| File: | dev/pci/if_bnx.c |
| Warning: | line 4885, column 2 Value stored to 'tx_chain_prod' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* $OpenBSD: if_bnx.c,v 1.133 2023/11/10 15:51:20 bluhm Exp $ */ |
| 2 | |
| 3 | /*- |
| 4 | * Copyright (c) 2006 Broadcom Corporation |
| 5 | * David Christensen <davidch@broadcom.com>. All rights reserved. |
| 6 | * |
| 7 | * Redistribution and use in source and binary forms, with or without |
| 8 | * modification, are permitted provided that the following conditions |
| 9 | * are met: |
| 10 | * |
| 11 | * 1. Redistributions of source code must retain the above copyright |
| 12 | * notice, this list of conditions and the following disclaimer. |
| 13 | * 2. Redistributions in binary form must reproduce the above copyright |
| 14 | * notice, this list of conditions and the following disclaimer in the |
| 15 | * documentation and/or other materials provided with the distribution. |
| 16 | * 3. Neither the name of Broadcom Corporation nor the name of its contributors |
| 17 | * may be used to endorse or promote products derived from this software |
| 18 | * without specific prior written consent. |
| 19 | * |
| 20 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' |
| 21 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 22 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 23 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS |
| 24 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 25 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 26 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 27 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 28 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 29 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF |
| 30 | * THE POSSIBILITY OF SUCH DAMAGE. |
| 31 | */ |
| 32 | |
| 33 | /* |
| 34 | * The following controllers are supported by this driver: |
| 35 | * BCM5706C A2, A3 |
| 36 | * BCM5706S A2, A3 |
| 37 | * BCM5708C B1, B2 |
| 38 | * BCM5708S B1, B2 |
| 39 | * BCM5709C A1, C0 |
| 40 | * BCM5709S A1, C0 |
| 41 | * BCM5716 C0 |
| 42 | * |
| 43 | * The following controllers are not supported by this driver: |
| 44 | * BCM5706C A0, A1 |
| 45 | * BCM5706S A0, A1 |
| 46 | * BCM5708C A0, B0 |
| 47 | * BCM5708S A0, B0 |
| 48 | * BCM5709C A0 B0, B1, B2 (pre-production) |
| 49 | * BCM5709S A0, B0, B1, B2 (pre-production) |
| 50 | */ |
| 51 | |
| 52 | #include <dev/pci/if_bnxreg.h> |
| 53 | |
| 54 | struct bnx_firmware { |
| 55 | char *filename; |
| 56 | struct bnx_firmware_header *fw; |
| 57 | |
| 58 | u_int32_t *bnx_COM_FwText; |
| 59 | u_int32_t *bnx_COM_FwData; |
| 60 | u_int32_t *bnx_COM_FwRodata; |
| 61 | u_int32_t *bnx_COM_FwBss; |
| 62 | u_int32_t *bnx_COM_FwSbss; |
| 63 | |
| 64 | u_int32_t *bnx_RXP_FwText; |
| 65 | u_int32_t *bnx_RXP_FwData; |
| 66 | u_int32_t *bnx_RXP_FwRodata; |
| 67 | u_int32_t *bnx_RXP_FwBss; |
| 68 | u_int32_t *bnx_RXP_FwSbss; |
| 69 | |
| 70 | u_int32_t *bnx_TPAT_FwText; |
| 71 | u_int32_t *bnx_TPAT_FwData; |
| 72 | u_int32_t *bnx_TPAT_FwRodata; |
| 73 | u_int32_t *bnx_TPAT_FwBss; |
| 74 | u_int32_t *bnx_TPAT_FwSbss; |
| 75 | |
| 76 | u_int32_t *bnx_TXP_FwText; |
| 77 | u_int32_t *bnx_TXP_FwData; |
| 78 | u_int32_t *bnx_TXP_FwRodata; |
| 79 | u_int32_t *bnx_TXP_FwBss; |
| 80 | u_int32_t *bnx_TXP_FwSbss; |
| 81 | }; |
| 82 | |
| 83 | struct bnx_firmware bnx_firmwares[] = { |
| 84 | { "bnx-b06", NULL((void *)0) }, |
| 85 | { "bnx-b09", NULL((void *)0) } |
| 86 | }; |
| 87 | #define BNX_FW_B060 0 |
| 88 | #define BNX_FW_B091 1 |
| 89 | |
| 90 | struct bnx_rv2p { |
| 91 | char *filename; |
| 92 | struct bnx_rv2p_header *fw; |
| 93 | |
| 94 | u_int32_t *bnx_rv2p_proc1; |
| 95 | u_int32_t *bnx_rv2p_proc2; |
| 96 | }; |
| 97 | |
| 98 | struct bnx_rv2p bnx_rv2ps[] = { |
| 99 | { "bnx-rv2p", NULL((void *)0) }, |
| 100 | { "bnx-xi-rv2p", NULL((void *)0) }, |
| 101 | { "bnx-xi90-rv2p", NULL((void *)0) } |
| 102 | }; |
| 103 | #define BNX_RV2P0 0 |
| 104 | #define BNX_XI_RV2P1 1 |
| 105 | #define BNX_XI90_RV2P2 2 |
| 106 | |
| 107 | void nswaph(u_int32_t *p, int wcount); |
| 108 | |
| 109 | /****************************************************************************/ |
| 110 | /* BNX Driver Version */ |
| 111 | /****************************************************************************/ |
| 112 | |
| 113 | #define BNX_DRIVER_VERSION"v0.9.6" "v0.9.6" |
| 114 | |
| 115 | /****************************************************************************/ |
| 116 | /* BNX Debug Options */ |
| 117 | /****************************************************************************/ |
| 118 | #ifdef BNX_DEBUG |
| 119 | u_int32_t bnx_debug = BNX_WARN(0x00FFFFFF | 0x01000000); |
| 120 | |
| 121 | /* 0 = Never */ |
| 122 | /* 1 = 1 in 2,147,483,648 */ |
| 123 | /* 256 = 1 in 8,388,608 */ |
| 124 | /* 2048 = 1 in 1,048,576 */ |
| 125 | /* 65536 = 1 in 32,768 */ |
| 126 | /* 1048576 = 1 in 2,048 */ |
| 127 | /* 268435456 = 1 in 8 */ |
| 128 | /* 536870912 = 1 in 4 */ |
| 129 | /* 1073741824 = 1 in 2 */ |
| 130 | |
| 131 | /* Controls how often the l2_fhdr frame error check will fail. */ |
| 132 | int bnx_debug_l2fhdr_status_check = 0; |
| 133 | |
| 134 | /* Controls how often the unexpected attention check will fail. */ |
| 135 | int bnx_debug_unexpected_attention = 0; |
| 136 | |
| 137 | /* Controls how often to simulate an mbuf allocation failure. */ |
| 138 | int bnx_debug_mbuf_allocation_failure = 0; |
| 139 | |
| 140 | /* Controls how often to simulate a DMA mapping failure. */ |
| 141 | int bnx_debug_dma_map_addr_failure = 0; |
| 142 | |
| 143 | /* Controls how often to simulate a bootcode failure. */ |
| 144 | int bnx_debug_bootcode_running_failure = 0; |
| 145 | #endif |
| 146 | |
| 147 | /****************************************************************************/ |
| 148 | /* PCI Device ID Table */ |
| 149 | /* */ |
| 150 | /* Used by bnx_probe() to identify the devices supported by this driver. */ |
| 151 | /****************************************************************************/ |
| 152 | const struct pci_matchid bnx_devices[] = { |
| 153 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM57060x164a }, |
| 154 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM5706S0x16aa }, |
| 155 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM57080x164c }, |
| 156 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM5708S0x16ac }, |
| 157 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM57090x1639 }, |
| 158 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM5709S0x163a }, |
| 159 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM57160x163b }, |
| 160 | { PCI_VENDOR_BROADCOM0x14e4, PCI_PRODUCT_BROADCOM_BCM5716S0x163c } |
| 161 | }; |
| 162 | |
| 163 | /****************************************************************************/ |
| 164 | /* Supported Flash NVRAM device data. */ |
| 165 | /****************************************************************************/ |
| 166 | static struct flash_spec flash_table[] = |
| 167 | { |
| 168 | #define BUFFERED_FLAGS(0x00000001 | 0x00000002) (BNX_NV_BUFFERED0x00000001 | BNX_NV_TRANSLATE0x00000002) |
| 169 | #define NONBUFFERED_FLAGS(0x00000004) (BNX_NV_WREN0x00000004) |
| 170 | |
| 171 | /* Slow EEPROM */ |
| 172 | {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400, |
| 173 | BUFFERED_FLAGS(0x00000001 | 0x00000002), SEEPROM_PAGE_BITS2, SEEPROM_PAGE_SIZE4, |
| 174 | SEEPROM_BYTE_ADDR_MASK((1 << 2)-1), SEEPROM_TOTAL_SIZE65536, |
| 175 | "EEPROM - slow"}, |
| 176 | /* Expansion entry 0001 */ |
| 177 | {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406, |
| 178 | NONBUFFERED_FLAGS(0x00000004), SAIFUN_FLASH_PAGE_BITS8, SAIFUN_FLASH_PAGE_SIZE256, |
| 179 | SAIFUN_FLASH_BYTE_ADDR_MASK((1 << 8)-1), 0, |
| 180 | "Entry 0001"}, |
| 181 | /* Saifun SA25F010 (non-buffered flash) */ |
| 182 | /* strap, cfg1, & write1 need updates */ |
| 183 | {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406, |
| 184 | 0, SAIFUN_FLASH_PAGE_BITS8, SAIFUN_FLASH_PAGE_SIZE256, |
| 185 | SAIFUN_FLASH_BYTE_ADDR_MASK((1 << 8)-1), SAIFUN_FLASH_BASE_TOTAL_SIZE65536*2, |
| 186 | "Non-buffered flash (128kB)"}, |
| 187 | /* Saifun SA25F020 (non-buffered flash) */ |
| 188 | /* strap, cfg1, & write1 need updates */ |
| 189 | {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406, |
| 190 | NONBUFFERED_FLAGS(0x00000004), SAIFUN_FLASH_PAGE_BITS8, SAIFUN_FLASH_PAGE_SIZE256, |
| 191 | SAIFUN_FLASH_BYTE_ADDR_MASK((1 << 8)-1), SAIFUN_FLASH_BASE_TOTAL_SIZE65536*4, |
| 192 | "Non-buffered flash (256kB)"}, |
| 193 | /* Expansion entry 0100 */ |
| 194 | {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406, |
| 195 | NONBUFFERED_FLAGS(0x00000004), SAIFUN_FLASH_PAGE_BITS8, SAIFUN_FLASH_PAGE_SIZE256, |
| 196 | SAIFUN_FLASH_BYTE_ADDR_MASK((1 << 8)-1), 0, |
| 197 | "Entry 0100"}, |
| 198 | /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */ |
| 199 | {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406, |
| 200 | NONBUFFERED_FLAGS(0x00000004), ST_MICRO_FLASH_PAGE_BITS8, ST_MICRO_FLASH_PAGE_SIZE256, |
| 201 | ST_MICRO_FLASH_BYTE_ADDR_MASK((1 << 8)-1), ST_MICRO_FLASH_BASE_TOTAL_SIZE65536*2, |
| 202 | "Entry 0101: ST M45PE10 (128kB non-buffered)"}, |
| 203 | /* Entry 0110: ST M45PE20 (non-buffered flash)*/ |
| 204 | {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406, |
| 205 | NONBUFFERED_FLAGS(0x00000004), ST_MICRO_FLASH_PAGE_BITS8, ST_MICRO_FLASH_PAGE_SIZE256, |
| 206 | ST_MICRO_FLASH_BYTE_ADDR_MASK((1 << 8)-1), ST_MICRO_FLASH_BASE_TOTAL_SIZE65536*4, |
| 207 | "Entry 0110: ST M45PE20 (256kB non-buffered)"}, |
| 208 | /* Saifun SA25F005 (non-buffered flash) */ |
| 209 | /* strap, cfg1, & write1 need updates */ |
| 210 | {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406, |
| 211 | NONBUFFERED_FLAGS(0x00000004), SAIFUN_FLASH_PAGE_BITS8, SAIFUN_FLASH_PAGE_SIZE256, |
| 212 | SAIFUN_FLASH_BYTE_ADDR_MASK((1 << 8)-1), SAIFUN_FLASH_BASE_TOTAL_SIZE65536, |
| 213 | "Non-buffered flash (64kB)"}, |
| 214 | /* Fast EEPROM */ |
| 215 | {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400, |
| 216 | BUFFERED_FLAGS(0x00000001 | 0x00000002), SEEPROM_PAGE_BITS2, SEEPROM_PAGE_SIZE4, |
| 217 | SEEPROM_BYTE_ADDR_MASK((1 << 2)-1), SEEPROM_TOTAL_SIZE65536, |
| 218 | "EEPROM - fast"}, |
| 219 | /* Expansion entry 1001 */ |
| 220 | {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406, |
| 221 | NONBUFFERED_FLAGS(0x00000004), SAIFUN_FLASH_PAGE_BITS8, SAIFUN_FLASH_PAGE_SIZE256, |
| 222 | SAIFUN_FLASH_BYTE_ADDR_MASK((1 << 8)-1), 0, |
| 223 | "Entry 1001"}, |
| 224 | /* Expansion entry 1010 */ |
| 225 | {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406, |
| 226 | NONBUFFERED_FLAGS(0x00000004), SAIFUN_FLASH_PAGE_BITS8, SAIFUN_FLASH_PAGE_SIZE256, |
| 227 | SAIFUN_FLASH_BYTE_ADDR_MASK((1 << 8)-1), 0, |
| 228 | "Entry 1010"}, |
| 229 | /* ATMEL AT45DB011B (buffered flash) */ |
| 230 | {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400, |
| 231 | BUFFERED_FLAGS(0x00000001 | 0x00000002), BUFFERED_FLASH_PAGE_BITS9, BUFFERED_FLASH_PAGE_SIZE264, |
| 232 | BUFFERED_FLASH_BYTE_ADDR_MASK((1 << 9)-1), BUFFERED_FLASH_TOTAL_SIZE0x21000, |
| 233 | "Buffered flash (128kB)"}, |
| 234 | /* Expansion entry 1100 */ |
| 235 | {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406, |
| 236 | NONBUFFERED_FLAGS(0x00000004), SAIFUN_FLASH_PAGE_BITS8, SAIFUN_FLASH_PAGE_SIZE256, |
| 237 | SAIFUN_FLASH_BYTE_ADDR_MASK((1 << 8)-1), 0, |
| 238 | "Entry 1100"}, |
| 239 | /* Expansion entry 1101 */ |
| 240 | {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406, |
| 241 | NONBUFFERED_FLAGS(0x00000004), SAIFUN_FLASH_PAGE_BITS8, SAIFUN_FLASH_PAGE_SIZE256, |
| 242 | SAIFUN_FLASH_BYTE_ADDR_MASK((1 << 8)-1), 0, |
| 243 | "Entry 1101"}, |
| 244 | /* Ateml Expansion entry 1110 */ |
| 245 | {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400, |
| 246 | BUFFERED_FLAGS(0x00000001 | 0x00000002), BUFFERED_FLASH_PAGE_BITS9, BUFFERED_FLASH_PAGE_SIZE264, |
| 247 | BUFFERED_FLASH_BYTE_ADDR_MASK((1 << 9)-1), 0, |
| 248 | "Entry 1110 (Atmel)"}, |
| 249 | /* ATMEL AT45DB021B (buffered flash) */ |
| 250 | {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400, |
| 251 | BUFFERED_FLAGS(0x00000001 | 0x00000002), BUFFERED_FLASH_PAGE_BITS9, BUFFERED_FLASH_PAGE_SIZE264, |
| 252 | BUFFERED_FLASH_BYTE_ADDR_MASK((1 << 9)-1), BUFFERED_FLASH_TOTAL_SIZE0x21000*2, |
| 253 | "Buffered flash (256kB)"}, |
| 254 | }; |
| 255 | |
| 256 | /* |
| 257 | * The BCM5709 controllers transparently handle the |
| 258 | * differences between Atmel 264 byte pages and all |
| 259 | * flash devices which use 256 byte pages, so no |
| 260 | * logical-to-physical mapping is required in the |
| 261 | * driver. |
| 262 | */ |
| 263 | static struct flash_spec flash_5709 = { |
| 264 | .flags = BNX_NV_BUFFERED0x00000001, |
| 265 | .page_bits = BCM5709_FLASH_PAGE_BITS8, |
| 266 | .page_size = BCM5709_FLASH_PAGE_SIZE256, |
| 267 | .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK((1 << 8)-1), |
| 268 | .total_size = BUFFERED_FLASH_TOTAL_SIZE0x21000 * 2, |
| 269 | .name = "5709 buffered flash (256kB)", |
| 270 | }; |
| 271 | |
| 272 | /****************************************************************************/ |
| 273 | /* OpenBSD device entry points. */ |
| 274 | /****************************************************************************/ |
| 275 | int bnx_probe(struct device *, void *, void *); |
| 276 | void bnx_attach(struct device *, struct device *, void *); |
| 277 | void bnx_attachhook(struct device *); |
| 278 | int bnx_read_firmware(struct bnx_softc *sc, int); |
| 279 | int bnx_read_rv2p(struct bnx_softc *sc, int); |
| 280 | #if 0 |
| 281 | void bnx_detach(void *); |
| 282 | #endif |
| 283 | |
| 284 | /****************************************************************************/ |
| 285 | /* BNX Debug Data Structure Dump Routines */ |
| 286 | /****************************************************************************/ |
| 287 | #ifdef BNX_DEBUG |
| 288 | void bnx_dump_mbuf(struct bnx_softc *, struct mbuf *); |
| 289 | void bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int); |
| 290 | void bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int); |
| 291 | void bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *); |
| 292 | void bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *); |
| 293 | void bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *); |
| 294 | void bnx_dump_tx_chain(struct bnx_softc *, int, int); |
| 295 | void bnx_dump_rx_chain(struct bnx_softc *, int, int); |
| 296 | void bnx_dump_status_block(struct bnx_softc *); |
| 297 | void bnx_dump_stats_block(struct bnx_softc *); |
| 298 | void bnx_dump_driver_state(struct bnx_softc *); |
| 299 | void bnx_dump_hw_state(struct bnx_softc *); |
| 300 | void bnx_breakpoint(struct bnx_softc *); |
| 301 | #endif |
| 302 | |
| 303 | /****************************************************************************/ |
| 304 | /* BNX Register/Memory Access Routines */ |
| 305 | /****************************************************************************/ |
| 306 | u_int32_t bnx_reg_rd_ind(struct bnx_softc *, u_int32_t); |
| 307 | void bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t); |
| 308 | void bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t); |
| 309 | int bnx_miibus_read_reg(struct device *, int, int); |
| 310 | void bnx_miibus_write_reg(struct device *, int, int, int); |
| 311 | void bnx_miibus_statchg(struct device *); |
| 312 | |
| 313 | /****************************************************************************/ |
| 314 | /* BNX NVRAM Access Routines */ |
| 315 | /****************************************************************************/ |
| 316 | int bnx_acquire_nvram_lock(struct bnx_softc *); |
| 317 | int bnx_release_nvram_lock(struct bnx_softc *); |
| 318 | void bnx_enable_nvram_access(struct bnx_softc *); |
| 319 | void bnx_disable_nvram_access(struct bnx_softc *); |
| 320 | int bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *, |
| 321 | u_int32_t); |
| 322 | int bnx_init_nvram(struct bnx_softc *); |
| 323 | int bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int); |
| 324 | int bnx_nvram_test(struct bnx_softc *); |
| 325 | #ifdef BNX_NVRAM_WRITE_SUPPORT |
| 326 | int bnx_enable_nvram_write(struct bnx_softc *); |
| 327 | void bnx_disable_nvram_write(struct bnx_softc *); |
| 328 | int bnx_nvram_erase_page(struct bnx_softc *, u_int32_t); |
| 329 | int bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *, |
| 330 | u_int32_t); |
| 331 | int bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int); |
| 332 | #endif |
| 333 | |
| 334 | /****************************************************************************/ |
| 335 | /* */ |
| 336 | /****************************************************************************/ |
| 337 | void bnx_get_media(struct bnx_softc *); |
| 338 | void bnx_init_media(struct bnx_softc *); |
| 339 | int bnx_dma_alloc(struct bnx_softc *); |
| 340 | void bnx_dma_free(struct bnx_softc *); |
| 341 | void bnx_release_resources(struct bnx_softc *); |
| 342 | |
| 343 | /****************************************************************************/ |
| 344 | /* BNX Firmware Synchronization and Load */ |
| 345 | /****************************************************************************/ |
| 346 | int bnx_fw_sync(struct bnx_softc *, u_int32_t); |
| 347 | void bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t, |
| 348 | u_int32_t); |
| 349 | void bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *, |
| 350 | struct fw_info *); |
| 351 | void bnx_init_cpus(struct bnx_softc *); |
| 352 | |
| 353 | void bnx_stop(struct bnx_softc *); |
| 354 | int bnx_reset(struct bnx_softc *, u_int32_t); |
| 355 | int bnx_chipinit(struct bnx_softc *); |
| 356 | int bnx_blockinit(struct bnx_softc *); |
| 357 | int bnx_get_buf(struct bnx_softc *, u_int16_t *, u_int16_t *, u_int32_t *); |
| 358 | |
| 359 | int bnx_init_tx_chain(struct bnx_softc *); |
| 360 | void bnx_init_tx_context(struct bnx_softc *); |
| 361 | int bnx_fill_rx_chain(struct bnx_softc *); |
| 362 | void bnx_init_rx_context(struct bnx_softc *); |
| 363 | int bnx_init_rx_chain(struct bnx_softc *); |
| 364 | void bnx_free_rx_chain(struct bnx_softc *); |
| 365 | void bnx_free_tx_chain(struct bnx_softc *); |
| 366 | void bnx_rxrefill(void *); |
| 367 | |
| 368 | int bnx_tx_encap(struct bnx_softc *, struct mbuf *, int *); |
| 369 | void bnx_start(struct ifqueue *); |
| 370 | int bnx_ioctl(struct ifnet *, u_long, caddr_t); |
| 371 | void bnx_watchdog(struct ifnet *); |
| 372 | int bnx_ifmedia_upd(struct ifnet *); |
| 373 | void bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *); |
| 374 | void bnx_init(void *); |
| 375 | void bnx_mgmt_init(struct bnx_softc *sc); |
| 376 | |
| 377 | void bnx_init_context(struct bnx_softc *); |
| 378 | void bnx_get_mac_addr(struct bnx_softc *); |
| 379 | void bnx_set_mac_addr(struct bnx_softc *); |
| 380 | void bnx_phy_intr(struct bnx_softc *); |
| 381 | void bnx_rx_intr(struct bnx_softc *); |
| 382 | void bnx_tx_intr(struct bnx_softc *); |
| 383 | void bnx_disable_intr(struct bnx_softc *); |
| 384 | void bnx_enable_intr(struct bnx_softc *); |
| 385 | |
| 386 | int bnx_intr(void *); |
| 387 | void bnx_iff(struct bnx_softc *); |
| 388 | void bnx_stats_update(struct bnx_softc *); |
| 389 | void bnx_tick(void *); |
| 390 | |
| 391 | /****************************************************************************/ |
| 392 | /* OpenBSD device dispatch table. */ |
| 393 | /****************************************************************************/ |
| 394 | const struct cfattach bnx_ca = { |
| 395 | sizeof(struct bnx_softc), bnx_probe, bnx_attach |
| 396 | }; |
| 397 | |
| 398 | struct cfdriver bnx_cd = { |
| 399 | NULL((void *)0), "bnx", DV_IFNET |
| 400 | }; |
| 401 | |
| 402 | /****************************************************************************/ |
| 403 | /* Device probe function. */ |
| 404 | /* */ |
| 405 | /* Compares the device to the driver's list of supported devices and */ |
| 406 | /* reports back to the OS whether this is the right driver for the device. */ |
| 407 | /* */ |
| 408 | /* Returns: */ |
| 409 | /* BUS_PROBE_DEFAULT on success, positive value on failure. */ |
| 410 | /****************************************************************************/ |
| 411 | int |
| 412 | bnx_probe(struct device *parent, void *match, void *aux) |
| 413 | { |
| 414 | return (pci_matchbyid((struct pci_attach_args *)aux, bnx_devices, |
| 415 | nitems(bnx_devices)(sizeof((bnx_devices)) / sizeof((bnx_devices)[0])))); |
| 416 | } |
| 417 | |
| 418 | void |
| 419 | nswaph(u_int32_t *p, int wcount) |
| 420 | { |
| 421 | for (; wcount; wcount -=4) { |
| 422 | *p = ntohl(*p)(__uint32_t)(__builtin_constant_p(*p) ? (__uint32_t)(((__uint32_t )(*p) & 0xff) << 24 | ((__uint32_t)(*p) & 0xff00 ) << 8 | ((__uint32_t)(*p) & 0xff0000) >> 8 | ((__uint32_t)(*p) & 0xff000000) >> 24) : __swap32md (*p)); |
| 423 | p++; |
| 424 | } |
| 425 | } |
| 426 | |
| 427 | int |
| 428 | bnx_read_firmware(struct bnx_softc *sc, int idx) |
| 429 | { |
| 430 | struct bnx_firmware *bfw = &bnx_firmwares[idx]; |
| 431 | struct bnx_firmware_header *hdr = bfw->fw; |
| 432 | u_char *p, *q; |
| 433 | size_t size; |
| 434 | int error; |
| 435 | |
| 436 | if (hdr != NULL((void *)0)) |
| 437 | return (0); |
| 438 | |
| 439 | if ((error = loadfirmware(bfw->filename, &p, &size)) != 0) |
| 440 | return (error); |
| 441 | |
| 442 | if (size < sizeof(struct bnx_firmware_header)) { |
| 443 | free(p, M_DEVBUF2, size); |
| 444 | return (EINVAL22); |
| 445 | } |
| 446 | |
| 447 | hdr = (struct bnx_firmware_header *)p; |
| 448 | |
| 449 | hdr->bnx_COM_FwReleaseMajor = ntohl(hdr->bnx_COM_FwReleaseMajor)(__uint32_t)(__builtin_constant_p(hdr->bnx_COM_FwReleaseMajor ) ? (__uint32_t)(((__uint32_t)(hdr->bnx_COM_FwReleaseMajor ) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_COM_FwReleaseMajor ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_COM_FwReleaseMajor ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_COM_FwReleaseMajor ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_COM_FwReleaseMajor )); |
| 450 | hdr->bnx_COM_FwReleaseMinor = ntohl(hdr->bnx_COM_FwReleaseMinor)(__uint32_t)(__builtin_constant_p(hdr->bnx_COM_FwReleaseMinor ) ? (__uint32_t)(((__uint32_t)(hdr->bnx_COM_FwReleaseMinor ) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_COM_FwReleaseMinor ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_COM_FwReleaseMinor ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_COM_FwReleaseMinor ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_COM_FwReleaseMinor )); |
| 451 | hdr->bnx_COM_FwReleaseFix = ntohl(hdr->bnx_COM_FwReleaseFix)(__uint32_t)(__builtin_constant_p(hdr->bnx_COM_FwReleaseFix ) ? (__uint32_t)(((__uint32_t)(hdr->bnx_COM_FwReleaseFix) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_COM_FwReleaseFix ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_COM_FwReleaseFix ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_COM_FwReleaseFix ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_COM_FwReleaseFix )); |
| 452 | hdr->bnx_COM_FwStartAddr = ntohl(hdr->bnx_COM_FwStartAddr)(__uint32_t)(__builtin_constant_p(hdr->bnx_COM_FwStartAddr ) ? (__uint32_t)(((__uint32_t)(hdr->bnx_COM_FwStartAddr) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_COM_FwStartAddr ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_COM_FwStartAddr ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_COM_FwStartAddr ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_COM_FwStartAddr )); |
| 453 | hdr->bnx_COM_FwTextAddr = ntohl(hdr->bnx_COM_FwTextAddr)(__uint32_t)(__builtin_constant_p(hdr->bnx_COM_FwTextAddr) ? (__uint32_t)(((__uint32_t)(hdr->bnx_COM_FwTextAddr) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_COM_FwTextAddr ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_COM_FwTextAddr ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_COM_FwTextAddr ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_COM_FwTextAddr )); |
| 454 | hdr->bnx_COM_FwTextLen = ntohl(hdr->bnx_COM_FwTextLen)(__uint32_t)(__builtin_constant_p(hdr->bnx_COM_FwTextLen) ? (__uint32_t)(((__uint32_t)(hdr->bnx_COM_FwTextLen) & 0xff ) << 24 | ((__uint32_t)(hdr->bnx_COM_FwTextLen) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_COM_FwTextLen ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_COM_FwTextLen ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_COM_FwTextLen )); |
| 455 | hdr->bnx_COM_FwDataAddr = ntohl(hdr->bnx_COM_FwDataAddr)(__uint32_t)(__builtin_constant_p(hdr->bnx_COM_FwDataAddr) ? (__uint32_t)(((__uint32_t)(hdr->bnx_COM_FwDataAddr) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_COM_FwDataAddr ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_COM_FwDataAddr ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_COM_FwDataAddr ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_COM_FwDataAddr )); |
| 456 | hdr->bnx_COM_FwDataLen = ntohl(hdr->bnx_COM_FwDataLen)(__uint32_t)(__builtin_constant_p(hdr->bnx_COM_FwDataLen) ? (__uint32_t)(((__uint32_t)(hdr->bnx_COM_FwDataLen) & 0xff ) << 24 | ((__uint32_t)(hdr->bnx_COM_FwDataLen) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_COM_FwDataLen ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_COM_FwDataLen ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_COM_FwDataLen )); |
| 457 | hdr->bnx_COM_FwRodataAddr = ntohl(hdr->bnx_COM_FwRodataAddr)(__uint32_t)(__builtin_constant_p(hdr->bnx_COM_FwRodataAddr ) ? (__uint32_t)(((__uint32_t)(hdr->bnx_COM_FwRodataAddr) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_COM_FwRodataAddr ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_COM_FwRodataAddr ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_COM_FwRodataAddr ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_COM_FwRodataAddr )); |
| 458 | hdr->bnx_COM_FwRodataLen = ntohl(hdr->bnx_COM_FwRodataLen)(__uint32_t)(__builtin_constant_p(hdr->bnx_COM_FwRodataLen ) ? (__uint32_t)(((__uint32_t)(hdr->bnx_COM_FwRodataLen) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_COM_FwRodataLen ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_COM_FwRodataLen ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_COM_FwRodataLen ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_COM_FwRodataLen )); |
| 459 | hdr->bnx_COM_FwBssAddr = ntohl(hdr->bnx_COM_FwBssAddr)(__uint32_t)(__builtin_constant_p(hdr->bnx_COM_FwBssAddr) ? (__uint32_t)(((__uint32_t)(hdr->bnx_COM_FwBssAddr) & 0xff ) << 24 | ((__uint32_t)(hdr->bnx_COM_FwBssAddr) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_COM_FwBssAddr ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_COM_FwBssAddr ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_COM_FwBssAddr )); |
| 460 | hdr->bnx_COM_FwBssLen = ntohl(hdr->bnx_COM_FwBssLen)(__uint32_t)(__builtin_constant_p(hdr->bnx_COM_FwBssLen) ? (__uint32_t)(((__uint32_t)(hdr->bnx_COM_FwBssLen) & 0xff ) << 24 | ((__uint32_t)(hdr->bnx_COM_FwBssLen) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_COM_FwBssLen) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_COM_FwBssLen ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_COM_FwBssLen )); |
| 461 | hdr->bnx_COM_FwSbssAddr = ntohl(hdr->bnx_COM_FwSbssAddr)(__uint32_t)(__builtin_constant_p(hdr->bnx_COM_FwSbssAddr) ? (__uint32_t)(((__uint32_t)(hdr->bnx_COM_FwSbssAddr) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_COM_FwSbssAddr ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_COM_FwSbssAddr ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_COM_FwSbssAddr ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_COM_FwSbssAddr )); |
| 462 | hdr->bnx_COM_FwSbssLen = ntohl(hdr->bnx_COM_FwSbssLen)(__uint32_t)(__builtin_constant_p(hdr->bnx_COM_FwSbssLen) ? (__uint32_t)(((__uint32_t)(hdr->bnx_COM_FwSbssLen) & 0xff ) << 24 | ((__uint32_t)(hdr->bnx_COM_FwSbssLen) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_COM_FwSbssLen ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_COM_FwSbssLen ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_COM_FwSbssLen )); |
| 463 | |
| 464 | hdr->bnx_RXP_FwReleaseMajor = ntohl(hdr->bnx_RXP_FwReleaseMajor)(__uint32_t)(__builtin_constant_p(hdr->bnx_RXP_FwReleaseMajor ) ? (__uint32_t)(((__uint32_t)(hdr->bnx_RXP_FwReleaseMajor ) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_RXP_FwReleaseMajor ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_RXP_FwReleaseMajor ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_RXP_FwReleaseMajor ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_RXP_FwReleaseMajor )); |
| 465 | hdr->bnx_RXP_FwReleaseMinor = ntohl(hdr->bnx_RXP_FwReleaseMinor)(__uint32_t)(__builtin_constant_p(hdr->bnx_RXP_FwReleaseMinor ) ? (__uint32_t)(((__uint32_t)(hdr->bnx_RXP_FwReleaseMinor ) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_RXP_FwReleaseMinor ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_RXP_FwReleaseMinor ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_RXP_FwReleaseMinor ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_RXP_FwReleaseMinor )); |
| 466 | hdr->bnx_RXP_FwReleaseFix = ntohl(hdr->bnx_RXP_FwReleaseFix)(__uint32_t)(__builtin_constant_p(hdr->bnx_RXP_FwReleaseFix ) ? (__uint32_t)(((__uint32_t)(hdr->bnx_RXP_FwReleaseFix) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_RXP_FwReleaseFix ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_RXP_FwReleaseFix ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_RXP_FwReleaseFix ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_RXP_FwReleaseFix )); |
| 467 | hdr->bnx_RXP_FwStartAddr = ntohl(hdr->bnx_RXP_FwStartAddr)(__uint32_t)(__builtin_constant_p(hdr->bnx_RXP_FwStartAddr ) ? (__uint32_t)(((__uint32_t)(hdr->bnx_RXP_FwStartAddr) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_RXP_FwStartAddr ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_RXP_FwStartAddr ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_RXP_FwStartAddr ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_RXP_FwStartAddr )); |
| 468 | hdr->bnx_RXP_FwTextAddr = ntohl(hdr->bnx_RXP_FwTextAddr)(__uint32_t)(__builtin_constant_p(hdr->bnx_RXP_FwTextAddr) ? (__uint32_t)(((__uint32_t)(hdr->bnx_RXP_FwTextAddr) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_RXP_FwTextAddr ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_RXP_FwTextAddr ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_RXP_FwTextAddr ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_RXP_FwTextAddr )); |
| 469 | hdr->bnx_RXP_FwTextLen = ntohl(hdr->bnx_RXP_FwTextLen)(__uint32_t)(__builtin_constant_p(hdr->bnx_RXP_FwTextLen) ? (__uint32_t)(((__uint32_t)(hdr->bnx_RXP_FwTextLen) & 0xff ) << 24 | ((__uint32_t)(hdr->bnx_RXP_FwTextLen) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_RXP_FwTextLen ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_RXP_FwTextLen ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_RXP_FwTextLen )); |
| 470 | hdr->bnx_RXP_FwDataAddr = ntohl(hdr->bnx_RXP_FwDataAddr)(__uint32_t)(__builtin_constant_p(hdr->bnx_RXP_FwDataAddr) ? (__uint32_t)(((__uint32_t)(hdr->bnx_RXP_FwDataAddr) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_RXP_FwDataAddr ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_RXP_FwDataAddr ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_RXP_FwDataAddr ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_RXP_FwDataAddr )); |
| 471 | hdr->bnx_RXP_FwDataLen = ntohl(hdr->bnx_RXP_FwDataLen)(__uint32_t)(__builtin_constant_p(hdr->bnx_RXP_FwDataLen) ? (__uint32_t)(((__uint32_t)(hdr->bnx_RXP_FwDataLen) & 0xff ) << 24 | ((__uint32_t)(hdr->bnx_RXP_FwDataLen) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_RXP_FwDataLen ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_RXP_FwDataLen ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_RXP_FwDataLen )); |
| 472 | hdr->bnx_RXP_FwRodataAddr = ntohl(hdr->bnx_RXP_FwRodataAddr)(__uint32_t)(__builtin_constant_p(hdr->bnx_RXP_FwRodataAddr ) ? (__uint32_t)(((__uint32_t)(hdr->bnx_RXP_FwRodataAddr) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_RXP_FwRodataAddr ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_RXP_FwRodataAddr ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_RXP_FwRodataAddr ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_RXP_FwRodataAddr )); |
| 473 | hdr->bnx_RXP_FwRodataLen = ntohl(hdr->bnx_RXP_FwRodataLen)(__uint32_t)(__builtin_constant_p(hdr->bnx_RXP_FwRodataLen ) ? (__uint32_t)(((__uint32_t)(hdr->bnx_RXP_FwRodataLen) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_RXP_FwRodataLen ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_RXP_FwRodataLen ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_RXP_FwRodataLen ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_RXP_FwRodataLen )); |
| 474 | hdr->bnx_RXP_FwBssAddr = ntohl(hdr->bnx_RXP_FwBssAddr)(__uint32_t)(__builtin_constant_p(hdr->bnx_RXP_FwBssAddr) ? (__uint32_t)(((__uint32_t)(hdr->bnx_RXP_FwBssAddr) & 0xff ) << 24 | ((__uint32_t)(hdr->bnx_RXP_FwBssAddr) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_RXP_FwBssAddr ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_RXP_FwBssAddr ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_RXP_FwBssAddr )); |
| 475 | hdr->bnx_RXP_FwBssLen = ntohl(hdr->bnx_RXP_FwBssLen)(__uint32_t)(__builtin_constant_p(hdr->bnx_RXP_FwBssLen) ? (__uint32_t)(((__uint32_t)(hdr->bnx_RXP_FwBssLen) & 0xff ) << 24 | ((__uint32_t)(hdr->bnx_RXP_FwBssLen) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_RXP_FwBssLen) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_RXP_FwBssLen ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_RXP_FwBssLen )); |
| 476 | hdr->bnx_RXP_FwSbssAddr = ntohl(hdr->bnx_RXP_FwSbssAddr)(__uint32_t)(__builtin_constant_p(hdr->bnx_RXP_FwSbssAddr) ? (__uint32_t)(((__uint32_t)(hdr->bnx_RXP_FwSbssAddr) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_RXP_FwSbssAddr ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_RXP_FwSbssAddr ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_RXP_FwSbssAddr ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_RXP_FwSbssAddr )); |
| 477 | hdr->bnx_RXP_FwSbssLen = ntohl(hdr->bnx_RXP_FwSbssLen)(__uint32_t)(__builtin_constant_p(hdr->bnx_RXP_FwSbssLen) ? (__uint32_t)(((__uint32_t)(hdr->bnx_RXP_FwSbssLen) & 0xff ) << 24 | ((__uint32_t)(hdr->bnx_RXP_FwSbssLen) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_RXP_FwSbssLen ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_RXP_FwSbssLen ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_RXP_FwSbssLen )); |
| 478 | |
| 479 | hdr->bnx_TPAT_FwReleaseMajor = ntohl(hdr->bnx_TPAT_FwReleaseMajor)(__uint32_t)(__builtin_constant_p(hdr->bnx_TPAT_FwReleaseMajor ) ? (__uint32_t)(((__uint32_t)(hdr->bnx_TPAT_FwReleaseMajor ) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_TPAT_FwReleaseMajor ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_TPAT_FwReleaseMajor ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_TPAT_FwReleaseMajor ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_TPAT_FwReleaseMajor )); |
| 480 | hdr->bnx_TPAT_FwReleaseMinor = ntohl(hdr->bnx_TPAT_FwReleaseMinor)(__uint32_t)(__builtin_constant_p(hdr->bnx_TPAT_FwReleaseMinor ) ? (__uint32_t)(((__uint32_t)(hdr->bnx_TPAT_FwReleaseMinor ) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_TPAT_FwReleaseMinor ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_TPAT_FwReleaseMinor ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_TPAT_FwReleaseMinor ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_TPAT_FwReleaseMinor )); |
| 481 | hdr->bnx_TPAT_FwReleaseFix = ntohl(hdr->bnx_TPAT_FwReleaseFix)(__uint32_t)(__builtin_constant_p(hdr->bnx_TPAT_FwReleaseFix ) ? (__uint32_t)(((__uint32_t)(hdr->bnx_TPAT_FwReleaseFix) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_TPAT_FwReleaseFix ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_TPAT_FwReleaseFix ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_TPAT_FwReleaseFix ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_TPAT_FwReleaseFix )); |
| 482 | hdr->bnx_TPAT_FwStartAddr = ntohl(hdr->bnx_TPAT_FwStartAddr)(__uint32_t)(__builtin_constant_p(hdr->bnx_TPAT_FwStartAddr ) ? (__uint32_t)(((__uint32_t)(hdr->bnx_TPAT_FwStartAddr) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_TPAT_FwStartAddr ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_TPAT_FwStartAddr ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_TPAT_FwStartAddr ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_TPAT_FwStartAddr )); |
| 483 | hdr->bnx_TPAT_FwTextAddr = ntohl(hdr->bnx_TPAT_FwTextAddr)(__uint32_t)(__builtin_constant_p(hdr->bnx_TPAT_FwTextAddr ) ? (__uint32_t)(((__uint32_t)(hdr->bnx_TPAT_FwTextAddr) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_TPAT_FwTextAddr ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_TPAT_FwTextAddr ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_TPAT_FwTextAddr ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_TPAT_FwTextAddr )); |
| 484 | hdr->bnx_TPAT_FwTextLen = ntohl(hdr->bnx_TPAT_FwTextLen)(__uint32_t)(__builtin_constant_p(hdr->bnx_TPAT_FwTextLen) ? (__uint32_t)(((__uint32_t)(hdr->bnx_TPAT_FwTextLen) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_TPAT_FwTextLen ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_TPAT_FwTextLen ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_TPAT_FwTextLen ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_TPAT_FwTextLen )); |
| 485 | hdr->bnx_TPAT_FwDataAddr = ntohl(hdr->bnx_TPAT_FwDataAddr)(__uint32_t)(__builtin_constant_p(hdr->bnx_TPAT_FwDataAddr ) ? (__uint32_t)(((__uint32_t)(hdr->bnx_TPAT_FwDataAddr) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_TPAT_FwDataAddr ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_TPAT_FwDataAddr ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_TPAT_FwDataAddr ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_TPAT_FwDataAddr )); |
| 486 | hdr->bnx_TPAT_FwDataLen = ntohl(hdr->bnx_TPAT_FwDataLen)(__uint32_t)(__builtin_constant_p(hdr->bnx_TPAT_FwDataLen) ? (__uint32_t)(((__uint32_t)(hdr->bnx_TPAT_FwDataLen) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_TPAT_FwDataLen ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_TPAT_FwDataLen ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_TPAT_FwDataLen ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_TPAT_FwDataLen )); |
| 487 | hdr->bnx_TPAT_FwRodataAddr = ntohl(hdr->bnx_TPAT_FwRodataAddr)(__uint32_t)(__builtin_constant_p(hdr->bnx_TPAT_FwRodataAddr ) ? (__uint32_t)(((__uint32_t)(hdr->bnx_TPAT_FwRodataAddr) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_TPAT_FwRodataAddr ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_TPAT_FwRodataAddr ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_TPAT_FwRodataAddr ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_TPAT_FwRodataAddr )); |
| 488 | hdr->bnx_TPAT_FwRodataLen = ntohl(hdr->bnx_TPAT_FwRodataLen)(__uint32_t)(__builtin_constant_p(hdr->bnx_TPAT_FwRodataLen ) ? (__uint32_t)(((__uint32_t)(hdr->bnx_TPAT_FwRodataLen) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_TPAT_FwRodataLen ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_TPAT_FwRodataLen ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_TPAT_FwRodataLen ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_TPAT_FwRodataLen )); |
| 489 | hdr->bnx_TPAT_FwBssAddr = ntohl(hdr->bnx_TPAT_FwBssAddr)(__uint32_t)(__builtin_constant_p(hdr->bnx_TPAT_FwBssAddr) ? (__uint32_t)(((__uint32_t)(hdr->bnx_TPAT_FwBssAddr) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_TPAT_FwBssAddr ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_TPAT_FwBssAddr ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_TPAT_FwBssAddr ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_TPAT_FwBssAddr )); |
| 490 | hdr->bnx_TPAT_FwBssLen = ntohl(hdr->bnx_TPAT_FwBssLen)(__uint32_t)(__builtin_constant_p(hdr->bnx_TPAT_FwBssLen) ? (__uint32_t)(((__uint32_t)(hdr->bnx_TPAT_FwBssLen) & 0xff ) << 24 | ((__uint32_t)(hdr->bnx_TPAT_FwBssLen) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_TPAT_FwBssLen ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_TPAT_FwBssLen ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_TPAT_FwBssLen )); |
| 491 | hdr->bnx_TPAT_FwSbssAddr = ntohl(hdr->bnx_TPAT_FwSbssAddr)(__uint32_t)(__builtin_constant_p(hdr->bnx_TPAT_FwSbssAddr ) ? (__uint32_t)(((__uint32_t)(hdr->bnx_TPAT_FwSbssAddr) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_TPAT_FwSbssAddr ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_TPAT_FwSbssAddr ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_TPAT_FwSbssAddr ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_TPAT_FwSbssAddr )); |
| 492 | hdr->bnx_TPAT_FwSbssLen = ntohl(hdr->bnx_TPAT_FwSbssLen)(__uint32_t)(__builtin_constant_p(hdr->bnx_TPAT_FwSbssLen) ? (__uint32_t)(((__uint32_t)(hdr->bnx_TPAT_FwSbssLen) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_TPAT_FwSbssLen ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_TPAT_FwSbssLen ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_TPAT_FwSbssLen ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_TPAT_FwSbssLen )); |
| 493 | |
| 494 | hdr->bnx_TXP_FwReleaseMajor = ntohl(hdr->bnx_TXP_FwReleaseMajor)(__uint32_t)(__builtin_constant_p(hdr->bnx_TXP_FwReleaseMajor ) ? (__uint32_t)(((__uint32_t)(hdr->bnx_TXP_FwReleaseMajor ) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_TXP_FwReleaseMajor ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_TXP_FwReleaseMajor ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_TXP_FwReleaseMajor ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_TXP_FwReleaseMajor )); |
| 495 | hdr->bnx_TXP_FwReleaseMinor = ntohl(hdr->bnx_TXP_FwReleaseMinor)(__uint32_t)(__builtin_constant_p(hdr->bnx_TXP_FwReleaseMinor ) ? (__uint32_t)(((__uint32_t)(hdr->bnx_TXP_FwReleaseMinor ) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_TXP_FwReleaseMinor ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_TXP_FwReleaseMinor ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_TXP_FwReleaseMinor ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_TXP_FwReleaseMinor )); |
| 496 | hdr->bnx_TXP_FwReleaseFix = ntohl(hdr->bnx_TXP_FwReleaseFix)(__uint32_t)(__builtin_constant_p(hdr->bnx_TXP_FwReleaseFix ) ? (__uint32_t)(((__uint32_t)(hdr->bnx_TXP_FwReleaseFix) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_TXP_FwReleaseFix ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_TXP_FwReleaseFix ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_TXP_FwReleaseFix ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_TXP_FwReleaseFix )); |
| 497 | hdr->bnx_TXP_FwStartAddr = ntohl(hdr->bnx_TXP_FwStartAddr)(__uint32_t)(__builtin_constant_p(hdr->bnx_TXP_FwStartAddr ) ? (__uint32_t)(((__uint32_t)(hdr->bnx_TXP_FwStartAddr) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_TXP_FwStartAddr ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_TXP_FwStartAddr ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_TXP_FwStartAddr ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_TXP_FwStartAddr )); |
| 498 | hdr->bnx_TXP_FwTextAddr = ntohl(hdr->bnx_TXP_FwTextAddr)(__uint32_t)(__builtin_constant_p(hdr->bnx_TXP_FwTextAddr) ? (__uint32_t)(((__uint32_t)(hdr->bnx_TXP_FwTextAddr) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_TXP_FwTextAddr ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_TXP_FwTextAddr ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_TXP_FwTextAddr ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_TXP_FwTextAddr )); |
| 499 | hdr->bnx_TXP_FwTextLen = ntohl(hdr->bnx_TXP_FwTextLen)(__uint32_t)(__builtin_constant_p(hdr->bnx_TXP_FwTextLen) ? (__uint32_t)(((__uint32_t)(hdr->bnx_TXP_FwTextLen) & 0xff ) << 24 | ((__uint32_t)(hdr->bnx_TXP_FwTextLen) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_TXP_FwTextLen ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_TXP_FwTextLen ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_TXP_FwTextLen )); |
| 500 | hdr->bnx_TXP_FwDataAddr = ntohl(hdr->bnx_TXP_FwDataAddr)(__uint32_t)(__builtin_constant_p(hdr->bnx_TXP_FwDataAddr) ? (__uint32_t)(((__uint32_t)(hdr->bnx_TXP_FwDataAddr) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_TXP_FwDataAddr ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_TXP_FwDataAddr ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_TXP_FwDataAddr ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_TXP_FwDataAddr )); |
| 501 | hdr->bnx_TXP_FwDataLen = ntohl(hdr->bnx_TXP_FwDataLen)(__uint32_t)(__builtin_constant_p(hdr->bnx_TXP_FwDataLen) ? (__uint32_t)(((__uint32_t)(hdr->bnx_TXP_FwDataLen) & 0xff ) << 24 | ((__uint32_t)(hdr->bnx_TXP_FwDataLen) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_TXP_FwDataLen ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_TXP_FwDataLen ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_TXP_FwDataLen )); |
| 502 | hdr->bnx_TXP_FwRodataAddr = ntohl(hdr->bnx_TXP_FwRodataAddr)(__uint32_t)(__builtin_constant_p(hdr->bnx_TXP_FwRodataAddr ) ? (__uint32_t)(((__uint32_t)(hdr->bnx_TXP_FwRodataAddr) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_TXP_FwRodataAddr ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_TXP_FwRodataAddr ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_TXP_FwRodataAddr ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_TXP_FwRodataAddr )); |
| 503 | hdr->bnx_TXP_FwRodataLen = ntohl(hdr->bnx_TXP_FwRodataLen)(__uint32_t)(__builtin_constant_p(hdr->bnx_TXP_FwRodataLen ) ? (__uint32_t)(((__uint32_t)(hdr->bnx_TXP_FwRodataLen) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_TXP_FwRodataLen ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_TXP_FwRodataLen ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_TXP_FwRodataLen ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_TXP_FwRodataLen )); |
| 504 | hdr->bnx_TXP_FwBssAddr = ntohl(hdr->bnx_TXP_FwBssAddr)(__uint32_t)(__builtin_constant_p(hdr->bnx_TXP_FwBssAddr) ? (__uint32_t)(((__uint32_t)(hdr->bnx_TXP_FwBssAddr) & 0xff ) << 24 | ((__uint32_t)(hdr->bnx_TXP_FwBssAddr) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_TXP_FwBssAddr ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_TXP_FwBssAddr ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_TXP_FwBssAddr )); |
