| File: | dev/ic/elink3.c |
| Warning: | line 1360, column 2 Value stored to 'len' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* $OpenBSD: elink3.c,v 1.101 2023/11/10 15:51:20 bluhm Exp $ */ |
| 2 | /* $NetBSD: elink3.c,v 1.32 1997/05/14 00:22:00 thorpej Exp $ */ |
| 3 | |
| 4 | /* |
| 5 | * Copyright (c) 1996, 1997 Jonathan Stone <jonathan@NetBSD.org> |
| 6 | * Copyright (c) 1994 Herb Peyerl <hpeyerl@beer.org> |
| 7 | * All rights reserved. |
| 8 | * |
| 9 | * Redistribution and use in source and binary forms, with or without |
| 10 | * modification, are permitted provided that the following conditions |
| 11 | * are met: |
| 12 | * 1. Redistributions of source code must retain the above copyright |
| 13 | * notice, this list of conditions and the following disclaimer. |
| 14 | * 2. Redistributions in binary form must reproduce the above copyright |
| 15 | * notice, this list of conditions and the following disclaimer in the |
| 16 | * documentation and/or other materials provided with the distribution. |
| 17 | * 3. All advertising materials mentioning features or use of this software |
| 18 | * must display the following acknowledgement: |
| 19 | * This product includes software developed by Herb Peyerl. |
| 20 | * 4. The name of Herb Peyerl may not be used to endorse or promote products |
| 21 | * derived from this software without specific prior written permission. |
| 22 | * |
| 23 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
| 24 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
| 25 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
| 26 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
| 27 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| 28 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 29 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 30 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 31 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| 32 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 33 | */ |
| 34 | |
| 35 | #include "bpfilter.h" |
| 36 | |
| 37 | #include <sys/param.h> |
| 38 | #include <sys/systm.h> |
| 39 | #include <sys/mbuf.h> |
| 40 | #include <sys/socket.h> |
| 41 | #include <sys/ioctl.h> |
| 42 | #include <sys/errno.h> |
| 43 | #include <sys/syslog.h> |
| 44 | #include <sys/timeout.h> |
| 45 | #include <sys/device.h> |
| 46 | |
| 47 | #include <net/if.h> |
| 48 | #include <net/if_media.h> |
| 49 | |
| 50 | #include <netinet/in.h> |
| 51 | #include <netinet/if_ether.h> |
| 52 | |
| 53 | #if NBPFILTER1 > 0 |
| 54 | #include <net/bpf.h> |
| 55 | #endif |
| 56 | |
| 57 | #include <machine/cpu.h> |
| 58 | #include <machine/bus.h> |
| 59 | |
| 60 | #include <dev/mii/mii.h> |
| 61 | #include <dev/mii/miivar.h> |
| 62 | |
| 63 | #include <dev/ic/elink3var.h> |
| 64 | #include <dev/ic/elink3reg.h> |
| 65 | |
| 66 | /* |
| 67 | * Structure to map media-present bits in boards to |
| 68 | * ifmedia codes and printable media names. Used for table-driven |
| 69 | * ifmedia initialization. |
| 70 | */ |
| 71 | struct ep_media { |
| 72 | int epm_eeprom_data; /* bitmask for eeprom config */ |
| 73 | int epm_conn; /* sc->ep_connectors code for medium */ |
| 74 | char *epm_name; /* name of medium */ |
| 75 | uint64_t epm_ifmedia; /* ifmedia word for medium */ |
| 76 | int epm_ifdata; |
| 77 | }; |
| 78 | |
| 79 | /* |
| 80 | * ep_media table for Vortex/Demon/Boomerang: |
| 81 | * map from media-present bits in register RESET_OPTIONS+2 |
| 82 | * to ifmedia "media words" and printable names. |
| 83 | * |
| 84 | * XXX indexed directly by INTERNAL_CONFIG default_media field, |
| 85 | * (i.e., EPMEDIA_ constants) forcing order of entries. |
| 86 | * Note that 3 is reserved. |
| 87 | */ |
| 88 | const struct ep_media ep_vortex_media[] = { |
| 89 | { EP_PCI_UTP(1<<3), EPC_UTP0x08, "utp", IFM_ETHER0x0000000000000100ULL|IFM_10_T3, |
| 90 | EPMEDIA_10BASE_T(u_short) 0x00 }, |
| 91 | { EP_PCI_AUI(1<<5), EPC_AUI0x01, "aui", IFM_ETHER0x0000000000000100ULL|IFM_10_55, |
| 92 | EPMEDIA_AUI(u_short) 0x01 }, |
| 93 | { 0, 0, "reserved", IFM_NONE2ULL, EPMEDIA_RESV1(u_short) 0x02 }, |
| 94 | { EP_PCI_BNC(1<<4), EPC_BNC0x02, "bnc", IFM_ETHER0x0000000000000100ULL|IFM_10_24, |
| 95 | EPMEDIA_10BASE_2(u_short) 0x03 }, |
| 96 | { EP_PCI_100BASE_TX(1<<1), EPC_100TX0x10, "100-TX", IFM_ETHER0x0000000000000100ULL|IFM_100_TX6, |
| 97 | EPMEDIA_100BASE_TX(u_short) 0x04 }, |
| 98 | { EP_PCI_100BASE_FX(1<<2), EPC_100FX0x20, "100-FX", IFM_ETHER0x0000000000000100ULL|IFM_100_FX7, |
| 99 | EPMEDIA_100BASE_FX(u_short) 0x05 }, |
| 100 | { EP_PCI_100BASE_MII(1<<6),EPC_MII0x40, "mii", IFM_ETHER0x0000000000000100ULL|IFM_100_TX6, |
| 101 | EPMEDIA_MII(u_short) 0x06 }, |
| 102 | { EP_PCI_100BASE_T4(1<<0), EPC_100T40x80, "100-T4", IFM_ETHER0x0000000000000100ULL|IFM_100_T48, |
| 103 | EPMEDIA_100BASE_T4(u_short) 0x07 } |
| 104 | }; |
| 105 | |
| 106 | /* |
| 107 | * ep_media table for 3c509/3c509b/3c579/3c589: |
| 108 | * map from media-present bits in register CNFG_CNTRL |
| 109 | * (window 0, offset ?) to ifmedia "media words" and printable names. |
| 110 | */ |
| 111 | struct ep_media ep_isa_media[] = { |
| 112 | { EP_W0_CC_UTP(1<<9), EPC_UTP0x08, "utp", IFM_ETHER0x0000000000000100ULL|IFM_10_T3, EPMEDIA_10BASE_T(u_short) 0x00 }, |
| 113 | { EP_W0_CC_AUI(1<<13), EPC_AUI0x01, "aui", IFM_ETHER0x0000000000000100ULL|IFM_10_55, EPMEDIA_AUI(u_short) 0x01 }, |
| 114 | { EP_W0_CC_BNC(1<<12), EPC_BNC0x02, "bnc", IFM_ETHER0x0000000000000100ULL|IFM_10_24, EPMEDIA_10BASE_2(u_short) 0x03 }, |
| 115 | }; |
| 116 | |
| 117 | /* Map vortex reset_options bits to if_media codes. */ |
| 118 | const uint64_t ep_default_to_media[] = { |
| 119 | IFM_ETHER0x0000000000000100ULL | IFM_10_T3, |
| 120 | IFM_ETHER0x0000000000000100ULL | IFM_10_55, |
| 121 | 0, /* reserved by 3Com */ |
| 122 | IFM_ETHER0x0000000000000100ULL | IFM_10_24, |
| 123 | IFM_ETHER0x0000000000000100ULL | IFM_100_TX6, |
| 124 | IFM_ETHER0x0000000000000100ULL | IFM_100_FX7, |
| 125 | IFM_ETHER0x0000000000000100ULL | IFM_100_TX6, /* XXX really MII: need to talk to PHY */ |
| 126 | IFM_ETHER0x0000000000000100ULL | IFM_100_T48, |
| 127 | }; |
| 128 | |
| 129 | struct cfdriver ep_cd = { |
| 130 | NULL((void *)0), "ep", DV_IFNET |
| 131 | }; |
| 132 | |
| 133 | void ep_vortex_probemedia(struct ep_softc *sc); |
| 134 | void ep_isa_probemedia(struct ep_softc *sc); |
| 135 | |
| 136 | void eptxstat(struct ep_softc *); |
| 137 | int epstatus(struct ep_softc *); |
| 138 | int epioctl(struct ifnet *, u_long, caddr_t); |
| 139 | void epstart(struct ifnet *); |
| 140 | void epwatchdog(struct ifnet *); |
| 141 | void epreset(struct ep_softc *); |
| 142 | void epread(struct ep_softc *); |
| 143 | struct mbuf *epget(struct ep_softc *, int); |
| 144 | void epmbuffill(void *); |
| 145 | void epmbufempty(struct ep_softc *); |
| 146 | void epsetfilter(struct ep_softc *); |
| 147 | void ep_roadrunner_mii_enable(struct ep_softc *); |
| 148 | int epsetmedia(struct ep_softc *, int); |
| 149 | |
| 150 | /* ifmedia callbacks */ |
| 151 | int ep_media_change(struct ifnet *); |
| 152 | void ep_media_status(struct ifnet *, struct ifmediareq *); |
| 153 | |
| 154 | /* MII callbacks */ |
| 155 | int ep_mii_readreg(struct device *, int, int); |
| 156 | void ep_mii_writereg(struct device *, int, int, int); |
| 157 | void ep_statchg(struct device *); |
| 158 | |
| 159 | void ep_mii_setbit(struct ep_softc *, u_int16_t); |
| 160 | void ep_mii_clrbit(struct ep_softc *, u_int16_t); |
| 161 | u_int16_t ep_mii_readbit(struct ep_softc *, u_int16_t); |
| 162 | void ep_mii_sync(struct ep_softc *); |
| 163 | void ep_mii_sendbits(struct ep_softc *, u_int32_t, int); |
| 164 | |
| 165 | int epbusyeeprom(struct ep_softc *); |
| 166 | u_int16_t ep_read_eeprom(struct ep_softc *, u_int16_t); |
| 167 | |
| 168 | static inline void ep_reset_cmd(struct ep_softc *sc, u_int cmd,u_int arg); |
| 169 | static inline void ep_finish_reset(bus_space_tag_t, bus_space_handle_t); |
| 170 | static inline void ep_discard_rxtop(bus_space_tag_t, bus_space_handle_t); |
| 171 | static __inline int ep_w1_reg(struct ep_softc *, int); |
| 172 | |
| 173 | /* |
| 174 | * Issue a (reset) command, and be sure it has completed. |
| 175 | * Used for global reset, TX_RESET, RX_RESET. |
| 176 | */ |
| 177 | static inline void |
| 178 | ep_reset_cmd(struct ep_softc *sc, u_int cmd, u_int arg) |
| 179 | { |
| 180 | bus_space_tag_t iot = sc->sc_iot; |
| 181 | bus_space_handle_t ioh = sc->sc_ioh; |
| 182 | |
| 183 | bus_space_write_2(iot, ioh, cmd, arg)((iot)->write_2((ioh), (cmd), (arg))); |
| 184 | ep_finish_reset(iot, ioh); |
| 185 | } |
| 186 | |
| 187 | /* |
| 188 | * Wait for any pending reset to complete. |
| 189 | */ |
| 190 | static inline void |
| 191 | ep_finish_reset(bus_space_tag_t iot, bus_space_handle_t ioh) |
| 192 | { |
| 193 | int i; |
| 194 | |
| 195 | for (i = 0; i < 10000; i++) { |
| 196 | if ((bus_space_read_2(iot, ioh, EP_STATUS)((iot)->read_2((ioh), (0x0e))) & |
| 197 | S_COMMAND_IN_PROGRESS(u_short) (0x1000)) == 0) |
| 198 | break; |
| 199 | DELAY(10)(*delay_func)(10); |
| 200 | } |
| 201 | } |
| 202 | |
| 203 | static inline void |
| 204 | ep_discard_rxtop(bus_space_tag_t iot, bus_space_handle_t ioh) |
| 205 | { |
| 206 | int i; |
| 207 | |
| 208 | bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK)((iot)->write_2((ioh), (0x0e), ((u_short) (0x8<<11)) )); |
| 209 | |
| 210 | /* |
| 211 | * Spin for about 1 msec, to avoid forcing a DELAY() between |
| 212 | * every received packet (adding latency and limiting pkt-recv rate). |
| 213 | * On PCI, at 4 30-nsec PCI bus cycles for a read, 8000 iterations |
| 214 | * is about right. |
| 215 | */ |
| 216 | for (i = 0; i < 8000; i++) { |
| 217 | if ((bus_space_read_2(iot, ioh, EP_STATUS)((iot)->read_2((ioh), (0x0e))) & |
