| File: | src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support/GenericDomTree.h |
| Warning: | line 494, column 12 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //====- X86FlagsCopyLowering.cpp - Lowers COPY nodes of EFLAGS ------------===// | |||
| 2 | // | |||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | |||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
| 6 | // | |||
| 7 | //===----------------------------------------------------------------------===// | |||
| 8 | /// \file | |||
| 9 | /// | |||
| 10 | /// Lowers COPY nodes of EFLAGS by directly extracting and preserving individual | |||
| 11 | /// flag bits. | |||
| 12 | /// | |||
| 13 | /// We have to do this by carefully analyzing and rewriting the usage of the | |||
| 14 | /// copied EFLAGS register because there is no general way to rematerialize the | |||
| 15 | /// entire EFLAGS register safely and efficiently. Using `popf` both forces | |||
| 16 | /// dynamic stack adjustment and can create correctness issues due to IF, TF, | |||
| 17 | /// and other non-status flags being overwritten. Using sequences involving | |||
| 18 | /// SAHF don't work on all x86 processors and are often quite slow compared to | |||
| 19 | /// directly testing a single status preserved in its own GPR. | |||
| 20 | /// | |||
| 21 | //===----------------------------------------------------------------------===// | |||
| 22 | ||||
| 23 | #include "X86.h" | |||
| 24 | #include "X86InstrBuilder.h" | |||
| 25 | #include "X86InstrInfo.h" | |||
| 26 | #include "X86Subtarget.h" | |||
| 27 | #include "llvm/ADT/ArrayRef.h" | |||
| 28 | #include "llvm/ADT/DenseMap.h" | |||
| 29 | #include "llvm/ADT/PostOrderIterator.h" | |||
| 30 | #include "llvm/ADT/STLExtras.h" | |||
| 31 | #include "llvm/ADT/ScopeExit.h" | |||
| 32 | #include "llvm/ADT/SmallPtrSet.h" | |||
| 33 | #include "llvm/ADT/SmallSet.h" | |||
| 34 | #include "llvm/ADT/SmallVector.h" | |||
| 35 | #include "llvm/ADT/SparseBitVector.h" | |||
| 36 | #include "llvm/ADT/Statistic.h" | |||
| 37 | #include "llvm/CodeGen/MachineBasicBlock.h" | |||
| 38 | #include "llvm/CodeGen/MachineConstantPool.h" | |||
| 39 | #include "llvm/CodeGen/MachineDominators.h" | |||
| 40 | #include "llvm/CodeGen/MachineFunction.h" | |||
| 41 | #include "llvm/CodeGen/MachineFunctionPass.h" | |||
| 42 | #include "llvm/CodeGen/MachineInstr.h" | |||
| 43 | #include "llvm/CodeGen/MachineInstrBuilder.h" | |||
| 44 | #include "llvm/CodeGen/MachineModuleInfo.h" | |||
| 45 | #include "llvm/CodeGen/MachineOperand.h" | |||
| 46 | #include "llvm/CodeGen/MachineRegisterInfo.h" | |||
| 47 | #include "llvm/CodeGen/MachineSSAUpdater.h" | |||
| 48 | #include "llvm/CodeGen/TargetInstrInfo.h" | |||
| 49 | #include "llvm/CodeGen/TargetRegisterInfo.h" | |||
| 50 | #include "llvm/CodeGen/TargetSchedule.h" | |||
| 51 | #include "llvm/CodeGen/TargetSubtargetInfo.h" | |||
| 52 | #include "llvm/IR/DebugLoc.h" | |||
| 53 | #include "llvm/MC/MCSchedule.h" | |||
| 54 | #include "llvm/Pass.h" | |||
| 55 | #include "llvm/Support/CommandLine.h" | |||
| 56 | #include "llvm/Support/Debug.h" | |||
| 57 | #include "llvm/Support/raw_ostream.h" | |||
| 58 | #include <algorithm> | |||
| 59 | #include <cassert> | |||
| 60 | #include <iterator> | |||
| 61 | #include <utility> | |||
| 62 | ||||
| 63 | using namespace llvm; | |||
| 64 | ||||
| 65 | #define PASS_KEY"x86-flags-copy-lowering" "x86-flags-copy-lowering" | |||
| 66 | #define DEBUG_TYPE"x86-flags-copy-lowering" PASS_KEY"x86-flags-copy-lowering" | |||
| 67 | ||||
| 68 | STATISTIC(NumCopiesEliminated, "Number of copies of EFLAGS eliminated")static llvm::Statistic NumCopiesEliminated = {"x86-flags-copy-lowering" , "NumCopiesEliminated", "Number of copies of EFLAGS eliminated" }; | |||
| 69 | STATISTIC(NumSetCCsInserted, "Number of setCC instructions inserted")static llvm::Statistic NumSetCCsInserted = {"x86-flags-copy-lowering" , "NumSetCCsInserted", "Number of setCC instructions inserted" }; | |||
| 70 | STATISTIC(NumTestsInserted, "Number of test instructions inserted")static llvm::Statistic NumTestsInserted = {"x86-flags-copy-lowering" , "NumTestsInserted", "Number of test instructions inserted"}; | |||
| 71 | STATISTIC(NumAddsInserted, "Number of adds instructions inserted")static llvm::Statistic NumAddsInserted = {"x86-flags-copy-lowering" , "NumAddsInserted", "Number of adds instructions inserted"}; | |||
| 72 | ||||
| 73 | namespace { | |||
| 74 | ||||
| 75 | // Convenient array type for storing registers associated with each condition. | |||
| 76 | using CondRegArray = std::array<unsigned, X86::LAST_VALID_COND + 1>; | |||
| 77 | ||||
| 78 | class X86FlagsCopyLoweringPass : public MachineFunctionPass { | |||
| 79 | public: | |||
| 80 | X86FlagsCopyLoweringPass() : MachineFunctionPass(ID) { } | |||
| 81 | ||||
| 82 | StringRef getPassName() const override { return "X86 EFLAGS copy lowering"; } | |||
| 83 | bool runOnMachineFunction(MachineFunction &MF) override; | |||
| 84 | void getAnalysisUsage(AnalysisUsage &AU) const override; | |||
| 85 | ||||
| 86 | /// Pass identification, replacement for typeid. | |||
| 87 | static char ID; | |||
| 88 | ||||
| 89 | private: | |||
| 90 | MachineRegisterInfo *MRI = nullptr; | |||
| 91 | const X86Subtarget *Subtarget = nullptr; | |||
| 92 | const X86InstrInfo *TII = nullptr; | |||
| 93 | const TargetRegisterInfo *TRI = nullptr; | |||
| 94 | const TargetRegisterClass *PromoteRC = nullptr; | |||
| 95 | MachineDominatorTree *MDT = nullptr; | |||
| 96 | ||||
| 97 | CondRegArray collectCondsInRegs(MachineBasicBlock &MBB, | |||
| 98 | MachineBasicBlock::iterator CopyDefI); | |||
| 99 | ||||
| 100 | Register promoteCondToReg(MachineBasicBlock &MBB, | |||
| 101 | MachineBasicBlock::iterator TestPos, | |||
| 102 | const DebugLoc &TestLoc, X86::CondCode Cond); | |||
| 103 | std::pair<unsigned, bool> getCondOrInverseInReg( | |||
| 104 | MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos, | |||
| 105 | const DebugLoc &TestLoc, X86::CondCode Cond, CondRegArray &CondRegs); | |||
| 106 | void insertTest(MachineBasicBlock &MBB, MachineBasicBlock::iterator Pos, | |||
| 107 | const DebugLoc &Loc, unsigned Reg); | |||
| 108 | ||||
| 109 | void rewriteArithmetic(MachineBasicBlock &TestMBB, | |||
| 110 | MachineBasicBlock::iterator TestPos, | |||
| 111 | const DebugLoc &TestLoc, MachineInstr &MI, | |||
| 112 | MachineOperand &FlagUse, CondRegArray &CondRegs); | |||
| 113 | void rewriteCMov(MachineBasicBlock &TestMBB, | |||
| 114 | MachineBasicBlock::iterator TestPos, const DebugLoc &TestLoc, | |||
| 115 | MachineInstr &CMovI, MachineOperand &FlagUse, | |||
| 116 | CondRegArray &CondRegs); | |||
| 117 | void rewriteFCMov(MachineBasicBlock &TestMBB, | |||
| 118 | MachineBasicBlock::iterator TestPos, | |||
| 119 | const DebugLoc &TestLoc, MachineInstr &CMovI, | |||
| 120 | MachineOperand &FlagUse, CondRegArray &CondRegs); | |||
| 121 | void rewriteCondJmp(MachineBasicBlock &TestMBB, | |||
| 122 | MachineBasicBlock::iterator TestPos, | |||
| 123 | const DebugLoc &TestLoc, MachineInstr &JmpI, | |||
| 124 | CondRegArray &CondRegs); | |||
| 125 | void rewriteCopy(MachineInstr &MI, MachineOperand &FlagUse, | |||
| 126 | MachineInstr &CopyDefI); | |||
| 127 | void rewriteSetCC(MachineBasicBlock &TestMBB, | |||
| 128 | MachineBasicBlock::iterator TestPos, | |||
| 129 | const DebugLoc &TestLoc, MachineInstr &SetCCI, | |||
| 130 | MachineOperand &FlagUse, CondRegArray &CondRegs); | |||
| 131 | }; | |||
| 132 | ||||
| 133 | } // end anonymous namespace | |||
| 134 | ||||
| 135 | INITIALIZE_PASS_BEGIN(X86FlagsCopyLoweringPass, DEBUG_TYPE,static void *initializeX86FlagsCopyLoweringPassPassOnce(PassRegistry &Registry) { | |||
| 136 | "X86 EFLAGS copy lowering", false, false)static void *initializeX86FlagsCopyLoweringPassPassOnce(PassRegistry &Registry) { | |||
| 137 | INITIALIZE_PASS_END(X86FlagsCopyLoweringPass, DEBUG_TYPE,PassInfo *PI = new PassInfo( "X86 EFLAGS copy lowering", "x86-flags-copy-lowering" , &X86FlagsCopyLoweringPass::ID, PassInfo::NormalCtor_t(callDefaultCtor <X86FlagsCopyLoweringPass>), false, false); Registry.registerPass (*PI, true); return PI; } static llvm::once_flag InitializeX86FlagsCopyLoweringPassPassFlag ; void llvm::initializeX86FlagsCopyLoweringPassPass(PassRegistry &Registry) { llvm::call_once(InitializeX86FlagsCopyLoweringPassPassFlag , initializeX86FlagsCopyLoweringPassPassOnce, std::ref(Registry )); } | |||
| 138 | "X86 EFLAGS copy lowering", false, false)PassInfo *PI = new PassInfo( "X86 EFLAGS copy lowering", "x86-flags-copy-lowering" , &X86FlagsCopyLoweringPass::ID, PassInfo::NormalCtor_t(callDefaultCtor <X86FlagsCopyLoweringPass>), false, false); Registry.registerPass (*PI, true); return PI; } static llvm::once_flag InitializeX86FlagsCopyLoweringPassPassFlag ; void llvm::initializeX86FlagsCopyLoweringPassPass(PassRegistry &Registry) { llvm::call_once(InitializeX86FlagsCopyLoweringPassPassFlag , initializeX86FlagsCopyLoweringPassPassOnce, std::ref(Registry )); } | |||
| 139 | ||||
| 140 | FunctionPass *llvm::createX86FlagsCopyLoweringPass() { | |||
| 141 | return new X86FlagsCopyLoweringPass(); | |||
| 142 | } | |||
| 143 | ||||
| 144 | char X86FlagsCopyLoweringPass::ID = 0; | |||
| 145 | ||||
| 146 | void X86FlagsCopyLoweringPass::getAnalysisUsage(AnalysisUsage &AU) const { | |||
| 147 | AU.addRequired<MachineDominatorTree>(); | |||
| 148 | MachineFunctionPass::getAnalysisUsage(AU); | |||
| 149 | } | |||
| 150 | ||||
| 151 | namespace { | |||
| 152 | /// An enumeration of the arithmetic instruction mnemonics which have | |||
| 153 | /// interesting flag semantics. | |||
| 154 | /// | |||
| 155 | /// We can map instruction opcodes into these mnemonics to make it easy to | |||
| 156 | /// dispatch with specific functionality. | |||
| 157 | enum class FlagArithMnemonic { | |||
| 158 | ADC, | |||
| 159 | ADCX, | |||
| 160 | ADOX, | |||
| 161 | RCL, | |||
| 162 | RCR, | |||
| 163 | SBB, | |||
| 164 | SETB, | |||
| 165 | }; | |||
| 166 | } // namespace | |||
| 167 | ||||
| 168 | static FlagArithMnemonic getMnemonicFromOpcode(unsigned Opcode) { | |||
| 169 | switch (Opcode) { | |||
| 170 | default: | |||
| 171 | report_fatal_error("No support for lowering a copy into EFLAGS when used " | |||
| 172 | "by this instruction!"); | |||
| 173 | ||||
| 174 | #define LLVM_EXPAND_INSTR_SIZES(MNEMONIC, SUFFIX) \ | |||
| 175 | case X86::MNEMONIC##8##SUFFIX: \ | |||
| 176 | case X86::MNEMONIC##16##SUFFIX: \ | |||
| 177 | case X86::MNEMONIC##32##SUFFIX: \ | |||
| 178 | case X86::MNEMONIC##64##SUFFIX: | |||
| 179 | ||||
| 180 | #define LLVM_EXPAND_ADC_SBB_INSTR(MNEMONIC) \ | |||
| 181 | LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr) \ | |||
| 182 | LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr_REV) \ | |||
| 183 | LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rm) \ | |||
| 184 | LLVM_EXPAND_INSTR_SIZES(MNEMONIC, mr) \ | |||
| 185 | case X86::MNEMONIC##8ri: \ | |||
| 186 | case X86::MNEMONIC##16ri8: \ | |||
| 187 | case X86::MNEMONIC##32ri8: \ | |||
| 188 | case X86::MNEMONIC##64ri8: \ | |||
| 189 | case X86::MNEMONIC##16ri: \ | |||
| 190 | case X86::MNEMONIC##32ri: \ | |||
| 191 | case X86::MNEMONIC##64ri32: \ | |||
| 192 | case X86::MNEMONIC##8mi: \ | |||
| 193 | case X86::MNEMONIC##16mi8: \ | |||
| 194 | case X86::MNEMONIC##32mi8: \ | |||
| 195 | case X86::MNEMONIC##64mi8: \ | |||
| 196 | case X86::MNEMONIC##16mi: \ | |||
| 197 | case X86::MNEMONIC##32mi: \ | |||
| 198 | case X86::MNEMONIC##64mi32: \ | |||
| 199 | case X86::MNEMONIC##8i8: \ | |||
| 200 | case X86::MNEMONIC##16i16: \ | |||
| 201 | case X86::MNEMONIC##32i32: \ | |||
| 202 | case X86::MNEMONIC##64i32: | |||
| 203 | ||||
| 204 | LLVM_EXPAND_ADC_SBB_INSTR(ADC) | |||
| 205 | return FlagArithMnemonic::ADC; | |||
| 206 | ||||
| 207 | LLVM_EXPAND_ADC_SBB_INSTR(SBB) | |||
| 208 | return FlagArithMnemonic::SBB; | |||
| 209 | ||||
| 210 | #undef LLVM_EXPAND_ADC_SBB_INSTR | |||
| 211 | ||||
| 212 | LLVM_EXPAND_INSTR_SIZES(RCL, rCL) | |||
| 213 | LLVM_EXPAND_INSTR_SIZES(RCL, r1) | |||
| 214 | LLVM_EXPAND_INSTR_SIZES(RCL, ri) | |||
| 215 | return FlagArithMnemonic::RCL; | |||
| 216 | ||||
| 217 | LLVM_EXPAND_INSTR_SIZES(RCR, rCL) | |||
| 218 | LLVM_EXPAND_INSTR_SIZES(RCR, r1) | |||
| 219 | LLVM_EXPAND_INSTR_SIZES(RCR, ri) | |||
| 220 | return FlagArithMnemonic::RCR; | |||
| 221 | ||||
| 222 | #undef LLVM_EXPAND_INSTR_SIZES | |||
| 223 | ||||
| 224 | case X86::ADCX32rr: | |||
| 225 | case X86::ADCX64rr: | |||
| 226 | case X86::ADCX32rm: | |||
| 227 | case X86::ADCX64rm: | |||
| 228 | return FlagArithMnemonic::ADCX; | |||
| 229 | ||||
| 230 | case X86::ADOX32rr: | |||
| 231 | case X86::ADOX64rr: | |||
| 232 | case X86::ADOX32rm: | |||
| 233 | case X86::ADOX64rm: | |||
| 234 | return FlagArithMnemonic::ADOX; | |||
| 235 | ||||
| 236 | case X86::SETB_C32r: | |||
| 237 | case X86::SETB_C64r: | |||
| 238 | return FlagArithMnemonic::SETB; | |||
| 239 | } | |||
| 240 | } | |||
| 241 | ||||
| 242 | static MachineBasicBlock &splitBlock(MachineBasicBlock &MBB, | |||
| 243 | MachineInstr &SplitI, | |||
| 244 | const X86InstrInfo &TII) { | |||
| 245 | MachineFunction &MF = *MBB.getParent(); | |||
| 246 | ||||
| 247 | assert(SplitI.getParent() == &MBB &&((void)0) | |||
| 248 | "Split instruction must be in the split block!")((void)0); | |||
| 249 | assert(SplitI.isBranch() &&((void)0) | |||
| 250 | "Only designed to split a tail of branch instructions!")((void)0); | |||
| 251 | assert(X86::getCondFromBranch(SplitI) != X86::COND_INVALID &&((void)0) | |||
| 252 | "Must split on an actual jCC instruction!")((void)0); | |||
| 253 | ||||
| 254 | // Dig out the previous instruction to the split point. | |||
| 255 | MachineInstr &PrevI = *std::prev(SplitI.getIterator()); | |||
| 256 | assert(PrevI.isBranch() && "Must split after a branch!")((void)0); | |||
| 257 | assert(X86::getCondFromBranch(PrevI) != X86::COND_INVALID &&((void)0) | |||
| 258 | "Must split after an actual jCC instruction!")((void)0); | |||
| 259 | assert(!std::prev(PrevI.getIterator())->isTerminator() &&((void)0) | |||
| 260 | "Must only have this one terminator prior to the split!")((void)0); | |||
| 261 | ||||
| 262 | // Grab the one successor edge that will stay in `MBB`. | |||
| 263 | MachineBasicBlock &UnsplitSucc = *PrevI.getOperand(0).getMBB(); | |||
| 264 | ||||
| 265 | // Analyze the original block to see if we are actually splitting an edge | |||
| 266 | // into two edges. This can happen when we have multiple conditional jumps to | |||
| 267 | // the same successor. | |||
| 268 | bool IsEdgeSplit = | |||
| 269 | std::any_of(SplitI.getIterator(), MBB.instr_end(), | |||
| 270 | [&](MachineInstr &MI) { | |||
| 271 | assert(MI.isTerminator() &&((void)0) | |||
| 272 | "Should only have spliced terminators!")((void)0); | |||
| 273 | return llvm::any_of( | |||
| 274 | MI.operands(), [&](MachineOperand &MOp) { | |||
| 275 | return MOp.isMBB() && MOp.getMBB() == &UnsplitSucc; | |||
| 276 | }); | |||
| 277 | }) || | |||
| 278 | MBB.getFallThrough() == &UnsplitSucc; | |||
| 279 | ||||
| 280 | MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock(); | |||
| 281 | ||||
| 282 | // Insert the new block immediately after the current one. Any existing | |||
| 283 | // fallthrough will be sunk into this new block anyways. | |||
| 284 | MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB); | |||
| 285 | ||||
| 286 | // Splice the tail of instructions into the new block. | |||
| 287 | NewMBB.splice(NewMBB.end(), &MBB, SplitI.getIterator(), MBB.end()); | |||
| 288 | ||||
| 289 | // Copy the necessary succesors (and their probability info) into the new | |||
| 290 | // block. | |||
| 291 | for (auto SI = MBB.succ_begin(), SE = MBB.succ_end(); SI != SE; ++SI) | |||
| 292 | if (IsEdgeSplit || *SI != &UnsplitSucc) | |||
| 293 | NewMBB.copySuccessor(&MBB, SI); | |||
| 294 | // Normalize the probabilities if we didn't end up splitting the edge. | |||
| 295 | if (!IsEdgeSplit) | |||
| 296 | NewMBB.normalizeSuccProbs(); | |||
| 297 | ||||
| 298 | // Now replace all of the moved successors in the original block with the new | |||
| 299 | // block. This will merge their probabilities. | |||
| 300 | for (MachineBasicBlock *Succ : NewMBB.successors()) | |||
| 301 | if (Succ != &UnsplitSucc) | |||
| 302 | MBB.replaceSuccessor(Succ, &NewMBB); | |||
| 303 | ||||
| 304 | // We should always end up replacing at least one successor. | |||
| 305 | assert(MBB.isSuccessor(&NewMBB) &&((void)0) | |||
| 306 | "Failed to make the new block a successor!")((void)0); | |||
| 307 | ||||
| 308 | // Now update all the PHIs. | |||
| 309 | for (MachineBasicBlock *Succ : NewMBB.successors()) { | |||
| 310 | for (MachineInstr &MI : *Succ) { | |||
| 311 | if (!MI.isPHI()) | |||
| 312 | break; | |||
| 313 | ||||
| 314 | for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps; | |||
| 315 | OpIdx += 2) { | |||
| 316 | MachineOperand &OpV = MI.getOperand(OpIdx); | |||
| 317 | MachineOperand &OpMBB = MI.getOperand(OpIdx + 1); | |||
| 318 | assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!")((void)0); | |||
| 319 | if (OpMBB.getMBB() != &MBB) | |||
| 320 | continue; | |||
| 321 | ||||
| 322 | // Replace the operand for unsplit successors | |||
| 323 | if (!IsEdgeSplit || Succ != &UnsplitSucc) { | |||
| 324 | OpMBB.setMBB(&NewMBB); | |||
| 325 | ||||
| 326 | // We have to continue scanning as there may be multiple entries in | |||
| 327 | // the PHI. | |||
| 328 | continue; | |||
| 329 | } | |||
| 330 | ||||
| 331 | // When we have split the edge append a new successor. | |||
| 332 | MI.addOperand(MF, OpV); | |||
| 333 | MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB)); | |||
| 334 | break; | |||
| 335 | } | |||
| 336 | } | |||
| 337 | } | |||
| 338 | ||||
| 339 | return NewMBB; | |||
| 340 | } | |||
| 341 | ||||
| 342 | static X86::CondCode getCondFromFCMOV(unsigned Opcode) { | |||
| 343 | switch (Opcode) { | |||
| 344 | default: return X86::COND_INVALID; | |||
| 345 | case X86::CMOVBE_Fp32: case X86::CMOVBE_Fp64: case X86::CMOVBE_Fp80: | |||
| 346 | return X86::COND_BE; | |||
| 347 | case X86::CMOVB_Fp32: case X86::CMOVB_Fp64: case X86::CMOVB_Fp80: | |||
| 348 | return X86::COND_B; | |||
| 349 | case X86::CMOVE_Fp32: case X86::CMOVE_Fp64: case X86::CMOVE_Fp80: | |||
| 350 | return X86::COND_E; | |||
| 351 | case X86::CMOVNBE_Fp32: case X86::CMOVNBE_Fp64: case X86::CMOVNBE_Fp80: | |||
| 352 | return X86::COND_A; | |||
| 353 | case X86::CMOVNB_Fp32: case X86::CMOVNB_Fp64: case X86::CMOVNB_Fp80: | |||
| 354 | return X86::COND_AE; | |||
| 355 | case X86::CMOVNE_Fp32: case X86::CMOVNE_Fp64: case X86::CMOVNE_Fp80: | |||
| 356 | return X86::COND_NE; | |||
| 357 | case X86::CMOVNP_Fp32: case X86::CMOVNP_Fp64: case X86::CMOVNP_Fp80: | |||
| 358 | return X86::COND_NP; | |||
| 359 | case X86::CMOVP_Fp32: case X86::CMOVP_Fp64: case X86::CMOVP_Fp80: | |||
| 360 | return X86::COND_P; | |||
| 361 | } | |||
| 362 | } | |||
| 363 | ||||
| 364 | bool X86FlagsCopyLoweringPass::runOnMachineFunction(MachineFunction &MF) { | |||
| 365 | LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()do { } while (false) | |||
| ||||
| 366 | << " **********\n")do { } while (false); | |||
| 367 | ||||
| 368 | Subtarget = &MF.getSubtarget<X86Subtarget>(); | |||
| 369 | MRI = &MF.getRegInfo(); | |||
| 370 | TII = Subtarget->getInstrInfo(); | |||
| 371 | TRI = Subtarget->getRegisterInfo(); | |||
| 372 | MDT = &getAnalysis<MachineDominatorTree>(); | |||
| 373 | PromoteRC = &X86::GR8RegClass; | |||
| 374 | ||||
| 375 | if (MF.begin() == MF.end()) | |||
| 376 | // Nothing to do for a degenerate empty function... | |||
| 377 | return false; | |||
| 378 | ||||
| 379 | // Collect the copies in RPO so that when there are chains where a copy is in | |||
| 380 | // turn copied again we visit the first one first. This ensures we can find | |||
| 381 | // viable locations for testing the original EFLAGS that dominate all the | |||
| 382 | // uses across complex CFGs. | |||
| 383 | SmallVector<MachineInstr *, 4> Copies; | |||
| 384 | ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); | |||
| 385 | for (MachineBasicBlock *MBB : RPOT) | |||
| 386 | for (MachineInstr &MI : *MBB) | |||
| 387 | if (MI.getOpcode() == TargetOpcode::COPY && | |||
| 388 | MI.getOperand(0).getReg() == X86::EFLAGS) | |||
| 389 | Copies.push_back(&MI); | |||
| 390 | ||||
| 391 | for (MachineInstr *CopyI : Copies) { | |||
| 392 | MachineBasicBlock &MBB = *CopyI->getParent(); | |||
| 393 | ||||
| 394 | MachineOperand &VOp = CopyI->getOperand(1); | |||
| 395 | assert(VOp.isReg() &&((void)0) | |||
| 396 | "The input to the copy for EFLAGS should always be a register!")((void)0); | |||
| 397 | MachineInstr &CopyDefI = *MRI->getVRegDef(VOp.getReg()); | |||
| 398 | if (CopyDefI.getOpcode() != TargetOpcode::COPY) { | |||
| 399 | // FIXME: The big likely candidate here are PHI nodes. We could in theory | |||
| 400 | // handle PHI nodes, but it gets really, really hard. Insanely hard. Hard | |||
| 401 | // enough that it is probably better to change every other part of LLVM | |||
| 402 | // to avoid creating them. The issue is that once we have PHIs we won't | |||
| 403 | // know which original EFLAGS value we need to capture with our setCCs | |||
| 404 | // below. The end result will be computing a complete set of setCCs that | |||
| 405 | // we *might* want, computing them in every place where we copy *out* of | |||
| 406 | // EFLAGS and then doing SSA formation on all of them to insert necessary | |||
| 407 | // PHI nodes and consume those here. Then hoping that somehow we DCE the | |||
| 408 | // unnecessary ones. This DCE seems very unlikely to be successful and so | |||
| 409 | // we will almost certainly end up with a glut of dead setCC | |||
| 410 | // instructions. Until we have a motivating test case and fail to avoid | |||
| 411 | // it by changing other parts of LLVM's lowering, we refuse to handle | |||
| 412 | // this complex case here. | |||
| 413 | LLVM_DEBUG(do { } while (false) | |||
| 414 | dbgs() << "ERROR: Encountered unexpected def of an eflags copy: ";do { } while (false) | |||
| 415 | CopyDefI.dump())do { } while (false); | |||
| 416 | report_fatal_error( | |||
| 417 | "Cannot lower EFLAGS copy unless it is defined in turn by a copy!"); | |||
| 418 | } | |||
| 419 | ||||
| 420 | auto Cleanup = make_scope_exit([&] { | |||
| 421 | // All uses of the EFLAGS copy are now rewritten, kill the copy into | |||
| 422 | // eflags and if dead the copy from. | |||
| 423 | CopyI->eraseFromParent(); | |||
| 424 | if (MRI->use_empty(CopyDefI.getOperand(0).getReg())) | |||
| 425 | CopyDefI.eraseFromParent(); | |||
| 426 | ++NumCopiesEliminated; | |||
| 427 | }); | |||
| 428 | ||||
| 429 | MachineOperand &DOp = CopyI->getOperand(0); | |||
| 430 | assert(DOp.isDef() && "Expected register def!")((void)0); | |||
| 431 | assert(DOp.getReg() == X86::EFLAGS && "Unexpected copy def register!")((void)0); | |||
| 432 | if (DOp.isDead()) | |||
| 433 | continue; | |||
| 434 | ||||
| 435 | MachineBasicBlock *TestMBB = CopyDefI.getParent(); | |||
| 436 | auto TestPos = CopyDefI.getIterator(); | |||
| 437 | DebugLoc TestLoc = CopyDefI.getDebugLoc(); | |||
| 438 | ||||
| 439 | LLVM_DEBUG(dbgs() << "Rewriting copy: "; CopyI->dump())do { } while (false); | |||
| 440 | ||||
