| File: | uvm/uvm_swap.c |
| Warning: | line 1209, column 2 Value stored to 'error' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* $OpenBSD: uvm_swap.c,v 1.168 2023/12/05 15:50:45 claudio Exp $ */ |
| 2 | /* $NetBSD: uvm_swap.c,v 1.40 2000/11/17 11:39:39 mrg Exp $ */ |
| 3 | |
| 4 | /* |
| 5 | * Copyright (c) 1995, 1996, 1997 Matthew R. Green |
| 6 | * All rights reserved. |
| 7 | * |
| 8 | * Redistribution and use in source and binary forms, with or without |
| 9 | * modification, are permitted provided that the following conditions |
| 10 | * are met: |
| 11 | * 1. Redistributions of source code must retain the above copyright |
| 12 | * notice, this list of conditions and the following disclaimer. |
| 13 | * 2. Redistributions in binary form must reproduce the above copyright |
| 14 | * notice, this list of conditions and the following disclaimer in the |
| 15 | * documentation and/or other materials provided with the distribution. |
| 16 | * |
| 17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
| 18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
| 19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
| 20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
| 21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
| 22 | * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 23 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
| 24 | * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| 25 | * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 26 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 27 | * SUCH DAMAGE. |
| 28 | * |
| 29 | * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp |
| 30 | * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp |
| 31 | */ |
| 32 | |
| 33 | #include <sys/param.h> |
| 34 | #include <sys/systm.h> |
| 35 | #include <sys/buf.h> |
| 36 | #include <sys/conf.h> |
| 37 | #include <sys/proc.h> |
| 38 | #include <sys/namei.h> |
| 39 | #include <sys/disklabel.h> |
| 40 | #include <sys/errno.h> |
| 41 | #include <sys/kernel.h> |
| 42 | #include <sys/malloc.h> |
| 43 | #include <sys/vnode.h> |
| 44 | #include <sys/fcntl.h> |
| 45 | #include <sys/extent.h> |
| 46 | #include <sys/blist.h> |
| 47 | #include <sys/mount.h> |
| 48 | #include <sys/mutex.h> |
| 49 | #include <sys/pool.h> |
| 50 | #include <sys/syscallargs.h> |
| 51 | #include <sys/swap.h> |
| 52 | #include <sys/disk.h> |
| 53 | #include <sys/task.h> |
| 54 | #include <sys/pledge.h> |
| 55 | #if defined(NFSCLIENT1) |
| 56 | #include <sys/socket.h> |
| 57 | #include <netinet/in.h> |
| 58 | #include <nfs/nfsproto.h> |
| 59 | #include <nfs/nfsdiskless.h> |
| 60 | #endif |
| 61 | |
| 62 | #include <uvm/uvm.h> |
| 63 | #ifdef UVM_SWAP_ENCRYPT1 |
| 64 | #include <uvm/uvm_swap_encrypt.h> |
| 65 | #endif |
| 66 | |
| 67 | #include <sys/specdev.h> |
| 68 | |
| 69 | #include "vnd.h" |
| 70 | |
| 71 | /* |
| 72 | * uvm_swap.c: manage configuration and i/o to swap space. |
| 73 | */ |
| 74 | |
| 75 | /* |
| 76 | * swap space is managed in the following way: |
| 77 | * |
| 78 | * each swap partition or file is described by a "swapdev" structure. |
| 79 | * each "swapdev" structure contains a "swapent" structure which contains |
| 80 | * information that is passed up to the user (via system calls). |
| 81 | * |
| 82 | * each swap partition is assigned a "priority" (int) which controls |
| 83 | * swap partition usage. |
| 84 | * |
| 85 | * the system maintains a global data structure describing all swap |
| 86 | * partitions/files. there is a sorted LIST of "swappri" structures |
| 87 | * which describe "swapdev"'s at that priority. this LIST is headed |
| 88 | * by the "swap_priority" global var. each "swappri" contains a |
| 89 | * TAILQ of "swapdev" structures at that priority. |
| 90 | * |
| 91 | * locking: |
| 92 | * - swap_syscall_lock (sleep lock): this lock serializes the swapctl |
| 93 | * system call and prevents the swap priority list from changing |
| 94 | * while we are in the middle of a system call (e.g. SWAP_STATS). |
| 95 | * - uvm_swap_data_lock (mutex): this lock protects all swap data |
| 96 | * structures including the priority list, the swapdev structures, |
| 97 | * and the swapmap arena. |
| 98 | * |
| 99 | * each swap device has the following info: |
| 100 | * - swap device in use (could be disabled, preventing future use) |
| 101 | * - swap enabled (allows new allocations on swap) |
| 102 | * - map info in /dev/drum |
| 103 | * - vnode pointer |
| 104 | * for swap files only: |
| 105 | * - block size |
| 106 | * - max byte count in buffer |
| 107 | * - buffer |
| 108 | * - credentials to use when doing i/o to file |
| 109 | * |
| 110 | * userland controls and configures swap with the swapctl(2) system call. |
| 111 | * the sys_swapctl performs the following operations: |
| 112 | * [1] SWAP_NSWAP: returns the number of swap devices currently configured |
| 113 | * [2] SWAP_STATS: given a pointer to an array of swapent structures |
| 114 | * (passed in via "arg") of a size passed in via "misc" ... we load |
| 115 | * the current swap config into the array. |
| 116 | * [3] SWAP_ON: given a pathname in arg (could be device or file) and a |
| 117 | * priority in "misc", start swapping on it. |
| 118 | * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device |
| 119 | * [5] SWAP_CTL: changes the priority of a swap device (new priority in |
| 120 | * "misc") |
| 121 | */ |
| 122 | |
| 123 | /* |
| 124 | * swapdev: describes a single swap partition/file |
| 125 | * |
| 126 | * note the following should be true: |
| 127 | * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks] |
| 128 | * swd_nblks <= swd_mapsize [because mapsize includes disklabel] |
| 129 | */ |
| 130 | struct swapdev { |
| 131 | struct swapent swd_se; |
| 132 | #define swd_devswd_se.se_dev swd_se.se_dev /* device id */ |
| 133 | #define swd_flagsswd_se.se_flags swd_se.se_flags /* flags:inuse/enable/fake */ |
| 134 | #define swd_priorityswd_se.se_priority swd_se.se_priority /* our priority */ |
| 135 | #define swd_inuseswd_se.se_inuse swd_se.se_inuse /* blocks used */ |
| 136 | #define swd_nblksswd_se.se_nblks swd_se.se_nblks /* total blocks */ |
| 137 | char *swd_path; /* saved pathname of device */ |
| 138 | int swd_pathlen; /* length of pathname */ |
| 139 | int swd_npages; /* #pages we can use */ |
| 140 | int swd_npginuse; /* #pages in use */ |
| 141 | int swd_npgbad; /* #pages bad */ |
| 142 | int swd_drumoffset; /* page0 offset in drum */ |
| 143 | int swd_drumsize; /* #pages in drum */ |
| 144 | blist_t swd_blist; /* blist for this swapdev */ |
| 145 | struct vnode *swd_vp; /* backing vnode */ |
| 146 | TAILQ_ENTRY(swapdev)struct { struct swapdev *tqe_next; struct swapdev **tqe_prev; } swd_next; /* priority tailq */ |
| 147 | |
| 148 | int swd_bsize; /* blocksize (bytes) */ |
| 149 | int swd_maxactive; /* max active i/o reqs */ |
| 150 | int swd_active; /* # of active i/o reqs */ |
| 151 | struct bufq swd_bufq; |
| 152 | struct ucred *swd_cred; /* cred for file access */ |
| 153 | #ifdef UVM_SWAP_ENCRYPT1 |
| 154 | #define SWD_KEY_SHIFT7 7 /* One key per 0.5 MByte */ |
| 155 | #define SWD_KEY(x,y)&((x)->swd_keys[((y) - (x)->swd_drumoffset) >> 7]) &((x)->swd_keys[((y) - (x)->swd_drumoffset) >> SWD_KEY_SHIFT7]) |
| 156 | #define SWD_KEY_SIZE(x)(((x) + (1 << 7) - 1) >> 7) (((x) + (1 << SWD_KEY_SHIFT7) - 1) >> SWD_KEY_SHIFT7) |
| 157 | |
| 158 | #define SWD_DCRYPT_SHIFT5 5 |
| 159 | #define SWD_DCRYPT_BITS32 32 |
| 160 | #define SWD_DCRYPT_MASK(32 - 1) (SWD_DCRYPT_BITS32 - 1) |
| 161 | #define SWD_DCRYPT_OFF(x)((x) >> 5) ((x) >> SWD_DCRYPT_SHIFT5) |
| 162 | #define SWD_DCRYPT_BIT(x)((x) & (32 - 1)) ((x) & SWD_DCRYPT_MASK(32 - 1)) |
| 163 | #define SWD_DCRYPT_SIZE(x)((((x) + (32 - 1)) >> 5) * sizeof(u_int32_t)) (SWD_DCRYPT_OFF((x) + SWD_DCRYPT_MASK)(((x) + (32 - 1)) >> 5) * sizeof(u_int32_t)) |
| 164 | u_int32_t *swd_decrypt; /* bitmap for decryption */ |
| 165 | struct swap_key *swd_keys; /* keys for different parts */ |
| 166 | #endif |
| 167 | }; |
| 168 | |
| 169 | /* |
| 170 | * swap device priority entry; the list is kept sorted on `spi_priority'. |
| 171 | */ |
| 172 | struct swappri { |
| 173 | int spi_priority; /* priority */ |
| 174 | TAILQ_HEAD(spi_swapdev, swapdev)struct spi_swapdev { struct swapdev *tqh_first; struct swapdev **tqh_last; } spi_swapdev; |
| 175 | /* tailq of swapdevs at this priority */ |
| 176 | LIST_ENTRY(swappri)struct { struct swappri *le_next; struct swappri **le_prev; } spi_swappri; /* global list of pri's */ |
| 177 | }; |
| 178 | |
| 179 | /* |
| 180 | * The following two structures are used to keep track of data transfers |
| 181 | * on swap devices associated with regular files. |
| 182 | * NOTE: this code is more or less a copy of vnd.c; we use the same |
| 183 | * structure names here to ease porting.. |
| 184 | */ |
| 185 | struct vndxfer { |
| 186 | struct buf *vx_bp; /* Pointer to parent buffer */ |
| 187 | struct swapdev *vx_sdp; |
| 188 | int vx_error; |
| 189 | int vx_pending; /* # of pending aux buffers */ |
| 190 | int vx_flags; |
| 191 | #define VX_BUSY1 1 |
| 192 | #define VX_DEAD2 2 |
| 193 | }; |
| 194 | |
| 195 | struct vndbuf { |
| 196 | struct buf vb_buf; |
| 197 | struct vndxfer *vb_vnx; |
| 198 | struct task vb_task; |
| 199 | }; |
| 200 | |
| 201 | /* |
| 202 | * We keep a of pool vndbuf's and vndxfer structures. |
| 203 | */ |
| 204 | struct pool vndxfer_pool; |
| 205 | struct pool vndbuf_pool; |
| 206 | |
| 207 | |
| 208 | /* |
| 209 | * local variables |
| 210 | */ |
| 211 | struct extent *swapmap; /* controls the mapping of /dev/drum */ |
| 212 | |
| 213 | /* list of all active swap devices [by priority] */ |
| 214 | LIST_HEAD(swap_priority, swappri)struct swap_priority { struct swappri *lh_first; }; |
| 215 | struct swap_priority swap_priority; /* [S] */ |
| 216 | |
| 217 | /* locks */ |
| 218 | struct mutex uvm_swap_data_lock = MUTEX_INITIALIZER(IPL_MPFLOOR){ ((void *)0), ((((0x9)) > 0x0 && ((0x9)) < 0x9 ) ? 0x9 : ((0x9))), 0x0 }; |
| 219 | struct rwlock swap_syscall_lock = RWLOCK_INITIALIZER("swplk"){ 0, "swplk" }; |
| 220 | |
| 221 | struct mutex oommtx = MUTEX_INITIALIZER(IPL_VM){ ((void *)0), ((((0xa)) > 0x0 && ((0xa)) < 0x9 ) ? 0x9 : ((0xa))), 0x0 }; |
| 222 | struct vm_page *oompps[SWCLUSTPAGES((64 * 1024) >> 12)]; |
| 223 | int oom = 0; |
| 224 | |
| 225 | /* |
| 226 | * prototypes |
| 227 | */ |
| 228 | void swapdrum_add(struct swapdev *, int); |
| 229 | struct swapdev *swapdrum_getsdp(int); |
| 230 | |
