| File: | dev/pci/drm/i915/gt/intel_execlists_submission.c |
| Warning: | line 2681, column 33 Dereference of null pointer |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | // SPDX-License-Identifier: MIT | |||
| 2 | /* | |||
| 3 | * Copyright © 2014 Intel Corporation | |||
| 4 | */ | |||
| 5 | ||||
| 6 | /** | |||
| 7 | * DOC: Logical Rings, Logical Ring Contexts and Execlists | |||
| 8 | * | |||
| 9 | * Motivation: | |||
| 10 | * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts". | |||
| 11 | * These expanded contexts enable a number of new abilities, especially | |||
| 12 | * "Execlists" (also implemented in this file). | |||
| 13 | * | |||
| 14 | * One of the main differences with the legacy HW contexts is that logical | |||
| 15 | * ring contexts incorporate many more things to the context's state, like | |||
| 16 | * PDPs or ringbuffer control registers: | |||
| 17 | * | |||
| 18 | * The reason why PDPs are included in the context is straightforward: as | |||
| 19 | * PPGTTs (per-process GTTs) are actually per-context, having the PDPs | |||
| 20 | * contained there mean you don't need to do a ppgtt->switch_mm yourself, | |||
| 21 | * instead, the GPU will do it for you on the context switch. | |||
| 22 | * | |||
| 23 | * But, what about the ringbuffer control registers (head, tail, etc..)? | |||
| 24 | * shouldn't we just need a set of those per engine command streamer? This is | |||
| 25 | * where the name "Logical Rings" starts to make sense: by virtualizing the | |||
| 26 | * rings, the engine cs shifts to a new "ring buffer" with every context | |||
| 27 | * switch. When you want to submit a workload to the GPU you: A) choose your | |||
| 28 | * context, B) find its appropriate virtualized ring, C) write commands to it | |||
| 29 | * and then, finally, D) tell the GPU to switch to that context. | |||
| 30 | * | |||
| 31 | * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch | |||
| 32 | * to a contexts is via a context execution list, ergo "Execlists". | |||
| 33 | * | |||
| 34 | * LRC implementation: | |||
| 35 | * Regarding the creation of contexts, we have: | |||
| 36 | * | |||
| 37 | * - One global default context. | |||
| 38 | * - One local default context for each opened fd. | |||
| 39 | * - One local extra context for each context create ioctl call. | |||
| 40 | * | |||
| 41 | * Now that ringbuffers belong per-context (and not per-engine, like before) | |||
| 42 | * and that contexts are uniquely tied to a given engine (and not reusable, | |||
| 43 | * like before) we need: | |||
| 44 | * | |||
| 45 | * - One ringbuffer per-engine inside each context. | |||
| 46 | * - One backing object per-engine inside each context. | |||
| 47 | * | |||
| 48 | * The global default context starts its life with these new objects fully | |||
| 49 | * allocated and populated. The local default context for each opened fd is | |||
| 50 | * more complex, because we don't know at creation time which engine is going | |||
| 51 | * to use them. To handle this, we have implemented a deferred creation of LR | |||
| 52 | * contexts: | |||
| 53 | * | |||
| 54 | * The local context starts its life as a hollow or blank holder, that only | |||
| 55 | * gets populated for a given engine once we receive an execbuffer. If later | |||
| 56 | * on we receive another execbuffer ioctl for the same context but a different | |||
| 57 | * engine, we allocate/populate a new ringbuffer and context backing object and | |||
| 58 | * so on. | |||
| 59 | * | |||
| 60 | * Finally, regarding local contexts created using the ioctl call: as they are | |||
| 61 | * only allowed with the render ring, we can allocate & populate them right | |||
| 62 | * away (no need to defer anything, at least for now). | |||
| 63 | * | |||
| 64 | * Execlists implementation: | |||
| 65 | * Execlists are the new method by which, on gen8+ hardware, workloads are | |||
| 66 | * submitted for execution (as opposed to the legacy, ringbuffer-based, method). | |||
| 67 | * This method works as follows: | |||
| 68 | * | |||
| 69 | * When a request is committed, its commands (the BB start and any leading or | |||
| 70 | * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer | |||
| 71 | * for the appropriate context. The tail pointer in the hardware context is not | |||
| 72 | * updated at this time, but instead, kept by the driver in the ringbuffer | |||
| 73 | * structure. A structure representing this request is added to a request queue | |||
| 74 | * for the appropriate engine: this structure contains a copy of the context's | |||
| 75 | * tail after the request was written to the ring buffer and a pointer to the | |||
| 76 | * context itself. | |||
| 77 | * | |||
| 78 | * If the engine's request queue was empty before the request was added, the | |||
| 79 | * queue is processed immediately. Otherwise the queue will be processed during | |||
| 80 | * a context switch interrupt. In any case, elements on the queue will get sent | |||
| 81 | * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a | |||
| 82 | * globally unique 20-bits submission ID. | |||
| 83 | * | |||
| 84 | * When execution of a request completes, the GPU updates the context status | |||
| 85 | * buffer with a context complete event and generates a context switch interrupt. | |||
| 86 | * During the interrupt handling, the driver examines the events in the buffer: | |||
| 87 | * for each context complete event, if the announced ID matches that on the head | |||
| 88 | * of the request queue, then that request is retired and removed from the queue. | |||
| 89 | * | |||
| 90 | * After processing, if any requests were retired and the queue is not empty | |||
| 91 | * then a new execution list can be submitted. The two requests at the front of | |||
| 92 | * the queue are next to be submitted but since a context may not occur twice in | |||
| 93 | * an execution list, if subsequent requests have the same ID as the first then | |||
| 94 | * the two requests must be combined. This is done simply by discarding requests | |||
| 95 | * at the head of the queue until either only one requests is left (in which case | |||
| 96 | * we use a NULL second context) or the first two requests have unique IDs. | |||
| 97 | * | |||
| 98 | * By always executing the first two requests in the queue the driver ensures | |||
| 99 | * that the GPU is kept as busy as possible. In the case where a single context | |||
| 100 | * completes but a second context is still executing, the request for this second | |||
| 101 | * context will be at the head of the queue when we remove the first one. This | |||
| 102 | * request will then be resubmitted along with a new request for a different context, | |||
| 103 | * which will cause the hardware to continue executing the second request and queue | |||
| 104 | * the new request (the GPU detects the condition of a context getting preempted | |||
| 105 | * with the same context and optimizes the context switch flow by not doing | |||
| 106 | * preemption, but just sampling the new tail pointer). | |||
| 107 | * | |||
| 108 | */ | |||
| 109 | #include <linux/interrupt.h> | |||
| 110 | #include <linux/string_helpers.h> | |||
| 111 | ||||
| 112 | #include "i915_drv.h" | |||
| 113 | #include "i915_trace.h" | |||
| 114 | #include "i915_vgpu.h" | |||
| 115 | #include "gen8_engine_cs.h" | |||
| 116 | #include "intel_breadcrumbs.h" | |||
| 117 | #include "intel_context.h" | |||
| 118 | #include "intel_engine_heartbeat.h" | |||
| 119 | #include "intel_engine_pm.h" | |||
| 120 | #include "intel_engine_regs.h" | |||
| 121 | #include "intel_engine_stats.h" | |||
| 122 | #include "intel_execlists_submission.h" | |||
| 123 | #include "intel_gt.h" | |||
| 124 | #include "intel_gt_irq.h" | |||
| 125 | #include "intel_gt_pm.h" | |||
| 126 | #include "intel_gt_regs.h" | |||
| 127 | #include "intel_gt_requests.h" | |||
| 128 | #include "intel_lrc.h" | |||
| 129 | #include "intel_lrc_reg.h" | |||
| 130 | #include "intel_mocs.h" | |||
| 131 | #include "intel_reset.h" | |||
| 132 | #include "intel_ring.h" | |||
| 133 | #include "intel_workarounds.h" | |||
| 134 | #include "shmem_utils.h" | |||
| 135 | ||||
| 136 | #define RING_EXECLIST_QFULL(1 << 0x2) (1 << 0x2) | |||
| 137 | #define RING_EXECLIST1_VALID(1 << 0x3) (1 << 0x3) | |||
| 138 | #define RING_EXECLIST0_VALID(1 << 0x4) (1 << 0x4) | |||
| 139 | #define RING_EXECLIST_ACTIVE_STATUS(3 << 0xE) (3 << 0xE) | |||
| 140 | #define RING_EXECLIST1_ACTIVE(1 << 0x11) (1 << 0x11) | |||
| 141 | #define RING_EXECLIST0_ACTIVE(1 << 0x12) (1 << 0x12) | |||
| 142 | ||||
| 143 | #define GEN8_CTX_STATUS_IDLE_ACTIVE(1 << 0) (1 << 0) | |||
| 144 | #define GEN8_CTX_STATUS_PREEMPTED(1 << 1) (1 << 1) | |||
| 145 | #define GEN8_CTX_STATUS_ELEMENT_SWITCH(1 << 2) (1 << 2) | |||
| 146 | #define GEN8_CTX_STATUS_ACTIVE_IDLE(1 << 3) (1 << 3) | |||
| 147 | #define GEN8_CTX_STATUS_COMPLETE(1 << 4) (1 << 4) | |||
| 148 | #define GEN8_CTX_STATUS_LITE_RESTORE(1 << 15) (1 << 15) | |||
| 149 | ||||
| 150 | #define GEN8_CTX_STATUS_COMPLETED_MASK((1 << 4) | (1 << 1)) \ | |||
| 151 | (GEN8_CTX_STATUS_COMPLETE(1 << 4) | GEN8_CTX_STATUS_PREEMPTED(1 << 1)) | |||
| 152 | ||||
| 153 | #define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE(0x1) (0x1) /* lower csb dword */ | |||
| 154 | #define GEN12_CTX_SWITCH_DETAIL(csb_dw)((csb_dw) & 0xF) ((csb_dw) & 0xF) /* upper csb dword */ | |||
| 155 | #define GEN12_CSB_SW_CTX_ID_MASK(((~0UL) >> (64 - (25) - 1)) & ((~0UL) << (15 ))) GENMASK(25, 15)(((~0UL) >> (64 - (25) - 1)) & ((~0UL) << (15 ))) | |||
| 156 | #define GEN12_IDLE_CTX_ID0x7FF 0x7FF | |||
| 157 | #define GEN12_CSB_CTX_VALID(csb_dw)(((typeof((((~0UL) >> (64 - (25) - 1)) & ((~0UL) << (15)))))(((csb_dw) & ((((~0UL) >> (64 - (25) - 1)) & ((~0UL) << (15))))) >> (__builtin_ffsll((( (~0UL) >> (64 - (25) - 1)) & ((~0UL) << (15)) )) - 1))) != 0x7FF) \ | |||
| 158 | (FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw)((typeof((((~0UL) >> (64 - (25) - 1)) & ((~0UL) << (15)))))(((csb_dw) & ((((~0UL) >> (64 - (25) - 1)) & ((~0UL) << (15))))) >> (__builtin_ffsll((( (~0UL) >> (64 - (25) - 1)) & ((~0UL) << (15)) )) - 1))) != GEN12_IDLE_CTX_ID0x7FF) | |||
| 159 | ||||
| 160 | #define XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE(1UL << (1)) BIT(1)(1UL << (1)) /* upper csb dword */ | |||
| 161 | #define XEHP_CSB_SW_CTX_ID_MASK(((~0UL) >> (64 - (31) - 1)) & ((~0UL) << (10 ))) GENMASK(31, 10)(((~0UL) >> (64 - (31) - 1)) & ((~0UL) << (10 ))) | |||
| 162 | #define XEHP_IDLE_CTX_ID0xFFFF 0xFFFF | |||
| 163 | #define XEHP_CSB_CTX_VALID(csb_dw)(((typeof((((~0UL) >> (64 - (31) - 1)) & ((~0UL) << (10)))))(((csb_dw) & ((((~0UL) >> (64 - (31) - 1)) & ((~0UL) << (10))))) >> (__builtin_ffsll((( (~0UL) >> (64 - (31) - 1)) & ((~0UL) << (10)) )) - 1))) != 0xFFFF) \ | |||
| 164 | (FIELD_GET(XEHP_CSB_SW_CTX_ID_MASK, csb_dw)((typeof((((~0UL) >> (64 - (31) - 1)) & ((~0UL) << (10)))))(((csb_dw) & ((((~0UL) >> (64 - (31) - 1)) & ((~0UL) << (10))))) >> (__builtin_ffsll((( (~0UL) >> (64 - (31) - 1)) & ((~0UL) << (10)) )) - 1))) != XEHP_IDLE_CTX_ID0xFFFF) | |||
| 165 | ||||
| 166 | /* Typical size of the average request (2 pipecontrols and a MI_BB) */ | |||
| 167 | #define EXECLISTS_REQUEST_SIZE64 64 /* bytes */ | |||
| 168 | ||||
| 169 | struct virtual_engine { | |||
| 170 | struct intel_engine_cs base; | |||
| 171 | struct intel_context context; | |||
| 172 | struct rcu_work rcu; | |||
| 173 | ||||
| 174 | /* | |||
| 175 | * We allow only a single request through the virtual engine at a time | |||
| 176 | * (each request in the timeline waits for the completion fence of | |||
| 177 | * the previous before being submitted). By restricting ourselves to | |||
| 178 | * only submitting a single request, each request is placed on to a | |||
| 179 | * physical to maximise load spreading (by virtue of the late greedy | |||
| 180 | * scheduling -- each real engine takes the next available request | |||
| 181 | * upon idling). | |||
| 182 | */ | |||
| 183 | struct i915_request *request; | |||
| 184 | ||||
| 185 | /* | |||
| 186 | * We keep a rbtree of available virtual engines inside each physical | |||
| 187 | * engine, sorted by priority. Here we preallocate the nodes we need | |||
| 188 | * for the virtual engine, indexed by physical_engine->id. | |||
| 189 | */ | |||
| 190 | struct ve_node { | |||
| 191 | struct rb_node rb; | |||
| 192 | int prio; | |||
| 193 | } nodes[I915_NUM_ENGINES]; | |||
| 194 | ||||
| 195 | /* And finally, which physical engines this virtual engine maps onto. */ | |||
| 196 | unsigned int num_siblings; | |||
| 197 | struct intel_engine_cs *siblings[]; | |||
| 198 | }; | |||
| 199 | ||||
| 200 | static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine) | |||
| 201 | { | |||
| 202 | GEM_BUG_ON(!intel_engine_is_virtual(engine))((void)0); | |||
| 203 | return container_of(engine, struct virtual_engine, base)({ const __typeof( ((struct virtual_engine *)0)->base ) *__mptr = (engine); (struct virtual_engine *)( (char *)__mptr - __builtin_offsetof (struct virtual_engine, base) );}); | |||
| 204 | } | |||
| 205 | ||||
| 206 | static struct intel_context * | |||
| 207 | execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count, | |||
| 208 | unsigned long flags); | |||
| 209 | ||||
| 210 | static struct i915_request * | |||
| 211 | __active_request(const struct intel_timeline * const tl, | |||
| 212 | struct i915_request *rq, | |||
| 213 | int error) | |||
| 214 | { | |||
| 215 | struct i915_request *active = rq; | |||
| 216 | ||||
| 217 | list_for_each_entry_from_reverse(rq, &tl->requests, link)for (; &rq->link != (&tl->requests); rq = ({ const __typeof( ((__typeof(*rq) *)0)->link ) *__mptr = (rq-> link.prev); (__typeof(*rq) *)( (char *)__mptr - __builtin_offsetof (__typeof(*rq), link) );})) { | |||
| 218 | if (__i915_request_is_complete(rq)) | |||
| 219 | break; | |||
| 220 | ||||
| 221 | if (error) { | |||
| 222 | i915_request_set_error_once(rq, error); | |||
| 223 | __i915_request_skip(rq); | |||
| 224 | } | |||
| 225 | active = rq; | |||
| 226 | } | |||
| 227 | ||||
| 228 | return active; | |||
| 229 | } | |||
| 230 | ||||
| 231 | static struct i915_request * | |||
| 232 | active_request(const struct intel_timeline * const tl, struct i915_request *rq) | |||
| 233 | { | |||
| 234 | return __active_request(tl, rq, 0); | |||
| 235 | } | |||
| 236 | ||||
| 237 | static void ring_set_paused(const struct intel_engine_cs *engine, int state) | |||
| 238 | { | |||
| 239 | /* | |||
| 240 | * We inspect HWS_PREEMPT with a semaphore inside | |||
| 241 | * engine->emit_fini_breadcrumb. If the dword is true, | |||
| 242 | * the ring is paused as the semaphore will busywait | |||
| 243 | * until the dword is false. | |||
| 244 | */ | |||
| 245 | engine->status_page.addr[I915_GEM_HWS_PREEMPT0x32] = state; | |||
| 246 | if (state) | |||
| 247 | wmb()do { __asm volatile("sfence" ::: "memory"); } while (0); | |||
| 248 | } | |||
| 249 | ||||
| 250 | static struct i915_priolist *to_priolist(struct rb_node *rb) | |||
| 251 | { | |||
| 252 | return rb_entry(rb, struct i915_priolist, node)({ const __typeof( ((struct i915_priolist *)0)->node ) *__mptr = (rb); (struct i915_priolist *)( (char *)__mptr - __builtin_offsetof (struct i915_priolist, node) );}); | |||
| 253 | } | |||
| 254 | ||||
| 255 | static int rq_prio(const struct i915_request *rq) | |||
| 256 | { | |||
| 257 | return READ_ONCE(rq->sched.attr.priority)({ typeof(rq->sched.attr.priority) __tmp = *(volatile typeof (rq->sched.attr.priority) *)&(rq->sched.attr.priority ); membar_datadep_consumer(); __tmp; }); | |||
| 258 | } | |||
| 259 | ||||
| 260 | static int effective_prio(const struct i915_request *rq) | |||
| 261 | { | |||
| 262 | int prio = rq_prio(rq); | |||
| 263 | ||||
| 264 | /* | |||
| 265 | * If this request is special and must not be interrupted at any | |||
| 266 | * cost, so be it. Note we are only checking the most recent request | |||
| 267 | * in the context and so may be masking an earlier vip request. It | |||
| 268 | * is hoped that under the conditions where nopreempt is used, this | |||
| 269 | * will not matter (i.e. all requests to that context will be | |||
| 270 | * nopreempt for as long as desired). | |||
| 271 | */ | |||
| 272 | if (i915_request_has_nopreempt(rq)) | |||
| 273 | prio = I915_PRIORITY_UNPREEMPTABLE0x7fffffff; | |||
| 274 | ||||
| 275 | return prio; | |||
| 276 | } | |||
| 277 | ||||
| 278 | static int queue_prio(const struct i915_sched_engine *sched_engine) | |||
| 279 | { | |||
| 280 | struct rb_node *rb; | |||
| 281 | ||||
| 282 | rb = rb_first_cached(&sched_engine->queue)linux_root_RB_MINMAX((struct linux_root *)(&(&sched_engine ->queue)->rb_root), -1); | |||
| 283 | if (!rb) | |||
| 284 | return INT_MIN(-0x7fffffff-1); | |||
| 285 | ||||
| 286 | return to_priolist(rb)->priority; | |||
| 287 | } | |||
| 288 | ||||
| 289 | static int virtual_prio(const struct intel_engine_execlists *el) | |||
| 290 | { | |||
| 291 | struct rb_node *rb = rb_first_cached(&el->virtual)linux_root_RB_MINMAX((struct linux_root *)(&(&el-> virtual)->rb_root), -1); | |||
| 292 | ||||
| 293 | return rb ? rb_entry(rb, struct ve_node, rb)({ const __typeof( ((struct ve_node *)0)->rb ) *__mptr = ( rb); (struct ve_node *)( (char *)__mptr - __builtin_offsetof( struct ve_node, rb) );})->prio : INT_MIN(-0x7fffffff-1); | |||
| 294 | } | |||
| 295 | ||||
| 296 | static bool_Bool need_preempt(const struct intel_engine_cs *engine, | |||
| 297 | const struct i915_request *rq) | |||
| 298 | { | |||
| 299 | int last_prio; | |||
| 300 | ||||
| 301 | if (!intel_engine_has_semaphores(engine)) | |||
| 302 | return false0; | |||
| 303 | ||||
| 304 | /* | |||
| 305 | * Check if the current priority hint merits a preemption attempt. | |||
| 306 | * | |||
| 307 | * We record the highest value priority we saw during rescheduling | |||
| 308 | * prior to this dequeue, therefore we know that if it is strictly | |||
| 309 | * less than the current tail of ESLP[0], we do not need to force | |||
| 310 | * a preempt-to-idle cycle. | |||
| 311 | * | |||
| 312 | * However, the priority hint is a mere hint that we may need to | |||
| 313 | * preempt. If that hint is stale or we may be trying to preempt | |||
| 314 | * ourselves, ignore the request. | |||
| 315 | * | |||
| 316 | * More naturally we would write | |||
| 317 | * prio >= max(0, last); | |||
| 318 | * except that we wish to prevent triggering preemption at the same | |||
| 319 | * priority level: the task that is running should remain running | |||
| 320 | * to preserve FIFO ordering of dependencies. | |||
| 321 | */ | |||
| 322 | last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1)(((effective_prio(rq))>(I915_PRIORITY_NORMAL - 1))?(effective_prio (rq)):(I915_PRIORITY_NORMAL - 1)); | |||
| 323 | if (engine->sched_engine->queue_priority_hint <= last_prio) | |||
| 324 | return false0; | |||
| 325 | ||||
| 326 | /* | |||
| 327 | * Check against the first request in ELSP[1], it will, thanks to the | |||
| 328 | * power of PI, be the highest priority of that context. | |||
| 329 | */ | |||
| 330 | if (!list_is_last(&rq->sched.link, &engine->sched_engine->requests) && | |||
| 331 | rq_prio(list_next_entry(rq, sched.link)({ const __typeof( ((typeof(*(rq)) *)0)->sched.link ) *__mptr = (((rq)->sched.link.next)); (typeof(*(rq)) *)( (char *)__mptr - __builtin_offsetof(typeof(*(rq)), sched.link) );})) > last_prio) | |||
| 332 | return true1; | |||
| 333 | ||||
| 334 | /* | |||
| 335 | * If the inflight context did not trigger the preemption, then maybe | |||
| 336 | * it was the set of queued requests? Pick the highest priority in | |||
| 337 | * the queue (the first active priolist) and see if it deserves to be | |||
| 338 | * running instead of ELSP[0]. | |||
| 339 | * | |||
| 340 | * The highest priority request in the queue can not be either | |||
| 341 | * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same | |||
| 342 | * context, it's priority would not exceed ELSP[0] aka last_prio. | |||
| 343 | */ | |||
| 344 | return max(virtual_prio(&engine->execlists),(((virtual_prio(&engine->execlists))>(queue_prio(engine ->sched_engine)))?(virtual_prio(&engine->execlists) ):(queue_prio(engine->sched_engine))) | |||
| 345 | queue_prio(engine->sched_engine))(((virtual_prio(&engine->execlists))>(queue_prio(engine ->sched_engine)))?(virtual_prio(&engine->execlists) ):(queue_prio(engine->sched_engine))) > last_prio; | |||
| 346 | } | |||
| 347 | ||||
| 348 | __maybe_unused__attribute__((__unused__)) static bool_Bool | |||
| 349 | assert_priority_queue(const struct i915_request *prev, | |||
| 350 | const struct i915_request *next) | |||
| 351 | { | |||
| 352 | /* | |||
| 353 | * Without preemption, the prev may refer to the still active element | |||
| 354 | * which we refuse to let go. | |||
| 355 | * | |||
| 356 | * Even with preemption, there are times when we think it is better not | |||
| 357 | * to preempt and leave an ostensibly lower priority request in flight. | |||
| 358 | */ | |||
| 359 | if (i915_request_is_active(prev)) | |||
| 360 | return true1; | |||
| 361 | ||||
| 362 | return rq_prio(prev) >= rq_prio(next); | |||
| 363 | } | |||
| 364 | ||||
| 365 | static struct i915_request * | |||
| 366 | __unwind_incomplete_requests(struct intel_engine_cs *engine) | |||
| 367 | { | |||
| 368 | struct i915_request *rq, *rn, *active = NULL((void *)0); | |||
| 369 | struct list_head *pl; | |||
| 370 | int prio = I915_PRIORITY_INVALID((-0x7fffffff-1)); | |||
| 371 | ||||
| 372 | lockdep_assert_held(&engine->sched_engine->lock)do { (void)(&engine->sched_engine->lock); } while(0 ); | |||
| 373 | ||||
| 374 | list_for_each_entry_safe_reverse(rq, rn,for (rq = ({ const __typeof( ((__typeof(*rq) *)0)->sched.link ) *__mptr = ((&engine->sched_engine->requests)-> prev); (__typeof(*rq) *)( (char *)__mptr - __builtin_offsetof (__typeof(*rq), sched.link) );}), rn = ({ const __typeof( ((__typeof (*rq) *)0)->sched.link ) *__mptr = ((rq)->sched.link.prev ); (__typeof(*rq) *)( (char *)__mptr - __builtin_offsetof(__typeof (*rq), sched.link) );}); &(rq)->sched.link != (&engine ->sched_engine->requests); rq = rn, rn = ({ const __typeof ( ((__typeof(*rn) *)0)->sched.link ) *__mptr = (rn->sched .link.prev); (__typeof(*rn) *)( (char *)__mptr - __builtin_offsetof (__typeof(*rn), sched.link) );})) | |||
| 375 | &engine->sched_engine->requests,for (rq = ({ const __typeof( ((__typeof(*rq) *)0)->sched.link ) *__mptr = ((&engine->sched_engine->requests)-> prev); (__typeof(*rq) *)( (char *)__mptr - __builtin_offsetof (__typeof(*rq), sched.link) );}), rn = ({ const __typeof( ((__typeof (*rq) *)0)->sched.link ) *__mptr = ((rq)->sched.link.prev ); (__typeof(*rq) *)( (char *)__mptr - __builtin_offsetof(__typeof (*rq), sched.link) );}); &(rq)->sched.link != (&engine ->sched_engine->requests); rq = rn, rn = ({ const __typeof ( ((__typeof(*rn) *)0)->sched.link ) *__mptr = (rn->sched .link.prev); (__typeof(*rn) *)( (char *)__mptr - __builtin_offsetof (__typeof(*rn), sched.link) );})) | |||
| 376 | sched.link)for (rq = ({ const __typeof( ((__typeof(*rq) *)0)->sched.link ) *__mptr = ((&engine->sched_engine->requests)-> prev); (__typeof(*rq) *)( (char *)__mptr - __builtin_offsetof (__typeof(*rq), sched.link) );}), rn = ({ const __typeof( ((__typeof (*rq) *)0)->sched.link ) *__mptr = ((rq)->sched.link.prev ); (__typeof(*rq) *)( (char *)__mptr - __builtin_offsetof(__typeof (*rq), sched.link) );}); &(rq)->sched.link != (&engine ->sched_engine->requests); rq = rn, rn = ({ const __typeof ( ((__typeof(*rn) *)0)->sched.link ) *__mptr = (rn->sched .link.prev); (__typeof(*rn) *)( (char *)__mptr - __builtin_offsetof (__typeof(*rn), sched.link) );})) { | |||
| 377 | if (__i915_request_is_complete(rq)) { | |||
| 378 | list_del_init(&rq->sched.link); | |||
| 379 | continue; | |||
| 380 | } | |||
| 381 | ||||
| 382 | __i915_request_unsubmit(rq); | |||
| 383 | ||||
| 384 | GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID)((void)0); | |||
| 385 | if (rq_prio(rq) != prio) { | |||
| 386 | prio = rq_prio(rq); | |||
| 387 | pl = i915_sched_lookup_priolist(engine->sched_engine, | |||
| 388 | prio); | |||
| 389 | } | |||
| 390 | GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine))((void)0); | |||
| 391 | ||||
| 392 | list_move(&rq->sched.link, pl); | |||
| 393 | set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); | |||
| 394 | ||||
| 395 | /* Check in case we rollback so far we wrap [size/2] */ | |||
| 396 | if (intel_ring_direction(rq->ring, | |||
| 397 | rq->tail, | |||
| 398 | rq->ring->tail + 8) > 0) | |||
| 399 | rq->context->lrc.desc |= CTX_DESC_FORCE_RESTORE(1ULL << (2)); | |||
| 400 | ||||
| 401 | active = rq; | |||
| 402 | } | |||
| 403 | ||||
| 404 | return active; | |||
| 405 | } | |||
| 406 | ||||
| 407 | struct i915_request * | |||
| 408 | execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists) | |||
| 409 | { | |||
| 410 | struct intel_engine_cs *engine = | |||
| 411 | container_of(execlists, typeof(*engine), execlists)({ const __typeof( ((typeof(*engine) *)0)->execlists ) *__mptr = (execlists); (typeof(*engine) *)( (char *)__mptr - __builtin_offsetof (typeof(*engine), execlists) );}); | |||
| 412 | ||||
| 413 | return __unwind_incomplete_requests(engine); | |||
| 414 | } | |||
| 415 | ||||
| 416 | static void | |||
| 417 | execlists_context_status_change(struct i915_request *rq, unsigned long status) | |||
| 418 | { | |||
| 419 | /* | |||
| 420 | * Only used when GVT-g is enabled now. When GVT-g is disabled, | |||
| 421 | * The compiler should eliminate this function as dead-code. | |||
| 422 | */ | |||
| 423 | if (!IS_ENABLED(CONFIG_DRM_I915_GVT)0) | |||
| 424 | return; | |||
| 425 | ||||
| 426 | STUB()do { printf("%s: stub\n", __func__); } while(0); | |||
| 427 | #ifdef notyet | |||
| 428 | atomic_notifier_call_chain(&rq->engine->context_status_notifier, | |||
| 429 | status, rq); | |||
| 430 | #endif | |||
| 431 | } | |||
| 432 | ||||
| 433 | static void reset_active(struct i915_request *rq, | |||
| 434 | struct intel_engine_cs *engine) | |||
| 435 | { | |||
| 436 | struct intel_context * const ce = rq->context; | |||
| 437 | u32 head; | |||
| 438 | ||||
| 439 | /* | |||
| 440 | * The executing context has been cancelled. We want to prevent | |||
| 441 | * further execution along this context and propagate the error on | |||
| 442 | * to anything depending on its results. | |||
| 443 | * | |||
| 444 | * In __i915_request_submit(), we apply the -EIO and remove the | |||
| 445 | * requests' payloads for any banned requests. But first, we must | |||
| 446 | * rewind the context back to the start of the incomplete request so | |||
| 447 | * that we do not jump back into the middle of the batch. | |||
| 448 | * | |||
| 449 | * We preserve the breadcrumbs and semaphores of the incomplete | |||
| 450 | * requests so that inter-timeline dependencies (i.e other timelines) | |||
| 451 | * remain correctly ordered. And we defer to __i915_request_submit() | |||
| 452 | * so that all asynchronous waits are correctly handled. | |||
| 453 | */ | |||
| 454 | ENGINE_TRACE(engine, "{ reset rq=%llx:%lld }\n",do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 455 | rq->fence.context, rq->fence.seqno)do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0); | |||
| 456 | ||||
| 457 | /* On resubmission of the active request, payload will be scrubbed */ | |||
| 458 | if (__i915_request_is_complete(rq)) | |||
| 459 | head = rq->tail; | |||
| 460 | else | |||
| 461 | head = __active_request(ce->timeline, rq, -EIO5)->head; | |||
| 462 | head = intel_ring_wrap(ce->ring, head); | |||
| 463 | ||||
| 464 | /* Scrub the context image to prevent replaying the previous batch */ | |||
| 465 | lrc_init_regs(ce, engine, true1); | |||
| 466 | ||||
| 467 | /* We've switched away, so this should be a no-op, but intent matters */ | |||
| 468 | ce->lrc.lrca = lrc_update_regs(ce, engine, head); | |||
| 469 | } | |||
| 470 | ||||
| 471 | static bool_Bool bad_request(const struct i915_request *rq) | |||
| 472 | { | |||
| 473 | return rq->fence.error && i915_request_started(rq); | |||
| 474 | } | |||
| 475 | ||||
| 476 | static struct intel_engine_cs * | |||
| 477 | __execlists_schedule_in(struct i915_request *rq) | |||
| 478 | { | |||
| 479 | struct intel_engine_cs * const engine = rq->engine; | |||
| 480 | struct intel_context * const ce = rq->context; | |||
| 481 | ||||
| 482 | intel_context_get(ce); | |||
| 483 | ||||
| 484 | if (unlikely(intel_context_is_closed(ce) &&__builtin_expect(!!(intel_context_is_closed(ce) && !intel_engine_has_heartbeat (engine)), 0) | |||
| 485 | !intel_engine_has_heartbeat(engine))__builtin_expect(!!(intel_context_is_closed(ce) && !intel_engine_has_heartbeat (engine)), 0)) | |||
| 486 | intel_context_set_exiting(ce); | |||
| 487 | ||||
