| File: | dev/ic/ath.c |
| Warning: | line 860, column 4 Value stored to 'wh' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* $OpenBSD: ath.c,v 1.125 2023/11/10 15:51:20 bluhm Exp $ */ |
| 2 | /* $NetBSD: ath.c,v 1.37 2004/08/18 21:59:39 dyoung Exp $ */ |
| 3 | |
| 4 | /*- |
| 5 | * Copyright (c) 2002-2004 Sam Leffler, Errno Consulting |
| 6 | * All rights reserved. |
| 7 | * |
| 8 | * Redistribution and use in source and binary forms, with or without |
| 9 | * modification, are permitted provided that the following conditions |
| 10 | * are met: |
| 11 | * 1. Redistributions of source code must retain the above copyright |
| 12 | * notice, this list of conditions and the following disclaimer, |
| 13 | * without modification. |
| 14 | * 2. Redistributions in binary form must reproduce at minimum a disclaimer |
| 15 | * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any |
| 16 | * redistribution must be conditioned upon including a substantially |
| 17 | * similar Disclaimer requirement for further binary redistribution. |
| 18 | * 3. Neither the names of the above-listed copyright holders nor the names |
| 19 | * of any contributors may be used to endorse or promote products derived |
| 20 | * from this software without specific prior written permission. |
| 21 | * |
| 22 | * NO WARRANTY |
| 23 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 24 | * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 25 | * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY |
| 26 | * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL |
| 27 | * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, |
| 28 | * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 29 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 30 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER |
| 31 | * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 32 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF |
| 33 | * THE POSSIBILITY OF SUCH DAMAGES. |
| 34 | */ |
| 35 | |
| 36 | /* |
| 37 | * Driver for the Atheros Wireless LAN controller. |
| 38 | * |
| 39 | * This software is derived from work of Atsushi Onoe; his contribution |
| 40 | * is greatly appreciated. It has been modified for OpenBSD to use an |
| 41 | * open source HAL instead of the original binary-only HAL. |
| 42 | */ |
| 43 | |
| 44 | #include "bpfilter.h" |
| 45 | |
| 46 | #include <sys/param.h> |
| 47 | #include <sys/systm.h> |
| 48 | #include <sys/mbuf.h> |
| 49 | #include <sys/malloc.h> |
| 50 | #include <sys/lock.h> |
| 51 | #include <sys/kernel.h> |
| 52 | #include <sys/socket.h> |
| 53 | #include <sys/sockio.h> |
| 54 | #include <sys/device.h> |
| 55 | #include <sys/errno.h> |
| 56 | #include <sys/timeout.h> |
| 57 | #include <sys/gpio.h> |
| 58 | #include <sys/endian.h> |
| 59 | |
| 60 | #include <machine/bus.h> |
| 61 | |
| 62 | #include <net/if.h> |
| 63 | #include <net/if_dl.h> |
| 64 | #include <net/if_media.h> |
| 65 | #if NBPFILTER1 > 0 |
| 66 | #include <net/bpf.h> |
| 67 | #endif |
| 68 | #include <netinet/in.h> |
| 69 | #include <netinet/if_ether.h> |
| 70 | |
| 71 | #include <net80211/ieee80211_var.h> |
| 72 | #include <net80211/ieee80211_rssadapt.h> |
| 73 | |
| 74 | #include <dev/pci/pcidevs.h> |
| 75 | #include <dev/gpio/gpiovar.h> |
| 76 | |
| 77 | #include <dev/ic/athvar.h> |
| 78 | |
| 79 | int ath_init(struct ifnet *); |
| 80 | int ath_init1(struct ath_softc *); |
| 81 | int ath_intr1(struct ath_softc *); |
| 82 | void ath_stop(struct ifnet *); |
| 83 | void ath_start(struct ifnet *); |
| 84 | void ath_reset(struct ath_softc *, int); |
| 85 | int ath_media_change(struct ifnet *); |
| 86 | void ath_watchdog(struct ifnet *); |
| 87 | int ath_ioctl(struct ifnet *, u_long, caddr_t); |
| 88 | void ath_fatal_proc(void *, int); |
| 89 | void ath_rxorn_proc(void *, int); |
| 90 | void ath_bmiss_proc(void *, int); |
| 91 | int ath_initkeytable(struct ath_softc *); |
| 92 | void ath_mcastfilter_accum(caddr_t, u_int32_t (*)[2]); |
| 93 | void ath_mcastfilter_compute(struct ath_softc *, u_int32_t (*)[2]); |
| 94 | u_int32_t ath_calcrxfilter(struct ath_softc *); |
| 95 | void ath_mode_init(struct ath_softc *); |
| 96 | #ifndef IEEE80211_STA_ONLY |
| 97 | int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *); |
| 98 | void ath_beacon_proc(void *, int); |
| 99 | void ath_beacon_free(struct ath_softc *); |
| 100 | #endif |
| 101 | void ath_beacon_config(struct ath_softc *); |
| 102 | int ath_desc_alloc(struct ath_softc *); |
| 103 | void ath_desc_free(struct ath_softc *); |
| 104 | struct ieee80211_node *ath_node_alloc(struct ieee80211com *); |
| 105 | struct mbuf *ath_getmbuf(int, int, u_int); |
| 106 | void ath_node_free(struct ieee80211com *, struct ieee80211_node *); |
| 107 | void ath_node_copy(struct ieee80211com *, |
| 108 | struct ieee80211_node *, const struct ieee80211_node *); |
| 109 | u_int8_t ath_node_getrssi(struct ieee80211com *, |
| 110 | const struct ieee80211_node *); |
| 111 | int ath_rxbuf_init(struct ath_softc *, struct ath_buf *); |
| 112 | void ath_rx_proc(void *, int); |
| 113 | int ath_tx_start(struct ath_softc *, struct ieee80211_node *, |
| 114 | struct ath_buf *, struct mbuf *); |
| 115 | void ath_tx_proc(void *, int); |
| 116 | int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); |
| 117 | void ath_draintxq(struct ath_softc *); |
| 118 | void ath_stoprecv(struct ath_softc *); |
| 119 | int ath_startrecv(struct ath_softc *); |
| 120 | void ath_next_scan(void *); |
| 121 | int ath_set_slot_time(struct ath_softc *); |
| 122 | void ath_calibrate(void *); |
| 123 | void ath_ledstate(struct ath_softc *, enum ieee80211_state); |
| 124 | int ath_newstate(struct ieee80211com *, enum ieee80211_state, int); |
| 125 | void ath_newassoc(struct ieee80211com *, |
| 126 | struct ieee80211_node *, int); |
| 127 | int ath_getchannels(struct ath_softc *, HAL_BOOL outdoor, |
| 128 | HAL_BOOL xchanmode); |
| 129 | int ath_rate_setup(struct ath_softc *sc, u_int mode); |
| 130 | void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); |
| 131 | void ath_rssadapt_updatenode(void *, struct ieee80211_node *); |
| 132 | void ath_rssadapt_updatestats(void *); |
| 133 | #ifndef IEEE80211_STA_ONLY |
| 134 | void ath_recv_mgmt(struct ieee80211com *, struct mbuf *, |
| 135 | struct ieee80211_node *, struct ieee80211_rxinfo *, int); |
| 136 | #endif |
| 137 | void ath_disable(struct ath_softc *); |
| 138 | |
| 139 | int ath_gpio_attach(struct ath_softc *, u_int16_t); |
| 140 | int ath_gpio_pin_read(void *, int); |
| 141 | void ath_gpio_pin_write(void *, int, int); |
| 142 | void ath_gpio_pin_ctl(void *, int, int); |
| 143 | |
| 144 | #ifdef AR_DEBUG |
| 145 | void ath_printrxbuf(struct ath_buf *, int); |
| 146 | void ath_printtxbuf(struct ath_buf *, int); |
| 147 | int ath_debug = 0; |
| 148 | #endif |
| 149 | |
| 150 | int ath_dwelltime = 200; /* 5 channels/second */ |
| 151 | int ath_calinterval = 30; /* calibrate every 30 secs */ |
| 152 | int ath_outdoor = AH_TRUE; /* outdoor operation */ |
| 153 | int ath_xchanmode = AH_TRUE; /* enable extended channels */ |
| 154 | int ath_softcrypto = 1; /* 1=enable software crypto */ |
| 155 | |
| 156 | struct cfdriver ath_cd = { |
| 157 | NULL((void *)0), "ath", DV_IFNET |
| 158 | }; |
| 159 | |
| 160 | int |
| 161 | ath_activate(struct device *self, int act) |
| 162 | { |
| 163 | struct ath_softc *sc = (struct ath_softc *)self; |
| 164 | struct ifnet *ifp = &sc->sc_ic.ic_ific_ac.ac_if; |
| 165 | |
| 166 | switch (act) { |
| 167 | case DVACT_SUSPEND3: |
| 168 | if (ifp->if_flags & IFF_RUNNING0x40) { |
| 169 | ath_stop(ifp); |
| 170 | if (sc->sc_power != NULL((void *)0)) |
| 171 | (*sc->sc_power)(sc, act); |
| 172 | } |
| 173 | break; |
| 174 | case DVACT_RESUME4: |
| 175 | if (ifp->if_flags & IFF_UP0x1) { |
| 176 | ath_init(ifp); |
| 177 | if (ifp->if_flags & IFF_RUNNING0x40) |
| 178 | ath_start(ifp); |
| 179 | } |
| 180 | break; |
| 181 | } |
| 182 | return 0; |
| 183 | } |
| 184 | |
| 185 | int |
| 186 | ath_enable(struct ath_softc *sc) |
| 187 | { |
| 188 | if (ATH_IS_ENABLED(sc)((sc)->sc_flags & 0x0002) == 0) { |
| 189 | if (sc->sc_enable != NULL((void *)0) && (*sc->sc_enable)(sc) != 0) { |
| 190 | printf("%s: device enable failed\n", |
| 191 | sc->sc_dev.dv_xname); |
| 192 | return (EIO5); |
| 193 | } |
| 194 | sc->sc_flags |= ATH_ENABLED0x0002; |
| 195 | } |
| 196 | return (0); |
| 197 | } |
| 198 | |
| 199 | void |
| 200 | ath_disable(struct ath_softc *sc) |
| 201 | { |
| 202 | if (!ATH_IS_ENABLED(sc)((sc)->sc_flags & 0x0002)) |
| 203 | return; |
| 204 | if (sc->sc_disable != NULL((void *)0)) |
| 205 | (*sc->sc_disable)(sc); |
| 206 | sc->sc_flags &= ~ATH_ENABLED0x0002; |
| 207 | } |
| 208 | |
| 209 | int |
| 210 | ath_attach(u_int16_t devid, struct ath_softc *sc) |
| 211 | { |
| 212 | struct ieee80211com *ic = &sc->sc_ic; |
| 213 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
| 214 | struct ath_hal *ah; |
| 215 | HAL_STATUS status; |
| 216 | HAL_TXQ_INFO qinfo; |
| 217 | int error = 0, i; |
| 218 | |
| 219 | DPRINTF(ATH_DEBUG_ANY, ("%s: devid 0x%x\n", __func__, devid)); |
| 220 | |
| 221 | bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ16); |
| 222 | sc->sc_flags &= ~ATH_ATTACHED0x0001; /* make sure that it's not attached */ |
| 223 | |
| 224 | ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, |
| 225 | sc->sc_pcie, &status); |
| 226 | if (ah == NULL((void *)0)) { |
| 227 | printf("%s: unable to attach hardware; HAL status %d\n", |
| 228 | ifp->if_xname, status); |
| 229 | error = ENXIO6; |
| 230 | goto bad; |
| 231 | } |
| 232 | if (ah->ah_abi != HAL_ABI_VERSION0x04090901) { |
| 233 | printf("%s: HAL ABI mismatch detected (0x%x != 0x%x)\n", |
| 234 | ifp->if_xname, ah->ah_abi, HAL_ABI_VERSION0x04090901); |
| 235 | error = ENXIO6; |
| 236 | goto bad; |
| 237 | } |
| 238 | |
| 239 | if (ah->ah_single_chip == AH_TRUE) { |
| 240 | printf("%s: AR%s %u.%u phy %u.%u rf %u.%u", ifp->if_xname, |
| 241 | ar5k_printver(AR5K_VERSION_DEV, devid), |
| 242 | ah->ah_mac_version, ah->ah_mac_revision, |
| 243 | ah->ah_phy_revision >> 4, ah->ah_phy_revision & 0xf, |
| 244 | ah->ah_radio_5ghz_revision >> 4, |
| 245 | ah->ah_radio_5ghz_revision & 0xf); |
| 246 | } else { |
| 247 | printf("%s: AR%s %u.%u phy %u.%u", ifp->if_xname, |
| 248 | ar5k_printver(AR5K_VERSION_VER, ah->ah_mac_srev), |
| 249 | ah->ah_mac_version, ah->ah_mac_revision, |
| 250 | ah->ah_phy_revision >> 4, ah->ah_phy_revision & 0xf); |
| 251 | printf(" rf%s %u.%u", |
| 252 | ar5k_printver(AR5K_VERSION_RAD, ah->ah_radio_5ghz_revision), |
| 253 | ah->ah_radio_5ghz_revision >> 4, |
| 254 | ah->ah_radio_5ghz_revision & 0xf); |
| 255 | if (ah->ah_radio_2ghz_revision != 0) { |
| 256 | printf(" rf%s %u.%u", |
| 257 | ar5k_printver(AR5K_VERSION_RAD, |
| 258 | ah->ah_radio_2ghz_revision), |
| 259 | ah->ah_radio_2ghz_revision >> 4, |
| 260 | ah->ah_radio_2ghz_revision & 0xf); |
| 261 | } |
| 262 | } |
| 263 | if (ah->ah_ee_versionah_capabilities.cap_eeprom.ee_version == AR5K_EEPROM_VERSION_4_70x3007) |
| 264 | printf(" eeprom 4.7"); |
| 265 | else |
| 266 | printf(" eeprom %1x.%1x", ah->ah_ee_versionah_capabilities.cap_eeprom.ee_version >> 12, |
| 267 | ah->ah_ee_versionah_capabilities.cap_eeprom.ee_version & 0xff); |
| 268 | |
| 269 | #if 0 |
| 270 | if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_UNSUPP0xff || |
| 271 | ah->ah_radio_2ghz_revision >= AR5K_SREV_RAD_UNSUPP0xff) { |
| 272 | printf(": RF radio not supported\n"); |
| 273 | error = EOPNOTSUPP45; |
| 274 | goto bad; |
| 275 | } |
| 276 | #endif |
| 277 | |
| 278 | sc->sc_ah = ah; |
| 279 | sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ |
| 280 | |
| 281 | /* |
| 282 | * Get regulation domain either stored in the EEPROM or defined |
| 283 | * as the default value. Some devices are known to have broken |
| 284 | * regulation domain values in their EEPROM. |
| 285 | */ |
| 286 | ath_hal_get_regdomain(ah, &ah->ah_regdomain)(*(&ah->ah_capabilities.cap_regdomain.reg_current) = ( ah)->ah_get_regdomain(ah)); |
| 287 | |
| 288 | /* |
| 289 | * Construct channel list based on the current regulation domain. |
| 290 | */ |
| 291 | error = ath_getchannels(sc, ath_outdoor, ath_xchanmode); |
| 292 | if (error != 0) |
| 293 | goto bad; |
| 294 | |
| 295 | /* |
| 296 | * Setup rate tables for all potential media types. |
| 297 | */ |
| 298 | ath_rate_setup(sc, IEEE80211_MODE_11A); |
| 299 | ath_rate_setup(sc, IEEE80211_MODE_11B); |
| 300 | ath_rate_setup(sc, IEEE80211_MODE_11G); |
| 301 | |
| 302 | error = ath_desc_alloc(sc); |
| 303 | if (error != 0) { |
| 304 | printf(": failed to allocate descriptors: %d\n", error); |
| 305 | goto bad; |
| 306 | } |
| 307 | timeout_set(&sc->sc_scan_to, ath_next_scan, sc); |
| 308 | timeout_set(&sc->sc_cal_to, ath_calibrate, sc); |
| 309 | timeout_set(&sc->sc_rssadapt_to, ath_rssadapt_updatestats, sc); |
| 310 | |
| 311 | ATH_TASK_INIT(&sc->sc_txtask, ath_tx_proc, sc)do { (&sc->sc_txtask)->t_func = (ath_tx_proc); (& sc->sc_txtask)->t_context = (sc); } while (0); |
| 312 | ATH_TASK_INIT(&sc->sc_rxtask, ath_rx_proc, sc)do { (&sc->sc_rxtask)->t_func = (ath_rx_proc); (& sc->sc_rxtask)->t_context = (sc); } while (0); |
| 313 | ATH_TASK_INIT(&sc->sc_rxorntask, ath_rxorn_proc, sc)do { (&sc->sc_rxorntask)->t_func = (ath_rxorn_proc) ; (&sc->sc_rxorntask)->t_context = (sc); } while (0 ); |
| 314 | ATH_TASK_INIT(&sc->sc_fataltask, ath_fatal_proc, sc)do { (&sc->sc_fataltask)->t_func = (ath_fatal_proc) ; (&sc->sc_fataltask)->t_context = (sc); } while (0 ); |
| 315 | ATH_TASK_INIT(&sc->sc_bmisstask, ath_bmiss_proc, sc)do { (&sc->sc_bmisstask)->t_func = (ath_bmiss_proc) ; (&sc->sc_bmisstask)->t_context = (sc); } while (0 ); |
| 316 | #ifndef IEEE80211_STA_ONLY |
| 317 | ATH_TASK_INIT(&sc->sc_swbatask, ath_beacon_proc, sc)do { (&sc->sc_swbatask)->t_func = (ath_beacon_proc) ; (&sc->sc_swbatask)->t_context = (sc); } while (0); |
| 318 | #endif |
| 319 | |
| 320 | /* |
| 321 | * For now just pre-allocate one data queue and one |
| 322 | * beacon queue. Note that the HAL handles resetting |
| 323 | * them at the needed time. Eventually we'll want to |
| 324 | * allocate more tx queues for splitting management |
| 325 | * frames and for QOS support. |
| 326 | */ |
| 327 | sc->sc_bhalq = ath_hal_setup_tx_queue(ah, HAL_TX_QUEUE_BEACON, NULL)((*(ah)->ah_setup_tx_queue)((ah), (HAL_TX_QUEUE_BEACON), ( ((void *)0)))); |
| 328 | if (sc->sc_bhalq == (u_int) -1) { |
| 329 | printf(": unable to setup a beacon xmit queue!\n"); |
| 330 | goto bad2; |
| 331 | } |
| 332 | |
| 333 | for (i = 0; i <= HAL_TX_QUEUE_ID_DATA_MAX; i++) { |
| 334 | bzero(&qinfo, sizeof(qinfo))__builtin_bzero((&qinfo), (sizeof(qinfo))); |
| 335 | qinfo.tqi_type = HAL_TX_QUEUE_DATA; |
| 336 | qinfo.tqi_subtype = i; /* should be mapped to WME types */ |
| 337 | sc->sc_txhalq[i] = ath_hal_setup_tx_queue(ah,((*(ah)->ah_setup_tx_queue)((ah), (HAL_TX_QUEUE_DATA), (& qinfo))) |
| 338 | HAL_TX_QUEUE_DATA, &qinfo)((*(ah)->ah_setup_tx_queue)((ah), (HAL_TX_QUEUE_DATA), (& qinfo))); |
| 339 | if (sc->sc_txhalq[i] == (u_int) -1) { |
| 340 | printf(": unable to setup a data xmit queue %u!\n", i); |
| 341 | goto bad2; |
| 342 | } |
| 343 | } |
| 344 | |
| 345 | ifp->if_softc = sc; |
| 346 | ifp->if_flags = IFF_SIMPLEX0x800 | IFF_BROADCAST0x2 | IFF_MULTICAST0x8000; |
| 347 | ifp->if_start = ath_start; |
| 348 | ifp->if_watchdog = ath_watchdog; |
| 349 | ifp->if_ioctl = ath_ioctl; |
| 350 | ifq_init_maxlen(&ifp->if_snd, ATH_TXBUF60 * ATH_TXDESC8); |
| 351 | |
| 352 | ic->ic_softcic_ac.ac_if.if_softc = sc; |
| 353 | ic->ic_newassoc = ath_newassoc; |
| 354 | /* XXX not right but it's not used anywhere important */ |
| 355 | ic->ic_phytype = IEEE80211_T_OFDM; |
| 356 | ic->ic_opmode = IEEE80211_M_STA; |
| 357 | ic->ic_caps = IEEE80211_C_WEP0x00000001 /* wep supported */ |
| 358 | | IEEE80211_C_PMGT0x00000004 /* power management */ |
| 359 | #ifndef IEEE80211_STA_ONLY |
| 360 | | IEEE80211_C_IBSS0x00000002 /* ibss, nee adhoc, mode */ |
| 361 | | IEEE80211_C_HOSTAP0x00000008 /* hostap mode */ |
| 362 | #endif |
| 363 | | IEEE80211_C_MONITOR0x00000200 /* monitor mode */ |
| 364 | | IEEE80211_C_SHSLOT0x00000080 /* short slot time supported */ |
| 365 | | IEEE80211_C_SHPREAMBLE0x00000100; /* short preamble supported */ |
| 366 | if (ath_softcrypto) |
| 367 | ic->ic_caps |= IEEE80211_C_RSN0x00001000; /* wpa/rsn supported */ |
| 368 | |
| 369 | /* |
| 370 | * Not all chips have the VEOL support we want to use with |
| 371 | * IBSS beacon; check here for it. |
| 372 | */ |
| 373 | sc->sc_veol = ath_hal_has_veol(ah)((*(ah)->ah_has_veol)((ah))); |
| 374 | |
| 375 | /* get mac address from hardware */ |
| 376 | ath_hal_get_lladdr(ah, ic->ic_myaddr)((*(ah)->ah_get_lladdr)((ah), (ic->ic_myaddr))); |
| 377 | |
| 378 | if_attach(ifp); |
| 379 | |
| 380 | /* call MI attach routine. */ |
| 381 | ieee80211_ifattach(ifp); |
| 382 | |
| 383 | /* override default methods */ |
| 384 | ic->ic_node_alloc = ath_node_alloc; |
| 385 | sc->sc_node_free = ic->ic_node_free; |
| 386 | ic->ic_node_free = ath_node_free; |
| 387 | sc->sc_node_copy = ic->ic_node_copy; |
| 388 | ic->ic_node_copy = ath_node_copy; |
| 389 | ic->ic_node_getrssi = ath_node_getrssi; |
| 390 | sc->sc_newstate = ic->ic_newstate; |
| 391 | ic->ic_newstate = ath_newstate; |
| 392 | #ifndef IEEE80211_STA_ONLY |
| 393 | sc->sc_recv_mgmt = ic->ic_recv_mgmt; |
| 394 | ic->ic_recv_mgmt = ath_recv_mgmt; |
| 395 | #endif |
| 396 | ic->ic_max_rssi = AR5K_MAX_RSSI64; |
| 397 | bcopy(etherbroadcastaddr, sc->sc_broadcast_addr, IEEE80211_ADDR_LEN6); |
| 398 | |
| 399 | /* complete initialization */ |
| 400 | ieee80211_media_init(ifp, ath_media_change, ieee80211_media_status); |
| 401 | |
| 402 | #if NBPFILTER1 > 0 |
| 403 | bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO127, |
| 404 | sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN64); |
| 405 | |
| 406 | sc->sc_rxtap_len = sizeof(sc->sc_rxtapu); |
| 407 | bzero(&sc->sc_rxtapu, sc->sc_rxtap_len)__builtin_bzero((&sc->sc_rxtapu), (sc->sc_rxtap_len )); |
| 408 | sc->sc_rxtapsc_rxtapu.th.wr_ihdr.it_len = htole16(sc->sc_rxtap_len)((__uint16_t)(sc->sc_rxtap_len)); |