| 218 | S_COMMAND_IN_PROGRESS(u_short) (0x1000)) == 0) |
| 219 | return; |
| 220 | } |
| 221 | |
| 222 | /* not fast enough, do DELAY()s */ |
| 223 | ep_finish_reset(iot, ioh); |
| 224 | } |
| 225 | |
| 226 | /* |
| 227 | * Some chips (i.e., 3c574 RoadRunner) have Window 1 registers offset. |
| 228 | */ |
| 229 | static __inline int |
| 230 | ep_w1_reg(struct ep_softc *sc, int reg) |
| 231 | { |
| 232 | switch (sc->ep_chipset) { |
| 233 | case EP_CHIPSET_ROADRUNNER0x05: |
| 234 | switch (reg) { |
| 235 | case EP_W1_FREE_TX0x0c: |
| 236 | case EP_W1_RUNNER_RDCTL0x16: |
| 237 | case EP_W1_RUNNER_WRCTL0x1c: |
| 238 | return (reg); |
| 239 | } |
| 240 | return (reg + 0x10); |
| 241 | } |
| 242 | return (reg); |
| 243 | } |
| 244 | |
| 245 | /* |
| 246 | * Back-end attach and configure. |
| 247 | */ |
| 248 | void |
| 249 | epconfig(struct ep_softc *sc, u_short chipset, u_int8_t *enaddr) |
| 250 | { |
| 251 | struct ifnet *ifp = &sc->sc_arpcom.ac_if; |
| 252 | bus_space_tag_t iot = sc->sc_iot; |
| 253 | bus_space_handle_t ioh = sc->sc_ioh; |
| 254 | u_int16_t i; |
| 255 | |
| 256 | sc->ep_chipset = chipset; |
| 257 | |
| 258 | /* |
| 259 | * We could have been groveling around in other register |
| 260 | * windows in the front-end; make sure we're in window 0 |
| 261 | * to read the EEPROM. |
| 262 | */ |
| 263 | GO_WINDOW(0)((sc->sc_iot)->write_2((sc->sc_ioh), (0x0e), ((u_short ) (0x1<<11)|0))); |
| 264 | |
| 265 | if (enaddr == NULL((void *)0)) { |
| 266 | /* |
| 267 | * Read the station address from the eeprom. |
| 268 | */ |
| 269 | for (i = 0; i < 3; i++) { |
| 270 | u_int16_t x = ep_read_eeprom(sc, i); |
| 271 | |
| 272 | sc->sc_arpcom.ac_enaddr[(i << 1)] = x >> 8; |
| 273 | sc->sc_arpcom.ac_enaddr[(i << 1) + 1] = x; |
| 274 | } |
| 275 | } else { |
| 276 | bcopy(enaddr, sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN6); |
| 277 | } |
| 278 | |
| 279 | printf(" address %s", ether_sprintf(sc->sc_arpcom.ac_enaddr)); |
| 280 | if (sc->ep_flags & EP_FLAGS_MII0x4000) |
| 281 | printf("\n"); |
| 282 | else |
| 283 | printf(", "); |
| 284 | |
| 285 | /* |
| 286 | * Vortex-based (3c59x pci,eisa) cards allow FDDI-sized (4500) byte |
| 287 | * packets. Commands only take an 11-bit parameter, and 11 bits |
| 288 | * isn't enough to hold a full-size packet length. |
| 289 | * Commands to these cards implicitly upshift a packet size |
| 290 | * or threshold by 2 bits. |
| 291 | * To detect cards with large-packet support, we probe by setting |
| 292 | * the transmit threshold register, then change windows and |
| 293 | * read back the threshold register directly, and see if the |
| 294 | * threshold value was shifted or not. |
| 295 | */ |
| 296 | bus_space_write_2(iot, ioh, EP_COMMAND,((iot)->write_2((ioh), (0x0e), ((u_short) (0x12<<11) | 2047))) |
| 297 | SET_TX_AVAIL_THRESH | EP_LARGEWIN_PROBE )((iot)->write_2((ioh), (0x0e), ((u_short) (0x12<<11) | 2047))); |
| 298 | GO_WINDOW(5)((sc->sc_iot)->write_2((sc->sc_ioh), (0x0e), ((u_short ) (0x1<<11)|5))); |
| 299 | i = bus_space_read_2(iot, ioh, EP_W5_TX_AVAIL_THRESH)((iot)->read_2((ioh), (0x02))); |
| 300 | GO_WINDOW(1)((sc->sc_iot)->write_2((sc->sc_ioh), (0x0e), ((u_short ) (0x1<<11)|1))); |
| 301 | switch (i) { |
| 302 | case EP_LARGEWIN_PROBE2047: |
| 303 | case (EP_LARGEWIN_PROBE2047 & EP_LARGEWIN_MASK0xffc): |
| 304 | sc->txashift = 0; |
| 305 | break; |
| 306 | |
| 307 | case (EP_LARGEWIN_PROBE2047 << 2): |
| 308 | sc->txashift = 2; |
| 309 | /* XXX does the 3c515 support Vortex-style RESET_OPTIONS? */ |
| 310 | break; |
| 311 | |
| 312 | default: |
| 313 | printf("wrote %x to TX_AVAIL_THRESH, read back %x. " |
| 314 | "Interface disabled\n", EP_THRESH_DISABLE2047, (int) i); |
| 315 | return; |
| 316 | } |
| 317 | |
| 318 | timeout_set(&sc->sc_epmbuffill_tmo, epmbuffill, sc); |
| 319 | |
| 320 | /* |
| 321 | * Ensure Tx-available interrupts are enabled for |
| 322 | * start the interface. |
| 323 | * XXX should be in epinit()? |
| 324 | */ |
| 325 | bus_space_write_2(iot, ioh, EP_COMMAND,((iot)->write_2((ioh), (0x0e), ((u_short) (0x12<<11) | (1600 >> sc->txashift)))) |
| 326 | SET_TX_AVAIL_THRESH | (1600 >> sc->txashift))((iot)->write_2((ioh), (0x0e), ((u_short) (0x12<<11) | (1600 >> sc->txashift)))); |
| 327 | |
| 328 | bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ16); |
| 329 | ifp->if_softc = sc; |
| 330 | ifp->if_start = epstart; |
| 331 | ifp->if_ioctl = epioctl; |
| 332 | ifp->if_watchdog = epwatchdog; |
| 333 | ifp->if_flags = |
| 334 | IFF_BROADCAST0x2 | IFF_SIMPLEX0x800 | IFF_MULTICAST0x8000; |
| 335 | /* 64 packets are around 100ms on 10Mbps */ |
| 336 | ifq_init_maxlen(&ifp->if_snd, 64); |
| 337 | |
| 338 | if_attach(ifp); |
| 339 | ether_ifattach(ifp); |
| 340 | |
| 341 | /* |
| 342 | * Finish configuration: |
| 343 | * determine chipset if the front-end couldn't do so, |
| 344 | * show board details, set media. |
| 345 | */ |
| 346 | |
| 347 | GO_WINDOW(0)((sc->sc_iot)->write_2((sc->sc_ioh), (0x0e), ((u_short ) (0x1<<11)|0))); |
| 348 | |
| 349 | ifmedia_init(&sc->sc_mii.mii_media, 0, ep_media_change, |
| 350 | ep_media_status); |
| 351 | sc->sc_mii.mii_ifp = ifp; |
| 352 | sc->sc_mii.mii_readreg = ep_mii_readreg; |
| 353 | sc->sc_mii.mii_writereg = ep_mii_writereg; |
| 354 | sc->sc_mii.mii_statchg = ep_statchg; |
| 355 | |
| 356 | /* |
| 357 | * If we've got an indirect (ISA, PCMCIA?) board, the chipset |
| 358 | * is unknown. If the board has large-packet support, it's a |
| 359 | * Vortex/Boomerang, otherwise it's a 3c509. |
| 360 | * XXX use eeprom capability word instead? |
| 361 | */ |
| 362 | if (sc->ep_chipset == EP_CHIPSET_UNKNOWN0x00 && sc->txashift) { |
| 363 | printf("warning: unknown chipset, possibly 3c515?\n"); |
| 364 | #ifdef notyet |
| 365 | sc->sc_chipset = EP_CHIPSET_VORTEX0x02; |
| 366 | #endif /* notyet */ |
| 367 | } |
| 368 | |
| 369 | /* |
| 370 | * Ascertain which media types are present and inform ifmedia. |
| 371 | */ |
| 372 | switch (sc->ep_chipset) { |
| 373 | case EP_CHIPSET_ROADRUNNER0x05: |
| 374 | if (sc->ep_flags & EP_FLAGS_MII0x4000) { |
| 375 | ep_roadrunner_mii_enable(sc); |
| 376 | GO_WINDOW(0)((sc->sc_iot)->write_2((sc->sc_ioh), (0x0e), ((u_short ) (0x1<<11)|0))); |
| 377 | } |
| 378 | /* FALLTHROUGH */ |
| 379 | |
| 380 | case EP_CHIPSET_BOOMERANG0x03: |
| 381 | /* |
| 382 | * If the device has MII, probe it. We won't be using |
| 383 | * any `native' media in this case, only PHYs. If |
| 384 | * we don't, just treat the Boomerang like the Vortex. |
| 385 | */ |
| 386 | if (sc->ep_flags & EP_FLAGS_MII0x4000) { |
| 387 | mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, |
| 388 | MII_PHY_ANY-1, MII_OFFSET_ANY-1, 0); |
| 389 | if (LIST_FIRST(&sc->sc_mii.mii_phys)((&sc->sc_mii.mii_phys)->lh_first) == NULL((void *)0)) { |
| 390 | ifmedia_add(&sc->sc_mii.mii_media, |
| 391 | IFM_ETHER0x0000000000000100ULL|IFM_NONE2ULL, 0, NULL((void *)0)); |
| 392 | ifmedia_set(&sc->sc_mii.mii_media, |
| 393 | IFM_ETHER0x0000000000000100ULL|IFM_NONE2ULL); |
| 394 | } else { |
| 395 | ifmedia_set(&sc->sc_mii.mii_media, |
| 396 | IFM_ETHER0x0000000000000100ULL|IFM_AUTO0ULL); |
| 397 | } |
| 398 | break; |
| 399 | } |
| 400 | /* FALLTHROUGH */ |
| 401 | |
| 402 | /* on a direct bus, the attach routine can tell, but check anyway. */ |
| 403 | case EP_CHIPSET_VORTEX0x02: |
| 404 | case EP_CHIPSET_BOOMERANG20x04: |
| 405 | ep_vortex_probemedia(sc); |
| 406 | break; |
| 407 | |
| 408 | /* on ISA we can't yet tell 3c509 from 3c515. Assume the former. */ |
| 409 | case EP_CHIPSET_3C5090x01: |
| 410 | default: |
| 411 | ep_isa_probemedia(sc); |
| 412 | break; |
| 413 | } |
| 414 | |
| 415 | GO_WINDOW(1)((sc->sc_iot)->write_2((sc->sc_ioh), (0x0e), ((u_short ) (0x1<<11)|1))); /* Window 1 is operating window */ |
| 416 | |
| 417 | sc->tx_start_thresh = 20; /* probably a good starting point. */ |
| 418 | |
| 419 | ep_reset_cmd(sc, EP_COMMAND0x0e, RX_RESET(u_short) (0x5<<11)); |
| 420 | ep_reset_cmd(sc, EP_COMMAND0x0e, TX_RESET(u_short) (0xb<<11)); |
| 421 | } |
| 422 | |
| 423 | int |
| 424 | ep_detach(struct device *self) |
| 425 | { |
| 426 | struct ep_softc *sc = (struct ep_softc *)self; |
| 427 | struct ifnet *ifp = &sc->sc_arpcom.ac_if; |
| 428 | |
| 429 | if (sc->ep_flags & EP_FLAGS_MII0x4000) |
| 430 | mii_detach(&sc->sc_mii, MII_PHY_ANY-1, MII_OFFSET_ANY-1); |
| 431 | |
| 432 | ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY((uint64_t) -1)); |
| 433 | |
| 434 | ether_ifdetach(ifp); |
| 435 | if_detach(ifp); |
| 436 | |
| 437 | return (0); |
| 438 | } |
| 439 | |
| 440 | /* |
| 441 | * Find supported media on 3c509-generation hardware that doesn't have |
| 442 | * a "reset_options" register in window 3. |
| 443 | * Use the config_cntrl register in window 0 instead. |
| 444 | * Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards |
| 445 | * that implement CONFIG_CTRL. We don't have a good way to set the |
| 446 | * default active medium; punt to ifconfig instead. |
| 447 | * |
| 448 | * XXX what about 3c515, pcmcia 10/100? |
| 449 | */ |
| 450 | void |
| 451 | ep_isa_probemedia(struct ep_softc *sc) |
| 452 | { |
| 453 | bus_space_tag_t iot = sc->sc_iot; |
| 454 | bus_space_handle_t ioh = sc->sc_ioh; |
| 455 | struct ifmedia *ifm = &sc->sc_mii.mii_media; |
| 456 | int conn, i; |
| 457 | u_int16_t ep_w0_config, port; |
| 458 | |
| 459 | conn = 0; |
| 460 | GO_WINDOW(0)((sc->sc_iot)->write_2((sc->sc_ioh), (0x0e), ((u_short ) (0x1<<11)|0))); |
| 461 | ep_w0_config = bus_space_read_2(iot, ioh, EP_W0_CONFIG_CTRL)((iot)->read_2((ioh), (0x04))); |
| 462 | for (i = 0; i < nitems(ep_isa_media)(sizeof((ep_isa_media)) / sizeof((ep_isa_media)[0])); i++) { |
| 463 | struct ep_media * epm = ep_isa_media + i; |
| 464 | |
| 465 | if ((ep_w0_config & epm->epm_eeprom_data) != 0) { |