| 488 | if (unlikely(!intel_context_is_schedulable(ce) || bad_request(rq))__builtin_expect(!!(!intel_context_is_schedulable(ce) || bad_request (rq)), 0)) | |||
| 489 | reset_active(rq, engine); | |||
| 490 | ||||
| 491 | if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)0) | |||
| 492 | lrc_check_regs(ce, engine, "before"); | |||
| 493 | ||||
| 494 | if (ce->tag) { | |||
| 495 | /* Use a fixed tag for OA and friends */ | |||
| 496 | GEM_BUG_ON(ce->tag <= BITS_PER_LONG)((void)0); | |||
| 497 | ce->lrc.ccid = ce->tag; | |||
| 498 | } else if (GRAPHICS_VER_FULL(engine->i915)(((&(engine->i915)->__runtime)->graphics.ip.ver) << 8 | ((&(engine->i915)->__runtime)->graphics .ip.rel)) >= IP_VER(12, 50)((12) << 8 | (50))) { | |||
| 499 | /* We don't need a strict matching tag, just different values */ | |||
| 500 | unsigned int tag = ffs(READ_ONCE(engine->context_tag)({ typeof(engine->context_tag) __tmp = *(volatile typeof(engine ->context_tag) *)&(engine->context_tag); membar_datadep_consumer (); __tmp; })); | |||
| 501 | ||||
| 502 | GEM_BUG_ON(tag == 0 || tag >= BITS_PER_LONG)((void)0); | |||
| 503 | clear_bit(tag - 1, &engine->context_tag); | |||
| 504 | ce->lrc.ccid = tag << (XEHP_SW_CTX_ID_SHIFT39 - 32); | |||
| 505 | ||||
| 506 | BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID)extern char _ctassert[(!(64 > ((1 << 11) - 1))) ? 1 : -1 ] __attribute__((__unused__)); | |||
| 507 | ||||
| 508 | } else { | |||
| 509 | /* We don't need a strict matching tag, just different values */ | |||
| 510 | unsigned int tag = __ffs(engine->context_tag)__builtin_ctzl(engine->context_tag); | |||
| 511 | ||||
| 512 | GEM_BUG_ON(tag >= BITS_PER_LONG)((void)0); | |||
| 513 | __clear_bit(tag, &engine->context_tag); | |||
| 514 | ce->lrc.ccid = (1 + tag) << (GEN11_SW_CTX_ID_SHIFT37 - 32); | |||
| 515 | ||||
| 516 | BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID)extern char _ctassert[(!(64 > ((1 << 11) - 1))) ? 1 : -1 ] __attribute__((__unused__)); | |||
| 517 | } | |||
| 518 | ||||
| 519 | ce->lrc.ccid |= engine->execlists.ccid; | |||
| 520 | ||||
| 521 | __intel_gt_pm_get(engine->gt); | |||
| 522 | if (engine->fw_domain && !engine->fw_active++) | |||
| 523 | intel_uncore_forcewake_get(engine->uncore, engine->fw_domain); | |||
| 524 | execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN); | |||
| 525 | intel_engine_context_in(engine); | |||
| 526 | ||||
| 527 | CE_TRACE(ce, "schedule-in, ccid:%x\n", ce->lrc.ccid)do { const struct intel_context *ce__ = (ce); do { const struct intel_engine_cs *e__ __attribute__((__unused__)) = (ce__-> engine); do { } while (0); } while (0); } while (0); | |||
| 528 | ||||
| 529 | return engine; | |||
| 530 | } | |||
| 531 | ||||
| 532 | static void execlists_schedule_in(struct i915_request *rq, int idx) | |||
| 533 | { | |||
| 534 | struct intel_context * const ce = rq->context; | |||
| 535 | struct intel_engine_cs *old; | |||
| 536 | ||||
| 537 | GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine))((void)0); | |||
| 538 | trace_i915_request_in(rq, idx); | |||
| 539 | ||||
| 540 | old = ce->inflight; | |||
| 541 | if (!old) | |||
| 542 | old = __execlists_schedule_in(rq); | |||
| 543 | WRITE_ONCE(ce->inflight, ptr_inc(old))({ typeof(ce->inflight) __tmp = (({ unsigned long __v = (unsigned long)(old); (typeof(old))(__v + 1); })); *(volatile typeof(ce ->inflight) *)&(ce->inflight) = __tmp; __tmp; }); | |||
| 544 | ||||
| 545 | GEM_BUG_ON(intel_context_inflight(ce) != rq->engine)((void)0); | |||
| 546 | } | |||
| 547 | ||||
| 548 | static void | |||
| 549 | resubmit_virtual_request(struct i915_request *rq, struct virtual_engine *ve) | |||
| 550 | { | |||
| 551 | struct intel_engine_cs *engine = rq->engine; | |||
| 552 | ||||
| 553 | spin_lock_irq(&engine->sched_engine->lock)mtx_enter(&engine->sched_engine->lock); | |||
| 554 | ||||
| 555 | clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); | |||
| 556 | WRITE_ONCE(rq->engine, &ve->base)({ typeof(rq->engine) __tmp = (&ve->base); *(volatile typeof(rq->engine) *)&(rq->engine) = __tmp; __tmp; }); | |||
| 557 | ve->base.submit_request(rq); | |||
| 558 | ||||
| 559 | spin_unlock_irq(&engine->sched_engine->lock)mtx_leave(&engine->sched_engine->lock); | |||
| 560 | } | |||
| 561 | ||||
| 562 | static void kick_siblings(struct i915_request *rq, struct intel_context *ce) | |||
| 563 | { | |||
| 564 | struct virtual_engine *ve = container_of(ce, typeof(*ve), context)({ const __typeof( ((typeof(*ve) *)0)->context ) *__mptr = (ce); (typeof(*ve) *)( (char *)__mptr - __builtin_offsetof(typeof (*ve), context) );}); | |||
| 565 | struct intel_engine_cs *engine = rq->engine; | |||
| 566 | ||||
| 567 | /* | |||
| 568 | * After this point, the rq may be transferred to a new sibling, so | |||
| 569 | * before we clear ce->inflight make sure that the context has been | |||
| 570 | * removed from the b->signalers and furthermore we need to make sure | |||
| 571 | * that the concurrent iterator in signal_irq_work is no longer | |||
| 572 | * following ce->signal_link. | |||
| 573 | */ | |||
| 574 | if (!list_empty(&ce->signals)) | |||
| 575 | intel_context_remove_breadcrumbs(ce, engine->breadcrumbs); | |||
| 576 | ||||
| 577 | /* | |||
| 578 | * This engine is now too busy to run this virtual request, so | |||
| 579 | * see if we can find an alternative engine for it to execute on. | |||
| 580 | * Once a request has become bonded to this engine, we treat it the | |||
| 581 | * same as other native request. | |||
| 582 | */ | |||
| 583 | if (i915_request_in_priority_queue(rq) && | |||
| 584 | rq->execution_mask != engine->mask) | |||
| 585 | resubmit_virtual_request(rq, ve); | |||
| 586 | ||||
| 587 | if (READ_ONCE(ve->request)({ typeof(ve->request) __tmp = *(volatile typeof(ve->request ) *)&(ve->request); membar_datadep_consumer(); __tmp; } )) | |||
| 588 | tasklet_hi_schedule(&ve->base.sched_engine->tasklet); | |||
| 589 | } | |||
| 590 | ||||
| 591 | static void __execlists_schedule_out(struct i915_request * const rq, | |||
| 592 | struct intel_context * const ce) | |||
| 593 | { | |||
| 594 | struct intel_engine_cs * const engine = rq->engine; | |||
| 595 | unsigned int ccid; | |||
| 596 | ||||
| 597 | /* | |||
| 598 | * NB process_csb() is not under the engine->sched_engine->lock and hence | |||
| 599 | * schedule_out can race with schedule_in meaning that we should | |||
| 600 | * refrain from doing non-trivial work here. | |||
| 601 | */ | |||
| 602 | ||||
| 603 | CE_TRACE(ce, "schedule-out, ccid:%x\n", ce->lrc.ccid)do { const struct intel_context *ce__ = (ce); do { const struct intel_engine_cs *e__ __attribute__((__unused__)) = (ce__-> engine); do { } while (0); } while (0); } while (0); | |||
| 604 | GEM_BUG_ON(ce->inflight != engine)((void)0); | |||
| 605 | ||||
| 606 | if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)0) | |||
| 607 | lrc_check_regs(ce, engine, "after"); | |||
| 608 | ||||
| 609 | /* | |||
| 610 | * If we have just completed this context, the engine may now be | |||
| 611 | * idle and we want to re-enter powersaving. | |||
| 612 | */ | |||
| 613 | if (intel_timeline_is_last(ce->timeline, rq) && | |||
| 614 | __i915_request_is_complete(rq)) | |||
| 615 | intel_engine_add_retire(engine, ce->timeline); | |||
| 616 | ||||
| 617 | ccid = ce->lrc.ccid; | |||
| 618 | if (GRAPHICS_VER_FULL(engine->i915)(((&(engine->i915)->__runtime)->graphics.ip.ver) << 8 | ((&(engine->i915)->__runtime)->graphics .ip.rel)) >= IP_VER(12, 50)((12) << 8 | (50))) { | |||
| 619 | ccid >>= XEHP_SW_CTX_ID_SHIFT39 - 32; | |||
| 620 | ccid &= XEHP_MAX_CONTEXT_HW_ID0xFFFF; | |||
| 621 | } else { | |||
| 622 | ccid >>= GEN11_SW_CTX_ID_SHIFT37 - 32; | |||
| 623 | ccid &= GEN12_MAX_CONTEXT_HW_ID((1 << 11) - 1); | |||
| 624 | } | |||
| 625 | ||||
| 626 | if (ccid < BITS_PER_LONG64) { | |||
| 627 | GEM_BUG_ON(ccid == 0)((void)0); | |||
| 628 | GEM_BUG_ON(test_bit(ccid - 1, &engine->context_tag))((void)0); | |||
| 629 | __set_bit(ccid - 1, &engine->context_tag); | |||
| 630 | } | |||
| 631 | intel_engine_context_out(engine); | |||
| 632 | execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT); | |||
| 633 | if (engine->fw_domain && !--engine->fw_active) | |||
| 634 | intel_uncore_forcewake_put(engine->uncore, engine->fw_domain); | |||
| 635 | intel_gt_pm_put_async(engine->gt); | |||
| 636 | ||||
| 637 | /* | |||
| 638 | * If this is part of a virtual engine, its next request may | |||
| 639 | * have been blocked waiting for access to the active context. | |||
| 640 | * We have to kick all the siblings again in case we need to | |||
| 641 | * switch (e.g. the next request is not runnable on this | |||
| 642 | * engine). Hopefully, we will already have submitted the next | |||
| 643 | * request before the tasklet runs and do not need to rebuild | |||
| 644 | * each virtual tree and kick everyone again. | |||
| 645 | */ | |||
| 646 | if (ce->engine != engine) | |||
| 647 | kick_siblings(rq, ce); | |||
| 648 | ||||
| 649 | WRITE_ONCE(ce->inflight, NULL)({ typeof(ce->inflight) __tmp = (((void *)0)); *(volatile typeof (ce->inflight) *)&(ce->inflight) = __tmp; __tmp; }); | |||
| 650 | intel_context_put(ce); | |||
| 651 | } | |||
| 652 | ||||
| 653 | static inline void execlists_schedule_out(struct i915_request *rq) | |||
| 654 | { | |||
| 655 | struct intel_context * const ce = rq->context; | |||
| 656 | ||||
| 657 | trace_i915_request_out(rq); | |||
| 658 | ||||
| 659 | GEM_BUG_ON(!ce->inflight)((void)0); | |||
| 660 | ce->inflight = ptr_dec(ce->inflight)({ unsigned long __v = (unsigned long)(ce->inflight); (typeof (ce->inflight))(__v - 1); }); | |||
| 661 | if (!__intel_context_inflight_count(ce->inflight)((unsigned long)(ce->inflight) & ((1UL << (3)) - 1))) | |||
| 662 | __execlists_schedule_out(rq, ce); | |||
| 663 | ||||
| 664 | i915_request_put(rq); | |||
| 665 | } | |||
| 666 | ||||
| 667 | static u32 map_i915_prio_to_lrc_desc_prio(int prio) | |||
| 668 | { | |||
| 669 | if (prio > I915_PRIORITY_NORMAL) | |||
| 670 | return GEN12_CTX_PRIORITY_HIGH(((typeof((((~0UL) >> (64 - (10) - 1)) & ((~0UL) << (9)))))(2) << (__builtin_ffsll((((~0UL) >> (64 - (10) - 1)) & ((~0UL) << (9)))) - 1)) & ((((~0UL ) >> (64 - (10) - 1)) & ((~0UL) << (9))))); | |||
| 671 | else if (prio < I915_PRIORITY_NORMAL) | |||
| 672 | return GEN12_CTX_PRIORITY_LOW(((typeof((((~0UL) >> (64 - (10) - 1)) & ((~0UL) << (9)))))(0) << (__builtin_ffsll((((~0UL) >> (64 - (10) - 1)) & ((~0UL) << (9)))) - 1)) & ((((~0UL ) >> (64 - (10) - 1)) & ((~0UL) << (9))))); | |||
| 673 | else | |||
| 674 | return GEN12_CTX_PRIORITY_NORMAL(((typeof((((~0UL) >> (64 - (10) - 1)) & ((~0UL) << (9)))))(1) << (__builtin_ffsll((((~0UL) >> (64 - (10) - 1)) & ((~0UL) << (9)))) - 1)) & ((((~0UL ) >> (64 - (10) - 1)) & ((~0UL) << (9))))); | |||
| 675 | } | |||
| 676 | ||||
| 677 | static u64 execlists_update_context(struct i915_request *rq) | |||
| 678 | { | |||
| 679 | struct intel_context *ce = rq->context; | |||
| 680 | u64 desc; | |||
| 681 | u32 tail, prev; | |||
| 682 | ||||
| 683 | desc = ce->lrc.desc; | |||
| 684 | if (rq->engine->flags & I915_ENGINE_HAS_EU_PRIORITY(1UL << (10))) | |||
| 685 | desc |= map_i915_prio_to_lrc_desc_prio(rq_prio(rq)); | |||
| 686 | ||||
| 687 | /* | |||
| 688 | * WaIdleLiteRestore:bdw,skl | |||
| 689 | * | |||
| 690 | * We should never submit the context with the same RING_TAIL twice | |||
| 691 | * just in case we submit an empty ring, which confuses the HW. | |||
| 692 | * | |||
| 693 | * We append a couple of NOOPs (gen8_emit_wa_tail) after the end of | |||
| 694 | * the normal request to be able to always advance the RING_TAIL on | |||
| 695 | * subsequent resubmissions (for lite restore). Should that fail us, | |||
| 696 | * and we try and submit the same tail again, force the context | |||
| 697 | * reload. | |||
| 698 | * | |||
| 699 | * If we need to return to a preempted context, we need to skip the | |||
| 700 | * lite-restore and force it to reload the RING_TAIL. Otherwise, the | |||
| 701 | * HW has a tendency to ignore us rewinding the TAIL to the end of | |||
| 702 | * an earlier request. | |||
| 703 | */ | |||
| 704 | GEM_BUG_ON(ce->lrc_reg_state[CTX_RING_TAIL] != rq->ring->tail)((void)0); | |||
| 705 | prev = rq->ring->tail; | |||
| 706 | tail = intel_ring_set_tail(rq->ring, rq->tail); | |||
| 707 | if (unlikely(intel_ring_direction(rq->ring, tail, prev) <= 0)__builtin_expect(!!(intel_ring_direction(rq->ring, tail, prev ) <= 0), 0)) | |||
| 708 | desc |= CTX_DESC_FORCE_RESTORE(1ULL << (2)); | |||
| 709 | ce->lrc_reg_state[CTX_RING_TAIL(0x06 + 1)] = tail; | |||
| 710 | rq->tail = rq->wa_tail; | |||
| 711 | ||||
| 712 | /* | |||
| 713 | * Make sure the context image is complete before we submit it to HW. | |||
| 714 | * | |||
| 715 | * Ostensibly, writes (including the WCB) should be flushed prior to | |||
| 716 | * an uncached write such as our mmio register access, the empirical | |||
| 717 | * evidence (esp. on Braswell) suggests that the WC write into memory | |||
| 718 | * may not be visible to the HW prior to the completion of the UC | |||
| 719 | * register write and that we may begin execution from the context | |||
| 720 | * before its image is complete leading to invalid PD chasing. | |||
| 721 | */ | |||
| 722 | wmb()do { __asm volatile("sfence" ::: "memory"); } while (0); | |||
| 723 | ||||
| 724 | ce->lrc.desc &= ~CTX_DESC_FORCE_RESTORE(1ULL << (2)); | |||
| 725 | return desc; | |||
| 726 | } | |||
| 727 | ||||
| 728 | static void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port) | |||
| 729 | { | |||
| 730 | if (execlists->ctrl_reg) { | |||
| 731 | writel(lower_32_bits(desc), execlists->submit_reg + port * 2)iowrite32(((u32)(desc)), execlists->submit_reg + port * 2); | |||
| 732 | writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1)iowrite32(((u32)(((desc) >> 16) >> 16)), execlists ->submit_reg + port * 2 + 1); | |||
| 733 | } else { | |||
| 734 | writel(upper_32_bits(desc), execlists->submit_reg)iowrite32(((u32)(((desc) >> 16) >> 16)), execlists ->submit_reg); | |||
| 735 | writel(lower_32_bits(desc), execlists->submit_reg)iowrite32(((u32)(desc)), execlists->submit_reg); | |||
| 736 | } | |||
| 737 | } | |||
| 738 | ||||
| 739 | static __maybe_unused__attribute__((__unused__)) char * | |||
| 740 | dump_port(char *buf, int buflen, const char *prefix, struct i915_request *rq) | |||
| 741 | { | |||
| 742 | if (!rq) | |||
| 743 | return ""; | |||
| 744 | ||||
| 745 | snprintf(buf, buflen, "%sccid:%x %llx:%lld%s prio %d", | |||
| 746 | prefix, | |||
| 747 | rq->context->lrc.ccid, | |||
| 748 | rq->fence.context, rq->fence.seqno, | |||
| 749 | __i915_request_is_complete(rq) ? "!" : | |||
| 750 | __i915_request_has_started(rq) ? "*" : | |||
| 751 | "", | |||
| 752 | rq_prio(rq)); | |||
| 753 | ||||
| 754 | return buf; | |||
| 755 | } | |||
| 756 | ||||
| 757 | static __maybe_unused__attribute__((__unused__)) noinline__attribute__((__noinline__)) void | |||
| 758 | trace_ports(const struct intel_engine_execlists *execlists, | |||
| 759 | const char *msg, | |||
| 760 | struct i915_request * const *ports) | |||
| 761 | { | |||
| 762 | const struct intel_engine_cs *engine = | |||
| 763 | container_of(execlists, typeof(*engine), execlists)({ const __typeof( ((typeof(*engine) *)0)->execlists ) *__mptr = (execlists); (typeof(*engine) *)( (char *)__mptr - __builtin_offsetof (typeof(*engine), execlists) );}); | |||
| 764 | char __maybe_unused__attribute__((__unused__)) p0[40], p1[40]; | |||
| 765 | ||||
| 766 | if (!ports[0]) | |||
| 767 | return; | |||
| 768 | ||||
| 769 | ENGINE_TRACE(engine, "%s { %s%s }\n", msg,do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 770 | dump_port(p0, sizeof(p0), "", ports[0]),do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 771 | dump_port(p1, sizeof(p1), ", ", ports[1]))do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0); | |||
| 772 | } | |||
| 773 | ||||
| 774 | static bool_Bool | |||
| 775 | reset_in_progress(const struct intel_engine_cs *engine) | |||
| 776 | { | |||
| 777 | return unlikely(!__tasklet_is_enabled(&engine->sched_engine->tasklet))__builtin_expect(!!(!__tasklet_is_enabled(&engine->sched_engine ->tasklet)), 0); | |||
| 778 | } | |||
| 779 | ||||
| 780 | static __maybe_unused__attribute__((__unused__)) noinline__attribute__((__noinline__)) bool_Bool | |||
| 781 | assert_pending_valid(const struct intel_engine_execlists *execlists, | |||
| 782 | const char *msg) | |||
| 783 | { | |||
| 784 | struct intel_engine_cs *engine = | |||
| 785 | container_of(execlists, typeof(*engine), execlists)({ const __typeof( ((typeof(*engine) *)0)->execlists ) *__mptr = (execlists); (typeof(*engine) *)( (char *)__mptr - __builtin_offsetof (typeof(*engine), execlists) );}); | |||
| 786 | struct i915_request * const *port, *rq, *prev = NULL((void *)0); | |||
| 787 | struct intel_context *ce = NULL((void *)0); | |||
| 788 | u32 ccid = -1; | |||
| 789 | ||||
| 790 | trace_ports(execlists, msg, execlists->pending); | |||
| 791 | ||||
| 792 | /* We may be messing around with the lists during reset, lalala */ | |||
| 793 | if (reset_in_progress(engine)) | |||
| 794 | return true1; | |||
| 795 | ||||
| 796 | if (!execlists->pending[0]) { | |||
| 797 | GEM_TRACE_ERR("%s: Nothing pending for promotion!\n",do { } while (0) | |||
| 798 | engine->name)do { } while (0); | |||
| 799 | return false0; | |||
| 800 | } | |||
| 801 | ||||
| 802 | if (execlists->pending[execlists_num_ports(execlists)]) { | |||
| 803 | GEM_TRACE_ERR("%s: Excess pending[%d] for promotion!\n",do { } while (0) | |||
| 804 | engine->name, execlists_num_ports(execlists))do { } while (0); | |||
| 805 | return false0; | |||
| 806 | } | |||
| 807 | ||||
| 808 | for (port = execlists->pending; (rq = *port); port++) { | |||
| 809 | unsigned long flags; | |||
| 810 | bool_Bool ok = true1; | |||
| 811 | ||||
| 812 | GEM_BUG_ON(!kref_read(&rq->fence.refcount))((void)0); | |||
| 813 | GEM_BUG_ON(!i915_request_is_active(rq))((void)0); | |||
| 814 | ||||
| 815 | if (ce == rq->context) { | |||
| 816 | GEM_TRACE_ERR("%s: Dup context:%llx in pending[%zd]\n",do { } while (0) | |||
| 817 | engine->name,do { } while (0) | |||
| 818 | ce->timeline->fence_context,do { } while (0) | |||
| 819 | port - execlists->pending)do { } while (0); | |||
| 820 | return false0; | |||
| 821 | } | |||
| 822 | ce = rq->context; | |||
| 823 | ||||
| 824 | if (ccid == ce->lrc.ccid) { | |||
| 825 | GEM_TRACE_ERR("%s: Dup ccid:%x context:%llx in pending[%zd]\n",do { } while (0) | |||
| 826 | engine->name,do { } while (0) | |||
| 827 | ccid, ce->timeline->fence_context,do { } while (0) | |||
| 828 | port - execlists->pending)do { } while (0); | |||
| 829 | return false0; | |||
| 830 | } | |||
| 831 | ccid = ce->lrc.ccid; | |||
| 832 | ||||
| 833 | /* | |||
| 834 | * Sentinels are supposed to be the last request so they flush | |||
| 835 | * the current execution off the HW. Check that they are the only | |||
| 836 | * request in the pending submission. | |||
| 837 | * | |||
| 838 | * NB: Due to the async nature of preempt-to-busy and request | |||
| 839 | * cancellation we need to handle the case where request | |||
| 840 | * becomes a sentinel in parallel to CSB processing. | |||
| 841 | */ | |||
| 842 | if (prev && i915_request_has_sentinel(prev) && | |||
| 843 | !READ_ONCE(prev->fence.error)({ typeof(prev->fence.error) __tmp = *(volatile typeof(prev ->fence.error) *)&(prev->fence.error); membar_datadep_consumer (); __tmp; })) { | |||
| 844 | GEM_TRACE_ERR("%s: context:%llx after sentinel in pending[%zd]\n",do { } while (0) | |||
| 845 | engine->name,do { } while (0) | |||
| 846 | ce->timeline->fence_context,do { } while (0) | |||
| 847 | port - execlists->pending)do { } while (0); | |||
| 848 | return false0; | |||
| 849 | } | |||
| 850 | prev = rq; | |||
| 851 | ||||
| 852 | /* | |||
| 853 | * We want virtual requests to only be in the first slot so | |||
| 854 | * that they are never stuck behind a hog and can be immediately | |||
| 855 | * transferred onto the next idle engine. | |||
| 856 | */ | |||
| 857 | if (rq->execution_mask != engine->mask && | |||
| 858 | port != execlists->pending) { | |||
| 859 | GEM_TRACE_ERR("%s: virtual engine:%llx not in prime position[%zd]\n",do { } while (0) | |||
| 860 | engine->name,do { } while (0) | |||
| 861 | ce->timeline->fence_context,do { } while (0) | |||
| 862 | port - execlists->pending)do { } while (0); | |||
| 863 | return false0; | |||
| 864 | } | |||
| 865 | ||||
| 866 | /* Hold tightly onto the lock to prevent concurrent retires! */ | |||
| 867 | if (!spin_trylock_irqsave(&rq->lock, flags)({ (void)(flags); mtx_enter_try(&rq->lock) ? 1 : 0; })) | |||
| 868 | continue; | |||
| 869 | ||||
| 870 | if (__i915_request_is_complete(rq)) | |||
| 871 | goto unlock; | |||
| 872 | ||||
| 873 | if (i915_active_is_idle(&ce->active) && | |||
| 874 | !intel_context_is_barrier(ce)) { | |||
| 875 | GEM_TRACE_ERR("%s: Inactive context:%llx in pending[%zd]\n",do { } while (0) | |||
| 876 | engine->name,do { } while (0) | |||
| 877 | ce->timeline->fence_context,do { } while (0) | |||
| 878 | port - execlists->pending)do { } while (0); | |||
| 879 | ok = false0; | |||
| 880 | goto unlock; | |||
| 881 | } | |||
| 882 | ||||
| 883 | if (!i915_vma_is_pinned(ce->state)) { | |||
| 884 | GEM_TRACE_ERR("%s: Unpinned context:%llx in pending[%zd]\n",do { } while (0) | |||
| 885 | engine->name,do { } while (0) | |||
| 886 | ce->timeline->fence_context,do { } while (0) | |||
| 887 | port - execlists->pending)do { } while (0); | |||
| 888 | ok = false0; | |||
| 889 | goto unlock; | |||
| 890 | } | |||
| 891 | ||||
| 892 | if (!i915_vma_is_pinned(ce->ring->vma)) { | |||
| 893 | GEM_TRACE_ERR("%s: Unpinned ring:%llx in pending[%zd]\n",do { } while (0) | |||
| 894 | engine->name,do { } while (0) | |||
| 895 | ce->timeline->fence_context,do { } while (0) | |||
| 896 | port - execlists->pending)do { } while (0); | |||
| 897 | ok = false0; | |||
| 898 | goto unlock; | |||
| 899 | } | |||
| 900 | ||||
| 901 | unlock: | |||
| 902 | spin_unlock_irqrestore(&rq->lock, flags)do { (void)(flags); mtx_leave(&rq->lock); } while (0); | |||
| 903 | if (!ok) | |||
| 904 | return false0; | |||
| 905 | } | |||
| 906 | ||||
| 907 | return ce; | |||
| 908 | } | |||
| 909 | ||||
| 910 | static void execlists_submit_ports(struct intel_engine_cs *engine) | |||
| 911 | { | |||
| 912 | struct intel_engine_execlists *execlists = &engine->execlists; | |||
| 913 | unsigned int n; | |||
| 914 | ||||
| 915 | GEM_BUG_ON(!assert_pending_valid(execlists, "submit"))((void)0); | |||
| 916 | ||||
| 917 | /* | |||
| 918 | * We can skip acquiring intel_runtime_pm_get() here as it was taken | |||
| 919 | * on our behalf by the request (see i915_gem_mark_busy()) and it will | |||
| 920 | * not be relinquished until the device is idle (see | |||
| 921 | * i915_gem_idle_work_handler()). As a precaution, we make sure | |||
| 922 | * that all ELSP are drained i.e. we have processed the CSB, | |||
| 923 | * before allowing ourselves to idle and calling intel_runtime_pm_put(). | |||
| 924 | */ | |||
| 925 | GEM_BUG_ON(!intel_engine_pm_is_awake(engine))((void)0); | |||
| 926 | ||||
| 927 | /* | |||
| 928 | * ELSQ note: the submit queue is not cleared after being submitted | |||
| 929 | * to the HW so we need to make sure we always clean it up. This is | |||
| 930 | * currently ensured by the fact that we always write the same number | |||
| 931 | * of elsq entries, keep this in mind before changing the loop below. | |||
| 932 | */ | |||
| 933 | for (n = execlists_num_ports(execlists); n--; ) { | |||
| 934 | struct i915_request *rq = execlists->pending[n]; | |||
| 935 | ||||
| 936 | write_desc(execlists, | |||
| 937 | rq ? execlists_update_context(rq) : 0, | |||
| 938 | n); | |||
| 939 | } | |||
| 940 | ||||
| 941 | /* we need to manually load the submit queue */ | |||
| 942 | if (execlists->ctrl_reg) | |||
| 943 | writel(EL_CTRL_LOAD, execlists->ctrl_reg)iowrite32(((u32)((1UL << (0)) + 0)), execlists->ctrl_reg ); | |||
| 944 | } | |||
| 945 | ||||
| 946 | static bool_Bool ctx_single_port_submission(const struct intel_context *ce) | |||
| 947 | { | |||
| 948 | return (IS_ENABLED(CONFIG_DRM_I915_GVT)0 && | |||
| 949 | intel_context_force_single_submission(ce)); | |||
| 950 | } | |||
| 951 | ||||
| 952 | static bool_Bool can_merge_ctx(const struct intel_context *prev, | |||
| 953 | const struct intel_context *next) | |||
| 954 | { | |||
| 955 | if (prev != next) | |||
| 956 | return false0; | |||
| 957 | ||||
| 958 | if (ctx_single_port_submission(prev)) | |||
| 959 | return false0; | |||
| 960 | ||||
| 961 | return true1; | |||
| 962 | } | |||
| 963 | ||||
| 964 | static unsigned long i915_request_flags(const struct i915_request *rq) | |||
| 965 | { | |||
| 966 | return READ_ONCE(rq->fence.flags)({ typeof(rq->fence.flags) __tmp = *(volatile typeof(rq-> fence.flags) *)&(rq->fence.flags); membar_datadep_consumer (); __tmp; }); | |||
| 967 | } | |||
| 968 | ||||
| 969 | static bool_Bool can_merge_rq(const struct i915_request *prev, | |||
| 970 | const struct i915_request *next) | |||
| 971 | { | |||
| 972 | GEM_BUG_ON(prev == next)((void)0); | |||
| 973 | GEM_BUG_ON(!assert_priority_queue(prev, next))((void)0); | |||
| 974 | ||||
| 975 | /* | |||
| 976 | * We do not submit known completed requests. Therefore if the next | |||
| 977 | * request is already completed, we can pretend to merge it in | |||
| 978 | * with the previous context (and we will skip updating the ELSP | |||
| 979 | * and tracking). Thus hopefully keeping the ELSP full with active | |||
| 980 | * contexts, despite the best efforts of preempt-to-busy to confuse | |||
| 981 | * us. | |||
| 982 | */ | |||
| 983 | if (__i915_request_is_complete(next)) | |||
| 984 | return true1; | |||
| 985 | ||||
| 986 | if (unlikely((i915_request_flags(prev) | i915_request_flags(next)) &__builtin_expect(!!((i915_request_flags(prev) | i915_request_flags (next)) & ((1UL << (I915_FENCE_FLAG_NOPREEMPT)) | ( 1UL << (I915_FENCE_FLAG_SENTINEL)))), 0) | |||
| 987 | (BIT(I915_FENCE_FLAG_NOPREEMPT) |__builtin_expect(!!((i915_request_flags(prev) | i915_request_flags (next)) & ((1UL << (I915_FENCE_FLAG_NOPREEMPT)) | ( 1UL << (I915_FENCE_FLAG_SENTINEL)))), 0) | |||
| 988 | BIT(I915_FENCE_FLAG_SENTINEL)))__builtin_expect(!!((i915_request_flags(prev) | i915_request_flags (next)) & ((1UL << (I915_FENCE_FLAG_NOPREEMPT)) | ( 1UL << (I915_FENCE_FLAG_SENTINEL)))), 0)) | |||
| 989 | return false0; | |||
| 990 | ||||
| 991 | if (!can_merge_ctx(prev->context, next->context)) | |||
| 992 | return false0; | |||
| 993 | ||||
| 994 | GEM_BUG_ON(i915_seqno_passed(prev->fence.seqno, next->fence.seqno))((void)0); | |||
| 995 | return true1; | |||
| 996 | } | |||
| 997 | ||||
| 998 | static bool_Bool virtual_matches(const struct virtual_engine *ve, | |||
| 999 | const struct i915_request *rq, | |||
| 1000 | const struct intel_engine_cs *engine) | |||
| 1001 | { | |||
| 1002 | const struct intel_engine_cs *inflight; | |||
| 1003 | ||||
| 1004 | if (!rq) | |||
| 1005 | return false0; | |||
| 1006 | ||||
| 1007 | if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */ | |||
| 1008 | return false0; | |||
| 1009 | ||||
| 1010 | /* | |||
| 1011 | * We track when the HW has completed saving the context image | |||
| 1012 | * (i.e. when we have seen the final CS event switching out of | |||
| 1013 | * the context) and must not overwrite the context image before | |||
| 1014 | * then. This restricts us to only using the active engine | |||
| 1015 | * while the previous virtualized request is inflight (so | |||
| 1016 | * we reuse the register offsets). This is a very small | |||
| 1017 | * hystersis on the greedy seelction algorithm. | |||
| 1018 | */ | |||
| 1019 | inflight = intel_context_inflight(&ve->context)({ unsigned long __v = (unsigned long)(({ typeof((&ve-> context)->inflight) __tmp = *(volatile typeof((&ve-> context)->inflight) *)&((&ve->context)->inflight ); membar_datadep_consumer(); __tmp; })); (typeof(({ typeof(( &ve->context)->inflight) __tmp = *(volatile typeof( (&ve->context)->inflight) *)&((&ve->context )->inflight); membar_datadep_consumer(); __tmp; })))(__v & -(1UL << (3))); }); | |||
| 1020 | if (inflight && inflight != engine) | |||
| 1021 | return false0; | |||
| 1022 | ||||
| 1023 | return true1; | |||
| 1024 | } | |||
| 1025 | ||||
| 1026 | static struct virtual_engine * | |||
| 1027 | first_virtual_engine(struct intel_engine_cs *engine) | |||
| 1028 | { | |||
| 1029 | struct intel_engine_execlists *el = &engine->execlists; | |||
| 1030 | struct rb_node *rb = rb_first_cached(&el->virtual)linux_root_RB_MINMAX((struct linux_root *)(&(&el-> virtual)->rb_root), -1); | |||
| 1031 | ||||
| 1032 | while (rb) { | |||
| 1033 | struct virtual_engine *ve = | |||