| 409 | sc->sc_rxtapsc_rxtapu.th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT)((__uint32_t)(( (1 << IEEE80211_RADIOTAP_FLAGS) | (1 << IEEE80211_RADIOTAP_RATE) | (1 << IEEE80211_RADIOTAP_CHANNEL ) | (1 << IEEE80211_RADIOTAP_ANTENNA) | (1 << IEEE80211_RADIOTAP_RSSI ) | 0))); |
| 410 | |
| 411 | sc->sc_txtap_len = sizeof(sc->sc_txtapu); |
| 412 | bzero(&sc->sc_txtapu, sc->sc_txtap_len)__builtin_bzero((&sc->sc_txtapu), (sc->sc_txtap_len )); |
| 413 | sc->sc_txtapsc_txtapu.th.wt_ihdr.it_len = htole16(sc->sc_txtap_len)((__uint16_t)(sc->sc_txtap_len)); |
| 414 | sc->sc_txtapsc_txtapu.th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT)((__uint32_t)(( (1 << IEEE80211_RADIOTAP_FLAGS) | (1 << IEEE80211_RADIOTAP_RATE) | (1 << IEEE80211_RADIOTAP_CHANNEL ) | (1 << IEEE80211_RADIOTAP_DBM_TX_POWER) | (1 << IEEE80211_RADIOTAP_ANTENNA) | 0))); |
| 415 | #endif |
| 416 | |
| 417 | sc->sc_flags |= ATH_ATTACHED0x0001; |
| 418 | |
| 419 | /* |
| 420 | * Print regulation domain and the mac address. The regulation domain |
| 421 | * will be marked with a * if the EEPROM value has been overwritten. |
| 422 | */ |
| 423 | printf(", %s%s, address %s\n", |
| 424 | ieee80211_regdomain2name(ah->ah_regdomainah_capabilities.cap_regdomain.reg_current), |
| 425 | ah->ah_regdomainah_capabilities.cap_regdomain.reg_current != ah->ah_regdomain_hwah_capabilities.cap_regdomain.reg_hw ? "*" : "", |
| 426 | ether_sprintf(ic->ic_myaddr)); |
| 427 | |
| 428 | if (ath_gpio_attach(sc, devid) == 0) |
| 429 | sc->sc_flags |= ATH_GPIO0x0004; |
| 430 | |
| 431 | return 0; |
| 432 | bad2: |
| 433 | ath_desc_free(sc); |
| 434 | bad: |
| 435 | if (ah) |
| 436 | ath_hal_detach(ah)((*(ah)->ah_detach)(ah)); |
| 437 | sc->sc_invalid = 1; |
| 438 | return error; |
| 439 | } |
| 440 | |
| 441 | int |
| 442 | ath_detach(struct ath_softc *sc, int flags) |
| 443 | { |
| 444 | struct ifnet *ifp = &sc->sc_ic.ic_ific_ac.ac_if; |
| 445 | int s; |
| 446 | |
| 447 | if ((sc->sc_flags & ATH_ATTACHED0x0001) == 0) |
| 448 | return (0); |
| 449 | |
| 450 | config_detach_children(&sc->sc_dev, flags); |
| 451 | |
| 452 | DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags)); |
| 453 | |
| 454 | timeout_del(&sc->sc_scan_to); |
| 455 | timeout_del(&sc->sc_cal_to); |
| 456 | timeout_del(&sc->sc_rssadapt_to); |
| 457 | |
| 458 | s = splnet()splraise(0x4); |
| 459 | ath_stop(ifp); |
| 460 | ath_desc_free(sc); |
| 461 | ath_hal_detach(sc->sc_ah)((*(sc->sc_ah)->ah_detach)(sc->sc_ah)); |
| 462 | |
| 463 | ieee80211_ifdetach(ifp); |
| 464 | if_detach(ifp); |
| 465 | |
| 466 | splx(s)spllower(s); |
| 467 | |
| 468 | return 0; |
| 469 | } |
| 470 | |
| 471 | int |
| 472 | ath_intr(void *arg) |
| 473 | { |
| 474 | return ath_intr1((struct ath_softc *)arg); |
| 475 | } |
| 476 | |
| 477 | int |
| 478 | ath_intr1(struct ath_softc *sc) |
| 479 | { |
| 480 | struct ieee80211com *ic = &sc->sc_ic; |
| 481 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
| 482 | struct ath_hal *ah = sc->sc_ah; |
| 483 | HAL_INT status; |
| 484 | |
| 485 | if (sc->sc_invalid) { |
| 486 | /* |
| 487 | * The hardware is not ready/present, don't touch anything. |
| 488 | * Note this can happen early on if the IRQ is shared. |
| 489 | */ |
| 490 | DPRINTF(ATH_DEBUG_ANY, ("%s: invalid; ignored\n", __func__)); |
| 491 | return 0; |
| 492 | } |
| 493 | if (!ath_hal_is_intr_pending(ah)((*(ah)->ah_is_intr_pending)((ah)))) /* shared irq, not for us */ |
| 494 | return 0; |
| 495 | if ((ifp->if_flags & (IFF_RUNNING0x40|IFF_UP0x1)) != (IFF_RUNNING0x40|IFF_UP0x1)) { |
| 496 | DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags 0x%x\n", |
| 497 | __func__, ifp->if_flags)); |
| 498 | ath_hal_get_isr(ah, &status)((*(ah)->ah_get_isr)((ah), (&status))); /* clear ISR */ |
| 499 | ath_hal_set_intr(ah, 0)((*(ah)->ah_set_intr)((ah), (0))); /* disable further intr's */ |
| 500 | return 1; /* XXX */ |
| 501 | } |
| 502 | ath_hal_get_isr(ah, &status)((*(ah)->ah_get_isr)((ah), (&status))); /* NB: clears ISR too */ |
| 503 | DPRINTF(ATH_DEBUG_INTR, ("%s: status 0x%x\n", __func__, status)); |
| 504 | status &= sc->sc_imask; /* discard unasked for bits */ |
| 505 | if (status & HAL_INT_FATAL0x40000000) { |
| 506 | sc->sc_stats.ast_hardware++; |
| 507 | ath_hal_set_intr(ah, 0)((*(ah)->ah_set_intr)((ah), (0))); /* disable intr's until reset */ |
| 508 | ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask)((*(&sc->sc_fataltask)->t_func)((&sc->sc_fataltask )->t_context, 1)); |
| 509 | } else if (status & HAL_INT_RXORN0x00000020) { |
| 510 | sc->sc_stats.ast_rxorn++; |
| 511 | ath_hal_set_intr(ah, 0)((*(ah)->ah_set_intr)((ah), (0))); /* disable intr's until reset */ |
| 512 | ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask)((*(&sc->sc_rxorntask)->t_func)((&sc->sc_rxorntask )->t_context, 1)); |
| 513 | } else if (status & HAL_INT_MIB0x00001000) { |
| 514 | DPRINTF(ATH_DEBUG_INTR, |
| 515 | ("%s: resetting MIB counters\n", __func__)); |
| 516 | sc->sc_stats.ast_mib++; |
| 517 | ath_hal_update_mib_counters(ah, &sc->sc_mib_stats)((*(ah)->ah_update_mib_counters)((ah), (&sc->sc_mib_stats ))); |
| 518 | } else { |
| 519 | if (status & HAL_INT_RXEOL0x00000010) { |
| 520 | /* |
| 521 | * NB: the hardware should re-read the link when |
| 522 | * RXE bit is written, but it doesn't work at |
| 523 | * least on older hardware revs. |
| 524 | */ |
| 525 | sc->sc_stats.ast_rxeol++; |
| 526 | sc->sc_rxlink = NULL((void *)0); |
| 527 | } |
| 528 | if (status & HAL_INT_TXURN0x00000800) { |
| 529 | sc->sc_stats.ast_txurn++; |
| 530 | /* bump tx trigger level */ |
| 531 | ath_hal_update_tx_triglevel(ah, AH_TRUE)((*(ah)->ah_update_tx_triglevel)((ah), (AH_TRUE))); |
| 532 | } |
| 533 | if (status & HAL_INT_RX0x00000001) |
| 534 | ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask)((*(&sc->sc_rxtask)->t_func)((&sc->sc_rxtask )->t_context, 1)); |
| 535 | if (status & HAL_INT_TX0x00000040) |
| 536 | ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_txtask)((*(&sc->sc_txtask)->t_func)((&sc->sc_txtask )->t_context, 1)); |
| 537 | if (status & HAL_INT_SWBA0x00010000) |
| 538 | ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_swbatask)((*(&sc->sc_swbatask)->t_func)((&sc->sc_swbatask )->t_context, 1)); |
| 539 | if (status & HAL_INT_BMISS0x00040000) { |
| 540 | sc->sc_stats.ast_bmiss++; |
| 541 | ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask)((*(&sc->sc_bmisstask)->t_func)((&sc->sc_bmisstask )->t_context, 1)); |
| 542 | } |
| 543 | } |
| 544 | return 1; |
| 545 | } |
| 546 | |
| 547 | void |
| 548 | ath_fatal_proc(void *arg, int pending) |
| 549 | { |
| 550 | struct ath_softc *sc = arg; |
| 551 | struct ieee80211com *ic = &sc->sc_ic; |
| 552 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
| 553 | |
| 554 | if (ifp->if_flags & IFF_DEBUG0x4) |
| 555 | printf("%s: hardware error; resetting\n", ifp->if_xname); |
| 556 | ath_reset(sc, 1); |
| 557 | } |
| 558 | |
| 559 | void |
| 560 | ath_rxorn_proc(void *arg, int pending) |
| 561 | { |
| 562 | struct ath_softc *sc = arg; |
| 563 | struct ieee80211com *ic = &sc->sc_ic; |
| 564 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
| 565 | |
| 566 | if (ifp->if_flags & IFF_DEBUG0x4) |
| 567 | printf("%s: rx FIFO overrun; resetting\n", ifp->if_xname); |
| 568 | ath_reset(sc, 1); |
| 569 | } |
| 570 | |
| 571 | void |
| 572 | ath_bmiss_proc(void *arg, int pending) |
| 573 | { |
| 574 | struct ath_softc *sc = arg; |
| 575 | struct ieee80211com *ic = &sc->sc_ic; |
| 576 | |
| 577 | DPRINTF(ATH_DEBUG_ANY, ("%s: pending %u\n", __func__, pending)); |
| 578 | if (ic->ic_opmode != IEEE80211_M_STA) |
| 579 | return; |
| 580 | if (ic->ic_state == IEEE80211_S_RUN) { |
| 581 | /* |
| 582 | * Rather than go directly to scan state, try to |
| 583 | * reassociate first. If that fails then the state |
| 584 | * machine will drop us into scanning after timing |
| 585 | * out waiting for a probe response. |
| 586 | */ |
| 587 | ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1)(((ic)->ic_newstate)((ic), (IEEE80211_S_ASSOC), (-1))); |
| 588 | } |
| 589 | } |
| 590 | |
| 591 | int |
| 592 | ath_init(struct ifnet *ifp) |
| 593 | { |
| 594 | return ath_init1((struct ath_softc *)ifp->if_softc); |
| 595 | } |
| 596 | |
| 597 | int |
| 598 | ath_init1(struct ath_softc *sc) |
| 599 | { |
| 600 | struct ieee80211com *ic = &sc->sc_ic; |
| 601 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
| 602 | struct ieee80211_node *ni; |
| 603 | enum ieee80211_phymode mode; |
| 604 | struct ath_hal *ah = sc->sc_ah; |
| 605 | HAL_STATUS status; |
| 606 | HAL_CHANNEL hchan; |
| 607 | int error = 0, s; |
| 608 | |
| 609 | DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags 0x%x\n", |
| 610 | __func__, ifp->if_flags)); |
| 611 | |
| 612 | if ((error = ath_enable(sc)) != 0) |
| 613 | return error; |
| 614 | |
| 615 | s = splnet()splraise(0x4); |
| 616 | /* |
| 617 | * Stop anything previously setup. This is safe |
| 618 | * whether this is the first time through or not. |
| 619 | */ |
| 620 | ath_stop(ifp); |
| 621 | |
| 622 | /* |
| 623 | * Reset the link layer address to the latest value. |
| 624 | */ |
| 625 | IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl))__builtin_memcpy((ic->ic_myaddr), (((caddr_t)((ifp->if_sadl )->sdl_data + (ifp->if_sadl)->sdl_nlen))), (6)); |
| 626 | ath_hal_set_lladdr(ah, ic->ic_myaddr)((*(ah)->ah_set_lladdr)((ah), (ic->ic_myaddr))); |
| 627 | |
| 628 | /* |
| 629 | * The basic interface to setting the hardware in a good |
| 630 | * state is ``reset''. On return the hardware is known to |
| 631 | * be powered up and with interrupts disabled. This must |
| 632 | * be followed by initialization of the appropriate bits |
| 633 | * and then setup of the interrupt mask. |
| 634 | */ |
| 635 | hchan.channel = ic->ic_ibss_chan->ic_freq; |
| 636 | hchan.channelFlags = ic->ic_ibss_chan->ic_flags; |
| 637 | if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)((*(ah)->ah_reset)((ah), (ic->ic_opmode), (&hchan), (AH_TRUE), (&status)))) { |
| 638 | printf("%s: unable to reset hardware; hal status %u\n", |
| 639 | ifp->if_xname, status); |
| 640 | error = EIO5; |
| 641 | goto done; |
| 642 | } |
| 643 | ath_set_slot_time(sc); |
| 644 | |
| 645 | if ((error = ath_initkeytable(sc)) != 0) { |
| 646 | printf("%s: unable to reset the key cache\n", |
| 647 | ifp->if_xname); |
| 648 | goto done; |
| 649 | } |
| 650 | |
| 651 | if ((error = ath_startrecv(sc)) != 0) { |
| 652 | printf("%s: unable to start recv logic\n", ifp->if_xname); |
| 653 | goto done; |
| 654 | } |
| 655 | |
| 656 | /* |
| 657 | * Enable interrupts. |
| 658 | */ |
| 659 | sc->sc_imask = HAL_INT_RX0x00000001 | HAL_INT_TX0x00000040 |
| 660 | | HAL_INT_RXEOL0x00000010 | HAL_INT_RXORN0x00000020 |
| 661 | | HAL_INT_FATAL0x40000000 | HAL_INT_GLOBAL0x80000000; |
| 662 | #ifndef IEEE80211_STA_ONLY |
| 663 | if (ic->ic_opmode == IEEE80211_M_HOSTAP) |
| 664 | sc->sc_imask |= HAL_INT_MIB0x00001000; |
| 665 | #endif |
| 666 | ath_hal_set_intr(ah, sc->sc_imask)((*(ah)->ah_set_intr)((ah), (sc->sc_imask))); |
| 667 | |
| 668 | ifp->if_flags |= IFF_RUNNING0x40; |
| 669 | ic->ic_state = IEEE80211_S_INIT; |
| 670 | |
| 671 | /* |
| 672 | * The hardware should be ready to go now so it's safe |
| 673 | * to kick the 802.11 state machine as it's likely to |
| 674 | * immediately call back to us to send mgmt frames. |
| 675 | */ |
| 676 | ni = ic->ic_bss; |
| 677 | ni->ni_chan = ic->ic_ibss_chan; |
| 678 | mode = ieee80211_chan2mode(ic, ni->ni_chan); |
| 679 | if (mode != sc->sc_curmode) |
| 680 | ath_setcurmode(sc, mode); |
| 681 | if (ic->ic_opmode != IEEE80211_M_MONITOR) { |
| 682 | ieee80211_new_state(ic, IEEE80211_S_SCAN, -1)(((ic)->ic_newstate)((ic), (IEEE80211_S_SCAN), (-1))); |
| 683 | } else { |
| 684 | ieee80211_new_state(ic, IEEE80211_S_RUN, -1)(((ic)->ic_newstate)((ic), (IEEE80211_S_RUN), (-1))); |
| 685 | } |
| 686 | done: |
| 687 | splx(s)spllower(s); |
| 688 | return error; |
| 689 | } |
| 690 | |
| 691 | void |
| 692 | ath_stop(struct ifnet *ifp) |
| 693 | { |
| 694 | struct ieee80211com *ic = (struct ieee80211com *) ifp; |
| 695 | struct ath_softc *sc = ifp->if_softc; |
| 696 | struct ath_hal *ah = sc->sc_ah; |
| 697 | int s; |
| 698 | |
| 699 | DPRINTF(ATH_DEBUG_ANY, ("%s: invalid %u if_flags 0x%x\n", |
| 700 | __func__, sc->sc_invalid, ifp->if_flags)); |
| 701 | |
| 702 | s = splnet()splraise(0x4); |
| 703 | if (ifp->if_flags & IFF_RUNNING0x40) { |
| 704 | /* |
| 705 | * Shutdown the hardware and driver: |
| 706 | * disable interrupts |
| 707 | * turn off timers |
| 708 | * clear transmit machinery |
| 709 | * clear receive machinery |
| 710 | * drain and release tx queues |
| 711 | * reclaim beacon resources |
| 712 | * reset 802.11 state machine |
| 713 | * power down hardware |
| 714 | * |
| 715 | * Note that some of this work is not possible if the |
| 716 | * hardware is gone (invalid). |
| 717 | */ |
| 718 | ifp->if_flags &= ~IFF_RUNNING0x40; |
| 719 | ifp->if_timer = 0; |
| 720 | if (!sc->sc_invalid) |
| 721 | ath_hal_set_intr(ah, 0)((*(ah)->ah_set_intr)((ah), (0))); |
| 722 | ath_draintxq(sc); |
| 723 | if (!sc->sc_invalid) { |
| 724 | ath_stoprecv(sc); |
| 725 | } else { |
| 726 | sc->sc_rxlink = NULL((void *)0); |
| 727 | } |
| 728 | ifq_purge(&ifp->if_snd); |
| 729 | #ifndef IEEE80211_STA_ONLY |
| 730 | ath_beacon_free(sc); |
| 731 | #endif |
| 732 | ieee80211_new_state(ic, IEEE80211_S_INIT, -1)(((ic)->ic_newstate)((ic), (IEEE80211_S_INIT), (-1))); |
| 733 | if (!sc->sc_invalid) { |
| 734 | ath_hal_set_power(ah, HAL_PM_FULL_SLEEP, 0)((*(ah)->ah_set_power)((ah), (HAL_PM_FULL_SLEEP), AH_TRUE, (0))); |
| 735 | } |
| 736 | ath_disable(sc); |
| 737 | } |
| 738 | splx(s)spllower(s); |
| 739 | } |
| 740 | |
| 741 | /* |
| 742 | * Reset the hardware w/o losing operational state. This is |
| 743 | * basically a more efficient way of doing ath_stop, ath_init, |
| 744 | * followed by state transitions to the current 802.11 |
| 745 | * operational state. Used to recover from errors rx overrun |
| 746 | * and to reset the hardware when rf gain settings must be reset. |
| 747 | */ |
| 748 | void |
| 749 | ath_reset(struct ath_softc *sc, int full) |
| 750 | { |
| 751 | struct ieee80211com *ic = &sc->sc_ic; |
| 752 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
| 753 | struct ath_hal *ah = sc->sc_ah; |
| 754 | struct ieee80211_channel *c; |
| 755 | HAL_STATUS status; |
| 756 | HAL_CHANNEL hchan; |
| 757 | |
| 758 | /* |
| 759 | * Convert to a HAL channel description. |
| 760 | */ |
| 761 | c = ic->ic_ibss_chan; |
| 762 | hchan.channel = c->ic_freq; |
| 763 | hchan.channelFlags = c->ic_flags; |
| 764 | |
| 765 | ath_hal_set_intr(ah, 0)((*(ah)->ah_set_intr)((ah), (0))); /* disable interrupts */ |
| 766 | ath_draintxq(sc); /* stop xmit side */ |
| 767 | ath_stoprecv(sc); /* stop recv side */ |
| 768 | /* NB: indicate channel change so we do a full reset */ |
| 769 | if (!ath_hal_reset(ah, ic->ic_opmode, &hchan,((*(ah)->ah_reset)((ah), (ic->ic_opmode), (&hchan), (full ? AH_TRUE : AH_FALSE), (&status))) |
| 770 | full ? AH_TRUE : AH_FALSE, &status)((*(ah)->ah_reset)((ah), (ic->ic_opmode), (&hchan), (full ? AH_TRUE : AH_FALSE), (&status)))) { |
| 771 | printf("%s: %s: unable to reset hardware; hal status %u\n", |
| 772 | ifp->if_xname, __func__, status); |
| 773 | } |
| 774 | ath_set_slot_time(sc); |
| 775 | /* In case channel changed, save as a node channel */ |
| 776 | ic->ic_bss->ni_chan = ic->ic_ibss_chan; |
| 777 | ath_hal_set_intr(ah, sc->sc_imask)((*(ah)->ah_set_intr)((ah), (sc->sc_imask))); |
| 778 | if (ath_startrecv(sc) != 0) /* restart recv */ |
| 779 | printf("%s: %s: unable to start recv logic\n", ifp->if_xname, |
| 780 | __func__); |
| 781 | ath_start(ifp); /* restart xmit */ |
| 782 | if (ic->ic_state == IEEE80211_S_RUN) |
| 783 | ath_beacon_config(sc); /* restart beacons */ |
| 784 | } |
| 785 | |
| 786 | void |
| 787 | ath_start(struct ifnet *ifp) |
| 788 | { |
| 789 | struct ath_softc *sc = ifp->if_softc; |
| 790 | struct ath_hal *ah = sc->sc_ah; |
| 791 | struct ieee80211com *ic = &sc->sc_ic; |
| 792 | struct ieee80211_node *ni; |
| 793 | struct ath_buf *bf; |
| 794 | struct mbuf *m; |
| 795 | struct ieee80211_frame *wh; |
| 796 | int s; |
| 797 | |
| 798 | if (!(ifp->if_flags & IFF_RUNNING0x40) || ifq_is_oactive(&ifp->if_snd) || |
| 799 | sc->sc_invalid) |
| 800 | return; |
| 801 | for (;;) { |
| 802 | /* |
| 803 | * Grab a TX buffer and associated resources. |
| 804 | */ |
| 805 | s = splnet()splraise(0x4); |
| 806 | bf = TAILQ_FIRST(&sc->sc_txbuf)((&sc->sc_txbuf)->tqh_first); |
| 807 | if (bf != NULL((void *)0)) |
| 808 | TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list)do { if (((bf)->bf_list.tqe_next) != ((void *)0)) (bf)-> bf_list.tqe_next->bf_list.tqe_prev = (bf)->bf_list.tqe_prev ; else (&sc->sc_txbuf)->tqh_last = (bf)->bf_list .tqe_prev; *(bf)->bf_list.tqe_prev = (bf)->bf_list.tqe_next ; ((bf)->bf_list.tqe_prev) = ((void *)-1); ((bf)->bf_list .tqe_next) = ((void *)-1); } while (0); |
| 809 | splx(s)spllower(s); |
| 810 | if (bf == NULL((void *)0)) { |
| 811 | DPRINTF(ATH_DEBUG_ANY, ("%s: out of xmit buffers\n", |
| 812 | __func__)); |
| 813 | sc->sc_stats.ast_tx_qstop++; |
| 814 | ifq_set_oactive(&ifp->if_snd); |
| 815 | break; |
| 816 | } |
| 817 | /* |
| 818 | * Poll the management queue for frames; they |
| 819 | * have priority over normal data frames. |
| 820 | */ |
| 821 | m = mq_dequeue(&ic->ic_mgtq); |
| 822 | if (m == NULL((void *)0)) { |
| 823 | /* |
| 824 | * No data frames go out unless we're associated. |
| 825 | */ |
| 826 | if (ic->ic_state != IEEE80211_S_RUN) { |
| 827 | DPRINTF(ATH_DEBUG_ANY, |
| 828 | ("%s: ignore data packet, state %u\n", |
| 829 | __func__, ic->ic_state)); |
| 830 | sc->sc_stats.ast_tx_discard++; |
| 831 | s = splnet()splraise(0x4); |
| 832 | TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list)do { (bf)->bf_list.tqe_next = ((void *)0); (bf)->bf_list .tqe_prev = (&sc->sc_txbuf)->tqh_last; *(&sc-> sc_txbuf)->tqh_last = (bf); (&sc->sc_txbuf)->tqh_last = &(bf)->bf_list.tqe_next; } while (0); |
| 833 | splx(s)spllower(s); |
| 834 | break; |
| 835 | } |
| 836 | m = ifq_dequeue(&ifp->if_snd); |
| 837 | if (m == NULL((void *)0)) { |
| 838 | s = splnet()splraise(0x4); |
