| File: | src/gnu/usr.bin/clang/libclangBasic/../../../llvm/clang/lib/Basic/Diagnostic.cpp |
| Warning: | line 824, column 9 Array access (from variable 'DiagStr') results in a null pointer dereference |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===- Diagnostic.cpp - C Language Family Diagnostic Handling -------------===// | ||||
| 2 | // | ||||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | ||||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||
| 6 | // | ||||
| 7 | //===----------------------------------------------------------------------===// | ||||
| 8 | // | ||||
| 9 | // This file implements the Diagnostic-related interfaces. | ||||
| 10 | // | ||||
| 11 | //===----------------------------------------------------------------------===// | ||||
| 12 | |||||
| 13 | #include "clang/Basic/Diagnostic.h" | ||||
| 14 | #include "clang/Basic/CharInfo.h" | ||||
| 15 | #include "clang/Basic/DiagnosticError.h" | ||||
| 16 | #include "clang/Basic/DiagnosticIDs.h" | ||||
| 17 | #include "clang/Basic/DiagnosticOptions.h" | ||||
| 18 | #include "clang/Basic/IdentifierTable.h" | ||||
| 19 | #include "clang/Basic/PartialDiagnostic.h" | ||||
| 20 | #include "clang/Basic/SourceLocation.h" | ||||
| 21 | #include "clang/Basic/SourceManager.h" | ||||
| 22 | #include "clang/Basic/Specifiers.h" | ||||
| 23 | #include "clang/Basic/TokenKinds.h" | ||||
| 24 | #include "llvm/ADT/SmallString.h" | ||||
| 25 | #include "llvm/ADT/SmallVector.h" | ||||
| 26 | #include "llvm/ADT/StringExtras.h" | ||||
| 27 | #include "llvm/ADT/StringRef.h" | ||||
| 28 | #include "llvm/Support/CrashRecoveryContext.h" | ||||
| 29 | #include "llvm/Support/Locale.h" | ||||
| 30 | #include "llvm/Support/raw_ostream.h" | ||||
| 31 | #include <algorithm> | ||||
| 32 | #include <cassert> | ||||
| 33 | #include <cstddef> | ||||
| 34 | #include <cstdint> | ||||
| 35 | #include <cstring> | ||||
| 36 | #include <limits> | ||||
| 37 | #include <string> | ||||
| 38 | #include <utility> | ||||
| 39 | #include <vector> | ||||
| 40 | |||||
| 41 | using namespace clang; | ||||
| 42 | |||||
| 43 | const StreamingDiagnostic &clang::operator<<(const StreamingDiagnostic &DB, | ||||
| 44 | DiagNullabilityKind nullability) { | ||||
| 45 | StringRef string; | ||||
| 46 | switch (nullability.first) { | ||||
| 47 | case NullabilityKind::NonNull: | ||||
| 48 | string = nullability.second ? "'nonnull'" : "'_Nonnull'"; | ||||
| 49 | break; | ||||
| 50 | |||||
| 51 | case NullabilityKind::Nullable: | ||||
| 52 | string = nullability.second ? "'nullable'" : "'_Nullable'"; | ||||
| 53 | break; | ||||
| 54 | |||||
| 55 | case NullabilityKind::Unspecified: | ||||
| 56 | string = nullability.second ? "'null_unspecified'" : "'_Null_unspecified'"; | ||||
| 57 | break; | ||||
| 58 | |||||
| 59 | case NullabilityKind::NullableResult: | ||||
| 60 | assert(!nullability.second &&((void)0) | ||||
| 61 | "_Nullable_result isn't supported as context-sensitive keyword")((void)0); | ||||
| 62 | string = "_Nullable_result"; | ||||
| 63 | break; | ||||
| 64 | } | ||||
| 65 | |||||
| 66 | DB.AddString(string); | ||||
| 67 | return DB; | ||||
| 68 | } | ||||
| 69 | |||||
| 70 | const StreamingDiagnostic &clang::operator<<(const StreamingDiagnostic &DB, | ||||
| 71 | llvm::Error &&E) { | ||||
| 72 | DB.AddString(toString(std::move(E))); | ||||
| 73 | return DB; | ||||
| 74 | } | ||||
| 75 | |||||
| 76 | static void DummyArgToStringFn(DiagnosticsEngine::ArgumentKind AK, intptr_t QT, | ||||
| 77 | StringRef Modifier, StringRef Argument, | ||||
| 78 | ArrayRef<DiagnosticsEngine::ArgumentValue> PrevArgs, | ||||
| 79 | SmallVectorImpl<char> &Output, | ||||
| 80 | void *Cookie, | ||||
| 81 | ArrayRef<intptr_t> QualTypeVals) { | ||||
| 82 | StringRef Str = "<can't format argument>"; | ||||
| 83 | Output.append(Str.begin(), Str.end()); | ||||
| 84 | } | ||||
| 85 | |||||
| 86 | DiagnosticsEngine::DiagnosticsEngine( | ||||
| 87 | IntrusiveRefCntPtr<DiagnosticIDs> diags, | ||||
| 88 | IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts, DiagnosticConsumer *client, | ||||
| 89 | bool ShouldOwnClient) | ||||
| 90 | : Diags(std::move(diags)), DiagOpts(std::move(DiagOpts)) { | ||||
| 91 | setClient(client, ShouldOwnClient); | ||||
| 92 | ArgToStringFn = DummyArgToStringFn; | ||||
| 93 | |||||
| 94 | Reset(); | ||||
| 95 | } | ||||
| 96 | |||||
| 97 | DiagnosticsEngine::~DiagnosticsEngine() { | ||||
| 98 | // If we own the diagnostic client, destroy it first so that it can access the | ||||
| 99 | // engine from its destructor. | ||||
| 100 | setClient(nullptr); | ||||
| 101 | } | ||||
| 102 | |||||
| 103 | void DiagnosticsEngine::dump() const { | ||||
| 104 | DiagStatesByLoc.dump(*SourceMgr); | ||||
| 105 | } | ||||
| 106 | |||||
| 107 | void DiagnosticsEngine::dump(StringRef DiagName) const { | ||||
| 108 | DiagStatesByLoc.dump(*SourceMgr, DiagName); | ||||
| 109 | } | ||||
| 110 | |||||
| 111 | void DiagnosticsEngine::setClient(DiagnosticConsumer *client, | ||||
| 112 | bool ShouldOwnClient) { | ||||
| 113 | Owner.reset(ShouldOwnClient ? client : nullptr); | ||||
| 114 | Client = client; | ||||
| 115 | } | ||||
| 116 | |||||
| 117 | void DiagnosticsEngine::pushMappings(SourceLocation Loc) { | ||||
| 118 | DiagStateOnPushStack.push_back(GetCurDiagState()); | ||||
| 119 | } | ||||
| 120 | |||||
| 121 | bool DiagnosticsEngine::popMappings(SourceLocation Loc) { | ||||
| 122 | if (DiagStateOnPushStack.empty()) | ||||
| 123 | return false; | ||||
| 124 | |||||
| 125 | if (DiagStateOnPushStack.back() != GetCurDiagState()) { | ||||
| 126 | // State changed at some point between push/pop. | ||||
| 127 | PushDiagStatePoint(DiagStateOnPushStack.back(), Loc); | ||||
| 128 | } | ||||
| 129 | DiagStateOnPushStack.pop_back(); | ||||
| 130 | return true; | ||||
| 131 | } | ||||
| 132 | |||||
| 133 | void DiagnosticsEngine::Reset() { | ||||
| 134 | ErrorOccurred = false; | ||||
| 135 | UncompilableErrorOccurred = false; | ||||
| 136 | FatalErrorOccurred = false; | ||||
| 137 | UnrecoverableErrorOccurred = false; | ||||
| 138 | |||||
| 139 | NumWarnings = 0; | ||||
| 140 | NumErrors = 0; | ||||
| 141 | TrapNumErrorsOccurred = 0; | ||||
| 142 | TrapNumUnrecoverableErrorsOccurred = 0; | ||||
| 143 | |||||
| 144 | CurDiagID = std::numeric_limits<unsigned>::max(); | ||||
| 145 | LastDiagLevel = DiagnosticIDs::Ignored; | ||||
| 146 | DelayedDiagID = 0; | ||||
| 147 | |||||
| 148 | // Clear state related to #pragma diagnostic. | ||||
| 149 | DiagStates.clear(); | ||||
| 150 | DiagStatesByLoc.clear(); | ||||
| 151 | DiagStateOnPushStack.clear(); | ||||
| 152 | |||||
| 153 | // Create a DiagState and DiagStatePoint representing diagnostic changes | ||||
| 154 | // through command-line. | ||||
| 155 | DiagStates.emplace_back(); | ||||
| 156 | DiagStatesByLoc.appendFirst(&DiagStates.back()); | ||||
| 157 | } | ||||
| 158 | |||||
| 159 | void DiagnosticsEngine::SetDelayedDiagnostic(unsigned DiagID, StringRef Arg1, | ||||
| 160 | StringRef Arg2, StringRef Arg3) { | ||||
| 161 | if (DelayedDiagID) | ||||
| 162 | return; | ||||
| 163 | |||||
| 164 | DelayedDiagID = DiagID; | ||||
| 165 | DelayedDiagArg1 = Arg1.str(); | ||||
| 166 | DelayedDiagArg2 = Arg2.str(); | ||||
| 167 | DelayedDiagArg3 = Arg3.str(); | ||||
| 168 | } | ||||
| 169 | |||||
| 170 | void DiagnosticsEngine::ReportDelayed() { | ||||
| 171 | unsigned ID = DelayedDiagID; | ||||
| 172 | DelayedDiagID = 0; | ||||
| 173 | Report(ID) << DelayedDiagArg1 << DelayedDiagArg2 << DelayedDiagArg3; | ||||
| 174 | } | ||||
| 175 | |||||
| 176 | void DiagnosticsEngine::DiagStateMap::appendFirst(DiagState *State) { | ||||
| 177 | assert(Files.empty() && "not first")((void)0); | ||||
| 178 | FirstDiagState = CurDiagState = State; | ||||
| 179 | CurDiagStateLoc = SourceLocation(); | ||||
| 180 | } | ||||
| 181 | |||||
| 182 | void DiagnosticsEngine::DiagStateMap::append(SourceManager &SrcMgr, | ||||
| 183 | SourceLocation Loc, | ||||
| 184 | DiagState *State) { | ||||
| 185 | CurDiagState = State; | ||||
| 186 | CurDiagStateLoc = Loc; | ||||
| 187 | |||||
| 188 | std::pair<FileID, unsigned> Decomp = SrcMgr.getDecomposedLoc(Loc); | ||||
| 189 | unsigned Offset = Decomp.second; | ||||
| 190 | for (File *F = getFile(SrcMgr, Decomp.first); F; | ||||
| 191 | Offset = F->ParentOffset, F = F->Parent) { | ||||
| 192 | F->HasLocalTransitions = true; | ||||
| 193 | auto &Last = F->StateTransitions.back(); | ||||
| 194 | assert(Last.Offset <= Offset && "state transitions added out of order")((void)0); | ||||
| 195 | |||||
| 196 | if (Last.Offset == Offset) { | ||||
| 197 | if (Last.State == State) | ||||
| 198 | break; | ||||
| 199 | Last.State = State; | ||||
| 200 | continue; | ||||
| 201 | } | ||||
| 202 | |||||
| 203 | F->StateTransitions.push_back({State, Offset}); | ||||
| 204 | } | ||||
| 205 | } | ||||
| 206 | |||||
| 207 | DiagnosticsEngine::DiagState * | ||||
| 208 | DiagnosticsEngine::DiagStateMap::lookup(SourceManager &SrcMgr, | ||||
| 209 | SourceLocation Loc) const { | ||||
| 210 | // Common case: we have not seen any diagnostic pragmas. | ||||
| 211 | if (Files.empty()) | ||||
| 212 | return FirstDiagState; | ||||
| 213 | |||||
| 214 | std::pair<FileID, unsigned> Decomp = SrcMgr.getDecomposedLoc(Loc); | ||||
| 215 | const File *F = getFile(SrcMgr, Decomp.first); | ||||
| 216 | return F->lookup(Decomp.second); | ||||
| 217 | } | ||||
| 218 | |||||
| 219 | DiagnosticsEngine::DiagState * | ||||
| 220 | DiagnosticsEngine::DiagStateMap::File::lookup(unsigned Offset) const { | ||||
| 221 | auto OnePastIt = | ||||
| 222 | llvm::partition_point(StateTransitions, [=](const DiagStatePoint &P) { | ||||
| 223 | return P.Offset <= Offset; | ||||
| 224 | }); | ||||
| 225 | assert(OnePastIt != StateTransitions.begin() && "missing initial state")((void)0); | ||||
| 226 | return OnePastIt[-1].State; | ||||
| 227 | } | ||||
| 228 | |||||
| 229 | DiagnosticsEngine::DiagStateMap::File * | ||||
| 230 | DiagnosticsEngine::DiagStateMap::getFile(SourceManager &SrcMgr, | ||||
| 231 | FileID ID) const { | ||||
| 232 | // Get or insert the File for this ID. | ||||
| 233 | auto Range = Files.equal_range(ID); | ||||
| 234 | if (Range.first != Range.second) | ||||
| 235 | return &Range.first->second; | ||||
| 236 | auto &F = Files.insert(Range.first, std::make_pair(ID, File()))->second; | ||||
| 237 | |||||
| 238 | // We created a new File; look up the diagnostic state at the start of it and | ||||
| 239 | // initialize it. | ||||
| 240 | if (ID.isValid()) { | ||||
| 241 | std::pair<FileID, unsigned> Decomp = SrcMgr.getDecomposedIncludedLoc(ID); | ||||
| 242 | F.Parent = getFile(SrcMgr, Decomp.first); | ||||
| 243 | F.ParentOffset = Decomp.second; | ||||
| 244 | F.StateTransitions.push_back({F.Parent->lookup(Decomp.second), 0}); | ||||
| 245 | } else { | ||||
| 246 | // This is the (imaginary) root file into which we pretend all top-level | ||||
| 247 | // files are included; it descends from the initial state. | ||||
| 248 | // | ||||
| 249 | // FIXME: This doesn't guarantee that we use the same ordering as | ||||
| 250 | // isBeforeInTranslationUnit in the cases where someone invented another | ||||
| 251 | // top-level file and added diagnostic pragmas to it. See the code at the | ||||
| 252 | // end of isBeforeInTranslationUnit for the quirks it deals with. | ||||
| 253 | F.StateTransitions.push_back({FirstDiagState, 0}); | ||||
| 254 | } | ||||
| 255 | return &F; | ||||
| 256 | } | ||||
| 257 | |||||
| 258 | void DiagnosticsEngine::DiagStateMap::dump(SourceManager &SrcMgr, | ||||
| 259 | StringRef DiagName) const { | ||||
| 260 | llvm::errs() << "diagnostic state at "; | ||||
| 261 | CurDiagStateLoc.print(llvm::errs(), SrcMgr); | ||||
| 262 | llvm::errs() << ": " << CurDiagState << "\n"; | ||||
| 263 | |||||
| 264 | for (auto &F : Files) { | ||||
| 265 | FileID ID = F.first; | ||||
| 266 | File &File = F.second; | ||||
| 267 | |||||
| 268 | bool PrintedOuterHeading = false; | ||||
| 269 | auto PrintOuterHeading = [&] { | ||||
| 270 | if (PrintedOuterHeading) return; | ||||
| 271 | PrintedOuterHeading = true; | ||||
| 272 | |||||
| 273 | llvm::errs() << "File " << &File << " <FileID " << ID.getHashValue() | ||||
| 274 | << ">: " << SrcMgr.getBufferOrFake(ID).getBufferIdentifier(); | ||||
| 275 | |||||
| 276 | if (F.second.Parent) { | ||||
| 277 | std::pair<FileID, unsigned> Decomp = | ||||
| 278 | SrcMgr.getDecomposedIncludedLoc(ID); | ||||
| 279 | assert(File.ParentOffset == Decomp.second)((void)0); | ||||
| 280 | llvm::errs() << " parent " << File.Parent << " <FileID " | ||||
| 281 | << Decomp.first.getHashValue() << "> "; | ||||
| 282 | SrcMgr.getLocForStartOfFile(Decomp.first) | ||||
| 283 | .getLocWithOffset(Decomp.second) | ||||
| 284 | .print(llvm::errs(), SrcMgr); | ||||
| 285 | } | ||||
| 286 | if (File.HasLocalTransitions) | ||||
| 287 | llvm::errs() << " has_local_transitions"; | ||||
| 288 | llvm::errs() << "\n"; | ||||
| 289 | }; | ||||
| 290 | |||||
| 291 | if (DiagName.empty()) | ||||
| 292 | PrintOuterHeading(); | ||||
| 293 | |||||
| 294 | for (DiagStatePoint &Transition : File.StateTransitions) { | ||||
| 295 | bool PrintedInnerHeading = false; | ||||
| 296 | auto PrintInnerHeading = [&] { | ||||
| 297 | if (PrintedInnerHeading) return; | ||||
| 298 | PrintedInnerHeading = true; | ||||
| 299 | |||||
| 300 | PrintOuterHeading(); | ||||
| 301 | llvm::errs() << " "; | ||||
| 302 | SrcMgr.getLocForStartOfFile(ID) | ||||
| 303 | .getLocWithOffset(Transition.Offset) | ||||
| 304 | .print(llvm::errs(), SrcMgr); | ||||
| 305 | llvm::errs() << ": state " << Transition.State << ":\n"; | ||||