| 441 | // Walk up across live-in EFLAGS to find where they were actually def'ed. | |||
| 442 | // | |||
| 443 | // This copy's def may just be part of a region of blocks covered by | |||
| 444 | // a single def of EFLAGS and we want to find the top of that region where | |||
| 445 | // possible. | |||
| 446 | // | |||
| 447 | // This is essentially a search for a *candidate* reaching definition | |||
| 448 | // location. We don't need to ever find the actual reaching definition here, | |||
| 449 | // but we want to walk up the dominator tree to find the highest point which | |||
| 450 | // would be viable for such a definition. | |||
| 451 | auto HasEFLAGSClobber = [&](MachineBasicBlock::iterator Begin, | |||
| 452 | MachineBasicBlock::iterator End) { | |||
| 453 | // Scan backwards as we expect these to be relatively short and often find | |||
| 454 | // a clobber near the end. | |||
| 455 | return llvm::any_of( | |||
| 456 | llvm::reverse(llvm::make_range(Begin, End)), [&](MachineInstr &MI) { | |||
| 457 | // Flag any instruction (other than the copy we are | |||
| 458 | // currently rewriting) that defs EFLAGS. | |||
| 459 | return &MI != CopyI && MI.findRegisterDefOperand(X86::EFLAGS); | |||
| 460 | }); | |||
| 461 | }; | |||
| 462 | auto HasEFLAGSClobberPath = [&](MachineBasicBlock *BeginMBB, | |||
| 463 | MachineBasicBlock *EndMBB) { | |||
| 464 | assert(MDT->dominates(BeginMBB, EndMBB) &&((void)0) | |||
| 465 | "Only support paths down the dominator tree!")((void)0); | |||
| 466 | SmallPtrSet<MachineBasicBlock *, 4> Visited; | |||
| 467 | SmallVector<MachineBasicBlock *, 4> Worklist; | |||
| 468 | // We terminate at the beginning. No need to scan it. | |||
| 469 | Visited.insert(BeginMBB); | |||
| 470 | Worklist.push_back(EndMBB); | |||
| 471 | do { | |||
| 472 | auto *MBB = Worklist.pop_back_val(); | |||
| 473 | for (auto *PredMBB : MBB->predecessors()) { | |||
| 474 | if (!Visited.insert(PredMBB).second) | |||
| 475 | continue; | |||
| 476 | if (HasEFLAGSClobber(PredMBB->begin(), PredMBB->end())) | |||
| 477 | return true; | |||
| 478 | // Enqueue this block to walk its predecessors. | |||
| 479 | Worklist.push_back(PredMBB); | |||
| 480 | } | |||
| 481 | } while (!Worklist.empty()); | |||
| 482 | // No clobber found along a path from the begin to end. | |||
| 483 | return false; | |||
| 484 | }; | |||
| 485 | while (TestMBB->isLiveIn(X86::EFLAGS) && !TestMBB->pred_empty() && | |||
| 486 | !HasEFLAGSClobber(TestMBB->begin(), TestPos)) { | |||
| 487 | // Find the nearest common dominator of the predecessors, as | |||
| 488 | // that will be the best candidate to hoist into. | |||
| 489 | MachineBasicBlock *HoistMBB = | |||
| 490 | std::accumulate(std::next(TestMBB->pred_begin()), TestMBB->pred_end(), | |||
| 491 | *TestMBB->pred_begin(), | |||
| 492 | [&](MachineBasicBlock *LHS, MachineBasicBlock *RHS) { | |||
| 493 | return MDT->findNearestCommonDominator(LHS, RHS); | |||
| 494 | }); | |||
| 495 | ||||
| 496 | // Now we need to scan all predecessors that may be reached along paths to | |||
| 497 | // the hoist block. A clobber anywhere in any of these blocks the hoist. | |||
| 498 | // Note that this even handles loops because we require *no* clobbers. | |||
| 499 | if (HasEFLAGSClobberPath(HoistMBB, TestMBB)) | |||
| 500 | break; | |||
| 501 | ||||
| 502 | // We also need the terminators to not sneakily clobber flags. | |||
| 503 | if (HasEFLAGSClobber(HoistMBB->getFirstTerminator()->getIterator(), | |||
| 504 | HoistMBB->instr_end())) | |||
| 505 | break; | |||
| 506 | ||||
| 507 | // We found a viable location, hoist our test position to it. | |||
| 508 | TestMBB = HoistMBB; | |||
| 509 | TestPos = TestMBB->getFirstTerminator()->getIterator(); | |||
| 510 | // Clear the debug location as it would just be confusing after hoisting. | |||
| 511 | TestLoc = DebugLoc(); | |||
| 512 | } | |||
| 513 | LLVM_DEBUG({do { } while (false) | |||
| 514 | auto DefIt = llvm::find_if(do { } while (false) | |||
| 515 | llvm::reverse(llvm::make_range(TestMBB->instr_begin(), TestPos)),do { } while (false) | |||
| 516 | [&](MachineInstr &MI) {do { } while (false) | |||
| 517 | return MI.findRegisterDefOperand(X86::EFLAGS);do { } while (false) | |||
| 518 | });do { } while (false) | |||
| 519 | if (DefIt.base() != TestMBB->instr_begin()) {do { } while (false) | |||
| 520 | dbgs() << " Using EFLAGS defined by: ";do { } while (false) | |||
| 521 | DefIt->dump();do { } while (false) | |||
| 522 | } else {do { } while (false) | |||
| 523 | dbgs() << " Using live-in flags for BB:\n";do { } while (false) | |||
| 524 | TestMBB->dump();do { } while (false) | |||
| 525 | }do { } while (false) | |||
| 526 | })do { } while (false); | |||
| 527 | ||||
| 528 | // While rewriting uses, we buffer jumps and rewrite them in a second pass | |||
| 529 | // because doing so will perturb the CFG that we are walking to find the | |||
| 530 | // uses in the first place. | |||
| 531 | SmallVector<MachineInstr *, 4> JmpIs; | |||
| 532 | ||||
| 533 | // Gather the condition flags that have already been preserved in | |||
| 534 | // registers. We do this from scratch each time as we expect there to be | |||
| 535 | // very few of them and we expect to not revisit the same copy definition | |||
| 536 | // many times. If either of those change sufficiently we could build a map | |||
| 537 | // of these up front instead. | |||
| 538 | CondRegArray CondRegs = collectCondsInRegs(*TestMBB, TestPos); | |||
| 539 | ||||
| 540 | // Collect the basic blocks we need to scan. Typically this will just be | |||
| 541 | // a single basic block but we may have to scan multiple blocks if the | |||
| 542 | // EFLAGS copy lives into successors. | |||
| 543 | SmallVector<MachineBasicBlock *, 2> Blocks; | |||
| 544 | SmallPtrSet<MachineBasicBlock *, 2> VisitedBlocks; | |||
| 545 | Blocks.push_back(&MBB); | |||
| 546 | ||||
| 547 | do { | |||
| 548 | MachineBasicBlock &UseMBB = *Blocks.pop_back_val(); | |||
| 549 | ||||
| 550 | // Track when if/when we find a kill of the flags in this block. | |||
| 551 | bool FlagsKilled = false; | |||
| 552 | ||||
| 553 | // In most cases, we walk from the beginning to the end of the block. But | |||
| 554 | // when the block is the same block as the copy is from, we will visit it | |||
| 555 | // twice. The first time we start from the copy and go to the end. The | |||
| 556 | // second time we start from the beginning and go to the copy. This lets | |||
| 557 | // us handle copies inside of cycles. | |||
| 558 | // FIXME: This loop is *super* confusing. This is at least in part | |||
| 559 | // a symptom of all of this routine needing to be refactored into | |||
| 560 | // documentable components. Once done, there may be a better way to write | |||
| 561 | // this loop. | |||
| 562 | for (auto MII = (&UseMBB == &MBB && !VisitedBlocks.count(&UseMBB)) | |||
| 563 | ? std::next(CopyI->getIterator()) | |||
| 564 | : UseMBB.instr_begin(), | |||
| 565 | MIE = UseMBB.instr_end(); | |||
| 566 | MII != MIE;) { | |||
| 567 | MachineInstr &MI = *MII++; | |||
| 568 | // If we are in the original copy block and encounter either the copy | |||
| 569 | // def or the copy itself, break so that we don't re-process any part of | |||
| 570 | // the block or process the instructions in the range that was copied | |||
| 571 | // over. | |||
| 572 | if (&MI == CopyI || &MI == &CopyDefI) { | |||
| 573 | assert(&UseMBB == &MBB && VisitedBlocks.count(&MBB) &&((void)0) | |||
| 574 | "Should only encounter these on the second pass over the "((void)0) | |||
| 575 | "original block.")((void)0); | |||
| 576 | break; | |||
| 577 | } | |||
| 578 | ||||
| 579 | MachineOperand *FlagUse = MI.findRegisterUseOperand(X86::EFLAGS); | |||
| 580 | if (!FlagUse) { | |||
| 581 | if (MI.findRegisterDefOperand(X86::EFLAGS)) { | |||
| 582 | // If EFLAGS are defined, it's as-if they were killed. We can stop | |||
| 583 | // scanning here. | |||
| 584 | // | |||
| 585 | // NB!!! Many instructions only modify some flags. LLVM currently | |||
| 586 | // models this as clobbering all flags, but if that ever changes | |||
| 587 | // this will need to be carefully updated to handle that more | |||
| 588 | // complex logic. | |||
| 589 | FlagsKilled = true; | |||
| 590 | break; | |||
| 591 | } | |||
| 592 | continue; | |||
| 593 | } | |||
| 594 | ||||
| 595 | LLVM_DEBUG(dbgs() << " Rewriting use: "; MI.dump())do { } while (false); | |||
| 596 | ||||
| 597 | // Check the kill flag before we rewrite as that may change it. | |||
| 598 | if (FlagUse->isKill()) | |||
| 599 | FlagsKilled = true; | |||
| 600 | ||||
| 601 | // Once we encounter a branch, the rest of the instructions must also be | |||
| 602 | // branches. We can't rewrite in place here, so we handle them below. | |||
| 603 | // | |||
| 604 | // Note that we don't have to handle tail calls here, even conditional | |||
| 605 | // tail calls, as those are not introduced into the X86 MI until post-RA | |||
| 606 | // branch folding or black placement. As a consequence, we get to deal | |||
| 607 | // with the simpler formulation of conditional branches followed by tail | |||
| 608 | // calls. | |||
| 609 | if (X86::getCondFromBranch(MI) != X86::COND_INVALID) { | |||
| 610 | auto JmpIt = MI.getIterator(); | |||
| 611 | do { | |||
| 612 | JmpIs.push_back(&*JmpIt); | |||
| 613 | ++JmpIt; | |||
| 614 | } while (JmpIt != UseMBB.instr_end() && | |||
| 615 | X86::getCondFromBranch(*JmpIt) != | |||
| 616 | X86::COND_INVALID); | |||
| 617 | break; | |||
| 618 | } | |||
| 619 | ||||
| 620 | // Otherwise we can just rewrite in-place. | |||
| 621 | if (X86::getCondFromCMov(MI) != X86::COND_INVALID) { | |||
| 622 | rewriteCMov(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs); | |||
| 623 | } else if (getCondFromFCMOV(MI.getOpcode()) != X86::COND_INVALID) { | |||
| 624 | rewriteFCMov(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs); | |||
| 625 | } else if (X86::getCondFromSETCC(MI) != X86::COND_INVALID) { | |||
| 626 | rewriteSetCC(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs); | |||
| 627 | } else if (MI.getOpcode() == TargetOpcode::COPY) { | |||
| 628 | rewriteCopy(MI, *FlagUse, CopyDefI); | |||
| 629 | } else { | |||
| 630 | // We assume all other instructions that use flags also def them. | |||
| 631 | assert(MI.findRegisterDefOperand(X86::EFLAGS) &&((void)0) | |||
| 632 | "Expected a def of EFLAGS for this instruction!")((void)0); | |||
| 633 | ||||
| 634 | // NB!!! Several arithmetic instructions only *partially* update | |||
| 635 | // flags. Theoretically, we could generate MI code sequences that | |||
| 636 | // would rely on this fact and observe different flags independently. | |||
| 637 | // But currently LLVM models all of these instructions as clobbering | |||
| 638 | // all the flags in an undef way. We rely on that to simplify the | |||
| 639 | // logic. | |||
| 640 | FlagsKilled = true; | |||
| 641 | ||||
| 642 | // Generically handle remaining uses as arithmetic instructions. | |||
| 643 | rewriteArithmetic(*TestMBB, TestPos, TestLoc, MI, *FlagUse, | |||
| 644 | CondRegs); | |||
| 645 | } | |||
| 646 | ||||
| 647 | // If this was the last use of the flags, we're done. | |||
| 648 | if (FlagsKilled) | |||
| 649 | break; | |||
| 650 | } | |||
| 651 | ||||
| 652 | // If the flags were killed, we're done with this block. | |||
| 653 | if (FlagsKilled) | |||
| 654 | continue; | |||
| 655 | ||||
| 656 | // Otherwise we need to scan successors for ones where the flags live-in | |||
| 657 | // and queue those up for processing. | |||
| 658 | for (MachineBasicBlock *SuccMBB : UseMBB.successors()) | |||
| 659 | if (SuccMBB->isLiveIn(X86::EFLAGS) && | |||
| 660 | VisitedBlocks.insert(SuccMBB).second) { | |||
| 661 | // We currently don't do any PHI insertion and so we require that the | |||
| 662 | // test basic block dominates all of the use basic blocks. Further, we | |||
| 663 | // can't have a cycle from the test block back to itself as that would | |||
| 664 | // create a cycle requiring a PHI to break it. | |||
| 665 | // | |||
| 666 | // We could in theory do PHI insertion here if it becomes useful by | |||
| 667 | // just taking undef values in along every edge that we don't trace | |||
| 668 | // this EFLAGS copy along. This isn't as bad as fully general PHI | |||
| 669 | // insertion, but still seems like a great deal of complexity. | |||
| 670 | // | |||
| 671 | // Because it is theoretically possible that some earlier MI pass or | |||
| 672 | // other lowering transformation could induce this to happen, we do | |||
| 673 | // a hard check even in non-debug builds here. | |||
| 674 | if (SuccMBB == TestMBB || !MDT->dominates(TestMBB, SuccMBB)) { | |||
| 675 | LLVM_DEBUG({do { } while (false) | |||
| 676 | dbgs()do { } while (false) | |||
| 677 | << "ERROR: Encountered use that is not dominated by our test "do { } while (false) | |||
| 678 | "basic block! Rewriting this would require inserting PHI "do { } while (false) | |||
| 679 | "nodes to track the flag state across the CFG.\n\nTest "do { } while (false) | |||
| 680 | "block:\n";do { } while (false) | |||
| 681 | TestMBB->dump();do { } while (false) | |||
| 682 | dbgs() << "Use block:\n";do { } while (false) | |||
| 683 | SuccMBB->dump();do { } while (false) | |||
| 684 | })do { } while (false); | |||
| 685 | report_fatal_error( | |||
| 686 | "Cannot lower EFLAGS copy when original copy def " | |||
| 687 | "does not dominate all uses."); | |||
| 688 | } | |||
| 689 | ||||
| 690 | Blocks.push_back(SuccMBB); | |||
| 691 | ||||
| 692 | // After this, EFLAGS will be recreated before each use. | |||
| 693 | SuccMBB->removeLiveIn(X86::EFLAGS); | |||
| 694 | } | |||
| 695 | } while (!Blocks.empty()); | |||
| 696 | ||||
| 697 | // Now rewrite the jumps that use the flags. These we handle specially | |||
| 698 | // because if there are multiple jumps in a single basic block we'll have | |||
| 699 | // to do surgery on the CFG. | |||
| 700 | MachineBasicBlock *LastJmpMBB = nullptr; | |||
| 701 | for (MachineInstr *JmpI : JmpIs) { | |||
| 702 | // Past the first jump within a basic block we need to split the blocks | |||
| 703 | // apart. | |||
| 704 | if (JmpI->getParent() == LastJmpMBB) | |||
| 705 | splitBlock(*JmpI->getParent(), *JmpI, *TII); | |||
| 706 | else | |||
| 707 | LastJmpMBB = JmpI->getParent(); | |||
| 708 | ||||
| 709 | rewriteCondJmp(*TestMBB, TestPos, TestLoc, *JmpI, CondRegs); | |||
| 710 | } | |||
| 711 | ||||
| 712 | // FIXME: Mark the last use of EFLAGS before the copy's def as a kill if | |||
| 713 | // the copy's def operand is itself a kill. | |||
| 714 | } | |||
| 715 | ||||
| 716 | #ifndef NDEBUG1 | |||
| 717 | for (MachineBasicBlock &MBB : MF) | |||
| 718 | for (MachineInstr &MI : MBB) | |||
| 719 | if (MI.getOpcode() == TargetOpcode::COPY && | |||
| 720 | (MI.getOperand(0).getReg() == X86::EFLAGS || | |||
| 721 | MI.getOperand(1).getReg() == X86::EFLAGS)) { | |||
| 722 | LLVM_DEBUG(dbgs() << "ERROR: Found a COPY involving EFLAGS: ";do { } while (false) | |||
| 723 | MI.dump())do { } while (false); | |||
| 724 | llvm_unreachable("Unlowered EFLAGS copy!")__builtin_unreachable(); | |||
| 725 | } | |||
| 726 | #endif | |||
| 727 | ||||
| 728 | return true; | |||
| 729 | } | |||
| 730 | ||||
| 731 | /// Collect any conditions that have already been set in registers so that we | |||
| 732 | /// can re-use them rather than adding duplicates. | |||
| 733 | CondRegArray X86FlagsCopyLoweringPass::collectCondsInRegs( | |||
| 734 | MachineBasicBlock &MBB, MachineBasicBlock::iterator TestPos) { | |||
| 735 | CondRegArray CondRegs = {}; | |||
| 736 | ||||
| 737 | // Scan backwards across the range of instructions with live EFLAGS. | |||
| 738 | for (MachineInstr &MI : | |||
| 739 | llvm::reverse(llvm::make_range(MBB.begin(), TestPos))) { | |||
| 740 | X86::CondCode Cond = X86::getCondFromSETCC(MI); | |||
| 741 | if (Cond != X86::COND_INVALID && !MI.mayStore() && | |||
| 742 | MI.getOperand(0).isReg() && MI.getOperand(0).getReg().isVirtual()) { | |||
| 743 | assert(MI.getOperand(0).isDef() &&((void)0) | |||
| 744 | "A non-storing SETcc should always define a register!")((void)0); | |||
| 745 | CondRegs[Cond] = MI.getOperand(0).getReg(); | |||
| 746 | } | |||
| 747 | ||||
| 748 | // Stop scanning when we see the first definition of the EFLAGS as prior to | |||
| 749 | // this we would potentially capture the wrong flag state. | |||
| 750 | if (MI.findRegisterDefOperand(X86::EFLAGS)) | |||
| 751 | break; | |||
| 752 | } | |||
| 753 | return CondRegs; | |||
| 754 | } | |||
| 755 | ||||
| 756 | Register X86FlagsCopyLoweringPass::promoteCondToReg( | |||
| 757 | MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos, | |||
| 758 | const DebugLoc &TestLoc, X86::CondCode Cond) { | |||
| 759 | Register Reg = MRI->createVirtualRegister(PromoteRC); | |||
| 760 | auto SetI = BuildMI(TestMBB, TestPos, TestLoc, | |||
| 761 | TII->get(X86::SETCCr), Reg).addImm(Cond); | |||
| 762 | (void)SetI; | |||
| 763 | LLVM_DEBUG(dbgs() << " save cond: "; SetI->dump())do { } while (false); | |||
| 764 | ++NumSetCCsInserted; | |||
| 765 | return Reg; | |||
| 766 | } | |||
| 767 | ||||
| 768 | std::pair<unsigned, bool> X86FlagsCopyLoweringPass::getCondOrInverseInReg( | |||
| 769 | MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos, | |||
| 770 | const DebugLoc &TestLoc, X86::CondCode Cond, CondRegArray &CondRegs) { | |||
| 771 | unsigned &CondReg = CondRegs[Cond]; | |||
| 772 | unsigned &InvCondReg = CondRegs[X86::GetOppositeBranchCondition(Cond)]; | |||
| 773 | if (!CondReg && !InvCondReg) | |||
| 774 | CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond); | |||
| 775 | ||||
| 776 | if (CondReg) | |||
| 777 | return {CondReg, false}; | |||
| 778 | else | |||
| 779 | return {InvCondReg, true}; | |||
| 780 | } | |||
| 781 | ||||
| 782 | void X86FlagsCopyLoweringPass::insertTest(MachineBasicBlock &MBB, | |||
| 783 | MachineBasicBlock::iterator Pos, | |||
| 784 | const DebugLoc &Loc, unsigned Reg) { | |||
| 785 | auto TestI = | |||
| 786 | BuildMI(MBB, Pos, Loc, TII->get(X86::TEST8rr)).addReg(Reg).addReg(Reg); | |||
| 787 | (void)TestI; | |||
| 788 | LLVM_DEBUG(dbgs() << " test cond: "; TestI->dump())do { } while (false); | |||
| 789 | ++NumTestsInserted; | |||
| 790 | } | |||
| 791 | ||||
| 792 | void X86FlagsCopyLoweringPass::rewriteArithmetic( | |||
| 793 | MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos, | |||
| 794 | const DebugLoc &TestLoc, MachineInstr &MI, MachineOperand &FlagUse, | |||
| 795 | CondRegArray &CondRegs) { | |||
| 796 | // Arithmetic is either reading CF or OF. Figure out which condition we need | |||
| 797 | // to preserve in a register. | |||
| 798 | X86::CondCode Cond = X86::COND_INVALID; | |||
| 799 | ||||
| 800 | // The addend to use to reset CF or OF when added to the flag value. | |||
| 801 | int Addend = 0; | |||
| 802 | ||||
| 803 | switch (getMnemonicFromOpcode(MI.getOpcode())) { | |||
| 804 | case FlagArithMnemonic::ADC: | |||
| 805 | case FlagArithMnemonic::ADCX: | |||
| 806 | case FlagArithMnemonic::RCL: | |||
| 807 | case FlagArithMnemonic::RCR: | |||
| 808 | case FlagArithMnemonic::SBB: | |||
| 809 | case FlagArithMnemonic::SETB: | |||
| 810 | Cond = X86::COND_B; // CF == 1 | |||
| 811 | // Set up an addend that when one is added will need a carry due to not | |||
| 812 | // having a higher bit available. | |||
| 813 | Addend = 255; | |||
| 814 | break; | |||
| 815 | ||||
| 816 | case FlagArithMnemonic::ADOX: | |||
| 817 | Cond = X86::COND_O; // OF == 1 | |||
| 818 | // Set up an addend that when one is added will turn from positive to | |||
| 819 | // negative and thus overflow in the signed domain. | |||
| 820 | Addend = 127; | |||
| 821 | break; | |||
| 822 | } | |||
| 823 | ||||
| 824 | // Now get a register that contains the value of the flag input to the | |||
| 825 | // arithmetic. We require exactly this flag to simplify the arithmetic | |||
| 826 | // required to materialize it back into the flag. | |||
| 827 | unsigned &CondReg = CondRegs[Cond]; | |||
| 828 | if (!CondReg) | |||
| 829 | CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond); | |||
| 830 | ||||
| 831 | MachineBasicBlock &MBB = *MI.getParent(); | |||
| 832 | ||||
| 833 | // Insert an instruction that will set the flag back to the desired value. | |||
| 834 | Register TmpReg = MRI->createVirtualRegister(PromoteRC); | |||
| 835 | auto AddI = | |||
| 836 | BuildMI(MBB, MI.getIterator(), MI.getDebugLoc(), TII->get(X86::ADD8ri)) | |||
| 837 | .addDef(TmpReg, RegState::Dead) | |||
| 838 | .addReg(CondReg) | |||
| 839 | .addImm(Addend); | |||
| 840 | (void)AddI; | |||
| 841 | LLVM_DEBUG(dbgs() << " add cond: "; AddI->dump())do { } while (false); | |||
| 842 | ++NumAddsInserted; | |||
| 843 | FlagUse.setIsKill(true); | |||
| 844 | } | |||
| 845 | ||||
| 846 | void X86FlagsCopyLoweringPass::rewriteCMov(MachineBasicBlock &TestMBB, | |||
| 847 | MachineBasicBlock::iterator TestPos, | |||
| 848 | const DebugLoc &TestLoc, | |||
| 849 | MachineInstr &CMovI, | |||
| 850 | MachineOperand &FlagUse, | |||
| 851 | CondRegArray &CondRegs) { | |||
| 852 | // First get the register containing this specific condition. | |||
| 853 | X86::CondCode Cond = X86::getCondFromCMov(CMovI); | |||
| 854 | unsigned CondReg; | |||
| 855 | bool Inverted; | |||
| 856 | std::tie(CondReg, Inverted) = | |||
| 857 | getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs); | |||
| 858 | ||||
| 859 | MachineBasicBlock &MBB = *CMovI.getParent(); | |||
| 860 | ||||
| 861 | // Insert a direct test of the saved register. | |||
| 862 | insertTest(MBB, CMovI.getIterator(), CMovI.getDebugLoc(), CondReg); | |||
| 863 | ||||
| 864 | // Rewrite the CMov to use the !ZF flag from the test, and then kill its use | |||
| 865 | // of the flags afterward. | |||
| 866 | CMovI.getOperand(CMovI.getDesc().getNumOperands() - 1) | |||
| 867 | .setImm(Inverted ? X86::COND_E : X86::COND_NE); | |||
| 868 | FlagUse.setIsKill(true); | |||
| 869 | LLVM_DEBUG(dbgs() << " fixed cmov: "; CMovI.dump())do { } while (false); | |||
| 870 | } | |||
| 871 | ||||
| 872 | void X86FlagsCopyLoweringPass::rewriteFCMov(MachineBasicBlock &TestMBB, | |||
| 873 | MachineBasicBlock::iterator TestPos, | |||
| 874 | const DebugLoc &TestLoc, | |||
| 875 | MachineInstr &CMovI, | |||
| 876 | MachineOperand &FlagUse, | |||
| 877 | CondRegArray &CondRegs) { | |||
| 878 | // First get the register containing this specific condition. | |||
| 879 | X86::CondCode Cond = getCondFromFCMOV(CMovI.getOpcode()); | |||
| 880 | unsigned CondReg; | |||
| 881 | bool Inverted; | |||
| 882 | std::tie(CondReg, Inverted) = | |||
| 883 | getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs); | |||
| 884 | ||||
| 885 | MachineBasicBlock &MBB = *CMovI.getParent(); | |||
| 886 | ||||
| 887 | // Insert a direct test of the saved register. | |||
| 888 | insertTest(MBB, CMovI.getIterator(), CMovI.getDebugLoc(), CondReg); | |||
| 889 | ||||
| 890 | auto getFCMOVOpcode = [](unsigned Opcode, bool Inverted) { | |||
| 891 | switch (Opcode) { | |||
| 892 | default: llvm_unreachable("Unexpected opcode!")__builtin_unreachable(); | |||
| 893 | case X86::CMOVBE_Fp32: case X86::CMOVNBE_Fp32: | |||
| 894 | case X86::CMOVB_Fp32: case X86::CMOVNB_Fp32: | |||
| 895 | case X86::CMOVE_Fp32: case X86::CMOVNE_Fp32: | |||