| 839 | TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list)do { (bf)->bf_list.tqe_next = ((void *)0); (bf)->bf_list .tqe_prev = (&sc->sc_txbuf)->tqh_last; *(&sc-> sc_txbuf)->tqh_last = (bf); (&sc->sc_txbuf)->tqh_last = &(bf)->bf_list.tqe_next; } while (0); |
| 840 | splx(s)spllower(s); |
| 841 | break; |
| 842 | } |
| 843 | |
| 844 | #if NBPFILTER1 > 0 |
| 845 | if (ifp->if_bpf) |
| 846 | bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT(1 << 1)); |
| 847 | #endif |
| 848 | |
| 849 | /* |
| 850 | * Encapsulate the packet in prep for transmission. |
| 851 | */ |
| 852 | m = ieee80211_encap(ifp, m, &ni); |
| 853 | if (m == NULL((void *)0)) { |
| 854 | DPRINTF(ATH_DEBUG_ANY, |
| 855 | ("%s: encapsulation failure\n", |
| 856 | __func__)); |
| 857 | sc->sc_stats.ast_tx_encap++; |
| 858 | goto bad; |
| 859 | } |
| 860 | wh = mtod(m, struct ieee80211_frame *)((struct ieee80211_frame *)((m)->m_hdr.mh_data)); |
Value stored to 'wh' is never read | |
| 861 | } else { |
| 862 | ni = m->m_pkthdrM_dat.MH.MH_pkthdr.ph_cookie; |
| 863 | |
| 864 | wh = mtod(m, struct ieee80211_frame *)((struct ieee80211_frame *)((m)->m_hdr.mh_data)); |
| 865 | if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK0xf0) == |
| 866 | IEEE80211_FC0_SUBTYPE_PROBE_RESP0x50) { |
| 867 | /* fill time stamp */ |
| 868 | u_int64_t tsf; |
| 869 | u_int32_t *tstamp; |
| 870 | |
| 871 | tsf = ath_hal_get_tsf64(ah)((*(ah)->ah_get_tsf64)((ah))); |
| 872 | /* XXX: adjust 100us delay to xmit */ |
| 873 | tsf += 100; |
| 874 | tstamp = (u_int32_t *)&wh[1]; |
| 875 | tstamp[0] = htole32(tsf & 0xffffffff)((__uint32_t)(tsf & 0xffffffff)); |
| 876 | tstamp[1] = htole32(tsf >> 32)((__uint32_t)(tsf >> 32)); |
| 877 | } |
| 878 | sc->sc_stats.ast_tx_mgmt++; |
| 879 | } |
| 880 | |
| 881 | if (ath_tx_start(sc, ni, bf, m)) { |
| 882 | bad: |
| 883 | s = splnet()splraise(0x4); |
| 884 | TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list)do { (bf)->bf_list.tqe_next = ((void *)0); (bf)->bf_list .tqe_prev = (&sc->sc_txbuf)->tqh_last; *(&sc-> sc_txbuf)->tqh_last = (bf); (&sc->sc_txbuf)->tqh_last = &(bf)->bf_list.tqe_next; } while (0); |
| 885 | splx(s)spllower(s); |
| 886 | ifp->if_oerrorsif_data.ifi_oerrors++; |
| 887 | if (ni != NULL((void *)0)) |
| 888 | ieee80211_release_node(ic, ni); |
| 889 | continue; |
| 890 | } |
| 891 | |
| 892 | sc->sc_tx_timer = 5; |
| 893 | ifp->if_timer = 1; |
| 894 | } |
| 895 | } |
| 896 | |
| 897 | int |
| 898 | ath_media_change(struct ifnet *ifp) |
| 899 | { |
| 900 | int error; |
| 901 | |
| 902 | error = ieee80211_media_change(ifp); |
| 903 | if (error == ENETRESET52) { |
| 904 | if ((ifp->if_flags & (IFF_RUNNING0x40|IFF_UP0x1)) == |
| 905 | (IFF_RUNNING0x40|IFF_UP0x1)) |
| 906 | ath_init(ifp); /* XXX lose error */ |
| 907 | error = 0; |
| 908 | } |
| 909 | return error; |
| 910 | } |
| 911 | |
| 912 | void |
| 913 | ath_watchdog(struct ifnet *ifp) |
| 914 | { |
| 915 | struct ath_softc *sc = ifp->if_softc; |
| 916 | |
| 917 | ifp->if_timer = 0; |
| 918 | if ((ifp->if_flags & IFF_RUNNING0x40) == 0 || sc->sc_invalid) |
| 919 | return; |
| 920 | if (sc->sc_tx_timer) { |
| 921 | if (--sc->sc_tx_timer == 0) { |
| 922 | printf("%s: device timeout\n", ifp->if_xname); |
| 923 | ath_reset(sc, 1); |
| 924 | ifp->if_oerrorsif_data.ifi_oerrors++; |
| 925 | sc->sc_stats.ast_watchdog++; |
| 926 | return; |
| 927 | } |
| 928 | ifp->if_timer = 1; |
| 929 | } |
| 930 | |
| 931 | ieee80211_watchdog(ifp); |
| 932 | } |
| 933 | |
| 934 | int |
| 935 | ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) |
| 936 | { |
| 937 | struct ath_softc *sc = ifp->if_softc; |
| 938 | struct ieee80211com *ic = &sc->sc_ic; |
| 939 | struct ifreq *ifr = (struct ifreq *)data; |
| 940 | int error = 0, s; |
| 941 | |
| 942 | s = splnet()splraise(0x4); |
| 943 | switch (cmd) { |
| 944 | case SIOCSIFADDR((unsigned long)0x80000000 | ((sizeof(struct ifreq) & 0x1fff ) << 16) | ((('i')) << 8) | ((12))): |
| 945 | ifp->if_flags |= IFF_UP0x1; |
| 946 | /* FALLTHROUGH */ |
| 947 | case SIOCSIFFLAGS((unsigned long)0x80000000 | ((sizeof(struct ifreq) & 0x1fff ) << 16) | ((('i')) << 8) | ((16))): |
| 948 | if (ifp->if_flags & IFF_UP0x1) { |
| 949 | if (ifp->if_flags & IFF_RUNNING0x40) { |
| 950 | /* |
| 951 | * To avoid rescanning another access point, |
| 952 | * do not call ath_init() here. Instead, |
| 953 | * only reflect promisc mode settings. |
| 954 | */ |
| 955 | ath_mode_init(sc); |
| 956 | } else { |
| 957 | /* |
| 958 | * Beware of being called during detach to |
| 959 | * reset promiscuous mode. In that case we |
| 960 | * will still be marked UP but not RUNNING. |
| 961 | * However trying to re-init the interface |
| 962 | * is the wrong thing to do as we've already |
| 963 | * torn down much of our state. There's |
| 964 | * probably a better way to deal with this. |
| 965 | */ |
| 966 | if (!sc->sc_invalid) |
| 967 | ath_init(ifp); /* XXX lose error */ |
| 968 | } |
| 969 | } else |
| 970 | ath_stop(ifp); |
| 971 | break; |
| 972 | case SIOCADDMULTI((unsigned long)0x80000000 | ((sizeof(struct ifreq) & 0x1fff ) << 16) | ((('i')) << 8) | ((49))): |
| 973 | case SIOCDELMULTI((unsigned long)0x80000000 | ((sizeof(struct ifreq) & 0x1fff ) << 16) | ((('i')) << 8) | ((50))): |
| 974 | error = (cmd == SIOCADDMULTI((unsigned long)0x80000000 | ((sizeof(struct ifreq) & 0x1fff ) << 16) | ((('i')) << 8) | ((49)))) ? |
| 975 | ether_addmulti(ifr, &sc->sc_ic.ic_ac) : |
| 976 | ether_delmulti(ifr, &sc->sc_ic.ic_ac); |
| 977 | if (error == ENETRESET52) { |
| 978 | if (ifp->if_flags & IFF_RUNNING0x40) |
| 979 | ath_mode_init(sc); |
| 980 | error = 0; |
| 981 | } |
| 982 | break; |
| 983 | case SIOCGATHSTATS(((unsigned long)0x80000000|(unsigned long)0x40000000) | ((sizeof (struct ifreq) & 0x1fff) << 16) | ((('i')) << 8) | ((137))): |
| 984 | error = copyout(&sc->sc_stats, |
| 985 | ifr->ifr_dataifr_ifru.ifru_data, sizeof (sc->sc_stats)); |
| 986 | break; |
| 987 | default: |
| 988 | error = ieee80211_ioctl(ifp, cmd, data); |
| 989 | if (error == ENETRESET52) { |
| 990 | if ((ifp->if_flags & (IFF_RUNNING0x40|IFF_UP0x1)) == |
| 991 | (IFF_RUNNING0x40|IFF_UP0x1)) { |
| 992 | if (ic->ic_opmode != IEEE80211_M_MONITOR) |
| 993 | ath_init(ifp); /* XXX lose error */ |
| 994 | else |
| 995 | ath_reset(sc, 1); |
| 996 | } |
| 997 | error = 0; |
| 998 | } |
| 999 | break; |
| 1000 | } |
| 1001 | splx(s)spllower(s); |
| 1002 | return error; |
| 1003 | } |
| 1004 | |
| 1005 | /* |
| 1006 | * Fill the hardware key cache with key entries. |
| 1007 | */ |
| 1008 | int |
| 1009 | ath_initkeytable(struct ath_softc *sc) |
| 1010 | { |
| 1011 | struct ieee80211com *ic = &sc->sc_ic; |
| 1012 | struct ath_hal *ah = sc->sc_ah; |
| 1013 | int i; |
| 1014 | |
| 1015 | if (ath_softcrypto) { |
| 1016 | /* |
| 1017 | * Disable the hardware crypto engine and reset the key cache |
| 1018 | * to allow software crypto operation for WEP/RSN/WPA2 |
| 1019 | */ |
| 1020 | if (ic->ic_flags & (IEEE80211_F_WEPON0x00000100|IEEE80211_F_RSNON0x00200000)) |
| 1021 | (void)ath_hal_softcrypto(ah, AH_TRUE)((*(ah)->ah_softcrypto)((ah), (AH_TRUE))); |
| 1022 | else |
| 1023 | (void)ath_hal_softcrypto(ah, AH_FALSE)((*(ah)->ah_softcrypto)((ah), (AH_FALSE))); |
| 1024 | return (0); |
| 1025 | } |
| 1026 | |
| 1027 | /* WEP is disabled, we only support WEP in hardware yet */ |
| 1028 | if ((ic->ic_flags & IEEE80211_F_WEPON0x00000100) == 0) |
| 1029 | return (0); |
| 1030 | |
| 1031 | /* |
| 1032 | * Setup the hardware after reset: the key cache is filled as |
| 1033 | * needed and the receive engine is set going. Frame transmit |
| 1034 | * is handled entirely in the frame output path; there's nothing |
| 1035 | * to do here except setup the interrupt mask. |
| 1036 | */ |
| 1037 | |
| 1038 | /* XXX maybe should reset all keys when !WEPON */ |
| 1039 | for (i = 0; i < IEEE80211_WEP_NKID4; i++) { |
| 1040 | struct ieee80211_key *k = &ic->ic_nw_keys[i]; |
| 1041 | if (k->k_len == 0) |
| 1042 | ath_hal_reset_key(ah, i)((*(ah)->ah_reset_key)((ah), (i))); |
| 1043 | else { |
| 1044 | HAL_KEYVAL hk; |
| 1045 | |
| 1046 | bzero(&hk, sizeof(hk))__builtin_bzero((&hk), (sizeof(hk))); |
| 1047 | /* |
| 1048 | * Pad the key to a supported key length. It |
| 1049 | * is always a good idea to use full-length |
| 1050 | * keys without padded zeros but this seems |
| 1051 | * to be the default behaviour used by many |
| 1052 | * implementations. |
| 1053 | */ |
| 1054 | if (k->k_cipher == IEEE80211_CIPHER_WEP40) |
| 1055 | hk.wk_len = AR5K_KEYVAL_LENGTH_405; |
| 1056 | else if (k->k_cipher == IEEE80211_CIPHER_WEP104) |
| 1057 | hk.wk_len = AR5K_KEYVAL_LENGTH_10413; |
| 1058 | else |
| 1059 | return (EINVAL22); |
| 1060 | bcopy(k->k_key, hk.wk_key, hk.wk_len); |
| 1061 | |
| 1062 | if (ath_hal_set_key(ah, i, &hk)((*(ah)->ah_set_key)((ah), (i), (&hk), ((void *)0), AH_FALSE )) != AH_TRUE) |
| 1063 | return (EINVAL22); |
| 1064 | } |
| 1065 | } |
| 1066 | |
| 1067 | return (0); |
| 1068 | } |
| 1069 | |
| 1070 | void |
| 1071 | ath_mcastfilter_accum(caddr_t dl, u_int32_t (*mfilt)[2]) |
| 1072 | { |
| 1073 | u_int32_t val; |
| 1074 | u_int8_t pos; |
| 1075 | |
| 1076 | val = LE_READ_4(dl + 0)((u_int32_t) ((((u_int8_t *)(dl + 0))[0] ) | (((u_int8_t *)(dl + 0))[1] << 8) | (((u_int8_t *)(dl + 0))[2] << 16 ) | (((u_int8_t *)(dl + 0))[3] << 24))); |
| 1077 | pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; |
| 1078 | val = LE_READ_4(dl + 3)((u_int32_t) ((((u_int8_t *)(dl + 3))[0] ) | (((u_int8_t *)(dl + 3))[1] << 8) | (((u_int8_t *)(dl + 3))[2] << 16 ) | (((u_int8_t *)(dl + 3))[3] << 24))); |
| 1079 | pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; |
| 1080 | pos &= 0x3f; |
| 1081 | (*mfilt)[pos / 32] |= (1 << (pos % 32)); |
| 1082 | } |
| 1083 | |
| 1084 | void |
| 1085 | ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2]) |
| 1086 | { |
| 1087 | struct arpcom *ac = &sc->sc_ic.ic_ac; |
| 1088 | struct ifnet *ifp = &sc->sc_ic.ic_ific_ac.ac_if; |
| 1089 | struct ether_multi *enm; |
| 1090 | struct ether_multistep estep; |
| 1091 | |
| 1092 | if (ac->ac_multirangecnt > 0) { |
| 1093 | /* XXX Punt on ranges. */ |
| 1094 | (*mfilt)[0] = (*mfilt)[1] = ~((u_int32_t)0); |
| 1095 | ifp->if_flags |= IFF_ALLMULTI0x200; |
| 1096 | return; |
| 1097 | } |
| 1098 | |
| 1099 | ETHER_FIRST_MULTI(estep, ac, enm)do { (estep).e_enm = ((&(ac)->ac_multiaddrs)->lh_first ); do { if ((((enm)) = ((estep)).e_enm) != ((void *)0)) ((estep )).e_enm = ((((enm)))->enm_list.le_next); } while ( 0); } while ( 0); |
| 1100 | while (enm != NULL((void *)0)) { |
| 1101 | ath_mcastfilter_accum(enm->enm_addrlo, mfilt); |
| 1102 | ETHER_NEXT_MULTI(estep, enm)do { if (((enm) = (estep).e_enm) != ((void *)0)) (estep).e_enm = (((enm))->enm_list.le_next); } while ( 0); |
| 1103 | } |
| 1104 | ifp->if_flags &= ~IFF_ALLMULTI0x200; |
| 1105 | } |
| 1106 | |
| 1107 | /* |
| 1108 | * Calculate the receive filter according to the |
| 1109 | * operating mode and state: |
| 1110 | * |
| 1111 | * o always accept unicast, broadcast, and multicast traffic |
| 1112 | * o maintain current state of phy error reception |
| 1113 | * o probe request frames are accepted only when operating in |
| 1114 | * hostap, adhoc, or monitor modes |
| 1115 | * o enable promiscuous mode according to the interface state |
| 1116 | * o accept beacons: |
| 1117 | * - when operating in adhoc mode so the 802.11 layer creates |
| 1118 | * node table entries for peers, |
| 1119 | * - when operating in station mode for collecting rssi data when |
| 1120 | * the station is otherwise quiet, or |
| 1121 | * - when scanning |
| 1122 | */ |
| 1123 | u_int32_t |
| 1124 | ath_calcrxfilter(struct ath_softc *sc) |
| 1125 | { |
| 1126 | struct ieee80211com *ic = &sc->sc_ic; |
| 1127 | struct ath_hal *ah = sc->sc_ah; |
| 1128 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
| 1129 | u_int32_t rfilt; |
| 1130 | |
| 1131 | rfilt = (ath_hal_get_rx_filter(ah)((*(ah)->ah_get_rx_filter)((ah))) & HAL_RX_FILTER_PHYERR0x00000100) |
| 1132 | | HAL_RX_FILTER_UCAST0x00000001 | HAL_RX_FILTER_BCAST0x00000004 | HAL_RX_FILTER_MCAST0x00000002; |
| 1133 | if (ic->ic_opmode != IEEE80211_M_STA) |
| 1134 | rfilt |= HAL_RX_FILTER_PROBEREQ0x00000080; |
| 1135 | #ifndef IEEE80211_STA_ONLY |
| 1136 | if (ic->ic_opmode != IEEE80211_M_AHDEMO) |
| 1137 | #endif |
| 1138 | rfilt |= HAL_RX_FILTER_BEACON0x00000010; |
| 1139 | if (ifp->if_flags & IFF_PROMISC0x100) |
| 1140 | rfilt |= HAL_RX_FILTER_PROM0x00000020; |
| 1141 | return rfilt; |
| 1142 | } |
| 1143 | |
| 1144 | void |
| 1145 | ath_mode_init(struct ath_softc *sc) |
| 1146 | { |
| 1147 | struct ath_hal *ah = sc->sc_ah; |
| 1148 | u_int32_t rfilt, mfilt[2]; |
| 1149 | |
| 1150 | /* configure rx filter */ |
| 1151 | rfilt = ath_calcrxfilter(sc); |
| 1152 | ath_hal_set_rx_filter(ah, rfilt)((*(ah)->ah_set_rx_filter)((ah), (rfilt))); |
| 1153 | |
| 1154 | /* configure operational mode */ |
| 1155 | ath_hal_set_opmode(ah)((*(ah)->ah_set_opmode)((ah))); |
| 1156 | |
| 1157 | /* calculate and install multicast filter */ |
| 1158 | mfilt[0] = mfilt[1] = 0; |
| 1159 | ath_mcastfilter_compute(sc, &mfilt); |
| 1160 | ath_hal_set_mcast_filter(ah, mfilt[0], mfilt[1])((*(ah)->ah_set_mcast_filter)((ah), (mfilt[0]), (mfilt[1]) )); |
| 1161 | DPRINTF(ATH_DEBUG_MODE, ("%s: RX filter 0x%x, MC filter %08x:%08x\n", |
| 1162 | __func__, rfilt, mfilt[0], mfilt[1])); |
| 1163 | } |
| 1164 | |
| 1165 | struct mbuf * |
| 1166 | ath_getmbuf(int flags, int type, u_int pktlen) |
| 1167 | { |
| 1168 | struct mbuf *m; |
| 1169 | |
| 1170 | KASSERT(pktlen <= MCLBYTES, ("802.11 packet too large: %u", pktlen))if (!(pktlen <= (1 << 11))) panic ("802.11 packet too large: %u" , pktlen); |
| 1171 | MGETHDR(m, flags, type)m = m_gethdr((flags), (type)); |
| 1172 | if (m != NULL((void *)0) && pktlen > MHLEN((256 - sizeof(struct m_hdr)) - sizeof(struct pkthdr))) { |
| 1173 | MCLGET(m, flags)(void) m_clget((m), (flags), (1 << 11)); |
| 1174 | if ((m->m_flagsm_hdr.mh_flags & M_EXT0x0001) == 0) { |
| 1175 | m_free(m); |
| 1176 | m = NULL((void *)0); |
| 1177 | } |
| 1178 | } |
| 1179 | return m; |
| 1180 | } |
| 1181 | |
| 1182 | #ifndef IEEE80211_STA_ONLY |
| 1183 | int |
| 1184 | ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni) |
| 1185 | { |
| 1186 | struct ieee80211com *ic = &sc->sc_ic; |
| 1187 | struct ath_hal *ah = sc->sc_ah; |
| 1188 | struct ath_buf *bf; |
| 1189 | struct ath_desc *ds; |
| 1190 | struct mbuf *m; |
| 1191 | int error; |
| 1192 | u_int8_t rate; |
| 1193 | const HAL_RATE_TABLE *rt; |
| 1194 | u_int flags = 0; |
| 1195 | |
| 1196 | bf = sc->sc_bcbuf; |
| 1197 | if (bf->bf_m != NULL((void *)0)) { |
| 1198 | bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (bf-> bf_dmamap)); |
| 1199 | m_freem(bf->bf_m); |
| 1200 | bf->bf_m = NULL((void *)0); |
| 1201 | bf->bf_node = NULL((void *)0); |
| 1202 | } |
| 1203 | /* |
| 1204 | * NB: the beacon data buffer must be 32-bit aligned; |
| 1205 | * we assume the mbuf routines will return us something |
| 1206 | * with this alignment (perhaps should assert). |
| 1207 | */ |
| 1208 | m = ieee80211_beacon_alloc(ic, ni); |
| 1209 | if (m == NULL((void *)0)) { |
| 1210 | DPRINTF(ATH_DEBUG_BEACON, ("%s: cannot get mbuf/cluster\n", |
| 1211 | __func__)); |
| 1212 | sc->sc_stats.ast_be_nombuf++; |
| 1213 | return ENOMEM12; |
| 1214 | } |
| 1215 | |
| 1216 | DPRINTF(ATH_DEBUG_BEACON, ("%s: m %p len %u\n", __func__, m, m->m_len)); |
| 1217 | error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( bf->bf_dmamap), (m), (0x0001)) |
| 1218 | BUS_DMA_NOWAIT)(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( bf->bf_dmamap), (m), (0x0001)); |
| 1219 | if (error != 0) { |
| 1220 | m_freem(m); |
| 1221 | return error; |
| 1222 | } |
| 1223 | KASSERT(bf->bf_nseg == 1,if (!(bf->bf_dmamap->dm_nsegs == 1)) panic ("%s: multi-segment packet; nseg %u" , __func__, bf->bf_dmamap->dm_nsegs) |
| 1224 | ("%s: multi-segment packet; nseg %u", __func__, bf->bf_nseg))if (!(bf->bf_dmamap->dm_nsegs == 1)) panic ("%s: multi-segment packet; nseg %u" , __func__, bf->bf_dmamap->dm_nsegs); |
| 1225 | bf->bf_m = m; |
| 1226 | |
| 1227 | /* setup descriptors */ |
| 1228 | ds = bf->bf_desc; |
| 1229 | bzero(ds, sizeof(struct ath_desc))__builtin_bzero((ds), (sizeof(struct ath_desc))); |
| 1230 | |
| 1231 | if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_veol) { |
| 1232 | ds->ds_link = bf->bf_daddr; /* link to self */ |
| 1233 | flags |= HAL_TXDESC_VEOL0x0020; |
| 1234 | } else { |
| 1235 | ds->ds_link = 0; |
| 1236 | } |
| 1237 | ds->ds_data = bf->bf_segsbf_dmamap->dm_segs[0].ds_addr; |
| 1238 | |
| 1239 | DPRINTF(ATH_DEBUG_ANY, ("%s: segaddr %p seglen %u\n", __func__, |
| 1240 | (caddr_t)bf->bf_segs[0].ds_addr, (u_int)bf->bf_segs[0].ds_len)); |
| 1241 | |
| 1242 | /* |
| 1243 | * Calculate rate code. |
| 1244 | * XXX everything at min xmit rate |
| 1245 | */ |
| 1246 | rt = sc->sc_currates; |
| 1247 | KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode))if (!(rt != ((void *)0))) panic ("no rate table, mode %u", sc ->sc_curmode); |
| 1248 | if (ic->ic_flags & IEEE80211_F_SHPREAMBLE0x00040000) { |
| 1249 | rate = rt->info[0].rateCode | rt->info[0].shortPreamble; |
| 1250 | } else { |
| 1251 | rate = rt->info[0].rateCode; |
| 1252 | } |
| 1253 | |
| 1254 | flags = HAL_TXDESC_NOACK0x0002; |
| 1255 | if (ic->ic_opmode == IEEE80211_M_IBSS) |
| 1256 | flags |= HAL_TXDESC_VEOL0x0020; |
| 1257 | |
| 1258 | if (!ath_hal_setup_tx_desc(ah, ds((*(ah)->ah_setup_tx_desc)((ah), (ds), (m->M_dat.MH.MH_pkthdr .len + 4), (sizeof(struct ieee80211_frame)), (HAL_PKT_TYPE_BEACON ), (60), (rate), (1), (((u_int32_t) - 1)), (0), (flags), (0), (0))) |
| 1259 | , m->m_pkthdr.len + IEEE80211_CRC_LEN /* packet length */((*(ah)->ah_setup_tx_desc)((ah), (ds), (m->M_dat.MH.MH_pkthdr .len + 4), (sizeof(struct ieee80211_frame)), (HAL_PKT_TYPE_BEACON ), (60), (rate), (1), (((u_int32_t) - 1)), (0), (flags), (0), (0))) |
| 1260 | , sizeof(struct ieee80211_frame) /* header length */((*(ah)->ah_setup_tx_desc)((ah), (ds), (m->M_dat.MH.MH_pkthdr .len + 4), (sizeof(struct ieee80211_frame)), (HAL_PKT_TYPE_BEACON ), (60), (rate), (1), (((u_int32_t) - 1)), (0), (flags), (0), (0))) |