| 306 | }; | ||||
| 307 | |||||
| 308 | if (DiagName.empty()) | ||||
| 309 | PrintInnerHeading(); | ||||
| 310 | |||||
| 311 | for (auto &Mapping : *Transition.State) { | ||||
| 312 | StringRef Option = | ||||
| 313 | DiagnosticIDs::getWarningOptionForDiag(Mapping.first); | ||||
| 314 | if (!DiagName.empty() && DiagName != Option) | ||||
| 315 | continue; | ||||
| 316 | |||||
| 317 | PrintInnerHeading(); | ||||
| 318 | llvm::errs() << " "; | ||||
| 319 | if (Option.empty()) | ||||
| 320 | llvm::errs() << "<unknown " << Mapping.first << ">"; | ||||
| 321 | else | ||||
| 322 | llvm::errs() << Option; | ||||
| 323 | llvm::errs() << ": "; | ||||
| 324 | |||||
| 325 | switch (Mapping.second.getSeverity()) { | ||||
| 326 | case diag::Severity::Ignored: llvm::errs() << "ignored"; break; | ||||
| 327 | case diag::Severity::Remark: llvm::errs() << "remark"; break; | ||||
| 328 | case diag::Severity::Warning: llvm::errs() << "warning"; break; | ||||
| 329 | case diag::Severity::Error: llvm::errs() << "error"; break; | ||||
| 330 | case diag::Severity::Fatal: llvm::errs() << "fatal"; break; | ||||
| 331 | } | ||||
| 332 | |||||
| 333 | if (!Mapping.second.isUser()) | ||||
| 334 | llvm::errs() << " default"; | ||||
| 335 | if (Mapping.second.isPragma()) | ||||
| 336 | llvm::errs() << " pragma"; | ||||
| 337 | if (Mapping.second.hasNoWarningAsError()) | ||||
| 338 | llvm::errs() << " no-error"; | ||||
| 339 | if (Mapping.second.hasNoErrorAsFatal()) | ||||
| 340 | llvm::errs() << " no-fatal"; | ||||
| 341 | if (Mapping.second.wasUpgradedFromWarning()) | ||||
| 342 | llvm::errs() << " overruled"; | ||||
| 343 | llvm::errs() << "\n"; | ||||
| 344 | } | ||||
| 345 | } | ||||
| 346 | } | ||||
| 347 | } | ||||
| 348 | |||||
| 349 | void DiagnosticsEngine::PushDiagStatePoint(DiagState *State, | ||||
| 350 | SourceLocation Loc) { | ||||
| 351 | assert(Loc.isValid() && "Adding invalid loc point")((void)0); | ||||
| 352 | DiagStatesByLoc.append(*SourceMgr, Loc, State); | ||||
| 353 | } | ||||
| 354 | |||||
| 355 | void DiagnosticsEngine::setSeverity(diag::kind Diag, diag::Severity Map, | ||||
| 356 | SourceLocation L) { | ||||
| 357 | assert(Diag < diag::DIAG_UPPER_LIMIT &&((void)0) | ||||
| 358 | "Can only map builtin diagnostics")((void)0); | ||||
| 359 | assert((Diags->isBuiltinWarningOrExtension(Diag) ||((void)0) | ||||
| 360 | (Map == diag::Severity::Fatal || Map == diag::Severity::Error)) &&((void)0) | ||||
| 361 | "Cannot map errors into warnings!")((void)0); | ||||
| 362 | assert((L.isInvalid() || SourceMgr) && "No SourceMgr for valid location")((void)0); | ||||
| 363 | |||||
| 364 | // Don't allow a mapping to a warning override an error/fatal mapping. | ||||
| 365 | bool WasUpgradedFromWarning = false; | ||||
| 366 | if (Map == diag::Severity::Warning) { | ||||
| 367 | DiagnosticMapping &Info = GetCurDiagState()->getOrAddMapping(Diag); | ||||
| 368 | if (Info.getSeverity() == diag::Severity::Error || | ||||
| 369 | Info.getSeverity() == diag::Severity::Fatal) { | ||||
| 370 | Map = Info.getSeverity(); | ||||
| 371 | WasUpgradedFromWarning = true; | ||||
| 372 | } | ||||
| 373 | } | ||||
| 374 | DiagnosticMapping Mapping = makeUserMapping(Map, L); | ||||
| 375 | Mapping.setUpgradedFromWarning(WasUpgradedFromWarning); | ||||
| 376 | |||||
| 377 | // Common case; setting all the diagnostics of a group in one place. | ||||
| 378 | if ((L.isInvalid() || L == DiagStatesByLoc.getCurDiagStateLoc()) && | ||||
| 379 | DiagStatesByLoc.getCurDiagState()) { | ||||
| 380 | // FIXME: This is theoretically wrong: if the current state is shared with | ||||
| 381 | // some other location (via push/pop) we will change the state for that | ||||
| 382 | // other location as well. This cannot currently happen, as we can't update | ||||
| 383 | // the diagnostic state at the same location at which we pop. | ||||
| 384 | DiagStatesByLoc.getCurDiagState()->setMapping(Diag, Mapping); | ||||
| 385 | return; | ||||
| 386 | } | ||||
| 387 | |||||
| 388 | // A diagnostic pragma occurred, create a new DiagState initialized with | ||||
| 389 | // the current one and a new DiagStatePoint to record at which location | ||||
| 390 | // the new state became active. | ||||
| 391 | DiagStates.push_back(*GetCurDiagState()); | ||||
| 392 | DiagStates.back().setMapping(Diag, Mapping); | ||||
| 393 | PushDiagStatePoint(&DiagStates.back(), L); | ||||
| 394 | } | ||||
| 395 | |||||
| 396 | bool DiagnosticsEngine::setSeverityForGroup(diag::Flavor Flavor, | ||||
| 397 | StringRef Group, diag::Severity Map, | ||||
| 398 | SourceLocation Loc) { | ||||
| 399 | // Get the diagnostics in this group. | ||||
| 400 | SmallVector<diag::kind, 256> GroupDiags; | ||||
| 401 | if (Diags->getDiagnosticsInGroup(Flavor, Group, GroupDiags)) | ||||
| 402 | return true; | ||||
| 403 | |||||
| 404 | // Set the mapping. | ||||
| 405 | for (diag::kind Diag : GroupDiags) | ||||
| 406 | setSeverity(Diag, Map, Loc); | ||||
| 407 | |||||
| 408 | return false; | ||||
| 409 | } | ||||
| 410 | |||||
| 411 | bool DiagnosticsEngine::setDiagnosticGroupWarningAsError(StringRef Group, | ||||
| 412 | bool Enabled) { | ||||
| 413 | // If we are enabling this feature, just set the diagnostic mappings to map to | ||||
| 414 | // errors. | ||||
| 415 | if (Enabled) | ||||
| 416 | return setSeverityForGroup(diag::Flavor::WarningOrError, Group, | ||||
| 417 | diag::Severity::Error); | ||||
| 418 | |||||
| 419 | // Otherwise, we want to set the diagnostic mapping's "no Werror" bit, and | ||||
| 420 | // potentially downgrade anything already mapped to be a warning. | ||||
| 421 | |||||
| 422 | // Get the diagnostics in this group. | ||||
| 423 | SmallVector<diag::kind, 8> GroupDiags; | ||||
| 424 | if (Diags->getDiagnosticsInGroup(diag::Flavor::WarningOrError, Group, | ||||
| 425 | GroupDiags)) | ||||
| 426 | return true; | ||||
| 427 | |||||
| 428 | // Perform the mapping change. | ||||
| 429 | for (diag::kind Diag : GroupDiags) { | ||||
| 430 | DiagnosticMapping &Info = GetCurDiagState()->getOrAddMapping(Diag); | ||||
| 431 | |||||
| 432 | if (Info.getSeverity() == diag::Severity::Error || | ||||
| 433 | Info.getSeverity() == diag::Severity::Fatal) | ||||
| 434 | Info.setSeverity(diag::Severity::Warning); | ||||
| 435 | |||||
| 436 | Info.setNoWarningAsError(true); | ||||
| 437 | } | ||||
| 438 | |||||
| 439 | return false; | ||||
| 440 | } | ||||
| 441 | |||||
| 442 | bool DiagnosticsEngine::setDiagnosticGroupErrorAsFatal(StringRef Group, | ||||
| 443 | bool Enabled) { | ||||
| 444 | // If we are enabling this feature, just set the diagnostic mappings to map to | ||||
| 445 | // fatal errors. | ||||
| 446 | if (Enabled) | ||||
| 447 | return setSeverityForGroup(diag::Flavor::WarningOrError, Group, | ||||
| 448 | diag::Severity::Fatal); | ||||
| 449 | |||||
| 450 | // Otherwise, we want to set the diagnostic mapping's "no Wfatal-errors" bit, | ||||
| 451 | // and potentially downgrade anything already mapped to be a fatal error. | ||||
| 452 | |||||
| 453 | // Get the diagnostics in this group. | ||||
| 454 | SmallVector<diag::kind, 8> GroupDiags; | ||||
| 455 | if (Diags->getDiagnosticsInGroup(diag::Flavor::WarningOrError, Group, | ||||
| 456 | GroupDiags)) | ||||
| 457 | return true; | ||||
| 458 | |||||
| 459 | // Perform the mapping change. | ||||
| 460 | for (diag::kind Diag : GroupDiags) { | ||||
| 461 | DiagnosticMapping &Info = GetCurDiagState()->getOrAddMapping(Diag); | ||||
| 462 | |||||
| 463 | if (Info.getSeverity() == diag::Severity::Fatal) | ||||
| 464 | Info.setSeverity(diag::Severity::Error); | ||||
| 465 | |||||
| 466 | Info.setNoErrorAsFatal(true); | ||||
| 467 | } | ||||
| 468 | |||||
| 469 | return false; | ||||
| 470 | } | ||||
| 471 | |||||
| 472 | void DiagnosticsEngine::setSeverityForAll(diag::Flavor Flavor, | ||||
| 473 | diag::Severity Map, | ||||
| 474 | SourceLocation Loc) { | ||||
| 475 | // Get all the diagnostics. | ||||
| 476 | std::vector<diag::kind> AllDiags; | ||||
| 477 | DiagnosticIDs::getAllDiagnostics(Flavor, AllDiags); | ||||
| 478 | |||||
| 479 | // Set the mapping. | ||||
| 480 | for (diag::kind Diag : AllDiags) | ||||
| 481 | if (Diags->isBuiltinWarningOrExtension(Diag)) | ||||
| 482 | setSeverity(Diag, Map, Loc); | ||||
| 483 | } | ||||
| 484 | |||||
| 485 | void DiagnosticsEngine::Report(const StoredDiagnostic &storedDiag) { | ||||
| 486 | assert(CurDiagID == std::numeric_limits<unsigned>::max() &&((void)0) | ||||
| 487 | "Multiple diagnostics in flight at once!")((void)0); | ||||
| 488 | |||||
| 489 | CurDiagLoc = storedDiag.getLocation(); | ||||
| 490 | CurDiagID = storedDiag.getID(); | ||||
| 491 | DiagStorage.NumDiagArgs = 0; | ||||
| 492 | |||||
| 493 | DiagStorage.DiagRanges.clear(); | ||||
| 494 | DiagStorage.DiagRanges.append(storedDiag.range_begin(), | ||||
| 495 | storedDiag.range_end()); | ||||
| 496 | |||||
| 497 | DiagStorage.FixItHints.clear(); | ||||
| 498 | DiagStorage.FixItHints.append(storedDiag.fixit_begin(), | ||||
| 499 | storedDiag.fixit_end()); | ||||
| 500 | |||||
| 501 | assert(Client && "DiagnosticConsumer not set!")((void)0); | ||||
| 502 | Level DiagLevel = storedDiag.getLevel(); | ||||
| 503 | Diagnostic Info(this, storedDiag.getMessage()); | ||||
| 504 | Client->HandleDiagnostic(DiagLevel, Info); | ||||
| 505 | if (Client->IncludeInDiagnosticCounts()) { | ||||
| 506 | if (DiagLevel == DiagnosticsEngine::Warning) | ||||
| 507 | ++NumWarnings; | ||||
| 508 | } | ||||
| 509 | |||||
| 510 | CurDiagID = std::numeric_limits<unsigned>::max(); | ||||
| 511 | } | ||||
| 512 | |||||
| 513 | bool DiagnosticsEngine::EmitCurrentDiagnostic(bool Force) { | ||||
| 514 | assert(getClient() && "DiagnosticClient not set!")((void)0); | ||||
| 515 | |||||
| 516 | bool Emitted; | ||||
| 517 | if (Force) { | ||||
| 518 | Diagnostic Info(this); | ||||
| 519 | |||||
| 520 | // Figure out the diagnostic level of this message. | ||||
| 521 | DiagnosticIDs::Level DiagLevel | ||||
| 522 | = Diags->getDiagnosticLevel(Info.getID(), Info.getLocation(), *this); | ||||
| 523 | |||||
| 524 | Emitted = (DiagLevel != DiagnosticIDs::Ignored); | ||||
| 525 | if (Emitted) { | ||||
| 526 | // Emit the diagnostic regardless of suppression level. | ||||
| 527 | Diags->EmitDiag(*this, DiagLevel); | ||||
| 528 | } | ||||
| 529 | } else { | ||||
| 530 | // Process the diagnostic, sending the accumulated information to the | ||||
| 531 | // DiagnosticConsumer. | ||||
| 532 | Emitted = ProcessDiag(); | ||||
| 533 | } | ||||
| 534 | |||||
| 535 | // Clear out the current diagnostic object. | ||||
| 536 | Clear(); | ||||
| 537 | |||||
| 538 | // If there was a delayed diagnostic, emit it now. | ||||
| 539 | if (!Force && DelayedDiagID) | ||||
| 540 | ReportDelayed(); | ||||
| 541 | |||||
| 542 | return Emitted; | ||||
| 543 | } | ||||
| 544 | |||||
| 545 | DiagnosticConsumer::~DiagnosticConsumer() = default; | ||||
| 546 | |||||
| 547 | void DiagnosticConsumer::HandleDiagnostic(DiagnosticsEngine::Level DiagLevel, | ||||
| 548 | const Diagnostic &Info) { | ||||
| 549 | if (!IncludeInDiagnosticCounts()) | ||||
| 550 | return; | ||||
| 551 | |||||
| 552 | if (DiagLevel == DiagnosticsEngine::Warning) | ||||
| 553 | ++NumWarnings; | ||||
| 554 | else if (DiagLevel >= DiagnosticsEngine::Error) | ||||
| 555 | ++NumErrors; | ||||
| 556 | } | ||||
| 557 | |||||
| 558 | /// ModifierIs - Return true if the specified modifier matches specified string. | ||||
| 559 | template <std::size_t StrLen> | ||||
| 560 | static bool ModifierIs(const char *Modifier, unsigned ModifierLen, | ||||
| 561 | const char (&Str)[StrLen]) { | ||||
| 562 | return StrLen-1 == ModifierLen && memcmp(Modifier, Str, StrLen-1) == 0; | ||||
| 563 | } | ||||
| 564 | |||||
| 565 | /// ScanForward - Scans forward, looking for the given character, skipping | ||||
| 566 | /// nested clauses and escaped characters. | ||||
| 567 | static const char *ScanFormat(const char *I, const char *E, char Target) { | ||||
| 568 | unsigned Depth = 0; | ||||
| 569 | |||||
| 570 | for ( ; I != E; ++I) { | ||||
| 571 | if (Depth == 0 && *I == Target) return I; | ||||
| 572 | if (Depth != 0 && *I == '}') Depth--; | ||||
| 573 | |||||
| 574 | if (*I == '%') { | ||||
| 575 | I++; | ||||
| 576 | if (I == E) break; | ||||
| 577 | |||||
| 578 | // Escaped characters get implicitly skipped here. | ||||
| 579 | |||||
| 580 | // Format specifier. | ||||
| 581 | if (!isDigit(*I) && !isPunctuation(*I)) { | ||||
| 582 | for (I++; I != E && !isDigit(*I) && *I != '{'; I++) ; | ||||
| 583 | if (I == E) break; | ||||
| 584 | if (*I == '{') | ||||
| 585 | Depth++; | ||||
| 586 | } | ||||
| 587 | } | ||||
| 588 | } | ||||
| 589 | return E; | ||||
| 590 | } | ||||
| 591 | |||||
| 592 | /// HandleSelectModifier - Handle the integer 'select' modifier. This is used | ||||
| 593 | /// like this: %select{foo|bar|baz}2. This means that the integer argument | ||||
| 594 | /// "%2" has a value from 0-2. If the value is 0, the diagnostic prints 'foo'. | ||||
| 595 | /// If the value is 1, it prints 'bar'. If it has the value 2, it prints 'baz'. | ||||
| 596 | /// This is very useful for certain classes of variant diagnostics. | ||||
| 597 | static void HandleSelectModifier(const Diagnostic &DInfo, unsigned ValNo, | ||||
| 598 | const char *Argument, unsigned ArgumentLen, | ||||
| 599 | SmallVectorImpl<char> &OutStr) { | ||||
| 600 | const char *ArgumentEnd = Argument+ArgumentLen; | ||||
| 601 | |||||
| 602 | // Skip over 'ValNo' |'s. | ||||
| 603 | while (ValNo) { | ||||
| 604 | const char *NextVal = ScanFormat(Argument, ArgumentEnd, '|'); | ||||
