| File: | src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/CodeGen/MachineScheduler.cpp |
| Warning: | line 3629, column 12 Access to field 'isScheduled' results in a dereference of a null pointer (loaded from variable 'SU') |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// | ||||||||
| 2 | // | ||||||||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||||||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | ||||||||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||||||
| 6 | // | ||||||||
| 7 | //===----------------------------------------------------------------------===// | ||||||||
| 8 | // | ||||||||
| 9 | // MachineScheduler schedules machine instructions after phi elimination. It | ||||||||
| 10 | // preserves LiveIntervals so it can be invoked before register allocation. | ||||||||
| 11 | // | ||||||||
| 12 | //===----------------------------------------------------------------------===// | ||||||||
| 13 | |||||||||
| 14 | #include "llvm/CodeGen/MachineScheduler.h" | ||||||||
| 15 | #include "llvm/ADT/ArrayRef.h" | ||||||||
| 16 | #include "llvm/ADT/BitVector.h" | ||||||||
| 17 | #include "llvm/ADT/DenseMap.h" | ||||||||
| 18 | #include "llvm/ADT/PriorityQueue.h" | ||||||||
| 19 | #include "llvm/ADT/STLExtras.h" | ||||||||
| 20 | #include "llvm/ADT/SmallVector.h" | ||||||||
| 21 | #include "llvm/ADT/Statistic.h" | ||||||||
| 22 | #include "llvm/ADT/iterator_range.h" | ||||||||
| 23 | #include "llvm/Analysis/AliasAnalysis.h" | ||||||||
| 24 | #include "llvm/CodeGen/LiveInterval.h" | ||||||||
| 25 | #include "llvm/CodeGen/LiveIntervals.h" | ||||||||
| 26 | #include "llvm/CodeGen/MachineBasicBlock.h" | ||||||||
| 27 | #include "llvm/CodeGen/MachineDominators.h" | ||||||||
| 28 | #include "llvm/CodeGen/MachineFunction.h" | ||||||||
| 29 | #include "llvm/CodeGen/MachineFunctionPass.h" | ||||||||
| 30 | #include "llvm/CodeGen/MachineInstr.h" | ||||||||
| 31 | #include "llvm/CodeGen/MachineLoopInfo.h" | ||||||||
| 32 | #include "llvm/CodeGen/MachineOperand.h" | ||||||||
| 33 | #include "llvm/CodeGen/MachinePassRegistry.h" | ||||||||
| 34 | #include "llvm/CodeGen/MachineRegisterInfo.h" | ||||||||
| 35 | #include "llvm/CodeGen/Passes.h" | ||||||||
| 36 | #include "llvm/CodeGen/RegisterClassInfo.h" | ||||||||
| 37 | #include "llvm/CodeGen/RegisterPressure.h" | ||||||||
| 38 | #include "llvm/CodeGen/ScheduleDAG.h" | ||||||||
| 39 | #include "llvm/CodeGen/ScheduleDAGInstrs.h" | ||||||||
| 40 | #include "llvm/CodeGen/ScheduleDAGMutation.h" | ||||||||
| 41 | #include "llvm/CodeGen/ScheduleDFS.h" | ||||||||
| 42 | #include "llvm/CodeGen/ScheduleHazardRecognizer.h" | ||||||||
| 43 | #include "llvm/CodeGen/SlotIndexes.h" | ||||||||
| 44 | #include "llvm/CodeGen/TargetFrameLowering.h" | ||||||||
| 45 | #include "llvm/CodeGen/TargetInstrInfo.h" | ||||||||
| 46 | #include "llvm/CodeGen/TargetLowering.h" | ||||||||
| 47 | #include "llvm/CodeGen/TargetPassConfig.h" | ||||||||
| 48 | #include "llvm/CodeGen/TargetRegisterInfo.h" | ||||||||
| 49 | #include "llvm/CodeGen/TargetSchedule.h" | ||||||||
| 50 | #include "llvm/CodeGen/TargetSubtargetInfo.h" | ||||||||
| 51 | #include "llvm/Config/llvm-config.h" | ||||||||
| 52 | #include "llvm/InitializePasses.h" | ||||||||
| 53 | #include "llvm/MC/LaneBitmask.h" | ||||||||
| 54 | #include "llvm/Pass.h" | ||||||||
| 55 | #include "llvm/Support/CommandLine.h" | ||||||||
| 56 | #include "llvm/Support/Compiler.h" | ||||||||
| 57 | #include "llvm/Support/Debug.h" | ||||||||
| 58 | #include "llvm/Support/ErrorHandling.h" | ||||||||
| 59 | #include "llvm/Support/GraphWriter.h" | ||||||||
| 60 | #include "llvm/Support/MachineValueType.h" | ||||||||
| 61 | #include "llvm/Support/raw_ostream.h" | ||||||||
| 62 | #include <algorithm> | ||||||||
| 63 | #include <cassert> | ||||||||
| 64 | #include <cstdint> | ||||||||
| 65 | #include <iterator> | ||||||||
| 66 | #include <limits> | ||||||||
| 67 | #include <memory> | ||||||||
| 68 | #include <string> | ||||||||
| 69 | #include <tuple> | ||||||||
| 70 | #include <utility> | ||||||||
| 71 | #include <vector> | ||||||||
| 72 | |||||||||
| 73 | using namespace llvm; | ||||||||
| 74 | |||||||||
| 75 | #define DEBUG_TYPE"machine-scheduler" "machine-scheduler" | ||||||||
| 76 | |||||||||
| 77 | STATISTIC(NumClustered, "Number of load/store pairs clustered")static llvm::Statistic NumClustered = {"machine-scheduler", "NumClustered" , "Number of load/store pairs clustered"}; | ||||||||
| 78 | |||||||||
| 79 | namespace llvm { | ||||||||
| 80 | |||||||||
| 81 | cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, | ||||||||
| 82 | cl::desc("Force top-down list scheduling")); | ||||||||
| 83 | cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, | ||||||||
| 84 | cl::desc("Force bottom-up list scheduling")); | ||||||||
| 85 | cl::opt<bool> | ||||||||
| 86 | DumpCriticalPathLength("misched-dcpl", cl::Hidden, | ||||||||
| 87 | cl::desc("Print critical path length to stdout")); | ||||||||
| 88 | |||||||||
| 89 | cl::opt<bool> VerifyScheduling( | ||||||||
| 90 | "verify-misched", cl::Hidden, | ||||||||
| 91 | cl::desc("Verify machine instrs before and after machine scheduling")); | ||||||||
| 92 | |||||||||
| 93 | } // end namespace llvm | ||||||||
| 94 | |||||||||
| 95 | #ifndef NDEBUG1 | ||||||||
| 96 | static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, | ||||||||
| 97 | cl::desc("Pop up a window to show MISched dags after they are processed")); | ||||||||
| 98 | |||||||||
| 99 | /// In some situations a few uninteresting nodes depend on nearly all other | ||||||||
| 100 | /// nodes in the graph, provide a cutoff to hide them. | ||||||||
| 101 | static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, | ||||||||
| 102 | cl::desc("Hide nodes with more predecessor/successor than cutoff")); | ||||||||
| 103 | |||||||||
| 104 | static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, | ||||||||
| 105 | cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); | ||||||||
| 106 | |||||||||
| 107 | static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, | ||||||||
| 108 | cl::desc("Only schedule this function")); | ||||||||
| 109 | static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, | ||||||||
| 110 | cl::desc("Only schedule this MBB#")); | ||||||||
| 111 | static cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden, | ||||||||
| 112 | cl::desc("Print schedule DAGs")); | ||||||||
| 113 | #else | ||||||||
| 114 | static const bool ViewMISchedDAGs = false; | ||||||||
| 115 | static const bool PrintDAGs = false; | ||||||||
| 116 | #endif // NDEBUG | ||||||||
| 117 | |||||||||
| 118 | /// Avoid quadratic complexity in unusually large basic blocks by limiting the | ||||||||
| 119 | /// size of the ready lists. | ||||||||
| 120 | static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden, | ||||||||
| 121 | cl::desc("Limit ready list to N instructions"), cl::init(256)); | ||||||||
| 122 | |||||||||
| 123 | static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, | ||||||||
| 124 | cl::desc("Enable register pressure scheduling."), cl::init(true)); | ||||||||
| 125 | |||||||||
| 126 | static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, | ||||||||
| 127 | cl::desc("Enable cyclic critical path analysis."), cl::init(true)); | ||||||||
| 128 | |||||||||
| 129 | static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, | ||||||||
| 130 | cl::desc("Enable memop clustering."), | ||||||||
| 131 | cl::init(true)); | ||||||||
| 132 | static cl::opt<bool> | ||||||||
| 133 | ForceFastCluster("force-fast-cluster", cl::Hidden, | ||||||||
| 134 | cl::desc("Switch to fast cluster algorithm with the lost " | ||||||||
| 135 | "of some fusion opportunities"), | ||||||||
| 136 | cl::init(false)); | ||||||||
| 137 | static cl::opt<unsigned> | ||||||||
| 138 | FastClusterThreshold("fast-cluster-threshold", cl::Hidden, | ||||||||
| 139 | cl::desc("The threshold for fast cluster"), | ||||||||
| 140 | cl::init(1000)); | ||||||||
| 141 | |||||||||
| 142 | // DAG subtrees must have at least this many nodes. | ||||||||
| 143 | static const unsigned MinSubtreeSize = 8; | ||||||||
| 144 | |||||||||
| 145 | // Pin the vtables to this file. | ||||||||
| 146 | void MachineSchedStrategy::anchor() {} | ||||||||
| 147 | |||||||||
| 148 | void ScheduleDAGMutation::anchor() {} | ||||||||
| 149 | |||||||||
| 150 | //===----------------------------------------------------------------------===// | ||||||||
| 151 | // Machine Instruction Scheduling Pass and Registry | ||||||||
| 152 | //===----------------------------------------------------------------------===// | ||||||||
| 153 | |||||||||
| 154 | MachineSchedContext::MachineSchedContext() { | ||||||||
| 155 | RegClassInfo = new RegisterClassInfo(); | ||||||||
| 156 | } | ||||||||
| 157 | |||||||||
| 158 | MachineSchedContext::~MachineSchedContext() { | ||||||||
| 159 | delete RegClassInfo; | ||||||||
| 160 | } | ||||||||
| 161 | |||||||||
| 162 | namespace { | ||||||||
| 163 | |||||||||
| 164 | /// Base class for a machine scheduler class that can run at any point. | ||||||||
| 165 | class MachineSchedulerBase : public MachineSchedContext, | ||||||||
| 166 | public MachineFunctionPass { | ||||||||
| 167 | public: | ||||||||
| 168 | MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} | ||||||||
| 169 | |||||||||
| 170 | void print(raw_ostream &O, const Module* = nullptr) const override; | ||||||||
| 171 | |||||||||
| 172 | protected: | ||||||||
| 173 | void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); | ||||||||
| 174 | }; | ||||||||
| 175 | |||||||||
| 176 | /// MachineScheduler runs after coalescing and before register allocation. | ||||||||
| 177 | class MachineScheduler : public MachineSchedulerBase { | ||||||||
| 178 | public: | ||||||||
| 179 | MachineScheduler(); | ||||||||
| 180 | |||||||||
| 181 | void getAnalysisUsage(AnalysisUsage &AU) const override; | ||||||||
| 182 | |||||||||
| 183 | bool runOnMachineFunction(MachineFunction&) override; | ||||||||
| 184 | |||||||||
| 185 | static char ID; // Class identification, replacement for typeinfo | ||||||||
| 186 | |||||||||
| 187 | protected: | ||||||||
| 188 | ScheduleDAGInstrs *createMachineScheduler(); | ||||||||
| 189 | }; | ||||||||
| 190 | |||||||||
| 191 | /// PostMachineScheduler runs after shortly before code emission. | ||||||||
| 192 | class PostMachineScheduler : public MachineSchedulerBase { | ||||||||
| 193 | public: | ||||||||
| 194 | PostMachineScheduler(); | ||||||||
| 195 | |||||||||
| 196 | void getAnalysisUsage(AnalysisUsage &AU) const override; | ||||||||
| 197 | |||||||||
| 198 | bool runOnMachineFunction(MachineFunction&) override; | ||||||||
| 199 | |||||||||
| 200 | static char ID; // Class identification, replacement for typeinfo | ||||||||
| 201 | |||||||||
| 202 | protected: | ||||||||
| 203 | ScheduleDAGInstrs *createPostMachineScheduler(); | ||||||||
| 204 | }; | ||||||||
| 205 | |||||||||
| 206 | } // end anonymous namespace | ||||||||
| 207 | |||||||||
| 208 | char MachineScheduler::ID = 0; | ||||||||
| 209 | |||||||||
| 210 | char &llvm::MachineSchedulerID = MachineScheduler::ID; | ||||||||
| 211 | |||||||||
| 212 | INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE,static void *initializeMachineSchedulerPassOnce(PassRegistry & Registry) { | ||||||||
| 213 | "Machine Instruction Scheduler", false, false)static void *initializeMachineSchedulerPassOnce(PassRegistry & Registry) { | ||||||||
| 214 | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)initializeAAResultsWrapperPassPass(Registry); | ||||||||
| 215 | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)initializeMachineDominatorTreePass(Registry); | ||||||||
| 216 | INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)initializeMachineLoopInfoPass(Registry); | ||||||||
| 217 | INITIALIZE_PASS_DEPENDENCY(SlotIndexes)initializeSlotIndexesPass(Registry); | ||||||||
| 218 | INITIALIZE_PASS_DEPENDENCY(LiveIntervals)initializeLiveIntervalsPass(Registry); | ||||||||
| 219 | INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE,PassInfo *PI = new PassInfo( "Machine Instruction Scheduler", "machine-scheduler", &MachineScheduler::ID, PassInfo::NormalCtor_t (callDefaultCtor<MachineScheduler>), false, false); Registry .registerPass(*PI, true); return PI; } static llvm::once_flag InitializeMachineSchedulerPassFlag; void llvm::initializeMachineSchedulerPass (PassRegistry &Registry) { llvm::call_once(InitializeMachineSchedulerPassFlag , initializeMachineSchedulerPassOnce, std::ref(Registry)); } | ||||||||
| 220 | "Machine Instruction Scheduler", false, false)PassInfo *PI = new PassInfo( "Machine Instruction Scheduler", "machine-scheduler", &MachineScheduler::ID, PassInfo::NormalCtor_t (callDefaultCtor<MachineScheduler>), false, false); Registry .registerPass(*PI, true); return PI; } static llvm::once_flag InitializeMachineSchedulerPassFlag; void llvm::initializeMachineSchedulerPass (PassRegistry &Registry) { llvm::call_once(InitializeMachineSchedulerPassFlag , initializeMachineSchedulerPassOnce, std::ref(Registry)); } | ||||||||
| 221 | |||||||||
| 222 | MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) { | ||||||||
| 223 | initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); | ||||||||
| 224 | } | ||||||||
| 225 | |||||||||
| 226 | void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { | ||||||||
| 227 | AU.setPreservesCFG(); | ||||||||
| 228 | AU.addRequired<MachineDominatorTree>(); | ||||||||
| 229 | AU.addRequired<MachineLoopInfo>(); | ||||||||
| 230 | AU.addRequired<AAResultsWrapperPass>(); | ||||||||
| 231 | AU.addRequired<TargetPassConfig>(); | ||||||||
| 232 | AU.addRequired<SlotIndexes>(); | ||||||||
| 233 | AU.addPreserved<SlotIndexes>(); | ||||||||
| 234 | AU.addRequired<LiveIntervals>(); | ||||||||
| 235 | AU.addPreserved<LiveIntervals>(); | ||||||||
| 236 | MachineFunctionPass::getAnalysisUsage(AU); | ||||||||
| 237 | } | ||||||||
| 238 | |||||||||
| 239 | char PostMachineScheduler::ID = 0; | ||||||||
| 240 | |||||||||
| 241 | char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; | ||||||||
| 242 | |||||||||
| 243 | INITIALIZE_PASS_BEGIN(PostMachineScheduler, "postmisched",static void *initializePostMachineSchedulerPassOnce(PassRegistry &Registry) { | ||||||||
| 244 | "PostRA Machine Instruction Scheduler", false, false)static void *initializePostMachineSchedulerPassOnce(PassRegistry &Registry) { | ||||||||
| 245 | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)initializeMachineDominatorTreePass(Registry); | ||||||||
| 246 | INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)initializeMachineLoopInfoPass(Registry); | ||||||||
| 247 | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)initializeAAResultsWrapperPassPass(Registry); | ||||||||
| 248 | INITIALIZE_PASS_END(PostMachineScheduler, "postmisched",PassInfo *PI = new PassInfo( "PostRA Machine Instruction Scheduler" , "postmisched", &PostMachineScheduler::ID, PassInfo::NormalCtor_t (callDefaultCtor<PostMachineScheduler>), false, false); Registry.registerPass(*PI, true); return PI; } static llvm:: once_flag InitializePostMachineSchedulerPassFlag; void llvm:: initializePostMachineSchedulerPass(PassRegistry &Registry ) { llvm::call_once(InitializePostMachineSchedulerPassFlag, initializePostMachineSchedulerPassOnce , std::ref(Registry)); } | ||||||||
| 249 | "PostRA Machine Instruction Scheduler", false, false)PassInfo *PI = new PassInfo( "PostRA Machine Instruction Scheduler" , "postmisched", &PostMachineScheduler::ID, PassInfo::NormalCtor_t (callDefaultCtor<PostMachineScheduler>), false, false); Registry.registerPass(*PI, true); return PI; } static llvm:: once_flag InitializePostMachineSchedulerPassFlag; void llvm:: initializePostMachineSchedulerPass(PassRegistry &Registry ) { llvm::call_once(InitializePostMachineSchedulerPassFlag, initializePostMachineSchedulerPassOnce , std::ref(Registry)); } | ||||||||
| 250 | |||||||||
| 251 | PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) { | ||||||||
| 252 | initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); | ||||||||
| 253 | } | ||||||||
| 254 | |||||||||
| 255 | void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { | ||||||||
| 256 | AU.setPreservesCFG(); | ||||||||
| 257 | AU.addRequired<MachineDominatorTree>(); | ||||||||
| 258 | AU.addRequired<MachineLoopInfo>(); | ||||||||
| 259 | AU.addRequired<AAResultsWrapperPass>(); | ||||||||
| 260 | AU.addRequired<TargetPassConfig>(); | ||||||||
| 261 | MachineFunctionPass::getAnalysisUsage(AU); | ||||||||
| 262 | } | ||||||||
| 263 | |||||||||
| 264 | MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor> | ||||||||
| 265 | MachineSchedRegistry::Registry; | ||||||||
| 266 | |||||||||
| 267 | /// A dummy default scheduler factory indicates whether the scheduler | ||||||||
| 268 | /// is overridden on the command line. | ||||||||
| 269 | static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { | ||||||||
| 270 | return nullptr; | ||||||||
| 271 | } | ||||||||
| 272 | |||||||||
| 273 | /// MachineSchedOpt allows command line selection of the scheduler. | ||||||||
| 274 | static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, | ||||||||
| 275 | RegisterPassParser<MachineSchedRegistry>> | ||||||||
| 276 | MachineSchedOpt("misched", | ||||||||
| 277 | cl::init(&useDefaultMachineSched), cl::Hidden, | ||||||||
| 278 | cl::desc("Machine instruction scheduler to use")); | ||||||||
| 279 | |||||||||
| 280 | static MachineSchedRegistry | ||||||||
| 281 | DefaultSchedRegistry("default", "Use the target's default scheduler choice.", | ||||||||
| 282 | useDefaultMachineSched); | ||||||||
| 283 | |||||||||
| 284 | static cl::opt<bool> EnableMachineSched( | ||||||||
| 285 | "enable-misched", | ||||||||
| 286 | cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), | ||||||||
| 287 | cl::Hidden); | ||||||||
| 288 | |||||||||
| 289 | static cl::opt<bool> EnablePostRAMachineSched( | ||||||||
| 290 | "enable-post-misched", | ||||||||
| 291 | cl::desc("Enable the post-ra machine instruction scheduling pass."), | ||||||||
| 292 | cl::init(true), cl::Hidden); | ||||||||
| 293 | |||||||||
| 294 | /// Decrement this iterator until reaching the top or a non-debug instr. | ||||||||
| 295 | static MachineBasicBlock::const_iterator | ||||||||
| 296 | priorNonDebug(MachineBasicBlock::const_iterator I, | ||||||||
| 297 | MachineBasicBlock::const_iterator Beg) { | ||||||||
| 298 | assert(I != Beg && "reached the top of the region, cannot decrement")((void)0); | ||||||||
| 299 | while (--I != Beg) { | ||||||||
| 300 | if (!I->isDebugOrPseudoInstr()) | ||||||||
| 301 | break; | ||||||||
| 302 | } | ||||||||
| 303 | return I; | ||||||||
| 304 | } | ||||||||
| 305 | |||||||||
| 306 | /// Non-const version. | ||||||||
| 307 | static MachineBasicBlock::iterator | ||||||||
| 308 | priorNonDebug(MachineBasicBlock::iterator I, | ||||||||
| 309 | MachineBasicBlock::const_iterator Beg) { | ||||||||
| 310 | return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg) | ||||||||
| 311 | .getNonConstIterator(); | ||||||||
| 312 | } | ||||||||
| 313 | |||||||||
| 314 | /// If this iterator is a debug value, increment until reaching the End or a | ||||||||
| 315 | /// non-debug instruction. | ||||||||
| 316 | static MachineBasicBlock::const_iterator | ||||||||
| 317 | nextIfDebug(MachineBasicBlock::const_iterator I, | ||||||||
| 318 | MachineBasicBlock::const_iterator End) { | ||||||||
| 319 | for(; I != End; ++I) { | ||||||||
| 320 | if (!I->isDebugOrPseudoInstr()) | ||||||||
| 321 | break; | ||||||||
| 322 | } | ||||||||
| 323 | return I; | ||||||||
| 324 | } | ||||||||
| 325 | |||||||||
| 326 | /// Non-const version. | ||||||||
| 327 | static MachineBasicBlock::iterator | ||||||||
| 328 | nextIfDebug(MachineBasicBlock::iterator I, | ||||||||
| 329 | MachineBasicBlock::const_iterator End) { | ||||||||
| 330 | return nextIfDebug(MachineBasicBlock::const_iterator(I), End) | ||||||||
| 331 | .getNonConstIterator(); | ||||||||
| 332 | } | ||||||||
| 333 | |||||||||
| 334 | /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. | ||||||||
| 335 | ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { | ||||||||
| 336 | // Select the scheduler, or set the default. | ||||||||
| 337 | MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; | ||||||||
| 338 | if (Ctor != useDefaultMachineSched) | ||||||||
| 339 | return Ctor(this); | ||||||||
| 340 | |||||||||
| 341 | // Get the default scheduler set by the target for this function. | ||||||||
| 342 | ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); | ||||||||
| 343 | if (Scheduler) | ||||||||
| 344 | return Scheduler; | ||||||||
| 345 | |||||||||
| 346 | // Default to GenericScheduler. | ||||||||
| 347 | return createGenericSchedLive(this); | ||||||||
| 348 | } | ||||||||
| 349 | |||||||||
| 350 | /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by | ||||||||
| 351 | /// the caller. We don't have a command line option to override the postRA | ||||||||
| 352 | /// scheduler. The Target must configure it. | ||||||||
| 353 | ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { | ||||||||
| 354 | // Get the postRA scheduler set by the target for this function. | ||||||||
| 355 | ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); | ||||||||
| 356 | if (Scheduler) | ||||||||
| 357 | return Scheduler; | ||||||||
| 358 | |||||||||
| 359 | // Default to GenericScheduler. | ||||||||
| 360 | return createGenericSchedPostRA(this); | ||||||||
| 361 | } | ||||||||
| 362 | |||||||||
| 363 | /// Top-level MachineScheduler pass driver. | ||||||||
| 364 | /// | ||||||||
| 365 | /// Visit blocks in function order. Divide each block into scheduling regions | ||||||||
| 366 | /// and visit them bottom-up. Visiting regions bottom-up is not required, but is | ||||||||
| 367 | /// consistent with the DAG builder, which traverses the interior of the | ||||||||
| 368 | /// scheduling regions bottom-up. | ||||||||
| 369 | /// | ||||||||
| 370 | /// This design avoids exposing scheduling boundaries to the DAG builder, | ||||||||
| 371 | /// simplifying the DAG builder's support for "special" target instructions. | ||||||||
| 372 | /// At the same time the design allows target schedulers to operate across | ||||||||
| 373 | /// scheduling boundaries, for example to bundle the boundary instructions | ||||||||
| 374 | /// without reordering them. This creates complexity, because the target | ||||||||
| 375 | /// scheduler must update the RegionBegin and RegionEnd positions cached by | ||||||||
| 376 | /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler | ||||||||
| 377 | /// design would be to split blocks at scheduling boundaries, but LLVM has a | ||||||||
| 378 | /// general bias against block splitting purely for implementation simplicity. | ||||||||
| 379 | bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { | ||||||||
| 380 | if (skipFunction(mf.getFunction())) | ||||||||
| 381 | return false; | ||||||||
| 382 | |||||||||
| 383 | if (EnableMachineSched.getNumOccurrences()) { | ||||||||
| 384 | if (!EnableMachineSched) | ||||||||
| 385 | return false; | ||||||||
| 386 | } else if (!mf.getSubtarget().enableMachineScheduler()) | ||||||||
| 387 | return false; | ||||||||
| 388 | |||||||||
| 389 | LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()))do { } while (false); | ||||||||
| 390 | |||||||||
| 391 | // Initialize the context of the pass. | ||||||||
| 392 | MF = &mf; | ||||||||
| 393 | MLI = &getAnalysis<MachineLoopInfo>(); | ||||||||
| 394 | MDT = &getAnalysis<MachineDominatorTree>(); | ||||||||
| 395 | PassConfig = &getAnalysis<TargetPassConfig>(); | ||||||||
| 396 | AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); | ||||||||
| 397 | |||||||||
| 398 | LIS = &getAnalysis<LiveIntervals>(); | ||||||||
| 399 | |||||||||
| 400 | if (VerifyScheduling) { | ||||||||
| 401 | LLVM_DEBUG(LIS->dump())do { } while (false); | ||||||||
| 402 | MF->verify(this, "Before machine scheduling."); | ||||||||
| 403 | } | ||||||||
| 404 | RegClassInfo->runOnMachineFunction(*MF); | ||||||||
| 405 | |||||||||
| 406 | // Instantiate the selected scheduler for this target, function, and | ||||||||
| 407 | // optimization level. | ||||||||
| 408 | std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); | ||||||||
| 409 | scheduleRegions(*Scheduler, false); | ||||||||
| 410 | |||||||||
| 411 | LLVM_DEBUG(LIS->dump())do { } while (false); | ||||||||
| 412 | if (VerifyScheduling) | ||||||||
| 413 | MF->verify(this, "After machine scheduling."); | ||||||||
| 414 | return true; | ||||||||
| 415 | } | ||||||||
| 416 | |||||||||
| 417 | bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { | ||||||||
| 418 | if (skipFunction(mf.getFunction())) | ||||||||
| 419 | return false; | ||||||||
| 420 | |||||||||
| 421 | if (EnablePostRAMachineSched.getNumOccurrences()) { | ||||||||
| 422 | if (!EnablePostRAMachineSched) | ||||||||
| 423 | return false; | ||||||||
| 424 | } else if (!mf.getSubtarget().enablePostRAMachineScheduler()) { | ||||||||
| 425 | LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n")do { } while (false); | ||||||||
| 426 | return false; | ||||||||
| 427 | } | ||||||||
| 428 | LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()))do { } while (false); | ||||||||
| 429 | |||||||||
| 430 | // Initialize the context of the pass. | ||||||||
| 431 | MF = &mf; | ||||||||
| 432 | MLI = &getAnalysis<MachineLoopInfo>(); | ||||||||
| 433 | PassConfig = &getAnalysis<TargetPassConfig>(); | ||||||||
| 434 | AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); | ||||||||
| 435 | |||||||||
| 436 | if (VerifyScheduling) | ||||||||
| 437 | MF->verify(this, "Before post machine scheduling."); | ||||||||
| 438 | |||||||||
| 439 | // Instantiate the selected scheduler for this target, function, and | ||||||||
| 440 | // optimization level. | ||||||||
| 441 | std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); | ||||||||
| 442 | scheduleRegions(*Scheduler, true); | ||||||||
| 443 | |||||||||
| 444 | if (VerifyScheduling) | ||||||||
| 445 | MF->verify(this, "After post machine scheduling."); | ||||||||
| 446 | return true; | ||||||||
| 447 | } | ||||||||
| 448 | |||||||||
| 449 | /// Return true of the given instruction should not be included in a scheduling | ||||||||
| 450 | /// region. | ||||||||
| 451 | /// | ||||||||
| 452 | /// MachineScheduler does not currently support scheduling across calls. To | ||||||||
| 453 | /// handle calls, the DAG builder needs to be modified to create register | ||||||||
| 454 | /// anti/output dependencies on the registers clobbered by the call's regmask | ||||||||
| 455 | /// operand. In PreRA scheduling, the stack pointer adjustment already prevents | ||||||||
| 456 | /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce | ||||||||
| 457 | /// the boundary, but there would be no benefit to postRA scheduling across | ||||||||
| 458 | /// calls this late anyway. | ||||||||
| 459 | static bool isSchedBoundary(MachineBasicBlock::iterator MI, | ||||||||
| 460 | MachineBasicBlock *MBB, | ||||||||
| 461 | MachineFunction *MF, | ||||||||
| 462 | const TargetInstrInfo *TII) { | ||||||||
| 463 | return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF); | ||||||||
| 464 | } | ||||||||
| 465 | |||||||||
| 466 | /// A region of an MBB for scheduling. | ||||||||
| 467 | namespace { | ||||||||
| 468 | struct SchedRegion { | ||||||||
| 469 | /// RegionBegin is the first instruction in the scheduling region, and | ||||||||
| 470 | /// RegionEnd is either MBB->end() or the scheduling boundary after the | ||||||||
| 471 | /// last instruction in the scheduling region. These iterators cannot refer | ||||||||
| 472 | /// to instructions outside of the identified scheduling region because | ||||||||
| 473 | /// those may be reordered before scheduling this region. | ||||||||
| 474 | MachineBasicBlock::iterator RegionBegin; | ||||||||
| 475 | MachineBasicBlock::iterator RegionEnd; | ||||||||
| 476 | unsigned NumRegionInstrs; | ||||||||
| 477 | |||||||||
| 478 | SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E, | ||||||||
| 479 | unsigned N) : | ||||||||
| 480 | RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {} | ||||||||
| 481 | }; | ||||||||
| 482 | } // end anonymous namespace | ||||||||
| 483 | |||||||||
| 484 | using MBBRegionsVector = SmallVector<SchedRegion, 16>; | ||||||||
| 485 | |||||||||
| 486 | static void | ||||||||
| 487 | getSchedRegions(MachineBasicBlock *MBB, | ||||||||
| 488 | MBBRegionsVector &Regions, | ||||||||
| 489 | bool RegionsTopDown) { | ||||||||
| 490 | MachineFunction *MF = MBB->getParent(); | ||||||||
| 491 | const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); | ||||||||
| 492 | |||||||||
| 493 | MachineBasicBlock::iterator I = nullptr; | ||||||||
| 494 | for(MachineBasicBlock::iterator RegionEnd = MBB->end(); | ||||||||
| 495 | RegionEnd != MBB->begin(); RegionEnd = I) { | ||||||||
| 496 | |||||||||
| 497 | // Avoid decrementing RegionEnd for blocks with no terminator. | ||||||||
| 498 | if (RegionEnd != MBB->end() || | ||||||||
| 499 | isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { | ||||||||
| 500 | --RegionEnd; | ||||||||
| 501 | } | ||||||||
| 502 | |||||||||
| 503 | // The next region starts above the previous region. Look backward in the | ||||||||
| 504 | // instruction stream until we find the nearest boundary. | ||||||||
| 505 | unsigned NumRegionInstrs = 0; | ||||||||
| 506 | I = RegionEnd; | ||||||||
| 507 | for (;I != MBB->begin(); --I) { | ||||||||
| 508 | MachineInstr &MI = *std::prev(I); | ||||||||
| 509 | if (isSchedBoundary(&MI, &*MBB, MF, TII)) | ||||||||
| 510 | break; | ||||||||
| 511 | if (!MI.isDebugOrPseudoInstr()) { | ||||||||
| 512 | // MBB::size() uses instr_iterator to count. Here we need a bundle to | ||||||||
| 513 | // count as a single instruction. | ||||||||
| 514 | ++NumRegionInstrs; | ||||||||
| 515 | } | ||||||||
| 516 | } | ||||||||
| 517 | |||||||||
| 518 | // It's possible we found a scheduling region that only has debug | ||||||||
| 519 | // instructions. Don't bother scheduling these. | ||||||||
| 520 | if (NumRegionInstrs != 0) | ||||||||
| 521 | Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs)); | ||||||||
| 522 | } | ||||||||
| 523 | |||||||||
| 524 | if (RegionsTopDown) | ||||||||
| 525 | std::reverse(Regions.begin(), Regions.end()); | ||||||||
| 526 | } | ||||||||
| 527 | |||||||||
| 528 | /// Main driver for both MachineScheduler and PostMachineScheduler. | ||||||||
| 529 | void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, | ||||||||
| 530 | bool FixKillFlags) { | ||||||||
| 531 | // Visit all machine basic blocks. | ||||||||
| 532 | // | ||||||||
| 533 | // TODO: Visit blocks in global postorder or postorder within the bottom-up | ||||||||
| 534 | // loop tree. Then we can optionally compute global RegPressure. | ||||||||
| 535 | for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); | ||||||||
| 536 | MBB != MBBEnd; ++MBB) { | ||||||||
| 537 | |||||||||
| 538 | Scheduler.startBlock(&*MBB); | ||||||||
| 539 | |||||||||
| 540 | #ifndef NDEBUG1 | ||||||||
| 541 | if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) | ||||||||
| 542 | continue; | ||||||||
| 543 | if (SchedOnlyBlock.getNumOccurrences() | ||||||||
| 544 | && (int)SchedOnlyBlock != MBB->getNumber()) | ||||||||
| 545 | continue; | ||||||||
| 546 | #endif | ||||||||
| 547 | |||||||||
| 548 | // Break the block into scheduling regions [I, RegionEnd). RegionEnd | ||||||||
| 549 | // points to the scheduling boundary at the bottom of the region. The DAG | ||||||||
| 550 | // does not include RegionEnd, but the region does (i.e. the next | ||||||||
| 551 | // RegionEnd is above the previous RegionBegin). If the current block has | ||||||||
| 552 | // no terminator then RegionEnd == MBB->end() for the bottom region. | ||||||||
| 553 | // | ||||||||
| 554 | // All the regions of MBB are first found and stored in MBBRegions, which | ||||||||
| 555 | // will be processed (MBB) top-down if initialized with true. | ||||||||
| 556 | // | ||||||||
| 557 | // The Scheduler may insert instructions during either schedule() or | ||||||||
| 558 | // exitRegion(), even for empty regions. So the local iterators 'I' and | ||||||||
| 559 | // 'RegionEnd' are invalid across these calls. Instructions must not be | ||||||||
| 560 | // added to other regions than the current one without updating MBBRegions. | ||||||||
| 561 | |||||||||
| 562 | MBBRegionsVector MBBRegions; | ||||||||
| 563 | getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown()); | ||||||||
| 564 | for (MBBRegionsVector::iterator R = MBBRegions.begin(); | ||||||||
| 565 | R != MBBRegions.end(); ++R) { | ||||||||
| 566 | MachineBasicBlock::iterator I = R->RegionBegin; | ||||||||
| 567 | MachineBasicBlock::iterator RegionEnd = R->RegionEnd; | ||||||||
| 568 | unsigned NumRegionInstrs = R->NumRegionInstrs; | ||||||||
| 569 | |||||||||
| 570 | // Notify the scheduler of the region, even if we may skip scheduling | ||||||||
| 571 | // it. Perhaps it still needs to be bundled. | ||||||||
| 572 | Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); | ||||||||
| 573 | |||||||||
| 574 | // Skip empty scheduling regions (0 or 1 schedulable instructions). | ||||||||
| 575 | if (I == RegionEnd || I == std::prev(RegionEnd)) { | ||||||||
| 576 | // Close the current region. Bundle the terminator if needed. | ||||||||
| 577 | // This invalidates 'RegionEnd' and 'I'. | ||||||||
| 578 | Scheduler.exitRegion(); | ||||||||
| 579 | continue; | ||||||||
| 580 | } | ||||||||
| 581 | LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n")do { } while (false); | ||||||||
| 582 | LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB)do { } while (false) | ||||||||
| 583 | << " " << MBB->getName() << "\n From: " << *Ido { } while (false) | ||||||||
| 584 | << " To: ";do { } while (false) | ||||||||
| 585 | if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;do { } while (false) | ||||||||
| 586 | else dbgs() << "End";do { } while (false) | ||||||||
| 587 | dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n')do { } while (false); | ||||||||
| 588 | if (DumpCriticalPathLength) { | ||||||||
| 589 | errs() << MF->getName(); | ||||||||
| 590 | errs() << ":%bb. " << MBB->getNumber(); | ||||||||
| 591 | errs() << " " << MBB->getName() << " \n"; | ||||||||
| 592 | } | ||||||||
| 593 | |||||||||
| 594 | // Schedule a region: possibly reorder instructions. | ||||||||
| 595 | // This invalidates the original region iterators. | ||||||||
| 596 | Scheduler.schedule(); | ||||||||
| 597 | |||||||||
| 598 | // Close the current region. | ||||||||
| 599 | Scheduler.exitRegion(); | ||||||||
| 600 | } | ||||||||
| 601 | Scheduler.finishBlock(); | ||||||||
| 602 | // FIXME: Ideally, no further passes should rely on kill flags. However, | ||||||||
| 603 | // thumb2 size reduction is currently an exception, so the PostMIScheduler | ||||||||
