| File: | dev/pci/drm/amd/pm/powerplay/smumgr/ci_smumgr.c |
| Warning: | line 211, column 24 Value stored to 'adev' during its initialization is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* |
| 2 | * Copyright 2017 Advanced Micro Devices, Inc. |
| 3 | * |
| 4 | * Permission is hereby granted, free of charge, to any person obtaining a |
| 5 | * copy of this software and associated documentation files (the "Software"), |
| 6 | * to deal in the Software without restriction, including without limitation |
| 7 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| 8 | * and/or sell copies of the Software, and to permit persons to whom the |
| 9 | * Software is furnished to do so, subject to the following conditions: |
| 10 | * |
| 11 | * The above copyright notice and this permission notice shall be included in |
| 12 | * all copies or substantial portions of the Software. |
| 13 | * |
| 14 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 15 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 16 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| 17 | * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| 18 | * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| 19 | * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| 20 | * OTHER DEALINGS IN THE SOFTWARE. |
| 21 | * |
| 22 | */ |
| 23 | #include <linux/module.h> |
| 24 | #include <linux/slab.h> |
| 25 | #include <linux/fb.h> |
| 26 | #include "linux/delay.h" |
| 27 | #include <linux/types.h> |
| 28 | #include <linux/pci.h> |
| 29 | |
| 30 | #include "smumgr.h" |
| 31 | #include "pp_debug.h" |
| 32 | #include "ci_smumgr.h" |
| 33 | #include "ppsmc.h" |
| 34 | #include "smu7_hwmgr.h" |
| 35 | #include "hardwaremanager.h" |
| 36 | #include "ppatomctrl.h" |
| 37 | #include "cgs_common.h" |
| 38 | #include "atombios.h" |
| 39 | #include "pppcielanes.h" |
| 40 | #include "smu7_smumgr.h" |
| 41 | |
| 42 | #include "smu/smu_7_0_1_d.h" |
| 43 | #include "smu/smu_7_0_1_sh_mask.h" |
| 44 | |
| 45 | #include "dce/dce_8_0_d.h" |
| 46 | #include "dce/dce_8_0_sh_mask.h" |
| 47 | |
| 48 | #include "bif/bif_4_1_d.h" |
| 49 | #include "bif/bif_4_1_sh_mask.h" |
| 50 | |
| 51 | #include "gca/gfx_7_2_d.h" |
| 52 | #include "gca/gfx_7_2_sh_mask.h" |
| 53 | |
| 54 | #include "gmc/gmc_7_1_d.h" |
| 55 | #include "gmc/gmc_7_1_sh_mask.h" |
| 56 | |
| 57 | #include "processpptables.h" |
| 58 | |
| 59 | #define MC_CG_ARB_FREQ_F00x0a 0x0a |
| 60 | #define MC_CG_ARB_FREQ_F10x0b 0x0b |
| 61 | #define MC_CG_ARB_FREQ_F20x0c 0x0c |
| 62 | #define MC_CG_ARB_FREQ_F30x0d 0x0d |
| 63 | |
| 64 | #define SMC_RAM_END0x40000 0x40000 |
| 65 | |
| 66 | #define CISLAND_MINIMUM_ENGINE_CLOCK800 800 |
| 67 | #define CISLAND_MAX_DEEPSLEEP_DIVIDER_ID5 5 |
| 68 | |
| 69 | static const struct ci_pt_defaults defaults_hawaii_xt = { |
| 70 | 1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0xB0000, |
| 71 | { 0x2E, 0x00, 0x00, 0x88, 0x00, 0x00, 0x72, 0x60, 0x51, 0xA7, 0x79, 0x6B, 0x90, 0xBD, 0x79 }, |
| 72 | { 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 } |
| 73 | }; |
| 74 | |
| 75 | static const struct ci_pt_defaults defaults_hawaii_pro = { |
| 76 | 1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0x65062, |
| 77 | { 0x2E, 0x00, 0x00, 0x88, 0x00, 0x00, 0x72, 0x60, 0x51, 0xA7, 0x79, 0x6B, 0x90, 0xBD, 0x79 }, |
| 78 | { 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 } |
| 79 | }; |
| 80 | |
| 81 | static const struct ci_pt_defaults defaults_bonaire_xt = { |
| 82 | 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000, |
| 83 | { 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61 }, |
| 84 | { 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 } |
| 85 | }; |
| 86 | |
| 87 | |
| 88 | static const struct ci_pt_defaults defaults_saturn_xt = { |
| 89 | 1, 0xF, 0xFD, 0x19, 5, 55, 0, 0x70000, |
| 90 | { 0x8C, 0x247, 0x249, 0xA6, 0x80, 0x81, 0x8B, 0x89, 0x86, 0xC9, 0xCA, 0xC9, 0x4D, 0x4D, 0x4D }, |
| 91 | { 0x187, 0x187, 0x187, 0x1C7, 0x1C7, 0x1C7, 0x210, 0x210, 0x210, 0x266, 0x266, 0x266, 0x2C9, 0x2C9, 0x2C9 } |
| 92 | }; |
| 93 | |
| 94 | |
| 95 | static int ci_set_smc_sram_address(struct pp_hwmgr *hwmgr, |
| 96 | uint32_t smc_addr, uint32_t limit) |
| 97 | { |
| 98 | if ((0 != (3 & smc_addr)) |
| 99 | || ((smc_addr + 3) >= limit)) { |
| 100 | pr_err("smc_addr invalid \n")printk("\0013" "amdgpu: [powerplay] " "smc_addr invalid \n"); |
| 101 | return -EINVAL22; |
| 102 | } |
| 103 | |
| 104 | cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, smc_addr)(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0x80,smc_addr)); |
| 105 | PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0)(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0x90,((((((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0x90))) & ~0x1 ) | (0x1 & ((0) << 0x0))))); |
| 106 | return 0; |
| 107 | } |
| 108 | |
| 109 | static int ci_copy_bytes_to_smc(struct pp_hwmgr *hwmgr, uint32_t smc_start_address, |
| 110 | const uint8_t *src, uint32_t byte_count, uint32_t limit) |
| 111 | { |
| 112 | int result; |
| 113 | uint32_t data = 0; |
| 114 | uint32_t original_data; |
| 115 | uint32_t addr = 0; |
| 116 | uint32_t extra_shift; |
| 117 | |
| 118 | if ((3 & smc_start_address) |
| 119 | || ((smc_start_address + byte_count) >= limit)) { |
| 120 | pr_err("smc_start_address invalid \n")printk("\0013" "amdgpu: [powerplay] " "smc_start_address invalid \n" ); |
| 121 | return -EINVAL22; |
| 122 | } |
| 123 | |
| 124 | addr = smc_start_address; |
| 125 | |
| 126 | while (byte_count >= 4) { |
| 127 | /* Bytes are written into the SMC address space with the MSB first. */ |
| 128 | data = src[0] * 0x1000000 + src[1] * 0x10000 + src[2] * 0x100 + src[3]; |
| 129 | |
| 130 | result = ci_set_smc_sram_address(hwmgr, addr, limit); |
| 131 | |
| 132 | if (0 != result) |
| 133 | return result; |
| 134 | |
| 135 | cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data)(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0x81,data)); |
| 136 | |
| 137 | src += 4; |
| 138 | byte_count -= 4; |
| 139 | addr += 4; |
| 140 | } |
| 141 | |
| 142 | if (0 != byte_count) { |
| 143 | |
| 144 | data = 0; |
| 145 | |
| 146 | result = ci_set_smc_sram_address(hwmgr, addr, limit); |
| 147 | |
| 148 | if (0 != result) |
| 149 | return result; |
| 150 | |
| 151 | |
| 152 | original_data = cgs_read_register(hwmgr->device, mmSMC_IND_DATA_0)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0x81)); |
| 153 | |
| 154 | extra_shift = 8 * (4 - byte_count); |
| 155 | |
| 156 | while (byte_count > 0) { |
| 157 | /* Bytes are written into the SMC addres space with the MSB first. */ |
| 158 | data = (0x100 * data) + *src++; |
| 159 | byte_count--; |
| 160 | } |
| 161 | |
| 162 | data <<= extra_shift; |
| 163 | |
| 164 | data |= (original_data & ~((~0UL) << extra_shift)); |
| 165 | |
| 166 | result = ci_set_smc_sram_address(hwmgr, addr, limit); |
| 167 | |
| 168 | if (0 != result) |
| 169 | return result; |
| 170 | |
| 171 | cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data)(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0x81,data)); |
| 172 | } |
| 173 | |
| 174 | return 0; |
| 175 | } |
| 176 | |
| 177 | |
| 178 | static int ci_program_jump_on_start(struct pp_hwmgr *hwmgr) |
| 179 | { |
| 180 | static const unsigned char data[4] = { 0xE0, 0x00, 0x80, 0x40 }; |
| 181 | |
| 182 | ci_copy_bytes_to_smc(hwmgr, 0x0, data, 4, sizeof(data)+1); |
| 183 | |
| 184 | return 0; |
| 185 | } |
| 186 | |
| 187 | static bool_Bool ci_is_smc_ram_running(struct pp_hwmgr *hwmgr) |
| 188 | { |
| 189 | return ((0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000004))) & 0x1) >> 0x0) |
| 190 | CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable)((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000004))) & 0x1) >> 0x0)) |
| 191 | && (0x20100 <= cgs_read_ind_register(hwmgr->device,(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000370)) |
| 192 | CGS_IND_REG__SMC, ixSMC_PC_C)(((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000370)))); |
| 193 | } |
| 194 | |
| 195 | static int ci_read_smc_sram_dword(struct pp_hwmgr *hwmgr, uint32_t smc_addr, |
| 196 | uint32_t *value, uint32_t limit) |
| 197 | { |
| 198 | int result; |
| 199 | |
| 200 | result = ci_set_smc_sram_address(hwmgr, smc_addr, limit); |
| 201 | |
| 202 | if (result) |
| 203 | return result; |
| 204 | |
| 205 | *value = cgs_read_register(hwmgr->device, mmSMC_IND_DATA_0)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0x81)); |
| 206 | return 0; |
| 207 | } |
| 208 | |
| 209 | static int ci_send_msg_to_smc(struct pp_hwmgr *hwmgr, uint16_t msg) |
| 210 | { |
| 211 | struct amdgpu_device *adev = hwmgr->adev; |
Value stored to 'adev' during its initialization is never read | |
| 212 | int ret; |
| 213 | |
| 214 | cgs_write_register(hwmgr->device, mmSMC_RESP_0, 0)(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0x95,0)); |
| 215 | cgs_write_register(hwmgr->device, mmSMC_MESSAGE_0, msg)(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0x94,msg)); |
| 216 | |
| 217 | PHM_WAIT_FIELD_UNEQUAL(hwmgr, SMC_RESP_0, SMC_RESP, 0)phm_wait_for_register_unequal(hwmgr, 0x95, (0) << 0x0, 0xffff ); |
| 218 | |
| 219 | ret = PHM_READ_FIELD(hwmgr->device, SMC_RESP_0, SMC_RESP)((((((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0x95))) & 0xffff) >> 0x0); |
| 220 | |
| 221 | if (ret != 1) |
| 222 | dev_info(adev->dev,do { } while(0) |
| 223 | "failed to send message %x ret is %d\n", msg,ret)do { } while(0); |
| 224 | |
| 225 | return 0; |
| 226 | } |
| 227 | |
| 228 | static int ci_send_msg_to_smc_with_parameter(struct pp_hwmgr *hwmgr, |
| 229 | uint16_t msg, uint32_t parameter) |
| 230 | { |
| 231 | cgs_write_register(hwmgr->device, mmSMC_MSG_ARG_0, parameter)(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xa4,parameter)); |
| 232 | return ci_send_msg_to_smc(hwmgr, msg); |
| 233 | } |
| 234 | |
| 235 | static void ci_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr) |
| 236 | { |
| 237 | struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| 238 | struct amdgpu_device *adev = hwmgr->adev; |
| 239 | uint32_t dev_id; |
| 240 | |
| 241 | dev_id = adev->pdev->device; |
| 242 | |
| 243 | switch (dev_id) { |
| 244 | case 0x67BA: |
| 245 | case 0x67B1: |
| 246 | smu_data->power_tune_defaults = &defaults_hawaii_pro; |
| 247 | break; |
| 248 | case 0x67B8: |
| 249 | case 0x66B0: |
| 250 | smu_data->power_tune_defaults = &defaults_hawaii_xt; |
| 251 | break; |
| 252 | case 0x6640: |
| 253 | case 0x6641: |
| 254 | case 0x6646: |
| 255 | case 0x6647: |
| 256 | smu_data->power_tune_defaults = &defaults_saturn_xt; |
| 257 | break; |
| 258 | case 0x6649: |
| 259 | case 0x6650: |
| 260 | case 0x6651: |
| 261 | case 0x6658: |
| 262 | case 0x665C: |
| 263 | case 0x665D: |
| 264 | case 0x67A0: |
| 265 | case 0x67A1: |
| 266 | case 0x67A2: |
| 267 | case 0x67A8: |
| 268 | case 0x67A9: |
| 269 | case 0x67AA: |
| 270 | case 0x67B9: |
| 271 | case 0x67BE: |
| 272 | default: |
| 273 | smu_data->power_tune_defaults = &defaults_bonaire_xt; |
| 274 | break; |
| 275 | } |
| 276 | } |
| 277 | |
| 278 | static int ci_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr, |
| 279 | struct phm_clock_voltage_dependency_table *allowed_clock_voltage_table, |
| 280 | uint32_t clock, uint32_t *vol) |
| 281 | { |
| 282 | uint32_t i = 0; |
| 283 | |
| 284 | if (allowed_clock_voltage_table->count == 0) |
| 285 | return -EINVAL22; |
| 286 | |
| 287 | for (i = 0; i < allowed_clock_voltage_table->count; i++) { |
| 288 | if (allowed_clock_voltage_table->entries[i].clk >= clock) { |
| 289 | *vol = allowed_clock_voltage_table->entries[i].v; |
| 290 | return 0; |
| 291 | } |
| 292 | } |
| 293 | |
| 294 | *vol = allowed_clock_voltage_table->entries[i - 1].v; |
| 295 | return 0; |
| 296 | } |
| 297 | |
| 298 | static int ci_calculate_sclk_params(struct pp_hwmgr *hwmgr, |
| 299 | uint32_t clock, struct SMU7_Discrete_GraphicsLevel *sclk) |
| 300 | { |
| 301 | const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 302 | struct pp_atomctrl_clock_dividers_vi dividers; |
| 303 | uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; |
| 304 | uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; |
| 305 | uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; |
| 306 | uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; |
| 307 | uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; |
| 308 | uint32_t ref_clock; |
| 309 | uint32_t ref_divider; |
| 310 | uint32_t fbdiv; |
| 311 | int result; |
| 312 | |
| 313 | /* get the engine clock dividers for this clock value */ |
| 314 | result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock, ÷rs); |
| 315 | |
| 316 | PP_ASSERT_WITH_CODE(result == 0,do { if (!(result == 0)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Error retrieving Engine Clock dividers from VBIOS." ); return result; } } while (0) |
| 317 | "Error retrieving Engine Clock dividers from VBIOS.",do { if (!(result == 0)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Error retrieving Engine Clock dividers from VBIOS." ); return result; } } while (0) |
| 318 | return result)do { if (!(result == 0)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Error retrieving Engine Clock dividers from VBIOS." ); return result; } } while (0); |
| 319 | |
| 320 | /* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */ |
| 321 | ref_clock = atomctrl_get_reference_clock(hwmgr); |
| 322 | ref_divider = 1 + dividers.uc_pll_ref_div; |
| 323 | |
| 324 | /* low 14 bits is fraction and high 12 bits is divider */ |
| 325 | fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF; |
| 326 | |
| 327 | /* SPLL_FUNC_CNTL setup */ |
| 328 | spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,(((spll_func_cntl) & ~0x7e0) | (0x7e0 & ((dividers.uc_pll_ref_div ) << 0x5))) |
| 329 | SPLL_REF_DIV, dividers.uc_pll_ref_div)(((spll_func_cntl) & ~0x7e0) | (0x7e0 & ((dividers.uc_pll_ref_div ) << 0x5))); |
| 330 | spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,(((spll_func_cntl) & ~0x7f00000) | (0x7f00000 & ((dividers .uc_pll_post_div) << 0x14))) |
| 331 | SPLL_PDIV_A, dividers.uc_pll_post_div)(((spll_func_cntl) & ~0x7f00000) | (0x7f00000 & ((dividers .uc_pll_post_div) << 0x14))); |
| 332 | |
| 333 | /* SPLL_FUNC_CNTL_3 setup*/ |
| 334 | spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,(((spll_func_cntl_3) & ~0x3ffffff) | (0x3ffffff & ((fbdiv ) << 0x0))) |
| 335 | SPLL_FB_DIV, fbdiv)(((spll_func_cntl_3) & ~0x3ffffff) | (0x3ffffff & ((fbdiv ) << 0x0))); |
| 336 | |
| 337 | /* set to use fractional accumulation*/ |
| 338 | spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,(((spll_func_cntl_3) & ~0x10000000) | (0x10000000 & ( (1) << 0x1c))) |
| 339 | SPLL_DITHEN, 1)(((spll_func_cntl_3) & ~0x10000000) | (0x10000000 & ( (1) << 0x1c))); |
| 340 | |
| 341 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| 342 | PHM_PlatformCaps_EngineSpreadSpectrumSupport)) { |
| 343 | struct pp_atomctrl_internal_ss_info ss_info; |
| 344 | uint32_t vco_freq = clock * dividers.uc_pll_post_div; |
| 345 | |
| 346 | if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr, |
| 347 | vco_freq, &ss_info)) { |
| 348 | uint32_t clk_s = ref_clock * 5 / |
| 349 | (ref_divider * ss_info.speed_spectrum_rate); |
| 350 | uint32_t clk_v = 4 * ss_info.speed_spectrum_percentage * |
| 351 | fbdiv / (clk_s * 10000); |
| 352 | |
| 353 | cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,(((cg_spll_spread_spectrum) & ~0xfff0) | (0xfff0 & (( clk_s) << 0x4))) |
| 354 | CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s)(((cg_spll_spread_spectrum) & ~0xfff0) | (0xfff0 & (( clk_s) << 0x4))); |
| 355 | cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,(((cg_spll_spread_spectrum) & ~0x1) | (0x1 & ((1) << 0x0))) |
| 356 | CG_SPLL_SPREAD_SPECTRUM, SSEN, 1)(((cg_spll_spread_spectrum) & ~0x1) | (0x1 & ((1) << 0x0))); |
| 357 | cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,(((cg_spll_spread_spectrum_2) & ~0x3ffffff) | (0x3ffffff & ((clk_v) << 0x0))) |
| 358 | CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v)(((cg_spll_spread_spectrum_2) & ~0x3ffffff) | (0x3ffffff & ((clk_v) << 0x0))); |
| 359 | } |
| 360 | } |
| 361 | |
| 362 | sclk->SclkFrequency = clock; |
| 363 | sclk->CgSpllFuncCntl3 = spll_func_cntl_3; |
| 364 | sclk->CgSpllFuncCntl4 = spll_func_cntl_4; |
| 365 | sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum; |
| 366 | sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2; |
| 367 | sclk->SclkDid = (uint8_t)dividers.pll_post_divider; |
| 368 | |
| 369 | return 0; |
| 370 | } |
| 371 | |
| 372 | static void ci_populate_phase_value_based_on_sclk(struct pp_hwmgr *hwmgr, |
| 373 | const struct phm_phase_shedding_limits_table *pl, |
| 374 | uint32_t sclk, uint32_t *p_shed) |
| 375 | { |
| 376 | unsigned int i; |
| 377 | |
| 378 | /* use the minimum phase shedding */ |
| 379 | *p_shed = 1; |
| 380 | |
| 381 | for (i = 0; i < pl->count; i++) { |
| 382 | if (sclk < pl->entries[i].Sclk) { |
| 383 | *p_shed = i; |
| 384 | break; |
| 385 | } |
| 386 | } |
| 387 | } |
| 388 | |
| 389 | static uint8_t ci_get_sleep_divider_id_from_clock(uint32_t clock, |
| 390 | uint32_t clock_insr) |
| 391 | { |
| 392 | uint8_t i; |
| 393 | uint32_t temp; |
| 394 | uint32_t min = min_t(uint32_t, clock_insr, CISLAND_MINIMUM_ENGINE_CLOCK)({ uint32_t __min_a = (clock_insr); uint32_t __min_b = (800); __min_a < __min_b ? __min_a : __min_b; }); |
| 395 | |
| 396 | if (clock < min) { |
| 397 | pr_info("Engine clock can't satisfy stutter requirement!\n")do { } while(0); |
| 398 | return 0; |
| 399 | } |
| 400 | for (i = CISLAND_MAX_DEEPSLEEP_DIVIDER_ID5; ; i--) { |
| 401 | temp = clock >> i; |
| 402 | |
| 403 | if (temp >= min || i == 0) |
| 404 | break; |
| 405 | } |
| 406 | return i; |
| 407 | } |
| 408 | |
| 409 | static int ci_populate_single_graphic_level(struct pp_hwmgr *hwmgr, |
| 410 | uint32_t clock, struct SMU7_Discrete_GraphicsLevel *level) |
| 411 | { |
| 412 | int result; |
| 413 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 414 | |
| 415 | |
| 416 | result = ci_calculate_sclk_params(hwmgr, clock, level); |
| 417 | |
| 418 | /* populate graphics levels */ |
| 419 | result = ci_get_dependency_volt_by_clk(hwmgr, |
| 420 | hwmgr->dyn_state.vddc_dependency_on_sclk, clock, |
| 421 | (uint32_t *)(&level->MinVddc)); |
| 422 | if (result) { |
| 423 | pr_err("vdd_dep_on_sclk table is NULL\n")printk("\0013" "amdgpu: [powerplay] " "vdd_dep_on_sclk table is NULL\n" ); |
| 424 | return result; |
| 425 | } |
| 426 | |
| 427 | level->SclkFrequency = clock; |
| 428 | level->MinVddcPhases = 1; |
| 429 | |
| 430 | if (data->vddc_phase_shed_control) |
| 431 | ci_populate_phase_value_based_on_sclk(hwmgr, |
| 432 | hwmgr->dyn_state.vddc_phase_shed_limits_table, |
| 433 | clock, |
| 434 | &level->MinVddcPhases); |
| 435 | |
| 436 | level->ActivityLevel = data->current_profile_setting.sclk_activity; |
| 437 | level->CcPwrDynRm = 0; |
| 438 | level->CcPwrDynRm1 = 0; |
| 439 | level->EnabledForActivity = 0; |
| 440 | /* this level can be used for throttling.*/ |
| 441 | level->EnabledForThrottle = 1; |
| 442 | level->UpH = data->current_profile_setting.sclk_up_hyst; |
| 443 | level->DownH = data->current_profile_setting.sclk_down_hyst; |
| 444 | level->VoltageDownH = 0; |
| 445 | level->PowerThrottle = 0; |
| 446 | |
| 447 | |
| 448 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| 449 | PHM_PlatformCaps_SclkDeepSleep)) |
| 450 | level->DeepSleepDivId = |
| 451 | ci_get_sleep_divider_id_from_clock(clock, |
| 452 | CISLAND_MINIMUM_ENGINE_CLOCK800); |
| 453 | |
| 454 | /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/ |
| 455 | level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW0; |
| 456 | |
| 457 | if (0 == result) { |
| 458 | level->MinVddc = PP_HOST_TO_SMC_UL(level->MinVddc * VOLTAGE_SCALE)(__uint32_t)(__builtin_constant_p(level->MinVddc * 4) ? (__uint32_t )(((__uint32_t)(level->MinVddc * 4) & 0xff) << 24 | ((__uint32_t)(level->MinVddc * 4) & 0xff00) << 8 | ((__uint32_t)(level->MinVddc * 4) & 0xff0000) >> 8 | ((__uint32_t)(level->MinVddc * 4) & 0xff000000) >> 24) : __swap32md(level->MinVddc * 4)); |
| 459 | CONVERT_FROM_HOST_TO_SMC_UL(level->MinVddcPhases)((level->MinVddcPhases) = (__uint32_t)(__builtin_constant_p (level->MinVddcPhases) ? (__uint32_t)(((__uint32_t)(level-> MinVddcPhases) & 0xff) << 24 | ((__uint32_t)(level-> MinVddcPhases) & 0xff00) << 8 | ((__uint32_t)(level ->MinVddcPhases) & 0xff0000) >> 8 | ((__uint32_t )(level->MinVddcPhases) & 0xff000000) >> 24) : __swap32md (level->MinVddcPhases))); |
| 460 | CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency)((level->SclkFrequency) = (__uint32_t)(__builtin_constant_p (level->SclkFrequency) ? (__uint32_t)(((__uint32_t)(level-> SclkFrequency) & 0xff) << 24 | ((__uint32_t)(level-> SclkFrequency) & 0xff00) << 8 | ((__uint32_t)(level ->SclkFrequency) & 0xff0000) >> 8 | ((__uint32_t )(level->SclkFrequency) & 0xff000000) >> 24) : __swap32md (level->SclkFrequency))); |
| 461 | CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel)((level->ActivityLevel) = (__uint16_t)(__builtin_constant_p (level->ActivityLevel) ? (__uint16_t)(((__uint16_t)(level-> ActivityLevel) & 0xffU) << 8 | ((__uint16_t)(level-> ActivityLevel) & 0xff00U) >> 8) : __swap16md(level-> ActivityLevel))); |
| 462 | CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3)((level->CgSpllFuncCntl3) = (__uint32_t)(__builtin_constant_p (level->CgSpllFuncCntl3) ? (__uint32_t)(((__uint32_t)(level ->CgSpllFuncCntl3) & 0xff) << 24 | ((__uint32_t) (level->CgSpllFuncCntl3) & 0xff00) << 8 | ((__uint32_t )(level->CgSpllFuncCntl3) & 0xff0000) >> 8 | ((__uint32_t )(level->CgSpllFuncCntl3) & 0xff000000) >> 24) : __swap32md(level->CgSpllFuncCntl3))); |
| 463 | CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4)((level->CgSpllFuncCntl4) = (__uint32_t)(__builtin_constant_p (level->CgSpllFuncCntl4) ? (__uint32_t)(((__uint32_t)(level ->CgSpllFuncCntl4) & 0xff) << 24 | ((__uint32_t) (level->CgSpllFuncCntl4) & 0xff00) << 8 | ((__uint32_t )(level->CgSpllFuncCntl4) & 0xff0000) >> 8 | ((__uint32_t )(level->CgSpllFuncCntl4) & 0xff000000) >> 24) : __swap32md(level->CgSpllFuncCntl4))); |
| 464 | CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum)((level->SpllSpreadSpectrum) = (__uint32_t)(__builtin_constant_p (level->SpllSpreadSpectrum) ? (__uint32_t)(((__uint32_t)(level ->SpllSpreadSpectrum) & 0xff) << 24 | ((__uint32_t )(level->SpllSpreadSpectrum) & 0xff00) << 8 | (( __uint32_t)(level->SpllSpreadSpectrum) & 0xff0000) >> 8 | ((__uint32_t)(level->SpllSpreadSpectrum) & 0xff000000 ) >> 24) : __swap32md(level->SpllSpreadSpectrum))); |
| 465 | CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2)((level->SpllSpreadSpectrum2) = (__uint32_t)(__builtin_constant_p (level->SpllSpreadSpectrum2) ? (__uint32_t)(((__uint32_t)( level->SpllSpreadSpectrum2) & 0xff) << 24 | ((__uint32_t )(level->SpllSpreadSpectrum2) & 0xff00) << 8 | ( (__uint32_t)(level->SpllSpreadSpectrum2) & 0xff0000) >> 8 | ((__uint32_t)(level->SpllSpreadSpectrum2) & 0xff000000 ) >> 24) : __swap32md(level->SpllSpreadSpectrum2))); |
| 466 | CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm)((level->CcPwrDynRm) = (__uint32_t)(__builtin_constant_p(level ->CcPwrDynRm) ? (__uint32_t)(((__uint32_t)(level->CcPwrDynRm ) & 0xff) << 24 | ((__uint32_t)(level->CcPwrDynRm ) & 0xff00) << 8 | ((__uint32_t)(level->CcPwrDynRm ) & 0xff0000) >> 8 | ((__uint32_t)(level->CcPwrDynRm ) & 0xff000000) >> 24) : __swap32md(level->CcPwrDynRm ))); |
| 467 | CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1)((level->CcPwrDynRm1) = (__uint32_t)(__builtin_constant_p( level->CcPwrDynRm1) ? (__uint32_t)(((__uint32_t)(level-> CcPwrDynRm1) & 0xff) << 24 | ((__uint32_t)(level-> CcPwrDynRm1) & 0xff00) << 8 | ((__uint32_t)(level-> CcPwrDynRm1) & 0xff0000) >> 8 | ((__uint32_t)(level ->CcPwrDynRm1) & 0xff000000) >> 24) : __swap32md (level->CcPwrDynRm1))); |
| 468 | } |
| 469 | |
| 470 | return result; |
| 471 | } |
| 472 | |
| 473 | static int ci_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) |
| 474 | { |
| 475 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 476 | struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| 477 | struct smu7_dpm_table *dpm_table = &data->dpm_table; |