| 1034 | rb_entry(rb, typeof(*ve), nodes[engine->id].rb)({ const __typeof( ((typeof(*ve) *)0)->nodes[engine->id ].rb ) *__mptr = (rb); (typeof(*ve) *)( (char *)__mptr - __builtin_offsetof (typeof(*ve), nodes[engine->id].rb) );}); | |||
| 1035 | struct i915_request *rq = READ_ONCE(ve->request)({ typeof(ve->request) __tmp = *(volatile typeof(ve->request ) *)&(ve->request); membar_datadep_consumer(); __tmp; } ); | |||
| 1036 | ||||
| 1037 | /* lazily cleanup after another engine handled rq */ | |||
| 1038 | if (!rq || !virtual_matches(ve, rq, engine)) { | |||
| 1039 | rb_erase_cached(rb, &el->virtual)linux_root_RB_REMOVE((struct linux_root *)(&(&el-> virtual)->rb_root), (rb)); | |||
| 1040 | RB_CLEAR_NODE(rb)(((rb))->__entry.rbe_parent = (rb)); | |||
| 1041 | rb = rb_first_cached(&el->virtual)linux_root_RB_MINMAX((struct linux_root *)(&(&el-> virtual)->rb_root), -1); | |||
| 1042 | continue; | |||
| 1043 | } | |||
| 1044 | ||||
| 1045 | return ve; | |||
| 1046 | } | |||
| 1047 | ||||
| 1048 | return NULL((void *)0); | |||
| 1049 | } | |||
| 1050 | ||||
| 1051 | static void virtual_xfer_context(struct virtual_engine *ve, | |||
| 1052 | struct intel_engine_cs *engine) | |||
| 1053 | { | |||
| 1054 | unsigned int n; | |||
| 1055 | ||||
| 1056 | if (likely(engine == ve->siblings[0])__builtin_expect(!!(engine == ve->siblings[0]), 1)) | |||
| 1057 | return; | |||
| 1058 | ||||
| 1059 | GEM_BUG_ON(READ_ONCE(ve->context.inflight))((void)0); | |||
| 1060 | if (!intel_engine_has_relative_mmio(engine)) | |||
| 1061 | lrc_update_offsets(&ve->context, engine); | |||
| 1062 | ||||
| 1063 | /* | |||
| 1064 | * Move the bound engine to the top of the list for | |||
| 1065 | * future execution. We then kick this tasklet first | |||
| 1066 | * before checking others, so that we preferentially | |||
| 1067 | * reuse this set of bound registers. | |||
| 1068 | */ | |||
| 1069 | for (n = 1; n < ve->num_siblings; n++) { | |||
| 1070 | if (ve->siblings[n] == engine) { | |||
| 1071 | swap(ve->siblings[n], ve->siblings[0])do { __typeof(ve->siblings[n]) __tmp = (ve->siblings[n] ); (ve->siblings[n]) = (ve->siblings[0]); (ve->siblings [0]) = __tmp; } while(0); | |||
| 1072 | break; | |||
| 1073 | } | |||
| 1074 | } | |||
| 1075 | } | |||
| 1076 | ||||
| 1077 | static void defer_request(struct i915_request *rq, struct list_head * const pl) | |||
| 1078 | { | |||
| 1079 | DRM_LIST_HEAD(list)struct list_head list = { &(list), &(list) }; | |||
| 1080 | ||||
| 1081 | /* | |||
| 1082 | * We want to move the interrupted request to the back of | |||
| 1083 | * the round-robin list (i.e. its priority level), but | |||
| 1084 | * in doing so, we must then move all requests that were in | |||
| 1085 | * flight and were waiting for the interrupted request to | |||
| 1086 | * be run after it again. | |||
| 1087 | */ | |||
| 1088 | do { | |||
| 1089 | struct i915_dependency *p; | |||
| 1090 | ||||
| 1091 | GEM_BUG_ON(i915_request_is_active(rq))((void)0); | |||
| 1092 | list_move_tail(&rq->sched.link, pl); | |||
| 1093 | ||||
| 1094 | for_each_waiter(p, rq)for (p = ({ const __typeof( ((__typeof(*p) *)0)->wait_link ) *__mptr = ((&(rq)->sched.waiters_list)->next); ( __typeof(*p) *)( (char *)__mptr - __builtin_offsetof(__typeof (*p), wait_link) );}); &p->wait_link != (&(rq)-> sched.waiters_list); p = ({ const __typeof( ((__typeof(*p) *) 0)->wait_link ) *__mptr = (p->wait_link.next); (__typeof (*p) *)( (char *)__mptr - __builtin_offsetof(__typeof(*p), wait_link ) );})) { | |||
| 1095 | struct i915_request *w = | |||
| 1096 | container_of(p->waiter, typeof(*w), sched)({ const __typeof( ((typeof(*w) *)0)->sched ) *__mptr = (p ->waiter); (typeof(*w) *)( (char *)__mptr - __builtin_offsetof (typeof(*w), sched) );}); | |||
| 1097 | ||||
| 1098 | if (p->flags & I915_DEPENDENCY_WEAK(1UL << (2))) | |||
| 1099 | continue; | |||
| 1100 | ||||
| 1101 | /* Leave semaphores spinning on the other engines */ | |||
| 1102 | if (w->engine != rq->engine) | |||
| 1103 | continue; | |||
| 1104 | ||||
| 1105 | /* No waiter should start before its signaler */ | |||
| 1106 | GEM_BUG_ON(i915_request_has_initial_breadcrumb(w) &&((void)0) | |||
| 1107 | __i915_request_has_started(w) &&((void)0) | |||
| 1108 | !__i915_request_is_complete(rq))((void)0); | |||
| 1109 | ||||
| 1110 | if (!i915_request_is_ready(w)) | |||
| 1111 | continue; | |||
| 1112 | ||||
| 1113 | if (rq_prio(w) < rq_prio(rq)) | |||
| 1114 | continue; | |||
| 1115 | ||||
| 1116 | GEM_BUG_ON(rq_prio(w) > rq_prio(rq))((void)0); | |||
| 1117 | GEM_BUG_ON(i915_request_is_active(w))((void)0); | |||
| 1118 | list_move_tail(&w->sched.link, &list); | |||
| 1119 | } | |||
| 1120 | ||||
| 1121 | rq = list_first_entry_or_null(&list, typeof(*rq), sched.link)(list_empty(&list) ? ((void *)0) : ({ const __typeof( ((typeof (*rq) *)0)->sched.link ) *__mptr = ((&list)->next); (typeof(*rq) *)( (char *)__mptr - __builtin_offsetof(typeof( *rq), sched.link) );})); | |||
| 1122 | } while (rq); | |||
| 1123 | } | |||
| 1124 | ||||
| 1125 | static void defer_active(struct intel_engine_cs *engine) | |||
| 1126 | { | |||
| 1127 | struct i915_request *rq; | |||
| 1128 | ||||
| 1129 | rq = __unwind_incomplete_requests(engine); | |||
| 1130 | if (!rq) | |||
| 1131 | return; | |||
| 1132 | ||||
| 1133 | defer_request(rq, i915_sched_lookup_priolist(engine->sched_engine, | |||
| 1134 | rq_prio(rq))); | |||
| 1135 | } | |||
| 1136 | ||||
| 1137 | static bool_Bool | |||
| 1138 | timeslice_yield(const struct intel_engine_execlists *el, | |||
| 1139 | const struct i915_request *rq) | |||
| 1140 | { | |||
| 1141 | /* | |||
| 1142 | * Once bitten, forever smitten! | |||
| 1143 | * | |||
| 1144 | * If the active context ever busy-waited on a semaphore, | |||
| 1145 | * it will be treated as a hog until the end of its timeslice (i.e. | |||
| 1146 | * until it is scheduled out and replaced by a new submission, | |||
| 1147 | * possibly even its own lite-restore). The HW only sends an interrupt | |||
| 1148 | * on the first miss, and we do know if that semaphore has been | |||
| 1149 | * signaled, or even if it is now stuck on another semaphore. Play | |||
| 1150 | * safe, yield if it might be stuck -- it will be given a fresh | |||
| 1151 | * timeslice in the near future. | |||
| 1152 | */ | |||
| 1153 | return rq->context->lrc.ccid == READ_ONCE(el->yield)({ typeof(el->yield) __tmp = *(volatile typeof(el->yield ) *)&(el->yield); membar_datadep_consumer(); __tmp; }); | |||
| 1154 | } | |||
| 1155 | ||||
| 1156 | static bool_Bool needs_timeslice(const struct intel_engine_cs *engine, | |||
| 1157 | const struct i915_request *rq) | |||
| 1158 | { | |||
| 1159 | if (!intel_engine_has_timeslices(engine)) | |||
| 1160 | return false0; | |||
| 1161 | ||||
| 1162 | /* If not currently active, or about to switch, wait for next event */ | |||
| 1163 | if (!rq || __i915_request_is_complete(rq)) | |||
| 1164 | return false0; | |||
| 1165 | ||||
| 1166 | /* We do not need to start the timeslice until after the ACK */ | |||
| 1167 | if (READ_ONCE(engine->execlists.pending[0])({ typeof(engine->execlists.pending[0]) __tmp = *(volatile typeof(engine->execlists.pending[0]) *)&(engine->execlists .pending[0]); membar_datadep_consumer(); __tmp; })) | |||
| 1168 | return false0; | |||
| 1169 | ||||
| 1170 | /* If ELSP[1] is occupied, always check to see if worth slicing */ | |||
| 1171 | if (!list_is_last_rcu(&rq->sched.link, | |||
| 1172 | &engine->sched_engine->requests)) { | |||
| 1173 | ENGINE_TRACE(engine, "timeslice required for second inflight context\n")do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0); | |||
| 1174 | return true1; | |||
| 1175 | } | |||
| 1176 | ||||
| 1177 | /* Otherwise, ELSP[0] is by itself, but may be waiting in the queue */ | |||
| 1178 | if (!i915_sched_engine_is_empty(engine->sched_engine)) { | |||
| 1179 | ENGINE_TRACE(engine, "timeslice required for queue\n")do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0); | |||
| 1180 | return true1; | |||
| 1181 | } | |||
| 1182 | ||||
| 1183 | if (!RB_EMPTY_ROOT(&engine->execlists.virtual.rb_root)((&engine->execlists.virtual.rb_root)->rb_node == ( (void *)0))) { | |||
| 1184 | ENGINE_TRACE(engine, "timeslice required for virtual\n")do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0); | |||
| 1185 | return true1; | |||
| 1186 | } | |||
| 1187 | ||||
| 1188 | return false0; | |||
| 1189 | } | |||
| 1190 | ||||
| 1191 | static bool_Bool | |||
| 1192 | timeslice_expired(struct intel_engine_cs *engine, const struct i915_request *rq) | |||
| 1193 | { | |||
| 1194 | const struct intel_engine_execlists *el = &engine->execlists; | |||
| 1195 | ||||
| 1196 | if (i915_request_has_nopreempt(rq) && __i915_request_has_started(rq)) | |||
| 1197 | return false0; | |||
| 1198 | ||||
| 1199 | if (!needs_timeslice(engine, rq)) | |||
| 1200 | return false0; | |||
| 1201 | ||||
| 1202 | return timer_expired(&el->timer) || timeslice_yield(el, rq); | |||
| 1203 | } | |||
| 1204 | ||||
| 1205 | static unsigned long timeslice(const struct intel_engine_cs *engine) | |||
| 1206 | { | |||
| 1207 | return READ_ONCE(engine->props.timeslice_duration_ms)({ typeof(engine->props.timeslice_duration_ms) __tmp = *(volatile typeof(engine->props.timeslice_duration_ms) *)&(engine ->props.timeslice_duration_ms); membar_datadep_consumer(); __tmp; }); | |||
| 1208 | } | |||
| 1209 | ||||
| 1210 | static void start_timeslice(struct intel_engine_cs *engine) | |||
| 1211 | { | |||
| 1212 | struct intel_engine_execlists *el = &engine->execlists; | |||
| 1213 | unsigned long duration; | |||
| 1214 | ||||
| 1215 | /* Disable the timer if there is nothing to switch to */ | |||
| 1216 | duration = 0; | |||
| 1217 | if (needs_timeslice(engine, *el->active)) { | |||
| 1218 | /* Avoid continually prolonging an active timeslice */ | |||
| 1219 | if (timer_active(&el->timer)) { | |||
| 1220 | /* | |||
| 1221 | * If we just submitted a new ELSP after an old | |||
| 1222 | * context, that context may have already consumed | |||
| 1223 | * its timeslice, so recheck. | |||
| 1224 | */ | |||
| 1225 | if (!timer_pending(&el->timer)(((&el->timer))->to_flags & 0x02)) | |||
| 1226 | tasklet_hi_schedule(&engine->sched_engine->tasklet); | |||
| 1227 | return; | |||
| 1228 | } | |||
| 1229 | ||||
| 1230 | duration = timeslice(engine); | |||
| 1231 | } | |||
| 1232 | ||||
| 1233 | set_timer_ms(&el->timer, duration); | |||
| 1234 | } | |||
| 1235 | ||||
| 1236 | static void record_preemption(struct intel_engine_execlists *execlists) | |||
| 1237 | { | |||
| 1238 | (void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++)0; | |||
| 1239 | } | |||
| 1240 | ||||
| 1241 | static unsigned long active_preempt_timeout(struct intel_engine_cs *engine, | |||
| 1242 | const struct i915_request *rq) | |||
| 1243 | { | |||
| 1244 | if (!rq) | |||
| 1245 | return 0; | |||
| 1246 | ||||
| 1247 | /* Only allow ourselves to force reset the currently active context */ | |||
| 1248 | engine->execlists.preempt_target = rq; | |||
| 1249 | ||||
| 1250 | /* Force a fast reset for terminated contexts (ignoring sysfs!) */ | |||
| 1251 | if (unlikely(intel_context_is_banned(rq->context) || bad_request(rq))__builtin_expect(!!(intel_context_is_banned(rq->context) || bad_request(rq)), 0)) | |||
| 1252 | return INTEL_CONTEXT_BANNED_PREEMPT_TIMEOUT_MS(1); | |||
| 1253 | ||||
| 1254 | return READ_ONCE(engine->props.preempt_timeout_ms)({ typeof(engine->props.preempt_timeout_ms) __tmp = *(volatile typeof(engine->props.preempt_timeout_ms) *)&(engine-> props.preempt_timeout_ms); membar_datadep_consumer(); __tmp; } ); | |||
| 1255 | } | |||
| 1256 | ||||
| 1257 | static void set_preempt_timeout(struct intel_engine_cs *engine, | |||
| 1258 | const struct i915_request *rq) | |||
| 1259 | { | |||
| 1260 | if (!intel_engine_has_preempt_reset(engine)) | |||
| 1261 | return; | |||
| 1262 | ||||
| 1263 | set_timer_ms(&engine->execlists.preempt, | |||
| 1264 | active_preempt_timeout(engine, rq)); | |||
| 1265 | } | |||
| 1266 | ||||
| 1267 | static bool_Bool completed(const struct i915_request *rq) | |||
| 1268 | { | |||
| 1269 | if (i915_request_has_sentinel(rq)) | |||
| 1270 | return false0; | |||
| 1271 | ||||
| 1272 | return __i915_request_is_complete(rq); | |||
| 1273 | } | |||
| 1274 | ||||
| 1275 | static void execlists_dequeue(struct intel_engine_cs *engine) | |||
| 1276 | { | |||
| 1277 | struct intel_engine_execlists * const execlists = &engine->execlists; | |||
| 1278 | struct i915_sched_engine * const sched_engine = engine->sched_engine; | |||
| 1279 | struct i915_request **port = execlists->pending; | |||
| 1280 | struct i915_request ** const last_port = port + execlists->port_mask; | |||
| 1281 | struct i915_request *last, * const *active; | |||
| 1282 | struct virtual_engine *ve; | |||
| 1283 | struct rb_node *rb; | |||
| 1284 | bool_Bool submit = false0; | |||
| 1285 | ||||
| 1286 | /* | |||
| 1287 | * Hardware submission is through 2 ports. Conceptually each port | |||
| 1288 | * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is | |||
| 1289 | * static for a context, and unique to each, so we only execute | |||
| 1290 | * requests belonging to a single context from each ring. RING_HEAD | |||
| 1291 | * is maintained by the CS in the context image, it marks the place | |||
| 1292 | * where it got up to last time, and through RING_TAIL we tell the CS | |||
| 1293 | * where we want to execute up to this time. | |||
| 1294 | * | |||
| 1295 | * In this list the requests are in order of execution. Consecutive | |||
| 1296 | * requests from the same context are adjacent in the ringbuffer. We | |||
| 1297 | * can combine these requests into a single RING_TAIL update: | |||
| 1298 | * | |||
| 1299 | * RING_HEAD...req1...req2 | |||
| 1300 | * ^- RING_TAIL | |||
| 1301 | * since to execute req2 the CS must first execute req1. | |||
| 1302 | * | |||
| 1303 | * Our goal then is to point each port to the end of a consecutive | |||
| 1304 | * sequence of requests as being the most optimal (fewest wake ups | |||
| 1305 | * and context switches) submission. | |||
| 1306 | */ | |||
| 1307 | ||||
| 1308 | spin_lock(&sched_engine->lock)mtx_enter(&sched_engine->lock); | |||
| 1309 | ||||
| 1310 | /* | |||
| 1311 | * If the queue is higher priority than the last | |||
| 1312 | * request in the currently active context, submit afresh. | |||
| 1313 | * We will resubmit again afterwards in case we need to split | |||
| 1314 | * the active context to interject the preemption request, | |||
| 1315 | * i.e. we will retrigger preemption following the ack in case | |||
| 1316 | * of trouble. | |||
| 1317 | * | |||
| 1318 | */ | |||
| 1319 | active = execlists->active; | |||
| 1320 | while ((last = *active) && completed(last)) | |||
| 1321 | active++; | |||
| 1322 | ||||
| 1323 | if (last) { | |||
| 1324 | if (need_preempt(engine, last)) { | |||
| 1325 | ENGINE_TRACE(engine,do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 1326 | "preempting last=%llx:%lld, prio=%d, hint=%d\n",do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 1327 | last->fence.context,do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 1328 | last->fence.seqno,do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 1329 | last->sched.attr.priority,do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 1330 | sched_engine->queue_priority_hint)do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0); | |||
| 1331 | record_preemption(execlists); | |||
| 1332 | ||||
| 1333 | /* | |||
| 1334 | * Don't let the RING_HEAD advance past the breadcrumb | |||
| 1335 | * as we unwind (and until we resubmit) so that we do | |||
| 1336 | * not accidentally tell it to go backwards. | |||
| 1337 | */ | |||
| 1338 | ring_set_paused(engine, 1); | |||
| 1339 | ||||
| 1340 | /* | |||
| 1341 | * Note that we have not stopped the GPU at this point, | |||
| 1342 | * so we are unwinding the incomplete requests as they | |||
| 1343 | * remain inflight and so by the time we do complete | |||
| 1344 | * the preemption, some of the unwound requests may | |||
| 1345 | * complete! | |||
| 1346 | */ | |||
| 1347 | __unwind_incomplete_requests(engine); | |||
| 1348 | ||||
| 1349 | last = NULL((void *)0); | |||
| 1350 | } else if (timeslice_expired(engine, last)) { | |||
| 1351 | ENGINE_TRACE(engine,do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 1352 | "expired:%s last=%llx:%lld, prio=%d, hint=%d, yield?=%s\n",do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 1353 | str_yes_no(timer_expired(&execlists->timer)),do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 1354 | last->fence.context, last->fence.seqno,do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 1355 | rq_prio(last),do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 1356 | sched_engine->queue_priority_hint,do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 1357 | str_yes_no(timeslice_yield(execlists, last)))do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0); | |||
| 1358 | ||||
| 1359 | /* | |||
| 1360 | * Consume this timeslice; ensure we start a new one. | |||
| 1361 | * | |||
| 1362 | * The timeslice expired, and we will unwind the | |||
| 1363 | * running contexts and recompute the next ELSP. | |||
| 1364 | * If that submit will be the same pair of contexts | |||
| 1365 | * (due to dependency ordering), we will skip the | |||
| 1366 | * submission. If we don't cancel the timer now, | |||
| 1367 | * we will see that the timer has expired and | |||
| 1368 | * reschedule the tasklet; continually until the | |||
| 1369 | * next context switch or other preemption event. | |||
| 1370 | * | |||
| 1371 | * Since we have decided to reschedule based on | |||
| 1372 | * consumption of this timeslice, if we submit the | |||
| 1373 | * same context again, grant it a full timeslice. | |||
| 1374 | */ | |||
| 1375 | cancel_timer(&execlists->timer); | |||
| 1376 | ring_set_paused(engine, 1); | |||
| 1377 | defer_active(engine); | |||
| 1378 | ||||
| 1379 | /* | |||
| 1380 | * Unlike for preemption, if we rewind and continue | |||
| 1381 | * executing the same context as previously active, | |||
| 1382 | * the order of execution will remain the same and | |||
| 1383 | * the tail will only advance. We do not need to | |||
| 1384 | * force a full context restore, as a lite-restore | |||
| 1385 | * is sufficient to resample the monotonic TAIL. | |||
| 1386 | * | |||
| 1387 | * If we switch to any other context, similarly we | |||
| 1388 | * will not rewind TAIL of current context, and | |||
| 1389 | * normal save/restore will preserve state and allow | |||
| 1390 | * us to later continue executing the same request. | |||
| 1391 | */ | |||
| 1392 | last = NULL((void *)0); | |||
| 1393 | } else { | |||
| 1394 | /* | |||
| 1395 | * Otherwise if we already have a request pending | |||
| 1396 | * for execution after the current one, we can | |||
| 1397 | * just wait until the next CS event before | |||
| 1398 | * queuing more. In either case we will force a | |||
| 1399 | * lite-restore preemption event, but if we wait | |||
| 1400 | * we hopefully coalesce several updates into a single | |||
| 1401 | * submission. | |||
| 1402 | */ | |||
| 1403 | if (active[1]) { | |||
| 1404 | /* | |||
| 1405 | * Even if ELSP[1] is occupied and not worthy | |||
| 1406 | * of timeslices, our queue might be. | |||
| 1407 | */ | |||
| 1408 | spin_unlock(&sched_engine->lock)mtx_leave(&sched_engine->lock); | |||
| 1409 | return; | |||
| 1410 | } | |||
| 1411 | } | |||
| 1412 | } | |||
| 1413 | ||||
| 1414 | /* XXX virtual is always taking precedence */ | |||
| 1415 | while ((ve = first_virtual_engine(engine))) { | |||
| 1416 | struct i915_request *rq; | |||
| 1417 | ||||
| 1418 | spin_lock(&ve->base.sched_engine->lock)mtx_enter(&ve->base.sched_engine->lock); | |||
| 1419 | ||||
| 1420 | rq = ve->request; | |||
| 1421 | if (unlikely(!virtual_matches(ve, rq, engine))__builtin_expect(!!(!virtual_matches(ve, rq, engine)), 0)) | |||
| 1422 | goto unlock; /* lost the race to a sibling */ | |||
| 1423 | ||||
| 1424 | GEM_BUG_ON(rq->engine != &ve->base)((void)0); | |||
| 1425 | GEM_BUG_ON(rq->context != &ve->context)((void)0); | |||
| 1426 | ||||
| 1427 | if (unlikely(rq_prio(rq) < queue_prio(sched_engine))__builtin_expect(!!(rq_prio(rq) < queue_prio(sched_engine) ), 0)) { | |||
| 1428 | spin_unlock(&ve->base.sched_engine->lock)mtx_leave(&ve->base.sched_engine->lock); | |||
| 1429 | break; | |||
| 1430 | } | |||
| 1431 | ||||
| 1432 | if (last && !can_merge_rq(last, rq)) { | |||
| 1433 | spin_unlock(&ve->base.sched_engine->lock)mtx_leave(&ve->base.sched_engine->lock); | |||
| 1434 | spin_unlock(&engine->sched_engine->lock)mtx_leave(&engine->sched_engine->lock); | |||
| 1435 | return; /* leave this for another sibling */ | |||
| 1436 | } | |||
| 1437 | ||||
| 1438 | ENGINE_TRACE(engine,do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 1439 | "virtual rq=%llx:%lld%s, new engine? %s\n",do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 1440 | rq->fence.context,do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 1441 | rq->fence.seqno,do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 1442 | __i915_request_is_complete(rq) ? "!" :do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 1443 | __i915_request_has_started(rq) ? "*" :do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 1444 | "",do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 1445 | str_yes_no(engine != ve->siblings[0]))do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0); | |||
| 1446 | ||||
| 1447 | WRITE_ONCE(ve->request, NULL)({ typeof(ve->request) __tmp = (((void *)0)); *(volatile typeof (ve->request) *)&(ve->request) = __tmp; __tmp; }); | |||
| 1448 | WRITE_ONCE(ve->base.sched_engine->queue_priority_hint, INT_MIN)({ typeof(ve->base.sched_engine->queue_priority_hint) __tmp = ((-0x7fffffff-1)); *(volatile typeof(ve->base.sched_engine ->queue_priority_hint) *)&(ve->base.sched_engine-> queue_priority_hint) = __tmp; __tmp; }); | |||
| 1449 | ||||
| 1450 | rb = &ve->nodes[engine->id].rb; | |||
| 1451 | rb_erase_cached(rb, &execlists->virtual)linux_root_RB_REMOVE((struct linux_root *)(&(&execlists ->virtual)->rb_root), (rb)); | |||
| 1452 | RB_CLEAR_NODE(rb)(((rb))->__entry.rbe_parent = (rb)); | |||
| 1453 | ||||
| 1454 | GEM_BUG_ON(!(rq->execution_mask & engine->mask))((void)0); | |||
| 1455 | WRITE_ONCE(rq->engine, engine)({ typeof(rq->engine) __tmp = (engine); *(volatile typeof( rq->engine) *)&(rq->engine) = __tmp; __tmp; }); | |||
| 1456 | ||||
| 1457 | if (__i915_request_submit(rq)) { | |||
| 1458 | /* | |||
| 1459 | * Only after we confirm that we will submit | |||
| 1460 | * this request (i.e. it has not already | |||
| 1461 | * completed), do we want to update the context. | |||
| 1462 | * | |||
| 1463 | * This serves two purposes. It avoids | |||
| 1464 | * unnecessary work if we are resubmitting an | |||
| 1465 | * already completed request after timeslicing. | |||
| 1466 | * But more importantly, it prevents us altering | |||
| 1467 | * ve->siblings[] on an idle context, where | |||
| 1468 | * we may be using ve->siblings[] in | |||
| 1469 | * virtual_context_enter / virtual_context_exit. | |||
| 1470 | */ | |||
| 1471 | virtual_xfer_context(ve, engine); | |||
| 1472 | GEM_BUG_ON(ve->siblings[0] != engine)((void)0); | |||
| 1473 | ||||
| 1474 | submit = true1; | |||
| 1475 | last = rq; | |||
| 1476 | } | |||
| 1477 | ||||
| 1478 | i915_request_put(rq); | |||
| 1479 | unlock: | |||
| 1480 | spin_unlock(&ve->base.sched_engine->lock)mtx_leave(&ve->base.sched_engine->lock); | |||
| 1481 | ||||
| 1482 | /* | |||
| 1483 | * Hmm, we have a bunch of virtual engine requests, | |||
| 1484 | * but the first one was already completed (thanks | |||
| 1485 | * preempt-to-busy!). Keep looking at the veng queue | |||
| 1486 | * until we have no more relevant requests (i.e. | |||
| 1487 | * the normal submit queue has higher priority). | |||
| 1488 | */ | |||
| 1489 | if (submit) | |||
| 1490 | break; | |||
| 1491 | } | |||
| 1492 | ||||
| 1493 | while ((rb = rb_first_cached(&sched_engine->queue)linux_root_RB_MINMAX((struct linux_root *)(&(&sched_engine ->queue)->rb_root), -1))) { | |||
| 1494 | struct i915_priolist *p = to_priolist(rb); | |||
| 1495 | struct i915_request *rq, *rn; | |||
| 1496 | ||||
| 1497 | priolist_for_each_request_consume(rq, rn, p)for (rq = ({ const __typeof( ((__typeof(*rq) *)0)->sched.link ) *__mptr = ((&(p)->requests)->next); (__typeof(*rq ) *)( (char *)__mptr - __builtin_offsetof(__typeof(*rq), sched .link) );}), rn = ({ const __typeof( ((__typeof(*rq) *)0)-> sched.link ) *__mptr = (rq->sched.link.next); (__typeof(*rq ) *)( (char *)__mptr - __builtin_offsetof(__typeof(*rq), sched .link) );}); &rq->sched.link != (&(p)->requests ); rq = rn, rn = ({ const __typeof( ((__typeof(*rn) *)0)-> sched.link ) *__mptr = (rn->sched.link.next); (__typeof(*rn ) *)( (char *)__mptr - __builtin_offsetof(__typeof(*rn), sched .link) );})) { | |||
| 1498 | bool_Bool merge = true1; | |||
| 1499 | ||||
| 1500 | /* | |||
| 1501 | * Can we combine this request with the current port? | |||
| 1502 | * It has to be the same context/ringbuffer and not | |||
| 1503 | * have any exceptions (e.g. GVT saying never to | |||
| 1504 | * combine contexts). | |||
| 1505 | * | |||
| 1506 | * If we can combine the requests, we can execute both | |||
| 1507 | * by updating the RING_TAIL to point to the end of the | |||
| 1508 | * second request, and so we never need to tell the | |||
| 1509 | * hardware about the first. | |||
| 1510 | */ | |||
| 1511 | if (last && !can_merge_rq(last, rq)) { | |||
| 1512 | /* | |||
| 1513 | * If we are on the second port and cannot | |||
| 1514 | * combine this request with the last, then we | |||
| 1515 | * are done. | |||
| 1516 | */ | |||
| 1517 | if (port == last_port) | |||
| 1518 | goto done; | |||
| 1519 | ||||
| 1520 | /* | |||
| 1521 | * We must not populate both ELSP[] with the | |||
| 1522 | * same LRCA, i.e. we must submit 2 different | |||
| 1523 | * contexts if we submit 2 ELSP. | |||
| 1524 | */ | |||
| 1525 | if (last->context == rq->context) | |||
| 1526 | goto done; | |||
| 1527 | ||||
| 1528 | if (i915_request_has_sentinel(last)) | |||
| 1529 | goto done; | |||
| 1530 | ||||
| 1531 | /* | |||
| 1532 | * We avoid submitting virtual requests into | |||
| 1533 | * the secondary ports so that we can migrate | |||
| 1534 | * the request immediately to another engine | |||
| 1535 | * rather than wait for the primary request. | |||
| 1536 | */ | |||
| 1537 | if (rq->execution_mask != engine->mask) | |||
| 1538 | goto done; | |||
| 1539 | ||||
| 1540 | /* | |||
| 1541 | * If GVT overrides us we only ever submit | |||
| 1542 | * port[0], leaving port[1] empty. Note that we | |||
| 1543 | * also have to be careful that we don't queue | |||
| 1544 | * the same context (even though a different | |||
| 1545 | * request) to the second port. | |||
| 1546 | */ | |||
| 1547 | if (ctx_single_port_submission(last->context) || | |||
| 1548 | ctx_single_port_submission(rq->context)) | |||
| 1549 | goto done; | |||
| 1550 | ||||
| 1551 | merge = false0; | |||
| 1552 | } | |||
| 1553 | ||||
| 1554 | if (__i915_request_submit(rq)) { | |||
| 1555 | if (!merge) { | |||
| 1556 | *port++ = i915_request_get(last); | |||
| 1557 | last = NULL((void *)0); | |||
| 1558 | } | |||
| 1559 | ||||
| 1560 | GEM_BUG_ON(last &&((void)0) | |||
| 1561 | !can_merge_ctx(last->context,((void)0) | |||
| 1562 | rq->context))((void)0); | |||
| 1563 | GEM_BUG_ON(last &&((void)0) | |||
| 1564 | i915_seqno_passed(last->fence.seqno,((void)0) | |||
| 1565 | rq->fence.seqno))((void)0); | |||
| 1566 | ||||
| 1567 | submit = true1; | |||
| 1568 | last = rq; | |||
| 1569 | } | |||
| 1570 | } | |||
| 1571 | ||||
| 1572 | rb_erase_cached(&p->node, &sched_engine->queue)linux_root_RB_REMOVE((struct linux_root *)(&(&sched_engine ->queue)->rb_root), (&p->node)); | |||
| 1573 | i915_priolist_free(p); | |||
| 1574 | } | |||
| 1575 | done: | |||
| 1576 | *port++ = i915_request_get(last); | |||
| 1577 | ||||
| 1578 | /* | |||
| 1579 | * Here be a bit of magic! Or sleight-of-hand, whichever you prefer. | |||
| 1580 | * | |||
| 1581 | * We choose the priority hint such that if we add a request of greater | |||
| 1582 | * priority than this, we kick the submission tasklet to decide on | |||
| 1583 | * the right order of submitting the requests to hardware. We must | |||
| 1584 | * also be prepared to reorder requests as they are in-flight on the | |||
| 1585 | * HW. We derive the priority hint then as the first "hole" in | |||
| 1586 | * the HW submission ports and if there are no available slots, | |||
| 1587 | * the priority of the lowest executing request, i.e. last. | |||
| 1588 | * | |||
| 1589 | * When we do receive a higher priority request ready to run from the | |||