| 604 | // needs to do this. | ||||||||
| 605 | if (FixKillFlags) | ||||||||
| 606 | Scheduler.fixupKills(*MBB); | ||||||||
| 607 | } | ||||||||
| 608 | Scheduler.finalizeSchedule(); | ||||||||
| 609 | } | ||||||||
| 610 | |||||||||
| 611 | void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { | ||||||||
| 612 | // unimplemented | ||||||||
| 613 | } | ||||||||
| 614 | |||||||||
| 615 | #if !defined(NDEBUG1) || defined(LLVM_ENABLE_DUMP) | ||||||||
| 616 | LLVM_DUMP_METHOD__attribute__((noinline)) void ReadyQueue::dump() const { | ||||||||
| 617 | dbgs() << "Queue " << Name << ": "; | ||||||||
| 618 | for (const SUnit *SU : Queue) | ||||||||
| 619 | dbgs() << SU->NodeNum << " "; | ||||||||
| 620 | dbgs() << "\n"; | ||||||||
| 621 | } | ||||||||
| 622 | #endif | ||||||||
| 623 | |||||||||
| 624 | //===----------------------------------------------------------------------===// | ||||||||
| 625 | // ScheduleDAGMI - Basic machine instruction scheduling. This is | ||||||||
| 626 | // independent of PreRA/PostRA scheduling and involves no extra book-keeping for | ||||||||
| 627 | // virtual registers. | ||||||||
| 628 | // ===----------------------------------------------------------------------===/ | ||||||||
| 629 | |||||||||
| 630 | // Provide a vtable anchor. | ||||||||
| 631 | ScheduleDAGMI::~ScheduleDAGMI() = default; | ||||||||
| 632 | |||||||||
| 633 | /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When | ||||||||
| 634 | /// NumPredsLeft reaches zero, release the successor node. | ||||||||
| 635 | /// | ||||||||
| 636 | /// FIXME: Adjust SuccSU height based on MinLatency. | ||||||||
| 637 | void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { | ||||||||
| 638 | SUnit *SuccSU = SuccEdge->getSUnit(); | ||||||||
| 639 | |||||||||
| 640 | if (SuccEdge->isWeak()) { | ||||||||
| 641 | --SuccSU->WeakPredsLeft; | ||||||||
| 642 | if (SuccEdge->isCluster()) | ||||||||
| 643 | NextClusterSucc = SuccSU; | ||||||||
| 644 | return; | ||||||||
| 645 | } | ||||||||
| 646 | #ifndef NDEBUG1 | ||||||||
| 647 | if (SuccSU->NumPredsLeft == 0) { | ||||||||
| 648 | dbgs() << "*** Scheduling failed! ***\n"; | ||||||||
| 649 | dumpNode(*SuccSU); | ||||||||
| 650 | dbgs() << " has been released too many times!\n"; | ||||||||
| 651 | llvm_unreachable(nullptr)__builtin_unreachable(); | ||||||||
| 652 | } | ||||||||
| 653 | #endif | ||||||||
| 654 | // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, | ||||||||
| 655 | // CurrCycle may have advanced since then. | ||||||||
| 656 | if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) | ||||||||
| 657 | SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); | ||||||||
| 658 | |||||||||
| 659 | --SuccSU->NumPredsLeft; | ||||||||
| 660 | if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) | ||||||||
| 661 | SchedImpl->releaseTopNode(SuccSU); | ||||||||
| 662 | } | ||||||||
| 663 | |||||||||
| 664 | /// releaseSuccessors - Call releaseSucc on each of SU's successors. | ||||||||
| 665 | void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { | ||||||||
| 666 | for (SDep &Succ : SU->Succs) | ||||||||
| 667 | releaseSucc(SU, &Succ); | ||||||||
| 668 | } | ||||||||
| 669 | |||||||||
| 670 | /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When | ||||||||
| 671 | /// NumSuccsLeft reaches zero, release the predecessor node. | ||||||||
| 672 | /// | ||||||||
| 673 | /// FIXME: Adjust PredSU height based on MinLatency. | ||||||||
| 674 | void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { | ||||||||
| 675 | SUnit *PredSU = PredEdge->getSUnit(); | ||||||||
| 676 | |||||||||
| 677 | if (PredEdge->isWeak()) { | ||||||||
| 678 | --PredSU->WeakSuccsLeft; | ||||||||
| 679 | if (PredEdge->isCluster()) | ||||||||
| 680 | NextClusterPred = PredSU; | ||||||||
| 681 | return; | ||||||||
| 682 | } | ||||||||
| 683 | #ifndef NDEBUG1 | ||||||||
| 684 | if (PredSU->NumSuccsLeft == 0) { | ||||||||
| 685 | dbgs() << "*** Scheduling failed! ***\n"; | ||||||||
| 686 | dumpNode(*PredSU); | ||||||||
| 687 | dbgs() << " has been released too many times!\n"; | ||||||||
| 688 | llvm_unreachable(nullptr)__builtin_unreachable(); | ||||||||
| 689 | } | ||||||||
| 690 | #endif | ||||||||
| 691 | // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, | ||||||||
| 692 | // CurrCycle may have advanced since then. | ||||||||
| 693 | if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) | ||||||||
| 694 | PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); | ||||||||
| 695 | |||||||||
| 696 | --PredSU->NumSuccsLeft; | ||||||||
| 697 | if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) | ||||||||
| 698 | SchedImpl->releaseBottomNode(PredSU); | ||||||||
| 699 | } | ||||||||
| 700 | |||||||||
| 701 | /// releasePredecessors - Call releasePred on each of SU's predecessors. | ||||||||
| 702 | void ScheduleDAGMI::releasePredecessors(SUnit *SU) { | ||||||||
| 703 | for (SDep &Pred : SU->Preds) | ||||||||
| 704 | releasePred(SU, &Pred); | ||||||||
| 705 | } | ||||||||
| 706 | |||||||||
| 707 | void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) { | ||||||||
| 708 | ScheduleDAGInstrs::startBlock(bb); | ||||||||
| 709 | SchedImpl->enterMBB(bb); | ||||||||
| 710 | } | ||||||||
| 711 | |||||||||
| 712 | void ScheduleDAGMI::finishBlock() { | ||||||||
| 713 | SchedImpl->leaveMBB(); | ||||||||
| 714 | ScheduleDAGInstrs::finishBlock(); | ||||||||
| 715 | } | ||||||||
| 716 | |||||||||
| 717 | /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after | ||||||||
| 718 | /// crossing a scheduling boundary. [begin, end) includes all instructions in | ||||||||
| 719 | /// the region, including the boundary itself and single-instruction regions | ||||||||
| 720 | /// that don't get scheduled. | ||||||||
| 721 | void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, | ||||||||
| 722 | MachineBasicBlock::iterator begin, | ||||||||
| 723 | MachineBasicBlock::iterator end, | ||||||||
| 724 | unsigned regioninstrs) | ||||||||
| 725 | { | ||||||||
| 726 | ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); | ||||||||
| 727 | |||||||||
| 728 | SchedImpl->initPolicy(begin, end, regioninstrs); | ||||||||
| 729 | } | ||||||||
| 730 | |||||||||
| 731 | /// This is normally called from the main scheduler loop but may also be invoked | ||||||||
| 732 | /// by the scheduling strategy to perform additional code motion. | ||||||||
| 733 | void ScheduleDAGMI::moveInstruction( | ||||||||
| 734 | MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { | ||||||||
| 735 | // Advance RegionBegin if the first instruction moves down. | ||||||||
| 736 | if (&*RegionBegin == MI) | ||||||||
| 737 | ++RegionBegin; | ||||||||
| 738 | |||||||||
| 739 | // Update the instruction stream. | ||||||||
| 740 | BB->splice(InsertPos, BB, MI); | ||||||||
| 741 | |||||||||
| 742 | // Update LiveIntervals | ||||||||
| 743 | if (LIS) | ||||||||
| 744 | LIS->handleMove(*MI, /*UpdateFlags=*/true); | ||||||||
| 745 | |||||||||
| 746 | // Recede RegionBegin if an instruction moves above the first. | ||||||||
| 747 | if (RegionBegin == InsertPos) | ||||||||
| 748 | RegionBegin = MI; | ||||||||
| 749 | } | ||||||||
| 750 | |||||||||
| 751 | bool ScheduleDAGMI::checkSchedLimit() { | ||||||||
| 752 | #ifndef NDEBUG1 | ||||||||
| 753 | if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { | ||||||||
| 754 | CurrentTop = CurrentBottom; | ||||||||
| 755 | return false; | ||||||||
| 756 | } | ||||||||
| 757 | ++NumInstrsScheduled; | ||||||||
| 758 | #endif | ||||||||
| 759 | return true; | ||||||||
| 760 | } | ||||||||
| 761 | |||||||||
| 762 | /// Per-region scheduling driver, called back from | ||||||||
| 763 | /// MachineScheduler::runOnMachineFunction. This is a simplified driver that | ||||||||
| 764 | /// does not consider liveness or register pressure. It is useful for PostRA | ||||||||
| 765 | /// scheduling and potentially other custom schedulers. | ||||||||
| 766 | void ScheduleDAGMI::schedule() { | ||||||||
| 767 | LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n")do { } while (false); | ||||||||
| 768 | LLVM_DEBUG(SchedImpl->dumpPolicy())do { } while (false); | ||||||||
| 769 | |||||||||
| 770 | // Build the DAG. | ||||||||
| 771 | buildSchedGraph(AA); | ||||||||
| 772 | |||||||||
| 773 | postprocessDAG(); | ||||||||
| 774 | |||||||||
| 775 | SmallVector<SUnit*, 8> TopRoots, BotRoots; | ||||||||
| 776 | findRootsAndBiasEdges(TopRoots, BotRoots); | ||||||||
| 777 | |||||||||
| 778 | LLVM_DEBUG(dump())do { } while (false); | ||||||||
| 779 | if (PrintDAGs) dump(); | ||||||||
| 780 | if (ViewMISchedDAGs) viewGraph(); | ||||||||
| 781 | |||||||||
| 782 | // Initialize the strategy before modifying the DAG. | ||||||||
| 783 | // This may initialize a DFSResult to be used for queue priority. | ||||||||
| 784 | SchedImpl->initialize(this); | ||||||||
| 785 | |||||||||
| 786 | // Initialize ready queues now that the DAG and priority data are finalized. | ||||||||
| 787 | initQueues(TopRoots, BotRoots); | ||||||||
| 788 | |||||||||
| 789 | bool IsTopNode = false; | ||||||||
| 790 | while (true) { | ||||||||
| 791 | LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n")do { } while (false); | ||||||||
| 792 | SUnit *SU = SchedImpl->pickNode(IsTopNode); | ||||||||
| 793 | if (!SU) break; | ||||||||
| 794 | |||||||||
| 795 | assert(!SU->isScheduled && "Node already scheduled")((void)0); | ||||||||
| 796 | if (!checkSchedLimit()) | ||||||||
| 797 | break; | ||||||||
| 798 | |||||||||
| 799 | MachineInstr *MI = SU->getInstr(); | ||||||||
| 800 | if (IsTopNode) { | ||||||||
| 801 | assert(SU->isTopReady() && "node still has unscheduled dependencies")((void)0); | ||||||||
| 802 | if (&*CurrentTop == MI) | ||||||||
| 803 | CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); | ||||||||
| 804 | else | ||||||||
| 805 | moveInstruction(MI, CurrentTop); | ||||||||
| 806 | } else { | ||||||||
| 807 | assert(SU->isBottomReady() && "node still has unscheduled dependencies")((void)0); | ||||||||
| 808 | MachineBasicBlock::iterator priorII = | ||||||||
| 809 | priorNonDebug(CurrentBottom, CurrentTop); | ||||||||
| 810 | if (&*priorII == MI) | ||||||||
| 811 | CurrentBottom = priorII; | ||||||||
| 812 | else { | ||||||||
| 813 | if (&*CurrentTop == MI) | ||||||||
| 814 | CurrentTop = nextIfDebug(++CurrentTop, priorII); | ||||||||
| 815 | moveInstruction(MI, CurrentBottom); | ||||||||
| 816 | CurrentBottom = MI; | ||||||||
| 817 | } | ||||||||
| 818 | } | ||||||||
| 819 | // Notify the scheduling strategy before updating the DAG. | ||||||||
| 820 | // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues | ||||||||
| 821 | // runs, it can then use the accurate ReadyCycle time to determine whether | ||||||||
| 822 | // newly released nodes can move to the readyQ. | ||||||||
| 823 | SchedImpl->schedNode(SU, IsTopNode); | ||||||||
| 824 | |||||||||
| 825 | updateQueues(SU, IsTopNode); | ||||||||
| 826 | } | ||||||||
| 827 | assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.")((void)0); | ||||||||
| 828 | |||||||||
| 829 | placeDebugValues(); | ||||||||
| 830 | |||||||||
| 831 | LLVM_DEBUG({do { } while (false) | ||||||||
| 832 | dbgs() << "*** Final schedule for "do { } while (false) | ||||||||
| 833 | << printMBBReference(*begin()->getParent()) << " ***\n";do { } while (false) | ||||||||
| 834 | dumpSchedule();do { } while (false) | ||||||||
| 835 | dbgs() << '\n';do { } while (false) | ||||||||
| 836 | })do { } while (false); | ||||||||
| 837 | } | ||||||||
| 838 | |||||||||
| 839 | /// Apply each ScheduleDAGMutation step in order. | ||||||||
| 840 | void ScheduleDAGMI::postprocessDAG() { | ||||||||
| 841 | for (auto &m : Mutations) | ||||||||
| 842 | m->apply(this); | ||||||||
| 843 | } | ||||||||
| 844 | |||||||||
| 845 | void ScheduleDAGMI:: | ||||||||
| 846 | findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, | ||||||||
| 847 | SmallVectorImpl<SUnit*> &BotRoots) { | ||||||||
| 848 | for (SUnit &SU : SUnits) { | ||||||||
| 849 | assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits")((void)0); | ||||||||
| 850 | |||||||||
| 851 | // Order predecessors so DFSResult follows the critical path. | ||||||||
| 852 | SU.biasCriticalPath(); | ||||||||
| 853 | |||||||||
| 854 | // A SUnit is ready to top schedule if it has no predecessors. | ||||||||
| 855 | if (!SU.NumPredsLeft) | ||||||||
| 856 | TopRoots.push_back(&SU); | ||||||||
| 857 | // A SUnit is ready to bottom schedule if it has no successors. | ||||||||
| 858 | if (!SU.NumSuccsLeft) | ||||||||
| 859 | BotRoots.push_back(&SU); | ||||||||
| 860 | } | ||||||||
| 861 | ExitSU.biasCriticalPath(); | ||||||||
| 862 | } | ||||||||
| 863 | |||||||||
| 864 | /// Identify DAG roots and setup scheduler queues. | ||||||||
| 865 | void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, | ||||||||
| 866 | ArrayRef<SUnit*> BotRoots) { | ||||||||
| 867 | NextClusterSucc = nullptr; | ||||||||
| 868 | NextClusterPred = nullptr; | ||||||||
| 869 | |||||||||
| 870 | // Release all DAG roots for scheduling, not including EntrySU/ExitSU. | ||||||||
| 871 | // | ||||||||
| 872 | // Nodes with unreleased weak edges can still be roots. | ||||||||
| 873 | // Release top roots in forward order. | ||||||||
| 874 | for (SUnit *SU : TopRoots) | ||||||||
| 875 | SchedImpl->releaseTopNode(SU); | ||||||||
| 876 | |||||||||
| 877 | // Release bottom roots in reverse order so the higher priority nodes appear | ||||||||
| 878 | // first. This is more natural and slightly more efficient. | ||||||||
| 879 | for (SmallVectorImpl<SUnit*>::const_reverse_iterator | ||||||||
| 880 | I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { | ||||||||
| 881 | SchedImpl->releaseBottomNode(*I); | ||||||||
| 882 | } | ||||||||
| 883 | |||||||||
| 884 | releaseSuccessors(&EntrySU); | ||||||||
| 885 | releasePredecessors(&ExitSU); | ||||||||
| 886 | |||||||||
| 887 | SchedImpl->registerRoots(); | ||||||||
| 888 | |||||||||
| 889 | // Advance past initial DebugValues. | ||||||||
| 890 | CurrentTop = nextIfDebug(RegionBegin, RegionEnd); | ||||||||
| 891 | CurrentBottom = RegionEnd; | ||||||||
| 892 | } | ||||||||
| 893 | |||||||||
| 894 | /// Update scheduler queues after scheduling an instruction. | ||||||||
| 895 | void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { | ||||||||
| 896 | // Release dependent instructions for scheduling. | ||||||||
| 897 | if (IsTopNode) | ||||||||
| 898 | releaseSuccessors(SU); | ||||||||
| 899 | else | ||||||||
| 900 | releasePredecessors(SU); | ||||||||
| 901 | |||||||||
| 902 | SU->isScheduled = true; | ||||||||
| 903 | } | ||||||||
| 904 | |||||||||
| 905 | /// Reinsert any remaining debug_values, just like the PostRA scheduler. | ||||||||
| 906 | void ScheduleDAGMI::placeDebugValues() { | ||||||||
| 907 | // If first instruction was a DBG_VALUE then put it back. | ||||||||
| 908 | if (FirstDbgValue) { | ||||||||
| 909 | BB->splice(RegionBegin, BB, FirstDbgValue); | ||||||||
| 910 | RegionBegin = FirstDbgValue; | ||||||||
| 911 | } | ||||||||
| 912 | |||||||||
| 913 | for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator | ||||||||
| 914 | DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { | ||||||||
| 915 | std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); | ||||||||
| 916 | MachineInstr *DbgValue = P.first; | ||||||||
| 917 | MachineBasicBlock::iterator OrigPrevMI = P.second; | ||||||||
| 918 | if (&*RegionBegin == DbgValue) | ||||||||
| 919 | ++RegionBegin; | ||||||||
| 920 | BB->splice(++OrigPrevMI, BB, DbgValue); | ||||||||
| 921 | if (OrigPrevMI == std::prev(RegionEnd)) | ||||||||
| 922 | RegionEnd = DbgValue; | ||||||||
| 923 | } | ||||||||
| 924 | DbgValues.clear(); | ||||||||
| 925 | FirstDbgValue = nullptr; | ||||||||
| 926 | } | ||||||||
| 927 | |||||||||
| 928 | #if !defined(NDEBUG1) || defined(LLVM_ENABLE_DUMP) | ||||||||
| 929 | LLVM_DUMP_METHOD__attribute__((noinline)) void ScheduleDAGMI::dumpSchedule() const { | ||||||||
| 930 | for (MachineInstr &MI : *this) { | ||||||||
| 931 | if (SUnit *SU = getSUnit(&MI)) | ||||||||
| 932 | dumpNode(*SU); | ||||||||
| 933 | else | ||||||||
| 934 | dbgs() << "Missing SUnit\n"; | ||||||||
| 935 | } | ||||||||
| 936 | } | ||||||||
| 937 | #endif | ||||||||
| 938 | |||||||||
| 939 | //===----------------------------------------------------------------------===// | ||||||||
| 940 | // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals | ||||||||
| 941 | // preservation. | ||||||||
| 942 | //===----------------------------------------------------------------------===// | ||||||||
| 943 | |||||||||
| 944 | ScheduleDAGMILive::~ScheduleDAGMILive() { | ||||||||
| 945 | delete DFSResult; | ||||||||
| 946 | } | ||||||||
| 947 | |||||||||
| 948 | void ScheduleDAGMILive::collectVRegUses(SUnit &SU) { | ||||||||
| 949 | const MachineInstr &MI = *SU.getInstr(); | ||||||||
| 950 | for (const MachineOperand &MO : MI.operands()) { | ||||||||
| 951 | if (!MO.isReg()) | ||||||||
| 952 | continue; | ||||||||
| 953 | if (!MO.readsReg()) | ||||||||
| 954 | continue; | ||||||||
| 955 | if (TrackLaneMasks && !MO.isUse()) | ||||||||
| 956 | continue; | ||||||||
| 957 | |||||||||
| 958 | Register Reg = MO.getReg(); | ||||||||
| 959 | if (!Register::isVirtualRegister(Reg)) | ||||||||
| 960 | continue; | ||||||||
| 961 | |||||||||
| 962 | // Ignore re-defs. | ||||||||
| 963 | if (TrackLaneMasks) { | ||||||||
| 964 | bool FoundDef = false; | ||||||||
| 965 | for (const MachineOperand &MO2 : MI.operands()) { | ||||||||
| 966 | if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) { | ||||||||
| 967 | FoundDef = true; | ||||||||
| 968 | break; | ||||||||
| 969 | } | ||||||||
| 970 | } | ||||||||
| 971 | if (FoundDef) | ||||||||
| 972 | continue; | ||||||||
| 973 | } | ||||||||
| 974 | |||||||||
| 975 | // Record this local VReg use. | ||||||||
| 976 | VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg); | ||||||||
| 977 | for (; UI != VRegUses.end(); ++UI) { | ||||||||
| 978 | if (UI->SU == &SU) | ||||||||
| 979 | break; | ||||||||
| 980 | } | ||||||||
| 981 | if (UI == VRegUses.end()) | ||||||||
| 982 | VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU)); | ||||||||
| 983 | } | ||||||||
| 984 | } | ||||||||
| 985 | |||||||||
| 986 | /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after | ||||||||
| 987 | /// crossing a scheduling boundary. [begin, end) includes all instructions in | ||||||||
| 988 | /// the region, including the boundary itself and single-instruction regions | ||||||||
| 989 | /// that don't get scheduled. | ||||||||
| 990 | void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, | ||||||||
| 991 | MachineBasicBlock::iterator begin, | ||||||||
| 992 | MachineBasicBlock::iterator end, | ||||||||
| 993 | unsigned regioninstrs) | ||||||||
| 994 | { | ||||||||
| 995 | // ScheduleDAGMI initializes SchedImpl's per-region policy. | ||||||||
| 996 | ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); | ||||||||
| 997 | |||||||||
| 998 | // For convenience remember the end of the liveness region. | ||||||||
| 999 | LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); | ||||||||
| 1000 | |||||||||
| 1001 | SUPressureDiffs.clear(); | ||||||||
| 1002 | |||||||||
| 1003 | ShouldTrackPressure = SchedImpl->shouldTrackPressure(); | ||||||||
| 1004 | ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); | ||||||||
| 1005 | |||||||||
| 1006 | assert((!ShouldTrackLaneMasks || ShouldTrackPressure) &&((void)0) | ||||||||
| 1007 | "ShouldTrackLaneMasks requires ShouldTrackPressure")((void)0); | ||||||||
| 1008 | } | ||||||||
| 1009 | |||||||||
| 1010 | // Setup the register pressure trackers for the top scheduled and bottom | ||||||||
| 1011 | // scheduled regions. | ||||||||
| 1012 | void ScheduleDAGMILive::initRegPressure() { | ||||||||
| 1013 | VRegUses.clear(); | ||||||||
| 1014 | VRegUses.setUniverse(MRI.getNumVirtRegs()); | ||||||||
| 1015 | for (SUnit &SU : SUnits) | ||||||||
| 1016 | collectVRegUses(SU); | ||||||||
| 1017 | |||||||||
| 1018 | TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, | ||||||||
| 1019 | ShouldTrackLaneMasks, false); | ||||||||
| 1020 | BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, | ||||||||
| 1021 | ShouldTrackLaneMasks, false); | ||||||||
| 1022 | |||||||||
| 1023 | // Close the RPTracker to finalize live ins. | ||||||||
| 1024 | RPTracker.closeRegion(); | ||||||||
| 1025 | |||||||||
| 1026 | LLVM_DEBUG(RPTracker.dump())do { } while (false); | ||||||||
| 1027 | |||||||||
| 1028 | // Initialize the live ins and live outs. | ||||||||
| 1029 | TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); | ||||||||
| 1030 | BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); | ||||||||
| 1031 | |||||||||
| 1032 | // Close one end of the tracker so we can call | ||||||||
| 1033 | // getMaxUpward/DownwardPressureDelta before advancing across any | ||||||||
| 1034 | // instructions. This converts currently live regs into live ins/outs. | ||||||||
| 1035 | TopRPTracker.closeTop(); | ||||||||
| 1036 | BotRPTracker.closeBottom(); | ||||||||
| 1037 | |||||||||
| 1038 | BotRPTracker.initLiveThru(RPTracker); | ||||||||
| 1039 | if (!BotRPTracker.getLiveThru().empty()) { | ||||||||
| 1040 | TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); | ||||||||
| 1041 | LLVM_DEBUG(dbgs() << "Live Thru: ";do { } while (false) | ||||||||
| 1042 | dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI))do { } while (false); | ||||||||
| 1043 | }; | ||||||||
| 1044 | |||||||||
| 1045 | // For each live out vreg reduce the pressure change associated with other | ||||||||
| 1046 | // uses of the same vreg below the live-out reaching def. | ||||||||
| 1047 | updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); | ||||||||
| 1048 | |||||||||
| 1049 | // Account for liveness generated by the region boundary. | ||||||||
| 1050 | if (LiveRegionEnd != RegionEnd) { | ||||||||
| 1051 | SmallVector<RegisterMaskPair, 8> LiveUses; | ||||||||
| 1052 | BotRPTracker.recede(&LiveUses); | ||||||||
| 1053 | updatePressureDiffs(LiveUses); | ||||||||
| 1054 | } | ||||||||
| 1055 | |||||||||
| 1056 | LLVM_DEBUG(dbgs() << "Top Pressure:\n";do { } while (false) | ||||||||
| 1057 | dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);do { } while (false) | ||||||||
| 1058 | dbgs() << "Bottom Pressure:\n";do { } while (false) | ||||||||
| 1059 | dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);)do { } while (false); | ||||||||
| 1060 | |||||||||
| 1061 | assert((BotRPTracker.getPos() == RegionEnd ||((void)0) | ||||||||
| 1062 | (RegionEnd->isDebugInstr() &&((void)0) | ||||||||
| 1063 | BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) &&((void)0) | ||||||||
| 1064 | "Can't find the region bottom")((void)0); | ||||||||
| 1065 | |||||||||
| 1066 | // Cache the list of excess pressure sets in this region. This will also track | ||||||||
| 1067 | // the max pressure in the scheduled code for these sets. | ||||||||
| 1068 | RegionCriticalPSets.clear(); | ||||||||
| 1069 | const std::vector<unsigned> &RegionPressure = | ||||||||
| 1070 | RPTracker.getPressure().MaxSetPressure; | ||||||||
| 1071 | for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { | ||||||||
| 1072 | unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); | ||||||||
| 1073 | if (RegionPressure[i] > Limit) { | ||||||||
| 1074 | LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limitdo { } while (false) | ||||||||
| 1075 | << " Actual " << RegionPressure[i] << "\n")do { } while (false); | ||||||||
| 1076 | RegionCriticalPSets.push_back(PressureChange(i)); | ||||||||
| 1077 | } | ||||||||
| 1078 | } | ||||||||
| 1079 | LLVM_DEBUG(dbgs() << "Excess PSets: ";do { } while (false) | ||||||||
| 1080 | for (const PressureChange &RCPSdo { } while (false) | ||||||||
| 1081 | : RegionCriticalPSets) dbgs()do { } while (false) | ||||||||
| 1082 | << TRI->getRegPressureSetName(RCPS.getPSet()) << " ";do { } while (false) | ||||||||
| 1083 | dbgs() << "\n")do { } while (false); | ||||||||
| 1084 | } | ||||||||
| 1085 | |||||||||
| 1086 | void ScheduleDAGMILive:: | ||||||||
| 1087 | updateScheduledPressure(const SUnit *SU, | ||||||||
| 1088 | const std::vector<unsigned> &NewMaxPressure) { | ||||||||
| 1089 | const PressureDiff &PDiff = getPressureDiff(SU); | ||||||||
| 1090 | unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); | ||||||||
| 1091 | for (const PressureChange &PC : PDiff) { | ||||||||
| 1092 | if (!PC.isValid()) | ||||||||
| 1093 | break; | ||||||||
| 1094 | unsigned ID = PC.getPSet(); | ||||||||
| 1095 | while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) | ||||||||
| 1096 | ++CritIdx; | ||||||||
| 1097 | if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { | ||||||||
| 1098 | if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() | ||||||||
| 1099 | && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max()) | ||||||||
| 1100 | RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); | ||||||||
| 1101 | } | ||||||||
| 1102 | unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); | ||||||||
| 1103 | if (NewMaxPressure[ID] >= Limit - 2) { | ||||||||
| 1104 | LLVM_DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": "do { } while (false) | ||||||||
| 1105 | << NewMaxPressure[ID]do { } while (false) | ||||||||
| 1106 | << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ")do { } while (false) | ||||||||
| 1107 | << Limit << "(+ " << BotRPTracker.getLiveThru()[ID]do { } while (false) | ||||||||
| 1108 | << " livethru)\n")do { } while (false); | ||||||||
| 1109 | } | ||||||||
| 1110 | } | ||||||||
| 1111 | } | ||||||||
| 1112 | |||||||||
| 1113 | /// Update the PressureDiff array for liveness after scheduling this | ||||||||
| 1114 | /// instruction. | ||||||||
| 1115 | void ScheduleDAGMILive::updatePressureDiffs( | ||||||||
| 1116 | ArrayRef<RegisterMaskPair> LiveUses) { | ||||||||
| 1117 | for (const RegisterMaskPair &P : LiveUses) { | ||||||||
| 1118 | Register Reg = P.RegUnit; | ||||||||
| 1119 | /// FIXME: Currently assuming single-use physregs. | ||||||||
| 1120 | if (!Register::isVirtualRegister(Reg)) | ||||||||
| 1121 | continue; | ||||||||
| 1122 | |||||||||
| 1123 | if (ShouldTrackLaneMasks) { | ||||||||
| 1124 | // If the register has just become live then other uses won't change | ||||||||
| 1125 | // this fact anymore => decrement pressure. | ||||||||
| 1126 | // If the register has just become dead then other uses make it come | ||||||||
| 1127 | // back to life => increment pressure. | ||||||||
| 1128 | bool Decrement = P.LaneMask.any(); | ||||||||
| 1129 | |||||||||
| 1130 | for (const VReg2SUnit &V2SU | ||||||||
| 1131 | : make_range(VRegUses.find(Reg), VRegUses.end())) { | ||||||||
| 1132 | SUnit &SU = *V2SU.SU; | ||||||||
| 1133 | if (SU.isScheduled || &SU == &ExitSU) | ||||||||
| 1134 | continue; | ||||||||
| 1135 | |||||||||
| 1136 | PressureDiff &PDiff = getPressureDiff(&SU); | ||||||||
| 1137 | PDiff.addPressureChange(Reg, Decrement, &MRI); | ||||||||
| 1138 | LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") "do { } while (false) | ||||||||
| 1139 | << printReg(Reg, TRI) << ':'do { } while (false) | ||||||||
| 1140 | << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr();do { } while (false) | ||||||||
| 1141 | dbgs() << " to "; PDiff.dump(*TRI);)do { } while (false); | ||||||||
| 1142 | } | ||||||||
| 1143 | } else { | ||||||||
| 1144 | assert(P.LaneMask.any())((void)0); | ||||||||
| 1145 | LLVM_DEBUG(dbgs() << " LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n")do { } while (false); | ||||||||
| 1146 | // This may be called before CurrentBottom has been initialized. However, | ||||||||
| 1147 | // BotRPTracker must have a valid position. We want the value live into the | ||||||||
| 1148 | // instruction or live out of the block, so ask for the previous | ||||||||
| 1149 | // instruction's live-out. | ||||||||
| 1150 | const LiveInterval &LI = LIS->getInterval(Reg); | ||||||||
| 1151 | VNInfo *VNI; | ||||||||
| 1152 | MachineBasicBlock::const_iterator I = | ||||||||
| 1153 | nextIfDebug(BotRPTracker.getPos(), BB->end()); | ||||||||
| 1154 | if (I == BB->end()) | ||||||||
| 1155 | VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); | ||||||||
| 1156 | else { | ||||||||
| 1157 | LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); | ||||||||
| 1158 | VNI = LRQ.valueIn(); | ||||||||
| 1159 | } | ||||||||
| 1160 | // RegisterPressureTracker guarantees that readsReg is true for LiveUses. | ||||||||
| 1161 | assert(VNI && "No live value at use.")((void)0); | ||||||||
| 1162 | for (const VReg2SUnit &V2SU | ||||||||
| 1163 | : make_range(VRegUses.find(Reg), VRegUses.end())) { | ||||||||
| 1164 | SUnit *SU = V2SU.SU; | ||||||||
| 1165 | // If this use comes before the reaching def, it cannot be a last use, | ||||||||
| 1166 | // so decrease its pressure change. | ||||||||
| 1167 | if (!SU->isScheduled && SU != &ExitSU) { | ||||||||
| 1168 | LiveQueryResult LRQ = | ||||||||
| 1169 | LI.Query(LIS->getInstructionIndex(*SU->getInstr())); | ||||||||
| 1170 | if (LRQ.valueIn() == VNI) { | ||||||||
| 1171 | PressureDiff &PDiff = getPressureDiff(SU); | ||||||||
| 1172 | PDiff.addPressureChange(Reg, true, &MRI); | ||||||||
| 1173 | LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") "do { } while (false) | ||||||||
| 1174 | << *SU->getInstr();do { } while (false) | ||||||||
| 1175 | dbgs() << " to "; PDiff.dump(*TRI);)do { } while (false); | ||||||||
| 1176 | } | ||||||||
| 1177 | } | ||||||||
| 1178 | } | ||||||||
| 1179 | } | ||||||||
| 1180 | } | ||||||||
| 1181 | } | ||||||||
| 1182 | |||||||||
| 1183 | void ScheduleDAGMILive::dump() const { | ||||||||
| 1184 | #if !defined(NDEBUG1) || defined(LLVM_ENABLE_DUMP) | ||||||||
| 1185 | if (EntrySU.getInstr() != nullptr) | ||||||||
| 1186 | dumpNodeAll(EntrySU); | ||||||||
| 1187 | for (const SUnit &SU : SUnits) { | ||||||||
| 1188 | dumpNodeAll(SU); | ||||||||
| 1189 | if (ShouldTrackPressure) { | ||||||||
| 1190 | dbgs() << " Pressure Diff : "; | ||||||||
| 1191 | getPressureDiff(&SU).dump(*TRI); | ||||||||
| 1192 | } | ||||||||
| 1193 | dbgs() << " Single Issue : "; | ||||||||
| 1194 | if (SchedModel.mustBeginGroup(SU.getInstr()) && | ||||||||
| 1195 | SchedModel.mustEndGroup(SU.getInstr())) | ||||||||
| 1196 | dbgs() << "true;"; | ||||||||
| 1197 | else | ||||||||
| 1198 | dbgs() << "false;"; | ||||||||
| 1199 | dbgs() << '\n'; | ||||||||
| 1200 | } | ||||||||
| 1201 | if (ExitSU.getInstr() != nullptr) | ||||||||
| 1202 | dumpNodeAll(ExitSU); | ||||||||
| 1203 | #endif | ||||||||
| 1204 | } | ||||||||
| 1205 | |||||||||
| 1206 | /// schedule - Called back from MachineScheduler::runOnMachineFunction | ||||||||
| 1207 | /// after setting up the current scheduling region. [RegionBegin, RegionEnd) | ||||||||
| 1208 | /// only includes instructions that have DAG nodes, not scheduling boundaries. | ||||||||
| 1209 | /// | ||||||||
| 1210 | /// This is a skeletal driver, with all the functionality pushed into helpers, | ||||||||
| 1211 | /// so that it can be easily extended by experimental schedulers. Generally, | ||||||||
| 1212 | /// implementing MachineSchedStrategy should be sufficient to implement a new | ||||||||
| 1213 | /// scheduling algorithm. However, if a scheduler further subclasses | ||||||||
| 1214 | /// ScheduleDAGMILive then it will want to override this virtual method in order | ||||||||
| 1215 | /// to update any specialized state. | ||||||||
| 1216 | void ScheduleDAGMILive::schedule() { | ||||||||
| 1217 | LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n")do { } while (false); | ||||||||
| 1218 | LLVM_DEBUG(SchedImpl->dumpPolicy())do { } while (false); | ||||||||
| 1219 | buildDAGWithRegPressure(); | ||||||||
| 1220 | |||||||||
| 1221 | postprocessDAG(); | ||||||||
| 1222 | |||||||||
| 1223 | SmallVector<SUnit*, 8> TopRoots, BotRoots; | ||||||||
| 1224 | findRootsAndBiasEdges(TopRoots, BotRoots); | ||||||||
| 1225 | |||||||||
| 1226 | // Initialize the strategy before modifying the DAG. | ||||||||
| 1227 | // This may initialize a DFSResult to be used for queue priority. | ||||||||
| 1228 | SchedImpl->initialize(this); | ||||||||
| 1229 | |||||||||
| 1230 | LLVM_DEBUG(dump())do { } while (false); | ||||||||
| 1231 | if (PrintDAGs) dump(); | ||||||||
| 1232 | if (ViewMISchedDAGs) viewGraph(); | ||||||||
| 1233 | |||||||||
| 1234 | // Initialize ready queues now that the DAG and priority data are finalized. | ||||||||
| 1235 | initQueues(TopRoots, BotRoots); | ||||||||
| 1236 | |||||||||
| 1237 | bool IsTopNode = false; | ||||||||
| 1238 | while (true) { | ||||||||
| 1239 | LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n")do { } while (false); | ||||||||
| 1240 | SUnit *SU = SchedImpl->pickNode(IsTopNode); | ||||||||
| 1241 | if (!SU) break; | ||||||||
| 1242 | |||||||||
| 1243 | assert(!SU->isScheduled && "Node already scheduled")((void)0); | ||||||||
| 1244 | if (!checkSchedLimit()) | ||||||||
| 1245 | break; | ||||||||
| 1246 | |||||||||
| 1247 | scheduleMI(SU, IsTopNode); | ||||||||
| 1248 | |||||||||
| 1249 | if (DFSResult) { | ||||||||
| 1250 | unsigned SubtreeID = DFSResult->getSubtreeID(SU); | ||||||||
| 1251 | if (!ScheduledTrees.test(SubtreeID)) { | ||||||||
| 1252 | ScheduledTrees.set(SubtreeID); | ||||||||
| 1253 | DFSResult->scheduleTree(SubtreeID); | ||||||||
| 1254 | SchedImpl->scheduleTree(SubtreeID); | ||||||||
| 1255 | } | ||||||||
| 1256 | } | ||||||||
| 1257 | |||||||||
| 1258 | // Notify the scheduling strategy after updating the DAG. | ||||||||
| 1259 | SchedImpl->schedNode(SU, IsTopNode); | ||||||||
| 1260 | |||||||||
| 1261 | updateQueues(SU, IsTopNode); | ||||||||
| 1262 | } | ||||||||
| 1263 | assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.")((void)0); | ||||||||
| 1264 | |||||||||
| 1265 | placeDebugValues(); | ||||||||
| 1266 | |||||||||
| 1267 | LLVM_DEBUG({do { } while (false) | ||||||||
| 1268 | dbgs() << "*** Final schedule for "do { } while (false) | ||||||||
| 1269 | << printMBBReference(*begin()->getParent()) << " ***\n";do { } while (false) | ||||||||
| 1270 | dumpSchedule();do { } while (false) | ||||||||
| 1271 | dbgs() << '\n';do { } while (false) | ||||||||
| 1272 | })do { } while (false); | ||||||||
| 1273 | } | ||||||||
| 1274 | |||||||||
| 1275 | /// Build the DAG and setup three register pressure trackers. | ||||||||
| 1276 | void ScheduleDAGMILive::buildDAGWithRegPressure() { | ||||||||
| 1277 | if (!ShouldTrackPressure) { | ||||||||
| 1278 | RPTracker.reset(); | ||||||||
| 1279 | RegionCriticalPSets.clear(); | ||||||||
| 1280 | buildSchedGraph(AA); | ||||||||
| 1281 | return; | ||||||||
| 1282 | } | ||||||||
| 1283 | |||||||||
| 1284 | // Initialize the register pressure tracker used by buildSchedGraph. | ||||||||
| 1285 | RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, | ||||||||
| 1286 | ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); | ||||||||
| 1287 | |||||||||