| 478 | int result = 0; |
| 479 | uint32_t array = smu_data->dpm_table_start + |
| 480 | offsetof(SMU7_Discrete_DpmTable, GraphicsLevel)__builtin_offsetof(SMU7_Discrete_DpmTable, GraphicsLevel); |
| 481 | uint32_t array_size = sizeof(struct SMU7_Discrete_GraphicsLevel) * |
| 482 | SMU7_MAX_LEVELS_GRAPHICS8; |
| 483 | struct SMU7_Discrete_GraphicsLevel *levels = |
| 484 | smu_data->smc_state_table.GraphicsLevel; |
| 485 | uint32_t i; |
| 486 | |
| 487 | for (i = 0; i < dpm_table->sclk_table.count; i++) { |
| 488 | result = ci_populate_single_graphic_level(hwmgr, |
| 489 | dpm_table->sclk_table.dpm_levels[i].value, |
| 490 | &levels[i]); |
| 491 | if (result) |
| 492 | return result; |
| 493 | if (i > 1) |
| 494 | smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0; |
| 495 | if (i == (dpm_table->sclk_table.count - 1)) |
| 496 | smu_data->smc_state_table.GraphicsLevel[i].DisplayWatermark = |
| 497 | PPSMC_DISPLAY_WATERMARK_HIGH1; |
| 498 | } |
| 499 | |
| 500 | smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1; |
| 501 | |
| 502 | smu_data->smc_state_table.GraphicsDpmLevelCount = (u8)dpm_table->sclk_table.count; |
| 503 | data->dpm_level_enable_mask.sclk_dpm_enable_mask = |
| 504 | phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table); |
| 505 | |
| 506 | result = ci_copy_bytes_to_smc(hwmgr, array, |
| 507 | (u8 *)levels, array_size, |
| 508 | SMC_RAM_END0x40000); |
| 509 | |
| 510 | return result; |
| 511 | |
| 512 | } |
| 513 | |
| 514 | static int ci_populate_svi_load_line(struct pp_hwmgr *hwmgr) |
| 515 | { |
| 516 | struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| 517 | const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults; |
| 518 | |
| 519 | smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en; |
| 520 | smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddc; |
| 521 | smu_data->power_tune_table.SviLoadLineTrimVddC = 3; |
| 522 | smu_data->power_tune_table.SviLoadLineOffsetVddC = 0; |
| 523 | |
| 524 | return 0; |
| 525 | } |
| 526 | |
| 527 | static int ci_populate_tdc_limit(struct pp_hwmgr *hwmgr) |
| 528 | { |
| 529 | uint16_t tdc_limit; |
| 530 | struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| 531 | const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults; |
| 532 | |
| 533 | tdc_limit = (uint16_t)(hwmgr->dyn_state.cac_dtp_table->usTDC * 256); |
| 534 | smu_data->power_tune_table.TDC_VDDC_PkgLimit = |
| 535 | CONVERT_FROM_HOST_TO_SMC_US(tdc_limit)((tdc_limit) = (__uint16_t)(__builtin_constant_p(tdc_limit) ? (__uint16_t)(((__uint16_t)(tdc_limit) & 0xffU) << 8 | ((__uint16_t)(tdc_limit) & 0xff00U) >> 8) : __swap16md (tdc_limit))); |
| 536 | smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc = |
| 537 | defaults->tdc_vddc_throttle_release_limit_perc; |
| 538 | smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt; |
| 539 | |
| 540 | return 0; |
| 541 | } |
| 542 | |
| 543 | static int ci_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset) |
| 544 | { |
| 545 | struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| 546 | const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults; |
| 547 | uint32_t temp; |
| 548 | |
| 549 | if (ci_read_smc_sram_dword(hwmgr, |
| 550 | fuse_table_offset + |
| 551 | offsetof(SMU7_Discrete_PmFuses, TdcWaterfallCtl)__builtin_offsetof(SMU7_Discrete_PmFuses, TdcWaterfallCtl), |
| 552 | (uint32_t *)&temp, SMC_RAM_END0x40000)) |
| 553 | PP_ASSERT_WITH_CODE(false,do { if (!(0)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!" ); return -22; } } while (0) |
| 554 | "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",do { if (!(0)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!" ); return -22; } } while (0) |
| 555 | return -EINVAL)do { if (!(0)) { printk("\0014" "amdgpu: [powerplay] " "%s\n" , "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!" ); return -22; } } while (0); |
| 556 | else |
| 557 | smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl; |
| 558 | |
| 559 | return 0; |
| 560 | } |
| 561 | |
| 562 | static int ci_populate_fuzzy_fan(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset) |
| 563 | { |
| 564 | uint16_t tmp; |
| 565 | struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| 566 | |
| 567 | if ((hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity & (1 << 15)) |
| 568 | || 0 == hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity) |
| 569 | tmp = hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity; |
| 570 | else |
| 571 | tmp = hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity; |
| 572 | |
| 573 | smu_data->power_tune_table.FuzzyFan_PwmSetDelta = CONVERT_FROM_HOST_TO_SMC_US(tmp)((tmp) = (__uint16_t)(__builtin_constant_p(tmp) ? (__uint16_t )(((__uint16_t)(tmp) & 0xffU) << 8 | ((__uint16_t)( tmp) & 0xff00U) >> 8) : __swap16md(tmp))); |
| 574 | |
| 575 | return 0; |
| 576 | } |
| 577 | |
| 578 | static int ci_populate_bapm_vddc_vid_sidd(struct pp_hwmgr *hwmgr) |
| 579 | { |
| 580 | int i; |
| 581 | struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| 582 | uint8_t *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd; |
| 583 | uint8_t *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd; |
| 584 | uint8_t *hi2_vid = smu_data->power_tune_table.BapmVddCVidHiSidd2; |
| 585 | |
| 586 | PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.cac_leakage_table,do { if (!(((void *)0) != hwmgr->dyn_state.cac_leakage_table )) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "The CAC Leakage table does not exist!" ); return -22; } } while (0) |
| 587 | "The CAC Leakage table does not exist!", return -EINVAL)do { if (!(((void *)0) != hwmgr->dyn_state.cac_leakage_table )) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "The CAC Leakage table does not exist!" ); return -22; } } while (0); |
| 588 | PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count <= 8,do { if (!(hwmgr->dyn_state.cac_leakage_table->count <= 8)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "There should never be more than 8 entries for BapmVddcVid!!!" ); return -22; } } while (0) |
| 589 | "There should never be more than 8 entries for BapmVddcVid!!!", return -EINVAL)do { if (!(hwmgr->dyn_state.cac_leakage_table->count <= 8)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "There should never be more than 8 entries for BapmVddcVid!!!" ); return -22; } } while (0); |
| 590 | PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count,do { if (!(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count)) { printk ("\0014" "amdgpu: [powerplay] " "%s\n", "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal" ); return -22; } } while (0) |
| 591 | "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal", return -EINVAL)do { if (!(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count)) { printk ("\0014" "amdgpu: [powerplay] " "%s\n", "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal" ); return -22; } } while (0); |
| 592 | |
| 593 | for (i = 0; (uint32_t) i < hwmgr->dyn_state.cac_leakage_table->count; i++) { |
| 594 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) { |
| 595 | lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc1); |
| 596 | hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc2); |
| 597 | hi2_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc3); |
| 598 | } else { |
| 599 | lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc); |
| 600 | hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Leakage); |
| 601 | } |
| 602 | } |
| 603 | |
| 604 | return 0; |
| 605 | } |
| 606 | |
| 607 | static int ci_populate_vddc_vid(struct pp_hwmgr *hwmgr) |
| 608 | { |
| 609 | int i; |
| 610 | struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| 611 | uint8_t *vid = smu_data->power_tune_table.VddCVid; |
| 612 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 613 | |
| 614 | PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 8,do { if (!(data->vddc_voltage_table.count <= 8)) { printk ("\0014" "amdgpu: [powerplay] " "%s\n", "There should never be more than 8 entries for VddcVid!!!" ); return -22; } } while (0) |
| 615 | "There should never be more than 8 entries for VddcVid!!!",do { if (!(data->vddc_voltage_table.count <= 8)) { printk ("\0014" "amdgpu: [powerplay] " "%s\n", "There should never be more than 8 entries for VddcVid!!!" ); return -22; } } while (0) |
| 616 | return -EINVAL)do { if (!(data->vddc_voltage_table.count <= 8)) { printk ("\0014" "amdgpu: [powerplay] " "%s\n", "There should never be more than 8 entries for VddcVid!!!" ); return -22; } } while (0); |
| 617 | |
| 618 | for (i = 0; i < (int)data->vddc_voltage_table.count; i++) |
| 619 | vid[i] = convert_to_vid(data->vddc_voltage_table.entries[i].value); |
| 620 | |
| 621 | return 0; |
| 622 | } |
| 623 | |
| 624 | static int ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(struct pp_hwmgr *hwmgr) |
| 625 | { |
| 626 | struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| 627 | u8 *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd; |
| 628 | u8 *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd; |
| 629 | int i, min, max; |
| 630 | |
| 631 | min = max = hi_vid[0]; |
| 632 | for (i = 0; i < 8; i++) { |
| 633 | if (0 != hi_vid[i]) { |
| 634 | if (min > hi_vid[i]) |
| 635 | min = hi_vid[i]; |
| 636 | if (max < hi_vid[i]) |
| 637 | max = hi_vid[i]; |
| 638 | } |
| 639 | |
| 640 | if (0 != lo_vid[i]) { |
| 641 | if (min > lo_vid[i]) |
| 642 | min = lo_vid[i]; |
| 643 | if (max < lo_vid[i]) |
| 644 | max = lo_vid[i]; |
| 645 | } |
| 646 | } |
| 647 | |
| 648 | if ((min == 0) || (max == 0)) |
| 649 | return -EINVAL22; |
| 650 | smu_data->power_tune_table.GnbLPMLMaxVid = (u8)max; |
| 651 | smu_data->power_tune_table.GnbLPMLMinVid = (u8)min; |
| 652 | |
| 653 | return 0; |
| 654 | } |
| 655 | |
| 656 | static int ci_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr) |
| 657 | { |
| 658 | struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| 659 | uint16_t HiSidd; |
| 660 | uint16_t LoSidd; |
| 661 | struct phm_cac_tdp_table *cac_table = hwmgr->dyn_state.cac_dtp_table; |
| 662 | |
| 663 | HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256); |
| 664 | LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256); |
| 665 | |
| 666 | smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd = |
| 667 | CONVERT_FROM_HOST_TO_SMC_US(HiSidd)((HiSidd) = (__uint16_t)(__builtin_constant_p(HiSidd) ? (__uint16_t )(((__uint16_t)(HiSidd) & 0xffU) << 8 | ((__uint16_t )(HiSidd) & 0xff00U) >> 8) : __swap16md(HiSidd))); |
| 668 | smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd = |
| 669 | CONVERT_FROM_HOST_TO_SMC_US(LoSidd)((LoSidd) = (__uint16_t)(__builtin_constant_p(LoSidd) ? (__uint16_t )(((__uint16_t)(LoSidd) & 0xffU) << 8 | ((__uint16_t )(LoSidd) & 0xff00U) >> 8) : __swap16md(LoSidd))); |
| 670 | |
| 671 | return 0; |
| 672 | } |
| 673 | |
| 674 | static int ci_populate_pm_fuses(struct pp_hwmgr *hwmgr) |
| 675 | { |
| 676 | struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| 677 | uint32_t pm_fuse_table_offset; |
| 678 | int ret = 0; |
| 679 | |
| 680 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| 681 | PHM_PlatformCaps_PowerContainment)) { |
| 682 | if (ci_read_smc_sram_dword(hwmgr, |
| 683 | SMU7_FIRMWARE_HEADER_LOCATION0x20000 + |
| 684 | offsetof(SMU7_Firmware_Header, PmFuseTable)__builtin_offsetof(SMU7_Firmware_Header, PmFuseTable), |
| 685 | &pm_fuse_table_offset, SMC_RAM_END0x40000)) { |
| 686 | pr_err("Attempt to get pm_fuse_table_offset Failed!\n")printk("\0013" "amdgpu: [powerplay] " "Attempt to get pm_fuse_table_offset Failed!\n" ); |
| 687 | return -EINVAL22; |
| 688 | } |
| 689 | |
| 690 | /* DW0 - DW3 */ |
| 691 | ret = ci_populate_bapm_vddc_vid_sidd(hwmgr); |
| 692 | /* DW4 - DW5 */ |
| 693 | ret |= ci_populate_vddc_vid(hwmgr); |
| 694 | /* DW6 */ |
| 695 | ret |= ci_populate_svi_load_line(hwmgr); |
| 696 | /* DW7 */ |
| 697 | ret |= ci_populate_tdc_limit(hwmgr); |
| 698 | /* DW8 */ |
| 699 | ret |= ci_populate_dw8(hwmgr, pm_fuse_table_offset); |
| 700 | |
| 701 | ret |= ci_populate_fuzzy_fan(hwmgr, pm_fuse_table_offset); |
| 702 | |
| 703 | ret |= ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(hwmgr); |
| 704 | |
| 705 | ret |= ci_populate_bapm_vddc_base_leakage_sidd(hwmgr); |
| 706 | if (ret) |
| 707 | return ret; |
| 708 | |
| 709 | ret = ci_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset, |
| 710 | (uint8_t *)&smu_data->power_tune_table, |
| 711 | sizeof(struct SMU7_Discrete_PmFuses), SMC_RAM_END0x40000); |
| 712 | } |
| 713 | return ret; |
| 714 | } |
| 715 | |
| 716 | static int ci_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr) |
| 717 | { |
| 718 | struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| 719 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 720 | const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults; |
| 721 | SMU7_Discrete_DpmTable *dpm_table = &(smu_data->smc_state_table); |
| 722 | struct phm_cac_tdp_table *cac_dtp_table = hwmgr->dyn_state.cac_dtp_table; |
| 723 | struct phm_ppm_table *ppm = hwmgr->dyn_state.ppm_parameter_table; |
| 724 | const uint16_t *def1, *def2; |
| 725 | int i, j, k; |
| 726 | |
| 727 | dpm_table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 256))(__uint16_t)(__builtin_constant_p((uint16_t)(cac_dtp_table-> usTDP * 256)) ? (__uint16_t)(((__uint16_t)((uint16_t)(cac_dtp_table ->usTDP * 256)) & 0xffU) << 8 | ((__uint16_t)((uint16_t )(cac_dtp_table->usTDP * 256)) & 0xff00U) >> 8) : __swap16md((uint16_t)(cac_dtp_table->usTDP * 256))); |
| 728 | dpm_table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usConfigurableTDP * 256))(__uint16_t)(__builtin_constant_p((uint16_t)(cac_dtp_table-> usConfigurableTDP * 256)) ? (__uint16_t)(((__uint16_t)((uint16_t )(cac_dtp_table->usConfigurableTDP * 256)) & 0xffU) << 8 | ((__uint16_t)((uint16_t)(cac_dtp_table->usConfigurableTDP * 256)) & 0xff00U) >> 8) : __swap16md((uint16_t)(cac_dtp_table ->usConfigurableTDP * 256))); |
| 729 | |
| 730 | dpm_table->DTETjOffset = 0; |
| 731 | dpm_table->GpuTjMax = (uint8_t)(data->thermal_temp_setting.temperature_high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES1000); |
| 732 | dpm_table->GpuTjHyst = 8; |
| 733 | |
| 734 | dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base; |
| 735 | |
| 736 | if (ppm) { |
| 737 | dpm_table->PPM_PkgPwrLimit = (uint16_t)ppm->dgpu_tdp * 256 / 1000; |
| 738 | dpm_table->PPM_TemperatureLimit = (uint16_t)ppm->tj_max * 256; |
| 739 | } else { |
| 740 | dpm_table->PPM_PkgPwrLimit = 0; |
| 741 | dpm_table->PPM_TemperatureLimit = 0; |
| 742 | } |
| 743 | |
| 744 | CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_PkgPwrLimit)((dpm_table->PPM_PkgPwrLimit) = (__uint16_t)(__builtin_constant_p (dpm_table->PPM_PkgPwrLimit) ? (__uint16_t)(((__uint16_t)( dpm_table->PPM_PkgPwrLimit) & 0xffU) << 8 | ((__uint16_t )(dpm_table->PPM_PkgPwrLimit) & 0xff00U) >> 8) : __swap16md(dpm_table->PPM_PkgPwrLimit))); |
| 745 | CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_TemperatureLimit)((dpm_table->PPM_TemperatureLimit) = (__uint16_t)(__builtin_constant_p (dpm_table->PPM_TemperatureLimit) ? (__uint16_t)(((__uint16_t )(dpm_table->PPM_TemperatureLimit) & 0xffU) << 8 | ((__uint16_t)(dpm_table->PPM_TemperatureLimit) & 0xff00U ) >> 8) : __swap16md(dpm_table->PPM_TemperatureLimit ))); |
| 746 | |
| 747 | dpm_table->BAPM_TEMP_GRADIENT = PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient)(__uint32_t)(__builtin_constant_p(defaults->bapm_temp_gradient ) ? (__uint32_t)(((__uint32_t)(defaults->bapm_temp_gradient ) & 0xff) << 24 | ((__uint32_t)(defaults->bapm_temp_gradient ) & 0xff00) << 8 | ((__uint32_t)(defaults->bapm_temp_gradient ) & 0xff0000) >> 8 | ((__uint32_t)(defaults->bapm_temp_gradient ) & 0xff000000) >> 24) : __swap32md(defaults->bapm_temp_gradient )); |
| 748 | def1 = defaults->bapmti_r; |
| 749 | def2 = defaults->bapmti_rc; |
| 750 | |
| 751 | for (i = 0; i < SMU7_DTE_ITERATIONS5; i++) { |
| 752 | for (j = 0; j < SMU7_DTE_SOURCES3; j++) { |
| 753 | for (k = 0; k < SMU7_DTE_SINKS1; k++) { |
| 754 | dpm_table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*def1)(__uint16_t)(__builtin_constant_p(*def1) ? (__uint16_t)(((__uint16_t )(*def1) & 0xffU) << 8 | ((__uint16_t)(*def1) & 0xff00U) >> 8) : __swap16md(*def1)); |
| 755 | dpm_table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*def2)(__uint16_t)(__builtin_constant_p(*def2) ? (__uint16_t)(((__uint16_t )(*def2) & 0xffU) << 8 | ((__uint16_t)(*def2) & 0xff00U) >> 8) : __swap16md(*def2)); |
| 756 | def1++; |
| 757 | def2++; |
| 758 | } |
| 759 | } |
| 760 | } |
| 761 | |
| 762 | return 0; |
| 763 | } |
| 764 | |
| 765 | static int ci_get_std_voltage_value_sidd(struct pp_hwmgr *hwmgr, |
| 766 | pp_atomctrl_voltage_table_entry *tab, uint16_t *hi, |
| 767 | uint16_t *lo) |
| 768 | { |
| 769 | uint16_t v_index; |
| 770 | bool_Bool vol_found = false0; |
| 771 | *hi = tab->value * VOLTAGE_SCALE4; |
| 772 | *lo = tab->value * VOLTAGE_SCALE4; |
| 773 | |
| 774 | PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.vddc_dependency_on_sclk,do { if (!(((void *)0) != hwmgr->dyn_state.vddc_dependency_on_sclk )) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "The SCLK/VDDC Dependency Table does not exist.\n" ); return -22; } } while (0) |
| 775 | "The SCLK/VDDC Dependency Table does not exist.\n",do { if (!(((void *)0) != hwmgr->dyn_state.vddc_dependency_on_sclk )) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "The SCLK/VDDC Dependency Table does not exist.\n" ); return -22; } } while (0) |
| 776 | return -EINVAL)do { if (!(((void *)0) != hwmgr->dyn_state.vddc_dependency_on_sclk )) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "The SCLK/VDDC Dependency Table does not exist.\n" ); return -22; } } while (0); |
| 777 | |
| 778 | if (NULL((void *)0) == hwmgr->dyn_state.cac_leakage_table) { |
| 779 | pr_warn("CAC Leakage Table does not exist, using vddc.\n")printk("\0014" "amdgpu: [powerplay] " "CAC Leakage Table does not exist, using vddc.\n" ); |
| 780 | return 0; |
| 781 | } |
| 782 | |
| 783 | for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) { |
| 784 | if (tab->value == hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) { |
| 785 | vol_found = true1; |
| 786 | if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) { |
| 787 | *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE4; |
| 788 | *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage * VOLTAGE_SCALE4); |
| 789 | } else { |
| 790 | pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index, using maximum index from CAC table.\n")printk("\0014" "amdgpu: [powerplay] " "Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index, using maximum index from CAC table.\n" ); |
| 791 | *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE4; |
| 792 | *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE4); |
| 793 | } |
| 794 | break; |
| 795 | } |
| 796 | } |
| 797 | |
| 798 | if (!vol_found) { |
| 799 | for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) { |
| 800 | if (tab->value <= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) { |
| 801 | vol_found = true1; |
| 802 | if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) { |
| 803 | *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE4; |
| 804 | *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage) * VOLTAGE_SCALE4; |
| 805 | } else { |
| 806 | pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index in second look up, using maximum index from CAC table.")printk("\0014" "amdgpu: [powerplay] " "Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index in second look up, using maximum index from CAC table." ); |
| 807 | *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE4; |
| 808 | *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE4); |
| 809 | } |
| 810 | break; |
| 811 | } |
| 812 | } |
| 813 | |
| 814 | if (!vol_found) |
| 815 | pr_warn("Unable to get std_vddc from SCLK/VDDC Dependency Table, using vddc.\n")printk("\0014" "amdgpu: [powerplay] " "Unable to get std_vddc from SCLK/VDDC Dependency Table, using vddc.\n" ); |
| 816 | } |
| 817 | |
| 818 | return 0; |
| 819 | } |
| 820 | |
| 821 | static int ci_populate_smc_voltage_table(struct pp_hwmgr *hwmgr, |
| 822 | pp_atomctrl_voltage_table_entry *tab, |
| 823 | SMU7_Discrete_VoltageLevel *smc_voltage_tab) |
| 824 | { |
| 825 | int result; |
| 826 | |
| 827 | result = ci_get_std_voltage_value_sidd(hwmgr, tab, |
| 828 | &smc_voltage_tab->StdVoltageHiSidd, |
| 829 | &smc_voltage_tab->StdVoltageLoSidd); |
| 830 | if (result) { |
| 831 | smc_voltage_tab->StdVoltageHiSidd = tab->value * VOLTAGE_SCALE4; |
| 832 | smc_voltage_tab->StdVoltageLoSidd = tab->value * VOLTAGE_SCALE4; |
| 833 | } |
| 834 | |
| 835 | smc_voltage_tab->Voltage = PP_HOST_TO_SMC_US(tab->value * VOLTAGE_SCALE)(__uint16_t)(__builtin_constant_p(tab->value * 4) ? (__uint16_t )(((__uint16_t)(tab->value * 4) & 0xffU) << 8 | ( (__uint16_t)(tab->value * 4) & 0xff00U) >> 8) : __swap16md (tab->value * 4)); |
| 836 | CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd)((smc_voltage_tab->StdVoltageHiSidd) = (__uint16_t)(__builtin_constant_p (smc_voltage_tab->StdVoltageHiSidd) ? (__uint16_t)(((__uint16_t )(smc_voltage_tab->StdVoltageHiSidd) & 0xffU) << 8 | ((__uint16_t)(smc_voltage_tab->StdVoltageHiSidd) & 0xff00U) >> 8) : __swap16md(smc_voltage_tab->StdVoltageHiSidd ))); |
| 837 | CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageLoSidd)((smc_voltage_tab->StdVoltageLoSidd) = (__uint16_t)(__builtin_constant_p (smc_voltage_tab->StdVoltageLoSidd) ? (__uint16_t)(((__uint16_t )(smc_voltage_tab->StdVoltageLoSidd) & 0xffU) << 8 | ((__uint16_t)(smc_voltage_tab->StdVoltageLoSidd) & 0xff00U) >> 8) : __swap16md(smc_voltage_tab->StdVoltageLoSidd ))); |
| 838 | |
| 839 | return 0; |
| 840 | } |
| 841 | |
| 842 | static int ci_populate_smc_vddc_table(struct pp_hwmgr *hwmgr, |
| 843 | SMU7_Discrete_DpmTable *table) |
| 844 | { |
| 845 | unsigned int count; |
| 846 | int result; |
| 847 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 848 | |
| 849 | table->VddcLevelCount = data->vddc_voltage_table.count; |
| 850 | for (count = 0; count < table->VddcLevelCount; count++) { |
| 851 | result = ci_populate_smc_voltage_table(hwmgr, |
| 852 | &(data->vddc_voltage_table.entries[count]), |
| 853 | &(table->VddcLevel[count])); |
| 854 | PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDC voltage table", return -EINVAL)do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "do not populate SMC VDDC voltage table"); return -22 ; } } while (0); |
| 855 | |
| 856 | /* GPIO voltage control */ |
| 857 | if (SMU7_VOLTAGE_CONTROL_BY_GPIO0x1 == data->voltage_control) { |
| 858 | table->VddcLevel[count].Smio = (uint8_t) count; |
| 859 | table->Smio[count] |= data->vddc_voltage_table.entries[count].smio_low; |
| 860 | table->SmioMaskVddcVid |= data->vddc_voltage_table.entries[count].smio_low; |
| 861 | } else { |
| 862 | table->VddcLevel[count].Smio = 0; |
| 863 | } |
| 864 | } |
| 865 | |
| 866 | CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount)((table->VddcLevelCount) = (__uint32_t)(__builtin_constant_p (table->VddcLevelCount) ? (__uint32_t)(((__uint32_t)(table ->VddcLevelCount) & 0xff) << 24 | ((__uint32_t)( table->VddcLevelCount) & 0xff00) << 8 | ((__uint32_t )(table->VddcLevelCount) & 0xff0000) >> 8 | ((__uint32_t )(table->VddcLevelCount) & 0xff000000) >> 24) : __swap32md (table->VddcLevelCount))); |
| 867 | |
| 868 | return 0; |
| 869 | } |
| 870 | |
| 871 | static int ci_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr, |
| 872 | SMU7_Discrete_DpmTable *table) |
| 873 | { |
| 874 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 875 | uint32_t count; |
| 876 | int result; |
| 877 | |
| 878 | table->VddciLevelCount = data->vddci_voltage_table.count; |
| 879 | |
| 880 | for (count = 0; count < table->VddciLevelCount; count++) { |
| 881 | result = ci_populate_smc_voltage_table(hwmgr, |
| 882 | &(data->vddci_voltage_table.entries[count]), |
| 883 | &(table->VddciLevel[count])); |
| 884 | PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC VDDCI voltage table", return -EINVAL)do { if (!(result == 0)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "do not populate SMC VDDCI voltage table"); return - 22; } } while (0); |
