| File: | dev/pci/drm/amd/pm/powerplay/smumgr/iceland_smumgr.c |
| Warning: | line 374, column 11 Value stored to 'HiSidd' during its initialization is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* |
| 2 | * Copyright 2016 Advanced Micro Devices, Inc. |
| 3 | * |
| 4 | * Permission is hereby granted, free of charge, to any person obtaining a |
| 5 | * copy of this software and associated documentation files (the "Software"), |
| 6 | * to deal in the Software without restriction, including without limitation |
| 7 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| 8 | * and/or sell copies of the Software, and to permit persons to whom the |
| 9 | * Software is furnished to do so, subject to the following conditions: |
| 10 | * |
| 11 | * The above copyright notice and this permission notice shall be included in |
| 12 | * all copies or substantial portions of the Software. |
| 13 | * |
| 14 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 15 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 16 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| 17 | * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| 18 | * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| 19 | * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| 20 | * OTHER DEALINGS IN THE SOFTWARE. |
| 21 | * |
| 22 | * Author: Huang Rui <ray.huang@amd.com> |
| 23 | * |
| 24 | */ |
| 25 | #include "pp_debug.h" |
| 26 | #include <linux/types.h> |
| 27 | #include <linux/kernel.h> |
| 28 | #include <linux/pci.h> |
| 29 | #include <linux/slab.h> |
| 30 | #include <linux/gfp.h> |
| 31 | |
| 32 | #include "smumgr.h" |
| 33 | #include "iceland_smumgr.h" |
| 34 | |
| 35 | #include "ppsmc.h" |
| 36 | |
| 37 | #include "cgs_common.h" |
| 38 | |
| 39 | #include "smu7_dyn_defaults.h" |
| 40 | #include "smu7_hwmgr.h" |
| 41 | #include "hardwaremanager.h" |
| 42 | #include "ppatomctrl.h" |
| 43 | #include "atombios.h" |
| 44 | #include "pppcielanes.h" |
| 45 | #include "pp_endian.h" |
| 46 | #include "processpptables.h" |
| 47 | |
| 48 | |
| 49 | #include "smu/smu_7_1_1_d.h" |
| 50 | #include "smu/smu_7_1_1_sh_mask.h" |
| 51 | #include "smu71_discrete.h" |
| 52 | |
| 53 | #include "smu_ucode_xfer_vi.h" |
| 54 | #include "gmc/gmc_8_1_d.h" |
| 55 | #include "gmc/gmc_8_1_sh_mask.h" |
| 56 | #include "bif/bif_5_0_d.h" |
| 57 | #include "bif/bif_5_0_sh_mask.h" |
| 58 | #include "dce/dce_10_0_d.h" |
| 59 | #include "dce/dce_10_0_sh_mask.h" |
| 60 | |
| 61 | |
| 62 | #define ICELAND_SMC_SIZE0x20000 0x20000 |
| 63 | |
| 64 | #define POWERTUNE_DEFAULT_SET_MAX1 1 |
| 65 | #define MC_CG_ARB_FREQ_F10x0b 0x0b |
| 66 | #define VDDC_VDDCI_DELTA200 200 |
| 67 | |
| 68 | #define DEVICE_ID_VI_ICELAND_M_69000x6900 0x6900 |
| 69 | #define DEVICE_ID_VI_ICELAND_M_69010x6901 0x6901 |
| 70 | #define DEVICE_ID_VI_ICELAND_M_69020x6902 0x6902 |
| 71 | #define DEVICE_ID_VI_ICELAND_M_69030x6903 0x6903 |
| 72 | |
| 73 | static const struct iceland_pt_defaults defaults_iceland = { |
| 74 | /* |
| 75 | * sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc, |
| 76 | * TDC_MAWt, TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT |
| 77 | */ |
| 78 | 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000, |
| 79 | { 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61 }, |
| 80 | { 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 } |
| 81 | }; |
| 82 | |
| 83 | /* 35W - XT, XTL */ |
| 84 | static const struct iceland_pt_defaults defaults_icelandxt = { |
| 85 | /* |
| 86 | * sviLoadLIneEn, SviLoadLineVddC, |
| 87 | * TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt, |
| 88 | * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, |
| 89 | * BAPM_TEMP_GRADIENT |
| 90 | */ |
| 91 | 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0x0, |
| 92 | { 0xA7, 0x0, 0x0, 0xB5, 0x0, 0x0, 0x9F, 0x0, 0x0, 0xD6, 0x0, 0x0, 0xD7, 0x0, 0x0}, |
| 93 | { 0x1EA, 0x0, 0x0, 0x224, 0x0, 0x0, 0x25E, 0x0, 0x0, 0x28E, 0x0, 0x0, 0x2AB, 0x0, 0x0} |
| 94 | }; |
| 95 | |
| 96 | /* 25W - PRO, LE */ |
| 97 | static const struct iceland_pt_defaults defaults_icelandpro = { |
| 98 | /* |
| 99 | * sviLoadLIneEn, SviLoadLineVddC, |
| 100 | * TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt, |
| 101 | * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, |
| 102 | * BAPM_TEMP_GRADIENT |
| 103 | */ |
| 104 | 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0x0, |
| 105 | { 0xB7, 0x0, 0x0, 0xC3, 0x0, 0x0, 0xB5, 0x0, 0x0, 0xEA, 0x0, 0x0, 0xE6, 0x0, 0x0}, |
| 106 | { 0x1EA, 0x0, 0x0, 0x224, 0x0, 0x0, 0x25E, 0x0, 0x0, 0x28E, 0x0, 0x0, 0x2AB, 0x0, 0x0} |
| 107 | }; |
| 108 | |
| 109 | static int iceland_start_smc(struct pp_hwmgr *hwmgr) |
| 110 | { |
| 111 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((0) << 0x0))))) |
| 112 | SMC_SYSCON_RESET_CNTL, rst_reg, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((0) << 0x0))))); |
| 113 | |
| 114 | return 0; |
| 115 | } |
| 116 | |
| 117 | static void iceland_reset_smc(struct pp_hwmgr *hwmgr) |
| 118 | { |
| 119 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((1) << 0x0))))) |
| 120 | SMC_SYSCON_RESET_CNTL,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((1) << 0x0))))) |
| 121 | rst_reg, 1)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((1) << 0x0))))); |
| 122 | } |
| 123 | |
| 124 | |
| 125 | static void iceland_stop_smc_clock(struct pp_hwmgr *hwmgr) |
| 126 | { |
| 127 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000004,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000004))) & ~0x1) | (0x1 & ((1) << 0x0))))) |
| 128 | SMC_SYSCON_CLOCK_CNTL_0,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000004,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000004))) & ~0x1) | (0x1 & ((1) << 0x0))))) |
| 129 | ck_disable, 1)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000004,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000004))) & ~0x1) | (0x1 & ((1) << 0x0))))); |
| 130 | } |
| 131 | |
| 132 | static void iceland_start_smc_clock(struct pp_hwmgr *hwmgr) |
| 133 | { |
| 134 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000004,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000004))) & ~0x1) | (0x1 & ((0) << 0x0))))) |
| 135 | SMC_SYSCON_CLOCK_CNTL_0,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000004,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000004))) & ~0x1) | (0x1 & ((0) << 0x0))))) |
| 136 | ck_disable, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000004,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000004))) & ~0x1) | (0x1 & ((0) << 0x0))))); |
| 137 | } |
| 138 | |
| 139 | static int iceland_smu_start_smc(struct pp_hwmgr *hwmgr) |
| 140 | { |
| 141 | /* set smc instruct start point at 0x0 */ |
| 142 | smu7_program_jump_on_start(hwmgr); |
| 143 | |
| 144 | /* enable smc clock */ |
| 145 | iceland_start_smc_clock(hwmgr); |
| 146 | |
| 147 | /* de-assert reset */ |
| 148 | iceland_start_smc(hwmgr); |
| 149 | |
| 150 | PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS,phm_wait_on_indirect_register(hwmgr, 0x80, 0x33000, (1) << 0x0, 0x1) |
| 151 | INTERRUPTS_ENABLED, 1)phm_wait_on_indirect_register(hwmgr, 0x80, 0x33000, (1) << 0x0, 0x1); |
| 152 | |
| 153 | return 0; |
| 154 | } |
| 155 | |
| 156 | |
| 157 | static int iceland_upload_smc_firmware_data(struct pp_hwmgr *hwmgr, |
| 158 | uint32_t length, const uint8_t *src, |
| 159 | uint32_t limit, uint32_t start_addr) |
| 160 | { |
| 161 | uint32_t byte_count = length; |
| 162 | uint32_t data; |
| 163 | |
| 164 | PP_ASSERT_WITH_CODE((limit >= byte_count), "SMC address is beyond the SMC RAM area.", return -EINVAL)do { if (!((limit >= byte_count))) { printk("\0014" "amdgpu: " "%s\n", "SMC address is beyond the SMC RAM area."); return - 22; } } while (0); |
| 165 | |
| 166 | cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, start_addr)(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0x80,start_addr)); |
| 167 | PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 1)(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0x92,((((((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0x92))) & ~0x1 ) | (0x1 & ((1) << 0x0))))); |
| 168 | |
| 169 | while (byte_count >= 4) { |
| 170 | data = src[0] * 0x1000000 + src[1] * 0x10000 + src[2] * 0x100 + src[3]; |
| 171 | cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data)(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0x81,data)); |
| 172 | src += 4; |
| 173 | byte_count -= 4; |
| 174 | } |
| 175 | |
| 176 | PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0)(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0x92,((((((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0x92))) & ~0x1 ) | (0x1 & ((0) << 0x0))))); |
| 177 | |
| 178 | PP_ASSERT_WITH_CODE((0 == byte_count), "SMC size must be divisible by 4.", return -EINVAL)do { if (!((0 == byte_count))) { printk("\0014" "amdgpu: " "%s\n" , "SMC size must be divisible by 4."); return -22; } } while ( 0); |
| 179 | |
| 180 | return 0; |
| 181 | } |
| 182 | |
| 183 | |
| 184 | static int iceland_smu_upload_firmware_image(struct pp_hwmgr *hwmgr) |
| 185 | { |
| 186 | uint32_t val; |
| 187 | struct cgs_firmware_info info = {0}; |
| 188 | |
| 189 | if (hwmgr == NULL((void *)0) || hwmgr->device == NULL((void *)0)) |
| 190 | return -EINVAL22; |
| 191 | |
| 192 | /* load SMC firmware */ |
| 193 | cgs_get_firmware_info(hwmgr->device,(((struct cgs_device *)hwmgr->device)->ops->get_firmware_info (hwmgr->device, smu7_convert_fw_type_to_cgs(0), &info) ) |
| 194 | smu7_convert_fw_type_to_cgs(UCODE_ID_SMU), &info)(((struct cgs_device *)hwmgr->device)->ops->get_firmware_info (hwmgr->device, smu7_convert_fw_type_to_cgs(0), &info) ); |
| 195 | |
| 196 | if (info.image_size & 3) { |
| 197 | pr_err("[ powerplay ] SMC ucode is not 4 bytes aligned\n")printk("\0013" "amdgpu: " "[ powerplay ] SMC ucode is not 4 bytes aligned\n" ); |
| 198 | return -EINVAL22; |
| 199 | } |
| 200 | |
| 201 | if (info.image_size > ICELAND_SMC_SIZE0x20000) { |
| 202 | pr_err("[ powerplay ] SMC address is beyond the SMC RAM area\n")printk("\0013" "amdgpu: " "[ powerplay ] SMC address is beyond the SMC RAM area\n" ); |
| 203 | return -EINVAL22; |
| 204 | } |
| 205 | hwmgr->smu_version = info.version; |
| 206 | /* wait for smc boot up */ |
| 207 | PHM_WAIT_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,phm_wait_for_indirect_register_unequal(hwmgr, 0x80, 0xc0000004 , (0) << 0x7, 0x80) |
| 208 | RCU_UC_EVENTS, boot_seq_done, 0)phm_wait_for_indirect_register_unequal(hwmgr, 0x80, 0xc0000004 , (0) << 0x7, 0x80); |
| 209 | |
| 210 | /* clear firmware interrupt enable flag */ |
| 211 | val = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000010)) |
| 212 | ixSMC_SYSCON_MISC_CNTL)(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000010)); |
| 213 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000010,val | 1)) |
| 214 | ixSMC_SYSCON_MISC_CNTL, val | 1)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000010,val | 1)); |
| 215 | |
| 216 | /* stop smc clock */ |
| 217 | iceland_stop_smc_clock(hwmgr); |
| 218 | |
| 219 | /* reset smc */ |
| 220 | iceland_reset_smc(hwmgr); |
| 221 | iceland_upload_smc_firmware_data(hwmgr, info.image_size, |
| 222 | (uint8_t *)info.kptr, ICELAND_SMC_SIZE0x20000, |
| 223 | info.ucode_start_address); |
| 224 | |
| 225 | return 0; |
| 226 | } |
| 227 | |
| 228 | static int iceland_request_smu_load_specific_fw(struct pp_hwmgr *hwmgr, |
| 229 | uint32_t firmwareType) |
| 230 | { |
| 231 | return 0; |
| 232 | } |
| 233 | |
| 234 | static int iceland_start_smu(struct pp_hwmgr *hwmgr) |
| 235 | { |
| 236 | struct iceland_smumgr *priv = hwmgr->smu_backend; |
| 237 | int result; |
| 238 | |
| 239 | if (!smu7_is_smc_ram_running(hwmgr)) { |
| 240 | result = iceland_smu_upload_firmware_image(hwmgr); |
| 241 | if (result) |
| 242 | return result; |
| 243 | |
| 244 | iceland_smu_start_smc(hwmgr); |
| 245 | } |
| 246 | |
| 247 | /* Setup SoftRegsStart here to visit the register UcodeLoadStatus |
| 248 | * to check fw loading state |
| 249 | */ |
| 250 | smu7_read_smc_sram_dword(hwmgr, |
| 251 | SMU71_FIRMWARE_HEADER_LOCATION0x20000 + |
| 252 | offsetof(SMU71_Firmware_Header, SoftRegisters)__builtin_offsetof(SMU71_Firmware_Header, SoftRegisters), |
| 253 | &(priv->smu7_data.soft_regs_start), 0x40000); |
| 254 | |
| 255 | result = smu7_request_smu_load_fw(hwmgr); |
| 256 | |
| 257 | return result; |
| 258 | } |
| 259 | |
| 260 | static int iceland_smu_init(struct pp_hwmgr *hwmgr) |
| 261 | { |
| 262 | struct iceland_smumgr *iceland_priv = NULL((void *)0); |
| 263 | |
| 264 | iceland_priv = kzalloc(sizeof(struct iceland_smumgr), GFP_KERNEL(0x0001 | 0x0004)); |
| 265 | |
| 266 | if (iceland_priv == NULL((void *)0)) |
| 267 | return -ENOMEM12; |
| 268 | |
| 269 | hwmgr->smu_backend = iceland_priv; |
| 270 | |
| 271 | if (smu7_init(hwmgr)) { |
| 272 | kfree(iceland_priv); |
| 273 | return -EINVAL22; |
| 274 | } |
| 275 | |
| 276 | return 0; |
| 277 | } |
| 278 | |
| 279 | |
| 280 | static void iceland_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr) |
| 281 | { |
| 282 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
| 283 | struct amdgpu_device *adev = hwmgr->adev; |
| 284 | uint32_t dev_id; |
| 285 | |
| 286 | dev_id = adev->pdev->device; |
| 287 | |
| 288 | switch (dev_id) { |
| 289 | case DEVICE_ID_VI_ICELAND_M_69000x6900: |
| 290 | case DEVICE_ID_VI_ICELAND_M_69030x6903: |
| 291 | smu_data->power_tune_defaults = &defaults_icelandxt; |
| 292 | break; |
| 293 | |
| 294 | case DEVICE_ID_VI_ICELAND_M_69010x6901: |
| 295 | case DEVICE_ID_VI_ICELAND_M_69020x6902: |
| 296 | smu_data->power_tune_defaults = &defaults_icelandpro; |
| 297 | break; |
| 298 | default: |
| 299 | smu_data->power_tune_defaults = &defaults_iceland; |
| 300 | pr_warn("Unknown V.I. Device ID.\n")printk("\0014" "amdgpu: " "Unknown V.I. Device ID.\n"); |
| 301 | break; |
| 302 | } |
| 303 | return; |
| 304 | } |
| 305 | |
| 306 | static int iceland_populate_svi_load_line(struct pp_hwmgr *hwmgr) |
| 307 | { |
| 308 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
| 309 | const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults; |
| 310 | |
| 311 | smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en; |
| 312 | smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddc; |
| 313 | smu_data->power_tune_table.SviLoadLineTrimVddC = 3; |
| 314 | smu_data->power_tune_table.SviLoadLineOffsetVddC = 0; |
| 315 | |
| 316 | return 0; |
| 317 | } |
| 318 | |
| 319 | static int iceland_populate_tdc_limit(struct pp_hwmgr *hwmgr) |
| 320 | { |
| 321 | uint16_t tdc_limit; |
| 322 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
| 323 | const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults; |
| 324 | |
| 325 | tdc_limit = (uint16_t)(hwmgr->dyn_state.cac_dtp_table->usTDC * 256); |
| 326 | smu_data->power_tune_table.TDC_VDDC_PkgLimit = |
| 327 | CONVERT_FROM_HOST_TO_SMC_US(tdc_limit)((tdc_limit) = (__uint16_t)(__builtin_constant_p(tdc_limit) ? (__uint16_t)(((__uint16_t)(tdc_limit) & 0xffU) << 8 | ((__uint16_t)(tdc_limit) & 0xff00U) >> 8) : __swap16md (tdc_limit))); |
| 328 | smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc = |
| 329 | defaults->tdc_vddc_throttle_release_limit_perc; |
| 330 | smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt; |
| 331 | |
| 332 | return 0; |
| 333 | } |
| 334 | |
| 335 | static int iceland_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset) |
| 336 | { |
| 337 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
| 338 | const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults; |
| 339 | uint32_t temp; |
| 340 | |
| 341 | if (smu7_read_smc_sram_dword(hwmgr, |
| 342 | fuse_table_offset + |
| 343 | offsetof(SMU71_Discrete_PmFuses, TdcWaterfallCtl)__builtin_offsetof(SMU71_Discrete_PmFuses, TdcWaterfallCtl), |
| 344 | (uint32_t *)&temp, SMC_RAM_END0x40000)) |
| 345 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!" ); return -22; } } while (0) |
| 346 | "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!" ); return -22; } } while (0) |
| 347 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!" ); return -22; } } while (0); |
| 348 | else |
| 349 | smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl; |
| 350 | |
| 351 | return 0; |
| 352 | } |
| 353 | |
| 354 | static int iceland_populate_temperature_scaler(struct pp_hwmgr *hwmgr) |
| 355 | { |
| 356 | return 0; |
| 357 | } |
| 358 | |
| 359 | static int iceland_populate_gnb_lpml(struct pp_hwmgr *hwmgr) |
| 360 | { |
| 361 | int i; |
| 362 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
| 363 | |
| 364 | /* Currently not used. Set all to zero. */ |
| 365 | for (i = 0; i < 8; i++) |
| 366 | smu_data->power_tune_table.GnbLPML[i] = 0; |
| 367 | |
| 368 | return 0; |
| 369 | } |
| 370 | |
| 371 | static int iceland_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr) |
| 372 | { |
| 373 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
| 374 | uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd; |
Value stored to 'HiSidd' during its initialization is never read | |
| 375 | uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd; |
| 376 | struct phm_cac_tdp_table *cac_table = hwmgr->dyn_state.cac_dtp_table; |
| 377 | |
| 378 | HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256); |
| 379 | LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256); |
| 380 | |
| 381 | smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd = |
| 382 | CONVERT_FROM_HOST_TO_SMC_US(HiSidd)((HiSidd) = (__uint16_t)(__builtin_constant_p(HiSidd) ? (__uint16_t )(((__uint16_t)(HiSidd) & 0xffU) << 8 | ((__uint16_t )(HiSidd) & 0xff00U) >> 8) : __swap16md(HiSidd))); |
| 383 | smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd = |
| 384 | CONVERT_FROM_HOST_TO_SMC_US(LoSidd)((LoSidd) = (__uint16_t)(__builtin_constant_p(LoSidd) ? (__uint16_t )(((__uint16_t)(LoSidd) & 0xffU) << 8 | ((__uint16_t )(LoSidd) & 0xff00U) >> 8) : __swap16md(LoSidd))); |
| 385 | |
| 386 | return 0; |
| 387 | } |
| 388 | |
| 389 | static int iceland_populate_bapm_vddc_vid_sidd(struct pp_hwmgr *hwmgr) |
| 390 | { |
| 391 | int i; |
| 392 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
| 393 | uint8_t *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd; |
| 394 | uint8_t *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd; |
| 395 | |
| 396 | PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.cac_leakage_table,do { if (!(((void *)0) != hwmgr->dyn_state.cac_leakage_table )) { printk("\0014" "amdgpu: " "%s\n", "The CAC Leakage table does not exist!" ); return -22; } } while (0) |
| 397 | "The CAC Leakage table does not exist!", return -EINVAL)do { if (!(((void *)0) != hwmgr->dyn_state.cac_leakage_table )) { printk("\0014" "amdgpu: " "%s\n", "The CAC Leakage table does not exist!" ); return -22; } } while (0); |
| 398 | PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count <= 8,do { if (!(hwmgr->dyn_state.cac_leakage_table->count <= 8)) { printk("\0014" "amdgpu: " "%s\n", "There should never be more than 8 entries for BapmVddcVid!!!" ); return -22; } } while (0) |
| 399 | "There should never be more than 8 entries for BapmVddcVid!!!", return -EINVAL)do { if (!(hwmgr->dyn_state.cac_leakage_table->count <= 8)) { printk("\0014" "amdgpu: " "%s\n", "There should never be more than 8 entries for BapmVddcVid!!!" ); return -22; } } while (0); |
| 400 | PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count,do { if (!(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count)) { printk ("\0014" "amdgpu: " "%s\n", "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal" ); return -22; } } while (0) |
| 401 | "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal", return -EINVAL)do { if (!(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count)) { printk ("\0014" "amdgpu: " "%s\n", "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal" ); return -22; } } while (0); |
| 402 | |
| 403 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) { |
| 404 | for (i = 0; (uint32_t) i < hwmgr->dyn_state.cac_leakage_table->count; i++) { |
| 405 | lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc1); |
| 406 | hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc2); |
| 407 | } |
| 408 | } else { |
| 409 | PP_ASSERT_WITH_CODE(false, "Iceland should always support EVV", return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Iceland should always support EVV" ); return -22; } } while (0); |
| 410 | } |
| 411 | |
| 412 | return 0; |
| 413 | } |
| 414 | |
| 415 | static int iceland_populate_vddc_vid(struct pp_hwmgr *hwmgr) |
| 416 | { |
| 417 | int i; |
| 418 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
| 419 | uint8_t *vid = smu_data->power_tune_table.VddCVid; |
| 420 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 421 | |
| 422 | PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 8,do { if (!(data->vddc_voltage_table.count <= 8)) { printk ("\0014" "amdgpu: " "%s\n", "There should never be more than 8 entries for VddcVid!!!" ); return -22; } } while (0) |
| 423 | "There should never be more than 8 entries for VddcVid!!!",do { if (!(data->vddc_voltage_table.count <= 8)) { printk ("\0014" "amdgpu: " "%s\n", "There should never be more than 8 entries for VddcVid!!!" ); return -22; } } while (0) |
| 424 | return -EINVAL)do { if (!(data->vddc_voltage_table.count <= 8)) { printk ("\0014" "amdgpu: " "%s\n", "There should never be more than 8 entries for VddcVid!!!" ); return -22; } } while (0); |