| 1261 | , HAL_PKT_TYPE_BEACON /* Atheros packet type */((*(ah)->ah_setup_tx_desc)((ah), (ds), (m->M_dat.MH.MH_pkthdr .len + 4), (sizeof(struct ieee80211_frame)), (HAL_PKT_TYPE_BEACON ), (60), (rate), (1), (((u_int32_t) - 1)), (0), (flags), (0), (0))) |
| 1262 | , 60 /* txpower XXX */((*(ah)->ah_setup_tx_desc)((ah), (ds), (m->M_dat.MH.MH_pkthdr .len + 4), (sizeof(struct ieee80211_frame)), (HAL_PKT_TYPE_BEACON ), (60), (rate), (1), (((u_int32_t) - 1)), (0), (flags), (0), (0))) |
| 1263 | , rate, 1 /* series 0 rate/tries */((*(ah)->ah_setup_tx_desc)((ah), (ds), (m->M_dat.MH.MH_pkthdr .len + 4), (sizeof(struct ieee80211_frame)), (HAL_PKT_TYPE_BEACON ), (60), (rate), (1), (((u_int32_t) - 1)), (0), (flags), (0), (0))) |
| 1264 | , HAL_TXKEYIX_INVALID /* no encryption */((*(ah)->ah_setup_tx_desc)((ah), (ds), (m->M_dat.MH.MH_pkthdr .len + 4), (sizeof(struct ieee80211_frame)), (HAL_PKT_TYPE_BEACON ), (60), (rate), (1), (((u_int32_t) - 1)), (0), (flags), (0), (0))) |
| 1265 | , 0 /* antenna mode */((*(ah)->ah_setup_tx_desc)((ah), (ds), (m->M_dat.MH.MH_pkthdr .len + 4), (sizeof(struct ieee80211_frame)), (HAL_PKT_TYPE_BEACON ), (60), (rate), (1), (((u_int32_t) - 1)), (0), (flags), (0), (0))) |
| 1266 | , flags /* no ack for beacons */((*(ah)->ah_setup_tx_desc)((ah), (ds), (m->M_dat.MH.MH_pkthdr .len + 4), (sizeof(struct ieee80211_frame)), (HAL_PKT_TYPE_BEACON ), (60), (rate), (1), (((u_int32_t) - 1)), (0), (flags), (0), (0))) |
| 1267 | , 0 /* rts/cts rate */((*(ah)->ah_setup_tx_desc)((ah), (ds), (m->M_dat.MH.MH_pkthdr .len + 4), (sizeof(struct ieee80211_frame)), (HAL_PKT_TYPE_BEACON ), (60), (rate), (1), (((u_int32_t) - 1)), (0), (flags), (0), (0))) |
| 1268 | , 0 /* rts/cts duration */((*(ah)->ah_setup_tx_desc)((ah), (ds), (m->M_dat.MH.MH_pkthdr .len + 4), (sizeof(struct ieee80211_frame)), (HAL_PKT_TYPE_BEACON ), (60), (rate), (1), (((u_int32_t) - 1)), (0), (flags), (0), (0))) |
| 1269 | )((*(ah)->ah_setup_tx_desc)((ah), (ds), (m->M_dat.MH.MH_pkthdr .len + 4), (sizeof(struct ieee80211_frame)), (HAL_PKT_TYPE_BEACON ), (60), (rate), (1), (((u_int32_t) - 1)), (0), (flags), (0), (0)))) { |
| 1270 | printf("%s: ath_hal_setup_tx_desc failed\n", __func__); |
| 1271 | return -1; |
| 1272 | } |
| 1273 | /* NB: beacon's BufLen must be a multiple of 4 bytes */ |
| 1274 | /* XXX verify mbuf data area covers this roundup */ |
| 1275 | if (!ath_hal_fill_tx_desc(ah, ds((*(ah)->ah_fill_tx_desc)((ah), (ds), (((((bf->bf_dmamap ->dm_segs[0].ds_len)+((4)-1))/(4))*(4))), (AH_TRUE), (AH_TRUE ))) |
| 1276 | , roundup(bf->bf_segs[0].ds_len, 4) /* buffer length */((*(ah)->ah_fill_tx_desc)((ah), (ds), (((((bf->bf_dmamap ->dm_segs[0].ds_len)+((4)-1))/(4))*(4))), (AH_TRUE), (AH_TRUE ))) |
| 1277 | , AH_TRUE /* first segment */((*(ah)->ah_fill_tx_desc)((ah), (ds), (((((bf->bf_dmamap ->dm_segs[0].ds_len)+((4)-1))/(4))*(4))), (AH_TRUE), (AH_TRUE ))) |
| 1278 | , AH_TRUE /* last segment */((*(ah)->ah_fill_tx_desc)((ah), (ds), (((((bf->bf_dmamap ->dm_segs[0].ds_len)+((4)-1))/(4))*(4))), (AH_TRUE), (AH_TRUE ))) |
| 1279 | )((*(ah)->ah_fill_tx_desc)((ah), (ds), (((((bf->bf_dmamap ->dm_segs[0].ds_len)+((4)-1))/(4))*(4))), (AH_TRUE), (AH_TRUE )))) { |
| 1280 | printf("%s: ath_hal_fill_tx_desc failed\n", __func__); |
| 1281 | return -1; |
| 1282 | } |
| 1283 | |
| 1284 | /* XXX it is not appropriate to bus_dmamap_sync? -dcy */ |
| 1285 | |
| 1286 | return 0; |
| 1287 | } |
| 1288 | |
| 1289 | void |
| 1290 | ath_beacon_proc(void *arg, int pending) |
| 1291 | { |
| 1292 | struct ath_softc *sc = arg; |
| 1293 | struct ieee80211com *ic = &sc->sc_ic; |
| 1294 | struct ath_buf *bf = sc->sc_bcbuf; |
| 1295 | struct ath_hal *ah = sc->sc_ah; |
| 1296 | |
| 1297 | DPRINTF(ATH_DEBUG_BEACON_PROC, ("%s: pending %u\n", __func__, pending)); |
| 1298 | if (ic->ic_opmode == IEEE80211_M_STA || |
| 1299 | bf == NULL((void *)0) || bf->bf_m == NULL((void *)0)) { |
| 1300 | DPRINTF(ATH_DEBUG_ANY, ("%s: ic_flags=%x bf=%p bf_m=%p\n", |
| 1301 | __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL)); |
| 1302 | return; |
| 1303 | } |
| 1304 | /* TODO: update beacon to reflect PS poll state */ |
| 1305 | if (!ath_hal_stop_tx_dma(ah, sc->sc_bhalq)((*(ah)->ah_stop_tx_dma)((ah), (sc->sc_bhalq)))) { |
| 1306 | DPRINTF(ATH_DEBUG_ANY, ("%s: beacon queue %u did not stop?\n", |
| 1307 | __func__, sc->sc_bhalq)); |
| 1308 | } |
| 1309 | bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (bf-> bf_dmamap), (0), (bf->bf_dmamap->dm_mapsize), (0x04)) |
| 1310 | bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (bf-> bf_dmamap), (0), (bf->bf_dmamap->dm_mapsize), (0x04)); |
| 1311 | |
| 1312 | ath_hal_put_tx_buf(ah, sc->sc_bhalq, bf->bf_daddr)((*(ah)->ah_put_tx_buf)((ah), (sc->sc_bhalq), (bf->bf_daddr ))); |
| 1313 | ath_hal_tx_start(ah, sc->sc_bhalq)((*(ah)->ah_tx_start)((ah), (sc->sc_bhalq))); |
| 1314 | DPRINTF(ATH_DEBUG_BEACON_PROC, |
| 1315 | ("%s: TXDP%u = %p (%p)\n", __func__, |
| 1316 | sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc)); |
| 1317 | } |
| 1318 | |
| 1319 | void |
| 1320 | ath_beacon_free(struct ath_softc *sc) |
| 1321 | { |
| 1322 | struct ath_buf *bf = sc->sc_bcbuf; |
| 1323 | |
| 1324 | if (bf->bf_m != NULL((void *)0)) { |
| 1325 | bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (bf-> bf_dmamap)); |
| 1326 | m_freem(bf->bf_m); |
| 1327 | bf->bf_m = NULL((void *)0); |
| 1328 | bf->bf_node = NULL((void *)0); |
| 1329 | } |
| 1330 | } |
| 1331 | #endif /* IEEE80211_STA_ONLY */ |
| 1332 | |
| 1333 | /* |
| 1334 | * Configure the beacon and sleep timers. |
| 1335 | * |
| 1336 | * When operating as an AP this resets the TSF and sets |
| 1337 | * up the hardware to notify us when we need to issue beacons. |
| 1338 | * |
| 1339 | * When operating in station mode this sets up the beacon |
| 1340 | * timers according to the timestamp of the last received |
| 1341 | * beacon and the current TSF, configures PCF and DTIM |
| 1342 | * handling, programs the sleep registers so the hardware |
| 1343 | * will wakeup in time to receive beacons, and configures |
| 1344 | * the beacon miss handling so we'll receive a BMISS |
| 1345 | * interrupt when we stop seeing beacons from the AP |
| 1346 | * we've associated with. |
| 1347 | */ |
| 1348 | void |
| 1349 | ath_beacon_config(struct ath_softc *sc) |
| 1350 | { |
| 1351 | #define MS_TO_TU(x)(((x) * 1000) / 1024) (((x) * 1000) / 1024) |
| 1352 | struct ath_hal *ah = sc->sc_ah; |
| 1353 | struct ieee80211com *ic = &sc->sc_ic; |
| 1354 | struct ieee80211_node *ni = ic->ic_bss; |
| 1355 | u_int32_t nexttbtt, intval; |
| 1356 | |
| 1357 | nexttbtt = (LE_READ_4(ni->ni_tstamp + 4)((u_int32_t) ((((u_int8_t *)(ni->ni_tstamp + 4))[0] ) | (( (u_int8_t *)(ni->ni_tstamp + 4))[1] << 8) | (((u_int8_t *)(ni->ni_tstamp + 4))[2] << 16) | (((u_int8_t *)(ni ->ni_tstamp + 4))[3] << 24))) << 22) | |
| 1358 | (LE_READ_4(ni->ni_tstamp)((u_int32_t) ((((u_int8_t *)(ni->ni_tstamp))[0] ) | (((u_int8_t *)(ni->ni_tstamp))[1] << 8) | (((u_int8_t *)(ni-> ni_tstamp))[2] << 16) | (((u_int8_t *)(ni->ni_tstamp ))[3] << 24))) >> 10); |
| 1359 | intval = MAX(1, ni->ni_intval)(((1)>(ni->ni_intval))?(1):(ni->ni_intval)) & HAL_BEACON_PERIOD0x0000ffff; |
| 1360 | if (nexttbtt == 0) { /* e.g. for ap mode */ |
| 1361 | nexttbtt = intval; |
| 1362 | } else if (intval) { |
| 1363 | nexttbtt = roundup(nexttbtt, intval)((((nexttbtt)+((intval)-1))/(intval))*(intval)); |
| 1364 | } |
| 1365 | DPRINTF(ATH_DEBUG_BEACON, ("%s: intval %u nexttbtt %u\n", |
| 1366 | __func__, ni->ni_intval, nexttbtt)); |
| 1367 | if (ic->ic_opmode == IEEE80211_M_STA) { |
| 1368 | HAL_BEACON_STATE bs; |
| 1369 | |
| 1370 | /* NB: no PCF support right now */ |
| 1371 | bzero(&bs, sizeof(bs))__builtin_bzero((&bs), (sizeof(bs))); |
| 1372 | bs.bs_intvalbs_interval = intval; |
| 1373 | bs.bs_nexttbttbs_next_beacon = nexttbtt; |
| 1374 | bs.bs_dtimperiodbs_dtim_period = bs.bs_intvalbs_interval; |
| 1375 | bs.bs_nextdtimbs_next_dtim = nexttbtt; |
| 1376 | /* |
| 1377 | * Calculate the number of consecutive beacons to miss |
| 1378 | * before taking a BMISS interrupt. |
| 1379 | * Note that we clamp the result to at most 7 beacons. |
| 1380 | */ |
| 1381 | bs.bs_bmissthresholdbs_bmiss_threshold = ic->ic_bmissthres; |
| 1382 | if (bs.bs_bmissthresholdbs_bmiss_threshold > 7) { |
| 1383 | bs.bs_bmissthresholdbs_bmiss_threshold = 7; |
| 1384 | } else if (bs.bs_bmissthresholdbs_bmiss_threshold <= 0) { |
| 1385 | bs.bs_bmissthresholdbs_bmiss_threshold = 1; |
| 1386 | } |
| 1387 | |
| 1388 | /* |
| 1389 | * Calculate sleep duration. The configuration is |
| 1390 | * given in ms. We insure a multiple of the beacon |
| 1391 | * period is used. Also, if the sleep duration is |
| 1392 | * greater than the DTIM period then it makes senses |
| 1393 | * to make it a multiple of that. |
| 1394 | * |
| 1395 | * XXX fixed at 100ms |
| 1396 | */ |
| 1397 | bs.bs_sleepdurationbs_sleep_duration = |
| 1398 | roundup(MS_TO_TU(100), bs.bs_intval)(((((((100) * 1000) / 1024))+((bs.bs_interval)-1))/(bs.bs_interval ))*(bs.bs_interval)); |
| 1399 | if (bs.bs_sleepdurationbs_sleep_duration > bs.bs_dtimperiodbs_dtim_period) { |
| 1400 | bs.bs_sleepdurationbs_sleep_duration = |
| 1401 | roundup(bs.bs_sleepduration, bs.bs_dtimperiod)((((bs.bs_sleep_duration)+((bs.bs_dtim_period)-1))/(bs.bs_dtim_period ))*(bs.bs_dtim_period)); |
| 1402 | } |
| 1403 | |
| 1404 | DPRINTF(ATH_DEBUG_BEACON, |
| 1405 | ("%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u" |
| 1406 | " sleep %u\n" |
| 1407 | , __func__ |
| 1408 | , bs.bs_intval |
| 1409 | , bs.bs_nexttbtt |
| 1410 | , bs.bs_dtimperiod |
| 1411 | , bs.bs_nextdtim |
| 1412 | , bs.bs_bmissthreshold |
| 1413 | , bs.bs_sleepduration |
| 1414 | )); |
| 1415 | ath_hal_set_intr(ah, 0)((*(ah)->ah_set_intr)((ah), (0))); |
| 1416 | ath_hal_set_beacon_timers(ah, &bs, 0/*XXX*/, 0, 0)((*(ah)->ah_set_beacon_timers)((ah), (&bs), (0), (0), ( 0))); |
| 1417 | sc->sc_imask |= HAL_INT_BMISS0x00040000; |
| 1418 | ath_hal_set_intr(ah, sc->sc_imask)((*(ah)->ah_set_intr)((ah), (sc->sc_imask))); |
| 1419 | } |
| 1420 | #ifndef IEEE80211_STA_ONLY |
| 1421 | else { |
| 1422 | ath_hal_set_intr(ah, 0)((*(ah)->ah_set_intr)((ah), (0))); |
| 1423 | if (nexttbtt == intval) |
| 1424 | intval |= HAL_BEACON_RESET_TSF0x01000000; |
| 1425 | if (ic->ic_opmode == IEEE80211_M_IBSS) { |
| 1426 | /* |
| 1427 | * In IBSS mode enable the beacon timers but only |
| 1428 | * enable SWBA interrupts if we need to manually |
| 1429 | * prepare beacon frames. Otherwise we use a |
| 1430 | * self-linked tx descriptor and let the hardware |
| 1431 | * deal with things. |
| 1432 | */ |
| 1433 | intval |= HAL_BEACON_ENA0x00800000; |
| 1434 | if (!sc->sc_veol) |
| 1435 | sc->sc_imask |= HAL_INT_SWBA0x00010000; |
| 1436 | } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) { |
| 1437 | /* |
| 1438 | * In AP mode we enable the beacon timers and |
| 1439 | * SWBA interrupts to prepare beacon frames. |
| 1440 | */ |
| 1441 | intval |= HAL_BEACON_ENA0x00800000; |
| 1442 | sc->sc_imask |= HAL_INT_SWBA0x00010000; /* beacon prepare */ |
| 1443 | } |
| 1444 | ath_hal_init_beacon(ah, nexttbtt, intval)((*(ah)->ah_init_beacon)((ah), (nexttbtt), (intval))); |
| 1445 | ath_hal_set_intr(ah, sc->sc_imask)((*(ah)->ah_set_intr)((ah), (sc->sc_imask))); |
| 1446 | /* |
| 1447 | * When using a self-linked beacon descriptor in IBBS |
| 1448 | * mode load it once here. |
| 1449 | */ |
| 1450 | if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_veol) |
| 1451 | ath_beacon_proc(sc, 0); |
| 1452 | } |
| 1453 | #endif |
| 1454 | } |
| 1455 | |
| 1456 | int |
| 1457 | ath_desc_alloc(struct ath_softc *sc) |
| 1458 | { |
| 1459 | int i, bsize, error = -1; |
| 1460 | struct ath_desc *ds; |
| 1461 | struct ath_buf *bf; |
| 1462 | |
| 1463 | /* allocate descriptors */ |
| 1464 | sc->sc_desc_len = sizeof(struct ath_desc) * |
| 1465 | (ATH_TXBUF60 * ATH_TXDESC8 + ATH_RXBUF40 + 1); |
| 1466 | if ((error = bus_dmamem_alloc(sc->sc_dmat, sc->sc_desc_len, PAGE_SIZE,(*(sc->sc_dmat)->_dmamem_alloc)((sc->sc_dmat), (sc-> sc_desc_len), ((1 << 12)), (0), (&sc->sc_dseg), ( 1), (&sc->sc_dnseg), (0)) |
| 1467 | 0, &sc->sc_dseg, 1, &sc->sc_dnseg, 0)(*(sc->sc_dmat)->_dmamem_alloc)((sc->sc_dmat), (sc-> sc_desc_len), ((1 << 12)), (0), (&sc->sc_dseg), ( 1), (&sc->sc_dnseg), (0))) != 0) { |
| 1468 | printf("%s: unable to allocate control data, error = %d\n", |
| 1469 | sc->sc_dev.dv_xname, error); |
| 1470 | goto fail0; |
| 1471 | } |
| 1472 | |
| 1473 | if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg,(*(sc->sc_dmat)->_dmamem_map)((sc->sc_dmat), (&sc ->sc_dseg), (sc->sc_dnseg), (sc->sc_desc_len), ((caddr_t *)&sc->sc_desc), (0x0004)) |
| 1474 | sc->sc_desc_len, (caddr_t *)&sc->sc_desc, BUS_DMA_COHERENT)(*(sc->sc_dmat)->_dmamem_map)((sc->sc_dmat), (&sc ->sc_dseg), (sc->sc_dnseg), (sc->sc_desc_len), ((caddr_t *)&sc->sc_desc), (0x0004))) != 0) { |
| 1475 | printf("%s: unable to map control data, error = %d\n", |
| 1476 | sc->sc_dev.dv_xname, error); |
| 1477 | goto fail1; |
| 1478 | } |
| 1479 | |
| 1480 | if ((error = bus_dmamap_create(sc->sc_dmat, sc->sc_desc_len, 1,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), (sc-> sc_desc_len), (1), (sc->sc_desc_len), (0), (0), (&sc-> sc_ddmamap)) |
| 1481 | sc->sc_desc_len, 0, 0, &sc->sc_ddmamap)(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), (sc-> sc_desc_len), (1), (sc->sc_desc_len), (0), (0), (&sc-> sc_ddmamap))) != 0) { |
| 1482 | printf("%s: unable to create control data DMA map, " |
| 1483 | "error = %d\n", sc->sc_dev.dv_xname, error); |
| 1484 | goto fail2; |
| 1485 | } |
| 1486 | |
| 1487 | if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap, sc->sc_desc,(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (sc-> sc_ddmamap), (sc->sc_desc), (sc->sc_desc_len), (((void * )0)), (0)) |
| 1488 | sc->sc_desc_len, NULL, 0)(*(sc->sc_dmat)->_dmamap_load)((sc->sc_dmat), (sc-> sc_ddmamap), (sc->sc_desc), (sc->sc_desc_len), (((void * )0)), (0))) != 0) { |
| 1489 | printf("%s: unable to load control data DMA map, error = %d\n", |
| 1490 | sc->sc_dev.dv_xname, error); |
| 1491 | goto fail3; |
| 1492 | } |
| 1493 | |
| 1494 | ds = sc->sc_desc; |
| 1495 | sc->sc_desc_paddr = sc->sc_ddmamap->dm_segs[0].ds_addr; |
| 1496 | |
| 1497 | DPRINTF(ATH_DEBUG_XMIT_DESC|ATH_DEBUG_RECV_DESC, |
| 1498 | ("ath_desc_alloc: DMA map: %p (%lu) -> %p (%lu)\n", |
| 1499 | ds, (u_long)sc->sc_desc_len, |
| 1500 | (caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len)); |
| 1501 | |
| 1502 | /* allocate buffers */ |
| 1503 | bsize = sizeof(struct ath_buf) * (ATH_TXBUF60 + ATH_RXBUF40 + 1); |
| 1504 | bf = malloc(bsize, M_DEVBUF2, M_NOWAIT0x0002 | M_ZERO0x0008); |
| 1505 | if (bf == NULL((void *)0)) { |
| 1506 | printf("%s: unable to allocate Tx/Rx buffers\n", |
| 1507 | sc->sc_dev.dv_xname); |
| 1508 | error = ENOMEM12; |
| 1509 | goto fail3; |
| 1510 | } |
| 1511 | sc->sc_bufptr = bf; |
| 1512 | |
| 1513 | TAILQ_INIT(&sc->sc_rxbuf)do { (&sc->sc_rxbuf)->tqh_first = ((void *)0); (& sc->sc_rxbuf)->tqh_last = &(&sc->sc_rxbuf)-> tqh_first; } while (0); |
| 1514 | for (i = 0; i < ATH_RXBUF40; i++, bf++, ds++) { |
| 1515 | bf->bf_desc = ds; |
| 1516 | bf->bf_daddr = sc->sc_desc_paddr + |
| 1517 | ((caddr_t)ds - (caddr_t)sc->sc_desc); |
| 1518 | if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((1 << 11)), (1), ((1 << 11)), (0), (0), (&bf->bf_dmamap )) |
| 1519 | MCLBYTES, 0, 0, &bf->bf_dmamap)(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((1 << 11)), (1), ((1 << 11)), (0), (0), (&bf->bf_dmamap ))) != 0) { |
| 1520 | printf("%s: unable to create Rx dmamap, error = %d\n", |
| 1521 | sc->sc_dev.dv_xname, error); |
| 1522 | goto fail4; |
| 1523 | } |
| 1524 | TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list)do { (bf)->bf_list.tqe_next = ((void *)0); (bf)->bf_list .tqe_prev = (&sc->sc_rxbuf)->tqh_last; *(&sc-> sc_rxbuf)->tqh_last = (bf); (&sc->sc_rxbuf)->tqh_last = &(bf)->bf_list.tqe_next; } while (0); |
| 1525 | } |
| 1526 | |
| 1527 | TAILQ_INIT(&sc->sc_txbuf)do { (&sc->sc_txbuf)->tqh_first = ((void *)0); (& sc->sc_txbuf)->tqh_last = &(&sc->sc_txbuf)-> tqh_first; } while (0); |
| 1528 | for (i = 0; i < ATH_TXBUF60; i++, bf++, ds += ATH_TXDESC8) { |
| 1529 | bf->bf_desc = ds; |
| 1530 | bf->bf_daddr = sc->sc_desc_paddr + |
| 1531 | ((caddr_t)ds - (caddr_t)sc->sc_desc); |
| 1532 | if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((1 << 11)), (8), ((1 << 11)), (0), (0), (&bf->bf_dmamap )) |
| 1533 | ATH_TXDESC, MCLBYTES, 0, 0, &bf->bf_dmamap)(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((1 << 11)), (8), ((1 << 11)), (0), (0), (&bf->bf_dmamap ))) != 0) { |
| 1534 | printf("%s: unable to create Tx dmamap, error = %d\n", |
| 1535 | sc->sc_dev.dv_xname, error); |
| 1536 | goto fail5; |
| 1537 | } |
| 1538 | TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list)do { (bf)->bf_list.tqe_next = ((void *)0); (bf)->bf_list .tqe_prev = (&sc->sc_txbuf)->tqh_last; *(&sc-> sc_txbuf)->tqh_last = (bf); (&sc->sc_txbuf)->tqh_last = &(bf)->bf_list.tqe_next; } while (0); |
| 1539 | } |
| 1540 | TAILQ_INIT(&sc->sc_txq)do { (&sc->sc_txq)->tqh_first = ((void *)0); (& sc->sc_txq)->tqh_last = &(&sc->sc_txq)->tqh_first ; } while (0); |
| 1541 | |
| 1542 | /* beacon buffer */ |
| 1543 | bf->bf_desc = ds; |
| 1544 | bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc); |
| 1545 | if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((1 << 11)), (1), ((1 << 11)), (0), (0), (&bf->bf_dmamap )) |
| 1546 | &bf->bf_dmamap)(*(sc->sc_dmat)->_dmamap_create)((sc->sc_dmat), ((1 << 11)), (1), ((1 << 11)), (0), (0), (&bf->bf_dmamap ))) != 0) { |
| 1547 | printf("%s: unable to create beacon dmamap, error = %d\n", |
| 1548 | sc->sc_dev.dv_xname, error); |
| 1549 | goto fail5; |
| 1550 | } |
| 1551 | sc->sc_bcbuf = bf; |
| 1552 | return 0; |
| 1553 | |
| 1554 | fail5: |
| 1555 | for (i = ATH_RXBUF40; i < ATH_RXBUF40 + ATH_TXBUF60; i++) { |
| 1556 | if (sc->sc_bufptr[i].bf_dmamap == NULL((void *)0)) |
| 1557 | continue; |
| 1558 | bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap)(*(sc->sc_dmat)->_dmamap_destroy)((sc->sc_dmat), (sc ->sc_bufptr[i].bf_dmamap)); |
| 1559 | } |
| 1560 | fail4: |
| 1561 | for (i = 0; i < ATH_RXBUF40; i++) { |