| 1590 | * user, see queue_request(), the priority hint is bumped to that | |||
| 1591 | * request triggering preemption on the next dequeue (or subsequent | |||
| 1592 | * interrupt for secondary ports). | |||
| 1593 | */ | |||
| 1594 | sched_engine->queue_priority_hint = queue_prio(sched_engine); | |||
| 1595 | i915_sched_engine_reset_on_empty(sched_engine); | |||
| 1596 | spin_unlock(&sched_engine->lock)mtx_leave(&sched_engine->lock); | |||
| 1597 | ||||
| 1598 | /* | |||
| 1599 | * We can skip poking the HW if we ended up with exactly the same set | |||
| 1600 | * of requests as currently running, e.g. trying to timeslice a pair | |||
| 1601 | * of ordered contexts. | |||
| 1602 | */ | |||
| 1603 | if (submit && | |||
| 1604 | memcmp(active,__builtin_memcmp((active), (execlists->pending), ((port - execlists ->pending) * sizeof(*port))) | |||
| 1605 | execlists->pending,__builtin_memcmp((active), (execlists->pending), ((port - execlists ->pending) * sizeof(*port))) | |||
| 1606 | (port - execlists->pending) * sizeof(*port))__builtin_memcmp((active), (execlists->pending), ((port - execlists ->pending) * sizeof(*port)))) { | |||
| 1607 | *port = NULL((void *)0); | |||
| 1608 | while (port-- != execlists->pending) | |||
| 1609 | execlists_schedule_in(*port, port - execlists->pending); | |||
| 1610 | ||||
| 1611 | WRITE_ONCE(execlists->yield, -1)({ typeof(execlists->yield) __tmp = (-1); *(volatile typeof (execlists->yield) *)&(execlists->yield) = __tmp; __tmp ; }); | |||
| 1612 | set_preempt_timeout(engine, *active); | |||
| 1613 | execlists_submit_ports(engine); | |||
| 1614 | } else { | |||
| 1615 | ring_set_paused(engine, 0); | |||
| 1616 | while (port-- != execlists->pending) | |||
| 1617 | i915_request_put(*port); | |||
| 1618 | *execlists->pending = NULL((void *)0); | |||
| 1619 | } | |||
| 1620 | } | |||
| 1621 | ||||
| 1622 | static void execlists_dequeue_irq(struct intel_engine_cs *engine) | |||
| 1623 | { | |||
| 1624 | local_irq_disable()intr_disable(); /* Suspend interrupts across request submission */ | |||
| 1625 | execlists_dequeue(engine); | |||
| 1626 | local_irq_enable()intr_enable(); /* flush irq_work (e.g. breadcrumb enabling) */ | |||
| 1627 | } | |||
| 1628 | ||||
| 1629 | static void clear_ports(struct i915_request **ports, int count) | |||
| 1630 | { | |||
| 1631 | memset_p((void **)ports, NULL((void *)0), count); | |||
| 1632 | } | |||
| 1633 | ||||
| 1634 | static void | |||
| 1635 | copy_ports(struct i915_request **dst, struct i915_request **src, int count) | |||
| 1636 | { | |||
| 1637 | /* A memcpy_p() would be very useful here! */ | |||
| 1638 | while (count--) | |||
| 1639 | WRITE_ONCE(*dst++, *src++)({ typeof(*dst++) __tmp = (*src++); *(volatile typeof(*dst++) *)&(*dst++) = __tmp; __tmp; }); /* avoid write tearing */ | |||
| 1640 | } | |||
| 1641 | ||||
| 1642 | static struct i915_request ** | |||
| 1643 | cancel_port_requests(struct intel_engine_execlists * const execlists, | |||
| 1644 | struct i915_request **inactive) | |||
| 1645 | { | |||
| 1646 | struct i915_request * const *port; | |||
| 1647 | ||||
| 1648 | for (port = execlists->pending; *port; port++) | |||
| 1649 | *inactive++ = *port; | |||
| 1650 | clear_ports(execlists->pending, ARRAY_SIZE(execlists->pending)(sizeof((execlists->pending)) / sizeof((execlists->pending )[0]))); | |||
| 1651 | ||||
| 1652 | /* Mark the end of active before we overwrite *active */ | |||
| 1653 | for (port = xchg(&execlists->active, execlists->pending)__sync_lock_test_and_set(&execlists->active, execlists ->pending); *port; port++) | |||
| 1654 | *inactive++ = *port; | |||
| 1655 | clear_ports(execlists->inflight, ARRAY_SIZE(execlists->inflight)(sizeof((execlists->inflight)) / sizeof((execlists->inflight )[0]))); | |||
| 1656 | ||||
| 1657 | smp_wmb()do { __asm volatile("" ::: "memory"); } while (0); /* complete the seqlock for execlists_active() */ | |||
| 1658 | WRITE_ONCE(execlists->active, execlists->inflight)({ typeof(execlists->active) __tmp = (execlists->inflight ); *(volatile typeof(execlists->active) *)&(execlists-> active) = __tmp; __tmp; }); | |||
| 1659 | ||||
| 1660 | /* Having cancelled all outstanding process_csb(), stop their timers */ | |||
| 1661 | GEM_BUG_ON(execlists->pending[0])((void)0); | |||
| 1662 | cancel_timer(&execlists->timer); | |||
| 1663 | cancel_timer(&execlists->preempt); | |||
| 1664 | ||||
| 1665 | return inactive; | |||
| 1666 | } | |||
| 1667 | ||||
| 1668 | /* | |||
| 1669 | * Starting with Gen12, the status has a new format: | |||
| 1670 | * | |||
| 1671 | * bit 0: switched to new queue | |||
| 1672 | * bit 1: reserved | |||
| 1673 | * bit 2: semaphore wait mode (poll or signal), only valid when | |||
| 1674 | * switch detail is set to "wait on semaphore" | |||
| 1675 | * bits 3-5: engine class | |||
| 1676 | * bits 6-11: engine instance | |||
| 1677 | * bits 12-14: reserved | |||
| 1678 | * bits 15-25: sw context id of the lrc the GT switched to | |||
| 1679 | * bits 26-31: sw counter of the lrc the GT switched to | |||
| 1680 | * bits 32-35: context switch detail | |||
| 1681 | * - 0: ctx complete | |||
| 1682 | * - 1: wait on sync flip | |||
| 1683 | * - 2: wait on vblank | |||
| 1684 | * - 3: wait on scanline | |||
| 1685 | * - 4: wait on semaphore | |||
| 1686 | * - 5: context preempted (not on SEMAPHORE_WAIT or | |||
| 1687 | * WAIT_FOR_EVENT) | |||
| 1688 | * bit 36: reserved | |||
| 1689 | * bits 37-43: wait detail (for switch detail 1 to 4) | |||
| 1690 | * bits 44-46: reserved | |||
| 1691 | * bits 47-57: sw context id of the lrc the GT switched away from | |||
| 1692 | * bits 58-63: sw counter of the lrc the GT switched away from | |||
| 1693 | * | |||
| 1694 | * Xe_HP csb shuffles things around compared to TGL: | |||
| 1695 | * | |||
| 1696 | * bits 0-3: context switch detail (same possible values as TGL) | |||
| 1697 | * bits 4-9: engine instance | |||
| 1698 | * bits 10-25: sw context id of the lrc the GT switched to | |||
| 1699 | * bits 26-31: sw counter of the lrc the GT switched to | |||
| 1700 | * bit 32: semaphore wait mode (poll or signal), Only valid when | |||
| 1701 | * switch detail is set to "wait on semaphore" | |||
| 1702 | * bit 33: switched to new queue | |||
| 1703 | * bits 34-41: wait detail (for switch detail 1 to 4) | |||
| 1704 | * bits 42-57: sw context id of the lrc the GT switched away from | |||
| 1705 | * bits 58-63: sw counter of the lrc the GT switched away from | |||
| 1706 | */ | |||
| 1707 | static inline bool_Bool | |||
| 1708 | __gen12_csb_parse(bool_Bool ctx_to_valid, bool_Bool ctx_away_valid, bool_Bool new_queue, | |||
| 1709 | u8 switch_detail) | |||
| 1710 | { | |||
| 1711 | /* | |||
| 1712 | * The context switch detail is not guaranteed to be 5 when a preemption | |||
| 1713 | * occurs, so we can't just check for that. The check below works for | |||
| 1714 | * all the cases we care about, including preemptions of WAIT | |||
| 1715 | * instructions and lite-restore. Preempt-to-idle via the CTRL register | |||
| 1716 | * would require some extra handling, but we don't support that. | |||
| 1717 | */ | |||
| 1718 | if (!ctx_away_valid || new_queue) { | |||
| 1719 | GEM_BUG_ON(!ctx_to_valid)((void)0); | |||
| 1720 | return true1; | |||
| 1721 | } | |||
| 1722 | ||||
| 1723 | /* | |||
| 1724 | * switch detail = 5 is covered by the case above and we do not expect a | |||
| 1725 | * context switch on an unsuccessful wait instruction since we always | |||
| 1726 | * use polling mode. | |||
| 1727 | */ | |||
| 1728 | GEM_BUG_ON(switch_detail)((void)0); | |||
| 1729 | return false0; | |||
| 1730 | } | |||
| 1731 | ||||
| 1732 | static bool_Bool xehp_csb_parse(const u64 csb) | |||
| 1733 | { | |||
| 1734 | return __gen12_csb_parse(XEHP_CSB_CTX_VALID(lower_32_bits(csb))(((typeof((((~0UL) >> (64 - (31) - 1)) & ((~0UL) << (10)))))(((((u32)(csb))) & ((((~0UL) >> (64 - (31) - 1)) & ((~0UL) << (10))))) >> (__builtin_ffsll ((((~0UL) >> (64 - (31) - 1)) & ((~0UL) << (10 )))) - 1))) != 0xFFFF), /* cxt to */ | |||
| 1735 | XEHP_CSB_CTX_VALID(upper_32_bits(csb))(((typeof((((~0UL) >> (64 - (31) - 1)) & ((~0UL) << (10)))))(((((u32)(((csb) >> 16) >> 16))) & ( (((~0UL) >> (64 - (31) - 1)) & ((~0UL) << (10 ))))) >> (__builtin_ffsll((((~0UL) >> (64 - (31) - 1)) & ((~0UL) << (10)))) - 1))) != 0xFFFF), /* cxt away */ | |||
| 1736 | upper_32_bits(csb)((u32)(((csb) >> 16) >> 16)) & XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE(1UL << (1)), | |||
| 1737 | GEN12_CTX_SWITCH_DETAIL(lower_32_bits(csb))((((u32)(csb))) & 0xF)); | |||
| 1738 | } | |||
| 1739 | ||||
| 1740 | static bool_Bool gen12_csb_parse(const u64 csb) | |||
| 1741 | { | |||
| 1742 | return __gen12_csb_parse(GEN12_CSB_CTX_VALID(lower_32_bits(csb))(((typeof((((~0UL) >> (64 - (25) - 1)) & ((~0UL) << (15)))))(((((u32)(csb))) & ((((~0UL) >> (64 - (25) - 1)) & ((~0UL) << (15))))) >> (__builtin_ffsll ((((~0UL) >> (64 - (25) - 1)) & ((~0UL) << (15 )))) - 1))) != 0x7FF), /* cxt to */ | |||
| 1743 | GEN12_CSB_CTX_VALID(upper_32_bits(csb))(((typeof((((~0UL) >> (64 - (25) - 1)) & ((~0UL) << (15)))))(((((u32)(((csb) >> 16) >> 16))) & ( (((~0UL) >> (64 - (25) - 1)) & ((~0UL) << (15 ))))) >> (__builtin_ffsll((((~0UL) >> (64 - (25) - 1)) & ((~0UL) << (15)))) - 1))) != 0x7FF), /* cxt away */ | |||
| 1744 | lower_32_bits(csb)((u32)(csb)) & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE(0x1), | |||
| 1745 | GEN12_CTX_SWITCH_DETAIL(upper_32_bits(csb))((((u32)(((csb) >> 16) >> 16))) & 0xF)); | |||
| 1746 | } | |||
| 1747 | ||||
| 1748 | static bool_Bool gen8_csb_parse(const u64 csb) | |||
| 1749 | { | |||
| 1750 | return csb & (GEN8_CTX_STATUS_IDLE_ACTIVE(1 << 0) | GEN8_CTX_STATUS_PREEMPTED(1 << 1)); | |||
| 1751 | } | |||
| 1752 | ||||
| 1753 | static noinline__attribute__((__noinline__)) u64 | |||
| 1754 | wa_csb_read(const struct intel_engine_cs *engine, u64 * const csb) | |||
| 1755 | { | |||
| 1756 | u64 entry; | |||
| 1757 | ||||
| 1758 | /* | |||
| 1759 | * Reading from the HWSP has one particular advantage: we can detect | |||
| 1760 | * a stale entry. Since the write into HWSP is broken, we have no reason | |||
| 1761 | * to trust the HW at all, the mmio entry may equally be unordered, so | |||
| 1762 | * we prefer the path that is self-checking and as a last resort, | |||
| 1763 | * return the mmio value. | |||
| 1764 | * | |||
| 1765 | * tgl,dg1:HSDES#22011327657 | |||
| 1766 | */ | |||
| 1767 | preempt_disable(); | |||
| 1768 | if (wait_for_atomic_us((entry = READ_ONCE(*csb)) != -1, 10)({ extern char _ctassert[(!(!__builtin_constant_p(10))) ? 1 : -1 ] __attribute__((__unused__)); extern char _ctassert[(!(( 10) > 50000)) ? 1 : -1 ] __attribute__((__unused__)); ({ int cpu, ret, timeout = ((10)) * 1000; u64 base; do { } while (0 ); if (!(1)) { preempt_disable(); cpu = (({struct cpu_info *__ci ; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof (struct cpu_info, ci_self))); __ci;})->ci_cpuid); } base = local_clock(); for (;;) { u64 now = local_clock(); if (!(1)) preempt_enable(); __asm volatile("" : : : "memory"); if (((entry = ({ typeof(*csb) __tmp = *(volatile typeof(*csb) *)&(*csb ); membar_datadep_consumer(); __tmp; })) != -1)) { ret = 0; break ; } if (now - base >= timeout) { ret = -60; break; } cpu_relax (); if (!(1)) { preempt_disable(); if (__builtin_expect(!!(cpu != (({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self ))); __ci;})->ci_cpuid)), 0)) { timeout -= now - base; cpu = (({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self ))); __ci;})->ci_cpuid); base = local_clock(); } } } ret; } ); })) { | |||
| 1769 | int idx = csb - engine->execlists.csb_status; | |||
| 1770 | int status; | |||
| 1771 | ||||
| 1772 | status = GEN8_EXECLISTS_STATUS_BUF0x370; | |||
| 1773 | if (idx >= 6) { | |||
| 1774 | status = GEN11_EXECLISTS_STATUS_BUF20x3c0; | |||
| 1775 | idx -= 6; | |||
| 1776 | } | |||
| 1777 | status += sizeof(u64) * idx; | |||
| 1778 | ||||
| 1779 | entry = intel_uncore_read64(engine->uncore, | |||
| 1780 | _MMIO(engine->mmio_base + status)((const i915_reg_t){ .reg = (engine->mmio_base + status) } )); | |||
| 1781 | } | |||
| 1782 | preempt_enable(); | |||
| 1783 | ||||
| 1784 | return entry; | |||
| 1785 | } | |||
| 1786 | ||||
| 1787 | static u64 csb_read(const struct intel_engine_cs *engine, u64 * const csb) | |||
| 1788 | { | |||
| 1789 | u64 entry = READ_ONCE(*csb)({ typeof(*csb) __tmp = *(volatile typeof(*csb) *)&(*csb) ; membar_datadep_consumer(); __tmp; }); | |||
| 1790 | ||||
| 1791 | /* | |||
| 1792 | * Unfortunately, the GPU does not always serialise its write | |||
| 1793 | * of the CSB entries before its write of the CSB pointer, at least | |||
| 1794 | * from the perspective of the CPU, using what is known as a Global | |||
| 1795 | * Observation Point. We may read a new CSB tail pointer, but then | |||
| 1796 | * read the stale CSB entries, causing us to misinterpret the | |||
| 1797 | * context-switch events, and eventually declare the GPU hung. | |||
| 1798 | * | |||
| 1799 | * icl:HSDES#1806554093 | |||
| 1800 | * tgl:HSDES#22011248461 | |||
| 1801 | */ | |||
| 1802 | if (unlikely(entry == -1)__builtin_expect(!!(entry == -1), 0)) | |||
| 1803 | entry = wa_csb_read(engine, csb); | |||
| 1804 | ||||
| 1805 | /* Consume this entry so that we can spot its future reuse. */ | |||
| 1806 | WRITE_ONCE(*csb, -1)({ typeof(*csb) __tmp = (-1); *(volatile typeof(*csb) *)& (*csb) = __tmp; __tmp; }); | |||
| 1807 | ||||
| 1808 | /* ELSP is an implicit wmb() before the GPU wraps and overwrites csb */ | |||
| 1809 | return entry; | |||
| 1810 | } | |||
| 1811 | ||||
| 1812 | static void new_timeslice(struct intel_engine_execlists *el) | |||
| 1813 | { | |||
| 1814 | /* By cancelling, we will start afresh in start_timeslice() */ | |||
| 1815 | cancel_timer(&el->timer); | |||
| 1816 | } | |||
| 1817 | ||||
| 1818 | static struct i915_request ** | |||
| 1819 | process_csb(struct intel_engine_cs *engine, struct i915_request **inactive) | |||
| 1820 | { | |||
| 1821 | struct intel_engine_execlists * const execlists = &engine->execlists; | |||
| 1822 | u64 * const buf = execlists->csb_status; | |||
| 1823 | const u8 num_entries = execlists->csb_size; | |||
| 1824 | struct i915_request **prev; | |||
| 1825 | u8 head, tail; | |||
| 1826 | ||||
| 1827 | /* | |||
| 1828 | * As we modify our execlists state tracking we require exclusive | |||
| 1829 | * access. Either we are inside the tasklet, or the tasklet is disabled | |||
| 1830 | * and we assume that is only inside the reset paths and so serialised. | |||
| 1831 | */ | |||
| 1832 | GEM_BUG_ON(!tasklet_is_locked(&engine->sched_engine->tasklet) &&((void)0) | |||
| 1833 | !reset_in_progress(engine))((void)0); | |||
| 1834 | ||||
| 1835 | /* | |||
| 1836 | * Note that csb_write, csb_status may be either in HWSP or mmio. | |||
| 1837 | * When reading from the csb_write mmio register, we have to be | |||
| 1838 | * careful to only use the GEN8_CSB_WRITE_PTR portion, which is | |||
| 1839 | * the low 4bits. As it happens we know the next 4bits are always | |||
| 1840 | * zero and so we can simply masked off the low u8 of the register | |||
| 1841 | * and treat it identically to reading from the HWSP (without having | |||
| 1842 | * to use explicit shifting and masking, and probably bifurcating | |||
| 1843 | * the code to handle the legacy mmio read). | |||
| 1844 | */ | |||
| 1845 | head = execlists->csb_head; | |||
| 1846 | tail = READ_ONCE(*execlists->csb_write)({ typeof(*execlists->csb_write) __tmp = *(volatile typeof (*execlists->csb_write) *)&(*execlists->csb_write); membar_datadep_consumer(); __tmp; }); | |||
| 1847 | if (unlikely(head == tail)__builtin_expect(!!(head == tail), 0)) | |||
| 1848 | return inactive; | |||
| 1849 | ||||
| 1850 | /* | |||
| 1851 | * We will consume all events from HW, or at least pretend to. | |||
| 1852 | * | |||
| 1853 | * The sequence of events from the HW is deterministic, and derived | |||
| 1854 | * from our writes to the ELSP, with a smidgen of variability for | |||
| 1855 | * the arrival of the asynchronous requests wrt to the inflight | |||
| 1856 | * execution. If the HW sends an event that does not correspond with | |||
| 1857 | * the one we are expecting, we have to abandon all hope as we lose | |||
| 1858 | * all tracking of what the engine is actually executing. We will | |||
| 1859 | * only detect we are out of sequence with the HW when we get an | |||
| 1860 | * 'impossible' event because we have already drained our own | |||
| 1861 | * preemption/promotion queue. If this occurs, we know that we likely | |||
| 1862 | * lost track of execution earlier and must unwind and restart, the | |||
| 1863 | * simplest way is by stop processing the event queue and force the | |||
| 1864 | * engine to reset. | |||
| 1865 | */ | |||
| 1866 | execlists->csb_head = tail; | |||
| 1867 | ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail)do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0); | |||
| 1868 | ||||
| 1869 | /* | |||
| 1870 | * Hopefully paired with a wmb() in HW! | |||
| 1871 | * | |||
| 1872 | * We must complete the read of the write pointer before any reads | |||
| 1873 | * from the CSB, so that we do not see stale values. Without an rmb | |||
| 1874 | * (lfence) the HW may speculatively perform the CSB[] reads *before* | |||
| 1875 | * we perform the READ_ONCE(*csb_write). | |||
| 1876 | */ | |||
| 1877 | rmb()do { __asm volatile("lfence" ::: "memory"); } while (0); | |||
| 1878 | ||||
| 1879 | /* Remember who was last running under the timer */ | |||
| 1880 | prev = inactive; | |||
| 1881 | *prev = NULL((void *)0); | |||
| 1882 | ||||
| 1883 | do { | |||
| 1884 | bool_Bool promote; | |||
| 1885 | u64 csb; | |||
| 1886 | ||||
| 1887 | if (++head == num_entries) | |||
| 1888 | head = 0; | |||
| 1889 | ||||
| 1890 | /* | |||
| 1891 | * We are flying near dragons again. | |||
| 1892 | * | |||
| 1893 | * We hold a reference to the request in execlist_port[] | |||
| 1894 | * but no more than that. We are operating in softirq | |||
| 1895 | * context and so cannot hold any mutex or sleep. That | |||
| 1896 | * prevents us stopping the requests we are processing | |||
| 1897 | * in port[] from being retired simultaneously (the | |||
| 1898 | * breadcrumb will be complete before we see the | |||
| 1899 | * context-switch). As we only hold the reference to the | |||
| 1900 | * request, any pointer chasing underneath the request | |||
| 1901 | * is subject to a potential use-after-free. Thus we | |||
| 1902 | * store all of the bookkeeping within port[] as | |||
| 1903 | * required, and avoid using unguarded pointers beneath | |||
| 1904 | * request itself. The same applies to the atomic | |||
| 1905 | * status notifier. | |||
| 1906 | */ | |||
| 1907 | ||||
| 1908 | csb = csb_read(engine, buf + head); | |||
| 1909 | ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n",do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 1910 | head, upper_32_bits(csb), lower_32_bits(csb))do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0); | |||
| 1911 | ||||
| 1912 | if (GRAPHICS_VER_FULL(engine->i915)(((&(engine->i915)->__runtime)->graphics.ip.ver) << 8 | ((&(engine->i915)->__runtime)->graphics .ip.rel)) >= IP_VER(12, 50)((12) << 8 | (50))) | |||
| 1913 | promote = xehp_csb_parse(csb); | |||
| 1914 | else if (GRAPHICS_VER(engine->i915)((&(engine->i915)->__runtime)->graphics.ip.ver) >= 12) | |||
| 1915 | promote = gen12_csb_parse(csb); | |||
| 1916 | else | |||
| 1917 | promote = gen8_csb_parse(csb); | |||
| 1918 | if (promote) { | |||
| 1919 | struct i915_request * const *old = execlists->active; | |||
| 1920 | ||||
| 1921 | if (GEM_WARN_ON(!*execlists->pending)({ __builtin_expect(!!(!!(!*execlists->pending)), 0); })) { | |||
| 1922 | execlists->error_interrupt |= ERROR_CSB(1UL << (31)); | |||
| 1923 | break; | |||
| 1924 | } | |||
| 1925 | ||||
| 1926 | ring_set_paused(engine, 0); | |||
| 1927 | ||||
| 1928 | /* Point active to the new ELSP; prevent overwriting */ | |||
| 1929 | WRITE_ONCE(execlists->active, execlists->pending)({ typeof(execlists->active) __tmp = (execlists->pending ); *(volatile typeof(execlists->active) *)&(execlists-> active) = __tmp; __tmp; }); | |||
| 1930 | smp_wmb()do { __asm volatile("" ::: "memory"); } while (0); /* notify execlists_active() */ | |||
| 1931 | ||||
| 1932 | /* cancel old inflight, prepare for switch */ | |||
| 1933 | trace_ports(execlists, "preempted", old); | |||
| 1934 | while (*old) | |||
| 1935 | *inactive++ = *old++; | |||
| 1936 | ||||
| 1937 | /* switch pending to inflight */ | |||
| 1938 | GEM_BUG_ON(!assert_pending_valid(execlists, "promote"))((void)0); | |||
| 1939 | copy_ports(execlists->inflight, | |||
| 1940 | execlists->pending, | |||
| 1941 | execlists_num_ports(execlists)); | |||
| 1942 | smp_wmb()do { __asm volatile("" ::: "memory"); } while (0); /* complete the seqlock */ | |||
| 1943 | WRITE_ONCE(execlists->active, execlists->inflight)({ typeof(execlists->active) __tmp = (execlists->inflight ); *(volatile typeof(execlists->active) *)&(execlists-> active) = __tmp; __tmp; }); | |||
| 1944 | ||||
| 1945 | /* XXX Magic delay for tgl */ | |||
| 1946 | ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR)((void)__raw_uncore_read32(((engine))->uncore, ((const i915_reg_t ){ .reg = (((engine)->mmio_base) + 0x3a0) }))); | |||
| 1947 | ||||
| 1948 | WRITE_ONCE(execlists->pending[0], NULL)({ typeof(execlists->pending[0]) __tmp = (((void *)0)); *( volatile typeof(execlists->pending[0]) *)&(execlists-> pending[0]) = __tmp; __tmp; }); | |||
| 1949 | } else { | |||
| 1950 | if (GEM_WARN_ON(!*execlists->active)({ __builtin_expect(!!(!!(!*execlists->active)), 0); })) { | |||
| 1951 | execlists->error_interrupt |= ERROR_CSB(1UL << (31)); | |||
| 1952 | break; | |||
| 1953 | } | |||
| 1954 | ||||
| 1955 | /* port0 completed, advanced to port1 */ | |||
| 1956 | trace_ports(execlists, "completed", execlists->active); | |||
| 1957 | ||||
| 1958 | /* | |||
| 1959 | * We rely on the hardware being strongly | |||
| 1960 | * ordered, that the breadcrumb write is | |||
| 1961 | * coherent (visible from the CPU) before the | |||
| 1962 | * user interrupt is processed. One might assume | |||
| 1963 | * that the breadcrumb write being before the | |||
| 1964 | * user interrupt and the CS event for the context | |||
| 1965 | * switch would therefore be before the CS event | |||
| 1966 | * itself... | |||
| 1967 | */ | |||
| 1968 | if (GEM_SHOW_DEBUG()(0) && | |||
| 1969 | !__i915_request_is_complete(*execlists->active)) { | |||
| 1970 | struct i915_request *rq = *execlists->active; | |||
| 1971 | const u32 *regs __maybe_unused__attribute__((__unused__)) = | |||
| 1972 | rq->context->lrc_reg_state; | |||
| 1973 | ||||
| 1974 | ENGINE_TRACE(engine,do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 1975 | "context completed before request!\n")do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0); | |||
| 1976 | ENGINE_TRACE(engine,do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 1977 | "ring:{start:0x%08x, head:%04x, tail:%04x, ctl:%08x, mode:%08x}\n",do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 1978 | ENGINE_READ(engine, RING_START),do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 1979 | ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR,do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 1980 | ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR,do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 1981 | ENGINE_READ(engine, RING_CTL),do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 1982 | ENGINE_READ(engine, RING_MI_MODE))do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0); | |||
| 1983 | ENGINE_TRACE(engine,do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 1984 | "rq:{start:%08x, head:%04x, tail:%04x, seqno:%llx:%d, hwsp:%d}, ",do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 1985 | i915_ggtt_offset(rq->ring->vma),do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 1986 | rq->head, rq->tail,do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 1987 | rq->fence.context,do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 1988 | lower_32_bits(rq->fence.seqno),do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 1989 | hwsp_seqno(rq))do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0); | |||
| 1990 | ENGINE_TRACE(engine,do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 1991 | "ctx:{start:%08x, head:%04x, tail:%04x}, ",do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 1992 | regs[CTX_RING_START],do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 1993 | regs[CTX_RING_HEAD],do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 1994 | regs[CTX_RING_TAIL])do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0); | |||
| 1995 | } | |||
| 1996 | ||||
| 1997 | *inactive++ = *execlists->active++; | |||
| 1998 | ||||
| 1999 | GEM_BUG_ON(execlists->active - execlists->inflight >((void)0) | |||
| 2000 | execlists_num_ports(execlists))((void)0); | |||
| 2001 | } | |||
| 2002 | } while (head != tail); | |||
| 2003 | ||||
| 2004 | /* | |||
| 2005 | * Gen11 has proven to fail wrt global observation point between | |||
| 2006 | * entry and tail update, failing on the ordering and thus | |||
| 2007 | * we see an old entry in the context status buffer. | |||
| 2008 | * | |||
| 2009 | * Forcibly evict out entries for the next gpu csb update, | |||
| 2010 | * to increase the odds that we get a fresh entries with non | |||
| 2011 | * working hardware. The cost for doing so comes out mostly with | |||
| 2012 | * the wash as hardware, working or not, will need to do the | |||
| 2013 | * invalidation before. | |||
| 2014 | */ | |||
| 2015 | drm_clflush_virt_range(&buf[0], num_entries * sizeof(buf[0])); | |||
| 2016 | ||||
| 2017 | /* | |||
| 2018 | * We assume that any event reflects a change in context flow | |||
| 2019 | * and merits a fresh timeslice. We reinstall the timer after | |||
| 2020 | * inspecting the queue to see if we need to resumbit. | |||
| 2021 | */ | |||
| 2022 | if (*prev != *execlists->active) { /* elide lite-restores */ | |||
| 2023 | struct intel_context *prev_ce = NULL((void *)0), *active_ce = NULL((void *)0); | |||
| 2024 | ||||
| 2025 | /* | |||
| 2026 | * Note the inherent discrepancy between the HW runtime, | |||
| 2027 | * recorded as part of the context switch, and the CPU | |||
| 2028 | * adjustment for active contexts. We have to hope that | |||
| 2029 | * the delay in processing the CS event is very small | |||
| 2030 | * and consistent. It works to our advantage to have | |||
| 2031 | * the CPU adjustment _undershoot_ (i.e. start later than) | |||
| 2032 | * the CS timestamp so we never overreport the runtime | |||
| 2033 | * and correct overselves later when updating from HW. | |||
| 2034 | */ | |||
| 2035 | if (*prev) | |||
| 2036 | prev_ce = (*prev)->context; | |||
| 2037 | if (*execlists->active) | |||
| 2038 | active_ce = (*execlists->active)->context; | |||
| 2039 | if (prev_ce != active_ce) { | |||
| 2040 | if (prev_ce) | |||
| 2041 | lrc_runtime_stop(prev_ce); | |||
| 2042 | if (active_ce) | |||
| 2043 | lrc_runtime_start(active_ce); | |||
| 2044 | } | |||
| 2045 | new_timeslice(execlists); | |||
| 2046 | } | |||
| 2047 | ||||
| 2048 | return inactive; | |||
| 2049 | } | |||
| 2050 | ||||
| 2051 | static void post_process_csb(struct i915_request **port, | |||
| 2052 | struct i915_request **last) | |||
| 2053 | { | |||
| 2054 | while (port != last) | |||
| 2055 | execlists_schedule_out(*port++); | |||
| 2056 | } | |||
| 2057 | ||||
| 2058 | static void __execlists_hold(struct i915_request *rq) | |||
| 2059 | { | |||
| 2060 | DRM_LIST_HEAD(list)struct list_head list = { &(list), &(list) }; | |||
| 2061 | ||||
| 2062 | do { | |||
| 2063 | struct i915_dependency *p; | |||
| 2064 | ||||
| 2065 | if (i915_request_is_active(rq)) | |||
| 2066 | __i915_request_unsubmit(rq); | |||
| 2067 | ||||
| 2068 | clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); | |||
| 2069 | list_move_tail(&rq->sched.link, | |||
| 2070 | &rq->engine->sched_engine->hold); | |||
| 2071 | i915_request_set_hold(rq); | |||
| 2072 | RQ_TRACE(rq, "on hold\n")do { const struct i915_request *rq__ = (rq); do { const struct intel_engine_cs *e__ __attribute__((__unused__)) = (rq__-> engine); do { } while (0); } while (0); } while (0); | |||
| 2073 | ||||
| 2074 | for_each_waiter(p, rq)for (p = ({ const __typeof( ((__typeof(*p) *)0)->wait_link ) *__mptr = ((&(rq)->sched.waiters_list)->next); ( __typeof(*p) *)( (char *)__mptr - __builtin_offsetof(__typeof (*p), wait_link) );}); &p->wait_link != (&(rq)-> sched.waiters_list); p = ({ const __typeof( ((__typeof(*p) *) 0)->wait_link ) *__mptr = (p->wait_link.next); (__typeof (*p) *)( (char *)__mptr - __builtin_offsetof(__typeof(*p), wait_link ) );})) { | |||