| 605 | assert(NextVal != ArgumentEnd && "Value for integer select modifier was"((void)0) | ||||
| 606 | " larger than the number of options in the diagnostic string!")((void)0); | ||||
| 607 | Argument = NextVal+1; // Skip this string. | ||||
| 608 | --ValNo; | ||||
| 609 | } | ||||
| 610 | |||||
| 611 | // Get the end of the value. This is either the } or the |. | ||||
| 612 | const char *EndPtr = ScanFormat(Argument, ArgumentEnd, '|'); | ||||
| 613 | |||||
| 614 | // Recursively format the result of the select clause into the output string. | ||||
| 615 | DInfo.FormatDiagnostic(Argument, EndPtr, OutStr); | ||||
| 616 | } | ||||
| 617 | |||||
| 618 | /// HandleIntegerSModifier - Handle the integer 's' modifier. This adds the | ||||
| 619 | /// letter 's' to the string if the value is not 1. This is used in cases like | ||||
| 620 | /// this: "you idiot, you have %4 parameter%s4!". | ||||
| 621 | static void HandleIntegerSModifier(unsigned ValNo, | ||||
| 622 | SmallVectorImpl<char> &OutStr) { | ||||
| 623 | if (ValNo != 1) | ||||
| 624 | OutStr.push_back('s'); | ||||
| 625 | } | ||||
| 626 | |||||
| 627 | /// HandleOrdinalModifier - Handle the integer 'ord' modifier. This | ||||
| 628 | /// prints the ordinal form of the given integer, with 1 corresponding | ||||
| 629 | /// to the first ordinal. Currently this is hard-coded to use the | ||||
| 630 | /// English form. | ||||
| 631 | static void HandleOrdinalModifier(unsigned ValNo, | ||||
| 632 | SmallVectorImpl<char> &OutStr) { | ||||
| 633 | assert(ValNo != 0 && "ValNo must be strictly positive!")((void)0); | ||||
| 634 | |||||
| 635 | llvm::raw_svector_ostream Out(OutStr); | ||||
| 636 | |||||
| 637 | // We could use text forms for the first N ordinals, but the numeric | ||||
| 638 | // forms are actually nicer in diagnostics because they stand out. | ||||
| 639 | Out << ValNo << llvm::getOrdinalSuffix(ValNo); | ||||
| 640 | } | ||||
| 641 | |||||
| 642 | /// PluralNumber - Parse an unsigned integer and advance Start. | ||||
| 643 | static unsigned PluralNumber(const char *&Start, const char *End) { | ||||
| 644 | // Programming 101: Parse a decimal number :-) | ||||
| 645 | unsigned Val = 0; | ||||
| 646 | while (Start != End && *Start >= '0' && *Start <= '9') { | ||||
| 647 | Val *= 10; | ||||
| 648 | Val += *Start - '0'; | ||||
| 649 | ++Start; | ||||
| 650 | } | ||||
| 651 | return Val; | ||||
| 652 | } | ||||
| 653 | |||||
| 654 | /// TestPluralRange - Test if Val is in the parsed range. Modifies Start. | ||||
| 655 | static bool TestPluralRange(unsigned Val, const char *&Start, const char *End) { | ||||
| 656 | if (*Start != '[') { | ||||
| 657 | unsigned Ref = PluralNumber(Start, End); | ||||
| 658 | return Ref == Val; | ||||
| 659 | } | ||||
| 660 | |||||
| 661 | ++Start; | ||||
| 662 | unsigned Low = PluralNumber(Start, End); | ||||
| 663 | assert(*Start == ',' && "Bad plural expression syntax: expected ,")((void)0); | ||||
| 664 | ++Start; | ||||
| 665 | unsigned High = PluralNumber(Start, End); | ||||
| 666 | assert(*Start == ']' && "Bad plural expression syntax: expected )")((void)0); | ||||
| 667 | ++Start; | ||||
| 668 | return Low <= Val && Val <= High; | ||||
| 669 | } | ||||
| 670 | |||||
| 671 | /// EvalPluralExpr - Actual expression evaluator for HandlePluralModifier. | ||||
| 672 | static bool EvalPluralExpr(unsigned ValNo, const char *Start, const char *End) { | ||||
| 673 | // Empty condition? | ||||
| 674 | if (*Start == ':') | ||||
| 675 | return true; | ||||
| 676 | |||||
| 677 | while (true) { | ||||
| 678 | char C = *Start; | ||||
| 679 | if (C == '%') { | ||||
| 680 | // Modulo expression | ||||
| 681 | ++Start; | ||||
| 682 | unsigned Arg = PluralNumber(Start, End); | ||||
| 683 | assert(*Start == '=' && "Bad plural expression syntax: expected =")((void)0); | ||||
| 684 | ++Start; | ||||
| 685 | unsigned ValMod = ValNo % Arg; | ||||
| 686 | if (TestPluralRange(ValMod, Start, End)) | ||||
| 687 | return true; | ||||
| 688 | } else { | ||||
| 689 | assert((C == '[' || (C >= '0' && C <= '9')) &&((void)0) | ||||
| 690 | "Bad plural expression syntax: unexpected character")((void)0); | ||||
| 691 | // Range expression | ||||
| 692 | if (TestPluralRange(ValNo, Start, End)) | ||||
| 693 | return true; | ||||
| 694 | } | ||||
| 695 | |||||
| 696 | // Scan for next or-expr part. | ||||
| 697 | Start = std::find(Start, End, ','); | ||||
| 698 | if (Start == End) | ||||
| 699 | break; | ||||
| 700 | ++Start; | ||||
| 701 | } | ||||
| 702 | return false; | ||||
| 703 | } | ||||
| 704 | |||||
| 705 | /// HandlePluralModifier - Handle the integer 'plural' modifier. This is used | ||||
| 706 | /// for complex plural forms, or in languages where all plurals are complex. | ||||
| 707 | /// The syntax is: %plural{cond1:form1|cond2:form2|:form3}, where condn are | ||||
| 708 | /// conditions that are tested in order, the form corresponding to the first | ||||
| 709 | /// that applies being emitted. The empty condition is always true, making the | ||||
| 710 | /// last form a default case. | ||||
| 711 | /// Conditions are simple boolean expressions, where n is the number argument. | ||||
| 712 | /// Here are the rules. | ||||
| 713 | /// condition := expression | empty | ||||
| 714 | /// empty := -> always true | ||||
| 715 | /// expression := numeric [',' expression] -> logical or | ||||
| 716 | /// numeric := range -> true if n in range | ||||
| 717 | /// | '%' number '=' range -> true if n % number in range | ||||
| 718 | /// range := number | ||||
| 719 | /// | '[' number ',' number ']' -> ranges are inclusive both ends | ||||
| 720 | /// | ||||
| 721 | /// Here are some examples from the GNU gettext manual written in this form: | ||||
| 722 | /// English: | ||||
| 723 | /// {1:form0|:form1} | ||||
| 724 | /// Latvian: | ||||
| 725 | /// {0:form2|%100=11,%10=0,%10=[2,9]:form1|:form0} | ||||
| 726 | /// Gaeilge: | ||||
| 727 | /// {1:form0|2:form1|:form2} | ||||
| 728 | /// Romanian: | ||||
| 729 | /// {1:form0|0,%100=[1,19]:form1|:form2} | ||||
| 730 | /// Lithuanian: | ||||
| 731 | /// {%10=0,%100=[10,19]:form2|%10=1:form0|:form1} | ||||
| 732 | /// Russian (requires repeated form): | ||||
| 733 | /// {%100=[11,14]:form2|%10=1:form0|%10=[2,4]:form1|:form2} | ||||
| 734 | /// Slovak | ||||
| 735 | /// {1:form0|[2,4]:form1|:form2} | ||||
| 736 | /// Polish (requires repeated form): | ||||
| 737 | /// {1:form0|%100=[10,20]:form2|%10=[2,4]:form1|:form2} | ||||
| 738 | static void HandlePluralModifier(const Diagnostic &DInfo, unsigned ValNo, | ||||
| 739 | const char *Argument, unsigned ArgumentLen, | ||||
| 740 | SmallVectorImpl<char> &OutStr) { | ||||
| 741 | const char *ArgumentEnd = Argument + ArgumentLen; | ||||
| 742 | while (true) { | ||||
| 743 | assert(Argument < ArgumentEnd && "Plural expression didn't match.")((void)0); | ||||
| 744 | const char *ExprEnd = Argument; | ||||
| 745 | while (*ExprEnd != ':') { | ||||
| 746 | assert(ExprEnd != ArgumentEnd && "Plural missing expression end")((void)0); | ||||
| 747 | ++ExprEnd; | ||||
| 748 | } | ||||
| 749 | if (EvalPluralExpr(ValNo, Argument, ExprEnd)) { | ||||
| 750 | Argument = ExprEnd + 1; | ||||
| 751 | ExprEnd = ScanFormat(Argument, ArgumentEnd, '|'); | ||||
| 752 | |||||
| 753 | // Recursively format the result of the plural clause into the | ||||
| 754 | // output string. | ||||
| 755 | DInfo.FormatDiagnostic(Argument, ExprEnd, OutStr); | ||||
| 756 | return; | ||||
| 757 | } | ||||
| 758 | Argument = ScanFormat(Argument, ArgumentEnd - 1, '|') + 1; | ||||
| 759 | } | ||||
| 760 | } | ||||
| 761 | |||||
| 762 | /// Returns the friendly description for a token kind that will appear | ||||
| 763 | /// without quotes in diagnostic messages. These strings may be translatable in | ||||
| 764 | /// future. | ||||
| 765 | static const char *getTokenDescForDiagnostic(tok::TokenKind Kind) { | ||||
| 766 | switch (Kind) { | ||||
| 767 | case tok::identifier: | ||||
| 768 | return "identifier"; | ||||
| 769 | default: | ||||
| 770 | return nullptr; | ||||
| 771 | } | ||||
| 772 | } | ||||
| 773 | |||||
| 774 | /// FormatDiagnostic - Format this diagnostic into a string, substituting the | ||||
| 775 | /// formal arguments into the %0 slots. The result is appended onto the Str | ||||
| 776 | /// array. | ||||
| 777 | void Diagnostic:: | ||||
| 778 | FormatDiagnostic(SmallVectorImpl<char> &OutStr) const { | ||||
| 779 | if (!StoredDiagMessage.empty()) { | ||||
| 780 | OutStr.append(StoredDiagMessage.begin(), StoredDiagMessage.end()); | ||||
| 781 | return; | ||||
| 782 | } | ||||
| 783 | |||||
| 784 | StringRef Diag = | ||||
| 785 | getDiags()->getDiagnosticIDs()->getDescription(getID()); | ||||
| 786 | |||||
| 787 | FormatDiagnostic(Diag.begin(), Diag.end(), OutStr); | ||||
| 788 | } | ||||
| 789 | |||||
| 790 | void Diagnostic:: | ||||
| 791 | FormatDiagnostic(const char *DiagStr, const char *DiagEnd, | ||||
| 792 | SmallVectorImpl<char> &OutStr) const { | ||||
| 793 | // When the diagnostic string is only "%0", the entire string is being given | ||||
| 794 | // by an outside source. Remove unprintable characters from this string | ||||
| 795 | // and skip all the other string processing. | ||||
| 796 | if (DiagEnd - DiagStr == 2 && | ||||
| 797 | StringRef(DiagStr, DiagEnd - DiagStr).equals("%0") && | ||||
| 798 | getArgKind(0) == DiagnosticsEngine::ak_std_string) { | ||||
| 799 | const std::string &S = getArgStdStr(0); | ||||
| 800 | for (char c : S) { | ||||
| 801 | if (llvm::sys::locale::isPrint(c) || c == '\t') { | ||||
| 802 | OutStr.push_back(c); | ||||
| 803 | } | ||||
| 804 | } | ||||
| 805 | return; | ||||
| 806 | } | ||||
| 807 | |||||
| 808 | /// FormattedArgs - Keep track of all of the arguments formatted by | ||||
| 809 | /// ConvertArgToString and pass them into subsequent calls to | ||||
| 810 | /// ConvertArgToString, allowing the implementation to avoid redundancies in | ||||
| 811 | /// obvious cases. | ||||
| 812 | SmallVector<DiagnosticsEngine::ArgumentValue, 8> FormattedArgs; | ||||
| 813 | |||||
| 814 | /// QualTypeVals - Pass a vector of arrays so that QualType names can be | ||||
| 815 | /// compared to see if more information is needed to be printed. | ||||
| 816 | SmallVector<intptr_t, 2> QualTypeVals; | ||||
| 817 | SmallString<64> Tree; | ||||
| 818 | |||||
| 819 | for (unsigned i = 0, e = getNumArgs(); i < e; ++i) | ||||
| 820 | if (getArgKind(i) == DiagnosticsEngine::ak_qualtype) | ||||
| 821 | QualTypeVals.push_back(getRawArg(i)); | ||||
| 822 | |||||
| 823 | while (DiagStr != DiagEnd) { | ||||
| 824 | if (DiagStr[0] != '%') { | ||||
| |||||
| 825 | // Append non-%0 substrings to Str if we have one. | ||||
| 826 | const char *StrEnd = std::find(DiagStr, DiagEnd, '%'); | ||||
| 827 | OutStr.append(DiagStr, StrEnd); | ||||
| 828 | DiagStr = StrEnd; | ||||
| 829 | continue; | ||||
| 830 | } else if (isPunctuation(DiagStr[1])) { | ||||
| 831 | OutStr.push_back(DiagStr[1]); // %% -> %. | ||||
| 832 | DiagStr += 2; | ||||
| 833 | continue; | ||||
| 834 | } | ||||
| 835 | |||||
| 836 | // Skip the %. | ||||
| 837 | ++DiagStr; | ||||
| 838 | |||||
| 839 | // This must be a placeholder for a diagnostic argument. The format for a | ||||
| 840 | // placeholder is one of "%0", "%modifier0", or "%modifier{arguments}0". | ||||
| 841 | // The digit is a number from 0-9 indicating which argument this comes from. | ||||
| 842 | // The modifier is a string of digits from the set [-a-z]+, arguments is a | ||||
| 843 | // brace enclosed string. | ||||
| 844 | const char *Modifier = nullptr, *Argument = nullptr; | ||||
| 845 | unsigned ModifierLen = 0, ArgumentLen = 0; | ||||
| 846 | |||||
| 847 | // Check to see if we have a modifier. If so eat it. | ||||
| 848 | if (!isDigit(DiagStr[0])) { | ||||
| 849 | Modifier = DiagStr; | ||||
| 850 | while (DiagStr[0] == '-' || | ||||
| 851 | (DiagStr[0] >= 'a' && DiagStr[0] <= 'z')) | ||||
| 852 | ++DiagStr; | ||||
| 853 | ModifierLen = DiagStr-Modifier; | ||||
| 854 | |||||
| 855 | // If we have an argument, get it next. | ||||
| 856 | if (DiagStr[0] == '{') { | ||||
| 857 | ++DiagStr; // Skip {. | ||||
| 858 | Argument = DiagStr; | ||||
| 859 | |||||
| 860 | DiagStr = ScanFormat(DiagStr, DiagEnd, '}'); | ||||
| 861 | assert(DiagStr != DiagEnd && "Mismatched {}'s in diagnostic string!")((void)0); | ||||
| 862 | ArgumentLen = DiagStr-Argument; | ||||
| 863 | ++DiagStr; // Skip }. | ||||
| 864 | } | ||||
| 865 | } | ||||
| 866 | |||||
| 867 | assert(isDigit(*DiagStr) && "Invalid format for argument in diagnostic")((void)0); | ||||
| 868 | unsigned ArgNo = *DiagStr++ - '0'; | ||||
| 869 | |||||
| 870 | // Only used for type diffing. | ||||
| 871 | unsigned ArgNo2 = ArgNo; | ||||
| 872 | |||||
| 873 | DiagnosticsEngine::ArgumentKind Kind = getArgKind(ArgNo); | ||||
| 874 | if (ModifierIs(Modifier, ModifierLen, "diff")) { | ||||
| 875 | assert(*DiagStr == ',' && isDigit(*(DiagStr + 1)) &&((void)0) | ||||
| 876 | "Invalid format for diff modifier")((void)0); | ||||
| 877 | ++DiagStr; // Comma. | ||||
| 878 | ArgNo2 = *DiagStr++ - '0'; | ||||
| 879 | DiagnosticsEngine::ArgumentKind Kind2 = getArgKind(ArgNo2); | ||||
| 880 | if (Kind == DiagnosticsEngine::ak_qualtype && | ||||
| 881 | Kind2 == DiagnosticsEngine::ak_qualtype) | ||||
| 882 | Kind = DiagnosticsEngine::ak_qualtype_pair; | ||||
| 883 | else { | ||||
| 884 | // %diff only supports QualTypes. For other kinds of arguments, | ||||
| 885 | // use the default printing. For example, if the modifier is: | ||||
| 886 | // "%diff{compare $ to $|other text}1,2" | ||||