| 885 | if (SMU7_VOLTAGE_CONTROL_BY_GPIO0x1 == data->vddci_control) { |
| 886 | table->VddciLevel[count].Smio = (uint8_t) count; |
| 887 | table->Smio[count] |= data->vddci_voltage_table.entries[count].smio_low; |
| 888 | table->SmioMaskVddciVid |= data->vddci_voltage_table.entries[count].smio_low; |
| 889 | } else { |
| 890 | table->VddciLevel[count].Smio = 0; |
| 891 | } |
| 892 | } |
| 893 | |
| 894 | CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount)((table->VddciLevelCount) = (__uint32_t)(__builtin_constant_p (table->VddciLevelCount) ? (__uint32_t)(((__uint32_t)(table ->VddciLevelCount) & 0xff) << 24 | ((__uint32_t) (table->VddciLevelCount) & 0xff00) << 8 | ((__uint32_t )(table->VddciLevelCount) & 0xff0000) >> 8 | ((__uint32_t )(table->VddciLevelCount) & 0xff000000) >> 24) : __swap32md(table->VddciLevelCount))); |
| 895 | |
| 896 | return 0; |
| 897 | } |
| 898 | |
| 899 | static int ci_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr, |
| 900 | SMU7_Discrete_DpmTable *table) |
| 901 | { |
| 902 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 903 | uint32_t count; |
| 904 | int result; |
| 905 | |
| 906 | table->MvddLevelCount = data->mvdd_voltage_table.count; |
| 907 | |
| 908 | for (count = 0; count < table->MvddLevelCount; count++) { |
| 909 | result = ci_populate_smc_voltage_table(hwmgr, |
| 910 | &(data->mvdd_voltage_table.entries[count]), |
| 911 | &table->MvddLevel[count]); |
| 912 | PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC mvdd voltage table", return -EINVAL)do { if (!(result == 0)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "do not populate SMC mvdd voltage table"); return -22 ; } } while (0); |
| 913 | if (SMU7_VOLTAGE_CONTROL_BY_GPIO0x1 == data->mvdd_control) { |
| 914 | table->MvddLevel[count].Smio = (uint8_t) count; |
| 915 | table->Smio[count] |= data->mvdd_voltage_table.entries[count].smio_low; |
| 916 | table->SmioMaskMvddVid |= data->mvdd_voltage_table.entries[count].smio_low; |
| 917 | } else { |
| 918 | table->MvddLevel[count].Smio = 0; |
| 919 | } |
| 920 | } |
| 921 | |
| 922 | CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount)((table->MvddLevelCount) = (__uint32_t)(__builtin_constant_p (table->MvddLevelCount) ? (__uint32_t)(((__uint32_t)(table ->MvddLevelCount) & 0xff) << 24 | ((__uint32_t)( table->MvddLevelCount) & 0xff00) << 8 | ((__uint32_t )(table->MvddLevelCount) & 0xff0000) >> 8 | ((__uint32_t )(table->MvddLevelCount) & 0xff000000) >> 24) : __swap32md (table->MvddLevelCount))); |
| 923 | |
| 924 | return 0; |
| 925 | } |
| 926 | |
| 927 | |
| 928 | static int ci_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr, |
| 929 | SMU7_Discrete_DpmTable *table) |
| 930 | { |
| 931 | int result; |
| 932 | |
| 933 | result = ci_populate_smc_vddc_table(hwmgr, table); |
| 934 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "can not populate VDDC voltage table to SMC"); return -22; } } while (0) |
| 935 | "can not populate VDDC voltage table to SMC", return -EINVAL)do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "can not populate VDDC voltage table to SMC"); return -22; } } while (0); |
| 936 | |
| 937 | result = ci_populate_smc_vdd_ci_table(hwmgr, table); |
| 938 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "can not populate VDDCI voltage table to SMC"); return -22; } } while (0) |
| 939 | "can not populate VDDCI voltage table to SMC", return -EINVAL)do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "can not populate VDDCI voltage table to SMC"); return -22; } } while (0); |
| 940 | |
| 941 | result = ci_populate_smc_mvdd_table(hwmgr, table); |
| 942 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "can not populate MVDD voltage table to SMC"); return -22; } } while (0) |
| 943 | "can not populate MVDD voltage table to SMC", return -EINVAL)do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "can not populate MVDD voltage table to SMC"); return -22; } } while (0); |
| 944 | |
| 945 | return 0; |
| 946 | } |
| 947 | |
| 948 | static int ci_populate_ulv_level(struct pp_hwmgr *hwmgr, |
| 949 | struct SMU7_Discrete_Ulv *state) |
| 950 | { |
| 951 | uint32_t voltage_response_time, ulv_voltage; |
| 952 | int result; |
| 953 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 954 | |
| 955 | state->CcPwrDynRm = 0; |
| 956 | state->CcPwrDynRm1 = 0; |
| 957 | |
| 958 | result = pp_tables_get_response_times(hwmgr, &voltage_response_time, &ulv_voltage); |
| 959 | PP_ASSERT_WITH_CODE((0 == result), "can not get ULV voltage value", return result;)do { if (!((0 == result))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "can not get ULV voltage value"); return result;; } } while (0); |
| 960 | |
| 961 | if (ulv_voltage == 0) { |
| 962 | data->ulv_supported = false0; |
| 963 | return 0; |
| 964 | } |
| 965 | |
| 966 | if (data->voltage_control != SMU7_VOLTAGE_CONTROL_BY_SVID20x2) { |
| 967 | /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */ |
| 968 | if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v) |
| 969 | state->VddcOffset = 0; |
| 970 | else |
| 971 | /* used in SMIO Mode. not implemented for now. this is backup only for CI. */ |
| 972 | state->VddcOffset = (uint16_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage); |
| 973 | } else { |
| 974 | /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */ |
| 975 | if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v) |
| 976 | state->VddcOffsetVid = 0; |
| 977 | else /* used in SVI2 Mode */ |
| 978 | state->VddcOffsetVid = (uint8_t)( |
| 979 | (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage) |
| 980 | * VOLTAGE_VID_OFFSET_SCALE2100 |
| 981 | / VOLTAGE_VID_OFFSET_SCALE1625); |
| 982 | } |
| 983 | state->VddcPhase = 1; |
| 984 | |
| 985 | CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm)((state->CcPwrDynRm) = (__uint32_t)(__builtin_constant_p(state ->CcPwrDynRm) ? (__uint32_t)(((__uint32_t)(state->CcPwrDynRm ) & 0xff) << 24 | ((__uint32_t)(state->CcPwrDynRm ) & 0xff00) << 8 | ((__uint32_t)(state->CcPwrDynRm ) & 0xff0000) >> 8 | ((__uint32_t)(state->CcPwrDynRm ) & 0xff000000) >> 24) : __swap32md(state->CcPwrDynRm ))); |
| 986 | CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1)((state->CcPwrDynRm1) = (__uint32_t)(__builtin_constant_p( state->CcPwrDynRm1) ? (__uint32_t)(((__uint32_t)(state-> CcPwrDynRm1) & 0xff) << 24 | ((__uint32_t)(state-> CcPwrDynRm1) & 0xff00) << 8 | ((__uint32_t)(state-> CcPwrDynRm1) & 0xff0000) >> 8 | ((__uint32_t)(state ->CcPwrDynRm1) & 0xff000000) >> 24) : __swap32md (state->CcPwrDynRm1))); |
| 987 | CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset)((state->VddcOffset) = (__uint16_t)(__builtin_constant_p(state ->VddcOffset) ? (__uint16_t)(((__uint16_t)(state->VddcOffset ) & 0xffU) << 8 | ((__uint16_t)(state->VddcOffset ) & 0xff00U) >> 8) : __swap16md(state->VddcOffset ))); |
| 988 | |
| 989 | return 0; |
| 990 | } |
| 991 | |
| 992 | static int ci_populate_ulv_state(struct pp_hwmgr *hwmgr, |
| 993 | SMU7_Discrete_Ulv *ulv_level) |
| 994 | { |
| 995 | return ci_populate_ulv_level(hwmgr, ulv_level); |
| 996 | } |
| 997 | |
| 998 | static int ci_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table) |
| 999 | { |
| 1000 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 1001 | struct smu7_dpm_table *dpm_table = &data->dpm_table; |
| 1002 | struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| 1003 | uint32_t i; |
| 1004 | |
| 1005 | /* Index dpm_table->pcie_speed_table.count is reserved for PCIE boot level.*/ |
| 1006 | for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) { |
| 1007 | table->LinkLevel[i].PcieGenSpeed = |
| 1008 | (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value; |
| 1009 | table->LinkLevel[i].PcieLaneCount = |
| 1010 | (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1); |
| 1011 | table->LinkLevel[i].EnabledForActivity = 1; |
| 1012 | table->LinkLevel[i].DownT = PP_HOST_TO_SMC_UL(5)(__uint32_t)(__builtin_constant_p(5) ? (__uint32_t)(((__uint32_t )(5) & 0xff) << 24 | ((__uint32_t)(5) & 0xff00) << 8 | ((__uint32_t)(5) & 0xff0000) >> 8 | ( (__uint32_t)(5) & 0xff000000) >> 24) : __swap32md(5 )); |
| 1013 | table->LinkLevel[i].UpT = PP_HOST_TO_SMC_UL(30)(__uint32_t)(__builtin_constant_p(30) ? (__uint32_t)(((__uint32_t )(30) & 0xff) << 24 | ((__uint32_t)(30) & 0xff00 ) << 8 | ((__uint32_t)(30) & 0xff0000) >> 8 | ((__uint32_t)(30) & 0xff000000) >> 24) : __swap32md (30)); |
| 1014 | } |
| 1015 | |
| 1016 | smu_data->smc_state_table.LinkLevelCount = |
| 1017 | (uint8_t)dpm_table->pcie_speed_table.count; |
| 1018 | data->dpm_level_enable_mask.pcie_dpm_enable_mask = |
| 1019 | phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table); |
| 1020 | |
| 1021 | return 0; |
| 1022 | } |
| 1023 | |
| 1024 | static int ci_calculate_mclk_params( |
| 1025 | struct pp_hwmgr *hwmgr, |
| 1026 | uint32_t memory_clock, |
| 1027 | SMU7_Discrete_MemoryLevel *mclk, |
| 1028 | bool_Bool strobe_mode, |
| 1029 | bool_Bool dllStateOn |
| 1030 | ) |
| 1031 | { |
| 1032 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 1033 | uint32_t dll_cntl = data->clock_registers.vDLL_CNTL; |
| 1034 | uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL; |
| 1035 | uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL; |
| 1036 | uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL; |
| 1037 | uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL; |
| 1038 | uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1; |
| 1039 | uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2; |
| 1040 | uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1; |
| 1041 | uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2; |
| 1042 | |
| 1043 | pp_atomctrl_memory_clock_param mpll_param; |
| 1044 | int result; |
| 1045 | |
| 1046 | result = atomctrl_get_memory_pll_dividers_si(hwmgr, |
| 1047 | memory_clock, &mpll_param, strobe_mode); |
| 1048 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Error retrieving Memory Clock Parameters from VBIOS." ); return result; } } while (0) |
| 1049 | "Error retrieving Memory Clock Parameters from VBIOS.", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Error retrieving Memory Clock Parameters from VBIOS." ); return result; } } while (0); |
| 1050 | |
| 1051 | mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl)(((mpll_func_cntl) & ~0xff00000) | (0xff00000 & ((mpll_param .bw_ctrl) << 0x14))); |
| 1052 | |
| 1053 | mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,(((mpll_func_cntl_1) & ~0xfff0000) | (0xfff0000 & ((mpll_param .mpll_fb_divider.cl_kf) << 0x10))) |
| 1054 | MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf)(((mpll_func_cntl_1) & ~0xfff0000) | (0xfff0000 & ((mpll_param .mpll_fb_divider.cl_kf) << 0x10))); |
| 1055 | mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,(((mpll_func_cntl_1) & ~0xfff0) | (0xfff0 & ((mpll_param .mpll_fb_divider.clk_frac) << 0x4))) |
| 1056 | MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac)(((mpll_func_cntl_1) & ~0xfff0) | (0xfff0 & ((mpll_param .mpll_fb_divider.clk_frac) << 0x4))); |
| 1057 | mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,(((mpll_func_cntl_1) & ~0x3) | (0x3 & ((mpll_param.vco_mode ) << 0x0))) |
| 1058 | MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode)(((mpll_func_cntl_1) & ~0x3) | (0x3 & ((mpll_param.vco_mode ) << 0x0))); |
| 1059 | |
| 1060 | mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,(((mpll_ad_func_cntl) & ~0x7) | (0x7 & ((mpll_param.mpll_post_divider ) << 0x0))) |
| 1061 | MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider)(((mpll_ad_func_cntl) & ~0x7) | (0x7 & ((mpll_param.mpll_post_divider ) << 0x0))); |
| 1062 | |
| 1063 | if (data->is_memory_gddr5) { |
| 1064 | mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,(((mpll_dq_func_cntl) & ~0x10) | (0x10 & ((mpll_param .yclk_sel) << 0x4))) |
| 1065 | MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel)(((mpll_dq_func_cntl) & ~0x10) | (0x10 & ((mpll_param .yclk_sel) << 0x4))); |
| 1066 | mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,(((mpll_dq_func_cntl) & ~0x7) | (0x7 & ((mpll_param.mpll_post_divider ) << 0x0))) |
| 1067 | MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider)(((mpll_dq_func_cntl) & ~0x7) | (0x7 & ((mpll_param.mpll_post_divider ) << 0x0))); |
| 1068 | } |
| 1069 | |
| 1070 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| 1071 | PHM_PlatformCaps_MemorySpreadSpectrumSupport)) { |
| 1072 | pp_atomctrl_internal_ss_info ss_info; |
| 1073 | uint32_t freq_nom; |
| 1074 | uint32_t tmp; |
| 1075 | uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr); |
| 1076 | |
| 1077 | /* for GDDR5 for all modes and DDR3 */ |
| 1078 | if (1 == mpll_param.qdr) |
| 1079 | freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider); |
| 1080 | else |
| 1081 | freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider); |
| 1082 | |
| 1083 | /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2 Note: S.I. reference_divider = 1*/ |
| 1084 | tmp = (freq_nom / reference_clock); |
| 1085 | tmp = tmp * tmp; |
| 1086 | |
| 1087 | if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) { |
| 1088 | uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate; |
| 1089 | uint32_t clkv = |
| 1090 | (uint32_t)((((131 * ss_info.speed_spectrum_percentage * |
| 1091 | ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom); |
| 1092 | |
| 1093 | mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv)(((mpll_ss1) & ~0x3ffffff) | (0x3ffffff & ((clkv) << 0x0))); |
| 1094 | mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks)(((mpll_ss2) & ~0xfff) | (0xfff & ((clks) << 0x0 ))); |
| 1095 | } |
| 1096 | } |
| 1097 | |
| 1098 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,(((mclk_pwrmgt_cntl) & ~0x1f) | (0x1f & ((mpll_param. dll_speed) << 0x0))) |
| 1099 | MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed)(((mclk_pwrmgt_cntl) & ~0x1f) | (0x1f & ((mpll_param. dll_speed) << 0x0))); |
| 1100 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,(((mclk_pwrmgt_cntl) & ~0x100) | (0x100 & ((dllStateOn ) << 0x8))) |
| 1101 | MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn)(((mclk_pwrmgt_cntl) & ~0x100) | (0x100 & ((dllStateOn ) << 0x8))); |
| 1102 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,(((mclk_pwrmgt_cntl) & ~0x200) | (0x200 & ((dllStateOn ) << 0x9))) |
| 1103 | MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn)(((mclk_pwrmgt_cntl) & ~0x200) | (0x200 & ((dllStateOn ) << 0x9))); |
| 1104 | |
| 1105 | |
| 1106 | mclk->MclkFrequency = memory_clock; |
| 1107 | mclk->MpllFuncCntl = mpll_func_cntl; |
| 1108 | mclk->MpllFuncCntl_1 = mpll_func_cntl_1; |
| 1109 | mclk->MpllFuncCntl_2 = mpll_func_cntl_2; |
| 1110 | mclk->MpllAdFuncCntl = mpll_ad_func_cntl; |
| 1111 | mclk->MpllDqFuncCntl = mpll_dq_func_cntl; |
| 1112 | mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl; |
| 1113 | mclk->DllCntl = dll_cntl; |
| 1114 | mclk->MpllSs1 = mpll_ss1; |
| 1115 | mclk->MpllSs2 = mpll_ss2; |
| 1116 | |
| 1117 | return 0; |
| 1118 | } |
| 1119 | |
| 1120 | static uint8_t ci_get_mclk_frequency_ratio(uint32_t memory_clock, |
| 1121 | bool_Bool strobe_mode) |
| 1122 | { |
| 1123 | uint8_t mc_para_index; |
| 1124 | |
| 1125 | if (strobe_mode) { |
| 1126 | if (memory_clock < 12500) |
| 1127 | mc_para_index = 0x00; |
| 1128 | else if (memory_clock > 47500) |
| 1129 | mc_para_index = 0x0f; |
| 1130 | else |
| 1131 | mc_para_index = (uint8_t)((memory_clock - 10000) / 2500); |
| 1132 | } else { |
| 1133 | if (memory_clock < 65000) |
| 1134 | mc_para_index = 0x00; |
| 1135 | else if (memory_clock > 135000) |
| 1136 | mc_para_index = 0x0f; |
| 1137 | else |
| 1138 | mc_para_index = (uint8_t)((memory_clock - 60000) / 5000); |
| 1139 | } |
| 1140 | |
| 1141 | return mc_para_index; |
| 1142 | } |
| 1143 | |
| 1144 | static uint8_t ci_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock) |
| 1145 | { |
| 1146 | uint8_t mc_para_index; |
| 1147 | |
| 1148 | if (memory_clock < 10000) |
| 1149 | mc_para_index = 0; |
| 1150 | else if (memory_clock >= 80000) |
| 1151 | mc_para_index = 0x0f; |
| 1152 | else |
| 1153 | mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1); |
| 1154 | |
| 1155 | return mc_para_index; |
| 1156 | } |
| 1157 | |
| 1158 | static int ci_populate_phase_value_based_on_mclk(struct pp_hwmgr *hwmgr, const struct phm_phase_shedding_limits_table *pl, |
| 1159 | uint32_t memory_clock, uint32_t *p_shed) |
| 1160 | { |
| 1161 | unsigned int i; |
| 1162 | |
| 1163 | *p_shed = 1; |
| 1164 | |
| 1165 | for (i = 0; i < pl->count; i++) { |
| 1166 | if (memory_clock < pl->entries[i].Mclk) { |
| 1167 | *p_shed = i; |
| 1168 | break; |
| 1169 | } |
| 1170 | } |
| 1171 | |
| 1172 | return 0; |
| 1173 | } |
| 1174 | |
| 1175 | static int ci_populate_single_memory_level( |
| 1176 | struct pp_hwmgr *hwmgr, |
| 1177 | uint32_t memory_clock, |
| 1178 | SMU7_Discrete_MemoryLevel *memory_level |
| 1179 | ) |
| 1180 | { |
| 1181 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 1182 | int result = 0; |
| 1183 | bool_Bool dll_state_on; |
| 1184 | uint32_t mclk_edc_wr_enable_threshold = 40000; |
| 1185 | uint32_t mclk_edc_enable_threshold = 40000; |
| 1186 | uint32_t mclk_strobe_mode_threshold = 40000; |
| 1187 | |
| 1188 | if (hwmgr->dyn_state.vddc_dependency_on_mclk != NULL((void *)0)) { |
| 1189 | result = ci_get_dependency_volt_by_clk(hwmgr, |
| 1190 | hwmgr->dyn_state.vddc_dependency_on_mclk, memory_clock, &memory_level->MinVddc); |
| 1191 | PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "can not find MinVddc voltage value from memory VDDC voltage dependency table" ); return result; } } while (0) |
| 1192 | "can not find MinVddc voltage value from memory VDDC voltage dependency table", return result)do { if (!((0 == result))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "can not find MinVddc voltage value from memory VDDC voltage dependency table" ); return result; } } while (0); |
| 1193 | } |
| 1194 | |
| 1195 | if (NULL((void *)0) != hwmgr->dyn_state.vddci_dependency_on_mclk) { |
| 1196 | result = ci_get_dependency_volt_by_clk(hwmgr, |
| 1197 | hwmgr->dyn_state.vddci_dependency_on_mclk, |
| 1198 | memory_clock, |
| 1199 | &memory_level->MinVddci); |
| 1200 | PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "can not find MinVddci voltage value from memory VDDCI voltage dependency table" ); return result; } } while (0) |
| 1201 | "can not find MinVddci voltage value from memory VDDCI voltage dependency table", return result)do { if (!((0 == result))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "can not find MinVddci voltage value from memory VDDCI voltage dependency table" ); return result; } } while (0); |
| 1202 | } |
| 1203 | |
| 1204 | if (NULL((void *)0) != hwmgr->dyn_state.mvdd_dependency_on_mclk) { |
| 1205 | result = ci_get_dependency_volt_by_clk(hwmgr, |
| 1206 | hwmgr->dyn_state.mvdd_dependency_on_mclk, |
| 1207 | memory_clock, |
| 1208 | &memory_level->MinMvdd); |
| 1209 | PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "can not find MinVddci voltage value from memory MVDD voltage dependency table" ); return result; } } while (0) |
| 1210 | "can not find MinVddci voltage value from memory MVDD voltage dependency table", return result)do { if (!((0 == result))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "can not find MinVddci voltage value from memory MVDD voltage dependency table" ); return result; } } while (0); |
| 1211 | } |
| 1212 | |
| 1213 | memory_level->MinVddcPhases = 1; |
| 1214 | |
| 1215 | if (data->vddc_phase_shed_control) { |
| 1216 | ci_populate_phase_value_based_on_mclk(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table, |
| 1217 | memory_clock, &memory_level->MinVddcPhases); |
| 1218 | } |
| 1219 | |
| 1220 | memory_level->EnabledForThrottle = 1; |
| 1221 | memory_level->EnabledForActivity = 1; |
| 1222 | memory_level->UpH = data->current_profile_setting.mclk_up_hyst; |
| 1223 | memory_level->DownH = data->current_profile_setting.mclk_down_hyst; |
| 1224 | memory_level->VoltageDownH = 0; |
| 1225 | |
| 1226 | /* Indicates maximum activity level for this performance level.*/ |
| 1227 | memory_level->ActivityLevel = data->current_profile_setting.mclk_activity; |
| 1228 | memory_level->StutterEnable = 0; |
| 1229 | memory_level->StrobeEnable = 0; |
| 1230 | memory_level->EdcReadEnable = 0; |
| 1231 | memory_level->EdcWriteEnable = 0; |
| 1232 | memory_level->RttEnable = 0; |
| 1233 | |
| 1234 | /* default set to low watermark. Highest level will be set to high later.*/ |
| 1235 | memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW0; |
| 1236 | |
| 1237 | data->display_timing.num_existing_displays = hwmgr->display_config->num_display; |
| 1238 | data->display_timing.vrefresh = hwmgr->display_config->vrefresh; |
| 1239 | |
| 1240 | /* stutter mode not support on ci */ |
| 1241 | |
| 1242 | /* decide strobe mode*/ |
| 1243 | memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) && |
| 1244 | (memory_clock <= mclk_strobe_mode_threshold); |
| 1245 | |
| 1246 | /* decide EDC mode and memory clock ratio*/ |
| 1247 | if (data->is_memory_gddr5) { |
| 1248 | memory_level->StrobeRatio = ci_get_mclk_frequency_ratio(memory_clock, |
| 1249 | memory_level->StrobeEnable); |
| 1250 | |
| 1251 | if ((mclk_edc_enable_threshold != 0) && |
| 1252 | (memory_clock > mclk_edc_enable_threshold)) { |
| 1253 | memory_level->EdcReadEnable = 1; |
| 1254 | } |
| 1255 | |
| 1256 | if ((mclk_edc_wr_enable_threshold != 0) && |
| 1257 | (memory_clock > mclk_edc_wr_enable_threshold)) { |
| 1258 | memory_level->EdcWriteEnable = 1; |
| 1259 | } |
| 1260 | |
| 1261 | if (memory_level->StrobeEnable) { |
| 1262 | if (ci_get_mclk_frequency_ratio(memory_clock, 1) >= |
| 1263 | ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0xa99)) >> 16) & 0xf)) |
| 1264 | dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0xa95)) >> 1) & 0x1) ? 1 : 0; |
| 1265 | else |
| 1266 | dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0xa96)) >> 1) & 0x1) ? 1 : 0; |
| 1267 | } else |
| 1268 | dll_state_on = data->dll_default_on; |
| 1269 | } else { |
| 1270 | memory_level->StrobeRatio = |
| 1271 | ci_get_ddr3_mclk_frequency_ratio(memory_clock); |
| 1272 | dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0xa95)) >> 1) & 0x1) ? 1 : 0; |
| 1273 | } |
| 1274 | |
| 1275 | result = ci_calculate_mclk_params(hwmgr, |
| 1276 | memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on); |
| 1277 | |
| 1278 | if (0 == result) { |
| 1279 | memory_level->MinVddc = PP_HOST_TO_SMC_UL(memory_level->MinVddc * VOLTAGE_SCALE)(__uint32_t)(__builtin_constant_p(memory_level->MinVddc * 4 ) ? (__uint32_t)(((__uint32_t)(memory_level->MinVddc * 4) & 0xff) << 24 | ((__uint32_t)(memory_level->MinVddc * 4) & 0xff00) << 8 | ((__uint32_t)(memory_level-> MinVddc * 4) & 0xff0000) >> 8 | ((__uint32_t)(memory_level ->MinVddc * 4) & 0xff000000) >> 24) : __swap32md (memory_level->MinVddc * 4)); |
| 1280 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinVddcPhases)((memory_level->MinVddcPhases) = (__uint32_t)(__builtin_constant_p (memory_level->MinVddcPhases) ? (__uint32_t)(((__uint32_t) (memory_level->MinVddcPhases) & 0xff) << 24 | (( __uint32_t)(memory_level->MinVddcPhases) & 0xff00) << 8 | ((__uint32_t)(memory_level->MinVddcPhases) & 0xff0000 ) >> 8 | ((__uint32_t)(memory_level->MinVddcPhases) & 0xff000000) >> 24) : __swap32md(memory_level->MinVddcPhases ))); |
| 1281 | memory_level->MinVddci = PP_HOST_TO_SMC_UL(memory_level->MinVddci * VOLTAGE_SCALE)(__uint32_t)(__builtin_constant_p(memory_level->MinVddci * 4) ? (__uint32_t)(((__uint32_t)(memory_level->MinVddci * 4 ) & 0xff) << 24 | ((__uint32_t)(memory_level->MinVddci * 4) & 0xff00) << 8 | ((__uint32_t)(memory_level-> MinVddci * 4) & 0xff0000) >> 8 | ((__uint32_t)(memory_level ->MinVddci * 4) & 0xff000000) >> 24) : __swap32md (memory_level->MinVddci * 4)); |