| 425 | |
| 426 | for (i = 0; i < (int)data->vddc_voltage_table.count; i++) { |
| 427 | vid[i] = convert_to_vid(data->vddc_voltage_table.entries[i].value); |
| 428 | } |
| 429 | |
| 430 | return 0; |
| 431 | } |
| 432 | |
| 433 | |
| 434 | |
| 435 | static int iceland_populate_pm_fuses(struct pp_hwmgr *hwmgr) |
| 436 | { |
| 437 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
| 438 | uint32_t pm_fuse_table_offset; |
| 439 | |
| 440 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| 441 | PHM_PlatformCaps_PowerContainment)) { |
| 442 | if (smu7_read_smc_sram_dword(hwmgr, |
| 443 | SMU71_FIRMWARE_HEADER_LOCATION0x20000 + |
| 444 | offsetof(SMU71_Firmware_Header, PmFuseTable)__builtin_offsetof(SMU71_Firmware_Header, PmFuseTable), |
| 445 | &pm_fuse_table_offset, SMC_RAM_END0x40000)) |
| 446 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to get pm_fuse_table_offset Failed!" ); return -22; } } while (0) |
| 447 | "Attempt to get pm_fuse_table_offset Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to get pm_fuse_table_offset Failed!" ); return -22; } } while (0) |
| 448 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to get pm_fuse_table_offset Failed!" ); return -22; } } while (0); |
| 449 | |
| 450 | /* DW0 - DW3 */ |
| 451 | if (iceland_populate_bapm_vddc_vid_sidd(hwmgr)) |
| 452 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate bapm vddc vid Failed!" ); return -22; } } while (0) |
| 453 | "Attempt to populate bapm vddc vid Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate bapm vddc vid Failed!" ); return -22; } } while (0) |
| 454 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate bapm vddc vid Failed!" ); return -22; } } while (0); |
| 455 | |
| 456 | /* DW4 - DW5 */ |
| 457 | if (iceland_populate_vddc_vid(hwmgr)) |
| 458 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate vddc vid Failed!" ); return -22; } } while (0) |
| 459 | "Attempt to populate vddc vid Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate vddc vid Failed!" ); return -22; } } while (0) |
| 460 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate vddc vid Failed!" ); return -22; } } while (0); |
| 461 | |
| 462 | /* DW6 */ |
| 463 | if (iceland_populate_svi_load_line(hwmgr)) |
| 464 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate SviLoadLine Failed!" ); return -22; } } while (0) |
| 465 | "Attempt to populate SviLoadLine Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate SviLoadLine Failed!" ); return -22; } } while (0) |
| 466 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate SviLoadLine Failed!" ); return -22; } } while (0); |
| 467 | /* DW7 */ |
| 468 | if (iceland_populate_tdc_limit(hwmgr)) |
| 469 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate TDCLimit Failed!" ); return -22; } } while (0) |
| 470 | "Attempt to populate TDCLimit Failed!", return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate TDCLimit Failed!" ); return -22; } } while (0); |
| 471 | /* DW8 */ |
| 472 | if (iceland_populate_dw8(hwmgr, pm_fuse_table_offset)) |
| 473 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate TdcWaterfallCtl, " "LPMLTemperature Min and Max Failed!"); return -22; } } while (0) |
| 474 | "Attempt to populate TdcWaterfallCtl, "do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate TdcWaterfallCtl, " "LPMLTemperature Min and Max Failed!"); return -22; } } while (0) |
| 475 | "LPMLTemperature Min and Max Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate TdcWaterfallCtl, " "LPMLTemperature Min and Max Failed!"); return -22; } } while (0) |
| 476 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate TdcWaterfallCtl, " "LPMLTemperature Min and Max Failed!"); return -22; } } while (0); |
| 477 | |
| 478 | /* DW9-DW12 */ |
| 479 | if (0 != iceland_populate_temperature_scaler(hwmgr)) |
| 480 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate LPMLTemperatureScaler Failed!" ); return -22; } } while (0) |
| 481 | "Attempt to populate LPMLTemperatureScaler Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate LPMLTemperatureScaler Failed!" ); return -22; } } while (0) |
| 482 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate LPMLTemperatureScaler Failed!" ); return -22; } } while (0); |
| 483 | |
| 484 | /* DW13-DW16 */ |
| 485 | if (iceland_populate_gnb_lpml(hwmgr)) |
| 486 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate GnbLPML Failed!" ); return -22; } } while (0) |
| 487 | "Attempt to populate GnbLPML Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate GnbLPML Failed!" ); return -22; } } while (0) |
| 488 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate GnbLPML Failed!" ); return -22; } } while (0); |
| 489 | |
| 490 | /* DW18 */ |
| 491 | if (iceland_populate_bapm_vddc_base_leakage_sidd(hwmgr)) |
| 492 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate BapmVddCBaseLeakage Hi and Lo Sidd Failed!" ); return -22; } } while (0) |
| 493 | "Attempt to populate BapmVddCBaseLeakage Hi and Lo Sidd Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate BapmVddCBaseLeakage Hi and Lo Sidd Failed!" ); return -22; } } while (0) |
| 494 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to populate BapmVddCBaseLeakage Hi and Lo Sidd Failed!" ); return -22; } } while (0); |
| 495 | |
| 496 | if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset, |
| 497 | (uint8_t *)&smu_data->power_tune_table, |
| 498 | sizeof(struct SMU71_Discrete_PmFuses), SMC_RAM_END0x40000)) |
| 499 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to download PmFuseTable Failed!" ); return -22; } } while (0) |
| 500 | "Attempt to download PmFuseTable Failed!",do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to download PmFuseTable Failed!" ); return -22; } } while (0) |
| 501 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: " "%s\n", "Attempt to download PmFuseTable Failed!" ); return -22; } } while (0); |
| 502 | } |
| 503 | return 0; |
| 504 | } |
| 505 | |
| 506 | static int iceland_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr, |
| 507 | struct phm_clock_voltage_dependency_table *allowed_clock_voltage_table, |
| 508 | uint32_t clock, uint32_t *vol) |
| 509 | { |
| 510 | uint32_t i = 0; |
| 511 | |
| 512 | /* clock - voltage dependency table is empty table */ |
| 513 | if (allowed_clock_voltage_table->count == 0) |
| 514 | return -EINVAL22; |
| 515 | |
| 516 | for (i = 0; i < allowed_clock_voltage_table->count; i++) { |
| 517 | /* find first sclk bigger than request */ |
| 518 | if (allowed_clock_voltage_table->entries[i].clk >= clock) { |
| 519 | *vol = allowed_clock_voltage_table->entries[i].v; |
| 520 | return 0; |
| 521 | } |
| 522 | } |
| 523 | |
| 524 | /* sclk is bigger than max sclk in the dependence table */ |
| 525 | *vol = allowed_clock_voltage_table->entries[i - 1].v; |
| 526 | |
| 527 | return 0; |
| 528 | } |
| 529 | |
| 530 | static int iceland_get_std_voltage_value_sidd(struct pp_hwmgr *hwmgr, |
| 531 | pp_atomctrl_voltage_table_entry *tab, uint16_t *hi, |
| 532 | uint16_t *lo) |
| 533 | { |
| 534 | uint16_t v_index; |
| 535 | bool_Bool vol_found = false0; |
| 536 | *hi = tab->value * VOLTAGE_SCALE4; |
| 537 | *lo = tab->value * VOLTAGE_SCALE4; |
| 538 | |
| 539 | /* SCLK/VDDC Dependency Table has to exist. */ |
| 540 | PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.vddc_dependency_on_sclk,do { if (!(((void *)0) != hwmgr->dyn_state.vddc_dependency_on_sclk )) { printk("\0014" "amdgpu: " "%s\n", "The SCLK/VDDC Dependency Table does not exist." ); return -22; } } while (0) |
| 541 | "The SCLK/VDDC Dependency Table does not exist.",do { if (!(((void *)0) != hwmgr->dyn_state.vddc_dependency_on_sclk )) { printk("\0014" "amdgpu: " "%s\n", "The SCLK/VDDC Dependency Table does not exist." ); return -22; } } while (0) |
| 542 | return -EINVAL)do { if (!(((void *)0) != hwmgr->dyn_state.vddc_dependency_on_sclk )) { printk("\0014" "amdgpu: " "%s\n", "The SCLK/VDDC Dependency Table does not exist." ); return -22; } } while (0); |
| 543 | |
| 544 | if (NULL((void *)0) == hwmgr->dyn_state.cac_leakage_table) { |
| 545 | pr_warn("CAC Leakage Table does not exist, using vddc.\n")printk("\0014" "amdgpu: " "CAC Leakage Table does not exist, using vddc.\n" ); |
| 546 | return 0; |
| 547 | } |
| 548 | |
| 549 | /* |
| 550 | * Since voltage in the sclk/vddc dependency table is not |
| 551 | * necessarily in ascending order because of ELB voltage |
| 552 | * patching, loop through entire list to find exact voltage. |
| 553 | */ |
| 554 | for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) { |
| 555 | if (tab->value == hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) { |
| 556 | vol_found = true1; |
| 557 | if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) { |
| 558 | *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE4; |
| 559 | *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage * VOLTAGE_SCALE4); |
| 560 | } else { |
| 561 | pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index, using maximum index from CAC table.\n")printk("\0014" "amdgpu: " "Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index, using maximum index from CAC table.\n" ); |
| 562 | *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE4; |
| 563 | *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE4); |
| 564 | } |
| 565 | break; |
| 566 | } |
| 567 | } |
| 568 | |
| 569 | /* |
| 570 | * If voltage is not found in the first pass, loop again to |
| 571 | * find the best match, equal or higher value. |
| 572 | */ |
| 573 | if (!vol_found) { |
| 574 | for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) { |
| 575 | if (tab->value <= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) { |
| 576 | vol_found = true1; |
| 577 | if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) { |
| 578 | *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE4; |
| 579 | *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage) * VOLTAGE_SCALE4; |
| 580 | } else { |
| 581 | pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index in second look up, using maximum index from CAC table.")printk("\0014" "amdgpu: " "Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index in second look up, using maximum index from CAC table." ); |
| 582 | *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE4; |
| 583 | *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE4); |
| 584 | } |
| 585 | break; |
| 586 | } |
| 587 | } |
| 588 | |
| 589 | if (!vol_found) |
| 590 | pr_warn("Unable to get std_vddc from SCLK/VDDC Dependency Table, using vddc.\n")printk("\0014" "amdgpu: " "Unable to get std_vddc from SCLK/VDDC Dependency Table, using vddc.\n" ); |
| 591 | } |
| 592 | |
| 593 | return 0; |
| 594 | } |
| 595 | |
| 596 | static int iceland_populate_smc_voltage_table(struct pp_hwmgr *hwmgr, |
| 597 | pp_atomctrl_voltage_table_entry *tab, |
| 598 | SMU71_Discrete_VoltageLevel *smc_voltage_tab) |
| 599 | { |
| 600 | int result; |
| 601 | |
| 602 | result = iceland_get_std_voltage_value_sidd(hwmgr, tab, |
| 603 | &smc_voltage_tab->StdVoltageHiSidd, |
| 604 | &smc_voltage_tab->StdVoltageLoSidd); |
| 605 | if (0 != result) { |
| 606 | smc_voltage_tab->StdVoltageHiSidd = tab->value * VOLTAGE_SCALE4; |
| 607 | smc_voltage_tab->StdVoltageLoSidd = tab->value * VOLTAGE_SCALE4; |
| 608 | } |
| 609 | |
| 610 | smc_voltage_tab->Voltage = PP_HOST_TO_SMC_US(tab->value * VOLTAGE_SCALE)(__uint16_t)(__builtin_constant_p(tab->value * 4) ? (__uint16_t )(((__uint16_t)(tab->value * 4) & 0xffU) << 8 | ( (__uint16_t)(tab->value * 4) & 0xff00U) >> 8) : __swap16md (tab->value * 4)); |
| 611 | CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd)((smc_voltage_tab->StdVoltageHiSidd) = (__uint16_t)(__builtin_constant_p (smc_voltage_tab->StdVoltageHiSidd) ? (__uint16_t)(((__uint16_t )(smc_voltage_tab->StdVoltageHiSidd) & 0xffU) << 8 | ((__uint16_t)(smc_voltage_tab->StdVoltageHiSidd) & 0xff00U) >> 8) : __swap16md(smc_voltage_tab->StdVoltageHiSidd ))); |
| 612 | CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd)((smc_voltage_tab->StdVoltageHiSidd) = (__uint16_t)(__builtin_constant_p (smc_voltage_tab->StdVoltageHiSidd) ? (__uint16_t)(((__uint16_t )(smc_voltage_tab->StdVoltageHiSidd) & 0xffU) << 8 | ((__uint16_t)(smc_voltage_tab->StdVoltageHiSidd) & 0xff00U) >> 8) : __swap16md(smc_voltage_tab->StdVoltageHiSidd ))); |
| 613 | |
| 614 | return 0; |
| 615 | } |
| 616 | |
| 617 | static int iceland_populate_smc_vddc_table(struct pp_hwmgr *hwmgr, |
| 618 | SMU71_Discrete_DpmTable *table) |
| 619 | { |
| 620 | unsigned int count; |
| 621 | int result; |
| 622 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 623 | |
| 624 | table->VddcLevelCount = data->vddc_voltage_table.count; |
| 625 | for (count = 0; count < table->VddcLevelCount; count++) { |
| 626 | result = iceland_populate_smc_voltage_table(hwmgr, |
| 627 | &(data->vddc_voltage_table.entries[count]), |
| 628 | &(table->VddcLevel[count])); |
| 629 | PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDC voltage table", return -EINVAL)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "do not populate SMC VDDC voltage table" ); return -22; } } while (0); |
| 630 | |
| 631 | /* GPIO voltage control */ |
| 632 | if (SMU7_VOLTAGE_CONTROL_BY_GPIO0x1 == data->voltage_control) |
| 633 | table->VddcLevel[count].Smio |= data->vddc_voltage_table.entries[count].smio_low; |
| 634 | else if (SMU7_VOLTAGE_CONTROL_BY_SVID20x2 == data->voltage_control) |
| 635 | table->VddcLevel[count].Smio = 0; |
| 636 | } |
| 637 | |
| 638 | CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount)((table->VddcLevelCount) = (__uint32_t)(__builtin_constant_p (table->VddcLevelCount) ? (__uint32_t)(((__uint32_t)(table ->VddcLevelCount) & 0xff) << 24 | ((__uint32_t)( table->VddcLevelCount) & 0xff00) << 8 | ((__uint32_t )(table->VddcLevelCount) & 0xff0000) >> 8 | ((__uint32_t )(table->VddcLevelCount) & 0xff000000) >> 24) : __swap32md (table->VddcLevelCount))); |
| 639 | |
| 640 | return 0; |
| 641 | } |
| 642 | |
| 643 | static int iceland_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr, |
| 644 | SMU71_Discrete_DpmTable *table) |
| 645 | { |
| 646 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 647 | uint32_t count; |
| 648 | int result; |
| 649 | |
| 650 | table->VddciLevelCount = data->vddci_voltage_table.count; |
| 651 | |
| 652 | for (count = 0; count < table->VddciLevelCount; count++) { |
| 653 | result = iceland_populate_smc_voltage_table(hwmgr, |
| 654 | &(data->vddci_voltage_table.entries[count]), |
| 655 | &(table->VddciLevel[count])); |
| 656 | PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC VDDCI voltage table", return -EINVAL)do { if (!(result == 0)) { printk("\0014" "amdgpu: " "%s\n", "do not populate SMC VDDCI voltage table" ); return -22; } } while (0); |
| 657 | if (SMU7_VOLTAGE_CONTROL_BY_GPIO0x1 == data->vddci_control) |
| 658 | table->VddciLevel[count].Smio |= data->vddci_voltage_table.entries[count].smio_low; |
| 659 | else |
| 660 | table->VddciLevel[count].Smio |= 0; |
| 661 | } |
| 662 | |
| 663 | CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount)((table->VddciLevelCount) = (__uint32_t)(__builtin_constant_p (table->VddciLevelCount) ? (__uint32_t)(((__uint32_t)(table ->VddciLevelCount) & 0xff) << 24 | ((__uint32_t) (table->VddciLevelCount) & 0xff00) << 8 | ((__uint32_t )(table->VddciLevelCount) & 0xff0000) >> 8 | ((__uint32_t )(table->VddciLevelCount) & 0xff000000) >> 24) : __swap32md(table->VddciLevelCount))); |
| 664 | |
| 665 | return 0; |
| 666 | } |
| 667 | |
| 668 | static int iceland_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr, |
| 669 | SMU71_Discrete_DpmTable *table) |
| 670 | { |
| 671 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 672 | uint32_t count; |
| 673 | int result; |
| 674 | |
| 675 | table->MvddLevelCount = data->mvdd_voltage_table.count; |
| 676 | |
| 677 | for (count = 0; count < table->VddciLevelCount; count++) { |
| 678 | result = iceland_populate_smc_voltage_table(hwmgr, |
| 679 | &(data->mvdd_voltage_table.entries[count]), |
| 680 | &table->MvddLevel[count]); |
| 681 | PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC mvdd voltage table", return -EINVAL)do { if (!(result == 0)) { printk("\0014" "amdgpu: " "%s\n", "do not populate SMC mvdd voltage table" ); return -22; } } while (0); |
| 682 | if (SMU7_VOLTAGE_CONTROL_BY_GPIO0x1 == data->mvdd_control) |
| 683 | table->MvddLevel[count].Smio |= data->mvdd_voltage_table.entries[count].smio_low; |
| 684 | else |
| 685 | table->MvddLevel[count].Smio |= 0; |
| 686 | } |
| 687 | |
| 688 | CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount)((table->MvddLevelCount) = (__uint32_t)(__builtin_constant_p (table->MvddLevelCount) ? (__uint32_t)(((__uint32_t)(table ->MvddLevelCount) & 0xff) << 24 | ((__uint32_t)( table->MvddLevelCount) & 0xff00) << 8 | ((__uint32_t )(table->MvddLevelCount) & 0xff0000) >> 8 | ((__uint32_t )(table->MvddLevelCount) & 0xff000000) >> 24) : __swap32md (table->MvddLevelCount))); |
| 689 | |
| 690 | return 0; |
| 691 | } |
| 692 | |
| 693 | |
| 694 | static int iceland_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr, |
| 695 | SMU71_Discrete_DpmTable *table) |
| 696 | { |
| 697 | int result; |
| 698 | |
| 699 | result = iceland_populate_smc_vddc_table(hwmgr, table); |
| 700 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "can not populate VDDC voltage table to SMC" ); return -22; } } while (0) |
| 701 | "can not populate VDDC voltage table to SMC", return -EINVAL)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "can not populate VDDC voltage table to SMC" ); return -22; } } while (0); |
| 702 | |
| 703 | result = iceland_populate_smc_vdd_ci_table(hwmgr, table); |
| 704 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "can not populate VDDCI voltage table to SMC" ); return -22; } } while (0) |
| 705 | "can not populate VDDCI voltage table to SMC", return -EINVAL)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "can not populate VDDCI voltage table to SMC" ); return -22; } } while (0); |
| 706 | |
| 707 | result = iceland_populate_smc_mvdd_table(hwmgr, table); |
| 708 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "can not populate MVDD voltage table to SMC" ); return -22; } } while (0) |
| 709 | "can not populate MVDD voltage table to SMC", return -EINVAL)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "can not populate MVDD voltage table to SMC" ); return -22; } } while (0); |
| 710 | |
| 711 | return 0; |
| 712 | } |
| 713 | |
| 714 | static int iceland_populate_ulv_level(struct pp_hwmgr *hwmgr, |
| 715 | struct SMU71_Discrete_Ulv *state) |
| 716 | { |
| 717 | uint32_t voltage_response_time, ulv_voltage; |
| 718 | int result; |
| 719 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 720 | |
| 721 | state->CcPwrDynRm = 0; |
| 722 | state->CcPwrDynRm1 = 0; |
| 723 | |
| 724 | result = pp_tables_get_response_times(hwmgr, &voltage_response_time, &ulv_voltage); |
| 725 | PP_ASSERT_WITH_CODE((0 == result), "can not get ULV voltage value", return result;)do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not get ULV voltage value"); return result;; } } while (0); |
| 726 | |
| 727 | if (ulv_voltage == 0) { |
| 728 | data->ulv_supported = false0; |
| 729 | return 0; |
| 730 | } |
| 731 | |
| 732 | if (data->voltage_control != SMU7_VOLTAGE_CONTROL_BY_SVID20x2) { |
| 733 | /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */ |
| 734 | if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v) |
| 735 | state->VddcOffset = 0; |
| 736 | else |
| 737 | /* used in SMIO Mode. not implemented for now. this is backup only for CI. */ |
| 738 | state->VddcOffset = (uint16_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage); |
| 739 | } else { |
| 740 | /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */ |
| 741 | if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v) |
| 742 | state->VddcOffsetVid = 0; |
| 743 | else /* used in SVI2 Mode */ |
| 744 | state->VddcOffsetVid = (uint8_t)( |
| 745 | (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage) |
| 746 | * VOLTAGE_VID_OFFSET_SCALE2100 |
| 747 | / VOLTAGE_VID_OFFSET_SCALE1625); |
| 748 | } |
| 749 | state->VddcPhase = 1; |
| 750 | |
| 751 | CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm)((state->CcPwrDynRm) = (__uint32_t)(__builtin_constant_p(state ->CcPwrDynRm) ? (__uint32_t)(((__uint32_t)(state->CcPwrDynRm ) & 0xff) << 24 | ((__uint32_t)(state->CcPwrDynRm ) & 0xff00) << 8 | ((__uint32_t)(state->CcPwrDynRm ) & 0xff0000) >> 8 | ((__uint32_t)(state->CcPwrDynRm ) & 0xff000000) >> 24) : __swap32md(state->CcPwrDynRm ))); |
| 752 | CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1)((state->CcPwrDynRm1) = (__uint32_t)(__builtin_constant_p( state->CcPwrDynRm1) ? (__uint32_t)(((__uint32_t)(state-> CcPwrDynRm1) & 0xff) << 24 | ((__uint32_t)(state-> CcPwrDynRm1) & 0xff00) << 8 | ((__uint32_t)(state-> CcPwrDynRm1) & 0xff0000) >> 8 | ((__uint32_t)(state ->CcPwrDynRm1) & 0xff000000) >> 24) : __swap32md (state->CcPwrDynRm1))); |
| 753 | CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset)((state->VddcOffset) = (__uint16_t)(__builtin_constant_p(state ->VddcOffset) ? (__uint16_t)(((__uint16_t)(state->VddcOffset ) & 0xffU) << 8 | ((__uint16_t)(state->VddcOffset ) & 0xff00U) >> 8) : __swap16md(state->VddcOffset ))); |
| 754 | |
| 755 | return 0; |
| 756 | } |
| 757 | |
