| File: | src/gnu/usr.bin/binutils-2.17/bfd/elflink.c |
| Warning: | line 5470, column 15 Assigned value is garbage or undefined |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* ELF linking support for BFD. | |||
| 2 | Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, | |||
| 3 | 2005, 2006 Free Software Foundation, Inc. | |||
| 4 | ||||
| 5 | This file is part of BFD, the Binary File Descriptor library. | |||
| 6 | ||||
| 7 | This program is free software; you can redistribute it and/or modify | |||
| 8 | it under the terms of the GNU General Public License as published by | |||
| 9 | the Free Software Foundation; either version 2 of the License, or | |||
| 10 | (at your option) any later version. | |||
| 11 | ||||
| 12 | This program is distributed in the hope that it will be useful, | |||
| 13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |||
| 14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |||
| 15 | GNU General Public License for more details. | |||
| 16 | ||||
| 17 | You should have received a copy of the GNU General Public License | |||
| 18 | along with this program; if not, write to the Free Software | |||
| 19 | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ | |||
| 20 | ||||
| 21 | #include "bfd.h" | |||
| 22 | #include "sysdep.h" | |||
| 23 | #include "bfdlink.h" | |||
| 24 | #include "libbfd.h" | |||
| 25 | #define ARCH_SIZE0 0 | |||
| 26 | #include "elf-bfd.h" | |||
| 27 | #include "safe-ctype.h" | |||
| 28 | #include "libiberty.h" | |||
| 29 | #include "objalloc.h" | |||
| 30 | ||||
| 31 | /* Define a symbol in a dynamic linkage section. */ | |||
| 32 | ||||
| 33 | struct elf_link_hash_entry * | |||
| 34 | _bfd_elf_define_linkage_sym (bfd *abfd, | |||
| 35 | struct bfd_link_info *info, | |||
| 36 | asection *sec, | |||
| 37 | const char *name) | |||
| 38 | { | |||
| 39 | struct elf_link_hash_entry *h; | |||
| 40 | struct bfd_link_hash_entry *bh; | |||
| 41 | const struct elf_backend_data *bed; | |||
| 42 | ||||
| 43 | h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE)((struct elf_link_hash_entry *) bfd_link_hash_lookup (&(( (struct elf_link_hash_table *) ((info)->hash)))->root, ( name), (0), (0), (0))); | |||
| 44 | if (h != NULL((void*)0)) | |||
| 45 | { | |||
| 46 | /* Zap symbol defined in an as-needed lib that wasn't linked. | |||
| 47 | This is a symptom of a larger problem: Absolute symbols | |||
| 48 | defined in shared libraries can't be overridden, because we | |||
| 49 | lose the link to the bfd which is via the symbol section. */ | |||
| 50 | h->root.type = bfd_link_hash_new; | |||
| 51 | } | |||
| 52 | ||||
| 53 | bh = &h->root; | |||
| 54 | if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL0x02, | |||
| 55 | sec, 0, NULL((void*)0), FALSE0, | |||
| 56 | get_elf_backend_data (abfd)((const struct elf_backend_data *) (abfd)->xvec->backend_data )->collect, | |||
| 57 | &bh)) | |||
| 58 | return NULL((void*)0); | |||
| 59 | h = (struct elf_link_hash_entry *) bh; | |||
| 60 | h->def_regular = 1; | |||
| 61 | h->type = STT_OBJECT1; | |||
| 62 | h->other = (h->other & ~ELF_ST_VISIBILITY (-1)((-1) & 0x3)) | STV_HIDDEN2; | |||
| 63 | ||||
| 64 | bed = get_elf_backend_data (abfd)((const struct elf_backend_data *) (abfd)->xvec->backend_data ); | |||
| 65 | (*bed->elf_backend_hide_symbol) (info, h, TRUE1); | |||
| 66 | return h; | |||
| 67 | } | |||
| 68 | ||||
| 69 | bfd_boolean | |||
| 70 | _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info) | |||
| 71 | { | |||
| 72 | flagword flags; | |||
| 73 | asection *s; | |||
| 74 | struct elf_link_hash_entry *h; | |||
| 75 | const struct elf_backend_data *bed = get_elf_backend_data (abfd)((const struct elf_backend_data *) (abfd)->xvec->backend_data ); | |||
| 76 | int ptralign; | |||
| 77 | ||||
| 78 | /* This function may be called more than once. */ | |||
| 79 | s = bfd_get_section_by_name (abfd, ".got"); | |||
| 80 | if (s != NULL((void*)0) && (s->flags & SEC_LINKER_CREATED0x200000) != 0) | |||
| 81 | return TRUE1; | |||
| 82 | ||||
| 83 | switch (bed->s->arch_size) | |||
| 84 | { | |||
| 85 | case 32: | |||
| 86 | ptralign = 2; | |||
| 87 | break; | |||
| 88 | ||||
| 89 | case 64: | |||
| 90 | ptralign = 3; | |||
| 91 | break; | |||
| 92 | ||||
| 93 | default: | |||
| 94 | bfd_set_error (bfd_error_bad_value); | |||
| 95 | return FALSE0; | |||
| 96 | } | |||
| 97 | ||||
| 98 | flags = bed->dynamic_sec_flags; | |||
| 99 | ||||
| 100 | s = bfd_make_section_with_flags (abfd, ".got", flags); | |||
| 101 | if (s == NULL((void*)0) | |||
| 102 | || !bfd_set_section_alignment (abfd, s, ptralign)(((s)->alignment_power = (ptralign)),1)) | |||
| 103 | return FALSE0; | |||
| 104 | ||||
| 105 | if (bed->want_got_plt) | |||
| 106 | { | |||
| 107 | s = bfd_make_section_with_flags (abfd, ".got.plt", flags); | |||
| 108 | if (s == NULL((void*)0) | |||
| 109 | || !bfd_set_section_alignment (abfd, s, ptralign)(((s)->alignment_power = (ptralign)),1)) | |||
| 110 | return FALSE0; | |||
| 111 | } | |||
| 112 | ||||
| 113 | if (bed->want_got_sym) | |||
| 114 | { | |||
| 115 | /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got | |||
| 116 | (or .got.plt) section. We don't do this in the linker script | |||
| 117 | because we don't want to define the symbol if we are not creating | |||
| 118 | a global offset table. */ | |||
| 119 | h = _bfd_elf_define_linkage_sym (abfd, info, s, "_GLOBAL_OFFSET_TABLE_"); | |||
| 120 | elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->hgot = h; | |||
| 121 | if (h == NULL((void*)0)) | |||
| 122 | return FALSE0; | |||
| 123 | } | |||
| 124 | ||||
| 125 | /* The first bit of the global offset table is the header. */ | |||
| 126 | s->size += bed->got_header_size; | |||
| 127 | ||||
| 128 | return TRUE1; | |||
| 129 | } | |||
| 130 | ||||
| 131 | /* Create a strtab to hold the dynamic symbol names. */ | |||
| 132 | static bfd_boolean | |||
| 133 | _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info) | |||
| 134 | { | |||
| 135 | struct elf_link_hash_table *hash_table; | |||
| 136 | ||||
| 137 | hash_table = elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash)); | |||
| 138 | if (hash_table->dynobj == NULL((void*)0)) | |||
| 139 | hash_table->dynobj = abfd; | |||
| 140 | ||||
| 141 | if (hash_table->dynstr == NULL((void*)0)) | |||
| 142 | { | |||
| 143 | hash_table->dynstr = _bfd_elf_strtab_init (); | |||
| 144 | if (hash_table->dynstr == NULL((void*)0)) | |||
| 145 | return FALSE0; | |||
| 146 | } | |||
| 147 | return TRUE1; | |||
| 148 | } | |||
| 149 | ||||
| 150 | /* Create some sections which will be filled in with dynamic linking | |||
| 151 | information. ABFD is an input file which requires dynamic sections | |||
| 152 | to be created. The dynamic sections take up virtual memory space | |||
| 153 | when the final executable is run, so we need to create them before | |||
| 154 | addresses are assigned to the output sections. We work out the | |||
| 155 | actual contents and size of these sections later. */ | |||
| 156 | ||||
| 157 | bfd_boolean | |||
| 158 | _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) | |||
| 159 | { | |||
| 160 | flagword flags; | |||
| 161 | register asection *s; | |||
| 162 | const struct elf_backend_data *bed; | |||
| 163 | ||||
| 164 | if (! is_elf_hash_table (info->hash)(((struct bfd_link_hash_table *) (info->hash))->type == bfd_link_elf_hash_table)) | |||
| 165 | return FALSE0; | |||
| 166 | ||||
| 167 | if (elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynamic_sections_created) | |||
| 168 | return TRUE1; | |||
| 169 | ||||
| 170 | if (!_bfd_elf_link_create_dynstrtab (abfd, info)) | |||
| 171 | return FALSE0; | |||
| 172 | ||||
| 173 | abfd = elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynobj; | |||
| 174 | bed = get_elf_backend_data (abfd)((const struct elf_backend_data *) (abfd)->xvec->backend_data ); | |||
| 175 | ||||
| 176 | flags = bed->dynamic_sec_flags; | |||
| 177 | ||||
| 178 | /* A dynamically linked executable has a .interp section, but a | |||
| 179 | shared library does not. */ | |||
| 180 | if (info->executable && !info->static_link) | |||
| 181 | { | |||
| 182 | s = bfd_make_section_with_flags (abfd, ".interp", | |||
| 183 | flags | SEC_READONLY0x008); | |||
| 184 | if (s == NULL((void*)0)) | |||
| 185 | return FALSE0; | |||
| 186 | } | |||
| 187 | ||||
| 188 | if (! info->traditional_format) | |||
| 189 | { | |||
| 190 | s = bfd_make_section_with_flags (abfd, ".eh_frame_hdr", | |||
| 191 | flags | SEC_READONLY0x008); | |||
| 192 | if (s == NULL((void*)0) | |||
| 193 | || ! bfd_set_section_alignment (abfd, s, 2)(((s)->alignment_power = (2)),1)) | |||
| 194 | return FALSE0; | |||
| 195 | elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->eh_info.hdr_sec = s; | |||
| 196 | } | |||
| 197 | ||||
| 198 | /* Create sections to hold version informations. These are removed | |||
| 199 | if they are not needed. */ | |||
| 200 | s = bfd_make_section_with_flags (abfd, ".gnu.version_d", | |||
| 201 | flags | SEC_READONLY0x008); | |||
| 202 | if (s == NULL((void*)0) | |||
| 203 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)(((s)->alignment_power = (bed->s->log_file_align)),1 )) | |||
| 204 | return FALSE0; | |||
| 205 | ||||
| 206 | s = bfd_make_section_with_flags (abfd, ".gnu.version", | |||
| 207 | flags | SEC_READONLY0x008); | |||
| 208 | if (s == NULL((void*)0) | |||
| 209 | || ! bfd_set_section_alignment (abfd, s, 1)(((s)->alignment_power = (1)),1)) | |||
| 210 | return FALSE0; | |||
| 211 | ||||
| 212 | s = bfd_make_section_with_flags (abfd, ".gnu.version_r", | |||
| 213 | flags | SEC_READONLY0x008); | |||
| 214 | if (s == NULL((void*)0) | |||
| 215 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)(((s)->alignment_power = (bed->s->log_file_align)),1 )) | |||
| 216 | return FALSE0; | |||
| 217 | ||||
| 218 | s = bfd_make_section_with_flags (abfd, ".dynsym", | |||
| 219 | flags | SEC_READONLY0x008); | |||
| 220 | if (s == NULL((void*)0) | |||
| 221 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)(((s)->alignment_power = (bed->s->log_file_align)),1 )) | |||
| 222 | return FALSE0; | |||
| 223 | ||||
| 224 | s = bfd_make_section_with_flags (abfd, ".dynstr", | |||
| 225 | flags | SEC_READONLY0x008); | |||
| 226 | if (s == NULL((void*)0)) | |||
| 227 | return FALSE0; | |||
| 228 | ||||
| 229 | s = bfd_make_section_with_flags (abfd, ".dynamic", flags); | |||
| 230 | if (s == NULL((void*)0) | |||
| 231 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)(((s)->alignment_power = (bed->s->log_file_align)),1 )) | |||
| 232 | return FALSE0; | |||
| 233 | ||||
| 234 | /* The special symbol _DYNAMIC is always set to the start of the | |||
| 235 | .dynamic section. We could set _DYNAMIC in a linker script, but we | |||
| 236 | only want to define it if we are, in fact, creating a .dynamic | |||
| 237 | section. We don't want to define it if there is no .dynamic | |||
| 238 | section, since on some ELF platforms the start up code examines it | |||