| 887 | // treat it as: | ||||
| 888 | // "compare %1 to %2" | ||||
| 889 | const char *ArgumentEnd = Argument + ArgumentLen; | ||||
| 890 | const char *Pipe = ScanFormat(Argument, ArgumentEnd, '|'); | ||||
| 891 | assert(ScanFormat(Pipe + 1, ArgumentEnd, '|') == ArgumentEnd &&((void)0) | ||||
| 892 | "Found too many '|'s in a %diff modifier!")((void)0); | ||||
| 893 | const char *FirstDollar = ScanFormat(Argument, Pipe, '$'); | ||||
| 894 | const char *SecondDollar = ScanFormat(FirstDollar + 1, Pipe, '$'); | ||||
| 895 | const char ArgStr1[] = { '%', static_cast<char>('0' + ArgNo) }; | ||||
| 896 | const char ArgStr2[] = { '%', static_cast<char>('0' + ArgNo2) }; | ||||
| 897 | FormatDiagnostic(Argument, FirstDollar, OutStr); | ||||
| 898 | FormatDiagnostic(ArgStr1, ArgStr1 + 2, OutStr); | ||||
| 899 | FormatDiagnostic(FirstDollar + 1, SecondDollar, OutStr); | ||||
| 900 | FormatDiagnostic(ArgStr2, ArgStr2 + 2, OutStr); | ||||
| 901 | FormatDiagnostic(SecondDollar + 1, Pipe, OutStr); | ||||
| 902 | continue; | ||||
| 903 | } | ||||
| 904 | } | ||||
| 905 | |||||
| 906 | switch (Kind) { | ||||
| 907 | // ---- STRINGS ---- | ||||
| 908 | case DiagnosticsEngine::ak_std_string: { | ||||
| 909 | const std::string &S = getArgStdStr(ArgNo); | ||||
| 910 | assert(ModifierLen == 0 && "No modifiers for strings yet")((void)0); | ||||
| 911 | OutStr.append(S.begin(), S.end()); | ||||
| 912 | break; | ||||
| 913 | } | ||||
| 914 | case DiagnosticsEngine::ak_c_string: { | ||||
| 915 | const char *S = getArgCStr(ArgNo); | ||||
| 916 | assert(ModifierLen == 0 && "No modifiers for strings yet")((void)0); | ||||
| 917 | |||||
| 918 | // Don't crash if get passed a null pointer by accident. | ||||
| 919 | if (!S) | ||||
| 920 | S = "(null)"; | ||||
| 921 | |||||
| 922 | OutStr.append(S, S + strlen(S)); | ||||
| 923 | break; | ||||
| 924 | } | ||||
| 925 | // ---- INTEGERS ---- | ||||
| 926 | case DiagnosticsEngine::ak_sint: { | ||||
| 927 | int Val = getArgSInt(ArgNo); | ||||
| 928 | |||||
| 929 | if (ModifierIs(Modifier, ModifierLen, "select")) { | ||||
| 930 | HandleSelectModifier(*this, (unsigned)Val, Argument, ArgumentLen, | ||||
| 931 | OutStr); | ||||
| 932 | } else if (ModifierIs(Modifier, ModifierLen, "s")) { | ||||
| 933 | HandleIntegerSModifier(Val, OutStr); | ||||
| 934 | } else if (ModifierIs(Modifier, ModifierLen, "plural")) { | ||||
| 935 | HandlePluralModifier(*this, (unsigned)Val, Argument, ArgumentLen, | ||||
| 936 | OutStr); | ||||
| 937 | } else if (ModifierIs(Modifier, ModifierLen, "ordinal")) { | ||||
| 938 | HandleOrdinalModifier((unsigned)Val, OutStr); | ||||
| 939 | } else { | ||||
| 940 | assert(ModifierLen == 0 && "Unknown integer modifier")((void)0); | ||||
| 941 | llvm::raw_svector_ostream(OutStr) << Val; | ||||
| 942 | } | ||||
| 943 | break; | ||||
| 944 | } | ||||
| 945 | case DiagnosticsEngine::ak_uint: { | ||||
| 946 | unsigned Val = getArgUInt(ArgNo); | ||||
| 947 | |||||
| 948 | if (ModifierIs(Modifier, ModifierLen, "select")) { | ||||
| 949 | HandleSelectModifier(*this, Val, Argument, ArgumentLen, OutStr); | ||||
| 950 | } else if (ModifierIs(Modifier, ModifierLen, "s")) { | ||||
| 951 | HandleIntegerSModifier(Val, OutStr); | ||||
| 952 | } else if (ModifierIs(Modifier, ModifierLen, "plural")) { | ||||
| 953 | HandlePluralModifier(*this, (unsigned)Val, Argument, ArgumentLen, | ||||
| 954 | OutStr); | ||||
| 955 | } else if (ModifierIs(Modifier, ModifierLen, "ordinal")) { | ||||
| 956 | HandleOrdinalModifier(Val, OutStr); | ||||
| 957 | } else { | ||||
| 958 | assert(ModifierLen == 0 && "Unknown integer modifier")((void)0); | ||||
| 959 | llvm::raw_svector_ostream(OutStr) << Val; | ||||
| 960 | } | ||||
| 961 | break; | ||||
| 962 | } | ||||
| 963 | // ---- TOKEN SPELLINGS ---- | ||||
| 964 | case DiagnosticsEngine::ak_tokenkind: { | ||||
| 965 | tok::TokenKind Kind = static_cast<tok::TokenKind>(getRawArg(ArgNo)); | ||||
| 966 | assert(ModifierLen == 0 && "No modifiers for token kinds yet")((void)0); | ||||
| 967 | |||||
| 968 | llvm::raw_svector_ostream Out(OutStr); | ||||
| 969 | if (const char *S = tok::getPunctuatorSpelling(Kind)) | ||||
| 970 | // Quoted token spelling for punctuators. | ||||
| 971 | Out << '\'' << S << '\''; | ||||
| 972 | else if (const char *S = tok::getKeywordSpelling(Kind)) | ||||
| 973 | // Unquoted token spelling for keywords. | ||||
| 974 | Out << S; | ||||
| 975 | else if (const char *S = getTokenDescForDiagnostic(Kind)) | ||||
| 976 | // Unquoted translatable token name. | ||||
| 977 | Out << S; | ||||
| 978 | else if (const char *S = tok::getTokenName(Kind)) | ||||
| 979 | // Debug name, shouldn't appear in user-facing diagnostics. | ||||
| 980 | Out << '<' << S << '>'; | ||||
| 981 | else | ||||
| 982 | Out << "(null)"; | ||||
| 983 | break; | ||||
| 984 | } | ||||
| 985 | // ---- NAMES and TYPES ---- | ||||
| 986 | case DiagnosticsEngine::ak_identifierinfo: { | ||||
| 987 | const IdentifierInfo *II = getArgIdentifier(ArgNo); | ||||
| 988 | assert(ModifierLen == 0 && "No modifiers for strings yet")((void)0); | ||||
| 989 | |||||
| 990 | // Don't crash if get passed a null pointer by accident. | ||||
| 991 | if (!II) { | ||||
| 992 | const char *S = "(null)"; | ||||
| 993 | OutStr.append(S, S + strlen(S)); | ||||
| 994 | continue; | ||||
| 995 | } | ||||
| 996 | |||||
| 997 | llvm::raw_svector_ostream(OutStr) << '\'' << II->getName() << '\''; | ||||
| 998 | break; | ||||
| 999 | } | ||||
| 1000 | case DiagnosticsEngine::ak_addrspace: | ||||
| 1001 | case DiagnosticsEngine::ak_qual: | ||||
| 1002 | case DiagnosticsEngine::ak_qualtype: | ||||
| 1003 | case DiagnosticsEngine::ak_declarationname: | ||||
| 1004 | case DiagnosticsEngine::ak_nameddecl: | ||||
| 1005 | case DiagnosticsEngine::ak_nestednamespec: | ||||
| 1006 | case DiagnosticsEngine::ak_declcontext: | ||||
| 1007 | case DiagnosticsEngine::ak_attr: | ||||
| 1008 | getDiags()->ConvertArgToString(Kind, getRawArg(ArgNo), | ||||
| 1009 | StringRef(Modifier, ModifierLen), | ||||
| 1010 | StringRef(Argument, ArgumentLen), | ||||
| 1011 | FormattedArgs, | ||||
| 1012 | OutStr, QualTypeVals); | ||||
| 1013 | break; | ||||
| 1014 | case DiagnosticsEngine::ak_qualtype_pair: { | ||||
| 1015 | // Create a struct with all the info needed for printing. | ||||
| 1016 | TemplateDiffTypes TDT; | ||||
| 1017 | TDT.FromType = getRawArg(ArgNo); | ||||
| 1018 | TDT.ToType = getRawArg(ArgNo2); | ||||
| 1019 | TDT.ElideType = getDiags()->ElideType; | ||||
| 1020 | TDT.ShowColors = getDiags()->ShowColors; | ||||
| 1021 | TDT.TemplateDiffUsed = false; | ||||
| 1022 | intptr_t val = reinterpret_cast<intptr_t>(&TDT); | ||||
| 1023 | |||||
| 1024 | const char *ArgumentEnd = Argument + ArgumentLen; | ||||
| 1025 | const char *Pipe = ScanFormat(Argument, ArgumentEnd, '|'); | ||||
| 1026 | |||||
| 1027 | // Print the tree. If this diagnostic already has a tree, skip the | ||||
| 1028 | // second tree. | ||||
| 1029 | if (getDiags()->PrintTemplateTree
| ||||
| 1030 | TDT.PrintFromType = true; | ||||
| 1031 | TDT.PrintTree = true; | ||||
| 1032 | getDiags()->ConvertArgToString(Kind, val, | ||||
| 1033 | StringRef(Modifier, ModifierLen), | ||||
| 1034 | StringRef(Argument, ArgumentLen), | ||||
| 1035 | FormattedArgs, | ||||
| 1036 | Tree, QualTypeVals); | ||||
| 1037 | // If there is no tree information, fall back to regular printing. | ||||
| 1038 | if (!Tree.empty()) { | ||||
| 1039 | FormatDiagnostic(Pipe + 1, ArgumentEnd, OutStr); | ||||
| 1040 | break; | ||||
| 1041 | } | ||||
| 1042 | } | ||||
| 1043 | |||||
| 1044 | // Non-tree printing, also the fall-back when tree printing fails. | ||||
| 1045 | // The fall-back is triggered when the types compared are not templates. | ||||
| 1046 | const char *FirstDollar = ScanFormat(Argument, ArgumentEnd, '$'); | ||||
| 1047 | const char *SecondDollar = ScanFormat(FirstDollar + 1, ArgumentEnd, '$'); | ||||
| 1048 | |||||
| 1049 | // Append before text | ||||
| 1050 | FormatDiagnostic(Argument, FirstDollar, OutStr); | ||||
| 1051 | |||||
| 1052 | // Append first type | ||||
| 1053 | TDT.PrintTree = false; | ||||
| 1054 | TDT.PrintFromType = true; | ||||
| 1055 | getDiags()->ConvertArgToString(Kind, val, | ||||
| 1056 | StringRef(Modifier, ModifierLen), | ||||
| 1057 | StringRef(Argument, ArgumentLen), | ||||
| 1058 | FormattedArgs, | ||||
| 1059 | OutStr, QualTypeVals); | ||||
| 1060 | if (!TDT.TemplateDiffUsed) | ||||
| 1061 | FormattedArgs.push_back(std::make_pair(DiagnosticsEngine::ak_qualtype, | ||||
| 1062 | TDT.FromType)); | ||||
| 1063 | |||||
| 1064 | // Append middle text | ||||
| 1065 | FormatDiagnostic(FirstDollar + 1, SecondDollar, OutStr); | ||||
| 1066 | |||||
| 1067 | // Append second type | ||||
| 1068 | TDT.PrintFromType = false; | ||||
| 1069 | getDiags()->ConvertArgToString(Kind, val, | ||||
| 1070 | StringRef(Modifier, ModifierLen), | ||||
| 1071 | StringRef(Argument, ArgumentLen), | ||||
| 1072 | FormattedArgs, | ||||
| 1073 | OutStr, QualTypeVals); | ||||
| 1074 | if (!TDT.TemplateDiffUsed) | ||||
| 1075 | FormattedArgs.push_back(std::make_pair(DiagnosticsEngine::ak_qualtype, | ||||
| 1076 | TDT.ToType)); | ||||
| 1077 | |||||
| 1078 | // Append end text | ||||
| 1079 | FormatDiagnostic(SecondDollar + 1, Pipe, OutStr); | ||||
| 1080 | break; | ||||
| 1081 | } | ||||
| 1082 | } | ||||
| 1083 | |||||
| 1084 | // Remember this argument info for subsequent formatting operations. Turn | ||||
| 1085 | // std::strings into a null terminated string to make it be the same case as | ||||
| 1086 | // all the other ones. | ||||
| 1087 | if (Kind == DiagnosticsEngine::ak_qualtype_pair) | ||||
| 1088 | continue; | ||||
| 1089 | else if (Kind != DiagnosticsEngine::ak_std_string) | ||||
| 1090 | FormattedArgs.push_back(std::make_pair(Kind, getRawArg(ArgNo))); | ||||
| 1091 | else | ||||
| 1092 | FormattedArgs.push_back(std::make_pair(DiagnosticsEngine::ak_c_string, | ||||
| 1093 | (intptr_t)getArgStdStr(ArgNo).c_str())); | ||||
| 1094 | } | ||||
| 1095 | |||||
| 1096 | // Append the type tree to the end of the diagnostics. | ||||
| 1097 | OutStr.append(Tree.begin(), Tree.end()); | ||||
| 1098 | } | ||||
| 1099 | |||||
| 1100 | StoredDiagnostic::StoredDiagnostic(DiagnosticsEngine::Level Level, unsigned ID, | ||||
| 1101 | StringRef Message) | ||||
| 1102 | : ID(ID), Level(Level), Message(Message) {} | ||||
| 1103 | |||||
| 1104 | StoredDiagnostic::StoredDiagnostic(DiagnosticsEngine::Level Level, | ||||
| 1105 | const Diagnostic &Info) | ||||
| 1106 | : ID(Info.getID()), Level(Level) { | ||||
| 1107 | assert((Info.getLocation().isInvalid() || Info.hasSourceManager()) &&((void)0) | ||||
| 1108 | "Valid source location without setting a source manager for diagnostic")((void)0); | ||||
| 1109 | if (Info.getLocation().isValid()) | ||||
| |||||
| 1110 | Loc = FullSourceLoc(Info.getLocation(), Info.getSourceManager()); | ||||
| 1111 | SmallString<64> Message; | ||||
| 1112 | Info.FormatDiagnostic(Message); | ||||
| 1113 | this->Message.assign(Message.begin(), Message.end()); | ||||
| 1114 | this->Ranges.assign(Info.getRanges().begin(), Info.getRanges().end()); | ||||
| 1115 | this->FixIts.assign(Info.getFixItHints().begin(), Info.getFixItHints().end()); | ||||
| 1116 | } | ||||
| 1117 | |||||
| 1118 | StoredDiagnostic::StoredDiagnostic(DiagnosticsEngine::Level Level, unsigned ID, | ||||
| 1119 | StringRef Message, FullSourceLoc Loc, | ||||
| 1120 | ArrayRef<CharSourceRange> Ranges, | ||||
| 1121 | ArrayRef<FixItHint> FixIts) | ||||
| 1122 | : ID(ID), Level(Level), Loc(Loc), Message(Message), | ||||
| 1123 | Ranges(Ranges.begin(), Ranges.end()), FixIts(FixIts.begin(), FixIts.end()) | ||||
| 1124 | { | ||||
| 1125 | } | ||||
| 1126 | |||||
| 1127 | /// IncludeInDiagnosticCounts - This method (whose default implementation | ||||
| 1128 | /// returns true) indicates whether the diagnostics handled by this | ||||
| 1129 | /// DiagnosticConsumer should be included in the number of diagnostics | ||||
| 1130 | /// reported by DiagnosticsEngine. | ||||
| 1131 | bool DiagnosticConsumer::IncludeInDiagnosticCounts() const { return true; } | ||||
| 1132 | |||||
| 1133 | void IgnoringDiagConsumer::anchor() {} | ||||
| 1134 | |||||
| 1135 | ForwardingDiagnosticConsumer::~ForwardingDiagnosticConsumer() = default; | ||||
| 1136 | |||||
| 1137 | void ForwardingDiagnosticConsumer::HandleDiagnostic( | ||||
| 1138 | DiagnosticsEngine::Level DiagLevel, | ||||
| 1139 | const Diagnostic &Info) { | ||||
| 1140 | Target.HandleDiagnostic(DiagLevel, Info); | ||||
| 1141 | } | ||||
| 1142 | |||||
| 1143 | void ForwardingDiagnosticConsumer::clear() { | ||||
| 1144 | DiagnosticConsumer::clear(); | ||||
| 1145 | Target.clear(); | ||||
| 1146 | } | ||||
| 1147 | |||||
| 1148 | bool ForwardingDiagnosticConsumer::IncludeInDiagnosticCounts() const { | ||||
| 1149 | return Target.IncludeInDiagnosticCounts(); | ||||
| 1150 | } | ||||
| 1151 | |||||
| 1152 | PartialDiagnostic::DiagStorageAllocator::DiagStorageAllocator() { | ||||
| 1153 | for (unsigned I = 0; I != NumCached; ++I) | ||||
| 1154 | FreeList[I] = Cached + I; | ||||
| 1155 | NumFreeListEntries = NumCached; | ||||
| 1156 | } | ||||
| 1157 | |||||
| 1158 | PartialDiagnostic::DiagStorageAllocator::~DiagStorageAllocator() { | ||||
| 1159 | // Don't assert if we are in a CrashRecovery context, as this invariant may | ||||
| 1160 | // be invalidated during a crash. | ||||
| 1161 | assert((NumFreeListEntries == NumCached ||((void)0) | ||||
| 1162 | llvm::CrashRecoveryContext::isRecoveringFromCrash()) &&((void)0) | ||||