| 758 | static int iceland_populate_ulv_state(struct pp_hwmgr *hwmgr, |
| 759 | SMU71_Discrete_Ulv *ulv_level) |
| 760 | { |
| 761 | return iceland_populate_ulv_level(hwmgr, ulv_level); |
| 762 | } |
| 763 | |
| 764 | static int iceland_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU71_Discrete_DpmTable *table) |
| 765 | { |
| 766 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 767 | struct smu7_dpm_table *dpm_table = &data->dpm_table; |
| 768 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
| 769 | uint32_t i; |
| 770 | |
| 771 | /* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */ |
| 772 | for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) { |
| 773 | table->LinkLevel[i].PcieGenSpeed = |
| 774 | (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value; |
| 775 | table->LinkLevel[i].PcieLaneCount = |
| 776 | (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1); |
| 777 | table->LinkLevel[i].EnabledForActivity = |
| 778 | 1; |
| 779 | table->LinkLevel[i].SPC = |
| 780 | (uint8_t)(data->pcie_spc_cap & 0xff); |
| 781 | table->LinkLevel[i].DownThreshold = |
| 782 | PP_HOST_TO_SMC_UL(5)(__uint32_t)(__builtin_constant_p(5) ? (__uint32_t)(((__uint32_t )(5) & 0xff) << 24 | ((__uint32_t)(5) & 0xff00) << 8 | ((__uint32_t)(5) & 0xff0000) >> 8 | ( (__uint32_t)(5) & 0xff000000) >> 24) : __swap32md(5 )); |
| 783 | table->LinkLevel[i].UpThreshold = |
| 784 | PP_HOST_TO_SMC_UL(30)(__uint32_t)(__builtin_constant_p(30) ? (__uint32_t)(((__uint32_t )(30) & 0xff) << 24 | ((__uint32_t)(30) & 0xff00 ) << 8 | ((__uint32_t)(30) & 0xff0000) >> 8 | ((__uint32_t)(30) & 0xff000000) >> 24) : __swap32md (30)); |
| 785 | } |
| 786 | |
| 787 | smu_data->smc_state_table.LinkLevelCount = |
| 788 | (uint8_t)dpm_table->pcie_speed_table.count; |
| 789 | data->dpm_level_enable_mask.pcie_dpm_enable_mask = |
| 790 | phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table); |
| 791 | |
| 792 | return 0; |
| 793 | } |
| 794 | |
| 795 | static int iceland_calculate_sclk_params(struct pp_hwmgr *hwmgr, |
| 796 | uint32_t engine_clock, SMU71_Discrete_GraphicsLevel *sclk) |
| 797 | { |
| 798 | const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 799 | pp_atomctrl_clock_dividers_vi dividers; |
| 800 | uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; |
| 801 | uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; |
| 802 | uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; |
| 803 | uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; |
| 804 | uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; |
| 805 | uint32_t reference_clock; |
| 806 | uint32_t reference_divider; |
| 807 | uint32_t fbdiv; |
| 808 | int result; |
| 809 | |
| 810 | /* get the engine clock dividers for this clock value*/ |
| 811 | result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock, ÷rs); |
| 812 | |
| 813 | PP_ASSERT_WITH_CODE(result == 0,do { if (!(result == 0)) { printk("\0014" "amdgpu: " "%s\n", "Error retrieving Engine Clock dividers from VBIOS." ); return result; } } while (0) |
| 814 | "Error retrieving Engine Clock dividers from VBIOS.", return result)do { if (!(result == 0)) { printk("\0014" "amdgpu: " "%s\n", "Error retrieving Engine Clock dividers from VBIOS." ); return result; } } while (0); |
| 815 | |
| 816 | /* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/ |
| 817 | reference_clock = atomctrl_get_reference_clock(hwmgr); |
| 818 | |
| 819 | reference_divider = 1 + dividers.uc_pll_ref_div; |
| 820 | |
| 821 | /* low 14 bits is fraction and high 12 bits is divider*/ |
| 822 | fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF; |
| 823 | |
| 824 | /* SPLL_FUNC_CNTL setup*/ |
| 825 | spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,(((spll_func_cntl) & ~0x7e0) | (0x7e0 & ((dividers.uc_pll_ref_div ) << 0x5))) |
| 826 | CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div)(((spll_func_cntl) & ~0x7e0) | (0x7e0 & ((dividers.uc_pll_ref_div ) << 0x5))); |
| 827 | spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,(((spll_func_cntl) & ~0x7f00000) | (0x7f00000 & ((dividers .uc_pll_post_div) << 0x14))) |
| 828 | CG_SPLL_FUNC_CNTL, SPLL_PDIV_A, dividers.uc_pll_post_div)(((spll_func_cntl) & ~0x7f00000) | (0x7f00000 & ((dividers .uc_pll_post_div) << 0x14))); |
| 829 | |
| 830 | /* SPLL_FUNC_CNTL_3 setup*/ |
| 831 | spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,(((spll_func_cntl_3) & ~0x3ffffff) | (0x3ffffff & ((fbdiv ) << 0x0))) |
| 832 | CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv)(((spll_func_cntl_3) & ~0x3ffffff) | (0x3ffffff & ((fbdiv ) << 0x0))); |
| 833 | |
| 834 | /* set to use fractional accumulation*/ |
| 835 | spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,(((spll_func_cntl_3) & ~0x10000000) | (0x10000000 & ( (1) << 0x1c))) |
| 836 | CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1)(((spll_func_cntl_3) & ~0x10000000) | (0x10000000 & ( (1) << 0x1c))); |
| 837 | |
| 838 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| 839 | PHM_PlatformCaps_EngineSpreadSpectrumSupport)) { |
| 840 | pp_atomctrl_internal_ss_info ss_info; |
| 841 | |
| 842 | uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div; |
| 843 | if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) { |
| 844 | /* |
| 845 | * ss_info.speed_spectrum_percentage -- in unit of 0.01% |
| 846 | * ss_info.speed_spectrum_rate -- in unit of khz |
| 847 | */ |
| 848 | /* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */ |
| 849 | uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate); |
| 850 | |
| 851 | /* clkv = 2 * D * fbdiv / NS */ |
| 852 | uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000); |
| 853 | |
| 854 | cg_spll_spread_spectrum = |
| 855 | PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS)(((cg_spll_spread_spectrum) & ~0xfff0) | (0xfff0 & (( clkS) << 0x4))); |
| 856 | cg_spll_spread_spectrum = |
| 857 | PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1)(((cg_spll_spread_spectrum) & ~0x1) | (0x1 & ((1) << 0x0))); |
| 858 | cg_spll_spread_spectrum_2 = |
| 859 | PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV)(((cg_spll_spread_spectrum_2) & ~0x3ffffff) | (0x3ffffff & ((clkV) << 0x0))); |
| 860 | } |
| 861 | } |
| 862 | |
| 863 | sclk->SclkFrequency = engine_clock; |
| 864 | sclk->CgSpllFuncCntl3 = spll_func_cntl_3; |
| 865 | sclk->CgSpllFuncCntl4 = spll_func_cntl_4; |
| 866 | sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum; |
| 867 | sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2; |
| 868 | sclk->SclkDid = (uint8_t)dividers.pll_post_divider; |
| 869 | |
| 870 | return 0; |
| 871 | } |
| 872 | |
| 873 | static int iceland_populate_phase_value_based_on_sclk(struct pp_hwmgr *hwmgr, |
| 874 | const struct phm_phase_shedding_limits_table *pl, |
| 875 | uint32_t sclk, uint32_t *p_shed) |
| 876 | { |
| 877 | unsigned int i; |
| 878 | |
| 879 | /* use the minimum phase shedding */ |
| 880 | *p_shed = 1; |
| 881 | |
| 882 | for (i = 0; i < pl->count; i++) { |
| 883 | if (sclk < pl->entries[i].Sclk) { |
| 884 | *p_shed = i; |
| 885 | break; |
| 886 | } |
| 887 | } |
| 888 | return 0; |
| 889 | } |
| 890 | |
| 891 | static int iceland_populate_single_graphic_level(struct pp_hwmgr *hwmgr, |
| 892 | uint32_t engine_clock, |
| 893 | SMU71_Discrete_GraphicsLevel *graphic_level) |
| 894 | { |
| 895 | int result; |
| 896 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 897 | |
| 898 | result = iceland_calculate_sclk_params(hwmgr, engine_clock, graphic_level); |
| 899 | |
| 900 | /* populate graphics levels*/ |
| 901 | result = iceland_get_dependency_volt_by_clk(hwmgr, |
| 902 | hwmgr->dyn_state.vddc_dependency_on_sclk, engine_clock, |
| 903 | &graphic_level->MinVddc); |
| 904 | PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find VDDC voltage value for VDDC engine clock dependency table" ); return result; } } while (0) |
| 905 | "can not find VDDC voltage value for VDDC engine clock dependency table", return result)do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find VDDC voltage value for VDDC engine clock dependency table" ); return result; } } while (0); |
| 906 | |
| 907 | /* SCLK frequency in units of 10KHz*/ |
| 908 | graphic_level->SclkFrequency = engine_clock; |
| 909 | graphic_level->MinVddcPhases = 1; |
| 910 | |
| 911 | if (data->vddc_phase_shed_control) |
| 912 | iceland_populate_phase_value_based_on_sclk(hwmgr, |
| 913 | hwmgr->dyn_state.vddc_phase_shed_limits_table, |
| 914 | engine_clock, |
| 915 | &graphic_level->MinVddcPhases); |
| 916 | |
| 917 | /* Indicates maximum activity level for this performance level. 50% for now*/ |
| 918 | graphic_level->ActivityLevel = data->current_profile_setting.sclk_activity; |
| 919 | |
| 920 | graphic_level->CcPwrDynRm = 0; |
| 921 | graphic_level->CcPwrDynRm1 = 0; |
| 922 | /* this level can be used if activity is high enough.*/ |
| 923 | graphic_level->EnabledForActivity = 0; |
| 924 | /* this level can be used for throttling.*/ |
| 925 | graphic_level->EnabledForThrottle = 1; |
| 926 | graphic_level->UpHyst = data->current_profile_setting.sclk_up_hyst; |
| 927 | graphic_level->DownHyst = data->current_profile_setting.sclk_down_hyst; |
| 928 | graphic_level->VoltageDownHyst = 0; |
| 929 | graphic_level->PowerThrottle = 0; |
| 930 | |
| 931 | data->display_timing.min_clock_in_sr = |
| 932 | hwmgr->display_config->min_core_set_clock_in_sr; |
| 933 | |
| 934 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| 935 | PHM_PlatformCaps_SclkDeepSleep)) |
| 936 | graphic_level->DeepSleepDivId = |
| 937 | smu7_get_sleep_divider_id_from_clock(engine_clock, |
| 938 | data->display_timing.min_clock_in_sr); |
| 939 | |
| 940 | /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/ |
| 941 | graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW0; |
| 942 | |
| 943 | if (0 == result) { |
| 944 | graphic_level->MinVddc = PP_HOST_TO_SMC_UL(graphic_level->MinVddc * VOLTAGE_SCALE)(__uint32_t)(__builtin_constant_p(graphic_level->MinVddc * 4) ? (__uint32_t)(((__uint32_t)(graphic_level->MinVddc * 4 ) & 0xff) << 24 | ((__uint32_t)(graphic_level->MinVddc * 4) & 0xff00) << 8 | ((__uint32_t)(graphic_level-> MinVddc * 4) & 0xff0000) >> 8 | ((__uint32_t)(graphic_level ->MinVddc * 4) & 0xff000000) >> 24) : __swap32md (graphic_level->MinVddc * 4)); |
| 945 | CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases)((graphic_level->MinVddcPhases) = (__uint32_t)(__builtin_constant_p (graphic_level->MinVddcPhases) ? (__uint32_t)(((__uint32_t )(graphic_level->MinVddcPhases) & 0xff) << 24 | ( (__uint32_t)(graphic_level->MinVddcPhases) & 0xff00) << 8 | ((__uint32_t)(graphic_level->MinVddcPhases) & 0xff0000 ) >> 8 | ((__uint32_t)(graphic_level->MinVddcPhases) & 0xff000000) >> 24) : __swap32md(graphic_level-> MinVddcPhases))); |
| 946 | CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency)((graphic_level->SclkFrequency) = (__uint32_t)(__builtin_constant_p (graphic_level->SclkFrequency) ? (__uint32_t)(((__uint32_t )(graphic_level->SclkFrequency) & 0xff) << 24 | ( (__uint32_t)(graphic_level->SclkFrequency) & 0xff00) << 8 | ((__uint32_t)(graphic_level->SclkFrequency) & 0xff0000 ) >> 8 | ((__uint32_t)(graphic_level->SclkFrequency) & 0xff000000) >> 24) : __swap32md(graphic_level-> SclkFrequency))); |
| 947 | CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel)((graphic_level->ActivityLevel) = (__uint16_t)(__builtin_constant_p (graphic_level->ActivityLevel) ? (__uint16_t)(((__uint16_t )(graphic_level->ActivityLevel) & 0xffU) << 8 | ( (__uint16_t)(graphic_level->ActivityLevel) & 0xff00U) >> 8) : __swap16md(graphic_level->ActivityLevel))); |
| 948 | CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3)((graphic_level->CgSpllFuncCntl3) = (__uint32_t)(__builtin_constant_p (graphic_level->CgSpllFuncCntl3) ? (__uint32_t)(((__uint32_t )(graphic_level->CgSpllFuncCntl3) & 0xff) << 24 | ((__uint32_t)(graphic_level->CgSpllFuncCntl3) & 0xff00 ) << 8 | ((__uint32_t)(graphic_level->CgSpllFuncCntl3 ) & 0xff0000) >> 8 | ((__uint32_t)(graphic_level-> CgSpllFuncCntl3) & 0xff000000) >> 24) : __swap32md( graphic_level->CgSpllFuncCntl3))); |
| 949 | CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4)((graphic_level->CgSpllFuncCntl4) = (__uint32_t)(__builtin_constant_p (graphic_level->CgSpllFuncCntl4) ? (__uint32_t)(((__uint32_t )(graphic_level->CgSpllFuncCntl4) & 0xff) << 24 | ((__uint32_t)(graphic_level->CgSpllFuncCntl4) & 0xff00 ) << 8 | ((__uint32_t)(graphic_level->CgSpllFuncCntl4 ) & 0xff0000) >> 8 | ((__uint32_t)(graphic_level-> CgSpllFuncCntl4) & 0xff000000) >> 24) : __swap32md( graphic_level->CgSpllFuncCntl4))); |
| 950 | CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum)((graphic_level->SpllSpreadSpectrum) = (__uint32_t)(__builtin_constant_p (graphic_level->SpllSpreadSpectrum) ? (__uint32_t)(((__uint32_t )(graphic_level->SpllSpreadSpectrum) & 0xff) << 24 | ((__uint32_t)(graphic_level->SpllSpreadSpectrum) & 0xff00 ) << 8 | ((__uint32_t)(graphic_level->SpllSpreadSpectrum ) & 0xff0000) >> 8 | ((__uint32_t)(graphic_level-> SpllSpreadSpectrum) & 0xff000000) >> 24) : __swap32md (graphic_level->SpllSpreadSpectrum))); |
| 951 | CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2)((graphic_level->SpllSpreadSpectrum2) = (__uint32_t)(__builtin_constant_p (graphic_level->SpllSpreadSpectrum2) ? (__uint32_t)(((__uint32_t )(graphic_level->SpllSpreadSpectrum2) & 0xff) << 24 | ((__uint32_t)(graphic_level->SpllSpreadSpectrum2) & 0xff00) << 8 | ((__uint32_t)(graphic_level->SpllSpreadSpectrum2 ) & 0xff0000) >> 8 | ((__uint32_t)(graphic_level-> SpllSpreadSpectrum2) & 0xff000000) >> 24) : __swap32md (graphic_level->SpllSpreadSpectrum2))); |
| 952 | CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm)((graphic_level->CcPwrDynRm) = (__uint32_t)(__builtin_constant_p (graphic_level->CcPwrDynRm) ? (__uint32_t)(((__uint32_t)(graphic_level ->CcPwrDynRm) & 0xff) << 24 | ((__uint32_t)(graphic_level ->CcPwrDynRm) & 0xff00) << 8 | ((__uint32_t)(graphic_level ->CcPwrDynRm) & 0xff0000) >> 8 | ((__uint32_t)(graphic_level ->CcPwrDynRm) & 0xff000000) >> 24) : __swap32md( graphic_level->CcPwrDynRm))); |
| 953 | CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1)((graphic_level->CcPwrDynRm1) = (__uint32_t)(__builtin_constant_p (graphic_level->CcPwrDynRm1) ? (__uint32_t)(((__uint32_t)( graphic_level->CcPwrDynRm1) & 0xff) << 24 | ((__uint32_t )(graphic_level->CcPwrDynRm1) & 0xff00) << 8 | ( (__uint32_t)(graphic_level->CcPwrDynRm1) & 0xff0000) >> 8 | ((__uint32_t)(graphic_level->CcPwrDynRm1) & 0xff000000 ) >> 24) : __swap32md(graphic_level->CcPwrDynRm1))); |
| 954 | } |
| 955 | |
| 956 | return result; |
| 957 | } |
| 958 | |
| 959 | static int iceland_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) |
| 960 | { |
| 961 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 962 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
| 963 | struct smu7_dpm_table *dpm_table = &data->dpm_table; |
| 964 | uint32_t level_array_adress = smu_data->smu7_data.dpm_table_start + |
| 965 | offsetof(SMU71_Discrete_DpmTable, GraphicsLevel)__builtin_offsetof(SMU71_Discrete_DpmTable, GraphicsLevel); |
| 966 | |
| 967 | uint32_t level_array_size = sizeof(SMU71_Discrete_GraphicsLevel) * |
| 968 | SMU71_MAX_LEVELS_GRAPHICS8; |
| 969 | |
| 970 | SMU71_Discrete_GraphicsLevel *levels = smu_data->smc_state_table.GraphicsLevel; |
| 971 | |
| 972 | uint32_t i; |
| 973 | uint8_t highest_pcie_level_enabled = 0; |
| 974 | uint8_t lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0; |
| 975 | uint8_t count = 0; |
| 976 | int result = 0; |
| 977 | |
| 978 | memset(levels, 0x00, level_array_size)__builtin_memset((levels), (0x00), (level_array_size)); |
| 979 | |
| 980 | for (i = 0; i < dpm_table->sclk_table.count; i++) { |
| 981 | result = iceland_populate_single_graphic_level(hwmgr, |
| 982 | dpm_table->sclk_table.dpm_levels[i].value, |
| 983 | &(smu_data->smc_state_table.GraphicsLevel[i])); |
| 984 | if (result != 0) |
| 985 | return result; |
| 986 | |
| 987 | /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */ |
| 988 | if (i > 1) |
| 989 | smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0; |
| 990 | } |
| 991 | |
| 992 | /* Only enable level 0 for now. */ |
| 993 | smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1; |
| 994 | |
| 995 | /* set highest level watermark to high */ |
| 996 | if (dpm_table->sclk_table.count > 1) |
| 997 | smu_data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark = |
| 998 | PPSMC_DISPLAY_WATERMARK_HIGH1; |
| 999 | |
| 1000 | smu_data->smc_state_table.GraphicsDpmLevelCount = |
| 1001 | (uint8_t)dpm_table->sclk_table.count; |
| 1002 | data->dpm_level_enable_mask.sclk_dpm_enable_mask = |
| 1003 | phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table); |
| 1004 | |
| 1005 | while ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
| 1006 | (1 << (highest_pcie_level_enabled + 1))) != 0) { |
| 1007 | highest_pcie_level_enabled++; |
| 1008 | } |
| 1009 | |
| 1010 | while ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
| 1011 | (1 << lowest_pcie_level_enabled)) == 0) { |
| 1012 | lowest_pcie_level_enabled++; |
| 1013 | } |
| 1014 | |
| 1015 | while ((count < highest_pcie_level_enabled) && |
| 1016 | ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
| 1017 | (1 << (lowest_pcie_level_enabled + 1 + count))) == 0)) { |
| 1018 | count++; |
| 1019 | } |
| 1020 | |
| 1021 | mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ? |
| 1022 | (lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled; |
| 1023 | |
| 1024 | |
| 1025 | /* set pcieDpmLevel to highest_pcie_level_enabled*/ |
| 1026 | for (i = 2; i < dpm_table->sclk_table.count; i++) { |
| 1027 | smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled; |
| 1028 | } |
| 1029 | |
| 1030 | /* set pcieDpmLevel to lowest_pcie_level_enabled*/ |
| 1031 | smu_data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled; |
| 1032 | |
| 1033 | /* set pcieDpmLevel to mid_pcie_level_enabled*/ |
| 1034 | smu_data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled; |
| 1035 | |
| 1036 | /* level count will send to smc once at init smc table and never change*/ |
| 1037 | result = smu7_copy_bytes_to_smc(hwmgr, level_array_adress, |
| 1038 | (uint8_t *)levels, (uint32_t)level_array_size, |
| 1039 | SMC_RAM_END0x40000); |
| 1040 | |
| 1041 | return result; |
| 1042 | } |
| 1043 | |
| 1044 | static int iceland_calculate_mclk_params( |
| 1045 | struct pp_hwmgr *hwmgr, |
| 1046 | uint32_t memory_clock, |
| 1047 | SMU71_Discrete_MemoryLevel *mclk, |
| 1048 | bool_Bool strobe_mode, |
| 1049 | bool_Bool dllStateOn |
| 1050 | ) |
| 1051 | { |
| 1052 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 1053 | |
| 1054 | uint32_t dll_cntl = data->clock_registers.vDLL_CNTL; |
| 1055 | uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL; |
| 1056 | uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL; |
| 1057 | uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL; |
| 1058 | uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL; |
| 1059 | uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1; |
| 1060 | uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2; |
| 1061 | uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1; |
| 1062 | uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2; |
| 1063 | |
| 1064 | pp_atomctrl_memory_clock_param mpll_param; |
| 1065 | int result; |
| 1066 | |
| 1067 | result = atomctrl_get_memory_pll_dividers_si(hwmgr, |
| 1068 | memory_clock, &mpll_param, strobe_mode); |
| 1069 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Error retrieving Memory Clock Parameters from VBIOS." ); return result; } } while (0) |
| 1070 | "Error retrieving Memory Clock Parameters from VBIOS.", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Error retrieving Memory Clock Parameters from VBIOS." ); return result; } } while (0); |
| 1071 | |
| 1072 | /* MPLL_FUNC_CNTL setup*/ |
| 1073 | mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl)(((mpll_func_cntl) & ~0xff00000) | (0xff00000 & ((mpll_param .bw_ctrl) << 0x14))); |
| 1074 | |
| 1075 | /* MPLL_FUNC_CNTL_1 setup*/ |
| 1076 | mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,(((mpll_func_cntl_1) & ~0xfff0000) | (0xfff0000 & ((mpll_param .mpll_fb_divider.cl_kf) << 0x10))) |
| 1077 | MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf)(((mpll_func_cntl_1) & ~0xfff0000) | (0xfff0000 & ((mpll_param .mpll_fb_divider.cl_kf) << 0x10))); |
| 1078 | mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,(((mpll_func_cntl_1) & ~0xfff0) | (0xfff0 & ((mpll_param .mpll_fb_divider.clk_frac) << 0x4))) |
| 1079 | MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac)(((mpll_func_cntl_1) & ~0xfff0) | (0xfff0 & ((mpll_param .mpll_fb_divider.clk_frac) << 0x4))); |
| 1080 | mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,(((mpll_func_cntl_1) & ~0x3) | (0x3 & ((mpll_param.vco_mode ) << 0x0))) |
| 1081 | MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode)(((mpll_func_cntl_1) & ~0x3) | (0x3 & ((mpll_param.vco_mode ) << 0x0))); |
| 1082 | |
| 1083 | /* MPLL_AD_FUNC_CNTL setup*/ |
| 1084 | mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,(((mpll_ad_func_cntl) & ~0x7) | (0x7 & ((mpll_param.mpll_post_divider ) << 0x0))) |
| 1085 | MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider)(((mpll_ad_func_cntl) & ~0x7) | (0x7 & ((mpll_param.mpll_post_divider ) << 0x0))); |
| 1086 | |
| 1087 | if (data->is_memory_gddr5) { |
| 1088 | /* MPLL_DQ_FUNC_CNTL setup*/ |