| 239 | to decide how to initialize the process. */ | |||
| 240 | if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC")) | |||
| 241 | return FALSE0; | |||
| 242 | ||||
| 243 | if (info->emit_hash) | |||
| 244 | { | |||
| 245 | s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY0x008); | |||
| 246 | if (s == NULL((void*)0) | |||
| 247 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)(((s)->alignment_power = (bed->s->log_file_align)),1 )) | |||
| 248 | return FALSE0; | |||
| 249 | elf_section_data (s)((struct bfd_elf_section_data*)(s)->used_by_bfd)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry; | |||
| 250 | } | |||
| 251 | ||||
| 252 | if (info->emit_gnu_hash) | |||
| 253 | { | |||
| 254 | s = bfd_make_section_with_flags (abfd, ".gnu.hash", | |||
| 255 | flags | SEC_READONLY0x008); | |||
| 256 | if (s == NULL((void*)0) | |||
| 257 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)(((s)->alignment_power = (bed->s->log_file_align)),1 )) | |||
| 258 | return FALSE0; | |||
| 259 | /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section: | |||
| 260 | 4 32-bit words followed by variable count of 64-bit words, then | |||
| 261 | variable count of 32-bit words. */ | |||
| 262 | if (bed->s->arch_size == 64) | |||
| 263 | elf_section_data (s)((struct bfd_elf_section_data*)(s)->used_by_bfd)->this_hdr.sh_entsize = 0; | |||
| 264 | else | |||
| 265 | elf_section_data (s)((struct bfd_elf_section_data*)(s)->used_by_bfd)->this_hdr.sh_entsize = 4; | |||
| 266 | } | |||
| 267 | ||||
| 268 | /* Let the backend create the rest of the sections. This lets the | |||
| 269 | backend set the right flags. The backend will normally create | |||
| 270 | the .got and .plt sections. */ | |||
| 271 | if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info)) | |||
| 272 | return FALSE0; | |||
| 273 | ||||
| 274 | elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynamic_sections_created = TRUE1; | |||
| 275 | ||||
| 276 | return TRUE1; | |||
| 277 | } | |||
| 278 | ||||
| 279 | /* Create dynamic sections when linking against a dynamic object. */ | |||
| 280 | ||||
| 281 | bfd_boolean | |||
| 282 | _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) | |||
| 283 | { | |||
| 284 | flagword flags, pltflags; | |||
| 285 | struct elf_link_hash_entry *h; | |||
| 286 | asection *s; | |||
| 287 | const struct elf_backend_data *bed = get_elf_backend_data (abfd)((const struct elf_backend_data *) (abfd)->xvec->backend_data ); | |||
| 288 | ||||
| 289 | /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and | |||
| 290 | .rel[a].bss sections. */ | |||
| 291 | flags = bed->dynamic_sec_flags; | |||
| 292 | ||||
| 293 | pltflags = flags; | |||
| 294 | if (bed->plt_not_loaded) | |||
| 295 | /* We do not clear SEC_ALLOC here because we still want the OS to | |||
| 296 | allocate space for the section; it's just that there's nothing | |||
| 297 | to read in from the object file. */ | |||
| 298 | pltflags &= ~ (SEC_CODE0x010 | SEC_LOAD0x002 | SEC_HAS_CONTENTS0x100); | |||
| 299 | else | |||
| 300 | pltflags |= SEC_ALLOC0x001 | SEC_CODE0x010 | SEC_LOAD0x002; | |||
| 301 | if (bed->plt_readonly) | |||
| 302 | pltflags |= SEC_READONLY0x008; | |||
| 303 | ||||
| 304 | s = bfd_make_section_with_flags (abfd, ".plt", pltflags); | |||
| 305 | if (s == NULL((void*)0) | |||
| 306 | || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment)(((s)->alignment_power = (bed->plt_alignment)),1)) | |||
| 307 | return FALSE0; | |||
| 308 | ||||
| 309 | /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the | |||
| 310 | .plt section. */ | |||
| 311 | if (bed->want_plt_sym) | |||
| 312 | { | |||
| 313 | h = _bfd_elf_define_linkage_sym (abfd, info, s, | |||
| 314 | "_PROCEDURE_LINKAGE_TABLE_"); | |||
| 315 | elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->hplt = h; | |||
| 316 | if (h == NULL((void*)0)) | |||
| 317 | return FALSE0; | |||
| 318 | } | |||
| 319 | ||||
| 320 | s = bfd_make_section_with_flags (abfd, | |||
| 321 | (bed->default_use_rela_p | |||
| 322 | ? ".rela.plt" : ".rel.plt"), | |||
| 323 | flags | SEC_READONLY0x008); | |||
| 324 | if (s == NULL((void*)0) | |||
| 325 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)(((s)->alignment_power = (bed->s->log_file_align)),1 )) | |||
| 326 | return FALSE0; | |||
| 327 | ||||
| 328 | if (! _bfd_elf_create_got_section (abfd, info)) | |||
| 329 | return FALSE0; | |||
| 330 | ||||
| 331 | if (bed->want_dynbss) | |||
| 332 | { | |||
| 333 | /* The .dynbss section is a place to put symbols which are defined | |||
| 334 | by dynamic objects, are referenced by regular objects, and are | |||
| 335 | not functions. We must allocate space for them in the process | |||
| 336 | image and use a R_*_COPY reloc to tell the dynamic linker to | |||
| 337 | initialize them at run time. The linker script puts the .dynbss | |||
| 338 | section into the .bss section of the final image. */ | |||
| 339 | s = bfd_make_section_with_flags (abfd, ".dynbss", | |||
| 340 | (SEC_ALLOC0x001 | |||
| 341 | | SEC_LINKER_CREATED0x200000)); | |||
| 342 | if (s == NULL((void*)0)) | |||
| 343 | return FALSE0; | |||
| 344 | ||||
| 345 | /* The .rel[a].bss section holds copy relocs. This section is not | |||
| 346 | normally needed. We need to create it here, though, so that the | |||
| 347 | linker will map it to an output section. We can't just create it | |||
| 348 | only if we need it, because we will not know whether we need it | |||
| 349 | until we have seen all the input files, and the first time the | |||
| 350 | main linker code calls BFD after examining all the input files | |||
| 351 | (size_dynamic_sections) the input sections have already been | |||
| 352 | mapped to the output sections. If the section turns out not to | |||
| 353 | be needed, we can discard it later. We will never need this | |||
| 354 | section when generating a shared object, since they do not use | |||
| 355 | copy relocs. */ | |||
| 356 | if (! info->shared) | |||
| 357 | { | |||
| 358 | s = bfd_make_section_with_flags (abfd, | |||
| 359 | (bed->default_use_rela_p | |||
| 360 | ? ".rela.bss" : ".rel.bss"), | |||
| 361 | flags | SEC_READONLY0x008); | |||
| 362 | if (s == NULL((void*)0) | |||
| 363 | || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)(((s)->alignment_power = (bed->s->log_file_align)),1 )) | |||
| 364 | return FALSE0; | |||
| 365 | } | |||
| 366 | } | |||
| 367 | ||||
| 368 | return TRUE1; | |||
| 369 | } | |||
| 370 | ||||
| 371 | /* Record a new dynamic symbol. We record the dynamic symbols as we | |||
| 372 | read the input files, since we need to have a list of all of them | |||
| 373 | before we can determine the final sizes of the output sections. | |||
| 374 | Note that we may actually call this function even though we are not | |||
| 375 | going to output any dynamic symbols; in some cases we know that a | |||
| 376 | symbol should be in the dynamic symbol table, but only if there is | |||
| 377 | one. */ | |||
| 378 | ||||
| 379 | bfd_boolean | |||
| 380 | bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info, | |||
| 381 | struct elf_link_hash_entry *h) | |||
| 382 | { | |||
| 383 | if (h->dynindx == -1) | |||
| 384 | { | |||
| 385 | struct elf_strtab_hash *dynstr; | |||
| 386 | char *p; | |||
| 387 | const char *name; | |||
| 388 | bfd_size_type indx; | |||
| 389 | ||||
| 390 | /* XXX: The ABI draft says the linker must turn hidden and | |||
| 391 | internal symbols into STB_LOCAL symbols when producing the | |||
| 392 | DSO. However, if ld.so honors st_other in the dynamic table, | |||
| 393 | this would not be necessary. */ | |||
| 394 | switch (ELF_ST_VISIBILITY (h->other)((h->other) & 0x3)) | |||
| 395 | { | |||
| 396 | case STV_INTERNAL1: | |||
| 397 | case STV_HIDDEN2: | |||
| 398 | if (h->root.type != bfd_link_hash_undefined | |||
| 399 | && h->root.type != bfd_link_hash_undefweak) | |||
| 400 | { | |||
| 401 | h->forced_local = 1; | |||
| 402 | if (!elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->is_relocatable_executable) | |||
| 403 | return TRUE1; | |||
| 404 | } | |||
| 405 | ||||
| 406 | default: | |||
| 407 | break; | |||
| 408 | } | |||
| 409 | ||||
| 410 | h->dynindx = elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynsymcount; | |||
| 411 | ++elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynsymcount; | |||
| 412 | ||||
| 413 | dynstr = elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynstr; | |||
| 414 | if (dynstr == NULL((void*)0)) | |||
| 415 | { | |||
| 416 | /* Create a strtab to hold the dynamic symbol names. */ | |||
| 417 | elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynstr = dynstr = _bfd_elf_strtab_init (); | |||
| 418 | if (dynstr == NULL((void*)0)) | |||
| 419 | return FALSE0; | |||
| 420 | } | |||
| 421 | ||||
| 422 | /* We don't put any version information in the dynamic string | |||
| 423 | table. */ | |||
| 424 | name = h->root.root.string; | |||
| 425 | p = strchr (name, ELF_VER_CHR'@'); | |||
| 426 | if (p != NULL((void*)0)) | |||
| 427 | /* We know that the p points into writable memory. In fact, | |||
| 428 | there are only a few symbols that have read-only names, being | |||
| 429 | those like _GLOBAL_OFFSET_TABLE_ that are created specially | |||
| 430 | by the backends. Most symbols will have names pointing into | |||
| 431 | an ELF string table read from a file, or to objalloc memory. */ | |||
| 432 | *p = 0; | |||
| 433 | ||||
| 434 | indx = _bfd_elf_strtab_add (dynstr, name, p != NULL((void*)0)); | |||
| 435 | ||||
| 436 | if (p != NULL((void*)0)) | |||
| 437 | *p = ELF_VER_CHR'@'; | |||
| 438 | ||||
| 439 | if (indx == (bfd_size_type) -1) | |||
| 440 | return FALSE0; | |||
| 441 | h->dynstr_index = indx; | |||
| 442 | } | |||
| 443 | ||||
| 444 | return TRUE1; | |||
| 445 | } | |||
| 446 | ||||
| 447 | /* Record an assignment to a symbol made by a linker script. We need | |||
| 448 | this in case some dynamic object refers to this symbol. */ | |||
| 449 | ||||
| 450 | bfd_boolean | |||
| 451 | bfd_elf_record_link_assignment (bfd *output_bfd, | |||
| 452 | struct bfd_link_info *info, | |||
| 453 | const char *name, | |||
| 454 | bfd_boolean provide, | |||
| 455 | bfd_boolean hidden) | |||
| 456 | { | |||
| 457 | struct elf_link_hash_entry *h; | |||
| 458 | struct elf_link_hash_table *htab; | |||
| 459 | ||||
| 460 | if (!is_elf_hash_table (info->hash)(((struct bfd_link_hash_table *) (info->hash))->type == bfd_link_elf_hash_table)) | |||
| 461 | return TRUE1; | |||
| 462 | ||||
| 463 | htab = elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash)); | |||
| 464 | h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE)((struct elf_link_hash_entry *) bfd_link_hash_lookup (&(htab )->root, (name), (!provide), (1), (0))); | |||
| 465 | if (h == NULL((void*)0)) | |||
| 466 | return provide; | |||
| 467 | ||||
| 468 | /* Since we're defining the symbol, don't let it seem to have not | |||