| 505 | hdr->bnx_TXP_FwBssLen = ntohl(hdr->bnx_TXP_FwBssLen)(__uint32_t)(__builtin_constant_p(hdr->bnx_TXP_FwBssLen) ? (__uint32_t)(((__uint32_t)(hdr->bnx_TXP_FwBssLen) & 0xff ) << 24 | ((__uint32_t)(hdr->bnx_TXP_FwBssLen) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_TXP_FwBssLen) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_TXP_FwBssLen ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_TXP_FwBssLen )); |
| 506 | hdr->bnx_TXP_FwSbssAddr = ntohl(hdr->bnx_TXP_FwSbssAddr)(__uint32_t)(__builtin_constant_p(hdr->bnx_TXP_FwSbssAddr) ? (__uint32_t)(((__uint32_t)(hdr->bnx_TXP_FwSbssAddr) & 0xff) << 24 | ((__uint32_t)(hdr->bnx_TXP_FwSbssAddr ) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_TXP_FwSbssAddr ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_TXP_FwSbssAddr ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_TXP_FwSbssAddr )); |
| 507 | hdr->bnx_TXP_FwSbssLen = ntohl(hdr->bnx_TXP_FwSbssLen)(__uint32_t)(__builtin_constant_p(hdr->bnx_TXP_FwSbssLen) ? (__uint32_t)(((__uint32_t)(hdr->bnx_TXP_FwSbssLen) & 0xff ) << 24 | ((__uint32_t)(hdr->bnx_TXP_FwSbssLen) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_TXP_FwSbssLen ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_TXP_FwSbssLen ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_TXP_FwSbssLen )); |
| 508 | |
| 509 | q = p + sizeof(*hdr); |
| 510 | |
| 511 | bfw->bnx_COM_FwText = (u_int32_t *)q; |
| 512 | q += hdr->bnx_COM_FwTextLen; |
| 513 | nswaph(bfw->bnx_COM_FwText, hdr->bnx_COM_FwTextLen); |
| 514 | bfw->bnx_COM_FwData = (u_int32_t *)q; |
| 515 | q += hdr->bnx_COM_FwDataLen; |
| 516 | nswaph(bfw->bnx_COM_FwData, hdr->bnx_COM_FwDataLen); |
| 517 | bfw->bnx_COM_FwRodata = (u_int32_t *)q; |
| 518 | q += hdr->bnx_COM_FwRodataLen; |
| 519 | nswaph(bfw->bnx_COM_FwRodata, hdr->bnx_COM_FwRodataLen); |
| 520 | bfw->bnx_COM_FwBss = (u_int32_t *)q; |
| 521 | q += hdr->bnx_COM_FwBssLen; |
| 522 | nswaph(bfw->bnx_COM_FwBss, hdr->bnx_COM_FwBssLen); |
| 523 | bfw->bnx_COM_FwSbss = (u_int32_t *)q; |
| 524 | q += hdr->bnx_COM_FwSbssLen; |
| 525 | nswaph(bfw->bnx_COM_FwSbss, hdr->bnx_COM_FwSbssLen); |
| 526 | |
| 527 | bfw->bnx_RXP_FwText = (u_int32_t *)q; |
| 528 | q += hdr->bnx_RXP_FwTextLen; |
| 529 | nswaph(bfw->bnx_RXP_FwText, hdr->bnx_RXP_FwTextLen); |
| 530 | bfw->bnx_RXP_FwData = (u_int32_t *)q; |
| 531 | q += hdr->bnx_RXP_FwDataLen; |
| 532 | nswaph(bfw->bnx_RXP_FwData, hdr->bnx_RXP_FwDataLen); |
| 533 | bfw->bnx_RXP_FwRodata = (u_int32_t *)q; |
| 534 | q += hdr->bnx_RXP_FwRodataLen; |
| 535 | nswaph(bfw->bnx_RXP_FwRodata, hdr->bnx_RXP_FwRodataLen); |
| 536 | bfw->bnx_RXP_FwBss = (u_int32_t *)q; |
| 537 | q += hdr->bnx_RXP_FwBssLen; |
| 538 | nswaph(bfw->bnx_RXP_FwBss, hdr->bnx_RXP_FwBssLen); |
| 539 | bfw->bnx_RXP_FwSbss = (u_int32_t *)q; |
| 540 | q += hdr->bnx_RXP_FwSbssLen; |
| 541 | nswaph(bfw->bnx_RXP_FwSbss, hdr->bnx_RXP_FwSbssLen); |
| 542 | |
| 543 | bfw->bnx_TPAT_FwText = (u_int32_t *)q; |
| 544 | q += hdr->bnx_TPAT_FwTextLen; |
| 545 | nswaph(bfw->bnx_TPAT_FwText, hdr->bnx_TPAT_FwTextLen); |
| 546 | bfw->bnx_TPAT_FwData = (u_int32_t *)q; |
| 547 | q += hdr->bnx_TPAT_FwDataLen; |
| 548 | nswaph(bfw->bnx_TPAT_FwData, hdr->bnx_TPAT_FwDataLen); |
| 549 | bfw->bnx_TPAT_FwRodata = (u_int32_t *)q; |
| 550 | q += hdr->bnx_TPAT_FwRodataLen; |
| 551 | nswaph(bfw->bnx_TPAT_FwRodata, hdr->bnx_TPAT_FwRodataLen); |
| 552 | bfw->bnx_TPAT_FwBss = (u_int32_t *)q; |
| 553 | q += hdr->bnx_TPAT_FwBssLen; |
| 554 | nswaph(bfw->bnx_TPAT_FwBss, hdr->bnx_TPAT_FwBssLen); |
| 555 | bfw->bnx_TPAT_FwSbss = (u_int32_t *)q; |
| 556 | q += hdr->bnx_TPAT_FwSbssLen; |
| 557 | nswaph(bfw->bnx_TPAT_FwSbss, hdr->bnx_TPAT_FwSbssLen); |
| 558 | |
| 559 | bfw->bnx_TXP_FwText = (u_int32_t *)q; |
| 560 | q += hdr->bnx_TXP_FwTextLen; |
| 561 | nswaph(bfw->bnx_TXP_FwText, hdr->bnx_TXP_FwTextLen); |
| 562 | bfw->bnx_TXP_FwData = (u_int32_t *)q; |
| 563 | q += hdr->bnx_TXP_FwDataLen; |
| 564 | nswaph(bfw->bnx_TXP_FwData, hdr->bnx_TXP_FwDataLen); |
| 565 | bfw->bnx_TXP_FwRodata = (u_int32_t *)q; |
| 566 | q += hdr->bnx_TXP_FwRodataLen; |
| 567 | nswaph(bfw->bnx_TXP_FwRodata, hdr->bnx_TXP_FwRodataLen); |
| 568 | bfw->bnx_TXP_FwBss = (u_int32_t *)q; |
| 569 | q += hdr->bnx_TXP_FwBssLen; |
| 570 | nswaph(bfw->bnx_TXP_FwBss, hdr->bnx_TXP_FwBssLen); |
| 571 | bfw->bnx_TXP_FwSbss = (u_int32_t *)q; |
| 572 | q += hdr->bnx_TXP_FwSbssLen; |
| 573 | nswaph(bfw->bnx_TXP_FwSbss, hdr->bnx_TXP_FwSbssLen); |
| 574 | |
| 575 | if (q - p != size) { |
| 576 | free(p, M_DEVBUF2, size); |
| 577 | hdr = NULL((void *)0); |
| 578 | return EINVAL22; |
| 579 | } |
| 580 | |
| 581 | bfw->fw = hdr; |
| 582 | |
| 583 | return (0); |
| 584 | } |
| 585 | |
| 586 | int |
| 587 | bnx_read_rv2p(struct bnx_softc *sc, int idx) |
| 588 | { |
| 589 | struct bnx_rv2p *rv2p = &bnx_rv2ps[idx]; |
| 590 | struct bnx_rv2p_header *hdr = rv2p->fw; |
| 591 | u_char *p, *q; |
| 592 | size_t size; |
| 593 | int error; |
| 594 | |
| 595 | if (hdr != NULL((void *)0)) |
| 596 | return (0); |
| 597 | |
| 598 | if ((error = loadfirmware(rv2p->filename, &p, &size)) != 0) |
| 599 | return (error); |
| 600 | |
| 601 | if (size < sizeof(struct bnx_rv2p_header)) { |
| 602 | free(p, M_DEVBUF2, size); |
| 603 | return (EINVAL22); |
| 604 | } |
| 605 | |
| 606 | hdr = (struct bnx_rv2p_header *)p; |
| 607 | |
| 608 | hdr->bnx_rv2p_proc1len = ntohl(hdr->bnx_rv2p_proc1len)(__uint32_t)(__builtin_constant_p(hdr->bnx_rv2p_proc1len) ? (__uint32_t)(((__uint32_t)(hdr->bnx_rv2p_proc1len) & 0xff ) << 24 | ((__uint32_t)(hdr->bnx_rv2p_proc1len) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_rv2p_proc1len ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_rv2p_proc1len ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_rv2p_proc1len )); |
| 609 | hdr->bnx_rv2p_proc2len = ntohl(hdr->bnx_rv2p_proc2len)(__uint32_t)(__builtin_constant_p(hdr->bnx_rv2p_proc2len) ? (__uint32_t)(((__uint32_t)(hdr->bnx_rv2p_proc2len) & 0xff ) << 24 | ((__uint32_t)(hdr->bnx_rv2p_proc2len) & 0xff00) << 8 | ((__uint32_t)(hdr->bnx_rv2p_proc2len ) & 0xff0000) >> 8 | ((__uint32_t)(hdr->bnx_rv2p_proc2len ) & 0xff000000) >> 24) : __swap32md(hdr->bnx_rv2p_proc2len )); |
| 610 | |
| 611 | q = p + sizeof(*hdr); |
| 612 | |
| 613 | rv2p->bnx_rv2p_proc1 = (u_int32_t *)q; |
| 614 | q += hdr->bnx_rv2p_proc1len; |
| 615 | nswaph(rv2p->bnx_rv2p_proc1, hdr->bnx_rv2p_proc1len); |
| 616 | rv2p->bnx_rv2p_proc2 = (u_int32_t *)q; |
| 617 | q += hdr->bnx_rv2p_proc2len; |
| 618 | nswaph(rv2p->bnx_rv2p_proc2, hdr->bnx_rv2p_proc2len); |
| 619 | |
| 620 | if (q - p != size) { |
| 621 | free(p, M_DEVBUF2, size); |
| 622 | return EINVAL22; |
| 623 | } |
| 624 | |
| 625 | rv2p->fw = hdr; |
| 626 | |
| 627 | return (0); |
| 628 | } |
| 629 | |
| 630 | |
| 631 | /****************************************************************************/ |
| 632 | /* Device attach function. */ |
| 633 | /* */ |
| 634 | /* Allocates device resources, performs secondary chip identification, */ |
| 635 | /* resets and initializes the hardware, and initializes driver instance */ |
| 636 | /* variables. */ |
| 637 | /* */ |
| 638 | /* Returns: */ |
| 639 | /* 0 on success, positive value on failure. */ |
| 640 | /****************************************************************************/ |
| 641 | void |
| 642 | bnx_attach(struct device *parent, struct device *self, void *aux) |
| 643 | { |
| 644 | struct bnx_softc *sc = (struct bnx_softc *)self; |
| 645 | struct pci_attach_args *pa = aux; |
| 646 | pci_chipset_tag_t pc = pa->pa_pc; |
| 647 | u_int32_t val; |
| 648 | pcireg_t memtype; |
| 649 | const char *intrstr = NULL((void *)0); |
| 650 | |
| 651 | sc->bnx_pa = *pa; |
| 652 | |
| 653 | /* |
| 654 | * Map control/status registers. |
| 655 | */ |
| 656 | memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR00x10); |
| 657 | if (pci_mapreg_map(pa, BNX_PCI_BAR00x10, memtype, 0, &sc->bnx_btag, |
| 658 | &sc->bnx_bhandle, NULL((void *)0), &sc->bnx_size, 0)) { |
| 659 | printf(": can't find mem space\n"); |
| 660 | return; |
| 661 | } |
| 662 | |
| 663 | if (pci_intr_map(pa, &sc->bnx_ih)) { |
| 664 | printf(": couldn't map interrupt\n"); |
| 665 | goto bnx_attach_fail; |
| 666 | } |
| 667 | intrstr = pci_intr_string(pc, sc->bnx_ih); |
| 668 | |
| 669 | /* |
| 670 | * Configure byte swap and enable indirect register access. |
| 671 | * Rely on CPU to do target byte swapping on big endian systems. |
| 672 | * Access to registers outside of PCI configuration space are not |
| 673 | * valid until this is done. |
| 674 | */ |
| 675 | pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG0x00000068, |
| 676 | BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA(1L<<7) | |
| 677 | BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP(1L<<3)); |
| 678 | |
| 679 | /* Save ASIC revision info. */ |
| 680 | sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x00000808 ))); |
| 681 | |
| 682 | /* |
| 683 | * Find the base address for shared memory access. |
| 684 | * Newer versions of bootcode use a signature and offset |
| 685 | * while older versions use a fixed address. |
| 686 | */ |
| 687 | val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE)bnx_reg_rd_ind(sc, 0x00160000); |
| 688 | if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK0xffff0000) == BNX_SHM_HDR_SIGNATURE_SIG0x53530000) |
| 689 | sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +bnx_reg_rd_ind(sc, 0x00160000 + 4 + (sc->bnx_pa.pa_function << 2)) |
| 690 | (sc->bnx_pa.pa_function << 2))bnx_reg_rd_ind(sc, 0x00160000 + 4 + (sc->bnx_pa.pa_function << 2)); |
| 691 | else |
| 692 | sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE0x167c00; |
| 693 | |
| 694 | DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base); |
| 695 | |
| 696 | /* Set initial device and PHY flags */ |
| 697 | sc->bnx_flags = 0; |
| 698 | sc->bnx_phy_flags = 0; |
| 699 | |
| 700 | /* Get PCI bus information (speed and type). */ |
| 701 | val = REG_RD(sc, BNX_PCICFG_MISC_STATUS)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x0000006c ))); |
| 702 | if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET(1L<<3)) { |
| 703 | u_int32_t clkreg; |
| 704 | |
| 705 | sc->bnx_flags |= BNX_PCIX_FLAG0x01; |
| 706 | |
| 707 | clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x00000070 ))); |
| 708 | |
| 709 | clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET(0xfL<<0); |
| 710 | switch (clkreg) { |
| 711 | case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ(7L<<0): |
| 712 | sc->bus_speed_mhz = 133; |
| 713 | break; |
| 714 | |
| 715 | case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ(6L<<0): |
| 716 | sc->bus_speed_mhz = 100; |
| 717 | break; |
| 718 | |
| 719 | case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ(4L<<0): |
| 720 | case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ(5L<<0): |
| 721 | sc->bus_speed_mhz = 66; |
| 722 | break; |
| 723 | |
| 724 | case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ(2L<<0): |
| 725 | case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ(3L<<0): |
| 726 | sc->bus_speed_mhz = 50; |
| 727 | break; |
| 728 | |
| 729 | case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW(0xfL<<0): |
| 730 | case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ(0L<<0): |
| 731 | case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ(1L<<0): |
| 732 | sc->bus_speed_mhz = 33; |
| 733 | break; |
| 734 | } |
| 735 | } else if (val & BNX_PCICFG_MISC_STATUS_M66EN(1L<<2)) |
| 736 | sc->bus_speed_mhz = 66; |
| 737 | else |
| 738 | sc->bus_speed_mhz = 33; |
| 739 | |
| 740 | if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET(1L<<1)) |
| 741 | sc->bnx_flags |= BNX_PCI_32BIT_FLAG0x02; |
| 742 | |
| 743 | /* Hookup IRQ last. */ |
| 744 | sc->bnx_intrhand = pci_intr_establish(pc, sc->bnx_ih, |
| 745 | IPL_NET0x4 | IPL_MPSAFE0x100, bnx_intr, sc, sc->bnx_dev.dv_xname); |
| 746 | if (sc->bnx_intrhand == NULL((void *)0)) { |
| 747 | printf(": couldn't establish interrupt"); |
| 748 | if (intrstr != NULL((void *)0)) |
| 749 | printf(" at %s", intrstr); |
| 750 | printf("\n"); |
| 751 | goto bnx_attach_fail; |
| 752 | } |
| 753 | |
| 754 | printf(": %s\n", intrstr); |
| 755 | |
| 756 | config_mountroot(self, bnx_attachhook); |
| 757 | return; |
| 758 | |
| 759 | bnx_attach_fail: |
| 760 | bnx_release_resources(sc); |
| 761 | DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); |
| 762 | } |
| 763 | |
| 764 | void |
| 765 | bnx_attachhook(struct device *self) |
| 766 | { |
| 767 | struct bnx_softc *sc = (struct bnx_softc *)self; |
| 768 | struct pci_attach_args *pa = &sc->bnx_pa; |
| 769 | struct ifnet *ifp; |
| 770 | int error, mii_flags = 0; |
| 771 | int fw = BNX_FW_B060; |
| 772 | int rv2p = BNX_RV2P0; |
| 773 | |
| 774 | if (BNX_CHIP_NUM(sc)(((sc)->bnx_chipid) & 0xffff0000) == BNX_CHIP_NUM_57090x57090000) { |
| 775 | fw = BNX_FW_B091; |
| 776 | if ((BNX_CHIP_REV(sc)(((sc)->bnx_chipid) & 0x0000f000) == BNX_CHIP_REV_Ax0x00000000)) |
| 777 | rv2p = BNX_XI90_RV2P2; |
| 778 | else |
| 779 | rv2p = BNX_XI_RV2P1; |
| 780 | } |
| 781 | |
| 782 | if ((error = bnx_read_firmware(sc, fw)) != 0) { |
| 783 | printf("%s: error %d, could not read firmware\n", |
| 784 | sc->bnx_dev.dv_xname, error); |
| 785 | return; |
| 786 | } |
| 787 | |
| 788 | if ((error = bnx_read_rv2p(sc, rv2p)) != 0) { |
| 789 | printf("%s: error %d, could not read rv2p\n", |
| 790 | sc->bnx_dev.dv_xname, error); |
| 791 | return; |
| 792 | } |
| 793 | |
| 794 | /* Reset the controller. */ |
| 795 | if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET0x01000000)) |
| 796 | goto bnx_attach_fail; |
| 797 | |
| 798 | /* Initialize the controller. */ |
| 799 | if (bnx_chipinit(sc)) { |
| 800 | printf("%s: Controller initialization failed!\n", |
| 801 | sc->bnx_dev.dv_xname); |
| 802 | goto bnx_attach_fail; |
| 803 | } |
| 804 | |
| 805 | /* Perform NVRAM test. */ |
| 806 | if (bnx_nvram_test(sc)) { |
| 807 | printf("%s: NVRAM test failed!\n", |
| 808 | sc->bnx_dev.dv_xname); |
| 809 | goto bnx_attach_fail; |
| 810 | } |
| 811 | |
| 812 | /* Fetch the permanent Ethernet MAC address. */ |
| 813 | bnx_get_mac_addr(sc); |
| 814 | |
| 815 | /* |
| 816 | * Trip points control how many BDs |
| 817 | * should be ready before generating an |
| 818 | * interrupt while ticks control how long |
| 819 | * a BD can sit in the chain before |
| 820 | * generating an interrupt. Set the default |
| 821 | * values for the RX and TX rings. |
| 822 | */ |
| 823 | |
| 824 | #ifdef BNX_DEBUG |
| 825 | /* Force more frequent interrupts. */ |
| 826 | sc->bnx_tx_quick_cons_trip_int = 1; |
| 827 | sc->bnx_tx_quick_cons_trip = 1; |
| 828 | sc->bnx_tx_ticks_int = 0; |
| 829 | sc->bnx_tx_ticks = 0; |
| 830 | |
| 831 | sc->bnx_rx_quick_cons_trip_int = 1; |
| 832 | sc->bnx_rx_quick_cons_trip = 1; |
| 833 | sc->bnx_rx_ticks_int = 0; |
| 834 | sc->bnx_rx_ticks = 0; |
| 835 | #else |
| 836 | sc->bnx_tx_quick_cons_trip_int = 20; |
| 837 | sc->bnx_tx_quick_cons_trip = 20; |
| 838 | sc->bnx_tx_ticks_int = 80; |
| 839 | sc->bnx_tx_ticks = 80; |
| 840 | |
| 841 | sc->bnx_rx_quick_cons_trip_int = 6; |
| 842 | sc->bnx_rx_quick_cons_trip = 6; |
| 843 | sc->bnx_rx_ticks_int = 18; |
| 844 | sc->bnx_rx_ticks = 18; |
| 845 | #endif |
| 846 | |
| 847 | /* Update statistics once every second. */ |
| 848 | sc->bnx_stats_ticks = 1000000 & 0xffff00; |
| 849 | |
| 850 | /* Find the media type for the adapter. */ |
| 851 | bnx_get_media(sc); |
| 852 | |
| 853 | /* |
| 854 | * Store config data needed by the PHY driver for |
| 855 | * backplane applications |
| 856 | */ |
| 857 | sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +bnx_reg_rd_ind(sc, sc->bnx_shmem_base + 0x0000003c) |
| 858 | BNX_SHARED_HW_CFG_CONFIG)bnx_reg_rd_ind(sc, sc->bnx_shmem_base + 0x0000003c); |
| 859 | sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +bnx_reg_rd_ind(sc, sc->bnx_shmem_base + 0x00000058) |
| 860 | BNX_PORT_HW_CFG_CONFIG)bnx_reg_rd_ind(sc, sc->bnx_shmem_base + 0x00000058); |
| 861 | |
| 862 | /* Allocate DMA memory resources. */ |
| 863 | sc->bnx_dmatag = pa->pa_dmat; |
| 864 | if (bnx_dma_alloc(sc)) { |
| 865 | printf("%s: DMA resource allocation failed!\n", |
| 866 | sc->bnx_dev.dv_xname); |
| 867 | goto bnx_attach_fail; |
| 868 | } |
| 869 | |
| 870 | /* Initialize the ifnet interface. */ |
| 871 | ifp = &sc->arpcom.ac_if; |
| 872 | ifp->if_softc = sc; |
| 873 | ifp->if_flags = IFF_BROADCAST0x2 | IFF_SIMPLEX0x800 | IFF_MULTICAST0x8000; |
| 874 | ifp->if_xflags = IFXF_MPSAFE0x1; |
| 875 | ifp->if_ioctl = bnx_ioctl; |
| 876 | ifp->if_qstart = bnx_start; |
| 877 | ifp->if_watchdog = bnx_watchdog; |
| 878 | ifp->if_hardmtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN9022 - |
| 879 | sizeof(struct ether_header); |
| 880 | ifq_init_maxlen(&ifp->if_snd, USABLE_TX_BD((((1 << 12) / sizeof(struct tx_bd)) - 1) * 2) - 1); |
| 881 | bcopy(sc->eaddr, sc->arpcom.ac_enaddr, ETHER_ADDR_LEN6); |
| 882 | bcopy(sc->bnx_dev.dv_xname, ifp->if_xname, IFNAMSIZ16); |
| 883 | |
| 884 | ifp->if_capabilitiesif_data.ifi_capabilities = IFCAP_CSUM_TCPv40x00000002 | IFCAP_CSUM_UDPv40x00000004; |
| 885 | |
| 886 | #if NVLAN1 > 0 |
| 887 | ifp->if_capabilitiesif_data.ifi_capabilities |= IFCAP_VLAN_HWTAGGING0x00000020; |
| 888 | #endif |
| 889 | |
| 890 | sc->mbuf_alloc_size = BNX_MAX_MRU(1 << 11); |
| 891 | |
| 892 | printf("%s: address %s\n", sc->bnx_dev.dv_xname, |
| 893 | ether_sprintf(sc->arpcom.ac_enaddr)); |
| 894 | |
| 895 | sc->bnx_mii.mii_ifp = ifp; |
| 896 | sc->bnx_mii.mii_readreg = bnx_miibus_read_reg; |
| 897 | sc->bnx_mii.mii_writereg = bnx_miibus_write_reg; |
| 898 | sc->bnx_mii.mii_statchg = bnx_miibus_statchg; |
| 899 | |
| 900 | /* Handle any special PHY initialization for SerDes PHYs. */ |
| 901 | bnx_init_media(sc); |
| 902 | |
| 903 | /* Look for our PHY. */ |
| 904 | ifmedia_init(&sc->bnx_mii.mii_media, 0, bnx_ifmedia_upd, |
| 905 | bnx_ifmedia_sts); |
| 906 | mii_flags |= MIIF_DOPAUSE0x0100; |
| 907 | if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG0x001) |
| 908 | mii_flags |= MIIF_HAVEFIBER0x0020; |
| 909 | mii_attach(&sc->bnx_dev, &sc->bnx_mii, 0xffffffff, |
| 910 | sc->bnx_phy_addr, MII_OFFSET_ANY-1, mii_flags); |
| 911 | |
| 912 | if (LIST_FIRST(&sc->bnx_mii.mii_phys)((&sc->bnx_mii.mii_phys)->lh_first) == NULL((void *)0)) { |
| 913 | printf("%s: no PHY found!\n", sc->bnx_dev.dv_xname); |
| 914 | ifmedia_add(&sc->bnx_mii.mii_media, |
| 915 | IFM_ETHER0x0000000000000100ULL|IFM_MANUAL1ULL, 0, NULL((void *)0)); |
| 916 | ifmedia_set(&sc->bnx_mii.mii_media, |
| 917 | IFM_ETHER0x0000000000000100ULL|IFM_MANUAL1ULL); |
| 918 | } else { |
| 919 | ifmedia_set(&sc->bnx_mii.mii_media, |
| 920 | IFM_ETHER0x0000000000000100ULL|IFM_AUTO0ULL); |
| 921 | } |
| 922 | |
| 923 | /* Attach to the Ethernet interface list. */ |
| 924 | if_attach(ifp); |
| 925 | ether_ifattach(ifp); |
| 926 | |
| 927 | timeout_set(&sc->bnx_timeout, bnx_tick, sc); |
| 928 | timeout_set(&sc->bnx_rxrefill, bnx_rxrefill, sc); |
| 929 | |
| 930 | /* Print some important debugging info. */ |
| 931 | DBRUN(BNX_INFO, bnx_dump_driver_state(sc)); |
| 932 | |
| 933 | /* Get the firmware running so ASF still works. */ |
| 934 | bnx_mgmt_init(sc); |
| 935 | |
| 936 | /* Handle interrupts */ |
| 937 | sc->bnx_flags |= BNX_ACTIVE_FLAG0x80; |
| 938 | |
| 939 | goto bnx_attach_exit; |
| 940 | |
| 941 | bnx_attach_fail: |
| 942 | bnx_release_resources(sc); |
| 943 | |
| 944 | bnx_attach_exit: |
| 945 | DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); |
| 946 | } |
| 947 | |
| 948 | /****************************************************************************/ |
| 949 | /* Device detach function. */ |
| 950 | /* */ |
| 951 | /* Stops the controller, resets the controller, and releases resources. */ |
| 952 | /* */ |
| 953 | /* Returns: */ |
| 954 | /* 0 on success, positive value on failure. */ |
| 955 | /****************************************************************************/ |
| 956 | #if 0 |
| 957 | void |
| 958 | bnx_detach(void *xsc) |
| 959 | { |
| 960 | struct bnx_softc *sc; |
| 961 | struct ifnet *ifp = &sc->arpcom.ac_if; |
| 962 | |
| 963 | sc = device_get_softc(dev); |
| 964 | |
| 965 | DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); |
| 966 | |
| 967 | /* Stop and reset the controller. */ |
| 968 | bnx_stop(sc); |
| 969 | bnx_reset(sc, BNX_DRV_MSG_CODE_RESET0x01000000); |
| 970 | |
| 971 | ether_ifdetach(ifp); |
| 972 | |
| 973 | /* If we have a child device on the MII bus remove it too. */ |
| 974 | bus_generic_detach(dev); |
| 975 | device_delete_child(dev, sc->bnx_mii); |
| 976 | |
| 977 | /* Release all remaining resources. */ |
| 978 | bnx_release_resources(sc); |
| 979 | |
| 980 | DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); |
| 981 | |
| 982 | return(0); |
| 983 | } |
| 984 | #endif |
| 985 | |
| 986 | /****************************************************************************/ |
| 987 | /* Indirect register read. */ |
| 988 | /* */ |
| 989 | /* Reads NetXtreme II registers using an index/data register pair in PCI */ |
| 990 | /* configuration space. Using this mechanism avoids issues with posted */ |
| 991 | /* reads but is much slower than memory-mapped I/O. */ |
| 992 | /* */ |
| 993 | /* Returns: */ |
| 994 | /* The value of the register. */ |
| 995 | /****************************************************************************/ |
| 996 | u_int32_t |
| 997 | bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset) |
| 998 | { |
| 999 | struct pci_attach_args *pa = &(sc->bnx_pa); |
| 1000 | |
| 1001 | pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS0x00000078, |
| 1002 | offset); |
| 1003 | #ifdef BNX_DEBUG |
| 1004 | { |
| 1005 | u_int32_t val; |
| 1006 | val = pci_conf_read(pa->pa_pc, pa->pa_tag, |
| 1007 | BNX_PCICFG_REG_WINDOW0x00000080); |
| 1008 | DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, " |
| 1009 | "val = 0x%08X\n", __FUNCTION__, offset, val); |
| 1010 | return (val); |
| 1011 | } |
| 1012 | #else |
| 1013 | return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW0x00000080); |
| 1014 | #endif |
| 1015 | } |
| 1016 | |
| 1017 | /****************************************************************************/ |
| 1018 | /* Indirect register write. */ |
| 1019 | /* */ |
| 1020 | /* Writes NetXtreme II registers using an index/data register pair in PCI */ |
| 1021 | /* configuration space. Using this mechanism avoids issues with posted */ |
| 1022 | /* writes but is muchh slower than memory-mapped I/O. */ |
| 1023 | /* */ |
| 1024 | /* Returns: */ |
| 1025 | /* Nothing. */ |
| 1026 | /****************************************************************************/ |
| 1027 | void |
| 1028 | bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val) |
| 1029 | { |
| 1030 | struct pci_attach_args *pa = &(sc->bnx_pa); |
| 1031 | |
| 1032 | DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n", |
| 1033 | __FUNCTION__, offset, val); |
| 1034 | |
| 1035 | pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS0x00000078, |
| 1036 | offset); |
| 1037 | pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW0x00000080, val); |
| 1038 | } |
| 1039 | |
| 1040 | /****************************************************************************/ |
| 1041 | /* Context memory write. */ |
| 1042 | /* */ |
| 1043 | /* The NetXtreme II controller uses context memory to track connection */ |
| 1044 | /* information for L2 and higher network protocols. */ |
| 1045 | /* */ |
| 1046 | /* Returns: */ |
| 1047 | /* Nothing. */ |
| 1048 | /****************************************************************************/ |
| 1049 | void |
| 1050 | bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t ctx_offset, |
| 1051 | u_int32_t ctx_val) |
| 1052 | { |
| 1053 | u_int32_t idx, offset = ctx_offset + cid_addr; |
| 1054 | u_int32_t val, retry_cnt = 5; |
| 1055 | |
| 1056 | if (BNX_CHIP_NUM(sc)(((sc)->bnx_chipid) & 0xffff0000) == BNX_CHIP_NUM_57090x57090000) { |
| 1057 | REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00001020 ), (ctx_val))); |
| 1058 | REG_WR(sc, BNX_CTX_CTX_CTRL,((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x0000101c ), ((offset | (1L<<30))))) |
| 1059 | (offset | BNX_CTX_CTX_CTRL_WRITE_REQ))((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x0000101c ), ((offset | (1L<<30))))); |
| 1060 | |
| 1061 | for (idx = 0; idx < retry_cnt; idx++) { |
| 1062 | val = REG_RD(sc, BNX_CTX_CTX_CTRL)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x0000101c ))); |
| 1063 | if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ(1L<<30)) == 0) |
| 1064 | break; |
| 1065 | DELAY(5)(*delay_func)(5); |
| 1066 | } |
| 1067 | |
| 1068 | #if 0 |
| 1069 | if (val & BNX_CTX_CTX_CTRL_WRITE_REQ(1L<<30)) |
| 1070 | BNX_PRINTF("%s(%d); Unable to write CTX memory: "printf("%s: " "/usr/src/sys/dev/pci/if_bnx.c", "%s(%d); Unable to write CTX memory: " "cid_addr = 0x%08X, offset = 0x%08X!\n"->bnx_dev.dv_xname , 1072, cid_addr, ctx_offset) |
| 1071 | "cid_addr = 0x%08X, offset = 0x%08X!\n",printf("%s: " "/usr/src/sys/dev/pci/if_bnx.c", "%s(%d); Unable to write CTX memory: " "cid_addr = 0x%08X, offset = 0x%08X!\n"->bnx_dev.dv_xname , 1072, cid_addr, ctx_offset) |
| 1072 | __FILE__, __LINE__, cid_addr, ctx_offset)printf("%s: " "/usr/src/sys/dev/pci/if_bnx.c", "%s(%d); Unable to write CTX memory: " "cid_addr = 0x%08X, offset = 0x%08X!\n"->bnx_dev.dv_xname , 1072, cid_addr, ctx_offset); |
| 1073 | #endif |
| 1074 | |
| 1075 | } else { |
| 1076 | REG_WR(sc, BNX_CTX_DATA_ADR, offset)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00001010 ), (offset))); |
| 1077 | REG_WR(sc, BNX_CTX_DATA, ctx_val)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00001014 ), (ctx_val))); |
| 1078 | } |
| 1079 | } |
| 1080 | |
| 1081 | /****************************************************************************/ |
| 1082 | /* PHY register read. */ |
| 1083 | /* */ |
| 1084 | /* Implements register reads on the MII bus. */ |
| 1085 | /* */ |
| 1086 | /* Returns: */ |
| 1087 | /* The value of the register. */ |
| 1088 | /****************************************************************************/ |
| 1089 | int |
| 1090 | bnx_miibus_read_reg(struct device *dev, int phy, int reg) |
| 1091 | { |
| 1092 | struct bnx_softc *sc = (struct bnx_softc *)dev; |
| 1093 | u_int32_t val; |
| 1094 | int i; |
| 1095 | |
| 1096 | /* |
| 1097 | * The BCM5709S PHY is an IEEE Clause 45 PHY |
| 1098 | * with special mappings to work with IEEE |
| 1099 | * Clause 22 register accesses. |
| 1100 | */ |
| 1101 | if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG0x400) != 0) { |
| 1102 | if (reg >= MII_BMCR0x00 && reg <= MII_ANLPRNP0x08) |
| 1103 | reg += 0x10; |
| 1104 | } |
| 1105 | |
| 1106 | if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG0x100) { |
| 1107 | val = REG_RD(sc, BNX_EMAC_MDIO_MODE)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x000014b4 ))); |
| 1108 | val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL(1L<<4); |
| 1109 | |
| 1110 | REG_WR(sc, BNX_EMAC_MDIO_MODE, val)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x000014b4 ), (val))); |
| 1111 | REG_RD(sc, BNX_EMAC_MDIO_MODE)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x000014b4 ))); |
| 1112 | |
| 1113 | DELAY(40)(*delay_func)(40); |
| 1114 | } |
| 1115 | |
| 1116 | val = BNX_MIPHY(phy)((phy & 0x1F) << 21) | BNX_MIREG(reg)((reg & 0x1F) << 16) | |
| 1117 | BNX_EMAC_MDIO_COMM_COMMAND_READ(2L<<26) | BNX_EMAC_MDIO_COMM_DISEXT(1L<<30) | |
| 1118 | BNX_EMAC_MDIO_COMM_START_BUSY(1L<<29); |
| 1119 | REG_WR(sc, BNX_EMAC_MDIO_COMM, val)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x000014ac ), (val))); |
| 1120 | |
| 1121 | for (i = 0; i < BNX_PHY_TIMEOUT50; i++) { |
| 1122 | DELAY(10)(*delay_func)(10); |
| 1123 | |
| 1124 | val = REG_RD(sc, BNX_EMAC_MDIO_COMM)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x000014ac ))); |
| 1125 | if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY(1L<<29))) { |
| 1126 | DELAY(5)(*delay_func)(5); |
| 1127 | |
| 1128 | val = REG_RD(sc, BNX_EMAC_MDIO_COMM)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x000014ac ))); |
| 1129 | val &= BNX_EMAC_MDIO_COMM_DATA(0xffffL<<0); |
| 1130 | |
| 1131 | break; |
| 1132 | } |
| 1133 | } |
| 1134 | |
| 1135 | if (val & BNX_EMAC_MDIO_COMM_START_BUSY(1L<<29)) { |
| 1136 | BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "printf("%s: " "%s(%d): Error: PHY read timeout! phy = %d, " "reg = 0x%04X\n" , sc->bnx_dev.dv_xname, "/usr/src/sys/dev/pci/if_bnx.c", 1137 , phy, reg) |
| 1137 | "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg)printf("%s: " "%s(%d): Error: PHY read timeout! phy = %d, " "reg = 0x%04X\n" , sc->bnx_dev.dv_xname, "/usr/src/sys/dev/pci/if_bnx.c", 1137 , phy, reg); |
| 1138 | val = 0x0; |
| 1139 | } else |
| 1140 | val = REG_RD(sc, BNX_EMAC_MDIO_COMM)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x000014ac ))); |
| 1141 | |
| 1142 | DBPRINT(sc, BNX_EXCESSIVE, |
| 1143 | "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __FUNCTION__, phy, |
| 1144 | (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff); |
| 1145 | |
| 1146 | if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG0x100) { |
| 1147 | val = REG_RD(sc, BNX_EMAC_MDIO_MODE)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x000014b4 ))); |
| 1148 | val |= BNX_EMAC_MDIO_MODE_AUTO_POLL(1L<<4); |
| 1149 | |
| 1150 | REG_WR(sc, BNX_EMAC_MDIO_MODE, val)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x000014b4 ), (val))); |
| 1151 | REG_RD(sc, BNX_EMAC_MDIO_MODE)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x000014b4 ))); |
| 1152 | |
| 1153 | DELAY(40)(*delay_func)(40); |
| 1154 | } |
| 1155 | |
| 1156 | return (val & 0xffff); |
| 1157 | } |
| 1158 | |
| 1159 | /****************************************************************************/ |
| 1160 | /* PHY register write. */ |
| 1161 | /* */ |
| 1162 | /* Implements register writes on the MII bus. */ |
| 1163 | /* */ |
| 1164 | /* Returns: */ |
| 1165 | /* The value of the register. */ |
| 1166 | /****************************************************************************/ |
| 1167 | void |
| 1168 | bnx_miibus_write_reg(struct device *dev, int phy, int reg, int val) |
| 1169 | { |
| 1170 | struct bnx_softc *sc = (struct bnx_softc *)dev; |
| 1171 | u_int32_t val1; |
| 1172 | int i; |
| 1173 | |
| 1174 | DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, " |
| 1175 | "val = 0x%04X\n", __FUNCTION__, |
| 1176 | phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff); |
| 1177 | |
| 1178 | /* |
| 1179 | * The BCM5709S PHY is an IEEE Clause 45 PHY |
| 1180 | * with special mappings to work with IEEE |
| 1181 | * Clause 22 register accesses. |
| 1182 | */ |
| 1183 | if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG0x400) != 0) { |
| 1184 | if (reg >= MII_BMCR0x00 && reg <= MII_ANLPRNP0x08) |
| 1185 | reg += 0x10; |
| 1186 | } |
| 1187 | |
| 1188 | if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG0x100) { |
| 1189 | val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x000014b4 ))); |
| 1190 | val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL(1L<<4); |
| 1191 | |
| 1192 | REG_WR(sc, BNX_EMAC_MDIO_MODE, val1)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x000014b4 ), (val1))); |
| 1193 | REG_RD(sc, BNX_EMAC_MDIO_MODE)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x000014b4 ))); |
| 1194 | |
| 1195 | DELAY(40)(*delay_func)(40); |
| 1196 | } |
| 1197 | |
| 1198 | val1 = BNX_MIPHY(phy)((phy & 0x1F) << 21) | BNX_MIREG(reg)((reg & 0x1F) << 16) | val | |
| 1199 | BNX_EMAC_MDIO_COMM_COMMAND_WRITE(1L<<26) | |
| 1200 | BNX_EMAC_MDIO_COMM_START_BUSY(1L<<29) | BNX_EMAC_MDIO_COMM_DISEXT(1L<<30); |
| 1201 | REG_WR(sc, BNX_EMAC_MDIO_COMM, val1)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x000014ac ), (val1))); |
| 1202 | |
| 1203 | for (i = 0; i < BNX_PHY_TIMEOUT50; i++) { |
| 1204 | DELAY(10)(*delay_func)(10); |
| 1205 | |
| 1206 | val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x000014ac ))); |
| 1207 | if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY(1L<<29))) { |
| 1208 | DELAY(5)(*delay_func)(5); |
| 1209 | break; |
| 1210 | } |
| 1211 | } |
| 1212 | |
| 1213 | if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY(1L<<29)) { |
| 1214 | BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,printf("%s: " "%s(%d): PHY write timeout!\n", sc->bnx_dev. dv_xname, "/usr/src/sys/dev/pci/if_bnx.c", 1215) |
| 1215 | __LINE__)printf("%s: " "%s(%d): PHY write timeout!\n", sc->bnx_dev. dv_xname, "/usr/src/sys/dev/pci/if_bnx.c", 1215); |
| 1216 | } |
| 1217 | |
| 1218 | if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG0x100) { |
| 1219 | val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x000014b4 ))); |
| 1220 | val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL(1L<<4); |
| 1221 | |
| 1222 | REG_WR(sc, BNX_EMAC_MDIO_MODE, val1)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x000014b4 ), (val1))); |
| 1223 | REG_RD(sc, BNX_EMAC_MDIO_MODE)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x000014b4 ))); |
| 1224 | |
| 1225 | DELAY(40)(*delay_func)(40); |
| 1226 | } |
| 1227 | } |
| 1228 | |
| 1229 | /****************************************************************************/ |
| 1230 | /* MII bus status change. */ |
| 1231 | /* */ |
| 1232 | /* Called by the MII bus driver when the PHY establishes link to set the */ |
| 1233 | /* MAC interface registers. */ |
| 1234 | /* */ |
| 1235 | /* Returns: */ |
| 1236 | /* Nothing. */ |
| 1237 | /****************************************************************************/ |
| 1238 | void |
| 1239 | bnx_miibus_statchg(struct device *dev) |
| 1240 | { |
| 1241 | struct bnx_softc *sc = (struct bnx_softc *)dev; |
| 1242 | struct mii_data *mii = &sc->bnx_mii; |
| 1243 | u_int32_t rx_mode = sc->rx_mode; |
| 1244 | int val; |
| 1245 | |
| 1246 | val = REG_RD(sc, BNX_EMAC_MODE)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x00001400 ))); |
| 1247 | val &= ~(BNX_EMAC_MODE_PORT(0x3L<<2) | BNX_EMAC_MODE_HALF_DUPLEX(1L<<1) | |
| 1248 | BNX_EMAC_MODE_MAC_LOOP(1L<<4) | BNX_EMAC_MODE_FORCE_LINK(1L<<11) | |
| 1249 | BNX_EMAC_MODE_25G(1L<<5)); |
| 1250 | |
| 1251 | /* |
| 1252 | * Get flow control negotiation result. |
| 1253 | */ |
| 1254 | if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media)((mii->mii_media.ifm_cur->ifm_media) & 0x00000000000000ffULL ) == IFM_AUTO0ULL && |
| 1255 | (mii->mii_media_active & IFM_ETH_FMASK(0x0000040000000000ULL|0x0000000000020000ULL|0x0000000000040000ULL )) != sc->bnx_flowflags) { |
| 1256 | sc->bnx_flowflags = mii->mii_media_active & IFM_ETH_FMASK(0x0000040000000000ULL|0x0000000000020000ULL|0x0000000000040000ULL ); |
| 1257 | mii->mii_media_active &= ~IFM_ETH_FMASK(0x0000040000000000ULL|0x0000000000020000ULL|0x0000000000040000ULL ); |
| 1258 | } |
| 1259 | |
| 1260 | /* Set MII or GMII interface based on the speed |
| 1261 | * negotiated by the PHY. |
| 1262 | */ |
| 1263 | switch (IFM_SUBTYPE(mii->mii_media_active)((mii->mii_media_active) & 0x00000000000000ffULL)) { |
| 1264 | case IFM_10_T3: |
| 1265 | if (BNX_CHIP_NUM(sc)(((sc)->bnx_chipid) & 0xffff0000) != BNX_CHIP_NUM_57060x57060000) { |
| 1266 | DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n"); |
| 1267 | val |= BNX_EMAC_MODE_PORT_MII_10(3L<<2); |
| 1268 | break; |
| 1269 | } |
| 1270 | /* FALLTHROUGH */ |
| 1271 | case IFM_100_TX6: |
| 1272 | DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n"); |
| 1273 | val |= BNX_EMAC_MODE_PORT_MII(1L<<2); |
| 1274 | break; |
| 1275 | case IFM_2500_SX21: |
| 1276 | DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n"); |
| 1277 | val |= BNX_EMAC_MODE_25G(1L<<5); |
| 1278 | /* FALLTHROUGH */ |
| 1279 | case IFM_1000_T16: |
| 1280 | case IFM_1000_SX11: |
| 1281 | DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n"); |
| 1282 | val |= BNX_EMAC_MODE_PORT_GMII(2L<<2); |
| 1283 | break; |
| 1284 | default: |
| 1285 | val |= BNX_EMAC_MODE_PORT_GMII(2L<<2); |
| 1286 | break; |
| 1287 | } |
| 1288 | |
| 1289 | /* Set half or full duplex based on the duplicity |
| 1290 | * negotiated by the PHY. |
| 1291 | */ |
| 1292 | if ((mii->mii_media_active & IFM_GMASK0x00ffff0000000000ULL) == IFM_HDX0x0000020000000000ULL) { |
| 1293 | DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n"); |
| 1294 | val |= BNX_EMAC_MODE_HALF_DUPLEX(1L<<1); |
| 1295 | } else |
| 1296 | DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n"); |
| 1297 | |
| 1298 | REG_WR(sc, BNX_EMAC_MODE, val)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00001400 ), (val))); |
| 1299 | |
| 1300 | /* |
| 1301 | * 802.3x flow control |
| 1302 | */ |
| 1303 | if (sc->bnx_flowflags & IFM_ETH_RXPAUSE0x0000000000020000ULL) { |
| 1304 | DBPRINT(sc, BNX_INFO, "Enabling RX mode flow control.\n"); |
| 1305 | rx_mode |= BNX_EMAC_RX_MODE_FLOW_EN(1L<<2); |
| 1306 | } else { |
| 1307 | DBPRINT(sc, BNX_INFO, "Disabling RX mode flow control.\n"); |
| 1308 | rx_mode &= ~BNX_EMAC_RX_MODE_FLOW_EN(1L<<2); |
| 1309 | } |
| 1310 | |
| 1311 | if (sc->bnx_flowflags & IFM_ETH_TXPAUSE0x0000000000040000ULL) { |
| 1312 | DBPRINT(sc, BNX_INFO, "Enabling TX mode flow control.\n"); |
| 1313 | BNX_SETBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x000014bc ), ((((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x000014bc ))) | ((1L<<4)))))); |
| 1314 | } else { |
| 1315 | DBPRINT(sc, BNX_INFO, "Disabling TX mode flow control.\n"); |
| 1316 | BNX_CLRBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x000014bc ), ((((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x000014bc ))) & ~((1L<<4)))))); |
| 1317 | } |
| 1318 | |
| 1319 | /* Only make changes if the receive mode has actually changed. */ |
| 1320 | if (rx_mode != sc->rx_mode) { |
| 1321 | DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n", |
| 1322 | rx_mode); |
| 1323 | |
| 1324 | sc->rx_mode = rx_mode; |
| 1325 | REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x000014c8 ), (rx_mode))); |
| 1326 | } |
| 1327 | } |
| 1328 | |
| 1329 | /****************************************************************************/ |
| 1330 | /* Acquire NVRAM lock. */ |
| 1331 | /* */ |
| 1332 | /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */ |
| 1333 | /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ |
| 1334 | /* for use by the driver. */ |
| 1335 | /* */ |
| 1336 | /* Returns: */ |
| 1337 | /* 0 on success, positive value on failure. */ |
| 1338 | /****************************************************************************/ |
| 1339 | int |
| 1340 | bnx_acquire_nvram_lock(struct bnx_softc *sc) |
| 1341 | { |
| 1342 | u_int32_t val; |
| 1343 | int j; |
| 1344 | |
| 1345 | DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n"); |
| 1346 | |
| 1347 | /* Request access to the flash interface. */ |
| 1348 | REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006420 ), ((1L<<2)))); |
| 1349 | for (j = 0; j < NVRAM_TIMEOUT_COUNT30000; j++) { |
| 1350 | val = REG_RD(sc, BNX_NVM_SW_ARB)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x00006420 ))); |
| 1351 | if (val & BNX_NVM_SW_ARB_ARB_ARB2(1L<<10)) |
| 1352 | break; |
| 1353 | |
| 1354 | DELAY(5)(*delay_func)(5); |
| 1355 | } |
| 1356 | |
| 1357 | if (j >= NVRAM_TIMEOUT_COUNT30000) { |
| 1358 | DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n"); |
| 1359 | return (EBUSY16); |
| 1360 | } |
| 1361 | |
| 1362 | return (0); |
| 1363 | } |
| 1364 | |
| 1365 | /****************************************************************************/ |
| 1366 | /* Release NVRAM lock. */ |
| 1367 | /* */ |
| 1368 | /* When the caller is finished accessing NVRAM the lock must be released. */ |
| 1369 | /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ |
| 1370 | /* for use by the driver. */ |
| 1371 | /* */ |
| 1372 | /* Returns: */ |
| 1373 | /* 0 on success, positive value on failure. */ |
| 1374 | /****************************************************************************/ |
| 1375 | int |
| 1376 | bnx_release_nvram_lock(struct bnx_softc *sc) |
| 1377 | { |
| 1378 | int j; |
| 1379 | u_int32_t val; |
| 1380 | |
| 1381 | DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n"); |
| 1382 | |
| 1383 | /* Relinquish nvram interface. */ |
| 1384 | REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006420 ), ((1L<<6)))); |
| 1385 | |
| 1386 | for (j = 0; j < NVRAM_TIMEOUT_COUNT30000; j++) { |
| 1387 | val = REG_RD(sc, BNX_NVM_SW_ARB)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x00006420 ))); |
| 1388 | if (!(val & BNX_NVM_SW_ARB_ARB_ARB2(1L<<10))) |
| 1389 | break; |
| 1390 | |
| 1391 | DELAY(5)(*delay_func)(5); |
| 1392 | } |
| 1393 | |
| 1394 | if (j >= NVRAM_TIMEOUT_COUNT30000) { |
| 1395 | DBPRINT(sc, BNX_WARN, "Timeout releasing NVRAM lock!\n"); |
| 1396 | return (EBUSY16); |
| 1397 | } |
| 1398 | |
| 1399 | return (0); |
| 1400 | } |
| 1401 | |
| 1402 | #ifdef BNX_NVRAM_WRITE_SUPPORT |
| 1403 | /****************************************************************************/ |
| 1404 | /* Enable NVRAM write access. */ |
| 1405 | /* */ |
| 1406 | /* Before writing to NVRAM the caller must enable NVRAM writes. */ |
| 1407 | /* */ |
| 1408 | /* Returns: */ |
| 1409 | /* 0 on success, positive value on failure. */ |
| 1410 | /****************************************************************************/ |
| 1411 | int |
| 1412 | bnx_enable_nvram_write(struct bnx_softc *sc) |
| 1413 | { |
| 1414 | u_int32_t val; |
| 1415 | |
| 1416 | DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n"); |
| 1417 | |
| 1418 | val = REG_RD(sc, BNX_MISC_CFG)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x00000804 ))); |
| 1419 | REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00000804 ), (val | (1L<<1)))); |
| 1420 | |
| 1421 | if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)((sc->bnx_flash_info->flags) & (0x00000001))) { |
| 1422 | int j; |
| 1423 | |
| 1424 | REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006400 ), ((1L<<3)))); |
| 1425 | REG_WR(sc, BNX_NVM_COMMAND,((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006400 ), ((1L<<16) | (1L<<4)))) |
| 1426 | BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006400 ), ((1L<<16) | (1L<<4)))); |
| 1427 | |
| 1428 | for (j = 0; j < NVRAM_TIMEOUT_COUNT30000; j++) { |
| 1429 | DELAY(5)(*delay_func)(5); |
| 1430 | |
| 1431 | val = REG_RD(sc, BNX_NVM_COMMAND)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x00006400 ))); |
| 1432 | if (val & BNX_NVM_COMMAND_DONE(1L<<3)) |
| 1433 | break; |
| 1434 | } |
| 1435 | |
| 1436 | if (j >= NVRAM_TIMEOUT_COUNT30000) { |
| 1437 | DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n"); |
| 1438 | return (EBUSY16); |
| 1439 | } |
| 1440 | } |
| 1441 | |
| 1442 | return (0); |
| 1443 | } |
| 1444 | |
| 1445 | /****************************************************************************/ |
| 1446 | /* Disable NVRAM write access. */ |
| 1447 | /* */ |
| 1448 | /* When the caller is finished writing to NVRAM write access must be */ |
| 1449 | /* disabled. */ |
| 1450 | /* */ |
| 1451 | /* Returns: */ |
| 1452 | /* Nothing. */ |
| 1453 | /****************************************************************************/ |
| 1454 | void |
| 1455 | bnx_disable_nvram_write(struct bnx_softc *sc) |
| 1456 | { |
| 1457 | u_int32_t val; |
| 1458 | |
| 1459 | DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n"); |
| 1460 | |
| 1461 | val = REG_RD(sc, BNX_MISC_CFG)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x00000804 ))); |
| 1462 | REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00000804 ), (val & ~(0x3L<<1)))); |
| 1463 | } |
| 1464 | #endif |
| 1465 | |
| 1466 | /****************************************************************************/ |
| 1467 | /* Enable NVRAM access. */ |
| 1468 | /* */ |
| 1469 | /* Before accessing NVRAM for read or write operations the caller must */ |
| 1470 | /* enabled NVRAM access. */ |
| 1471 | /* */ |
| 1472 | /* Returns: */ |
| 1473 | /* Nothing. */ |
| 1474 | /****************************************************************************/ |
| 1475 | void |
| 1476 | bnx_enable_nvram_access(struct bnx_softc *sc) |
| 1477 | { |
| 1478 | u_int32_t val; |
| 1479 | |
| 1480 | DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n"); |
| 1481 | |
| 1482 | val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x00006424 ))); |
| 1483 | /* Enable both bits, even on read. */ |
| 1484 | REG_WR(sc, BNX_NVM_ACCESS_ENABLE,((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006424 ), (val | (1L<<0) | (1L<<1)))) |
| 1485 | val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006424 ), (val | (1L<<0) | (1L<<1)))); |
| 1486 | } |
| 1487 | |
| 1488 | /****************************************************************************/ |
| 1489 | /* Disable NVRAM access. */ |
| 1490 | /* */ |
| 1491 | /* When the caller is finished accessing NVRAM access must be disabled. */ |
| 1492 | /* */ |
| 1493 | /* Returns: */ |
| 1494 | /* Nothing. */ |
| 1495 | /****************************************************************************/ |
| 1496 | void |
| 1497 | bnx_disable_nvram_access(struct bnx_softc *sc) |
| 1498 | { |
| 1499 | u_int32_t val; |
| 1500 | |
| 1501 | DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n"); |
| 1502 | |
| 1503 | val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x00006424 ))); |
| 1504 | |
| 1505 | /* Disable both bits, even after read. */ |
| 1506 | REG_WR(sc, BNX_NVM_ACCESS_ENABLE,((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006424 ), (val & ~((1L<<0) | (1L<<1))))) |
| 1507 | val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN))((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006424 ), (val & ~((1L<<0) | (1L<<1))))); |
| 1508 | } |
| 1509 | |
| 1510 | #ifdef BNX_NVRAM_WRITE_SUPPORT |
| 1511 | /****************************************************************************/ |
| 1512 | /* Erase NVRAM page before writing. */ |
| 1513 | /* */ |
| 1514 | /* Non-buffered flash parts require that a page be erased before it is */ |
| 1515 | /* written. */ |
| 1516 | /* */ |
| 1517 | /* Returns: */ |
| 1518 | /* 0 on success, positive value on failure. */ |
| 1519 | /****************************************************************************/ |
| 1520 | int |
| 1521 | bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset) |
| 1522 | { |
| 1523 | u_int32_t cmd; |
| 1524 | int j; |
| 1525 | |
| 1526 | /* Buffered flash doesn't require an erase. */ |
| 1527 | if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)((sc->bnx_flash_info->flags) & (0x00000001))) |