| 1089 | mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,(((mpll_dq_func_cntl) & ~0x10) | (0x10 & ((mpll_param .yclk_sel) << 0x4))) |
| 1090 | MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel)(((mpll_dq_func_cntl) & ~0x10) | (0x10 & ((mpll_param .yclk_sel) << 0x4))); |
| 1091 | mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,(((mpll_dq_func_cntl) & ~0x7) | (0x7 & ((mpll_param.mpll_post_divider ) << 0x0))) |
| 1092 | MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider)(((mpll_dq_func_cntl) & ~0x7) | (0x7 & ((mpll_param.mpll_post_divider ) << 0x0))); |
| 1093 | } |
| 1094 | |
| 1095 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| 1096 | PHM_PlatformCaps_MemorySpreadSpectrumSupport)) { |
| 1097 | /* |
| 1098 | ************************************ |
| 1099 | Fref = Reference Frequency |
| 1100 | NF = Feedback divider ratio |
| 1101 | NR = Reference divider ratio |
| 1102 | Fnom = Nominal VCO output frequency = Fref * NF / NR |
| 1103 | Fs = Spreading Rate |
| 1104 | D = Percentage down-spread / 2 |
| 1105 | Fint = Reference input frequency to PFD = Fref / NR |
| 1106 | NS = Spreading rate divider ratio = int(Fint / (2 * Fs)) |
| 1107 | CLKS = NS - 1 = ISS_STEP_NUM[11:0] |
| 1108 | NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2) |
| 1109 | CLKV = 65536 * NV = ISS_STEP_SIZE[25:0] |
| 1110 | ************************************* |
| 1111 | */ |
| 1112 | pp_atomctrl_internal_ss_info ss_info; |
| 1113 | uint32_t freq_nom; |
| 1114 | uint32_t tmp; |
| 1115 | uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr); |
| 1116 | |
| 1117 | /* for GDDR5 for all modes and DDR3 */ |
| 1118 | if (1 == mpll_param.qdr) |
| 1119 | freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider); |
| 1120 | else |
| 1121 | freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider); |
| 1122 | |
| 1123 | /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2 Note: S.I. reference_divider = 1*/ |
| 1124 | tmp = (freq_nom / reference_clock); |
| 1125 | tmp = tmp * tmp; |
| 1126 | |
| 1127 | if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) { |
| 1128 | /* ss_info.speed_spectrum_percentage -- in unit of 0.01% */ |
| 1129 | /* ss.Info.speed_spectrum_rate -- in unit of khz */ |
| 1130 | /* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */ |
| 1131 | /* = reference_clock * 5 / speed_spectrum_rate */ |
| 1132 | uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate; |
| 1133 | |
| 1134 | /* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */ |
| 1135 | /* = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */ |
| 1136 | uint32_t clkv = |
| 1137 | (uint32_t)((((131 * ss_info.speed_spectrum_percentage * |
| 1138 | ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom); |
| 1139 | |
| 1140 | mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv)(((mpll_ss1) & ~0x3ffffff) | (0x3ffffff & ((clkv) << 0x0))); |
| 1141 | mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks)(((mpll_ss2) & ~0xfff) | (0xfff & ((clks) << 0x0 ))); |
| 1142 | } |
| 1143 | } |
| 1144 | |
| 1145 | /* MCLK_PWRMGT_CNTL setup */ |
| 1146 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,(((mclk_pwrmgt_cntl) & ~0x1f) | (0x1f & ((mpll_param. dll_speed) << 0x0))) |
| 1147 | MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed)(((mclk_pwrmgt_cntl) & ~0x1f) | (0x1f & ((mpll_param. dll_speed) << 0x0))); |
| 1148 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,(((mclk_pwrmgt_cntl) & ~0x100) | (0x100 & ((dllStateOn ) << 0x8))) |
| 1149 | MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn)(((mclk_pwrmgt_cntl) & ~0x100) | (0x100 & ((dllStateOn ) << 0x8))); |
| 1150 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,(((mclk_pwrmgt_cntl) & ~0x200) | (0x200 & ((dllStateOn ) << 0x9))) |
| 1151 | MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn)(((mclk_pwrmgt_cntl) & ~0x200) | (0x200 & ((dllStateOn ) << 0x9))); |
| 1152 | |
| 1153 | |
| 1154 | /* Save the result data to outpupt memory level structure */ |
| 1155 | mclk->MclkFrequency = memory_clock; |
| 1156 | mclk->MpllFuncCntl = mpll_func_cntl; |
| 1157 | mclk->MpllFuncCntl_1 = mpll_func_cntl_1; |
| 1158 | mclk->MpllFuncCntl_2 = mpll_func_cntl_2; |
| 1159 | mclk->MpllAdFuncCntl = mpll_ad_func_cntl; |
| 1160 | mclk->MpllDqFuncCntl = mpll_dq_func_cntl; |
| 1161 | mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl; |
| 1162 | mclk->DllCntl = dll_cntl; |
| 1163 | mclk->MpllSs1 = mpll_ss1; |
| 1164 | mclk->MpllSs2 = mpll_ss2; |
| 1165 | |
| 1166 | return 0; |
| 1167 | } |
| 1168 | |
| 1169 | static uint8_t iceland_get_mclk_frequency_ratio(uint32_t memory_clock, |
| 1170 | bool_Bool strobe_mode) |
| 1171 | { |
| 1172 | uint8_t mc_para_index; |
| 1173 | |
| 1174 | if (strobe_mode) { |
| 1175 | if (memory_clock < 12500) { |
| 1176 | mc_para_index = 0x00; |
| 1177 | } else if (memory_clock > 47500) { |
| 1178 | mc_para_index = 0x0f; |
| 1179 | } else { |
| 1180 | mc_para_index = (uint8_t)((memory_clock - 10000) / 2500); |
| 1181 | } |
| 1182 | } else { |
| 1183 | if (memory_clock < 65000) { |
| 1184 | mc_para_index = 0x00; |
| 1185 | } else if (memory_clock > 135000) { |
| 1186 | mc_para_index = 0x0f; |
| 1187 | } else { |
| 1188 | mc_para_index = (uint8_t)((memory_clock - 60000) / 5000); |
| 1189 | } |
| 1190 | } |
| 1191 | |
| 1192 | return mc_para_index; |
| 1193 | } |
| 1194 | |
| 1195 | static uint8_t iceland_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock) |
| 1196 | { |
| 1197 | uint8_t mc_para_index; |
| 1198 | |
| 1199 | if (memory_clock < 10000) { |
| 1200 | mc_para_index = 0; |
| 1201 | } else if (memory_clock >= 80000) { |
| 1202 | mc_para_index = 0x0f; |
| 1203 | } else { |
| 1204 | mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1); |
| 1205 | } |
| 1206 | |
| 1207 | return mc_para_index; |
| 1208 | } |
| 1209 | |
| 1210 | static int iceland_populate_phase_value_based_on_mclk(struct pp_hwmgr *hwmgr, const struct phm_phase_shedding_limits_table *pl, |
| 1211 | uint32_t memory_clock, uint32_t *p_shed) |
| 1212 | { |
| 1213 | unsigned int i; |
| 1214 | |
| 1215 | *p_shed = 1; |
| 1216 | |
| 1217 | for (i = 0; i < pl->count; i++) { |
| 1218 | if (memory_clock < pl->entries[i].Mclk) { |
| 1219 | *p_shed = i; |
| 1220 | break; |
| 1221 | } |
| 1222 | } |
| 1223 | |
| 1224 | return 0; |
| 1225 | } |
| 1226 | |
| 1227 | static int iceland_populate_single_memory_level( |
| 1228 | struct pp_hwmgr *hwmgr, |
| 1229 | uint32_t memory_clock, |
| 1230 | SMU71_Discrete_MemoryLevel *memory_level |
| 1231 | ) |
| 1232 | { |
| 1233 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 1234 | int result = 0; |
| 1235 | bool_Bool dll_state_on; |
| 1236 | uint32_t mclk_edc_wr_enable_threshold = 40000; |
| 1237 | uint32_t mclk_edc_enable_threshold = 40000; |
| 1238 | uint32_t mclk_strobe_mode_threshold = 40000; |
| 1239 | |
| 1240 | if (hwmgr->dyn_state.vddc_dependency_on_mclk != NULL((void *)0)) { |
| 1241 | result = iceland_get_dependency_volt_by_clk(hwmgr, |
| 1242 | hwmgr->dyn_state.vddc_dependency_on_mclk, memory_clock, &memory_level->MinVddc); |
| 1243 | PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find MinVddc voltage value from memory VDDC voltage dependency table" ); return result; } } while (0) |
| 1244 | "can not find MinVddc voltage value from memory VDDC voltage dependency table", return result)do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find MinVddc voltage value from memory VDDC voltage dependency table" ); return result; } } while (0); |
| 1245 | } |
| 1246 | |
| 1247 | if (data->vddci_control == SMU7_VOLTAGE_CONTROL_NONE0x0) { |
| 1248 | memory_level->MinVddci = memory_level->MinVddc; |
| 1249 | } else if (NULL((void *)0) != hwmgr->dyn_state.vddci_dependency_on_mclk) { |
| 1250 | result = iceland_get_dependency_volt_by_clk(hwmgr, |
| 1251 | hwmgr->dyn_state.vddci_dependency_on_mclk, |
| 1252 | memory_clock, |
| 1253 | &memory_level->MinVddci); |
| 1254 | PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find MinVddci voltage value from memory VDDCI voltage dependency table" ); return result; } } while (0) |
| 1255 | "can not find MinVddci voltage value from memory VDDCI voltage dependency table", return result)do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "can not find MinVddci voltage value from memory VDDCI voltage dependency table" ); return result; } } while (0); |
| 1256 | } |
| 1257 | |
| 1258 | memory_level->MinVddcPhases = 1; |
| 1259 | |
| 1260 | if (data->vddc_phase_shed_control) { |
| 1261 | iceland_populate_phase_value_based_on_mclk(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table, |
| 1262 | memory_clock, &memory_level->MinVddcPhases); |
| 1263 | } |
| 1264 | |
| 1265 | memory_level->EnabledForThrottle = 1; |
| 1266 | memory_level->EnabledForActivity = 0; |
| 1267 | memory_level->UpHyst = data->current_profile_setting.mclk_up_hyst; |
| 1268 | memory_level->DownHyst = data->current_profile_setting.mclk_down_hyst; |
| 1269 | memory_level->VoltageDownHyst = 0; |
| 1270 | |
| 1271 | /* Indicates maximum activity level for this performance level.*/ |
| 1272 | memory_level->ActivityLevel = data->current_profile_setting.mclk_activity; |
| 1273 | memory_level->StutterEnable = 0; |
| 1274 | memory_level->StrobeEnable = 0; |
| 1275 | memory_level->EdcReadEnable = 0; |
| 1276 | memory_level->EdcWriteEnable = 0; |
| 1277 | memory_level->RttEnable = 0; |
| 1278 | |
| 1279 | /* default set to low watermark. Highest level will be set to high later.*/ |
| 1280 | memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW0; |
| 1281 | |
| 1282 | data->display_timing.num_existing_displays = hwmgr->display_config->num_display; |
| 1283 | data->display_timing.vrefresh = hwmgr->display_config->vrefresh; |
| 1284 | |
| 1285 | /* stutter mode not support on iceland */ |
| 1286 | |
| 1287 | /* decide strobe mode*/ |
| 1288 | memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) && |
| 1289 | (memory_clock <= mclk_strobe_mode_threshold); |
| 1290 | |
| 1291 | /* decide EDC mode and memory clock ratio*/ |
| 1292 | if (data->is_memory_gddr5) { |
| 1293 | memory_level->StrobeRatio = iceland_get_mclk_frequency_ratio(memory_clock, |
| 1294 | memory_level->StrobeEnable); |
| 1295 | |
| 1296 | if ((mclk_edc_enable_threshold != 0) && |
| 1297 | (memory_clock > mclk_edc_enable_threshold)) { |
| 1298 | memory_level->EdcReadEnable = 1; |
| 1299 | } |
| 1300 | |
| 1301 | if ((mclk_edc_wr_enable_threshold != 0) && |
| 1302 | (memory_clock > mclk_edc_wr_enable_threshold)) { |
| 1303 | memory_level->EdcWriteEnable = 1; |
| 1304 | } |
| 1305 | |
| 1306 | if (memory_level->StrobeEnable) { |
| 1307 | if (iceland_get_mclk_frequency_ratio(memory_clock, 1) >= |
| 1308 | ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0xa99)) >> 16) & 0xf)) |
| 1309 | dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0xa95)) >> 1) & 0x1) ? 1 : 0; |
| 1310 | else |
| 1311 | dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0xa96)) >> 1) & 0x1) ? 1 : 0; |
| 1312 | } else |
| 1313 | dll_state_on = data->dll_default_on; |
| 1314 | } else { |
| 1315 | memory_level->StrobeRatio = |
| 1316 | iceland_get_ddr3_mclk_frequency_ratio(memory_clock); |
| 1317 | dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0xa95)) >> 1) & 0x1) ? 1 : 0; |
| 1318 | } |
| 1319 | |
| 1320 | result = iceland_calculate_mclk_params(hwmgr, |
| 1321 | memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on); |
| 1322 | |
| 1323 | if (0 == result) { |
| 1324 | memory_level->MinVddc = PP_HOST_TO_SMC_UL(memory_level->MinVddc * VOLTAGE_SCALE)(__uint32_t)(__builtin_constant_p(memory_level->MinVddc * 4 ) ? (__uint32_t)(((__uint32_t)(memory_level->MinVddc * 4) & 0xff) << 24 | ((__uint32_t)(memory_level->MinVddc * 4) & 0xff00) << 8 | ((__uint32_t)(memory_level-> MinVddc * 4) & 0xff0000) >> 8 | ((__uint32_t)(memory_level ->MinVddc * 4) & 0xff000000) >> 24) : __swap32md (memory_level->MinVddc * 4)); |
| 1325 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinVddcPhases)((memory_level->MinVddcPhases) = (__uint32_t)(__builtin_constant_p (memory_level->MinVddcPhases) ? (__uint32_t)(((__uint32_t) (memory_level->MinVddcPhases) & 0xff) << 24 | (( __uint32_t)(memory_level->MinVddcPhases) & 0xff00) << 8 | ((__uint32_t)(memory_level->MinVddcPhases) & 0xff0000 ) >> 8 | ((__uint32_t)(memory_level->MinVddcPhases) & 0xff000000) >> 24) : __swap32md(memory_level->MinVddcPhases ))); |
| 1326 | memory_level->MinVddci = PP_HOST_TO_SMC_UL(memory_level->MinVddci * VOLTAGE_SCALE)(__uint32_t)(__builtin_constant_p(memory_level->MinVddci * 4) ? (__uint32_t)(((__uint32_t)(memory_level->MinVddci * 4 ) & 0xff) << 24 | ((__uint32_t)(memory_level->MinVddci * 4) & 0xff00) << 8 | ((__uint32_t)(memory_level-> MinVddci * 4) & 0xff0000) >> 8 | ((__uint32_t)(memory_level ->MinVddci * 4) & 0xff000000) >> 24) : __swap32md (memory_level->MinVddci * 4)); |
| 1327 | memory_level->MinMvdd = PP_HOST_TO_SMC_UL(memory_level->MinMvdd * VOLTAGE_SCALE)(__uint32_t)(__builtin_constant_p(memory_level->MinMvdd * 4 ) ? (__uint32_t)(((__uint32_t)(memory_level->MinMvdd * 4) & 0xff) << 24 | ((__uint32_t)(memory_level->MinMvdd * 4) & 0xff00) << 8 | ((__uint32_t)(memory_level-> MinMvdd * 4) & 0xff0000) >> 8 | ((__uint32_t)(memory_level ->MinMvdd * 4) & 0xff000000) >> 24) : __swap32md (memory_level->MinMvdd * 4)); |
| 1328 | /* MCLK frequency in units of 10KHz*/ |
| 1329 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency)((memory_level->MclkFrequency) = (__uint32_t)(__builtin_constant_p (memory_level->MclkFrequency) ? (__uint32_t)(((__uint32_t) (memory_level->MclkFrequency) & 0xff) << 24 | (( __uint32_t)(memory_level->MclkFrequency) & 0xff00) << 8 | ((__uint32_t)(memory_level->MclkFrequency) & 0xff0000 ) >> 8 | ((__uint32_t)(memory_level->MclkFrequency) & 0xff000000) >> 24) : __swap32md(memory_level->MclkFrequency ))); |
| 1330 | /* Indicates maximum activity level for this performance level.*/ |
| 1331 | CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel)((memory_level->ActivityLevel) = (__uint16_t)(__builtin_constant_p (memory_level->ActivityLevel) ? (__uint16_t)(((__uint16_t) (memory_level->ActivityLevel) & 0xffU) << 8 | (( __uint16_t)(memory_level->ActivityLevel) & 0xff00U) >> 8) : __swap16md(memory_level->ActivityLevel))); |
| 1332 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl)((memory_level->MpllFuncCntl) = (__uint32_t)(__builtin_constant_p (memory_level->MpllFuncCntl) ? (__uint32_t)(((__uint32_t)( memory_level->MpllFuncCntl) & 0xff) << 24 | ((__uint32_t )(memory_level->MpllFuncCntl) & 0xff00) << 8 | ( (__uint32_t)(memory_level->MpllFuncCntl) & 0xff0000) >> 8 | ((__uint32_t)(memory_level->MpllFuncCntl) & 0xff000000 ) >> 24) : __swap32md(memory_level->MpllFuncCntl))); |
| 1333 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1)((memory_level->MpllFuncCntl_1) = (__uint32_t)(__builtin_constant_p (memory_level->MpllFuncCntl_1) ? (__uint32_t)(((__uint32_t )(memory_level->MpllFuncCntl_1) & 0xff) << 24 | ( (__uint32_t)(memory_level->MpllFuncCntl_1) & 0xff00) << 8 | ((__uint32_t)(memory_level->MpllFuncCntl_1) & 0xff0000 ) >> 8 | ((__uint32_t)(memory_level->MpllFuncCntl_1) & 0xff000000) >> 24) : __swap32md(memory_level-> MpllFuncCntl_1))); |
| 1334 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2)((memory_level->MpllFuncCntl_2) = (__uint32_t)(__builtin_constant_p (memory_level->MpllFuncCntl_2) ? (__uint32_t)(((__uint32_t )(memory_level->MpllFuncCntl_2) & 0xff) << 24 | ( (__uint32_t)(memory_level->MpllFuncCntl_2) & 0xff00) << 8 | ((__uint32_t)(memory_level->MpllFuncCntl_2) & 0xff0000 ) >> 8 | ((__uint32_t)(memory_level->MpllFuncCntl_2) & 0xff000000) >> 24) : __swap32md(memory_level-> MpllFuncCntl_2))); |
| 1335 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl)((memory_level->MpllAdFuncCntl) = (__uint32_t)(__builtin_constant_p (memory_level->MpllAdFuncCntl) ? (__uint32_t)(((__uint32_t )(memory_level->MpllAdFuncCntl) & 0xff) << 24 | ( (__uint32_t)(memory_level->MpllAdFuncCntl) & 0xff00) << 8 | ((__uint32_t)(memory_level->MpllAdFuncCntl) & 0xff0000 ) >> 8 | ((__uint32_t)(memory_level->MpllAdFuncCntl) & 0xff000000) >> 24) : __swap32md(memory_level-> MpllAdFuncCntl))); |
| 1336 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl)((memory_level->MpllDqFuncCntl) = (__uint32_t)(__builtin_constant_p (memory_level->MpllDqFuncCntl) ? (__uint32_t)(((__uint32_t )(memory_level->MpllDqFuncCntl) & 0xff) << 24 | ( (__uint32_t)(memory_level->MpllDqFuncCntl) & 0xff00) << 8 | ((__uint32_t)(memory_level->MpllDqFuncCntl) & 0xff0000 ) >> 8 | ((__uint32_t)(memory_level->MpllDqFuncCntl) & 0xff000000) >> 24) : __swap32md(memory_level-> MpllDqFuncCntl))); |
| 1337 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl)((memory_level->MclkPwrmgtCntl) = (__uint32_t)(__builtin_constant_p (memory_level->MclkPwrmgtCntl) ? (__uint32_t)(((__uint32_t )(memory_level->MclkPwrmgtCntl) & 0xff) << 24 | ( (__uint32_t)(memory_level->MclkPwrmgtCntl) & 0xff00) << 8 | ((__uint32_t)(memory_level->MclkPwrmgtCntl) & 0xff0000 ) >> 8 | ((__uint32_t)(memory_level->MclkPwrmgtCntl) & 0xff000000) >> 24) : __swap32md(memory_level-> MclkPwrmgtCntl))); |
| 1338 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl)((memory_level->DllCntl) = (__uint32_t)(__builtin_constant_p (memory_level->DllCntl) ? (__uint32_t)(((__uint32_t)(memory_level ->DllCntl) & 0xff) << 24 | ((__uint32_t)(memory_level ->DllCntl) & 0xff00) << 8 | ((__uint32_t)(memory_level ->DllCntl) & 0xff0000) >> 8 | ((__uint32_t)(memory_level ->DllCntl) & 0xff000000) >> 24) : __swap32md(memory_level ->DllCntl))); |
| 1339 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1)((memory_level->MpllSs1) = (__uint32_t)(__builtin_constant_p (memory_level->MpllSs1) ? (__uint32_t)(((__uint32_t)(memory_level ->MpllSs1) & 0xff) << 24 | ((__uint32_t)(memory_level ->MpllSs1) & 0xff00) << 8 | ((__uint32_t)(memory_level ->MpllSs1) & 0xff0000) >> 8 | ((__uint32_t)(memory_level ->MpllSs1) & 0xff000000) >> 24) : __swap32md(memory_level ->MpllSs1))); |
| 1340 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2)((memory_level->MpllSs2) = (__uint32_t)(__builtin_constant_p (memory_level->MpllSs2) ? (__uint32_t)(((__uint32_t)(memory_level ->MpllSs2) & 0xff) << 24 | ((__uint32_t)(memory_level ->MpllSs2) & 0xff00) << 8 | ((__uint32_t)(memory_level ->MpllSs2) & 0xff0000) >> 8 | ((__uint32_t)(memory_level ->MpllSs2) & 0xff000000) >> 24) : __swap32md(memory_level ->MpllSs2))); |
| 1341 | } |
| 1342 | |
| 1343 | return result; |
| 1344 | } |
| 1345 | |
| 1346 | static int iceland_populate_all_memory_levels(struct pp_hwmgr *hwmgr) |
| 1347 | { |
| 1348 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 1349 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
| 1350 | struct smu7_dpm_table *dpm_table = &data->dpm_table; |
| 1351 | int result; |
| 1352 | |
| 1353 | /* populate MCLK dpm table to SMU7 */ |
| 1354 | uint32_t level_array_adress = smu_data->smu7_data.dpm_table_start + offsetof(SMU71_Discrete_DpmTable, MemoryLevel)__builtin_offsetof(SMU71_Discrete_DpmTable, MemoryLevel); |
| 1355 | uint32_t level_array_size = sizeof(SMU71_Discrete_MemoryLevel) * SMU71_MAX_LEVELS_MEMORY4; |
| 1356 | SMU71_Discrete_MemoryLevel *levels = smu_data->smc_state_table.MemoryLevel; |
| 1357 | uint32_t i; |
| 1358 | |
| 1359 | memset(levels, 0x00, level_array_size)__builtin_memset((levels), (0x00), (level_array_size)); |
| 1360 | |
| 1361 | for (i = 0; i < dpm_table->mclk_table.count; i++) { |
| 1362 | PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),do { if (!((0 != dpm_table->mclk_table.dpm_levels[i].value ))) { printk("\0014" "amdgpu: " "%s\n", "can not populate memory level as memory clock is zero" ); return -22; } } while (0) |
| 1363 | "can not populate memory level as memory clock is zero", return -EINVAL)do { if (!((0 != dpm_table->mclk_table.dpm_levels[i].value ))) { printk("\0014" "amdgpu: " "%s\n", "can not populate memory level as memory clock is zero" ); return -22; } } while (0); |
| 1364 | result = iceland_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value, |
| 1365 | &(smu_data->smc_state_table.MemoryLevel[i])); |
| 1366 | if (0 != result) { |
| 1367 | return result; |
| 1368 | } |
| 1369 | } |
| 1370 | |
| 1371 | /* Only enable level 0 for now.*/ |
| 1372 | smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1; |
| 1373 | |
| 1374 | /* |
| 1375 | * in order to prevent MC activity from stutter mode to push DPM up. |
| 1376 | * the UVD change complements this by putting the MCLK in a higher state |
| 1377 | * by default such that we are not effected by up threshold or and MCLK DPM latency. |
| 1378 | */ |
| 1379 | smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F; |
| 1380 | CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel)((smu_data->smc_state_table.MemoryLevel[0].ActivityLevel) = (__uint16_t)(__builtin_constant_p(smu_data->smc_state_table .MemoryLevel[0].ActivityLevel) ? (__uint16_t)(((__uint16_t)(smu_data ->smc_state_table.MemoryLevel[0].ActivityLevel) & 0xffU ) << 8 | ((__uint16_t)(smu_data->smc_state_table.MemoryLevel [0].ActivityLevel) & 0xff00U) >> 8) : __swap16md(smu_data ->smc_state_table.MemoryLevel[0].ActivityLevel))); |
| 1381 | |
| 1382 | smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count; |
| 1383 | data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table); |
| 1384 | /* set highest level watermark to high*/ |
| 1385 | smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH1; |
| 1386 | |