| 2075 | struct i915_request *w = | |||
| 2076 | container_of(p->waiter, typeof(*w), sched)({ const __typeof( ((typeof(*w) *)0)->sched ) *__mptr = (p ->waiter); (typeof(*w) *)( (char *)__mptr - __builtin_offsetof (typeof(*w), sched) );}); | |||
| 2077 | ||||
| 2078 | if (p->flags & I915_DEPENDENCY_WEAK(1UL << (2))) | |||
| 2079 | continue; | |||
| 2080 | ||||
| 2081 | /* Leave semaphores spinning on the other engines */ | |||
| 2082 | if (w->engine != rq->engine) | |||
| 2083 | continue; | |||
| 2084 | ||||
| 2085 | if (!i915_request_is_ready(w)) | |||
| 2086 | continue; | |||
| 2087 | ||||
| 2088 | if (__i915_request_is_complete(w)) | |||
| 2089 | continue; | |||
| 2090 | ||||
| 2091 | if (i915_request_on_hold(w)) | |||
| 2092 | continue; | |||
| 2093 | ||||
| 2094 | list_move_tail(&w->sched.link, &list); | |||
| 2095 | } | |||
| 2096 | ||||
| 2097 | rq = list_first_entry_or_null(&list, typeof(*rq), sched.link)(list_empty(&list) ? ((void *)0) : ({ const __typeof( ((typeof (*rq) *)0)->sched.link ) *__mptr = ((&list)->next); (typeof(*rq) *)( (char *)__mptr - __builtin_offsetof(typeof( *rq), sched.link) );})); | |||
| 2098 | } while (rq); | |||
| 2099 | } | |||
| 2100 | ||||
| 2101 | static bool_Bool execlists_hold(struct intel_engine_cs *engine, | |||
| 2102 | struct i915_request *rq) | |||
| 2103 | { | |||
| 2104 | if (i915_request_on_hold(rq)) | |||
| 2105 | return false0; | |||
| 2106 | ||||
| 2107 | spin_lock_irq(&engine->sched_engine->lock)mtx_enter(&engine->sched_engine->lock); | |||
| 2108 | ||||
| 2109 | if (__i915_request_is_complete(rq)) { /* too late! */ | |||
| 2110 | rq = NULL((void *)0); | |||
| 2111 | goto unlock; | |||
| 2112 | } | |||
| 2113 | ||||
| 2114 | /* | |||
| 2115 | * Transfer this request onto the hold queue to prevent it | |||
| 2116 | * being resumbitted to HW (and potentially completed) before we have | |||
| 2117 | * released it. Since we may have already submitted following | |||
| 2118 | * requests, we need to remove those as well. | |||
| 2119 | */ | |||
| 2120 | GEM_BUG_ON(i915_request_on_hold(rq))((void)0); | |||
| 2121 | GEM_BUG_ON(rq->engine != engine)((void)0); | |||
| 2122 | __execlists_hold(rq); | |||
| 2123 | GEM_BUG_ON(list_empty(&engine->sched_engine->hold))((void)0); | |||
| 2124 | ||||
| 2125 | unlock: | |||
| 2126 | spin_unlock_irq(&engine->sched_engine->lock)mtx_leave(&engine->sched_engine->lock); | |||
| 2127 | return rq; | |||
| 2128 | } | |||
| 2129 | ||||
| 2130 | static bool_Bool hold_request(const struct i915_request *rq) | |||
| 2131 | { | |||
| 2132 | struct i915_dependency *p; | |||
| 2133 | bool_Bool result = false0; | |||
| 2134 | ||||
| 2135 | /* | |||
| 2136 | * If one of our ancestors is on hold, we must also be on hold, | |||
| 2137 | * otherwise we will bypass it and execute before it. | |||
| 2138 | */ | |||
| 2139 | rcu_read_lock(); | |||
| 2140 | for_each_signaler(p, rq)for (p = ({ const __typeof( ((__typeof(*p) *)0)->signal_link ) *__mptr = ((&(rq)->sched.signalers_list)->next); (__typeof(*p) *)( (char *)__mptr - __builtin_offsetof(__typeof (*p), signal_link) );}); &p->signal_link != (&(rq) ->sched.signalers_list); p = ({ const __typeof( ((__typeof (*p) *)0)->signal_link ) *__mptr = (p->signal_link.next ); (__typeof(*p) *)( (char *)__mptr - __builtin_offsetof(__typeof (*p), signal_link) );})) { | |||
| 2141 | const struct i915_request *s = | |||
| 2142 | container_of(p->signaler, typeof(*s), sched)({ const __typeof( ((typeof(*s) *)0)->sched ) *__mptr = (p ->signaler); (typeof(*s) *)( (char *)__mptr - __builtin_offsetof (typeof(*s), sched) );}); | |||
| 2143 | ||||
| 2144 | if (s->engine != rq->engine) | |||
| 2145 | continue; | |||
| 2146 | ||||
| 2147 | result = i915_request_on_hold(s); | |||
| 2148 | if (result) | |||
| 2149 | break; | |||
| 2150 | } | |||
| 2151 | rcu_read_unlock(); | |||
| 2152 | ||||
| 2153 | return result; | |||
| 2154 | } | |||
| 2155 | ||||
| 2156 | static void __execlists_unhold(struct i915_request *rq) | |||
| 2157 | { | |||
| 2158 | DRM_LIST_HEAD(list)struct list_head list = { &(list), &(list) }; | |||
| 2159 | ||||
| 2160 | do { | |||
| 2161 | struct i915_dependency *p; | |||
| 2162 | ||||
| 2163 | RQ_TRACE(rq, "hold release\n")do { const struct i915_request *rq__ = (rq); do { const struct intel_engine_cs *e__ __attribute__((__unused__)) = (rq__-> engine); do { } while (0); } while (0); } while (0); | |||
| 2164 | ||||
| 2165 | GEM_BUG_ON(!i915_request_on_hold(rq))((void)0); | |||
| 2166 | GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit))((void)0); | |||
| 2167 | ||||
| 2168 | i915_request_clear_hold(rq); | |||
| 2169 | list_move_tail(&rq->sched.link, | |||
| 2170 | i915_sched_lookup_priolist(rq->engine->sched_engine, | |||
| 2171 | rq_prio(rq))); | |||
| 2172 | set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); | |||
| 2173 | ||||
| 2174 | /* Also release any children on this engine that are ready */ | |||
| 2175 | for_each_waiter(p, rq)for (p = ({ const __typeof( ((__typeof(*p) *)0)->wait_link ) *__mptr = ((&(rq)->sched.waiters_list)->next); ( __typeof(*p) *)( (char *)__mptr - __builtin_offsetof(__typeof (*p), wait_link) );}); &p->wait_link != (&(rq)-> sched.waiters_list); p = ({ const __typeof( ((__typeof(*p) *) 0)->wait_link ) *__mptr = (p->wait_link.next); (__typeof (*p) *)( (char *)__mptr - __builtin_offsetof(__typeof(*p), wait_link ) );})) { | |||
| 2176 | struct i915_request *w = | |||
| 2177 | container_of(p->waiter, typeof(*w), sched)({ const __typeof( ((typeof(*w) *)0)->sched ) *__mptr = (p ->waiter); (typeof(*w) *)( (char *)__mptr - __builtin_offsetof (typeof(*w), sched) );}); | |||
| 2178 | ||||
| 2179 | if (p->flags & I915_DEPENDENCY_WEAK(1UL << (2))) | |||
| 2180 | continue; | |||
| 2181 | ||||
| 2182 | if (w->engine != rq->engine) | |||
| 2183 | continue; | |||
| 2184 | ||||
| 2185 | if (!i915_request_on_hold(w)) | |||
| 2186 | continue; | |||
| 2187 | ||||
| 2188 | /* Check that no other parents are also on hold */ | |||
| 2189 | if (hold_request(w)) | |||
| 2190 | continue; | |||
| 2191 | ||||
| 2192 | list_move_tail(&w->sched.link, &list); | |||
| 2193 | } | |||
| 2194 | ||||
| 2195 | rq = list_first_entry_or_null(&list, typeof(*rq), sched.link)(list_empty(&list) ? ((void *)0) : ({ const __typeof( ((typeof (*rq) *)0)->sched.link ) *__mptr = ((&list)->next); (typeof(*rq) *)( (char *)__mptr - __builtin_offsetof(typeof( *rq), sched.link) );})); | |||
| 2196 | } while (rq); | |||
| 2197 | } | |||
| 2198 | ||||
| 2199 | static void execlists_unhold(struct intel_engine_cs *engine, | |||
| 2200 | struct i915_request *rq) | |||
| 2201 | { | |||
| 2202 | spin_lock_irq(&engine->sched_engine->lock)mtx_enter(&engine->sched_engine->lock); | |||
| 2203 | ||||
| 2204 | /* | |||
| 2205 | * Move this request back to the priority queue, and all of its | |||
| 2206 | * children and grandchildren that were suspended along with it. | |||
| 2207 | */ | |||
| 2208 | __execlists_unhold(rq); | |||
| 2209 | ||||
| 2210 | if (rq_prio(rq) > engine->sched_engine->queue_priority_hint) { | |||
| 2211 | engine->sched_engine->queue_priority_hint = rq_prio(rq); | |||
| 2212 | tasklet_hi_schedule(&engine->sched_engine->tasklet); | |||
| 2213 | } | |||
| 2214 | ||||
| 2215 | spin_unlock_irq(&engine->sched_engine->lock)mtx_leave(&engine->sched_engine->lock); | |||
| 2216 | } | |||
| 2217 | ||||
| 2218 | struct execlists_capture { | |||
| 2219 | struct work_struct work; | |||
| 2220 | struct i915_request *rq; | |||
| 2221 | struct i915_gpu_coredump *error; | |||
| 2222 | }; | |||
| 2223 | ||||
| 2224 | static void execlists_capture_work(struct work_struct *work) | |||
| 2225 | { | |||
| 2226 | struct execlists_capture *cap = container_of(work, typeof(*cap), work)({ const __typeof( ((typeof(*cap) *)0)->work ) *__mptr = ( work); (typeof(*cap) *)( (char *)__mptr - __builtin_offsetof( typeof(*cap), work) );}); | |||
| 2227 | const gfp_t gfp = __GFP_KSWAPD_RECLAIM0x0002 | __GFP_RETRY_MAYFAIL0 | | |||
| 2228 | __GFP_NOWARN0; | |||
| 2229 | struct intel_engine_cs *engine = cap->rq->engine; | |||
| 2230 | struct intel_gt_coredump *gt = cap->error->gt; | |||
| 2231 | struct intel_engine_capture_vma *vma; | |||
| 2232 | ||||
| 2233 | /* Compress all the objects attached to the request, slow! */ | |||
| 2234 | vma = intel_engine_coredump_add_request(gt->engine, cap->rq, gfp); | |||
| 2235 | if (vma) { | |||
| 2236 | struct i915_vma_compress *compress = | |||
| 2237 | i915_vma_capture_prepare(gt); | |||
| 2238 | ||||
| 2239 | intel_engine_coredump_add_vma(gt->engine, vma, compress); | |||
| 2240 | i915_vma_capture_finish(gt, compress); | |||
| 2241 | } | |||
| 2242 | ||||
| 2243 | gt->simulated = gt->engine->simulated; | |||
| 2244 | cap->error->simulated = gt->simulated; | |||
| 2245 | ||||
| 2246 | /* Publish the error state, and announce it to the world */ | |||
| 2247 | i915_error_state_store(cap->error); | |||
| 2248 | i915_gpu_coredump_put(cap->error); | |||
| 2249 | ||||
| 2250 | /* Return this request and all that depend upon it for signaling */ | |||
| 2251 | execlists_unhold(engine, cap->rq); | |||
| 2252 | i915_request_put(cap->rq); | |||
| 2253 | ||||
| 2254 | kfree(cap); | |||
| 2255 | } | |||
| 2256 | ||||
| 2257 | static struct execlists_capture *capture_regs(struct intel_engine_cs *engine) | |||
| 2258 | { | |||
| 2259 | const gfp_t gfp = GFP_ATOMIC0x0002 | __GFP_NOWARN0; | |||
| 2260 | struct execlists_capture *cap; | |||
| 2261 | ||||
| 2262 | cap = kmalloc(sizeof(*cap), gfp); | |||
| 2263 | if (!cap) | |||
| 2264 | return NULL((void *)0); | |||
| 2265 | ||||
| 2266 | cap->error = i915_gpu_coredump_alloc(engine->i915, gfp); | |||
| 2267 | if (!cap->error) | |||
| 2268 | goto err_cap; | |||
| 2269 | ||||
| 2270 | cap->error->gt = intel_gt_coredump_alloc(engine->gt, gfp, CORE_DUMP_FLAG_NONE0x0); | |||
| 2271 | if (!cap->error->gt) | |||
| 2272 | goto err_gpu; | |||
| 2273 | ||||
| 2274 | cap->error->gt->engine = intel_engine_coredump_alloc(engine, gfp, CORE_DUMP_FLAG_NONE0x0); | |||
| 2275 | if (!cap->error->gt->engine) | |||
| 2276 | goto err_gt; | |||
| 2277 | ||||
| 2278 | cap->error->gt->engine->hung = true1; | |||
| 2279 | ||||
| 2280 | return cap; | |||
| 2281 | ||||
| 2282 | err_gt: | |||
| 2283 | kfree(cap->error->gt); | |||
| 2284 | err_gpu: | |||
| 2285 | kfree(cap->error); | |||
| 2286 | err_cap: | |||
| 2287 | kfree(cap); | |||
| 2288 | return NULL((void *)0); | |||
| 2289 | } | |||
| 2290 | ||||
| 2291 | static struct i915_request * | |||
| 2292 | active_context(struct intel_engine_cs *engine, u32 ccid) | |||
| 2293 | { | |||
| 2294 | const struct intel_engine_execlists * const el = &engine->execlists; | |||
| 2295 | struct i915_request * const *port, *rq; | |||
| 2296 | ||||
| 2297 | /* | |||
| 2298 | * Use the most recent result from process_csb(), but just in case | |||
| 2299 | * we trigger an error (via interrupt) before the first CS event has | |||
| 2300 | * been written, peek at the next submission. | |||
| 2301 | */ | |||
| 2302 | ||||
| 2303 | for (port = el->active; (rq = *port); port++) { | |||
| 2304 | if (rq->context->lrc.ccid == ccid) { | |||
| 2305 | ENGINE_TRACE(engine,do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 2306 | "ccid:%x found at active:%zd\n",do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 2307 | ccid, port - el->active)do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0); | |||
| 2308 | return rq; | |||
| 2309 | } | |||
| 2310 | } | |||
| 2311 | ||||
| 2312 | for (port = el->pending; (rq = *port); port++) { | |||
| 2313 | if (rq->context->lrc.ccid == ccid) { | |||
| 2314 | ENGINE_TRACE(engine,do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 2315 | "ccid:%x found at pending:%zd\n",do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 2316 | ccid, port - el->pending)do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0); | |||
| 2317 | return rq; | |||
| 2318 | } | |||
| 2319 | } | |||
| 2320 | ||||
| 2321 | ENGINE_TRACE(engine, "ccid:%x not found\n", ccid)do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0); | |||
| 2322 | return NULL((void *)0); | |||
| 2323 | } | |||
| 2324 | ||||
| 2325 | static u32 active_ccid(struct intel_engine_cs *engine) | |||
| 2326 | { | |||
| 2327 | return ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI)__raw_uncore_read32(((engine))->uncore, ((const i915_reg_t ){ .reg = (((engine)->mmio_base) + 0x234 + 4) })); | |||
| 2328 | } | |||
| 2329 | ||||
| 2330 | static void execlists_capture(struct intel_engine_cs *engine) | |||
| 2331 | { | |||
| 2332 | struct execlists_capture *cap; | |||
| 2333 | ||||
| 2334 | if (!IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)1) | |||
| 2335 | return; | |||
| 2336 | ||||
| 2337 | /* | |||
| 2338 | * We need to _quickly_ capture the engine state before we reset. | |||
| 2339 | * We are inside an atomic section (softirq) here and we are delaying | |||
| 2340 | * the forced preemption event. | |||
| 2341 | */ | |||
| 2342 | cap = capture_regs(engine); | |||
| 2343 | if (!cap) | |||
| 2344 | return; | |||
| 2345 | ||||
| 2346 | spin_lock_irq(&engine->sched_engine->lock)mtx_enter(&engine->sched_engine->lock); | |||
| 2347 | cap->rq = active_context(engine, active_ccid(engine)); | |||
| 2348 | if (cap->rq) { | |||
| 2349 | cap->rq = active_request(cap->rq->context->timeline, cap->rq); | |||
| 2350 | cap->rq = i915_request_get_rcu(cap->rq); | |||
| 2351 | } | |||
| 2352 | spin_unlock_irq(&engine->sched_engine->lock)mtx_leave(&engine->sched_engine->lock); | |||
| 2353 | if (!cap->rq) | |||
| 2354 | goto err_free; | |||
| 2355 | ||||
| 2356 | /* | |||
| 2357 | * Remove the request from the execlists queue, and take ownership | |||
| 2358 | * of the request. We pass it to our worker who will _slowly_ compress | |||
| 2359 | * all the pages the _user_ requested for debugging their batch, after | |||
| 2360 | * which we return it to the queue for signaling. | |||
| 2361 | * | |||
| 2362 | * By removing them from the execlists queue, we also remove the | |||
| 2363 | * requests from being processed by __unwind_incomplete_requests() | |||
| 2364 | * during the intel_engine_reset(), and so they will *not* be replayed | |||
| 2365 | * afterwards. | |||
| 2366 | * | |||
| 2367 | * Note that because we have not yet reset the engine at this point, | |||
| 2368 | * it is possible for the request that we have identified as being | |||
| 2369 | * guilty, did in fact complete and we will then hit an arbitration | |||
| 2370 | * point allowing the outstanding preemption to succeed. The likelihood | |||
| 2371 | * of that is very low (as capturing of the engine registers should be | |||
| 2372 | * fast enough to run inside an irq-off atomic section!), so we will | |||
| 2373 | * simply hold that request accountable for being non-preemptible | |||
| 2374 | * long enough to force the reset. | |||
| 2375 | */ | |||
| 2376 | if (!execlists_hold(engine, cap->rq)) | |||
| 2377 | goto err_rq; | |||
| 2378 | ||||
| 2379 | INIT_WORK(&cap->work, execlists_capture_work); | |||
| 2380 | schedule_work(&cap->work); | |||
| 2381 | return; | |||
| 2382 | ||||
| 2383 | err_rq: | |||
| 2384 | i915_request_put(cap->rq); | |||
| 2385 | err_free: | |||
| 2386 | i915_gpu_coredump_put(cap->error); | |||
| 2387 | kfree(cap); | |||
| 2388 | } | |||
| 2389 | ||||
| 2390 | static void execlists_reset(struct intel_engine_cs *engine, const char *msg) | |||
| 2391 | { | |||
| 2392 | const unsigned int bit = I915_RESET_ENGINE2 + engine->id; | |||
| 2393 | unsigned long *lock = &engine->gt->reset.flags; | |||
| 2394 | ||||
| 2395 | if (!intel_has_reset_engine(engine->gt)) | |||
| 2396 | return; | |||
| 2397 | ||||
| 2398 | if (test_and_set_bit(bit, lock)) | |||
| 2399 | return; | |||
| 2400 | ||||
| 2401 | ENGINE_TRACE(engine, "reset for %s\n", msg)do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0); | |||
| 2402 | ||||
| 2403 | /* Mark this tasklet as disabled to avoid waiting for it to complete */ | |||
| 2404 | tasklet_disable_nosync(&engine->sched_engine->tasklet); | |||
| 2405 | ||||
| 2406 | ring_set_paused(engine, 1); /* Freeze the current request in place */ | |||
| 2407 | execlists_capture(engine); | |||
| 2408 | intel_engine_reset(engine, msg); | |||
| 2409 | ||||
| 2410 | tasklet_enable(&engine->sched_engine->tasklet); | |||
| 2411 | clear_and_wake_up_bit(bit, lock); | |||
| 2412 | } | |||
| 2413 | ||||
| 2414 | static bool_Bool preempt_timeout(const struct intel_engine_cs *const engine) | |||
| 2415 | { | |||
| 2416 | const struct timeout *t = &engine->execlists.preempt; | |||
| 2417 | ||||
| 2418 | if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT640) | |||
| 2419 | return false0; | |||
| 2420 | ||||
| 2421 | if (!timer_expired(t)) | |||
| 2422 | return false0; | |||
| 2423 | ||||
| 2424 | return engine->execlists.pending[0]; | |||
| 2425 | } | |||
| 2426 | ||||
| 2427 | /* | |||
| 2428 | * Check the unread Context Status Buffers and manage the submission of new | |||
| 2429 | * contexts to the ELSP accordingly. | |||
| 2430 | */ | |||
| 2431 | static void execlists_submission_tasklet(struct tasklet_struct *t) | |||
| 2432 | { | |||
| 2433 | struct i915_sched_engine *sched_engine = | |||
| 2434 | from_tasklet(sched_engine, t, tasklet)({ const __typeof( ((typeof(*sched_engine) *)0)->tasklet ) *__mptr = (t); (typeof(*sched_engine) *)( (char *)__mptr - __builtin_offsetof (typeof(*sched_engine), tasklet) );}); | |||
| 2435 | struct intel_engine_cs * const engine = sched_engine->private_data; | |||
| 2436 | struct i915_request *post[2 * EXECLIST_MAX_PORTS2]; | |||
| 2437 | struct i915_request **inactive; | |||
| 2438 | ||||
| 2439 | rcu_read_lock(); | |||
| 2440 | inactive = process_csb(engine, post); | |||
| 2441 | GEM_BUG_ON(inactive - post > ARRAY_SIZE(post))((void)0); | |||
| 2442 | ||||
| 2443 | if (unlikely(preempt_timeout(engine))__builtin_expect(!!(preempt_timeout(engine)), 0)) { | |||
| 2444 | const struct i915_request *rq = *engine->execlists.active; | |||
| 2445 | ||||
| 2446 | /* | |||
| 2447 | * If after the preempt-timeout expired, we are still on the | |||
| 2448 | * same active request/context as before we initiated the | |||
| 2449 | * preemption, reset the engine. | |||
| 2450 | * | |||
| 2451 | * However, if we have processed a CS event to switch contexts, | |||
| 2452 | * but not yet processed the CS event for the pending | |||
| 2453 | * preemption, reset the timer allowing the new context to | |||
| 2454 | * gracefully exit. | |||
| 2455 | */ | |||
| 2456 | cancel_timer(&engine->execlists.preempt); | |||
| 2457 | if (rq == engine->execlists.preempt_target) | |||
| 2458 | engine->execlists.error_interrupt |= ERROR_PREEMPT(1UL << (30)); | |||
| 2459 | else | |||
| 2460 | set_timer_ms(&engine->execlists.preempt, | |||
| 2461 | active_preempt_timeout(engine, rq)); | |||
| 2462 | } | |||
| 2463 | ||||
| 2464 | if (unlikely(READ_ONCE(engine->execlists.error_interrupt))__builtin_expect(!!(({ typeof(engine->execlists.error_interrupt ) __tmp = *(volatile typeof(engine->execlists.error_interrupt ) *)&(engine->execlists.error_interrupt); membar_datadep_consumer (); __tmp; })), 0)) { | |||
| 2465 | const char *msg; | |||
| 2466 | ||||
| 2467 | /* Generate the error message in priority wrt to the user! */ | |||
| 2468 | if (engine->execlists.error_interrupt & GENMASK(15, 0)(((~0UL) >> (64 - (15) - 1)) & ((~0UL) << (0) ))) | |||
| 2469 | msg = "CS error"; /* thrown by a user payload */ | |||
| 2470 | else if (engine->execlists.error_interrupt & ERROR_CSB(1UL << (31))) | |||
| 2471 | msg = "invalid CSB event"; | |||
| 2472 | else if (engine->execlists.error_interrupt & ERROR_PREEMPT(1UL << (30))) | |||
| 2473 | msg = "preemption time out"; | |||
| 2474 | else | |||
| 2475 | msg = "internal error"; | |||
| 2476 | ||||
| 2477 | engine->execlists.error_interrupt = 0; | |||
| 2478 | execlists_reset(engine, msg); | |||
| 2479 | } | |||
| 2480 | ||||
| 2481 | if (!engine->execlists.pending[0]) { | |||
| 2482 | execlists_dequeue_irq(engine); | |||
| 2483 | start_timeslice(engine); | |||
| 2484 | } | |||
| 2485 | ||||
| 2486 | post_process_csb(post, inactive); | |||
| 2487 | rcu_read_unlock(); | |||
| 2488 | } | |||
| 2489 | ||||
| 2490 | static void execlists_irq_handler(struct intel_engine_cs *engine, u16 iir) | |||
| 2491 | { | |||
| 2492 | bool_Bool tasklet = false0; | |||
| 2493 | ||||
| 2494 | if (unlikely(iir & GT_CS_MASTER_ERROR_INTERRUPT)__builtin_expect(!!(iir & ((u32)((1UL << (3)) + 0)) ), 0)) { | |||
| 2495 | u32 eir; | |||
| 2496 | ||||
| 2497 | /* Upper 16b are the enabling mask, rsvd for internal errors */ | |||
| 2498 | eir = ENGINE_READ(engine, RING_EIR)intel_uncore_read(((engine))->uncore, ((const i915_reg_t){ .reg = (((engine)->mmio_base) + 0xb0) })) & GENMASK(15, 0)(((~0UL) >> (64 - (15) - 1)) & ((~0UL) << (0) )); | |||
| 2499 | ENGINE_TRACE(engine, "CS error: %x\n", eir)do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0); | |||
| 2500 | ||||
| 2501 | /* Disable the error interrupt until after the reset */ | |||
| 2502 | if (likely(eir)__builtin_expect(!!(eir), 1)) { | |||
| 2503 | ENGINE_WRITE(engine, RING_EMR, ~0u)intel_uncore_write(((engine))->uncore, ((const i915_reg_t) { .reg = (((engine)->mmio_base) + 0xb4) }), (~0u)); | |||
| 2504 | ENGINE_WRITE(engine, RING_EIR, eir)intel_uncore_write(((engine))->uncore, ((const i915_reg_t) { .reg = (((engine)->mmio_base) + 0xb0) }), (eir)); | |||
| 2505 | WRITE_ONCE(engine->execlists.error_interrupt, eir)({ typeof(engine->execlists.error_interrupt) __tmp = (eir) ; *(volatile typeof(engine->execlists.error_interrupt) *)& (engine->execlists.error_interrupt) = __tmp; __tmp; }); | |||
| 2506 | tasklet = true1; | |||
| 2507 | } | |||
| 2508 | } | |||
| 2509 | ||||
| 2510 | if (iir & GT_WAIT_SEMAPHORE_INTERRUPT((u32)((1UL << (11)) + 0))) { | |||
| 2511 | WRITE_ONCE(engine->execlists.yield,({ typeof(engine->execlists.yield) __tmp = (__raw_uncore_read32 (((engine))->uncore, ((const i915_reg_t){ .reg = (((engine )->mmio_base) + 0x234 + 4) }))); *(volatile typeof(engine-> execlists.yield) *)&(engine->execlists.yield) = __tmp; __tmp; }) | |||
| 2512 | ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI))({ typeof(engine->execlists.yield) __tmp = (__raw_uncore_read32 (((engine))->uncore, ((const i915_reg_t){ .reg = (((engine )->mmio_base) + 0x234 + 4) }))); *(volatile typeof(engine-> execlists.yield) *)&(engine->execlists.yield) = __tmp; __tmp; }); | |||
| 2513 | ENGINE_TRACE(engine, "semaphore yield: %08x\n",do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 2514 | engine->execlists.yield)do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0); | |||
| 2515 | if (del_timer(&engine->execlists.timer)timeout_del((&engine->execlists.timer))) | |||
| 2516 | tasklet = true1; | |||
| 2517 | } | |||
| 2518 | ||||
| 2519 | if (iir & GT_CONTEXT_SWITCH_INTERRUPT(1 << 8)) | |||
| 2520 | tasklet = true1; | |||
| 2521 | ||||
| 2522 | if (iir & GT_RENDER_USER_INTERRUPT(1 << 0)) | |||
| 2523 | intel_engine_signal_breadcrumbs(engine); | |||
| 2524 | ||||
| 2525 | if (tasklet) | |||
| 2526 | tasklet_hi_schedule(&engine->sched_engine->tasklet); | |||
| 2527 | } | |||
| 2528 | ||||
| 2529 | static void __execlists_kick(struct intel_engine_execlists *execlists) | |||
| 2530 | { | |||
| 2531 | struct intel_engine_cs *engine = | |||
| 2532 | container_of(execlists, typeof(*engine), execlists)({ const __typeof( ((typeof(*engine) *)0)->execlists ) *__mptr = (execlists); (typeof(*engine) *)( (char *)__mptr - __builtin_offsetof (typeof(*engine), execlists) );}); | |||
| 2533 | ||||
| 2534 | /* Kick the tasklet for some interrupt coalescing and reset handling */ | |||
| 2535 | tasklet_hi_schedule(&engine->sched_engine->tasklet); | |||
| 2536 | } | |||
| 2537 | ||||
| 2538 | #define execlists_kick(t, member)__execlists_kick(({ const __typeof( ((struct intel_engine_execlists *)0)->member ) *__mptr = (t); (struct intel_engine_execlists *)( (char *)__mptr - __builtin_offsetof(struct intel_engine_execlists , member) );})) \ | |||
| 2539 | __execlists_kick(container_of(t, struct intel_engine_execlists, member)({ const __typeof( ((struct intel_engine_execlists *)0)->member ) *__mptr = (t); (struct intel_engine_execlists *)( (char *) __mptr - __builtin_offsetof(struct intel_engine_execlists, member ) );})) | |||
| 2540 | ||||
| 2541 | static void execlists_timeslice(void *arg) | |||
| 2542 | { | |||
| 2543 | struct timeout *timer = (struct timeout *)arg; | |||
| 2544 | execlists_kick(timer, timer)__execlists_kick(({ const __typeof( ((struct intel_engine_execlists *)0)->timer ) *__mptr = (timer); (struct intel_engine_execlists *)( (char *)__mptr - __builtin_offsetof(struct intel_engine_execlists , timer) );})); | |||
| 2545 | } | |||
| 2546 | ||||
| 2547 | static void execlists_preempt(void *arg) | |||
| 2548 | { | |||
| 2549 | struct timeout *timer = (struct timeout *)arg; | |||
| 2550 | execlists_kick(timer, preempt)__execlists_kick(({ const __typeof( ((struct intel_engine_execlists *)0)->preempt ) *__mptr = (timer); (struct intel_engine_execlists *)( (char *)__mptr - __builtin_offsetof(struct intel_engine_execlists , preempt) );})); | |||
| 2551 | } | |||
| 2552 | ||||
| 2553 | static void queue_request(struct intel_engine_cs *engine, | |||
| 2554 | struct i915_request *rq) | |||
| 2555 | { | |||
| 2556 | GEM_BUG_ON(!list_empty(&rq->sched.link))((void)0); | |||
| 2557 | list_add_tail(&rq->sched.link, | |||
| 2558 | i915_sched_lookup_priolist(engine->sched_engine, | |||
| 2559 | rq_prio(rq))); | |||
| 2560 | set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); | |||
| 2561 | } | |||
| 2562 | ||||
| 2563 | static bool_Bool submit_queue(struct intel_engine_cs *engine, | |||
| 2564 | const struct i915_request *rq) | |||
| 2565 | { | |||
| 2566 | struct i915_sched_engine *sched_engine = engine->sched_engine; | |||
| 2567 | ||||
| 2568 | if (rq_prio(rq) <= sched_engine->queue_priority_hint) | |||
| 2569 | return false0; | |||
| 2570 | ||||
| 2571 | sched_engine->queue_priority_hint = rq_prio(rq); | |||
| 2572 | return true1; | |||
| 2573 | } | |||
| 2574 | ||||
| 2575 | static bool_Bool ancestor_on_hold(const struct intel_engine_cs *engine, | |||
| 2576 | const struct i915_request *rq) | |||
| 2577 | { | |||
| 2578 | GEM_BUG_ON(i915_request_on_hold(rq))((void)0); | |||
| 2579 | return !list_empty(&engine->sched_engine->hold) && hold_request(rq); | |||
| 2580 | } | |||
| 2581 | ||||
| 2582 | static void execlists_submit_request(struct i915_request *request) | |||
| 2583 | { | |||
| 2584 | struct intel_engine_cs *engine = request->engine; | |||
| 2585 | unsigned long flags; | |||
| 2586 | ||||
| 2587 | /* Will be called from irq-context when using foreign fences. */ | |||
| 2588 | spin_lock_irqsave(&engine->sched_engine->lock, flags)do { flags = 0; mtx_enter(&engine->sched_engine->lock ); } while (0); | |||
| 2589 | ||||
| 2590 | if (unlikely(ancestor_on_hold(engine, request))__builtin_expect(!!(ancestor_on_hold(engine, request)), 0)) { | |||
| 2591 | RQ_TRACE(request, "ancestor on hold\n")do { const struct i915_request *rq__ = (request); do { const struct intel_engine_cs *e__ __attribute__((__unused__)) = (rq__-> engine); do { } while (0); } while (0); } while (0); | |||
| 2592 | list_add_tail(&request->sched.link, | |||
| 2593 | &engine->sched_engine->hold); | |||
| 2594 | i915_request_set_hold(request); | |||
| 2595 | } else { | |||
| 2596 | queue_request(engine, request); | |||
| 2597 | ||||
| 2598 | GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine))((void)0); | |||
| 2599 | GEM_BUG_ON(list_empty(&request->sched.link))((void)0); | |||
| 2600 | ||||
| 2601 | if (submit_queue(engine, request)) | |||
| 2602 | __execlists_kick(&engine->execlists); | |||
| 2603 | } | |||
| 2604 | ||||
| 2605 | spin_unlock_irqrestore(&engine->sched_engine->lock, flags)do { (void)(flags); mtx_leave(&engine->sched_engine-> lock); } while (0); | |||
| 2606 | } | |||
| 2607 | ||||
| 2608 | static int | |||
| 2609 | __execlists_context_pre_pin(struct intel_context *ce, | |||
| 2610 | struct intel_engine_cs *engine, | |||
| 2611 | struct i915_gem_ww_ctx *ww, void **vaddr) | |||
| 2612 | { | |||
| 2613 | int err; | |||
| 2614 | ||||
| 2615 | err = lrc_pre_pin(ce, engine, ww, vaddr); | |||
| 2616 | if (err) | |||
| 2617 | return err; | |||
| 2618 | ||||
| 2619 | if (!__test_and_set_bit(CONTEXT_INIT_BIT2, &ce->flags)) { | |||
| 2620 | lrc_init_state(ce, engine, *vaddr); | |||
| 2621 | ||||
| 2622 | __i915_gem_object_flush_map(ce->state->obj, 0, engine->context_size); | |||
| 2623 | } | |||
| 2624 | ||||
| 2625 | return 0; | |||
| 2626 | } | |||
| 2627 | ||||
| 2628 | static int execlists_context_pre_pin(struct intel_context *ce, | |||
| 2629 | struct i915_gem_ww_ctx *ww, | |||
| 2630 | void **vaddr) | |||
| 2631 | { | |||
| 2632 | return __execlists_context_pre_pin(ce, ce->engine, ww, vaddr); | |||
| 2633 | } | |||