| 469 | been defined. record_dynamic_symbol and size_dynamic_sections | |||
| 470 | may depend on this. */ | |||
| 471 | if (h->root.type == bfd_link_hash_undefweak | |||
| 472 | || h->root.type == bfd_link_hash_undefined) | |||
| 473 | { | |||
| 474 | h->root.type = bfd_link_hash_new; | |||
| 475 | if (h->root.u.undef.next != NULL((void*)0) || htab->root.undefs_tail == &h->root) | |||
| 476 | bfd_link_repair_undef_list (&htab->root); | |||
| 477 | } | |||
| 478 | ||||
| 479 | if (h->root.type == bfd_link_hash_new) | |||
| 480 | h->non_elf = 0; | |||
| 481 | ||||
| 482 | /* If this symbol is being provided by the linker script, and it is | |||
| 483 | currently defined by a dynamic object, but not by a regular | |||
| 484 | object, then mark it as undefined so that the generic linker will | |||
| 485 | force the correct value. */ | |||
| 486 | if (provide | |||
| 487 | && h->def_dynamic | |||
| 488 | && !h->def_regular) | |||
| 489 | h->root.type = bfd_link_hash_undefined; | |||
| 490 | ||||
| 491 | /* If this symbol is not being provided by the linker script, and it is | |||
| 492 | currently defined by a dynamic object, but not by a regular object, | |||
| 493 | then clear out any version information because the symbol will not be | |||
| 494 | associated with the dynamic object any more. */ | |||
| 495 | if (!provide | |||
| 496 | && h->def_dynamic | |||
| 497 | && !h->def_regular) | |||
| 498 | h->verinfo.verdef = NULL((void*)0); | |||
| 499 | ||||
| 500 | h->def_regular = 1; | |||
| 501 | ||||
| 502 | if (provide && hidden) | |||
| 503 | { | |||
| 504 | const struct elf_backend_data *bed = get_elf_backend_data (output_bfd)((const struct elf_backend_data *) (output_bfd)->xvec-> backend_data); | |||
| 505 | ||||
| 506 | h->other = (h->other & ~ELF_ST_VISIBILITY (-1)((-1) & 0x3)) | STV_HIDDEN2; | |||
| 507 | (*bed->elf_backend_hide_symbol) (info, h, TRUE1); | |||
| 508 | } | |||
| 509 | ||||
| 510 | /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects | |||
| 511 | and executables. */ | |||
| 512 | if (!info->relocatable | |||
| 513 | && h->dynindx != -1 | |||
| 514 | && (ELF_ST_VISIBILITY (h->other)((h->other) & 0x3) == STV_HIDDEN2 | |||
| 515 | || ELF_ST_VISIBILITY (h->other)((h->other) & 0x3) == STV_INTERNAL1)) | |||
| 516 | h->forced_local = 1; | |||
| 517 | ||||
| 518 | if ((h->def_dynamic | |||
| 519 | || h->ref_dynamic | |||
| 520 | || info->shared | |||
| 521 | || (info->executable && elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->is_relocatable_executable)) | |||
| 522 | && h->dynindx == -1) | |||
| 523 | { | |||
| 524 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) | |||
| 525 | return FALSE0; | |||
| 526 | ||||
| 527 | /* If this is a weak defined symbol, and we know a corresponding | |||
| 528 | real symbol from the same dynamic object, make sure the real | |||
| 529 | symbol is also made into a dynamic symbol. */ | |||
| 530 | if (h->u.weakdef != NULL((void*)0) | |||
| 531 | && h->u.weakdef->dynindx == -1) | |||
| 532 | { | |||
| 533 | if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef)) | |||
| 534 | return FALSE0; | |||
| 535 | } | |||
| 536 | } | |||
| 537 | ||||
| 538 | return TRUE1; | |||
| 539 | } | |||
| 540 | ||||
| 541 | /* Record a new local dynamic symbol. Returns 0 on failure, 1 on | |||
| 542 | success, and 2 on a failure caused by attempting to record a symbol | |||
| 543 | in a discarded section, eg. a discarded link-once section symbol. */ | |||
| 544 | ||||
| 545 | int | |||
| 546 | bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info, | |||
| 547 | bfd *input_bfd, | |||
| 548 | long input_indx) | |||
| 549 | { | |||
| 550 | bfd_size_type amt; | |||
| 551 | struct elf_link_local_dynamic_entry *entry; | |||
| 552 | struct elf_link_hash_table *eht; | |||
| 553 | struct elf_strtab_hash *dynstr; | |||
| 554 | unsigned long dynstr_index; | |||
| 555 | char *name; | |||
| 556 | Elf_External_Sym_Shndx eshndx; | |||
| 557 | char esym[sizeof (Elf64_External_Sym)]; | |||
| 558 | ||||
| 559 | if (! is_elf_hash_table (info->hash)(((struct bfd_link_hash_table *) (info->hash))->type == bfd_link_elf_hash_table)) | |||
| 560 | return 0; | |||
| 561 | ||||
| 562 | /* See if the entry exists already. */ | |||
| 563 | for (entry = elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynlocal; entry ; entry = entry->next) | |||
| 564 | if (entry->input_bfd == input_bfd && entry->input_indx == input_indx) | |||
| 565 | return 1; | |||
| 566 | ||||
| 567 | amt = sizeof (*entry); | |||
| 568 | entry = bfd_alloc (input_bfd, amt); | |||
| 569 | if (entry == NULL((void*)0)) | |||
| 570 | return 0; | |||
| 571 | ||||
| 572 | /* Go find the symbol, so that we can find it's name. */ | |||
| 573 | if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)((input_bfd) -> tdata.elf_obj_data)->symtab_hdr, | |||
| 574 | 1, input_indx, &entry->isym, esym, &eshndx)) | |||
| 575 | { | |||
| 576 | bfd_release (input_bfd, entry); | |||
| 577 | return 0; | |||
| 578 | } | |||
| 579 | ||||
| 580 | if (entry->isym.st_shndx != SHN_UNDEF0 | |||
| 581 | && (entry->isym.st_shndx < SHN_LORESERVE0xFF00 | |||
| 582 | || entry->isym.st_shndx > SHN_HIRESERVE0xFFFF)) | |||
| 583 | { | |||
| 584 | asection *s; | |||
| 585 | ||||
| 586 | s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx); | |||
| 587 | if (s == NULL((void*)0) || bfd_is_abs_section (s->output_section)((s->output_section) == ((asection *) &bfd_abs_section ))) | |||
| 588 | { | |||
| 589 | /* We can still bfd_release here as nothing has done another | |||
| 590 | bfd_alloc. We can't do this later in this function. */ | |||
| 591 | bfd_release (input_bfd, entry); | |||
| 592 | return 2; | |||
| 593 | } | |||
| 594 | } | |||
| 595 | ||||
| 596 | name = (bfd_elf_string_from_elf_section | |||
| 597 | (input_bfd, elf_tdata (input_bfd)((input_bfd) -> tdata.elf_obj_data)->symtab_hdr.sh_link, | |||
| 598 | entry->isym.st_name)); | |||
| 599 | ||||
| 600 | dynstr = elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynstr; | |||
| 601 | if (dynstr == NULL((void*)0)) | |||
| 602 | { | |||
| 603 | /* Create a strtab to hold the dynamic symbol names. */ | |||
| 604 | elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynstr = dynstr = _bfd_elf_strtab_init (); | |||
| 605 | if (dynstr == NULL((void*)0)) | |||
| 606 | return 0; | |||
| 607 | } | |||
| 608 | ||||
| 609 | dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE0); | |||
| 610 | if (dynstr_index == (unsigned long) -1) | |||
| 611 | return 0; | |||
| 612 | entry->isym.st_name = dynstr_index; | |||
| 613 | ||||
| 614 | eht = elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash)); | |||
| 615 | ||||
| 616 | entry->next = eht->dynlocal; | |||
| 617 | eht->dynlocal = entry; | |||
| 618 | entry->input_bfd = input_bfd; | |||
| 619 | entry->input_indx = input_indx; | |||
| 620 | eht->dynsymcount++; | |||
| 621 | ||||
| 622 | /* Whatever binding the symbol had before, it's now local. */ | |||
| 623 | entry->isym.st_info | |||
| 624 | = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info))(((0) << 4) + ((((entry->isym.st_info) & 0xF)) & 0xF)); | |||
| 625 | ||||
| 626 | /* The dynindx will be set at the end of size_dynamic_sections. */ | |||
| 627 | ||||
| 628 | return 1; | |||
| 629 | } | |||
| 630 | ||||
| 631 | /* Return the dynindex of a local dynamic symbol. */ | |||
| 632 | ||||
| 633 | long | |||
| 634 | _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info, | |||
| 635 | bfd *input_bfd, | |||
| 636 | long input_indx) | |||
| 637 | { | |||
| 638 | struct elf_link_local_dynamic_entry *e; | |||
| 639 | ||||
| 640 | for (e = elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynlocal; e ; e = e->next) | |||
| 641 | if (e->input_bfd == input_bfd && e->input_indx == input_indx) | |||
| 642 | return e->dynindx; | |||
| 643 | return -1; | |||
| 644 | } | |||
| 645 | ||||
| 646 | /* This function is used to renumber the dynamic symbols, if some of | |||
| 647 | them are removed because they are marked as local. This is called | |||
| 648 | via elf_link_hash_traverse. */ | |||
| 649 | ||||
| 650 | static bfd_boolean | |||
| 651 | elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h, | |||
| 652 | void *data) | |||
| 653 | { | |||
| 654 | size_t *count = data; | |||
| 655 | ||||
| 656 | if (h->root.type == bfd_link_hash_warning) | |||
| 657 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |||
| 658 | ||||
| 659 | if (h->forced_local) | |||
| 660 | return TRUE1; | |||
| 661 | ||||
| 662 | if (h->dynindx != -1) | |||
| 663 | h->dynindx = ++(*count); | |||
| 664 | ||||
| 665 | return TRUE1; | |||
| 666 | } | |||
| 667 | ||||
| 668 | ||||
| 669 | /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with | |||
| 670 | STB_LOCAL binding. */ | |||
| 671 | ||||
| 672 | static bfd_boolean | |||
| 673 | elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h, | |||
| 674 | void *data) | |||
| 675 | { | |||
| 676 | size_t *count = data; | |||
| 677 | ||||
| 678 | if (h->root.type == bfd_link_hash_warning) | |||
| 679 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |||
| 680 | ||||
| 681 | if (!h->forced_local) | |||
| 682 | return TRUE1; | |||
| 683 | ||||
| 684 | if (h->dynindx != -1) | |||
| 685 | h->dynindx = ++(*count); | |||
| 686 | ||||
| 687 | return TRUE1; | |||
| 688 | } | |||
| 689 | ||||
| 690 | /* Return true if the dynamic symbol for a given section should be | |||
| 691 | omitted when creating a shared library. */ | |||
| 692 | bfd_boolean | |||
| 693 | _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED__attribute__ ((__unused__)), | |||
| 694 | struct bfd_link_info *info, | |||
| 695 | asection *p) | |||
| 696 | { | |||
| 697 | switch (elf_section_data (p)((struct bfd_elf_section_data*)(p)->used_by_bfd)->this_hdr.sh_type) | |||
| 698 | { | |||
| 699 | case SHT_PROGBITS1: | |||
| 700 | case SHT_NOBITS8: | |||
| 701 | /* If sh_type is yet undecided, assume it could be | |||
| 702 | SHT_PROGBITS/SHT_NOBITS. */ | |||
| 703 | case SHT_NULL0: | |||
| 704 | if (strcmp (p->name, ".got") == 0 | |||
| 705 | || strcmp (p->name, ".got.plt") == 0 | |||
| 706 | || strcmp (p->name, ".plt") == 0) | |||
| 707 | { | |||
| 708 | asection *ip; | |||
| 709 | bfd *dynobj = elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynobj; | |||
| 710 | ||||
| 711 | if (dynobj != NULL((void*)0) | |||
| 712 | && (ip = bfd_get_section_by_name (dynobj, p->name)) != NULL((void*)0) | |||
| 713 | && (ip->flags & SEC_LINKER_CREATED0x200000) | |||
| 714 | && ip->output_section == p) | |||
| 715 | return TRUE1; | |||
| 716 | } | |||
| 717 | return FALSE0; | |||
| 718 | ||||
| 719 | /* There shouldn't be section relative relocations | |||
| 720 | against any other section. */ | |||
| 721 | default: | |||
| 722 | return TRUE1; | |||
| 723 | } | |||
| 724 | } | |||
| 725 | ||||
| 726 | /* Assign dynsym indices. In a shared library we generate a section | |||
| 727 | symbol for each output section, which come first. Next come symbols | |||