| 1562 | if (sc->sc_bufptr[i].bf_dmamap == NULL((void *)0)) |
| 1563 | continue; |
| 1564 | bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap)(*(sc->sc_dmat)->_dmamap_destroy)((sc->sc_dmat), (sc ->sc_bufptr[i].bf_dmamap)); |
| 1565 | } |
| 1566 | fail3: |
| 1567 | bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (sc-> sc_ddmamap)); |
| 1568 | fail2: |
| 1569 | bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap)(*(sc->sc_dmat)->_dmamap_destroy)((sc->sc_dmat), (sc ->sc_ddmamap)); |
| 1570 | sc->sc_ddmamap = NULL((void *)0); |
| 1571 | fail1: |
| 1572 | bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_desc, sc->sc_desc_len)(*(sc->sc_dmat)->_dmamem_unmap)((sc->sc_dmat), ((caddr_t )sc->sc_desc), (sc->sc_desc_len)); |
| 1573 | fail0: |
| 1574 | bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg)(*(sc->sc_dmat)->_dmamem_free)((sc->sc_dmat), (& sc->sc_dseg), (sc->sc_dnseg)); |
| 1575 | return error; |
| 1576 | } |
| 1577 | |
| 1578 | void |
| 1579 | ath_desc_free(struct ath_softc *sc) |
| 1580 | { |
| 1581 | struct ath_buf *bf; |
| 1582 | |
| 1583 | bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (sc-> sc_ddmamap)); |
| 1584 | bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap)(*(sc->sc_dmat)->_dmamap_destroy)((sc->sc_dmat), (sc ->sc_ddmamap)); |
| 1585 | bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg)(*(sc->sc_dmat)->_dmamem_free)((sc->sc_dmat), (& sc->sc_dseg), (sc->sc_dnseg)); |
| 1586 | |
| 1587 | TAILQ_FOREACH(bf, &sc->sc_txq, bf_list)for((bf) = ((&sc->sc_txq)->tqh_first); (bf) != ((void *)0); (bf) = ((bf)->bf_list.tqe_next)) { |
| 1588 | bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (bf-> bf_dmamap)); |
| 1589 | bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap)(*(sc->sc_dmat)->_dmamap_destroy)((sc->sc_dmat), (bf ->bf_dmamap)); |
| 1590 | m_freem(bf->bf_m); |
| 1591 | } |
| 1592 | TAILQ_FOREACH(bf, &sc->sc_txbuf, bf_list)for((bf) = ((&sc->sc_txbuf)->tqh_first); (bf) != (( void *)0); (bf) = ((bf)->bf_list.tqe_next)) |
| 1593 | bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap)(*(sc->sc_dmat)->_dmamap_destroy)((sc->sc_dmat), (bf ->bf_dmamap)); |
| 1594 | TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list)for((bf) = ((&sc->sc_rxbuf)->tqh_first); (bf) != (( void *)0); (bf) = ((bf)->bf_list.tqe_next)) { |
| 1595 | if (bf->bf_m) { |
| 1596 | bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (bf-> bf_dmamap)); |
| 1597 | bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap)(*(sc->sc_dmat)->_dmamap_destroy)((sc->sc_dmat), (bf ->bf_dmamap)); |
| 1598 | m_freem(bf->bf_m); |
| 1599 | bf->bf_m = NULL((void *)0); |
| 1600 | } |
| 1601 | } |
| 1602 | if (sc->sc_bcbuf != NULL((void *)0)) { |
| 1603 | bus_dmamap_unload(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (sc-> sc_bcbuf->bf_dmamap)); |
| 1604 | bus_dmamap_destroy(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap)(*(sc->sc_dmat)->_dmamap_destroy)((sc->sc_dmat), (sc ->sc_bcbuf->bf_dmamap)); |
| 1605 | sc->sc_bcbuf = NULL((void *)0); |
| 1606 | } |
| 1607 | |
| 1608 | TAILQ_INIT(&sc->sc_rxbuf)do { (&sc->sc_rxbuf)->tqh_first = ((void *)0); (& sc->sc_rxbuf)->tqh_last = &(&sc->sc_rxbuf)-> tqh_first; } while (0); |
| 1609 | TAILQ_INIT(&sc->sc_txbuf)do { (&sc->sc_txbuf)->tqh_first = ((void *)0); (& sc->sc_txbuf)->tqh_last = &(&sc->sc_txbuf)-> tqh_first; } while (0); |
| 1610 | TAILQ_INIT(&sc->sc_txq)do { (&sc->sc_txq)->tqh_first = ((void *)0); (& sc->sc_txq)->tqh_last = &(&sc->sc_txq)->tqh_first ; } while (0); |
| 1611 | free(sc->sc_bufptr, M_DEVBUF2, 0); |
| 1612 | sc->sc_bufptr = NULL((void *)0); |
| 1613 | } |
| 1614 | |
| 1615 | struct ieee80211_node * |
| 1616 | ath_node_alloc(struct ieee80211com *ic) |
| 1617 | { |
| 1618 | struct ath_node *an; |
| 1619 | |
| 1620 | an = malloc(sizeof(*an), M_DEVBUF2, M_NOWAIT0x0002 | M_ZERO0x0008); |
| 1621 | if (an) { |
| 1622 | int i; |
| 1623 | for (i = 0; i < ATH_RHIST_SIZE16; i++) |
| 1624 | an->an_rx_hist[i].arh_ticks = ATH_RHIST_NOTIME(~0); |
| 1625 | an->an_rx_hist_next = ATH_RHIST_SIZE16-1; |
| 1626 | return &an->an_node; |
| 1627 | } else |
| 1628 | return NULL((void *)0); |
| 1629 | } |
| 1630 | |
| 1631 | void |
| 1632 | ath_node_free(struct ieee80211com *ic, struct ieee80211_node *ni) |
| 1633 | { |
| 1634 | struct ath_softc *sc = ic->ic_ific_ac.ac_if.if_softc; |
| 1635 | struct ath_buf *bf; |
| 1636 | |
| 1637 | TAILQ_FOREACH(bf, &sc->sc_txq, bf_list)for((bf) = ((&sc->sc_txq)->tqh_first); (bf) != ((void *)0); (bf) = ((bf)->bf_list.tqe_next)) { |
| 1638 | if (bf->bf_node == ni) |
| 1639 | bf->bf_node = NULL((void *)0); |
| 1640 | } |
| 1641 | (*sc->sc_node_free)(ic, ni); |
| 1642 | } |
| 1643 | |
| 1644 | void |
| 1645 | ath_node_copy(struct ieee80211com *ic, |
| 1646 | struct ieee80211_node *dst, const struct ieee80211_node *src) |
| 1647 | { |
| 1648 | struct ath_softc *sc = ic->ic_ific_ac.ac_if.if_softc; |
| 1649 | |
| 1650 | bcopy(&src[1], &dst[1], |
| 1651 | sizeof(struct ath_node) - sizeof(struct ieee80211_node)); |
| 1652 | (*sc->sc_node_copy)(ic, dst, src); |
| 1653 | } |
| 1654 | |
| 1655 | u_int8_t |
| 1656 | ath_node_getrssi(struct ieee80211com *ic, const struct ieee80211_node *ni) |
| 1657 | { |
| 1658 | const struct ath_node *an = ATH_NODE(ni)((struct ath_node *)(ni)); |
| 1659 | int i, now, nsamples, rssi; |
| 1660 | |
| 1661 | /* |
| 1662 | * Calculate the average over the last second of sampled data. |
| 1663 | */ |
| 1664 | now = ATH_TICKS()(ticks); |
| 1665 | nsamples = 0; |
| 1666 | rssi = 0; |
| 1667 | i = an->an_rx_hist_next; |
| 1668 | do { |
| 1669 | const struct ath_recv_hist *rh = &an->an_rx_hist[i]; |
| 1670 | if (rh->arh_ticks == ATH_RHIST_NOTIME(~0)) |
| 1671 | goto done; |
| 1672 | if (now - rh->arh_ticks > hz) |
| 1673 | goto done; |
| 1674 | rssi += rh->arh_rssi; |
| 1675 | nsamples++; |
| 1676 | if (i == 0) { |
| 1677 | i = ATH_RHIST_SIZE16-1; |
| 1678 | } else { |
| 1679 | i--; |
| 1680 | } |
| 1681 | } while (i != an->an_rx_hist_next); |
| 1682 | done: |
| 1683 | /* |
| 1684 | * Return either the average or the last known |
| 1685 | * value if there is no recent data. |
| 1686 | */ |
| 1687 | return (nsamples ? rssi / nsamples : an->an_rx_hist[i].arh_rssi); |
| 1688 | } |
| 1689 | |
| 1690 | int |
| 1691 | ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf) |
| 1692 | { |
| 1693 | struct ath_hal *ah = sc->sc_ah; |
| 1694 | int error; |
| 1695 | struct mbuf *m; |
| 1696 | struct ath_desc *ds; |
| 1697 | |
| 1698 | m = bf->bf_m; |
| 1699 | if (m == NULL((void *)0)) { |
| 1700 | /* |
| 1701 | * NB: by assigning a page to the rx dma buffer we |
| 1702 | * implicitly satisfy the Atheros requirement that |
| 1703 | * this buffer be cache-line-aligned and sized to be |
| 1704 | * multiple of the cache line size. Not doing this |
| 1705 | * causes weird stuff to happen (for the 5210 at least). |
| 1706 | */ |
| 1707 | m = ath_getmbuf(M_DONTWAIT0x0002, MT_DATA1, MCLBYTES(1 << 11)); |
| 1708 | if (m == NULL((void *)0)) { |
| 1709 | DPRINTF(ATH_DEBUG_ANY, |
| 1710 | ("%s: no mbuf/cluster\n", __func__)); |
| 1711 | sc->sc_stats.ast_rx_nombuf++; |
| 1712 | return ENOMEM12; |
| 1713 | } |
| 1714 | bf->bf_m = m; |
| 1715 | m->m_pkthdrM_dat.MH.MH_pkthdr.len = m->m_lenm_hdr.mh_len = m->m_extM_dat.MH.MH_dat.MH_ext.ext_size; |
| 1716 | |
| 1717 | error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( bf->bf_dmamap), (m), (0x0001)) |
| 1718 | BUS_DMA_NOWAIT)(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( bf->bf_dmamap), (m), (0x0001)); |
| 1719 | if (error != 0) { |
| 1720 | DPRINTF(ATH_DEBUG_ANY, |
| 1721 | ("%s: ath_bus_dmamap_load_mbuf failed;" |
| 1722 | " error %d\n", __func__, error)); |
| 1723 | sc->sc_stats.ast_rx_busdma++; |
| 1724 | return error; |
| 1725 | } |
| 1726 | KASSERT(bf->bf_nseg == 1,if (!(bf->bf_dmamap->dm_nsegs == 1)) panic ("ath_rxbuf_init: multi-segment packet; nseg %u" , bf->bf_dmamap->dm_nsegs) |
| 1727 | ("ath_rxbuf_init: multi-segment packet; nseg %u",if (!(bf->bf_dmamap->dm_nsegs == 1)) panic ("ath_rxbuf_init: multi-segment packet; nseg %u" , bf->bf_dmamap->dm_nsegs) |
| 1728 | bf->bf_nseg))if (!(bf->bf_dmamap->dm_nsegs == 1)) panic ("ath_rxbuf_init: multi-segment packet; nseg %u" , bf->bf_dmamap->dm_nsegs); |
| 1729 | } |
| 1730 | bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (bf-> bf_dmamap), (0), (bf->bf_dmamap->dm_mapsize), (0x01)) |
| 1731 | bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (bf-> bf_dmamap), (0), (bf->bf_dmamap->dm_mapsize), (0x01)); |
| 1732 | |
| 1733 | /* |
| 1734 | * Setup descriptors. For receive we always terminate |
| 1735 | * the descriptor list with a self-linked entry so we'll |
| 1736 | * not get overrun under high load (as can happen with a |
| 1737 | * 5212 when ANI processing enables PHY errors). |
| 1738 | * |
| 1739 | * To insure the last descriptor is self-linked we create |
| 1740 | * each descriptor as self-linked and add it to the end. As |
| 1741 | * each additional descriptor is added the previous self-linked |
| 1742 | * entry is ``fixed'' naturally. This should be safe even |
| 1743 | * if DMA is happening. When processing RX interrupts we |
| 1744 | * never remove/process the last, self-linked, entry on the |
| 1745 | * descriptor list. This insures the hardware always has |
| 1746 | * someplace to write a new frame. |
| 1747 | */ |
| 1748 | ds = bf->bf_desc; |
| 1749 | bzero(ds, sizeof(struct ath_desc))__builtin_bzero((ds), (sizeof(struct ath_desc))); |
| 1750 | #ifndef IEEE80211_STA_ONLY |
| 1751 | if (sc->sc_ic.ic_opmode != IEEE80211_M_HOSTAP) |
| 1752 | ds->ds_link = bf->bf_daddr; /* link to self */ |
| 1753 | #endif |
| 1754 | ds->ds_data = bf->bf_segsbf_dmamap->dm_segs[0].ds_addr; |
| 1755 | ath_hal_setup_rx_desc(ah, ds((*(ah)->ah_setup_rx_desc)((ah), (ds), (m->m_hdr.mh_len ), (0))) |
| 1756 | , m->m_len /* buffer size */((*(ah)->ah_setup_rx_desc)((ah), (ds), (m->m_hdr.mh_len ), (0))) |
| 1757 | , 0((*(ah)->ah_setup_rx_desc)((ah), (ds), (m->m_hdr.mh_len ), (0))) |
| 1758 | )((*(ah)->ah_setup_rx_desc)((ah), (ds), (m->m_hdr.mh_len ), (0))); |
| 1759 | |
| 1760 | if (sc->sc_rxlink != NULL((void *)0)) |
| 1761 | *sc->sc_rxlink = bf->bf_daddr; |
| 1762 | sc->sc_rxlink = &ds->ds_link; |
| 1763 | return 0; |
| 1764 | } |
| 1765 | |
| 1766 | void |
| 1767 | ath_rx_proc(void *arg, int npending) |
| 1768 | { |
| 1769 | struct mbuf_list ml = MBUF_LIST_INITIALIZER(){ ((void *)0), ((void *)0), 0 }; |
| 1770 | #define PA2DESC(_sc, _pa) \ |
| 1771 | ((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \ |
| 1772 | ((_pa) - (_sc)->sc_desc_paddr))) |
| 1773 | struct ath_softc *sc = arg; |
| 1774 | struct ath_buf *bf; |
| 1775 | struct ieee80211com *ic = &sc->sc_ic; |
| 1776 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
| 1777 | struct ath_hal *ah = sc->sc_ah; |
| 1778 | struct ath_desc *ds; |
| 1779 | struct mbuf *m; |
| 1780 | struct ieee80211_frame *wh; |
| 1781 | struct ieee80211_frame whbuf; |
| 1782 | struct ieee80211_rxinfo rxi; |
| 1783 | struct ieee80211_node *ni; |
| 1784 | struct ath_node *an; |
| 1785 | struct ath_recv_hist *rh; |
| 1786 | int len; |
| 1787 | u_int phyerr; |
| 1788 | HAL_STATUS status; |
| 1789 | |
| 1790 | DPRINTF(ATH_DEBUG_RX_PROC, ("%s: pending %u\n", __func__, npending)); |
| 1791 | do { |
| 1792 | bf = TAILQ_FIRST(&sc->sc_rxbuf)((&sc->sc_rxbuf)->tqh_first); |
| 1793 | if (bf == NULL((void *)0)) { /* NB: shouldn't happen */ |
| 1794 | printf("%s: ath_rx_proc: no buffer!\n", ifp->if_xname); |
| 1795 | break; |
| 1796 | } |
| 1797 | ds = bf->bf_desc; |
| 1798 | if (ds->ds_link == bf->bf_daddr) { |
| 1799 | /* NB: never process the self-linked entry at the end */ |
| 1800 | break; |
| 1801 | } |
| 1802 | m = bf->bf_m; |
| 1803 | if (m == NULL((void *)0)) { /* NB: shouldn't happen */ |
| 1804 | printf("%s: ath_rx_proc: no mbuf!\n", ifp->if_xname); |
| 1805 | continue; |
| 1806 | } |
| 1807 | /* XXX sync descriptor memory */ |
| 1808 | /* |
| 1809 | * Must provide the virtual address of the current |
| 1810 | * descriptor, the physical address, and the virtual |
| 1811 | * address of the next descriptor in the h/w chain. |
| 1812 | * This allows the HAL to look ahead to see if the |
| 1813 | * hardware is done with a descriptor by checking the |
| 1814 | * done bit in the following descriptor and the address |
| 1815 | * of the current descriptor the DMA engine is working |
| 1816 | * on. All this is necessary because of our use of |
| 1817 | * a self-linked list to avoid rx overruns. |
| 1818 | */ |
| 1819 | status = ath_hal_proc_rx_desc(ah, ds,((*(ah)->ah_proc_rx_desc)((ah), (ds), (bf->bf_daddr), ( PA2DESC(sc, ds->ds_link)))) |
| 1820 | bf->bf_daddr, PA2DESC(sc, ds->ds_link))((*(ah)->ah_proc_rx_desc)((ah), (ds), (bf->bf_daddr), ( PA2DESC(sc, ds->ds_link)))); |
| 1821 | #ifdef AR_DEBUG |
| 1822 | if (ath_debug & ATH_DEBUG_RECV_DESC) |
| 1823 | ath_printrxbuf(bf, status == HAL_OK0); |
| 1824 | #endif |
| 1825 | if (status == HAL_EINPROGRESS36) |
| 1826 | break; |
| 1827 | TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list)do { if (((bf)->bf_list.tqe_next) != ((void *)0)) (bf)-> bf_list.tqe_next->bf_list.tqe_prev = (bf)->bf_list.tqe_prev ; else (&sc->sc_rxbuf)->tqh_last = (bf)->bf_list .tqe_prev; *(bf)->bf_list.tqe_prev = (bf)->bf_list.tqe_next ; ((bf)->bf_list.tqe_prev) = ((void *)-1); ((bf)->bf_list .tqe_next) = ((void *)-1); } while (0); |
| 1828 | |
| 1829 | if (ds->ds_rxstatds_us.rx.rs_more) { |
| 1830 | /* |
| 1831 | * Frame spans multiple descriptors; this |
| 1832 | * cannot happen yet as we don't support |
| 1833 | * jumbograms. If not in monitor mode, |
| 1834 | * discard the frame. |
| 1835 | */ |
| 1836 | |
| 1837 | /* |
| 1838 | * Enable this if you want to see error |
| 1839 | * frames in Monitor mode. |
| 1840 | */ |
| 1841 | #ifdef ERROR_FRAMES |
| 1842 | if (ic->ic_opmode != IEEE80211_M_MONITOR) { |
| 1843 | /* XXX statistic */ |
| 1844 | goto rx_next; |
| 1845 | } |
| 1846 | #endif |
| 1847 | /* fall thru for monitor mode handling... */ |
| 1848 | |
| 1849 | } else if (ds->ds_rxstatds_us.rx.rs_status != 0) { |
| 1850 | if (ds->ds_rxstatds_us.rx.rs_status & HAL_RXERR_CRC0x01) |
| 1851 | sc->sc_stats.ast_rx_crcerr++; |
| 1852 | if (ds->ds_rxstatds_us.rx.rs_status & HAL_RXERR_FIFO0x04) |
| 1853 | sc->sc_stats.ast_rx_fifoerr++; |
| 1854 | if (ds->ds_rxstatds_us.rx.rs_status & HAL_RXERR_DECRYPT0x08) |
| 1855 | sc->sc_stats.ast_rx_badcrypt++; |
| 1856 | if (ds->ds_rxstatds_us.rx.rs_status & HAL_RXERR_PHY0x02) { |
| 1857 | sc->sc_stats.ast_rx_phyerr++; |
| 1858 | phyerr = ds->ds_rxstatds_us.rx.rs_phyerr & 0x1f; |
| 1859 | sc->sc_stats.ast_rx_phy[phyerr]++; |
| 1860 | } |
| 1861 | |
| 1862 | /* |
| 1863 | * reject error frames, we normally don't want |
| 1864 | * to see them in monitor mode. |
| 1865 | */ |
| 1866 | if ((ds->ds_rxstatds_us.rx.rs_status & HAL_RXERR_DECRYPT0x08 ) || |
| 1867 | (ds->ds_rxstatds_us.rx.rs_status & HAL_RXERR_PHY0x02)) |
| 1868 | goto rx_next; |
| 1869 | |
| 1870 | /* |
| 1871 | * In monitor mode, allow through packets that |
| 1872 | * cannot be decrypted |
| 1873 | */ |
| 1874 | if ((ds->ds_rxstatds_us.rx.rs_status & ~HAL_RXERR_DECRYPT0x08) || |
| 1875 | sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR) |
| 1876 | goto rx_next; |
| 1877 | } |
| 1878 | |
| 1879 | len = ds->ds_rxstatds_us.rx.rs_datalen; |
| 1880 | if (len < IEEE80211_MIN_LEN(sizeof(struct ieee80211_frame_min) + 4)) { |
| 1881 | DPRINTF(ATH_DEBUG_RECV, ("%s: short packet %d\n", |
| 1882 | __func__, len)); |
| 1883 | sc->sc_stats.ast_rx_tooshort++; |
| 1884 | goto rx_next; |
| 1885 | } |
| 1886 | |
| 1887 | bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (bf-> bf_dmamap), (0), (bf->bf_dmamap->dm_mapsize), (0x02)) |
| 1888 | bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (bf-> bf_dmamap), (0), (bf->bf_dmamap->dm_mapsize), (0x02)); |
| 1889 | |
| 1890 | bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (bf-> bf_dmamap)); |
| 1891 | bf->bf_m = NULL((void *)0); |
| 1892 | m->m_pkthdrM_dat.MH.MH_pkthdr.len = m->m_lenm_hdr.mh_len = len; |
| 1893 | |
| 1894 | #if NBPFILTER1 > 0 |
| 1895 | if (sc->sc_drvbpf) { |
| 1896 | sc->sc_rxtapsc_rxtapu.th.wr_flags = IEEE80211_RADIOTAP_F_FCS0x10; |
| 1897 | sc->sc_rxtapsc_rxtapu.th.wr_rate = |
| 1898 | sc->sc_hwmap[ds->ds_rxstatds_us.rx.rs_rate] & |
| 1899 | IEEE80211_RATE_VAL0x7f; |
| 1900 | sc->sc_rxtapsc_rxtapu.th.wr_antenna = ds->ds_rxstatds_us.rx.rs_antenna; |
| 1901 | sc->sc_rxtapsc_rxtapu.th.wr_rssi = ds->ds_rxstatds_us.rx.rs_rssi; |
| 1902 | sc->sc_rxtapsc_rxtapu.th.wr_max_rssi = ic->ic_max_rssi; |
| 1903 | |
| 1904 | bpf_mtap_hdr(sc->sc_drvbpf, &sc->sc_rxtapsc_rxtapu.th, |
| 1905 | sc->sc_rxtap_len, m, BPF_DIRECTION_IN(1 << 0)); |
| 1906 | } |
| 1907 | #endif |
| 1908 | m_adj(m, -IEEE80211_CRC_LEN4); |
| 1909 | wh = mtod(m, struct ieee80211_frame *)((struct ieee80211_frame *)((m)->m_hdr.mh_data)); |
| 1910 | memset(&rxi, 0, sizeof(rxi))__builtin_memset((&rxi), (0), (sizeof(rxi))); |
| 1911 | if (!ath_softcrypto && (wh->i_fc[1] & IEEE80211_FC1_WEP0x40)) { |
| 1912 | /* |
| 1913 | * WEP is decrypted by hardware. Clear WEP bit |
| 1914 | * and trim WEP header for ieee80211_inputm(). |
| 1915 | */ |
| 1916 | wh->i_fc[1] &= ~IEEE80211_FC1_WEP0x40; |
| 1917 | bcopy(wh, &whbuf, sizeof(whbuf)); |
| 1918 | m_adj(m, IEEE80211_WEP_IVLEN3 + IEEE80211_WEP_KIDLEN1); |
| 1919 | wh = mtod(m, struct ieee80211_frame *)((struct ieee80211_frame *)((m)->m_hdr.mh_data)); |
| 1920 | bcopy(&whbuf, wh, sizeof(whbuf)); |
| 1921 | /* |
| 1922 | * Also trim WEP ICV from the tail. |
| 1923 | */ |
| 1924 | m_adj(m, -IEEE80211_WEP_CRCLEN4); |
| 1925 | /* |
| 1926 | * The header has probably moved. |
| 1927 | */ |
| 1928 | wh = mtod(m, struct ieee80211_frame *)((struct ieee80211_frame *)((m)->m_hdr.mh_data)); |
| 1929 | |
| 1930 | rxi.rxi_flags |= IEEE80211_RXI_HWDEC0x00000001; |
| 1931 | } |
| 1932 | |
| 1933 | /* |
| 1934 | * Locate the node for sender, track state, and |
| 1935 | * then pass this node (referenced) up to the 802.11 |
| 1936 | * layer for its use. |
| 1937 | */ |
| 1938 | ni = ieee80211_find_rxnode(ic, wh); |
| 1939 | |
| 1940 | /* |
| 1941 | * Record driver-specific state. |
| 1942 | */ |
