| File: | dev/ic/hme.c |
| Warning: | line 463, column 2 Value stored to 'dma' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* $OpenBSD: hme.c,v 1.83 2020/12/12 11:48:52 jan Exp $ */ |
| 2 | /* $NetBSD: hme.c,v 1.21 2001/07/07 15:59:37 thorpej Exp $ */ |
| 3 | |
| 4 | /*- |
| 5 | * Copyright (c) 1999 The NetBSD Foundation, Inc. |
| 6 | * All rights reserved. |
| 7 | * |
| 8 | * This code is derived from software contributed to The NetBSD Foundation |
| 9 | * by Paul Kranenburg. |
| 10 | * |
| 11 | * Redistribution and use in source and binary forms, with or without |
| 12 | * modification, are permitted provided that the following conditions |
| 13 | * are met: |
| 14 | * 1. Redistributions of source code must retain the above copyright |
| 15 | * notice, this list of conditions and the following disclaimer. |
| 16 | * 2. Redistributions in binary form must reproduce the above copyright |
| 17 | * notice, this list of conditions and the following disclaimer in the |
| 18 | * documentation and/or other materials provided with the distribution. |
| 19 | * |
| 20 | * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS |
| 21 | * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
| 22 | * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 23 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS |
| 24 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 25 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 26 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 27 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 28 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 29 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 30 | * POSSIBILITY OF SUCH DAMAGE. |
| 31 | */ |
| 32 | |
| 33 | /* |
| 34 | * HME Ethernet module driver. |
| 35 | */ |
| 36 | |
| 37 | #include "bpfilter.h" |
| 38 | |
| 39 | #undef HMEDEBUG |
| 40 | |
| 41 | #include <sys/param.h> |
| 42 | #include <sys/systm.h> |
| 43 | #include <sys/kernel.h> |
| 44 | #include <sys/mbuf.h> |
| 45 | #include <sys/syslog.h> |
| 46 | #include <sys/socket.h> |
| 47 | #include <sys/device.h> |
| 48 | #include <sys/malloc.h> |
| 49 | #include <sys/ioctl.h> |
| 50 | #include <sys/errno.h> |
| 51 | |
| 52 | #include <net/if.h> |
| 53 | #include <net/if_media.h> |
| 54 | |
| 55 | #include <netinet/in.h> |
| 56 | #include <netinet/if_ether.h> |
| 57 | |
| 58 | #if NBPFILTER1 > 0 |
| 59 | #include <net/bpf.h> |
| 60 | #endif |
| 61 | |
| 62 | #include <dev/mii/mii.h> |
| 63 | #include <dev/mii/miivar.h> |
| 64 | |
| 65 | #include <machine/bus.h> |
| 66 | |
| 67 | #include <dev/ic/hmereg.h> |
| 68 | #include <dev/ic/hmevar.h> |
| 69 | |
| 70 | struct cfdriver hme_cd = { |
| 71 | NULL((void *)0), "hme", DV_IFNET |
| 72 | }; |
| 73 | |
| 74 | #define HME_RX_OFFSET2 2 |
| 75 | |
| 76 | void hme_start(struct ifnet *); |
| 77 | void hme_stop(struct hme_softc *, int); |
| 78 | int hme_ioctl(struct ifnet *, u_long, caddr_t); |
| 79 | void hme_tick(void *); |
| 80 | void hme_watchdog(struct ifnet *); |
| 81 | void hme_init(struct hme_softc *); |
| 82 | void hme_meminit(struct hme_softc *); |
| 83 | void hme_mifinit(struct hme_softc *); |
| 84 | void hme_reset(struct hme_softc *); |
| 85 | void hme_iff(struct hme_softc *); |
| 86 | void hme_fill_rx_ring(struct hme_softc *); |
| 87 | int hme_newbuf(struct hme_softc *, struct hme_sxd *); |
| 88 | |
| 89 | /* MII methods & callbacks */ |
| 90 | static int hme_mii_readreg(struct device *, int, int); |
| 91 | static void hme_mii_writereg(struct device *, int, int, int); |
| 92 | static void hme_mii_statchg(struct device *); |
| 93 | |
| 94 | int hme_mediachange(struct ifnet *); |
| 95 | void hme_mediastatus(struct ifnet *, struct ifmediareq *); |
| 96 | |
| 97 | int hme_eint(struct hme_softc *, u_int); |
| 98 | int hme_rint(struct hme_softc *); |
| 99 | int hme_tint(struct hme_softc *); |
| 100 | |
| 101 | void |
| 102 | hme_config(struct hme_softc *sc) |
| 103 | { |
| 104 | struct ifnet *ifp = &sc->sc_arpcom.ac_if; |
| 105 | struct mii_data *mii = &sc->sc_mii; |
| 106 | struct mii_softc *child; |
| 107 | bus_dma_tag_t dmatag = sc->sc_dmatag; |
| 108 | bus_dma_segment_t seg; |
| 109 | bus_size_t size; |
| 110 | int rseg, error, i; |
| 111 | |
| 112 | /* |
| 113 | * HME common initialization. |
| 114 | * |
| 115 | * hme_softc fields that must be initialized by the front-end: |
| 116 | * |
| 117 | * the bus tag: |
| 118 | * sc_bustag |
| 119 | * |
| 120 | * the dma bus tag: |
| 121 | * sc_dmatag |
| 122 | * |
| 123 | * the bus handles: |
| 124 | * sc_seb (Shared Ethernet Block registers) |
| 125 | * sc_erx (Receiver Unit registers) |
| 126 | * sc_etx (Transmitter Unit registers) |
| 127 | * sc_mac (MAC registers) |
| 128 | * sc_mif (Management Interface registers) |
| 129 | * |
| 130 | * the maximum bus burst size: |
| 131 | * sc_burst |
| 132 | * |
| 133 | * the local Ethernet address: |
| 134 | * sc_arpcom.ac_enaddr |
| 135 | * |
| 136 | */ |
| 137 | |
| 138 | /* Make sure the chip is stopped. */ |
| 139 | hme_stop(sc, 0); |
| 140 | |
| 141 | for (i = 0; i < HME_TX_RING_SIZE64; i++) { |
| 142 | if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, HME_TX_NSEGS,(*(sc->sc_dmatag)->_dmamap_create)((sc->sc_dmatag), ( (1 << 11)), (16), ((1 << 11)), (0), (0x0001 | 0x0002 ), (&sc->sc_txd[i].sd_map)) |
| 143 | MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,(*(sc->sc_dmatag)->_dmamap_create)((sc->sc_dmatag), ( (1 << 11)), (16), ((1 << 11)), (0), (0x0001 | 0x0002 ), (&sc->sc_txd[i].sd_map)) |
| 144 | &sc->sc_txd[i].sd_map)(*(sc->sc_dmatag)->_dmamap_create)((sc->sc_dmatag), ( (1 << 11)), (16), ((1 << 11)), (0), (0x0001 | 0x0002 ), (&sc->sc_txd[i].sd_map)) != 0) { |
| 145 | sc->sc_txd[i].sd_map = NULL((void *)0); |
| 146 | goto fail; |
| 147 | } |
| 148 | } |
| 149 | for (i = 0; i < HME_RX_RING_SIZE64; i++) { |
| 150 | if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,(*(sc->sc_dmatag)->_dmamap_create)((sc->sc_dmatag), ( (1 << 11)), (1), ((1 << 11)), (0), (0x0001 | 0x0002 ), (&sc->sc_rxd[i].sd_map)) |
| 151 | MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,(*(sc->sc_dmatag)->_dmamap_create)((sc->sc_dmatag), ( (1 << 11)), (1), ((1 << 11)), (0), (0x0001 | 0x0002 ), (&sc->sc_rxd[i].sd_map)) |
| 152 | &sc->sc_rxd[i].sd_map)(*(sc->sc_dmatag)->_dmamap_create)((sc->sc_dmatag), ( (1 << 11)), (1), ((1 << 11)), (0), (0x0001 | 0x0002 ), (&sc->sc_rxd[i].sd_map)) != 0) { |
| 153 | sc->sc_rxd[i].sd_map = NULL((void *)0); |
| 154 | goto fail; |
| 155 | } |
| 156 | } |
| 157 | if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1, MCLBYTES, 0,(*(sc->sc_dmatag)->_dmamap_create)((sc->sc_dmatag), ( (1 << 11)), (1), ((1 << 11)), (0), (0x0001 | 0x0002 ), (&sc->sc_rxmap_spare)) |
| 158 | BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sc->sc_rxmap_spare)(*(sc->sc_dmatag)->_dmamap_create)((sc->sc_dmatag), ( (1 << 11)), (1), ((1 << 11)), (0), (0x0001 | 0x0002 ), (&sc->sc_rxmap_spare)) != 0) { |
| 159 | sc->sc_rxmap_spare = NULL((void *)0); |
| 160 | goto fail; |
| 161 | } |
| 162 | |
| 163 | /* |
| 164 | * Allocate DMA capable memory |
| 165 | * Buffer descriptors must be aligned on a 2048 byte boundary; |
| 166 | * take this into account when calculating the size. Note that |
| 167 | * the maximum number of descriptors (256) occupies 2048 bytes, |
| 168 | * so we allocate that much regardless of the number of descriptors. |
| 169 | */ |
| 170 | size = (HME_XD_SIZE8 * HME_RX_RING_MAX256) + /* RX descriptors */ |
| 171 | (HME_XD_SIZE8 * HME_TX_RING_MAX256); /* TX descriptors */ |
| 172 | |
| 173 | /* Allocate DMA buffer */ |
| 174 | if ((error = bus_dmamem_alloc(dmatag, size, 2048, 0, &seg, 1, &rseg,(*(dmatag)->_dmamem_alloc)((dmatag), (size), (2048), (0), ( &seg), (1), (&rseg), (0x0001)) |