| 1288 | // Account for liveness generate by the region boundary. | ||||||||
| 1289 | if (LiveRegionEnd != RegionEnd) | ||||||||
| 1290 | RPTracker.recede(); | ||||||||
| 1291 | |||||||||
| 1292 | // Build the DAG, and compute current register pressure. | ||||||||
| 1293 | buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); | ||||||||
| 1294 | |||||||||
| 1295 | // Initialize top/bottom trackers after computing region pressure. | ||||||||
| 1296 | initRegPressure(); | ||||||||
| 1297 | } | ||||||||
| 1298 | |||||||||
| 1299 | void ScheduleDAGMILive::computeDFSResult() { | ||||||||
| 1300 | if (!DFSResult) | ||||||||
| 1301 | DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); | ||||||||
| 1302 | DFSResult->clear(); | ||||||||
| 1303 | ScheduledTrees.clear(); | ||||||||
| 1304 | DFSResult->resize(SUnits.size()); | ||||||||
| 1305 | DFSResult->compute(SUnits); | ||||||||
| 1306 | ScheduledTrees.resize(DFSResult->getNumSubtrees()); | ||||||||
| 1307 | } | ||||||||
| 1308 | |||||||||
| 1309 | /// Compute the max cyclic critical path through the DAG. The scheduling DAG | ||||||||
| 1310 | /// only provides the critical path for single block loops. To handle loops that | ||||||||
| 1311 | /// span blocks, we could use the vreg path latencies provided by | ||||||||
| 1312 | /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently | ||||||||
| 1313 | /// available for use in the scheduler. | ||||||||
| 1314 | /// | ||||||||
| 1315 | /// The cyclic path estimation identifies a def-use pair that crosses the back | ||||||||
| 1316 | /// edge and considers the depth and height of the nodes. For example, consider | ||||||||
| 1317 | /// the following instruction sequence where each instruction has unit latency | ||||||||
| 1318 | /// and defines an eponymous virtual register: | ||||||||
| 1319 | /// | ||||||||
| 1320 | /// a->b(a,c)->c(b)->d(c)->exit | ||||||||
| 1321 | /// | ||||||||
| 1322 | /// The cyclic critical path is a two cycles: b->c->b | ||||||||
| 1323 | /// The acyclic critical path is four cycles: a->b->c->d->exit | ||||||||
| 1324 | /// LiveOutHeight = height(c) = len(c->d->exit) = 2 | ||||||||
| 1325 | /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 | ||||||||
| 1326 | /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 | ||||||||
| 1327 | /// LiveInDepth = depth(b) = len(a->b) = 1 | ||||||||
| 1328 | /// | ||||||||
| 1329 | /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 | ||||||||
| 1330 | /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 | ||||||||
| 1331 | /// CyclicCriticalPath = min(2, 2) = 2 | ||||||||
| 1332 | /// | ||||||||
| 1333 | /// This could be relevant to PostRA scheduling, but is currently implemented | ||||||||
| 1334 | /// assuming LiveIntervals. | ||||||||
| 1335 | unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { | ||||||||
| 1336 | // This only applies to single block loop. | ||||||||
| 1337 | if (!BB->isSuccessor(BB)) | ||||||||
| 1338 | return 0; | ||||||||
| 1339 | |||||||||
| 1340 | unsigned MaxCyclicLatency = 0; | ||||||||
| 1341 | // Visit each live out vreg def to find def/use pairs that cross iterations. | ||||||||
| 1342 | for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { | ||||||||
| 1343 | Register Reg = P.RegUnit; | ||||||||
| 1344 | if (!Register::isVirtualRegister(Reg)) | ||||||||
| 1345 | continue; | ||||||||
| 1346 | const LiveInterval &LI = LIS->getInterval(Reg); | ||||||||
| 1347 | const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); | ||||||||
| 1348 | if (!DefVNI) | ||||||||
| 1349 | continue; | ||||||||
| 1350 | |||||||||
| 1351 | MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); | ||||||||
| 1352 | const SUnit *DefSU = getSUnit(DefMI); | ||||||||
| 1353 | if (!DefSU) | ||||||||
| 1354 | continue; | ||||||||
| 1355 | |||||||||
| 1356 | unsigned LiveOutHeight = DefSU->getHeight(); | ||||||||
| 1357 | unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; | ||||||||
| 1358 | // Visit all local users of the vreg def. | ||||||||
| 1359 | for (const VReg2SUnit &V2SU | ||||||||
| 1360 | : make_range(VRegUses.find(Reg), VRegUses.end())) { | ||||||||
| 1361 | SUnit *SU = V2SU.SU; | ||||||||
| 1362 | if (SU == &ExitSU) | ||||||||
| 1363 | continue; | ||||||||
| 1364 | |||||||||
| 1365 | // Only consider uses of the phi. | ||||||||
| 1366 | LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); | ||||||||
| 1367 | if (!LRQ.valueIn()->isPHIDef()) | ||||||||
| 1368 | continue; | ||||||||
| 1369 | |||||||||
| 1370 | // Assume that a path spanning two iterations is a cycle, which could | ||||||||
| 1371 | // overestimate in strange cases. This allows cyclic latency to be | ||||||||
| 1372 | // estimated as the minimum slack of the vreg's depth or height. | ||||||||
| 1373 | unsigned CyclicLatency = 0; | ||||||||
| 1374 | if (LiveOutDepth > SU->getDepth()) | ||||||||
| 1375 | CyclicLatency = LiveOutDepth - SU->getDepth(); | ||||||||
| 1376 | |||||||||
| 1377 | unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; | ||||||||
| 1378 | if (LiveInHeight > LiveOutHeight) { | ||||||||
| 1379 | if (LiveInHeight - LiveOutHeight < CyclicLatency) | ||||||||
| 1380 | CyclicLatency = LiveInHeight - LiveOutHeight; | ||||||||
| 1381 | } else | ||||||||
| 1382 | CyclicLatency = 0; | ||||||||
| 1383 | |||||||||
| 1384 | LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("do { } while (false) | ||||||||
| 1385 | << SU->NodeNum << ") = " << CyclicLatency << "c\n")do { } while (false); | ||||||||
| 1386 | if (CyclicLatency > MaxCyclicLatency) | ||||||||
| 1387 | MaxCyclicLatency = CyclicLatency; | ||||||||
| 1388 | } | ||||||||
| 1389 | } | ||||||||
| 1390 | LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n")do { } while (false); | ||||||||
| 1391 | return MaxCyclicLatency; | ||||||||
| 1392 | } | ||||||||
| 1393 | |||||||||
| 1394 | /// Release ExitSU predecessors and setup scheduler queues. Re-position | ||||||||
| 1395 | /// the Top RP tracker in case the region beginning has changed. | ||||||||
| 1396 | void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots, | ||||||||
| 1397 | ArrayRef<SUnit*> BotRoots) { | ||||||||
| 1398 | ScheduleDAGMI::initQueues(TopRoots, BotRoots); | ||||||||
| 1399 | if (ShouldTrackPressure) { | ||||||||
| 1400 | assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker")((void)0); | ||||||||
| 1401 | TopRPTracker.setPos(CurrentTop); | ||||||||
| 1402 | } | ||||||||
| 1403 | } | ||||||||
| 1404 | |||||||||
| 1405 | /// Move an instruction and update register pressure. | ||||||||
| 1406 | void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { | ||||||||
| 1407 | // Move the instruction to its new location in the instruction stream. | ||||||||
| 1408 | MachineInstr *MI = SU->getInstr(); | ||||||||
| 1409 | |||||||||
| 1410 | if (IsTopNode) { | ||||||||
| 1411 | assert(SU->isTopReady() && "node still has unscheduled dependencies")((void)0); | ||||||||
| 1412 | if (&*CurrentTop == MI) | ||||||||
| 1413 | CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); | ||||||||
| 1414 | else { | ||||||||
| 1415 | moveInstruction(MI, CurrentTop); | ||||||||
| 1416 | TopRPTracker.setPos(MI); | ||||||||
| 1417 | } | ||||||||
| 1418 | |||||||||
| 1419 | if (ShouldTrackPressure) { | ||||||||
| 1420 | // Update top scheduled pressure. | ||||||||
| 1421 | RegisterOperands RegOpers; | ||||||||
| 1422 | RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); | ||||||||
| 1423 | if (ShouldTrackLaneMasks) { | ||||||||
| 1424 | // Adjust liveness and add missing dead+read-undef flags. | ||||||||
| 1425 | SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); | ||||||||
| 1426 | RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); | ||||||||
| 1427 | } else { | ||||||||
| 1428 | // Adjust for missing dead-def flags. | ||||||||
| 1429 | RegOpers.detectDeadDefs(*MI, *LIS); | ||||||||
| 1430 | } | ||||||||
| 1431 | |||||||||
| 1432 | TopRPTracker.advance(RegOpers); | ||||||||
| 1433 | assert(TopRPTracker.getPos() == CurrentTop && "out of sync")((void)0); | ||||||||
| 1434 | LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure(do { } while (false) | ||||||||
| 1435 | TopRPTracker.getRegSetPressureAtPos(), TRI);)do { } while (false); | ||||||||
| 1436 | |||||||||
| 1437 | updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); | ||||||||
| 1438 | } | ||||||||
| 1439 | } else { | ||||||||
| 1440 | assert(SU->isBottomReady() && "node still has unscheduled dependencies")((void)0); | ||||||||
| 1441 | MachineBasicBlock::iterator priorII = | ||||||||
| 1442 | priorNonDebug(CurrentBottom, CurrentTop); | ||||||||
| 1443 | if (&*priorII == MI) | ||||||||
| 1444 | CurrentBottom = priorII; | ||||||||
| 1445 | else { | ||||||||
| 1446 | if (&*CurrentTop == MI) { | ||||||||
| 1447 | CurrentTop = nextIfDebug(++CurrentTop, priorII); | ||||||||
| 1448 | TopRPTracker.setPos(CurrentTop); | ||||||||
| 1449 | } | ||||||||
| 1450 | moveInstruction(MI, CurrentBottom); | ||||||||
| 1451 | CurrentBottom = MI; | ||||||||
| 1452 | BotRPTracker.setPos(CurrentBottom); | ||||||||
| 1453 | } | ||||||||
| 1454 | if (ShouldTrackPressure) { | ||||||||
| 1455 | RegisterOperands RegOpers; | ||||||||
| 1456 | RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); | ||||||||
| 1457 | if (ShouldTrackLaneMasks) { | ||||||||
| 1458 | // Adjust liveness and add missing dead+read-undef flags. | ||||||||
| 1459 | SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); | ||||||||
| 1460 | RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); | ||||||||
| 1461 | } else { | ||||||||
| 1462 | // Adjust for missing dead-def flags. | ||||||||
| 1463 | RegOpers.detectDeadDefs(*MI, *LIS); | ||||||||
| 1464 | } | ||||||||
| 1465 | |||||||||
| 1466 | if (BotRPTracker.getPos() != CurrentBottom) | ||||||||
| 1467 | BotRPTracker.recedeSkipDebugValues(); | ||||||||
| 1468 | SmallVector<RegisterMaskPair, 8> LiveUses; | ||||||||
| 1469 | BotRPTracker.recede(RegOpers, &LiveUses); | ||||||||
| 1470 | assert(BotRPTracker.getPos() == CurrentBottom && "out of sync")((void)0); | ||||||||
| 1471 | LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure(do { } while (false) | ||||||||
| 1472 | BotRPTracker.getRegSetPressureAtPos(), TRI);)do { } while (false); | ||||||||
| 1473 | |||||||||
| 1474 | updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); | ||||||||
| 1475 | updatePressureDiffs(LiveUses); | ||||||||
| 1476 | } | ||||||||
| 1477 | } | ||||||||
| 1478 | } | ||||||||
| 1479 | |||||||||
| 1480 | //===----------------------------------------------------------------------===// | ||||||||
| 1481 | // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. | ||||||||
| 1482 | //===----------------------------------------------------------------------===// | ||||||||
| 1483 | |||||||||
| 1484 | namespace { | ||||||||
| 1485 | |||||||||
| 1486 | /// Post-process the DAG to create cluster edges between neighboring | ||||||||
| 1487 | /// loads or between neighboring stores. | ||||||||
| 1488 | class BaseMemOpClusterMutation : public ScheduleDAGMutation { | ||||||||
| 1489 | struct MemOpInfo { | ||||||||
| 1490 | SUnit *SU; | ||||||||
| 1491 | SmallVector<const MachineOperand *, 4> BaseOps; | ||||||||
| 1492 | int64_t Offset; | ||||||||
| 1493 | unsigned Width; | ||||||||
| 1494 | |||||||||
| 1495 | MemOpInfo(SUnit *SU, ArrayRef<const MachineOperand *> BaseOps, | ||||||||
| 1496 | int64_t Offset, unsigned Width) | ||||||||
| 1497 | : SU(SU), BaseOps(BaseOps.begin(), BaseOps.end()), Offset(Offset), | ||||||||
| 1498 | Width(Width) {} | ||||||||
| 1499 | |||||||||
| 1500 | static bool Compare(const MachineOperand *const &A, | ||||||||
| 1501 | const MachineOperand *const &B) { | ||||||||
| 1502 | if (A->getType() != B->getType()) | ||||||||
| 1503 | return A->getType() < B->getType(); | ||||||||
| 1504 | if (A->isReg()) | ||||||||
| 1505 | return A->getReg() < B->getReg(); | ||||||||
| 1506 | if (A->isFI()) { | ||||||||
| 1507 | const MachineFunction &MF = *A->getParent()->getParent()->getParent(); | ||||||||
| 1508 | const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering(); | ||||||||
| 1509 | bool StackGrowsDown = TFI.getStackGrowthDirection() == | ||||||||
| 1510 | TargetFrameLowering::StackGrowsDown; | ||||||||
| 1511 | return StackGrowsDown ? A->getIndex() > B->getIndex() | ||||||||
| 1512 | : A->getIndex() < B->getIndex(); | ||||||||
| 1513 | } | ||||||||
| 1514 | |||||||||
| 1515 | llvm_unreachable("MemOpClusterMutation only supports register or frame "__builtin_unreachable() | ||||||||
| 1516 | "index bases.")__builtin_unreachable(); | ||||||||
| 1517 | } | ||||||||
| 1518 | |||||||||
| 1519 | bool operator<(const MemOpInfo &RHS) const { | ||||||||
| 1520 | // FIXME: Don't compare everything twice. Maybe use C++20 three way | ||||||||
| 1521 | // comparison instead when it's available. | ||||||||
| 1522 | if (std::lexicographical_compare(BaseOps.begin(), BaseOps.end(), | ||||||||
| 1523 | RHS.BaseOps.begin(), RHS.BaseOps.end(), | ||||||||
| 1524 | Compare)) | ||||||||
| 1525 | return true; | ||||||||
| 1526 | if (std::lexicographical_compare(RHS.BaseOps.begin(), RHS.BaseOps.end(), | ||||||||
| 1527 | BaseOps.begin(), BaseOps.end(), Compare)) | ||||||||
| 1528 | return false; | ||||||||
| 1529 | if (Offset != RHS.Offset) | ||||||||
| 1530 | return Offset < RHS.Offset; | ||||||||
| 1531 | return SU->NodeNum < RHS.SU->NodeNum; | ||||||||
| 1532 | } | ||||||||
| 1533 | }; | ||||||||
| 1534 | |||||||||
| 1535 | const TargetInstrInfo *TII; | ||||||||
| 1536 | const TargetRegisterInfo *TRI; | ||||||||
| 1537 | bool IsLoad; | ||||||||
| 1538 | |||||||||
| 1539 | public: | ||||||||
| 1540 | BaseMemOpClusterMutation(const TargetInstrInfo *tii, | ||||||||
| 1541 | const TargetRegisterInfo *tri, bool IsLoad) | ||||||||
| 1542 | : TII(tii), TRI(tri), IsLoad(IsLoad) {} | ||||||||
| 1543 | |||||||||
| 1544 | void apply(ScheduleDAGInstrs *DAGInstrs) override; | ||||||||
| 1545 | |||||||||
| 1546 | protected: | ||||||||
| 1547 | void clusterNeighboringMemOps(ArrayRef<MemOpInfo> MemOps, bool FastCluster, | ||||||||
| 1548 | ScheduleDAGInstrs *DAG); | ||||||||
| 1549 | void collectMemOpRecords(std::vector<SUnit> &SUnits, | ||||||||
| 1550 | SmallVectorImpl<MemOpInfo> &MemOpRecords); | ||||||||
| 1551 | bool groupMemOps(ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG, | ||||||||
| 1552 | DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups); | ||||||||
| 1553 | }; | ||||||||
| 1554 | |||||||||
| 1555 | class StoreClusterMutation : public BaseMemOpClusterMutation { | ||||||||
| 1556 | public: | ||||||||
| 1557 | StoreClusterMutation(const TargetInstrInfo *tii, | ||||||||
| 1558 | const TargetRegisterInfo *tri) | ||||||||
| 1559 | : BaseMemOpClusterMutation(tii, tri, false) {} | ||||||||
| 1560 | }; | ||||||||
| 1561 | |||||||||
| 1562 | class LoadClusterMutation : public BaseMemOpClusterMutation { | ||||||||
| 1563 | public: | ||||||||
| 1564 | LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) | ||||||||
| 1565 | : BaseMemOpClusterMutation(tii, tri, true) {} | ||||||||
| 1566 | }; | ||||||||
| 1567 | |||||||||
| 1568 | } // end anonymous namespace | ||||||||
| 1569 | |||||||||
| 1570 | namespace llvm { | ||||||||
| 1571 | |||||||||
| 1572 | std::unique_ptr<ScheduleDAGMutation> | ||||||||
| 1573 | createLoadClusterDAGMutation(const TargetInstrInfo *TII, | ||||||||
| 1574 | const TargetRegisterInfo *TRI) { | ||||||||
| 1575 | return EnableMemOpCluster ? std::make_unique<LoadClusterMutation>(TII, TRI) | ||||||||
| 1576 | : nullptr; | ||||||||
| 1577 | } | ||||||||
| 1578 | |||||||||
| 1579 | std::unique_ptr<ScheduleDAGMutation> | ||||||||
| 1580 | createStoreClusterDAGMutation(const TargetInstrInfo *TII, | ||||||||
| 1581 | const TargetRegisterInfo *TRI) { | ||||||||
| 1582 | return EnableMemOpCluster ? std::make_unique<StoreClusterMutation>(TII, TRI) | ||||||||
| 1583 | : nullptr; | ||||||||
| 1584 | } | ||||||||
| 1585 | |||||||||
| 1586 | } // end namespace llvm | ||||||||
| 1587 | |||||||||
| 1588 | // Sorting all the loads/stores first, then for each load/store, checking the | ||||||||
| 1589 | // following load/store one by one, until reach the first non-dependent one and | ||||||||
| 1590 | // call target hook to see if they can cluster. | ||||||||
| 1591 | // If FastCluster is enabled, we assume that, all the loads/stores have been | ||||||||
| 1592 | // preprocessed and now, they didn't have dependencies on each other. | ||||||||
| 1593 | void BaseMemOpClusterMutation::clusterNeighboringMemOps( | ||||||||
| 1594 | ArrayRef<MemOpInfo> MemOpRecords, bool FastCluster, | ||||||||
| 1595 | ScheduleDAGInstrs *DAG) { | ||||||||
| 1596 | // Keep track of the current cluster length and bytes for each SUnit. | ||||||||
| 1597 | DenseMap<unsigned, std::pair<unsigned, unsigned>> SUnit2ClusterInfo; | ||||||||
| 1598 | |||||||||
| 1599 | // At this point, `MemOpRecords` array must hold atleast two mem ops. Try to | ||||||||
| 1600 | // cluster mem ops collected within `MemOpRecords` array. | ||||||||
| 1601 | for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { | ||||||||
| 1602 | // Decision to cluster mem ops is taken based on target dependent logic | ||||||||
| 1603 | auto MemOpa = MemOpRecords[Idx]; | ||||||||
| 1604 | |||||||||
| 1605 | // Seek for the next load/store to do the cluster. | ||||||||
| 1606 | unsigned NextIdx = Idx + 1; | ||||||||
| 1607 | for (; NextIdx < End; ++NextIdx) | ||||||||
| 1608 | // Skip if MemOpb has been clustered already or has dependency with | ||||||||
| 1609 | // MemOpa. | ||||||||
| 1610 | if (!SUnit2ClusterInfo.count(MemOpRecords[NextIdx].SU->NodeNum) && | ||||||||
| 1611 | (FastCluster || | ||||||||
| 1612 | (!DAG->IsReachable(MemOpRecords[NextIdx].SU, MemOpa.SU) && | ||||||||
| 1613 | !DAG->IsReachable(MemOpa.SU, MemOpRecords[NextIdx].SU)))) | ||||||||
| 1614 | break; | ||||||||
| 1615 | if (NextIdx == End) | ||||||||
| 1616 | continue; | ||||||||
| 1617 | |||||||||
| 1618 | auto MemOpb = MemOpRecords[NextIdx]; | ||||||||
| 1619 | unsigned ClusterLength = 2; | ||||||||
| 1620 | unsigned CurrentClusterBytes = MemOpa.Width + MemOpb.Width; | ||||||||
| 1621 | if (SUnit2ClusterInfo.count(MemOpa.SU->NodeNum)) { | ||||||||
| 1622 | ClusterLength = SUnit2ClusterInfo[MemOpa.SU->NodeNum].first + 1; | ||||||||
| 1623 | CurrentClusterBytes = | ||||||||
| 1624 | SUnit2ClusterInfo[MemOpa.SU->NodeNum].second + MemOpb.Width; | ||||||||
| 1625 | } | ||||||||
| 1626 | |||||||||
| 1627 | if (!TII->shouldClusterMemOps(MemOpa.BaseOps, MemOpb.BaseOps, ClusterLength, | ||||||||
| 1628 | CurrentClusterBytes)) | ||||||||
| 1629 | continue; | ||||||||
| 1630 | |||||||||
| 1631 | SUnit *SUa = MemOpa.SU; | ||||||||
| 1632 | SUnit *SUb = MemOpb.SU; | ||||||||
| 1633 | if (SUa->NodeNum > SUb->NodeNum) | ||||||||
| 1634 | std::swap(SUa, SUb); | ||||||||
| 1635 | |||||||||
| 1636 | // FIXME: Is this check really required? | ||||||||
| 1637 | if (!DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) | ||||||||
| 1638 | continue; | ||||||||
| 1639 | |||||||||
| 1640 | LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("do { } while (false) | ||||||||
| 1641 | << SUb->NodeNum << ")\n")do { } while (false); | ||||||||
| 1642 | ++NumClustered; | ||||||||
| 1643 | |||||||||
| 1644 | if (IsLoad) { | ||||||||
| 1645 | // Copy successor edges from SUa to SUb. Interleaving computation | ||||||||
| 1646 | // dependent on SUa can prevent load combining due to register reuse. | ||||||||
| 1647 | // Predecessor edges do not need to be copied from SUb to SUa since | ||||||||
| 1648 | // nearby loads should have effectively the same inputs. | ||||||||
| 1649 | for (const SDep &Succ : SUa->Succs) { | ||||||||
| 1650 | if (Succ.getSUnit() == SUb) | ||||||||
| 1651 | continue; | ||||||||
| 1652 | LLVM_DEBUG(dbgs() << " Copy Succ SU(" << Succ.getSUnit()->NodeNumdo { } while (false) | ||||||||
| 1653 | << ")\n")do { } while (false); | ||||||||
| 1654 | DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial)); | ||||||||
| 1655 | } | ||||||||
| 1656 | } else { | ||||||||
| 1657 | // Copy predecessor edges from SUb to SUa to avoid the SUnits that | ||||||||
| 1658 | // SUb dependent on scheduled in-between SUb and SUa. Successor edges | ||||||||
| 1659 | // do not need to be copied from SUa to SUb since no one will depend | ||||||||
| 1660 | // on stores. | ||||||||
| 1661 | // Notice that, we don't need to care about the memory dependency as | ||||||||
| 1662 | // we won't try to cluster them if they have any memory dependency. | ||||||||
| 1663 | for (const SDep &Pred : SUb->Preds) { | ||||||||
| 1664 | if (Pred.getSUnit() == SUa) | ||||||||
| 1665 | continue; | ||||||||
| 1666 | LLVM_DEBUG(dbgs() << " Copy Pred SU(" << Pred.getSUnit()->NodeNumdo { } while (false) | ||||||||
| 1667 | << ")\n")do { } while (false); | ||||||||
| 1668 | DAG->addEdge(SUa, SDep(Pred.getSUnit(), SDep::Artificial)); | ||||||||
| 1669 | } | ||||||||
| 1670 | } | ||||||||
| 1671 | |||||||||
| 1672 | SUnit2ClusterInfo[MemOpb.SU->NodeNum] = {ClusterLength, | ||||||||
| 1673 | CurrentClusterBytes}; | ||||||||
| 1674 | |||||||||
| 1675 | LLVM_DEBUG(dbgs() << " Curr cluster length: " << ClusterLengthdo { } while (false) | ||||||||
| 1676 | << ", Curr cluster bytes: " << CurrentClusterBytesdo { } while (false) | ||||||||
| 1677 | << "\n")do { } while (false); | ||||||||
| 1678 | } | ||||||||
| 1679 | } | ||||||||
| 1680 | |||||||||
| 1681 | void BaseMemOpClusterMutation::collectMemOpRecords( | ||||||||
| 1682 | std::vector<SUnit> &SUnits, SmallVectorImpl<MemOpInfo> &MemOpRecords) { | ||||||||
| 1683 | for (auto &SU : SUnits) { | ||||||||
| 1684 | if ((IsLoad && !SU.getInstr()->mayLoad()) || | ||||||||
| 1685 | (!IsLoad && !SU.getInstr()->mayStore())) | ||||||||
| 1686 | continue; | ||||||||
| 1687 | |||||||||
| 1688 | const MachineInstr &MI = *SU.getInstr(); | ||||||||
| 1689 | SmallVector<const MachineOperand *, 4> BaseOps; | ||||||||
| 1690 | int64_t Offset; | ||||||||
| 1691 | bool OffsetIsScalable; | ||||||||
| 1692 | unsigned Width; | ||||||||
| 1693 | if (TII->getMemOperandsWithOffsetWidth(MI, BaseOps, Offset, | ||||||||
| 1694 | OffsetIsScalable, Width, TRI)) { | ||||||||
| 1695 | MemOpRecords.push_back(MemOpInfo(&SU, BaseOps, Offset, Width)); | ||||||||
| 1696 | |||||||||
| 1697 | LLVM_DEBUG(dbgs() << "Num BaseOps: " << BaseOps.size() << ", Offset: "do { } while (false) | ||||||||
| 1698 | << Offset << ", OffsetIsScalable: " << OffsetIsScalabledo { } while (false) | ||||||||
| 1699 | << ", Width: " << Width << "\n")do { } while (false); | ||||||||
| 1700 | } | ||||||||
| 1701 | #ifndef NDEBUG1 | ||||||||
| 1702 | for (auto *Op : BaseOps) | ||||||||
| 1703 | assert(Op)((void)0); | ||||||||
| 1704 | #endif | ||||||||
| 1705 | } | ||||||||
| 1706 | } | ||||||||
| 1707 | |||||||||
| 1708 | bool BaseMemOpClusterMutation::groupMemOps( | ||||||||
| 1709 | ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG, | ||||||||
| 1710 | DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups) { | ||||||||
| 1711 | bool FastCluster = | ||||||||
| 1712 | ForceFastCluster || | ||||||||
| 1713 | MemOps.size() * DAG->SUnits.size() / 1000 > FastClusterThreshold; | ||||||||
| 1714 | |||||||||
| 1715 | for (const auto &MemOp : MemOps) { | ||||||||
| 1716 | unsigned ChainPredID = DAG->SUnits.size(); | ||||||||
| 1717 | if (FastCluster) { | ||||||||
| 1718 | for (const SDep &Pred : MemOp.SU->Preds) { | ||||||||
| 1719 | // We only want to cluster the mem ops that have the same ctrl(non-data) | ||||||||
| 1720 | // pred so that they didn't have ctrl dependency for each other. But for | ||||||||
| 1721 | // store instrs, we can still cluster them if the pred is load instr. | ||||||||
| 1722 | if ((Pred.isCtrl() && | ||||||||
| 1723 | (IsLoad || | ||||||||
| 1724 | (Pred.getSUnit() && Pred.getSUnit()->getInstr()->mayStore()))) && | ||||||||
| 1725 | !Pred.isArtificial()) { | ||||||||
| 1726 | ChainPredID = Pred.getSUnit()->NodeNum; | ||||||||
| 1727 | break; | ||||||||
| 1728 | } | ||||||||
| 1729 | } | ||||||||
| 1730 | } else | ||||||||
| 1731 | ChainPredID = 0; | ||||||||
| 1732 | |||||||||
| 1733 | Groups[ChainPredID].push_back(MemOp); | ||||||||
| 1734 | } | ||||||||
| 1735 | return FastCluster; | ||||||||
| 1736 | } | ||||||||
| 1737 | |||||||||
| 1738 | /// Callback from DAG postProcessing to create cluster edges for loads/stores. | ||||||||
| 1739 | void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) { | ||||||||
| 1740 | // Collect all the clusterable loads/stores | ||||||||
| 1741 | SmallVector<MemOpInfo, 32> MemOpRecords; | ||||||||
| 1742 | collectMemOpRecords(DAG->SUnits, MemOpRecords); | ||||||||
| 1743 | |||||||||
| 1744 | if (MemOpRecords.size() < 2) | ||||||||
| 1745 | return; | ||||||||
| 1746 | |||||||||
| 1747 | // Put the loads/stores without dependency into the same group with some | ||||||||
| 1748 | // heuristic if the DAG is too complex to avoid compiling time blow up. | ||||||||
| 1749 | // Notice that, some fusion pair could be lost with this. | ||||||||
| 1750 | DenseMap<unsigned, SmallVector<MemOpInfo, 32>> Groups; | ||||||||
| 1751 | bool FastCluster = groupMemOps(MemOpRecords, DAG, Groups); | ||||||||
| 1752 | |||||||||
| 1753 | for (auto &Group : Groups) { | ||||||||
| 1754 | // Sorting the loads/stores, so that, we can stop the cluster as early as | ||||||||
| 1755 | // possible. | ||||||||
| 1756 | llvm::sort(Group.second); | ||||||||
| 1757 | |||||||||
| 1758 | // Trying to cluster all the neighboring loads/stores. | ||||||||
| 1759 | clusterNeighboringMemOps(Group.second, FastCluster, DAG); | ||||||||
| 1760 | } | ||||||||
| 1761 | } | ||||||||
| 1762 | |||||||||
| 1763 | //===----------------------------------------------------------------------===// | ||||||||
| 1764 | // CopyConstrain - DAG post-processing to encourage copy elimination. | ||||||||
| 1765 | //===----------------------------------------------------------------------===// | ||||||||
| 1766 | |||||||||
| 1767 | namespace { | ||||||||
| 1768 | |||||||||
| 1769 | /// Post-process the DAG to create weak edges from all uses of a copy to | ||||||||
| 1770 | /// the one use that defines the copy's source vreg, most likely an induction | ||||||||
| 1771 | /// variable increment. | ||||||||
| 1772 | class CopyConstrain : public ScheduleDAGMutation { | ||||||||
| 1773 | // Transient state. | ||||||||
| 1774 | SlotIndex RegionBeginIdx; | ||||||||
| 1775 | |||||||||
| 1776 | // RegionEndIdx is the slot index of the last non-debug instruction in the | ||||||||
| 1777 | // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. | ||||||||
| 1778 | SlotIndex RegionEndIdx; | ||||||||
| 1779 | |||||||||
| 1780 | public: | ||||||||
| 1781 | CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} | ||||||||
| 1782 | |||||||||
| 1783 | void apply(ScheduleDAGInstrs *DAGInstrs) override; | ||||||||
| 1784 | |||||||||
| 1785 | protected: | ||||||||
| 1786 | void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); | ||||||||
| 1787 | }; | ||||||||
| 1788 | |||||||||
| 1789 | } // end anonymous namespace | ||||||||
| 1790 | |||||||||
| 1791 | namespace llvm { | ||||||||
| 1792 | |||||||||
| 1793 | std::unique_ptr<ScheduleDAGMutation> | ||||||||
| 1794 | createCopyConstrainDAGMutation(const TargetInstrInfo *TII, | ||||||||
| 1795 | const TargetRegisterInfo *TRI) { | ||||||||
| 1796 | return std::make_unique<CopyConstrain>(TII, TRI); | ||||||||
| 1797 | } | ||||||||
| 1798 | |||||||||
| 1799 | } // end namespace llvm | ||||||||
| 1800 | |||||||||
| 1801 | /// constrainLocalCopy handles two possibilities: | ||||||||
| 1802 | /// 1) Local src: | ||||||||
| 1803 | /// I0: = dst | ||||||||
| 1804 | /// I1: src = ... | ||||||||
| 1805 | /// I2: = dst | ||||||||
| 1806 | /// I3: dst = src (copy) | ||||||||
| 1807 | /// (create pred->succ edges I0->I1, I2->I1) | ||||||||
| 1808 | /// | ||||||||
| 1809 | /// 2) Local copy: | ||||||||
| 1810 | /// I0: dst = src (copy) | ||||||||
| 1811 | /// I1: = dst | ||||||||
| 1812 | /// I2: src = ... | ||||||||
| 1813 | /// I3: = dst | ||||||||
| 1814 | /// (create pred->succ edges I1->I2, I3->I2) | ||||||||
| 1815 | /// | ||||||||
| 1816 | /// Although the MachineScheduler is currently constrained to single blocks, | ||||||||
| 1817 | /// this algorithm should handle extended blocks. An EBB is a set of | ||||||||
| 1818 | /// contiguously numbered blocks such that the previous block in the EBB is | ||||||||
| 1819 | /// always the single predecessor. | ||||||||
| 1820 | void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { | ||||||||
| 1821 | LiveIntervals *LIS = DAG->getLIS(); | ||||||||
| 1822 | MachineInstr *Copy = CopySU->getInstr(); | ||||||||
| 1823 | |||||||||
| 1824 | // Check for pure vreg copies. | ||||||||
| 1825 | const MachineOperand &SrcOp = Copy->getOperand(1); | ||||||||
| 1826 | Register SrcReg = SrcOp.getReg(); | ||||||||
| 1827 | if (!Register::isVirtualRegister(SrcReg) || !SrcOp.readsReg()) | ||||||||
| 1828 | return; | ||||||||
| 1829 | |||||||||
| 1830 | const MachineOperand &DstOp = Copy->getOperand(0); | ||||||||
| 1831 | Register DstReg = DstOp.getReg(); | ||||||||
| 1832 | if (!Register::isVirtualRegister(DstReg) || DstOp.isDead()) | ||||||||
| 1833 | return; | ||||||||
| 1834 | |||||||||
| 1835 | // Check if either the dest or source is local. If it's live across a back | ||||||||
| 1836 | // edge, it's not local. Note that if both vregs are live across the back | ||||||||
| 1837 | // edge, we cannot successfully contrain the copy without cyclic scheduling. | ||||||||
| 1838 | // If both the copy's source and dest are local live intervals, then we | ||||||||
| 1839 | // should treat the dest as the global for the purpose of adding | ||||||||
| 1840 | // constraints. This adds edges from source's other uses to the copy. | ||||||||
| 1841 | unsigned LocalReg = SrcReg; | ||||||||
| 1842 | unsigned GlobalReg = DstReg; | ||||||||
| 1843 | LiveInterval *LocalLI = &LIS->getInterval(LocalReg); | ||||||||
| 1844 | if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { | ||||||||
| 1845 | LocalReg = DstReg; | ||||||||
| 1846 | GlobalReg = SrcReg; | ||||||||
| 1847 | LocalLI = &LIS->getInterval(LocalReg); | ||||||||
| 1848 | if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) | ||||||||
| 1849 | return; | ||||||||
| 1850 | } | ||||||||
| 1851 | LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); | ||||||||
| 1852 | |||||||||
| 1853 | // Find the global segment after the start of the local LI. | ||||||||
| 1854 | LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); | ||||||||
| 1855 | // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a | ||||||||
| 1856 | // local live range. We could create edges from other global uses to the local | ||||||||
| 1857 | // start, but the coalescer should have already eliminated these cases, so | ||||||||
| 1858 | // don't bother dealing with it. | ||||||||
| 1859 | if (GlobalSegment == GlobalLI->end()) | ||||||||
| 1860 | return; | ||||||||
| 1861 | |||||||||
| 1862 | // If GlobalSegment is killed at the LocalLI->start, the call to find() | ||||||||
| 1863 | // returned the next global segment. But if GlobalSegment overlaps with | ||||||||
| 1864 | // LocalLI->start, then advance to the next segment. If a hole in GlobalLI | ||||||||
| 1865 | // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. | ||||||||
| 1866 | if (GlobalSegment->contains(LocalLI->beginIndex())) | ||||||||
| 1867 | ++GlobalSegment; | ||||||||
| 1868 | |||||||||
| 1869 | if (GlobalSegment == GlobalLI->end()) | ||||||||
| 1870 | return; | ||||||||
| 1871 | |||||||||
| 1872 | // Check if GlobalLI contains a hole in the vicinity of LocalLI. | ||||||||
| 1873 | if (GlobalSegment != GlobalLI->begin()) { | ||||||||
| 1874 | // Two address defs have no hole. | ||||||||
| 1875 | if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, | ||||||||
| 1876 | GlobalSegment->start)) { | ||||||||
| 1877 | return; | ||||||||
| 1878 | } | ||||||||
| 1879 | // If the prior global segment may be defined by the same two-address | ||||||||
| 1880 | // instruction that also defines LocalLI, then can't make a hole here. | ||||||||
| 1881 | if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, | ||||||||
| 1882 | LocalLI->beginIndex())) { | ||||||||
| 1883 | return; | ||||||||
| 1884 | } | ||||||||
| 1885 | // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise | ||||||||
| 1886 | // it would be a disconnected component in the live range. | ||||||||
| 1887 | assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&((void)0) | ||||||||
| 1888 | "Disconnected LRG within the scheduling region.")((void)0); | ||||||||
| 1889 | } | ||||||||
| 1890 | MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); | ||||||||
| 1891 | if (!GlobalDef) | ||||||||
| 1892 | return; | ||||||||
| 1893 | |||||||||
| 1894 | SUnit *GlobalSU = DAG->getSUnit(GlobalDef); | ||||||||
| 1895 | if (!GlobalSU) | ||||||||
| 1896 | return; | ||||||||
| 1897 | |||||||||
| 1898 | // GlobalDef is the bottom of the GlobalLI hole. Open the hole by | ||||||||
| 1899 | // constraining the uses of the last local def to precede GlobalDef. | ||||||||
| 1900 | SmallVector<SUnit*,8> LocalUses; | ||||||||
| 1901 | const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); | ||||||||
| 1902 | MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); | ||||||||
| 1903 | SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); | ||||||||
| 1904 | for (const SDep &Succ : LastLocalSU->Succs) { | ||||||||
| 1905 | if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg) | ||||||||
| 1906 | continue; | ||||||||
| 1907 | if (Succ.getSUnit() == GlobalSU) | ||||||||
| 1908 | continue; | ||||||||
| 1909 | if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit())) | ||||||||
| 1910 | return; | ||||||||
| 1911 | LocalUses.push_back(Succ.getSUnit()); | ||||||||
| 1912 | } | ||||||||
| 1913 | // Open the top of the GlobalLI hole by constraining any earlier global uses | ||||||||
| 1914 | // to precede the start of LocalLI. | ||||||||
| 1915 | SmallVector<SUnit*,8> GlobalUses; | ||||||||
| 1916 | MachineInstr *FirstLocalDef = | ||||||||
| 1917 | LIS->getInstructionFromIndex(LocalLI->beginIndex()); | ||||||||
| 1918 | SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); | ||||||||
| 1919 | for (const SDep &Pred : GlobalSU->Preds) { | ||||||||
| 1920 | if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg) | ||||||||
| 1921 | continue; | ||||||||
| 1922 | if (Pred.getSUnit() == FirstLocalSU) | ||||||||
| 1923 | continue; | ||||||||
| 1924 | if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit())) | ||||||||
| 1925 | return; | ||||||||
| 1926 | GlobalUses.push_back(Pred.getSUnit()); | ||||||||
| 1927 | } | ||||||||
| 1928 | LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n")do { } while (false); | ||||||||
| 1929 | // Add the weak edges. | ||||||||
| 1930 | for (SUnit *LU : LocalUses) { | ||||||||