| 231 | struct swapdev *swaplist_find(struct vnode *, int); |
| 232 | void swaplist_insert(struct swapdev *, |
| 233 | struct swappri *, int); |
| 234 | void swaplist_trim(void); |
| 235 | |
| 236 | int swap_on(struct proc *, struct swapdev *); |
| 237 | int swap_off(struct proc *, struct swapdev *); |
| 238 | |
| 239 | void sw_reg_strategy(struct swapdev *, struct buf *, int); |
| 240 | void sw_reg_iodone(struct buf *); |
| 241 | void sw_reg_iodone_internal(void *); |
| 242 | void sw_reg_start(struct swapdev *); |
| 243 | |
| 244 | int uvm_swap_io(struct vm_page **, int, int, int); |
| 245 | |
| 246 | void swapmount(void); |
| 247 | int uvm_swap_allocpages(struct vm_page **, int, int); |
| 248 | |
| 249 | #ifdef UVM_SWAP_ENCRYPT1 |
| 250 | /* for swap encrypt */ |
| 251 | void uvm_swap_markdecrypt(struct swapdev *, int, int, int); |
| 252 | boolean_t uvm_swap_needdecrypt(struct swapdev *, int); |
| 253 | void uvm_swap_initcrypt(struct swapdev *, int); |
| 254 | #endif |
| 255 | |
| 256 | /* |
| 257 | * uvm_swap_init: init the swap system data structures and locks |
| 258 | * |
| 259 | * => called at boot time from init_main.c after the filesystems |
| 260 | * are brought up (which happens after uvm_init()) |
| 261 | */ |
| 262 | void |
| 263 | uvm_swap_init(void) |
| 264 | { |
| 265 | int error; |
| 266 | |
| 267 | /* |
| 268 | * first, init the swap list, its counter, and its lock. |
| 269 | * then get a handle on the vnode for /dev/drum by using |
| 270 | * the its dev_t number ("swapdev", from MD conf.c). |
| 271 | */ |
| 272 | LIST_INIT(&swap_priority)do { ((&swap_priority)->lh_first) = ((void *)0); } while (0); |
| 273 | uvmexp.nswapdev = 0; |
| 274 | |
| 275 | if (!swapdev_vp && bdevvp(swapdev, &swapdev_vp)) |
| 276 | panic("uvm_swap_init: can't get vnode for swap device"); |
| 277 | |
| 278 | /* |
| 279 | * create swap block extent to map /dev/drum. The extent spans |
| 280 | * 1 to INT_MAX allows 2 gigablocks of swap space. Note that |
| 281 | * block 0 is reserved (used to indicate an allocation failure, |
| 282 | * or no allocation). |
| 283 | */ |
| 284 | swapmap = extent_create("swapmap", 1, INT_MAX0x7fffffff, |
| 285 | M_VMSWAP92, 0, 0, EX_NOWAIT0x0000); |
| 286 | if (swapmap == 0) |
| 287 | panic("uvm_swap_init: extent_create failed"); |
| 288 | |
| 289 | /* allocate pools for structures used for swapping to files. */ |
| 290 | pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, IPL_BIO0x3, 0, |
| 291 | "swp vnx", NULL((void *)0)); |
| 292 | pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, IPL_BIO0x3, 0, |
| 293 | "swp vnd", NULL((void *)0)); |
| 294 | |
| 295 | /* allocate pages for OOM situations. */ |
| 296 | error = uvm_swap_allocpages(oompps, SWCLUSTPAGES((64 * 1024) >> 12), UVM_PLA_NOWAIT0x0002); |
| 297 | KASSERT(error == 0)((error == 0) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/uvm/uvm_swap.c" , 297, "error == 0")); |
| 298 | |
| 299 | /* Setup the initial swap partition */ |
| 300 | swapmount(); |
| 301 | } |
| 302 | |
| 303 | #ifdef UVM_SWAP_ENCRYPT1 |
| 304 | void |
| 305 | uvm_swap_initcrypt_all(void) |
| 306 | { |
| 307 | struct swapdev *sdp; |
| 308 | struct swappri *spp; |
| 309 | int npages; |
| 310 | |
| 311 | |
| 312 | LIST_FOREACH(spp, &swap_priority, spi_swappri)for((spp) = ((&swap_priority)->lh_first); (spp)!= ((void *)0); (spp) = ((spp)->spi_swappri.le_next)) { |
| 313 | TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next)for((sdp) = ((&spp->spi_swapdev)->tqh_first); (sdp) != ((void *)0); (sdp) = ((sdp)->swd_next.tqe_next)) { |
| 314 | if (sdp->swd_decrypt == NULL((void *)0)) { |
| 315 | npages = dbtob((uint64_t)sdp->swd_nblks)(((uint64_t)sdp->swd_se.se_nblks) << 9) >> |
| 316 | PAGE_SHIFT12; |
| 317 | uvm_swap_initcrypt(sdp, npages); |
| 318 | } |
| 319 | } |
| 320 | } |
| 321 | } |
| 322 | |
| 323 | void |
| 324 | uvm_swap_initcrypt(struct swapdev *sdp, int npages) |
| 325 | { |
| 326 | /* |
| 327 | * keep information if a page needs to be decrypted when we get it |
| 328 | * from the swap device. |
| 329 | * We cannot chance a malloc later, if we are doing ASYNC puts, |
| 330 | * we may not call malloc with M_WAITOK. This consumes only |
| 331 | * 8KB memory for a 256MB swap partition. |
| 332 | */ |
| 333 | sdp->swd_decrypt = malloc(SWD_DCRYPT_SIZE(npages)((((npages) + (32 - 1)) >> 5) * sizeof(u_int32_t)), M_VMSWAP92, |
| 334 | M_WAITOK0x0001|M_ZERO0x0008); |
| 335 | sdp->swd_keys = mallocarray(SWD_KEY_SIZE(npages)(((npages) + (1 << 7) - 1) >> 7), |
| 336 | sizeof(struct swap_key), M_VMSWAP92, M_WAITOK0x0001|M_ZERO0x0008); |
| 337 | } |
| 338 | |
| 339 | #endif /* UVM_SWAP_ENCRYPT */ |
| 340 | |
| 341 | int |
| 342 | uvm_swap_allocpages(struct vm_page **pps, int npages, int flags) |
| 343 | { |
| 344 | struct pglist pgl; |
| 345 | int error, i; |
| 346 | |
| 347 | KASSERT(npages <= SWCLUSTPAGES)((npages <= ((64 * 1024) >> 12)) ? (void)0 : __assert ("diagnostic ", "/usr/src/sys/uvm/uvm_swap.c", 347, "npages <= SWCLUSTPAGES" )); |
| 348 | |
| 349 | TAILQ_INIT(&pgl)do { (&pgl)->tqh_first = ((void *)0); (&pgl)->tqh_last = &(&pgl)->tqh_first; } while (0); |
| 350 | again: |
| 351 | error = uvm_pglistalloc(npages * PAGE_SIZE(1 << 12), dma_constraint.ucr_low, |
| 352 | dma_constraint.ucr_high, 0, 0, &pgl, npages, flags); |
| 353 | if (error && (curproc({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_curproc == uvm.pagedaemon_proc)) { |
| 354 | mtx_enter(&oommtx); |
| 355 | if (oom) { |
| 356 | msleep_nsec(&oom, &oommtx, PVM4 | PNORELOCK0x200, |
| 357 | "oom", INFSLP0xffffffffffffffffULL); |
| 358 | goto again; |
| 359 | } |
| 360 | oom = 1; |
| 361 | for (i = 0; i < npages; i++) { |
| 362 | pps[i] = oompps[i]; |
| 363 | atomic_setbits_intx86_atomic_setbits_u32(&pps[i]->pg_flags, PG_BUSY0x00000001); |
| 364 | } |
| 365 | mtx_leave(&oommtx); |
| 366 | return 0; |
| 367 | } |
| 368 | if (error) |
| 369 | return error; |
| 370 | |
| 371 | for (i = 0; i < npages; i++) { |
| 372 | pps[i] = TAILQ_FIRST(&pgl)((&pgl)->tqh_first); |
| 373 | /* *sigh* */ |
| 374 | atomic_setbits_intx86_atomic_setbits_u32(&pps[i]->pg_flags, PG_BUSY0x00000001); |
| 375 | TAILQ_REMOVE(&pgl, pps[i], pageq)do { if (((pps[i])->pageq.tqe_next) != ((void *)0)) (pps[i ])->pageq.tqe_next->pageq.tqe_prev = (pps[i])->pageq .tqe_prev; else (&pgl)->tqh_last = (pps[i])->pageq. tqe_prev; *(pps[i])->pageq.tqe_prev = (pps[i])->pageq.tqe_next ; ((pps[i])->pageq.tqe_prev) = ((void *)-1); ((pps[i])-> pageq.tqe_next) = ((void *)-1); } while (0); |
| 376 | } |
| 377 | |
| 378 | return 0; |
| 379 | } |
| 380 | |
| 381 | void |
| 382 | uvm_swap_freepages(struct vm_page **pps, int npages) |
| 383 | { |
| 384 | int i; |
| 385 | |
| 386 | if (pps[0] == oompps[0]) { |
| 387 | for (i = 0; i < npages; i++) |
| 388 | uvm_pageclean(pps[i]); |
| 389 | |
| 390 | mtx_enter(&oommtx); |
| 391 | KASSERT(oom == 1)((oom == 1) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/uvm/uvm_swap.c" , 391, "oom == 1")); |
| 392 | oom = 0; |
| 393 | mtx_leave(&oommtx); |
| 394 | wakeup(&oom); |
| 395 | return; |
| 396 | } |
| 397 | |
| 398 | uvm_lock_pageq()mtx_enter(&uvm.pageqlock); |
| 399 | for (i = 0; i < npages; i++) |
| 400 | uvm_pagefree(pps[i]); |
| 401 | uvm_unlock_pageq()mtx_leave(&uvm.pageqlock); |
| 402 | |
| 403 | } |
| 404 | |
| 405 | #ifdef UVM_SWAP_ENCRYPT1 |
| 406 | /* |
| 407 | * Mark pages on the swap device for later decryption |
| 408 | */ |
| 409 | |
| 410 | void |
| 411 | uvm_swap_markdecrypt(struct swapdev *sdp, int startslot, int npages, |
| 412 | int decrypt) |
| 413 | { |
| 414 | int pagestart, i; |
| 415 | int off, bit; |
| 416 | |
| 417 | if (!sdp) |
| 418 | return; |
| 419 | |
| 420 | pagestart = startslot - sdp->swd_drumoffset; |
| 421 | for (i = 0; i < npages; i++, pagestart++) { |
| 422 | off = SWD_DCRYPT_OFF(pagestart)((pagestart) >> 5); |
| 423 | bit = SWD_DCRYPT_BIT(pagestart)((pagestart) & (32 - 1)); |
| 424 | if (decrypt) |
| 425 | /* pages read need decryption */ |
| 426 | sdp->swd_decrypt[off] |= 1 << bit; |
| 427 | else |
| 428 | /* pages read do not need decryption */ |
| 429 | sdp->swd_decrypt[off] &= ~(1 << bit); |
| 430 | } |
| 431 | } |
| 432 | |
| 433 | /* |
| 434 | * Check if the page that we got from disk needs to be decrypted |
| 435 | */ |
| 436 | |
| 437 | boolean_t |
| 438 | uvm_swap_needdecrypt(struct swapdev *sdp, int off) |
| 439 | { |
| 440 | if (!sdp) |
| 441 | return FALSE0; |
| 442 | |
| 443 | off -= sdp->swd_drumoffset; |
| 444 | return sdp->swd_decrypt[SWD_DCRYPT_OFF(off)((off) >> 5)] & (1 << SWD_DCRYPT_BIT(off)((off) & (32 - 1))) ? |
| 445 | TRUE1 : FALSE0; |
| 446 | } |
| 447 | |
| 448 | void |
| 449 | uvm_swap_finicrypt_all(void) |
| 450 | { |
| 451 | struct swapdev *sdp; |
| 452 | struct swappri *spp; |
| 453 | struct swap_key *key; |
| 454 | unsigned int nkeys; |
| 455 | |
| 456 | LIST_FOREACH(spp, &swap_priority, spi_swappri)for((spp) = ((&swap_priority)->lh_first); (spp)!= ((void *)0); (spp) = ((spp)->spi_swappri.le_next)) { |
| 457 | TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next)for((sdp) = ((&spp->spi_swapdev)->tqh_first); (sdp) != ((void *)0); (sdp) = ((sdp)->swd_next.tqe_next)) { |
| 458 | if (sdp->swd_decrypt == NULL((void *)0)) |
| 459 | continue; |
| 460 | |
| 461 | nkeys = dbtob((uint64_t)sdp->swd_nblks)(((uint64_t)sdp->swd_se.se_nblks) << 9) >> PAGE_SHIFT12; |
| 462 | key = sdp->swd_keys + (SWD_KEY_SIZE(nkeys)(((nkeys) + (1 << 7) - 1) >> 7) - 1); |
| 463 | do { |
| 464 | if (key->refcount != 0) |
| 465 | swap_key_delete(key); |
| 466 | } while (key-- != sdp->swd_keys); |
| 467 | } |
| 468 | } |
| 469 | } |
| 470 | #endif /* UVM_SWAP_ENCRYPT */ |
| 471 | |
| 472 | /* |
| 473 | * swaplist functions: functions that operate on the list of swap |
| 474 | * devices on the system. |
| 475 | */ |
| 476 | |
| 477 | /* |
| 478 | * swaplist_insert: insert swap device "sdp" into the global list |
| 479 | * |
| 480 | * => caller must hold both swap_syscall_lock and uvm_swap_data_lock |
| 481 | * => caller must provide a newly allocated swappri structure (we will |
| 482 | * FREE it if we don't need it... this it to prevent allocation |
| 483 | * blocking here while adding swap) |
| 484 | */ |
| 485 | void |
| 486 | swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority) |
| 487 | { |
| 488 | struct swappri *spp, *pspp; |
| 489 | |
| 490 | KASSERT(rw_write_held(&swap_syscall_lock))((rw_write_held(&swap_syscall_lock)) ? (void)0 : __assert ("diagnostic ", "/usr/src/sys/uvm/uvm_swap.c", 490, "rw_write_held(&swap_syscall_lock)" )); |