| 175 | BUS_DMA_NOWAIT)(*(dmatag)->_dmamem_alloc)((dmatag), (size), (2048), (0), ( &seg), (1), (&rseg), (0x0001))) != 0) { |
| 176 | printf("\n%s: DMA buffer alloc error %d\n", |
| 177 | sc->sc_dev.dv_xname, error); |
| 178 | return; |
| 179 | } |
| 180 | |
| 181 | /* Map DMA memory in CPU addressable space */ |
| 182 | if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,(*(dmatag)->_dmamem_map)((dmatag), (&seg), (rseg), (size ), (&sc->sc_rb.rb_membase), (0x0001|0x0004)) |
| 183 | &sc->sc_rb.rb_membase, BUS_DMA_NOWAIT|BUS_DMA_COHERENT)(*(dmatag)->_dmamem_map)((dmatag), (&seg), (rseg), (size ), (&sc->sc_rb.rb_membase), (0x0001|0x0004))) != 0) { |
| 184 | printf("\n%s: DMA buffer map error %d\n", |
| 185 | sc->sc_dev.dv_xname, error); |
| 186 | bus_dmamap_unload(dmatag, sc->sc_dmamap)(*(dmatag)->_dmamap_unload)((dmatag), (sc->sc_dmamap)); |
| 187 | bus_dmamem_free(dmatag, &seg, rseg)(*(dmatag)->_dmamem_free)((dmatag), (&seg), (rseg)); |
| 188 | return; |
| 189 | } |
| 190 | |
| 191 | if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,(*(dmatag)->_dmamap_create)((dmatag), (size), (1), (size), (0), (0x0001), (&sc->sc_dmamap)) |
| 192 | BUS_DMA_NOWAIT, &sc->sc_dmamap)(*(dmatag)->_dmamap_create)((dmatag), (size), (1), (size), (0), (0x0001), (&sc->sc_dmamap))) != 0) { |
| 193 | printf("\n%s: DMA map create error %d\n", |
| 194 | sc->sc_dev.dv_xname, error); |
| 195 | return; |
| 196 | } |
| 197 | |
| 198 | /* Load the buffer */ |
| 199 | if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,(*(dmatag)->_dmamap_load)((dmatag), (sc->sc_dmamap), (sc ->sc_rb.rb_membase), (size), (((void *)0)), (0x0001|0x0004 )) |
| 200 | sc->sc_rb.rb_membase, size, NULL,(*(dmatag)->_dmamap_load)((dmatag), (sc->sc_dmamap), (sc ->sc_rb.rb_membase), (size), (((void *)0)), (0x0001|0x0004 )) |
| 201 | BUS_DMA_NOWAIT|BUS_DMA_COHERENT)(*(dmatag)->_dmamap_load)((dmatag), (sc->sc_dmamap), (sc ->sc_rb.rb_membase), (size), (((void *)0)), (0x0001|0x0004 ))) != 0) { |
| 202 | printf("\n%s: DMA buffer map load error %d\n", |
| 203 | sc->sc_dev.dv_xname, error); |
| 204 | bus_dmamem_free(dmatag, &seg, rseg)(*(dmatag)->_dmamem_free)((dmatag), (&seg), (rseg)); |
| 205 | return; |
| 206 | } |
| 207 | sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr; |
| 208 | |
| 209 | printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr)); |
| 210 | |
| 211 | /* Initialize ifnet structure. */ |
| 212 | strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, sizeof ifp->if_xname); |
| 213 | ifp->if_softc = sc; |
| 214 | ifp->if_start = hme_start; |
| 215 | ifp->if_ioctl = hme_ioctl; |
| 216 | ifp->if_watchdog = hme_watchdog; |
| 217 | ifp->if_flags = |
| 218 | IFF_BROADCAST0x2 | IFF_SIMPLEX0x800 | IFF_MULTICAST0x8000; |
| 219 | ifp->if_capabilitiesif_data.ifi_capabilities = IFCAP_VLAN_MTU0x00000010; |
| 220 | |
| 221 | /* Initialize ifmedia structures and MII info */ |
| 222 | mii->mii_ifp = ifp; |
| 223 | mii->mii_readreg = hme_mii_readreg; |
| 224 | mii->mii_writereg = hme_mii_writereg; |
| 225 | mii->mii_statchg = hme_mii_statchg; |
| 226 | |
| 227 | ifmedia_init(&mii->mii_media, IFM_IMASK0xff00000000000000ULL, |
| 228 | hme_mediachange, hme_mediastatus); |
| 229 | |
| 230 | hme_mifinit(sc); |
| 231 | |
| 232 | if (sc->sc_tcvr == -1) |
| 233 | mii_attach(&sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY-1, |
| 234 | MII_OFFSET_ANY-1, 0); |
| 235 | else |
| 236 | mii_attach(&sc->sc_dev, mii, 0xffffffff, sc->sc_tcvr, |
| 237 | MII_OFFSET_ANY-1, 0); |
| 238 | |
| 239 | child = LIST_FIRST(&mii->mii_phys)((&mii->mii_phys)->lh_first); |
| 240 | if (child == NULL((void *)0)) { |
| 241 | /* No PHY attached */ |
| 242 | ifmedia_add(&sc->sc_mediasc_mii.mii_media, IFM_ETHER0x0000000000000100ULL|IFM_MANUAL1ULL, 0, NULL((void *)0)); |
| 243 | ifmedia_set(&sc->sc_mediasc_mii.mii_media, IFM_ETHER0x0000000000000100ULL|IFM_MANUAL1ULL); |
| 244 | } else { |
| 245 | /* |
| 246 | * Walk along the list of attached MII devices and |
| 247 | * establish an `MII instance' to `phy number' |
| 248 | * mapping. We'll use this mapping in media change |
| 249 | * requests to determine which phy to use to program |
| 250 | * the MIF configuration register. |
| 251 | */ |
| 252 | for (; child != NULL((void *)0); child = LIST_NEXT(child, mii_list)((child)->mii_list.le_next)) { |
| 253 | /* |
| 254 | * Note: we support just two PHYs: the built-in |
| 255 | * internal device and an external on the MII |
| 256 | * connector. |
| 257 | */ |
| 258 | if (child->mii_phy > 1 || child->mii_inst > 1) { |
| 259 | printf("%s: cannot accommodate MII device %s" |
| 260 | " at phy %d, instance %lld\n", |
| 261 | sc->sc_dev.dv_xname, |
| 262 | child->mii_dev.dv_xname, |
| 263 | child->mii_phy, child->mii_inst); |
| 264 | continue; |
| 265 | } |
| 266 | |
| 267 | sc->sc_phys[child->mii_inst] = child->mii_phy; |
| 268 | } |
| 269 | |
| 270 | /* |
| 271 | * XXX - we can really do the following ONLY if the |
| 272 | * phy indeed has the auto negotiation capability!! |
| 273 | */ |
| 274 | ifmedia_set(&sc->sc_mediasc_mii.mii_media, IFM_ETHER0x0000000000000100ULL|IFM_AUTO0ULL); |
| 275 | } |
| 276 | |
| 277 | /* Attach the interface. */ |
| 278 | if_attach(ifp); |
| 279 | ether_ifattach(ifp); |
| 280 | |
| 281 | timeout_set(&sc->sc_tick_ch, hme_tick, sc); |
| 282 | return; |
| 283 | |
| 284 | fail: |
| 285 | if (sc->sc_rxmap_spare != NULL((void *)0)) |
| 286 | bus_dmamap_destroy(sc->sc_dmatag, sc->sc_rxmap_spare)(*(sc->sc_dmatag)->_dmamap_destroy)((sc->sc_dmatag), (sc->sc_rxmap_spare)); |
| 287 | for (i = 0; i < HME_TX_RING_SIZE64; i++) |
| 288 | if (sc->sc_txd[i].sd_map != NULL((void *)0)) |
| 289 | bus_dmamap_destroy(sc->sc_dmatag, sc->sc_txd[i].sd_map)(*(sc->sc_dmatag)->_dmamap_destroy)((sc->sc_dmatag), (sc->sc_txd[i].sd_map)); |
| 290 | for (i = 0; i < HME_RX_RING_SIZE64; i++) |
| 291 | if (sc->sc_rxd[i].sd_map != NULL((void *)0)) |
| 292 | bus_dmamap_destroy(sc->sc_dmatag, sc->sc_rxd[i].sd_map)(*(sc->sc_dmatag)->_dmamap_destroy)((sc->sc_dmatag), (sc->sc_rxd[i].sd_map)); |
| 293 | } |
| 294 | |
| 295 | void |
| 296 | hme_unconfig(struct hme_softc *sc) |
| 297 | { |
| 298 | struct ifnet *ifp = &sc->sc_arpcom.ac_if; |
| 299 | int i; |
| 300 | |
| 301 | hme_stop(sc, 1); |
| 302 | |
| 303 | bus_dmamap_destroy(sc->sc_dmatag, sc->sc_rxmap_spare)(*(sc->sc_dmatag)->_dmamap_destroy)((sc->sc_dmatag), (sc->sc_rxmap_spare)); |
| 304 | for (i = 0; i < HME_TX_RING_SIZE64; i++) |
| 305 | if (sc->sc_txd[i].sd_map != NULL((void *)0)) |
| 306 | bus_dmamap_destroy(sc->sc_dmatag, sc->sc_txd[i].sd_map)(*(sc->sc_dmatag)->_dmamap_destroy)((sc->sc_dmatag), (sc->sc_txd[i].sd_map)); |
| 307 | for (i = 0; i < HME_RX_RING_SIZE64; i++) |
| 308 | if (sc->sc_rxd[i].sd_map != NULL((void *)0)) |
| 309 | bus_dmamap_destroy(sc->sc_dmatag, sc->sc_rxd[i].sd_map)(*(sc->sc_dmatag)->_dmamap_destroy)((sc->sc_dmatag), (sc->sc_rxd[i].sd_map)); |
| 310 | |
| 311 | /* Detach all PHYs */ |
| 312 | mii_detach(&sc->sc_mii, MII_PHY_ANY-1, MII_OFFSET_ANY-1); |
| 313 | |
| 314 | /* Delete all remaining media. */ |
| 315 | ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY((uint64_t) -1)); |
| 316 | |
| 317 | ether_ifdetach(ifp); |
| 318 | if_detach(ifp); |
| 319 | } |
| 320 | |
| 321 | void |
| 322 | hme_tick(void *arg) |
| 323 | { |
| 324 | struct hme_softc *sc = arg; |
| 325 | struct ifnet *ifp = &sc->sc_arpcom.ac_if; |
| 326 | bus_space_tag_t t = sc->sc_bustag; |
| 327 | bus_space_handle_t mac = sc->sc_mac; |
| 328 | int s; |
| 329 | |
| 330 | s = splnet()splraise(0x4); |
| 331 | /* |
| 332 | * Unload collision counters |
| 333 | */ |
| 334 | ifp->if_collisionsif_data.ifi_collisions += |