| 1528 | return (0); |
| 1529 | |
| 1530 | DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n"); |
| 1531 | |
| 1532 | /* Build an erase command. */ |
| 1533 | cmd = BNX_NVM_COMMAND_ERASE(1L<<6) | BNX_NVM_COMMAND_WR(1L<<5) | |
| 1534 | BNX_NVM_COMMAND_DOIT(1L<<4); |
| 1535 | |
| 1536 | /* |
| 1537 | * Clear the DONE bit separately, set the NVRAM address to erase, |
| 1538 | * and issue the erase command. |
| 1539 | */ |
| 1540 | REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006400 ), ((1L<<3)))); |
| 1541 | REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x0000640c ), (offset & (0xffffffL<<0)))); |
| 1542 | REG_WR(sc, BNX_NVM_COMMAND, cmd)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006400 ), (cmd))); |
| 1543 | |
| 1544 | /* Wait for completion. */ |
| 1545 | for (j = 0; j < NVRAM_TIMEOUT_COUNT30000; j++) { |
| 1546 | u_int32_t val; |
| 1547 | |
| 1548 | DELAY(5)(*delay_func)(5); |
| 1549 | |
| 1550 | val = REG_RD(sc, BNX_NVM_COMMAND)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x00006400 ))); |
| 1551 | if (val & BNX_NVM_COMMAND_DONE(1L<<3)) |
| 1552 | break; |
| 1553 | } |
| 1554 | |
| 1555 | if (j >= NVRAM_TIMEOUT_COUNT30000) { |
| 1556 | DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n"); |
| 1557 | return (EBUSY16); |
| 1558 | } |
| 1559 | |
| 1560 | return (0); |
| 1561 | } |
| 1562 | #endif /* BNX_NVRAM_WRITE_SUPPORT */ |
| 1563 | |
| 1564 | /****************************************************************************/ |
| 1565 | /* Read a dword (32 bits) from NVRAM. */ |
| 1566 | /* */ |
| 1567 | /* Read a 32 bit word from NVRAM. The caller is assumed to have already */ |
| 1568 | /* obtained the NVRAM lock and enabled the controller for NVRAM access. */ |
| 1569 | /* */ |
| 1570 | /* Returns: */ |
| 1571 | /* 0 on success and the 32 bit value read, positive value on failure. */ |
| 1572 | /****************************************************************************/ |
| 1573 | int |
| 1574 | bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset, |
| 1575 | u_int8_t *ret_val, u_int32_t cmd_flags) |
| 1576 | { |
| 1577 | u_int32_t cmd; |
| 1578 | int i, rc = 0; |
| 1579 | |
| 1580 | /* Build the command word. */ |
| 1581 | cmd = BNX_NVM_COMMAND_DOIT(1L<<4) | cmd_flags; |
| 1582 | |
| 1583 | /* Calculate the offset for buffered flash if translation is used. */ |
| 1584 | if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)((sc->bnx_flash_info->flags) & (0x00000002))) { |
| 1585 | offset = ((offset / sc->bnx_flash_info->page_size) << |
| 1586 | sc->bnx_flash_info->page_bits) + |
| 1587 | (offset % sc->bnx_flash_info->page_size); |
| 1588 | } |
| 1589 | |
| 1590 | /* |
| 1591 | * Clear the DONE bit separately, set the address to read, |
| 1592 | * and issue the read. |
| 1593 | */ |
| 1594 | REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006400 ), ((1L<<3)))); |
| 1595 | REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x0000640c ), (offset & (0xffffffL<<0)))); |
| 1596 | REG_WR(sc, BNX_NVM_COMMAND, cmd)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006400 ), (cmd))); |
| 1597 | |
| 1598 | /* Wait for completion. */ |
| 1599 | for (i = 0; i < NVRAM_TIMEOUT_COUNT30000; i++) { |
| 1600 | u_int32_t val; |
| 1601 | |
| 1602 | DELAY(5)(*delay_func)(5); |
| 1603 | |
| 1604 | val = REG_RD(sc, BNX_NVM_COMMAND)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x00006400 ))); |
| 1605 | if (val & BNX_NVM_COMMAND_DONE(1L<<3)) { |
| 1606 | val = REG_RD(sc, BNX_NVM_READ)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x00006410 ))); |
| 1607 | |
| 1608 | val = bnx_be32toh(val)(__uint32_t)(__builtin_constant_p(val) ? (__uint32_t)(((__uint32_t )(val) & 0xff) << 24 | ((__uint32_t)(val) & 0xff00 ) << 8 | ((__uint32_t)(val) & 0xff0000) >> 8 | ((__uint32_t)(val) & 0xff000000) >> 24) : __swap32md (val)); |
| 1609 | memcpy(ret_val, &val, 4)__builtin_memcpy((ret_val), (&val), (4)); |
| 1610 | break; |
| 1611 | } |
| 1612 | } |
| 1613 | |
| 1614 | /* Check for errors. */ |
| 1615 | if (i >= NVRAM_TIMEOUT_COUNT30000) { |
| 1616 | BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "printf("%s: " "%s(%d): Timeout error reading NVRAM at " "offset 0x%08X!\n" , sc->bnx_dev.dv_xname, "/usr/src/sys/dev/pci/if_bnx.c", 1617 , offset) |
| 1617 | "offset 0x%08X!\n", __FILE__, __LINE__, offset)printf("%s: " "%s(%d): Timeout error reading NVRAM at " "offset 0x%08X!\n" , sc->bnx_dev.dv_xname, "/usr/src/sys/dev/pci/if_bnx.c", 1617 , offset); |
| 1618 | rc = EBUSY16; |
| 1619 | } |
| 1620 | |
| 1621 | return(rc); |
| 1622 | } |
| 1623 | |
| 1624 | #ifdef BNX_NVRAM_WRITE_SUPPORT |
| 1625 | /****************************************************************************/ |
| 1626 | /* Write a dword (32 bits) to NVRAM. */ |
| 1627 | /* */ |
| 1628 | /* Write a 32 bit word to NVRAM. The caller is assumed to have already */ |
| 1629 | /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */ |
| 1630 | /* enabled NVRAM write access. */ |
| 1631 | /* */ |
| 1632 | /* Returns: */ |
| 1633 | /* 0 on success, positive value on failure. */ |
| 1634 | /****************************************************************************/ |
| 1635 | int |
| 1636 | bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val, |
| 1637 | u_int32_t cmd_flags) |
| 1638 | { |
| 1639 | u_int32_t cmd, val32; |
| 1640 | int j; |
| 1641 | |
| 1642 | /* Build the command word. */ |
| 1643 | cmd = BNX_NVM_COMMAND_DOIT(1L<<4) | BNX_NVM_COMMAND_WR(1L<<5) | cmd_flags; |
| 1644 | |
| 1645 | /* Calculate the offset for buffered flash if translation is used. */ |
| 1646 | if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)((sc->bnx_flash_info->flags) & (0x00000002))) { |
| 1647 | offset = ((offset / sc->bnx_flash_info->page_size) << |
| 1648 | sc->bnx_flash_info->page_bits) + |
| 1649 | (offset % sc->bnx_flash_info->page_size); |
| 1650 | } |
| 1651 | |
| 1652 | /* |
| 1653 | * Clear the DONE bit separately, convert NVRAM data to big-endian, |
| 1654 | * set the NVRAM address to write, and issue the write command |
| 1655 | */ |
| 1656 | REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006400 ), ((1L<<3)))); |
| 1657 | memcpy(&val32, val, 4)__builtin_memcpy((&val32), (val), (4)); |
| 1658 | val32 = htobe32(val32)(__uint32_t)(__builtin_constant_p(val32) ? (__uint32_t)(((__uint32_t )(val32) & 0xff) << 24 | ((__uint32_t)(val32) & 0xff00) << 8 | ((__uint32_t)(val32) & 0xff0000) >> 8 | ((__uint32_t)(val32) & 0xff000000) >> 24) : __swap32md (val32)); |
| 1659 | REG_WR(sc, BNX_NVM_WRITE, val32)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006408 ), (val32))); |
| 1660 | REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x0000640c ), (offset & (0xffffffL<<0)))); |
| 1661 | REG_WR(sc, BNX_NVM_COMMAND, cmd)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006400 ), (cmd))); |
| 1662 | |
| 1663 | /* Wait for completion. */ |
| 1664 | for (j = 0; j < NVRAM_TIMEOUT_COUNT30000; j++) { |
| 1665 | DELAY(5)(*delay_func)(5); |
| 1666 | |
| 1667 | if (REG_RD(sc, BNX_NVM_COMMAND)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x00006400 ))) & BNX_NVM_COMMAND_DONE(1L<<3)) |
| 1668 | break; |
| 1669 | } |
| 1670 | if (j >= NVRAM_TIMEOUT_COUNT30000) { |
| 1671 | BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "printf("%s: " "%s(%d): Timeout error writing NVRAM at " "offset 0x%08X\n" , sc->bnx_dev.dv_xname, "/usr/src/sys/dev/pci/if_bnx.c", 1672 , offset) |
| 1672 | "offset 0x%08X\n", __FILE__, __LINE__, offset)printf("%s: " "%s(%d): Timeout error writing NVRAM at " "offset 0x%08X\n" , sc->bnx_dev.dv_xname, "/usr/src/sys/dev/pci/if_bnx.c", 1672 , offset); |
| 1673 | return (EBUSY16); |
| 1674 | } |
| 1675 | |
| 1676 | return (0); |
| 1677 | } |
| 1678 | #endif /* BNX_NVRAM_WRITE_SUPPORT */ |
| 1679 | |
| 1680 | /****************************************************************************/ |
| 1681 | /* Initialize NVRAM access. */ |
| 1682 | /* */ |
| 1683 | /* Identify the NVRAM device in use and prepare the NVRAM interface to */ |
| 1684 | /* access that device. */ |
| 1685 | /* */ |
| 1686 | /* Returns: */ |
| 1687 | /* 0 on success, positive value on failure. */ |
| 1688 | /****************************************************************************/ |
| 1689 | int |
| 1690 | bnx_init_nvram(struct bnx_softc *sc) |
| 1691 | { |
| 1692 | u_int32_t val; |
| 1693 | int j, entry_count, rc = 0; |
| 1694 | struct flash_spec *flash; |
| 1695 | |
| 1696 | DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); |
| 1697 | |
| 1698 | if (BNX_CHIP_NUM(sc)(((sc)->bnx_chipid) & 0xffff0000) == BNX_CHIP_NUM_57090x57090000) { |
| 1699 | sc->bnx_flash_info = &flash_5709; |
| 1700 | goto bnx_init_nvram_get_flash_size; |
| 1701 | } |
| 1702 | |
| 1703 | /* Determine the selected interface. */ |
| 1704 | val = REG_RD(sc, BNX_NVM_CFG1)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x00006414 ))); |
| 1705 | |
| 1706 | entry_count = sizeof(flash_table) / sizeof(struct flash_spec); |
| 1707 | |
| 1708 | /* |
| 1709 | * Flash reconfiguration is required to support additional |
| 1710 | * NVRAM devices not directly supported in hardware. |
| 1711 | * Check if the flash interface was reconfigured |
| 1712 | * by the bootcode. |
| 1713 | */ |
| 1714 | |
| 1715 | if (val & 0x40000000) { |
| 1716 | /* Flash interface reconfigured by bootcode. */ |
| 1717 | |
| 1718 | DBPRINT(sc,BNX_INFO_LOAD, |
| 1719 | "bnx_init_nvram(): Flash WAS reconfigured.\n"); |
| 1720 | |
| 1721 | for (j = 0, flash = &flash_table[0]; j < entry_count; |
| 1722 | j++, flash++) { |
| 1723 | if ((val & FLASH_BACKUP_STRAP_MASK(0xf << 26)) == |
| 1724 | (flash->config1 & FLASH_BACKUP_STRAP_MASK(0xf << 26))) { |
| 1725 | sc->bnx_flash_info = flash; |
| 1726 | break; |
| 1727 | } |
| 1728 | } |
| 1729 | } else { |
| 1730 | /* Flash interface not yet reconfigured. */ |
| 1731 | u_int32_t mask; |
| 1732 | |
| 1733 | DBPRINT(sc,BNX_INFO_LOAD, |
| 1734 | "bnx_init_nvram(): Flash was NOT reconfigured.\n"); |
| 1735 | |
| 1736 | if (val & (1 << 23)) |
| 1737 | mask = FLASH_BACKUP_STRAP_MASK(0xf << 26); |
| 1738 | else |
| 1739 | mask = FLASH_STRAP_MASK((1L<<0) | (1L<<1) | (1L<<24) | (1L<< 25)); |
| 1740 | |
| 1741 | /* Look for the matching NVRAM device configuration data. */ |
| 1742 | for (j = 0, flash = &flash_table[0]; j < entry_count; |
| 1743 | j++, flash++) { |
| 1744 | /* Check if the dev matches any of the known devices. */ |
| 1745 | if ((val & mask) == (flash->strapping & mask)) { |
| 1746 | /* Found a device match. */ |
| 1747 | sc->bnx_flash_info = flash; |
| 1748 | |
| 1749 | /* Request access to the flash interface. */ |
| 1750 | if ((rc = bnx_acquire_nvram_lock(sc)) != 0) |
| 1751 | return (rc); |
| 1752 | |
| 1753 | /* Reconfigure the flash interface. */ |
| 1754 | bnx_enable_nvram_access(sc); |
| 1755 | REG_WR(sc, BNX_NVM_CFG1, flash->config1)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006414 ), (flash->config1))); |
| 1756 | REG_WR(sc, BNX_NVM_CFG2, flash->config2)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006418 ), (flash->config2))); |
| 1757 | REG_WR(sc, BNX_NVM_CFG3, flash->config3)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x0000641c ), (flash->config3))); |
| 1758 | REG_WR(sc, BNX_NVM_WRITE1, flash->write1)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006428 ), (flash->write1))); |
| 1759 | bnx_disable_nvram_access(sc); |
| 1760 | bnx_release_nvram_lock(sc); |
| 1761 | |
| 1762 | break; |
| 1763 | } |
| 1764 | } |
| 1765 | } |
| 1766 | |
| 1767 | /* Check if a matching device was found. */ |
| 1768 | if (j == entry_count) { |
| 1769 | sc->bnx_flash_info = NULL((void *)0); |
| 1770 | BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",printf("%s: " "%s(%d): Unknown Flash NVRAM found!\n", sc-> bnx_dev.dv_xname, "/usr/src/sys/dev/pci/if_bnx.c", 1771) |
| 1771 | __FILE__, __LINE__)printf("%s: " "%s(%d): Unknown Flash NVRAM found!\n", sc-> bnx_dev.dv_xname, "/usr/src/sys/dev/pci/if_bnx.c", 1771); |
| 1772 | rc = ENODEV19; |
| 1773 | } |
| 1774 | |
| 1775 | bnx_init_nvram_get_flash_size: |
| 1776 | /* Write the flash config data to the shared memory interface. */ |
| 1777 | val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2)bnx_reg_rd_ind(sc, sc->bnx_shmem_base + 0x00000040); |
| 1778 | val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK0x00fff000; |
| 1779 | if (val) |
| 1780 | sc->bnx_flash_size = val; |
| 1781 | else |
| 1782 | sc->bnx_flash_size = sc->bnx_flash_info->total_size; |
| 1783 | |
| 1784 | DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = " |
| 1785 | "0x%08X\n", sc->bnx_flash_info->total_size); |
| 1786 | |
| 1787 | DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); |
| 1788 | |
| 1789 | return (rc); |
| 1790 | } |
| 1791 | |
| 1792 | /****************************************************************************/ |
| 1793 | /* Read an arbitrary range of data from NVRAM. */ |
| 1794 | /* */ |
| 1795 | /* Prepares the NVRAM interface for access and reads the requested data */ |
| 1796 | /* into the supplied buffer. */ |
| 1797 | /* */ |
| 1798 | /* Returns: */ |
| 1799 | /* 0 on success and the data read, positive value on failure. */ |
| 1800 | /****************************************************************************/ |
| 1801 | int |
| 1802 | bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf, |
| 1803 | int buf_size) |
| 1804 | { |
| 1805 | int rc = 0; |
| 1806 | u_int32_t cmd_flags, offset32, len32, extra; |
| 1807 | |
| 1808 | if (buf_size == 0) |
| 1809 | return (0); |
| 1810 | |
| 1811 | /* Request access to the flash interface. */ |
| 1812 | if ((rc = bnx_acquire_nvram_lock(sc)) != 0) |
| 1813 | return (rc); |
| 1814 | |
| 1815 | /* Enable access to flash interface */ |
| 1816 | bnx_enable_nvram_access(sc); |
| 1817 | |
| 1818 | len32 = buf_size; |
| 1819 | offset32 = offset; |
| 1820 | extra = 0; |
| 1821 | |
| 1822 | cmd_flags = 0; |
| 1823 | |
| 1824 | if (offset32 & 3) { |
| 1825 | u_int8_t buf[4]; |
| 1826 | u_int32_t pre_len; |
| 1827 | |
| 1828 | offset32 &= ~3; |
| 1829 | pre_len = 4 - (offset & 3); |
| 1830 | |
| 1831 | if (pre_len >= len32) { |
| 1832 | pre_len = len32; |
| 1833 | cmd_flags = |
| 1834 | BNX_NVM_COMMAND_FIRST(1L<<7) | BNX_NVM_COMMAND_LAST(1L<<8); |
| 1835 | } else |
| 1836 | cmd_flags = BNX_NVM_COMMAND_FIRST(1L<<7); |
| 1837 | |
| 1838 | rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags); |
| 1839 | |
| 1840 | if (rc) |
| 1841 | return (rc); |
| 1842 | |
| 1843 | memcpy(ret_buf, buf + (offset & 3), pre_len)__builtin_memcpy((ret_buf), (buf + (offset & 3)), (pre_len )); |
| 1844 | |
| 1845 | offset32 += 4; |
| 1846 | ret_buf += pre_len; |
| 1847 | len32 -= pre_len; |
| 1848 | } |
| 1849 | |
| 1850 | if (len32 & 3) { |
| 1851 | extra = 4 - (len32 & 3); |
| 1852 | len32 = (len32 + 4) & ~3; |
| 1853 | } |
| 1854 | |
| 1855 | if (len32 == 4) { |
| 1856 | u_int8_t buf[4]; |
| 1857 | |
| 1858 | if (cmd_flags) |
| 1859 | cmd_flags = BNX_NVM_COMMAND_LAST(1L<<8); |
| 1860 | else |
| 1861 | cmd_flags = |
| 1862 | BNX_NVM_COMMAND_FIRST(1L<<7) | BNX_NVM_COMMAND_LAST(1L<<8); |
| 1863 | |
| 1864 | rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags); |
| 1865 | |
| 1866 | memcpy(ret_buf, buf, 4 - extra)__builtin_memcpy((ret_buf), (buf), (4 - extra)); |
| 1867 | } else if (len32 > 0) { |
| 1868 | u_int8_t buf[4]; |
| 1869 | |
| 1870 | /* Read the first word. */ |
| 1871 | if (cmd_flags) |
| 1872 | cmd_flags = 0; |
| 1873 | else |
| 1874 | cmd_flags = BNX_NVM_COMMAND_FIRST(1L<<7); |
| 1875 | |
| 1876 | rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags); |
| 1877 | |
| 1878 | /* Advance to the next dword. */ |
| 1879 | offset32 += 4; |
| 1880 | ret_buf += 4; |
| 1881 | len32 -= 4; |
| 1882 | |
| 1883 | while (len32 > 4 && rc == 0) { |
| 1884 | rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0); |
| 1885 | |
| 1886 | /* Advance to the next dword. */ |
| 1887 | offset32 += 4; |
| 1888 | ret_buf += 4; |
| 1889 | len32 -= 4; |
| 1890 | } |
| 1891 | |
| 1892 | if (rc) |
| 1893 | return (rc); |
| 1894 | |
| 1895 | cmd_flags = BNX_NVM_COMMAND_LAST(1L<<8); |
| 1896 | rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags); |
| 1897 | |
| 1898 | memcpy(ret_buf, buf, 4 - extra)__builtin_memcpy((ret_buf), (buf), (4 - extra)); |
| 1899 | } |
| 1900 | |
| 1901 | /* Disable access to flash interface and release the lock. */ |
| 1902 | bnx_disable_nvram_access(sc); |
| 1903 | bnx_release_nvram_lock(sc); |
| 1904 | |
| 1905 | return (rc); |
| 1906 | } |
| 1907 | |
| 1908 | #ifdef BNX_NVRAM_WRITE_SUPPORT |
| 1909 | /****************************************************************************/ |
| 1910 | /* Write an arbitrary range of data from NVRAM. */ |
| 1911 | /* */ |
| 1912 | /* Prepares the NVRAM interface for write access and writes the requested */ |
| 1913 | /* data from the supplied buffer. The caller is responsible for */ |
| 1914 | /* calculating any appropriate CRCs. */ |
| 1915 | /* */ |
| 1916 | /* Returns: */ |
| 1917 | /* 0 on success, positive value on failure. */ |
| 1918 | /****************************************************************************/ |
| 1919 | int |
| 1920 | bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf, |
| 1921 | int buf_size) |
| 1922 | { |
| 1923 | u_int32_t written, offset32, len32; |
| 1924 | u_int8_t *buf, start[4], end[4]; |
| 1925 | int rc = 0; |
| 1926 | int align_start, align_end; |
| 1927 | |
| 1928 | buf = data_buf; |
| 1929 | offset32 = offset; |
| 1930 | len32 = buf_size; |
| 1931 | align_start = align_end = 0; |
| 1932 | |
| 1933 | if ((align_start = (offset32 & 3))) { |
| 1934 | offset32 &= ~3; |
| 1935 | len32 += align_start; |
| 1936 | if ((rc = bnx_nvram_read(sc, offset32, start, 4))) |
| 1937 | return (rc); |
| 1938 | } |
| 1939 | |
| 1940 | if (len32 & 3) { |
| 1941 | if ((len32 > 4) || !align_start) { |
| 1942 | align_end = 4 - (len32 & 3); |
| 1943 | len32 += align_end; |
| 1944 | if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4, |
| 1945 | end, 4))) { |
| 1946 | return (rc); |
| 1947 | } |
| 1948 | } |
| 1949 | } |
| 1950 | |
| 1951 | if (align_start || align_end) { |
| 1952 | buf = malloc(len32, M_DEVBUF2, M_NOWAIT0x0002); |
| 1953 | if (buf == 0) |
| 1954 | return (ENOMEM12); |
| 1955 | |
| 1956 | if (align_start) |
| 1957 | memcpy(buf, start, 4)__builtin_memcpy((buf), (start), (4)); |
| 1958 | |
| 1959 | if (align_end) |
| 1960 | memcpy(buf + len32 - 4, end, 4)__builtin_memcpy((buf + len32 - 4), (end), (4)); |
| 1961 | |
| 1962 | memcpy(buf + align_start, data_buf, buf_size)__builtin_memcpy((buf + align_start), (data_buf), (buf_size)); |
| 1963 | } |
| 1964 | |
| 1965 | written = 0; |
| 1966 | while ((written < len32) && (rc == 0)) { |
| 1967 | u_int32_t page_start, page_end, data_start, data_end; |
| 1968 | u_int32_t addr, cmd_flags; |
| 1969 | int i; |
| 1970 | u_int8_t flash_buffer[264]; |
| 1971 | |
| 1972 | /* Find the page_start addr */ |
| 1973 | page_start = offset32 + written; |
| 1974 | page_start -= (page_start % sc->bnx_flash_info->page_size); |
| 1975 | /* Find the page_end addr */ |
| 1976 | page_end = page_start + sc->bnx_flash_info->page_size; |
| 1977 | /* Find the data_start addr */ |
| 1978 | data_start = (written == 0) ? offset32 : page_start; |
| 1979 | /* Find the data_end addr */ |
| 1980 | data_end = (page_end > offset32 + len32) ? |
| 1981 | (offset32 + len32) : page_end; |
| 1982 | |
| 1983 | /* Request access to the flash interface. */ |
| 1984 | if ((rc = bnx_acquire_nvram_lock(sc)) != 0) |
| 1985 | goto nvram_write_end; |
| 1986 | |
| 1987 | /* Enable access to flash interface */ |
| 1988 | bnx_enable_nvram_access(sc); |
| 1989 | |
| 1990 | cmd_flags = BNX_NVM_COMMAND_FIRST(1L<<7); |
| 1991 | if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)((sc->bnx_flash_info->flags) & (0x00000001))) { |
| 1992 | int j; |
| 1993 | |
| 1994 | /* Read the whole page into the buffer |
| 1995 | * (non-buffer flash only) */ |
| 1996 | for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) { |
| 1997 | if (j == (sc->bnx_flash_info->page_size - 4)) |
| 1998 | cmd_flags |= BNX_NVM_COMMAND_LAST(1L<<8); |
| 1999 | |
| 2000 | rc = bnx_nvram_read_dword(sc, |
| 2001 | page_start + j, |
| 2002 | &flash_buffer[j], |
| 2003 | cmd_flags); |
| 2004 | |
| 2005 | if (rc) |
| 2006 | goto nvram_write_end; |
| 2007 | |
| 2008 | cmd_flags = 0; |
| 2009 | } |
| 2010 | } |
| 2011 | |
| 2012 | /* Enable writes to flash interface (unlock write-protect) */ |
| 2013 | if ((rc = bnx_enable_nvram_write(sc)) != 0) |
| 2014 | goto nvram_write_end; |
| 2015 | |
| 2016 | /* Erase the page */ |
| 2017 | if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0) |
| 2018 | goto nvram_write_end; |
| 2019 | |
| 2020 | /* Re-enable the write again for the actual write */ |
| 2021 | bnx_enable_nvram_write(sc); |
| 2022 | |
| 2023 | /* Loop to write back the buffer data from page_start to |
| 2024 | * data_start */ |
| 2025 | i = 0; |
| 2026 | if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)((sc->bnx_flash_info->flags) & (0x00000001))) { |
| 2027 | for (addr = page_start; addr < data_start; |
| 2028 | addr += 4, i += 4) { |
| 2029 | |
| 2030 | rc = bnx_nvram_write_dword(sc, addr, |
| 2031 | &flash_buffer[i], cmd_flags); |
| 2032 | |
| 2033 | if (rc != 0) |
| 2034 | goto nvram_write_end; |
| 2035 | |
| 2036 | cmd_flags = 0; |
| 2037 | } |
| 2038 | } |
| 2039 | |
| 2040 | /* Loop to write the new data from data_start to data_end */ |
| 2041 | for (addr = data_start; addr < data_end; addr += 4, i++) { |
| 2042 | if ((addr == page_end - 4) || |
| 2043 | (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)((sc->bnx_flash_info->flags) & (0x00000001)) |
| 2044 | && (addr == data_end - 4))) { |
| 2045 | |
| 2046 | cmd_flags |= BNX_NVM_COMMAND_LAST(1L<<8); |
| 2047 | } |
| 2048 | |
| 2049 | rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags); |
| 2050 | |
| 2051 | if (rc != 0) |
| 2052 | goto nvram_write_end; |
| 2053 | |
| 2054 | cmd_flags = 0; |
| 2055 | buf += 4; |
| 2056 | } |
| 2057 | |
| 2058 | /* Loop to write back the buffer data from data_end |
| 2059 | * to page_end */ |
| 2060 | if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)((sc->bnx_flash_info->flags) & (0x00000001))) { |
| 2061 | for (addr = data_end; addr < page_end; |
| 2062 | addr += 4, i += 4) { |
| 2063 | |
| 2064 | if (addr == page_end-4) |
| 2065 | cmd_flags = BNX_NVM_COMMAND_LAST(1L<<8); |
| 2066 | |
| 2067 | rc = bnx_nvram_write_dword(sc, addr, |
| 2068 | &flash_buffer[i], cmd_flags); |
| 2069 | |
| 2070 | if (rc != 0) |
| 2071 | goto nvram_write_end; |
| 2072 | |
| 2073 | cmd_flags = 0; |
| 2074 | } |
| 2075 | } |
| 2076 | |
| 2077 | /* Disable writes to flash interface (lock write-protect) */ |
| 2078 | bnx_disable_nvram_write(sc); |
| 2079 | |
| 2080 | /* Disable access to flash interface */ |
| 2081 | bnx_disable_nvram_access(sc); |
| 2082 | bnx_release_nvram_lock(sc); |
| 2083 | |
| 2084 | /* Increment written */ |
| 2085 | written += data_end - data_start; |
| 2086 | } |
| 2087 | |
| 2088 | nvram_write_end: |
| 2089 | if (align_start || align_end) |
| 2090 | free(buf, M_DEVBUF2, len32); |
| 2091 | |
| 2092 | return (rc); |
| 2093 | } |
| 2094 | #endif /* BNX_NVRAM_WRITE_SUPPORT */ |
| 2095 | |
| 2096 | /****************************************************************************/ |
| 2097 | /* Verifies that NVRAM is accessible and contains valid data. */ |
| 2098 | /* */ |
| 2099 | /* Reads the configuration data from NVRAM and verifies that the CRC is */ |
| 2100 | /* correct. */ |
| 2101 | /* */ |
| 2102 | /* Returns: */ |
| 2103 | /* 0 on success, positive value on failure. */ |
| 2104 | /****************************************************************************/ |
| 2105 | int |
| 2106 | bnx_nvram_test(struct bnx_softc *sc) |
| 2107 | { |
| 2108 | u_int32_t buf[BNX_NVRAM_SIZE0x200 / 4]; |
| 2109 | u_int8_t *data = (u_int8_t *) buf; |
| 2110 | int rc = 0; |
| 2111 | u_int32_t magic, csum; |
| 2112 | |
| 2113 | /* |
| 2114 | * Check that the device NVRAM is valid by reading |
| 2115 | * the magic value at offset 0. |
| 2116 | */ |
| 2117 | if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0) |
| 2118 | goto bnx_nvram_test_done; |
| 2119 | |
| 2120 | magic = bnx_be32toh(buf[0])(__uint32_t)(__builtin_constant_p(buf[0]) ? (__uint32_t)(((__uint32_t )(buf[0]) & 0xff) << 24 | ((__uint32_t)(buf[0]) & 0xff00) << 8 | ((__uint32_t)(buf[0]) & 0xff0000) >> 8 | ((__uint32_t)(buf[0]) & 0xff000000) >> 24) : __swap32md (buf[0])); |
| 2121 | if (magic != BNX_NVRAM_MAGIC0x669955aa) { |
| 2122 | rc = ENODEV19; |
| 2123 | BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "printf("%s: " "%s(%d): Invalid NVRAM magic value! " "Expected: 0x%08X, Found: 0x%08X\n" , sc->bnx_dev.dv_xname, "/usr/src/sys/dev/pci/if_bnx.c", 2125 , 0x669955aa, magic) |
| 2124 | "Expected: 0x%08X, Found: 0x%08X\n",printf("%s: " "%s(%d): Invalid NVRAM magic value! " "Expected: 0x%08X, Found: 0x%08X\n" , sc->bnx_dev.dv_xname, "/usr/src/sys/dev/pci/if_bnx.c", 2125 , 0x669955aa, magic) |
| 2125 | __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic)printf("%s: " "%s(%d): Invalid NVRAM magic value! " "Expected: 0x%08X, Found: 0x%08X\n" , sc->bnx_dev.dv_xname, "/usr/src/sys/dev/pci/if_bnx.c", 2125 , 0x669955aa, magic); |
| 2126 | goto bnx_nvram_test_done; |
| 2127 | } |
| 2128 | |
| 2129 | /* |
| 2130 | * Verify that the device NVRAM includes valid |
| 2131 | * configuration data. |
| 2132 | */ |
| 2133 | if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE0x200)) != 0) |
| 2134 | goto bnx_nvram_test_done; |
| 2135 | |
| 2136 | csum = ether_crc32_le(data, 0x100); |
| 2137 | if (csum != BNX_CRC32_RESIDUAL0xdebb20e3) { |
| 2138 | rc = ENODEV19; |
| 2139 | BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "printf("%s: " "%s(%d): Invalid Manufacturing Information " "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n" , sc->bnx_dev.dv_xname, "/usr/src/sys/dev/pci/if_bnx.c", 2141 , 0xdebb20e3, csum) |
| 2140 | "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",printf("%s: " "%s(%d): Invalid Manufacturing Information " "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n" , sc->bnx_dev.dv_xname, "/usr/src/sys/dev/pci/if_bnx.c", 2141 , 0xdebb20e3, csum) |
| 2141 | __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum)printf("%s: " "%s(%d): Invalid Manufacturing Information " "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n" , sc->bnx_dev.dv_xname, "/usr/src/sys/dev/pci/if_bnx.c", 2141 , 0xdebb20e3, csum); |
| 2142 | goto bnx_nvram_test_done; |
| 2143 | } |
| 2144 | |
| 2145 | csum = ether_crc32_le(data + 0x100, 0x100); |
| 2146 | if (csum != BNX_CRC32_RESIDUAL0xdebb20e3) { |
| 2147 | BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "printf("%s: " "%s(%d): Invalid Feature Configuration " "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n" , sc->bnx_dev.dv_xname, "/usr/src/sys/dev/pci/if_bnx.c", 2149 , 0xdebb20e3, csum) |
| 2148 | "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",printf("%s: " "%s(%d): Invalid Feature Configuration " "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n" , sc->bnx_dev.dv_xname, "/usr/src/sys/dev/pci/if_bnx.c", 2149 , 0xdebb20e3, csum) |
| 2149 | __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum)printf("%s: " "%s(%d): Invalid Feature Configuration " "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n" , sc->bnx_dev.dv_xname, "/usr/src/sys/dev/pci/if_bnx.c", 2149 , 0xdebb20e3, csum); |
| 2150 | rc = ENODEV19; |
| 2151 | } |
| 2152 | |
| 2153 | bnx_nvram_test_done: |
| 2154 | return (rc); |
| 2155 | } |
| 2156 | |
| 2157 | /****************************************************************************/ |
| 2158 | /* Identifies the current media type of the controller and sets the PHY */ |
| 2159 | /* address. */ |
| 2160 | /* */ |
| 2161 | /* Returns: */ |
| 2162 | /* Nothing. */ |
| 2163 | /****************************************************************************/ |
| 2164 | void |
| 2165 | bnx_get_media(struct bnx_softc *sc) |
| 2166 | { |
| 2167 | u_int32_t val; |
| 2168 | |
| 2169 | sc->bnx_phy_addr = 1; |
| 2170 | |
| 2171 | if (BNX_CHIP_NUM(sc)(((sc)->bnx_chipid) & 0xffff0000) == BNX_CHIP_NUM_57090x57090000) { |
| 2172 | u_int32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x000008ec ))); |
| 2173 | u_int32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID(0xffL<<0); |
| 2174 | u_int32_t strap; |
| 2175 | |
| 2176 | /* |
| 2177 | * The BCM5709S is software configurable |
| 2178 | * for Copper or SerDes operation. |
| 2179 | */ |
| 2180 | if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C(3L<<0)) { |
| 2181 | DBPRINT(sc, BNX_INFO_LOAD, |
| 2182 | "5709 bonded for copper.\n"); |
| 2183 | goto bnx_get_media_exit; |
| 2184 | } else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S(12L<<0)) { |
| 2185 | DBPRINT(sc, BNX_INFO_LOAD, |
| 2186 | "5709 bonded for dual media.\n"); |
| 2187 | sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG0x001; |
| 2188 | goto bnx_get_media_exit; |
| 2189 | } |
| 2190 | |
| 2191 | if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE(1L<<25)) |
| 2192 | strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL(0x7L<<21)) >> 21; |
| 2193 | else { |
| 2194 | strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP(0x7L<<8)) |
| 2195 | >> 8; |
| 2196 | } |
| 2197 | |
| 2198 | if (sc->bnx_pa.pa_function == 0) { |
| 2199 | switch (strap) { |
| 2200 | case 0x4: |
| 2201 | case 0x5: |
| 2202 | case 0x6: |
| 2203 | DBPRINT(sc, BNX_INFO_LOAD, |
| 2204 | "BCM5709 s/w configured for SerDes.\n"); |
| 2205 | sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG0x001; |
| 2206 | break; |
| 2207 | default: |
| 2208 | DBPRINT(sc, BNX_INFO_LOAD, |
| 2209 | "BCM5709 s/w configured for Copper.\n"); |
| 2210 | } |
| 2211 | } else { |
| 2212 | switch (strap) { |
| 2213 | case 0x1: |
| 2214 | case 0x2: |
| 2215 | case 0x4: |
| 2216 | DBPRINT(sc, BNX_INFO_LOAD, |
| 2217 | "BCM5709 s/w configured for SerDes.\n"); |
| 2218 | sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG0x001; |
| 2219 | break; |
| 2220 | default: |
| 2221 | DBPRINT(sc, BNX_INFO_LOAD, |
| 2222 | "BCM5709 s/w configured for Copper.\n"); |
| 2223 | } |
| 2224 | } |
| 2225 | |
| 2226 | } else if (BNX_CHIP_BOND_ID(sc)(((sc)->bnx_chipid) & 0xf) & BNX_CHIP_BOND_ID_SERDES_BIT0x01) |
| 2227 | sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG0x001; |
| 2228 | |
| 2229 | if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG0x001) { |
| 2230 | sc->bnx_flags |= BNX_NO_WOL_FLAG0x08; |
| 2231 | |
| 2232 | if (BNX_CHIP_NUM(sc)(((sc)->bnx_chipid) & 0xffff0000) == BNX_CHIP_NUM_57090x57090000) |
| 2233 | sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG0x400; |
| 2234 | |
| 2235 | /* |
| 2236 | * The BCM5708S, BCM5709S, and BCM5716S controllers use a |
| 2237 | * separate PHY for SerDes. |
| 2238 | */ |
| 2239 | if (BNX_CHIP_NUM(sc)(((sc)->bnx_chipid) & 0xffff0000) != BNX_CHIP_NUM_57060x57060000) { |
| 2240 | sc->bnx_phy_addr = 2; |
| 2241 | val = REG_RD_IND(sc, sc->bnx_shmem_base +bnx_reg_rd_ind(sc, sc->bnx_shmem_base + 0x0000003c) |
| 2242 | BNX_SHARED_HW_CFG_CONFIG)bnx_reg_rd_ind(sc, sc->bnx_shmem_base + 0x0000003c); |
| 2243 | if (val & BNX_SHARED_HW_CFG_PHY_2_5G0x20) { |
| 2244 | sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG0x008; |
| 2245 | DBPRINT(sc, BNX_INFO_LOAD, |
| 2246 | "Found 2.5Gb capable adapter\n"); |
| 2247 | } |
| 2248 | } |
| 2249 | } else if ((BNX_CHIP_NUM(sc)(((sc)->bnx_chipid) & 0xffff0000) == BNX_CHIP_NUM_57060x57060000) || |
| 2250 | (BNX_CHIP_NUM(sc)(((sc)->bnx_chipid) & 0xffff0000) == BNX_CHIP_NUM_57080x57080000)) |
| 2251 | sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG0x002; |
| 2252 | |
| 2253 | bnx_get_media_exit: |
| 2254 | DBPRINT(sc, (BNX_INFO_LOAD | BNX_INFO_PHY), |
| 2255 | "Using PHY address %d.\n", sc->bnx_phy_addr); |
| 2256 | } |
| 2257 | |
| 2258 | /****************************************************************************/ |
| 2259 | /* Performs PHY initialization required before MII drivers access the */ |
| 2260 | /* device. */ |
| 2261 | /* */ |
| 2262 | /* Returns: */ |
| 2263 | /* Nothing. */ |
| 2264 | /****************************************************************************/ |
| 2265 | void |
| 2266 | bnx_init_media(struct bnx_softc *sc) |
| 2267 | { |
| 2268 | if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG0x400) { |
| 2269 | /* |
| 2270 | * Configure the BCM5709S / BCM5716S PHYs to use traditional |
| 2271 | * IEEE Clause 22 method. Otherwise we have no way to attach |
| 2272 | * the PHY to the mii(4) layer. PHY specific configuration |
| 2273 | * is done by the mii(4) layer. |
| 2274 | */ |
| 2275 | |
| 2276 | /* Select auto-negotiation MMD of the PHY. */ |
| 2277 | bnx_miibus_write_reg(&sc->bnx_dev, sc->bnx_phy_addr, |
| 2278 | BRGPHY_BLOCK_ADDR0x1F, BRGPHY_BLOCK_ADDR_ADDR_EXT0xFFD0); |
| 2279 | |
| 2280 | bnx_miibus_write_reg(&sc->bnx_dev, sc->bnx_phy_addr, |
| 2281 | BRGPHY_ADDR_EXT0x1E, BRGPHY_ADDR_EXT_AN_MMD0x3800); |
| 2282 | |
| 2283 | bnx_miibus_write_reg(&sc->bnx_dev, sc->bnx_phy_addr, |
| 2284 | BRGPHY_BLOCK_ADDR0x1F, BRGPHY_BLOCK_ADDR_COMBO_IEEE00xFFE0); |
| 2285 | } |
| 2286 | } |
| 2287 | |
| 2288 | /****************************************************************************/ |
| 2289 | /* Free any DMA memory owned by the driver. */ |
| 2290 | /* */ |
| 2291 | /* Scans through each data structure that requires DMA memory and frees */ |
| 2292 | /* the memory if allocated. */ |
| 2293 | /* */ |
| 2294 | /* Returns: */ |
| 2295 | /* Nothing. */ |
| 2296 | /****************************************************************************/ |
| 2297 | void |
| 2298 | bnx_dma_free(struct bnx_softc *sc) |
| 2299 | { |
| 2300 | int i; |
| 2301 | |
| 2302 | DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); |
| 2303 | |
| 2304 | /* Destroy the status block. */ |
| 2305 | if (sc->status_block != NULL((void *)0) && sc->status_map != NULL((void *)0)) { |
| 2306 | bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,(*(sc->bnx_dmatag)->_dmamap_sync)((sc->bnx_dmatag), ( sc->status_map), (0), (sc->status_map->dm_mapsize), ( 0x02)) |
| 2307 | sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD)(*(sc->bnx_dmatag)->_dmamap_sync)((sc->bnx_dmatag), ( sc->status_map), (0), (sc->status_map->dm_mapsize), ( 0x02)); |
| 2308 | bus_dmamap_unload(sc->bnx_dmatag, sc->status_map)(*(sc->bnx_dmatag)->_dmamap_unload)((sc->bnx_dmatag) , (sc->status_map)); |
| 2309 | bus_dmamem_unmap(sc->bnx_dmatag, (caddr_t)sc->status_block,(*(sc->bnx_dmatag)->_dmamem_unmap)((sc->bnx_dmatag), ((caddr_t)sc->status_block), (sizeof(struct status_block) )) |
| 2310 | BNX_STATUS_BLK_SZ)(*(sc->bnx_dmatag)->_dmamem_unmap)((sc->bnx_dmatag), ((caddr_t)sc->status_block), (sizeof(struct status_block) )); |
| 2311 | bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,(*(sc->bnx_dmatag)->_dmamem_free)((sc->bnx_dmatag), ( &sc->status_seg), (sc->status_rseg)) |
| 2312 | sc->status_rseg)(*(sc->bnx_dmatag)->_dmamem_free)((sc->bnx_dmatag), ( &sc->status_seg), (sc->status_rseg)); |
| 2313 | bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map)(*(sc->bnx_dmatag)->_dmamap_destroy)((sc->bnx_dmatag ), (sc->status_map)); |
| 2314 | sc->status_block = NULL((void *)0); |
| 2315 | sc->status_map = NULL((void *)0); |
| 2316 | } |
| 2317 | |
| 2318 | /* Destroy the statistics block. */ |
| 2319 | if (sc->stats_block != NULL((void *)0) && sc->stats_map != NULL((void *)0)) { |
| 2320 | bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map)(*(sc->bnx_dmatag)->_dmamap_unload)((sc->bnx_dmatag) , (sc->stats_map)); |
| 2321 | bus_dmamem_unmap(sc->bnx_dmatag, (caddr_t)sc->stats_block,(*(sc->bnx_dmatag)->_dmamem_unmap)((sc->bnx_dmatag), ((caddr_t)sc->stats_block), (sizeof(struct statistics_block ))) |
| 2322 | BNX_STATS_BLK_SZ)(*(sc->bnx_dmatag)->_dmamem_unmap)((sc->bnx_dmatag), ((caddr_t)sc->stats_block), (sizeof(struct statistics_block ))); |
| 2323 | bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,(*(sc->bnx_dmatag)->_dmamem_free)((sc->bnx_dmatag), ( &sc->stats_seg), (sc->stats_rseg)) |
| 2324 | sc->stats_rseg)(*(sc->bnx_dmatag)->_dmamem_free)((sc->bnx_dmatag), ( &sc->stats_seg), (sc->stats_rseg)); |
| 2325 | bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map)(*(sc->bnx_dmatag)->_dmamap_destroy)((sc->bnx_dmatag ), (sc->stats_map)); |
| 2326 | sc->stats_block = NULL((void *)0); |
| 2327 | sc->stats_map = NULL((void *)0); |
| 2328 | } |
| 2329 | |
| 2330 | /* Free, unmap and destroy all context memory pages. */ |
| 2331 | if (BNX_CHIP_NUM(sc)(((sc)->bnx_chipid) & 0xffff0000) == BNX_CHIP_NUM_57090x57090000) { |
| 2332 | for (i = 0; i < sc->ctx_pages; i++) { |
| 2333 | if (sc->ctx_block[i] != NULL((void *)0)) { |
| 2334 | bus_dmamap_unload(sc->bnx_dmatag,(*(sc->bnx_dmatag)->_dmamap_unload)((sc->bnx_dmatag) , (sc->ctx_map[i])) |
| 2335 | sc->ctx_map[i])(*(sc->bnx_dmatag)->_dmamap_unload)((sc->bnx_dmatag) , (sc->ctx_map[i])); |
| 2336 | bus_dmamem_unmap(sc->bnx_dmatag,(*(sc->bnx_dmatag)->_dmamem_unmap)((sc->bnx_dmatag), ((caddr_t)sc->ctx_block[i]), ((1 << 12))) |
| 2337 | (caddr_t)sc->ctx_block[i],(*(sc->bnx_dmatag)->_dmamem_unmap)((sc->bnx_dmatag), ((caddr_t)sc->ctx_block[i]), ((1 << 12))) |
| 2338 | BCM_PAGE_SIZE)(*(sc->bnx_dmatag)->_dmamem_unmap)((sc->bnx_dmatag), ((caddr_t)sc->ctx_block[i]), ((1 << 12))); |
| 2339 | bus_dmamem_free(sc->bnx_dmatag,(*(sc->bnx_dmatag)->_dmamem_free)((sc->bnx_dmatag), ( &sc->ctx_segs[i]), (sc->ctx_rsegs[i])) |
| 2340 | &sc->ctx_segs[i], sc->ctx_rsegs[i])(*(sc->bnx_dmatag)->_dmamem_free)((sc->bnx_dmatag), ( &sc->ctx_segs[i]), (sc->ctx_rsegs[i])); |
| 2341 | bus_dmamap_destroy(sc->bnx_dmatag,(*(sc->bnx_dmatag)->_dmamap_destroy)((sc->bnx_dmatag ), (sc->ctx_map[i])) |
| 2342 | sc->ctx_map[i])(*(sc->bnx_dmatag)->_dmamap_destroy)((sc->bnx_dmatag ), (sc->ctx_map[i])); |
| 2343 | sc->ctx_block[i] = NULL((void *)0); |
| 2344 | } |
| 2345 | } |
| 2346 | } |
| 2347 | |
| 2348 | /* Free, unmap and destroy all TX buffer descriptor chain pages. */ |
| 2349 | for (i = 0; i < TX_PAGES2; i++ ) { |
| 2350 | if (sc->tx_bd_chain[i] != NULL((void *)0) && |
| 2351 | sc->tx_bd_chain_map[i] != NULL((void *)0)) { |
| 2352 | bus_dmamap_unload(sc->bnx_dmatag,(*(sc->bnx_dmatag)->_dmamap_unload)((sc->bnx_dmatag) , (sc->tx_bd_chain_map[i])) |
| 2353 | sc->tx_bd_chain_map[i])(*(sc->bnx_dmatag)->_dmamap_unload)((sc->bnx_dmatag) , (sc->tx_bd_chain_map[i])); |
| 2354 | bus_dmamem_unmap(sc->bnx_dmatag,(*(sc->bnx_dmatag)->_dmamem_unmap)((sc->bnx_dmatag), ((caddr_t)sc->tx_bd_chain[i]), ((1 << 12))) |
| 2355 | (caddr_t)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ)(*(sc->bnx_dmatag)->_dmamem_unmap)((sc->bnx_dmatag), ((caddr_t)sc->tx_bd_chain[i]), ((1 << 12))); |
| 2356 | bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],(*(sc->bnx_dmatag)->_dmamem_free)((sc->bnx_dmatag), ( &sc->tx_bd_chain_seg[i]), (sc->tx_bd_chain_rseg[i]) ) |
| 2357 | sc->tx_bd_chain_rseg[i])(*(sc->bnx_dmatag)->_dmamem_free)((sc->bnx_dmatag), ( &sc->tx_bd_chain_seg[i]), (sc->tx_bd_chain_rseg[i]) ); |
| 2358 | bus_dmamap_destroy(sc->bnx_dmatag,(*(sc->bnx_dmatag)->_dmamap_destroy)((sc->bnx_dmatag ), (sc->tx_bd_chain_map[i])) |
| 2359 | sc->tx_bd_chain_map[i])(*(sc->bnx_dmatag)->_dmamap_destroy)((sc->bnx_dmatag ), (sc->tx_bd_chain_map[i])); |
| 2360 | sc->tx_bd_chain[i] = NULL((void *)0); |
| 2361 | sc->tx_bd_chain_map[i] = NULL((void *)0); |
| 2362 | } |
| 2363 | } |
| 2364 | |
| 2365 | /* Unload and destroy the TX mbuf maps. */ |
| 2366 | for (i = 0; i < TOTAL_TX_BD(((1 << 12) / sizeof(struct tx_bd)) * 2); i++) { |
| 2367 | bus_dmamap_unload(sc->bnx_dmatag, sc->tx_mbuf_map[i])(*(sc->bnx_dmatag)->_dmamap_unload)((sc->bnx_dmatag) , (sc->tx_mbuf_map[i])); |
| 2368 | bus_dmamap_destroy(sc->bnx_dmatag, sc->tx_mbuf_map[i])(*(sc->bnx_dmatag)->_dmamap_destroy)((sc->bnx_dmatag ), (sc->tx_mbuf_map[i])); |
| 2369 | } |
| 2370 | |
| 2371 | /* Free, unmap and destroy all RX buffer descriptor chain pages. */ |
| 2372 | for (i = 0; i < RX_PAGES2; i++ ) { |
| 2373 | if (sc->rx_bd_chain[i] != NULL((void *)0) && |
| 2374 | sc->rx_bd_chain_map[i] != NULL((void *)0)) { |
| 2375 | bus_dmamap_unload(sc->bnx_dmatag,(*(sc->bnx_dmatag)->_dmamap_unload)((sc->bnx_dmatag) , (sc->rx_bd_chain_map[i])) |
| 2376 | sc->rx_bd_chain_map[i])(*(sc->bnx_dmatag)->_dmamap_unload)((sc->bnx_dmatag) , (sc->rx_bd_chain_map[i])); |
| 2377 | bus_dmamem_unmap(sc->bnx_dmatag,(*(sc->bnx_dmatag)->_dmamem_unmap)((sc->bnx_dmatag), ((caddr_t)sc->rx_bd_chain[i]), ((1 << 12))) |
| 2378 | (caddr_t)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ)(*(sc->bnx_dmatag)->_dmamem_unmap)((sc->bnx_dmatag), ((caddr_t)sc->rx_bd_chain[i]), ((1 << 12))); |
| 2379 | bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],(*(sc->bnx_dmatag)->_dmamem_free)((sc->bnx_dmatag), ( &sc->rx_bd_chain_seg[i]), (sc->rx_bd_chain_rseg[i]) ) |
| 2380 | sc->rx_bd_chain_rseg[i])(*(sc->bnx_dmatag)->_dmamem_free)((sc->bnx_dmatag), ( &sc->rx_bd_chain_seg[i]), (sc->rx_bd_chain_rseg[i]) ); |
| 2381 | |
| 2382 | bus_dmamap_destroy(sc->bnx_dmatag,(*(sc->bnx_dmatag)->_dmamap_destroy)((sc->bnx_dmatag ), (sc->rx_bd_chain_map[i])) |
| 2383 | sc->rx_bd_chain_map[i])(*(sc->bnx_dmatag)->_dmamap_destroy)((sc->bnx_dmatag ), (sc->rx_bd_chain_map[i])); |
| 2384 | sc->rx_bd_chain[i] = NULL((void *)0); |
| 2385 | sc->rx_bd_chain_map[i] = NULL((void *)0); |
| 2386 | } |
| 2387 | } |
| 2388 | |
| 2389 | /* Unload and destroy the RX mbuf maps. */ |
| 2390 | for (i = 0; i < TOTAL_RX_BD(((1 << 12) / sizeof(struct rx_bd)) * 2); i++) { |
| 2391 | if (sc->rx_mbuf_map[i] != NULL((void *)0)) { |
| 2392 | bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i])(*(sc->bnx_dmatag)->_dmamap_unload)((sc->bnx_dmatag) , (sc->rx_mbuf_map[i])); |
| 2393 | bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i])(*(sc->bnx_dmatag)->_dmamap_destroy)((sc->bnx_dmatag ), (sc->rx_mbuf_map[i])); |
| 2394 | } |
| 2395 | } |
| 2396 | |
| 2397 | DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); |
| 2398 | } |
| 2399 | |
| 2400 | /****************************************************************************/ |
| 2401 | /* Allocate any DMA memory needed by the driver. */ |
| 2402 | /* */ |
| 2403 | /* Allocates DMA memory needed for the various global structures needed by */ |
| 2404 | /* hardware. */ |
| 2405 | /* */ |
| 2406 | /* Returns: */ |
| 2407 | /* 0 for success, positive value for failure. */ |
| 2408 | /****************************************************************************/ |
| 2409 | int |
| 2410 | bnx_dma_alloc(struct bnx_softc *sc) |
| 2411 | { |
| 2412 | int i, rc = 0; |
| 2413 | |
| 2414 | DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); |
| 2415 | |
| 2416 | /* |
| 2417 | * Create DMA maps for the TX buffer mbufs. |
| 2418 | */ |
| 2419 | for (i = 0; i < TOTAL_TX_BD(((1 << 12) / sizeof(struct tx_bd)) * 2); i++) { |
| 2420 | if (bus_dmamap_create(sc->bnx_dmatag,(*(sc->bnx_dmatag)->_dmamap_create)((sc->bnx_dmatag) , (9022), (8), ((1 << 11)), (0), (0x0001), (&sc-> tx_mbuf_map[i])) |
| 2421 | BNX_MAX_JUMBO_ETHER_MTU_VLAN, BNX_MAX_SEGMENTS,(*(sc->bnx_dmatag)->_dmamap_create)((sc->bnx_dmatag) , (9022), (8), ((1 << 11)), (0), (0x0001), (&sc-> tx_mbuf_map[i])) |
| 2422 | MCLBYTES, 0, BUS_DMA_NOWAIT, &sc->tx_mbuf_map[i])(*(sc->bnx_dmatag)->_dmamap_create)((sc->bnx_dmatag) , (9022), (8), ((1 << 11)), (0), (0x0001), (&sc-> tx_mbuf_map[i]))) { |
| 2423 | printf(": Could not create Tx mbuf %d DMA map!\n", 1); |
| 2424 | rc = ENOMEM12; |
| 2425 | goto bnx_dma_alloc_exit; |
| 2426 | } |
| 2427 | } |
| 2428 | |
| 2429 | /* |
| 2430 | * Allocate DMA memory for the status block, map the memory into DMA |
| 2431 | * space, and fetch the physical address of the block. |
| 2432 | */ |
| 2433 | if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,(*(sc->bnx_dmatag)->_dmamap_create)((sc->bnx_dmatag) , (sizeof(struct status_block)), (1), (sizeof(struct status_block )), (0), (0x0001), (&sc->status_map)) |
| 2434 | BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)(*(sc->bnx_dmatag)->_dmamap_create)((sc->bnx_dmatag) , (sizeof(struct status_block)), (1), (sizeof(struct status_block )), (0), (0x0001), (&sc->status_map))) { |
| 2435 | printf(": Could not create status block DMA map!\n"); |
| 2436 | rc = ENOMEM12; |
| 2437 | goto bnx_dma_alloc_exit; |
| 2438 | } |
| 2439 | |
| 2440 | if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,(*(sc->bnx_dmatag)->_dmamem_alloc)((sc->bnx_dmatag), (sizeof(struct status_block)), (8), (0), (&sc->status_seg ), (1), (&sc->status_rseg), (0x0001 | 0x1000)) |
| 2441 | BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,(*(sc->bnx_dmatag)->_dmamem_alloc)((sc->bnx_dmatag), (sizeof(struct status_block)), (8), (0), (&sc->status_seg ), (1), (&sc->status_rseg), (0x0001 | 0x1000)) |
| 2442 | &sc->status_rseg, BUS_DMA_NOWAIT | BUS_DMA_ZERO)(*(sc->bnx_dmatag)->_dmamem_alloc)((sc->bnx_dmatag), (sizeof(struct status_block)), (8), (0), (&sc->status_seg ), (1), (&sc->status_rseg), (0x0001 | 0x1000))) { |
| 2443 | printf(": Could not allocate status block DMA memory!\n"); |
| 2444 | rc = ENOMEM12; |
| 2445 | goto bnx_dma_alloc_exit; |
| 2446 | } |
| 2447 | |
| 2448 | if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,(*(sc->bnx_dmatag)->_dmamem_map)((sc->bnx_dmatag), ( &sc->status_seg), (sc->status_rseg), (sizeof(struct status_block)), ((caddr_t *)&sc->status_block), (0x0001 )) |
| 2449 | BNX_STATUS_BLK_SZ, (caddr_t *)&sc->status_block, BUS_DMA_NOWAIT)(*(sc->bnx_dmatag)->_dmamem_map)((sc->bnx_dmatag), ( &sc->status_seg), (sc->status_rseg), (sizeof(struct status_block)), ((caddr_t *)&sc->status_block), (0x0001 ))) { |
| 2450 | printf(": Could not map status block DMA memory!\n"); |
| 2451 | rc = ENOMEM12; |
| 2452 | goto bnx_dma_alloc_exit; |
| 2453 | } |
| 2454 | |
| 2455 | if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,(*(sc->bnx_dmatag)->_dmamap_load)((sc->bnx_dmatag), ( sc->status_map), (sc->status_block), (sizeof(struct status_block )), (((void *)0)), (0x0001)) |
| 2456 | sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)(*(sc->bnx_dmatag)->_dmamap_load)((sc->bnx_dmatag), ( sc->status_map), (sc->status_block), (sizeof(struct status_block )), (((void *)0)), (0x0001))) { |
| 2457 | printf(": Could not load status block DMA memory!\n"); |
| 2458 | rc = ENOMEM12; |
| 2459 | goto bnx_dma_alloc_exit; |
| 2460 | } |
| 2461 | |