| 1282 | memory_level->MinMvdd = PP_HOST_TO_SMC_UL(memory_level->MinMvdd * VOLTAGE_SCALE)(__uint32_t)(__builtin_constant_p(memory_level->MinMvdd * 4 ) ? (__uint32_t)(((__uint32_t)(memory_level->MinMvdd * 4) & 0xff) << 24 | ((__uint32_t)(memory_level->MinMvdd * 4) & 0xff00) << 8 | ((__uint32_t)(memory_level-> MinMvdd * 4) & 0xff0000) >> 8 | ((__uint32_t)(memory_level ->MinMvdd * 4) & 0xff000000) >> 24) : __swap32md (memory_level->MinMvdd * 4)); |
| 1283 | /* MCLK frequency in units of 10KHz*/ |
| 1284 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency)((memory_level->MclkFrequency) = (__uint32_t)(__builtin_constant_p (memory_level->MclkFrequency) ? (__uint32_t)(((__uint32_t) (memory_level->MclkFrequency) & 0xff) << 24 | (( __uint32_t)(memory_level->MclkFrequency) & 0xff00) << 8 | ((__uint32_t)(memory_level->MclkFrequency) & 0xff0000 ) >> 8 | ((__uint32_t)(memory_level->MclkFrequency) & 0xff000000) >> 24) : __swap32md(memory_level->MclkFrequency ))); |
| 1285 | /* Indicates maximum activity level for this performance level.*/ |
| 1286 | CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel)((memory_level->ActivityLevel) = (__uint16_t)(__builtin_constant_p (memory_level->ActivityLevel) ? (__uint16_t)(((__uint16_t) (memory_level->ActivityLevel) & 0xffU) << 8 | (( __uint16_t)(memory_level->ActivityLevel) & 0xff00U) >> 8) : __swap16md(memory_level->ActivityLevel))); |
| 1287 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl)((memory_level->MpllFuncCntl) = (__uint32_t)(__builtin_constant_p (memory_level->MpllFuncCntl) ? (__uint32_t)(((__uint32_t)( memory_level->MpllFuncCntl) & 0xff) << 24 | ((__uint32_t )(memory_level->MpllFuncCntl) & 0xff00) << 8 | ( (__uint32_t)(memory_level->MpllFuncCntl) & 0xff0000) >> 8 | ((__uint32_t)(memory_level->MpllFuncCntl) & 0xff000000 ) >> 24) : __swap32md(memory_level->MpllFuncCntl))); |
| 1288 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1)((memory_level->MpllFuncCntl_1) = (__uint32_t)(__builtin_constant_p (memory_level->MpllFuncCntl_1) ? (__uint32_t)(((__uint32_t )(memory_level->MpllFuncCntl_1) & 0xff) << 24 | ( (__uint32_t)(memory_level->MpllFuncCntl_1) & 0xff00) << 8 | ((__uint32_t)(memory_level->MpllFuncCntl_1) & 0xff0000 ) >> 8 | ((__uint32_t)(memory_level->MpllFuncCntl_1) & 0xff000000) >> 24) : __swap32md(memory_level-> MpllFuncCntl_1))); |
| 1289 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2)((memory_level->MpllFuncCntl_2) = (__uint32_t)(__builtin_constant_p (memory_level->MpllFuncCntl_2) ? (__uint32_t)(((__uint32_t )(memory_level->MpllFuncCntl_2) & 0xff) << 24 | ( (__uint32_t)(memory_level->MpllFuncCntl_2) & 0xff00) << 8 | ((__uint32_t)(memory_level->MpllFuncCntl_2) & 0xff0000 ) >> 8 | ((__uint32_t)(memory_level->MpllFuncCntl_2) & 0xff000000) >> 24) : __swap32md(memory_level-> MpllFuncCntl_2))); |
| 1290 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl)((memory_level->MpllAdFuncCntl) = (__uint32_t)(__builtin_constant_p (memory_level->MpllAdFuncCntl) ? (__uint32_t)(((__uint32_t )(memory_level->MpllAdFuncCntl) & 0xff) << 24 | ( (__uint32_t)(memory_level->MpllAdFuncCntl) & 0xff00) << 8 | ((__uint32_t)(memory_level->MpllAdFuncCntl) & 0xff0000 ) >> 8 | ((__uint32_t)(memory_level->MpllAdFuncCntl) & 0xff000000) >> 24) : __swap32md(memory_level-> MpllAdFuncCntl))); |
| 1291 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl)((memory_level->MpllDqFuncCntl) = (__uint32_t)(__builtin_constant_p (memory_level->MpllDqFuncCntl) ? (__uint32_t)(((__uint32_t )(memory_level->MpllDqFuncCntl) & 0xff) << 24 | ( (__uint32_t)(memory_level->MpllDqFuncCntl) & 0xff00) << 8 | ((__uint32_t)(memory_level->MpllDqFuncCntl) & 0xff0000 ) >> 8 | ((__uint32_t)(memory_level->MpllDqFuncCntl) & 0xff000000) >> 24) : __swap32md(memory_level-> MpllDqFuncCntl))); |
| 1292 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl)((memory_level->MclkPwrmgtCntl) = (__uint32_t)(__builtin_constant_p (memory_level->MclkPwrmgtCntl) ? (__uint32_t)(((__uint32_t )(memory_level->MclkPwrmgtCntl) & 0xff) << 24 | ( (__uint32_t)(memory_level->MclkPwrmgtCntl) & 0xff00) << 8 | ((__uint32_t)(memory_level->MclkPwrmgtCntl) & 0xff0000 ) >> 8 | ((__uint32_t)(memory_level->MclkPwrmgtCntl) & 0xff000000) >> 24) : __swap32md(memory_level-> MclkPwrmgtCntl))); |
| 1293 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl)((memory_level->DllCntl) = (__uint32_t)(__builtin_constant_p (memory_level->DllCntl) ? (__uint32_t)(((__uint32_t)(memory_level ->DllCntl) & 0xff) << 24 | ((__uint32_t)(memory_level ->DllCntl) & 0xff00) << 8 | ((__uint32_t)(memory_level ->DllCntl) & 0xff0000) >> 8 | ((__uint32_t)(memory_level ->DllCntl) & 0xff000000) >> 24) : __swap32md(memory_level ->DllCntl))); |
| 1294 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1)((memory_level->MpllSs1) = (__uint32_t)(__builtin_constant_p (memory_level->MpllSs1) ? (__uint32_t)(((__uint32_t)(memory_level ->MpllSs1) & 0xff) << 24 | ((__uint32_t)(memory_level ->MpllSs1) & 0xff00) << 8 | ((__uint32_t)(memory_level ->MpllSs1) & 0xff0000) >> 8 | ((__uint32_t)(memory_level ->MpllSs1) & 0xff000000) >> 24) : __swap32md(memory_level ->MpllSs1))); |
| 1295 | CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2)((memory_level->MpllSs2) = (__uint32_t)(__builtin_constant_p (memory_level->MpllSs2) ? (__uint32_t)(((__uint32_t)(memory_level ->MpllSs2) & 0xff) << 24 | ((__uint32_t)(memory_level ->MpllSs2) & 0xff00) << 8 | ((__uint32_t)(memory_level ->MpllSs2) & 0xff0000) >> 8 | ((__uint32_t)(memory_level ->MpllSs2) & 0xff000000) >> 24) : __swap32md(memory_level ->MpllSs2))); |
| 1296 | } |
| 1297 | |
| 1298 | return result; |
| 1299 | } |
| 1300 | |
| 1301 | static int ci_populate_all_memory_levels(struct pp_hwmgr *hwmgr) |
| 1302 | { |
| 1303 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 1304 | struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| 1305 | struct smu7_dpm_table *dpm_table = &data->dpm_table; |
| 1306 | int result; |
| 1307 | struct amdgpu_device *adev = hwmgr->adev; |
| 1308 | uint32_t dev_id; |
| 1309 | |
| 1310 | uint32_t level_array_address = smu_data->dpm_table_start + offsetof(SMU7_Discrete_DpmTable, MemoryLevel)__builtin_offsetof(SMU7_Discrete_DpmTable, MemoryLevel); |
| 1311 | uint32_t level_array_size = sizeof(SMU7_Discrete_MemoryLevel) * SMU7_MAX_LEVELS_MEMORY6; |
| 1312 | SMU7_Discrete_MemoryLevel *levels = smu_data->smc_state_table.MemoryLevel; |
| 1313 | uint32_t i; |
| 1314 | |
| 1315 | memset(levels, 0x00, level_array_size)__builtin_memset((levels), (0x00), (level_array_size)); |
| 1316 | |
| 1317 | for (i = 0; i < dpm_table->mclk_table.count; i++) { |
| 1318 | PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),do { if (!((0 != dpm_table->mclk_table.dpm_levels[i].value ))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "can not populate memory level as memory clock is zero" ); return -22; } } while (0) |
| 1319 | "can not populate memory level as memory clock is zero", return -EINVAL)do { if (!((0 != dpm_table->mclk_table.dpm_levels[i].value ))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "can not populate memory level as memory clock is zero" ); return -22; } } while (0); |
| 1320 | result = ci_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value, |
| 1321 | &(smu_data->smc_state_table.MemoryLevel[i])); |
| 1322 | if (0 != result) |
| 1323 | return result; |
| 1324 | } |
| 1325 | |
| 1326 | smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1; |
| 1327 | |
| 1328 | dev_id = adev->pdev->device; |
| 1329 | |
| 1330 | if ((dpm_table->mclk_table.count >= 2) |
| 1331 | && ((dev_id == 0x67B0) || (dev_id == 0x67B1))) { |
| 1332 | smu_data->smc_state_table.MemoryLevel[1].MinVddci = |
| 1333 | smu_data->smc_state_table.MemoryLevel[0].MinVddci; |
| 1334 | smu_data->smc_state_table.MemoryLevel[1].MinMvdd = |
| 1335 | smu_data->smc_state_table.MemoryLevel[0].MinMvdd; |
| 1336 | } |
| 1337 | smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F; |
| 1338 | CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel)((smu_data->smc_state_table.MemoryLevel[0].ActivityLevel) = (__uint16_t)(__builtin_constant_p(smu_data->smc_state_table .MemoryLevel[0].ActivityLevel) ? (__uint16_t)(((__uint16_t)(smu_data ->smc_state_table.MemoryLevel[0].ActivityLevel) & 0xffU ) << 8 | ((__uint16_t)(smu_data->smc_state_table.MemoryLevel [0].ActivityLevel) & 0xff00U) >> 8) : __swap16md(smu_data ->smc_state_table.MemoryLevel[0].ActivityLevel))); |
| 1339 | |
| 1340 | smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count; |
| 1341 | data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table); |
| 1342 | smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH1; |
| 1343 | |
| 1344 | result = ci_copy_bytes_to_smc(hwmgr, |
| 1345 | level_array_address, (uint8_t *)levels, (uint32_t)level_array_size, |
| 1346 | SMC_RAM_END0x40000); |
| 1347 | |
| 1348 | return result; |
| 1349 | } |
| 1350 | |
| 1351 | static int ci_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk, |
| 1352 | SMU7_Discrete_VoltageLevel *voltage) |
| 1353 | { |
| 1354 | const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 1355 | |
| 1356 | uint32_t i = 0; |
| 1357 | |
| 1358 | if (SMU7_VOLTAGE_CONTROL_NONE0x0 != data->mvdd_control) { |
| 1359 | /* find mvdd value which clock is more than request */ |
| 1360 | for (i = 0; i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count; i++) { |
| 1361 | if (mclk <= hwmgr->dyn_state.mvdd_dependency_on_mclk->entries[i].clk) { |
| 1362 | /* Always round to higher voltage. */ |
| 1363 | voltage->Voltage = data->mvdd_voltage_table.entries[i].value; |
| 1364 | break; |
| 1365 | } |
| 1366 | } |
| 1367 | |
| 1368 | PP_ASSERT_WITH_CODE(i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count,do { if (!(i < hwmgr->dyn_state.mvdd_dependency_on_mclk ->count)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "MVDD Voltage is outside the supported range." ); return -22; } } while (0) |
| 1369 | "MVDD Voltage is outside the supported range.", return -EINVAL)do { if (!(i < hwmgr->dyn_state.mvdd_dependency_on_mclk ->count)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "MVDD Voltage is outside the supported range." ); return -22; } } while (0); |
| 1370 | |
| 1371 | } else { |
| 1372 | return -EINVAL22; |
| 1373 | } |
| 1374 | |
| 1375 | return 0; |
| 1376 | } |
| 1377 | |
| 1378 | static int ci_populate_smc_acpi_level(struct pp_hwmgr *hwmgr, |
| 1379 | SMU7_Discrete_DpmTable *table) |
| 1380 | { |
| 1381 | int result = 0; |
| 1382 | const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 1383 | struct pp_atomctrl_clock_dividers_vi dividers; |
| 1384 | |
| 1385 | SMU7_Discrete_VoltageLevel voltage_level; |
| 1386 | uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; |
| 1387 | uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2; |
| 1388 | uint32_t dll_cntl = data->clock_registers.vDLL_CNTL; |
| 1389 | uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL; |
| 1390 | |
| 1391 | |
| 1392 | /* The ACPI state should not do DPM on DC (or ever).*/ |
| 1393 | table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC0x01; |
| 1394 | |
| 1395 | if (data->acpi_vddc) |
| 1396 | table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->acpi_vddc * VOLTAGE_SCALE)(__uint32_t)(__builtin_constant_p(data->acpi_vddc * 4) ? ( __uint32_t)(((__uint32_t)(data->acpi_vddc * 4) & 0xff) << 24 | ((__uint32_t)(data->acpi_vddc * 4) & 0xff00 ) << 8 | ((__uint32_t)(data->acpi_vddc * 4) & 0xff0000 ) >> 8 | ((__uint32_t)(data->acpi_vddc * 4) & 0xff000000 ) >> 24) : __swap32md(data->acpi_vddc * 4)); |
| 1397 | else |
| 1398 | table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->min_vddc_in_pptable * VOLTAGE_SCALE)(__uint32_t)(__builtin_constant_p(data->min_vddc_in_pptable * 4) ? (__uint32_t)(((__uint32_t)(data->min_vddc_in_pptable * 4) & 0xff) << 24 | ((__uint32_t)(data->min_vddc_in_pptable * 4) & 0xff00) << 8 | ((__uint32_t)(data->min_vddc_in_pptable * 4) & 0xff0000) >> 8 | ((__uint32_t)(data->min_vddc_in_pptable * 4) & 0xff000000) >> 24) : __swap32md(data->min_vddc_in_pptable * 4)); |
| 1399 | |
| 1400 | table->ACPILevel.MinVddcPhases = data->vddc_phase_shed_control ? 0 : 1; |
| 1401 | /* assign zero for now*/ |
| 1402 | table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr); |
| 1403 | |
| 1404 | /* get the engine clock dividers for this clock value*/ |
| 1405 | result = atomctrl_get_engine_pll_dividers_vi(hwmgr, |
| 1406 | table->ACPILevel.SclkFrequency, ÷rs); |
| 1407 | |
| 1408 | PP_ASSERT_WITH_CODE(result == 0,do { if (!(result == 0)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Error retrieving Engine Clock dividers from VBIOS." ); return result; } } while (0) |
| 1409 | "Error retrieving Engine Clock dividers from VBIOS.", return result)do { if (!(result == 0)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Error retrieving Engine Clock dividers from VBIOS." ); return result; } } while (0); |
| 1410 | |
| 1411 | /* divider ID for required SCLK*/ |
| 1412 | table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider; |
| 1413 | table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW0; |
| 1414 | table->ACPILevel.DeepSleepDivId = 0; |
| 1415 | |
| 1416 | spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,(((spll_func_cntl) & ~0x2) | (0x2 & ((0) << 0x1 ))) |
| 1417 | CG_SPLL_FUNC_CNTL, SPLL_PWRON, 0)(((spll_func_cntl) & ~0x2) | (0x2 & ((0) << 0x1 ))); |
| 1418 | spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,(((spll_func_cntl) & ~0x1) | (0x1 & ((1) << 0x0 ))) |
| 1419 | CG_SPLL_FUNC_CNTL, SPLL_RESET, 1)(((spll_func_cntl) & ~0x1) | (0x1 & ((1) << 0x0 ))); |
| 1420 | spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2,(((spll_func_cntl_2) & ~0x1ff) | (0x1ff & ((4) << 0x0))) |
| 1421 | CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL, 4)(((spll_func_cntl_2) & ~0x1ff) | (0x1ff & ((4) << 0x0))); |
| 1422 | |
| 1423 | table->ACPILevel.CgSpllFuncCntl = spll_func_cntl; |
| 1424 | table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2; |
| 1425 | table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; |
| 1426 | table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; |
| 1427 | table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; |
| 1428 | table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; |
| 1429 | table->ACPILevel.CcPwrDynRm = 0; |
| 1430 | table->ACPILevel.CcPwrDynRm1 = 0; |
| 1431 | |
| 1432 | /* For various features to be enabled/disabled while this level is active.*/ |
| 1433 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags)((table->ACPILevel.Flags) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.Flags) ? (__uint32_t)(((__uint32_t)(table ->ACPILevel.Flags) & 0xff) << 24 | ((__uint32_t) (table->ACPILevel.Flags) & 0xff00) << 8 | ((__uint32_t )(table->ACPILevel.Flags) & 0xff0000) >> 8 | ((__uint32_t )(table->ACPILevel.Flags) & 0xff000000) >> 24) : __swap32md(table->ACPILevel.Flags))); |
| 1434 | /* SCLK frequency in units of 10KHz*/ |
| 1435 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency)((table->ACPILevel.SclkFrequency) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.SclkFrequency) ? (__uint32_t)(((__uint32_t )(table->ACPILevel.SclkFrequency) & 0xff) << 24 | ((__uint32_t)(table->ACPILevel.SclkFrequency) & 0xff00 ) << 8 | ((__uint32_t)(table->ACPILevel.SclkFrequency ) & 0xff0000) >> 8 | ((__uint32_t)(table->ACPILevel .SclkFrequency) & 0xff000000) >> 24) : __swap32md(table ->ACPILevel.SclkFrequency))); |
| 1436 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl)((table->ACPILevel.CgSpllFuncCntl) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.CgSpllFuncCntl) ? (__uint32_t)(((__uint32_t )(table->ACPILevel.CgSpllFuncCntl) & 0xff) << 24 | ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl) & 0xff00 ) << 8 | ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl ) & 0xff0000) >> 8 | ((__uint32_t)(table->ACPILevel .CgSpllFuncCntl) & 0xff000000) >> 24) : __swap32md( table->ACPILevel.CgSpllFuncCntl))); |
| 1437 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2)((table->ACPILevel.CgSpllFuncCntl2) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.CgSpllFuncCntl2) ? (__uint32_t)(((__uint32_t )(table->ACPILevel.CgSpllFuncCntl2) & 0xff) << 24 | ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl2) & 0xff00 ) << 8 | ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl2 ) & 0xff0000) >> 8 | ((__uint32_t)(table->ACPILevel .CgSpllFuncCntl2) & 0xff000000) >> 24) : __swap32md (table->ACPILevel.CgSpllFuncCntl2))); |
| 1438 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3)((table->ACPILevel.CgSpllFuncCntl3) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.CgSpllFuncCntl3) ? (__uint32_t)(((__uint32_t )(table->ACPILevel.CgSpllFuncCntl3) & 0xff) << 24 | ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl3) & 0xff00 ) << 8 | ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl3 ) & 0xff0000) >> 8 | ((__uint32_t)(table->ACPILevel .CgSpllFuncCntl3) & 0xff000000) >> 24) : __swap32md (table->ACPILevel.CgSpllFuncCntl3))); |
| 1439 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4)((table->ACPILevel.CgSpllFuncCntl4) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.CgSpllFuncCntl4) ? (__uint32_t)(((__uint32_t )(table->ACPILevel.CgSpllFuncCntl4) & 0xff) << 24 | ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl4) & 0xff00 ) << 8 | ((__uint32_t)(table->ACPILevel.CgSpllFuncCntl4 ) & 0xff0000) >> 8 | ((__uint32_t)(table->ACPILevel .CgSpllFuncCntl4) & 0xff000000) >> 24) : __swap32md (table->ACPILevel.CgSpllFuncCntl4))); |
| 1440 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum)((table->ACPILevel.SpllSpreadSpectrum) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.SpllSpreadSpectrum) ? (__uint32_t)(((__uint32_t )(table->ACPILevel.SpllSpreadSpectrum) & 0xff) << 24 | ((__uint32_t)(table->ACPILevel.SpllSpreadSpectrum) & 0xff00) << 8 | ((__uint32_t)(table->ACPILevel.SpllSpreadSpectrum ) & 0xff0000) >> 8 | ((__uint32_t)(table->ACPILevel .SpllSpreadSpectrum) & 0xff000000) >> 24) : __swap32md (table->ACPILevel.SpllSpreadSpectrum))); |
| 1441 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2)((table->ACPILevel.SpllSpreadSpectrum2) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.SpllSpreadSpectrum2) ? (__uint32_t)(((__uint32_t )(table->ACPILevel.SpllSpreadSpectrum2) & 0xff) << 24 | ((__uint32_t)(table->ACPILevel.SpllSpreadSpectrum2) & 0xff00) << 8 | ((__uint32_t)(table->ACPILevel.SpllSpreadSpectrum2 ) & 0xff0000) >> 8 | ((__uint32_t)(table->ACPILevel .SpllSpreadSpectrum2) & 0xff000000) >> 24) : __swap32md (table->ACPILevel.SpllSpreadSpectrum2))); |
| 1442 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm)((table->ACPILevel.CcPwrDynRm) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.CcPwrDynRm) ? (__uint32_t)(((__uint32_t) (table->ACPILevel.CcPwrDynRm) & 0xff) << 24 | (( __uint32_t)(table->ACPILevel.CcPwrDynRm) & 0xff00) << 8 | ((__uint32_t)(table->ACPILevel.CcPwrDynRm) & 0xff0000 ) >> 8 | ((__uint32_t)(table->ACPILevel.CcPwrDynRm) & 0xff000000) >> 24) : __swap32md(table->ACPILevel.CcPwrDynRm ))); |
| 1443 | CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1)((table->ACPILevel.CcPwrDynRm1) = (__uint32_t)(__builtin_constant_p (table->ACPILevel.CcPwrDynRm1) ? (__uint32_t)(((__uint32_t )(table->ACPILevel.CcPwrDynRm1) & 0xff) << 24 | ( (__uint32_t)(table->ACPILevel.CcPwrDynRm1) & 0xff00) << 8 | ((__uint32_t)(table->ACPILevel.CcPwrDynRm1) & 0xff0000 ) >> 8 | ((__uint32_t)(table->ACPILevel.CcPwrDynRm1) & 0xff000000) >> 24) : __swap32md(table->ACPILevel .CcPwrDynRm1))); |
| 1444 | |
| 1445 | |
| 1446 | /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/ |
| 1447 | table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc; |
| 1448 | table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases; |
| 1449 | |
| 1450 | if (SMU7_VOLTAGE_CONTROL_NONE0x0 == data->vddci_control) |
| 1451 | table->MemoryACPILevel.MinVddci = table->MemoryACPILevel.MinVddc; |
| 1452 | else { |
| 1453 | if (data->acpi_vddci != 0) |
| 1454 | table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->acpi_vddci * VOLTAGE_SCALE)(__uint32_t)(__builtin_constant_p(data->acpi_vddci * 4) ? ( __uint32_t)(((__uint32_t)(data->acpi_vddci * 4) & 0xff ) << 24 | ((__uint32_t)(data->acpi_vddci * 4) & 0xff00 ) << 8 | ((__uint32_t)(data->acpi_vddci * 4) & 0xff0000 ) >> 8 | ((__uint32_t)(data->acpi_vddci * 4) & 0xff000000 ) >> 24) : __swap32md(data->acpi_vddci * 4)); |
| 1455 | else |
| 1456 | table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->min_vddci_in_pptable * VOLTAGE_SCALE)(__uint32_t)(__builtin_constant_p(data->min_vddci_in_pptable * 4) ? (__uint32_t)(((__uint32_t)(data->min_vddci_in_pptable * 4) & 0xff) << 24 | ((__uint32_t)(data->min_vddci_in_pptable * 4) & 0xff00) << 8 | ((__uint32_t)(data->min_vddci_in_pptable * 4) & 0xff0000) >> 8 | ((__uint32_t)(data->min_vddci_in_pptable * 4) & 0xff000000) >> 24) : __swap32md(data->min_vddci_in_pptable * 4)); |
| 1457 | } |
| 1458 | |
| 1459 | if (0 == ci_populate_mvdd_value(hwmgr, 0, &voltage_level)) |
| 1460 | table->MemoryACPILevel.MinMvdd = |
| 1461 | PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE)(__uint32_t)(__builtin_constant_p(voltage_level.Voltage * 4) ? (__uint32_t)(((__uint32_t)(voltage_level.Voltage * 4) & 0xff ) << 24 | ((__uint32_t)(voltage_level.Voltage * 4) & 0xff00) << 8 | ((__uint32_t)(voltage_level.Voltage * 4 ) & 0xff0000) >> 8 | ((__uint32_t)(voltage_level.Voltage * 4) & 0xff000000) >> 24) : __swap32md(voltage_level .Voltage * 4)); |
| 1462 | else |
| 1463 | table->MemoryACPILevel.MinMvdd = 0; |
| 1464 | |
| 1465 | /* Force reset on DLL*/ |
| 1466 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,(((mclk_pwrmgt_cntl) & ~0x10000) | (0x10000 & ((0x1) << 0x10))) |
| 1467 | MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1)(((mclk_pwrmgt_cntl) & ~0x10000) | (0x10000 & ((0x1) << 0x10))); |
| 1468 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,(((mclk_pwrmgt_cntl) & ~0x20000) | (0x20000 & ((0x1) << 0x11))) |
| 1469 | MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1)(((mclk_pwrmgt_cntl) & ~0x20000) | (0x20000 & ((0x1) << 0x11))); |
| 1470 | |
| 1471 | /* Disable DLL in ACPIState*/ |
| 1472 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,(((mclk_pwrmgt_cntl) & ~0x100) | (0x100 & ((0) << 0x8))) |
| 1473 | MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0)(((mclk_pwrmgt_cntl) & ~0x100) | (0x100 & ((0) << 0x8))); |
| 1474 | mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,(((mclk_pwrmgt_cntl) & ~0x200) | (0x200 & ((0) << 0x9))) |
| 1475 | MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0)(((mclk_pwrmgt_cntl) & ~0x200) | (0x200 & ((0) << 0x9))); |
| 1476 | |
| 1477 | /* Enable DLL bypass signal*/ |
| 1478 | dll_cntl = PHM_SET_FIELD(dll_cntl,(((dll_cntl) & ~0x1000000) | (0x1000000 & ((0) << 0x18))) |
| 1479 | DLL_CNTL, MRDCK0_BYPASS, 0)(((dll_cntl) & ~0x1000000) | (0x1000000 & ((0) << 0x18))); |
| 1480 | dll_cntl = PHM_SET_FIELD(dll_cntl,(((dll_cntl) & ~0x2000000) | (0x2000000 & ((0) << 0x19))) |
| 1481 | DLL_CNTL, MRDCK1_BYPASS, 0)(((dll_cntl) & ~0x2000000) | (0x2000000 & ((0) << 0x19))); |
| 1482 | |
| 1483 | table->MemoryACPILevel.DllCntl = |
| 1484 | PP_HOST_TO_SMC_UL(dll_cntl)(__uint32_t)(__builtin_constant_p(dll_cntl) ? (__uint32_t)((( __uint32_t)(dll_cntl) & 0xff) << 24 | ((__uint32_t) (dll_cntl) & 0xff00) << 8 | ((__uint32_t)(dll_cntl) & 0xff0000) >> 8 | ((__uint32_t)(dll_cntl) & 0xff000000 ) >> 24) : __swap32md(dll_cntl)); |
| 1485 | table->MemoryACPILevel.MclkPwrmgtCntl = |
| 1486 | PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl)(__uint32_t)(__builtin_constant_p(mclk_pwrmgt_cntl) ? (__uint32_t )(((__uint32_t)(mclk_pwrmgt_cntl) & 0xff) << 24 | ( (__uint32_t)(mclk_pwrmgt_cntl) & 0xff00) << 8 | ((__uint32_t )(mclk_pwrmgt_cntl) & 0xff0000) >> 8 | ((__uint32_t )(mclk_pwrmgt_cntl) & 0xff000000) >> 24) : __swap32md (mclk_pwrmgt_cntl)); |
| 1487 | table->MemoryACPILevel.MpllAdFuncCntl = |
| 1488 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL)(__uint32_t)(__builtin_constant_p(data->clock_registers.vMPLL_AD_FUNC_CNTL ) ? (__uint32_t)(((__uint32_t)(data->clock_registers.vMPLL_AD_FUNC_CNTL ) & 0xff) << 24 | ((__uint32_t)(data->clock_registers .vMPLL_AD_FUNC_CNTL) & 0xff00) << 8 | ((__uint32_t) (data->clock_registers.vMPLL_AD_FUNC_CNTL) & 0xff0000) >> 8 | ((__uint32_t)(data->clock_registers.vMPLL_AD_FUNC_CNTL ) & 0xff000000) >> 24) : __swap32md(data->clock_registers .vMPLL_AD_FUNC_CNTL)); |