| 1943 | an = ATH_NODE(ni)((struct ath_node *)(ni)); |
| 1944 | if (++(an->an_rx_hist_next) == ATH_RHIST_SIZE16) |
| 1945 | an->an_rx_hist_next = 0; |
| 1946 | rh = &an->an_rx_hist[an->an_rx_hist_next]; |
| 1947 | rh->arh_ticks = ATH_TICKS()(ticks); |
| 1948 | rh->arh_rssi = ds->ds_rxstatds_us.rx.rs_rssi; |
| 1949 | rh->arh_antenna = ds->ds_rxstatds_us.rx.rs_antenna; |
| 1950 | |
| 1951 | /* |
| 1952 | * Send frame up for processing. |
| 1953 | */ |
| 1954 | rxi.rxi_rssi = ds->ds_rxstatds_us.rx.rs_rssi; |
| 1955 | rxi.rxi_tstamp = ds->ds_rxstatds_us.rx.rs_tstamp; |
| 1956 | ieee80211_inputm(ifp, m, ni, &rxi, &ml); |
| 1957 | |
| 1958 | /* Handle the rate adaption */ |
| 1959 | ieee80211_rssadapt_input(ic, ni, &an->an_rssadapt, |
| 1960 | ds->ds_rxstatds_us.rx.rs_rssi); |
| 1961 | |
| 1962 | /* |
| 1963 | * The frame may have caused the node to be marked for |
| 1964 | * reclamation (e.g. in response to a DEAUTH message) |
| 1965 | * so use release_node here instead of unref_node. |
| 1966 | */ |
| 1967 | ieee80211_release_node(ic, ni); |
| 1968 | |
| 1969 | rx_next: |
| 1970 | TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list)do { (bf)->bf_list.tqe_next = ((void *)0); (bf)->bf_list .tqe_prev = (&sc->sc_rxbuf)->tqh_last; *(&sc-> sc_rxbuf)->tqh_last = (bf); (&sc->sc_rxbuf)->tqh_last = &(bf)->bf_list.tqe_next; } while (0); |
| 1971 | } while (ath_rxbuf_init(sc, bf) == 0); |
| 1972 | |
| 1973 | if_input(ifp, &ml); |
| 1974 | |
| 1975 | ath_hal_set_rx_signal(ah)((*(ah)->ah_set_rx_signal)((ah))); /* rx signal state monitoring */ |
| 1976 | ath_hal_start_rx(ah)((*(ah)->ah_start_rx)((ah))); /* in case of RXEOL */ |
| 1977 | #undef PA2DESC |
| 1978 | } |
| 1979 | |
| 1980 | /* |
| 1981 | * XXX Size of an ACK control frame in bytes. |
| 1982 | */ |
| 1983 | #define IEEE80211_ACK_SIZE(2+2+6 +4) (2+2+IEEE80211_ADDR_LEN6+4) |
| 1984 | |
| 1985 | int |
| 1986 | ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, |
| 1987 | struct ath_buf *bf, struct mbuf *m0) |
| 1988 | { |
| 1989 | struct ieee80211com *ic = &sc->sc_ic; |
| 1990 | struct ath_hal *ah = sc->sc_ah; |
| 1991 | struct ifnet *ifp = &sc->sc_ic.ic_ific_ac.ac_if; |
| 1992 | int i, error, iswep, hdrlen, pktlen, len, s, tries; |
| 1993 | u_int8_t rix, cix, txrate, ctsrate; |
| 1994 | struct ath_desc *ds; |
| 1995 | struct ieee80211_frame *wh; |
| 1996 | struct ieee80211_key *k; |
| 1997 | u_int32_t iv; |
| 1998 | u_int8_t *ivp; |
| 1999 | u_int8_t hdrbuf[sizeof(struct ieee80211_frame) + |
| 2000 | IEEE80211_WEP_IVLEN3 + IEEE80211_WEP_KIDLEN1]; |
| 2001 | u_int subtype, flags, ctsduration, antenna; |
| 2002 | HAL_PKT_TYPE atype; |
| 2003 | const HAL_RATE_TABLE *rt; |
| 2004 | HAL_BOOL shortPreamble; |
| 2005 | struct ath_node *an; |
| 2006 | u_int8_t hwqueue = HAL_TX_QUEUE_ID_DATA_MIN; |
| 2007 | |
| 2008 | wh = mtod(m0, struct ieee80211_frame *)((struct ieee80211_frame *)((m0)->m_hdr.mh_data)); |
| 2009 | iswep = wh->i_fc[1] & IEEE80211_FC1_PROTECTED0x40; |
| 2010 | hdrlen = sizeof(struct ieee80211_frame); |
| 2011 | pktlen = m0->m_pkthdrM_dat.MH.MH_pkthdr.len; |
| 2012 | |
| 2013 | if (ath_softcrypto && iswep) { |
| 2014 | k = ieee80211_get_txkey(ic, wh, ni); |
| 2015 | if ((m0 = ieee80211_encrypt(ic, m0, k)) == NULL((void *)0)) |
| 2016 | return ENOMEM12; |
| 2017 | wh = mtod(m0, struct ieee80211_frame *)((struct ieee80211_frame *)((m0)->m_hdr.mh_data)); |
| 2018 | |
| 2019 | /* reset len in case we got a new mbuf */ |
| 2020 | pktlen = m0->m_pkthdrM_dat.MH.MH_pkthdr.len; |
| 2021 | } else if (!ath_softcrypto && iswep) { |
| 2022 | bcopy(mtod(m0, caddr_t)((caddr_t)((m0)->m_hdr.mh_data)), hdrbuf, hdrlen); |
| 2023 | m_adj(m0, hdrlen); |
| 2024 | M_PREPEND(m0, sizeof(hdrbuf), M_DONTWAIT)(m0) = m_prepend((m0), (sizeof(hdrbuf)), (0x0002)); |
| 2025 | if (m0 == NULL((void *)0)) { |
| 2026 | sc->sc_stats.ast_tx_nombuf++; |
| 2027 | return ENOMEM12; |
| 2028 | } |
| 2029 | ivp = hdrbuf + hdrlen; |
| 2030 | wh = mtod(m0, struct ieee80211_frame *)((struct ieee80211_frame *)((m0)->m_hdr.mh_data)); |
| 2031 | /* |
| 2032 | * XXX |
| 2033 | * IV must not duplicate during the lifetime of the key. |
| 2034 | * But no mechanism to renew keys is defined in IEEE 802.11 |
| 2035 | * for WEP. And the IV may be duplicated at other stations |
| 2036 | * because the session key itself is shared. So we use a |
| 2037 | * pseudo random IV for now, though it is not the right way. |
| 2038 | * |
| 2039 | * NB: Rather than use a strictly random IV we select a |
| 2040 | * random one to start and then increment the value for |
| 2041 | * each frame. This is an explicit tradeoff between |
| 2042 | * overhead and security. Given the basic insecurity of |
| 2043 | * WEP this seems worthwhile. |
| 2044 | */ |
| 2045 | |
| 2046 | /* |
| 2047 | * Skip 'bad' IVs from Fluhrer/Mantin/Shamir: |
| 2048 | * (B, 255, N) with 3 <= B < 16 and 0 <= N <= 255 |
| 2049 | */ |
| 2050 | iv = ic->ic_iv; |
| 2051 | if ((iv & 0xff00) == 0xff00) { |
| 2052 | int B = (iv & 0xff0000) >> 16; |
| 2053 | if (3 <= B && B < 16) |
| 2054 | iv = (B+1) << 16; |
| 2055 | } |
| 2056 | ic->ic_iv = iv + 1; |
| 2057 | |
| 2058 | /* |
| 2059 | * NB: Preserve byte order of IV for packet |
| 2060 | * sniffers; it doesn't matter otherwise. |
| 2061 | */ |
| 2062 | #if BYTE_ORDER1234 == BIG_ENDIAN4321 |
| 2063 | ivp[0] = iv >> 0; |
| 2064 | ivp[1] = iv >> 8; |
| 2065 | ivp[2] = iv >> 16; |
| 2066 | #else |
| 2067 | ivp[2] = iv >> 0; |
| 2068 | ivp[1] = iv >> 8; |
| 2069 | ivp[0] = iv >> 16; |
| 2070 | #endif |
| 2071 | ivp[3] = ic->ic_wep_txkeyic_def_txkey << 6; /* Key ID and pad */ |
| 2072 | bcopy(hdrbuf, mtod(m0, caddr_t)((caddr_t)((m0)->m_hdr.mh_data)), sizeof(hdrbuf)); |
| 2073 | /* |
| 2074 | * The length of hdrlen and pktlen must be increased for WEP |
| 2075 | */ |
| 2076 | len = IEEE80211_WEP_IVLEN3 + |
| 2077 | IEEE80211_WEP_KIDLEN1 + |
| 2078 | IEEE80211_WEP_CRCLEN4; |
| 2079 | hdrlen += len; |
| 2080 | pktlen += len; |
| 2081 | } |
| 2082 | pktlen += IEEE80211_CRC_LEN4; |
| 2083 | |
| 2084 | /* |
| 2085 | * Load the DMA map so any coalescing is done. This |
| 2086 | * also calculates the number of descriptors we need. |
| 2087 | */ |
| 2088 | error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( bf->bf_dmamap), (m0), (0x0001)) |
| 2089 | BUS_DMA_NOWAIT)(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( bf->bf_dmamap), (m0), (0x0001)); |
| 2090 | /* |
| 2091 | * Discard null packets and check for packets that |
| 2092 | * require too many TX descriptors. We try to convert |
| 2093 | * the latter to a cluster. |
| 2094 | */ |
| 2095 | if (error == EFBIG27) { /* too many desc's, linearize */ |
| 2096 | sc->sc_stats.ast_tx_linear++; |
| 2097 | if (m_defrag(m0, M_DONTWAIT0x0002)) { |
| 2098 | sc->sc_stats.ast_tx_nomcl++; |
| 2099 | m_freem(m0); |
| 2100 | return ENOMEM12; |
| 2101 | } |
| 2102 | error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( bf->bf_dmamap), (m0), (0x0001)) |
| 2103 | BUS_DMA_NOWAIT)(*(sc->sc_dmat)->_dmamap_load_mbuf)((sc->sc_dmat), ( bf->bf_dmamap), (m0), (0x0001)); |
| 2104 | if (error != 0) { |
| 2105 | sc->sc_stats.ast_tx_busdma++; |
| 2106 | m_freem(m0); |
| 2107 | return error; |
| 2108 | } |
| 2109 | KASSERT(bf->bf_nseg == 1,if (!(bf->bf_dmamap->dm_nsegs == 1)) panic ("ath_tx_start: packet not one segment; nseg %u" , bf->bf_dmamap->dm_nsegs) |
| 2110 | ("ath_tx_start: packet not one segment; nseg %u",if (!(bf->bf_dmamap->dm_nsegs == 1)) panic ("ath_tx_start: packet not one segment; nseg %u" , bf->bf_dmamap->dm_nsegs) |
| 2111 | bf->bf_nseg))if (!(bf->bf_dmamap->dm_nsegs == 1)) panic ("ath_tx_start: packet not one segment; nseg %u" , bf->bf_dmamap->dm_nsegs); |
| 2112 | } else if (error != 0) { |
| 2113 | sc->sc_stats.ast_tx_busdma++; |
| 2114 | m_freem(m0); |
| 2115 | return error; |
| 2116 | } else if (bf->bf_nsegbf_dmamap->dm_nsegs == 0) { /* null packet, discard */ |
| 2117 | sc->sc_stats.ast_tx_nodata++; |
| 2118 | m_freem(m0); |
| 2119 | return EIO5; |
| 2120 | } |
| 2121 | DPRINTF(ATH_DEBUG_XMIT, ("%s: m %p len %u\n", __func__, m0, pktlen)); |
| 2122 | bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (bf-> bf_dmamap), (0), (bf->bf_dmamap->dm_mapsize), (0x04)) |
| 2123 | bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (bf-> bf_dmamap), (0), (bf->bf_dmamap->dm_mapsize), (0x04)); |
| 2124 | bf->bf_m = m0; |
| 2125 | bf->bf_node = ni; /* NB: held reference */ |
| 2126 | an = ATH_NODE(ni)((struct ath_node *)(ni)); |
| 2127 | |
| 2128 | /* setup descriptors */ |
| 2129 | ds = bf->bf_desc; |
| 2130 | rt = sc->sc_currates; |
| 2131 | KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode))if (!(rt != ((void *)0))) panic ("no rate table, mode %u", sc ->sc_curmode); |
| 2132 | |
| 2133 | /* |
| 2134 | * Calculate Atheros packet type from IEEE80211 packet header |
| 2135 | * and setup for rate calculations. |
| 2136 | */ |
| 2137 | bf->bf_id.id_node = NULL((void *)0); |
| 2138 | atype = HAL_PKT_TYPE_NORMAL; /* default */ |
| 2139 | switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK0x0c) { |
| 2140 | case IEEE80211_FC0_TYPE_MGT0x00: |
| 2141 | subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK0xf0; |
| 2142 | if (subtype == IEEE80211_FC0_SUBTYPE_BEACON0x80) { |
| 2143 | atype = HAL_PKT_TYPE_BEACON; |
| 2144 | } else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP0x50) { |
| 2145 | atype = HAL_PKT_TYPE_PROBE_RESP; |
| 2146 | } else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM0x90) { |
| 2147 | atype = HAL_PKT_TYPE_ATIM; |
| 2148 | } |
| 2149 | rix = 0; /* XXX lowest rate */ |
| 2150 | break; |
| 2151 | case IEEE80211_FC0_TYPE_CTL0x04: |
| 2152 | subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK0xf0; |
| 2153 | if (subtype == IEEE80211_FC0_SUBTYPE_PS_POLL0xa0) |
| 2154 | atype = HAL_PKT_TYPE_PSPOLL; |
| 2155 | rix = 0; /* XXX lowest rate */ |
| 2156 | break; |
| 2157 | default: |
| 2158 | /* remember link conditions for rate adaptation algorithm */ |
| 2159 | if (ic->ic_fixed_rate == -1) { |
| 2160 | bf->bf_id.id_len = m0->m_pkthdrM_dat.MH.MH_pkthdr.len; |
| 2161 | bf->bf_id.id_rateidx = ni->ni_txrate; |
| 2162 | bf->bf_id.id_node = ni; |
| 2163 | bf->bf_id.id_rssi = ath_node_getrssi(ic, ni); |
| 2164 | } |
| 2165 | ni->ni_txrate = ieee80211_rssadapt_choose(&an->an_rssadapt, |
| 2166 | &ni->ni_rates, wh, m0->m_pkthdrM_dat.MH.MH_pkthdr.len, ic->ic_fixed_rate, |
| 2167 | ifp->if_xname, 0); |
| 2168 | rix = sc->sc_rixmap[ni->ni_rates.rs_rates[ni->ni_txrate] & |
| 2169 | IEEE80211_RATE_VAL0x7f]; |
| 2170 | if (rix == 0xff) { |
| 2171 | printf("%s: bogus xmit rate 0x%x (idx 0x%x)\n", |
| 2172 | ifp->if_xname, ni->ni_rates.rs_rates[ni->ni_txrate], |
| 2173 | ni->ni_txrate); |
| 2174 | sc->sc_stats.ast_tx_badrate++; |
| 2175 | m_freem(m0); |
| 2176 | return EIO5; |
| 2177 | } |
| 2178 | break; |
| 2179 | } |
| 2180 | |
| 2181 | /* |
| 2182 | * NB: the 802.11 layer marks whether or not we should |
| 2183 | * use short preamble based on the current mode and |
| 2184 | * negotiated parameters. |
| 2185 | */ |
| 2186 | if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE0x00040000) && |
| 2187 | (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE0x0020)) { |
| 2188 | txrate = rt->info[rix].rateCode | rt->info[rix].shortPreamble; |
| 2189 | shortPreamble = AH_TRUE; |
| 2190 | sc->sc_stats.ast_tx_shortpre++; |
| 2191 | } else { |
| 2192 | txrate = rt->info[rix].rateCode; |
| 2193 | shortPreamble = AH_FALSE; |
| 2194 | } |
| 2195 | |
| 2196 | /* |
| 2197 | * Calculate miscellaneous flags. |
| 2198 | */ |
| 2199 | flags = HAL_TXDESC_CLRDMASK0x0001; /* XXX needed for wep errors */ |
| 2200 | if (IEEE80211_IS_MULTICAST(wh->i_addr1)(*(wh->i_addr1) & 0x01)) { |
| 2201 | flags |= HAL_TXDESC_NOACK0x0002; /* no ack on broad/multicast */ |
| 2202 | sc->sc_stats.ast_tx_noack++; |
| 2203 | } else if (pktlen > ic->ic_rtsthreshold) { |
| 2204 | flags |= HAL_TXDESC_RTSENA0x0004; /* RTS based on frame length */ |
| 2205 | sc->sc_stats.ast_tx_rts++; |
| 2206 | } |
| 2207 | |
| 2208 | /* |
| 2209 | * Calculate duration. This logically belongs in the 802.11 |
| 2210 | * layer but it lacks sufficient information to calculate it. |
| 2211 | */ |
| 2212 | if ((flags & HAL_TXDESC_NOACK0x0002) == 0 && |
| 2213 | (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK0x0c) != IEEE80211_FC0_TYPE_CTL0x04) { |
| 2214 | u_int16_t dur; |
| 2215 | /* |
| 2216 | * XXX not right with fragmentation. |
| 2217 | */ |
| 2218 | dur = ath_hal_computetxtime(ah, rt, IEEE80211_ACK_SIZE(2+2+6 +4), |
| 2219 | rix, shortPreamble); |
| 2220 | *((u_int16_t*) wh->i_dur) = htole16(dur)((__uint16_t)(dur)); |
| 2221 | } |
| 2222 | |
| 2223 | /* |
| 2224 | * Calculate RTS/CTS rate and duration if needed. |
| 2225 | */ |
| 2226 | ctsduration = 0; |
| 2227 | if (flags & (HAL_TXDESC_RTSENA0x0004|HAL_TXDESC_CTSENA0x0008)) { |
| 2228 | /* |
| 2229 | * CTS transmit rate is derived from the transmit rate |
| 2230 | * by looking in the h/w rate table. We must also factor |
| 2231 | * in whether or not a short preamble is to be used. |
| 2232 | */ |
| 2233 | cix = rt->info[rix].controlRate; |
| 2234 | ctsrate = rt->info[cix].rateCode; |
| 2235 | if (shortPreamble) |
| 2236 | ctsrate |= rt->info[cix].shortPreamble; |
| 2237 | /* |
| 2238 | * Compute the transmit duration based on the size |
| 2239 | * of an ACK frame. We call into the HAL to do the |
| 2240 | * computation since it depends on the characteristics |
| 2241 | * of the actual PHY being used. |
| 2242 | */ |
| 2243 | if (flags & HAL_TXDESC_RTSENA0x0004) { /* SIFS + CTS */ |
| 2244 | ctsduration += ath_hal_computetxtime(ah, |
| 2245 | rt, IEEE80211_ACK_SIZE(2+2+6 +4), cix, shortPreamble); |
| 2246 | } |
| 2247 | /* SIFS + data */ |
| 2248 | ctsduration += ath_hal_computetxtime(ah, |
| 2249 | rt, pktlen, rix, shortPreamble); |
| 2250 | if ((flags & HAL_TXDESC_NOACK0x0002) == 0) { /* SIFS + ACK */ |
| 2251 | ctsduration += ath_hal_computetxtime(ah, |
| 2252 | rt, IEEE80211_ACK_SIZE(2+2+6 +4), cix, shortPreamble); |
| 2253 | } |
| 2254 | } else |
| 2255 | ctsrate = 0; |
| 2256 | |
| 2257 | /* |
| 2258 | * For now use the antenna on which the last good |
| 2259 | * frame was received on. We assume this field is |
| 2260 | * initialized to 0 which gives us ``auto'' or the |
| 2261 | * ``default'' antenna. |
| 2262 | */ |
| 2263 | if (an->an_tx_antenna) { |
| 2264 | antenna = an->an_tx_antenna; |
| 2265 | } else { |
| 2266 | antenna = an->an_rx_hist[an->an_rx_hist_next].arh_antenna; |
| 2267 | } |
| 2268 | |
| 2269 | #if NBPFILTER1 > 0 |
| 2270 | if (ic->ic_rawbpf) |
| 2271 | bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT(1 << 1)); |
| 2272 | |
| 2273 | if (sc->sc_drvbpf) { |
| 2274 | sc->sc_txtapsc_txtapu.th.wt_flags = 0; |
| 2275 | if (shortPreamble) |
| 2276 | sc->sc_txtapsc_txtapu.th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE0x02; |
| 2277 | if (!ath_softcrypto && iswep) |
| 2278 | sc->sc_txtapsc_txtapu.th.wt_flags |= IEEE80211_RADIOTAP_F_WEP0x04; |
| 2279 | sc->sc_txtapsc_txtapu.th.wt_rate = ni->ni_rates.rs_rates[ni->ni_txrate] & |
| 2280 | IEEE80211_RATE_VAL0x7f; |
| 2281 | sc->sc_txtapsc_txtapu.th.wt_txpower = 30; |
| 2282 | sc->sc_txtapsc_txtapu.th.wt_antenna = antenna; |
| 2283 | |
| 2284 | bpf_mtap_hdr(sc->sc_drvbpf, &sc->sc_txtapsc_txtapu.th, sc->sc_txtap_len, |
| 2285 | m0, BPF_DIRECTION_OUT(1 << 1)); |
| 2286 | } |
| 2287 | #endif |
| 2288 | |
| 2289 | /* |
| 2290 | * Formulate first tx descriptor with tx controls. |
| 2291 | */ |
| 2292 | tries = IEEE80211_IS_MULTICAST(wh->i_addr1)(*(wh->i_addr1) & 0x01) ? 1 : 15; |
| 2293 | /* XXX check return value? */ |
| 2294 | ath_hal_setup_tx_desc(ah, ds((*(ah)->ah_setup_tx_desc)((ah), (ds), (pktlen), (hdrlen), (atype), (60), (txrate), (tries), (iswep ? sc->sc_ic.ic_def_txkey : ((u_int32_t) - 1)), (antenna), (flags), (ctsrate), (ctsduration ))) |
| 2295 | , pktlen /* packet length */((*(ah)->ah_setup_tx_desc)((ah), (ds), (pktlen), (hdrlen), (atype), (60), (txrate), (tries), (iswep ? sc->sc_ic.ic_def_txkey : ((u_int32_t) - 1)), (antenna), (flags), (ctsrate), (ctsduration ))) |
| 2296 | , hdrlen /* header length */((*(ah)->ah_setup_tx_desc)((ah), (ds), (pktlen), (hdrlen), (atype), (60), (txrate), (tries), (iswep ? sc->sc_ic.ic_def_txkey : ((u_int32_t) - 1)), (antenna), (flags), (ctsrate), (ctsduration ))) |
| 2297 | , atype /* Atheros packet type */((*(ah)->ah_setup_tx_desc)((ah), (ds), (pktlen), (hdrlen), (atype), (60), (txrate), (tries), (iswep ? sc->sc_ic.ic_def_txkey : ((u_int32_t) - 1)), (antenna), (flags), (ctsrate), (ctsduration ))) |
| 2298 | , 60 /* txpower XXX */((*(ah)->ah_setup_tx_desc)((ah), (ds), (pktlen), (hdrlen), (atype), (60), (txrate), (tries), (iswep ? sc->sc_ic.ic_def_txkey : ((u_int32_t) - 1)), (antenna), (flags), (ctsrate), (ctsduration ))) |
| 2299 | , txrate, tries /* series 0 rate/tries */((*(ah)->ah_setup_tx_desc)((ah), (ds), (pktlen), (hdrlen), (atype), (60), (txrate), (tries), (iswep ? sc->sc_ic.ic_def_txkey : ((u_int32_t) - 1)), (antenna), (flags), (ctsrate), (ctsduration ))) |
| 2300 | , iswep ? sc->sc_ic.ic_wep_txkey : HAL_TXKEYIX_INVALID((*(ah)->ah_setup_tx_desc)((ah), (ds), (pktlen), (hdrlen), (atype), (60), (txrate), (tries), (iswep ? sc->sc_ic.ic_def_txkey : ((u_int32_t) - 1)), (antenna), (flags), (ctsrate), (ctsduration ))) |
| 2301 | , antenna /* antenna mode */((*(ah)->ah_setup_tx_desc)((ah), (ds), (pktlen), (hdrlen), (atype), (60), (txrate), (tries), (iswep ? sc->sc_ic.ic_def_txkey : ((u_int32_t) - 1)), (antenna), (flags), (ctsrate), (ctsduration ))) |
| 2302 | , flags /* flags */((*(ah)->ah_setup_tx_desc)((ah), (ds), (pktlen), (hdrlen), (atype), (60), (txrate), (tries), (iswep ? sc->sc_ic.ic_def_txkey : ((u_int32_t) - 1)), (antenna), (flags), (ctsrate), (ctsduration ))) |
| 2303 | , ctsrate /* rts/cts rate */((*(ah)->ah_setup_tx_desc)((ah), (ds), (pktlen), (hdrlen), (atype), (60), (txrate), (tries), (iswep ? sc->sc_ic.ic_def_txkey : ((u_int32_t) - 1)), (antenna), (flags), (ctsrate), (ctsduration ))) |
| 2304 | , ctsduration /* rts/cts duration */((*(ah)->ah_setup_tx_desc)((ah), (ds), (pktlen), (hdrlen), (atype), (60), (txrate), (tries), (iswep ? sc->sc_ic.ic_def_txkey : ((u_int32_t) - 1)), (antenna), (flags), (ctsrate), (ctsduration ))) |