| 491 | MUTEX_ASSERT_LOCKED(&uvm_swap_data_lock)do { if (((&uvm_swap_data_lock)->mtx_owner != ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci ) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci; })) && !(panicstr || db_active)) panic("mutex %p not held in %s" , (&uvm_swap_data_lock), __func__); } while (0); |
| 492 | |
| 493 | /* |
| 494 | * find entry at or after which to insert the new device. |
| 495 | */ |
| 496 | pspp = NULL((void *)0); |
| 497 | LIST_FOREACH(spp, &swap_priority, spi_swappri)for((spp) = ((&swap_priority)->lh_first); (spp)!= ((void *)0); (spp) = ((spp)->spi_swappri.le_next)) { |
| 498 | if (priority <= spp->spi_priority) |
| 499 | break; |
| 500 | pspp = spp; |
| 501 | } |
| 502 | |
| 503 | /* |
| 504 | * new priority? |
| 505 | */ |
| 506 | if (spp == NULL((void *)0) || spp->spi_priority != priority) { |
| 507 | spp = newspp; /* use newspp! */ |
| 508 | |
| 509 | spp->spi_priority = priority; |
| 510 | TAILQ_INIT(&spp->spi_swapdev)do { (&spp->spi_swapdev)->tqh_first = ((void *)0); ( &spp->spi_swapdev)->tqh_last = &(&spp->spi_swapdev )->tqh_first; } while (0); |
| 511 | |
| 512 | if (pspp) |
| 513 | LIST_INSERT_AFTER(pspp, spp, spi_swappri)do { if (((spp)->spi_swappri.le_next = (pspp)->spi_swappri .le_next) != ((void *)0)) (pspp)->spi_swappri.le_next-> spi_swappri.le_prev = &(spp)->spi_swappri.le_next; (pspp )->spi_swappri.le_next = (spp); (spp)->spi_swappri.le_prev = &(pspp)->spi_swappri.le_next; } while (0); |
| 514 | else |
| 515 | LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri)do { if (((spp)->spi_swappri.le_next = (&swap_priority )->lh_first) != ((void *)0)) (&swap_priority)->lh_first ->spi_swappri.le_prev = &(spp)->spi_swappri.le_next ; (&swap_priority)->lh_first = (spp); (spp)->spi_swappri .le_prev = &(&swap_priority)->lh_first; } while (0 ); |
| 516 | } else { |
| 517 | /* we don't need a new priority structure, free it */ |
| 518 | free(newspp, M_VMSWAP92, sizeof(*newspp)); |
| 519 | } |
| 520 | |
| 521 | /* |
| 522 | * priority found (or created). now insert on the priority's |
| 523 | * tailq list and bump the total number of swapdevs. |
| 524 | */ |
| 525 | sdp->swd_priorityswd_se.se_priority = priority; |
| 526 | TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next)do { (sdp)->swd_next.tqe_next = ((void *)0); (sdp)->swd_next .tqe_prev = (&spp->spi_swapdev)->tqh_last; *(&spp ->spi_swapdev)->tqh_last = (sdp); (&spp->spi_swapdev )->tqh_last = &(sdp)->swd_next.tqe_next; } while (0 ); |
| 527 | uvmexp.nswapdev++; |
| 528 | } |
| 529 | |
| 530 | /* |
| 531 | * swaplist_find: find and optionally remove a swap device from the |
| 532 | * global list. |
| 533 | * |
| 534 | * => caller must hold both swap_syscall_lock and uvm_swap_data_lock |
| 535 | * => we return the swapdev we found (and removed) |
| 536 | */ |
| 537 | struct swapdev * |
| 538 | swaplist_find(struct vnode *vp, boolean_t remove) |
| 539 | { |
| 540 | struct swapdev *sdp; |
| 541 | struct swappri *spp; |
| 542 | |
| 543 | KASSERT(rw_write_held(&swap_syscall_lock))((rw_write_held(&swap_syscall_lock)) ? (void)0 : __assert ("diagnostic ", "/usr/src/sys/uvm/uvm_swap.c", 543, "rw_write_held(&swap_syscall_lock)" )); |
| 544 | MUTEX_ASSERT_LOCKED(&uvm_swap_data_lock)do { if (((&uvm_swap_data_lock)->mtx_owner != ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci ) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci; })) && !(panicstr || db_active)) panic("mutex %p not held in %s" , (&uvm_swap_data_lock), __func__); } while (0); |
| 545 | |
| 546 | /* |
| 547 | * search the lists for the requested vp |
| 548 | */ |
| 549 | LIST_FOREACH(spp, &swap_priority, spi_swappri)for((spp) = ((&swap_priority)->lh_first); (spp)!= ((void *)0); (spp) = ((spp)->spi_swappri.le_next)) { |
| 550 | TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next)for((sdp) = ((&spp->spi_swapdev)->tqh_first); (sdp) != ((void *)0); (sdp) = ((sdp)->swd_next.tqe_next)) { |
| 551 | if (sdp->swd_vp != vp) |
| 552 | continue; |
| 553 | if (remove) { |
| 554 | TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next)do { if (((sdp)->swd_next.tqe_next) != ((void *)0)) (sdp)-> swd_next.tqe_next->swd_next.tqe_prev = (sdp)->swd_next. tqe_prev; else (&spp->spi_swapdev)->tqh_last = (sdp )->swd_next.tqe_prev; *(sdp)->swd_next.tqe_prev = (sdp) ->swd_next.tqe_next; ((sdp)->swd_next.tqe_prev) = ((void *)-1); ((sdp)->swd_next.tqe_next) = ((void *)-1); } while (0); |
| 555 | uvmexp.nswapdev--; |
| 556 | } |
| 557 | return (sdp); |
| 558 | } |
| 559 | } |
| 560 | return (NULL((void *)0)); |
| 561 | } |
| 562 | |
| 563 | |
| 564 | /* |
| 565 | * swaplist_trim: scan priority list for empty priority entries and kill |
| 566 | * them. |
| 567 | * |
| 568 | * => caller must hold both swap_syscall_lock and uvm_swap_data_lock |
| 569 | */ |
| 570 | void |
| 571 | swaplist_trim(void) |
| 572 | { |
| 573 | struct swappri *spp, *nextspp; |
| 574 | |
| 575 | KASSERT(rw_write_held(&swap_syscall_lock))((rw_write_held(&swap_syscall_lock)) ? (void)0 : __assert ("diagnostic ", "/usr/src/sys/uvm/uvm_swap.c", 575, "rw_write_held(&swap_syscall_lock)" )); |
| 576 | MUTEX_ASSERT_LOCKED(&uvm_swap_data_lock)do { if (((&uvm_swap_data_lock)->mtx_owner != ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci ) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci; })) && !(panicstr || db_active)) panic("mutex %p not held in %s" , (&uvm_swap_data_lock), __func__); } while (0); |
| 577 | |
| 578 | LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp)for ((spp) = ((&swap_priority)->lh_first); (spp) && ((nextspp) = ((spp)->spi_swappri.le_next), 1); (spp) = (nextspp )) { |
| 579 | if (!TAILQ_EMPTY(&spp->spi_swapdev)(((&spp->spi_swapdev)->tqh_first) == ((void *)0))) |
| 580 | continue; |
| 581 | LIST_REMOVE(spp, spi_swappri)do { if ((spp)->spi_swappri.le_next != ((void *)0)) (spp)-> spi_swappri.le_next->spi_swappri.le_prev = (spp)->spi_swappri .le_prev; *(spp)->spi_swappri.le_prev = (spp)->spi_swappri .le_next; ((spp)->spi_swappri.le_prev) = ((void *)-1); ((spp )->spi_swappri.le_next) = ((void *)-1); } while (0); |
| 582 | free(spp, M_VMSWAP92, sizeof(*spp)); |
| 583 | } |
| 584 | } |
| 585 | |
| 586 | /* |
| 587 | * swapdrum_add: add a "swapdev"'s blocks into /dev/drum's area. |
| 588 | * |
| 589 | * => caller must hold swap_syscall_lock |
| 590 | * => uvm_swap_data_lock should be unlocked (we may sleep) |
| 591 | */ |
| 592 | void |
| 593 | swapdrum_add(struct swapdev *sdp, int npages) |
| 594 | { |
| 595 | u_long result; |
| 596 | |
| 597 | if (extent_alloc(swapmap, npages, EX_NOALIGN, 0, EX_NOBOUNDARY,extent_alloc_subregion((swapmap), (swapmap)->ex_start, (swapmap )->ex_end, (npages), (1), (0), (0), (0x0001), (&result )) |
| 598 | EX_WAITOK, &result)extent_alloc_subregion((swapmap), (swapmap)->ex_start, (swapmap )->ex_end, (npages), (1), (0), (0), (0x0001), (&result ))) |
| 599 | panic("swapdrum_add"); |
| 600 | |
| 601 | sdp->swd_drumoffset = result; |
| 602 | sdp->swd_drumsize = npages; |
| 603 | } |
| 604 | |
| 605 | /* |
| 606 | * swapdrum_getsdp: given a page offset in /dev/drum, convert it back |
| 607 | * to the "swapdev" that maps that section of the drum. |
| 608 | * |
| 609 | * => each swapdev takes one big contig chunk of the drum |
| 610 | * => caller must hold uvm_swap_data_lock |
| 611 | */ |
| 612 | struct swapdev * |
| 613 | swapdrum_getsdp(int pgno) |
| 614 | { |
| 615 | struct swapdev *sdp; |
| 616 | struct swappri *spp; |
| 617 | |
| 618 | MUTEX_ASSERT_LOCKED(&uvm_swap_data_lock)do { if (((&uvm_swap_data_lock)->mtx_owner != ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci ) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci; })) && !(panicstr || db_active)) panic("mutex %p not held in %s" , (&uvm_swap_data_lock), __func__); } while (0); |
| 619 | |
| 620 | LIST_FOREACH(spp, &swap_priority, spi_swappri)for((spp) = ((&swap_priority)->lh_first); (spp)!= ((void *)0); (spp) = ((spp)->spi_swappri.le_next)) { |
| 621 | TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next)for((sdp) = ((&spp->spi_swapdev)->tqh_first); (sdp) != ((void *)0); (sdp) = ((sdp)->swd_next.tqe_next)) { |
| 622 | if (pgno >= sdp->swd_drumoffset && |
| 623 | pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) { |
| 624 | return sdp; |
| 625 | } |
| 626 | } |
| 627 | } |
| 628 | return NULL((void *)0); |
| 629 | } |
| 630 | |
| 631 | |
| 632 | /* |
| 633 | * sys_swapctl: main entry point for swapctl(2) system call |
| 634 | * [with two helper functions: swap_on and swap_off] |
| 635 | */ |
| 636 | int |
| 637 | sys_swapctl(struct proc *p, void *v, register_t *retval) |
| 638 | { |
| 639 | struct sys_swapctl_args /* { |
| 640 | syscallarg(int) cmd; |
| 641 | syscallarg(void *) arg; |
| 642 | syscallarg(int) misc; |
| 643 | } */ *uap = (struct sys_swapctl_args *)v; |
| 644 | struct vnode *vp; |
| 645 | struct nameidata nd; |
| 646 | struct swappri *spp; |
| 647 | struct swapdev *sdp; |
| 648 | struct swapent *sep; |
| 649 | char userpath[MAXPATHLEN1024]; |
| 650 | size_t len; |
| 651 | int count, error, misc; |
| 652 | int priority; |
| 653 | |
| 654 | misc = SCARG(uap, misc)((uap)->misc.le.datum); |
| 655 | |
| 656 | if ((error = pledge_swapctl(p, SCARG(uap, cmd)((uap)->cmd.le.datum)))) |
| 657 | return error; |
| 658 | |
| 659 | /* |
| 660 | * ensure serialized syscall access by grabbing the swap_syscall_lock |
| 661 | */ |
| 662 | rw_enter_write(&swap_syscall_lock); |
| 663 | |
| 664 | /* |
| 665 | * we handle the non-priv NSWAP and STATS request first. |
| 666 | * |
| 667 | * SWAP_NSWAP: return number of config'd swap devices |
| 668 | * [can also be obtained with uvmexp sysctl] |
| 669 | */ |
| 670 | if (SCARG(uap, cmd)((uap)->cmd.le.datum) == SWAP_NSWAP3) { |
| 671 | *retval = uvmexp.nswapdev; |
| 672 | error = 0; |
| 673 | goto out; |
| 674 | } |
| 675 | |
| 676 | /* |
| 677 | * SWAP_STATS: get stats on current # of configured swap devs |
| 678 | * |
| 679 | * note that the swap_priority list can't change as long |
| 680 | * as we are holding the swap_syscall_lock. we don't want |
| 681 | * to grab the uvm_swap_data_lock because we may fault&sleep during |
| 682 | * copyout() and we don't want to be holding that lock then! |
| 683 | */ |
| 684 | if (SCARG(uap, cmd)((uap)->cmd.le.datum) == SWAP_STATS4) { |
| 685 | sep = (struct swapent *)SCARG(uap, arg)((uap)->arg.le.datum); |
| 686 | count = 0; |
| 687 | |
| 688 | LIST_FOREACH(spp, &swap_priority, spi_swappri)for((spp) = ((&swap_priority)->lh_first); (spp)!= ((void *)0); (spp) = ((spp)->spi_swappri.le_next)) { |
