't. It is not |
| 4732 | * clear which of the capability flags could tell us what to expect. |
| 4733 | * For now, keep things simple and just leave the MIC in place if |
| 4734 | * it is present. |
| 4735 | * |
| 4736 | * The IV will be stripped by ieee80211_inputm(). |
| 4737 | */ |
| 4738 | return 0; |
| 4739 | } |
| 4740 | |
| 4741 | int |
| 4742 | iwm_rx_hwdecrypt(struct iwm_softc *sc, struct mbuf *m, uint32_t rx_pkt_status, |
| 4743 | struct ieee80211_rxinfo *rxi) |
| 4744 | { |
| 4745 | struct ieee80211com *ic = &sc->sc_ic; |
| 4746 | struct ifnet *ifp = IC2IFP(ic)(&(ic)->ic_ac.ac_if); |
| 4747 | struct ieee80211_frame *wh; |
| 4748 | struct ieee80211_node *ni; |
| 4749 | int ret = 0; |
| 4750 | uint8_t type, subtype; |
| 4751 | |
| 4752 | wh = mtod(m, struct ieee80211_frame *)((struct ieee80211_frame *)((m)->m_hdr.mh_data)); |
| 4753 | |
| 4754 | type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK0x0c; |
| 4755 | if (type == IEEE80211_FC0_TYPE_CTL0x04) |
| 4756 | return 0; |
| 4757 | |
| 4758 | subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK0xf0; |
| 4759 | if (ieee80211_has_qos(wh) && (subtype & IEEE80211_FC0_SUBTYPE_NODATA0x40)) |
| 4760 | return 0; |
| 4761 | |
| 4762 | if (IEEE80211_IS_MULTICAST(wh->i_addr1)(*(wh->i_addr1) & 0x01) || |
| 4763 | !(wh->i_fc[1] & IEEE80211_FC1_PROTECTED0x40)) |
| 4764 | return 0; |
| 4765 | |
| 4766 | ni = ieee80211_find_rxnode(ic, wh); |
| 4767 | /* Handle hardware decryption. */ |
| 4768 | if ((ni->ni_flags & IEEE80211_NODE_RXPROT0x0008) && |
| 4769 | ni->ni_pairwise_key.k_cipher == IEEE80211_CIPHER_CCMP) { |
| 4770 | if ((rx_pkt_status & IWM_RX_MPDU_RES_STATUS_SEC_ENC_MSK(7 << 8)) != |
| 4771 | IWM_RX_MPDU_RES_STATUS_SEC_CCM_ENC(2 << 8)) { |
| 4772 | ic->ic_stats.is_ccmp_dec_errs++; |
| 4773 | ret = 1; |
| 4774 | goto out; |
| 4775 | } |
| 4776 | /* Check whether decryption was successful or not. */ |
| 4777 | if ((rx_pkt_status & |
| 4778 | (IWM_RX_MPDU_RES_STATUS_DEC_DONE(1 << 11) | |
| 4779 | IWM_RX_MPDU_RES_STATUS_MIC_OK(1 << 6))) != |
| 4780 | (IWM_RX_MPDU_RES_STATUS_DEC_DONE(1 << 11) | |
| 4781 | IWM_RX_MPDU_RES_STATUS_MIC_OK(1 << 6))) { |
| 4782 | ic->ic_stats.is_ccmp_dec_errs++; |
| 4783 | ret = 1; |
| 4784 | goto out; |
| 4785 | } |
| 4786 | rxi->rxi_flags |= IEEE80211_RXI_HWDEC0x00000001; |
| 4787 | } |
| 4788 | out: |
| 4789 | if (ret) |
| 4790 | ifp->if_ierrorsif_data.ifi_ierrors++; |
| 4791 | ieee80211_release_node(ic, ni); |
| 4792 | return ret; |
| 4793 | } |
| 4794 | |
| 4795 | void |
| 4796 | iwm_rx_frame(struct iwm_softc *sc, struct mbuf *m, int chanidx, |
| 4797 | uint32_t rx_pkt_status, int is_shortpre, int rate_n_flags, |
| 4798 | uint32_t device_timestamp, struct ieee80211_rxinfo *rxi, |
| 4799 | struct mbuf_list *ml) |
| 4800 | { |
| 4801 | struct ieee80211com *ic = &sc->sc_ic; |
| 4802 | struct ifnet *ifp = IC2IFP(ic)(&(ic)->ic_ac.ac_if); |
| 4803 | struct ieee80211_frame *wh; |
| 4804 | struct ieee80211_node *ni; |
| 4805 | |
| 4806 | if (chanidx < 0 || chanidx >= nitems(ic->ic_channels)(sizeof((ic->ic_channels)) / sizeof((ic->ic_channels)[0 ]))) |
| 4807 | chanidx = ieee80211_chan2ieee(ic, ic->ic_ibss_chan); |
| 4808 | |
| 4809 | wh = mtod(m, struct ieee80211_frame *)((struct ieee80211_frame *)((m)->m_hdr.mh_data)); |
| 4810 | ni = ieee80211_find_rxnode(ic, wh); |
| 4811 | if ((rxi->rxi_flags & IEEE80211_RXI_HWDEC0x00000001) && |
| 4812 | iwm_ccmp_decap(sc, m, ni, rxi) != 0) { |
| 4813 | ifp->if_ierrorsif_data.ifi_ierrors++; |
| 4814 | m_freem(m); |
| 4815 | ieee80211_release_node(ic, ni); |
| 4816 | return; |
| 4817 | } |
| 4818 | |
| 4819 | #if NBPFILTER1 > 0 |
| 4820 | if (sc->sc_drvbpf != NULL((void *)0)) { |
| 4821 | struct iwm_rx_radiotap_header *tap = &sc->sc_rxtapsc_rxtapu.th; |
| 4822 | uint16_t chan_flags; |
| 4823 | |
| 4824 | tap->wr_flags = 0; |
| 4825 | if (is_shortpre) |
| 4826 | tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE0x02; |
| 4827 | tap->wr_chan_freq = |
| 4828 | htole16(ic->ic_channels[chanidx].ic_freq)((__uint16_t)(ic->ic_channels[chanidx].ic_freq)); |
| 4829 | chan_flags = ic->ic_channels[chanidx].ic_flags; |
| 4830 | if (ic->ic_curmode != IEEE80211_MODE_11N && |
| 4831 | ic->ic_curmode != IEEE80211_MODE_11AC) { |
| 4832 | chan_flags &= ~IEEE80211_CHAN_HT0x2000; |
| 4833 | chan_flags &= ~IEEE80211_CHAN_40MHZ0x8000; |
| 4834 | } |
| 4835 | if (ic->ic_curmode != IEEE80211_MODE_11AC) |
| 4836 | chan_flags &= ~IEEE80211_CHAN_VHT0x4000; |
| 4837 | tap->wr_chan_flags = htole16(chan_flags)((__uint16_t)(chan_flags)); |
| 4838 | tap->wr_dbm_antsignal = (int8_t)rxi->rxi_rssi; |
| 4839 | tap->wr_dbm_antnoise = (int8_t)sc->sc_noise; |
| 4840 | tap->wr_tsft = device_timestamp; |
| 4841 | if (rate_n_flags & IWM_RATE_MCS_HT_MSK(1 << 8)) { |
| 4842 | uint8_t mcs = (rate_n_flags & |
| 4843 | (IWM_RATE_HT_MCS_RATE_CODE_MSK0x7 | |
| 4844 | IWM_RATE_HT_MCS_NSS_MSK(3 << 3))); |
| 4845 | tap->wr_rate = (0x80 | mcs); |
| 4846 | } else { |
| 4847 | uint8_t rate = (rate_n_flags & |
| 4848 | IWM_RATE_LEGACY_RATE_MSK0xff); |
| 4849 | switch (rate) { |
| 4850 | /* CCK rates. */ |
| 4851 | case 10: tap->wr_rate = 2; break; |
| 4852 | case 20: tap->wr_rate = 4; break; |
| 4853 | case 55: tap->wr_rate = 11; break; |
| 4854 | case 110: tap->wr_rate = 22; break; |
| 4855 | /* OFDM rates. */ |
| 4856 | case 0xd: tap->wr_rate = 12; break; |
| 4857 | case 0xf: tap->wr_rate = 18; break; |
| 4858 | case 0x5: tap->wr_rate = 24; break; |
| 4859 | case 0x7: tap->wr_rate = 36; break; |
| 4860 | case 0x9: tap->wr_rate = 48; break; |
| 4861 | case 0xb: tap->wr_rate = 72; break; |
| 4862 | case 0x1: tap->wr_rate = 96; break; |
| 4863 | case 0x3: tap->wr_rate = 108; break; |
| 4864 | /* Unknown rate: should not happen. */ |
| 4865 | default: tap->wr_rate = 0; |
| 4866 | } |
| 4867 | } |
| 4868 | |
| 4869 | bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_rxtap_len, |
| 4870 | m, BPF_DIRECTION_IN(1 << 0)); |
| 4871 | } |
| 4872 | #endif |
| 4873 | ieee80211_inputm(IC2IFP(ic)(&(ic)->ic_ac.ac_if), m, ni, rxi, ml); |
| 4874 | ieee80211_release_node(ic, ni); |
| 4875 | } |
| 4876 | |
| 4877 | void |
| 4878 | iwm_rx_mpdu(struct iwm_softc *sc, struct mbuf *m, void *pktdata, |
| 4879 | size_t maxlen, struct mbuf_list *ml) |
| 4880 | { |
| 4881 | struct ieee80211com *ic = &sc->sc_ic; |
| 4882 | struct ieee80211_rxinfo rxi; |
| 4883 | struct iwm_rx_phy_info *phy_info; |
| 4884 | struct iwm_rx_mpdu_res_start *rx_res; |
| 4885 | int device_timestamp; |
| 4886 | uint16_t phy_flags; |
| 4887 | uint32_t len; |
| 4888 | uint32_t rx_pkt_status; |
| 4889 | int rssi, chanidx, rate_n_flags; |
| 4890 | |
| 4891 | memset(&rxi, 0, sizeof(rxi))__builtin_memset((&rxi), (0), (sizeof(rxi))); |
| 4892 | |
| 4893 | phy_info = &sc->sc_last_phy_info; |
| 4894 | rx_res = (struct iwm_rx_mpdu_res_start *)pktdata; |
| 4895 | len = le16toh(rx_res->byte_count)((__uint16_t)(rx_res->byte_count)); |
| 4896 | if (ic->ic_opmode == IEEE80211_M_MONITOR) { |
| 4897 | /* Allow control frames in monitor mode. */ |
| 4898 | if (len < sizeof(struct ieee80211_frame_cts)) { |
| 4899 | ic->ic_stats.is_rx_tooshort++; |
| 4900 | IC2IFP(ic)(&(ic)->ic_ac.ac_if)->if_ierrorsif_data.ifi_ierrors++; |
| 4901 | m_freem(m); |
| 4902 | return; |
| 4903 | } |
| 4904 | } else if (len < sizeof(struct ieee80211_frame)) { |
| 4905 | ic->ic_stats.is_rx_tooshort++; |
| 4906 | IC2IFP(ic)(&(ic)->ic_ac.ac_if)->if_ierrorsif_data.ifi_ierrors++; |
| 4907 | m_freem(m); |
| 4908 | return; |
| 4909 | } |
| 4910 | if (len > maxlen - sizeof(*rx_res)) { |
| 4911 | IC2IFP(ic)(&(ic)->ic_ac.ac_if)->if_ierrorsif_data.ifi_ierrors++; |
| 4912 | m_freem(m); |
| 4913 | return; |
| 4914 | } |
| 4915 | |
| 4916 | if (__predict_false(phy_info->cfg_phy_cnt > 20)__builtin_expect(((phy_info->cfg_phy_cnt > 20) != 0), 0 )) { |
| 4917 | m_freem(m); |
| 4918 | return; |
| 4919 | } |
| 4920 | |
| 4921 | rx_pkt_status = le32toh(*(uint32_t *)(pktdata + sizeof(*rx_res) + len))((__uint32_t)(*(uint32_t *)(pktdata + sizeof(*rx_res) + len)) ); |
| 4922 | if (!(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_CRC_OK(1 << 0)) || |
| 4923 | !(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_OVERRUN_OK(1 << 1))) { |
| 4924 | m_freem(m); |
| 4925 | return; /* drop */ |
| 4926 | } |
| 4927 | |
| 4928 | m->m_datam_hdr.mh_data = pktdata + sizeof(*rx_res); |
| 4929 | m->m_pkthdrM_dat.MH.MH_pkthdr.len = m->m_lenm_hdr.mh_len = len; |
| 4930 | |
| 4931 | if (iwm_rx_hwdecrypt(sc, m, rx_pkt_status, &rxi)) { |
| 4932 | m_freem(m); |
| 4933 | return; |
| 4934 | } |
| 4935 | |
| 4936 | chanidx = letoh32(phy_info->channel)((__uint32_t)(phy_info->channel)); |
| 4937 | device_timestamp = le32toh(phy_info->system_timestamp)((__uint32_t)(phy_info->system_timestamp)); |
| 4938 | phy_flags = letoh16(phy_info->phy_flags)((__uint16_t)(phy_info->phy_flags)); |
| 4939 | rate_n_flags = le32toh(phy_info->rate_n_flags)((__uint32_t)(phy_info->rate_n_flags)); |
| 4940 | |
| 4941 | rssi = iwm_get_signal_strength(sc, phy_info); |
| 4942 | rssi = (0 - IWM_MIN_DBM-100) + rssi; /* normalize */ |
| 4943 | rssi = MIN(rssi, ic->ic_max_rssi)(((rssi)<(ic->ic_max_rssi))?(rssi):(ic->ic_max_rssi) ); /* clip to max. 100% */ |
| 4944 | |
| 4945 | rxi.rxi_rssi = rssi; |
| 4946 | rxi.rxi_tstamp = device_timestamp; |
| 4947 | rxi.rxi_chan = chanidx; |
| 4948 | |
| 4949 | iwm_rx_frame(sc, m, chanidx, rx_pkt_status, |
| 4950 | (phy_flags & IWM_PHY_INFO_FLAG_SHPREAMBLE(1 << 2)), |
| 4951 | rate_n_flags, device_timestamp, &rxi, ml); |
| 4952 | } |
| 4953 | |
| 4954 | void |
| 4955 | iwm_flip_address(uint8_t *addr) |
| 4956 | { |
| 4957 | int i; |
| 4958 | uint8_t mac_addr[ETHER_ADDR_LEN6]; |
| 4959 | |
| 4960 | for (i = 0; i < ETHER_ADDR_LEN6; i++) |
| 4961 | mac_addr[i] = addr[ETHER_ADDR_LEN6 - i - 1]; |
| 4962 | IEEE80211_ADDR_COPY(addr, mac_addr)__builtin_memcpy((addr), (mac_addr), (6)); |
| 4963 | } |
| 4964 | |
| 4965 | /* |
| 4966 | * Drop duplicate 802.11 retransmissions |
| 4967 | * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") |
| 4968 | * and handle pseudo-duplicate frames which result from deaggregation |
| 4969 | * of A-MSDU frames in hardware. |
| 4970 | */ |
| 4971 | int |
| 4972 | iwm_detect_duplicate(struct iwm_softc *sc, struct mbuf *m, |
| 4973 | struct iwm_rx_mpdu_desc *desc, struct ieee80211_rxinfo *rxi) |
| 4974 | { |
| 4975 | struct ieee80211com *ic = &sc->sc_ic; |
| 4976 | struct iwm_node *in = (void *)ic->ic_bss; |
| 4977 | struct iwm_rxq_dup_data *dup_data = &in->dup_data; |
| 4978 | uint8_t tid = IWM_MAX_TID_COUNT8, subframe_idx; |
| 4979 | struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *)((struct ieee80211_frame *)((m)->m_hdr.mh_data)); |
| 4980 | uint8_t type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK0x0c; |
| 4981 | uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK0xf0; |
| 4982 | int hasqos = ieee80211_has_qos(wh); |
| 4983 | uint16_t seq; |
| 4984 | |
| 4985 | if (type == IEEE80211_FC0_TYPE_CTL0x04 || |
| 4986 | (hasqos && (subtype & IEEE80211_FC0_SUBTYPE_NODATA0x40)) || |
| 4987 | IEEE80211_IS_MULTICAST(wh->i_addr1)(*(wh->i_addr1) & 0x01)) |
| 4988 | return 0; |
| 4989 | |
| 4990 | if (hasqos) { |
| 4991 | tid = (ieee80211_get_qos(wh) & IEEE80211_QOS_TID0x000f); |
| 4992 | if (tid > IWM_MAX_TID_COUNT8) |
| 4993 | tid = IWM_MAX_TID_COUNT8; |
| 4994 | } |
| 4995 | |
| 4996 | /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */ |
| 4997 | subframe_idx = desc->amsdu_info & |
| 4998 | IWM_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK0x7f; |
| 4999 | |
| 5000 | seq = letoh16(*(u_int16_t *)wh->i_seq)((__uint16_t)(*(u_int16_t *)wh->i_seq)) >> IEEE80211_SEQ_SEQ_SHIFT4; |
| 5001 | if ((wh->i_fc[1] & IEEE80211_FC1_RETRY0x08) && |
| 5002 | dup_data->last_seq[tid] == seq && |
| 5003 | dup_data->last_sub_frame[tid] >= subframe_idx) |
| 5004 | return 1; |
| 5005 | |
| 5006 | /* |
| 5007 | * Allow the same frame sequence number for all A-MSDU subframes |
| 5008 | * following the first subframe. |
| 5009 | * Otherwise these subframes would be discarded as replays. |
| 5010 | */ |
| 5011 | if (dup_data->last_seq[tid] == seq && |
| 5012 | subframe_idx > dup_data->last_sub_frame[tid] && |
| 5013 | (desc->mac_flags2 & IWM_RX_MPDU_MFLG2_AMSDU0x40)) { |
| 5014 | rxi->rxi_flags |= IEEE80211_RXI_SAME_SEQ0x00000008; |
| 5015 | } |
| 5016 | |
| 5017 | dup_data->last_seq[tid] = seq; |
| 5018 | dup_data->last_sub_frame[tid] = subframe_idx; |
| 5019 | |
| 5020 | return 0; |
| 5021 | } |
| 5022 | |
| 5023 | /* |
| 5024 | * Returns true if sn2 - buffer_size < sn1 < sn2. |
| 5025 | * To be used only in order to compare reorder buffer head with NSSN. |
| 5026 | * We fully trust NSSN unless it is behind us due to reorder timeout. |
| 5027 | * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN. |
| 5028 | */ |
| 5029 | int |
| 5030 | iwm_is_sn_less(uint16_t sn1, uint16_t sn2, uint16_t buffer_size) |
| 5031 | { |
| 5032 | return SEQ_LT(sn1, sn2)((((u_int16_t)(sn1) - (u_int16_t)(sn2)) & 0xfff) > 2048 ) && !SEQ_LT(sn1, sn2 - buffer_size)((((u_int16_t)(sn1) - (u_int16_t)(sn2 - buffer_size)) & 0xfff ) > 2048); |
| 5033 | } |
| 5034 | |
| 5035 | void |
| 5036 | iwm_release_frames(struct iwm_softc *sc, struct ieee80211_node *ni, |
| 5037 | struct iwm_rxba_data *rxba, struct iwm_reorder_buffer *reorder_buf, |
| 5038 | uint16_t nssn, struct mbuf_list *ml) |
| 5039 | { |
| 5040 | struct iwm_reorder_buf_entry *entries = &rxba->entries[0]; |
| 5041 | uint16_t ssn = reorder_buf->head_sn; |
| 5042 | |
| 5043 | /* ignore nssn smaller than head sn - this can happen due to timeout */ |
| 5044 | if (iwm_is_sn_less(nssn, ssn, reorder_buf->buf_size)) |
| 5045 | goto set_timer; |
| 5046 | |
| 5047 | while (iwm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) { |
| 5048 | int index = ssn % reorder_buf->buf_size; |
| 5049 | struct mbuf *m; |
| 5050 | int chanidx, is_shortpre; |
| 5051 | uint32_t rx_pkt_status, rate_n_flags, device_timestamp; |
| 5052 | struct ieee80211_rxinfo *rxi; |
| 5053 | |
| 5054 | /* This data is the same for all A-MSDU subframes. */ |
| 5055 | chanidx = entries[index].chanidx; |
| 5056 | rx_pkt_status = entries[index].rx_pkt_status; |
| 5057 | is_shortpre = entries[index].is_shortpre; |
| 5058 | rate_n_flags = entries[index].rate_n_flags; |
| 5059 | device_timestamp = entries[index].device_timestamp; |
| 5060 | rxi = &entries[index].rxi; |
| 5061 | |
| 5062 | /* |
| 5063 | * Empty the list. Will have more than one frame for A-MSDU. |
| 5064 | * Empty list is valid as well since nssn indicates frames were |
| 5065 | * received. |
| 5066 | */ |
| 5067 | while ((m = ml_dequeue(&entries[index].frames)) != NULL((void *)0)) { |
| 5068 | iwm_rx_frame(sc, m, chanidx, rx_pkt_status, is_shortpre, |
| 5069 | rate_n_flags, device_timestamp, rxi, ml); |
| 5070 | reorder_buf->num_stored--; |
| 5071 | |
| 5072 | /* |
| 5073 | * Allow the same frame sequence number and CCMP PN for |
| 5074 | * all A-MSDU subframes following the first subframe. |
| 5075 | * Otherwise they would be discarded as replays. |
| 5076 | */ |
| 5077 | rxi->rxi_flags |= IEEE80211_RXI_SAME_SEQ0x00000008; |
| 5078 | rxi->rxi_flags |= IEEE80211_RXI_HWDEC_SAME_PN0x00000004; |
| 5079 | } |
| 5080 | |
| 5081 | ssn = (ssn + 1) & 0xfff; |
| 5082 | } |
| 5083 | reorder_buf->head_sn = nssn; |
| 5084 | |
| 5085 | set_timer: |
| 5086 | if (reorder_buf->num_stored && !reorder_buf->removed) { |
| 5087 | timeout_add_usec(&reorder_buf->reorder_timer, |
| 5088 | RX_REORDER_BUF_TIMEOUT_MQ_USEC(100000ULL)); |
| 5089 | } else |
| 5090 | timeout_del(&reorder_buf->reorder_timer); |
| 5091 | } |
| 5092 | |
| 5093 | int |
| 5094 | iwm_oldsn_workaround(struct iwm_softc *sc, struct ieee80211_node *ni, int tid, |
| 5095 | struct iwm_reorder_buffer *buffer, uint32_t reorder_data, uint32_t gp2) |
| 5096 | { |
| 5097 | struct ieee80211com *ic = &sc->sc_ic; |
| 5098 | |
| 5099 | if (gp2 != buffer->consec_oldsn_ampdu_gp2) { |
| 5100 | /* we have a new (A-)MPDU ... */ |
| 5101 | |
| 5102 | /* |
| 5103 | * reset counter to 0 if we didn't have any oldsn in |
| 5104 | * the last A-MPDU (as detected by GP2 being identical) |
| 5105 | */ |
| 5106 | if (!buffer->consec_oldsn_prev_drop) |
| 5107 | buffer->consec_oldsn_drops = 0; |
| 5108 | |
| 5109 | /* either way, update our tracking state */ |
| 5110 | buffer->consec_oldsn_ampdu_gp2 = gp2; |
| 5111 | } else if (buffer->consec_oldsn_prev_drop) { |
| 5112 | /* |
| 5113 | * tracking state didn't change, and we had an old SN |
| 5114 | * indication before - do nothing in this case, we |
| 5115 | * already noted this one down and are waiting for the |
| 5116 | * next A-MPDU (by GP2) |
| 5117 | */ |
| 5118 | return 0; |
| 5119 | } |
| 5120 | |
| 5121 | /* return unless this MPDU has old SN */ |
| 5122 | if (!(reorder_data & IWM_RX_MPDU_REORDER_BA_OLD_SN0x80000000)) |
| 5123 | return 0; |
| 5124 | |
| 5125 | /* update state */ |
| 5126 | buffer->consec_oldsn_prev_drop = 1; |
| 5127 | buffer->consec_oldsn_drops++; |
| 5128 | |
| 5129 | /* if limit is reached, send del BA and reset state */ |
| 5130 | if (buffer->consec_oldsn_drops == IWM_AMPDU_CONSEC_DROPS_DELBA10) { |
| 5131 | ieee80211_delba_request(ic, ni, IEEE80211_REASON_UNSPECIFIED, |
| 5132 | 0, tid); |
| 5133 | buffer->consec_oldsn_prev_drop = 0; |
| 5134 | buffer->consec_oldsn_drops = 0; |
| 5135 | return 1; |
| 5136 | } |
| 5137 | |
| 5138 | return 0; |
| 5139 | } |
| 5140 | |
| 5141 | /* |
| 5142 | * Handle re-ordering of frames which were de-aggregated in hardware. |
| 5143 | * Returns 1 if the MPDU was consumed (buffered or dropped). |
| 5144 | * Returns 0 if the MPDU should be passed to upper layer. |
| 5145 | */ |
| 5146 | int |
| 5147 | iwm_rx_reorder(struct iwm_softc *sc, struct mbuf *m, int chanidx, |
| 5148 | struct iwm_rx_mpdu_desc *desc, int is_shortpre, int rate_n_flags, |
| 5149 | uint32_t device_timestamp, struct ieee80211_rxinfo *rxi, |
| 5150 | struct mbuf_list *ml) |
| 5151 | { |
| 5152 | struct ieee80211com *ic = &sc->sc_ic; |
| 5153 | struct ieee80211_frame *wh; |
| 5154 | struct ieee80211_node *ni; |
| 5155 | struct iwm_rxba_data *rxba; |
| 5156 | struct iwm_reorder_buffer *buffer; |
| 5157 | uint32_t reorder_data = le32toh(desc->reorder_data)((__uint32_t)(desc->reorder_data)); |
| 5158 | int is_amsdu = (desc->mac_flags2 & IWM_RX_MPDU_MFLG2_AMSDU0x40); |
| 5159 | int last_subframe = |
| 5160 | (desc->amsdu_info & IWM_RX_MPDU_AMSDU_LAST_SUBFRAME0x80); |
| 5161 | uint8_t tid; |
| 5162 | uint8_t subframe_idx = (desc->amsdu_info & |
| 5163 | IWM_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK0x7f); |
| 5164 | struct iwm_reorder_buf_entry *entries; |
| 5165 | int index; |
| 5166 | uint16_t nssn, sn; |
| 5167 | uint8_t baid, type, subtype; |
| 5168 | int hasqos; |
| 5169 | |
| 5170 | wh = mtod(m, struct ieee80211_frame *)((struct ieee80211_frame *)((m)->m_hdr.mh_data)); |
| 5171 | hasqos = ieee80211_has_qos(wh); |
| 5172 | tid = hasqos ? ieee80211_get_qos(wh) & IEEE80211_QOS_TID0x000f : 0; |
| 5173 | |
| 5174 | type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK0x0c; |
| 5175 | subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK0xf0; |
| 5176 | |
| 5177 | /* |
| 5178 | * We are only interested in Block Ack requests and unicast QoS data. |
| 5179 | */ |
| 5180 | if (IEEE80211_IS_MULTICAST(wh->i_addr1)(*(wh->i_addr1) & 0x01)) |
| 5181 | return 0; |
| 5182 | if (hasqos) { |
| 5183 | if (subtype & IEEE80211_FC0_SUBTYPE_NODATA0x40) |
| 5184 | return 0; |
| 5185 | } else { |
| 5186 | if (type != IEEE80211_FC0_TYPE_CTL0x04 || |
| 5187 | subtype != IEEE80211_FC0_SUBTYPE_BAR0x80) |
| 5188 | return 0; |
| 5189 | } |
| 5190 | |
| 5191 | baid = (reorder_data & IWM_RX_MPDU_REORDER_BAID_MASK0x7f000000) >> |
| 5192 | IWM_RX_MPDU_REORDER_BAID_SHIFT24; |
| 5193 | if (baid == IWM_RX_REORDER_DATA_INVALID_BAID0x7f || |
| 5194 | baid >= nitems(sc->sc_rxba_data)(sizeof((sc->sc_rxba_data)) / sizeof((sc->sc_rxba_data) [0]))) |
| 5195 | return 0; |
| 5196 | |
| 5197 | rxba = &sc->sc_rxba_data[baid]; |
| 5198 | if (rxba->baid == IWM_RX_REORDER_DATA_INVALID_BAID0x7f || |
| 5199 | tid != rxba->tid || rxba->sta_id != IWM_STATION_ID0) |
| 5200 | return 0; |
| 5201 | |
| 5202 | if (rxba->timeout != 0) |
| 5203 | getmicrouptime(&rxba->last_rx); |
| 5204 | |
| 5205 | /* Bypass A-MPDU re-ordering in net80211. */ |
| 5206 | rxi->rxi_flags |= IEEE80211_RXI_AMPDU_DONE0x00000002; |
| 5207 | |
| 5208 | nssn = reorder_data & IWM_RX_MPDU_REORDER_NSSN_MASK0x00000fff; |
| 5209 | sn = (reorder_data & IWM_RX_MPDU_REORDER_SN_MASK0x00fff000) >> |
| 5210 | IWM_RX_MPDU_REORDER_SN_SHIFT12; |
| 5211 | |
| 5212 | buffer = &rxba->reorder_buf; |
| 5213 | entries = &rxba->entries[0]; |
| 5214 | |
| 5215 | if (!buffer->valid) { |
| 5216 | if (reorder_data & IWM_RX_MPDU_REORDER_BA_OLD_SN0x80000000) |
| 5217 | return 0; |
| 5218 | buffer->valid = 1; |
| 5219 | } |
| 5220 | |
| 5221 | ni = ieee80211_find_rxnode(ic, wh); |
| 5222 | if (type == IEEE80211_FC0_TYPE_CTL0x04 && |
| 5223 | subtype == IEEE80211_FC0_SUBTYPE_BAR0x80) { |
| 5224 | iwm_release_frames(sc, ni, rxba, buffer, nssn, ml); |
| 5225 | goto drop; |
| 5226 | } |
| 5227 | |
| 5228 | /* |
| 5229 | * If there was a significant jump in the nssn - adjust. |
| 5230 | * If the SN is smaller than the NSSN it might need to first go into |
| 5231 | * the reorder buffer, in which case we just release up to it and the |
| 5232 | * rest of the function will take care of storing it and releasing up to |
| 5233 | * the nssn. |
| 5234 | */ |
| 5235 | if (!iwm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size, |
| 5236 | buffer->buf_size) || |
| 5237 | !SEQ_LT(sn, buffer->head_sn + buffer->buf_size)((((u_int16_t)(sn) - (u_int16_t)(buffer->head_sn + buffer-> buf_size)) & 0xfff) > 2048)) { |
| 5238 | uint16_t min_sn = SEQ_LT(sn, nssn)((((u_int16_t)(sn) - (u_int16_t)(nssn)) & 0xfff) > 2048 ) ? sn : nssn; |
| 5239 | ic->ic_stats.is_ht_rx_frame_above_ba_winend++; |
| 5240 | iwm_release_frames(sc, ni, rxba, buffer, min_sn, ml); |
| 5241 | } |
| 5242 | |
| 5243 | if (iwm_oldsn_workaround(sc, ni, tid, buffer, reorder_data, |
| 5244 | device_timestamp)) { |
| 5245 | /* BA session will be torn down. */ |
| 5246 | ic->ic_stats.is_ht_rx_ba_window_jump++; |
| 5247 | goto drop; |
| 5248 | |
| 5249 | } |
| 5250 | |
| 5251 | /* drop any outdated packets */ |
| 5252 | if (SEQ_LT(sn, buffer->head_sn)((((u_int16_t)(sn) - (u_int16_t)(buffer->head_sn)) & 0xfff ) > 2048)) { |
| 5253 | ic->ic_stats.is_ht_rx_frame_below_ba_winstart++; |
| 5254 | goto drop; |
| 5255 | } |
| 5256 | |
| 5257 | /* release immediately if allowed by nssn and no stored frames */ |
| 5258 | if (!buffer->num_stored && SEQ_LT(sn, nssn)((((u_int16_t)(sn) - (u_int16_t)(nssn)) & 0xfff) > 2048 )) { |
| 5259 | if (iwm_is_sn_less(buffer->head_sn, nssn, buffer->buf_size) && |
| 5260 | (!is_amsdu || last_subframe)) |
| 5261 | buffer->head_sn = nssn; |
| 5262 | ieee80211_release_node(ic, ni); |
| 5263 | return 0; |
| 5264 | } |
| 5265 | |
| 5266 | /* |
| 5267 | * release immediately if there are no stored frames, and the sn is |
| 5268 | * equal to the head. |
| 5269 | * This can happen due to reorder timer, where NSSN is behind head_sn. |
| 5270 | * When we released everything, and we got the next frame in the |
| 5271 | * sequence, according to the NSSN we can't release immediately, |
| 5272 | * while technically there is no hole and we can move forward. |
| 5273 | */ |
| 5274 | if (!buffer->num_stored && sn == buffer->head_sn) { |
| 5275 | if (!is_amsdu || last_subframe) |
| 5276 | buffer->head_sn = (buffer->head_sn + 1) & 0xfff; |
| 5277 | ieee80211_release_node(ic, ni); |
| 5278 | return 0; |
| 5279 | } |
| 5280 | |
| 5281 | index = sn % buffer->buf_size; |
| 5282 | |
| 5283 | /* |
| 5284 | * Check if we already stored this frame |
| 5285 | * As AMSDU is either received or not as whole, logic is simple: |
| 5286 | * If we have frames in that position in the buffer and the last frame |
| 5287 | * originated from AMSDU had a different SN then it is a retransmission. |
| 5288 | * If it is the same SN then if the subframe index is incrementing it |
| 5289 | * is the same AMSDU - otherwise it is a retransmission. |
| 5290 | */ |
| 5291 | if (!ml_empty(&entries[index].frames)((&entries[index].frames)->ml_len == 0)) { |
| 5292 | if (!is_amsdu) { |
| 5293 | ic->ic_stats.is_ht_rx_ba_no_buf++; |
| 5294 | goto drop; |
| 5295 | } else if (sn != buffer->last_amsdu || |
| 5296 | buffer->last_sub_index >= subframe_idx) { |
| 5297 | ic->ic_stats.is_ht_rx_ba_no_buf++; |
| 5298 | goto drop; |
| 5299 | } |
| 5300 | } else { |
| 5301 | /* This data is the same for all A-MSDU subframes. */ |
| 5302 | entries[index].chanidx = chanidx; |
| 5303 | entries[index].is_shortpre = is_shortpre; |
| 5304 | entries[index].rate_n_flags = rate_n_flags; |
| 5305 | entries[index].device_timestamp = device_timestamp; |
| 5306 | memcpy(&entries[index].rxi, rxi, sizeof(entries[index].rxi))__builtin_memcpy((&entries[index].rxi), (rxi), (sizeof(entries [index].rxi))); |
| 5307 | } |
| 5308 | |
| 5309 | /* put in reorder buffer */ |
| 5310 | ml_enqueue(&entries[index].frames, m); |
| 5311 | buffer->num_stored++; |
| 5312 | getmicrouptime(&entries[index].reorder_time); |
| 5313 | |
| 5314 | if (is_amsdu) { |
| 5315 | buffer->last_amsdu = sn; |
| 5316 | buffer->last_sub_index = subframe_idx; |
| 5317 | } |
| 5318 | |
| 5319 | /* |
| 5320 | * We cannot trust NSSN for AMSDU sub-frames that are not the last. |
| 5321 | * The reason is that NSSN advances on the first sub-frame, and may |
| 5322 | * cause the reorder buffer to advance before all the sub-frames arrive. |
| 5323 | * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with |
| 5324 | * SN 1. NSSN for first sub frame will be 3 with the result of driver |
| 5325 | * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is |
| 5326 | * already ahead and it will be dropped. |
| 5327 | * If the last sub-frame is not on this queue - we will get frame |
| 5328 | * release notification with up to date NSSN. |
| 5329 | */ |
| 5330 | if (!is_amsdu || last_subframe) |
| 5331 | iwm_release_frames(sc, ni, rxba, buffer, nssn, ml); |
| 5332 | |
| 5333 | ieee80211_release_node(ic, ni); |
| 5334 | return 1; |
| 5335 | |
| 5336 | drop: |
| 5337 | m_freem(m); |
| 5338 | ieee80211_release_node(ic, ni); |
| 5339 | return 1; |
| 5340 | } |
| 5341 | |
| 5342 | void |
| 5343 | iwm_rx_mpdu_mq(struct iwm_softc *sc, struct mbuf *m, void *pktdata, |
| 5344 | size_t maxlen, struct mbuf_list *ml) |
| 5345 | { |
| 5346 | struct ieee80211com *ic = &sc->sc_ic; |
| 5347 | struct ieee80211_rxinfo rxi; |
| 5348 | struct iwm_rx_mpdu_desc *desc; |
| 5349 | uint32_t len, hdrlen, rate_n_flags, device_timestamp; |
| 5350 | int rssi; |
| 5351 | uint8_t chanidx; |
| 5352 | uint16_t phy_info; |
| 5353 | |
| 5354 | memset(&rxi, 0, sizeof(rxi))__builtin_memset((&rxi), (0), (sizeof(rxi))); |
| 5355 | |
| 5356 | desc = (struct iwm_rx_mpdu_desc *)pktdata; |
| 5357 | |
| 5358 | if (!(desc->status & htole16(IWM_RX_MPDU_RES_STATUS_CRC_OK)((__uint16_t)((1 << 0)))) || |
| 5359 | !(desc->status & htole16(IWM_RX_MPDU_RES_STATUS_OVERRUN_OK)((__uint16_t)((1 << 1))))) { |
| 5360 | m_freem(m); |
| 5361 | return; /* drop */ |
| 5362 | } |
| 5363 | |
| 5364 | len = le16toh(desc->mpdu_len)((__uint16_t)(desc->mpdu_len)); |
| 5365 | if (ic->ic_opmode == IEEE80211_M_MONITOR) { |
| 5366 | /* Allow control frames in monitor mode. */ |
| 5367 | if (len < sizeof(struct ieee80211_frame_cts)) { |
| 5368 | ic->ic_stats.is_rx_tooshort++; |
| 5369 | IC2IFP(ic)(&(ic)->ic_ac.ac_if)->if_ierrorsif_data.ifi_ierrors++; |
| 5370 | m_freem(m); |
| 5371 | return; |
| 5372 | } |
| 5373 | } else if (len < sizeof(struct ieee80211_frame)) { |
| 5374 | ic->ic_stats.is_rx_tooshort++; |
| 5375 | IC2IFP(ic)(&(ic)->ic_ac.ac_if)->if_ierrorsif_data.ifi_ierrors++; |
| 5376 | m_freem(m); |
| 5377 | return; |
| 5378 | } |
| 5379 | if (len > maxlen - sizeof(*desc)) { |
| 5380 | IC2IFP(ic)(&(ic)->ic_ac.ac_if)->if_ierrorsif_data.ifi_ierrors++; |
| 5381 | m_freem(m); |
| 5382 | return; |
| 5383 | } |
| 5384 | |
| 5385 | m->m_datam_hdr.mh_data = pktdata + sizeof(*desc); |
| 5386 | m->m_pkthdrM_dat.MH.MH_pkthdr.len = m->m_lenm_hdr.mh_len = len; |
| 5387 | |
| 5388 | /* Account for padding following the frame header. */ |
| 5389 | if (desc->mac_flags2 & IWM_RX_MPDU_MFLG2_PAD0x20) { |
| 5390 | struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *)((struct ieee80211_frame *)((m)->m_hdr.mh_data)); |
| 5391 | int type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK0x0c; |
| 5392 | if (type == IEEE80211_FC0_TYPE_CTL0x04) { |
| 5393 | switch (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK0xf0) { |
| 5394 | case IEEE80211_FC0_SUBTYPE_CTS0xc0: |
| 5395 | hdrlen = sizeof(struct ieee80211_frame_cts); |
| 5396 | break; |
| 5397 | case IEEE80211_FC0_SUBTYPE_ACK0xd0: |
| 5398 | hdrlen = sizeof(struct ieee80211_frame_ack); |
| 5399 | break; |
| 5400 | default: |
| 5401 | hdrlen = sizeof(struct ieee80211_frame_min); |
| 5402 | break; |
| 5403 | } |
| 5404 | } else |
| 5405 | hdrlen = ieee80211_get_hdrlen(wh); |
| 5406 | |
| 5407 | if ((le16toh(desc->status)((__uint16_t)(desc->status)) & |
| 5408 | IWM_RX_MPDU_RES_STATUS_SEC_ENC_MSK(7 << 8)) == |
| 5409 | IWM_RX_MPDU_RES_STATUS_SEC_CCM_ENC(2 << 8)) { |
| 5410 | /* Padding is inserted after the IV. */ |
| 5411 | hdrlen += IEEE80211_CCMP_HDRLEN8; |
| 5412 | } |
| 5413 | |
| 5414 | memmove(m->m_data + 2, m->m_data, hdrlen)__builtin_memmove((m->m_hdr.mh_data + 2), (m->m_hdr.mh_data ), (hdrlen)); |
| 5415 | m_adj(m, 2); |
| 5416 | } |
| 5417 | |
| 5418 | /* |
| 5419 | * Hardware de-aggregates A-MSDUs and copies the same MAC header |
| 5420 | * in place for each subframe. But it leaves the 'A-MSDU present' |
| 5421 | * bit set in the frame header. We need to clear this bit ourselves. |
| 5422 | * |
| 5423 | * And we must allow the same CCMP PN for subframes following the |
| 5424 | * first subframe. Otherwise they would be discarded as replays. |
| 5425 | */ |
| 5426 | if (desc->mac_flags2 & IWM_RX_MPDU_MFLG2_AMSDU0x40) { |
| 5427 | struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *)((struct ieee80211_frame *)((m)->m_hdr.mh_data)); |
| 5428 | uint8_t subframe_idx = (desc->amsdu_info & |
| 5429 | IWM_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK0x7f); |
| 5430 | if (subframe_idx > 0) |
| 5431 | rxi.rxi_flags |= IEEE80211_RXI_HWDEC_SAME_PN0x00000004; |
| 5432 | if (ieee80211_has_qos(wh) && ieee80211_has_addr4(wh) && |
| 5433 | m->m_lenm_hdr.mh_len >= sizeof(struct ieee80211_qosframe_addr4)) { |
| 5434 | struct ieee80211_qosframe_addr4 *qwh4 = mtod(m,((struct ieee80211_qosframe_addr4 *)((m)->m_hdr.mh_data)) |
| 5435 | struct ieee80211_qosframe_addr4 *)((struct ieee80211_qosframe_addr4 *)((m)->m_hdr.mh_data)); |
| 5436 | qwh4->i_qos[0] &= htole16(~IEEE80211_QOS_AMSDU)((__uint16_t)(~0x0080)); |
| 5437 | |
| 5438 | /* HW reverses addr3 and addr4. */ |
| 5439 | iwm_flip_address(qwh4->i_addr3); |
| 5440 | iwm_flip_address(qwh4->i_addr4); |
| 5441 | } else if (ieee80211_has_qos(wh) && |
| 5442 | m->m_lenm_hdr.mh_len >= sizeof(struct ieee80211_qosframe)) { |
| 5443 | struct ieee80211_qosframe *qwh = mtod(m,((struct ieee80211_qosframe *)((m)->m_hdr.mh_data)) |
| 5444 | struct ieee80211_qosframe *)((struct ieee80211_qosframe *)((m)->m_hdr.mh_data)); |
| 5445 | qwh->i_qos[0] &= htole16(~IEEE80211_QOS_AMSDU)((__uint16_t)(~0x0080)); |
| 5446 | |
| 5447 | /* HW reverses addr3. */ |
| 5448 | iwm_flip_address(qwh->i_addr3); |
| 5449 | } |
| 5450 | } |
| 5451 | |
| 5452 | /* |
| 5453 | * Verify decryption before duplicate detection. The latter uses |
| 5454 | * the TID supplied in QoS frame headers and this TID is implicitly |
| 5455 | * verified as part of the CCMP nonce. |
| 5456 | */ |
| 5457 | if (iwm_rx_hwdecrypt(sc, m, le16toh(desc->status)((__uint16_t)(desc->status)), &rxi)) { |
| 5458 | m_freem(m); |
| 5459 | return; |
| 5460 | } |
| 5461 | |
| 5462 | if (iwm_detect_duplicate(sc, m, desc, &rxi)) { |
| 5463 | m_freem(m); |
| 5464 | return; |
| 5465 | } |
| 5466 | |
| 5467 | phy_info = le16toh(desc->phy_info)((__uint16_t)(desc->phy_info)); |
| 5468 | rate_n_flags = le32toh(desc->v1.rate_n_flags)((__uint32_t)(desc->v1.rate_n_flags)); |
| 5469 | chanidx = desc->v1.channel; |
| 5470 | device_timestamp = desc->v1.gp2_on_air_rise; |
| 5471 | |
| 5472 | rssi = iwm_rxmq_get_signal_strength(sc, desc); |
| 5473 | rssi = (0 - IWM_MIN_DBM-100) + rssi; /* normalize */ |
| 5474 | rssi = MIN(rssi, ic->ic_max_rssi)(((rssi)<(ic->ic_max_rssi))?(rssi):(ic->ic_max_rssi) ); /* clip to max. 100% */ |
| 5475 | |
| 5476 | rxi.rxi_rssi = rssi; |
| 5477 | rxi.rxi_tstamp = le64toh(desc->v1.tsf_on_air_rise)((__uint64_t)(desc->v1.tsf_on_air_rise)); |
| 5478 | rxi.rxi_chan = chanidx; |
| 5479 | |
| 5480 | if (iwm_rx_reorder(sc, m, chanidx, desc, |
| 5481 | (phy_info & IWM_RX_MPDU_PHY_SHORT_PREAMBLE(1 << 7)), |
| 5482 | rate_n_flags, device_timestamp, &rxi, ml)) |
| 5483 | return; |
| 5484 | |
| 5485 | iwm_rx_frame(sc, m, chanidx, le16toh(desc->status)((__uint16_t)(desc->status)), |
| 5486 | (phy_info & IWM_RX_MPDU_PHY_SHORT_PREAMBLE(1 << 7)), |
| 5487 | rate_n_flags, device_timestamp, &rxi, ml); |
| 5488 | } |
| 5489 | |
| 5490 | void |
| 5491 | iwm_ra_choose(struct iwm_softc *sc, struct ieee80211_node *ni) |
| 5492 | { |
| 5493 | struct ieee80211com *ic = &sc->sc_ic; |
| 5494 | struct iwm_node *in = (void *)ni; |
| 5495 | int old_txmcs = ni->ni_txmcs; |
| 5496 | int old_nss = ni->ni_vht_ss; |
| 5497 | |
| 5498 | if (ni->ni_flags & IEEE80211_NODE_VHT0x10000) |
| 5499 | ieee80211_ra_vht_choose(&in->in_rn_vht, ic, ni); |
| 5500 | else |
| 5501 | ieee80211_ra_choose(&in->in_rn, ic, ni); |
| 5502 | |
| 5503 | /* |
| 5504 | * If RA has chosen a new TX rate we must update |
| 5505 | * the firmware's LQ rate table. |
| 5506 | */ |
| 5507 | if (ni->ni_txmcs != old_txmcs || ni->ni_vht_ss != old_nss) |
| 5508 | iwm_setrates(in, 1); |
| 5509 | } |
| 5510 | |
| 5511 | void |
| 5512 | iwm_ht_single_rate_control(struct iwm_softc *sc, struct ieee80211_node *ni, |
| 5513 | int txmcs, uint8_t failure_frame, int txfail) |
| 5514 | { |
| 5515 | struct ieee80211com *ic = &sc->sc_ic; |
| 5516 | struct iwm_node *in = (void *)ni; |
| 5517 | |
| 5518 | /* Ignore Tx reports which don't match our last LQ command. */ |
| 5519 | if (txmcs != ni->ni_txmcs) { |
| 5520 | if (++in->lq_rate_mismatch > 15) { |
| 5521 | /* Try to sync firmware with the driver... */ |
| 5522 | iwm_setrates(in, 1); |
| 5523 | in->lq_rate_mismatch = 0; |
| 5524 | } |
| 5525 | } else { |
| 5526 | int mcs = txmcs; |
| 5527 | const struct ieee80211_ht_rateset *rs = |
| 5528 | ieee80211_ra_get_ht_rateset(txmcs, |
| 5529 | ieee80211_node_supports_ht_chan40(ni), |
| 5530 | ieee80211_ra_use_ht_sgi(ni)); |
| 5531 | unsigned int retries = 0, i; |
| 5532 | |
| 5533 | in->lq_rate_mismatch = 0; |
| 5534 | |
| 5535 | for (i = 0; i < failure_frame; i++) { |
| 5536 | if (mcs > rs->min_mcs) { |
| 5537 | ieee80211_ra_add_stats_ht(&in->in_rn, |
| 5538 | ic, ni, mcs, 1, 1); |
| 5539 | mcs--; |
| 5540 | } else |
| 5541 | retries++; |
| 5542 | } |
| 5543 | |
| 5544 | if (txfail && failure_frame == 0) { |
| 5545 | ieee80211_ra_add_stats_ht(&in->in_rn, ic, ni, |
| 5546 | txmcs, 1, 1); |
| 5547 | } else { |
| 5548 | ieee80211_ra_add_stats_ht(&in->in_rn, ic, ni, |
| 5549 | mcs, retries + 1, retries); |
| 5550 | } |
| 5551 | |
| 5552 | iwm_ra_choose(sc, ni); |
| 5553 | } |
| 5554 | } |
| 5555 | |
| 5556 | void |
| 5557 | iwm_vht_single_rate_control(struct iwm_softc *sc, struct ieee80211_node *ni, |
| 5558 | int txmcs, int nss, uint8_t failure_frame, int txfail) |
| 5559 | { |
| 5560 | struct ieee80211com *ic = &sc->sc_ic; |
| 5561 | struct iwm_node *in = (void *)ni; |
| 5562 | uint8_t vht_chan_width = IEEE80211_VHTOP0_CHAN_WIDTH_801; |
| 5563 | uint8_t sco = IEEE80211_HTOP0_SCO_SCN0; |
| 5564 | |
| 5565 | /* Ignore Tx reports which don't match our last LQ command. */ |
| 5566 | if (txmcs != ni->ni_txmcs || nss != ni->ni_vht_ss) { |
| 5567 | if (++in->lq_rate_mismatch > 15) { |
| 5568 | /* Try to sync firmware with the driver... */ |
| 5569 | iwm_setrates(in, 1); |
| 5570 | in->lq_rate_mismatch = 0; |
| 5571 | } |
| 5572 | } else { |
| 5573 | int mcs = txmcs; |
| 5574 | unsigned int retries = 0, i; |
| 5575 | |
| 5576 | if (in->in_phyctxt) { |
| 5577 | vht_chan_width = in->in_phyctxt->vht_chan_width; |
| 5578 | sco = in->in_phyctxt->sco; |
| 5579 | } |
| 5580 | in->lq_rate_mismatch = 0; |
| 5581 | |
| 5582 | for (i = 0; i < failure_frame; i++) { |
| 5583 | if (mcs > 0) { |
| 5584 | ieee80211_ra_vht_add_stats(&in->in_rn_vht, |
| 5585 | ic, ni, mcs, nss, 1, 1); |
| 5586 | if (vht_chan_width >= |
| 5587 | IEEE80211_VHTOP0_CHAN_WIDTH_801) { |
| 5588 | /* |
| 5589 | * First 4 Tx attempts used same MCS, |
| 5590 | * twice at 80MHz and twice at 40MHz. |
| 5591 | */ |
| 5592 | if (i >= 4) |
| 5593 | mcs--; |
| 5594 | } else if (sco == IEEE80211_HTOP0_SCO_SCA1 || |
| 5595 | sco == IEEE80211_HTOP0_SCO_SCB3) { |
| 5596 | /* |
| 5597 | * First 4 Tx attempts used same MCS, |
| 5598 | * four times at 40MHz. |
| 5599 | */ |
| 5600 | if (i >= 4) |
| 5601 | mcs--; |
| 5602 | } else |
| 5603 | mcs--; |
| 5604 | } else |
| 5605 | retries++; |
| 5606 | } |
| 5607 | |
| 5608 | if (txfail && failure_frame == 0) { |
| 5609 | ieee80211_ra_vht_add_stats(&in->in_rn_vht, ic, ni, |
| 5610 | txmcs, nss, 1, 1); |
| 5611 | } else { |
| 5612 | ieee80211_ra_vht_add_stats(&in->in_rn_vht, ic, ni, |
| 5613 | mcs, nss, retries + 1, retries); |
| 5614 | } |
| 5615 | |
| 5616 | iwm_ra_choose(sc, ni); |
| 5617 | } |
| 5618 | } |
| 5619 | |
| 5620 | void |
| 5621 | iwm_rx_tx_cmd_single(struct iwm_softc *sc, struct iwm_rx_packet *pkt, |
| 5622 | struct iwm_node *in, int txmcs, int txrate) |
| 5623 | { |
| 5624 | struct ieee80211com *ic = &sc->sc_ic; |
| 5625 | struct ieee80211_node *ni = &in->in_ni; |
| 5626 | struct ifnet *ifp = IC2IFP(ic)(&(ic)->ic_ac.ac_if); |
| 5627 | struct iwm_tx_resp *tx_resp = (void *)pkt->data; |
| 5628 | int status = le16toh(tx_resp->status.status)((__uint16_t)(tx_resp->status.status)) & IWM_TX_STATUS_MSK0x000000ff; |
| 5629 | uint32_t initial_rate = le32toh(tx_resp->initial_rate)((__uint32_t)(tx_resp->initial_rate)); |
| 5630 | int txfail; |
| 5631 | |
| 5632 | KASSERT(tx_resp->frame_count == 1)((tx_resp->frame_count == 1) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/dev/pci/if_iwm.c", 5632, "tx_resp->frame_count == 1" )); |
| 5633 | |
| 5634 | txfail = (status != IWM_TX_STATUS_SUCCESS0x01 && |
| 5635 | status != IWM_TX_STATUS_DIRECT_DONE0x02); |
| 5636 | |
| 5637 | /* |
| 5638 | * Update rate control statistics. |
| 5639 | * Only report frames which were actually queued with the currently |
| 5640 | * selected Tx rate. Because Tx queues are relatively long we may |
| 5641 | * encounter previously selected rates here during Tx bursts. |
| 5642 | * Providing feedback based on such frames can lead to suboptimal |
| 5643 | * Tx rate control decisions. |
| 5644 | */ |
| 5645 | if ((ni->ni_flags & IEEE80211_NODE_HT0x0400) == 0) { |
| 5646 | if (txrate != ni->ni_txrate) { |
| 5647 | if (++in->lq_rate_mismatch > 15) { |
| 5648 | /* Try to sync firmware with the driver... */ |
| 5649 | iwm_setrates(in, 1); |
| 5650 | in->lq_rate_mismatch = 0; |
| 5651 | } |
| 5652 | } else { |
| 5653 | in->lq_rate_mismatch = 0; |
| 5654 | |
| 5655 | in->in_amn.amn_txcnt++; |
| 5656 | if (txfail) |
| 5657 | in->in_amn.amn_retrycnt++; |
| 5658 | if (tx_resp->failure_frame > 0) |
| 5659 | in->in_amn.amn_retrycnt++; |
| 5660 | } |
| 5661 | } else if ((ni->ni_flags & IEEE80211_NODE_VHT0x10000) && |
| 5662 | ic->ic_fixed_mcs == -1 && ic->ic_state == IEEE80211_S_RUN && |
| 5663 | (initial_rate & IWM_RATE_MCS_VHT_MSK(1 << 26))) { |
| 5664 | int txmcs = initial_rate & IWM_RATE_VHT_MCS_RATE_CODE_MSK0xf; |
| 5665 | int nss = ((initial_rate & IWM_RATE_VHT_MCS_NSS_MSK(3 << 4)) >> |
| 5666 | IWM_RATE_VHT_MCS_NSS_POS4) + 1; |
| 5667 | iwm_vht_single_rate_control(sc, ni, txmcs, nss, |
| 5668 | tx_resp->failure_frame, txfail); |
| 5669 | } else if (ic->ic_fixed_mcs == -1 && ic->ic_state == IEEE80211_S_RUN && |
| 5670 | (initial_rate & IWM_RATE_MCS_HT_MSK(1 << 8))) { |
| 5671 | int txmcs = initial_rate & |
| 5672 | (IWM_RATE_HT_MCS_RATE_CODE_MSK0x7 | IWM_RATE_HT_MCS_NSS_MSK(3 << 3)); |
| 5673 | iwm_ht_single_rate_control(sc, ni, txmcs, |
| 5674 | tx_resp->failure_frame, txfail); |
| 5675 | } |
| 5676 | |
| 5677 | if (txfail) |
| 5678 | ifp->if_oerrorsif_data.ifi_oerrors++; |
| 5679 | } |
| 5680 | |
| 5681 | void |
| 5682 | iwm_txd_done(struct iwm_softc *sc, struct iwm_tx_data *txd) |
| 5683 | { |
| 5684 | struct ieee80211com *ic = &sc->sc_ic; |
| 5685 | |
| 5686 | bus_dmamap_sync(sc->sc_dmat, txd->map, 0, txd->map->dm_mapsize,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (txd-> map), (0), (txd->map->dm_mapsize), (0x08)) |
| 5687 | BUS_DMASYNC_POSTWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (txd-> map), (0), (txd->map->dm_mapsize), (0x08)); |
| 5688 | bus_dmamap_unload(sc->sc_dmat, txd->map)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (txd ->map)); |
| 5689 | m_freem(txd->m); |
| 5690 | txd->m = NULL((void *)0); |
| 5691 | |
| 5692 | KASSERT(txd->in)((txd->in) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/dev/pci/if_iwm.c" , 5692, "txd->in")); |
| 5693 | ieee80211_release_node(ic, &txd->in->in_ni); |
| 5694 | txd->in = NULL((void *)0); |
| 5695 | txd->ampdu_nframes = 0; |
| 5696 | txd->ampdu_txmcs = 0; |
| 5697 | txd->ampdu_txnss = 0; |
| 5698 | } |
| 5699 | |
| 5700 | void |
| 5701 | iwm_txq_advance(struct iwm_softc *sc, struct iwm_tx_ring *ring, int idx) |
| 5702 | { |
| 5703 | struct iwm_tx_data *txd; |
| 5704 | |
| 5705 | while (ring->tail != idx) { |
| 5706 | txd = &ring->data[ring->tail]; |
| 5707 | if (txd->m != NULL((void *)0)) { |
| 5708 | iwm_reset_sched(sc, ring->qid, ring->tail, IWM_STATION_ID0); |
| 5709 | iwm_txd_done(sc, txd); |
| 5710 | ring->queued--; |
| 5711 | } |
| 5712 | ring->tail = (ring->tail + 1) % IWM_TX_RING_COUNT256; |
| 5713 | } |
| 5714 | |
| 5715 | wakeup(ring); |