| 335 | bus_space_read_4(t, mac, HME_MACI_NCCNT)((t)->read_4((mac), ((144*4)))) + |
| 336 | bus_space_read_4(t, mac, HME_MACI_FCCNT)((t)->read_4((mac), ((145*4)))) + |
| 337 | bus_space_read_4(t, mac, HME_MACI_EXCNT)((t)->read_4((mac), ((146*4)))) + |
| 338 | bus_space_read_4(t, mac, HME_MACI_LTCNT)((t)->read_4((mac), ((147*4)))); |
| 339 | |
| 340 | /* |
| 341 | * then clear the hardware counters. |
| 342 | */ |
| 343 | bus_space_write_4(t, mac, HME_MACI_NCCNT, 0)((t)->write_4((mac), ((144*4)), (0))); |
| 344 | bus_space_write_4(t, mac, HME_MACI_FCCNT, 0)((t)->write_4((mac), ((145*4)), (0))); |
| 345 | bus_space_write_4(t, mac, HME_MACI_EXCNT, 0)((t)->write_4((mac), ((146*4)), (0))); |
| 346 | bus_space_write_4(t, mac, HME_MACI_LTCNT, 0)((t)->write_4((mac), ((147*4)), (0))); |
| 347 | |
| 348 | /* |
| 349 | * If buffer allocation fails, the receive ring may become |
| 350 | * empty. There is no receive interrupt to recover from that. |
| 351 | */ |
| 352 | if (if_rxr_inuse(&sc->sc_rx_ring)((&sc->sc_rx_ring)->rxr_alive) == 0) |
| 353 | hme_fill_rx_ring(sc); |
| 354 | |
| 355 | mii_tick(&sc->sc_mii); |
| 356 | splx(s)spllower(s); |
| 357 | |
| 358 | timeout_add_sec(&sc->sc_tick_ch, 1); |
| 359 | } |
| 360 | |
| 361 | void |
| 362 | hme_reset(struct hme_softc *sc) |
| 363 | { |
| 364 | int s; |
| 365 | |
| 366 | s = splnet()splraise(0x4); |
| 367 | hme_init(sc); |
| 368 | splx(s)spllower(s); |
| 369 | } |
| 370 | |
| 371 | void |
| 372 | hme_stop(struct hme_softc *sc, int softonly) |
| 373 | { |
| 374 | struct ifnet *ifp = &sc->sc_arpcom.ac_if; |
| 375 | bus_space_tag_t t = sc->sc_bustag; |
| 376 | bus_space_handle_t seb = sc->sc_seb; |
| 377 | int n; |
| 378 | |
| 379 | timeout_del(&sc->sc_tick_ch); |
| 380 | |
| 381 | /* |
| 382 | * Mark the interface down and cancel the watchdog timer. |
| 383 | */ |
| 384 | ifp->if_flags &= ~IFF_RUNNING0x40; |
| 385 | ifq_clr_oactive(&ifp->if_snd); |
| 386 | ifp->if_timer = 0; |
| 387 | |
| 388 | if (!softonly) { |
| 389 | mii_down(&sc->sc_mii); |
| 390 | |
| 391 | /* Mask all interrupts */ |
| 392 | bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff)((t)->write_4((seb), ((65*4)), (0xffffffff))); |
| 393 | |
| 394 | /* Reset transmitter and receiver */ |
| 395 | bus_space_write_4(t, seb, HME_SEBI_RESET,((t)->write_4((seb), ((0*4)), ((0x00000001 | 0x00000002))) ) |
| 396 | (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX))((t)->write_4((seb), ((0*4)), ((0x00000001 | 0x00000002))) ); |
| 397 | |
| 398 | for (n = 0; n < 20; n++) { |
| 399 | u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET)((t)->read_4((seb), ((0*4)))); |
| 400 | if ((v & (HME_SEB_RESET_ETX0x00000001 | HME_SEB_RESET_ERX0x00000002)) == 0) |
| 401 | break; |
| 402 | DELAY(20)(*delay_func)(20); |
| 403 | } |
| 404 | if (n >= 20) |
| 405 | printf("%s: hme_stop: reset failed\n", sc->sc_dev.dv_xname); |
| 406 | } |
| 407 | |
| 408 | for (n = 0; n < HME_TX_RING_SIZE64; n++) { |
| 409 | if (sc->sc_txd[n].sd_mbuf != NULL((void *)0)) { |
| 410 | bus_dmamap_sync(sc->sc_dmatag, sc->sc_txd[n].sd_map,(*(sc->sc_dmatag)->_dmamap_sync)((sc->sc_dmatag), (sc ->sc_txd[n].sd_map), (0), (sc->sc_txd[n].sd_map->dm_mapsize ), (0x08)) |
| 411 | 0, sc->sc_txd[n].sd_map->dm_mapsize,(*(sc->sc_dmatag)->_dmamap_sync)((sc->sc_dmatag), (sc ->sc_txd[n].sd_map), (0), (sc->sc_txd[n].sd_map->dm_mapsize ), (0x08)) |
| 412 | BUS_DMASYNC_POSTWRITE)(*(sc->sc_dmatag)->_dmamap_sync)((sc->sc_dmatag), (sc ->sc_txd[n].sd_map), (0), (sc->sc_txd[n].sd_map->dm_mapsize ), (0x08)); |
| 413 | bus_dmamap_unload(sc->sc_dmatag, sc->sc_txd[n].sd_map)(*(sc->sc_dmatag)->_dmamap_unload)((sc->sc_dmatag), ( sc->sc_txd[n].sd_map)); |
| 414 | m_freem(sc->sc_txd[n].sd_mbuf); |
| 415 | sc->sc_txd[n].sd_mbuf = NULL((void *)0); |
| 416 | } |
| 417 | } |
| 418 | sc->sc_tx_prod = sc->sc_tx_cons = sc->sc_tx_cnt = 0; |
| 419 | |
| 420 | for (n = 0; n < HME_RX_RING_SIZE64; n++) { |
| 421 | if (sc->sc_rxd[n].sd_mbuf != NULL((void *)0)) { |
| 422 | bus_dmamap_sync(sc->sc_dmatag, sc->sc_rxd[n].sd_map,(*(sc->sc_dmatag)->_dmamap_sync)((sc->sc_dmatag), (sc ->sc_rxd[n].sd_map), (0), (sc->sc_rxd[n].sd_map->dm_mapsize ), (0x02)) |
| 423 | 0, sc->sc_rxd[n].sd_map->dm_mapsize,(*(sc->sc_dmatag)->_dmamap_sync)((sc->sc_dmatag), (sc ->sc_rxd[n].sd_map), (0), (sc->sc_rxd[n].sd_map->dm_mapsize ), (0x02)) |
| 424 | BUS_DMASYNC_POSTREAD)(*(sc->sc_dmatag)->_dmamap_sync)((sc->sc_dmatag), (sc ->sc_rxd[n].sd_map), (0), (sc->sc_rxd[n].sd_map->dm_mapsize ), (0x02)); |
| 425 | bus_dmamap_unload(sc->sc_dmatag, sc->sc_rxd[n].sd_map)(*(sc->sc_dmatag)->_dmamap_unload)((sc->sc_dmatag), ( sc->sc_rxd[n].sd_map)); |
| 426 | m_freem(sc->sc_rxd[n].sd_mbuf); |
| 427 | sc->sc_rxd[n].sd_mbuf = NULL((void *)0); |
| 428 | } |
| 429 | } |
| 430 | sc->sc_rx_prod = sc->sc_rx_cons = 0; |
| 431 | } |
| 432 | |
| 433 | void |
| 434 | hme_meminit(struct hme_softc *sc) |
| 435 | { |
| 436 | bus_addr_t dma; |
| 437 | caddr_t p; |
| 438 | unsigned int i; |
| 439 | struct hme_ring *hr = &sc->sc_rb; |
| 440 | |
| 441 | p = hr->rb_membase; |
| 442 | dma = hr->rb_dmabase; |
| 443 | |
| 444 | /* |
| 445 | * Allocate transmit descriptors |
| 446 | */ |
| 447 | hr->rb_txd = p; |
| 448 | hr->rb_txddma = dma; |
| 449 | p += HME_TX_RING_SIZE64 * HME_XD_SIZE8; |
| 450 | dma += HME_TX_RING_SIZE64 * HME_XD_SIZE8; |
| 451 | /* We have reserved descriptor space until the next 2048 byte boundary.*/ |
| 452 | dma = (bus_addr_t)roundup((u_long)dma, 2048)(((((u_long)dma)+((2048)-1))/(2048))*(2048)); |
| 453 | p = (caddr_t)roundup((u_long)p, 2048)(((((u_long)p)+((2048)-1))/(2048))*(2048)); |
| 454 | |
| 455 | /* |
| 456 | * Allocate receive descriptors |
| 457 | */ |
| 458 | hr->rb_rxd = p; |
| 459 | hr->rb_rxddma = dma; |
| 460 | p += HME_RX_RING_SIZE64 * HME_XD_SIZE8; |
| 461 | dma += HME_RX_RING_SIZE64 * HME_XD_SIZE8; |
| 462 | /* Again move forward to the next 2048 byte boundary.*/ |
| 463 | dma = (bus_addr_t)roundup((u_long)dma, 2048)(((((u_long)dma)+((2048)-1))/(2048))*(2048)); |
Value stored to 'dma' is never read | |
| 464 | p = (caddr_t)roundup((u_long)p, 2048)(((((u_long)p)+((2048)-1))/(2048))*(2048)); |
| 465 | |
| 466 | /* |
| 467 | * Initialize transmit descriptors |
| 468 | */ |
| 469 | for (i = 0; i < HME_TX_RING_SIZE64; i++) { |
| 470 | HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, 0)do { *((u_int32_t *)((hr->rb_txd) + ((i) * 8) + 4)) = ((sc ->sc_pci) ? ((__uint32_t)(0)) : (0)); } while(0); |
| 471 | HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0)do { *((u_int32_t *)((hr->rb_txd) + ((i) * 8) + 0)) = ((sc ->sc_pci) ? ((__uint32_t)(0)) : (0)); } while(0); |
| 472 | sc->sc_txd[i].sd_mbuf = NULL((void *)0); |
| 473 | } |
| 474 | |
| 475 | /* |
| 476 | * Initialize receive descriptors |
| 477 | */ |
| 478 | for (i = 0; i < HME_RX_RING_SIZE64; i++) { |
| 479 | HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, 0)do { *((u_int32_t *)((hr->rb_rxd) + ((i) * 8) + 4)) = ((sc ->sc_pci) ? ((__uint32_t)(0)) : (0)); } while(0); |
| 480 | HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i, 0)do { *((u_int32_t *)((hr->rb_rxd) + ((i) * 8) + 0)) = ((sc ->sc_pci) ? ((__uint32_t)(0)) : (0)); } while(0); |
| 481 | sc->sc_rxd[i].sd_mbuf = NULL((void *)0); |
| 482 | } |
| 483 | |
| 484 | if_rxr_init(&sc->sc_rx_ring, 2, HME_RX_RING_SIZE64); |
| 485 | hme_fill_rx_ring(sc); |
| 486 | } |
| 487 | |
| 488 | /* |
| 489 | * Initialization of interface; set up initialization block |
| 490 | * and transmit/receive descriptor rings. |
| 491 | */ |
| 492 | void |
| 493 | hme_init(struct hme_softc *sc) |
| 494 | { |
| 495 | struct ifnet *ifp = &sc->sc_arpcom.ac_if; |
| 496 | bus_space_tag_t t = sc->sc_bustag; |