| 1489 | table->MemoryACPILevel.MpllDqFuncCntl = |
| 1490 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL)(__uint32_t)(__builtin_constant_p(data->clock_registers.vMPLL_DQ_FUNC_CNTL ) ? (__uint32_t)(((__uint32_t)(data->clock_registers.vMPLL_DQ_FUNC_CNTL ) & 0xff) << 24 | ((__uint32_t)(data->clock_registers .vMPLL_DQ_FUNC_CNTL) & 0xff00) << 8 | ((__uint32_t) (data->clock_registers.vMPLL_DQ_FUNC_CNTL) & 0xff0000) >> 8 | ((__uint32_t)(data->clock_registers.vMPLL_DQ_FUNC_CNTL ) & 0xff000000) >> 24) : __swap32md(data->clock_registers .vMPLL_DQ_FUNC_CNTL)); |
| 1491 | table->MemoryACPILevel.MpllFuncCntl = |
| 1492 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL)(__uint32_t)(__builtin_constant_p(data->clock_registers.vMPLL_FUNC_CNTL ) ? (__uint32_t)(((__uint32_t)(data->clock_registers.vMPLL_FUNC_CNTL ) & 0xff) << 24 | ((__uint32_t)(data->clock_registers .vMPLL_FUNC_CNTL) & 0xff00) << 8 | ((__uint32_t)(data ->clock_registers.vMPLL_FUNC_CNTL) & 0xff0000) >> 8 | ((__uint32_t)(data->clock_registers.vMPLL_FUNC_CNTL) & 0xff000000) >> 24) : __swap32md(data->clock_registers .vMPLL_FUNC_CNTL)); |
| 1493 | table->MemoryACPILevel.MpllFuncCntl_1 = |
| 1494 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1)(__uint32_t)(__builtin_constant_p(data->clock_registers.vMPLL_FUNC_CNTL_1 ) ? (__uint32_t)(((__uint32_t)(data->clock_registers.vMPLL_FUNC_CNTL_1 ) & 0xff) << 24 | ((__uint32_t)(data->clock_registers .vMPLL_FUNC_CNTL_1) & 0xff00) << 8 | ((__uint32_t)( data->clock_registers.vMPLL_FUNC_CNTL_1) & 0xff0000) >> 8 | ((__uint32_t)(data->clock_registers.vMPLL_FUNC_CNTL_1 ) & 0xff000000) >> 24) : __swap32md(data->clock_registers .vMPLL_FUNC_CNTL_1)); |
| 1495 | table->MemoryACPILevel.MpllFuncCntl_2 = |
| 1496 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2)(__uint32_t)(__builtin_constant_p(data->clock_registers.vMPLL_FUNC_CNTL_2 ) ? (__uint32_t)(((__uint32_t)(data->clock_registers.vMPLL_FUNC_CNTL_2 ) & 0xff) << 24 | ((__uint32_t)(data->clock_registers .vMPLL_FUNC_CNTL_2) & 0xff00) << 8 | ((__uint32_t)( data->clock_registers.vMPLL_FUNC_CNTL_2) & 0xff0000) >> 8 | ((__uint32_t)(data->clock_registers.vMPLL_FUNC_CNTL_2 ) & 0xff000000) >> 24) : __swap32md(data->clock_registers .vMPLL_FUNC_CNTL_2)); |
| 1497 | table->MemoryACPILevel.MpllSs1 = |
| 1498 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1)(__uint32_t)(__builtin_constant_p(data->clock_registers.vMPLL_SS1 ) ? (__uint32_t)(((__uint32_t)(data->clock_registers.vMPLL_SS1 ) & 0xff) << 24 | ((__uint32_t)(data->clock_registers .vMPLL_SS1) & 0xff00) << 8 | ((__uint32_t)(data-> clock_registers.vMPLL_SS1) & 0xff0000) >> 8 | ((__uint32_t )(data->clock_registers.vMPLL_SS1) & 0xff000000) >> 24) : __swap32md(data->clock_registers.vMPLL_SS1)); |
| 1499 | table->MemoryACPILevel.MpllSs2 = |
| 1500 | PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2)(__uint32_t)(__builtin_constant_p(data->clock_registers.vMPLL_SS2 ) ? (__uint32_t)(((__uint32_t)(data->clock_registers.vMPLL_SS2 ) & 0xff) << 24 | ((__uint32_t)(data->clock_registers .vMPLL_SS2) & 0xff00) << 8 | ((__uint32_t)(data-> clock_registers.vMPLL_SS2) & 0xff0000) >> 8 | ((__uint32_t )(data->clock_registers.vMPLL_SS2) & 0xff000000) >> 24) : __swap32md(data->clock_registers.vMPLL_SS2)); |
| 1501 | |
| 1502 | table->MemoryACPILevel.EnabledForThrottle = 0; |
| 1503 | table->MemoryACPILevel.EnabledForActivity = 0; |
| 1504 | table->MemoryACPILevel.UpH = 0; |
| 1505 | table->MemoryACPILevel.DownH = 100; |
| 1506 | table->MemoryACPILevel.VoltageDownH = 0; |
| 1507 | /* Indicates maximum activity level for this performance level.*/ |
| 1508 | table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity)(__uint16_t)(__builtin_constant_p(data->current_profile_setting .mclk_activity) ? (__uint16_t)(((__uint16_t)(data->current_profile_setting .mclk_activity) & 0xffU) << 8 | ((__uint16_t)(data-> current_profile_setting.mclk_activity) & 0xff00U) >> 8) : __swap16md(data->current_profile_setting.mclk_activity )); |
| 1509 | |
| 1510 | table->MemoryACPILevel.StutterEnable = 0; |
| 1511 | table->MemoryACPILevel.StrobeEnable = 0; |
| 1512 | table->MemoryACPILevel.EdcReadEnable = 0; |
| 1513 | table->MemoryACPILevel.EdcWriteEnable = 0; |
| 1514 | table->MemoryACPILevel.RttEnable = 0; |
| 1515 | |
| 1516 | return result; |
| 1517 | } |
| 1518 | |
| 1519 | static int ci_populate_smc_uvd_level(struct pp_hwmgr *hwmgr, |
| 1520 | SMU7_Discrete_DpmTable *table) |
| 1521 | { |
| 1522 | int result = 0; |
| 1523 | uint8_t count; |
| 1524 | struct pp_atomctrl_clock_dividers_vi dividers; |
| 1525 | struct phm_uvd_clock_voltage_dependency_table *uvd_table = |
| 1526 | hwmgr->dyn_state.uvd_clock_voltage_dependency_table; |
| 1527 | |
| 1528 | table->UvdLevelCount = (uint8_t)(uvd_table->count); |
| 1529 | |
| 1530 | for (count = 0; count < table->UvdLevelCount; count++) { |
| 1531 | table->UvdLevel[count].VclkFrequency = |
| 1532 | uvd_table->entries[count].vclk; |
| 1533 | table->UvdLevel[count].DclkFrequency = |
| 1534 | uvd_table->entries[count].dclk; |
| 1535 | table->UvdLevel[count].MinVddc = |
| 1536 | uvd_table->entries[count].v * VOLTAGE_SCALE4; |
| 1537 | table->UvdLevel[count].MinVddcPhases = 1; |
| 1538 | |
| 1539 | result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
| 1540 | table->UvdLevel[count].VclkFrequency, ÷rs); |
| 1541 | PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "can not find divide id for Vclk clock"); return result ; } } while (0) |
| 1542 | "can not find divide id for Vclk clock", return result)do { if (!((0 == result))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "can not find divide id for Vclk clock"); return result ; } } while (0); |
| 1543 | |
| 1544 | table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider; |
| 1545 | |
| 1546 | result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
| 1547 | table->UvdLevel[count].DclkFrequency, ÷rs); |
| 1548 | PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "can not find divide id for Dclk clock"); return result ; } } while (0) |
| 1549 | "can not find divide id for Dclk clock", return result)do { if (!((0 == result))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "can not find divide id for Dclk clock"); return result ; } } while (0); |
| 1550 | |
| 1551 | table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider; |
| 1552 | CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency)((table->UvdLevel[count].VclkFrequency) = (__uint32_t)(__builtin_constant_p (table->UvdLevel[count].VclkFrequency) ? (__uint32_t)(((__uint32_t )(table->UvdLevel[count].VclkFrequency) & 0xff) << 24 | ((__uint32_t)(table->UvdLevel[count].VclkFrequency) & 0xff00) << 8 | ((__uint32_t)(table->UvdLevel[count] .VclkFrequency) & 0xff0000) >> 8 | ((__uint32_t)(table ->UvdLevel[count].VclkFrequency) & 0xff000000) >> 24) : __swap32md(table->UvdLevel[count].VclkFrequency))); |
| 1553 | CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency)((table->UvdLevel[count].DclkFrequency) = (__uint32_t)(__builtin_constant_p (table->UvdLevel[count].DclkFrequency) ? (__uint32_t)(((__uint32_t )(table->UvdLevel[count].DclkFrequency) & 0xff) << 24 | ((__uint32_t)(table->UvdLevel[count].DclkFrequency) & 0xff00) << 8 | ((__uint32_t)(table->UvdLevel[count] .DclkFrequency) & 0xff0000) >> 8 | ((__uint32_t)(table ->UvdLevel[count].DclkFrequency) & 0xff000000) >> 24) : __swap32md(table->UvdLevel[count].DclkFrequency))); |
| 1554 | CONVERT_FROM_HOST_TO_SMC_US(table->UvdLevel[count].MinVddc)((table->UvdLevel[count].MinVddc) = (__uint16_t)(__builtin_constant_p (table->UvdLevel[count].MinVddc) ? (__uint16_t)(((__uint16_t )(table->UvdLevel[count].MinVddc) & 0xffU) << 8 | ((__uint16_t)(table->UvdLevel[count].MinVddc) & 0xff00U ) >> 8) : __swap16md(table->UvdLevel[count].MinVddc) )); |
| 1555 | } |
| 1556 | |
| 1557 | return result; |
| 1558 | } |
| 1559 | |
| 1560 | static int ci_populate_smc_vce_level(struct pp_hwmgr *hwmgr, |
| 1561 | SMU7_Discrete_DpmTable *table) |
| 1562 | { |
| 1563 | int result = -EINVAL22; |
| 1564 | uint8_t count; |
| 1565 | struct pp_atomctrl_clock_dividers_vi dividers; |
| 1566 | struct phm_vce_clock_voltage_dependency_table *vce_table = |
| 1567 | hwmgr->dyn_state.vce_clock_voltage_dependency_table; |
| 1568 | |
| 1569 | table->VceLevelCount = (uint8_t)(vce_table->count); |
| 1570 | table->VceBootLevel = 0; |
| 1571 | |
| 1572 | for (count = 0; count < table->VceLevelCount; count++) { |
| 1573 | table->VceLevel[count].Frequency = vce_table->entries[count].evclk; |
| 1574 | table->VceLevel[count].MinVoltage = |
| 1575 | vce_table->entries[count].v * VOLTAGE_SCALE4; |
| 1576 | table->VceLevel[count].MinPhases = 1; |
| 1577 | |
| 1578 | result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
| 1579 | table->VceLevel[count].Frequency, ÷rs); |
| 1580 | PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "can not find divide id for VCE engine clock"); return result; } } while (0) |
| 1581 | "can not find divide id for VCE engine clock",do { if (!((0 == result))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "can not find divide id for VCE engine clock"); return result; } } while (0) |
| 1582 | return result)do { if (!((0 == result))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "can not find divide id for VCE engine clock"); return result; } } while (0); |
| 1583 | |
| 1584 | table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider; |
| 1585 | |
| 1586 | CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency)((table->VceLevel[count].Frequency) = (__uint32_t)(__builtin_constant_p (table->VceLevel[count].Frequency) ? (__uint32_t)(((__uint32_t )(table->VceLevel[count].Frequency) & 0xff) << 24 | ((__uint32_t)(table->VceLevel[count].Frequency) & 0xff00 ) << 8 | ((__uint32_t)(table->VceLevel[count].Frequency ) & 0xff0000) >> 8 | ((__uint32_t)(table->VceLevel [count].Frequency) & 0xff000000) >> 24) : __swap32md (table->VceLevel[count].Frequency))); |
| 1587 | CONVERT_FROM_HOST_TO_SMC_US(table->VceLevel[count].MinVoltage)((table->VceLevel[count].MinVoltage) = (__uint16_t)(__builtin_constant_p (table->VceLevel[count].MinVoltage) ? (__uint16_t)(((__uint16_t )(table->VceLevel[count].MinVoltage) & 0xffU) << 8 | ((__uint16_t)(table->VceLevel[count].MinVoltage) & 0xff00U) >> 8) : __swap16md(table->VceLevel[count]. MinVoltage))); |
| 1588 | } |
| 1589 | return result; |
| 1590 | } |
| 1591 | |
| 1592 | static int ci_populate_smc_acp_level(struct pp_hwmgr *hwmgr, |
| 1593 | SMU7_Discrete_DpmTable *table) |
| 1594 | { |
| 1595 | int result = -EINVAL22; |
| 1596 | uint8_t count; |
| 1597 | struct pp_atomctrl_clock_dividers_vi dividers; |
| 1598 | struct phm_acp_clock_voltage_dependency_table *acp_table = |
| 1599 | hwmgr->dyn_state.acp_clock_voltage_dependency_table; |
| 1600 | |
| 1601 | table->AcpLevelCount = (uint8_t)(acp_table->count); |
| 1602 | table->AcpBootLevel = 0; |
| 1603 | |
| 1604 | for (count = 0; count < table->AcpLevelCount; count++) { |
| 1605 | table->AcpLevel[count].Frequency = acp_table->entries[count].acpclk; |
| 1606 | table->AcpLevel[count].MinVoltage = acp_table->entries[count].v; |
| 1607 | table->AcpLevel[count].MinPhases = 1; |
| 1608 | |
| 1609 | result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
| 1610 | table->AcpLevel[count].Frequency, ÷rs); |
| 1611 | PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "can not find divide id for engine clock"); return result ; } } while (0) |
| 1612 | "can not find divide id for engine clock", return result)do { if (!((0 == result))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "can not find divide id for engine clock"); return result ; } } while (0); |
| 1613 | |
| 1614 | table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider; |
| 1615 | |
| 1616 | CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency)((table->AcpLevel[count].Frequency) = (__uint32_t)(__builtin_constant_p (table->AcpLevel[count].Frequency) ? (__uint32_t)(((__uint32_t )(table->AcpLevel[count].Frequency) & 0xff) << 24 | ((__uint32_t)(table->AcpLevel[count].Frequency) & 0xff00 ) << 8 | ((__uint32_t)(table->AcpLevel[count].Frequency ) & 0xff0000) >> 8 | ((__uint32_t)(table->AcpLevel [count].Frequency) & 0xff000000) >> 24) : __swap32md (table->AcpLevel[count].Frequency))); |
| 1617 | CONVERT_FROM_HOST_TO_SMC_US(table->AcpLevel[count].MinVoltage)((table->AcpLevel[count].MinVoltage) = (__uint16_t)(__builtin_constant_p (table->AcpLevel[count].MinVoltage) ? (__uint16_t)(((__uint16_t )(table->AcpLevel[count].MinVoltage) & 0xffU) << 8 | ((__uint16_t)(table->AcpLevel[count].MinVoltage) & 0xff00U) >> 8) : __swap16md(table->AcpLevel[count]. MinVoltage))); |
| 1618 | } |
| 1619 | return result; |
| 1620 | } |
| 1621 | |
| 1622 | static int ci_populate_memory_timing_parameters( |
| 1623 | struct pp_hwmgr *hwmgr, |
| 1624 | uint32_t engine_clock, |
| 1625 | uint32_t memory_clock, |
| 1626 | struct SMU7_Discrete_MCArbDramTimingTableEntry *arb_regs |
| 1627 | ) |
| 1628 | { |
| 1629 | uint32_t dramTiming; |
| 1630 | uint32_t dramTiming2; |
| 1631 | uint32_t burstTime; |
| 1632 | int result; |
| 1633 | |
| 1634 | result = atomctrl_set_engine_dram_timings_rv770(hwmgr, |
| 1635 | engine_clock, memory_clock); |
| 1636 | |
| 1637 | PP_ASSERT_WITH_CODE(result == 0,do { if (!(result == 0)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Error calling VBIOS to set DRAM_TIMING."); return result ; } } while (0) |
| 1638 | "Error calling VBIOS to set DRAM_TIMING.", return result)do { if (!(result == 0)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Error calling VBIOS to set DRAM_TIMING."); return result ; } } while (0); |
| 1639 | |
| 1640 | dramTiming = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0x9dd)); |
| 1641 | dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0x9de)); |
| 1642 | burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0)((((((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0xa02))) & 0x1f) >> 0x0); |
| 1643 | |
| 1644 | arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dramTiming)(__uint32_t)(__builtin_constant_p(dramTiming) ? (__uint32_t)( ((__uint32_t)(dramTiming) & 0xff) << 24 | ((__uint32_t )(dramTiming) & 0xff00) << 8 | ((__uint32_t)(dramTiming ) & 0xff0000) >> 8 | ((__uint32_t)(dramTiming) & 0xff000000) >> 24) : __swap32md(dramTiming)); |
| 1645 | arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2)(__uint32_t)(__builtin_constant_p(dramTiming2) ? (__uint32_t) (((__uint32_t)(dramTiming2) & 0xff) << 24 | ((__uint32_t )(dramTiming2) & 0xff00) << 8 | ((__uint32_t)(dramTiming2 ) & 0xff0000) >> 8 | ((__uint32_t)(dramTiming2) & 0xff000000) >> 24) : __swap32md(dramTiming2)); |
| 1646 | arb_regs->McArbBurstTime = (uint8_t)burstTime; |
| 1647 | |
| 1648 | return 0; |
| 1649 | } |
| 1650 | |
| 1651 | static int ci_program_memory_timing_parameters(struct pp_hwmgr *hwmgr) |
| 1652 | { |
| 1653 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 1654 | struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| 1655 | int result = 0; |
| 1656 | SMU7_Discrete_MCArbDramTimingTable arb_regs; |
| 1657 | uint32_t i, j; |
| 1658 | |
| 1659 | memset(&arb_regs, 0x00, sizeof(SMU7_Discrete_MCArbDramTimingTable))__builtin_memset((&arb_regs), (0x00), (sizeof(SMU7_Discrete_MCArbDramTimingTable ))); |
| 1660 | |
| 1661 | for (i = 0; i < data->dpm_table.sclk_table.count; i++) { |
| 1662 | for (j = 0; j < data->dpm_table.mclk_table.count; j++) { |
| 1663 | result = ci_populate_memory_timing_parameters |
| 1664 | (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value, |
| 1665 | data->dpm_table.mclk_table.dpm_levels[j].value, |
| 1666 | &arb_regs.entries[i][j]); |
| 1667 | |
| 1668 | if (0 != result) |
| 1669 | break; |
| 1670 | } |
| 1671 | } |
| 1672 | |
| 1673 | if (0 == result) { |
| 1674 | result = ci_copy_bytes_to_smc( |
| 1675 | hwmgr, |
| 1676 | smu_data->arb_table_start, |
| 1677 | (uint8_t *)&arb_regs, |
| 1678 | sizeof(SMU7_Discrete_MCArbDramTimingTable), |
| 1679 | SMC_RAM_END0x40000 |
| 1680 | ); |
| 1681 | } |
| 1682 | |
| 1683 | return result; |
| 1684 | } |
| 1685 | |
| 1686 | static int ci_populate_smc_boot_level(struct pp_hwmgr *hwmgr, |
| 1687 | SMU7_Discrete_DpmTable *table) |
| 1688 | { |
| 1689 | int result = 0; |
| 1690 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 1691 | struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| 1692 | |
| 1693 | table->GraphicsBootLevel = 0; |
| 1694 | table->MemoryBootLevel = 0; |
| 1695 | |
| 1696 | /* find boot level from dpm table*/ |
| 1697 | result = phm_find_boot_level(&(data->dpm_table.sclk_table), |
| 1698 | data->vbios_boot_state.sclk_bootup_value, |
| 1699 | (uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel)); |
| 1700 | |
| 1701 | if (0 != result) { |
| 1702 | smu_data->smc_state_table.GraphicsBootLevel = 0; |
| 1703 | pr_err("VBIOS did not find boot engine clock value in dependency table. Using Graphics DPM level 0!\n")printk("\0013" "amdgpu: [powerplay] " "VBIOS did not find boot engine clock value in dependency table. Using Graphics DPM level 0!\n" ); |
| 1704 | result = 0; |
| 1705 | } |
| 1706 | |
| 1707 | result = phm_find_boot_level(&(data->dpm_table.mclk_table), |
| 1708 | data->vbios_boot_state.mclk_bootup_value, |
| 1709 | (uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel)); |
| 1710 | |
| 1711 | if (0 != result) { |
| 1712 | smu_data->smc_state_table.MemoryBootLevel = 0; |
| 1713 | pr_err("VBIOS did not find boot engine clock value in dependency table. Using Memory DPM level 0!\n")printk("\0013" "amdgpu: [powerplay] " "VBIOS did not find boot engine clock value in dependency table. Using Memory DPM level 0!\n" ); |
| 1714 | result = 0; |
| 1715 | } |
| 1716 | |
| 1717 | table->BootVddc = data->vbios_boot_state.vddc_bootup_value; |
| 1718 | table->BootVddci = data->vbios_boot_state.vddci_bootup_value; |
| 1719 | table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value; |
| 1720 | |
| 1721 | return result; |
| 1722 | } |
| 1723 | |
| 1724 | static int ci_populate_mc_reg_address(struct pp_hwmgr *hwmgr, |
| 1725 | SMU7_Discrete_MCRegisters *mc_reg_table) |
| 1726 | { |
| 1727 | const struct ci_smumgr *smu_data = (struct ci_smumgr *)hwmgr->smu_backend; |
| 1728 | |
| 1729 | uint32_t i, j; |
| 1730 | |
| 1731 | for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) { |
| 1732 | if (smu_data->mc_reg_table.validflag & 1<<j) { |
| 1733 | PP_ASSERT_WITH_CODE(i < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE,do { if (!(i < 16)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Index of mc_reg_table->address[] array out of boundary" ); return -22; } } while (0) |
| 1734 | "Index of mc_reg_table->address[] array out of boundary", return -EINVAL)do { if (!(i < 16)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Index of mc_reg_table->address[] array out of boundary" ); return -22; } } while (0); |
| 1735 | mc_reg_table->address[i].s0 = |
| 1736 | PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0)(__uint16_t)(__builtin_constant_p(smu_data->mc_reg_table.mc_reg_address [j].s0) ? (__uint16_t)(((__uint16_t)(smu_data->mc_reg_table .mc_reg_address[j].s0) & 0xffU) << 8 | ((__uint16_t )(smu_data->mc_reg_table.mc_reg_address[j].s0) & 0xff00U ) >> 8) : __swap16md(smu_data->mc_reg_table.mc_reg_address [j].s0)); |
| 1737 | mc_reg_table->address[i].s1 = |
| 1738 | PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1)(__uint16_t)(__builtin_constant_p(smu_data->mc_reg_table.mc_reg_address [j].s1) ? (__uint16_t)(((__uint16_t)(smu_data->mc_reg_table .mc_reg_address[j].s1) & 0xffU) << 8 | ((__uint16_t )(smu_data->mc_reg_table.mc_reg_address[j].s1) & 0xff00U ) >> 8) : __swap16md(smu_data->mc_reg_table.mc_reg_address [j].s1)); |
| 1739 | i++; |
| 1740 | } |
| 1741 | } |
| 1742 | |
| 1743 | mc_reg_table->last = (uint8_t)i; |
| 1744 | |
| 1745 | return 0; |
| 1746 | } |
| 1747 | |
| 1748 | static void ci_convert_mc_registers( |
| 1749 | const struct ci_mc_reg_entry *entry, |
| 1750 | SMU7_Discrete_MCRegisterSet *data, |
| 1751 | uint32_t num_entries, uint32_t valid_flag) |
| 1752 | { |
| 1753 | uint32_t i, j; |
| 1754 | |
| 1755 | for (i = 0, j = 0; j < num_entries; j++) { |
| 1756 | if (valid_flag & 1<<j) { |
| 1757 | data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j])(__uint32_t)(__builtin_constant_p(entry->mc_data[j]) ? (__uint32_t )(((__uint32_t)(entry->mc_data[j]) & 0xff) << 24 | ((__uint32_t)(entry->mc_data[j]) & 0xff00) << 8 | ((__uint32_t)(entry->mc_data[j]) & 0xff0000) >> 8 | ((__uint32_t)(entry->mc_data[j]) & 0xff000000) >> 24) : __swap32md(entry->mc_data[j])); |
| 1758 | i++; |
| 1759 | } |
| 1760 | } |
| 1761 | } |
| 1762 | |
| 1763 | static int ci_convert_mc_reg_table_entry_to_smc( |
| 1764 | struct pp_hwmgr *hwmgr, |
| 1765 | const uint32_t memory_clock, |
| 1766 | SMU7_Discrete_MCRegisterSet *mc_reg_table_data |
| 1767 | ) |
| 1768 | { |
| 1769 | struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| 1770 | uint32_t i = 0; |
| 1771 | |
| 1772 | for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) { |
| 1773 | if (memory_clock <= |
| 1774 | smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) { |
| 1775 | break; |
| 1776 | } |
| 1777 | } |
| 1778 | |
| 1779 | if ((i == smu_data->mc_reg_table.num_entries) && (i > 0)) |
| 1780 | --i; |
| 1781 | |
| 1782 | ci_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i], |
| 1783 | mc_reg_table_data, smu_data->mc_reg_table.last, |
| 1784 | smu_data->mc_reg_table.validflag); |
| 1785 | |
| 1786 | return 0; |
| 1787 | } |
| 1788 | |
| 1789 | static int ci_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr, |
| 1790 | SMU7_Discrete_MCRegisters *mc_regs) |
| 1791 | { |
| 1792 | int result = 0; |
| 1793 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 1794 | int res; |
| 1795 | uint32_t i; |
| 1796 | |
| 1797 | for (i = 0; i < data->dpm_table.mclk_table.count; i++) { |
| 1798 | res = ci_convert_mc_reg_table_entry_to_smc( |
| 1799 | hwmgr, |
| 1800 | data->dpm_table.mclk_table.dpm_levels[i].value, |
| 1801 | &mc_regs->data[i] |
| 1802 | ); |
| 1803 | |
| 1804 | if (0 != res) |
| 1805 | result = res; |
| 1806 | } |
| 1807 | |
| 1808 | return result; |
| 1809 | } |
| 1810 | |
| 1811 | static int ci_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr) |
| 1812 | { |
| 1813 | struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| 1814 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 1815 | uint32_t address; |
| 1816 | int32_t result; |
| 1817 | |
| 1818 | if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK0x00000002)) |
| 1819 | return 0; |
| 1820 | |
| 1821 | |
| 1822 | memset(&smu_data->mc_regs, 0, sizeof(SMU7_Discrete_MCRegisters))__builtin_memset((&smu_data->mc_regs), (0), (sizeof(SMU7_Discrete_MCRegisters ))); |
| 1823 | |
| 1824 | result = ci_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs)); |
| 1825 | |
| 1826 | if (result != 0) |
| 1827 | return result; |
| 1828 | |
| 1829 | address = smu_data->mc_reg_table_start + (uint32_t)offsetof(SMU7_Discrete_MCRegisters, data[0])__builtin_offsetof(SMU7_Discrete_MCRegisters, data[0]); |
| 1830 | |
| 1831 | return ci_copy_bytes_to_smc(hwmgr, address, |
| 1832 | (uint8_t *)&smu_data->mc_regs.data[0], |
| 1833 | sizeof(SMU7_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count, |
| 1834 | SMC_RAM_END0x40000); |
| 1835 | } |
| 1836 | |
| 1837 | static int ci_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr) |
| 1838 | { |
| 1839 | int result; |
| 1840 | struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| 1841 | |
| 1842 | memset(&smu_data->mc_regs, 0x00, sizeof(SMU7_Discrete_MCRegisters))__builtin_memset((&smu_data->mc_regs), (0x00), (sizeof (SMU7_Discrete_MCRegisters))); |
| 1843 | result = ci_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs)); |
| 1844 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to initialize MCRegTable for the MC register addresses!" ); return result;; } } while (0) |
| 1845 | "Failed to initialize MCRegTable for the MC register addresses!", return result;)do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to initialize MCRegTable for the MC register addresses!" ); return result;; } } while (0); |
| 1846 | |
| 1847 | result = ci_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs); |