| 1931 | LLVM_DEBUG(dbgs() << " Local use SU(" << LU->NodeNum << ") -> SU("do { } while (false) | ||||||||
| 1932 | << GlobalSU->NodeNum << ")\n")do { } while (false); | ||||||||
| 1933 | DAG->addEdge(GlobalSU, SDep(LU, SDep::Weak)); | ||||||||
| 1934 | } | ||||||||
| 1935 | for (SUnit *GU : GlobalUses) { | ||||||||
| 1936 | LLVM_DEBUG(dbgs() << " Global use SU(" << GU->NodeNum << ") -> SU("do { } while (false) | ||||||||
| 1937 | << FirstLocalSU->NodeNum << ")\n")do { } while (false); | ||||||||
| 1938 | DAG->addEdge(FirstLocalSU, SDep(GU, SDep::Weak)); | ||||||||
| 1939 | } | ||||||||
| 1940 | } | ||||||||
| 1941 | |||||||||
| 1942 | /// Callback from DAG postProcessing to create weak edges to encourage | ||||||||
| 1943 | /// copy elimination. | ||||||||
| 1944 | void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { | ||||||||
| 1945 | ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); | ||||||||
| 1946 | assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals")((void)0); | ||||||||
| 1947 | |||||||||
| 1948 | MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); | ||||||||
| 1949 | if (FirstPos == DAG->end()) | ||||||||
| 1950 | return; | ||||||||
| 1951 | RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); | ||||||||
| 1952 | RegionEndIdx = DAG->getLIS()->getInstructionIndex( | ||||||||
| 1953 | *priorNonDebug(DAG->end(), DAG->begin())); | ||||||||
| 1954 | |||||||||
| 1955 | for (SUnit &SU : DAG->SUnits) { | ||||||||
| 1956 | if (!SU.getInstr()->isCopy()) | ||||||||
| 1957 | continue; | ||||||||
| 1958 | |||||||||
| 1959 | constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG)); | ||||||||
| 1960 | } | ||||||||
| 1961 | } | ||||||||
| 1962 | |||||||||
| 1963 | //===----------------------------------------------------------------------===// | ||||||||
| 1964 | // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler | ||||||||
| 1965 | // and possibly other custom schedulers. | ||||||||
| 1966 | //===----------------------------------------------------------------------===// | ||||||||
| 1967 | |||||||||
| 1968 | static const unsigned InvalidCycle = ~0U; | ||||||||
| 1969 | |||||||||
| 1970 | SchedBoundary::~SchedBoundary() { delete HazardRec; } | ||||||||
| 1971 | |||||||||
| 1972 | /// Given a Count of resource usage and a Latency value, return true if a | ||||||||
| 1973 | /// SchedBoundary becomes resource limited. | ||||||||
| 1974 | /// If we are checking after scheduling a node, we should return true when | ||||||||
| 1975 | /// we just reach the resource limit. | ||||||||
| 1976 | static bool checkResourceLimit(unsigned LFactor, unsigned Count, | ||||||||
| 1977 | unsigned Latency, bool AfterSchedNode) { | ||||||||
| 1978 | int ResCntFactor = (int)(Count - (Latency * LFactor)); | ||||||||
| 1979 | if (AfterSchedNode) | ||||||||
| 1980 | return ResCntFactor >= (int)LFactor; | ||||||||
| 1981 | else | ||||||||
| 1982 | return ResCntFactor > (int)LFactor; | ||||||||
| 1983 | } | ||||||||
| 1984 | |||||||||
| 1985 | void SchedBoundary::reset() { | ||||||||
| 1986 | // A new HazardRec is created for each DAG and owned by SchedBoundary. | ||||||||
| 1987 | // Destroying and reconstructing it is very expensive though. So keep | ||||||||
| 1988 | // invalid, placeholder HazardRecs. | ||||||||
| 1989 | if (HazardRec && HazardRec->isEnabled()) { | ||||||||
| 1990 | delete HazardRec; | ||||||||
| 1991 | HazardRec = nullptr; | ||||||||
| 1992 | } | ||||||||
| 1993 | Available.clear(); | ||||||||
| 1994 | Pending.clear(); | ||||||||
| 1995 | CheckPending = false; | ||||||||
| 1996 | CurrCycle = 0; | ||||||||
| 1997 | CurrMOps = 0; | ||||||||
| 1998 | MinReadyCycle = std::numeric_limits<unsigned>::max(); | ||||||||
| 1999 | ExpectedLatency = 0; | ||||||||
| 2000 | DependentLatency = 0; | ||||||||
| 2001 | RetiredMOps = 0; | ||||||||
| 2002 | MaxExecutedResCount = 0; | ||||||||
| 2003 | ZoneCritResIdx = 0; | ||||||||
| 2004 | IsResourceLimited = false; | ||||||||
| 2005 | ReservedCycles.clear(); | ||||||||
| 2006 | ReservedCyclesIndex.clear(); | ||||||||
| 2007 | ResourceGroupSubUnitMasks.clear(); | ||||||||
| 2008 | #ifndef NDEBUG1 | ||||||||
| 2009 | // Track the maximum number of stall cycles that could arise either from the | ||||||||
| 2010 | // latency of a DAG edge or the number of cycles that a processor resource is | ||||||||
| 2011 | // reserved (SchedBoundary::ReservedCycles). | ||||||||
| 2012 | MaxObservedStall = 0; | ||||||||
| 2013 | #endif | ||||||||
| 2014 | // Reserve a zero-count for invalid CritResIdx. | ||||||||
| 2015 | ExecutedResCounts.resize(1); | ||||||||
| 2016 | assert(!ExecutedResCounts[0] && "nonzero count for bad resource")((void)0); | ||||||||
| 2017 | } | ||||||||
| 2018 | |||||||||
| 2019 | void SchedRemainder:: | ||||||||
| 2020 | init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { | ||||||||
| 2021 | reset(); | ||||||||
| 2022 | if (!SchedModel->hasInstrSchedModel()) | ||||||||
| 2023 | return; | ||||||||
| 2024 | RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); | ||||||||
| 2025 | for (SUnit &SU : DAG->SUnits) { | ||||||||
| 2026 | const MCSchedClassDesc *SC = DAG->getSchedClass(&SU); | ||||||||
| 2027 | RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC) | ||||||||
| 2028 | * SchedModel->getMicroOpFactor(); | ||||||||
| 2029 | for (TargetSchedModel::ProcResIter | ||||||||
| 2030 | PI = SchedModel->getWriteProcResBegin(SC), | ||||||||
| 2031 | PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { | ||||||||
| 2032 | unsigned PIdx = PI->ProcResourceIdx; | ||||||||
| 2033 | unsigned Factor = SchedModel->getResourceFactor(PIdx); | ||||||||
| 2034 | RemainingCounts[PIdx] += (Factor * PI->Cycles); | ||||||||
| 2035 | } | ||||||||
| 2036 | } | ||||||||
| 2037 | } | ||||||||
| 2038 | |||||||||
| 2039 | void SchedBoundary:: | ||||||||
| 2040 | init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { | ||||||||
| 2041 | reset(); | ||||||||
| 2042 | DAG = dag; | ||||||||
| 2043 | SchedModel = smodel; | ||||||||
| 2044 | Rem = rem; | ||||||||
| 2045 | if (SchedModel->hasInstrSchedModel()) { | ||||||||
| 2046 | unsigned ResourceCount = SchedModel->getNumProcResourceKinds(); | ||||||||
| 2047 | ReservedCyclesIndex.resize(ResourceCount); | ||||||||
| 2048 | ExecutedResCounts.resize(ResourceCount); | ||||||||
| 2049 | ResourceGroupSubUnitMasks.resize(ResourceCount, APInt(ResourceCount, 0)); | ||||||||
| 2050 | unsigned NumUnits = 0; | ||||||||
| 2051 | |||||||||
| 2052 | for (unsigned i = 0; i < ResourceCount; ++i) { | ||||||||
| 2053 | ReservedCyclesIndex[i] = NumUnits; | ||||||||
| 2054 | NumUnits += SchedModel->getProcResource(i)->NumUnits; | ||||||||
| 2055 | if (isUnbufferedGroup(i)) { | ||||||||
| 2056 | auto SubUnits = SchedModel->getProcResource(i)->SubUnitsIdxBegin; | ||||||||
| 2057 | for (unsigned U = 0, UE = SchedModel->getProcResource(i)->NumUnits; | ||||||||
| 2058 | U != UE; ++U) | ||||||||
| 2059 | ResourceGroupSubUnitMasks[i].setBit(SubUnits[U]); | ||||||||
| 2060 | } | ||||||||
| 2061 | } | ||||||||
| 2062 | |||||||||
| 2063 | ReservedCycles.resize(NumUnits, InvalidCycle); | ||||||||
| 2064 | } | ||||||||
| 2065 | } | ||||||||
| 2066 | |||||||||
| 2067 | /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat | ||||||||
| 2068 | /// these "soft stalls" differently than the hard stall cycles based on CPU | ||||||||
| 2069 | /// resources and computed by checkHazard(). A fully in-order model | ||||||||
| 2070 | /// (MicroOpBufferSize==0) will not make use of this since instructions are not | ||||||||
| 2071 | /// available for scheduling until they are ready. However, a weaker in-order | ||||||||
| 2072 | /// model may use this for heuristics. For example, if a processor has in-order | ||||||||
| 2073 | /// behavior when reading certain resources, this may come into play. | ||||||||
| 2074 | unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { | ||||||||
| 2075 | if (!SU->isUnbuffered) | ||||||||
| 2076 | return 0; | ||||||||
| 2077 | |||||||||
| 2078 | unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); | ||||||||
| 2079 | if (ReadyCycle > CurrCycle) | ||||||||
| 2080 | return ReadyCycle - CurrCycle; | ||||||||
| 2081 | return 0; | ||||||||
| 2082 | } | ||||||||
| 2083 | |||||||||
| 2084 | /// Compute the next cycle at which the given processor resource unit | ||||||||
| 2085 | /// can be scheduled. | ||||||||
| 2086 | unsigned SchedBoundary::getNextResourceCycleByInstance(unsigned InstanceIdx, | ||||||||
| 2087 | unsigned Cycles) { | ||||||||
| 2088 | unsigned NextUnreserved = ReservedCycles[InstanceIdx]; | ||||||||
| 2089 | // If this resource has never been used, always return cycle zero. | ||||||||
| 2090 | if (NextUnreserved == InvalidCycle) | ||||||||
| 2091 | return 0; | ||||||||
| 2092 | // For bottom-up scheduling add the cycles needed for the current operation. | ||||||||
| 2093 | if (!isTop()) | ||||||||
| 2094 | NextUnreserved += Cycles; | ||||||||
| 2095 | return NextUnreserved; | ||||||||
| 2096 | } | ||||||||
| 2097 | |||||||||
| 2098 | /// Compute the next cycle at which the given processor resource can be | ||||||||
| 2099 | /// scheduled. Returns the next cycle and the index of the processor resource | ||||||||
| 2100 | /// instance in the reserved cycles vector. | ||||||||
| 2101 | std::pair<unsigned, unsigned> | ||||||||
| 2102 | SchedBoundary::getNextResourceCycle(const MCSchedClassDesc *SC, unsigned PIdx, | ||||||||
| 2103 | unsigned Cycles) { | ||||||||
| 2104 | |||||||||
| 2105 | unsigned MinNextUnreserved = InvalidCycle; | ||||||||
| 2106 | unsigned InstanceIdx = 0; | ||||||||
| 2107 | unsigned StartIndex = ReservedCyclesIndex[PIdx]; | ||||||||
| 2108 | unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits; | ||||||||
| 2109 | assert(NumberOfInstances > 0 &&((void)0) | ||||||||
| 2110 | "Cannot have zero instances of a ProcResource")((void)0); | ||||||||
| 2111 | |||||||||
| 2112 | if (isUnbufferedGroup(PIdx)) { | ||||||||
| 2113 | // If any subunits are used by the instruction, report that the resource | ||||||||
| 2114 | // group is available at 0, effectively removing the group record from | ||||||||
| 2115 | // hazarding and basing the hazarding decisions on the subunit records. | ||||||||
| 2116 | // Otherwise, choose the first available instance from among the subunits. | ||||||||
| 2117 | // Specifications which assign cycles to both the subunits and the group or | ||||||||
| 2118 | // which use an unbuffered group with buffered subunits will appear to | ||||||||
| 2119 | // schedule strangely. In the first case, the additional cycles for the | ||||||||
| 2120 | // group will be ignored. In the second, the group will be ignored | ||||||||
| 2121 | // entirely. | ||||||||
| 2122 | for (const MCWriteProcResEntry &PE : | ||||||||
| 2123 | make_range(SchedModel->getWriteProcResBegin(SC), | ||||||||
| 2124 | SchedModel->getWriteProcResEnd(SC))) | ||||||||
| 2125 | if (ResourceGroupSubUnitMasks[PIdx][PE.ProcResourceIdx]) | ||||||||
| 2126 | return std::make_pair(0u, StartIndex); | ||||||||
| 2127 | |||||||||
| 2128 | auto SubUnits = SchedModel->getProcResource(PIdx)->SubUnitsIdxBegin; | ||||||||
| 2129 | for (unsigned I = 0, End = NumberOfInstances; I < End; ++I) { | ||||||||
| 2130 | unsigned NextUnreserved, NextInstanceIdx; | ||||||||
| 2131 | std::tie(NextUnreserved, NextInstanceIdx) = | ||||||||
| 2132 | getNextResourceCycle(SC, SubUnits[I], Cycles); | ||||||||
| 2133 | if (MinNextUnreserved > NextUnreserved) { | ||||||||
| 2134 | InstanceIdx = NextInstanceIdx; | ||||||||
| 2135 | MinNextUnreserved = NextUnreserved; | ||||||||
| 2136 | } | ||||||||
| 2137 | } | ||||||||
| 2138 | return std::make_pair(MinNextUnreserved, InstanceIdx); | ||||||||
| 2139 | } | ||||||||
| 2140 | |||||||||
| 2141 | for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End; | ||||||||
| 2142 | ++I) { | ||||||||
| 2143 | unsigned NextUnreserved = getNextResourceCycleByInstance(I, Cycles); | ||||||||
| 2144 | if (MinNextUnreserved > NextUnreserved) { | ||||||||
| 2145 | InstanceIdx = I; | ||||||||
| 2146 | MinNextUnreserved = NextUnreserved; | ||||||||
| 2147 | } | ||||||||
| 2148 | } | ||||||||
| 2149 | return std::make_pair(MinNextUnreserved, InstanceIdx); | ||||||||
| 2150 | } | ||||||||
| 2151 | |||||||||
| 2152 | /// Does this SU have a hazard within the current instruction group. | ||||||||
| 2153 | /// | ||||||||
| 2154 | /// The scheduler supports two modes of hazard recognition. The first is the | ||||||||
| 2155 | /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that | ||||||||
| 2156 | /// supports highly complicated in-order reservation tables | ||||||||
| 2157 | /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic. | ||||||||
| 2158 | /// | ||||||||
| 2159 | /// The second is a streamlined mechanism that checks for hazards based on | ||||||||
| 2160 | /// simple counters that the scheduler itself maintains. It explicitly checks | ||||||||
| 2161 | /// for instruction dispatch limitations, including the number of micro-ops that | ||||||||
| 2162 | /// can dispatch per cycle. | ||||||||
| 2163 | /// | ||||||||
| 2164 | /// TODO: Also check whether the SU must start a new group. | ||||||||
| 2165 | bool SchedBoundary::checkHazard(SUnit *SU) { | ||||||||
| 2166 | if (HazardRec->isEnabled() | ||||||||
| 2167 | && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { | ||||||||
| 2168 | return true; | ||||||||
| 2169 | } | ||||||||
| 2170 | |||||||||
| 2171 | unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); | ||||||||
| 2172 | if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { | ||||||||
| 2173 | LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops="do { } while (false) | ||||||||
| 2174 | << SchedModel->getNumMicroOps(SU->getInstr()) << '\n')do { } while (false); | ||||||||
| 2175 | return true; | ||||||||
| 2176 | } | ||||||||
| 2177 | |||||||||
| 2178 | if (CurrMOps > 0 && | ||||||||
| 2179 | ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) || | ||||||||
| 2180 | (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) { | ||||||||
| 2181 | LLVM_DEBUG(dbgs() << " hazard: SU(" << SU->NodeNum << ") must "do { } while (false) | ||||||||
| 2182 | << (isTop() ? "begin" : "end") << " group\n")do { } while (false); | ||||||||
| 2183 | return true; | ||||||||
| 2184 | } | ||||||||
| 2185 | |||||||||
| 2186 | if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { | ||||||||
| 2187 | const MCSchedClassDesc *SC = DAG->getSchedClass(SU); | ||||||||
| 2188 | for (const MCWriteProcResEntry &PE : | ||||||||
| 2189 | make_range(SchedModel->getWriteProcResBegin(SC), | ||||||||
| 2190 | SchedModel->getWriteProcResEnd(SC))) { | ||||||||
| 2191 | unsigned ResIdx = PE.ProcResourceIdx; | ||||||||
| 2192 | unsigned Cycles = PE.Cycles; | ||||||||
| 2193 | unsigned NRCycle, InstanceIdx; | ||||||||
| 2194 | std::tie(NRCycle, InstanceIdx) = getNextResourceCycle(SC, ResIdx, Cycles); | ||||||||
| 2195 | if (NRCycle > CurrCycle) { | ||||||||
| 2196 | #ifndef NDEBUG1 | ||||||||
| 2197 | MaxObservedStall = std::max(Cycles, MaxObservedStall); | ||||||||
| 2198 | #endif | ||||||||
| 2199 | LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") "do { } while (false) | ||||||||
| 2200 | << SchedModel->getResourceName(ResIdx)do { } while (false) | ||||||||
| 2201 | << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx] << ']'do { } while (false) | ||||||||
| 2202 | << "=" << NRCycle << "c\n")do { } while (false); | ||||||||
| 2203 | return true; | ||||||||
| 2204 | } | ||||||||
| 2205 | } | ||||||||
| 2206 | } | ||||||||
| 2207 | return false; | ||||||||
| 2208 | } | ||||||||
| 2209 | |||||||||
| 2210 | // Find the unscheduled node in ReadySUs with the highest latency. | ||||||||
| 2211 | unsigned SchedBoundary:: | ||||||||
| 2212 | findMaxLatency(ArrayRef<SUnit*> ReadySUs) { | ||||||||
| 2213 | SUnit *LateSU = nullptr; | ||||||||
| 2214 | unsigned RemLatency = 0; | ||||||||
| 2215 | for (SUnit *SU : ReadySUs) { | ||||||||
| 2216 | unsigned L = getUnscheduledLatency(SU); | ||||||||
| 2217 | if (L > RemLatency) { | ||||||||
| 2218 | RemLatency = L; | ||||||||
| 2219 | LateSU = SU; | ||||||||
| 2220 | } | ||||||||
| 2221 | } | ||||||||
| 2222 | if (LateSU) { | ||||||||
| 2223 | LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU("do { } while (false) | ||||||||
| 2224 | << LateSU->NodeNum << ") " << RemLatency << "c\n")do { } while (false); | ||||||||
| 2225 | } | ||||||||
| 2226 | return RemLatency; | ||||||||
| 2227 | } | ||||||||
| 2228 | |||||||||
| 2229 | // Count resources in this zone and the remaining unscheduled | ||||||||
| 2230 | // instruction. Return the max count, scaled. Set OtherCritIdx to the critical | ||||||||
| 2231 | // resource index, or zero if the zone is issue limited. | ||||||||
| 2232 | unsigned SchedBoundary:: | ||||||||
| 2233 | getOtherResourceCount(unsigned &OtherCritIdx) { | ||||||||
| 2234 | OtherCritIdx = 0; | ||||||||
| 2235 | if (!SchedModel->hasInstrSchedModel()) | ||||||||
| 2236 | return 0; | ||||||||
| 2237 | |||||||||
| 2238 | unsigned OtherCritCount = Rem->RemIssueCount | ||||||||
| 2239 | + (RetiredMOps * SchedModel->getMicroOpFactor()); | ||||||||
| 2240 | LLVM_DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: "do { } while (false) | ||||||||
| 2241 | << OtherCritCount / SchedModel->getMicroOpFactor() << '\n')do { } while (false); | ||||||||
| 2242 | for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); | ||||||||
| 2243 | PIdx != PEnd; ++PIdx) { | ||||||||
| 2244 | unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; | ||||||||
| 2245 | if (OtherCount > OtherCritCount) { | ||||||||
| 2246 | OtherCritCount = OtherCount; | ||||||||
| 2247 | OtherCritIdx = PIdx; | ||||||||
| 2248 | } | ||||||||
| 2249 | } | ||||||||
| 2250 | if (OtherCritIdx) { | ||||||||
| 2251 | LLVM_DEBUG(do { } while (false) | ||||||||
| 2252 | dbgs() << " " << Available.getName() << " + Remain CritRes: "do { } while (false) | ||||||||
| 2253 | << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)do { } while (false) | ||||||||
| 2254 | << " " << SchedModel->getResourceName(OtherCritIdx) << "\n")do { } while (false); | ||||||||
| 2255 | } | ||||||||
| 2256 | return OtherCritCount; | ||||||||
| 2257 | } | ||||||||
| 2258 | |||||||||
| 2259 | void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle, bool InPQueue, | ||||||||
| 2260 | unsigned Idx) { | ||||||||
| 2261 | assert(SU->getInstr() && "Scheduled SUnit must have instr")((void)0); | ||||||||
| 2262 | |||||||||
| 2263 | #ifndef NDEBUG1 | ||||||||
| 2264 | // ReadyCycle was been bumped up to the CurrCycle when this node was | ||||||||
| 2265 | // scheduled, but CurrCycle may have been eagerly advanced immediately after | ||||||||
| 2266 | // scheduling, so may now be greater than ReadyCycle. | ||||||||
| 2267 | if (ReadyCycle > CurrCycle) | ||||||||
| 2268 | MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); | ||||||||
| 2269 | #endif | ||||||||
| 2270 | |||||||||
| 2271 | if (ReadyCycle < MinReadyCycle) | ||||||||
| 2272 | MinReadyCycle = ReadyCycle; | ||||||||
| 2273 | |||||||||
| 2274 | // Check for interlocks first. For the purpose of other heuristics, an | ||||||||
| 2275 | // instruction that cannot issue appears as if it's not in the ReadyQueue. | ||||||||
| 2276 | bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; | ||||||||
| 2277 | bool HazardDetected = (!IsBuffered && ReadyCycle > CurrCycle) || | ||||||||
| 2278 | checkHazard(SU) || (Available.size() >= ReadyListLimit); | ||||||||
| 2279 | |||||||||
| 2280 | if (!HazardDetected) { | ||||||||
| 2281 | Available.push(SU); | ||||||||
| 2282 | |||||||||
| 2283 | if (InPQueue) | ||||||||
| 2284 | Pending.remove(Pending.begin() + Idx); | ||||||||
| 2285 | return; | ||||||||
| 2286 | } | ||||||||
| 2287 | |||||||||
| 2288 | if (!InPQueue) | ||||||||
| 2289 | Pending.push(SU); | ||||||||
| 2290 | } | ||||||||
| 2291 | |||||||||
| 2292 | /// Move the boundary of scheduled code by one cycle. | ||||||||
| 2293 | void SchedBoundary::bumpCycle(unsigned NextCycle) { | ||||||||
| 2294 | if (SchedModel->getMicroOpBufferSize() == 0) { | ||||||||
| 2295 | assert(MinReadyCycle < std::numeric_limits<unsigned>::max() &&((void)0) | ||||||||
| 2296 | "MinReadyCycle uninitialized")((void)0); | ||||||||
| 2297 | if (MinReadyCycle > NextCycle) | ||||||||
| 2298 | NextCycle = MinReadyCycle; | ||||||||
| 2299 | } | ||||||||
| 2300 | // Update the current micro-ops, which will issue in the next cycle. | ||||||||
| 2301 | unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); | ||||||||
| 2302 | CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; | ||||||||
| 2303 | |||||||||
| 2304 | // Decrement DependentLatency based on the next cycle. | ||||||||
| 2305 | if ((NextCycle - CurrCycle) > DependentLatency) | ||||||||
| 2306 | DependentLatency = 0; | ||||||||
| 2307 | else | ||||||||
| 2308 | DependentLatency -= (NextCycle - CurrCycle); | ||||||||
| 2309 | |||||||||
| 2310 | if (!HazardRec->isEnabled()) { | ||||||||
| 2311 | // Bypass HazardRec virtual calls. | ||||||||
| 2312 | CurrCycle = NextCycle; | ||||||||
| 2313 | } else { | ||||||||
| 2314 | // Bypass getHazardType calls in case of long latency. | ||||||||
| 2315 | for (; CurrCycle != NextCycle; ++CurrCycle) { | ||||||||
| 2316 | if (isTop()) | ||||||||
| 2317 | HazardRec->AdvanceCycle(); | ||||||||
| 2318 | else | ||||||||
| 2319 | HazardRec->RecedeCycle(); | ||||||||
| 2320 | } | ||||||||
| 2321 | } | ||||||||
| 2322 | CheckPending = true; | ||||||||
| 2323 | IsResourceLimited = | ||||||||
| 2324 | checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), | ||||||||
| 2325 | getScheduledLatency(), true); | ||||||||
| 2326 | |||||||||
| 2327 | LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName()do { } while (false) | ||||||||
| 2328 | << '\n')do { } while (false); | ||||||||
| 2329 | } | ||||||||
| 2330 | |||||||||
| 2331 | void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { | ||||||||
| 2332 | ExecutedResCounts[PIdx] += Count; | ||||||||
| 2333 | if (ExecutedResCounts[PIdx] > MaxExecutedResCount) | ||||||||
| 2334 | MaxExecutedResCount = ExecutedResCounts[PIdx]; | ||||||||
| 2335 | } | ||||||||
| 2336 | |||||||||
| 2337 | /// Add the given processor resource to this scheduled zone. | ||||||||
| 2338 | /// | ||||||||
| 2339 | /// \param Cycles indicates the number of consecutive (non-pipelined) cycles | ||||||||
| 2340 | /// during which this resource is consumed. | ||||||||
| 2341 | /// | ||||||||
| 2342 | /// \return the next cycle at which the instruction may execute without | ||||||||
| 2343 | /// oversubscribing resources. | ||||||||
| 2344 | unsigned SchedBoundary::countResource(const MCSchedClassDesc *SC, unsigned PIdx, | ||||||||
| 2345 | unsigned Cycles, unsigned NextCycle) { | ||||||||
| 2346 | unsigned Factor = SchedModel->getResourceFactor(PIdx); | ||||||||
| 2347 | unsigned Count = Factor * Cycles; | ||||||||
| 2348 | LLVM_DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) << " +"do { } while (false) | ||||||||
| 2349 | << Cycles << "x" << Factor << "u\n")do { } while (false); | ||||||||
| 2350 | |||||||||
| 2351 | // Update Executed resources counts. | ||||||||
| 2352 | incExecutedResources(PIdx, Count); | ||||||||
| 2353 | assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted")((void)0); | ||||||||
| 2354 | Rem->RemainingCounts[PIdx] -= Count; | ||||||||
| 2355 | |||||||||
| 2356 | // Check if this resource exceeds the current critical resource. If so, it | ||||||||
| 2357 | // becomes the critical resource. | ||||||||
| 2358 | if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { | ||||||||
| 2359 | ZoneCritResIdx = PIdx; | ||||||||
| 2360 | LLVM_DEBUG(dbgs() << " *** Critical resource "do { } while (false) | ||||||||
| 2361 | << SchedModel->getResourceName(PIdx) << ": "do { } while (false) | ||||||||
| 2362 | << getResourceCount(PIdx) / SchedModel->getLatencyFactor()do { } while (false) | ||||||||
| 2363 | << "c\n")do { } while (false); | ||||||||
| 2364 | } | ||||||||
| 2365 | // For reserved resources, record the highest cycle using the resource. | ||||||||
| 2366 | unsigned NextAvailable, InstanceIdx; | ||||||||
| 2367 | std::tie(NextAvailable, InstanceIdx) = getNextResourceCycle(SC, PIdx, Cycles); | ||||||||
| 2368 | if (NextAvailable > CurrCycle) { | ||||||||
| 2369 | LLVM_DEBUG(dbgs() << " Resource conflict: "do { } while (false) | ||||||||
| 2370 | << SchedModel->getResourceName(PIdx)do { } while (false) | ||||||||
| 2371 | << '[' << InstanceIdx - ReservedCyclesIndex[PIdx] << ']'do { } while (false) | ||||||||
| 2372 | << " reserved until @" << NextAvailable << "\n")do { } while (false); | ||||||||
| 2373 | } | ||||||||
| 2374 | return NextAvailable; | ||||||||
| 2375 | } | ||||||||
| 2376 | |||||||||
| 2377 | /// Move the boundary of scheduled code by one SUnit. | ||||||||
| 2378 | void SchedBoundary::bumpNode(SUnit *SU) { | ||||||||
| 2379 | // Update the reservation table. | ||||||||
| 2380 | if (HazardRec->isEnabled()) { | ||||||||
| 2381 | if (!isTop() && SU->isCall) { | ||||||||
| 2382 | // Calls are scheduled with their preceding instructions. For bottom-up | ||||||||
| 2383 | // scheduling, clear the pipeline state before emitting. | ||||||||
| 2384 | HazardRec->Reset(); | ||||||||
| 2385 | } | ||||||||
| 2386 | HazardRec->EmitInstruction(SU); | ||||||||
| 2387 | // Scheduling an instruction may have made pending instructions available. | ||||||||
| 2388 | CheckPending = true; | ||||||||
| 2389 | } | ||||||||
| 2390 | // checkHazard should prevent scheduling multiple instructions per cycle that | ||||||||
| 2391 | // exceed the issue width. | ||||||||
| 2392 | const MCSchedClassDesc *SC = DAG->getSchedClass(SU); | ||||||||
| 2393 | unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); | ||||||||
| 2394 | assert(((void)0) | ||||||||
| 2395 | (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&((void)0) | ||||||||
| 2396 | "Cannot schedule this instruction's MicroOps in the current cycle.")((void)0); | ||||||||
| 2397 | |||||||||
| 2398 | unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); | ||||||||
| 2399 | LLVM_DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n")do { } while (false); | ||||||||
| 2400 | |||||||||
| 2401 | unsigned NextCycle = CurrCycle; | ||||||||
| 2402 | switch (SchedModel->getMicroOpBufferSize()) { | ||||||||
| 2403 | case 0: | ||||||||
| 2404 | assert(ReadyCycle <= CurrCycle && "Broken PendingQueue")((void)0); | ||||||||
| 2405 | break; | ||||||||
| 2406 | case 1: | ||||||||
| 2407 | if (ReadyCycle > NextCycle) { | ||||||||
| 2408 | NextCycle = ReadyCycle; | ||||||||
| 2409 | LLVM_DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n")do { } while (false); | ||||||||
| 2410 | } | ||||||||
| 2411 | break; | ||||||||
| 2412 | default: | ||||||||
| 2413 | // We don't currently model the OOO reorder buffer, so consider all | ||||||||
| 2414 | // scheduled MOps to be "retired". We do loosely model in-order resource | ||||||||
| 2415 | // latency. If this instruction uses an in-order resource, account for any | ||||||||
| 2416 | // likely stall cycles. | ||||||||
| 2417 | if (SU->isUnbuffered && ReadyCycle > NextCycle) | ||||||||
| 2418 | NextCycle = ReadyCycle; | ||||||||
| 2419 | break; | ||||||||
| 2420 | } | ||||||||
| 2421 | RetiredMOps += IncMOps; | ||||||||
| 2422 | |||||||||
| 2423 | // Update resource counts and critical resource. | ||||||||
| 2424 | if (SchedModel->hasInstrSchedModel()) { | ||||||||
| 2425 | unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); | ||||||||
| 2426 | assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted")((void)0); | ||||||||
| 2427 | Rem->RemIssueCount -= DecRemIssue; | ||||||||
| 2428 | if (ZoneCritResIdx) { | ||||||||
| 2429 | // Scale scheduled micro-ops for comparing with the critical resource. | ||||||||
| 2430 | unsigned ScaledMOps = | ||||||||
| 2431 | RetiredMOps * SchedModel->getMicroOpFactor(); | ||||||||
| 2432 | |||||||||
| 2433 | // If scaled micro-ops are now more than the previous critical resource by | ||||||||
| 2434 | // a full cycle, then micro-ops issue becomes critical. | ||||||||
| 2435 | if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) | ||||||||
| 2436 | >= (int)SchedModel->getLatencyFactor()) { | ||||||||
| 2437 | ZoneCritResIdx = 0; | ||||||||
| 2438 | LLVM_DEBUG(dbgs() << " *** Critical resource NumMicroOps: "do { } while (false) | ||||||||
| 2439 | << ScaledMOps / SchedModel->getLatencyFactor()do { } while (false) | ||||||||
| 2440 | << "c\n")do { } while (false); | ||||||||
| 2441 | } | ||||||||
| 2442 | } | ||||||||
| 2443 | for (TargetSchedModel::ProcResIter | ||||||||
| 2444 | PI = SchedModel->getWriteProcResBegin(SC), | ||||||||
| 2445 | PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { | ||||||||
| 2446 | unsigned RCycle = | ||||||||
| 2447 | countResource(SC, PI->ProcResourceIdx, PI->Cycles, NextCycle); | ||||||||
| 2448 | if (RCycle > NextCycle) | ||||||||
| 2449 | NextCycle = RCycle; | ||||||||
| 2450 | } | ||||||||
| 2451 | if (SU->hasReservedResource) { | ||||||||
| 2452 | // For reserved resources, record the highest cycle using the resource. | ||||||||
| 2453 | // For top-down scheduling, this is the cycle in which we schedule this | ||||||||
| 2454 | // instruction plus the number of cycles the operations reserves the | ||||||||
| 2455 | // resource. For bottom-up is it simply the instruction's cycle. | ||||||||
| 2456 | for (TargetSchedModel::ProcResIter | ||||||||
| 2457 | PI = SchedModel->getWriteProcResBegin(SC), | ||||||||
| 2458 | PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { | ||||||||
| 2459 | unsigned PIdx = PI->ProcResourceIdx; | ||||||||
| 2460 | if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { | ||||||||
| 2461 | unsigned ReservedUntil, InstanceIdx; | ||||||||
| 2462 | std::tie(ReservedUntil, InstanceIdx) = | ||||||||
| 2463 | getNextResourceCycle(SC, PIdx, 0); | ||||||||
| 2464 | if (isTop()) { | ||||||||
| 2465 | ReservedCycles[InstanceIdx] = | ||||||||
| 2466 | std::max(ReservedUntil, NextCycle + PI->Cycles); | ||||||||
| 2467 | } else | ||||||||
| 2468 | ReservedCycles[InstanceIdx] = NextCycle; | ||||||||
| 2469 | } | ||||||||
| 2470 | } | ||||||||
| 2471 | } | ||||||||
| 2472 | } | ||||||||
| 2473 | // Update ExpectedLatency and DependentLatency. | ||||||||
| 2474 | unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; | ||||||||
| 2475 | unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; | ||||||||
| 2476 | if (SU->getDepth() > TopLatency) { | ||||||||
| 2477 | TopLatency = SU->getDepth(); | ||||||||
| 2478 | LLVM_DEBUG(dbgs() << " " << Available.getName() << " TopLatency SU("do { } while (false) | ||||||||
| 2479 | << SU->NodeNum << ") " << TopLatency << "c\n")do { } while (false); | ||||||||
| 2480 | } | ||||||||
| 2481 | if (SU->getHeight() > BotLatency) { | ||||||||
| 2482 | BotLatency = SU->getHeight(); | ||||||||
| 2483 | LLVM_DEBUG(dbgs() << " " << Available.getName() << " BotLatency SU("do { } while (false) | ||||||||
| 2484 | << SU->NodeNum << ") " << BotLatency << "c\n")do { } while (false); | ||||||||
| 2485 | } | ||||||||
| 2486 | // If we stall for any reason, bump the cycle. | ||||||||
| 2487 | if (NextCycle > CurrCycle) | ||||||||
| 2488 | bumpCycle(NextCycle); | ||||||||
| 2489 | else | ||||||||
| 2490 | // After updating ZoneCritResIdx and ExpectedLatency, check if we're | ||||||||
| 2491 | // resource limited. If a stall occurred, bumpCycle does this. | ||||||||
| 2492 | IsResourceLimited = | ||||||||
| 2493 | checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), | ||||||||
| 2494 | getScheduledLatency(), true); | ||||||||
| 2495 | |||||||||
| 2496 | // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle | ||||||||
| 2497 | // resets CurrMOps. Loop to handle instructions with more MOps than issue in | ||||||||
| 2498 | // one cycle. Since we commonly reach the max MOps here, opportunistically | ||||||||
| 2499 | // bump the cycle to avoid uselessly checking everything in the readyQ. | ||||||||
| 2500 | CurrMOps += IncMOps; | ||||||||
| 2501 | |||||||||
| 2502 | // Bump the cycle count for issue group constraints. | ||||||||
| 2503 | // This must be done after NextCycle has been adjust for all other stalls. | ||||||||
| 2504 | // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set | ||||||||
| 2505 | // currCycle to X. | ||||||||
| 2506 | if ((isTop() && SchedModel->mustEndGroup(SU->getInstr())) || | ||||||||
| 2507 | (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) { | ||||||||
| 2508 | LLVM_DEBUG(dbgs() << " Bump cycle to " << (isTop() ? "end" : "begin")do { } while (false) | ||||||||
| 2509 | << " group\n")do { } while (false); | ||||||||
| 2510 | bumpCycle(++NextCycle); | ||||||||
| 2511 | } | ||||||||
| 2512 | |||||||||
| 2513 | while (CurrMOps >= SchedModel->getIssueWidth()) { | ||||||||
| 2514 | LLVM_DEBUG(dbgs() << " *** Max MOps " << CurrMOps << " at cycle "do { } while (false) | ||||||||
| 2515 | << CurrCycle << '\n')do { } while (false); | ||||||||
| 2516 | bumpCycle(++NextCycle); | ||||||||
| 2517 | } | ||||||||
| 2518 | LLVM_DEBUG(dumpScheduledState())do { } while (false); | ||||||||
| 2519 | } | ||||||||
| 2520 | |||||||||
| 2521 | /// Release pending ready nodes in to the available queue. This makes them | ||||||||
| 2522 | /// visible to heuristics. | ||||||||
| 2523 | void SchedBoundary::releasePending() { | ||||||||
| 2524 | // If the available queue is empty, it is safe to reset MinReadyCycle. | ||||||||
| 2525 | if (Available.empty()) | ||||||||
| 2526 | MinReadyCycle = std::numeric_limits<unsigned>::max(); | ||||||||
| 2527 | |||||||||
| 2528 | // Check to see if any of the pending instructions are ready to issue. If | ||||||||
| 2529 | // so, add them to the available queue. | ||||||||
| 2530 | for (unsigned I = 0, E = Pending.size(); I < E; ++I) { | ||||||||
| 2531 | SUnit *SU = *(Pending.begin() + I); | ||||||||
| 2532 | unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; | ||||||||
| 2533 | |||||||||
| 2534 | if (ReadyCycle < MinReadyCycle) | ||||||||
| 2535 | MinReadyCycle = ReadyCycle; | ||||||||
| 2536 | |||||||||
| 2537 | if (Available.size() >= ReadyListLimit) | ||||||||
| 2538 | break; | ||||||||
| 2539 | |||||||||
| 2540 | releaseNode(SU, ReadyCycle, true, I); | ||||||||
| 2541 | if (E != Pending.size()) { | ||||||||
| 2542 | --I; | ||||||||
| 2543 | --E; | ||||||||
| 2544 | } | ||||||||
| 2545 | } | ||||||||
| 2546 | CheckPending = false; | ||||||||
| 2547 | } | ||||||||
| 2548 | |||||||||
| 2549 | /// Remove SU from the ready set for this boundary. | ||||||||
| 2550 | void SchedBoundary::removeReady(SUnit *SU) { | ||||||||
| 2551 | if (Available.isInQueue(SU)) | ||||||||
| 2552 | Available.remove(Available.find(SU)); | ||||||||
| 2553 | else { | ||||||||
| 2554 | assert(Pending.isInQueue(SU) && "bad ready count")((void)0); | ||||||||
| 2555 | Pending.remove(Pending.find(SU)); | ||||||||
| 2556 | } | ||||||||
| 2557 | } | ||||||||
| 2558 | |||||||||