| 896 | case X86::CMOVP_Fp32: case X86::CMOVNP_Fp32: | |||
| 897 | return Inverted ? X86::CMOVE_Fp32 : X86::CMOVNE_Fp32; | |||
| 898 | case X86::CMOVBE_Fp64: case X86::CMOVNBE_Fp64: | |||
| 899 | case X86::CMOVB_Fp64: case X86::CMOVNB_Fp64: | |||
| 900 | case X86::CMOVE_Fp64: case X86::CMOVNE_Fp64: | |||
| 901 | case X86::CMOVP_Fp64: case X86::CMOVNP_Fp64: | |||
| 902 | return Inverted ? X86::CMOVE_Fp64 : X86::CMOVNE_Fp64; | |||
| 903 | case X86::CMOVBE_Fp80: case X86::CMOVNBE_Fp80: | |||
| 904 | case X86::CMOVB_Fp80: case X86::CMOVNB_Fp80: | |||
| 905 | case X86::CMOVE_Fp80: case X86::CMOVNE_Fp80: | |||
| 906 | case X86::CMOVP_Fp80: case X86::CMOVNP_Fp80: | |||
| 907 | return Inverted ? X86::CMOVE_Fp80 : X86::CMOVNE_Fp80; | |||
| 908 | } | |||
| 909 | }; | |||
| 910 | ||||
| 911 | // Rewrite the CMov to use the !ZF flag from the test. | |||
| 912 | CMovI.setDesc(TII->get(getFCMOVOpcode(CMovI.getOpcode(), Inverted))); | |||
| 913 | FlagUse.setIsKill(true); | |||
| 914 | LLVM_DEBUG(dbgs() << " fixed fcmov: "; CMovI.dump())do { } while (false); | |||
| 915 | } | |||
| 916 | ||||
| 917 | void X86FlagsCopyLoweringPass::rewriteCondJmp( | |||
| 918 | MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos, | |||
| 919 | const DebugLoc &TestLoc, MachineInstr &JmpI, CondRegArray &CondRegs) { | |||
| 920 | // First get the register containing this specific condition. | |||
| 921 | X86::CondCode Cond = X86::getCondFromBranch(JmpI); | |||
| 922 | unsigned CondReg; | |||
| 923 | bool Inverted; | |||
| 924 | std::tie(CondReg, Inverted) = | |||
| 925 | getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs); | |||
| 926 | ||||
| 927 | MachineBasicBlock &JmpMBB = *JmpI.getParent(); | |||
| 928 | ||||
| 929 | // Insert a direct test of the saved register. | |||
| 930 | insertTest(JmpMBB, JmpI.getIterator(), JmpI.getDebugLoc(), CondReg); | |||
| 931 | ||||
| 932 | // Rewrite the jump to use the !ZF flag from the test, and kill its use of | |||
| 933 | // flags afterward. | |||
| 934 | JmpI.getOperand(1).setImm(Inverted ? X86::COND_E : X86::COND_NE); | |||
| 935 | JmpI.findRegisterUseOperand(X86::EFLAGS)->setIsKill(true); | |||
| 936 | LLVM_DEBUG(dbgs() << " fixed jCC: "; JmpI.dump())do { } while (false); | |||
| 937 | } | |||
| 938 | ||||
| 939 | void X86FlagsCopyLoweringPass::rewriteCopy(MachineInstr &MI, | |||
| 940 | MachineOperand &FlagUse, | |||
| 941 | MachineInstr &CopyDefI) { | |||
| 942 | // Just replace this copy with the original copy def. | |||
| 943 | MRI->replaceRegWith(MI.getOperand(0).getReg(), | |||
| 944 | CopyDefI.getOperand(0).getReg()); | |||
| 945 | MI.eraseFromParent(); | |||
| 946 | } | |||
| 947 | ||||
| 948 | void X86FlagsCopyLoweringPass::rewriteSetCC(MachineBasicBlock &TestMBB, | |||
| 949 | MachineBasicBlock::iterator TestPos, | |||
| 950 | const DebugLoc &TestLoc, | |||
| 951 | MachineInstr &SetCCI, | |||
| 952 | MachineOperand &FlagUse, | |||
| 953 | CondRegArray &CondRegs) { | |||
| 954 | X86::CondCode Cond = X86::getCondFromSETCC(SetCCI); | |||
| 955 | // Note that we can't usefully rewrite this to the inverse without complex | |||
| 956 | // analysis of the users of the setCC. Largely we rely on duplicates which | |||
| 957 | // could have been avoided already being avoided here. | |||
| 958 | unsigned &CondReg = CondRegs[Cond]; | |||
| 959 | if (!CondReg) | |||
| 960 | CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond); | |||
| 961 | ||||
| 962 | // Rewriting a register def is trivial: we just replace the register and | |||
| 963 | // remove the setcc. | |||
| 964 | if (!SetCCI.mayStore()) { | |||
| 965 | assert(SetCCI.getOperand(0).isReg() &&((void)0) | |||
| 966 | "Cannot have a non-register defined operand to SETcc!")((void)0); | |||
| 967 | MRI->replaceRegWith(SetCCI.getOperand(0).getReg(), CondReg); | |||
| 968 | SetCCI.eraseFromParent(); | |||
| 969 | return; | |||
| 970 | } | |||
| 971 | ||||
| 972 | // Otherwise, we need to emit a store. | |||
| 973 | auto MIB = BuildMI(*SetCCI.getParent(), SetCCI.getIterator(), | |||
| 974 | SetCCI.getDebugLoc(), TII->get(X86::MOV8mr)); | |||
| 975 | // Copy the address operands. | |||
| 976 | for (int i = 0; i < X86::AddrNumOperands; ++i) | |||
| 977 | MIB.add(SetCCI.getOperand(i)); | |||
| 978 | ||||
| 979 | MIB.addReg(CondReg); | |||
| 980 | ||||
| 981 | MIB.setMemRefs(SetCCI.memoperands()); | |||
| 982 | ||||
| 983 | SetCCI.eraseFromParent(); | |||
| 984 | } |
| 1 | // -*- C++ -*- |
| 2 | //===---------------------------- numeric ---------------------------------===// |
| 3 | // |
| 4 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 5 | // See https://llvm.org/LICENSE.txt for license information. |
| 6 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | |
| 10 | #ifndef _LIBCPP_NUMERIC |
| 11 | #define _LIBCPP_NUMERIC |
| 12 | |
| 13 | /* |
| 14 | numeric synopsis |
| 15 | |
| 16 | namespace std |
| 17 | { |
| 18 | |
| 19 | template <class InputIterator, class T> |
| 20 | constexpr T // constexpr since C++20 |
| 21 | accumulate(InputIterator first, InputIterator last, T init); |
| 22 | |
| 23 | template <class InputIterator, class T, class BinaryOperation> |
| 24 | constexpr T // constexpr since C++20 |
| 25 | accumulate(InputIterator first, InputIterator last, T init, BinaryOperation binary_op); |
| 26 | |
| 27 | template<class InputIterator> |
| 28 | constexpr typename iterator_traits<InputIterator>::value_type // constexpr since C++20 |
| 29 | reduce(InputIterator first, InputIterator last); // C++17 |
| 30 | |
| 31 | template<class InputIterator, class T> |
| 32 | constexpr T // constexpr since C++20 |
| 33 | reduce(InputIterator first, InputIterator last, T init); // C++17 |
| 34 | |
| 35 | template<class InputIterator, class T, class BinaryOperation> |
| 36 | constexpr T // constexpr since C++20 |
| 37 | reduce(InputIterator first, InputIterator last, T init, BinaryOperation binary_op); // C++17 |
| 38 | |
| 39 | template <class InputIterator1, class InputIterator2, class T> |
| 40 | constexpr T // constexpr since C++20 |
| 41 | inner_product(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, T init); |
| 42 | |
| 43 | template <class InputIterator1, class InputIterator2, class T, class BinaryOperation1, class BinaryOperation2> |
| 44 | constexpr T // constexpr since C++20 |
| 45 | inner_product(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, |
| 46 | T init, BinaryOperation1 binary_op1, BinaryOperation2 binary_op2); |
| 47 | |
| 48 | |
| 49 | template<class InputIterator1, class InputIterator2, class T> |
| 50 | constexpr T // constexpr since C++20 |
| 51 | transform_reduce(InputIterator1 first1, InputIterator1 last1, |
| 52 | InputIterator2 first2, T init); // C++17 |
| 53 | |
| 54 | template<class InputIterator1, class InputIterator2, class T, class BinaryOperation1, class BinaryOperation2> |
| 55 | constexpr T // constexpr since C++20 |
| 56 | transform_reduce(InputIterator1 first1, InputIterator1 last1, |
| 57 | InputIterator2 first2, T init, |
| 58 | BinaryOperation1 binary_op1, BinaryOperation2 binary_op2); // C++17 |
| 59 | |
| 60 | template<class InputIterator, class T, class BinaryOperation, class UnaryOperation> |
| 61 | constexpr T // constexpr since C++20 |
| 62 | transform_reduce(InputIterator first, InputIterator last, T init, |
| 63 | BinaryOperation binary_op, UnaryOperation unary_op); // C++17 |
| 64 | |
| 65 | template <class InputIterator, class OutputIterator> |
| 66 | constexpr OutputIterator // constexpr since C++20 |
| 67 | partial_sum(InputIterator first, InputIterator last, OutputIterator result); |
| 68 | |
| 69 | template <class InputIterator, class OutputIterator, class BinaryOperation> |
| 70 | constexpr OutputIterator // constexpr since C++20 |
| 71 | partial_sum(InputIterator first, InputIterator last, OutputIterator result, BinaryOperation binary_op); |
| 72 | |
| 73 | template<class InputIterator, class OutputIterator, class T> |
| 74 | constexpr OutputIterator // constexpr since C++20 |
| 75 | exclusive_scan(InputIterator first, InputIterator last, |
| 76 | OutputIterator result, T init); // C++17 |
| 77 | |
| 78 | template<class InputIterator, class OutputIterator, class T, class BinaryOperation> |
| 79 | constexpr OutputIterator // constexpr since C++20 |
| 80 | exclusive_scan(InputIterator first, InputIterator last, |
| 81 | OutputIterator result, T init, BinaryOperation binary_op); // C++17 |
| 82 | |
| 83 | template<class InputIterator, class OutputIterator> |
| 84 | constexpr OutputIterator // constexpr since C++20 |
| 85 | inclusive_scan(InputIterator first, InputIterator last, OutputIterator result); // C++17 |
| 86 | |
| 87 | template<class InputIterator, class OutputIterator, class BinaryOperation> |
| 88 | constexpr OutputIterator // constexpr since C++20 |
| 89 | inclusive_scan(InputIterator first, InputIterator last, |
| 90 | OutputIterator result, BinaryOperation binary_op); // C++17 |
| 91 | |
| 92 | template<class InputIterator, class OutputIterator, class BinaryOperation, class T> |
| 93 | constexpr OutputIterator // constexpr since C++20 |
| 94 | inclusive_scan(InputIterator first, InputIterator last, |
| 95 | OutputIterator result, BinaryOperation binary_op, T init); // C++17 |
| 96 | |
| 97 | template<class InputIterator, class OutputIterator, class T, |
| 98 | class BinaryOperation, class UnaryOperation> |
| 99 | constexpr OutputIterator // constexpr since C++20 |
| 100 | transform_exclusive_scan(InputIterator first, InputIterator last, |
| 101 | OutputIterator result, T init, |
| 102 | BinaryOperation binary_op, UnaryOperation unary_op); // C++17 |
| 103 | |
| 104 | template<class InputIterator, class OutputIterator, |
| 105 | class BinaryOperation, class UnaryOperation> |
| 106 | constexpr OutputIterator // constexpr since C++20 |
| 107 | transform_inclusive_scan(InputIterator first, InputIterator last, |
| 108 | OutputIterator result, |
| 109 | BinaryOperation binary_op, UnaryOperation unary_op); // C++17 |
| 110 | |
| 111 | template<class InputIterator, class OutputIterator, |
| 112 | class BinaryOperation, class UnaryOperation, class T> |
| 113 | constexpr OutputIterator // constexpr since C++20 |
| 114 | transform_inclusive_scan(InputIterator first, InputIterator last, |
| 115 | OutputIterator result, |
| 116 | BinaryOperation binary_op, UnaryOperation unary_op, |
| 117 | T init); // C++17 |
| 118 | |
| 119 | template <class InputIterator, class OutputIterator> |
| 120 | constexpr OutputIterator // constexpr since C++20 |
| 121 | adjacent_difference(InputIterator first, InputIterator last, OutputIterator result); |
| 122 | |
| 123 | template <class InputIterator, class OutputIterator, class BinaryOperation> |
| 124 | constexpr OutputIterator // constexpr since C++20 |
| 125 | adjacent_difference(InputIterator first, InputIterator last, OutputIterator result, BinaryOperation binary_op); |
| 126 | |
| 127 | template <class ForwardIterator, class T> |
| 128 | constexpr void // constexpr since C++20 |
| 129 | iota(ForwardIterator first, ForwardIterator last, T value); |
| 130 | |
| 131 | template <class M, class N> |
| 132 | constexpr common_type_t<M,N> gcd(M m, N n); // C++17 |
| 133 | |
| 134 | template <class M, class N> |
| 135 | constexpr common_type_t<M,N> lcm(M m, N n); // C++17 |
| 136 | |
| 137 | template<class T> |
| 138 | constexpr T midpoint(T a, T b) noexcept; // C++20 |
| 139 | |
| 140 | template<class T> |
| 141 | constexpr T* midpoint(T* a, T* b); // C++20 |
| 142 | |
| 143 | } // std |
| 144 | |
| 145 | */ |
| 146 | |
| 147 | #include <__config> |
| 148 | #include <__debug> |
| 149 | #include <cmath> // for isnormal |
| 150 | #include <functional> |
| 151 | #include <iterator> |
| 152 | #include <limits> // for numeric_limits |
| 153 | #include <version> |
| 154 | |
| 155 | #if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER) |
| 156 | #pragma GCC system_header |
| 157 | #endif |
| 158 | |
| 159 | _LIBCPP_PUSH_MACROSpush_macro("min") push_macro("max") |
| 160 | #include <__undef_macros> |
| 161 | |
| 162 | _LIBCPP_BEGIN_NAMESPACE_STDnamespace std { inline namespace __1 { |
| 163 | |
| 164 | template <class _InputIterator, class _Tp> |
| 165 | _LIBCPP_INLINE_VISIBILITY__attribute__ ((__visibility__("hidden"))) __attribute__ ((__exclude_from_explicit_instantiation__ )) _LIBCPP_CONSTEXPR_AFTER_CXX17 |
| 166 | _Tp |
| 167 | accumulate(_InputIterator __first, _InputIterator __last, _Tp __init) |
| 168 | { |
| 169 | for (; __first != __last; ++__first) |
| 170 | #if _LIBCPP_STD_VER14 > 17 |
| 171 | __init = _VSTDstd::__1::move(__init) + *__first; |
| 172 | #else |
| 173 | __init = __init + *__first; |
| 174 | #endif |
| 175 | return __init; |
| 176 | } |
| 177 | |
| 178 | template <class _InputIterator, class _Tp, class _BinaryOperation> |
| 179 | _LIBCPP_INLINE_VISIBILITY__attribute__ ((__visibility__("hidden"))) __attribute__ ((__exclude_from_explicit_instantiation__ )) _LIBCPP_CONSTEXPR_AFTER_CXX17 |
| 180 | _Tp |
| 181 | accumulate(_InputIterator __first, _InputIterator __last, _Tp __init, _BinaryOperation __binary_op) |
| 182 | { |
| 183 | for (; __first != __last; ++__first) |
| 184 | #if _LIBCPP_STD_VER14 > 17 |
| 185 | __init = __binary_op(_VSTDstd::__1::move(__init), *__first); |
| 186 | #else |
| 187 | __init = __binary_op(__init, *__first); |
| 188 | #endif |
| 189 | return __init; |
| 190 | } |
| 191 | |
| 192 | #if _LIBCPP_STD_VER14 > 14 |
| 193 | template <class _InputIterator, class _Tp, class _BinaryOp> |
| 194 | _LIBCPP_INLINE_VISIBILITY__attribute__ ((__visibility__("hidden"))) __attribute__ ((__exclude_from_explicit_instantiation__ )) _LIBCPP_CONSTEXPR_AFTER_CXX17 |
| 195 | _Tp |
| 196 | reduce(_InputIterator __first, _InputIterator __last, _Tp __init, _BinaryOp __b) |
| 197 | { |
| 198 | for (; __first != __last; ++__first) |
| 199 | __init = __b(__init, *__first); |
| 200 | return __init; |
| 201 | } |
| 202 | |
| 203 | template <class _InputIterator, class _Tp> |
| 204 | _LIBCPP_INLINE_VISIBILITY__attribute__ ((__visibility__("hidden"))) __attribute__ ((__exclude_from_explicit_instantiation__ )) _LIBCPP_CONSTEXPR_AFTER_CXX17 |
| 205 | _Tp |
| 206 | reduce(_InputIterator __first, _InputIterator __last, _Tp __init) |
| 207 | { |
| 208 | return _VSTDstd::__1::reduce(__first, __last, __init, _VSTDstd::__1::plus<>()); |
| 209 | } |
| 210 | |
| 211 | template <class _InputIterator> |
| 212 | _LIBCPP_INLINE_VISIBILITY__attribute__ ((__visibility__("hidden"))) __attribute__ ((__exclude_from_explicit_instantiation__ )) _LIBCPP_CONSTEXPR_AFTER_CXX17 |
| 213 | typename iterator_traits<_InputIterator>::value_type |
| 214 | reduce(_InputIterator __first, _InputIterator __last) |
| 215 | { |
| 216 | return _VSTDstd::__1::reduce(__first, __last, |
| 217 | typename iterator_traits<_InputIterator>::value_type{}); |
| 218 | } |
| 219 | #endif |
| 220 | |
| 221 | template <class _InputIterator1, class _InputIterator2, class _Tp> |
| 222 | _LIBCPP_INLINE_VISIBILITY__attribute__ ((__visibility__("hidden"))) __attribute__ ((__exclude_from_explicit_instantiation__ )) _LIBCPP_CONSTEXPR_AFTER_CXX17 |
| 223 | _Tp |
| 224 | inner_product(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _Tp __init) |
| 225 | { |
| 226 | for (; __first1 != __last1; ++__first1, (void) ++__first2) |
| 227 | #if _LIBCPP_STD_VER14 > 17 |
| 228 | __init = _VSTDstd::__1::move(__init) + *__first1 * *__first2; |
| 229 | #else |
| 230 | __init = __init + *__first1 * *__first2; |
| 231 | #endif |
| 232 | return __init; |
| 233 | } |
| 234 | |
| 235 | template <class _InputIterator1, class _InputIterator2, class _Tp, class _BinaryOperation1, class _BinaryOperation2> |
| 236 | _LIBCPP_INLINE_VISIBILITY__attribute__ ((__visibility__("hidden"))) __attribute__ ((__exclude_from_explicit_instantiation__ )) _LIBCPP_CONSTEXPR_AFTER_CXX17 |
| 237 | _Tp |
| 238 | inner_product(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, |
| 239 | _Tp __init, _BinaryOperation1 __binary_op1, _BinaryOperation2 __binary_op2) |
| 240 | { |
| 241 | for (; __first1 != __last1; ++__first1, (void) ++__first2) |
| 242 | #if _LIBCPP_STD_VER14 > 17 |
| 243 | __init = __binary_op1(_VSTDstd::__1::move(__init), __binary_op2(*__first1, *__first2)); |
| 244 | #else |
| 245 | __init = __binary_op1(__init, __binary_op2(*__first1, *__first2)); |
| 246 | #endif |
| 247 | return __init; |
| 248 | } |
| 249 | |
| 250 | #if _LIBCPP_STD_VER14 > 14 |
| 251 | template <class _InputIterator, class _Tp, class _BinaryOp, class _UnaryOp> |
| 252 | _LIBCPP_INLINE_VISIBILITY__attribute__ ((__visibility__("hidden"))) __attribute__ ((__exclude_from_explicit_instantiation__ )) _LIBCPP_CONSTEXPR_AFTER_CXX17 |
| 253 | _Tp |
| 254 | transform_reduce(_InputIterator __first, _InputIterator __last, |
| 255 | _Tp __init, _BinaryOp __b, _UnaryOp __u) |
| 256 | { |
| 257 | for (; __first != __last; ++__first) |
| 258 | __init = __b(__init, __u(*__first)); |
| 259 | return __init; |
| 260 | } |
| 261 | |
| 262 | template <class _InputIterator1, class _InputIterator2, |
| 263 | class _Tp, class _BinaryOp1, class _BinaryOp2> |
| 264 | _LIBCPP_INLINE_VISIBILITY__attribute__ ((__visibility__("hidden"))) __attribute__ ((__exclude_from_explicit_instantiation__ )) _LIBCPP_CONSTEXPR_AFTER_CXX17 |
| 265 | _Tp |
| 266 | transform_reduce(_InputIterator1 __first1, _InputIterator1 __last1, |
| 267 | _InputIterator2 __first2, _Tp __init, _BinaryOp1 __b1, _BinaryOp2 __b2) |
| 268 | { |
| 269 | for (; __first1 != __last1; ++__first1, (void) ++__first2) |
| 270 | __init = __b1(__init, __b2(*__first1, *__first2)); |
| 271 | return __init; |
| 272 | } |
| 273 | |
| 274 | template <class _InputIterator1, class _InputIterator2, class _Tp> |
| 275 | _LIBCPP_INLINE_VISIBILITY__attribute__ ((__visibility__("hidden"))) __attribute__ ((__exclude_from_explicit_instantiation__ )) _LIBCPP_CONSTEXPR_AFTER_CXX17 |
| 276 | _Tp |
| 277 | transform_reduce(_InputIterator1 __first1, _InputIterator1 __last1, |
| 278 | _InputIterator2 __first2, _Tp __init) |
| 279 | { |
| 280 | return _VSTDstd::__1::transform_reduce(__first1, __last1, __first2, _VSTDstd::__1::move(__init), |
| 281 | _VSTDstd::__1::plus<>(), _VSTDstd::__1::multiplies<>()); |
| 282 | } |
| 283 | #endif |
| 284 | |
| 285 | template <class _InputIterator, class _OutputIterator> |
| 286 | _LIBCPP_INLINE_VISIBILITY__attribute__ ((__visibility__("hidden"))) __attribute__ ((__exclude_from_explicit_instantiation__ )) _LIBCPP_CONSTEXPR_AFTER_CXX17 |
| 287 | _OutputIterator |
| 288 | partial_sum(_InputIterator __first, _InputIterator __last, _OutputIterator __result) |
| 289 | { |
| 290 | if (__first != __last) |
| 291 | { |
| 292 | typename iterator_traits<_InputIterator>::value_type __t(*__first); |
| 293 | *__result = __t; |
| 294 | for (++__first, (void) ++__result; __first != __last; ++__first, (void) ++__result) |
| 295 | { |
| 296 | #if _LIBCPP_STD_VER14 > 17 |
| 297 | __t = _VSTDstd::__1::move(__t) + *__first; |
| 298 | #else |
| 299 | __t = __t + *__first; |
| 300 | #endif |
| 301 | *__result = __t; |
| 302 | } |
| 303 | } |
| 304 | return __result; |
| 305 | } |
| 306 | |
| 307 | template <class _InputIterator, class _OutputIterator, class _BinaryOperation> |
| 308 | _LIBCPP_INLINE_VISIBILITY__attribute__ ((__visibility__("hidden"))) __attribute__ ((__exclude_from_explicit_instantiation__ )) _LIBCPP_CONSTEXPR_AFTER_CXX17 |
| 309 | _OutputIterator |
| 310 | partial_sum(_InputIterator __first, _InputIterator __last, _OutputIterator __result, |
| 311 | _BinaryOperation __binary_op) |
| 312 | { |
| 313 | if (__first != __last) |
| 314 | { |
| 315 | typename iterator_traits<_InputIterator>::value_type __t(*__first); |
| 316 | *__result = __t; |
| 317 | for (++__first, (void) ++__result; __first != __last; ++__first, (void) ++__result) |
| 318 | { |
| 319 | #if _LIBCPP_STD_VER14 > 17 |
| 320 | __t = __binary_op(_VSTDstd::__1::move(__t), *__first); |
| 321 | #else |
| 322 | __t = __binary_op(__t, *__first); |
| 323 | #endif |
| 324 | *__result = __t; |
| 325 | } |
| 326 | } |
| 327 | return __result; |
| 328 | } |
| 329 | |
| 330 | #if _LIBCPP_STD_VER14 > 14 |
| 331 | template <class _InputIterator, class _OutputIterator, class _Tp, class _BinaryOp> |
| 332 | _LIBCPP_INLINE_VISIBILITY__attribute__ ((__visibility__("hidden"))) __attribute__ ((__exclude_from_explicit_instantiation__ )) _LIBCPP_CONSTEXPR_AFTER_CXX17 |
| 333 | _OutputIterator |
| 334 | exclusive_scan(_InputIterator __first, _InputIterator __last, |
| 335 | _OutputIterator __result, _Tp __init, _BinaryOp __b) |
| 336 | { |
| 337 | if (__first != __last) |
| 338 | { |
| 339 | _Tp __tmp(__b(__init, *__first)); |
| 340 | while (true) |
| 341 | { |
| 342 | *__result = _VSTDstd::__1::move(__init); |
| 343 | ++__result; |
| 344 | ++__first; |
| 345 | if (__first == __last) |
| 346 | break; |
| 347 | __init = _VSTDstd::__1::move(__tmp); |
| 348 | __tmp = __b(__init, *__first); |
| 349 | } |
| 350 | } |
| 351 | return __result; |
| 352 | } |
| 353 | |
| 354 | template <class _InputIterator, class _OutputIterator, class _Tp> |
| 355 | _LIBCPP_INLINE_VISIBILITY__attribute__ ((__visibility__("hidden"))) __attribute__ ((__exclude_from_explicit_instantiation__ )) _LIBCPP_CONSTEXPR_AFTER_CXX17 |
| 356 | _OutputIterator |
| 357 | exclusive_scan(_InputIterator __first, _InputIterator __last, |
| 358 | _OutputIterator __result, _Tp __init) |
| 359 | { |
| 360 | return _VSTDstd::__1::exclusive_scan(__first, __last, __result, __init, _VSTDstd::__1::plus<>()); |
| 361 | } |
| 362 | |
| 363 | template <class _InputIterator, class _OutputIterator, class _Tp, class _BinaryOp> |
| 364 | _LIBCPP_INLINE_VISIBILITY__attribute__ ((__visibility__("hidden"))) __attribute__ ((__exclude_from_explicit_instantiation__ )) _LIBCPP_CONSTEXPR_AFTER_CXX17 |
| 365 | _OutputIterator inclusive_scan(_InputIterator __first, _InputIterator __last, |
| 366 | _OutputIterator __result, _BinaryOp __b, _Tp __init) |
| 367 | { |
| 368 | for (; __first != __last; ++__first, (void) ++__result) { |
| 369 | __init = __b(__init, *__first); |
| 370 | *__result = __init; |
| 371 | } |
| 372 | return __result; |
| 373 | } |
| 374 | |
| 375 | template <class _InputIterator, class _OutputIterator, class _BinaryOp> |
| 376 | _LIBCPP_INLINE_VISIBILITY__attribute__ ((__visibility__("hidden"))) __attribute__ ((__exclude_from_explicit_instantiation__ )) _LIBCPP_CONSTEXPR_AFTER_CXX17 |
| 377 | _OutputIterator inclusive_scan(_InputIterator __first, _InputIterator __last, |
| 378 | _OutputIterator __result, _BinaryOp __b) |
| 379 | { |
| 380 | if (__first != __last) { |
| 381 | typename iterator_traits<_InputIterator>::value_type __init = *__first; |
| 382 | *__result++ = __init; |
| 383 | if (++__first != __last) |
| 384 | return _VSTDstd::__1::inclusive_scan(__first, __last, __result, __b, __init); |
| 385 | } |
| 386 | |
| 387 | return __result; |
| 388 | } |
| 389 | |
| 390 | template <class _InputIterator, class _OutputIterator> |
| 391 | _LIBCPP_INLINE_VISIBILITY__attribute__ ((__visibility__("hidden"))) __attribute__ ((__exclude_from_explicit_instantiation__ )) _LIBCPP_CONSTEXPR_AFTER_CXX17 |
| 392 | _OutputIterator inclusive_scan(_InputIterator __first, _InputIterator __last, |
| 393 | _OutputIterator __result) |
| 394 | { |
| 395 | return _VSTDstd::__1::inclusive_scan(__first, __last, __result, _VSTDstd::__1::plus<>()); |
| 396 | } |
| 397 | |