| 728 | which have been forced to local binding. Then all of the back-end | |||
| 729 | allocated local dynamic syms, followed by the rest of the global | |||
| 730 | symbols. */ | |||
| 731 | ||||
| 732 | static unsigned long | |||
| 733 | _bfd_elf_link_renumber_dynsyms (bfd *output_bfd, | |||
| 734 | struct bfd_link_info *info, | |||
| 735 | unsigned long *section_sym_count) | |||
| 736 | { | |||
| 737 | unsigned long dynsymcount = 0; | |||
| 738 | ||||
| 739 | if (info->shared || elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->is_relocatable_executable) | |||
| 740 | { | |||
| 741 | const struct elf_backend_data *bed = get_elf_backend_data (output_bfd)((const struct elf_backend_data *) (output_bfd)->xvec-> backend_data); | |||
| 742 | asection *p; | |||
| 743 | for (p = output_bfd->sections; p ; p = p->next) | |||
| 744 | if ((p->flags & SEC_EXCLUDE0x8000) == 0 | |||
| 745 | && (p->flags & SEC_ALLOC0x001) != 0 | |||
| 746 | && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p)) | |||
| 747 | elf_section_data (p)((struct bfd_elf_section_data*)(p)->used_by_bfd)->dynindx = ++dynsymcount; | |||
| 748 | } | |||
| 749 | *section_sym_count = dynsymcount; | |||
| 750 | ||||
| 751 | elf_link_hash_traverse (elf_hash_table (info),(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (elf_link_renumber_local_hash_table_dynsyms), (& dynsymcount))) | |||
| 752 | elf_link_renumber_local_hash_table_dynsyms,(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (elf_link_renumber_local_hash_table_dynsyms), (& dynsymcount))) | |||
| 753 | &dynsymcount)(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (elf_link_renumber_local_hash_table_dynsyms), (& dynsymcount))); | |||
| 754 | ||||
| 755 | if (elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynlocal) | |||
| 756 | { | |||
| 757 | struct elf_link_local_dynamic_entry *p; | |||
| 758 | for (p = elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynlocal; p ; p = p->next) | |||
| 759 | p->dynindx = ++dynsymcount; | |||
| 760 | } | |||
| 761 | ||||
| 762 | elf_link_hash_traverse (elf_hash_table (info),(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (elf_link_renumber_hash_table_dynsyms), (&dynsymcount ))) | |||
| 763 | elf_link_renumber_hash_table_dynsyms,(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (elf_link_renumber_hash_table_dynsyms), (&dynsymcount ))) | |||
| 764 | &dynsymcount)(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (elf_link_renumber_hash_table_dynsyms), (&dynsymcount ))); | |||
| 765 | ||||
| 766 | /* There is an unused NULL entry at the head of the table which | |||
| 767 | we must account for in our count. Unless there weren't any | |||
| 768 | symbols, which means we'll have no table at all. */ | |||
| 769 | if (dynsymcount != 0) | |||
| 770 | ++dynsymcount; | |||
| 771 | ||||
| 772 | elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynsymcount = dynsymcount; | |||
| 773 | return dynsymcount; | |||
| 774 | } | |||
| 775 | ||||
| 776 | /* This function is called when we want to define a new symbol. It | |||
| 777 | handles the various cases which arise when we find a definition in | |||
| 778 | a dynamic object, or when there is already a definition in a | |||
| 779 | dynamic object. The new symbol is described by NAME, SYM, PSEC, | |||
| 780 | and PVALUE. We set SYM_HASH to the hash table entry. We set | |||
| 781 | OVERRIDE if the old symbol is overriding a new definition. We set | |||
| 782 | TYPE_CHANGE_OK if it is OK for the type to change. We set | |||
| 783 | SIZE_CHANGE_OK if it is OK for the size to change. By OK to | |||
| 784 | change, we mean that we shouldn't warn if the type or size does | |||
| 785 | change. We set POLD_ALIGNMENT if an old common symbol in a dynamic | |||
| 786 | object is overridden by a regular object. */ | |||
| 787 | ||||
| 788 | bfd_boolean | |||
| 789 | _bfd_elf_merge_symbol (bfd *abfd, | |||
| 790 | struct bfd_link_info *info, | |||
| 791 | const char *name, | |||
| 792 | Elf_Internal_Sym *sym, | |||
| 793 | asection **psec, | |||
| 794 | bfd_vma *pvalue, | |||
| 795 | unsigned int *pold_alignment, | |||
| 796 | struct elf_link_hash_entry **sym_hash, | |||
| 797 | bfd_boolean *skip, | |||
| 798 | bfd_boolean *override, | |||
| 799 | bfd_boolean *type_change_ok, | |||
| 800 | bfd_boolean *size_change_ok) | |||
| 801 | { | |||
| 802 | asection *sec, *oldsec; | |||
| 803 | struct elf_link_hash_entry *h; | |||
| 804 | struct elf_link_hash_entry *flip; | |||
| 805 | int bind; | |||
| 806 | bfd *oldbfd; | |||
| 807 | bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon; | |||
| 808 | bfd_boolean newweak, oldweak; | |||
| 809 | const struct elf_backend_data *bed; | |||
| 810 | ||||
| 811 | *skip = FALSE0; | |||
| 812 | *override = FALSE0; | |||
| 813 | ||||
| 814 | sec = *psec; | |||
| 815 | bind = ELF_ST_BIND (sym->st_info)(((unsigned int)(sym->st_info)) >> 4); | |||
| 816 | ||||
| 817 | if (! bfd_is_und_section (sec)((sec) == ((asection *) &bfd_und_section))) | |||
| 818 | h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE)((struct elf_link_hash_entry *) bfd_link_hash_lookup (&(( (struct elf_link_hash_table *) ((info)->hash)))->root, ( name), (1), (0), (0))); | |||
| 819 | else | |||
| 820 | h = ((struct elf_link_hash_entry *) | |||
| 821 | bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE1, FALSE0, FALSE0)); | |||
| 822 | if (h == NULL((void*)0)) | |||
| 823 | return FALSE0; | |||
| 824 | *sym_hash = h; | |||
| 825 | ||||
| 826 | /* This code is for coping with dynamic objects, and is only useful | |||
| 827 | if we are doing an ELF link. */ | |||
| 828 | if (info->hash->creator != abfd->xvec) | |||
| 829 | return TRUE1; | |||
| 830 | ||||
| 831 | /* For merging, we only care about real symbols. */ | |||
| 832 | ||||
| 833 | while (h->root.type == bfd_link_hash_indirect | |||
| 834 | || h->root.type == bfd_link_hash_warning) | |||
| 835 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |||
| 836 | ||||
| 837 | /* If we just created the symbol, mark it as being an ELF symbol. | |||
| 838 | Other than that, there is nothing to do--there is no merge issue | |||
| 839 | with a newly defined symbol--so we just return. */ | |||
| 840 | ||||
| 841 | if (h->root.type == bfd_link_hash_new) | |||
| 842 | { | |||
| 843 | h->non_elf = 0; | |||
| 844 | return TRUE1; | |||
| 845 | } | |||
| 846 | ||||
| 847 | /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the | |||
| 848 | existing symbol. */ | |||
| 849 | ||||
| 850 | switch (h->root.type) | |||
| 851 | { | |||
| 852 | default: | |||
| 853 | oldbfd = NULL((void*)0); | |||
| 854 | oldsec = NULL((void*)0); | |||
| 855 | break; | |||
| 856 | ||||
| 857 | case bfd_link_hash_undefined: | |||
| 858 | case bfd_link_hash_undefweak: | |||
| 859 | oldbfd = h->root.u.undef.abfd; | |||
| 860 | oldsec = NULL((void*)0); | |||
| 861 | break; | |||
| 862 | ||||
| 863 | case bfd_link_hash_defined: | |||
| 864 | case bfd_link_hash_defweak: | |||
| 865 | oldbfd = h->root.u.def.section->owner; | |||
| 866 | oldsec = h->root.u.def.section; | |||
| 867 | break; | |||
| 868 | ||||
| 869 | case bfd_link_hash_common: | |||
| 870 | oldbfd = h->root.u.c.p->section->owner; | |||
| 871 | oldsec = h->root.u.c.p->section; | |||
| 872 | break; | |||
| 873 | } | |||
| 874 | ||||
| 875 | /* In cases involving weak versioned symbols, we may wind up trying | |||
| 876 | to merge a symbol with itself. Catch that here, to avoid the | |||
| 877 | confusion that results if we try to override a symbol with | |||
| 878 | itself. The additional tests catch cases like | |||
| 879 | _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a | |||
| 880 | dynamic object, which we do want to handle here. */ | |||
| 881 | if (abfd == oldbfd | |||
| 882 | && ((abfd->flags & DYNAMIC0x40) == 0 | |||
| 883 | || !h->def_regular)) | |||
| 884 | return TRUE1; | |||
| 885 | ||||
| 886 | /* NEWDYN and OLDDYN indicate whether the new or old symbol, | |||
| 887 | respectively, is from a dynamic object. */ | |||
| 888 | ||||
| 889 | newdyn = (abfd->flags & DYNAMIC0x40) != 0; | |||
| 890 | ||||
| 891 | olddyn = FALSE0; | |||
| 892 | if (oldbfd != NULL((void*)0)) | |||
| 893 | olddyn = (oldbfd->flags & DYNAMIC0x40) != 0; | |||
| 894 | else if (oldsec != NULL((void*)0)) | |||
| 895 | { | |||
| 896 | /* This handles the special SHN_MIPS_{TEXT,DATA} section | |||
| 897 | indices used by MIPS ELF. */ | |||
| 898 | olddyn = (oldsec->symbol->flags & BSF_DYNAMIC0x8000) != 0; | |||
| 899 | } | |||
| 900 | ||||
| 901 | /* NEWDEF and OLDDEF indicate whether the new or old symbol, | |||
| 902 | respectively, appear to be a definition rather than reference. */ | |||
| 903 | ||||
| 904 | newdef = !bfd_is_und_section (sec)((sec) == ((asection *) &bfd_und_section)) && !bfd_is_com_section (sec)(((sec)->flags & 0x1000) != 0); | |||
| 905 | ||||
| 906 | olddef = (h->root.type != bfd_link_hash_undefined | |||
| 907 | && h->root.type != bfd_link_hash_undefweak | |||
| 908 | && h->root.type != bfd_link_hash_common); | |||
| 909 | ||||
| 910 | /* When we try to create a default indirect symbol from the dynamic | |||
| 911 | definition with the default version, we skip it if its type and | |||
| 912 | the type of existing regular definition mismatch. We only do it | |||
| 913 | if the existing regular definition won't be dynamic. */ | |||
| 914 | if (pold_alignment == NULL((void*)0) | |||
| 915 | && !info->shared | |||
| 916 | && !info->export_dynamic | |||
| 917 | && !h->ref_dynamic | |||
| 918 | && newdyn | |||
| 919 | && newdef | |||
| 920 | && !olddyn | |||
| 921 | && (olddef || h->root.type == bfd_link_hash_common) | |||
| 922 | && ELF_ST_TYPE (sym->st_info)((sym->st_info) & 0xF) != h->type | |||
| 923 | && ELF_ST_TYPE (sym->st_info)((sym->st_info) & 0xF) != STT_NOTYPE0 | |||
| 924 | && h->type != STT_NOTYPE0) | |||
| 925 | { | |||
| 926 | *skip = TRUE1; | |||
| 927 | return TRUE1; | |||
| 928 | } | |||
| 929 | ||||
| 930 | /* Check TLS symbol. We don't check undefined symbol introduced by | |||
| 931 | "ld -u". */ | |||
| 932 | if ((ELF_ST_TYPE (sym->st_info)((sym->st_info) & 0xF) == STT_TLS6 || h->type == STT_TLS6) | |||
| 933 | && ELF_ST_TYPE (sym->st_info)((sym->st_info) & 0xF) != h->type | |||
| 934 | && oldbfd != NULL((void*)0)) | |||
| 935 | { | |||
| 936 | bfd *ntbfd, *tbfd; | |||
| 937 | bfd_boolean ntdef, tdef; | |||
| 938 | asection *ntsec, *tsec; | |||
| 939 | ||||
| 940 | if (h->type == STT_TLS6) | |||
| 941 | { | |||
| 942 | ntbfd = abfd; | |||
| 943 | ntsec = sec; | |||
| 944 | ntdef = newdef; | |||
| 945 | tbfd = oldbfd; | |||
| 946 | tsec = oldsec; | |||
| 947 | tdef = olddef; | |||
| 948 | } | |||
| 949 | else | |||
| 950 | { | |||
| 951 | ntbfd = oldbfd; | |||
| 952 | ntsec = oldsec; | |||
| 953 | ntdef = olddef; | |||
| 954 | tbfd = abfd; | |||
| 955 | tsec = sec; | |||
| 956 | tdef = newdef; | |||
| 957 | } | |||
| 958 | ||||
| 959 | if (tdef && ntdef) | |||
| 960 | (*_bfd_error_handler) | |||