| 689 | TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next)for((sdp) = ((&spp->spi_swapdev)->tqh_first); (sdp) != ((void *)0); (sdp) = ((sdp)->swd_next.tqe_next)) { |
| 690 | if (count >= misc) |
| 691 | continue; |
| 692 | |
| 693 | sdp->swd_inuseswd_se.se_inuse = |
| 694 | btodb((u_int64_t)sdp->swd_npginuse <<(((u_int64_t)sdp->swd_npginuse << 12) >> 9) |
| 695 | PAGE_SHIFT)(((u_int64_t)sdp->swd_npginuse << 12) >> 9); |
| 696 | error = copyout(&sdp->swd_se, sep, |
| 697 | sizeof(struct swapent)); |
| 698 | if (error) |
| 699 | goto out; |
| 700 | |
| 701 | /* now copy out the path if necessary */ |
| 702 | error = copyoutstr(sdp->swd_path, |
| 703 | sep->se_path, sizeof(sep->se_path), NULL((void *)0)); |
| 704 | if (error) |
| 705 | goto out; |
| 706 | |
| 707 | count++; |
| 708 | sep++; |
| 709 | } |
| 710 | } |
| 711 | |
| 712 | *retval = count; |
| 713 | error = 0; |
| 714 | goto out; |
| 715 | } |
| 716 | |
| 717 | /* all other requests require superuser privs. verify. */ |
| 718 | if ((error = suser(p))) |
| 719 | goto out; |
| 720 | |
| 721 | /* |
| 722 | * at this point we expect a path name in arg. we will |
| 723 | * use namei() to gain a vnode reference (vref), and lock |
| 724 | * the vnode (VOP_LOCK). |
| 725 | */ |
| 726 | error = copyinstr(SCARG(uap, arg)((uap)->arg.le.datum), userpath, sizeof(userpath), &len); |
| 727 | if (error) |
| 728 | goto out; |
| 729 | disk_map(userpath, userpath, sizeof(userpath), DM_OPENBLCK0x2); |
| 730 | NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, UIO_SYSSPACE, userpath, p)ndinitat(&nd, 0, 0x0040|0x0004, UIO_SYSSPACE, -100, userpath , p); |
| 731 | if ((error = namei(&nd))) |
| 732 | goto out; |
| 733 | vp = nd.ni_vp; |
| 734 | /* note: "vp" is referenced and locked */ |
| 735 | |
| 736 | error = 0; /* assume no error */ |
| 737 | switch(SCARG(uap, cmd)((uap)->cmd.le.datum)) { |
| 738 | case SWAP_DUMPDEV7: |
| 739 | if (vp->v_type != VBLK) { |
| 740 | error = ENOTBLK15; |
| 741 | break; |
| 742 | } |
| 743 | dumpdev = vp->v_rdevv_un.vu_specinfo->si_rdev; |
| 744 | break; |
| 745 | case SWAP_CTL5: |
| 746 | /* |
| 747 | * get new priority, remove old entry (if any) and then |
| 748 | * reinsert it in the correct place. finally, prune out |
| 749 | * any empty priority structures. |
| 750 | */ |
| 751 | priority = SCARG(uap, misc)((uap)->misc.le.datum); |
| 752 | spp = malloc(sizeof *spp, M_VMSWAP92, M_WAITOK0x0001); |
| 753 | mtx_enter(&uvm_swap_data_lock); |
| 754 | if ((sdp = swaplist_find(vp, 1)) == NULL((void *)0)) { |
| 755 | error = ENOENT2; |
| 756 | } else { |
| 757 | swaplist_insert(sdp, spp, priority); |
| 758 | swaplist_trim(); |
| 759 | } |
| 760 | mtx_leave(&uvm_swap_data_lock); |
| 761 | if (error) |
| 762 | free(spp, M_VMSWAP92, sizeof(*spp)); |
| 763 | break; |
| 764 | case SWAP_ON1: |
| 765 | /* |
| 766 | * If the device is a regular file, make sure the filesystem |
| 767 | * can be used for swapping. |
| 768 | */ |
| 769 | if (vp->v_type == VREG && |
| 770 | (vp->v_mount->mnt_flag & MNT_SWAPPABLE0x00200000) == 0) { |
| 771 | error = ENOTSUP91; |
| 772 | break; |
| 773 | } |
| 774 | |
| 775 | /* |
| 776 | * check for duplicates. if none found, then insert a |
| 777 | * dummy entry on the list to prevent someone else from |
| 778 | * trying to enable this device while we are working on |
| 779 | * it. |
| 780 | */ |
| 781 | |
| 782 | priority = SCARG(uap, misc)((uap)->misc.le.datum); |
| 783 | sdp = malloc(sizeof *sdp, M_VMSWAP92, M_WAITOK0x0001|M_ZERO0x0008); |
| 784 | spp = malloc(sizeof *spp, M_VMSWAP92, M_WAITOK0x0001); |
| 785 | sdp->swd_flagsswd_se.se_flags = SWF_FAKE0x00000008; /* placeholder only */ |
| 786 | sdp->swd_vp = vp; |
| 787 | sdp->swd_devswd_se.se_dev = (vp->v_type == VBLK) ? vp->v_rdevv_un.vu_specinfo->si_rdev : NODEV(dev_t)(-1); |
| 788 | |
| 789 | /* |
| 790 | * XXX Is NFS elaboration necessary? |
| 791 | */ |
| 792 | if (vp->v_type == VREG) { |
| 793 | sdp->swd_cred = crdup(p->p_ucred); |
| 794 | } |
| 795 | |
| 796 | mtx_enter(&uvm_swap_data_lock); |
| 797 | if (swaplist_find(vp, 0) != NULL((void *)0)) { |
| 798 | error = EBUSY16; |
| 799 | mtx_leave(&uvm_swap_data_lock); |
| 800 | if (vp->v_type == VREG) { |
| 801 | crfree(sdp->swd_cred); |
| 802 | } |
| 803 | free(sdp, M_VMSWAP92, sizeof *sdp); |
| 804 | free(spp, M_VMSWAP92, sizeof *spp); |
| 805 | break; |
| 806 | } |
| 807 | swaplist_insert(sdp, spp, priority); |
| 808 | mtx_leave(&uvm_swap_data_lock); |
| 809 | |
| 810 | sdp->swd_pathlen = len; |
| 811 | sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP92, M_WAITOK0x0001); |
| 812 | strlcpy(sdp->swd_path, userpath, len); |
| 813 | |
| 814 | /* |
| 815 | * we've now got a FAKE placeholder in the swap list. |
| 816 | * now attempt to enable swap on it. if we fail, undo |
| 817 | * what we've done and kill the fake entry we just inserted. |
| 818 | * if swap_on is a success, it will clear the SWF_FAKE flag |
| 819 | */ |
| 820 | |
| 821 | if ((error = swap_on(p, sdp)) != 0) { |
| 822 | mtx_enter(&uvm_swap_data_lock); |
| 823 | (void) swaplist_find(vp, 1); /* kill fake entry */ |
| 824 | swaplist_trim(); |
| 825 | mtx_leave(&uvm_swap_data_lock); |
| 826 | if (vp->v_type == VREG) { |
| 827 | crfree(sdp->swd_cred); |
| 828 | } |
| 829 | free(sdp->swd_path, M_VMSWAP92, sdp->swd_pathlen); |
| 830 | free(sdp, M_VMSWAP92, sizeof(*sdp)); |
| 831 | break; |
| 832 | } |
| 833 | break; |
| 834 | case SWAP_OFF2: |
| 835 | mtx_enter(&uvm_swap_data_lock); |
| 836 | if ((sdp = swaplist_find(vp, 0)) == NULL((void *)0)) { |
| 837 | mtx_leave(&uvm_swap_data_lock); |
| 838 | error = ENXIO6; |
| 839 | break; |
| 840 | } |
| 841 | |
| 842 | /* |
| 843 | * If a device isn't in use or enabled, we |
| 844 | * can't stop swapping from it (again). |
| 845 | */ |
| 846 | if ((sdp->swd_flagsswd_se.se_flags & (SWF_INUSE0x00000001|SWF_ENABLE0x00000002)) == 0) { |
| 847 | mtx_leave(&uvm_swap_data_lock); |
| 848 | error = EBUSY16; |
| 849 | break; |
| 850 | } |
| 851 | |
| 852 | /* |
| 853 | * do the real work. |
| 854 | */ |
| 855 | error = swap_off(p, sdp); |
| 856 | break; |
| 857 | default: |
| 858 | error = EINVAL22; |
| 859 | } |
| 860 | |
| 861 | /* done! release the ref gained by namei() and unlock. */ |
| 862 | vput(vp); |
| 863 | |
| 864 | out: |
| 865 | rw_exit_write(&swap_syscall_lock); |
| 866 | |
| 867 | return (error); |
| 868 | } |
| 869 | |
| 870 | /* |
| 871 | * swap_on: attempt to enable a swapdev for swapping. note that the |
| 872 | * swapdev is already on the global list, but disabled (marked |
| 873 | * SWF_FAKE). |
| 874 | * |
| 875 | * => we avoid the start of the disk (to protect disk labels) |
| 876 | * => caller should leave uvm_swap_data_lock unlocked, we may lock it |
| 877 | * if needed. |
| 878 | */ |
| 879 | int |
| 880 | swap_on(struct proc *p, struct swapdev *sdp) |
| 881 | { |
| 882 | struct vnode *vp; |
| 883 | int error, npages, nblocks, size; |
| 884 | long addr; |
| 885 | struct vattr va; |
| 886 | #if defined(NFSCLIENT1) |
| 887 | extern const struct vops nfs_vops; |
| 888 | #endif /* defined(NFSCLIENT) */ |
| 889 | dev_t dev; |
| 890 | |
| 891 | /* |
| 892 | * we want to enable swapping on sdp. the swd_vp contains |
| 893 | * the vnode we want (locked and ref'd), and the swd_dev |
| 894 | * contains the dev_t of the file, if it a block device. |
| 895 | */ |
| 896 | |
| 897 | vp = sdp->swd_vp; |
| 898 | dev = sdp->swd_devswd_se.se_dev; |
| 899 | |
| 900 | #if NVND1 > 0 |
| 901 | /* no swapping to vnds. */ |
| 902 | if (bdevsw[major(dev)(((unsigned)(dev) >> 8) & 0xff)].d_strategy == vndstrategy) |
| 903 | return (EOPNOTSUPP45); |
| 904 | #endif |
| 905 | |
| 906 | /* |
| 907 | * open the swap file (mostly useful for block device files to |
| 908 | * let device driver know what is up). |
| 909 | * |
| 910 | * we skip the open/close for root on swap because the root |
| 911 | * has already been opened when root was mounted (mountroot). |
| 912 | */ |
| 913 | if (vp != rootvp) { |
| 914 | if ((error = VOP_OPEN(vp, FREAD0x0001|FWRITE0x0002, p->p_ucred, p))) |
| 915 | return (error); |
| 916 | } |
| 917 | |
| 918 | /* XXX this only works for block devices */ |
| 919 | /* |
| 920 | * we now need to determine the size of the swap area. for |
| 921 | * block specials we can call the d_psize function. |
| 922 | * for normal files, we must stat [get attrs]. |
| 923 | * |
| 924 | * we put the result in nblks. |
| 925 | * for normal files, we also want the filesystem block size |
| 926 | * (which we get with statfs). |
| 927 | */ |
| 928 | switch (vp->v_type) { |
| 929 | case VBLK: |
| 930 | if (bdevsw[major(dev)(((unsigned)(dev) >> 8) & 0xff)].d_psize == 0 || |
| 931 | (nblocks = (*bdevsw[major(dev)(((unsigned)(dev) >> 8) & 0xff)].d_psize)(dev)) == -1) { |
| 932 | error = ENXIO6; |
| 933 | goto bad; |
| 934 | } |
| 935 | break; |
| 936 | |
| 937 | case VREG: |
| 938 | if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p))) |
| 939 | goto bad; |
| 940 | nblocks = (int)btodb(va.va_size)((va.va_size) >> 9); |
| 941 | if ((error = |
| 942 | VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)(*(vp->v_mount)->mnt_op->vfs_statfs)(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0) |
| 943 | goto bad; |
| 944 | |
| 945 | sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize; |
| 946 | /* |
| 947 | * limit the max # of outstanding I/O requests we issue |
| 948 | * at any one time. take it easy on NFS servers. |
| 949 | */ |
| 950 | #if defined(NFSCLIENT1) |
| 951 | if (vp->v_op == &nfs_vops) |
| 952 | sdp->swd_maxactive = 2; /* XXX */ |
| 953 | else |
| 954 | #endif /* defined(NFSCLIENT) */ |
| 955 | sdp->swd_maxactive = 8; /* XXX */ |
| 956 | bufq_init(&sdp->swd_bufq, BUFQ_FIFO0); |
| 957 | break; |
| 958 | |
| 959 | default: |
| 960 | error = ENXIO6; |
| 961 | goto bad; |
| 962 | } |
| 963 | |
| 964 | /* |
| 965 | * save nblocks in a safe place and convert to pages. |
| 966 | */ |
| 967 | |
| 968 | sdp->swd_nblksswd_se.se_nblks = nblocks; |
| 969 | npages = dbtob((u_int64_t)nblocks)(((u_int64_t)nblocks) << 9) >> PAGE_SHIFT12; |
| 970 | |
| 971 | /* |
| 972 | * for block special files, we want to make sure that leave |
| 973 | * the disklabel and bootblocks alone, so we arrange to skip |
| 974 | * over them (arbitrarily choosing to skip PAGE_SIZE bytes). |
| 975 | * note that because of this the "size" can be less than the |
| 976 | * actual number of blocks on the device. |
| 977 | */ |
| 978 | if (vp->v_type == VBLK) { |
| 979 | /* we use pages 1 to (size - 1) [inclusive] */ |
| 980 | size = npages - 1; |