| 1387 | /* level count will send to smc once at init smc table and never change*/ |
| 1388 | result = smu7_copy_bytes_to_smc(hwmgr, |
| 1389 | level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size, |
| 1390 | SMC_RAM_END0x40000); |
| 1391 | |
| 1392 | return result; |
| 1393 | } |
| 1394 | |
| 1395 | static int iceland_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk, |
| 1396 | SMU71_Discrete_VoltageLevel *voltage) |
| 1397 | { |
| 1398 | const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 1399 | |
| 1400 | uint32_t i = 0; |
| 1401 | |
| 1402 | if (SMU7_VOLTAGE_CONTROL_NONE0x0 != data->mvdd_control) { |
| 1403 | /* find mvdd value which clock is more than request */ |
| 1404 | for (i = 0; i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count; i++) { |
| 1405 | if (mclk <= hwmgr->dyn_state.mvdd_dependency_on_mclk->entries[i].clk) { |
| 1406 | /* Always round to higher voltage. */ |
| 1407 | voltage->Voltage = data->mvdd_voltage_table.entries[i].value; |
| 1408 | break; |
| 1409 | } |
| 1410 | } |
| 1411 | |
| 1412 | PP_ASSERT_WITH_CODE(i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count,do { if (!(i < hwmgr->dyn_state.mvdd_dependency_on_mclk ->count)) { printk("\0014" "amdgpu: " "%s\n", "MVDD Voltage is outside the supported range." ); return -22; } } while (0) |
| 1413 | "MVDD Voltage is outside the supported range.", return -EINVAL)do { if (!(i < hwmgr->dyn_state.mvdd_dependency_on_mclk ->count)) { printk("\0014" "amdgpu: " "%s\n", "MVDD Voltage is outside the supported range." ); return -22; } } while (0); |
| 1414 | |
| 1415 | } else { |
| 1416 | return -EINVAL22; |
| 1417 | } |
| 1418 | |
| 1419 | return 0; |
| 1420 | } |
| 1421 | |
| 1422 | static int iceland_populate_smc_acpi_level(struct pp_hwmgr *hwmgr, |
| 1423 | SMU71_Discrete_DpmTable *table) |
| 1424 | { |
| 1425 | int result = 0; |
| 1426 | const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 1427 | struct pp_atomctrl_clock_dividers_vi dividers; |
| 1428 | uint32_t vddc_phase_shed_control = 0; |
| 1429 | |
| 1430 | SMU71_Discrete_VoltageLevel voltage_level; |
| 1431 | uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; |
| 1432 | uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2; |
| 1433 | uint32_t dll_cntl = data->clock_registers.vDLL_CNTL; |
| 1434 | uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL; |
| 1435 | |
| 1436 | |
| 1437 | /* The ACPI state should not do DPM on DC (or ever).*/ |
| 1438 | table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC0x01; |
| 1439 | |
| 1440 | if (data->acpi_vddc) |
| 1441 | table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->acpi_vddc * VOLTAGE_SCALE)(__uint32_t)(__builtin_constant_p(data->acpi_vddc * 4) ? ( __uint32_t)(((__uint32_t)(data->acpi_vddc * 4) & 0xff) << 24 | ((__uint32_t)(data->acpi_vddc * 4) & 0xff00 ) << 8 | ((__uint32_t)(data->acpi_vddc * 4) & 0xff0000 ) >> 8 | ((__uint32_t)(data->acpi_vddc * 4) & 0xff000000 ) >> 24) : __swap32md(data->acpi_vddc * 4)); |
| 1442 | else |
| 1443 | table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->min_vddc_in_pptable * VOLTAGE_SCALE)(__uint32_t)(__builtin_constant_p(data->min_vddc_in_pptable * 4) ? (__uint32_t)(((__uint32_t)(data->min_vddc_in_pptable * 4) & 0xff) << 24 | ((__uint32_t)(data->min_vddc_in_pptable * 4) & 0xff00) << 8 | ((__uint32_t)(data->min_vddc_in_pptable * 4) & 0xff0000) >> 8 | ((__uint32_t)(data->min_vddc_in_pptable * 4) & 0xff000000) >> 24) : __swap32md(data->min_vddc_in_pptable * 4)); |
| 1444 | |
| 1445 | table->ACPILevel.MinVddcPhases = vddc_phase_shed_control ? 0 : 1; |
| 1446 | /* assign zero for now*/ |
| 1447 | table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr); |
| 1448 | |
| 1449 | /* get the engine clock dividers for this clock value*/ |
| 1450 | result = atomctrl_get_engine_pll_dividers_vi(hwmgr, |
| 1451 | table->ACPILevel.SclkFrequency, ÷rs); |
| 1452 | |
| 1453 | PP_ASSERT_WITH_CODE(result == 0,do { if (!(result == 0)) { printk("\0014" "amdgpu: " "%s\n", "Error retrieving Engine Clock dividers from VBIOS." ); return result; } } while (0) |
| 1454 | "Error retrieving Engine Clock dividers from VBIOS.", return result)do { if (!(result == 0)) { printk("\0014" "amdgpu: " "%s\n", "Error retrieving Engine Clock dividers from VBIOS." ); return result; } } while (0); |
| 1455 | |
| 1456 | /* divider ID for required SCLK*/ |
| 1457 | table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider; |
| 1458 | table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW0; |
| 1459 | table->ACPILevel.DeepSleepDivId = 0; |
| 1460 | |
| 1461 | spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,(((spll_func_cntl) & ~0x2) | (0x2 & ((0) << 0x1 ))) |
| 1462 | CG_SPLL_FUNC_CNTL, SPLL_PWRON, 0)(((spll_func_cntl) & ~0x2) | (0x2 & ((0) << 0x1 ))); |
| 1463 | spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,(((spll_func_cntl) & ~0x1) | (0x1 & ((1) << 0x0 ))) |
| 1464 | CG_SPLL_FUNC_CNTL, SPLL_RESET, 1)(((spll_func_cntl) & ~0x1) | (0x1 & ((1) << 0x0 ))); |
| 1465 | spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2,(((spll_func_cntl_2) & ~0x1ff) | (0x1ff & ((4) << 0x0))) |
| 1466 | CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL, 4)(((spll_func_cntl_2) & ~0x1ff) | (0x1ff & ((4) << 0x0))); |
| 1467 | |
| 1468 | table->ACPILevel.CgSpllFuncCntl = spll_func_cntl; |
| 1469 | table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2; |
| 1470 | table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; |
| 1471 | table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; |
| 1472 | table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; |
| 1473 | table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; |
| 1474 | table->ACPILevel.CcPwrDynRm = 0; |
| 1475 | table->ACPILevel.CcPwrDynRm1 = 0; |
| 1476 | |
| 1477 | |
| 1478 | /* For various features to be enabled/disabled while this level is active.*/ |
| 1479 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags)((table->ACPILevel.Flags) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.Flags) ? (__uint32_t)(((__uint32_t)(table ->ACPILevel.Flags) & 0xff) << 24 | ((__uint32_t) (table->ACPILevel.Flags) & 0xff00) << 8 | ((__uint32_t )(table->ACPILevel.Flags) & 0xff0000) >> 8 | ((__uint32_t )(table->ACPILevel.Flags) & 0xff000000) >> 24) : __swap32md(table->ACPILevel.Flags))); |
| 1480 | /* SCLK frequency in units of 10KHz*/ |
| 1481 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency)((table->ACPILevel.SclkFrequency) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.SclkFrequency) ? (__uint32_t)(((__uint32_t )(table->ACPILevel.SclkFrequency) & 0xff) << 24 | ((__uint32_t)(table->ACPILevel.SclkFrequency) & 0xff00 ) << 8 | ((__uint32_t)(table->ACPILevel.SclkFrequency ) & 0xff0000) >> 8 | ((__uint32_t)(table->ACPILevel .SclkFrequency) & 0xff000000) >> 24) : __swap32md(table ->ACPILevel.SclkFrequency))); |
| 1482 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl)((table->ACPILevel.CgSpllFuncCntl) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.CgSpllFuncCntl) ? (__uint32_t)(((__uint32_t )(table->ACPILevel.CgSpllFuncCntl) & 0xff) << 24 | ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl) & 0xff00 ) << 8 | ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl ) & 0xff0000) >> 8 | ((__uint32_t)(table->ACPILevel .CgSpllFuncCntl) & 0xff000000) >> 24) : __swap32md( table->ACPILevel.CgSpllFuncCntl))); |
| 1483 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2)((table->ACPILevel.CgSpllFuncCntl2) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.CgSpllFuncCntl2) ? (__uint32_t)(((__uint32_t )(table->ACPILevel.CgSpllFuncCntl2) & 0xff) << 24 | ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl2) & 0xff00 ) << 8 | ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl2 ) & 0xff0000) >> 8 | ((__uint32_t)(table->ACPILevel .CgSpllFuncCntl2) & 0xff000000) >> 24) : __swap32md (table->ACPILevel.CgSpllFuncCntl2))); |
| 1484 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3)((table->ACPILevel.CgSpllFuncCntl3) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.CgSpllFuncCntl3) ? (__uint32_t)(((__uint32_t )(table->ACPILevel.CgSpllFuncCntl3) & 0xff) << 24 | ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl3) & 0xff00 ) << 8 | ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl3 ) & 0xff0000) >> 8 | ((__uint32_t)(table->ACPILevel .CgSpllFuncCntl3) & 0xff000000) >> 24) : __swap32md (table->ACPILevel.CgSpllFuncCntl3))); |
| 1485 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4)((table->ACPILevel.CgSpllFuncCntl4) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.CgSpllFuncCntl4) ? (__uint32_t)(((__uint32_t )(table->ACPILevel.CgSpllFuncCntl4) & 0xff) << 24 | ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl4) & 0xff00 ) << 8 | ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl4 ) & 0xff0000) >> 8 | ((__uint32_t)(table->ACPILevel .CgSpllFuncCntl4) & 0xff000000) >> 24) : __swap32md (table->ACPILevel.CgSpllFuncCntl4))); |
| 1486 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum)((table->ACPILevel.SpllSpreadSpectrum) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.SpllSpreadSpectrum) ? (__uint32_t)(((__uint32_t )(table->ACPILevel.SpllSpreadSpectrum) & 0xff) << 24 | ((__uint32_t)(table->ACPILevel.SpllSpreadSpectrum) & 0xff00) << 8 | ((__uint32_t)(table->ACPILevel.SpllSpreadSpectrum ) & 0xff0000) >> 8 | ((__uint32_t)(table->ACPILevel .SpllSpreadSpectrum) & 0xff000000) >> 24) : __swap32md (table->ACPILevel.SpllSpreadSpectrum))); |
| 1487 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2)((table->ACPILevel.SpllSpreadSpectrum2) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.SpllSpreadSpectrum2) ? (__uint32_t)(((__uint32_t )(table->ACPILevel.SpllSpreadSpectrum2) & 0xff) << 24 | ((__uint32_t)(table->ACPILevel.SpllSpreadSpectrum2) & 0xff00) << 8 | ((__uint32_t)(table->ACPILevel.SpllSpreadSpectrum2 ) & 0xff0000) >> 8 | ((__uint32_t)(table->ACPILevel .SpllSpreadSpectrum2) & 0xff000000) >> 24) : __swap32md (table->ACPILevel.SpllSpreadSpectrum2))); |
| 1488 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm)((table->ACPILevel.CcPwrDynRm) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.CcPwrDynRm) ? (__uint32_t)(((__uint32_t) (table->ACPILevel.CcPwrDynRm) & 0xff) << 24 | (( __uint32_t)(table->ACPILevel.CcPwrDynRm) & 0xff00) << 8 | ((__uint32_t)(table->ACPILevel.CcPwrDynRm) & 0xff0000 ) >> 8 | ((__uint32_t)(table->ACPILevel.CcPwrDynRm) & 0xff000000) >> 24) : __swap32md(table->ACPILevel.CcPwrDynRm ))); |
| 1489 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1)((table->ACPILevel.CcPwrDynRm1) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.CcPwrDynRm1) ? (__uint32_t)(((__uint32_t )(table->ACPILevel.CcPwrDynRm1) & 0xff) << 24 | ( (__uint32_t)(table->ACPILevel.CcPwrDynRm1) & 0xff00) << 8 | ((__uint32_t)(table->ACPILevel.CcPwrDynRm1) & 0xff0000 ) >> 8 | ((__uint32_t)(table->ACPILevel.CcPwrDynRm1) & 0xff000000) >> 24) : __swap32md(table->ACPILevel .CcPwrDynRm1))); |
| 1490 | |
| 1491 | /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/ |
| 1492 | table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc; |
| 1493 | table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases; |
| 1494 | |
| 1495 | if (SMU7_VOLTAGE_CONTROL_NONE0x0 == data->vddci_control) |
| 1496 | table->MemoryACPILevel.MinVddci = table->MemoryACPILevel.MinVddc; |
| 1497 | else { |
| 1498 | if (data->acpi_vddci != 0) |
| 1499 | table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->acpi_vddci * VOLTAGE_SCALE)(__uint32_t)(__builtin_constant_p(data->acpi_vddci * 4) ? ( __uint32_t)(((__uint32_t)(data->acpi_vddci * 4) & 0xff ) << 24 | ((__uint32_t)(data->acpi_vddci * 4) & 0xff00 ) << 8 | ((__uint32_t)(data->acpi_vddci * 4) & 0xff0000 ) >> 8 | ((__uint32_t)(data->acpi_vddci * 4) & 0xff000000 ) >> 24) : __swap32md(data->acpi_vddci * 4)); |
| 1500 | else |
| 1501 | table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->min_vddci_in_pptable * VOLTAGE_SCALE)(__uint32_t)(__builtin_constant_p(data->min_vddci_in_pptable * 4) ? (__uint32_t)(((__uint32_t)(data->min_vddci_in_pptable * 4) & 0xff) << 24 | ((__uint32_t)(data->min_vddci_in_pptable * 4) & 0xff00) << 8 | ((__uint32_t)(data->min_vddci_in_pptable * 4) & 0xff0000) >> 8 | ((__uint32_t)(data->min_vddci_in_pptable * 4) & 0xff000000) >> 24) : __swap32md(data->min_vddci_in_pptable * 4)); |
| 1502 | } |
| 1503 | |
| 1504 | if (0 == iceland_populate_mvdd_value(hwmgr, 0, &voltage_level)) |
| 1505 | table->MemoryACPILevel.MinMvdd = |
| 1506 | PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE)(__uint32_t)(__builtin_constant_p(voltage_level.Voltage * 4) ? (__uint32_t)(((__uint32_t)(voltage_level.Voltage * 4) & 0xff ) << 24 | ((__uint32_t)(voltage_level.Voltage * 4) & 0xff00) << 8 | ((__uint32_t)(voltage_level.Voltage * 4 ) & 0xff0000) >> 8 | ((__uint32_t)(voltage_level.Voltage * 4) & 0xff000000) >> 24) : __swap32md(voltage_level .Voltage * 4)); |
| 1507 | else |
| 1508 | table->MemoryACPILevel.MinMvdd = 0; |
| 1509 | |
| 1510 | /* Force reset on DLL*/ |
| 1511 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,(((mclk_pwrmgt_cntl) & ~0x10000) | (0x10000 & ((0x1) << 0x10))) |
| 1512 | MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1)(((mclk_pwrmgt_cntl) & ~0x10000) | (0x10000 & ((0x1) << 0x10))); |
| 1513 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,(((mclk_pwrmgt_cntl) & ~0x20000) | (0x20000 & ((0x1) << 0x11))) |
| 1514 | MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1)(((mclk_pwrmgt_cntl) & ~0x20000) | (0x20000 & ((0x1) << 0x11))); |
| 1515 | |
| 1516 | /* Disable DLL in ACPIState*/ |
| 1517 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,(((mclk_pwrmgt_cntl) & ~0x100) | (0x100 & ((0) << 0x8))) |
| 1518 | MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0)(((mclk_pwrmgt_cntl) & ~0x100) | (0x100 & ((0) << 0x8))); |
| 1519 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,(((mclk_pwrmgt_cntl) & ~0x200) | (0x200 & ((0) << 0x9))) |
| 1520 | MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0)(((mclk_pwrmgt_cntl) & ~0x200) | (0x200 & ((0) << 0x9))); |
| 1521 | |
| 1522 | /* Enable DLL bypass signal*/ |
| 1523 | dll_cntl = PHM_SET_FIELD(dll_cntl,(((dll_cntl) & ~0x1000000) | (0x1000000 & ((0) << 0x18))) |
| 1524 | DLL_CNTL, MRDCK0_BYPASS, 0)(((dll_cntl) & ~0x1000000) | (0x1000000 & ((0) << 0x18))); |
| 1525 | dll_cntl = PHM_SET_FIELD(dll_cntl,(((dll_cntl) & ~0x2000000) | (0x2000000 & ((0) << 0x19))) |
| 1526 | DLL_CNTL, MRDCK1_BYPASS, 0)(((dll_cntl) & ~0x2000000) | (0x2000000 & ((0) << 0x19))); |
| 1527 | |
| 1528 | table->MemoryACPILevel.DllCntl = |
| 1529 | PP_HOST_TO_SMC_UL(dll_cntl)(__uint32_t)(__builtin_constant_p(dll_cntl) ? (__uint32_t)((( __uint32_t)(dll_cntl) & 0xff) << 24 | ((__uint32_t) (dll_cntl) & 0xff00) << 8 | ((__uint32_t)(dll_cntl) & 0xff0000) >> 8 | ((__uint32_t)(dll_cntl) & 0xff000000 ) >> 24) : __swap32md(dll_cntl)); |
| 1530 | table->MemoryACPILevel.MclkPwrmgtCntl = |
| 1531 | PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl)(__uint32_t)(__builtin_constant_p(mclk_pwrmgt_cntl) ? (__uint32_t )(((__uint32_t)(mclk_pwrmgt_cntl) & 0xff) << 24 | ( (__uint32_t)(mclk_pwrmgt_cntl) & 0xff00) << 8 | ((__uint32_t )(mclk_pwrmgt_cntl) & 0xff0000) >> 8 | ((__uint32_t )(mclk_pwrmgt_cntl) & 0xff000000) >> 24) : __swap32md (mclk_pwrmgt_cntl)); |
| 1532 | table->MemoryACPILevel.MpllAdFuncCntl = |
| 1533 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL)(__uint32_t)(__builtin_constant_p(data->clock_registers.vMPLL_AD_FUNC_CNTL ) ? (__uint32_t)(((__uint32_t)(data->clock_registers.vMPLL_AD_FUNC_CNTL ) & 0xff) << 24 | ((__uint32_t)(data->clock_registers .vMPLL_AD_FUNC_CNTL) & 0xff00) << 8 | ((__uint32_t) (data->clock_registers.vMPLL_AD_FUNC_CNTL) & 0xff0000) >> 8 | ((__uint32_t)(data->clock_registers.vMPLL_AD_FUNC_CNTL ) & 0xff000000) >> 24) : __swap32md(data->clock_registers .vMPLL_AD_FUNC_CNTL)); |
| 1534 | table->MemoryACPILevel.MpllDqFuncCntl = |
| 1535 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL)(__uint32_t)(__builtin_constant_p(data->clock_registers.vMPLL_DQ_FUNC_CNTL ) ? (__uint32_t)(((__uint32_t)(data->clock_registers.vMPLL_DQ_FUNC_CNTL ) & 0xff) << 24 | ((__uint32_t)(data->clock_registers .vMPLL_DQ_FUNC_CNTL) & 0xff00) << 8 | ((__uint32_t) (data->clock_registers.vMPLL_DQ_FUNC_CNTL) & 0xff0000) >> 8 | ((__uint32_t)(data->clock_registers.vMPLL_DQ_FUNC_CNTL ) & 0xff000000) >> 24) : __swap32md(data->clock_registers .vMPLL_DQ_FUNC_CNTL)); |
| 1536 | table->MemoryACPILevel.MpllFuncCntl = |
| 1537 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL)(__uint32_t)(__builtin_constant_p(data->clock_registers.vMPLL_FUNC_CNTL ) ? (__uint32_t)(((__uint32_t)(data->clock_registers.vMPLL_FUNC_CNTL ) & 0xff) << 24 | ((__uint32_t)(data->clock_registers .vMPLL_FUNC_CNTL) & 0xff00) << 8 | ((__uint32_t)(data ->clock_registers.vMPLL_FUNC_CNTL) & 0xff0000) >> 8 | ((__uint32_t)(data->clock_registers.vMPLL_FUNC_CNTL) & 0xff000000) >> 24) : __swap32md(data->clock_registers .vMPLL_FUNC_CNTL)); |
| 1538 | table->MemoryACPILevel.MpllFuncCntl_1 = |
| 1539 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1)(__uint32_t)(__builtin_constant_p(data->clock_registers.vMPLL_FUNC_CNTL_1 ) ? (__uint32_t)(((__uint32_t)(data->clock_registers.vMPLL_FUNC_CNTL_1 ) & 0xff) << 24 | ((__uint32_t)(data->clock_registers .vMPLL_FUNC_CNTL_1) & 0xff00) << 8 | ((__uint32_t)( data->clock_registers.vMPLL_FUNC_CNTL_1) & 0xff0000) >> 8 | ((__uint32_t)(data->clock_registers.vMPLL_FUNC_CNTL_1 ) & 0xff000000) >> 24) : __swap32md(data->clock_registers .vMPLL_FUNC_CNTL_1)); |
| 1540 | table->MemoryACPILevel.MpllFuncCntl_2 = |
| 1541 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2)(__uint32_t)(__builtin_constant_p(data->clock_registers.vMPLL_FUNC_CNTL_2 ) ? (__uint32_t)(((__uint32_t)(data->clock_registers.vMPLL_FUNC_CNTL_2 ) & 0xff) << 24 | ((__uint32_t)(data->clock_registers .vMPLL_FUNC_CNTL_2) & 0xff00) << 8 | ((__uint32_t)( data->clock_registers.vMPLL_FUNC_CNTL_2) & 0xff0000) >> 8 | ((__uint32_t)(data->clock_registers.vMPLL_FUNC_CNTL_2 ) & 0xff000000) >> 24) : __swap32md(data->clock_registers .vMPLL_FUNC_CNTL_2)); |
| 1542 | table->MemoryACPILevel.MpllSs1 = |
| 1543 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1)(__uint32_t)(__builtin_constant_p(data->clock_registers.vMPLL_SS1 ) ? (__uint32_t)(((__uint32_t)(data->clock_registers.vMPLL_SS1 ) & 0xff) << 24 | ((__uint32_t)(data->clock_registers .vMPLL_SS1) & 0xff00) << 8 | ((__uint32_t)(data-> clock_registers.vMPLL_SS1) & 0xff0000) >> 8 | ((__uint32_t )(data->clock_registers.vMPLL_SS1) & 0xff000000) >> 24) : __swap32md(data->clock_registers.vMPLL_SS1)); |
| 1544 | table->MemoryACPILevel.MpllSs2 = |
| 1545 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2)(__uint32_t)(__builtin_constant_p(data->clock_registers.vMPLL_SS2 ) ? (__uint32_t)(((__uint32_t)(data->clock_registers.vMPLL_SS2 ) & 0xff) << 24 | ((__uint32_t)(data->clock_registers .vMPLL_SS2) & 0xff00) << 8 | ((__uint32_t)(data-> clock_registers.vMPLL_SS2) & 0xff0000) >> 8 | ((__uint32_t )(data->clock_registers.vMPLL_SS2) & 0xff000000) >> 24) : __swap32md(data->clock_registers.vMPLL_SS2)); |
| 1546 | |
| 1547 | table->MemoryACPILevel.EnabledForThrottle = 0; |
| 1548 | table->MemoryACPILevel.EnabledForActivity = 0; |
| 1549 | table->MemoryACPILevel.UpHyst = 0; |
| 1550 | table->MemoryACPILevel.DownHyst = 100; |
| 1551 | table->MemoryACPILevel.VoltageDownHyst = 0; |
| 1552 | /* Indicates maximum activity level for this performance level.*/ |
| 1553 | table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity)(__uint16_t)(__builtin_constant_p(data->current_profile_setting .mclk_activity) ? (__uint16_t)(((__uint16_t)(data->current_profile_setting .mclk_activity) & 0xffU) << 8 | ((__uint16_t)(data-> current_profile_setting.mclk_activity) & 0xff00U) >> 8) : __swap16md(data->current_profile_setting.mclk_activity )); |
| 1554 | |
| 1555 | table->MemoryACPILevel.StutterEnable = 0; |
| 1556 | table->MemoryACPILevel.StrobeEnable = 0; |
| 1557 | table->MemoryACPILevel.EdcReadEnable = 0; |
| 1558 | table->MemoryACPILevel.EdcWriteEnable = 0; |
| 1559 | table->MemoryACPILevel.RttEnable = 0; |
| 1560 | |
| 1561 | return result; |
| 1562 | } |
| 1563 | |
| 1564 | static int iceland_populate_smc_uvd_level(struct pp_hwmgr *hwmgr, |
| 1565 | SMU71_Discrete_DpmTable *table) |
| 1566 | { |
| 1567 | return 0; |
| 1568 | } |
| 1569 | |
| 1570 | static int iceland_populate_smc_vce_level(struct pp_hwmgr *hwmgr, |
| 1571 | SMU71_Discrete_DpmTable *table) |
| 1572 | { |
| 1573 | return 0; |
| 1574 | } |
| 1575 | |
| 1576 | static int iceland_populate_smc_acp_level(struct pp_hwmgr *hwmgr, |
| 1577 | SMU71_Discrete_DpmTable *table) |
| 1578 | { |
| 1579 | return 0; |
| 1580 | } |
| 1581 | |
| 1582 | static int iceland_populate_memory_timing_parameters( |
| 1583 | struct pp_hwmgr *hwmgr, |
| 1584 | uint32_t engine_clock, |
| 1585 | uint32_t memory_clock, |
| 1586 | struct SMU71_Discrete_MCArbDramTimingTableEntry *arb_regs |
| 1587 | ) |
| 1588 | { |
| 1589 | uint32_t dramTiming; |
| 1590 | uint32_t dramTiming2; |
| 1591 | uint32_t burstTime; |
| 1592 | int result; |
| 1593 | |
| 1594 | result = atomctrl_set_engine_dram_timings_rv770(hwmgr, |
| 1595 | engine_clock, memory_clock); |
| 1596 | |
| 1597 | PP_ASSERT_WITH_CODE(result == 0,do { if (!(result == 0)) { printk("\0014" "amdgpu: " "%s\n", "Error calling VBIOS to set DRAM_TIMING." ); return result; } } while (0) |