| 1848 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to initialize MCRegTable for driver state!") ; return result;; } } while (0) |
| 1849 | "Failed to initialize MCRegTable for driver state!", return result;)do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to initialize MCRegTable for driver state!") ; return result;; } } while (0); |
| 1850 | |
| 1851 | return ci_copy_bytes_to_smc(hwmgr, smu_data->mc_reg_table_start, |
| 1852 | (uint8_t *)&smu_data->mc_regs, sizeof(SMU7_Discrete_MCRegisters), SMC_RAM_END0x40000); |
| 1853 | } |
| 1854 | |
| 1855 | static int ci_populate_smc_initial_state(struct pp_hwmgr *hwmgr) |
| 1856 | { |
| 1857 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 1858 | struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| 1859 | uint8_t count, level; |
| 1860 | |
| 1861 | count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->count); |
| 1862 | |
| 1863 | for (level = 0; level < count; level++) { |
| 1864 | if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[level].clk |
| 1865 | >= data->vbios_boot_state.sclk_bootup_value) { |
| 1866 | smu_data->smc_state_table.GraphicsBootLevel = level; |
| 1867 | break; |
| 1868 | } |
| 1869 | } |
| 1870 | |
| 1871 | count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_mclk->count); |
| 1872 | |
| 1873 | for (level = 0; level < count; level++) { |
| 1874 | if (hwmgr->dyn_state.vddc_dependency_on_mclk->entries[level].clk |
| 1875 | >= data->vbios_boot_state.mclk_bootup_value) { |
| 1876 | smu_data->smc_state_table.MemoryBootLevel = level; |
| 1877 | break; |
| 1878 | } |
| 1879 | } |
| 1880 | |
| 1881 | return 0; |
| 1882 | } |
| 1883 | |
| 1884 | static int ci_populate_smc_svi2_config(struct pp_hwmgr *hwmgr, |
| 1885 | SMU7_Discrete_DpmTable *table) |
| 1886 | { |
| 1887 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 1888 | |
| 1889 | if (SMU7_VOLTAGE_CONTROL_BY_SVID20x2 == data->voltage_control) |
| 1890 | table->SVI2Enable = 1; |
| 1891 | else |
| 1892 | table->SVI2Enable = 0; |
| 1893 | return 0; |
| 1894 | } |
| 1895 | |
| 1896 | static int ci_start_smc(struct pp_hwmgr *hwmgr) |
| 1897 | { |
| 1898 | /* set smc instruct start point at 0x0 */ |
| 1899 | ci_program_jump_on_start(hwmgr); |
| 1900 | |
| 1901 | /* enable smc clock */ |
| 1902 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000004,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000004))) & ~0x1) | (0x1 & ((0) << 0x0))))); |
| 1903 | |
| 1904 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((0) << 0x0))))); |
| 1905 | |
| 1906 | PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS,phm_wait_on_indirect_register(hwmgr, 0x80, 0x3f800, (1) << 0x0, 0x1) |
| 1907 | INTERRUPTS_ENABLED, 1)phm_wait_on_indirect_register(hwmgr, 0x80, 0x3f800, (1) << 0x0, 0x1); |
| 1908 | |
| 1909 | return 0; |
| 1910 | } |
| 1911 | |
| 1912 | static int ci_populate_vr_config(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table) |
| 1913 | { |
| 1914 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 1915 | uint16_t config; |
| 1916 | |
| 1917 | config = VR_SVI2_PLANE_11; |
| 1918 | table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT8); |
| 1919 | |
| 1920 | if (SMU7_VOLTAGE_CONTROL_BY_SVID20x2 == data->voltage_control) { |
| 1921 | config = VR_SVI2_PLANE_22; |
| 1922 | table->VRConfig |= config; |
| 1923 | } else { |
| 1924 | pr_info("VDDCshould be on SVI2 controller!")do { } while(0); |
| 1925 | } |
| 1926 | |
| 1927 | if (SMU7_VOLTAGE_CONTROL_BY_SVID20x2 == data->vddci_control) { |
| 1928 | config = VR_SVI2_PLANE_22; |
| 1929 | table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT16); |
| 1930 | } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO0x1 == data->vddci_control) { |
| 1931 | config = VR_SMIO_PATTERN_13; |
| 1932 | table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT16); |
| 1933 | } |
| 1934 | |
| 1935 | if (SMU7_VOLTAGE_CONTROL_BY_GPIO0x1 == data->mvdd_control) { |
| 1936 | config = VR_SMIO_PATTERN_24; |
| 1937 | table->VRConfig |= (config<<VRCONF_MVDD_SHIFT24); |
| 1938 | } |
| 1939 | |
| 1940 | return 0; |
| 1941 | } |
| 1942 | |
| 1943 | static int ci_init_smc_table(struct pp_hwmgr *hwmgr) |
| 1944 | { |
| 1945 | int result; |
| 1946 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 1947 | struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| 1948 | SMU7_Discrete_DpmTable *table = &(smu_data->smc_state_table); |
| 1949 | struct pp_atomctrl_gpio_pin_assignment gpio_pin; |
| 1950 | u32 i; |
| 1951 | |
| 1952 | ci_initialize_power_tune_defaults(hwmgr); |
| 1953 | memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table))__builtin_memset((&(smu_data->smc_state_table)), (0x00 ), (sizeof(smu_data->smc_state_table))); |
| 1954 | |
| 1955 | if (SMU7_VOLTAGE_CONTROL_NONE0x0 != data->voltage_control) |
| 1956 | ci_populate_smc_voltage_tables(hwmgr, table); |
| 1957 | |
| 1958 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| 1959 | PHM_PlatformCaps_AutomaticDCTransition)) |
| 1960 | table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC0x01; |
| 1961 | |
| 1962 | |
| 1963 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| 1964 | PHM_PlatformCaps_StepVddc)) |
| 1965 | table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC0x02; |
| 1966 | |
| 1967 | if (data->is_memory_gddr5) |
| 1968 | table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR50x04; |
| 1969 | |
| 1970 | if (data->ulv_supported) { |
| 1971 | result = ci_populate_ulv_state(hwmgr, &(table->Ulv)); |
| 1972 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to initialize ULV state!"); return result; } } while (0) |
| 1973 | "Failed to initialize ULV state!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to initialize ULV state!"); return result; } } while (0); |
| 1974 | |
| 1975 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc020015c,0x40035)) |
| 1976 | ixCG_ULV_PARAMETER, 0x40035)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc020015c,0x40035)); |
| 1977 | } |
| 1978 | |
| 1979 | result = ci_populate_all_graphic_levels(hwmgr); |
| 1980 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to initialize Graphics Level!"); return result ; } } while (0) |
| 1981 | "Failed to initialize Graphics Level!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to initialize Graphics Level!"); return result ; } } while (0); |
| 1982 | |
| 1983 | result = ci_populate_all_memory_levels(hwmgr); |
| 1984 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to initialize Memory Level!"); return result ; } } while (0) |
| 1985 | "Failed to initialize Memory Level!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to initialize Memory Level!"); return result ; } } while (0); |
| 1986 | |
| 1987 | result = ci_populate_smc_link_level(hwmgr, table); |
| 1988 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to initialize Link Level!"); return result; } } while (0) |
| 1989 | "Failed to initialize Link Level!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to initialize Link Level!"); return result; } } while (0); |
| 1990 | |
| 1991 | result = ci_populate_smc_acpi_level(hwmgr, table); |
| 1992 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to initialize ACPI Level!"); return result; } } while (0) |
| 1993 | "Failed to initialize ACPI Level!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to initialize ACPI Level!"); return result; } } while (0); |
| 1994 | |
| 1995 | result = ci_populate_smc_vce_level(hwmgr, table); |
| 1996 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to initialize VCE Level!"); return result; } } while (0) |
| 1997 | "Failed to initialize VCE Level!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to initialize VCE Level!"); return result; } } while (0); |
| 1998 | |
| 1999 | result = ci_populate_smc_acp_level(hwmgr, table); |
| 2000 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to initialize ACP Level!"); return result; } } while (0) |
| 2001 | "Failed to initialize ACP Level!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to initialize ACP Level!"); return result; } } while (0); |
| 2002 | |
| 2003 | /* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */ |
| 2004 | /* need to populate the ARB settings for the initial state. */ |
| 2005 | result = ci_program_memory_timing_parameters(hwmgr); |
| 2006 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to Write ARB settings for the initial state." ); return result; } } while (0) |
| 2007 | "Failed to Write ARB settings for the initial state.", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to Write ARB settings for the initial state." ); return result; } } while (0); |
| 2008 | |
| 2009 | result = ci_populate_smc_uvd_level(hwmgr, table); |
| 2010 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to initialize UVD Level!"); return result; } } while (0) |
| 2011 | "Failed to initialize UVD Level!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to initialize UVD Level!"); return result; } } while (0); |
| 2012 | |
| 2013 | table->UvdBootLevel = 0; |
| 2014 | table->VceBootLevel = 0; |
| 2015 | table->AcpBootLevel = 0; |
| 2016 | table->SamuBootLevel = 0; |
| 2017 | |
| 2018 | table->GraphicsBootLevel = 0; |
| 2019 | table->MemoryBootLevel = 0; |
| 2020 | |
| 2021 | result = ci_populate_smc_boot_level(hwmgr, table); |
| 2022 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to initialize Boot Level!"); return result; } } while (0) |
| 2023 | "Failed to initialize Boot Level!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to initialize Boot Level!"); return result; } } while (0); |
| 2024 | |
| 2025 | result = ci_populate_smc_initial_state(hwmgr); |
| 2026 | PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot State!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to initialize Boot State!"); return result; } } while (0); |
| 2027 | |
| 2028 | result = ci_populate_bapm_parameters_in_dpm_table(hwmgr); |
| 2029 | PP_ASSERT_WITH_CODE(0 == result, "Failed to populate BAPM Parameters!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to populate BAPM Parameters!"); return result ; } } while (0); |
| 2030 | |
| 2031 | table->UVDInterval = 1; |
| 2032 | table->VCEInterval = 1; |
| 2033 | table->ACPInterval = 1; |
| 2034 | table->SAMUInterval = 1; |
| 2035 | table->GraphicsVoltageChangeEnable = 1; |
| 2036 | table->GraphicsThermThrottleEnable = 1; |
| 2037 | table->GraphicsInterval = 1; |
| 2038 | table->VoltageInterval = 1; |
| 2039 | table->ThermalInterval = 1; |
| 2040 | |
| 2041 | table->TemperatureLimitHigh = |
| 2042 | (data->thermal_temp_setting.temperature_high * |
| 2043 | SMU7_Q88_FORMAT_CONVERSION_UNIT256) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES1000; |
| 2044 | table->TemperatureLimitLow = |
| 2045 | (data->thermal_temp_setting.temperature_low * |
| 2046 | SMU7_Q88_FORMAT_CONVERSION_UNIT256) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES1000; |
| 2047 | |
| 2048 | table->MemoryVoltageChangeEnable = 1; |
| 2049 | table->MemoryInterval = 1; |
| 2050 | table->VoltageResponseTime = 0; |
| 2051 | table->VddcVddciDelta = 4000; |
| 2052 | table->PhaseResponseTime = 0; |
| 2053 | table->MemoryThermThrottleEnable = 1; |
| 2054 | |
| 2055 | PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count),do { if (!((1 <= data->dpm_table.pcie_speed_table.count ))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "There must be 1 or more PCIE levels defined in PPTable." ); return -22; } } while (0) |
| 2056 | "There must be 1 or more PCIE levels defined in PPTable.",do { if (!((1 <= data->dpm_table.pcie_speed_table.count ))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "There must be 1 or more PCIE levels defined in PPTable." ); return -22; } } while (0) |
| 2057 | return -EINVAL)do { if (!((1 <= data->dpm_table.pcie_speed_table.count ))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "There must be 1 or more PCIE levels defined in PPTable." ); return -22; } } while (0); |
| 2058 | |
| 2059 | table->PCIeBootLinkLevel = (uint8_t)data->dpm_table.pcie_speed_table.count; |
| 2060 | table->PCIeGenInterval = 1; |
| 2061 | |
| 2062 | result = ci_populate_vr_config(hwmgr, table); |
| 2063 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to populate VRConfig setting!"); return result ; } } while (0) |
| 2064 | "Failed to populate VRConfig setting!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to populate VRConfig setting!"); return result ; } } while (0); |
| 2065 | data->vr_config = table->VRConfig; |
| 2066 | |
| 2067 | ci_populate_smc_svi2_config(hwmgr, table); |
| 2068 | |
| 2069 | for (i = 0; i < SMU7_MAX_ENTRIES_SMIO32; i++) |
| 2070 | CONVERT_FROM_HOST_TO_SMC_UL(table->Smio[i])((table->Smio[i]) = (__uint32_t)(__builtin_constant_p(table ->Smio[i]) ? (__uint32_t)(((__uint32_t)(table->Smio[i]) & 0xff) << 24 | ((__uint32_t)(table->Smio[i]) & 0xff00) << 8 | ((__uint32_t)(table->Smio[i]) & 0xff0000 ) >> 8 | ((__uint32_t)(table->Smio[i]) & 0xff000000 ) >> 24) : __swap32md(table->Smio[i]))); |
| 2071 | |
| 2072 | table->ThermGpio = 17; |
| 2073 | table->SclkStepSize = 0x4000; |
| 2074 | if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID61, &gpio_pin)) { |
| 2075 | table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift; |
| 2076 | phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| 2077 | PHM_PlatformCaps_RegulatorHot); |
| 2078 | } else { |
| 2079 | table->VRHotGpio = SMU7_UNUSED_GPIO_PIN0x7F; |
| 2080 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| 2081 | PHM_PlatformCaps_RegulatorHot); |
| 2082 | } |
| 2083 | |
| 2084 | table->AcDcGpio = SMU7_UNUSED_GPIO_PIN0x7F; |
| 2085 | |
| 2086 | CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags)((table->SystemFlags) = (__uint32_t)(__builtin_constant_p( table->SystemFlags) ? (__uint32_t)(((__uint32_t)(table-> SystemFlags) & 0xff) << 24 | ((__uint32_t)(table-> SystemFlags) & 0xff00) << 8 | ((__uint32_t)(table-> SystemFlags) & 0xff0000) >> 8 | ((__uint32_t)(table ->SystemFlags) & 0xff000000) >> 24) : __swap32md (table->SystemFlags))); |
| 2087 | CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig)((table->VRConfig) = (__uint32_t)(__builtin_constant_p(table ->VRConfig) ? (__uint32_t)(((__uint32_t)(table->VRConfig ) & 0xff) << 24 | ((__uint32_t)(table->VRConfig) & 0xff00) << 8 | ((__uint32_t)(table->VRConfig) & 0xff0000) >> 8 | ((__uint32_t)(table->VRConfig ) & 0xff000000) >> 24) : __swap32md(table->VRConfig ))); |
| 2088 | CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcVid)((table->SmioMaskVddcVid) = (__uint32_t)(__builtin_constant_p (table->SmioMaskVddcVid) ? (__uint32_t)(((__uint32_t)(table ->SmioMaskVddcVid) & 0xff) << 24 | ((__uint32_t) (table->SmioMaskVddcVid) & 0xff00) << 8 | ((__uint32_t )(table->SmioMaskVddcVid) & 0xff0000) >> 8 | ((__uint32_t )(table->SmioMaskVddcVid) & 0xff000000) >> 24) : __swap32md(table->SmioMaskVddcVid))); |
| 2089 | CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcPhase)((table->SmioMaskVddcPhase) = (__uint32_t)(__builtin_constant_p (table->SmioMaskVddcPhase) ? (__uint32_t)(((__uint32_t)(table ->SmioMaskVddcPhase) & 0xff) << 24 | ((__uint32_t )(table->SmioMaskVddcPhase) & 0xff00) << 8 | ((__uint32_t )(table->SmioMaskVddcPhase) & 0xff0000) >> 8 | ( (__uint32_t)(table->SmioMaskVddcPhase) & 0xff000000) >> 24) : __swap32md(table->SmioMaskVddcPhase))); |
| 2090 | CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddciVid)((table->SmioMaskVddciVid) = (__uint32_t)(__builtin_constant_p (table->SmioMaskVddciVid) ? (__uint32_t)(((__uint32_t)(table ->SmioMaskVddciVid) & 0xff) << 24 | ((__uint32_t )(table->SmioMaskVddciVid) & 0xff00) << 8 | ((__uint32_t )(table->SmioMaskVddciVid) & 0xff0000) >> 8 | (( __uint32_t)(table->SmioMaskVddciVid) & 0xff000000) >> 24) : __swap32md(table->SmioMaskVddciVid))); |
| 2091 | CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskMvddVid)((table->SmioMaskMvddVid) = (__uint32_t)(__builtin_constant_p (table->SmioMaskMvddVid) ? (__uint32_t)(((__uint32_t)(table ->SmioMaskMvddVid) & 0xff) << 24 | ((__uint32_t) (table->SmioMaskMvddVid) & 0xff00) << 8 | ((__uint32_t )(table->SmioMaskMvddVid) & 0xff0000) >> 8 | ((__uint32_t )(table->SmioMaskMvddVid) & 0xff000000) >> 24) : __swap32md(table->SmioMaskMvddVid))); |
| 2092 | CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize)((table->SclkStepSize) = (__uint32_t)(__builtin_constant_p (table->SclkStepSize) ? (__uint32_t)(((__uint32_t)(table-> SclkStepSize) & 0xff) << 24 | ((__uint32_t)(table-> SclkStepSize) & 0xff00) << 8 | ((__uint32_t)(table-> SclkStepSize) & 0xff0000) >> 8 | ((__uint32_t)(table ->SclkStepSize) & 0xff000000) >> 24) : __swap32md (table->SclkStepSize))); |
| 2093 | CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh)((table->TemperatureLimitHigh) = (__uint16_t)(__builtin_constant_p (table->TemperatureLimitHigh) ? (__uint16_t)(((__uint16_t) (table->TemperatureLimitHigh) & 0xffU) << 8 | (( __uint16_t)(table->TemperatureLimitHigh) & 0xff00U) >> 8) : __swap16md(table->TemperatureLimitHigh))); |
| 2094 | CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow)((table->TemperatureLimitLow) = (__uint16_t)(__builtin_constant_p (table->TemperatureLimitLow) ? (__uint16_t)(((__uint16_t)( table->TemperatureLimitLow) & 0xffU) << 8 | ((__uint16_t )(table->TemperatureLimitLow) & 0xff00U) >> 8) : __swap16md(table->TemperatureLimitLow))); |
| 2095 | table->VddcVddciDelta = PP_HOST_TO_SMC_US(table->VddcVddciDelta)(__uint16_t)(__builtin_constant_p(table->VddcVddciDelta) ? (__uint16_t)(((__uint16_t)(table->VddcVddciDelta) & 0xffU ) << 8 | ((__uint16_t)(table->VddcVddciDelta) & 0xff00U ) >> 8) : __swap16md(table->VddcVddciDelta)); |
| 2096 | CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime)((table->VoltageResponseTime) = (__uint16_t)(__builtin_constant_p (table->VoltageResponseTime) ? (__uint16_t)(((__uint16_t)( table->VoltageResponseTime) & 0xffU) << 8 | ((__uint16_t )(table->VoltageResponseTime) & 0xff00U) >> 8) : __swap16md(table->VoltageResponseTime))); |
| 2097 | CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime)((table->PhaseResponseTime) = (__uint16_t)(__builtin_constant_p (table->PhaseResponseTime) ? (__uint16_t)(((__uint16_t)(table ->PhaseResponseTime) & 0xffU) << 8 | ((__uint16_t )(table->PhaseResponseTime) & 0xff00U) >> 8) : __swap16md (table->PhaseResponseTime))); |
| 2098 | |
| 2099 | table->BootVddc = PP_HOST_TO_SMC_US(table->BootVddc * VOLTAGE_SCALE)(__uint16_t)(__builtin_constant_p(table->BootVddc * 4) ? ( __uint16_t)(((__uint16_t)(table->BootVddc * 4) & 0xffU ) << 8 | ((__uint16_t)(table->BootVddc * 4) & 0xff00U ) >> 8) : __swap16md(table->BootVddc * 4)); |
| 2100 | table->BootVddci = PP_HOST_TO_SMC_US(table->BootVddci * VOLTAGE_SCALE)(__uint16_t)(__builtin_constant_p(table->BootVddci * 4) ? ( __uint16_t)(((__uint16_t)(table->BootVddci * 4) & 0xffU ) << 8 | ((__uint16_t)(table->BootVddci * 4) & 0xff00U ) >> 8) : __swap16md(table->BootVddci * 4)); |
| 2101 | table->BootMVdd = PP_HOST_TO_SMC_US(table->BootMVdd * VOLTAGE_SCALE)(__uint16_t)(__builtin_constant_p(table->BootMVdd * 4) ? ( __uint16_t)(((__uint16_t)(table->BootMVdd * 4) & 0xffU ) << 8 | ((__uint16_t)(table->BootMVdd * 4) & 0xff00U ) >> 8) : __swap16md(table->BootMVdd * 4)); |
| 2102 | |
| 2103 | /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */ |
| 2104 | result = ci_copy_bytes_to_smc(hwmgr, smu_data->dpm_table_start + |
| 2105 | offsetof(SMU7_Discrete_DpmTable, SystemFlags)__builtin_offsetof(SMU7_Discrete_DpmTable, SystemFlags), |
| 2106 | (uint8_t *)&(table->SystemFlags), |
| 2107 | sizeof(SMU7_Discrete_DpmTable)-3 * sizeof(SMU7_PIDController), |
| 2108 | SMC_RAM_END0x40000); |
| 2109 | |
| 2110 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to upload dpm data to SMC memory!"); return result ;; } } while (0) |
| 2111 | "Failed to upload dpm data to SMC memory!", return result;)do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to upload dpm data to SMC memory!"); return result ;; } } while (0); |
| 2112 | |
| 2113 | result = ci_populate_initial_mc_reg_table(hwmgr); |
| 2114 | PP_ASSERT_WITH_CODE((0 == result),do { if (!((0 == result))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to populate initialize MC Reg table!"); return result; } } while (0) |
| 2115 | "Failed to populate initialize MC Reg table!", return result)do { if (!((0 == result))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to populate initialize MC Reg table!"); return result; } } while (0); |
| 2116 | |
| 2117 | result = ci_populate_pm_fuses(hwmgr); |
| 2118 | PP_ASSERT_WITH_CODE(0 == result,do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to populate PM fuses to SMC memory!"); return result; } } while (0) |
| 2119 | "Failed to populate PM fuses to SMC memory!", return result)do { if (!(0 == result)) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to populate PM fuses to SMC memory!"); return result; } } while (0); |
| 2120 | |
| 2121 | ci_start_smc(hwmgr); |
| 2122 | |
| 2123 | return 0; |
| 2124 | } |
| 2125 | |
| 2126 | static int ci_thermal_setup_fan_table(struct pp_hwmgr *hwmgr) |
| 2127 | { |
| 2128 | struct ci_smumgr *ci_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| 2129 | SMU7_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE0 }; |
| 2130 | uint32_t duty100; |
| 2131 | uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2; |
| 2132 | uint16_t fdo_min, slope1, slope2; |
| 2133 | uint32_t reference_clock; |
| 2134 | int res; |
| 2135 | uint64_t tmp64; |
| 2136 | |
| 2137 | if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl)) |
| 2138 | return 0; |
| 2139 | |
| 2140 | if (hwmgr->thermal_controller.fanInfo.bNoFan) { |
| 2141 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| 2142 | PHM_PlatformCaps_MicrocodeFanControl); |
| 2143 | return 0; |
| 2144 | } |
| 2145 | |
| 2146 | if (0 == ci_data->fan_table_start) { |
| 2147 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl); |
| 2148 | return 0; |
| 2149 | } |
| 2150 | |
| 2151 | duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL1, FMAX_DUTY100)((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0300068))) & 0xff) >> 0x0); |
| 2152 | |
| 2153 | if (0 == duty100) { |
| 2154 | phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl); |
| 2155 | return 0; |
| 2156 | } |
| 2157 | |
| 2158 | tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100; |
| 2159 | do_div(tmp64, 10000)({ uint32_t __base = (10000); uint32_t __rem = ((uint64_t)(tmp64 )) % __base; (tmp64) = ((uint64_t)(tmp64)) / __base; __rem; } ); |
| 2160 | fdo_min = (uint16_t)tmp64; |
| 2161 | |
| 2162 | t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - hwmgr->thermal_controller.advanceFanControlParameters.usTMin; |
| 2163 | t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - hwmgr->thermal_controller.advanceFanControlParameters.usTMed; |
| 2164 | |
| 2165 | pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin; |
| 2166 | pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed; |
| 2167 | |
| 2168 | slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100); |
| 2169 | slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100); |
| 2170 | |
| 2171 | fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100)(__uint16_t)(__builtin_constant_p((50 + hwmgr->thermal_controller .advanceFanControlParameters.usTMin) / 100) ? (__uint16_t)((( __uint16_t)((50 + hwmgr->thermal_controller.advanceFanControlParameters .usTMin) / 100) & 0xffU) << 8 | ((__uint16_t)((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin ) / 100) & 0xff00U) >> 8) : __swap16md((50 + hwmgr-> thermal_controller.advanceFanControlParameters.usTMin) / 100) ); |
| 2172 | fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100)(__uint16_t)(__builtin_constant_p((50 + hwmgr->thermal_controller .advanceFanControlParameters.usTMed) / 100) ? (__uint16_t)((( __uint16_t)((50 + hwmgr->thermal_controller.advanceFanControlParameters .usTMed) / 100) & 0xffU) << 8 | ((__uint16_t)((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed ) / 100) & 0xff00U) >> 8) : __swap16md((50 + hwmgr-> thermal_controller.advanceFanControlParameters.usTMed) / 100) ); |