| 2634 | ||||
| 2635 | static int execlists_context_pin(struct intel_context *ce, void *vaddr) | |||
| 2636 | { | |||
| 2637 | return lrc_pin(ce, ce->engine, vaddr); | |||
| 2638 | } | |||
| 2639 | ||||
| 2640 | static int execlists_context_alloc(struct intel_context *ce) | |||
| 2641 | { | |||
| 2642 | return lrc_alloc(ce, ce->engine); | |||
| 2643 | } | |||
| 2644 | ||||
| 2645 | static void execlists_context_cancel_request(struct intel_context *ce, | |||
| 2646 | struct i915_request *rq) | |||
| 2647 | { | |||
| 2648 | struct intel_engine_cs *engine = NULL((void *)0); | |||
| 2649 | ||||
| 2650 | i915_request_active_engine(rq, &engine); | |||
| 2651 | ||||
| 2652 | if (engine && intel_engine_pulse(engine)) | |||
| 2653 | intel_gt_handle_error(engine->gt, engine->mask, 0, | |||
| 2654 | "request cancellation by %s", | |||
| 2655 | curproc({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_curproc->p_p->ps_comm); | |||
| 2656 | } | |||
| 2657 | ||||
| 2658 | static struct intel_context * | |||
| 2659 | execlists_create_parallel(struct intel_engine_cs **engines, | |||
| 2660 | unsigned int num_siblings, | |||
| 2661 | unsigned int width) | |||
| 2662 | { | |||
| 2663 | struct intel_context *parent = NULL((void *)0), *ce, *err; | |||
| ||||
| 2664 | int i; | |||
| 2665 | ||||
| 2666 | GEM_BUG_ON(num_siblings != 1)((void)0); | |||
| 2667 | ||||
| 2668 | for (i = 0; i < width; ++i) { | |||
| 2669 | ce = intel_context_create(engines[i]); | |||
| 2670 | if (IS_ERR(ce)) { | |||
| 2671 | err = ce; | |||
| 2672 | goto unwind; | |||
| 2673 | } | |||
| 2674 | ||||
| 2675 | if (i == 0) | |||
| 2676 | parent = ce; | |||
| 2677 | else | |||
| 2678 | intel_context_bind_parent_child(parent, ce); | |||
| 2679 | } | |||
| 2680 | ||||
| 2681 | parent->parallel.fence_context = dma_fence_context_alloc(1); | |||
| ||||
| 2682 | ||||
| 2683 | intel_context_set_nopreempt(parent); | |||
| 2684 | for_each_child(parent, ce)for (ce = ({ const __typeof( ((__typeof(*ce) *)0)->parallel .child_link ) *__mptr = ((&(parent)->parallel.child_list )->next); (__typeof(*ce) *)( (char *)__mptr - __builtin_offsetof (__typeof(*ce), parallel.child_link) );}); &ce->parallel .child_link != (&(parent)->parallel.child_list); ce = ( { const __typeof( ((__typeof(*ce) *)0)->parallel.child_link ) *__mptr = (ce->parallel.child_link.next); (__typeof(*ce ) *)( (char *)__mptr - __builtin_offsetof(__typeof(*ce), parallel .child_link) );})) | |||
| 2685 | intel_context_set_nopreempt(ce); | |||
| 2686 | ||||
| 2687 | return parent; | |||
| 2688 | ||||
| 2689 | unwind: | |||
| 2690 | if (parent) | |||
| 2691 | intel_context_put(parent); | |||
| 2692 | return err; | |||
| 2693 | } | |||
| 2694 | ||||
| 2695 | static const struct intel_context_ops execlists_context_ops = { | |||
| 2696 | .flags = COPS_HAS_INFLIGHT(1UL << (0)) | COPS_RUNTIME_CYCLES(1UL << (1)), | |||
| 2697 | ||||
| 2698 | .alloc = execlists_context_alloc, | |||
| 2699 | ||||
| 2700 | .cancel_request = execlists_context_cancel_request, | |||
| 2701 | ||||
| 2702 | .pre_pin = execlists_context_pre_pin, | |||
| 2703 | .pin = execlists_context_pin, | |||
| 2704 | .unpin = lrc_unpin, | |||
| 2705 | .post_unpin = lrc_post_unpin, | |||
| 2706 | ||||
| 2707 | .enter = intel_context_enter_engine, | |||
| 2708 | .exit = intel_context_exit_engine, | |||
| 2709 | ||||
| 2710 | .reset = lrc_reset, | |||
| 2711 | .destroy = lrc_destroy, | |||
| 2712 | ||||
| 2713 | .create_parallel = execlists_create_parallel, | |||
| 2714 | .create_virtual = execlists_create_virtual, | |||
| 2715 | }; | |||
| 2716 | ||||
| 2717 | static int emit_pdps(struct i915_request *rq) | |||
| 2718 | { | |||
| 2719 | const struct intel_engine_cs * const engine = rq->engine; | |||
| 2720 | struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(rq->context->vm); | |||
| 2721 | int err, i; | |||
| 2722 | u32 *cs; | |||
| 2723 | ||||
| 2724 | GEM_BUG_ON(intel_vgpu_active(rq->engine->i915))((void)0); | |||
| 2725 | ||||
| 2726 | /* | |||
| 2727 | * Beware ye of the dragons, this sequence is magic! | |||
| 2728 | * | |||
| 2729 | * Small changes to this sequence can cause anything from | |||
| 2730 | * GPU hangs to forcewake errors and machine lockups! | |||
| 2731 | */ | |||
| 2732 | ||||
| 2733 | cs = intel_ring_begin(rq, 2); | |||
| 2734 | if (IS_ERR(cs)) | |||
| 2735 | return PTR_ERR(cs); | |||
| 2736 | ||||
| 2737 | *cs++ = MI_ARB_ON_OFF(((0x0) << 29) | (0x08) << 23 | (0)) | MI_ARB_DISABLE(0<<0); | |||
| 2738 | *cs++ = MI_NOOP(((0x0) << 29) | (0) << 23 | (0)); | |||
| 2739 | intel_ring_advance(rq, cs); | |||
| 2740 | ||||
| 2741 | /* Flush any residual operations from the context load */ | |||
| 2742 | err = engine->emit_flush(rq, EMIT_FLUSH(1UL << (1))); | |||
| 2743 | if (err) | |||
| 2744 | return err; | |||
| 2745 | ||||
| 2746 | /* Magic required to prevent forcewake errors! */ | |||
| 2747 | err = engine->emit_flush(rq, EMIT_INVALIDATE(1UL << (0))); | |||
| 2748 | if (err) | |||
| 2749 | return err; | |||
| 2750 | ||||
| 2751 | cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES4 + 2); | |||
| 2752 | if (IS_ERR(cs)) | |||
| 2753 | return PTR_ERR(cs); | |||
| 2754 | ||||
| 2755 | /* Ensure the LRI have landed before we invalidate & continue */ | |||
| 2756 | *cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES)(((0x0) << 29) | (0x22) << 23 | (2*(2 * 4)-1)) | MI_LRI_FORCE_POSTED(1<<12); | |||
| 2757 | for (i = GEN8_3LVL_PDPES4; i--; ) { | |||
| 2758 | const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i); | |||
| 2759 | u32 base = engine->mmio_base; | |||
| 2760 | ||||
| 2761 | *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i)((const i915_reg_t){ .reg = ((base) + 0x270 + (i) * 8 + 4) })); | |||
| 2762 | *cs++ = upper_32_bits(pd_daddr)((u32)(((pd_daddr) >> 16) >> 16)); | |||
| 2763 | *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i)((const i915_reg_t){ .reg = ((base) + 0x270 + (i) * 8) })); | |||
| 2764 | *cs++ = lower_32_bits(pd_daddr)((u32)(pd_daddr)); | |||
| 2765 | } | |||
| 2766 | *cs++ = MI_ARB_ON_OFF(((0x0) << 29) | (0x08) << 23 | (0)) | MI_ARB_ENABLE(1<<0); | |||
| 2767 | intel_ring_advance(rq, cs); | |||
| 2768 | ||||
| 2769 | intel_ring_advance(rq, cs); | |||
| 2770 | ||||
| 2771 | return 0; | |||
| 2772 | } | |||
| 2773 | ||||
| 2774 | static int execlists_request_alloc(struct i915_request *request) | |||
| 2775 | { | |||
| 2776 | int ret; | |||
| 2777 | ||||
| 2778 | GEM_BUG_ON(!intel_context_is_pinned(request->context))((void)0); | |||
| 2779 | ||||
| 2780 | /* | |||
| 2781 | * Flush enough space to reduce the likelihood of waiting after | |||
| 2782 | * we start building the request - in which case we will just | |||
| 2783 | * have to repeat work. | |||
| 2784 | */ | |||
| 2785 | request->reserved_space += EXECLISTS_REQUEST_SIZE64; | |||
| 2786 | ||||
| 2787 | /* | |||
| 2788 | * Note that after this point, we have committed to using | |||
| 2789 | * this request as it is being used to both track the | |||
| 2790 | * state of engine initialisation and liveness of the | |||
| 2791 | * golden renderstate above. Think twice before you try | |||
| 2792 | * to cancel/unwind this request now. | |||
| 2793 | */ | |||
| 2794 | ||||
| 2795 | if (!i915_vm_is_4lvl(request->context->vm)) { | |||
| 2796 | ret = emit_pdps(request); | |||
| 2797 | if (ret) | |||
| 2798 | return ret; | |||
| 2799 | } | |||
| 2800 | ||||
| 2801 | /* Unconditionally invalidate GPU caches and TLBs. */ | |||
| 2802 | ret = request->engine->emit_flush(request, EMIT_INVALIDATE(1UL << (0))); | |||
| 2803 | if (ret) | |||
| 2804 | return ret; | |||
| 2805 | ||||
| 2806 | request->reserved_space -= EXECLISTS_REQUEST_SIZE64; | |||
| 2807 | return 0; | |||
| 2808 | } | |||
| 2809 | ||||
| 2810 | static void reset_csb_pointers(struct intel_engine_cs *engine) | |||
| 2811 | { | |||
| 2812 | struct intel_engine_execlists * const execlists = &engine->execlists; | |||
| 2813 | const unsigned int reset_value = execlists->csb_size - 1; | |||
| 2814 | ||||
| 2815 | ring_set_paused(engine, 0); | |||
| 2816 | ||||
| 2817 | /* | |||
| 2818 | * Sometimes Icelake forgets to reset its pointers on a GPU reset. | |||
| 2819 | * Bludgeon them with a mmio update to be sure. | |||
| 2820 | */ | |||
| 2821 | ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,intel_uncore_write(((engine))->uncore, ((const i915_reg_t) { .reg = (((engine)->mmio_base) + 0x3a0) }), (0xffff << 16 | reset_value << 8 | reset_value)) | |||
| 2822 | 0xffff << 16 | reset_value << 8 | reset_value)intel_uncore_write(((engine))->uncore, ((const i915_reg_t) { .reg = (((engine)->mmio_base) + 0x3a0) }), (0xffff << 16 | reset_value << 8 | reset_value)); | |||
| 2823 | ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR)((void)__raw_uncore_read32(((engine))->uncore, ((const i915_reg_t ){ .reg = (((engine)->mmio_base) + 0x3a0) }))); | |||
| 2824 | ||||
| 2825 | /* | |||
| 2826 | * After a reset, the HW starts writing into CSB entry [0]. We | |||
| 2827 | * therefore have to set our HEAD pointer back one entry so that | |||
| 2828 | * the *first* entry we check is entry 0. To complicate this further, | |||
| 2829 | * as we don't wait for the first interrupt after reset, we have to | |||
| 2830 | * fake the HW write to point back to the last entry so that our | |||
| 2831 | * inline comparison of our cached head position against the last HW | |||
| 2832 | * write works even before the first interrupt. | |||
| 2833 | */ | |||
| 2834 | execlists->csb_head = reset_value; | |||
| 2835 | WRITE_ONCE(*execlists->csb_write, reset_value)({ typeof(*execlists->csb_write) __tmp = (reset_value); *( volatile typeof(*execlists->csb_write) *)&(*execlists-> csb_write) = __tmp; __tmp; }); | |||
| 2836 | wmb()do { __asm volatile("sfence" ::: "memory"); } while (0); /* Make sure this is visible to HW (paranoia?) */ | |||
| 2837 | ||||
| 2838 | /* Check that the GPU does indeed update the CSB entries! */ | |||
| 2839 | memset(execlists->csb_status, -1, (reset_value + 1) * sizeof(u64))__builtin_memset((execlists->csb_status), (-1), ((reset_value + 1) * sizeof(u64))); | |||
| 2840 | drm_clflush_virt_range(execlists->csb_status, | |||
| 2841 | execlists->csb_size * | |||
| 2842 | sizeof(execlists->csb_status)); | |||
| 2843 | ||||
| 2844 | /* Once more for luck and our trusty paranoia */ | |||
| 2845 | ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,intel_uncore_write(((engine))->uncore, ((const i915_reg_t) { .reg = (((engine)->mmio_base) + 0x3a0) }), (0xffff << 16 | reset_value << 8 | reset_value)) | |||
| 2846 | 0xffff << 16 | reset_value << 8 | reset_value)intel_uncore_write(((engine))->uncore, ((const i915_reg_t) { .reg = (((engine)->mmio_base) + 0x3a0) }), (0xffff << 16 | reset_value << 8 | reset_value)); | |||
| 2847 | ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR)((void)__raw_uncore_read32(((engine))->uncore, ((const i915_reg_t ){ .reg = (((engine)->mmio_base) + 0x3a0) }))); | |||
| 2848 | ||||
| 2849 | GEM_BUG_ON(READ_ONCE(*execlists->csb_write) != reset_value)((void)0); | |||
| 2850 | } | |||
| 2851 | ||||
| 2852 | static void sanitize_hwsp(struct intel_engine_cs *engine) | |||
| 2853 | { | |||
| 2854 | struct intel_timeline *tl; | |||
| 2855 | ||||
| 2856 | list_for_each_entry(tl, &engine->status_page.timelines, engine_link)for (tl = ({ const __typeof( ((__typeof(*tl) *)0)->engine_link ) *__mptr = ((&engine->status_page.timelines)->next ); (__typeof(*tl) *)( (char *)__mptr - __builtin_offsetof(__typeof (*tl), engine_link) );}); &tl->engine_link != (&engine ->status_page.timelines); tl = ({ const __typeof( ((__typeof (*tl) *)0)->engine_link ) *__mptr = (tl->engine_link.next ); (__typeof(*tl) *)( (char *)__mptr - __builtin_offsetof(__typeof (*tl), engine_link) );})) | |||
| 2857 | intel_timeline_reset_seqno(tl); | |||
| 2858 | } | |||
| 2859 | ||||
| 2860 | static void execlists_sanitize(struct intel_engine_cs *engine) | |||
| 2861 | { | |||
| 2862 | GEM_BUG_ON(execlists_active(&engine->execlists))((void)0); | |||
| 2863 | ||||
| 2864 | /* | |||
| 2865 | * Poison residual state on resume, in case the suspend didn't! | |||
| 2866 | * | |||
| 2867 | * We have to assume that across suspend/resume (or other loss | |||
| 2868 | * of control) that the contents of our pinned buffers has been | |||
| 2869 | * lost, replaced by garbage. Since this doesn't always happen, | |||
| 2870 | * let's poison such state so that we more quickly spot when | |||
| 2871 | * we falsely assume it has been preserved. | |||
| 2872 | */ | |||
| 2873 | if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)0) | |||
| 2874 | memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE)__builtin_memset((engine->status_page.addr), (0xdb), ((1 << 12))); | |||
| 2875 | ||||
| 2876 | reset_csb_pointers(engine); | |||
| 2877 | ||||
| 2878 | /* | |||
| 2879 | * The kernel_context HWSP is stored in the status_page. As above, | |||
| 2880 | * that may be lost on resume/initialisation, and so we need to | |||
| 2881 | * reset the value in the HWSP. | |||
| 2882 | */ | |||
| 2883 | sanitize_hwsp(engine); | |||
| 2884 | ||||
| 2885 | /* And scrub the dirty cachelines for the HWSP */ | |||
| 2886 | drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE(1 << 12)); | |||
| 2887 | ||||
| 2888 | intel_engine_reset_pinned_contexts(engine); | |||
| 2889 | } | |||
| 2890 | ||||
| 2891 | static void enable_error_interrupt(struct intel_engine_cs *engine) | |||
| 2892 | { | |||
| 2893 | u32 status; | |||
| 2894 | ||||
| 2895 | engine->execlists.error_interrupt = 0; | |||
| 2896 | ENGINE_WRITE(engine, RING_EMR, ~0u)intel_uncore_write(((engine))->uncore, ((const i915_reg_t) { .reg = (((engine)->mmio_base) + 0xb4) }), (~0u)); | |||
| 2897 | ENGINE_WRITE(engine, RING_EIR, ~0u)intel_uncore_write(((engine))->uncore, ((const i915_reg_t) { .reg = (((engine)->mmio_base) + 0xb0) }), (~0u)); /* clear all existing errors */ | |||
| 2898 | ||||
| 2899 | status = ENGINE_READ(engine, RING_ESR)intel_uncore_read(((engine))->uncore, ((const i915_reg_t){ .reg = (((engine)->mmio_base) + 0xb8) })); | |||
| 2900 | if (unlikely(status)__builtin_expect(!!(status), 0)) { | |||
| 2901 | drm_err(&engine->i915->drm,printf("drm:pid%d:%s *ERROR* " "[drm] " "*ERROR* " "engine '%s' resumed still in error: %08x\n" , ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_curproc->p_p->ps_pid, __func__ , engine ->name, status) | |||
| 2902 | "engine '%s' resumed still in error: %08x\n",printf("drm:pid%d:%s *ERROR* " "[drm] " "*ERROR* " "engine '%s' resumed still in error: %08x\n" , ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_curproc->p_p->ps_pid, __func__ , engine ->name, status) | |||
| 2903 | engine->name, status)printf("drm:pid%d:%s *ERROR* " "[drm] " "*ERROR* " "engine '%s' resumed still in error: %08x\n" , ({struct cpu_info *__ci; asm volatile("movq %%gs:%P1,%0" : "=r" (__ci) :"n" (__builtin_offsetof(struct cpu_info, ci_self))); __ci;})->ci_curproc->p_p->ps_pid, __func__ , engine ->name, status); | |||
| 2904 | __intel_gt_reset(engine->gt, engine->mask); | |||
| 2905 | } | |||
| 2906 | ||||
| 2907 | /* | |||
| 2908 | * On current gen8+, we have 2 signals to play with | |||
| 2909 | * | |||
| 2910 | * - I915_ERROR_INSTUCTION (bit 0) | |||
| 2911 | * | |||
| 2912 | * Generate an error if the command parser encounters an invalid | |||
| 2913 | * instruction | |||
| 2914 | * | |||
| 2915 | * This is a fatal error. | |||
| 2916 | * | |||
| 2917 | * - CP_PRIV (bit 2) | |||
| 2918 | * | |||
| 2919 | * Generate an error on privilege violation (where the CP replaces | |||
| 2920 | * the instruction with a no-op). This also fires for writes into | |||
| 2921 | * read-only scratch pages. | |||
| 2922 | * | |||
| 2923 | * This is a non-fatal error, parsing continues. | |||
| 2924 | * | |||
| 2925 | * * there are a few others defined for odd HW that we do not use | |||
| 2926 | * | |||
| 2927 | * Since CP_PRIV fires for cases where we have chosen to ignore the | |||
| 2928 | * error (as the HW is validating and suppressing the mistakes), we | |||
| 2929 | * only unmask the instruction error bit. | |||
| 2930 | */ | |||
| 2931 | ENGINE_WRITE(engine, RING_EMR, ~I915_ERROR_INSTRUCTION)intel_uncore_write(((engine))->uncore, ((const i915_reg_t) { .reg = (((engine)->mmio_base) + 0xb4) }), (~(1 << 0 ))); | |||
| 2932 | } | |||
| 2933 | ||||
| 2934 | static void enable_execlists(struct intel_engine_cs *engine) | |||
| 2935 | { | |||
| 2936 | u32 mode; | |||
| 2937 | ||||
| 2938 | assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL); | |||
| 2939 | ||||
| 2940 | intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */ | |||
| 2941 | ||||
| 2942 | if (GRAPHICS_VER(engine->i915)((&(engine->i915)->__runtime)->graphics.ip.ver) >= 11) | |||
| 2943 | mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE)({ typeof((1 << 3)) _a = ((1 << 3)); ({ if (__builtin_constant_p (_a)) do { } while (0); if (__builtin_constant_p(_a)) do { } while (0); if (__builtin_constant_p(_a) && __builtin_constant_p (_a)) do { } while (0); ((_a) << 16 | (_a)); }); }); | |||
| 2944 | else | |||
| 2945 | mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE)({ typeof((1 << 15)) _a = ((1 << 15)); ({ if (__builtin_constant_p (_a)) do { } while (0); if (__builtin_constant_p(_a)) do { } while (0); if (__builtin_constant_p(_a) && __builtin_constant_p (_a)) do { } while (0); ((_a) << 16 | (_a)); }); }); | |||
| 2946 | ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode)__raw_uncore_write32(((engine))->uncore, ((const i915_reg_t ){ .reg = (((engine)->mmio_base) + 0x29c) }), (mode)); | |||
| 2947 | ||||
| 2948 | ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING))__raw_uncore_write32(((engine))->uncore, ((const i915_reg_t ){ .reg = (((engine)->mmio_base) + 0x9c) }), ((({ if (__builtin_constant_p ((((u32)((1UL << (8)) + 0))))) do { } while (0); if (__builtin_constant_p (0)) do { } while (0); if (__builtin_constant_p((((u32)((1UL << (8)) + 0)))) && __builtin_constant_p(0)) do { } while (0); (((((u32)((1UL << (8)) + 0)))) << 16 | (0)) ; })))); | |||
| 2949 | ||||
| 2950 | ENGINE_WRITE_FW(engine,__raw_uncore_write32(((engine))->uncore, ((const i915_reg_t ){ .reg = (((engine)->mmio_base) + 0x80) }), (i915_ggtt_offset (engine->status_page.vma))) | |||
| 2951 | RING_HWS_PGA,__raw_uncore_write32(((engine))->uncore, ((const i915_reg_t ){ .reg = (((engine)->mmio_base) + 0x80) }), (i915_ggtt_offset (engine->status_page.vma))) | |||
| 2952 | i915_ggtt_offset(engine->status_page.vma))__raw_uncore_write32(((engine))->uncore, ((const i915_reg_t ){ .reg = (((engine)->mmio_base) + 0x80) }), (i915_ggtt_offset (engine->status_page.vma))); | |||
| 2953 | ENGINE_POSTING_READ(engine, RING_HWS_PGA)((void)__raw_uncore_read32(((engine))->uncore, ((const i915_reg_t ){ .reg = (((engine)->mmio_base) + 0x80) }))); | |||
| 2954 | ||||
| 2955 | enable_error_interrupt(engine); | |||
| 2956 | } | |||
| 2957 | ||||
| 2958 | static int execlists_resume(struct intel_engine_cs *engine) | |||
| 2959 | { | |||
| 2960 | intel_mocs_init_engine(engine); | |||
| 2961 | intel_breadcrumbs_reset(engine->breadcrumbs); | |||
| 2962 | ||||
| 2963 | enable_execlists(engine); | |||
| 2964 | ||||
| 2965 | if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE(1UL << (11))) | |||
| 2966 | xehp_enable_ccs_engines(engine); | |||
| 2967 | ||||
| 2968 | return 0; | |||
| 2969 | } | |||
| 2970 | ||||
| 2971 | static void execlists_reset_prepare(struct intel_engine_cs *engine) | |||
| 2972 | { | |||
| 2973 | ENGINE_TRACE(engine, "depth<-%d\n",do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 2974 | atomic_read(&engine->sched_engine->tasklet.count))do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0); | |||
| 2975 | ||||
| 2976 | /* | |||
| 2977 | * Prevent request submission to the hardware until we have | |||
| 2978 | * completed the reset in i915_gem_reset_finish(). If a request | |||
| 2979 | * is completed by one engine, it may then queue a request | |||
| 2980 | * to a second via its execlists->tasklet *just* as we are | |||
| 2981 | * calling engine->resume() and also writing the ELSP. | |||
| 2982 | * Turning off the execlists->tasklet until the reset is over | |||
| 2983 | * prevents the race. | |||
| 2984 | */ | |||
| 2985 | __tasklet_disable_sync_once(&engine->sched_engine->tasklet); | |||
| 2986 | GEM_BUG_ON(!reset_in_progress(engine))((void)0); | |||
| 2987 | ||||
| 2988 | /* | |||
| 2989 | * We stop engines, otherwise we might get failed reset and a | |||
| 2990 | * dead gpu (on elk). Also as modern gpu as kbl can suffer | |||
| 2991 | * from system hang if batchbuffer is progressing when | |||
| 2992 | * the reset is issued, regardless of READY_TO_RESET ack. | |||
| 2993 | * Thus assume it is best to stop engines on all gens | |||
| 2994 | * where we have a gpu reset. | |||
| 2995 | * | |||
| 2996 | * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES) | |||
| 2997 | * | |||
| 2998 | * FIXME: Wa for more modern gens needs to be validated | |||
| 2999 | */ | |||
| 3000 | ring_set_paused(engine, 1); | |||
| 3001 | intel_engine_stop_cs(engine); | |||
| 3002 | ||||
| 3003 | /* | |||
| 3004 | * Wa_22011802037:gen11/gen12: In addition to stopping the cs, we need | |||
| 3005 | * to wait for any pending mi force wakeups | |||
| 3006 | */ | |||
| 3007 | if (IS_GRAPHICS_VER(engine->i915, 11, 12)(((&(engine->i915)->__runtime)->graphics.ip.ver) >= (11) && ((&(engine->i915)->__runtime )->graphics.ip.ver) <= (12))) | |||
| 3008 | intel_engine_wait_for_pending_mi_fw(engine); | |||
| 3009 | ||||
| 3010 | engine->execlists.reset_ccid = active_ccid(engine); | |||
| 3011 | } | |||
| 3012 | ||||
| 3013 | static struct i915_request ** | |||
| 3014 | reset_csb(struct intel_engine_cs *engine, struct i915_request **inactive) | |||
| 3015 | { | |||
| 3016 | struct intel_engine_execlists * const execlists = &engine->execlists; | |||
| 3017 | ||||
| 3018 | drm_clflush_virt_range(execlists->csb_write, | |||
| 3019 | sizeof(execlists->csb_write[0])); | |||
| 3020 | ||||
| 3021 | inactive = process_csb(engine, inactive); /* drain preemption events */ | |||
| 3022 | ||||
| 3023 | /* Following the reset, we need to reload the CSB read/write pointers */ | |||
| 3024 | reset_csb_pointers(engine); | |||
| 3025 | ||||
| 3026 | return inactive; | |||
| 3027 | } | |||
| 3028 | ||||
| 3029 | static void | |||
| 3030 | execlists_reset_active(struct intel_engine_cs *engine, bool_Bool stalled) | |||
| 3031 | { | |||
| 3032 | struct intel_context *ce; | |||
| 3033 | struct i915_request *rq; | |||
| 3034 | u32 head; | |||
| 3035 | ||||
| 3036 | /* | |||
| 3037 | * Save the currently executing context, even if we completed | |||
| 3038 | * its request, it was still running at the time of the | |||
| 3039 | * reset and will have been clobbered. | |||
| 3040 | */ | |||
| 3041 | rq = active_context(engine, engine->execlists.reset_ccid); | |||
| 3042 | if (!rq) | |||
| 3043 | return; | |||
| 3044 | ||||
| 3045 | ce = rq->context; | |||
| 3046 | GEM_BUG_ON(!i915_vma_is_pinned(ce->state))((void)0); | |||
| 3047 | ||||
| 3048 | if (__i915_request_is_complete(rq)) { | |||
| 3049 | /* Idle context; tidy up the ring so we can restart afresh */ | |||
| 3050 | head = intel_ring_wrap(ce->ring, rq->tail); | |||
| 3051 | goto out_replay; | |||
| 3052 | } | |||
| 3053 | ||||
| 3054 | /* We still have requests in-flight; the engine should be active */ | |||
| 3055 | GEM_BUG_ON(!intel_engine_pm_is_awake(engine))((void)0); | |||
| 3056 | ||||
| 3057 | /* Context has requests still in-flight; it should not be idle! */ | |||
| 3058 | GEM_BUG_ON(i915_active_is_idle(&ce->active))((void)0); | |||
| 3059 | ||||
| 3060 | rq = active_request(ce->timeline, rq); | |||
| 3061 | head = intel_ring_wrap(ce->ring, rq->head); | |||
| 3062 | GEM_BUG_ON(head == ce->ring->tail)((void)0); | |||
| 3063 | ||||
| 3064 | /* | |||
| 3065 | * If this request hasn't started yet, e.g. it is waiting on a | |||
| 3066 | * semaphore, we need to avoid skipping the request or else we | |||
| 3067 | * break the signaling chain. However, if the context is corrupt | |||
| 3068 | * the request will not restart and we will be stuck with a wedged | |||
| 3069 | * device. It is quite often the case that if we issue a reset | |||
| 3070 | * while the GPU is loading the context image, that the context | |||
| 3071 | * image becomes corrupt. | |||
| 3072 | * | |||
| 3073 | * Otherwise, if we have not started yet, the request should replay | |||
| 3074 | * perfectly and we do not need to flag the result as being erroneous. | |||
| 3075 | */ | |||
| 3076 | if (!__i915_request_has_started(rq)) | |||
| 3077 | goto out_replay; | |||
| 3078 | ||||
| 3079 | /* | |||
| 3080 | * If the request was innocent, we leave the request in the ELSP | |||
| 3081 | * and will try to replay it on restarting. The context image may | |||
| 3082 | * have been corrupted by the reset, in which case we may have | |||
| 3083 | * to service a new GPU hang, but more likely we can continue on | |||
| 3084 | * without impact. | |||
| 3085 | * | |||
| 3086 | * If the request was guilty, we presume the context is corrupt | |||
| 3087 | * and have to at least restore the RING register in the context | |||
| 3088 | * image back to the expected values to skip over the guilty request. | |||
| 3089 | */ | |||
| 3090 | __i915_request_reset(rq, stalled); | |||
| 3091 | ||||
| 3092 | /* | |||
| 3093 | * We want a simple context + ring to execute the breadcrumb update. | |||
| 3094 | * We cannot rely on the context being intact across the GPU hang, | |||
| 3095 | * so clear it and rebuild just what we need for the breadcrumb. | |||
| 3096 | * All pending requests for this context will be zapped, and any | |||
| 3097 | * future request will be after userspace has had the opportunity | |||
| 3098 | * to recreate its own state. | |||
| 3099 | */ | |||
| 3100 | out_replay: | |||
| 3101 | ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n",do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 3102 | head, ce->ring->tail)do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0); | |||
| 3103 | lrc_reset_regs(ce, engine); | |||
| 3104 | ce->lrc.lrca = lrc_update_regs(ce, engine, head); | |||
| 3105 | } | |||
| 3106 | ||||
| 3107 | static void execlists_reset_csb(struct intel_engine_cs *engine, bool_Bool stalled) | |||
| 3108 | { | |||
| 3109 | struct intel_engine_execlists * const execlists = &engine->execlists; | |||
| 3110 | struct i915_request *post[2 * EXECLIST_MAX_PORTS2]; | |||
| 3111 | struct i915_request **inactive; | |||
| 3112 | ||||
| 3113 | rcu_read_lock(); | |||
| 3114 | inactive = reset_csb(engine, post); | |||
| 3115 | ||||
| 3116 | execlists_reset_active(engine, true1); | |||
| 3117 | ||||
| 3118 | inactive = cancel_port_requests(execlists, inactive); | |||
| 3119 | post_process_csb(post, inactive); | |||
| 3120 | rcu_read_unlock(); | |||
| 3121 | } | |||
| 3122 | ||||
| 3123 | static void execlists_reset_rewind(struct intel_engine_cs *engine, bool_Bool stalled) | |||
| 3124 | { | |||
| 3125 | unsigned long flags; | |||
| 3126 | ||||
| 3127 | ENGINE_TRACE(engine, "\n")do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0); | |||
| 3128 | ||||
| 3129 | /* Process the csb, find the guilty context and throw away */ | |||
| 3130 | execlists_reset_csb(engine, stalled); | |||
| 3131 | ||||
| 3132 | /* Push back any incomplete requests for replay after the reset. */ | |||
| 3133 | rcu_read_lock(); | |||
| 3134 | spin_lock_irqsave(&engine->sched_engine->lock, flags)do { flags = 0; mtx_enter(&engine->sched_engine->lock ); } while (0); | |||
| 3135 | __unwind_incomplete_requests(engine); | |||
| 3136 | spin_unlock_irqrestore(&engine->sched_engine->lock, flags)do { (void)(flags); mtx_leave(&engine->sched_engine-> lock); } while (0); | |||
| 3137 | rcu_read_unlock(); | |||
| 3138 | } | |||
| 3139 | ||||
| 3140 | static void nop_submission_tasklet(struct tasklet_struct *t) | |||
| 3141 | { | |||
| 3142 | struct i915_sched_engine *sched_engine = | |||
| 3143 | from_tasklet(sched_engine, t, tasklet)({ const __typeof( ((typeof(*sched_engine) *)0)->tasklet ) *__mptr = (t); (typeof(*sched_engine) *)( (char *)__mptr - __builtin_offsetof (typeof(*sched_engine), tasklet) );}); | |||
| 3144 | struct intel_engine_cs * const engine = sched_engine->private_data; | |||
| 3145 | ||||
| 3146 | /* The driver is wedged; don't process any more events. */ | |||
| 3147 | WRITE_ONCE(engine->sched_engine->queue_priority_hint, INT_MIN)({ typeof(engine->sched_engine->queue_priority_hint) __tmp = ((-0x7fffffff-1)); *(volatile typeof(engine->sched_engine ->queue_priority_hint) *)&(engine->sched_engine-> queue_priority_hint) = __tmp; __tmp; }); | |||
| 3148 | } | |||
| 3149 | ||||
| 3150 | static void execlists_reset_cancel(struct intel_engine_cs *engine) | |||
| 3151 | { | |||