| 497 | bus_space_handle_t seb = sc->sc_seb; |
| 498 | bus_space_handle_t etx = sc->sc_etx; |
| 499 | bus_space_handle_t erx = sc->sc_erx; |
| 500 | bus_space_handle_t mac = sc->sc_mac; |
| 501 | u_int8_t *ea; |
| 502 | u_int32_t v; |
| 503 | |
| 504 | /* |
| 505 | * Initialization sequence. The numbered steps below correspond |
| 506 | * to the sequence outlined in section 6.3.5.1 in the Ethernet |
| 507 | * Channel Engine manual (part of the PCIO manual). |
| 508 | * See also the STP2002-STQ document from Sun Microsystems. |
| 509 | */ |
| 510 | |
| 511 | /* step 1 & 2. Reset the Ethernet Channel */ |
| 512 | hme_stop(sc, 0); |
| 513 | |
| 514 | /* Re-initialize the MIF */ |
| 515 | hme_mifinit(sc); |
| 516 | |
| 517 | /* step 3. Setup data structures in host memory */ |
| 518 | hme_meminit(sc); |
| 519 | |
| 520 | /* step 4. TX MAC registers & counters */ |
| 521 | bus_space_write_4(t, mac, HME_MACI_NCCNT, 0)((t)->write_4((mac), ((144*4)), (0))); |
| 522 | bus_space_write_4(t, mac, HME_MACI_FCCNT, 0)((t)->write_4((mac), ((145*4)), (0))); |
| 523 | bus_space_write_4(t, mac, HME_MACI_EXCNT, 0)((t)->write_4((mac), ((146*4)), (0))); |
| 524 | bus_space_write_4(t, mac, HME_MACI_LTCNT, 0)((t)->write_4((mac), ((147*4)), (0))); |
| 525 | bus_space_write_4(t, mac, HME_MACI_TXSIZE, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN)((t)->write_4((mac), ((140*4)), (1518 + 4))); |
| 526 | |
| 527 | /* Load station MAC address */ |
| 528 | ea = sc->sc_arpcom.ac_enaddr; |
| 529 | bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1])((t)->write_4((mac), ((200*4)), ((ea[0] << 8) | ea[1 ]))); |
| 530 | bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3])((t)->write_4((mac), ((199*4)), ((ea[2] << 8) | ea[3 ]))); |
| 531 | bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5])((t)->write_4((mac), ((198*4)), ((ea[4] << 8) | ea[5 ]))); |
| 532 | |
| 533 | /* |
| 534 | * Init seed for backoff |
| 535 | * (source suggested by manual: low 10 bits of MAC address) |
| 536 | */ |
| 537 | v = ((ea[4] << 8) | ea[5]) & 0x3fff; |
| 538 | bus_space_write_4(t, mac, HME_MACI_RANDSEED, v)((t)->write_4((mac), ((148*4)), (v))); |
| 539 | |
| 540 | |
| 541 | /* Note: Accepting power-on default for other MAC registers here.. */ |
| 542 | |
| 543 | |
| 544 | /* step 5. RX MAC registers & counters */ |
| 545 | hme_iff(sc); |
| 546 | |
| 547 | /* step 6 & 7. Program Descriptor Ring Base Addresses */ |
| 548 | bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma)((t)->write_4((etx), ((2*4)), (sc->sc_rb.rb_txddma))); |
| 549 | bus_space_write_4(t, etx, HME_ETXI_RSIZE, HME_TX_RING_SIZE)((t)->write_4((etx), ((11*4)), (64))); |
| 550 | |
| 551 | bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma)((t)->write_4((erx), ((1*4)), (sc->sc_rb.rb_rxddma))); |
| 552 | bus_space_write_4(t, mac, HME_MACI_RXSIZE, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN)((t)->write_4((mac), ((196*4)), (1518 + 4))); |
| 553 | |
| 554 | /* step 8. Global Configuration & Interrupt Mask */ |
| 555 | bus_space_write_4(t, seb, HME_SEBI_IMASK,((t)->write_4((seb), ((65*4)), (~(0x01000000 | 0x00010000 | 0x02000000 | 0x10000000 | 0x00000002 | (0x80000000 | 0x40000000 | 0x20000000 | 0x10000000 | 0x08000000 | 0x04000000 | 0x00400000 | 0x00200000 | 0x00100000 | 0x00080000 | 0x00040000 | 0x00020000 | 0x00008000 | 0x00004000 | 0x00002000 | 0x00001000 | 0x00000800 | 0x00000400| 0x00000200| 0x00000080 | 0x00000040 | 0x00000010 | 0x00000008| 0x00000004))))) |
| 556 | ~(HME_SEB_STAT_HOSTTOTX | HME_SEB_STAT_RXTOHOST |((t)->write_4((seb), ((65*4)), (~(0x01000000 | 0x00010000 | 0x02000000 | 0x10000000 | 0x00000002 | (0x80000000 | 0x40000000 | 0x20000000 | 0x10000000 | 0x08000000 | 0x04000000 | 0x00400000 | 0x00200000 | 0x00100000 | 0x00080000 | 0x00040000 | 0x00020000 | 0x00008000 | 0x00004000 | 0x00002000 | 0x00001000 | 0x00000800 | 0x00000400| 0x00000200| 0x00000080 | 0x00000040 | 0x00000010 | 0x00000008| 0x00000004))))) |
| 557 | HME_SEB_STAT_TXALL | HME_SEB_STAT_TXPERR |((t)->write_4((seb), ((65*4)), (~(0x01000000 | 0x00010000 | 0x02000000 | 0x10000000 | 0x00000002 | (0x80000000 | 0x40000000 | 0x20000000 | 0x10000000 | 0x08000000 | 0x04000000 | 0x00400000 | 0x00200000 | 0x00100000 | 0x00080000 | 0x00040000 | 0x00020000 | 0x00008000 | 0x00004000 | 0x00002000 | 0x00001000 | 0x00000800 | 0x00000400| 0x00000200| 0x00000080 | 0x00000040 | 0x00000010 | 0x00000008| 0x00000004))))) |
| 558 | HME_SEB_STAT_RCNTEXP | HME_SEB_STAT_ALL_ERRORS))((t)->write_4((seb), ((65*4)), (~(0x01000000 | 0x00010000 | 0x02000000 | 0x10000000 | 0x00000002 | (0x80000000 | 0x40000000 | 0x20000000 | 0x10000000 | 0x08000000 | 0x04000000 | 0x00400000 | 0x00200000 | 0x00100000 | 0x00080000 | 0x00040000 | 0x00020000 | 0x00008000 | 0x00004000 | 0x00002000 | 0x00001000 | 0x00000800 | 0x00000400| 0x00000200| 0x00000080 | 0x00000040 | 0x00000010 | 0x00000008| 0x00000004))))); |
| 559 | |
| 560 | switch (sc->sc_burst) { |
| 561 | default: |
| 562 | v = 0; |
| 563 | break; |
| 564 | case 16: |
| 565 | v = HME_SEB_CFG_BURST160x00000000; |
| 566 | break; |
| 567 | case 32: |
| 568 | v = HME_SEB_CFG_BURST320x00000001; |
| 569 | break; |
| 570 | case 64: |
| 571 | v = HME_SEB_CFG_BURST640x00000002; |
| 572 | break; |
| 573 | } |
| 574 | bus_space_write_4(t, seb, HME_SEBI_CFG, v)((t)->write_4((seb), ((1*4)), (v))); |
| 575 | |
| 576 | /* step 9. ETX Configuration: use mostly default values */ |
| 577 | |
| 578 | /* Enable DMA */ |
| 579 | v = bus_space_read_4(t, etx, HME_ETXI_CFG)((t)->read_4((etx), ((1*4)))); |
| 580 | v |= HME_ETX_CFG_DMAENABLE0x00000001; |
| 581 | bus_space_write_4(t, etx, HME_ETXI_CFG, v)((t)->write_4((etx), ((1*4)), (v))); |
| 582 | |
| 583 | /* Transmit Descriptor ring size: in increments of 16 */ |
| 584 | bus_space_write_4(t, etx, HME_ETXI_RSIZE, HME_TX_RING_SIZE / 16 - 1)((t)->write_4((etx), ((11*4)), (64 / 16 - 1))); |
| 585 | |
| 586 | /* step 10. ERX Configuration */ |
| 587 | v = bus_space_read_4(t, erx, HME_ERXI_CFG)((t)->read_4((erx), ((0*4)))); |
| 588 | v &= ~HME_ERX_CFG_RINGSIZE2560x00000600; |
| 589 | #if HME_RX_RING_SIZE64 == 32 |
| 590 | v |= HME_ERX_CFG_RINGSIZE320x00000000; |
| 591 | #elif HME_RX_RING_SIZE64 == 64 |
| 592 | v |= HME_ERX_CFG_RINGSIZE640x00000200; |
| 593 | #elif HME_RX_RING_SIZE64 == 128 |
| 594 | v |= HME_ERX_CFG_RINGSIZE1280x00000400; |
| 595 | #elif HME_RX_RING_SIZE64 == 256 |
| 596 | v |= HME_ERX_CFG_RINGSIZE2560x00000600; |
| 597 | #else |
| 598 | # error "RX ring size must be 32, 64, 128, or 256" |
| 599 | #endif |
| 600 | /* Enable DMA */ |
| 601 | v |= HME_ERX_CFG_DMAENABLE0x00000001 | (HME_RX_OFFSET2 << 3); |
| 602 | bus_space_write_4(t, erx, HME_ERXI_CFG, v)((t)->write_4((erx), ((0*4)), (v))); |
| 603 | |
| 604 | /* step 11. XIF Configuration */ |
| 605 | v = bus_space_read_4(t, mac, HME_MACI_XIF)((t)->read_4((mac), ((0*4)))); |
| 606 | v |= HME_MAC_XIF_OE0x00000001; |
| 607 | bus_space_write_4(t, mac, HME_MACI_XIF, v)((t)->write_4((mac), ((0*4)), (v))); |
| 608 | |
| 609 | /* step 12. RX_MAC Configuration Register */ |
| 610 | v = bus_space_read_4(t, mac, HME_MACI_RXCFG)((t)->read_4((mac), ((195*4)))); |
| 611 | v |= HME_MAC_RXCFG_ENABLE0x00000001; |
| 612 | bus_space_write_4(t, mac, HME_MACI_RXCFG, v)((t)->write_4((mac), ((195*4)), (v))); |
| 613 | |
| 614 | /* step 13. TX_MAC Configuration Register */ |
| 615 | v = bus_space_read_4(t, mac, HME_MACI_TXCFG)((t)->read_4((mac), ((131*4)))); |
| 616 | v |= (HME_MAC_TXCFG_ENABLE0x00000001 | HME_MAC_TXCFG_DGIVEUP0x00000400); |
| 617 | bus_space_write_4(t, mac, HME_MACI_TXCFG, v)((t)->write_4((mac), ((131*4)), (v))); |
| 618 | |
| 619 | /* Set the current media. */ |
| 620 | mii_mediachg(&sc->sc_mii); |
| 621 | |
| 622 | /* Start the one second timer. */ |