| 981 | addr = 1; |
| 982 | } else { |
| 983 | /* we use pages 0 to (size - 1) [inclusive] */ |
| 984 | size = npages; |
| 985 | addr = 0; |
| 986 | } |
| 987 | |
| 988 | /* |
| 989 | * make sure we have enough blocks for a reasonable sized swap |
| 990 | * area. we want at least one page. |
| 991 | */ |
| 992 | |
| 993 | if (size < 1) { |
| 994 | error = EINVAL22; |
| 995 | goto bad; |
| 996 | } |
| 997 | |
| 998 | /* |
| 999 | * now we need to allocate a blist to manage this swap device |
| 1000 | */ |
| 1001 | sdp->swd_blist = blist_create(npages); |
| 1002 | /* mark all expect the `saved' region free. */ |
| 1003 | blist_free(sdp->swd_blist, addr, size); |
| 1004 | |
| 1005 | #ifdef HIBERNATE1 |
| 1006 | /* |
| 1007 | * Lock down the last region of primary disk swap, in case |
| 1008 | * hibernate needs to place a signature there. |
| 1009 | */ |
| 1010 | if (dev == swdevt[0].sw_dev && vp->v_type == VBLK && size > 3 ) { |
| 1011 | if (blist_fill(sdp->swd_blist, npages - 1, 1) != 1) |
| 1012 | panic("hibernate reserve"); |
| 1013 | } |
| 1014 | #endif |
| 1015 | |
| 1016 | /* add a ref to vp to reflect usage as a swap device. */ |
| 1017 | vref(vp); |
| 1018 | |
| 1019 | #ifdef UVM_SWAP_ENCRYPT1 |
| 1020 | if (uvm_doswapencrypt) |
| 1021 | uvm_swap_initcrypt(sdp, npages); |
| 1022 | #endif |
| 1023 | /* now add the new swapdev to the drum and enable. */ |
| 1024 | swapdrum_add(sdp, npages); |
| 1025 | sdp->swd_npages = size; |
| 1026 | mtx_enter(&uvm_swap_data_lock); |
| 1027 | sdp->swd_flagsswd_se.se_flags &= ~SWF_FAKE0x00000008; /* going live */ |
| 1028 | sdp->swd_flagsswd_se.se_flags |= (SWF_INUSE0x00000001|SWF_ENABLE0x00000002); |
| 1029 | uvmexp.swpages += size; |
| 1030 | mtx_leave(&uvm_swap_data_lock); |
| 1031 | return (0); |
| 1032 | |
| 1033 | /* |
| 1034 | * failure: clean up and return error. |
| 1035 | */ |
| 1036 | |
| 1037 | bad: |
| 1038 | if (vp != rootvp) |
| 1039 | (void)VOP_CLOSE(vp, FREAD0x0001|FWRITE0x0002, p->p_ucred, p); |
| 1040 | return (error); |
| 1041 | } |
| 1042 | |
| 1043 | /* |
| 1044 | * swap_off: stop swapping on swapdev |
| 1045 | * |
| 1046 | * => swap data should be locked, we will unlock. |
| 1047 | */ |
| 1048 | int |
| 1049 | swap_off(struct proc *p, struct swapdev *sdp) |
| 1050 | { |
| 1051 | int npages = sdp->swd_npages; |
| 1052 | int error = 0; |
| 1053 | |
| 1054 | KASSERT(rw_write_held(&swap_syscall_lock))((rw_write_held(&swap_syscall_lock)) ? (void)0 : __assert ("diagnostic ", "/usr/src/sys/uvm/uvm_swap.c", 1054, "rw_write_held(&swap_syscall_lock)" )); |
| 1055 | MUTEX_ASSERT_LOCKED(&uvm_swap_data_lock)do { if (((&uvm_swap_data_lock)->mtx_owner != ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci ) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci; })) && !(panicstr || db_active)) panic("mutex %p not held in %s" , (&uvm_swap_data_lock), __func__); } while (0); |
| 1056 | |
| 1057 | /* disable the swap area being removed */ |
| 1058 | sdp->swd_flagsswd_se.se_flags &= ~SWF_ENABLE0x00000002; |
| 1059 | mtx_leave(&uvm_swap_data_lock); |
| 1060 | |
| 1061 | /* |
| 1062 | * the idea is to find all the pages that are paged out to this |
| 1063 | * device, and page them all in. in uvm, swap-backed pageable |
| 1064 | * memory can take two forms: aobjs and anons. call the |
| 1065 | * swapoff hook for each subsystem to bring in pages. |
| 1066 | */ |
| 1067 | |
| 1068 | if (uao_swap_off(sdp->swd_drumoffset, |
| 1069 | sdp->swd_drumoffset + sdp->swd_drumsize) || |
| 1070 | amap_swap_off(sdp->swd_drumoffset, |
| 1071 | sdp->swd_drumoffset + sdp->swd_drumsize)) { |
| 1072 | error = ENOMEM12; |
| 1073 | } else if (sdp->swd_npginuse > sdp->swd_npgbad) { |
| 1074 | error = EBUSY16; |
| 1075 | } |
| 1076 | |
| 1077 | if (error) { |
| 1078 | mtx_enter(&uvm_swap_data_lock); |
| 1079 | sdp->swd_flagsswd_se.se_flags |= SWF_ENABLE0x00000002; |
| 1080 | mtx_leave(&uvm_swap_data_lock); |
| 1081 | return error; |
| 1082 | } |
| 1083 | |
| 1084 | /* |
| 1085 | * done with the vnode and saved creds. |
| 1086 | * drop our ref on the vnode before calling VOP_CLOSE() |
| 1087 | * so that spec_close() can tell if this is the last close. |
| 1088 | */ |
| 1089 | if (sdp->swd_vp->v_type == VREG) { |
| 1090 | crfree(sdp->swd_cred); |
| 1091 | } |
| 1092 | vrele(sdp->swd_vp); |
| 1093 | if (sdp->swd_vp != rootvp) { |
| 1094 | (void) VOP_CLOSE(sdp->swd_vp, FREAD0x0001|FWRITE0x0002, p->p_ucred, p); |
| 1095 | } |
| 1096 | |
| 1097 | mtx_enter(&uvm_swap_data_lock); |
| 1098 | uvmexp.swpages -= npages; |
| 1099 | |
| 1100 | if (swaplist_find(sdp->swd_vp, 1) == NULL((void *)0)) |
| 1101 | panic("swap_off: swapdev not in list"); |
| 1102 | swaplist_trim(); |
| 1103 | mtx_leave(&uvm_swap_data_lock); |
| 1104 | |
| 1105 | /* |
| 1106 | * free all resources! |
| 1107 | */ |
| 1108 | extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize, |
| 1109 | EX_WAITOK0x0001); |
| 1110 | blist_destroy(sdp->swd_blist); |
| 1111 | /* free sdp->swd_path ? */ |
| 1112 | free(sdp, M_VMSWAP92, sizeof(*sdp)); |
| 1113 | return (0); |
| 1114 | } |
| 1115 | |
| 1116 | /* |
| 1117 | * /dev/drum interface and i/o functions |
| 1118 | */ |
| 1119 | |
| 1120 | /* |
| 1121 | * swstrategy: perform I/O on the drum |
| 1122 | * |
| 1123 | * => we must map the i/o request from the drum to the correct swapdev. |
| 1124 | */ |
| 1125 | void |
| 1126 | swstrategy(struct buf *bp) |
| 1127 | { |
| 1128 | struct swapdev *sdp; |
| 1129 | int s, pageno, bn; |
| 1130 | |
| 1131 | /* |
| 1132 | * convert block number to swapdev. note that swapdev can't |
| 1133 | * be yanked out from under us because we are holding resources |
| 1134 | * in it (i.e. the blocks we are doing I/O on). |
| 1135 | */ |
| 1136 | pageno = dbtob((u_int64_t)bp->b_blkno)(((u_int64_t)bp->b_blkno) << 9) >> PAGE_SHIFT12; |
| 1137 | mtx_enter(&uvm_swap_data_lock); |
| 1138 | sdp = swapdrum_getsdp(pageno); |
| 1139 | mtx_leave(&uvm_swap_data_lock); |
| 1140 | if (sdp == NULL((void *)0)) { |
| 1141 | bp->b_error = EINVAL22; |
| 1142 | bp->b_flags |= B_ERROR0x00000400; |
| 1143 | s = splbio()splraise(0x3); |
| 1144 | biodone(bp); |
| 1145 | splx(s)spllower(s); |
| 1146 | return; |
| 1147 | } |
| 1148 | |
| 1149 | /* convert drum page number to block number on this swapdev. */ |
| 1150 | pageno -= sdp->swd_drumoffset; /* page # on swapdev */ |
| 1151 | bn = btodb((u_int64_t)pageno << PAGE_SHIFT)(((u_int64_t)pageno << 12) >> 9); /* convert to diskblock */ |
| 1152 | |
| 1153 | /* |
| 1154 | * for block devices we finish up here. |
| 1155 | * for regular files we have to do more work which we delegate |
| 1156 | * to sw_reg_strategy(). |
| 1157 | */ |
| 1158 | switch (sdp->swd_vp->v_type) { |
| 1159 | default: |
| 1160 | panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type); |
| 1161 | case VBLK: |
| 1162 | /* |
| 1163 | * must convert "bp" from an I/O on /dev/drum to an I/O |
| 1164 | * on the swapdev (sdp). |
| 1165 | */ |
| 1166 | s = splbio()splraise(0x3); |
| 1167 | buf_replacevnode(bp, sdp->swd_vp); |
| 1168 | |
| 1169 | bp->b_blkno = bn; |
| 1170 | splx(s)spllower(s); |
| 1171 | VOP_STRATEGY(bp->b_vp, bp); |
| 1172 | return; |
| 1173 | case VREG: |
| 1174 | /* delegate to sw_reg_strategy function. */ |
| 1175 | sw_reg_strategy(sdp, bp, bn); |
| 1176 | return; |
| 1177 | } |
| 1178 | /* NOTREACHED */ |
| 1179 | } |
| 1180 | |
| 1181 | /* |
| 1182 | * sw_reg_strategy: handle swap i/o to regular files |
| 1183 | */ |
| 1184 | void |
| 1185 | sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn) |
| 1186 | { |
| 1187 | struct vnode *vp; |
| 1188 | struct vndxfer *vnx; |
| 1189 | daddr_t nbn; |
| 1190 | caddr_t addr; |
| 1191 | off_t byteoff; |
| 1192 | int s, off, nra, error, sz, resid; |
| 1193 | |
| 1194 | /* |
| 1195 | * allocate a vndxfer head for this transfer and point it to |
| 1196 | * our buffer. |
| 1197 | */ |
| 1198 | vnx = pool_get(&vndxfer_pool, PR_WAITOK0x0001); |
| 1199 | vnx->vx_flags = VX_BUSY1; |
| 1200 | vnx->vx_error = 0; |
| 1201 | vnx->vx_pending = 0; |
| 1202 | vnx->vx_bp = bp; |
| 1203 | vnx->vx_sdp = sdp; |
| 1204 | |
| 1205 | /* |
| 1206 | * setup for main loop where we read filesystem blocks into |
| 1207 | * our buffer. |
| 1208 | */ |
| 1209 | error = 0; |
Value stored to 'error' is never read | |
| 1210 | bp->b_resid = bp->b_bcount; /* nothing transferred yet! */ |
| 1211 | addr = bp->b_data; /* current position in buffer */ |
| 1212 | byteoff = dbtob((u_int64_t)bn)(((u_int64_t)bn) << 9); |
| 1213 | |
| 1214 | for (resid = bp->b_resid; resid; resid -= sz) { |
| 1215 | struct vndbuf *nbp; |
| 1216 | /* |
| 1217 | * translate byteoffset into block number. return values: |
| 1218 | * vp = vnode of underlying device |
| 1219 | * nbn = new block number (on underlying vnode dev) |
| 1220 | * nra = num blocks we can read-ahead (excludes requested |
| 1221 | * block) |
| 1222 | */ |
| 1223 | nra = 0; |
| 1224 | error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize, |
| 1225 | &vp, &nbn, &nra); |
| 1226 | |
| 1227 | if (error == 0 && nbn == -1) { |
| 1228 | /* |
| 1229 | * this used to just set error, but that doesn't |
| 1230 | * do the right thing. Instead, it causes random |
| 1231 | * memory errors. The panic() should remain until |
| 1232 | * this condition doesn't destabilize the system. |
| 1233 | */ |
| 1234 | #if 1 |
| 1235 | panic("sw_reg_strategy: swap to sparse file"); |
| 1236 | #else |
| 1237 | error = EIO5; /* failure */ |
| 1238 | #endif |
| 1239 | } |
| 1240 | |
| 1241 | /* |
| 1242 | * punt if there was an error or a hole in the file. |
| 1243 | * we must wait for any i/o ops we have already started |
| 1244 | * to finish before returning. |
| 1245 | * |
| 1246 | * XXX we could deal with holes here but it would be |
| 1247 | * a hassle (in the write case). |
| 1248 | */ |
| 1249 | if (error) { |
| 1250 | s = splbio()splraise(0x3); |
| 1251 | vnx->vx_error = error; /* pass error up */ |
| 1252 | goto out; |
| 1253 | } |
| 1254 | |
| 1255 | /* |
| 1256 | * compute the size ("sz") of this transfer (in bytes). |
| 1257 | */ |
| 1258 | off = byteoff % sdp->swd_bsize; |
| 1259 | sz = (1 + nra) * sdp->swd_bsize - off; |
| 1260 | if (sz > resid) |
| 1261 | sz = resid; |
| 1262 | |
| 1263 | /* |
| 1264 | * now get a buf structure. note that the vb_buf is |
| 1265 | * at the front of the nbp structure so that you can |
| 1266 | * cast pointers between the two structure easily. |
| 1267 | */ |
| 1268 | nbp = pool_get(&vndbuf_pool, PR_WAITOK0x0001); |
| 1269 | nbp->vb_buf.b_flags = bp->b_flags | B_CALL0x00000040; |