| 2305 | )((*(ah)->ah_setup_tx_desc)((ah), (ds), (pktlen), (hdrlen), (atype), (60), (txrate), (tries), (iswep ? sc->sc_ic.ic_def_txkey : ((u_int32_t) - 1)), (antenna), (flags), (ctsrate), (ctsduration ))); |
| 2306 | #ifdef notyet |
| 2307 | ath_hal_setup_xtx_desc(ah, ds |
| 2308 | , AH_FALSE /* short preamble */ |
| 2309 | , 0, 0 /* series 1 rate/tries */ |
| 2310 | , 0, 0 /* series 2 rate/tries */ |
| 2311 | , 0, 0 /* series 3 rate/tries */ |
| 2312 | ); |
| 2313 | #endif |
| 2314 | /* |
| 2315 | * Fillin the remainder of the descriptor info. |
| 2316 | */ |
| 2317 | for (i = 0; i < bf->bf_nsegbf_dmamap->dm_nsegs; i++, ds++) { |
| 2318 | ds->ds_data = bf->bf_segsbf_dmamap->dm_segs[i].ds_addr; |
| 2319 | if (i == bf->bf_nsegbf_dmamap->dm_nsegs - 1) { |
| 2320 | ds->ds_link = 0; |
| 2321 | } else { |
| 2322 | ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1); |
| 2323 | } |
| 2324 | ath_hal_fill_tx_desc(ah, ds((*(ah)->ah_fill_tx_desc)((ah), (ds), (bf->bf_dmamap-> dm_segs[i].ds_len), (i == 0), (i == bf->bf_dmamap->dm_nsegs - 1))) |
| 2325 | , bf->bf_segs[i].ds_len /* segment length */((*(ah)->ah_fill_tx_desc)((ah), (ds), (bf->bf_dmamap-> dm_segs[i].ds_len), (i == 0), (i == bf->bf_dmamap->dm_nsegs - 1))) |
| 2326 | , i == 0 /* first segment */((*(ah)->ah_fill_tx_desc)((ah), (ds), (bf->bf_dmamap-> dm_segs[i].ds_len), (i == 0), (i == bf->bf_dmamap->dm_nsegs - 1))) |
| 2327 | , i == bf->bf_nseg - 1 /* last segment */((*(ah)->ah_fill_tx_desc)((ah), (ds), (bf->bf_dmamap-> dm_segs[i].ds_len), (i == 0), (i == bf->bf_dmamap->dm_nsegs - 1))) |
| 2328 | )((*(ah)->ah_fill_tx_desc)((ah), (ds), (bf->bf_dmamap-> dm_segs[i].ds_len), (i == 0), (i == bf->bf_dmamap->dm_nsegs - 1))); |
| 2329 | DPRINTF(ATH_DEBUG_XMIT, |
| 2330 | ("%s: %d: %08x %08x %08x %08x %08x %08x\n", |
| 2331 | __func__, i, ds->ds_link, ds->ds_data, |
| 2332 | ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1])); |
| 2333 | } |
| 2334 | |
| 2335 | /* |
| 2336 | * Insert the frame on the outbound list and |
| 2337 | * pass it on to the hardware. |
| 2338 | */ |
| 2339 | s = splnet()splraise(0x4); |
| 2340 | TAILQ_INSERT_TAIL(&sc->sc_txq, bf, bf_list)do { (bf)->bf_list.tqe_next = ((void *)0); (bf)->bf_list .tqe_prev = (&sc->sc_txq)->tqh_last; *(&sc-> sc_txq)->tqh_last = (bf); (&sc->sc_txq)->tqh_last = &(bf)->bf_list.tqe_next; } while (0); |
| 2341 | if (sc->sc_txlink == NULL((void *)0)) { |
| 2342 | ath_hal_put_tx_buf(ah, sc->sc_txhalq[hwqueue], bf->bf_daddr)((*(ah)->ah_put_tx_buf)((ah), (sc->sc_txhalq[hwqueue]), (bf->bf_daddr))); |
| 2343 | DPRINTF(ATH_DEBUG_XMIT, ("%s: TXDP0 = %p (%p)\n", __func__, |
| 2344 | (caddr_t)bf->bf_daddr, bf->bf_desc)); |
| 2345 | } else { |
| 2346 | *sc->sc_txlink = bf->bf_daddr; |
| 2347 | DPRINTF(ATH_DEBUG_XMIT, ("%s: link(%p)=%p (%p)\n", __func__, |
| 2348 | sc->sc_txlink, (caddr_t)bf->bf_daddr, bf->bf_desc)); |
| 2349 | } |
| 2350 | sc->sc_txlink = &bf->bf_desc[bf->bf_nsegbf_dmamap->dm_nsegs - 1].ds_link; |
| 2351 | splx(s)spllower(s); |
| 2352 | |
| 2353 | ath_hal_tx_start(ah, sc->sc_txhalq[hwqueue])((*(ah)->ah_tx_start)((ah), (sc->sc_txhalq[hwqueue]))); |
| 2354 | return 0; |
| 2355 | } |
| 2356 | |
| 2357 | void |
| 2358 | ath_tx_proc(void *arg, int npending) |
| 2359 | { |
| 2360 | struct ath_softc *sc = arg; |
| 2361 | struct ath_hal *ah = sc->sc_ah; |
| 2362 | struct ath_buf *bf; |
| 2363 | struct ieee80211com *ic = &sc->sc_ic; |
| 2364 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
| 2365 | struct ath_desc *ds; |
| 2366 | struct ieee80211_node *ni; |
| 2367 | struct ath_node *an; |
| 2368 | int sr, lr, s; |
| 2369 | HAL_STATUS status; |
| 2370 | |
| 2371 | for (;;) { |
| 2372 | s = splnet()splraise(0x4); |
| 2373 | bf = TAILQ_FIRST(&sc->sc_txq)((&sc->sc_txq)->tqh_first); |
| 2374 | if (bf == NULL((void *)0)) { |
| 2375 | sc->sc_txlink = NULL((void *)0); |
| 2376 | splx(s)spllower(s); |
| 2377 | break; |
| 2378 | } |
| 2379 | /* only the last descriptor is needed */ |
| 2380 | ds = &bf->bf_desc[bf->bf_nsegbf_dmamap->dm_nsegs - 1]; |
| 2381 | status = ath_hal_proc_tx_desc(ah, ds)((*(ah)->ah_proc_tx_desc)((ah), (ds))); |
| 2382 | #ifdef AR_DEBUG |
| 2383 | if (ath_debug & ATH_DEBUG_XMIT_DESC) |
| 2384 | ath_printtxbuf(bf, status == HAL_OK0); |
| 2385 | #endif |
| 2386 | if (status == HAL_EINPROGRESS36) { |
| 2387 | splx(s)spllower(s); |
| 2388 | break; |
| 2389 | } |
| 2390 | TAILQ_REMOVE(&sc->sc_txq, bf, bf_list)do { if (((bf)->bf_list.tqe_next) != ((void *)0)) (bf)-> bf_list.tqe_next->bf_list.tqe_prev = (bf)->bf_list.tqe_prev ; else (&sc->sc_txq)->tqh_last = (bf)->bf_list.tqe_prev ; *(bf)->bf_list.tqe_prev = (bf)->bf_list.tqe_next; ((bf )->bf_list.tqe_prev) = ((void *)-1); ((bf)->bf_list.tqe_next ) = ((void *)-1); } while (0); |
| 2391 | splx(s)spllower(s); |
| 2392 | |
| 2393 | ni = bf->bf_node; |
| 2394 | if (ni != NULL((void *)0)) { |
| 2395 | an = (struct ath_node *) ni; |
| 2396 | if (ds->ds_txstatds_us.tx.ts_status == 0) { |
| 2397 | if (bf->bf_id.id_node != NULL((void *)0)) |
| 2398 | ieee80211_rssadapt_raise_rate(ic, |
| 2399 | &an->an_rssadapt, &bf->bf_id); |
| 2400 | an->an_tx_antenna = ds->ds_txstatds_us.tx.ts_antenna; |
| 2401 | } else { |
| 2402 | if (bf->bf_id.id_node != NULL((void *)0)) |
| 2403 | ieee80211_rssadapt_lower_rate(ic, ni, |
| 2404 | &an->an_rssadapt, &bf->bf_id); |
| 2405 | if (ds->ds_txstatds_us.tx.ts_status & HAL_TXERR_XRETRY0x01) |
| 2406 | sc->sc_stats.ast_tx_xretries++; |
| 2407 | if (ds->ds_txstatds_us.tx.ts_status & HAL_TXERR_FIFO0x04) |
| 2408 | sc->sc_stats.ast_tx_fifoerr++; |
| 2409 | if (ds->ds_txstatds_us.tx.ts_status & HAL_TXERR_FILT0x02) |
| 2410 | sc->sc_stats.ast_tx_filtered++; |
| 2411 | an->an_tx_antenna = 0; /* invalidate */ |
| 2412 | } |
| 2413 | sr = ds->ds_txstatds_us.tx.ts_shortretry; |
| 2414 | lr = ds->ds_txstatds_us.tx.ts_longretry; |
| 2415 | sc->sc_stats.ast_tx_shortretry += sr; |
| 2416 | sc->sc_stats.ast_tx_longretry += lr; |
| 2417 | /* |
| 2418 | * Reclaim reference to node. |
| 2419 | * |
| 2420 | * NB: the node may be reclaimed here if, for example |
| 2421 | * this is a DEAUTH message that was sent and the |
| 2422 | * node was timed out due to inactivity. |
| 2423 | */ |
| 2424 | ieee80211_release_node(ic, ni); |
| 2425 | } |
| 2426 | bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (bf-> bf_dmamap), (0), (bf->bf_dmamap->dm_mapsize), (0x08)) |
| 2427 | bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE)(*(sc->sc_dmat)->_dmamap_sync)((sc->sc_dmat), (bf-> bf_dmamap), (0), (bf->bf_dmamap->dm_mapsize), (0x08)); |
| 2428 | bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (bf-> bf_dmamap)); |
| 2429 | m_freem(bf->bf_m); |
| 2430 | bf->bf_m = NULL((void *)0); |
| 2431 | bf->bf_node = NULL((void *)0); |
| 2432 | |
| 2433 | s = splnet()splraise(0x4); |
| 2434 | TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list)do { (bf)->bf_list.tqe_next = ((void *)0); (bf)->bf_list .tqe_prev = (&sc->sc_txbuf)->tqh_last; *(&sc-> sc_txbuf)->tqh_last = (bf); (&sc->sc_txbuf)->tqh_last = &(bf)->bf_list.tqe_next; } while (0); |
| 2435 | splx(s)spllower(s); |
| 2436 | } |
| 2437 | ifq_clr_oactive(&ifp->if_snd); |
| 2438 | sc->sc_tx_timer = 0; |
| 2439 | |
| 2440 | ath_start(ifp); |
| 2441 | } |
| 2442 | |
| 2443 | /* |
| 2444 | * Drain the transmit queue and reclaim resources. |
| 2445 | */ |
| 2446 | void |
| 2447 | ath_draintxq(struct ath_softc *sc) |
| 2448 | { |
| 2449 | struct ath_hal *ah = sc->sc_ah; |
| 2450 | struct ieee80211com *ic = &sc->sc_ic; |
| 2451 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
| 2452 | struct ieee80211_node *ni; |
| 2453 | struct ath_buf *bf; |
| 2454 | int s, i; |
| 2455 | |
| 2456 | /* XXX return value */ |
| 2457 | if (!sc->sc_invalid) { |
| 2458 | for (i = 0; i <= HAL_TX_QUEUE_ID_DATA_MAX; i++) { |
| 2459 | /* don't touch the hardware if marked invalid */ |
| 2460 | (void) ath_hal_stop_tx_dma(ah, sc->sc_txhalq[i])((*(ah)->ah_stop_tx_dma)((ah), (sc->sc_txhalq[i]))); |
| 2461 | DPRINTF(ATH_DEBUG_RESET, |
| 2462 | ("%s: tx queue %d (%p), link %p\n", __func__, i, |
| 2463 | (caddr_t)(u_intptr_t)ath_hal_get_tx_buf(ah, |
| 2464 | sc->sc_txhalq[i]), sc->sc_txlink)); |
| 2465 | } |
| 2466 | (void) ath_hal_stop_tx_dma(ah, sc->sc_bhalq)((*(ah)->ah_stop_tx_dma)((ah), (sc->sc_bhalq))); |
| 2467 | DPRINTF(ATH_DEBUG_RESET, |
| 2468 | ("%s: beacon queue (%p)\n", __func__, |
| 2469 | (caddr_t)(u_intptr_t)ath_hal_get_tx_buf(ah, sc->sc_bhalq))); |
| 2470 | } |
| 2471 | for (;;) { |
| 2472 | s = splnet()splraise(0x4); |
| 2473 | bf = TAILQ_FIRST(&sc->sc_txq)((&sc->sc_txq)->tqh_first); |
| 2474 | if (bf == NULL((void *)0)) { |
| 2475 | sc->sc_txlink = NULL((void *)0); |
| 2476 | splx(s)spllower(s); |
| 2477 | break; |
| 2478 | } |
| 2479 | TAILQ_REMOVE(&sc->sc_txq, bf, bf_list)do { if (((bf)->bf_list.tqe_next) != ((void *)0)) (bf)-> bf_list.tqe_next->bf_list.tqe_prev = (bf)->bf_list.tqe_prev ; else (&sc->sc_txq)->tqh_last = (bf)->bf_list.tqe_prev ; *(bf)->bf_list.tqe_prev = (bf)->bf_list.tqe_next; ((bf )->bf_list.tqe_prev) = ((void *)-1); ((bf)->bf_list.tqe_next ) = ((void *)-1); } while (0); |
| 2480 | splx(s)spllower(s); |
| 2481 | #ifdef AR_DEBUG |
| 2482 | if (ath_debug & ATH_DEBUG_RESET) { |
| 2483 | ath_printtxbuf(bf, |
| 2484 | ath_hal_proc_tx_desc(ah, bf->bf_desc)((*(ah)->ah_proc_tx_desc)((ah), (bf->bf_desc))) == HAL_OK0); |
| 2485 | } |
| 2486 | #endif /* AR_DEBUG */ |
| 2487 | bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap)(*(sc->sc_dmat)->_dmamap_unload)((sc->sc_dmat), (bf-> bf_dmamap)); |
| 2488 | m_freem(bf->bf_m); |
| 2489 | bf->bf_m = NULL((void *)0); |
| 2490 | ni = bf->bf_node; |
| 2491 | bf->bf_node = NULL((void *)0); |
| 2492 | s = splnet()splraise(0x4); |
| 2493 | if (ni != NULL((void *)0)) { |
| 2494 | /* |
| 2495 | * Reclaim node reference. |
| 2496 | */ |
| 2497 | ieee80211_release_node(ic, ni); |
| 2498 | } |
| 2499 | TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list)do { (bf)->bf_list.tqe_next = ((void *)0); (bf)->bf_list .tqe_prev = (&sc->sc_txbuf)->tqh_last; *(&sc-> sc_txbuf)->tqh_last = (bf); (&sc->sc_txbuf)->tqh_last = &(bf)->bf_list.tqe_next; } while (0); |
| 2500 | splx(s)spllower(s); |
| 2501 | } |
| 2502 | ifq_clr_oactive(&ifp->if_snd); |
| 2503 | sc->sc_tx_timer = 0; |
| 2504 | } |
| 2505 | |
| 2506 | /* |
| 2507 | * Disable the receive h/w in preparation for a reset. |
| 2508 | */ |
| 2509 | void |
| 2510 | ath_stoprecv(struct ath_softc *sc) |
| 2511 | { |
| 2512 | #define PA2DESC(_sc, _pa) \ |
| 2513 | ((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \ |
| 2514 | ((_pa) - (_sc)->sc_desc_paddr))) |
| 2515 | struct ath_hal *ah = sc->sc_ah; |
| 2516 | |
| 2517 | ath_hal_stop_pcu_recv(ah)((*(ah)->ah_stop_pcu_recv)((ah))); /* disable PCU */ |
| 2518 | ath_hal_set_rx_filter(ah, 0)((*(ah)->ah_set_rx_filter)((ah), (0))); /* clear recv filter */ |
| 2519 | ath_hal_stop_rx_dma(ah)((*(ah)->ah_stop_rx_dma)((ah))); /* disable DMA engine */ |
| 2520 | #ifdef AR_DEBUG |
| 2521 | if (ath_debug & ATH_DEBUG_RESET) { |
| 2522 | struct ath_buf *bf; |
| 2523 | |
| 2524 | printf("%s: rx queue %p, link %p\n", __func__, |
| 2525 | (caddr_t)(u_intptr_t)ath_hal_get_rx_buf(ah)((*(ah)->ah_get_rx_buf)((ah))), sc->sc_rxlink); |
| 2526 | TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list)for((bf) = ((&sc->sc_rxbuf)->tqh_first); (bf) != (( void *)0); (bf) = ((bf)->bf_list.tqe_next)) { |
| 2527 | struct ath_desc *ds = bf->bf_desc; |
| 2528 | if (ath_hal_proc_rx_desc(ah, ds, bf->bf_daddr,((*(ah)->ah_proc_rx_desc)((ah), (ds), (bf->bf_daddr), ( PA2DESC(sc, ds->ds_link)))) |
| 2529 | PA2DESC(sc, ds->ds_link))((*(ah)->ah_proc_rx_desc)((ah), (ds), (bf->bf_daddr), ( PA2DESC(sc, ds->ds_link)))) == HAL_OK0) |
| 2530 | ath_printrxbuf(bf, 1); |
| 2531 | } |
| 2532 | } |
| 2533 | #endif |
| 2534 | sc->sc_rxlink = NULL((void *)0); /* just in case */ |
| 2535 | #undef PA2DESC |
| 2536 | } |
| 2537 | |
| 2538 | /* |
| 2539 | * Enable the receive h/w following a reset. |
| 2540 | */ |
| 2541 | int |
| 2542 | ath_startrecv(struct ath_softc *sc) |
| 2543 | { |
| 2544 | struct ath_hal *ah = sc->sc_ah; |
| 2545 | struct ath_buf *bf; |
| 2546 | |
| 2547 | sc->sc_rxlink = NULL((void *)0); |
| 2548 | TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list)for((bf) = ((&sc->sc_rxbuf)->tqh_first); (bf) != (( void *)0); (bf) = ((bf)->bf_list.tqe_next)) { |
| 2549 | int error = ath_rxbuf_init(sc, bf); |
| 2550 | if (error != 0) { |
| 2551 | DPRINTF(ATH_DEBUG_RECV, |
| 2552 | ("%s: ath_rxbuf_init failed %d\n", |
| 2553 | __func__, error)); |
| 2554 | return error; |
| 2555 | } |
| 2556 | } |
| 2557 | |
| 2558 | bf = TAILQ_FIRST(&sc->sc_rxbuf)((&sc->sc_rxbuf)->tqh_first); |
| 2559 | ath_hal_put_rx_buf(ah, bf->bf_daddr)((*(ah)->ah_put_rx_buf)((ah), (bf->bf_daddr))); |
| 2560 | ath_hal_start_rx(ah)((*(ah)->ah_start_rx)((ah))); /* enable recv descriptors */ |
| 2561 | ath_mode_init(sc); /* set filters, etc. */ |
| 2562 | ath_hal_start_rx_pcu(ah)((*(ah)->ah_start_rx_pcu)((ah))); /* re-enable PCU/DMA engine */ |
| 2563 | return 0; |
| 2564 | } |
| 2565 | |
| 2566 | /* |
| 2567 | * Set/change channels. If the channel is really being changed, |
| 2568 | * it's done by resetting the chip. To accomplish this we must |
| 2569 | * first cleanup any pending DMA, then restart stuff after a la |
| 2570 | * ath_init. |
| 2571 | */ |
| 2572 | int |
| 2573 | ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) |
| 2574 | { |
| 2575 | struct ath_hal *ah = sc->sc_ah; |
| 2576 | struct ieee80211com *ic = &sc->sc_ic; |
| 2577 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
| 2578 | |
| 2579 | DPRINTF(ATH_DEBUG_ANY, ("%s: %u (%u MHz) -> %u (%u MHz)\n", __func__, |
| 2580 | ieee80211_chan2ieee(ic, ic->ic_ibss_chan), |
| 2581 | ic->ic_ibss_chan->ic_freq, |
| 2582 | ieee80211_chan2ieee(ic, chan), chan->ic_freq)); |
| 2583 | if (chan != ic->ic_ibss_chan) { |
| 2584 | HAL_STATUS status; |
| 2585 | HAL_CHANNEL hchan; |
| 2586 | enum ieee80211_phymode mode; |
| 2587 | |
| 2588 | /* |
| 2589 | * To switch channels clear any pending DMA operations; |
| 2590 | * wait long enough for the RX fifo to drain, reset the |
| 2591 | * hardware at the new frequency, and then re-enable |
| 2592 | * the relevant bits of the h/w. |
| 2593 | */ |
| 2594 | ath_hal_set_intr(ah, 0)((*(ah)->ah_set_intr)((ah), (0))); /* disable interrupts */ |
| 2595 | ath_draintxq(sc); /* clear pending tx frames */ |
| 2596 | ath_stoprecv(sc); /* turn off frame recv */ |
| 2597 | /* |
| 2598 | * Convert to a HAL channel description. |
| 2599 | */ |
| 2600 | hchan.channel = chan->ic_freq; |
| 2601 | hchan.channelFlags = chan->ic_flags; |
| 2602 | if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE,((*(ah)->ah_reset)((ah), (ic->ic_opmode), (&hchan), (AH_TRUE), (&status))) |
| 2603 | &status)((*(ah)->ah_reset)((ah), (ic->ic_opmode), (&hchan), (AH_TRUE), (&status)))) { |
| 2604 | printf("%s: ath_chan_set: unable to reset " |
| 2605 | "channel %u (%u MHz)\n", ifp->if_xname, |
| 2606 | ieee80211_chan2ieee(ic, chan), chan->ic_freq); |
| 2607 | return EIO5; |
| 2608 | } |
| 2609 | ath_set_slot_time(sc); |
| 2610 | /* |
| 2611 | * Re-enable rx framework. |
| 2612 | */ |
| 2613 | if (ath_startrecv(sc) != 0) { |
| 2614 | printf("%s: ath_chan_set: unable to restart recv " |
| 2615 | "logic\n", ifp->if_xname); |
| 2616 | return EIO5; |
| 2617 | } |
| 2618 | |
| 2619 | #if NBPFILTER1 > 0 |
| 2620 | /* |
| 2621 | * Update BPF state. |
| 2622 | */ |
| 2623 | sc->sc_txtapsc_txtapu.th.wt_chan_freq = sc->sc_rxtapsc_rxtapu.th.wr_chan_freq = |
| 2624 | htole16(chan->ic_freq)((__uint16_t)(chan->ic_freq)); |
| 2625 | sc->sc_txtapsc_txtapu.th.wt_chan_flags = sc->sc_rxtapsc_rxtapu.th.wr_chan_flags = |
| 2626 | htole16(chan->ic_flags)((__uint16_t)(chan->ic_flags)); |
| 2627 | #endif |
| 2628 | |
| 2629 | /* |
| 2630 | * Change channels and update the h/w rate map |
| 2631 | * if we're switching; e.g. 11a to 11b/g. |
| 2632 | */ |
| 2633 | ic->ic_ibss_chan = chan; |
| 2634 | mode = ieee80211_chan2mode(ic, chan); |
| 2635 | if (mode != sc->sc_curmode) |
| 2636 | ath_setcurmode(sc, mode); |
| 2637 | |
| 2638 | /* |
| 2639 | * Re-enable interrupts. |
| 2640 | */ |
| 2641 | ath_hal_set_intr(ah, sc->sc_imask)((*(ah)->ah_set_intr)((ah), (sc->sc_imask))); |
| 2642 | } |
| 2643 | return 0; |
| 2644 | } |
| 2645 | |
| 2646 | void |
| 2647 | ath_next_scan(void *arg) |
| 2648 | { |
| 2649 | struct ath_softc *sc = arg; |
| 2650 | struct ieee80211com *ic = &sc->sc_ic; |
| 2651 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
| 2652 | int s; |
| 2653 | |
| 2654 | /* don't call ath_start w/o network interrupts blocked */ |
| 2655 | s = splnet()splraise(0x4); |
| 2656 | |
| 2657 | if (ic->ic_state == IEEE80211_S_SCAN) |
| 2658 | ieee80211_next_scan(ifp); |
| 2659 | splx(s)spllower(s); |
| 2660 | } |
| 2661 | |
| 2662 | int |
| 2663 | ath_set_slot_time(struct ath_softc *sc) |
| 2664 | { |
| 2665 | struct ath_hal *ah = sc->sc_ah; |
| 2666 | struct ieee80211com *ic = &sc->sc_ic; |
| 2667 | |
| 2668 | if (ic->ic_flags & IEEE80211_F_SHSLOT0x00020000) |
| 2669 | return (ath_hal_set_slot_time(ah, HAL_SLOT_TIME_9)((*(ah)->ah_set_slot_time)(ah, 396))); |
| 2670 | |
| 2671 | return (0); |
| 2672 | } |
| 2673 | |
| 2674 | /* |
| 2675 | * Periodically recalibrate the PHY to account |
| 2676 | * for temperature/environment changes. |
| 2677 | */ |
| 2678 | void |
| 2679 | ath_calibrate(void *arg) |
| 2680 | { |
| 2681 | struct ath_softc *sc = arg; |
| 2682 | struct ath_hal *ah = sc->sc_ah; |
| 2683 | struct ieee80211com *ic = &sc->sc_ic; |
| 2684 | struct ieee80211_channel *c; |
| 2685 | HAL_CHANNEL hchan; |
| 2686 | int s; |
| 2687 | |
| 2688 | sc->sc_stats.ast_per_cal++; |
| 2689 | |
| 2690 | /* |
| 2691 | * Convert to a HAL channel description. |
| 2692 | */ |
| 2693 | c = ic->ic_ibss_chan; |
| 2694 | hchan.channel = c->ic_freq; |
| 2695 | hchan.channelFlags = c->ic_flags; |
| 2696 | |
| 2697 | s = splnet()splraise(0x4); |
| 2698 | DPRINTF(ATH_DEBUG_CALIBRATE, |
| 2699 | ("%s: channel %u/%x\n", __func__, c->ic_freq, c->ic_flags)); |
| 2700 | |
| 2701 | if (ath_hal_get_rf_gain(ah)((*(ah)->ah_get_rf_gain)((ah))) == HAL_RFGAIN_NEED_CHANGE) { |
| 2702 | /* |