| 1598 | "Error calling VBIOS to set DRAM_TIMING.", return result)do { if (!(result == 0)) { printk("\0014" "amdgpu: " "%s\n", "Error calling VBIOS to set DRAM_TIMING." ); return result; } } while (0); |
| 1599 | |
| 1600 | dramTiming = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0x9dd)); |
| 1601 | dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0x9de)); |
| 1602 | burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0)((((((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0xa02))) & 0x1f) >> 0x0); |
| 1603 | |
| 1604 | arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dramTiming)(__uint32_t)(__builtin_constant_p(dramTiming) ? (__uint32_t)( ((__uint32_t)(dramTiming) & 0xff) << 24 | ((__uint32_t )(dramTiming) & 0xff00) << 8 | ((__uint32_t)(dramTiming ) & 0xff0000) >> 8 | ((__uint32_t)(dramTiming) & 0xff000000) >> 24) : __swap32md(dramTiming)); |
| 1605 | arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2)(__uint32_t)(__builtin_constant_p(dramTiming2) ? (__uint32_t) (((__uint32_t)(dramTiming2) & 0xff) << 24 | ((__uint32_t )(dramTiming2) & 0xff00) << 8 | ((__uint32_t)(dramTiming2 ) & 0xff0000) >> 8 | ((__uint32_t)(dramTiming2) & 0xff000000) >> 24) : __swap32md(dramTiming2)); |
| 1606 | arb_regs->McArbBurstTime = (uint8_t)burstTime; |
| 1607 | |
| 1608 | return 0; |
| 1609 | } |
| 1610 | |
| 1611 | static int iceland_program_memory_timing_parameters(struct pp_hwmgr *hwmgr) |
| 1612 | { |
| 1613 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 1614 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
| 1615 | int result = 0; |
| 1616 | SMU71_Discrete_MCArbDramTimingTable arb_regs; |
| 1617 | uint32_t i, j; |
| 1618 | |
| 1619 | memset(&arb_regs, 0x00, sizeof(SMU71_Discrete_MCArbDramTimingTable))__builtin_memset((&arb_regs), (0x00), (sizeof(SMU71_Discrete_MCArbDramTimingTable ))); |
| 1620 | |
| 1621 | for (i = 0; i < data->dpm_table.sclk_table.count; i++) { |
| 1622 | for (j = 0; j < data->dpm_table.mclk_table.count; j++) { |
| 1623 | result = iceland_populate_memory_timing_parameters |
| 1624 | (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value, |
| 1625 | data->dpm_table.mclk_table.dpm_levels[j].value, |
| 1626 | &arb_regs.entries[i][j]); |
| 1627 | |
| 1628 | if (0 != result) { |
| 1629 | break; |
| 1630 | } |
| 1631 | } |
| 1632 | } |
| 1633 | |
| 1634 | if (0 == result) { |
| 1635 | result = smu7_copy_bytes_to_smc( |
| 1636 | hwmgr, |
| 1637 | smu_data->smu7_data.arb_table_start, |
| 1638 | (uint8_t *)&arb_regs, |
| 1639 | sizeof(SMU71_Discrete_MCArbDramTimingTable), |
| 1640 | SMC_RAM_END0x40000 |
| 1641 | ); |
| 1642 | } |
| 1643 | |
| 1644 | return result; |
| 1645 | } |
| 1646 | |
| 1647 | static int iceland_populate_smc_boot_level(struct pp_hwmgr *hwmgr, |
| 1648 | SMU71_Discrete_DpmTable *table) |
| 1649 | { |
| 1650 | int result = 0; |
| 1651 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 1652 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
| 1653 | table->GraphicsBootLevel = 0; |
| 1654 | table->MemoryBootLevel = 0; |
| 1655 | |
| 1656 | /* find boot level from dpm table*/ |
| 1657 | result = phm_find_boot_level(&(data->dpm_table.sclk_table), |
| 1658 | data->vbios_boot_state.sclk_bootup_value, |
| 1659 | (uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel)); |
| 1660 | |
| 1661 | if (0 != result) { |
| 1662 | smu_data->smc_state_table.GraphicsBootLevel = 0; |
| 1663 | pr_err("VBIOS did not find boot engine clock value in dependency table. Using Graphics DPM level 0!\n")printk("\0013" "amdgpu: " "VBIOS did not find boot engine clock value in dependency table. Using Graphics DPM level 0!\n" ); |
| 1664 | result = 0; |
| 1665 | } |
| 1666 | |
| 1667 | result = phm_find_boot_level(&(data->dpm_table.mclk_table), |
| 1668 | data->vbios_boot_state.mclk_bootup_value, |
| 1669 | (uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel)); |
| 1670 | |
| 1671 | if (0 != result) { |
| 1672 | smu_data->smc_state_table.MemoryBootLevel = 0; |
| 1673 | pr_err("VBIOS did not find boot engine clock value in dependency table. Using Memory DPM level 0!\n")printk("\0013" "amdgpu: " "VBIOS did not find boot engine clock value in dependency table. Using Memory DPM level 0!\n" ); |
| 1674 | result = 0; |
| 1675 | } |
| 1676 | |
| 1677 | table->BootVddc = data->vbios_boot_state.vddc_bootup_value; |
| 1678 | if (SMU7_VOLTAGE_CONTROL_NONE0x0 == data->vddci_control) |
| 1679 | table->BootVddci = table->BootVddc; |
| 1680 | else |
| 1681 | table->BootVddci = data->vbios_boot_state.vddci_bootup_value; |
| 1682 | |
| 1683 | table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value; |
| 1684 | |
| 1685 | return result; |
| 1686 | } |
| 1687 | |
| 1688 | static int iceland_populate_mc_reg_address(struct pp_hwmgr *hwmgr, |
| 1689 | SMU71_Discrete_MCRegisters *mc_reg_table) |
| 1690 | { |
| 1691 | const struct iceland_smumgr *smu_data = (struct iceland_smumgr *)hwmgr->smu_backend; |
| 1692 | |
| 1693 | uint32_t i, j; |
| 1694 | |
| 1695 | for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) { |
| 1696 | if (smu_data->mc_reg_table.validflag & 1<<j) { |
| 1697 | PP_ASSERT_WITH_CODE(i < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE,do { if (!(i < 16)) { printk("\0014" "amdgpu: " "%s\n", "Index of mc_reg_table->address[] array out of boundary" ); return -22; } } while (0) |
| 1698 | "Index of mc_reg_table->address[] array out of boundary", return -EINVAL)do { if (!(i < 16)) { printk("\0014" "amdgpu: " "%s\n", "Index of mc_reg_table->address[] array out of boundary" ); return -22; } } while (0); |
| 1699 | mc_reg_table->address[i].s0 = |
| 1700 | PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0)(__uint16_t)(__builtin_constant_p(smu_data->mc_reg_table.mc_reg_address [j].s0) ? (__uint16_t)(((__uint16_t)(smu_data->mc_reg_table .mc_reg_address[j].s0) & 0xffU) << 8 | ((__uint16_t )(smu_data->mc_reg_table.mc_reg_address[j].s0) & 0xff00U ) >> 8) : __swap16md(smu_data->mc_reg_table.mc_reg_address [j].s0)); |
| 1701 | mc_reg_table->address[i].s1 = |
| 1702 | PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1)(__uint16_t)(__builtin_constant_p(smu_data->mc_reg_table.mc_reg_address [j].s1) ? (__uint16_t)(((__uint16_t)(smu_data->mc_reg_table .mc_reg_address[j].s1) & 0xffU) << 8 | ((__uint16_t )(smu_data->mc_reg_table.mc_reg_address[j].s1) & 0xff00U ) >> 8) : __swap16md(smu_data->mc_reg_table.mc_reg_address [j].s1)); |
| 1703 | i++; |
| 1704 | } |
| 1705 | } |
| 1706 | |
| 1707 | mc_reg_table->last = (uint8_t)i; |
| 1708 | |
| 1709 | return 0; |
| 1710 | } |
| 1711 | |
| 1712 | /*convert register values from driver to SMC format */ |
| 1713 | static void iceland_convert_mc_registers( |
| 1714 | const struct iceland_mc_reg_entry *entry, |
| 1715 | SMU71_Discrete_MCRegisterSet *data, |
| 1716 | uint32_t num_entries, uint32_t valid_flag) |
| 1717 | { |
| 1718 | uint32_t i, j; |
| 1719 | |
| 1720 | for (i = 0, j = 0; j < num_entries; j++) { |
| 1721 | if (valid_flag & 1<<j) { |
| 1722 | data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j])(__uint32_t)(__builtin_constant_p(entry->mc_data[j]) ? (__uint32_t )(((__uint32_t)(entry->mc_data[j]) & 0xff) << 24 | ((__uint32_t)(entry->mc_data[j]) & 0xff00) << 8 | ((__uint32_t)(entry->mc_data[j]) & 0xff0000) >> 8 | ((__uint32_t)(entry->mc_data[j]) & 0xff000000) >> 24) : __swap32md(entry->mc_data[j])); |
| 1723 | i++; |
| 1724 | } |
| 1725 | } |
| 1726 | } |
| 1727 | |
| 1728 | static int iceland_convert_mc_reg_table_entry_to_smc(struct pp_hwmgr *hwmgr, |
| 1729 | const uint32_t memory_clock, |
| 1730 | SMU71_Discrete_MCRegisterSet *mc_reg_table_data |
| 1731 | ) |
| 1732 | { |
| 1733 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
| 1734 | uint32_t i = 0; |
| 1735 | |
| 1736 | for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) { |
| 1737 | if (memory_clock <= |
| 1738 | smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) { |
| 1739 | break; |
| 1740 | } |
| 1741 | } |
| 1742 | |
| 1743 | if ((i == smu_data->mc_reg_table.num_entries) && (i > 0)) |
| 1744 | --i; |
| 1745 | |
| 1746 | iceland_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i], |
| 1747 | mc_reg_table_data, smu_data->mc_reg_table.last, |
| 1748 | smu_data->mc_reg_table.validflag); |
| 1749 | |
| 1750 | return 0; |
| 1751 | } |
| 1752 | |
| 1753 | static int iceland_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr, |
| 1754 | SMU71_Discrete_MCRegisters *mc_regs) |
| 1755 | { |
| 1756 | int result = 0; |
| 1757 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 1758 | int res; |
| 1759 | uint32_t i; |
| 1760 | |
| 1761 | for (i = 0; i < data->dpm_table.mclk_table.count; i++) { |
| 1762 | res = iceland_convert_mc_reg_table_entry_to_smc( |
| 1763 | hwmgr, |
| 1764 | data->dpm_table.mclk_table.dpm_levels[i].value, |
| 1765 | &mc_regs->data[i] |
| 1766 | ); |
| 1767 | |
| 1768 | if (0 != res) |
| 1769 | result = res; |
| 1770 | } |
| 1771 | |
| 1772 | return result; |
| 1773 | } |
| 1774 | |
| 1775 | static int iceland_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr) |
| 1776 | { |
| 1777 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
| 1778 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 1779 | uint32_t address; |
| 1780 | int32_t result; |
| 1781 | |
| 1782 | if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK0x00000002)) |
| 1783 | return 0; |
| 1784 | |
| 1785 | |
| 1786 | memset(&smu_data->mc_regs, 0, sizeof(SMU71_Discrete_MCRegisters))__builtin_memset((&smu_data->mc_regs), (0), (sizeof(SMU71_Discrete_MCRegisters ))); |
| 1787 | |
| 1788 | result = iceland_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs)); |
| 1789 | |
| 1790 | if (result != 0) |
| 1791 | return result; |
| 1792 | |
| 1793 | |
| 1794 | address = smu_data->smu7_data.mc_reg_table_start + (uint32_t)offsetof(SMU71_Discrete_MCRegisters, data[0])__builtin_offsetof(SMU71_Discrete_MCRegisters, data[0]); |
| 1795 | |
| 1796 | return smu7_copy_bytes_to_smc(hwmgr, address, |
| 1797 | (uint8_t *)&smu_data->mc_regs.data[0], |
| 1798 | sizeof(SMU71_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count, |
| 1799 | SMC_RAM_END0x40000); |
| 1800 | } |
| 1801 | |
| 1802 | static int iceland_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr) |
| 1803 | { |
| 1804 | int result; |
| 1805 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
| 1806 | |
| 1807 | memset(&smu_data->mc_regs, 0x00, sizeof(SMU71_Discrete_MCRegisters))__builtin_memset((&smu_data->mc_regs), (0x00), (sizeof (SMU71_Discrete_MCRegisters))); |
| 1808 | result = iceland_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs)); |
| 1809 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize MCRegTable for the MC register addresses!" ); return result;; } } while (0) |
| 1810 | "Failed to initialize MCRegTable for the MC register addresses!", return result;)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize MCRegTable for the MC register addresses!" ); return result;; } } while (0); |
| 1811 | |
| 1812 | result = iceland_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs); |
| 1813 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize MCRegTable for driver state!" ); return result;; } } while (0) |
| 1814 | "Failed to initialize MCRegTable for driver state!", return result;)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize MCRegTable for driver state!" ); return result;; } } while (0); |
| 1815 | |
| 1816 | return smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.mc_reg_table_start, |
| 1817 | (uint8_t *)&smu_data->mc_regs, sizeof(SMU71_Discrete_MCRegisters), SMC_RAM_END0x40000); |
| 1818 | } |
| 1819 | |
| 1820 | static int iceland_populate_smc_initial_state(struct pp_hwmgr *hwmgr) |
| 1821 | { |
| 1822 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 1823 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
| 1824 | uint8_t count, level; |
| 1825 | |
| 1826 | count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->count); |
| 1827 | |
| 1828 | for (level = 0; level < count; level++) { |
| 1829 | if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[level].clk |
| 1830 | >= data->vbios_boot_state.sclk_bootup_value) { |
| 1831 | smu_data->smc_state_table.GraphicsBootLevel = level; |
| 1832 | break; |
| 1833 | } |
| 1834 | } |
| 1835 | |
| 1836 | count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_mclk->count); |
| 1837 | |
| 1838 | for (level = 0; level < count; level++) { |
| 1839 | if (hwmgr->dyn_state.vddc_dependency_on_mclk->entries[level].clk |
| 1840 | >= data->vbios_boot_state.mclk_bootup_value) { |
| 1841 | smu_data->smc_state_table.MemoryBootLevel = level; |
| 1842 | break; |
| 1843 | } |
| 1844 | } |
| 1845 | |
| 1846 | return 0; |
| 1847 | } |
| 1848 | |
| 1849 | static int iceland_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr) |
| 1850 | { |
| 1851 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 1852 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
| 1853 | const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults; |
| 1854 | SMU71_Discrete_DpmTable *dpm_table = &(smu_data->smc_state_table); |
| 1855 | struct phm_cac_tdp_table *cac_dtp_table = hwmgr->dyn_state.cac_dtp_table; |
| 1856 | struct phm_ppm_table *ppm = hwmgr->dyn_state.ppm_parameter_table; |
| 1857 | const uint16_t *def1, *def2; |
| 1858 | int i, j, k; |
| 1859 | |
| 1860 | |
| 1861 | /* |
| 1862 | * TDP number of fraction bits are changed from 8 to 7 for Iceland |
| 1863 | * as requested by SMC team |
| 1864 | */ |
| 1865 | |
| 1866 | dpm_table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 256))(__uint16_t)(__builtin_constant_p((uint16_t)(cac_dtp_table-> usTDP * 256)) ? (__uint16_t)(((__uint16_t)((uint16_t)(cac_dtp_table ->usTDP * 256)) & 0xffU) << 8 | ((__uint16_t)((uint16_t )(cac_dtp_table->usTDP * 256)) & 0xff00U) >> 8) : __swap16md((uint16_t)(cac_dtp_table->usTDP * 256))); |
| 1867 | dpm_table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usConfigurableTDP * 256))(__uint16_t)(__builtin_constant_p((uint16_t)(cac_dtp_table-> usConfigurableTDP * 256)) ? (__uint16_t)(((__uint16_t)((uint16_t )(cac_dtp_table->usConfigurableTDP * 256)) & 0xffU) << 8 | ((__uint16_t)((uint16_t)(cac_dtp_table->usConfigurableTDP * 256)) & 0xff00U) >> 8) : __swap16md((uint16_t)(cac_dtp_table ->usConfigurableTDP * 256))); |
| 1868 | |
| 1869 | |
| 1870 | dpm_table->DTETjOffset = 0; |
| 1871 | |
| 1872 | dpm_table->GpuTjMax = (uint8_t)(data->thermal_temp_setting.temperature_high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES1000); |
| 1873 | dpm_table->GpuTjHyst = 8; |
| 1874 | |
| 1875 | dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base; |
| 1876 | |
| 1877 | /* The following are for new Iceland Multi-input fan/thermal control */ |
| 1878 | if (NULL((void *)0) != ppm) { |
| 1879 | dpm_table->PPM_PkgPwrLimit = (uint16_t)ppm->dgpu_tdp * 256 / 1000; |
| 1880 | dpm_table->PPM_TemperatureLimit = (uint16_t)ppm->tj_max * 256; |
| 1881 | } else { |
| 1882 | dpm_table->PPM_PkgPwrLimit = 0; |
| 1883 | dpm_table->PPM_TemperatureLimit = 0; |
| 1884 | } |
| 1885 | |
| 1886 | CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_PkgPwrLimit)((dpm_table->PPM_PkgPwrLimit) = (__uint16_t)(__builtin_constant_p (dpm_table->PPM_PkgPwrLimit) ? (__uint16_t)(((__uint16_t)( dpm_table->PPM_PkgPwrLimit) & 0xffU) << 8 | ((__uint16_t )(dpm_table->PPM_PkgPwrLimit) & 0xff00U) >> 8) : __swap16md(dpm_table->PPM_PkgPwrLimit))); |
| 1887 | CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_TemperatureLimit)((dpm_table->PPM_TemperatureLimit) = (__uint16_t)(__builtin_constant_p (dpm_table->PPM_TemperatureLimit) ? (__uint16_t)(((__uint16_t )(dpm_table->PPM_TemperatureLimit) & 0xffU) << 8 | ((__uint16_t)(dpm_table->PPM_TemperatureLimit) & 0xff00U ) >> 8) : __swap16md(dpm_table->PPM_TemperatureLimit ))); |
| 1888 | |
| 1889 | dpm_table->BAPM_TEMP_GRADIENT = PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient)(__uint32_t)(__builtin_constant_p(defaults->bapm_temp_gradient ) ? (__uint32_t)(((__uint32_t)(defaults->bapm_temp_gradient ) & 0xff) << 24 | ((__uint32_t)(defaults->bapm_temp_gradient ) & 0xff00) << 8 | ((__uint32_t)(defaults->bapm_temp_gradient ) & 0xff0000) >> 8 | ((__uint32_t)(defaults->bapm_temp_gradient ) & 0xff000000) >> 24) : __swap32md(defaults->bapm_temp_gradient )); |
| 1890 | def1 = defaults->bapmti_r; |
| 1891 | def2 = defaults->bapmti_rc; |
| 1892 | |
| 1893 | for (i = 0; i < SMU71_DTE_ITERATIONS5; i++) { |
| 1894 | for (j = 0; j < SMU71_DTE_SOURCES3; j++) { |
| 1895 | for (k = 0; k < SMU71_DTE_SINKS1; k++) { |
| 1896 | dpm_table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*def1)(__uint16_t)(__builtin_constant_p(*def1) ? (__uint16_t)(((__uint16_t )(*def1) & 0xffU) << 8 | ((__uint16_t)(*def1) & 0xff00U) >> 8) : __swap16md(*def1)); |
| 1897 | dpm_table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*def2)(__uint16_t)(__builtin_constant_p(*def2) ? (__uint16_t)(((__uint16_t )(*def2) & 0xffU) << 8 | ((__uint16_t)(*def2) & 0xff00U) >> 8) : __swap16md(*def2)); |
| 1898 | def1++; |
| 1899 | def2++; |
| 1900 | } |
| 1901 | } |
| 1902 | } |
| 1903 | |
| 1904 | return 0; |
| 1905 | } |
| 1906 | |
| 1907 | static int iceland_populate_smc_svi2_config(struct pp_hwmgr *hwmgr, |
| 1908 | SMU71_Discrete_DpmTable *tab) |
| 1909 | { |
| 1910 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 1911 | |
| 1912 | if (SMU7_VOLTAGE_CONTROL_BY_SVID20x2 == data->voltage_control) |
| 1913 | tab->SVI2Enable |= VDDC_ON_SVI20x1; |
| 1914 | |
| 1915 | if (SMU7_VOLTAGE_CONTROL_BY_SVID20x2 == data->vddci_control) |
| 1916 | tab->SVI2Enable |= VDDCI_ON_SVI20x2; |
| 1917 | else |
| 1918 | tab->MergedVddci = 1; |
| 1919 | |
| 1920 | if (SMU7_VOLTAGE_CONTROL_BY_SVID20x2 == data->mvdd_control) |
| 1921 | tab->SVI2Enable |= MVDD_ON_SVI20x4; |
| 1922 | |
| 1923 | PP_ASSERT_WITH_CODE(tab->SVI2Enable != (VDDC_ON_SVI2 | VDDCI_ON_SVI2 | MVDD_ON_SVI2) &&do { if (!(tab->SVI2Enable != (0x1 | 0x2 | 0x4) && (tab->SVI2Enable & 0x1))) { printk("\0014" "amdgpu: " "%s\n", "SVI2 domain configuration is incorrect!"); return - 22; } } while (0) |
| 1924 | (tab->SVI2Enable & VDDC_ON_SVI2), "SVI2 domain configuration is incorrect!", return -EINVAL)do { if (!(tab->SVI2Enable != (0x1 | 0x2 | 0x4) && (tab->SVI2Enable & 0x1))) { printk("\0014" "amdgpu: " "%s\n", "SVI2 domain configuration is incorrect!"); return - 22; } } while (0); |
| 1925 | |
| 1926 | return 0; |
| 1927 | } |
| 1928 | |
| 1929 | static int iceland_init_smc_table(struct pp_hwmgr *hwmgr) |
| 1930 | { |
| 1931 | int result; |
| 1932 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 1933 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
| 1934 | SMU71_Discrete_DpmTable *table = &(smu_data->smc_state_table); |
| 1935 | |
| 1936 | |
| 1937 | iceland_initialize_power_tune_defaults(hwmgr); |
| 1938 | memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table))__builtin_memset((&(smu_data->smc_state_table)), (0x00 ), (sizeof(smu_data->smc_state_table))); |
| 1939 | |
| 1940 | if (SMU7_VOLTAGE_CONTROL_NONE0x0 != data->voltage_control) { |
| 1941 | iceland_populate_smc_voltage_tables(hwmgr, table); |
| 1942 | } |
| 1943 | |
| 1944 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| 1945 | PHM_PlatformCaps_AutomaticDCTransition)) |
| 1946 | table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC0x01; |
| 1947 | |
| 1948 | |
| 1949 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| 1950 | PHM_PlatformCaps_StepVddc)) |
| 1951 | table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC0x02; |
| 1952 | |
| 1953 | if (data->is_memory_gddr5) |
| 1954 | table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR50x04; |
| 1955 | |
| 1956 | |
| 1957 | if (data->ulv_supported) { |
| 1958 | result = iceland_populate_ulv_state(hwmgr, &(smu_data->ulv_setting)); |
| 1959 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize ULV state!" ); return result;; } } while (0) |
| 1960 | "Failed to initialize ULV state!", return result;)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize ULV state!" ); return result;; } } while (0); |
| 1961 | |
| 1962 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc020015c,0x40035)) |
| 1963 | ixCG_ULV_PARAMETER, 0x40035)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc020015c,0x40035)); |
| 1964 | } |
| 1965 | |
| 1966 | result = iceland_populate_smc_link_level(hwmgr, table); |
| 1967 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Link Level!" ); return result;; } } while (0) |
| 1968 | "Failed to initialize Link Level!", return result;)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Link Level!" ); return result;; } } while (0); |
| 1969 | |
| 1970 | result = iceland_populate_all_graphic_levels(hwmgr); |
| 1971 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Graphics Level!" ); return result;; } } while (0) |
| 1972 | "Failed to initialize Graphics Level!", return result;)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Graphics Level!" ); return result;; } } while (0); |
| 1973 | |
| 1974 | result = iceland_populate_all_memory_levels(hwmgr); |
| 1975 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Memory Level!" ); return result;; } } while (0) |
| 1976 | "Failed to initialize Memory Level!", return result;)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Memory Level!" ); return result;; } } while (0); |
| 1977 | |
| 1978 | result = iceland_populate_smc_acpi_level(hwmgr, table); |
| 1979 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize ACPI Level!" ); return result;; } } while (0) |