| 466 | ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_ifdata, 0); |
| 467 | if (conn) |
| 468 | printf("/"); |
| 469 | printf("%s", epm->epm_name); |
| 470 | conn |= epm->epm_conn; |
| 471 | } |
| 472 | } |
| 473 | sc->ep_connectors = conn; |
| 474 | |
| 475 | /* get default medium from EEPROM */ |
| 476 | if (epbusyeeprom(sc)) |
| 477 | return; /* XXX why is eeprom busy? */ |
| 478 | bus_space_write_2(iot, ioh, EP_W0_EEPROM_COMMAND,((iot)->write_2((ioh), (0x0a), ((1<<7) | 0x8))) |
| 479 | READ_EEPROM | EEPROM_ADDR_CFG)((iot)->write_2((ioh), (0x0a), ((1<<7) | 0x8))); |
| 480 | if (epbusyeeprom(sc)) |
| 481 | return; /* XXX why is eeprom busy? */ |
| 482 | port = bus_space_read_2(iot, ioh, EP_W0_EEPROM_DATA)((iot)->read_2((ioh), (0x0c))); |
| 483 | port = port >> 14; |
| 484 | |
| 485 | printf(" (default %s)\n", ep_vortex_media[port].epm_name); |
| 486 | |
| 487 | /* tell ifconfig what currently-active media is. */ |
| 488 | ifmedia_set(ifm, ep_default_to_media[port]); |
| 489 | |
| 490 | /* XXX autoselect not yet implemented */ |
| 491 | } |
| 492 | |
| 493 | |
| 494 | /* |
| 495 | * Find media present on large-packet-capable elink3 devices. |
| 496 | * Show onboard configuration of large-packet-capable elink3 devices |
| 497 | * (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0. |
| 498 | * Use media and card-version info in window 3 instead. |
| 499 | * |
| 500 | * XXX how much of this works with 3c515, pcmcia 10/100? |
| 501 | */ |
| 502 | void |
| 503 | ep_vortex_probemedia(struct ep_softc *sc) |
| 504 | { |
| 505 | bus_space_tag_t iot = sc->sc_iot; |
| 506 | bus_space_handle_t ioh = sc->sc_ioh; |
| 507 | struct ifmedia *ifm = &sc->sc_mii.mii_media; |
| 508 | u_int config1, conn; |
| 509 | int reset_options; |
| 510 | int default_media; /* 3-bit encoding of default (EEPROM) media */ |
| 511 | int autoselect; /* boolean: should default to autoselect */ |
| 512 | const char *medium_name; |
| 513 | register int i; |
| 514 | |
| 515 | GO_WINDOW(3)((sc->sc_iot)->write_2((sc->sc_ioh), (0x0e), ((u_short ) (0x1<<11)|3))); |
| 516 | config1 = (u_int)bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2)((iot)->read_2((ioh), (0x00 + 2))); |
| 517 | reset_options = (int)bus_space_read_1(iot, ioh, EP_W3_RESET_OPTIONS)((iot)->read_1((ioh), (0x08))); |
| 518 | GO_WINDOW(0)((sc->sc_iot)->write_2((sc->sc_ioh), (0x0e), ((u_short ) (0x1<<11)|0))); |
| 519 | |
| 520 | default_media = (config1 & CONFIG_MEDIAMASK(u_short) 0x0070) >> CONFIG_MEDIAMASK_SHIFT(u_short) 4; |
| 521 | autoselect = (config1 & CONFIG_AUTOSELECT(u_short) 0x0100) >> CONFIG_AUTOSELECT_SHIFT(u_short) 8; |
| 522 | |
| 523 | /* set available media options */ |
| 524 | conn = 0; |
| 525 | for (i = 0; i < nitems(ep_vortex_media)(sizeof((ep_vortex_media)) / sizeof((ep_vortex_media)[0])); i++) { |
| 526 | const struct ep_media *epm = ep_vortex_media + i; |
| 527 | |
| 528 | if ((reset_options & epm->epm_eeprom_data) != 0) { |
| 529 | if (conn) |
| 530 | printf("/"); |
| 531 | printf("%s", epm->epm_name); |
| 532 | conn |= epm->epm_conn; |
| 533 | ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_ifdata, 0); |
| 534 | } |
| 535 | } |
| 536 | |
| 537 | sc->ep_connectors = conn; |
| 538 | |
| 539 | /* Show eeprom's idea of default media. */ |
| 540 | medium_name = (default_media > nitems(ep_vortex_media)(sizeof((ep_vortex_media)) / sizeof((ep_vortex_media)[0])) - 1) |
| 541 | ? "(unknown/impossible media)" |
| 542 | : ep_vortex_media[default_media].epm_name; |
| 543 | printf(" default %s%s", |
| 544 | medium_name, (autoselect) ? "/autoselect" : ""); |
| 545 | /* sc->sc_media = ep_vortex_media[default_media].epm_ifdata;*/ |
| 546 | |
| 547 | #ifdef notyet |
| 548 | /* |
| 549 | * Set default: either the active interface the card |
| 550 | * reads from the EEPROM, or if autoselect is true, |
| 551 | * whatever we find is actually connected. |
| 552 | * |
| 553 | * XXX autoselect not yet implemented. |
| 554 | */ |
| 555 | #endif /* notyet */ |
| 556 | |
| 557 | /* tell ifconfig what currently-active media is. */ |
| 558 | ifmedia_set(ifm, ep_default_to_media[default_media]); |
| 559 | } |
| 560 | |
| 561 | /* |
| 562 | * Bring device up. |
| 563 | * |
| 564 | * The order in here seems important. Otherwise we may not receive |
| 565 | * interrupts. ?! |
| 566 | */ |
| 567 | void |
| 568 | epinit(struct ep_softc *sc) |
| 569 | { |
| 570 | register struct ifnet *ifp = &sc->sc_arpcom.ac_if; |
| 571 | bus_space_tag_t iot = sc->sc_iot; |
| 572 | bus_space_handle_t ioh = sc->sc_ioh; |
| 573 | int i; |
| 574 | |
| 575 | /* make sure any pending reset has completed before touching board */ |
| 576 | ep_finish_reset(iot, ioh); |
| 577 | |
| 578 | /* cancel any pending I/O */ |
| 579 | epstop(sc); |
| 580 | |
| 581 | if (sc->bustype != EP_BUS_PCI0x3) { |
| 582 | GO_WINDOW(0)((sc->sc_iot)->write_2((sc->sc_ioh), (0x0e), ((u_short ) (0x1<<11)|0))); |
| 583 | bus_space_write_2(iot, ioh, EP_W0_CONFIG_CTRL, 0)((iot)->write_2((ioh), (0x04), (0))); |
| 584 | bus_space_write_2(iot, ioh, EP_W0_CONFIG_CTRL, ENABLE_DRQ_IRQ)((iot)->write_2((ioh), (0x04), (0x0001))); |
| 585 | } |
| 586 | |
| 587 | if (sc->bustype == EP_BUS_PCMCIA0x1) { |
| 588 | bus_space_write_2(iot, ioh, EP_W0_RESOURCE_CFG, 0x3f00)((iot)->write_2((ioh), (0x08), (0x3f00))); |
| 589 | } |
| 590 | |
| 591 | GO_WINDOW(2)((sc->sc_iot)->write_2((sc->sc_ioh), (0x0e), ((u_short ) (0x1<<11)|2))); |
| 592 | for (i = 0; i < 6; i++) /* Reload the ether_addr. */ |
| 593 | bus_space_write_1(iot, ioh, EP_W2_ADDR_0 + i,((iot)->write_1((ioh), (0x00 + i), (sc->sc_arpcom.ac_enaddr [i]))) |
| 594 | sc->sc_arpcom.ac_enaddr[i])((iot)->write_1((ioh), (0x00 + i), (sc->sc_arpcom.ac_enaddr [i]))); |
| 595 | |
| 596 | if (sc->bustype == EP_BUS_PCI0x3 || sc->bustype == EP_BUS_EISA0x2) |
| 597 | /* |
| 598 | * Reset the station-address receive filter. |
| 599 | * A bug workaround for busmastering (Vortex, Demon) cards. |
| 600 | */ |
| 601 | for (i = 0; i < 6; i++) |
| 602 | bus_space_write_1(iot, ioh, EP_W2_RECVMASK_0 + i, 0)((iot)->write_1((ioh), (0x06 + i), (0))); |
| 603 | |
| 604 | ep_reset_cmd(sc, EP_COMMAND0x0e, RX_RESET(u_short) (0x5<<11)); |
| 605 | ep_reset_cmd(sc, EP_COMMAND0x0e, TX_RESET(u_short) (0xb<<11)); |
| 606 | |
| 607 | GO_WINDOW(1)((sc->sc_iot)->write_2((sc->sc_ioh), (0x0e), ((u_short ) (0x1<<11)|1))); /* Window 1 is operating window */ |
| 608 | for (i = 0; i < 31; i++) |
| 609 | bus_space_read_1(iot, ioh, ep_w1_reg(sc, EP_W1_TX_STATUS))((iot)->read_1((ioh), (ep_w1_reg(sc, 0x0b)))); |
| 610 | |
| 611 | /* Set threshold for Tx-space available interrupt. */ |
| 612 | bus_space_write_2(iot, ioh, EP_COMMAND,((iot)->write_2((ioh), (0x0e), ((u_short) (0x12<<11) | (1600 >> sc->txashift)))) |
| 613 | SET_TX_AVAIL_THRESH | (1600 >> sc->txashift))((iot)->write_2((ioh), (0x0e), ((u_short) (0x12<<11) | (1600 >> sc->txashift)))); |
| 614 | |
| 615 | if (sc->ep_chipset == EP_CHIPSET_ROADRUNNER0x05) { |
| 616 | /* Enable options in the PCMCIA LAN COR register, via |
| 617 | * RoadRunner Window 1. |
| 618 | * |
| 619 | * XXX MAGIC CONSTANTS! |
| 620 | */ |
| 621 | u_int16_t cor; |
| 622 | |
| 623 | bus_space_write_2(iot, ioh, EP_W1_RUNNER_RDCTL, (1 << 11))((iot)->write_2((ioh), (0x16), ((1 << 11)))); |
| 624 | |
| 625 | cor = bus_space_read_2(iot, ioh, 0)((iot)->read_2((ioh), (0))) & ~0x30; |
| 626 | bus_space_write_2(iot, ioh, 0, cor)((iot)->write_2((ioh), (0), (cor))); |
| 627 | |
| 628 | bus_space_write_2(iot, ioh, EP_W1_RUNNER_WRCTL, 0)((iot)->write_2((ioh), (0x1c), (0))); |
| 629 | bus_space_write_2(iot, ioh, EP_W1_RUNNER_RDCTL, 0)((iot)->write_2((ioh), (0x16), (0))); |
| 630 | |
| 631 | if (sc->ep_flags & EP_FLAGS_MII0x4000) { |
| 632 | ep_roadrunner_mii_enable(sc); |
| 633 | GO_WINDOW(1)((sc->sc_iot)->write_2((sc->sc_ioh), (0x0e), ((u_short ) (0x1<<11)|1))); |
| 634 | } |
| 635 | } |
| 636 | |
| 637 | /* Enable interrupts. */ |
| 638 | bus_space_write_2(iot, ioh, EP_COMMAND, SET_RD_0_MASK |((iot)->write_2((ioh), (0x0e), ((u_short) (0x0f<<11) | (u_short) (0x0002) | (u_short) (0x0010) | (u_short) (0x0004 ) | (u_short) (0x0008)))) |
| 639 | S_CARD_FAILURE | S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL)((iot)->write_2((ioh), (0x0e), ((u_short) (0x0f<<11) | (u_short) (0x0002) | (u_short) (0x0010) | (u_short) (0x0004 ) | (u_short) (0x0008)))); |
| 640 | bus_space_write_2(iot, ioh, EP_COMMAND, SET_INTR_MASK |((iot)->write_2((ioh), (0x0e), ((u_short) (0x0e<<11) | (u_short) (0x0002) | (u_short) (0x0010) | (u_short) (0x0004 ) | (u_short) (0x0008)))) |
| 641 | S_CARD_FAILURE | S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL)((iot)->write_2((ioh), (0x0e), ((u_short) (0x0e<<11) | (u_short) (0x0002) | (u_short) (0x0010) | (u_short) (0x0004 ) | (u_short) (0x0008)))); |
| 642 | |
| 643 | /* |
| 644 | * Attempt to get rid of any stray interrupts that occurred during |
| 645 | * configuration. On the i386 this isn't possible because one may |
| 646 | * already be queued. However, a single stray interrupt is |
| 647 | * unimportant. |
| 648 | */ |
| 649 | bus_space_write_2(iot, ioh, EP_COMMAND, ACK_INTR | 0xff)((iot)->write_2((ioh), (0x0e), ((u_short) (0x6800) | 0xff) )); |
| 650 | |
| 651 | epsetfilter(sc); |
| 652 | epsetmedia(sc, sc->sc_mii.mii_media.ifm_cur->ifm_data); |
| 653 | |
| 654 | bus_space_write_2(iot, ioh, EP_COMMAND, RX_ENABLE)((iot)->write_2((ioh), (0x0e), ((u_short) (0x4<<11)) )); |
| 655 | bus_space_write_2(iot, ioh, EP_COMMAND, TX_ENABLE)((iot)->write_2((ioh), (0x0e), ((u_short) (0x9<<11)) )); |
| 656 | |
| 657 | epmbuffill(sc); |
| 658 | |
| 659 | /* Interface is now `running', with no output active. */ |
| 660 | ifp->if_flags |= IFF_RUNNING0x40; |
| 661 | ifq_clr_oactive(&ifp->if_snd); |
| 662 | |
| 663 | /* Attempt to start output, if any. */ |
| 664 | epstart(ifp); |