| 5716 | } |
| 5717 | |
| 5718 | void |
| 5719 | iwm_ampdu_tx_done(struct iwm_softc *sc, struct iwm_cmd_header *cmd_hdr, |
| 5720 | struct iwm_node *in, struct iwm_tx_ring *txq, uint32_t initial_rate, |
| 5721 | uint8_t nframes, uint8_t failure_frame, uint16_t ssn, int status, |
| 5722 | struct iwm_agg_tx_status *agg_status) |
| 5723 | { |
| 5724 | struct ieee80211com *ic = &sc->sc_ic; |
| 5725 | int tid = cmd_hdr->qid - IWM_FIRST_AGG_TX_QUEUE10; |
| 5726 | struct iwm_tx_data *txdata = &txq->data[cmd_hdr->idx]; |
| 5727 | struct ieee80211_node *ni = &in->in_ni; |
| 5728 | struct ieee80211_tx_ba *ba; |
| 5729 | int txfail = (status != IWM_TX_STATUS_SUCCESS0x01 && |
| 5730 | status != IWM_TX_STATUS_DIRECT_DONE0x02); |
| 5731 | uint16_t seq; |
| 5732 | |
| 5733 | if (ic->ic_state != IEEE80211_S_RUN) |
| 5734 | return; |
| 5735 | |
| 5736 | if (nframes > 1) { |
| 5737 | int i; |
| 5738 | /* |
| 5739 | * Collect information about this A-MPDU. |
| 5740 | */ |
| 5741 | |
| 5742 | for (i = 0; i < nframes; i++) { |
| 5743 | uint8_t qid = agg_status[i].qid; |
| 5744 | uint8_t idx = agg_status[i].idx; |
| 5745 | uint16_t txstatus = (le16toh(agg_status[i].status)((__uint16_t)(agg_status[i].status)) & |
| 5746 | IWM_AGG_TX_STATE_STATUS_MSK0x0fff); |
| 5747 | |
| 5748 | if (txstatus != IWM_AGG_TX_STATE_TRANSMITTED0x0000) |
| 5749 | continue; |
| 5750 | |
| 5751 | if (qid != cmd_hdr->qid) |
| 5752 | continue; |
| 5753 | |
| 5754 | txdata = &txq->data[idx]; |
| 5755 | if (txdata->m == NULL((void *)0)) |
| 5756 | continue; |
| 5757 | |
| 5758 | /* The Tx rate was the same for all subframes. */ |
| 5759 | if ((ni->ni_flags & IEEE80211_NODE_VHT0x10000) && |
| 5760 | (initial_rate & IWM_RATE_MCS_VHT_MSK(1 << 26))) { |
| 5761 | txdata->ampdu_txmcs = initial_rate & |
| 5762 | IWM_RATE_VHT_MCS_RATE_CODE_MSK0xf; |
| 5763 | txdata->ampdu_txnss = ((initial_rate & |
| 5764 | IWM_RATE_VHT_MCS_NSS_MSK(3 << 4)) >> |
| 5765 | IWM_RATE_VHT_MCS_NSS_POS4) + 1; |
| 5766 | txdata->ampdu_nframes = nframes; |
| 5767 | } else if (initial_rate & IWM_RATE_MCS_HT_MSK(1 << 8)) { |
| 5768 | txdata->ampdu_txmcs = initial_rate & |
| 5769 | (IWM_RATE_HT_MCS_RATE_CODE_MSK0x7 | |
| 5770 | IWM_RATE_HT_MCS_NSS_MSK(3 << 3)); |
| 5771 | txdata->ampdu_nframes = nframes; |
| 5772 | } |
| 5773 | } |
| 5774 | return; |
| 5775 | } |
| 5776 | |
| 5777 | ba = &ni->ni_tx_ba[tid]; |
| 5778 | if (ba->ba_state != IEEE80211_BA_AGREED2) |
| 5779 | return; |
| 5780 | if (SEQ_LT(ssn, ba->ba_winstart)((((u_int16_t)(ssn) - (u_int16_t)(ba->ba_winstart)) & 0xfff ) > 2048)) |
| 5781 | return; |
| 5782 | |
| 5783 | /* This was a final single-frame Tx attempt for frame SSN-1. */ |
| 5784 | seq = (ssn - 1) & 0xfff; |
| 5785 | |
| 5786 | /* |
| 5787 | * Skip rate control if our Tx rate is fixed. |
| 5788 | * Don't report frames to MiRA which were sent at a different |
| 5789 | * Tx rate than ni->ni_txmcs. |
| 5790 | */ |
| 5791 | if (ic->ic_fixed_mcs == -1) { |
| 5792 | if (txdata->ampdu_nframes > 1) { |
| 5793 | /* |
| 5794 | * This frame was once part of an A-MPDU. |
| 5795 | * Report one failed A-MPDU Tx attempt. |
| 5796 | * The firmware might have made several such |
| 5797 | * attempts but we don't keep track of this. |
| 5798 | */ |
| 5799 | if (ni->ni_flags & IEEE80211_NODE_VHT0x10000) { |
| 5800 | ieee80211_ra_vht_add_stats(&in->in_rn_vht, |
| 5801 | ic, ni, txdata->ampdu_txmcs, |
| 5802 | txdata->ampdu_txnss, 1, 1); |
| 5803 | } else { |
| 5804 | ieee80211_ra_add_stats_ht(&in->in_rn, ic, ni, |
| 5805 | txdata->ampdu_txmcs, 1, 1); |
| 5806 | } |
| 5807 | } |
| 5808 | |
| 5809 | /* Report the final single-frame Tx attempt. */ |
| 5810 | if ((ni->ni_flags & IEEE80211_NODE_VHT0x10000) && |
| 5811 | (initial_rate & IWM_RATE_MCS_VHT_MSK(1 << 26))) { |
| 5812 | int txmcs = initial_rate & |
| 5813 | IWM_RATE_VHT_MCS_RATE_CODE_MSK0xf; |
| 5814 | int nss = ((initial_rate & |
| 5815 | IWM_RATE_VHT_MCS_NSS_MSK(3 << 4)) >> |
| 5816 | IWM_RATE_VHT_MCS_NSS_POS4) + 1; |
| 5817 | iwm_vht_single_rate_control(sc, ni, txmcs, nss, |
| 5818 | failure_frame, txfail); |
| 5819 | } else if (initial_rate & IWM_RATE_MCS_HT_MSK(1 << 8)) { |
| 5820 | int txmcs = initial_rate & |
| 5821 | (IWM_RATE_HT_MCS_RATE_CODE_MSK0x7 | |
| 5822 | IWM_RATE_HT_MCS_NSS_MSK(3 << 3)); |
| 5823 | iwm_ht_single_rate_control(sc, ni, txmcs, |
| 5824 | failure_frame, txfail); |
| 5825 | } |
| 5826 | } |
| 5827 | |
| 5828 | if (txfail) |
| 5829 | ieee80211_tx_compressed_bar(ic, ni, tid, ssn); |
| 5830 | |
| 5831 | /* |
| 5832 | * SSN corresponds to the first (perhaps not yet transmitted) frame |
| 5833 | * in firmware's BA window. Firmware is not going to retransmit any |
| 5834 | * frames before its BA window so mark them all as done. |
| 5835 | */ |
| 5836 | ieee80211_output_ba_move_window(ic, ni, tid, ssn); |
| 5837 | iwm_txq_advance(sc, txq, IWM_AGG_SSN_TO_TXQ_IDX(ssn)((ssn) & (256 - 1))); |
| 5838 | iwm_clear_oactive(sc, txq); |
| 5839 | } |
| 5840 | |
| 5841 | void |
| 5842 | iwm_rx_tx_cmd(struct iwm_softc *sc, struct iwm_rx_packet *pkt, |
| 5843 | struct iwm_rx_data *data) |
| 5844 | { |
| 5845 | struct iwm_cmd_header *cmd_hdr = &pkt->hdr; |
| 5846 | int idx = cmd_hdr->idx; |
| 5847 | int qid = cmd_hdr->qid; |
| 5848 | struct iwm_tx_ring *ring = &sc->txq[qid]; |
| 5849 | struct iwm_tx_data *txd; |
| 5850 | struct iwm_tx_resp *tx_resp = (void *)pkt->data; |
| 5851 | uint32_t ssn; |
| 5852 | uint32_t len = iwm_rx_packet_len(pkt); |
| 5853 | |
| 5854 | bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWM_RBUF_SIZE,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (0), (4096), (0x02)) |
| 5855 | BUS_DMASYNC_POSTREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (0), (4096), (0x02)); |
| 5856 | |
| 5857 | /* Sanity checks. */ |
| 5858 | if (sizeof(*tx_resp) > len) |
| 5859 | return; |
| 5860 | if (qid < IWM_FIRST_AGG_TX_QUEUE10 && tx_resp->frame_count > 1) |
| 5861 | return; |
| 5862 | if (qid > IWM_LAST_AGG_TX_QUEUE(10 + 8 - 1)) |
| 5863 | return; |
| 5864 | if (sizeof(*tx_resp) + sizeof(ssn) + |
| 5865 | tx_resp->frame_count * sizeof(tx_resp->status) > len) |
| 5866 | return; |
| 5867 | |
| 5868 | sc->sc_tx_timer[qid] = 0; |
| 5869 | |
| 5870 | txd = &ring->data[idx]; |
| 5871 | if (txd->m == NULL((void *)0)) |
| 5872 | return; |
| 5873 | |
| 5874 | memcpy(&ssn, &tx_resp->status + tx_resp->frame_count, sizeof(ssn))__builtin_memcpy((&ssn), (&tx_resp->status + tx_resp ->frame_count), (sizeof(ssn))); |
| 5875 | ssn = le32toh(ssn)((__uint32_t)(ssn)) & 0xfff; |
| 5876 | if (qid >= IWM_FIRST_AGG_TX_QUEUE10) { |
| 5877 | int status; |
| 5878 | status = le16toh(tx_resp->status.status)((__uint16_t)(tx_resp->status.status)) & IWM_TX_STATUS_MSK0x000000ff; |
| 5879 | iwm_ampdu_tx_done(sc, cmd_hdr, txd->in, ring, |
| 5880 | le32toh(tx_resp->initial_rate)((__uint32_t)(tx_resp->initial_rate)), tx_resp->frame_count, |
| 5881 | tx_resp->failure_frame, ssn, status, &tx_resp->status); |
| 5882 | } else { |
| 5883 | /* |
| 5884 | * Even though this is not an agg queue, we must only free |
| 5885 | * frames before the firmware's starting sequence number. |
| 5886 | */ |
| 5887 | iwm_rx_tx_cmd_single(sc, pkt, txd->in, txd->txmcs, txd->txrate); |
| 5888 | iwm_txq_advance(sc, ring, IWM_AGG_SSN_TO_TXQ_IDX(ssn)((ssn) & (256 - 1))); |
| 5889 | iwm_clear_oactive(sc, ring); |
| 5890 | } |
| 5891 | } |
| 5892 | |
| 5893 | void |
| 5894 | iwm_clear_oactive(struct iwm_softc *sc, struct iwm_tx_ring *ring) |
| 5895 | { |
| 5896 | struct ieee80211com *ic = &sc->sc_ic; |
| 5897 | struct ifnet *ifp = IC2IFP(ic)(&(ic)->ic_ac.ac_if); |
| 5898 | |
| 5899 | if (ring->queued < IWM_TX_RING_LOMARK192) { |
| 5900 | sc->qfullmsk &= ~(1 << ring->qid); |
| 5901 | if (sc->qfullmsk == 0 && ifq_is_oactive(&ifp->if_snd)) { |
| 5902 | ifq_clr_oactive(&ifp->if_snd); |
| 5903 | /* |
| 5904 | * Well, we're in interrupt context, but then again |
| 5905 | * I guess net80211 does all sorts of stunts in |
| 5906 | * interrupt context, so maybe this is no biggie. |
| 5907 | */ |
| 5908 | (*ifp->if_start)(ifp); |
| 5909 | } |
| 5910 | } |
| 5911 | } |
| 5912 | |
| 5913 | void |
| 5914 | iwm_ampdu_rate_control(struct iwm_softc *sc, struct ieee80211_node *ni, |
| 5915 | struct iwm_tx_ring *txq, int tid, uint16_t seq, uint16_t ssn) |
| 5916 | { |
| 5917 | struct ieee80211com *ic = &sc->sc_ic; |
| 5918 | struct iwm_node *in = (void *)ni; |
| 5919 | int idx, end_idx; |
| 5920 | |
| 5921 | /* |
| 5922 | * Update Tx rate statistics for A-MPDUs before firmware's BA window. |
| 5923 | */ |
| 5924 | idx = IWM_AGG_SSN_TO_TXQ_IDX(seq)((seq) & (256 - 1)); |
| 5925 | end_idx = IWM_AGG_SSN_TO_TXQ_IDX(ssn)((ssn) & (256 - 1)); |
| 5926 | while (idx != end_idx) { |
| 5927 | struct iwm_tx_data *txdata = &txq->data[idx]; |
| 5928 | if (txdata->m != NULL((void *)0) && txdata->ampdu_nframes > 1) { |
| 5929 | /* |
| 5930 | * We can assume that this subframe has been ACKed |
| 5931 | * because ACK failures come as single frames and |
| 5932 | * before failing an A-MPDU subframe the firmware |
| 5933 | * sends it as a single frame at least once. |
| 5934 | */ |
| 5935 | if (ni->ni_flags & IEEE80211_NODE_VHT0x10000) { |
| 5936 | ieee80211_ra_vht_add_stats(&in->in_rn_vht, |
| 5937 | ic, ni, txdata->ampdu_txmcs, |
| 5938 | txdata->ampdu_txnss, 1, 0); |
| 5939 | } else { |
| 5940 | ieee80211_ra_add_stats_ht(&in->in_rn, ic, ni, |
| 5941 | txdata->ampdu_txmcs, 1, 0); |
| 5942 | } |
| 5943 | /* Report this frame only once. */ |
| 5944 | txdata->ampdu_nframes = 0; |
| 5945 | } |
| 5946 | |
| 5947 | idx = (idx + 1) % IWM_TX_RING_COUNT256; |
| 5948 | } |
| 5949 | |
| 5950 | iwm_ra_choose(sc, ni); |
| 5951 | } |
| 5952 | |
| 5953 | void |
| 5954 | iwm_rx_compressed_ba(struct iwm_softc *sc, struct iwm_rx_packet *pkt) |
| 5955 | { |
| 5956 | struct iwm_ba_notif *ban = (void *)pkt->data; |
| 5957 | struct ieee80211com *ic = &sc->sc_ic; |
| 5958 | struct ieee80211_node *ni = ic->ic_bss; |
| 5959 | struct iwm_node *in = (void *)ni; |
| 5960 | struct ieee80211_tx_ba *ba; |
| 5961 | struct iwm_tx_ring *ring; |
| 5962 | uint16_t seq, ssn; |
| 5963 | int qid; |
| 5964 | |
| 5965 | if (ic->ic_state != IEEE80211_S_RUN) |
| 5966 | return; |
| 5967 | |
| 5968 | if (iwm_rx_packet_payload_len(pkt) < sizeof(*ban)) |
| 5969 | return; |
| 5970 | |
| 5971 | if (ban->sta_id != IWM_STATION_ID0 || |
| 5972 | !IEEE80211_ADDR_EQ(in->in_macaddr, ban->sta_addr)(__builtin_memcmp((in->in_macaddr), (ban->sta_addr), (6 )) == 0)) |
| 5973 | return; |
| 5974 | |
| 5975 | qid = le16toh(ban->scd_flow)((__uint16_t)(ban->scd_flow)); |
| 5976 | if (qid < IWM_FIRST_AGG_TX_QUEUE10 || qid > IWM_LAST_AGG_TX_QUEUE(10 + 8 - 1)) |
| 5977 | return; |
| 5978 | |
| 5979 | /* Protect against a firmware bug where the queue/TID are off. */ |
| 5980 | if (qid != IWM_FIRST_AGG_TX_QUEUE10 + ban->tid) |
| 5981 | return; |
| 5982 | |
| 5983 | sc->sc_tx_timer[qid] = 0; |
| 5984 | |
| 5985 | ba = &ni->ni_tx_ba[ban->tid]; |
| 5986 | if (ba->ba_state != IEEE80211_BA_AGREED2) |
| 5987 | return; |
| 5988 | |
| 5989 | ring = &sc->txq[qid]; |
| 5990 | |
| 5991 | /* |
| 5992 | * The first bit in ban->bitmap corresponds to the sequence number |
| 5993 | * stored in the sequence control field ban->seq_ctl. |
| 5994 | * Multiple BA notifications in a row may be using this number, with |
| 5995 | * additional bits being set in cba->bitmap. It is unclear how the |
| 5996 | * firmware decides to shift this window forward. |
| 5997 | * We rely on ba->ba_winstart instead. |
| 5998 | */ |
| 5999 | seq = le16toh(ban->seq_ctl)((__uint16_t)(ban->seq_ctl)) >> IEEE80211_SEQ_SEQ_SHIFT4; |
| 6000 | |
| 6001 | /* |
| 6002 | * The firmware's new BA window starting sequence number |
| 6003 | * corresponds to the first hole in ban->scd_ssn, implying |
| 6004 | * that all frames between 'seq' and 'ssn' (non-inclusive) |
| 6005 | * have been acked. |
| 6006 | */ |
| 6007 | ssn = le16toh(ban->scd_ssn)((__uint16_t)(ban->scd_ssn)); |
| 6008 | |
| 6009 | if (SEQ_LT(ssn, ba->ba_winstart)((((u_int16_t)(ssn) - (u_int16_t)(ba->ba_winstart)) & 0xfff ) > 2048)) |
| 6010 | return; |
| 6011 | |
| 6012 | /* Skip rate control if our Tx rate is fixed. */ |
| 6013 | if (ic->ic_fixed_mcs == -1) |
| 6014 | iwm_ampdu_rate_control(sc, ni, ring, ban->tid, |
| 6015 | ba->ba_winstart, ssn); |
| 6016 | |
| 6017 | /* |
| 6018 | * SSN corresponds to the first (perhaps not yet transmitted) frame |
| 6019 | * in firmware's BA window. Firmware is not going to retransmit any |
| 6020 | * frames before its BA window so mark them all as done. |
| 6021 | */ |
| 6022 | ieee80211_output_ba_move_window(ic, ni, ban->tid, ssn); |
| 6023 | iwm_txq_advance(sc, ring, IWM_AGG_SSN_TO_TXQ_IDX(ssn)((ssn) & (256 - 1))); |
| 6024 | iwm_clear_oactive(sc, ring); |
| 6025 | } |
| 6026 | |
| 6027 | void |
| 6028 | iwm_rx_bmiss(struct iwm_softc *sc, struct iwm_rx_packet *pkt, |
| 6029 | struct iwm_rx_data *data) |
| 6030 | { |
| 6031 | struct ieee80211com *ic = &sc->sc_ic; |
| 6032 | struct iwm_missed_beacons_notif *mbn = (void *)pkt->data; |
| 6033 | uint32_t missed; |
| 6034 | |
| 6035 | if ((ic->ic_opmode != IEEE80211_M_STA) || |
| 6036 | (ic->ic_state != IEEE80211_S_RUN)) |
| 6037 | return; |
| 6038 | |
| 6039 | bus_dmamap_sync(sc->sc_dmat, data->map, sizeof(*pkt),(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (sizeof(*pkt)), (sizeof(*mbn)), (0x02)) |
| 6040 | sizeof(*mbn), BUS_DMASYNC_POSTREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (sizeof(*pkt)), (sizeof(*mbn)), (0x02)); |
| 6041 | |
| 6042 | missed = le32toh(mbn->consec_missed_beacons_since_last_rx)((__uint32_t)(mbn->consec_missed_beacons_since_last_rx)); |
| 6043 | if (missed > ic->ic_bmissthres && ic->ic_mgt_timer == 0) { |
| 6044 | if (ic->ic_ific_ac.ac_if.if_flags & IFF_DEBUG0x4) |
| 6045 | printf("%s: receiving no beacons from %s; checking if " |
| 6046 | "this AP is still responding to probe requests\n", |
| 6047 | DEVNAME(sc)((sc)->sc_dev.dv_xname), ether_sprintf(ic->ic_bss->ni_macaddr)); |
| 6048 | /* |
| 6049 | * Rather than go directly to scan state, try to send a |
| 6050 | * directed probe request first. If that fails then the |
| 6051 | * state machine will drop us into scanning after timing |
| 6052 | * out waiting for a probe response. |
| 6053 | */ |
| 6054 | IEEE80211_SEND_MGMT(ic, ic->ic_bss,((*(ic)->ic_send_mgmt)(ic, ic->ic_bss, 0x40, 0, 0)) |
| 6055 | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 0)((*(ic)->ic_send_mgmt)(ic, ic->ic_bss, 0x40, 0, 0)); |
| 6056 | } |
| 6057 | |
| 6058 | } |
| 6059 | |
| 6060 | int |
| 6061 | iwm_binding_cmd(struct iwm_softc *sc, struct iwm_node *in, uint32_t action) |
| 6062 | { |
| 6063 | struct iwm_binding_cmd cmd; |
| 6064 | struct iwm_phy_ctxt *phyctxt = in->in_phyctxt; |
| 6065 | uint32_t mac_id = IWM_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color)((in->in_id << (0)) | (in->in_color << (8)) ); |
| 6066 | int i, err, active = (sc->sc_flags & IWM_FLAG_BINDING_ACTIVE0x10); |
| 6067 | uint32_t status; |
| 6068 | size_t len; |
| 6069 | |
| 6070 | if (action == IWM_FW_CTXT_ACTION_ADD1 && active) |
| 6071 | panic("binding already added"); |
| 6072 | if (action == IWM_FW_CTXT_ACTION_REMOVE3 && !active) |
| 6073 | panic("binding already removed"); |
| 6074 | |
| 6075 | if (phyctxt == NULL((void *)0)) /* XXX race with iwm_stop() */ |
| 6076 | return EINVAL22; |
| 6077 | |
| 6078 | memset(&cmd, 0, sizeof(cmd))__builtin_memset((&cmd), (0), (sizeof(cmd))); |
| 6079 | |
| 6080 | cmd.id_and_color |
| 6081 | = htole32(IWM_FW_CMD_ID_AND_COLOR(phyctxt->id, phyctxt->color))((__uint32_t)(((phyctxt->id << (0)) | (phyctxt->color << (8))))); |
| 6082 | cmd.action = htole32(action)((__uint32_t)(action)); |
| 6083 | cmd.phy = htole32(IWM_FW_CMD_ID_AND_COLOR(phyctxt->id, phyctxt->color))((__uint32_t)(((phyctxt->id << (0)) | (phyctxt->color << (8))))); |
| 6084 | |
| 6085 | cmd.macs[0] = htole32(mac_id)((__uint32_t)(mac_id)); |
| 6086 | for (i = 1; i < IWM_MAX_MACS_IN_BINDING(3); i++) |
| 6087 | cmd.macs[i] = htole32(IWM_FW_CTXT_INVALID)((__uint32_t)((0xffffffff))); |
| 6088 | |
| 6089 | if (IEEE80211_IS_CHAN_2GHZ(phyctxt->channel)(((phyctxt->channel)->ic_flags & 0x0080) != 0) || |
| 6090 | !isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_CDB_SUPPORT)((sc->sc_enabled_capa)[(40)>>3] & (1<<((40 )&(8 -1))))) |
| 6091 | cmd.lmac_id = htole32(IWM_LMAC_24G_INDEX)((__uint32_t)(0)); |
| 6092 | else |
| 6093 | cmd.lmac_id = htole32(IWM_LMAC_5G_INDEX)((__uint32_t)(1)); |
| 6094 | |
| 6095 | if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_BINDING_CDB_SUPPORT)((sc->sc_enabled_capa)[(39)>>3] & (1<<((39 )&(8 -1))))) |
| 6096 | len = sizeof(cmd); |
| 6097 | else |
| 6098 | len = sizeof(struct iwm_binding_cmd_v1); |
| 6099 | status = 0; |
| 6100 | err = iwm_send_cmd_pdu_status(sc, IWM_BINDING_CONTEXT_CMD0x2b, len, &cmd, |
| 6101 | &status); |
| 6102 | if (err == 0 && status != 0) |
| 6103 | err = EIO5; |
| 6104 | |
| 6105 | return err; |
| 6106 | } |
| 6107 | |
| 6108 | void |
| 6109 | iwm_phy_ctxt_cmd_hdr(struct iwm_softc *sc, struct iwm_phy_ctxt *ctxt, |
| 6110 | struct iwm_phy_context_cmd *cmd, uint32_t action, uint32_t apply_time) |
| 6111 | { |
| 6112 | memset(cmd, 0, sizeof(struct iwm_phy_context_cmd))__builtin_memset((cmd), (0), (sizeof(struct iwm_phy_context_cmd ))); |
| 6113 | |
| 6114 | cmd->id_and_color = htole32(IWM_FW_CMD_ID_AND_COLOR(ctxt->id,((__uint32_t)(((ctxt->id << (0)) | (ctxt->color << (8))))) |
| 6115 | ctxt->color))((__uint32_t)(((ctxt->id << (0)) | (ctxt->color << (8))))); |
| 6116 | cmd->action = htole32(action)((__uint32_t)(action)); |
| 6117 | cmd->apply_time = htole32(apply_time)((__uint32_t)(apply_time)); |
| 6118 | } |
| 6119 | |
| 6120 | void |
| 6121 | iwm_phy_ctxt_cmd_data(struct iwm_softc *sc, struct iwm_phy_context_cmd *cmd, |
| 6122 | struct ieee80211_channel *chan, uint8_t chains_static, |
| 6123 | uint8_t chains_dynamic, uint8_t sco, uint8_t vht_chan_width) |
| 6124 | { |
| 6125 | struct ieee80211com *ic = &sc->sc_ic; |
| 6126 | uint8_t active_cnt, idle_cnt; |
| 6127 | |
| 6128 | cmd->ci.band = IEEE80211_IS_CHAN_2GHZ(chan)(((chan)->ic_flags & 0x0080) != 0) ? |
| 6129 | IWM_PHY_BAND_24(1) : IWM_PHY_BAND_5(0); |
| 6130 | cmd->ci.channel = ieee80211_chan2ieee(ic, chan); |
| 6131 | if (vht_chan_width == IEEE80211_VHTOP0_CHAN_WIDTH_801) { |
| 6132 | cmd->ci.ctrl_pos = iwm_get_vht_ctrl_pos(ic, chan); |
| 6133 | cmd->ci.width = IWM_PHY_VHT_CHANNEL_MODE80(0x2); |
| 6134 | } else if (chan->ic_flags & IEEE80211_CHAN_40MHZ0x8000) { |
| 6135 | if (sco == IEEE80211_HTOP0_SCO_SCA1) { |
| 6136 | /* secondary chan above -> control chan below */ |
| 6137 | cmd->ci.ctrl_pos = IWM_PHY_VHT_CTRL_POS_1_BELOW(0x0); |
| 6138 | cmd->ci.width = IWM_PHY_VHT_CHANNEL_MODE40(0x1); |
| 6139 | } else if (sco == IEEE80211_HTOP0_SCO_SCB3) { |
| 6140 | /* secondary chan below -> control chan above */ |
| 6141 | cmd->ci.ctrl_pos = IWM_PHY_VHT_CTRL_POS_1_ABOVE(0x4); |
| 6142 | cmd->ci.width = IWM_PHY_VHT_CHANNEL_MODE40(0x1); |
| 6143 | } else { |
| 6144 | cmd->ci.width = IWM_PHY_VHT_CHANNEL_MODE20(0x0); |
| 6145 | cmd->ci.ctrl_pos = IWM_PHY_VHT_CTRL_POS_1_BELOW(0x0); |
| 6146 | } |
| 6147 | } else { |
| 6148 | cmd->ci.width = IWM_PHY_VHT_CHANNEL_MODE20(0x0); |
| 6149 | cmd->ci.ctrl_pos = IWM_PHY_VHT_CTRL_POS_1_BELOW(0x0); |
| 6150 | } |
| 6151 | |
| 6152 | /* Set rx the chains */ |
| 6153 | idle_cnt = chains_static; |
| 6154 | active_cnt = chains_dynamic; |
| 6155 | |
| 6156 | cmd->rxchain_info = htole32(iwm_fw_valid_rx_ant(sc) <<((__uint32_t)(iwm_fw_valid_rx_ant(sc) << (1))) |
| 6157 | IWM_PHY_RX_CHAIN_VALID_POS)((__uint32_t)(iwm_fw_valid_rx_ant(sc) << (1))); |
| 6158 | cmd->rxchain_info |= htole32(idle_cnt << IWM_PHY_RX_CHAIN_CNT_POS)((__uint32_t)(idle_cnt << (10))); |
| 6159 | cmd->rxchain_info |= htole32(active_cnt <<((__uint32_t)(active_cnt << (12))) |
| 6160 | IWM_PHY_RX_CHAIN_MIMO_CNT_POS)((__uint32_t)(active_cnt << (12))); |
| 6161 | |
| 6162 | cmd->txchain_info = htole32(iwm_fw_valid_tx_ant(sc))((__uint32_t)(iwm_fw_valid_tx_ant(sc))); |
| 6163 | } |
| 6164 | |
| 6165 | uint8_t |
| 6166 | iwm_get_vht_ctrl_pos(struct ieee80211com *ic, struct ieee80211_channel *chan) |
| 6167 | { |
| 6168 | int center_idx = ic->ic_bss->ni_vht_chan_center_freq_idx0; |
| 6169 | int primary_idx = ic->ic_bss->ni_primary_chan; |
| 6170 | /* |
| 6171 | * The FW is expected to check the control channel position only |
| 6172 | * when in HT/VHT and the channel width is not 20MHz. Return |
| 6173 | * this value as the default one: |
| 6174 | */ |
| 6175 | uint8_t pos = IWM_PHY_VHT_CTRL_POS_1_BELOW(0x0); |
| 6176 | |
| 6177 | switch (primary_idx - center_idx) { |
| 6178 | case -6: |
| 6179 | pos = IWM_PHY_VHT_CTRL_POS_2_BELOW(0x1); |
| 6180 | break; |
| 6181 | case -2: |
| 6182 | pos = IWM_PHY_VHT_CTRL_POS_1_BELOW(0x0); |
| 6183 | break; |
| 6184 | case 2: |
| 6185 | pos = IWM_PHY_VHT_CTRL_POS_1_ABOVE(0x4); |
| 6186 | break; |
| 6187 | case 6: |
| 6188 | pos = IWM_PHY_VHT_CTRL_POS_2_ABOVE(0x5); |
| 6189 | break; |
| 6190 | default: |
| 6191 | break; |
| 6192 | } |
| 6193 | |
| 6194 | return pos; |
| 6195 | } |
| 6196 | |
| 6197 | int |
| 6198 | iwm_phy_ctxt_cmd_uhb(struct iwm_softc *sc, struct iwm_phy_ctxt *ctxt, |
| 6199 | uint8_t chains_static, uint8_t chains_dynamic, uint32_t action, |
| 6200 | uint32_t apply_time, uint8_t sco, uint8_t vht_chan_width) |
| 6201 | { |
| 6202 | struct ieee80211com *ic = &sc->sc_ic; |
| 6203 | struct iwm_phy_context_cmd_uhb cmd; |
| 6204 | uint8_t active_cnt, idle_cnt; |
| 6205 | struct ieee80211_channel *chan = ctxt->channel; |
| 6206 | |
| 6207 | memset(&cmd, 0, sizeof(cmd))__builtin_memset((&cmd), (0), (sizeof(cmd))); |
| 6208 | cmd.id_and_color = htole32(IWM_FW_CMD_ID_AND_COLOR(ctxt->id,((__uint32_t)(((ctxt->id << (0)) | (ctxt->color << (8))))) |
| 6209 | ctxt->color))((__uint32_t)(((ctxt->id << (0)) | (ctxt->color << (8))))); |
| 6210 | cmd.action = htole32(action)((__uint32_t)(action)); |
| 6211 | cmd.apply_time = htole32(apply_time)((__uint32_t)(apply_time)); |
| 6212 | |
| 6213 | cmd.ci.band = IEEE80211_IS_CHAN_2GHZ(chan)(((chan)->ic_flags & 0x0080) != 0) ? |
| 6214 | IWM_PHY_BAND_24(1) : IWM_PHY_BAND_5(0); |
| 6215 | cmd.ci.channel = htole32(ieee80211_chan2ieee(ic, chan))((__uint32_t)(ieee80211_chan2ieee(ic, chan))); |
| 6216 | if (vht_chan_width == IEEE80211_VHTOP0_CHAN_WIDTH_801) { |
| 6217 | cmd.ci.ctrl_pos = iwm_get_vht_ctrl_pos(ic, chan); |
| 6218 | cmd.ci.width = IWM_PHY_VHT_CHANNEL_MODE80(0x2); |
| 6219 | } else if (chan->ic_flags & IEEE80211_CHAN_40MHZ0x8000) { |
| 6220 | if (sco == IEEE80211_HTOP0_SCO_SCA1) { |
| 6221 | /* secondary chan above -> control chan below */ |
| 6222 | cmd.ci.ctrl_pos = IWM_PHY_VHT_CTRL_POS_1_BELOW(0x0); |
| 6223 | cmd.ci.width = IWM_PHY_VHT_CHANNEL_MODE40(0x1); |
| 6224 | } else if (sco == IEEE80211_HTOP0_SCO_SCB3) { |
| 6225 | /* secondary chan below -> control chan above */ |
| 6226 | cmd.ci.ctrl_pos = IWM_PHY_VHT_CTRL_POS_1_ABOVE(0x4); |
| 6227 | cmd.ci.width = IWM_PHY_VHT_CHANNEL_MODE40(0x1); |
| 6228 | } else { |
| 6229 | cmd.ci.width = IWM_PHY_VHT_CHANNEL_MODE20(0x0); |
| 6230 | cmd.ci.ctrl_pos = IWM_PHY_VHT_CTRL_POS_1_BELOW(0x0); |
| 6231 | } |
| 6232 | } else { |
| 6233 | cmd.ci.width = IWM_PHY_VHT_CHANNEL_MODE20(0x0); |
| 6234 | cmd.ci.ctrl_pos = IWM_PHY_VHT_CTRL_POS_1_BELOW(0x0); |
| 6235 | } |
| 6236 | |
| 6237 | idle_cnt = chains_static; |
| 6238 | active_cnt = chains_dynamic; |
| 6239 | cmd.rxchain_info = htole32(iwm_fw_valid_rx_ant(sc) <<((__uint32_t)(iwm_fw_valid_rx_ant(sc) << (1))) |
| 6240 | IWM_PHY_RX_CHAIN_VALID_POS)((__uint32_t)(iwm_fw_valid_rx_ant(sc) << (1))); |
| 6241 | cmd.rxchain_info |= htole32(idle_cnt << IWM_PHY_RX_CHAIN_CNT_POS)((__uint32_t)(idle_cnt << (10))); |
| 6242 | cmd.rxchain_info |= htole32(active_cnt <<((__uint32_t)(active_cnt << (12))) |
| 6243 | IWM_PHY_RX_CHAIN_MIMO_CNT_POS)((__uint32_t)(active_cnt << (12))); |
| 6244 | cmd.txchain_info = htole32(iwm_fw_valid_tx_ant(sc))((__uint32_t)(iwm_fw_valid_tx_ant(sc))); |
| 6245 | |
| 6246 | return iwm_send_cmd_pdu(sc, IWM_PHY_CONTEXT_CMD0x8, 0, sizeof(cmd), &cmd); |
| 6247 | } |
| 6248 | |
| 6249 | int |
| 6250 | iwm_phy_ctxt_cmd(struct iwm_softc *sc, struct iwm_phy_ctxt *ctxt, |
| 6251 | uint8_t chains_static, uint8_t chains_dynamic, uint32_t action, |
| 6252 | uint32_t apply_time, uint8_t sco, uint8_t vht_chan_width) |
| 6253 | { |
| 6254 | struct iwm_phy_context_cmd cmd; |
| 6255 | |
| 6256 | /* |
| 6257 | * Intel increased the size of the fw_channel_info struct and neglected |
| 6258 | * to bump the phy_context_cmd struct, which contains an fw_channel_info |
| 6259 | * member in the middle. |
| 6260 | * To keep things simple we use a separate function to handle the larger |
| 6261 | * variant of the phy context command. |
| 6262 | */ |
| 6263 | if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_ULTRA_HB_CHANNELS)((sc->sc_enabled_capa)[(48)>>3] & (1<<((48 )&(8 -1))))) |
| 6264 | return iwm_phy_ctxt_cmd_uhb(sc, ctxt, chains_static, |
| 6265 | chains_dynamic, action, apply_time, sco, vht_chan_width); |
| 6266 | |
| 6267 | iwm_phy_ctxt_cmd_hdr(sc, ctxt, &cmd, action, apply_time); |
| 6268 | |
| 6269 | iwm_phy_ctxt_cmd_data(sc, &cmd, ctxt->channel, |
| 6270 | chains_static, chains_dynamic, sco, vht_chan_width); |
| 6271 | |
| 6272 | return iwm_send_cmd_pdu(sc, IWM_PHY_CONTEXT_CMD0x8, 0, |
| 6273 | sizeof(struct iwm_phy_context_cmd), &cmd); |
| 6274 | } |
| 6275 | |
| 6276 | int |
| 6277 | iwm_send_cmd(struct iwm_softc *sc, struct iwm_host_cmd *hcmd) |
| 6278 | { |
| 6279 | struct iwm_tx_ring *ring = &sc->txq[sc->cmdqid]; |
| 6280 | struct iwm_tfd *desc; |
| 6281 | struct iwm_tx_data *txdata; |
| 6282 | struct iwm_device_cmd *cmd; |
| 6283 | struct mbuf *m; |
| 6284 | bus_addr_t paddr; |
| 6285 | uint32_t addr_lo; |
| 6286 | int err = 0, i, paylen, off, s; |
| 6287 | int idx, code, async, group_id; |
| 6288 | size_t hdrlen, datasz; |
| 6289 | uint8_t *data; |
| 6290 | int generation = sc->sc_generation; |
| 6291 | |
| 6292 | code = hcmd->id; |
| 6293 | async = hcmd->flags & IWM_CMD_ASYNC; |
| 6294 | idx = ring->cur; |
| 6295 | |
| 6296 | for (i = 0, paylen = 0; i < nitems(hcmd->len)(sizeof((hcmd->len)) / sizeof((hcmd->len)[0])); i++) { |
| 6297 | paylen += hcmd->len[i]; |
| 6298 | } |
| 6299 | |
| 6300 | /* If this command waits for a response, allocate response buffer. */ |
| 6301 | hcmd->resp_pkt = NULL((void *)0); |
| 6302 | if (hcmd->flags & IWM_CMD_WANT_RESP) { |
| 6303 | uint8_t *resp_buf; |
| 6304 | KASSERT(!async)((!async) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/dev/pci/if_iwm.c" , 6304, "!async")); |
| 6305 | KASSERT(hcmd->resp_pkt_len >= sizeof(struct iwm_rx_packet))((hcmd->resp_pkt_len >= sizeof(struct iwm_rx_packet)) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/dev/pci/if_iwm.c" , 6305, "hcmd->resp_pkt_len >= sizeof(struct iwm_rx_packet)" )); |
| 6306 | KASSERT(hcmd->resp_pkt_len <= IWM_CMD_RESP_MAX)((hcmd->resp_pkt_len <= (1 << 12)) ? (void)0 : __assert ("diagnostic ", "/usr/src/sys/dev/pci/if_iwm.c", 6306, "hcmd->resp_pkt_len <= IWM_CMD_RESP_MAX" )); |
| 6307 | if (sc->sc_cmd_resp_pkt[idx] != NULL((void *)0)) |
| 6308 | return ENOSPC28; |
| 6309 | resp_buf = malloc(hcmd->resp_pkt_len, M_DEVBUF2, |
| 6310 | M_NOWAIT0x0002 | M_ZERO0x0008); |
| 6311 | if (resp_buf == NULL((void *)0)) |
| 6312 | return ENOMEM12; |
| 6313 | sc->sc_cmd_resp_pkt[idx] = resp_buf; |
| 6314 | sc->sc_cmd_resp_len[idx] = hcmd->resp_pkt_len; |
| 6315 | } else { |
| 6316 | sc->sc_cmd_resp_pkt[idx] = NULL((void *)0); |
| 6317 | } |
| 6318 | |
| 6319 | s = splnet()splraise(0x4); |
| 6320 | |
| 6321 | desc = &ring->desc[idx]; |
| 6322 | txdata = &ring->data[idx]; |
| 6323 | |
| 6324 | group_id = iwm_cmd_groupid(code); |
| 6325 | if (group_id != 0) { |
| 6326 | hdrlen = sizeof(cmd->hdr_wide); |
| 6327 | datasz = sizeof(cmd->data_wide); |
| 6328 | } else { |
| 6329 | hdrlen = sizeof(cmd->hdr); |
| 6330 | datasz = sizeof(cmd->data); |
| 6331 | } |
| 6332 | |
| 6333 | if (paylen > datasz) { |
| 6334 | /* Command is too large to fit in pre-allocated space. */ |
| 6335 | size_t totlen = hdrlen + paylen; |
| 6336 | if (paylen > IWM_MAX_CMD_PAYLOAD_SIZE((4096 - 4) - sizeof(struct iwm_cmd_header))) { |
| 6337 | printf("%s: firmware command too long (%zd bytes)\n", |
| 6338 | DEVNAME(sc)((sc)->sc_dev.dv_xname), totlen); |
| 6339 | err = EINVAL22; |
| 6340 | goto out; |
| 6341 | } |
| 6342 | m = MCLGETL(NULL, M_DONTWAIT, totlen)m_clget((((void *)0)), (0x0002), (totlen)); |
| 6343 | if (m == NULL((void *)0)) { |
| 6344 | printf("%s: could not get fw cmd mbuf (%zd bytes)\n", |
| 6345 | DEVNAME(sc)((sc)->sc_dev.dv_xname), totlen); |
| 6346 | err = ENOMEM12; |
| 6347 | goto out; |
| 6348 | } |
| 6349 | cmd = mtod(m, struct iwm_device_cmd *)((struct iwm_device_cmd *)((m)->m_hdr.mh_data)); |
| 6350 | err = bus_dmamap_load(sc->sc_dmat, txdata->map, cmd,(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (txdata ->map), (cmd), (totlen), (((void *)0)), (0x0001 | 0x0400)) |
| 6351 | totlen, NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE)(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (txdata ->map), (cmd), (totlen), (((void *)0)), (0x0001 | 0x0400)); |
| 6352 | if (err) { |
| 6353 | printf("%s: could not load fw cmd mbuf (%zd bytes)\n", |
| 6354 | DEVNAME(sc)((sc)->sc_dev.dv_xname), totlen); |
| 6355 | m_freem(m); |
| 6356 | goto out; |
| 6357 | } |
| 6358 | txdata->m = m; /* mbuf will be freed in iwm_cmd_done() */ |
| 6359 | paddr = txdata->map->dm_segs[0].ds_addr; |
| 6360 | } else { |
| 6361 | cmd = &ring->cmd[idx]; |
| 6362 | paddr = txdata->cmd_paddr; |
| 6363 | } |
| 6364 | |
| 6365 | if (group_id != 0) { |
| 6366 | cmd->hdr_wide.opcode = iwm_cmd_opcode(code); |
| 6367 | cmd->hdr_wide.group_id = group_id; |
| 6368 | cmd->hdr_wide.qid = ring->qid; |
| 6369 | cmd->hdr_wide.idx = idx; |
| 6370 | cmd->hdr_wide.length = htole16(paylen)((__uint16_t)(paylen)); |
| 6371 | cmd->hdr_wide.version = iwm_cmd_version(code); |
| 6372 | data = cmd->data_wide; |
| 6373 | } else { |
| 6374 | cmd->hdr.code = code; |
| 6375 | cmd->hdr.flags = 0; |
| 6376 | cmd->hdr.qid = ring->qid; |
| 6377 | cmd->hdr.idx = idx; |
| 6378 | data = cmd->data; |
| 6379 | } |
| 6380 | |
| 6381 | for (i = 0, off = 0; i < nitems(hcmd->data)(sizeof((hcmd->data)) / sizeof((hcmd->data)[0])); i++) { |
| 6382 | if (hcmd->len[i] == 0) |
| 6383 | continue; |
| 6384 | memcpy(data + off, hcmd->data[i], hcmd->len[i])__builtin_memcpy((data + off), (hcmd->data[i]), (hcmd-> len[i])); |
| 6385 | off += hcmd->len[i]; |
| 6386 | } |
| 6387 | KASSERT(off == paylen)((off == paylen) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/dev/pci/if_iwm.c" , 6387, "off == paylen")); |
| 6388 | |
| 6389 | /* lo field is not aligned */ |
| 6390 | addr_lo = htole32((uint32_t)paddr)((__uint32_t)((uint32_t)paddr)); |
| 6391 | memcpy(&desc->tbs[0].lo, &addr_lo, sizeof(uint32_t))__builtin_memcpy((&desc->tbs[0].lo), (&addr_lo), ( sizeof(uint32_t))); |
| 6392 | desc->tbs[0].hi_n_len = htole16(iwm_get_dma_hi_addr(paddr)((__uint16_t)(iwm_get_dma_hi_addr(paddr) | ((hdrlen + paylen) << 4))) |
| 6393 | | ((hdrlen + paylen) << 4))((__uint16_t)(iwm_get_dma_hi_addr(paddr) | ((hdrlen + paylen) << 4))); |
| 6394 | desc->num_tbs = 1; |
| 6395 | |
| 6396 | if (paylen > datasz) { |
| 6397 | bus_dmamap_sync(sc->sc_dmat, txdata->map, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (txdata ->map), (0), (hdrlen + paylen), (0x04)) |
| 6398 | hdrlen + paylen, BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (txdata ->map), (0), (hdrlen + paylen), (0x04)); |
| 6399 | } else { |
| 6400 | bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> cmd_dma.map), ((char *)(void *)cmd - (char *)(void *)ring-> cmd_dma.vaddr), (hdrlen + paylen), (0x04)) |
| 6401 | (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> cmd_dma.map), ((char *)(void *)cmd - (char *)(void *)ring-> cmd_dma.vaddr), (hdrlen + paylen), (0x04)) |
| 6402 | hdrlen + paylen, BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> cmd_dma.map), ((char *)(void *)cmd - (char *)(void *)ring-> cmd_dma.vaddr), (hdrlen + paylen), (0x04)); |
| 6403 | } |
| 6404 | bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> desc_dma.map), ((char *)(void *)desc - (char *)(void *)ring-> desc_dma.vaddr), (sizeof (*desc)), (0x04)) |
| 6405 | (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> desc_dma.map), ((char *)(void *)desc - (char *)(void *)ring-> desc_dma.vaddr), (sizeof (*desc)), (0x04)) |
| 6406 | sizeof (*desc), BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> desc_dma.map), ((char *)(void *)desc - (char *)(void *)ring-> desc_dma.vaddr), (sizeof (*desc)), (0x04)); |
| 6407 | |
| 6408 | /* |
| 6409 | * Wake up the NIC to make sure that the firmware will see the host |
| 6410 | * command - we will let the NIC sleep once all the host commands |
| 6411 | * returned. This needs to be done only on 7000 family NICs. |
| 6412 | */ |
| 6413 | if (sc->sc_device_family == IWM_DEVICE_FAMILY_70001) { |
| 6414 | if (ring->queued == 0 && !iwm_nic_lock(sc)) { |
| 6415 | err = EBUSY16; |
| 6416 | goto out; |
| 6417 | } |
| 6418 | } |
| 6419 | |
| 6420 | iwm_update_sched(sc, ring->qid, ring->cur, 0, 0); |
| 6421 | |
| 6422 | /* Kick command ring. */ |
| 6423 | ring->queued++; |
| 6424 | ring->cur = (ring->cur + 1) % IWM_TX_RING_COUNT256; |
| 6425 | IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x400)+0x060 ))), ((ring->qid << 8 | ring->cur)))); |
| 6426 | |
| 6427 | if (!async) { |
| 6428 | err = tsleep_nsec(desc, PCATCH0x100, "iwmcmd", SEC_TO_NSEC(1)); |
| 6429 | if (err == 0) { |
| 6430 | /* if hardware is no longer up, return error */ |
| 6431 | if (generation != sc->sc_generation) { |
| 6432 | err = ENXIO6; |
| 6433 | goto out; |
| 6434 | } |
| 6435 | |
| 6436 | /* Response buffer will be freed in iwm_free_resp(). */ |
| 6437 | hcmd->resp_pkt = (void *)sc->sc_cmd_resp_pkt[idx]; |
| 6438 | sc->sc_cmd_resp_pkt[idx] = NULL((void *)0); |
| 6439 | } else if (generation == sc->sc_generation) { |
| 6440 | free(sc->sc_cmd_resp_pkt[idx], M_DEVBUF2, |
| 6441 | sc->sc_cmd_resp_len[idx]); |
| 6442 | sc->sc_cmd_resp_pkt[idx] = NULL((void *)0); |
| 6443 | } |
| 6444 | } |
| 6445 | out: |
| 6446 | splx(s)spllower(s); |
| 6447 | |
| 6448 | return err; |
| 6449 | } |
| 6450 | |
| 6451 | int |
| 6452 | iwm_send_cmd_pdu(struct iwm_softc *sc, uint32_t id, uint32_t flags, |
| 6453 | uint16_t len, const void *data) |
| 6454 | { |
| 6455 | struct iwm_host_cmd cmd = { |
| 6456 | .id = id, |
| 6457 | .len = { len, }, |
| 6458 | .data = { data, }, |
| 6459 | .flags = flags, |
| 6460 | }; |
| 6461 | |
| 6462 | return iwm_send_cmd(sc, &cmd); |
| 6463 | } |
| 6464 | |
| 6465 | int |
| 6466 | iwm_send_cmd_status(struct iwm_softc *sc, struct iwm_host_cmd *cmd, |
| 6467 | uint32_t *status) |
| 6468 | { |
| 6469 | struct iwm_rx_packet *pkt; |
| 6470 | struct iwm_cmd_response *resp; |
| 6471 | int err, resp_len; |
| 6472 | |
| 6473 | KASSERT((cmd->flags & IWM_CMD_WANT_RESP) == 0)(((cmd->flags & IWM_CMD_WANT_RESP) == 0) ? (void)0 : __assert ("diagnostic ", "/usr/src/sys/dev/pci/if_iwm.c", 6473, "(cmd->flags & IWM_CMD_WANT_RESP) == 0" )); |
| 6474 | cmd->flags |= IWM_CMD_WANT_RESP; |
| 6475 | cmd->resp_pkt_len = sizeof(*pkt) + sizeof(*resp); |
| 6476 | |
| 6477 | err = iwm_send_cmd(sc, cmd); |
| 6478 | if (err) |
| 6479 | return err; |
| 6480 | |
| 6481 | pkt = cmd->resp_pkt; |
| 6482 | if (pkt == NULL((void *)0) || (pkt->hdr.flags & IWM_CMD_FAILED_MSK0x40)) |
| 6483 | return EIO5; |
| 6484 | |
| 6485 | resp_len = iwm_rx_packet_payload_len(pkt); |
| 6486 | if (resp_len != sizeof(*resp)) { |
| 6487 | iwm_free_resp(sc, cmd); |
| 6488 | return EIO5; |
| 6489 | } |
| 6490 | |
| 6491 | resp = (void *)pkt->data; |
| 6492 | *status = le32toh(resp->status)((__uint32_t)(resp->status)); |
| 6493 | iwm_free_resp(sc, cmd); |
| 6494 | return err; |
| 6495 | } |
| 6496 | |
| 6497 | int |
| 6498 | iwm_send_cmd_pdu_status(struct iwm_softc *sc, uint32_t id, uint16_t len, |
| 6499 | const void *data, uint32_t *status) |
| 6500 | { |
| 6501 | struct iwm_host_cmd cmd = { |
| 6502 | .id = id, |
| 6503 | .len = { len, }, |
| 6504 | .data = { data, }, |
| 6505 | }; |
| 6506 | |
| 6507 | return iwm_send_cmd_status(sc, &cmd, status); |
| 6508 | } |
| 6509 | |
| 6510 | void |
| 6511 | iwm_free_resp(struct iwm_softc *sc, struct iwm_host_cmd *hcmd) |
| 6512 | { |
| 6513 | KASSERT((hcmd->flags & (IWM_CMD_WANT_RESP)) == IWM_CMD_WANT_RESP)(((hcmd->flags & (IWM_CMD_WANT_RESP)) == IWM_CMD_WANT_RESP ) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/dev/pci/if_iwm.c" , 6513, "(hcmd->flags & (IWM_CMD_WANT_RESP)) == IWM_CMD_WANT_RESP" )); |
| 6514 | free(hcmd->resp_pkt, M_DEVBUF2, hcmd->resp_pkt_len); |
| 6515 | hcmd->resp_pkt = NULL((void *)0); |
| 6516 | } |
| 6517 | |
| 6518 | void |
| 6519 | iwm_cmd_done(struct iwm_softc *sc, int qid, int idx, int code) |
| 6520 | { |
| 6521 | struct iwm_tx_ring *ring = &sc->txq[sc->cmdqid]; |
| 6522 | struct iwm_tx_data *data; |
| 6523 | |
| 6524 | if (qid != sc->cmdqid) { |
| 6525 | return; /* Not a command ack. */ |
| 6526 | } |
| 6527 | |
| 6528 | data = &ring->data[idx]; |
| 6529 | |
| 6530 | if (data->m != NULL((void *)0)) { |
| 6531 | bus_dmamap_sync(sc->sc_dmat, data->map, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (0), (data->map->dm_mapsize), (0x08)) |
| 6532 | data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (0), (data->map->dm_mapsize), (0x08)); |
| 6533 | bus_dmamap_unload(sc->sc_dmat, data->map)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (data ->map)); |
| 6534 | m_freem(data->m); |
| 6535 | data->m = NULL((void *)0); |
| 6536 | } |
| 6537 | wakeup(&ring->desc[idx]); |
| 6538 | |
| 6539 | if (ring->queued == 0) { |
| 6540 | DPRINTF(("%s: unexpected firmware response to command 0x%x\n",do { ; } while (0) |
| 6541 | DEVNAME(sc), code))do { ; } while (0); |
| 6542 | } else if (--ring->queued == 0) { |
| 6543 | /* |
| 6544 | * 7000 family NICs are locked while commands are in progress. |
| 6545 | * All commands are now done so we may unlock the NIC again. |
| 6546 | */ |
| 6547 | if (sc->sc_device_family == IWM_DEVICE_FAMILY_70001) |
| 6548 | iwm_nic_unlock(sc); |
| 6549 | } |
| 6550 | } |
| 6551 | |
| 6552 | void |
| 6553 | iwm_update_sched(struct iwm_softc *sc, int qid, int idx, uint8_t sta_id, |
| 6554 | uint16_t len) |
| 6555 | { |
| 6556 | struct iwm_agn_scd_bc_tbl *scd_bc_tbl; |
| 6557 | uint16_t val; |
| 6558 | |
| 6559 | scd_bc_tbl = sc->sched_dma.vaddr; |
| 6560 | |
| 6561 | len += IWM_TX_CRC_SIZE4 + IWM_TX_DELIMITER_SIZE4; |
| 6562 | if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_DW_BC_TABLE(1 << 4)) |
| 6563 | len = roundup(len, 4)((((len)+((4)-1))/(4))*(4)) / 4; |
| 6564 | |
| 6565 | val = htole16(sta_id << 12 | len)((__uint16_t)(sta_id << 12 | len)); |
| 6566 | |
| 6567 | bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> sched_dma.map), (0), (sc->sched_dma.size), (0x04)) |
| 6568 | 0, sc->sched_dma.size, BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> sched_dma.map), (0), (sc->sched_dma.size), (0x04)); |
| 6569 | |
| 6570 | /* Update TX scheduler. */ |
| 6571 | scd_bc_tbl[qid].tfd_offset[idx] = val; |
| 6572 | if (idx < IWM_TFD_QUEUE_SIZE_BC_DUP(64)) |
| 6573 | scd_bc_tbl[qid].tfd_offset[IWM_TFD_QUEUE_SIZE_MAX(256) + idx] = val; |
| 6574 | bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> sched_dma.map), (0), (sc->sched_dma.size), (0x08)) |
| 6575 | 0, sc->sched_dma.size, BUS_DMASYNC_POSTWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> sched_dma.map), (0), (sc->sched_dma.size), (0x08)); |
| 6576 | } |
| 6577 | |
| 6578 | void |
| 6579 | iwm_reset_sched(struct iwm_softc *sc, int qid, int idx, uint8_t sta_id) |
| 6580 | { |
| 6581 | struct iwm_agn_scd_bc_tbl *scd_bc_tbl; |
| 6582 | uint16_t val; |
| 6583 | |
| 6584 | scd_bc_tbl = sc->sched_dma.vaddr; |
| 6585 | |
| 6586 | val = htole16(1 | (sta_id << 12))((__uint16_t)(1 | (sta_id << 12))); |
| 6587 | |
| 6588 | bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> sched_dma.map), (0), (sc->sched_dma.size), (0x04)) |
| 6589 | 0, sc->sched_dma.size, BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> sched_dma.map), (0), (sc->sched_dma.size), (0x04)); |
| 6590 | |
| 6591 | /* Update TX scheduler. */ |
| 6592 | scd_bc_tbl[qid].tfd_offset[idx] = val; |
| 6593 | if (idx < IWM_TFD_QUEUE_SIZE_BC_DUP(64)) |
| 6594 | scd_bc_tbl[qid].tfd_offset[IWM_TFD_QUEUE_SIZE_MAX(256) + idx] = val; |
| 6595 | |
| 6596 | bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> sched_dma.map), (0), (sc->sched_dma.size), (0x08)) |
| 6597 | 0, sc->sched_dma.size, BUS_DMASYNC_POSTWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> sched_dma.map), (0), (sc->sched_dma.size), (0x08)); |
| 6598 | } |
| 6599 | |
| 6600 | /* |
| 6601 | * Fill in various bit for management frames, and leave them |
| 6602 | * unfilled for data frames (firmware takes care of that). |
| 6603 | * Return the selected legacy TX rate, or zero if HT/VHT is used. |
| 6604 | */ |
| 6605 | uint8_t |
| 6606 | iwm_tx_fill_cmd(struct iwm_softc *sc, struct iwm_node *in, |
| 6607 | struct ieee80211_frame *wh, struct iwm_tx_cmd *tx) |
| 6608 | { |
| 6609 | struct ieee80211com *ic = &sc->sc_ic; |
| 6610 | struct ieee80211_node *ni = &in->in_ni; |
| 6611 | const struct iwm_rate *rinfo; |
| 6612 | int type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK0x0c; |
| 6613 | int min_ridx = iwm_rval2ridx(ieee80211_min_basic_rate(ic)); |
| 6614 | int ridx, rate_flags; |
| 6615 | uint8_t rate = 0; |
| 6616 | |
| 6617 | tx->rts_retry_limit = IWM_RTS_DFAULT_RETRY_LIMIT3; |
| 6618 | tx->data_retry_limit = IWM_LOW_RETRY_LIMIT7; |
| 6619 | |
| 6620 | if (IEEE80211_IS_MULTICAST(wh->i_addr1)(*(wh->i_addr1) & 0x01) || |
| 6621 | type != IEEE80211_FC0_TYPE_DATA0x08) { |
| 6622 | /* for non-data, use the lowest supported rate */ |
| 6623 | ridx = min_ridx; |
| 6624 | tx->data_retry_limit = IWM_MGMT_DFAULT_RETRY_LIMIT3; |
| 6625 | } else if (ic->ic_fixed_mcs != -1) { |
| 6626 | if (ni->ni_flags & IEEE80211_NODE_VHT0x10000) |
| 6627 | ridx = IWM_FIRST_OFDM_RATE; |
| 6628 | else |