| 961 | (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A")("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A" ), | |||
| 962 | tbfd, tsec, ntbfd, ntsec, h->root.root.string); | |||
| 963 | else if (!tdef && !ntdef) | |||
| 964 | (*_bfd_error_handler) | |||
| 965 | (_("%s: TLS reference in %B mismatches non-TLS reference in %B")("%s: TLS reference in %B mismatches non-TLS reference in %B" ), | |||
| 966 | tbfd, ntbfd, h->root.root.string); | |||
| 967 | else if (tdef) | |||
| 968 | (*_bfd_error_handler) | |||
| 969 | (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B")("%s: TLS definition in %B section %A mismatches non-TLS reference in %B" ), | |||
| 970 | tbfd, tsec, ntbfd, h->root.root.string); | |||
| 971 | else | |||
| 972 | (*_bfd_error_handler) | |||
| 973 | (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A")("%s: TLS reference in %B mismatches non-TLS definition in %B section %A" ), | |||
| 974 | tbfd, ntbfd, ntsec, h->root.root.string); | |||
| 975 | ||||
| 976 | bfd_set_error (bfd_error_bad_value); | |||
| 977 | return FALSE0; | |||
| 978 | } | |||
| 979 | ||||
| 980 | /* We need to remember if a symbol has a definition in a dynamic | |||
| 981 | object or is weak in all dynamic objects. Internal and hidden | |||
| 982 | visibility will make it unavailable to dynamic objects. */ | |||
| 983 | if (newdyn && !h->dynamic_def) | |||
| 984 | { | |||
| 985 | if (!bfd_is_und_section (sec)((sec) == ((asection *) &bfd_und_section))) | |||
| 986 | h->dynamic_def = 1; | |||
| 987 | else | |||
| 988 | { | |||
| 989 | /* Check if this symbol is weak in all dynamic objects. If it | |||
| 990 | is the first time we see it in a dynamic object, we mark | |||
| 991 | if it is weak. Otherwise, we clear it. */ | |||
| 992 | if (!h->ref_dynamic) | |||
| 993 | { | |||
| 994 | if (bind == STB_WEAK2) | |||
| 995 | h->dynamic_weak = 1; | |||
| 996 | } | |||
| 997 | else if (bind != STB_WEAK2) | |||
| 998 | h->dynamic_weak = 0; | |||
| 999 | } | |||
| 1000 | } | |||
| 1001 | ||||
| 1002 | /* If the old symbol has non-default visibility, we ignore the new | |||
| 1003 | definition from a dynamic object. */ | |||
| 1004 | if (newdyn | |||
| 1005 | && ELF_ST_VISIBILITY (h->other)((h->other) & 0x3) != STV_DEFAULT0 | |||
| 1006 | && !bfd_is_und_section (sec)((sec) == ((asection *) &bfd_und_section))) | |||
| 1007 | { | |||
| 1008 | *skip = TRUE1; | |||
| 1009 | /* Make sure this symbol is dynamic. */ | |||
| 1010 | h->ref_dynamic = 1; | |||
| 1011 | /* A protected symbol has external availability. Make sure it is | |||
| 1012 | recorded as dynamic. | |||
| 1013 | ||||
| 1014 | FIXME: Should we check type and size for protected symbol? */ | |||
| 1015 | if (ELF_ST_VISIBILITY (h->other)((h->other) & 0x3) == STV_PROTECTED3) | |||
| 1016 | return bfd_elf_link_record_dynamic_symbol (info, h); | |||
| 1017 | else | |||
| 1018 | return TRUE1; | |||
| 1019 | } | |||
| 1020 | else if (!newdyn | |||
| 1021 | && ELF_ST_VISIBILITY (sym->st_other)((sym->st_other) & 0x3) != STV_DEFAULT0 | |||
| 1022 | && h->def_dynamic) | |||
| 1023 | { | |||
| 1024 | /* If the new symbol with non-default visibility comes from a | |||
| 1025 | relocatable file and the old definition comes from a dynamic | |||
| 1026 | object, we remove the old definition. */ | |||
| 1027 | if ((*sym_hash)->root.type == bfd_link_hash_indirect) | |||
| 1028 | h = *sym_hash; | |||
| 1029 | ||||
| 1030 | if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root) | |||
| 1031 | && bfd_is_und_section (sec)((sec) == ((asection *) &bfd_und_section))) | |||
| 1032 | { | |||
| 1033 | /* If the new symbol is undefined and the old symbol was | |||
| 1034 | also undefined before, we need to make sure | |||
| 1035 | _bfd_generic_link_add_one_symbol doesn't mess | |||
| 1036 | up the linker hash table undefs list. Since the old | |||
| 1037 | definition came from a dynamic object, it is still on the | |||
| 1038 | undefs list. */ | |||
| 1039 | h->root.type = bfd_link_hash_undefined; | |||
| 1040 | h->root.u.undef.abfd = abfd; | |||
| 1041 | } | |||
| 1042 | else | |||
| 1043 | { | |||
| 1044 | h->root.type = bfd_link_hash_new; | |||
| 1045 | h->root.u.undef.abfd = NULL((void*)0); | |||
| 1046 | } | |||
| 1047 | ||||
| 1048 | if (h->def_dynamic) | |||
| 1049 | { | |||
| 1050 | h->def_dynamic = 0; | |||
| 1051 | h->ref_dynamic = 1; | |||
| 1052 | h->dynamic_def = 1; | |||
| 1053 | } | |||
| 1054 | /* FIXME: Should we check type and size for protected symbol? */ | |||
| 1055 | h->size = 0; | |||
| 1056 | h->type = 0; | |||
| 1057 | return TRUE1; | |||
| 1058 | } | |||
| 1059 | ||||
| 1060 | /* Differentiate strong and weak symbols. */ | |||
| 1061 | newweak = bind == STB_WEAK2; | |||
| 1062 | oldweak = (h->root.type == bfd_link_hash_defweak | |||
| 1063 | || h->root.type == bfd_link_hash_undefweak); | |||
| 1064 | ||||
| 1065 | /* If a new weak symbol definition comes from a regular file and the | |||
| 1066 | old symbol comes from a dynamic library, we treat the new one as | |||
| 1067 | strong. Similarly, an old weak symbol definition from a regular | |||
| 1068 | file is treated as strong when the new symbol comes from a dynamic | |||
| 1069 | library. Further, an old weak symbol from a dynamic library is | |||
| 1070 | treated as strong if the new symbol is from a dynamic library. | |||
| 1071 | This reflects the way glibc's ld.so works. | |||
| 1072 | ||||
| 1073 | Do this before setting *type_change_ok or *size_change_ok so that | |||
| 1074 | we warn properly when dynamic library symbols are overridden. */ | |||
| 1075 | ||||
| 1076 | if (newdef && !newdyn && olddyn) | |||
| 1077 | newweak = FALSE0; | |||
| 1078 | if (olddef && newdyn) | |||
| 1079 | oldweak = FALSE0; | |||
| 1080 | ||||
| 1081 | /* It's OK to change the type if either the existing symbol or the | |||
| 1082 | new symbol is weak. A type change is also OK if the old symbol | |||
| 1083 | is undefined and the new symbol is defined. */ | |||
| 1084 | ||||
| 1085 | if (oldweak | |||
| 1086 | || newweak | |||
| 1087 | || (newdef | |||
| 1088 | && h->root.type == bfd_link_hash_undefined)) | |||
| 1089 | *type_change_ok = TRUE1; | |||
| 1090 | ||||
| 1091 | /* It's OK to change the size if either the existing symbol or the | |||
| 1092 | new symbol is weak, or if the old symbol is undefined. */ | |||
| 1093 | ||||
| 1094 | if (*type_change_ok | |||
| 1095 | || h->root.type == bfd_link_hash_undefined) | |||
| 1096 | *size_change_ok = TRUE1; | |||
| 1097 | ||||
| 1098 | /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old | |||
| 1099 | symbol, respectively, appears to be a common symbol in a dynamic | |||
| 1100 | object. If a symbol appears in an uninitialized section, and is | |||
| 1101 | not weak, and is not a function, then it may be a common symbol | |||
| 1102 | which was resolved when the dynamic object was created. We want | |||
| 1103 | to treat such symbols specially, because they raise special | |||
| 1104 | considerations when setting the symbol size: if the symbol | |||
| 1105 | appears as a common symbol in a regular object, and the size in | |||
| 1106 | the regular object is larger, we must make sure that we use the | |||
| 1107 | larger size. This problematic case can always be avoided in C, | |||
| 1108 | but it must be handled correctly when using Fortran shared | |||
| 1109 | libraries. | |||
| 1110 | ||||
| 1111 | Note that if NEWDYNCOMMON is set, NEWDEF will be set, and | |||
| 1112 | likewise for OLDDYNCOMMON and OLDDEF. | |||
| 1113 | ||||
| 1114 | Note that this test is just a heuristic, and that it is quite | |||
| 1115 | possible to have an uninitialized symbol in a shared object which | |||
| 1116 | is really a definition, rather than a common symbol. This could | |||
| 1117 | lead to some minor confusion when the symbol really is a common | |||
| 1118 | symbol in some regular object. However, I think it will be | |||
| 1119 | harmless. */ | |||
| 1120 | ||||
| 1121 | if (newdyn | |||
| 1122 | && newdef | |||
| 1123 | && !newweak | |||
| 1124 | && (sec->flags & SEC_ALLOC0x001) != 0 | |||
| 1125 | && (sec->flags & SEC_LOAD0x002) == 0 | |||
| 1126 | && sym->st_size > 0 | |||
| 1127 | && ELF_ST_TYPE (sym->st_info)((sym->st_info) & 0xF) != STT_FUNC2) | |||
| 1128 | newdyncommon = TRUE1; | |||
| 1129 | else | |||
| 1130 | newdyncommon = FALSE0; | |||
| 1131 | ||||
| 1132 | if (olddyn | |||
| 1133 | && olddef | |||
| 1134 | && h->root.type == bfd_link_hash_defined | |||
| 1135 | && h->def_dynamic | |||
| 1136 | && (h->root.u.def.section->flags & SEC_ALLOC0x001) != 0 | |||
| 1137 | && (h->root.u.def.section->flags & SEC_LOAD0x002) == 0 | |||
| 1138 | && h->size > 0 | |||
| 1139 | && h->type != STT_FUNC2) | |||
| 1140 | olddyncommon = TRUE1; | |||
| 1141 | else | |||
| 1142 | olddyncommon = FALSE0; | |||
| 1143 | ||||
| 1144 | /* We now know everything about the old and new symbols. We ask the | |||
| 1145 | backend to check if we can merge them. */ | |||
| 1146 | bed = get_elf_backend_data (abfd)((const struct elf_backend_data *) (abfd)->xvec->backend_data ); | |||
| 1147 | if (bed->merge_symbol | |||
| 1148 | && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue, | |||
| 1149 | pold_alignment, skip, override, | |||
| 1150 | type_change_ok, size_change_ok, | |||
| 1151 | &newdyn, &newdef, &newdyncommon, &newweak, | |||
| 1152 | abfd, &sec, | |||
| 1153 | &olddyn, &olddef, &olddyncommon, &oldweak, | |||
| 1154 | oldbfd, &oldsec)) | |||
| 1155 | return FALSE0; | |||
| 1156 | ||||
| 1157 | /* If both the old and the new symbols look like common symbols in a | |||
| 1158 | dynamic object, set the size of the symbol to the larger of the | |||
| 1159 | two. */ | |||
| 1160 | ||||
| 1161 | if (olddyncommon | |||
| 1162 | && newdyncommon | |||
| 1163 | && sym->st_size != h->size) | |||
| 1164 | { | |||
| 1165 | /* Since we think we have two common symbols, issue a multiple | |||
| 1166 | common warning if desired. Note that we only warn if the | |||
| 1167 | size is different. If the size is the same, we simply let | |||
| 1168 | the old symbol override the new one as normally happens with | |||
| 1169 | symbols defined in dynamic objects. */ | |||
| 1170 | ||||
| 1171 | if (! ((*info->callbacks->multiple_common) | |||
| 1172 | (info, h->root.root.string, oldbfd, bfd_link_hash_common, | |||
| 1173 | h->size, abfd, bfd_link_hash_common, sym->st_size))) | |||
| 1174 | return FALSE0; | |||
| 1175 | ||||
| 1176 | if (sym->st_size > h->size) | |||
| 1177 | h->size = sym->st_size; | |||
| 1178 | ||||
| 1179 | *size_change_ok = TRUE1; | |||
| 1180 | } | |||
| 1181 | ||||
| 1182 | /* If we are looking at a dynamic object, and we have found a | |||
| 1183 | definition, we need to see if the symbol was already defined by | |||
| 1184 | some other object. If so, we want to use the existing | |||
| 1185 | definition, and we do not want to report a multiple symbol | |||
| 1186 | definition error; we do this by clobbering *PSEC to be | |||