| 665 | } |
| 666 | |
| 667 | /* |
| 668 | * Set multicast receive filter. |
| 669 | * elink3 hardware has no selective multicast filter in hardware. |
| 670 | * Enable reception of all multicasts and filter in software. |
| 671 | */ |
| 672 | void |
| 673 | epsetfilter(struct ep_softc *sc) |
| 674 | { |
| 675 | register struct ifnet *ifp = &sc->sc_arpcom.ac_if; |
| 676 | |
| 677 | GO_WINDOW(1)((sc->sc_iot)->write_2((sc->sc_ioh), (0x0e), ((u_short ) (0x1<<11)|1))); /* Window 1 is operating window */ |
| 678 | bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_COMMAND, SET_RX_FILTER |((sc->sc_iot)->write_2((sc->sc_ioh), (0x0e), ((u_short ) (0x10<<11) | (u_short) (0x01) | (u_short) (0x04) | (( ifp->if_flags & 0x8000) ? (u_short) (0x02) : 0 ) | ((ifp ->if_flags & 0x100) ? (u_short) (0x08) : 0 )))) |
| 679 | FIL_INDIVIDUAL | FIL_BRDCST |((sc->sc_iot)->write_2((sc->sc_ioh), (0x0e), ((u_short ) (0x10<<11) | (u_short) (0x01) | (u_short) (0x04) | (( ifp->if_flags & 0x8000) ? (u_short) (0x02) : 0 ) | ((ifp ->if_flags & 0x100) ? (u_short) (0x08) : 0 )))) |
| 680 | ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0 ) |((sc->sc_iot)->write_2((sc->sc_ioh), (0x0e), ((u_short ) (0x10<<11) | (u_short) (0x01) | (u_short) (0x04) | (( ifp->if_flags & 0x8000) ? (u_short) (0x02) : 0 ) | ((ifp ->if_flags & 0x100) ? (u_short) (0x08) : 0 )))) |
| 681 | ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0 ))((sc->sc_iot)->write_2((sc->sc_ioh), (0x0e), ((u_short ) (0x10<<11) | (u_short) (0x01) | (u_short) (0x04) | (( ifp->if_flags & 0x8000) ? (u_short) (0x02) : 0 ) | ((ifp ->if_flags & 0x100) ? (u_short) (0x08) : 0 )))); |
| 682 | } |
| 683 | |
| 684 | |
| 685 | int |
| 686 | ep_media_change(struct ifnet *ifp) |
| 687 | { |
| 688 | register struct ep_softc *sc = ifp->if_softc; |
| 689 | |
| 690 | return epsetmedia(sc, sc->sc_mii.mii_media.ifm_cur->ifm_data); |
| 691 | } |
| 692 | |
| 693 | /* |
| 694 | * Reset and enable the MII on the RoadRunner. |
| 695 | */ |
| 696 | void |
| 697 | ep_roadrunner_mii_enable(struct ep_softc *sc) |
| 698 | { |
| 699 | bus_space_tag_t iot = sc->sc_iot; |
| 700 | bus_space_handle_t ioh = sc->sc_ioh; |
| 701 | |
| 702 | GO_WINDOW(3)((sc->sc_iot)->write_2((sc->sc_ioh), (0x0e), ((u_short ) (0x1<<11)|3))); |
| 703 | bus_space_write_2(iot, ioh, EP_W3_RESET_OPTIONS,((iot)->write_2((ioh), (0x08), ((1<<6)|0x8000))) |
| 704 | EP_PCI_100BASE_MII|EP_RUNNER_ENABLE_MII)((iot)->write_2((ioh), (0x08), ((1<<6)|0x8000))); |
| 705 | delay(1000)(*delay_func)(1000); |
| 706 | bus_space_write_2(iot, ioh, EP_W3_RESET_OPTIONS,((iot)->write_2((ioh), (0x08), ((1<<6)|0x4000|0x8000 ))) |
| 707 | EP_PCI_100BASE_MII|EP_RUNNER_MII_RESET|EP_RUNNER_ENABLE_MII)((iot)->write_2((ioh), (0x08), ((1<<6)|0x4000|0x8000 ))); |
| 708 | ep_reset_cmd(sc, EP_COMMAND0x0e, TX_RESET(u_short) (0xb<<11)); |
| 709 | ep_reset_cmd(sc, EP_COMMAND0x0e, RX_RESET(u_short) (0x5<<11)); |
| 710 | delay(1000)(*delay_func)(1000); |
| 711 | bus_space_write_2(iot, ioh, EP_W3_RESET_OPTIONS,((iot)->write_2((ioh), (0x08), ((1<<6)|0x8000))) |
| 712 | EP_PCI_100BASE_MII|EP_RUNNER_ENABLE_MII)((iot)->write_2((ioh), (0x08), ((1<<6)|0x8000))); |
| 713 | } |
| 714 | |
| 715 | /* |
| 716 | * Set active media to a specific given EPMEDIA_<> value. |
| 717 | * For vortex/demon/boomerang cards, update media field in w3_internal_config, |
| 718 | * and power on selected transceiver. |
| 719 | * For 3c509-generation cards (3c509/3c579/3c589/3c509B), |
| 720 | * update media field in w0_address_config, and power on selected xcvr. |
| 721 | */ |
| 722 | int |
| 723 | epsetmedia(struct ep_softc *sc, int medium) |
| 724 | { |
| 725 | bus_space_tag_t iot = sc->sc_iot; |
| 726 | bus_space_handle_t ioh = sc->sc_ioh; |
| 727 | int w4_media; |
| 728 | int config0, config1; |
| 729 | |
| 730 | /* |
| 731 | * you can `ifconfig (link0|-link0) ep0' to get the following |
| 732 | * behaviour: |
| 733 | * -link0 disable AUI/UTP. enable BNC. |
| 734 | * link0 disable BNC. enable AUI. |
| 735 | * link1 if the card has a UTP connector, and link0 is |
| 736 | * set too, then you get the UTP port. |
| 737 | */ |
| 738 | |
| 739 | /* |
| 740 | * First, change the media-control bits in EP_W4_MEDIA_TYPE. |
| 741 | */ |
| 742 | |
| 743 | /* Turn everything off. First turn off linkbeat and UTP. */ |
| 744 | GO_WINDOW(4)((sc->sc_iot)->write_2((sc->sc_ioh), (0x0e), ((u_short ) (0x1<<11)|4))); |
| 745 | w4_media = bus_space_read_2(iot, ioh, EP_W4_MEDIA_TYPE)((iot)->read_2((ioh), (0x0a))); |
| 746 | w4_media = w4_media & ~(ENABLE_UTP(0x40|0x80)|SQE_ENABLE0x08); |
| 747 | bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE, w4_media)((iot)->write_2((ioh), (0x0a), (w4_media))); |
| 748 | |
| 749 | /* Turn off coax */ |
| 750 | bus_space_write_2(iot, ioh, EP_COMMAND, STOP_TRANSCEIVER)((iot)->write_2((ioh), (0x0e), ((u_short) (0x17<<11) ))); |
| 751 | delay(1000)(*delay_func)(1000); |
| 752 | |
| 753 | /* If the device has MII, select it, and then tell the |
| 754 | * PHY which media to use. |
| 755 | */ |
| 756 | if (sc->ep_flags & EP_FLAGS_MII0x4000) { |
| 757 | GO_WINDOW(3)((sc->sc_iot)->write_2((sc->sc_ioh), (0x0e), ((u_short ) (0x1<<11)|3))); |
| 758 | |
| 759 | if (sc->ep_chipset == EP_CHIPSET_ROADRUNNER0x05) { |
| 760 | int resopt; |
| 761 | |
| 762 | resopt = bus_space_read_2(iot, ioh,((iot)->read_2((ioh), (0x08))) |
| 763 | EP_W3_RESET_OPTIONS)((iot)->read_2((ioh), (0x08))); |
| 764 | bus_space_write_2(iot, ioh, EP_W3_RESET_OPTIONS,((iot)->write_2((ioh), (0x08), (resopt | 0x8000))) |
| 765 | resopt | EP_RUNNER_ENABLE_MII)((iot)->write_2((ioh), (0x08), (resopt | 0x8000))); |
| 766 | } |
| 767 | |
| 768 | config0 = (u_int)bus_space_read_2(iot, ioh,((iot)->read_2((ioh), (0x00))) |
| 769 | EP_W3_INTERNAL_CONFIG)((iot)->read_2((ioh), (0x00))); |
| 770 | config1 = (u_int)bus_space_read_2(iot, ioh,((iot)->read_2((ioh), (0x00 + 2))) |
| 771 | EP_W3_INTERNAL_CONFIG + 2)((iot)->read_2((ioh), (0x00 + 2))); |
| 772 | |
| 773 | config1 = config1 & ~CONFIG_MEDIAMASK(u_short) 0x0070; |
| 774 | config1 |= (EPMEDIA_MII(u_short) 0x06 << CONFIG_MEDIAMASK_SHIFT(u_short) 4); |
| 775 | |
| 776 | bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG, config0)((iot)->write_2((ioh), (0x00), (config0))); |
| 777 | bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2, config1)((iot)->write_2((ioh), (0x00 + 2), (config1))); |
| 778 | GO_WINDOW(1)((sc->sc_iot)->write_2((sc->sc_ioh), (0x0e), ((u_short ) (0x1<<11)|1))); /* back to operating window */ |
| 779 | |
| 780 | mii_mediachg(&sc->sc_mii); |
| 781 | return (0); |
| 782 | } |
| 783 | |
| 784 | /* |
| 785 | * Now turn on the selected media/transceiver. |
| 786 | */ |
| 787 | GO_WINDOW(4)((sc->sc_iot)->write_2((sc->sc_ioh), (0x0e), ((u_short ) (0x1<<11)|4))); |
| 788 | switch (medium) { |
| 789 | case EPMEDIA_10BASE_T(u_short) 0x00: |
| 790 | bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE, (ENABLE_UTP |((iot)->write_2((ioh), (0x0a), (((0x40|0x80) | (sc->bustype == 0x1 ? 0x0001 : 0))))) |
| 791 | (sc->bustype == EP_BUS_PCMCIA ? MEDIA_LED : 0)))((iot)->write_2((ioh), (0x0a), (((0x40|0x80) | (sc->bustype == 0x1 ? 0x0001 : 0))))); |
| 792 | break; |
| 793 | |
| 794 | case EPMEDIA_10BASE_2(u_short) 0x03: |
| 795 | bus_space_write_2(iot, ioh, EP_COMMAND, START_TRANSCEIVER)((iot)->write_2((ioh), (0x0e), ((u_short) (0x2<<11)) )); |
| 796 | DELAY(1000)(*delay_func)(1000); /* 50ms not enough? */ |
| 797 | break; |
| 798 | |
| 799 | /* XXX following only for new-generation cards */ |
| 800 | case EPMEDIA_100BASE_TX(u_short) 0x04: |
| 801 | case EPMEDIA_100BASE_FX(u_short) 0x05: |
| 802 | case EPMEDIA_100BASE_T4(u_short) 0x07: /* XXX check documentation */ |
| 803 | bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE,((iot)->write_2((ioh), (0x0a), (w4_media | 0x80))) |
| 804 | w4_media | LINKBEAT_ENABLE)((iot)->write_2((ioh), (0x0a), (w4_media | 0x80))); |
| 805 | DELAY(1000)(*delay_func)(1000); /* not strictly necessary? */ |
| 806 | break; |
| 807 | |
| 808 | case EPMEDIA_AUI(u_short) 0x01: |
| 809 | bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE,((iot)->write_2((ioh), (0x0a), (w4_media | 0x08))) |
| 810 | w4_media | SQE_ENABLE)((iot)->write_2((ioh), (0x0a), (w4_media | 0x08))); |
| 811 | DELAY(1000)(*delay_func)(1000); /* not strictly necessary? */ |
| 812 | break; |
| 813 | case EPMEDIA_MII(u_short) 0x06: |
| 814 | break; |
| 815 | default: |
| 816 | #if defined(EP_DEBUG) |
| 817 | printf("%s unknown media 0x%x\n", sc->sc_dev.dv_xname, medium); |
| 818 | #endif |
| 819 | break; |
| 820 | |
| 821 | } |
| 822 | |
| 823 | /* |
| 824 | * Tell the chip which PHY [sic] to use. |
| 825 | */ |
| 826 | switch (sc->ep_chipset) { |
| 827 | case EP_CHIPSET_VORTEX0x02: |
| 828 | case EP_CHIPSET_BOOMERANG20x04: |
| 829 | GO_WINDOW(3)((sc->sc_iot)->write_2((sc->sc_ioh), (0x0e), ((u_short ) (0x1<<11)|3))); |
| 830 | config0 = (u_int)bus_space_read_2(iot, ioh,((iot)->read_2((ioh), (0x00))) |
| 831 | EP_W3_INTERNAL_CONFIG)((iot)->read_2((ioh), (0x00))); |
| 832 | config1 = (u_int)bus_space_read_2(iot, ioh,((iot)->read_2((ioh), (0x00 + 2))) |
| 833 | EP_W3_INTERNAL_CONFIG + 2)((iot)->read_2((ioh), (0x00 + 2))); |
| 834 | |
| 835 | #if defined(EP_DEBUG) |
| 836 | printf("%s: read 0x%x, 0x%x from EP_W3_CONFIG register\n", |
| 837 | sc->sc_dev.dv_xname, config0, config1); |
| 838 | #endif |
| 839 | config1 = config1 & ~CONFIG_MEDIAMASK(u_short) 0x0070; |
| 840 | config1 |= (medium << CONFIG_MEDIAMASK_SHIFT(u_short) 4); |
| 841 | |
| 842 | #if defined(EP_DEBUG) |
| 843 | printf("epsetmedia: %s: medium 0x%x, 0x%x to EP_W3_CONFIG\n", |
| 844 | sc->sc_dev.dv_xname, medium, config1); |
| 845 | #endif |
| 846 | bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG, config0)((iot)->write_2((ioh), (0x00), (config0))); |