| 2462 | bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,(*(sc->bnx_dmatag)->_dmamap_sync)((sc->bnx_dmatag), ( sc->status_map), (0), (sc->status_map->dm_mapsize), ( 0x01)) |
| 2463 | sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD)(*(sc->bnx_dmatag)->_dmamap_sync)((sc->bnx_dmatag), ( sc->status_map), (0), (sc->status_map->dm_mapsize), ( 0x01)); |
| 2464 | |
| 2465 | sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr; |
| 2466 | |
| 2467 | /* DRC - Fix for 64 bit addresses. */ |
| 2468 | DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n", |
| 2469 | (u_int32_t) sc->status_block_paddr); |
| 2470 | |
| 2471 | /* BCM5709 uses host memory as cache for context memory. */ |
| 2472 | if (BNX_CHIP_NUM(sc)(((sc)->bnx_chipid) & 0xffff0000) == BNX_CHIP_NUM_57090x57090000) { |
| 2473 | sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE(1 << 12); |
| 2474 | if (sc->ctx_pages == 0) |
| 2475 | sc->ctx_pages = 1; |
| 2476 | if (sc->ctx_pages > 4) /* XXX */ |
| 2477 | sc->ctx_pages = 4; |
| 2478 | |
| 2479 | DBRUNIF((sc->ctx_pages > 512), |
| 2480 | BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n", |
| 2481 | __FILE__, __LINE__, sc->ctx_pages)); |
| 2482 | |
| 2483 | |
| 2484 | for (i = 0; i < sc->ctx_pages; i++) { |
| 2485 | if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,(*(sc->bnx_dmatag)->_dmamap_create)((sc->bnx_dmatag) , ((1 << 12)), (1), ((1 << 12)), (0), (0x0001 | 0x0002 ), (&sc->ctx_map[i])) |
| 2486 | 1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,(*(sc->bnx_dmatag)->_dmamap_create)((sc->bnx_dmatag) , ((1 << 12)), (1), ((1 << 12)), (0), (0x0001 | 0x0002 ), (&sc->ctx_map[i])) |
| 2487 | BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,(*(sc->bnx_dmatag)->_dmamap_create)((sc->bnx_dmatag) , ((1 << 12)), (1), ((1 << 12)), (0), (0x0001 | 0x0002 ), (&sc->ctx_map[i])) |
| 2488 | &sc->ctx_map[i])(*(sc->bnx_dmatag)->_dmamap_create)((sc->bnx_dmatag) , ((1 << 12)), (1), ((1 << 12)), (0), (0x0001 | 0x0002 ), (&sc->ctx_map[i])) != 0) { |
| 2489 | rc = ENOMEM12; |
| 2490 | goto bnx_dma_alloc_exit; |
| 2491 | } |
| 2492 | |
| 2493 | if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,(*(sc->bnx_dmatag)->_dmamem_alloc)((sc->bnx_dmatag), ((1 << 12)), ((1 << 12)), (0), (&sc->ctx_segs [i]), (1), (&sc->ctx_rsegs[i]), (0x0001)) |
| 2494 | BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],(*(sc->bnx_dmatag)->_dmamem_alloc)((sc->bnx_dmatag), ((1 << 12)), ((1 << 12)), (0), (&sc->ctx_segs [i]), (1), (&sc->ctx_rsegs[i]), (0x0001)) |
| 2495 | 1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT)(*(sc->bnx_dmatag)->_dmamem_alloc)((sc->bnx_dmatag), ((1 << 12)), ((1 << 12)), (0), (&sc->ctx_segs [i]), (1), (&sc->ctx_rsegs[i]), (0x0001)) != 0) { |
| 2496 | rc = ENOMEM12; |
| 2497 | goto bnx_dma_alloc_exit; |
| 2498 | } |
| 2499 | |
| 2500 | if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],(*(sc->bnx_dmatag)->_dmamem_map)((sc->bnx_dmatag), ( &sc->ctx_segs[i]), (sc->ctx_rsegs[i]), ((1 << 12)), ((caddr_t *)&sc->ctx_block[i]), (0x0001)) |
| 2501 | sc->ctx_rsegs[i], BCM_PAGE_SIZE,(*(sc->bnx_dmatag)->_dmamem_map)((sc->bnx_dmatag), ( &sc->ctx_segs[i]), (sc->ctx_rsegs[i]), ((1 << 12)), ((caddr_t *)&sc->ctx_block[i]), (0x0001)) |
| 2502 | (caddr_t *)&sc->ctx_block[i],(*(sc->bnx_dmatag)->_dmamem_map)((sc->bnx_dmatag), ( &sc->ctx_segs[i]), (sc->ctx_rsegs[i]), ((1 << 12)), ((caddr_t *)&sc->ctx_block[i]), (0x0001)) |
| 2503 | BUS_DMA_NOWAIT)(*(sc->bnx_dmatag)->_dmamem_map)((sc->bnx_dmatag), ( &sc->ctx_segs[i]), (sc->ctx_rsegs[i]), ((1 << 12)), ((caddr_t *)&sc->ctx_block[i]), (0x0001)) != 0) { |
| 2504 | rc = ENOMEM12; |
| 2505 | goto bnx_dma_alloc_exit; |
| 2506 | } |
| 2507 | |
| 2508 | if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],(*(sc->bnx_dmatag)->_dmamap_load)((sc->bnx_dmatag), ( sc->ctx_map[i]), (sc->ctx_block[i]), ((1 << 12)), (((void *)0)), (0x0001)) |
| 2509 | sc->ctx_block[i], BCM_PAGE_SIZE, NULL,(*(sc->bnx_dmatag)->_dmamap_load)((sc->bnx_dmatag), ( sc->ctx_map[i]), (sc->ctx_block[i]), ((1 << 12)), (((void *)0)), (0x0001)) |
| 2510 | BUS_DMA_NOWAIT)(*(sc->bnx_dmatag)->_dmamap_load)((sc->bnx_dmatag), ( sc->ctx_map[i]), (sc->ctx_block[i]), ((1 << 12)), (((void *)0)), (0x0001)) != 0) { |
| 2511 | rc = ENOMEM12; |
| 2512 | goto bnx_dma_alloc_exit; |
| 2513 | } |
| 2514 | |
| 2515 | bzero(sc->ctx_block[i], BCM_PAGE_SIZE)__builtin_bzero((sc->ctx_block[i]), ((1 << 12))); |
| 2516 | } |
| 2517 | } |
| 2518 | |
| 2519 | /* |
| 2520 | * Allocate DMA memory for the statistics block, map the memory into |
| 2521 | * DMA space, and fetch the physical address of the block. |
| 2522 | */ |
| 2523 | if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,(*(sc->bnx_dmatag)->_dmamap_create)((sc->bnx_dmatag) , (sizeof(struct statistics_block)), (1), (sizeof(struct statistics_block )), (0), (0x0001), (&sc->stats_map)) |
| 2524 | BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)(*(sc->bnx_dmatag)->_dmamap_create)((sc->bnx_dmatag) , (sizeof(struct statistics_block)), (1), (sizeof(struct statistics_block )), (0), (0x0001), (&sc->stats_map))) { |
| 2525 | printf(": Could not create stats block DMA map!\n"); |
| 2526 | rc = ENOMEM12; |
| 2527 | goto bnx_dma_alloc_exit; |
| 2528 | } |
| 2529 | |
| 2530 | if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,(*(sc->bnx_dmatag)->_dmamem_alloc)((sc->bnx_dmatag), (sizeof(struct statistics_block)), (8), (0), (&sc->stats_seg ), (1), (&sc->stats_rseg), (0x0001 | 0x1000)) |
| 2531 | BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,(*(sc->bnx_dmatag)->_dmamem_alloc)((sc->bnx_dmatag), (sizeof(struct statistics_block)), (8), (0), (&sc->stats_seg ), (1), (&sc->stats_rseg), (0x0001 | 0x1000)) |
| 2532 | &sc->stats_rseg, BUS_DMA_NOWAIT | BUS_DMA_ZERO)(*(sc->bnx_dmatag)->_dmamem_alloc)((sc->bnx_dmatag), (sizeof(struct statistics_block)), (8), (0), (&sc->stats_seg ), (1), (&sc->stats_rseg), (0x0001 | 0x1000))) { |
| 2533 | printf(": Could not allocate stats block DMA memory!\n"); |
| 2534 | rc = ENOMEM12; |
| 2535 | goto bnx_dma_alloc_exit; |
| 2536 | } |
| 2537 | |
| 2538 | if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,(*(sc->bnx_dmatag)->_dmamem_map)((sc->bnx_dmatag), ( &sc->stats_seg), (sc->stats_rseg), (sizeof(struct statistics_block )), ((caddr_t *)&sc->stats_block), (0x0001)) |
| 2539 | BNX_STATS_BLK_SZ, (caddr_t *)&sc->stats_block, BUS_DMA_NOWAIT)(*(sc->bnx_dmatag)->_dmamem_map)((sc->bnx_dmatag), ( &sc->stats_seg), (sc->stats_rseg), (sizeof(struct statistics_block )), ((caddr_t *)&sc->stats_block), (0x0001))) { |
| 2540 | printf(": Could not map stats block DMA memory!\n"); |
| 2541 | rc = ENOMEM12; |
| 2542 | goto bnx_dma_alloc_exit; |
| 2543 | } |
| 2544 | |
| 2545 | if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,(*(sc->bnx_dmatag)->_dmamap_load)((sc->bnx_dmatag), ( sc->stats_map), (sc->stats_block), (sizeof(struct statistics_block )), (((void *)0)), (0x0001)) |
| 2546 | sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)(*(sc->bnx_dmatag)->_dmamap_load)((sc->bnx_dmatag), ( sc->stats_map), (sc->stats_block), (sizeof(struct statistics_block )), (((void *)0)), (0x0001))) { |
| 2547 | printf(": Could not load status block DMA memory!\n"); |
| 2548 | rc = ENOMEM12; |
| 2549 | goto bnx_dma_alloc_exit; |
| 2550 | } |
| 2551 | |
| 2552 | sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr; |
| 2553 | |
| 2554 | /* DRC - Fix for 64 bit address. */ |
| 2555 | DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n", |
| 2556 | (u_int32_t) sc->stats_block_paddr); |
| 2557 | |
| 2558 | /* |
| 2559 | * Allocate DMA memory for the TX buffer descriptor chain, |
| 2560 | * and fetch the physical address of the block. |
| 2561 | */ |
| 2562 | for (i = 0; i < TX_PAGES2; i++) { |
| 2563 | if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,(*(sc->bnx_dmatag)->_dmamap_create)((sc->bnx_dmatag) , ((1 << 12)), (1), ((1 << 12)), (0), (0x0001), ( &sc->tx_bd_chain_map[i])) |
| 2564 | BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,(*(sc->bnx_dmatag)->_dmamap_create)((sc->bnx_dmatag) , ((1 << 12)), (1), ((1 << 12)), (0), (0x0001), ( &sc->tx_bd_chain_map[i])) |
| 2565 | &sc->tx_bd_chain_map[i])(*(sc->bnx_dmatag)->_dmamap_create)((sc->bnx_dmatag) , ((1 << 12)), (1), ((1 << 12)), (0), (0x0001), ( &sc->tx_bd_chain_map[i]))) { |
| 2566 | printf(": Could not create Tx desc %d DMA map!\n", i); |
| 2567 | rc = ENOMEM12; |
| 2568 | goto bnx_dma_alloc_exit; |
| 2569 | } |
| 2570 | |
| 2571 | if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,(*(sc->bnx_dmatag)->_dmamem_alloc)((sc->bnx_dmatag), ((1 << 12)), ((1 << 12)), (0), (&sc->tx_bd_chain_seg [i]), (1), (&sc->tx_bd_chain_rseg[i]), (0x0001)) |
| 2572 | BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,(*(sc->bnx_dmatag)->_dmamem_alloc)((sc->bnx_dmatag), ((1 << 12)), ((1 << 12)), (0), (&sc->tx_bd_chain_seg [i]), (1), (&sc->tx_bd_chain_rseg[i]), (0x0001)) |
| 2573 | &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)(*(sc->bnx_dmatag)->_dmamem_alloc)((sc->bnx_dmatag), ((1 << 12)), ((1 << 12)), (0), (&sc->tx_bd_chain_seg [i]), (1), (&sc->tx_bd_chain_rseg[i]), (0x0001))) { |
| 2574 | printf(": Could not allocate TX desc %d DMA memory!\n", |
| 2575 | i); |
| 2576 | rc = ENOMEM12; |
| 2577 | goto bnx_dma_alloc_exit; |
| 2578 | } |
| 2579 | |
| 2580 | if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],(*(sc->bnx_dmatag)->_dmamem_map)((sc->bnx_dmatag), ( &sc->tx_bd_chain_seg[i]), (sc->tx_bd_chain_rseg[i]) , ((1 << 12)), ((caddr_t *)&sc->tx_bd_chain[i]), (0x0001)) |
| 2581 | sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,(*(sc->bnx_dmatag)->_dmamem_map)((sc->bnx_dmatag), ( &sc->tx_bd_chain_seg[i]), (sc->tx_bd_chain_rseg[i]) , ((1 << 12)), ((caddr_t *)&sc->tx_bd_chain[i]), (0x0001)) |
| 2582 | (caddr_t *)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)(*(sc->bnx_dmatag)->_dmamem_map)((sc->bnx_dmatag), ( &sc->tx_bd_chain_seg[i]), (sc->tx_bd_chain_rseg[i]) , ((1 << 12)), ((caddr_t *)&sc->tx_bd_chain[i]), (0x0001))) { |
| 2583 | printf(": Could not map TX desc %d DMA memory!\n", i); |
| 2584 | rc = ENOMEM12; |
| 2585 | goto bnx_dma_alloc_exit; |
| 2586 | } |
| 2587 | |
| 2588 | if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],(*(sc->bnx_dmatag)->_dmamap_load)((sc->bnx_dmatag), ( sc->tx_bd_chain_map[i]), ((caddr_t)sc->tx_bd_chain[i]), ((1 << 12)), (((void *)0)), (0x0001)) |
| 2589 | (caddr_t)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,(*(sc->bnx_dmatag)->_dmamap_load)((sc->bnx_dmatag), ( sc->tx_bd_chain_map[i]), ((caddr_t)sc->tx_bd_chain[i]), ((1 << 12)), (((void *)0)), (0x0001)) |
| 2590 | BUS_DMA_NOWAIT)(*(sc->bnx_dmatag)->_dmamap_load)((sc->bnx_dmatag), ( sc->tx_bd_chain_map[i]), ((caddr_t)sc->tx_bd_chain[i]), ((1 << 12)), (((void *)0)), (0x0001))) { |
| 2591 | printf(": Could not load TX desc %d DMA memory!\n", i); |
| 2592 | rc = ENOMEM12; |
| 2593 | goto bnx_dma_alloc_exit; |
| 2594 | } |
| 2595 | |
| 2596 | sc->tx_bd_chain_paddr[i] = |
| 2597 | sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr; |
| 2598 | |
| 2599 | /* DRC - Fix for 64 bit systems. */ |
| 2600 | DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n", |
| 2601 | i, (u_int32_t) sc->tx_bd_chain_paddr[i]); |
| 2602 | } |
| 2603 | |
| 2604 | /* |
| 2605 | * Allocate DMA memory for the Rx buffer descriptor chain, |
| 2606 | * and fetch the physical address of the block. |
| 2607 | */ |
| 2608 | for (i = 0; i < RX_PAGES2; i++) { |
| 2609 | if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,(*(sc->bnx_dmatag)->_dmamap_create)((sc->bnx_dmatag) , ((1 << 12)), (1), ((1 << 12)), (0), (0x0001), ( &sc->rx_bd_chain_map[i])) |
| 2610 | BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,(*(sc->bnx_dmatag)->_dmamap_create)((sc->bnx_dmatag) , ((1 << 12)), (1), ((1 << 12)), (0), (0x0001), ( &sc->rx_bd_chain_map[i])) |
| 2611 | &sc->rx_bd_chain_map[i])(*(sc->bnx_dmatag)->_dmamap_create)((sc->bnx_dmatag) , ((1 << 12)), (1), ((1 << 12)), (0), (0x0001), ( &sc->rx_bd_chain_map[i]))) { |
| 2612 | printf(": Could not create Rx desc %d DMA map!\n", i); |
| 2613 | rc = ENOMEM12; |
| 2614 | goto bnx_dma_alloc_exit; |
| 2615 | } |
| 2616 | |
| 2617 | if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,(*(sc->bnx_dmatag)->_dmamem_alloc)((sc->bnx_dmatag), ((1 << 12)), ((1 << 12)), (0), (&sc->rx_bd_chain_seg [i]), (1), (&sc->rx_bd_chain_rseg[i]), (0x0001 | 0x1000 )) |
| 2618 | BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,(*(sc->bnx_dmatag)->_dmamem_alloc)((sc->bnx_dmatag), ((1 << 12)), ((1 << 12)), (0), (&sc->rx_bd_chain_seg [i]), (1), (&sc->rx_bd_chain_rseg[i]), (0x0001 | 0x1000 )) |
| 2619 | &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT | BUS_DMA_ZERO)(*(sc->bnx_dmatag)->_dmamem_alloc)((sc->bnx_dmatag), ((1 << 12)), ((1 << 12)), (0), (&sc->rx_bd_chain_seg [i]), (1), (&sc->rx_bd_chain_rseg[i]), (0x0001 | 0x1000 ))) { |
| 2620 | printf(": Could not allocate Rx desc %d DMA memory!\n", |
| 2621 | i); |
| 2622 | rc = ENOMEM12; |
| 2623 | goto bnx_dma_alloc_exit; |
| 2624 | } |
| 2625 | |
| 2626 | if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],(*(sc->bnx_dmatag)->_dmamem_map)((sc->bnx_dmatag), ( &sc->rx_bd_chain_seg[i]), (sc->rx_bd_chain_rseg[i]) , ((1 << 12)), ((caddr_t *)&sc->rx_bd_chain[i]), (0x0001)) |
| 2627 | sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,(*(sc->bnx_dmatag)->_dmamem_map)((sc->bnx_dmatag), ( &sc->rx_bd_chain_seg[i]), (sc->rx_bd_chain_rseg[i]) , ((1 << 12)), ((caddr_t *)&sc->rx_bd_chain[i]), (0x0001)) |
| 2628 | (caddr_t *)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)(*(sc->bnx_dmatag)->_dmamem_map)((sc->bnx_dmatag), ( &sc->rx_bd_chain_seg[i]), (sc->rx_bd_chain_rseg[i]) , ((1 << 12)), ((caddr_t *)&sc->rx_bd_chain[i]), (0x0001))) { |
| 2629 | printf(": Could not map Rx desc %d DMA memory!\n", i); |
| 2630 | rc = ENOMEM12; |
| 2631 | goto bnx_dma_alloc_exit; |
| 2632 | } |
| 2633 | |
| 2634 | if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],(*(sc->bnx_dmatag)->_dmamap_load)((sc->bnx_dmatag), ( sc->rx_bd_chain_map[i]), ((caddr_t)sc->rx_bd_chain[i]), ((1 << 12)), (((void *)0)), (0x0001)) |
| 2635 | (caddr_t)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,(*(sc->bnx_dmatag)->_dmamap_load)((sc->bnx_dmatag), ( sc->rx_bd_chain_map[i]), ((caddr_t)sc->rx_bd_chain[i]), ((1 << 12)), (((void *)0)), (0x0001)) |
| 2636 | BUS_DMA_NOWAIT)(*(sc->bnx_dmatag)->_dmamap_load)((sc->bnx_dmatag), ( sc->rx_bd_chain_map[i]), ((caddr_t)sc->rx_bd_chain[i]), ((1 << 12)), (((void *)0)), (0x0001))) { |
| 2637 | printf(": Could not load Rx desc %d DMA memory!\n", i); |
| 2638 | rc = ENOMEM12; |
| 2639 | goto bnx_dma_alloc_exit; |
| 2640 | } |
| 2641 | |
| 2642 | sc->rx_bd_chain_paddr[i] = |
| 2643 | sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr; |
| 2644 | |
| 2645 | /* DRC - Fix for 64 bit systems. */ |
| 2646 | DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n", |
| 2647 | i, (u_int32_t) sc->rx_bd_chain_paddr[i]); |
| 2648 | } |
| 2649 | |
| 2650 | /* |
| 2651 | * Create DMA maps for the Rx buffer mbufs. |
| 2652 | */ |
| 2653 | for (i = 0; i < TOTAL_RX_BD(((1 << 12) / sizeof(struct rx_bd)) * 2); i++) { |
| 2654 | if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,(*(sc->bnx_dmatag)->_dmamap_create)((sc->bnx_dmatag) , (9216), (1), (9216), (0), (0x0001), (&sc->rx_mbuf_map [i])) |
| 2655 | 1, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,(*(sc->bnx_dmatag)->_dmamap_create)((sc->bnx_dmatag) , (9216), (1), (9216), (0), (0x0001), (&sc->rx_mbuf_map [i])) |
| 2656 | &sc->rx_mbuf_map[i])(*(sc->bnx_dmatag)->_dmamap_create)((sc->bnx_dmatag) , (9216), (1), (9216), (0), (0x0001), (&sc->rx_mbuf_map [i]))) { |
| 2657 | printf(": Could not create Rx mbuf %d DMA map!\n", i); |
| 2658 | rc = ENOMEM12; |
| 2659 | goto bnx_dma_alloc_exit; |
| 2660 | } |
| 2661 | } |
| 2662 | |
| 2663 | bnx_dma_alloc_exit: |
| 2664 | DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); |
| 2665 | |
| 2666 | return(rc); |
| 2667 | } |
| 2668 | |
| 2669 | /****************************************************************************/ |
| 2670 | /* Release all resources used by the driver. */ |
| 2671 | /* */ |
| 2672 | /* Releases all resources acquired by the driver including interrupts, */ |
| 2673 | /* interrupt handler, interfaces, mutexes, and DMA memory. */ |
| 2674 | /* */ |
| 2675 | /* Returns: */ |
| 2676 | /* Nothing. */ |
| 2677 | /****************************************************************************/ |
| 2678 | void |
| 2679 | bnx_release_resources(struct bnx_softc *sc) |
| 2680 | { |
| 2681 | struct pci_attach_args *pa = &(sc->bnx_pa); |
| 2682 | |
| 2683 | DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); |
| 2684 | |
| 2685 | bnx_dma_free(sc); |
| 2686 | |
| 2687 | if (sc->bnx_intrhand != NULL((void *)0)) |
| 2688 | pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand); |
| 2689 | |
| 2690 | if (sc->bnx_size) |
| 2691 | bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size); |
| 2692 | |
| 2693 | DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); |
| 2694 | } |
| 2695 | |
| 2696 | /****************************************************************************/ |
| 2697 | /* Firmware synchronization. */ |
| 2698 | /* */ |
| 2699 | /* Before performing certain events such as a chip reset, synchronize with */ |
| 2700 | /* the firmware first. */ |
| 2701 | /* */ |
| 2702 | /* Returns: */ |
| 2703 | /* 0 for success, positive value for failure. */ |
| 2704 | /****************************************************************************/ |
| 2705 | int |
| 2706 | bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data) |
| 2707 | { |
| 2708 | int i, rc = 0; |
| 2709 | u_int32_t val; |
| 2710 | |
| 2711 | /* Don't waste any time if we've timed out before. */ |
| 2712 | if (sc->bnx_fw_timed_out) { |
| 2713 | rc = EBUSY16; |
| 2714 | goto bnx_fw_sync_exit; |
| 2715 | } |
| 2716 | |
| 2717 | /* Increment the message sequence number. */ |
| 2718 | sc->bnx_fw_wr_seq++; |
| 2719 | msg_data |= sc->bnx_fw_wr_seq; |
| 2720 | |
| 2721 | DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n", |
| 2722 | msg_data); |
| 2723 | |
| 2724 | /* Send the message to the bootcode driver mailbox. */ |
| 2725 | REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data)bnx_reg_wr_ind(sc, sc->bnx_shmem_base + 0x00000004, msg_data ); |
| 2726 | |
| 2727 | /* Wait for the bootcode to acknowledge the message. */ |
| 2728 | for (i = 0; i < FW_ACK_TIME_OUT_MS1000; i++) { |
| 2729 | /* Check for a response in the bootcode firmware mailbox. */ |
| 2730 | val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB)bnx_reg_rd_ind(sc, sc->bnx_shmem_base + 0x00000008); |
| 2731 | if ((val & BNX_FW_MSG_ACK0x0000ffff) == (msg_data & BNX_DRV_MSG_SEQ0x0000ffff)) |
| 2732 | break; |
| 2733 | DELAY(1000)(*delay_func)(1000); |
| 2734 | } |
| 2735 | |
| 2736 | /* If we've timed out, tell the bootcode that we've stopped waiting. */ |
| 2737 | if (((val & BNX_FW_MSG_ACK0x0000ffff) != (msg_data & BNX_DRV_MSG_SEQ0x0000ffff)) && |
| 2738 | ((msg_data & BNX_DRV_MSG_DATA0x00ff0000) != BNX_DRV_MSG_DATA_WAIT00x00010000)) { |
| 2739 | BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "printf("%s: " "%s(%d): Firmware synchronization timeout! " "msg_data = 0x%08X\n" , sc->bnx_dev.dv_xname, "/usr/src/sys/dev/pci/if_bnx.c", 2740 , msg_data) |
| 2740 | "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data)printf("%s: " "%s(%d): Firmware synchronization timeout! " "msg_data = 0x%08X\n" , sc->bnx_dev.dv_xname, "/usr/src/sys/dev/pci/if_bnx.c", 2740 , msg_data); |
| 2741 | |
| 2742 | msg_data &= ~BNX_DRV_MSG_CODE0xff000000; |
| 2743 | msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT0x05000000; |
| 2744 | |
| 2745 | REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data)bnx_reg_wr_ind(sc, sc->bnx_shmem_base + 0x00000004, msg_data ); |
| 2746 | |
| 2747 | sc->bnx_fw_timed_out = 1; |
| 2748 | rc = EBUSY16; |
| 2749 | } |
| 2750 | |
| 2751 | bnx_fw_sync_exit: |
| 2752 | return (rc); |
| 2753 | } |
| 2754 | |
| 2755 | /****************************************************************************/ |
| 2756 | /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */ |
| 2757 | /* */ |
| 2758 | /* Returns: */ |
| 2759 | /* Nothing. */ |
| 2760 | /****************************************************************************/ |
| 2761 | void |
| 2762 | bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code, |
| 2763 | u_int32_t rv2p_code_len, u_int32_t rv2p_proc) |
| 2764 | { |
| 2765 | int i; |
| 2766 | u_int32_t val; |
| 2767 | |
| 2768 | /* Set the page size used by RV2P. */ |
| 2769 | if (rv2p_proc == RV2P_PROC21) { |
| 2770 | BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,{ rv2p_code[5] = (rv2p_code[5] & ~0xFFFF) | ((((1 << 12) / sizeof(struct rx_bd)) - 1)); } |
| 2771 | USABLE_RX_BD_PER_PAGE){ rv2p_code[5] = (rv2p_code[5] & ~0xFFFF) | ((((1 << 12) / sizeof(struct rx_bd)) - 1)); }; |
| 2772 | } |
| 2773 | |
| 2774 | for (i = 0; i < rv2p_code_len; i += 8) { |
| 2775 | REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00002830 ), (*rv2p_code))); |
| 2776 | rv2p_code++; |
| 2777 | REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00002834 ), (*rv2p_code))); |
| 2778 | rv2p_code++; |
| 2779 | |
| 2780 | if (rv2p_proc == RV2P_PROC10) { |
| 2781 | val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR(1L<<31); |
| 2782 | REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00002838 ), (val))); |
| 2783 | } else { |
| 2784 | val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR(1L<<31); |
| 2785 | REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x0000283c ), (val))); |
| 2786 | } |
| 2787 | } |
| 2788 | |
| 2789 | /* Reset the processor, un-stall is done later. */ |
| 2790 | if (rv2p_proc == RV2P_PROC10) |
| 2791 | REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00002800 ), ((1L<<16)))); |
| 2792 | else |
| 2793 | REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00002800 ), ((1L<<17)))); |
| 2794 | } |
| 2795 | |
| 2796 | /****************************************************************************/ |
| 2797 | /* Load RISC processor firmware. */ |
| 2798 | /* */ |
| 2799 | /* Loads firmware from the file if_bnxfw.h into the scratchpad memory */ |
| 2800 | /* associated with a particular processor. */ |
| 2801 | /* */ |
| 2802 | /* Returns: */ |
| 2803 | /* Nothing. */ |
| 2804 | /****************************************************************************/ |
| 2805 | void |
| 2806 | bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg, |
| 2807 | struct fw_info *fw) |
| 2808 | { |
| 2809 | u_int32_t offset; |
| 2810 | u_int32_t val; |
| 2811 | |
| 2812 | /* Halt the CPU. */ |
| 2813 | val = REG_RD_IND(sc, cpu_reg->mode)bnx_reg_rd_ind(sc, cpu_reg->mode); |
| 2814 | val |= cpu_reg->mode_value_halt; |
| 2815 | REG_WR_IND(sc, cpu_reg->mode, val)bnx_reg_wr_ind(sc, cpu_reg->mode, val); |
| 2816 | REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear)bnx_reg_wr_ind(sc, cpu_reg->state, cpu_reg->state_value_clear ); |
| 2817 | |
| 2818 | /* Load the Text area. */ |
| 2819 | offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base); |
| 2820 | if (fw->text) { |
| 2821 | int j; |
| 2822 | |
| 2823 | for (j = 0; j < (fw->text_len / 4); j++, offset += 4) |
| 2824 | REG_WR_IND(sc, offset, fw->text[j])bnx_reg_wr_ind(sc, offset, fw->text[j]); |
| 2825 | } |
| 2826 | |
| 2827 | /* Load the Data area. */ |
| 2828 | offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base); |
| 2829 | if (fw->data) { |
| 2830 | int j; |
| 2831 | |
| 2832 | for (j = 0; j < (fw->data_len / 4); j++, offset += 4) |
| 2833 | REG_WR_IND(sc, offset, fw->data[j])bnx_reg_wr_ind(sc, offset, fw->data[j]); |
| 2834 | } |
| 2835 | |
| 2836 | /* Load the SBSS area. */ |
| 2837 | offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base); |
| 2838 | if (fw->sbss) { |
| 2839 | int j; |
| 2840 | |
| 2841 | for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) |
| 2842 | REG_WR_IND(sc, offset, fw->sbss[j])bnx_reg_wr_ind(sc, offset, fw->sbss[j]); |
| 2843 | } |
| 2844 | |
| 2845 | /* Load the BSS area. */ |
| 2846 | offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base); |
| 2847 | if (fw->bss) { |
| 2848 | int j; |
| 2849 | |
| 2850 | for (j = 0; j < (fw->bss_len/4); j++, offset += 4) |
| 2851 | REG_WR_IND(sc, offset, fw->bss[j])bnx_reg_wr_ind(sc, offset, fw->bss[j]); |
| 2852 | } |
| 2853 | |
| 2854 | /* Load the Read-Only area. */ |
| 2855 | offset = cpu_reg->spad_base + |
| 2856 | (fw->rodata_addr - cpu_reg->mips_view_base); |
| 2857 | if (fw->rodata) { |
| 2858 | int j; |
| 2859 | |
| 2860 | for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) |
| 2861 | REG_WR_IND(sc, offset, fw->rodata[j])bnx_reg_wr_ind(sc, offset, fw->rodata[j]); |
| 2862 | } |
| 2863 | |
| 2864 | /* Clear the pre-fetch instruction. */ |
| 2865 | REG_WR_IND(sc, cpu_reg->inst, 0)bnx_reg_wr_ind(sc, cpu_reg->inst, 0); |
| 2866 | REG_WR_IND(sc, cpu_reg->pc, fw->start_addr)bnx_reg_wr_ind(sc, cpu_reg->pc, fw->start_addr); |
| 2867 | |
| 2868 | /* Start the CPU. */ |
| 2869 | val = REG_RD_IND(sc, cpu_reg->mode)bnx_reg_rd_ind(sc, cpu_reg->mode); |
| 2870 | val &= ~cpu_reg->mode_value_halt; |
| 2871 | REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear)bnx_reg_wr_ind(sc, cpu_reg->state, cpu_reg->state_value_clear ); |
| 2872 | REG_WR_IND(sc, cpu_reg->mode, val)bnx_reg_wr_ind(sc, cpu_reg->mode, val); |
| 2873 | } |
| 2874 | |
| 2875 | /****************************************************************************/ |
| 2876 | /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */ |
| 2877 | /* */ |
| 2878 | /* Loads the firmware for each CPU and starts the CPU. */ |
| 2879 | /* */ |
| 2880 | /* Returns: */ |
| 2881 | /* Nothing. */ |
| 2882 | /****************************************************************************/ |
| 2883 | void |
| 2884 | bnx_init_cpus(struct bnx_softc *sc) |
| 2885 | { |
| 2886 | struct bnx_firmware *bfw = &bnx_firmwares[BNX_FW_B060]; |
| 2887 | struct bnx_rv2p *rv2p = &bnx_rv2ps[BNX_RV2P0]; |
| 2888 | struct cpu_reg cpu_reg; |
| 2889 | struct fw_info fw; |
| 2890 | |
| 2891 | if (BNX_CHIP_NUM(sc)(((sc)->bnx_chipid) & 0xffff0000) == BNX_CHIP_NUM_57090x57090000) { |
| 2892 | bfw = &bnx_firmwares[BNX_FW_B091]; |
| 2893 | if ((BNX_CHIP_REV(sc)(((sc)->bnx_chipid) & 0x0000f000) == BNX_CHIP_REV_Ax0x00000000)) |
| 2894 | rv2p = &bnx_rv2ps[BNX_XI90_RV2P2]; |
| 2895 | else |
| 2896 | rv2p = &bnx_rv2ps[BNX_XI_RV2P1]; |
| 2897 | } |
| 2898 | |
| 2899 | /* Initialize the RV2P processor. */ |
| 2900 | bnx_load_rv2p_fw(sc, rv2p->bnx_rv2p_proc1, |
| 2901 | rv2p->fw->bnx_rv2p_proc1len, RV2P_PROC10); |
| 2902 | bnx_load_rv2p_fw(sc, rv2p->bnx_rv2p_proc2, |
| 2903 | rv2p->fw->bnx_rv2p_proc2len, RV2P_PROC21); |
| 2904 | |
| 2905 | /* Initialize the RX Processor. */ |
| 2906 | cpu_reg.mode = BNX_RXP_CPU_MODE0x000c5000; |
| 2907 | cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT(1L<<10); |
| 2908 | cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA(1L<<1); |
| 2909 | cpu_reg.state = BNX_RXP_CPU_STATE0x000c5004; |
| 2910 | cpu_reg.state_value_clear = 0xffffff; |
| 2911 | cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE0x000c5200; |
| 2912 | cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK0x000c5008; |
| 2913 | cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER0x000c501c; |
| 2914 | cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION0x000c5020; |
| 2915 | cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT0x000c5034; |
| 2916 | cpu_reg.spad_base = BNX_RXP_SCRATCH0x000e0000; |
| 2917 | cpu_reg.mips_view_base = 0x8000000; |
| 2918 | |
| 2919 | fw.ver_major = bfw->fw->bnx_RXP_FwReleaseMajor; |
| 2920 | fw.ver_minor = bfw->fw->bnx_RXP_FwReleaseMinor; |
| 2921 | fw.ver_fix = bfw->fw->bnx_RXP_FwReleaseFix; |
| 2922 | fw.start_addr = bfw->fw->bnx_RXP_FwStartAddr; |
| 2923 | |
| 2924 | fw.text_addr = bfw->fw->bnx_RXP_FwTextAddr; |
| 2925 | fw.text_len = bfw->fw->bnx_RXP_FwTextLen; |
| 2926 | fw.text_index = 0; |
| 2927 | fw.text = bfw->bnx_RXP_FwText; |
| 2928 | |
| 2929 | fw.data_addr = bfw->fw->bnx_RXP_FwDataAddr; |
| 2930 | fw.data_len = bfw->fw->bnx_RXP_FwDataLen; |
| 2931 | fw.data_index = 0; |
| 2932 | fw.data = bfw->bnx_RXP_FwData; |
| 2933 | |
| 2934 | fw.sbss_addr = bfw->fw->bnx_RXP_FwSbssAddr; |
| 2935 | fw.sbss_len = bfw->fw->bnx_RXP_FwSbssLen; |
| 2936 | fw.sbss_index = 0; |
| 2937 | fw.sbss = bfw->bnx_RXP_FwSbss; |
| 2938 | |
| 2939 | fw.bss_addr = bfw->fw->bnx_RXP_FwBssAddr; |
| 2940 | fw.bss_len = bfw->fw->bnx_RXP_FwBssLen; |
| 2941 | fw.bss_index = 0; |
| 2942 | fw.bss = bfw->bnx_RXP_FwBss; |
| 2943 | |
| 2944 | fw.rodata_addr = bfw->fw->bnx_RXP_FwRodataAddr; |
| 2945 | fw.rodata_len = bfw->fw->bnx_RXP_FwRodataLen; |
| 2946 | fw.rodata_index = 0; |
| 2947 | fw.rodata = bfw->bnx_RXP_FwRodata; |
| 2948 | |
| 2949 | DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n"); |
| 2950 | bnx_load_cpu_fw(sc, &cpu_reg, &fw); |
| 2951 | |
| 2952 | /* Initialize the TX Processor. */ |
| 2953 | cpu_reg.mode = BNX_TXP_CPU_MODE0x00045000; |
| 2954 | cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT(1L<<10); |
| 2955 | cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA(1L<<1); |
| 2956 | cpu_reg.state = BNX_TXP_CPU_STATE0x00045004; |
| 2957 | cpu_reg.state_value_clear = 0xffffff; |
| 2958 | cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE0x00045200; |
| 2959 | cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK0x00045008; |
| 2960 | cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER0x0004501c; |
| 2961 | cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION0x00045020; |
| 2962 | cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT0x00045034; |
| 2963 | cpu_reg.spad_base = BNX_TXP_SCRATCH0x00060000; |
| 2964 | cpu_reg.mips_view_base = 0x8000000; |
| 2965 | |
| 2966 | fw.ver_major = bfw->fw->bnx_TXP_FwReleaseMajor; |
| 2967 | fw.ver_minor = bfw->fw->bnx_TXP_FwReleaseMinor; |
| 2968 | fw.ver_fix = bfw->fw->bnx_TXP_FwReleaseFix; |
| 2969 | fw.start_addr = bfw->fw->bnx_TXP_FwStartAddr; |
| 2970 | |
| 2971 | fw.text_addr = bfw->fw->bnx_TXP_FwTextAddr; |
| 2972 | fw.text_len = bfw->fw->bnx_TXP_FwTextLen; |
| 2973 | fw.text_index = 0; |
| 2974 | fw.text = bfw->bnx_TXP_FwText; |
| 2975 | |
| 2976 | fw.data_addr = bfw->fw->bnx_TXP_FwDataAddr; |
| 2977 | fw.data_len = bfw->fw->bnx_TXP_FwDataLen; |
| 2978 | fw.data_index = 0; |
| 2979 | fw.data = bfw->bnx_TXP_FwData; |
| 2980 | |
| 2981 | fw.sbss_addr = bfw->fw->bnx_TXP_FwSbssAddr; |
| 2982 | fw.sbss_len = bfw->fw->bnx_TXP_FwSbssLen; |
| 2983 | fw.sbss_index = 0; |
| 2984 | fw.sbss = bfw->bnx_TXP_FwSbss; |
| 2985 | |
| 2986 | fw.bss_addr = bfw->fw->bnx_TXP_FwBssAddr; |
| 2987 | fw.bss_len = bfw->fw->bnx_TXP_FwBssLen; |
| 2988 | fw.bss_index = 0; |
| 2989 | fw.bss = bfw->bnx_TXP_FwBss; |
| 2990 | |
| 2991 | fw.rodata_addr = bfw->fw->bnx_TXP_FwRodataAddr; |
| 2992 | fw.rodata_len = bfw->fw->bnx_TXP_FwRodataLen; |
| 2993 | fw.rodata_index = 0; |
| 2994 | fw.rodata = bfw->bnx_TXP_FwRodata; |
| 2995 | |
| 2996 | DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n"); |
| 2997 | bnx_load_cpu_fw(sc, &cpu_reg, &fw); |
| 2998 | |
| 2999 | /* Initialize the TX Patch-up Processor. */ |
| 3000 | cpu_reg.mode = BNX_TPAT_CPU_MODE0x00085000; |
| 3001 | cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT(1L<<10); |
| 3002 | cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA(1L<<1); |
| 3003 | cpu_reg.state = BNX_TPAT_CPU_STATE0x00085004; |
| 3004 | cpu_reg.state_value_clear = 0xffffff; |
| 3005 | cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE0x00085200; |
| 3006 | cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK0x00085008; |
| 3007 | cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER0x0008501c; |
| 3008 | cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION0x00085020; |
| 3009 | cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT0x00085034; |
| 3010 | cpu_reg.spad_base = BNX_TPAT_SCRATCH0x000a0000; |
| 3011 | cpu_reg.mips_view_base = 0x8000000; |
| 3012 | |
| 3013 | fw.ver_major = bfw->fw->bnx_TPAT_FwReleaseMajor; |
| 3014 | fw.ver_minor = bfw->fw->bnx_TPAT_FwReleaseMinor; |
| 3015 | fw.ver_fix = bfw->fw->bnx_TPAT_FwReleaseFix; |
| 3016 | fw.start_addr = bfw->fw->bnx_TPAT_FwStartAddr; |
| 3017 | |
| 3018 | fw.text_addr = bfw->fw->bnx_TPAT_FwTextAddr; |
| 3019 | fw.text_len = bfw->fw->bnx_TPAT_FwTextLen; |
| 3020 | fw.text_index = 0; |
| 3021 | fw.text = bfw->bnx_TPAT_FwText; |
| 3022 | |
| 3023 | fw.data_addr = bfw->fw->bnx_TPAT_FwDataAddr; |
| 3024 | fw.data_len = bfw->fw->bnx_TPAT_FwDataLen; |
| 3025 | fw.data_index = 0; |
| 3026 | fw.data = bfw->bnx_TPAT_FwData; |
| 3027 | |
| 3028 | fw.sbss_addr = bfw->fw->bnx_TPAT_FwSbssAddr; |
| 3029 | fw.sbss_len = bfw->fw->bnx_TPAT_FwSbssLen; |
| 3030 | fw.sbss_index = 0; |
| 3031 | fw.sbss = bfw->bnx_TPAT_FwSbss; |
| 3032 | |
| 3033 | fw.bss_addr = bfw->fw->bnx_TPAT_FwBssAddr; |
| 3034 | fw.bss_len = bfw->fw->bnx_TPAT_FwBssLen; |
| 3035 | fw.bss_index = 0; |
| 3036 | fw.bss = bfw->bnx_TPAT_FwBss; |
| 3037 | |
| 3038 | fw.rodata_addr = bfw->fw->bnx_TPAT_FwRodataAddr; |
| 3039 | fw.rodata_len = bfw->fw->bnx_TPAT_FwRodataLen; |
| 3040 | fw.rodata_index = 0; |
| 3041 | fw.rodata = bfw->bnx_TPAT_FwRodata; |
| 3042 | |
| 3043 | DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n"); |
| 3044 | bnx_load_cpu_fw(sc, &cpu_reg, &fw); |
| 3045 | |
| 3046 | /* Initialize the Completion Processor. */ |
| 3047 | cpu_reg.mode = BNX_COM_CPU_MODE0x00105000; |
| 3048 | cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT(1L<<10); |
| 3049 | cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA(1L<<1); |
| 3050 | cpu_reg.state = BNX_COM_CPU_STATE0x00105004; |
| 3051 | cpu_reg.state_value_clear = 0xffffff; |
| 3052 | cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE0x00105200; |
| 3053 | cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK0x00105008; |
| 3054 | cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER0x0010501c; |
| 3055 | cpu_reg.inst = BNX_COM_CPU_INSTRUCTION0x00105020; |
| 3056 | cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT0x00105034; |
| 3057 | cpu_reg.spad_base = BNX_COM_SCRATCH0x00120000; |
| 3058 | cpu_reg.mips_view_base = 0x8000000; |
| 3059 | |
| 3060 | fw.ver_major = bfw->fw->bnx_COM_FwReleaseMajor; |
| 3061 | fw.ver_minor = bfw->fw->bnx_COM_FwReleaseMinor; |
| 3062 | fw.ver_fix = bfw->fw->bnx_COM_FwReleaseFix; |
| 3063 | fw.start_addr = bfw->fw->bnx_COM_FwStartAddr; |
| 3064 | |
| 3065 | fw.text_addr = bfw->fw->bnx_COM_FwTextAddr; |
| 3066 | fw.text_len = bfw->fw->bnx_COM_FwTextLen; |
| 3067 | fw.text_index = 0; |
| 3068 | fw.text = bfw->bnx_COM_FwText; |
| 3069 | |
| 3070 | fw.data_addr = bfw->fw->bnx_COM_FwDataAddr; |
| 3071 | fw.data_len = bfw->fw->bnx_COM_FwDataLen; |
| 3072 | fw.data_index = 0; |
| 3073 | fw.data = bfw->bnx_COM_FwData; |
| 3074 | |
| 3075 | fw.sbss_addr = bfw->fw->bnx_COM_FwSbssAddr; |
| 3076 | fw.sbss_len = bfw->fw->bnx_COM_FwSbssLen; |
| 3077 | fw.sbss_index = 0; |
| 3078 | fw.sbss = bfw->bnx_COM_FwSbss; |
| 3079 | |
| 3080 | fw.bss_addr = bfw->fw->bnx_COM_FwBssAddr; |
| 3081 | fw.bss_len = bfw->fw->bnx_COM_FwBssLen; |
| 3082 | fw.bss_index = 0; |
| 3083 | fw.bss = bfw->bnx_COM_FwBss; |
| 3084 | |
| 3085 | fw.rodata_addr = bfw->fw->bnx_COM_FwRodataAddr; |
| 3086 | fw.rodata_len = bfw->fw->bnx_COM_FwRodataLen; |
| 3087 | fw.rodata_index = 0; |
| 3088 | fw.rodata = bfw->bnx_COM_FwRodata; |
| 3089 | |
| 3090 | DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n"); |
| 3091 | bnx_load_cpu_fw(sc, &cpu_reg, &fw); |
| 3092 | } |
| 3093 | |
| 3094 | /****************************************************************************/ |
| 3095 | /* Initialize context memory. */ |
| 3096 | /* */ |
| 3097 | /* Clears the memory associated with each Context ID (CID). */ |
| 3098 | /* */ |
| 3099 | /* Returns: */ |
| 3100 | /* Nothing. */ |
| 3101 | /****************************************************************************/ |
| 3102 | void |
| 3103 | bnx_init_context(struct bnx_softc *sc) |
| 3104 | { |
| 3105 | if (BNX_CHIP_NUM(sc)(((sc)->bnx_chipid) & 0xffff0000) == BNX_CHIP_NUM_57090x57090000) { |
| 3106 | /* DRC: Replace this constant value with a #define. */ |
| 3107 | int i, retry_cnt = 10; |
| 3108 | u_int32_t val; |
| 3109 | |
| 3110 | /* |
| 3111 | * BCM5709 context memory may be cached |
| 3112 | * in host memory so prepare the host memory |
| 3113 | * for access. |
| 3114 | */ |
| 3115 | val = BNX_CTX_COMMAND_ENABLED(1L<<0) | BNX_CTX_COMMAND_MEM_INIT(1L<<13) |
| 3116 | | (1 << 12); |
| 3117 | val |= (BCM_PAGE_BITS12 - 8) << 16; |
| 3118 | REG_WR(sc, BNX_CTX_COMMAND, val)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00001000 ), (val))); |
| 3119 | |
| 3120 | /* Wait for mem init command to complete. */ |
| 3121 | for (i = 0; i < retry_cnt; i++) { |
| 3122 | val = REG_RD(sc, BNX_CTX_COMMAND)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x00001000 ))); |
| 3123 | if (!(val & BNX_CTX_COMMAND_MEM_INIT(1L<<13))) |
| 3124 | break; |
| 3125 | DELAY(2)(*delay_func)(2); |
| 3126 | } |
| 3127 | |
| 3128 | /* ToDo: Consider returning an error here. */ |
| 3129 | |
| 3130 | for (i = 0; i < sc->ctx_pages; i++) { |
| 3131 | int j; |
| 3132 | |
| 3133 | /* Set the physaddr of the context memory cache. */ |
| 3134 | val = (u_int32_t)(sc->ctx_segs[i].ds_addr); |
| 3135 | REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x000010cc ), (val | (1L<<0)))) |
| 3136 | BNX_CTX_HOST_PAGE_TBL_DATA0_VALID)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x000010cc ), (val | (1L<<0)))); |
| 3137 | val = (u_int32_t) |
| 3138 | ((u_int64_t)sc->ctx_segs[i].ds_addr >> 32); |
| 3139 | REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x000010d0 ), (val))); |
| 3140 | REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x000010c8 ), (i | (1L<<30)))) |
| 3141 | BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x000010c8 ), (i | (1L<<30)))); |
| 3142 | |
| 3143 | /* Verify that the context memory write was successful. */ |
| 3144 | for (j = 0; j < retry_cnt; j++) { |
| 3145 | val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x000010c8 ))); |
| 3146 | if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ(1L<<30)) == 0) |
| 3147 | break; |
| 3148 | DELAY(5)(*delay_func)(5); |
| 3149 | } |
| 3150 | |
| 3151 | /* ToDo: Consider returning an error here. */ |
| 3152 | } |
| 3153 | } else { |
| 3154 | u_int32_t vcid_addr, offset; |
| 3155 | |
| 3156 | /* |
| 3157 | * For the 5706/5708, context memory is local to |
| 3158 | * the controller, so initialize the controller |
| 3159 | * context memory. |
| 3160 | */ |
| 3161 | |
| 3162 | vcid_addr = GET_CID_ADDR(96)((96) << 7); |
| 3163 | while (vcid_addr) { |
| 3164 | |
| 3165 | vcid_addr -= PHY_CTX_SIZE(1 << 6); |
| 3166 | |
| 3167 | REG_WR(sc, BNX_CTX_VIRT_ADDR, 0)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00001008 ), (0))); |
| 3168 | REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x0000100c ), (vcid_addr))); |
| 3169 | |
| 3170 | for(offset = 0; offset < PHY_CTX_SIZE(1 << 6); offset += 4) { |
| 3171 | CTX_WR(sc, 0x00, offset, 0)bnx_ctx_wr(sc, 0x00, offset, 0); |
| 3172 | } |
| 3173 | |
| 3174 | REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00001008 ), (vcid_addr))); |
| 3175 | REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x0000100c ), (vcid_addr))); |
| 3176 | } |
| 3177 | } |
| 3178 | } |
| 3179 | |
| 3180 | /****************************************************************************/ |
| 3181 | /* Fetch the permanent MAC address of the controller. */ |
| 3182 | /* */ |
| 3183 | /* Returns: */ |
| 3184 | /* Nothing. */ |
| 3185 | /****************************************************************************/ |
| 3186 | void |
| 3187 | bnx_get_mac_addr(struct bnx_softc *sc) |
| 3188 | { |
| 3189 | u_int32_t mac_lo = 0, mac_hi = 0; |
| 3190 | |
| 3191 | /* |
| 3192 | * The NetXtreme II bootcode populates various NIC |
| 3193 | * power-on and runtime configuration items in a |
| 3194 | * shared memory area. The factory configured MAC |
| 3195 | * address is available from both NVRAM and the |
| 3196 | * shared memory area so we'll read the value from |
| 3197 | * shared memory for speed. |
| 3198 | */ |
| 3199 | |
| 3200 | mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER)bnx_reg_rd_ind(sc, sc->bnx_shmem_base + 0x00000050); |
| 3201 | mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER)bnx_reg_rd_ind(sc, sc->bnx_shmem_base + 0x00000054); |
| 3202 | |
| 3203 | if ((mac_lo == 0) && (mac_hi == 0)) { |
| 3204 | BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",printf("%s: " "%s(%d): Invalid Ethernet address!\n", sc->bnx_dev .dv_xname, "/usr/src/sys/dev/pci/if_bnx.c", 3205) |
| 3205 | __FILE__, __LINE__)printf("%s: " "%s(%d): Invalid Ethernet address!\n", sc->bnx_dev .dv_xname, "/usr/src/sys/dev/pci/if_bnx.c", 3205); |
| 3206 | } else { |
| 3207 | sc->eaddr[0] = (u_char)(mac_hi >> 8); |
| 3208 | sc->eaddr[1] = (u_char)(mac_hi >> 0); |
| 3209 | sc->eaddr[2] = (u_char)(mac_lo >> 24); |
| 3210 | sc->eaddr[3] = (u_char)(mac_lo >> 16); |
| 3211 | sc->eaddr[4] = (u_char)(mac_lo >> 8); |
| 3212 | sc->eaddr[5] = (u_char)(mac_lo >> 0); |
| 3213 | } |
| 3214 | |
| 3215 | DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = " |
| 3216 | "%6D\n", sc->eaddr, ":"); |
| 3217 | } |
| 3218 | |
| 3219 | /****************************************************************************/ |
| 3220 | /* Program the MAC address. */ |
| 3221 | /* */ |
| 3222 | /* Returns: */ |
| 3223 | /* Nothing. */ |
| 3224 | /****************************************************************************/ |
| 3225 | void |
| 3226 | bnx_set_mac_addr(struct bnx_softc *sc) |
| 3227 | { |
| 3228 | u_int32_t val; |
| 3229 | u_int8_t *mac_addr = sc->eaddr; |
| 3230 | |
| 3231 | DBPRINT(sc, BNX_INFO, "Setting Ethernet address = " |
| 3232 | "%6D\n", sc->eaddr, ":"); |
| 3233 | |
| 3234 | val = (mac_addr[0] << 8) | mac_addr[1]; |
| 3235 | |
| 3236 | REG_WR(sc, BNX_EMAC_MAC_MATCH0, val)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00001410 ), (val))); |
| 3237 | |
| 3238 | val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | |
| 3239 | (mac_addr[4] << 8) | mac_addr[5]; |
| 3240 | |
| 3241 | REG_WR(sc, BNX_EMAC_MAC_MATCH1, val)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00001414 ), (val))); |
| 3242 | } |
| 3243 | |
| 3244 | /****************************************************************************/ |
| 3245 | /* Stop the controller. */ |
| 3246 | /* */ |
| 3247 | /* Returns: */ |
| 3248 | /* Nothing. */ |
| 3249 | /****************************************************************************/ |
| 3250 | void |
| 3251 | bnx_stop(struct bnx_softc *sc) |
| 3252 | { |
| 3253 | struct ifnet *ifp = &sc->arpcom.ac_if; |
| 3254 | struct ifmedia_entry *ifm; |
| 3255 | struct mii_data *mii; |
| 3256 | int mtmp, itmp; |
| 3257 | |
| 3258 | DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); |
| 3259 | |
| 3260 | timeout_del(&sc->bnx_timeout); |
| 3261 | timeout_del(&sc->bnx_rxrefill); |
| 3262 | |
| 3263 | ifp->if_flags &= ~IFF_RUNNING0x40; |
| 3264 | ifq_clr_oactive(&ifp->if_snd); |
| 3265 | |
| 3266 | /* Disable the transmit/receive blocks. */ |
| 3267 | REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00000814 ), (0x5ffffff))); |
| 3268 | REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x00000814 ))); |
| 3269 | DELAY(20)(*delay_func)(20); |
| 3270 | |
| 3271 | bnx_disable_intr(sc); |
| 3272 | |
| 3273 | intr_barrier(sc->bnx_intrhand); |
| 3274 | KASSERT((ifp->if_flags & IFF_RUNNING) == 0)(((ifp->if_flags & 0x40) == 0) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/dev/pci/if_bnx.c", 3274, "(ifp->if_flags & IFF_RUNNING) == 0" )); |
| 3275 | |
| 3276 | /* Tell firmware that the driver is going away. */ |
| 3277 | bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL0x09000000); |
| 3278 | |
| 3279 | /* Free RX buffers. */ |
| 3280 | bnx_free_rx_chain(sc); |
| 3281 | |
| 3282 | /* Free TX buffers. */ |
| 3283 | bnx_free_tx_chain(sc); |
| 3284 | |
| 3285 | /* |
| 3286 | * Isolate/power down the PHY, but leave the media selection |
| 3287 | * unchanged so that things will be put back to normal when |
| 3288 | * we bring the interface back up. |
| 3289 | */ |
| 3290 | mii = &sc->bnx_mii; |
| 3291 | itmp = ifp->if_flags; |
| 3292 | ifp->if_flags |= IFF_UP0x1; |
| 3293 | ifm = mii->mii_media.ifm_cur; |
| 3294 | mtmp = ifm->ifm_media; |
| 3295 | ifm->ifm_media = IFM_ETHER0x0000000000000100ULL|IFM_NONE2ULL; |
| 3296 | mii_mediachg(mii); |
| 3297 | ifm->ifm_media = mtmp; |
| 3298 | ifp->if_flags = itmp; |
| 3299 | |
| 3300 | ifp->if_timer = 0; |
| 3301 | |
| 3302 | sc->bnx_link = 0; |
| 3303 | |
| 3304 | DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); |
| 3305 | |
| 3306 | bnx_mgmt_init(sc); |
| 3307 | } |
| 3308 | |
| 3309 | int |
| 3310 | bnx_reset(struct bnx_softc *sc, u_int32_t reset_code) |
| 3311 | { |
| 3312 | struct pci_attach_args *pa = &(sc->bnx_pa); |
| 3313 | u_int32_t val; |
| 3314 | int i, rc = 0; |
| 3315 | |
| 3316 | DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); |
| 3317 | |
| 3318 | /* Wait for pending PCI transactions to complete. */ |
| 3319 | REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00000814 ), ((1L<<4) | (1L<<26) | (1L<<17) | (1L<< 19)))) |
| 3320 | BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00000814 ), ((1L<<4) | (1L<<26) | (1L<<17) | (1L<< 19)))) |
| 3321 | BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00000814 ), ((1L<<4) | (1L<<26) | (1L<<17) | (1L<< 19)))) |
| 3322 | BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00000814 ), ((1L<<4) | (1L<<26) | (1L<<17) | (1L<< 19)))) |
| 3323 | BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00000814 ), ((1L<<4) | (1L<<26) | (1L<<17) | (1L<< 19)))); |
| 3324 | val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x00000814 ))); |
| 3325 | DELAY(5)(*delay_func)(5); |
| 3326 | |
| 3327 | /* Disable DMA */ |
| 3328 | if (BNX_CHIP_NUM(sc)(((sc)->bnx_chipid) & 0xffff0000) == BNX_CHIP_NUM_57090x57090000) { |
| 3329 | val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x000008c8 ))); |
| 3330 | val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE(1L<<16); |
| 3331 | REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x000008c8 ), (val))); |
| 3332 | } |
| 3333 | |
| 3334 | /* Assume bootcode is running. */ |
| 3335 | sc->bnx_fw_timed_out = 0; |