| 6629 | ridx = sc->sc_fixed_ridx; |
| 6630 | } else if (ic->ic_fixed_rate != -1) { |
| 6631 | ridx = sc->sc_fixed_ridx; |
| 6632 | } else { |
| 6633 | int i; |
| 6634 | /* Use firmware rateset retry table. */ |
| 6635 | tx->initial_rate_index = 0; |
| 6636 | tx->tx_flags |= htole32(IWM_TX_CMD_FLG_STA_RATE)((__uint32_t)((1 << 4))); |
| 6637 | if (ni->ni_flags & IEEE80211_NODE_HT0x0400) /* VHT implies HT */ |
| 6638 | return 0; |
| 6639 | ridx = (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)(((ni->ni_chan)->ic_flags & 0x0100) != 0)) ? |
| 6640 | IWM_RIDX_OFDM4 : IWM_RIDX_CCK0; |
| 6641 | for (i = 0; i < ni->ni_rates.rs_nrates; i++) { |
| 6642 | if (iwm_rates[i].rate == (ni->ni_txrate & |
| 6643 | IEEE80211_RATE_VAL0x7f)) { |
| 6644 | ridx = i; |
| 6645 | break; |
| 6646 | } |
| 6647 | } |
| 6648 | return iwm_rates[ridx].rate & 0xff; |
| 6649 | } |
| 6650 | |
| 6651 | rinfo = &iwm_rates[ridx]; |
| 6652 | if ((ni->ni_flags & IEEE80211_NODE_VHT0x10000) == 0 && |
| 6653 | iwm_is_mimo_ht_plcp(rinfo->ht_plcp)) |
| 6654 | rate_flags = IWM_RATE_MCS_ANT_AB_MSK((1 << 14) | (2 << 14)); |
| 6655 | else |
| 6656 | rate_flags = iwm_valid_siso_ant_rate_mask(sc); |
| 6657 | if (IWM_RIDX_IS_CCK(ridx)((ridx) < 4)) |
| 6658 | rate_flags |= IWM_RATE_MCS_CCK_MSK(1 << 9); |
| 6659 | if ((ni->ni_flags & IEEE80211_NODE_HT0x0400) && |
| 6660 | type == IEEE80211_FC0_TYPE_DATA0x08 && |
| 6661 | rinfo->ht_plcp != IWM_RATE_HT_SISO_MCS_INV_PLCP0x20) { |
| 6662 | uint8_t sco = IEEE80211_HTOP0_SCO_SCN0; |
| 6663 | uint8_t vht_chan_width = IEEE80211_VHTOP0_CHAN_WIDTH_HT0; |
| 6664 | if ((ni->ni_flags & IEEE80211_NODE_VHT0x10000) && |
| 6665 | IEEE80211_CHAN_80MHZ_ALLOWED(ni->ni_chan)(((ni->ni_chan)->ic_xflags & 0x00000001) != 0) && |
| 6666 | ieee80211_node_supports_vht_chan80(ni)) |
| 6667 | vht_chan_width = IEEE80211_VHTOP0_CHAN_WIDTH_801; |
| 6668 | else if (IEEE80211_CHAN_40MHZ_ALLOWED(ni->ni_chan)(((ni->ni_chan)->ic_flags & 0x8000) != 0) && |
| 6669 | ieee80211_node_supports_ht_chan40(ni)) |
| 6670 | sco = (ni->ni_htop0 & IEEE80211_HTOP0_SCO_MASK0x03); |
| 6671 | if (ni->ni_flags & IEEE80211_NODE_VHT0x10000) |
| 6672 | rate_flags |= IWM_RATE_MCS_VHT_MSK(1 << 26); |
| 6673 | else |
| 6674 | rate_flags |= IWM_RATE_MCS_HT_MSK(1 << 8); |
| 6675 | if (vht_chan_width == IEEE80211_VHTOP0_CHAN_WIDTH_801 && |
| 6676 | in->in_phyctxt != NULL((void *)0) && |
| 6677 | in->in_phyctxt->vht_chan_width == vht_chan_width) { |
| 6678 | rate_flags |= IWM_RATE_MCS_CHAN_WIDTH_80(2 << 11); |
| 6679 | if (ieee80211_node_supports_vht_sgi80(ni)) |
| 6680 | rate_flags |= IWM_RATE_MCS_SGI_MSK(1 << 13); |
| 6681 | } else if ((sco == IEEE80211_HTOP0_SCO_SCA1 || |
| 6682 | sco == IEEE80211_HTOP0_SCO_SCB3) && |
| 6683 | in->in_phyctxt != NULL((void *)0) && in->in_phyctxt->sco == sco) { |
| 6684 | rate_flags |= IWM_RATE_MCS_CHAN_WIDTH_40(1 << 11); |
| 6685 | if (ieee80211_node_supports_ht_sgi40(ni)) |
| 6686 | rate_flags |= IWM_RATE_MCS_SGI_MSK(1 << 13); |
| 6687 | } else if (ieee80211_node_supports_ht_sgi20(ni)) |
| 6688 | rate_flags |= IWM_RATE_MCS_SGI_MSK(1 << 13); |
| 6689 | if (ni->ni_flags & IEEE80211_NODE_VHT0x10000) { |
| 6690 | /* |
| 6691 | * ifmedia only provides an MCS index, no NSS. |
| 6692 | * Use a fixed SISO rate. |
| 6693 | */ |
| 6694 | tx->rate_n_flags = htole32(rate_flags |((__uint32_t)(rate_flags | (ic->ic_fixed_mcs & 0xf))) |
| 6695 | (ic->ic_fixed_mcs &((__uint32_t)(rate_flags | (ic->ic_fixed_mcs & 0xf))) |
| 6696 | IWM_RATE_VHT_MCS_RATE_CODE_MSK))((__uint32_t)(rate_flags | (ic->ic_fixed_mcs & 0xf))); |
| 6697 | } else |
| 6698 | tx->rate_n_flags = htole32(rate_flags | rinfo->ht_plcp)((__uint32_t)(rate_flags | rinfo->ht_plcp)); |
| 6699 | } else |
| 6700 | tx->rate_n_flags = htole32(rate_flags | rinfo->plcp)((__uint32_t)(rate_flags | rinfo->plcp)); |
| 6701 | |
| 6702 | return rate; |
| 6703 | } |
| 6704 | |
| 6705 | #define TB0_SIZE16 16 |
| 6706 | int |
| 6707 | iwm_tx(struct iwm_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac) |
| 6708 | { |
| 6709 | struct ieee80211com *ic = &sc->sc_ic; |
| 6710 | struct iwm_node *in = (void *)ni; |
| 6711 | struct iwm_tx_ring *ring; |
| 6712 | struct iwm_tx_data *data; |
| 6713 | struct iwm_tfd *desc; |
| 6714 | struct iwm_device_cmd *cmd; |
| 6715 | struct iwm_tx_cmd *tx; |
| 6716 | struct ieee80211_frame *wh; |
| 6717 | struct ieee80211_key *k = NULL((void *)0); |
| 6718 | uint8_t rate; |
| 6719 | uint8_t *ivp; |
| 6720 | uint32_t flags; |
| 6721 | u_int hdrlen; |
| 6722 | bus_dma_segment_t *seg; |
| 6723 | uint8_t tid, type, subtype; |
| 6724 | int i, totlen, err, pad; |
| 6725 | int qid, hasqos; |
| 6726 | |
| 6727 | wh = mtod(m, struct ieee80211_frame *)((struct ieee80211_frame *)((m)->m_hdr.mh_data)); |
| 6728 | type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK0x0c; |
| 6729 | subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK0xf0; |
| 6730 | if (type == IEEE80211_FC0_TYPE_CTL0x04) |
| 6731 | hdrlen = sizeof(struct ieee80211_frame_min); |
| 6732 | else |
| 6733 | hdrlen = ieee80211_get_hdrlen(wh); |
| 6734 | |
| 6735 | hasqos = ieee80211_has_qos(wh); |
| 6736 | if (type == IEEE80211_FC0_TYPE_DATA0x08) |
| 6737 | tid = IWM_TID_NON_QOS0; |
| 6738 | else |
| 6739 | tid = IWM_MAX_TID_COUNT8; |
| 6740 | |
| 6741 | /* |
| 6742 | * Map EDCA categories to Tx data queues. |
| 6743 | * |
| 6744 | * We use static data queue assignments even in DQA mode. We do not |
| 6745 | * need to share Tx queues between stations because we only implement |
| 6746 | * client mode; the firmware's station table contains only one entry |
| 6747 | * which represents our access point. |
| 6748 | */ |
| 6749 | if (ic->ic_opmode == IEEE80211_M_MONITOR) { |
| 6750 | if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_DQA_SUPPORT)((sc->sc_enabled_capa)[(12)>>3] & (1<<((12 )&(8 -1))))) |
| 6751 | qid = IWM_DQA_INJECT_MONITOR_QUEUE2; |
| 6752 | else |
| 6753 | qid = IWM_AUX_QUEUE15; |
| 6754 | } else if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_DQA_SUPPORT)((sc->sc_enabled_capa)[(12)>>3] & (1<<((12 )&(8 -1))))) |
| 6755 | qid = IWM_DQA_MIN_MGMT_QUEUE5 + ac; |
| 6756 | else |
| 6757 | qid = ac; |
| 6758 | |
| 6759 | /* If possible, put this frame on an aggregation queue. */ |
| 6760 | if (hasqos) { |
| 6761 | struct ieee80211_tx_ba *ba; |
| 6762 | uint16_t qos = ieee80211_get_qos(wh); |
| 6763 | int qostid = qos & IEEE80211_QOS_TID0x000f; |
| 6764 | int agg_qid = IWM_FIRST_AGG_TX_QUEUE10 + qostid; |
| 6765 | |
| 6766 | ba = &ni->ni_tx_ba[qostid]; |
| 6767 | if (!IEEE80211_IS_MULTICAST(wh->i_addr1)(*(wh->i_addr1) & 0x01) && |
| 6768 | type == IEEE80211_FC0_TYPE_DATA0x08 && |
| 6769 | subtype != IEEE80211_FC0_SUBTYPE_NODATA0x40 && |
| 6770 | (sc->tx_ba_queue_mask & (1 << agg_qid)) && |
| 6771 | ba->ba_state == IEEE80211_BA_AGREED2) { |
| 6772 | qid = agg_qid; |
| 6773 | tid = qostid; |
| 6774 | ac = ieee80211_up_to_ac(ic, qostid); |
| 6775 | } |
| 6776 | } |
| 6777 | |
| 6778 | ring = &sc->txq[qid]; |
| 6779 | desc = &ring->desc[ring->cur]; |
| 6780 | memset(desc, 0, sizeof(*desc))__builtin_memset((desc), (0), (sizeof(*desc))); |
| 6781 | data = &ring->data[ring->cur]; |
| 6782 | |
| 6783 | cmd = &ring->cmd[ring->cur]; |
| 6784 | cmd->hdr.code = IWM_TX_CMD0x1c; |
| 6785 | cmd->hdr.flags = 0; |
| 6786 | cmd->hdr.qid = ring->qid; |
| 6787 | cmd->hdr.idx = ring->cur; |
| 6788 | |
| 6789 | tx = (void *)cmd->data; |
| 6790 | memset(tx, 0, sizeof(*tx))__builtin_memset((tx), (0), (sizeof(*tx))); |
| 6791 | |
| 6792 | rate = iwm_tx_fill_cmd(sc, in, wh, tx); |
| 6793 | |
| 6794 | #if NBPFILTER1 > 0 |
| 6795 | if (sc->sc_drvbpf != NULL((void *)0)) { |
| 6796 | struct iwm_tx_radiotap_header *tap = &sc->sc_txtapsc_txtapu.th; |
| 6797 | uint16_t chan_flags; |
| 6798 | |
| 6799 | tap->wt_flags = 0; |
| 6800 | tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq)((__uint16_t)(ni->ni_chan->ic_freq)); |
| 6801 | chan_flags = ni->ni_chan->ic_flags; |
| 6802 | if (ic->ic_curmode != IEEE80211_MODE_11N && |
| 6803 | ic->ic_curmode != IEEE80211_MODE_11AC) { |
| 6804 | chan_flags &= ~IEEE80211_CHAN_HT0x2000; |
| 6805 | chan_flags &= ~IEEE80211_CHAN_40MHZ0x8000; |
| 6806 | } |
| 6807 | if (ic->ic_curmode != IEEE80211_MODE_11AC) |
| 6808 | chan_flags &= ~IEEE80211_CHAN_VHT0x4000; |
| 6809 | tap->wt_chan_flags = htole16(chan_flags)((__uint16_t)(chan_flags)); |
| 6810 | if ((ni->ni_flags & IEEE80211_NODE_HT0x0400) && |
| 6811 | !IEEE80211_IS_MULTICAST(wh->i_addr1)(*(wh->i_addr1) & 0x01) && |
| 6812 | type == IEEE80211_FC0_TYPE_DATA0x08) { |
| 6813 | tap->wt_rate = (0x80 | ni->ni_txmcs); |
| 6814 | } else |
| 6815 | tap->wt_rate = rate; |
| 6816 | if ((ic->ic_flags & IEEE80211_F_WEPON0x00000100) && |
| 6817 | (wh->i_fc[1] & IEEE80211_FC1_PROTECTED0x40)) |
| 6818 | tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP0x04; |
| 6819 | |
| 6820 | bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_txtap_len, |
| 6821 | m, BPF_DIRECTION_OUT(1 << 1)); |
| 6822 | } |
| 6823 | #endif |
| 6824 | totlen = m->m_pkthdrM_dat.MH.MH_pkthdr.len; |
| 6825 | |
| 6826 | if (ic->ic_opmode != IEEE80211_M_MONITOR && |
| 6827 | (wh->i_fc[1] & IEEE80211_FC1_PROTECTED0x40)) { |
| 6828 | k = ieee80211_get_txkey(ic, wh, ni); |
| 6829 | if ((k->k_flags & IEEE80211_KEY_GROUP0x00000001) || |
| 6830 | (k->k_cipher != IEEE80211_CIPHER_CCMP)) { |
| 6831 | if ((m = ieee80211_encrypt(ic, m, k)) == NULL((void *)0)) |
| 6832 | return ENOBUFS55; |
| 6833 | /* 802.11 header may have moved. */ |
| 6834 | wh = mtod(m, struct ieee80211_frame *)((struct ieee80211_frame *)((m)->m_hdr.mh_data)); |
| 6835 | totlen = m->m_pkthdrM_dat.MH.MH_pkthdr.len; |
| 6836 | k = NULL((void *)0); /* skip hardware crypto below */ |
| 6837 | } else { |
| 6838 | /* HW appends CCMP MIC */ |
| 6839 | totlen += IEEE80211_CCMP_HDRLEN8; |
| 6840 | } |
| 6841 | } |
| 6842 | |
| 6843 | flags = 0; |
| 6844 | if (!IEEE80211_IS_MULTICAST(wh->i_addr1)(*(wh->i_addr1) & 0x01)) { |
| 6845 | flags |= IWM_TX_CMD_FLG_ACK(1 << 3); |
| 6846 | } |
| 6847 | |
| 6848 | if (type == IEEE80211_FC0_TYPE_DATA0x08 && |
| 6849 | !IEEE80211_IS_MULTICAST(wh->i_addr1)(*(wh->i_addr1) & 0x01) && |
| 6850 | (totlen + IEEE80211_CRC_LEN4 > ic->ic_rtsthreshold || |
| 6851 | (ic->ic_flags & IEEE80211_F_USEPROT0x00100000))) |
| 6852 | flags |= IWM_TX_CMD_FLG_PROT_REQUIRE(1 << 0); |
| 6853 | |
| 6854 | if (ic->ic_opmode == IEEE80211_M_MONITOR) |
| 6855 | tx->sta_id = IWM_MONITOR_STA_ID2; |
| 6856 | else |
| 6857 | tx->sta_id = IWM_STATION_ID0; |
| 6858 | |
| 6859 | if (type == IEEE80211_FC0_TYPE_MGT0x00) { |
| 6860 | if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ0x00 || |
| 6861 | subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ0x20) |
| 6862 | tx->pm_frame_timeout = htole16(3)((__uint16_t)(3)); |
| 6863 | else |
| 6864 | tx->pm_frame_timeout = htole16(2)((__uint16_t)(2)); |
| 6865 | } else { |
| 6866 | if (type == IEEE80211_FC0_TYPE_CTL0x04 && |
| 6867 | subtype == IEEE80211_FC0_SUBTYPE_BAR0x80) { |
| 6868 | struct ieee80211_frame_min *mwh; |
| 6869 | uint8_t *barfrm; |
| 6870 | uint16_t ctl; |
| 6871 | mwh = mtod(m, struct ieee80211_frame_min *)((struct ieee80211_frame_min *)((m)->m_hdr.mh_data)); |
| 6872 | barfrm = (uint8_t *)&mwh[1]; |
| 6873 | ctl = LE_READ_2(barfrm)((u_int16_t) ((((const u_int8_t *)(barfrm))[0]) | (((const u_int8_t *)(barfrm))[1] << 8))); |
| 6874 | tid = (ctl & IEEE80211_BA_TID_INFO_MASK0xf000) >> |
| 6875 | IEEE80211_BA_TID_INFO_SHIFT12; |
| 6876 | flags |= IWM_TX_CMD_FLG_ACK(1 << 3) | IWM_TX_CMD_FLG_BAR(1 << 6); |
| 6877 | tx->data_retry_limit = IWM_BAR_DFAULT_RETRY_LIMIT60; |
| 6878 | } |
| 6879 | |
| 6880 | tx->pm_frame_timeout = htole16(0)((__uint16_t)(0)); |
| 6881 | } |
| 6882 | |
| 6883 | if (hdrlen & 3) { |
| 6884 | /* First segment length must be a multiple of 4. */ |
| 6885 | flags |= IWM_TX_CMD_FLG_MH_PAD(1 << 20); |
| 6886 | tx->offload_assist |= htole16(IWM_TX_CMD_OFFLD_PAD)((__uint16_t)((1 << 13))); |
| 6887 | pad = 4 - (hdrlen & 3); |
| 6888 | } else |
| 6889 | pad = 0; |
| 6890 | |
| 6891 | tx->len = htole16(totlen)((__uint16_t)(totlen)); |
| 6892 | tx->tid_tspec = tid; |
| 6893 | tx->life_time = htole32(IWM_TX_CMD_LIFE_TIME_INFINITE)((__uint32_t)(0xFFFFFFFF)); |
| 6894 | |
| 6895 | /* Set physical address of "scratch area". */ |
| 6896 | tx->dram_lsb_ptr = htole32(data->scratch_paddr)((__uint32_t)(data->scratch_paddr)); |
| 6897 | tx->dram_msb_ptr = iwm_get_dma_hi_addr(data->scratch_paddr); |
| 6898 | |
| 6899 | /* Copy 802.11 header in TX command. */ |
| 6900 | memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen)__builtin_memcpy((((uint8_t *)tx) + sizeof(*tx)), (wh), (hdrlen )); |
| 6901 | |
| 6902 | if (k != NULL((void *)0) && k->k_cipher == IEEE80211_CIPHER_CCMP) { |
| 6903 | /* Trim 802.11 header and prepend CCMP IV. */ |
| 6904 | m_adj(m, hdrlen - IEEE80211_CCMP_HDRLEN8); |
| 6905 | ivp = mtod(m, u_int8_t *)((u_int8_t *)((m)->m_hdr.mh_data)); |
| 6906 | k->k_tsc++; /* increment the 48-bit PN */ |
| 6907 | ivp[0] = k->k_tsc; /* PN0 */ |
| 6908 | ivp[1] = k->k_tsc >> 8; /* PN1 */ |
| 6909 | ivp[2] = 0; /* Rsvd */ |
| 6910 | ivp[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV0x20; |
| 6911 | ivp[4] = k->k_tsc >> 16; /* PN2 */ |
| 6912 | ivp[5] = k->k_tsc >> 24; /* PN3 */ |
| 6913 | ivp[6] = k->k_tsc >> 32; /* PN4 */ |
| 6914 | ivp[7] = k->k_tsc >> 40; /* PN5 */ |
| 6915 | |
| 6916 | tx->sec_ctl = IWM_TX_CMD_SEC_CCM0x02; |
| 6917 | memcpy(tx->key, k->k_key, MIN(sizeof(tx->key), k->k_len))__builtin_memcpy((tx->key), (k->k_key), ((((sizeof(tx-> key))<(k->k_len))?(sizeof(tx->key)):(k->k_len)))); |
| 6918 | /* TX scheduler includes CCMP MIC length. */ |
| 6919 | totlen += IEEE80211_CCMP_MICLEN8; |
| 6920 | } else { |
| 6921 | /* Trim 802.11 header. */ |
| 6922 | m_adj(m, hdrlen); |
| 6923 | tx->sec_ctl = 0; |
| 6924 | } |
| 6925 | |
| 6926 | flags |= IWM_TX_CMD_FLG_BT_DIS(1 << 12); |
| 6927 | if (!hasqos) |
| 6928 | flags |= IWM_TX_CMD_FLG_SEQ_CTL(1 << 13); |
| 6929 | |
| 6930 | tx->tx_flags |= htole32(flags)((__uint32_t)(flags)); |
| 6931 | |
| 6932 | err = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( data->map), (m), (0x0001 | 0x0400)) |
| 6933 | BUS_DMA_NOWAIT | BUS_DMA_WRITE)(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( data->map), (m), (0x0001 | 0x0400)); |
| 6934 | if (err && err != EFBIG27) { |
| 6935 | printf("%s: can't map mbuf (error %d)\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), err); |
| 6936 | m_freem(m); |
| 6937 | return err; |
| 6938 | } |
| 6939 | if (err) { |
| 6940 | /* Too many DMA segments, linearize mbuf. */ |
| 6941 | if (m_defrag(m, M_DONTWAIT0x0002)) { |
| 6942 | m_freem(m); |
| 6943 | return ENOBUFS55; |
| 6944 | } |
| 6945 | err = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( data->map), (m), (0x0001 | 0x0400)) |
| 6946 | BUS_DMA_NOWAIT | BUS_DMA_WRITE)(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( data->map), (m), (0x0001 | 0x0400)); |
| 6947 | if (err) { |
| 6948 | printf("%s: can't map mbuf (error %d)\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), |
| 6949 | err); |
| 6950 | m_freem(m); |
| 6951 | return err; |
| 6952 | } |
| 6953 | } |
| 6954 | data->m = m; |
| 6955 | data->in = in; |
| 6956 | data->txmcs = ni->ni_txmcs; |
| 6957 | data->txrate = ni->ni_txrate; |
| 6958 | data->ampdu_txmcs = ni->ni_txmcs; /* updated upon Tx interrupt */ |
| 6959 | data->ampdu_txnss = ni->ni_vht_ss; /* updated upon Tx interrupt */ |
| 6960 | |
| 6961 | /* Fill TX descriptor. */ |
| 6962 | desc->num_tbs = 2 + data->map->dm_nsegs; |
| 6963 | |
| 6964 | desc->tbs[0].lo = htole32(data->cmd_paddr)((__uint32_t)(data->cmd_paddr)); |
| 6965 | desc->tbs[0].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr) |((__uint16_t)(iwm_get_dma_hi_addr(data->cmd_paddr) | (16 << 4))) |
| 6966 | (TB0_SIZE << 4))((__uint16_t)(iwm_get_dma_hi_addr(data->cmd_paddr) | (16 << 4))); |
| 6967 | desc->tbs[1].lo = htole32(data->cmd_paddr + TB0_SIZE)((__uint32_t)(data->cmd_paddr + 16)); |
| 6968 | desc->tbs[1].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr) |((__uint16_t)(iwm_get_dma_hi_addr(data->cmd_paddr) | ((sizeof (struct iwm_cmd_header) + sizeof(*tx) + hdrlen + pad - 16) << 4))) |
| 6969 | ((sizeof(struct iwm_cmd_header) + sizeof(*tx)((__uint16_t)(iwm_get_dma_hi_addr(data->cmd_paddr) | ((sizeof (struct iwm_cmd_header) + sizeof(*tx) + hdrlen + pad - 16) << 4))) |
| 6970 | + hdrlen + pad - TB0_SIZE) << 4))((__uint16_t)(iwm_get_dma_hi_addr(data->cmd_paddr) | ((sizeof (struct iwm_cmd_header) + sizeof(*tx) + hdrlen + pad - 16) << 4))); |
| 6971 | |
| 6972 | /* Other DMA segments are for data payload. */ |
| 6973 | seg = data->map->dm_segs; |
| 6974 | for (i = 0; i < data->map->dm_nsegs; i++, seg++) { |
| 6975 | desc->tbs[i+2].lo = htole32(seg->ds_addr)((__uint32_t)(seg->ds_addr)); |
| 6976 | desc->tbs[i+2].hi_n_len = \ |
| 6977 | htole16(iwm_get_dma_hi_addr(seg->ds_addr)((__uint16_t)(iwm_get_dma_hi_addr(seg->ds_addr) | ((seg-> ds_len) << 4))) |
| 6978 | | ((seg->ds_len) << 4))((__uint16_t)(iwm_get_dma_hi_addr(seg->ds_addr) | ((seg-> ds_len) << 4))); |
| 6979 | } |
| 6980 | |
| 6981 | bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (0), (data->map->dm_mapsize), (0x04)) |
| 6982 | BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (0), (data->map->dm_mapsize), (0x04)); |
| 6983 | bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> cmd_dma.map), ((char *)(void *)cmd - (char *)(void *)ring-> cmd_dma.vaddr), (sizeof (*cmd)), (0x04)) |
| 6984 | (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> cmd_dma.map), ((char *)(void *)cmd - (char *)(void *)ring-> cmd_dma.vaddr), (sizeof (*cmd)), (0x04)) |
| 6985 | sizeof (*cmd), BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> cmd_dma.map), ((char *)(void *)cmd - (char *)(void *)ring-> cmd_dma.vaddr), (sizeof (*cmd)), (0x04)); |
| 6986 | bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> desc_dma.map), ((char *)(void *)desc - (char *)(void *)ring-> desc_dma.vaddr), (sizeof (*desc)), (0x04)) |
| 6987 | (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> desc_dma.map), ((char *)(void *)desc - (char *)(void *)ring-> desc_dma.vaddr), (sizeof (*desc)), (0x04)) |
| 6988 | sizeof (*desc), BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (ring-> desc_dma.map), ((char *)(void *)desc - (char *)(void *)ring-> desc_dma.vaddr), (sizeof (*desc)), (0x04)); |
| 6989 | |
| 6990 | iwm_update_sched(sc, ring->qid, ring->cur, tx->sta_id, totlen); |
| 6991 | |
| 6992 | /* Kick TX ring. */ |
| 6993 | ring->cur = (ring->cur + 1) % IWM_TX_RING_COUNT256; |
| 6994 | IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x400)+0x060 ))), ((ring->qid << 8 | ring->cur)))); |
| 6995 | |
| 6996 | /* Mark TX ring as full if we reach a certain threshold. */ |
| 6997 | if (++ring->queued > IWM_TX_RING_HIMARK224) { |
| 6998 | sc->qfullmsk |= 1 << ring->qid; |
| 6999 | } |
| 7000 | |
| 7001 | if (ic->ic_ific_ac.ac_if.if_flags & IFF_UP0x1) |
| 7002 | sc->sc_tx_timer[ring->qid] = 15; |
| 7003 | |
| 7004 | return 0; |
| 7005 | } |
| 7006 | |
| 7007 | int |
| 7008 | iwm_flush_tx_path(struct iwm_softc *sc, int tfd_queue_msk) |
| 7009 | { |
| 7010 | struct iwm_tx_path_flush_cmd flush_cmd = { |
| 7011 | .sta_id = htole32(IWM_STATION_ID)((__uint32_t)(0)), |
| 7012 | .tid_mask = htole16(0xffff)((__uint16_t)(0xffff)), |
| 7013 | }; |
| 7014 | int err; |
| 7015 | |
| 7016 | err = iwm_send_cmd_pdu(sc, IWM_TXPATH_FLUSH0x1e, 0, |
| 7017 | sizeof(flush_cmd), &flush_cmd); |
| 7018 | if (err) |
| 7019 | printf("%s: Flushing tx queue failed: %d\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), err); |
| 7020 | return err; |
| 7021 | } |
| 7022 | |
| 7023 | #define IWM_FLUSH_WAIT_MS2000 2000 |
| 7024 | |
| 7025 | int |
| 7026 | iwm_wait_tx_queues_empty(struct iwm_softc *sc) |
| 7027 | { |
| 7028 | int i, err; |
| 7029 | |
| 7030 | for (i = 0; i < IWM_MAX_QUEUES31; i++) { |
| 7031 | struct iwm_tx_ring *ring = &sc->txq[i]; |
| 7032 | |
| 7033 | if (i == sc->cmdqid) |
| 7034 | continue; |
| 7035 | |
| 7036 | while (ring->queued > 0) { |
| 7037 | err = tsleep_nsec(ring, 0, "iwmflush", |
| 7038 | MSEC_TO_NSEC(IWM_FLUSH_WAIT_MS2000)); |
| 7039 | if (err) |
| 7040 | return err; |
| 7041 | } |
| 7042 | } |
| 7043 | |
| 7044 | return 0; |
| 7045 | } |
| 7046 | |
| 7047 | void |
| 7048 | iwm_led_enable(struct iwm_softc *sc) |
| 7049 | { |
| 7050 | IWM_WRITE(sc, IWM_CSR_LED_REG, IWM_CSR_LED_REG_TURN_ON)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x094))), ( ((0x60))))); |
| 7051 | } |
| 7052 | |
| 7053 | void |
| 7054 | iwm_led_disable(struct iwm_softc *sc) |
| 7055 | { |
| 7056 | IWM_WRITE(sc, IWM_CSR_LED_REG, IWM_CSR_LED_REG_TURN_OFF)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x094))), ( ((0x20))))); |
| 7057 | } |
| 7058 | |
| 7059 | int |
| 7060 | iwm_led_is_enabled(struct iwm_softc *sc) |
| 7061 | { |
| 7062 | return (IWM_READ(sc, IWM_CSR_LED_REG)(((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x094))))) == IWM_CSR_LED_REG_TURN_ON(0x60)); |
| 7063 | } |
| 7064 | |
| 7065 | #define IWM_LED_BLINK_TIMEOUT_MSEC200 200 |
| 7066 | |
| 7067 | void |
| 7068 | iwm_led_blink_timeout(void *arg) |
| 7069 | { |
| 7070 | struct iwm_softc *sc = arg; |
| 7071 | |
| 7072 | if (iwm_led_is_enabled(sc)) |
| 7073 | iwm_led_disable(sc); |
| 7074 | else |
| 7075 | iwm_led_enable(sc); |
| 7076 | |
| 7077 | timeout_add_msec(&sc->sc_led_blink_to, IWM_LED_BLINK_TIMEOUT_MSEC200); |
| 7078 | } |
| 7079 | |
| 7080 | void |
| 7081 | iwm_led_blink_start(struct iwm_softc *sc) |
| 7082 | { |
| 7083 | timeout_add_msec(&sc->sc_led_blink_to, IWM_LED_BLINK_TIMEOUT_MSEC200); |
| 7084 | iwm_led_enable(sc); |
| 7085 | } |
| 7086 | |
| 7087 | void |
| 7088 | iwm_led_blink_stop(struct iwm_softc *sc) |
| 7089 | { |
| 7090 | timeout_del(&sc->sc_led_blink_to); |
| 7091 | iwm_led_disable(sc); |
| 7092 | } |
| 7093 | |
| 7094 | #define IWM_POWER_KEEP_ALIVE_PERIOD_SEC25 25 |
| 7095 | |
| 7096 | int |
| 7097 | iwm_beacon_filter_send_cmd(struct iwm_softc *sc, |
| 7098 | struct iwm_beacon_filter_cmd *cmd) |
| 7099 | { |
| 7100 | return iwm_send_cmd_pdu(sc, IWM_REPLY_BEACON_FILTERING_CMD0xd2, |
| 7101 | 0, sizeof(struct iwm_beacon_filter_cmd), cmd); |
| 7102 | } |
| 7103 | |
| 7104 | void |
| 7105 | iwm_beacon_filter_set_cqm_params(struct iwm_softc *sc, struct iwm_node *in, |
| 7106 | struct iwm_beacon_filter_cmd *cmd) |
| 7107 | { |
| 7108 | cmd->ba_enable_beacon_abort = htole32(sc->sc_bf.ba_enabled)((__uint32_t)(sc->sc_bf.ba_enabled)); |
| 7109 | } |
| 7110 | |
| 7111 | int |
| 7112 | iwm_update_beacon_abort(struct iwm_softc *sc, struct iwm_node *in, int enable) |
| 7113 | { |
| 7114 | struct iwm_beacon_filter_cmd cmd = { |
| 7115 | IWM_BF_CMD_CONFIG_DEFAULTS.bf_energy_delta = ((__uint32_t)(5)), .bf_roaming_energy_delta = ((__uint32_t)(1)), .bf_roaming_state = ((__uint32_t)(72)), .bf_temp_threshold = ((__uint32_t)(112)), .bf_temp_fast_filter = ((__uint32_t)(1)), .bf_temp_slow_filter = ((__uint32_t)(5) ), .bf_debug_flag = ((__uint32_t)(0)), .bf_escape_timer = ((__uint32_t )(50)), .ba_escape_timer = ((__uint32_t)(6)), |
| 7116 | .bf_enable_beacon_filter = htole32(1)((__uint32_t)(1)), |
| 7117 | .ba_enable_beacon_abort = htole32(enable)((__uint32_t)(enable)), |
| 7118 | }; |
| 7119 | |
| 7120 | if (!sc->sc_bf.bf_enabled) |
| 7121 | return 0; |
| 7122 | |
| 7123 | sc->sc_bf.ba_enabled = enable; |
| 7124 | iwm_beacon_filter_set_cqm_params(sc, in, &cmd); |
| 7125 | return iwm_beacon_filter_send_cmd(sc, &cmd); |
| 7126 | } |
| 7127 | |
| 7128 | void |
| 7129 | iwm_power_build_cmd(struct iwm_softc *sc, struct iwm_node *in, |
| 7130 | struct iwm_mac_power_cmd *cmd) |
| 7131 | { |
| 7132 | struct ieee80211com *ic = &sc->sc_ic; |
| 7133 | struct ieee80211_node *ni = &in->in_ni; |
| 7134 | int dtim_period, dtim_msec, keep_alive; |
| 7135 | |
| 7136 | cmd->id_and_color = htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id,((__uint32_t)(((in->in_id << (0)) | (in->in_color << (8))))) |
| 7137 | in->in_color))((__uint32_t)(((in->in_id << (0)) | (in->in_color << (8))))); |
| 7138 | if (ni->ni_dtimperiod) |
| 7139 | dtim_period = ni->ni_dtimperiod; |
| 7140 | else |
| 7141 | dtim_period = 1; |
| 7142 | |
| 7143 | /* |
| 7144 | * Regardless of power management state the driver must set |
| 7145 | * keep alive period. FW will use it for sending keep alive NDPs |
| 7146 | * immediately after association. Check that keep alive period |
| 7147 | * is at least 3 * DTIM. |
| 7148 | */ |
| 7149 | dtim_msec = dtim_period * ni->ni_intval; |
| 7150 | keep_alive = MAX(3 * dtim_msec, 1000 * IWM_POWER_KEEP_ALIVE_PERIOD_SEC)(((3 * dtim_msec)>(1000 * 25))?(3 * dtim_msec):(1000 * 25) ); |
| 7151 | keep_alive = roundup(keep_alive, 1000)((((keep_alive)+((1000)-1))/(1000))*(1000)) / 1000; |
| 7152 | cmd->keep_alive_seconds = htole16(keep_alive)((__uint16_t)(keep_alive)); |
| 7153 | |
| 7154 | if (ic->ic_opmode != IEEE80211_M_MONITOR) |
| 7155 | cmd->flags = htole16(IWM_POWER_FLAGS_POWER_SAVE_ENA_MSK)((__uint16_t)((1 << 0))); |
| 7156 | } |
| 7157 | |
| 7158 | int |
| 7159 | iwm_power_mac_update_mode(struct iwm_softc *sc, struct iwm_node *in) |
| 7160 | { |
| 7161 | int err; |
| 7162 | int ba_enable; |
| 7163 | struct iwm_mac_power_cmd cmd; |
| 7164 | |
| 7165 | memset(&cmd, 0, sizeof(cmd))__builtin_memset((&cmd), (0), (sizeof(cmd))); |
| 7166 | |
| 7167 | iwm_power_build_cmd(sc, in, &cmd); |
| 7168 | |
| 7169 | err = iwm_send_cmd_pdu(sc, IWM_MAC_PM_POWER_TABLE0xa9, 0, |
| 7170 | sizeof(cmd), &cmd); |
| 7171 | if (err != 0) |
| 7172 | return err; |
| 7173 | |
| 7174 | ba_enable = !!(cmd.flags & |
| 7175 | htole16(IWM_POWER_FLAGS_POWER_MANAGEMENT_ENA_MSK)((__uint16_t)((1 << 1)))); |
| 7176 | return iwm_update_beacon_abort(sc, in, ba_enable); |
| 7177 | } |
| 7178 | |
| 7179 | int |
| 7180 | iwm_power_update_device(struct iwm_softc *sc) |
| 7181 | { |
| 7182 | struct iwm_device_power_cmd cmd = { }; |
| 7183 | struct ieee80211com *ic = &sc->sc_ic; |
| 7184 | |
| 7185 | if (ic->ic_opmode != IEEE80211_M_MONITOR) |
| 7186 | cmd.flags = htole16(IWM_DEVICE_POWER_FLAGS_POWER_SAVE_ENA_MSK)((__uint16_t)((1 << 0))); |
| 7187 | |
| 7188 | return iwm_send_cmd_pdu(sc, |
| 7189 | IWM_POWER_TABLE_CMD0x77, 0, sizeof(cmd), &cmd); |
| 7190 | } |
| 7191 | |
| 7192 | int |
| 7193 | iwm_enable_beacon_filter(struct iwm_softc *sc, struct iwm_node *in) |
| 7194 | { |
| 7195 | struct iwm_beacon_filter_cmd cmd = { |
| 7196 | IWM_BF_CMD_CONFIG_DEFAULTS.bf_energy_delta = ((__uint32_t)(5)), .bf_roaming_energy_delta = ((__uint32_t)(1)), .bf_roaming_state = ((__uint32_t)(72)), .bf_temp_threshold = ((__uint32_t)(112)), .bf_temp_fast_filter = ((__uint32_t)(1)), .bf_temp_slow_filter = ((__uint32_t)(5) ), .bf_debug_flag = ((__uint32_t)(0)), .bf_escape_timer = ((__uint32_t )(50)), .ba_escape_timer = ((__uint32_t)(6)), |
| 7197 | .bf_enable_beacon_filter = htole32(1)((__uint32_t)(1)), |
| 7198 | }; |
| 7199 | int err; |
| 7200 | |
| 7201 | iwm_beacon_filter_set_cqm_params(sc, in, &cmd); |
| 7202 | err = iwm_beacon_filter_send_cmd(sc, &cmd); |
| 7203 | |
| 7204 | if (err == 0) |
| 7205 | sc->sc_bf.bf_enabled = 1; |
| 7206 | |
| 7207 | return err; |
| 7208 | } |
| 7209 | |
| 7210 | int |
| 7211 | iwm_disable_beacon_filter(struct iwm_softc *sc) |
| 7212 | { |
| 7213 | struct iwm_beacon_filter_cmd cmd; |
| 7214 | int err; |
| 7215 | |
| 7216 | memset(&cmd, 0, sizeof(cmd))__builtin_memset((&cmd), (0), (sizeof(cmd))); |
| 7217 | |
| 7218 | err = iwm_beacon_filter_send_cmd(sc, &cmd); |
| 7219 | if (err == 0) |
| 7220 | sc->sc_bf.bf_enabled = 0; |
| 7221 | |
| 7222 | return err; |
| 7223 | } |
| 7224 | |
| 7225 | int |
| 7226 | iwm_add_sta_cmd(struct iwm_softc *sc, struct iwm_node *in, int update) |
| 7227 | { |
| 7228 | struct iwm_add_sta_cmd add_sta_cmd; |
| 7229 | int err; |
| 7230 | uint32_t status, aggsize; |
| 7231 | const uint32_t max_aggsize = (IWM_STA_FLG_MAX_AGG_SIZE_64K(3 << 19) >> |
| 7232 | IWM_STA_FLG_MAX_AGG_SIZE_SHIFT19); |
| 7233 | size_t cmdsize; |
| 7234 | struct ieee80211com *ic = &sc->sc_ic; |
| 7235 | |
| 7236 | if (!update && (sc->sc_flags & IWM_FLAG_STA_ACTIVE0x20)) |
| 7237 | panic("STA already added"); |
| 7238 | |
| 7239 | memset(&add_sta_cmd, 0, sizeof(add_sta_cmd))__builtin_memset((&add_sta_cmd), (0), (sizeof(add_sta_cmd ))); |
| 7240 | |
| 7241 | if (ic->ic_opmode == IEEE80211_M_MONITOR) |
| 7242 | add_sta_cmd.sta_id = IWM_MONITOR_STA_ID2; |
| 7243 | else |
| 7244 | add_sta_cmd.sta_id = IWM_STATION_ID0; |
| 7245 | if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_STA_TYPE)((sc->sc_ucode_api)[(30)>>3] & (1<<((30)& (8 -1))))) { |
| 7246 | if (ic->ic_opmode == IEEE80211_M_MONITOR) |
| 7247 | add_sta_cmd.station_type = IWM_STA_GENERAL_PURPOSE1; |
| 7248 | else |
| 7249 | add_sta_cmd.station_type = IWM_STA_LINK0; |
| 7250 | } |
| 7251 | add_sta_cmd.mac_id_n_color |
| 7252 | = htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color))((__uint32_t)(((in->in_id << (0)) | (in->in_color << (8))))); |
| 7253 | if (ic->ic_opmode == IEEE80211_M_MONITOR) { |
| 7254 | int qid; |
| 7255 | IEEE80211_ADDR_COPY(&add_sta_cmd.addr, etheranyaddr)__builtin_memcpy((&add_sta_cmd.addr), (etheranyaddr), (6) ); |
| 7256 | if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_DQA_SUPPORT)((sc->sc_enabled_capa)[(12)>>3] & (1<<((12 )&(8 -1))))) |
| 7257 | qid = IWM_DQA_INJECT_MONITOR_QUEUE2; |
| 7258 | else |
| 7259 | qid = IWM_AUX_QUEUE15; |
| 7260 | in->tfd_queue_msk |= (1 << qid); |
| 7261 | } else { |
| 7262 | int ac; |
| 7263 | for (ac = 0; ac < EDCA_NUM_AC4; ac++) { |
| 7264 | int qid = ac; |
| 7265 | if (isset(sc->sc_enabled_capa,((sc->sc_enabled_capa)[(12)>>3] & (1<<((12 )&(8 -1)))) |
| 7266 | IWM_UCODE_TLV_CAPA_DQA_SUPPORT)((sc->sc_enabled_capa)[(12)>>3] & (1<<((12 )&(8 -1))))) |
| 7267 | qid += IWM_DQA_MIN_MGMT_QUEUE5; |
| 7268 | in->tfd_queue_msk |= (1 << qid); |
| 7269 | } |
| 7270 | } |
| 7271 | if (!update) { |
| 7272 | if (ic->ic_opmode == IEEE80211_M_MONITOR) |
| 7273 | IEEE80211_ADDR_COPY(&add_sta_cmd.addr,__builtin_memcpy((&add_sta_cmd.addr), (etherbroadcastaddr ), (6)) |
| 7274 | etherbroadcastaddr)__builtin_memcpy((&add_sta_cmd.addr), (etherbroadcastaddr ), (6)); |
| 7275 | else |
| 7276 | IEEE80211_ADDR_COPY(&add_sta_cmd.addr,__builtin_memcpy((&add_sta_cmd.addr), (in->in_macaddr) , (6)) |
| 7277 | in->in_macaddr)__builtin_memcpy((&add_sta_cmd.addr), (in->in_macaddr) , (6)); |
| 7278 | } |
| 7279 | add_sta_cmd.add_modify = update ? 1 : 0; |
| 7280 | add_sta_cmd.station_flags_msk |
| 7281 | |= htole32(IWM_STA_FLG_FAT_EN_MSK | IWM_STA_FLG_MIMO_EN_MSK)((__uint32_t)((3 << 26) | (3 << 28))); |
| 7282 | if (update) { |
| 7283 | add_sta_cmd.modify_mask |= (IWM_STA_MODIFY_QUEUES(1 << 7) | |
| 7284 | IWM_STA_MODIFY_TID_DISABLE_TX(1 << 1)); |
| 7285 | } |
| 7286 | add_sta_cmd.tid_disable_tx = htole16(in->tid_disable_ampdu)((__uint16_t)(in->tid_disable_ampdu)); |
| 7287 | add_sta_cmd.tfd_queue_msk = htole32(in->tfd_queue_msk)((__uint32_t)(in->tfd_queue_msk)); |
| 7288 | |
| 7289 | if (in->in_ni.ni_flags & IEEE80211_NODE_HT0x0400) { |
| 7290 | add_sta_cmd.station_flags_msk |
| 7291 | |= htole32(IWM_STA_FLG_MAX_AGG_SIZE_MSK |((__uint32_t)((7 << 19) | (7 << 23))) |
| 7292 | IWM_STA_FLG_AGG_MPDU_DENS_MSK)((__uint32_t)((7 << 19) | (7 << 23))); |
| 7293 | |
| 7294 | if (iwm_mimo_enabled(sc)) { |
| 7295 | if (in->in_ni.ni_flags & IEEE80211_NODE_VHT0x10000) { |
| 7296 | uint16_t rx_mcs = (in->in_ni.ni_vht_rxmcs & |
| 7297 | IEEE80211_VHT_MCS_FOR_SS_MASK(2)(0x3 << (2*((2)-1)))) >> |
| 7298 | IEEE80211_VHT_MCS_FOR_SS_SHIFT(2)(2*((2)-1)); |
| 7299 | if (rx_mcs != IEEE80211_VHT_MCS_SS_NOT_SUPP3) { |
| 7300 | add_sta_cmd.station_flags |= |
| 7301 | htole32(IWM_STA_FLG_MIMO_EN_MIMO2)((__uint32_t)((1 << 28))); |
| 7302 | } |
| 7303 | } else { |
| 7304 | if (in->in_ni.ni_rxmcs[1] != 0) { |
| 7305 | add_sta_cmd.station_flags |= |
| 7306 | htole32(IWM_STA_FLG_MIMO_EN_MIMO2)((__uint32_t)((1 << 28))); |
| 7307 | } |
| 7308 | if (in->in_ni.ni_rxmcs[2] != 0) { |
| 7309 | add_sta_cmd.station_flags |= |
| 7310 | htole32(IWM_STA_FLG_MIMO_EN_MIMO3)((__uint32_t)((2 << 28))); |
| 7311 | } |
| 7312 | } |
| 7313 | } |
| 7314 | |
| 7315 | if (IEEE80211_CHAN_40MHZ_ALLOWED(in->in_ni.ni_chan)(((in->in_ni.ni_chan)->ic_flags & 0x8000) != 0) && |
| 7316 | ieee80211_node_supports_ht_chan40(&in->in_ni)) { |
| 7317 | add_sta_cmd.station_flags |= htole32(((__uint32_t)((1 << 26))) |
| 7318 | IWM_STA_FLG_FAT_EN_40MHZ)((__uint32_t)((1 << 26))); |
| 7319 | } |
| 7320 | |
| 7321 | if (in->in_ni.ni_flags & IEEE80211_NODE_VHT0x10000) { |
| 7322 | if (IEEE80211_CHAN_80MHZ_ALLOWED(in->in_ni.ni_chan)(((in->in_ni.ni_chan)->ic_xflags & 0x00000001) != 0 ) && |
| 7323 | ieee80211_node_supports_vht_chan80(&in->in_ni)) { |
| 7324 | add_sta_cmd.station_flags |= htole32(((__uint32_t)((2 << 26))) |
| 7325 | IWM_STA_FLG_FAT_EN_80MHZ)((__uint32_t)((2 << 26))); |
| 7326 | } |
| 7327 | aggsize = (in->in_ni.ni_vhtcaps & |
| 7328 | IEEE80211_VHTCAP_MAX_AMPDU_LEN_MASK0x03800000) >> |
| 7329 | IEEE80211_VHTCAP_MAX_AMPDU_LEN_SHIFT23; |
| 7330 | } else { |
| 7331 | aggsize = (in->in_ni.ni_ampdu_param & |
| 7332 | IEEE80211_AMPDU_PARAM_LE0x03); |
| 7333 | } |
| 7334 | if (aggsize > max_aggsize) |
| 7335 | aggsize = max_aggsize; |
| 7336 | add_sta_cmd.station_flags |= htole32((aggsize <<((__uint32_t)((aggsize << 19) & (7 << 19))) |
| 7337 | IWM_STA_FLG_MAX_AGG_SIZE_SHIFT) &((__uint32_t)((aggsize << 19) & (7 << 19))) |
| 7338 | IWM_STA_FLG_MAX_AGG_SIZE_MSK)((__uint32_t)((aggsize << 19) & (7 << 19))); |
| 7339 | |
| 7340 | switch (in->in_ni.ni_ampdu_param & IEEE80211_AMPDU_PARAM_SS0x1c) { |
| 7341 | case IEEE80211_AMPDU_PARAM_SS_2(4 << 2): |
| 7342 | add_sta_cmd.station_flags |
| 7343 | |= htole32(IWM_STA_FLG_AGG_MPDU_DENS_2US)((__uint32_t)((4 << 23))); |
| 7344 | break; |
| 7345 | case IEEE80211_AMPDU_PARAM_SS_4(5 << 2): |
| 7346 | add_sta_cmd.station_flags |
| 7347 | |= htole32(IWM_STA_FLG_AGG_MPDU_DENS_4US)((__uint32_t)((5 << 23))); |
| 7348 | break; |
| 7349 | case IEEE80211_AMPDU_PARAM_SS_8(6 << 2): |
| 7350 | add_sta_cmd.station_flags |
| 7351 | |= htole32(IWM_STA_FLG_AGG_MPDU_DENS_8US)((__uint32_t)((6 << 23))); |
| 7352 | break; |
| 7353 | case IEEE80211_AMPDU_PARAM_SS_16(7 << 2): |
| 7354 | add_sta_cmd.station_flags |
| 7355 | |= htole32(IWM_STA_FLG_AGG_MPDU_DENS_16US)((__uint32_t)((7 << 23))); |
| 7356 | break; |
| 7357 | default: |
| 7358 | break; |
| 7359 | } |
| 7360 | } |
| 7361 | |
| 7362 | status = IWM_ADD_STA_SUCCESS0x1; |
| 7363 | if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_STA_TYPE)((sc->sc_ucode_api)[(30)>>3] & (1<<((30)& (8 -1))))) |
| 7364 | cmdsize = sizeof(add_sta_cmd); |
| 7365 | else |
| 7366 | cmdsize = sizeof(struct iwm_add_sta_cmd_v7); |
| 7367 | err = iwm_send_cmd_pdu_status(sc, IWM_ADD_STA0x18, cmdsize, |
| 7368 | &add_sta_cmd, &status); |
| 7369 | if (!err && (status & IWM_ADD_STA_STATUS_MASK0xFF) != IWM_ADD_STA_SUCCESS0x1) |
| 7370 | err = EIO5; |
| 7371 | |
| 7372 | return err; |
| 7373 | } |
| 7374 | |
| 7375 | int |
| 7376 | iwm_add_aux_sta(struct iwm_softc *sc) |
| 7377 | { |
| 7378 | struct iwm_add_sta_cmd cmd; |
| 7379 | int err, qid; |
| 7380 | uint32_t status; |
| 7381 | size_t cmdsize; |
| 7382 | |
| 7383 | if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_DQA_SUPPORT)((sc->sc_enabled_capa)[(12)>>3] & (1<<((12 )&(8 -1))))) { |
| 7384 | qid = IWM_DQA_AUX_QUEUE1; |
| 7385 | err = iwm_enable_txq(sc, IWM_AUX_STA_ID1, qid, |
| 7386 | IWM_TX_FIFO_MCAST5, 0, IWM_MAX_TID_COUNT8, 0); |
| 7387 | } else { |
| 7388 | qid = IWM_AUX_QUEUE15; |
| 7389 | err = iwm_enable_ac_txq(sc, qid, IWM_TX_FIFO_MCAST5); |
| 7390 | } |
| 7391 | if (err) |
| 7392 | return err; |
| 7393 | |
| 7394 | memset(&cmd, 0, sizeof(cmd))__builtin_memset((&cmd), (0), (sizeof(cmd))); |
| 7395 | cmd.sta_id = IWM_AUX_STA_ID1; |
| 7396 | if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_STA_TYPE)((sc->sc_ucode_api)[(30)>>3] & (1<<((30)& (8 -1))))) |
| 7397 | cmd.station_type = IWM_STA_AUX_ACTIVITY4; |
| 7398 | cmd.mac_id_n_color = |
| 7399 | htole32(IWM_FW_CMD_ID_AND_COLOR(IWM_MAC_INDEX_AUX, 0))((__uint32_t)(((4 << (0)) | (0 << (8))))); |
| 7400 | cmd.tfd_queue_msk = htole32(1 << qid)((__uint32_t)(1 << qid)); |
| 7401 | cmd.tid_disable_tx = htole16(0xffff)((__uint16_t)(0xffff)); |
| 7402 | |
| 7403 | status = IWM_ADD_STA_SUCCESS0x1; |
| 7404 | if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_STA_TYPE)((sc->sc_ucode_api)[(30)>>3] & (1<<((30)& (8 -1))))) |
| 7405 | cmdsize = sizeof(cmd); |
| 7406 | else |
| 7407 | cmdsize = sizeof(struct iwm_add_sta_cmd_v7); |
| 7408 | err = iwm_send_cmd_pdu_status(sc, IWM_ADD_STA0x18, cmdsize, &cmd, |
| 7409 | &status); |
| 7410 | if (!err && (status & IWM_ADD_STA_STATUS_MASK0xFF) != IWM_ADD_STA_SUCCESS0x1) |
| 7411 | err = EIO5; |
| 7412 | |
| 7413 | return err; |
| 7414 | } |
| 7415 | |
| 7416 | int |
| 7417 | iwm_drain_sta(struct iwm_softc *sc, struct iwm_node* in, int drain) |
| 7418 | { |
| 7419 | struct iwm_add_sta_cmd cmd; |
| 7420 | int err; |
| 7421 | uint32_t status; |
| 7422 | size_t cmdsize; |
| 7423 | |
| 7424 | memset(&cmd, 0, sizeof(cmd))__builtin_memset((&cmd), (0), (sizeof(cmd))); |
| 7425 | cmd.mac_id_n_color = htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id,((__uint32_t)(((in->in_id << (0)) | (in->in_color << (8))))) |
| 7426 | in->in_color))((__uint32_t)(((in->in_id << (0)) | (in->in_color << (8))))); |
| 7427 | cmd.sta_id = IWM_STATION_ID0; |
| 7428 | cmd.add_modify = IWM_STA_MODE_MODIFY1; |
| 7429 | cmd.station_flags = drain ? htole32(IWM_STA_FLG_DRAIN_FLOW)((__uint32_t)((1 << 12))) : 0; |
| 7430 | cmd.station_flags_msk = htole32(IWM_STA_FLG_DRAIN_FLOW)((__uint32_t)((1 << 12))); |
| 7431 | |
| 7432 | if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_STA_TYPE)((sc->sc_ucode_api)[(30)>>3] & (1<<((30)& (8 -1))))) |
| 7433 | cmdsize = sizeof(cmd); |
| 7434 | else |
| 7435 | cmdsize = sizeof(struct iwm_add_sta_cmd_v7); |
| 7436 | |
| 7437 | status = IWM_ADD_STA_SUCCESS0x1; |
| 7438 | err = iwm_send_cmd_pdu_status(sc, IWM_ADD_STA0x18, |
| 7439 | cmdsize, &cmd, &status); |
| 7440 | if (err) { |
| 7441 | printf("%s: could not update sta (error %d)\n", |
| 7442 | DEVNAME(sc)((sc)->sc_dev.dv_xname), err); |
| 7443 | return err; |
| 7444 | } |
| 7445 | |
| 7446 | switch (status & IWM_ADD_STA_STATUS_MASK0xFF) { |
| 7447 | case IWM_ADD_STA_SUCCESS0x1: |
| 7448 | break; |
| 7449 | default: |
| 7450 | err = EIO5; |
| 7451 | printf("%s: Couldn't %s draining for station\n", |
| 7452 | DEVNAME(sc)((sc)->sc_dev.dv_xname), drain ? "enable" : "disable"); |
| 7453 | break; |
| 7454 | } |
| 7455 | |
| 7456 | return err; |
| 7457 | } |
| 7458 | |
| 7459 | int |
| 7460 | iwm_flush_sta(struct iwm_softc *sc, struct iwm_node *in) |
| 7461 | { |
| 7462 | int err; |
| 7463 | |
| 7464 | sc->sc_flags |= IWM_FLAG_TXFLUSH0x400; |
| 7465 | |
| 7466 | err = iwm_drain_sta(sc, in, 1); |
| 7467 | if (err) |
| 7468 | goto done; |
| 7469 | |
| 7470 | err = iwm_flush_tx_path(sc, in->tfd_queue_msk); |
| 7471 | if (err) { |
| 7472 | printf("%s: could not flush Tx path (error %d)\n", |
| 7473 | DEVNAME(sc)((sc)->sc_dev.dv_xname), err); |
| 7474 | goto done; |
| 7475 | } |
| 7476 | |
| 7477 | /* |
| 7478 | * Flushing Tx rings may fail if the AP has disappeared. |
| 7479 | * We can rely on iwm_newstate_task() to reset everything and begin |
| 7480 | * scanning again if we are left with outstanding frames on queues. |
| 7481 | */ |
| 7482 | err = iwm_wait_tx_queues_empty(sc); |
| 7483 | if (err) |
| 7484 | goto done; |
| 7485 | |
| 7486 | err = iwm_drain_sta(sc, in, 0); |
| 7487 | done: |
| 7488 | sc->sc_flags &= ~IWM_FLAG_TXFLUSH0x400; |
| 7489 | return err; |
| 7490 | } |
| 7491 | |
| 7492 | int |
| 7493 | iwm_rm_sta_cmd(struct iwm_softc *sc, struct iwm_node *in) |
| 7494 | { |
| 7495 | struct ieee80211com *ic = &sc->sc_ic; |
| 7496 | struct iwm_rm_sta_cmd rm_sta_cmd; |
| 7497 | int err; |
| 7498 | |
| 7499 | if ((sc->sc_flags & IWM_FLAG_STA_ACTIVE0x20) == 0) |
| 7500 | panic("sta already removed"); |
| 7501 | |
| 7502 | memset(&rm_sta_cmd, 0, sizeof(rm_sta_cmd))__builtin_memset((&rm_sta_cmd), (0), (sizeof(rm_sta_cmd)) ); |
| 7503 | if (ic->ic_opmode == IEEE80211_M_MONITOR) |
| 7504 | rm_sta_cmd.sta_id = IWM_MONITOR_STA_ID2; |
| 7505 | else |
| 7506 | rm_sta_cmd.sta_id = IWM_STATION_ID0; |
| 7507 | |
| 7508 | err = iwm_send_cmd_pdu(sc, IWM_REMOVE_STA0x19, 0, sizeof(rm_sta_cmd), |
| 7509 | &rm_sta_cmd); |
| 7510 | |
| 7511 | return err; |
| 7512 | } |
| 7513 | |
| 7514 | uint16_t |
| 7515 | iwm_scan_rx_chain(struct iwm_softc *sc) |
| 7516 | { |
| 7517 | uint16_t rx_chain; |
| 7518 | uint8_t rx_ant; |
| 7519 | |
| 7520 | rx_ant = iwm_fw_valid_rx_ant(sc); |
| 7521 | rx_chain = rx_ant << IWM_PHY_RX_CHAIN_VALID_POS(1); |
| 7522 | rx_chain |= rx_ant << IWM_PHY_RX_CHAIN_FORCE_MIMO_SEL_POS(7); |
| 7523 | rx_chain |= rx_ant << IWM_PHY_RX_CHAIN_FORCE_SEL_POS(4); |
| 7524 | rx_chain |= 0x1 << IWM_PHY_RX_CHAIN_DRIVER_FORCE_POS(0); |
| 7525 | return htole16(rx_chain)((__uint16_t)(rx_chain)); |
| 7526 | } |
| 7527 | |
| 7528 | uint32_t |
| 7529 | iwm_scan_rate_n_flags(struct iwm_softc *sc, int flags, int no_cck) |
| 7530 | { |
| 7531 | uint32_t tx_ant; |
| 7532 | int i, ind; |
| 7533 | |
| 7534 | for (i = 0, ind = sc->sc_scan_last_antenna; |
| 7535 | i < IWM_RATE_MCS_ANT_NUM3; i++) { |
| 7536 | ind = (ind + 1) % IWM_RATE_MCS_ANT_NUM3; |
| 7537 | if (iwm_fw_valid_tx_ant(sc) & (1 << ind)) { |
| 7538 | sc->sc_scan_last_antenna = ind; |
| 7539 | break; |
| 7540 | } |
| 7541 | } |
| 7542 | tx_ant = (1 << sc->sc_scan_last_antenna) << IWM_RATE_MCS_ANT_POS14; |
| 7543 | |
| 7544 | if ((flags & IEEE80211_CHAN_2GHZ0x0080) && !no_cck) |
| 7545 | return htole32(IWM_RATE_1M_PLCP | IWM_RATE_MCS_CCK_MSK |((__uint32_t)(10 | (1 << 9) | tx_ant)) |
| 7546 | tx_ant)((__uint32_t)(10 | (1 << 9) | tx_ant)); |
| 7547 | else |
| 7548 | return htole32(IWM_RATE_6M_PLCP | tx_ant)((__uint32_t)(13 | tx_ant)); |
| 7549 | } |
| 7550 | |
| 7551 | uint8_t |
| 7552 | iwm_lmac_scan_fill_channels(struct iwm_softc *sc, |
| 7553 | struct iwm_scan_channel_cfg_lmac *chan, int n_ssids, int bgscan) |
| 7554 | { |
| 7555 | struct ieee80211com *ic = &sc->sc_ic; |