| 2173 | fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100)(__uint16_t)(__builtin_constant_p((50 + hwmgr->thermal_controller .advanceFanControlParameters.usTMax) / 100) ? (__uint16_t)((( __uint16_t)((50 + hwmgr->thermal_controller.advanceFanControlParameters .usTMax) / 100) & 0xffU) << 8 | ((__uint16_t)((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax ) / 100) & 0xff00U) >> 8) : __swap16md((50 + hwmgr-> thermal_controller.advanceFanControlParameters.usTMax) / 100) ); |
| 2174 | |
| 2175 | fan_table.Slope1 = cpu_to_be16(slope1)(__uint16_t)(__builtin_constant_p(slope1) ? (__uint16_t)(((__uint16_t )(slope1) & 0xffU) << 8 | ((__uint16_t)(slope1) & 0xff00U) >> 8) : __swap16md(slope1)); |
| 2176 | fan_table.Slope2 = cpu_to_be16(slope2)(__uint16_t)(__builtin_constant_p(slope2) ? (__uint16_t)(((__uint16_t )(slope2) & 0xffU) << 8 | ((__uint16_t)(slope2) & 0xff00U) >> 8) : __swap16md(slope2)); |
| 2177 | |
| 2178 | fan_table.FdoMin = cpu_to_be16(fdo_min)(__uint16_t)(__builtin_constant_p(fdo_min) ? (__uint16_t)(((__uint16_t )(fdo_min) & 0xffU) << 8 | ((__uint16_t)(fdo_min) & 0xff00U) >> 8) : __swap16md(fdo_min)); |
| 2179 | |
| 2180 | fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst)(__uint16_t)(__builtin_constant_p(hwmgr->thermal_controller .advanceFanControlParameters.ucTHyst) ? (__uint16_t)(((__uint16_t )(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst ) & 0xffU) << 8 | ((__uint16_t)(hwmgr->thermal_controller .advanceFanControlParameters.ucTHyst) & 0xff00U) >> 8) : __swap16md(hwmgr->thermal_controller.advanceFanControlParameters .ucTHyst)); |
| 2181 | |
| 2182 | fan_table.HystUp = cpu_to_be16(1)(__uint16_t)(__builtin_constant_p(1) ? (__uint16_t)(((__uint16_t )(1) & 0xffU) << 8 | ((__uint16_t)(1) & 0xff00U ) >> 8) : __swap16md(1)); |
| 2183 | |
| 2184 | fan_table.HystSlope = cpu_to_be16(1)(__uint16_t)(__builtin_constant_p(1) ? (__uint16_t)(((__uint16_t )(1) & 0xffU) << 8 | ((__uint16_t)(1) & 0xff00U ) >> 8) : __swap16md(1)); |
| 2185 | |
| 2186 | fan_table.TempRespLim = cpu_to_be16(5)(__uint16_t)(__builtin_constant_p(5) ? (__uint16_t)(((__uint16_t )(5) & 0xffU) << 8 | ((__uint16_t)(5) & 0xff00U ) >> 8) : __swap16md(5)); |
| 2187 | |
| 2188 | reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev)((struct amdgpu_device *)hwmgr->adev)->asic_funcs->get_xclk (((struct amdgpu_device *)hwmgr->adev)); |
| 2189 | |
| 2190 | fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600)(__uint32_t)(__builtin_constant_p((hwmgr->thermal_controller .advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) ? (__uint32_t)(((__uint32_t)((hwmgr->thermal_controller .advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) & 0xff) << 24 | ((__uint32_t)((hwmgr->thermal_controller .advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) & 0xff00) << 8 | ((__uint32_t)((hwmgr->thermal_controller .advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) & 0xff0000) >> 8 | ((__uint32_t)((hwmgr-> thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600) & 0xff000000) >> 24) : __swap32md ((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600)); |
| 2191 | |
| 2192 | fan_table.FdoMax = cpu_to_be16((uint16_t)duty100)(__uint16_t)(__builtin_constant_p((uint16_t)duty100) ? (__uint16_t )(((__uint16_t)((uint16_t)duty100) & 0xffU) << 8 | ( (__uint16_t)((uint16_t)duty100) & 0xff00U) >> 8) : __swap16md ((uint16_t)duty100)); |
| 2193 | |
| 2194 | fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL)((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,0xc0300010))) & 0xff00000 ) >> 0x14); |
| 2195 | |
| 2196 | res = ci_copy_bytes_to_smc(hwmgr, ci_data->fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END0x40000); |
| 2197 | |
| 2198 | return res; |
| 2199 | } |
| 2200 | |
| 2201 | static int ci_program_mem_timing_parameters(struct pp_hwmgr *hwmgr) |
| 2202 | { |
| 2203 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 2204 | |
| 2205 | if (data->need_update_smu7_dpm_table & |
| 2206 | (DPMTABLE_OD_UPDATE_SCLK0x00000001 + DPMTABLE_OD_UPDATE_MCLK0x00000002)) |
| 2207 | return ci_program_memory_timing_parameters(hwmgr); |
| 2208 | |
| 2209 | return 0; |
| 2210 | } |
| 2211 | |
| 2212 | static int ci_update_sclk_threshold(struct pp_hwmgr *hwmgr) |
| 2213 | { |
| 2214 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 2215 | struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| 2216 | |
| 2217 | int result = 0; |
| 2218 | uint32_t low_sclk_interrupt_threshold = 0; |
| 2219 | |
| 2220 | if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| 2221 | PHM_PlatformCaps_SclkThrottleLowNotification) |
| 2222 | && (data->low_sclk_interrupt_threshold != 0)) { |
| 2223 | low_sclk_interrupt_threshold = |
| 2224 | data->low_sclk_interrupt_threshold; |
| 2225 | |
| 2226 | CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold)((low_sclk_interrupt_threshold) = (__uint32_t)(__builtin_constant_p (low_sclk_interrupt_threshold) ? (__uint32_t)(((__uint32_t)(low_sclk_interrupt_threshold ) & 0xff) << 24 | ((__uint32_t)(low_sclk_interrupt_threshold ) & 0xff00) << 8 | ((__uint32_t)(low_sclk_interrupt_threshold ) & 0xff0000) >> 8 | ((__uint32_t)(low_sclk_interrupt_threshold ) & 0xff000000) >> 24) : __swap32md(low_sclk_interrupt_threshold ))); |
| 2227 | |
| 2228 | result = ci_copy_bytes_to_smc( |
| 2229 | hwmgr, |
| 2230 | smu_data->dpm_table_start + |
| 2231 | offsetof(SMU7_Discrete_DpmTable,__builtin_offsetof(SMU7_Discrete_DpmTable, LowSclkInterruptT) |
| 2232 | LowSclkInterruptT)__builtin_offsetof(SMU7_Discrete_DpmTable, LowSclkInterruptT), |
| 2233 | (uint8_t *)&low_sclk_interrupt_threshold, |
| 2234 | sizeof(uint32_t), |
| 2235 | SMC_RAM_END0x40000); |
| 2236 | } |
| 2237 | |
| 2238 | result = ci_update_and_upload_mc_reg_table(hwmgr); |
| 2239 | |
| 2240 | PP_ASSERT_WITH_CODE((0 == result), "Failed to upload MC reg table!", return result)do { if (!((0 == result))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to upload MC reg table!"); return result; } } while (0); |
| 2241 | |
| 2242 | result = ci_program_mem_timing_parameters(hwmgr); |
| 2243 | PP_ASSERT_WITH_CODE((result == 0),do { if (!((result == 0))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to program memory timing parameters!"); ; } } while (0) |
| 2244 | "Failed to program memory timing parameters!",do { if (!((result == 0))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to program memory timing parameters!"); ; } } while (0) |
| 2245 | )do { if (!((result == 0))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Failed to program memory timing parameters!"); ; } } while (0); |
| 2246 | |
| 2247 | return result; |
| 2248 | } |
| 2249 | |
| 2250 | static uint32_t ci_get_offsetof(uint32_t type, uint32_t member) |
| 2251 | { |
| 2252 | switch (type) { |
| 2253 | case SMU_SoftRegisters: |
| 2254 | switch (member) { |
| 2255 | case HandshakeDisables: |
| 2256 | return offsetof(SMU7_SoftRegisters, HandshakeDisables)__builtin_offsetof(SMU7_SoftRegisters, HandshakeDisables); |
| 2257 | case VoltageChangeTimeout: |
| 2258 | return offsetof(SMU7_SoftRegisters, VoltageChangeTimeout)__builtin_offsetof(SMU7_SoftRegisters, VoltageChangeTimeout); |
| 2259 | case AverageGraphicsActivity: |
| 2260 | return offsetof(SMU7_SoftRegisters, AverageGraphicsA)__builtin_offsetof(SMU7_SoftRegisters, AverageGraphicsA); |
| 2261 | case AverageMemoryActivity: |
| 2262 | return offsetof(SMU7_SoftRegisters, AverageMemoryA)__builtin_offsetof(SMU7_SoftRegisters, AverageMemoryA); |
| 2263 | case PreVBlankGap: |
| 2264 | return offsetof(SMU7_SoftRegisters, PreVBlankGap)__builtin_offsetof(SMU7_SoftRegisters, PreVBlankGap); |
| 2265 | case VBlankTimeout: |
| 2266 | return offsetof(SMU7_SoftRegisters, VBlankTimeout)__builtin_offsetof(SMU7_SoftRegisters, VBlankTimeout); |
| 2267 | case DRAM_LOG_ADDR_H: |
| 2268 | return offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_H)__builtin_offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_H); |
| 2269 | case DRAM_LOG_ADDR_L: |
| 2270 | return offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_L)__builtin_offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_L); |
| 2271 | case DRAM_LOG_PHY_ADDR_H: |
| 2272 | return offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_H)__builtin_offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_H); |
| 2273 | case DRAM_LOG_PHY_ADDR_L: |
| 2274 | return offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_L)__builtin_offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_L); |
| 2275 | case DRAM_LOG_BUFF_SIZE: |
| 2276 | return offsetof(SMU7_SoftRegisters, DRAM_LOG_BUFF_SIZE)__builtin_offsetof(SMU7_SoftRegisters, DRAM_LOG_BUFF_SIZE); |
| 2277 | } |
| 2278 | break; |
| 2279 | case SMU_Discrete_DpmTable: |
| 2280 | switch (member) { |
| 2281 | case LowSclkInterruptThreshold: |
| 2282 | return offsetof(SMU7_Discrete_DpmTable, LowSclkInterruptT)__builtin_offsetof(SMU7_Discrete_DpmTable, LowSclkInterruptT); |
| 2283 | } |
| 2284 | break; |
| 2285 | } |
| 2286 | pr_debug("can't get the offset of type %x member %x\n", type, member)do { } while(0); |
| 2287 | return 0; |
| 2288 | } |
| 2289 | |
| 2290 | static uint32_t ci_get_mac_definition(uint32_t value) |
| 2291 | { |
| 2292 | switch (value) { |
| 2293 | case SMU_MAX_LEVELS_GRAPHICS: |
| 2294 | return SMU7_MAX_LEVELS_GRAPHICS8; |
| 2295 | case SMU_MAX_LEVELS_MEMORY: |
| 2296 | return SMU7_MAX_LEVELS_MEMORY6; |
| 2297 | case SMU_MAX_LEVELS_LINK: |
| 2298 | return SMU7_MAX_LEVELS_LINK8; |
| 2299 | case SMU_MAX_ENTRIES_SMIO: |
| 2300 | return SMU7_MAX_ENTRIES_SMIO32; |
| 2301 | case SMU_MAX_LEVELS_VDDC: |
| 2302 | return SMU7_MAX_LEVELS_VDDC8; |
| 2303 | case SMU_MAX_LEVELS_VDDCI: |
| 2304 | return SMU7_MAX_LEVELS_VDDCI4; |
| 2305 | case SMU_MAX_LEVELS_MVDD: |
| 2306 | return SMU7_MAX_LEVELS_MVDD4; |
| 2307 | } |
| 2308 | |
| 2309 | pr_debug("can't get the mac of %x\n", value)do { } while(0); |
| 2310 | return 0; |
| 2311 | } |
| 2312 | |
| 2313 | static int ci_load_smc_ucode(struct pp_hwmgr *hwmgr) |
| 2314 | { |
| 2315 | uint32_t byte_count, start_addr; |
| 2316 | uint8_t *src; |
| 2317 | uint32_t data; |
| 2318 | |
| 2319 | struct cgs_firmware_info info = {0}; |
| 2320 | |
| 2321 | cgs_get_firmware_info(hwmgr->device, CGS_UCODE_ID_SMU, &info)(((struct cgs_device *)hwmgr->device)->ops->get_firmware_info (hwmgr->device, CGS_UCODE_ID_SMU, &info)); |
| 2322 | |
| 2323 | hwmgr->is_kicker = info.is_kicker; |
| 2324 | hwmgr->smu_version = info.version; |
| 2325 | byte_count = info.image_size; |
| 2326 | src = (uint8_t *)info.kptr; |
| 2327 | start_addr = info.ucode_start_address; |
| 2328 | |
| 2329 | if (byte_count > SMC_RAM_END0x40000) { |
| 2330 | pr_err("SMC address is beyond the SMC RAM area.\n")printk("\0013" "amdgpu: [powerplay] " "SMC address is beyond the SMC RAM area.\n" ); |
| 2331 | return -EINVAL22; |
| 2332 | } |
| 2333 | |
| 2334 | cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, start_addr)(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0x80,start_addr)); |
| 2335 | PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 1)(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0x90,((((((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0x90))) & ~0x1 ) | (0x1 & ((1) << 0x0))))); |
| 2336 | |
| 2337 | for (; byte_count >= 4; byte_count -= 4) { |
| 2338 | data = (src[0] << 24) | (src[1] << 16) | (src[2] << 8) | src[3]; |
| 2339 | cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data)(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0x81,data)); |
| 2340 | src += 4; |
| 2341 | } |
| 2342 | PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0)(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0x90,((((((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0x90))) & ~0x1 ) | (0x1 & ((0) << 0x0))))); |
| 2343 | |
| 2344 | if (0 != byte_count) { |
| 2345 | pr_err("SMC size must be divisible by 4\n")printk("\0013" "amdgpu: [powerplay] " "SMC size must be divisible by 4\n" ); |
| 2346 | return -EINVAL22; |
| 2347 | } |
| 2348 | |
| 2349 | return 0; |
| 2350 | } |
| 2351 | |
| 2352 | static int ci_upload_firmware(struct pp_hwmgr *hwmgr) |
| 2353 | { |
| 2354 | if (ci_is_smc_ram_running(hwmgr)) { |
| 2355 | pr_info("smc is running, no need to load smc firmware\n")do { } while(0); |
| 2356 | return 0; |
| 2357 | } |
| 2358 | PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS,phm_wait_on_indirect_register(hwmgr, 0x80, 0xc0000004, (1) << 0x7, 0x80) |
| 2359 | boot_seq_done, 1)phm_wait_on_indirect_register(hwmgr, 0x80, 0xc0000004, (1) << 0x7, 0x80); |
| 2360 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_MISC_CNTL,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000010,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000010))) & ~0x1) | (0x1 & ((1) << 0))))) |
| 2361 | pre_fetcher_en, 1)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000010,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000010))) & ~0x1) | (0x1 & ((1) << 0))))); |
| 2362 | |
| 2363 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 1)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000004,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000004))) & ~0x1) | (0x1 & ((1) << 0x0))))); |
| 2364 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 1)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((1) << 0x0))))); |
| 2365 | return ci_load_smc_ucode(hwmgr); |
| 2366 | } |
| 2367 | |
| 2368 | static int ci_process_firmware_header(struct pp_hwmgr *hwmgr) |
| 2369 | { |
| 2370 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 2371 | struct ci_smumgr *ci_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| 2372 | |
| 2373 | uint32_t tmp = 0; |
| 2374 | int result; |
| 2375 | bool_Bool error = false0; |
| 2376 | |
| 2377 | if (ci_upload_firmware(hwmgr)) |
| 2378 | return -EINVAL22; |
| 2379 | |
| 2380 | result = ci_read_smc_sram_dword(hwmgr, |
| 2381 | SMU7_FIRMWARE_HEADER_LOCATION0x20000 + |
| 2382 | offsetof(SMU7_Firmware_Header, DpmTable)__builtin_offsetof(SMU7_Firmware_Header, DpmTable), |
| 2383 | &tmp, SMC_RAM_END0x40000); |
| 2384 | |
| 2385 | if (0 == result) |
| 2386 | ci_data->dpm_table_start = tmp; |
| 2387 | |
| 2388 | error |= (0 != result); |
| 2389 | |
| 2390 | result = ci_read_smc_sram_dword(hwmgr, |
| 2391 | SMU7_FIRMWARE_HEADER_LOCATION0x20000 + |
| 2392 | offsetof(SMU7_Firmware_Header, SoftRegisters)__builtin_offsetof(SMU7_Firmware_Header, SoftRegisters), |
| 2393 | &tmp, SMC_RAM_END0x40000); |
| 2394 | |
| 2395 | if (0 == result) { |
| 2396 | data->soft_regs_start = tmp; |
| 2397 | ci_data->soft_regs_start = tmp; |
| 2398 | } |
| 2399 | |
| 2400 | error |= (0 != result); |
| 2401 | |
| 2402 | result = ci_read_smc_sram_dword(hwmgr, |
| 2403 | SMU7_FIRMWARE_HEADER_LOCATION0x20000 + |
| 2404 | offsetof(SMU7_Firmware_Header, mcRegisterTable)__builtin_offsetof(SMU7_Firmware_Header, mcRegisterTable), |
| 2405 | &tmp, SMC_RAM_END0x40000); |
| 2406 | |
| 2407 | if (0 == result) |
| 2408 | ci_data->mc_reg_table_start = tmp; |
| 2409 | |
| 2410 | result = ci_read_smc_sram_dword(hwmgr, |
| 2411 | SMU7_FIRMWARE_HEADER_LOCATION0x20000 + |
| 2412 | offsetof(SMU7_Firmware_Header, FanTable)__builtin_offsetof(SMU7_Firmware_Header, FanTable), |
| 2413 | &tmp, SMC_RAM_END0x40000); |
| 2414 | |
| 2415 | if (0 == result) |
| 2416 | ci_data->fan_table_start = tmp; |
| 2417 | |
| 2418 | error |= (0 != result); |
| 2419 | |
| 2420 | result = ci_read_smc_sram_dword(hwmgr, |
| 2421 | SMU7_FIRMWARE_HEADER_LOCATION0x20000 + |
| 2422 | offsetof(SMU7_Firmware_Header, mcArbDramTimingTable)__builtin_offsetof(SMU7_Firmware_Header, mcArbDramTimingTable ), |
| 2423 | &tmp, SMC_RAM_END0x40000); |
| 2424 | |
| 2425 | if (0 == result) |
| 2426 | ci_data->arb_table_start = tmp; |
| 2427 | |
| 2428 | error |= (0 != result); |
| 2429 | |
| 2430 | result = ci_read_smc_sram_dword(hwmgr, |
| 2431 | SMU7_FIRMWARE_HEADER_LOCATION0x20000 + |
| 2432 | offsetof(SMU7_Firmware_Header, Version)__builtin_offsetof(SMU7_Firmware_Header, Version), |
| 2433 | &tmp, SMC_RAM_END0x40000); |
| 2434 | |
| 2435 | if (0 == result) |
| 2436 | hwmgr->microcode_version_info.SMC = tmp; |
| 2437 | |
| 2438 | error |= (0 != result); |
| 2439 | |
| 2440 | return error ? 1 : 0; |
| 2441 | } |
| 2442 | |
| 2443 | static uint8_t ci_get_memory_modile_index(struct pp_hwmgr *hwmgr) |
| 2444 | { |
| 2445 | return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0x5cd)) >> 16)); |
| 2446 | } |
| 2447 | |
| 2448 | static bool_Bool ci_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg) |
| 2449 | { |
| 2450 | bool_Bool result = true1; |
| 2451 | |
| 2452 | switch (in_reg) { |
| 2453 | case mmMC_SEQ_RAS_TIMING0xa28: |
| 2454 | *out_reg = mmMC_SEQ_RAS_TIMING_LP0xa9b; |
| 2455 | break; |
| 2456 | |
| 2457 | case mmMC_SEQ_DLL_STBY0xd8e: |
| 2458 | *out_reg = mmMC_SEQ_DLL_STBY_LP0xd8f; |
| 2459 | break; |
| 2460 | |
| 2461 | case mmMC_SEQ_G5PDX_CMD00xd83: |
| 2462 | *out_reg = mmMC_SEQ_G5PDX_CMD0_LP0xd84; |
| 2463 | break; |
| 2464 | |
| 2465 | case mmMC_SEQ_G5PDX_CMD10xd85: |
| 2466 | *out_reg = mmMC_SEQ_G5PDX_CMD1_LP0xd86; |
| 2467 | break; |
| 2468 | |
| 2469 | case mmMC_SEQ_G5PDX_CTRL0xd81: |
| 2470 | *out_reg = mmMC_SEQ_G5PDX_CTRL_LP0xd82; |
| 2471 | break; |
| 2472 | |
| 2473 | case mmMC_SEQ_CAS_TIMING0xa29: |
| 2474 | *out_reg = mmMC_SEQ_CAS_TIMING_LP0xa9c; |
| 2475 | break; |
| 2476 | |
| 2477 | case mmMC_SEQ_MISC_TIMING0xa2a: |
| 2478 | *out_reg = mmMC_SEQ_MISC_TIMING_LP0xa9d; |
| 2479 | break; |
| 2480 | |
| 2481 | case mmMC_SEQ_MISC_TIMING20xa2b: |
| 2482 | *out_reg = mmMC_SEQ_MISC_TIMING2_LP0xa9e; |
| 2483 | break; |
| 2484 | |
| 2485 | case mmMC_SEQ_PMG_DVS_CMD0xd8c: |
| 2486 | *out_reg = mmMC_SEQ_PMG_DVS_CMD_LP0xd8d; |
| 2487 | break; |
| 2488 | |
| 2489 | case mmMC_SEQ_PMG_DVS_CTL0xd8a: |
| 2490 | *out_reg = mmMC_SEQ_PMG_DVS_CTL_LP0xd8b; |
| 2491 | break; |
| 2492 | |
| 2493 | case mmMC_SEQ_RD_CTL_D00xa2d: |
| 2494 | *out_reg = mmMC_SEQ_RD_CTL_D0_LP0xac7; |
| 2495 | break; |
| 2496 | |
| 2497 | case mmMC_SEQ_RD_CTL_D10xa2e: |
| 2498 | *out_reg = mmMC_SEQ_RD_CTL_D1_LP0xac8; |
| 2499 | break; |
| 2500 | |
| 2501 | case mmMC_SEQ_WR_CTL_D00xa2f: |
| 2502 | *out_reg = mmMC_SEQ_WR_CTL_D0_LP0xa9f; |
| 2503 | break; |
| 2504 | |
| 2505 | case mmMC_SEQ_WR_CTL_D10xa30: |
| 2506 | *out_reg = mmMC_SEQ_WR_CTL_D1_LP0xaa0; |
| 2507 | break; |
| 2508 | |
| 2509 | case mmMC_PMG_CMD_EMRS0xa83: |
| 2510 | *out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP0xaa1; |
| 2511 | break; |
| 2512 | |
| 2513 | case mmMC_PMG_CMD_MRS0xaab: |
| 2514 | *out_reg = mmMC_SEQ_PMG_CMD_MRS_LP0xaa2; |
| 2515 | break; |
| 2516 | |
| 2517 | case mmMC_PMG_CMD_MRS10xad1: |
| 2518 | *out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP0xad2; |
| 2519 | break; |
| 2520 | |
| 2521 | case mmMC_SEQ_PMG_TIMING0xa2c: |
| 2522 | *out_reg = mmMC_SEQ_PMG_TIMING_LP0xad3; |
| 2523 | break; |
| 2524 | |
| 2525 | case mmMC_PMG_CMD_MRS20xad7: |
| 2526 | *out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP0xad8; |
| 2527 | break; |
| 2528 | |
| 2529 | case mmMC_SEQ_WR_CTL_20xad5: |
| 2530 | *out_reg = mmMC_SEQ_WR_CTL_2_LP0xad6; |
| 2531 | break; |
| 2532 | |
| 2533 | default: |
| 2534 | result = false0; |
| 2535 | break; |
| 2536 | } |
| 2537 | |
| 2538 | return result; |
| 2539 | } |
| 2540 | |
| 2541 | static int ci_set_s0_mc_reg_index(struct ci_mc_reg_table *table) |
| 2542 | { |
| 2543 | uint32_t i; |
| 2544 | uint16_t address; |
| 2545 | |
| 2546 | for (i = 0; i < table->last; i++) { |
| 2547 | table->mc_reg_address[i].s0 = |
| 2548 | ci_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address) |
| 2549 | ? address : table->mc_reg_address[i].s1; |
| 2550 | } |
| 2551 | return 0; |
| 2552 | } |
| 2553 | |
| 2554 | static int ci_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table, |
| 2555 | struct ci_mc_reg_table *ni_table) |
| 2556 | { |
| 2557 | uint8_t i, j; |
| 2558 | |
| 2559 | PP_ASSERT_WITH_CODE((table->last <= SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),do { if (!((table->last <= 16))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Invalid VramInfo table."); return -22; } } while (0 ) |
| 2560 | "Invalid VramInfo table.", return -EINVAL)do { if (!((table->last <= 16))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Invalid VramInfo table."); return -22; } } while (0 ); |
| 2561 | PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),do { if (!((table->num_entries <= 16))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Invalid VramInfo table."); return -22; } } while (0) |
| 2562 | "Invalid VramInfo table.", return -EINVAL)do { if (!((table->num_entries <= 16))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Invalid VramInfo table."); return -22; } } while (0); |
| 2563 | |
| 2564 | for (i = 0; i < table->last; i++) |
| 2565 | ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1; |
| 2566 | |
| 2567 | ni_table->last = table->last; |
| 2568 | |
| 2569 | for (i = 0; i < table->num_entries; i++) { |
| 2570 | ni_table->mc_reg_table_entry[i].mclk_max = |
| 2571 | table->mc_reg_table_entry[i].mclk_max; |
| 2572 | for (j = 0; j < table->last; j++) { |
| 2573 | ni_table->mc_reg_table_entry[i].mc_data[j] = |
| 2574 | table->mc_reg_table_entry[i].mc_data[j]; |
| 2575 | } |
| 2576 | } |
| 2577 | |
| 2578 | ni_table->num_entries = table->num_entries; |
| 2579 | |
| 2580 | return 0; |
| 2581 | } |
| 2582 | |
| 2583 | static int ci_set_mc_special_registers(struct pp_hwmgr *hwmgr, |
| 2584 | struct ci_mc_reg_table *table) |
| 2585 | { |
| 2586 | uint8_t i, j, k; |
| 2587 | uint32_t temp_reg; |
| 2588 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 2589 | |
| 2590 | for (i = 0, j = table->last; i < table->last; i++) { |
| 2591 | PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),do { if (!((j < 16))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Invalid VramInfo table."); return -22; } } while (0 ) |
| 2592 | "Invalid VramInfo table.", return -EINVAL)do { if (!((j < 16))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Invalid VramInfo table."); return -22; } } while (0 ); |
| 2593 | |
| 2594 | switch (table->mc_reg_address[i].s1) { |
| 2595 | |
| 2596 | case mmMC_SEQ_MISC10xa81: |
| 2597 | temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0xa83)); |
| 2598 | table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS0xa83; |
| 2599 | table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP0xaa1; |
| 2600 | for (k = 0; k < table->num_entries; k++) { |
| 2601 | table->mc_reg_table_entry[k].mc_data[j] = |
| 2602 | ((temp_reg & 0xffff0000)) | |
| 2603 | ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16); |
| 2604 | } |
| 2605 | j++; |
| 2606 | |
| 2607 | PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),do { if (!((j < 16))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Invalid VramInfo table."); return -22; } } while (0 ) |
| 2608 | "Invalid VramInfo table.", return -EINVAL)do { if (!((j < 16))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Invalid VramInfo table."); return -22; } } while (0 ); |
| 2609 | temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0xaab)); |
| 2610 | table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS0xaab; |
| 2611 | table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP0xaa2; |
| 2612 | for (k = 0; k < table->num_entries; k++) { |
| 2613 | table->mc_reg_table_entry[k].mc_data[j] = |
| 2614 | (temp_reg & 0xffff0000) | |
| 2615 | (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); |
| 2616 | |
| 2617 | if (!data->is_memory_gddr5) |
| 2618 | table->mc_reg_table_entry[k].mc_data[j] |= 0x100; |
| 2619 | } |
| 2620 | j++; |
| 2621 | |
| 2622 | if (!data->is_memory_gddr5) { |
| 2623 | PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),do { if (!((j < 16))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Invalid VramInfo table."); return -22; } } while (0 ) |
| 2624 | "Invalid VramInfo table.", return -EINVAL)do { if (!((j < 16))) { printk("\0014" "amdgpu: [powerplay] " "%s\n", "Invalid VramInfo table."); return -22; } } while (0 ); |
| 2625 | table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD0xa34; |
| 2626 | table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD0xa34; |
| 2627 | for (k = 0; k < table->num_entries; k++) { |
| 2628 | table->mc_reg_table_entry[k].mc_data[j] = |
| 2629 | (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16; |
| 2630 | } |
| 2631 | j++; |