| 2559 | /// If this queue only has one ready candidate, return it. As a side effect, | ||||||||
| 2560 | /// defer any nodes that now hit a hazard, and advance the cycle until at least | ||||||||
| 2561 | /// one node is ready. If multiple instructions are ready, return NULL. | ||||||||
| 2562 | SUnit *SchedBoundary::pickOnlyChoice() { | ||||||||
| 2563 | if (CheckPending) | ||||||||
| 2564 | releasePending(); | ||||||||
| 2565 | |||||||||
| 2566 | // Defer any ready instrs that now have a hazard. | ||||||||
| 2567 | for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { | ||||||||
| 2568 | if (checkHazard(*I)) { | ||||||||
| 2569 | Pending.push(*I); | ||||||||
| 2570 | I = Available.remove(I); | ||||||||
| 2571 | continue; | ||||||||
| 2572 | } | ||||||||
| 2573 | ++I; | ||||||||
| 2574 | } | ||||||||
| 2575 | for (unsigned i = 0; Available.empty(); ++i) { | ||||||||
| 2576 | // FIXME: Re-enable assert once PR20057 is resolved. | ||||||||
| 2577 | // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && | ||||||||
| 2578 | // "permanent hazard"); | ||||||||
| 2579 | (void)i; | ||||||||
| 2580 | bumpCycle(CurrCycle + 1); | ||||||||
| 2581 | releasePending(); | ||||||||
| 2582 | } | ||||||||
| 2583 | |||||||||
| 2584 | LLVM_DEBUG(Pending.dump())do { } while (false); | ||||||||
| 2585 | LLVM_DEBUG(Available.dump())do { } while (false); | ||||||||
| 2586 | |||||||||
| 2587 | if (Available.size() == 1) | ||||||||
| 2588 | return *Available.begin(); | ||||||||
| 2589 | return nullptr; | ||||||||
| 2590 | } | ||||||||
| 2591 | |||||||||
| 2592 | #if !defined(NDEBUG1) || defined(LLVM_ENABLE_DUMP) | ||||||||
| 2593 | // This is useful information to dump after bumpNode. | ||||||||
| 2594 | // Note that the Queue contents are more useful before pickNodeFromQueue. | ||||||||
| 2595 | LLVM_DUMP_METHOD__attribute__((noinline)) void SchedBoundary::dumpScheduledState() const { | ||||||||
| 2596 | unsigned ResFactor; | ||||||||
| 2597 | unsigned ResCount; | ||||||||
| 2598 | if (ZoneCritResIdx) { | ||||||||
| 2599 | ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); | ||||||||
| 2600 | ResCount = getResourceCount(ZoneCritResIdx); | ||||||||
| 2601 | } else { | ||||||||
| 2602 | ResFactor = SchedModel->getMicroOpFactor(); | ||||||||
| 2603 | ResCount = RetiredMOps * ResFactor; | ||||||||
| 2604 | } | ||||||||
| 2605 | unsigned LFactor = SchedModel->getLatencyFactor(); | ||||||||
| 2606 | dbgs() << Available.getName() << " @" << CurrCycle << "c\n" | ||||||||
| 2607 | << " Retired: " << RetiredMOps; | ||||||||
| 2608 | dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; | ||||||||
| 2609 | dbgs() << "\n Critical: " << ResCount / LFactor << "c, " | ||||||||
| 2610 | << ResCount / ResFactor << " " | ||||||||
| 2611 | << SchedModel->getResourceName(ZoneCritResIdx) | ||||||||
| 2612 | << "\n ExpectedLatency: " << ExpectedLatency << "c\n" | ||||||||
| 2613 | << (IsResourceLimited ? " - Resource" : " - Latency") | ||||||||
| 2614 | << " limited.\n"; | ||||||||
| 2615 | } | ||||||||
| 2616 | #endif | ||||||||
| 2617 | |||||||||
| 2618 | //===----------------------------------------------------------------------===// | ||||||||
| 2619 | // GenericScheduler - Generic implementation of MachineSchedStrategy. | ||||||||
| 2620 | //===----------------------------------------------------------------------===// | ||||||||
| 2621 | |||||||||
| 2622 | void GenericSchedulerBase::SchedCandidate:: | ||||||||
| 2623 | initResourceDelta(const ScheduleDAGMI *DAG, | ||||||||
| 2624 | const TargetSchedModel *SchedModel) { | ||||||||
| 2625 | if (!Policy.ReduceResIdx && !Policy.DemandResIdx) | ||||||||
| 2626 | return; | ||||||||
| 2627 | |||||||||
| 2628 | const MCSchedClassDesc *SC = DAG->getSchedClass(SU); | ||||||||
| 2629 | for (TargetSchedModel::ProcResIter | ||||||||
| 2630 | PI = SchedModel->getWriteProcResBegin(SC), | ||||||||
| 2631 | PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { | ||||||||
| 2632 | if (PI->ProcResourceIdx == Policy.ReduceResIdx) | ||||||||
| 2633 | ResDelta.CritResources += PI->Cycles; | ||||||||
| 2634 | if (PI->ProcResourceIdx == Policy.DemandResIdx) | ||||||||
| 2635 | ResDelta.DemandedResources += PI->Cycles; | ||||||||
| 2636 | } | ||||||||
| 2637 | } | ||||||||
| 2638 | |||||||||
| 2639 | /// Compute remaining latency. We need this both to determine whether the | ||||||||
| 2640 | /// overall schedule has become latency-limited and whether the instructions | ||||||||
| 2641 | /// outside this zone are resource or latency limited. | ||||||||
| 2642 | /// | ||||||||
| 2643 | /// The "dependent" latency is updated incrementally during scheduling as the | ||||||||
| 2644 | /// max height/depth of scheduled nodes minus the cycles since it was | ||||||||
| 2645 | /// scheduled: | ||||||||
| 2646 | /// DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone | ||||||||
| 2647 | /// | ||||||||
| 2648 | /// The "independent" latency is the max ready queue depth: | ||||||||
| 2649 | /// ILat = max N.depth for N in Available|Pending | ||||||||
| 2650 | /// | ||||||||
| 2651 | /// RemainingLatency is the greater of independent and dependent latency. | ||||||||
| 2652 | /// | ||||||||
| 2653 | /// These computations are expensive, especially in DAGs with many edges, so | ||||||||
| 2654 | /// only do them if necessary. | ||||||||
| 2655 | static unsigned computeRemLatency(SchedBoundary &CurrZone) { | ||||||||
| 2656 | unsigned RemLatency = CurrZone.getDependentLatency(); | ||||||||
| 2657 | RemLatency = std::max(RemLatency, | ||||||||
| 2658 | CurrZone.findMaxLatency(CurrZone.Available.elements())); | ||||||||
| 2659 | RemLatency = std::max(RemLatency, | ||||||||
| 2660 | CurrZone.findMaxLatency(CurrZone.Pending.elements())); | ||||||||
| 2661 | return RemLatency; | ||||||||
| 2662 | } | ||||||||
| 2663 | |||||||||
| 2664 | /// Returns true if the current cycle plus remaning latency is greater than | ||||||||
| 2665 | /// the critical path in the scheduling region. | ||||||||
| 2666 | bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy, | ||||||||
| 2667 | SchedBoundary &CurrZone, | ||||||||
| 2668 | bool ComputeRemLatency, | ||||||||
| 2669 | unsigned &RemLatency) const { | ||||||||
| 2670 | // The current cycle is already greater than the critical path, so we are | ||||||||
| 2671 | // already latency limited and don't need to compute the remaining latency. | ||||||||
| 2672 | if (CurrZone.getCurrCycle() > Rem.CriticalPath) | ||||||||
| 2673 | return true; | ||||||||
| 2674 | |||||||||
| 2675 | // If we haven't scheduled anything yet, then we aren't latency limited. | ||||||||
| 2676 | if (CurrZone.getCurrCycle() == 0) | ||||||||
| 2677 | return false; | ||||||||
| 2678 | |||||||||
| 2679 | if (ComputeRemLatency) | ||||||||
| 2680 | RemLatency = computeRemLatency(CurrZone); | ||||||||
| 2681 | |||||||||
| 2682 | return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath; | ||||||||
| 2683 | } | ||||||||
| 2684 | |||||||||
| 2685 | /// Set the CandPolicy given a scheduling zone given the current resources and | ||||||||
| 2686 | /// latencies inside and outside the zone. | ||||||||
| 2687 | void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, | ||||||||
| 2688 | SchedBoundary &CurrZone, | ||||||||
| 2689 | SchedBoundary *OtherZone) { | ||||||||
| 2690 | // Apply preemptive heuristics based on the total latency and resources | ||||||||
| 2691 | // inside and outside this zone. Potential stalls should be considered before | ||||||||
| 2692 | // following this policy. | ||||||||
| 2693 | |||||||||
| 2694 | // Compute the critical resource outside the zone. | ||||||||
| 2695 | unsigned OtherCritIdx = 0; | ||||||||
| 2696 | unsigned OtherCount = | ||||||||
| 2697 | OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; | ||||||||
| 2698 | |||||||||
| 2699 | bool OtherResLimited = false; | ||||||||
| 2700 | unsigned RemLatency = 0; | ||||||||
| 2701 | bool RemLatencyComputed = false; | ||||||||
| 2702 | if (SchedModel->hasInstrSchedModel() && OtherCount != 0) { | ||||||||
| 2703 | RemLatency = computeRemLatency(CurrZone); | ||||||||
| 2704 | RemLatencyComputed = true; | ||||||||
| 2705 | OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(), | ||||||||
| 2706 | OtherCount, RemLatency, false); | ||||||||
| 2707 | } | ||||||||
| 2708 | |||||||||
| 2709 | // Schedule aggressively for latency in PostRA mode. We don't check for | ||||||||
| 2710 | // acyclic latency during PostRA, and highly out-of-order processors will | ||||||||
| 2711 | // skip PostRA scheduling. | ||||||||
| 2712 | if (!OtherResLimited && | ||||||||
| 2713 | (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed, | ||||||||
| 2714 | RemLatency))) { | ||||||||
| 2715 | Policy.ReduceLatency |= true; | ||||||||
| 2716 | LLVM_DEBUG(dbgs() << " " << CurrZone.Available.getName()do { } while (false) | ||||||||
| 2717 | << " RemainingLatency " << RemLatency << " + "do { } while (false) | ||||||||
| 2718 | << CurrZone.getCurrCycle() << "c > CritPath "do { } while (false) | ||||||||
| 2719 | << Rem.CriticalPath << "\n")do { } while (false); | ||||||||
| 2720 | } | ||||||||
| 2721 | // If the same resource is limiting inside and outside the zone, do nothing. | ||||||||
| 2722 | if (CurrZone.getZoneCritResIdx() == OtherCritIdx) | ||||||||
| 2723 | return; | ||||||||
| 2724 | |||||||||
| 2725 | LLVM_DEBUG(if (CurrZone.isResourceLimited()) {do { } while (false) | ||||||||
| 2726 | dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: "do { } while (false) | ||||||||
| 2727 | << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n";do { } while (false) | ||||||||
| 2728 | } if (OtherResLimited) dbgs()do { } while (false) | ||||||||
| 2729 | << " RemainingLimit: "do { } while (false) | ||||||||
| 2730 | << SchedModel->getResourceName(OtherCritIdx) << "\n";do { } while (false) | ||||||||
| 2731 | if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs()do { } while (false) | ||||||||
| 2732 | << " Latency limited both directions.\n")do { } while (false); | ||||||||
| 2733 | |||||||||
| 2734 | if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) | ||||||||
| 2735 | Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); | ||||||||
| 2736 | |||||||||
| 2737 | if (OtherResLimited) | ||||||||
| 2738 | Policy.DemandResIdx = OtherCritIdx; | ||||||||
| 2739 | } | ||||||||
| 2740 | |||||||||
| 2741 | #ifndef NDEBUG1 | ||||||||
| 2742 | const char *GenericSchedulerBase::getReasonStr( | ||||||||
| 2743 | GenericSchedulerBase::CandReason Reason) { | ||||||||
| 2744 | switch (Reason) { | ||||||||
| 2745 | case NoCand: return "NOCAND "; | ||||||||
| 2746 | case Only1: return "ONLY1 "; | ||||||||
| 2747 | case PhysReg: return "PHYS-REG "; | ||||||||
| 2748 | case RegExcess: return "REG-EXCESS"; | ||||||||
| 2749 | case RegCritical: return "REG-CRIT "; | ||||||||
| 2750 | case Stall: return "STALL "; | ||||||||
| 2751 | case Cluster: return "CLUSTER "; | ||||||||
| 2752 | case Weak: return "WEAK "; | ||||||||
| 2753 | case RegMax: return "REG-MAX "; | ||||||||
| 2754 | case ResourceReduce: return "RES-REDUCE"; | ||||||||
| 2755 | case ResourceDemand: return "RES-DEMAND"; | ||||||||
| 2756 | case TopDepthReduce: return "TOP-DEPTH "; | ||||||||
| 2757 | case TopPathReduce: return "TOP-PATH "; | ||||||||
| 2758 | case BotHeightReduce:return "BOT-HEIGHT"; | ||||||||
| 2759 | case BotPathReduce: return "BOT-PATH "; | ||||||||
| 2760 | case NextDefUse: return "DEF-USE "; | ||||||||
| 2761 | case NodeOrder: return "ORDER "; | ||||||||
| 2762 | }; | ||||||||
| 2763 | llvm_unreachable("Unknown reason!")__builtin_unreachable(); | ||||||||
| 2764 | } | ||||||||
| 2765 | |||||||||
| 2766 | void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { | ||||||||
| 2767 | PressureChange P; | ||||||||
| 2768 | unsigned ResIdx = 0; | ||||||||
| 2769 | unsigned Latency = 0; | ||||||||
| 2770 | switch (Cand.Reason) { | ||||||||
| 2771 | default: | ||||||||
| 2772 | break; | ||||||||
| 2773 | case RegExcess: | ||||||||
| 2774 | P = Cand.RPDelta.Excess; | ||||||||
| 2775 | break; | ||||||||
| 2776 | case RegCritical: | ||||||||
| 2777 | P = Cand.RPDelta.CriticalMax; | ||||||||
| 2778 | break; | ||||||||
| 2779 | case RegMax: | ||||||||
| 2780 | P = Cand.RPDelta.CurrentMax; | ||||||||
| 2781 | break; | ||||||||
| 2782 | case ResourceReduce: | ||||||||
| 2783 | ResIdx = Cand.Policy.ReduceResIdx; | ||||||||
| 2784 | break; | ||||||||
| 2785 | case ResourceDemand: | ||||||||
| 2786 | ResIdx = Cand.Policy.DemandResIdx; | ||||||||
| 2787 | break; | ||||||||
| 2788 | case TopDepthReduce: | ||||||||
| 2789 | Latency = Cand.SU->getDepth(); | ||||||||
| 2790 | break; | ||||||||
| 2791 | case TopPathReduce: | ||||||||
| 2792 | Latency = Cand.SU->getHeight(); | ||||||||
| 2793 | break; | ||||||||
| 2794 | case BotHeightReduce: | ||||||||
| 2795 | Latency = Cand.SU->getHeight(); | ||||||||
| 2796 | break; | ||||||||
| 2797 | case BotPathReduce: | ||||||||
| 2798 | Latency = Cand.SU->getDepth(); | ||||||||
| 2799 | break; | ||||||||
| 2800 | } | ||||||||
| 2801 | dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); | ||||||||
| 2802 | if (P.isValid()) | ||||||||
| 2803 | dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) | ||||||||
| 2804 | << ":" << P.getUnitInc() << " "; | ||||||||
| 2805 | else | ||||||||
| 2806 | dbgs() << " "; | ||||||||
| 2807 | if (ResIdx) | ||||||||
| 2808 | dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; | ||||||||
| 2809 | else | ||||||||
| 2810 | dbgs() << " "; | ||||||||
| 2811 | if (Latency) | ||||||||
| 2812 | dbgs() << " " << Latency << " cycles "; | ||||||||
| 2813 | else | ||||||||
| 2814 | dbgs() << " "; | ||||||||
| 2815 | dbgs() << '\n'; | ||||||||
| 2816 | } | ||||||||
| 2817 | #endif | ||||||||
| 2818 | |||||||||
| 2819 | namespace llvm { | ||||||||
| 2820 | /// Return true if this heuristic determines order. | ||||||||
| 2821 | /// TODO: Consider refactor return type of these functions as integer or enum, | ||||||||
| 2822 | /// as we may need to differentiate whether TryCand is better than Cand. | ||||||||
| 2823 | bool tryLess(int TryVal, int CandVal, | ||||||||
| 2824 | GenericSchedulerBase::SchedCandidate &TryCand, | ||||||||
| 2825 | GenericSchedulerBase::SchedCandidate &Cand, | ||||||||
| 2826 | GenericSchedulerBase::CandReason Reason) { | ||||||||
| 2827 | if (TryVal < CandVal) { | ||||||||
| 2828 | TryCand.Reason = Reason; | ||||||||
| 2829 | return true; | ||||||||
| 2830 | } | ||||||||
| 2831 | if (TryVal > CandVal) { | ||||||||
| 2832 | if (Cand.Reason > Reason) | ||||||||
| 2833 | Cand.Reason = Reason; | ||||||||
| 2834 | return true; | ||||||||
| 2835 | } | ||||||||
| 2836 | return false; | ||||||||
| 2837 | } | ||||||||
| 2838 | |||||||||
| 2839 | bool tryGreater(int TryVal, int CandVal, | ||||||||
| 2840 | GenericSchedulerBase::SchedCandidate &TryCand, | ||||||||
| 2841 | GenericSchedulerBase::SchedCandidate &Cand, | ||||||||
| 2842 | GenericSchedulerBase::CandReason Reason) { | ||||||||
| 2843 | if (TryVal > CandVal) { | ||||||||
| 2844 | TryCand.Reason = Reason; | ||||||||
| 2845 | return true; | ||||||||
| 2846 | } | ||||||||
| 2847 | if (TryVal < CandVal) { | ||||||||
| 2848 | if (Cand.Reason > Reason) | ||||||||
| 2849 | Cand.Reason = Reason; | ||||||||
| 2850 | return true; | ||||||||
| 2851 | } | ||||||||
| 2852 | return false; | ||||||||
| 2853 | } | ||||||||
| 2854 | |||||||||
| 2855 | bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, | ||||||||
| 2856 | GenericSchedulerBase::SchedCandidate &Cand, | ||||||||
| 2857 | SchedBoundary &Zone) { | ||||||||
| 2858 | if (Zone.isTop()) { | ||||||||
| 2859 | // Prefer the candidate with the lesser depth, but only if one of them has | ||||||||
| 2860 | // depth greater than the total latency scheduled so far, otherwise either | ||||||||
| 2861 | // of them could be scheduled now with no stall. | ||||||||
| 2862 | if (std::max(TryCand.SU->getDepth(), Cand.SU->getDepth()) > | ||||||||
| 2863 | Zone.getScheduledLatency()) { | ||||||||
| 2864 | if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), | ||||||||
| 2865 | TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) | ||||||||
| 2866 | return true; | ||||||||
| 2867 | } | ||||||||
| 2868 | if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), | ||||||||
| 2869 | TryCand, Cand, GenericSchedulerBase::TopPathReduce)) | ||||||||
| 2870 | return true; | ||||||||
| 2871 | } else { | ||||||||
| 2872 | // Prefer the candidate with the lesser height, but only if one of them has | ||||||||
| 2873 | // height greater than the total latency scheduled so far, otherwise either | ||||||||
| 2874 | // of them could be scheduled now with no stall. | ||||||||
| 2875 | if (std::max(TryCand.SU->getHeight(), Cand.SU->getHeight()) > | ||||||||
| 2876 | Zone.getScheduledLatency()) { | ||||||||
| 2877 | if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), | ||||||||
| 2878 | TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) | ||||||||
| 2879 | return true; | ||||||||
| 2880 | } | ||||||||
| 2881 | if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), | ||||||||
| 2882 | TryCand, Cand, GenericSchedulerBase::BotPathReduce)) | ||||||||
| 2883 | return true; | ||||||||
| 2884 | } | ||||||||
| 2885 | return false; | ||||||||
| 2886 | } | ||||||||
| 2887 | } // end namespace llvm | ||||||||
| 2888 | |||||||||
| 2889 | static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) { | ||||||||
| 2890 | LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")do { } while (false) | ||||||||
| 2891 | << GenericSchedulerBase::getReasonStr(Reason) << '\n')do { } while (false); | ||||||||
| 2892 | } | ||||||||
| 2893 | |||||||||
| 2894 | static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) { | ||||||||
| 2895 | tracePick(Cand.Reason, Cand.AtTop); | ||||||||
| 2896 | } | ||||||||
| 2897 | |||||||||
| 2898 | void GenericScheduler::initialize(ScheduleDAGMI *dag) { | ||||||||
| 2899 | assert(dag->hasVRegLiveness() &&((void)0) | ||||||||
| 2900 | "(PreRA)GenericScheduler needs vreg liveness")((void)0); | ||||||||
| 2901 | DAG = static_cast<ScheduleDAGMILive*>(dag); | ||||||||
| 2902 | SchedModel = DAG->getSchedModel(); | ||||||||
| 2903 | TRI = DAG->TRI; | ||||||||
| 2904 | |||||||||
| 2905 | if (RegionPolicy.ComputeDFSResult) | ||||||||
| 2906 | DAG->computeDFSResult(); | ||||||||
| 2907 | |||||||||
| 2908 | Rem.init(DAG, SchedModel); | ||||||||
| 2909 | Top.init(DAG, SchedModel, &Rem); | ||||||||
| 2910 | Bot.init(DAG, SchedModel, &Rem); | ||||||||
| 2911 | |||||||||
| 2912 | // Initialize resource counts. | ||||||||
| 2913 | |||||||||
| 2914 | // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or | ||||||||
| 2915 | // are disabled, then these HazardRecs will be disabled. | ||||||||
| 2916 | const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); | ||||||||
| 2917 | if (!Top.HazardRec) { | ||||||||
| 2918 | Top.HazardRec = | ||||||||
| 2919 | DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( | ||||||||
| 2920 | Itin, DAG); | ||||||||
| 2921 | } | ||||||||
| 2922 | if (!Bot.HazardRec) { | ||||||||
| 2923 | Bot.HazardRec = | ||||||||
| 2924 | DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( | ||||||||
| 2925 | Itin, DAG); | ||||||||
| 2926 | } | ||||||||
| 2927 | TopCand.SU = nullptr; | ||||||||
| 2928 | BotCand.SU = nullptr; | ||||||||
| 2929 | } | ||||||||
| 2930 | |||||||||
| 2931 | /// Initialize the per-region scheduling policy. | ||||||||
| 2932 | void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, | ||||||||
| 2933 | MachineBasicBlock::iterator End, | ||||||||
| 2934 | unsigned NumRegionInstrs) { | ||||||||
| 2935 | const MachineFunction &MF = *Begin->getMF(); | ||||||||
| 2936 | const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); | ||||||||
| 2937 | |||||||||
| 2938 | // Avoid setting up the register pressure tracker for small regions to save | ||||||||
| 2939 | // compile time. As a rough heuristic, only track pressure when the number of | ||||||||
| 2940 | // schedulable instructions exceeds half the integer register file. | ||||||||
| 2941 | RegionPolicy.ShouldTrackPressure = true; | ||||||||
| 2942 | for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { | ||||||||
| 2943 | MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; | ||||||||
| 2944 | if (TLI->isTypeLegal(LegalIntVT)) { | ||||||||
| 2945 | unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( | ||||||||
| 2946 | TLI->getRegClassFor(LegalIntVT)); | ||||||||
| 2947 | RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); | ||||||||
| 2948 | } | ||||||||
| 2949 | } | ||||||||
| 2950 | |||||||||
| 2951 | // For generic targets, we default to bottom-up, because it's simpler and more | ||||||||
| 2952 | // compile-time optimizations have been implemented in that direction. | ||||||||
| 2953 | RegionPolicy.OnlyBottomUp = true; | ||||||||
| 2954 | |||||||||
| 2955 | // Allow the subtarget to override default policy. | ||||||||
| 2956 | MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs); | ||||||||
| 2957 | |||||||||
| 2958 | // After subtarget overrides, apply command line options. | ||||||||
| 2959 | if (!EnableRegPressure) { | ||||||||
| 2960 | RegionPolicy.ShouldTrackPressure = false; | ||||||||
| 2961 | RegionPolicy.ShouldTrackLaneMasks = false; | ||||||||
| 2962 | } | ||||||||
| 2963 | |||||||||
| 2964 | // Check -misched-topdown/bottomup can force or unforce scheduling direction. | ||||||||
| 2965 | // e.g. -misched-bottomup=false allows scheduling in both directions. | ||||||||
| 2966 | assert((!ForceTopDown || !ForceBottomUp) &&((void)0) | ||||||||
| 2967 | "-misched-topdown incompatible with -misched-bottomup")((void)0); | ||||||||
| 2968 | if (ForceBottomUp.getNumOccurrences() > 0) { | ||||||||
| 2969 | RegionPolicy.OnlyBottomUp = ForceBottomUp; | ||||||||
| 2970 | if (RegionPolicy.OnlyBottomUp) | ||||||||
| 2971 | RegionPolicy.OnlyTopDown = false; | ||||||||
| 2972 | } | ||||||||
| 2973 | if (ForceTopDown.getNumOccurrences() > 0) { | ||||||||
| 2974 | RegionPolicy.OnlyTopDown = ForceTopDown; | ||||||||
| 2975 | if (RegionPolicy.OnlyTopDown) | ||||||||
| 2976 | RegionPolicy.OnlyBottomUp = false; | ||||||||
| 2977 | } | ||||||||
| 2978 | } | ||||||||
| 2979 | |||||||||
| 2980 | void GenericScheduler::dumpPolicy() const { | ||||||||
| 2981 | // Cannot completely remove virtual function even in release mode. | ||||||||
| 2982 | #if !defined(NDEBUG1) || defined(LLVM_ENABLE_DUMP) | ||||||||
| 2983 | dbgs() << "GenericScheduler RegionPolicy: " | ||||||||
| 2984 | << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure | ||||||||
| 2985 | << " OnlyTopDown=" << RegionPolicy.OnlyTopDown | ||||||||
| 2986 | << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp | ||||||||
| 2987 | << "\n"; | ||||||||
| 2988 | #endif | ||||||||
| 2989 | } | ||||||||
| 2990 | |||||||||
| 2991 | /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic | ||||||||
| 2992 | /// critical path by more cycles than it takes to drain the instruction buffer. | ||||||||
| 2993 | /// We estimate an upper bounds on in-flight instructions as: | ||||||||
| 2994 | /// | ||||||||
| 2995 | /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) | ||||||||
| 2996 | /// InFlightIterations = AcyclicPath / CyclesPerIteration | ||||||||
| 2997 | /// InFlightResources = InFlightIterations * LoopResources | ||||||||
| 2998 | /// | ||||||||
| 2999 | /// TODO: Check execution resources in addition to IssueCount. | ||||||||
| 3000 | void GenericScheduler::checkAcyclicLatency() { | ||||||||
| 3001 | if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) | ||||||||
| 3002 | return; | ||||||||
| 3003 | |||||||||
| 3004 | // Scaled number of cycles per loop iteration. | ||||||||
| 3005 | unsigned IterCount = | ||||||||
| 3006 | std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), | ||||||||
| 3007 | Rem.RemIssueCount); | ||||||||
| 3008 | // Scaled acyclic critical path. | ||||||||
| 3009 | unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); | ||||||||
| 3010 | // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop | ||||||||
| 3011 | unsigned InFlightCount = | ||||||||
| 3012 | (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; | ||||||||
| 3013 | unsigned BufferLimit = | ||||||||
| 3014 | SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); | ||||||||
| 3015 | |||||||||
| 3016 | Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; | ||||||||
| 3017 | |||||||||
| 3018 | LLVM_DEBUG(do { } while (false) | ||||||||
| 3019 | dbgs() << "IssueCycles="do { } while (false) | ||||||||
| 3020 | << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "do { } while (false) | ||||||||
| 3021 | << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()do { } while (false) | ||||||||
| 3022 | << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCountdo { } while (false) | ||||||||
| 3023 | << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()do { } while (false) | ||||||||
| 3024 | << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";do { } while (false) | ||||||||
| 3025 | if (Rem.IsAcyclicLatencyLimited) dbgs() << " ACYCLIC LATENCY LIMIT\n")do { } while (false); | ||||||||
| 3026 | } | ||||||||
| 3027 | |||||||||
| 3028 | void GenericScheduler::registerRoots() { | ||||||||
| 3029 | Rem.CriticalPath = DAG->ExitSU.getDepth(); | ||||||||
| 3030 | |||||||||
| 3031 | // Some roots may not feed into ExitSU. Check all of them in case. | ||||||||
| 3032 | for (const SUnit *SU : Bot.Available) { | ||||||||
| 3033 | if (SU->getDepth() > Rem.CriticalPath) | ||||||||
| 3034 | Rem.CriticalPath = SU->getDepth(); | ||||||||
| 3035 | } | ||||||||
| 3036 | LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n')do { } while (false); | ||||||||
| 3037 | if (DumpCriticalPathLength) { | ||||||||
| 3038 | errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; | ||||||||
| 3039 | } | ||||||||
| 3040 | |||||||||
| 3041 | if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) { | ||||||||
| 3042 | Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); | ||||||||
| 3043 | checkAcyclicLatency(); | ||||||||
| 3044 | } | ||||||||
| 3045 | } | ||||||||
| 3046 | |||||||||
| 3047 | namespace llvm { | ||||||||
| 3048 | bool tryPressure(const PressureChange &TryP, | ||||||||
| 3049 | const PressureChange &CandP, | ||||||||
| 3050 | GenericSchedulerBase::SchedCandidate &TryCand, | ||||||||
| 3051 | GenericSchedulerBase::SchedCandidate &Cand, | ||||||||
| 3052 | GenericSchedulerBase::CandReason Reason, | ||||||||
| 3053 | const TargetRegisterInfo *TRI, | ||||||||
| 3054 | const MachineFunction &MF) { | ||||||||
| 3055 | // If one candidate decreases and the other increases, go with it. | ||||||||
| 3056 | // Invalid candidates have UnitInc==0. | ||||||||
| 3057 | if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, | ||||||||
| 3058 | Reason)) { | ||||||||
| 3059 | return true; | ||||||||
| 3060 | } | ||||||||
| 3061 | // Do not compare the magnitude of pressure changes between top and bottom | ||||||||
| 3062 | // boundary. | ||||||||
| 3063 | if (Cand.AtTop != TryCand.AtTop) | ||||||||
| 3064 | return false; | ||||||||
| 3065 | |||||||||
| 3066 | // If both candidates affect the same set in the same boundary, go with the | ||||||||
| 3067 | // smallest increase. | ||||||||
| 3068 | unsigned TryPSet = TryP.getPSetOrMax(); | ||||||||
| 3069 | unsigned CandPSet = CandP.getPSetOrMax(); | ||||||||
| 3070 | if (TryPSet == CandPSet) { | ||||||||
| 3071 | return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, | ||||||||
| 3072 | Reason); | ||||||||
| 3073 | } | ||||||||
| 3074 | |||||||||
| 3075 | int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : | ||||||||
| 3076 | std::numeric_limits<int>::max(); | ||||||||
| 3077 | |||||||||
| 3078 | int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : | ||||||||
| 3079 | std::numeric_limits<int>::max(); | ||||||||
| 3080 | |||||||||
| 3081 | // If the candidates are decreasing pressure, reverse priority. | ||||||||
| 3082 | if (TryP.getUnitInc() < 0) | ||||||||
| 3083 | std::swap(TryRank, CandRank); | ||||||||
| 3084 | return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); | ||||||||
| 3085 | } | ||||||||
| 3086 | |||||||||
| 3087 | unsigned getWeakLeft(const SUnit *SU, bool isTop) { | ||||||||
| 3088 | return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; | ||||||||
| 3089 | } | ||||||||
| 3090 | |||||||||
| 3091 | /// Minimize physical register live ranges. Regalloc wants them adjacent to | ||||||||
| 3092 | /// their physreg def/use. | ||||||||
| 3093 | /// | ||||||||
| 3094 | /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf | ||||||||
| 3095 | /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled | ||||||||
| 3096 | /// with the operation that produces or consumes the physreg. We'll do this when | ||||||||
| 3097 | /// regalloc has support for parallel copies. | ||||||||
| 3098 | int biasPhysReg(const SUnit *SU, bool isTop) { | ||||||||
| 3099 | const MachineInstr *MI = SU->getInstr(); | ||||||||
| 3100 | |||||||||
| 3101 | if (MI->isCopy()) { | ||||||||
| 3102 | unsigned ScheduledOper = isTop ? 1 : 0; | ||||||||
| 3103 | unsigned UnscheduledOper = isTop ? 0 : 1; | ||||||||
| 3104 | // If we have already scheduled the physreg produce/consumer, immediately | ||||||||
| 3105 | // schedule the copy. | ||||||||
| 3106 | if (Register::isPhysicalRegister(MI->getOperand(ScheduledOper).getReg())) | ||||||||
| 3107 | return 1; | ||||||||
| 3108 | // If the physreg is at the boundary, defer it. Otherwise schedule it | ||||||||
| 3109 | // immediately to free the dependent. We can hoist the copy later. | ||||||||
| 3110 | bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; | ||||||||
| 3111 | if (Register::isPhysicalRegister(MI->getOperand(UnscheduledOper).getReg())) | ||||||||
| 3112 | return AtBoundary ? -1 : 1; | ||||||||
| 3113 | } | ||||||||
| 3114 | |||||||||
| 3115 | if (MI->isMoveImmediate()) { | ||||||||
| 3116 | // If we have a move immediate and all successors have been assigned, bias | ||||||||
| 3117 | // towards scheduling this later. Make sure all register defs are to | ||||||||
| 3118 | // physical registers. | ||||||||
| 3119 | bool DoBias = true; | ||||||||
| 3120 | for (const MachineOperand &Op : MI->defs()) { | ||||||||
| 3121 | if (Op.isReg() && !Register::isPhysicalRegister(Op.getReg())) { | ||||||||
| 3122 | DoBias = false; | ||||||||
| 3123 | break; | ||||||||
| 3124 | } | ||||||||
| 3125 | } | ||||||||
| 3126 | |||||||||
| 3127 | if (DoBias) | ||||||||
| 3128 | return isTop ? -1 : 1; | ||||||||
| 3129 | } | ||||||||
| 3130 | |||||||||
| 3131 | return 0; | ||||||||
| 3132 | } | ||||||||
| 3133 | } // end namespace llvm | ||||||||
| 3134 | |||||||||
| 3135 | void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU, | ||||||||
| 3136 | bool AtTop, | ||||||||
| 3137 | const RegPressureTracker &RPTracker, | ||||||||
| 3138 | RegPressureTracker &TempTracker) { | ||||||||
| 3139 | Cand.SU = SU; | ||||||||
| 3140 | Cand.AtTop = AtTop; | ||||||||
| 3141 | if (DAG->isTrackingPressure()) { | ||||||||
| 3142 | if (AtTop) { | ||||||||
| 3143 | TempTracker.getMaxDownwardPressureDelta( | ||||||||
| 3144 | Cand.SU->getInstr(), | ||||||||
| 3145 | Cand.RPDelta, | ||||||||
| 3146 | DAG->getRegionCriticalPSets(), | ||||||||
| 3147 | DAG->getRegPressure().MaxSetPressure); | ||||||||
| 3148 | } else { | ||||||||
| 3149 | if (VerifyScheduling) { | ||||||||
| 3150 | TempTracker.getMaxUpwardPressureDelta( | ||||||||
| 3151 | Cand.SU->getInstr(), | ||||||||
| 3152 | &DAG->getPressureDiff(Cand.SU), | ||||||||
| 3153 | Cand.RPDelta, | ||||||||
| 3154 | DAG->getRegionCriticalPSets(), | ||||||||
| 3155 | DAG->getRegPressure().MaxSetPressure); | ||||||||
| 3156 | } else { | ||||||||
| 3157 | RPTracker.getUpwardPressureDelta( | ||||||||
| 3158 | Cand.SU->getInstr(), | ||||||||
| 3159 | DAG->getPressureDiff(Cand.SU), | ||||||||
| 3160 | Cand.RPDelta, | ||||||||
| 3161 | DAG->getRegionCriticalPSets(), | ||||||||
| 3162 | DAG->getRegPressure().MaxSetPressure); | ||||||||
| 3163 | } | ||||||||
| 3164 | } | ||||||||
| 3165 | } | ||||||||
| 3166 | LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs()do { } while (false) | ||||||||
| 3167 | << " Try SU(" << Cand.SU->NodeNum << ") "do { } while (false) | ||||||||
| 3168 | << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":"do { } while (false) | ||||||||
| 3169 | << Cand.RPDelta.Excess.getUnitInc() << "\n")do { } while (false); | ||||||||
| 3170 | } | ||||||||
| 3171 | |||||||||
| 3172 | /// Apply a set of heuristics to a new candidate. Heuristics are currently | ||||||||
| 3173 | /// hierarchical. This may be more efficient than a graduated cost model because | ||||||||
| 3174 | /// we don't need to evaluate all aspects of the model for each node in the | ||||||||
| 3175 | /// queue. But it's really done to make the heuristics easier to debug and | ||||||||
| 3176 | /// statistically analyze. | ||||||||
| 3177 | /// | ||||||||
| 3178 | /// \param Cand provides the policy and current best candidate. | ||||||||
| 3179 | /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. | ||||||||
| 3180 | /// \param Zone describes the scheduled zone that we are extending, or nullptr | ||||||||
| 3181 | /// if Cand is from a different zone than TryCand. | ||||||||
| 3182 | /// \return \c true if TryCand is better than Cand (Reason is NOT NoCand) | ||||||||
| 3183 | bool GenericScheduler::tryCandidate(SchedCandidate &Cand, | ||||||||
| 3184 | SchedCandidate &TryCand, | ||||||||
| 3185 | SchedBoundary *Zone) const { | ||||||||
| 3186 | // Initialize the candidate if needed. | ||||||||
| 3187 | if (!Cand.isValid()) { | ||||||||
| 3188 | TryCand.Reason = NodeOrder; | ||||||||
| 3189 | return true; | ||||||||
| 3190 | } | ||||||||
| 3191 | |||||||||
| 3192 | // Bias PhysReg Defs and copies to their uses and defined respectively. | ||||||||
| 3193 | if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop), | ||||||||
| 3194 | biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg)) | ||||||||
| 3195 | return TryCand.Reason != NoCand; | ||||||||
| 3196 | |||||||||
| 3197 | // Avoid exceeding the target's limit. | ||||||||
| 3198 | if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, | ||||||||
| 3199 | Cand.RPDelta.Excess, | ||||||||
| 3200 | TryCand, Cand, RegExcess, TRI, | ||||||||
| 3201 | DAG->MF)) | ||||||||
| 3202 | return TryCand.Reason != NoCand; | ||||||||
| 3203 | |||||||||
| 3204 | // Avoid increasing the max critical pressure in the scheduled region. | ||||||||
| 3205 | if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, | ||||||||
| 3206 | Cand.RPDelta.CriticalMax, | ||||||||
| 3207 | TryCand, Cand, RegCritical, TRI, | ||||||||
| 3208 | DAG->MF)) | ||||||||
| 3209 | return TryCand.Reason != NoCand; | ||||||||
| 3210 | |||||||||
| 3211 | // We only compare a subset of features when comparing nodes between | ||||||||
| 3212 | // Top and Bottom boundary. Some properties are simply incomparable, in many | ||||||||