| 1187 | bfd_und_section_ptr. | |||
| 1188 | ||||
| 1189 | We treat a common symbol as a definition if the symbol in the | |||
| 1190 | shared library is a function, since common symbols always | |||
| 1191 | represent variables; this can cause confusion in principle, but | |||
| 1192 | any such confusion would seem to indicate an erroneous program or | |||
| 1193 | shared library. We also permit a common symbol in a regular | |||
| 1194 | object to override a weak symbol in a shared object. */ | |||
| 1195 | ||||
| 1196 | if (newdyn | |||
| 1197 | && newdef | |||
| 1198 | && (olddef | |||
| 1199 | || (h->root.type == bfd_link_hash_common | |||
| 1200 | && (newweak | |||
| 1201 | || ELF_ST_TYPE (sym->st_info)((sym->st_info) & 0xF) == STT_FUNC2 | |||
| 1202 | || (!olddyn && info->executable))))) | |||
| 1203 | { | |||
| 1204 | *override = TRUE1; | |||
| 1205 | newdef = FALSE0; | |||
| 1206 | newdyncommon = FALSE0; | |||
| 1207 | ||||
| 1208 | *psec = sec = bfd_und_section_ptr((asection *) &bfd_und_section); | |||
| 1209 | *size_change_ok = TRUE1; | |||
| 1210 | ||||
| 1211 | /* If we get here when the old symbol is a common symbol, then | |||
| 1212 | we are explicitly letting it override a weak symbol or | |||
| 1213 | function in a dynamic object, and we don't want to warn about | |||
| 1214 | a type change. If the old symbol is a defined symbol, a type | |||
| 1215 | change warning may still be appropriate. */ | |||
| 1216 | ||||
| 1217 | if (h->root.type == bfd_link_hash_common) | |||
| 1218 | *type_change_ok = TRUE1; | |||
| 1219 | } | |||
| 1220 | ||||
| 1221 | /* Handle the special case of an old common symbol merging with a | |||
| 1222 | new symbol which looks like a common symbol in a shared object. | |||
| 1223 | We change *PSEC and *PVALUE to make the new symbol look like a | |||
| 1224 | common symbol, and let _bfd_generic_link_add_one_symbol do the | |||
| 1225 | right thing. */ | |||
| 1226 | ||||
| 1227 | if (newdyncommon | |||
| 1228 | && h->root.type == bfd_link_hash_common) | |||
| 1229 | { | |||
| 1230 | *override = TRUE1; | |||
| 1231 | newdef = FALSE0; | |||
| 1232 | newdyncommon = FALSE0; | |||
| 1233 | *pvalue = sym->st_size; | |||
| 1234 | *psec = sec = bed->common_section (oldsec); | |||
| 1235 | *size_change_ok = TRUE1; | |||
| 1236 | } | |||
| 1237 | ||||
| 1238 | /* Skip weak definitions of symbols that are already defined. */ | |||
| 1239 | if (newdef && olddef && newweak) | |||
| 1240 | *skip = TRUE1; | |||
| 1241 | ||||
| 1242 | /* If the old symbol is from a dynamic object, and the new symbol is | |||
| 1243 | a definition which is not from a dynamic object, then the new | |||
| 1244 | symbol overrides the old symbol. Symbols from regular files | |||
| 1245 | always take precedence over symbols from dynamic objects, even if | |||
| 1246 | they are defined after the dynamic object in the link. | |||
| 1247 | ||||
| 1248 | As above, we again permit a common symbol in a regular object to | |||
| 1249 | override a definition in a shared object if the shared object | |||
| 1250 | symbol is a function or is weak. */ | |||
| 1251 | ||||
| 1252 | flip = NULL((void*)0); | |||
| 1253 | if (!newdyn | |||
| 1254 | && (newdef | |||
| 1255 | || (bfd_is_com_section (sec)(((sec)->flags & 0x1000) != 0) | |||
| 1256 | && (oldweak | |||
| 1257 | || h->type == STT_FUNC2))) | |||
| 1258 | && olddyn | |||
| 1259 | && olddef | |||
| 1260 | && h->def_dynamic) | |||
| 1261 | { | |||
| 1262 | /* Change the hash table entry to undefined, and let | |||
| 1263 | _bfd_generic_link_add_one_symbol do the right thing with the | |||
| 1264 | new definition. */ | |||
| 1265 | ||||
| 1266 | h->root.type = bfd_link_hash_undefined; | |||
| 1267 | h->root.u.undef.abfd = h->root.u.def.section->owner; | |||
| 1268 | *size_change_ok = TRUE1; | |||
| 1269 | ||||
| 1270 | olddef = FALSE0; | |||
| 1271 | olddyncommon = FALSE0; | |||
| 1272 | ||||
| 1273 | /* We again permit a type change when a common symbol may be | |||
| 1274 | overriding a function. */ | |||
| 1275 | ||||
| 1276 | if (bfd_is_com_section (sec)(((sec)->flags & 0x1000) != 0)) | |||
| 1277 | *type_change_ok = TRUE1; | |||
| 1278 | ||||
| 1279 | if ((*sym_hash)->root.type == bfd_link_hash_indirect) | |||
| 1280 | flip = *sym_hash; | |||
| 1281 | else | |||
| 1282 | /* This union may have been set to be non-NULL when this symbol | |||
| 1283 | was seen in a dynamic object. We must force the union to be | |||
| 1284 | NULL, so that it is correct for a regular symbol. */ | |||
| 1285 | h->verinfo.vertree = NULL((void*)0); | |||
| 1286 | } | |||
| 1287 | ||||
| 1288 | /* Handle the special case of a new common symbol merging with an | |||
| 1289 | old symbol that looks like it might be a common symbol defined in | |||
| 1290 | a shared object. Note that we have already handled the case in | |||
| 1291 | which a new common symbol should simply override the definition | |||
| 1292 | in the shared library. */ | |||
| 1293 | ||||
| 1294 | if (! newdyn | |||
| 1295 | && bfd_is_com_section (sec)(((sec)->flags & 0x1000) != 0) | |||
| 1296 | && olddyncommon) | |||
| 1297 | { | |||
| 1298 | /* It would be best if we could set the hash table entry to a | |||
| 1299 | common symbol, but we don't know what to use for the section | |||
| 1300 | or the alignment. */ | |||
| 1301 | if (! ((*info->callbacks->multiple_common) | |||
| 1302 | (info, h->root.root.string, oldbfd, bfd_link_hash_common, | |||
| 1303 | h->size, abfd, bfd_link_hash_common, sym->st_size))) | |||
| 1304 | return FALSE0; | |||
| 1305 | ||||
| 1306 | /* If the presumed common symbol in the dynamic object is | |||
| 1307 | larger, pretend that the new symbol has its size. */ | |||
| 1308 | ||||
| 1309 | if (h->size > *pvalue) | |||
| 1310 | *pvalue = h->size; | |||
| 1311 | ||||
| 1312 | /* We need to remember the alignment required by the symbol | |||
| 1313 | in the dynamic object. */ | |||
| 1314 | BFD_ASSERT (pold_alignment)do { if (!(pold_alignment)) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,1314); } while (0); | |||
| 1315 | *pold_alignment = h->root.u.def.section->alignment_power; | |||
| 1316 | ||||
| 1317 | olddef = FALSE0; | |||
| 1318 | olddyncommon = FALSE0; | |||
| 1319 | ||||
| 1320 | h->root.type = bfd_link_hash_undefined; | |||
| 1321 | h->root.u.undef.abfd = h->root.u.def.section->owner; | |||
| 1322 | ||||
| 1323 | *size_change_ok = TRUE1; | |||
| 1324 | *type_change_ok = TRUE1; | |||
| 1325 | ||||
| 1326 | if ((*sym_hash)->root.type == bfd_link_hash_indirect) | |||
| 1327 | flip = *sym_hash; | |||
| 1328 | else | |||
| 1329 | h->verinfo.vertree = NULL((void*)0); | |||
| 1330 | } | |||
| 1331 | ||||
| 1332 | if (flip != NULL((void*)0)) | |||
| 1333 | { | |||
| 1334 | /* Handle the case where we had a versioned symbol in a dynamic | |||
| 1335 | library and now find a definition in a normal object. In this | |||
| 1336 | case, we make the versioned symbol point to the normal one. */ | |||
| 1337 | const struct elf_backend_data *bed = get_elf_backend_data (abfd)((const struct elf_backend_data *) (abfd)->xvec->backend_data ); | |||
| 1338 | flip->root.type = h->root.type; | |||
| 1339 | h->root.type = bfd_link_hash_indirect; | |||
| 1340 | h->root.u.i.link = (struct bfd_link_hash_entry *) flip; | |||
| 1341 | (*bed->elf_backend_copy_indirect_symbol) (info, flip, h); | |||
| 1342 | flip->root.u.undef.abfd = h->root.u.undef.abfd; | |||
| 1343 | if (h->def_dynamic) | |||
| 1344 | { | |||
| 1345 | h->def_dynamic = 0; | |||
| 1346 | flip->ref_dynamic = 1; | |||
| 1347 | } | |||
| 1348 | } | |||
| 1349 | ||||
| 1350 | return TRUE1; | |||
| 1351 | } | |||
| 1352 | ||||
| 1353 | /* This function is called to create an indirect symbol from the | |||
| 1354 | default for the symbol with the default version if needed. The | |||
| 1355 | symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We | |||
| 1356 | set DYNSYM if the new indirect symbol is dynamic. */ | |||
| 1357 | ||||
| 1358 | bfd_boolean | |||
| 1359 | _bfd_elf_add_default_symbol (bfd *abfd, | |||
| 1360 | struct bfd_link_info *info, | |||
| 1361 | struct elf_link_hash_entry *h, | |||
| 1362 | const char *name, | |||
| 1363 | Elf_Internal_Sym *sym, | |||
| 1364 | asection **psec, | |||
| 1365 | bfd_vma *value, | |||
| 1366 | bfd_boolean *dynsym, | |||
| 1367 | bfd_boolean override) | |||
| 1368 | { | |||
| 1369 | bfd_boolean type_change_ok; | |||
| 1370 | bfd_boolean size_change_ok; | |||
| 1371 | bfd_boolean skip; | |||
| 1372 | char *shortname; | |||
| 1373 | struct elf_link_hash_entry *hi; | |||
| 1374 | struct bfd_link_hash_entry *bh; | |||
| 1375 | const struct elf_backend_data *bed; | |||
| 1376 | bfd_boolean collect; | |||
| 1377 | bfd_boolean dynamic; | |||
| 1378 | char *p; | |||
| 1379 | size_t len, shortlen; | |||
| 1380 | asection *sec; | |||
| 1381 | ||||
| 1382 | /* If this symbol has a version, and it is the default version, we | |||
| 1383 | create an indirect symbol from the default name to the fully | |||
| 1384 | decorated name. This will cause external references which do not | |||
| 1385 | specify a version to be bound to this version of the symbol. */ | |||
| 1386 | p = strchr (name, ELF_VER_CHR'@'); | |||
| 1387 | if (p == NULL((void*)0) || p[1] != ELF_VER_CHR'@') | |||
| 1388 | return TRUE1; | |||
| 1389 | ||||
| 1390 | if (override) | |||
| 1391 | { | |||
| 1392 | /* We are overridden by an old definition. We need to check if we | |||
| 1393 | need to create the indirect symbol from the default name. */ | |||
| 1394 | hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,((struct elf_link_hash_entry *) bfd_link_hash_lookup (&(( (struct elf_link_hash_table *) ((info)->hash)))->root, ( name), (1), (0), (0))) | |||
| 1395 | FALSE, FALSE)((struct elf_link_hash_entry *) bfd_link_hash_lookup (&(( (struct elf_link_hash_table *) ((info)->hash)))->root, ( name), (1), (0), (0))); | |||
| 1396 | BFD_ASSERT (hi != NULL)do { if (!(hi != ((void*)0))) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,1396); } while (0); | |||
| 1397 | if (hi == h) | |||
| 1398 | return TRUE1; | |||
| 1399 | while (hi->root.type == bfd_link_hash_indirect | |||
| 1400 | || hi->root.type == bfd_link_hash_warning) | |||
| 1401 | { | |||
| 1402 | hi = (struct elf_link_hash_entry *) hi->root.u.i.link; | |||
| 1403 | if (hi == h) | |||
| 1404 | return TRUE1; | |||
| 1405 | } | |||
| 1406 | } | |||
| 1407 | ||||
| 1408 | bed = get_elf_backend_data (abfd)((const struct elf_backend_data *) (abfd)->xvec->backend_data ); | |||
| 1409 | collect = bed->collect; | |||
| 1410 | dynamic = (abfd->flags & DYNAMIC0x40) != 0; | |||
| 1411 | ||||
| 1412 | shortlen = p - name; | |||
| 1413 | shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1); | |||
| 1414 | if (shortname == NULL((void*)0)) | |||
| 1415 | return FALSE0; | |||
| 1416 | memcpy (shortname, name, shortlen); | |||
| 1417 | shortname[shortlen] = '\0'; | |||
| 1418 | ||||
| 1419 | /* We are going to create a new symbol. Merge it with any existing | |||