| 7556 | struct ieee80211_channel *c; |
| 7557 | uint8_t nchan; |
| 7558 | |
| 7559 | for (nchan = 0, c = &ic->ic_channels[1]; |
| 7560 | c <= &ic->ic_channels[IEEE80211_CHAN_MAX255] && |
| 7561 | nchan < sc->sc_capa_n_scan_channels; |
| 7562 | c++) { |
| 7563 | if (c->ic_flags == 0) |
| 7564 | continue; |
| 7565 | |
| 7566 | chan->channel_num = htole16(ieee80211_mhz2ieee(c->ic_freq, 0))((__uint16_t)(ieee80211_mhz2ieee(c->ic_freq, 0))); |
| 7567 | chan->iter_count = htole16(1)((__uint16_t)(1)); |
| 7568 | chan->iter_interval = 0; |
| 7569 | chan->flags = htole32(IWM_UNIFIED_SCAN_CHANNEL_PARTIAL)((__uint32_t)((1 << 28))); |
| 7570 | if (n_ssids != 0 && !bgscan) |
| 7571 | chan->flags |= htole32(1 << 1)((__uint32_t)(1 << 1)); /* select SSID 0 */ |
| 7572 | chan++; |
| 7573 | nchan++; |
| 7574 | } |
| 7575 | |
| 7576 | return nchan; |
| 7577 | } |
| 7578 | |
| 7579 | uint8_t |
| 7580 | iwm_umac_scan_fill_channels(struct iwm_softc *sc, |
| 7581 | struct iwm_scan_channel_cfg_umac *chan, int n_ssids, int bgscan) |
| 7582 | { |
| 7583 | struct ieee80211com *ic = &sc->sc_ic; |
| 7584 | struct ieee80211_channel *c; |
| 7585 | uint8_t nchan; |
| 7586 | |
| 7587 | for (nchan = 0, c = &ic->ic_channels[1]; |
| 7588 | c <= &ic->ic_channels[IEEE80211_CHAN_MAX255] && |
| 7589 | nchan < sc->sc_capa_n_scan_channels; |
| 7590 | c++) { |
| 7591 | if (c->ic_flags == 0) |
| 7592 | continue; |
| 7593 | |
| 7594 | chan->channel_num = ieee80211_mhz2ieee(c->ic_freq, 0); |
| 7595 | chan->iter_count = 1; |
| 7596 | chan->iter_interval = htole16(0)((__uint16_t)(0)); |
| 7597 | if (n_ssids != 0 && !bgscan) |
| 7598 | chan->flags = htole32(1 << 0)((__uint32_t)(1 << 0)); /* select SSID 0 */ |
| 7599 | chan++; |
| 7600 | nchan++; |
| 7601 | } |
| 7602 | |
| 7603 | return nchan; |
| 7604 | } |
| 7605 | |
| 7606 | int |
| 7607 | iwm_fill_probe_req_v1(struct iwm_softc *sc, struct iwm_scan_probe_req_v1 *preq1) |
| 7608 | { |
| 7609 | struct iwm_scan_probe_req preq2; |
| 7610 | int err, i; |
| 7611 | |
| 7612 | err = iwm_fill_probe_req(sc, &preq2); |
| 7613 | if (err) |
| 7614 | return err; |
| 7615 | |
| 7616 | preq1->mac_header = preq2.mac_header; |
| 7617 | for (i = 0; i < nitems(preq1->band_data)(sizeof((preq1->band_data)) / sizeof((preq1->band_data) [0])); i++) |
| 7618 | preq1->band_data[i] = preq2.band_data[i]; |
| 7619 | preq1->common_data = preq2.common_data; |
| 7620 | memcpy(preq1->buf, preq2.buf, sizeof(preq1->buf))__builtin_memcpy((preq1->buf), (preq2.buf), (sizeof(preq1-> buf))); |
| 7621 | return 0; |
| 7622 | } |
| 7623 | |
| 7624 | int |
| 7625 | iwm_fill_probe_req(struct iwm_softc *sc, struct iwm_scan_probe_req *preq) |
| 7626 | { |
| 7627 | struct ieee80211com *ic = &sc->sc_ic; |
| 7628 | struct ieee80211_frame *wh = (struct ieee80211_frame *)preq->buf; |
| 7629 | struct ieee80211_rateset *rs; |
| 7630 | size_t remain = sizeof(preq->buf); |
| 7631 | uint8_t *frm, *pos; |
| 7632 | |
| 7633 | memset(preq, 0, sizeof(*preq))__builtin_memset((preq), (0), (sizeof(*preq))); |
| 7634 | |
| 7635 | if (remain < sizeof(*wh) + 2) |
| 7636 | return ENOBUFS55; |
| 7637 | |
| 7638 | /* |
| 7639 | * Build a probe request frame. Most of the following code is a |
| 7640 | * copy & paste of what is done in net80211. |
| 7641 | */ |
| 7642 | wh->i_fc[0] = IEEE80211_FC0_VERSION_00x00 | IEEE80211_FC0_TYPE_MGT0x00 | |
| 7643 | IEEE80211_FC0_SUBTYPE_PROBE_REQ0x40; |
| 7644 | wh->i_fc[1] = IEEE80211_FC1_DIR_NODS0x00; |
| 7645 | IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr)__builtin_memcpy((wh->i_addr1), (etherbroadcastaddr), (6)); |
| 7646 | IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr)__builtin_memcpy((wh->i_addr2), (ic->ic_myaddr), (6)); |
| 7647 | IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr)__builtin_memcpy((wh->i_addr3), (etherbroadcastaddr), (6)); |
| 7648 | *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */ |
| 7649 | *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */ |
| 7650 | |
| 7651 | frm = (uint8_t *)(wh + 1); |
| 7652 | |
| 7653 | *frm++ = IEEE80211_ELEMID_SSID; |
| 7654 | *frm++ = 0; |
| 7655 | /* hardware inserts SSID */ |
| 7656 | |
| 7657 | /* Tell firmware where the MAC header and SSID IE are. */ |
| 7658 | preq->mac_header.offset = 0; |
| 7659 | preq->mac_header.len = htole16(frm - (uint8_t *)wh)((__uint16_t)(frm - (uint8_t *)wh)); |
| 7660 | remain -= frm - (uint8_t *)wh; |
| 7661 | |
| 7662 | /* Fill in 2GHz IEs and tell firmware where they are. */ |
| 7663 | rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; |
| 7664 | if (rs->rs_nrates > IEEE80211_RATE_SIZE8) { |
| 7665 | if (remain < 4 + rs->rs_nrates) |
| 7666 | return ENOBUFS55; |
| 7667 | } else if (remain < 2 + rs->rs_nrates) |
| 7668 | return ENOBUFS55; |
| 7669 | preq->band_data[0].offset = htole16(frm - (uint8_t *)wh)((__uint16_t)(frm - (uint8_t *)wh)); |
| 7670 | pos = frm; |
| 7671 | frm = ieee80211_add_rates(frm, rs); |
| 7672 | if (rs->rs_nrates > IEEE80211_RATE_SIZE8) |
| 7673 | frm = ieee80211_add_xrates(frm, rs); |
| 7674 | remain -= frm - pos; |
| 7675 | |
| 7676 | if (isset(sc->sc_enabled_capa,((sc->sc_enabled_capa)[(9)>>3] & (1<<((9)& (8 -1)))) |
| 7677 | IWM_UCODE_TLV_CAPA_DS_PARAM_SET_IE_SUPPORT)((sc->sc_enabled_capa)[(9)>>3] & (1<<((9)& (8 -1))))) { |
| 7678 | if (remain < 3) |
| 7679 | return ENOBUFS55; |
| 7680 | *frm++ = IEEE80211_ELEMID_DSPARMS; |
| 7681 | *frm++ = 1; |
| 7682 | *frm++ = 0; |
| 7683 | remain -= 3; |
| 7684 | } |
| 7685 | preq->band_data[0].len = htole16(frm - pos)((__uint16_t)(frm - pos)); |
| 7686 | |
| 7687 | if (sc->sc_nvm.sku_cap_band_52GHz_enable) { |
| 7688 | /* Fill in 5GHz IEs. */ |
| 7689 | rs = &ic->ic_sup_rates[IEEE80211_MODE_11A]; |
| 7690 | if (rs->rs_nrates > IEEE80211_RATE_SIZE8) { |
| 7691 | if (remain < 4 + rs->rs_nrates) |
| 7692 | return ENOBUFS55; |
| 7693 | } else if (remain < 2 + rs->rs_nrates) |
| 7694 | return ENOBUFS55; |
| 7695 | preq->band_data[1].offset = htole16(frm - (uint8_t *)wh)((__uint16_t)(frm - (uint8_t *)wh)); |
| 7696 | pos = frm; |
| 7697 | frm = ieee80211_add_rates(frm, rs); |
| 7698 | if (rs->rs_nrates > IEEE80211_RATE_SIZE8) |
| 7699 | frm = ieee80211_add_xrates(frm, rs); |
| 7700 | preq->band_data[1].len = htole16(frm - pos)((__uint16_t)(frm - pos)); |
| 7701 | remain -= frm - pos; |
| 7702 | if (ic->ic_flags & IEEE80211_F_VHTON0x20000000) { |
| 7703 | if (remain < 14) |
| 7704 | return ENOBUFS55; |
| 7705 | frm = ieee80211_add_vhtcaps(frm, ic); |
| 7706 | remain -= frm - pos; |
| 7707 | preq->band_data[1].len = htole16(frm - pos)((__uint16_t)(frm - pos)); |
| 7708 | } |
| 7709 | } |
| 7710 | |
| 7711 | /* Send 11n IEs on both 2GHz and 5GHz bands. */ |
| 7712 | preq->common_data.offset = htole16(frm - (uint8_t *)wh)((__uint16_t)(frm - (uint8_t *)wh)); |
| 7713 | pos = frm; |
| 7714 | if (ic->ic_flags & IEEE80211_F_HTON0x02000000) { |
| 7715 | if (remain < 28) |
| 7716 | return ENOBUFS55; |
| 7717 | frm = ieee80211_add_htcaps(frm, ic); |
| 7718 | /* XXX add WME info? */ |
| 7719 | remain -= frm - pos; |
| 7720 | } |
| 7721 | |
| 7722 | preq->common_data.len = htole16(frm - pos)((__uint16_t)(frm - pos)); |
| 7723 | |
| 7724 | return 0; |
| 7725 | } |
| 7726 | |
| 7727 | int |
| 7728 | iwm_lmac_scan(struct iwm_softc *sc, int bgscan) |
| 7729 | { |
| 7730 | struct ieee80211com *ic = &sc->sc_ic; |
| 7731 | struct iwm_host_cmd hcmd = { |
| 7732 | .id = IWM_SCAN_OFFLOAD_REQUEST_CMD0x51, |
| 7733 | .len = { 0, }, |
| 7734 | .data = { NULL((void *)0), }, |
| 7735 | .flags = 0, |
| 7736 | }; |
| 7737 | struct iwm_scan_req_lmac *req; |
| 7738 | struct iwm_scan_probe_req_v1 *preq; |
| 7739 | size_t req_len; |
| 7740 | int err, async = bgscan; |
| 7741 | |
| 7742 | req_len = sizeof(struct iwm_scan_req_lmac) + |
| 7743 | (sizeof(struct iwm_scan_channel_cfg_lmac) * |
| 7744 | sc->sc_capa_n_scan_channels) + sizeof(struct iwm_scan_probe_req_v1); |
| 7745 | if (req_len > IWM_MAX_CMD_PAYLOAD_SIZE((4096 - 4) - sizeof(struct iwm_cmd_header))) |
| 7746 | return ENOMEM12; |
| 7747 | req = malloc(req_len, M_DEVBUF2, |
| 7748 | (async ? M_NOWAIT0x0002 : M_WAIT0x0001) | M_CANFAIL0x0004 | M_ZERO0x0008); |
| 7749 | if (req == NULL((void *)0)) |
| 7750 | return ENOMEM12; |
| 7751 | |
| 7752 | hcmd.len[0] = (uint16_t)req_len; |
| 7753 | hcmd.data[0] = (void *)req; |
| 7754 | hcmd.flags |= async ? IWM_CMD_ASYNC : 0; |
| 7755 | |
| 7756 | /* These timings correspond to iwlwifi's UNASSOC scan. */ |
| 7757 | req->active_dwell = 10; |
| 7758 | req->passive_dwell = 110; |
| 7759 | req->fragmented_dwell = 44; |
| 7760 | req->extended_dwell = 90; |
| 7761 | if (bgscan) { |
| 7762 | req->max_out_time = htole32(120)((__uint32_t)(120)); |
| 7763 | req->suspend_time = htole32(120)((__uint32_t)(120)); |
| 7764 | } else { |
| 7765 | req->max_out_time = htole32(0)((__uint32_t)(0)); |
| 7766 | req->suspend_time = htole32(0)((__uint32_t)(0)); |
| 7767 | } |
| 7768 | req->scan_prio = htole32(IWM_SCAN_PRIORITY_HIGH)((__uint32_t)(2)); |
| 7769 | req->rx_chain_select = iwm_scan_rx_chain(sc); |
| 7770 | req->iter_num = htole32(1)((__uint32_t)(1)); |
| 7771 | req->delay = 0; |
| 7772 | |
| 7773 | req->scan_flags = htole32(IWM_LMAC_SCAN_FLAG_PASS_ALL |((__uint32_t)((1 << 0) | (1 << 3) | (1 << 7 ))) |
| 7774 | IWM_LMAC_SCAN_FLAG_ITER_COMPLETE |((__uint32_t)((1 << 0) | (1 << 3) | (1 << 7 ))) |
| 7775 | IWM_LMAC_SCAN_FLAG_EXTENDED_DWELL)((__uint32_t)((1 << 0) | (1 << 3) | (1 << 7 ))); |
| 7776 | if (ic->ic_des_esslen == 0) |
| 7777 | req->scan_flags |= htole32(IWM_LMAC_SCAN_FLAG_PASSIVE)((__uint32_t)((1 << 1))); |
| 7778 | else |
| 7779 | req->scan_flags |= |
| 7780 | htole32(IWM_LMAC_SCAN_FLAG_PRE_CONNECTION)((__uint32_t)((1 << 2))); |
| 7781 | if (isset(sc->sc_enabled_capa,((sc->sc_enabled_capa)[(9)>>3] & (1<<((9)& (8 -1)))) |
| 7782 | IWM_UCODE_TLV_CAPA_DS_PARAM_SET_IE_SUPPORT)((sc->sc_enabled_capa)[(9)>>3] & (1<<((9)& (8 -1)))) && |
| 7783 | isset(sc->sc_enabled_capa,((sc->sc_enabled_capa)[(10)>>3] & (1<<((10 )&(8 -1)))) |
| 7784 | IWM_UCODE_TLV_CAPA_WFA_TPC_REP_IE_SUPPORT)((sc->sc_enabled_capa)[(10)>>3] & (1<<((10 )&(8 -1))))) |
| 7785 | req->scan_flags |= htole32(IWM_LMAC_SCAN_FLAGS_RRM_ENABLED)((__uint32_t)((1 << 6))); |
| 7786 | |
| 7787 | req->flags = htole32(IWM_PHY_BAND_24)((__uint32_t)((1))); |
| 7788 | if (sc->sc_nvm.sku_cap_band_52GHz_enable) |
| 7789 | req->flags |= htole32(IWM_PHY_BAND_5)((__uint32_t)((0))); |
| 7790 | req->filter_flags = |
| 7791 | htole32(IWM_MAC_FILTER_ACCEPT_GRP | IWM_MAC_FILTER_IN_BEACON)((__uint32_t)((1 << 2) | (1 << 6))); |
| 7792 | |
| 7793 | /* Tx flags 2 GHz. */ |
| 7794 | req->tx_cmd[0].tx_flags = htole32(IWM_TX_CMD_FLG_SEQ_CTL |((__uint32_t)((1 << 13) | (1 << 12))) |
| 7795 | IWM_TX_CMD_FLG_BT_DIS)((__uint32_t)((1 << 13) | (1 << 12))); |
| 7796 | req->tx_cmd[0].rate_n_flags = |
| 7797 | iwm_scan_rate_n_flags(sc, IEEE80211_CHAN_2GHZ0x0080, 1/*XXX*/); |
| 7798 | req->tx_cmd[0].sta_id = IWM_AUX_STA_ID1; |
| 7799 | |
| 7800 | /* Tx flags 5 GHz. */ |
| 7801 | req->tx_cmd[1].tx_flags = htole32(IWM_TX_CMD_FLG_SEQ_CTL |((__uint32_t)((1 << 13) | (1 << 12))) |
| 7802 | IWM_TX_CMD_FLG_BT_DIS)((__uint32_t)((1 << 13) | (1 << 12))); |
| 7803 | req->tx_cmd[1].rate_n_flags = |
| 7804 | iwm_scan_rate_n_flags(sc, IEEE80211_CHAN_5GHZ0x0100, 1/*XXX*/); |
| 7805 | req->tx_cmd[1].sta_id = IWM_AUX_STA_ID1; |
| 7806 | |
| 7807 | /* Check if we're doing an active directed scan. */ |
| 7808 | if (ic->ic_des_esslen != 0) { |
| 7809 | req->direct_scan[0].id = IEEE80211_ELEMID_SSID; |
| 7810 | req->direct_scan[0].len = ic->ic_des_esslen; |
| 7811 | memcpy(req->direct_scan[0].ssid, ic->ic_des_essid,__builtin_memcpy((req->direct_scan[0].ssid), (ic->ic_des_essid ), (ic->ic_des_esslen)) |
| 7812 | ic->ic_des_esslen)__builtin_memcpy((req->direct_scan[0].ssid), (ic->ic_des_essid ), (ic->ic_des_esslen)); |
| 7813 | } |
| 7814 | |
| 7815 | req->n_channels = iwm_lmac_scan_fill_channels(sc, |
| 7816 | (struct iwm_scan_channel_cfg_lmac *)req->data, |
| 7817 | ic->ic_des_esslen != 0, bgscan); |
| 7818 | |
| 7819 | preq = (struct iwm_scan_probe_req_v1 *)(req->data + |
| 7820 | (sizeof(struct iwm_scan_channel_cfg_lmac) * |
| 7821 | sc->sc_capa_n_scan_channels)); |
| 7822 | err = iwm_fill_probe_req_v1(sc, preq); |
| 7823 | if (err) { |
| 7824 | free(req, M_DEVBUF2, req_len); |
| 7825 | return err; |
| 7826 | } |
| 7827 | |
| 7828 | /* Specify the scan plan: We'll do one iteration. */ |
| 7829 | req->schedule[0].iterations = 1; |
| 7830 | req->schedule[0].full_scan_mul = 1; |
| 7831 | |
| 7832 | /* Disable EBS. */ |
| 7833 | req->channel_opt[0].non_ebs_ratio = 1; |
| 7834 | req->channel_opt[1].non_ebs_ratio = 1; |
| 7835 | |
| 7836 | err = iwm_send_cmd(sc, &hcmd); |
| 7837 | free(req, M_DEVBUF2, req_len); |
| 7838 | return err; |
| 7839 | } |
| 7840 | |
| 7841 | int |
| 7842 | iwm_config_umac_scan(struct iwm_softc *sc) |
| 7843 | { |
| 7844 | struct ieee80211com *ic = &sc->sc_ic; |
| 7845 | struct iwm_scan_config *scan_config; |
| 7846 | int err, nchan; |
| 7847 | size_t cmd_size; |
| 7848 | struct ieee80211_channel *c; |
| 7849 | struct iwm_host_cmd hcmd = { |
| 7850 | .id = iwm_cmd_id(IWM_SCAN_CFG_CMD0xc, IWM_LONG_GROUP0x1, 0), |
| 7851 | .flags = 0, |
| 7852 | }; |
| 7853 | static const uint32_t rates = (IWM_SCAN_CONFIG_RATE_1M(1 << 8) | |
| 7854 | IWM_SCAN_CONFIG_RATE_2M(1 << 9) | IWM_SCAN_CONFIG_RATE_5M(1 << 10) | |
| 7855 | IWM_SCAN_CONFIG_RATE_11M(1 << 11) | IWM_SCAN_CONFIG_RATE_6M(1 << 0) | |
| 7856 | IWM_SCAN_CONFIG_RATE_9M(1 << 1) | IWM_SCAN_CONFIG_RATE_12M(1 << 2) | |
| 7857 | IWM_SCAN_CONFIG_RATE_18M(1 << 3) | IWM_SCAN_CONFIG_RATE_24M(1 << 4) | |
| 7858 | IWM_SCAN_CONFIG_RATE_36M(1 << 5) | IWM_SCAN_CONFIG_RATE_48M(1 << 6) | |
| 7859 | IWM_SCAN_CONFIG_RATE_54M(1 << 7)); |
| 7860 | |
| 7861 | cmd_size = sizeof(*scan_config) + sc->sc_capa_n_scan_channels; |
| 7862 | |
| 7863 | scan_config = malloc(cmd_size, M_DEVBUF2, M_WAIT0x0001 | M_CANFAIL0x0004 | M_ZERO0x0008); |
| 7864 | if (scan_config == NULL((void *)0)) |
| 7865 | return ENOMEM12; |
| 7866 | |
| 7867 | scan_config->tx_chains = htole32(iwm_fw_valid_tx_ant(sc))((__uint32_t)(iwm_fw_valid_tx_ant(sc))); |
| 7868 | scan_config->rx_chains = htole32(iwm_fw_valid_rx_ant(sc))((__uint32_t)(iwm_fw_valid_rx_ant(sc))); |
| 7869 | scan_config->legacy_rates = htole32(rates |((__uint32_t)(rates | ((rates) << 16))) |
| 7870 | IWM_SCAN_CONFIG_SUPPORTED_RATE(rates))((__uint32_t)(rates | ((rates) << 16))); |
| 7871 | |
| 7872 | /* These timings correspond to iwlwifi's UNASSOC scan. */ |
| 7873 | scan_config->dwell_active = 10; |
| 7874 | scan_config->dwell_passive = 110; |
| 7875 | scan_config->dwell_fragmented = 44; |
| 7876 | scan_config->dwell_extended = 90; |
| 7877 | scan_config->out_of_channel_time = htole32(0)((__uint32_t)(0)); |
| 7878 | scan_config->suspend_time = htole32(0)((__uint32_t)(0)); |
| 7879 | |
| 7880 | IEEE80211_ADDR_COPY(scan_config->mac_addr, sc->sc_ic.ic_myaddr)__builtin_memcpy((scan_config->mac_addr), (sc->sc_ic.ic_myaddr ), (6)); |
| 7881 | |
| 7882 | scan_config->bcast_sta_id = IWM_AUX_STA_ID1; |
| 7883 | scan_config->channel_flags = 0; |
| 7884 | |
| 7885 | for (c = &ic->ic_channels[1], nchan = 0; |
| 7886 | c <= &ic->ic_channels[IEEE80211_CHAN_MAX255] && |
| 7887 | nchan < sc->sc_capa_n_scan_channels; c++) { |
| 7888 | if (c->ic_flags == 0) |
| 7889 | continue; |
| 7890 | scan_config->channel_array[nchan++] = |
| 7891 | ieee80211_mhz2ieee(c->ic_freq, 0); |
| 7892 | } |
| 7893 | |
| 7894 | scan_config->flags = htole32(IWM_SCAN_CONFIG_FLAG_ACTIVATE |((__uint32_t)((1 << 0) | (1 << 3) | (1 << 8 ) | (1 << 9) | (1 << 10) | (1 << 11) | (1 << 14) | (1 << 15) | (1 << 13)| ((nchan) << 26 ) | (1 << 17))) |
| 7895 | IWM_SCAN_CONFIG_FLAG_ALLOW_CHUB_REQS |((__uint32_t)((1 << 0) | (1 << 3) | (1 << 8 ) | (1 << 9) | (1 << 10) | (1 << 11) | (1 << 14) | (1 << 15) | (1 << 13)| ((nchan) << 26 ) | (1 << 17))) |
| 7896 | IWM_SCAN_CONFIG_FLAG_SET_TX_CHAINS |((__uint32_t)((1 << 0) | (1 << 3) | (1 << 8 ) | (1 << 9) | (1 << 10) | (1 << 11) | (1 << 14) | (1 << 15) | (1 << 13)| ((nchan) << 26 ) | (1 << 17))) |
| 7897 | IWM_SCAN_CONFIG_FLAG_SET_RX_CHAINS |((__uint32_t)((1 << 0) | (1 << 3) | (1 << 8 ) | (1 << 9) | (1 << 10) | (1 << 11) | (1 << 14) | (1 << 15) | (1 << 13)| ((nchan) << 26 ) | (1 << 17))) |
| 7898 | IWM_SCAN_CONFIG_FLAG_SET_AUX_STA_ID |((__uint32_t)((1 << 0) | (1 << 3) | (1 << 8 ) | (1 << 9) | (1 << 10) | (1 << 11) | (1 << 14) | (1 << 15) | (1 << 13)| ((nchan) << 26 ) | (1 << 17))) |
| 7899 | IWM_SCAN_CONFIG_FLAG_SET_ALL_TIMES |((__uint32_t)((1 << 0) | (1 << 3) | (1 << 8 ) | (1 << 9) | (1 << 10) | (1 << 11) | (1 << 14) | (1 << 15) | (1 << 13)| ((nchan) << 26 ) | (1 << 17))) |
| 7900 | IWM_SCAN_CONFIG_FLAG_SET_LEGACY_RATES |((__uint32_t)((1 << 0) | (1 << 3) | (1 << 8 ) | (1 << 9) | (1 << 10) | (1 << 11) | (1 << 14) | (1 << 15) | (1 << 13)| ((nchan) << 26 ) | (1 << 17))) |
| 7901 | IWM_SCAN_CONFIG_FLAG_SET_MAC_ADDR |((__uint32_t)((1 << 0) | (1 << 3) | (1 << 8 ) | (1 << 9) | (1 << 10) | (1 << 11) | (1 << 14) | (1 << 15) | (1 << 13)| ((nchan) << 26 ) | (1 << 17))) |
| 7902 | IWM_SCAN_CONFIG_FLAG_SET_CHANNEL_FLAGS|((__uint32_t)((1 << 0) | (1 << 3) | (1 << 8 ) | (1 << 9) | (1 << 10) | (1 << 11) | (1 << 14) | (1 << 15) | (1 << 13)| ((nchan) << 26 ) | (1 << 17))) |
| 7903 | IWM_SCAN_CONFIG_N_CHANNELS(nchan) |((__uint32_t)((1 << 0) | (1 << 3) | (1 << 8 ) | (1 << 9) | (1 << 10) | (1 << 11) | (1 << 14) | (1 << 15) | (1 << 13)| ((nchan) << 26 ) | (1 << 17))) |
| 7904 | IWM_SCAN_CONFIG_FLAG_CLEAR_FRAGMENTED)((__uint32_t)((1 << 0) | (1 << 3) | (1 << 8 ) | (1 << 9) | (1 << 10) | (1 << 11) | (1 << 14) | (1 << 15) | (1 << 13)| ((nchan) << 26 ) | (1 << 17))); |
| 7905 | |
| 7906 | hcmd.data[0] = scan_config; |
| 7907 | hcmd.len[0] = cmd_size; |
| 7908 | |
| 7909 | err = iwm_send_cmd(sc, &hcmd); |
| 7910 | free(scan_config, M_DEVBUF2, cmd_size); |
| 7911 | return err; |
| 7912 | } |
| 7913 | |
| 7914 | int |
| 7915 | iwm_umac_scan_size(struct iwm_softc *sc) |
| 7916 | { |
| 7917 | int base_size = IWM_SCAN_REQ_UMAC_SIZE_V136; |
| 7918 | int tail_size; |
| 7919 | |
| 7920 | if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_ADAPTIVE_DWELL_V2)((sc->sc_ucode_api)[(42)>>3] & (1<<((42)& (8 -1))))) |
| 7921 | base_size = IWM_SCAN_REQ_UMAC_SIZE_V8sizeof(struct iwm_scan_req_umac); |
| 7922 | else if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_ADAPTIVE_DWELL)((sc->sc_ucode_api)[(32)>>3] & (1<<((32)& (8 -1))))) |
| 7923 | base_size = IWM_SCAN_REQ_UMAC_SIZE_V748; |
| 7924 | if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_SCAN_EXT_CHAN_VER)((sc->sc_ucode_api)[(58)>>3] & (1<<((58)& (8 -1))))) |
| 7925 | tail_size = sizeof(struct iwm_scan_req_umac_tail_v2); |
| 7926 | else |
| 7927 | tail_size = sizeof(struct iwm_scan_req_umac_tail_v1); |
| 7928 | |
| 7929 | return base_size + sizeof(struct iwm_scan_channel_cfg_umac) * |
| 7930 | sc->sc_capa_n_scan_channels + tail_size; |
| 7931 | } |
| 7932 | |
| 7933 | struct iwm_scan_umac_chan_param * |
| 7934 | iwm_get_scan_req_umac_chan_param(struct iwm_softc *sc, |
| 7935 | struct iwm_scan_req_umac *req) |
| 7936 | { |
| 7937 | if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_ADAPTIVE_DWELL_V2)((sc->sc_ucode_api)[(42)>>3] & (1<<((42)& (8 -1))))) |
| 7938 | return &req->v8.channel; |
| 7939 | |
| 7940 | if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_ADAPTIVE_DWELL)((sc->sc_ucode_api)[(32)>>3] & (1<<((32)& (8 -1))))) |
| 7941 | return &req->v7.channel; |
| 7942 | |
| 7943 | return &req->v1.channel; |
| 7944 | } |
| 7945 | |
| 7946 | void * |
| 7947 | iwm_get_scan_req_umac_data(struct iwm_softc *sc, struct iwm_scan_req_umac *req) |
| 7948 | { |
| 7949 | if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_ADAPTIVE_DWELL_V2)((sc->sc_ucode_api)[(42)>>3] & (1<<((42)& (8 -1))))) |
| 7950 | return (void *)&req->v8.data; |
| 7951 | |
| 7952 | if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_ADAPTIVE_DWELL)((sc->sc_ucode_api)[(32)>>3] & (1<<((32)& (8 -1))))) |
| 7953 | return (void *)&req->v7.data; |
| 7954 | |
| 7955 | return (void *)&req->v1.data; |
| 7956 | |
| 7957 | } |
| 7958 | |
| 7959 | /* adaptive dwell max budget time [TU] for full scan */ |
| 7960 | #define IWM_SCAN_ADWELL_MAX_BUDGET_FULL_SCAN300 300 |
| 7961 | /* adaptive dwell max budget time [TU] for directed scan */ |
| 7962 | #define IWM_SCAN_ADWELL_MAX_BUDGET_DIRECTED_SCAN100 100 |
| 7963 | /* adaptive dwell default high band APs number */ |
| 7964 | #define IWM_SCAN_ADWELL_DEFAULT_HB_N_APS8 8 |
| 7965 | /* adaptive dwell default low band APs number */ |
| 7966 | #define IWM_SCAN_ADWELL_DEFAULT_LB_N_APS2 2 |
| 7967 | /* adaptive dwell default APs number in social channels (1, 6, 11) */ |
| 7968 | #define IWM_SCAN_ADWELL_DEFAULT_N_APS_SOCIAL10 10 |
| 7969 | |
| 7970 | int |
| 7971 | iwm_umac_scan(struct iwm_softc *sc, int bgscan) |
| 7972 | { |
| 7973 | struct ieee80211com *ic = &sc->sc_ic; |
| 7974 | struct iwm_host_cmd hcmd = { |
| 7975 | .id = iwm_cmd_id(IWM_SCAN_REQ_UMAC0xd, IWM_LONG_GROUP0x1, 0), |
| 7976 | .len = { 0, }, |
| 7977 | .data = { NULL((void *)0), }, |
| 7978 | .flags = 0, |
| 7979 | }; |
| 7980 | struct iwm_scan_req_umac *req; |
| 7981 | void *cmd_data, *tail_data; |
| 7982 | struct iwm_scan_req_umac_tail_v2 *tail; |
| 7983 | struct iwm_scan_req_umac_tail_v1 *tailv1; |
| 7984 | struct iwm_scan_umac_chan_param *chanparam; |
| 7985 | size_t req_len; |
| 7986 | int err, async = bgscan; |
| 7987 | |
| 7988 | req_len = iwm_umac_scan_size(sc); |
| 7989 | if ((req_len < IWM_SCAN_REQ_UMAC_SIZE_V136 + |
| 7990 | sizeof(struct iwm_scan_req_umac_tail_v1)) || |
| 7991 | req_len > IWM_MAX_CMD_PAYLOAD_SIZE((4096 - 4) - sizeof(struct iwm_cmd_header))) |
| 7992 | return ERANGE34; |
| 7993 | req = malloc(req_len, M_DEVBUF2, |
| 7994 | (async ? M_NOWAIT0x0002 : M_WAIT0x0001) | M_CANFAIL0x0004 | M_ZERO0x0008); |
| 7995 | if (req == NULL((void *)0)) |
| 7996 | return ENOMEM12; |
| 7997 | |
| 7998 | hcmd.len[0] = (uint16_t)req_len; |
| 7999 | hcmd.data[0] = (void *)req; |
| 8000 | hcmd.flags |= async ? IWM_CMD_ASYNC : 0; |
| 8001 | |
| 8002 | if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_ADAPTIVE_DWELL)((sc->sc_ucode_api)[(32)>>3] & (1<<((32)& (8 -1))))) { |
| 8003 | req->v7.adwell_default_n_aps_social = |
| 8004 | IWM_SCAN_ADWELL_DEFAULT_N_APS_SOCIAL10; |
| 8005 | req->v7.adwell_default_n_aps = |
| 8006 | IWM_SCAN_ADWELL_DEFAULT_LB_N_APS2; |
| 8007 | |
| 8008 | if (ic->ic_des_esslen != 0) |
| 8009 | req->v7.adwell_max_budget = |
| 8010 | htole16(IWM_SCAN_ADWELL_MAX_BUDGET_DIRECTED_SCAN)((__uint16_t)(100)); |
| 8011 | else |
| 8012 | req->v7.adwell_max_budget = |
| 8013 | htole16(IWM_SCAN_ADWELL_MAX_BUDGET_FULL_SCAN)((__uint16_t)(300)); |
| 8014 | |
| 8015 | req->v7.scan_priority = htole32(IWM_SCAN_PRIORITY_HIGH)((__uint32_t)(2)); |
| 8016 | req->v7.max_out_time[IWM_SCAN_LB_LMAC_IDX0] = 0; |
| 8017 | req->v7.suspend_time[IWM_SCAN_LB_LMAC_IDX0] = 0; |
| 8018 | |
| 8019 | if (isset(sc->sc_ucode_api,((sc->sc_ucode_api)[(42)>>3] & (1<<((42)& (8 -1)))) |
| 8020 | IWM_UCODE_TLV_API_ADAPTIVE_DWELL_V2)((sc->sc_ucode_api)[(42)>>3] & (1<<((42)& (8 -1))))) { |
| 8021 | req->v8.active_dwell[IWM_SCAN_LB_LMAC_IDX0] = 10; |
| 8022 | req->v8.passive_dwell[IWM_SCAN_LB_LMAC_IDX0] = 110; |
| 8023 | } else { |
| 8024 | req->v7.active_dwell = 10; |
| 8025 | req->v7.passive_dwell = 110; |
| 8026 | req->v7.fragmented_dwell = 44; |
| 8027 | } |
| 8028 | } else { |
| 8029 | /* These timings correspond to iwlwifi's UNASSOC scan. */ |
| 8030 | req->v1.active_dwell = 10; |
| 8031 | req->v1.passive_dwell = 110; |
| 8032 | req->v1.fragmented_dwell = 44; |
| 8033 | req->v1.extended_dwell = 90; |
| 8034 | |
| 8035 | req->v1.scan_priority = htole32(IWM_SCAN_PRIORITY_HIGH)((__uint32_t)(2)); |
| 8036 | } |
| 8037 | |
| 8038 | if (bgscan) { |
| 8039 | const uint32_t timeout = htole32(120)((__uint32_t)(120)); |
| 8040 | if (isset(sc->sc_ucode_api,((sc->sc_ucode_api)[(42)>>3] & (1<<((42)& (8 -1)))) |
| 8041 | IWM_UCODE_TLV_API_ADAPTIVE_DWELL_V2)((sc->sc_ucode_api)[(42)>>3] & (1<<((42)& (8 -1))))) { |
| 8042 | req->v8.max_out_time[IWM_SCAN_LB_LMAC_IDX0] = timeout; |
| 8043 | req->v8.suspend_time[IWM_SCAN_LB_LMAC_IDX0] = timeout; |
| 8044 | } else if (isset(sc->sc_ucode_api,((sc->sc_ucode_api)[(32)>>3] & (1<<((32)& (8 -1)))) |
| 8045 | IWM_UCODE_TLV_API_ADAPTIVE_DWELL)((sc->sc_ucode_api)[(32)>>3] & (1<<((32)& (8 -1))))) { |
| 8046 | req->v7.max_out_time[IWM_SCAN_LB_LMAC_IDX0] = timeout; |
| 8047 | req->v7.suspend_time[IWM_SCAN_LB_LMAC_IDX0] = timeout; |
| 8048 | } else { |
| 8049 | req->v1.max_out_time = timeout; |
| 8050 | req->v1.suspend_time = timeout; |
| 8051 | } |
| 8052 | } |
| 8053 | |
| 8054 | req->ooc_priority = htole32(IWM_SCAN_PRIORITY_HIGH)((__uint32_t)(2)); |
| 8055 | |
| 8056 | cmd_data = iwm_get_scan_req_umac_data(sc, req); |
| 8057 | chanparam = iwm_get_scan_req_umac_chan_param(sc, req); |
| 8058 | chanparam->count = iwm_umac_scan_fill_channels(sc, |
| 8059 | (struct iwm_scan_channel_cfg_umac *)cmd_data, |
| 8060 | ic->ic_des_esslen != 0, bgscan); |
| 8061 | chanparam->flags = 0; |
| 8062 | |
| 8063 | tail_data = cmd_data + sizeof(struct iwm_scan_channel_cfg_umac) * |
| 8064 | sc->sc_capa_n_scan_channels; |
| 8065 | tail = tail_data; |
| 8066 | /* tail v1 layout differs in preq and direct_scan member fields. */ |
| 8067 | tailv1 = tail_data; |
| 8068 | |
| 8069 | req->general_flags = htole32(IWM_UMAC_SCAN_GEN_FLAGS_PASS_ALL |((__uint32_t)((1 << 2) | (1 << 5))) |
| 8070 | IWM_UMAC_SCAN_GEN_FLAGS_ITER_COMPLETE)((__uint32_t)((1 << 2) | (1 << 5))); |
| 8071 | if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_ADAPTIVE_DWELL_V2)((sc->sc_ucode_api)[(42)>>3] & (1<<((42)& (8 -1))))) { |
| 8072 | req->v8.general_flags2 = |
| 8073 | IWM_UMAC_SCAN_GEN_FLAGS2_ALLOW_CHNL_REORDER(1 << 1); |
| 8074 | } |
| 8075 | |
| 8076 | if (ic->ic_des_esslen != 0) { |
| 8077 | if (isset(sc->sc_ucode_api,((sc->sc_ucode_api)[(58)>>3] & (1<<((58)& (8 -1)))) |
| 8078 | IWM_UCODE_TLV_API_SCAN_EXT_CHAN_VER)((sc->sc_ucode_api)[(58)>>3] & (1<<((58)& (8 -1))))) { |
| 8079 | tail->direct_scan[0].id = IEEE80211_ELEMID_SSID; |
| 8080 | tail->direct_scan[0].len = ic->ic_des_esslen; |
| 8081 | memcpy(tail->direct_scan[0].ssid, ic->ic_des_essid,__builtin_memcpy((tail->direct_scan[0].ssid), (ic->ic_des_essid ), (ic->ic_des_esslen)) |
| 8082 | ic->ic_des_esslen)__builtin_memcpy((tail->direct_scan[0].ssid), (ic->ic_des_essid ), (ic->ic_des_esslen)); |
| 8083 | } else { |
| 8084 | tailv1->direct_scan[0].id = IEEE80211_ELEMID_SSID; |
| 8085 | tailv1->direct_scan[0].len = ic->ic_des_esslen; |
| 8086 | memcpy(tailv1->direct_scan[0].ssid, ic->ic_des_essid,__builtin_memcpy((tailv1->direct_scan[0].ssid), (ic->ic_des_essid ), (ic->ic_des_esslen)) |
| 8087 | ic->ic_des_esslen)__builtin_memcpy((tailv1->direct_scan[0].ssid), (ic->ic_des_essid ), (ic->ic_des_esslen)); |
| 8088 | } |
| 8089 | req->general_flags |= |
| 8090 | htole32(IWM_UMAC_SCAN_GEN_FLAGS_PRE_CONNECT)((__uint32_t)((1 << 4))); |
| 8091 | } else |
| 8092 | req->general_flags |= htole32(IWM_UMAC_SCAN_GEN_FLAGS_PASSIVE)((__uint32_t)((1 << 3))); |
| 8093 | |
| 8094 | if (isset(sc->sc_enabled_capa,((sc->sc_enabled_capa)[(9)>>3] & (1<<((9)& (8 -1)))) |
| 8095 | IWM_UCODE_TLV_CAPA_DS_PARAM_SET_IE_SUPPORT)((sc->sc_enabled_capa)[(9)>>3] & (1<<((9)& (8 -1)))) && |
| 8096 | isset(sc->sc_enabled_capa,((sc->sc_enabled_capa)[(10)>>3] & (1<<((10 )&(8 -1)))) |
| 8097 | IWM_UCODE_TLV_CAPA_WFA_TPC_REP_IE_SUPPORT)((sc->sc_enabled_capa)[(10)>>3] & (1<<((10 )&(8 -1))))) |
| 8098 | req->general_flags |= |
| 8099 | htole32(IWM_UMAC_SCAN_GEN_FLAGS_RRM_ENABLED)((__uint32_t)((1 << 8))); |
| 8100 | |
| 8101 | if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_ADAPTIVE_DWELL)((sc->sc_ucode_api)[(32)>>3] & (1<<((32)& (8 -1))))) { |
| 8102 | req->general_flags |= |
| 8103 | htole32(IWM_UMAC_SCAN_GEN_FLAGS_ADAPTIVE_DWELL)((__uint32_t)((1 << 13))); |
| 8104 | } else { |
| 8105 | req->general_flags |= |
| 8106 | htole32(IWM_UMAC_SCAN_GEN_FLAGS_EXTENDED_DWELL)((__uint32_t)((1 << 10))); |
| 8107 | } |
| 8108 | |
| 8109 | if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_SCAN_EXT_CHAN_VER)((sc->sc_ucode_api)[(58)>>3] & (1<<((58)& (8 -1))))) |
| 8110 | err = iwm_fill_probe_req(sc, &tail->preq); |
| 8111 | else |
| 8112 | err = iwm_fill_probe_req_v1(sc, &tailv1->preq); |
| 8113 | if (err) { |
| 8114 | free(req, M_DEVBUF2, req_len); |
| 8115 | return err; |
| 8116 | } |
| 8117 | |
| 8118 | /* Specify the scan plan: We'll do one iteration. */ |
| 8119 | tail->schedule[0].interval = 0; |
| 8120 | tail->schedule[0].iter_count = 1; |
| 8121 | |
| 8122 | err = iwm_send_cmd(sc, &hcmd); |
| 8123 | free(req, M_DEVBUF2, req_len); |
| 8124 | return err; |
| 8125 | } |
| 8126 | |
| 8127 | void |
| 8128 | iwm_mcc_update(struct iwm_softc *sc, struct iwm_mcc_chub_notif *notif) |
| 8129 | { |
| 8130 | struct ieee80211com *ic = &sc->sc_ic; |
| 8131 | struct ifnet *ifp = IC2IFP(ic)(&(ic)->ic_ac.ac_if); |
| 8132 | char alpha2[3]; |
| 8133 | |
| 8134 | snprintf(alpha2, sizeof(alpha2), "%c%c", |
| 8135 | (le16toh(notif->mcc)((__uint16_t)(notif->mcc)) & 0xff00) >> 8, le16toh(notif->mcc)((__uint16_t)(notif->mcc)) & 0xff); |
| 8136 | |
| 8137 | if (ifp->if_flags & IFF_DEBUG0x4) { |
| 8138 | printf("%s: firmware has detected regulatory domain '%s' " |
| 8139 | "(0x%x)\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), alpha2, le16toh(notif->mcc)((__uint16_t)(notif->mcc))); |
| 8140 | } |
| 8141 | |
| 8142 | /* TODO: Schedule a task to send MCC_UPDATE_CMD? */ |
| 8143 | } |
| 8144 | |
| 8145 | uint8_t |
| 8146 | iwm_ridx2rate(struct ieee80211_rateset *rs, int ridx) |
| 8147 | { |
| 8148 | int i; |
| 8149 | uint8_t rval; |
| 8150 | |
| 8151 | for (i = 0; i < rs->rs_nrates; i++) { |
| 8152 | rval = (rs->rs_rates[i] & IEEE80211_RATE_VAL0x7f); |
| 8153 | if (rval == iwm_rates[ridx].rate) |
| 8154 | return rs->rs_rates[i]; |
| 8155 | } |
| 8156 | |
| 8157 | return 0; |
| 8158 | } |
| 8159 | |
| 8160 | int |
| 8161 | iwm_rval2ridx(int rval) |
| 8162 | { |
| 8163 | int ridx; |
| 8164 | |
| 8165 | for (ridx = 0; ridx < nitems(iwm_rates)(sizeof((iwm_rates)) / sizeof((iwm_rates)[0])); ridx++) { |
| 8166 | if (iwm_rates[ridx].plcp == IWM_RATE_INVM_PLCP0xff) |
| 8167 | continue; |
| 8168 | if (rval == iwm_rates[ridx].rate) |
| 8169 | break; |
| 8170 | } |
| 8171 | |
| 8172 | return ridx; |
| 8173 | } |
| 8174 | |
| 8175 | void |
| 8176 | iwm_ack_rates(struct iwm_softc *sc, struct iwm_node *in, int *cck_rates, |
| 8177 | int *ofdm_rates) |
| 8178 | { |
| 8179 | struct ieee80211_node *ni = &in->in_ni; |
| 8180 | struct ieee80211_rateset *rs = &ni->ni_rates; |
| 8181 | int lowest_present_ofdm = -1; |
| 8182 | int lowest_present_cck = -1; |
| 8183 | uint8_t cck = 0; |
| 8184 | uint8_t ofdm = 0; |
| 8185 | int i; |
| 8186 | |
| 8187 | if (ni->ni_chan == IEEE80211_CHAN_ANYC((struct ieee80211_channel *) ((void *)0)) || |
| 8188 | IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)(((ni->ni_chan)->ic_flags & 0x0080) != 0)) { |
| 8189 | for (i = IWM_FIRST_CCK_RATE; i < IWM_FIRST_OFDM_RATE; i++) { |
| 8190 | if ((iwm_ridx2rate(rs, i) & IEEE80211_RATE_BASIC0x80) == 0) |
| 8191 | continue; |
| 8192 | cck |= (1 << i); |
| 8193 | if (lowest_present_cck == -1 || lowest_present_cck > i) |
| 8194 | lowest_present_cck = i; |
| 8195 | } |
| 8196 | } |
| 8197 | for (i = IWM_FIRST_OFDM_RATE; i <= IWM_LAST_NON_HT_RATE; i++) { |
| 8198 | if ((iwm_ridx2rate(rs, i) & IEEE80211_RATE_BASIC0x80) == 0) |
| 8199 | continue; |
| 8200 | ofdm |= (1 << (i - IWM_FIRST_OFDM_RATE)); |
| 8201 | if (lowest_present_ofdm == -1 || lowest_present_ofdm > i) |
| 8202 | lowest_present_ofdm = i; |
| 8203 | } |
| 8204 | |
| 8205 | /* |
| 8206 | * Now we've got the basic rates as bitmaps in the ofdm and cck |
| 8207 | * variables. This isn't sufficient though, as there might not |
| 8208 | * be all the right rates in the bitmap. E.g. if the only basic |
| 8209 | * rates are 5.5 Mbps and 11 Mbps, we still need to add 1 Mbps |
| 8210 | * and 6 Mbps because the 802.11-2007 standard says in 9.6: |
| 8211 | * |
| 8212 | * [...] a STA responding to a received frame shall transmit |
| 8213 | * its Control Response frame [...] at the highest rate in the |
| 8214 | * BSSBasicRateSet parameter that is less than or equal to the |
| 8215 | * rate of the immediately previous frame in the frame exchange |
| 8216 | * sequence ([...]) and that is of the same modulation class |
| 8217 | * ([...]) as the received frame. If no rate contained in the |
| 8218 | * BSSBasicRateSet parameter meets these conditions, then the |
| 8219 | * control frame sent in response to a received frame shall be |
| 8220 | * transmitted at the highest mandatory rate of the PHY that is |
| 8221 | * less than or equal to the rate of the received frame, and |
| 8222 | * that is of the same modulation class as the received frame. |
| 8223 | * |
| 8224 | * As a consequence, we need to add all mandatory rates that are |
| 8225 | * lower than all of the basic rates to these bitmaps. |
| 8226 | */ |
| 8227 | |
| 8228 | if (IWM_RATE_24M_INDEX < lowest_present_ofdm) |
| 8229 | ofdm |= IWM_RATE_BIT_MSK(24)(1 << (IWM_RATE_24M_INDEX)) >> IWM_FIRST_OFDM_RATE; |
| 8230 | if (IWM_RATE_12M_INDEX < lowest_present_ofdm) |
| 8231 | ofdm |= IWM_RATE_BIT_MSK(12)(1 << (IWM_RATE_12M_INDEX)) >> IWM_FIRST_OFDM_RATE; |
| 8232 | /* 6M already there or needed so always add */ |
| 8233 | ofdm |= IWM_RATE_BIT_MSK(6)(1 << (IWM_RATE_6M_INDEX)) >> IWM_FIRST_OFDM_RATE; |
| 8234 | |
| 8235 | /* |
| 8236 | * CCK is a bit more complex with DSSS vs. HR/DSSS vs. ERP. |
| 8237 | * Note, however: |
| 8238 | * - if no CCK rates are basic, it must be ERP since there must |
| 8239 | * be some basic rates at all, so they're OFDM => ERP PHY |
| 8240 | * (or we're in 5 GHz, and the cck bitmap will never be used) |
| 8241 | * - if 11M is a basic rate, it must be ERP as well, so add 5.5M |
| 8242 | * - if 5.5M is basic, 1M and 2M are mandatory |
| 8243 | * - if 2M is basic, 1M is mandatory |
| 8244 | * - if 1M is basic, that's the only valid ACK rate. |
| 8245 | * As a consequence, it's not as complicated as it sounds, just add |
| 8246 | * any lower rates to the ACK rate bitmap. |
| 8247 | */ |
| 8248 | if (IWM_RATE_11M_INDEX < lowest_present_cck) |
| 8249 | cck |= IWM_RATE_BIT_MSK(11)(1 << (IWM_RATE_11M_INDEX)) >> IWM_FIRST_CCK_RATE; |
| 8250 | if (IWM_RATE_5M_INDEX < lowest_present_cck) |
| 8251 | cck |= IWM_RATE_BIT_MSK(5)(1 << (IWM_RATE_5M_INDEX)) >> IWM_FIRST_CCK_RATE; |
| 8252 | if (IWM_RATE_2M_INDEX < lowest_present_cck) |
| 8253 | cck |= IWM_RATE_BIT_MSK(2)(1 << (IWM_RATE_2M_INDEX)) >> IWM_FIRST_CCK_RATE; |
| 8254 | /* 1M already there or needed so always add */ |
| 8255 | cck |= IWM_RATE_BIT_MSK(1)(1 << (IWM_RATE_1M_INDEX)) >> IWM_FIRST_CCK_RATE; |
| 8256 | |
| 8257 | *cck_rates = cck; |
| 8258 | *ofdm_rates = ofdm; |
| 8259 | } |
| 8260 | |
| 8261 | void |
| 8262 | iwm_mac_ctxt_cmd_common(struct iwm_softc *sc, struct iwm_node *in, |
| 8263 | struct iwm_mac_ctx_cmd *cmd, uint32_t action) |
| 8264 | { |
| 8265 | #define IWM_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */ |
| 8266 | struct ieee80211com *ic = &sc->sc_ic; |
| 8267 | struct ieee80211_node *ni = ic->ic_bss; |
| 8268 | int cck_ack_rates, ofdm_ack_rates; |
| 8269 | int i; |
| 8270 | |
| 8271 | cmd->id_and_color = htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id,((__uint32_t)(((in->in_id << (0)) | (in->in_color << (8))))) |
| 8272 | in->in_color))((__uint32_t)(((in->in_id << (0)) | (in->in_color << (8))))); |
| 8273 | cmd->action = htole32(action)((__uint32_t)(action)); |
| 8274 | |
| 8275 | if (ic->ic_opmode == IEEE80211_M_MONITOR) |
| 8276 | cmd->mac_type = htole32(IWM_FW_MAC_TYPE_LISTENER)((__uint32_t)(2)); |
| 8277 | else if (ic->ic_opmode == IEEE80211_M_STA) |
| 8278 | cmd->mac_type = htole32(IWM_FW_MAC_TYPE_BSS_STA)((__uint32_t)(5)); |
| 8279 | else |
| 8280 | panic("unsupported operating mode %d", ic->ic_opmode); |
| 8281 | cmd->tsf_id = htole32(IWM_TSF_ID_A)((__uint32_t)(0)); |
| 8282 | |
| 8283 | IEEE80211_ADDR_COPY(cmd->node_addr, ic->ic_myaddr)__builtin_memcpy((cmd->node_addr), (ic->ic_myaddr), (6) ); |
| 8284 | if (ic->ic_opmode == IEEE80211_M_MONITOR) { |
| 8285 | IEEE80211_ADDR_COPY(cmd->bssid_addr, etherbroadcastaddr)__builtin_memcpy((cmd->bssid_addr), (etherbroadcastaddr), ( 6)); |
| 8286 | return; |
| 8287 | } |
| 8288 | |
| 8289 | IEEE80211_ADDR_COPY(cmd->bssid_addr, in->in_macaddr)__builtin_memcpy((cmd->bssid_addr), (in->in_macaddr), ( 6)); |
| 8290 | iwm_ack_rates(sc, in, &cck_ack_rates, &ofdm_ack_rates); |
| 8291 | cmd->cck_rates = htole32(cck_ack_rates)((__uint32_t)(cck_ack_rates)); |
| 8292 | cmd->ofdm_rates = htole32(ofdm_ack_rates)((__uint32_t)(ofdm_ack_rates)); |
| 8293 | |
| 8294 | cmd->cck_short_preamble |
| 8295 | = htole32((ic->ic_flags & IEEE80211_F_SHPREAMBLE)((__uint32_t)((ic->ic_flags & 0x00040000) ? (1 << 5) : 0)) |
| 8296 | ? IWM_MAC_FLG_SHORT_PREAMBLE : 0)((__uint32_t)((ic->ic_flags & 0x00040000) ? (1 << 5) : 0)); |
| 8297 | cmd->short_slot |
| 8298 | = htole32((ic->ic_flags & IEEE80211_F_SHSLOT)((__uint32_t)((ic->ic_flags & 0x00020000) ? (1 << 4) : 0)) |
| 8299 | ? IWM_MAC_FLG_SHORT_SLOT : 0)((__uint32_t)((ic->ic_flags & 0x00020000) ? (1 << 4) : 0)); |
| 8300 | |
| 8301 | for (i = 0; i < EDCA_NUM_AC4; i++) { |
| 8302 | struct ieee80211_edca_ac_params *ac = &ic->ic_edca_ac[i]; |
| 8303 | int txf = iwm_ac_to_tx_fifo[i]; |
| 8304 | |
| 8305 | cmd->ac[txf].cw_min = htole16(IWM_EXP2(ac->ac_ecwmin))((__uint16_t)(IWM_EXP2(ac->ac_ecwmin))); |
| 8306 | cmd->ac[txf].cw_max = htole16(IWM_EXP2(ac->ac_ecwmax))((__uint16_t)(IWM_EXP2(ac->ac_ecwmax))); |
| 8307 | cmd->ac[txf].aifsn = ac->ac_aifsn; |
| 8308 | cmd->ac[txf].fifos_mask = (1 << txf); |
| 8309 | cmd->ac[txf].edca_txop = htole16(ac->ac_txoplimit * 32)((__uint16_t)(ac->ac_txoplimit * 32)); |
| 8310 | } |
| 8311 | if (ni->ni_flags & IEEE80211_NODE_QOS0x0002) |
| 8312 | cmd->qos_flags |= htole32(IWM_MAC_QOS_FLG_UPDATE_EDCA)((__uint32_t)((1 << 0))); |
| 8313 | |
| 8314 | if (ni->ni_flags & IEEE80211_NODE_HT0x0400) { |
| 8315 | enum ieee80211_htprot htprot = |
| 8316 | (ni->ni_htop1 & IEEE80211_HTOP1_PROT_MASK0x0003); |
| 8317 | switch (htprot) { |
| 8318 | case IEEE80211_HTPROT_NONE: |
| 8319 | break; |
| 8320 | case IEEE80211_HTPROT_NONMEMBER: |
| 8321 | case IEEE80211_HTPROT_NONHT_MIXED: |
| 8322 | cmd->protection_flags |= |
| 8323 | htole32(IWM_MAC_PROT_FLG_HT_PROT |((__uint32_t)((1 << 23) | (1 << 24))) |
| 8324 | IWM_MAC_PROT_FLG_FAT_PROT)((__uint32_t)((1 << 23) | (1 << 24))); |
| 8325 | break; |
| 8326 | case IEEE80211_HTPROT_20MHZ: |
| 8327 | if (in->in_phyctxt && |
| 8328 | (in->in_phyctxt->sco == IEEE80211_HTOP0_SCO_SCA1 || |
| 8329 | in->in_phyctxt->sco == IEEE80211_HTOP0_SCO_SCB3)) { |
| 8330 | cmd->protection_flags |= |
| 8331 | htole32(IWM_MAC_PROT_FLG_HT_PROT |((__uint32_t)((1 << 23) | (1 << 24))) |
| 8332 | IWM_MAC_PROT_FLG_FAT_PROT)((__uint32_t)((1 << 23) | (1 << 24))); |
| 8333 | } |
| 8334 | break; |
| 8335 | default: |
| 8336 | break; |
| 8337 | } |
| 8338 | |
| 8339 | cmd->qos_flags |= htole32(IWM_MAC_QOS_FLG_TGN)((__uint32_t)((1 << 1))); |
| 8340 | } |
| 8341 | if (ic->ic_flags & IEEE80211_F_USEPROT0x00100000) |
| 8342 | cmd->protection_flags |= htole32(IWM_MAC_PROT_FLG_TGG_PROTECT)((__uint32_t)((1 << 3))); |
| 8343 | |
| 8344 | cmd->filter_flags = htole32(IWM_MAC_FILTER_ACCEPT_GRP)((__uint32_t)((1 << 2))); |
| 8345 | #undef IWM_EXP2 |
| 8346 | } |
| 8347 | |
| 8348 | void |
| 8349 | iwm_mac_ctxt_cmd_fill_sta(struct iwm_softc *sc, struct iwm_node *in, |
| 8350 | struct iwm_mac_data_sta *sta, int assoc) |
| 8351 | { |
| 8352 | struct ieee80211_node *ni = &in->in_ni; |
| 8353 | uint32_t dtim_off; |
| 8354 | uint64_t tsf; |
| 8355 | |
| 8356 | dtim_off = ni->ni_dtimcount * ni->ni_intval * IEEE80211_DUR_TU1024; |
| 8357 | memcpy(&tsf, ni->ni_tstamp, sizeof(tsf))__builtin_memcpy((&tsf), (ni->ni_tstamp), (sizeof(tsf) )); |
| 8358 | tsf = letoh64(tsf)((__uint64_t)(tsf)); |
| 8359 | |
| 8360 | sta->is_assoc = htole32(assoc)((__uint32_t)(assoc)); |
| 8361 | sta->dtim_time = htole32(ni->ni_rstamp + dtim_off)((__uint32_t)(ni->ni_rstamp + dtim_off)); |
| 8362 | sta->dtim_tsf = htole64(tsf + dtim_off)((__uint64_t)(tsf + dtim_off)); |
| 8363 | sta->bi = htole32(ni->ni_intval)((__uint32_t)(ni->ni_intval)); |
| 8364 | sta->bi_reciprocal = htole32(iwm_reciprocal(ni->ni_intval))((__uint32_t)(iwm_reciprocal(ni->ni_intval))); |
| 8365 | sta->dtim_interval = htole32(ni->ni_intval * ni->ni_dtimperiod)((__uint32_t)(ni->ni_intval * ni->ni_dtimperiod)); |
| 8366 | sta->dtim_reciprocal = htole32(iwm_reciprocal(sta->dtim_interval))((__uint32_t)(iwm_reciprocal(sta->dtim_interval))); |
| 8367 | sta->listen_interval = htole32(10)((__uint32_t)(10)); |
| 8368 | sta->assoc_id = htole32(ni->ni_associd)((__uint32_t)(ni->ni_associd)); |
| 8369 | sta->assoc_beacon_arrive_time = htole32(ni->ni_rstamp)((__uint32_t)(ni->ni_rstamp)); |
| 8370 | } |
| 8371 | |
| 8372 | int |
| 8373 | iwm_mac_ctxt_cmd(struct iwm_softc *sc, struct iwm_node *in, uint32_t action, |
| 8374 | int assoc) |
| 8375 | { |
| 8376 | struct ieee80211com *ic = &sc->sc_ic; |
| 8377 | struct ieee80211_node *ni = &in->in_ni; |
| 8378 | struct iwm_mac_ctx_cmd cmd; |
| 8379 | int active = (sc->sc_flags & IWM_FLAG_MAC_ACTIVE0x08); |
| 8380 | |
| 8381 | if (action == IWM_FW_CTXT_ACTION_ADD1 && active) |
| 8382 | panic("MAC already added"); |
| 8383 | if (action == IWM_FW_CTXT_ACTION_REMOVE3 && !active) |
| 8384 | panic("MAC already removed"); |
| 8385 | |
| 8386 | memset(&cmd, 0, sizeof(cmd))__builtin_memset((&cmd), (0), (sizeof(cmd))); |
| 8387 | |
| 8388 | iwm_mac_ctxt_cmd_common(sc, in, &cmd, action); |
| 8389 | |
| 8390 | if (ic->ic_opmode == IEEE80211_M_MONITOR) { |
| 8391 | cmd.filter_flags |= htole32(IWM_MAC_FILTER_IN_PROMISC |((__uint32_t)((1 << 0) | (1 << 1) | (1 << 2 ) | (1 << 6) | (1 << 12) | (1 << 11))) |
| 8392 | IWM_MAC_FILTER_IN_CONTROL_AND_MGMT |((__uint32_t)((1 << 0) | (1 << 1) | (1 << 2 ) | (1 << 6) | (1 << 12) | (1 << 11))) |
| 8393 | IWM_MAC_FILTER_ACCEPT_GRP |((__uint32_t)((1 << 0) | (1 << 1) | (1 << 2 ) | (1 << 6) | (1 << 12) | (1 << 11))) |