| 1163 | "A partial is on the lam")((void)0); | ||||
| 1164 | } | ||||
| 1165 | |||||
| 1166 | char DiagnosticError::ID; |
| 1 | //===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines the SmallVector class. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #ifndef LLVM_ADT_SMALLVECTOR_H |
| 14 | #define LLVM_ADT_SMALLVECTOR_H |
| 15 | |
| 16 | #include "llvm/ADT/iterator_range.h" |
| 17 | #include "llvm/Support/Compiler.h" |
| 18 | #include "llvm/Support/ErrorHandling.h" |
| 19 | #include "llvm/Support/MemAlloc.h" |
| 20 | #include "llvm/Support/type_traits.h" |
| 21 | #include <algorithm> |
| 22 | #include <cassert> |
| 23 | #include <cstddef> |
| 24 | #include <cstdlib> |
| 25 | #include <cstring> |
| 26 | #include <functional> |
| 27 | #include <initializer_list> |
| 28 | #include <iterator> |
| 29 | #include <limits> |
| 30 | #include <memory> |
| 31 | #include <new> |
| 32 | #include <type_traits> |
| 33 | #include <utility> |
| 34 | |
| 35 | namespace llvm { |
| 36 | |
| 37 | /// This is all the stuff common to all SmallVectors. |
| 38 | /// |
| 39 | /// The template parameter specifies the type which should be used to hold the |
| 40 | /// Size and Capacity of the SmallVector, so it can be adjusted. |
| 41 | /// Using 32 bit size is desirable to shrink the size of the SmallVector. |
| 42 | /// Using 64 bit size is desirable for cases like SmallVector<char>, where a |
| 43 | /// 32 bit size would limit the vector to ~4GB. SmallVectors are used for |
| 44 | /// buffering bitcode output - which can exceed 4GB. |
| 45 | template <class Size_T> class SmallVectorBase { |
| 46 | protected: |
| 47 | void *BeginX; |
| 48 | Size_T Size = 0, Capacity; |
| 49 | |
| 50 | /// The maximum value of the Size_T used. |
| 51 | static constexpr size_t SizeTypeMax() { |
| 52 | return std::numeric_limits<Size_T>::max(); |
| 53 | } |
| 54 | |
| 55 | SmallVectorBase() = delete; |
| 56 | SmallVectorBase(void *FirstEl, size_t TotalCapacity) |
| 57 | : BeginX(FirstEl), Capacity(TotalCapacity) {} |
| 58 | |
| 59 | /// This is a helper for \a grow() that's out of line to reduce code |
| 60 | /// duplication. This function will report a fatal error if it can't grow at |
| 61 | /// least to \p MinSize. |
| 62 | void *mallocForGrow(size_t MinSize, size_t TSize, size_t &NewCapacity); |
| 63 | |
| 64 | /// This is an implementation of the grow() method which only works |
| 65 | /// on POD-like data types and is out of line to reduce code duplication. |
| 66 | /// This function will report a fatal error if it cannot increase capacity. |
| 67 | void grow_pod(void *FirstEl, size_t MinSize, size_t TSize); |
| 68 | |
| 69 | public: |
| 70 | size_t size() const { return Size; } |
| 71 | size_t capacity() const { return Capacity; } |
| 72 | |
| 73 | LLVM_NODISCARD[[clang::warn_unused_result]] bool empty() const { return !Size; } |
| 74 | |
| 75 | /// Set the array size to \p N, which the current array must have enough |
| 76 | /// capacity for. |
| 77 | /// |
| 78 | /// This does not construct or destroy any elements in the vector. |
| 79 | /// |
| 80 | /// Clients can use this in conjunction with capacity() to write past the end |
| 81 | /// of the buffer when they know that more elements are available, and only |
| 82 | /// update the size later. This avoids the cost of value initializing elements |
| 83 | /// which will only be overwritten. |
| 84 | void set_size(size_t N) { |
| 85 | assert(N <= capacity())((void)0); |
| 86 | Size = N; |
| 87 | } |
| 88 | }; |
| 89 | |
| 90 | template <class T> |
| 91 | using SmallVectorSizeType = |
| 92 | typename std::conditional<sizeof(T) < 4 && sizeof(void *) >= 8, uint64_t, |
| 93 | uint32_t>::type; |
| 94 | |
| 95 | /// Figure out the offset of the first element. |
| 96 | template <class T, typename = void> struct SmallVectorAlignmentAndSize { |
| 97 | alignas(SmallVectorBase<SmallVectorSizeType<T>>) char Base[sizeof( |
| 98 | SmallVectorBase<SmallVectorSizeType<T>>)]; |
| 99 | alignas(T) char FirstEl[sizeof(T)]; |
| 100 | }; |
| 101 | |
| 102 | /// This is the part of SmallVectorTemplateBase which does not depend on whether |
| 103 | /// the type T is a POD. The extra dummy template argument is used by ArrayRef |
| 104 | /// to avoid unnecessarily requiring T to be complete. |
| 105 | template <typename T, typename = void> |
| 106 | class SmallVectorTemplateCommon |
| 107 | : public SmallVectorBase<SmallVectorSizeType<T>> { |
| 108 | using Base = SmallVectorBase<SmallVectorSizeType<T>>; |
| 109 | |
| 110 | /// Find the address of the first element. For this pointer math to be valid |
| 111 | /// with small-size of 0 for T with lots of alignment, it's important that |
| 112 | /// SmallVectorStorage is properly-aligned even for small-size of 0. |
| 113 | void *getFirstEl() const { |
| 114 | return const_cast<void *>(reinterpret_cast<const void *>( |
| 115 | reinterpret_cast<const char *>(this) + |
| 116 | offsetof(SmallVectorAlignmentAndSize<T>, FirstEl)__builtin_offsetof(SmallVectorAlignmentAndSize<T>, FirstEl ))); |
| 117 | } |
| 118 | // Space after 'FirstEl' is clobbered, do not add any instance vars after it. |
| 119 | |
| 120 | protected: |
| 121 | SmallVectorTemplateCommon(size_t Size) : Base(getFirstEl(), Size) {} |
| 122 | |
| 123 | void grow_pod(size_t MinSize, size_t TSize) { |
| 124 | Base::grow_pod(getFirstEl(), MinSize, TSize); |
| 125 | } |
| 126 | |
| 127 | /// Return true if this is a smallvector which has not had dynamic |
| 128 | /// memory allocated for it. |
| 129 | bool isSmall() const { return this->BeginX == getFirstEl(); } |
| 130 | |
| 131 | /// Put this vector in a state of being small. |
| 132 | void resetToSmall() { |
| 133 | this->BeginX = getFirstEl(); |
| 134 | this->Size = this->Capacity = 0; // FIXME: Setting Capacity to 0 is suspect. |
| 135 | } |
| 136 | |
| 137 | /// Return true if V is an internal reference to the given range. |
| 138 | bool isReferenceToRange(const void *V, const void *First, const void *Last) const { |
| 139 | // Use std::less to avoid UB. |
| 140 | std::less<> LessThan; |
| 141 | return !LessThan(V, First) && LessThan(V, Last); |
| 142 | } |
| 143 | |
| 144 | /// Return true if V is an internal reference to this vector. |
| 145 | bool isReferenceToStorage(const void *V) const { |
| 146 | return isReferenceToRange(V, this->begin(), this->end()); |
| 147 | } |
| 148 | |
| 149 | /// Return true if First and Last form a valid (possibly empty) range in this |
| 150 | /// vector's storage. |
| 151 | bool isRangeInStorage(const void *First, const void *Last) const { |
| 152 | // Use std::less to avoid UB. |
| 153 | std::less<> LessThan; |
| 154 | return !LessThan(First, this->begin()) && !LessThan(Last, First) && |
| 155 | !LessThan(this->end(), Last); |
| 156 | } |
| 157 | |
| 158 | /// Return true unless Elt will be invalidated by resizing the vector to |
| 159 | /// NewSize. |
| 160 | bool isSafeToReferenceAfterResize(const void *Elt, size_t NewSize) { |
| 161 | // Past the end. |
| 162 | if (LLVM_LIKELY(!isReferenceToStorage(Elt))__builtin_expect((bool)(!isReferenceToStorage(Elt)), true)) |
| 163 | return true; |
| 164 | |
| 165 | // Return false if Elt will be destroyed by shrinking. |
| 166 | if (NewSize <= this->size()) |
| 167 | return Elt < this->begin() + NewSize; |
| 168 | |
| 169 | // Return false if we need to grow. |
| 170 | return NewSize <= this->capacity(); |
| 171 | } |
| 172 | |
| 173 | /// Check whether Elt will be invalidated by resizing the vector to NewSize. |
| 174 | void assertSafeToReferenceAfterResize(const void *Elt, size_t NewSize) { |
| 175 | assert(isSafeToReferenceAfterResize(Elt, NewSize) &&((void)0) |
| 176 | "Attempting to reference an element of the vector in an operation "((void)0) |
| 177 | "that invalidates it")((void)0); |
| 178 | } |
| 179 | |
| 180 | /// Check whether Elt will be invalidated by increasing the size of the |
| 181 | /// vector by N. |
| 182 | void assertSafeToAdd(const void *Elt, size_t N = 1) { |
| 183 | this->assertSafeToReferenceAfterResize(Elt, this->size() + N); |
| 184 | } |
| 185 | |
| 186 | /// Check whether any part of the range will be invalidated by clearing. |
| 187 | void assertSafeToReferenceAfterClear(const T *From, const T *To) { |
| 188 | if (From == To) |
| 189 | return; |
| 190 | this->assertSafeToReferenceAfterResize(From, 0); |
| 191 | this->assertSafeToReferenceAfterResize(To - 1, 0); |
| 192 | } |
| 193 | template < |
| 194 | class ItTy, |
| 195 | std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value, |
| 196 | bool> = false> |
| 197 | void assertSafeToReferenceAfterClear(ItTy, ItTy) {} |
| 198 | |
| 199 | /// Check whether any part of the range will be invalidated by growing. |
| 200 | void assertSafeToAddRange(const T *From, const T *To) { |
| 201 | if (From == To) |
| 202 | return; |
| 203 | this->assertSafeToAdd(From, To - From); |
| 204 | this->assertSafeToAdd(To - 1, To - From); |
| 205 | } |
| 206 | template < |
| 207 | class ItTy, |
| 208 | std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value, |
| 209 | bool> = false> |
| 210 | void assertSafeToAddRange(ItTy, ItTy) {} |
| 211 | |
| 212 | /// Reserve enough space to add one element, and return the updated element |
| 213 | /// pointer in case it was a reference to the storage. |
| 214 | template <class U> |
| 215 | static const T *reserveForParamAndGetAddressImpl(U *This, const T &Elt, |
| 216 | size_t N) { |
| 217 | size_t NewSize = This->size() + N; |
| 218 | if (LLVM_LIKELY(NewSize <= This->capacity())__builtin_expect((bool)(NewSize <= This->capacity()), true )) |
| 219 | return &Elt; |
| 220 | |
| 221 | bool ReferencesStorage = false; |
| 222 | int64_t Index = -1; |
| 223 | if (!U::TakesParamByValue) { |
| 224 | if (LLVM_UNLIKELY(This->isReferenceToStorage(&Elt))__builtin_expect((bool)(This->isReferenceToStorage(&Elt )), false)) { |
| 225 | ReferencesStorage = true; |
| 226 | Index = &Elt - This->begin(); |
| 227 | } |
| 228 | } |
| 229 | This->grow(NewSize); |
| 230 | return ReferencesStorage ? This->begin() + Index : &Elt; |
| 231 | } |
| 232 | |
| 233 | public: |
| 234 | using size_type = size_t; |
| 235 | using difference_type = ptrdiff_t; |
| 236 | using value_type = T; |
| 237 | using iterator = T *; |
| 238 | using const_iterator = const T *; |
| 239 | |
| 240 | using const_reverse_iterator = std::reverse_iterator<const_iterator>; |
| 241 | using reverse_iterator = std::reverse_iterator<iterator>; |
| 242 | |
| 243 | using reference = T &; |
| 244 | using const_reference = const T &; |
| 245 | using pointer = T *; |
| 246 | using const_pointer = const T *; |
| 247 | |
| 248 | using Base::capacity; |
| 249 | using Base::empty; |
| 250 | using Base::size; |
| 251 | |
| 252 | // forward iterator creation methods. |
| 253 | iterator begin() { return (iterator)this->BeginX; } |
| 254 | const_iterator begin() const { return (const_iterator)this->BeginX; } |
| 255 | iterator end() { return begin() + size(); } |
| 256 | const_iterator end() const { return begin() + size(); } |
| 257 | |
| 258 | // reverse iterator creation methods. |
| 259 | reverse_iterator rbegin() { return reverse_iterator(end()); } |
| 260 | const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); } |
| 261 | reverse_iterator rend() { return reverse_iterator(begin()); } |
| 262 | const_reverse_iterator rend() const { return const_reverse_iterator(begin());} |
| 263 | |
| 264 | size_type size_in_bytes() const { return size() * sizeof(T); } |
| 265 | size_type max_size() const { |
| 266 | return std::min(this->SizeTypeMax(), size_type(-1) / sizeof(T)); |
| 267 | } |
| 268 | |
| 269 | size_t capacity_in_bytes() const { return capacity() * sizeof(T); } |
| 270 | |
| 271 | /// Return a pointer to the vector's buffer, even if empty(). |
| 272 | pointer data() { return pointer(begin()); } |
| 273 | /// Return a pointer to the vector's buffer, even if empty(). |
| 274 | const_pointer data() const { return const_pointer(begin()); } |
| 275 | |
| 276 | reference operator[](size_type idx) { |
| 277 | assert(idx < size())((void)0); |
| 278 | return begin()[idx]; |
| 279 | } |
| 280 | const_reference operator[](size_type idx) const { |
| 281 | assert(idx < size())((void)0); |
| 282 | return begin()[idx]; |
| 283 | } |
| 284 | |
| 285 | reference front() { |
| 286 | assert(!empty())((void)0); |
| 287 | return begin()[0]; |
| 288 | } |
| 289 | const_reference front() const { |
| 290 | assert(!empty())((void)0); |
| 291 | return begin()[0]; |
| 292 | } |
| 293 | |
| 294 | reference back() { |
| 295 | assert(!empty())((void)0); |
| 296 | return end()[-1]; |
| 297 | } |
| 298 | const_reference back() const { |
| 299 | assert(!empty())((void)0); |
| 300 | return end()[-1]; |
| 301 | } |
| 302 | }; |
| 303 | |
| 304 | /// SmallVectorTemplateBase<TriviallyCopyable = false> - This is where we put |
| 305 | /// method implementations that are designed to work with non-trivial T's. |
| 306 | /// |
| 307 | /// We approximate is_trivially_copyable with trivial move/copy construction and |
| 308 | /// trivial destruction. While the standard doesn't specify that you're allowed |
| 309 | /// copy these types with memcpy, there is no way for the type to observe this. |
| 310 | /// This catches the important case of std::pair<POD, POD>, which is not |
| 311 | /// trivially assignable. |
| 312 | template <typename T, bool = (is_trivially_copy_constructible<T>::value) && |
| 313 | (is_trivially_move_constructible<T>::value) && |
| 314 | std::is_trivially_destructible<T>::value> |
| 315 | class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> { |