| 398 | template <class _InputIterator, class _OutputIterator, class _Tp, |
| 399 | class _BinaryOp, class _UnaryOp> |
| 400 | _LIBCPP_INLINE_VISIBILITY__attribute__ ((__visibility__("hidden"))) __attribute__ ((__exclude_from_explicit_instantiation__ )) _LIBCPP_CONSTEXPR_AFTER_CXX17 |
| 401 | _OutputIterator |
| 402 | transform_exclusive_scan(_InputIterator __first, _InputIterator __last, |
| 403 | _OutputIterator __result, _Tp __init, |
| 404 | _BinaryOp __b, _UnaryOp __u) |
| 405 | { |
| 406 | if (__first != __last) |
| 407 | { |
| 408 | _Tp __saved = __init; |
| 409 | do |
| 410 | { |
| 411 | __init = __b(__init, __u(*__first)); |
| 412 | *__result = __saved; |
| 413 | __saved = __init; |
| 414 | ++__result; |
| 415 | } while (++__first != __last); |
| 416 | } |
| 417 | return __result; |
| 418 | } |
| 419 | |
| 420 | template <class _InputIterator, class _OutputIterator, class _Tp, class _BinaryOp, class _UnaryOp> |
| 421 | _LIBCPP_INLINE_VISIBILITY__attribute__ ((__visibility__("hidden"))) __attribute__ ((__exclude_from_explicit_instantiation__ )) _LIBCPP_CONSTEXPR_AFTER_CXX17 |
| 422 | _OutputIterator |
| 423 | transform_inclusive_scan(_InputIterator __first, _InputIterator __last, |
| 424 | _OutputIterator __result, _BinaryOp __b, _UnaryOp __u, _Tp __init) |
| 425 | { |
| 426 | for (; __first != __last; ++__first, (void) ++__result) { |
| 427 | __init = __b(__init, __u(*__first)); |
| 428 | *__result = __init; |
| 429 | } |
| 430 | |
| 431 | return __result; |
| 432 | } |
| 433 | |
| 434 | template <class _InputIterator, class _OutputIterator, class _BinaryOp, class _UnaryOp> |
| 435 | _LIBCPP_INLINE_VISIBILITY__attribute__ ((__visibility__("hidden"))) __attribute__ ((__exclude_from_explicit_instantiation__ )) _LIBCPP_CONSTEXPR_AFTER_CXX17 |
| 436 | _OutputIterator |
| 437 | transform_inclusive_scan(_InputIterator __first, _InputIterator __last, |
| 438 | _OutputIterator __result, _BinaryOp __b, _UnaryOp __u) |
| 439 | { |
| 440 | if (__first != __last) { |
| 441 | typename iterator_traits<_InputIterator>::value_type __init = __u(*__first); |
| 442 | *__result++ = __init; |
| 443 | if (++__first != __last) |
| 444 | return _VSTDstd::__1::transform_inclusive_scan(__first, __last, __result, __b, __u, __init); |
| 445 | } |
| 446 | |
| 447 | return __result; |
| 448 | } |
| 449 | #endif |
| 450 | |
| 451 | template <class _InputIterator, class _OutputIterator> |
| 452 | _LIBCPP_INLINE_VISIBILITY__attribute__ ((__visibility__("hidden"))) __attribute__ ((__exclude_from_explicit_instantiation__ )) _LIBCPP_CONSTEXPR_AFTER_CXX17 |
| 453 | _OutputIterator |
| 454 | adjacent_difference(_InputIterator __first, _InputIterator __last, _OutputIterator __result) |
| 455 | { |
| 456 | if (__first != __last) |
| 457 | { |
| 458 | typename iterator_traits<_InputIterator>::value_type __acc(*__first); |
| 459 | *__result = __acc; |
| 460 | for (++__first, (void) ++__result; __first != __last; ++__first, (void) ++__result) |
| 461 | { |
| 462 | typename iterator_traits<_InputIterator>::value_type __val(*__first); |
| 463 | #if _LIBCPP_STD_VER14 > 17 |
| 464 | *__result = __val - _VSTDstd::__1::move(__acc); |
| 465 | #else |
| 466 | *__result = __val - __acc; |
| 467 | #endif |
| 468 | __acc = _VSTDstd::__1::move(__val); |
| 469 | } |
| 470 | } |
| 471 | return __result; |
| 472 | } |
| 473 | |
| 474 | template <class _InputIterator, class _OutputIterator, class _BinaryOperation> |
| 475 | _LIBCPP_INLINE_VISIBILITY__attribute__ ((__visibility__("hidden"))) __attribute__ ((__exclude_from_explicit_instantiation__ )) _LIBCPP_CONSTEXPR_AFTER_CXX17 |
| 476 | _OutputIterator |
| 477 | adjacent_difference(_InputIterator __first, _InputIterator __last, _OutputIterator __result, |
| 478 | _BinaryOperation __binary_op) |
| 479 | { |
| 480 | if (__first != __last) |
| 481 | { |
| 482 | typename iterator_traits<_InputIterator>::value_type __acc(*__first); |
| 483 | *__result = __acc; |
| 484 | for (++__first, (void) ++__result; __first != __last; ++__first, (void) ++__result) |
| 485 | { |
| 486 | typename iterator_traits<_InputIterator>::value_type __val(*__first); |
| 487 | #if _LIBCPP_STD_VER14 > 17 |
| 488 | *__result = __binary_op(__val, _VSTDstd::__1::move(__acc)); |
| 489 | #else |
| 490 | *__result = __binary_op(__val, __acc); |
| 491 | #endif |
| 492 | __acc = _VSTDstd::__1::move(__val); |
| 493 | } |
| 494 | } |
| 495 | return __result; |
| 496 | } |
| 497 | |
| 498 | template <class _ForwardIterator, class _Tp> |
| 499 | _LIBCPP_INLINE_VISIBILITY__attribute__ ((__visibility__("hidden"))) __attribute__ ((__exclude_from_explicit_instantiation__ )) _LIBCPP_CONSTEXPR_AFTER_CXX17 |
| 500 | void |
| 501 | iota(_ForwardIterator __first, _ForwardIterator __last, _Tp __value_) |
| 502 | { |
| 503 | for (; __first != __last; ++__first, (void) ++__value_) |
| 504 | *__first = __value_; |
| 505 | } |
| 506 | |
| 507 | |
| 508 | #if _LIBCPP_STD_VER14 > 14 |
| 509 | template <typename _Result, typename _Source, bool _IsSigned = is_signed<_Source>::value> struct __ct_abs; |
| 510 | |
| 511 | template <typename _Result, typename _Source> |
| 512 | struct __ct_abs<_Result, _Source, true> { |
| 513 | _LIBCPP_CONSTEXPRconstexpr _LIBCPP_INLINE_VISIBILITY__attribute__ ((__visibility__("hidden"))) __attribute__ ((__exclude_from_explicit_instantiation__ )) |
| 514 | _Result operator()(_Source __t) const noexcept |
| 515 | { |
| 516 | if (__t >= 0) return __t; |
| 517 | if (__t == numeric_limits<_Source>::min()) return -static_cast<_Result>(__t); |
| 518 | return -__t; |
| 519 | } |
| 520 | }; |
| 521 | |
| 522 | template <typename _Result, typename _Source> |
| 523 | struct __ct_abs<_Result, _Source, false> { |
| 524 | _LIBCPP_CONSTEXPRconstexpr _LIBCPP_INLINE_VISIBILITY__attribute__ ((__visibility__("hidden"))) __attribute__ ((__exclude_from_explicit_instantiation__ )) |
| 525 | _Result operator()(_Source __t) const noexcept { return __t; } |
| 526 | }; |
| 527 | |
| 528 | |
| 529 | template<class _Tp> |
| 530 | _LIBCPP_CONSTEXPRconstexpr _LIBCPP_HIDDEN__attribute__ ((__visibility__("hidden"))) |
| 531 | _Tp __gcd(_Tp __m, _Tp __n) |
| 532 | { |
| 533 | static_assert((!is_signed<_Tp>::value), ""); |
| 534 | return __n == 0 ? __m : _VSTDstd::__1::__gcd<_Tp>(__n, __m % __n); |
| 535 | } |
| 536 | |
| 537 | |
| 538 | template<class _Tp, class _Up> |
| 539 | _LIBCPP_CONSTEXPRconstexpr _LIBCPP_INLINE_VISIBILITY__attribute__ ((__visibility__("hidden"))) __attribute__ ((__exclude_from_explicit_instantiation__ )) |
| 540 | common_type_t<_Tp,_Up> |
| 541 | gcd(_Tp __m, _Up __n) |
| 542 | { |
| 543 | static_assert((is_integral<_Tp>::value && is_integral<_Up>::value), "Arguments to gcd must be integer types"); |
| 544 | static_assert((!is_same<typename remove_cv<_Tp>::type, bool>::value), "First argument to gcd cannot be bool" ); |
| 545 | static_assert((!is_same<typename remove_cv<_Up>::type, bool>::value), "Second argument to gcd cannot be bool" ); |
| 546 | using _Rp = common_type_t<_Tp,_Up>; |
| 547 | using _Wp = make_unsigned_t<_Rp>; |
| 548 | return static_cast<_Rp>(_VSTDstd::__1::__gcd( |
| 549 | static_cast<_Wp>(__ct_abs<_Rp, _Tp>()(__m)), |
| 550 | static_cast<_Wp>(__ct_abs<_Rp, _Up>()(__n)))); |
| 551 | } |
| 552 | |
| 553 | template<class _Tp, class _Up> |
| 554 | _LIBCPP_CONSTEXPRconstexpr _LIBCPP_INLINE_VISIBILITY__attribute__ ((__visibility__("hidden"))) __attribute__ ((__exclude_from_explicit_instantiation__ )) |
| 555 | common_type_t<_Tp,_Up> |
| 556 | lcm(_Tp __m, _Up __n) |
| 557 | { |
| 558 | static_assert((is_integral<_Tp>::value && is_integral<_Up>::value), "Arguments to lcm must be integer types"); |
| 559 | static_assert((!is_same<typename remove_cv<_Tp>::type, bool>::value), "First argument to lcm cannot be bool" ); |
| 560 | static_assert((!is_same<typename remove_cv<_Up>::type, bool>::value), "Second argument to lcm cannot be bool" ); |
| 561 | if (__m == 0 || __n == 0) |
| 562 | return 0; |
| 563 | |
| 564 | using _Rp = common_type_t<_Tp,_Up>; |
| 565 | _Rp __val1 = __ct_abs<_Rp, _Tp>()(__m) / _VSTDstd::__1::gcd(__m, __n); |
| 566 | _Rp __val2 = __ct_abs<_Rp, _Up>()(__n); |
| 567 | _LIBCPP_ASSERT((numeric_limits<_Rp>::max() / __val1 > __val2), "Overflow in lcm")((void)0); |
| 568 | return __val1 * __val2; |
| 569 | } |
| 570 | |
| 571 | #endif /* _LIBCPP_STD_VER > 14 */ |
| 572 | |
| 573 | #if _LIBCPP_STD_VER14 > 17 |
| 574 | template <class _Tp> |
| 575 | _LIBCPP_INLINE_VISIBILITY__attribute__ ((__visibility__("hidden"))) __attribute__ ((__exclude_from_explicit_instantiation__ )) constexpr |
| 576 | enable_if_t<is_integral_v<_Tp> && !is_same_v<bool, _Tp> && !is_null_pointer_v<_Tp>, _Tp> |
| 577 | midpoint(_Tp __a, _Tp __b) noexcept |
| 578 | _LIBCPP_DISABLE_UBSAN_UNSIGNED_INTEGER_CHECK__attribute__((__no_sanitize__("unsigned-integer-overflow"))) |
| 579 | { |
| 580 | using _Up = make_unsigned_t<_Tp>; |
| 581 | constexpr _Up __bitshift = numeric_limits<_Up>::digits - 1; |
| 582 | |
| 583 | _Up __diff = _Up(__b) - _Up(__a); |
| 584 | _Up __sign_bit = __b < __a; |
| 585 | |
| 586 | _Up __half_diff = (__diff / 2) + (__sign_bit << __bitshift) + (__sign_bit & __diff); |
| 587 | |
| 588 | return __a + __half_diff; |
| 589 | } |
| 590 | |
| 591 | |
| 592 | template <class _TPtr> |
| 593 | _LIBCPP_INLINE_VISIBILITY__attribute__ ((__visibility__("hidden"))) __attribute__ ((__exclude_from_explicit_instantiation__ )) constexpr |
| 594 | enable_if_t<is_pointer_v<_TPtr> |
| 595 | && is_object_v<remove_pointer_t<_TPtr>> |
| 596 | && ! is_void_v<remove_pointer_t<_TPtr>> |
| 597 | && (sizeof(remove_pointer_t<_TPtr>) > 0), _TPtr> |
| 598 | midpoint(_TPtr __a, _TPtr __b) noexcept |
| 599 | { |
| 600 | return __a + _VSTDstd::__1::midpoint(ptrdiff_t(0), __b - __a); |
| 601 | } |
| 602 | |
| 603 | |
| 604 | template <typename _Tp> |
| 605 | constexpr int __sign(_Tp __val) { |
| 606 | return (_Tp(0) < __val) - (__val < _Tp(0)); |
| 607 | } |
| 608 | |
| 609 | template <typename _Fp> |
| 610 | constexpr _Fp __fp_abs(_Fp __f) { return __f >= 0 ? __f : -__f; } |
| 611 | |
| 612 | template <class _Fp> |
| 613 | _LIBCPP_INLINE_VISIBILITY__attribute__ ((__visibility__("hidden"))) __attribute__ ((__exclude_from_explicit_instantiation__ )) constexpr |
| 614 | enable_if_t<is_floating_point_v<_Fp>, _Fp> |
| 615 | midpoint(_Fp __a, _Fp __b) noexcept |
| 616 | { |
| 617 | constexpr _Fp __lo = numeric_limits<_Fp>::min()*2; |
| 618 | constexpr _Fp __hi = numeric_limits<_Fp>::max()/2; |
| 619 | return __fp_abs(__a) <= __hi && __fp_abs(__b) <= __hi ? // typical case: overflow is impossible |
| 620 | (__a + __b)/2 : // always correctly rounded |
| 621 | __fp_abs(__a) < __lo ? __a + __b/2 : // not safe to halve a |
| 622 | __fp_abs(__b) < __lo ? __a/2 + __b : // not safe to halve b |
| 623 | __a/2 + __b/2; // otherwise correctly rounded |
| 624 | } |
| 625 | |
| 626 | #endif // _LIBCPP_STD_VER > 17 |
| 627 | |
| 628 | _LIBCPP_END_NAMESPACE_STD} } |
| 629 | |
| 630 | _LIBCPP_POP_MACROSpop_macro("min") pop_macro("max") |
| 631 | |
| 632 | #if defined(_LIBCPP_HAS_PARALLEL_ALGORITHMS) && _LIBCPP_STD_VER14 >= 17 |
| 633 | # include <__pstl_numeric> |
| 634 | #endif |
| 635 | |
| 636 | #endif // _LIBCPP_NUMERIC |
| 1 | //==- llvm/CodeGen/MachineDominators.h - Machine Dom Calculation -*- C++ -*-==// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines classes mirroring those in llvm/Analysis/Dominators.h, |
| 10 | // but for target-specific code rather than target-independent IR. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #ifndef LLVM_CODEGEN_MACHINEDOMINATORS_H |
| 15 | #define LLVM_CODEGEN_MACHINEDOMINATORS_H |
| 16 | |
| 17 | #include "llvm/ADT/SmallSet.h" |
| 18 | #include "llvm/ADT/SmallVector.h" |
| 19 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 20 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 21 | #include "llvm/CodeGen/MachineInstr.h" |
| 22 | #include "llvm/Support/GenericDomTree.h" |
| 23 | #include "llvm/Support/GenericDomTreeConstruction.h" |
| 24 | #include <cassert> |
| 25 | #include <memory> |
| 26 | |
| 27 | namespace llvm { |
| 28 | |
| 29 | template <> |
| 30 | inline void DominatorTreeBase<MachineBasicBlock, false>::addRoot( |
| 31 | MachineBasicBlock *MBB) { |
| 32 | this->Roots.push_back(MBB); |
| 33 | } |
| 34 | |
| 35 | extern template class DomTreeNodeBase<MachineBasicBlock>; |
| 36 | extern template class DominatorTreeBase<MachineBasicBlock, false>; // DomTree |
| 37 | extern template class DominatorTreeBase<MachineBasicBlock, true>; // PostDomTree |
| 38 | |
| 39 | using MachineDomTreeNode = DomTreeNodeBase<MachineBasicBlock>; |
| 40 | |
| 41 | //===------------------------------------- |
| 42 | /// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to |
| 43 | /// compute a normal dominator tree. |
| 44 | /// |
| 45 | class MachineDominatorTree : public MachineFunctionPass { |
| 46 | using DomTreeT = DomTreeBase<MachineBasicBlock>; |
| 47 | |
| 48 | /// Helper structure used to hold all the basic blocks |
| 49 | /// involved in the split of a critical edge. |
| 50 | struct CriticalEdge { |
| 51 | MachineBasicBlock *FromBB; |
| 52 | MachineBasicBlock *ToBB; |
| 53 | MachineBasicBlock *NewBB; |
| 54 | }; |
| 55 | |
| 56 | /// Pile up all the critical edges to be split. |
| 57 | /// The splitting of a critical edge is local and thus, it is possible |
| 58 | /// to apply several of those changes at the same time. |
| 59 | mutable SmallVector<CriticalEdge, 32> CriticalEdgesToSplit; |
| 60 | |
| 61 | /// Remember all the basic blocks that are inserted during |
| 62 | /// edge splitting. |
| 63 | /// Invariant: NewBBs == all the basic blocks contained in the NewBB |
| 64 | /// field of all the elements of CriticalEdgesToSplit. |
| 65 | /// I.e., forall elt in CriticalEdgesToSplit, it exists BB in NewBBs |
| 66 | /// such as BB == elt.NewBB. |
| 67 | mutable SmallSet<MachineBasicBlock *, 32> NewBBs; |
| 68 | |
| 69 | /// The DominatorTreeBase that is used to compute a normal dominator tree. |
| 70 | std::unique_ptr<DomTreeT> DT; |
| 71 | |
| 72 | /// Apply all the recorded critical edges to the DT. |
| 73 | /// This updates the underlying DT information in a way that uses |
| 74 | /// the fast query path of DT as much as possible. |
| 75 | /// |
| 76 | /// \post CriticalEdgesToSplit.empty(). |
| 77 | void applySplitCriticalEdges() const; |
| 78 | |
| 79 | public: |
| 80 | static char ID; // Pass ID, replacement for typeid |
| 81 | |
| 82 | MachineDominatorTree(); |
| 83 | explicit MachineDominatorTree(MachineFunction &MF) : MachineFunctionPass(ID) { |
| 84 | calculate(MF); |
| 85 | } |
| 86 | |
| 87 | DomTreeT &getBase() { |
| 88 | if (!DT) DT.reset(new DomTreeT()); |
| 89 | applySplitCriticalEdges(); |
| 90 | return *DT; |
| 91 | } |
| 92 | |
| 93 | void getAnalysisUsage(AnalysisUsage &AU) const override; |
| 94 | |
| 95 | MachineBasicBlock *getRoot() const { |
| 96 | applySplitCriticalEdges(); |
| 97 | return DT->getRoot(); |
| 98 | } |
| 99 | |
| 100 | MachineDomTreeNode *getRootNode() const { |
| 101 | applySplitCriticalEdges(); |
| 102 | return DT->getRootNode(); |
| 103 | } |
| 104 | |
| 105 | bool runOnMachineFunction(MachineFunction &F) override; |
| 106 | |
| 107 | void calculate(MachineFunction &F); |
| 108 | |
| 109 | bool dominates(const MachineDomTreeNode *A, |
| 110 | const MachineDomTreeNode *B) const { |
| 111 | applySplitCriticalEdges(); |
| 112 | return DT->dominates(A, B); |
| 113 | } |
| 114 | |
| 115 | bool dominates(const MachineBasicBlock *A, const MachineBasicBlock *B) const { |
| 116 | applySplitCriticalEdges(); |
| 117 | return DT->dominates(A, B); |
| 118 | } |
| 119 | |
| 120 | // dominates - Return true if A dominates B. This performs the |
| 121 | // special checks necessary if A and B are in the same basic block. |
| 122 | bool dominates(const MachineInstr *A, const MachineInstr *B) const { |
| 123 | applySplitCriticalEdges(); |
| 124 | const MachineBasicBlock *BBA = A->getParent(), *BBB = B->getParent(); |
| 125 | if (BBA != BBB) return DT->dominates(BBA, BBB); |
| 126 | |
| 127 | // Loop through the basic block until we find A or B. |
| 128 | MachineBasicBlock::const_iterator I = BBA->begin(); |
| 129 | for (; &*I != A && &*I != B; ++I) |
| 130 | /*empty*/ ; |
| 131 | |
| 132 | return &*I == A; |
| 133 | } |
| 134 | |
| 135 | bool properlyDominates(const MachineDomTreeNode *A, |
| 136 | const MachineDomTreeNode *B) const { |
| 137 | applySplitCriticalEdges(); |
| 138 | return DT->properlyDominates(A, B); |
| 139 | } |
| 140 | |
| 141 | bool properlyDominates(const MachineBasicBlock *A, |
| 142 | const MachineBasicBlock *B) const { |
| 143 | applySplitCriticalEdges(); |
| 144 | return DT->properlyDominates(A, B); |
| 145 | } |
| 146 | |
| 147 | /// findNearestCommonDominator - Find nearest common dominator basic block |
| 148 | /// for basic block A and B. If there is no such block then return NULL. |
| 149 | MachineBasicBlock *findNearestCommonDominator(MachineBasicBlock *A, |
| 150 | MachineBasicBlock *B) { |
| 151 | applySplitCriticalEdges(); |
| 152 | return DT->findNearestCommonDominator(A, B); |
| 153 | } |
| 154 | |
| 155 | MachineDomTreeNode *operator[](MachineBasicBlock *BB) const { |
| 156 | applySplitCriticalEdges(); |
| 157 | return DT->getNode(BB); |
| 158 | } |
| 159 | |
| 160 | /// getNode - return the (Post)DominatorTree node for the specified basic |
| 161 | /// block. This is the same as using operator[] on this class. |
| 162 | /// |
| 163 | MachineDomTreeNode *getNode(MachineBasicBlock *BB) const { |
| 164 | applySplitCriticalEdges(); |
| 165 | return DT->getNode(BB); |
| 166 | } |
| 167 | |
| 168 | /// addNewBlock - Add a new node to the dominator tree information. This |
| 169 | /// creates a new node as a child of DomBB dominator node,linking it into |
| 170 | /// the children list of the immediate dominator. |
| 171 | MachineDomTreeNode *addNewBlock(MachineBasicBlock *BB, |
| 172 | MachineBasicBlock *DomBB) { |
| 173 | applySplitCriticalEdges(); |
| 174 | return DT->addNewBlock(BB, DomBB); |
| 175 | } |
| 176 | |
| 177 | /// changeImmediateDominator - This method is used to update the dominator |
| 178 | /// tree information when a node's immediate dominator changes. |
| 179 | /// |
| 180 | void changeImmediateDominator(MachineBasicBlock *N, |
| 181 | MachineBasicBlock *NewIDom) { |
| 182 | applySplitCriticalEdges(); |
| 183 | DT->changeImmediateDominator(N, NewIDom); |
| 184 | } |
| 185 | |
| 186 | void changeImmediateDominator(MachineDomTreeNode *N, |
| 187 | MachineDomTreeNode *NewIDom) { |
| 188 | applySplitCriticalEdges(); |
| 189 | DT->changeImmediateDominator(N, NewIDom); |
| 190 | } |
| 191 | |
| 192 | /// eraseNode - Removes a node from the dominator tree. Block must not |
| 193 | /// dominate any other blocks. Removes node from its immediate dominator's |
| 194 | /// children list. Deletes dominator node associated with basic block BB. |
| 195 | void eraseNode(MachineBasicBlock *BB) { |
| 196 | applySplitCriticalEdges(); |
| 197 | DT->eraseNode(BB); |
| 198 | } |
| 199 | |
| 200 | /// splitBlock - BB is split and now it has one successor. Update dominator |
| 201 | /// tree to reflect this change. |
| 202 | void splitBlock(MachineBasicBlock* NewBB) { |
| 203 | applySplitCriticalEdges(); |
| 204 | DT->splitBlock(NewBB); |
| 205 | } |
| 206 | |
| 207 | /// isReachableFromEntry - Return true if A is dominated by the entry |
| 208 | /// block of the function containing it. |
| 209 | bool isReachableFromEntry(const MachineBasicBlock *A) { |
| 210 | applySplitCriticalEdges(); |
| 211 | return DT->isReachableFromEntry(A); |
| 212 | } |
| 213 | |
| 214 | void releaseMemory() override; |
| 215 | |
| 216 | void verifyAnalysis() const override; |
| 217 | |
| 218 | void print(raw_ostream &OS, const Module*) const override; |
| 219 | |
| 220 | /// Record that the critical edge (FromBB, ToBB) has been |
| 221 | /// split with NewBB. |
| 222 | /// This is best to use this method instead of directly update the |
| 223 | /// underlying information, because this helps mitigating the |
| 224 | /// number of time the DT information is invalidated. |
| 225 | /// |
| 226 | /// \note Do not use this method with regular edges. |
| 227 | /// |
| 228 | /// \note To benefit from the compile time improvement incurred by this |
| 229 | /// method, the users of this method have to limit the queries to the DT |
| 230 | /// interface between two edges splitting. In other words, they have to |
| 231 | /// pack the splitting of critical edges as much as possible. |
| 232 | void recordSplitCriticalEdge(MachineBasicBlock *FromBB, |
| 233 | MachineBasicBlock *ToBB, |
| 234 | MachineBasicBlock *NewBB) { |
| 235 | bool Inserted = NewBBs.insert(NewBB).second; |
| 236 | (void)Inserted; |
| 237 | assert(Inserted &&((void)0) |
| 238 | "A basic block inserted via edge splitting cannot appear twice")((void)0); |
| 239 | CriticalEdgesToSplit.push_back({FromBB, ToBB, NewBB}); |
| 240 | } |
| 241 | }; |
| 242 | |
| 243 | //===------------------------------------- |
| 244 | /// DominatorTree GraphTraits specialization so the DominatorTree can be |
| 245 | /// iterable by generic graph iterators. |
| 246 | /// |
| 247 | |
| 248 | template <class Node, class ChildIterator> |
| 249 | struct MachineDomTreeGraphTraitsBase { |
| 250 | using NodeRef = Node *; |
| 251 | using ChildIteratorType = ChildIterator; |
| 252 | |
| 253 | static NodeRef getEntryNode(NodeRef N) { return N; } |
| 254 | static ChildIteratorType child_begin(NodeRef N) { return N->begin(); } |
| 255 | static ChildIteratorType child_end(NodeRef N) { return N->end(); } |
| 256 | }; |
| 257 | |
| 258 | template <class T> struct GraphTraits; |
| 259 | |
| 260 | template <> |
| 261 | struct GraphTraits<MachineDomTreeNode *> |
| 262 | : public MachineDomTreeGraphTraitsBase<MachineDomTreeNode, |
| 263 | MachineDomTreeNode::const_iterator> { |
| 264 | }; |
| 265 | |
| 266 | template <> |
| 267 | struct GraphTraits<const MachineDomTreeNode *> |
| 268 | : public MachineDomTreeGraphTraitsBase<const MachineDomTreeNode, |
| 269 | MachineDomTreeNode::const_iterator> { |
| 270 | }; |
| 271 | |
| 272 | template <> struct GraphTraits<MachineDominatorTree*> |
| 273 | : public GraphTraits<MachineDomTreeNode *> { |
| 274 | static NodeRef getEntryNode(MachineDominatorTree *DT) { |
| 275 | return DT->getRootNode(); |
| 276 | } |
| 277 | }; |
| 278 | |
| 279 | } // end namespace llvm |
| 280 | |
| 281 | #endif // LLVM_CODEGEN_MACHINEDOMINATORS_H |
| 1 | //===- GenericDomTree.h - Generic dominator trees for graphs ----*- C++ -*-===// | |||
| 2 | // | |||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | |||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
| 6 | // | |||
| 7 | //===----------------------------------------------------------------------===// | |||
| 8 | /// \file | |||
| 9 | /// | |||
| 10 | /// This file defines a set of templates that efficiently compute a dominator | |||
| 11 | /// tree over a generic graph. This is used typically in LLVM for fast | |||
| 12 | /// dominance queries on the CFG, but is fully generic w.r.t. the underlying | |||
| 13 | /// graph types. | |||
| 14 | /// | |||
| 15 | /// Unlike ADT/* graph algorithms, generic dominator tree has more requirements | |||
| 16 | /// on the graph's NodeRef. The NodeRef should be a pointer and, | |||