| 3213 | // other instances we should only override the other boundary if something | ||||||||
| 3214 | // is a clear good pick on one boundary. Skip heuristics that are more | ||||||||
| 3215 | // "tie-breaking" in nature. | ||||||||
| 3216 | bool SameBoundary = Zone != nullptr; | ||||||||
| 3217 | if (SameBoundary) { | ||||||||
| 3218 | // For loops that are acyclic path limited, aggressively schedule for | ||||||||
| 3219 | // latency. Within an single cycle, whenever CurrMOps > 0, allow normal | ||||||||
| 3220 | // heuristics to take precedence. | ||||||||
| 3221 | if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() && | ||||||||
| 3222 | tryLatency(TryCand, Cand, *Zone)) | ||||||||
| 3223 | return TryCand.Reason != NoCand; | ||||||||
| 3224 | |||||||||
| 3225 | // Prioritize instructions that read unbuffered resources by stall cycles. | ||||||||
| 3226 | if (tryLess(Zone->getLatencyStallCycles(TryCand.SU), | ||||||||
| 3227 | Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) | ||||||||
| 3228 | return TryCand.Reason != NoCand; | ||||||||
| 3229 | } | ||||||||
| 3230 | |||||||||
| 3231 | // Keep clustered nodes together to encourage downstream peephole | ||||||||
| 3232 | // optimizations which may reduce resource requirements. | ||||||||
| 3233 | // | ||||||||
| 3234 | // This is a best effort to set things up for a post-RA pass. Optimizations | ||||||||
| 3235 | // like generating loads of multiple registers should ideally be done within | ||||||||
| 3236 | // the scheduler pass by combining the loads during DAG postprocessing. | ||||||||
| 3237 | const SUnit *CandNextClusterSU = | ||||||||
| 3238 | Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); | ||||||||
| 3239 | const SUnit *TryCandNextClusterSU = | ||||||||
| 3240 | TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); | ||||||||
| 3241 | if (tryGreater(TryCand.SU == TryCandNextClusterSU, | ||||||||
| 3242 | Cand.SU == CandNextClusterSU, | ||||||||
| 3243 | TryCand, Cand, Cluster)) | ||||||||
| 3244 | return TryCand.Reason != NoCand; | ||||||||
| 3245 | |||||||||
| 3246 | if (SameBoundary) { | ||||||||
| 3247 | // Weak edges are for clustering and other constraints. | ||||||||
| 3248 | if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop), | ||||||||
| 3249 | getWeakLeft(Cand.SU, Cand.AtTop), | ||||||||
| 3250 | TryCand, Cand, Weak)) | ||||||||
| 3251 | return TryCand.Reason != NoCand; | ||||||||
| 3252 | } | ||||||||
| 3253 | |||||||||
| 3254 | // Avoid increasing the max pressure of the entire region. | ||||||||
| 3255 | if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, | ||||||||
| 3256 | Cand.RPDelta.CurrentMax, | ||||||||
| 3257 | TryCand, Cand, RegMax, TRI, | ||||||||
| 3258 | DAG->MF)) | ||||||||
| 3259 | return TryCand.Reason != NoCand; | ||||||||
| 3260 | |||||||||
| 3261 | if (SameBoundary) { | ||||||||
| 3262 | // Avoid critical resource consumption and balance the schedule. | ||||||||
| 3263 | TryCand.initResourceDelta(DAG, SchedModel); | ||||||||
| 3264 | if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, | ||||||||
| 3265 | TryCand, Cand, ResourceReduce)) | ||||||||
| 3266 | return TryCand.Reason != NoCand; | ||||||||
| 3267 | if (tryGreater(TryCand.ResDelta.DemandedResources, | ||||||||
| 3268 | Cand.ResDelta.DemandedResources, | ||||||||
| 3269 | TryCand, Cand, ResourceDemand)) | ||||||||
| 3270 | return TryCand.Reason != NoCand; | ||||||||
| 3271 | |||||||||
| 3272 | // Avoid serializing long latency dependence chains. | ||||||||
| 3273 | // For acyclic path limited loops, latency was already checked above. | ||||||||
| 3274 | if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency && | ||||||||
| 3275 | !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone)) | ||||||||
| 3276 | return TryCand.Reason != NoCand; | ||||||||
| 3277 | |||||||||
| 3278 | // Fall through to original instruction order. | ||||||||
| 3279 | if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) | ||||||||
| 3280 | || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { | ||||||||
| 3281 | TryCand.Reason = NodeOrder; | ||||||||
| 3282 | return true; | ||||||||
| 3283 | } | ||||||||
| 3284 | } | ||||||||
| 3285 | |||||||||
| 3286 | return false; | ||||||||
| 3287 | } | ||||||||
| 3288 | |||||||||
| 3289 | /// Pick the best candidate from the queue. | ||||||||
| 3290 | /// | ||||||||
| 3291 | /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during | ||||||||
| 3292 | /// DAG building. To adjust for the current scheduling location we need to | ||||||||
| 3293 | /// maintain the number of vreg uses remaining to be top-scheduled. | ||||||||
| 3294 | void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, | ||||||||
| 3295 | const CandPolicy &ZonePolicy, | ||||||||
| 3296 | const RegPressureTracker &RPTracker, | ||||||||
| 3297 | SchedCandidate &Cand) { | ||||||||
| 3298 | // getMaxPressureDelta temporarily modifies the tracker. | ||||||||
| 3299 | RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); | ||||||||
| 3300 | |||||||||
| 3301 | ReadyQueue &Q = Zone.Available; | ||||||||
| 3302 | for (SUnit *SU : Q) { | ||||||||
| 3303 | |||||||||
| 3304 | SchedCandidate TryCand(ZonePolicy); | ||||||||
| 3305 | initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker); | ||||||||
| 3306 | // Pass SchedBoundary only when comparing nodes from the same boundary. | ||||||||
| 3307 | SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; | ||||||||
| 3308 | if (tryCandidate(Cand, TryCand, ZoneArg)) { | ||||||||
| 3309 | // Initialize resource delta if needed in case future heuristics query it. | ||||||||
| 3310 | if (TryCand.ResDelta == SchedResourceDelta()) | ||||||||
| 3311 | TryCand.initResourceDelta(DAG, SchedModel); | ||||||||
| 3312 | Cand.setBest(TryCand); | ||||||||
| 3313 | LLVM_DEBUG(traceCandidate(Cand))do { } while (false); | ||||||||
| 3314 | } | ||||||||
| 3315 | } | ||||||||
| 3316 | } | ||||||||
| 3317 | |||||||||
| 3318 | /// Pick the best candidate node from either the top or bottom queue. | ||||||||
| 3319 | SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { | ||||||||
| 3320 | // Schedule as far as possible in the direction of no choice. This is most | ||||||||
| 3321 | // efficient, but also provides the best heuristics for CriticalPSets. | ||||||||
| 3322 | if (SUnit *SU = Bot.pickOnlyChoice()) { | ||||||||
| 3323 | IsTopNode = false; | ||||||||
| 3324 | tracePick(Only1, false); | ||||||||
| 3325 | return SU; | ||||||||
| 3326 | } | ||||||||
| 3327 | if (SUnit *SU = Top.pickOnlyChoice()) { | ||||||||
| 3328 | IsTopNode = true; | ||||||||
| 3329 | tracePick(Only1, true); | ||||||||
| 3330 | return SU; | ||||||||
| 3331 | } | ||||||||
| 3332 | // Set the bottom-up policy based on the state of the current bottom zone and | ||||||||
| 3333 | // the instructions outside the zone, including the top zone. | ||||||||
| 3334 | CandPolicy BotPolicy; | ||||||||
| 3335 | setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); | ||||||||
| 3336 | // Set the top-down policy based on the state of the current top zone and | ||||||||
| 3337 | // the instructions outside the zone, including the bottom zone. | ||||||||
| 3338 | CandPolicy TopPolicy; | ||||||||
| 3339 | setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); | ||||||||
| 3340 | |||||||||
| 3341 | // See if BotCand is still valid (because we previously scheduled from Top). | ||||||||
| 3342 | LLVM_DEBUG(dbgs() << "Picking from Bot:\n")do { } while (false); | ||||||||
| 3343 | if (!BotCand.isValid() || BotCand.SU->isScheduled || | ||||||||
| 3344 | BotCand.Policy != BotPolicy) { | ||||||||
| 3345 | BotCand.reset(CandPolicy()); | ||||||||
| 3346 | pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); | ||||||||
| 3347 | assert(BotCand.Reason != NoCand && "failed to find the first candidate")((void)0); | ||||||||
| 3348 | } else { | ||||||||
| 3349 | LLVM_DEBUG(traceCandidate(BotCand))do { } while (false); | ||||||||
| 3350 | #ifndef NDEBUG1 | ||||||||
| 3351 | if (VerifyScheduling) { | ||||||||
| 3352 | SchedCandidate TCand; | ||||||||
| 3353 | TCand.reset(CandPolicy()); | ||||||||
| 3354 | pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); | ||||||||
| 3355 | assert(TCand.SU == BotCand.SU &&((void)0) | ||||||||
| 3356 | "Last pick result should correspond to re-picking right now")((void)0); | ||||||||
| 3357 | } | ||||||||
| 3358 | #endif | ||||||||
| 3359 | } | ||||||||
| 3360 | |||||||||
| 3361 | // Check if the top Q has a better candidate. | ||||||||
| 3362 | LLVM_DEBUG(dbgs() << "Picking from Top:\n")do { } while (false); | ||||||||
| 3363 | if (!TopCand.isValid() || TopCand.SU->isScheduled || | ||||||||
| 3364 | TopCand.Policy != TopPolicy) { | ||||||||
| 3365 | TopCand.reset(CandPolicy()); | ||||||||
| 3366 | pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); | ||||||||
| 3367 | assert(TopCand.Reason != NoCand && "failed to find the first candidate")((void)0); | ||||||||
| 3368 | } else { | ||||||||
| 3369 | LLVM_DEBUG(traceCandidate(TopCand))do { } while (false); | ||||||||
| 3370 | #ifndef NDEBUG1 | ||||||||
| 3371 | if (VerifyScheduling) { | ||||||||
| 3372 | SchedCandidate TCand; | ||||||||
| 3373 | TCand.reset(CandPolicy()); | ||||||||
| 3374 | pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); | ||||||||
| 3375 | assert(TCand.SU == TopCand.SU &&((void)0) | ||||||||
| 3376 | "Last pick result should correspond to re-picking right now")((void)0); | ||||||||
| 3377 | } | ||||||||
| 3378 | #endif | ||||||||
| 3379 | } | ||||||||
| 3380 | |||||||||
| 3381 | // Pick best from BotCand and TopCand. | ||||||||
| 3382 | assert(BotCand.isValid())((void)0); | ||||||||
| 3383 | assert(TopCand.isValid())((void)0); | ||||||||
| 3384 | SchedCandidate Cand = BotCand; | ||||||||
| 3385 | TopCand.Reason = NoCand; | ||||||||
| 3386 | if (tryCandidate(Cand, TopCand, nullptr)) { | ||||||||
| 3387 | Cand.setBest(TopCand); | ||||||||
| 3388 | LLVM_DEBUG(traceCandidate(Cand))do { } while (false); | ||||||||
| 3389 | } | ||||||||
| 3390 | |||||||||
| 3391 | IsTopNode = Cand.AtTop; | ||||||||
| 3392 | tracePick(Cand); | ||||||||
| 3393 | return Cand.SU; | ||||||||
| 3394 | } | ||||||||
| 3395 | |||||||||
| 3396 | /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. | ||||||||
| 3397 | SUnit *GenericScheduler::pickNode(bool &IsTopNode) { | ||||||||
| 3398 | if (DAG->top() == DAG->bottom()) { | ||||||||
| 3399 | assert(Top.Available.empty() && Top.Pending.empty() &&((void)0) | ||||||||
| 3400 | Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage")((void)0); | ||||||||
| 3401 | return nullptr; | ||||||||
| 3402 | } | ||||||||
| 3403 | SUnit *SU; | ||||||||
| 3404 | do { | ||||||||
| 3405 | if (RegionPolicy.OnlyTopDown) { | ||||||||
| 3406 | SU = Top.pickOnlyChoice(); | ||||||||
| 3407 | if (!SU) { | ||||||||
| 3408 | CandPolicy NoPolicy; | ||||||||
| 3409 | TopCand.reset(NoPolicy); | ||||||||
| 3410 | pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); | ||||||||
| 3411 | assert(TopCand.Reason != NoCand && "failed to find a candidate")((void)0); | ||||||||
| 3412 | tracePick(TopCand); | ||||||||
| 3413 | SU = TopCand.SU; | ||||||||
| 3414 | } | ||||||||
| 3415 | IsTopNode = true; | ||||||||
| 3416 | } else if (RegionPolicy.OnlyBottomUp) { | ||||||||
| 3417 | SU = Bot.pickOnlyChoice(); | ||||||||
| 3418 | if (!SU) { | ||||||||
| 3419 | CandPolicy NoPolicy; | ||||||||
| 3420 | BotCand.reset(NoPolicy); | ||||||||
| 3421 | pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); | ||||||||
| 3422 | assert(BotCand.Reason != NoCand && "failed to find a candidate")((void)0); | ||||||||
| 3423 | tracePick(BotCand); | ||||||||
| 3424 | SU = BotCand.SU; | ||||||||
| 3425 | } | ||||||||
| 3426 | IsTopNode = false; | ||||||||
| 3427 | } else { | ||||||||
| 3428 | SU = pickNodeBidirectional(IsTopNode); | ||||||||
| 3429 | } | ||||||||
| 3430 | } while (SU->isScheduled); | ||||||||
| 3431 | |||||||||
| 3432 | if (SU->isTopReady()) | ||||||||
| 3433 | Top.removeReady(SU); | ||||||||
| 3434 | if (SU->isBottomReady()) | ||||||||
| 3435 | Bot.removeReady(SU); | ||||||||
| 3436 | |||||||||
| 3437 | LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "do { } while (false) | ||||||||
| 3438 | << *SU->getInstr())do { } while (false); | ||||||||
| 3439 | return SU; | ||||||||
| 3440 | } | ||||||||
| 3441 | |||||||||
| 3442 | void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) { | ||||||||
| 3443 | MachineBasicBlock::iterator InsertPos = SU->getInstr(); | ||||||||
| 3444 | if (!isTop) | ||||||||
| 3445 | ++InsertPos; | ||||||||
| 3446 | SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; | ||||||||
| 3447 | |||||||||
| 3448 | // Find already scheduled copies with a single physreg dependence and move | ||||||||
| 3449 | // them just above the scheduled instruction. | ||||||||
| 3450 | for (SDep &Dep : Deps) { | ||||||||
| 3451 | if (Dep.getKind() != SDep::Data || | ||||||||
| 3452 | !Register::isPhysicalRegister(Dep.getReg())) | ||||||||
| 3453 | continue; | ||||||||
| 3454 | SUnit *DepSU = Dep.getSUnit(); | ||||||||
| 3455 | if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) | ||||||||
| 3456 | continue; | ||||||||
| 3457 | MachineInstr *Copy = DepSU->getInstr(); | ||||||||
| 3458 | if (!Copy->isCopy() && !Copy->isMoveImmediate()) | ||||||||
| 3459 | continue; | ||||||||
| 3460 | LLVM_DEBUG(dbgs() << " Rescheduling physreg copy ";do { } while (false) | ||||||||
| 3461 | DAG->dumpNode(*Dep.getSUnit()))do { } while (false); | ||||||||
| 3462 | DAG->moveInstruction(Copy, InsertPos); | ||||||||
| 3463 | } | ||||||||
| 3464 | } | ||||||||
| 3465 | |||||||||
| 3466 | /// Update the scheduler's state after scheduling a node. This is the same node | ||||||||
| 3467 | /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to | ||||||||
| 3468 | /// update it's state based on the current cycle before MachineSchedStrategy | ||||||||
| 3469 | /// does. | ||||||||
| 3470 | /// | ||||||||
| 3471 | /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling | ||||||||
| 3472 | /// them here. See comments in biasPhysReg. | ||||||||
| 3473 | void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { | ||||||||
| 3474 | if (IsTopNode) { | ||||||||
| 3475 | SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); | ||||||||
| 3476 | Top.bumpNode(SU); | ||||||||
| 3477 | if (SU->hasPhysRegUses) | ||||||||
| 3478 | reschedulePhysReg(SU, true); | ||||||||
| 3479 | } else { | ||||||||
| 3480 | SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); | ||||||||
| 3481 | Bot.bumpNode(SU); | ||||||||
| 3482 | if (SU->hasPhysRegDefs) | ||||||||
| 3483 | reschedulePhysReg(SU, false); | ||||||||
| 3484 | } | ||||||||
| 3485 | } | ||||||||
| 3486 | |||||||||
| 3487 | /// Create the standard converging machine scheduler. This will be used as the | ||||||||
| 3488 | /// default scheduler if the target does not set a default. | ||||||||
| 3489 | ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) { | ||||||||
| 3490 | ScheduleDAGMILive *DAG = | ||||||||
| 3491 | new ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C)); | ||||||||
| 3492 | // Register DAG post-processors. | ||||||||
| 3493 | // | ||||||||
| 3494 | // FIXME: extend the mutation API to allow earlier mutations to instantiate | ||||||||
| 3495 | // data and pass it to later mutations. Have a single mutation that gathers | ||||||||
| 3496 | // the interesting nodes in one pass. | ||||||||
| 3497 | DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI)); | ||||||||
| 3498 | return DAG; | ||||||||
| 3499 | } | ||||||||
| 3500 | |||||||||
| 3501 | static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) { | ||||||||
| 3502 | return createGenericSchedLive(C); | ||||||||
| 3503 | } | ||||||||
| 3504 | |||||||||
| 3505 | static MachineSchedRegistry | ||||||||
| 3506 | GenericSchedRegistry("converge", "Standard converging scheduler.", | ||||||||
| 3507 | createConvergingSched); | ||||||||
| 3508 | |||||||||
| 3509 | //===----------------------------------------------------------------------===// | ||||||||
| 3510 | // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. | ||||||||
| 3511 | //===----------------------------------------------------------------------===// | ||||||||
| 3512 | |||||||||
| 3513 | void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { | ||||||||
| 3514 | DAG = Dag; | ||||||||
| 3515 | SchedModel = DAG->getSchedModel(); | ||||||||
| 3516 | TRI = DAG->TRI; | ||||||||
| 3517 | |||||||||
| 3518 | Rem.init(DAG, SchedModel); | ||||||||
| 3519 | Top.init(DAG, SchedModel, &Rem); | ||||||||
| 3520 | BotRoots.clear(); | ||||||||
| 3521 | |||||||||
| 3522 | // Initialize the HazardRecognizers. If itineraries don't exist, are empty, | ||||||||
| 3523 | // or are disabled, then these HazardRecs will be disabled. | ||||||||
| 3524 | const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); | ||||||||
| 3525 | if (!Top.HazardRec) { | ||||||||
| 3526 | Top.HazardRec = | ||||||||
| 3527 | DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( | ||||||||
| 3528 | Itin, DAG); | ||||||||
| 3529 | } | ||||||||
| 3530 | } | ||||||||
| 3531 | |||||||||
| 3532 | void PostGenericScheduler::registerRoots() { | ||||||||
| 3533 | Rem.CriticalPath = DAG->ExitSU.getDepth(); | ||||||||
| 3534 | |||||||||
| 3535 | // Some roots may not feed into ExitSU. Check all of them in case. | ||||||||
| 3536 | for (const SUnit *SU : BotRoots) { | ||||||||
| 3537 | if (SU->getDepth() > Rem.CriticalPath) | ||||||||
| 3538 | Rem.CriticalPath = SU->getDepth(); | ||||||||
| 3539 | } | ||||||||
| 3540 | LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n')do { } while (false); | ||||||||
| 3541 | if (DumpCriticalPathLength) { | ||||||||
| 3542 | errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; | ||||||||
| 3543 | } | ||||||||
| 3544 | } | ||||||||
| 3545 | |||||||||
| 3546 | /// Apply a set of heuristics to a new candidate for PostRA scheduling. | ||||||||
| 3547 | /// | ||||||||
| 3548 | /// \param Cand provides the policy and current best candidate. | ||||||||
| 3549 | /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. | ||||||||
| 3550 | /// \return \c true if TryCand is better than Cand (Reason is NOT NoCand) | ||||||||
| 3551 | bool PostGenericScheduler::tryCandidate(SchedCandidate &Cand, | ||||||||
| 3552 | SchedCandidate &TryCand) { | ||||||||
| 3553 | // Initialize the candidate if needed. | ||||||||
| 3554 | if (!Cand.isValid()) { | ||||||||
| 3555 | TryCand.Reason = NodeOrder; | ||||||||
| 3556 | return true; | ||||||||
| 3557 | } | ||||||||
| 3558 | |||||||||
| 3559 | // Prioritize instructions that read unbuffered resources by stall cycles. | ||||||||
| 3560 | if (tryLess(Top.getLatencyStallCycles(TryCand.SU), | ||||||||
| 3561 | Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) | ||||||||
| 3562 | return TryCand.Reason != NoCand; | ||||||||
| 3563 | |||||||||
| 3564 | // Keep clustered nodes together. | ||||||||
| 3565 | if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(), | ||||||||
| 3566 | Cand.SU == DAG->getNextClusterSucc(), | ||||||||
| 3567 | TryCand, Cand, Cluster)) | ||||||||
| 3568 | return TryCand.Reason != NoCand; | ||||||||
| 3569 | |||||||||
| 3570 | // Avoid critical resource consumption and balance the schedule. | ||||||||
| 3571 | if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, | ||||||||
| 3572 | TryCand, Cand, ResourceReduce)) | ||||||||
| 3573 | return TryCand.Reason != NoCand; | ||||||||
| 3574 | if (tryGreater(TryCand.ResDelta.DemandedResources, | ||||||||
| 3575 | Cand.ResDelta.DemandedResources, | ||||||||
| 3576 | TryCand, Cand, ResourceDemand)) | ||||||||
| 3577 | return TryCand.Reason != NoCand; | ||||||||
| 3578 | |||||||||
| 3579 | // Avoid serializing long latency dependence chains. | ||||||||
| 3580 | if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { | ||||||||
| 3581 | return TryCand.Reason != NoCand; | ||||||||
| 3582 | } | ||||||||
| 3583 | |||||||||
| 3584 | // Fall through to original instruction order. | ||||||||
| 3585 | if (TryCand.SU->NodeNum < Cand.SU->NodeNum) { | ||||||||
| 3586 | TryCand.Reason = NodeOrder; | ||||||||
| 3587 | return true; | ||||||||
| 3588 | } | ||||||||
| 3589 | |||||||||
| 3590 | return false; | ||||||||
| 3591 | } | ||||||||
| 3592 | |||||||||
| 3593 | void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { | ||||||||
| 3594 | ReadyQueue &Q = Top.Available; | ||||||||
| 3595 | for (SUnit *SU : Q) { | ||||||||
| 3596 | SchedCandidate TryCand(Cand.Policy); | ||||||||
| 3597 | TryCand.SU = SU; | ||||||||
| 3598 | TryCand.AtTop = true; | ||||||||
| 3599 | TryCand.initResourceDelta(DAG, SchedModel); | ||||||||
| 3600 | if (tryCandidate(Cand, TryCand)) { | ||||||||
| 3601 | Cand.setBest(TryCand); | ||||||||
| 3602 | LLVM_DEBUG(traceCandidate(Cand))do { } while (false); | ||||||||
| 3603 | } | ||||||||
| 3604 | } | ||||||||
| 3605 | } | ||||||||
| 3606 | |||||||||
| 3607 | /// Pick the next node to schedule. | ||||||||
| 3608 | SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { | ||||||||
| 3609 | if (DAG->top() == DAG->bottom()) { | ||||||||
| |||||||||
| 3610 | assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage")((void)0); | ||||||||
| 3611 | return nullptr; | ||||||||
| 3612 | } | ||||||||
| 3613 | SUnit *SU; | ||||||||
| 3614 | do { | ||||||||
| 3615 | SU = Top.pickOnlyChoice(); | ||||||||
| 3616 | if (SU
| ||||||||
| 3617 | tracePick(Only1, true); | ||||||||
| 3618 | } else { | ||||||||
| 3619 | CandPolicy NoPolicy; | ||||||||
| 3620 | SchedCandidate TopCand(NoPolicy); | ||||||||
| 3621 | // Set the top-down policy based on the state of the current top zone and | ||||||||
| 3622 | // the instructions outside the zone, including the bottom zone. | ||||||||
| 3623 | setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); | ||||||||
| 3624 | pickNodeFromQueue(TopCand); | ||||||||
| 3625 | assert(TopCand.Reason != NoCand && "failed to find a candidate")((void)0); | ||||||||
| 3626 | tracePick(TopCand); | ||||||||
| 3627 | SU = TopCand.SU; | ||||||||
| 3628 | } | ||||||||
| 3629 | } while (SU->isScheduled); | ||||||||
| |||||||||
| 3630 | |||||||||
| 3631 | IsTopNode = true; | ||||||||
| 3632 | Top.removeReady(SU); | ||||||||
| 3633 | |||||||||
| 3634 | LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "do { } while (false) | ||||||||
| 3635 | << *SU->getInstr())do { } while (false); | ||||||||
| 3636 | return SU; | ||||||||
| 3637 | } | ||||||||
| 3638 | |||||||||
| 3639 | /// Called after ScheduleDAGMI has scheduled an instruction and updated | ||||||||
| 3640 | /// scheduled/remaining flags in the DAG nodes. | ||||||||
| 3641 | void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { | ||||||||
| 3642 | SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); | ||||||||
| 3643 | Top.bumpNode(SU); | ||||||||
| 3644 | } | ||||||||
| 3645 | |||||||||
| 3646 | ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) { | ||||||||
| 3647 | return new ScheduleDAGMI(C, std::make_unique<PostGenericScheduler>(C), | ||||||||
| 3648 | /*RemoveKillFlags=*/true); | ||||||||
| 3649 | } | ||||||||
| 3650 | |||||||||
| 3651 | //===----------------------------------------------------------------------===// | ||||||||
| 3652 | // ILP Scheduler. Currently for experimental analysis of heuristics. | ||||||||
| 3653 | //===----------------------------------------------------------------------===// | ||||||||
| 3654 | |||||||||
| 3655 | namespace { | ||||||||
| 3656 | |||||||||
| 3657 | /// Order nodes by the ILP metric. | ||||||||
| 3658 | struct ILPOrder { | ||||||||
| 3659 | const SchedDFSResult *DFSResult = nullptr; | ||||||||
| 3660 | const BitVector *ScheduledTrees = nullptr; | ||||||||
| 3661 | bool MaximizeILP; | ||||||||
| 3662 | |||||||||
| 3663 | ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {} | ||||||||
| 3664 | |||||||||
| 3665 | /// Apply a less-than relation on node priority. | ||||||||
| 3666 | /// | ||||||||
| 3667 | /// (Return true if A comes after B in the Q.) | ||||||||
| 3668 | bool operator()(const SUnit *A, const SUnit *B) const { | ||||||||
| 3669 | unsigned SchedTreeA = DFSResult->getSubtreeID(A); | ||||||||
| 3670 | unsigned SchedTreeB = DFSResult->getSubtreeID(B); | ||||||||
| 3671 | if (SchedTreeA != SchedTreeB) { | ||||||||
| 3672 | // Unscheduled trees have lower priority. | ||||||||
| 3673 | if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) | ||||||||
| 3674 | return ScheduledTrees->test(SchedTreeB); | ||||||||
| 3675 | |||||||||
| 3676 | // Trees with shallower connections have have lower priority. | ||||||||
| 3677 | if (DFSResult->getSubtreeLevel(SchedTreeA) | ||||||||
| 3678 | != DFSResult->getSubtreeLevel(SchedTreeB)) { | ||||||||
| 3679 | return DFSResult->getSubtreeLevel(SchedTreeA) | ||||||||
| 3680 | < DFSResult->getSubtreeLevel(SchedTreeB); | ||||||||
| 3681 | } | ||||||||
| 3682 | } | ||||||||
| 3683 | if (MaximizeILP) | ||||||||
| 3684 | return DFSResult->getILP(A) < DFSResult->getILP(B); | ||||||||
| 3685 | else | ||||||||
| 3686 | return DFSResult->getILP(A) > DFSResult->getILP(B); | ||||||||
| 3687 | } | ||||||||
| 3688 | }; | ||||||||
| 3689 | |||||||||
| 3690 | /// Schedule based on the ILP metric. | ||||||||
| 3691 | class ILPScheduler : public MachineSchedStrategy { | ||||||||
| 3692 | ScheduleDAGMILive *DAG = nullptr; | ||||||||
| 3693 | ILPOrder Cmp; | ||||||||
| 3694 | |||||||||
| 3695 | std::vector<SUnit*> ReadyQ; | ||||||||
| 3696 | |||||||||
| 3697 | public: | ||||||||
| 3698 | ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {} | ||||||||
| 3699 | |||||||||
| 3700 | void initialize(ScheduleDAGMI *dag) override { | ||||||||
| 3701 | assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness")((void)0); | ||||||||
| 3702 | DAG = static_cast<ScheduleDAGMILive*>(dag); | ||||||||
| 3703 | DAG->computeDFSResult(); | ||||||||
| 3704 | Cmp.DFSResult = DAG->getDFSResult(); | ||||||||
| 3705 | Cmp.ScheduledTrees = &DAG->getScheduledTrees(); | ||||||||
| 3706 | ReadyQ.clear(); | ||||||||
| 3707 | } | ||||||||
| 3708 | |||||||||
| 3709 | void registerRoots() override { | ||||||||
| 3710 | // Restore the heap in ReadyQ with the updated DFS results. | ||||||||
| 3711 | std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); | ||||||||
| 3712 | } | ||||||||
| 3713 | |||||||||
| 3714 | /// Implement MachineSchedStrategy interface. | ||||||||
| 3715 | /// ----------------------------------------- | ||||||||
| 3716 | |||||||||
| 3717 | /// Callback to select the highest priority node from the ready Q. | ||||||||
| 3718 | SUnit *pickNode(bool &IsTopNode) override { | ||||||||
| 3719 | if (ReadyQ.empty()) return nullptr; | ||||||||
| 3720 | std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); | ||||||||
| 3721 | SUnit *SU = ReadyQ.back(); | ||||||||
| 3722 | ReadyQ.pop_back(); | ||||||||
| 3723 | IsTopNode = false; | ||||||||
| 3724 | LLVM_DEBUG(dbgs() << "Pick node "do { } while (false) | ||||||||
| 3725 | << "SU(" << SU->NodeNum << ") "do { } while (false) | ||||||||
| 3726 | << " ILP: " << DAG->getDFSResult()->getILP(SU)do { } while (false) | ||||||||
| 3727 | << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU)do { } while (false) | ||||||||
| 3728 | << " @"do { } while (false) | ||||||||
| 3729 | << DAG->getDFSResult()->getSubtreeLevel(do { } while (false) | ||||||||
| 3730 | DAG->getDFSResult()->getSubtreeID(SU))do { } while (false) | ||||||||
| 3731 | << '\n'do { } while (false) | ||||||||
| 3732 | << "Scheduling " << *SU->getInstr())do { } while (false); | ||||||||
| 3733 | return SU; | ||||||||
| 3734 | } | ||||||||
| 3735 | |||||||||
| 3736 | /// Scheduler callback to notify that a new subtree is scheduled. | ||||||||
| 3737 | void scheduleTree(unsigned SubtreeID) override { | ||||||||
| 3738 | std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); | ||||||||
| 3739 | } | ||||||||
| 3740 | |||||||||
| 3741 | /// Callback after a node is scheduled. Mark a newly scheduled tree, notify | ||||||||
| 3742 | /// DFSResults, and resort the priority Q. | ||||||||
| 3743 | void schedNode(SUnit *SU, bool IsTopNode) override { | ||||||||
| 3744 | assert(!IsTopNode && "SchedDFSResult needs bottom-up")((void)0); | ||||||||
| 3745 | } | ||||||||
| 3746 | |||||||||
| 3747 | void releaseTopNode(SUnit *) override { /*only called for top roots*/ } | ||||||||
| 3748 | |||||||||
| 3749 | void releaseBottomNode(SUnit *SU) override { | ||||||||
| 3750 | ReadyQ.push_back(SU); | ||||||||
| 3751 | std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); | ||||||||
| 3752 | } | ||||||||
| 3753 | }; | ||||||||
| 3754 | |||||||||
| 3755 | } // end anonymous namespace | ||||||||
| 3756 | |||||||||
| 3757 | static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { | ||||||||
| 3758 | return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(true)); | ||||||||
| 3759 | } | ||||||||
| 3760 | static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { | ||||||||
| 3761 | return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(false)); | ||||||||
| 3762 | } | ||||||||
| 3763 | |||||||||
| 3764 | static MachineSchedRegistry ILPMaxRegistry( | ||||||||
| 3765 | "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); | ||||||||
| 3766 | static MachineSchedRegistry ILPMinRegistry( | ||||||||
| 3767 | "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); | ||||||||
| 3768 | |||||||||
| 3769 | //===----------------------------------------------------------------------===// | ||||||||
| 3770 | // Machine Instruction Shuffler for Correctness Testing | ||||||||
| 3771 | //===----------------------------------------------------------------------===// | ||||||||
| 3772 | |||||||||
| 3773 | #ifndef NDEBUG1 | ||||||||
| 3774 | namespace { | ||||||||
| 3775 | |||||||||
| 3776 | /// Apply a less-than relation on the node order, which corresponds to the | ||||||||
| 3777 | /// instruction order prior to scheduling. IsReverse implements greater-than. | ||||||||
| 3778 | template<bool IsReverse> | ||||||||
| 3779 | struct SUnitOrder { | ||||||||
| 3780 | bool operator()(SUnit *A, SUnit *B) const { | ||||||||
| 3781 | if (IsReverse) | ||||||||
| 3782 | return A->NodeNum > B->NodeNum; | ||||||||
| 3783 | else | ||||||||
| 3784 | return A->NodeNum < B->NodeNum; | ||||||||
| 3785 | } | ||||||||
| 3786 | }; | ||||||||
| 3787 | |||||||||
| 3788 | /// Reorder instructions as much as possible. | ||||||||
| 3789 | class InstructionShuffler : public MachineSchedStrategy { | ||||||||
| 3790 | bool IsAlternating; | ||||||||
| 3791 | bool IsTopDown; | ||||||||
| 3792 | |||||||||
| 3793 | // Using a less-than relation (SUnitOrder<false>) for the TopQ priority | ||||||||
| 3794 | // gives nodes with a higher number higher priority causing the latest | ||||||||
| 3795 | // instructions to be scheduled first. | ||||||||
| 3796 | PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>> | ||||||||
| 3797 | TopQ; | ||||||||
| 3798 | |||||||||
| 3799 | // When scheduling bottom-up, use greater-than as the queue priority. | ||||||||
| 3800 | PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>> | ||||||||
| 3801 | BottomQ; | ||||||||
| 3802 | |||||||||
| 3803 | public: | ||||||||
| 3804 | InstructionShuffler(bool alternate, bool topdown) | ||||||||
| 3805 | : IsAlternating(alternate), IsTopDown(topdown) {} | ||||||||
| 3806 | |||||||||
| 3807 | void initialize(ScheduleDAGMI*) override { | ||||||||
| 3808 | TopQ.clear(); | ||||||||
| 3809 | BottomQ.clear(); | ||||||||
| 3810 | } | ||||||||
| 3811 | |||||||||
| 3812 | /// Implement MachineSchedStrategy interface. | ||||||||
| 3813 | /// ----------------------------------------- | ||||||||
| 3814 | |||||||||
| 3815 | SUnit *pickNode(bool &IsTopNode) override { | ||||||||
| 3816 | SUnit *SU; | ||||||||
| 3817 | if (IsTopDown) { | ||||||||
| 3818 | do { | ||||||||
| 3819 | if (TopQ.empty()) return nullptr; | ||||||||
| 3820 | SU = TopQ.top(); | ||||||||
| 3821 | TopQ.pop(); | ||||||||
| 3822 | } while (SU->isScheduled); | ||||||||
| 3823 | IsTopNode = true; | ||||||||
| 3824 | } else { | ||||||||
| 3825 | do { | ||||||||
| 3826 | if (BottomQ.empty()) return nullptr; | ||||||||
| 3827 | SU = BottomQ.top(); | ||||||||
| 3828 | BottomQ.pop(); | ||||||||
| 3829 | } while (SU->isScheduled); | ||||||||
| 3830 | IsTopNode = false; | ||||||||
| 3831 | } | ||||||||
| 3832 | if (IsAlternating) | ||||||||
| 3833 | IsTopDown = !IsTopDown; | ||||||||
| 3834 | return SU; | ||||||||
| 3835 | } | ||||||||
| 3836 | |||||||||
| 3837 | void schedNode(SUnit *SU, bool IsTopNode) override {} | ||||||||
| 3838 | |||||||||
| 3839 | void releaseTopNode(SUnit *SU) override { | ||||||||
| 3840 | TopQ.push(SU); | ||||||||
| 3841 | } | ||||||||
| 3842 | void releaseBottomNode(SUnit *SU) override { | ||||||||
| 3843 | BottomQ.push(SU); | ||||||||
| 3844 | } | ||||||||
| 3845 | }; | ||||||||
| 3846 | |||||||||
| 3847 | } // end anonymous namespace | ||||||||
| 3848 | |||||||||
| 3849 | static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { | ||||||||
| 3850 | bool Alternate = !ForceTopDown && !ForceBottomUp; | ||||||||
| 3851 | bool TopDown = !ForceBottomUp; | ||||||||
| 3852 | assert((TopDown || !ForceTopDown) &&((void)0) | ||||||||
| 3853 | "-misched-topdown incompatible with -misched-bottomup")((void)0); | ||||||||
| 3854 | return new ScheduleDAGMILive( | ||||||||
| 3855 | C, std::make_unique<InstructionShuffler>(Alternate, TopDown)); | ||||||||
| 3856 | } | ||||||||
| 3857 | |||||||||
| 3858 | static MachineSchedRegistry ShufflerRegistry( | ||||||||
| 3859 | "shuffle", "Shuffle machine instructions alternating directions", | ||||||||
| 3860 | createInstructionShuffler); | ||||||||
| 3861 | #endif // !NDEBUG | ||||||||
| 3862 | |||||||||
| 3863 | //===----------------------------------------------------------------------===// | ||||||||
| 3864 | // GraphWriter support for ScheduleDAGMILive. | ||||||||
| 3865 | //===----------------------------------------------------------------------===// | ||||||||
| 3866 | |||||||||
| 3867 | #ifndef NDEBUG1 | ||||||||
| 3868 | namespace llvm { | ||||||||
| 3869 | |||||||||
| 3870 | template<> struct GraphTraits< | ||||||||
| 3871 | ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; | ||||||||
| 3872 | |||||||||
| 3873 | template<> | ||||||||
| 3874 | struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { | ||||||||
| 3875 | DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} | ||||||||
| 3876 | |||||||||
| 3877 | static std::string getGraphName(const ScheduleDAG *G) { | ||||||||
| 3878 | return std::string(G->MF.getName()); | ||||||||
| 3879 | } | ||||||||
| 3880 | |||||||||
| 3881 | static bool renderGraphFromBottomUp() { | ||||||||
| 3882 | return true; | ||||||||
| 3883 | } | ||||||||
| 3884 | |||||||||
| 3885 | static bool isNodeHidden(const SUnit *Node, const ScheduleDAG *G) { | ||||||||
| 3886 | if (ViewMISchedCutoff == 0) | ||||||||
| 3887 | return false; | ||||||||