| 1980 | "Failed to initialize ACPI Level!", return result;)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize ACPI Level!" ); return result;; } } while (0); |
| 1981 | |
| 1982 | result = iceland_populate_smc_vce_level(hwmgr, table); |
| 1983 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize VCE Level!" ); return result;; } } while (0) |
| 1984 | "Failed to initialize VCE Level!", return result;)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize VCE Level!" ); return result;; } } while (0); |
| 1985 | |
| 1986 | result = iceland_populate_smc_acp_level(hwmgr, table); |
| 1987 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize ACP Level!" ); return result;; } } while (0) |
| 1988 | "Failed to initialize ACP Level!", return result;)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize ACP Level!" ); return result;; } } while (0); |
| 1989 | |
| 1990 | /* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */ |
| 1991 | /* need to populate the ARB settings for the initial state. */ |
| 1992 | result = iceland_program_memory_timing_parameters(hwmgr); |
| 1993 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to Write ARB settings for the initial state." ); return result;; } } while (0) |
| 1994 | "Failed to Write ARB settings for the initial state.", return result;)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to Write ARB settings for the initial state." ); return result;; } } while (0); |
| 1995 | |
| 1996 | result = iceland_populate_smc_uvd_level(hwmgr, table); |
| 1997 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize UVD Level!" ); return result;; } } while (0) |
| 1998 | "Failed to initialize UVD Level!", return result;)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize UVD Level!" ); return result;; } } while (0); |
| 1999 | |
| 2000 | table->GraphicsBootLevel = 0; |
| 2001 | table->MemoryBootLevel = 0; |
| 2002 | |
| 2003 | result = iceland_populate_smc_boot_level(hwmgr, table); |
| 2004 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Boot Level!" ); return result;; } } while (0) |
| 2005 | "Failed to initialize Boot Level!", return result;)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Boot Level!" ); return result;; } } while (0); |
| 2006 | |
| 2007 | result = iceland_populate_smc_initial_state(hwmgr); |
| 2008 | PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot State!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to initialize Boot State!" ); return result; } } while (0); |
| 2009 | |
| 2010 | result = iceland_populate_bapm_parameters_in_dpm_table(hwmgr); |
| 2011 | PP_ASSERT_WITH_CODE(0 == result, "Failed to populate BAPM Parameters!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate BAPM Parameters!" ); return result; } } while (0); |
| 2012 | |
| 2013 | table->GraphicsVoltageChangeEnable = 1; |
| 2014 | table->GraphicsThermThrottleEnable = 1; |
| 2015 | table->GraphicsInterval = 1; |
| 2016 | table->VoltageInterval = 1; |
| 2017 | table->ThermalInterval = 1; |
| 2018 | |
| 2019 | table->TemperatureLimitHigh = |
| 2020 | (data->thermal_temp_setting.temperature_high * |
| 2021 | SMU7_Q88_FORMAT_CONVERSION_UNIT256) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES1000; |
| 2022 | table->TemperatureLimitLow = |
| 2023 | (data->thermal_temp_setting.temperature_low * |
| 2024 | SMU7_Q88_FORMAT_CONVERSION_UNIT256) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES1000; |
| 2025 | |
| 2026 | table->MemoryVoltageChangeEnable = 1; |
| 2027 | table->MemoryInterval = 1; |
| 2028 | table->VoltageResponseTime = 0; |
| 2029 | table->PhaseResponseTime = 0; |
| 2030 | table->MemoryThermThrottleEnable = 1; |
| 2031 | table->PCIeBootLinkLevel = 0; |
| 2032 | table->PCIeGenInterval = 1; |
| 2033 | |
| 2034 | result = iceland_populate_smc_svi2_config(hwmgr, table); |
| 2035 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate SVI2 setting!" ); return result; } } while (0) |
| 2036 | "Failed to populate SVI2 setting!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate SVI2 setting!" ); return result; } } while (0); |
| 2037 | |
| 2038 | table->ThermGpio = 17; |
| 2039 | table->SclkStepSize = 0x4000; |
| 2040 | |
| 2041 | CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags)((table->SystemFlags) = (__uint32_t)(__builtin_constant_p( table->SystemFlags) ? (__uint32_t)(((__uint32_t)(table-> SystemFlags) & 0xff) << 24 | ((__uint32_t)(table-> SystemFlags) & 0xff00) << 8 | ((__uint32_t)(table-> SystemFlags) & 0xff0000) >> 8 | ((__uint32_t)(table ->SystemFlags) & 0xff000000) >> 24) : __swap32md (table->SystemFlags))); |
| 2042 | CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcVid)((table->SmioMaskVddcVid) = (__uint32_t)(__builtin_constant_p (table->SmioMaskVddcVid) ? (__uint32_t)(((__uint32_t)(table ->SmioMaskVddcVid) & 0xff) << 24 | ((__uint32_t) (table->SmioMaskVddcVid) & 0xff00) << 8 | ((__uint32_t )(table->SmioMaskVddcVid) & 0xff0000) >> 8 | ((__uint32_t )(table->SmioMaskVddcVid) & 0xff000000) >> 24) : __swap32md(table->SmioMaskVddcVid))); |
| 2043 | CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcPhase)((table->SmioMaskVddcPhase) = (__uint32_t)(__builtin_constant_p (table->SmioMaskVddcPhase) ? (__uint32_t)(((__uint32_t)(table ->SmioMaskVddcPhase) & 0xff) << 24 | ((__uint32_t )(table->SmioMaskVddcPhase) & 0xff00) << 8 | ((__uint32_t )(table->SmioMaskVddcPhase) & 0xff0000) >> 8 | ( (__uint32_t)(table->SmioMaskVddcPhase) & 0xff000000) >> 24) : __swap32md(table->SmioMaskVddcPhase))); |
| 2044 | CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddciVid)((table->SmioMaskVddciVid) = (__uint32_t)(__builtin_constant_p (table->SmioMaskVddciVid) ? (__uint32_t)(((__uint32_t)(table ->SmioMaskVddciVid) & 0xff) << 24 | ((__uint32_t )(table->SmioMaskVddciVid) & 0xff00) << 8 | ((__uint32_t )(table->SmioMaskVddciVid) & 0xff0000) >> 8 | (( __uint32_t)(table->SmioMaskVddciVid) & 0xff000000) >> 24) : __swap32md(table->SmioMaskVddciVid))); |
| 2045 | CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskMvddVid)((table->SmioMaskMvddVid) = (__uint32_t)(__builtin_constant_p (table->SmioMaskMvddVid) ? (__uint32_t)(((__uint32_t)(table ->SmioMaskMvddVid) & 0xff) << 24 | ((__uint32_t) (table->SmioMaskMvddVid) & 0xff00) << 8 | ((__uint32_t )(table->SmioMaskMvddVid) & 0xff0000) >> 8 | ((__uint32_t )(table->SmioMaskMvddVid) & 0xff000000) >> 24) : __swap32md(table->SmioMaskMvddVid))); |
| 2046 | CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize)((table->SclkStepSize) = (__uint32_t)(__builtin_constant_p (table->SclkStepSize) ? (__uint32_t)(((__uint32_t)(table-> SclkStepSize) & 0xff) << 24 | ((__uint32_t)(table-> SclkStepSize) & 0xff00) << 8 | ((__uint32_t)(table-> SclkStepSize) & 0xff0000) >> 8 | ((__uint32_t)(table ->SclkStepSize) & 0xff000000) >> 24) : __swap32md (table->SclkStepSize))); |
| 2047 | CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh)((table->TemperatureLimitHigh) = (__uint16_t)(__builtin_constant_p (table->TemperatureLimitHigh) ? (__uint16_t)(((__uint16_t) (table->TemperatureLimitHigh) & 0xffU) << 8 | (( __uint16_t)(table->TemperatureLimitHigh) & 0xff00U) >> 8) : __swap16md(table->TemperatureLimitHigh))); |
| 2048 | CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow)((table->TemperatureLimitLow) = (__uint16_t)(__builtin_constant_p (table->TemperatureLimitLow) ? (__uint16_t)(((__uint16_t)( table->TemperatureLimitLow) & 0xffU) << 8 | ((__uint16_t )(table->TemperatureLimitLow) & 0xff00U) >> 8) : __swap16md(table->TemperatureLimitLow))); |
| 2049 | CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime)((table->VoltageResponseTime) = (__uint16_t)(__builtin_constant_p (table->VoltageResponseTime) ? (__uint16_t)(((__uint16_t)( table->VoltageResponseTime) & 0xffU) << 8 | ((__uint16_t )(table->VoltageResponseTime) & 0xff00U) >> 8) : __swap16md(table->VoltageResponseTime))); |
| 2050 | CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime)((table->PhaseResponseTime) = (__uint16_t)(__builtin_constant_p (table->PhaseResponseTime) ? (__uint16_t)(((__uint16_t)(table ->PhaseResponseTime) & 0xffU) << 8 | ((__uint16_t )(table->PhaseResponseTime) & 0xff00U) >> 8) : __swap16md (table->PhaseResponseTime))); |
| 2051 | |
| 2052 | table->BootVddc = PP_HOST_TO_SMC_US(table->BootVddc * VOLTAGE_SCALE)(__uint16_t)(__builtin_constant_p(table->BootVddc * 4) ? ( __uint16_t)(((__uint16_t)(table->BootVddc * 4) & 0xffU ) << 8 | ((__uint16_t)(table->BootVddc * 4) & 0xff00U ) >> 8) : __swap16md(table->BootVddc * 4)); |
| 2053 | table->BootVddci = PP_HOST_TO_SMC_US(table->BootVddci * VOLTAGE_SCALE)(__uint16_t)(__builtin_constant_p(table->BootVddci * 4) ? ( __uint16_t)(((__uint16_t)(table->BootVddci * 4) & 0xffU ) << 8 | ((__uint16_t)(table->BootVddci * 4) & 0xff00U ) >> 8) : __swap16md(table->BootVddci * 4)); |
| 2054 | table->BootMVdd = PP_HOST_TO_SMC_US(table->BootMVdd * VOLTAGE_SCALE)(__uint16_t)(__builtin_constant_p(table->BootMVdd * 4) ? ( __uint16_t)(((__uint16_t)(table->BootMVdd * 4) & 0xffU ) << 8 | ((__uint16_t)(table->BootMVdd * 4) & 0xff00U ) >> 8) : __swap16md(table->BootMVdd * 4)); |
| 2055 | |
| 2056 | /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */ |
| 2057 | result = smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.dpm_table_start + |
| 2058 | offsetof(SMU71_Discrete_DpmTable, SystemFlags)__builtin_offsetof(SMU71_Discrete_DpmTable, SystemFlags), |
| 2059 | (uint8_t *)&(table->SystemFlags), |
| 2060 | sizeof(SMU71_Discrete_DpmTable)-3 * sizeof(SMU71_PIDController), |
| 2061 | SMC_RAM_END0x40000); |
| 2062 | |
| 2063 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to upload dpm data to SMC memory!" ); return result;; } } while (0) |
| 2064 | "Failed to upload dpm data to SMC memory!", return result;)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to upload dpm data to SMC memory!" ); return result;; } } while (0); |
| 2065 | |
| 2066 | /* Upload all ulv setting to SMC memory.(dpm level, dpm level count etc) */ |
| 2067 | result = smu7_copy_bytes_to_smc(hwmgr, |
| 2068 | smu_data->smu7_data.ulv_setting_starts, |
| 2069 | (uint8_t *)&(smu_data->ulv_setting), |
| 2070 | sizeof(SMU71_Discrete_Ulv), |
| 2071 | SMC_RAM_END0x40000); |
| 2072 | |
| 2073 | |
| 2074 | result = iceland_populate_initial_mc_reg_table(hwmgr); |
| 2075 | PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "Failed to populate initialize MC Reg table!"); return result ; } } while (0) |
| 2076 | "Failed to populate initialize MC Reg table!", return result)do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "Failed to populate initialize MC Reg table!"); return result ; } } while (0); |
| 2077 | |
| 2078 | result = iceland_populate_pm_fuses(hwmgr); |
| 2079 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate PM fuses to SMC memory!" ); return result; } } while (0) |
| 2080 | "Failed to populate PM fuses to SMC memory!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: " "%s\n", "Failed to populate PM fuses to SMC memory!" ); return result; } } while (0); |
| 2081 | |
| 2082 | return 0; |
| 2083 | } |
| 2084 | |
| 2085 | static int iceland_thermal_setup_fan_table(struct pp_hwmgr *hwmgr) |
| 2086 | { |
| 2087 | struct smu7_smumgr *smu7_data = (struct smu7_smumgr *)(hwmgr->smu_backend); |
| 2088 | SMU71_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE0 }; |
| 2089 | uint32_t duty100; |
| 2090 | uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2; |
| 2091 | uint16_t fdo_min, slope1, slope2; |
| 2092 | uint32_t reference_clock; |
| 2093 | int res; |
| 2094 | uint64_t tmp64; |
| 2095 | |
| 2096 | if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl)) |
| 2097 | return 0; |
| 2098 | |
| 2099 | if (hwmgr->thermal_controller.fanInfo.bNoFan) { |
| 2100 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| 2101 | PHM_PlatformCaps_MicrocodeFanControl); |
| 2102 | return 0; |
| 2103 | } |
| 2104 | |
| 2105 | if (0 == smu7_data->fan_table_start) { |
| 2106 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl); |
| 2107 | return 0; |
| 2108 | } |
| 2109 | |
| 2110 | duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL1, FMAX_DUTY100)((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0300068))) & 0xff) >> 0x0); |
| 2111 | |
| 2112 | if (0 == duty100) { |
| 2113 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl); |
| 2114 | return 0; |
| 2115 | } |
| 2116 | |
| 2117 | tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100; |
| 2118 | do_div(tmp64, 10000)({ uint32_t __base = (10000); uint32_t __rem = ((uint64_t)(tmp64 )) % __base; (tmp64) = ((uint64_t)(tmp64)) / __base; __rem; } ); |
| 2119 | fdo_min = (uint16_t)tmp64; |
| 2120 | |
| 2121 | t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - hwmgr->thermal_controller.advanceFanControlParameters.usTMin; |
| 2122 | t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - hwmgr->thermal_controller.advanceFanControlParameters.usTMed; |
| 2123 | |
| 2124 | pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin; |
| 2125 | pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed; |
| 2126 | |
| 2127 | slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100); |
| 2128 | slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100); |
| 2129 | |
| 2130 | fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100)(__uint16_t)(__builtin_constant_p((50 + hwmgr->thermal_controller .advanceFanControlParameters.usTMin) / 100) ? (__uint16_t)((( __uint16_t)((50 + hwmgr->thermal_controller.advanceFanControlParameters .usTMin) / 100) & 0xffU) << 8 | ((__uint16_t)((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin ) / 100) & 0xff00U) >> 8) : __swap16md((50 + hwmgr-> thermal_controller.advanceFanControlParameters.usTMin) / 100) ); |
| 2131 | fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100)(__uint16_t)(__builtin_constant_p((50 + hwmgr->thermal_controller .advanceFanControlParameters.usTMed) / 100) ? (__uint16_t)((( __uint16_t)((50 + hwmgr->thermal_controller.advanceFanControlParameters .usTMed) / 100) & 0xffU) << 8 | ((__uint16_t)((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed ) / 100) & 0xff00U) >> 8) : __swap16md((50 + hwmgr-> thermal_controller.advanceFanControlParameters.usTMed) / 100) ); |
| 2132 | fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100)(__uint16_t)(__builtin_constant_p((50 + hwmgr->thermal_controller .advanceFanControlParameters.usTMax) / 100) ? (__uint16_t)((( __uint16_t)((50 + hwmgr->thermal_controller.advanceFanControlParameters .usTMax) / 100) & 0xffU) << 8 | ((__uint16_t)((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax ) / 100) & 0xff00U) >> 8) : __swap16md((50 + hwmgr-> thermal_controller.advanceFanControlParameters.usTMax) / 100) ); |
| 2133 | |
| 2134 | fan_table.Slope1 = cpu_to_be16(slope1)(__uint16_t)(__builtin_constant_p(slope1) ? (__uint16_t)(((__uint16_t )(slope1) & 0xffU) << 8 | ((__uint16_t)(slope1) & 0xff00U) >> 8) : __swap16md(slope1)); |
| 2135 | fan_table.Slope2 = cpu_to_be16(slope2)(__uint16_t)(__builtin_constant_p(slope2) ? (__uint16_t)(((__uint16_t )(slope2) & 0xffU) << 8 | ((__uint16_t)(slope2) & 0xff00U) >> 8) : __swap16md(slope2)); |
| 2136 | |
| 2137 | fan_table.FdoMin = cpu_to_be16(fdo_min)(__uint16_t)(__builtin_constant_p(fdo_min) ? (__uint16_t)(((__uint16_t )(fdo_min) & 0xffU) << 8 | ((__uint16_t)(fdo_min) & 0xff00U) >> 8) : __swap16md(fdo_min)); |
| 2138 | |
| 2139 | fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst)(__uint16_t)(__builtin_constant_p(hwmgr->thermal_controller .advanceFanControlParameters.ucTHyst) ? (__uint16_t)(((__uint16_t )(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst ) & 0xffU) << 8 | ((__uint16_t)(hwmgr->thermal_controller .advanceFanControlParameters.ucTHyst) & 0xff00U) >> 8) : __swap16md(hwmgr->thermal_controller.advanceFanControlParameters .ucTHyst)); |
| 2140 | |
| 2141 | fan_table.HystUp = cpu_to_be16(1)(__uint16_t)(__builtin_constant_p(1) ? (__uint16_t)(((__uint16_t )(1) & 0xffU) << 8 | ((__uint16_t)(1) & 0xff00U ) >> 8) : __swap16md(1)); |
| 2142 | |
| 2143 | fan_table.HystSlope = cpu_to_be16(1)(__uint16_t)(__builtin_constant_p(1) ? (__uint16_t)(((__uint16_t )(1) & 0xffU) << 8 | ((__uint16_t)(1) & 0xff00U ) >> 8) : __swap16md(1)); |
| 2144 | |
| 2145 | fan_table.TempRespLim = cpu_to_be16(5)(__uint16_t)(__builtin_constant_p(5) ? (__uint16_t)(((__uint16_t )(5) & 0xffU) << 8 | ((__uint16_t)(5) & 0xff00U ) >> 8) : __swap16md(5)); |
| 2146 | |
| 2147 | reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev)((struct amdgpu_device *)hwmgr->adev)->asic_funcs->get_xclk (((struct amdgpu_device *)hwmgr->adev)); |
| 2148 | |
| 2149 | fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600)(__uint32_t)(__builtin_constant_p((hwmgr->thermal_controller .advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) ? (__uint32_t)(((__uint32_t)((hwmgr->thermal_controller .advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) & 0xff) << 24 | ((__uint32_t)((hwmgr->thermal_controller .advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) & 0xff00) << 8 | ((__uint32_t)((hwmgr->thermal_controller .advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) & 0xff0000) >> 8 | ((__uint32_t)((hwmgr-> thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) & 0xff000000) >> 24) : __swap32md ((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600)); |
| 2150 | |
| 2151 | fan_table.FdoMax = cpu_to_be16((uint16_t)duty100)(__uint16_t)(__builtin_constant_p((uint16_t)duty100) ? (__uint16_t )(((__uint16_t)((uint16_t)duty100) & 0xffU) << 8 | ( (__uint16_t)((uint16_t)duty100) & 0xff00U) >> 8) : __swap16md ((uint16_t)duty100)); |
| 2152 | |
| 2153 | fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL)((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0300010))) & 0xff00000 ) >> 0x14); |
| 2154 | |
| 2155 | /* fan_table.FanControl_GL_Flag = 1; */ |
| 2156 | |
| 2157 | res = smu7_copy_bytes_to_smc(hwmgr, smu7_data->fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END0x40000); |
| 2158 | |
| 2159 | return res; |
| 2160 | } |
| 2161 | |
| 2162 | |
| 2163 | static int iceland_program_mem_timing_parameters(struct pp_hwmgr *hwmgr) |
| 2164 | { |
| 2165 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 2166 | |
| 2167 | if (data->need_update_smu7_dpm_table & |
| 2168 | (DPMTABLE_OD_UPDATE_SCLK0x00000001 + DPMTABLE_OD_UPDATE_MCLK0x00000002)) |
| 2169 | return iceland_program_memory_timing_parameters(hwmgr); |
| 2170 | |
| 2171 | return 0; |
| 2172 | } |
| 2173 | |
| 2174 | static int iceland_update_sclk_threshold(struct pp_hwmgr *hwmgr) |
| 2175 | { |
| 2176 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 2177 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
| 2178 | |
| 2179 | int result = 0; |
| 2180 | uint32_t low_sclk_interrupt_threshold = 0; |
| 2181 | |
| 2182 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| 2183 | PHM_PlatformCaps_SclkThrottleLowNotification) |
| 2184 | && (data->low_sclk_interrupt_threshold != 0)) { |
| 2185 | low_sclk_interrupt_threshold = |
| 2186 | data->low_sclk_interrupt_threshold; |
| 2187 | |
| 2188 | CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold)((low_sclk_interrupt_threshold) = (__uint32_t)(__builtin_constant_p (low_sclk_interrupt_threshold) ? (__uint32_t)(((__uint32_t)(low_sclk_interrupt_threshold ) & 0xff) << 24 | ((__uint32_t)(low_sclk_interrupt_threshold ) & 0xff00) << 8 | ((__uint32_t)(low_sclk_interrupt_threshold ) & 0xff0000) >> 8 | ((__uint32_t)(low_sclk_interrupt_threshold ) & 0xff000000) >> 24) : __swap32md(low_sclk_interrupt_threshold ))); |
| 2189 | |
| 2190 | result = smu7_copy_bytes_to_smc( |
| 2191 | hwmgr, |
| 2192 | smu_data->smu7_data.dpm_table_start + |
| 2193 | offsetof(SMU71_Discrete_DpmTable,__builtin_offsetof(SMU71_Discrete_DpmTable, LowSclkInterruptThreshold ) |
| 2194 | LowSclkInterruptThreshold)__builtin_offsetof(SMU71_Discrete_DpmTable, LowSclkInterruptThreshold ), |
| 2195 | (uint8_t *)&low_sclk_interrupt_threshold, |
| 2196 | sizeof(uint32_t), |
| 2197 | SMC_RAM_END0x40000); |
| 2198 | } |
| 2199 | |
| 2200 | result = iceland_update_and_upload_mc_reg_table(hwmgr); |
| 2201 | |
| 2202 | PP_ASSERT_WITH_CODE((0 == result), "Failed to upload MC reg table!", return result)do { if (!((0 == result))) { printk("\0014" "amdgpu: " "%s\n" , "Failed to upload MC reg table!"); return result; } } while (0); |
| 2203 | |
| 2204 | result = iceland_program_mem_timing_parameters(hwmgr); |
| 2205 | PP_ASSERT_WITH_CODE((result == 0),do { if (!((result == 0))) { printk("\0014" "amdgpu: " "%s\n" , "Failed to program memory timing parameters!"); ; } } while (0) |
| 2206 | "Failed to program memory timing parameters!",do { if (!((result == 0))) { printk("\0014" "amdgpu: " "%s\n" , "Failed to program memory timing parameters!"); ; } } while (0) |
| 2207 | )do { if (!((result == 0))) { printk("\0014" "amdgpu: " "%s\n" , "Failed to program memory timing parameters!"); ; } } while (0); |
| 2208 | |
| 2209 | return result; |
| 2210 | } |
| 2211 | |
| 2212 | static uint32_t iceland_get_offsetof(uint32_t type, uint32_t member) |
| 2213 | { |
| 2214 | switch (type) { |
| 2215 | case SMU_SoftRegisters: |
| 2216 | switch (member) { |
| 2217 | case HandshakeDisables: |
| 2218 | return offsetof(SMU71_SoftRegisters, HandshakeDisables)__builtin_offsetof(SMU71_SoftRegisters, HandshakeDisables); |
| 2219 | case VoltageChangeTimeout: |
| 2220 | return offsetof(SMU71_SoftRegisters, VoltageChangeTimeout)__builtin_offsetof(SMU71_SoftRegisters, VoltageChangeTimeout); |