| 847 | bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2, config1)((iot)->write_2((ioh), (0x00 + 2), (config1))); |
| 848 | break; |
| 849 | |
| 850 | default: |
| 851 | GO_WINDOW(0)((sc->sc_iot)->write_2((sc->sc_ioh), (0x0e), ((u_short ) (0x1<<11)|0))); |
| 852 | config0 = bus_space_read_2(iot, ioh, EP_W0_ADDRESS_CFG)((iot)->read_2((ioh), (0x06))); |
| 853 | config0 &= 0x3fff; |
| 854 | bus_space_write_2(iot, ioh, EP_W0_ADDRESS_CFG,((iot)->write_2((ioh), (0x06), (config0 | (medium << 14)))) |
| 855 | config0 | (medium << 14))((iot)->write_2((ioh), (0x06), (config0 | (medium << 14)))); |
| 856 | DELAY(1000)(*delay_func)(1000); |
| 857 | break; |
| 858 | } |
| 859 | |
| 860 | GO_WINDOW(1)((sc->sc_iot)->write_2((sc->sc_ioh), (0x0e), ((u_short ) (0x1<<11)|1))); /* Window 1 is operating window */ |
| 861 | return (0); |
| 862 | } |
| 863 | |
| 864 | |
| 865 | /* |
| 866 | * Get currently-selected media from card. |
| 867 | * (if_media callback, may be called before interface is brought up). |
| 868 | */ |
| 869 | void |
| 870 | ep_media_status(struct ifnet *ifp, struct ifmediareq *req) |
| 871 | { |
| 872 | register struct ep_softc *sc = ifp->if_softc; |
| 873 | bus_space_tag_t iot = sc->sc_iot; |
| 874 | bus_space_handle_t ioh = sc->sc_ioh; |
| 875 | u_int config1; |
| 876 | u_int ep_mediastatus; |
| 877 | |
| 878 | /* |
| 879 | * If we have MII, go ask the PHY what's going on. |
| 880 | */ |
| 881 | if (sc->ep_flags & EP_FLAGS_MII0x4000) { |
| 882 | mii_pollstat(&sc->sc_mii); |
| 883 | req->ifm_active = sc->sc_mii.mii_media_active; |
| 884 | req->ifm_status = sc->sc_mii.mii_media_status; |
| 885 | return; |
| 886 | } |
| 887 | |
| 888 | /* XXX read from softc when we start autosensing media */ |
| 889 | req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media; |
| 890 | |
| 891 | switch (sc->ep_chipset) { |
| 892 | case EP_CHIPSET_VORTEX0x02: |
| 893 | case EP_CHIPSET_BOOMERANG0x03: |
| 894 | GO_WINDOW(3)((sc->sc_iot)->write_2((sc->sc_ioh), (0x0e), ((u_short ) (0x1<<11)|3))); |
| 895 | delay(5000)(*delay_func)(5000); |
| 896 | |
| 897 | config1 = bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2)((iot)->read_2((ioh), (0x00 + 2))); |
| 898 | GO_WINDOW(1)((sc->sc_iot)->write_2((sc->sc_ioh), (0x0e), ((u_short ) (0x1<<11)|1))); |
| 899 | |
| 900 | config1 = |
| 901 | (config1 & CONFIG_MEDIAMASK(u_short) 0x0070) >> CONFIG_MEDIAMASK_SHIFT(u_short) 4; |
| 902 | req->ifm_active = ep_default_to_media[config1]; |
| 903 | |
| 904 | /* XXX check full-duplex bits? */ |
| 905 | |
| 906 | GO_WINDOW(4)((sc->sc_iot)->write_2((sc->sc_ioh), (0x0e), ((u_short ) (0x1<<11)|4))); |
| 907 | req->ifm_status = IFM_AVALID0x0000000000000001ULL; /* XXX */ |
| 908 | ep_mediastatus = bus_space_read_2(iot, ioh, EP_W4_MEDIA_TYPE)((iot)->read_2((ioh), (0x0a))); |
| 909 | if (ep_mediastatus & LINKBEAT_DETECT0x800) |
| 910 | req->ifm_status |= IFM_ACTIVE0x0000000000000002ULL; /* XXX automedia */ |
| 911 | |
| 912 | break; |
| 913 | |
| 914 | case EP_CHIPSET_UNKNOWN0x00: |
| 915 | case EP_CHIPSET_3C5090x01: |
| 916 | req->ifm_status = 0; /* XXX */ |
| 917 | break; |
| 918 | |
| 919 | default: |
| 920 | printf("%s: media_status on unknown chipset 0x%x\n", |
| 921 | ifp->if_xname, sc->ep_chipset); |
| 922 | break; |
| 923 | } |
| 924 | |
| 925 | /* XXX look for softc heartbeat for other chips or media */ |
| 926 | |
| 927 | GO_WINDOW(1)((sc->sc_iot)->write_2((sc->sc_ioh), (0x0e), ((u_short ) (0x1<<11)|1))); |
| 928 | return; |
| 929 | } |
| 930 | |
| 931 | |
| 932 | |
| 933 | /* |
| 934 | * Start outputting on the interface. |
| 935 | * Always called as splnet(). |
| 936 | */ |
| 937 | void |
| 938 | epstart(struct ifnet *ifp) |
| 939 | { |
| 940 | register struct ep_softc *sc = ifp->if_softc; |
| 941 | bus_space_tag_t iot = sc->sc_iot; |
| 942 | bus_space_handle_t ioh = sc->sc_ioh; |
| 943 | struct mbuf *m, *m0; |
| 944 | caddr_t data; |
| 945 | int sh, len, pad, txreg; |
| 946 | |
| 947 | /* Don't transmit if interface is busy or not running */ |
| 948 | if (!(ifp->if_flags & IFF_RUNNING0x40) || ifq_is_oactive(&ifp->if_snd)) |
| 949 | return; |
| 950 | |
| 951 | startagain: |
| 952 | /* Sneak a peek at the next packet */ |
| 953 | m0 = ifq_deq_begin(&ifp->if_snd); |
| 954 | if (m0 == NULL((void *)0)) |
| 955 | return; |
| 956 | |
| 957 | /* We need to use m->m_pkthdr.len, so require the header */ |
| 958 | if ((m0->m_flagsm_hdr.mh_flags & M_PKTHDR0x0002) == 0) |
| 959 | panic("epstart: no header mbuf"); |
| 960 | len = m0->m_pkthdrM_dat.MH.MH_pkthdr.len; |
| 961 | |
| 962 | pad = (4 - len) & 3; |
| 963 | |
| 964 | /* |
| 965 | * The 3c509 automatically pads short packets to minimum ethernet |
| 966 | * length, but we drop packets that are too large. Perhaps we should |
| 967 | * truncate them instead? |
| 968 | */ |
| 969 | if (len + pad > ETHER_MAX_LEN1518) { |
| 970 | /* packet is obviously too large: toss it */ |
| 971 | ++ifp->if_oerrorsif_data.ifi_oerrors; |
| 972 | ifq_deq_commit(&ifp->if_snd, m0); |
| 973 | m_freem(m0); |
| 974 | goto readcheck; |
| 975 | } |
| 976 | |
| 977 | if (bus_space_read_2(iot, ioh, ep_w1_reg(sc, EP_W1_FREE_TX))((iot)->read_2((ioh), (ep_w1_reg(sc, 0x0c)))) < |
| 978 | len + pad + 4) { |
| 979 | bus_space_write_2(iot, ioh, EP_COMMAND,((iot)->write_2((ioh), (0x0e), ((u_short) (0x12<<11) | ((len + pad + 4) >> sc->txashift)))) |
| 980 | SET_TX_AVAIL_THRESH | ((len + pad + 4) >> sc->txashift))((iot)->write_2((ioh), (0x0e), ((u_short) (0x12<<11) | ((len + pad + 4) >> sc->txashift)))); |
| 981 | /* not enough room in FIFO */ |
| 982 | ifq_deq_rollback(&ifp->if_snd, m0); |
| 983 | ifq_set_oactive(&ifp->if_snd); |
| 984 | return; |
| 985 | } else { |
| 986 | bus_space_write_2(iot, ioh, EP_COMMAND,((iot)->write_2((ioh), (0x0e), ((u_short) (0x12<<11) | 2047))) |
| 987 | SET_TX_AVAIL_THRESH | EP_THRESH_DISABLE)((iot)->write_2((ioh), (0x0e), ((u_short) (0x12<<11) | 2047))); |
| 988 | } |
| 989 | |
| 990 | ifq_deq_commit(&ifp->if_snd, m0); |
| 991 | if (m0 == NULL((void *)0)) |
| 992 | return; |
| 993 | |
| 994 | bus_space_write_2(iot, ioh, EP_COMMAND, SET_TX_START_THRESH |((iot)->write_2((ioh), (0x0e), ((u_short) (0x13<<11) | ((len / 4 + sc->tx_start_thresh) )))) |
| 995 | ((len / 4 + sc->tx_start_thresh) /*>> sc->txashift*/))((iot)->write_2((ioh), (0x0e), ((u_short) (0x13<<11) | ((len / 4 + sc->tx_start_thresh) )))); |
| 996 | |
| 997 | #if NBPFILTER1 > 0 |
| 998 | if (ifp->if_bpf) |
| 999 | bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT(1 << 1)); |
| 1000 | #endif |
| 1001 | |
| 1002 | /* |
| 1003 | * Do the output at splhigh() so that an interrupt from another device |
| 1004 | * won't cause a FIFO underrun. |
| 1005 | */ |
| 1006 | sh = splhigh()splraise(0xd); |
| 1007 | |
| 1008 | txreg = ep_w1_reg(sc, EP_W1_TX_PIO_WR_10x00); |
| 1009 | |
| 1010 | bus_space_write_2(iot, ioh, txreg, len)((iot)->write_2((ioh), (txreg), (len))); |
| 1011 | bus_space_write_2(iot, ioh, txreg, 0xffff)((iot)->write_2((ioh), (txreg), (0xffff))); /* Second is meaningless */ |
| 1012 | if (EP_IS_BUS_32(sc->bustype)((sc->bustype) & 0x2)) { |
| 1013 | for (m = m0; m; ) { |
| 1014 | data = mtod(m, u_int8_t *)((u_int8_t *)((m)->m_hdr.mh_data)); |
| 1015 | if (m->m_lenm_hdr.mh_len > 3 && ALIGNED_POINTER(data, uint32_t)1) { |
| 1016 | bus_space_write_raw_multi_4(iot, ioh, txreg,((iot)->write_multi_4((ioh), (txreg), (const u_int32_t *)( data), (m->m_hdr.mh_len & ~3) >> 2)) |
| 1017 | data, m->m_len & ~3)((iot)->write_multi_4((ioh), (txreg), (const u_int32_t *)( data), (m->m_hdr.mh_len & ~3) >> 2)); |
| 1018 | if (m->m_lenm_hdr.mh_len & 3) |
| 1019 | bus_space_write_multi_1(iot, ioh, txreg,((iot)->write_multi_1((ioh), (txreg), (data + (m->m_hdr .mh_len & ~3)), (m->m_hdr.mh_len & 3))) |
| 1020 | data + (m->m_len & ~3),((iot)->write_multi_1((ioh), (txreg), (data + (m->m_hdr .mh_len & ~3)), (m->m_hdr.mh_len & 3))) |
| 1021 | m->m_len & 3)((iot)->write_multi_1((ioh), (txreg), (data + (m->m_hdr .mh_len & ~3)), (m->m_hdr.mh_len & 3))); |
| 1022 | } else |
| 1023 | bus_space_write_multi_1(iot, ioh, txreg,((iot)->write_multi_1((ioh), (txreg), (data), (m->m_hdr .mh_len))) |
| 1024 | data, m->m_len)((iot)->write_multi_1((ioh), (txreg), (data), (m->m_hdr .mh_len))); |
| 1025 | m0 = m_free(m); |
| 1026 | m = m0; |
| 1027 | } |
| 1028 | } else { |
| 1029 | for (m = m0; m; ) { |
| 1030 | data = mtod(m, u_int8_t *)((u_int8_t *)((m)->m_hdr.mh_data)); |
| 1031 | if (m->m_lenm_hdr.mh_len > 1 && ALIGNED_POINTER(data, uint16_t)1) { |
| 1032 | bus_space_write_raw_multi_2(iot, ioh, txreg,((iot)->write_multi_2((ioh), (txreg), (const u_int16_t *)( data), (m->m_hdr.mh_len & ~1) >> 1)) |
| 1033 | data, m->m_len & ~1)((iot)->write_multi_2((ioh), (txreg), (const u_int16_t *)( data), (m->m_hdr.mh_len & ~1) >> 1)); |
| 1034 | if (m->m_lenm_hdr.mh_len & 1) |
| 1035 | bus_space_write_1(iot, ioh, txreg,((iot)->write_1((ioh), (txreg), (*(data + m->m_hdr.mh_len - 1)))) |
| 1036 | *(data + m->m_len - 1))((iot)->write_1((ioh), (txreg), (*(data + m->m_hdr.mh_len - 1)))); |
| 1037 | } else |
| 1038 | bus_space_write_multi_1(iot, ioh, txreg,((iot)->write_multi_1((ioh), (txreg), (data), (m->m_hdr .mh_len))) |
| 1039 | data, m->m_len)((iot)->write_multi_1((ioh), (txreg), (data), (m->m_hdr .mh_len))); |
| 1040 | m0 = m_free(m); |
| 1041 | m = m0; |
| 1042 | } |
| 1043 | } |
| 1044 | while (pad--) |
| 1045 | bus_space_write_1(iot, ioh, txreg, 0)((iot)->write_1((ioh), (txreg), (0))); |
| 1046 | |
| 1047 | splx(sh)spllower(sh); |
| 1048 | |
| 1049 | readcheck: |
| 1050 | if ((bus_space_read_2(iot, ioh, ep_w1_reg(sc, EP_W1_RX_STATUS))((iot)->read_2((ioh), (ep_w1_reg(sc, 0x08)))) & |
| 1051 | ERR_INCOMPLETE(u_short) (0x8000)) == 0) { |
| 1052 | /* We received a complete packet. */ |
| 1053 | u_int16_t status = bus_space_read_2(iot, ioh, EP_STATUS)((iot)->read_2((ioh), (0x0e))); |