| 623 | timeout_add_sec(&sc->sc_tick_ch, 1); |
| 624 | |
| 625 | ifp->if_flags |= IFF_RUNNING0x40; |
| 626 | ifq_clr_oactive(&ifp->if_snd); |
| 627 | |
| 628 | hme_start(ifp); |
| 629 | } |
| 630 | |
| 631 | void |
| 632 | hme_start(struct ifnet *ifp) |
| 633 | { |
| 634 | struct hme_softc *sc = (struct hme_softc *)ifp->if_softc; |
| 635 | struct hme_ring *hr = &sc->sc_rb; |
| 636 | struct mbuf *m; |
| 637 | u_int32_t flags; |
| 638 | bus_dmamap_t map; |
| 639 | u_int32_t frag, cur, i; |
| 640 | int error; |
| 641 | |
| 642 | if (!(ifp->if_flags & IFF_RUNNING0x40) || ifq_is_oactive(&ifp->if_snd)) |
| 643 | return; |
| 644 | |
| 645 | while (sc->sc_txd[sc->sc_tx_prod].sd_mbuf == NULL((void *)0)) { |
| 646 | m = ifq_deq_begin(&ifp->if_snd); |
| 647 | if (m == NULL((void *)0)) |
| 648 | break; |
| 649 | |
| 650 | /* |
| 651 | * Encapsulate this packet and start it going... |
| 652 | * or fail... |
| 653 | */ |
| 654 | |
| 655 | cur = frag = sc->sc_tx_prod; |
| 656 | map = sc->sc_txd[cur].sd_map; |
| 657 | |
| 658 | error = bus_dmamap_load_mbuf(sc->sc_dmatag, map, m,(*(sc->sc_dmatag)->_dmamap_load_mbuf)((sc->sc_dmatag ), (map), (m), (0x0001)) |
| 659 | BUS_DMA_NOWAIT)(*(sc->sc_dmatag)->_dmamap_load_mbuf)((sc->sc_dmatag ), (map), (m), (0x0001)); |
| 660 | if (error != 0 && error != EFBIG27) |
| 661 | goto drop; |
| 662 | if (error != 0) { |
| 663 | /* Too many fragments, linearize. */ |
| 664 | if (m_defrag(m, M_DONTWAIT0x0002)) |
| 665 | goto drop; |
| 666 | error = bus_dmamap_load_mbuf(sc->sc_dmatag, map, m,(*(sc->sc_dmatag)->_dmamap_load_mbuf)((sc->sc_dmatag ), (map), (m), (0x0001)) |
| 667 | BUS_DMA_NOWAIT)(*(sc->sc_dmatag)->_dmamap_load_mbuf)((sc->sc_dmatag ), (map), (m), (0x0001)); |
| 668 | if (error != 0) |
| 669 | goto drop; |
| 670 | } |
| 671 | |
| 672 | if ((HME_TX_RING_SIZE64 - (sc->sc_tx_cnt + map->dm_nsegs)) < 5) { |
| 673 | bus_dmamap_unload(sc->sc_dmatag, map)(*(sc->sc_dmatag)->_dmamap_unload)((sc->sc_dmatag), ( map)); |
| 674 | ifq_deq_rollback(&ifp->if_snd, m); |
| 675 | ifq_set_oactive(&ifp->if_snd); |
| 676 | break; |
| 677 | } |
| 678 | |
| 679 | /* We are now committed to transmitting the packet. */ |
| 680 | ifq_deq_commit(&ifp->if_snd, m); |
| 681 | |
| 682 | #if NBPFILTER1 > 0 |
| 683 | /* |
| 684 | * If BPF is listening on this interface, let it see the |
| 685 | * packet before we commit it to the wire. |
| 686 | */ |
| 687 | if (ifp->if_bpf) |
| 688 | bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT(1 << 1)); |
| 689 | #endif |
| 690 | |
| 691 | bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,(*(sc->sc_dmatag)->_dmamap_sync)((sc->sc_dmatag), (map ), (0), (map->dm_mapsize), (0x04)) |
| 692 | BUS_DMASYNC_PREWRITE)(*(sc->sc_dmatag)->_dmamap_sync)((sc->sc_dmatag), (map ), (0), (map->dm_mapsize), (0x04)); |
| 693 | |
| 694 | for (i = 0; i < map->dm_nsegs; i++) { |
| 695 | flags = HME_XD_ENCODE_TSIZE(map->dm_segs[i].ds_len)(((map->dm_segs[i].ds_len) << 0) & 0x00003fff); |
| 696 | if (i == 0) |
| 697 | flags |= HME_XD_SOP0x40000000; |
| 698 | else |
| 699 | flags |= HME_XD_OWN0x80000000; |
| 700 | |
| 701 | HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, frag,do { *((u_int32_t *)((hr->rb_txd) + ((frag) * 8) + 4)) = ( (sc->sc_pci) ? ((__uint32_t)(map->dm_segs[i].ds_addr)) : (map->dm_segs[i].ds_addr)); } while(0) |
| 702 | map->dm_segs[i].ds_addr)do { *((u_int32_t *)((hr->rb_txd) + ((frag) * 8) + 4)) = ( (sc->sc_pci) ? ((__uint32_t)(map->dm_segs[i].ds_addr)) : (map->dm_segs[i].ds_addr)); } while(0); |
| 703 | HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, frag, flags)do { *((u_int32_t *)((hr->rb_txd) + ((frag) * 8) + 0)) = ( (sc->sc_pci) ? ((__uint32_t)(flags)) : (flags)); } while(0 ); |
| 704 | |
| 705 | cur = frag; |
| 706 | if (++frag == HME_TX_RING_SIZE64) |
| 707 | frag = 0; |
| 708 | } |
| 709 | |
| 710 | /* Set end of packet on last descriptor. */ |
| 711 | flags = HME_XD_GETFLAGS(sc->sc_pci, hr->rb_txd, cur)(sc->sc_pci) ? ((__uint32_t)(*((u_int32_t *)((hr->rb_txd ) + ((cur) * 8) + 0)))) : (*((u_int32_t *)((hr->rb_txd) + ( (cur) * 8) + 0))); |
| 712 | flags |= HME_XD_EOP0x20000000; |
| 713 | HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, cur, flags)do { *((u_int32_t *)((hr->rb_txd) + ((cur) * 8) + 0)) = (( sc->sc_pci) ? ((__uint32_t)(flags)) : (flags)); } while(0); |
| 714 | |
| 715 | sc->sc_tx_cnt += map->dm_nsegs; |
| 716 | sc->sc_txd[sc->sc_tx_prod].sd_map = sc->sc_txd[cur].sd_map; |
| 717 | sc->sc_txd[cur].sd_map = map; |
| 718 | sc->sc_txd[cur].sd_mbuf = m; |
| 719 | |
| 720 | /* Give first frame over to the hardware. */ |
| 721 | flags = HME_XD_GETFLAGS(sc->sc_pci, hr->rb_txd, sc->sc_tx_prod)(sc->sc_pci) ? ((__uint32_t)(*((u_int32_t *)((hr->rb_txd ) + ((sc->sc_tx_prod) * 8) + 0)))) : (*((u_int32_t *)((hr-> rb_txd) + ((sc->sc_tx_prod) * 8) + 0))); |
| 722 | flags |= HME_XD_OWN0x80000000; |
| 723 | HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, sc->sc_tx_prod, flags)do { *((u_int32_t *)((hr->rb_txd) + ((sc->sc_tx_prod) * 8) + 0)) = ((sc->sc_pci) ? ((__uint32_t)(flags)) : (flags )); } while(0); |
| 724 | |
| 725 | bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,((sc->sc_bustag)->write_4((sc->sc_etx), ((0*4)), (0x00000001 ))) |
| 726 | HME_ETX_TP_DMAWAKEUP)((sc->sc_bustag)->write_4((sc->sc_etx), ((0*4)), (0x00000001 ))); |
| 727 | sc->sc_tx_prod = frag; |
| 728 | |
| 729 | ifp->if_timer = 5; |
| 730 | } |
| 731 | |
| 732 | return; |
| 733 | |
| 734 | drop: |
| 735 | ifq_deq_commit(&ifp->if_snd, m); |
| 736 | m_freem(m); |
| 737 | ifp->if_oerrorsif_data.ifi_oerrors++; |
| 738 | } |
| 739 | |
| 740 | /* |
| 741 | * Transmit interrupt. |
| 742 | */ |
| 743 | int |
| 744 | hme_tint(struct hme_softc *sc) |
| 745 | { |
| 746 | struct ifnet *ifp = &sc->sc_arpcom.ac_if; |
| 747 | unsigned int ri, txflags; |
| 748 | struct hme_sxd *sd; |
| 749 | int cnt = sc->sc_tx_cnt; |
| 750 | |
| 751 | /* Fetch current position in the transmit ring */ |
| 752 | ri = sc->sc_tx_cons; |
| 753 | sd = &sc->sc_txd[ri]; |
| 754 | |
| 755 | for (;;) { |
| 756 | if (cnt <= 0) |
| 757 | break; |
| 758 | |
| 759 | txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri)(sc->sc_pci) ? ((__uint32_t)(*((u_int32_t *)((sc->sc_rb .rb_txd) + ((ri) * 8) + 0)))) : (*((u_int32_t *)((sc->sc_rb .rb_txd) + ((ri) * 8) + 0))); |
| 760 | |
| 761 | if (txflags & HME_XD_OWN0x80000000) |
| 762 | break; |
| 763 | |
| 764 | ifq_clr_oactive(&ifp->if_snd); |
| 765 | |
| 766 | if (sd->sd_mbuf != NULL((void *)0)) { |
| 767 | bus_dmamap_sync(sc->sc_dmatag, sd->sd_map,(*(sc->sc_dmatag)->_dmamap_sync)((sc->sc_dmatag), (sd ->sd_map), (0), (sd->sd_map->dm_mapsize), (0x08)) |
| 768 | 0, sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE)(*(sc->sc_dmatag)->_dmamap_sync)((sc->sc_dmatag), (sd ->sd_map), (0), (sd->sd_map->dm_mapsize), (0x08)); |
| 769 | bus_dmamap_unload(sc->sc_dmatag, sd->sd_map)(*(sc->sc_dmatag)->_dmamap_unload)((sc->sc_dmatag), ( sd->sd_map)); |
| 770 | m_freem(sd->sd_mbuf); |
| 771 | sd->sd_mbuf = NULL((void *)0); |
| 772 | } |
| 773 | |
| 774 | if (++ri == HME_TX_RING_SIZE64) { |
| 775 | ri = 0; |
| 776 | sd = sc->sc_txd; |
| 777 | } else |
| 778 | sd++; |
| 779 | |
| 780 | --cnt; |
| 781 | } |
| 782 | |
| 783 | sc->sc_tx_cnt = cnt; |
| 784 | ifp->if_timer = cnt > 0 ? 5 : 0; |
| 785 | |
| 786 | /* Update ring */ |
| 787 | sc->sc_tx_cons = ri; |
| 788 | |
| 789 | hme_start(ifp); |
| 790 | |
| 791 | return (1); |
| 792 | } |
| 793 | |
| 794 | /* |
| 795 | * Receive interrupt. |
| 796 | */ |
| 797 | int |
| 798 | hme_rint(struct hme_softc *sc) |
| 799 | { |
| 800 | struct ifnet *ifp = &sc->sc_arpcom.ac_if; |
| 801 | struct mbuf_list ml = MBUF_LIST_INITIALIZER(){ ((void *)0), ((void *)0), 0 }; |