| 8394 | IWM_MAC_FILTER_IN_BEACON |((__uint32_t)((1 << 0) | (1 << 1) | (1 << 2 ) | (1 << 6) | (1 << 12) | (1 << 11))) |
| 8395 | IWM_MAC_FILTER_IN_PROBE_REQUEST |((__uint32_t)((1 << 0) | (1 << 1) | (1 << 2 ) | (1 << 6) | (1 << 12) | (1 << 11))) |
| 8396 | IWM_MAC_FILTER_IN_CRC32)((__uint32_t)((1 << 0) | (1 << 1) | (1 << 2 ) | (1 << 6) | (1 << 12) | (1 << 11))); |
| 8397 | } else if (!assoc || !ni->ni_associd || !ni->ni_dtimperiod) |
| 8398 | /* |
| 8399 | * Allow beacons to pass through as long as we are not |
| 8400 | * associated or we do not have dtim period information. |
| 8401 | */ |
| 8402 | cmd.filter_flags |= htole32(IWM_MAC_FILTER_IN_BEACON)((__uint32_t)((1 << 6))); |
| 8403 | else |
| 8404 | iwm_mac_ctxt_cmd_fill_sta(sc, in, &cmd.sta, assoc); |
| 8405 | |
| 8406 | return iwm_send_cmd_pdu(sc, IWM_MAC_CONTEXT_CMD0x28, 0, sizeof(cmd), &cmd); |
| 8407 | } |
| 8408 | |
| 8409 | int |
| 8410 | iwm_update_quotas(struct iwm_softc *sc, struct iwm_node *in, int running) |
| 8411 | { |
| 8412 | struct iwm_time_quota_cmd_v1 cmd; |
| 8413 | int i, idx, num_active_macs, quota, quota_rem; |
| 8414 | int colors[IWM_MAX_BINDINGS(4)] = { -1, -1, -1, -1, }; |
| 8415 | int n_ifs[IWM_MAX_BINDINGS(4)] = {0, }; |
| 8416 | uint16_t id; |
| 8417 | |
| 8418 | memset(&cmd, 0, sizeof(cmd))__builtin_memset((&cmd), (0), (sizeof(cmd))); |
| 8419 | |
| 8420 | /* currently, PHY ID == binding ID */ |
| 8421 | if (in && in->in_phyctxt) { |
| 8422 | id = in->in_phyctxt->id; |
| 8423 | KASSERT(id < IWM_MAX_BINDINGS)((id < (4)) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/dev/pci/if_iwm.c" , 8423, "id < IWM_MAX_BINDINGS")); |
| 8424 | colors[id] = in->in_phyctxt->color; |
| 8425 | if (running) |
| 8426 | n_ifs[id] = 1; |
| 8427 | } |
| 8428 | |
| 8429 | /* |
| 8430 | * The FW's scheduling session consists of |
| 8431 | * IWM_MAX_QUOTA fragments. Divide these fragments |
| 8432 | * equally between all the bindings that require quota |
| 8433 | */ |
| 8434 | num_active_macs = 0; |
| 8435 | for (i = 0; i < IWM_MAX_BINDINGS(4); i++) { |
| 8436 | cmd.quotas[i].id_and_color = htole32(IWM_FW_CTXT_INVALID)((__uint32_t)((0xffffffff))); |
| 8437 | num_active_macs += n_ifs[i]; |
| 8438 | } |
| 8439 | |
| 8440 | quota = 0; |
| 8441 | quota_rem = 0; |
| 8442 | if (num_active_macs) { |
| 8443 | quota = IWM_MAX_QUOTA128 / num_active_macs; |
| 8444 | quota_rem = IWM_MAX_QUOTA128 % num_active_macs; |
| 8445 | } |
| 8446 | |
| 8447 | for (idx = 0, i = 0; i < IWM_MAX_BINDINGS(4); i++) { |
| 8448 | if (colors[i] < 0) |
| 8449 | continue; |
| 8450 | |
| 8451 | cmd.quotas[idx].id_and_color = |
| 8452 | htole32(IWM_FW_CMD_ID_AND_COLOR(i, colors[i]))((__uint32_t)(((i << (0)) | (colors[i] << (8))))); |
| 8453 | |
| 8454 | if (n_ifs[i] <= 0) { |
| 8455 | cmd.quotas[idx].quota = htole32(0)((__uint32_t)(0)); |
| 8456 | cmd.quotas[idx].max_duration = htole32(0)((__uint32_t)(0)); |
| 8457 | } else { |
| 8458 | cmd.quotas[idx].quota = htole32(quota * n_ifs[i])((__uint32_t)(quota * n_ifs[i])); |
| 8459 | cmd.quotas[idx].max_duration = htole32(0)((__uint32_t)(0)); |
| 8460 | } |
| 8461 | idx++; |
| 8462 | } |
| 8463 | |
| 8464 | /* Give the remainder of the session to the first binding */ |
| 8465 | cmd.quotas[0].quota = htole32(le32toh(cmd.quotas[0].quota) + quota_rem)((__uint32_t)(((__uint32_t)(cmd.quotas[0].quota)) + quota_rem )); |
| 8466 | |
| 8467 | if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_QUOTA_LOW_LATENCY)((sc->sc_ucode_api)[(38)>>3] & (1<<((38)& (8 -1))))) { |
| 8468 | struct iwm_time_quota_cmd cmd_v2; |
| 8469 | |
| 8470 | memset(&cmd_v2, 0, sizeof(cmd_v2))__builtin_memset((&cmd_v2), (0), (sizeof(cmd_v2))); |
| 8471 | for (i = 0; i < IWM_MAX_BINDINGS(4); i++) { |
| 8472 | cmd_v2.quotas[i].id_and_color = |
| 8473 | cmd.quotas[i].id_and_color; |
| 8474 | cmd_v2.quotas[i].quota = cmd.quotas[i].quota; |
| 8475 | cmd_v2.quotas[i].max_duration = |
| 8476 | cmd.quotas[i].max_duration; |
| 8477 | } |
| 8478 | return iwm_send_cmd_pdu(sc, IWM_TIME_QUOTA_CMD0x2c, 0, |
| 8479 | sizeof(cmd_v2), &cmd_v2); |
| 8480 | } |
| 8481 | |
| 8482 | return iwm_send_cmd_pdu(sc, IWM_TIME_QUOTA_CMD0x2c, 0, sizeof(cmd), &cmd); |
| 8483 | } |
| 8484 | |
| 8485 | void |
| 8486 | iwm_add_task(struct iwm_softc *sc, struct taskq *taskq, struct task *task) |
| 8487 | { |
| 8488 | int s = splnet()splraise(0x4); |
| 8489 | |
| 8490 | if (sc->sc_flags & IWM_FLAG_SHUTDOWN0x100) { |
| 8491 | splx(s)spllower(s); |
| 8492 | return; |
| 8493 | } |
| 8494 | |
| 8495 | refcnt_take(&sc->task_refs); |
| 8496 | if (!task_add(taskq, task)) |
| 8497 | refcnt_rele_wake(&sc->task_refs); |
| 8498 | splx(s)spllower(s); |
| 8499 | } |
| 8500 | |
| 8501 | void |
| 8502 | iwm_del_task(struct iwm_softc *sc, struct taskq *taskq, struct task *task) |
| 8503 | { |
| 8504 | if (task_del(taskq, task)) |
| 8505 | refcnt_rele(&sc->task_refs); |
| 8506 | } |
| 8507 | |
| 8508 | int |
| 8509 | iwm_scan(struct iwm_softc *sc) |
| 8510 | { |
| 8511 | struct ieee80211com *ic = &sc->sc_ic; |
| 8512 | struct ifnet *ifp = IC2IFP(ic)(&(ic)->ic_ac.ac_if); |
| 8513 | int err; |
| 8514 | |
| 8515 | if (sc->sc_flags & IWM_FLAG_BGSCAN0x200) { |
| 8516 | err = iwm_scan_abort(sc); |
| 8517 | if (err) { |
| 8518 | printf("%s: could not abort background scan\n", |
| 8519 | DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 8520 | return err; |
| 8521 | } |
| 8522 | } |
| 8523 | |
| 8524 | if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN)((sc->sc_enabled_capa)[(2)>>3] & (1<<((2)& (8 -1))))) |
| 8525 | err = iwm_umac_scan(sc, 0); |
| 8526 | else |
| 8527 | err = iwm_lmac_scan(sc, 0); |
| 8528 | if (err) { |
| 8529 | printf("%s: could not initiate scan\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 8530 | return err; |
| 8531 | } |
| 8532 | |
| 8533 | /* |
| 8534 | * The current mode might have been fixed during association. |
| 8535 | * Ensure all channels get scanned. |
| 8536 | */ |
| 8537 | if (IFM_MODE(ic->ic_media.ifm_cur->ifm_media)((ic->ic_media.ifm_cur->ifm_media) & 0x000000ff00000000ULL ) == IFM_AUTO0ULL) |
| 8538 | ieee80211_setmode(ic, IEEE80211_MODE_AUTO); |
| 8539 | |
| 8540 | sc->sc_flags |= IWM_FLAG_SCANNING0x04; |
| 8541 | if (ifp->if_flags & IFF_DEBUG0x4) |
| 8542 | printf("%s: %s -> %s\n", ifp->if_xname, |
| 8543 | ieee80211_state_name[ic->ic_state], |
| 8544 | ieee80211_state_name[IEEE80211_S_SCAN]); |
| 8545 | if ((sc->sc_flags & IWM_FLAG_BGSCAN0x200) == 0) { |
| 8546 | ieee80211_set_link_state(ic, LINK_STATE_DOWN2); |
| 8547 | ieee80211_node_cleanup(ic, ic->ic_bss); |
| 8548 | } |
| 8549 | ic->ic_state = IEEE80211_S_SCAN; |
| 8550 | iwm_led_blink_start(sc); |
| 8551 | wakeup(&ic->ic_state); /* wake iwm_init() */ |
| 8552 | |
| 8553 | return 0; |
| 8554 | } |
| 8555 | |
| 8556 | int |
| 8557 | iwm_bgscan(struct ieee80211com *ic) |
| 8558 | { |
| 8559 | struct iwm_softc *sc = IC2IFP(ic)(&(ic)->ic_ac.ac_if)->if_softc; |
| 8560 | int err; |
| 8561 | |
| 8562 | if (sc->sc_flags & IWM_FLAG_SCANNING0x04) |
| 8563 | return 0; |
| 8564 | |
| 8565 | if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN)((sc->sc_enabled_capa)[(2)>>3] & (1<<((2)& (8 -1))))) |
| 8566 | err = iwm_umac_scan(sc, 1); |
| 8567 | else |
| 8568 | err = iwm_lmac_scan(sc, 1); |
| 8569 | if (err) { |
| 8570 | printf("%s: could not initiate scan\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 8571 | return err; |
| 8572 | } |
| 8573 | |
| 8574 | sc->sc_flags |= IWM_FLAG_BGSCAN0x200; |
| 8575 | return 0; |
| 8576 | } |
| 8577 | |
| 8578 | void |
| 8579 | iwm_bgscan_done(struct ieee80211com *ic, |
| 8580 | struct ieee80211_node_switch_bss_arg *arg, size_t arg_size) |
| 8581 | { |
| 8582 | struct iwm_softc *sc = ic->ic_softcic_ac.ac_if.if_softc; |
| 8583 | |
| 8584 | free(sc->bgscan_unref_arg, M_DEVBUF2, sc->bgscan_unref_arg_size); |
| 8585 | sc->bgscan_unref_arg = arg; |
| 8586 | sc->bgscan_unref_arg_size = arg_size; |
| 8587 | iwm_add_task(sc, systq, &sc->bgscan_done_task); |
| 8588 | } |
| 8589 | |
| 8590 | void |
| 8591 | iwm_bgscan_done_task(void *arg) |
| 8592 | { |
| 8593 | struct iwm_softc *sc = arg; |
| 8594 | struct ieee80211com *ic = &sc->sc_ic; |
| 8595 | struct iwm_node *in = (void *)ic->ic_bss; |
| 8596 | struct ieee80211_node *ni = &in->in_ni; |
| 8597 | int tid, err = 0, s = splnet()splraise(0x4); |
| 8598 | |
| 8599 | if ((sc->sc_flags & IWM_FLAG_SHUTDOWN0x100) || |
| 8600 | (ic->ic_flags & IEEE80211_F_BGSCAN0x08000000) == 0 || |
| 8601 | ic->ic_state != IEEE80211_S_RUN) { |
| 8602 | err = ENXIO6; |
| 8603 | goto done; |
| 8604 | } |
| 8605 | |
| 8606 | for (tid = 0; tid < IWM_MAX_TID_COUNT8; tid++) { |
| 8607 | int qid = IWM_FIRST_AGG_TX_QUEUE10 + tid; |
| 8608 | |
| 8609 | if ((sc->tx_ba_queue_mask & (1 << qid)) == 0) |
| 8610 | continue; |
| 8611 | |
| 8612 | err = iwm_sta_tx_agg(sc, ni, tid, 0, 0, 0); |
| 8613 | if (err) |
| 8614 | goto done; |
| 8615 | err = iwm_disable_txq(sc, IWM_STATION_ID0, qid, tid); |
| 8616 | if (err) |
| 8617 | goto done; |
| 8618 | in->tfd_queue_msk &= ~(1 << qid); |
| 8619 | #if 0 /* disabled for now; we are going to DEAUTH soon anyway */ |
| 8620 | IEEE80211_SEND_ACTION(ic, ni, IEEE80211_CATEG_BA,((*(ic)->ic_send_mgmt)(ic, ni, 0xd0, (IEEE80211_CATEG_BA) << 16 | (2), IEEE80211_REASON_AUTH_LEAVE << 16 | 0x01 << 8 | tid)) |
| 8621 | IEEE80211_ACTION_DELBA,((*(ic)->ic_send_mgmt)(ic, ni, 0xd0, (IEEE80211_CATEG_BA) << 16 | (2), IEEE80211_REASON_AUTH_LEAVE << 16 | 0x01 << 8 | tid)) |
| 8622 | IEEE80211_REASON_AUTH_LEAVE << 16 |((*(ic)->ic_send_mgmt)(ic, ni, 0xd0, (IEEE80211_CATEG_BA) << 16 | (2), IEEE80211_REASON_AUTH_LEAVE << 16 | 0x01 << 8 | tid)) |
| 8623 | IEEE80211_FC1_DIR_TODS << 8 | tid)((*(ic)->ic_send_mgmt)(ic, ni, 0xd0, (IEEE80211_CATEG_BA) << 16 | (2), IEEE80211_REASON_AUTH_LEAVE << 16 | 0x01 << 8 | tid)); |
| 8624 | #endif |
| 8625 | ieee80211_node_tx_ba_clear(ni, tid); |
| 8626 | } |
| 8627 | |
| 8628 | err = iwm_flush_sta(sc, in); |
| 8629 | if (err) |
| 8630 | goto done; |
| 8631 | |
| 8632 | /* |
| 8633 | * Tx queues have been flushed and Tx agg has been stopped. |
| 8634 | * Allow roaming to proceed. |
| 8635 | */ |
| 8636 | ni->ni_unref_arg = sc->bgscan_unref_arg; |
| 8637 | ni->ni_unref_arg_size = sc->bgscan_unref_arg_size; |
| 8638 | sc->bgscan_unref_arg = NULL((void *)0); |
| 8639 | sc->bgscan_unref_arg_size = 0; |
| 8640 | ieee80211_node_tx_stopped(ic, &in->in_ni); |
| 8641 | done: |
| 8642 | if (err) { |
| 8643 | free(sc->bgscan_unref_arg, M_DEVBUF2, sc->bgscan_unref_arg_size); |
| 8644 | sc->bgscan_unref_arg = NULL((void *)0); |
| 8645 | sc->bgscan_unref_arg_size = 0; |
| 8646 | if ((sc->sc_flags & IWM_FLAG_SHUTDOWN0x100) == 0) |
| 8647 | task_add(systq, &sc->init_task); |
| 8648 | } |
| 8649 | refcnt_rele_wake(&sc->task_refs); |
| 8650 | splx(s)spllower(s); |
| 8651 | } |
| 8652 | |
| 8653 | int |
| 8654 | iwm_umac_scan_abort(struct iwm_softc *sc) |
| 8655 | { |
| 8656 | struct iwm_umac_scan_abort cmd = { 0 }; |
| 8657 | |
| 8658 | return iwm_send_cmd_pdu(sc, |
| 8659 | IWM_WIDE_ID(IWM_LONG_GROUP, IWM_SCAN_ABORT_UMAC)((0x1 << 8) | 0xe), |
| 8660 | 0, sizeof(cmd), &cmd); |
| 8661 | } |
| 8662 | |
| 8663 | int |
| 8664 | iwm_lmac_scan_abort(struct iwm_softc *sc) |
| 8665 | { |
| 8666 | struct iwm_host_cmd cmd = { |
| 8667 | .id = IWM_SCAN_OFFLOAD_ABORT_CMD0x52, |
| 8668 | }; |
| 8669 | int err, status; |
| 8670 | |
| 8671 | err = iwm_send_cmd_status(sc, &cmd, &status); |
| 8672 | if (err) |
| 8673 | return err; |
| 8674 | |
| 8675 | if (status != IWM_CAN_ABORT_STATUS1) { |
| 8676 | /* |
| 8677 | * The scan abort will return 1 for success or |
| 8678 | * 2 for "failure". A failure condition can be |
| 8679 | * due to simply not being in an active scan which |
| 8680 | * can occur if we send the scan abort before the |
| 8681 | * microcode has notified us that a scan is completed. |
| 8682 | */ |
| 8683 | return EBUSY16; |
| 8684 | } |
| 8685 | |
| 8686 | return 0; |
| 8687 | } |
| 8688 | |
| 8689 | int |
| 8690 | iwm_scan_abort(struct iwm_softc *sc) |
| 8691 | { |
| 8692 | int err; |
| 8693 | |
| 8694 | if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN)((sc->sc_enabled_capa)[(2)>>3] & (1<<((2)& (8 -1))))) |
| 8695 | err = iwm_umac_scan_abort(sc); |
| 8696 | else |
| 8697 | err = iwm_lmac_scan_abort(sc); |
| 8698 | |
| 8699 | if (err == 0) |
| 8700 | sc->sc_flags &= ~(IWM_FLAG_SCANNING0x04 | IWM_FLAG_BGSCAN0x200); |
| 8701 | return err; |
| 8702 | } |
| 8703 | |
| 8704 | int |
| 8705 | iwm_phy_ctxt_update(struct iwm_softc *sc, struct iwm_phy_ctxt *phyctxt, |
| 8706 | struct ieee80211_channel *chan, uint8_t chains_static, |
| 8707 | uint8_t chains_dynamic, uint32_t apply_time, uint8_t sco, |
| 8708 | uint8_t vht_chan_width) |
| 8709 | { |
| 8710 | uint16_t band_flags = (IEEE80211_CHAN_2GHZ0x0080 | IEEE80211_CHAN_5GHZ0x0100); |
| 8711 | int err; |
| 8712 | |
| 8713 | if (isset(sc->sc_enabled_capa,((sc->sc_enabled_capa)[(39)>>3] & (1<<((39 )&(8 -1)))) |
| 8714 | IWM_UCODE_TLV_CAPA_BINDING_CDB_SUPPORT)((sc->sc_enabled_capa)[(39)>>3] & (1<<((39 )&(8 -1)))) && |
| 8715 | (phyctxt->channel->ic_flags & band_flags) != |
| 8716 | (chan->ic_flags & band_flags)) { |
| 8717 | err = iwm_phy_ctxt_cmd(sc, phyctxt, chains_static, |
| 8718 | chains_dynamic, IWM_FW_CTXT_ACTION_REMOVE3, apply_time, sco, |
| 8719 | vht_chan_width); |
| 8720 | if (err) { |
| 8721 | printf("%s: could not remove PHY context " |
| 8722 | "(error %d)\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), err); |
| 8723 | return err; |
| 8724 | } |
| 8725 | phyctxt->channel = chan; |
| 8726 | err = iwm_phy_ctxt_cmd(sc, phyctxt, chains_static, |
| 8727 | chains_dynamic, IWM_FW_CTXT_ACTION_ADD1, apply_time, sco, |
| 8728 | vht_chan_width); |
| 8729 | if (err) { |
| 8730 | printf("%s: could not add PHY context " |
| 8731 | "(error %d)\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), err); |
| 8732 | return err; |
| 8733 | } |
| 8734 | } else { |
| 8735 | phyctxt->channel = chan; |
| 8736 | err = iwm_phy_ctxt_cmd(sc, phyctxt, chains_static, |
| 8737 | chains_dynamic, IWM_FW_CTXT_ACTION_MODIFY2, apply_time, sco, |
| 8738 | vht_chan_width); |
| 8739 | if (err) { |
| 8740 | printf("%s: could not update PHY context (error %d)\n", |
| 8741 | DEVNAME(sc)((sc)->sc_dev.dv_xname), err); |
| 8742 | return err; |
| 8743 | } |
| 8744 | } |
| 8745 | |
| 8746 | phyctxt->sco = sco; |
| 8747 | phyctxt->vht_chan_width = vht_chan_width; |
| 8748 | return 0; |
| 8749 | } |
| 8750 | |
| 8751 | int |
| 8752 | iwm_auth(struct iwm_softc *sc) |
| 8753 | { |
| 8754 | struct ieee80211com *ic = &sc->sc_ic; |
| 8755 | struct iwm_node *in = (void *)ic->ic_bss; |
| 8756 | uint32_t duration; |
| 8757 | int generation = sc->sc_generation, err; |
| 8758 | |
| 8759 | splassert(IPL_NET)do { if (splassert_ctl > 0) { splassert_check(0x4, __func__ ); } } while (0); |
| 8760 | |
| 8761 | if (ic->ic_opmode == IEEE80211_M_MONITOR) { |
| 8762 | err = iwm_phy_ctxt_update(sc, &sc->sc_phyctxt[0], |
| 8763 | ic->ic_ibss_chan, 1, 1, 0, IEEE80211_HTOP0_SCO_SCN0, |
| 8764 | IEEE80211_VHTOP0_CHAN_WIDTH_HT0); |
| 8765 | if (err) |
| 8766 | return err; |
| 8767 | } else { |
| 8768 | err = iwm_phy_ctxt_update(sc, &sc->sc_phyctxt[0], |
| 8769 | in->in_ni.ni_chan, 1, 1, 0, IEEE80211_HTOP0_SCO_SCN0, |
| 8770 | IEEE80211_VHTOP0_CHAN_WIDTH_HT0); |
| 8771 | if (err) |
| 8772 | return err; |
| 8773 | } |
| 8774 | in->in_phyctxt = &sc->sc_phyctxt[0]; |
| 8775 | IEEE80211_ADDR_COPY(in->in_macaddr, in->in_ni.ni_macaddr)__builtin_memcpy((in->in_macaddr), (in->in_ni.ni_macaddr ), (6)); |
| 8776 | iwm_setrates(in, 0); |
| 8777 | |
| 8778 | err = iwm_mac_ctxt_cmd(sc, in, IWM_FW_CTXT_ACTION_ADD1, 0); |
| 8779 | if (err) { |
| 8780 | printf("%s: could not add MAC context (error %d)\n", |
| 8781 | DEVNAME(sc)((sc)->sc_dev.dv_xname), err); |
| 8782 | return err; |
| 8783 | } |
| 8784 | sc->sc_flags |= IWM_FLAG_MAC_ACTIVE0x08; |
| 8785 | |
| 8786 | err = iwm_binding_cmd(sc, in, IWM_FW_CTXT_ACTION_ADD1); |
| 8787 | if (err) { |
| 8788 | printf("%s: could not add binding (error %d)\n", |
| 8789 | DEVNAME(sc)((sc)->sc_dev.dv_xname), err); |
| 8790 | goto rm_mac_ctxt; |
| 8791 | } |
| 8792 | sc->sc_flags |= IWM_FLAG_BINDING_ACTIVE0x10; |
| 8793 | |
| 8794 | in->tid_disable_ampdu = 0xffff; |
| 8795 | err = iwm_add_sta_cmd(sc, in, 0); |
| 8796 | if (err) { |
| 8797 | printf("%s: could not add sta (error %d)\n", |
| 8798 | DEVNAME(sc)((sc)->sc_dev.dv_xname), err); |
| 8799 | goto rm_binding; |
| 8800 | } |
| 8801 | sc->sc_flags |= IWM_FLAG_STA_ACTIVE0x20; |
| 8802 | |
| 8803 | if (ic->ic_opmode == IEEE80211_M_MONITOR) |
| 8804 | return 0; |
| 8805 | |
| 8806 | /* |
| 8807 | * Prevent the FW from wandering off channel during association |
| 8808 | * by "protecting" the session with a time event. |
| 8809 | */ |
| 8810 | if (in->in_ni.ni_intval) |
| 8811 | duration = in->in_ni.ni_intval * 2; |
| 8812 | else |
| 8813 | duration = IEEE80211_DUR_TU1024; |
| 8814 | iwm_protect_session(sc, in, duration, in->in_ni.ni_intval / 2); |
| 8815 | |
| 8816 | return 0; |
| 8817 | |
| 8818 | rm_binding: |
| 8819 | if (generation == sc->sc_generation) { |
| 8820 | iwm_binding_cmd(sc, in, IWM_FW_CTXT_ACTION_REMOVE3); |
| 8821 | sc->sc_flags &= ~IWM_FLAG_BINDING_ACTIVE0x10; |
| 8822 | } |
| 8823 | rm_mac_ctxt: |
| 8824 | if (generation == sc->sc_generation) { |
| 8825 | iwm_mac_ctxt_cmd(sc, in, IWM_FW_CTXT_ACTION_REMOVE3, 0); |
| 8826 | sc->sc_flags &= ~IWM_FLAG_MAC_ACTIVE0x08; |
| 8827 | } |
| 8828 | return err; |
| 8829 | } |
| 8830 | |
| 8831 | int |
| 8832 | iwm_deauth(struct iwm_softc *sc) |
| 8833 | { |
| 8834 | struct ieee80211com *ic = &sc->sc_ic; |
| 8835 | struct iwm_node *in = (void *)ic->ic_bss; |
| 8836 | int err; |
| 8837 | |
| 8838 | splassert(IPL_NET)do { if (splassert_ctl > 0) { splassert_check(0x4, __func__ ); } } while (0); |
| 8839 | |
| 8840 | iwm_unprotect_session(sc, in); |
| 8841 | |
| 8842 | if (sc->sc_flags & IWM_FLAG_STA_ACTIVE0x20) { |
| 8843 | err = iwm_flush_sta(sc, in); |
| 8844 | if (err) |
| 8845 | return err; |
| 8846 | err = iwm_rm_sta_cmd(sc, in); |
| 8847 | if (err) { |
| 8848 | printf("%s: could not remove STA (error %d)\n", |
| 8849 | DEVNAME(sc)((sc)->sc_dev.dv_xname), err); |
| 8850 | return err; |
| 8851 | } |
| 8852 | in->tid_disable_ampdu = 0xffff; |
| 8853 | sc->sc_flags &= ~IWM_FLAG_STA_ACTIVE0x20; |
| 8854 | sc->sc_rx_ba_sessions = 0; |
| 8855 | sc->ba_rx.start_tidmask = 0; |
| 8856 | sc->ba_rx.stop_tidmask = 0; |
| 8857 | sc->tx_ba_queue_mask = 0; |
| 8858 | sc->ba_tx.start_tidmask = 0; |
| 8859 | sc->ba_tx.stop_tidmask = 0; |
| 8860 | } |
| 8861 | |
| 8862 | if (sc->sc_flags & IWM_FLAG_BINDING_ACTIVE0x10) { |
| 8863 | err = iwm_binding_cmd(sc, in, IWM_FW_CTXT_ACTION_REMOVE3); |
| 8864 | if (err) { |
| 8865 | printf("%s: could not remove binding (error %d)\n", |
| 8866 | DEVNAME(sc)((sc)->sc_dev.dv_xname), err); |
| 8867 | return err; |
| 8868 | } |
| 8869 | sc->sc_flags &= ~IWM_FLAG_BINDING_ACTIVE0x10; |
| 8870 | } |
| 8871 | |
| 8872 | if (sc->sc_flags & IWM_FLAG_MAC_ACTIVE0x08) { |
| 8873 | err = iwm_mac_ctxt_cmd(sc, in, IWM_FW_CTXT_ACTION_REMOVE3, 0); |
| 8874 | if (err) { |
| 8875 | printf("%s: could not remove MAC context (error %d)\n", |
| 8876 | DEVNAME(sc)((sc)->sc_dev.dv_xname), err); |
| 8877 | return err; |
| 8878 | } |
| 8879 | sc->sc_flags &= ~IWM_FLAG_MAC_ACTIVE0x08; |
| 8880 | } |
| 8881 | |
| 8882 | /* Move unused PHY context to a default channel. */ |
| 8883 | err = iwm_phy_ctxt_update(sc, &sc->sc_phyctxt[0], |
| 8884 | &ic->ic_channels[1], 1, 1, 0, IEEE80211_HTOP0_SCO_SCN0, |
| 8885 | IEEE80211_VHTOP0_CHAN_WIDTH_HT0); |
| 8886 | if (err) |
| 8887 | return err; |
| 8888 | |
| 8889 | return 0; |
| 8890 | } |
| 8891 | |
| 8892 | int |
| 8893 | iwm_run(struct iwm_softc *sc) |
| 8894 | { |
| 8895 | struct ieee80211com *ic = &sc->sc_ic; |
| 8896 | struct iwm_node *in = (void *)ic->ic_bss; |
| 8897 | struct ieee80211_node *ni = &in->in_ni; |
| 8898 | int err; |
| 8899 | |
| 8900 | splassert(IPL_NET)do { if (splassert_ctl > 0) { splassert_check(0x4, __func__ ); } } while (0); |
| 8901 | |
| 8902 | if (ic->ic_opmode == IEEE80211_M_MONITOR) { |
| 8903 | /* Add a MAC context and a sniffing STA. */ |
| 8904 | err = iwm_auth(sc); |
| 8905 | if (err) |
| 8906 | return err; |
| 8907 | } |
| 8908 | |
| 8909 | /* Configure Rx chains for MIMO and configure 40 MHz channel. */ |
| 8910 | if (ic->ic_opmode == IEEE80211_M_MONITOR) { |
| 8911 | uint8_t chains = iwm_mimo_enabled(sc) ? 2 : 1; |
| 8912 | err = iwm_phy_ctxt_update(sc, in->in_phyctxt, |
| 8913 | in->in_phyctxt->channel, chains, chains, |
| 8914 | 0, IEEE80211_HTOP0_SCO_SCN0, |
| 8915 | IEEE80211_VHTOP0_CHAN_WIDTH_HT0); |
| 8916 | if (err) { |
| 8917 | printf("%s: failed to update PHY\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 8918 | return err; |
| 8919 | } |
| 8920 | } else if (ni->ni_flags & IEEE80211_NODE_HT0x0400) { |
| 8921 | uint8_t chains = iwm_mimo_enabled(sc) ? 2 : 1; |
| 8922 | uint8_t sco, vht_chan_width; |
| 8923 | if (IEEE80211_CHAN_40MHZ_ALLOWED(in->in_ni.ni_chan)(((in->in_ni.ni_chan)->ic_flags & 0x8000) != 0) && |
| 8924 | ieee80211_node_supports_ht_chan40(ni)) |
| 8925 | sco = (ni->ni_htop0 & IEEE80211_HTOP0_SCO_MASK0x03); |
| 8926 | else |
| 8927 | sco = IEEE80211_HTOP0_SCO_SCN0; |
| 8928 | if ((ni->ni_flags & IEEE80211_NODE_VHT0x10000) && |
| 8929 | IEEE80211_CHAN_80MHZ_ALLOWED(in->in_ni.ni_chan)(((in->in_ni.ni_chan)->ic_xflags & 0x00000001) != 0 ) && |
| 8930 | ieee80211_node_supports_vht_chan80(ni)) |
| 8931 | vht_chan_width = IEEE80211_VHTOP0_CHAN_WIDTH_801; |
| 8932 | else |
| 8933 | vht_chan_width = IEEE80211_VHTOP0_CHAN_WIDTH_HT0; |
| 8934 | err = iwm_phy_ctxt_update(sc, in->in_phyctxt, |
| 8935 | in->in_phyctxt->channel, chains, chains, |
| 8936 | 0, sco, vht_chan_width); |
| 8937 | if (err) { |
| 8938 | printf("%s: failed to update PHY\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 8939 | return err; |
| 8940 | } |
| 8941 | } |
| 8942 | |
| 8943 | /* Update STA again to apply HT and VHT settings. */ |
| 8944 | err = iwm_add_sta_cmd(sc, in, 1); |
| 8945 | if (err) { |
| 8946 | printf("%s: could not update STA (error %d)\n", |
| 8947 | DEVNAME(sc)((sc)->sc_dev.dv_xname), err); |
| 8948 | return err; |
| 8949 | } |
| 8950 | |
| 8951 | /* We have now been assigned an associd by the AP. */ |
| 8952 | err = iwm_mac_ctxt_cmd(sc, in, IWM_FW_CTXT_ACTION_MODIFY2, 1); |
| 8953 | if (err) { |
| 8954 | printf("%s: failed to update MAC\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 8955 | return err; |
| 8956 | } |
| 8957 | |
| 8958 | err = iwm_sf_config(sc, IWM_SF_FULL_ON1); |
| 8959 | if (err) { |
| 8960 | printf("%s: could not set sf full on (error %d)\n", |
| 8961 | DEVNAME(sc)((sc)->sc_dev.dv_xname), err); |
| 8962 | return err; |
| 8963 | } |
| 8964 | |
| 8965 | err = iwm_allow_mcast(sc); |
| 8966 | if (err) { |
| 8967 | printf("%s: could not allow mcast (error %d)\n", |
| 8968 | DEVNAME(sc)((sc)->sc_dev.dv_xname), err); |
| 8969 | return err; |
| 8970 | } |
| 8971 | |
| 8972 | err = iwm_power_update_device(sc); |
| 8973 | if (err) { |
| 8974 | printf("%s: could not send power command (error %d)\n", |
| 8975 | DEVNAME(sc)((sc)->sc_dev.dv_xname), err); |
| 8976 | return err; |
| 8977 | } |
| 8978 | #ifdef notyet |
| 8979 | /* |
| 8980 | * Disabled for now. Default beacon filter settings |
| 8981 | * prevent net80211 from getting ERP and HT protection |
| 8982 | * updates from beacons. |
| 8983 | */ |
| 8984 | err = iwm_enable_beacon_filter(sc, in); |
| 8985 | if (err) { |
| 8986 | printf("%s: could not enable beacon filter\n", |
| 8987 | DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 8988 | return err; |
| 8989 | } |
| 8990 | #endif |
| 8991 | err = iwm_power_mac_update_mode(sc, in); |
| 8992 | if (err) { |
| 8993 | printf("%s: could not update MAC power (error %d)\n", |
| 8994 | DEVNAME(sc)((sc)->sc_dev.dv_xname), err); |
| 8995 | return err; |
| 8996 | } |
| 8997 | |
| 8998 | if (!isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_DYNAMIC_QUOTA)((sc->sc_enabled_capa)[(44)>>3] & (1<<((44 )&(8 -1))))) { |
| 8999 | err = iwm_update_quotas(sc, in, 1); |
| 9000 | if (err) { |
| 9001 | printf("%s: could not update quotas (error %d)\n", |
| 9002 | DEVNAME(sc)((sc)->sc_dev.dv_xname), err); |
| 9003 | return err; |
| 9004 | } |
| 9005 | } |
| 9006 | |
| 9007 | ieee80211_amrr_node_init(&sc->sc_amrr, &in->in_amn); |
| 9008 | ieee80211_ra_node_init(&in->in_rn); |
| 9009 | ieee80211_ra_vht_node_init(&in->in_rn_vht); |
| 9010 | |
| 9011 | if (ic->ic_opmode == IEEE80211_M_MONITOR) { |
| 9012 | iwm_led_blink_start(sc); |
| 9013 | return 0; |
| 9014 | } |
| 9015 | |
| 9016 | /* Start at lowest available bit-rate, AMRR will raise. */ |
| 9017 | in->in_ni.ni_txrate = 0; |
| 9018 | in->in_ni.ni_txmcs = 0; |
| 9019 | in->in_ni.ni_vht_ss = 1; |
| 9020 | iwm_setrates(in, 0); |
| 9021 | |
| 9022 | timeout_add_msec(&sc->sc_calib_to, 500); |
| 9023 | iwm_led_enable(sc); |
| 9024 | |
| 9025 | return 0; |
| 9026 | } |
| 9027 | |
| 9028 | int |
| 9029 | iwm_run_stop(struct iwm_softc *sc) |
| 9030 | { |
| 9031 | struct ieee80211com *ic = &sc->sc_ic; |
| 9032 | struct iwm_node *in = (void *)ic->ic_bss; |
| 9033 | struct ieee80211_node *ni = &in->in_ni; |
| 9034 | int err, i, tid; |
| 9035 | |
| 9036 | splassert(IPL_NET)do { if (splassert_ctl > 0) { splassert_check(0x4, __func__ ); } } while (0); |
| 9037 | |
| 9038 | /* |
| 9039 | * Stop Tx/Rx BA sessions now. We cannot rely on the BA task |
| 9040 | * for this when moving out of RUN state since it runs in a |
| 9041 | * separate thread. |
| 9042 | * Note that in->in_ni (struct ieee80211_node) already represents |
| 9043 | * our new access point in case we are roaming between APs. |
| 9044 | * This means we cannot rely on struct ieee802111_node to tell |
| 9045 | * us which BA sessions exist. |
| 9046 | */ |
| 9047 | for (i = 0; i < nitems(sc->sc_rxba_data)(sizeof((sc->sc_rxba_data)) / sizeof((sc->sc_rxba_data) [0])); i++) { |
| 9048 | struct iwm_rxba_data *rxba = &sc->sc_rxba_data[i]; |
| 9049 | if (rxba->baid == IWM_RX_REORDER_DATA_INVALID_BAID0x7f) |
| 9050 | continue; |
| 9051 | err = iwm_sta_rx_agg(sc, ni, rxba->tid, 0, 0, 0, 0); |
| 9052 | if (err) |
| 9053 | return err; |
| 9054 | iwm_clear_reorder_buffer(sc, rxba); |
| 9055 | if (sc->sc_rx_ba_sessions > 0) |
| 9056 | sc->sc_rx_ba_sessions--; |
| 9057 | } |
| 9058 | for (tid = 0; tid < IWM_MAX_TID_COUNT8; tid++) { |
| 9059 | int qid = IWM_FIRST_AGG_TX_QUEUE10 + tid; |
| 9060 | if ((sc->tx_ba_queue_mask & (1 << qid)) == 0) |
| 9061 | continue; |
| 9062 | err = iwm_sta_tx_agg(sc, ni, tid, 0, 0, 0); |
| 9063 | if (err) |
| 9064 | return err; |
| 9065 | err = iwm_disable_txq(sc, IWM_STATION_ID0, qid, tid); |
| 9066 | if (err) |
| 9067 | return err; |
| 9068 | in->tfd_queue_msk &= ~(1 << qid); |
| 9069 | } |
| 9070 | ieee80211_ba_del(ni); |
| 9071 | |
| 9072 | if (ic->ic_opmode == IEEE80211_M_MONITOR) |
| 9073 | iwm_led_blink_stop(sc); |
| 9074 | |
| 9075 | err = iwm_sf_config(sc, IWM_SF_INIT_OFF3); |
| 9076 | if (err) |
| 9077 | return err; |
| 9078 | |
| 9079 | iwm_disable_beacon_filter(sc); |
| 9080 | |
| 9081 | if (!isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_DYNAMIC_QUOTA)((sc->sc_enabled_capa)[(44)>>3] & (1<<((44 )&(8 -1))))) { |
| 9082 | err = iwm_update_quotas(sc, in, 0); |
| 9083 | if (err) { |
| 9084 | printf("%s: could not update quotas (error %d)\n", |
| 9085 | DEVNAME(sc)((sc)->sc_dev.dv_xname), err); |
| 9086 | return err; |
| 9087 | } |
| 9088 | } |
| 9089 | |
| 9090 | /* Mark station as disassociated. */ |
| 9091 | err = iwm_mac_ctxt_cmd(sc, in, IWM_FW_CTXT_ACTION_MODIFY2, 0); |
| 9092 | if (err) { |
| 9093 | printf("%s: failed to update MAC\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 9094 | return err; |
| 9095 | } |
| 9096 | |
| 9097 | /* Reset Tx chains in case MIMO or 40 MHz channels were enabled. */ |
| 9098 | if (in->in_ni.ni_flags & IEEE80211_NODE_HT0x0400) { |
| 9099 | err = iwm_phy_ctxt_update(sc, in->in_phyctxt, |
| 9100 | in->in_phyctxt->channel, 1, 1, 0, IEEE80211_HTOP0_SCO_SCN0, |
| 9101 | IEEE80211_VHTOP0_CHAN_WIDTH_HT0); |
| 9102 | if (err) { |
| 9103 | printf("%s: failed to update PHY\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 9104 | return err; |
| 9105 | } |
| 9106 | } |
| 9107 | |
| 9108 | return 0; |
| 9109 | } |
| 9110 | |
| 9111 | struct ieee80211_node * |
| 9112 | iwm_node_alloc(struct ieee80211com *ic) |
| 9113 | { |
| 9114 | return malloc(sizeof (struct iwm_node), M_DEVBUF2, M_NOWAIT0x0002 | M_ZERO0x0008); |
| 9115 | } |
| 9116 | |
| 9117 | int |
| 9118 | iwm_set_key_v1(struct ieee80211com *ic, struct ieee80211_node *ni, |
| 9119 | struct ieee80211_key *k) |
| 9120 | { |
| 9121 | struct iwm_softc *sc = ic->ic_softcic_ac.ac_if.if_softc; |
| 9122 | struct iwm_add_sta_key_cmd_v1 cmd; |
| 9123 | |
| 9124 | memset(&cmd, 0, sizeof(cmd))__builtin_memset((&cmd), (0), (sizeof(cmd))); |
| 9125 | |
| 9126 | cmd.common.key_flags = htole16(IWM_STA_KEY_FLG_CCM |((__uint16_t)((2 << 0) | (1 << 3) | ((k->k_id << 8) & (3 << 8)))) |
| 9127 | IWM_STA_KEY_FLG_WEP_KEY_MAP |((__uint16_t)((2 << 0) | (1 << 3) | ((k->k_id << 8) & (3 << 8)))) |
| 9128 | ((k->k_id << IWM_STA_KEY_FLG_KEYID_POS) &((__uint16_t)((2 << 0) | (1 << 3) | ((k->k_id << 8) & (3 << 8)))) |
| 9129 | IWM_STA_KEY_FLG_KEYID_MSK))((__uint16_t)((2 << 0) | (1 << 3) | ((k->k_id << 8) & (3 << 8)))); |
| 9130 | if (k->k_flags & IEEE80211_KEY_GROUP0x00000001) |
| 9131 | cmd.common.key_flags |= htole16(IWM_STA_KEY_MULTICAST)((__uint16_t)((1 << 14))); |
| 9132 | |
| 9133 | memcpy(cmd.common.key, k->k_key, MIN(sizeof(cmd.common.key), k->k_len))__builtin_memcpy((cmd.common.key), (k->k_key), ((((sizeof( cmd.common.key))<(k->k_len))?(sizeof(cmd.common.key)):( k->k_len)))); |
| 9134 | cmd.common.key_offset = 0; |
| 9135 | cmd.common.sta_id = IWM_STATION_ID0; |
| 9136 | |
| 9137 | return iwm_send_cmd_pdu(sc, IWM_ADD_STA_KEY0x17, IWM_CMD_ASYNC, |
| 9138 | sizeof(cmd), &cmd); |
| 9139 | } |
| 9140 | |
| 9141 | int |
| 9142 | iwm_set_key(struct ieee80211com *ic, struct ieee80211_node *ni, |
| 9143 | struct ieee80211_key *k) |
| 9144 | { |
| 9145 | struct iwm_softc *sc = ic->ic_softcic_ac.ac_if.if_softc; |
| 9146 | struct iwm_add_sta_key_cmd cmd; |
| 9147 | |
| 9148 | if ((k->k_flags & IEEE80211_KEY_GROUP0x00000001) || |
| 9149 | k->k_cipher != IEEE80211_CIPHER_CCMP) { |
| 9150 | /* Fallback to software crypto for other ciphers. */ |
| 9151 | return (ieee80211_set_key(ic, ni, k)); |
| 9152 | } |
| 9153 | |
| 9154 | if (!isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_TKIP_MIC_KEYS)((sc->sc_ucode_api)[(29)>>3] & (1<<((29)& (8 -1))))) |
| 9155 | return iwm_set_key_v1(ic, ni, k); |
| 9156 | |
| 9157 | memset(&cmd, 0, sizeof(cmd))__builtin_memset((&cmd), (0), (sizeof(cmd))); |
| 9158 | |
| 9159 | cmd.common.key_flags = htole16(IWM_STA_KEY_FLG_CCM |((__uint16_t)((2 << 0) | (1 << 3) | ((k->k_id << 8) & (3 << 8)))) |
| 9160 | IWM_STA_KEY_FLG_WEP_KEY_MAP |((__uint16_t)((2 << 0) | (1 << 3) | ((k->k_id << 8) & (3 << 8)))) |
| 9161 | ((k->k_id << IWM_STA_KEY_FLG_KEYID_POS) &((__uint16_t)((2 << 0) | (1 << 3) | ((k->k_id << 8) & (3 << 8)))) |
| 9162 | IWM_STA_KEY_FLG_KEYID_MSK))((__uint16_t)((2 << 0) | (1 << 3) | ((k->k_id << 8) & (3 << 8)))); |
| 9163 | if (k->k_flags & IEEE80211_KEY_GROUP0x00000001) |
| 9164 | cmd.common.key_flags |= htole16(IWM_STA_KEY_MULTICAST)((__uint16_t)((1 << 14))); |
| 9165 | |
| 9166 | memcpy(cmd.common.key, k->k_key, MIN(sizeof(cmd.common.key), k->k_len))__builtin_memcpy((cmd.common.key), (k->k_key), ((((sizeof( cmd.common.key))<(k->k_len))?(sizeof(cmd.common.key)):( k->k_len)))); |
| 9167 | cmd.common.key_offset = 0; |
| 9168 | cmd.common.sta_id = IWM_STATION_ID0; |
| 9169 | |
| 9170 | cmd.transmit_seq_cnt = htole64(k->k_tsc)((__uint64_t)(k->k_tsc)); |
| 9171 | |
| 9172 | return iwm_send_cmd_pdu(sc, IWM_ADD_STA_KEY0x17, IWM_CMD_ASYNC, |
| 9173 | sizeof(cmd), &cmd); |
| 9174 | } |
| 9175 | |
| 9176 | void |
| 9177 | iwm_delete_key_v1(struct ieee80211com *ic, struct ieee80211_node *ni, |
| 9178 | struct ieee80211_key *k) |
| 9179 | { |
| 9180 | struct iwm_softc *sc = ic->ic_softcic_ac.ac_if.if_softc; |
| 9181 | struct iwm_add_sta_key_cmd_v1 cmd; |
| 9182 | |
| 9183 | memset(&cmd, 0, sizeof(cmd))__builtin_memset((&cmd), (0), (sizeof(cmd))); |
| 9184 | |
| 9185 | cmd.common.key_flags = htole16(IWM_STA_KEY_NOT_VALID |((__uint16_t)((1 << 11) | (0 << 0) | (1 << 3 ) | ((k->k_id << 8) & (3 << 8)))) |
| 9186 | IWM_STA_KEY_FLG_NO_ENC | IWM_STA_KEY_FLG_WEP_KEY_MAP |((__uint16_t)((1 << 11) | (0 << 0) | (1 << 3 ) | ((k->k_id << 8) & (3 << 8)))) |
| 9187 | ((k->k_id << IWM_STA_KEY_FLG_KEYID_POS) &((__uint16_t)((1 << 11) | (0 << 0) | (1 << 3 ) | ((k->k_id << 8) & (3 << 8)))) |
| 9188 | IWM_STA_KEY_FLG_KEYID_MSK))((__uint16_t)((1 << 11) | (0 << 0) | (1 << 3 ) | ((k->k_id << 8) & (3 << 8)))); |
| 9189 | memcpy(cmd.common.key, k->k_key, MIN(sizeof(cmd.common.key), k->k_len))__builtin_memcpy((cmd.common.key), (k->k_key), ((((sizeof( cmd.common.key))<(k->k_len))?(sizeof(cmd.common.key)):( k->k_len)))); |
| 9190 | cmd.common.key_offset = 0; |
| 9191 | cmd.common.sta_id = IWM_STATION_ID0; |
| 9192 | |
| 9193 | iwm_send_cmd_pdu(sc, IWM_ADD_STA_KEY0x17, IWM_CMD_ASYNC, sizeof(cmd), &cmd); |
| 9194 | } |
| 9195 | |
| 9196 | void |
| 9197 | iwm_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni, |
| 9198 | struct ieee80211_key *k) |
| 9199 | { |
| 9200 | struct iwm_softc *sc = ic->ic_softcic_ac.ac_if.if_softc; |
| 9201 | struct iwm_add_sta_key_cmd cmd; |
| 9202 | |
| 9203 | if ((k->k_flags & IEEE80211_KEY_GROUP0x00000001) || |
| 9204 | (k->k_cipher != IEEE80211_CIPHER_CCMP)) { |
| 9205 | /* Fallback to software crypto for other ciphers. */ |
| 9206 | ieee80211_delete_key(ic, ni, k); |
| 9207 | return; |
| 9208 | } |
| 9209 | |
| 9210 | if ((sc->sc_flags & IWM_FLAG_STA_ACTIVE0x20) == 0) |
| 9211 | return; |
| 9212 | |
| 9213 | if (!isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_TKIP_MIC_KEYS)((sc->sc_ucode_api)[(29)>>3] & (1<<((29)& (8 -1))))) |
| 9214 | return iwm_delete_key_v1(ic, ni, k); |
| 9215 | |
| 9216 | memset(&cmd, 0, sizeof(cmd))__builtin_memset((&cmd), (0), (sizeof(cmd))); |
| 9217 | |
| 9218 | cmd.common.key_flags = htole16(IWM_STA_KEY_NOT_VALID |((__uint16_t)((1 << 11) | (0 << 0) | (1 << 3 ) | ((k->k_id << 8) & (3 << 8)))) |
| 9219 | IWM_STA_KEY_FLG_NO_ENC | IWM_STA_KEY_FLG_WEP_KEY_MAP |((__uint16_t)((1 << 11) | (0 << 0) | (1 << 3 ) | ((k->k_id << 8) & (3 << 8)))) |
| 9220 | ((k->k_id << IWM_STA_KEY_FLG_KEYID_POS) &((__uint16_t)((1 << 11) | (0 << 0) | (1 << 3 ) | ((k->k_id << 8) & (3 << 8)))) |
| 9221 | IWM_STA_KEY_FLG_KEYID_MSK))((__uint16_t)((1 << 11) | (0 << 0) | (1 << 3 ) | ((k->k_id << 8) & (3 << 8)))); |
| 9222 | memcpy(cmd.common.key, k->k_key, MIN(sizeof(cmd.common.key), k->k_len))__builtin_memcpy((cmd.common.key), (k->k_key), ((((sizeof( cmd.common.key))<(k->k_len))?(sizeof(cmd.common.key)):( k->k_len)))); |
| 9223 | cmd.common.key_offset = 0; |
| 9224 | cmd.common.sta_id = IWM_STATION_ID0; |
| 9225 | |
| 9226 | iwm_send_cmd_pdu(sc, IWM_ADD_STA_KEY0x17, IWM_CMD_ASYNC, sizeof(cmd), &cmd); |
| 9227 | } |
| 9228 | |
| 9229 | void |
| 9230 | iwm_calib_timeout(void *arg) |
| 9231 | { |
| 9232 | struct iwm_softc *sc = arg; |
| 9233 | struct ieee80211com *ic = &sc->sc_ic; |
| 9234 | struct iwm_node *in = (void *)ic->ic_bss; |
| 9235 | struct ieee80211_node *ni = &in->in_ni; |
| 9236 | int s; |
| 9237 | |
| 9238 | s = splnet()splraise(0x4); |
| 9239 | if ((ic->ic_fixed_rate == -1 || ic->ic_fixed_mcs == -1) && |
| 9240 | (ni->ni_flags & IEEE80211_NODE_HT0x0400) == 0 && |
| 9241 | ic->ic_opmode == IEEE80211_M_STA && ic->ic_bss) { |
| 9242 | int old_txrate = ni->ni_txrate; |
| 9243 | ieee80211_amrr_choose(&sc->sc_amrr, &in->in_ni, &in->in_amn); |
| 9244 | /* |
| 9245 | * If AMRR has chosen a new TX rate we must update |
| 9246 | * the firwmare's LQ rate table. |
| 9247 | * ni_txrate may change again before the task runs so |
| 9248 | * cache the chosen rate in the iwm_node structure. |
| 9249 | */ |
| 9250 | if (ni->ni_txrate != old_txrate) |
| 9251 | iwm_setrates(in, 1); |
| 9252 | } |
| 9253 | |
| 9254 | splx(s)spllower(s); |
| 9255 | |
| 9256 | timeout_add_msec(&sc->sc_calib_to, 500); |
| 9257 | } |
| 9258 | |
| 9259 | void |
| 9260 | iwm_set_rate_table_vht(struct iwm_node *in, struct iwm_lq_cmd *lqcmd) |
| 9261 | { |
| 9262 | struct ieee80211_node *ni = &in->in_ni; |
| 9263 | struct ieee80211com *ic = ni->ni_ic; |
| 9264 | struct iwm_softc *sc = IC2IFP(ic)(&(ic)->ic_ac.ac_if)->if_softc; |
| 9265 | int ridx_min = iwm_rval2ridx(ieee80211_min_basic_rate(ic)); |
| 9266 | int i, tab, txmcs; |
| 9267 | |
| 9268 | /* |
| 9269 | * Fill the LQ rate selection table with VHT rates in descending |
| 9270 | * order, i.e. with the node's current TX rate first. Keep reducing |
| 9271 | * channel width during later Tx attempts, and eventually fall back |
| 9272 | * to legacy OFDM. Do not mix SISO and MIMO rates. |
| 9273 | */ |
| 9274 | lqcmd->mimo_delim = 0; |
| 9275 | txmcs = ni->ni_txmcs; |
| 9276 | for (i = 0; i < nitems(lqcmd->rs_table)(sizeof((lqcmd->rs_table)) / sizeof((lqcmd->rs_table)[0 ])); i++) { |
| 9277 | if (txmcs >= 0) { |
| 9278 | tab = IWM_RATE_MCS_VHT_MSK(1 << 26); |
| 9279 | tab |= txmcs & IWM_RATE_VHT_MCS_RATE_CODE_MSK0xf; |
| 9280 | tab |= ((ni->ni_vht_ss - 1) << |
| 9281 | IWM_RATE_VHT_MCS_NSS_POS4) & |
| 9282 | IWM_RATE_VHT_MCS_NSS_MSK(3 << 4); |
| 9283 | if (ni->ni_vht_ss > 1) |
| 9284 | tab |= IWM_RATE_MCS_ANT_AB_MSK((1 << 14) | (2 << 14)); |
| 9285 | else |
| 9286 | tab |= iwm_valid_siso_ant_rate_mask(sc); |
| 9287 | |
| 9288 | /* |
| 9289 | * First two Tx attempts may use 80MHz/40MHz/SGI. |
| 9290 | * Next two Tx attempts may use 40MHz/SGI. |
| 9291 | * Beyond that use 20 MHz and decrease the rate. |
| 9292 | * As a special case, MCS 9 is invalid on 20 Mhz. |
| 9293 | */ |
| 9294 | if (txmcs == 9) { |
| 9295 | if (i < 2 && in->in_phyctxt->vht_chan_width >= |
| 9296 | IEEE80211_VHTOP0_CHAN_WIDTH_801) |
| 9297 | tab |= IWM_RATE_MCS_CHAN_WIDTH_80(2 << 11); |
| 9298 | else if (in->in_phyctxt->sco == |
| 9299 | IEEE80211_HTOP0_SCO_SCA1 || |
| 9300 | in->in_phyctxt->sco == |
| 9301 | IEEE80211_HTOP0_SCO_SCB3) |
| 9302 | tab |= IWM_RATE_MCS_CHAN_WIDTH_40(1 << 11); |
| 9303 | else { |
| 9304 | /* no 40 MHz, fall back on MCS 8 */ |
| 9305 | tab &= ~IWM_RATE_VHT_MCS_RATE_CODE_MSK0xf; |
| 9306 | tab |= 8; |
| 9307 | } |
| 9308 | |
| 9309 | tab |= IWM_RATE_MCS_RTS_REQUIRED_MSK(1 << 30); |
| 9310 | if (i < 4) { |
| 9311 | if (ieee80211_ra_vht_use_sgi(ni)) |
| 9312 | tab |= IWM_RATE_MCS_SGI_MSK(1 << 13); |
| 9313 | } else |
| 9314 | txmcs--; |
| 9315 | } else if (i < 2 && in->in_phyctxt->vht_chan_width >= |
| 9316 | IEEE80211_VHTOP0_CHAN_WIDTH_801) { |
| 9317 | tab |= IWM_RATE_MCS_CHAN_WIDTH_80(2 << 11); |
| 9318 | tab |= IWM_RATE_MCS_RTS_REQUIRED_MSK(1 << 30); |
| 9319 | if (ieee80211_ra_vht_use_sgi(ni)) |
| 9320 | tab |= IWM_RATE_MCS_SGI_MSK(1 << 13); |
| 9321 | } else if (i < 4 && |
| 9322 | in->in_phyctxt->vht_chan_width >= |
| 9323 | IEEE80211_VHTOP0_CHAN_WIDTH_HT0 && |
| 9324 | (in->in_phyctxt->sco == IEEE80211_HTOP0_SCO_SCA1 || |
| 9325 | in->in_phyctxt->sco == IEEE80211_HTOP0_SCO_SCB3)) { |
| 9326 | tab |= IWM_RATE_MCS_CHAN_WIDTH_40(1 << 11); |
| 9327 | tab |= IWM_RATE_MCS_RTS_REQUIRED_MSK(1 << 30); |
| 9328 | if (ieee80211_ra_vht_use_sgi(ni)) |
| 9329 | tab |= IWM_RATE_MCS_SGI_MSK(1 << 13); |
| 9330 | } else if (txmcs >= 0) |
| 9331 | txmcs--; |
| 9332 | } else { |
| 9333 | /* Fill the rest with the lowest possible rate. */ |
| 9334 | tab = iwm_rates[ridx_min].plcp; |
| 9335 | tab |= iwm_valid_siso_ant_rate_mask(sc); |
| 9336 | if (ni->ni_vht_ss > 1 && lqcmd->mimo_delim == 0) |
| 9337 | lqcmd->mimo_delim = i; |
| 9338 | } |
| 9339 | |
| 9340 | lqcmd->rs_table[i] = htole32(tab)((__uint32_t)(tab)); |
| 9341 | } |
| 9342 | } |
| 9343 | |
| 9344 | void |
| 9345 | iwm_set_rate_table(struct iwm_node *in, struct iwm_lq_cmd *lqcmd) |
| 9346 | { |
| 9347 | struct ieee80211_node *ni = &in->in_ni; |
| 9348 | struct ieee80211com *ic = ni->ni_ic; |
| 9349 | struct iwm_softc *sc = IC2IFP(ic)(&(ic)->ic_ac.ac_if)->if_softc; |
| 9350 | struct ieee80211_rateset *rs = &ni->ni_rates; |
| 9351 | int i, ridx, ridx_min, ridx_max, j, mimo, tab = 0; |
| 9352 | |
| 9353 | /* |
| 9354 | * Fill the LQ rate selection table with legacy and/or HT rates |
| 9355 | * in descending order, i.e. with the node's current TX rate first. |
| 9356 | * In cases where throughput of an HT rate corresponds to a legacy |
| 9357 | * rate it makes no sense to add both. We rely on the fact that |
| 9358 | * iwm_rates is laid out such that equivalent HT/legacy rates share |
| 9359 | * the same IWM_RATE_*_INDEX value. Also, rates not applicable to |
| 9360 | * legacy/HT are assumed to be marked with an 'invalid' PLCP value. |
| 9361 | */ |
| 9362 | j = 0; |
| 9363 | ridx_min = iwm_rval2ridx(ieee80211_min_basic_rate(ic)); |
| 9364 | mimo = iwm_is_mimo_ht_mcs(ni->ni_txmcs); |
| 9365 | ridx_max = (mimo ? IWM_RIDX_MAX((sizeof((iwm_rates)) / sizeof((iwm_rates)[0]))-1) : IWM_LAST_HT_SISO_RATE); |
| 9366 | for (ridx = ridx_max; ridx >= ridx_min; ridx--) { |
| 9367 | uint8_t plcp = iwm_rates[ridx].plcp; |
| 9368 | uint8_t ht_plcp = iwm_rates[ridx].ht_plcp; |
| 9369 | |
| 9370 | if (j >= nitems(lqcmd->rs_table)(sizeof((lqcmd->rs_table)) / sizeof((lqcmd->rs_table)[0 ]))) |
| 9371 | break; |
| 9372 | tab = 0; |
| 9373 | if (ni->ni_flags & IEEE80211_NODE_HT0x0400) { |
| 9374 | if (ht_plcp == IWM_RATE_HT_SISO_MCS_INV_PLCP0x20) |
| 9375 | continue; |
| 9376 | /* Do not mix SISO and MIMO HT rates. */ |
| 9377 | if ((mimo && !iwm_is_mimo_ht_plcp(ht_plcp)) || |
| 9378 | (!mimo && iwm_is_mimo_ht_plcp(ht_plcp))) |
| 9379 | continue; |
| 9380 | for (i = ni->ni_txmcs; i >= 0; i--) { |
| 9381 | if (isclr(ni->ni_rxmcs, i)(((ni->ni_rxmcs)[(i)>>3] & (1<<((i)&(8 -1)))) == 0)) |
| 9382 | continue; |
| 9383 | if (ridx != iwm_ht_mcs2ridx[i]) |
| 9384 | continue; |
| 9385 | tab = ht_plcp; |
| 9386 | tab |= IWM_RATE_MCS_HT_MSK(1 << 8); |