| 1270 | nbp->vb_buf.b_bcount = sz; |
| 1271 | nbp->vb_buf.b_bufsize = sz; |
| 1272 | nbp->vb_buf.b_error = 0; |
| 1273 | nbp->vb_buf.b_data = addr; |
| 1274 | nbp->vb_buf.b_bq = NULL((void *)0); |
| 1275 | nbp->vb_buf.b_blkno = nbn + btodb(off)((off) >> 9); |
| 1276 | nbp->vb_buf.b_proc = bp->b_proc; |
| 1277 | nbp->vb_buf.b_iodone = sw_reg_iodone; |
| 1278 | nbp->vb_buf.b_vp = NULLVP((struct vnode *)((void *)0)); |
| 1279 | nbp->vb_buf.b_vnbufs.le_next = NOLIST((struct buf *)0x87654321); |
| 1280 | LIST_INIT(&nbp->vb_buf.b_dep)do { ((&nbp->vb_buf.b_dep)->lh_first) = ((void *)0) ; } while (0); |
| 1281 | |
| 1282 | /* |
| 1283 | * set b_dirtyoff/end and b_validoff/end. this is |
| 1284 | * required by the NFS client code (otherwise it will |
| 1285 | * just discard our I/O request). |
| 1286 | */ |
| 1287 | if (bp->b_dirtyend == 0) { |
| 1288 | nbp->vb_buf.b_dirtyoff = 0; |
| 1289 | nbp->vb_buf.b_dirtyend = sz; |
| 1290 | } else { |
| 1291 | nbp->vb_buf.b_dirtyoff = |
| 1292 | max(0, bp->b_dirtyoff - (bp->b_bcount-resid)); |
| 1293 | nbp->vb_buf.b_dirtyend = |
| 1294 | min(sz, |
| 1295 | max(0, bp->b_dirtyend - (bp->b_bcount-resid))); |
| 1296 | } |
| 1297 | if (bp->b_validend == 0) { |
| 1298 | nbp->vb_buf.b_validoff = 0; |
| 1299 | nbp->vb_buf.b_validend = sz; |
| 1300 | } else { |
| 1301 | nbp->vb_buf.b_validoff = |
| 1302 | max(0, bp->b_validoff - (bp->b_bcount-resid)); |
| 1303 | nbp->vb_buf.b_validend = |
| 1304 | min(sz, |
| 1305 | max(0, bp->b_validend - (bp->b_bcount-resid))); |
| 1306 | } |
| 1307 | |
| 1308 | /* patch it back to the vnx */ |
| 1309 | nbp->vb_vnx = vnx; |
| 1310 | task_set(&nbp->vb_task, sw_reg_iodone_internal, nbp); |
| 1311 | |
| 1312 | s = splbio()splraise(0x3); |
| 1313 | if (vnx->vx_error != 0) { |
| 1314 | pool_put(&vndbuf_pool, nbp); |
| 1315 | goto out; |
| 1316 | } |
| 1317 | vnx->vx_pending++; |
| 1318 | |
| 1319 | /* assoc new buffer with underlying vnode */ |
| 1320 | bgetvp(vp, &nbp->vb_buf); |
| 1321 | |
| 1322 | /* start I/O if we are not over our limit */ |
| 1323 | bufq_queue(&sdp->swd_bufq, &nbp->vb_buf); |
| 1324 | sw_reg_start(sdp); |
| 1325 | splx(s)spllower(s); |
| 1326 | |
| 1327 | /* |
| 1328 | * advance to the next I/O |
| 1329 | */ |
| 1330 | byteoff += sz; |
| 1331 | addr += sz; |
| 1332 | } |
| 1333 | |
| 1334 | s = splbio()splraise(0x3); |
| 1335 | |
| 1336 | out: /* Arrive here at splbio */ |
| 1337 | vnx->vx_flags &= ~VX_BUSY1; |
| 1338 | if (vnx->vx_pending == 0) { |
| 1339 | if (vnx->vx_error != 0) { |
| 1340 | bp->b_error = vnx->vx_error; |
| 1341 | bp->b_flags |= B_ERROR0x00000400; |
| 1342 | } |
| 1343 | pool_put(&vndxfer_pool, vnx); |
| 1344 | biodone(bp); |
| 1345 | } |
| 1346 | splx(s)spllower(s); |
| 1347 | } |
| 1348 | |
| 1349 | /* sw_reg_start: start an I/O request on the requested swapdev. */ |
| 1350 | void |
| 1351 | sw_reg_start(struct swapdev *sdp) |
| 1352 | { |
| 1353 | struct buf *bp; |
| 1354 | |
| 1355 | /* XXX: recursion control */ |
| 1356 | if ((sdp->swd_flagsswd_se.se_flags & SWF_BUSY0x00000004) != 0) |
| 1357 | return; |
| 1358 | |
| 1359 | sdp->swd_flagsswd_se.se_flags |= SWF_BUSY0x00000004; |
| 1360 | |
| 1361 | while (sdp->swd_active < sdp->swd_maxactive) { |
| 1362 | bp = bufq_dequeue(&sdp->swd_bufq); |
| 1363 | if (bp == NULL((void *)0)) |
| 1364 | break; |
| 1365 | |
| 1366 | sdp->swd_active++; |
| 1367 | |
| 1368 | if ((bp->b_flags & B_READ0x00008000) == 0) |
| 1369 | bp->b_vp->v_numoutput++; |
| 1370 | |
| 1371 | VOP_STRATEGY(bp->b_vp, bp); |
| 1372 | } |
| 1373 | sdp->swd_flagsswd_se.se_flags &= ~SWF_BUSY0x00000004; |
| 1374 | } |
| 1375 | |
| 1376 | /* |
| 1377 | * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup |
| 1378 | * |
| 1379 | * => note that we can recover the vndbuf struct by casting the buf ptr |
| 1380 | * |
| 1381 | * XXX: |
| 1382 | * We only put this onto a taskq here, because of the maxactive game since |
| 1383 | * it basically requires us to call back into VOP_STRATEGY() (where we must |
| 1384 | * be able to sleep) via sw_reg_start(). |
| 1385 | */ |
| 1386 | void |
| 1387 | sw_reg_iodone(struct buf *bp) |
| 1388 | { |
| 1389 | struct vndbuf *vbp = (struct vndbuf *)bp; |
| 1390 | task_add(systq, &vbp->vb_task); |
| 1391 | } |
| 1392 | |
| 1393 | void |
| 1394 | sw_reg_iodone_internal(void *xvbp) |
| 1395 | { |
| 1396 | struct vndbuf *vbp = xvbp; |
| 1397 | struct vndxfer *vnx = vbp->vb_vnx; |
| 1398 | struct buf *pbp = vnx->vx_bp; /* parent buffer */ |
| 1399 | struct swapdev *sdp = vnx->vx_sdp; |
| 1400 | int resid, s; |
| 1401 | |
| 1402 | s = splbio()splraise(0x3); |
| 1403 | |
| 1404 | resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid; |
| 1405 | pbp->b_resid -= resid; |
| 1406 | vnx->vx_pending--; |
| 1407 | |
| 1408 | /* pass error upward */ |
| 1409 | if (vbp->vb_buf.b_error) |
| 1410 | vnx->vx_error = vbp->vb_buf.b_error; |
| 1411 | |
| 1412 | /* disassociate this buffer from the vnode (if any). */ |
| 1413 | if (vbp->vb_buf.b_vp != NULL((void *)0)) { |
| 1414 | brelvp(&vbp->vb_buf); |
| 1415 | } |
| 1416 | |
| 1417 | /* kill vbp structure */ |
| 1418 | pool_put(&vndbuf_pool, vbp); |
| 1419 | |
| 1420 | /* |
| 1421 | * wrap up this transaction if it has run to completion or, in |
| 1422 | * case of an error, when all auxiliary buffers have returned. |
| 1423 | */ |
| 1424 | if (vnx->vx_error != 0) { |
| 1425 | /* pass error upward */ |
| 1426 | pbp->b_flags |= B_ERROR0x00000400; |
| 1427 | pbp->b_error = vnx->vx_error; |
| 1428 | if ((vnx->vx_flags & VX_BUSY1) == 0 && vnx->vx_pending == 0) { |
| 1429 | pool_put(&vndxfer_pool, vnx); |
| 1430 | biodone(pbp); |
| 1431 | } |
| 1432 | } else if (pbp->b_resid == 0) { |
| 1433 | KASSERT(vnx->vx_pending == 0)((vnx->vx_pending == 0) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/uvm/uvm_swap.c", 1433, "vnx->vx_pending == 0" )); |
| 1434 | if ((vnx->vx_flags & VX_BUSY1) == 0) { |
| 1435 | pool_put(&vndxfer_pool, vnx); |
| 1436 | biodone(pbp); |
| 1437 | } |
| 1438 | } |
| 1439 | |
| 1440 | /* |
| 1441 | * done! start next swapdev I/O if one is pending |
| 1442 | */ |
| 1443 | sdp->swd_active--; |
| 1444 | sw_reg_start(sdp); |
| 1445 | splx(s)spllower(s); |
| 1446 | } |
| 1447 | |
| 1448 | |
| 1449 | /* |
| 1450 | * uvm_swap_alloc: allocate space on swap |
| 1451 | * |
| 1452 | * => allocation is done "round robin" down the priority list, as we |
| 1453 | * allocate in a priority we "rotate" the tail queue. |
| 1454 | * => space can be freed with uvm_swap_free |
| 1455 | * => we return the page slot number in /dev/drum (0 == invalid slot) |
| 1456 | * => we lock uvm_swap_data_lock |
| 1457 | * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM |
| 1458 | */ |
| 1459 | int |
| 1460 | uvm_swap_alloc(int *nslots, boolean_t lessok) |
| 1461 | { |
| 1462 | struct swapdev *sdp; |
| 1463 | struct swappri *spp; |
| 1464 | |
| 1465 | /* |
| 1466 | * no swap devices configured yet? definite failure. |
| 1467 | */ |
| 1468 | if (uvmexp.nswapdev < 1) |
| 1469 | return 0; |
| 1470 | |
| 1471 | /* |
| 1472 | * lock data lock, convert slots into blocks, and enter loop |
| 1473 | */ |
| 1474 | KERNEL_ASSERT_LOCKED()((_kernel_lock_held()) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/uvm/uvm_swap.c" , 1474, "_kernel_lock_held()")); |
| 1475 | mtx_enter(&uvm_swap_data_lock); |
| 1476 | |
| 1477 | ReTry: /* XXXMRG */ |
| 1478 | LIST_FOREACH(spp, &swap_priority, spi_swappri)for((spp) = ((&swap_priority)->lh_first); (spp)!= ((void *)0); (spp) = ((spp)->spi_swappri.le_next)) { |
| 1479 | TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next)for((sdp) = ((&spp->spi_swapdev)->tqh_first); (sdp) != ((void *)0); (sdp) = ((sdp)->swd_next.tqe_next)) { |
| 1480 | swblk_t result; |
| 1481 | |
| 1482 | /* if it's not enabled, then we can't swap from it */ |
| 1483 | if ((sdp->swd_flagsswd_se.se_flags & SWF_ENABLE0x00000002) == 0) |
| 1484 | continue; |
| 1485 | if (sdp->swd_npginuse + *nslots > sdp->swd_npages) |
| 1486 | continue; |
| 1487 | result = blist_alloc(sdp->swd_blist, *nslots); |
| 1488 | if (result == SWAPBLK_NONE((swblk_t)-1)) { |
| 1489 | continue; |
| 1490 | } |
| 1491 | KASSERT(result < sdp->swd_drumsize)((result < sdp->swd_drumsize) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/uvm/uvm_swap.c", 1491, "result < sdp->swd_drumsize" )); |
| 1492 | |
| 1493 | /* |
| 1494 | * successful allocation! now rotate the tailq. |
| 1495 | */ |
| 1496 | TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next)do { if (((sdp)->swd_next.tqe_next) != ((void *)0)) (sdp)-> swd_next.tqe_next->swd_next.tqe_prev = (sdp)->swd_next. tqe_prev; else (&spp->spi_swapdev)->tqh_last = (sdp )->swd_next.tqe_prev; *(sdp)->swd_next.tqe_prev = (sdp) ->swd_next.tqe_next; ((sdp)->swd_next.tqe_prev) = ((void *)-1); ((sdp)->swd_next.tqe_next) = ((void *)-1); } while (0); |
| 1497 | TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next)do { (sdp)->swd_next.tqe_next = ((void *)0); (sdp)->swd_next .tqe_prev = (&spp->spi_swapdev)->tqh_last; *(&spp ->spi_swapdev)->tqh_last = (sdp); (&spp->spi_swapdev )->tqh_last = &(sdp)->swd_next.tqe_next; } while (0 ); |
| 1498 | sdp->swd_npginuse += *nslots; |
| 1499 | uvmexp.swpginuse += *nslots; |
| 1500 | mtx_leave(&uvm_swap_data_lock); |
| 1501 | /* done! return drum slot number */ |
| 1502 | return result + sdp->swd_drumoffset; |
| 1503 | } |
| 1504 | } |
| 1505 | |
| 1506 | /* XXXMRG: BEGIN HACK */ |
| 1507 | if (*nslots > 1 && lessok) { |
| 1508 | *nslots = 1; |
| 1509 | /* XXXMRG: ugh! blist should support this for us */ |
| 1510 | goto ReTry; |
| 1511 | } |
| 1512 | /* XXXMRG: END HACK */ |
| 1513 | |
| 1514 | mtx_leave(&uvm_swap_data_lock); |
| 1515 | return 0; /* failed */ |
| 1516 | } |
| 1517 | |
| 1518 | /* |
| 1519 | * uvm_swapisfilled: return true if the amount of free space in swap is |
| 1520 | * smaller than the size of a cluster. |
| 1521 | * |
| 1522 | * As long as some swap slots are being used by pages currently in memory, |
| 1523 | * it is possible to reuse them. Even if the swap space has been completly |
| 1524 | * filled we do not consider it full. |
| 1525 | */ |
| 1526 | int |
| 1527 | uvm_swapisfilled(void) |
| 1528 | { |
| 1529 | int result; |
| 1530 | |
| 1531 | mtx_enter(&uvm_swap_data_lock); |
| 1532 | KASSERT(uvmexp.swpginuse <= uvmexp.swpages)((uvmexp.swpginuse <= uvmexp.swpages) ? (void)0 : __assert ("diagnostic ", "/usr/src/sys/uvm/uvm_swap.c", 1532, "uvmexp.swpginuse <= uvmexp.swpages" )); |
| 1533 | result = (uvmexp.swpginuse + SWCLUSTPAGES((64 * 1024) >> 12)) >= uvmexp.swpages; |