| 17 | /// NodeRef->getParent() must return the parent node that is also a pointer. | |||
| 18 | /// | |||
| 19 | /// FIXME: Maybe GenericDomTree needs a TreeTraits, instead of GraphTraits. | |||
| 20 | /// | |||
| 21 | //===----------------------------------------------------------------------===// | |||
| 22 | ||||
| 23 | #ifndef LLVM_SUPPORT_GENERICDOMTREE_H | |||
| 24 | #define LLVM_SUPPORT_GENERICDOMTREE_H | |||
| 25 | ||||
| 26 | #include "llvm/ADT/DenseMap.h" | |||
| 27 | #include "llvm/ADT/GraphTraits.h" | |||
| 28 | #include "llvm/ADT/STLExtras.h" | |||
| 29 | #include "llvm/ADT/SmallPtrSet.h" | |||
| 30 | #include "llvm/ADT/SmallVector.h" | |||
| 31 | #include "llvm/Support/CFGDiff.h" | |||
| 32 | #include "llvm/Support/CFGUpdate.h" | |||
| 33 | #include "llvm/Support/raw_ostream.h" | |||
| 34 | #include <algorithm> | |||
| 35 | #include <cassert> | |||
| 36 | #include <cstddef> | |||
| 37 | #include <iterator> | |||
| 38 | #include <memory> | |||
| 39 | #include <type_traits> | |||
| 40 | #include <utility> | |||
| 41 | ||||
| 42 | namespace llvm { | |||
| 43 | ||||
| 44 | template <typename NodeT, bool IsPostDom> | |||
| 45 | class DominatorTreeBase; | |||
| 46 | ||||
| 47 | namespace DomTreeBuilder { | |||
| 48 | template <typename DomTreeT> | |||
| 49 | struct SemiNCAInfo; | |||
| 50 | } // namespace DomTreeBuilder | |||
| 51 | ||||
| 52 | /// Base class for the actual dominator tree node. | |||
| 53 | template <class NodeT> class DomTreeNodeBase { | |||
| 54 | friend class PostDominatorTree; | |||
| 55 | friend class DominatorTreeBase<NodeT, false>; | |||
| 56 | friend class DominatorTreeBase<NodeT, true>; | |||
| 57 | friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase<NodeT, false>>; | |||
| 58 | friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase<NodeT, true>>; | |||
| 59 | ||||
| 60 | NodeT *TheBB; | |||
| 61 | DomTreeNodeBase *IDom; | |||
| 62 | unsigned Level; | |||
| 63 | SmallVector<DomTreeNodeBase *, 4> Children; | |||
| 64 | mutable unsigned DFSNumIn = ~0; | |||
| 65 | mutable unsigned DFSNumOut = ~0; | |||
| 66 | ||||
| 67 | public: | |||
| 68 | DomTreeNodeBase(NodeT *BB, DomTreeNodeBase *iDom) | |||
| 69 | : TheBB(BB), IDom(iDom), Level(IDom ? IDom->Level + 1 : 0) {} | |||
| 70 | ||||
| 71 | using iterator = typename SmallVector<DomTreeNodeBase *, 4>::iterator; | |||
| 72 | using const_iterator = | |||
| 73 | typename SmallVector<DomTreeNodeBase *, 4>::const_iterator; | |||
| 74 | ||||
| 75 | iterator begin() { return Children.begin(); } | |||
| 76 | iterator end() { return Children.end(); } | |||
| 77 | const_iterator begin() const { return Children.begin(); } | |||
| 78 | const_iterator end() const { return Children.end(); } | |||
| 79 | ||||
| 80 | DomTreeNodeBase *const &back() const { return Children.back(); } | |||
| 81 | DomTreeNodeBase *&back() { return Children.back(); } | |||
| 82 | ||||
| 83 | iterator_range<iterator> children() { return make_range(begin(), end()); } | |||
| 84 | iterator_range<const_iterator> children() const { | |||
| 85 | return make_range(begin(), end()); | |||
| 86 | } | |||
| 87 | ||||
| 88 | NodeT *getBlock() const { return TheBB; } | |||
| 89 | DomTreeNodeBase *getIDom() const { return IDom; } | |||
| 90 | unsigned getLevel() const { return Level; } | |||
| 91 | ||||
| 92 | std::unique_ptr<DomTreeNodeBase> addChild( | |||
| 93 | std::unique_ptr<DomTreeNodeBase> C) { | |||
| 94 | Children.push_back(C.get()); | |||
| 95 | return C; | |||
| 96 | } | |||
| 97 | ||||
| 98 | bool isLeaf() const { return Children.empty(); } | |||
| 99 | size_t getNumChildren() const { return Children.size(); } | |||
| 100 | ||||
| 101 | void clearAllChildren() { Children.clear(); } | |||
| 102 | ||||
| 103 | bool compare(const DomTreeNodeBase *Other) const { | |||
| 104 | if (getNumChildren() != Other->getNumChildren()) | |||
| 105 | return true; | |||
| 106 | ||||
| 107 | if (Level != Other->Level) return true; | |||
| 108 | ||||
| 109 | SmallPtrSet<const NodeT *, 4> OtherChildren; | |||
| 110 | for (const DomTreeNodeBase *I : *Other) { | |||
| 111 | const NodeT *Nd = I->getBlock(); | |||
| 112 | OtherChildren.insert(Nd); | |||
| 113 | } | |||
| 114 | ||||
| 115 | for (const DomTreeNodeBase *I : *this) { | |||
| 116 | const NodeT *N = I->getBlock(); | |||
| 117 | if (OtherChildren.count(N) == 0) | |||
| 118 | return true; | |||
| 119 | } | |||
| 120 | return false; | |||
| 121 | } | |||
| 122 | ||||
| 123 | void setIDom(DomTreeNodeBase *NewIDom) { | |||
| 124 | assert(IDom && "No immediate dominator?")((void)0); | |||
| 125 | if (IDom == NewIDom) return; | |||
| 126 | ||||
| 127 | auto I = find(IDom->Children, this); | |||
| 128 | assert(I != IDom->Children.end() &&((void)0) | |||
| 129 | "Not in immediate dominator children set!")((void)0); | |||
| 130 | // I am no longer your child... | |||
| 131 | IDom->Children.erase(I); | |||
| 132 | ||||
| 133 | // Switch to new dominator | |||
| 134 | IDom = NewIDom; | |||
| 135 | IDom->Children.push_back(this); | |||
| 136 | ||||
| 137 | UpdateLevel(); | |||
| 138 | } | |||
| 139 | ||||
| 140 | /// getDFSNumIn/getDFSNumOut - These return the DFS visitation order for nodes | |||
| 141 | /// in the dominator tree. They are only guaranteed valid if | |||
| 142 | /// updateDFSNumbers() has been called. | |||
| 143 | unsigned getDFSNumIn() const { return DFSNumIn; } | |||
| 144 | unsigned getDFSNumOut() const { return DFSNumOut; } | |||
| 145 | ||||
| 146 | private: | |||
| 147 | // Return true if this node is dominated by other. Use this only if DFS info | |||
| 148 | // is valid. | |||
| 149 | bool DominatedBy(const DomTreeNodeBase *other) const { | |||
| 150 | return this->DFSNumIn >= other->DFSNumIn && | |||
| 151 | this->DFSNumOut <= other->DFSNumOut; | |||
| 152 | } | |||
| 153 | ||||
| 154 | void UpdateLevel() { | |||
| 155 | assert(IDom)((void)0); | |||
| 156 | if (Level == IDom->Level + 1) return; | |||
| 157 | ||||
| 158 | SmallVector<DomTreeNodeBase *, 64> WorkStack = {this}; | |||
| 159 | ||||
| 160 | while (!WorkStack.empty()) { | |||
| 161 | DomTreeNodeBase *Current = WorkStack.pop_back_val(); | |||
| 162 | Current->Level = Current->IDom->Level + 1; | |||
| 163 | ||||
| 164 | for (DomTreeNodeBase *C : *Current) { | |||
| 165 | assert(C->IDom)((void)0); | |||
| 166 | if (C->Level != C->IDom->Level + 1) WorkStack.push_back(C); | |||
| 167 | } | |||
| 168 | } | |||
| 169 | } | |||
| 170 | }; | |||
| 171 | ||||
| 172 | template <class NodeT> | |||
| 173 | raw_ostream &operator<<(raw_ostream &O, const DomTreeNodeBase<NodeT> *Node) { | |||
| 174 | if (Node->getBlock()) | |||
| 175 | Node->getBlock()->printAsOperand(O, false); | |||
| 176 | else | |||
| 177 | O << " <<exit node>>"; | |||
| 178 | ||||
| 179 | O << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "} [" | |||
| 180 | << Node->getLevel() << "]\n"; | |||
| 181 | ||||
| 182 | return O; | |||
| 183 | } | |||
| 184 | ||||
| 185 | template <class NodeT> | |||
| 186 | void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &O, | |||
| 187 | unsigned Lev) { | |||
| 188 | O.indent(2 * Lev) << "[" << Lev << "] " << N; | |||
| 189 | for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(), | |||
| 190 | E = N->end(); | |||
| 191 | I != E; ++I) | |||
| 192 | PrintDomTree<NodeT>(*I, O, Lev + 1); | |||
| 193 | } | |||
| 194 | ||||
| 195 | namespace DomTreeBuilder { | |||
| 196 | // The routines below are provided in a separate header but referenced here. | |||
| 197 | template <typename DomTreeT> | |||
| 198 | void Calculate(DomTreeT &DT); | |||
| 199 | ||||
| 200 | template <typename DomTreeT> | |||
| 201 | void CalculateWithUpdates(DomTreeT &DT, | |||
| 202 | ArrayRef<typename DomTreeT::UpdateType> Updates); | |||
| 203 | ||||
| 204 | template <typename DomTreeT> | |||
| 205 | void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From, | |||
| 206 | typename DomTreeT::NodePtr To); | |||
| 207 | ||||
| 208 | template <typename DomTreeT> | |||
| 209 | void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From, | |||
| 210 | typename DomTreeT::NodePtr To); | |||
| 211 | ||||
| 212 | template <typename DomTreeT> | |||
| 213 | void ApplyUpdates(DomTreeT &DT, | |||
| 214 | GraphDiff<typename DomTreeT::NodePtr, | |||
| 215 | DomTreeT::IsPostDominator> &PreViewCFG, | |||
| 216 | GraphDiff<typename DomTreeT::NodePtr, | |||
| 217 | DomTreeT::IsPostDominator> *PostViewCFG); | |||
| 218 | ||||
| 219 | template <typename DomTreeT> | |||
| 220 | bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL); | |||
| 221 | } // namespace DomTreeBuilder | |||
| 222 | ||||
| 223 | /// Core dominator tree base class. | |||
| 224 | /// | |||
| 225 | /// This class is a generic template over graph nodes. It is instantiated for | |||
| 226 | /// various graphs in the LLVM IR or in the code generator. | |||
| 227 | template <typename NodeT, bool IsPostDom> | |||
| 228 | class DominatorTreeBase { | |||
| 229 | public: | |||
| 230 | static_assert(std::is_pointer<typename GraphTraits<NodeT *>::NodeRef>::value, | |||
| 231 | "Currently DominatorTreeBase supports only pointer nodes"); | |||
| 232 | using NodeType = NodeT; | |||
| 233 | using NodePtr = NodeT *; | |||
| 234 | using ParentPtr = decltype(std::declval<NodeT *>()->getParent()); | |||
| 235 | static_assert(std::is_pointer<ParentPtr>::value, | |||
| 236 | "Currently NodeT's parent must be a pointer type"); | |||
| 237 | using ParentType = std::remove_pointer_t<ParentPtr>; | |||
| 238 | static constexpr bool IsPostDominator = IsPostDom; | |||
| 239 | ||||
| 240 | using UpdateType = cfg::Update<NodePtr>; | |||
| 241 | using UpdateKind = cfg::UpdateKind; | |||
| 242 | static constexpr UpdateKind Insert = UpdateKind::Insert; | |||
| 243 | static constexpr UpdateKind Delete = UpdateKind::Delete; | |||
| 244 | ||||
| 245 | enum class VerificationLevel { Fast, Basic, Full }; | |||
| 246 | ||||
| 247 | protected: | |||
| 248 | // Dominators always have a single root, postdominators can have more. | |||
| 249 | SmallVector<NodeT *, IsPostDom ? 4 : 1> Roots; | |||
| 250 | ||||
| 251 | using DomTreeNodeMapType = | |||
| 252 | DenseMap<NodeT *, std::unique_ptr<DomTreeNodeBase<NodeT>>>; | |||
| 253 | DomTreeNodeMapType DomTreeNodes; | |||
| 254 | DomTreeNodeBase<NodeT> *RootNode = nullptr; | |||
| 255 | ParentPtr Parent = nullptr; | |||
| 256 | ||||
| 257 | mutable bool DFSInfoValid = false; | |||
| 258 | mutable unsigned int SlowQueries = 0; | |||
| 259 | ||||
| 260 | friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase>; | |||
| 261 | ||||
| 262 | public: | |||
| 263 | DominatorTreeBase() {} | |||
| 264 | ||||
| 265 | DominatorTreeBase(DominatorTreeBase &&Arg) | |||
| 266 | : Roots(std::move(Arg.Roots)), | |||
| 267 | DomTreeNodes(std::move(Arg.DomTreeNodes)), | |||
| 268 | RootNode(Arg.RootNode), | |||
| 269 | Parent(Arg.Parent), | |||
| 270 | DFSInfoValid(Arg.DFSInfoValid), | |||
| 271 | SlowQueries(Arg.SlowQueries) { | |||
| 272 | Arg.wipe(); | |||
| 273 | } | |||
| 274 | ||||
| 275 | DominatorTreeBase &operator=(DominatorTreeBase &&RHS) { | |||
| 276 | Roots = std::move(RHS.Roots); | |||
| 277 | DomTreeNodes = std::move(RHS.DomTreeNodes); | |||
| 278 | RootNode = RHS.RootNode; | |||
| 279 | Parent = RHS.Parent; | |||
| 280 | DFSInfoValid = RHS.DFSInfoValid; | |||
| 281 | SlowQueries = RHS.SlowQueries; | |||
| 282 | RHS.wipe(); | |||
| 283 | return *this; | |||
| 284 | } | |||
| 285 | ||||
| 286 | DominatorTreeBase(const DominatorTreeBase &) = delete; | |||
| 287 | DominatorTreeBase &operator=(const DominatorTreeBase &) = delete; | |||
| 288 | ||||
| 289 | /// Iteration over roots. | |||
| 290 | /// | |||
| 291 | /// This may include multiple blocks if we are computing post dominators. | |||
| 292 | /// For forward dominators, this will always be a single block (the entry | |||
| 293 | /// block). | |||
| 294 | using root_iterator = typename SmallVectorImpl<NodeT *>::iterator; | |||
| 295 | using const_root_iterator = typename SmallVectorImpl<NodeT *>::const_iterator; | |||
| 296 | ||||
| 297 | root_iterator root_begin() { return Roots.begin(); } | |||
| 298 | const_root_iterator root_begin() const { return Roots.begin(); } | |||
| 299 | root_iterator root_end() { return Roots.end(); } | |||
| 300 | const_root_iterator root_end() const { return Roots.end(); } | |||
| 301 | ||||
| 302 | size_t root_size() const { return Roots.size(); } | |||
| 303 | ||||
| 304 | iterator_range<root_iterator> roots() { | |||
| 305 | return make_range(root_begin(), root_end()); | |||
| 306 | } | |||
| 307 | iterator_range<const_root_iterator> roots() const { | |||
| 308 | return make_range(root_begin(), root_end()); | |||
| 309 | } | |||
| 310 | ||||
| 311 | /// isPostDominator - Returns true if analysis based of postdoms | |||
| 312 | /// | |||
| 313 | bool isPostDominator() const { return IsPostDominator; } | |||
| 314 | ||||
| 315 | /// compare - Return false if the other dominator tree base matches this | |||
| 316 | /// dominator tree base. Otherwise return true. | |||
| 317 | bool compare(const DominatorTreeBase &Other) const { | |||
| 318 | if (Parent != Other.Parent) return true; | |||
| 319 | ||||
| 320 | if (Roots.size() != Other.Roots.size()) | |||
| 321 | return true; | |||
| 322 | ||||
| 323 | if (!std::is_permutation(Roots.begin(), Roots.end(), Other.Roots.begin())) | |||
| 324 | return true; | |||
| 325 | ||||
| 326 | const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes; | |||
| 327 | if (DomTreeNodes.size() != OtherDomTreeNodes.size()) | |||
| 328 | return true; | |||
| 329 | ||||
| 330 | for (const auto &DomTreeNode : DomTreeNodes) { | |||
| 331 | NodeT *BB = DomTreeNode.first; | |||
| 332 | typename DomTreeNodeMapType::const_iterator OI = | |||
| 333 | OtherDomTreeNodes.find(BB); | |||
| 334 | if (OI == OtherDomTreeNodes.end()) | |||
| 335 | return true; | |||
| 336 | ||||
| 337 | DomTreeNodeBase<NodeT> &MyNd = *DomTreeNode.second; | |||
| 338 | DomTreeNodeBase<NodeT> &OtherNd = *OI->second; | |||
| 339 | ||||
| 340 | if (MyNd.compare(&OtherNd)) | |||
| 341 | return true; | |||
| 342 | } | |||
| 343 | ||||
| 344 | return false; | |||
| 345 | } | |||
| 346 | ||||
| 347 | /// getNode - return the (Post)DominatorTree node for the specified basic | |||
| 348 | /// block. This is the same as using operator[] on this class. The result | |||
| 349 | /// may (but is not required to) be null for a forward (backwards) | |||
| 350 | /// statically unreachable block. | |||
| 351 | DomTreeNodeBase<NodeT> *getNode(const NodeT *BB) const { | |||
| 352 | auto I = DomTreeNodes.find(BB); | |||
| 353 | if (I != DomTreeNodes.end()) | |||
| 354 | return I->second.get(); | |||
| 355 | return nullptr; | |||
| 356 | } | |||
| 357 | ||||
| 358 | /// See getNode. | |||
| 359 | DomTreeNodeBase<NodeT> *operator[](const NodeT *BB) const { | |||
| 360 | return getNode(BB); | |||
| 361 | } | |||
| 362 | ||||
| 363 | /// getRootNode - This returns the entry node for the CFG of the function. If | |||
| 364 | /// this tree represents the post-dominance relations for a function, however, | |||
| 365 | /// this root may be a node with the block == NULL. This is the case when | |||
| 366 | /// there are multiple exit nodes from a particular function. Consumers of | |||
| 367 | /// post-dominance information must be capable of dealing with this | |||
| 368 | /// possibility. | |||
| 369 | /// | |||
| 370 | DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; } | |||
| 371 | const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; } | |||
| 372 | ||||
| 373 | /// Get all nodes dominated by R, including R itself. | |||
| 374 | void getDescendants(NodeT *R, SmallVectorImpl<NodeT *> &Result) const { | |||
| 375 | Result.clear(); | |||
| 376 | const DomTreeNodeBase<NodeT> *RN = getNode(R); | |||
| 377 | if (!RN) | |||
| 378 | return; // If R is unreachable, it will not be present in the DOM tree. | |||
| 379 | SmallVector<const DomTreeNodeBase<NodeT> *, 8> WL; | |||
| 380 | WL.push_back(RN); | |||
| 381 | ||||
| 382 | while (!WL.empty()) { | |||
| 383 | const DomTreeNodeBase<NodeT> *N = WL.pop_back_val(); | |||
| 384 | Result.push_back(N->getBlock()); | |||
| 385 | WL.append(N->begin(), N->end()); | |||
| 386 | } | |||
| 387 | } | |||
| 388 | ||||
| 389 | /// properlyDominates - Returns true iff A dominates B and A != B. | |||
| 390 | /// Note that this is not a constant time operation! | |||
| 391 | /// | |||
| 392 | bool properlyDominates(const DomTreeNodeBase<NodeT> *A, | |||
| 393 | const DomTreeNodeBase<NodeT> *B) const { | |||
| 394 | if (!A || !B) | |||
| 395 | return false; | |||
| 396 | if (A == B) | |||
| 397 | return false; | |||
| 398 | return dominates(A, B); | |||
| 399 | } | |||
| 400 | ||||
| 401 | bool properlyDominates(const NodeT *A, const NodeT *B) const; | |||
| 402 | ||||
| 403 | /// isReachableFromEntry - Return true if A is dominated by the entry | |||
| 404 | /// block of the function containing it. | |||
| 405 | bool isReachableFromEntry(const NodeT *A) const { | |||
| 406 | assert(!this->isPostDominator() &&((void)0) | |||
| 407 | "This is not implemented for post dominators")((void)0); | |||
| 408 | return isReachableFromEntry(getNode(const_cast<NodeT *>(A))); | |||
| 409 | } | |||
| 410 | ||||
| 411 | bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const { return A; } | |||
| 412 | ||||
| 413 | /// dominates - Returns true iff A dominates B. Note that this is not a | |||
| 414 | /// constant time operation! | |||
| 415 | /// | |||
| 416 | bool dominates(const DomTreeNodeBase<NodeT> *A, | |||
| 417 | const DomTreeNodeBase<NodeT> *B) const { | |||
| 418 | // A node trivially dominates itself. | |||
| 419 | if (B == A) | |||
| 420 | return true; | |||
| 421 | ||||
| 422 | // An unreachable node is dominated by anything. | |||
| 423 | if (!isReachableFromEntry(B)) | |||
| 424 | return true; | |||
| 425 | ||||
| 426 | // And dominates nothing. | |||
| 427 | if (!isReachableFromEntry(A)) | |||
| 428 | return false; | |||
| 429 | ||||
| 430 | if (B->getIDom() == A) return true; | |||
| 431 | ||||
| 432 | if (A->getIDom() == B) return false; | |||
| 433 | ||||
| 434 | // A can only dominate B if it is higher in the tree. | |||
| 435 | if (A->getLevel() >= B->getLevel()) return false; | |||
| 436 | ||||
| 437 | // Compare the result of the tree walk and the dfs numbers, if expensive | |||
| 438 | // checks are enabled. | |||
| 439 | #ifdef EXPENSIVE_CHECKS | |||
| 440 | assert((!DFSInfoValid ||((void)0) | |||
| 441 | (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) &&((void)0) | |||
| 442 | "Tree walk disagrees with dfs numbers!")((void)0); | |||
| 443 | #endif | |||
| 444 | ||||
| 445 | if (DFSInfoValid) | |||
| 446 | return B->DominatedBy(A); | |||
| 447 | ||||
| 448 | // If we end up with too many slow queries, just update the | |||
| 449 | // DFS numbers on the theory that we are going to keep querying. | |||
| 450 | SlowQueries++; | |||
| 451 | if (SlowQueries > 32) { | |||
| 452 | updateDFSNumbers(); | |||
| 453 | return B->DominatedBy(A); | |||
| 454 | } | |||
| 455 | ||||
| 456 | return dominatedBySlowTreeWalk(A, B); | |||
| 457 | } | |||
| 458 | ||||
| 459 | bool dominates(const NodeT *A, const NodeT *B) const; | |||
| 460 | ||||
| 461 | NodeT *getRoot() const { | |||
| 462 | assert(this->Roots.size() == 1 && "Should always have entry node!")((void)0); | |||
| 463 | return this->Roots[0]; | |||
| 464 | } | |||
| 465 | ||||
| 466 | /// Find nearest common dominator basic block for basic block A and B. A and B | |||
| 467 | /// must have tree nodes. | |||
| 468 | NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) const { | |||
| 469 | assert(A && B && "Pointers are not valid")((void)0); | |||
| 470 | assert(A->getParent() == B->getParent() &&((void)0) | |||
| 471 | "Two blocks are not in same function")((void)0); | |||
| 472 | ||||
| 473 | // If either A or B is a entry block then it is nearest common dominator | |||
| 474 | // (for forward-dominators). | |||
| 475 | if (!isPostDominator()) { | |||
| 476 | NodeT &Entry = A->getParent()->front(); | |||
| 477 | if (A == &Entry || B == &Entry) | |||
| 478 | return &Entry; | |||
| 479 | } | |||
| 480 | ||||
| 481 | DomTreeNodeBase<NodeT> *NodeA = getNode(A); | |||
| 482 | DomTreeNodeBase<NodeT> *NodeB = getNode(B); | |||
| 483 | assert(NodeA && "A must be in the tree")((void)0); | |||
| 484 | assert(NodeB && "B must be in the tree")((void)0); | |||
| 485 | ||||
| 486 | // Use level information to go up the tree until the levels match. Then | |||
| 487 | // continue going up til we arrive at the same node. | |||
| 488 | while (NodeA != NodeB) { | |||
| 489 | if (NodeA->getLevel() < NodeB->getLevel()) std::swap(NodeA, NodeB); | |||
| 490 | ||||
| 491 | NodeA = NodeA->IDom; | |||
| 492 | } | |||
| 493 | ||||
| 494 | return NodeA->getBlock(); | |||
| ||||
| 495 | } | |||
| 496 | ||||
| 497 | const NodeT *findNearestCommonDominator(const NodeT *A, | |||
| 498 | const NodeT *B) const { | |||
| 499 | // Cast away the const qualifiers here. This is ok since | |||
| 500 | // const is re-introduced on the return type. | |||
| 501 | return findNearestCommonDominator(const_cast<NodeT *>(A), | |||
| 502 | const_cast<NodeT *>(B)); | |||
| 503 | } | |||
| 504 | ||||
| 505 | bool isVirtualRoot(const DomTreeNodeBase<NodeT> *A) const { | |||
| 506 | return isPostDominator() && !A->getBlock(); | |||
| 507 | } | |||
| 508 | ||||
| 509 | //===--------------------------------------------------------------------===// | |||
| 510 | // API to update (Post)DominatorTree information based on modifications to | |||
| 511 | // the CFG... | |||
| 512 | ||||
| 513 | /// Inform the dominator tree about a sequence of CFG edge insertions and | |||
| 514 | /// deletions and perform a batch update on the tree. | |||
| 515 | /// | |||
| 516 | /// This function should be used when there were multiple CFG updates after | |||
| 517 | /// the last dominator tree update. It takes care of performing the updates | |||
| 518 | /// in sync with the CFG and optimizes away the redundant operations that | |||
| 519 | /// cancel each other. | |||
| 520 | /// The functions expects the sequence of updates to be balanced. Eg.: | |||
| 521 | /// - {{Insert, A, B}, {Delete, A, B}, {Insert, A, B}} is fine, because | |||
| 522 | /// logically it results in a single insertions. | |||
| 523 | /// - {{Insert, A, B}, {Insert, A, B}} is invalid, because it doesn't make | |||
| 524 | /// sense to insert the same edge twice. | |||
| 525 | /// | |||
| 526 | /// What's more, the functions assumes that it's safe to ask every node in the | |||
| 527 | /// CFG about its children and inverse children. This implies that deletions | |||
| 528 | /// of CFG edges must not delete the CFG nodes before calling this function. | |||
| 529 | /// | |||
| 530 | /// The applyUpdates function can reorder the updates and remove redundant | |||
| 531 | /// ones internally. The batch updater is also able to detect sequences of | |||
| 532 | /// zero and exactly one update -- it's optimized to do less work in these | |||
| 533 | /// cases. | |||
| 534 | /// | |||
| 535 | /// Note that for postdominators it automatically takes care of applying | |||
| 536 | /// updates on reverse edges internally (so there's no need to swap the | |||
| 537 | /// From and To pointers when constructing DominatorTree::UpdateType). | |||