| 2703 | * Rfgain is out of bounds, reset the chip |
| 2704 | * to load new gain values. |
| 2705 | */ |
| 2706 | sc->sc_stats.ast_per_rfgain++; |
| 2707 | ath_reset(sc, 1); |
| 2708 | } |
| 2709 | if (!ath_hal_calibrate(ah, &hchan)((*(ah)->ah_calibrate)((ah), (&hchan)))) { |
| 2710 | DPRINTF(ATH_DEBUG_ANY, |
| 2711 | ("%s: calibration of channel %u failed\n", |
| 2712 | __func__, c->ic_freq)); |
| 2713 | sc->sc_stats.ast_per_calfail++; |
| 2714 | } |
| 2715 | timeout_add_sec(&sc->sc_cal_to, ath_calinterval); |
| 2716 | splx(s)spllower(s); |
| 2717 | } |
| 2718 | |
| 2719 | void |
| 2720 | ath_ledstate(struct ath_softc *sc, enum ieee80211_state state) |
| 2721 | { |
| 2722 | HAL_LED_STATE led = HAL_LED_INITIEEE80211_S_INIT; |
| 2723 | u_int32_t softled = AR5K_SOFTLED_OFF1; |
| 2724 | |
| 2725 | switch (state) { |
| 2726 | case IEEE80211_S_INIT: |
| 2727 | break; |
| 2728 | case IEEE80211_S_SCAN: |
| 2729 | led = HAL_LED_SCANIEEE80211_S_SCAN; |
| 2730 | break; |
| 2731 | case IEEE80211_S_AUTH: |
| 2732 | led = HAL_LED_AUTHIEEE80211_S_AUTH; |
| 2733 | break; |
| 2734 | case IEEE80211_S_ASSOC: |
| 2735 | led = HAL_LED_ASSOCIEEE80211_S_ASSOC; |
| 2736 | softled = AR5K_SOFTLED_ON0; |
| 2737 | break; |
| 2738 | case IEEE80211_S_RUN: |
| 2739 | led = HAL_LED_RUNIEEE80211_S_RUN; |
| 2740 | softled = AR5K_SOFTLED_ON0; |
| 2741 | break; |
| 2742 | } |
| 2743 | |
| 2744 | ath_hal_set_ledstate(sc->sc_ah, led)((*(sc->sc_ah)->ah_set_ledstate)((sc->sc_ah), (led)) ); |
| 2745 | if (sc->sc_softled) { |
| 2746 | ath_hal_set_gpio_output(sc->sc_ah, AR5K_SOFTLED_PIN)((*(sc->sc_ah)->ah_set_gpio_output)((sc->sc_ah), (0) )); |
| 2747 | ath_hal_set_gpio(sc->sc_ah, AR5K_SOFTLED_PIN, softled)((*(sc->sc_ah)->ah_set_gpio)((sc->sc_ah), (0), (softled ))); |
| 2748 | } |
| 2749 | } |
| 2750 | |
| 2751 | int |
| 2752 | ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) |
| 2753 | { |
| 2754 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
| 2755 | struct ath_softc *sc = ifp->if_softc; |
| 2756 | struct ath_hal *ah = sc->sc_ah; |
| 2757 | struct ieee80211_node *ni; |
| 2758 | const u_int8_t *bssid; |
| 2759 | int error, i; |
| 2760 | |
| 2761 | u_int32_t rfilt; |
| 2762 | |
| 2763 | DPRINTF(ATH_DEBUG_ANY, ("%s: %s -> %s\n", __func__, |
| 2764 | ieee80211_state_name[ic->ic_state], |
| 2765 | ieee80211_state_name[nstate])); |
| 2766 | |
| 2767 | timeout_del(&sc->sc_scan_to); |
| 2768 | timeout_del(&sc->sc_cal_to); |
| 2769 | ath_ledstate(sc, nstate); |
| 2770 | |
| 2771 | if (nstate == IEEE80211_S_INIT) { |
| 2772 | timeout_del(&sc->sc_rssadapt_to); |
| 2773 | sc->sc_imask &= ~(HAL_INT_SWBA0x00010000 | HAL_INT_BMISS0x00040000); |
| 2774 | ath_hal_set_intr(ah, sc->sc_imask)((*(ah)->ah_set_intr)((ah), (sc->sc_imask))); |
| 2775 | return (*sc->sc_newstate)(ic, nstate, arg); |
| 2776 | } |
| 2777 | ni = ic->ic_bss; |
| 2778 | error = ath_chan_set(sc, ni->ni_chan); |
| 2779 | if (error != 0) |
| 2780 | goto bad; |
| 2781 | rfilt = ath_calcrxfilter(sc); |
| 2782 | if (nstate == IEEE80211_S_SCAN || |
| 2783 | ic->ic_opmode == IEEE80211_M_MONITOR) { |
| 2784 | bssid = sc->sc_broadcast_addr; |
| 2785 | } else { |
| 2786 | bssid = ni->ni_bssid; |
| 2787 | } |
| 2788 | ath_hal_set_rx_filter(ah, rfilt)((*(ah)->ah_set_rx_filter)((ah), (rfilt))); |
| 2789 | DPRINTF(ATH_DEBUG_ANY, ("%s: RX filter 0x%x bssid %s\n", |
| 2790 | __func__, rfilt, ether_sprintf((u_char*)bssid))); |
| 2791 | |
| 2792 | if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA) { |
| 2793 | ath_hal_set_associd(ah, bssid, ni->ni_associd)((*(ah)->ah_set_associd)((ah), (bssid), (ni->ni_associd ), 0)); |
| 2794 | } else { |
| 2795 | ath_hal_set_associd(ah, bssid, 0)((*(ah)->ah_set_associd)((ah), (bssid), (0), 0)); |
| 2796 | } |
| 2797 | |
| 2798 | if (!ath_softcrypto && (ic->ic_flags & IEEE80211_F_WEPON0x00000100)) { |
| 2799 | for (i = 0; i < IEEE80211_WEP_NKID4; i++) { |
| 2800 | if (ath_hal_is_key_valid(ah, i)(((*(ah)->ah_is_key_valid)((ah), (i))))) |
| 2801 | ath_hal_set_key_lladdr(ah, i, bssid)((*(ah)->ah_set_key_lladdr)((ah), (i), (bssid))); |
| 2802 | } |
| 2803 | } |
| 2804 | |
| 2805 | if (ic->ic_opmode == IEEE80211_M_MONITOR) { |
| 2806 | /* nothing to do */ |
| 2807 | } else if (nstate == IEEE80211_S_RUN) { |
| 2808 | DPRINTF(ATH_DEBUG_ANY, ("%s(RUN): " |
| 2809 | "ic_flags=0x%08x iv=%d bssid=%s " |
| 2810 | "capinfo=0x%04x chan=%d\n", |
| 2811 | __func__, |
| 2812 | ic->ic_flags, |
| 2813 | ni->ni_intval, |
| 2814 | ether_sprintf(ni->ni_bssid), |
| 2815 | ni->ni_capinfo, |
| 2816 | ieee80211_chan2ieee(ic, ni->ni_chan))); |
| 2817 | |
| 2818 | /* |
| 2819 | * Allocate and setup the beacon frame for AP or adhoc mode. |
| 2820 | */ |
| 2821 | #ifndef IEEE80211_STA_ONLY |
| 2822 | if (ic->ic_opmode == IEEE80211_M_HOSTAP || |
| 2823 | ic->ic_opmode == IEEE80211_M_IBSS) { |
| 2824 | error = ath_beacon_alloc(sc, ni); |
| 2825 | if (error != 0) |
| 2826 | goto bad; |
| 2827 | } |
| 2828 | #endif |
| 2829 | /* |
| 2830 | * Configure the beacon and sleep timers. |
| 2831 | */ |
| 2832 | ath_beacon_config(sc); |
| 2833 | } else { |
| 2834 | sc->sc_imask &= ~(HAL_INT_SWBA0x00010000 | HAL_INT_BMISS0x00040000); |
| 2835 | ath_hal_set_intr(ah, sc->sc_imask)((*(ah)->ah_set_intr)((ah), (sc->sc_imask))); |
| 2836 | } |
| 2837 | |
| 2838 | /* |
| 2839 | * Invoke the parent method to complete the work. |
| 2840 | */ |
| 2841 | error = (*sc->sc_newstate)(ic, nstate, arg); |
| 2842 | |
| 2843 | if (nstate == IEEE80211_S_RUN) { |
| 2844 | /* start periodic recalibration timer */ |
| 2845 | timeout_add_sec(&sc->sc_cal_to, ath_calinterval); |
| 2846 | |
| 2847 | if (ic->ic_opmode != IEEE80211_M_MONITOR) |
| 2848 | timeout_add_msec(&sc->sc_rssadapt_to, 100); |
| 2849 | } else if (nstate == IEEE80211_S_SCAN) { |
| 2850 | /* start ap/neighbor scan timer */ |
| 2851 | timeout_add_msec(&sc->sc_scan_to, ath_dwelltime); |
| 2852 | } |
| 2853 | bad: |
| 2854 | return error; |
| 2855 | } |
| 2856 | |
| 2857 | #ifndef IEEE80211_STA_ONLY |
| 2858 | void |
| 2859 | ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m, |
| 2860 | struct ieee80211_node *ni, struct ieee80211_rxinfo *rxi, int subtype) |
| 2861 | { |
| 2862 | struct ath_softc *sc = (struct ath_softc*)ic->ic_softcic_ac.ac_if.if_softc; |
| 2863 | struct ath_hal *ah = sc->sc_ah; |
| 2864 | |
| 2865 | (*sc->sc_recv_mgmt)(ic, m, ni, rxi, subtype); |
| 2866 | |
| 2867 | switch (subtype) { |
| 2868 | case IEEE80211_FC0_SUBTYPE_PROBE_RESP0x50: |
| 2869 | case IEEE80211_FC0_SUBTYPE_BEACON0x80: |
| 2870 | if (ic->ic_opmode != IEEE80211_M_IBSS || |
| 2871 | ic->ic_state != IEEE80211_S_RUN) |
| 2872 | break; |
| 2873 | if (ieee80211_ibss_merge(ic, ni, ath_hal_get_tsf64(ah)((*(ah)->ah_get_tsf64)((ah)))) == |
| 2874 | ENETRESET52) |
| 2875 | ath_hal_set_associd(ah, ic->ic_bss->ni_bssid, 0)((*(ah)->ah_set_associd)((ah), (ic->ic_bss->ni_bssid ), (0), 0)); |
| 2876 | break; |
| 2877 | default: |
| 2878 | break; |
| 2879 | } |
| 2880 | return; |
| 2881 | } |
| 2882 | #endif |
| 2883 | |
| 2884 | /* |
| 2885 | * Setup driver-specific state for a newly associated node. |
| 2886 | * Note that we're called also on a re-associate, the isnew |
| 2887 | * param tells us if this is the first time or not. |
| 2888 | */ |
| 2889 | void |
| 2890 | ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) |
| 2891 | { |
| 2892 | if (ic->ic_opmode == IEEE80211_M_MONITOR) |
| 2893 | return; |
| 2894 | } |
| 2895 | |
| 2896 | int |
| 2897 | ath_getchannels(struct ath_softc *sc, HAL_BOOL outdoor, HAL_BOOL xchanmode) |
| 2898 | { |
| 2899 | struct ieee80211com *ic = &sc->sc_ic; |
| 2900 | struct ifnet *ifp = &ic->ic_ific_ac.ac_if; |
| 2901 | struct ath_hal *ah = sc->sc_ah; |
| 2902 | HAL_CHANNEL *chans; |
| 2903 | int i, ix, nchan; |
| 2904 | |
| 2905 | sc->sc_nchan = 0; |
| 2906 | chans = malloc(IEEE80211_CHAN_MAX255 * sizeof(HAL_CHANNEL), |
| 2907 | M_TEMP127, M_NOWAIT0x0002); |
| 2908 | if (chans == NULL((void *)0)) { |
| 2909 | printf("%s: unable to allocate channel table\n", ifp->if_xname); |
| 2910 | return ENOMEM12; |
| 2911 | } |
| 2912 | if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX255, &nchan, |
| 2913 | HAL_MODE_ALL, outdoor, xchanmode)) { |
| 2914 | printf("%s: unable to collect channel list from hal\n", |
| 2915 | ifp->if_xname); |
| 2916 | free(chans, M_TEMP127, 0); |
| 2917 | return EINVAL22; |
| 2918 | } |
| 2919 | |
| 2920 | /* |
| 2921 | * Convert HAL channels to ieee80211 ones and insert |
| 2922 | * them in the table according to their channel number. |
| 2923 | */ |
| 2924 | for (i = 0; i < nchan; i++) { |
| 2925 | HAL_CHANNEL *c = &chans[i]; |
| 2926 | ix = ieee80211_mhz2ieee(c->channel, c->channelFlags); |
| 2927 | if (ix > IEEE80211_CHAN_MAX255) { |
| 2928 | printf("%s: bad hal channel %u (%u/%x) ignored\n", |
| 2929 | ifp->if_xname, ix, c->channel, c->channelFlags); |
| 2930 | continue; |
| 2931 | } |
| 2932 | DPRINTF(ATH_DEBUG_ANY, |
| 2933 | ("%s: HAL channel %d/%d freq %d flags %#04x idx %d\n", |
| 2934 | sc->sc_dev.dv_xname, i, nchan, c->channel, c->channelFlags, |
| 2935 | ix)); |
| 2936 | /* NB: flags are known to be compatible */ |
| 2937 | if (ic->ic_channels[ix].ic_freq == 0) { |
| 2938 | ic->ic_channels[ix].ic_freq = c->channel; |
| 2939 | ic->ic_channels[ix].ic_flags = c->channelFlags; |
| 2940 | } else { |
| 2941 | /* channels overlap; e.g. 11g and 11b */ |
| 2942 | ic->ic_channels[ix].ic_flags |= c->channelFlags; |
| 2943 | } |
| 2944 | /* count valid channels */ |
| 2945 | sc->sc_nchan++; |
| 2946 | } |
| 2947 | free(chans, M_TEMP127, 0); |
| 2948 | |
| 2949 | if (sc->sc_nchan < 1) { |
| 2950 | printf("%s: no valid channels for regdomain %s(%u)\n", |
| 2951 | ifp->if_xname, ieee80211_regdomain2name(ah->ah_regdomainah_capabilities.cap_regdomain.reg_current), |
| 2952 | ah->ah_regdomainah_capabilities.cap_regdomain.reg_current); |
| 2953 | return ENOENT2; |
| 2954 | } |
| 2955 | |
| 2956 | /* set an initial channel */ |
| 2957 | ic->ic_ibss_chan = &ic->ic_channels[0]; |
| 2958 | |
| 2959 | return 0; |
| 2960 | } |
| 2961 | |
| 2962 | int |
| 2963 | ath_rate_setup(struct ath_softc *sc, u_int mode) |
| 2964 | { |
| 2965 | struct ath_hal *ah = sc->sc_ah; |
| 2966 | struct ieee80211com *ic = &sc->sc_ic; |
| 2967 | const HAL_RATE_TABLE *rt; |
| 2968 | struct ieee80211_rateset *rs; |
| 2969 | int i, maxrates; |
| 2970 | |
| 2971 | switch (mode) { |
| 2972 | case IEEE80211_MODE_11A: |
| 2973 | sc->sc_rates[mode] = ath_hal_get_rate_table(ah, HAL_MODE_11A)((*(ah)->ah_get_rate_table)((ah), (HAL_MODE_11A))); |
| 2974 | break; |
| 2975 | case IEEE80211_MODE_11B: |
| 2976 | sc->sc_rates[mode] = ath_hal_get_rate_table(ah, HAL_MODE_11B)((*(ah)->ah_get_rate_table)((ah), (HAL_MODE_11B))); |
| 2977 | break; |
| 2978 | case IEEE80211_MODE_11G: |
| 2979 | sc->sc_rates[mode] = ath_hal_get_rate_table(ah, HAL_MODE_11G)((*(ah)->ah_get_rate_table)((ah), (HAL_MODE_11G))); |
| 2980 | break; |
| 2981 | default: |
| 2982 | DPRINTF(ATH_DEBUG_ANY, |
| 2983 | ("%s: invalid mode %u\n", __func__, mode)); |
| 2984 | return 0; |
| 2985 | } |
| 2986 | rt = sc->sc_rates[mode]; |
| 2987 | if (rt == NULL((void *)0)) |
| 2988 | return 0; |
| 2989 | if (rt->rateCount > IEEE80211_RATE_MAXSIZE15) { |
| 2990 | DPRINTF(ATH_DEBUG_ANY, |
| 2991 | ("%s: rate table too small (%u > %u)\n", |
| 2992 | __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE)); |
| 2993 | maxrates = IEEE80211_RATE_MAXSIZE15; |
| 2994 | } else { |
| 2995 | maxrates = rt->rateCount; |
| 2996 | } |
| 2997 | rs = &ic->ic_sup_rates[mode]; |
| 2998 | for (i = 0; i < maxrates; i++) |
| 2999 | rs->rs_rates[i] = rt->info[i].dot11Rate; |
| 3000 | rs->rs_nrates = maxrates; |
| 3001 | return 1; |
| 3002 | } |
| 3003 | |
| 3004 | void |
| 3005 | ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) |
| 3006 | { |
| 3007 | const HAL_RATE_TABLE *rt; |
| 3008 | struct ieee80211com *ic = &sc->sc_ic; |
| 3009 | struct ieee80211_node *ni; |
| 3010 | int i; |
| 3011 | |
| 3012 | memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap))__builtin_memset((sc->sc_rixmap), (0xff), (sizeof(sc->sc_rixmap ))); |
| 3013 | rt = sc->sc_rates[mode]; |
| 3014 | KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode))if (!(rt != ((void *)0))) panic ("no h/w rate set for phy mode %u" , mode); |
| 3015 | for (i = 0; i < rt->rateCount; i++) |
| 3016 | sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL0x7f] = i; |
| 3017 | bzero(sc->sc_hwmap, sizeof(sc->sc_hwmap))__builtin_bzero((sc->sc_hwmap), (sizeof(sc->sc_hwmap))); |
| 3018 | for (i = 0; i < 32; i++) |
| 3019 | sc->sc_hwmap[i] = rt->info[rt->rateCodeToIndex[i]].dot11Rate; |
| 3020 | sc->sc_currates = rt; |
| 3021 | sc->sc_curmode = mode; |
| 3022 | ni = ic->ic_bss; |
| 3023 | ni->ni_rates.rs_nrates = sc->sc_currates->rateCount; |
| 3024 | if (ni->ni_txrate >= ni->ni_rates.rs_nrates) |
| 3025 | ni->ni_txrate = 0; |
| 3026 | } |
| 3027 | |
| 3028 | void |
| 3029 | ath_rssadapt_updatenode(void *arg, struct ieee80211_node *ni) |
| 3030 | { |
| 3031 | struct ath_node *an = ATH_NODE(ni)((struct ath_node *)(ni)); |
| 3032 | |
| 3033 | ieee80211_rssadapt_updatestats(&an->an_rssadapt); |
| 3034 | } |
| 3035 | |
| 3036 | void |
| 3037 | ath_rssadapt_updatestats(void *arg) |
| 3038 | { |
| 3039 | struct ath_softc *sc = (struct ath_softc *)arg; |
| 3040 | struct ieee80211com *ic = &sc->sc_ic; |
| 3041 | |
| 3042 | if (ic->ic_opmode == IEEE80211_M_STA) { |
| 3043 | ath_rssadapt_updatenode(arg, ic->ic_bss); |
| 3044 | } else { |
| 3045 | ieee80211_iterate_nodes(ic, ath_rssadapt_updatenode, arg); |
| 3046 | } |
| 3047 | |
| 3048 | timeout_add_msec(&sc->sc_rssadapt_to, 100); |
| 3049 | } |
| 3050 | |
| 3051 | #ifdef AR_DEBUG |
| 3052 | void |
| 3053 | ath_printrxbuf(struct ath_buf *bf, int done) |
| 3054 | { |
| 3055 | struct ath_desc *ds; |
| 3056 | int i; |
| 3057 | |
| 3058 | for (i = 0, ds = bf->bf_desc; i < bf->bf_nsegbf_dmamap->dm_nsegs; i++, ds++) { |
| 3059 | printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n", |
| 3060 | i, ds, (struct ath_desc *)bf->bf_daddr + i, |
| 3061 | ds->ds_link, ds->ds_data, |
| 3062 | ds->ds_ctl0, ds->ds_ctl1, |
| 3063 | ds->ds_hw[0], ds->ds_hw[1], |
| 3064 | !done ? ' ' : (ds->ds_rxstatds_us.rx.rs_status == 0) ? '*' : '!'); |
| 3065 | } |
| 3066 | } |
| 3067 | |
| 3068 | void |
| 3069 | ath_printtxbuf(struct ath_buf *bf, int done) |
| 3070 | { |
| 3071 | struct ath_desc *ds; |
| 3072 | int i; |
| 3073 | |
| 3074 | for (i = 0, ds = bf->bf_desc; i < bf->bf_nsegbf_dmamap->dm_nsegs; i++, ds++) { |
| 3075 | printf("T%d (%p %p) " |
| 3076 | "%08x %08x %08x %08x %08x %08x %08x %08x %c\n", |
| 3077 | i, ds, (struct ath_desc *)bf->bf_daddr + i, |
| 3078 | ds->ds_link, ds->ds_data, |
| 3079 | ds->ds_ctl0, ds->ds_ctl1, |
| 3080 | ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3], |
| 3081 | !done ? ' ' : (ds->ds_txstatds_us.tx.ts_status == 0) ? '*' : '!'); |
| 3082 | } |
| 3083 | } |
| 3084 | #endif /* AR_DEBUG */ |
| 3085 | |
| 3086 | int |
| 3087 | ath_gpio_attach(struct ath_softc *sc, u_int16_t devid) |
| 3088 | { |
| 3089 | struct ath_hal *ah = sc->sc_ah; |
| 3090 | struct gpiobus_attach_args gba; |
| 3091 | int i; |
| 3092 | |
| 3093 | if (ah->ah_gpio_npins < 1) |
| 3094 | return 0; |
| 3095 | |
| 3096 | /* Initialize gpio pins array */ |
| 3097 | for (i = 0; i < ah->ah_gpio_npins && i < AR5K_MAX_GPIO10; i++) { |
| 3098 | sc->sc_gpio_pins[i].pin_num = i; |
| 3099 | sc->sc_gpio_pins[i].pin_caps = GPIO_PIN_INPUT0x0001 | |
| 3100 | GPIO_PIN_OUTPUT0x0002; |
| 3101 | |
| 3102 | /* Set pin mode to input */ |
| 3103 | ath_hal_set_gpio_input(ah, i)((*(ah)->ah_set_gpio_input)((ah), (i))); |
| 3104 | sc->sc_gpio_pins[i].pin_flags = GPIO_PIN_INPUT0x0001; |
| 3105 | |
| 3106 | /* Get pin input */ |
| 3107 | sc->sc_gpio_pins[i].pin_state = ath_hal_get_gpio(ah, i)((*(ah)->ah_get_gpio)((ah), (i))) ? |
| 3108 | GPIO_PIN_HIGH0x01 : GPIO_PIN_LOW0x00; |
| 3109 | } |
| 3110 | |
| 3111 | /* Enable GPIO-controlled software LED if available */ |
| 3112 | if ((ah->ah_version == AR5K_AR5211) || |
| 3113 | (devid == PCI_PRODUCT_ATHEROS_AR5212_IBM0x1014)) { |
| 3114 | sc->sc_softled = 1; |
| 3115 | ath_hal_set_gpio_output(ah, AR5K_SOFTLED_PIN)((*(ah)->ah_set_gpio_output)((ah), (0))); |
| 3116 | ath_hal_set_gpio(ah, AR5K_SOFTLED_PIN, AR5K_SOFTLED_OFF)((*(ah)->ah_set_gpio)((ah), (0), (1))); |
| 3117 | } |
| 3118 | |
| 3119 | /* Create gpio controller tag */ |
| 3120 | sc->sc_gpio_gc.gp_cookie = sc; |
| 3121 | sc->sc_gpio_gc.gp_pin_read = ath_gpio_pin_read; |
| 3122 | sc->sc_gpio_gc.gp_pin_write = ath_gpio_pin_write; |
| 3123 | sc->sc_gpio_gc.gp_pin_ctl = ath_gpio_pin_ctl; |
| 3124 | |
| 3125 | gba.gba_name = "gpio"; |
| 3126 | gba.gba_gc = &sc->sc_gpio_gc; |
| 3127 | gba.gba_pins = sc->sc_gpio_pins; |
| 3128 | gba.gba_npins = ah->ah_gpio_npins; |
| 3129 | |
| 3130 | #ifdef notyet |
| 3131 | #if NGPIO > 0 |
| 3132 | if (config_found(&sc->sc_dev, &gba, gpiobus_print)config_found_sm((&sc->sc_dev), (&gba), (gpiobus_print ), ((void *)0)) == NULL((void *)0)) |
| 3133 | return (ENODEV19); |
| 3134 | #endif |
| 3135 | #endif |
| 3136 | |
| 3137 | return (0); |
| 3138 | } |
| 3139 | |
| 3140 | int |
| 3141 | ath_gpio_pin_read(void *arg, int pin) |
| 3142 | { |
| 3143 | struct ath_softc *sc = arg; |
| 3144 | struct ath_hal *ah = sc->sc_ah; |
| 3145 | return (ath_hal_get_gpio(ah, pin)((*(ah)->ah_get_gpio)((ah), (pin))) ? GPIO_PIN_HIGH0x01 : GPIO_PIN_LOW0x00); |
| 3146 | } |
| 3147 | |
| 3148 | void |
| 3149 | ath_gpio_pin_write(void *arg, int pin, int value) |
| 3150 | { |
| 3151 | struct ath_softc *sc = arg; |
| 3152 | struct ath_hal *ah = sc->sc_ah; |
| 3153 | ath_hal_set_gpio(ah, pin, value ? GPIO_PIN_HIGH : GPIO_PIN_LOW)((*(ah)->ah_set_gpio)((ah), (pin), (value ? 0x01 : 0x00))); |
| 3154 | } |
| 3155 | |
| 3156 | void |
| 3157 | ath_gpio_pin_ctl(void *arg, int pin, int flags) |
| 3158 | { |
| 3159 | struct ath_softc *sc = arg; |
| 3160 | struct ath_hal *ah = sc->sc_ah; |
| 3161 | |
| 3162 | if (flags & GPIO_PIN_INPUT0x0001) { |
| 3163 | ath_hal_set_gpio_input(ah, pin)((*(ah)->ah_set_gpio_input)((ah), (pin))); |
| 3164 | } else if (flags & GPIO_PIN_OUTPUT0x0002) { |
| 3165 | ath_hal_set_gpio_output(ah, pin)((*(ah)->ah_set_gpio_output)((ah), (pin))); |
| 3166 | } |
| 3167 | } |