| 3152 | struct intel_engine_execlists * const execlists = &engine->execlists; | |||
| 3153 | struct i915_sched_engine * const sched_engine = engine->sched_engine; | |||
| 3154 | struct i915_request *rq, *rn; | |||
| 3155 | struct rb_node *rb; | |||
| 3156 | unsigned long flags; | |||
| 3157 | ||||
| 3158 | ENGINE_TRACE(engine, "\n")do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0); | |||
| 3159 | ||||
| 3160 | /* | |||
| 3161 | * Before we call engine->cancel_requests(), we should have exclusive | |||
| 3162 | * access to the submission state. This is arranged for us by the | |||
| 3163 | * caller disabling the interrupt generation, the tasklet and other | |||
| 3164 | * threads that may then access the same state, giving us a free hand | |||
| 3165 | * to reset state. However, we still need to let lockdep be aware that | |||
| 3166 | * we know this state may be accessed in hardirq context, so we | |||
| 3167 | * disable the irq around this manipulation and we want to keep | |||
| 3168 | * the spinlock focused on its duties and not accidentally conflate | |||
| 3169 | * coverage to the submission's irq state. (Similarly, although we | |||
| 3170 | * shouldn't need to disable irq around the manipulation of the | |||
| 3171 | * submission's irq state, we also wish to remind ourselves that | |||
| 3172 | * it is irq state.) | |||
| 3173 | */ | |||
| 3174 | execlists_reset_csb(engine, true1); | |||
| 3175 | ||||
| 3176 | rcu_read_lock(); | |||
| 3177 | spin_lock_irqsave(&engine->sched_engine->lock, flags)do { flags = 0; mtx_enter(&engine->sched_engine->lock ); } while (0); | |||
| 3178 | ||||
| 3179 | /* Mark all executing requests as skipped. */ | |||
| 3180 | list_for_each_entry(rq, &engine->sched_engine->requests, sched.link)for (rq = ({ const __typeof( ((__typeof(*rq) *)0)->sched.link ) *__mptr = ((&engine->sched_engine->requests)-> next); (__typeof(*rq) *)( (char *)__mptr - __builtin_offsetof (__typeof(*rq), sched.link) );}); &rq->sched.link != ( &engine->sched_engine->requests); rq = ({ const __typeof ( ((__typeof(*rq) *)0)->sched.link ) *__mptr = (rq->sched .link.next); (__typeof(*rq) *)( (char *)__mptr - __builtin_offsetof (__typeof(*rq), sched.link) );})) | |||
| 3181 | i915_request_put(i915_request_mark_eio(rq)); | |||
| 3182 | intel_engine_signal_breadcrumbs(engine); | |||
| 3183 | ||||
| 3184 | /* Flush the queued requests to the timeline list (for retiring). */ | |||
| 3185 | while ((rb = rb_first_cached(&sched_engine->queue)linux_root_RB_MINMAX((struct linux_root *)(&(&sched_engine ->queue)->rb_root), -1))) { | |||
| 3186 | struct i915_priolist *p = to_priolist(rb); | |||
| 3187 | ||||
| 3188 | priolist_for_each_request_consume(rq, rn, p)for (rq = ({ const __typeof( ((__typeof(*rq) *)0)->sched.link ) *__mptr = ((&(p)->requests)->next); (__typeof(*rq ) *)( (char *)__mptr - __builtin_offsetof(__typeof(*rq), sched .link) );}), rn = ({ const __typeof( ((__typeof(*rq) *)0)-> sched.link ) *__mptr = (rq->sched.link.next); (__typeof(*rq ) *)( (char *)__mptr - __builtin_offsetof(__typeof(*rq), sched .link) );}); &rq->sched.link != (&(p)->requests ); rq = rn, rn = ({ const __typeof( ((__typeof(*rn) *)0)-> sched.link ) *__mptr = (rn->sched.link.next); (__typeof(*rn ) *)( (char *)__mptr - __builtin_offsetof(__typeof(*rn), sched .link) );})) { | |||
| 3189 | if (i915_request_mark_eio(rq)) { | |||
| 3190 | __i915_request_submit(rq); | |||
| 3191 | i915_request_put(rq); | |||
| 3192 | } | |||
| 3193 | } | |||
| 3194 | ||||
| 3195 | rb_erase_cached(&p->node, &sched_engine->queue)linux_root_RB_REMOVE((struct linux_root *)(&(&sched_engine ->queue)->rb_root), (&p->node)); | |||
| 3196 | i915_priolist_free(p); | |||
| 3197 | } | |||
| 3198 | ||||
| 3199 | /* On-hold requests will be flushed to timeline upon their release */ | |||
| 3200 | list_for_each_entry(rq, &sched_engine->hold, sched.link)for (rq = ({ const __typeof( ((__typeof(*rq) *)0)->sched.link ) *__mptr = ((&sched_engine->hold)->next); (__typeof (*rq) *)( (char *)__mptr - __builtin_offsetof(__typeof(*rq), sched .link) );}); &rq->sched.link != (&sched_engine-> hold); rq = ({ const __typeof( ((__typeof(*rq) *)0)->sched .link ) *__mptr = (rq->sched.link.next); (__typeof(*rq) *) ( (char *)__mptr - __builtin_offsetof(__typeof(*rq), sched.link ) );})) | |||
| 3201 | i915_request_put(i915_request_mark_eio(rq)); | |||
| 3202 | ||||
| 3203 | /* Cancel all attached virtual engines */ | |||
| 3204 | while ((rb = rb_first_cached(&execlists->virtual)linux_root_RB_MINMAX((struct linux_root *)(&(&execlists ->virtual)->rb_root), -1))) { | |||
| 3205 | struct virtual_engine *ve = | |||
| 3206 | rb_entry(rb, typeof(*ve), nodes[engine->id].rb)({ const __typeof( ((typeof(*ve) *)0)->nodes[engine->id ].rb ) *__mptr = (rb); (typeof(*ve) *)( (char *)__mptr - __builtin_offsetof (typeof(*ve), nodes[engine->id].rb) );}); | |||
| 3207 | ||||
| 3208 | rb_erase_cached(rb, &execlists->virtual)linux_root_RB_REMOVE((struct linux_root *)(&(&execlists ->virtual)->rb_root), (rb)); | |||
| 3209 | RB_CLEAR_NODE(rb)(((rb))->__entry.rbe_parent = (rb)); | |||
| 3210 | ||||
| 3211 | spin_lock(&ve->base.sched_engine->lock)mtx_enter(&ve->base.sched_engine->lock); | |||
| 3212 | rq = fetch_and_zero(&ve->request)({ typeof(*&ve->request) __T = *(&ve->request); *(&ve->request) = (typeof(*&ve->request))0; __T ; }); | |||
| 3213 | if (rq) { | |||
| 3214 | if (i915_request_mark_eio(rq)) { | |||
| 3215 | rq->engine = engine; | |||
| 3216 | __i915_request_submit(rq); | |||
| 3217 | i915_request_put(rq); | |||
| 3218 | } | |||
| 3219 | i915_request_put(rq); | |||
| 3220 | ||||
| 3221 | ve->base.sched_engine->queue_priority_hint = INT_MIN(-0x7fffffff-1); | |||
| 3222 | } | |||
| 3223 | spin_unlock(&ve->base.sched_engine->lock)mtx_leave(&ve->base.sched_engine->lock); | |||
| 3224 | } | |||
| 3225 | ||||
| 3226 | /* Remaining _unready_ requests will be nop'ed when submitted */ | |||
| 3227 | ||||
| 3228 | sched_engine->queue_priority_hint = INT_MIN(-0x7fffffff-1); | |||
| 3229 | sched_engine->queue = RB_ROOT_CACHED(struct rb_root_cached) { ((void *)0) }; | |||
| 3230 | ||||
| 3231 | GEM_BUG_ON(__tasklet_is_enabled(&engine->sched_engine->tasklet))((void)0); | |||
| 3232 | engine->sched_engine->tasklet.callback = nop_submission_tasklet; | |||
| 3233 | ||||
| 3234 | spin_unlock_irqrestore(&engine->sched_engine->lock, flags)do { (void)(flags); mtx_leave(&engine->sched_engine-> lock); } while (0); | |||
| 3235 | rcu_read_unlock(); | |||
| 3236 | } | |||
| 3237 | ||||
| 3238 | static void execlists_reset_finish(struct intel_engine_cs *engine) | |||
| 3239 | { | |||
| 3240 | struct intel_engine_execlists * const execlists = &engine->execlists; | |||
| 3241 | ||||
| 3242 | /* | |||
| 3243 | * After a GPU reset, we may have requests to replay. Do so now while | |||
| 3244 | * we still have the forcewake to be sure that the GPU is not allowed | |||
| 3245 | * to sleep before we restart and reload a context. | |||
| 3246 | * | |||
| 3247 | * If the GPU reset fails, the engine may still be alive with requests | |||
| 3248 | * inflight. We expect those to complete, or for the device to be | |||
| 3249 | * reset as the next level of recovery, and as a final resort we | |||
| 3250 | * will declare the device wedged. | |||
| 3251 | */ | |||
| 3252 | GEM_BUG_ON(!reset_in_progress(engine))((void)0); | |||
| 3253 | ||||
| 3254 | /* And kick in case we missed a new request submission. */ | |||
| 3255 | if (__tasklet_enable(&engine->sched_engine->tasklet)) | |||
| 3256 | __execlists_kick(execlists); | |||
| 3257 | ||||
| 3258 | ENGINE_TRACE(engine, "depth->%d\n",do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 3259 | atomic_read(&engine->sched_engine->tasklet.count))do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0); | |||
| 3260 | } | |||
| 3261 | ||||
| 3262 | static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine) | |||
| 3263 | { | |||
| 3264 | ENGINE_WRITE(engine, RING_IMR,intel_uncore_write(((engine))->uncore, ((const i915_reg_t) { .reg = (((engine)->mmio_base) + 0xa8) }), (~(engine-> irq_enable_mask | engine->irq_keep_mask))) | |||
| 3265 | ~(engine->irq_enable_mask | engine->irq_keep_mask))intel_uncore_write(((engine))->uncore, ((const i915_reg_t) { .reg = (((engine)->mmio_base) + 0xa8) }), (~(engine-> irq_enable_mask | engine->irq_keep_mask))); | |||
| 3266 | ENGINE_POSTING_READ(engine, RING_IMR)((void)__raw_uncore_read32(((engine))->uncore, ((const i915_reg_t ){ .reg = (((engine)->mmio_base) + 0xa8) }))); | |||
| 3267 | } | |||
| 3268 | ||||
| 3269 | static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine) | |||
| 3270 | { | |||
| 3271 | ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask)intel_uncore_write(((engine))->uncore, ((const i915_reg_t) { .reg = (((engine)->mmio_base) + 0xa8) }), (~engine->irq_keep_mask )); | |||
| 3272 | } | |||
| 3273 | ||||
| 3274 | static void execlists_park(struct intel_engine_cs *engine) | |||
| 3275 | { | |||
| 3276 | cancel_timer(&engine->execlists.timer); | |||
| 3277 | cancel_timer(&engine->execlists.preempt); | |||
| 3278 | } | |||
| 3279 | ||||
| 3280 | static void add_to_engine(struct i915_request *rq) | |||
| 3281 | { | |||
| 3282 | lockdep_assert_held(&rq->engine->sched_engine->lock)do { (void)(&rq->engine->sched_engine->lock); } while (0); | |||
| 3283 | list_move_tail(&rq->sched.link, &rq->engine->sched_engine->requests); | |||
| 3284 | } | |||
| 3285 | ||||
| 3286 | static void remove_from_engine(struct i915_request *rq) | |||
| 3287 | { | |||
| 3288 | struct intel_engine_cs *engine, *locked; | |||
| 3289 | ||||
| 3290 | /* | |||
| 3291 | * Virtual engines complicate acquiring the engine timeline lock, | |||
| 3292 | * as their rq->engine pointer is not stable until under that | |||
| 3293 | * engine lock. The simple ploy we use is to take the lock then | |||
| 3294 | * check that the rq still belongs to the newly locked engine. | |||
| 3295 | */ | |||
| 3296 | locked = READ_ONCE(rq->engine)({ typeof(rq->engine) __tmp = *(volatile typeof(rq->engine ) *)&(rq->engine); membar_datadep_consumer(); __tmp; } ); | |||
| 3297 | spin_lock_irq(&locked->sched_engine->lock)mtx_enter(&locked->sched_engine->lock); | |||
| 3298 | while (unlikely(locked != (engine = READ_ONCE(rq->engine)))__builtin_expect(!!(locked != (engine = ({ typeof(rq->engine ) __tmp = *(volatile typeof(rq->engine) *)&(rq->engine ); membar_datadep_consumer(); __tmp; }))), 0)) { | |||
| 3299 | spin_unlock(&locked->sched_engine->lock)mtx_leave(&locked->sched_engine->lock); | |||
| 3300 | spin_lock(&engine->sched_engine->lock)mtx_enter(&engine->sched_engine->lock); | |||
| 3301 | locked = engine; | |||
| 3302 | } | |||
| 3303 | list_del_init(&rq->sched.link); | |||
| 3304 | ||||
| 3305 | clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); | |||
| 3306 | clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags); | |||
| 3307 | ||||
| 3308 | /* Prevent further __await_execution() registering a cb, then flush */ | |||
| 3309 | set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); | |||
| 3310 | ||||
| 3311 | spin_unlock_irq(&locked->sched_engine->lock)mtx_leave(&locked->sched_engine->lock); | |||
| 3312 | ||||
| 3313 | i915_request_notify_execute_cb_imm(rq); | |||
| 3314 | } | |||
| 3315 | ||||
| 3316 | static bool_Bool can_preempt(struct intel_engine_cs *engine) | |||
| 3317 | { | |||
| 3318 | if (GRAPHICS_VER(engine->i915)((&(engine->i915)->__runtime)->graphics.ip.ver) > 8) | |||
| 3319 | return true1; | |||
| 3320 | ||||
| 3321 | /* GPGPU on bdw requires extra w/a; not implemented */ | |||
| 3322 | return engine->class != RENDER_CLASS0; | |||
| 3323 | } | |||
| 3324 | ||||
| 3325 | static void kick_execlists(const struct i915_request *rq, int prio) | |||
| 3326 | { | |||
| 3327 | struct intel_engine_cs *engine = rq->engine; | |||
| 3328 | struct i915_sched_engine *sched_engine = engine->sched_engine; | |||
| 3329 | const struct i915_request *inflight; | |||
| 3330 | ||||
| 3331 | /* | |||
| 3332 | * We only need to kick the tasklet once for the high priority | |||
| 3333 | * new context we add into the queue. | |||
| 3334 | */ | |||
| 3335 | if (prio <= sched_engine->queue_priority_hint) | |||
| 3336 | return; | |||
| 3337 | ||||
| 3338 | rcu_read_lock(); | |||
| 3339 | ||||
| 3340 | /* Nothing currently active? We're overdue for a submission! */ | |||
| 3341 | inflight = execlists_active(&engine->execlists); | |||
| 3342 | if (!inflight) | |||
| 3343 | goto unlock; | |||
| 3344 | ||||
| 3345 | /* | |||
| 3346 | * If we are already the currently executing context, don't | |||
| 3347 | * bother evaluating if we should preempt ourselves. | |||
| 3348 | */ | |||
| 3349 | if (inflight->context == rq->context) | |||
| 3350 | goto unlock; | |||
| 3351 | ||||
| 3352 | ENGINE_TRACE(engine,do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 3353 | "bumping queue-priority-hint:%d for rq:%llx:%lld, inflight:%llx:%lld prio %d\n",do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 3354 | prio,do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 3355 | rq->fence.context, rq->fence.seqno,do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 3356 | inflight->fence.context, inflight->fence.seqno,do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0) | |||
| 3357 | inflight->sched.attr.priority)do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (engine); do { } while (0); } while (0); | |||
| 3358 | ||||
| 3359 | sched_engine->queue_priority_hint = prio; | |||
| 3360 | ||||
| 3361 | /* | |||
| 3362 | * Allow preemption of low -> normal -> high, but we do | |||
| 3363 | * not allow low priority tasks to preempt other low priority | |||
| 3364 | * tasks under the impression that latency for low priority | |||
| 3365 | * tasks does not matter (as much as background throughput), | |||
| 3366 | * so kiss. | |||
| 3367 | */ | |||
| 3368 | if (prio >= max(I915_PRIORITY_NORMAL, rq_prio(inflight))(((I915_PRIORITY_NORMAL)>(rq_prio(inflight)))?(I915_PRIORITY_NORMAL ):(rq_prio(inflight)))) | |||
| 3369 | tasklet_hi_schedule(&sched_engine->tasklet); | |||
| 3370 | ||||
| 3371 | unlock: | |||
| 3372 | rcu_read_unlock(); | |||
| 3373 | } | |||
| 3374 | ||||
| 3375 | static void execlists_set_default_submission(struct intel_engine_cs *engine) | |||
| 3376 | { | |||
| 3377 | engine->submit_request = execlists_submit_request; | |||
| 3378 | engine->sched_engine->schedule = i915_schedule; | |||
| 3379 | engine->sched_engine->kick_backend = kick_execlists; | |||
| 3380 | engine->sched_engine->tasklet.callback = execlists_submission_tasklet; | |||
| 3381 | } | |||
| 3382 | ||||
| 3383 | static void execlists_shutdown(struct intel_engine_cs *engine) | |||
| 3384 | { | |||
| 3385 | /* Synchronise with residual timers and any softirq they raise */ | |||
| 3386 | del_timer_sync(&engine->execlists.timer)timeout_del_barrier((&engine->execlists.timer)); | |||
| 3387 | del_timer_sync(&engine->execlists.preempt)timeout_del_barrier((&engine->execlists.preempt)); | |||
| 3388 | tasklet_kill(&engine->sched_engine->tasklet); | |||
| 3389 | } | |||
| 3390 | ||||
| 3391 | static void execlists_release(struct intel_engine_cs *engine) | |||
| 3392 | { | |||
| 3393 | engine->sanitize = NULL((void *)0); /* no longer in control, nothing to sanitize */ | |||
| 3394 | ||||
| 3395 | execlists_shutdown(engine); | |||
| 3396 | ||||
| 3397 | intel_engine_cleanup_common(engine); | |||
| 3398 | lrc_fini_wa_ctx(engine); | |||
| 3399 | } | |||
| 3400 | ||||
| 3401 | static ktime_t __execlists_engine_busyness(struct intel_engine_cs *engine, | |||
| 3402 | ktime_t *now) | |||
| 3403 | { | |||
| 3404 | struct intel_engine_execlists_stats *stats = &engine->stats.execlists; | |||
| 3405 | ktime_t total = stats->total; | |||
| 3406 | ||||
| 3407 | /* | |||
| 3408 | * If the engine is executing something at the moment | |||
| 3409 | * add it to the total. | |||
| 3410 | */ | |||
| 3411 | *now = ktime_get(); | |||
| 3412 | if (READ_ONCE(stats->active)({ typeof(stats->active) __tmp = *(volatile typeof(stats-> active) *)&(stats->active); membar_datadep_consumer(); __tmp; })) | |||
| 3413 | total = ktime_add(total, ktime_sub(*now, stats->start)); | |||
| 3414 | ||||
| 3415 | return total; | |||
| 3416 | } | |||
| 3417 | ||||
| 3418 | static ktime_t execlists_engine_busyness(struct intel_engine_cs *engine, | |||
| 3419 | ktime_t *now) | |||
| 3420 | { | |||
| 3421 | struct intel_engine_execlists_stats *stats = &engine->stats.execlists; | |||
| 3422 | unsigned int seq; | |||
| 3423 | ktime_t total; | |||
| 3424 | ||||
| 3425 | do { | |||
| 3426 | seq = read_seqcount_begin(&stats->lock); | |||
| 3427 | total = __execlists_engine_busyness(engine, now); | |||
| 3428 | } while (read_seqcount_retry(&stats->lock, seq)); | |||
| 3429 | ||||
| 3430 | return total; | |||
| 3431 | } | |||
| 3432 | ||||
| 3433 | static void | |||
| 3434 | logical_ring_default_vfuncs(struct intel_engine_cs *engine) | |||
| 3435 | { | |||
| 3436 | /* Default vfuncs which can be overridden by each engine. */ | |||
| 3437 | ||||
| 3438 | engine->resume = execlists_resume; | |||
| 3439 | ||||
| 3440 | engine->cops = &execlists_context_ops; | |||
| 3441 | engine->request_alloc = execlists_request_alloc; | |||
| 3442 | engine->add_active_request = add_to_engine; | |||
| 3443 | engine->remove_active_request = remove_from_engine; | |||
| 3444 | ||||
| 3445 | engine->reset.prepare = execlists_reset_prepare; | |||
| 3446 | engine->reset.rewind = execlists_reset_rewind; | |||
| 3447 | engine->reset.cancel = execlists_reset_cancel; | |||
| 3448 | engine->reset.finish = execlists_reset_finish; | |||
| 3449 | ||||
| 3450 | engine->park = execlists_park; | |||
| 3451 | engine->unpark = NULL((void *)0); | |||
| 3452 | ||||
| 3453 | engine->emit_flush = gen8_emit_flush_xcs; | |||
| 3454 | engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb; | |||
| 3455 | engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs; | |||
| 3456 | if (GRAPHICS_VER(engine->i915)((&(engine->i915)->__runtime)->graphics.ip.ver) >= 12) { | |||
| 3457 | engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs; | |||
| 3458 | engine->emit_flush = gen12_emit_flush_xcs; | |||
| 3459 | } | |||
| 3460 | engine->set_default_submission = execlists_set_default_submission; | |||
| 3461 | ||||
| 3462 | if (GRAPHICS_VER(engine->i915)((&(engine->i915)->__runtime)->graphics.ip.ver) < 11) { | |||
| 3463 | engine->irq_enable = gen8_logical_ring_enable_irq; | |||
| 3464 | engine->irq_disable = gen8_logical_ring_disable_irq; | |||
| 3465 | } else { | |||
| 3466 | /* | |||
| 3467 | * TODO: On Gen11 interrupt masks need to be clear | |||
| 3468 | * to allow C6 entry. Keep interrupts enabled at | |||
| 3469 | * and take the hit of generating extra interrupts | |||
| 3470 | * until a more refined solution exists. | |||
| 3471 | */ | |||
| 3472 | } | |||
| 3473 | intel_engine_set_irq_handler(engine, execlists_irq_handler); | |||
| 3474 | ||||
| 3475 | engine->flags |= I915_ENGINE_SUPPORTS_STATS(1UL << (1)); | |||
| 3476 | if (!intel_vgpu_active(engine->i915)) { | |||
| 3477 | engine->flags |= I915_ENGINE_HAS_SEMAPHORES(1UL << (3)); | |||
| 3478 | if (can_preempt(engine)) { | |||
| 3479 | engine->flags |= I915_ENGINE_HAS_PREEMPTION(1UL << (2)); | |||
| 3480 | if (CONFIG_DRM_I915_TIMESLICE_DURATION1) | |||
| 3481 | engine->flags |= I915_ENGINE_HAS_TIMESLICES(1UL << (4)); | |||
| 3482 | } | |||
| 3483 | } | |||
| 3484 | ||||
| 3485 | if (GRAPHICS_VER_FULL(engine->i915)(((&(engine->i915)->__runtime)->graphics.ip.ver) << 8 | ((&(engine->i915)->__runtime)->graphics .ip.rel)) >= IP_VER(12, 50)((12) << 8 | (50))) { | |||
| 3486 | if (intel_engine_has_preemption(engine)) | |||
| 3487 | engine->emit_bb_start = gen125_emit_bb_start; | |||
| 3488 | else | |||
| 3489 | engine->emit_bb_start = gen125_emit_bb_start_noarb; | |||
| 3490 | } else { | |||
| 3491 | if (intel_engine_has_preemption(engine)) | |||
| 3492 | engine->emit_bb_start = gen8_emit_bb_start; | |||
| 3493 | else | |||
| 3494 | engine->emit_bb_start = gen8_emit_bb_start_noarb; | |||
| 3495 | } | |||
| 3496 | ||||
| 3497 | engine->busyness = execlists_engine_busyness; | |||
| 3498 | } | |||
| 3499 | ||||
| 3500 | static void logical_ring_default_irqs(struct intel_engine_cs *engine) | |||
| 3501 | { | |||
| 3502 | unsigned int shift = 0; | |||
| 3503 | ||||
| 3504 | if (GRAPHICS_VER(engine->i915)((&(engine->i915)->__runtime)->graphics.ip.ver) < 11) { | |||
| 3505 | const u8 irq_shifts[] = { | |||
| 3506 | [RCS0] = GEN8_RCS_IRQ_SHIFT0, | |||
| 3507 | [BCS0] = GEN8_BCS_IRQ_SHIFT16, | |||
| 3508 | [VCS0] = GEN8_VCS0_IRQ_SHIFT0, | |||
| 3509 | [VCS1] = GEN8_VCS1_IRQ_SHIFT16, | |||
| 3510 | [VECS0] = GEN8_VECS_IRQ_SHIFT0, | |||
| 3511 | }; | |||
| 3512 | ||||
| 3513 | shift = irq_shifts[engine->id]; | |||
| 3514 | } | |||
| 3515 | ||||
| 3516 | engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT(1 << 0) << shift; | |||
| 3517 | engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT(1 << 8) << shift; | |||
| 3518 | engine->irq_keep_mask |= GT_CS_MASTER_ERROR_INTERRUPT((u32)((1UL << (3)) + 0)) << shift; | |||
| 3519 | engine->irq_keep_mask |= GT_WAIT_SEMAPHORE_INTERRUPT((u32)((1UL << (11)) + 0)) << shift; | |||
| 3520 | } | |||
| 3521 | ||||
| 3522 | static void rcs_submission_override(struct intel_engine_cs *engine) | |||
| 3523 | { | |||
| 3524 | switch (GRAPHICS_VER(engine->i915)((&(engine->i915)->__runtime)->graphics.ip.ver)) { | |||
| 3525 | case 12: | |||
| 3526 | engine->emit_flush = gen12_emit_flush_rcs; | |||
| 3527 | engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs; | |||
| 3528 | break; | |||
| 3529 | case 11: | |||
| 3530 | engine->emit_flush = gen11_emit_flush_rcs; | |||
| 3531 | engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs; | |||
| 3532 | break; | |||
| 3533 | default: | |||
| 3534 | engine->emit_flush = gen8_emit_flush_rcs; | |||
| 3535 | engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs; | |||
| 3536 | break; | |||
| 3537 | } | |||
| 3538 | } | |||
| 3539 | ||||
| 3540 | int intel_execlists_submission_setup(struct intel_engine_cs *engine) | |||
| 3541 | { | |||
| 3542 | struct intel_engine_execlists * const execlists = &engine->execlists; | |||
| 3543 | struct drm_i915_privateinteldrm_softc *i915 = engine->i915; | |||
| 3544 | struct intel_uncore *uncore = engine->uncore; | |||
| 3545 | u32 base = engine->mmio_base; | |||
| 3546 | ||||
| 3547 | tasklet_setup(&engine->sched_engine->tasklet, execlists_submission_tasklet); | |||
| 3548 | #ifdef __linux__ | |||
| 3549 | timer_setup(&engine->execlists.timer, execlists_timeslice, 0); | |||
| 3550 | timer_setup(&engine->execlists.preempt, execlists_preempt, 0); | |||
| 3551 | #else | |||
| 3552 | timeout_set(&engine->execlists.timer, execlists_timeslice, | |||
| 3553 | &engine->execlists.timer); | |||
| 3554 | timeout_set(&engine->execlists.preempt, execlists_preempt, | |||
| 3555 | &engine->execlists.preempt); | |||
| 3556 | #endif | |||
| 3557 | ||||
| 3558 | logical_ring_default_vfuncs(engine); | |||
| 3559 | logical_ring_default_irqs(engine); | |||
| 3560 | ||||
| 3561 | seqcount_init(&engine->stats.execlists.lock); | |||
| 3562 | ||||
| 3563 | if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE(1UL << (9))) | |||
| 3564 | rcs_submission_override(engine); | |||
| 3565 | ||||
| 3566 | lrc_init_wa_ctx(engine); | |||
| 3567 | ||||
| 3568 | if (HAS_LOGICAL_RING_ELSQ(i915)((&(i915)->__info)->has_logical_ring_elsq)) { | |||
| 3569 | execlists->submit_reg = uncore->regs + | |||
| 3570 | i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base)((const i915_reg_t){ .reg = ((base) + 0x510) })); | |||
| 3571 | execlists->ctrl_reg = uncore->regs + | |||
| 3572 | i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base)((const i915_reg_t){ .reg = ((base) + 0x550) })); | |||
| 3573 | ||||
| 3574 | engine->fw_domain = intel_uncore_forcewake_for_reg(engine->uncore, | |||
| 3575 | RING_EXECLIST_CONTROL(engine->mmio_base)((const i915_reg_t){ .reg = ((engine->mmio_base) + 0x550) } ), | |||
| 3576 | FW_REG_WRITE(2)); | |||
| 3577 | } else { | |||
| 3578 | execlists->submit_reg = uncore->regs + | |||
| 3579 | i915_mmio_reg_offset(RING_ELSP(base)((const i915_reg_t){ .reg = ((base) + 0x230) })); | |||
| 3580 | } | |||
| 3581 | ||||
| 3582 | execlists->csb_status = | |||
| 3583 | (u64 *)&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX0x10]; | |||
| 3584 | ||||
| 3585 | execlists->csb_write = | |||
| 3586 | &engine->status_page.addr[INTEL_HWS_CSB_WRITE_INDEX(i915)(((&(i915)->__runtime)->graphics.ip.ver) >= 11 ? 0x2f : 0x1f)]; | |||
| 3587 | ||||
| 3588 | if (GRAPHICS_VER(i915)((&(i915)->__runtime)->graphics.ip.ver) < 11) | |||
| 3589 | execlists->csb_size = GEN8_CSB_ENTRIES6; | |||
| 3590 | else | |||
| 3591 | execlists->csb_size = GEN11_CSB_ENTRIES12; | |||
| 3592 | ||||
| 3593 | engine->context_tag = GENMASK(BITS_PER_LONG - 2, 0)(((~0UL) >> (64 - (64 - 2) - 1)) & ((~0UL) << (0))); | |||
| 3594 | if (GRAPHICS_VER(engine->i915)((&(engine->i915)->__runtime)->graphics.ip.ver) >= 11 && | |||
| 3595 | GRAPHICS_VER_FULL(engine->i915)(((&(engine->i915)->__runtime)->graphics.ip.ver) << 8 | ((&(engine->i915)->__runtime)->graphics .ip.rel)) < IP_VER(12, 50)((12) << 8 | (50))) { | |||
| 3596 | execlists->ccid |= engine->instance << (GEN11_ENGINE_INSTANCE_SHIFT48 - 32); | |||
| 3597 | execlists->ccid |= engine->class << (GEN11_ENGINE_CLASS_SHIFT61 - 32); | |||
| 3598 | } | |||
| 3599 | ||||
| 3600 | /* Finally, take ownership and responsibility for cleanup! */ | |||
| 3601 | engine->sanitize = execlists_sanitize; | |||
| 3602 | engine->release = execlists_release; | |||
| 3603 | ||||
| 3604 | return 0; | |||
| 3605 | } | |||
| 3606 | ||||
| 3607 | static struct list_head *virtual_queue(struct virtual_engine *ve) | |||
| 3608 | { | |||
| 3609 | return &ve->base.sched_engine->default_priolist.requests; | |||
| 3610 | } | |||
| 3611 | ||||
| 3612 | static void rcu_virtual_context_destroy(struct work_struct *wrk) | |||
| 3613 | { | |||
| 3614 | struct virtual_engine *ve = | |||
| 3615 | container_of(wrk, typeof(*ve), rcu.work)({ const __typeof( ((typeof(*ve) *)0)->rcu.work ) *__mptr = (wrk); (typeof(*ve) *)( (char *)__mptr - __builtin_offsetof( typeof(*ve), rcu.work) );}); | |||
| 3616 | unsigned int n; | |||
| 3617 | ||||
| 3618 | GEM_BUG_ON(ve->context.inflight)((void)0); | |||
| 3619 | ||||
| 3620 | /* Preempt-to-busy may leave a stale request behind. */ | |||
| 3621 | if (unlikely(ve->request)__builtin_expect(!!(ve->request), 0)) { | |||
| 3622 | struct i915_request *old; | |||
| 3623 | ||||
| 3624 | spin_lock_irq(&ve->base.sched_engine->lock)mtx_enter(&ve->base.sched_engine->lock); | |||
| 3625 | ||||
| 3626 | old = fetch_and_zero(&ve->request)({ typeof(*&ve->request) __T = *(&ve->request); *(&ve->request) = (typeof(*&ve->request))0; __T ; }); | |||
| 3627 | if (old) { | |||
| 3628 | GEM_BUG_ON(!__i915_request_is_complete(old))((void)0); | |||
| 3629 | __i915_request_submit(old); | |||
| 3630 | i915_request_put(old); | |||
| 3631 | } | |||
| 3632 | ||||
| 3633 | spin_unlock_irq(&ve->base.sched_engine->lock)mtx_leave(&ve->base.sched_engine->lock); | |||
| 3634 | } | |||
| 3635 | ||||
| 3636 | /* | |||
| 3637 | * Flush the tasklet in case it is still running on another core. | |||
| 3638 | * | |||
| 3639 | * This needs to be done before we remove ourselves from the siblings' | |||
| 3640 | * rbtrees as in the case it is running in parallel, it may reinsert | |||
| 3641 | * the rb_node into a sibling. | |||
| 3642 | */ | |||
| 3643 | tasklet_kill(&ve->base.sched_engine->tasklet); | |||
| 3644 | ||||
| 3645 | /* Decouple ourselves from the siblings, no more access allowed. */ | |||
| 3646 | for (n = 0; n < ve->num_siblings; n++) { | |||
| 3647 | struct intel_engine_cs *sibling = ve->siblings[n]; | |||
| 3648 | struct rb_node *node = &ve->nodes[sibling->id].rb; | |||
| 3649 | ||||
| 3650 | if (RB_EMPTY_NODE(node)((node)->__entry.rbe_parent == node)) | |||
| 3651 | continue; | |||
| 3652 | ||||
| 3653 | spin_lock_irq(&sibling->sched_engine->lock)mtx_enter(&sibling->sched_engine->lock); | |||
| 3654 | ||||
| 3655 | /* Detachment is lazily performed in the sched_engine->tasklet */ | |||
| 3656 | if (!RB_EMPTY_NODE(node)((node)->__entry.rbe_parent == node)) | |||
| 3657 | rb_erase_cached(node, &sibling->execlists.virtual)linux_root_RB_REMOVE((struct linux_root *)(&(&sibling ->execlists.virtual)->rb_root), (node)); | |||
| 3658 | ||||
| 3659 | spin_unlock_irq(&sibling->sched_engine->lock)mtx_leave(&sibling->sched_engine->lock); | |||
| 3660 | } | |||
| 3661 | GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.sched_engine->tasklet))((void)0); | |||
| 3662 | GEM_BUG_ON(!list_empty(virtual_queue(ve)))((void)0); | |||
| 3663 | ||||
| 3664 | lrc_fini(&ve->context); | |||
| 3665 | intel_context_fini(&ve->context); | |||
| 3666 | ||||