| 316 | friend class SmallVectorTemplateCommon<T>; |
| 317 | |
| 318 | protected: |
| 319 | static constexpr bool TakesParamByValue = false; |
| 320 | using ValueParamT = const T &; |
| 321 | |
| 322 | SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {} |
| 323 | |
| 324 | static void destroy_range(T *S, T *E) { |
| 325 | while (S != E) { |
| 326 | --E; |
| 327 | E->~T(); |
| 328 | } |
| 329 | } |
| 330 | |
| 331 | /// Move the range [I, E) into the uninitialized memory starting with "Dest", |
| 332 | /// constructing elements as needed. |
| 333 | template<typename It1, typename It2> |
| 334 | static void uninitialized_move(It1 I, It1 E, It2 Dest) { |
| 335 | std::uninitialized_copy(std::make_move_iterator(I), |
| 336 | std::make_move_iterator(E), Dest); |
| 337 | } |
| 338 | |
| 339 | /// Copy the range [I, E) onto the uninitialized memory starting with "Dest", |
| 340 | /// constructing elements as needed. |
| 341 | template<typename It1, typename It2> |
| 342 | static void uninitialized_copy(It1 I, It1 E, It2 Dest) { |
| 343 | std::uninitialized_copy(I, E, Dest); |
| 344 | } |
| 345 | |
| 346 | /// Grow the allocated memory (without initializing new elements), doubling |
| 347 | /// the size of the allocated memory. Guarantees space for at least one more |
| 348 | /// element, or MinSize more elements if specified. |
| 349 | void grow(size_t MinSize = 0); |
| 350 | |
| 351 | /// Create a new allocation big enough for \p MinSize and pass back its size |
| 352 | /// in \p NewCapacity. This is the first section of \a grow(). |
| 353 | T *mallocForGrow(size_t MinSize, size_t &NewCapacity) { |
| 354 | return static_cast<T *>( |
| 355 | SmallVectorBase<SmallVectorSizeType<T>>::mallocForGrow( |
| 356 | MinSize, sizeof(T), NewCapacity)); |
| 357 | } |
| 358 | |
| 359 | /// Move existing elements over to the new allocation \p NewElts, the middle |
| 360 | /// section of \a grow(). |
| 361 | void moveElementsForGrow(T *NewElts); |
| 362 | |
| 363 | /// Transfer ownership of the allocation, finishing up \a grow(). |
| 364 | void takeAllocationForGrow(T *NewElts, size_t NewCapacity); |
| 365 | |
| 366 | /// Reserve enough space to add one element, and return the updated element |
| 367 | /// pointer in case it was a reference to the storage. |
| 368 | const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) { |
| 369 | return this->reserveForParamAndGetAddressImpl(this, Elt, N); |
| 370 | } |
| 371 | |
| 372 | /// Reserve enough space to add one element, and return the updated element |
| 373 | /// pointer in case it was a reference to the storage. |
| 374 | T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) { |
| 375 | return const_cast<T *>( |
| 376 | this->reserveForParamAndGetAddressImpl(this, Elt, N)); |
| 377 | } |
| 378 | |
| 379 | static T &&forward_value_param(T &&V) { return std::move(V); } |
| 380 | static const T &forward_value_param(const T &V) { return V; } |
| 381 | |
| 382 | void growAndAssign(size_t NumElts, const T &Elt) { |
| 383 | // Grow manually in case Elt is an internal reference. |
| 384 | size_t NewCapacity; |
| 385 | T *NewElts = mallocForGrow(NumElts, NewCapacity); |
| 386 | std::uninitialized_fill_n(NewElts, NumElts, Elt); |
| 387 | this->destroy_range(this->begin(), this->end()); |
| 388 | takeAllocationForGrow(NewElts, NewCapacity); |
| 389 | this->set_size(NumElts); |
| 390 | } |
| 391 | |
| 392 | template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) { |
| 393 | // Grow manually in case one of Args is an internal reference. |
| 394 | size_t NewCapacity; |
| 395 | T *NewElts = mallocForGrow(0, NewCapacity); |
| 396 | ::new ((void *)(NewElts + this->size())) T(std::forward<ArgTypes>(Args)...); |
| 397 | moveElementsForGrow(NewElts); |
| 398 | takeAllocationForGrow(NewElts, NewCapacity); |
| 399 | this->set_size(this->size() + 1); |
| 400 | return this->back(); |
| 401 | } |
| 402 | |
| 403 | public: |
| 404 | void push_back(const T &Elt) { |
| 405 | const T *EltPtr = reserveForParamAndGetAddress(Elt); |
| 406 | ::new ((void *)this->end()) T(*EltPtr); |
| 407 | this->set_size(this->size() + 1); |
| 408 | } |
| 409 | |
| 410 | void push_back(T &&Elt) { |
| 411 | T *EltPtr = reserveForParamAndGetAddress(Elt); |
| 412 | ::new ((void *)this->end()) T(::std::move(*EltPtr)); |
| 413 | this->set_size(this->size() + 1); |
| 414 | } |
| 415 | |
| 416 | void pop_back() { |
| 417 | this->set_size(this->size() - 1); |
| 418 | this->end()->~T(); |
| 419 | } |
| 420 | }; |
| 421 | |
| 422 | // Define this out-of-line to dissuade the C++ compiler from inlining it. |
| 423 | template <typename T, bool TriviallyCopyable> |
| 424 | void SmallVectorTemplateBase<T, TriviallyCopyable>::grow(size_t MinSize) { |
| 425 | size_t NewCapacity; |
| 426 | T *NewElts = mallocForGrow(MinSize, NewCapacity); |
| 427 | moveElementsForGrow(NewElts); |
| 428 | takeAllocationForGrow(NewElts, NewCapacity); |
| 429 | } |
| 430 | |
| 431 | // Define this out-of-line to dissuade the C++ compiler from inlining it. |
| 432 | template <typename T, bool TriviallyCopyable> |
| 433 | void SmallVectorTemplateBase<T, TriviallyCopyable>::moveElementsForGrow( |
| 434 | T *NewElts) { |
| 435 | // Move the elements over. |
| 436 | this->uninitialized_move(this->begin(), this->end(), NewElts); |
| 437 | |
| 438 | // Destroy the original elements. |
| 439 | destroy_range(this->begin(), this->end()); |
| 440 | } |
| 441 | |
| 442 | // Define this out-of-line to dissuade the C++ compiler from inlining it. |
| 443 | template <typename T, bool TriviallyCopyable> |
| 444 | void SmallVectorTemplateBase<T, TriviallyCopyable>::takeAllocationForGrow( |
| 445 | T *NewElts, size_t NewCapacity) { |
| 446 | // If this wasn't grown from the inline copy, deallocate the old space. |
| 447 | if (!this->isSmall()) |
| 448 | free(this->begin()); |
| 449 | |
| 450 | this->BeginX = NewElts; |
| 451 | this->Capacity = NewCapacity; |
| 452 | } |
| 453 | |
| 454 | /// SmallVectorTemplateBase<TriviallyCopyable = true> - This is where we put |
| 455 | /// method implementations that are designed to work with trivially copyable |
| 456 | /// T's. This allows using memcpy in place of copy/move construction and |
| 457 | /// skipping destruction. |
| 458 | template <typename T> |
| 459 | class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> { |
| 460 | friend class SmallVectorTemplateCommon<T>; |
| 461 | |
| 462 | protected: |
| 463 | /// True if it's cheap enough to take parameters by value. Doing so avoids |
| 464 | /// overhead related to mitigations for reference invalidation. |
| 465 | static constexpr bool TakesParamByValue = sizeof(T) <= 2 * sizeof(void *); |
| 466 | |
| 467 | /// Either const T& or T, depending on whether it's cheap enough to take |
| 468 | /// parameters by value. |
| 469 | using ValueParamT = |
| 470 | typename std::conditional<TakesParamByValue, T, const T &>::type; |
| 471 | |
| 472 | SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {} |
| 473 | |
| 474 | // No need to do a destroy loop for POD's. |
| 475 | static void destroy_range(T *, T *) {} |
| 476 | |
| 477 | /// Move the range [I, E) onto the uninitialized memory |
| 478 | /// starting with "Dest", constructing elements into it as needed. |
| 479 | template<typename It1, typename It2> |
| 480 | static void uninitialized_move(It1 I, It1 E, It2 Dest) { |
| 481 | // Just do a copy. |
| 482 | uninitialized_copy(I, E, Dest); |
| 483 | } |
| 484 | |
| 485 | /// Copy the range [I, E) onto the uninitialized memory |
| 486 | /// starting with "Dest", constructing elements into it as needed. |
| 487 | template<typename It1, typename It2> |
| 488 | static void uninitialized_copy(It1 I, It1 E, It2 Dest) { |
| 489 | // Arbitrary iterator types; just use the basic implementation. |
| 490 | std::uninitialized_copy(I, E, Dest); |
| 491 | } |
| 492 | |
| 493 | /// Copy the range [I, E) onto the uninitialized memory |
| 494 | /// starting with "Dest", constructing elements into it as needed. |
| 495 | template <typename T1, typename T2> |
| 496 | static void uninitialized_copy( |
| 497 | T1 *I, T1 *E, T2 *Dest, |
| 498 | std::enable_if_t<std::is_same<typename std::remove_const<T1>::type, |
| 499 | T2>::value> * = nullptr) { |
| 500 | // Use memcpy for PODs iterated by pointers (which includes SmallVector |
| 501 | // iterators): std::uninitialized_copy optimizes to memmove, but we can |
| 502 | // use memcpy here. Note that I and E are iterators and thus might be |
| 503 | // invalid for memcpy if they are equal. |
| 504 | if (I != E) |
| 505 | memcpy(reinterpret_cast<void *>(Dest), I, (E - I) * sizeof(T)); |
| 506 | } |
| 507 | |
| 508 | /// Double the size of the allocated memory, guaranteeing space for at |
| 509 | /// least one more element or MinSize if specified. |
| 510 | void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); } |
| 511 | |
| 512 | /// Reserve enough space to add one element, and return the updated element |
| 513 | /// pointer in case it was a reference to the storage. |
| 514 | const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) { |
| 515 | return this->reserveForParamAndGetAddressImpl(this, Elt, N); |
| 516 | } |
| 517 | |
| 518 | /// Reserve enough space to add one element, and return the updated element |
| 519 | /// pointer in case it was a reference to the storage. |
| 520 | T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) { |
| 521 | return const_cast<T *>( |
| 522 | this->reserveForParamAndGetAddressImpl(this, Elt, N)); |
| 523 | } |
| 524 | |
| 525 | /// Copy \p V or return a reference, depending on \a ValueParamT. |
| 526 | static ValueParamT forward_value_param(ValueParamT V) { return V; } |
| 527 | |
| 528 | void growAndAssign(size_t NumElts, T Elt) { |
| 529 | // Elt has been copied in case it's an internal reference, side-stepping |
| 530 | // reference invalidation problems without losing the realloc optimization. |
| 531 | this->set_size(0); |
| 532 | this->grow(NumElts); |
| 533 | std::uninitialized_fill_n(this->begin(), NumElts, Elt); |
| 534 | this->set_size(NumElts); |
| 535 | } |
| 536 | |
| 537 | template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) { |
| 538 | // Use push_back with a copy in case Args has an internal reference, |
| 539 | // side-stepping reference invalidation problems without losing the realloc |
| 540 | // optimization. |
| 541 | push_back(T(std::forward<ArgTypes>(Args)...)); |
| 542 | return this->back(); |
| 543 | } |
| 544 | |
| 545 | public: |
| 546 | void push_back(ValueParamT Elt) { |
| 547 | const T *EltPtr = reserveForParamAndGetAddress(Elt); |
| 548 | memcpy(reinterpret_cast<void *>(this->end()), EltPtr, sizeof(T)); |
| 549 | this->set_size(this->size() + 1); |
| 550 | } |
| 551 | |
| 552 | void pop_back() { this->set_size(this->size() - 1); } |
| 553 | }; |
| 554 | |
| 555 | /// This class consists of common code factored out of the SmallVector class to |
| 556 | /// reduce code duplication based on the SmallVector 'N' template parameter. |
| 557 | template <typename T> |
| 558 | class SmallVectorImpl : public SmallVectorTemplateBase<T> { |
| 559 | using SuperClass = SmallVectorTemplateBase<T>; |
| 560 | |
| 561 | public: |
| 562 | using iterator = typename SuperClass::iterator; |
| 563 | using const_iterator = typename SuperClass::const_iterator; |
| 564 | using reference = typename SuperClass::reference; |
| 565 | using size_type = typename SuperClass::size_type; |
| 566 | |
| 567 | protected: |
| 568 | using SmallVectorTemplateBase<T>::TakesParamByValue; |
| 569 | using ValueParamT = typename SuperClass::ValueParamT; |
| 570 | |
| 571 | // Default ctor - Initialize to empty. |
| 572 | explicit SmallVectorImpl(unsigned N) |
| 573 | : SmallVectorTemplateBase<T>(N) {} |
| 574 | |
| 575 | public: |
| 576 | SmallVectorImpl(const SmallVectorImpl &) = delete; |
| 577 | |
| 578 | ~SmallVectorImpl() { |
| 579 | // Subclass has already destructed this vector's elements. |
| 580 | // If this wasn't grown from the inline copy, deallocate the old space. |
| 581 | if (!this->isSmall()) |
| 582 | free(this->begin()); |
| 583 | } |
| 584 | |
| 585 | void clear() { |
| 586 | this->destroy_range(this->begin(), this->end()); |
| 587 | this->Size = 0; |
| 588 | } |
| 589 | |
| 590 | private: |
| 591 | template <bool ForOverwrite> void resizeImpl(size_type N) { |
| 592 | if (N < this->size()) { |
| 593 | this->pop_back_n(this->size() - N); |
| 594 | } else if (N > this->size()) { |
| 595 | this->reserve(N); |
| 596 | for (auto I = this->end(), E = this->begin() + N; I != E; ++I) |
| 597 | if (ForOverwrite) |
| 598 | new (&*I) T; |
| 599 | else |
| 600 | new (&*I) T(); |
| 601 | this->set_size(N); |
| 602 | } |
| 603 | } |
| 604 | |
| 605 | public: |
| 606 | void resize(size_type N) { resizeImpl<false>(N); } |
| 607 | |
| 608 | /// Like resize, but \ref T is POD, the new values won't be initialized. |
| 609 | void resize_for_overwrite(size_type N) { resizeImpl<true>(N); } |
| 610 | |
| 611 | void resize(size_type N, ValueParamT NV) { |
| 612 | if (N == this->size()) |
| 613 | return; |
| 614 | |
| 615 | if (N < this->size()) { |
| 616 | this->pop_back_n(this->size() - N); |
| 617 | return; |
| 618 | } |
| 619 | |
| 620 | // N > this->size(). Defer to append. |
| 621 | this->append(N - this->size(), NV); |
| 622 | } |
| 623 | |
| 624 | void reserve(size_type N) { |
| 625 | if (this->capacity() < N) |
| 626 | this->grow(N); |
| 627 | } |
| 628 | |
| 629 | void pop_back_n(size_type NumItems) { |
| 630 | assert(this->size() >= NumItems)((void)0); |