| 3888 | return (Node->Preds.size() > ViewMISchedCutoff | ||||||||
| 3889 | || Node->Succs.size() > ViewMISchedCutoff); | ||||||||
| 3890 | } | ||||||||
| 3891 | |||||||||
| 3892 | /// If you want to override the dot attributes printed for a particular | ||||||||
| 3893 | /// edge, override this method. | ||||||||
| 3894 | static std::string getEdgeAttributes(const SUnit *Node, | ||||||||
| 3895 | SUnitIterator EI, | ||||||||
| 3896 | const ScheduleDAG *Graph) { | ||||||||
| 3897 | if (EI.isArtificialDep()) | ||||||||
| 3898 | return "color=cyan,style=dashed"; | ||||||||
| 3899 | if (EI.isCtrlDep()) | ||||||||
| 3900 | return "color=blue,style=dashed"; | ||||||||
| 3901 | return ""; | ||||||||
| 3902 | } | ||||||||
| 3903 | |||||||||
| 3904 | static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { | ||||||||
| 3905 | std::string Str; | ||||||||
| 3906 | raw_string_ostream SS(Str); | ||||||||
| 3907 | const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); | ||||||||
| 3908 | const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? | ||||||||
| 3909 | static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; | ||||||||
| 3910 | SS << "SU:" << SU->NodeNum; | ||||||||
| 3911 | if (DFS) | ||||||||
| 3912 | SS << " I:" << DFS->getNumInstrs(SU); | ||||||||
| 3913 | return SS.str(); | ||||||||
| 3914 | } | ||||||||
| 3915 | |||||||||
| 3916 | static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { | ||||||||
| 3917 | return G->getGraphNodeLabel(SU); | ||||||||
| 3918 | } | ||||||||
| 3919 | |||||||||
| 3920 | static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { | ||||||||
| 3921 | std::string Str("shape=Mrecord"); | ||||||||
| 3922 | const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); | ||||||||
| 3923 | const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? | ||||||||
| 3924 | static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; | ||||||||
| 3925 | if (DFS) { | ||||||||
| 3926 | Str += ",style=filled,fillcolor=\"#"; | ||||||||
| 3927 | Str += DOT::getColorString(DFS->getSubtreeID(N)); | ||||||||
| 3928 | Str += '"'; | ||||||||
| 3929 | } | ||||||||
| 3930 | return Str; | ||||||||
| 3931 | } | ||||||||
| 3932 | }; | ||||||||
| 3933 | |||||||||
| 3934 | } // end namespace llvm | ||||||||
| 3935 | #endif // NDEBUG | ||||||||
| 3936 | |||||||||
| 3937 | /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG | ||||||||
| 3938 | /// rendered using 'dot'. | ||||||||
| 3939 | void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { | ||||||||
| 3940 | #ifndef NDEBUG1 | ||||||||
| 3941 | ViewGraph(this, Name, false, Title); | ||||||||
| 3942 | #else | ||||||||
| 3943 | errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " | ||||||||
| 3944 | << "systems with Graphviz or gv!\n"; | ||||||||
| 3945 | #endif // NDEBUG | ||||||||
| 3946 | } | ||||||||
| 3947 | |||||||||
| 3948 | /// Out-of-line implementation with no arguments is handy for gdb. | ||||||||
| 3949 | void ScheduleDAGMI::viewGraph() { | ||||||||
| 3950 | viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); | ||||||||
| 3951 | } |
| 1 | //===- llvm/CodeGen/MachineInstrBundleIterator.h ----------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Defines an iterator class that bundles MachineInstr. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #ifndef LLVM_CODEGEN_MACHINEINSTRBUNDLEITERATOR_H |
| 14 | #define LLVM_CODEGEN_MACHINEINSTRBUNDLEITERATOR_H |
| 15 | |
| 16 | #include "llvm/ADT/ilist.h" |
| 17 | #include "llvm/ADT/simple_ilist.h" |
| 18 | #include <cassert> |
| 19 | #include <iterator> |
| 20 | #include <type_traits> |
| 21 | |
| 22 | namespace llvm { |
| 23 | |
| 24 | template <class T, bool IsReverse> struct MachineInstrBundleIteratorTraits; |
| 25 | template <class T> struct MachineInstrBundleIteratorTraits<T, false> { |
| 26 | using list_type = simple_ilist<T, ilist_sentinel_tracking<true>>; |
| 27 | using instr_iterator = typename list_type::iterator; |
| 28 | using nonconst_instr_iterator = typename list_type::iterator; |
| 29 | using const_instr_iterator = typename list_type::const_iterator; |
| 30 | }; |
| 31 | template <class T> struct MachineInstrBundleIteratorTraits<T, true> { |
| 32 | using list_type = simple_ilist<T, ilist_sentinel_tracking<true>>; |
| 33 | using instr_iterator = typename list_type::reverse_iterator; |
| 34 | using nonconst_instr_iterator = typename list_type::reverse_iterator; |
| 35 | using const_instr_iterator = typename list_type::const_reverse_iterator; |
| 36 | }; |
| 37 | template <class T> struct MachineInstrBundleIteratorTraits<const T, false> { |
| 38 | using list_type = simple_ilist<T, ilist_sentinel_tracking<true>>; |
| 39 | using instr_iterator = typename list_type::const_iterator; |
| 40 | using nonconst_instr_iterator = typename list_type::iterator; |
| 41 | using const_instr_iterator = typename list_type::const_iterator; |
| 42 | }; |
| 43 | template <class T> struct MachineInstrBundleIteratorTraits<const T, true> { |
| 44 | using list_type = simple_ilist<T, ilist_sentinel_tracking<true>>; |
| 45 | using instr_iterator = typename list_type::const_reverse_iterator; |
| 46 | using nonconst_instr_iterator = typename list_type::reverse_iterator; |
| 47 | using const_instr_iterator = typename list_type::const_reverse_iterator; |
| 48 | }; |
| 49 | |
| 50 | template <bool IsReverse> struct MachineInstrBundleIteratorHelper; |
| 51 | template <> struct MachineInstrBundleIteratorHelper<false> { |
| 52 | /// Get the beginning of the current bundle. |
| 53 | template <class Iterator> static Iterator getBundleBegin(Iterator I) { |
| 54 | if (!I.isEnd()) |
| 55 | while (I->isBundledWithPred()) |
| 56 | --I; |
| 57 | return I; |
| 58 | } |
| 59 | |
| 60 | /// Get the final node of the current bundle. |
| 61 | template <class Iterator> static Iterator getBundleFinal(Iterator I) { |
| 62 | if (!I.isEnd()) |
| 63 | while (I->isBundledWithSucc()) |
| 64 | ++I; |
| 65 | return I; |
| 66 | } |
| 67 | |
| 68 | /// Increment forward ilist iterator. |
| 69 | template <class Iterator> static void increment(Iterator &I) { |
| 70 | I = std::next(getBundleFinal(I)); |
| 71 | } |
| 72 | |
| 73 | /// Decrement forward ilist iterator. |
| 74 | template <class Iterator> static void decrement(Iterator &I) { |
| 75 | I = getBundleBegin(std::prev(I)); |
| 76 | } |
| 77 | }; |
| 78 | |
| 79 | template <> struct MachineInstrBundleIteratorHelper<true> { |
| 80 | /// Get the beginning of the current bundle. |
| 81 | template <class Iterator> static Iterator getBundleBegin(Iterator I) { |
| 82 | return MachineInstrBundleIteratorHelper<false>::getBundleBegin( |
| 83 | I.getReverse()) |
| 84 | .getReverse(); |
| 85 | } |
| 86 | |
| 87 | /// Get the final node of the current bundle. |
| 88 | template <class Iterator> static Iterator getBundleFinal(Iterator I) { |
| 89 | return MachineInstrBundleIteratorHelper<false>::getBundleFinal( |
| 90 | I.getReverse()) |
| 91 | .getReverse(); |
| 92 | } |
| 93 | |
| 94 | /// Increment reverse ilist iterator. |
| 95 | template <class Iterator> static void increment(Iterator &I) { |
| 96 | I = getBundleBegin(std::next(I)); |
| 97 | } |
| 98 | |
| 99 | /// Decrement reverse ilist iterator. |
| 100 | template <class Iterator> static void decrement(Iterator &I) { |
| 101 | I = std::prev(getBundleFinal(I)); |
| 102 | } |
| 103 | }; |
| 104 | |
| 105 | /// MachineBasicBlock iterator that automatically skips over MIs that are |
| 106 | /// inside bundles (i.e. walk top level MIs only). |
| 107 | template <typename Ty, bool IsReverse = false> |
| 108 | class MachineInstrBundleIterator : MachineInstrBundleIteratorHelper<IsReverse> { |
| 109 | using Traits = MachineInstrBundleIteratorTraits<Ty, IsReverse>; |
| 110 | using instr_iterator = typename Traits::instr_iterator; |
| 111 | |
| 112 | instr_iterator MII; |
| 113 | |
| 114 | public: |
| 115 | using value_type = typename instr_iterator::value_type; |
| 116 | using difference_type = typename instr_iterator::difference_type; |
| 117 | using pointer = typename instr_iterator::pointer; |
| 118 | using reference = typename instr_iterator::reference; |
| 119 | using const_pointer = typename instr_iterator::const_pointer; |
| 120 | using const_reference = typename instr_iterator::const_reference; |
| 121 | using iterator_category = std::bidirectional_iterator_tag; |
| 122 | |
| 123 | private: |
| 124 | using nonconst_instr_iterator = typename Traits::nonconst_instr_iterator; |
| 125 | using const_instr_iterator = typename Traits::const_instr_iterator; |
| 126 | using nonconst_iterator = |
| 127 | MachineInstrBundleIterator<typename nonconst_instr_iterator::value_type, |
| 128 | IsReverse>; |
| 129 | using reverse_iterator = MachineInstrBundleIterator<Ty, !IsReverse>; |
| 130 | |
| 131 | public: |
| 132 | MachineInstrBundleIterator(instr_iterator MI) : MII(MI) { |
| 133 | assert((!MI.getNodePtr() || MI.isEnd() || !MI->isBundledWithPred()) &&((void)0) |
| 134 | "It's not legal to initialize MachineInstrBundleIterator with a "((void)0) |
| 135 | "bundled MI")((void)0); |
| 136 | } |
| 137 | |
| 138 | MachineInstrBundleIterator(reference MI) : MII(MI) { |
| 139 | assert(!MI.isBundledWithPred() && "It's not legal to initialize "((void)0) |
| 140 | "MachineInstrBundleIterator with a "((void)0) |
| 141 | "bundled MI")((void)0); |
| 142 | } |
| 143 | |
| 144 | MachineInstrBundleIterator(pointer MI) : MII(MI) { |
| 145 | // FIXME: This conversion should be explicit. |
| 146 | assert((!MI || !MI->isBundledWithPred()) && "It's not legal to initialize "((void)0) |
| 147 | "MachineInstrBundleIterator "((void)0) |
| 148 | "with a bundled MI")((void)0); |
| 149 | } |
| 150 | |
| 151 | // Template allows conversion from const to nonconst. |
| 152 | template <class OtherTy> |
| 153 | MachineInstrBundleIterator( |
| 154 | const MachineInstrBundleIterator<OtherTy, IsReverse> &I, |
| 155 | std::enable_if_t<std::is_convertible<OtherTy *, Ty *>::value, void *> = |
| 156 | nullptr) |
| 157 | : MII(I.getInstrIterator()) {} |
| 158 | |
| 159 | MachineInstrBundleIterator() : MII(nullptr) {} |
| 160 | |
| 161 | /// Explicit conversion between forward/reverse iterators. |
| 162 | /// |
| 163 | /// Translate between forward and reverse iterators without changing range |
| 164 | /// boundaries. The resulting iterator will dereference (and have a handle) |
| 165 | /// to the previous node, which is somewhat unexpected; but converting the |
| 166 | /// two endpoints in a range will give the same range in reverse. |
| 167 | /// |
| 168 | /// This matches std::reverse_iterator conversions. |
| 169 | explicit MachineInstrBundleIterator( |
| 170 | const MachineInstrBundleIterator<Ty, !IsReverse> &I) |
| 171 | : MachineInstrBundleIterator(++I.getReverse()) {} |
| 172 | |
| 173 | /// Get the bundle iterator for the given instruction's bundle. |
| 174 | static MachineInstrBundleIterator getAtBundleBegin(instr_iterator MI) { |
| 175 | return MachineInstrBundleIteratorHelper<IsReverse>::getBundleBegin(MI); |
| 176 | } |
| 177 | |
| 178 | reference operator*() const { return *MII; } |
| 179 | pointer operator->() const { return &operator*(); } |
| 180 | |
| 181 | /// Check for null. |
| 182 | bool isValid() const { return MII.getNodePtr(); } |
| 183 | |
| 184 | friend bool operator==(const MachineInstrBundleIterator &L, |
| 185 | const MachineInstrBundleIterator &R) { |
| 186 | return L.MII == R.MII; |
| 187 | } |
| 188 | friend bool operator==(const MachineInstrBundleIterator &L, |
| 189 | const const_instr_iterator &R) { |
| 190 | return L.MII == R; // Avoid assertion about validity of R. |
| 191 | } |
| 192 | friend bool operator==(const const_instr_iterator &L, |
| 193 | const MachineInstrBundleIterator &R) { |
| 194 | return L == R.MII; // Avoid assertion about validity of L. |
| 195 | } |
| 196 | friend bool operator==(const MachineInstrBundleIterator &L, |
| 197 | const nonconst_instr_iterator &R) { |
| 198 | return L.MII == R; // Avoid assertion about validity of R. |
| 199 | } |
| 200 | friend bool operator==(const nonconst_instr_iterator &L, |
| 201 | const MachineInstrBundleIterator &R) { |
| 202 | return L == R.MII; // Avoid assertion about validity of L. |
| 203 | } |
| 204 | friend bool operator==(const MachineInstrBundleIterator &L, const_pointer R) { |
| 205 | return L == const_instr_iterator(R); // Avoid assertion about validity of R. |
| 206 | } |
| 207 | friend bool operator==(const_pointer L, const MachineInstrBundleIterator &R) { |
| 208 | return const_instr_iterator(L) == R; // Avoid assertion about validity of L. |
| 209 | } |
| 210 | friend bool operator==(const MachineInstrBundleIterator &L, |
| 211 | const_reference R) { |
| 212 | return L == &R; // Avoid assertion about validity of R. |
| 213 | } |
| 214 | friend bool operator==(const_reference L, |
| 215 | const MachineInstrBundleIterator &R) { |
| 216 | return &L == R; // Avoid assertion about validity of L. |
| 217 | } |
| 218 | |
| 219 | friend bool operator!=(const MachineInstrBundleIterator &L, |
| 220 | const MachineInstrBundleIterator &R) { |
| 221 | return !(L == R); |
| 222 | } |
| 223 | friend bool operator!=(const MachineInstrBundleIterator &L, |
| 224 | const const_instr_iterator &R) { |
| 225 | return !(L == R); |
| 226 | } |
| 227 | friend bool operator!=(const const_instr_iterator &L, |
| 228 | const MachineInstrBundleIterator &R) { |
| 229 | return !(L == R); |
| 230 | } |
| 231 | friend bool operator!=(const MachineInstrBundleIterator &L, |
| 232 | const nonconst_instr_iterator &R) { |
| 233 | return !(L == R); |
| 234 | } |
| 235 | friend bool operator!=(const nonconst_instr_iterator &L, |
| 236 | const MachineInstrBundleIterator &R) { |
| 237 | return !(L == R); |
| 238 | } |
| 239 | friend bool operator!=(const MachineInstrBundleIterator &L, const_pointer R) { |
| 240 | return !(L == R); |
| 241 | } |
| 242 | friend bool operator!=(const_pointer L, const MachineInstrBundleIterator &R) { |
| 243 | return !(L == R); |
| 244 | } |
| 245 | friend bool operator!=(const MachineInstrBundleIterator &L, |
| 246 | const_reference R) { |
| 247 | return !(L == R); |
| 248 | } |
| 249 | friend bool operator!=(const_reference L, |
| 250 | const MachineInstrBundleIterator &R) { |
| 251 | return !(L == R); |
| 252 | } |
| 253 | |
| 254 | // Increment and decrement operators... |
| 255 | MachineInstrBundleIterator &operator--() { |
| 256 | this->decrement(MII); |
| 257 | return *this; |
| 258 | } |
| 259 | MachineInstrBundleIterator &operator++() { |
| 260 | this->increment(MII); |
| 261 | return *this; |
| 262 | } |
| 263 | MachineInstrBundleIterator operator--(int) { |
| 264 | MachineInstrBundleIterator Temp = *this; |
| 265 | --*this; |
| 266 | return Temp; |
| 267 | } |
| 268 | MachineInstrBundleIterator operator++(int) { |
| 269 | MachineInstrBundleIterator Temp = *this; |
| 270 | ++*this; |
| 271 | return Temp; |
| 272 | } |
| 273 | |
| 274 | instr_iterator getInstrIterator() const { return MII; } |
| 275 | |
| 276 | nonconst_iterator getNonConstIterator() const { return MII.getNonConst(); } |
| 277 | |
| 278 | /// Get a reverse iterator to the same node. |
| 279 | /// |
| 280 | /// Gives a reverse iterator that will dereference (and have a handle) to the |
| 281 | /// same node. Converting the endpoint iterators in a range will give a |
| 282 | /// different range; for range operations, use the explicit conversions. |
| 283 | reverse_iterator getReverse() const { return MII.getReverse(); } |
| 284 | }; |
| 285 | |
| 286 | } // end namespace llvm |
| 287 | |
| 288 | #endif // LLVM_CODEGEN_MACHINEINSTRBUNDLEITERATOR_H |
| 1 | //===- llvm/ADT/ilist_iterator.h - Intrusive List Iterator ------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #ifndef LLVM_ADT_ILIST_ITERATOR_H |
| 10 | #define LLVM_ADT_ILIST_ITERATOR_H |
| 11 | |
| 12 | #include "llvm/ADT/ilist_node.h" |
| 13 | #include <cassert> |
| 14 | #include <cstddef> |
| 15 | #include <iterator> |
| 16 | #include <type_traits> |
| 17 | |
| 18 | namespace llvm { |
| 19 | |
| 20 | namespace ilist_detail { |
| 21 | |
| 22 | /// Find const-correct node types. |
| 23 | template <class OptionsT, bool IsConst> struct IteratorTraits; |
| 24 | template <class OptionsT> struct IteratorTraits<OptionsT, false> { |
| 25 | using value_type = typename OptionsT::value_type; |
| 26 | using pointer = typename OptionsT::pointer; |
| 27 | using reference = typename OptionsT::reference; |
| 28 | using node_pointer = ilist_node_impl<OptionsT> *; |
| 29 | using node_reference = ilist_node_impl<OptionsT> &; |
| 30 | }; |
| 31 | template <class OptionsT> struct IteratorTraits<OptionsT, true> { |
| 32 | using value_type = const typename OptionsT::value_type; |
| 33 | using pointer = typename OptionsT::const_pointer; |
| 34 | using reference = typename OptionsT::const_reference; |
| 35 | using node_pointer = const ilist_node_impl<OptionsT> *; |
| 36 | using node_reference = const ilist_node_impl<OptionsT> &; |
| 37 | }; |
| 38 | |
| 39 | template <bool IsReverse> struct IteratorHelper; |
| 40 | template <> struct IteratorHelper<false> : ilist_detail::NodeAccess { |
| 41 | using Access = ilist_detail::NodeAccess; |
| 42 | |
| 43 | template <class T> static void increment(T *&I) { I = Access::getNext(*I); } |
| 44 | template <class T> static void decrement(T *&I) { I = Access::getPrev(*I); } |
| 45 | }; |
| 46 | template <> struct IteratorHelper<true> : ilist_detail::NodeAccess { |
| 47 | using Access = ilist_detail::NodeAccess; |
| 48 | |
| 49 | template <class T> static void increment(T *&I) { I = Access::getPrev(*I); } |
| 50 | template <class T> static void decrement(T *&I) { I = Access::getNext(*I); } |
| 51 | }; |
| 52 | |
| 53 | } // end namespace ilist_detail |
| 54 | |
| 55 | /// Iterator for intrusive lists based on ilist_node. |
| 56 | template <class OptionsT, bool IsReverse, bool IsConst> |
| 57 | class ilist_iterator : ilist_detail::SpecificNodeAccess<OptionsT> { |
| 58 | friend ilist_iterator<OptionsT, IsReverse, !IsConst>; |
| 59 | friend ilist_iterator<OptionsT, !IsReverse, IsConst>; |
| 60 | friend ilist_iterator<OptionsT, !IsReverse, !IsConst>; |
| 61 | |
| 62 | using Traits = ilist_detail::IteratorTraits<OptionsT, IsConst>; |
| 63 | using Access = ilist_detail::SpecificNodeAccess<OptionsT>; |
| 64 | |
| 65 | public: |
| 66 | using value_type = typename Traits::value_type; |
| 67 | using pointer = typename Traits::pointer; |
| 68 | using reference = typename Traits::reference; |
| 69 | using difference_type = ptrdiff_t; |
| 70 | using iterator_category = std::bidirectional_iterator_tag; |
| 71 | using const_pointer = typename OptionsT::const_pointer; |
| 72 | using const_reference = typename OptionsT::const_reference; |
| 73 | |
| 74 | private: |
| 75 | using node_pointer = typename Traits::node_pointer; |
| 76 | using node_reference = typename Traits::node_reference; |
| 77 | |
| 78 | node_pointer NodePtr = nullptr; |
| 79 | |
| 80 | public: |
| 81 | /// Create from an ilist_node. |
| 82 | explicit ilist_iterator(node_reference N) : NodePtr(&N) {} |
| 83 | |
| 84 | explicit ilist_iterator(pointer NP) : NodePtr(Access::getNodePtr(NP)) {} |
| 85 | explicit ilist_iterator(reference NR) : NodePtr(Access::getNodePtr(&NR)) {} |
| 86 | ilist_iterator() = default; |
| 87 | |
| 88 | // This is templated so that we can allow constructing a const iterator from |
| 89 | // a nonconst iterator... |
| 90 | template <bool RHSIsConst> |
| 91 | ilist_iterator(const ilist_iterator<OptionsT, IsReverse, RHSIsConst> &RHS, |
| 92 | std::enable_if_t<IsConst || !RHSIsConst, void *> = nullptr) |
| 93 | : NodePtr(RHS.NodePtr) {} |
| 94 | |
| 95 | // This is templated so that we can allow assigning to a const iterator from |
| 96 | // a nonconst iterator... |
| 97 | template <bool RHSIsConst> |
| 98 | std::enable_if_t<IsConst || !RHSIsConst, ilist_iterator &> |
| 99 | operator=(const ilist_iterator<OptionsT, IsReverse, RHSIsConst> &RHS) { |
| 100 | NodePtr = RHS.NodePtr; |
| 101 | return *this; |
| 102 | } |
| 103 | |
| 104 | /// Explicit conversion between forward/reverse iterators. |
| 105 | /// |
| 106 | /// Translate between forward and reverse iterators without changing range |
| 107 | /// boundaries. The resulting iterator will dereference (and have a handle) |
| 108 | /// to the previous node, which is somewhat unexpected; but converting the |
| 109 | /// two endpoints in a range will give the same range in reverse. |
| 110 | /// |
| 111 | /// This matches std::reverse_iterator conversions. |
| 112 | explicit ilist_iterator( |
| 113 | const ilist_iterator<OptionsT, !IsReverse, IsConst> &RHS) |
| 114 | : ilist_iterator(++RHS.getReverse()) {} |
| 115 | |
| 116 | /// Get a reverse iterator to the same node. |
| 117 | /// |
| 118 | /// Gives a reverse iterator that will dereference (and have a handle) to the |
| 119 | /// same node. Converting the endpoint iterators in a range will give a |
| 120 | /// different range; for range operations, use the explicit conversions. |
| 121 | ilist_iterator<OptionsT, !IsReverse, IsConst> getReverse() const { |
| 122 | if (NodePtr) |
| 123 | return ilist_iterator<OptionsT, !IsReverse, IsConst>(*NodePtr); |
| 124 | return ilist_iterator<OptionsT, !IsReverse, IsConst>(); |
| 125 | } |
| 126 | |
| 127 | /// Const-cast. |
| 128 | ilist_iterator<OptionsT, IsReverse, false> getNonConst() const { |
| 129 | if (NodePtr) |
| 130 | return ilist_iterator<OptionsT, IsReverse, false>( |
| 131 | const_cast<typename ilist_iterator<OptionsT, IsReverse, |
| 132 | false>::node_reference>(*NodePtr)); |
| 133 | return ilist_iterator<OptionsT, IsReverse, false>(); |
| 134 | } |
| 135 | |
| 136 | // Accessors... |
| 137 | reference operator*() const { |
| 138 | assert(!NodePtr->isKnownSentinel())((void)0); |
| 139 | return *Access::getValuePtr(NodePtr); |
| 140 | } |
| 141 | pointer operator->() const { return &operator*(); } |
| 142 | |
| 143 | // Comparison operators |
| 144 | friend bool operator==(const ilist_iterator &LHS, const ilist_iterator &RHS) { |
| 145 | return LHS.NodePtr == RHS.NodePtr; |
| 146 | } |
| 147 | friend bool operator!=(const ilist_iterator &LHS, const ilist_iterator &RHS) { |
| 148 | return LHS.NodePtr != RHS.NodePtr; |
| 149 | } |
| 150 | |
| 151 | // Increment and decrement operators... |
| 152 | ilist_iterator &operator--() { |
| 153 | NodePtr = IsReverse ? NodePtr->getNext() : NodePtr->getPrev(); |
| 154 | return *this; |
| 155 | } |
| 156 | ilist_iterator &operator++() { |
| 157 | NodePtr = IsReverse ? NodePtr->getPrev() : NodePtr->getNext(); |
| 158 | return *this; |
| 159 | } |
| 160 | ilist_iterator operator--(int) { |
| 161 | ilist_iterator tmp = *this; |
| 162 | --*this; |
| 163 | return tmp; |
| 164 | } |
| 165 | ilist_iterator operator++(int) { |
| 166 | ilist_iterator tmp = *this; |
| 167 | ++*this; |
| 168 | return tmp; |
| 169 | } |
| 170 | |
| 171 | /// Get the underlying ilist_node. |
| 172 | node_pointer getNodePtr() const { return static_cast<node_pointer>(NodePtr); } |
| 173 | |
| 174 | /// Check for end. Only valid if ilist_sentinel_tracking<true>. |
| 175 | bool isEnd() const { return NodePtr ? NodePtr->isSentinel() : false; } |
| 176 | }; |
| 177 | |
| 178 | template <typename From> struct simplify_type; |
| 179 | |
| 180 | /// Allow ilist_iterators to convert into pointers to a node automatically when |
| 181 | /// used by the dyn_cast, cast, isa mechanisms... |
| 182 | /// |
| 183 | /// FIXME: remove this, since there is no implicit conversion to NodeTy. |
| 184 | template <class OptionsT, bool IsConst> |
| 185 | struct simplify_type<ilist_iterator<OptionsT, false, IsConst>> { |
| 186 | using iterator = ilist_iterator<OptionsT, false, IsConst>; |
| 187 | using SimpleType = typename iterator::pointer; |
| 188 | |
| 189 | static SimpleType getSimplifiedValue(const iterator &Node) { return &*Node; } |
| 190 | }; |
| 191 | template <class OptionsT, bool IsConst> |
| 192 | struct simplify_type<const ilist_iterator<OptionsT, false, IsConst>> |
| 193 | : simplify_type<ilist_iterator<OptionsT, false, IsConst>> {}; |
| 194 | |
| 195 | } // end namespace llvm |
| 196 | |
| 197 | #endif // LLVM_ADT_ILIST_ITERATOR_H |
| 1 | //===- MachineScheduler.h - MachineInstr Scheduling Pass --------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file provides an interface for customizing the standard MachineScheduler |
| 10 | // pass. Note that the entire pass may be replaced as follows: |
| 11 | // |
| 12 | // <Target>TargetMachine::createPassConfig(PassManagerBase &PM) { |
| 13 | // PM.substitutePass(&MachineSchedulerID, &CustomSchedulerPassID); |
| 14 | // ...} |
| 15 | // |
| 16 | // The MachineScheduler pass is only responsible for choosing the regions to be |
| 17 | // scheduled. Targets can override the DAG builder and scheduler without |
| 18 | // replacing the pass as follows: |
| 19 | // |
| 20 | // ScheduleDAGInstrs *<Target>PassConfig:: |
| 21 | // createMachineScheduler(MachineSchedContext *C) { |
| 22 | // return new CustomMachineScheduler(C); |
| 23 | // } |
| 24 | // |
| 25 | // The default scheduler, ScheduleDAGMILive, builds the DAG and drives list |
| 26 | // scheduling while updating the instruction stream, register pressure, and live |
| 27 | // intervals. Most targets don't need to override the DAG builder and list |
| 28 | // scheduler, but subtargets that require custom scheduling heuristics may |
| 29 | // plugin an alternate MachineSchedStrategy. The strategy is responsible for |
| 30 | // selecting the highest priority node from the list: |
| 31 | // |
| 32 | // ScheduleDAGInstrs *<Target>PassConfig:: |
| 33 | // createMachineScheduler(MachineSchedContext *C) { |
| 34 | // return new ScheduleDAGMILive(C, CustomStrategy(C)); |
| 35 | // } |
| 36 | // |
| 37 | // The DAG builder can also be customized in a sense by adding DAG mutations |
| 38 | // that will run after DAG building and before list scheduling. DAG mutations |
| 39 | // can adjust dependencies based on target-specific knowledge or add weak edges |
| 40 | // to aid heuristics: |
| 41 | // |
| 42 | // ScheduleDAGInstrs *<Target>PassConfig:: |
| 43 | // createMachineScheduler(MachineSchedContext *C) { |
| 44 | // ScheduleDAGMI *DAG = createGenericSchedLive(C); |
| 45 | // DAG->addMutation(new CustomDAGMutation(...)); |
| 46 | // return DAG; |
| 47 | // } |
| 48 | // |
| 49 | // A target that supports alternative schedulers can use the |
| 50 | // MachineSchedRegistry to allow command line selection. This can be done by |
| 51 | // implementing the following boilerplate: |
| 52 | // |
| 53 | // static ScheduleDAGInstrs *createCustomMachineSched(MachineSchedContext *C) { |
| 54 | // return new CustomMachineScheduler(C); |
| 55 | // } |
| 56 | // static MachineSchedRegistry |
| 57 | // SchedCustomRegistry("custom", "Run my target's custom scheduler", |
| 58 | // createCustomMachineSched); |
| 59 | // |
| 60 | // |
| 61 | // Finally, subtargets that don't need to implement custom heuristics but would |
| 62 | // like to configure the GenericScheduler's policy for a given scheduler region, |
| 63 | // including scheduling direction and register pressure tracking policy, can do |
| 64 | // this: |
| 65 | // |
| 66 | // void <SubTarget>Subtarget:: |
| 67 | // overrideSchedPolicy(MachineSchedPolicy &Policy, |
| 68 | // unsigned NumRegionInstrs) const { |
| 69 | // Policy.<Flag> = true; |
| 70 | // } |
| 71 | // |
| 72 | //===----------------------------------------------------------------------===// |
| 73 | |
| 74 | #ifndef LLVM_CODEGEN_MACHINESCHEDULER_H |
| 75 | #define LLVM_CODEGEN_MACHINESCHEDULER_H |
| 76 | |
| 77 | #include "llvm/ADT/APInt.h" |
| 78 | #include "llvm/ADT/ArrayRef.h" |
| 79 | #include "llvm/ADT/BitVector.h" |
| 80 | #include "llvm/ADT/STLExtras.h" |
| 81 | #include "llvm/ADT/SmallVector.h" |
| 82 | #include "llvm/ADT/StringRef.h" |
| 83 | #include "llvm/ADT/Twine.h" |
| 84 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 85 | #include "llvm/CodeGen/MachinePassRegistry.h" |
| 86 | #include "llvm/CodeGen/RegisterPressure.h" |
| 87 | #include "llvm/CodeGen/ScheduleDAG.h" |
| 88 | #include "llvm/CodeGen/ScheduleDAGInstrs.h" |
| 89 | #include "llvm/CodeGen/ScheduleDAGMutation.h" |
| 90 | #include "llvm/CodeGen/TargetSchedule.h" |
| 91 | #include "llvm/Support/CommandLine.h" |
| 92 | #include "llvm/Support/ErrorHandling.h" |
| 93 | #include <algorithm> |
| 94 | #include <cassert> |
| 95 | #include <memory> |
| 96 | #include <string> |
| 97 | #include <vector> |
| 98 | |
| 99 | namespace llvm { |
| 100 | |
| 101 | extern cl::opt<bool> ForceTopDown; |
| 102 | extern cl::opt<bool> ForceBottomUp; |
| 103 | extern cl::opt<bool> VerifyScheduling; |
| 104 | |
| 105 | class AAResults; |
| 106 | class LiveIntervals; |
| 107 | class MachineDominatorTree; |
| 108 | class MachineFunction; |
| 109 | class MachineInstr; |
| 110 | class MachineLoopInfo; |
| 111 | class RegisterClassInfo; |
| 112 | class SchedDFSResult; |
| 113 | class ScheduleHazardRecognizer; |
| 114 | class TargetInstrInfo; |
| 115 | class TargetPassConfig; |
| 116 | class TargetRegisterInfo; |
| 117 | |
| 118 | /// MachineSchedContext provides enough context from the MachineScheduler pass |
| 119 | /// for the target to instantiate a scheduler. |
| 120 | struct MachineSchedContext { |
| 121 | MachineFunction *MF = nullptr; |
| 122 | const MachineLoopInfo *MLI = nullptr; |
| 123 | const MachineDominatorTree *MDT = nullptr; |
| 124 | const TargetPassConfig *PassConfig = nullptr; |
| 125 | AAResults *AA = nullptr; |
| 126 | LiveIntervals *LIS = nullptr; |
| 127 | |
| 128 | RegisterClassInfo *RegClassInfo; |
| 129 | |
| 130 | MachineSchedContext(); |
| 131 | virtual ~MachineSchedContext(); |
| 132 | }; |
| 133 | |
| 134 | /// MachineSchedRegistry provides a selection of available machine instruction |
| 135 | /// schedulers. |
| 136 | class MachineSchedRegistry |
| 137 | : public MachinePassRegistryNode< |
| 138 | ScheduleDAGInstrs *(*)(MachineSchedContext *)> { |
| 139 | public: |
| 140 | using ScheduleDAGCtor = ScheduleDAGInstrs *(*)(MachineSchedContext *); |
| 141 | |
| 142 | // RegisterPassParser requires a (misnamed) FunctionPassCtor type. |
| 143 | using FunctionPassCtor = ScheduleDAGCtor; |
| 144 | |
| 145 | static MachinePassRegistry<ScheduleDAGCtor> Registry; |
| 146 | |
| 147 | MachineSchedRegistry(const char *N, const char *D, ScheduleDAGCtor C) |
| 148 | : MachinePassRegistryNode(N, D, C) { |
| 149 | Registry.Add(this); |
| 150 | } |
| 151 | |
| 152 | ~MachineSchedRegistry() { Registry.Remove(this); } |
| 153 | |
| 154 | // Accessors. |
| 155 | // |
| 156 | MachineSchedRegistry *getNext() const { |
| 157 | return (MachineSchedRegistry *)MachinePassRegistryNode::getNext(); |
| 158 | } |
| 159 | |
| 160 | static MachineSchedRegistry *getList() { |
| 161 | return (MachineSchedRegistry *)Registry.getList(); |
| 162 | } |
| 163 | |
| 164 | static void setListener(MachinePassRegistryListener<FunctionPassCtor> *L) { |
| 165 | Registry.setListener(L); |
| 166 | } |
| 167 | }; |
| 168 | |
| 169 | class ScheduleDAGMI; |
| 170 | |
| 171 | /// Define a generic scheduling policy for targets that don't provide their own |
| 172 | /// MachineSchedStrategy. This can be overriden for each scheduling region |
| 173 | /// before building the DAG. |
| 174 | struct MachineSchedPolicy { |
| 175 | // Allow the scheduler to disable register pressure tracking. |
| 176 | bool ShouldTrackPressure = false; |
| 177 | /// Track LaneMasks to allow reordering of independent subregister writes |
| 178 | /// of the same vreg. \sa MachineSchedStrategy::shouldTrackLaneMasks() |
| 179 | bool ShouldTrackLaneMasks = false; |
| 180 | |
| 181 | // Allow the scheduler to force top-down or bottom-up scheduling. If neither |
| 182 | // is true, the scheduler runs in both directions and converges. |
| 183 | bool OnlyTopDown = false; |
| 184 | bool OnlyBottomUp = false; |
| 185 | |
| 186 | // Disable heuristic that tries to fetch nodes from long dependency chains |
| 187 | // first. |
| 188 | bool DisableLatencyHeuristic = false; |
| 189 | |
| 190 | // Compute DFSResult for use in scheduling heuristics. |
| 191 | bool ComputeDFSResult = false; |
| 192 | |
| 193 | MachineSchedPolicy() = default; |
| 194 | }; |
| 195 | |
| 196 | /// MachineSchedStrategy - Interface to the scheduling algorithm used by |
| 197 | /// ScheduleDAGMI. |
| 198 | /// |
| 199 | /// Initialization sequence: |
| 200 | /// initPolicy -> shouldTrackPressure -> initialize(DAG) -> registerRoots |
| 201 | class MachineSchedStrategy { |
| 202 | virtual void anchor(); |
| 203 | |
| 204 | public: |
| 205 | virtual ~MachineSchedStrategy() = default; |
| 206 | |
| 207 | /// Optionally override the per-region scheduling policy. |
| 208 | virtual void initPolicy(MachineBasicBlock::iterator Begin, |
| 209 | MachineBasicBlock::iterator End, |
| 210 | unsigned NumRegionInstrs) {} |
| 211 | |
| 212 | virtual void dumpPolicy() const {} |
| 213 | |
| 214 | /// Check if pressure tracking is needed before building the DAG and |
| 215 | /// initializing this strategy. Called after initPolicy. |
| 216 | virtual bool shouldTrackPressure() const { return true; } |
| 217 | |
| 218 | /// Returns true if lanemasks should be tracked. LaneMask tracking is |
| 219 | /// necessary to reorder independent subregister defs for the same vreg. |
| 220 | /// This has to be enabled in combination with shouldTrackPressure(). |
| 221 | virtual bool shouldTrackLaneMasks() const { return false; } |
| 222 | |
| 223 | // If this method returns true, handling of the scheduling regions |
| 224 | // themselves (in case of a scheduling boundary in MBB) will be done |
| 225 | // beginning with the topmost region of MBB. |
| 226 | virtual bool doMBBSchedRegionsTopDown() const { return false; } |
| 227 | |
| 228 | /// Initialize the strategy after building the DAG for a new region. |
| 229 | virtual void initialize(ScheduleDAGMI *DAG) = 0; |
| 230 | |
| 231 | /// Tell the strategy that MBB is about to be processed. |
| 232 | virtual void enterMBB(MachineBasicBlock *MBB) {}; |
| 233 | |
| 234 | /// Tell the strategy that current MBB is done. |
| 235 | virtual void leaveMBB() {}; |
| 236 | |
| 237 | /// Notify this strategy that all roots have been released (including those |
| 238 | /// that depend on EntrySU or ExitSU). |
| 239 | virtual void registerRoots() {} |
| 240 | |
| 241 | /// Pick the next node to schedule, or return NULL. Set IsTopNode to true to |
| 242 | /// schedule the node at the top of the unscheduled region. Otherwise it will |
| 243 | /// be scheduled at the bottom. |
| 244 | virtual SUnit *pickNode(bool &IsTopNode) = 0; |
| 245 | |
| 246 | /// Scheduler callback to notify that a new subtree is scheduled. |
| 247 | virtual void scheduleTree(unsigned SubtreeID) {} |
| 248 | |
| 249 | /// Notify MachineSchedStrategy that ScheduleDAGMI has scheduled an |
| 250 | /// instruction and updated scheduled/remaining flags in the DAG nodes. |
| 251 | virtual void schedNode(SUnit *SU, bool IsTopNode) = 0; |
| 252 | |