| 1054 | |
| 1055 | if ((status & S_INTR_LATCH(u_short) (0x0001)) == 0) { |
| 1056 | /* |
| 1057 | * No interrupt, read the packet and continue |
| 1058 | * Is this supposed to happen? Is my motherboard |
| 1059 | * completely busted? |
| 1060 | */ |
| 1061 | epread(sc); |
| 1062 | } else |
| 1063 | /* Got an interrupt, return to get it serviced. */ |
| 1064 | return; |
| 1065 | } else { |
| 1066 | /* Check if we are stuck and reset [see XXX comment] */ |
| 1067 | if (epstatus(sc)) { |
| 1068 | #ifdef EP_DEBUG |
| 1069 | if (ifp->if_flags & IFF_DEBUG0x4) |
| 1070 | printf("%s: adapter reset\n", |
| 1071 | sc->sc_dev.dv_xname); |
| 1072 | #endif |
| 1073 | epreset(sc); |
| 1074 | } |
| 1075 | } |
| 1076 | |
| 1077 | goto startagain; |
| 1078 | } |
| 1079 | |
| 1080 | |
| 1081 | /* |
| 1082 | * XXX: The 3c509 card can get in a mode where both the fifo status bit |
| 1083 | * FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set |
| 1084 | * We detect this situation and we reset the adapter. |
| 1085 | * It happens at times when there is a lot of broadcast traffic |
| 1086 | * on the cable (once in a blue moon). |
| 1087 | */ |
| 1088 | int |
| 1089 | epstatus(struct ep_softc *sc) |
| 1090 | { |
| 1091 | bus_space_tag_t iot = sc->sc_iot; |
| 1092 | bus_space_handle_t ioh = sc->sc_ioh; |
| 1093 | u_int16_t fifost; |
| 1094 | |
| 1095 | /* |
| 1096 | * Check the FIFO status and act accordingly |
| 1097 | */ |
| 1098 | GO_WINDOW(4)((sc->sc_iot)->write_2((sc->sc_ioh), (0x0e), ((u_short ) (0x1<<11)|4))); |
| 1099 | fifost = bus_space_read_2(iot, ioh, EP_W4_FIFO_DIAG)((iot)->read_2((ioh), (0x04))); |
| 1100 | GO_WINDOW(1)((sc->sc_iot)->write_2((sc->sc_ioh), (0x0e), ((u_short ) (0x1<<11)|1))); |
| 1101 | |
| 1102 | if (fifost & FIFOS_RX_UNDERRUN(u_short) 0x2000) { |
| 1103 | #ifdef EP_DEBUG |
| 1104 | if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG0x4) |
| 1105 | printf("%s: RX underrun\n", sc->sc_dev.dv_xname); |
| 1106 | #endif |
| 1107 | epreset(sc); |
| 1108 | return 0; |
| 1109 | } |
| 1110 | |
| 1111 | if (fifost & FIFOS_RX_STATUS_OVERRUN(u_short) 0x1000) { |
| 1112 | #ifdef EP_DEBUG |
| 1113 | if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG0x4) |
| 1114 | printf("%s: RX Status overrun\n", sc->sc_dev.dv_xname); |
| 1115 | #endif |
| 1116 | return 1; |
| 1117 | } |
| 1118 | |
| 1119 | if (fifost & FIFOS_RX_OVERRUN(u_short) 0x0800) { |
| 1120 | #ifdef EP_DEBUG |
| 1121 | if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG0x4) |
| 1122 | printf("%s: RX overrun\n", sc->sc_dev.dv_xname); |
| 1123 | #endif |
| 1124 | return 1; |
| 1125 | } |
| 1126 | |
| 1127 | if (fifost & FIFOS_TX_OVERRUN(u_short) 0x0400) { |
| 1128 | #ifdef EP_DEBUG |
| 1129 | if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG0x4) |
| 1130 | printf("%s: TX overrun\n", sc->sc_dev.dv_xname); |
| 1131 | #endif |
| 1132 | epreset(sc); |
| 1133 | return 0; |
| 1134 | } |
| 1135 | |
| 1136 | return 0; |
| 1137 | } |
| 1138 | |
| 1139 | |
| 1140 | void |
| 1141 | eptxstat(struct ep_softc *sc) |
| 1142 | { |
| 1143 | bus_space_tag_t iot = sc->sc_iot; |
| 1144 | bus_space_handle_t ioh = sc->sc_ioh; |
| 1145 | int i; |
| 1146 | |
| 1147 | /* |
| 1148 | * We need to read+write TX_STATUS until we get a 0 status |
| 1149 | * in order to turn off the interrupt flag. |
| 1150 | */ |
| 1151 | while ((i = bus_space_read_1(iot, ioh,((iot)->read_1((ioh), (ep_w1_reg(sc, 0x0b)))) |
| 1152 | ep_w1_reg(sc, EP_W1_TX_STATUS))((iot)->read_1((ioh), (ep_w1_reg(sc, 0x0b))))) & TXS_COMPLETE0x80) { |
| 1153 | bus_space_write_1(iot, ioh, ep_w1_reg(sc, EP_W1_TX_STATUS),((iot)->write_1((ioh), (ep_w1_reg(sc, 0x0b)), (0x0))) |
| 1154 | 0x0)((iot)->write_1((ioh), (ep_w1_reg(sc, 0x0b)), (0x0))); |
| 1155 | |
| 1156 | if (i & TXS_JABBER0x20) { |
| 1157 | ++sc->sc_arpcom.ac_if.if_oerrorsif_data.ifi_oerrors; |
| 1158 | #ifdef EP_DEBUG |
| 1159 | if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG0x4) |
| 1160 | printf("%s: jabber (%x)\n", |
| 1161 | sc->sc_dev.dv_xname, i); |
| 1162 | #endif |
| 1163 | epreset(sc); |
| 1164 | } else if (i & TXS_UNDERRUN0x10) { |
| 1165 | ++sc->sc_arpcom.ac_if.if_oerrorsif_data.ifi_oerrors; |
| 1166 | #ifdef EP_DEBUG |
| 1167 | if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG0x4) |
| 1168 | printf("%s: fifo underrun (%x) @%d\n", |
| 1169 | sc->sc_dev.dv_xname, i, |
| 1170 | sc->tx_start_thresh); |
| 1171 | #endif |
| 1172 | if (sc->tx_succ_ok < 100) |
| 1173 | sc->tx_start_thresh = min(ETHER_MAX_LEN1518, |
| 1174 | sc->tx_start_thresh + 20); |
| 1175 | sc->tx_succ_ok = 0; |
| 1176 | epreset(sc); |
| 1177 | } else if (i & TXS_MAX_COLLISION0x08) { |
| 1178 | ++sc->sc_arpcom.ac_if.if_collisionsif_data.ifi_collisions; |
| 1179 | bus_space_write_2(iot, ioh, EP_COMMAND, TX_ENABLE)((iot)->write_2((ioh), (0x0e), ((u_short) (0x9<<11)) )); |
| 1180 | ifq_clr_oactive(&sc->sc_arpcom.ac_if.if_snd); |
| 1181 | } else |
| 1182 | sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127; |
| 1183 | } |
| 1184 | } |
| 1185 | |
| 1186 | int |
| 1187 | epintr(void *arg) |
| 1188 | { |
| 1189 | register struct ep_softc *sc = arg; |
| 1190 | bus_space_tag_t iot = sc->sc_iot; |
| 1191 | bus_space_handle_t ioh = sc->sc_ioh; |
| 1192 | struct ifnet *ifp = &sc->sc_arpcom.ac_if; |
| 1193 | u_int16_t status; |
| 1194 | int ret = 0; |
| 1195 | |
| 1196 | for (;;) { |
| 1197 | bus_space_write_2(iot, ioh, EP_COMMAND, C_INTR_LATCH)((iot)->write_2((ioh), (0x0e), ((u_short) ((u_short) (0x6800 )|0x01)))); |
| 1198 | |
| 1199 | status = bus_space_read_2(iot, ioh, EP_STATUS)((iot)->read_2((ioh), (0x0e))); |
| 1200 | |
| 1201 | if ((status & (S_TX_COMPLETE(u_short) (0x0004) | S_TX_AVAIL(u_short) (0x0008) | |
| 1202 | S_RX_COMPLETE(u_short) (0x0010) | S_CARD_FAILURE(u_short) (0x0002))) == 0) |
| 1203 | break; |
| 1204 | |
| 1205 | ret = 1; |
| 1206 | |
| 1207 | /* |
| 1208 | * Acknowledge any interrupts. It's important that we do this |
| 1209 | * first, since there would otherwise be a race condition. |
| 1210 | * Due to the i386 interrupt queueing, we may get spurious |
| 1211 | * interrupts occasionally. |
| 1212 | */ |
| 1213 | bus_space_write_2(iot, ioh, EP_COMMAND, ACK_INTR | status)((iot)->write_2((ioh), (0x0e), ((u_short) (0x6800) | status ))); |
| 1214 | |
| 1215 | if (status & S_RX_COMPLETE(u_short) (0x0010)) |
| 1216 | epread(sc); |
| 1217 | if (status & S_TX_AVAIL(u_short) (0x0008)) { |
| 1218 | ifq_clr_oactive(&ifp->if_snd); |
| 1219 | epstart(ifp); |
| 1220 | } |
| 1221 | if (status & S_CARD_FAILURE(u_short) (0x0002)) { |
| 1222 | epreset(sc); |
| 1223 | return (1); |
| 1224 | } |
| 1225 | if (status & S_TX_COMPLETE(u_short) (0x0004)) { |
| 1226 | eptxstat(sc); |
| 1227 | epstart(ifp); |
| 1228 | } |
| 1229 | } |
| 1230 | |
| 1231 | /* no more interrupts */ |
| 1232 | return (ret); |
| 1233 | } |
| 1234 | |
| 1235 | void |
| 1236 | epread(struct ep_softc *sc) |
| 1237 | { |
| 1238 | bus_space_tag_t iot = sc->sc_iot; |
| 1239 | bus_space_handle_t ioh = sc->sc_ioh; |
| 1240 | struct ifnet *ifp = &sc->sc_arpcom.ac_if; |
| 1241 | struct mbuf_list ml = MBUF_LIST_INITIALIZER(){ ((void *)0), ((void *)0), 0 }; |
| 1242 | struct mbuf *m; |
| 1243 | int len, error = 0; |
| 1244 | |
| 1245 | len = bus_space_read_2(iot, ioh, ep_w1_reg(sc, EP_W1_RX_STATUS))((iot)->read_2((ioh), (ep_w1_reg(sc, 0x08)))); |
| 1246 | |
| 1247 | again: |
| 1248 | #ifdef EP_DEBUG |
| 1249 | if (ifp->if_flags & IFF_DEBUG0x4) { |
| 1250 | int err = len & ERR_MASK(u_short) (0x7800); |
| 1251 | char *s = NULL((void *)0); |
| 1252 | |
| 1253 | if (len & ERR_INCOMPLETE(u_short) (0x8000)) |
| 1254 | s = "incomplete packet"; |
| 1255 | else if (err == ERR_OVERRUN(u_short) (0x4000)) |
| 1256 | s = "packet overrun"; |
| 1257 | else if (err == ERR_RUNT(u_short) (0x5800)) |
| 1258 | s = "runt packet"; |
| 1259 | else if (err == ERR_ALIGNMENT(u_short) (0x6000)) |
| 1260 | s = "bad alignment"; |
| 1261 | else if (err == ERR_CRC(u_short) (0x6800)) |
| 1262 | s = "bad crc"; |
| 1263 | else if (err == ERR_OVERSIZE(u_short) (0x4800)) |
| 1264 | s = "oversized packet"; |
| 1265 | else if (err == ERR_DRIBBLE(u_short) (0x1000)) |
| 1266 | s = "dribble bits"; |
| 1267 | |
| 1268 | if (s) |
| 1269 | printf("%s: %s\n", sc->sc_dev.dv_xname, s); |
| 1270 | } |
| 1271 | #endif |
| 1272 | |
| 1273 | if (len & ERR_INCOMPLETE(u_short) (0x8000)) |
| 1274 | goto done; |
| 1275 | |
| 1276 | if (len & ERR_RX(u_short) (0x4000)) { |
| 1277 | ++ifp->if_ierrorsif_data.ifi_ierrors; |
| 1278 | error = 1; |
| 1279 | goto done; |
| 1280 | } |
| 1281 | |
| 1282 | len &= RX_BYTES_MASK(u_short) (0x07ff); /* Lower 11 bits = RX bytes. */ |
| 1283 | |
| 1284 | /* Pull packet off interface. */ |
| 1285 | m = epget(sc, len); |
| 1286 | if (m == NULL((void *)0)) { |
| 1287 | ifp->if_ierrorsif_data.ifi_ierrors++; |
| 1288 | error = 1; |
| 1289 | goto done; |
| 1290 | } |
| 1291 | |
| 1292 | ml_enqueue(&ml, m); |
| 1293 | |
| 1294 | /* |
| 1295 | * In periods of high traffic we can actually receive enough |
| 1296 | * packets so that the fifo overrun bit will be set at this point, |
| 1297 | * even though we just read a packet. In this case we |
| 1298 | * are not going to receive any more interrupts. We check for |
| 1299 | * this condition and read again until the fifo is not full. |
| 1300 | * We could simplify this test by not using epstatus(), but |
| 1301 | * rechecking the RX_STATUS register directly. This test could |
| 1302 | * result in unnecessary looping in cases where there is a new |
| 1303 | * packet but the fifo is not full, but it will not fix the |
| 1304 | * stuck behavior. |
| 1305 | * |
| 1306 | * Even with this improvement, we still get packet overrun errors |
| 1307 | * which are hurting performance. Maybe when I get some more time |