| 9387 | /* First two Tx attempts may use 40MHz/SGI. */ |
| 9388 | if (j > 1) |
| 9389 | break; |
| 9390 | if (in->in_phyctxt->sco == |
| 9391 | IEEE80211_HTOP0_SCO_SCA1 || |
| 9392 | in->in_phyctxt->sco == |
| 9393 | IEEE80211_HTOP0_SCO_SCB3) { |
| 9394 | tab |= IWM_RATE_MCS_CHAN_WIDTH_40(1 << 11); |
| 9395 | tab |= IWM_RATE_MCS_RTS_REQUIRED_MSK(1 << 30); |
| 9396 | } |
| 9397 | if (ieee80211_ra_use_ht_sgi(ni)) |
| 9398 | tab |= IWM_RATE_MCS_SGI_MSK(1 << 13); |
| 9399 | break; |
| 9400 | } |
| 9401 | } else if (plcp != IWM_RATE_INVM_PLCP0xff) { |
| 9402 | for (i = ni->ni_txrate; i >= 0; i--) { |
| 9403 | if (iwm_rates[ridx].rate == (rs->rs_rates[i] & |
| 9404 | IEEE80211_RATE_VAL0x7f)) { |
| 9405 | tab = plcp; |
| 9406 | break; |
| 9407 | } |
| 9408 | } |
| 9409 | } |
| 9410 | |
| 9411 | if (tab == 0) |
| 9412 | continue; |
| 9413 | |
| 9414 | if (iwm_is_mimo_ht_plcp(ht_plcp)) |
| 9415 | tab |= IWM_RATE_MCS_ANT_AB_MSK((1 << 14) | (2 << 14)); |
| 9416 | else |
| 9417 | tab |= iwm_valid_siso_ant_rate_mask(sc); |
| 9418 | |
| 9419 | if (IWM_RIDX_IS_CCK(ridx)((ridx) < 4)) |
| 9420 | tab |= IWM_RATE_MCS_CCK_MSK(1 << 9); |
| 9421 | lqcmd->rs_table[j++] = htole32(tab)((__uint32_t)(tab)); |
| 9422 | } |
| 9423 | |
| 9424 | lqcmd->mimo_delim = (mimo ? j : 0); |
| 9425 | |
| 9426 | /* Fill the rest with the lowest possible rate */ |
| 9427 | while (j < nitems(lqcmd->rs_table)(sizeof((lqcmd->rs_table)) / sizeof((lqcmd->rs_table)[0 ]))) { |
| 9428 | tab = iwm_rates[ridx_min].plcp; |
| 9429 | if (IWM_RIDX_IS_CCK(ridx_min)((ridx_min) < 4)) |
| 9430 | tab |= IWM_RATE_MCS_CCK_MSK(1 << 9); |
| 9431 | tab |= iwm_valid_siso_ant_rate_mask(sc); |
| 9432 | lqcmd->rs_table[j++] = htole32(tab)((__uint32_t)(tab)); |
| 9433 | } |
| 9434 | } |
| 9435 | |
| 9436 | void |
| 9437 | iwm_setrates(struct iwm_node *in, int async) |
| 9438 | { |
| 9439 | struct ieee80211_node *ni = &in->in_ni; |
| 9440 | struct ieee80211com *ic = ni->ni_ic; |
| 9441 | struct iwm_softc *sc = IC2IFP(ic)(&(ic)->ic_ac.ac_if)->if_softc; |
| 9442 | struct iwm_lq_cmd lqcmd; |
| 9443 | struct iwm_host_cmd cmd = { |
| 9444 | .id = IWM_LQ_CMD0x4e, |
| 9445 | .len = { sizeof(lqcmd), }, |
| 9446 | }; |
| 9447 | |
| 9448 | cmd.flags = async ? IWM_CMD_ASYNC : 0; |
| 9449 | |
| 9450 | memset(&lqcmd, 0, sizeof(lqcmd))__builtin_memset((&lqcmd), (0), (sizeof(lqcmd))); |
| 9451 | lqcmd.sta_id = IWM_STATION_ID0; |
| 9452 | |
| 9453 | if (ic->ic_flags & IEEE80211_F_USEPROT0x00100000) |
| 9454 | lqcmd.flags |= IWM_LQ_FLAG_USE_RTS_MSK(1 << 0); |
| 9455 | |
| 9456 | if (ni->ni_flags & IEEE80211_NODE_VHT0x10000) |
| 9457 | iwm_set_rate_table_vht(in, &lqcmd); |
| 9458 | else |
| 9459 | iwm_set_rate_table(in, &lqcmd); |
| 9460 | |
| 9461 | if (sc->sc_device_family == IWM_DEVICE_FAMILY_90003 && |
| 9462 | (iwm_fw_valid_tx_ant(sc) & IWM_ANT_B(1 << 1))) |
| 9463 | lqcmd.single_stream_ant_msk = IWM_ANT_B(1 << 1); |
| 9464 | else |
| 9465 | lqcmd.single_stream_ant_msk = IWM_ANT_A(1 << 0); |
| 9466 | lqcmd.dual_stream_ant_msk = IWM_ANT_AB((1 << 0) | (1 << 1)); |
| 9467 | |
| 9468 | lqcmd.agg_time_limit = htole16(4000)((__uint16_t)(4000)); /* 4ms */ |
| 9469 | lqcmd.agg_disable_start_th = 3; |
| 9470 | lqcmd.agg_frame_cnt_limit = 0x3f; |
| 9471 | |
| 9472 | cmd.data[0] = &lqcmd; |
| 9473 | iwm_send_cmd(sc, &cmd); |
| 9474 | } |
| 9475 | |
| 9476 | int |
| 9477 | iwm_media_change(struct ifnet *ifp) |
| 9478 | { |
| 9479 | struct iwm_softc *sc = ifp->if_softc; |
| 9480 | struct ieee80211com *ic = &sc->sc_ic; |
| 9481 | uint8_t rate, ridx; |
| 9482 | int err; |
| 9483 | |
| 9484 | err = ieee80211_media_change(ifp); |
| 9485 | if (err != ENETRESET52) |
| 9486 | return err; |
| 9487 | |
| 9488 | if (ic->ic_fixed_mcs != -1) |
| 9489 | sc->sc_fixed_ridx = iwm_ht_mcs2ridx[ic->ic_fixed_mcs]; |
| 9490 | else if (ic->ic_fixed_rate != -1) { |
| 9491 | rate = ic->ic_sup_rates[ic->ic_curmode]. |
| 9492 | rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL0x7f; |
| 9493 | /* Map 802.11 rate to HW rate index. */ |
| 9494 | for (ridx = 0; ridx <= IWM_RIDX_MAX((sizeof((iwm_rates)) / sizeof((iwm_rates)[0]))-1); ridx++) |
| 9495 | if (iwm_rates[ridx].rate == rate) |
| 9496 | break; |
| 9497 | sc->sc_fixed_ridx = ridx; |
| 9498 | } |
| 9499 | |
| 9500 | if ((ifp->if_flags & (IFF_UP0x1 | IFF_RUNNING0x40)) == |
| 9501 | (IFF_UP0x1 | IFF_RUNNING0x40)) { |
| 9502 | iwm_stop(ifp); |
| 9503 | err = iwm_init(ifp); |
| 9504 | } |
| 9505 | return err; |
| 9506 | } |
| 9507 | |
| 9508 | void |
| 9509 | iwm_newstate_task(void *psc) |
| 9510 | { |
| 9511 | struct iwm_softc *sc = (struct iwm_softc *)psc; |
| 9512 | struct ieee80211com *ic = &sc->sc_ic; |
| 9513 | enum ieee80211_state nstate = sc->ns_nstate; |
| 9514 | enum ieee80211_state ostate = ic->ic_state; |
| 9515 | int arg = sc->ns_arg; |
| 9516 | int err = 0, s = splnet()splraise(0x4); |
| 9517 | |
| 9518 | if (sc->sc_flags & IWM_FLAG_SHUTDOWN0x100) { |
| 9519 | /* iwm_stop() is waiting for us. */ |
| 9520 | refcnt_rele_wake(&sc->task_refs); |
| 9521 | splx(s)spllower(s); |
| 9522 | return; |
| 9523 | } |
| 9524 | |
| 9525 | if (ostate == IEEE80211_S_SCAN) { |
| 9526 | if (nstate == ostate) { |
| 9527 | if (sc->sc_flags & IWM_FLAG_SCANNING0x04) { |
| 9528 | refcnt_rele_wake(&sc->task_refs); |
| 9529 | splx(s)spllower(s); |
| 9530 | return; |
| 9531 | } |
| 9532 | /* Firmware is no longer scanning. Do another scan. */ |
| 9533 | goto next_scan; |
| 9534 | } else |
| 9535 | iwm_led_blink_stop(sc); |
| 9536 | } |
| 9537 | |
| 9538 | if (nstate <= ostate) { |
| 9539 | switch (ostate) { |
| 9540 | case IEEE80211_S_RUN: |
| 9541 | err = iwm_run_stop(sc); |
| 9542 | if (err) |
| 9543 | goto out; |
| 9544 | /* FALLTHROUGH */ |
| 9545 | case IEEE80211_S_ASSOC: |
| 9546 | case IEEE80211_S_AUTH: |
| 9547 | if (nstate <= IEEE80211_S_AUTH) { |
| 9548 | err = iwm_deauth(sc); |
| 9549 | if (err) |
| 9550 | goto out; |
| 9551 | } |
| 9552 | /* FALLTHROUGH */ |
| 9553 | case IEEE80211_S_SCAN: |
| 9554 | case IEEE80211_S_INIT: |
| 9555 | break; |
| 9556 | } |
| 9557 | |
| 9558 | /* Die now if iwm_stop() was called while we were sleeping. */ |
| 9559 | if (sc->sc_flags & IWM_FLAG_SHUTDOWN0x100) { |
| 9560 | refcnt_rele_wake(&sc->task_refs); |
| 9561 | splx(s)spllower(s); |
| 9562 | return; |
| 9563 | } |
| 9564 | } |
| 9565 | |
| 9566 | switch (nstate) { |
| 9567 | case IEEE80211_S_INIT: |
| 9568 | break; |
| 9569 | |
| 9570 | case IEEE80211_S_SCAN: |
| 9571 | next_scan: |
| 9572 | err = iwm_scan(sc); |
| 9573 | if (err) |
| 9574 | break; |
| 9575 | refcnt_rele_wake(&sc->task_refs); |
| 9576 | splx(s)spllower(s); |
| 9577 | return; |
| 9578 | |
| 9579 | case IEEE80211_S_AUTH: |
| 9580 | err = iwm_auth(sc); |
| 9581 | break; |
| 9582 | |
| 9583 | case IEEE80211_S_ASSOC: |
| 9584 | break; |
| 9585 | |
| 9586 | case IEEE80211_S_RUN: |
| 9587 | err = iwm_run(sc); |
| 9588 | break; |
| 9589 | } |
| 9590 | |
| 9591 | out: |
| 9592 | if ((sc->sc_flags & IWM_FLAG_SHUTDOWN0x100) == 0) { |
| 9593 | if (err) |
| 9594 | task_add(systq, &sc->init_task); |
| 9595 | else |
| 9596 | sc->sc_newstate(ic, nstate, arg); |
| 9597 | } |
| 9598 | refcnt_rele_wake(&sc->task_refs); |
| 9599 | splx(s)spllower(s); |
| 9600 | } |
| 9601 | |
| 9602 | int |
| 9603 | iwm_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) |
| 9604 | { |
| 9605 | struct ifnet *ifp = IC2IFP(ic)(&(ic)->ic_ac.ac_if); |
| 9606 | struct iwm_softc *sc = ifp->if_softc; |
| 9607 | |
| 9608 | /* |
| 9609 | * Prevent attempts to transition towards the same state, unless |
| 9610 | * we are scanning in which case a SCAN -> SCAN transition |
| 9611 | * triggers another scan iteration. And AUTH -> AUTH is needed |
| 9612 | * to support band-steering. |
| 9613 | */ |
| 9614 | if (sc->ns_nstate == nstate && nstate != IEEE80211_S_SCAN && |
| 9615 | nstate != IEEE80211_S_AUTH) |
| 9616 | return 0; |
| 9617 | |
| 9618 | if (ic->ic_state == IEEE80211_S_RUN) { |
| 9619 | timeout_del(&sc->sc_calib_to); |
| 9620 | iwm_del_task(sc, systq, &sc->ba_task); |
| 9621 | iwm_del_task(sc, systq, &sc->mac_ctxt_task); |
| 9622 | iwm_del_task(sc, systq, &sc->phy_ctxt_task); |
| 9623 | iwm_del_task(sc, systq, &sc->bgscan_done_task); |
| 9624 | } |
| 9625 | |
| 9626 | sc->ns_nstate = nstate; |
| 9627 | sc->ns_arg = arg; |
| 9628 | |
| 9629 | iwm_add_task(sc, sc->sc_nswq, &sc->newstate_task); |
| 9630 | |
| 9631 | return 0; |
| 9632 | } |
| 9633 | |
| 9634 | void |
| 9635 | iwm_endscan(struct iwm_softc *sc) |
| 9636 | { |
| 9637 | struct ieee80211com *ic = &sc->sc_ic; |
| 9638 | |
| 9639 | if ((sc->sc_flags & (IWM_FLAG_SCANNING0x04 | IWM_FLAG_BGSCAN0x200)) == 0) |
| 9640 | return; |
| 9641 | |
| 9642 | sc->sc_flags &= ~(IWM_FLAG_SCANNING0x04 | IWM_FLAG_BGSCAN0x200); |
| 9643 | ieee80211_end_scan(&ic->ic_ific_ac.ac_if); |
| 9644 | } |
| 9645 | |
| 9646 | /* |
| 9647 | * Aging and idle timeouts for the different possible scenarios |
| 9648 | * in default configuration |
| 9649 | */ |
| 9650 | static const uint32_t |
| 9651 | iwm_sf_full_timeout_def[IWM_SF_NUM_SCENARIO5][IWM_SF_NUM_TIMEOUT_TYPES2] = { |
| 9652 | { |
| 9653 | htole32(IWM_SF_SINGLE_UNICAST_AGING_TIMER_DEF)((__uint32_t)(400)), |
| 9654 | htole32(IWM_SF_SINGLE_UNICAST_IDLE_TIMER_DEF)((__uint32_t)(160)) |
| 9655 | }, |
| 9656 | { |
| 9657 | htole32(IWM_SF_AGG_UNICAST_AGING_TIMER_DEF)((__uint32_t)(400)), |
| 9658 | htole32(IWM_SF_AGG_UNICAST_IDLE_TIMER_DEF)((__uint32_t)(160)) |
| 9659 | }, |
| 9660 | { |
| 9661 | htole32(IWM_SF_MCAST_AGING_TIMER_DEF)((__uint32_t)(400)), |
| 9662 | htole32(IWM_SF_MCAST_IDLE_TIMER_DEF)((__uint32_t)(160)) |
| 9663 | }, |
| 9664 | { |
| 9665 | htole32(IWM_SF_BA_AGING_TIMER_DEF)((__uint32_t)(400)), |
| 9666 | htole32(IWM_SF_BA_IDLE_TIMER_DEF)((__uint32_t)(160)) |
| 9667 | }, |
| 9668 | { |
| 9669 | htole32(IWM_SF_TX_RE_AGING_TIMER_DEF)((__uint32_t)(400)), |
| 9670 | htole32(IWM_SF_TX_RE_IDLE_TIMER_DEF)((__uint32_t)(160)) |
| 9671 | }, |
| 9672 | }; |
| 9673 | |
| 9674 | /* |
| 9675 | * Aging and idle timeouts for the different possible scenarios |
| 9676 | * in single BSS MAC configuration. |
| 9677 | */ |
| 9678 | static const uint32_t |
| 9679 | iwm_sf_full_timeout[IWM_SF_NUM_SCENARIO5][IWM_SF_NUM_TIMEOUT_TYPES2] = { |
| 9680 | { |
| 9681 | htole32(IWM_SF_SINGLE_UNICAST_AGING_TIMER)((__uint32_t)(2016)), |
| 9682 | htole32(IWM_SF_SINGLE_UNICAST_IDLE_TIMER)((__uint32_t)(320)) |
| 9683 | }, |
| 9684 | { |
| 9685 | htole32(IWM_SF_AGG_UNICAST_AGING_TIMER)((__uint32_t)(2016)), |
| 9686 | htole32(IWM_SF_AGG_UNICAST_IDLE_TIMER)((__uint32_t)(320)) |
| 9687 | }, |
| 9688 | { |
| 9689 | htole32(IWM_SF_MCAST_AGING_TIMER)((__uint32_t)(10016)), |
| 9690 | htole32(IWM_SF_MCAST_IDLE_TIMER)((__uint32_t)(2016)) |
| 9691 | }, |
| 9692 | { |
| 9693 | htole32(IWM_SF_BA_AGING_TIMER)((__uint32_t)(2016)), |
| 9694 | htole32(IWM_SF_BA_IDLE_TIMER)((__uint32_t)(320)) |
| 9695 | }, |
| 9696 | { |
| 9697 | htole32(IWM_SF_TX_RE_AGING_TIMER)((__uint32_t)(2016)), |
| 9698 | htole32(IWM_SF_TX_RE_IDLE_TIMER)((__uint32_t)(320)) |
| 9699 | }, |
| 9700 | }; |
| 9701 | |
| 9702 | void |
| 9703 | iwm_fill_sf_command(struct iwm_softc *sc, struct iwm_sf_cfg_cmd *sf_cmd, |
| 9704 | struct ieee80211_node *ni) |
| 9705 | { |
| 9706 | int i, j, watermark; |
| 9707 | |
| 9708 | sf_cmd->watermark[IWM_SF_LONG_DELAY_ON0] = htole32(IWM_SF_W_MARK_SCAN)((__uint32_t)(4096)); |
| 9709 | |
| 9710 | /* |
| 9711 | * If we are in association flow - check antenna configuration |
| 9712 | * capabilities of the AP station, and choose the watermark accordingly. |
| 9713 | */ |
| 9714 | if (ni) { |
| 9715 | if (ni->ni_flags & IEEE80211_NODE_HT0x0400) { |
| 9716 | if (ni->ni_rxmcs[1] != 0) |
| 9717 | watermark = IWM_SF_W_MARK_MIMO28192; |
| 9718 | else |
| 9719 | watermark = IWM_SF_W_MARK_SISO4096; |
| 9720 | } else { |
| 9721 | watermark = IWM_SF_W_MARK_LEGACY4096; |
| 9722 | } |
| 9723 | /* default watermark value for unassociated mode. */ |
| 9724 | } else { |
| 9725 | watermark = IWM_SF_W_MARK_MIMO28192; |
| 9726 | } |
| 9727 | sf_cmd->watermark[IWM_SF_FULL_ON1] = htole32(watermark)((__uint32_t)(watermark)); |
| 9728 | |
| 9729 | for (i = 0; i < IWM_SF_NUM_SCENARIO5; i++) { |
| 9730 | for (j = 0; j < IWM_SF_NUM_TIMEOUT_TYPES2; j++) { |
| 9731 | sf_cmd->long_delay_timeouts[i][j] = |
| 9732 | htole32(IWM_SF_LONG_DELAY_AGING_TIMER)((__uint32_t)(1000000)); |
| 9733 | } |
| 9734 | } |
| 9735 | |
| 9736 | if (ni) { |
| 9737 | memcpy(sf_cmd->full_on_timeouts, iwm_sf_full_timeout,__builtin_memcpy((sf_cmd->full_on_timeouts), (iwm_sf_full_timeout ), (sizeof(iwm_sf_full_timeout))) |
| 9738 | sizeof(iwm_sf_full_timeout))__builtin_memcpy((sf_cmd->full_on_timeouts), (iwm_sf_full_timeout ), (sizeof(iwm_sf_full_timeout))); |
| 9739 | } else { |
| 9740 | memcpy(sf_cmd->full_on_timeouts, iwm_sf_full_timeout_def,__builtin_memcpy((sf_cmd->full_on_timeouts), (iwm_sf_full_timeout_def ), (sizeof(iwm_sf_full_timeout_def))) |
| 9741 | sizeof(iwm_sf_full_timeout_def))__builtin_memcpy((sf_cmd->full_on_timeouts), (iwm_sf_full_timeout_def ), (sizeof(iwm_sf_full_timeout_def))); |
| 9742 | } |
| 9743 | |
| 9744 | } |
| 9745 | |
| 9746 | int |
| 9747 | iwm_sf_config(struct iwm_softc *sc, int new_state) |
| 9748 | { |
| 9749 | struct ieee80211com *ic = &sc->sc_ic; |
| 9750 | struct iwm_sf_cfg_cmd sf_cmd = { |
| 9751 | .state = htole32(new_state)((__uint32_t)(new_state)), |
| 9752 | }; |
| 9753 | int err = 0; |
| 9754 | |
| 9755 | #if 0 /* only used for models with sdio interface, in iwlwifi */ |
| 9756 | if (sc->sc_device_family == IWM_DEVICE_FAMILY_80002) |
| 9757 | sf_cmd.state |= htole32(IWM_SF_CFG_DUMMY_NOTIF_OFF)((__uint32_t)((1 << 16))); |
| 9758 | #endif |
| 9759 | |
| 9760 | switch (new_state) { |
| 9761 | case IWM_SF_UNINIT2: |
| 9762 | case IWM_SF_INIT_OFF3: |
| 9763 | iwm_fill_sf_command(sc, &sf_cmd, NULL((void *)0)); |
| 9764 | break; |
| 9765 | case IWM_SF_FULL_ON1: |
| 9766 | iwm_fill_sf_command(sc, &sf_cmd, ic->ic_bss); |
| 9767 | break; |
| 9768 | default: |
| 9769 | return EINVAL22; |
| 9770 | } |
| 9771 | |
| 9772 | err = iwm_send_cmd_pdu(sc, IWM_REPLY_SF_CFG_CMD0xd1, IWM_CMD_ASYNC, |
| 9773 | sizeof(sf_cmd), &sf_cmd); |
| 9774 | return err; |
| 9775 | } |
| 9776 | |
| 9777 | int |
| 9778 | iwm_send_bt_init_conf(struct iwm_softc *sc) |
| 9779 | { |
| 9780 | struct iwm_bt_coex_cmd bt_cmd; |
| 9781 | |
| 9782 | bt_cmd.mode = htole32(IWM_BT_COEX_WIFI)((__uint32_t)(0x3)); |
| 9783 | bt_cmd.enabled_modules = htole32(IWM_BT_COEX_HIGH_BAND_RET)((__uint32_t)((1 << 4))); |
| 9784 | |
| 9785 | return iwm_send_cmd_pdu(sc, IWM_BT_CONFIG0x9b, 0, sizeof(bt_cmd), |
| 9786 | &bt_cmd); |
| 9787 | } |
| 9788 | |
| 9789 | int |
| 9790 | iwm_send_soc_conf(struct iwm_softc *sc) |
| 9791 | { |
| 9792 | struct iwm_soc_configuration_cmd cmd; |
| 9793 | int err; |
| 9794 | uint32_t cmd_id, flags = 0; |
| 9795 | |
| 9796 | memset(&cmd, 0, sizeof(cmd))__builtin_memset((&cmd), (0), (sizeof(cmd))); |
| 9797 | |
| 9798 | /* |
| 9799 | * In VER_1 of this command, the discrete value is considered |
| 9800 | * an integer; In VER_2, it's a bitmask. Since we have only 2 |
| 9801 | * values in VER_1, this is backwards-compatible with VER_2, |
| 9802 | * as long as we don't set any other flag bits. |
| 9803 | */ |
| 9804 | if (!sc->sc_integrated) { /* VER_1 */ |
| 9805 | flags = IWM_SOC_CONFIG_CMD_FLAGS_DISCRETE(1 << 0); |
| 9806 | } else { /* VER_2 */ |
| 9807 | uint8_t scan_cmd_ver; |
| 9808 | if (sc->sc_ltr_delay != IWM_SOC_FLAGS_LTR_APPLY_DELAY_NONE0) |
| 9809 | flags |= (sc->sc_ltr_delay & |
| 9810 | IWM_SOC_FLAGS_LTR_APPLY_DELAY_MASK0xc); |
| 9811 | scan_cmd_ver = iwm_lookup_cmd_ver(sc, IWM_LONG_GROUP0x1, |
| 9812 | IWM_SCAN_REQ_UMAC0xd); |
| 9813 | if (scan_cmd_ver != IWM_FW_CMD_VER_UNKNOWN99 && |
| 9814 | scan_cmd_ver >= 2 && sc->sc_low_latency_xtal) |
| 9815 | flags |= IWM_SOC_CONFIG_CMD_FLAGS_LOW_LATENCY(1 << 1); |
| 9816 | } |
| 9817 | cmd.flags = htole32(flags)((__uint32_t)(flags)); |
| 9818 | |
| 9819 | cmd.latency = htole32(sc->sc_xtal_latency)((__uint32_t)(sc->sc_xtal_latency)); |
| 9820 | |
| 9821 | cmd_id = iwm_cmd_id(IWM_SOC_CONFIGURATION_CMD0x01, IWM_SYSTEM_GROUP0x2, 0); |
| 9822 | err = iwm_send_cmd_pdu(sc, cmd_id, 0, sizeof(cmd), &cmd); |
| 9823 | if (err) |
| 9824 | printf("%s: failed to set soc latency: %d\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), err); |
| 9825 | return err; |
| 9826 | } |
| 9827 | |
| 9828 | int |
| 9829 | iwm_send_update_mcc_cmd(struct iwm_softc *sc, const char *alpha2) |
| 9830 | { |
| 9831 | struct iwm_mcc_update_cmd mcc_cmd; |
| 9832 | struct iwm_host_cmd hcmd = { |
| 9833 | .id = IWM_MCC_UPDATE_CMD0xc8, |
| 9834 | .flags = IWM_CMD_WANT_RESP, |
| 9835 | .resp_pkt_len = IWM_CMD_RESP_MAX(1 << 12), |
| 9836 | .data = { &mcc_cmd }, |
| 9837 | }; |
| 9838 | struct iwm_rx_packet *pkt; |
| 9839 | size_t resp_len; |
| 9840 | int err; |
| 9841 | int resp_v3 = isset(sc->sc_enabled_capa,((sc->sc_enabled_capa)[(73)>>3] & (1<<((73 )&(8 -1)))) |
| 9842 | IWM_UCODE_TLV_CAPA_LAR_SUPPORT_V3)((sc->sc_enabled_capa)[(73)>>3] & (1<<((73 )&(8 -1)))); |
| 9843 | |
| 9844 | if (sc->sc_device_family == IWM_DEVICE_FAMILY_80002 && |
| 9845 | !sc->sc_nvm.lar_enabled) { |
| 9846 | return 0; |
| 9847 | } |
| 9848 | |
| 9849 | memset(&mcc_cmd, 0, sizeof(mcc_cmd))__builtin_memset((&mcc_cmd), (0), (sizeof(mcc_cmd))); |
| 9850 | mcc_cmd.mcc = htole16(alpha2[0] << 8 | alpha2[1])((__uint16_t)(alpha2[0] << 8 | alpha2[1])); |
| 9851 | if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_WIFI_MCC_UPDATE)((sc->sc_ucode_api)[(9)>>3] & (1<<((9)& (8 -1)))) || |
| 9852 | isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_LAR_MULTI_MCC)((sc->sc_enabled_capa)[(29)>>3] & (1<<((29 )&(8 -1))))) |
| 9853 | mcc_cmd.source_id = IWM_MCC_SOURCE_GET_CURRENT0x10; |
| 9854 | else |
| 9855 | mcc_cmd.source_id = IWM_MCC_SOURCE_OLD_FW0; |
| 9856 | |
| 9857 | if (resp_v3) { /* same size as resp_v2 */ |
| 9858 | hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd); |
| 9859 | } else { |
| 9860 | hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd_v1); |
| 9861 | } |
| 9862 | |
| 9863 | err = iwm_send_cmd(sc, &hcmd); |
| 9864 | if (err) |
| 9865 | return err; |
| 9866 | |
| 9867 | pkt = hcmd.resp_pkt; |
| 9868 | if (!pkt || (pkt->hdr.flags & IWM_CMD_FAILED_MSK0x40)) { |
| 9869 | err = EIO5; |
| 9870 | goto out; |
| 9871 | } |
| 9872 | |
| 9873 | if (resp_v3) { |
| 9874 | struct iwm_mcc_update_resp_v3 *resp; |
| 9875 | resp_len = iwm_rx_packet_payload_len(pkt); |
| 9876 | if (resp_len < sizeof(*resp)) { |
| 9877 | err = EIO5; |
| 9878 | goto out; |
| 9879 | } |
| 9880 | |
| 9881 | resp = (void *)pkt->data; |
| 9882 | if (resp_len != sizeof(*resp) + |
| 9883 | resp->n_channels * sizeof(resp->channels[0])) { |
| 9884 | err = EIO5; |
| 9885 | goto out; |
| 9886 | } |
| 9887 | } else { |
| 9888 | struct iwm_mcc_update_resp_v1 *resp_v1; |
| 9889 | resp_len = iwm_rx_packet_payload_len(pkt); |
| 9890 | if (resp_len < sizeof(*resp_v1)) { |
| 9891 | err = EIO5; |
| 9892 | goto out; |
| 9893 | } |
| 9894 | |
| 9895 | resp_v1 = (void *)pkt->data; |
| 9896 | if (resp_len != sizeof(*resp_v1) + |
| 9897 | resp_v1->n_channels * sizeof(resp_v1->channels[0])) { |
| 9898 | err = EIO5; |
| 9899 | goto out; |
| 9900 | } |
| 9901 | } |
| 9902 | out: |
| 9903 | iwm_free_resp(sc, &hcmd); |
| 9904 | return err; |
| 9905 | } |
| 9906 | |
| 9907 | int |
| 9908 | iwm_send_temp_report_ths_cmd(struct iwm_softc *sc) |
| 9909 | { |
| 9910 | struct iwm_temp_report_ths_cmd cmd; |
| 9911 | int err; |
| 9912 | |
| 9913 | /* |
| 9914 | * In order to give responsibility for critical-temperature-kill |
| 9915 | * and TX backoff to FW we need to send an empty temperature |
| 9916 | * reporting command at init time. |
| 9917 | */ |
| 9918 | memset(&cmd, 0, sizeof(cmd))__builtin_memset((&cmd), (0), (sizeof(cmd))); |
| 9919 | |
| 9920 | err = iwm_send_cmd_pdu(sc, |
| 9921 | IWM_WIDE_ID(IWM_PHY_OPS_GROUP, IWM_TEMP_REPORTING_THRESHOLDS_CMD)((0x4 << 8) | 0x04), |
| 9922 | 0, sizeof(cmd), &cmd); |
| 9923 | if (err) |
| 9924 | printf("%s: TEMP_REPORT_THS_CMD command failed (error %d)\n", |
| 9925 | DEVNAME(sc)((sc)->sc_dev.dv_xname), err); |
| 9926 | |
| 9927 | return err; |
| 9928 | } |
| 9929 | |
| 9930 | void |
| 9931 | iwm_tt_tx_backoff(struct iwm_softc *sc, uint32_t backoff) |
| 9932 | { |
| 9933 | struct iwm_host_cmd cmd = { |
| 9934 | .id = IWM_REPLY_THERMAL_MNG_BACKOFF0x7e, |
| 9935 | .len = { sizeof(uint32_t), }, |
| 9936 | .data = { &backoff, }, |
| 9937 | }; |
| 9938 | |
| 9939 | iwm_send_cmd(sc, &cmd); |
| 9940 | } |
| 9941 | |
| 9942 | void |
| 9943 | iwm_free_fw_paging(struct iwm_softc *sc) |
| 9944 | { |
| 9945 | int i; |
| 9946 | |
| 9947 | if (sc->fw_paging_db[0].fw_paging_block.vaddr == NULL((void *)0)) |
| 9948 | return; |
| 9949 | |
| 9950 | for (i = 0; i < IWM_NUM_OF_FW_PAGING_BLOCKS33; i++) { |
| 9951 | iwm_dma_contig_free(&sc->fw_paging_db[i].fw_paging_block); |
| 9952 | } |
| 9953 | |
| 9954 | memset(sc->fw_paging_db, 0, sizeof(sc->fw_paging_db))__builtin_memset((sc->fw_paging_db), (0), (sizeof(sc->fw_paging_db ))); |
| 9955 | } |
| 9956 | |
| 9957 | int |
| 9958 | iwm_fill_paging_mem(struct iwm_softc *sc, const struct iwm_fw_sects *image) |
| 9959 | { |
| 9960 | int sec_idx, idx; |
| 9961 | uint32_t offset = 0; |
| 9962 | |
| 9963 | /* |
| 9964 | * find where is the paging image start point: |
| 9965 | * if CPU2 exist and it's in paging format, then the image looks like: |
| 9966 | * CPU1 sections (2 or more) |
| 9967 | * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between CPU1 to CPU2 |
| 9968 | * CPU2 sections (not paged) |
| 9969 | * PAGING_SEPARATOR_SECTION delimiter - separate between CPU2 |
| 9970 | * non paged to CPU2 paging sec |
| 9971 | * CPU2 paging CSS |
| 9972 | * CPU2 paging image (including instruction and data) |
| 9973 | */ |
| 9974 | for (sec_idx = 0; sec_idx < IWM_UCODE_SECT_MAX16; sec_idx++) { |
| 9975 | if (image->fw_sect[sec_idx].fws_devoff == |
| 9976 | IWM_PAGING_SEPARATOR_SECTION0xAAAABBBB) { |
| 9977 | sec_idx++; |
| 9978 | break; |
| 9979 | } |
| 9980 | } |
| 9981 | |
| 9982 | /* |
| 9983 | * If paging is enabled there should be at least 2 more sections left |
| 9984 | * (one for CSS and one for Paging data) |
| 9985 | */ |
| 9986 | if (sec_idx >= nitems(image->fw_sect)(sizeof((image->fw_sect)) / sizeof((image->fw_sect)[0]) ) - 1) { |
| 9987 | printf("%s: Paging: Missing CSS and/or paging sections\n", |
| 9988 | DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 9989 | iwm_free_fw_paging(sc); |
| 9990 | return EINVAL22; |
| 9991 | } |
| 9992 | |
| 9993 | /* copy the CSS block to the dram */ |
| 9994 | DPRINTF(("%s: Paging: load paging CSS to FW, sec = %d\n",do { ; } while (0) |
| 9995 | DEVNAME(sc), sec_idx))do { ; } while (0); |
| 9996 | |
| 9997 | memcpy(sc->fw_paging_db[0].fw_paging_block.vaddr,__builtin_memcpy((sc->fw_paging_db[0].fw_paging_block.vaddr ), (image->fw_sect[sec_idx].fws_data), (sc->fw_paging_db [0].fw_paging_size)) |
| 9998 | image->fw_sect[sec_idx].fws_data,__builtin_memcpy((sc->fw_paging_db[0].fw_paging_block.vaddr ), (image->fw_sect[sec_idx].fws_data), (sc->fw_paging_db [0].fw_paging_size)) |
| 9999 | sc->fw_paging_db[0].fw_paging_size)__builtin_memcpy((sc->fw_paging_db[0].fw_paging_block.vaddr ), (image->fw_sect[sec_idx].fws_data), (sc->fw_paging_db [0].fw_paging_size)); |
| 10000 | |
| 10001 | DPRINTF(("%s: Paging: copied %d CSS bytes to first block\n",do { ; } while (0) |
| 10002 | DEVNAME(sc), sc->fw_paging_db[0].fw_paging_size))do { ; } while (0); |
| 10003 | |
| 10004 | sec_idx++; |
| 10005 | |
| 10006 | /* |
| 10007 | * copy the paging blocks to the dram |
| 10008 | * loop index start from 1 since that CSS block already copied to dram |
| 10009 | * and CSS index is 0. |
| 10010 | * loop stop at num_of_paging_blk since that last block is not full. |
| 10011 | */ |
| 10012 | for (idx = 1; idx < sc->num_of_paging_blk; idx++) { |
| 10013 | memcpy(sc->fw_paging_db[idx].fw_paging_block.vaddr,__builtin_memcpy((sc->fw_paging_db[idx].fw_paging_block.vaddr ), ((const char *)image->fw_sect[sec_idx].fws_data + offset ), (sc->fw_paging_db[idx].fw_paging_size)) |
| 10014 | (const char *)image->fw_sect[sec_idx].fws_data + offset,__builtin_memcpy((sc->fw_paging_db[idx].fw_paging_block.vaddr ), ((const char *)image->fw_sect[sec_idx].fws_data + offset ), (sc->fw_paging_db[idx].fw_paging_size)) |
| 10015 | sc->fw_paging_db[idx].fw_paging_size)__builtin_memcpy((sc->fw_paging_db[idx].fw_paging_block.vaddr ), ((const char *)image->fw_sect[sec_idx].fws_data + offset ), (sc->fw_paging_db[idx].fw_paging_size)); |
| 10016 | |
| 10017 | DPRINTF(("%s: Paging: copied %d paging bytes to block %d\n",do { ; } while (0) |
| 10018 | DEVNAME(sc), sc->fw_paging_db[idx].fw_paging_size, idx))do { ; } while (0); |
| 10019 | |
| 10020 | offset += sc->fw_paging_db[idx].fw_paging_size; |
| 10021 | } |
| 10022 | |
| 10023 | /* copy the last paging block */ |
| 10024 | if (sc->num_of_pages_in_last_blk > 0) { |
| 10025 | memcpy(sc->fw_paging_db[idx].fw_paging_block.vaddr,__builtin_memcpy((sc->fw_paging_db[idx].fw_paging_block.vaddr ), ((const char *)image->fw_sect[sec_idx].fws_data + offset ), ((1 << 12) * sc->num_of_pages_in_last_blk)) |
| 10026 | (const char *)image->fw_sect[sec_idx].fws_data + offset,__builtin_memcpy((sc->fw_paging_db[idx].fw_paging_block.vaddr ), ((const char *)image->fw_sect[sec_idx].fws_data + offset ), ((1 << 12) * sc->num_of_pages_in_last_blk)) |
| 10027 | IWM_FW_PAGING_SIZE * sc->num_of_pages_in_last_blk)__builtin_memcpy((sc->fw_paging_db[idx].fw_paging_block.vaddr ), ((const char *)image->fw_sect[sec_idx].fws_data + offset ), ((1 << 12) * sc->num_of_pages_in_last_blk)); |
| 10028 | |
| 10029 | DPRINTF(("%s: Paging: copied %d pages in the last block %d\n",do { ; } while (0) |
| 10030 | DEVNAME(sc), sc->num_of_pages_in_last_blk, idx))do { ; } while (0); |
| 10031 | } |
| 10032 | |
| 10033 | return 0; |
| 10034 | } |
| 10035 | |
| 10036 | int |
| 10037 | iwm_alloc_fw_paging_mem(struct iwm_softc *sc, const struct iwm_fw_sects *image) |
| 10038 | { |
| 10039 | int blk_idx = 0; |
| 10040 | int error, num_of_pages; |
| 10041 | |
| 10042 | if (sc->fw_paging_db[0].fw_paging_block.vaddr != NULL((void *)0)) { |
| 10043 | int i; |
| 10044 | /* Device got reset, and we setup firmware paging again */ |
| 10045 | bus_dmamap_sync(sc->sc_dmat,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> fw_paging_db[0].fw_paging_block.map), (0), ((1 << 12)), (0x08 | 0x02)) |
| 10046 | sc->fw_paging_db[0].fw_paging_block.map,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> fw_paging_db[0].fw_paging_block.map), (0), ((1 << 12)), (0x08 | 0x02)) |
| 10047 | 0, IWM_FW_PAGING_SIZE,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> fw_paging_db[0].fw_paging_block.map), (0), ((1 << 12)), (0x08 | 0x02)) |
| 10048 | BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> fw_paging_db[0].fw_paging_block.map), (0), ((1 << 12)), (0x08 | 0x02)); |
| 10049 | for (i = 1; i < sc->num_of_paging_blk + 1; i++) { |
| 10050 | bus_dmamap_sync(sc->sc_dmat,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> fw_paging_db[i].fw_paging_block.map), (0), (((1 << 3) * (1 << 12))), (0x08 | 0x02)) |
| 10051 | sc->fw_paging_db[i].fw_paging_block.map,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> fw_paging_db[i].fw_paging_block.map), (0), (((1 << 3) * (1 << 12))), (0x08 | 0x02)) |
| 10052 | 0, IWM_PAGING_BLOCK_SIZE,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> fw_paging_db[i].fw_paging_block.map), (0), (((1 << 3) * (1 << 12))), (0x08 | 0x02)) |
| 10053 | BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> fw_paging_db[i].fw_paging_block.map), (0), (((1 << 3) * (1 << 12))), (0x08 | 0x02)); |
| 10054 | } |
| 10055 | return 0; |
| 10056 | } |
| 10057 | |
| 10058 | /* ensure IWM_BLOCK_2_EXP_SIZE is power of 2 of IWM_PAGING_BLOCK_SIZE */ |
| 10059 | #if (1 << IWM_BLOCK_2_EXP_SIZE(12 + 3)) != IWM_PAGING_BLOCK_SIZE((1 << 3) * (1 << 12)) |
| 10060 | #error IWM_BLOCK_2_EXP_SIZE(12 + 3) must be power of 2 of IWM_PAGING_BLOCK_SIZE((1 << 3) * (1 << 12)) |
| 10061 | #endif |
| 10062 | |
| 10063 | num_of_pages = image->paging_mem_size / IWM_FW_PAGING_SIZE(1 << 12); |
| 10064 | sc->num_of_paging_blk = |
| 10065 | ((num_of_pages - 1) / IWM_NUM_OF_PAGE_PER_GROUP(1 << 3)) + 1; |
| 10066 | |
| 10067 | sc->num_of_pages_in_last_blk = |
| 10068 | num_of_pages - |
| 10069 | IWM_NUM_OF_PAGE_PER_GROUP(1 << 3) * (sc->num_of_paging_blk - 1); |
| 10070 | |
| 10071 | DPRINTF(("%s: Paging: allocating mem for %d paging blocks, each block"do { ; } while (0) |
| 10072 | " holds 8 pages, last block holds %d pages\n", DEVNAME(sc),do { ; } while (0) |
| 10073 | sc->num_of_paging_blk,do { ; } while (0) |
| 10074 | sc->num_of_pages_in_last_blk))do { ; } while (0); |
| 10075 | |
| 10076 | /* allocate block of 4Kbytes for paging CSS */ |
| 10077 | error = iwm_dma_contig_alloc(sc->sc_dmat, |
| 10078 | &sc->fw_paging_db[blk_idx].fw_paging_block, IWM_FW_PAGING_SIZE(1 << 12), |
| 10079 | 4096); |
| 10080 | if (error) { |
| 10081 | /* free all the previous pages since we failed */ |
| 10082 | iwm_free_fw_paging(sc); |
| 10083 | return ENOMEM12; |
| 10084 | } |
| 10085 | |
| 10086 | sc->fw_paging_db[blk_idx].fw_paging_size = IWM_FW_PAGING_SIZE(1 << 12); |
| 10087 | |
| 10088 | DPRINTF(("%s: Paging: allocated 4K(CSS) bytes for firmware paging.\n",do { ; } while (0) |
| 10089 | DEVNAME(sc)))do { ; } while (0); |
| 10090 | |
| 10091 | /* |
| 10092 | * allocate blocks in dram. |
| 10093 | * since that CSS allocated in fw_paging_db[0] loop start from index 1 |
| 10094 | */ |
| 10095 | for (blk_idx = 1; blk_idx < sc->num_of_paging_blk + 1; blk_idx++) { |
| 10096 | /* allocate block of IWM_PAGING_BLOCK_SIZE (32K) */ |
| 10097 | /* XXX Use iwm_dma_contig_alloc for allocating */ |
| 10098 | error = iwm_dma_contig_alloc(sc->sc_dmat, |
| 10099 | &sc->fw_paging_db[blk_idx].fw_paging_block, |
| 10100 | IWM_PAGING_BLOCK_SIZE((1 << 3) * (1 << 12)), 4096); |
| 10101 | if (error) { |
| 10102 | /* free all the previous pages since we failed */ |
| 10103 | iwm_free_fw_paging(sc); |
| 10104 | return ENOMEM12; |
| 10105 | } |
| 10106 | |
| 10107 | sc->fw_paging_db[blk_idx].fw_paging_size = |
| 10108 | IWM_PAGING_BLOCK_SIZE((1 << 3) * (1 << 12)); |
| 10109 | |
| 10110 | DPRINTF((do { ; } while (0) |
| 10111 | "%s: Paging: allocated 32K bytes for firmware paging.\n",do { ; } while (0) |
| 10112 | DEVNAME(sc)))do { ; } while (0); |
| 10113 | } |
| 10114 | |
| 10115 | return 0; |
| 10116 | } |
| 10117 | |
| 10118 | int |
| 10119 | iwm_save_fw_paging(struct iwm_softc *sc, const struct iwm_fw_sects *fw) |
| 10120 | { |
| 10121 | int ret; |
| 10122 | |
| 10123 | ret = iwm_alloc_fw_paging_mem(sc, fw); |
| 10124 | if (ret) |
| 10125 | return ret; |
| 10126 | |
| 10127 | return iwm_fill_paging_mem(sc, fw); |
| 10128 | } |
| 10129 | |
| 10130 | /* send paging cmd to FW in case CPU2 has paging image */ |
| 10131 | int |
| 10132 | iwm_send_paging_cmd(struct iwm_softc *sc, const struct iwm_fw_sects *fw) |
| 10133 | { |
| 10134 | int blk_idx; |
| 10135 | uint32_t dev_phy_addr; |
| 10136 | struct iwm_fw_paging_cmd fw_paging_cmd = { |
| 10137 | .flags = |
| 10138 | htole32(IWM_PAGING_CMD_IS_SECURED |((__uint32_t)((1 << 9) | (1 << 8) | (sc->num_of_pages_in_last_blk << 0))) |
| 10139 | IWM_PAGING_CMD_IS_ENABLED |((__uint32_t)((1 << 9) | (1 << 8) | (sc->num_of_pages_in_last_blk << 0))) |
| 10140 | (sc->num_of_pages_in_last_blk <<((__uint32_t)((1 << 9) | (1 << 8) | (sc->num_of_pages_in_last_blk << 0))) |
| 10141 | IWM_PAGING_CMD_NUM_OF_PAGES_IN_LAST_GRP_POS))((__uint32_t)((1 << 9) | (1 << 8) | (sc->num_of_pages_in_last_blk << 0))), |
| 10142 | .block_size = htole32(IWM_BLOCK_2_EXP_SIZE)((__uint32_t)((12 + 3))), |
| 10143 | .block_num = htole32(sc->num_of_paging_blk)((__uint32_t)(sc->num_of_paging_blk)), |
| 10144 | }; |
| 10145 | |
| 10146 | /* loop for all paging blocks + CSS block */ |
| 10147 | for (blk_idx = 0; blk_idx < sc->num_of_paging_blk + 1; blk_idx++) { |
| 10148 | dev_phy_addr = htole32(((__uint32_t)(sc->fw_paging_db[blk_idx].fw_paging_block.paddr >> 12)) |
| 10149 | sc->fw_paging_db[blk_idx].fw_paging_block.paddr >>((__uint32_t)(sc->fw_paging_db[blk_idx].fw_paging_block.paddr >> 12)) |
| 10150 | IWM_PAGE_2_EXP_SIZE)((__uint32_t)(sc->fw_paging_db[blk_idx].fw_paging_block.paddr >> 12)); |
| 10151 | fw_paging_cmd.device_phy_addr[blk_idx] = dev_phy_addr; |
| 10152 | bus_dmamap_sync(sc->sc_dmat,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> fw_paging_db[blk_idx].fw_paging_block.map), (0), (blk_idx == 0 ? (1 << 12) : ((1 << 3) * (1 << 12))), (0x04 | 0x01)) |
| 10153 | sc->fw_paging_db[blk_idx].fw_paging_block.map, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> fw_paging_db[blk_idx].fw_paging_block.map), (0), (blk_idx == 0 ? (1 << 12) : ((1 << 3) * (1 << 12))), (0x04 | 0x01)) |
| 10154 | blk_idx == 0 ? IWM_FW_PAGING_SIZE : IWM_PAGING_BLOCK_SIZE,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> fw_paging_db[blk_idx].fw_paging_block.map), (0), (blk_idx == 0 ? (1 << 12) : ((1 << 3) * (1 << 12))), (0x04 | 0x01)) |
| 10155 | BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> fw_paging_db[blk_idx].fw_paging_block.map), (0), (blk_idx == 0 ? (1 << 12) : ((1 << 3) * (1 << 12))), (0x04 | 0x01)); |
| 10156 | } |
| 10157 | |
| 10158 | return iwm_send_cmd_pdu(sc, iwm_cmd_id(IWM_FW_PAGING_BLOCK_CMD0x4f, |
| 10159 | IWM_LONG_GROUP0x1, 0), |
| 10160 | 0, sizeof(fw_paging_cmd), &fw_paging_cmd); |
| 10161 | } |
| 10162 | |
| 10163 | int |
| 10164 | iwm_init_hw(struct iwm_softc *sc) |
| 10165 | { |
| 10166 | struct ieee80211com *ic = &sc->sc_ic; |
| 10167 | int err, i, ac, qid, s; |
| 10168 | |
| 10169 | err = iwm_run_init_mvm_ucode(sc, 0); |
| 10170 | if (err) |
| 10171 | return err; |
| 10172 | |
| 10173 | /* Should stop and start HW since INIT image just loaded. */ |
| 10174 | iwm_stop_device(sc); |
| 10175 | err = iwm_start_hw(sc); |
| 10176 | if (err) { |
| 10177 | printf("%s: could not initialize hardware\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 10178 | return err; |
| 10179 | } |
| 10180 | |
| 10181 | /* Restart, this time with the regular firmware */ |
| 10182 | s = splnet()splraise(0x4); |
| 10183 | err = iwm_load_ucode_wait_alive(sc, IWM_UCODE_TYPE_REGULAR); |
| 10184 | if (err) { |
| 10185 | printf("%s: could not load firmware\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 10186 | splx(s)spllower(s); |
| 10187 | return err; |
| 10188 | } |
| 10189 | |
| 10190 | if (!iwm_nic_lock(sc)) { |
| 10191 | splx(s)spllower(s); |
| 10192 | return EBUSY16; |
| 10193 | } |
| 10194 | |
| 10195 | err = iwm_send_tx_ant_cfg(sc, iwm_fw_valid_tx_ant(sc)); |
| 10196 | if (err) { |
| 10197 | printf("%s: could not init tx ant config (error %d)\n", |
| 10198 | DEVNAME(sc)((sc)->sc_dev.dv_xname), err); |
| 10199 | goto err; |
| 10200 | } |
| 10201 | |
| 10202 | err = iwm_send_phy_db_data(sc); |
| 10203 | if (err) { |
| 10204 | printf("%s: could not init phy db (error %d)\n", |
| 10205 | DEVNAME(sc)((sc)->sc_dev.dv_xname), err); |
| 10206 | goto err; |
| 10207 | } |
| 10208 | |
| 10209 | err = iwm_send_phy_cfg_cmd(sc); |
| 10210 | if (err) { |
| 10211 | printf("%s: could not send phy config (error %d)\n", |
| 10212 | DEVNAME(sc)((sc)->sc_dev.dv_xname), err); |
| 10213 | goto err; |
| 10214 | } |
| 10215 | |
| 10216 | err = iwm_send_bt_init_conf(sc); |
| 10217 | if (err) { |
| 10218 | printf("%s: could not init bt coex (error %d)\n", |
| 10219 | DEVNAME(sc)((sc)->sc_dev.dv_xname), err); |
| 10220 | goto err; |
| 10221 | } |
| 10222 | |
| 10223 | if (isset(sc->sc_enabled_capa,((sc->sc_enabled_capa)[(37)>>3] & (1<<((37 )&(8 -1)))) |
| 10224 | IWM_UCODE_TLV_CAPA_SOC_LATENCY_SUPPORT)((sc->sc_enabled_capa)[(37)>>3] & (1<<((37 )&(8 -1))))) { |
| 10225 | err = iwm_send_soc_conf(sc); |
| 10226 | if (err) |
| 10227 | goto err; |
| 10228 | } |
| 10229 | |
| 10230 | if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_DQA_SUPPORT)((sc->sc_enabled_capa)[(12)>>3] & (1<<((12 )&(8 -1))))) { |
| 10231 | err = iwm_send_dqa_cmd(sc); |
| 10232 | if (err) |
| 10233 | goto err; |
| 10234 | } |
| 10235 | |
| 10236 | /* Add auxiliary station for scanning */ |
| 10237 | err = iwm_add_aux_sta(sc); |
| 10238 | if (err) { |
| 10239 | printf("%s: could not add aux station (error %d)\n", |
| 10240 | DEVNAME(sc)((sc)->sc_dev.dv_xname), err); |
| 10241 | goto err; |
| 10242 | } |
| 10243 | |
| 10244 | for (i = 0; i < IWM_NUM_PHY_CTX3; i++) { |
| 10245 | /* |
| 10246 | * The channel used here isn't relevant as it's |
| 10247 | * going to be overwritten in the other flows. |
| 10248 | * For now use the first channel we have. |
| 10249 | */ |
| 10250 | sc->sc_phyctxt[i].id = i; |
| 10251 | sc->sc_phyctxt[i].channel = &ic->ic_channels[1]; |
| 10252 | err = iwm_phy_ctxt_cmd(sc, &sc->sc_phyctxt[i], 1, 1, |
| 10253 | IWM_FW_CTXT_ACTION_ADD1, 0, IEEE80211_HTOP0_SCO_SCN0, |
| 10254 | IEEE80211_VHTOP0_CHAN_WIDTH_HT0); |
| 10255 | if (err) { |
| 10256 | printf("%s: could not add phy context %d (error %d)\n", |
| 10257 | DEVNAME(sc)((sc)->sc_dev.dv_xname), i, err); |
| 10258 | goto err; |
| 10259 | } |
| 10260 | } |
| 10261 | |
| 10262 | /* Initialize tx backoffs to the minimum. */ |
| 10263 | if (sc->sc_device_family == IWM_DEVICE_FAMILY_70001) |
| 10264 | iwm_tt_tx_backoff(sc, 0); |
| 10265 | |
| 10266 | |
| 10267 | err = iwm_config_ltr(sc); |
| 10268 | if (err) { |
| 10269 | printf("%s: PCIe LTR configuration failed (error %d)\n", |
| 10270 | DEVNAME(sc)((sc)->sc_dev.dv_xname), err); |
| 10271 | } |
| 10272 | |
| 10273 | if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_CT_KILL_BY_FW)((sc->sc_enabled_capa)[(74)>>3] & (1<<((74 )&(8 -1))))) { |
| 10274 | err = iwm_send_temp_report_ths_cmd(sc); |
| 10275 | if (err) |
| 10276 | goto err; |
| 10277 | } |
| 10278 | |
| 10279 | err = iwm_power_update_device(sc); |
| 10280 | if (err) { |
| 10281 | printf("%s: could not send power command (error %d)\n", |
| 10282 | DEVNAME(sc)((sc)->sc_dev.dv_xname), err); |
| 10283 | goto err; |
| 10284 | } |
| 10285 | |
| 10286 | if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_LAR_SUPPORT)((sc->sc_enabled_capa)[(1)>>3] & (1<<((1)& (8 -1))))) { |
| 10287 | err = iwm_send_update_mcc_cmd(sc, "ZZ"); |
| 10288 | if (err) { |
| 10289 | printf("%s: could not init LAR (error %d)\n", |
| 10290 | DEVNAME(sc)((sc)->sc_dev.dv_xname), err); |
| 10291 | goto err; |
| 10292 | } |
| 10293 | } |
| 10294 | |
| 10295 | if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN)((sc->sc_enabled_capa)[(2)>>3] & (1<<((2)& (8 -1))))) { |
| 10296 | err = iwm_config_umac_scan(sc); |
| 10297 | if (err) { |
| 10298 | printf("%s: could not configure scan (error %d)\n", |
| 10299 | DEVNAME(sc)((sc)->sc_dev.dv_xname), err); |
| 10300 | goto err; |
| 10301 | } |
| 10302 | } |
| 10303 | |
| 10304 | if (ic->ic_opmode == IEEE80211_M_MONITOR) { |
| 10305 | if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_DQA_SUPPORT)((sc->sc_enabled_capa)[(12)>>3] & (1<<((12 )&(8 -1))))) |
| 10306 | qid = IWM_DQA_INJECT_MONITOR_QUEUE2; |
| 10307 | else |
| 10308 | qid = IWM_AUX_QUEUE15; |
| 10309 | err = iwm_enable_txq(sc, IWM_MONITOR_STA_ID2, qid, |
| 10310 | iwm_ac_to_tx_fifo[EDCA_AC_BE], 0, IWM_MAX_TID_COUNT8, 0); |
| 10311 | if (err) { |
| 10312 | printf("%s: could not enable monitor inject Tx queue " |
| 10313 | "(error %d)\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), err); |
| 10314 | goto err; |
| 10315 | } |
| 10316 | } else { |
| 10317 | for (ac = 0; ac < EDCA_NUM_AC4; ac++) { |
| 10318 | if (isset(sc->sc_enabled_capa,((sc->sc_enabled_capa)[(12)>>3] & (1<<((12 )&(8 -1)))) |
| 10319 | IWM_UCODE_TLV_CAPA_DQA_SUPPORT)((sc->sc_enabled_capa)[(12)>>3] & (1<<((12 )&(8 -1))))) |
| 10320 | qid = ac + IWM_DQA_MIN_MGMT_QUEUE5; |
| 10321 | else |
| 10322 | qid = ac; |
| 10323 | err = iwm_enable_txq(sc, IWM_STATION_ID0, qid, |
| 10324 | iwm_ac_to_tx_fifo[ac], 0, IWM_TID_NON_QOS0, 0); |
| 10325 | if (err) { |
| 10326 | printf("%s: could not enable Tx queue %d " |
| 10327 | "(error %d)\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), ac, err); |
| 10328 | goto err; |
| 10329 | } |
| 10330 | } |
| 10331 | } |
| 10332 | |
| 10333 | err = iwm_disable_beacon_filter(sc); |
| 10334 | if (err) { |
| 10335 | printf("%s: could not disable beacon filter (error %d)\n", |
| 10336 | DEVNAME(sc)((sc)->sc_dev.dv_xname), err); |
| 10337 | goto err; |
| 10338 | } |
| 10339 | |
| 10340 | err: |
| 10341 | iwm_nic_unlock(sc); |
| 10342 | splx(s)spllower(s); |
| 10343 | return err; |
| 10344 | } |
| 10345 | |
| 10346 | /* Allow multicast from our BSSID. */ |
| 10347 | int |
| 10348 | iwm_allow_mcast(struct iwm_softc *sc) |
| 10349 | { |
| 10350 | struct ieee80211com *ic = &sc->sc_ic; |
| 10351 | struct iwm_node *in = (void *)ic->ic_bss; |
| 10352 | struct iwm_mcast_filter_cmd *cmd; |
| 10353 | size_t size; |
| 10354 | int err; |
| 10355 | |
| 10356 | size = roundup(sizeof(*cmd), 4)((((sizeof(*cmd))+((4)-1))/(4))*(4)); |
| 10357 | cmd = malloc(size, M_DEVBUF2, M_NOWAIT0x0002 | M_ZERO0x0008); |
| 10358 | if (cmd == NULL((void *)0)) |
| 10359 | return ENOMEM12; |
| 10360 | cmd->filter_own = 1; |
| 10361 | cmd->port_id = 0; |
| 10362 | cmd->count = 0; |
| 10363 | cmd->pass_all = 1; |
| 10364 | IEEE80211_ADDR_COPY(cmd->bssid, in->in_macaddr)__builtin_memcpy((cmd->bssid), (in->in_macaddr), (6)); |
| 10365 | |
| 10366 | err = iwm_send_cmd_pdu(sc, IWM_MCAST_FILTER_CMD0xd0, |
| 10367 | 0, size, cmd); |
| 10368 | free(cmd, M_DEVBUF2, size); |
| 10369 | return err; |
| 10370 | } |
| 10371 | |
| 10372 | int |
| 10373 | iwm_init(struct ifnet *ifp) |
| 10374 | { |
| 10375 | struct iwm_softc *sc = ifp->if_softc; |
| 10376 | struct ieee80211com *ic = &sc->sc_ic; |
| 10377 | int err, generation; |
| 10378 | |
| 10379 | rw_assert_wrlock(&sc->ioctl_rwl); |
| 10380 | |
| 10381 | generation = ++sc->sc_generation; |
| 10382 | |
| 10383 | err = iwm_preinit(sc); |
| 10384 | if (err) |
| 10385 | return err; |
| 10386 | |
| 10387 | err = iwm_start_hw(sc); |
| 10388 | if (err) { |
| 10389 | printf("%s: could not initialize hardware\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 10390 | return err; |