| 2221 | case AverageGraphicsActivity: |
| 2222 | return offsetof(SMU71_SoftRegisters, AverageGraphicsActivity)__builtin_offsetof(SMU71_SoftRegisters, AverageGraphicsActivity ); |
| 2223 | case AverageMemoryActivity: |
| 2224 | return offsetof(SMU71_SoftRegisters, AverageMemoryActivity)__builtin_offsetof(SMU71_SoftRegisters, AverageMemoryActivity ); |
| 2225 | case PreVBlankGap: |
| 2226 | return offsetof(SMU71_SoftRegisters, PreVBlankGap)__builtin_offsetof(SMU71_SoftRegisters, PreVBlankGap); |
| 2227 | case VBlankTimeout: |
| 2228 | return offsetof(SMU71_SoftRegisters, VBlankTimeout)__builtin_offsetof(SMU71_SoftRegisters, VBlankTimeout); |
| 2229 | case UcodeLoadStatus: |
| 2230 | return offsetof(SMU71_SoftRegisters, UcodeLoadStatus)__builtin_offsetof(SMU71_SoftRegisters, UcodeLoadStatus); |
| 2231 | case DRAM_LOG_ADDR_H: |
| 2232 | return offsetof(SMU71_SoftRegisters, DRAM_LOG_ADDR_H)__builtin_offsetof(SMU71_SoftRegisters, DRAM_LOG_ADDR_H); |
| 2233 | case DRAM_LOG_ADDR_L: |
| 2234 | return offsetof(SMU71_SoftRegisters, DRAM_LOG_ADDR_L)__builtin_offsetof(SMU71_SoftRegisters, DRAM_LOG_ADDR_L); |
| 2235 | case DRAM_LOG_PHY_ADDR_H: |
| 2236 | return offsetof(SMU71_SoftRegisters, DRAM_LOG_PHY_ADDR_H)__builtin_offsetof(SMU71_SoftRegisters, DRAM_LOG_PHY_ADDR_H); |
| 2237 | case DRAM_LOG_PHY_ADDR_L: |
| 2238 | return offsetof(SMU71_SoftRegisters, DRAM_LOG_PHY_ADDR_L)__builtin_offsetof(SMU71_SoftRegisters, DRAM_LOG_PHY_ADDR_L); |
| 2239 | case DRAM_LOG_BUFF_SIZE: |
| 2240 | return offsetof(SMU71_SoftRegisters, DRAM_LOG_BUFF_SIZE)__builtin_offsetof(SMU71_SoftRegisters, DRAM_LOG_BUFF_SIZE); |
| 2241 | } |
| 2242 | break; |
| 2243 | case SMU_Discrete_DpmTable: |
| 2244 | switch (member) { |
| 2245 | case LowSclkInterruptThreshold: |
| 2246 | return offsetof(SMU71_Discrete_DpmTable, LowSclkInterruptThreshold)__builtin_offsetof(SMU71_Discrete_DpmTable, LowSclkInterruptThreshold ); |
| 2247 | } |
| 2248 | break; |
| 2249 | } |
| 2250 | pr_warn("can't get the offset of type %x member %x\n", type, member)printk("\0014" "amdgpu: " "can't get the offset of type %x member %x\n" , type, member); |
| 2251 | return 0; |
| 2252 | } |
| 2253 | |
| 2254 | static uint32_t iceland_get_mac_definition(uint32_t value) |
| 2255 | { |
| 2256 | switch (value) { |
| 2257 | case SMU_MAX_LEVELS_GRAPHICS: |
| 2258 | return SMU71_MAX_LEVELS_GRAPHICS8; |
| 2259 | case SMU_MAX_LEVELS_MEMORY: |
| 2260 | return SMU71_MAX_LEVELS_MEMORY4; |
| 2261 | case SMU_MAX_LEVELS_LINK: |
| 2262 | return SMU71_MAX_LEVELS_LINK8; |
| 2263 | case SMU_MAX_ENTRIES_SMIO: |
| 2264 | return SMU71_MAX_ENTRIES_SMIO32; |
| 2265 | case SMU_MAX_LEVELS_VDDC: |
| 2266 | return SMU71_MAX_LEVELS_VDDC8; |
| 2267 | case SMU_MAX_LEVELS_VDDCI: |
| 2268 | return SMU71_MAX_LEVELS_VDDCI4; |
| 2269 | case SMU_MAX_LEVELS_MVDD: |
| 2270 | return SMU71_MAX_LEVELS_MVDD4; |
| 2271 | } |
| 2272 | |
| 2273 | pr_warn("can't get the mac of %x\n", value)printk("\0014" "amdgpu: " "can't get the mac of %x\n", value); |
| 2274 | return 0; |
| 2275 | } |
| 2276 | |
| 2277 | static int iceland_process_firmware_header(struct pp_hwmgr *hwmgr) |
| 2278 | { |
| 2279 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 2280 | struct smu7_smumgr *smu7_data = (struct smu7_smumgr *)(hwmgr->smu_backend); |
| 2281 | |
| 2282 | uint32_t tmp; |
| 2283 | int result; |
| 2284 | bool_Bool error = false0; |
| 2285 | |
| 2286 | result = smu7_read_smc_sram_dword(hwmgr, |
| 2287 | SMU71_FIRMWARE_HEADER_LOCATION0x20000 + |
| 2288 | offsetof(SMU71_Firmware_Header, DpmTable)__builtin_offsetof(SMU71_Firmware_Header, DpmTable), |
| 2289 | &tmp, SMC_RAM_END0x40000); |
| 2290 | |
| 2291 | if (0 == result) { |
| 2292 | smu7_data->dpm_table_start = tmp; |
| 2293 | } |
| 2294 | |
| 2295 | error |= (0 != result); |
| 2296 | |
| 2297 | result = smu7_read_smc_sram_dword(hwmgr, |
| 2298 | SMU71_FIRMWARE_HEADER_LOCATION0x20000 + |
| 2299 | offsetof(SMU71_Firmware_Header, SoftRegisters)__builtin_offsetof(SMU71_Firmware_Header, SoftRegisters), |
| 2300 | &tmp, SMC_RAM_END0x40000); |
| 2301 | |
| 2302 | if (0 == result) { |
| 2303 | data->soft_regs_start = tmp; |
| 2304 | smu7_data->soft_regs_start = tmp; |
| 2305 | } |
| 2306 | |
| 2307 | error |= (0 != result); |
| 2308 | |
| 2309 | |
| 2310 | result = smu7_read_smc_sram_dword(hwmgr, |
| 2311 | SMU71_FIRMWARE_HEADER_LOCATION0x20000 + |
| 2312 | offsetof(SMU71_Firmware_Header, mcRegisterTable)__builtin_offsetof(SMU71_Firmware_Header, mcRegisterTable), |
| 2313 | &tmp, SMC_RAM_END0x40000); |
| 2314 | |
| 2315 | if (0 == result) { |
| 2316 | smu7_data->mc_reg_table_start = tmp; |
| 2317 | } |
| 2318 | |
| 2319 | result = smu7_read_smc_sram_dword(hwmgr, |
| 2320 | SMU71_FIRMWARE_HEADER_LOCATION0x20000 + |
| 2321 | offsetof(SMU71_Firmware_Header, FanTable)__builtin_offsetof(SMU71_Firmware_Header, FanTable), |
| 2322 | &tmp, SMC_RAM_END0x40000); |
| 2323 | |
| 2324 | if (0 == result) { |
| 2325 | smu7_data->fan_table_start = tmp; |
| 2326 | } |
| 2327 | |
| 2328 | error |= (0 != result); |
| 2329 | |
| 2330 | result = smu7_read_smc_sram_dword(hwmgr, |
| 2331 | SMU71_FIRMWARE_HEADER_LOCATION0x20000 + |
| 2332 | offsetof(SMU71_Firmware_Header, mcArbDramTimingTable)__builtin_offsetof(SMU71_Firmware_Header, mcArbDramTimingTable ), |
| 2333 | &tmp, SMC_RAM_END0x40000); |
| 2334 | |
| 2335 | if (0 == result) { |
| 2336 | smu7_data->arb_table_start = tmp; |
| 2337 | } |
| 2338 | |
| 2339 | error |= (0 != result); |
| 2340 | |
| 2341 | |
| 2342 | result = smu7_read_smc_sram_dword(hwmgr, |
| 2343 | SMU71_FIRMWARE_HEADER_LOCATION0x20000 + |
| 2344 | offsetof(SMU71_Firmware_Header, Version)__builtin_offsetof(SMU71_Firmware_Header, Version), |
| 2345 | &tmp, SMC_RAM_END0x40000); |
| 2346 | |
| 2347 | if (0 == result) { |
| 2348 | hwmgr->microcode_version_info.SMC = tmp; |
| 2349 | } |
| 2350 | |
| 2351 | error |= (0 != result); |
| 2352 | |
| 2353 | result = smu7_read_smc_sram_dword(hwmgr, |
| 2354 | SMU71_FIRMWARE_HEADER_LOCATION0x20000 + |
| 2355 | offsetof(SMU71_Firmware_Header, UlvSettings)__builtin_offsetof(SMU71_Firmware_Header, UlvSettings), |
| 2356 | &tmp, SMC_RAM_END0x40000); |
| 2357 | |
| 2358 | if (0 == result) { |
| 2359 | smu7_data->ulv_setting_starts = tmp; |
| 2360 | } |
| 2361 | |
| 2362 | error |= (0 != result); |
| 2363 | |
| 2364 | return error ? 1 : 0; |
| 2365 | } |
| 2366 | |
| 2367 | /*---------------------------MC----------------------------*/ |
| 2368 | |
| 2369 | static uint8_t iceland_get_memory_modile_index(struct pp_hwmgr *hwmgr) |
| 2370 | { |
| 2371 | return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0x5cd)) >> 16)); |
| 2372 | } |
| 2373 | |
| 2374 | static bool_Bool iceland_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg) |
| 2375 | { |
| 2376 | bool_Bool result = true1; |
| 2377 | |
| 2378 | switch (in_reg) { |
| 2379 | case mmMC_SEQ_RAS_TIMING0xa28: |
| 2380 | *out_reg = mmMC_SEQ_RAS_TIMING_LP0xa9b; |
| 2381 | break; |
| 2382 | |
| 2383 | case mmMC_SEQ_DLL_STBY0xd8e: |
| 2384 | *out_reg = mmMC_SEQ_DLL_STBY_LP0xd8f; |
| 2385 | break; |
| 2386 | |
| 2387 | case mmMC_SEQ_G5PDX_CMD00xd83: |
| 2388 | *out_reg = mmMC_SEQ_G5PDX_CMD0_LP0xd84; |
| 2389 | break; |
| 2390 | |
| 2391 | case mmMC_SEQ_G5PDX_CMD10xd85: |
| 2392 | *out_reg = mmMC_SEQ_G5PDX_CMD1_LP0xd86; |
| 2393 | break; |
| 2394 | |
| 2395 | case mmMC_SEQ_G5PDX_CTRL0xd81: |
| 2396 | *out_reg = mmMC_SEQ_G5PDX_CTRL_LP0xd82; |
| 2397 | break; |
| 2398 | |
| 2399 | case mmMC_SEQ_CAS_TIMING0xa29: |
| 2400 | *out_reg = mmMC_SEQ_CAS_TIMING_LP0xa9c; |
| 2401 | break; |
| 2402 | |
| 2403 | case mmMC_SEQ_MISC_TIMING0xa2a: |
| 2404 | *out_reg = mmMC_SEQ_MISC_TIMING_LP0xa9d; |
| 2405 | break; |
| 2406 | |
| 2407 | case mmMC_SEQ_MISC_TIMING20xa2b: |
| 2408 | *out_reg = mmMC_SEQ_MISC_TIMING2_LP0xa9e; |
| 2409 | break; |
| 2410 | |
| 2411 | case mmMC_SEQ_PMG_DVS_CMD0xd8c: |
| 2412 | *out_reg = mmMC_SEQ_PMG_DVS_CMD_LP0xd8d; |
| 2413 | break; |
| 2414 | |
| 2415 | case mmMC_SEQ_PMG_DVS_CTL0xd8a: |
| 2416 | *out_reg = mmMC_SEQ_PMG_DVS_CTL_LP0xd8b; |
| 2417 | break; |
| 2418 | |
| 2419 | case mmMC_SEQ_RD_CTL_D00xa2d: |
| 2420 | *out_reg = mmMC_SEQ_RD_CTL_D0_LP0xac7; |
| 2421 | break; |
| 2422 | |
| 2423 | case mmMC_SEQ_RD_CTL_D10xa2e: |
| 2424 | *out_reg = mmMC_SEQ_RD_CTL_D1_LP0xac8; |
| 2425 | break; |
| 2426 | |
| 2427 | case mmMC_SEQ_WR_CTL_D00xa2f: |
| 2428 | *out_reg = mmMC_SEQ_WR_CTL_D0_LP0xa9f; |
| 2429 | break; |
| 2430 | |
| 2431 | case mmMC_SEQ_WR_CTL_D10xa30: |
| 2432 | *out_reg = mmMC_SEQ_WR_CTL_D1_LP0xaa0; |
| 2433 | break; |
| 2434 | |
| 2435 | case mmMC_PMG_CMD_EMRS0xa83: |
| 2436 | *out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP0xaa1; |
| 2437 | break; |
| 2438 | |
| 2439 | case mmMC_PMG_CMD_MRS0xaab: |
| 2440 | *out_reg = mmMC_SEQ_PMG_CMD_MRS_LP0xaa2; |
| 2441 | break; |
| 2442 | |
| 2443 | case mmMC_PMG_CMD_MRS10xad1: |
| 2444 | *out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP0xad2; |
| 2445 | break; |
| 2446 | |
| 2447 | case mmMC_SEQ_PMG_TIMING0xa2c: |
| 2448 | *out_reg = mmMC_SEQ_PMG_TIMING_LP0xad3; |
| 2449 | break; |
| 2450 | |
| 2451 | case mmMC_PMG_CMD_MRS20xad7: |
| 2452 | *out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP0xad8; |
| 2453 | break; |
| 2454 | |
| 2455 | case mmMC_SEQ_WR_CTL_20xad5: |
| 2456 | *out_reg = mmMC_SEQ_WR_CTL_2_LP0xad6; |
| 2457 | break; |
| 2458 | |
| 2459 | default: |
| 2460 | result = false0; |
| 2461 | break; |
| 2462 | } |
| 2463 | |
| 2464 | return result; |
| 2465 | } |
| 2466 | |
| 2467 | static int iceland_set_s0_mc_reg_index(struct iceland_mc_reg_table *table) |
| 2468 | { |
| 2469 | uint32_t i; |
| 2470 | uint16_t address; |
| 2471 | |
| 2472 | for (i = 0; i < table->last; i++) { |
| 2473 | table->mc_reg_address[i].s0 = |
| 2474 | iceland_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address) |
| 2475 | ? address : table->mc_reg_address[i].s1; |
| 2476 | } |
| 2477 | return 0; |
| 2478 | } |
| 2479 | |
| 2480 | static int iceland_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table, |
| 2481 | struct iceland_mc_reg_table *ni_table) |
| 2482 | { |
| 2483 | uint8_t i, j; |
| 2484 | |
| 2485 | PP_ASSERT_WITH_CODE((table->last <= SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),do { if (!((table->last <= 16))) { printk("\0014" "amdgpu: " "%s\n", "Invalid VramInfo table."); return -22; } } while (0 ) |
| 2486 | "Invalid VramInfo table.", return -EINVAL)do { if (!((table->last <= 16))) { printk("\0014" "amdgpu: " "%s\n", "Invalid VramInfo table."); return -22; } } while (0 ); |
| 2487 | PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),do { if (!((table->num_entries <= 16))) { printk("\0014" "amdgpu: " "%s\n", "Invalid VramInfo table."); return -22; } } while (0) |
| 2488 | "Invalid VramInfo table.", return -EINVAL)do { if (!((table->num_entries <= 16))) { printk("\0014" "amdgpu: " "%s\n", "Invalid VramInfo table."); return -22; } } while (0); |
| 2489 | |
| 2490 | for (i = 0; i < table->last; i++) { |
| 2491 | ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1; |
| 2492 | } |
| 2493 | ni_table->last = table->last; |
| 2494 | |
| 2495 | for (i = 0; i < table->num_entries; i++) { |
| 2496 | ni_table->mc_reg_table_entry[i].mclk_max = |
| 2497 | table->mc_reg_table_entry[i].mclk_max; |
| 2498 | for (j = 0; j < table->last; j++) { |
| 2499 | ni_table->mc_reg_table_entry[i].mc_data[j] = |
| 2500 | table->mc_reg_table_entry[i].mc_data[j]; |
| 2501 | } |
| 2502 | } |
| 2503 | |
| 2504 | ni_table->num_entries = table->num_entries; |
| 2505 | |
| 2506 | return 0; |
| 2507 | } |
| 2508 | |
| 2509 | static int iceland_set_mc_special_registers(struct pp_hwmgr *hwmgr, |
| 2510 | struct iceland_mc_reg_table *table) |
| 2511 | { |
| 2512 | uint8_t i, j, k; |
| 2513 | uint32_t temp_reg; |
| 2514 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 2515 | |
| 2516 | for (i = 0, j = table->last; i < table->last; i++) { |
| 2517 | PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),do { if (!((j < 16))) { printk("\0014" "amdgpu: " "%s\n", "Invalid VramInfo table." ); return -22; } } while (0) |
| 2518 | "Invalid VramInfo table.", return -EINVAL)do { if (!((j < 16))) { printk("\0014" "amdgpu: " "%s\n", "Invalid VramInfo table." ); return -22; } } while (0); |
| 2519 | |
| 2520 | switch (table->mc_reg_address[i].s1) { |
| 2521 | |
| 2522 | case mmMC_SEQ_MISC10xa81: |
| 2523 | temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0xa83)); |
| 2524 | table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS0xa83; |
| 2525 | table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP0xaa1; |
| 2526 | for (k = 0; k < table->num_entries; k++) { |
| 2527 | table->mc_reg_table_entry[k].mc_data[j] = |
| 2528 | ((temp_reg & 0xffff0000)) | |
| 2529 | ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16); |
| 2530 | } |
| 2531 | j++; |
| 2532 | |
| 2533 | PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),do { if (!((j < 16))) { printk("\0014" "amdgpu: " "%s\n", "Invalid VramInfo table." ); return -22; } } while (0) |
| 2534 | "Invalid VramInfo table.", return -EINVAL)do { if (!((j < 16))) { printk("\0014" "amdgpu: " "%s\n", "Invalid VramInfo table." ); return -22; } } while (0); |
| 2535 | temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0xaab)); |
| 2536 | table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS0xaab; |
| 2537 | table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP0xaa2; |
| 2538 | for (k = 0; k < table->num_entries; k++) { |
| 2539 | table->mc_reg_table_entry[k].mc_data[j] = |
| 2540 | (temp_reg & 0xffff0000) | |
| 2541 | (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); |
| 2542 | |
| 2543 | if (!data->is_memory_gddr5) { |
| 2544 | table->mc_reg_table_entry[k].mc_data[j] |= 0x100; |
| 2545 | } |
| 2546 | } |
| 2547 | j++; |
| 2548 | |
| 2549 | if (!data->is_memory_gddr5) { |
| 2550 | PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),do { if (!((j < 16))) { printk("\0014" "amdgpu: " "%s\n", "Invalid VramInfo table." ); return -22; } } while (0) |
| 2551 | "Invalid VramInfo table.", return -EINVAL)do { if (!((j < 16))) { printk("\0014" "amdgpu: " "%s\n", "Invalid VramInfo table." ); return -22; } } while (0); |
| 2552 | table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD0xa34; |
| 2553 | table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD0xa34; |
| 2554 | for (k = 0; k < table->num_entries; k++) { |
| 2555 | table->mc_reg_table_entry[k].mc_data[j] = |
| 2556 | (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16; |
| 2557 | } |
| 2558 | j++; |
| 2559 | } |
| 2560 | |
| 2561 | break; |
| 2562 | |
| 2563 | case mmMC_SEQ_RESERVE_M0xa82: |
| 2564 | temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0xad1)); |
| 2565 | table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS10xad1; |
| 2566 | table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP0xad2; |
| 2567 | for (k = 0; k < table->num_entries; k++) { |
| 2568 | table->mc_reg_table_entry[k].mc_data[j] = |
| 2569 | (temp_reg & 0xffff0000) | |
| 2570 | (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); |
| 2571 | } |
| 2572 | j++; |
| 2573 | break; |
| 2574 | |
| 2575 | default: |
| 2576 | break; |
| 2577 | } |
| 2578 | |
| 2579 | } |
| 2580 | |
| 2581 | table->last = j; |
| 2582 | |
| 2583 | return 0; |
| 2584 | } |
| 2585 | |
| 2586 | static int iceland_set_valid_flag(struct iceland_mc_reg_table *table) |
| 2587 | { |
| 2588 | uint8_t i, j; |
| 2589 | for (i = 0; i < table->last; i++) { |
| 2590 | for (j = 1; j < table->num_entries; j++) { |
| 2591 | if (table->mc_reg_table_entry[j-1].mc_data[i] != |
| 2592 | table->mc_reg_table_entry[j].mc_data[i]) { |
| 2593 | table->validflag |= (1<<i); |
| 2594 | break; |
| 2595 | } |
| 2596 | } |
| 2597 | } |
| 2598 | |
| 2599 | return 0; |
| 2600 | } |
| 2601 | |
| 2602 | static int iceland_initialize_mc_reg_table(struct pp_hwmgr *hwmgr) |
| 2603 | { |
| 2604 | int result; |
| 2605 | struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); |
| 2606 | pp_atomctrl_mc_reg_table *table; |
| 2607 | struct iceland_mc_reg_table *ni_table = &smu_data->mc_reg_table; |
| 2608 | uint8_t module_index = iceland_get_memory_modile_index(hwmgr); |
| 2609 | |
| 2610 | table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL(0x0001 | 0x0004)); |
| 2611 | |
| 2612 | if (NULL((void *)0) == table) |
| 2613 | return -ENOMEM12; |
| 2614 | |
| 2615 | /* Program additional LP registers that are no longer programmed by VBIOS */ |
| 2616 | cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xa9b,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa28)))); |
| 2617 | cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xa9c,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa29)))); |
| 2618 | cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xd8f,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xd8e)))); |
| 2619 | cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xd84,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xd83)))); |
| 2620 | cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xd86,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xd85)))); |
| 2621 | cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xd82,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xd81)))); |
| 2622 | cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xd8d,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xd8c)))); |
| 2623 | cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xd8b,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xd8a)))); |
| 2624 | cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xa9d,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa2a)))); |
| 2625 | cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xa9e,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa2b)))); |
| 2626 | cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xaa1,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa83)))); |
| 2627 | cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xaa2,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xaab)))); |
| 2628 | cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xad2,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xad1)))); |
| 2629 | cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xa9f,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa2f)))); |
| 2630 | cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xaa0,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa30)))); |
| 2631 | cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xac7,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa2d)))); |
| 2632 | cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xac8,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa2e)))); |
| 2633 | cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xad3,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa2c)))); |
| 2634 | cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xad8,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xad7)))); |
| 2635 | cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xad6,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xad5)))); |
| 2636 | |
| 2637 | result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table); |
| 2638 | |
| 2639 | if (0 == result) |
| 2640 | result = iceland_copy_vbios_smc_reg_table(table, ni_table); |
| 2641 | |
| 2642 | if (0 == result) { |
| 2643 | iceland_set_s0_mc_reg_index(ni_table); |
| 2644 | result = iceland_set_mc_special_registers(hwmgr, ni_table); |
| 2645 | } |
| 2646 | |
| 2647 | if (0 == result) |
| 2648 | iceland_set_valid_flag(ni_table); |
| 2649 | |
| 2650 | kfree(table); |
| 2651 | |
| 2652 | return result; |
| 2653 | } |
| 2654 | |
| 2655 | static bool_Bool iceland_is_dpm_running(struct pp_hwmgr *hwmgr) |
| 2656 | { |
| 2657 | return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x33010))) & 0x2000) >> 0xd) |
| 2658 | CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON)((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x33010))) & 0x2000) >> 0xd)) |
| 2659 | ? true1 : false0; |
| 2660 | } |
| 2661 | |
| 2662 | const struct pp_smumgr_func iceland_smu_funcs = { |
| 2663 | .name = "iceland_smu", |
| 2664 | .smu_init = &iceland_smu_init, |
| 2665 | .smu_fini = &smu7_smu_fini, |
| 2666 | .start_smu = &iceland_start_smu, |
| 2667 | .check_fw_load_finish = &smu7_check_fw_load_finish, |
| 2668 | .request_smu_load_fw = &smu7_request_smu_load_fw, |
| 2669 | .request_smu_load_specific_fw = &iceland_request_smu_load_specific_fw, |
| 2670 | .send_msg_to_smc = &smu7_send_msg_to_smc, |
| 2671 | .send_msg_to_smc_with_parameter = &smu7_send_msg_to_smc_with_parameter, |
| 2672 | .get_argument = smu7_get_argument, |
| 2673 | .download_pptable_settings = NULL((void *)0), |
| 2674 | .upload_pptable_settings = NULL((void *)0), |
| 2675 | .get_offsetof = iceland_get_offsetof, |
| 2676 | .process_firmware_header = iceland_process_firmware_header, |
| 2677 | .init_smc_table = iceland_init_smc_table, |
| 2678 | .update_sclk_threshold = iceland_update_sclk_threshold, |
| 2679 | .thermal_setup_fan_table = iceland_thermal_setup_fan_table, |
| 2680 | .populate_all_graphic_levels = iceland_populate_all_graphic_levels, |
| 2681 | .populate_all_memory_levels = iceland_populate_all_memory_levels, |
| 2682 | .get_mac_definition = iceland_get_mac_definition, |
| 2683 | .initialize_mc_reg_table = iceland_initialize_mc_reg_table, |
| 2684 | .is_dpm_running = iceland_is_dpm_running, |
| 2685 | }; |
| 2686 |