| 3336 | |
| 3337 | /* Give the firmware a chance to prepare for the reset. */ |
| 3338 | rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT00x00010000 | reset_code); |
| 3339 | if (rc) |
| 3340 | goto bnx_reset_exit; |
| 3341 | |
| 3342 | /* Set a firmware reminder that this is a soft reset. */ |
| 3343 | REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,bnx_reg_wr_ind(sc, sc->bnx_shmem_base + 0x00000000, 0x4841564b ) |
| 3344 | BNX_DRV_RESET_SIGNATURE_MAGIC)bnx_reg_wr_ind(sc, sc->bnx_shmem_base + 0x00000000, 0x4841564b ); |
| 3345 | |
| 3346 | /* Dummy read to force the chip to complete all current transactions. */ |
| 3347 | val = REG_RD(sc, BNX_MISC_ID)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x00000808 ))); |
| 3348 | |
| 3349 | /* Chip reset. */ |
| 3350 | if (BNX_CHIP_NUM(sc)(((sc)->bnx_chipid) & 0xffff0000) == BNX_CHIP_NUM_57090x57090000) { |
| 3351 | REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00000800 ), ((1L<<4)))); |
| 3352 | REG_RD(sc, BNX_MISC_COMMAND)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x00000800 ))); |
| 3353 | DELAY(5)(*delay_func)(5); |
| 3354 | |
| 3355 | val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA(1L<<7) | |
| 3356 | BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP(1L<<3); |
| 3357 | |
| 3358 | pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG0x00000068, |
| 3359 | val); |
| 3360 | } else { |
| 3361 | val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ(1L<<8) | |
| 3362 | BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA(1L<<7) | |
| 3363 | BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP(1L<<3); |
| 3364 | REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00000068 ), (val))); |
| 3365 | |
| 3366 | /* Allow up to 30us for reset to complete. */ |
| 3367 | for (i = 0; i < 10; i++) { |
| 3368 | val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x00000068 ))); |
| 3369 | if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ(1L<<8) | |
| 3370 | BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY(1L<<9))) == 0) { |
| 3371 | break; |
| 3372 | } |
| 3373 | DELAY(10)(*delay_func)(10); |
| 3374 | } |
| 3375 | |
| 3376 | /* Check that reset completed successfully. */ |
| 3377 | if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ(1L<<8) | |
| 3378 | BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY(1L<<9))) { |
| 3379 | BNX_PRINTF(sc, "%s(%d): Reset failed!\n",printf("%s: " "%s(%d): Reset failed!\n", sc->bnx_dev.dv_xname , "/usr/src/sys/dev/pci/if_bnx.c", 3380) |
| 3380 | __FILE__, __LINE__)printf("%s: " "%s(%d): Reset failed!\n", sc->bnx_dev.dv_xname , "/usr/src/sys/dev/pci/if_bnx.c", 3380); |
| 3381 | rc = EBUSY16; |
| 3382 | goto bnx_reset_exit; |
| 3383 | } |
| 3384 | } |
| 3385 | |
| 3386 | /* Make sure byte swapping is properly configured. */ |
| 3387 | val = REG_RD(sc, BNX_PCI_SWAP_DIAG0)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x00000418 ))); |
| 3388 | if (val != 0x01020304) { |
| 3389 | BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",printf("%s: " "%s(%d): Byte swap is incorrect!\n", sc->bnx_dev .dv_xname, "/usr/src/sys/dev/pci/if_bnx.c", 3390) |
| 3390 | __FILE__, __LINE__)printf("%s: " "%s(%d): Byte swap is incorrect!\n", sc->bnx_dev .dv_xname, "/usr/src/sys/dev/pci/if_bnx.c", 3390); |
| 3391 | rc = ENODEV19; |
| 3392 | goto bnx_reset_exit; |
| 3393 | } |
| 3394 | |
| 3395 | /* Just completed a reset, assume that firmware is running again. */ |
| 3396 | sc->bnx_fw_timed_out = 0; |
| 3397 | |
| 3398 | /* Wait for the firmware to finish its initialization. */ |
| 3399 | rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT10x00020000 | reset_code); |
| 3400 | if (rc) |
| 3401 | BNX_PRINTF(sc, "%s(%d): Firmware did not complete "printf("%s: " "%s(%d): Firmware did not complete " "initialization!\n" , sc->bnx_dev.dv_xname, "/usr/src/sys/dev/pci/if_bnx.c", 3402 ) |
| 3402 | "initialization!\n", __FILE__, __LINE__)printf("%s: " "%s(%d): Firmware did not complete " "initialization!\n" , sc->bnx_dev.dv_xname, "/usr/src/sys/dev/pci/if_bnx.c", 3402 ); |
| 3403 | |
| 3404 | bnx_reset_exit: |
| 3405 | DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); |
| 3406 | |
| 3407 | return (rc); |
| 3408 | } |
| 3409 | |
| 3410 | int |
| 3411 | bnx_chipinit(struct bnx_softc *sc) |
| 3412 | { |
| 3413 | struct pci_attach_args *pa = &(sc->bnx_pa); |
| 3414 | u_int32_t val; |
| 3415 | int rc = 0; |
| 3416 | |
| 3417 | DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); |
| 3418 | |
| 3419 | /* Make sure the interrupt is not active. */ |
| 3420 | REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00000084 ), ((1L<<18)))); |
| 3421 | |
| 3422 | /* Initialize DMA byte/word swapping, configure the number of DMA */ |
| 3423 | /* channels and PCI clock compensation delay. */ |
| 3424 | val = BNX_DMA_CONFIG_DATA_BYTE_SWAP(1L<<0) | |
| 3425 | BNX_DMA_CONFIG_DATA_WORD_SWAP(1L<<1) | |
| 3426 | #if BYTE_ORDER1234 == BIG_ENDIAN4321 |
| 3427 | BNX_DMA_CONFIG_CNTL_BYTE_SWAP(1L<<4) | |
| 3428 | #endif |
| 3429 | BNX_DMA_CONFIG_CNTL_WORD_SWAP(1L<<5) | |
| 3430 | DMA_READ_CHANS5 << 12 | |
| 3431 | DMA_WRITE_CHANS3 << 16; |
| 3432 | |
| 3433 | val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY(1L<<11); |
| 3434 | |
| 3435 | if ((sc->bnx_flags & BNX_PCIX_FLAG0x01) && (sc->bus_speed_mhz == 133)) |
| 3436 | val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP(1L<<23); |
| 3437 | |
| 3438 | /* |
| 3439 | * This setting resolves a problem observed on certain Intel PCI |
| 3440 | * chipsets that cannot handle multiple outstanding DMA operations. |
| 3441 | * See errata E9_5706A1_65. |
| 3442 | */ |
| 3443 | if ((BNX_CHIP_NUM(sc)(((sc)->bnx_chipid) & 0xffff0000) == BNX_CHIP_NUM_57060x57060000) && |
| 3444 | (BNX_CHIP_ID(sc)(((sc)->bnx_chipid) & 0xfffffff0) != BNX_CHIP_ID_5706_A00x57060000) && |
| 3445 | !(sc->bnx_flags & BNX_PCIX_FLAG0x01)) |
| 3446 | val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA(1L<<10); |
| 3447 | |
| 3448 | REG_WR(sc, BNX_DMA_CONFIG, val)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00000c08 ), (val))); |
| 3449 | |
| 3450 | #if 1 |
| 3451 | /* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */ |
| 3452 | if (sc->bnx_flags & BNX_PCIX_FLAG0x01) { |
| 3453 | val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD0x40); |
| 3454 | pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD0x40, |
| 3455 | val & ~0x20000); |
| 3456 | } |
| 3457 | #endif |
| 3458 | |
| 3459 | /* Enable the RX_V2P and Context state machines before access. */ |
| 3460 | REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00000810 ), ((1L<<19) | (1L<<15) | (1L<<21)))) |
| 3461 | BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00000810 ), ((1L<<19) | (1L<<15) | (1L<<21)))) |
| 3462 | BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00000810 ), ((1L<<19) | (1L<<15) | (1L<<21)))) |
| 3463 | BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00000810 ), ((1L<<19) | (1L<<15) | (1L<<21)))); |
| 3464 | |
| 3465 | /* Initialize context mapping and zero out the quick contexts. */ |
| 3466 | bnx_init_context(sc); |
| 3467 | |
| 3468 | /* Initialize the on-boards CPUs */ |
| 3469 | bnx_init_cpus(sc); |
| 3470 | |
| 3471 | /* Prepare NVRAM for access. */ |
| 3472 | if (bnx_init_nvram(sc)) { |
| 3473 | rc = ENODEV19; |
| 3474 | goto bnx_chipinit_exit; |
| 3475 | } |
| 3476 | |
| 3477 | /* Set the kernel bypass block size */ |
| 3478 | val = REG_RD(sc, BNX_MQ_CONFIG)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x00003c08 ))); |
| 3479 | val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE(0x7L<<4); |
| 3480 | val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256(0L<<4); |
| 3481 | |
| 3482 | /* Enable bins used on the 5709. */ |
| 3483 | if (BNX_CHIP_NUM(sc)(((sc)->bnx_chipid) & 0xffff0000) == BNX_CHIP_NUM_57090x57090000) { |
| 3484 | val |= BNX_MQ_CONFIG_BIN_MQ_MODE(1L<<2); |
| 3485 | if (BNX_CHIP_ID(sc)(((sc)->bnx_chipid) & 0xfffffff0) == BNX_CHIP_ID_5709_A10x57090010) |
| 3486 | val |= BNX_MQ_CONFIG_HALT_DIS(1L<<1); |
| 3487 | } |
| 3488 | |
| 3489 | REG_WR(sc, BNX_MQ_CONFIG, val)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00003c08 ), (val))); |
| 3490 | |
| 3491 | val = 0x10000 + (MAX_CID_CNT0x4000 * MB_KERNEL_CTX_SIZE(1 << 8)); |
| 3492 | REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00003c1c ), (val))); |
| 3493 | REG_WR(sc, BNX_MQ_KNL_WIND_END, val)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00003c20 ), (val))); |
| 3494 | |
| 3495 | val = (BCM_PAGE_BITS12 - 8) << 24; |
| 3496 | REG_WR(sc, BNX_RV2P_CONFIG, val)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00002808 ), (val))); |
| 3497 | |
| 3498 | /* Configure page size. */ |
| 3499 | val = REG_RD(sc, BNX_TBDR_CONFIG)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x00005008 ))); |
| 3500 | val &= ~BNX_TBDR_CONFIG_PAGE_SIZE(0xfL<<24); |
| 3501 | val |= (BCM_PAGE_BITS12 - 8) << 24 | 0x40; |
| 3502 | REG_WR(sc, BNX_TBDR_CONFIG, val)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00005008 ), (val))); |
| 3503 | |
| 3504 | #if 0 |
| 3505 | /* Set the perfect match control register to default. */ |
| 3506 | REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0)bnx_reg_wr_ind(sc, BNX_RXP_PM_CTRL, 0); |
| 3507 | #endif |
| 3508 | |
| 3509 | bnx_chipinit_exit: |
| 3510 | DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); |
| 3511 | |
| 3512 | return(rc); |
| 3513 | } |
| 3514 | |
| 3515 | /****************************************************************************/ |
| 3516 | /* Initialize the controller in preparation to send/receive traffic. */ |
| 3517 | /* */ |
| 3518 | /* Returns: */ |
| 3519 | /* 0 for success, positive value for failure. */ |
| 3520 | /****************************************************************************/ |
| 3521 | int |
| 3522 | bnx_blockinit(struct bnx_softc *sc) |
| 3523 | { |
| 3524 | u_int32_t reg, val; |
| 3525 | int rc = 0; |
| 3526 | |
| 3527 | DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); |
| 3528 | |
| 3529 | /* Load the hardware default MAC address. */ |
| 3530 | bnx_set_mac_addr(sc); |
| 3531 | |
| 3532 | /* Set the Ethernet backoff seed value */ |
| 3533 | val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) + |
| 3534 | (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16); |
| 3535 | REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00001498 ), (val))); |
| 3536 | |
| 3537 | sc->last_status_idx = 0; |
| 3538 | sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE(1L<<12); |
| 3539 | |
| 3540 | /* Set up link change interrupt generation. */ |
| 3541 | REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00001408 ), ((1L<<11)))); |
| 3542 | REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x0000680c ), ((1L<<0)))); |
| 3543 | |
| 3544 | /* Program the physical address of the status block. */ |
| 3545 | REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr))((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006810 ), ((u_int32_t)(sc->status_block_paddr)))); |
| 3546 | REG_WR(sc, BNX_HC_STATUS_ADDR_H,((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006814 ), ((u_int32_t)((u_int64_t)sc->status_block_paddr >> 32)))) |
| 3547 | (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32))((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006814 ), ((u_int32_t)((u_int64_t)sc->status_block_paddr >> 32)))); |
| 3548 | |
| 3549 | /* Program the physical address of the statistics block. */ |
| 3550 | REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006818 ), ((u_int32_t)(sc->stats_block_paddr)))) |
| 3551 | (u_int32_t)(sc->stats_block_paddr))((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006818 ), ((u_int32_t)(sc->stats_block_paddr)))); |
| 3552 | REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x0000681c ), ((u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32 )))) |
| 3553 | (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32))((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x0000681c ), ((u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32 )))); |
| 3554 | |
| 3555 | /* Program various host coalescing parameters. */ |
| 3556 | REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006820 ), ((sc->bnx_tx_quick_cons_trip_int << 16) | sc-> bnx_tx_quick_cons_trip))) |
| 3557 | << 16) | sc->bnx_tx_quick_cons_trip)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006820 ), ((sc->bnx_tx_quick_cons_trip_int << 16) | sc-> bnx_tx_quick_cons_trip))); |
| 3558 | REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006828 ), ((sc->bnx_rx_quick_cons_trip_int << 16) | sc-> bnx_rx_quick_cons_trip))) |
| 3559 | << 16) | sc->bnx_rx_quick_cons_trip)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006828 ), ((sc->bnx_rx_quick_cons_trip_int << 16) | sc-> bnx_rx_quick_cons_trip))); |
| 3560 | REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006824 ), ((sc->bnx_comp_prod_trip_int << 16) | sc->bnx_comp_prod_trip ))) |
| 3561 | sc->bnx_comp_prod_trip)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006824 ), ((sc->bnx_comp_prod_trip_int << 16) | sc->bnx_comp_prod_trip ))); |
| 3562 | REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006830 ), ((sc->bnx_tx_ticks_int << 16) | sc->bnx_tx_ticks ))) |
| 3563 | sc->bnx_tx_ticks)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006830 ), ((sc->bnx_tx_ticks_int << 16) | sc->bnx_tx_ticks ))); |
| 3564 | REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x0000682c ), ((sc->bnx_rx_ticks_int << 16) | sc->bnx_rx_ticks ))) |
| 3565 | sc->bnx_rx_ticks)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x0000682c ), ((sc->bnx_rx_ticks_int << 16) | sc->bnx_rx_ticks ))); |
| 3566 | REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006834 ), ((sc->bnx_com_ticks_int << 16) | sc->bnx_com_ticks ))) |
| 3567 | sc->bnx_com_ticks)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006834 ), ((sc->bnx_com_ticks_int << 16) | sc->bnx_com_ticks ))); |
| 3568 | REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006838 ), ((sc->bnx_cmd_ticks_int << 16) | sc->bnx_cmd_ticks ))) |
| 3569 | sc->bnx_cmd_ticks)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006838 ), ((sc->bnx_cmd_ticks_int << 16) | sc->bnx_cmd_ticks ))); |
| 3570 | REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00))((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006844 ), ((sc->bnx_stats_ticks & 0xffff00)))); |
| 3571 | REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006840 ), (0xbb8))); /* 3ms */ |
| 3572 | REG_WR(sc, BNX_HC_CONFIG,((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006808 ), (((1L<<1) | (1L<<2) | (1L<<0))))) |
| 3573 | (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006808 ), (((1L<<1) | (1L<<2) | (1L<<0))))) |
| 3574 | BNX_HC_CONFIG_COLLECT_STATS))((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006808 ), (((1L<<1) | (1L<<2) | (1L<<0))))); |
| 3575 | |
| 3576 | /* Clear the internal statistics counters. */ |
| 3577 | REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006800 ), ((1L<<21)))); |
| 3578 | |
| 3579 | /* Verify that bootcode is running. */ |
| 3580 | reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE)bnx_reg_rd_ind(sc, sc->bnx_shmem_base + 0x00000020); |
| 3581 | |
| 3582 | DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure), |
| 3583 | BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n", |
| 3584 | __FILE__, __LINE__); reg = 0); |
| 3585 | |
| 3586 | if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK0xffffff00) != |
| 3587 | BNX_DEV_INFO_SIGNATURE_MAGIC0x44564900) { |
| 3588 | BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "printf("%s: " "%s(%d): Bootcode not running! Found: 0x%08X, " "Expected: 08%08X\n", sc->bnx_dev.dv_xname, "/usr/src/sys/dev/pci/if_bnx.c" , 3591, (reg & 0xffffff00), 0x44564900) |
| 3589 | "Expected: 08%08X\n", __FILE__, __LINE__,printf("%s: " "%s(%d): Bootcode not running! Found: 0x%08X, " "Expected: 08%08X\n", sc->bnx_dev.dv_xname, "/usr/src/sys/dev/pci/if_bnx.c" , 3591, (reg & 0xffffff00), 0x44564900) |
| 3590 | (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),printf("%s: " "%s(%d): Bootcode not running! Found: 0x%08X, " "Expected: 08%08X\n", sc->bnx_dev.dv_xname, "/usr/src/sys/dev/pci/if_bnx.c" , 3591, (reg & 0xffffff00), 0x44564900) |
| 3591 | BNX_DEV_INFO_SIGNATURE_MAGIC)printf("%s: " "%s(%d): Bootcode not running! Found: 0x%08X, " "Expected: 08%08X\n", sc->bnx_dev.dv_xname, "/usr/src/sys/dev/pci/if_bnx.c" , 3591, (reg & 0xffffff00), 0x44564900); |
| 3592 | rc = ENODEV19; |
| 3593 | goto bnx_blockinit_exit; |
| 3594 | } |
| 3595 | |
| 3596 | /* Check if any management firmware is running. */ |
| 3597 | reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE)bnx_reg_rd_ind(sc, sc->bnx_shmem_base + 0x000000d8); |
| 3598 | if (reg & (BNX_PORT_FEATURE_ASF_ENABLED0x04000000 | |
| 3599 | BNX_PORT_FEATURE_IMD_ENABLED0x08000000)) { |
| 3600 | DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n"); |
| 3601 | sc->bnx_flags |= BNX_MFW_ENABLE_FLAG0x40; |
| 3602 | } |
| 3603 | |
| 3604 | sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +bnx_reg_rd_ind(sc, sc->bnx_shmem_base + 0x0000004c) |
| 3605 | BNX_DEV_INFO_BC_REV)bnx_reg_rd_ind(sc, sc->bnx_shmem_base + 0x0000004c); |
| 3606 | |
| 3607 | DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver); |
| 3608 | |
| 3609 | /* Enable DMA */ |
| 3610 | if (BNX_CHIP_NUM(sc)(((sc)->bnx_chipid) & 0xffff0000) == BNX_CHIP_NUM_57090x57090000) { |
| 3611 | val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x000008c8 ))); |
| 3612 | val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE(1L<<16); |
| 3613 | REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x000008c8 ), (val))); |
| 3614 | } |
| 3615 | |
| 3616 | /* Allow bootcode to apply any additional fixes before enabling MAC. */ |
| 3617 | rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT20x00030000 | BNX_DRV_MSG_CODE_RESET0x01000000); |
| 3618 | |
| 3619 | /* Enable link state change interrupt generation. */ |
| 3620 | if (BNX_CHIP_NUM(sc)(((sc)->bnx_chipid) & 0xffff0000) == BNX_CHIP_NUM_57090x57090000) { |
| 3621 | REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00000810 ), (0x17ffffff))) |
| 3622 | BNX_MISC_ENABLE_DEFAULT_XI)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00000810 ), (0x17ffffff))); |
| 3623 | } else |
| 3624 | REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00000810 ), (0x05ffffff))); |
| 3625 | |
| 3626 | /* Enable all remaining blocks in the MAC. */ |
| 3627 | REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00000810 ), (0x5ffffff))); |
| 3628 | REG_RD(sc, BNX_MISC_ENABLE_SET_BITS)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x00000810 ))); |
| 3629 | DELAY(20)(*delay_func)(20); |
| 3630 | |
| 3631 | bnx_blockinit_exit: |
| 3632 | DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); |
| 3633 | |
| 3634 | return (rc); |
| 3635 | } |
| 3636 | |
| 3637 | /****************************************************************************/ |
| 3638 | /* Encapsulate an mbuf cluster into the rx_bd chain. */ |
| 3639 | /* */ |
| 3640 | /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */ |
| 3641 | /* This routine will map an mbuf cluster into 1 or more rx_bd's as */ |
| 3642 | /* necessary. */ |
| 3643 | /* */ |
| 3644 | /* Returns: */ |
| 3645 | /* 0 for success, positive value for failure. */ |
| 3646 | /****************************************************************************/ |
| 3647 | int |
| 3648 | bnx_get_buf(struct bnx_softc *sc, u_int16_t *prod, |
| 3649 | u_int16_t *chain_prod, u_int32_t *prod_bseq) |
| 3650 | { |
| 3651 | bus_dmamap_t map; |
| 3652 | struct mbuf *m; |
| 3653 | struct rx_bd *rxbd; |
| 3654 | int i; |
| 3655 | u_int32_t addr; |
| 3656 | #ifdef BNX_DEBUG |
| 3657 | u_int16_t debug_chain_prod = *chain_prod; |
| 3658 | #endif |
| 3659 | u_int16_t first_chain_prod; |
| 3660 | |
| 3661 | DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n", |
| 3662 | __FUNCTION__); |
| 3663 | |
| 3664 | /* Make sure the inputs are valid. */ |
| 3665 | DBRUNIF((*chain_prod > MAX_RX_BD), |
| 3666 | printf("%s: RX producer out of range: 0x%04X > 0x%04X\n", |
| 3667 | *chain_prod, (u_int16_t) MAX_RX_BD)); |
| 3668 | |
| 3669 | DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = " |
| 3670 | "0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, *prod, *chain_prod, |
| 3671 | *prod_bseq); |
| 3672 | |
| 3673 | /* This is a new mbuf allocation. */ |
| 3674 | m = MCLGETL(NULL, M_DONTWAIT, BNX_MAX_JUMBO_MRU)m_clget((((void *)0)), (0x0002), (9216)); |
| 3675 | if (!m) |
| 3676 | return (0); |
| 3677 | m->m_lenm_hdr.mh_len = m->m_pkthdrM_dat.MH.MH_pkthdr.len = BNX_MAX_JUMBO_MRU9216; |
| 3678 | /* the chip aligns the ip header for us, no need to m_adj */ |
| 3679 | |
| 3680 | /* Map the mbuf cluster into device memory. */ |
| 3681 | map = sc->rx_mbuf_map[*chain_prod]; |
| 3682 | if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT)(*(sc->bnx_dmatag)->_dmamap_load_mbuf)((sc->bnx_dmatag ), (map), (m), (0x0001))) { |
| 3683 | m_freem(m); |
| 3684 | return (0); |
| 3685 | } |
| 3686 | first_chain_prod = *chain_prod; |
| 3687 | |
| 3688 | #ifdef BNX_DEBUG |
| 3689 | /* Track the distribution of buffer segments. */ |
| 3690 | sc->rx_mbuf_segs[map->dm_nsegs]++; |
| 3691 | #endif |
| 3692 | |
| 3693 | /* Setup the rx_bd for the first segment. */ |
| 3694 | rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)(((*chain_prod) & ~(((1 << 12) / sizeof(struct rx_bd )) - 1)) >> (12 - 4))][RX_IDX(*chain_prod)((*chain_prod) & (((1 << 12) / sizeof(struct rx_bd) ) - 1))]; |
| 3695 | |
| 3696 | addr = (u_int32_t)map->dm_segs[0].ds_addr; |
| 3697 | rxbd->rx_bd_haddr_lo = addr; |
| 3698 | addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32); |
| 3699 | rxbd->rx_bd_haddr_hi = addr; |
| 3700 | rxbd->rx_bd_len = map->dm_segs[0].ds_len; |
| 3701 | rxbd->rx_bd_flags = RX_BD_FLAGS_START(1<<3); |
| 3702 | *prod_bseq += map->dm_segs[0].ds_len; |
| 3703 | |
| 3704 | for (i = 1; i < map->dm_nsegs; i++) { |
| 3705 | *prod = NEXT_RX_BD(*prod)(((*prod) & (((1 << 12) / sizeof(struct rx_bd)) - 1 )) == ((((1 << 12) / sizeof(struct rx_bd)) - 1) - 1)) ? (*prod) + 2 : (*prod) + 1; |
| 3706 | *chain_prod = RX_CHAIN_IDX(*prod)((*prod) & ((((1 << 12) / sizeof(struct rx_bd)) * 2 ) - 1)); |
| 3707 | |
| 3708 | rxbd = |
| 3709 | &sc->rx_bd_chain[RX_PAGE(*chain_prod)(((*chain_prod) & ~(((1 << 12) / sizeof(struct rx_bd )) - 1)) >> (12 - 4))][RX_IDX(*chain_prod)((*chain_prod) & (((1 << 12) / sizeof(struct rx_bd) ) - 1))]; |
| 3710 | |
| 3711 | addr = (u_int32_t)map->dm_segs[i].ds_addr; |
| 3712 | rxbd->rx_bd_haddr_lo = addr; |
| 3713 | addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32); |
| 3714 | rxbd->rx_bd_haddr_hi = addr; |
| 3715 | rxbd->rx_bd_len = map->dm_segs[i].ds_len; |
| 3716 | rxbd->rx_bd_flags = 0; |
| 3717 | *prod_bseq += map->dm_segs[i].ds_len; |
| 3718 | } |
| 3719 | |
| 3720 | rxbd->rx_bd_flags |= RX_BD_FLAGS_END(1<<2); |
| 3721 | |
| 3722 | /* |
| 3723 | * Save the mbuf, adjust the map pointer (swap map for first and |
| 3724 | * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches) |
| 3725 | * and update our counter. |
| 3726 | */ |
| 3727 | sc->rx_mbuf_ptr[*chain_prod] = m; |
| 3728 | sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod]; |
| 3729 | sc->rx_mbuf_map[*chain_prod] = map; |
| 3730 | |
| 3731 | DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod, |
| 3732 | map->dm_nsegs)); |
| 3733 | |
| 3734 | return (map->dm_nsegs); |
| 3735 | } |
| 3736 | |
| 3737 | |
| 3738 | /****************************************************************************/ |
| 3739 | /* Initialize the TX context memory. */ |
| 3740 | /* */ |
| 3741 | /* Returns: */ |
| 3742 | /* Nothing */ |
| 3743 | /****************************************************************************/ |
| 3744 | void |
| 3745 | bnx_init_tx_context(struct bnx_softc *sc) |
| 3746 | { |
| 3747 | u_int32_t val; |
| 3748 | |
| 3749 | /* Initialize the context ID for an L2 TX chain. */ |
| 3750 | if (BNX_CHIP_NUM(sc)(((sc)->bnx_chipid) & 0xffff0000) == BNX_CHIP_NUM_57090x57090000) { |
| 3751 | /* Set the CID type to support an L2 connection. */ |
| 3752 | val = BNX_L2CTX_TYPE_TYPE_L2(1<<28) | BNX_L2CTX_TYPE_SIZE_L2((0xc0/0x20)<<16); |
| 3753 | CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val)bnx_ctx_wr(sc, ((16) << 7), 0x00000080, val); |
| 3754 | val = BNX_L2CTX_CMD_TYPE_TYPE_L2(0<<24) | (8 << 16); |
| 3755 | CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val)bnx_ctx_wr(sc, ((16) << 7), 0x00000240, val); |
| 3756 | |
| 3757 | /* Point the hardware to the first page in the chain. */ |
| 3758 | val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32); |
| 3759 | CTX_WR(sc, GET_CID_ADDR(TX_CID),bnx_ctx_wr(sc, ((16) << 7), 0x00000258, val) |
| 3760 | BNX_L2CTX_TBDR_BHADDR_HI_XI, val)bnx_ctx_wr(sc, ((16) << 7), 0x00000258, val); |
| 3761 | val = (u_int32_t)(sc->tx_bd_chain_paddr[0]); |
| 3762 | CTX_WR(sc, GET_CID_ADDR(TX_CID),bnx_ctx_wr(sc, ((16) << 7), 0x0000025c, val) |
| 3763 | BNX_L2CTX_TBDR_BHADDR_LO_XI, val)bnx_ctx_wr(sc, ((16) << 7), 0x0000025c, val); |
| 3764 | } else { |
| 3765 | /* Set the CID type to support an L2 connection. */ |
| 3766 | val = BNX_L2CTX_TYPE_TYPE_L2(1<<28) | BNX_L2CTX_TYPE_SIZE_L2((0xc0/0x20)<<16); |
| 3767 | CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val)bnx_ctx_wr(sc, ((16) << 7), 0x00000000, val); |
| 3768 | val = BNX_L2CTX_CMD_TYPE_TYPE_L2(0<<24) | (8 << 16); |
| 3769 | CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val)bnx_ctx_wr(sc, ((16) << 7), 0x00000088, val); |
| 3770 | |
| 3771 | /* Point the hardware to the first page in the chain. */ |
| 3772 | val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32); |
| 3773 | CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val)bnx_ctx_wr(sc, ((16) << 7), 0x000000a0, val); |
| 3774 | val = (u_int32_t)(sc->tx_bd_chain_paddr[0]); |
| 3775 | CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val)bnx_ctx_wr(sc, ((16) << 7), 0x000000a4, val); |
| 3776 | } |
| 3777 | } |
| 3778 | |
| 3779 | /****************************************************************************/ |
| 3780 | /* Allocate memory and initialize the TX data structures. */ |
| 3781 | /* */ |
| 3782 | /* Returns: */ |
| 3783 | /* 0 for success, positive value for failure. */ |
| 3784 | /****************************************************************************/ |
| 3785 | int |
| 3786 | bnx_init_tx_chain(struct bnx_softc *sc) |
| 3787 | { |
| 3788 | struct tx_bd *txbd; |
| 3789 | u_int32_t addr; |
| 3790 | int i, rc = 0; |
| 3791 | |
| 3792 | DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); |
| 3793 | |
| 3794 | /* Set the initial TX producer/consumer indices. */ |
| 3795 | sc->tx_prod = 0; |
| 3796 | sc->tx_cons = 0; |
| 3797 | sc->tx_prod_bseq = 0; |
| 3798 | sc->used_tx_bd = 0; |
| 3799 | sc->max_tx_bd = USABLE_TX_BD((((1 << 12) / sizeof(struct tx_bd)) - 1) * 2); |
| 3800 | DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD); |
| 3801 | DBRUNIF(1, sc->tx_full_count = 0); |
| 3802 | |
| 3803 | /* |
| 3804 | * The NetXtreme II supports a linked-list structure called |
| 3805 | * a Buffer Descriptor Chain (or BD chain). A BD chain |
| 3806 | * consists of a series of 1 or more chain pages, each of which |
| 3807 | * consists of a fixed number of BD entries. |
| 3808 | * The last BD entry on each page is a pointer to the next page |
| 3809 | * in the chain, and the last pointer in the BD chain |
| 3810 | * points back to the beginning of the chain. |
| 3811 | */ |
| 3812 | |
| 3813 | /* Set the TX next pointer chain entries. */ |
| 3814 | for (i = 0; i < TX_PAGES2; i++) { |
| 3815 | int j; |
| 3816 | |
| 3817 | txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE(((1 << 12) / sizeof(struct tx_bd)) - 1)]; |
| 3818 | |
| 3819 | /* Check if we've reached the last page. */ |
| 3820 | if (i == (TX_PAGES2 - 1)) |
| 3821 | j = 0; |
| 3822 | else |
| 3823 | j = i + 1; |
| 3824 | |
| 3825 | addr = (u_int32_t)sc->tx_bd_chain_paddr[j]; |
| 3826 | txbd->tx_bd_haddr_lo = addr; |
| 3827 | addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32); |
| 3828 | txbd->tx_bd_haddr_hi = addr; |
| 3829 | } |
| 3830 | |
| 3831 | /* |
| 3832 | * Initialize the context ID for an L2 TX chain. |
| 3833 | */ |
| 3834 | bnx_init_tx_context(sc); |
| 3835 | |
| 3836 | DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); |
| 3837 | |
| 3838 | return(rc); |
| 3839 | } |
| 3840 | |
| 3841 | /****************************************************************************/ |
| 3842 | /* Free memory and clear the TX data structures. */ |
| 3843 | /* */ |
| 3844 | /* Returns: */ |
| 3845 | /* Nothing. */ |
| 3846 | /****************************************************************************/ |
| 3847 | void |
| 3848 | bnx_free_tx_chain(struct bnx_softc *sc) |
| 3849 | { |
| 3850 | int i; |
| 3851 | |
| 3852 | DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); |
| 3853 | |
| 3854 | /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */ |
| 3855 | for (i = 0; i < TOTAL_TX_BD(((1 << 12) / sizeof(struct tx_bd)) * 2); i++) { |
| 3856 | if (sc->tx_mbuf_ptr[i] != NULL((void *)0)) { |
| 3857 | if (sc->tx_mbuf_map[i] != NULL((void *)0)) { |
| 3858 | bus_dmamap_sync(sc->bnx_dmatag,(*(sc->bnx_dmatag)->_dmamap_sync)((sc->bnx_dmatag), ( sc->tx_mbuf_map[i]), (0), (sc->tx_mbuf_map[i]->dm_mapsize ), (0x08)) |
| 3859 | sc->tx_mbuf_map[i], 0,(*(sc->bnx_dmatag)->_dmamap_sync)((sc->bnx_dmatag), ( sc->tx_mbuf_map[i]), (0), (sc->tx_mbuf_map[i]->dm_mapsize ), (0x08)) |
| 3860 | sc->tx_mbuf_map[i]->dm_mapsize,(*(sc->bnx_dmatag)->_dmamap_sync)((sc->bnx_dmatag), ( sc->tx_mbuf_map[i]), (0), (sc->tx_mbuf_map[i]->dm_mapsize ), (0x08)) |
| 3861 | BUS_DMASYNC_POSTWRITE)(*(sc->bnx_dmatag)->_dmamap_sync)((sc->bnx_dmatag), ( sc->tx_mbuf_map[i]), (0), (sc->tx_mbuf_map[i]->dm_mapsize ), (0x08)); |
| 3862 | bus_dmamap_unload(sc->bnx_dmatag,(*(sc->bnx_dmatag)->_dmamap_unload)((sc->bnx_dmatag) , (sc->tx_mbuf_map[i])) |
| 3863 | sc->tx_mbuf_map[i])(*(sc->bnx_dmatag)->_dmamap_unload)((sc->bnx_dmatag) , (sc->tx_mbuf_map[i])); |
| 3864 | } |
| 3865 | m_freem(sc->tx_mbuf_ptr[i]); |
| 3866 | sc->tx_mbuf_ptr[i] = NULL((void *)0); |
| 3867 | DBRUNIF(1, sc->tx_mbuf_alloc--); |
| 3868 | } |
| 3869 | } |
| 3870 | |
| 3871 | /* Clear each TX chain page. */ |
| 3872 | for (i = 0; i < TX_PAGES2; i++) |
| 3873 | bzero(sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ)__builtin_bzero((sc->tx_bd_chain[i]), ((1 << 12))); |
| 3874 | |
| 3875 | sc->used_tx_bd = 0; |
| 3876 | |
| 3877 | /* Check if we lost any mbufs in the process. */ |
| 3878 | DBRUNIF((sc->tx_mbuf_alloc), |
| 3879 | printf("%s: Memory leak! Lost %d mbufs from tx chain!\n", |
| 3880 | sc->tx_mbuf_alloc)); |
| 3881 | |
| 3882 | DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); |
| 3883 | } |
| 3884 | |
| 3885 | /****************************************************************************/ |
| 3886 | /* Initialize the RX context memory. */ |
| 3887 | /* */ |
| 3888 | /* Returns: */ |
| 3889 | /* Nothing */ |
| 3890 | /****************************************************************************/ |
| 3891 | void |
| 3892 | bnx_init_rx_context(struct bnx_softc *sc) |
| 3893 | { |
| 3894 | u_int32_t val; |
| 3895 | |
| 3896 | /* Initialize the context ID for an L2 RX chain. */ |
| 3897 | val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE(1<<28) | |
| 3898 | BNX_L2CTX_CTX_TYPE_SIZE_L2((0x20/20)<<16) | (0x02 << 8); |
| 3899 | |
| 3900 | /* |
| 3901 | * Set the level for generating pause frames |
| 3902 | * when the number of available rx_bd's gets |
| 3903 | * too low (the low watermark) and the level |
| 3904 | * when pause frames can be stopped (the high |
| 3905 | * watermark). |
| 3906 | */ |
| 3907 | if (BNX_CHIP_NUM(sc)(((sc)->bnx_chipid) & 0xffff0000) == BNX_CHIP_NUM_57090x57090000) { |
| 3908 | u_int32_t lo_water, hi_water; |
| 3909 | |
| 3910 | lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT32; |
| 3911 | hi_water = USABLE_RX_BD((((1 << 12) / sizeof(struct rx_bd)) - 1) * 2) / 4; |
| 3912 | |
| 3913 | lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE4; |
| 3914 | hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE16; |
| 3915 | |
| 3916 | if (hi_water > 0xf) |
| 3917 | hi_water = 0xf; |
| 3918 | else if (hi_water == 0) |
| 3919 | lo_water = 0; |
| 3920 | |
| 3921 | val |= (lo_water << BNX_L2CTX_RX_LO_WATER_MARK_SHIFT0) | |
| 3922 | (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT4); |
| 3923 | } |
| 3924 | |
| 3925 | CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val)bnx_ctx_wr(sc, ((0) << 7), 0x00000000, val); |
| 3926 | |
| 3927 | /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */ |
| 3928 | if (BNX_CHIP_NUM(sc)(((sc)->bnx_chipid) & 0xffff0000) == BNX_CHIP_NUM_57090x57090000) { |
| 3929 | val = REG_RD(sc, BNX_MQ_MAP_L2_5)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x00003d34 ))); |
| 3930 | REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00003d34 ), (val | (0x3L<<26)))); |
| 3931 | } |
| 3932 | |
| 3933 | /* Point the hardware to the first page in the chain. */ |
| 3934 | val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32); |
| 3935 | CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val)bnx_ctx_wr(sc, ((0) << 7), 0x00000010, val); |
| 3936 | val = (u_int32_t)(sc->rx_bd_chain_paddr[0]); |
| 3937 | CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val)bnx_ctx_wr(sc, ((0) << 7), 0x00000014, val); |
| 3938 | } |
| 3939 | |
| 3940 | /****************************************************************************/ |
| 3941 | /* Add mbufs to the RX chain until its full or an mbuf allocation error */ |
| 3942 | /* occurs. */ |
| 3943 | /* */ |
| 3944 | /* Returns: */ |
| 3945 | /* Nothing */ |
| 3946 | /****************************************************************************/ |
| 3947 | int |
| 3948 | bnx_fill_rx_chain(struct bnx_softc *sc) |
| 3949 | { |
| 3950 | u_int16_t prod, chain_prod; |
| 3951 | u_int32_t prod_bseq; |
| 3952 | u_int slots, used; |
| 3953 | int ndesc = 0; |
| 3954 | #ifdef BNX_DEBUG |
| 3955 | int rx_mbuf_alloc_before; |
| 3956 | #endif |
| 3957 | |
| 3958 | DBPRINT(sc, BNX_EXCESSIVE_RECV, "Entering %s()\n", __FUNCTION__); |
| 3959 | |
| 3960 | prod = sc->rx_prod; |
| 3961 | prod_bseq = sc->rx_prod_bseq; |
| 3962 | |
| 3963 | #ifdef BNX_DEBUG |
| 3964 | rx_mbuf_alloc_before = sc->rx_mbuf_alloc; |
| 3965 | #endif |
| 3966 | |
| 3967 | /* Keep filling the RX chain until it's full. */ |
| 3968 | slots = if_rxr_get(&sc->rx_ring, sc->max_rx_bd); |
| 3969 | while (slots > 0) { |
| 3970 | chain_prod = RX_CHAIN_IDX(prod)((prod) & ((((1 << 12) / sizeof(struct rx_bd)) * 2) - 1)); |
| 3971 | |
| 3972 | used = bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq); |
| 3973 | if (used == 0) { |
| 3974 | /* Bail out if we can't add an mbuf to the chain. */ |
| 3975 | break; |
| 3976 | } |
| 3977 | slots -= used; |
| 3978 | |
| 3979 | prod = NEXT_RX_BD(prod)(((prod) & (((1 << 12) / sizeof(struct rx_bd)) - 1) ) == ((((1 << 12) / sizeof(struct rx_bd)) - 1) - 1)) ? ( prod) + 2 : (prod) + 1; |
| 3980 | ndesc++; |
| 3981 | } |
| 3982 | if_rxr_put(&sc->rx_ring, slots)do { (&sc->rx_ring)->rxr_alive -= (slots); } while ( 0); |
| 3983 | |
| 3984 | /* Save the RX chain producer index. */ |
| 3985 | sc->rx_prod = prod; |
| 3986 | sc->rx_prod_bseq = prod_bseq; |
| 3987 | |
| 3988 | /* Tell the chip about the waiting rx_bd's. */ |
| 3989 | REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod)((sc->bnx_btag)->write_2((sc->bnx_bhandle), ((0x10000 + ((0) << 8)) + 0x00000004), (sc->rx_prod))); |
| 3990 | REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq)((sc->bnx_btag)->write_4((sc->bnx_bhandle), ((0x10000 + ((0) << 8)) + 0x00000008), (sc->rx_prod_bseq))); |
| 3991 | |
| 3992 | DBPRINT(sc, BNX_EXCESSIVE_RECV, "Exiting %s()\n", __FUNCTION__); |
| 3993 | |
| 3994 | return (ndesc); |
| 3995 | } |
| 3996 | |
| 3997 | /****************************************************************************/ |
| 3998 | /* Allocate memory and initialize the RX data structures. */ |
| 3999 | /* */ |
| 4000 | /* Returns: */ |
| 4001 | /* 0 for success, positive value for failure. */ |
| 4002 | /****************************************************************************/ |
| 4003 | int |
| 4004 | bnx_init_rx_chain(struct bnx_softc *sc) |
| 4005 | { |
| 4006 | struct rx_bd *rxbd; |
| 4007 | int i, rc = 0; |
| 4008 | u_int32_t addr; |
| 4009 | |
| 4010 | DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); |
| 4011 | |
| 4012 | /* Initialize the RX producer and consumer indices. */ |
| 4013 | sc->rx_prod = 0; |
| 4014 | sc->rx_cons = 0; |
| 4015 | sc->rx_prod_bseq = 0; |
| 4016 | sc->max_rx_bd = USABLE_RX_BD((((1 << 12) / sizeof(struct rx_bd)) - 1) * 2); |
| 4017 | DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD); |
| 4018 | DBRUNIF(1, sc->rx_empty_count = 0); |
| 4019 | |
| 4020 | /* Initialize the RX next pointer chain entries. */ |
| 4021 | for (i = 0; i < RX_PAGES2; i++) { |
| 4022 | int j; |
| 4023 | |
| 4024 | rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE(((1 << 12) / sizeof(struct rx_bd)) - 1)]; |
| 4025 | |
| 4026 | /* Check if we've reached the last page. */ |
| 4027 | if (i == (RX_PAGES2 - 1)) |
| 4028 | j = 0; |
| 4029 | else |
| 4030 | j = i + 1; |
| 4031 | |
| 4032 | /* Setup the chain page pointers. */ |
| 4033 | addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32); |
| 4034 | rxbd->rx_bd_haddr_hi = addr; |
| 4035 | addr = (u_int32_t)sc->rx_bd_chain_paddr[j]; |
| 4036 | rxbd->rx_bd_haddr_lo = addr; |
| 4037 | } |
| 4038 | |
| 4039 | if_rxr_init(&sc->rx_ring, 16, sc->max_rx_bd); |
| 4040 | |
| 4041 | /* Fill up the RX chain. */ |
| 4042 | bnx_fill_rx_chain(sc); |
| 4043 | |
| 4044 | for (i = 0; i < RX_PAGES2; i++) |
| 4045 | bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,(*(sc->bnx_dmatag)->_dmamap_sync)((sc->bnx_dmatag), ( sc->rx_bd_chain_map[i]), (0), (sc->rx_bd_chain_map[i]-> dm_mapsize), (0x01 | 0x04)) |
| 4046 | sc->rx_bd_chain_map[i]->dm_mapsize,(*(sc->bnx_dmatag)->_dmamap_sync)((sc->bnx_dmatag), ( sc->rx_bd_chain_map[i]), (0), (sc->rx_bd_chain_map[i]-> dm_mapsize), (0x01 | 0x04)) |
| 4047 | BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE)(*(sc->bnx_dmatag)->_dmamap_sync)((sc->bnx_dmatag), ( sc->rx_bd_chain_map[i]), (0), (sc->rx_bd_chain_map[i]-> dm_mapsize), (0x01 | 0x04)); |
| 4048 | |
| 4049 | bnx_init_rx_context(sc); |
| 4050 | |
| 4051 | DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD)); |
| 4052 | |
| 4053 | DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); |
| 4054 | |
| 4055 | return(rc); |
| 4056 | } |
| 4057 | |
| 4058 | /****************************************************************************/ |
| 4059 | /* Free memory and clear the RX data structures. */ |
| 4060 | /* */ |
| 4061 | /* Returns: */ |
| 4062 | /* Nothing. */ |
| 4063 | /****************************************************************************/ |
| 4064 | void |
| 4065 | bnx_free_rx_chain(struct bnx_softc *sc) |
| 4066 | { |
| 4067 | int i; |
| 4068 | #ifdef BNX_DEBUG |
| 4069 | int rx_mbuf_alloc_before; |
| 4070 | #endif |
| 4071 | |
| 4072 | DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); |
| 4073 | |
| 4074 | #ifdef BNX_DEBUG |
| 4075 | rx_mbuf_alloc_before = sc->rx_mbuf_alloc; |
| 4076 | #endif |
| 4077 | |
| 4078 | /* Free any mbufs still in the RX mbuf chain. */ |
| 4079 | for (i = 0; i < TOTAL_RX_BD(((1 << 12) / sizeof(struct rx_bd)) * 2); i++) { |
| 4080 | if (sc->rx_mbuf_ptr[i] != NULL((void *)0)) { |
| 4081 | if (sc->rx_mbuf_map[i] != NULL((void *)0)) { |
| 4082 | bus_dmamap_sync(sc->bnx_dmatag,(*(sc->bnx_dmatag)->_dmamap_sync)((sc->bnx_dmatag), ( sc->rx_mbuf_map[i]), (0), (sc->rx_mbuf_map[i]->dm_mapsize ), (0x02)) |
| 4083 | sc->rx_mbuf_map[i], 0,(*(sc->bnx_dmatag)->_dmamap_sync)((sc->bnx_dmatag), ( sc->rx_mbuf_map[i]), (0), (sc->rx_mbuf_map[i]->dm_mapsize ), (0x02)) |
| 4084 | sc->rx_mbuf_map[i]->dm_mapsize,(*(sc->bnx_dmatag)->_dmamap_sync)((sc->bnx_dmatag), ( sc->rx_mbuf_map[i]), (0), (sc->rx_mbuf_map[i]->dm_mapsize ), (0x02)) |
| 4085 | BUS_DMASYNC_POSTREAD)(*(sc->bnx_dmatag)->_dmamap_sync)((sc->bnx_dmatag), ( sc->rx_mbuf_map[i]), (0), (sc->rx_mbuf_map[i]->dm_mapsize ), (0x02)); |
| 4086 | bus_dmamap_unload(sc->bnx_dmatag,(*(sc->bnx_dmatag)->_dmamap_unload)((sc->bnx_dmatag) , (sc->rx_mbuf_map[i])) |
| 4087 | sc->rx_mbuf_map[i])(*(sc->bnx_dmatag)->_dmamap_unload)((sc->bnx_dmatag) , (sc->rx_mbuf_map[i])); |
| 4088 | } |
| 4089 | m_freem(sc->rx_mbuf_ptr[i]); |
| 4090 | sc->rx_mbuf_ptr[i] = NULL((void *)0); |
| 4091 | DBRUNIF(1, sc->rx_mbuf_alloc--); |
| 4092 | } |
| 4093 | } |
| 4094 | |
| 4095 | DBRUNIF((rx_mbuf_alloc_before - sc->rx_mbuf_alloc), |
| 4096 | BNX_PRINTF(sc, "%s(): Released %d mbufs.\n", |
| 4097 | __FUNCTION__, (rx_mbuf_alloc_before - sc->rx_mbuf_alloc))); |
| 4098 | |
| 4099 | /* Clear each RX chain page. */ |
| 4100 | for (i = 0; i < RX_PAGES2; i++) |
| 4101 | bzero(sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ)__builtin_bzero((sc->rx_bd_chain[i]), ((1 << 12))); |
| 4102 | |
| 4103 | /* Check if we lost any mbufs in the process. */ |
| 4104 | DBRUNIF((sc->rx_mbuf_alloc), |
| 4105 | printf("%s: Memory leak! Lost %d mbufs from rx chain!\n", |
| 4106 | sc->rx_mbuf_alloc)); |
| 4107 | |
| 4108 | DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); |
| 4109 | } |
| 4110 | |
| 4111 | void |
| 4112 | bnx_rxrefill(void *xsc) |
| 4113 | { |
| 4114 | struct bnx_softc *sc = xsc; |
| 4115 | int s; |
| 4116 | |
| 4117 | s = splnet()splraise(0x4); |
| 4118 | if (!bnx_fill_rx_chain(sc)) |
| 4119 | timeout_add(&sc->bnx_rxrefill, 1); |
| 4120 | splx(s)spllower(s); |
| 4121 | } |
| 4122 | |
| 4123 | /****************************************************************************/ |
| 4124 | /* Set media options. */ |
| 4125 | /* */ |
| 4126 | /* Returns: */ |
| 4127 | /* 0 for success, positive value for failure. */ |
| 4128 | /****************************************************************************/ |
| 4129 | int |
| 4130 | bnx_ifmedia_upd(struct ifnet *ifp) |
| 4131 | { |
| 4132 | struct bnx_softc *sc; |
| 4133 | struct mii_data *mii; |
| 4134 | int rc = 0; |
| 4135 | |
| 4136 | sc = ifp->if_softc; |
| 4137 | |
| 4138 | mii = &sc->bnx_mii; |
| 4139 | sc->bnx_link = 0; |
| 4140 | if (mii->mii_instance) { |
| 4141 | struct mii_softc *miisc; |
| 4142 | LIST_FOREACH(miisc, &mii->mii_phys, mii_list)for((miisc) = ((&mii->mii_phys)->lh_first); (miisc) != ((void *)0); (miisc) = ((miisc)->mii_list.le_next)) |
| 4143 | mii_phy_reset(miisc); |
| 4144 | } |
| 4145 | mii_mediachg(mii); |
| 4146 | |
| 4147 | return(rc); |
| 4148 | } |
| 4149 | |
| 4150 | /****************************************************************************/ |
| 4151 | /* Reports current media status. */ |
| 4152 | /* */ |
| 4153 | /* Returns: */ |
| 4154 | /* Nothing. */ |
| 4155 | /****************************************************************************/ |
| 4156 | void |
| 4157 | bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) |
| 4158 | { |
| 4159 | struct bnx_softc *sc; |
| 4160 | struct mii_data *mii; |
| 4161 | int s; |
| 4162 | |
| 4163 | sc = ifp->if_softc; |
| 4164 | |
| 4165 | s = splnet()splraise(0x4); |
| 4166 | |
| 4167 | mii = &sc->bnx_mii; |
| 4168 | |
| 4169 | mii_pollstat(mii); |
| 4170 | ifmr->ifm_status = mii->mii_media_status; |
| 4171 | ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK(0x0000040000000000ULL|0x0000000000020000ULL|0x0000000000040000ULL )) | |
| 4172 | sc->bnx_flowflags; |
| 4173 | |
| 4174 | splx(s)spllower(s); |
| 4175 | } |
| 4176 | |
| 4177 | /****************************************************************************/ |
| 4178 | /* Handles PHY generated interrupt events. */ |
| 4179 | /* */ |
| 4180 | /* Returns: */ |
| 4181 | /* Nothing. */ |
| 4182 | /****************************************************************************/ |
| 4183 | void |
| 4184 | bnx_phy_intr(struct bnx_softc *sc) |
| 4185 | { |
| 4186 | u_int32_t new_link_state, old_link_state; |
| 4187 | |
| 4188 | new_link_state = sc->status_block->status_attn_bits & |
| 4189 | STATUS_ATTN_BITS_LINK_STATE(1L<<0); |
| 4190 | old_link_state = sc->status_block->status_attn_bits_ack & |
| 4191 | STATUS_ATTN_BITS_LINK_STATE(1L<<0); |
| 4192 | |
| 4193 | /* Handle any changes if the link state has changed. */ |
| 4194 | if (new_link_state != old_link_state) { |
| 4195 | DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc)); |
| 4196 | |
| 4197 | sc->bnx_link = 0; |
| 4198 | timeout_del(&sc->bnx_timeout); |
| 4199 | bnx_tick(sc); |
| 4200 | |
| 4201 | /* Update the status_attn_bits_ack field in the status block. */ |
| 4202 | if (new_link_state) { |
| 4203 | REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00000088 ), ((1L<<0)))) |
| 4204 | STATUS_ATTN_BITS_LINK_STATE)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00000088 ), ((1L<<0)))); |
| 4205 | DBPRINT(sc, BNX_INFO, "Link is now UP.\n"); |
| 4206 | } else { |
| 4207 | REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x0000008c ), ((1L<<0)))) |
| 4208 | STATUS_ATTN_BITS_LINK_STATE)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x0000008c ), ((1L<<0)))); |
| 4209 | DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n"); |
| 4210 | } |
| 4211 | } |
| 4212 | |
| 4213 | /* Acknowledge the link change interrupt. */ |
| 4214 | REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00001404 ), ((1L<<12)))); |
| 4215 | } |
| 4216 | |
| 4217 | /****************************************************************************/ |
| 4218 | /* Handles received frame interrupt events. */ |
| 4219 | /* */ |
| 4220 | /* Returns: */ |
| 4221 | /* Nothing. */ |
| 4222 | /****************************************************************************/ |
| 4223 | void |
| 4224 | bnx_rx_intr(struct bnx_softc *sc) |
| 4225 | { |
| 4226 | struct status_block *sblk = sc->status_block; |
| 4227 | struct ifnet *ifp = &sc->arpcom.ac_if; |
| 4228 | struct mbuf_list ml = MBUF_LIST_INITIALIZER(){ ((void *)0), ((void *)0), 0 }; |
| 4229 | u_int16_t hw_cons, sw_cons, sw_chain_cons; |
| 4230 | u_int16_t sw_prod, sw_chain_prod; |
| 4231 | u_int32_t sw_prod_bseq; |
| 4232 | struct l2_fhdr *l2fhdr; |
| 4233 | int i; |
| 4234 | |
| 4235 | DBRUNIF(1, sc->rx_interrupts++); |
| 4236 | |