| 538 | /// The type of updates is the same for DomTreeBase<T> and PostDomTreeBase<T> | |||
| 539 | /// with the same template parameter T. | |||
| 540 | /// | |||
| 541 | /// \param Updates An unordered sequence of updates to perform. The current | |||
| 542 | /// CFG and the reverse of these updates provides the pre-view of the CFG. | |||
| 543 | /// | |||
| 544 | void applyUpdates(ArrayRef<UpdateType> Updates) { | |||
| 545 | GraphDiff<NodePtr, IsPostDominator> PreViewCFG( | |||
| 546 | Updates, /*ReverseApplyUpdates=*/true); | |||
| 547 | DomTreeBuilder::ApplyUpdates(*this, PreViewCFG, nullptr); | |||
| 548 | } | |||
| 549 | ||||
| 550 | /// \param Updates An unordered sequence of updates to perform. The current | |||
| 551 | /// CFG and the reverse of these updates provides the pre-view of the CFG. | |||
| 552 | /// \param PostViewUpdates An unordered sequence of update to perform in order | |||
| 553 | /// to obtain a post-view of the CFG. The DT will be updated assuming the | |||
| 554 | /// obtained PostViewCFG is the desired end state. | |||
| 555 | void applyUpdates(ArrayRef<UpdateType> Updates, | |||
| 556 | ArrayRef<UpdateType> PostViewUpdates) { | |||
| 557 | if (Updates.empty()) { | |||
| 558 | GraphDiff<NodePtr, IsPostDom> PostViewCFG(PostViewUpdates); | |||
| 559 | DomTreeBuilder::ApplyUpdates(*this, PostViewCFG, &PostViewCFG); | |||
| 560 | } else { | |||
| 561 | // PreViewCFG needs to merge Updates and PostViewCFG. The updates in | |||
| 562 | // Updates need to be reversed, and match the direction in PostViewCFG. | |||
| 563 | // The PostViewCFG is created with updates reversed (equivalent to changes | |||
| 564 | // made to the CFG), so the PreViewCFG needs all the updates reverse | |||
| 565 | // applied. | |||
| 566 | SmallVector<UpdateType> AllUpdates(Updates.begin(), Updates.end()); | |||
| 567 | append_range(AllUpdates, PostViewUpdates); | |||
| 568 | GraphDiff<NodePtr, IsPostDom> PreViewCFG(AllUpdates, | |||
| 569 | /*ReverseApplyUpdates=*/true); | |||
| 570 | GraphDiff<NodePtr, IsPostDom> PostViewCFG(PostViewUpdates); | |||
| 571 | DomTreeBuilder::ApplyUpdates(*this, PreViewCFG, &PostViewCFG); | |||
| 572 | } | |||
| 573 | } | |||
| 574 | ||||
| 575 | /// Inform the dominator tree about a CFG edge insertion and update the tree. | |||
| 576 | /// | |||
| 577 | /// This function has to be called just before or just after making the update | |||
| 578 | /// on the actual CFG. There cannot be any other updates that the dominator | |||
| 579 | /// tree doesn't know about. | |||
| 580 | /// | |||
| 581 | /// Note that for postdominators it automatically takes care of inserting | |||
| 582 | /// a reverse edge internally (so there's no need to swap the parameters). | |||
| 583 | /// | |||
| 584 | void insertEdge(NodeT *From, NodeT *To) { | |||
| 585 | assert(From)((void)0); | |||
| 586 | assert(To)((void)0); | |||
| 587 | assert(From->getParent() == Parent)((void)0); | |||
| 588 | assert(To->getParent() == Parent)((void)0); | |||
| 589 | DomTreeBuilder::InsertEdge(*this, From, To); | |||
| 590 | } | |||
| 591 | ||||
| 592 | /// Inform the dominator tree about a CFG edge deletion and update the tree. | |||
| 593 | /// | |||
| 594 | /// This function has to be called just after making the update on the actual | |||
| 595 | /// CFG. An internal functions checks if the edge doesn't exist in the CFG in | |||
| 596 | /// DEBUG mode. There cannot be any other updates that the | |||
| 597 | /// dominator tree doesn't know about. | |||
| 598 | /// | |||
| 599 | /// Note that for postdominators it automatically takes care of deleting | |||
| 600 | /// a reverse edge internally (so there's no need to swap the parameters). | |||
| 601 | /// | |||
| 602 | void deleteEdge(NodeT *From, NodeT *To) { | |||
| 603 | assert(From)((void)0); | |||
| 604 | assert(To)((void)0); | |||
| 605 | assert(From->getParent() == Parent)((void)0); | |||
| 606 | assert(To->getParent() == Parent)((void)0); | |||
| 607 | DomTreeBuilder::DeleteEdge(*this, From, To); | |||
| 608 | } | |||
| 609 | ||||
| 610 | /// Add a new node to the dominator tree information. | |||
| 611 | /// | |||
| 612 | /// This creates a new node as a child of DomBB dominator node, linking it | |||
| 613 | /// into the children list of the immediate dominator. | |||
| 614 | /// | |||
| 615 | /// \param BB New node in CFG. | |||
| 616 | /// \param DomBB CFG node that is dominator for BB. | |||
| 617 | /// \returns New dominator tree node that represents new CFG node. | |||
| 618 | /// | |||
| 619 | DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) { | |||
| 620 | assert(getNode(BB) == nullptr && "Block already in dominator tree!")((void)0); | |||
| 621 | DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB); | |||
| 622 | assert(IDomNode && "Not immediate dominator specified for block!")((void)0); | |||
| 623 | DFSInfoValid = false; | |||
| 624 | return createChild(BB, IDomNode); | |||
| 625 | } | |||
| 626 | ||||
| 627 | /// Add a new node to the forward dominator tree and make it a new root. | |||
| 628 | /// | |||
| 629 | /// \param BB New node in CFG. | |||
| 630 | /// \returns New dominator tree node that represents new CFG node. | |||
| 631 | /// | |||
| 632 | DomTreeNodeBase<NodeT> *setNewRoot(NodeT *BB) { | |||
| 633 | assert(getNode(BB) == nullptr && "Block already in dominator tree!")((void)0); | |||
| 634 | assert(!this->isPostDominator() &&((void)0) | |||
| 635 | "Cannot change root of post-dominator tree")((void)0); | |||
| 636 | DFSInfoValid = false; | |||
| 637 | DomTreeNodeBase<NodeT> *NewNode = createNode(BB); | |||
| 638 | if (Roots.empty()) { | |||
| 639 | addRoot(BB); | |||
| 640 | } else { | |||
| 641 | assert(Roots.size() == 1)((void)0); | |||
| 642 | NodeT *OldRoot = Roots.front(); | |||
| 643 | auto &OldNode = DomTreeNodes[OldRoot]; | |||
| 644 | OldNode = NewNode->addChild(std::move(DomTreeNodes[OldRoot])); | |||
| 645 | OldNode->IDom = NewNode; | |||
| 646 | OldNode->UpdateLevel(); | |||
| 647 | Roots[0] = BB; | |||
| 648 | } | |||
| 649 | return RootNode = NewNode; | |||
| 650 | } | |||
| 651 | ||||
| 652 | /// changeImmediateDominator - This method is used to update the dominator | |||
| 653 | /// tree information when a node's immediate dominator changes. | |||
| 654 | /// | |||
| 655 | void changeImmediateDominator(DomTreeNodeBase<NodeT> *N, | |||
| 656 | DomTreeNodeBase<NodeT> *NewIDom) { | |||
| 657 | assert(N && NewIDom && "Cannot change null node pointers!")((void)0); | |||
| 658 | DFSInfoValid = false; | |||
| 659 | N->setIDom(NewIDom); | |||
| 660 | } | |||
| 661 | ||||
| 662 | void changeImmediateDominator(NodeT *BB, NodeT *NewBB) { | |||
| 663 | changeImmediateDominator(getNode(BB), getNode(NewBB)); | |||
| 664 | } | |||
| 665 | ||||
| 666 | /// eraseNode - Removes a node from the dominator tree. Block must not | |||
| 667 | /// dominate any other blocks. Removes node from its immediate dominator's | |||
| 668 | /// children list. Deletes dominator node associated with basic block BB. | |||
| 669 | void eraseNode(NodeT *BB) { | |||
| 670 | DomTreeNodeBase<NodeT> *Node = getNode(BB); | |||
| 671 | assert(Node && "Removing node that isn't in dominator tree.")((void)0); | |||
| 672 | assert(Node->isLeaf() && "Node is not a leaf node.")((void)0); | |||
| 673 | ||||
| 674 | DFSInfoValid = false; | |||
| 675 | ||||
| 676 | // Remove node from immediate dominator's children list. | |||
| 677 | DomTreeNodeBase<NodeT> *IDom = Node->getIDom(); | |||
| 678 | if (IDom) { | |||
| 679 | const auto I = find(IDom->Children, Node); | |||
| 680 | assert(I != IDom->Children.end() &&((void)0) | |||
| 681 | "Not in immediate dominator children set!")((void)0); | |||
| 682 | // I am no longer your child... | |||
| 683 | IDom->Children.erase(I); | |||
| 684 | } | |||
| 685 | ||||
| 686 | DomTreeNodes.erase(BB); | |||
| 687 | ||||
| 688 | if (!IsPostDom) return; | |||
| 689 | ||||
| 690 | // Remember to update PostDominatorTree roots. | |||
| 691 | auto RIt = llvm::find(Roots, BB); | |||
| 692 | if (RIt != Roots.end()) { | |||
| 693 | std::swap(*RIt, Roots.back()); | |||
| 694 | Roots.pop_back(); | |||
| 695 | } | |||
| 696 | } | |||
| 697 | ||||
| 698 | /// splitBlock - BB is split and now it has one successor. Update dominator | |||
| 699 | /// tree to reflect this change. | |||
| 700 | void splitBlock(NodeT *NewBB) { | |||
| 701 | if (IsPostDominator) | |||
| 702 | Split<Inverse<NodeT *>>(NewBB); | |||
| 703 | else | |||
| 704 | Split<NodeT *>(NewBB); | |||
| 705 | } | |||
| 706 | ||||
| 707 | /// print - Convert to human readable form | |||
| 708 | /// | |||
| 709 | void print(raw_ostream &O) const { | |||
| 710 | O << "=============================--------------------------------\n"; | |||
| 711 | if (IsPostDominator) | |||
| 712 | O << "Inorder PostDominator Tree: "; | |||
| 713 | else | |||
| 714 | O << "Inorder Dominator Tree: "; | |||
| 715 | if (!DFSInfoValid) | |||
| 716 | O << "DFSNumbers invalid: " << SlowQueries << " slow queries."; | |||
| 717 | O << "\n"; | |||
| 718 | ||||
| 719 | // The postdom tree can have a null root if there are no returns. | |||
| 720 | if (getRootNode()) PrintDomTree<NodeT>(getRootNode(), O, 1); | |||
| 721 | O << "Roots: "; | |||
| 722 | for (const NodePtr Block : Roots) { | |||
| 723 | Block->printAsOperand(O, false); | |||
| 724 | O << " "; | |||
| 725 | } | |||
| 726 | O << "\n"; | |||
| 727 | } | |||
| 728 | ||||
| 729 | public: | |||
| 730 | /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking | |||
| 731 | /// dominator tree in dfs order. | |||
| 732 | void updateDFSNumbers() const { | |||
| 733 | if (DFSInfoValid) { | |||
| 734 | SlowQueries = 0; | |||
| 735 | return; | |||
| 736 | } | |||
| 737 | ||||
| 738 | SmallVector<std::pair<const DomTreeNodeBase<NodeT> *, | |||
| 739 | typename DomTreeNodeBase<NodeT>::const_iterator>, | |||
| 740 | 32> WorkStack; | |||
| 741 | ||||
| 742 | const DomTreeNodeBase<NodeT> *ThisRoot = getRootNode(); | |||
| 743 | assert((!Parent || ThisRoot) && "Empty constructed DomTree")((void)0); | |||
| 744 | if (!ThisRoot) | |||
| 745 | return; | |||
| 746 | ||||
| 747 | // Both dominators and postdominators have a single root node. In the case | |||
| 748 | // case of PostDominatorTree, this node is a virtual root. | |||
| 749 | WorkStack.push_back({ThisRoot, ThisRoot->begin()}); | |||
| 750 | ||||
| 751 | unsigned DFSNum = 0; | |||
| 752 | ThisRoot->DFSNumIn = DFSNum++; | |||
| 753 | ||||
| 754 | while (!WorkStack.empty()) { | |||
| 755 | const DomTreeNodeBase<NodeT> *Node = WorkStack.back().first; | |||
| 756 | const auto ChildIt = WorkStack.back().second; | |||
| 757 | ||||
| 758 | // If we visited all of the children of this node, "recurse" back up the | |||
| 759 | // stack setting the DFOutNum. | |||
| 760 | if (ChildIt == Node->end()) { | |||
| 761 | Node->DFSNumOut = DFSNum++; | |||
| 762 | WorkStack.pop_back(); | |||
| 763 | } else { | |||
| 764 | // Otherwise, recursively visit this child. | |||
| 765 | const DomTreeNodeBase<NodeT> *Child = *ChildIt; | |||
| 766 | ++WorkStack.back().second; | |||
| 767 | ||||
| 768 | WorkStack.push_back({Child, Child->begin()}); | |||
| 769 | Child->DFSNumIn = DFSNum++; | |||
| 770 | } | |||
| 771 | } | |||
| 772 | ||||
| 773 | SlowQueries = 0; | |||
| 774 | DFSInfoValid = true; | |||
| 775 | } | |||
| 776 | ||||
| 777 | /// recalculate - compute a dominator tree for the given function | |||
| 778 | void recalculate(ParentType &Func) { | |||
| 779 | Parent = &Func; | |||
| 780 | DomTreeBuilder::Calculate(*this); | |||
| 781 | } | |||
| 782 | ||||
| 783 | void recalculate(ParentType &Func, ArrayRef<UpdateType> Updates) { | |||
| 784 | Parent = &Func; | |||
| 785 | DomTreeBuilder::CalculateWithUpdates(*this, Updates); | |||
| 786 | } | |||
| 787 | ||||
| 788 | /// verify - checks if the tree is correct. There are 3 level of verification: | |||
| 789 | /// - Full -- verifies if the tree is correct by making sure all the | |||
| 790 | /// properties (including the parent and the sibling property) | |||
| 791 | /// hold. | |||
| 792 | /// Takes O(N^3) time. | |||
| 793 | /// | |||
| 794 | /// - Basic -- checks if the tree is correct, but compares it to a freshly | |||
| 795 | /// constructed tree instead of checking the sibling property. | |||
| 796 | /// Takes O(N^2) time. | |||
| 797 | /// | |||
| 798 | /// - Fast -- checks basic tree structure and compares it with a freshly | |||
| 799 | /// constructed tree. | |||
| 800 | /// Takes O(N^2) time worst case, but is faster in practise (same | |||
| 801 | /// as tree construction). | |||
| 802 | bool verify(VerificationLevel VL = VerificationLevel::Full) const { | |||
| 803 | return DomTreeBuilder::Verify(*this, VL); | |||
| 804 | } | |||
| 805 | ||||
| 806 | void reset() { | |||
| 807 | DomTreeNodes.clear(); | |||
| 808 | Roots.clear(); | |||
| 809 | RootNode = nullptr; | |||
| 810 | Parent = nullptr; | |||
| 811 | DFSInfoValid = false; | |||
| 812 | SlowQueries = 0; | |||
| 813 | } | |||
| 814 | ||||
| 815 | protected: | |||
| 816 | void addRoot(NodeT *BB) { this->Roots.push_back(BB); } | |||
| 817 | ||||
| 818 | DomTreeNodeBase<NodeT> *createChild(NodeT *BB, DomTreeNodeBase<NodeT> *IDom) { | |||
| 819 | return (DomTreeNodes[BB] = IDom->addChild( | |||
| 820 | std::make_unique<DomTreeNodeBase<NodeT>>(BB, IDom))) | |||
| 821 | .get(); | |||
| 822 | } | |||
| 823 | ||||
| 824 | DomTreeNodeBase<NodeT> *createNode(NodeT *BB) { | |||
| 825 | return (DomTreeNodes[BB] = | |||
| 826 | std::make_unique<DomTreeNodeBase<NodeT>>(BB, nullptr)) | |||
| 827 | .get(); | |||
| 828 | } | |||
| 829 | ||||
| 830 | // NewBB is split and now it has one successor. Update dominator tree to | |||
| 831 | // reflect this change. | |||
| 832 | template <class N> | |||
| 833 | void Split(typename GraphTraits<N>::NodeRef NewBB) { | |||
| 834 | using GraphT = GraphTraits<N>; | |||
| 835 | using NodeRef = typename GraphT::NodeRef; | |||
| 836 | assert(std::distance(GraphT::child_begin(NewBB),((void)0) | |||
| 837 | GraphT::child_end(NewBB)) == 1 &&((void)0) | |||
| 838 | "NewBB should have a single successor!")((void)0); | |||
| 839 | NodeRef NewBBSucc = *GraphT::child_begin(NewBB); | |||
| 840 | ||||
| 841 | SmallVector<NodeRef, 4> PredBlocks(children<Inverse<N>>(NewBB)); | |||
| 842 | ||||
| 843 | assert(!PredBlocks.empty() && "No predblocks?")((void)0); | |||
| 844 | ||||
| 845 | bool NewBBDominatesNewBBSucc = true; | |||
| 846 | for (auto Pred : children<Inverse<N>>(NewBBSucc)) { | |||
| 847 | if (Pred != NewBB && !dominates(NewBBSucc, Pred) && | |||
| 848 | isReachableFromEntry(Pred)) { | |||
| 849 | NewBBDominatesNewBBSucc = false; | |||
| 850 | break; | |||
| 851 | } | |||
| 852 | } | |||
| 853 | ||||
| 854 | // Find NewBB's immediate dominator and create new dominator tree node for | |||
| 855 | // NewBB. | |||
| 856 | NodeT *NewBBIDom = nullptr; | |||
| 857 | unsigned i = 0; | |||
| 858 | for (i = 0; i < PredBlocks.size(); ++i) | |||
| 859 | if (isReachableFromEntry(PredBlocks[i])) { | |||
| 860 | NewBBIDom = PredBlocks[i]; | |||
| 861 | break; | |||
| 862 | } | |||
| 863 | ||||
| 864 | // It's possible that none of the predecessors of NewBB are reachable; | |||
| 865 | // in that case, NewBB itself is unreachable, so nothing needs to be | |||
| 866 | // changed. | |||
| 867 | if (!NewBBIDom) return; | |||
| 868 | ||||
| 869 | for (i = i + 1; i < PredBlocks.size(); ++i) { | |||
| 870 | if (isReachableFromEntry(PredBlocks[i])) | |||
| 871 | NewBBIDom = findNearestCommonDominator(NewBBIDom, PredBlocks[i]); | |||
| 872 | } | |||
| 873 | ||||
| 874 | // Create the new dominator tree node... and set the idom of NewBB. | |||
| 875 | DomTreeNodeBase<NodeT> *NewBBNode = addNewBlock(NewBB, NewBBIDom); | |||
| 876 | ||||
| 877 | // If NewBB strictly dominates other blocks, then it is now the immediate | |||
| 878 | // dominator of NewBBSucc. Update the dominator tree as appropriate. | |||
| 879 | if (NewBBDominatesNewBBSucc) { | |||
| 880 | DomTreeNodeBase<NodeT> *NewBBSuccNode = getNode(NewBBSucc); | |||
| 881 | changeImmediateDominator(NewBBSuccNode, NewBBNode); | |||
| 882 | } | |||
| 883 | } | |||
| 884 | ||||
| 885 | private: | |||
| 886 | bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A, | |||
| 887 | const DomTreeNodeBase<NodeT> *B) const { | |||
| 888 | assert(A != B)((void)0); | |||
| 889 | assert(isReachableFromEntry(B))((void)0); | |||
| 890 | assert(isReachableFromEntry(A))((void)0); | |||
| 891 | ||||
| 892 | const unsigned ALevel = A->getLevel(); | |||
| 893 | const DomTreeNodeBase<NodeT> *IDom; | |||
| 894 | ||||
| 895 | // Don't walk nodes above A's subtree. When we reach A's level, we must | |||
| 896 | // either find A or be in some other subtree not dominated by A. | |||
| 897 | while ((IDom = B->getIDom()) != nullptr && IDom->getLevel() >= ALevel) | |||
| 898 | B = IDom; // Walk up the tree | |||
| 899 | ||||
| 900 | return B == A; | |||
| 901 | } | |||
| 902 | ||||
| 903 | /// Wipe this tree's state without releasing any resources. | |||
| 904 | /// | |||
| 905 | /// This is essentially a post-move helper only. It leaves the object in an | |||
| 906 | /// assignable and destroyable state, but otherwise invalid. | |||
| 907 | void wipe() { | |||
| 908 | DomTreeNodes.clear(); | |||
| 909 | RootNode = nullptr; | |||
| 910 | Parent = nullptr; | |||
| 911 | } | |||
| 912 | }; | |||
| 913 | ||||
| 914 | template <typename T> | |||
| 915 | using DomTreeBase = DominatorTreeBase<T, false>; | |||
| 916 | ||||
| 917 | template <typename T> | |||
| 918 | using PostDomTreeBase = DominatorTreeBase<T, true>; | |||
| 919 | ||||
| 920 | // These two functions are declared out of line as a workaround for building | |||
| 921 | // with old (< r147295) versions of clang because of pr11642. | |||
| 922 | template <typename NodeT, bool IsPostDom> | |||
| 923 | bool DominatorTreeBase<NodeT, IsPostDom>::dominates(const NodeT *A, | |||
| 924 | const NodeT *B) const { | |||
| 925 | if (A == B) | |||
| 926 | return true; | |||
| 927 | ||||
| 928 | // Cast away the const qualifiers here. This is ok since | |||
| 929 | // this function doesn't actually return the values returned | |||
| 930 | // from getNode. | |||
| 931 | return dominates(getNode(const_cast<NodeT *>(A)), | |||
| 932 | getNode(const_cast<NodeT *>(B))); | |||
| 933 | } | |||
| 934 | template <typename NodeT, bool IsPostDom> | |||
| 935 | bool DominatorTreeBase<NodeT, IsPostDom>::properlyDominates( | |||
| 936 | const NodeT *A, const NodeT *B) const { | |||
| 937 | if (A == B) | |||
| 938 | return false; | |||
| 939 | ||||
| 940 | // Cast away the const qualifiers here. This is ok since | |||
| 941 | // this function doesn't actually return the values returned | |||
| 942 | // from getNode. | |||
| 943 | return dominates(getNode(const_cast<NodeT *>(A)), | |||
| 944 | getNode(const_cast<NodeT *>(B))); | |||
| 945 | } | |||
| 946 | ||||
| 947 | } // end namespace llvm | |||
| 948 | ||||
| 949 | #endif // LLVM_SUPPORT_GENERICDOMTREE_H |
| 1 | //===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines the DenseMap class. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #ifndef LLVM_ADT_DENSEMAP_H |
| 14 | #define LLVM_ADT_DENSEMAP_H |
| 15 | |
| 16 | #include "llvm/ADT/DenseMapInfo.h" |
| 17 | #include "llvm/ADT/EpochTracker.h" |
| 18 | #include "llvm/Support/AlignOf.h" |
| 19 | #include "llvm/Support/Compiler.h" |
| 20 | #include "llvm/Support/MathExtras.h" |
| 21 | #include "llvm/Support/MemAlloc.h" |
| 22 | #include "llvm/Support/ReverseIteration.h" |
| 23 | #include "llvm/Support/type_traits.h" |
| 24 | #include <algorithm> |
| 25 | #include <cassert> |
| 26 | #include <cstddef> |
| 27 | #include <cstring> |
| 28 | #include <initializer_list> |
| 29 | #include <iterator> |
| 30 | #include <new> |
| 31 | #include <type_traits> |
| 32 | #include <utility> |
| 33 | |
| 34 | namespace llvm { |
| 35 | |
| 36 | namespace detail { |
| 37 | |
| 38 | // We extend a pair to allow users to override the bucket type with their own |
| 39 | // implementation without requiring two members. |
| 40 | template <typename KeyT, typename ValueT> |
| 41 | struct DenseMapPair : public std::pair<KeyT, ValueT> { |
| 42 | using std::pair<KeyT, ValueT>::pair; |
| 43 | |
| 44 | KeyT &getFirst() { return std::pair<KeyT, ValueT>::first; } |
| 45 | const KeyT &getFirst() const { return std::pair<KeyT, ValueT>::first; } |
| 46 | ValueT &getSecond() { return std::pair<KeyT, ValueT>::second; } |
| 47 | const ValueT &getSecond() const { return std::pair<KeyT, ValueT>::second; } |
| 48 | }; |
| 49 | |
| 50 | } // end namespace detail |
| 51 | |
| 52 | template <typename KeyT, typename ValueT, |
| 53 | typename KeyInfoT = DenseMapInfo<KeyT>, |
| 54 | typename Bucket = llvm::detail::DenseMapPair<KeyT, ValueT>, |
| 55 | bool IsConst = false> |
| 56 | class DenseMapIterator; |
| 57 | |
| 58 | template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT, |
| 59 | typename BucketT> |
| 60 | class DenseMapBase : public DebugEpochBase { |
| 61 | template <typename T> |
| 62 | using const_arg_type_t = typename const_pointer_or_const_ref<T>::type; |
| 63 | |
| 64 | public: |
| 65 | using size_type = unsigned; |
| 66 | using key_type = KeyT; |
| 67 | using mapped_type = ValueT; |
| 68 | using value_type = BucketT; |
| 69 | |
| 70 | using iterator = DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT>; |
| 71 | using const_iterator = |
| 72 | DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT, true>; |
| 73 | |
| 74 | inline iterator begin() { |
| 75 | // When the map is empty, avoid the overhead of advancing/retreating past |
| 76 | // empty buckets. |
| 77 | if (empty()) |
| 78 | return end(); |
| 79 | if (shouldReverseIterate<KeyT>()) |
| 80 | return makeIterator(getBucketsEnd() - 1, getBuckets(), *this); |
| 81 | return makeIterator(getBuckets(), getBucketsEnd(), *this); |
| 82 | } |
| 83 | inline iterator end() { |
| 84 | return makeIterator(getBucketsEnd(), getBucketsEnd(), *this, true); |
| 85 | } |
| 86 | inline const_iterator begin() const { |
| 87 | if (empty()) |
| 88 | return end(); |
| 89 | if (shouldReverseIterate<KeyT>()) |
| 90 | return makeConstIterator(getBucketsEnd() - 1, getBuckets(), *this); |
| 91 | return makeConstIterator(getBuckets(), getBucketsEnd(), *this); |
| 92 | } |
| 93 | inline const_iterator end() const { |
| 94 | return makeConstIterator(getBucketsEnd(), getBucketsEnd(), *this, true); |
| 95 | } |
| 96 | |
| 97 | LLVM_NODISCARD[[clang::warn_unused_result]] bool empty() const { |
| 98 | return getNumEntries() == 0; |
| 99 | } |
| 100 | unsigned size() const { return getNumEntries(); } |
| 101 | |
| 102 | /// Grow the densemap so that it can contain at least \p NumEntries items |
| 103 | /// before resizing again. |
| 104 | void reserve(size_type NumEntries) { |
| 105 | auto NumBuckets = getMinBucketToReserveForEntries(NumEntries); |
| 106 | incrementEpoch(); |
| 107 | if (NumBuckets > getNumBuckets()) |
| 108 | grow(NumBuckets); |
| 109 | } |
| 110 | |
| 111 | void clear() { |
| 112 | incrementEpoch(); |
| 113 | if (getNumEntries() == 0 && getNumTombstones() == 0) return; |
| 114 | |
| 115 | // If the capacity of the array is huge, and the # elements used is small, |
| 116 | // shrink the array. |
| 117 | if (getNumEntries() * 4 < getNumBuckets() && getNumBuckets() > 64) { |