| 10391 | } |
| 10392 | |
| 10393 | err = iwm_init_hw(sc); |
| 10394 | if (err) { |
| 10395 | if (generation == sc->sc_generation) |
| 10396 | iwm_stop_device(sc); |
| 10397 | return err; |
| 10398 | } |
| 10399 | |
| 10400 | if (sc->sc_nvm.sku_cap_11n_enable) |
| 10401 | iwm_setup_ht_rates(sc); |
| 10402 | if (sc->sc_nvm.sku_cap_11ac_enable) |
| 10403 | iwm_setup_vht_rates(sc); |
| 10404 | |
| 10405 | KASSERT(sc->task_refs.r_refs == 0)((sc->task_refs.r_refs == 0) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/dev/pci/if_iwm.c", 10405, "sc->task_refs.r_refs == 0" )); |
| 10406 | refcnt_init(&sc->task_refs); |
| 10407 | ifq_clr_oactive(&ifp->if_snd); |
| 10408 | ifp->if_flags |= IFF_RUNNING0x40; |
| 10409 | |
| 10410 | if (ic->ic_opmode == IEEE80211_M_MONITOR) { |
| 10411 | ic->ic_bss->ni_chan = ic->ic_ibss_chan; |
| 10412 | ieee80211_new_state(ic, IEEE80211_S_RUN, -1)(((ic)->ic_newstate)((ic), (IEEE80211_S_RUN), (-1))); |
| 10413 | return 0; |
| 10414 | } |
| 10415 | |
| 10416 | ieee80211_begin_scan(ifp); |
| 10417 | |
| 10418 | /* |
| 10419 | * ieee80211_begin_scan() ends up scheduling iwm_newstate_task(). |
| 10420 | * Wait until the transition to SCAN state has completed. |
| 10421 | */ |
| 10422 | do { |
| 10423 | err = tsleep_nsec(&ic->ic_state, PCATCH0x100, "iwminit", |
| 10424 | SEC_TO_NSEC(1)); |
| 10425 | if (generation != sc->sc_generation) |
| 10426 | return ENXIO6; |
| 10427 | if (err) { |
| 10428 | iwm_stop(ifp); |
| 10429 | return err; |
| 10430 | } |
| 10431 | } while (ic->ic_state != IEEE80211_S_SCAN); |
| 10432 | |
| 10433 | return 0; |
| 10434 | } |
| 10435 | |
| 10436 | void |
| 10437 | iwm_start(struct ifnet *ifp) |
| 10438 | { |
| 10439 | struct iwm_softc *sc = ifp->if_softc; |
| 10440 | struct ieee80211com *ic = &sc->sc_ic; |
| 10441 | struct ieee80211_node *ni; |
| 10442 | struct ether_header *eh; |
| 10443 | struct mbuf *m; |
| 10444 | int ac = EDCA_AC_BE; /* XXX */ |
| 10445 | |
| 10446 | if (!(ifp->if_flags & IFF_RUNNING0x40) || ifq_is_oactive(&ifp->if_snd)) |
| 10447 | return; |
| 10448 | |
| 10449 | for (;;) { |
| 10450 | /* why isn't this done per-queue? */ |
| 10451 | if (sc->qfullmsk != 0) { |
| 10452 | ifq_set_oactive(&ifp->if_snd); |
| 10453 | break; |
| 10454 | } |
| 10455 | |
| 10456 | /* Don't queue additional frames while flushing Tx queues. */ |
| 10457 | if (sc->sc_flags & IWM_FLAG_TXFLUSH0x400) |
| 10458 | break; |
| 10459 | |
| 10460 | /* need to send management frames even if we're not RUNning */ |
| 10461 | m = mq_dequeue(&ic->ic_mgtq); |
| 10462 | if (m) { |
| 10463 | ni = m->m_pkthdrM_dat.MH.MH_pkthdr.ph_cookie; |
| 10464 | goto sendit; |
| 10465 | } |
| 10466 | |
| 10467 | if (ic->ic_state != IEEE80211_S_RUN || |
| 10468 | (ic->ic_xflags & IEEE80211_F_TX_MGMT_ONLY0x00000001)) |
| 10469 | break; |
| 10470 | |
| 10471 | m = ifq_dequeue(&ifp->if_snd); |
| 10472 | if (!m) |
| 10473 | break; |
| 10474 | if (m->m_lenm_hdr.mh_len < sizeof (*eh) && |
| 10475 | (m = m_pullup(m, sizeof (*eh))) == NULL((void *)0)) { |
| 10476 | ifp->if_oerrorsif_data.ifi_oerrors++; |
| 10477 | continue; |
| 10478 | } |
| 10479 | #if NBPFILTER1 > 0 |
| 10480 | if (ifp->if_bpf != NULL((void *)0)) |
| 10481 | bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT(1 << 1)); |
| 10482 | #endif |
| 10483 | if ((m = ieee80211_encap(ifp, m, &ni)) == NULL((void *)0)) { |
| 10484 | ifp->if_oerrorsif_data.ifi_oerrors++; |
| 10485 | continue; |
| 10486 | } |
| 10487 | |
| 10488 | sendit: |
| 10489 | #if NBPFILTER1 > 0 |
| 10490 | if (ic->ic_rawbpf != NULL((void *)0)) |
| 10491 | bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT(1 << 1)); |
| 10492 | #endif |
| 10493 | if (iwm_tx(sc, m, ni, ac) != 0) { |
| 10494 | ieee80211_release_node(ic, ni); |
| 10495 | ifp->if_oerrorsif_data.ifi_oerrors++; |
| 10496 | continue; |
| 10497 | } |
| 10498 | |
| 10499 | if (ifp->if_flags & IFF_UP0x1) |
| 10500 | ifp->if_timer = 1; |
| 10501 | } |
| 10502 | |
| 10503 | return; |
| 10504 | } |
| 10505 | |
| 10506 | void |
| 10507 | iwm_stop(struct ifnet *ifp) |
| 10508 | { |
| 10509 | struct iwm_softc *sc = ifp->if_softc; |
| 10510 | struct ieee80211com *ic = &sc->sc_ic; |
| 10511 | struct iwm_node *in = (void *)ic->ic_bss; |
| 10512 | int i, s = splnet()splraise(0x4); |
| 10513 | |
| 10514 | rw_assert_wrlock(&sc->ioctl_rwl); |
| 10515 | |
| 10516 | sc->sc_flags |= IWM_FLAG_SHUTDOWN0x100; /* Disallow new tasks. */ |
| 10517 | |
| 10518 | /* Cancel scheduled tasks and let any stale tasks finish up. */ |
| 10519 | task_del(systq, &sc->init_task); |
| 10520 | iwm_del_task(sc, sc->sc_nswq, &sc->newstate_task); |
| 10521 | iwm_del_task(sc, systq, &sc->ba_task); |
| 10522 | iwm_del_task(sc, systq, &sc->mac_ctxt_task); |
| 10523 | iwm_del_task(sc, systq, &sc->phy_ctxt_task); |
| 10524 | iwm_del_task(sc, systq, &sc->bgscan_done_task); |
| 10525 | KASSERT(sc->task_refs.r_refs >= 1)((sc->task_refs.r_refs >= 1) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/dev/pci/if_iwm.c", 10525, "sc->task_refs.r_refs >= 1" )); |
| 10526 | refcnt_finalize(&sc->task_refs, "iwmstop"); |
| 10527 | |
| 10528 | iwm_stop_device(sc); |
| 10529 | |
| 10530 | free(sc->bgscan_unref_arg, M_DEVBUF2, sc->bgscan_unref_arg_size); |
| 10531 | sc->bgscan_unref_arg = NULL((void *)0); |
| 10532 | sc->bgscan_unref_arg_size = 0; |
| 10533 | |
| 10534 | /* Reset soft state. */ |
| 10535 | |
| 10536 | sc->sc_generation++; |
| 10537 | for (i = 0; i < nitems(sc->sc_cmd_resp_pkt)(sizeof((sc->sc_cmd_resp_pkt)) / sizeof((sc->sc_cmd_resp_pkt )[0])); i++) { |
| 10538 | free(sc->sc_cmd_resp_pkt[i], M_DEVBUF2, sc->sc_cmd_resp_len[i]); |
| 10539 | sc->sc_cmd_resp_pkt[i] = NULL((void *)0); |
| 10540 | sc->sc_cmd_resp_len[i] = 0; |
| 10541 | } |
| 10542 | ifp->if_flags &= ~IFF_RUNNING0x40; |
| 10543 | ifq_clr_oactive(&ifp->if_snd); |
| 10544 | |
| 10545 | in->in_phyctxt = NULL((void *)0); |
| 10546 | in->tid_disable_ampdu = 0xffff; |
| 10547 | in->tfd_queue_msk = 0; |
| 10548 | IEEE80211_ADDR_COPY(in->in_macaddr, etheranyaddr)__builtin_memcpy((in->in_macaddr), (etheranyaddr), (6)); |
| 10549 | |
| 10550 | sc->sc_flags &= ~(IWM_FLAG_SCANNING0x04 | IWM_FLAG_BGSCAN0x200); |
| 10551 | sc->sc_flags &= ~IWM_FLAG_MAC_ACTIVE0x08; |
| 10552 | sc->sc_flags &= ~IWM_FLAG_BINDING_ACTIVE0x10; |
| 10553 | sc->sc_flags &= ~IWM_FLAG_STA_ACTIVE0x20; |
| 10554 | sc->sc_flags &= ~IWM_FLAG_TE_ACTIVE0x40; |
| 10555 | sc->sc_flags &= ~IWM_FLAG_HW_ERR0x80; |
| 10556 | sc->sc_flags &= ~IWM_FLAG_SHUTDOWN0x100; |
| 10557 | sc->sc_flags &= ~IWM_FLAG_TXFLUSH0x400; |
| 10558 | |
| 10559 | sc->sc_rx_ba_sessions = 0; |
| 10560 | sc->ba_rx.start_tidmask = 0; |
| 10561 | sc->ba_rx.stop_tidmask = 0; |
| 10562 | sc->tx_ba_queue_mask = 0; |
| 10563 | sc->ba_tx.start_tidmask = 0; |
| 10564 | sc->ba_tx.stop_tidmask = 0; |
| 10565 | |
| 10566 | sc->sc_newstate(ic, IEEE80211_S_INIT, -1); |
| 10567 | sc->ns_nstate = IEEE80211_S_INIT; |
| 10568 | |
| 10569 | timeout_del(&sc->sc_calib_to); /* XXX refcount? */ |
| 10570 | for (i = 0; i < nitems(sc->sc_rxba_data)(sizeof((sc->sc_rxba_data)) / sizeof((sc->sc_rxba_data) [0])); i++) { |
| 10571 | struct iwm_rxba_data *rxba = &sc->sc_rxba_data[i]; |
| 10572 | iwm_clear_reorder_buffer(sc, rxba); |
| 10573 | } |
| 10574 | iwm_led_blink_stop(sc); |
| 10575 | memset(sc->sc_tx_timer, 0, sizeof(sc->sc_tx_timer))__builtin_memset((sc->sc_tx_timer), (0), (sizeof(sc->sc_tx_timer ))); |
| 10576 | ifp->if_timer = 0; |
| 10577 | |
| 10578 | splx(s)spllower(s); |
| 10579 | } |
| 10580 | |
| 10581 | void |
| 10582 | iwm_watchdog(struct ifnet *ifp) |
| 10583 | { |
| 10584 | struct iwm_softc *sc = ifp->if_softc; |
| 10585 | int i; |
| 10586 | |
| 10587 | ifp->if_timer = 0; |
| 10588 | |
| 10589 | /* |
| 10590 | * We maintain a separate timer for each Tx queue because |
| 10591 | * Tx aggregation queues can get "stuck" while other queues |
| 10592 | * keep working. The Linux driver uses a similar workaround. |
| 10593 | */ |
| 10594 | for (i = 0; i < nitems(sc->sc_tx_timer)(sizeof((sc->sc_tx_timer)) / sizeof((sc->sc_tx_timer)[0 ])); i++) { |
| 10595 | if (sc->sc_tx_timer[i] > 0) { |
| 10596 | if (--sc->sc_tx_timer[i] == 0) { |
| 10597 | printf("%s: device timeout\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 10598 | if (ifp->if_flags & IFF_DEBUG0x4) { |
| 10599 | iwm_nic_error(sc); |
| 10600 | iwm_dump_driver_status(sc); |
| 10601 | } |
| 10602 | if ((sc->sc_flags & IWM_FLAG_SHUTDOWN0x100) == 0) |
| 10603 | task_add(systq, &sc->init_task); |
| 10604 | ifp->if_oerrorsif_data.ifi_oerrors++; |
| 10605 | return; |
| 10606 | } |
| 10607 | ifp->if_timer = 1; |
| 10608 | } |
| 10609 | } |
| 10610 | |
| 10611 | ieee80211_watchdog(ifp); |
| 10612 | } |
| 10613 | |
| 10614 | int |
| 10615 | iwm_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) |
| 10616 | { |
| 10617 | struct iwm_softc *sc = ifp->if_softc; |
| 10618 | int s, err = 0, generation = sc->sc_generation; |
| 10619 | |
| 10620 | /* |
| 10621 | * Prevent processes from entering this function while another |
| 10622 | * process is tsleep'ing in it. |
| 10623 | */ |
| 10624 | err = rw_enter(&sc->ioctl_rwl, RW_WRITE0x0001UL | RW_INTR0x0010UL); |
| 10625 | if (err == 0 && generation != sc->sc_generation) { |
| 10626 | rw_exit(&sc->ioctl_rwl); |
| 10627 | return ENXIO6; |
| 10628 | } |
| 10629 | if (err) |
| 10630 | return err; |
| 10631 | s = splnet()splraise(0x4); |
| 10632 | |
| 10633 | switch (cmd) { |
| 10634 | case SIOCSIFADDR((unsigned long)0x80000000 | ((sizeof(struct ifreq) & 0x1fff ) << 16) | ((('i')) << 8) | ((12))): |
| 10635 | ifp->if_flags |= IFF_UP0x1; |
| 10636 | /* FALLTHROUGH */ |
| 10637 | case SIOCSIFFLAGS((unsigned long)0x80000000 | ((sizeof(struct ifreq) & 0x1fff ) << 16) | ((('i')) << 8) | ((16))): |
| 10638 | if (ifp->if_flags & IFF_UP0x1) { |
| 10639 | if (!(ifp->if_flags & IFF_RUNNING0x40)) { |
| 10640 | /* Force reload of firmware image from disk. */ |
| 10641 | sc->sc_fw.fw_status = IWM_FW_STATUS_NONE0; |
| 10642 | err = iwm_init(ifp); |
| 10643 | } |
| 10644 | } else { |
| 10645 | if (ifp->if_flags & IFF_RUNNING0x40) |
| 10646 | iwm_stop(ifp); |
| 10647 | } |
| 10648 | break; |
| 10649 | |
| 10650 | default: |
| 10651 | err = ieee80211_ioctl(ifp, cmd, data); |
| 10652 | } |
| 10653 | |
| 10654 | if (err == ENETRESET52) { |
| 10655 | err = 0; |
| 10656 | if ((ifp->if_flags & (IFF_UP0x1 | IFF_RUNNING0x40)) == |
| 10657 | (IFF_UP0x1 | IFF_RUNNING0x40)) { |
| 10658 | iwm_stop(ifp); |
| 10659 | err = iwm_init(ifp); |
| 10660 | } |
| 10661 | } |
| 10662 | |
| 10663 | splx(s)spllower(s); |
| 10664 | rw_exit(&sc->ioctl_rwl); |
| 10665 | |
| 10666 | return err; |
| 10667 | } |
| 10668 | |
| 10669 | /* |
| 10670 | * Note: This structure is read from the device with IO accesses, |
| 10671 | * and the reading already does the endian conversion. As it is |
| 10672 | * read with uint32_t-sized accesses, any members with a different size |
| 10673 | * need to be ordered correctly though! |
| 10674 | */ |
| 10675 | struct iwm_error_event_table { |
| 10676 | uint32_t valid; /* (nonzero) valid, (0) log is empty */ |
| 10677 | uint32_t error_id; /* type of error */ |
| 10678 | uint32_t trm_hw_status0; /* TRM HW status */ |
| 10679 | uint32_t trm_hw_status1; /* TRM HW status */ |
| 10680 | uint32_t blink2; /* branch link */ |
| 10681 | uint32_t ilink1; /* interrupt link */ |
| 10682 | uint32_t ilink2; /* interrupt link */ |
| 10683 | uint32_t data1; /* error-specific data */ |
| 10684 | uint32_t data2; /* error-specific data */ |
| 10685 | uint32_t data3; /* error-specific data */ |
| 10686 | uint32_t bcon_time; /* beacon timer */ |
| 10687 | uint32_t tsf_low; /* network timestamp function timer */ |
| 10688 | uint32_t tsf_hi; /* network timestamp function timer */ |
| 10689 | uint32_t gp1; /* GP1 timer register */ |
| 10690 | uint32_t gp2; /* GP2 timer register */ |
| 10691 | uint32_t fw_rev_type; /* firmware revision type */ |
| 10692 | uint32_t major; /* uCode version major */ |
| 10693 | uint32_t minor; /* uCode version minor */ |
| 10694 | uint32_t hw_ver; /* HW Silicon version */ |
| 10695 | uint32_t brd_ver; /* HW board version */ |
| 10696 | uint32_t log_pc; /* log program counter */ |
| 10697 | uint32_t frame_ptr; /* frame pointer */ |
| 10698 | uint32_t stack_ptr; /* stack pointer */ |
| 10699 | uint32_t hcmd; /* last host command header */ |
| 10700 | uint32_t isr0; /* isr status register LMPM_NIC_ISR0: |
| 10701 | * rxtx_flag */ |
| 10702 | uint32_t isr1; /* isr status register LMPM_NIC_ISR1: |
| 10703 | * host_flag */ |
| 10704 | uint32_t isr2; /* isr status register LMPM_NIC_ISR2: |
| 10705 | * enc_flag */ |
| 10706 | uint32_t isr3; /* isr status register LMPM_NIC_ISR3: |
| 10707 | * time_flag */ |
| 10708 | uint32_t isr4; /* isr status register LMPM_NIC_ISR4: |
| 10709 | * wico interrupt */ |
| 10710 | uint32_t last_cmd_id; /* last HCMD id handled by the firmware */ |
| 10711 | uint32_t wait_event; /* wait event() caller address */ |
| 10712 | uint32_t l2p_control; /* L2pControlField */ |
| 10713 | uint32_t l2p_duration; /* L2pDurationField */ |
| 10714 | uint32_t l2p_mhvalid; /* L2pMhValidBits */ |
| 10715 | uint32_t l2p_addr_match; /* L2pAddrMatchStat */ |
| 10716 | uint32_t lmpm_pmg_sel; /* indicate which clocks are turned on |
| 10717 | * (LMPM_PMG_SEL) */ |
| 10718 | uint32_t u_timestamp; /* indicate when the date and time of the |
| 10719 | * compilation */ |
| 10720 | uint32_t flow_handler; /* FH read/write pointers, RX credit */ |
| 10721 | } __packed__attribute__((__packed__)) /* LOG_ERROR_TABLE_API_S_VER_3 */; |
| 10722 | |
| 10723 | /* |
| 10724 | * UMAC error struct - relevant starting from family 8000 chip. |
| 10725 | * Note: This structure is read from the device with IO accesses, |
| 10726 | * and the reading already does the endian conversion. As it is |
| 10727 | * read with u32-sized accesses, any members with a different size |
| 10728 | * need to be ordered correctly though! |
| 10729 | */ |
| 10730 | struct iwm_umac_error_event_table { |
| 10731 | uint32_t valid; /* (nonzero) valid, (0) log is empty */ |
| 10732 | uint32_t error_id; /* type of error */ |
| 10733 | uint32_t blink1; /* branch link */ |
| 10734 | uint32_t blink2; /* branch link */ |
| 10735 | uint32_t ilink1; /* interrupt link */ |
| 10736 | uint32_t ilink2; /* interrupt link */ |
| 10737 | uint32_t data1; /* error-specific data */ |
| 10738 | uint32_t data2; /* error-specific data */ |
| 10739 | uint32_t data3; /* error-specific data */ |
| 10740 | uint32_t umac_major; |
| 10741 | uint32_t umac_minor; |
| 10742 | uint32_t frame_pointer; /* core register 27*/ |
| 10743 | uint32_t stack_pointer; /* core register 28 */ |
| 10744 | uint32_t cmd_header; /* latest host cmd sent to UMAC */ |
| 10745 | uint32_t nic_isr_pref; /* ISR status register */ |
| 10746 | } __packed__attribute__((__packed__)); |
| 10747 | |
| 10748 | #define ERROR_START_OFFSET(1 * sizeof(uint32_t)) (1 * sizeof(uint32_t)) |
| 10749 | #define ERROR_ELEM_SIZE(7 * sizeof(uint32_t)) (7 * sizeof(uint32_t)) |
| 10750 | |
| 10751 | void |
| 10752 | iwm_nic_umac_error(struct iwm_softc *sc) |
| 10753 | { |
| 10754 | struct iwm_umac_error_event_table table; |
| 10755 | uint32_t base; |
| 10756 | |
| 10757 | base = sc->sc_uc.uc_umac_error_event_table; |
| 10758 | |
| 10759 | if (base < 0x800000) { |
| 10760 | printf("%s: Invalid error log pointer 0x%08x\n", |
| 10761 | DEVNAME(sc)((sc)->sc_dev.dv_xname), base); |
| 10762 | return; |
| 10763 | } |
| 10764 | |
| 10765 | if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) { |
| 10766 | printf("%s: reading errlog failed\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 10767 | return; |
| 10768 | } |
| 10769 | |
| 10770 | if (ERROR_START_OFFSET(1 * sizeof(uint32_t)) <= table.valid * ERROR_ELEM_SIZE(7 * sizeof(uint32_t))) { |
| 10771 | printf("%s: Start UMAC Error Log Dump:\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 10772 | printf("%s: Status: 0x%x, count: %d\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), |
| 10773 | sc->sc_flags, table.valid); |
| 10774 | } |
| 10775 | |
| 10776 | printf("%s: 0x%08X | %s\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.error_id, |
| 10777 | iwm_desc_lookup(table.error_id)); |
| 10778 | printf("%s: 0x%08X | umac branchlink1\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.blink1); |
| 10779 | printf("%s: 0x%08X | umac branchlink2\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.blink2); |
| 10780 | printf("%s: 0x%08X | umac interruptlink1\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.ilink1); |
| 10781 | printf("%s: 0x%08X | umac interruptlink2\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.ilink2); |
| 10782 | printf("%s: 0x%08X | umac data1\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.data1); |
| 10783 | printf("%s: 0x%08X | umac data2\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.data2); |
| 10784 | printf("%s: 0x%08X | umac data3\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.data3); |
| 10785 | printf("%s: 0x%08X | umac major\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.umac_major); |
| 10786 | printf("%s: 0x%08X | umac minor\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.umac_minor); |
| 10787 | printf("%s: 0x%08X | frame pointer\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), |
| 10788 | table.frame_pointer); |
| 10789 | printf("%s: 0x%08X | stack pointer\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), |
| 10790 | table.stack_pointer); |
| 10791 | printf("%s: 0x%08X | last host cmd\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.cmd_header); |
| 10792 | printf("%s: 0x%08X | isr status reg\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), |
| 10793 | table.nic_isr_pref); |
| 10794 | } |
| 10795 | |
| 10796 | #define IWM_FW_SYSASSERT_CPU_MASK0xf0000000 0xf0000000 |
| 10797 | static struct { |
| 10798 | const char *name; |
| 10799 | uint8_t num; |
| 10800 | } advanced_lookup[] = { |
| 10801 | { "NMI_INTERRUPT_WDG", 0x34 }, |
| 10802 | { "SYSASSERT", 0x35 }, |
| 10803 | { "UCODE_VERSION_MISMATCH", 0x37 }, |
| 10804 | { "BAD_COMMAND", 0x38 }, |
| 10805 | { "BAD_COMMAND", 0x39 }, |
| 10806 | { "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C }, |
| 10807 | { "FATAL_ERROR", 0x3D }, |
| 10808 | { "NMI_TRM_HW_ERR", 0x46 }, |
| 10809 | { "NMI_INTERRUPT_TRM", 0x4C }, |
| 10810 | { "NMI_INTERRUPT_BREAK_POINT", 0x54 }, |
| 10811 | { "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C }, |
| 10812 | { "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 }, |
| 10813 | { "NMI_INTERRUPT_HOST", 0x66 }, |
| 10814 | { "NMI_INTERRUPT_LMAC_FATAL", 0x70 }, |
| 10815 | { "NMI_INTERRUPT_UMAC_FATAL", 0x71 }, |
| 10816 | { "NMI_INTERRUPT_OTHER_LMAC_FATAL", 0x73 }, |
| 10817 | { "NMI_INTERRUPT_ACTION_PT", 0x7C }, |
| 10818 | { "NMI_INTERRUPT_UNKNOWN", 0x84 }, |
| 10819 | { "NMI_INTERRUPT_INST_ACTION_PT", 0x86 }, |
| 10820 | { "ADVANCED_SYSASSERT", 0 }, |
| 10821 | }; |
| 10822 | |
| 10823 | const char * |
| 10824 | iwm_desc_lookup(uint32_t num) |
| 10825 | { |
| 10826 | int i; |
| 10827 | |
| 10828 | for (i = 0; i < nitems(advanced_lookup)(sizeof((advanced_lookup)) / sizeof((advanced_lookup)[0])) - 1; i++) |
| 10829 | if (advanced_lookup[i].num == |
| 10830 | (num & ~IWM_FW_SYSASSERT_CPU_MASK0xf0000000)) |
| 10831 | return advanced_lookup[i].name; |
| 10832 | |
| 10833 | /* No entry matches 'num', so it is the last: ADVANCED_SYSASSERT */ |
| 10834 | return advanced_lookup[i].name; |
| 10835 | } |
| 10836 | |
| 10837 | /* |
| 10838 | * Support for dumping the error log seemed like a good idea ... |
| 10839 | * but it's mostly hex junk and the only sensible thing is the |
| 10840 | * hw/ucode revision (which we know anyway). Since it's here, |
| 10841 | * I'll just leave it in, just in case e.g. the Intel guys want to |
| 10842 | * help us decipher some "ADVANCED_SYSASSERT" later. |
| 10843 | */ |
| 10844 | void |
| 10845 | iwm_nic_error(struct iwm_softc *sc) |
| 10846 | { |
| 10847 | struct iwm_error_event_table table; |
| 10848 | uint32_t base; |
| 10849 | |
| 10850 | printf("%s: dumping device error log\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 10851 | base = sc->sc_uc.uc_error_event_table; |
| 10852 | if (base < 0x800000) { |
| 10853 | printf("%s: Invalid error log pointer 0x%08x\n", |
| 10854 | DEVNAME(sc)((sc)->sc_dev.dv_xname), base); |
| 10855 | return; |
| 10856 | } |
| 10857 | |
| 10858 | if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) { |
| 10859 | printf("%s: reading errlog failed\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 10860 | return; |
| 10861 | } |
| 10862 | |
| 10863 | if (!table.valid) { |
| 10864 | printf("%s: errlog not found, skipping\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 10865 | return; |
| 10866 | } |
| 10867 | |
| 10868 | if (ERROR_START_OFFSET(1 * sizeof(uint32_t)) <= table.valid * ERROR_ELEM_SIZE(7 * sizeof(uint32_t))) { |
| 10869 | printf("%s: Start Error Log Dump:\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 10870 | printf("%s: Status: 0x%x, count: %d\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), |
| 10871 | sc->sc_flags, table.valid); |
| 10872 | } |
| 10873 | |
| 10874 | printf("%s: 0x%08X | %-28s\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.error_id, |
| 10875 | iwm_desc_lookup(table.error_id)); |
| 10876 | printf("%s: %08X | trm_hw_status0\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), |
| 10877 | table.trm_hw_status0); |
| 10878 | printf("%s: %08X | trm_hw_status1\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), |
| 10879 | table.trm_hw_status1); |
| 10880 | printf("%s: %08X | branchlink2\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.blink2); |
| 10881 | printf("%s: %08X | interruptlink1\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.ilink1); |
| 10882 | printf("%s: %08X | interruptlink2\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.ilink2); |
| 10883 | printf("%s: %08X | data1\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.data1); |
| 10884 | printf("%s: %08X | data2\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.data2); |
| 10885 | printf("%s: %08X | data3\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.data3); |
| 10886 | printf("%s: %08X | beacon time\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.bcon_time); |
| 10887 | printf("%s: %08X | tsf low\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.tsf_low); |
| 10888 | printf("%s: %08X | tsf hi\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.tsf_hi); |
| 10889 | printf("%s: %08X | time gp1\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.gp1); |
| 10890 | printf("%s: %08X | time gp2\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.gp2); |
| 10891 | printf("%s: %08X | uCode revision type\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), |
| 10892 | table.fw_rev_type); |
| 10893 | printf("%s: %08X | uCode version major\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), |
| 10894 | table.major); |
| 10895 | printf("%s: %08X | uCode version minor\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), |
| 10896 | table.minor); |
| 10897 | printf("%s: %08X | hw version\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.hw_ver); |
| 10898 | printf("%s: %08X | board version\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.brd_ver); |
| 10899 | printf("%s: %08X | hcmd\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.hcmd); |
| 10900 | printf("%s: %08X | isr0\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.isr0); |
| 10901 | printf("%s: %08X | isr1\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.isr1); |
| 10902 | printf("%s: %08X | isr2\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.isr2); |
| 10903 | printf("%s: %08X | isr3\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.isr3); |
| 10904 | printf("%s: %08X | isr4\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.isr4); |
| 10905 | printf("%s: %08X | last cmd Id\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.last_cmd_id); |
| 10906 | printf("%s: %08X | wait_event\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.wait_event); |
| 10907 | printf("%s: %08X | l2p_control\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.l2p_control); |
| 10908 | printf("%s: %08X | l2p_duration\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.l2p_duration); |
| 10909 | printf("%s: %08X | l2p_mhvalid\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.l2p_mhvalid); |
| 10910 | printf("%s: %08X | l2p_addr_match\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.l2p_addr_match); |
| 10911 | printf("%s: %08X | lmpm_pmg_sel\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.lmpm_pmg_sel); |
| 10912 | printf("%s: %08X | timestamp\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.u_timestamp); |
| 10913 | printf("%s: %08X | flow_handler\n", DEVNAME(sc)((sc)->sc_dev.dv_xname), table.flow_handler); |
| 10914 | |
| 10915 | if (sc->sc_uc.uc_umac_error_event_table) |
| 10916 | iwm_nic_umac_error(sc); |
| 10917 | } |
| 10918 | |
| 10919 | void |
| 10920 | iwm_dump_driver_status(struct iwm_softc *sc) |
| 10921 | { |
| 10922 | int i; |
| 10923 | |
| 10924 | printf("driver status:\n"); |
| 10925 | for (i = 0; i < IWM_MAX_QUEUES31; i++) { |
| 10926 | struct iwm_tx_ring *ring = &sc->txq[i]; |
| 10927 | printf(" tx ring %2d: qid=%-2d cur=%-3d " |
| 10928 | "queued=%-3d\n", |
| 10929 | i, ring->qid, ring->cur, ring->queued); |
| 10930 | } |
| 10931 | printf(" rx ring: cur=%d\n", sc->rxq.cur); |
| 10932 | printf(" 802.11 state %s\n", |
| 10933 | ieee80211_state_name[sc->sc_ic.ic_state]); |
| 10934 | } |
| 10935 | |
| 10936 | #define SYNC_RESP_STRUCT(_var_, _pkt_)do { (*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), ( data->map), (sizeof(*(_pkt_))), (sizeof(*(_var_))), (0x02) ); _var_ = (void *)((_pkt_)+1); } while ( 0) \ |
| 10937 | do { \ |
| 10938 | bus_dmamap_sync(sc->sc_dmat, data->map, sizeof(*(_pkt_)), \(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (sizeof(*(_pkt_))), (sizeof(*(_var_))), (0x02)) |
| 10939 | sizeof(*(_var_)), BUS_DMASYNC_POSTREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (sizeof(*(_pkt_))), (sizeof(*(_var_))), (0x02)); \ |
| 10940 | _var_ = (void *)((_pkt_)+1); \ |
| 10941 | } while (/*CONSTCOND*/0) |
| 10942 | |
| 10943 | #define SYNC_RESP_PTR(_ptr_, _len_, _pkt_)do { (*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), ( data->map), (sizeof(*(_pkt_))), (sizeof(len)), (0x02)); _ptr_ = (void *)((_pkt_)+1); } while ( 0) \ |
| 10944 | do { \ |
| 10945 | bus_dmamap_sync(sc->sc_dmat, data->map, sizeof(*(_pkt_)), \(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (sizeof(*(_pkt_))), (sizeof(len)), (0x02)) |
| 10946 | sizeof(len), BUS_DMASYNC_POSTREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (sizeof(*(_pkt_))), (sizeof(len)), (0x02)); \ |
| 10947 | _ptr_ = (void *)((_pkt_)+1); \ |
| 10948 | } while (/*CONSTCOND*/0) |
| 10949 | |
| 10950 | #define ADVANCE_RXQ(sc)(sc->rxq.cur = (sc->rxq.cur + 1) % count); (sc->rxq.cur = (sc->rxq.cur + 1) % count); |
| 10951 | |
| 10952 | int |
| 10953 | iwm_rx_pkt_valid(struct iwm_rx_packet *pkt) |
| 10954 | { |
| 10955 | int qid, idx, code; |
| 10956 | |
| 10957 | qid = pkt->hdr.qid & ~0x80; |
| 10958 | idx = pkt->hdr.idx; |
| 10959 | code = IWM_WIDE_ID(pkt->hdr.flags, pkt->hdr.code)((pkt->hdr.flags << 8) | pkt->hdr.code); |
| 10960 | |
| 10961 | return (!(qid == 0 && idx == 0 && code == 0) && |
| 10962 | pkt->len_n_flags != htole32(IWM_FH_RSCSR_FRAME_INVALID)((__uint32_t)(0x55550000))); |
| 10963 | } |
| 10964 | |
| 10965 | void |
| 10966 | iwm_rx_pkt(struct iwm_softc *sc, struct iwm_rx_data *data, struct mbuf_list *ml) |
| 10967 | { |
| 10968 | struct ifnet *ifp = IC2IFP(&sc->sc_ic)(&(&sc->sc_ic)->ic_ac.ac_if); |
| 10969 | struct iwm_rx_packet *pkt, *nextpkt; |
| 10970 | uint32_t offset = 0, nextoff = 0, nmpdu = 0, len; |
| 10971 | struct mbuf *m0, *m; |
| 10972 | const size_t minsz = sizeof(pkt->len_n_flags) + sizeof(pkt->hdr); |
| 10973 | int qid, idx, code, handled = 1; |
| 10974 | |
| 10975 | bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWM_RBUF_SIZE,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (0), (4096), (0x02)) |
| 10976 | BUS_DMASYNC_POSTREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (0), (4096), (0x02)); |
| 10977 | |
| 10978 | m0 = data->m; |
| 10979 | while (m0 && offset + minsz < IWM_RBUF_SIZE4096) { |
| 10980 | pkt = (struct iwm_rx_packet *)(m0->m_datam_hdr.mh_data + offset); |
| 10981 | qid = pkt->hdr.qid; |
| 10982 | idx = pkt->hdr.idx; |
| 10983 | |
| 10984 | code = IWM_WIDE_ID(pkt->hdr.flags, pkt->hdr.code)((pkt->hdr.flags << 8) | pkt->hdr.code); |
| 10985 | |
| 10986 | if (!iwm_rx_pkt_valid(pkt)) |
| 10987 | break; |
| 10988 | |
| 10989 | len = sizeof(pkt->len_n_flags) + iwm_rx_packet_len(pkt); |
| 10990 | if (len < minsz || len > (IWM_RBUF_SIZE4096 - offset)) |
| 10991 | break; |
| 10992 | |
| 10993 | if (code == IWM_REPLY_RX_MPDU_CMD0xc1 && ++nmpdu == 1) { |
| 10994 | /* Take mbuf m0 off the RX ring. */ |
| 10995 | if (iwm_rx_addbuf(sc, IWM_RBUF_SIZE4096, sc->rxq.cur)) { |
| 10996 | ifp->if_ierrorsif_data.ifi_ierrors++; |
| 10997 | break; |
| 10998 | } |
| 10999 | KASSERT(data->m != m0)((data->m != m0) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/dev/pci/if_iwm.c" , 10999, "data->m != m0")); |
| 11000 | } |
| 11001 | |
| 11002 | switch (code) { |
| 11003 | case IWM_REPLY_RX_PHY_CMD0xc0: |
| 11004 | iwm_rx_rx_phy_cmd(sc, pkt, data); |
| 11005 | break; |
| 11006 | |
| 11007 | case IWM_REPLY_RX_MPDU_CMD0xc1: { |
| 11008 | size_t maxlen = IWM_RBUF_SIZE4096 - offset - minsz; |
| 11009 | nextoff = offset + |
| 11010 | roundup(len, IWM_FH_RSCSR_FRAME_ALIGN)((((len)+((0x40)-1))/(0x40))*(0x40)); |
| 11011 | nextpkt = (struct iwm_rx_packet *) |
| 11012 | (m0->m_datam_hdr.mh_data + nextoff); |
| 11013 | if (nextoff + minsz >= IWM_RBUF_SIZE4096 || |
| 11014 | !iwm_rx_pkt_valid(nextpkt)) { |
| 11015 | /* No need to copy last frame in buffer. */ |
| 11016 | if (offset > 0) |
| 11017 | m_adj(m0, offset); |
| 11018 | if (sc->sc_mqrx_supported) |
| 11019 | iwm_rx_mpdu_mq(sc, m0, pkt->data, |
| 11020 | maxlen, ml); |
| 11021 | else |
| 11022 | iwm_rx_mpdu(sc, m0, pkt->data, |
| 11023 | maxlen, ml); |
| 11024 | m0 = NULL((void *)0); /* stack owns m0 now; abort loop */ |
| 11025 | } else { |
| 11026 | /* |
| 11027 | * Create an mbuf which points to the current |
| 11028 | * packet. Always copy from offset zero to |
| 11029 | * preserve m_pkthdr. |
| 11030 | */ |
| 11031 | m = m_copym(m0, 0, M_COPYALL1000000000, M_DONTWAIT0x0002); |
| 11032 | if (m == NULL((void *)0)) { |
| 11033 | ifp->if_ierrorsif_data.ifi_ierrors++; |
| 11034 | m_freem(m0); |
| 11035 | m0 = NULL((void *)0); |
| 11036 | break; |
| 11037 | } |
| 11038 | m_adj(m, offset); |
| 11039 | if (sc->sc_mqrx_supported) |
| 11040 | iwm_rx_mpdu_mq(sc, m, pkt->data, |
| 11041 | maxlen, ml); |
| 11042 | else |
| 11043 | iwm_rx_mpdu(sc, m, pkt->data, |
| 11044 | maxlen, ml); |
| 11045 | } |
| 11046 | break; |
| 11047 | } |
| 11048 | |
| 11049 | case IWM_TX_CMD0x1c: |
| 11050 | iwm_rx_tx_cmd(sc, pkt, data); |
| 11051 | break; |
| 11052 | |
| 11053 | case IWM_BA_NOTIF0xc5: |
| 11054 | iwm_rx_compressed_ba(sc, pkt); |
| 11055 | break; |
| 11056 | |
| 11057 | case IWM_MISSED_BEACONS_NOTIFICATION0xa2: |
| 11058 | iwm_rx_bmiss(sc, pkt, data); |
| 11059 | break; |
| 11060 | |
| 11061 | case IWM_MFUART_LOAD_NOTIFICATION0xb1: |
| 11062 | break; |
| 11063 | |
| 11064 | case IWM_ALIVE0x1: { |
| 11065 | struct iwm_alive_resp_v1 *resp1; |
| 11066 | struct iwm_alive_resp_v2 *resp2; |
| 11067 | struct iwm_alive_resp_v3 *resp3; |
| 11068 | |
| 11069 | if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp1)) { |
| 11070 | SYNC_RESP_STRUCT(resp1, pkt)do { (*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), ( data->map), (sizeof(*(pkt))), (sizeof(*(resp1))), (0x02)); resp1 = (void *)((pkt)+1); } while ( 0); |
| 11071 | sc->sc_uc.uc_error_event_table |
| 11072 | = le32toh(resp1->error_event_table_ptr)((__uint32_t)(resp1->error_event_table_ptr)); |
| 11073 | sc->sc_uc.uc_log_event_table |
| 11074 | = le32toh(resp1->log_event_table_ptr)((__uint32_t)(resp1->log_event_table_ptr)); |
| 11075 | sc->sched_base = le32toh(resp1->scd_base_ptr)((__uint32_t)(resp1->scd_base_ptr)); |
| 11076 | if (resp1->status == IWM_ALIVE_STATUS_OK0xCAFE) |
| 11077 | sc->sc_uc.uc_ok = 1; |
| 11078 | else |
| 11079 | sc->sc_uc.uc_ok = 0; |
| 11080 | } |
| 11081 | |
| 11082 | if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp2)) { |
| 11083 | SYNC_RESP_STRUCT(resp2, pkt)do { (*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), ( data->map), (sizeof(*(pkt))), (sizeof(*(resp2))), (0x02)); resp2 = (void *)((pkt)+1); } while ( 0); |
| 11084 | sc->sc_uc.uc_error_event_table |
| 11085 | = le32toh(resp2->error_event_table_ptr)((__uint32_t)(resp2->error_event_table_ptr)); |
| 11086 | sc->sc_uc.uc_log_event_table |
| 11087 | = le32toh(resp2->log_event_table_ptr)((__uint32_t)(resp2->log_event_table_ptr)); |
| 11088 | sc->sched_base = le32toh(resp2->scd_base_ptr)((__uint32_t)(resp2->scd_base_ptr)); |
| 11089 | sc->sc_uc.uc_umac_error_event_table |
| 11090 | = le32toh(resp2->error_info_addr)((__uint32_t)(resp2->error_info_addr)); |
| 11091 | if (resp2->status == IWM_ALIVE_STATUS_OK0xCAFE) |
| 11092 | sc->sc_uc.uc_ok = 1; |
| 11093 | else |
| 11094 | sc->sc_uc.uc_ok = 0; |
| 11095 | } |
| 11096 | |
| 11097 | if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp3)) { |
| 11098 | SYNC_RESP_STRUCT(resp3, pkt)do { (*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), ( data->map), (sizeof(*(pkt))), (sizeof(*(resp3))), (0x02)); resp3 = (void *)((pkt)+1); } while ( 0); |
| 11099 | sc->sc_uc.uc_error_event_table |
| 11100 | = le32toh(resp3->error_event_table_ptr)((__uint32_t)(resp3->error_event_table_ptr)); |
| 11101 | sc->sc_uc.uc_log_event_table |
| 11102 | = le32toh(resp3->log_event_table_ptr)((__uint32_t)(resp3->log_event_table_ptr)); |
| 11103 | sc->sched_base = le32toh(resp3->scd_base_ptr)((__uint32_t)(resp3->scd_base_ptr)); |
| 11104 | sc->sc_uc.uc_umac_error_event_table |
| 11105 | = le32toh(resp3->error_info_addr)((__uint32_t)(resp3->error_info_addr)); |
| 11106 | if (resp3->status == IWM_ALIVE_STATUS_OK0xCAFE) |
| 11107 | sc->sc_uc.uc_ok = 1; |
| 11108 | else |
| 11109 | sc->sc_uc.uc_ok = 0; |
| 11110 | } |
| 11111 | |
| 11112 | sc->sc_uc.uc_intr = 1; |
| 11113 | wakeup(&sc->sc_uc); |
| 11114 | break; |
| 11115 | } |
| 11116 | |
| 11117 | case IWM_CALIB_RES_NOTIF_PHY_DB0x6b: { |
| 11118 | struct iwm_calib_res_notif_phy_db *phy_db_notif; |
| 11119 | SYNC_RESP_STRUCT(phy_db_notif, pkt)do { (*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), ( data->map), (sizeof(*(pkt))), (sizeof(*(phy_db_notif))), ( 0x02)); phy_db_notif = (void *)((pkt)+1); } while ( 0); |
| 11120 | iwm_phy_db_set_section(sc, phy_db_notif); |
| 11121 | sc->sc_init_complete |= IWM_CALIB_COMPLETE0x02; |
| 11122 | wakeup(&sc->sc_init_complete); |
| 11123 | break; |
| 11124 | } |
| 11125 | |
| 11126 | case IWM_STATISTICS_NOTIFICATION0x9d: { |
| 11127 | struct iwm_notif_statistics *stats; |
| 11128 | SYNC_RESP_STRUCT(stats, pkt)do { (*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), ( data->map), (sizeof(*(pkt))), (sizeof(*(stats))), (0x02)); stats = (void *)((pkt)+1); } while ( 0); |
| 11129 | memcpy(&sc->sc_stats, stats, sizeof(sc->sc_stats))__builtin_memcpy((&sc->sc_stats), (stats), (sizeof(sc-> sc_stats))); |
| 11130 | sc->sc_noise = iwm_get_noise(&stats->rx.general); |
| 11131 | break; |
| 11132 | } |
| 11133 | |
| 11134 | case IWM_MCC_CHUB_UPDATE_CMD0xc9: { |
| 11135 | struct iwm_mcc_chub_notif *notif; |
| 11136 | SYNC_RESP_STRUCT(notif, pkt)do { (*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), ( data->map), (sizeof(*(pkt))), (sizeof(*(notif))), (0x02)); notif = (void *)((pkt)+1); } while ( 0); |
| 11137 | iwm_mcc_update(sc, notif); |
| 11138 | break; |
| 11139 | } |
| 11140 | |
| 11141 | case IWM_DTS_MEASUREMENT_NOTIFICATION0xdd: |
| 11142 | case IWM_WIDE_ID(IWM_PHY_OPS_GROUP,((0x4 << 8) | 0xFF) |
| 11143 | IWM_DTS_MEASUREMENT_NOTIF_WIDE)((0x4 << 8) | 0xFF): |
| 11144 | case IWM_WIDE_ID(IWM_PHY_OPS_GROUP,((0x4 << 8) | 0x04) |
| 11145 | IWM_TEMP_REPORTING_THRESHOLDS_CMD)((0x4 << 8) | 0x04): |
| 11146 | break; |
| 11147 | |
| 11148 | case IWM_WIDE_ID(IWM_PHY_OPS_GROUP,((0x4 << 8) | 0xFE) |
| 11149 | IWM_CT_KILL_NOTIFICATION)((0x4 << 8) | 0xFE): { |
| 11150 | struct iwm_ct_kill_notif *notif; |
| 11151 | SYNC_RESP_STRUCT(notif, pkt)do { (*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), ( data->map), (sizeof(*(pkt))), (sizeof(*(notif))), (0x02)); notif = (void *)((pkt)+1); } while ( 0); |
| 11152 | printf("%s: device at critical temperature (%u degC), " |
| 11153 | "stopping device\n", |
| 11154 | DEVNAME(sc)((sc)->sc_dev.dv_xname), le16toh(notif->temperature)((__uint16_t)(notif->temperature))); |
| 11155 | sc->sc_flags |= IWM_FLAG_HW_ERR0x80; |
| 11156 | task_add(systq, &sc->init_task); |
| 11157 | break; |
| 11158 | } |
| 11159 | |
| 11160 | case IWM_ADD_STA_KEY0x17: |
| 11161 | case IWM_PHY_CONFIGURATION_CMD0x6a: |
| 11162 | case IWM_TX_ANT_CONFIGURATION_CMD0x98: |
| 11163 | case IWM_ADD_STA0x18: |
| 11164 | case IWM_MAC_CONTEXT_CMD0x28: |
| 11165 | case IWM_REPLY_SF_CFG_CMD0xd1: |
| 11166 | case IWM_POWER_TABLE_CMD0x77: |
| 11167 | case IWM_LTR_CONFIG0xee: |
| 11168 | case IWM_PHY_CONTEXT_CMD0x8: |
| 11169 | case IWM_BINDING_CONTEXT_CMD0x2b: |
| 11170 | case IWM_WIDE_ID(IWM_LONG_GROUP, IWM_SCAN_CFG_CMD)((0x1 << 8) | 0xc): |
| 11171 | case IWM_WIDE_ID(IWM_LONG_GROUP, IWM_SCAN_REQ_UMAC)((0x1 << 8) | 0xd): |
| 11172 | case IWM_WIDE_ID(IWM_LONG_GROUP, IWM_SCAN_ABORT_UMAC)((0x1 << 8) | 0xe): |
| 11173 | case IWM_SCAN_OFFLOAD_REQUEST_CMD0x51: |
| 11174 | case IWM_SCAN_OFFLOAD_ABORT_CMD0x52: |
| 11175 | case IWM_REPLY_BEACON_FILTERING_CMD0xd2: |
| 11176 | case IWM_MAC_PM_POWER_TABLE0xa9: |
| 11177 | case IWM_TIME_QUOTA_CMD0x2c: |
| 11178 | case IWM_REMOVE_STA0x19: |
| 11179 | case IWM_TXPATH_FLUSH0x1e: |
| 11180 | case IWM_LQ_CMD0x4e: |
| 11181 | case IWM_WIDE_ID(IWM_LONG_GROUP,((0x1 << 8) | 0x4f) |
| 11182 | IWM_FW_PAGING_BLOCK_CMD)((0x1 << 8) | 0x4f): |
| 11183 | case IWM_BT_CONFIG0x9b: |
| 11184 | case IWM_REPLY_THERMAL_MNG_BACKOFF0x7e: |
| 11185 | case IWM_NVM_ACCESS_CMD0x88: |
| 11186 | case IWM_MCC_UPDATE_CMD0xc8: |
| 11187 | case IWM_TIME_EVENT_CMD0x29: { |
| 11188 | size_t pkt_len; |
| 11189 | |
| 11190 | if (sc->sc_cmd_resp_pkt[idx] == NULL((void *)0)) |
| 11191 | break; |
| 11192 | |
| 11193 | bus_dmamap_sync(sc->sc_dmat, data->map, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (0), (sizeof(*pkt)), (0x02)) |
| 11194 | sizeof(*pkt), BUS_DMASYNC_POSTREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (0), (sizeof(*pkt)), (0x02)); |
| 11195 | |
| 11196 | pkt_len = sizeof(pkt->len_n_flags) + |
| 11197 | iwm_rx_packet_len(pkt); |
| 11198 | |
| 11199 | if ((pkt->hdr.flags & IWM_CMD_FAILED_MSK0x40) || |
| 11200 | pkt_len < sizeof(*pkt) || |
| 11201 | pkt_len > sc->sc_cmd_resp_len[idx]) { |
| 11202 | free(sc->sc_cmd_resp_pkt[idx], M_DEVBUF2, |
| 11203 | sc->sc_cmd_resp_len[idx]); |
| 11204 | sc->sc_cmd_resp_pkt[idx] = NULL((void *)0); |
| 11205 | break; |
| 11206 | } |
| 11207 | |
| 11208 | bus_dmamap_sync(sc->sc_dmat, data->map, sizeof(*pkt),(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (sizeof(*pkt)), (pkt_len - sizeof(*pkt)), (0x02)) |
| 11209 | pkt_len - sizeof(*pkt), BUS_DMASYNC_POSTREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (data-> map), (sizeof(*pkt)), (pkt_len - sizeof(*pkt)), (0x02)); |
| 11210 | memcpy(sc->sc_cmd_resp_pkt[idx], pkt, pkt_len)__builtin_memcpy((sc->sc_cmd_resp_pkt[idx]), (pkt), (pkt_len )); |
| 11211 | break; |
| 11212 | } |
| 11213 | |
| 11214 | /* ignore */ |
| 11215 | case IWM_PHY_DB_CMD0x6c: |
| 11216 | break; |
| 11217 | |
| 11218 | case IWM_INIT_COMPLETE_NOTIF0x4: |
| 11219 | sc->sc_init_complete |= IWM_INIT_COMPLETE0x01; |
| 11220 | wakeup(&sc->sc_init_complete); |
| 11221 | break; |
| 11222 | |
| 11223 | case IWM_SCAN_OFFLOAD_COMPLETE0x6d: { |
| 11224 | struct iwm_periodic_scan_complete *notif; |
| 11225 | SYNC_RESP_STRUCT(notif, pkt)do { (*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), ( data->map), (sizeof(*(pkt))), (sizeof(*(notif))), (0x02)); notif = (void *)((pkt)+1); } while ( 0); |
| 11226 | break; |
| 11227 | } |
| 11228 | |
| 11229 | case IWM_SCAN_ITERATION_COMPLETE0xe7: { |
| 11230 | struct iwm_lmac_scan_complete_notif *notif; |
| 11231 | SYNC_RESP_STRUCT(notif, pkt)do { (*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), ( data->map), (sizeof(*(pkt))), (sizeof(*(notif))), (0x02)); notif = (void *)((pkt)+1); } while ( 0); |
| 11232 | iwm_endscan(sc); |
| 11233 | break; |
| 11234 | } |
| 11235 | |
| 11236 | case IWM_SCAN_COMPLETE_UMAC0xf: { |
| 11237 | struct iwm_umac_scan_complete *notif; |
| 11238 | SYNC_RESP_STRUCT(notif, pkt)do { (*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), ( data->map), (sizeof(*(pkt))), (sizeof(*(notif))), (0x02)); notif = (void *)((pkt)+1); } while ( 0); |
| 11239 | iwm_endscan(sc); |
| 11240 | break; |
| 11241 | } |
| 11242 | |
| 11243 | case IWM_SCAN_ITERATION_COMPLETE_UMAC0xb5: { |
| 11244 | struct iwm_umac_scan_iter_complete_notif *notif; |
| 11245 | SYNC_RESP_STRUCT(notif, pkt)do { (*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), ( data->map), (sizeof(*(pkt))), (sizeof(*(notif))), (0x02)); notif = (void *)((pkt)+1); } while ( 0); |
| 11246 | iwm_endscan(sc); |
| 11247 | break; |
| 11248 | } |
| 11249 | |
| 11250 | case IWM_REPLY_ERROR0x2: { |
| 11251 | struct iwm_error_resp *resp; |
| 11252 | SYNC_RESP_STRUCT(resp, pkt)do { (*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), ( data->map), (sizeof(*(pkt))), (sizeof(*(resp))), (0x02)); resp = (void *)((pkt)+1); } while ( 0); |
| 11253 | printf("%s: firmware error 0x%x, cmd 0x%x\n", |
| 11254 | DEVNAME(sc)((sc)->sc_dev.dv_xname), le32toh(resp->error_type)((__uint32_t)(resp->error_type)), |
| 11255 | resp->cmd_id); |