| 4237 | if (if_rxr_inuse(&sc->rx_ring)((&sc->rx_ring)->rxr_alive) == 0) |
| 4238 | return; |
| 4239 | |
| 4240 | /* Prepare the RX chain pages to be accessed by the host CPU. */ |
| 4241 | for (i = 0; i < RX_PAGES2; i++) |
| 4242 | bus_dmamap_sync(sc->bnx_dmatag,(*(sc->bnx_dmatag)->_dmamap_sync)((sc->bnx_dmatag), ( sc->rx_bd_chain_map[i]), (0), (sc->rx_bd_chain_map[i]-> dm_mapsize), (0x08)) |
| 4243 | sc->rx_bd_chain_map[i], 0,(*(sc->bnx_dmatag)->_dmamap_sync)((sc->bnx_dmatag), ( sc->rx_bd_chain_map[i]), (0), (sc->rx_bd_chain_map[i]-> dm_mapsize), (0x08)) |
| 4244 | sc->rx_bd_chain_map[i]->dm_mapsize,(*(sc->bnx_dmatag)->_dmamap_sync)((sc->bnx_dmatag), ( sc->rx_bd_chain_map[i]), (0), (sc->rx_bd_chain_map[i]-> dm_mapsize), (0x08)) |
| 4245 | BUS_DMASYNC_POSTWRITE)(*(sc->bnx_dmatag)->_dmamap_sync)((sc->bnx_dmatag), ( sc->rx_bd_chain_map[i]), (0), (sc->rx_bd_chain_map[i]-> dm_mapsize), (0x08)); |
| 4246 | |
| 4247 | /* Get the hardware's view of the RX consumer index. */ |
| 4248 | hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0; |
| 4249 | if ((hw_cons & USABLE_RX_BD_PER_PAGE(((1 << 12) / sizeof(struct rx_bd)) - 1)) == USABLE_RX_BD_PER_PAGE(((1 << 12) / sizeof(struct rx_bd)) - 1)) |
| 4250 | hw_cons++; |
| 4251 | |
| 4252 | /* Get working copies of the driver's view of the RX indices. */ |
| 4253 | sw_cons = sc->rx_cons; |
| 4254 | sw_prod = sc->rx_prod; |
| 4255 | sw_prod_bseq = sc->rx_prod_bseq; |
| 4256 | |
| 4257 | DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, " |
| 4258 | "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n", |
| 4259 | __FUNCTION__, sw_prod, sw_cons, sw_prod_bseq); |
| 4260 | |
| 4261 | /* Prevent speculative reads from getting ahead of the status block. */ |
| 4262 | bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0, |
| 4263 | BUS_SPACE_BARRIER_READ0x01); |
| 4264 | |
| 4265 | /* |
| 4266 | * Scan through the receive chain as long |
| 4267 | * as there is work to do. |
| 4268 | */ |
| 4269 | while (sw_cons != hw_cons) { |
| 4270 | struct mbuf *m; |
| 4271 | struct rx_bd *rxbd; |
| 4272 | unsigned int len; |
| 4273 | u_int32_t status; |
| 4274 | |
| 4275 | /* Clear the mbuf pointer. */ |
| 4276 | m = NULL((void *)0); |
| 4277 | |
| 4278 | /* Convert the producer/consumer indices to an actual |
| 4279 | * rx_bd index. |
| 4280 | */ |
| 4281 | sw_chain_cons = RX_CHAIN_IDX(sw_cons)((sw_cons) & ((((1 << 12) / sizeof(struct rx_bd)) * 2) - 1)); |
| 4282 | sw_chain_prod = RX_CHAIN_IDX(sw_prod)((sw_prod) & ((((1 << 12) / sizeof(struct rx_bd)) * 2) - 1)); |
| 4283 | |
| 4284 | /* Get the used rx_bd. */ |
| 4285 | rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)(((sw_chain_cons) & ~(((1 << 12) / sizeof(struct rx_bd )) - 1)) >> (12 - 4))][RX_IDX(sw_chain_cons)((sw_chain_cons) & (((1 << 12) / sizeof(struct rx_bd )) - 1))]; |
| 4286 | if_rxr_put(&sc->rx_ring, 1)do { (&sc->rx_ring)->rxr_alive -= (1); } while (0); |
| 4287 | |
| 4288 | DBRUN(BNX_VERBOSE_RECV, printf("%s(): ", __FUNCTION__); |
| 4289 | bnx_dump_rxbd(sc, sw_chain_cons, rxbd)); |
| 4290 | |
| 4291 | /* The mbuf is stored with the last rx_bd entry of a packet. */ |
| 4292 | if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL((void *)0)) { |
| 4293 | /* Validate that this is the last rx_bd. */ |
| 4294 | DBRUNIF((!(rxbd->rx_bd_flags & RX_BD_FLAGS_END)), |
| 4295 | printf("%s: Unexpected mbuf found in " |
| 4296 | "rx_bd[0x%04X]!\n", sw_chain_cons); |
| 4297 | bnx_breakpoint(sc)); |
| 4298 | |
| 4299 | /* DRC - ToDo: If the received packet is small, say less |
| 4300 | * than 128 bytes, allocate a new mbuf here, |
| 4301 | * copy the data to that mbuf, and recycle |
| 4302 | * the mapped jumbo frame. |
| 4303 | */ |
| 4304 | |
| 4305 | /* Unmap the mbuf from DMA space. */ |
| 4306 | bus_dmamap_sync(sc->bnx_dmatag,(*(sc->bnx_dmatag)->_dmamap_sync)((sc->bnx_dmatag), ( sc->rx_mbuf_map[sw_chain_cons]), (0), (sc->rx_mbuf_map[ sw_chain_cons]->dm_mapsize), (0x02)) |
| 4307 | sc->rx_mbuf_map[sw_chain_cons], 0,(*(sc->bnx_dmatag)->_dmamap_sync)((sc->bnx_dmatag), ( sc->rx_mbuf_map[sw_chain_cons]), (0), (sc->rx_mbuf_map[ sw_chain_cons]->dm_mapsize), (0x02)) |
| 4308 | sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,(*(sc->bnx_dmatag)->_dmamap_sync)((sc->bnx_dmatag), ( sc->rx_mbuf_map[sw_chain_cons]), (0), (sc->rx_mbuf_map[ sw_chain_cons]->dm_mapsize), (0x02)) |
| 4309 | BUS_DMASYNC_POSTREAD)(*(sc->bnx_dmatag)->_dmamap_sync)((sc->bnx_dmatag), ( sc->rx_mbuf_map[sw_chain_cons]), (0), (sc->rx_mbuf_map[ sw_chain_cons]->dm_mapsize), (0x02)); |
| 4310 | bus_dmamap_unload(sc->bnx_dmatag,(*(sc->bnx_dmatag)->_dmamap_unload)((sc->bnx_dmatag) , (sc->rx_mbuf_map[sw_chain_cons])) |
| 4311 | sc->rx_mbuf_map[sw_chain_cons])(*(sc->bnx_dmatag)->_dmamap_unload)((sc->bnx_dmatag) , (sc->rx_mbuf_map[sw_chain_cons])); |
| 4312 | |
| 4313 | /* Remove the mbuf from RX chain. */ |
| 4314 | m = sc->rx_mbuf_ptr[sw_chain_cons]; |
| 4315 | sc->rx_mbuf_ptr[sw_chain_cons] = NULL((void *)0); |
| 4316 | |
| 4317 | /* |
| 4318 | * Frames received on the NetXteme II are prepended |
| 4319 | * with the l2_fhdr structure which provides status |
| 4320 | * information about the received frame (including |
| 4321 | * VLAN tags and checksum info) and are also |
| 4322 | * automatically adjusted to align the IP header |
| 4323 | * (i.e. two null bytes are inserted before the |
| 4324 | * Ethernet header). |
| 4325 | */ |
| 4326 | l2fhdr = mtod(m, struct l2_fhdr *)((struct l2_fhdr *)((m)->m_hdr.mh_data)); |
| 4327 | |
| 4328 | len = l2fhdr->l2_fhdr_pkt_len; |
| 4329 | status = l2fhdr->l2_fhdr_status; |
| 4330 | |
| 4331 | DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check), |
| 4332 | printf("Simulating l2_fhdr status error.\n"); |
| 4333 | status = status | L2_FHDR_ERRORS_PHY_DECODE); |
| 4334 | |
| 4335 | /* Watch for unusual sized frames. */ |
| 4336 | DBRUNIF(((len < BNX_MIN_MTU) || |
| 4337 | (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)), |
| 4338 | printf("%s: Unusual frame size found. " |
| 4339 | "Min(%d), Actual(%d), Max(%d)\n", (int)BNX_MIN_MTU, |
| 4340 | len, (int) BNX_MAX_JUMBO_ETHER_MTU_VLAN); |
| 4341 | |
| 4342 | bnx_dump_mbuf(sc, m); |
| 4343 | bnx_breakpoint(sc)); |
| 4344 | |
| 4345 | len -= ETHER_CRC_LEN4; |
| 4346 | |
| 4347 | /* Check the received frame for errors. */ |
| 4348 | if (status & (L2_FHDR_ERRORS_BAD_CRC(1<<17) | |
| 4349 | L2_FHDR_ERRORS_PHY_DECODE(1<<18) | |
| 4350 | L2_FHDR_ERRORS_ALIGNMENT(1<<19) | |
| 4351 | L2_FHDR_ERRORS_TOO_SHORT(1<<20) | |
| 4352 | L2_FHDR_ERRORS_GIANT_FRAME(1<<21))) { |
| 4353 | /* Log the error and release the mbuf. */ |
| 4354 | ifp->if_ierrorsif_data.ifi_ierrors++; |
| 4355 | DBRUNIF(1, sc->l2fhdr_status_errors++); |
| 4356 | |
| 4357 | m_freem(m); |
| 4358 | m = NULL((void *)0); |
| 4359 | goto bnx_rx_int_next_rx; |
| 4360 | } |
| 4361 | |
| 4362 | /* Skip over the l2_fhdr when passing the data up |
| 4363 | * the stack. |
| 4364 | */ |
| 4365 | m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN2); |
| 4366 | |
| 4367 | /* Adjust the pckt length to match the received data. */ |
| 4368 | m->m_pkthdrM_dat.MH.MH_pkthdr.len = m->m_lenm_hdr.mh_len = len; |
| 4369 | |
| 4370 | DBRUN(BNX_VERBOSE_RECV, |
| 4371 | struct ether_header *eh; |
| 4372 | eh = mtod(m, struct ether_header *); |
| 4373 | printf("%s: to: %6D, from: %6D, type: 0x%04X\n", |
| 4374 | __FUNCTION__, eh->ether_dhost, ":", |
| 4375 | eh->ether_shost, ":", htons(eh->ether_type))); |
| 4376 | |
| 4377 | /* Validate the checksum. */ |
| 4378 | |
| 4379 | /* Check for an IP datagram. */ |
| 4380 | if (status & L2_FHDR_STATUS_IP_DATAGRAM(1<<13)) { |
| 4381 | /* Check if the IP checksum is valid. */ |
| 4382 | if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) |
| 4383 | == 0) |
| 4384 | m->m_pkthdrM_dat.MH.MH_pkthdr.csum_flags |= |
| 4385 | M_IPV4_CSUM_IN_OK0x0008; |
| 4386 | else |
| 4387 | DBPRINT(sc, BNX_WARN_SEND, |
| 4388 | "%s(): Invalid IP checksum " |
| 4389 | "= 0x%04X!\n", |
| 4390 | __FUNCTION__, |
| 4391 | l2fhdr->l2_fhdr_ip_xsum |
| 4392 | ); |
| 4393 | } |
| 4394 | |
| 4395 | /* Check for a valid TCP/UDP frame. */ |
| 4396 | if (status & (L2_FHDR_STATUS_TCP_SEGMENT(1<<14) | |
| 4397 | L2_FHDR_STATUS_UDP_DATAGRAM(1<<15))) { |
| 4398 | /* Check for a good TCP/UDP checksum. */ |
| 4399 | if ((status & |
| 4400 | (L2_FHDR_ERRORS_TCP_XSUM(1<<28) | |
| 4401 | L2_FHDR_ERRORS_UDP_XSUM(1<<31))) == 0) { |
| 4402 | m->m_pkthdrM_dat.MH.MH_pkthdr.csum_flags |= |
| 4403 | M_TCP_CSUM_IN_OK0x0020 | |
| 4404 | M_UDP_CSUM_IN_OK0x0080; |
| 4405 | } else { |
| 4406 | DBPRINT(sc, BNX_WARN_SEND, |
| 4407 | "%s(): Invalid TCP/UDP " |
| 4408 | "checksum = 0x%04X!\n", |
| 4409 | __FUNCTION__, |
| 4410 | l2fhdr->l2_fhdr_tcp_udp_xsum); |
| 4411 | } |
| 4412 | } |
| 4413 | |
| 4414 | /* |
| 4415 | * If we received a packet with a vlan tag, |
| 4416 | * attach that information to the packet. |
| 4417 | */ |
| 4418 | if ((status & L2_FHDR_STATUS_L2_VLAN_TAG(1<<6)) && |
| 4419 | !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG(1L<<10))) { |
| 4420 | #if NVLAN1 > 0 |
| 4421 | DBPRINT(sc, BNX_VERBOSE_SEND, |
| 4422 | "%s(): VLAN tag = 0x%04X\n", |
| 4423 | __FUNCTION__, |
| 4424 | l2fhdr->l2_fhdr_vlan_tag); |
| 4425 | |
| 4426 | m->m_pkthdrM_dat.MH.MH_pkthdr.ether_vtag = |
| 4427 | l2fhdr->l2_fhdr_vlan_tag; |
| 4428 | m->m_flagsm_hdr.mh_flags |= M_VLANTAG0x0020; |
| 4429 | #else |
| 4430 | m_freem(m); |
| 4431 | m = NULL((void *)0); |
| 4432 | goto bnx_rx_int_next_rx; |
| 4433 | #endif |
| 4434 | } |
| 4435 | |
| 4436 | bnx_rx_int_next_rx: |
| 4437 | sw_prod = NEXT_RX_BD(sw_prod)(((sw_prod) & (((1 << 12) / sizeof(struct rx_bd)) - 1)) == ((((1 << 12) / sizeof(struct rx_bd)) - 1) - 1)) ? (sw_prod) + 2 : (sw_prod) + 1; |
| 4438 | } |
| 4439 | |
| 4440 | sw_cons = NEXT_RX_BD(sw_cons)(((sw_cons) & (((1 << 12) / sizeof(struct rx_bd)) - 1)) == ((((1 << 12) / sizeof(struct rx_bd)) - 1) - 1)) ? (sw_cons) + 2 : (sw_cons) + 1; |
| 4441 | |
| 4442 | /* If we have a packet, pass it up the stack */ |
| 4443 | if (m) { |
| 4444 | sc->rx_cons = sw_cons; |
| 4445 | |
| 4446 | DBPRINT(sc, BNX_VERBOSE_RECV, |
| 4447 | "%s(): Passing received frame up.\n", __FUNCTION__); |
| 4448 | ml_enqueue(&ml, m); |
| 4449 | DBRUNIF(1, sc->rx_mbuf_alloc--); |
| 4450 | |
| 4451 | sw_cons = sc->rx_cons; |
| 4452 | } |
| 4453 | |
| 4454 | /* Refresh hw_cons to see if there's new work */ |
| 4455 | if (sw_cons == hw_cons) { |
| 4456 | hw_cons = sc->hw_rx_cons = |
| 4457 | sblk->status_rx_quick_consumer_index0; |
| 4458 | if ((hw_cons & USABLE_RX_BD_PER_PAGE(((1 << 12) / sizeof(struct rx_bd)) - 1)) == |
| 4459 | USABLE_RX_BD_PER_PAGE(((1 << 12) / sizeof(struct rx_bd)) - 1)) |
| 4460 | hw_cons++; |
| 4461 | } |
| 4462 | |
| 4463 | /* Prevent speculative reads from getting ahead of |
| 4464 | * the status block. |
| 4465 | */ |
| 4466 | bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0, |
| 4467 | BUS_SPACE_BARRIER_READ0x01); |
| 4468 | } |
| 4469 | |
| 4470 | if (ifiq_input(&ifp->if_rcv, &ml)) |
| 4471 | if_rxr_livelocked(&sc->rx_ring); |
| 4472 | |
| 4473 | /* No new packets to process. Refill the RX chain and exit. */ |
| 4474 | sc->rx_cons = sw_cons; |
| 4475 | if (!bnx_fill_rx_chain(sc)) |
| 4476 | timeout_add(&sc->bnx_rxrefill, 1); |
| 4477 | |
| 4478 | for (i = 0; i < RX_PAGES2; i++) |
| 4479 | bus_dmamap_sync(sc->bnx_dmatag,(*(sc->bnx_dmatag)->_dmamap_sync)((sc->bnx_dmatag), ( sc->rx_bd_chain_map[i]), (0), (sc->rx_bd_chain_map[i]-> dm_mapsize), (0x04)) |
| 4480 | sc->rx_bd_chain_map[i], 0,(*(sc->bnx_dmatag)->_dmamap_sync)((sc->bnx_dmatag), ( sc->rx_bd_chain_map[i]), (0), (sc->rx_bd_chain_map[i]-> dm_mapsize), (0x04)) |
| 4481 | sc->rx_bd_chain_map[i]->dm_mapsize,(*(sc->bnx_dmatag)->_dmamap_sync)((sc->bnx_dmatag), ( sc->rx_bd_chain_map[i]), (0), (sc->rx_bd_chain_map[i]-> dm_mapsize), (0x04)) |
| 4482 | BUS_DMASYNC_PREWRITE)(*(sc->bnx_dmatag)->_dmamap_sync)((sc->bnx_dmatag), ( sc->rx_bd_chain_map[i]), (0), (sc->rx_bd_chain_map[i]-> dm_mapsize), (0x04)); |
| 4483 | |
| 4484 | DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, " |
| 4485 | "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n", |
| 4486 | __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq); |
| 4487 | } |
| 4488 | |
| 4489 | /****************************************************************************/ |
| 4490 | /* Handles transmit completion interrupt events. */ |
| 4491 | /* */ |
| 4492 | /* Returns: */ |
| 4493 | /* Nothing. */ |
| 4494 | /****************************************************************************/ |
| 4495 | void |
| 4496 | bnx_tx_intr(struct bnx_softc *sc) |
| 4497 | { |
| 4498 | struct status_block *sblk = sc->status_block; |
| 4499 | struct ifnet *ifp = &sc->arpcom.ac_if; |
| 4500 | bus_dmamap_t map; |
| 4501 | u_int16_t hw_tx_cons, sw_tx_cons, sw_tx_chain_cons; |
| 4502 | int freed, used; |
| 4503 | |
| 4504 | DBRUNIF(1, sc->tx_interrupts++); |
| 4505 | |
| 4506 | /* Get the hardware's view of the TX consumer index. */ |
| 4507 | hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0; |
| 4508 | |
| 4509 | /* Skip to the next entry if this is a chain page pointer. */ |
| 4510 | if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE(((1 << 12) / sizeof(struct tx_bd)) - 1)) == USABLE_TX_BD_PER_PAGE(((1 << 12) / sizeof(struct tx_bd)) - 1)) |
| 4511 | hw_tx_cons++; |
| 4512 | |
| 4513 | sw_tx_cons = sc->tx_cons; |
| 4514 | |
| 4515 | /* Prevent speculative reads from getting ahead of the status block. */ |
| 4516 | bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0, |
| 4517 | BUS_SPACE_BARRIER_READ0x01); |
| 4518 | |
| 4519 | /* Cycle through any completed TX chain page entries. */ |
| 4520 | freed = 0; |
| 4521 | while (sw_tx_cons != hw_tx_cons) { |
| 4522 | #ifdef BNX_DEBUG |
| 4523 | struct tx_bd *txbd = NULL((void *)0); |
| 4524 | #endif |
| 4525 | sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons)((sw_tx_cons) & ((((1 << 12) / sizeof(struct tx_bd) ) * 2) - 1)); |
| 4526 | |
| 4527 | DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, " |
| 4528 | "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n", |
| 4529 | __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons); |
| 4530 | |
| 4531 | DBRUNIF((sw_tx_chain_cons > MAX_TX_BD), |
| 4532 | printf("%s: TX chain consumer out of range! " |
| 4533 | " 0x%04X > 0x%04X\n", sw_tx_chain_cons, (int)MAX_TX_BD); |
| 4534 | bnx_breakpoint(sc)); |
| 4535 | |
| 4536 | DBRUNIF(1, txbd = &sc->tx_bd_chain |
| 4537 | [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]); |
| 4538 | |
| 4539 | DBRUNIF((txbd == NULL), |
| 4540 | printf("%s: Unexpected NULL tx_bd[0x%04X]!\n", |
| 4541 | sw_tx_chain_cons); |
| 4542 | bnx_breakpoint(sc)); |
| 4543 | |
| 4544 | DBRUN(BNX_INFO_SEND, printf("%s: ", __FUNCTION__); |
| 4545 | bnx_dump_txbd(sc, sw_tx_chain_cons, txbd)); |
| 4546 | |
| 4547 | map = sc->tx_mbuf_map[sw_tx_chain_cons]; |
| 4548 | if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL((void *)0)) { |
| 4549 | /* Validate that this is the last tx_bd. */ |
| 4550 | DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)), |
| 4551 | printf("%s: tx_bd END flag not set but " |
| 4552 | "txmbuf == NULL!\n"); |
| 4553 | bnx_breakpoint(sc)); |
| 4554 | |
| 4555 | DBRUN(BNX_INFO_SEND, |
| 4556 | printf("%s: Unloading map/freeing mbuf " |
| 4557 | "from tx_bd[0x%04X]\n", |
| 4558 | __FUNCTION__, sw_tx_chain_cons)); |
| 4559 | |
| 4560 | /* Unmap the mbuf. */ |
| 4561 | bus_dmamap_sync(sc->bnx_dmatag, map, 0,(*(sc->bnx_dmatag)->_dmamap_sync)((sc->bnx_dmatag), ( map), (0), (map->dm_mapsize), (0x08)) |
| 4562 | map->dm_mapsize, BUS_DMASYNC_POSTWRITE)(*(sc->bnx_dmatag)->_dmamap_sync)((sc->bnx_dmatag), ( map), (0), (map->dm_mapsize), (0x08)); |
| 4563 | bus_dmamap_unload(sc->bnx_dmatag, map)(*(sc->bnx_dmatag)->_dmamap_unload)((sc->bnx_dmatag) , (map)); |
| 4564 | |
| 4565 | /* Free the mbuf. */ |
| 4566 | m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]); |
| 4567 | sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL((void *)0); |
| 4568 | } |
| 4569 | |
| 4570 | freed++; |
| 4571 | sw_tx_cons = NEXT_TX_BD(sw_tx_cons)(((sw_tx_cons) & (((1 << 12) / sizeof(struct tx_bd) ) - 1)) == ((((1 << 12) / sizeof(struct tx_bd)) - 1) - 1 )) ? (sw_tx_cons) + 2 : (sw_tx_cons) + 1; |
| 4572 | } |
| 4573 | |
| 4574 | used = atomic_sub_int_nv(&sc->used_tx_bd, freed)_atomic_sub_int_nv(&sc->used_tx_bd, freed); |
| 4575 | |
| 4576 | sc->tx_cons = sw_tx_cons; |
| 4577 | |
| 4578 | /* Clear the TX timeout timer. */ |
| 4579 | if (used == 0) |
| 4580 | ifp->if_timer = 0; |
| 4581 | |
| 4582 | if (ifq_is_oactive(&ifp->if_snd)) |
| 4583 | ifq_restart(&ifp->if_snd); |
| 4584 | } |
| 4585 | |
| 4586 | /****************************************************************************/ |
| 4587 | /* Disables interrupt generation. */ |
| 4588 | /* */ |
| 4589 | /* Returns: */ |
| 4590 | /* Nothing. */ |
| 4591 | /****************************************************************************/ |
| 4592 | void |
| 4593 | bnx_disable_intr(struct bnx_softc *sc) |
| 4594 | { |
| 4595 | REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00000084 ), ((1L<<18)))); |
| 4596 | REG_RD(sc, BNX_PCICFG_INT_ACK_CMD)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x00000084 ))); |
| 4597 | } |
| 4598 | |
| 4599 | /****************************************************************************/ |
| 4600 | /* Enables interrupt generation. */ |
| 4601 | /* */ |
| 4602 | /* Returns: */ |
| 4603 | /* Nothing. */ |
| 4604 | /****************************************************************************/ |
| 4605 | void |
| 4606 | bnx_enable_intr(struct bnx_softc *sc) |
| 4607 | { |
| 4608 | u_int32_t val; |
| 4609 | |
| 4610 | REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00000084 ), ((1L<<16) | (1L<<18) | sc->last_status_idx) )) |
| 4611 | BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00000084 ), ((1L<<16) | (1L<<18) | sc->last_status_idx) )); |
| 4612 | |
| 4613 | REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00000084 ), ((1L<<16) | sc->last_status_idx))) |
| 4614 | sc->last_status_idx)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00000084 ), ((1L<<16) | sc->last_status_idx))); |
| 4615 | |
| 4616 | val = REG_RD(sc, BNX_HC_COMMAND)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x00006800 ))); |
| 4617 | REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00006800 ), (val | (1L<<16)))); |
| 4618 | } |
| 4619 | |
| 4620 | /****************************************************************************/ |
| 4621 | /* Handles controller initialization. */ |
| 4622 | /* */ |
| 4623 | /* Returns: */ |
| 4624 | /* Nothing. */ |
| 4625 | /****************************************************************************/ |
| 4626 | void |
| 4627 | bnx_init(void *xsc) |
| 4628 | { |
| 4629 | struct bnx_softc *sc = (struct bnx_softc *)xsc; |
| 4630 | struct ifnet *ifp = &sc->arpcom.ac_if; |
| 4631 | u_int32_t ether_mtu; |
| 4632 | int s; |
| 4633 | |
| 4634 | DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__); |
| 4635 | |
| 4636 | s = splnet()splraise(0x4); |
| 4637 | |
| 4638 | bnx_stop(sc); |
| 4639 | |
| 4640 | if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET0x01000000)) { |
| 4641 | BNX_PRINTF(sc, "Controller reset failed!\n")printf("%s: " "Controller reset failed!\n", sc->bnx_dev.dv_xname ); |
| 4642 | goto bnx_init_exit; |
| 4643 | } |
| 4644 | |
| 4645 | if (bnx_chipinit(sc)) { |
| 4646 | BNX_PRINTF(sc, "Controller initialization failed!\n")printf("%s: " "Controller initialization failed!\n", sc->bnx_dev .dv_xname); |
| 4647 | goto bnx_init_exit; |
| 4648 | } |
| 4649 | |
| 4650 | if (bnx_blockinit(sc)) { |
| 4651 | BNX_PRINTF(sc, "Block initialization failed!\n")printf("%s: " "Block initialization failed!\n", sc->bnx_dev .dv_xname); |
| 4652 | goto bnx_init_exit; |
| 4653 | } |
| 4654 | |
| 4655 | /* Load our MAC address. */ |
| 4656 | bcopy(sc->arpcom.ac_enaddr, sc->eaddr, ETHER_ADDR_LEN6); |
| 4657 | bnx_set_mac_addr(sc); |
| 4658 | |
| 4659 | /* Calculate and program the Ethernet MRU size. */ |
| 4660 | ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN9022; |
| 4661 | |
| 4662 | DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n", |
| 4663 | __FUNCTION__, ether_mtu); |
| 4664 | |
| 4665 | /* |
| 4666 | * Program the MRU and enable Jumbo frame |
| 4667 | * support. |
| 4668 | */ |
| 4669 | REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x0000149c ), (ether_mtu | (1L<<31)))) |
| 4670 | BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x0000149c ), (ether_mtu | (1L<<31)))); |
| 4671 | |
| 4672 | /* Calculate the RX Ethernet frame size for rx_bd's. */ |
| 4673 | sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8; |
| 4674 | |
| 4675 | DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, " |
| 4676 | "max_frame_size = %d\n", __FUNCTION__, (int)MCLBYTES, |
| 4677 | sc->mbuf_alloc_size, sc->max_frame_size); |
| 4678 | |
| 4679 | /* Program appropriate promiscuous/multicast filtering. */ |
| 4680 | bnx_iff(sc); |
| 4681 | |
| 4682 | /* Init RX buffer descriptor chain. */ |
| 4683 | bnx_init_rx_chain(sc); |
| 4684 | |
| 4685 | /* Init TX buffer descriptor chain. */ |
| 4686 | bnx_init_tx_chain(sc); |
| 4687 | |
| 4688 | /* Enable host interrupts. */ |
| 4689 | bnx_enable_intr(sc); |
| 4690 | |
| 4691 | bnx_ifmedia_upd(ifp); |
| 4692 | |
| 4693 | ifp->if_flags |= IFF_RUNNING0x40; |
| 4694 | ifq_clr_oactive(&ifp->if_snd); |
| 4695 | |
| 4696 | timeout_add_sec(&sc->bnx_timeout, 1); |
| 4697 | |
| 4698 | bnx_init_exit: |
| 4699 | DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); |
| 4700 | |
| 4701 | splx(s)spllower(s); |
| 4702 | |
| 4703 | return; |
| 4704 | } |
| 4705 | |
| 4706 | void |
| 4707 | bnx_mgmt_init(struct bnx_softc *sc) |
| 4708 | { |
| 4709 | struct ifnet *ifp = &sc->arpcom.ac_if; |
| 4710 | u_int32_t val; |
| 4711 | |
| 4712 | /* Check if the driver is still running and bail out if it is. */ |
| 4713 | if (ifp->if_flags & IFF_RUNNING0x40) |
| 4714 | goto bnx_mgmt_init_exit; |
| 4715 | |
| 4716 | /* Initialize the on-boards CPUs */ |
| 4717 | bnx_init_cpus(sc); |
| 4718 | |
| 4719 | val = (BCM_PAGE_BITS12 - 8) << 24; |
| 4720 | REG_WR(sc, BNX_RV2P_CONFIG, val)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00002808 ), (val))); |
| 4721 | |
| 4722 | /* Enable all critical blocks in the MAC. */ |
| 4723 | REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00000810 ), ((1L<<15) | (1L<<17) | (1L<<18)))) |
| 4724 | BNX_MISC_ENABLE_SET_BITS_RX_V2P_ENABLE |((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00000810 ), ((1L<<15) | (1L<<17) | (1L<<18)))) |
| 4725 | BNX_MISC_ENABLE_SET_BITS_RX_DMA_ENABLE |((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00000810 ), ((1L<<15) | (1L<<17) | (1L<<18)))) |
| 4726 | BNX_MISC_ENABLE_SET_BITS_COMPLETION_ENABLE)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00000810 ), ((1L<<15) | (1L<<17) | (1L<<18)))); |
| 4727 | REG_RD(sc, BNX_MISC_ENABLE_SET_BITS)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x00000810 ))); |
| 4728 | DELAY(20)(*delay_func)(20); |
| 4729 | |
| 4730 | bnx_ifmedia_upd(ifp); |
| 4731 | |
| 4732 | bnx_mgmt_init_exit: |
| 4733 | DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__); |
| 4734 | } |
| 4735 | |
| 4736 | /*****************************************************************************/ |
| 4737 | /* Encapsulates an mbuf cluster into the tx_bd chain structure and makes the */ |
| 4738 | /* memory visible to the controller. */ |
| 4739 | /* */ |
| 4740 | /* Returns: */ |
| 4741 | /* 0 for success, positive value for failure. */ |
| 4742 | /*****************************************************************************/ |
| 4743 | int |
| 4744 | bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m, int *used) |
| 4745 | { |
| 4746 | bus_dmamap_t map; |
| 4747 | struct tx_bd *txbd = NULL((void *)0); |
| 4748 | u_int16_t vlan_tag = 0, flags = 0; |
| 4749 | u_int16_t chain_prod, chain_head, prod; |
| 4750 | #ifdef BNX_DEBUG |
| 4751 | u_int16_t debug_prod; |
| 4752 | #endif |
| 4753 | u_int32_t addr, prod_bseq; |
| 4754 | int i, error; |
| 4755 | |
| 4756 | /* Transfer any checksum offload flags to the bd. */ |
| 4757 | if (m->m_pkthdrM_dat.MH.MH_pkthdr.csum_flags) { |
| 4758 | if (m->m_pkthdrM_dat.MH.MH_pkthdr.csum_flags & M_IPV4_CSUM_OUT0x0001) |
| 4759 | flags |= TX_BD_FLAGS_IP_CKSUM(1<<2); |
| 4760 | if (m->m_pkthdrM_dat.MH.MH_pkthdr.csum_flags & |
| 4761 | (M_TCP_CSUM_OUT0x0002 | M_UDP_CSUM_OUT0x0004)) |
| 4762 | flags |= TX_BD_FLAGS_TCP_UDP_CKSUM(1<<1); |
| 4763 | } |
| 4764 | |
| 4765 | #if NVLAN1 > 0 |
| 4766 | /* Transfer any VLAN tags to the bd. */ |
| 4767 | if (m->m_flagsm_hdr.mh_flags & M_VLANTAG0x0020) { |
| 4768 | flags |= TX_BD_FLAGS_VLAN_TAG(1<<3); |
| 4769 | vlan_tag = m->m_pkthdrM_dat.MH.MH_pkthdr.ether_vtag; |
| 4770 | } |
| 4771 | #endif |
| 4772 | |
| 4773 | /* Map the mbuf into DMAable memory. */ |
| 4774 | prod = sc->tx_prod; |
| 4775 | chain_head = chain_prod = TX_CHAIN_IDX(prod)((prod) & ((((1 << 12) / sizeof(struct tx_bd)) * 2) - 1)); |
| 4776 | map = sc->tx_mbuf_map[chain_head]; |
| 4777 | |
| 4778 | /* Map the mbuf into our DMA address space. */ |
| 4779 | error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m,(*(sc->bnx_dmatag)->_dmamap_load_mbuf)((sc->bnx_dmatag ), (map), (m), (0x0001)) |
| 4780 | BUS_DMA_NOWAIT)(*(sc->bnx_dmatag)->_dmamap_load_mbuf)((sc->bnx_dmatag ), (map), (m), (0x0001)); |
| 4781 | switch (error) { |
| 4782 | case 0: |
| 4783 | break; |
| 4784 | |
| 4785 | case EFBIG27: |
| 4786 | if ((error = m_defrag(m, M_DONTWAIT0x0002)) == 0 && |
| 4787 | (error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m,(*(sc->bnx_dmatag)->_dmamap_load_mbuf)((sc->bnx_dmatag ), (map), (m), (0x0001)) |
| 4788 | BUS_DMA_NOWAIT)(*(sc->bnx_dmatag)->_dmamap_load_mbuf)((sc->bnx_dmatag ), (map), (m), (0x0001))) == 0) |
| 4789 | break; |
| 4790 | |
| 4791 | /* FALLTHROUGH */ |
| 4792 | default: |
| 4793 | sc->tx_dma_map_failures++; |
| 4794 | return (ENOBUFS55); |
| 4795 | } |
| 4796 | |
| 4797 | /* prod points to an empty tx_bd at this point. */ |
| 4798 | prod_bseq = sc->tx_prod_bseq; |
| 4799 | #ifdef BNX_DEBUG |
| 4800 | debug_prod = chain_prod; |
| 4801 | #endif |
| 4802 | |
| 4803 | DBPRINT(sc, BNX_INFO_SEND, |
| 4804 | "%s(): Start: prod = 0x%04X, chain_prod = %04X, " |
| 4805 | "prod_bseq = 0x%08X\n", |
| 4806 | __FUNCTION__, prod, chain_prod, prod_bseq); |
| 4807 | |
| 4808 | /* |
| 4809 | * Cycle through each mbuf segment that makes up |
| 4810 | * the outgoing frame, gathering the mapping info |
| 4811 | * for that segment and creating a tx_bd for the |
| 4812 | * mbuf. |
| 4813 | */ |
| 4814 | for (i = 0; i < map->dm_nsegs ; i++) { |
| 4815 | chain_prod = TX_CHAIN_IDX(prod)((prod) & ((((1 << 12) / sizeof(struct tx_bd)) * 2) - 1)); |
| 4816 | txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)(((chain_prod) & ~(((1 << 12) / sizeof(struct tx_bd )) - 1)) >> (12 - 4))][TX_IDX(chain_prod)((chain_prod) & (((1 << 12) / sizeof(struct tx_bd)) - 1))]; |
| 4817 | |
| 4818 | addr = (u_int32_t)map->dm_segs[i].ds_addr; |
| 4819 | txbd->tx_bd_haddr_lo = addr; |
| 4820 | addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32); |
| 4821 | txbd->tx_bd_haddr_hi = addr; |
| 4822 | txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len; |
| 4823 | txbd->tx_bd_vlan_tag = vlan_tag; |
| 4824 | txbd->tx_bd_flags = flags; |
| 4825 | prod_bseq += map->dm_segs[i].ds_len; |
| 4826 | if (i == 0) |
| 4827 | txbd->tx_bd_flags |= TX_BD_FLAGS_START(1<<7); |
| 4828 | prod = NEXT_TX_BD(prod)(((prod) & (((1 << 12) / sizeof(struct tx_bd)) - 1) ) == ((((1 << 12) / sizeof(struct tx_bd)) - 1) - 1)) ? ( prod) + 2 : (prod) + 1; |
| 4829 | } |
| 4830 | |
| 4831 | /* Set the END flag on the last TX buffer descriptor. */ |
| 4832 | txbd->tx_bd_flags |= TX_BD_FLAGS_END(1<<6); |
| 4833 | |
| 4834 | DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, |
| 4835 | map->dm_nsegs)); |
| 4836 | |
| 4837 | DBPRINT(sc, BNX_INFO_SEND, |
| 4838 | "%s(): End: prod = 0x%04X, chain_prod = %04X, " |
| 4839 | "prod_bseq = 0x%08X\n", |
| 4840 | __FUNCTION__, prod, chain_prod, prod_bseq); |
| 4841 | |
| 4842 | sc->tx_mbuf_ptr[chain_prod] = m; |
| 4843 | sc->tx_mbuf_map[chain_head] = sc->tx_mbuf_map[chain_prod]; |
| 4844 | sc->tx_mbuf_map[chain_prod] = map; |
| 4845 | |
| 4846 | *used += map->dm_nsegs; |
| 4847 | |
| 4848 | DBRUNIF(1, sc->tx_mbuf_alloc++); |
| 4849 | |
| 4850 | DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod, |
| 4851 | map->dm_nsegs)); |
| 4852 | |
| 4853 | bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,(*(sc->bnx_dmatag)->_dmamap_sync)((sc->bnx_dmatag), ( map), (0), (map->dm_mapsize), (0x04)) |
| 4854 | BUS_DMASYNC_PREWRITE)(*(sc->bnx_dmatag)->_dmamap_sync)((sc->bnx_dmatag), ( map), (0), (map->dm_mapsize), (0x04)); |
| 4855 | |
| 4856 | /* prod points to the next free tx_bd at this point. */ |
| 4857 | sc->tx_prod = prod; |
| 4858 | sc->tx_prod_bseq = prod_bseq; |
| 4859 | |
| 4860 | return (0); |
| 4861 | } |
| 4862 | |
| 4863 | /****************************************************************************/ |
| 4864 | /* Main transmit routine. */ |
| 4865 | /* */ |
| 4866 | /* Returns: */ |
| 4867 | /* Nothing. */ |
| 4868 | /****************************************************************************/ |
| 4869 | void |
| 4870 | bnx_start(struct ifqueue *ifq) |
| 4871 | { |
| 4872 | struct ifnet *ifp = ifq->ifq_if; |
| 4873 | struct bnx_softc *sc = ifp->if_softc; |
| 4874 | struct mbuf *m_head = NULL((void *)0); |
| 4875 | int used; |
| 4876 | u_int16_t tx_prod, tx_chain_prod; |
| 4877 | |
| 4878 | if (!sc->bnx_link) { |
| 4879 | ifq_purge(ifq); |
| 4880 | goto bnx_start_exit; |
| 4881 | } |
| 4882 | |
| 4883 | /* prod points to the next free tx_bd. */ |
| 4884 | tx_prod = sc->tx_prod; |
| 4885 | tx_chain_prod = TX_CHAIN_IDX(tx_prod)((tx_prod) & ((((1 << 12) / sizeof(struct tx_bd)) * 2) - 1)); |
Value stored to 'tx_chain_prod' is never read | |
| 4886 | |
| 4887 | DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, " |
| 4888 | "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X\n", |
| 4889 | __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq); |
| 4890 | |
| 4891 | /* |
| 4892 | * Keep adding entries while there is space in the ring. |
| 4893 | */ |
| 4894 | used = 0; |
| 4895 | while (1) { |
| 4896 | if (sc->used_tx_bd + used + BNX_MAX_SEGMENTS8 + 1 >= |
| 4897 | sc->max_tx_bd) { |
| 4898 | DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for " |
| 4899 | "business! Total tx_bd used = %d\n", |
| 4900 | sc->used_tx_bd + used); |
| 4901 | ifq_set_oactive(ifq); |
| 4902 | break; |
| 4903 | } |
| 4904 | |
| 4905 | m_head = ifq_dequeue(ifq); |
| 4906 | if (m_head == NULL((void *)0)) |
| 4907 | break; |
| 4908 | |
| 4909 | if (bnx_tx_encap(sc, m_head, &used)) { |
| 4910 | m_freem(m_head); |
| 4911 | continue; |
| 4912 | } |
| 4913 | |
| 4914 | #if NBPFILTER1 > 0 |
| 4915 | if (ifp->if_bpf) |
| 4916 | bpf_mtap_ether(ifp->if_bpf, m_head, BPF_DIRECTION_OUT(1 << 1)); |
| 4917 | #endif |
| 4918 | } |
| 4919 | |
| 4920 | if (used == 0) { |
| 4921 | /* no packets were dequeued */ |
| 4922 | DBPRINT(sc, BNX_VERBOSE_SEND, |
| 4923 | "%s(): No packets were dequeued\n", __FUNCTION__); |
| 4924 | goto bnx_start_exit; |
| 4925 | } |
| 4926 | |
| 4927 | /* Update the driver's counters. */ |
| 4928 | used = atomic_add_int_nv(&sc->used_tx_bd, used)_atomic_add_int_nv(&sc->used_tx_bd, used); |
| 4929 | |
| 4930 | /* Update some debug statistics counters */ |
| 4931 | DBRUNIF((used > sc->tx_hi_watermark), |
| 4932 | sc->tx_hi_watermark = used); |
| 4933 | DBRUNIF(used == sc->max_tx_bd, sc->tx_full_count++); |
| 4934 | |
| 4935 | tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod)((sc->tx_prod) & ((((1 << 12) / sizeof(struct tx_bd )) * 2) - 1)); |
| 4936 | DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod " |
| 4937 | "= 0x%04X, tx_prod_bseq = 0x%08X\n", __FUNCTION__, tx_prod, |
| 4938 | tx_chain_prod, sc->tx_prod_bseq); |
| 4939 | |
| 4940 | /* Start the transmit. */ |
| 4941 | REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod)((sc->bnx_btag)->write_2((sc->bnx_bhandle), ((0x10000 + ((16) << 8)) + 0x00000088), (sc->tx_prod))); |
| 4942 | REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq)((sc->bnx_btag)->write_4((sc->bnx_bhandle), ((0x10000 + ((16) << 8)) + 0x00000090), (sc->tx_prod_bseq))); |
| 4943 | |
| 4944 | /* Set the tx timeout. */ |
| 4945 | ifp->if_timer = BNX_TX_TIMEOUT5; |
| 4946 | |
| 4947 | bnx_start_exit: |
| 4948 | return; |
| 4949 | } |
| 4950 | |
| 4951 | /****************************************************************************/ |
| 4952 | /* Handles any IOCTL calls from the operating system. */ |
| 4953 | /* */ |
| 4954 | /* Returns: */ |
| 4955 | /* 0 for success, positive value for failure. */ |
| 4956 | /****************************************************************************/ |
| 4957 | int |
| 4958 | bnx_ioctl(struct ifnet *ifp, u_long command, caddr_t data) |
| 4959 | { |
| 4960 | struct bnx_softc *sc = ifp->if_softc; |
| 4961 | struct ifreq *ifr = (struct ifreq *) data; |
| 4962 | struct mii_data *mii = &sc->bnx_mii; |
| 4963 | int s, error = 0; |
| 4964 | |
| 4965 | s = splnet()splraise(0x4); |
| 4966 | |
| 4967 | switch (command) { |
| 4968 | case SIOCSIFADDR((unsigned long)0x80000000 | ((sizeof(struct ifreq) & 0x1fff ) << 16) | ((('i')) << 8) | ((12))): |
| 4969 | ifp->if_flags |= IFF_UP0x1; |
| 4970 | if (!(ifp->if_flags & IFF_RUNNING0x40)) |
| 4971 | bnx_init(sc); |
| 4972 | break; |
| 4973 | |
| 4974 | case SIOCSIFFLAGS((unsigned long)0x80000000 | ((sizeof(struct ifreq) & 0x1fff ) << 16) | ((('i')) << 8) | ((16))): |
| 4975 | if (ifp->if_flags & IFF_UP0x1) { |
| 4976 | if (ifp->if_flags & IFF_RUNNING0x40) |
| 4977 | error = ENETRESET52; |
| 4978 | else |
| 4979 | bnx_init(sc); |
| 4980 | } else { |
| 4981 | if (ifp->if_flags & IFF_RUNNING0x40) |
| 4982 | bnx_stop(sc); |
| 4983 | } |
| 4984 | break; |
| 4985 | |
| 4986 | case SIOCSIFMEDIA(((unsigned long)0x80000000|(unsigned long)0x40000000) | ((sizeof (struct ifreq) & 0x1fff) << 16) | ((('i')) << 8) | ((55))): |
| 4987 | /* Flow control requires full-duplex mode. */ |
| 4988 | if (IFM_SUBTYPE(ifr->ifr_media)((ifr->ifr_ifru.ifru_media) & 0x00000000000000ffULL) == IFM_AUTO0ULL || |
| 4989 | (ifr->ifr_mediaifr_ifru.ifru_media & IFM_FDX0x0000010000000000ULL) == 0) |
| 4990 | ifr->ifr_mediaifr_ifru.ifru_media &= ~IFM_ETH_FMASK(0x0000040000000000ULL|0x0000000000020000ULL|0x0000000000040000ULL ); |
| 4991 | |
| 4992 | if (IFM_SUBTYPE(ifr->ifr_media)((ifr->ifr_ifru.ifru_media) & 0x00000000000000ffULL) != IFM_AUTO0ULL) { |
| 4993 | if ((ifr->ifr_mediaifr_ifru.ifru_media & IFM_ETH_FMASK(0x0000040000000000ULL|0x0000000000020000ULL|0x0000000000040000ULL )) == IFM_FLOW0x0000040000000000ULL) { |
| 4994 | /* We can do both TXPAUSE and RXPAUSE. */ |
| 4995 | ifr->ifr_mediaifr_ifru.ifru_media |= |
| 4996 | IFM_ETH_TXPAUSE0x0000000000040000ULL | IFM_ETH_RXPAUSE0x0000000000020000ULL; |
| 4997 | } |
| 4998 | sc->bnx_flowflags = ifr->ifr_mediaifr_ifru.ifru_media & IFM_ETH_FMASK(0x0000040000000000ULL|0x0000000000020000ULL|0x0000000000040000ULL ); |
| 4999 | } |
| 5000 | /* FALLTHROUGH */ |
| 5001 | case SIOCGIFMEDIA(((unsigned long)0x80000000|(unsigned long)0x40000000) | ((sizeof (struct ifmediareq) & 0x1fff) << 16) | ((('i')) << 8) | ((56))): |
| 5002 | DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n", |
| 5003 | sc->bnx_phy_flags); |
| 5004 | |
| 5005 | error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); |
| 5006 | break; |
| 5007 | |
| 5008 | case SIOCGIFRXR((unsigned long)0x80000000 | ((sizeof(struct ifreq) & 0x1fff ) << 16) | ((('i')) << 8) | ((170))): |
| 5009 | error = if_rxr_ioctl((struct if_rxrinfo *)ifr->ifr_dataifr_ifru.ifru_data, |
| 5010 | NULL((void *)0), BNX_MAX_JUMBO_MRU9216, &sc->rx_ring); |
| 5011 | break; |
| 5012 | |
| 5013 | default: |
| 5014 | error = ether_ioctl(ifp, &sc->arpcom, command, data); |
| 5015 | } |
| 5016 | |
| 5017 | if (error == ENETRESET52) { |
| 5018 | if (ifp->if_flags & IFF_RUNNING0x40) |
| 5019 | bnx_iff(sc); |
| 5020 | error = 0; |
| 5021 | } |
| 5022 | |
| 5023 | splx(s)spllower(s); |
| 5024 | return (error); |
| 5025 | } |
| 5026 | |
| 5027 | /****************************************************************************/ |
| 5028 | /* Transmit timeout handler. */ |
| 5029 | /* */ |
| 5030 | /* Returns: */ |
| 5031 | /* Nothing. */ |
| 5032 | /****************************************************************************/ |
| 5033 | void |
| 5034 | bnx_watchdog(struct ifnet *ifp) |
| 5035 | { |
| 5036 | struct bnx_softc *sc = ifp->if_softc; |
| 5037 | |
| 5038 | DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc); |
| 5039 | bnx_dump_status_block(sc)); |
| 5040 | |
| 5041 | /* |
| 5042 | * If we are in this routine because of pause frames, then |
| 5043 | * don't reset the hardware. |
| 5044 | */ |
| 5045 | if (REG_RD(sc, BNX_EMAC_TX_STATUS)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x000014c0 ))) & BNX_EMAC_TX_STATUS_XOFFED(1L<<0)) |
| 5046 | return; |
| 5047 | |
| 5048 | printf("%s: Watchdog timeout occurred, resetting!\n", |
| 5049 | ifp->if_xname); |
| 5050 | |
| 5051 | /* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */ |
| 5052 | |
| 5053 | bnx_init(sc); |
| 5054 | |
| 5055 | ifp->if_oerrorsif_data.ifi_oerrors++; |
| 5056 | } |
| 5057 | |
| 5058 | /* |
| 5059 | * Interrupt handler. |
| 5060 | */ |
| 5061 | /****************************************************************************/ |
| 5062 | /* Main interrupt entry point. Verifies that the controller generated the */ |
| 5063 | /* interrupt and then calls a separate routine for handle the various */ |
| 5064 | /* interrupt causes (PHY, TX, RX). */ |
| 5065 | /* */ |
| 5066 | /* Returns: */ |
| 5067 | /* 0 for success, positive value for failure. */ |
| 5068 | /****************************************************************************/ |
| 5069 | int |
| 5070 | bnx_intr(void *xsc) |
| 5071 | { |
| 5072 | struct bnx_softc *sc = xsc; |
| 5073 | struct ifnet *ifp = &sc->arpcom.ac_if; |
| 5074 | u_int32_t status_attn_bits; |
| 5075 | u_int16_t status_idx; |
| 5076 | int rv = 0; |
| 5077 | |
| 5078 | if ((sc->bnx_flags & BNX_ACTIVE_FLAG0x80) == 0) |
| 5079 | return (0); |
| 5080 | |
| 5081 | DBRUNIF(1, sc->interrupts_generated++); |
| 5082 | |
| 5083 | bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,(*(sc->bnx_dmatag)->_dmamap_sync)((sc->bnx_dmatag), ( sc->status_map), (0), (sc->status_map->dm_mapsize), ( 0x02)) |
| 5084 | sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD)(*(sc->bnx_dmatag)->_dmamap_sync)((sc->bnx_dmatag), ( sc->status_map), (0), (sc->status_map->dm_mapsize), ( 0x02)); |
| 5085 | |
| 5086 | /* |
| 5087 | * If the hardware status block index |
| 5088 | * matches the last value read by the |
| 5089 | * driver and we haven't asserted our |
| 5090 | * interrupt then there's nothing to do. |
| 5091 | */ |
| 5092 | status_idx = sc->status_block->status_idx; |
| 5093 | if (status_idx != sc->last_status_idx || |
| 5094 | !ISSET(REG_RD(sc, BNX_PCICFG_MISC_STATUS),((((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x0000006c )))) & ((1L<<0))) |
| 5095 | BNX_PCICFG_MISC_STATUS_INTA_VALUE)((((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x0000006c )))) & ((1L<<0)))) { |
| 5096 | rv = 1; |
| 5097 | |
| 5098 | /* Ack the interrupt */ |
| 5099 | REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00000084 ), ((1L<<16) | status_idx))) |
| 5100 | BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | status_idx)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00000084 ), ((1L<<16) | status_idx))); |
| 5101 | |
| 5102 | status_attn_bits = sc->status_block->status_attn_bits; |
| 5103 | |
| 5104 | DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention), |
| 5105 | printf("Simulating unexpected status attention bit set."); |
| 5106 | status_attn_bits = status_attn_bits | |
| 5107 | STATUS_ATTN_BITS_PARITY_ERROR); |
| 5108 | |
| 5109 | /* Was it a link change interrupt? */ |
| 5110 | if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE(1L<<0)) != |
| 5111 | (sc->status_block->status_attn_bits_ack & |
| 5112 | STATUS_ATTN_BITS_LINK_STATE(1L<<0))) { |
| 5113 | KERNEL_LOCK()_kernel_lock(); |
| 5114 | bnx_phy_intr(sc); |
| 5115 | KERNEL_UNLOCK()_kernel_unlock(); |
| 5116 | } |
| 5117 | |
| 5118 | /* If any other attention is asserted then the chip is toast. */ |
| 5119 | if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE(1L<<0)) != |
| 5120 | (sc->status_block->status_attn_bits_ack & |
| 5121 | ~STATUS_ATTN_BITS_LINK_STATE(1L<<0)))) { |
| 5122 | KERNEL_LOCK()_kernel_lock(); |
| 5123 | DBRUN(1, sc->unexpected_attentions++); |
| 5124 | |
| 5125 | BNX_PRINTF(sc, "Fatal attention detected: 0x%08X\n",printf("%s: " "Fatal attention detected: 0x%08X\n", sc->bnx_dev .dv_xname, sc->status_block->status_attn_bits) |
| 5126 | sc->status_block->status_attn_bits)printf("%s: " "Fatal attention detected: 0x%08X\n", sc->bnx_dev .dv_xname, sc->status_block->status_attn_bits); |
| 5127 | |
| 5128 | DBRUN(BNX_FATAL, |
| 5129 | if (bnx_debug_unexpected_attention == 0) |
| 5130 | bnx_breakpoint(sc)); |
| 5131 | |
| 5132 | bnx_init(sc); |
| 5133 | KERNEL_UNLOCK()_kernel_unlock(); |
| 5134 | goto out; |
| 5135 | } |
| 5136 | |
| 5137 | /* Check for any completed RX frames. */ |
| 5138 | if (sc->status_block->status_rx_quick_consumer_index0 != |
| 5139 | sc->hw_rx_cons) |
| 5140 | bnx_rx_intr(sc); |
| 5141 | |
| 5142 | /* Check for any completed TX frames. */ |
| 5143 | if (sc->status_block->status_tx_quick_consumer_index0 != |
| 5144 | sc->hw_tx_cons) |
| 5145 | bnx_tx_intr(sc); |
| 5146 | |
| 5147 | /* |
| 5148 | * Save the status block index value for use during the |
| 5149 | * next interrupt. |
| 5150 | */ |
| 5151 | sc->last_status_idx = status_idx; |
| 5152 | |
| 5153 | /* Start moving packets again */ |
| 5154 | if (ifp->if_flags & IFF_RUNNING0x40 && |
| 5155 | !ifq_empty(&ifp->if_snd)(({ typeof((&ifp->if_snd)->ifq_len) __tmp = *(volatile typeof((&ifp->if_snd)->ifq_len) *)&((&ifp-> if_snd)->ifq_len); membar_datadep_consumer(); __tmp; }) == 0)) |
| 5156 | ifq_start(&ifp->if_snd); |
| 5157 | } |
| 5158 | |
| 5159 | out: |
| 5160 | bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,(*(sc->bnx_dmatag)->_dmamap_sync)((sc->bnx_dmatag), ( sc->status_map), (0), (sc->status_map->dm_mapsize), ( 0x01)) |
| 5161 | sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD)(*(sc->bnx_dmatag)->_dmamap_sync)((sc->bnx_dmatag), ( sc->status_map), (0), (sc->status_map->dm_mapsize), ( 0x01)); |
| 5162 | |
| 5163 | return (rv); |
| 5164 | } |
| 5165 | |
| 5166 | /****************************************************************************/ |
| 5167 | /* Programs the various packet receive modes (broadcast and multicast). */ |
| 5168 | /* */ |
| 5169 | /* Returns: */ |
| 5170 | /* Nothing. */ |
| 5171 | /****************************************************************************/ |
| 5172 | void |
| 5173 | bnx_iff(struct bnx_softc *sc) |
| 5174 | { |
| 5175 | struct arpcom *ac = &sc->arpcom; |
| 5176 | struct ifnet *ifp = &ac->ac_if; |
| 5177 | struct ether_multi *enm; |
| 5178 | struct ether_multistep step; |
| 5179 | u_int32_t hashes[NUM_MC_HASH_REGISTERS8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; |
| 5180 | u_int32_t rx_mode, sort_mode; |
| 5181 | int h, i; |
| 5182 | |
| 5183 | /* Initialize receive mode default settings. */ |
| 5184 | rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS(1L<<8) | |
| 5185 | BNX_EMAC_RX_MODE_KEEP_VLAN_TAG(1L<<10)); |
| 5186 | sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN(1L<<16); |
| 5187 | ifp->if_flags &= ~IFF_ALLMULTI0x200; |
| 5188 | |
| 5189 | /* |
| 5190 | * ASF/IPMI/UMP firmware requires that VLAN tag stripping |
| 5191 | * be enabled. |
| 5192 | */ |
| 5193 | if (!(ifp->if_capabilitiesif_data.ifi_capabilities & IFCAP_VLAN_HWTAGGING0x00000020) && |
| 5194 | (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG0x40))) |
| 5195 | rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG(1L<<10); |
| 5196 | |
| 5197 | /* |
| 5198 | * Check for promiscuous, all multicast, or selected |
| 5199 | * multicast address filtering. |
| 5200 | */ |
| 5201 | if (ifp->if_flags & IFF_PROMISC0x100) { |
| 5202 | DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n"); |
| 5203 | |
| 5204 | ifp->if_flags |= IFF_ALLMULTI0x200; |
| 5205 | /* Enable promiscuous mode. */ |
| 5206 | rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS(1L<<8); |
| 5207 | sort_mode |= BNX_RPM_SORT_USER0_PROM_EN(1L<<19); |
| 5208 | } else if (ac->ac_multirangecnt > 0) { |
| 5209 | DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n"); |
| 5210 | |
| 5211 | ifp->if_flags |= IFF_ALLMULTI0x200; |
| 5212 | /* Enable all multicast addresses. */ |
| 5213 | for (i = 0; i < NUM_MC_HASH_REGISTERS8; i++) |
| 5214 | REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x000014d0 + (i * 4)), (0xffffffff))) |
| 5215 | 0xffffffff)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x000014d0 + (i * 4)), (0xffffffff))); |
| 5216 | sort_mode |= BNX_RPM_SORT_USER0_MC_EN(1L<<17); |
| 5217 | } else { |
| 5218 | /* Accept one or more multicast(s). */ |
| 5219 | DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n"); |
| 5220 | |
| 5221 | ETHER_FIRST_MULTI(step, ac, enm)do { (step).e_enm = ((&(ac)->ac_multiaddrs)->lh_first ); do { if ((((enm)) = ((step)).e_enm) != ((void *)0)) ((step )).e_enm = ((((enm)))->enm_list.le_next); } while ( 0); } while ( 0); |
| 5222 | while (enm != NULL((void *)0)) { |
| 5223 | h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN6) & |
| 5224 | 0xFF; |
| 5225 | |
| 5226 | hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F); |
| 5227 | |
| 5228 | ETHER_NEXT_MULTI(step, enm)do { if (((enm) = (step).e_enm) != ((void *)0)) (step).e_enm = (((enm))->enm_list.le_next); } while ( 0); |
| 5229 | } |
| 5230 | |
| 5231 | for (i = 0; i < NUM_MC_HASH_REGISTERS8; i++) |
| 5232 | REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x000014d0 + (i * 4)), (hashes[i]))) |
| 5233 | hashes[i])((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x000014d0 + (i * 4)), (hashes[i]))); |
| 5234 | |
| 5235 | sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN(1L<<18); |
| 5236 | } |
| 5237 | |
| 5238 | /* Only make changes if the receive mode has actually changed. */ |