| 1534 | mtx_leave(&uvm_swap_data_lock); |
| 1535 | |
| 1536 | return result; |
| 1537 | } |
| 1538 | |
| 1539 | /* |
| 1540 | * uvm_swapisfull: return true if the amount of pages only in swap |
| 1541 | * accounts for more than 99% of the total swap space. |
| 1542 | * |
| 1543 | */ |
| 1544 | int |
| 1545 | uvm_swapisfull(void) |
| 1546 | { |
| 1547 | int result; |
| 1548 | |
| 1549 | mtx_enter(&uvm_swap_data_lock); |
| 1550 | KASSERT(uvmexp.swpgonly <= uvmexp.swpages)((uvmexp.swpgonly <= uvmexp.swpages) ? (void)0 : __assert( "diagnostic ", "/usr/src/sys/uvm/uvm_swap.c", 1550, "uvmexp.swpgonly <= uvmexp.swpages" )); |
| 1551 | result = (uvmexp.swpgonly >= ((long)uvmexp.swpages * 99 / 100)); |
| 1552 | mtx_leave(&uvm_swap_data_lock); |
| 1553 | |
| 1554 | return result; |
| 1555 | } |
| 1556 | |
| 1557 | /* |
| 1558 | * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors |
| 1559 | * |
| 1560 | * => we lock uvm_swap_data_lock |
| 1561 | */ |
| 1562 | void |
| 1563 | uvm_swap_markbad(int startslot, int nslots) |
| 1564 | { |
| 1565 | struct swapdev *sdp; |
| 1566 | |
| 1567 | mtx_enter(&uvm_swap_data_lock); |
| 1568 | sdp = swapdrum_getsdp(startslot); |
| 1569 | if (sdp != NULL((void *)0)) { |
| 1570 | /* |
| 1571 | * we just keep track of how many pages have been marked bad |
| 1572 | * in this device, to make everything add up in swap_off(). |
| 1573 | * we assume here that the range of slots will all be within |
| 1574 | * one swap device. |
| 1575 | */ |
| 1576 | sdp->swd_npgbad += nslots; |
| 1577 | } |
| 1578 | mtx_leave(&uvm_swap_data_lock); |
| 1579 | } |
| 1580 | |
| 1581 | /* |
| 1582 | * uvm_swap_free: free swap slots |
| 1583 | * |
| 1584 | * => this can be all or part of an allocation made by uvm_swap_alloc |
| 1585 | * => we lock uvm_swap_data_lock |
| 1586 | */ |
| 1587 | void |
| 1588 | uvm_swap_free(int startslot, int nslots) |
| 1589 | { |
| 1590 | struct swapdev *sdp; |
| 1591 | |
| 1592 | /* |
| 1593 | * ignore attempts to free the "bad" slot. |
| 1594 | */ |
| 1595 | |
| 1596 | if (startslot == SWSLOT_BAD(-1)) { |
| 1597 | return; |
| 1598 | } |
| 1599 | |
| 1600 | /* |
| 1601 | * convert drum slot offset back to sdp, free the blocks |
| 1602 | * in the extent, and return. must hold pri lock to do |
| 1603 | * lookup and access the extent. |
| 1604 | */ |
| 1605 | KERNEL_LOCK()_kernel_lock(); |
| 1606 | mtx_enter(&uvm_swap_data_lock); |
| 1607 | sdp = swapdrum_getsdp(startslot); |
| 1608 | KASSERT(uvmexp.nswapdev >= 1)((uvmexp.nswapdev >= 1) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/uvm/uvm_swap.c", 1608, "uvmexp.nswapdev >= 1" )); |
| 1609 | KASSERT(sdp != NULL)((sdp != ((void *)0)) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/uvm/uvm_swap.c" , 1609, "sdp != NULL")); |
| 1610 | KASSERT(sdp->swd_npginuse >= nslots)((sdp->swd_npginuse >= nslots) ? (void)0 : __assert("diagnostic " , "/usr/src/sys/uvm/uvm_swap.c", 1610, "sdp->swd_npginuse >= nslots" )); |
| 1611 | blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots); |
| 1612 | sdp->swd_npginuse -= nslots; |
| 1613 | uvmexp.swpginuse -= nslots; |
| 1614 | mtx_leave(&uvm_swap_data_lock); |
| 1615 | |
| 1616 | #ifdef UVM_SWAP_ENCRYPT1 |
| 1617 | { |
| 1618 | int i; |
| 1619 | if (swap_encrypt_initialized) { |
| 1620 | /* Dereference keys */ |
| 1621 | for (i = 0; i < nslots; i++) |
| 1622 | if (uvm_swap_needdecrypt(sdp, startslot + i)) { |
| 1623 | struct swap_key *key; |
| 1624 | |
| 1625 | key = SWD_KEY(sdp, startslot + i)&((sdp)->swd_keys[((startslot + i) - (sdp)->swd_drumoffset ) >> 7]); |
| 1626 | if (key->refcount != 0) |
| 1627 | SWAP_KEY_PUT(sdp, key)do { (key)->refcount--; if ((key)->refcount == 0) { swap_key_delete (key); } } while(0);; |
| 1628 | } |
| 1629 | |
| 1630 | /* Mark range as not decrypt */ |
| 1631 | uvm_swap_markdecrypt(sdp, startslot, nslots, 0); |
| 1632 | } |
| 1633 | } |
| 1634 | #endif /* UVM_SWAP_ENCRYPT */ |
| 1635 | KERNEL_UNLOCK()_kernel_unlock(); |
| 1636 | } |
| 1637 | |
| 1638 | /* |
| 1639 | * uvm_swap_put: put any number of pages into a contig place on swap |
| 1640 | * |
| 1641 | * => can be sync or async |
| 1642 | */ |
| 1643 | int |
| 1644 | uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags) |
| 1645 | { |
| 1646 | int result; |
| 1647 | |
| 1648 | result = uvm_swap_io(ppsp, swslot, npages, B_WRITE0x00000000 | |
| 1649 | ((flags & PGO_SYNCIO0x002) ? 0 : B_ASYNC0x00000004)); |
| 1650 | |
| 1651 | return (result); |
| 1652 | } |
| 1653 | |
| 1654 | /* |
| 1655 | * uvm_swap_get: get a single page from swap |
| 1656 | * |
| 1657 | * => usually a sync op (from fault) |
| 1658 | */ |
| 1659 | int |
| 1660 | uvm_swap_get(struct vm_page *page, int swslot, int flags) |
| 1661 | { |
| 1662 | int result; |
| 1663 | |
| 1664 | atomic_inc_int(&uvmexp.nswget)_atomic_inc_int(&uvmexp.nswget); |
| 1665 | KASSERT(flags & PGO_SYNCIO)((flags & 0x002) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/uvm/uvm_swap.c" , 1665, "flags & PGO_SYNCIO")); |
| 1666 | if (swslot == SWSLOT_BAD(-1)) { |
| 1667 | return VM_PAGER_ERROR4; |
| 1668 | } |
| 1669 | |
| 1670 | KERNEL_LOCK()_kernel_lock(); |
| 1671 | result = uvm_swap_io(&page, swslot, 1, B_READ0x00008000); |
| 1672 | KERNEL_UNLOCK()_kernel_unlock(); |
| 1673 | |
| 1674 | if (result == VM_PAGER_OK0 || result == VM_PAGER_PEND3) { |
| 1675 | /* |
| 1676 | * this page is no longer only in swap. |
| 1677 | */ |
| 1678 | atomic_dec_int(&uvmexp.swpgonly)_atomic_dec_int(&uvmexp.swpgonly); |
| 1679 | } |
| 1680 | return (result); |
| 1681 | } |
| 1682 | |
| 1683 | /* |
| 1684 | * uvm_swap_io: do an i/o operation to swap |
| 1685 | */ |
| 1686 | |
| 1687 | int |
| 1688 | uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags) |
| 1689 | { |
| 1690 | daddr_t startblk; |
| 1691 | struct buf *bp; |
| 1692 | vaddr_t kva; |
| 1693 | int result, s, mapinflags, pflag, bounce = 0, i; |
| 1694 | boolean_t write, async; |
| 1695 | vaddr_t bouncekva; |
| 1696 | struct vm_page *tpps[SWCLUSTPAGES((64 * 1024) >> 12)]; |
| 1697 | int pdaemon = (curproc({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_curproc == uvm.pagedaemon_proc); |
| 1698 | #ifdef UVM_SWAP_ENCRYPT1 |
| 1699 | struct swapdev *sdp; |
| 1700 | int encrypt = 0; |
| 1701 | #endif |
| 1702 | |
| 1703 | KERNEL_ASSERT_LOCKED()((_kernel_lock_held()) ? (void)0 : __assert("diagnostic ", "/usr/src/sys/uvm/uvm_swap.c" , 1703, "_kernel_lock_held()")); |
| 1704 | |
| 1705 | write = (flags & B_READ0x00008000) == 0; |
| 1706 | async = (flags & B_ASYNC0x00000004) != 0; |
| 1707 | |
| 1708 | /* convert starting drum slot to block number */ |
| 1709 | startblk = btodb((u_int64_t)startslot << PAGE_SHIFT)(((u_int64_t)startslot << 12) >> 9); |
| 1710 | |
| 1711 | pflag = (async || pdaemon) ? PR_NOWAIT0x0002 : PR_WAITOK0x0001; |
| 1712 | bp = pool_get(&bufpool, pflag | PR_ZERO0x0008); |
| 1713 | if (bp == NULL((void *)0)) |
| 1714 | return (VM_PAGER_AGAIN5); |
| 1715 | |
| 1716 | /* |
| 1717 | * map the pages into the kernel (XXX: currently required |
| 1718 | * by buffer system). |
| 1719 | */ |
| 1720 | mapinflags = !write ? UVMPAGER_MAPIN_READ0x02 : UVMPAGER_MAPIN_WRITE0x00; |
| 1721 | if (!async) |
| 1722 | mapinflags |= UVMPAGER_MAPIN_WAITOK0x01; |
| 1723 | kva = uvm_pagermapin(pps, npages, mapinflags); |
| 1724 | if (kva == 0) { |
| 1725 | pool_put(&bufpool, bp); |
| 1726 | return (VM_PAGER_AGAIN5); |
| 1727 | } |
| 1728 | |
| 1729 | #ifdef UVM_SWAP_ENCRYPT1 |
| 1730 | if (write) { |
| 1731 | /* |
| 1732 | * Check if we need to do swap encryption on old pages. |
| 1733 | * Later we need a different scheme, that swap encrypts |
| 1734 | * all pages of a process that had at least one page swap |
| 1735 | * encrypted. Then we might not need to copy all pages |
| 1736 | * in the cluster, and avoid the memory overheard in |
| 1737 | * swapping. |
| 1738 | */ |
| 1739 | if (uvm_doswapencrypt) |
| 1740 | encrypt = 1; |
| 1741 | } |
| 1742 | |
| 1743 | if (swap_encrypt_initialized || encrypt) { |
| 1744 | /* |
| 1745 | * we need to know the swap device that we are swapping to/from |
| 1746 | * to see if the pages need to be marked for decryption or |
| 1747 | * actually need to be decrypted. |
| 1748 | * XXX - does this information stay the same over the whole |
| 1749 | * execution of this function? |
| 1750 | */ |
| 1751 | mtx_enter(&uvm_swap_data_lock); |
| 1752 | sdp = swapdrum_getsdp(startslot); |
| 1753 | mtx_leave(&uvm_swap_data_lock); |
| 1754 | } |
| 1755 | |
| 1756 | /* |
| 1757 | * Check that we are dma capable for read (write always bounces |
| 1758 | * through the swapencrypt anyway... |
| 1759 | */ |
| 1760 | if (write && encrypt) { |
| 1761 | bounce = 1; /* bounce through swapencrypt always */ |
| 1762 | } else { |
| 1763 | #else |
| 1764 | { |
| 1765 | #endif |
| 1766 | |
| 1767 | for (i = 0; i < npages; i++) { |
| 1768 | if (VM_PAGE_TO_PHYS(pps[i])((pps[i])->phys_addr) < dma_constraint.ucr_low || |
| 1769 | VM_PAGE_TO_PHYS(pps[i])((pps[i])->phys_addr) > dma_constraint.ucr_high) { |
| 1770 | bounce = 1; |
| 1771 | break; |
| 1772 | } |
| 1773 | } |
| 1774 | } |
| 1775 | |
| 1776 | if (bounce) { |
| 1777 | int swmapflags, plaflags; |
| 1778 | |
| 1779 | /* We always need write access. */ |
| 1780 | swmapflags = UVMPAGER_MAPIN_READ0x02; |
| 1781 | plaflags = UVM_PLA_NOWAIT0x0002; |
| 1782 | if (!async) { |
| 1783 | swmapflags |= UVMPAGER_MAPIN_WAITOK0x01; |
| 1784 | plaflags = UVM_PLA_WAITOK0x0001; |
| 1785 | } |
| 1786 | if (uvm_swap_allocpages(tpps, npages, plaflags)) { |
| 1787 | pool_put(&bufpool, bp); |
| 1788 | uvm_pagermapout(kva, npages); |
| 1789 | return (VM_PAGER_AGAIN5); |
| 1790 | } |
| 1791 | |
| 1792 | bouncekva = uvm_pagermapin(tpps, npages, swmapflags); |
| 1793 | if (bouncekva == 0) { |
| 1794 | pool_put(&bufpool, bp); |
| 1795 | uvm_pagermapout(kva, npages); |
| 1796 | uvm_swap_freepages(tpps, npages); |
| 1797 | return (VM_PAGER_AGAIN5); |
| 1798 | } |
| 1799 | } |
| 1800 | |
| 1801 | /* encrypt to swap */ |
| 1802 | if (write && bounce) { |
| 1803 | int i, opages; |
| 1804 | caddr_t src, dst; |
| 1805 | u_int64_t block; |
| 1806 | |
| 1807 | src = (caddr_t) kva; |
| 1808 | dst = (caddr_t) bouncekva; |
| 1809 | block = startblk; |
| 1810 | for (i = 0; i < npages; i++) { |
| 1811 | #ifdef UVM_SWAP_ENCRYPT1 |
| 1812 | struct swap_key *key; |
| 1813 | |
| 1814 | if (encrypt) { |
| 1815 | key = SWD_KEY(sdp, startslot + i)&((sdp)->swd_keys[((startslot + i) - (sdp)->swd_drumoffset ) >> 7]); |