| 2632 | } |
| 2633 | |
| 2634 | break; |
| 2635 | |
| 2636 | case mmMC_SEQ_RESERVE_M0xa82: |
| 2637 | temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1)(((struct cgs_device *)hwmgr->device)->ops->read_register (hwmgr->device,0xad1)); |
| 2638 | table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS10xad1; |
| 2639 | table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP0xad2; |
| 2640 | for (k = 0; k < table->num_entries; k++) { |
| 2641 | table->mc_reg_table_entry[k].mc_data[j] = |
| 2642 | (temp_reg & 0xffff0000) | |
| 2643 | (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); |
| 2644 | } |
| 2645 | j++; |
| 2646 | break; |
| 2647 | |
| 2648 | default: |
| 2649 | break; |
| 2650 | } |
| 2651 | |
| 2652 | } |
| 2653 | |
| 2654 | table->last = j; |
| 2655 | |
| 2656 | return 0; |
| 2657 | } |
| 2658 | |
| 2659 | static int ci_set_valid_flag(struct ci_mc_reg_table *table) |
| 2660 | { |
| 2661 | uint8_t i, j; |
| 2662 | |
| 2663 | for (i = 0; i < table->last; i++) { |
| 2664 | for (j = 1; j < table->num_entries; j++) { |
| 2665 | if (table->mc_reg_table_entry[j-1].mc_data[i] != |
| 2666 | table->mc_reg_table_entry[j].mc_data[i]) { |
| 2667 | table->validflag |= (1 << i); |
| 2668 | break; |
| 2669 | } |
| 2670 | } |
| 2671 | } |
| 2672 | |
| 2673 | return 0; |
| 2674 | } |
| 2675 | |
| 2676 | static int ci_initialize_mc_reg_table(struct pp_hwmgr *hwmgr) |
| 2677 | { |
| 2678 | int result; |
| 2679 | struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend); |
| 2680 | pp_atomctrl_mc_reg_table *table; |
| 2681 | struct ci_mc_reg_table *ni_table = &smu_data->mc_reg_table; |
| 2682 | uint8_t module_index = ci_get_memory_modile_index(hwmgr); |
| 2683 | |
| 2684 | table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL(0x0001 | 0x0004)); |
| 2685 | |
| 2686 | if (NULL((void *)0) == table) |
| 2687 | return -ENOMEM12; |
| 2688 | |
| 2689 | /* Program additional LP registers that are no longer programmed by VBIOS */ |
| 2690 | cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xa9b,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa28)))); |
| 2691 | cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xa9c,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa29)))); |
| 2692 | cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xd8f,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xd8e)))); |
| 2693 | cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xd84,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xd83)))); |
| 2694 | cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xd86,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xd85)))); |
| 2695 | cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xd82,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xd81)))); |
| 2696 | cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xd8d,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xd8c)))); |
| 2697 | cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xd8b,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xd8a)))); |
| 2698 | cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xa9d,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa2a)))); |
| 2699 | cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xa9e,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa2b)))); |
| 2700 | cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xaa1,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa83)))); |
| 2701 | cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xaa2,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xaab)))); |
| 2702 | cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xad2,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xad1)))); |
| 2703 | cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xa9f,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa2f)))); |
| 2704 | cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xaa0,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa30)))); |
| 2705 | cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xac7,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa2d)))); |
| 2706 | cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xac8,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa2e)))); |
| 2707 | cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xad3,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xa2c)))); |
| 2708 | cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xad8,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xad7)))); |
| 2709 | cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2))(((struct cgs_device *)hwmgr->device)->ops->write_register (hwmgr->device,0xad6,(((struct cgs_device *)hwmgr->device )->ops->read_register(hwmgr->device,0xad5)))); |
| 2710 | |
| 2711 | result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table); |
| 2712 | |
| 2713 | if (0 == result) |
| 2714 | result = ci_copy_vbios_smc_reg_table(table, ni_table); |
| 2715 | |
| 2716 | if (0 == result) { |
| 2717 | ci_set_s0_mc_reg_index(ni_table); |
| 2718 | result = ci_set_mc_special_registers(hwmgr, ni_table); |
| 2719 | } |
| 2720 | |
| 2721 | if (0 == result) |
| 2722 | ci_set_valid_flag(ni_table); |
| 2723 | |
| 2724 | kfree(table); |
| 2725 | |
| 2726 | return result; |
| 2727 | } |
| 2728 | |
| 2729 | static bool_Bool ci_is_dpm_running(struct pp_hwmgr *hwmgr) |
| 2730 | { |
| 2731 | return ci_is_smc_ram_running(hwmgr); |
| 2732 | } |
| 2733 | |
| 2734 | static int ci_smu_init(struct pp_hwmgr *hwmgr) |
| 2735 | { |
| 2736 | struct ci_smumgr *ci_priv = NULL((void *)0); |
| 2737 | |
| 2738 | ci_priv = kzalloc(sizeof(struct ci_smumgr), GFP_KERNEL(0x0001 | 0x0004)); |
| 2739 | |
| 2740 | if (ci_priv == NULL((void *)0)) |
| 2741 | return -ENOMEM12; |
| 2742 | |
| 2743 | hwmgr->smu_backend = ci_priv; |
| 2744 | |
| 2745 | return 0; |
| 2746 | } |
| 2747 | |
| 2748 | static int ci_smu_fini(struct pp_hwmgr *hwmgr) |
| 2749 | { |
| 2750 | kfree(hwmgr->smu_backend); |
| 2751 | hwmgr->smu_backend = NULL((void *)0); |
| 2752 | return 0; |
| 2753 | } |
| 2754 | |
| 2755 | static int ci_start_smu(struct pp_hwmgr *hwmgr) |
| 2756 | { |
| 2757 | return 0; |
| 2758 | } |
| 2759 | |
| 2760 | static int ci_update_dpm_settings(struct pp_hwmgr *hwmgr, |
| 2761 | void *profile_setting) |
| 2762 | { |
| 2763 | struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| 2764 | struct ci_smumgr *smu_data = (struct ci_smumgr *) |
| 2765 | (hwmgr->smu_backend); |
| 2766 | struct profile_mode_setting *setting; |
| 2767 | struct SMU7_Discrete_GraphicsLevel *levels = |
| 2768 | smu_data->smc_state_table.GraphicsLevel; |
| 2769 | uint32_t array = smu_data->dpm_table_start + |
| 2770 | offsetof(SMU7_Discrete_DpmTable, GraphicsLevel)__builtin_offsetof(SMU7_Discrete_DpmTable, GraphicsLevel); |
| 2771 | |
| 2772 | uint32_t mclk_array = smu_data->dpm_table_start + |
| 2773 | offsetof(SMU7_Discrete_DpmTable, MemoryLevel)__builtin_offsetof(SMU7_Discrete_DpmTable, MemoryLevel); |
| 2774 | struct SMU7_Discrete_MemoryLevel *mclk_levels = |
| 2775 | smu_data->smc_state_table.MemoryLevel; |
| 2776 | uint32_t i; |
| 2777 | uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp; |
| 2778 | |
| 2779 | if (profile_setting == NULL((void *)0)) |
| 2780 | return -EINVAL22; |
| 2781 | |
| 2782 | setting = (struct profile_mode_setting *)profile_setting; |
| 2783 | |
| 2784 | if (setting->bupdate_sclk) { |
| 2785 | if (!data->sclk_dpm_key_disabled) |
| 2786 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel((uint16_t) 0x189), NULL((void *)0)); |
| 2787 | for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) { |
| 2788 | if (levels[i].ActivityLevel != |
| 2789 | cpu_to_be16(setting->sclk_activity)(__uint16_t)(__builtin_constant_p(setting->sclk_activity) ? (__uint16_t)(((__uint16_t)(setting->sclk_activity) & 0xffU ) << 8 | ((__uint16_t)(setting->sclk_activity) & 0xff00U) >> 8) : __swap16md(setting->sclk_activity) )) { |
| 2790 | levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity)(__uint16_t)(__builtin_constant_p(setting->sclk_activity) ? (__uint16_t)(((__uint16_t)(setting->sclk_activity) & 0xffU ) << 8 | ((__uint16_t)(setting->sclk_activity) & 0xff00U) >> 8) : __swap16md(setting->sclk_activity) ); |
| 2791 | |
| 2792 | clk_activity_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i) |
| 2793 | + offsetof(SMU7_Discrete_GraphicsLevel, ActivityLevel)__builtin_offsetof(SMU7_Discrete_GraphicsLevel, ActivityLevel ); |
| 2794 | offset = clk_activity_offset & ~0x3; |
| 2795 | tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset))(__uint32_t)(__builtin_constant_p((((struct cgs_device *)hwmgr ->device)->ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC ,offset))) ? (__uint32_t)(((__uint32_t)((((struct cgs_device * )hwmgr->device)->ops->read_ind_register(hwmgr->device ,CGS_IND_REG__SMC,offset))) & 0xff) << 24 | ((__uint32_t )((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,offset))) & 0xff00) << 8 | ((__uint32_t)((((struct cgs_device *)hwmgr->device)-> ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset ))) & 0xff0000) >> 8 | ((__uint32_t)((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,offset))) & 0xff000000) >> 24 ) : __swap32md((((struct cgs_device *)hwmgr->device)->ops ->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset )))); |
| 2796 | tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t)); |
| 2797 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp))(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,offset,(__uint32_t)(__builtin_constant_p (tmp) ? (__uint32_t)(((__uint32_t)(tmp) & 0xff) << 24 | ((__uint32_t)(tmp) & 0xff00) << 8 | ((__uint32_t )(tmp) & 0xff0000) >> 8 | ((__uint32_t)(tmp) & 0xff000000 ) >> 24) : __swap32md(tmp)))); |
| 2798 | |
| 2799 | } |
| 2800 | if (levels[i].UpH != setting->sclk_up_hyst || |
| 2801 | levels[i].DownH != setting->sclk_down_hyst) { |
| 2802 | levels[i].UpH = setting->sclk_up_hyst; |
| 2803 | levels[i].DownH = setting->sclk_down_hyst; |
| 2804 | up_hyst_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i) |
| 2805 | + offsetof(SMU7_Discrete_GraphicsLevel, UpH)__builtin_offsetof(SMU7_Discrete_GraphicsLevel, UpH); |
| 2806 | down_hyst_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i) |
| 2807 | + offsetof(SMU7_Discrete_GraphicsLevel, DownH)__builtin_offsetof(SMU7_Discrete_GraphicsLevel, DownH); |
| 2808 | offset = up_hyst_offset & ~0x3; |
| 2809 | tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset))(__uint32_t)(__builtin_constant_p((((struct cgs_device *)hwmgr ->device)->ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC ,offset))) ? (__uint32_t)(((__uint32_t)((((struct cgs_device * )hwmgr->device)->ops->read_ind_register(hwmgr->device ,CGS_IND_REG__SMC,offset))) & 0xff) << 24 | ((__uint32_t )((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,offset))) & 0xff00) << 8 | ((__uint32_t)((((struct cgs_device *)hwmgr->device)-> ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset ))) & 0xff0000) >> 8 | ((__uint32_t)((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,offset))) & 0xff000000) >> 24 ) : __swap32md((((struct cgs_device *)hwmgr->device)->ops ->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset )))); |
| 2810 | tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpH, sizeof(uint8_t)); |
| 2811 | tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownH, sizeof(uint8_t)); |
| 2812 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp))(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,offset,(__uint32_t)(__builtin_constant_p (tmp) ? (__uint32_t)(((__uint32_t)(tmp) & 0xff) << 24 | ((__uint32_t)(tmp) & 0xff00) << 8 | ((__uint32_t )(tmp) & 0xff0000) >> 8 | ((__uint32_t)(tmp) & 0xff000000 ) >> 24) : __swap32md(tmp)))); |
| 2813 | } |
| 2814 | } |
| 2815 | if (!data->sclk_dpm_key_disabled) |
| 2816 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel((uint16_t) 0x18A), NULL((void *)0)); |
| 2817 | } |
| 2818 | |
| 2819 | if (setting->bupdate_mclk) { |
| 2820 | if (!data->mclk_dpm_key_disabled) |
| 2821 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel((uint16_t) 0x18B), NULL((void *)0)); |
| 2822 | for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) { |
| 2823 | if (mclk_levels[i].ActivityLevel != |
| 2824 | cpu_to_be16(setting->mclk_activity)(__uint16_t)(__builtin_constant_p(setting->mclk_activity) ? (__uint16_t)(((__uint16_t)(setting->mclk_activity) & 0xffU ) << 8 | ((__uint16_t)(setting->mclk_activity) & 0xff00U) >> 8) : __swap16md(setting->mclk_activity) )) { |
| 2825 | mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity)(__uint16_t)(__builtin_constant_p(setting->mclk_activity) ? (__uint16_t)(((__uint16_t)(setting->mclk_activity) & 0xffU ) << 8 | ((__uint16_t)(setting->mclk_activity) & 0xff00U) >> 8) : __swap16md(setting->mclk_activity) ); |
| 2826 | |
| 2827 | clk_activity_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i) |
| 2828 | + offsetof(SMU7_Discrete_MemoryLevel, ActivityLevel)__builtin_offsetof(SMU7_Discrete_MemoryLevel, ActivityLevel); |
| 2829 | offset = clk_activity_offset & ~0x3; |
| 2830 | tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset))(__uint32_t)(__builtin_constant_p((((struct cgs_device *)hwmgr ->device)->ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC ,offset))) ? (__uint32_t)(((__uint32_t)((((struct cgs_device * )hwmgr->device)->ops->read_ind_register(hwmgr->device ,CGS_IND_REG__SMC,offset))) & 0xff) << 24 | ((__uint32_t )((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,offset))) & 0xff00) << 8 | ((__uint32_t)((((struct cgs_device *)hwmgr->device)-> ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset ))) & 0xff0000) >> 8 | ((__uint32_t)((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,offset))) & 0xff000000) >> 24 ) : __swap32md((((struct cgs_device *)hwmgr->device)->ops ->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset )))); |
| 2831 | tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t)); |
| 2832 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp))(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,offset,(__uint32_t)(__builtin_constant_p (tmp) ? (__uint32_t)(((__uint32_t)(tmp) & 0xff) << 24 | ((__uint32_t)(tmp) & 0xff00) << 8 | ((__uint32_t )(tmp) & 0xff0000) >> 8 | ((__uint32_t)(tmp) & 0xff000000 ) >> 24) : __swap32md(tmp)))); |
| 2833 | |
| 2834 | } |
| 2835 | if (mclk_levels[i].UpH != setting->mclk_up_hyst || |
| 2836 | mclk_levels[i].DownH != setting->mclk_down_hyst) { |
| 2837 | mclk_levels[i].UpH = setting->mclk_up_hyst; |
| 2838 | mclk_levels[i].DownH = setting->mclk_down_hyst; |
| 2839 | up_hyst_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i) |
| 2840 | + offsetof(SMU7_Discrete_MemoryLevel, UpH)__builtin_offsetof(SMU7_Discrete_MemoryLevel, UpH); |
| 2841 | down_hyst_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i) |
| 2842 | + offsetof(SMU7_Discrete_MemoryLevel, DownH)__builtin_offsetof(SMU7_Discrete_MemoryLevel, DownH); |
| 2843 | offset = up_hyst_offset & ~0x3; |
| 2844 | tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset))(__uint32_t)(__builtin_constant_p((((struct cgs_device *)hwmgr ->device)->ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC ,offset))) ? (__uint32_t)(((__uint32_t)((((struct cgs_device * )hwmgr->device)->ops->read_ind_register(hwmgr->device ,CGS_IND_REG__SMC,offset))) & 0xff) << 24 | ((__uint32_t )((((struct cgs_device *)hwmgr->device)->ops->read_ind_register (hwmgr->device,CGS_IND_REG__SMC,offset))) & 0xff00) << 8 | ((__uint32_t)((((struct cgs_device *)hwmgr->device)-> ops->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset ))) & 0xff0000) >> 8 | ((__uint32_t)((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,offset))) & 0xff000000) >> 24 ) : __swap32md((((struct cgs_device *)hwmgr->device)->ops ->read_ind_register(hwmgr->device,CGS_IND_REG__SMC,offset )))); |
| 2845 | tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpH, sizeof(uint8_t)); |
| 2846 | tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownH, sizeof(uint8_t)); |
| 2847 | cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp))(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,offset,(__uint32_t)(__builtin_constant_p (tmp) ? (__uint32_t)(((__uint32_t)(tmp) & 0xff) << 24 | ((__uint32_t)(tmp) & 0xff00) << 8 | ((__uint32_t )(tmp) & 0xff0000) >> 8 | ((__uint32_t)(tmp) & 0xff000000 ) >> 24) : __swap32md(tmp)))); |
| 2848 | } |
| 2849 | } |
| 2850 | if (!data->mclk_dpm_key_disabled) |
| 2851 | smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel((uint16_t) 0x18C), NULL((void *)0)); |
| 2852 | } |
| 2853 | return 0; |
| 2854 | } |
| 2855 | |
| 2856 | static int ci_update_uvd_smc_table(struct pp_hwmgr *hwmgr) |
| 2857 | { |
| 2858 | struct amdgpu_device *adev = hwmgr->adev; |
| 2859 | struct smu7_hwmgr *data = hwmgr->backend; |
| 2860 | struct ci_smumgr *smu_data = hwmgr->smu_backend; |
| 2861 | struct phm_uvd_clock_voltage_dependency_table *uvd_table = |
| 2862 | hwmgr->dyn_state.uvd_clock_voltage_dependency_table; |
| 2863 | uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD | |
| 2864 | AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK | |
| 2865 | AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK | |
| 2866 | AMD_DPM_FORCED_LEVEL_PROFILE_PEAK; |
| 2867 | uint32_t max_vddc = adev->pm.ac_power ? hwmgr->dyn_state.max_clock_voltage_on_ac.vddc : |
| 2868 | hwmgr->dyn_state.max_clock_voltage_on_dc.vddc; |
| 2869 | int32_t i; |
| 2870 | |
| 2871 | if (PP_CAP(PHM_PlatformCaps_UVDDPM)phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, ( PHM_PlatformCaps_UVDDPM)) || uvd_table->count <= 0) |
| 2872 | smu_data->smc_state_table.UvdBootLevel = 0; |
| 2873 | else |
| 2874 | smu_data->smc_state_table.UvdBootLevel = uvd_table->count - 1; |
| 2875 | |
| 2876 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, DPM_TABLE_475,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x3f768,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x3f768))) & ~0xff000000) | (0xff000000 & ((smu_data->smc_state_table.UvdBootLevel) << 0x18 ))))) |
| 2877 | UvdBootLevel, smu_data->smc_state_table.UvdBootLevel)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x3f768,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x3f768))) & ~0xff000000) | (0xff000000 & ((smu_data->smc_state_table.UvdBootLevel) << 0x18 ))))); |
| 2878 | |
| 2879 | data->dpm_level_enable_mask.uvd_dpm_enable_mask = 0; |
| 2880 | |
| 2881 | for (i = uvd_table->count - 1; i >= 0; i--) { |
| 2882 | if (uvd_table->entries[i].v <= max_vddc) |
| 2883 | data->dpm_level_enable_mask.uvd_dpm_enable_mask |= 1 << i; |
| 2884 | if (hwmgr->dpm_level & profile_mode_mask || !PP_CAP(PHM_PlatformCaps_UVDDPM)phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, ( PHM_PlatformCaps_UVDDPM))) |
| 2885 | break; |
| 2886 | } |
| 2887 | smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_UVDDPM_SetEnabledMask((uint16_t) 0x12D), |
| 2888 | data->dpm_level_enable_mask.uvd_dpm_enable_mask, |
| 2889 | NULL((void *)0)); |
| 2890 | |
| 2891 | return 0; |
| 2892 | } |
| 2893 | |
| 2894 | static int ci_update_vce_smc_table(struct pp_hwmgr *hwmgr) |
| 2895 | { |
| 2896 | struct amdgpu_device *adev = hwmgr->adev; |
| 2897 | struct smu7_hwmgr *data = hwmgr->backend; |
| 2898 | struct phm_vce_clock_voltage_dependency_table *vce_table = |
| 2899 | hwmgr->dyn_state.vce_clock_voltage_dependency_table; |
| 2900 | uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD | |
| 2901 | AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK | |
| 2902 | AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK | |
| 2903 | AMD_DPM_FORCED_LEVEL_PROFILE_PEAK; |
| 2904 | uint32_t max_vddc = adev->pm.ac_power ? hwmgr->dyn_state.max_clock_voltage_on_ac.vddc : |
| 2905 | hwmgr->dyn_state.max_clock_voltage_on_dc.vddc; |
| 2906 | int32_t i; |
| 2907 | |
| 2908 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, DPM_TABLE_475,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x3f768,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x3f768))) & ~0xff0000) | (0xff0000 & ((0) << 0x10))))) |
| 2909 | VceBootLevel, 0)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x3f768,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x3f768))) & ~0xff0000) | (0xff0000 & ((0) << 0x10))))); /* temp hard code to level 0, vce can set min evclk*/ |
| 2910 | |
| 2911 | data->dpm_level_enable_mask.vce_dpm_enable_mask = 0; |
| 2912 | |
| 2913 | for (i = vce_table->count - 1; i >= 0; i--) { |
| 2914 | if (vce_table->entries[i].v <= max_vddc) |
| 2915 | data->dpm_level_enable_mask.vce_dpm_enable_mask |= 1 << i; |
| 2916 | if (hwmgr->dpm_level & profile_mode_mask || !PP_CAP(PHM_PlatformCaps_VCEDPM)phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, ( PHM_PlatformCaps_VCEDPM))) |
| 2917 | break; |
| 2918 | } |
| 2919 | smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_VCEDPM_SetEnabledMask((uint16_t) 0x12E), |
| 2920 | data->dpm_level_enable_mask.vce_dpm_enable_mask, |
| 2921 | NULL((void *)0)); |
| 2922 | |
| 2923 | return 0; |
| 2924 | } |
| 2925 | |
| 2926 | static int ci_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type) |
| 2927 | { |
| 2928 | switch (type) { |
| 2929 | case SMU_UVD_TABLE: |
| 2930 | ci_update_uvd_smc_table(hwmgr); |
| 2931 | break; |
| 2932 | case SMU_VCE_TABLE: |
| 2933 | ci_update_vce_smc_table(hwmgr); |
| 2934 | break; |
| 2935 | default: |
| 2936 | break; |
| 2937 | } |
| 2938 | return 0; |
| 2939 | } |
| 2940 | |
| 2941 | static void ci_reset_smc(struct pp_hwmgr *hwmgr) |
| 2942 | { |
| 2943 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((1) << 0x0))))) |
| 2944 | SMC_SYSCON_RESET_CNTL,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((1) << 0x0))))) |
| 2945 | rst_reg, 1)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000000,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000000))) & ~0x1) | (0x1 & ((1) << 0x0))))); |
| 2946 | } |
| 2947 | |
| 2948 | |
| 2949 | static void ci_stop_smc_clock(struct pp_hwmgr *hwmgr) |
| 2950 | { |
| 2951 | PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000004,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000004))) & ~0x1) | (0x1 & ((1) << 0x0))))) |
| 2952 | SMC_SYSCON_CLOCK_CNTL_0,(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000004,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000004))) & ~0x1) | (0x1 & ((1) << 0x0))))) |
| 2953 | ck_disable, 1)(((struct cgs_device *)hwmgr->device)->ops->write_ind_register (hwmgr->device,CGS_IND_REG__SMC,0x80000004,((((((struct cgs_device *)hwmgr->device)->ops->read_ind_register(hwmgr-> device,CGS_IND_REG__SMC,0x80000004))) & ~0x1) | (0x1 & ((1) << 0x0))))); |
| 2954 | } |
| 2955 | |
| 2956 | static int ci_stop_smc(struct pp_hwmgr *hwmgr) |
| 2957 | { |
| 2958 | ci_reset_smc(hwmgr); |
| 2959 | ci_stop_smc_clock(hwmgr); |
| 2960 | |
| 2961 | return 0; |
| 2962 | } |
| 2963 | |
| 2964 | const struct pp_smumgr_func ci_smu_funcs = { |
| 2965 | .name = "ci_smu", |
| 2966 | .smu_init = ci_smu_init, |
| 2967 | .smu_fini = ci_smu_fini, |
| 2968 | .start_smu = ci_start_smu, |
| 2969 | .check_fw_load_finish = NULL((void *)0), |
| 2970 | .request_smu_load_fw = NULL((void *)0), |
| 2971 | .request_smu_load_specific_fw = NULL((void *)0), |
| 2972 | .send_msg_to_smc = ci_send_msg_to_smc, |
| 2973 | .send_msg_to_smc_with_parameter = ci_send_msg_to_smc_with_parameter, |
| 2974 | .get_argument = smu7_get_argument, |
| 2975 | .download_pptable_settings = NULL((void *)0), |
| 2976 | .upload_pptable_settings = NULL((void *)0), |
| 2977 | .get_offsetof = ci_get_offsetof, |
| 2978 | .process_firmware_header = ci_process_firmware_header, |
| 2979 | .init_smc_table = ci_init_smc_table, |
| 2980 | .update_sclk_threshold = ci_update_sclk_threshold, |
| 2981 | .thermal_setup_fan_table = ci_thermal_setup_fan_table, |
| 2982 | .populate_all_graphic_levels = ci_populate_all_graphic_levels, |
| 2983 | .populate_all_memory_levels = ci_populate_all_memory_levels, |
| 2984 | .get_mac_definition = ci_get_mac_definition, |
| 2985 | .initialize_mc_reg_table = ci_initialize_mc_reg_table, |
| 2986 | .is_dpm_running = ci_is_dpm_running, |
| 2987 | .update_dpm_settings = ci_update_dpm_settings, |
| 2988 | .update_smc_table = ci_update_smc_table, |
| 2989 | .stop_smc = ci_stop_smc, |
| 2990 | }; |