| 1308 | * I'll modify epread() so that it can handle RX_EARLY interrupts. |
| 1309 | */ |
| 1310 | if (epstatus(sc)) { |
| 1311 | len = bus_space_read_2(iot, ioh,((iot)->read_2((ioh), (ep_w1_reg(sc, 0x08)))) |
| 1312 | ep_w1_reg(sc, EP_W1_RX_STATUS))((iot)->read_2((ioh), (ep_w1_reg(sc, 0x08)))); |
| 1313 | /* Check if we are stuck and reset [see XXX comment] */ |
| 1314 | if (len & ERR_INCOMPLETE(u_short) (0x8000)) { |
| 1315 | #ifdef EP_DEBUG |
| 1316 | if (ifp->if_flags & IFF_DEBUG0x4) |
| 1317 | printf("%s: adapter reset\n", |
| 1318 | sc->sc_dev.dv_xname); |
| 1319 | #endif |
| 1320 | epreset(sc); |
| 1321 | goto done; |
| 1322 | } |
| 1323 | goto again; |
| 1324 | } |
| 1325 | done: |
| 1326 | if (error) |
| 1327 | ep_discard_rxtop(iot, ioh); |
| 1328 | if_input(ifp, &ml); |
| 1329 | } |
| 1330 | |
| 1331 | struct mbuf * |
| 1332 | epget(struct ep_softc *sc, int totlen) |
| 1333 | { |
| 1334 | bus_space_tag_t iot = sc->sc_iot; |
| 1335 | bus_space_handle_t ioh = sc->sc_ioh; |
| 1336 | struct mbuf *m; |
| 1337 | caddr_t data; |
| 1338 | int len, pad, off, sh, rxreg; |
| 1339 | |
| 1340 | splassert(IPL_NET)do { if (splassert_ctl > 0) { splassert_check(0x4, __func__ ); } } while (0); |
| 1341 | |
| 1342 | m = sc->mb[sc->next_mb]; |
| 1343 | sc->mb[sc->next_mb] = NULL((void *)0); |
| 1344 | if (m == NULL((void *)0)) { |
| 1345 | m = MCLGETL(NULL, M_DONTWAIT, MCLBYTES)m_clget((((void *)0)), (0x0002), ((1 << 11))); |
| 1346 | /* If the queue is no longer full, refill. */ |
| 1347 | if (!timeout_pending(&sc->sc_epmbuffill_tmo)((&sc->sc_epmbuffill_tmo)->to_flags & 0x02)) |
| 1348 | timeout_add(&sc->sc_epmbuffill_tmo, 1); |
| 1349 | } |
| 1350 | if (!m) |
| 1351 | return (NULL((void *)0)); |
| 1352 | |
| 1353 | sc->next_mb = (sc->next_mb + 1) % MAX_MBS8; |
| 1354 | |
| 1355 | len = MCLBYTES(1 << 11); |
| 1356 | m->m_pkthdrM_dat.MH.MH_pkthdr.len = totlen; |
| 1357 | m->m_lenm_hdr.mh_len = totlen; |
| 1358 | pad = ALIGN(sizeof(struct ether_header))(((unsigned long)(sizeof(struct ether_header)) + (sizeof(long ) - 1)) &~(sizeof(long) - 1)) - sizeof(struct ether_header); |
| 1359 | m->m_datam_hdr.mh_data += pad; |
| 1360 | len -= pad; |
Value stored to 'len' is never read | |
| 1361 | |
| 1362 | /* |
| 1363 | * We read the packet at splhigh() so that an interrupt from another |
| 1364 | * device doesn't cause the card's buffer to overflow while we're |
| 1365 | * reading it. We may still lose packets at other times. |
| 1366 | */ |
| 1367 | sh = splhigh()splraise(0xd); |
| 1368 | |
| 1369 | rxreg = ep_w1_reg(sc, EP_W1_RX_PIO_RD_10x00); |
| 1370 | |
| 1371 | off = 0; |
| 1372 | while (totlen) { |
| 1373 | len = min(totlen, m_trailingspace(m)); |
| 1374 | if (len == 0) |
| 1375 | panic("ep_get: packet does not fit in MCLBYTES"); |
| 1376 | |
| 1377 | data = mtod(m, u_int8_t *)((u_int8_t *)((m)->m_hdr.mh_data)); |
| 1378 | if (EP_IS_BUS_32(sc->bustype)((sc->bustype) & 0x2)) |
| 1379 | pad = 4 - ((u_long)(data + off) & 0x3); |
| 1380 | else |
| 1381 | pad = (u_long)(data + off) & 0x1; |
| 1382 | |
| 1383 | if (pad) { |
| 1384 | if (pad < len) |
| 1385 | pad = len; |
| 1386 | bus_space_read_multi_1(iot, ioh, rxreg,((iot)->read_multi_1((ioh), (rxreg), (data + off), (pad))) |
| 1387 | data + off, pad)((iot)->read_multi_1((ioh), (rxreg), (data + off), (pad))); |
| 1388 | len = pad; |
| 1389 | } else if (EP_IS_BUS_32(sc->bustype)((sc->bustype) & 0x2) && len > 3 && |
| 1390 | ALIGNED_POINTER(data, uint32_t)1) { |
| 1391 | len &= ~3; |
| 1392 | bus_space_read_raw_multi_4(iot, ioh, rxreg,((iot)->read_multi_4((ioh), (rxreg), (u_int32_t *)(data + off ), (len) >> 2)) |
| 1393 | data + off, len)((iot)->read_multi_4((ioh), (rxreg), (u_int32_t *)(data + off ), (len) >> 2)); |
| 1394 | } else if (len > 1 && ALIGNED_POINTER(data, uint16_t)1) { |
| 1395 | len &= ~1; |
| 1396 | bus_space_read_raw_multi_2(iot, ioh, rxreg,((iot)->read_multi_2((ioh), (rxreg), (u_int16_t *)(data + off ), (len) >> 1)) |
| 1397 | data + off, len)((iot)->read_multi_2((ioh), (rxreg), (u_int16_t *)(data + off ), (len) >> 1)); |
| 1398 | } else |
| 1399 | bus_space_read_multi_1(iot, ioh, rxreg,((iot)->read_multi_1((ioh), (rxreg), (data + off), (len))) |
| 1400 | data + off, len)((iot)->read_multi_1((ioh), (rxreg), (data + off), (len))); |
| 1401 | |
| 1402 | off += len; |
| 1403 | totlen -= len; |
| 1404 | } |
| 1405 | |
| 1406 | ep_discard_rxtop(iot, ioh); |
| 1407 | |
| 1408 | splx(sh)spllower(sh); |
| 1409 | |
| 1410 | return m; |
| 1411 | } |
| 1412 | |
| 1413 | int |
| 1414 | epioctl(struct ifnet *ifp, u_long cmd, caddr_t data) |
| 1415 | { |
| 1416 | struct ep_softc *sc = ifp->if_softc; |
| 1417 | struct ifreq *ifr = (struct ifreq *)data; |
| 1418 | int s, error = 0; |
| 1419 | |
| 1420 | s = splnet()splraise(0x4); |
| 1421 | |
| 1422 | switch (cmd) { |
| 1423 | case SIOCSIFADDR((unsigned long)0x80000000 | ((sizeof(struct ifreq) & 0x1fff ) << 16) | ((('i')) << 8) | ((12))): |
| 1424 | ifp->if_flags |= IFF_UP0x1; |
| 1425 | if (!(ifp->if_flags & IFF_RUNNING0x40)) |
| 1426 | epinit(sc); |
| 1427 | break; |
| 1428 | |
| 1429 | case SIOCSIFFLAGS((unsigned long)0x80000000 | ((sizeof(struct ifreq) & 0x1fff ) << 16) | ((('i')) << 8) | ((16))): |
| 1430 | if (ifp->if_flags & IFF_UP0x1) { |
| 1431 | if (ifp->if_flags & IFF_RUNNING0x40) |
| 1432 | error = ENETRESET52; |
| 1433 | else |
| 1434 | epinit(sc); |
| 1435 | } else { |
| 1436 | if (ifp->if_flags & IFF_RUNNING0x40) |
| 1437 | epstop(sc); |
| 1438 | } |
| 1439 | break; |
| 1440 | |
| 1441 | case SIOCSIFMEDIA(((unsigned long)0x80000000|(unsigned long)0x40000000) | ((sizeof (struct ifreq) & 0x1fff) << 16) | ((('i')) << 8) | ((55))): |
| 1442 | case SIOCGIFMEDIA(((unsigned long)0x80000000|(unsigned long)0x40000000) | ((sizeof (struct ifmediareq) & 0x1fff) << 16) | ((('i')) << 8) | ((56))): |
| 1443 | error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd); |
| 1444 | break; |
| 1445 | |
| 1446 | default: |
| 1447 | error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data); |
| 1448 | } |
| 1449 | |
| 1450 | if (error == ENETRESET52) { |
| 1451 | if (ifp->if_flags & IFF_RUNNING0x40) |
| 1452 | epreset(sc); |
| 1453 | error = 0; |
| 1454 | } |
| 1455 | |
| 1456 | splx(s)spllower(s); |
| 1457 | return (error); |
| 1458 | } |
| 1459 | |
| 1460 | void |
| 1461 | epreset(struct ep_softc *sc) |
| 1462 | { |
| 1463 | int s; |
| 1464 | |
| 1465 | s = splnet()splraise(0x4); |
| 1466 | epinit(sc); |
| 1467 | splx(s)spllower(s); |
| 1468 | } |
| 1469 | |
| 1470 | void |
| 1471 | epwatchdog(struct ifnet *ifp) |
| 1472 | { |
| 1473 | struct ep_softc *sc = ifp->if_softc; |
| 1474 | |
| 1475 | log(LOG_ERR3, "%s: device timeout\n", sc->sc_dev.dv_xname); |
| 1476 | ++sc->sc_arpcom.ac_if.if_oerrorsif_data.ifi_oerrors; |
| 1477 | |
| 1478 | epreset(sc); |
| 1479 | } |
| 1480 | |
| 1481 | void |
| 1482 | epstop(struct ep_softc *sc) |
| 1483 | { |
| 1484 | struct ifnet *ifp = &sc->sc_arpcom.ac_if; |
| 1485 | bus_space_tag_t iot = sc->sc_iot; |
| 1486 | bus_space_handle_t ioh = sc->sc_ioh; |
| 1487 | |
| 1488 | ifp->if_flags &= ~IFF_RUNNING0x40; |
| 1489 | ifq_clr_oactive(&ifp->if_snd); |
| 1490 | |
| 1491 | if (sc->ep_flags & EP_FLAGS_MII0x4000) { |
| 1492 | mii_down(&sc->sc_mii); |
| 1493 | } |
| 1494 | |
| 1495 | if (sc->ep_chipset == EP_CHIPSET_ROADRUNNER0x05) { |
| 1496 | /* Clear the FIFO buffer count, thus halting |
| 1497 | * any currently-running transactions. |
| 1498 | */ |
| 1499 | GO_WINDOW(1)((sc->sc_iot)->write_2((sc->sc_ioh), (0x0e), ((u_short ) (0x1<<11)|1))); /* sanity */ |
| 1500 | bus_space_write_2(iot, ioh, EP_W1_RUNNER_WRCTL, 0)((iot)->write_2((ioh), (0x1c), (0))); |
| 1501 | bus_space_write_2(iot, ioh, EP_W1_RUNNER_RDCTL, 0)((iot)->write_2((ioh), (0x16), (0))); |
| 1502 | } |
| 1503 | |
| 1504 | bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISABLE)((iot)->write_2((ioh), (0x0e), ((u_short) (0x3<<11)) )); |
| 1505 | ep_discard_rxtop(iot, ioh); |
| 1506 | |
| 1507 | bus_space_write_2(iot, ioh, EP_COMMAND, TX_DISABLE)((iot)->write_2((ioh), (0x0e), ((u_short) (0xa<<11)) )); |
| 1508 | bus_space_write_2(iot, ioh, EP_COMMAND, STOP_TRANSCEIVER)((iot)->write_2((ioh), (0x0e), ((u_short) (0x17<<11) ))); |
| 1509 | |
| 1510 | ep_reset_cmd(sc, EP_COMMAND0x0e, RX_RESET(u_short) (0x5<<11)); |
| 1511 | ep_reset_cmd(sc, EP_COMMAND0x0e, TX_RESET(u_short) (0xb<<11)); |
| 1512 | |
| 1513 | bus_space_write_2(iot, ioh, EP_COMMAND, C_INTR_LATCH)((iot)->write_2((ioh), (0x0e), ((u_short) ((u_short) (0x6800 )|0x01)))); |
| 1514 | bus_space_write_2(iot, ioh, EP_COMMAND, SET_RD_0_MASK)((iot)->write_2((ioh), (0x0e), ((u_short) (0x0f<<11) ))); |
| 1515 | bus_space_write_2(iot, ioh, EP_COMMAND, SET_INTR_MASK)((iot)->write_2((ioh), (0x0e), ((u_short) (0x0e<<11) ))); |
| 1516 | bus_space_write_2(iot, ioh, EP_COMMAND, SET_RX_FILTER)((iot)->write_2((ioh), (0x0e), ((u_short) (0x10<<11) ))); |
| 1517 | |
| 1518 | epmbufempty(sc); |
| 1519 | } |
| 1520 | |
| 1521 | /* |
| 1522 | * We get eeprom data from the id_port given an offset into the |
| 1523 | * eeprom. Basically; after the ID_sequence is sent to all of |
| 1524 | * the cards; they enter the ID_CMD state where they will accept |
| 1525 | * command requests. 0x80-0xbf loads the eeprom data. We then |
| 1526 | * read the port 16 times and with every read; the cards check |
| 1527 | * for contention (ie: if one card writes a 0 bit and another |
| 1528 | * writes a 1 bit then the host sees a 0. At the end of the cycle; |
| 1529 | * each card compares the data on the bus; if there is a difference |
| 1530 | * then that card goes into ID_WAIT state again). In the meantime; |
| 1531 | * one bit of data is returned in the AX register which is conveniently |
| 1532 | * returned to us by bus_space_read_1(). Hence; we read 16 times getting one |
| 1533 | * bit of data with each read. |