| 631 | this->destroy_range(this->end() - NumItems, this->end()); |
| 632 | this->set_size(this->size() - NumItems); |
| 633 | } |
| 634 | |
| 635 | LLVM_NODISCARD[[clang::warn_unused_result]] T pop_back_val() { |
| 636 | T Result = ::std::move(this->back()); |
| 637 | this->pop_back(); |
| 638 | return Result; |
| 639 | } |
| 640 | |
| 641 | void swap(SmallVectorImpl &RHS); |
| 642 | |
| 643 | /// Add the specified range to the end of the SmallVector. |
| 644 | template <typename in_iter, |
| 645 | typename = std::enable_if_t<std::is_convertible< |
| 646 | typename std::iterator_traits<in_iter>::iterator_category, |
| 647 | std::input_iterator_tag>::value>> |
| 648 | void append(in_iter in_start, in_iter in_end) { |
| 649 | this->assertSafeToAddRange(in_start, in_end); |
| 650 | size_type NumInputs = std::distance(in_start, in_end); |
| 651 | this->reserve(this->size() + NumInputs); |
| 652 | this->uninitialized_copy(in_start, in_end, this->end()); |
| 653 | this->set_size(this->size() + NumInputs); |
| 654 | } |
| 655 | |
| 656 | /// Append \p NumInputs copies of \p Elt to the end. |
| 657 | void append(size_type NumInputs, ValueParamT Elt) { |
| 658 | const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumInputs); |
| 659 | std::uninitialized_fill_n(this->end(), NumInputs, *EltPtr); |
| 660 | this->set_size(this->size() + NumInputs); |
| 661 | } |
| 662 | |
| 663 | void append(std::initializer_list<T> IL) { |
| 664 | append(IL.begin(), IL.end()); |
| 665 | } |
| 666 | |
| 667 | void append(const SmallVectorImpl &RHS) { append(RHS.begin(), RHS.end()); } |
| 668 | |
| 669 | void assign(size_type NumElts, ValueParamT Elt) { |
| 670 | // Note that Elt could be an internal reference. |
| 671 | if (NumElts > this->capacity()) { |
| 672 | this->growAndAssign(NumElts, Elt); |
| 673 | return; |
| 674 | } |
| 675 | |
| 676 | // Assign over existing elements. |
| 677 | std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt); |
| 678 | if (NumElts > this->size()) |
| 679 | std::uninitialized_fill_n(this->end(), NumElts - this->size(), Elt); |
| 680 | else if (NumElts < this->size()) |
| 681 | this->destroy_range(this->begin() + NumElts, this->end()); |
| 682 | this->set_size(NumElts); |
| 683 | } |
| 684 | |
| 685 | // FIXME: Consider assigning over existing elements, rather than clearing & |
| 686 | // re-initializing them - for all assign(...) variants. |
| 687 | |
| 688 | template <typename in_iter, |
| 689 | typename = std::enable_if_t<std::is_convertible< |
| 690 | typename std::iterator_traits<in_iter>::iterator_category, |
| 691 | std::input_iterator_tag>::value>> |
| 692 | void assign(in_iter in_start, in_iter in_end) { |
| 693 | this->assertSafeToReferenceAfterClear(in_start, in_end); |
| 694 | clear(); |
| 695 | append(in_start, in_end); |
| 696 | } |
| 697 | |
| 698 | void assign(std::initializer_list<T> IL) { |
| 699 | clear(); |
| 700 | append(IL); |
| 701 | } |
| 702 | |
| 703 | void assign(const SmallVectorImpl &RHS) { assign(RHS.begin(), RHS.end()); } |
| 704 | |
| 705 | iterator erase(const_iterator CI) { |
| 706 | // Just cast away constness because this is a non-const member function. |
| 707 | iterator I = const_cast<iterator>(CI); |
| 708 | |
| 709 | assert(this->isReferenceToStorage(CI) && "Iterator to erase is out of bounds.")((void)0); |
| 710 | |
| 711 | iterator N = I; |
| 712 | // Shift all elts down one. |
| 713 | std::move(I+1, this->end(), I); |
| 714 | // Drop the last elt. |
| 715 | this->pop_back(); |
| 716 | return(N); |
| 717 | } |
| 718 | |
| 719 | iterator erase(const_iterator CS, const_iterator CE) { |
| 720 | // Just cast away constness because this is a non-const member function. |
| 721 | iterator S = const_cast<iterator>(CS); |
| 722 | iterator E = const_cast<iterator>(CE); |
| 723 | |
| 724 | assert(this->isRangeInStorage(S, E) && "Range to erase is out of bounds.")((void)0); |
| 725 | |
| 726 | iterator N = S; |
| 727 | // Shift all elts down. |
| 728 | iterator I = std::move(E, this->end(), S); |
| 729 | // Drop the last elts. |
| 730 | this->destroy_range(I, this->end()); |
| 731 | this->set_size(I - this->begin()); |
| 732 | return(N); |
| 733 | } |
| 734 | |
| 735 | private: |
| 736 | template <class ArgType> iterator insert_one_impl(iterator I, ArgType &&Elt) { |
| 737 | // Callers ensure that ArgType is derived from T. |
| 738 | static_assert( |
| 739 | std::is_same<std::remove_const_t<std::remove_reference_t<ArgType>>, |
| 740 | T>::value, |
| 741 | "ArgType must be derived from T!"); |
| 742 | |
| 743 | if (I == this->end()) { // Important special case for empty vector. |
| 744 | this->push_back(::std::forward<ArgType>(Elt)); |
| 745 | return this->end()-1; |
| 746 | } |
| 747 | |
| 748 | assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.")((void)0); |
| 749 | |
| 750 | // Grow if necessary. |
| 751 | size_t Index = I - this->begin(); |
| 752 | std::remove_reference_t<ArgType> *EltPtr = |
| 753 | this->reserveForParamAndGetAddress(Elt); |
| 754 | I = this->begin() + Index; |
| 755 | |
| 756 | ::new ((void*) this->end()) T(::std::move(this->back())); |
| 757 | // Push everything else over. |
| 758 | std::move_backward(I, this->end()-1, this->end()); |
| 759 | this->set_size(this->size() + 1); |
| 760 | |
| 761 | // If we just moved the element we're inserting, be sure to update |
| 762 | // the reference (never happens if TakesParamByValue). |
| 763 | static_assert(!TakesParamByValue || std::is_same<ArgType, T>::value, |
| 764 | "ArgType must be 'T' when taking by value!"); |
| 765 | if (!TakesParamByValue && this->isReferenceToRange(EltPtr, I, this->end())) |
| 766 | ++EltPtr; |
| 767 | |
| 768 | *I = ::std::forward<ArgType>(*EltPtr); |
| 769 | return I; |
| 770 | } |
| 771 | |
| 772 | public: |
| 773 | iterator insert(iterator I, T &&Elt) { |
| 774 | return insert_one_impl(I, this->forward_value_param(std::move(Elt))); |
| 775 | } |
| 776 | |
| 777 | iterator insert(iterator I, const T &Elt) { |
| 778 | return insert_one_impl(I, this->forward_value_param(Elt)); |
| 779 | } |
| 780 | |
| 781 | iterator insert(iterator I, size_type NumToInsert, ValueParamT Elt) { |
| 782 | // Convert iterator to elt# to avoid invalidating iterator when we reserve() |
| 783 | size_t InsertElt = I - this->begin(); |
| 784 | |
| 785 | if (I == this->end()) { // Important special case for empty vector. |
| 786 | append(NumToInsert, Elt); |
| 787 | return this->begin()+InsertElt; |
| 788 | } |
| 789 | |
| 790 | assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.")((void)0); |
| 791 | |
| 792 | // Ensure there is enough space, and get the (maybe updated) address of |
| 793 | // Elt. |
| 794 | const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumToInsert); |
| 795 | |
| 796 | // Uninvalidate the iterator. |
| 797 | I = this->begin()+InsertElt; |
| 798 | |
| 799 | // If there are more elements between the insertion point and the end of the |
| 800 | // range than there are being inserted, we can use a simple approach to |
| 801 | // insertion. Since we already reserved space, we know that this won't |
| 802 | // reallocate the vector. |
| 803 | if (size_t(this->end()-I) >= NumToInsert) { |
| 804 | T *OldEnd = this->end(); |
| 805 | append(std::move_iterator<iterator>(this->end() - NumToInsert), |
| 806 | std::move_iterator<iterator>(this->end())); |
| 807 | |
| 808 | // Copy the existing elements that get replaced. |
| 809 | std::move_backward(I, OldEnd-NumToInsert, OldEnd); |
| 810 | |
| 811 | // If we just moved the element we're inserting, be sure to update |
| 812 | // the reference (never happens if TakesParamByValue). |
| 813 | if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end()) |
| 814 | EltPtr += NumToInsert; |
| 815 | |
| 816 | std::fill_n(I, NumToInsert, *EltPtr); |
| 817 | return I; |
| 818 | } |
| 819 | |
| 820 | // Otherwise, we're inserting more elements than exist already, and we're |
| 821 | // not inserting at the end. |
| 822 | |
| 823 | // Move over the elements that we're about to overwrite. |
| 824 | T *OldEnd = this->end(); |
| 825 | this->set_size(this->size() + NumToInsert); |
| 826 | size_t NumOverwritten = OldEnd-I; |
| 827 | this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten); |
| 828 | |
| 829 | // If we just moved the element we're inserting, be sure to update |
| 830 | // the reference (never happens if TakesParamByValue). |
| 831 | if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end()) |
| 832 | EltPtr += NumToInsert; |
| 833 | |
| 834 | // Replace the overwritten part. |
| 835 | std::fill_n(I, NumOverwritten, *EltPtr); |
| 836 | |
| 837 | // Insert the non-overwritten middle part. |
| 838 | std::uninitialized_fill_n(OldEnd, NumToInsert - NumOverwritten, *EltPtr); |
| 839 | return I; |
| 840 | } |
| 841 | |
| 842 | template <typename ItTy, |
| 843 | typename = std::enable_if_t<std::is_convertible< |
| 844 | typename std::iterator_traits<ItTy>::iterator_category, |
| 845 | std::input_iterator_tag>::value>> |
| 846 | iterator insert(iterator I, ItTy From, ItTy To) { |
| 847 | // Convert iterator to elt# to avoid invalidating iterator when we reserve() |
| 848 | size_t InsertElt = I - this->begin(); |
| 849 | |
| 850 | if (I == this->end()) { // Important special case for empty vector. |
| 851 | append(From, To); |
| 852 | return this->begin()+InsertElt; |
| 853 | } |
| 854 | |
| 855 | assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.")((void)0); |
| 856 | |
| 857 | // Check that the reserve that follows doesn't invalidate the iterators. |
| 858 | this->assertSafeToAddRange(From, To); |
| 859 | |
| 860 | size_t NumToInsert = std::distance(From, To); |
| 861 | |
| 862 | // Ensure there is enough space. |
| 863 | reserve(this->size() + NumToInsert); |
| 864 | |
| 865 | // Uninvalidate the iterator. |
| 866 | I = this->begin()+InsertElt; |
| 867 | |
| 868 | // If there are more elements between the insertion point and the end of the |
| 869 | // range than there are being inserted, we can use a simple approach to |
| 870 | // insertion. Since we already reserved space, we know that this won't |
| 871 | // reallocate the vector. |
| 872 | if (size_t(this->end()-I) >= NumToInsert) { |
| 873 | T *OldEnd = this->end(); |
| 874 | append(std::move_iterator<iterator>(this->end() - NumToInsert), |
| 875 | std::move_iterator<iterator>(this->end())); |
| 876 | |
| 877 | // Copy the existing elements that get replaced. |
| 878 | std::move_backward(I, OldEnd-NumToInsert, OldEnd); |
| 879 | |
| 880 | std::copy(From, To, I); |
| 881 | return I; |
| 882 | } |
| 883 | |
| 884 | // Otherwise, we're inserting more elements than exist already, and we're |
| 885 | // not inserting at the end. |
| 886 | |
| 887 | // Move over the elements that we're about to overwrite. |
| 888 | T *OldEnd = this->end(); |
| 889 | this->set_size(this->size() + NumToInsert); |
| 890 | size_t NumOverwritten = OldEnd-I; |
| 891 | this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten); |
| 892 | |
| 893 | // Replace the overwritten part. |
| 894 | for (T *J = I; NumOverwritten > 0; --NumOverwritten) { |
| 895 | *J = *From; |
| 896 | ++J; ++From; |
| 897 | } |
| 898 | |
| 899 | // Insert the non-overwritten middle part. |
| 900 | this->uninitialized_copy(From, To, OldEnd); |
| 901 | return I; |
| 902 | } |
| 903 | |
| 904 | void insert(iterator I, std::initializer_list<T> IL) { |
| 905 | insert(I, IL.begin(), IL.end()); |
| 906 | } |
| 907 | |
| 908 | template <typename... ArgTypes> reference emplace_back(ArgTypes &&... Args) { |
| 909 | if (LLVM_UNLIKELY(this->size() >= this->capacity())__builtin_expect((bool)(this->size() >= this->capacity ()), false)) |
| 910 | return this->growAndEmplaceBack(std::forward<ArgTypes>(Args)...); |
| 911 | |
| 912 | ::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...); |
| 913 | this->set_size(this->size() + 1); |
| 914 | return this->back(); |
| 915 | } |
| 916 | |
| 917 | SmallVectorImpl &operator=(const SmallVectorImpl &RHS); |
| 918 | |
| 919 | SmallVectorImpl &operator=(SmallVectorImpl &&RHS); |
| 920 | |
| 921 | bool operator==(const SmallVectorImpl &RHS) const { |
| 922 | if (this->size() != RHS.size()) return false; |
| 923 | return std::equal(this->begin(), this->end(), RHS.begin()); |
| 924 | } |
| 925 | bool operator!=(const SmallVectorImpl &RHS) const { |
| 926 | return !(*this == RHS); |
| 927 | } |
| 928 | |
| 929 | bool operator<(const SmallVectorImpl &RHS) const { |
| 930 | return std::lexicographical_compare(this->begin(), this->end(), |
| 931 | RHS.begin(), RHS.end()); |
| 932 | } |
| 933 | }; |
| 934 | |
| 935 | template <typename T> |
| 936 | void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) { |
| 937 | if (this == &RHS) return; |
| 938 | |
| 939 | // We can only avoid copying elements if neither vector is small. |
| 940 | if (!this->isSmall() && !RHS.isSmall()) { |
| 941 | std::swap(this->BeginX, RHS.BeginX); |
| 942 | std::swap(this->Size, RHS.Size); |
| 943 | std::swap(this->Capacity, RHS.Capacity); |
| 944 | return; |
| 945 | } |
| 946 | this->reserve(RHS.size()); |
| 947 | RHS.reserve(this->size()); |
| 948 | |
| 949 | // Swap the shared elements. |
| 950 | size_t NumShared = this->size(); |
| 951 | if (NumShared > RHS.size()) NumShared = RHS.size(); |
| 952 | for (size_type i = 0; i != NumShared; ++i) |
| 953 | std::swap((*this)[i], RHS[i]); |
| 954 | |
| 955 | // Copy over the extra elts. |
| 956 | if (this->size() > RHS.size()) { |
| 957 | size_t EltDiff = this->size() - RHS.size(); |
| 958 | this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end()); |