| 1816 | SWAP_KEY_GET(sdp, key)do { if ((key)->refcount == 0) { swap_key_create(key); } ( key)->refcount++; } while(0);; /* add reference */ |
| 1817 | |
| 1818 | swap_encrypt(key, src, dst, block, PAGE_SIZE(1 << 12)); |
| 1819 | block += btodb(PAGE_SIZE)(((1 << 12)) >> 9); |
| 1820 | } else { |
| 1821 | #else |
| 1822 | { |
| 1823 | #endif /* UVM_SWAP_ENCRYPT */ |
| 1824 | memcpy(dst, src, PAGE_SIZE)__builtin_memcpy((dst), (src), ((1 << 12))); |
| 1825 | } |
| 1826 | /* this just tells async callbacks to free */ |
| 1827 | atomic_setbits_intx86_atomic_setbits_u32(&tpps[i]->pg_flags, PQ_ENCRYPT0x00400000); |
| 1828 | src += PAGE_SIZE(1 << 12); |
| 1829 | dst += PAGE_SIZE(1 << 12); |
| 1830 | } |
| 1831 | |
| 1832 | uvm_pagermapout(kva, npages); |
| 1833 | |
| 1834 | /* dispose of pages we dont use anymore */ |
| 1835 | opages = npages; |
| 1836 | uvm_pager_dropcluster(NULL((void *)0), NULL((void *)0), pps, &opages, |
| 1837 | PGO_PDFREECLUST0x080); |
| 1838 | |
| 1839 | kva = bouncekva; |
| 1840 | } |
| 1841 | |
| 1842 | /* |
| 1843 | * prevent ASYNC reads. |
| 1844 | * uvm_swap_io is only called from uvm_swap_get, uvm_swap_get |
| 1845 | * assumes that all gets are SYNCIO. Just make sure here. |
| 1846 | * XXXARTUBC - might not be true anymore. |
| 1847 | */ |
| 1848 | if (!write) { |
| 1849 | flags &= ~B_ASYNC0x00000004; |
| 1850 | async = 0; |
| 1851 | } |
| 1852 | |
| 1853 | /* |
| 1854 | * fill in the bp. we currently route our i/o through |
| 1855 | * /dev/drum's vnode [swapdev_vp]. |
| 1856 | */ |
| 1857 | bp->b_flags = B_BUSY0x00000010 | B_NOCACHE0x00001000 | B_RAW0x00004000 | (flags & (B_READ0x00008000|B_ASYNC0x00000004)); |
| 1858 | bp->b_proc = &proc0; /* XXX */ |
| 1859 | bp->b_vnbufs.le_next = NOLIST((struct buf *)0x87654321); |
| 1860 | if (bounce) |
| 1861 | bp->b_data = (caddr_t)bouncekva; |
| 1862 | else |
| 1863 | bp->b_data = (caddr_t)kva; |
| 1864 | bp->b_bq = NULL((void *)0); |
| 1865 | bp->b_blkno = startblk; |
| 1866 | LIST_INIT(&bp->b_dep)do { ((&bp->b_dep)->lh_first) = ((void *)0); } while (0); |
| 1867 | s = splbio()splraise(0x3); |
| 1868 | bp->b_vp = NULL((void *)0); |
| 1869 | buf_replacevnode(bp, swapdev_vp); |
| 1870 | splx(s)spllower(s); |
| 1871 | bp->b_bufsize = bp->b_bcount = (long)npages << PAGE_SHIFT12; |
| 1872 | |
| 1873 | /* |
| 1874 | * for pageouts we must set "dirtyoff" [NFS client code needs it]. |
| 1875 | * and we bump v_numoutput (counter of number of active outputs). |
| 1876 | */ |
| 1877 | if (write) { |
| 1878 | bp->b_dirtyoff = 0; |
| 1879 | bp->b_dirtyend = npages << PAGE_SHIFT12; |
| 1880 | #ifdef UVM_SWAP_ENCRYPT1 |
| 1881 | /* mark the pages in the drum for decryption */ |
| 1882 | if (swap_encrypt_initialized) |
| 1883 | uvm_swap_markdecrypt(sdp, startslot, npages, encrypt); |
| 1884 | #endif |
| 1885 | s = splbio()splraise(0x3); |
| 1886 | swapdev_vp->v_numoutput++; |
| 1887 | splx(s)spllower(s); |
| 1888 | } |
| 1889 | |
| 1890 | /* for async ops we must set up the iodone handler. */ |
| 1891 | if (async) { |
| 1892 | bp->b_flags |= B_CALL0x00000040 | (pdaemon ? B_PDAEMON0x00200000 : 0); |
| 1893 | bp->b_iodone = uvm_aio_biodone; |
| 1894 | } |
| 1895 | |
| 1896 | /* now we start the I/O, and if async, return. */ |
| 1897 | VOP_STRATEGY(bp->b_vp, bp); |
| 1898 | if (async) |
| 1899 | return (VM_PAGER_PEND3); |
| 1900 | |
| 1901 | /* must be sync i/o. wait for it to finish */ |
| 1902 | (void) biowait(bp); |
| 1903 | result = (bp->b_flags & B_ERROR0x00000400) ? VM_PAGER_ERROR4 : VM_PAGER_OK0; |
| 1904 | |
| 1905 | /* decrypt swap */ |
| 1906 | if (!write && !(bp->b_flags & B_ERROR0x00000400)) { |
| 1907 | int i; |
| 1908 | caddr_t data = (caddr_t)kva; |
| 1909 | caddr_t dst = (caddr_t)kva; |
| 1910 | u_int64_t block = startblk; |
| 1911 | |
| 1912 | if (bounce) |
| 1913 | data = (caddr_t)bouncekva; |
| 1914 | |
| 1915 | for (i = 0; i < npages; i++) { |
| 1916 | #ifdef UVM_SWAP_ENCRYPT1 |
| 1917 | struct swap_key *key; |
| 1918 | |
| 1919 | /* Check if we need to decrypt */ |
| 1920 | if (swap_encrypt_initialized && |
| 1921 | uvm_swap_needdecrypt(sdp, startslot + i)) { |
| 1922 | key = SWD_KEY(sdp, startslot + i)&((sdp)->swd_keys[((startslot + i) - (sdp)->swd_drumoffset ) >> 7]); |
| 1923 | if (key->refcount == 0) { |
| 1924 | result = VM_PAGER_ERROR4; |
| 1925 | break; |
| 1926 | } |
| 1927 | swap_decrypt(key, data, dst, block, PAGE_SIZE(1 << 12)); |
| 1928 | } else if (bounce) { |
| 1929 | #else |
| 1930 | if (bounce) { |
| 1931 | #endif |
| 1932 | memcpy(dst, data, PAGE_SIZE)__builtin_memcpy((dst), (data), ((1 << 12))); |
| 1933 | } |
| 1934 | data += PAGE_SIZE(1 << 12); |
| 1935 | dst += PAGE_SIZE(1 << 12); |
| 1936 | block += btodb(PAGE_SIZE)(((1 << 12)) >> 9); |
| 1937 | } |
| 1938 | if (bounce) |
| 1939 | uvm_pagermapout(bouncekva, npages); |
| 1940 | } |
| 1941 | /* kill the pager mapping */ |
| 1942 | uvm_pagermapout(kva, npages); |
| 1943 | |
| 1944 | /* Not anymore needed, free after encryption/bouncing */ |
| 1945 | if (!write && bounce) |
| 1946 | uvm_swap_freepages(tpps, npages); |
| 1947 | |
| 1948 | /* now dispose of the buf */ |
| 1949 | s = splbio()splraise(0x3); |
| 1950 | if (bp->b_vp) |
| 1951 | brelvp(bp); |
| 1952 | |
| 1953 | if (write && bp->b_vp) |
| 1954 | vwakeup(bp->b_vp); |
| 1955 | pool_put(&bufpool, bp); |
| 1956 | splx(s)spllower(s); |
| 1957 | |
| 1958 | /* finally return. */ |
| 1959 | return (result); |
| 1960 | } |
| 1961 | |
| 1962 | void |
| 1963 | swapmount(void) |
| 1964 | { |
| 1965 | struct swapdev *sdp; |
| 1966 | struct swappri *spp; |
| 1967 | struct vnode *vp; |
| 1968 | dev_t swap_dev = swdevt[0].sw_dev; |
| 1969 | char *nam; |
| 1970 | char path[MNAMELEN90 + 1]; |
| 1971 | |
| 1972 | if (swap_dev == NODEV(dev_t)(-1)) |
| 1973 | return; |
| 1974 | |
| 1975 | rw_enter_write(&swap_syscall_lock); |
| 1976 | |
| 1977 | #if defined(NFSCLIENT1) |
| 1978 | if (swap_dev == NETDEV(dev_t)(-2)) { |
| 1979 | extern struct nfs_diskless nfs_diskless; |
| 1980 | |
| 1981 | snprintf(path, sizeof(path), "%s", |
| 1982 | nfs_diskless.nd_swap.ndm_host); |
| 1983 | vp = nfs_diskless.sw_vp; |
| 1984 | goto gotit; |
| 1985 | } else |
| 1986 | #endif |
| 1987 | if (bdevvp(swap_dev, &vp)) { |
| 1988 | rw_exit_write(&swap_syscall_lock); |
| 1989 | return; |
| 1990 | } |
| 1991 | |
| 1992 | /* Construct a potential path to swap */ |
| 1993 | if ((nam = findblkname(major(swap_dev)(((unsigned)(swap_dev) >> 8) & 0xff)))) |
| 1994 | snprintf(path, sizeof(path), "/dev/%s%d%c", nam, |
| 1995 | DISKUNIT(swap_dev)(((unsigned)((swap_dev) & 0xff) | (((swap_dev) & 0xffff0000 ) >> 8)) / 16), 'a' + DISKPART(swap_dev)(((unsigned)((swap_dev) & 0xff) | (((swap_dev) & 0xffff0000 ) >> 8)) % 16)); |
| 1996 | else |
| 1997 | snprintf(path, sizeof(path), "blkdev0x%x", |
| 1998 | swap_dev); |
| 1999 | |
| 2000 | #if defined(NFSCLIENT1) |
| 2001 | gotit: |
| 2002 | #endif |
| 2003 | sdp = malloc(sizeof(*sdp), M_VMSWAP92, M_WAITOK0x0001|M_ZERO0x0008); |
| 2004 | spp = malloc(sizeof(*spp), M_VMSWAP92, M_WAITOK0x0001); |
| 2005 | |
| 2006 | sdp->swd_flagsswd_se.se_flags = SWF_FAKE0x00000008; |
| 2007 | sdp->swd_devswd_se.se_dev = swap_dev; |
| 2008 | |
| 2009 | sdp->swd_pathlen = strlen(path) + 1; |
| 2010 | sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP92, M_WAITOK0x0001 | M_ZERO0x0008); |
| 2011 | strlcpy(sdp->swd_path, path, sdp->swd_pathlen); |
| 2012 | |
| 2013 | sdp->swd_vp = vp; |
| 2014 | |
| 2015 | mtx_enter(&uvm_swap_data_lock); |
| 2016 | swaplist_insert(sdp, spp, 0); |
| 2017 | mtx_leave(&uvm_swap_data_lock); |
| 2018 | |
| 2019 | if (swap_on(curproc({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_curproc, sdp)) { |
| 2020 | mtx_enter(&uvm_swap_data_lock); |
| 2021 | swaplist_find(vp, 1); |
| 2022 | swaplist_trim(); |
| 2023 | vput(sdp->swd_vp); |
| 2024 | mtx_leave(&uvm_swap_data_lock); |
| 2025 | rw_exit_write(&swap_syscall_lock); |
| 2026 | free(sdp->swd_path, M_VMSWAP92, sdp->swd_pathlen); |
| 2027 | free(sdp, M_VMSWAP92, sizeof(*sdp)); |
| 2028 | return; |
| 2029 | } |
| 2030 | rw_exit_write(&swap_syscall_lock); |
| 2031 | } |
| 2032 | |
| 2033 | #ifdef HIBERNATE1 |
| 2034 | int |
| 2035 | uvm_hibswap(dev_t dev, u_long *sp, u_long *ep) |
| 2036 | { |
| 2037 | struct swapdev *sdp, *swd = NULL((void *)0); |
| 2038 | struct swappri *spp; |
| 2039 | |
| 2040 | /* no swap devices configured yet? */ |
| 2041 | if (uvmexp.nswapdev < 1 || dev != swdevt[0].sw_dev) |
| 2042 | return (1); |
| 2043 | |
| 2044 | LIST_FOREACH(spp, &swap_priority, spi_swappri)for((spp) = ((&swap_priority)->lh_first); (spp)!= ((void *)0); (spp) = ((spp)->spi_swappri.le_next)) { |
| 2045 | TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next)for((sdp) = ((&spp->spi_swapdev)->tqh_first); (sdp) != ((void *)0); (sdp) = ((sdp)->swd_next.tqe_next)) { |
| 2046 | if (sdp->swd_devswd_se.se_dev == dev) |
| 2047 | swd = sdp; |
| 2048 | } |
| 2049 | } |
| 2050 | |
| 2051 | if (swd == NULL((void *)0) || (swd->swd_flagsswd_se.se_flags & SWF_ENABLE0x00000002) == 0) |
| 2052 | return (1); |
| 2053 | |
| 2054 | blist_gapfind(swd->swd_blist, sp, ep); |
| 2055 | |
| 2056 | if (*ep - *sp == 0) |
| 2057 | /* no gap found */ |
| 2058 | return (1); |
| 2059 | |
| 2060 | /* |
| 2061 | * blist_gapfind returns the gap as [sp,ep[ , |
| 2062 | * whereas [sp,ep] is expected from uvm_hibswap(). |
| 2063 | */ |
| 2064 | *ep -= 1; |
| 2065 | |
| 2066 | return (0); |
| 2067 | } |
| 2068 | #endif /* HIBERNATE */ |
| 2069 | |
| 2070 | #ifdef DDB1 |
| 2071 | void |
| 2072 | swap_print_all(int (*pr)(const char *, ...)) |
| 2073 | { |
| 2074 | struct swappri *spp; |
| 2075 | struct swapdev *sdp; |
| 2076 | |
| 2077 | LIST_FOREACH(spp, &swap_priority, spi_swappri)for((spp) = ((&swap_priority)->lh_first); (spp)!= ((void *)0); (spp) = ((spp)->spi_swappri.le_next)) { |
| 2078 | TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next)for((sdp) = ((&spp->spi_swapdev)->tqh_first); (sdp) != ((void *)0); (sdp) = ((sdp)->swd_next.tqe_next)) { |
| 2079 | #ifdef HIBERNATE1 |
| 2080 | u_long bgap = 0, egap = 0; |
| 2081 | #endif |
| 2082 | |
| 2083 | pr("swap %p path \"%s\" flags 0x%x\n", sdp, |
| 2084 | sdp->swd_path, sdp->swd_flagsswd_se.se_flags); |
| 2085 | |
| 2086 | blist_print(sdp->swd_blist); |
| 2087 | |
| 2088 | #ifdef HIBERNATE1 |
| 2089 | if (!uvm_hibswap(sdp->swd_devswd_se.se_dev, &bgap, &egap)) |
| 2090 | pr("hibernate gap: [0x%lx, 0x%lx] size=%lu\n", |
| 2091 | bgap, egap, (egap - bgap + 1)); |
| 2092 | else |
| 2093 | pr("hibernate gap: not found\n"); |
| 2094 | #endif |
| 2095 | } |
| 2096 | } |
| 2097 | } |
| 2098 | #endif /* DDB */ |