| 802 | struct mbuf *m; |
| 803 | struct hme_sxd *sd; |
| 804 | unsigned int ri, len; |
| 805 | u_int32_t flags; |
| 806 | |
| 807 | ri = sc->sc_rx_cons; |
| 808 | sd = &sc->sc_rxd[ri]; |
| 809 | |
| 810 | /* |
| 811 | * Process all buffers with valid data. |
| 812 | */ |
| 813 | while (if_rxr_inuse(&sc->sc_rx_ring)((&sc->sc_rx_ring)->rxr_alive) > 0) { |
| 814 | flags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_rxd, ri)(sc->sc_pci) ? ((__uint32_t)(*((u_int32_t *)((sc->sc_rb .rb_rxd) + ((ri) * 8) + 0)))) : (*((u_int32_t *)((sc->sc_rb .rb_rxd) + ((ri) * 8) + 0))); |
| 815 | if (flags & HME_XD_OWN0x80000000) |
| 816 | break; |
| 817 | |
| 818 | bus_dmamap_sync(sc->sc_dmatag, sd->sd_map,(*(sc->sc_dmatag)->_dmamap_sync)((sc->sc_dmatag), (sd ->sd_map), (0), (sd->sd_map->dm_mapsize), (0x02)) |
| 819 | 0, sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTREAD)(*(sc->sc_dmatag)->_dmamap_sync)((sc->sc_dmatag), (sd ->sd_map), (0), (sd->sd_map->dm_mapsize), (0x02)); |
| 820 | bus_dmamap_unload(sc->sc_dmatag, sd->sd_map)(*(sc->sc_dmatag)->_dmamap_unload)((sc->sc_dmatag), ( sd->sd_map)); |
| 821 | |
| 822 | m = sd->sd_mbuf; |
| 823 | sd->sd_mbuf = NULL((void *)0); |
| 824 | |
| 825 | if (++ri == HME_RX_RING_SIZE64) { |
| 826 | ri = 0; |
| 827 | sd = sc->sc_rxd; |
| 828 | } else |
| 829 | sd++; |
| 830 | |
| 831 | if_rxr_put(&sc->sc_rx_ring, 1)do { (&sc->sc_rx_ring)->rxr_alive -= (1); } while ( 0); |
| 832 | |
| 833 | if (flags & HME_XD_OFL0x40000000) { |
| 834 | ifp->if_ierrorsif_data.ifi_ierrors++; |
| 835 | printf("%s: buffer overflow, ri=%d; flags=0x%x\n", |
| 836 | sc->sc_dev.dv_xname, ri, flags); |
| 837 | m_freem(m); |
| 838 | continue; |
| 839 | } |
| 840 | |
| 841 | len = HME_XD_DECODE_RSIZE(flags)(((flags) & 0x3fff0000) >> 16); |
| 842 | m->m_pkthdrM_dat.MH.MH_pkthdr.len = m->m_lenm_hdr.mh_len = len; |
| 843 | |
| 844 | ml_enqueue(&ml, m); |
| 845 | } |
| 846 | |
| 847 | if (ifiq_input(&ifp->if_rcv, &ml)) |
| 848 | if_rxr_livelocked(&sc->sc_rx_ring); |
| 849 | |
| 850 | sc->sc_rx_cons = ri; |
| 851 | hme_fill_rx_ring(sc); |
| 852 | return (1); |
| 853 | } |
| 854 | |
| 855 | int |
| 856 | hme_eint(struct hme_softc *sc, u_int status) |
| 857 | { |
| 858 | struct ifnet *ifp = &sc->sc_arpcom.ac_if; |
| 859 | |
| 860 | if (status & HME_SEB_STAT_MIFIRQ0x00800000) { |
| 861 | printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname); |
| 862 | status &= ~HME_SEB_STAT_MIFIRQ0x00800000; |
| 863 | } |
| 864 | |
| 865 | if (status & HME_SEB_STAT_DTIMEXP0x00008000) { |
| 866 | ifp->if_oerrorsif_data.ifi_oerrors++; |
| 867 | status &= ~HME_SEB_STAT_DTIMEXP0x00008000; |
| 868 | } |
| 869 | |
| 870 | if (status & HME_SEB_STAT_NORXD0x00020000) { |
| 871 | ifp->if_ierrorsif_data.ifi_ierrors++; |
| 872 | status &= ~HME_SEB_STAT_NORXD0x00020000; |
| 873 | } |
| 874 | |
| 875 | status &= ~(HME_SEB_STAT_RXTOHOST0x00010000 | HME_SEB_STAT_GOTFRAME0x00000001 | |
| 876 | HME_SEB_STAT_SENTFRAME0x00000100 | HME_SEB_STAT_HOSTTOTX0x01000000 | |
| 877 | HME_SEB_STAT_TXALL0x02000000); |
| 878 | |
| 879 | if (status == 0) |
| 880 | return (1); |
| 881 | |
| 882 | #ifdef HME_DEBUG |
| 883 | printf("%s: status=%b\n", sc->sc_dev.dv_xname, status, HME_SEB_STAT_BITS"\020\1RX\2RCNT\3ACNT\4CCNT\5LCNT\6RFIFO\7CVCNT\10STST" "\11TX\12TFIFO\13MAXPKT\14NCNT\15ECNT\16LCCNT\17FCNT" "\20DTIME\21RXHOST\22NORXD\23RXE\24EXLATE\25RXP\26RXT\27EOP" "\30MIF\31TXHOST\32TXALL\33TXE\34TXL\35TXP\36TXT\37SLV" "\40SLVP"); |
| 884 | #endif |
| 885 | return (1); |
| 886 | } |
| 887 | |
| 888 | int |
| 889 | hme_intr(void *v) |
| 890 | { |
| 891 | struct hme_softc *sc = (struct hme_softc *)v; |
| 892 | bus_space_tag_t t = sc->sc_bustag; |
| 893 | bus_space_handle_t seb = sc->sc_seb; |
| 894 | u_int32_t status; |
| 895 | int r = 0; |
| 896 | |
| 897 | status = bus_space_read_4(t, seb, HME_SEBI_STAT)((t)->read_4((seb), ((64*4)))); |
| 898 | if (status == 0xffffffff) |
| 899 | return (0); |
| 900 | |
| 901 | if ((status & HME_SEB_STAT_ALL_ERRORS(0x80000000 | 0x40000000 | 0x20000000 | 0x10000000 | 0x08000000 | 0x04000000 | 0x00400000 | 0x00200000 | 0x00100000 | 0x00080000 | 0x00040000 | 0x00020000 | 0x00008000 | 0x00004000 | 0x00002000 | 0x00001000 | 0x00000800 | 0x00000400| 0x00000200| 0x00000080 | 0x00000040 | 0x00000010 | 0x00000008| 0x00000004)) != 0) |
| 902 | r |= hme_eint(sc, status); |
| 903 | |
| 904 | if ((status & (HME_SEB_STAT_TXALL0x02000000 | HME_SEB_STAT_HOSTTOTX0x01000000)) != 0) |
| 905 | r |= hme_tint(sc); |
| 906 | |
| 907 | if ((status & HME_SEB_STAT_RXTOHOST0x00010000) != 0) |
| 908 | r |= hme_rint(sc); |
| 909 | |
| 910 | return (r); |
| 911 | } |
| 912 | |
| 913 | |
| 914 | void |
| 915 | hme_watchdog(struct ifnet *ifp) |
| 916 | { |
| 917 | struct hme_softc *sc = ifp->if_softc; |
| 918 | |
| 919 | log(LOG_ERR3, "%s: device timeout\n", sc->sc_dev.dv_xname); |
| 920 | ifp->if_oerrorsif_data.ifi_oerrors++; |
| 921 | |
| 922 | hme_reset(sc); |
| 923 | } |
| 924 | |
| 925 | /* |
| 926 | * Initialize the MII Management Interface |
| 927 | */ |
| 928 | void |
| 929 | hme_mifinit(struct hme_softc *sc) |
| 930 | { |
| 931 | bus_space_tag_t t = sc->sc_bustag; |
| 932 | bus_space_handle_t mif = sc->sc_mif; |
| 933 | bus_space_handle_t mac = sc->sc_mac; |
| 934 | int phy; |
| 935 | u_int32_t v; |
| 936 | |
| 937 | v = bus_space_read_4(t, mif, HME_MIFI_CFG)((t)->read_4((mif), ((4*4)))); |
| 938 | phy = HME_PHYAD_EXTERNAL0; |
| 939 | if (v & HME_MIF_CFG_MDI10x00000200) |
| 940 | phy = sc->sc_tcvr = HME_PHYAD_EXTERNAL0; |
| 941 | else if (v & HME_MIF_CFG_MDI00x00000100) |
| 942 | phy = sc->sc_tcvr = HME_PHYAD_INTERNAL1; |
| 943 | else |
| 944 | sc->sc_tcvr = -1; |
| 945 | |
| 946 | /* Configure the MIF in frame mode, no poll, current phy select */ |
| 947 | v = 0; |
| 948 | if (phy == HME_PHYAD_EXTERNAL0) |
| 949 | v |= HME_MIF_CFG_PHY0x00000001; |
| 950 | bus_space_write_4(t, mif, HME_MIFI_CFG, v)((t)->write_4((mif), ((4*4)), (v))); |
| 951 | |
| 952 | /* If an external transceiver is selected, enable its MII drivers */ |
| 953 | v = bus_space_read_4(t, mac, HME_MACI_XIF)((t)->read_4((mac), ((0*4)))); |
| 954 | v &= ~HME_MAC_XIF_MIIENABLE0x00000008; |
| 955 | if (phy == HME_PHYAD_EXTERNAL0) |
| 956 | v |= HME_MAC_XIF_MIIENABLE0x00000008; |
| 957 | bus_space_write_4(t, mac, HME_MACI_XIF, v)((t)->write_4((mac), ((0*4)), (v))); |
| 958 | } |
| 959 | |
| 960 | /* |
| 961 | * MII interface |
| 962 | */ |
| 963 | static int |
| 964 | hme_mii_readreg(struct device *self, int phy, int reg) |
| 965 | { |
| 966 | struct hme_softc *sc = (struct hme_softc *)self; |
| 967 | bus_space_tag_t t = sc->sc_bustag; |
| 968 | bus_space_handle_t mif = sc->sc_mif; |
| 969 | bus_space_handle_t mac = sc->sc_mac; |
| 970 | u_int32_t v, xif_cfg, mifi_cfg; |
| 971 | int n; |
| 972 | |
| 973 | if (phy != HME_PHYAD_EXTERNAL0 && phy != HME_PHYAD_INTERNAL1) |
| 974 | return (0); |
| 975 | |
| 976 | /* Select the desired PHY in the MIF configuration register */ |
| 977 | v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG)((t)->read_4((mif), ((4*4)))); |
| 978 | v &= ~HME_MIF_CFG_PHY0x00000001; |
| 979 | if (phy == HME_PHYAD_EXTERNAL0) |
| 980 | v |= HME_MIF_CFG_PHY0x00000001; |
| 981 | bus_space_write_4(t, mif, HME_MIFI_CFG, v)((t)->write_4((mif), ((4*4)), (v))); |
| 982 | |
| 983 | /* Enable MII drivers on external transceiver */ |
| 984 | v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF)((t)->read_4((mac), ((0*4)))); |
| 985 | if (phy == HME_PHYAD_EXTERNAL0) |
| 986 | v |= HME_MAC_XIF_MIIENABLE0x00000008; |
| 987 | else |
| 988 | v &= ~HME_MAC_XIF_MIIENABLE0x00000008; |
| 989 | bus_space_write_4(t, mac, HME_MACI_XIF, v)((t)->write_4((mac), ((0*4)), (v))); |