| 118 | shrink_and_clear(); |
| 119 | return; |
| 120 | } |
| 121 | |
| 122 | const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey(); |
| 123 | if (std::is_trivially_destructible<ValueT>::value) { |
| 124 | // Use a simpler loop when values don't need destruction. |
| 125 | for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) |
| 126 | P->getFirst() = EmptyKey; |
| 127 | } else { |
| 128 | unsigned NumEntries = getNumEntries(); |
| 129 | for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) { |
| 130 | if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey)) { |
| 131 | if (!KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) { |
| 132 | P->getSecond().~ValueT(); |
| 133 | --NumEntries; |
| 134 | } |
| 135 | P->getFirst() = EmptyKey; |
| 136 | } |
| 137 | } |
| 138 | assert(NumEntries == 0 && "Node count imbalance!")((void)0); |
| 139 | } |
| 140 | setNumEntries(0); |
| 141 | setNumTombstones(0); |
| 142 | } |
| 143 | |
| 144 | /// Return 1 if the specified key is in the map, 0 otherwise. |
| 145 | size_type count(const_arg_type_t<KeyT> Val) const { |
| 146 | const BucketT *TheBucket; |
| 147 | return LookupBucketFor(Val, TheBucket) ? 1 : 0; |
| 148 | } |
| 149 | |
| 150 | iterator find(const_arg_type_t<KeyT> Val) { |
| 151 | BucketT *TheBucket; |
| 152 | if (LookupBucketFor(Val, TheBucket)) |
| 153 | return makeIterator(TheBucket, |
| 154 | shouldReverseIterate<KeyT>() ? getBuckets() |
| 155 | : getBucketsEnd(), |
| 156 | *this, true); |
| 157 | return end(); |
| 158 | } |
| 159 | const_iterator find(const_arg_type_t<KeyT> Val) const { |
| 160 | const BucketT *TheBucket; |
| 161 | if (LookupBucketFor(Val, TheBucket)) |
| 162 | return makeConstIterator(TheBucket, |
| 163 | shouldReverseIterate<KeyT>() ? getBuckets() |
| 164 | : getBucketsEnd(), |
| 165 | *this, true); |
| 166 | return end(); |
| 167 | } |
| 168 | |
| 169 | /// Alternate version of find() which allows a different, and possibly |
| 170 | /// less expensive, key type. |
| 171 | /// The DenseMapInfo is responsible for supplying methods |
| 172 | /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key |
| 173 | /// type used. |
| 174 | template<class LookupKeyT> |
| 175 | iterator find_as(const LookupKeyT &Val) { |
| 176 | BucketT *TheBucket; |
| 177 | if (LookupBucketFor(Val, TheBucket)) |
| 178 | return makeIterator(TheBucket, |
| 179 | shouldReverseIterate<KeyT>() ? getBuckets() |
| 180 | : getBucketsEnd(), |
| 181 | *this, true); |
| 182 | return end(); |
| 183 | } |
| 184 | template<class LookupKeyT> |
| 185 | const_iterator find_as(const LookupKeyT &Val) const { |
| 186 | const BucketT *TheBucket; |
| 187 | if (LookupBucketFor(Val, TheBucket)) |
| 188 | return makeConstIterator(TheBucket, |
| 189 | shouldReverseIterate<KeyT>() ? getBuckets() |
| 190 | : getBucketsEnd(), |
| 191 | *this, true); |
| 192 | return end(); |
| 193 | } |
| 194 | |
| 195 | /// lookup - Return the entry for the specified key, or a default |
| 196 | /// constructed value if no such entry exists. |
| 197 | ValueT lookup(const_arg_type_t<KeyT> Val) const { |
| 198 | const BucketT *TheBucket; |
| 199 | if (LookupBucketFor(Val, TheBucket)) |
| 200 | return TheBucket->getSecond(); |
| 201 | return ValueT(); |
| 202 | } |
| 203 | |
| 204 | // Inserts key,value pair into the map if the key isn't already in the map. |
| 205 | // If the key is already in the map, it returns false and doesn't update the |
| 206 | // value. |
| 207 | std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) { |
| 208 | return try_emplace(KV.first, KV.second); |
| 209 | } |
| 210 | |
| 211 | // Inserts key,value pair into the map if the key isn't already in the map. |
| 212 | // If the key is already in the map, it returns false and doesn't update the |
| 213 | // value. |
| 214 | std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) { |
| 215 | return try_emplace(std::move(KV.first), std::move(KV.second)); |
| 216 | } |
| 217 | |
| 218 | // Inserts key,value pair into the map if the key isn't already in the map. |
| 219 | // The value is constructed in-place if the key is not in the map, otherwise |
| 220 | // it is not moved. |
| 221 | template <typename... Ts> |
| 222 | std::pair<iterator, bool> try_emplace(KeyT &&Key, Ts &&... Args) { |
| 223 | BucketT *TheBucket; |
| 224 | if (LookupBucketFor(Key, TheBucket)) |
| 225 | return std::make_pair(makeIterator(TheBucket, |
| 226 | shouldReverseIterate<KeyT>() |
| 227 | ? getBuckets() |
| 228 | : getBucketsEnd(), |
| 229 | *this, true), |
| 230 | false); // Already in map. |
| 231 | |
| 232 | // Otherwise, insert the new element. |
| 233 | TheBucket = |
| 234 | InsertIntoBucket(TheBucket, std::move(Key), std::forward<Ts>(Args)...); |
| 235 | return std::make_pair(makeIterator(TheBucket, |
| 236 | shouldReverseIterate<KeyT>() |
| 237 | ? getBuckets() |
| 238 | : getBucketsEnd(), |
| 239 | *this, true), |
| 240 | true); |
| 241 | } |
| 242 | |
| 243 | // Inserts key,value pair into the map if the key isn't already in the map. |
| 244 | // The value is constructed in-place if the key is not in the map, otherwise |
| 245 | // it is not moved. |
| 246 | template <typename... Ts> |
| 247 | std::pair<iterator, bool> try_emplace(const KeyT &Key, Ts &&... Args) { |
| 248 | BucketT *TheBucket; |
| 249 | if (LookupBucketFor(Key, TheBucket)) |
| 250 | return std::make_pair(makeIterator(TheBucket, |
| 251 | shouldReverseIterate<KeyT>() |
| 252 | ? getBuckets() |
| 253 | : getBucketsEnd(), |
| 254 | *this, true), |
| 255 | false); // Already in map. |
| 256 | |
| 257 | // Otherwise, insert the new element. |
| 258 | TheBucket = InsertIntoBucket(TheBucket, Key, std::forward<Ts>(Args)...); |
| 259 | return std::make_pair(makeIterator(TheBucket, |
| 260 | shouldReverseIterate<KeyT>() |
| 261 | ? getBuckets() |
| 262 | : getBucketsEnd(), |
| 263 | *this, true), |
| 264 | true); |
| 265 | } |
| 266 | |
| 267 | /// Alternate version of insert() which allows a different, and possibly |
| 268 | /// less expensive, key type. |
| 269 | /// The DenseMapInfo is responsible for supplying methods |
| 270 | /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key |
| 271 | /// type used. |
| 272 | template <typename LookupKeyT> |
| 273 | std::pair<iterator, bool> insert_as(std::pair<KeyT, ValueT> &&KV, |
| 274 | const LookupKeyT &Val) { |
| 275 | BucketT *TheBucket; |
| 276 | if (LookupBucketFor(Val, TheBucket)) |
| 277 | return std::make_pair(makeIterator(TheBucket, |
| 278 | shouldReverseIterate<KeyT>() |
| 279 | ? getBuckets() |
| 280 | : getBucketsEnd(), |
| 281 | *this, true), |
| 282 | false); // Already in map. |
| 283 | |
| 284 | // Otherwise, insert the new element. |
| 285 | TheBucket = InsertIntoBucketWithLookup(TheBucket, std::move(KV.first), |
| 286 | std::move(KV.second), Val); |
| 287 | return std::make_pair(makeIterator(TheBucket, |
| 288 | shouldReverseIterate<KeyT>() |
| 289 | ? getBuckets() |
| 290 | : getBucketsEnd(), |
| 291 | *this, true), |
| 292 | true); |
| 293 | } |
| 294 | |
| 295 | /// insert - Range insertion of pairs. |
| 296 | template<typename InputIt> |
| 297 | void insert(InputIt I, InputIt E) { |
| 298 | for (; I != E; ++I) |
| 299 | insert(*I); |
| 300 | } |
| 301 | |
| 302 | bool erase(const KeyT &Val) { |
| 303 | BucketT *TheBucket; |
| 304 | if (!LookupBucketFor(Val, TheBucket)) |
| 305 | return false; // not in map. |
| 306 | |
| 307 | TheBucket->getSecond().~ValueT(); |
| 308 | TheBucket->getFirst() = getTombstoneKey(); |
| 309 | decrementNumEntries(); |
| 310 | incrementNumTombstones(); |
| 311 | return true; |
| 312 | } |
| 313 | void erase(iterator I) { |
| 314 | BucketT *TheBucket = &*I; |
| 315 | TheBucket->getSecond().~ValueT(); |
| 316 | TheBucket->getFirst() = getTombstoneKey(); |
| 317 | decrementNumEntries(); |
| 318 | incrementNumTombstones(); |
| 319 | } |
| 320 | |
| 321 | value_type& FindAndConstruct(const KeyT &Key) { |
| 322 | BucketT *TheBucket; |
| 323 | if (LookupBucketFor(Key, TheBucket)) |
| 324 | return *TheBucket; |
| 325 | |
| 326 | return *InsertIntoBucket(TheBucket, Key); |
| 327 | } |
| 328 | |
| 329 | ValueT &operator[](const KeyT &Key) { |
| 330 | return FindAndConstruct(Key).second; |
| 331 | } |
| 332 | |
| 333 | value_type& FindAndConstruct(KeyT &&Key) { |
| 334 | BucketT *TheBucket; |
| 335 | if (LookupBucketFor(Key, TheBucket)) |
| 336 | return *TheBucket; |
| 337 | |
| 338 | return *InsertIntoBucket(TheBucket, std::move(Key)); |
| 339 | } |
| 340 | |
| 341 | ValueT &operator[](KeyT &&Key) { |
| 342 | return FindAndConstruct(std::move(Key)).second; |
| 343 | } |
| 344 | |
| 345 | /// isPointerIntoBucketsArray - Return true if the specified pointer points |
| 346 | /// somewhere into the DenseMap's array of buckets (i.e. either to a key or |
| 347 | /// value in the DenseMap). |
| 348 | bool isPointerIntoBucketsArray(const void *Ptr) const { |
| 349 | return Ptr >= getBuckets() && Ptr < getBucketsEnd(); |
| 350 | } |
| 351 | |
| 352 | /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets |
| 353 | /// array. In conjunction with the previous method, this can be used to |
| 354 | /// determine whether an insertion caused the DenseMap to reallocate. |
| 355 | const void *getPointerIntoBucketsArray() const { return getBuckets(); } |
| 356 | |
| 357 | protected: |
| 358 | DenseMapBase() = default; |
| 359 | |
| 360 | void destroyAll() { |
| 361 | if (getNumBuckets() == 0) // Nothing to do. |
| 362 | return; |
| 363 | |
| 364 | const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey(); |
| 365 | for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) { |
| 366 | if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) && |
| 367 | !KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) |
| 368 | P->getSecond().~ValueT(); |
| 369 | P->getFirst().~KeyT(); |
| 370 | } |
| 371 | } |
| 372 | |
| 373 | void initEmpty() { |
| 374 | setNumEntries(0); |
| 375 | setNumTombstones(0); |
| 376 | |
| 377 | assert((getNumBuckets() & (getNumBuckets()-1)) == 0 &&((void)0) |
| 378 | "# initial buckets must be a power of two!")((void)0); |
| 379 | const KeyT EmptyKey = getEmptyKey(); |
| 380 | for (BucketT *B = getBuckets(), *E = getBucketsEnd(); B != E; ++B) |
| 381 | ::new (&B->getFirst()) KeyT(EmptyKey); |
| 382 | } |
| 383 | |
| 384 | /// Returns the number of buckets to allocate to ensure that the DenseMap can |
| 385 | /// accommodate \p NumEntries without need to grow(). |
| 386 | unsigned getMinBucketToReserveForEntries(unsigned NumEntries) { |
| 387 | // Ensure that "NumEntries * 4 < NumBuckets * 3" |
| 388 | if (NumEntries == 0) |
| 389 | return 0; |
| 390 | // +1 is required because of the strict equality. |
| 391 | // For example if NumEntries is 48, we need to return 401. |
| 392 | return NextPowerOf2(NumEntries * 4 / 3 + 1); |
| 393 | } |
| 394 | |
| 395 | void moveFromOldBuckets(BucketT *OldBucketsBegin, BucketT *OldBucketsEnd) { |
| 396 | initEmpty(); |
| 397 | |
| 398 | // Insert all the old elements. |
| 399 | const KeyT EmptyKey = getEmptyKey(); |
| 400 | const KeyT TombstoneKey = getTombstoneKey(); |
| 401 | for (BucketT *B = OldBucketsBegin, *E = OldBucketsEnd; B != E; ++B) { |
| 402 | if (!KeyInfoT::isEqual(B->getFirst(), EmptyKey) && |
| 403 | !KeyInfoT::isEqual(B->getFirst(), TombstoneKey)) { |
| 404 | // Insert the key/value into the new table. |
| 405 | BucketT *DestBucket; |
| 406 | bool FoundVal = LookupBucketFor(B->getFirst(), DestBucket); |
| 407 | (void)FoundVal; // silence warning. |
| 408 | assert(!FoundVal && "Key already in new map?")((void)0); |
| 409 | DestBucket->getFirst() = std::move(B->getFirst()); |
| 410 | ::new (&DestBucket->getSecond()) ValueT(std::move(B->getSecond())); |
| 411 | incrementNumEntries(); |
| 412 | |
| 413 | // Free the value. |
| 414 | B->getSecond().~ValueT(); |
| 415 | } |
| 416 | B->getFirst().~KeyT(); |
| 417 | } |
| 418 | } |
| 419 | |
| 420 | template <typename OtherBaseT> |
| 421 | void copyFrom( |
| 422 | const DenseMapBase<OtherBaseT, KeyT, ValueT, KeyInfoT, BucketT> &other) { |
| 423 | assert(&other != this)((void)0); |
| 424 | assert(getNumBuckets() == other.getNumBuckets())((void)0); |
| 425 | |
| 426 | setNumEntries(other.getNumEntries()); |
| 427 | setNumTombstones(other.getNumTombstones()); |
| 428 | |
| 429 | if (std::is_trivially_copyable<KeyT>::value && |
| 430 | std::is_trivially_copyable<ValueT>::value) |
| 431 | memcpy(reinterpret_cast<void *>(getBuckets()), other.getBuckets(), |
| 432 | getNumBuckets() * sizeof(BucketT)); |
| 433 | else |
| 434 | for (size_t i = 0; i < getNumBuckets(); ++i) { |
| 435 | ::new (&getBuckets()[i].getFirst()) |
| 436 | KeyT(other.getBuckets()[i].getFirst()); |
| 437 | if (!KeyInfoT::isEqual(getBuckets()[i].getFirst(), getEmptyKey()) && |
| 438 | !KeyInfoT::isEqual(getBuckets()[i].getFirst(), getTombstoneKey())) |
| 439 | ::new (&getBuckets()[i].getSecond()) |
| 440 | ValueT(other.getBuckets()[i].getSecond()); |
| 441 | } |
| 442 | } |
| 443 | |
| 444 | static unsigned getHashValue(const KeyT &Val) { |
| 445 | return KeyInfoT::getHashValue(Val); |
| 446 | } |
| 447 | |
| 448 | template<typename LookupKeyT> |
| 449 | static unsigned getHashValue(const LookupKeyT &Val) { |
| 450 | return KeyInfoT::getHashValue(Val); |
| 451 | } |
| 452 | |
| 453 | static const KeyT getEmptyKey() { |
| 454 | static_assert(std::is_base_of<DenseMapBase, DerivedT>::value, |
| 455 | "Must pass the derived type to this template!"); |
| 456 | return KeyInfoT::getEmptyKey(); |
| 457 | } |
| 458 | |
| 459 | static const KeyT getTombstoneKey() { |
| 460 | return KeyInfoT::getTombstoneKey(); |
| 461 | } |
| 462 | |
| 463 | private: |
| 464 | iterator makeIterator(BucketT *P, BucketT *E, |
| 465 | DebugEpochBase &Epoch, |
| 466 | bool NoAdvance=false) { |
| 467 | if (shouldReverseIterate<KeyT>()) { |
| 468 | BucketT *B = P == getBucketsEnd() ? getBuckets() : P + 1; |
| 469 | return iterator(B, E, Epoch, NoAdvance); |
| 470 | } |
| 471 | return iterator(P, E, Epoch, NoAdvance); |
| 472 | } |
| 473 | |
| 474 | const_iterator makeConstIterator(const BucketT *P, const BucketT *E, |
| 475 | const DebugEpochBase &Epoch, |
| 476 | const bool NoAdvance=false) const { |
| 477 | if (shouldReverseIterate<KeyT>()) { |
| 478 | const BucketT *B = P == getBucketsEnd() ? getBuckets() : P + 1; |
| 479 | return const_iterator(B, E, Epoch, NoAdvance); |
| 480 | } |
| 481 | return const_iterator(P, E, Epoch, NoAdvance); |
| 482 | } |
| 483 | |
| 484 | unsigned getNumEntries() const { |
| 485 | return static_cast<const DerivedT *>(this)->getNumEntries(); |
| 486 | } |
| 487 | |
| 488 | void setNumEntries(unsigned Num) { |
| 489 | static_cast<DerivedT *>(this)->setNumEntries(Num); |
| 490 | } |
| 491 | |
| 492 | void incrementNumEntries() { |
| 493 | setNumEntries(getNumEntries() + 1); |
| 494 | } |
| 495 | |
| 496 | void decrementNumEntries() { |
| 497 | setNumEntries(getNumEntries() - 1); |
| 498 | } |
| 499 | |
| 500 | unsigned getNumTombstones() const { |
| 501 | return static_cast<const DerivedT *>(this)->getNumTombstones(); |
| 502 | } |
| 503 | |
| 504 | void setNumTombstones(unsigned Num) { |
| 505 | static_cast<DerivedT *>(this)->setNumTombstones(Num); |
| 506 | } |
| 507 | |
| 508 | void incrementNumTombstones() { |
| 509 | setNumTombstones(getNumTombstones() + 1); |
| 510 | } |
| 511 | |
| 512 | void decrementNumTombstones() { |
| 513 | setNumTombstones(getNumTombstones() - 1); |
| 514 | } |
| 515 | |
| 516 | const BucketT *getBuckets() const { |
| 517 | return static_cast<const DerivedT *>(this)->getBuckets(); |
| 518 | } |
| 519 | |
| 520 | BucketT *getBuckets() { |
| 521 | return static_cast<DerivedT *>(this)->getBuckets(); |
| 522 | } |
| 523 | |
| 524 | unsigned getNumBuckets() const { |
| 525 | return static_cast<const DerivedT *>(this)->getNumBuckets(); |
| 526 | } |
| 527 | |
| 528 | BucketT *getBucketsEnd() { |
| 529 | return getBuckets() + getNumBuckets(); |
| 530 | } |
| 531 | |
| 532 | const BucketT *getBucketsEnd() const { |
| 533 | return getBuckets() + getNumBuckets(); |
| 534 | } |
| 535 | |
| 536 | void grow(unsigned AtLeast) { |
| 537 | static_cast<DerivedT *>(this)->grow(AtLeast); |
| 538 | } |
| 539 | |
| 540 | void shrink_and_clear() { |
| 541 | static_cast<DerivedT *>(this)->shrink_and_clear(); |
| 542 | } |
| 543 | |
| 544 | template <typename KeyArg, typename... ValueArgs> |
| 545 | BucketT *InsertIntoBucket(BucketT *TheBucket, KeyArg &&Key, |
| 546 | ValueArgs &&... Values) { |
| 547 | TheBucket = InsertIntoBucketImpl(Key, Key, TheBucket); |
| 548 | |
| 549 | TheBucket->getFirst() = std::forward<KeyArg>(Key); |
| 550 | ::new (&TheBucket->getSecond()) ValueT(std::forward<ValueArgs>(Values)...); |
| 551 | return TheBucket; |
| 552 | } |
| 553 | |
| 554 | template <typename LookupKeyT> |
| 555 | BucketT *InsertIntoBucketWithLookup(BucketT *TheBucket, KeyT &&Key, |
| 556 | ValueT &&Value, LookupKeyT &Lookup) { |
| 557 | TheBucket = InsertIntoBucketImpl(Key, Lookup, TheBucket); |
| 558 | |
| 559 | TheBucket->getFirst() = std::move(Key); |
| 560 | ::new (&TheBucket->getSecond()) ValueT(std::move(Value)); |
| 561 | return TheBucket; |
| 562 | } |
| 563 | |
| 564 | template <typename LookupKeyT> |
| 565 | BucketT *InsertIntoBucketImpl(const KeyT &Key, const LookupKeyT &Lookup, |
| 566 | BucketT *TheBucket) { |
| 567 | incrementEpoch(); |
| 568 | |
| 569 | // If the load of the hash table is more than 3/4, or if fewer than 1/8 of |
| 570 | // the buckets are empty (meaning that many are filled with tombstones), |
| 571 | // grow the table. |
| 572 | // |
| 573 | // The later case is tricky. For example, if we had one empty bucket with |
| 574 | // tons of tombstones, failing lookups (e.g. for insertion) would have to |
| 575 | // probe almost the entire table until it found the empty bucket. If the |
| 576 | // table completely filled with tombstones, no lookup would ever succeed, |
| 577 | // causing infinite loops in lookup. |
| 578 | unsigned NewNumEntries = getNumEntries() + 1; |
| 579 | unsigned NumBuckets = getNumBuckets(); |
| 580 | if (LLVM_UNLIKELY(NewNumEntries * 4 >= NumBuckets * 3)__builtin_expect((bool)(NewNumEntries * 4 >= NumBuckets * 3 ), false)) { |
| 581 | this->grow(NumBuckets * 2); |
| 582 | LookupBucketFor(Lookup, TheBucket); |
| 583 | NumBuckets = getNumBuckets(); |
| 584 | } else if (LLVM_UNLIKELY(NumBuckets-(NewNumEntries+getNumTombstones()) <=__builtin_expect((bool)(NumBuckets-(NewNumEntries+getNumTombstones ()) <= NumBuckets/8), false) |
| 585 | NumBuckets/8)__builtin_expect((bool)(NumBuckets-(NewNumEntries+getNumTombstones ()) <= NumBuckets/8), false)) { |
| 586 | this->grow(NumBuckets); |
| 587 | LookupBucketFor(Lookup, TheBucket); |
| 588 | } |
| 589 | assert(TheBucket)((void)0); |
| 590 | |
| 591 | // Only update the state after we've grown our bucket space appropriately |
| 592 | // so that when growing buckets we have self-consistent entry count. |
| 593 | incrementNumEntries(); |
| 594 | |
| 595 | // If we are writing over a tombstone, remember this. |
| 596 | const KeyT EmptyKey = getEmptyKey(); |
| 597 | if (!KeyInfoT::isEqual(TheBucket->getFirst(), EmptyKey)) |
| 598 | decrementNumTombstones(); |
| 599 | |
| 600 | return TheBucket; |
| 601 | } |
| 602 | |
| 603 | /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in |
| 604 | /// FoundBucket. If the bucket contains the key and a value, this returns |
| 605 | /// true, otherwise it returns a bucket with an empty marker or tombstone and |
| 606 | /// returns false. |
| 607 | template<typename LookupKeyT> |
| 608 | bool LookupBucketFor(const LookupKeyT &Val, |
| 609 | const BucketT *&FoundBucket) const { |
| 610 | const BucketT *BucketsPtr = getBuckets(); |
| 611 | const unsigned NumBuckets = getNumBuckets(); |
| 612 | |
| 613 | if (NumBuckets == 0) { |
| 614 | FoundBucket = nullptr; |
| 615 | return false; |
| 616 | } |
| 617 | |
| 618 | // FoundTombstone - Keep track of whether we find a tombstone while probing. |
| 619 | const BucketT *FoundTombstone = nullptr; |
| 620 | const KeyT EmptyKey = getEmptyKey(); |
| 621 | const KeyT TombstoneKey = getTombstoneKey(); |
| 622 | assert(!KeyInfoT::isEqual(Val, EmptyKey) &&((void)0) |
| 623 | !KeyInfoT::isEqual(Val, TombstoneKey) &&((void)0) |
| 624 | "Empty/Tombstone value shouldn't be inserted into map!")((void)0); |
| 625 | |
| 626 | unsigned BucketNo = getHashValue(Val) & (NumBuckets-1); |
| 627 | unsigned ProbeAmt = 1; |
| 628 | while (true) { |
| 629 | const BucketT *ThisBucket = BucketsPtr + BucketNo; |
| 630 | // Found Val's bucket? If so, return it. |
| 631 | if (LLVM_LIKELY(KeyInfoT::isEqual(Val, ThisBucket->getFirst()))__builtin_expect((bool)(KeyInfoT::isEqual(Val, ThisBucket-> getFirst())), true)) { |
| 632 | FoundBucket = ThisBucket; |
| 633 | return true; |
| 634 | } |
| 635 | |
| 636 | // If we found an empty bucket, the key doesn't exist in the set. |
| 637 | // Insert it and return the default value. |
| 638 | if (LLVM_LIKELY(KeyInfoT::isEqual(ThisBucket->getFirst(), EmptyKey))__builtin_expect((bool)(KeyInfoT::isEqual(ThisBucket->getFirst (), EmptyKey)), true)) { |
| 639 | // If we've already seen a tombstone while probing, fill it in instead |
| 640 | // of the empty bucket we eventually probed to. |
| 641 | FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket; |
| 642 | return false; |
| 643 | } |
| 644 | |
| 645 | // If this is a tombstone, remember it. If Val ends up not in the map, we |
| 646 | // prefer to return it than something that would require more probing. |
| 647 | if (KeyInfoT::isEqual(ThisBucket->getFirst(), TombstoneKey) && |
| 648 | !FoundTombstone) |
| 649 | FoundTombstone = ThisBucket; // Remember the first tombstone found. |
| 650 | |
| 651 | // Otherwise, it's a hash collision or a tombstone, continue quadratic |
| 652 | // probing. |
| 653 | BucketNo += ProbeAmt++; |
| 654 | BucketNo &= (NumBuckets-1); |
| 655 | } |
| 656 | } |
| 657 | |
| 658 | template <typename LookupKeyT> |
| 659 | bool LookupBucketFor(const LookupKeyT &Val, BucketT *&FoundBucket) { |
| 660 | const BucketT *ConstFoundBucket; |
| 661 | bool Result = const_cast<const DenseMapBase *>(this) |
| 662 | ->LookupBucketFor(Val, ConstFoundBucket); |
| 663 | FoundBucket = const_cast<BucketT *>(ConstFoundBucket); |
| 664 | return Result; |
| 665 | } |
| 666 | |
| 667 | public: |
| 668 | /// Return the approximate size (in bytes) of the actual map. |
| 669 | /// This is just the raw memory used by DenseMap. |
| 670 | /// If entries are pointers to objects, the size of the referenced objects |
| 671 | /// are not included. |
| 672 | size_t getMemorySize() const { |
| 673 | return getNumBuckets() * sizeof(BucketT); |
| 674 | } |
| 675 | }; |
| 676 | |
| 677 | /// Equality comparison for DenseMap. |
| 678 | /// |
| 679 | /// Iterates over elements of LHS confirming that each (key, value) pair in LHS |
| 680 | /// is also in RHS, and that no additional pairs are in RHS. |
| 681 | /// Equivalent to N calls to RHS.find and N value comparisons. Amortized |
| 682 | /// complexity is linear, worst case is O(N^2) (if every hash collides). |
| 683 | template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT, |
| 684 | typename BucketT> |
| 685 | bool operator==( |
| 686 | const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &LHS, |
| 687 | const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &RHS) { |