| 959 | RHS.set_size(RHS.size() + EltDiff); |
| 960 | this->destroy_range(this->begin()+NumShared, this->end()); |
| 961 | this->set_size(NumShared); |
| 962 | } else if (RHS.size() > this->size()) { |
| 963 | size_t EltDiff = RHS.size() - this->size(); |
| 964 | this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end()); |
| 965 | this->set_size(this->size() + EltDiff); |
| 966 | this->destroy_range(RHS.begin()+NumShared, RHS.end()); |
| 967 | RHS.set_size(NumShared); |
| 968 | } |
| 969 | } |
| 970 | |
| 971 | template <typename T> |
| 972 | SmallVectorImpl<T> &SmallVectorImpl<T>:: |
| 973 | operator=(const SmallVectorImpl<T> &RHS) { |
| 974 | // Avoid self-assignment. |
| 975 | if (this == &RHS) return *this; |
| 976 | |
| 977 | // If we already have sufficient space, assign the common elements, then |
| 978 | // destroy any excess. |
| 979 | size_t RHSSize = RHS.size(); |
| 980 | size_t CurSize = this->size(); |
| 981 | if (CurSize >= RHSSize) { |
| 982 | // Assign common elements. |
| 983 | iterator NewEnd; |
| 984 | if (RHSSize) |
| 985 | NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin()); |
| 986 | else |
| 987 | NewEnd = this->begin(); |
| 988 | |
| 989 | // Destroy excess elements. |
| 990 | this->destroy_range(NewEnd, this->end()); |
| 991 | |
| 992 | // Trim. |
| 993 | this->set_size(RHSSize); |
| 994 | return *this; |
| 995 | } |
| 996 | |
| 997 | // If we have to grow to have enough elements, destroy the current elements. |
| 998 | // This allows us to avoid copying them during the grow. |
| 999 | // FIXME: don't do this if they're efficiently moveable. |
| 1000 | if (this->capacity() < RHSSize) { |
| 1001 | // Destroy current elements. |
| 1002 | this->clear(); |
| 1003 | CurSize = 0; |
| 1004 | this->grow(RHSSize); |
| 1005 | } else if (CurSize) { |
| 1006 | // Otherwise, use assignment for the already-constructed elements. |
| 1007 | std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin()); |
| 1008 | } |
| 1009 | |
| 1010 | // Copy construct the new elements in place. |
| 1011 | this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(), |
| 1012 | this->begin()+CurSize); |
| 1013 | |
| 1014 | // Set end. |
| 1015 | this->set_size(RHSSize); |
| 1016 | return *this; |
| 1017 | } |
| 1018 | |
| 1019 | template <typename T> |
| 1020 | SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) { |
| 1021 | // Avoid self-assignment. |
| 1022 | if (this == &RHS) return *this; |
| 1023 | |
| 1024 | // If the RHS isn't small, clear this vector and then steal its buffer. |
| 1025 | if (!RHS.isSmall()) { |
| 1026 | this->destroy_range(this->begin(), this->end()); |
| 1027 | if (!this->isSmall()) free(this->begin()); |
| 1028 | this->BeginX = RHS.BeginX; |
| 1029 | this->Size = RHS.Size; |
| 1030 | this->Capacity = RHS.Capacity; |
| 1031 | RHS.resetToSmall(); |
| 1032 | return *this; |
| 1033 | } |
| 1034 | |
| 1035 | // If we already have sufficient space, assign the common elements, then |
| 1036 | // destroy any excess. |
| 1037 | size_t RHSSize = RHS.size(); |
| 1038 | size_t CurSize = this->size(); |
| 1039 | if (CurSize >= RHSSize) { |
| 1040 | // Assign common elements. |
| 1041 | iterator NewEnd = this->begin(); |
| 1042 | if (RHSSize) |
| 1043 | NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd); |
| 1044 | |
| 1045 | // Destroy excess elements and trim the bounds. |
| 1046 | this->destroy_range(NewEnd, this->end()); |
| 1047 | this->set_size(RHSSize); |
| 1048 | |
| 1049 | // Clear the RHS. |
| 1050 | RHS.clear(); |
| 1051 | |
| 1052 | return *this; |
| 1053 | } |
| 1054 | |
| 1055 | // If we have to grow to have enough elements, destroy the current elements. |
| 1056 | // This allows us to avoid copying them during the grow. |
| 1057 | // FIXME: this may not actually make any sense if we can efficiently move |
| 1058 | // elements. |
| 1059 | if (this->capacity() < RHSSize) { |
| 1060 | // Destroy current elements. |
| 1061 | this->clear(); |
| 1062 | CurSize = 0; |
| 1063 | this->grow(RHSSize); |
| 1064 | } else if (CurSize) { |
| 1065 | // Otherwise, use assignment for the already-constructed elements. |
| 1066 | std::move(RHS.begin(), RHS.begin()+CurSize, this->begin()); |
| 1067 | } |
| 1068 | |
| 1069 | // Move-construct the new elements in place. |
| 1070 | this->uninitialized_move(RHS.begin()+CurSize, RHS.end(), |
| 1071 | this->begin()+CurSize); |
| 1072 | |
| 1073 | // Set end. |
| 1074 | this->set_size(RHSSize); |
| 1075 | |
| 1076 | RHS.clear(); |
| 1077 | return *this; |
| 1078 | } |
| 1079 | |
| 1080 | /// Storage for the SmallVector elements. This is specialized for the N=0 case |
| 1081 | /// to avoid allocating unnecessary storage. |
| 1082 | template <typename T, unsigned N> |
| 1083 | struct SmallVectorStorage { |
| 1084 | alignas(T) char InlineElts[N * sizeof(T)]; |
| 1085 | }; |
| 1086 | |
| 1087 | /// We need the storage to be properly aligned even for small-size of 0 so that |
| 1088 | /// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is |
| 1089 | /// well-defined. |
| 1090 | template <typename T> struct alignas(T) SmallVectorStorage<T, 0> {}; |
| 1091 | |
| 1092 | /// Forward declaration of SmallVector so that |
| 1093 | /// calculateSmallVectorDefaultInlinedElements can reference |
| 1094 | /// `sizeof(SmallVector<T, 0>)`. |
| 1095 | template <typename T, unsigned N> class LLVM_GSL_OWNER[[gsl::Owner]] SmallVector; |
| 1096 | |
| 1097 | /// Helper class for calculating the default number of inline elements for |
| 1098 | /// `SmallVector<T>`. |
| 1099 | /// |
| 1100 | /// This should be migrated to a constexpr function when our minimum |
| 1101 | /// compiler support is enough for multi-statement constexpr functions. |
| 1102 | template <typename T> struct CalculateSmallVectorDefaultInlinedElements { |
| 1103 | // Parameter controlling the default number of inlined elements |
| 1104 | // for `SmallVector<T>`. |
| 1105 | // |
| 1106 | // The default number of inlined elements ensures that |
| 1107 | // 1. There is at least one inlined element. |
| 1108 | // 2. `sizeof(SmallVector<T>) <= kPreferredSmallVectorSizeof` unless |
| 1109 | // it contradicts 1. |
| 1110 | static constexpr size_t kPreferredSmallVectorSizeof = 64; |
| 1111 | |
| 1112 | // static_assert that sizeof(T) is not "too big". |
| 1113 | // |
| 1114 | // Because our policy guarantees at least one inlined element, it is possible |
| 1115 | // for an arbitrarily large inlined element to allocate an arbitrarily large |
| 1116 | // amount of inline storage. We generally consider it an antipattern for a |
| 1117 | // SmallVector to allocate an excessive amount of inline storage, so we want |
| 1118 | // to call attention to these cases and make sure that users are making an |
| 1119 | // intentional decision if they request a lot of inline storage. |
| 1120 | // |
| 1121 | // We want this assertion to trigger in pathological cases, but otherwise |
| 1122 | // not be too easy to hit. To accomplish that, the cutoff is actually somewhat |
| 1123 | // larger than kPreferredSmallVectorSizeof (otherwise, |
| 1124 | // `SmallVector<SmallVector<T>>` would be one easy way to trip it, and that |
| 1125 | // pattern seems useful in practice). |
| 1126 | // |
| 1127 | // One wrinkle is that this assertion is in theory non-portable, since |
| 1128 | // sizeof(T) is in general platform-dependent. However, we don't expect this |
| 1129 | // to be much of an issue, because most LLVM development happens on 64-bit |
| 1130 | // hosts, and therefore sizeof(T) is expected to *decrease* when compiled for |
| 1131 | // 32-bit hosts, dodging the issue. The reverse situation, where development |
| 1132 | // happens on a 32-bit host and then fails due to sizeof(T) *increasing* on a |
| 1133 | // 64-bit host, is expected to be very rare. |
| 1134 | static_assert( |
| 1135 | sizeof(T) <= 256, |
| 1136 | "You are trying to use a default number of inlined elements for " |
| 1137 | "`SmallVector<T>` but `sizeof(T)` is really big! Please use an " |
| 1138 | "explicit number of inlined elements with `SmallVector<T, N>` to make " |
| 1139 | "sure you really want that much inline storage."); |
| 1140 | |
| 1141 | // Discount the size of the header itself when calculating the maximum inline |
| 1142 | // bytes. |
| 1143 | static constexpr size_t PreferredInlineBytes = |
| 1144 | kPreferredSmallVectorSizeof - sizeof(SmallVector<T, 0>); |
| 1145 | static constexpr size_t NumElementsThatFit = PreferredInlineBytes / sizeof(T); |
| 1146 | static constexpr size_t value = |
| 1147 | NumElementsThatFit == 0 ? 1 : NumElementsThatFit; |
| 1148 | }; |
| 1149 | |
| 1150 | /// This is a 'vector' (really, a variable-sized array), optimized |
| 1151 | /// for the case when the array is small. It contains some number of elements |
| 1152 | /// in-place, which allows it to avoid heap allocation when the actual number of |
| 1153 | /// elements is below that threshold. This allows normal "small" cases to be |
| 1154 | /// fast without losing generality for large inputs. |
| 1155 | /// |
| 1156 | /// \note |
| 1157 | /// In the absence of a well-motivated choice for the number of inlined |
| 1158 | /// elements \p N, it is recommended to use \c SmallVector<T> (that is, |
| 1159 | /// omitting the \p N). This will choose a default number of inlined elements |
| 1160 | /// reasonable for allocation on the stack (for example, trying to keep \c |
| 1161 | /// sizeof(SmallVector<T>) around 64 bytes). |
| 1162 | /// |
| 1163 | /// \warning This does not attempt to be exception safe. |
| 1164 | /// |
| 1165 | /// \see https://llvm.org/docs/ProgrammersManual.html#llvm-adt-smallvector-h |
| 1166 | template <typename T, |
| 1167 | unsigned N = CalculateSmallVectorDefaultInlinedElements<T>::value> |
| 1168 | class LLVM_GSL_OWNER[[gsl::Owner]] SmallVector : public SmallVectorImpl<T>, |
| 1169 | SmallVectorStorage<T, N> { |
| 1170 | public: |
| 1171 | SmallVector() : SmallVectorImpl<T>(N) {} |
| 1172 | |
| 1173 | ~SmallVector() { |
| 1174 | // Destroy the constructed elements in the vector. |
| 1175 | this->destroy_range(this->begin(), this->end()); |
| 1176 | } |
| 1177 | |
| 1178 | explicit SmallVector(size_t Size, const T &Value = T()) |
| 1179 | : SmallVectorImpl<T>(N) { |
| 1180 | this->assign(Size, Value); |
| 1181 | } |
| 1182 | |
| 1183 | template <typename ItTy, |
| 1184 | typename = std::enable_if_t<std::is_convertible< |
| 1185 | typename std::iterator_traits<ItTy>::iterator_category, |
| 1186 | std::input_iterator_tag>::value>> |
| 1187 | SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) { |
| 1188 | this->append(S, E); |
| 1189 | } |
| 1190 | |
| 1191 | template <typename RangeTy> |
| 1192 | explicit SmallVector(const iterator_range<RangeTy> &R) |
| 1193 | : SmallVectorImpl<T>(N) { |
| 1194 | this->append(R.begin(), R.end()); |
| 1195 | } |
| 1196 | |
| 1197 | SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) { |
| 1198 | this->assign(IL); |
| 1199 | } |
| 1200 | |
| 1201 | SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) { |
| 1202 | if (!RHS.empty()) |
| 1203 | SmallVectorImpl<T>::operator=(RHS); |
| 1204 | } |
| 1205 | |
| 1206 | SmallVector &operator=(const SmallVector &RHS) { |
| 1207 | SmallVectorImpl<T>::operator=(RHS); |
| 1208 | return *this; |
| 1209 | } |
| 1210 | |
| 1211 | SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) { |
| 1212 | if (!RHS.empty()) |
| 1213 | SmallVectorImpl<T>::operator=(::std::move(RHS)); |
| 1214 | } |
| 1215 | |
| 1216 | SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) { |
| 1217 | if (!RHS.empty()) |
| 1218 | SmallVectorImpl<T>::operator=(::std::move(RHS)); |
| 1219 | } |
| 1220 | |
| 1221 | SmallVector &operator=(SmallVector &&RHS) { |
| 1222 | SmallVectorImpl<T>::operator=(::std::move(RHS)); |
| 1223 | return *this; |
| 1224 | } |
| 1225 | |
| 1226 | SmallVector &operator=(SmallVectorImpl<T> &&RHS) { |
| 1227 | SmallVectorImpl<T>::operator=(::std::move(RHS)); |
| 1228 | return *this; |
| 1229 | } |
| 1230 | |
| 1231 | SmallVector &operator=(std::initializer_list<T> IL) { |
| 1232 | this->assign(IL); |
| 1233 | return *this; |
| 1234 | } |
| 1235 | }; |
| 1236 | |
| 1237 | template <typename T, unsigned N> |
| 1238 | inline size_t capacity_in_bytes(const SmallVector<T, N> &X) { |
| 1239 | return X.capacity_in_bytes(); |
| 1240 | } |
| 1241 | |
| 1242 | /// Given a range of type R, iterate the entire range and return a |
| 1243 | /// SmallVector with elements of the vector. This is useful, for example, |
| 1244 | /// when you want to iterate a range and then sort the results. |
| 1245 | template <unsigned Size, typename R> |
| 1246 | SmallVector<typename std::remove_const<typename std::remove_reference< |
| 1247 | decltype(*std::begin(std::declval<R &>()))>::type>::type, |
| 1248 | Size> |
| 1249 | to_vector(R &&Range) { |
| 1250 | return {std::begin(Range), std::end(Range)}; |
| 1251 | } |
| 1252 | |
| 1253 | } // end namespace llvm |
| 1254 | |
| 1255 | namespace std { |
| 1256 | |
| 1257 | /// Implement std::swap in terms of SmallVector swap. |
| 1258 | template<typename T> |
| 1259 | inline void |
| 1260 | swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) { |
| 1261 | LHS.swap(RHS); |
| 1262 | } |
| 1263 | |
| 1264 | /// Implement std::swap in terms of SmallVector swap. |
| 1265 | template<typename T, unsigned N> |
| 1266 | inline void |
| 1267 | swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) { |
| 1268 | LHS.swap(RHS); |
| 1269 | } |
| 1270 | |
| 1271 | } // end namespace std |
| 1272 | |
| 1273 | #endif // LLVM_ADT_SMALLVECTOR_H |