| 253 | /// When all predecessor dependencies have been resolved, free this node for |
| 254 | /// top-down scheduling. |
| 255 | virtual void releaseTopNode(SUnit *SU) = 0; |
| 256 | |
| 257 | /// When all successor dependencies have been resolved, free this node for |
| 258 | /// bottom-up scheduling. |
| 259 | virtual void releaseBottomNode(SUnit *SU) = 0; |
| 260 | }; |
| 261 | |
| 262 | /// ScheduleDAGMI is an implementation of ScheduleDAGInstrs that simply |
| 263 | /// schedules machine instructions according to the given MachineSchedStrategy |
| 264 | /// without much extra book-keeping. This is the common functionality between |
| 265 | /// PreRA and PostRA MachineScheduler. |
| 266 | class ScheduleDAGMI : public ScheduleDAGInstrs { |
| 267 | protected: |
| 268 | AAResults *AA; |
| 269 | LiveIntervals *LIS; |
| 270 | std::unique_ptr<MachineSchedStrategy> SchedImpl; |
| 271 | |
| 272 | /// Ordered list of DAG postprocessing steps. |
| 273 | std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations; |
| 274 | |
| 275 | /// The top of the unscheduled zone. |
| 276 | MachineBasicBlock::iterator CurrentTop; |
| 277 | |
| 278 | /// The bottom of the unscheduled zone. |
| 279 | MachineBasicBlock::iterator CurrentBottom; |
| 280 | |
| 281 | /// Record the next node in a scheduled cluster. |
| 282 | const SUnit *NextClusterPred = nullptr; |
| 283 | const SUnit *NextClusterSucc = nullptr; |
| 284 | |
| 285 | #ifndef NDEBUG1 |
| 286 | /// The number of instructions scheduled so far. Used to cut off the |
| 287 | /// scheduler at the point determined by misched-cutoff. |
| 288 | unsigned NumInstrsScheduled = 0; |
| 289 | #endif |
| 290 | |
| 291 | public: |
| 292 | ScheduleDAGMI(MachineSchedContext *C, std::unique_ptr<MachineSchedStrategy> S, |
| 293 | bool RemoveKillFlags) |
| 294 | : ScheduleDAGInstrs(*C->MF, C->MLI, RemoveKillFlags), AA(C->AA), |
| 295 | LIS(C->LIS), SchedImpl(std::move(S)) {} |
| 296 | |
| 297 | // Provide a vtable anchor |
| 298 | ~ScheduleDAGMI() override; |
| 299 | |
| 300 | /// If this method returns true, handling of the scheduling regions |
| 301 | /// themselves (in case of a scheduling boundary in MBB) will be done |
| 302 | /// beginning with the topmost region of MBB. |
| 303 | bool doMBBSchedRegionsTopDown() const override { |
| 304 | return SchedImpl->doMBBSchedRegionsTopDown(); |
| 305 | } |
| 306 | |
| 307 | // Returns LiveIntervals instance for use in DAG mutators and such. |
| 308 | LiveIntervals *getLIS() const { return LIS; } |
| 309 | |
| 310 | /// Return true if this DAG supports VReg liveness and RegPressure. |
| 311 | virtual bool hasVRegLiveness() const { return false; } |
| 312 | |
| 313 | /// Add a postprocessing step to the DAG builder. |
| 314 | /// Mutations are applied in the order that they are added after normal DAG |
| 315 | /// building and before MachineSchedStrategy initialization. |
| 316 | /// |
| 317 | /// ScheduleDAGMI takes ownership of the Mutation object. |
| 318 | void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) { |
| 319 | if (Mutation) |
| 320 | Mutations.push_back(std::move(Mutation)); |
| 321 | } |
| 322 | |
| 323 | MachineBasicBlock::iterator top() const { return CurrentTop; } |
| 324 | MachineBasicBlock::iterator bottom() const { return CurrentBottom; } |
| 325 | |
| 326 | /// Implement the ScheduleDAGInstrs interface for handling the next scheduling |
| 327 | /// region. This covers all instructions in a block, while schedule() may only |
| 328 | /// cover a subset. |
| 329 | void enterRegion(MachineBasicBlock *bb, |
| 330 | MachineBasicBlock::iterator begin, |
| 331 | MachineBasicBlock::iterator end, |
| 332 | unsigned regioninstrs) override; |
| 333 | |
| 334 | /// Implement ScheduleDAGInstrs interface for scheduling a sequence of |
| 335 | /// reorderable instructions. |
| 336 | void schedule() override; |
| 337 | |
| 338 | void startBlock(MachineBasicBlock *bb) override; |
| 339 | void finishBlock() override; |
| 340 | |
| 341 | /// Change the position of an instruction within the basic block and update |
| 342 | /// live ranges and region boundary iterators. |
| 343 | void moveInstruction(MachineInstr *MI, MachineBasicBlock::iterator InsertPos); |
| 344 | |
| 345 | const SUnit *getNextClusterPred() const { return NextClusterPred; } |
| 346 | |
| 347 | const SUnit *getNextClusterSucc() const { return NextClusterSucc; } |
| 348 | |
| 349 | void viewGraph(const Twine &Name, const Twine &Title) override; |
| 350 | void viewGraph() override; |
| 351 | |
| 352 | protected: |
| 353 | // Top-Level entry points for the schedule() driver... |
| 354 | |
| 355 | /// Apply each ScheduleDAGMutation step in order. This allows different |
| 356 | /// instances of ScheduleDAGMI to perform custom DAG postprocessing. |
| 357 | void postprocessDAG(); |
| 358 | |
| 359 | /// Release ExitSU predecessors and setup scheduler queues. |
| 360 | void initQueues(ArrayRef<SUnit*> TopRoots, ArrayRef<SUnit*> BotRoots); |
| 361 | |
| 362 | /// Update scheduler DAG and queues after scheduling an instruction. |
| 363 | void updateQueues(SUnit *SU, bool IsTopNode); |
| 364 | |
| 365 | /// Reinsert debug_values recorded in ScheduleDAGInstrs::DbgValues. |
| 366 | void placeDebugValues(); |
| 367 | |
| 368 | /// dump the scheduled Sequence. |
| 369 | void dumpSchedule() const; |
| 370 | |
| 371 | // Lesser helpers... |
| 372 | bool checkSchedLimit(); |
| 373 | |
| 374 | void findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, |
| 375 | SmallVectorImpl<SUnit*> &BotRoots); |
| 376 | |
| 377 | void releaseSucc(SUnit *SU, SDep *SuccEdge); |
| 378 | void releaseSuccessors(SUnit *SU); |
| 379 | void releasePred(SUnit *SU, SDep *PredEdge); |
| 380 | void releasePredecessors(SUnit *SU); |
| 381 | }; |
| 382 | |
| 383 | /// ScheduleDAGMILive is an implementation of ScheduleDAGInstrs that schedules |
| 384 | /// machine instructions while updating LiveIntervals and tracking regpressure. |
| 385 | class ScheduleDAGMILive : public ScheduleDAGMI { |
| 386 | protected: |
| 387 | RegisterClassInfo *RegClassInfo; |
| 388 | |
| 389 | /// Information about DAG subtrees. If DFSResult is NULL, then SchedulerTrees |
| 390 | /// will be empty. |
| 391 | SchedDFSResult *DFSResult = nullptr; |
| 392 | BitVector ScheduledTrees; |
| 393 | |
| 394 | MachineBasicBlock::iterator LiveRegionEnd; |
| 395 | |
| 396 | /// Maps vregs to the SUnits of their uses in the current scheduling region. |
| 397 | VReg2SUnitMultiMap VRegUses; |
| 398 | |
| 399 | // Map each SU to its summary of pressure changes. This array is updated for |
| 400 | // liveness during bottom-up scheduling. Top-down scheduling may proceed but |
| 401 | // has no affect on the pressure diffs. |
| 402 | PressureDiffs SUPressureDiffs; |
| 403 | |
| 404 | /// Register pressure in this region computed by initRegPressure. |
| 405 | bool ShouldTrackPressure = false; |
| 406 | bool ShouldTrackLaneMasks = false; |
| 407 | IntervalPressure RegPressure; |
| 408 | RegPressureTracker RPTracker; |
| 409 | |
| 410 | /// List of pressure sets that exceed the target's pressure limit before |
| 411 | /// scheduling, listed in increasing set ID order. Each pressure set is paired |
| 412 | /// with its max pressure in the currently scheduled regions. |
| 413 | std::vector<PressureChange> RegionCriticalPSets; |
| 414 | |
| 415 | /// The top of the unscheduled zone. |
| 416 | IntervalPressure TopPressure; |
| 417 | RegPressureTracker TopRPTracker; |
| 418 | |
| 419 | /// The bottom of the unscheduled zone. |
| 420 | IntervalPressure BotPressure; |
| 421 | RegPressureTracker BotRPTracker; |
| 422 | |
| 423 | /// True if disconnected subregister components are already renamed. |
| 424 | /// The renaming is only done on demand if lane masks are tracked. |
| 425 | bool DisconnectedComponentsRenamed = false; |
| 426 | |
| 427 | public: |
| 428 | ScheduleDAGMILive(MachineSchedContext *C, |
| 429 | std::unique_ptr<MachineSchedStrategy> S) |
| 430 | : ScheduleDAGMI(C, std::move(S), /*RemoveKillFlags=*/false), |
| 431 | RegClassInfo(C->RegClassInfo), RPTracker(RegPressure), |
| 432 | TopRPTracker(TopPressure), BotRPTracker(BotPressure) {} |
| 433 | |
| 434 | ~ScheduleDAGMILive() override; |
| 435 | |
| 436 | /// Return true if this DAG supports VReg liveness and RegPressure. |
| 437 | bool hasVRegLiveness() const override { return true; } |
| 438 | |
| 439 | /// Return true if register pressure tracking is enabled. |
| 440 | bool isTrackingPressure() const { return ShouldTrackPressure; } |
| 441 | |
| 442 | /// Get current register pressure for the top scheduled instructions. |
| 443 | const IntervalPressure &getTopPressure() const { return TopPressure; } |
| 444 | const RegPressureTracker &getTopRPTracker() const { return TopRPTracker; } |
| 445 | |
| 446 | /// Get current register pressure for the bottom scheduled instructions. |
| 447 | const IntervalPressure &getBotPressure() const { return BotPressure; } |
| 448 | const RegPressureTracker &getBotRPTracker() const { return BotRPTracker; } |
| 449 | |
| 450 | /// Get register pressure for the entire scheduling region before scheduling. |
| 451 | const IntervalPressure &getRegPressure() const { return RegPressure; } |
| 452 | |
| 453 | const std::vector<PressureChange> &getRegionCriticalPSets() const { |
| 454 | return RegionCriticalPSets; |
| 455 | } |
| 456 | |
| 457 | PressureDiff &getPressureDiff(const SUnit *SU) { |
| 458 | return SUPressureDiffs[SU->NodeNum]; |
| 459 | } |
| 460 | const PressureDiff &getPressureDiff(const SUnit *SU) const { |
| 461 | return SUPressureDiffs[SU->NodeNum]; |
| 462 | } |
| 463 | |
| 464 | /// Compute a DFSResult after DAG building is complete, and before any |
| 465 | /// queue comparisons. |
| 466 | void computeDFSResult(); |
| 467 | |
| 468 | /// Return a non-null DFS result if the scheduling strategy initialized it. |
| 469 | const SchedDFSResult *getDFSResult() const { return DFSResult; } |
| 470 | |
| 471 | BitVector &getScheduledTrees() { return ScheduledTrees; } |
| 472 | |
| 473 | /// Implement the ScheduleDAGInstrs interface for handling the next scheduling |
| 474 | /// region. This covers all instructions in a block, while schedule() may only |
| 475 | /// cover a subset. |
| 476 | void enterRegion(MachineBasicBlock *bb, |
| 477 | MachineBasicBlock::iterator begin, |
| 478 | MachineBasicBlock::iterator end, |
| 479 | unsigned regioninstrs) override; |
| 480 | |
| 481 | /// Implement ScheduleDAGInstrs interface for scheduling a sequence of |
| 482 | /// reorderable instructions. |
| 483 | void schedule() override; |
| 484 | |
| 485 | /// Compute the cyclic critical path through the DAG. |
| 486 | unsigned computeCyclicCriticalPath(); |
| 487 | |
| 488 | void dump() const override; |
| 489 | |
| 490 | protected: |
| 491 | // Top-Level entry points for the schedule() driver... |
| 492 | |
| 493 | /// Call ScheduleDAGInstrs::buildSchedGraph with register pressure tracking |
| 494 | /// enabled. This sets up three trackers. RPTracker will cover the entire DAG |
| 495 | /// region, TopTracker and BottomTracker will be initialized to the top and |
| 496 | /// bottom of the DAG region without covereing any unscheduled instruction. |
| 497 | void buildDAGWithRegPressure(); |
| 498 | |
| 499 | /// Release ExitSU predecessors and setup scheduler queues. Re-position |
| 500 | /// the Top RP tracker in case the region beginning has changed. |
| 501 | void initQueues(ArrayRef<SUnit*> TopRoots, ArrayRef<SUnit*> BotRoots); |
| 502 | |
| 503 | /// Move an instruction and update register pressure. |
| 504 | void scheduleMI(SUnit *SU, bool IsTopNode); |
| 505 | |
| 506 | // Lesser helpers... |
| 507 | |
| 508 | void initRegPressure(); |
| 509 | |
| 510 | void updatePressureDiffs(ArrayRef<RegisterMaskPair> LiveUses); |
| 511 | |
| 512 | void updateScheduledPressure(const SUnit *SU, |
| 513 | const std::vector<unsigned> &NewMaxPressure); |
| 514 | |
| 515 | void collectVRegUses(SUnit &SU); |
| 516 | }; |
| 517 | |
| 518 | //===----------------------------------------------------------------------===// |
| 519 | /// |
| 520 | /// Helpers for implementing custom MachineSchedStrategy classes. These take |
| 521 | /// care of the book-keeping associated with list scheduling heuristics. |
| 522 | /// |
| 523 | //===----------------------------------------------------------------------===// |
| 524 | |
| 525 | /// ReadyQueue encapsulates vector of "ready" SUnits with basic convenience |
| 526 | /// methods for pushing and removing nodes. ReadyQueue's are uniquely identified |
| 527 | /// by an ID. SUnit::NodeQueueId is a mask of the ReadyQueues the SUnit is in. |
| 528 | /// |
| 529 | /// This is a convenience class that may be used by implementations of |
| 530 | /// MachineSchedStrategy. |
| 531 | class ReadyQueue { |
| 532 | unsigned ID; |
| 533 | std::string Name; |
| 534 | std::vector<SUnit*> Queue; |
| 535 | |
| 536 | public: |
| 537 | ReadyQueue(unsigned id, const Twine &name): ID(id), Name(name.str()) {} |
| 538 | |
| 539 | unsigned getID() const { return ID; } |
| 540 | |
| 541 | StringRef getName() const { return Name; } |
| 542 | |
| 543 | // SU is in this queue if it's NodeQueueID is a superset of this ID. |
| 544 | bool isInQueue(SUnit *SU) const { return (SU->NodeQueueId & ID); } |
| 545 | |
| 546 | bool empty() const { return Queue.empty(); } |
| 547 | |
| 548 | void clear() { Queue.clear(); } |
| 549 | |
| 550 | unsigned size() const { return Queue.size(); } |
| 551 | |
| 552 | using iterator = std::vector<SUnit*>::iterator; |
| 553 | |
| 554 | iterator begin() { return Queue.begin(); } |
| 555 | |
| 556 | iterator end() { return Queue.end(); } |
| 557 | |
| 558 | ArrayRef<SUnit*> elements() { return Queue; } |
| 559 | |
| 560 | iterator find(SUnit *SU) { return llvm::find(Queue, SU); } |
| 561 | |
| 562 | void push(SUnit *SU) { |
| 563 | Queue.push_back(SU); |
| 564 | SU->NodeQueueId |= ID; |
| 565 | } |
| 566 | |
| 567 | iterator remove(iterator I) { |
| 568 | (*I)->NodeQueueId &= ~ID; |
| 569 | *I = Queue.back(); |
| 570 | unsigned idx = I - Queue.begin(); |
| 571 | Queue.pop_back(); |
| 572 | return Queue.begin() + idx; |
| 573 | } |
| 574 | |
| 575 | void dump() const; |
| 576 | }; |
| 577 | |
| 578 | /// Summarize the unscheduled region. |
| 579 | struct SchedRemainder { |
| 580 | // Critical path through the DAG in expected latency. |
| 581 | unsigned CriticalPath; |
| 582 | unsigned CyclicCritPath; |
| 583 | |
| 584 | // Scaled count of micro-ops left to schedule. |
| 585 | unsigned RemIssueCount; |
| 586 | |
| 587 | bool IsAcyclicLatencyLimited; |
| 588 | |
| 589 | // Unscheduled resources |
| 590 | SmallVector<unsigned, 16> RemainingCounts; |
| 591 | |
| 592 | SchedRemainder() { reset(); } |
| 593 | |
| 594 | void reset() { |
| 595 | CriticalPath = 0; |
| 596 | CyclicCritPath = 0; |
| 597 | RemIssueCount = 0; |
| 598 | IsAcyclicLatencyLimited = false; |
| 599 | RemainingCounts.clear(); |
| 600 | } |
| 601 | |
| 602 | void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel); |
| 603 | }; |
| 604 | |
| 605 | /// Each Scheduling boundary is associated with ready queues. It tracks the |
| 606 | /// current cycle in the direction of movement, and maintains the state |
| 607 | /// of "hazards" and other interlocks at the current cycle. |
| 608 | class SchedBoundary { |
| 609 | public: |
| 610 | /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both) |
| 611 | enum { |
| 612 | TopQID = 1, |
| 613 | BotQID = 2, |
| 614 | LogMaxQID = 2 |
| 615 | }; |
| 616 | |
| 617 | ScheduleDAGMI *DAG = nullptr; |
| 618 | const TargetSchedModel *SchedModel = nullptr; |
| 619 | SchedRemainder *Rem = nullptr; |
| 620 | |
| 621 | ReadyQueue Available; |
| 622 | ReadyQueue Pending; |
| 623 | |
| 624 | ScheduleHazardRecognizer *HazardRec = nullptr; |
| 625 | |
| 626 | private: |
| 627 | /// True if the pending Q should be checked/updated before scheduling another |
| 628 | /// instruction. |
| 629 | bool CheckPending; |
| 630 | |
| 631 | /// Number of cycles it takes to issue the instructions scheduled in this |
| 632 | /// zone. It is defined as: scheduled-micro-ops / issue-width + stalls. |
| 633 | /// See getStalls(). |
| 634 | unsigned CurrCycle; |
| 635 | |
| 636 | /// Micro-ops issued in the current cycle |
| 637 | unsigned CurrMOps; |
| 638 | |
| 639 | /// MinReadyCycle - Cycle of the soonest available instruction. |
| 640 | unsigned MinReadyCycle; |
| 641 | |
| 642 | // The expected latency of the critical path in this scheduled zone. |
| 643 | unsigned ExpectedLatency; |
| 644 | |
| 645 | // The latency of dependence chains leading into this zone. |
| 646 | // For each node scheduled bottom-up: DLat = max DLat, N.Depth. |
| 647 | // For each cycle scheduled: DLat -= 1. |
| 648 | unsigned DependentLatency; |
| 649 | |
| 650 | /// Count the scheduled (issued) micro-ops that can be retired by |
| 651 | /// time=CurrCycle assuming the first scheduled instr is retired at time=0. |
| 652 | unsigned RetiredMOps; |
| 653 | |
| 654 | // Count scheduled resources that have been executed. Resources are |
| 655 | // considered executed if they become ready in the time that it takes to |
| 656 | // saturate any resource including the one in question. Counts are scaled |
| 657 | // for direct comparison with other resources. Counts can be compared with |
| 658 | // MOps * getMicroOpFactor and Latency * getLatencyFactor. |
| 659 | SmallVector<unsigned, 16> ExecutedResCounts; |
| 660 | |
| 661 | /// Cache the max count for a single resource. |
| 662 | unsigned MaxExecutedResCount; |
| 663 | |
| 664 | // Cache the critical resources ID in this scheduled zone. |
| 665 | unsigned ZoneCritResIdx; |
| 666 | |
| 667 | // Is the scheduled region resource limited vs. latency limited. |
| 668 | bool IsResourceLimited; |
| 669 | |
| 670 | // Record the highest cycle at which each resource has been reserved by a |
| 671 | // scheduled instruction. |
| 672 | SmallVector<unsigned, 16> ReservedCycles; |
| 673 | |
| 674 | // For each PIdx, stores first index into ReservedCycles that corresponds to |
| 675 | // it. |
| 676 | SmallVector<unsigned, 16> ReservedCyclesIndex; |
| 677 | |
| 678 | // For each PIdx, stores the resource group IDs of its subunits |
| 679 | SmallVector<APInt, 16> ResourceGroupSubUnitMasks; |
| 680 | |
| 681 | #ifndef NDEBUG1 |
| 682 | // Remember the greatest possible stall as an upper bound on the number of |
| 683 | // times we should retry the pending queue because of a hazard. |
| 684 | unsigned MaxObservedStall; |
| 685 | #endif |
| 686 | |
| 687 | public: |
| 688 | /// Pending queues extend the ready queues with the same ID and the |
| 689 | /// PendingFlag set. |
| 690 | SchedBoundary(unsigned ID, const Twine &Name): |
| 691 | Available(ID, Name+".A"), Pending(ID << LogMaxQID, Name+".P") { |
| 692 | reset(); |
| 693 | } |
| 694 | |
| 695 | ~SchedBoundary(); |
| 696 | |
| 697 | void reset(); |
| 698 | |
| 699 | void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, |
| 700 | SchedRemainder *rem); |
| 701 | |
| 702 | bool isTop() const { |
| 703 | return Available.getID() == TopQID; |
| 704 | } |
| 705 | |
| 706 | /// Number of cycles to issue the instructions scheduled in this zone. |
| 707 | unsigned getCurrCycle() const { return CurrCycle; } |
| 708 | |
| 709 | /// Micro-ops issued in the current cycle |
| 710 | unsigned getCurrMOps() const { return CurrMOps; } |
| 711 | |
| 712 | // The latency of dependence chains leading into this zone. |
| 713 | unsigned getDependentLatency() const { return DependentLatency; } |
| 714 | |
| 715 | /// Get the number of latency cycles "covered" by the scheduled |
| 716 | /// instructions. This is the larger of the critical path within the zone |
| 717 | /// and the number of cycles required to issue the instructions. |
| 718 | unsigned getScheduledLatency() const { |
| 719 | return std::max(ExpectedLatency, CurrCycle); |
| 720 | } |
| 721 | |
| 722 | unsigned getUnscheduledLatency(SUnit *SU) const { |
| 723 | return isTop() ? SU->getHeight() : SU->getDepth(); |
| 724 | } |
| 725 | |
| 726 | unsigned getResourceCount(unsigned ResIdx) const { |
| 727 | return ExecutedResCounts[ResIdx]; |
| 728 | } |
| 729 | |
| 730 | /// Get the scaled count of scheduled micro-ops and resources, including |
| 731 | /// executed resources. |
| 732 | unsigned getCriticalCount() const { |
| 733 | if (!ZoneCritResIdx) |
| 734 | return RetiredMOps * SchedModel->getMicroOpFactor(); |
| 735 | return getResourceCount(ZoneCritResIdx); |
| 736 | } |
| 737 | |
| 738 | /// Get a scaled count for the minimum execution time of the scheduled |
| 739 | /// micro-ops that are ready to execute by getExecutedCount. Notice the |
| 740 | /// feedback loop. |
| 741 | unsigned getExecutedCount() const { |
| 742 | return std::max(CurrCycle * SchedModel->getLatencyFactor(), |
| 743 | MaxExecutedResCount); |
| 744 | } |
| 745 | |
| 746 | unsigned getZoneCritResIdx() const { return ZoneCritResIdx; } |
| 747 | |
| 748 | // Is the scheduled region resource limited vs. latency limited. |
| 749 | bool isResourceLimited() const { return IsResourceLimited; } |
| 750 | |
| 751 | /// Get the difference between the given SUnit's ready time and the current |
| 752 | /// cycle. |
| 753 | unsigned getLatencyStallCycles(SUnit *SU); |
| 754 | |
| 755 | unsigned getNextResourceCycleByInstance(unsigned InstanceIndex, |
| 756 | unsigned Cycles); |
| 757 | |
| 758 | std::pair<unsigned, unsigned> getNextResourceCycle(const MCSchedClassDesc *SC, |
| 759 | unsigned PIdx, |
| 760 | unsigned Cycles); |
| 761 | |
| 762 | bool isUnbufferedGroup(unsigned PIdx) const { |
| 763 | return SchedModel->getProcResource(PIdx)->SubUnitsIdxBegin && |
| 764 | !SchedModel->getProcResource(PIdx)->BufferSize; |
| 765 | } |
| 766 | |
| 767 | bool checkHazard(SUnit *SU); |
| 768 | |
| 769 | unsigned findMaxLatency(ArrayRef<SUnit*> ReadySUs); |
| 770 | |
| 771 | unsigned getOtherResourceCount(unsigned &OtherCritIdx); |
| 772 | |
| 773 | /// Release SU to make it ready. If it's not in hazard, remove it from |
| 774 | /// pending queue (if already in) and push into available queue. |
| 775 | /// Otherwise, push the SU into pending queue. |
| 776 | /// |
| 777 | /// @param SU The unit to be released. |
| 778 | /// @param ReadyCycle Until which cycle the unit is ready. |
| 779 | /// @param InPQueue Whether SU is already in pending queue. |
| 780 | /// @param Idx Position offset in pending queue (if in it). |
| 781 | void releaseNode(SUnit *SU, unsigned ReadyCycle, bool InPQueue, |
| 782 | unsigned Idx = 0); |
| 783 | |
| 784 | void bumpCycle(unsigned NextCycle); |
| 785 | |
| 786 | void incExecutedResources(unsigned PIdx, unsigned Count); |
| 787 | |
| 788 | unsigned countResource(const MCSchedClassDesc *SC, unsigned PIdx, |
| 789 | unsigned Cycles, unsigned ReadyCycle); |
| 790 | |
| 791 | void bumpNode(SUnit *SU); |
| 792 | |
| 793 | void releasePending(); |
| 794 | |
| 795 | void removeReady(SUnit *SU); |
| 796 | |
| 797 | /// Call this before applying any other heuristics to the Available queue. |
| 798 | /// Updates the Available/Pending Q's if necessary and returns the single |
| 799 | /// available instruction, or NULL if there are multiple candidates. |
| 800 | SUnit *pickOnlyChoice(); |
| 801 | |
| 802 | void dumpScheduledState() const; |
| 803 | }; |
| 804 | |
| 805 | /// Base class for GenericScheduler. This class maintains information about |
| 806 | /// scheduling candidates based on TargetSchedModel making it easy to implement |
| 807 | /// heuristics for either preRA or postRA scheduling. |
| 808 | class GenericSchedulerBase : public MachineSchedStrategy { |
| 809 | public: |
| 810 | /// Represent the type of SchedCandidate found within a single queue. |
| 811 | /// pickNodeBidirectional depends on these listed by decreasing priority. |
| 812 | enum CandReason : uint8_t { |
| 813 | NoCand, Only1, PhysReg, RegExcess, RegCritical, Stall, Cluster, Weak, |
| 814 | RegMax, ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce, |
| 815 | TopDepthReduce, TopPathReduce, NextDefUse, NodeOrder}; |
| 816 | |
| 817 | #ifndef NDEBUG1 |
| 818 | static const char *getReasonStr(GenericSchedulerBase::CandReason Reason); |
| 819 | #endif |
| 820 | |
| 821 | /// Policy for scheduling the next instruction in the candidate's zone. |
| 822 | struct CandPolicy { |
| 823 | bool ReduceLatency = false; |
| 824 | unsigned ReduceResIdx = 0; |
| 825 | unsigned DemandResIdx = 0; |
| 826 | |
| 827 | CandPolicy() = default; |
| 828 | |
| 829 | bool operator==(const CandPolicy &RHS) const { |
| 830 | return ReduceLatency == RHS.ReduceLatency && |
| 831 | ReduceResIdx == RHS.ReduceResIdx && |
| 832 | DemandResIdx == RHS.DemandResIdx; |
| 833 | } |
| 834 | bool operator!=(const CandPolicy &RHS) const { |
| 835 | return !(*this == RHS); |
| 836 | } |
| 837 | }; |
| 838 | |
| 839 | /// Status of an instruction's critical resource consumption. |
| 840 | struct SchedResourceDelta { |
| 841 | // Count critical resources in the scheduled region required by SU. |
| 842 | unsigned CritResources = 0; |
| 843 | |
| 844 | // Count critical resources from another region consumed by SU. |
| 845 | unsigned DemandedResources = 0; |
| 846 | |
| 847 | SchedResourceDelta() = default; |
| 848 | |
| 849 | bool operator==(const SchedResourceDelta &RHS) const { |
| 850 | return CritResources == RHS.CritResources |
| 851 | && DemandedResources == RHS.DemandedResources; |
| 852 | } |
| 853 | bool operator!=(const SchedResourceDelta &RHS) const { |
| 854 | return !operator==(RHS); |
| 855 | } |
| 856 | }; |
| 857 | |
| 858 | /// Store the state used by GenericScheduler heuristics, required for the |
| 859 | /// lifetime of one invocation of pickNode(). |
| 860 | struct SchedCandidate { |
| 861 | CandPolicy Policy; |
| 862 | |
| 863 | // The best SUnit candidate. |
| 864 | SUnit *SU; |
| 865 | |
| 866 | // The reason for this candidate. |
| 867 | CandReason Reason; |
| 868 | |
| 869 | // Whether this candidate should be scheduled at top/bottom. |
| 870 | bool AtTop; |
| 871 | |
| 872 | // Register pressure values for the best candidate. |
| 873 | RegPressureDelta RPDelta; |
| 874 | |
| 875 | // Critical resource consumption of the best candidate. |
| 876 | SchedResourceDelta ResDelta; |
| 877 | |
| 878 | SchedCandidate() { reset(CandPolicy()); } |
| 879 | SchedCandidate(const CandPolicy &Policy) { reset(Policy); } |
| 880 | |
| 881 | void reset(const CandPolicy &NewPolicy) { |
| 882 | Policy = NewPolicy; |
| 883 | SU = nullptr; |
| 884 | Reason = NoCand; |
| 885 | AtTop = false; |
| 886 | RPDelta = RegPressureDelta(); |
| 887 | ResDelta = SchedResourceDelta(); |
| 888 | } |
| 889 | |
| 890 | bool isValid() const { return SU; } |
| 891 | |
| 892 | // Copy the status of another candidate without changing policy. |
| 893 | void setBest(SchedCandidate &Best) { |
| 894 | assert(Best.Reason != NoCand && "uninitialized Sched candidate")((void)0); |
| 895 | SU = Best.SU; |
| 896 | Reason = Best.Reason; |
| 897 | AtTop = Best.AtTop; |
| 898 | RPDelta = Best.RPDelta; |
| 899 | ResDelta = Best.ResDelta; |
| 900 | } |
| 901 | |
| 902 | void initResourceDelta(const ScheduleDAGMI *DAG, |
| 903 | const TargetSchedModel *SchedModel); |
| 904 | }; |
| 905 | |
| 906 | protected: |
| 907 | const MachineSchedContext *Context; |
| 908 | const TargetSchedModel *SchedModel = nullptr; |
| 909 | const TargetRegisterInfo *TRI = nullptr; |
| 910 | |
| 911 | SchedRemainder Rem; |
| 912 | |
| 913 | GenericSchedulerBase(const MachineSchedContext *C) : Context(C) {} |
| 914 | |
| 915 | void setPolicy(CandPolicy &Policy, bool IsPostRA, SchedBoundary &CurrZone, |
| 916 | SchedBoundary *OtherZone); |
| 917 | |
| 918 | #ifndef NDEBUG1 |
| 919 | void traceCandidate(const SchedCandidate &Cand); |
| 920 | #endif |
| 921 | |
| 922 | private: |
| 923 | bool shouldReduceLatency(const CandPolicy &Policy, SchedBoundary &CurrZone, |
| 924 | bool ComputeRemLatency, unsigned &RemLatency) const; |
| 925 | }; |
| 926 | |
| 927 | // Utility functions used by heuristics in tryCandidate(). |
| 928 | bool tryLess(int TryVal, int CandVal, |
| 929 | GenericSchedulerBase::SchedCandidate &TryCand, |
| 930 | GenericSchedulerBase::SchedCandidate &Cand, |
| 931 | GenericSchedulerBase::CandReason Reason); |
| 932 | bool tryGreater(int TryVal, int CandVal, |
| 933 | GenericSchedulerBase::SchedCandidate &TryCand, |
| 934 | GenericSchedulerBase::SchedCandidate &Cand, |
| 935 | GenericSchedulerBase::CandReason Reason); |
| 936 | bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, |
| 937 | GenericSchedulerBase::SchedCandidate &Cand, |
| 938 | SchedBoundary &Zone); |
| 939 | bool tryPressure(const PressureChange &TryP, |
| 940 | const PressureChange &CandP, |
| 941 | GenericSchedulerBase::SchedCandidate &TryCand, |
| 942 | GenericSchedulerBase::SchedCandidate &Cand, |
| 943 | GenericSchedulerBase::CandReason Reason, |
| 944 | const TargetRegisterInfo *TRI, |
| 945 | const MachineFunction &MF); |
| 946 | unsigned getWeakLeft(const SUnit *SU, bool isTop); |
| 947 | int biasPhysReg(const SUnit *SU, bool isTop); |
| 948 | |
| 949 | /// GenericScheduler shrinks the unscheduled zone using heuristics to balance |
| 950 | /// the schedule. |
| 951 | class GenericScheduler : public GenericSchedulerBase { |
| 952 | public: |
| 953 | GenericScheduler(const MachineSchedContext *C): |
| 954 | GenericSchedulerBase(C), Top(SchedBoundary::TopQID, "TopQ"), |
| 955 | Bot(SchedBoundary::BotQID, "BotQ") {} |
| 956 | |
| 957 | void initPolicy(MachineBasicBlock::iterator Begin, |
| 958 | MachineBasicBlock::iterator End, |
| 959 | unsigned NumRegionInstrs) override; |
| 960 | |
| 961 | void dumpPolicy() const override; |
| 962 | |
| 963 | bool shouldTrackPressure() const override { |
| 964 | return RegionPolicy.ShouldTrackPressure; |
| 965 | } |
| 966 | |
| 967 | bool shouldTrackLaneMasks() const override { |
| 968 | return RegionPolicy.ShouldTrackLaneMasks; |
| 969 | } |
| 970 | |
| 971 | void initialize(ScheduleDAGMI *dag) override; |
| 972 | |
| 973 | SUnit *pickNode(bool &IsTopNode) override; |
| 974 | |
| 975 | void schedNode(SUnit *SU, bool IsTopNode) override; |
| 976 | |
| 977 | void releaseTopNode(SUnit *SU) override { |
| 978 | if (SU->isScheduled) |
| 979 | return; |
| 980 | |
| 981 | Top.releaseNode(SU, SU->TopReadyCycle, false); |
| 982 | TopCand.SU = nullptr; |
| 983 | } |
| 984 | |
| 985 | void releaseBottomNode(SUnit *SU) override { |
| 986 | if (SU->isScheduled) |
| 987 | return; |
| 988 | |
| 989 | Bot.releaseNode(SU, SU->BotReadyCycle, false); |
| 990 | BotCand.SU = nullptr; |
| 991 | } |
| 992 | |
| 993 | void registerRoots() override; |
| 994 | |
| 995 | protected: |
| 996 | ScheduleDAGMILive *DAG = nullptr; |
| 997 | |
| 998 | MachineSchedPolicy RegionPolicy; |
| 999 | |
| 1000 | // State of the top and bottom scheduled instruction boundaries. |
| 1001 | SchedBoundary Top; |
| 1002 | SchedBoundary Bot; |
| 1003 | |
| 1004 | /// Candidate last picked from Top boundary. |
| 1005 | SchedCandidate TopCand; |
| 1006 | /// Candidate last picked from Bot boundary. |
| 1007 | SchedCandidate BotCand; |
| 1008 | |
| 1009 | void checkAcyclicLatency(); |
| 1010 | |
| 1011 | void initCandidate(SchedCandidate &Cand, SUnit *SU, bool AtTop, |
| 1012 | const RegPressureTracker &RPTracker, |
| 1013 | RegPressureTracker &TempTracker); |
| 1014 | |
| 1015 | virtual bool tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand, |
| 1016 | SchedBoundary *Zone) const; |
| 1017 | |
| 1018 | SUnit *pickNodeBidirectional(bool &IsTopNode); |
| 1019 | |
| 1020 | void pickNodeFromQueue(SchedBoundary &Zone, |
| 1021 | const CandPolicy &ZonePolicy, |
| 1022 | const RegPressureTracker &RPTracker, |
| 1023 | SchedCandidate &Candidate); |
| 1024 | |
| 1025 | void reschedulePhysReg(SUnit *SU, bool isTop); |
| 1026 | }; |
| 1027 | |
| 1028 | /// PostGenericScheduler - Interface to the scheduling algorithm used by |
| 1029 | /// ScheduleDAGMI. |
| 1030 | /// |
| 1031 | /// Callbacks from ScheduleDAGMI: |
| 1032 | /// initPolicy -> initialize(DAG) -> registerRoots -> pickNode ... |
| 1033 | class PostGenericScheduler : public GenericSchedulerBase { |
| 1034 | protected: |
| 1035 | ScheduleDAGMI *DAG = nullptr; |
| 1036 | SchedBoundary Top; |
| 1037 | SmallVector<SUnit*, 8> BotRoots; |
| 1038 | |
| 1039 | public: |
| 1040 | PostGenericScheduler(const MachineSchedContext *C): |
| 1041 | GenericSchedulerBase(C), Top(SchedBoundary::TopQID, "TopQ") {} |
| 1042 | |
| 1043 | ~PostGenericScheduler() override = default; |
| 1044 | |
| 1045 | void initPolicy(MachineBasicBlock::iterator Begin, |
| 1046 | MachineBasicBlock::iterator End, |
| 1047 | unsigned NumRegionInstrs) override { |
| 1048 | /* no configurable policy */ |
| 1049 | } |
| 1050 | |
| 1051 | /// PostRA scheduling does not track pressure. |
| 1052 | bool shouldTrackPressure() const override { return false; } |
| 1053 | |
| 1054 | void initialize(ScheduleDAGMI *Dag) override; |
| 1055 | |
| 1056 | void registerRoots() override; |
| 1057 | |
| 1058 | SUnit *pickNode(bool &IsTopNode) override; |
| 1059 | |
| 1060 | void scheduleTree(unsigned SubtreeID) override { |
| 1061 | llvm_unreachable("PostRA scheduler does not support subtree analysis.")__builtin_unreachable(); |
| 1062 | } |
| 1063 | |
| 1064 | void schedNode(SUnit *SU, bool IsTopNode) override; |
| 1065 | |
| 1066 | void releaseTopNode(SUnit *SU) override { |
| 1067 | if (SU->isScheduled) |
| 1068 | return; |
| 1069 | Top.releaseNode(SU, SU->TopReadyCycle, false); |
| 1070 | } |
| 1071 | |
| 1072 | // Only called for roots. |
| 1073 | void releaseBottomNode(SUnit *SU) override { |
| 1074 | BotRoots.push_back(SU); |
| 1075 | } |
| 1076 | |
| 1077 | protected: |
| 1078 | virtual bool tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand); |
| 1079 | |
| 1080 | void pickNodeFromQueue(SchedCandidate &Cand); |
| 1081 | }; |
| 1082 | |
| 1083 | /// Create the standard converging machine scheduler. This will be used as the |
| 1084 | /// default scheduler if the target does not set a default. |
| 1085 | /// Adds default DAG mutations. |
| 1086 | ScheduleDAGMILive *createGenericSchedLive(MachineSchedContext *C); |
| 1087 | |
| 1088 | /// Create a generic scheduler with no vreg liveness or DAG mutation passes. |
| 1089 | ScheduleDAGMI *createGenericSchedPostRA(MachineSchedContext *C); |
| 1090 | |
| 1091 | std::unique_ptr<ScheduleDAGMutation> |
| 1092 | createLoadClusterDAGMutation(const TargetInstrInfo *TII, |
| 1093 | const TargetRegisterInfo *TRI); |
| 1094 | |
| 1095 | std::unique_ptr<ScheduleDAGMutation> |
| 1096 | createStoreClusterDAGMutation(const TargetInstrInfo *TII, |
| 1097 | const TargetRegisterInfo *TRI); |
| 1098 | |
| 1099 | std::unique_ptr<ScheduleDAGMutation> |
| 1100 | createCopyConstrainDAGMutation(const TargetInstrInfo *TII, |
| 1101 | const TargetRegisterInfo *TRI); |
| 1102 | |
| 1103 | } // end namespace llvm |
| 1104 | |
| 1105 | #endif // LLVM_CODEGEN_MACHINESCHEDULER_H |