| 1420 | symbol with this name. For the purposes of the merge, act as | |||
| 1421 | though we were defining the symbol we just defined, although we | |||
| 1422 | actually going to define an indirect symbol. */ | |||
| 1423 | type_change_ok = FALSE0; | |||
| 1424 | size_change_ok = FALSE0; | |||
| 1425 | sec = *psec; | |||
| 1426 | if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value, | |||
| 1427 | NULL((void*)0), &hi, &skip, &override, | |||
| 1428 | &type_change_ok, &size_change_ok)) | |||
| 1429 | return FALSE0; | |||
| 1430 | ||||
| 1431 | if (skip) | |||
| 1432 | goto nondefault; | |||
| 1433 | ||||
| 1434 | if (! override) | |||
| 1435 | { | |||
| 1436 | bh = &hi->root; | |||
| 1437 | if (! (_bfd_generic_link_add_one_symbol | |||
| 1438 | (info, abfd, shortname, BSF_INDIRECT0x2000, bfd_ind_section_ptr((asection *) &bfd_ind_section), | |||
| 1439 | 0, name, FALSE0, collect, &bh))) | |||
| 1440 | return FALSE0; | |||
| 1441 | hi = (struct elf_link_hash_entry *) bh; | |||
| 1442 | } | |||
| 1443 | else | |||
| 1444 | { | |||
| 1445 | /* In this case the symbol named SHORTNAME is overriding the | |||
| 1446 | indirect symbol we want to add. We were planning on making | |||
| 1447 | SHORTNAME an indirect symbol referring to NAME. SHORTNAME | |||
| 1448 | is the name without a version. NAME is the fully versioned | |||
| 1449 | name, and it is the default version. | |||
| 1450 | ||||
| 1451 | Overriding means that we already saw a definition for the | |||
| 1452 | symbol SHORTNAME in a regular object, and it is overriding | |||
| 1453 | the symbol defined in the dynamic object. | |||
| 1454 | ||||
| 1455 | When this happens, we actually want to change NAME, the | |||
| 1456 | symbol we just added, to refer to SHORTNAME. This will cause | |||
| 1457 | references to NAME in the shared object to become references | |||
| 1458 | to SHORTNAME in the regular object. This is what we expect | |||
| 1459 | when we override a function in a shared object: that the | |||
| 1460 | references in the shared object will be mapped to the | |||
| 1461 | definition in the regular object. */ | |||
| 1462 | ||||
| 1463 | while (hi->root.type == bfd_link_hash_indirect | |||
| 1464 | || hi->root.type == bfd_link_hash_warning) | |||
| 1465 | hi = (struct elf_link_hash_entry *) hi->root.u.i.link; | |||
| 1466 | ||||
| 1467 | h->root.type = bfd_link_hash_indirect; | |||
| 1468 | h->root.u.i.link = (struct bfd_link_hash_entry *) hi; | |||
| 1469 | if (h->def_dynamic) | |||
| 1470 | { | |||
| 1471 | h->def_dynamic = 0; | |||
| 1472 | hi->ref_dynamic = 1; | |||
| 1473 | if (hi->ref_regular | |||
| 1474 | || hi->def_regular) | |||
| 1475 | { | |||
| 1476 | if (! bfd_elf_link_record_dynamic_symbol (info, hi)) | |||
| 1477 | return FALSE0; | |||
| 1478 | } | |||
| 1479 | } | |||
| 1480 | ||||
| 1481 | /* Now set HI to H, so that the following code will set the | |||
| 1482 | other fields correctly. */ | |||
| 1483 | hi = h; | |||
| 1484 | } | |||
| 1485 | ||||
| 1486 | /* If there is a duplicate definition somewhere, then HI may not | |||
| 1487 | point to an indirect symbol. We will have reported an error to | |||
| 1488 | the user in that case. */ | |||
| 1489 | ||||
| 1490 | if (hi->root.type == bfd_link_hash_indirect) | |||
| 1491 | { | |||
| 1492 | struct elf_link_hash_entry *ht; | |||
| 1493 | ||||
| 1494 | ht = (struct elf_link_hash_entry *) hi->root.u.i.link; | |||
| 1495 | (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi); | |||
| 1496 | ||||
| 1497 | /* See if the new flags lead us to realize that the symbol must | |||
| 1498 | be dynamic. */ | |||
| 1499 | if (! *dynsym) | |||
| 1500 | { | |||
| 1501 | if (! dynamic) | |||
| 1502 | { | |||
| 1503 | if (info->shared | |||
| 1504 | || hi->ref_dynamic) | |||
| 1505 | *dynsym = TRUE1; | |||
| 1506 | } | |||
| 1507 | else | |||
| 1508 | { | |||
| 1509 | if (hi->ref_regular) | |||
| 1510 | *dynsym = TRUE1; | |||
| 1511 | } | |||
| 1512 | } | |||
| 1513 | } | |||
| 1514 | ||||
| 1515 | /* We also need to define an indirection from the nondefault version | |||
| 1516 | of the symbol. */ | |||
| 1517 | ||||
| 1518 | nondefault: | |||
| 1519 | len = strlen (name); | |||
| 1520 | shortname = bfd_hash_allocate (&info->hash->table, len); | |||
| 1521 | if (shortname == NULL((void*)0)) | |||
| 1522 | return FALSE0; | |||
| 1523 | memcpy (shortname, name, shortlen); | |||
| 1524 | memcpy (shortname + shortlen, p + 1, len - shortlen); | |||
| 1525 | ||||
| 1526 | /* Once again, merge with any existing symbol. */ | |||
| 1527 | type_change_ok = FALSE0; | |||
| 1528 | size_change_ok = FALSE0; | |||
| 1529 | sec = *psec; | |||
| 1530 | if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value, | |||
| 1531 | NULL((void*)0), &hi, &skip, &override, | |||
| 1532 | &type_change_ok, &size_change_ok)) | |||
| 1533 | return FALSE0; | |||
| 1534 | ||||
| 1535 | if (skip) | |||
| 1536 | return TRUE1; | |||
| 1537 | ||||
| 1538 | if (override) | |||
| 1539 | { | |||
| 1540 | /* Here SHORTNAME is a versioned name, so we don't expect to see | |||
| 1541 | the type of override we do in the case above unless it is | |||
| 1542 | overridden by a versioned definition. */ | |||
| 1543 | if (hi->root.type != bfd_link_hash_defined | |||
| 1544 | && hi->root.type != bfd_link_hash_defweak) | |||
| 1545 | (*_bfd_error_handler) | |||
| 1546 | (_("%B: unexpected redefinition of indirect versioned symbol `%s'")("%B: unexpected redefinition of indirect versioned symbol `%s'" ), | |||
| 1547 | abfd, shortname); | |||
| 1548 | } | |||
| 1549 | else | |||
| 1550 | { | |||
| 1551 | bh = &hi->root; | |||
| 1552 | if (! (_bfd_generic_link_add_one_symbol | |||
| 1553 | (info, abfd, shortname, BSF_INDIRECT0x2000, | |||
| 1554 | bfd_ind_section_ptr((asection *) &bfd_ind_section), 0, name, FALSE0, collect, &bh))) | |||
| 1555 | return FALSE0; | |||
| 1556 | hi = (struct elf_link_hash_entry *) bh; | |||
| 1557 | ||||
| 1558 | /* If there is a duplicate definition somewhere, then HI may not | |||
| 1559 | point to an indirect symbol. We will have reported an error | |||
| 1560 | to the user in that case. */ | |||
| 1561 | ||||
| 1562 | if (hi->root.type == bfd_link_hash_indirect) | |||
| 1563 | { | |||
| 1564 | (*bed->elf_backend_copy_indirect_symbol) (info, h, hi); | |||
| 1565 | ||||
| 1566 | /* See if the new flags lead us to realize that the symbol | |||
| 1567 | must be dynamic. */ | |||
| 1568 | if (! *dynsym) | |||
| 1569 | { | |||
| 1570 | if (! dynamic) | |||
| 1571 | { | |||
| 1572 | if (info->shared | |||
| 1573 | || hi->ref_dynamic) | |||
| 1574 | *dynsym = TRUE1; | |||
| 1575 | } | |||
| 1576 | else | |||
| 1577 | { | |||
| 1578 | if (hi->ref_regular) | |||
| 1579 | *dynsym = TRUE1; | |||
| 1580 | } | |||
| 1581 | } | |||
| 1582 | } | |||
| 1583 | } | |||
| 1584 | ||||
| 1585 | return TRUE1; | |||
| 1586 | } | |||
| 1587 | ||||
| 1588 | /* This routine is used to export all defined symbols into the dynamic | |||
| 1589 | symbol table. It is called via elf_link_hash_traverse. */ | |||
| 1590 | ||||
| 1591 | bfd_boolean | |||
| 1592 | _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data) | |||
| 1593 | { | |||
| 1594 | struct elf_info_failed *eif = data; | |||
| 1595 | ||||
| 1596 | /* Ignore indirect symbols. These are added by the versioning code. */ | |||
| 1597 | if (h->root.type == bfd_link_hash_indirect) | |||
| 1598 | return TRUE1; | |||
| 1599 | ||||
| 1600 | if (h->root.type == bfd_link_hash_warning) | |||
| 1601 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |||
| 1602 | ||||
| 1603 | if (h->dynindx == -1 | |||
| 1604 | && (h->def_regular | |||
| 1605 | || h->ref_regular)) | |||
| 1606 | { | |||
| 1607 | struct bfd_elf_version_tree *t; | |||
| 1608 | struct bfd_elf_version_expr *d; | |||
| 1609 | ||||
| 1610 | for (t = eif->verdefs; t != NULL((void*)0); t = t->next) | |||
| 1611 | { | |||
| 1612 | if (t->globals.list != NULL((void*)0)) | |||
| 1613 | { | |||
| 1614 | d = (*t->match) (&t->globals, NULL((void*)0), h->root.root.string); | |||
| 1615 | if (d != NULL((void*)0)) | |||
| 1616 | goto doit; | |||
| 1617 | } | |||
| 1618 | ||||
| 1619 | if (t->locals.list != NULL((void*)0)) | |||
| 1620 | { | |||
| 1621 | d = (*t->match) (&t->locals, NULL((void*)0), h->root.root.string); | |||
| 1622 | if (d != NULL((void*)0)) | |||
| 1623 | return TRUE1; | |||
| 1624 | } | |||
| 1625 | } | |||
| 1626 | ||||
| 1627 | if (!eif->verdefs) | |||
| 1628 | { | |||
| 1629 | doit: | |||
| 1630 | if (! bfd_elf_link_record_dynamic_symbol (eif->info, h)) | |||
| 1631 | { | |||
| 1632 | eif->failed = TRUE1; | |||
| 1633 | return FALSE0; | |||
| 1634 | } | |||
| 1635 | } | |||
| 1636 | } | |||
| 1637 | ||||
| 1638 | return TRUE1; | |||
| 1639 | } | |||
| 1640 | ||||
| 1641 | /* Look through the symbols which are defined in other shared | |||
| 1642 | libraries and referenced here. Update the list of version | |||
| 1643 | dependencies. This will be put into the .gnu.version_r section. | |||
| 1644 | This function is called via elf_link_hash_traverse. */ | |||
| 1645 | ||||
| 1646 | bfd_boolean | |||
| 1647 | _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h, | |||
| 1648 | void *data) | |||
| 1649 | { | |||
| 1650 | struct elf_find_verdep_info *rinfo = data; | |||
| 1651 | Elf_Internal_Verneed *t; | |||
| 1652 | Elf_Internal_Vernaux *a; | |||
| 1653 | bfd_size_type amt; | |||
| 1654 | ||||
| 1655 | if (h->root.type == bfd_link_hash_warning) | |||
| 1656 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |||
| 1657 | ||||
| 1658 | /* We only care about symbols defined in shared objects with version | |||
| 1659 | information. */ | |||
| 1660 | if (!h->def_dynamic | |||
| 1661 | || h->def_regular | |||
| 1662 | || h->dynindx == -1 | |||
| 1663 | || h->verinfo.verdef == NULL((void*)0)) | |||
| 1664 | return TRUE1; | |||
| 1665 | ||||
| 1666 | /* See if we already know about this version. */ | |||
| 1667 | for (t = elf_tdata (rinfo->output_bfd)((rinfo->output_bfd) -> tdata.elf_obj_data)->verref; t != NULL((void*)0); t = t->vn_nextref) | |||
| 1668 | { | |||
| 1669 | if (t->vn_bfd != h->verinfo.verdef->vd_bfd) | |||
| 1670 | continue; | |||
| 1671 | ||||
| 1672 | for (a = t->vn_auxptr; a != NULL((void*)0); a = a->vna_nextptr) | |||
| 1673 | if (a->vna_nodename == h->verinfo.verdef->vd_nodename) | |||
| 1674 | return TRUE1; | |||
| 1675 | ||||
| 1676 | break; | |||
| 1677 | } | |||
| 1678 | ||||
| 1679 | /* This is a new version. Add it to tree we are building. */ | |||
| 1680 | ||||
| 1681 | if (t == NULL((void*)0)) | |||
| 1682 | { | |||
| 1683 | amt = sizeof *t; | |||
| 1684 | t = bfd_zalloc (rinfo->output_bfd, amt); | |||
| 1685 | if (t == NULL((void*)0)) | |||
| 1686 | { | |||
| 1687 | rinfo->failed = TRUE1; | |||
| 1688 | return FALSE0; | |||
| 1689 | } | |||
| 1690 | ||||
| 1691 | t->vn_bfd = h->verinfo.verdef->vd_bfd; | |||
| 1692 | t->vn_nextref = elf_tdata (rinfo->output_bfd)((rinfo->output_bfd) -> tdata.elf_obj_data)->verref; | |||