| 990 | |
| 991 | /* Construct the frame command */ |
| 992 | v = (MII_COMMAND_START0x01 << HME_MIF_FO_ST_SHIFT30) | |
| 993 | HME_MIF_FO_TAMSB0x00020000 | |
| 994 | (MII_COMMAND_READ0x02 << HME_MIF_FO_OPC_SHIFT28) | |
| 995 | (phy << HME_MIF_FO_PHYAD_SHIFT23) | |
| 996 | (reg << HME_MIF_FO_REGAD_SHIFT18); |
| 997 | |
| 998 | bus_space_write_4(t, mif, HME_MIFI_FO, v)((t)->write_4((mif), ((3*4)), (v))); |
| 999 | for (n = 0; n < 100; n++) { |
| 1000 | DELAY(1)(*delay_func)(1); |
| 1001 | v = bus_space_read_4(t, mif, HME_MIFI_FO)((t)->read_4((mif), ((3*4)))); |
| 1002 | if (v & HME_MIF_FO_TALSB0x00010000) { |
| 1003 | v &= HME_MIF_FO_DATA0x0000ffff; |
| 1004 | goto out; |
| 1005 | } |
| 1006 | } |
| 1007 | |
| 1008 | v = 0; |
| 1009 | printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname); |
| 1010 | |
| 1011 | out: |
| 1012 | /* Restore MIFI_CFG register */ |
| 1013 | bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg)((t)->write_4((mif), ((4*4)), (mifi_cfg))); |
| 1014 | /* Restore XIF register */ |
| 1015 | bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg)((t)->write_4((mac), ((0*4)), (xif_cfg))); |
| 1016 | return (v); |
| 1017 | } |
| 1018 | |
| 1019 | static void |
| 1020 | hme_mii_writereg(struct device *self, int phy, int reg, int val) |
| 1021 | { |
| 1022 | struct hme_softc *sc = (void *)self; |
| 1023 | bus_space_tag_t t = sc->sc_bustag; |
| 1024 | bus_space_handle_t mif = sc->sc_mif; |
| 1025 | bus_space_handle_t mac = sc->sc_mac; |
| 1026 | u_int32_t v, xif_cfg, mifi_cfg; |
| 1027 | int n; |
| 1028 | |
| 1029 | /* We can at most have two PHYs */ |
| 1030 | if (phy != HME_PHYAD_EXTERNAL0 && phy != HME_PHYAD_INTERNAL1) |
| 1031 | return; |
| 1032 | |
| 1033 | /* Select the desired PHY in the MIF configuration register */ |
| 1034 | v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG)((t)->read_4((mif), ((4*4)))); |
| 1035 | v &= ~HME_MIF_CFG_PHY0x00000001; |
| 1036 | if (phy == HME_PHYAD_EXTERNAL0) |
| 1037 | v |= HME_MIF_CFG_PHY0x00000001; |
| 1038 | bus_space_write_4(t, mif, HME_MIFI_CFG, v)((t)->write_4((mif), ((4*4)), (v))); |
| 1039 | |
| 1040 | /* Enable MII drivers on external transceiver */ |
| 1041 | v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF)((t)->read_4((mac), ((0*4)))); |
| 1042 | if (phy == HME_PHYAD_EXTERNAL0) |
| 1043 | v |= HME_MAC_XIF_MIIENABLE0x00000008; |
| 1044 | else |
| 1045 | v &= ~HME_MAC_XIF_MIIENABLE0x00000008; |
| 1046 | bus_space_write_4(t, mac, HME_MACI_XIF, v)((t)->write_4((mac), ((0*4)), (v))); |
| 1047 | |
| 1048 | /* Construct the frame command */ |
| 1049 | v = (MII_COMMAND_START0x01 << HME_MIF_FO_ST_SHIFT30) | |
| 1050 | HME_MIF_FO_TAMSB0x00020000 | |
| 1051 | (MII_COMMAND_WRITE0x01 << HME_MIF_FO_OPC_SHIFT28) | |
| 1052 | (phy << HME_MIF_FO_PHYAD_SHIFT23) | |
| 1053 | (reg << HME_MIF_FO_REGAD_SHIFT18) | |
| 1054 | (val & HME_MIF_FO_DATA0x0000ffff); |
| 1055 | |
| 1056 | bus_space_write_4(t, mif, HME_MIFI_FO, v)((t)->write_4((mif), ((3*4)), (v))); |
| 1057 | for (n = 0; n < 100; n++) { |
| 1058 | DELAY(1)(*delay_func)(1); |
| 1059 | v = bus_space_read_4(t, mif, HME_MIFI_FO)((t)->read_4((mif), ((3*4)))); |
| 1060 | if (v & HME_MIF_FO_TALSB0x00010000) |
| 1061 | goto out; |
| 1062 | } |
| 1063 | |
| 1064 | printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname); |
| 1065 | out: |
| 1066 | /* Restore MIFI_CFG register */ |
| 1067 | bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg)((t)->write_4((mif), ((4*4)), (mifi_cfg))); |
| 1068 | /* Restore XIF register */ |
| 1069 | bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg)((t)->write_4((mac), ((0*4)), (xif_cfg))); |
| 1070 | } |
| 1071 | |
| 1072 | static void |
| 1073 | hme_mii_statchg(struct device *dev) |
| 1074 | { |
| 1075 | struct hme_softc *sc = (void *)dev; |
| 1076 | bus_space_tag_t t = sc->sc_bustag; |
| 1077 | bus_space_handle_t mac = sc->sc_mac; |
| 1078 | u_int32_t v; |
| 1079 | |
| 1080 | #ifdef HMEDEBUG |
| 1081 | if (sc->sc_debug) |
| 1082 | printf("hme_mii_statchg: status change\n", phy); |
| 1083 | #endif |
| 1084 | |
| 1085 | /* Set the MAC Full Duplex bit appropriately */ |
| 1086 | /* Apparently the hme chip is SIMPLEX if working in full duplex mode, |
| 1087 | but not otherwise. */ |
| 1088 | v = bus_space_read_4(t, mac, HME_MACI_TXCFG)((t)->read_4((mac), ((131*4)))); |
| 1089 | if ((IFM_OPTIONS(sc->sc_mii.mii_media_active)((sc->sc_mii.mii_media_active) & (0x00000000ffff0000ULL |0x00ffff0000000000ULL)) & IFM_FDX0x0000010000000000ULL) != 0) { |
| 1090 | v |= HME_MAC_TXCFG_FULLDPLX0x00000200; |
| 1091 | sc->sc_arpcom.ac_if.if_flags |= IFF_SIMPLEX0x800; |
| 1092 | } else { |
| 1093 | v &= ~HME_MAC_TXCFG_FULLDPLX0x00000200; |
| 1094 | sc->sc_arpcom.ac_if.if_flags &= ~IFF_SIMPLEX0x800; |
| 1095 | } |
| 1096 | bus_space_write_4(t, mac, HME_MACI_TXCFG, v)((t)->write_4((mac), ((131*4)), (v))); |
| 1097 | } |
| 1098 | |
| 1099 | int |
| 1100 | hme_mediachange(struct ifnet *ifp) |
| 1101 | { |
| 1102 | struct hme_softc *sc = ifp->if_softc; |
| 1103 | bus_space_tag_t t = sc->sc_bustag; |
| 1104 | bus_space_handle_t mif = sc->sc_mif; |
| 1105 | bus_space_handle_t mac = sc->sc_mac; |
| 1106 | uint64_t instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media)(((sc->sc_mii.mii_media.ifm_cur->ifm_media) & 0xff00000000000000ULL ) >> 56); |
| 1107 | int phy = sc->sc_phys[instance]; |
| 1108 | u_int32_t v; |
| 1109 | |
| 1110 | #ifdef HMEDEBUG |
| 1111 | if (sc->sc_debug) |
| 1112 | printf("hme_mediachange: phy = %d\n", phy); |
| 1113 | #endif |
| 1114 | if (IFM_TYPE(sc->sc_media.ifm_media)((sc->sc_mii.mii_media.ifm_media) & 0x000000000000ff00ULL ) != IFM_ETHER0x0000000000000100ULL) |
| 1115 | return (EINVAL22); |
| 1116 | |
| 1117 | /* Select the current PHY in the MIF configuration register */ |
| 1118 | v = bus_space_read_4(t, mif, HME_MIFI_CFG)((t)->read_4((mif), ((4*4)))); |
| 1119 | v &= ~HME_MIF_CFG_PHY0x00000001; |
| 1120 | if (phy == HME_PHYAD_EXTERNAL0) |
| 1121 | v |= HME_MIF_CFG_PHY0x00000001; |
| 1122 | bus_space_write_4(t, mif, HME_MIFI_CFG, v)((t)->write_4((mif), ((4*4)), (v))); |
| 1123 | |
| 1124 | /* If an external transceiver is selected, enable its MII drivers */ |
| 1125 | v = bus_space_read_4(t, mac, HME_MACI_XIF)((t)->read_4((mac), ((0*4)))); |
| 1126 | v &= ~HME_MAC_XIF_MIIENABLE0x00000008; |
| 1127 | if (phy == HME_PHYAD_EXTERNAL0) |
| 1128 | v |= HME_MAC_XIF_MIIENABLE0x00000008; |
| 1129 | bus_space_write_4(t, mac, HME_MACI_XIF, v)((t)->write_4((mac), ((0*4)), (v))); |
| 1130 | |
| 1131 | return (mii_mediachg(&sc->sc_mii)); |
| 1132 | } |
| 1133 | |
| 1134 | void |
| 1135 | hme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) |
| 1136 | { |
| 1137 | struct hme_softc *sc = ifp->if_softc; |
| 1138 | |
| 1139 | if ((ifp->if_flags & IFF_UP0x1) == 0) |
| 1140 | return; |
| 1141 | |
| 1142 | mii_pollstat(&sc->sc_mii); |
| 1143 | ifmr->ifm_active = sc->sc_mii.mii_media_active; |
| 1144 | ifmr->ifm_status = sc->sc_mii.mii_media_status; |
| 1145 | } |
| 1146 | |
| 1147 | /* |
| 1148 | * Process an ioctl request. |
| 1149 | */ |
| 1150 | int |
| 1151 | hme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) |
| 1152 | { |
| 1153 | struct hme_softc *sc = ifp->if_softc; |
| 1154 | struct ifreq *ifr = (struct ifreq *)data; |
| 1155 | int s, error = 0; |
| 1156 | |
| 1157 | s = splnet()splraise(0x4); |
| 1158 | |
| 1159 | switch (cmd) { |
| 1160 | case SIOCSIFADDR((unsigned long)0x80000000 | ((sizeof(struct ifreq) & 0x1fff ) << 16) | ((('i')) << 8) | ((12))): |
| 1161 | ifp->if_flags |= IFF_UP0x1; |
| 1162 | if (!(ifp->if_flags & IFF_RUNNING0x40)) |
| 1163 | hme_init(sc); |
| 1164 | break; |
| 1165 | |