| 5239 | if (rx_mode != sc->rx_mode) { |
| 5240 | DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n", |
| 5241 | rx_mode); |
| 5242 | |
| 5243 | sc->rx_mode = rx_mode; |
| 5244 | REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x000014c8 ), (rx_mode))); |
| 5245 | } |
| 5246 | |
| 5247 | /* Disable and clear the existing sort before enabling a new sort. */ |
| 5248 | REG_WR(sc, BNX_RPM_SORT_USER0, 0x0)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00001820 ), (0x0))); |
| 5249 | REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00001820 ), (sort_mode))); |
| 5250 | REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA)((sc->bnx_btag)->write_4((sc->bnx_bhandle), (0x00001820 ), (sort_mode | (1L<<31)))); |
| 5251 | } |
| 5252 | |
| 5253 | /****************************************************************************/ |
| 5254 | /* Called periodically to updates statistics from the controllers */ |
| 5255 | /* statistics block. */ |
| 5256 | /* */ |
| 5257 | /* Returns: */ |
| 5258 | /* Nothing. */ |
| 5259 | /****************************************************************************/ |
| 5260 | void |
| 5261 | bnx_stats_update(struct bnx_softc *sc) |
| 5262 | { |
| 5263 | struct ifnet *ifp = &sc->arpcom.ac_if; |
| 5264 | struct statistics_block *stats; |
| 5265 | |
| 5266 | DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __FUNCTION__); |
| 5267 | |
| 5268 | stats = (struct statistics_block *)sc->stats_block; |
| 5269 | |
| 5270 | /* |
| 5271 | * Update the interface statistics from the |
| 5272 | * hardware statistics. |
| 5273 | */ |
| 5274 | ifp->if_collisionsif_data.ifi_collisions = (u_long)stats->stat_EtherStatsCollisions; |
| 5275 | |
| 5276 | ifp->if_ierrorsif_data.ifi_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts + |
| 5277 | (u_long)stats->stat_EtherStatsOverrsizePkts + |
| 5278 | (u_long)stats->stat_IfInMBUFDiscards + |
| 5279 | (u_long)stats->stat_Dot3StatsAlignmentErrors + |
| 5280 | (u_long)stats->stat_Dot3StatsFCSErrors; |
| 5281 | |
| 5282 | ifp->if_oerrorsif_data.ifi_oerrors = (u_long) |
| 5283 | stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors + |
| 5284 | (u_long)stats->stat_Dot3StatsExcessiveCollisions + |
| 5285 | (u_long)stats->stat_Dot3StatsLateCollisions; |
| 5286 | |
| 5287 | /* |
| 5288 | * Certain controllers don't report |
| 5289 | * carrier sense errors correctly. |
| 5290 | * See errata E11_5708CA0_1165. |
| 5291 | */ |
| 5292 | if (!(BNX_CHIP_NUM(sc)(((sc)->bnx_chipid) & 0xffff0000) == BNX_CHIP_NUM_57060x57060000) && |
| 5293 | !(BNX_CHIP_ID(sc)(((sc)->bnx_chipid) & 0xfffffff0) == BNX_CHIP_ID_5708_A00x57080000)) |
| 5294 | ifp->if_oerrorsif_data.ifi_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors; |
| 5295 | |
| 5296 | /* |
| 5297 | * Update the sysctl statistics from the |
| 5298 | * hardware statistics. |
| 5299 | */ |
| 5300 | sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) + |
| 5301 | (u_int64_t) stats->stat_IfHCInOctets_lo; |
| 5302 | |
| 5303 | sc->stat_IfHCInBadOctets = |
| 5304 | ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) + |
| 5305 | (u_int64_t) stats->stat_IfHCInBadOctets_lo; |
| 5306 | |
| 5307 | sc->stat_IfHCOutOctets = |
| 5308 | ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) + |
| 5309 | (u_int64_t) stats->stat_IfHCOutOctets_lo; |
| 5310 | |
| 5311 | sc->stat_IfHCOutBadOctets = |
| 5312 | ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) + |
| 5313 | (u_int64_t) stats->stat_IfHCOutBadOctets_lo; |
| 5314 | |
| 5315 | sc->stat_IfHCInUcastPkts = |
| 5316 | ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) + |
| 5317 | (u_int64_t) stats->stat_IfHCInUcastPkts_lo; |
| 5318 | |
| 5319 | sc->stat_IfHCInMulticastPkts = |
| 5320 | ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) + |
| 5321 | (u_int64_t) stats->stat_IfHCInMulticastPkts_lo; |
| 5322 | |
| 5323 | sc->stat_IfHCInBroadcastPkts = |
| 5324 | ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) + |
| 5325 | (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo; |
| 5326 | |
| 5327 | sc->stat_IfHCOutUcastPkts = |
| 5328 | ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) + |
| 5329 | (u_int64_t) stats->stat_IfHCOutUcastPkts_lo; |
| 5330 | |
| 5331 | sc->stat_IfHCOutMulticastPkts = |
| 5332 | ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) + |
| 5333 | (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo; |
| 5334 | |
| 5335 | sc->stat_IfHCOutBroadcastPkts = |
| 5336 | ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) + |
| 5337 | (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo; |
| 5338 | |
| 5339 | sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors = |
| 5340 | stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors; |
| 5341 | |
| 5342 | sc->stat_Dot3StatsCarrierSenseErrors = |
| 5343 | stats->stat_Dot3StatsCarrierSenseErrors; |
| 5344 | |
| 5345 | sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors; |
| 5346 | |
| 5347 | sc->stat_Dot3StatsAlignmentErrors = |
| 5348 | stats->stat_Dot3StatsAlignmentErrors; |
| 5349 | |
| 5350 | sc->stat_Dot3StatsSingleCollisionFrames = |
| 5351 | stats->stat_Dot3StatsSingleCollisionFrames; |
| 5352 | |
| 5353 | sc->stat_Dot3StatsMultipleCollisionFrames = |
| 5354 | stats->stat_Dot3StatsMultipleCollisionFrames; |
| 5355 | |
| 5356 | sc->stat_Dot3StatsDeferredTransmissions = |
| 5357 | stats->stat_Dot3StatsDeferredTransmissions; |
| 5358 | |
| 5359 | sc->stat_Dot3StatsExcessiveCollisions = |
| 5360 | stats->stat_Dot3StatsExcessiveCollisions; |
| 5361 | |
| 5362 | sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions; |
| 5363 | |
| 5364 | sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions; |
| 5365 | |
| 5366 | sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments; |
| 5367 | |
| 5368 | sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers; |
| 5369 | |
| 5370 | sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts; |
| 5371 | |
| 5372 | sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts; |
| 5373 | |
| 5374 | sc->stat_EtherStatsPktsRx64Octets = |
| 5375 | stats->stat_EtherStatsPktsRx64Octets; |
| 5376 | |
| 5377 | sc->stat_EtherStatsPktsRx65Octetsto127Octets = |
| 5378 | stats->stat_EtherStatsPktsRx65Octetsto127Octets; |
| 5379 | |
| 5380 | sc->stat_EtherStatsPktsRx128Octetsto255Octets = |
| 5381 | stats->stat_EtherStatsPktsRx128Octetsto255Octets; |
| 5382 | |
| 5383 | sc->stat_EtherStatsPktsRx256Octetsto511Octets = |
| 5384 | stats->stat_EtherStatsPktsRx256Octetsto511Octets; |
| 5385 | |
| 5386 | sc->stat_EtherStatsPktsRx512Octetsto1023Octets = |
| 5387 | stats->stat_EtherStatsPktsRx512Octetsto1023Octets; |
| 5388 | |
| 5389 | sc->stat_EtherStatsPktsRx1024Octetsto1522Octets = |
| 5390 | stats->stat_EtherStatsPktsRx1024Octetsto1522Octets; |
| 5391 | |
| 5392 | sc->stat_EtherStatsPktsRx1523Octetsto9022Octets = |
| 5393 | stats->stat_EtherStatsPktsRx1523Octetsto9022Octets; |
| 5394 | |
| 5395 | sc->stat_EtherStatsPktsTx64Octets = |
| 5396 | stats->stat_EtherStatsPktsTx64Octets; |
| 5397 | |
| 5398 | sc->stat_EtherStatsPktsTx65Octetsto127Octets = |
| 5399 | stats->stat_EtherStatsPktsTx65Octetsto127Octets; |
| 5400 | |
| 5401 | sc->stat_EtherStatsPktsTx128Octetsto255Octets = |
| 5402 | stats->stat_EtherStatsPktsTx128Octetsto255Octets; |
| 5403 | |
| 5404 | sc->stat_EtherStatsPktsTx256Octetsto511Octets = |
| 5405 | stats->stat_EtherStatsPktsTx256Octetsto511Octets; |
| 5406 | |
| 5407 | sc->stat_EtherStatsPktsTx512Octetsto1023Octets = |
| 5408 | stats->stat_EtherStatsPktsTx512Octetsto1023Octets; |
| 5409 | |
| 5410 | sc->stat_EtherStatsPktsTx1024Octetsto1522Octets = |
| 5411 | stats->stat_EtherStatsPktsTx1024Octetsto1522Octets; |
| 5412 | |
| 5413 | sc->stat_EtherStatsPktsTx1523Octetsto9022Octets = |
| 5414 | stats->stat_EtherStatsPktsTx1523Octetsto9022Octets; |
| 5415 | |
| 5416 | sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived; |
| 5417 | |
| 5418 | sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived; |
| 5419 | |
| 5420 | sc->stat_OutXonSent = stats->stat_OutXonSent; |
| 5421 | |
| 5422 | sc->stat_OutXoffSent = stats->stat_OutXoffSent; |
| 5423 | |
| 5424 | sc->stat_FlowControlDone = stats->stat_FlowControlDone; |
| 5425 | |
| 5426 | sc->stat_MacControlFramesReceived = |
| 5427 | stats->stat_MacControlFramesReceived; |
| 5428 | |
| 5429 | sc->stat_XoffStateEntered = stats->stat_XoffStateEntered; |
| 5430 | |
| 5431 | sc->stat_IfInFramesL2FilterDiscards = |
| 5432 | stats->stat_IfInFramesL2FilterDiscards; |
| 5433 | |
| 5434 | sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards; |
| 5435 | |
| 5436 | sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards; |
| 5437 | |
| 5438 | sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards; |
| 5439 | |
| 5440 | sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit; |
| 5441 | |
| 5442 | sc->stat_CatchupInRuleCheckerDiscards = |
| 5443 | stats->stat_CatchupInRuleCheckerDiscards; |
| 5444 | |
| 5445 | sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards; |
| 5446 | |
| 5447 | sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards; |
| 5448 | |
| 5449 | sc->stat_CatchupInRuleCheckerP4Hit = |
| 5450 | stats->stat_CatchupInRuleCheckerP4Hit; |
| 5451 | |
| 5452 | DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __FUNCTION__); |
| 5453 | } |
| 5454 | |
| 5455 | void |
| 5456 | bnx_tick(void *xsc) |
| 5457 | { |
| 5458 | struct bnx_softc *sc = xsc; |
| 5459 | struct ifnet *ifp = &sc->arpcom.ac_if; |
| 5460 | struct mii_data *mii = NULL((void *)0); |
| 5461 | u_int32_t msg; |
| 5462 | |
| 5463 | /* Tell the firmware that the driver is still running. */ |
| 5464 | #ifdef BNX_DEBUG |
| 5465 | msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE0x00080000; |
| 5466 | #else |
| 5467 | msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq; |
| 5468 | #endif |
| 5469 | REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg)bnx_reg_wr_ind(sc, sc->bnx_shmem_base + 0x00000010, msg); |
| 5470 | |
| 5471 | /* Update the statistics from the hardware statistics block. */ |
| 5472 | bnx_stats_update(sc); |
| 5473 | |
| 5474 | /* Schedule the next tick. */ |
| 5475 | timeout_add_sec(&sc->bnx_timeout, 1); |
| 5476 | |
| 5477 | /* If link is up already up then we're done. */ |
| 5478 | if (sc->bnx_link) |
| 5479 | goto bnx_tick_exit; |
| 5480 | |
| 5481 | mii = &sc->bnx_mii; |
| 5482 | mii_tick(mii); |
| 5483 | |
| 5484 | /* Check if the link has come up. */ |
| 5485 | if (!sc->bnx_link && mii->mii_media_status & IFM_ACTIVE0x0000000000000002ULL && |
| 5486 | IFM_SUBTYPE(mii->mii_media_active)((mii->mii_media_active) & 0x00000000000000ffULL) != IFM_NONE2ULL) { |
| 5487 | sc->bnx_link++; |
| 5488 | /* Now that link is up, handle any outstanding TX traffic. */ |
| 5489 | if (!ifq_empty(&ifp->if_snd)(({ typeof((&ifp->if_snd)->ifq_len) __tmp = *(volatile typeof((&ifp->if_snd)->ifq_len) *)&((&ifp-> if_snd)->ifq_len); membar_datadep_consumer(); __tmp; }) == 0)) |
| 5490 | ifq_start(&ifp->if_snd); |
| 5491 | } |
| 5492 | |
| 5493 | bnx_tick_exit: |
| 5494 | return; |
| 5495 | } |
| 5496 | |
| 5497 | /****************************************************************************/ |
| 5498 | /* BNX Debug Routines */ |
| 5499 | /****************************************************************************/ |
| 5500 | #ifdef BNX_DEBUG |
| 5501 | |
| 5502 | /****************************************************************************/ |
| 5503 | /* Prints out information about an mbuf. */ |
| 5504 | /* */ |
| 5505 | /* Returns: */ |
| 5506 | /* Nothing. */ |
| 5507 | /****************************************************************************/ |
| 5508 | void |
| 5509 | bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m) |
| 5510 | { |
| 5511 | struct mbuf *mp = m; |
| 5512 | |
| 5513 | if (m == NULL((void *)0)) { |
| 5514 | /* Index out of range. */ |
| 5515 | printf("mbuf ptr is null!\n"); |
| 5516 | return; |
| 5517 | } |
| 5518 | |
| 5519 | while (mp) { |
| 5520 | printf("mbuf: vaddr = %p, m_len = %d, m_flags = ", |
| 5521 | mp, mp->m_lenm_hdr.mh_len); |
| 5522 | |
| 5523 | if (mp->m_flagsm_hdr.mh_flags & M_EXT0x0001) |
| 5524 | printf("M_EXT "); |
| 5525 | if (mp->m_flagsm_hdr.mh_flags & M_PKTHDR0x0002) |
| 5526 | printf("M_PKTHDR "); |
| 5527 | printf("\n"); |
| 5528 | |
| 5529 | if (mp->m_flagsm_hdr.mh_flags & M_EXT0x0001) |
| 5530 | printf("- m_ext: vaddr = %p, ext_size = 0x%04X\n", |
| 5531 | mp, mp->m_extM_dat.MH.MH_dat.MH_ext.ext_size); |
| 5532 | |
| 5533 | mp = mp->m_nextm_hdr.mh_next; |
| 5534 | } |
| 5535 | } |
| 5536 | |
| 5537 | /****************************************************************************/ |
| 5538 | /* Prints out the mbufs in the TX mbuf chain. */ |
| 5539 | /* */ |
| 5540 | /* Returns: */ |
| 5541 | /* Nothing. */ |
| 5542 | /****************************************************************************/ |
| 5543 | void |
| 5544 | bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count) |
| 5545 | { |
| 5546 | struct mbuf *m; |
| 5547 | int i; |
| 5548 | |
| 5549 | BNX_PRINTF(sc,printf("%s: " "----------------------------" " tx mbuf data " "----------------------------\n", sc->bnx_dev.dv_xname) |
| 5550 | "----------------------------"printf("%s: " "----------------------------" " tx mbuf data " "----------------------------\n", sc->bnx_dev.dv_xname) |
| 5551 | " tx mbuf data "printf("%s: " "----------------------------" " tx mbuf data " "----------------------------\n", sc->bnx_dev.dv_xname) |
| 5552 | "----------------------------\n")printf("%s: " "----------------------------" " tx mbuf data " "----------------------------\n", sc->bnx_dev.dv_xname); |
| 5553 | |
| 5554 | for (i = 0; i < count; i++) { |
| 5555 | m = sc->tx_mbuf_ptr[chain_prod]; |
| 5556 | BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod)printf("%s: " "txmbuf[%d]\n", sc->bnx_dev.dv_xname, chain_prod ); |
| 5557 | bnx_dump_mbuf(sc, m); |
| 5558 | chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod))(((((chain_prod) & (((1 << 12) / sizeof(struct tx_bd )) - 1)) == ((((1 << 12) / sizeof(struct tx_bd)) - 1) - 1)) ? (chain_prod) + 2 : (chain_prod) + 1) & ((((1 << 12) / sizeof(struct tx_bd)) * 2) - 1)); |
| 5559 | } |
| 5560 | |
| 5561 | BNX_PRINTF(sc,printf("%s: " "--------------------------------------------" "----------------------------\n" , sc->bnx_dev.dv_xname) |
| 5562 | "--------------------------------------------"printf("%s: " "--------------------------------------------" "----------------------------\n" , sc->bnx_dev.dv_xname) |
| 5563 | "----------------------------\n")printf("%s: " "--------------------------------------------" "----------------------------\n" , sc->bnx_dev.dv_xname); |
| 5564 | } |
| 5565 | |
| 5566 | /* |
| 5567 | * This routine prints the RX mbuf chain. |
| 5568 | */ |
| 5569 | void |
| 5570 | bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count) |
| 5571 | { |
| 5572 | struct mbuf *m; |
| 5573 | int i; |
| 5574 | |
| 5575 | BNX_PRINTF(sc,printf("%s: " "----------------------------" " rx mbuf data " "----------------------------\n", sc->bnx_dev.dv_xname) |
| 5576 | "----------------------------"printf("%s: " "----------------------------" " rx mbuf data " "----------------------------\n", sc->bnx_dev.dv_xname) |
| 5577 | " rx mbuf data "printf("%s: " "----------------------------" " rx mbuf data " "----------------------------\n", sc->bnx_dev.dv_xname) |
| 5578 | "----------------------------\n")printf("%s: " "----------------------------" " rx mbuf data " "----------------------------\n", sc->bnx_dev.dv_xname); |
| 5579 | |
| 5580 | for (i = 0; i < count; i++) { |
| 5581 | m = sc->rx_mbuf_ptr[chain_prod]; |
| 5582 | BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod)printf("%s: " "rxmbuf[0x%04X]\n", sc->bnx_dev.dv_xname, chain_prod ); |
| 5583 | bnx_dump_mbuf(sc, m); |
| 5584 | chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod))(((((chain_prod) & (((1 << 12) / sizeof(struct rx_bd )) - 1)) == ((((1 << 12) / sizeof(struct rx_bd)) - 1) - 1)) ? (chain_prod) + 2 : (chain_prod) + 1) & ((((1 << 12) / sizeof(struct rx_bd)) * 2) - 1)); |
| 5585 | } |
| 5586 | |
| 5587 | |
| 5588 | BNX_PRINTF(sc,printf("%s: " "--------------------------------------------" "----------------------------\n" , sc->bnx_dev.dv_xname) |
| 5589 | "--------------------------------------------"printf("%s: " "--------------------------------------------" "----------------------------\n" , sc->bnx_dev.dv_xname) |
| 5590 | "----------------------------\n")printf("%s: " "--------------------------------------------" "----------------------------\n" , sc->bnx_dev.dv_xname); |
| 5591 | } |
| 5592 | |
| 5593 | void |
| 5594 | bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd) |
| 5595 | { |
| 5596 | if (idx > MAX_TX_BD((((1 << 12) / sizeof(struct tx_bd)) * 2) - 1)) |
| 5597 | /* Index out of range. */ |
| 5598 | BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx)printf("%s: " "tx_bd[0x%04X]: Invalid tx_bd index!\n", sc-> bnx_dev.dv_xname, idx); |
| 5599 | else if ((idx & USABLE_TX_BD_PER_PAGE(((1 << 12) / sizeof(struct tx_bd)) - 1)) == USABLE_TX_BD_PER_PAGE(((1 << 12) / sizeof(struct tx_bd)) - 1)) |
| 5600 | /* TX Chain page pointer. */ |
| 5601 | BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "printf("%s: " "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain " "page pointer\n" , sc->bnx_dev.dv_xname, idx, txbd->tx_bd_haddr_hi, txbd ->tx_bd_haddr_lo) |
| 5602 | "page pointer\n", idx, txbd->tx_bd_haddr_hi,printf("%s: " "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain " "page pointer\n" , sc->bnx_dev.dv_xname, idx, txbd->tx_bd_haddr_hi, txbd ->tx_bd_haddr_lo) |
| 5603 | txbd->tx_bd_haddr_lo)printf("%s: " "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain " "page pointer\n" , sc->bnx_dev.dv_xname, idx, txbd->tx_bd_haddr_hi, txbd ->tx_bd_haddr_lo); |
| 5604 | else |
| 5605 | /* Normal tx_bd entry. */ |
| 5606 | BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "printf("%s: " "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = " "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", sc->bnx_dev .dv_xname, idx, txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo , txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag, txbd-> tx_bd_flags) |
| 5607 | "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,printf("%s: " "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = " "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", sc->bnx_dev .dv_xname, idx, txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo , txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag, txbd-> tx_bd_flags) |
| 5608 | txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,printf("%s: " "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = " "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", sc->bnx_dev .dv_xname, idx, txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo , txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag, txbd-> tx_bd_flags) |
| 5609 | txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,printf("%s: " "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = " "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", sc->bnx_dev .dv_xname, idx, txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo , txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag, txbd-> tx_bd_flags) |
| 5610 | txbd->tx_bd_flags)printf("%s: " "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = " "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", sc->bnx_dev .dv_xname, idx, txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo , txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag, txbd-> tx_bd_flags); |
| 5611 | } |
| 5612 | |
| 5613 | void |
| 5614 | bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd) |
| 5615 | { |
| 5616 | if (idx > MAX_RX_BD((((1 << 12) / sizeof(struct rx_bd)) * 2) - 1)) |
| 5617 | /* Index out of range. */ |
| 5618 | BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx)printf("%s: " "rx_bd[0x%04X]: Invalid rx_bd index!\n", sc-> bnx_dev.dv_xname, idx); |
| 5619 | else if ((idx & USABLE_RX_BD_PER_PAGE(((1 << 12) / sizeof(struct rx_bd)) - 1)) == USABLE_RX_BD_PER_PAGE(((1 << 12) / sizeof(struct rx_bd)) - 1)) |
| 5620 | /* TX Chain page pointer. */ |
| 5621 | BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "printf("%s: " "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page " "pointer\n", sc->bnx_dev.dv_xname, idx, rxbd->rx_bd_haddr_hi , rxbd->rx_bd_haddr_lo) |
| 5622 | "pointer\n", idx, rxbd->rx_bd_haddr_hi,printf("%s: " "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page " "pointer\n", sc->bnx_dev.dv_xname, idx, rxbd->rx_bd_haddr_hi , rxbd->rx_bd_haddr_lo) |
| 5623 | rxbd->rx_bd_haddr_lo)printf("%s: " "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page " "pointer\n", sc->bnx_dev.dv_xname, idx, rxbd->rx_bd_haddr_hi , rxbd->rx_bd_haddr_lo); |
| 5624 | else |
| 5625 | /* Normal tx_bd entry. */ |
| 5626 | BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "printf("%s: " "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = " "0x%08X, flags = 0x%08X\n", sc->bnx_dev.dv_xname, idx, rxbd ->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len , rxbd->rx_bd_flags) |
| 5627 | "0x%08X, flags = 0x%08X\n", idx,printf("%s: " "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = " "0x%08X, flags = 0x%08X\n", sc->bnx_dev.dv_xname, idx, rxbd ->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len , rxbd->rx_bd_flags) |
| 5628 | rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,printf("%s: " "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = " "0x%08X, flags = 0x%08X\n", sc->bnx_dev.dv_xname, idx, rxbd ->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len , rxbd->rx_bd_flags) |
| 5629 | rxbd->rx_bd_len, rxbd->rx_bd_flags)printf("%s: " "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = " "0x%08X, flags = 0x%08X\n", sc->bnx_dev.dv_xname, idx, rxbd ->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len , rxbd->rx_bd_flags); |
| 5630 | } |
| 5631 | |
| 5632 | void |
| 5633 | bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr) |
| 5634 | { |
| 5635 | BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "printf("%s: " "l2_fhdr[0x%04X]: status = 0x%08X, " "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, " "tcp_udp_xsum = 0x%04X\n", sc->bnx_dev.dv_xname, idx, l2fhdr ->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag , l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum ) |
| 5636 | "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "printf("%s: " "l2_fhdr[0x%04X]: status = 0x%08X, " "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, " "tcp_udp_xsum = 0x%04X\n", sc->bnx_dev.dv_xname, idx, l2fhdr ->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag , l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum ) |
| 5637 | "tcp_udp_xsum = 0x%04X\n", idx,printf("%s: " "l2_fhdr[0x%04X]: status = 0x%08X, " "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, " "tcp_udp_xsum = 0x%04X\n", sc->bnx_dev.dv_xname, idx, l2fhdr ->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag , l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum ) |
| 5638 | l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,printf("%s: " "l2_fhdr[0x%04X]: status = 0x%08X, " "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, " "tcp_udp_xsum = 0x%04X\n", sc->bnx_dev.dv_xname, idx, l2fhdr ->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag , l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum ) |
| 5639 | l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,printf("%s: " "l2_fhdr[0x%04X]: status = 0x%08X, " "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, " "tcp_udp_xsum = 0x%04X\n", sc->bnx_dev.dv_xname, idx, l2fhdr ->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag , l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum ) |
| 5640 | l2fhdr->l2_fhdr_tcp_udp_xsum)printf("%s: " "l2_fhdr[0x%04X]: status = 0x%08X, " "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, " "tcp_udp_xsum = 0x%04X\n", sc->bnx_dev.dv_xname, idx, l2fhdr ->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag , l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum ); |
| 5641 | } |
| 5642 | |
| 5643 | /* |
| 5644 | * This routine prints the TX chain. |
| 5645 | */ |
| 5646 | void |
| 5647 | bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count) |
| 5648 | { |
| 5649 | struct tx_bd *txbd; |
| 5650 | int i; |
| 5651 | |
| 5652 | /* First some info about the tx_bd chain structure. */ |
| 5653 | BNX_PRINTF(sc,printf("%s: " "----------------------------" " tx_bd chain " "----------------------------\n", sc->bnx_dev.dv_xname) |
| 5654 | "----------------------------"printf("%s: " "----------------------------" " tx_bd chain " "----------------------------\n", sc->bnx_dev.dv_xname) |
| 5655 | " tx_bd chain "printf("%s: " "----------------------------" " tx_bd chain " "----------------------------\n", sc->bnx_dev.dv_xname) |
| 5656 | "----------------------------\n")printf("%s: " "----------------------------" " tx_bd chain " "----------------------------\n", sc->bnx_dev.dv_xname); |
| 5657 | |
| 5658 | BNX_PRINTF(sc,printf("%s: " "page size = 0x%08X, tx chain pages = 0x%08X\n" , sc->bnx_dev.dv_xname, (u_int32_t)(1 << 12), (u_int32_t ) 2) |
| 5659 | "page size = 0x%08X, tx chain pages = 0x%08X\n",printf("%s: " "page size = 0x%08X, tx chain pages = 0x%08X\n" , sc->bnx_dev.dv_xname, (u_int32_t)(1 << 12), (u_int32_t ) 2) |
| 5660 | (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES)printf("%s: " "page size = 0x%08X, tx chain pages = 0x%08X\n" , sc->bnx_dev.dv_xname, (u_int32_t)(1 << 12), (u_int32_t ) 2); |
| 5661 | |
| 5662 | BNX_PRINTF(sc,printf("%s: " "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n" , sc->bnx_dev.dv_xname, (u_int32_t)((1 << 12) / sizeof (struct tx_bd)), (u_int32_t)(((1 << 12) / sizeof(struct tx_bd)) - 1)) |
| 5663 | "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",printf("%s: " "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n" , sc->bnx_dev.dv_xname, (u_int32_t)((1 << 12) / sizeof (struct tx_bd)), (u_int32_t)(((1 << 12) / sizeof(struct tx_bd)) - 1)) |
| 5664 | (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE)printf("%s: " "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n" , sc->bnx_dev.dv_xname, (u_int32_t)((1 << 12) / sizeof (struct tx_bd)), (u_int32_t)(((1 << 12) / sizeof(struct tx_bd)) - 1)); |
| 5665 | |
| 5666 | BNX_PRINTF(sc, "total tx_bd = 0x%08X\n", (u_int32_t)TOTAL_TX_BD)printf("%s: " "total tx_bd = 0x%08X\n", sc->bnx_dev.dv_xname , (u_int32_t)(((1 << 12) / sizeof(struct tx_bd)) * 2)); |
| 5667 | |
| 5668 | BNX_PRINTF(sc, ""printf("%s: " "" "-----------------------------" " tx_bd data " "-----------------------------\n", sc->bnx_dev.dv_xname) |
| 5669 | "-----------------------------"printf("%s: " "" "-----------------------------" " tx_bd data " "-----------------------------\n", sc->bnx_dev.dv_xname) |
| 5670 | " tx_bd data "printf("%s: " "" "-----------------------------" " tx_bd data " "-----------------------------\n", sc->bnx_dev.dv_xname) |
| 5671 | "-----------------------------\n")printf("%s: " "" "-----------------------------" " tx_bd data " "-----------------------------\n", sc->bnx_dev.dv_xname); |
| 5672 | |
| 5673 | /* Now print out the tx_bd's themselves. */ |
| 5674 | for (i = 0; i < count; i++) { |
| 5675 | txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)(((tx_prod) & ~(((1 << 12) / sizeof(struct tx_bd)) - 1)) >> (12 - 4))][TX_IDX(tx_prod)((tx_prod) & (((1 << 12) / sizeof(struct tx_bd)) - 1 ))]; |
| 5676 | bnx_dump_txbd(sc, tx_prod, txbd); |
| 5677 | tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod))(((((tx_prod) & (((1 << 12) / sizeof(struct tx_bd)) - 1)) == ((((1 << 12) / sizeof(struct tx_bd)) - 1) - 1 )) ? (tx_prod) + 2 : (tx_prod) + 1) & ((((1 << 12) / sizeof(struct tx_bd)) * 2) - 1)); |
| 5678 | } |
| 5679 | |
| 5680 | BNX_PRINTF(sc,printf("%s: " "-----------------------------" "--------------" "-----------------------------\n", sc->bnx_dev.dv_xname) |
| 5681 | "-----------------------------"printf("%s: " "-----------------------------" "--------------" "-----------------------------\n", sc->bnx_dev.dv_xname) |
| 5682 | "--------------"printf("%s: " "-----------------------------" "--------------" "-----------------------------\n", sc->bnx_dev.dv_xname) |
| 5683 | "-----------------------------\n")printf("%s: " "-----------------------------" "--------------" "-----------------------------\n", sc->bnx_dev.dv_xname); |
| 5684 | } |
| 5685 | |
| 5686 | /* |
| 5687 | * This routine prints the RX chain. |
| 5688 | */ |
| 5689 | void |
| 5690 | bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count) |
| 5691 | { |
| 5692 | struct rx_bd *rxbd; |
| 5693 | int i; |
| 5694 | |
| 5695 | /* First some info about the tx_bd chain structure. */ |
| 5696 | BNX_PRINTF(sc,printf("%s: " "----------------------------" " rx_bd chain " "----------------------------\n", sc->bnx_dev.dv_xname) |
| 5697 | "----------------------------"printf("%s: " "----------------------------" " rx_bd chain " "----------------------------\n", sc->bnx_dev.dv_xname) |
| 5698 | " rx_bd chain "printf("%s: " "----------------------------" " rx_bd chain " "----------------------------\n", sc->bnx_dev.dv_xname) |
| 5699 | "----------------------------\n")printf("%s: " "----------------------------" " rx_bd chain " "----------------------------\n", sc->bnx_dev.dv_xname); |
| 5700 | |
| 5701 | BNX_PRINTF(sc, "----- RX_BD Chain -----\n")printf("%s: " "----- RX_BD Chain -----\n", sc->bnx_dev.dv_xname ); |
| 5702 | |
| 5703 | BNX_PRINTF(sc,printf("%s: " "page size = 0x%08X, rx chain pages = 0x%08X\n" , sc->bnx_dev.dv_xname, (u_int32_t)(1 << 12), (u_int32_t )2) |
| 5704 | "page size = 0x%08X, rx chain pages = 0x%08X\n",printf("%s: " "page size = 0x%08X, rx chain pages = 0x%08X\n" , sc->bnx_dev.dv_xname, (u_int32_t)(1 << 12), (u_int32_t )2) |
| 5705 | (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES)printf("%s: " "page size = 0x%08X, rx chain pages = 0x%08X\n" , sc->bnx_dev.dv_xname, (u_int32_t)(1 << 12), (u_int32_t )2); |
| 5706 | |
| 5707 | BNX_PRINTF(sc,printf("%s: " "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n" , sc->bnx_dev.dv_xname, (u_int32_t)((1 << 12) / sizeof (struct rx_bd)), (u_int32_t)(((1 << 12) / sizeof(struct rx_bd)) - 1)) |
| 5708 | "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",printf("%s: " "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n" , sc->bnx_dev.dv_xname, (u_int32_t)((1 << 12) / sizeof (struct rx_bd)), (u_int32_t)(((1 << 12) / sizeof(struct rx_bd)) - 1)) |
| 5709 | (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE)printf("%s: " "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n" , sc->bnx_dev.dv_xname, (u_int32_t)((1 << 12) / sizeof (struct rx_bd)), (u_int32_t)(((1 << 12) / sizeof(struct rx_bd)) - 1)); |
| 5710 | |
| 5711 | BNX_PRINTF(sc, "total rx_bd = 0x%08X\n", (u_int32_t)TOTAL_RX_BD)printf("%s: " "total rx_bd = 0x%08X\n", sc->bnx_dev.dv_xname , (u_int32_t)(((1 << 12) / sizeof(struct rx_bd)) * 2)); |
| 5712 | |
| 5713 | BNX_PRINTF(sc,printf("%s: " "----------------------------" " rx_bd data " "----------------------------\n", sc->bnx_dev.dv_xname) |
| 5714 | "----------------------------"printf("%s: " "----------------------------" " rx_bd data " "----------------------------\n", sc->bnx_dev.dv_xname) |
| 5715 | " rx_bd data "printf("%s: " "----------------------------" " rx_bd data " "----------------------------\n", sc->bnx_dev.dv_xname) |
| 5716 | "----------------------------\n")printf("%s: " "----------------------------" " rx_bd data " "----------------------------\n", sc->bnx_dev.dv_xname); |
| 5717 | |
| 5718 | /* Now print out the rx_bd's themselves. */ |
| 5719 | for (i = 0; i < count; i++) { |
| 5720 | rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)(((rx_prod) & ~(((1 << 12) / sizeof(struct rx_bd)) - 1)) >> (12 - 4))][RX_IDX(rx_prod)((rx_prod) & (((1 << 12) / sizeof(struct rx_bd)) - 1 ))]; |
| 5721 | bnx_dump_rxbd(sc, rx_prod, rxbd); |
| 5722 | rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod))(((((rx_prod) & (((1 << 12) / sizeof(struct rx_bd)) - 1)) == ((((1 << 12) / sizeof(struct rx_bd)) - 1) - 1 )) ? (rx_prod) + 2 : (rx_prod) + 1) & ((((1 << 12) / sizeof(struct rx_bd)) * 2) - 1)); |
| 5723 | } |
| 5724 | |
| 5725 | BNX_PRINTF(sc,printf("%s: " "----------------------------" "--------------" "----------------------------\n", sc->bnx_dev.dv_xname) |
| 5726 | "----------------------------"printf("%s: " "----------------------------" "--------------" "----------------------------\n", sc->bnx_dev.dv_xname) |
| 5727 | "--------------"printf("%s: " "----------------------------" "--------------" "----------------------------\n", sc->bnx_dev.dv_xname) |
| 5728 | "----------------------------\n")printf("%s: " "----------------------------" "--------------" "----------------------------\n", sc->bnx_dev.dv_xname); |
| 5729 | } |
| 5730 | |
| 5731 | /* |
| 5732 | * This routine prints the status block. |
| 5733 | */ |
| 5734 | void |
| 5735 | bnx_dump_status_block(struct bnx_softc *sc) |
| 5736 | { |
| 5737 | struct status_block *sblk; |
| 5738 | |
| 5739 | sblk = sc->status_block; |
| 5740 | |
| 5741 | BNX_PRINTF(sc, "----------------------------- Status Block "printf("%s: " "----------------------------- Status Block " "-----------------------------\n" , sc->bnx_dev.dv_xname) |
| 5742 | "-----------------------------\n")printf("%s: " "----------------------------- Status Block " "-----------------------------\n" , sc->bnx_dev.dv_xname); |
| 5743 | |
| 5744 | BNX_PRINTF(sc,printf("%s: " "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n" , sc->bnx_dev.dv_xname, sblk->status_attn_bits, sblk-> status_attn_bits_ack, sblk->status_idx) |
| 5745 | "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",printf("%s: " "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n" , sc->bnx_dev.dv_xname, sblk->status_attn_bits, sblk-> status_attn_bits_ack, sblk->status_idx) |
| 5746 | sblk->status_attn_bits, sblk->status_attn_bits_ack,printf("%s: " "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n" , sc->bnx_dev.dv_xname, sblk->status_attn_bits, sblk-> status_attn_bits_ack, sblk->status_idx) |
| 5747 | sblk->status_idx)printf("%s: " "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n" , sc->bnx_dev.dv_xname, sblk->status_attn_bits, sblk-> status_attn_bits_ack, sblk->status_idx); |
| 5748 | |
| 5749 | BNX_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n",printf("%s: " "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n" , sc->bnx_dev.dv_xname, sblk->status_rx_quick_consumer_index0 , sblk->status_tx_quick_consumer_index0) |
| 5750 | sblk->status_rx_quick_consumer_index0,printf("%s: " "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n" , sc->bnx_dev.dv_xname, sblk->status_rx_quick_consumer_index0 , sblk->status_tx_quick_consumer_index0) |
| 5751 | sblk->status_tx_quick_consumer_index0)printf("%s: " "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n" , sc->bnx_dev.dv_xname, sblk->status_rx_quick_consumer_index0 , sblk->status_tx_quick_consumer_index0); |
| 5752 | |
| 5753 | BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx)printf("%s: " "status_idx = 0x%04X\n", sc->bnx_dev.dv_xname , sblk->status_idx); |
| 5754 | |
| 5755 | /* Theses indices are not used for normal L2 drivers. */ |
| 5756 | if (sblk->status_rx_quick_consumer_index1 || |
| 5757 | sblk->status_tx_quick_consumer_index1) |
| 5758 | BNX_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n",printf("%s: " "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n", sc->bnx_dev.dv_xname, sblk->status_rx_quick_consumer_index1 , sblk->status_tx_quick_consumer_index1) |
| 5759 | sblk->status_rx_quick_consumer_index1,printf("%s: " "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n", sc->bnx_dev.dv_xname, sblk->status_rx_quick_consumer_index1 , sblk->status_tx_quick_consumer_index1) |
| 5760 | sblk->status_tx_quick_consumer_index1)printf("%s: " "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n", sc->bnx_dev.dv_xname, sblk->status_rx_quick_consumer_index1 , sblk->status_tx_quick_consumer_index1); |
| 5761 | |
| 5762 | if (sblk->status_rx_quick_consumer_index2 || |
| 5763 | sblk->status_tx_quick_consumer_index2) |
| 5764 | BNX_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n",printf("%s: " "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n", sc->bnx_dev.dv_xname, sblk->status_rx_quick_consumer_index2 , sblk->status_tx_quick_consumer_index2) |
| 5765 | sblk->status_rx_quick_consumer_index2,printf("%s: " "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n", sc->bnx_dev.dv_xname, sblk->status_rx_quick_consumer_index2 , sblk->status_tx_quick_consumer_index2) |
| 5766 | sblk->status_tx_quick_consumer_index2)printf("%s: " "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n", sc->bnx_dev.dv_xname, sblk->status_rx_quick_consumer_index2 , sblk->status_tx_quick_consumer_index2); |
| 5767 | |
| 5768 | if (sblk->status_rx_quick_consumer_index3 || |
| 5769 | sblk->status_tx_quick_consumer_index3) |
| 5770 | BNX_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n",printf("%s: " "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n", sc->bnx_dev.dv_xname, sblk->status_rx_quick_consumer_index3 , sblk->status_tx_quick_consumer_index3) |
| 5771 | sblk->status_rx_quick_consumer_index3,printf("%s: " "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n", sc->bnx_dev.dv_xname, sblk->status_rx_quick_consumer_index3 , sblk->status_tx_quick_consumer_index3) |
| 5772 | sblk->status_tx_quick_consumer_index3)printf("%s: " "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n", sc->bnx_dev.dv_xname, sblk->status_rx_quick_consumer_index3 , sblk->status_tx_quick_consumer_index3); |
| 5773 | |
| 5774 | if (sblk->status_rx_quick_consumer_index4 || |
| 5775 | sblk->status_rx_quick_consumer_index5) |
| 5776 | BNX_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n",printf("%s: " "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n", sc->bnx_dev.dv_xname, sblk->status_rx_quick_consumer_index4 , sblk->status_rx_quick_consumer_index5) |
| 5777 | sblk->status_rx_quick_consumer_index4,printf("%s: " "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n", sc->bnx_dev.dv_xname, sblk->status_rx_quick_consumer_index4 , sblk->status_rx_quick_consumer_index5) |
| 5778 | sblk->status_rx_quick_consumer_index5)printf("%s: " "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n", sc->bnx_dev.dv_xname, sblk->status_rx_quick_consumer_index4 , sblk->status_rx_quick_consumer_index5); |
| 5779 | |
| 5780 | if (sblk->status_rx_quick_consumer_index6 || |
| 5781 | sblk->status_rx_quick_consumer_index7) |
| 5782 | BNX_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n",printf("%s: " "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n", sc->bnx_dev.dv_xname, sblk->status_rx_quick_consumer_index6 , sblk->status_rx_quick_consumer_index7) |
| 5783 | sblk->status_rx_quick_consumer_index6,printf("%s: " "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n", sc->bnx_dev.dv_xname, sblk->status_rx_quick_consumer_index6 , sblk->status_rx_quick_consumer_index7) |
| 5784 | sblk->status_rx_quick_consumer_index7)printf("%s: " "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n", sc->bnx_dev.dv_xname, sblk->status_rx_quick_consumer_index6 , sblk->status_rx_quick_consumer_index7); |
| 5785 | |
| 5786 | if (sblk->status_rx_quick_consumer_index8 || |
| 5787 | sblk->status_rx_quick_consumer_index9) |
| 5788 | BNX_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n",printf("%s: " "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n", sc->bnx_dev.dv_xname, sblk->status_rx_quick_consumer_index8 , sblk->status_rx_quick_consumer_index9) |
| 5789 | sblk->status_rx_quick_consumer_index8,printf("%s: " "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n", sc->bnx_dev.dv_xname, sblk->status_rx_quick_consumer_index8 , sblk->status_rx_quick_consumer_index9) |
| 5790 | sblk->status_rx_quick_consumer_index9)printf("%s: " "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n", sc->bnx_dev.dv_xname, sblk->status_rx_quick_consumer_index8 , sblk->status_rx_quick_consumer_index9); |
| 5791 | |
| 5792 | if (sblk->status_rx_quick_consumer_index10 || |
| 5793 | sblk->status_rx_quick_consumer_index11) |
| 5794 | BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n",printf("%s: " "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n", sc->bnx_dev.dv_xname, sblk->status_rx_quick_consumer_index10 , sblk->status_rx_quick_consumer_index11) |
| 5795 | sblk->status_rx_quick_consumer_index10,printf("%s: " "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n", sc->bnx_dev.dv_xname, sblk->status_rx_quick_consumer_index10 , sblk->status_rx_quick_consumer_index11) |
| 5796 | sblk->status_rx_quick_consumer_index11)printf("%s: " "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n", sc->bnx_dev.dv_xname, sblk->status_rx_quick_consumer_index10 , sblk->status_rx_quick_consumer_index11); |
| 5797 | |
| 5798 | if (sblk->status_rx_quick_consumer_index12 || |
| 5799 | sblk->status_rx_quick_consumer_index13) |
| 5800 | BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n",printf("%s: " "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n", sc->bnx_dev.dv_xname, sblk->status_rx_quick_consumer_index12 , sblk->status_rx_quick_consumer_index13) |
| 5801 | sblk->status_rx_quick_consumer_index12,printf("%s: " "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n", sc->bnx_dev.dv_xname, sblk->status_rx_quick_consumer_index12 , sblk->status_rx_quick_consumer_index13) |
| 5802 | sblk->status_rx_quick_consumer_index13)printf("%s: " "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n", sc->bnx_dev.dv_xname, sblk->status_rx_quick_consumer_index12 , sblk->status_rx_quick_consumer_index13); |
| 5803 | |
| 5804 | if (sblk->status_rx_quick_consumer_index14 || |
| 5805 | sblk->status_rx_quick_consumer_index15) |
| 5806 | BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n",printf("%s: " "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n", sc->bnx_dev.dv_xname, sblk->status_rx_quick_consumer_index14 , sblk->status_rx_quick_consumer_index15) |
| 5807 | sblk->status_rx_quick_consumer_index14,printf("%s: " "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n", sc->bnx_dev.dv_xname, sblk->status_rx_quick_consumer_index14 , sblk->status_rx_quick_consumer_index15) |
| 5808 | sblk->status_rx_quick_consumer_index15)printf("%s: " "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n", sc->bnx_dev.dv_xname, sblk->status_rx_quick_consumer_index14 , sblk->status_rx_quick_consumer_index15); |
| 5809 | |
| 5810 | if (sblk->status_completion_producer_index || |
| 5811 | sblk->status_cmd_consumer_index) |
| 5812 | BNX_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n",printf("%s: " "com_prod = 0x%08X, cmd_cons = 0x%08X\n", sc->bnx_dev.dv_xname, sblk->status_completion_producer_index , sblk->status_cmd_consumer_index) |
| 5813 | sblk->status_completion_producer_index,printf("%s: " "com_prod = 0x%08X, cmd_cons = 0x%08X\n", sc->bnx_dev.dv_xname, sblk->status_completion_producer_index , sblk->status_cmd_consumer_index) |
| 5814 | sblk->status_cmd_consumer_index)printf("%s: " "com_prod = 0x%08X, cmd_cons = 0x%08X\n", sc->bnx_dev.dv_xname, sblk->status_completion_producer_index , sblk->status_cmd_consumer_index); |
| 5815 | |
| 5816 | BNX_PRINTF(sc, "-------------------------------------------"printf("%s: " "-------------------------------------------" "-----------------------------\n" , sc->bnx_dev.dv_xname) |
| 5817 | "-----------------------------\n")printf("%s: " "-------------------------------------------" "-----------------------------\n" , sc->bnx_dev.dv_xname); |
| 5818 | } |
| 5819 | |
| 5820 | /* |
| 5821 | * This routine prints the statistics block. |
| 5822 | */ |
| 5823 | void |
| 5824 | bnx_dump_stats_block(struct bnx_softc *sc) |
| 5825 | { |
| 5826 | struct statistics_block *sblk; |
| 5827 | |
| 5828 | sblk = sc->stats_block; |
| 5829 | |
| 5830 | BNX_PRINTF(sc, ""printf("%s: " "" "-----------------------------" " Stats Block " "-----------------------------\n", sc->bnx_dev.dv_xname) |
| 5831 | "-----------------------------"printf("%s: " "" "-----------------------------" " Stats Block " "-----------------------------\n", sc->bnx_dev.dv_xname) |
| 5832 | " Stats Block "printf("%s: " "" "-----------------------------" " Stats Block " "-----------------------------\n", sc->bnx_dev.dv_xname) |
| 5833 | "-----------------------------\n")printf("%s: " "" "-----------------------------" " Stats Block " "-----------------------------\n", sc->bnx_dev.dv_xname); |
| 5834 | |
| 5835 | BNX_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, "printf("%s: " "IfHcInOctets = 0x%08X:%08X, " "IfHcInBadOctets = 0x%08X:%08X\n" , sc->bnx_dev.dv_xname, sblk->stat_IfHCInOctets_hi, sblk ->stat_IfHCInOctets_lo, sblk->stat_IfHCInBadOctets_hi, sblk ->stat_IfHCInBadOctets_lo) |
| 5836 | "IfHcInBadOctets = 0x%08X:%08X\n",printf("%s: " "IfHcInOctets = 0x%08X:%08X, " "IfHcInBadOctets = 0x%08X:%08X\n" , sc->bnx_dev.dv_xname, sblk->stat_IfHCInOctets_hi, sblk ->stat_IfHCInOctets_lo, sblk->stat_IfHCInBadOctets_hi, sblk ->stat_IfHCInBadOctets_lo) |
| 5837 | sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,printf("%s: " "IfHcInOctets = 0x%08X:%08X, " "IfHcInBadOctets = 0x%08X:%08X\n" , sc->bnx_dev.dv_xname, sblk->stat_IfHCInOctets_hi, sblk ->stat_IfHCInOctets_lo, sblk->stat_IfHCInBadOctets_hi, sblk ->stat_IfHCInBadOctets_lo) |
| 5838 | sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo)printf("%s: " "IfHcInOctets = 0x%08X:%08X, " "IfHcInBadOctets = 0x%08X:%08X\n" , sc->bnx_dev.dv_xname, sblk->stat_IfHCInOctets_hi, sblk ->stat_IfHCInOctets_lo, sblk->stat_IfHCInBadOctets_hi, sblk ->stat_IfHCInBadOctets_lo); |
| 5839 | |
| 5840 | BNX_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, "printf("%s: " "IfHcOutOctets = 0x%08X:%08X, " "IfHcOutBadOctets = 0x%08X:%08X\n" , sc->bnx_dev.dv_xname, sblk->stat_IfHCOutOctets_hi, sblk ->stat_IfHCOutOctets_lo, sblk->stat_IfHCOutBadOctets_hi , sblk->stat_IfHCOutBadOctets_lo) |
| 5841 | "IfHcOutBadOctets = 0x%08X:%08X\n",printf("%s: " "IfHcOutOctets = 0x%08X:%08X, " "IfHcOutBadOctets = 0x%08X:%08X\n" , sc->bnx_dev.dv_xname, sblk->stat_IfHCOutOctets_hi, sblk ->stat_IfHCOutOctets_lo, sblk->stat_IfHCOutBadOctets_hi , sblk->stat_IfHCOutBadOctets_lo) |