| 3667 | if (ve->base.breadcrumbs) | |||
| 3668 | intel_breadcrumbs_put(ve->base.breadcrumbs); | |||
| 3669 | if (ve->base.sched_engine) | |||
| 3670 | i915_sched_engine_put(ve->base.sched_engine); | |||
| 3671 | intel_engine_free_request_pool(&ve->base); | |||
| 3672 | ||||
| 3673 | kfree(ve); | |||
| 3674 | } | |||
| 3675 | ||||
| 3676 | static void virtual_context_destroy(struct kref *kref) | |||
| 3677 | { | |||
| 3678 | struct virtual_engine *ve = | |||
| 3679 | container_of(kref, typeof(*ve), context.ref)({ const __typeof( ((typeof(*ve) *)0)->context.ref ) *__mptr = (kref); (typeof(*ve) *)( (char *)__mptr - __builtin_offsetof (typeof(*ve), context.ref) );}); | |||
| 3680 | ||||
| 3681 | GEM_BUG_ON(!list_empty(&ve->context.signals))((void)0); | |||
| 3682 | ||||
| 3683 | /* | |||
| 3684 | * When destroying the virtual engine, we have to be aware that | |||
| 3685 | * it may still be in use from an hardirq/softirq context causing | |||
| 3686 | * the resubmission of a completed request (background completion | |||
| 3687 | * due to preempt-to-busy). Before we can free the engine, we need | |||
| 3688 | * to flush the submission code and tasklets that are still potentially | |||
| 3689 | * accessing the engine. Flushing the tasklets requires process context, | |||
| 3690 | * and since we can guard the resubmit onto the engine with an RCU read | |||
| 3691 | * lock, we can delegate the free of the engine to an RCU worker. | |||
| 3692 | */ | |||
| 3693 | INIT_RCU_WORK(&ve->rcu, rcu_virtual_context_destroy); | |||
| 3694 | queue_rcu_work(system_wq, &ve->rcu); | |||
| 3695 | } | |||
| 3696 | ||||
| 3697 | static void virtual_engine_initial_hint(struct virtual_engine *ve) | |||
| 3698 | { | |||
| 3699 | int swp; | |||
| 3700 | ||||
| 3701 | /* | |||
| 3702 | * Pick a random sibling on starting to help spread the load around. | |||
| 3703 | * | |||
| 3704 | * New contexts are typically created with exactly the same order | |||
| 3705 | * of siblings, and often started in batches. Due to the way we iterate | |||
| 3706 | * the array of sibling when submitting requests, sibling[0] is | |||
| 3707 | * prioritised for dequeuing. If we make sure that sibling[0] is fairly | |||
| 3708 | * randomised across the system, we also help spread the load by the | |||
| 3709 | * first engine we inspect being different each time. | |||
| 3710 | * | |||
| 3711 | * NB This does not force us to execute on this engine, it will just | |||
| 3712 | * typically be the first we inspect for submission. | |||
| 3713 | */ | |||
| 3714 | swp = prandom_u32_max(ve->num_siblings); | |||
| 3715 | if (swp) | |||
| 3716 | swap(ve->siblings[swp], ve->siblings[0])do { __typeof(ve->siblings[swp]) __tmp = (ve->siblings[ swp]); (ve->siblings[swp]) = (ve->siblings[0]); (ve-> siblings[0]) = __tmp; } while(0); | |||
| 3717 | } | |||
| 3718 | ||||
| 3719 | static int virtual_context_alloc(struct intel_context *ce) | |||
| 3720 | { | |||
| 3721 | struct virtual_engine *ve = container_of(ce, typeof(*ve), context)({ const __typeof( ((typeof(*ve) *)0)->context ) *__mptr = (ce); (typeof(*ve) *)( (char *)__mptr - __builtin_offsetof(typeof (*ve), context) );}); | |||
| 3722 | ||||
| 3723 | return lrc_alloc(ce, ve->siblings[0]); | |||
| 3724 | } | |||
| 3725 | ||||
| 3726 | static int virtual_context_pre_pin(struct intel_context *ce, | |||
| 3727 | struct i915_gem_ww_ctx *ww, | |||
| 3728 | void **vaddr) | |||
| 3729 | { | |||
| 3730 | struct virtual_engine *ve = container_of(ce, typeof(*ve), context)({ const __typeof( ((typeof(*ve) *)0)->context ) *__mptr = (ce); (typeof(*ve) *)( (char *)__mptr - __builtin_offsetof(typeof (*ve), context) );}); | |||
| 3731 | ||||
| 3732 | /* Note: we must use a real engine class for setting up reg state */ | |||
| 3733 | return __execlists_context_pre_pin(ce, ve->siblings[0], ww, vaddr); | |||
| 3734 | } | |||
| 3735 | ||||
| 3736 | static int virtual_context_pin(struct intel_context *ce, void *vaddr) | |||
| 3737 | { | |||
| 3738 | struct virtual_engine *ve = container_of(ce, typeof(*ve), context)({ const __typeof( ((typeof(*ve) *)0)->context ) *__mptr = (ce); (typeof(*ve) *)( (char *)__mptr - __builtin_offsetof(typeof (*ve), context) );}); | |||
| 3739 | ||||
| 3740 | return lrc_pin(ce, ve->siblings[0], vaddr); | |||
| 3741 | } | |||
| 3742 | ||||
| 3743 | static void virtual_context_enter(struct intel_context *ce) | |||
| 3744 | { | |||
| 3745 | struct virtual_engine *ve = container_of(ce, typeof(*ve), context)({ const __typeof( ((typeof(*ve) *)0)->context ) *__mptr = (ce); (typeof(*ve) *)( (char *)__mptr - __builtin_offsetof(typeof (*ve), context) );}); | |||
| 3746 | unsigned int n; | |||
| 3747 | ||||
| 3748 | for (n = 0; n < ve->num_siblings; n++) | |||
| 3749 | intel_engine_pm_get(ve->siblings[n]); | |||
| 3750 | ||||
| 3751 | intel_timeline_enter(ce->timeline); | |||
| 3752 | } | |||
| 3753 | ||||
| 3754 | static void virtual_context_exit(struct intel_context *ce) | |||
| 3755 | { | |||
| 3756 | struct virtual_engine *ve = container_of(ce, typeof(*ve), context)({ const __typeof( ((typeof(*ve) *)0)->context ) *__mptr = (ce); (typeof(*ve) *)( (char *)__mptr - __builtin_offsetof(typeof (*ve), context) );}); | |||
| 3757 | unsigned int n; | |||
| 3758 | ||||
| 3759 | intel_timeline_exit(ce->timeline); | |||
| 3760 | ||||
| 3761 | for (n = 0; n < ve->num_siblings; n++) | |||
| 3762 | intel_engine_pm_put(ve->siblings[n]); | |||
| 3763 | } | |||
| 3764 | ||||
| 3765 | static struct intel_engine_cs * | |||
| 3766 | virtual_get_sibling(struct intel_engine_cs *engine, unsigned int sibling) | |||
| 3767 | { | |||
| 3768 | struct virtual_engine *ve = to_virtual_engine(engine); | |||
| 3769 | ||||
| 3770 | if (sibling >= ve->num_siblings) | |||
| 3771 | return NULL((void *)0); | |||
| 3772 | ||||
| 3773 | return ve->siblings[sibling]; | |||
| 3774 | } | |||
| 3775 | ||||
| 3776 | static const struct intel_context_ops virtual_context_ops = { | |||
| 3777 | .flags = COPS_HAS_INFLIGHT(1UL << (0)) | COPS_RUNTIME_CYCLES(1UL << (1)), | |||
| 3778 | ||||
| 3779 | .alloc = virtual_context_alloc, | |||
| 3780 | ||||
| 3781 | .cancel_request = execlists_context_cancel_request, | |||
| 3782 | ||||
| 3783 | .pre_pin = virtual_context_pre_pin, | |||
| 3784 | .pin = virtual_context_pin, | |||
| 3785 | .unpin = lrc_unpin, | |||
| 3786 | .post_unpin = lrc_post_unpin, | |||
| 3787 | ||||
| 3788 | .enter = virtual_context_enter, | |||
| 3789 | .exit = virtual_context_exit, | |||
| 3790 | ||||
| 3791 | .destroy = virtual_context_destroy, | |||
| 3792 | ||||
| 3793 | .get_sibling = virtual_get_sibling, | |||
| 3794 | }; | |||
| 3795 | ||||
| 3796 | static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve) | |||
| 3797 | { | |||
| 3798 | struct i915_request *rq; | |||
| 3799 | intel_engine_mask_t mask; | |||
| 3800 | ||||
| 3801 | rq = READ_ONCE(ve->request)({ typeof(ve->request) __tmp = *(volatile typeof(ve->request ) *)&(ve->request); membar_datadep_consumer(); __tmp; } ); | |||
| 3802 | if (!rq) | |||
| 3803 | return 0; | |||
| 3804 | ||||
| 3805 | /* The rq is ready for submission; rq->execution_mask is now stable. */ | |||
| 3806 | mask = rq->execution_mask; | |||
| 3807 | if (unlikely(!mask)__builtin_expect(!!(!mask), 0)) { | |||
| 3808 | /* Invalid selection, submit to a random engine in error */ | |||
| 3809 | i915_request_set_error_once(rq, -ENODEV19); | |||
| 3810 | mask = ve->siblings[0]->mask; | |||
| 3811 | } | |||
| 3812 | ||||
| 3813 | ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n",do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (&ve->base); do { } while (0); } while (0) | |||
| 3814 | rq->fence.context, rq->fence.seqno,do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (&ve->base); do { } while (0); } while (0) | |||
| 3815 | mask, ve->base.sched_engine->queue_priority_hint)do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (&ve->base); do { } while (0); } while (0); | |||
| 3816 | ||||
| 3817 | return mask; | |||
| 3818 | } | |||
| 3819 | ||||
| 3820 | static void virtual_submission_tasklet(struct tasklet_struct *t) | |||
| 3821 | { | |||
| 3822 | struct i915_sched_engine *sched_engine = | |||
| 3823 | from_tasklet(sched_engine, t, tasklet)({ const __typeof( ((typeof(*sched_engine) *)0)->tasklet ) *__mptr = (t); (typeof(*sched_engine) *)( (char *)__mptr - __builtin_offsetof (typeof(*sched_engine), tasklet) );}); | |||
| 3824 | struct virtual_engine * const ve = | |||
| 3825 | (struct virtual_engine *)sched_engine->private_data; | |||
| 3826 | const int prio = READ_ONCE(sched_engine->queue_priority_hint)({ typeof(sched_engine->queue_priority_hint) __tmp = *(volatile typeof(sched_engine->queue_priority_hint) *)&(sched_engine ->queue_priority_hint); membar_datadep_consumer(); __tmp; } ); | |||
| 3827 | intel_engine_mask_t mask; | |||
| 3828 | unsigned int n; | |||
| 3829 | ||||
| 3830 | rcu_read_lock(); | |||
| 3831 | mask = virtual_submission_mask(ve); | |||
| 3832 | rcu_read_unlock(); | |||
| 3833 | if (unlikely(!mask)__builtin_expect(!!(!mask), 0)) | |||
| 3834 | return; | |||
| 3835 | ||||
| 3836 | for (n = 0; n < ve->num_siblings; n++) { | |||
| 3837 | struct intel_engine_cs *sibling = READ_ONCE(ve->siblings[n])({ typeof(ve->siblings[n]) __tmp = *(volatile typeof(ve-> siblings[n]) *)&(ve->siblings[n]); membar_datadep_consumer (); __tmp; }); | |||
| 3838 | struct ve_node * const node = &ve->nodes[sibling->id]; | |||
| 3839 | struct rb_node **parent, *rb; | |||
| 3840 | bool_Bool first; | |||
| 3841 | ||||
| 3842 | if (!READ_ONCE(ve->request)({ typeof(ve->request) __tmp = *(volatile typeof(ve->request ) *)&(ve->request); membar_datadep_consumer(); __tmp; } )) | |||
| 3843 | break; /* already handled by a sibling's tasklet */ | |||
| 3844 | ||||
| 3845 | spin_lock_irq(&sibling->sched_engine->lock)mtx_enter(&sibling->sched_engine->lock); | |||
| 3846 | ||||
| 3847 | if (unlikely(!(mask & sibling->mask))__builtin_expect(!!(!(mask & sibling->mask)), 0)) { | |||
| 3848 | if (!RB_EMPTY_NODE(&node->rb)((&node->rb)->__entry.rbe_parent == &node->rb )) { | |||
| 3849 | rb_erase_cached(&node->rb,linux_root_RB_REMOVE((struct linux_root *)(&(&sibling ->execlists.virtual)->rb_root), (&node->rb)) | |||
| 3850 | &sibling->execlists.virtual)linux_root_RB_REMOVE((struct linux_root *)(&(&sibling ->execlists.virtual)->rb_root), (&node->rb)); | |||
| 3851 | RB_CLEAR_NODE(&node->rb)(((&node->rb))->__entry.rbe_parent = (&node-> rb)); | |||
| 3852 | } | |||
| 3853 | ||||
| 3854 | goto unlock_engine; | |||
| 3855 | } | |||
| 3856 | ||||
| 3857 | if (unlikely(!RB_EMPTY_NODE(&node->rb))__builtin_expect(!!(!((&node->rb)->__entry.rbe_parent == &node->rb)), 0)) { | |||
| 3858 | /* | |||
| 3859 | * Cheat and avoid rebalancing the tree if we can | |||
| 3860 | * reuse this node in situ. | |||
| 3861 | */ | |||
| 3862 | first = rb_first_cached(&sibling->execlists.virtual)linux_root_RB_MINMAX((struct linux_root *)(&(&sibling ->execlists.virtual)->rb_root), -1) == | |||
| 3863 | &node->rb; | |||
| 3864 | if (prio == node->prio || (prio > node->prio && first)) | |||
| 3865 | goto submit_engine; | |||
| 3866 | ||||
| 3867 | rb_erase_cached(&node->rb, &sibling->execlists.virtual)linux_root_RB_REMOVE((struct linux_root *)(&(&sibling ->execlists.virtual)->rb_root), (&node->rb)); | |||
| 3868 | } | |||
| 3869 | ||||
| 3870 | rb = NULL((void *)0); | |||
| 3871 | first = true1; | |||
| 3872 | parent = &sibling->execlists.virtual.rb_root.rb_node; | |||
| 3873 | while (*parent) { | |||
| 3874 | struct ve_node *other; | |||
| 3875 | ||||
| 3876 | rb = *parent; | |||
| 3877 | other = rb_entry(rb, typeof(*other), rb)({ const __typeof( ((typeof(*other) *)0)->rb ) *__mptr = ( rb); (typeof(*other) *)( (char *)__mptr - __builtin_offsetof( typeof(*other), rb) );}); | |||
| 3878 | if (prio > other->prio) { | |||
| 3879 | parent = &rb->rb_left__entry.rbe_left; | |||
| 3880 | } else { | |||
| 3881 | parent = &rb->rb_right__entry.rbe_right; | |||
| 3882 | first = false0; | |||
| 3883 | } | |||
| 3884 | } | |||
| 3885 | ||||
| 3886 | rb_link_node(&node->rb, rb, parent); | |||
| 3887 | rb_insert_color_cached(&node->rb,linux_root_RB_INSERT_COLOR((struct linux_root *)(&(&sibling ->execlists.virtual)->rb_root), (&node->rb)) | |||
| 3888 | &sibling->execlists.virtual,linux_root_RB_INSERT_COLOR((struct linux_root *)(&(&sibling ->execlists.virtual)->rb_root), (&node->rb)) | |||
| 3889 | first)linux_root_RB_INSERT_COLOR((struct linux_root *)(&(&sibling ->execlists.virtual)->rb_root), (&node->rb)); | |||
| 3890 | ||||
| 3891 | submit_engine: | |||
| 3892 | GEM_BUG_ON(RB_EMPTY_NODE(&node->rb))((void)0); | |||
| 3893 | node->prio = prio; | |||
| 3894 | if (first && prio > sibling->sched_engine->queue_priority_hint) | |||
| 3895 | tasklet_hi_schedule(&sibling->sched_engine->tasklet); | |||
| 3896 | ||||
| 3897 | unlock_engine: | |||
| 3898 | spin_unlock_irq(&sibling->sched_engine->lock)mtx_leave(&sibling->sched_engine->lock); | |||
| 3899 | ||||
| 3900 | if (intel_context_inflight(&ve->context)({ unsigned long __v = (unsigned long)(({ typeof((&ve-> context)->inflight) __tmp = *(volatile typeof((&ve-> context)->inflight) *)&((&ve->context)->inflight ); membar_datadep_consumer(); __tmp; })); (typeof(({ typeof(( &ve->context)->inflight) __tmp = *(volatile typeof( (&ve->context)->inflight) *)&((&ve->context )->inflight); membar_datadep_consumer(); __tmp; })))(__v & -(1UL << (3))); })) | |||
| 3901 | break; | |||
| 3902 | } | |||
| 3903 | } | |||
| 3904 | ||||
| 3905 | static void virtual_submit_request(struct i915_request *rq) | |||
| 3906 | { | |||
| 3907 | struct virtual_engine *ve = to_virtual_engine(rq->engine); | |||
| 3908 | unsigned long flags; | |||
| 3909 | ||||
| 3910 | ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n",do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (&ve->base); do { } while (0); } while (0) | |||
| 3911 | rq->fence.context,do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (&ve->base); do { } while (0); } while (0) | |||
| 3912 | rq->fence.seqno)do { const struct intel_engine_cs *e__ __attribute__((__unused__ )) = (&ve->base); do { } while (0); } while (0); | |||
| 3913 | ||||
| 3914 | GEM_BUG_ON(ve->base.submit_request != virtual_submit_request)((void)0); | |||
| 3915 | ||||
| 3916 | spin_lock_irqsave(&ve->base.sched_engine->lock, flags)do { flags = 0; mtx_enter(&ve->base.sched_engine->lock ); } while (0); | |||
| 3917 | ||||
| 3918 | /* By the time we resubmit a request, it may be completed */ | |||
| 3919 | if (__i915_request_is_complete(rq)) { | |||
| 3920 | __i915_request_submit(rq); | |||
| 3921 | goto unlock; | |||
| 3922 | } | |||
| 3923 | ||||
| 3924 | if (ve->request) { /* background completion from preempt-to-busy */ | |||
| 3925 | GEM_BUG_ON(!__i915_request_is_complete(ve->request))((void)0); | |||
| 3926 | __i915_request_submit(ve->request); | |||
| 3927 | i915_request_put(ve->request); | |||
| 3928 | } | |||
| 3929 | ||||
| 3930 | ve->base.sched_engine->queue_priority_hint = rq_prio(rq); | |||
| 3931 | ve->request = i915_request_get(rq); | |||
| 3932 | ||||
| 3933 | GEM_BUG_ON(!list_empty(virtual_queue(ve)))((void)0); | |||
| 3934 | list_move_tail(&rq->sched.link, virtual_queue(ve)); | |||
| 3935 | ||||
| 3936 | tasklet_hi_schedule(&ve->base.sched_engine->tasklet); | |||
| 3937 | ||||
| 3938 | unlock: | |||
| 3939 | spin_unlock_irqrestore(&ve->base.sched_engine->lock, flags)do { (void)(flags); mtx_leave(&ve->base.sched_engine-> lock); } while (0); | |||
| 3940 | } | |||
| 3941 | ||||
| 3942 | static struct intel_context * | |||
| 3943 | execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count, | |||
| 3944 | unsigned long flags) | |||
| 3945 | { | |||
| 3946 | struct virtual_engine *ve; | |||
| 3947 | unsigned int n; | |||
| 3948 | int err; | |||
| 3949 | ||||
| 3950 | ve = kzalloc(struct_size(ve, siblings, count)(sizeof(*(ve)) + ((count) * (sizeof(*(ve)->siblings)))), GFP_KERNEL(0x0001 | 0x0004)); | |||
| 3951 | if (!ve) | |||
| 3952 | return ERR_PTR(-ENOMEM12); | |||
| 3953 | ||||
| 3954 | ve->base.i915 = siblings[0]->i915; | |||
| 3955 | ve->base.gt = siblings[0]->gt; | |||
| 3956 | ve->base.uncore = siblings[0]->uncore; | |||
| 3957 | ve->base.id = -1; | |||
| 3958 | ||||
| 3959 | ve->base.class = OTHER_CLASS4; | |||
| 3960 | ve->base.uabi_class = I915_ENGINE_CLASS_INVALID; | |||
| 3961 | ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL-2; | |||
| 3962 | ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL-2; | |||
| 3963 | ||||
| 3964 | /* | |||
| 3965 | * The decision on whether to submit a request using semaphores | |||
| 3966 | * depends on the saturated state of the engine. We only compute | |||
| 3967 | * this during HW submission of the request, and we need for this | |||
| 3968 | * state to be globally applied to all requests being submitted | |||
| 3969 | * to this engine. Virtual engines encompass more than one physical | |||
| 3970 | * engine and so we cannot accurately tell in advance if one of those | |||
| 3971 | * engines is already saturated and so cannot afford to use a semaphore | |||
| 3972 | * and be pessimized in priority for doing so -- if we are the only | |||
| 3973 | * context using semaphores after all other clients have stopped, we | |||
| 3974 | * will be starved on the saturated system. Such a global switch for | |||
| 3975 | * semaphores is less than ideal, but alas is the current compromise. | |||
| 3976 | */ | |||
| 3977 | ve->base.saturated = ALL_ENGINES((intel_engine_mask_t)~0ul); | |||
| 3978 | ||||
| 3979 | snprintf(ve->base.name, sizeof(ve->base.name), "virtual"); | |||
| 3980 | ||||
| 3981 | intel_engine_init_execlists(&ve->base); | |||
| 3982 | ||||
| 3983 | ve->base.sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL2); | |||
| 3984 | if (!ve->base.sched_engine) { | |||
| 3985 | err = -ENOMEM12; | |||
| 3986 | goto err_put; | |||
| 3987 | } | |||
| 3988 | ve->base.sched_engine->private_data = &ve->base; | |||
| 3989 | ||||
| 3990 | ve->base.cops = &virtual_context_ops; | |||
| 3991 | ve->base.request_alloc = execlists_request_alloc; | |||
| 3992 | ||||
| 3993 | ve->base.sched_engine->schedule = i915_schedule; | |||
| 3994 | ve->base.sched_engine->kick_backend = kick_execlists; | |||
| 3995 | ve->base.submit_request = virtual_submit_request; | |||
| 3996 | ||||
| 3997 | INIT_LIST_HEAD(virtual_queue(ve)); | |||
| 3998 | tasklet_setup(&ve->base.sched_engine->tasklet, virtual_submission_tasklet); | |||
| 3999 | ||||
| 4000 | intel_context_init(&ve->context, &ve->base); | |||
| 4001 | ||||
| 4002 | ve->base.breadcrumbs = intel_breadcrumbs_create(NULL((void *)0)); | |||
| 4003 | if (!ve->base.breadcrumbs) { | |||
| 4004 | err = -ENOMEM12; | |||
| 4005 | goto err_put; | |||
| 4006 | } | |||
| 4007 | ||||
| 4008 | for (n = 0; n < count; n++) { | |||
| 4009 | struct intel_engine_cs *sibling = siblings[n]; | |||
| 4010 | ||||
| 4011 | GEM_BUG_ON(!is_power_of_2(sibling->mask))((void)0); | |||
| 4012 | if (sibling->mask & ve->base.mask) { | |||
| 4013 | DRM_DEBUG("duplicate %s entry in load balancer\n",___drm_dbg(((void *)0), DRM_UT_CORE, "duplicate %s entry in load balancer\n" , sibling->name) | |||
| 4014 | sibling->name)___drm_dbg(((void *)0), DRM_UT_CORE, "duplicate %s entry in load balancer\n" , sibling->name); | |||
| 4015 | err = -EINVAL22; | |||
| 4016 | goto err_put; | |||
| 4017 | } | |||
| 4018 | ||||
| 4019 | /* | |||
| 4020 | * The virtual engine implementation is tightly coupled to | |||
| 4021 | * the execlists backend -- we push out request directly | |||
| 4022 | * into a tree inside each physical engine. We could support | |||
| 4023 | * layering if we handle cloning of the requests and | |||
| 4024 | * submitting a copy into each backend. | |||
| 4025 | */ | |||
| 4026 | if (sibling->sched_engine->tasklet.callback != | |||
| 4027 | execlists_submission_tasklet) { | |||
| 4028 | err = -ENODEV19; | |||
| 4029 | goto err_put; | |||
| 4030 | } | |||
| 4031 | ||||
| 4032 | GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb))((void)0); | |||
| 4033 | RB_CLEAR_NODE(&ve->nodes[sibling->id].rb)(((&ve->nodes[sibling->id].rb))->__entry.rbe_parent = (&ve->nodes[sibling->id].rb)); | |||
| 4034 | ||||
| 4035 | ve->siblings[ve->num_siblings++] = sibling; | |||
| 4036 | ve->base.mask |= sibling->mask; | |||
| 4037 | ve->base.logical_mask |= sibling->logical_mask; | |||
| 4038 | ||||
| 4039 | /* | |||
| 4040 | * All physical engines must be compatible for their emission | |||
| 4041 | * functions (as we build the instructions during request | |||
| 4042 | * construction and do not alter them before submission | |||
| 4043 | * on the physical engine). We use the engine class as a guide | |||
| 4044 | * here, although that could be refined. | |||
| 4045 | */ | |||
| 4046 | if (ve->base.class != OTHER_CLASS4) { | |||
| 4047 | if (ve->base.class != sibling->class) { | |||
| 4048 | DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",___drm_dbg(((void *)0), DRM_UT_CORE, "invalid mixing of engine class, sibling %d, already %d\n" , sibling->class, ve->base.class) | |||
| 4049 | sibling->class, ve->base.class)___drm_dbg(((void *)0), DRM_UT_CORE, "invalid mixing of engine class, sibling %d, already %d\n" , sibling->class, ve->base.class); | |||
| 4050 | err = -EINVAL22; | |||
| 4051 | goto err_put; | |||
| 4052 | } | |||
| 4053 | continue; | |||
| 4054 | } | |||
| 4055 | ||||
| 4056 | ve->base.class = sibling->class; | |||
| 4057 | ve->base.uabi_class = sibling->uabi_class; | |||
| 4058 | snprintf(ve->base.name, sizeof(ve->base.name), | |||
| 4059 | "v%dx%d", ve->base.class, count); | |||
| 4060 | ve->base.context_size = sibling->context_size; | |||
| 4061 | ||||
| 4062 | ve->base.add_active_request = sibling->add_active_request; | |||
| 4063 | ve->base.remove_active_request = sibling->remove_active_request; | |||
| 4064 | ve->base.emit_bb_start = sibling->emit_bb_start; | |||
| 4065 | ve->base.emit_flush = sibling->emit_flush; | |||
| 4066 | ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb; | |||
| 4067 | ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb; | |||
| 4068 | ve->base.emit_fini_breadcrumb_dw = | |||
| 4069 | sibling->emit_fini_breadcrumb_dw; | |||
| 4070 | ||||
| 4071 | ve->base.flags = sibling->flags; | |||
| 4072 | } | |||
| 4073 | ||||
| 4074 | ve->base.flags |= I915_ENGINE_IS_VIRTUAL(1UL << (5)); | |||
| 4075 | ||||
| 4076 | virtual_engine_initial_hint(ve); | |||
| 4077 | return &ve->context; | |||
| 4078 | ||||
| 4079 | err_put: | |||
| 4080 | intel_context_put(&ve->context); | |||
| 4081 | return ERR_PTR(err); | |||
| 4082 | } | |||
| 4083 | ||||
| 4084 | void intel_execlists_show_requests(struct intel_engine_cs *engine, | |||
| 4085 | struct drm_printer *m, | |||
| 4086 | void (*show_request)(struct drm_printer *m, | |||
| 4087 | const struct i915_request *rq, | |||
| 4088 | const char *prefix, | |||
| 4089 | int indent), | |||
| 4090 | unsigned int max) | |||
| 4091 | { | |||
| 4092 | const struct intel_engine_execlists *execlists = &engine->execlists; | |||
| 4093 | struct i915_sched_engine *sched_engine = engine->sched_engine; | |||
| 4094 | struct i915_request *rq, *last; | |||
| 4095 | unsigned long flags; | |||
| 4096 | unsigned int count; | |||
| 4097 | struct rb_node *rb; | |||
| 4098 | ||||
| 4099 | spin_lock_irqsave(&sched_engine->lock, flags)do { flags = 0; mtx_enter(&sched_engine->lock); } while (0); | |||
| 4100 | ||||
| 4101 | last = NULL((void *)0); | |||
| 4102 | count = 0; | |||
| 4103 | list_for_each_entry(rq, &sched_engine->requests, sched.link)for (rq = ({ const __typeof( ((__typeof(*rq) *)0)->sched.link ) *__mptr = ((&sched_engine->requests)->next); (__typeof (*rq) *)( (char *)__mptr - __builtin_offsetof(__typeof(*rq), sched .link) );}); &rq->sched.link != (&sched_engine-> requests); rq = ({ const __typeof( ((__typeof(*rq) *)0)->sched .link ) *__mptr = (rq->sched.link.next); (__typeof(*rq) *) ( (char *)__mptr - __builtin_offsetof(__typeof(*rq), sched.link ) );})) { | |||
| 4104 | if (count++ < max - 1) | |||
| 4105 | show_request(m, rq, "\t\t", 0); | |||
| 4106 | else | |||
| 4107 | last = rq; | |||
| 4108 | } | |||
| 4109 | if (last) { | |||
| 4110 | if (count > max) { | |||
| 4111 | drm_printf(m, | |||
| 4112 | "\t\t...skipping %d executing requests...\n", | |||
| 4113 | count - max); | |||
| 4114 | } | |||
| 4115 | show_request(m, last, "\t\t", 0); | |||
| 4116 | } | |||
| 4117 | ||||
| 4118 | if (sched_engine->queue_priority_hint != INT_MIN(-0x7fffffff-1)) | |||
| 4119 | drm_printf(m, "\t\tQueue priority hint: %d\n", | |||
| 4120 | READ_ONCE(sched_engine->queue_priority_hint)({ typeof(sched_engine->queue_priority_hint) __tmp = *(volatile typeof(sched_engine->queue_priority_hint) *)&(sched_engine ->queue_priority_hint); membar_datadep_consumer(); __tmp; } )); | |||
| 4121 | ||||
| 4122 | last = NULL((void *)0); | |||
| 4123 | count = 0; | |||
| 4124 | for (rb = rb_first_cached(&sched_engine->queue)linux_root_RB_MINMAX((struct linux_root *)(&(&sched_engine ->queue)->rb_root), -1); rb; rb = rb_next(rb)linux_root_RB_NEXT((rb))) { | |||
| 4125 | struct i915_priolist *p = rb_entry(rb, typeof(*p), node)({ const __typeof( ((typeof(*p) *)0)->node ) *__mptr = (rb ); (typeof(*p) *)( (char *)__mptr - __builtin_offsetof(typeof (*p), node) );}); | |||
| 4126 | ||||
| 4127 | priolist_for_each_request(rq, p)for (rq = ({ const __typeof( ((__typeof(*rq) *)0)->sched.link ) *__mptr = ((&(p)->requests)->next); (__typeof(*rq ) *)( (char *)__mptr - __builtin_offsetof(__typeof(*rq), sched .link) );}); &rq->sched.link != (&(p)->requests ); rq = ({ const __typeof( ((__typeof(*rq) *)0)->sched.link ) *__mptr = (rq->sched.link.next); (__typeof(*rq) *)( (char *)__mptr - __builtin_offsetof(__typeof(*rq), sched.link) );} )) { | |||
| 4128 | if (count++ < max - 1) | |||
| 4129 | show_request(m, rq, "\t\t", 0); | |||
| 4130 | else | |||
| 4131 | last = rq; | |||
| 4132 | } | |||
| 4133 | } | |||
| 4134 | if (last) { | |||
| 4135 | if (count > max) { | |||
| 4136 | drm_printf(m, | |||
| 4137 | "\t\t...skipping %d queued requests...\n", | |||
| 4138 | count - max); | |||
| 4139 | } | |||
| 4140 | show_request(m, last, "\t\t", 0); | |||
| 4141 | } | |||
| 4142 | ||||
| 4143 | last = NULL((void *)0); | |||
| 4144 | count = 0; | |||
| 4145 | for (rb = rb_first_cached(&execlists->virtual)linux_root_RB_MINMAX((struct linux_root *)(&(&execlists ->virtual)->rb_root), -1); rb; rb = rb_next(rb)linux_root_RB_NEXT((rb))) { | |||
| 4146 | struct virtual_engine *ve = | |||
| 4147 | rb_entry(rb, typeof(*ve), nodes[engine->id].rb)({ const __typeof( ((typeof(*ve) *)0)->nodes[engine->id ].rb ) *__mptr = (rb); (typeof(*ve) *)( (char *)__mptr - __builtin_offsetof (typeof(*ve), nodes[engine->id].rb) );}); | |||
| 4148 | struct i915_request *rq = READ_ONCE(ve->request)({ typeof(ve->request) __tmp = *(volatile typeof(ve->request ) *)&(ve->request); membar_datadep_consumer(); __tmp; } ); | |||
| 4149 | ||||
| 4150 | if (rq) { | |||
| 4151 | if (count++ < max - 1) | |||
| 4152 | show_request(m, rq, "\t\t", 0); | |||
| 4153 | else | |||
| 4154 | last = rq; | |||
| 4155 | } | |||
| 4156 | } | |||
| 4157 | if (last) { | |||
| 4158 | if (count > max) { | |||
| 4159 | drm_printf(m, | |||
| 4160 | "\t\t...skipping %d virtual requests...\n", | |||
| 4161 | count - max); | |||
| 4162 | } | |||
| 4163 | show_request(m, last, "\t\t", 0); | |||
| 4164 | } | |||
| 4165 | ||||
| 4166 | spin_unlock_irqrestore(&sched_engine->lock, flags)do { (void)(flags); mtx_leave(&sched_engine->lock); } while (0); | |||
| 4167 | } | |||
| 4168 | ||||
| 4169 | static unsigned long list_count(struct list_head *list) | |||
| 4170 | { | |||
| 4171 | struct list_head *pos; | |||
| 4172 | unsigned long count = 0; | |||
| 4173 | ||||
| 4174 | list_for_each(pos, list)for (pos = (list)->next; pos != list; pos = (pos)->next ) | |||
| 4175 | count++; | |||
| 4176 | ||||
| 4177 | return count; | |||
| 4178 | } | |||
| 4179 | ||||
| 4180 | void intel_execlists_dump_active_requests(struct intel_engine_cs *engine, | |||
| 4181 | struct i915_request *hung_rq, | |||
| 4182 | struct drm_printer *m) | |||
| 4183 | { | |||
| 4184 | unsigned long flags; | |||
| 4185 | ||||
| 4186 | spin_lock_irqsave(&engine->sched_engine->lock, flags)do { flags = 0; mtx_enter(&engine->sched_engine->lock ); } while (0); | |||
| 4187 | ||||
| 4188 | intel_engine_dump_active_requests(&engine->sched_engine->requests, hung_rq, m); | |||
| 4189 | ||||
| 4190 | drm_printf(m, "\tOn hold?: %lu\n", | |||
| 4191 | list_count(&engine->sched_engine->hold)); | |||
| 4192 | ||||
| 4193 | spin_unlock_irqrestore(&engine->sched_engine->lock, flags)do { (void)(flags); mtx_leave(&engine->sched_engine-> lock); } while (0); | |||
| 4194 | } | |||
| 4195 | ||||
| 4196 | #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)0 | |||
| 4197 | #include "selftest_execlists.c" | |||
| 4198 | #endif |