| 1166 | case SIOCSIFFLAGS((unsigned long)0x80000000 | ((sizeof(struct ifreq) & 0x1fff ) << 16) | ((('i')) << 8) | ((16))): |
| 1167 | if (ifp->if_flags & IFF_UP0x1) { |
| 1168 | if (ifp->if_flags & IFF_RUNNING0x40) |
| 1169 | error = ENETRESET52; |
| 1170 | else |
| 1171 | hme_init(sc); |
| 1172 | } else { |
| 1173 | if (ifp->if_flags & IFF_RUNNING0x40) |
| 1174 | hme_stop(sc, 0); |
| 1175 | } |
| 1176 | #ifdef HMEDEBUG |
| 1177 | sc->sc_debug = (ifp->if_flags & IFF_DEBUG0x4) != 0 ? 1 : 0; |
| 1178 | #endif |
| 1179 | break; |
| 1180 | |
| 1181 | case SIOCGIFMEDIA(((unsigned long)0x80000000|(unsigned long)0x40000000) | ((sizeof (struct ifmediareq) & 0x1fff) << 16) | ((('i')) << 8) | ((56))): |
| 1182 | case SIOCSIFMEDIA(((unsigned long)0x80000000|(unsigned long)0x40000000) | ((sizeof (struct ifreq) & 0x1fff) << 16) | ((('i')) << 8) | ((55))): |
| 1183 | error = ifmedia_ioctl(ifp, ifr, &sc->sc_mediasc_mii.mii_media, cmd); |
| 1184 | break; |
| 1185 | |
| 1186 | case SIOCGIFRXR((unsigned long)0x80000000 | ((sizeof(struct ifreq) & 0x1fff ) << 16) | ((('i')) << 8) | ((170))): |
| 1187 | error = if_rxr_ioctl((struct if_rxrinfo *)ifr->ifr_dataifr_ifru.ifru_data, |
| 1188 | NULL((void *)0), MCLBYTES(1 << 11), &sc->sc_rx_ring); |
| 1189 | break; |
| 1190 | |
| 1191 | default: |
| 1192 | error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data); |
| 1193 | } |
| 1194 | |
| 1195 | if (error == ENETRESET52) { |
| 1196 | if (ifp->if_flags & IFF_RUNNING0x40) |
| 1197 | hme_iff(sc); |
| 1198 | error = 0; |
| 1199 | } |
| 1200 | |
| 1201 | splx(s)spllower(s); |
| 1202 | return (error); |
| 1203 | } |
| 1204 | |
| 1205 | void |
| 1206 | hme_iff(struct hme_softc *sc) |
| 1207 | { |
| 1208 | struct ifnet *ifp = &sc->sc_arpcom.ac_if; |
| 1209 | struct arpcom *ac = &sc->sc_arpcom; |
| 1210 | struct ether_multi *enm; |
| 1211 | struct ether_multistep step; |
| 1212 | bus_space_tag_t t = sc->sc_bustag; |
| 1213 | bus_space_handle_t mac = sc->sc_mac; |
| 1214 | u_int32_t hash[4]; |
| 1215 | u_int32_t rxcfg, crc; |
| 1216 | |
| 1217 | rxcfg = bus_space_read_4(t, mac, HME_MACI_RXCFG)((t)->read_4((mac), ((195*4)))); |
| 1218 | rxcfg &= ~(HME_MAC_RXCFG_HENABLE0x00000800 | HME_MAC_RXCFG_PMISC0x00000040); |
| 1219 | ifp->if_flags &= ~IFF_ALLMULTI0x200; |
| 1220 | /* Clear hash table */ |
| 1221 | hash[0] = hash[1] = hash[2] = hash[3] = 0; |
| 1222 | |
| 1223 | if (ifp->if_flags & IFF_PROMISC0x100) { |
| 1224 | ifp->if_flags |= IFF_ALLMULTI0x200; |
| 1225 | rxcfg |= HME_MAC_RXCFG_PMISC0x00000040; |
| 1226 | } else if (ac->ac_multirangecnt > 0) { |
| 1227 | ifp->if_flags |= IFF_ALLMULTI0x200; |
| 1228 | rxcfg |= HME_MAC_RXCFG_HENABLE0x00000800; |
| 1229 | hash[0] = hash[1] = hash[2] = hash[3] = 0xffff; |
| 1230 | } else { |
| 1231 | rxcfg |= HME_MAC_RXCFG_HENABLE0x00000800; |
| 1232 | |
| 1233 | ETHER_FIRST_MULTI(step, ac, enm)do { (step).e_enm = ((&(ac)->ac_multiaddrs)->lh_first ); do { if ((((enm)) = ((step)).e_enm) != ((void *)0)) ((step )).e_enm = ((((enm)))->enm_list.le_next); } while ( 0); } while ( 0); |
| 1234 | while (enm != NULL((void *)0)) { |
| 1235 | crc = ether_crc32_le(enm->enm_addrlo, |
| 1236 | ETHER_ADDR_LEN6) >> 26; |
| 1237 | |
| 1238 | /* Set the corresponding bit in the filter. */ |
| 1239 | hash[crc >> 4] |= 1 << (crc & 0xf); |
| 1240 | |
| 1241 | ETHER_NEXT_MULTI(step, enm)do { if (((enm) = (step).e_enm) != ((void *)0)) (step).e_enm = (((enm))->enm_list.le_next); } while ( 0); |
| 1242 | } |
| 1243 | } |
| 1244 | |
| 1245 | /* Now load the hash table into the chip */ |
| 1246 | bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0])((t)->write_4((mac), ((211*4)), (hash[0]))); |
| 1247 | bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1])((t)->write_4((mac), ((210*4)), (hash[1]))); |
| 1248 | bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2])((t)->write_4((mac), ((209*4)), (hash[2]))); |
| 1249 | bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3])((t)->write_4((mac), ((208*4)), (hash[3]))); |
| 1250 | bus_space_write_4(t, mac, HME_MACI_RXCFG, rxcfg)((t)->write_4((mac), ((195*4)), (rxcfg))); |
| 1251 | } |
| 1252 | |
| 1253 | void |
| 1254 | hme_fill_rx_ring(struct hme_softc *sc) |
| 1255 | { |
| 1256 | struct hme_sxd *sd; |
| 1257 | u_int slots; |
| 1258 | |
| 1259 | for (slots = if_rxr_get(&sc->sc_rx_ring, HME_RX_RING_SIZE64); |
| 1260 | slots > 0; slots--) { |
| 1261 | if (hme_newbuf(sc, &sc->sc_rxd[sc->sc_rx_prod])) |
| 1262 | break; |
| 1263 | |
| 1264 | sd = &sc->sc_rxd[sc->sc_rx_prod]; |
| 1265 | HME_XD_SETADDR(sc->sc_pci, sc->sc_rb.rb_rxd, sc->sc_rx_prod,do { *((u_int32_t *)((sc->sc_rb.rb_rxd) + ((sc->sc_rx_prod ) * 8) + 4)) = ((sc->sc_pci) ? ((__uint32_t)(sd->sd_map ->dm_segs[0].ds_addr)) : (sd->sd_map->dm_segs[0].ds_addr )); } while(0) |
| 1266 | sd->sd_map->dm_segs[0].ds_addr)do { *((u_int32_t *)((sc->sc_rb.rb_rxd) + ((sc->sc_rx_prod ) * 8) + 4)) = ((sc->sc_pci) ? ((__uint32_t)(sd->sd_map ->dm_segs[0].ds_addr)) : (sd->sd_map->dm_segs[0].ds_addr )); } while(0); |
| 1267 | HME_XD_SETFLAGS(sc->sc_pci, sc->sc_rb.rb_rxd, sc->sc_rx_prod,do { *((u_int32_t *)((sc->sc_rb.rb_rxd) + ((sc->sc_rx_prod ) * 8) + 0)) = ((sc->sc_pci) ? ((__uint32_t)(0x80000000 | ( ((1600) << 16) & 0x3fff0000))) : (0x80000000 | (((1600 ) << 16) & 0x3fff0000))); } while(0) |
| 1268 | HME_XD_OWN | HME_XD_ENCODE_RSIZE(HME_RX_PKTSIZE))do { *((u_int32_t *)((sc->sc_rb.rb_rxd) + ((sc->sc_rx_prod ) * 8) + 0)) = ((sc->sc_pci) ? ((__uint32_t)(0x80000000 | ( ((1600) << 16) & 0x3fff0000))) : (0x80000000 | (((1600 ) << 16) & 0x3fff0000))); } while(0); |
| 1269 | |
| 1270 | if (++sc->sc_rx_prod == HME_RX_RING_SIZE64) |
| 1271 | sc->sc_rx_prod = 0; |
| 1272 | } |
| 1273 | if_rxr_put(&sc->sc_rx_ring, slots)do { (&sc->sc_rx_ring)->rxr_alive -= (slots); } while (0); |
| 1274 | } |
| 1275 | |
| 1276 | int |
| 1277 | hme_newbuf(struct hme_softc *sc, struct hme_sxd *d) |
| 1278 | { |
| 1279 | struct mbuf *m; |
| 1280 | bus_dmamap_t map; |
| 1281 | |
| 1282 | /* |
| 1283 | * All operations should be on local variables and/or rx spare map |
| 1284 | * until we're sure everything is a success. |
| 1285 | */ |
| 1286 | |
| 1287 | m = MCLGETL(NULL, M_DONTWAIT, MCLBYTES)m_clget((((void *)0)), (0x0002), ((1 << 11))); |
| 1288 | if (!m) |
| 1289 | return (ENOBUFS55); |
| 1290 | |
| 1291 | if (bus_dmamap_load(sc->sc_dmatag, sc->sc_rxmap_spare,(*(sc->sc_dmatag)->_dmamap_load)((sc->sc_dmatag), (sc ->sc_rxmap_spare), (((caddr_t)((m)->m_hdr.mh_data))), ( (1 << 11) - 2), (((void *)0)), (0x0001)) |
| 1292 | mtod(m, caddr_t), MCLBYTES - HME_RX_OFFSET, NULL,(*(sc->sc_dmatag)->_dmamap_load)((sc->sc_dmatag), (sc ->sc_rxmap_spare), (((caddr_t)((m)->m_hdr.mh_data))), ( (1 << 11) - 2), (((void *)0)), (0x0001)) |
| 1293 | BUS_DMA_NOWAIT)(*(sc->sc_dmatag)->_dmamap_load)((sc->sc_dmatag), (sc ->sc_rxmap_spare), (((caddr_t)((m)->m_hdr.mh_data))), ( (1 << 11) - 2), (((void *)0)), (0x0001)) != 0) { |
| 1294 | m_freem(m); |
| 1295 | return (ENOBUFS55); |
| 1296 | } |
| 1297 | |
| 1298 | /* |
| 1299 | * At this point we have a new buffer loaded into the spare map. |
| 1300 | * Just need to clear out the old mbuf/map and put the new one |
| 1301 | * in place. |
| 1302 | */ |
| 1303 | |
| 1304 | map = d->sd_map; |
| 1305 | d->sd_map = sc->sc_rxmap_spare; |
| 1306 | sc->sc_rxmap_spare = map; |
| 1307 | |
| 1308 | bus_dmamap_sync(sc->sc_dmatag, d->sd_map, 0, d->sd_map->dm_mapsize,(*(sc->sc_dmatag)->_dmamap_sync)((sc->sc_dmatag), (d ->sd_map), (0), (d->sd_map->dm_mapsize), (0x01)) |
| 1309 | BUS_DMASYNC_PREREAD)(*(sc->sc_dmatag)->_dmamap_sync)((sc->sc_dmatag), (d ->sd_map), (0), (d->sd_map->dm_mapsize), (0x01)); |
| 1310 | |
| 1311 | m->m_datam_hdr.mh_data += HME_RX_OFFSET2; |
| 1312 | d->sd_mbuf = m; |
| 1313 | return (0); |
| 1314 | } |