| 5842 | sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,printf("%s: " "IfHcOutOctets = 0x%08X:%08X, " "IfHcOutBadOctets = 0x%08X:%08X\n" , sc->bnx_dev.dv_xname, sblk->stat_IfHCOutOctets_hi, sblk ->stat_IfHCOutOctets_lo, sblk->stat_IfHCOutBadOctets_hi , sblk->stat_IfHCOutBadOctets_lo) |
| 5843 | sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo)printf("%s: " "IfHcOutOctets = 0x%08X:%08X, " "IfHcOutBadOctets = 0x%08X:%08X\n" , sc->bnx_dev.dv_xname, sblk->stat_IfHCOutOctets_hi, sblk ->stat_IfHCOutOctets_lo, sblk->stat_IfHCOutBadOctets_hi , sblk->stat_IfHCOutBadOctets_lo); |
| 5844 | |
| 5845 | BNX_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, "printf("%s: " "IfHcInUcastPkts = 0x%08X:%08X, " "IfHcInMulticastPkts = 0x%08X:%08X\n" , sc->bnx_dev.dv_xname, sblk->stat_IfHCInUcastPkts_hi, sblk ->stat_IfHCInUcastPkts_lo, sblk->stat_IfHCInMulticastPkts_hi , sblk->stat_IfHCInMulticastPkts_lo) |
| 5846 | "IfHcInMulticastPkts = 0x%08X:%08X\n",printf("%s: " "IfHcInUcastPkts = 0x%08X:%08X, " "IfHcInMulticastPkts = 0x%08X:%08X\n" , sc->bnx_dev.dv_xname, sblk->stat_IfHCInUcastPkts_hi, sblk ->stat_IfHCInUcastPkts_lo, sblk->stat_IfHCInMulticastPkts_hi , sblk->stat_IfHCInMulticastPkts_lo) |
| 5847 | sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,printf("%s: " "IfHcInUcastPkts = 0x%08X:%08X, " "IfHcInMulticastPkts = 0x%08X:%08X\n" , sc->bnx_dev.dv_xname, sblk->stat_IfHCInUcastPkts_hi, sblk ->stat_IfHCInUcastPkts_lo, sblk->stat_IfHCInMulticastPkts_hi , sblk->stat_IfHCInMulticastPkts_lo) |
| 5848 | sblk->stat_IfHCInMulticastPkts_hi,printf("%s: " "IfHcInUcastPkts = 0x%08X:%08X, " "IfHcInMulticastPkts = 0x%08X:%08X\n" , sc->bnx_dev.dv_xname, sblk->stat_IfHCInUcastPkts_hi, sblk ->stat_IfHCInUcastPkts_lo, sblk->stat_IfHCInMulticastPkts_hi , sblk->stat_IfHCInMulticastPkts_lo) |
| 5849 | sblk->stat_IfHCInMulticastPkts_lo)printf("%s: " "IfHcInUcastPkts = 0x%08X:%08X, " "IfHcInMulticastPkts = 0x%08X:%08X\n" , sc->bnx_dev.dv_xname, sblk->stat_IfHCInUcastPkts_hi, sblk ->stat_IfHCInUcastPkts_lo, sblk->stat_IfHCInMulticastPkts_hi , sblk->stat_IfHCInMulticastPkts_lo); |
| 5850 | |
| 5851 | BNX_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, "printf("%s: " "IfHcInBroadcastPkts = 0x%08X:%08X, " "IfHcOutUcastPkts = 0x%08X:%08X\n" , sc->bnx_dev.dv_xname, sblk->stat_IfHCInBroadcastPkts_hi , sblk->stat_IfHCInBroadcastPkts_lo, sblk->stat_IfHCOutUcastPkts_hi , sblk->stat_IfHCOutUcastPkts_lo) |
| 5852 | "IfHcOutUcastPkts = 0x%08X:%08X\n",printf("%s: " "IfHcInBroadcastPkts = 0x%08X:%08X, " "IfHcOutUcastPkts = 0x%08X:%08X\n" , sc->bnx_dev.dv_xname, sblk->stat_IfHCInBroadcastPkts_hi , sblk->stat_IfHCInBroadcastPkts_lo, sblk->stat_IfHCOutUcastPkts_hi , sblk->stat_IfHCOutUcastPkts_lo) |
| 5853 | sblk->stat_IfHCInBroadcastPkts_hi,printf("%s: " "IfHcInBroadcastPkts = 0x%08X:%08X, " "IfHcOutUcastPkts = 0x%08X:%08X\n" , sc->bnx_dev.dv_xname, sblk->stat_IfHCInBroadcastPkts_hi , sblk->stat_IfHCInBroadcastPkts_lo, sblk->stat_IfHCOutUcastPkts_hi , sblk->stat_IfHCOutUcastPkts_lo) |
| 5854 | sblk->stat_IfHCInBroadcastPkts_lo,printf("%s: " "IfHcInBroadcastPkts = 0x%08X:%08X, " "IfHcOutUcastPkts = 0x%08X:%08X\n" , sc->bnx_dev.dv_xname, sblk->stat_IfHCInBroadcastPkts_hi , sblk->stat_IfHCInBroadcastPkts_lo, sblk->stat_IfHCOutUcastPkts_hi , sblk->stat_IfHCOutUcastPkts_lo) |
| 5855 | sblk->stat_IfHCOutUcastPkts_hi,printf("%s: " "IfHcInBroadcastPkts = 0x%08X:%08X, " "IfHcOutUcastPkts = 0x%08X:%08X\n" , sc->bnx_dev.dv_xname, sblk->stat_IfHCInBroadcastPkts_hi , sblk->stat_IfHCInBroadcastPkts_lo, sblk->stat_IfHCOutUcastPkts_hi , sblk->stat_IfHCOutUcastPkts_lo) |
| 5856 | sblk->stat_IfHCOutUcastPkts_lo)printf("%s: " "IfHcInBroadcastPkts = 0x%08X:%08X, " "IfHcOutUcastPkts = 0x%08X:%08X\n" , sc->bnx_dev.dv_xname, sblk->stat_IfHCInBroadcastPkts_hi , sblk->stat_IfHCInBroadcastPkts_lo, sblk->stat_IfHCOutUcastPkts_hi , sblk->stat_IfHCOutUcastPkts_lo); |
| 5857 | |
| 5858 | BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "printf("%s: " "IfHcOutMulticastPkts = 0x%08X:%08X, " "IfHcOutBroadcastPkts = 0x%08X:%08X\n" , sc->bnx_dev.dv_xname, sblk->stat_IfHCOutMulticastPkts_hi , sblk->stat_IfHCOutMulticastPkts_lo, sblk->stat_IfHCOutBroadcastPkts_hi , sblk->stat_IfHCOutBroadcastPkts_lo) |
| 5859 | "IfHcOutBroadcastPkts = 0x%08X:%08X\n",printf("%s: " "IfHcOutMulticastPkts = 0x%08X:%08X, " "IfHcOutBroadcastPkts = 0x%08X:%08X\n" , sc->bnx_dev.dv_xname, sblk->stat_IfHCOutMulticastPkts_hi , sblk->stat_IfHCOutMulticastPkts_lo, sblk->stat_IfHCOutBroadcastPkts_hi , sblk->stat_IfHCOutBroadcastPkts_lo) |
| 5860 | sblk->stat_IfHCOutMulticastPkts_hi,printf("%s: " "IfHcOutMulticastPkts = 0x%08X:%08X, " "IfHcOutBroadcastPkts = 0x%08X:%08X\n" , sc->bnx_dev.dv_xname, sblk->stat_IfHCOutMulticastPkts_hi , sblk->stat_IfHCOutMulticastPkts_lo, sblk->stat_IfHCOutBroadcastPkts_hi , sblk->stat_IfHCOutBroadcastPkts_lo) |
| 5861 | sblk->stat_IfHCOutMulticastPkts_lo,printf("%s: " "IfHcOutMulticastPkts = 0x%08X:%08X, " "IfHcOutBroadcastPkts = 0x%08X:%08X\n" , sc->bnx_dev.dv_xname, sblk->stat_IfHCOutMulticastPkts_hi , sblk->stat_IfHCOutMulticastPkts_lo, sblk->stat_IfHCOutBroadcastPkts_hi , sblk->stat_IfHCOutBroadcastPkts_lo) |
| 5862 | sblk->stat_IfHCOutBroadcastPkts_hi,printf("%s: " "IfHcOutMulticastPkts = 0x%08X:%08X, " "IfHcOutBroadcastPkts = 0x%08X:%08X\n" , sc->bnx_dev.dv_xname, sblk->stat_IfHCOutMulticastPkts_hi , sblk->stat_IfHCOutMulticastPkts_lo, sblk->stat_IfHCOutBroadcastPkts_hi , sblk->stat_IfHCOutBroadcastPkts_lo) |
| 5863 | sblk->stat_IfHCOutBroadcastPkts_lo)printf("%s: " "IfHcOutMulticastPkts = 0x%08X:%08X, " "IfHcOutBroadcastPkts = 0x%08X:%08X\n" , sc->bnx_dev.dv_xname, sblk->stat_IfHCOutMulticastPkts_hi , sblk->stat_IfHCOutMulticastPkts_lo, sblk->stat_IfHCOutBroadcastPkts_hi , sblk->stat_IfHCOutBroadcastPkts_lo); |
| 5864 | |
| 5865 | if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors) |
| 5866 | BNX_PRINTF(sc, "0x%08X : "printf("%s: " "0x%08X : " "emac_tx_stat_dot3statsinternalmactransmiterrors\n" , sc->bnx_dev.dv_xname, sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors ) |
| 5867 | "emac_tx_stat_dot3statsinternalmactransmiterrors\n",printf("%s: " "0x%08X : " "emac_tx_stat_dot3statsinternalmactransmiterrors\n" , sc->bnx_dev.dv_xname, sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors ) |
| 5868 | sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)printf("%s: " "0x%08X : " "emac_tx_stat_dot3statsinternalmactransmiterrors\n" , sc->bnx_dev.dv_xname, sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors ); |
| 5869 | |
| 5870 | if (sblk->stat_Dot3StatsCarrierSenseErrors) |
| 5871 | BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",printf("%s: " "0x%08X : Dot3StatsCarrierSenseErrors\n", sc-> bnx_dev.dv_xname, sblk->stat_Dot3StatsCarrierSenseErrors) |
| 5872 | sblk->stat_Dot3StatsCarrierSenseErrors)printf("%s: " "0x%08X : Dot3StatsCarrierSenseErrors\n", sc-> bnx_dev.dv_xname, sblk->stat_Dot3StatsCarrierSenseErrors); |
| 5873 | |
| 5874 | if (sblk->stat_Dot3StatsFCSErrors) |
| 5875 | BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",printf("%s: " "0x%08X : Dot3StatsFCSErrors\n", sc->bnx_dev .dv_xname, sblk->stat_Dot3StatsFCSErrors) |
| 5876 | sblk->stat_Dot3StatsFCSErrors)printf("%s: " "0x%08X : Dot3StatsFCSErrors\n", sc->bnx_dev .dv_xname, sblk->stat_Dot3StatsFCSErrors); |
| 5877 | |
| 5878 | if (sblk->stat_Dot3StatsAlignmentErrors) |
| 5879 | BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",printf("%s: " "0x%08X : Dot3StatsAlignmentErrors\n", sc->bnx_dev .dv_xname, sblk->stat_Dot3StatsAlignmentErrors) |
| 5880 | sblk->stat_Dot3StatsAlignmentErrors)printf("%s: " "0x%08X : Dot3StatsAlignmentErrors\n", sc->bnx_dev .dv_xname, sblk->stat_Dot3StatsAlignmentErrors); |
| 5881 | |
| 5882 | if (sblk->stat_Dot3StatsSingleCollisionFrames) |
| 5883 | BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",printf("%s: " "0x%08X : Dot3StatsSingleCollisionFrames\n", sc ->bnx_dev.dv_xname, sblk->stat_Dot3StatsSingleCollisionFrames ) |
| 5884 | sblk->stat_Dot3StatsSingleCollisionFrames)printf("%s: " "0x%08X : Dot3StatsSingleCollisionFrames\n", sc ->bnx_dev.dv_xname, sblk->stat_Dot3StatsSingleCollisionFrames ); |
| 5885 | |
| 5886 | if (sblk->stat_Dot3StatsMultipleCollisionFrames) |
| 5887 | BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",printf("%s: " "0x%08X : Dot3StatsMultipleCollisionFrames\n", sc ->bnx_dev.dv_xname, sblk->stat_Dot3StatsMultipleCollisionFrames ) |
| 5888 | sblk->stat_Dot3StatsMultipleCollisionFrames)printf("%s: " "0x%08X : Dot3StatsMultipleCollisionFrames\n", sc ->bnx_dev.dv_xname, sblk->stat_Dot3StatsMultipleCollisionFrames ); |
| 5889 | |
| 5890 | if (sblk->stat_Dot3StatsDeferredTransmissions) |
| 5891 | BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",printf("%s: " "0x%08X : Dot3StatsDeferredTransmissions\n", sc ->bnx_dev.dv_xname, sblk->stat_Dot3StatsDeferredTransmissions ) |
| 5892 | sblk->stat_Dot3StatsDeferredTransmissions)printf("%s: " "0x%08X : Dot3StatsDeferredTransmissions\n", sc ->bnx_dev.dv_xname, sblk->stat_Dot3StatsDeferredTransmissions ); |
| 5893 | |
| 5894 | if (sblk->stat_Dot3StatsExcessiveCollisions) |
| 5895 | BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",printf("%s: " "0x%08X : Dot3StatsExcessiveCollisions\n", sc-> bnx_dev.dv_xname, sblk->stat_Dot3StatsExcessiveCollisions) |
| 5896 | sblk->stat_Dot3StatsExcessiveCollisions)printf("%s: " "0x%08X : Dot3StatsExcessiveCollisions\n", sc-> bnx_dev.dv_xname, sblk->stat_Dot3StatsExcessiveCollisions); |
| 5897 | |
| 5898 | if (sblk->stat_Dot3StatsLateCollisions) |
| 5899 | BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",printf("%s: " "0x%08X : Dot3StatsLateCollisions\n", sc->bnx_dev .dv_xname, sblk->stat_Dot3StatsLateCollisions) |
| 5900 | sblk->stat_Dot3StatsLateCollisions)printf("%s: " "0x%08X : Dot3StatsLateCollisions\n", sc->bnx_dev .dv_xname, sblk->stat_Dot3StatsLateCollisions); |
| 5901 | |
| 5902 | if (sblk->stat_EtherStatsCollisions) |
| 5903 | BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",printf("%s: " "0x%08X : EtherStatsCollisions\n", sc->bnx_dev .dv_xname, sblk->stat_EtherStatsCollisions) |
| 5904 | sblk->stat_EtherStatsCollisions)printf("%s: " "0x%08X : EtherStatsCollisions\n", sc->bnx_dev .dv_xname, sblk->stat_EtherStatsCollisions); |
| 5905 | |
| 5906 | if (sblk->stat_EtherStatsFragments) |
| 5907 | BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",printf("%s: " "0x%08X : EtherStatsFragments\n", sc->bnx_dev .dv_xname, sblk->stat_EtherStatsFragments) |
| 5908 | sblk->stat_EtherStatsFragments)printf("%s: " "0x%08X : EtherStatsFragments\n", sc->bnx_dev .dv_xname, sblk->stat_EtherStatsFragments); |
| 5909 | |
| 5910 | if (sblk->stat_EtherStatsJabbers) |
| 5911 | BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",printf("%s: " "0x%08X : EtherStatsJabbers\n", sc->bnx_dev. dv_xname, sblk->stat_EtherStatsJabbers) |
| 5912 | sblk->stat_EtherStatsJabbers)printf("%s: " "0x%08X : EtherStatsJabbers\n", sc->bnx_dev. dv_xname, sblk->stat_EtherStatsJabbers); |
| 5913 | |
| 5914 | if (sblk->stat_EtherStatsUndersizePkts) |
| 5915 | BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",printf("%s: " "0x%08X : EtherStatsUndersizePkts\n", sc->bnx_dev .dv_xname, sblk->stat_EtherStatsUndersizePkts) |
| 5916 | sblk->stat_EtherStatsUndersizePkts)printf("%s: " "0x%08X : EtherStatsUndersizePkts\n", sc->bnx_dev .dv_xname, sblk->stat_EtherStatsUndersizePkts); |
| 5917 | |
| 5918 | if (sblk->stat_EtherStatsOverrsizePkts) |
| 5919 | BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",printf("%s: " "0x%08X : EtherStatsOverrsizePkts\n", sc->bnx_dev .dv_xname, sblk->stat_EtherStatsOverrsizePkts) |
| 5920 | sblk->stat_EtherStatsOverrsizePkts)printf("%s: " "0x%08X : EtherStatsOverrsizePkts\n", sc->bnx_dev .dv_xname, sblk->stat_EtherStatsOverrsizePkts); |
| 5921 | |
| 5922 | if (sblk->stat_EtherStatsPktsRx64Octets) |
| 5923 | BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",printf("%s: " "0x%08X : EtherStatsPktsRx64Octets\n", sc->bnx_dev .dv_xname, sblk->stat_EtherStatsPktsRx64Octets) |
| 5924 | sblk->stat_EtherStatsPktsRx64Octets)printf("%s: " "0x%08X : EtherStatsPktsRx64Octets\n", sc->bnx_dev .dv_xname, sblk->stat_EtherStatsPktsRx64Octets); |
| 5925 | |
| 5926 | if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets) |
| 5927 | BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",printf("%s: " "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n" , sc->bnx_dev.dv_xname, sblk->stat_EtherStatsPktsRx65Octetsto127Octets ) |
| 5928 | sblk->stat_EtherStatsPktsRx65Octetsto127Octets)printf("%s: " "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n" , sc->bnx_dev.dv_xname, sblk->stat_EtherStatsPktsRx65Octetsto127Octets ); |
| 5929 | |
| 5930 | if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets) |
| 5931 | BNX_PRINTF(sc, "0x%08X : "printf("%s: " "0x%08X : " "EtherStatsPktsRx128Octetsto255Octets\n" , sc->bnx_dev.dv_xname, sblk->stat_EtherStatsPktsRx128Octetsto255Octets ) |
| 5932 | "EtherStatsPktsRx128Octetsto255Octets\n",printf("%s: " "0x%08X : " "EtherStatsPktsRx128Octetsto255Octets\n" , sc->bnx_dev.dv_xname, sblk->stat_EtherStatsPktsRx128Octetsto255Octets ) |
| 5933 | sblk->stat_EtherStatsPktsRx128Octetsto255Octets)printf("%s: " "0x%08X : " "EtherStatsPktsRx128Octetsto255Octets\n" , sc->bnx_dev.dv_xname, sblk->stat_EtherStatsPktsRx128Octetsto255Octets ); |
| 5934 | |
| 5935 | if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets) |
| 5936 | BNX_PRINTF(sc, "0x%08X : "printf("%s: " "0x%08X : " "EtherStatsPktsRx256Octetsto511Octets\n" , sc->bnx_dev.dv_xname, sblk->stat_EtherStatsPktsRx256Octetsto511Octets ) |
| 5937 | "EtherStatsPktsRx256Octetsto511Octets\n",printf("%s: " "0x%08X : " "EtherStatsPktsRx256Octetsto511Octets\n" , sc->bnx_dev.dv_xname, sblk->stat_EtherStatsPktsRx256Octetsto511Octets ) |
| 5938 | sblk->stat_EtherStatsPktsRx256Octetsto511Octets)printf("%s: " "0x%08X : " "EtherStatsPktsRx256Octetsto511Octets\n" , sc->bnx_dev.dv_xname, sblk->stat_EtherStatsPktsRx256Octetsto511Octets ); |
| 5939 | |
| 5940 | if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets) |
| 5941 | BNX_PRINTF(sc, "0x%08X : "printf("%s: " "0x%08X : " "EtherStatsPktsRx512Octetsto1023Octets\n" , sc->bnx_dev.dv_xname, sblk->stat_EtherStatsPktsRx512Octetsto1023Octets ) |
| 5942 | "EtherStatsPktsRx512Octetsto1023Octets\n",printf("%s: " "0x%08X : " "EtherStatsPktsRx512Octetsto1023Octets\n" , sc->bnx_dev.dv_xname, sblk->stat_EtherStatsPktsRx512Octetsto1023Octets ) |
| 5943 | sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)printf("%s: " "0x%08X : " "EtherStatsPktsRx512Octetsto1023Octets\n" , sc->bnx_dev.dv_xname, sblk->stat_EtherStatsPktsRx512Octetsto1023Octets ); |
| 5944 | |
| 5945 | if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets) |
| 5946 | BNX_PRINTF(sc, "0x%08X : "printf("%s: " "0x%08X : " "EtherStatsPktsRx1024Octetsto1522Octets\n" , sc->bnx_dev.dv_xname, sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets ) |
| 5947 | "EtherStatsPktsRx1024Octetsto1522Octets\n",printf("%s: " "0x%08X : " "EtherStatsPktsRx1024Octetsto1522Octets\n" , sc->bnx_dev.dv_xname, sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets ) |
| 5948 | sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)printf("%s: " "0x%08X : " "EtherStatsPktsRx1024Octetsto1522Octets\n" , sc->bnx_dev.dv_xname, sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets ); |
| 5949 | |
| 5950 | if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets) |
| 5951 | BNX_PRINTF(sc, "0x%08X : "printf("%s: " "0x%08X : " "EtherStatsPktsRx1523Octetsto9022Octets\n" , sc->bnx_dev.dv_xname, sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets ) |
| 5952 | "EtherStatsPktsRx1523Octetsto9022Octets\n",printf("%s: " "0x%08X : " "EtherStatsPktsRx1523Octetsto9022Octets\n" , sc->bnx_dev.dv_xname, sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets ) |
| 5953 | sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)printf("%s: " "0x%08X : " "EtherStatsPktsRx1523Octetsto9022Octets\n" , sc->bnx_dev.dv_xname, sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets ); |
| 5954 | |
| 5955 | if (sblk->stat_EtherStatsPktsTx64Octets) |
| 5956 | BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",printf("%s: " "0x%08X : EtherStatsPktsTx64Octets\n", sc->bnx_dev .dv_xname, sblk->stat_EtherStatsPktsTx64Octets) |
| 5957 | sblk->stat_EtherStatsPktsTx64Octets)printf("%s: " "0x%08X : EtherStatsPktsTx64Octets\n", sc->bnx_dev .dv_xname, sblk->stat_EtherStatsPktsTx64Octets); |
| 5958 | |
| 5959 | if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets) |
| 5960 | BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",printf("%s: " "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n" , sc->bnx_dev.dv_xname, sblk->stat_EtherStatsPktsTx65Octetsto127Octets ) |
| 5961 | sblk->stat_EtherStatsPktsTx65Octetsto127Octets)printf("%s: " "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n" , sc->bnx_dev.dv_xname, sblk->stat_EtherStatsPktsTx65Octetsto127Octets ); |
| 5962 | |
| 5963 | if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets) |
| 5964 | BNX_PRINTF(sc, "0x%08X : "printf("%s: " "0x%08X : " "EtherStatsPktsTx128Octetsto255Octets\n" , sc->bnx_dev.dv_xname, sblk->stat_EtherStatsPktsTx128Octetsto255Octets ) |
| 5965 | "EtherStatsPktsTx128Octetsto255Octets\n",printf("%s: " "0x%08X : " "EtherStatsPktsTx128Octetsto255Octets\n" , sc->bnx_dev.dv_xname, sblk->stat_EtherStatsPktsTx128Octetsto255Octets ) |
| 5966 | sblk->stat_EtherStatsPktsTx128Octetsto255Octets)printf("%s: " "0x%08X : " "EtherStatsPktsTx128Octetsto255Octets\n" , sc->bnx_dev.dv_xname, sblk->stat_EtherStatsPktsTx128Octetsto255Octets ); |
| 5967 | |
| 5968 | if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets) |
| 5969 | BNX_PRINTF(sc, "0x%08X : "printf("%s: " "0x%08X : " "EtherStatsPktsTx256Octetsto511Octets\n" , sc->bnx_dev.dv_xname, sblk->stat_EtherStatsPktsTx256Octetsto511Octets ) |
| 5970 | "EtherStatsPktsTx256Octetsto511Octets\n",printf("%s: " "0x%08X : " "EtherStatsPktsTx256Octetsto511Octets\n" , sc->bnx_dev.dv_xname, sblk->stat_EtherStatsPktsTx256Octetsto511Octets ) |
| 5971 | sblk->stat_EtherStatsPktsTx256Octetsto511Octets)printf("%s: " "0x%08X : " "EtherStatsPktsTx256Octetsto511Octets\n" , sc->bnx_dev.dv_xname, sblk->stat_EtherStatsPktsTx256Octetsto511Octets ); |
| 5972 | |
| 5973 | if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets) |
| 5974 | BNX_PRINTF(sc, "0x%08X : "printf("%s: " "0x%08X : " "EtherStatsPktsTx512Octetsto1023Octets\n" , sc->bnx_dev.dv_xname, sblk->stat_EtherStatsPktsTx512Octetsto1023Octets ) |
| 5975 | "EtherStatsPktsTx512Octetsto1023Octets\n",printf("%s: " "0x%08X : " "EtherStatsPktsTx512Octetsto1023Octets\n" , sc->bnx_dev.dv_xname, sblk->stat_EtherStatsPktsTx512Octetsto1023Octets ) |
| 5976 | sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)printf("%s: " "0x%08X : " "EtherStatsPktsTx512Octetsto1023Octets\n" , sc->bnx_dev.dv_xname, sblk->stat_EtherStatsPktsTx512Octetsto1023Octets ); |
| 5977 | |
| 5978 | if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets) |
| 5979 | BNX_PRINTF(sc, "0x%08X : "printf("%s: " "0x%08X : " "EtherStatsPktsTx1024Octetsto1522Octets\n" , sc->bnx_dev.dv_xname, sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets ) |
| 5980 | "EtherStatsPktsTx1024Octetsto1522Octets\n",printf("%s: " "0x%08X : " "EtherStatsPktsTx1024Octetsto1522Octets\n" , sc->bnx_dev.dv_xname, sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets ) |
| 5981 | sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)printf("%s: " "0x%08X : " "EtherStatsPktsTx1024Octetsto1522Octets\n" , sc->bnx_dev.dv_xname, sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets ); |
| 5982 | |
| 5983 | if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets) |
| 5984 | BNX_PRINTF(sc, "0x%08X : "printf("%s: " "0x%08X : " "EtherStatsPktsTx1523Octetsto9022Octets\n" , sc->bnx_dev.dv_xname, sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets ) |
| 5985 | "EtherStatsPktsTx1523Octetsto9022Octets\n",printf("%s: " "0x%08X : " "EtherStatsPktsTx1523Octetsto9022Octets\n" , sc->bnx_dev.dv_xname, sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets ) |
| 5986 | sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)printf("%s: " "0x%08X : " "EtherStatsPktsTx1523Octetsto9022Octets\n" , sc->bnx_dev.dv_xname, sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets ); |
| 5987 | |
| 5988 | if (sblk->stat_XonPauseFramesReceived) |
| 5989 | BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",printf("%s: " "0x%08X : XonPauseFramesReceived\n", sc->bnx_dev .dv_xname, sblk->stat_XonPauseFramesReceived) |
| 5990 | sblk->stat_XonPauseFramesReceived)printf("%s: " "0x%08X : XonPauseFramesReceived\n", sc->bnx_dev .dv_xname, sblk->stat_XonPauseFramesReceived); |
| 5991 | |
| 5992 | if (sblk->stat_XoffPauseFramesReceived) |
| 5993 | BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",printf("%s: " "0x%08X : XoffPauseFramesReceived\n", sc->bnx_dev .dv_xname, sblk->stat_XoffPauseFramesReceived) |
| 5994 | sblk->stat_XoffPauseFramesReceived)printf("%s: " "0x%08X : XoffPauseFramesReceived\n", sc->bnx_dev .dv_xname, sblk->stat_XoffPauseFramesReceived); |
| 5995 | |
| 5996 | if (sblk->stat_OutXonSent) |
| 5997 | BNX_PRINTF(sc, "0x%08X : OutXonSent\n",printf("%s: " "0x%08X : OutXonSent\n", sc->bnx_dev.dv_xname , sblk->stat_OutXonSent) |
| 5998 | sblk->stat_OutXonSent)printf("%s: " "0x%08X : OutXonSent\n", sc->bnx_dev.dv_xname , sblk->stat_OutXonSent); |
| 5999 | |
| 6000 | if (sblk->stat_OutXoffSent) |
| 6001 | BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",printf("%s: " "0x%08X : OutXoffSent\n", sc->bnx_dev.dv_xname , sblk->stat_OutXoffSent) |
| 6002 | sblk->stat_OutXoffSent)printf("%s: " "0x%08X : OutXoffSent\n", sc->bnx_dev.dv_xname , sblk->stat_OutXoffSent); |
| 6003 | |
| 6004 | if (sblk->stat_FlowControlDone) |
| 6005 | BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",printf("%s: " "0x%08X : FlowControlDone\n", sc->bnx_dev.dv_xname , sblk->stat_FlowControlDone) |
| 6006 | sblk->stat_FlowControlDone)printf("%s: " "0x%08X : FlowControlDone\n", sc->bnx_dev.dv_xname , sblk->stat_FlowControlDone); |
| 6007 | |
| 6008 | if (sblk->stat_MacControlFramesReceived) |
| 6009 | BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",printf("%s: " "0x%08X : MacControlFramesReceived\n", sc->bnx_dev .dv_xname, sblk->stat_MacControlFramesReceived) |
| 6010 | sblk->stat_MacControlFramesReceived)printf("%s: " "0x%08X : MacControlFramesReceived\n", sc->bnx_dev .dv_xname, sblk->stat_MacControlFramesReceived); |
| 6011 | |
| 6012 | if (sblk->stat_XoffStateEntered) |
| 6013 | BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",printf("%s: " "0x%08X : XoffStateEntered\n", sc->bnx_dev.dv_xname , sblk->stat_XoffStateEntered) |
| 6014 | sblk->stat_XoffStateEntered)printf("%s: " "0x%08X : XoffStateEntered\n", sc->bnx_dev.dv_xname , sblk->stat_XoffStateEntered); |
| 6015 | |
| 6016 | if (sblk->stat_IfInFramesL2FilterDiscards) |
| 6017 | BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",printf("%s: " "0x%08X : IfInFramesL2FilterDiscards\n", sc-> bnx_dev.dv_xname, sblk->stat_IfInFramesL2FilterDiscards) |
| 6018 | sblk->stat_IfInFramesL2FilterDiscards)printf("%s: " "0x%08X : IfInFramesL2FilterDiscards\n", sc-> bnx_dev.dv_xname, sblk->stat_IfInFramesL2FilterDiscards); |
| 6019 | |
| 6020 | if (sblk->stat_IfInRuleCheckerDiscards) |
| 6021 | BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",printf("%s: " "0x%08X : IfInRuleCheckerDiscards\n", sc->bnx_dev .dv_xname, sblk->stat_IfInRuleCheckerDiscards) |
| 6022 | sblk->stat_IfInRuleCheckerDiscards)printf("%s: " "0x%08X : IfInRuleCheckerDiscards\n", sc->bnx_dev .dv_xname, sblk->stat_IfInRuleCheckerDiscards); |
| 6023 | |
| 6024 | if (sblk->stat_IfInFTQDiscards) |
| 6025 | BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",printf("%s: " "0x%08X : IfInFTQDiscards\n", sc->bnx_dev.dv_xname , sblk->stat_IfInFTQDiscards) |
| 6026 | sblk->stat_IfInFTQDiscards)printf("%s: " "0x%08X : IfInFTQDiscards\n", sc->bnx_dev.dv_xname , sblk->stat_IfInFTQDiscards); |
| 6027 | |
| 6028 | if (sblk->stat_IfInMBUFDiscards) |
| 6029 | BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",printf("%s: " "0x%08X : IfInMBUFDiscards\n", sc->bnx_dev.dv_xname , sblk->stat_IfInMBUFDiscards) |
| 6030 | sblk->stat_IfInMBUFDiscards)printf("%s: " "0x%08X : IfInMBUFDiscards\n", sc->bnx_dev.dv_xname , sblk->stat_IfInMBUFDiscards); |
| 6031 | |
| 6032 | if (sblk->stat_IfInRuleCheckerP4Hit) |
| 6033 | BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",printf("%s: " "0x%08X : IfInRuleCheckerP4Hit\n", sc->bnx_dev .dv_xname, sblk->stat_IfInRuleCheckerP4Hit) |
| 6034 | sblk->stat_IfInRuleCheckerP4Hit)printf("%s: " "0x%08X : IfInRuleCheckerP4Hit\n", sc->bnx_dev .dv_xname, sblk->stat_IfInRuleCheckerP4Hit); |
| 6035 | |
| 6036 | if (sblk->stat_CatchupInRuleCheckerDiscards) |
| 6037 | BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",printf("%s: " "0x%08X : CatchupInRuleCheckerDiscards\n", sc-> bnx_dev.dv_xname, sblk->stat_CatchupInRuleCheckerDiscards) |
| 6038 | sblk->stat_CatchupInRuleCheckerDiscards)printf("%s: " "0x%08X : CatchupInRuleCheckerDiscards\n", sc-> bnx_dev.dv_xname, sblk->stat_CatchupInRuleCheckerDiscards); |
| 6039 | |
| 6040 | if (sblk->stat_CatchupInFTQDiscards) |
| 6041 | BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",printf("%s: " "0x%08X : CatchupInFTQDiscards\n", sc->bnx_dev .dv_xname, sblk->stat_CatchupInFTQDiscards) |
| 6042 | sblk->stat_CatchupInFTQDiscards)printf("%s: " "0x%08X : CatchupInFTQDiscards\n", sc->bnx_dev .dv_xname, sblk->stat_CatchupInFTQDiscards); |
| 6043 | |
| 6044 | if (sblk->stat_CatchupInMBUFDiscards) |
| 6045 | BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",printf("%s: " "0x%08X : CatchupInMBUFDiscards\n", sc->bnx_dev .dv_xname, sblk->stat_CatchupInMBUFDiscards) |
| 6046 | sblk->stat_CatchupInMBUFDiscards)printf("%s: " "0x%08X : CatchupInMBUFDiscards\n", sc->bnx_dev .dv_xname, sblk->stat_CatchupInMBUFDiscards); |
| 6047 | |
| 6048 | if (sblk->stat_CatchupInRuleCheckerP4Hit) |
| 6049 | BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",printf("%s: " "0x%08X : CatchupInRuleCheckerP4Hit\n", sc-> bnx_dev.dv_xname, sblk->stat_CatchupInRuleCheckerP4Hit) |
| 6050 | sblk->stat_CatchupInRuleCheckerP4Hit)printf("%s: " "0x%08X : CatchupInRuleCheckerP4Hit\n", sc-> bnx_dev.dv_xname, sblk->stat_CatchupInRuleCheckerP4Hit); |
| 6051 | |
| 6052 | BNX_PRINTF(sc,printf("%s: " "-----------------------------" "--------------" "-----------------------------\n", sc->bnx_dev.dv_xname) |
| 6053 | "-----------------------------"printf("%s: " "-----------------------------" "--------------" "-----------------------------\n", sc->bnx_dev.dv_xname) |
| 6054 | "--------------"printf("%s: " "-----------------------------" "--------------" "-----------------------------\n", sc->bnx_dev.dv_xname) |
| 6055 | "-----------------------------\n")printf("%s: " "-----------------------------" "--------------" "-----------------------------\n", sc->bnx_dev.dv_xname); |
| 6056 | } |
| 6057 | |
| 6058 | void |
| 6059 | bnx_dump_driver_state(struct bnx_softc *sc) |
| 6060 | { |
| 6061 | BNX_PRINTF(sc,printf("%s: " "-----------------------------" " Driver State " "-----------------------------\n", sc->bnx_dev.dv_xname) |
| 6062 | "-----------------------------"printf("%s: " "-----------------------------" " Driver State " "-----------------------------\n", sc->bnx_dev.dv_xname) |
| 6063 | " Driver State "printf("%s: " "-----------------------------" " Driver State " "-----------------------------\n", sc->bnx_dev.dv_xname) |
| 6064 | "-----------------------------\n")printf("%s: " "-----------------------------" " Driver State " "-----------------------------\n", sc->bnx_dev.dv_xname); |
| 6065 | |
| 6066 | BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "printf("%s: " "%p - (sc) driver softc structure virtual " "address\n" , sc->bnx_dev.dv_xname, sc) |
| 6067 | "address\n", sc)printf("%s: " "%p - (sc) driver softc structure virtual " "address\n" , sc->bnx_dev.dv_xname, sc); |
| 6068 | |
| 6069 | BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",printf("%s: " "%p - (sc->status_block) status block virtual address\n" , sc->bnx_dev.dv_xname, sc->status_block) |
| 6070 | sc->status_block)printf("%s: " "%p - (sc->status_block) status block virtual address\n" , sc->bnx_dev.dv_xname, sc->status_block); |
| 6071 | |
| 6072 | BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "printf("%s: " "%p - (sc->stats_block) statistics block virtual " "address\n", sc->bnx_dev.dv_xname, sc->stats_block) |
| 6073 | "address\n", sc->stats_block)printf("%s: " "%p - (sc->stats_block) statistics block virtual " "address\n", sc->bnx_dev.dv_xname, sc->stats_block); |
| 6074 | |
| 6075 | BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "printf("%s: " "%p - (sc->tx_bd_chain) tx_bd chain virtual " "address\n", sc->bnx_dev.dv_xname, sc->tx_bd_chain) |
| 6076 | "address\n", sc->tx_bd_chain)printf("%s: " "%p - (sc->tx_bd_chain) tx_bd chain virtual " "address\n", sc->bnx_dev.dv_xname, sc->tx_bd_chain); |
| 6077 | |
| 6078 | BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",printf("%s: " "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n" , sc->bnx_dev.dv_xname, sc->rx_bd_chain) |
| 6079 | sc->rx_bd_chain)printf("%s: " "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n" , sc->bnx_dev.dv_xname, sc->rx_bd_chain); |
| 6080 | |
| 6081 | BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",printf("%s: " "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n" , sc->bnx_dev.dv_xname, sc->tx_mbuf_ptr) |
| 6082 | sc->tx_mbuf_ptr)printf("%s: " "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n" , sc->bnx_dev.dv_xname, sc->tx_mbuf_ptr); |
| 6083 | |
| 6084 | BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",printf("%s: " "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n" , sc->bnx_dev.dv_xname, sc->rx_mbuf_ptr) |
| 6085 | sc->rx_mbuf_ptr)printf("%s: " "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n" , sc->bnx_dev.dv_xname, sc->rx_mbuf_ptr); |
| 6086 | |
| 6087 | BNX_PRINTF(sc,printf("%s: " " 0x%08X - (sc->interrupts_generated) h/w intrs\n" , sc->bnx_dev.dv_xname, sc->interrupts_generated) |
| 6088 | " 0x%08X - (sc->interrupts_generated) h/w intrs\n",printf("%s: " " 0x%08X - (sc->interrupts_generated) h/w intrs\n" , sc->bnx_dev.dv_xname, sc->interrupts_generated) |
| 6089 | sc->interrupts_generated)printf("%s: " " 0x%08X - (sc->interrupts_generated) h/w intrs\n" , sc->bnx_dev.dv_xname, sc->interrupts_generated); |
| 6090 | |
| 6091 | BNX_PRINTF(sc,printf("%s: " " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n" , sc->bnx_dev.dv_xname, sc->rx_interrupts) |
| 6092 | " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n",printf("%s: " " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n" , sc->bnx_dev.dv_xname, sc->rx_interrupts) |
| 6093 | sc->rx_interrupts)printf("%s: " " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n" , sc->bnx_dev.dv_xname, sc->rx_interrupts); |
| 6094 | |
| 6095 | BNX_PRINTF(sc,printf("%s: " " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n" , sc->bnx_dev.dv_xname, sc->tx_interrupts) |
| 6096 | " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n",printf("%s: " " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n" , sc->bnx_dev.dv_xname, sc->tx_interrupts) |
| 6097 | sc->tx_interrupts)printf("%s: " " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n" , sc->bnx_dev.dv_xname, sc->tx_interrupts); |
| 6098 | |
| 6099 | BNX_PRINTF(sc,printf("%s: " " 0x%08X - (sc->last_status_idx) status block index\n" , sc->bnx_dev.dv_xname, sc->last_status_idx) |
| 6100 | " 0x%08X - (sc->last_status_idx) status block index\n",printf("%s: " " 0x%08X - (sc->last_status_idx) status block index\n" , sc->bnx_dev.dv_xname, sc->last_status_idx) |
| 6101 | sc->last_status_idx)printf("%s: " " 0x%08X - (sc->last_status_idx) status block index\n" , sc->bnx_dev.dv_xname, sc->last_status_idx); |
| 6102 | |
| 6103 | BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n",printf("%s: " " 0x%08X - (sc->tx_prod) tx producer index\n" , sc->bnx_dev.dv_xname, sc->tx_prod) |
| 6104 | sc->tx_prod)printf("%s: " " 0x%08X - (sc->tx_prod) tx producer index\n" , sc->bnx_dev.dv_xname, sc->tx_prod); |
| 6105 | |
| 6106 | BNX_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n",printf("%s: " " 0x%08X - (sc->tx_cons) tx consumer index\n" , sc->bnx_dev.dv_xname, sc->tx_cons) |
| 6107 | sc->tx_cons)printf("%s: " " 0x%08X - (sc->tx_cons) tx consumer index\n" , sc->bnx_dev.dv_xname, sc->tx_cons); |
| 6108 | |
| 6109 | BNX_PRINTF(sc,printf("%s: " " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n" , sc->bnx_dev.dv_xname, sc->tx_prod_bseq) |
| 6110 | " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",printf("%s: " " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n" , sc->bnx_dev.dv_xname, sc->tx_prod_bseq) |
| 6111 | sc->tx_prod_bseq)printf("%s: " " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n" , sc->bnx_dev.dv_xname, sc->tx_prod_bseq); |
| 6112 | |
| 6113 | BNX_PRINTF(sc,printf("%s: " " 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n" , sc->bnx_dev.dv_xname, sc->tx_mbuf_alloc) |
| 6114 | " 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",printf("%s: " " 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n" , sc->bnx_dev.dv_xname, sc->tx_mbuf_alloc) |
| 6115 | sc->tx_mbuf_alloc)printf("%s: " " 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n" , sc->bnx_dev.dv_xname, sc->tx_mbuf_alloc); |
| 6116 | |
| 6117 | BNX_PRINTF(sc,printf("%s: " " 0x%08X - (sc->used_tx_bd) used tx_bd's\n" , sc->bnx_dev.dv_xname, sc->used_tx_bd) |
| 6118 | " 0x%08X - (sc->used_tx_bd) used tx_bd's\n",printf("%s: " " 0x%08X - (sc->used_tx_bd) used tx_bd's\n" , sc->bnx_dev.dv_xname, sc->used_tx_bd) |
| 6119 | sc->used_tx_bd)printf("%s: " " 0x%08X - (sc->used_tx_bd) used tx_bd's\n" , sc->bnx_dev.dv_xname, sc->used_tx_bd); |
| 6120 | |
| 6121 | BNX_PRINTF(sc,printf("%s: " " 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n" , sc->bnx_dev.dv_xname, sc->tx_hi_watermark, sc->max_tx_bd ) |
| 6122 | " 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",printf("%s: " " 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n" , sc->bnx_dev.dv_xname, sc->tx_hi_watermark, sc->max_tx_bd ) |
| 6123 | sc->tx_hi_watermark, sc->max_tx_bd)printf("%s: " " 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n" , sc->bnx_dev.dv_xname, sc->tx_hi_watermark, sc->max_tx_bd ); |
| 6124 | |
| 6125 | BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n",printf("%s: " " 0x%08X - (sc->rx_prod) rx producer index\n" , sc->bnx_dev.dv_xname, sc->rx_prod) |
| 6126 | sc->rx_prod)printf("%s: " " 0x%08X - (sc->rx_prod) rx producer index\n" , sc->bnx_dev.dv_xname, sc->rx_prod); |
| 6127 | |
| 6128 | BNX_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n",printf("%s: " " 0x%08X - (sc->rx_cons) rx consumer index\n" , sc->bnx_dev.dv_xname, sc->rx_cons) |
| 6129 | sc->rx_cons)printf("%s: " " 0x%08X - (sc->rx_cons) rx consumer index\n" , sc->bnx_dev.dv_xname, sc->rx_cons); |
| 6130 | |
| 6131 | BNX_PRINTF(sc,printf("%s: " " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n" , sc->bnx_dev.dv_xname, sc->rx_prod_bseq) |
| 6132 | " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",printf("%s: " " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n" , sc->bnx_dev.dv_xname, sc->rx_prod_bseq) |
| 6133 | sc->rx_prod_bseq)printf("%s: " " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n" , sc->bnx_dev.dv_xname, sc->rx_prod_bseq); |
| 6134 | |
| 6135 | BNX_PRINTF(sc,printf("%s: " " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n" , sc->bnx_dev.dv_xname, sc->rx_mbuf_alloc) |
| 6136 | " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",printf("%s: " " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n" , sc->bnx_dev.dv_xname, sc->rx_mbuf_alloc) |
| 6137 | sc->rx_mbuf_alloc)printf("%s: " " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n" , sc->bnx_dev.dv_xname, sc->rx_mbuf_alloc); |
| 6138 | |
| 6139 | BNX_PRINTF(sc,printf("%s: " "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n" , sc->bnx_dev.dv_xname, sc->rx_low_watermark, sc->max_rx_bd ) |
| 6140 | "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",printf("%s: " "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n" , sc->bnx_dev.dv_xname, sc->rx_low_watermark, sc->max_rx_bd ) |
| 6141 | sc->rx_low_watermark, sc->max_rx_bd)printf("%s: " "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n" , sc->bnx_dev.dv_xname, sc->rx_low_watermark, sc->max_rx_bd ); |
| 6142 | |
| 6143 | BNX_PRINTF(sc,printf("%s: " " 0x%08X - (sc->mbuf_alloc_failed) " "mbuf alloc failures\n", sc->bnx_dev.dv_xname, sc->mbuf_alloc_failed ) |
| 6144 | " 0x%08X - (sc->mbuf_alloc_failed) "printf("%s: " " 0x%08X - (sc->mbuf_alloc_failed) " "mbuf alloc failures\n", sc->bnx_dev.dv_xname, sc->mbuf_alloc_failed ) |
| 6145 | "mbuf alloc failures\n",printf("%s: " " 0x%08X - (sc->mbuf_alloc_failed) " "mbuf alloc failures\n", sc->bnx_dev.dv_xname, sc->mbuf_alloc_failed ) |
| 6146 | sc->mbuf_alloc_failed)printf("%s: " " 0x%08X - (sc->mbuf_alloc_failed) " "mbuf alloc failures\n", sc->bnx_dev.dv_xname, sc->mbuf_alloc_failed ); |
| 6147 | |
| 6148 | BNX_PRINTF(sc,printf("%s: " " 0x%0X - (sc->mbuf_sim_allocated_failed) " "simulated mbuf alloc failures\n", sc->bnx_dev.dv_xname, sc ->mbuf_sim_alloc_failed) |
| 6149 | " 0x%0X - (sc->mbuf_sim_allocated_failed) "printf("%s: " " 0x%0X - (sc->mbuf_sim_allocated_failed) " "simulated mbuf alloc failures\n", sc->bnx_dev.dv_xname, sc ->mbuf_sim_alloc_failed) |
| 6150 | "simulated mbuf alloc failures\n",printf("%s: " " 0x%0X - (sc->mbuf_sim_allocated_failed) " "simulated mbuf alloc failures\n", sc->bnx_dev.dv_xname, sc ->mbuf_sim_alloc_failed) |
| 6151 | sc->mbuf_sim_alloc_failed)printf("%s: " " 0x%0X - (sc->mbuf_sim_allocated_failed) " "simulated mbuf alloc failures\n", sc->bnx_dev.dv_xname, sc ->mbuf_sim_alloc_failed); |
| 6152 | |
| 6153 | BNX_PRINTF(sc, "-------------------------------------------"printf("%s: " "-------------------------------------------" "-----------------------------\n" , sc->bnx_dev.dv_xname) |
| 6154 | "-----------------------------\n")printf("%s: " "-------------------------------------------" "-----------------------------\n" , sc->bnx_dev.dv_xname); |
| 6155 | } |
| 6156 | |
| 6157 | void |
| 6158 | bnx_dump_hw_state(struct bnx_softc *sc) |
| 6159 | { |
| 6160 | u_int32_t val1; |
| 6161 | int i; |
| 6162 | |
| 6163 | BNX_PRINTF(sc,printf("%s: " "----------------------------" " Hardware State " "----------------------------\n", sc->bnx_dev.dv_xname) |
| 6164 | "----------------------------"printf("%s: " "----------------------------" " Hardware State " "----------------------------\n", sc->bnx_dev.dv_xname) |
| 6165 | " Hardware State "printf("%s: " "----------------------------" " Hardware State " "----------------------------\n", sc->bnx_dev.dv_xname) |
| 6166 | "----------------------------\n")printf("%s: " "----------------------------" " Hardware State " "----------------------------\n", sc->bnx_dev.dv_xname); |
| 6167 | |
| 6168 | BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver)printf("%s: " "0x%08X : bootcode version\n", sc->bnx_dev.dv_xname , sc->bnx_fw_ver); |
| 6169 | |
| 6170 | val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x0000080c ))); |
| 6171 | BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",printf("%s: " "0x%08X : (0x%04X) misc_enable_status_bits\n", sc ->bnx_dev.dv_xname, val1, 0x0000080c) |
| 6172 | val1, BNX_MISC_ENABLE_STATUS_BITS)printf("%s: " "0x%08X : (0x%04X) misc_enable_status_bits\n", sc ->bnx_dev.dv_xname, val1, 0x0000080c); |
| 6173 | |
| 6174 | val1 = REG_RD(sc, BNX_DMA_STATUS)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x00000c04 ))); |
| 6175 | BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS)printf("%s: " "0x%08X : (0x%04X) dma_status\n", sc->bnx_dev .dv_xname, val1, 0x00000c04); |
| 6176 | |
| 6177 | val1 = REG_RD(sc, BNX_CTX_STATUS)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x00001004 ))); |
| 6178 | BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS)printf("%s: " "0x%08X : (0x%04X) ctx_status\n", sc->bnx_dev .dv_xname, val1, 0x00001004); |
| 6179 | |
| 6180 | val1 = REG_RD(sc, BNX_EMAC_STATUS)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x00001404 ))); |
| 6181 | BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,printf("%s: " "0x%08X : (0x%04X) emac_status\n", sc->bnx_dev .dv_xname, val1, 0x00001404) |
| 6182 | BNX_EMAC_STATUS)printf("%s: " "0x%08X : (0x%04X) emac_status\n", sc->bnx_dev .dv_xname, val1, 0x00001404); |
| 6183 | |
| 6184 | val1 = REG_RD(sc, BNX_RPM_STATUS)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x00001804 ))); |
| 6185 | BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS)printf("%s: " "0x%08X : (0x%04X) rpm_status\n", sc->bnx_dev .dv_xname, val1, 0x00001804); |
| 6186 | |
| 6187 | val1 = REG_RD(sc, BNX_TBDR_STATUS)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x00005004 ))); |
| 6188 | BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,printf("%s: " "0x%08X : (0x%04X) tbdr_status\n", sc->bnx_dev .dv_xname, val1, 0x00005004) |
| 6189 | BNX_TBDR_STATUS)printf("%s: " "0x%08X : (0x%04X) tbdr_status\n", sc->bnx_dev .dv_xname, val1, 0x00005004); |
| 6190 | |
| 6191 | val1 = REG_RD(sc, BNX_TDMA_STATUS)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x00005c04 ))); |
| 6192 | BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,printf("%s: " "0x%08X : (0x%04X) tdma_status\n", sc->bnx_dev .dv_xname, val1, 0x00005c04) |
| 6193 | BNX_TDMA_STATUS)printf("%s: " "0x%08X : (0x%04X) tdma_status\n", sc->bnx_dev .dv_xname, val1, 0x00005c04); |
| 6194 | |
| 6195 | val1 = REG_RD(sc, BNX_HC_STATUS)((sc->bnx_btag)->read_4((sc->bnx_bhandle), (0x00006804 ))); |
| 6196 | BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS)printf("%s: " "0x%08X : (0x%04X) hc_status\n", sc->bnx_dev .dv_xname, val1, 0x00006804); |
| 6197 | |
| 6198 | BNX_PRINTF(sc,printf("%s: " "----------------------------" "----------------" "----------------------------\n", sc->bnx_dev.dv_xname) |
| 6199 | "----------------------------"printf("%s: " "----------------------------" "----------------" "----------------------------\n", sc->bnx_dev.dv_xname) |
| 6200 | "----------------"printf("%s: " "----------------------------" "----------------" "----------------------------\n", sc->bnx_dev.dv_xname) |
| 6201 | "----------------------------\n")printf("%s: " "----------------------------" "----------------" "----------------------------\n", sc->bnx_dev.dv_xname); |
| 6202 | |
| 6203 | BNX_PRINTF(sc,printf("%s: " "----------------------------" " Register Dump " "----------------------------\n", sc->bnx_dev.dv_xname) |
| 6204 | "----------------------------"printf("%s: " "----------------------------" " Register Dump " "----------------------------\n", sc->bnx_dev.dv_xname) |
| 6205 | " Register Dump "printf("%s: " "----------------------------" " Register Dump " "----------------------------\n", sc->bnx_dev.dv_xname) |
| 6206 | "----------------------------\n")printf("%s: " "----------------------------" " Register Dump " "----------------------------\n", sc->bnx_dev.dv_xname); |
| 6207 | |
| 6208 | for (i = 0x400; i < 0x8000; i += 0x10) |
| 6209 | BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",printf("%s: " "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", sc-> bnx_dev.dv_xname, i, ((sc->bnx_btag)->read_4((sc->bnx_bhandle ), (i))), ((sc->bnx_btag)->read_4((sc->bnx_bhandle), (i + 0x4))), ((sc->bnx_btag)->read_4((sc->bnx_bhandle ), (i + 0x8))), ((sc->bnx_btag)->read_4((sc->bnx_bhandle ), (i + 0xC)))) |
| 6210 | i, REG_RD(sc, i), REG_RD(sc, i + 0x4),printf("%s: " "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", sc-> bnx_dev.dv_xname, i, ((sc->bnx_btag)->read_4((sc->bnx_bhandle ), (i))), ((sc->bnx_btag)->read_4((sc->bnx_bhandle), (i + 0x4))), ((sc->bnx_btag)->read_4((sc->bnx_bhandle ), (i + 0x8))), ((sc->bnx_btag)->read_4((sc->bnx_bhandle ), (i + 0xC)))) |
| 6211 | REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC))printf("%s: " "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", sc-> bnx_dev.dv_xname, i, ((sc->bnx_btag)->read_4((sc->bnx_bhandle ), (i))), ((sc->bnx_btag)->read_4((sc->bnx_bhandle), (i + 0x4))), ((sc->bnx_btag)->read_4((sc->bnx_bhandle ), (i + 0x8))), ((sc->bnx_btag)->read_4((sc->bnx_bhandle ), (i + 0xC)))); |
| 6212 | |
| 6213 | BNX_PRINTF(sc,printf("%s: " "----------------------------" "----------------" "----------------------------\n", sc->bnx_dev.dv_xname) |
| 6214 | "----------------------------"printf("%s: " "----------------------------" "----------------" "----------------------------\n", sc->bnx_dev.dv_xname) |
| 6215 | "----------------"printf("%s: " "----------------------------" "----------------" "----------------------------\n", sc->bnx_dev.dv_xname) |
| 6216 | "----------------------------\n")printf("%s: " "----------------------------" "----------------" "----------------------------\n", sc->bnx_dev.dv_xname); |
| 6217 | } |
| 6218 | |
| 6219 | void |
| 6220 | bnx_breakpoint(struct bnx_softc *sc) |
| 6221 | { |
| 6222 | /* Unreachable code to shut the compiler up about unused functions. */ |
| 6223 | if (0) { |
| 6224 | bnx_dump_txbd(sc, 0, NULL((void *)0)); |
| 6225 | bnx_dump_rxbd(sc, 0, NULL((void *)0)); |
| 6226 | bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD((((1 << 12) / sizeof(struct tx_bd)) - 1) * 2)); |
| 6227 | bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd); |
| 6228 | bnx_dump_l2fhdr(sc, 0, NULL((void *)0)); |
| 6229 | bnx_dump_tx_chain(sc, 0, USABLE_TX_BD((((1 << 12) / sizeof(struct tx_bd)) - 1) * 2)); |
| 6230 | bnx_dump_rx_chain(sc, 0, sc->max_rx_bd); |
| 6231 | bnx_dump_status_block(sc); |
| 6232 | bnx_dump_stats_block(sc); |
| 6233 | bnx_dump_driver_state(sc); |
| 6234 | bnx_dump_hw_state(sc); |
| 6235 | } |
| 6236 | |
| 6237 | bnx_dump_driver_state(sc); |
| 6238 | /* Print the important status block fields. */ |
| 6239 | bnx_dump_status_block(sc); |
| 6240 | |
| 6241 | #if 0 |
| 6242 | /* Call the debugger. */ |
| 6243 | breakpoint(); |
| 6244 | #endif |
| 6245 | |
| 6246 | return; |
| 6247 | } |
| 6248 | #endif |