| 1534 | * |
| 1535 | * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT! |
| 1536 | */ |
| 1537 | u_int16_t |
| 1538 | epreadeeprom(bus_space_tag_t iot, bus_space_handle_t ioh, int offset) |
| 1539 | { |
| 1540 | u_int16_t data = 0; |
| 1541 | int i; |
| 1542 | |
| 1543 | bus_space_write_1(iot, ioh, 0, 0x80 + offset)((iot)->write_1((ioh), (0), (0x80 + offset))); |
| 1544 | delay(1000)(*delay_func)(1000); |
| 1545 | for (i = 0; i < 16; i++) |
| 1546 | data = (data << 1) | (bus_space_read_2(iot, ioh, 0)((iot)->read_2((ioh), (0))) & 1); |
| 1547 | return (data); |
| 1548 | } |
| 1549 | |
| 1550 | int |
| 1551 | epbusyeeprom(struct ep_softc *sc) |
| 1552 | { |
| 1553 | bus_space_tag_t iot = sc->sc_iot; |
| 1554 | bus_space_handle_t ioh = sc->sc_ioh; |
| 1555 | int i = 100, j; |
| 1556 | |
| 1557 | while (i--) { |
| 1558 | j = bus_space_read_2(iot, ioh, EP_W0_EEPROM_COMMAND)((iot)->read_2((ioh), (0x0a))); |
| 1559 | if (j & EEPROM_BUSY(1<<15)) |
| 1560 | delay(100)(*delay_func)(100); |
| 1561 | else |
| 1562 | break; |
| 1563 | } |
| 1564 | if (!i) { |
| 1565 | printf("\n%s: eeprom failed to come ready\n", |
| 1566 | sc->sc_dev.dv_xname); |
| 1567 | return (1); |
| 1568 | } |
| 1569 | if (sc->bustype != EP_BUS_PCMCIA0x1 && sc->bustype != EP_BUS_PCI0x3 && |
| 1570 | (j & EEPROM_TST_MODE(1<<14))) { |
| 1571 | printf("\n%s: erase pencil mark, or disable PnP mode!\n", |
| 1572 | sc->sc_dev.dv_xname); |
| 1573 | return (1); |
| 1574 | } |
| 1575 | return (0); |
| 1576 | } |
| 1577 | |
| 1578 | u_int16_t |
| 1579 | ep_read_eeprom(struct ep_softc *sc, u_int16_t offset) |
| 1580 | { |
| 1581 | u_int16_t readcmd; |
| 1582 | |
| 1583 | /* |
| 1584 | * RoadRunner has a larger EEPROM, so a different read command |
| 1585 | * is required. |
| 1586 | */ |
| 1587 | if (sc->ep_chipset == EP_CHIPSET_ROADRUNNER0x05) |
| 1588 | readcmd = READ_EEPROM_RR0x200; |
| 1589 | else |
| 1590 | readcmd = READ_EEPROM(1<<7); |
| 1591 | |
| 1592 | if (epbusyeeprom(sc)) |
| 1593 | return (0); /* XXX why is eeprom busy? */ |
| 1594 | bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_W0_EEPROM_COMMAND,((sc->sc_iot)->write_2((sc->sc_ioh), (0x0a), (readcmd | offset))) |
| 1595 | readcmd | offset)((sc->sc_iot)->write_2((sc->sc_ioh), (0x0a), (readcmd | offset))); |
| 1596 | if (epbusyeeprom(sc)) |
| 1597 | return (0); /* XXX why is eeprom busy? */ |
| 1598 | |
| 1599 | return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, EP_W0_EEPROM_DATA)((sc->sc_iot)->read_2((sc->sc_ioh), (0x0c)))); |
| 1600 | } |
| 1601 | |
| 1602 | void |
| 1603 | epmbuffill(void *v) |
| 1604 | { |
| 1605 | struct ep_softc *sc = v; |
| 1606 | int s, i; |
| 1607 | |
| 1608 | s = splnet()splraise(0x4); |
| 1609 | for (i = 0; i < MAX_MBS8; i++) { |
| 1610 | if (sc->mb[i] == NULL((void *)0)) { |
| 1611 | sc->mb[i] = MCLGETL(NULL, M_DONTWAIT, MCLBYTES)m_clget((((void *)0)), (0x0002), ((1 << 11))); |
| 1612 | if (sc->mb[i] == NULL((void *)0)) |
| 1613 | break; |
| 1614 | } |
| 1615 | } |
| 1616 | /* If the queue was not filled, try again. */ |
| 1617 | if (i < MAX_MBS8) |
| 1618 | timeout_add(&sc->sc_epmbuffill_tmo, 1); |
| 1619 | splx(s)spllower(s); |
| 1620 | } |
| 1621 | |
| 1622 | void |
| 1623 | epmbufempty(struct ep_softc *sc) |
| 1624 | { |
| 1625 | int s, i; |
| 1626 | |
| 1627 | s = splnet()splraise(0x4); |
| 1628 | for (i = 0; i<MAX_MBS8; i++) { |
| 1629 | if (sc->mb[i]) { |
| 1630 | m_freem(sc->mb[i]); |
| 1631 | sc->mb[i] = NULL((void *)0); |
| 1632 | } |
| 1633 | } |
| 1634 | sc->next_mb = 0; |
| 1635 | timeout_del(&sc->sc_epmbuffill_tmo); |
| 1636 | splx(s)spllower(s); |
| 1637 | } |
| 1638 | |
| 1639 | void |
| 1640 | ep_mii_setbit(struct ep_softc *sc, u_int16_t bit) |
| 1641 | { |
| 1642 | u_int16_t val; |
| 1643 | |
| 1644 | /* We assume we're already in Window 4 */ |
| 1645 | val = bus_space_read_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT)((sc->sc_iot)->read_2((sc->sc_ioh), (0x08))); |
| 1646 | bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT,((sc->sc_iot)->write_2((sc->sc_ioh), (0x08), (val | bit ))) |
| 1647 | val | bit)((sc->sc_iot)->write_2((sc->sc_ioh), (0x08), (val | bit ))); |
| 1648 | } |
| 1649 | |
| 1650 | void |
| 1651 | ep_mii_clrbit(struct ep_softc *sc, u_int16_t bit) |
| 1652 | { |
| 1653 | u_int16_t val; |
| 1654 | |
| 1655 | /* We assume we're already in Window 4 */ |
| 1656 | val = bus_space_read_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT)((sc->sc_iot)->read_2((sc->sc_ioh), (0x08))); |
| 1657 | bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT,((sc->sc_iot)->write_2((sc->sc_ioh), (0x08), (val & ~bit))) |
| 1658 | val & ~bit)((sc->sc_iot)->write_2((sc->sc_ioh), (0x08), (val & ~bit))); |
| 1659 | } |
| 1660 | |
| 1661 | u_int16_t |
| 1662 | ep_mii_readbit(struct ep_softc *sc, u_int16_t bit) |
| 1663 | { |
| 1664 | |
| 1665 | /* We assume we're already in Window 4 */ |
| 1666 | return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT)((sc->sc_iot)->read_2((sc->sc_ioh), (0x08))) & |
| 1667 | bit); |
| 1668 | } |
| 1669 | |
| 1670 | void |
| 1671 | ep_mii_sync(struct ep_softc *sc) |
| 1672 | { |
| 1673 | int i; |
| 1674 | |
| 1675 | /* We assume we're already in Window 4 */ |
| 1676 | ep_mii_clrbit(sc, PHYSMGMT_DIR0x0004); |
| 1677 | for (i = 0; i < 32; i++) { |
| 1678 | ep_mii_clrbit(sc, PHYSMGMT_CLK0x0001); |
| 1679 | ep_mii_setbit(sc, PHYSMGMT_CLK0x0001); |
| 1680 | } |
| 1681 | } |
| 1682 | |
| 1683 | void |
| 1684 | ep_mii_sendbits(struct ep_softc *sc, u_int32_t data, int nbits) |
| 1685 | { |
| 1686 | int i; |
| 1687 | |
| 1688 | /* We assume we're already in Window 4 */ |
| 1689 | ep_mii_setbit(sc, PHYSMGMT_DIR0x0004); |
| 1690 | for (i = 1 << (nbits - 1); i; i = i >> 1) { |
| 1691 | ep_mii_clrbit(sc, PHYSMGMT_CLK0x0001); |
| 1692 | ep_mii_readbit(sc, PHYSMGMT_CLK0x0001); |
| 1693 | if (data & i) |
| 1694 | ep_mii_setbit(sc, PHYSMGMT_DATA0x0002); |
| 1695 | else |
| 1696 | ep_mii_clrbit(sc, PHYSMGMT_DATA0x0002); |
| 1697 | ep_mii_setbit(sc, PHYSMGMT_CLK0x0001); |
| 1698 | ep_mii_readbit(sc, PHYSMGMT_CLK0x0001); |
| 1699 | } |
| 1700 | } |
| 1701 | |
| 1702 | int |
| 1703 | ep_mii_readreg(struct device *self, int phy, int reg) |
| 1704 | { |
| 1705 | struct ep_softc *sc = (struct ep_softc *)self; |
| 1706 | int val = 0, i, err; |
| 1707 | |
| 1708 | /* |
| 1709 | * Read the PHY register by manually driving the MII control lines. |
| 1710 | */ |
| 1711 | |
| 1712 | GO_WINDOW(4)((sc->sc_iot)->write_2((sc->sc_ioh), (0x0e), ((u_short ) (0x1<<11)|4))); |
| 1713 | |
| 1714 | bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT, 0)((sc->sc_iot)->write_2((sc->sc_ioh), (0x08), (0))); |
| 1715 | |
| 1716 | ep_mii_sync(sc); |
| 1717 | ep_mii_sendbits(sc, MII_COMMAND_START0x01, 2); |
| 1718 | ep_mii_sendbits(sc, MII_COMMAND_READ0x02, 2); |
| 1719 | ep_mii_sendbits(sc, phy, 5); |
| 1720 | ep_mii_sendbits(sc, reg, 5); |
| 1721 | |
| 1722 | ep_mii_clrbit(sc, PHYSMGMT_DIR0x0004); |
| 1723 | ep_mii_clrbit(sc, PHYSMGMT_CLK0x0001); |
| 1724 | ep_mii_setbit(sc, PHYSMGMT_CLK0x0001); |
| 1725 | ep_mii_clrbit(sc, PHYSMGMT_CLK0x0001); |
| 1726 | |
| 1727 | err = ep_mii_readbit(sc, PHYSMGMT_DATA0x0002); |
| 1728 | ep_mii_setbit(sc, PHYSMGMT_CLK0x0001); |
| 1729 | |
| 1730 | /* Even if an error occurs, must still clock out the cycle. */ |
| 1731 | for (i = 0; i < 16; i++) { |
| 1732 | val <<= 1; |
| 1733 | ep_mii_clrbit(sc, PHYSMGMT_CLK0x0001); |
| 1734 | if (err == 0 && ep_mii_readbit(sc, PHYSMGMT_DATA0x0002)) |
| 1735 | val |= 1; |
| 1736 | ep_mii_setbit(sc, PHYSMGMT_CLK0x0001); |
| 1737 | } |
| 1738 | ep_mii_clrbit(sc, PHYSMGMT_CLK0x0001); |
| 1739 | ep_mii_setbit(sc, PHYSMGMT_CLK0x0001); |
| 1740 | |
| 1741 | GO_WINDOW(1)((sc->sc_iot)->write_2((sc->sc_ioh), (0x0e), ((u_short ) (0x1<<11)|1))); /* back to operating window */ |
| 1742 | |
| 1743 | return (err ? 0 : val); |
| 1744 | } |
| 1745 | |
| 1746 | void |
| 1747 | ep_mii_writereg(struct device *self, int phy, int reg, int val) |
| 1748 | { |
| 1749 | struct ep_softc *sc = (struct ep_softc *)self; |
| 1750 | |
| 1751 | /* |
| 1752 | * Write the PHY register by manually driving the MII control lines. |
| 1753 | */ |
| 1754 | |
| 1755 | GO_WINDOW(4)((sc->sc_iot)->write_2((sc->sc_ioh), (0x0e), ((u_short ) (0x1<<11)|4))); |
| 1756 | |
| 1757 | ep_mii_sync(sc); |
| 1758 | ep_mii_sendbits(sc, MII_COMMAND_START0x01, 2); |
| 1759 | ep_mii_sendbits(sc, MII_COMMAND_WRITE0x01, 2); |
| 1760 | ep_mii_sendbits(sc, phy, 5); |
| 1761 | ep_mii_sendbits(sc, reg, 5); |
| 1762 | ep_mii_sendbits(sc, MII_COMMAND_ACK0x02, 2); |
| 1763 | ep_mii_sendbits(sc, val, 16); |
| 1764 | |
| 1765 | ep_mii_clrbit(sc, PHYSMGMT_CLK0x0001); |
| 1766 | ep_mii_setbit(sc, PHYSMGMT_CLK0x0001); |
| 1767 | |
| 1768 | GO_WINDOW(1)((sc->sc_iot)->write_2((sc->sc_ioh), (0x0e), ((u_short ) (0x1<<11)|1))); /* back to operating window */ |
| 1769 | } |
| 1770 | |
| 1771 | void |
| 1772 | ep_statchg(struct device *self) |
| 1773 | { |
| 1774 | struct ep_softc *sc = (struct ep_softc *)self; |
| 1775 | bus_space_tag_t iot = sc->sc_iot; |
| 1776 | bus_space_handle_t ioh = sc->sc_ioh; |
| 1777 | int mctl; |
| 1778 | |
| 1779 | /* XXX Update ifp->if_baudrate */ |
| 1780 | |
| 1781 | GO_WINDOW(3)((sc->sc_iot)->write_2((sc->sc_ioh), (0x0e), ((u_short ) (0x1<<11)|3))); |
| 1782 | mctl = bus_space_read_2(iot, ioh, EP_W3_MAC_CONTROL)((iot)->read_2((ioh), (0x06))); |
| 1783 | if (sc->sc_mii.mii_media_active & IFM_FDX0x0000010000000000ULL) |
| 1784 | mctl |= MAC_CONTROL_FDX0x20; |
| 1785 | else |
| 1786 | mctl &= ~MAC_CONTROL_FDX0x20; |
| 1787 | bus_space_write_2(iot, ioh, EP_W3_MAC_CONTROL, mctl)((iot)->write_2((ioh), (0x06), (mctl))); |
| 1788 | GO_WINDOW(1)((sc->sc_iot)->write_2((sc->sc_ioh), (0x0e), ((u_short ) (0x1<<11)|1))); /* back to operating window */ |
| 1789 | } |