| 688 | if (LHS.size() != RHS.size()) |
| 689 | return false; |
| 690 | |
| 691 | for (auto &KV : LHS) { |
| 692 | auto I = RHS.find(KV.first); |
| 693 | if (I == RHS.end() || I->second != KV.second) |
| 694 | return false; |
| 695 | } |
| 696 | |
| 697 | return true; |
| 698 | } |
| 699 | |
| 700 | /// Inequality comparison for DenseMap. |
| 701 | /// |
| 702 | /// Equivalent to !(LHS == RHS). See operator== for performance notes. |
| 703 | template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT, |
| 704 | typename BucketT> |
| 705 | bool operator!=( |
| 706 | const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &LHS, |
| 707 | const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &RHS) { |
| 708 | return !(LHS == RHS); |
| 709 | } |
| 710 | |
| 711 | template <typename KeyT, typename ValueT, |
| 712 | typename KeyInfoT = DenseMapInfo<KeyT>, |
| 713 | typename BucketT = llvm::detail::DenseMapPair<KeyT, ValueT>> |
| 714 | class DenseMap : public DenseMapBase<DenseMap<KeyT, ValueT, KeyInfoT, BucketT>, |
| 715 | KeyT, ValueT, KeyInfoT, BucketT> { |
| 716 | friend class DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>; |
| 717 | |
| 718 | // Lift some types from the dependent base class into this class for |
| 719 | // simplicity of referring to them. |
| 720 | using BaseT = DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>; |
| 721 | |
| 722 | BucketT *Buckets; |
| 723 | unsigned NumEntries; |
| 724 | unsigned NumTombstones; |
| 725 | unsigned NumBuckets; |
| 726 | |
| 727 | public: |
| 728 | /// Create a DenseMap with an optional \p InitialReserve that guarantee that |
| 729 | /// this number of elements can be inserted in the map without grow() |
| 730 | explicit DenseMap(unsigned InitialReserve = 0) { init(InitialReserve); } |
| 731 | |
| 732 | DenseMap(const DenseMap &other) : BaseT() { |
| 733 | init(0); |
| 734 | copyFrom(other); |
| 735 | } |
| 736 | |
| 737 | DenseMap(DenseMap &&other) : BaseT() { |
| 738 | init(0); |
| 739 | swap(other); |
| 740 | } |
| 741 | |
| 742 | template<typename InputIt> |
| 743 | DenseMap(const InputIt &I, const InputIt &E) { |
| 744 | init(std::distance(I, E)); |
| 745 | this->insert(I, E); |
| 746 | } |
| 747 | |
| 748 | DenseMap(std::initializer_list<typename BaseT::value_type> Vals) { |
| 749 | init(Vals.size()); |
| 750 | this->insert(Vals.begin(), Vals.end()); |
| 751 | } |
| 752 | |
| 753 | ~DenseMap() { |
| 754 | this->destroyAll(); |
| 755 | deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT)); |
| 756 | } |
| 757 | |
| 758 | void swap(DenseMap& RHS) { |
| 759 | this->incrementEpoch(); |
| 760 | RHS.incrementEpoch(); |
| 761 | std::swap(Buckets, RHS.Buckets); |
| 762 | std::swap(NumEntries, RHS.NumEntries); |
| 763 | std::swap(NumTombstones, RHS.NumTombstones); |
| 764 | std::swap(NumBuckets, RHS.NumBuckets); |
| 765 | } |
| 766 | |
| 767 | DenseMap& operator=(const DenseMap& other) { |
| 768 | if (&other != this) |
| 769 | copyFrom(other); |
| 770 | return *this; |
| 771 | } |
| 772 | |
| 773 | DenseMap& operator=(DenseMap &&other) { |
| 774 | this->destroyAll(); |
| 775 | deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT)); |
| 776 | init(0); |
| 777 | swap(other); |
| 778 | return *this; |
| 779 | } |
| 780 | |
| 781 | void copyFrom(const DenseMap& other) { |
| 782 | this->destroyAll(); |
| 783 | deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT)); |
| 784 | if (allocateBuckets(other.NumBuckets)) { |
| 785 | this->BaseT::copyFrom(other); |
| 786 | } else { |
| 787 | NumEntries = 0; |
| 788 | NumTombstones = 0; |
| 789 | } |
| 790 | } |
| 791 | |
| 792 | void init(unsigned InitNumEntries) { |
| 793 | auto InitBuckets = BaseT::getMinBucketToReserveForEntries(InitNumEntries); |
| 794 | if (allocateBuckets(InitBuckets)) { |
| 795 | this->BaseT::initEmpty(); |
| 796 | } else { |
| 797 | NumEntries = 0; |
| 798 | NumTombstones = 0; |
| 799 | } |
| 800 | } |
| 801 | |
| 802 | void grow(unsigned AtLeast) { |
| 803 | unsigned OldNumBuckets = NumBuckets; |
| 804 | BucketT *OldBuckets = Buckets; |
| 805 | |
| 806 | allocateBuckets(std::max<unsigned>(64, static_cast<unsigned>(NextPowerOf2(AtLeast-1)))); |
| 807 | assert(Buckets)((void)0); |
| 808 | if (!OldBuckets) { |
| 809 | this->BaseT::initEmpty(); |
| 810 | return; |
| 811 | } |
| 812 | |
| 813 | this->moveFromOldBuckets(OldBuckets, OldBuckets+OldNumBuckets); |
| 814 | |
| 815 | // Free the old table. |
| 816 | deallocate_buffer(OldBuckets, sizeof(BucketT) * OldNumBuckets, |
| 817 | alignof(BucketT)); |
| 818 | } |
| 819 | |
| 820 | void shrink_and_clear() { |
| 821 | unsigned OldNumBuckets = NumBuckets; |
| 822 | unsigned OldNumEntries = NumEntries; |
| 823 | this->destroyAll(); |
| 824 | |
| 825 | // Reduce the number of buckets. |
| 826 | unsigned NewNumBuckets = 0; |
| 827 | if (OldNumEntries) |
| 828 | NewNumBuckets = std::max(64, 1 << (Log2_32_Ceil(OldNumEntries) + 1)); |
| 829 | if (NewNumBuckets == NumBuckets) { |
| 830 | this->BaseT::initEmpty(); |
| 831 | return; |
| 832 | } |
| 833 | |
| 834 | deallocate_buffer(Buckets, sizeof(BucketT) * OldNumBuckets, |
| 835 | alignof(BucketT)); |
| 836 | init(NewNumBuckets); |
| 837 | } |
| 838 | |
| 839 | private: |
| 840 | unsigned getNumEntries() const { |
| 841 | return NumEntries; |
| 842 | } |
| 843 | |
| 844 | void setNumEntries(unsigned Num) { |
| 845 | NumEntries = Num; |
| 846 | } |
| 847 | |
| 848 | unsigned getNumTombstones() const { |
| 849 | return NumTombstones; |
| 850 | } |
| 851 | |
| 852 | void setNumTombstones(unsigned Num) { |
| 853 | NumTombstones = Num; |
| 854 | } |
| 855 | |
| 856 | BucketT *getBuckets() const { |
| 857 | return Buckets; |
| 858 | } |
| 859 | |
| 860 | unsigned getNumBuckets() const { |
| 861 | return NumBuckets; |
| 862 | } |
| 863 | |
| 864 | bool allocateBuckets(unsigned Num) { |
| 865 | NumBuckets = Num; |
| 866 | if (NumBuckets == 0) { |
| 867 | Buckets = nullptr; |
| 868 | return false; |
| 869 | } |
| 870 | |
| 871 | Buckets = static_cast<BucketT *>( |
| 872 | allocate_buffer(sizeof(BucketT) * NumBuckets, alignof(BucketT))); |
| 873 | return true; |
| 874 | } |
| 875 | }; |
| 876 | |
| 877 | template <typename KeyT, typename ValueT, unsigned InlineBuckets = 4, |
| 878 | typename KeyInfoT = DenseMapInfo<KeyT>, |
| 879 | typename BucketT = llvm::detail::DenseMapPair<KeyT, ValueT>> |
| 880 | class SmallDenseMap |
| 881 | : public DenseMapBase< |
| 882 | SmallDenseMap<KeyT, ValueT, InlineBuckets, KeyInfoT, BucketT>, KeyT, |
| 883 | ValueT, KeyInfoT, BucketT> { |
| 884 | friend class DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>; |
| 885 | |
| 886 | // Lift some types from the dependent base class into this class for |
| 887 | // simplicity of referring to them. |
| 888 | using BaseT = DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>; |
| 889 | |
| 890 | static_assert(isPowerOf2_64(InlineBuckets), |
| 891 | "InlineBuckets must be a power of 2."); |
| 892 | |
| 893 | unsigned Small : 1; |
| 894 | unsigned NumEntries : 31; |
| 895 | unsigned NumTombstones; |
| 896 | |
| 897 | struct LargeRep { |
| 898 | BucketT *Buckets; |
| 899 | unsigned NumBuckets; |
| 900 | }; |
| 901 | |
| 902 | /// A "union" of an inline bucket array and the struct representing |
| 903 | /// a large bucket. This union will be discriminated by the 'Small' bit. |
| 904 | AlignedCharArrayUnion<BucketT[InlineBuckets], LargeRep> storage; |
| 905 | |
| 906 | public: |
| 907 | explicit SmallDenseMap(unsigned NumInitBuckets = 0) { |
| 908 | init(NumInitBuckets); |
| 909 | } |
| 910 | |
| 911 | SmallDenseMap(const SmallDenseMap &other) : BaseT() { |
| 912 | init(0); |
| 913 | copyFrom(other); |
| 914 | } |
| 915 | |
| 916 | SmallDenseMap(SmallDenseMap &&other) : BaseT() { |
| 917 | init(0); |
| 918 | swap(other); |
| 919 | } |
| 920 | |
| 921 | template<typename InputIt> |
| 922 | SmallDenseMap(const InputIt &I, const InputIt &E) { |
| 923 | init(NextPowerOf2(std::distance(I, E))); |
| 924 | this->insert(I, E); |
| 925 | } |
| 926 | |
| 927 | SmallDenseMap(std::initializer_list<typename BaseT::value_type> Vals) |
| 928 | : SmallDenseMap(Vals.begin(), Vals.end()) {} |
| 929 | |
| 930 | ~SmallDenseMap() { |
| 931 | this->destroyAll(); |
| 932 | deallocateBuckets(); |
| 933 | } |
| 934 | |
| 935 | void swap(SmallDenseMap& RHS) { |
| 936 | unsigned TmpNumEntries = RHS.NumEntries; |
| 937 | RHS.NumEntries = NumEntries; |
| 938 | NumEntries = TmpNumEntries; |
| 939 | std::swap(NumTombstones, RHS.NumTombstones); |
| 940 | |
| 941 | const KeyT EmptyKey = this->getEmptyKey(); |
| 942 | const KeyT TombstoneKey = this->getTombstoneKey(); |
| 943 | if (Small && RHS.Small) { |
| 944 | // If we're swapping inline bucket arrays, we have to cope with some of |
| 945 | // the tricky bits of DenseMap's storage system: the buckets are not |
| 946 | // fully initialized. Thus we swap every key, but we may have |
| 947 | // a one-directional move of the value. |
| 948 | for (unsigned i = 0, e = InlineBuckets; i != e; ++i) { |
| 949 | BucketT *LHSB = &getInlineBuckets()[i], |
| 950 | *RHSB = &RHS.getInlineBuckets()[i]; |
| 951 | bool hasLHSValue = (!KeyInfoT::isEqual(LHSB->getFirst(), EmptyKey) && |
| 952 | !KeyInfoT::isEqual(LHSB->getFirst(), TombstoneKey)); |
| 953 | bool hasRHSValue = (!KeyInfoT::isEqual(RHSB->getFirst(), EmptyKey) && |
| 954 | !KeyInfoT::isEqual(RHSB->getFirst(), TombstoneKey)); |
| 955 | if (hasLHSValue && hasRHSValue) { |
| 956 | // Swap together if we can... |
| 957 | std::swap(*LHSB, *RHSB); |
| 958 | continue; |
| 959 | } |
| 960 | // Swap separately and handle any asymmetry. |
| 961 | std::swap(LHSB->getFirst(), RHSB->getFirst()); |
| 962 | if (hasLHSValue) { |
| 963 | ::new (&RHSB->getSecond()) ValueT(std::move(LHSB->getSecond())); |
| 964 | LHSB->getSecond().~ValueT(); |
| 965 | } else if (hasRHSValue) { |
| 966 | ::new (&LHSB->getSecond()) ValueT(std::move(RHSB->getSecond())); |
| 967 | RHSB->getSecond().~ValueT(); |
| 968 | } |
| 969 | } |
| 970 | return; |
| 971 | } |
| 972 | if (!Small && !RHS.Small) { |
| 973 | std::swap(getLargeRep()->Buckets, RHS.getLargeRep()->Buckets); |
| 974 | std::swap(getLargeRep()->NumBuckets, RHS.getLargeRep()->NumBuckets); |
| 975 | return; |
| 976 | } |
| 977 | |
| 978 | SmallDenseMap &SmallSide = Small ? *this : RHS; |
| 979 | SmallDenseMap &LargeSide = Small ? RHS : *this; |
| 980 | |
| 981 | // First stash the large side's rep and move the small side across. |
| 982 | LargeRep TmpRep = std::move(*LargeSide.getLargeRep()); |
| 983 | LargeSide.getLargeRep()->~LargeRep(); |
| 984 | LargeSide.Small = true; |
| 985 | // This is similar to the standard move-from-old-buckets, but the bucket |
| 986 | // count hasn't actually rotated in this case. So we have to carefully |
| 987 | // move construct the keys and values into their new locations, but there |
| 988 | // is no need to re-hash things. |
| 989 | for (unsigned i = 0, e = InlineBuckets; i != e; ++i) { |
| 990 | BucketT *NewB = &LargeSide.getInlineBuckets()[i], |
| 991 | *OldB = &SmallSide.getInlineBuckets()[i]; |
| 992 | ::new (&NewB->getFirst()) KeyT(std::move(OldB->getFirst())); |
| 993 | OldB->getFirst().~KeyT(); |
| 994 | if (!KeyInfoT::isEqual(NewB->getFirst(), EmptyKey) && |
| 995 | !KeyInfoT::isEqual(NewB->getFirst(), TombstoneKey)) { |
| 996 | ::new (&NewB->getSecond()) ValueT(std::move(OldB->getSecond())); |
| 997 | OldB->getSecond().~ValueT(); |
| 998 | } |
| 999 | } |
| 1000 | |
| 1001 | // The hard part of moving the small buckets across is done, just move |
| 1002 | // the TmpRep into its new home. |
| 1003 | SmallSide.Small = false; |
| 1004 | new (SmallSide.getLargeRep()) LargeRep(std::move(TmpRep)); |
| 1005 | } |
| 1006 | |
| 1007 | SmallDenseMap& operator=(const SmallDenseMap& other) { |
| 1008 | if (&other != this) |
| 1009 | copyFrom(other); |
| 1010 | return *this; |
| 1011 | } |
| 1012 | |
| 1013 | SmallDenseMap& operator=(SmallDenseMap &&other) { |
| 1014 | this->destroyAll(); |
| 1015 | deallocateBuckets(); |
| 1016 | init(0); |
| 1017 | swap(other); |
| 1018 | return *this; |
| 1019 | } |
| 1020 | |
| 1021 | void copyFrom(const SmallDenseMap& other) { |
| 1022 | this->destroyAll(); |
| 1023 | deallocateBuckets(); |
| 1024 | Small = true; |
| 1025 | if (other.getNumBuckets() > InlineBuckets) { |
| 1026 | Small = false; |
| 1027 | new (getLargeRep()) LargeRep(allocateBuckets(other.getNumBuckets())); |
| 1028 | } |
| 1029 | this->BaseT::copyFrom(other); |
| 1030 | } |
| 1031 | |
| 1032 | void init(unsigned InitBuckets) { |
| 1033 | Small = true; |
| 1034 | if (InitBuckets > InlineBuckets) { |
| 1035 | Small = false; |
| 1036 | new (getLargeRep()) LargeRep(allocateBuckets(InitBuckets)); |
| 1037 | } |
| 1038 | this->BaseT::initEmpty(); |
| 1039 | } |
| 1040 | |
| 1041 | void grow(unsigned AtLeast) { |
| 1042 | if (AtLeast > InlineBuckets) |
| 1043 | AtLeast = std::max<unsigned>(64, NextPowerOf2(AtLeast-1)); |
| 1044 | |
| 1045 | if (Small) { |
| 1046 | // First move the inline buckets into a temporary storage. |
| 1047 | AlignedCharArrayUnion<BucketT[InlineBuckets]> TmpStorage; |
| 1048 | BucketT *TmpBegin = reinterpret_cast<BucketT *>(&TmpStorage); |
| 1049 | BucketT *TmpEnd = TmpBegin; |
| 1050 | |
| 1051 | // Loop over the buckets, moving non-empty, non-tombstones into the |
| 1052 | // temporary storage. Have the loop move the TmpEnd forward as it goes. |
| 1053 | const KeyT EmptyKey = this->getEmptyKey(); |
| 1054 | const KeyT TombstoneKey = this->getTombstoneKey(); |
| 1055 | for (BucketT *P = getBuckets(), *E = P + InlineBuckets; P != E; ++P) { |
| 1056 | if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) && |
| 1057 | !KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) { |
| 1058 | assert(size_t(TmpEnd - TmpBegin) < InlineBuckets &&((void)0) |
| 1059 | "Too many inline buckets!")((void)0); |
| 1060 | ::new (&TmpEnd->getFirst()) KeyT(std::move(P->getFirst())); |
| 1061 | ::new (&TmpEnd->getSecond()) ValueT(std::move(P->getSecond())); |
| 1062 | ++TmpEnd; |
| 1063 | P->getSecond().~ValueT(); |
| 1064 | } |
| 1065 | P->getFirst().~KeyT(); |
| 1066 | } |
| 1067 | |
| 1068 | // AtLeast == InlineBuckets can happen if there are many tombstones, |
| 1069 | // and grow() is used to remove them. Usually we always switch to the |
| 1070 | // large rep here. |
| 1071 | if (AtLeast > InlineBuckets) { |
| 1072 | Small = false; |
| 1073 | new (getLargeRep()) LargeRep(allocateBuckets(AtLeast)); |
| 1074 | } |
| 1075 | this->moveFromOldBuckets(TmpBegin, TmpEnd); |
| 1076 | return; |
| 1077 | } |
| 1078 | |
| 1079 | LargeRep OldRep = std::move(*getLargeRep()); |
| 1080 | getLargeRep()->~LargeRep(); |
| 1081 | if (AtLeast <= InlineBuckets) { |
| 1082 | Small = true; |
| 1083 | } else { |
| 1084 | new (getLargeRep()) LargeRep(allocateBuckets(AtLeast)); |
| 1085 | } |
| 1086 | |
| 1087 | this->moveFromOldBuckets(OldRep.Buckets, OldRep.Buckets+OldRep.NumBuckets); |
| 1088 | |
| 1089 | // Free the old table. |
| 1090 | deallocate_buffer(OldRep.Buckets, sizeof(BucketT) * OldRep.NumBuckets, |
| 1091 | alignof(BucketT)); |
| 1092 | } |
| 1093 | |
| 1094 | void shrink_and_clear() { |
| 1095 | unsigned OldSize = this->size(); |
| 1096 | this->destroyAll(); |
| 1097 | |
| 1098 | // Reduce the number of buckets. |
| 1099 | unsigned NewNumBuckets = 0; |
| 1100 | if (OldSize) { |
| 1101 | NewNumBuckets = 1 << (Log2_32_Ceil(OldSize) + 1); |
| 1102 | if (NewNumBuckets > InlineBuckets && NewNumBuckets < 64u) |
| 1103 | NewNumBuckets = 64; |
| 1104 | } |
| 1105 | if ((Small && NewNumBuckets <= InlineBuckets) || |
| 1106 | (!Small && NewNumBuckets == getLargeRep()->NumBuckets)) { |
| 1107 | this->BaseT::initEmpty(); |
| 1108 | return; |
| 1109 | } |
| 1110 | |
| 1111 | deallocateBuckets(); |
| 1112 | init(NewNumBuckets); |
| 1113 | } |
| 1114 | |
| 1115 | private: |
| 1116 | unsigned getNumEntries() const { |
| 1117 | return NumEntries; |
| 1118 | } |
| 1119 | |
| 1120 | void setNumEntries(unsigned Num) { |
| 1121 | // NumEntries is hardcoded to be 31 bits wide. |
| 1122 | assert(Num < (1U << 31) && "Cannot support more than 1<<31 entries")((void)0); |
| 1123 | NumEntries = Num; |
| 1124 | } |
| 1125 | |
| 1126 | unsigned getNumTombstones() const { |
| 1127 | return NumTombstones; |
| 1128 | } |
| 1129 | |
| 1130 | void setNumTombstones(unsigned Num) { |
| 1131 | NumTombstones = Num; |
| 1132 | } |
| 1133 | |
| 1134 | const BucketT *getInlineBuckets() const { |
| 1135 | assert(Small)((void)0); |
| 1136 | // Note that this cast does not violate aliasing rules as we assert that |
| 1137 | // the memory's dynamic type is the small, inline bucket buffer, and the |
| 1138 | // 'storage' is a POD containing a char buffer. |
| 1139 | return reinterpret_cast<const BucketT *>(&storage); |
| 1140 | } |
| 1141 | |
| 1142 | BucketT *getInlineBuckets() { |
| 1143 | return const_cast<BucketT *>( |
| 1144 | const_cast<const SmallDenseMap *>(this)->getInlineBuckets()); |
| 1145 | } |
| 1146 | |
| 1147 | const LargeRep *getLargeRep() const { |
| 1148 | assert(!Small)((void)0); |
| 1149 | // Note, same rule about aliasing as with getInlineBuckets. |
| 1150 | return reinterpret_cast<const LargeRep *>(&storage); |
| 1151 | } |
| 1152 | |
| 1153 | LargeRep *getLargeRep() { |
| 1154 | return const_cast<LargeRep *>( |
| 1155 | const_cast<const SmallDenseMap *>(this)->getLargeRep()); |
| 1156 | } |
| 1157 | |
| 1158 | const BucketT *getBuckets() const { |
| 1159 | return Small ? getInlineBuckets() : getLargeRep()->Buckets; |
| 1160 | } |
| 1161 | |
| 1162 | BucketT *getBuckets() { |
| 1163 | return const_cast<BucketT *>( |
| 1164 | const_cast<const SmallDenseMap *>(this)->getBuckets()); |
| 1165 | } |
| 1166 | |
| 1167 | unsigned getNumBuckets() const { |
| 1168 | return Small ? InlineBuckets : getLargeRep()->NumBuckets; |
| 1169 | } |
| 1170 | |
| 1171 | void deallocateBuckets() { |
| 1172 | if (Small) |
| 1173 | return; |
| 1174 | |
| 1175 | deallocate_buffer(getLargeRep()->Buckets, |
| 1176 | sizeof(BucketT) * getLargeRep()->NumBuckets, |
| 1177 | alignof(BucketT)); |
| 1178 | getLargeRep()->~LargeRep(); |
| 1179 | } |
| 1180 | |
| 1181 | LargeRep allocateBuckets(unsigned Num) { |
| 1182 | assert(Num > InlineBuckets && "Must allocate more buckets than are inline")((void)0); |
| 1183 | LargeRep Rep = {static_cast<BucketT *>(allocate_buffer( |
| 1184 | sizeof(BucketT) * Num, alignof(BucketT))), |
| 1185 | Num}; |
| 1186 | return Rep; |
| 1187 | } |
| 1188 | }; |
| 1189 | |
| 1190 | template <typename KeyT, typename ValueT, typename KeyInfoT, typename Bucket, |
| 1191 | bool IsConst> |
| 1192 | class DenseMapIterator : DebugEpochBase::HandleBase { |
| 1193 | friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true>; |
| 1194 | friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, false>; |
| 1195 | |
| 1196 | public: |
| 1197 | using difference_type = ptrdiff_t; |
| 1198 | using value_type = |
| 1199 | typename std::conditional<IsConst, const Bucket, Bucket>::type; |
| 1200 | using pointer = value_type *; |
| 1201 | using reference = value_type &; |
| 1202 | using iterator_category = std::forward_iterator_tag; |
| 1203 | |
| 1204 | private: |
| 1205 | pointer Ptr = nullptr; |
| 1206 | pointer End = nullptr; |
| 1207 | |
| 1208 | public: |
| 1209 | DenseMapIterator() = default; |
| 1210 | |
| 1211 | DenseMapIterator(pointer Pos, pointer E, const DebugEpochBase &Epoch, |
| 1212 | bool NoAdvance = false) |
| 1213 | : DebugEpochBase::HandleBase(&Epoch), Ptr(Pos), End(E) { |
| 1214 | assert(isHandleInSync() && "invalid construction!")((void)0); |
| 1215 | |
| 1216 | if (NoAdvance) return; |
| 1217 | if (shouldReverseIterate<KeyT>()) { |
| 1218 | RetreatPastEmptyBuckets(); |
| 1219 | return; |
| 1220 | } |
| 1221 | AdvancePastEmptyBuckets(); |
| 1222 | } |
| 1223 | |
| 1224 | // Converting ctor from non-const iterators to const iterators. SFINAE'd out |
| 1225 | // for const iterator destinations so it doesn't end up as a user defined copy |
| 1226 | // constructor. |
| 1227 | template <bool IsConstSrc, |
| 1228 | typename = std::enable_if_t<!IsConstSrc && IsConst>> |
| 1229 | DenseMapIterator( |
| 1230 | const DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, IsConstSrc> &I) |
| 1231 | : DebugEpochBase::HandleBase(I), Ptr(I.Ptr), End(I.End) {} |
| 1232 | |
| 1233 | reference operator*() const { |
| 1234 | assert(isHandleInSync() && "invalid iterator access!")((void)0); |
| 1235 | assert(Ptr != End && "dereferencing end() iterator")((void)0); |
| 1236 | if (shouldReverseIterate<KeyT>()) |
| 1237 | return Ptr[-1]; |
| 1238 | return *Ptr; |
| 1239 | } |
| 1240 | pointer operator->() const { |
| 1241 | assert(isHandleInSync() && "invalid iterator access!")((void)0); |
| 1242 | assert(Ptr != End && "dereferencing end() iterator")((void)0); |
| 1243 | if (shouldReverseIterate<KeyT>()) |
| 1244 | return &(Ptr[-1]); |
| 1245 | return Ptr; |
| 1246 | } |
| 1247 | |
| 1248 | friend bool operator==(const DenseMapIterator &LHS, |
| 1249 | const DenseMapIterator &RHS) { |
| 1250 | assert((!LHS.Ptr || LHS.isHandleInSync()) && "handle not in sync!")((void)0); |
| 1251 | assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!")((void)0); |
| 1252 | assert(LHS.getEpochAddress() == RHS.getEpochAddress() &&((void)0) |
| 1253 | "comparing incomparable iterators!")((void)0); |
| 1254 | return LHS.Ptr == RHS.Ptr; |
| 1255 | } |
| 1256 | |
| 1257 | friend bool operator!=(const DenseMapIterator &LHS, |
| 1258 | const DenseMapIterator &RHS) { |
| 1259 | return !(LHS == RHS); |
| 1260 | } |
| 1261 | |
| 1262 | inline DenseMapIterator& operator++() { // Preincrement |
| 1263 | assert(isHandleInSync() && "invalid iterator access!")((void)0); |
| 1264 | assert(Ptr != End && "incrementing end() iterator")((void)0); |
| 1265 | if (shouldReverseIterate<KeyT>()) { |
| 1266 | --Ptr; |
| 1267 | RetreatPastEmptyBuckets(); |
| 1268 | return *this; |
| 1269 | } |
| 1270 | ++Ptr; |
| 1271 | AdvancePastEmptyBuckets(); |
| 1272 | return *this; |
| 1273 | } |
| 1274 | DenseMapIterator operator++(int) { // Postincrement |
| 1275 | assert(isHandleInSync() && "invalid iterator access!")((void)0); |
| 1276 | DenseMapIterator tmp = *this; ++*this; return tmp; |
| 1277 | } |
| 1278 | |
| 1279 | private: |
| 1280 | void AdvancePastEmptyBuckets() { |
| 1281 | assert(Ptr <= End)((void)0); |
| 1282 | const KeyT Empty = KeyInfoT::getEmptyKey(); |
| 1283 | const KeyT Tombstone = KeyInfoT::getTombstoneKey(); |
| 1284 | |
| 1285 | while (Ptr != End && (KeyInfoT::isEqual(Ptr->getFirst(), Empty) || |
| 1286 | KeyInfoT::isEqual(Ptr->getFirst(), Tombstone))) |
| 1287 | ++Ptr; |
| 1288 | } |
| 1289 | |
| 1290 | void RetreatPastEmptyBuckets() { |
| 1291 | assert(Ptr >= End)((void)0); |
| 1292 | const KeyT Empty = KeyInfoT::getEmptyKey(); |
| 1293 | const KeyT Tombstone = KeyInfoT::getTombstoneKey(); |
| 1294 | |
| 1295 | while (Ptr != End && (KeyInfoT::isEqual(Ptr[-1].getFirst(), Empty) || |
| 1296 | KeyInfoT::isEqual(Ptr[-1].getFirst(), Tombstone))) |
| 1297 | --Ptr; |
| 1298 | } |
| 1299 | }; |
| 1300 | |
| 1301 | template <typename KeyT, typename ValueT, typename KeyInfoT> |
| 1302 | inline size_t capacity_in_bytes(const DenseMap<KeyT, ValueT, KeyInfoT> &X) { |
| 1303 | return X.getMemorySize(); |
| 1304 | } |
| 1305 | |
| 1306 | } // end namespace llvm |
| 1307 | |
| 1308 | #endif // LLVM_ADT_DENSEMAP_H |