| 11256 | break; |
| 11257 | } |
| 11258 | |
| 11259 | case IWM_TIME_EVENT_NOTIFICATION0x2a: { |
| 11260 | struct iwm_time_event_notif *notif; |
| 11261 | uint32_t action; |
| 11262 | SYNC_RESP_STRUCT(notif, pkt)do { (*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), ( data->map), (sizeof(*(pkt))), (sizeof(*(notif))), (0x02)); notif = (void *)((pkt)+1); } while ( 0); |
| 11263 | |
| 11264 | if (sc->sc_time_event_uid != le32toh(notif->unique_id)((__uint32_t)(notif->unique_id))) |
| 11265 | break; |
| 11266 | action = le32toh(notif->action)((__uint32_t)(notif->action)); |
| 11267 | if (action & IWM_TE_V2_NOTIF_HOST_EVENT_END(1 << 1)) |
| 11268 | sc->sc_flags &= ~IWM_FLAG_TE_ACTIVE0x40; |
| 11269 | break; |
| 11270 | } |
| 11271 | |
| 11272 | case IWM_WIDE_ID(IWM_SYSTEM_GROUP,((0x2 << 8) | 0xff) |
| 11273 | IWM_FSEQ_VER_MISMATCH_NOTIFICATION)((0x2 << 8) | 0xff): |
| 11274 | break; |
| 11275 | |
| 11276 | /* |
| 11277 | * Firmware versions 21 and 22 generate some DEBUG_LOG_MSG |
| 11278 | * messages. Just ignore them for now. |
| 11279 | */ |
| 11280 | case IWM_DEBUG_LOG_MSG0xf7: |
| 11281 | break; |
| 11282 | |
| 11283 | case IWM_MCAST_FILTER_CMD0xd0: |
| 11284 | break; |
| 11285 | |
| 11286 | case IWM_SCD_QUEUE_CFG0x1d: { |
| 11287 | struct iwm_scd_txq_cfg_rsp *rsp; |
| 11288 | SYNC_RESP_STRUCT(rsp, pkt)do { (*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), ( data->map), (sizeof(*(pkt))), (sizeof(*(rsp))), (0x02)); rsp = (void *)((pkt)+1); } while ( 0); |
| 11289 | |
| 11290 | break; |
| 11291 | } |
| 11292 | |
| 11293 | case IWM_WIDE_ID(IWM_DATA_PATH_GROUP, IWM_DQA_ENABLE_CMD)((0x5 << 8) | 0x00): |
| 11294 | break; |
| 11295 | |
| 11296 | case IWM_WIDE_ID(IWM_SYSTEM_GROUP, IWM_SOC_CONFIGURATION_CMD)((0x2 << 8) | 0x01): |
| 11297 | break; |
| 11298 | |
| 11299 | default: |
| 11300 | handled = 0; |
| 11301 | printf("%s: unhandled firmware response 0x%x/0x%x " |
| 11302 | "rx ring %d[%d]\n", |
| 11303 | DEVNAME(sc)((sc)->sc_dev.dv_xname), code, pkt->len_n_flags, |
| 11304 | (qid & ~0x80), idx); |
| 11305 | break; |
| 11306 | } |
| 11307 | |
| 11308 | /* |
| 11309 | * uCode sets bit 0x80 when it originates the notification, |
| 11310 | * i.e. when the notification is not a direct response to a |
| 11311 | * command sent by the driver. |
| 11312 | * For example, uCode issues IWM_REPLY_RX when it sends a |
| 11313 | * received frame to the driver. |
| 11314 | */ |
| 11315 | if (handled && !(qid & (1 << 7))) { |
| 11316 | iwm_cmd_done(sc, qid, idx, code); |
| 11317 | } |
| 11318 | |
| 11319 | offset += roundup(len, IWM_FH_RSCSR_FRAME_ALIGN)((((len)+((0x40)-1))/(0x40))*(0x40)); |
| 11320 | } |
| 11321 | |
| 11322 | if (m0 && m0 != data->m) |
| 11323 | m_freem(m0); |
| 11324 | } |
| 11325 | |
| 11326 | void |
| 11327 | iwm_notif_intr(struct iwm_softc *sc) |
| 11328 | { |
| 11329 | struct mbuf_list ml = MBUF_LIST_INITIALIZER(){ ((void *)0), ((void *)0), 0 }; |
| 11330 | uint32_t wreg; |
| 11331 | uint16_t hw; |
| 11332 | int count; |
| 11333 | |
| 11334 | bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> rxq.stat_dma.map), (0), (sc->rxq.stat_dma.size), (0x02)) |
| 11335 | 0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (sc-> rxq.stat_dma.map), (0), (sc->rxq.stat_dma.size), (0x02)); |
| 11336 | |
| 11337 | if (sc->sc_mqrx_supported) { |
| 11338 | count = IWM_RX_MQ_RING_COUNT512; |
| 11339 | wreg = IWM_RFH_Q0_FRBDCB_WIDX_TRG0x1C80; |
| 11340 | } else { |
| 11341 | count = IWM_RX_RING_COUNT256; |
| 11342 | wreg = IWM_FH_RSCSR_CHNL0_WPTR(((((0x1000) + 0xBC0)) + 0x008)); |
| 11343 | } |
| 11344 | |
| 11345 | hw = le16toh(sc->rxq.stat->closed_rb_num)((__uint16_t)(sc->rxq.stat->closed_rb_num)) & 0xfff; |
| 11346 | hw &= (count - 1); |
| 11347 | while (sc->rxq.cur != hw) { |
| 11348 | struct iwm_rx_data *data = &sc->rxq.data[sc->rxq.cur]; |
| 11349 | iwm_rx_pkt(sc, data, &ml); |
| 11350 | ADVANCE_RXQ(sc)(sc->rxq.cur = (sc->rxq.cur + 1) % count);; |
| 11351 | } |
| 11352 | if_input(&sc->sc_ic.ic_ific_ac.ac_if, &ml); |
| 11353 | |
| 11354 | /* |
| 11355 | * Tell the firmware what we have processed. |
| 11356 | * Seems like the hardware gets upset unless we align the write by 8?? |
| 11357 | */ |
| 11358 | hw = (hw == 0) ? count - 1 : hw - 1; |
| 11359 | IWM_WRITE(sc, wreg, hw & ~7)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((wreg)), ((hw & ~7)))); |
| 11360 | } |
| 11361 | |
| 11362 | int |
| 11363 | iwm_intr(void *arg) |
| 11364 | { |
| 11365 | struct iwm_softc *sc = arg; |
| 11366 | struct ieee80211com *ic = &sc->sc_ic; |
| 11367 | struct ifnet *ifp = IC2IFP(ic)(&(ic)->ic_ac.ac_if); |
| 11368 | int handled = 0; |
| 11369 | int rv = 0; |
| 11370 | uint32_t r1, r2; |
| 11371 | |
| 11372 | IWM_WRITE(sc, IWM_CSR_INT_MASK, 0)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x00c))), ( (0)))); |
| 11373 | |
| 11374 | if (sc->sc_flags & IWM_FLAG_USE_ICT0x01) { |
| 11375 | uint32_t *ict = sc->ict_dma.vaddr; |
| 11376 | int tmp; |
| 11377 | |
| 11378 | tmp = htole32(ict[sc->ict_cur])((__uint32_t)(ict[sc->ict_cur])); |
| 11379 | if (!tmp) |
| 11380 | goto out_ena; |
| 11381 | |
| 11382 | /* |
| 11383 | * ok, there was something. keep plowing until we have all. |
| 11384 | */ |
| 11385 | r1 = r2 = 0; |
| 11386 | while (tmp) { |
| 11387 | r1 |= tmp; |
| 11388 | ict[sc->ict_cur] = 0; |
| 11389 | sc->ict_cur = (sc->ict_cur+1) % IWM_ICT_COUNT(4096 / sizeof (uint32_t)); |
| 11390 | tmp = htole32(ict[sc->ict_cur])((__uint32_t)(ict[sc->ict_cur])); |
| 11391 | } |
| 11392 | |
| 11393 | /* this is where the fun begins. don't ask */ |
| 11394 | if (r1 == 0xffffffff) |
| 11395 | r1 = 0; |
| 11396 | |
| 11397 | /* |
| 11398 | * Workaround for hardware bug where bits are falsely cleared |
| 11399 | * when using interrupt coalescing. Bit 15 should be set if |
| 11400 | * bits 18 and 19 are set. |
| 11401 | */ |
| 11402 | if (r1 & 0xc0000) |
| 11403 | r1 |= 0x8000; |
| 11404 | |
| 11405 | r1 = (0xff & r1) | ((0xff00 & r1) << 16); |
| 11406 | } else { |
| 11407 | r1 = IWM_READ(sc, IWM_CSR_INT)(((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x008))))); |
| 11408 | r2 = IWM_READ(sc, IWM_CSR_FH_INT_STATUS)(((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x010))))); |
| 11409 | } |
| 11410 | if (r1 == 0 && r2 == 0) { |
| 11411 | goto out_ena; |
| 11412 | } |
| 11413 | if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) |
| 11414 | goto out; |
| 11415 | |
| 11416 | IWM_WRITE(sc, IWM_CSR_INT, r1 | ~sc->sc_intmask)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x008))), ( (r1 | ~sc->sc_intmask)))); |
| 11417 | |
| 11418 | /* ignored */ |
| 11419 | handled |= (r1 & (IWM_CSR_INT_BIT_ALIVE(1 << 0) /*| IWM_CSR_INT_BIT_SCD*/)); |
| 11420 | |
| 11421 | if (r1 & IWM_CSR_INT_BIT_RF_KILL(1 << 7)) { |
| 11422 | handled |= IWM_CSR_INT_BIT_RF_KILL(1 << 7); |
| 11423 | iwm_check_rfkill(sc); |
| 11424 | task_add(systq, &sc->init_task); |
| 11425 | rv = 1; |
| 11426 | goto out_ena; |
| 11427 | } |
| 11428 | |
| 11429 | if (r1 & IWM_CSR_INT_BIT_SW_ERR(1 << 25)) { |
| 11430 | if (ifp->if_flags & IFF_DEBUG0x4) { |
| 11431 | iwm_nic_error(sc); |
| 11432 | iwm_dump_driver_status(sc); |
| 11433 | } |
| 11434 | printf("%s: fatal firmware error\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 11435 | if ((sc->sc_flags & IWM_FLAG_SHUTDOWN0x100) == 0) |
| 11436 | task_add(systq, &sc->init_task); |
| 11437 | rv = 1; |
| 11438 | goto out; |
| 11439 | |
| 11440 | } |
| 11441 | |
| 11442 | if (r1 & IWM_CSR_INT_BIT_HW_ERR(1 << 29)) { |
| 11443 | handled |= IWM_CSR_INT_BIT_HW_ERR(1 << 29); |
| 11444 | printf("%s: hardware error, stopping device \n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 11445 | if ((sc->sc_flags & IWM_FLAG_SHUTDOWN0x100) == 0) { |
| 11446 | sc->sc_flags |= IWM_FLAG_HW_ERR0x80; |
| 11447 | task_add(systq, &sc->init_task); |
| 11448 | } |
| 11449 | rv = 1; |
| 11450 | goto out; |
| 11451 | } |
| 11452 | |
| 11453 | /* firmware chunk loaded */ |
| 11454 | if (r1 & IWM_CSR_INT_BIT_FH_TX(1 << 27)) { |
| 11455 | IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_TX_MASK)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x010))), ( (((1 << 1) | (1 << 0)))))); |
| 11456 | handled |= IWM_CSR_INT_BIT_FH_TX(1 << 27); |
| 11457 | |
| 11458 | sc->sc_fw_chunk_done = 1; |
| 11459 | wakeup(&sc->sc_fw); |
| 11460 | } |
| 11461 | |
| 11462 | if (r1 & (IWM_CSR_INT_BIT_FH_RX(1U << 31) | IWM_CSR_INT_BIT_SW_RX(1 << 3) | |
| 11463 | IWM_CSR_INT_BIT_RX_PERIODIC(1 << 28))) { |
| 11464 | if (r1 & (IWM_CSR_INT_BIT_FH_RX(1U << 31) | IWM_CSR_INT_BIT_SW_RX(1 << 3))) { |
| 11465 | handled |= (IWM_CSR_INT_BIT_FH_RX(1U << 31) | IWM_CSR_INT_BIT_SW_RX(1 << 3)); |
| 11466 | IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_RX_MASK)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x010))), ( (((1 << 30) | (1 << 17) | (1 << 16)))))); |
| 11467 | } |
| 11468 | if (r1 & IWM_CSR_INT_BIT_RX_PERIODIC(1 << 28)) { |
| 11469 | handled |= IWM_CSR_INT_BIT_RX_PERIODIC(1 << 28); |
| 11470 | IWM_WRITE(sc, IWM_CSR_INT, IWM_CSR_INT_BIT_RX_PERIODIC)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x008))), ( ((1 << 28))))); |
| 11471 | } |
| 11472 | |
| 11473 | /* Disable periodic interrupt; we use it as just a one-shot. */ |
| 11474 | IWM_WRITE_1(sc, IWM_CSR_INT_PERIODIC_REG, IWM_CSR_INT_PERIODIC_DIS)(((sc)->sc_st)->write_1(((sc)->sc_sh), (((0x005))), ( ((0x00))))); |
| 11475 | |
| 11476 | /* |
| 11477 | * Enable periodic interrupt in 8 msec only if we received |
| 11478 | * real RX interrupt (instead of just periodic int), to catch |
| 11479 | * any dangling Rx interrupt. If it was just the periodic |
| 11480 | * interrupt, there was no dangling Rx activity, and no need |
| 11481 | * to extend the periodic interrupt; one-shot is enough. |
| 11482 | */ |
| 11483 | if (r1 & (IWM_CSR_INT_BIT_FH_RX(1U << 31) | IWM_CSR_INT_BIT_SW_RX(1 << 3))) |
| 11484 | IWM_WRITE_1(sc, IWM_CSR_INT_PERIODIC_REG,(((sc)->sc_st)->write_1(((sc)->sc_sh), (((0x005))), ( ((0xFF))))) |
| 11485 | IWM_CSR_INT_PERIODIC_ENA)(((sc)->sc_st)->write_1(((sc)->sc_sh), (((0x005))), ( ((0xFF))))); |
| 11486 | |
| 11487 | iwm_notif_intr(sc); |
| 11488 | } |
| 11489 | |
| 11490 | rv = 1; |
| 11491 | |
| 11492 | out_ena: |
| 11493 | iwm_restore_interrupts(sc); |
| 11494 | out: |
| 11495 | return rv; |
| 11496 | } |
| 11497 | |
| 11498 | int |
| 11499 | iwm_intr_msix(void *arg) |
| 11500 | { |
| 11501 | struct iwm_softc *sc = arg; |
| 11502 | struct ieee80211com *ic = &sc->sc_ic; |
| 11503 | struct ifnet *ifp = IC2IFP(ic)(&(ic)->ic_ac.ac_if); |
| 11504 | uint32_t inta_fh, inta_hw; |
| 11505 | int vector = 0; |
| 11506 | |
| 11507 | inta_fh = IWM_READ(sc, IWM_CSR_MSIX_FH_INT_CAUSES_AD)(((sc)->sc_st)->read_4(((sc)->sc_sh), ((((0x2000) + 0x800 ))))); |
| 11508 | inta_hw = IWM_READ(sc, IWM_CSR_MSIX_HW_INT_CAUSES_AD)(((sc)->sc_st)->read_4(((sc)->sc_sh), ((((0x2000) + 0x808 ))))); |
| 11509 | IWM_WRITE(sc, IWM_CSR_MSIX_FH_INT_CAUSES_AD, inta_fh)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x800))), ((inta_fh)))); |
| 11510 | IWM_WRITE(sc, IWM_CSR_MSIX_HW_INT_CAUSES_AD, inta_hw)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x808))), ((inta_hw)))); |
| 11511 | inta_fh &= sc->sc_fh_mask; |
| 11512 | inta_hw &= sc->sc_hw_mask; |
| 11513 | |
| 11514 | if (inta_fh & IWM_MSIX_FH_INT_CAUSES_Q0 || |
| 11515 | inta_fh & IWM_MSIX_FH_INT_CAUSES_Q1) { |
| 11516 | iwm_notif_intr(sc); |
| 11517 | } |
| 11518 | |
| 11519 | /* firmware chunk loaded */ |
| 11520 | if (inta_fh & IWM_MSIX_FH_INT_CAUSES_D2S_CH0_NUM) { |
| 11521 | sc->sc_fw_chunk_done = 1; |
| 11522 | wakeup(&sc->sc_fw); |
| 11523 | } |
| 11524 | |
| 11525 | if ((inta_fh & IWM_MSIX_FH_INT_CAUSES_FH_ERR) || |
| 11526 | (inta_hw & IWM_MSIX_HW_INT_CAUSES_REG_SW_ERR) || |
| 11527 | (inta_hw & IWM_MSIX_HW_INT_CAUSES_REG_SW_ERR_V2)) { |
| 11528 | if (ifp->if_flags & IFF_DEBUG0x4) { |
| 11529 | iwm_nic_error(sc); |
| 11530 | iwm_dump_driver_status(sc); |
| 11531 | } |
| 11532 | printf("%s: fatal firmware error\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 11533 | if ((sc->sc_flags & IWM_FLAG_SHUTDOWN0x100) == 0) |
| 11534 | task_add(systq, &sc->init_task); |
| 11535 | return 1; |
| 11536 | } |
| 11537 | |
| 11538 | if (inta_hw & IWM_MSIX_HW_INT_CAUSES_REG_RF_KILL) { |
| 11539 | iwm_check_rfkill(sc); |
| 11540 | task_add(systq, &sc->init_task); |
| 11541 | } |
| 11542 | |
| 11543 | if (inta_hw & IWM_MSIX_HW_INT_CAUSES_REG_HW_ERR) { |
| 11544 | printf("%s: hardware error, stopping device \n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 11545 | if ((sc->sc_flags & IWM_FLAG_SHUTDOWN0x100) == 0) { |
| 11546 | sc->sc_flags |= IWM_FLAG_HW_ERR0x80; |
| 11547 | task_add(systq, &sc->init_task); |
| 11548 | } |
| 11549 | return 1; |
| 11550 | } |
| 11551 | |
| 11552 | /* |
| 11553 | * Before sending the interrupt the HW disables it to prevent |
| 11554 | * a nested interrupt. This is done by writing 1 to the corresponding |
| 11555 | * bit in the mask register. After handling the interrupt, it should be |
| 11556 | * re-enabled by clearing this bit. This register is defined as |
| 11557 | * write 1 clear (W1C) register, meaning that it's being clear |
| 11558 | * by writing 1 to the bit. |
| 11559 | */ |
| 11560 | IWM_WRITE(sc, IWM_CSR_MSIX_AUTOMASK_ST_AD, 1 << vector)(((sc)->sc_st)->write_4(((sc)->sc_sh), ((((0x2000) + 0x810))), ((1 << vector)))); |
| 11561 | return 1; |
| 11562 | } |
| 11563 | |
| 11564 | typedef void *iwm_match_t; |
| 11565 | |
| 11566 | static const struct pci_matchid iwm_devices[] = { |
| 11567 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_3160_10x08b3 }, |
| 11568 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_3160_20x08b4 }, |
| 11569 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_3165_10x3165 }, |
| 11570 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_3165_20x3166 }, |
| 11571 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_3168_10x24fb }, |
| 11572 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_7260_10x08b1 }, |
| 11573 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_7260_20x08b2 }, |
| 11574 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_7265_10x095a }, |
| 11575 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_7265_20x095b }, |
| 11576 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_8260_10x24f3 }, |
| 11577 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_8260_20x24f4 }, |
| 11578 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_8265_10x24fd }, |
| 11579 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_9260_10x2526 }, |
| 11580 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_9560_10x9df0 }, |
| 11581 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_9560_20xa370 }, |
| 11582 | { PCI_VENDOR_INTEL0x8086, PCI_PRODUCT_INTEL_WL_9560_30x31dc }, |
| 11583 | }; |
| 11584 | |
| 11585 | int |
| 11586 | iwm_match(struct device *parent, iwm_match_t match __unused__attribute__((__unused__)), void *aux) |
| 11587 | { |
| 11588 | return pci_matchbyid((struct pci_attach_args *)aux, iwm_devices, |
| 11589 | nitems(iwm_devices)(sizeof((iwm_devices)) / sizeof((iwm_devices)[0]))); |
| 11590 | } |
| 11591 | |
| 11592 | int |
| 11593 | iwm_preinit(struct iwm_softc *sc) |
| 11594 | { |
| 11595 | struct ieee80211com *ic = &sc->sc_ic; |
| 11596 | struct ifnet *ifp = IC2IFP(ic)(&(ic)->ic_ac.ac_if); |
| 11597 | int err; |
| 11598 | |
| 11599 | err = iwm_prepare_card_hw(sc); |
| 11600 | if (err) { |
| 11601 | printf("%s: could not initialize hardware\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 11602 | return err; |
| 11603 | } |
| 11604 | |
| 11605 | if (sc->attached) { |
| 11606 | /* Update MAC in case the upper layers changed it. */ |
| 11607 | IEEE80211_ADDR_COPY(sc->sc_ic.ic_myaddr,__builtin_memcpy((sc->sc_ic.ic_myaddr), (((struct arpcom * )ifp)->ac_enaddr), (6)) |
| 11608 | ((struct arpcom *)ifp)->ac_enaddr)__builtin_memcpy((sc->sc_ic.ic_myaddr), (((struct arpcom * )ifp)->ac_enaddr), (6)); |
| 11609 | return 0; |
| 11610 | } |
| 11611 | |
| 11612 | err = iwm_start_hw(sc); |
| 11613 | if (err) { |
| 11614 | printf("%s: could not initialize hardware\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 11615 | return err; |
| 11616 | } |
| 11617 | |
| 11618 | err = iwm_run_init_mvm_ucode(sc, 1); |
| 11619 | iwm_stop_device(sc); |
| 11620 | if (err) |
| 11621 | return err; |
| 11622 | |
| 11623 | /* Print version info and MAC address on first successful fw load. */ |
| 11624 | sc->attached = 1; |
| 11625 | printf("%s: hw rev 0x%x, fw ver %s, address %s\n", |
| 11626 | DEVNAME(sc)((sc)->sc_dev.dv_xname), sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK(0x000FFF0), |
| 11627 | sc->sc_fwver, ether_sprintf(sc->sc_nvm.hw_addr)); |
| 11628 | |
| 11629 | if (sc->sc_nvm.sku_cap_11n_enable) |
| 11630 | iwm_setup_ht_rates(sc); |
| 11631 | |
| 11632 | /* not all hardware can do 5GHz band */ |
| 11633 | if (!sc->sc_nvm.sku_cap_band_52GHz_enable) |
| 11634 | memset(&ic->ic_sup_rates[IEEE80211_MODE_11A], 0,__builtin_memset((&ic->ic_sup_rates[IEEE80211_MODE_11A ]), (0), (sizeof(ic->ic_sup_rates[IEEE80211_MODE_11A]))) |
| 11635 | sizeof(ic->ic_sup_rates[IEEE80211_MODE_11A]))__builtin_memset((&ic->ic_sup_rates[IEEE80211_MODE_11A ]), (0), (sizeof(ic->ic_sup_rates[IEEE80211_MODE_11A]))); |
| 11636 | |
| 11637 | /* Configure channel information obtained from firmware. */ |
| 11638 | ieee80211_channel_init(ifp); |
| 11639 | |
| 11640 | /* Configure MAC address. */ |
| 11641 | err = if_setlladdr(ifp, ic->ic_myaddr); |
| 11642 | if (err) |
| 11643 | printf("%s: could not set MAC address (error %d)\n", |
| 11644 | DEVNAME(sc)((sc)->sc_dev.dv_xname), err); |
| 11645 | |
| 11646 | ieee80211_media_init(ifp, iwm_media_change, ieee80211_media_status); |
| 11647 | |
| 11648 | return 0; |
| 11649 | } |
| 11650 | |
| 11651 | void |
| 11652 | iwm_attach_hook(struct device *self) |
| 11653 | { |
| 11654 | struct iwm_softc *sc = (void *)self; |
| 11655 | |
| 11656 | KASSERT(!cold)((!cold) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/dev/pci/if_iwm.c" , 11656, "!cold")); |
| 11657 | |
| 11658 | iwm_preinit(sc); |
| 11659 | } |
| 11660 | |
| 11661 | void |
| 11662 | iwm_attach(struct device *parent, struct device *self, void *aux) |
| 11663 | { |
| 11664 | struct iwm_softc *sc = (void *)self; |
| 11665 | struct pci_attach_args *pa = aux; |
| 11666 | pci_intr_handle_t ih; |
| 11667 | pcireg_t reg, memtype; |
| 11668 | struct ieee80211com *ic = &sc->sc_ic; |
| 11669 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
| 11670 | const char *intrstr; |
| 11671 | int err; |
| 11672 | int txq_i, i, j; |
| 11673 | |
| 11674 | sc->sc_pct = pa->pa_pc; |
| 11675 | sc->sc_pcitag = pa->pa_tag; |
| 11676 | sc->sc_dmat = pa->pa_dmat; |
| 11677 | |
| 11678 | rw_init(&sc->ioctl_rwl, "iwmioctl")_rw_init_flags(&sc->ioctl_rwl, "iwmioctl", 0, ((void * )0)); |
| 11679 | |
| 11680 | err = pci_get_capability(sc->sc_pct, sc->sc_pcitag, |
| 11681 | PCI_CAP_PCIEXPRESS0x10, &sc->sc_cap_off, NULL((void *)0)); |
| 11682 | if (err == 0) { |
| 11683 | printf("%s: PCIe capability structure not found!\n", |
| 11684 | DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 11685 | return; |
| 11686 | } |
| 11687 | |
| 11688 | /* |
| 11689 | * We disable the RETRY_TIMEOUT register (0x41) to keep |
| 11690 | * PCI Tx retries from interfering with C3 CPU state. |
| 11691 | */ |
| 11692 | reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); |
| 11693 | pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00); |
| 11694 | |
| 11695 | memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START0x10); |
| 11696 | err = pci_mapreg_map(pa, PCI_MAPREG_START0x10, memtype, 0, |
| 11697 | &sc->sc_st, &sc->sc_sh, NULL((void *)0), &sc->sc_sz, 0); |
| 11698 | if (err) { |
| 11699 | printf("%s: can't map mem space\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 11700 | return; |
| 11701 | } |
| 11702 | |
| 11703 | if (pci_intr_map_msix(pa, 0, &ih) == 0) { |
| 11704 | sc->sc_msix = 1; |
| 11705 | } else if (pci_intr_map_msi(pa, &ih)) { |
| 11706 | if (pci_intr_map(pa, &ih)) { |
| 11707 | printf("%s: can't map interrupt\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 11708 | return; |
| 11709 | } |
| 11710 | /* Hardware bug workaround. */ |
| 11711 | reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, |
| 11712 | PCI_COMMAND_STATUS_REG0x04); |
| 11713 | if (reg & PCI_COMMAND_INTERRUPT_DISABLE0x00000400) |
| 11714 | reg &= ~PCI_COMMAND_INTERRUPT_DISABLE0x00000400; |
| 11715 | pci_conf_write(sc->sc_pct, sc->sc_pcitag, |
| 11716 | PCI_COMMAND_STATUS_REG0x04, reg); |
| 11717 | } |
| 11718 | |
| 11719 | intrstr = pci_intr_string(sc->sc_pct, ih); |
| 11720 | if (sc->sc_msix) |
| 11721 | sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET0x4, |
| 11722 | iwm_intr_msix, sc, DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 11723 | else |
| 11724 | sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET0x4, |
| 11725 | iwm_intr, sc, DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 11726 | |
| 11727 | if (sc->sc_ih == NULL((void *)0)) { |
| 11728 | printf("\n"); |
| 11729 | printf("%s: can't establish interrupt", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 11730 | if (intrstr != NULL((void *)0)) |
| 11731 | printf(" at %s", intrstr); |
| 11732 | printf("\n"); |
| 11733 | return; |
| 11734 | } |
| 11735 | printf(", %s\n", intrstr); |
| 11736 | |
| 11737 | sc->sc_hw_rev = IWM_READ(sc, IWM_CSR_HW_REV)(((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x028))))); |
| 11738 | switch (PCI_PRODUCT(pa->pa_id)(((pa->pa_id) >> 16) & 0xffff)) { |
| 11739 | case PCI_PRODUCT_INTEL_WL_3160_10x08b3: |
| 11740 | case PCI_PRODUCT_INTEL_WL_3160_20x08b4: |
| 11741 | sc->sc_fwname = "iwm-3160-17"; |
| 11742 | sc->host_interrupt_operation_mode = 1; |
| 11743 | sc->sc_device_family = IWM_DEVICE_FAMILY_70001; |
| 11744 | sc->sc_fwdmasegsz = IWM_FWDMASEGSZ(192*1024); |
| 11745 | sc->sc_nvm_max_section_size = 16384; |
| 11746 | sc->nvm_type = IWM_NVM; |
| 11747 | break; |
| 11748 | case PCI_PRODUCT_INTEL_WL_3165_10x3165: |
| 11749 | case PCI_PRODUCT_INTEL_WL_3165_20x3166: |
| 11750 | sc->sc_fwname = "iwm-7265D-29"; |
| 11751 | sc->host_interrupt_operation_mode = 0; |
| 11752 | sc->sc_device_family = IWM_DEVICE_FAMILY_70001; |
| 11753 | sc->sc_fwdmasegsz = IWM_FWDMASEGSZ(192*1024); |
| 11754 | sc->sc_nvm_max_section_size = 16384; |
| 11755 | sc->nvm_type = IWM_NVM; |
| 11756 | break; |
| 11757 | case PCI_PRODUCT_INTEL_WL_3168_10x24fb: |
| 11758 | sc->sc_fwname = "iwm-3168-29"; |
| 11759 | sc->host_interrupt_operation_mode = 0; |
| 11760 | sc->sc_device_family = IWM_DEVICE_FAMILY_70001; |
| 11761 | sc->sc_fwdmasegsz = IWM_FWDMASEGSZ(192*1024); |
| 11762 | sc->sc_nvm_max_section_size = 16384; |
| 11763 | sc->nvm_type = IWM_NVM_SDP; |
| 11764 | break; |
| 11765 | case PCI_PRODUCT_INTEL_WL_7260_10x08b1: |
| 11766 | case PCI_PRODUCT_INTEL_WL_7260_20x08b2: |
| 11767 | sc->sc_fwname = "iwm-7260-17"; |
| 11768 | sc->host_interrupt_operation_mode = 1; |
| 11769 | sc->sc_device_family = IWM_DEVICE_FAMILY_70001; |
| 11770 | sc->sc_fwdmasegsz = IWM_FWDMASEGSZ(192*1024); |
| 11771 | sc->sc_nvm_max_section_size = 16384; |
| 11772 | sc->nvm_type = IWM_NVM; |
| 11773 | break; |
| 11774 | case PCI_PRODUCT_INTEL_WL_7265_10x095a: |
| 11775 | case PCI_PRODUCT_INTEL_WL_7265_20x095b: |
| 11776 | sc->sc_fwname = "iwm-7265-17"; |
| 11777 | sc->host_interrupt_operation_mode = 0; |
| 11778 | sc->sc_device_family = IWM_DEVICE_FAMILY_70001; |
| 11779 | sc->sc_fwdmasegsz = IWM_FWDMASEGSZ(192*1024); |
| 11780 | sc->sc_nvm_max_section_size = 16384; |
| 11781 | sc->nvm_type = IWM_NVM; |
| 11782 | break; |
| 11783 | case PCI_PRODUCT_INTEL_WL_8260_10x24f3: |
| 11784 | case PCI_PRODUCT_INTEL_WL_8260_20x24f4: |
| 11785 | sc->sc_fwname = "iwm-8000C-36"; |
| 11786 | sc->host_interrupt_operation_mode = 0; |
| 11787 | sc->sc_device_family = IWM_DEVICE_FAMILY_80002; |
| 11788 | sc->sc_fwdmasegsz = IWM_FWDMASEGSZ_8000(320*1024); |
| 11789 | sc->sc_nvm_max_section_size = 32768; |
| 11790 | sc->nvm_type = IWM_NVM_EXT; |
| 11791 | break; |
| 11792 | case PCI_PRODUCT_INTEL_WL_8265_10x24fd: |
| 11793 | sc->sc_fwname = "iwm-8265-36"; |
| 11794 | sc->host_interrupt_operation_mode = 0; |
| 11795 | sc->sc_device_family = IWM_DEVICE_FAMILY_80002; |
| 11796 | sc->sc_fwdmasegsz = IWM_FWDMASEGSZ_8000(320*1024); |
| 11797 | sc->sc_nvm_max_section_size = 32768; |
| 11798 | sc->nvm_type = IWM_NVM_EXT; |
| 11799 | break; |
| 11800 | case PCI_PRODUCT_INTEL_WL_9260_10x2526: |
| 11801 | sc->sc_fwname = "iwm-9260-46"; |
| 11802 | sc->host_interrupt_operation_mode = 0; |
| 11803 | sc->sc_device_family = IWM_DEVICE_FAMILY_90003; |
| 11804 | sc->sc_fwdmasegsz = IWM_FWDMASEGSZ_8000(320*1024); |
| 11805 | sc->sc_nvm_max_section_size = 32768; |
| 11806 | sc->sc_mqrx_supported = 1; |
| 11807 | break; |
| 11808 | case PCI_PRODUCT_INTEL_WL_9560_10x9df0: |
| 11809 | case PCI_PRODUCT_INTEL_WL_9560_20xa370: |
| 11810 | case PCI_PRODUCT_INTEL_WL_9560_30x31dc: |
| 11811 | sc->sc_fwname = "iwm-9000-46"; |
| 11812 | sc->host_interrupt_operation_mode = 0; |
| 11813 | sc->sc_device_family = IWM_DEVICE_FAMILY_90003; |
| 11814 | sc->sc_fwdmasegsz = IWM_FWDMASEGSZ_8000(320*1024); |
| 11815 | sc->sc_nvm_max_section_size = 32768; |
| 11816 | sc->sc_mqrx_supported = 1; |
| 11817 | sc->sc_integrated = 1; |
| 11818 | if (PCI_PRODUCT(pa->pa_id)(((pa->pa_id) >> 16) & 0xffff) == PCI_PRODUCT_INTEL_WL_9560_30x31dc) { |
| 11819 | sc->sc_xtal_latency = 670; |
| 11820 | sc->sc_extra_phy_config = IWM_FW_PHY_CFG_SHARED_CLK(1U << 31); |
| 11821 | } else |
| 11822 | sc->sc_xtal_latency = 650; |
| 11823 | break; |
| 11824 | default: |
| 11825 | printf("%s: unknown adapter type\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 11826 | return; |
| 11827 | } |
| 11828 | |
| 11829 | /* |
| 11830 | * In the 8000 HW family the format of the 4 bytes of CSR_HW_REV have |
| 11831 | * changed, and now the revision step also includes bit 0-1 (no more |
| 11832 | * "dash" value). To keep hw_rev backwards compatible - we'll store it |
| 11833 | * in the old format. |
| 11834 | */ |
| 11835 | if (sc->sc_device_family >= IWM_DEVICE_FAMILY_80002) { |
| 11836 | uint32_t hw_step; |
| 11837 | |
| 11838 | sc->sc_hw_rev = (sc->sc_hw_rev & 0xfff0) | |
| 11839 | (IWM_CSR_HW_REV_STEP(sc->sc_hw_rev << 2)(((sc->sc_hw_rev << 2) & 0x000000C) >> 2) << 2); |
| 11840 | |
| 11841 | if (iwm_prepare_card_hw(sc) != 0) { |
| 11842 | printf("%s: could not initialize hardware\n", |
| 11843 | DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 11844 | return; |
| 11845 | } |
| 11846 | |
| 11847 | /* |
| 11848 | * In order to recognize C step the driver should read the |
| 11849 | * chip version id located at the AUX bus MISC address. |
| 11850 | */ |
| 11851 | IWM_SETBITS(sc, IWM_CSR_GP_CNTRL,(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x024))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x024))))) | ((0x00000004)))))) |
| 11852 | IWM_CSR_GP_CNTRL_REG_FLAG_INIT_DONE)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x024))), ( ((((sc)->sc_st)->read_4(((sc)->sc_sh), (((0x024))))) | ((0x00000004)))))); |
| 11853 | DELAY(2)(*delay_func)(2); |
| 11854 | |
| 11855 | err = iwm_poll_bit(sc, IWM_CSR_GP_CNTRL(0x024), |
| 11856 | IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY(0x00000001), |
| 11857 | IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY(0x00000001), |
| 11858 | 25000); |
| 11859 | if (!err) { |
| 11860 | printf("%s: Failed to wake up the nic\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 11861 | return; |
| 11862 | } |
| 11863 | |
| 11864 | if (iwm_nic_lock(sc)) { |
| 11865 | hw_step = iwm_read_prph(sc, IWM_WFPM_CTRL_REG0xa03030); |
| 11866 | hw_step |= IWM_ENABLE_WFPM0x80000000; |
| 11867 | iwm_write_prph(sc, IWM_WFPM_CTRL_REG0xa03030, hw_step); |
| 11868 | hw_step = iwm_read_prph(sc, IWM_AUX_MISC_REG0xa200b0); |
| 11869 | hw_step = (hw_step >> IWM_HW_STEP_LOCATION_BITS24) & 0xF; |
| 11870 | if (hw_step == 0x3) |
| 11871 | sc->sc_hw_rev = (sc->sc_hw_rev & 0xFFFFFFF3) | |
| 11872 | (IWM_SILICON_C_STEP2 << 2); |
| 11873 | iwm_nic_unlock(sc); |
| 11874 | } else { |
| 11875 | printf("%s: Failed to lock the nic\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 11876 | return; |
| 11877 | } |
| 11878 | } |
| 11879 | |
| 11880 | /* |
| 11881 | * Allocate DMA memory for firmware transfers. |
| 11882 | * Must be aligned on a 16-byte boundary. |
| 11883 | */ |
| 11884 | err = iwm_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, |
| 11885 | sc->sc_fwdmasegsz, 16); |
| 11886 | if (err) { |
| 11887 | printf("%s: could not allocate memory for firmware\n", |
| 11888 | DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 11889 | return; |
| 11890 | } |
| 11891 | |
| 11892 | /* Allocate "Keep Warm" page, used internally by the card. */ |
| 11893 | err = iwm_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, 4096, 4096); |
| 11894 | if (err) { |
| 11895 | printf("%s: could not allocate keep warm page\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 11896 | goto fail1; |
| 11897 | } |
| 11898 | |
| 11899 | /* Allocate interrupt cause table (ICT).*/ |
| 11900 | err = iwm_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma, |
| 11901 | IWM_ICT_SIZE4096, 1<<IWM_ICT_PADDR_SHIFT12); |
| 11902 | if (err) { |
| 11903 | printf("%s: could not allocate ICT table\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 11904 | goto fail2; |
| 11905 | } |
| 11906 | |
| 11907 | /* TX scheduler rings must be aligned on a 1KB boundary. */ |
| 11908 | err = iwm_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma, |
| 11909 | nitems(sc->txq)(sizeof((sc->txq)) / sizeof((sc->txq)[0])) * sizeof(struct iwm_agn_scd_bc_tbl), 1024); |
| 11910 | if (err) { |
| 11911 | printf("%s: could not allocate TX scheduler rings\n", |
| 11912 | DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 11913 | goto fail3; |
| 11914 | } |
| 11915 | |
| 11916 | for (txq_i = 0; txq_i < nitems(sc->txq)(sizeof((sc->txq)) / sizeof((sc->txq)[0])); txq_i++) { |
| 11917 | err = iwm_alloc_tx_ring(sc, &sc->txq[txq_i], txq_i); |
| 11918 | if (err) { |
| 11919 | printf("%s: could not allocate TX ring %d\n", |
| 11920 | DEVNAME(sc)((sc)->sc_dev.dv_xname), txq_i); |
| 11921 | goto fail4; |
| 11922 | } |
| 11923 | } |
| 11924 | |
| 11925 | err = iwm_alloc_rx_ring(sc, &sc->rxq); |
| 11926 | if (err) { |
| 11927 | printf("%s: could not allocate RX ring\n", DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 11928 | goto fail4; |
| 11929 | } |
| 11930 | |
| 11931 | sc->sc_nswq = taskq_create("iwmns", 1, IPL_NET0x4, 0); |
| 11932 | if (sc->sc_nswq == NULL((void *)0)) |
| 11933 | goto fail4; |
| 11934 | |
| 11935 | /* Clear pending interrupts. */ |
| 11936 | IWM_WRITE(sc, IWM_CSR_INT, 0xffffffff)(((sc)->sc_st)->write_4(((sc)->sc_sh), (((0x008))), ( (0xffffffff)))); |
| 11937 | |
| 11938 | ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ |
| 11939 | ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ |
| 11940 | ic->ic_state = IEEE80211_S_INIT; |
| 11941 | |
| 11942 | /* Set device capabilities. */ |
| 11943 | ic->ic_caps = |
| 11944 | IEEE80211_C_QOS0x00000800 | IEEE80211_C_TX_AMPDU0x00010000 | /* A-MPDU */ |
| 11945 | IEEE80211_C_WEP0x00000001 | /* WEP */ |
| 11946 | IEEE80211_C_RSN0x00001000 | /* WPA/RSN */ |
| 11947 | IEEE80211_C_SCANALL0x00000400 | /* device scans all channels at once */ |
| 11948 | IEEE80211_C_SCANALLBAND0x00008000 | /* device scans all bands at once */ |
| 11949 | IEEE80211_C_MONITOR0x00000200 | /* monitor mode supported */ |
| 11950 | IEEE80211_C_SHSLOT0x00000080 | /* short slot time supported */ |
| 11951 | IEEE80211_C_SHPREAMBLE0x00000100; /* short preamble supported */ |
| 11952 | |
| 11953 | ic->ic_htcaps = IEEE80211_HTCAP_SGI200x00000020 | IEEE80211_HTCAP_SGI400x00000040; |
| 11954 | ic->ic_htcaps |= IEEE80211_HTCAP_CBW20_400x00000002; |
| 11955 | ic->ic_htcaps |= |
| 11956 | (IEEE80211_HTCAP_SMPS_DIS3 << IEEE80211_HTCAP_SMPS_SHIFT2); |
| 11957 | ic->ic_htxcaps = 0; |
| 11958 | ic->ic_txbfcaps = 0; |
| 11959 | ic->ic_aselcaps = 0; |
| 11960 | ic->ic_ampdu_params = (IEEE80211_AMPDU_PARAM_SS_4(5 << 2) | 0x3 /* 64k */); |
| 11961 | |
| 11962 | ic->ic_vhtcaps = IEEE80211_VHTCAP_MAX_MPDU_LENGTH_38950 | |
| 11963 | (IEEE80211_VHTCAP_MAX_AMPDU_LEN_64K3 << |
| 11964 | IEEE80211_VHTCAP_MAX_AMPDU_LEN_SHIFT23) | |
| 11965 | (IEEE80211_VHTCAP_CHAN_WIDTH_800 << |
| 11966 | IEEE80211_VHTCAP_CHAN_WIDTH_SHIFT2) | IEEE80211_VHTCAP_SGI800x00000020 | |
| 11967 | IEEE80211_VHTCAP_RX_ANT_PATTERN0x10000000 | IEEE80211_VHTCAP_TX_ANT_PATTERN0x20000000; |
| 11968 | |
| 11969 | ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a; |
| 11970 | ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; |
| 11971 | ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; |
| 11972 | |
| 11973 | for (i = 0; i < nitems(sc->sc_phyctxt)(sizeof((sc->sc_phyctxt)) / sizeof((sc->sc_phyctxt)[0]) ); i++) { |
| 11974 | sc->sc_phyctxt[i].id = i; |
| 11975 | sc->sc_phyctxt[i].sco = IEEE80211_HTOP0_SCO_SCN0; |
| 11976 | sc->sc_phyctxt[i].vht_chan_width = |
| 11977 | IEEE80211_VHTOP0_CHAN_WIDTH_HT0; |
| 11978 | } |
| 11979 | |
| 11980 | sc->sc_amrr.amrr_min_success_threshold = 1; |
| 11981 | sc->sc_amrr.amrr_max_success_threshold = 15; |
| 11982 | |
| 11983 | /* IBSS channel undefined for now. */ |
| 11984 | ic->ic_ibss_chan = &ic->ic_channels[1]; |
| 11985 | |
| 11986 | ic->ic_max_rssi = IWM_MAX_DBM-33 - IWM_MIN_DBM-100; |
| 11987 | |
| 11988 | ifp->if_softc = sc; |
| 11989 | ifp->if_flags = IFF_BROADCAST0x2 | IFF_SIMPLEX0x800 | IFF_MULTICAST0x8000; |
| 11990 | ifp->if_ioctl = iwm_ioctl; |
| 11991 | ifp->if_start = iwm_start; |
| 11992 | ifp->if_watchdog = iwm_watchdog; |
| 11993 | memcpy(ifp->if_xname, DEVNAME(sc), IFNAMSIZ)__builtin_memcpy((ifp->if_xname), (((sc)->sc_dev.dv_xname )), (16)); |
| 11994 | |
| 11995 | if_attach(ifp); |
| 11996 | ieee80211_ifattach(ifp); |
| 11997 | ieee80211_media_init(ifp, iwm_media_change, ieee80211_media_status); |
| 11998 | |
| 11999 | #if NBPFILTER1 > 0 |
| 12000 | iwm_radiotap_attach(sc); |
| 12001 | #endif |
| 12002 | timeout_set(&sc->sc_calib_to, iwm_calib_timeout, sc); |
| 12003 | timeout_set(&sc->sc_led_blink_to, iwm_led_blink_timeout, sc); |
| 12004 | for (i = 0; i < nitems(sc->sc_rxba_data)(sizeof((sc->sc_rxba_data)) / sizeof((sc->sc_rxba_data) [0])); i++) { |
| 12005 | struct iwm_rxba_data *rxba = &sc->sc_rxba_data[i]; |
| 12006 | rxba->baid = IWM_RX_REORDER_DATA_INVALID_BAID0x7f; |
| 12007 | rxba->sc = sc; |
| 12008 | timeout_set(&rxba->session_timer, iwm_rx_ba_session_expired, |
| 12009 | rxba); |
| 12010 | timeout_set(&rxba->reorder_buf.reorder_timer, |
| 12011 | iwm_reorder_timer_expired, &rxba->reorder_buf); |
| 12012 | for (j = 0; j < nitems(rxba->entries)(sizeof((rxba->entries)) / sizeof((rxba->entries)[0])); j++) |
| 12013 | ml_init(&rxba->entries[j].frames); |
| 12014 | } |
| 12015 | task_set(&sc->init_task, iwm_init_task, sc); |
| 12016 | task_set(&sc->newstate_task, iwm_newstate_task, sc); |
| 12017 | task_set(&sc->ba_task, iwm_ba_task, sc); |
| 12018 | task_set(&sc->mac_ctxt_task, iwm_mac_ctxt_task, sc); |
| 12019 | task_set(&sc->phy_ctxt_task, iwm_phy_ctxt_task, sc); |
| 12020 | task_set(&sc->bgscan_done_task, iwm_bgscan_done_task, sc); |
| 12021 | |
| 12022 | ic->ic_node_alloc = iwm_node_alloc; |
| 12023 | ic->ic_bgscan_start = iwm_bgscan; |
| 12024 | ic->ic_bgscan_done = iwm_bgscan_done; |
| 12025 | ic->ic_set_key = iwm_set_key; |
| 12026 | ic->ic_delete_key = iwm_delete_key; |
| 12027 | |
| 12028 | /* Override 802.11 state transition machine. */ |
| 12029 | sc->sc_newstate = ic->ic_newstate; |
| 12030 | ic->ic_newstate = iwm_newstate; |
| 12031 | ic->ic_updateprot = iwm_updateprot; |
| 12032 | ic->ic_updateslot = iwm_updateslot; |
| 12033 | ic->ic_updateedca = iwm_updateedca; |
| 12034 | ic->ic_updatechan = iwm_updatechan; |
| 12035 | ic->ic_updatedtim = iwm_updatedtim; |
| 12036 | ic->ic_ampdu_rx_start = iwm_ampdu_rx_start; |
| 12037 | ic->ic_ampdu_rx_stop = iwm_ampdu_rx_stop; |
| 12038 | ic->ic_ampdu_tx_start = iwm_ampdu_tx_start; |
| 12039 | ic->ic_ampdu_tx_stop = iwm_ampdu_tx_stop; |
| 12040 | /* |
| 12041 | * We cannot read the MAC address without loading the |
| 12042 | * firmware from disk. Postpone until mountroot is done. |
| 12043 | */ |
| 12044 | config_mountroot(self, iwm_attach_hook); |
| 12045 | |
| 12046 | return; |
| 12047 | |
| 12048 | fail4: while (--txq_i >= 0) |
| 12049 | iwm_free_tx_ring(sc, &sc->txq[txq_i]); |
| 12050 | iwm_free_rx_ring(sc, &sc->rxq); |
| 12051 | iwm_dma_contig_free(&sc->sched_dma); |
| 12052 | fail3: if (sc->ict_dma.vaddr != NULL((void *)0)) |
| 12053 | iwm_dma_contig_free(&sc->ict_dma); |
| 12054 | |
| 12055 | fail2: iwm_dma_contig_free(&sc->kw_dma); |
| 12056 | fail1: iwm_dma_contig_free(&sc->fw_dma); |
| 12057 | return; |
| 12058 | } |
| 12059 | |
| 12060 | #if NBPFILTER1 > 0 |
| 12061 | void |
| 12062 | iwm_radiotap_attach(struct iwm_softc *sc) |
| 12063 | { |
| 12064 | bpfattach(&sc->sc_drvbpf, &sc->sc_ic.ic_ific_ac.ac_if, DLT_IEEE802_11_RADIO127, |
| 12065 | sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN64); |
| 12066 | |
| 12067 | sc->sc_rxtap_len = sizeof sc->sc_rxtapu; |
| 12068 | sc->sc_rxtapsc_rxtapu.th.wr_ihdr.it_len = htole16(sc->sc_rxtap_len)((__uint16_t)(sc->sc_rxtap_len)); |
| 12069 | sc->sc_rxtapsc_rxtapu.th.wr_ihdr.it_present = htole32(IWM_RX_RADIOTAP_PRESENT)((__uint32_t)(((1 << IEEE80211_RADIOTAP_TSFT) | (1 << IEEE80211_RADIOTAP_FLAGS) | (1 << IEEE80211_RADIOTAP_RATE ) | (1 << IEEE80211_RADIOTAP_CHANNEL) | (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL ) | (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE)))); |
| 12070 | |
| 12071 | sc->sc_txtap_len = sizeof sc->sc_txtapu; |
| 12072 | sc->sc_txtapsc_txtapu.th.wt_ihdr.it_len = htole16(sc->sc_txtap_len)((__uint16_t)(sc->sc_txtap_len)); |
| 12073 | sc->sc_txtapsc_txtapu.th.wt_ihdr.it_present = htole32(IWM_TX_RADIOTAP_PRESENT)((__uint32_t)(((1 << IEEE80211_RADIOTAP_FLAGS) | (1 << IEEE80211_RADIOTAP_RATE) | (1 << IEEE80211_RADIOTAP_CHANNEL )))); |
| 12074 | } |
| 12075 | #endif |
| 12076 | |
| 12077 | void |
| 12078 | iwm_init_task(void *arg1) |
| 12079 | { |
| 12080 | struct iwm_softc *sc = arg1; |
| 12081 | struct ifnet *ifp = &sc->sc_ic.ic_ific_ac.ac_if; |
| 12082 | int s = splnet()splraise(0x4); |
| 12083 | int generation = sc->sc_generation; |
| 12084 | int fatal = (sc->sc_flags & (IWM_FLAG_HW_ERR0x80 | IWM_FLAG_RFKILL0x02)); |
| 12085 | |
| 12086 | rw_enter_write(&sc->ioctl_rwl); |
| 12087 | if (generation != sc->sc_generation) { |
| 12088 | rw_exit(&sc->ioctl_rwl); |
| 12089 | splx(s)spllower(s); |
| 12090 | return; |
| 12091 | } |
| 12092 | |
| 12093 | if (ifp->if_flags & IFF_RUNNING0x40) |
| 12094 | iwm_stop(ifp); |
| 12095 | else |
| 12096 | sc->sc_flags &= ~IWM_FLAG_HW_ERR0x80; |
| 12097 | |
| 12098 | if (!fatal && (ifp->if_flags & (IFF_UP0x1 | IFF_RUNNING0x40)) == IFF_UP0x1) |
| 12099 | iwm_init(ifp); |
| 12100 | |
| 12101 | rw_exit(&sc->ioctl_rwl); |
| 12102 | splx(s)spllower(s); |
| 12103 | } |
| 12104 | |
| 12105 | void |
| 12106 | iwm_resume(struct iwm_softc *sc) |
| 12107 | { |
| 12108 | pcireg_t reg; |
| 12109 | |
| 12110 | /* |
| 12111 | * We disable the RETRY_TIMEOUT register (0x41) to keep |
| 12112 | * PCI Tx retries from interfering with C3 CPU state. |
| 12113 | */ |
| 12114 | reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); |
| 12115 | pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00); |
| 12116 | |
| 12117 | if (!sc->sc_msix) { |
| 12118 | /* Hardware bug workaround. */ |
| 12119 | reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, |
| 12120 | PCI_COMMAND_STATUS_REG0x04); |
| 12121 | if (reg & PCI_COMMAND_INTERRUPT_DISABLE0x00000400) |
| 12122 | reg &= ~PCI_COMMAND_INTERRUPT_DISABLE0x00000400; |
| 12123 | pci_conf_write(sc->sc_pct, sc->sc_pcitag, |
| 12124 | PCI_COMMAND_STATUS_REG0x04, reg); |
| 12125 | } |
| 12126 | |
| 12127 | iwm_disable_interrupts(sc); |
| 12128 | } |
| 12129 | |
| 12130 | int |
| 12131 | iwm_wakeup(struct iwm_softc *sc) |
| 12132 | { |
| 12133 | struct ieee80211com *ic = &sc->sc_ic; |
| 12134 | struct ifnet *ifp = &sc->sc_ic.ic_ific_ac.ac_if; |
| 12135 | int err; |
| 12136 | |
| 12137 | err = iwm_start_hw(sc); |
| 12138 | if (err) |
| 12139 | return err; |
| 12140 | |
| 12141 | err = iwm_init_hw(sc); |
| 12142 | if (err) |
| 12143 | return err; |
| 12144 | |
| 12145 | refcnt_init(&sc->task_refs); |
| 12146 | ifq_clr_oactive(&ifp->if_snd); |
| 12147 | ifp->if_flags |= IFF_RUNNING0x40; |
| 12148 | |
| 12149 | if (ic->ic_opmode == IEEE80211_M_MONITOR) |
| 12150 | ieee80211_new_state(ic, IEEE80211_S_RUN, -1)(((ic)->ic_newstate)((ic), (IEEE80211_S_RUN), (-1))); |
| 12151 | else |
| 12152 | ieee80211_begin_scan(ifp); |
| 12153 | |
| 12154 | return 0; |
| 12155 | } |
| 12156 | |
| 12157 | int |
| 12158 | iwm_activate(struct device *self, int act) |
| 12159 | { |
| 12160 | struct iwm_softc *sc = (struct iwm_softc *)self; |
| 12161 | struct ifnet *ifp = &sc->sc_ic.ic_ific_ac.ac_if; |
| 12162 | int err = 0; |
| 12163 | |
| 12164 | switch (act) { |
| 12165 | case DVACT_QUIESCE2: |
| 12166 | if (ifp->if_flags & IFF_RUNNING0x40) { |
| 12167 | rw_enter_write(&sc->ioctl_rwl); |
| 12168 | iwm_stop(ifp); |
| 12169 | rw_exit(&sc->ioctl_rwl); |
| 12170 | } |
| 12171 | break; |
| 12172 | case DVACT_RESUME4: |
| 12173 | iwm_resume(sc); |
| 12174 | break; |
| 12175 | case DVACT_WAKEUP5: |
| 12176 | if ((ifp->if_flags & (IFF_UP0x1 | IFF_RUNNING0x40)) == IFF_UP0x1) { |
| 12177 | err = iwm_wakeup(sc); |
| 12178 | if (err) |
| 12179 | printf("%s: could not initialize hardware\n", |
| 12180 | DEVNAME(sc)((sc)->sc_dev.dv_xname)); |
| 12181 | } |
| 12182 | break; |
| 12183 | } |
| 12184 | |
| 12185 | return 0; |
| 12186 | } |
| 12187 | |
| 12188 | struct cfdriver iwm_cd = { |
| 12189 | NULL((void *)0), "iwm", DV_IFNET |
| 12190 | }; |
| 12191 | |
| 12192 | const struct cfattach iwm_ca = { |
| 12193 | sizeof(struct iwm_softc), iwm_match, iwm_attach, |
| 12194 | NULL((void *)0), iwm_activate |
| 12195 | }; |