| 1693 | elf_tdata (rinfo->output_bfd)((rinfo->output_bfd) -> tdata.elf_obj_data)->verref = t; | |||
| 1694 | } | |||
| 1695 | ||||
| 1696 | amt = sizeof *a; | |||
| 1697 | a = bfd_zalloc (rinfo->output_bfd, amt); | |||
| 1698 | ||||
| 1699 | /* Note that we are copying a string pointer here, and testing it | |||
| 1700 | above. If bfd_elf_string_from_elf_section is ever changed to | |||
| 1701 | discard the string data when low in memory, this will have to be | |||
| 1702 | fixed. */ | |||
| 1703 | a->vna_nodename = h->verinfo.verdef->vd_nodename; | |||
| 1704 | ||||
| 1705 | a->vna_flags = h->verinfo.verdef->vd_flags; | |||
| 1706 | a->vna_nextptr = t->vn_auxptr; | |||
| 1707 | ||||
| 1708 | h->verinfo.verdef->vd_exp_refno = rinfo->vers; | |||
| 1709 | ++rinfo->vers; | |||
| 1710 | ||||
| 1711 | a->vna_other = h->verinfo.verdef->vd_exp_refno + 1; | |||
| 1712 | ||||
| 1713 | t->vn_auxptr = a; | |||
| 1714 | ||||
| 1715 | return TRUE1; | |||
| 1716 | } | |||
| 1717 | ||||
| 1718 | /* Figure out appropriate versions for all the symbols. We may not | |||
| 1719 | have the version number script until we have read all of the input | |||
| 1720 | files, so until that point we don't know which symbols should be | |||
| 1721 | local. This function is called via elf_link_hash_traverse. */ | |||
| 1722 | ||||
| 1723 | bfd_boolean | |||
| 1724 | _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data) | |||
| 1725 | { | |||
| 1726 | struct elf_assign_sym_version_info *sinfo; | |||
| 1727 | struct bfd_link_info *info; | |||
| 1728 | const struct elf_backend_data *bed; | |||
| 1729 | struct elf_info_failed eif; | |||
| 1730 | char *p; | |||
| 1731 | bfd_size_type amt; | |||
| 1732 | ||||
| 1733 | sinfo = data; | |||
| 1734 | info = sinfo->info; | |||
| 1735 | ||||
| 1736 | if (h->root.type == bfd_link_hash_warning) | |||
| 1737 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |||
| 1738 | ||||
| 1739 | /* Fix the symbol flags. */ | |||
| 1740 | eif.failed = FALSE0; | |||
| 1741 | eif.info = info; | |||
| 1742 | if (! _bfd_elf_fix_symbol_flags (h, &eif)) | |||
| 1743 | { | |||
| 1744 | if (eif.failed) | |||
| 1745 | sinfo->failed = TRUE1; | |||
| 1746 | return FALSE0; | |||
| 1747 | } | |||
| 1748 | ||||
| 1749 | /* We only need version numbers for symbols defined in regular | |||
| 1750 | objects. */ | |||
| 1751 | if (!h->def_regular) | |||
| 1752 | return TRUE1; | |||
| 1753 | ||||
| 1754 | bed = get_elf_backend_data (sinfo->output_bfd)((const struct elf_backend_data *) (sinfo->output_bfd)-> xvec->backend_data); | |||
| 1755 | p = strchr (h->root.root.string, ELF_VER_CHR'@'); | |||
| 1756 | if (p != NULL((void*)0) && h->verinfo.vertree == NULL((void*)0)) | |||
| 1757 | { | |||
| 1758 | struct bfd_elf_version_tree *t; | |||
| 1759 | bfd_boolean hidden; | |||
| 1760 | ||||
| 1761 | hidden = TRUE1; | |||
| 1762 | ||||
| 1763 | /* There are two consecutive ELF_VER_CHR characters if this is | |||
| 1764 | not a hidden symbol. */ | |||
| 1765 | ++p; | |||
| 1766 | if (*p == ELF_VER_CHR'@') | |||
| 1767 | { | |||
| 1768 | hidden = FALSE0; | |||
| 1769 | ++p; | |||
| 1770 | } | |||
| 1771 | ||||
| 1772 | /* If there is no version string, we can just return out. */ | |||
| 1773 | if (*p == '\0') | |||
| 1774 | { | |||
| 1775 | if (hidden) | |||
| 1776 | h->hidden = 1; | |||
| 1777 | return TRUE1; | |||
| 1778 | } | |||
| 1779 | ||||
| 1780 | /* Look for the version. If we find it, it is no longer weak. */ | |||
| 1781 | for (t = sinfo->verdefs; t != NULL((void*)0); t = t->next) | |||
| 1782 | { | |||
| 1783 | if (strcmp (t->name, p) == 0) | |||
| 1784 | { | |||
| 1785 | size_t len; | |||
| 1786 | char *alc; | |||
| 1787 | struct bfd_elf_version_expr *d; | |||
| 1788 | ||||
| 1789 | len = p - h->root.root.string; | |||
| 1790 | alc = bfd_malloc (len); | |||
| 1791 | if (alc == NULL((void*)0)) | |||
| 1792 | return FALSE0; | |||
| 1793 | memcpy (alc, h->root.root.string, len - 1); | |||
| 1794 | alc[len - 1] = '\0'; | |||
| 1795 | if (alc[len - 2] == ELF_VER_CHR'@') | |||
| 1796 | alc[len - 2] = '\0'; | |||
| 1797 | ||||
| 1798 | h->verinfo.vertree = t; | |||
| 1799 | t->used = TRUE1; | |||
| 1800 | d = NULL((void*)0); | |||
| 1801 | ||||
| 1802 | if (t->globals.list != NULL((void*)0)) | |||
| 1803 | d = (*t->match) (&t->globals, NULL((void*)0), alc); | |||
| 1804 | ||||
| 1805 | /* See if there is anything to force this symbol to | |||
| 1806 | local scope. */ | |||
| 1807 | if (d == NULL((void*)0) && t->locals.list != NULL((void*)0)) | |||
| 1808 | { | |||
| 1809 | d = (*t->match) (&t->locals, NULL((void*)0), alc); | |||
| 1810 | if (d != NULL((void*)0) | |||
| 1811 | && h->dynindx != -1 | |||
| 1812 | && ! info->export_dynamic) | |||
| 1813 | (*bed->elf_backend_hide_symbol) (info, h, TRUE1); | |||
| 1814 | } | |||
| 1815 | ||||
| 1816 | free (alc); | |||
| 1817 | break; | |||
| 1818 | } | |||
| 1819 | } | |||
| 1820 | ||||
| 1821 | /* If we are building an application, we need to create a | |||
| 1822 | version node for this version. */ | |||
| 1823 | if (t == NULL((void*)0) && info->executable) | |||
| 1824 | { | |||
| 1825 | struct bfd_elf_version_tree **pp; | |||
| 1826 | int version_index; | |||
| 1827 | ||||
| 1828 | /* If we aren't going to export this symbol, we don't need | |||
| 1829 | to worry about it. */ | |||
| 1830 | if (h->dynindx == -1) | |||
| 1831 | return TRUE1; | |||
| 1832 | ||||
| 1833 | amt = sizeof *t; | |||
| 1834 | t = bfd_zalloc (sinfo->output_bfd, amt); | |||
| 1835 | if (t == NULL((void*)0)) | |||
| 1836 | { | |||
| 1837 | sinfo->failed = TRUE1; | |||
| 1838 | return FALSE0; | |||
| 1839 | } | |||
| 1840 | ||||
| 1841 | t->name = p; | |||
| 1842 | t->name_indx = (unsigned int) -1; | |||
| 1843 | t->used = TRUE1; | |||
| 1844 | ||||
| 1845 | version_index = 1; | |||
| 1846 | /* Don't count anonymous version tag. */ | |||
| 1847 | if (sinfo->verdefs != NULL((void*)0) && sinfo->verdefs->vernum == 0) | |||
| 1848 | version_index = 0; | |||
| 1849 | for (pp = &sinfo->verdefs; *pp != NULL((void*)0); pp = &(*pp)->next) | |||
| 1850 | ++version_index; | |||
| 1851 | t->vernum = version_index; | |||
| 1852 | ||||
| 1853 | *pp = t; | |||
| 1854 | ||||
| 1855 | h->verinfo.vertree = t; | |||
| 1856 | } | |||
| 1857 | else if (t == NULL((void*)0)) | |||
| 1858 | { | |||
| 1859 | /* We could not find the version for a symbol when | |||
| 1860 | generating a shared archive. Return an error. */ | |||
| 1861 | (*_bfd_error_handler) | |||
| 1862 | (_("%B: undefined versioned symbol name %s")("%B: undefined versioned symbol name %s"), | |||
| 1863 | sinfo->output_bfd, h->root.root.string); | |||
| 1864 | bfd_set_error (bfd_error_bad_value); | |||
| 1865 | sinfo->failed = TRUE1; | |||
| 1866 | return FALSE0; | |||
| 1867 | } | |||
| 1868 | ||||
| 1869 | if (hidden) | |||
| 1870 | h->hidden = 1; | |||
| 1871 | } | |||
| 1872 | ||||
| 1873 | /* If we don't have a version for this symbol, see if we can find | |||
| 1874 | something. */ | |||
| 1875 | if (h->verinfo.vertree == NULL((void*)0) && sinfo->verdefs != NULL((void*)0)) | |||
| 1876 | { | |||
| 1877 | struct bfd_elf_version_tree *t; | |||
| 1878 | struct bfd_elf_version_tree *local_ver; | |||
| 1879 | struct bfd_elf_version_expr *d; | |||
| 1880 | ||||
| 1881 | /* See if can find what version this symbol is in. If the | |||
| 1882 | symbol is supposed to be local, then don't actually register | |||
| 1883 | it. */ | |||
| 1884 | local_ver = NULL((void*)0); | |||
| 1885 | for (t = sinfo->verdefs; t != NULL((void*)0); t = t->next) | |||
| 1886 | { | |||
| 1887 | if (t->globals.list != NULL((void*)0)) | |||
| 1888 | { | |||
| 1889 | bfd_boolean matched; | |||
| 1890 | ||||
| 1891 | matched = FALSE0; | |||
| 1892 | d = NULL((void*)0); | |||
| 1893 | while ((d = (*t->match) (&t->globals, d, | |||
| 1894 | h->root.root.string)) != NULL((void*)0)) | |||
| 1895 | if (d->symver) | |||
| 1896 | matched = TRUE1; | |||
| 1897 | else | |||
| 1898 | { | |||
| 1899 | /* There is a version without definition. Make | |||
| 1900 | the symbol the default definition for this | |||
| 1901 | version. */ | |||
| 1902 | h->verinfo.vertree = t; | |||
| 1903 | local_ver = NULL((void*)0); | |||
| 1904 | d->script = 1; | |||
| 1905 | break; | |||
| 1906 | } | |||
| 1907 | if (d != NULL((void*)0)) | |||
| 1908 | break; | |||
| 1909 | else if (matched) | |||
| 1910 | /* There is no undefined version for this symbol. Hide the | |||
| 1911 | default one. */ | |||
| 1912 | (*bed->elf_backend_hide_symbol) (info, h, TRUE1); | |||
| 1913 | } | |||
| 1914 | ||||
| 1915 | if (t->locals.list != NULL((void*)0)) | |||
| 1916 | { | |||
| 1917 | d = NULL((void*)0); | |||
| 1918 | while ((d = (*t->match) (&t->locals, d, | |||
| 1919 | h->root.root.string)) != NULL((void*)0)) | |||
| 1920 | { | |||
| 1921 | local_ver = t; | |||
| 1922 | /* If the match is "*", keep looking for a more | |||
| 1923 | explicit, perhaps even global, match. | |||
| 1924 | XXX: Shouldn't this be !d->wildcard instead? */ | |||
| 1925 | if (d->pattern[0] != '*' || d->pattern[1] != '\0') | |||
| 1926 | break; | |||
| 1927 | } | |||
| 1928 | ||||
| 1929 | if (d != NULL((void*)0)) | |||
| 1930 | break; | |||
| 1931 | } | |||
| 1932 | } | |||
| 1933 | ||||
| 1934 | if (local_ver != NULL((void*)0)) | |||
| 1935 | { | |||
| 1936 | h->verinfo.vertree = local_ver; | |||
| 1937 | if (h->dynindx != -1 | |||
| 1938 | && ! info->export_dynamic) | |||
| 1939 | { | |||
| 1940 | (*bed->elf_backend_hide_symbol) (info, h, TRUE1); | |||
| 1941 | } | |||
| 1942 | } | |||
| 1943 | } | |||
| 1944 | ||||
| 1945 | return TRUE1; | |||
| 1946 | } | |||
| 1947 | ||||
| 1948 | /* Read and swap the relocs from the section indicated by SHDR. This | |||
| 1949 | may be either a REL or a RELA section. The relocations are | |||
| 1950 | translated into RELA relocations and stored in INTERNAL_RELOCS, | |||
| 1951 | which should have already been allocated to contain enough space. | |||
| 1952 | The EXTERNAL_RELOCS are a buffer where the external form of the | |||
| 1953 | relocations should be stored. | |||
| 1954 | ||||
| 1955 | Returns FALSE if something goes wrong. */ | |||
| 1956 | ||||
| 1957 | static bfd_boolean | |||
| 1958 | elf_link_read_relocs_from_section (bfd *abfd, | |||
| 1959 | asection *sec, | |||
| 1960 | Elf_Internal_Shdr *shdr, | |||
| 1961 | void *external_relocs, | |||
| 1962 | Elf_Internal_Rela *internal_relocs) | |||
| 1963 | { | |||
| 1964 | const struct elf_backend_data *bed; | |||
| 1965 | void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); | |||
| 1966 | const bfd_byte *erela; | |||
| 1967 | const bfd_byte *erelaend; | |||
| 1968 | Elf_Internal_Rela *irela; | |||
| 1969 | Elf_Internal_Shdr *symtab_hdr; | |||
| 1970 | size_t nsyms; | |||
| 1971 | ||||
| 1972 | /* Position ourselves at the start of the section. */ | |||
| 1973 | if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET0) != 0) | |||
| 1974 | return FALSE0; | |||
| 1975 | ||||
| 1976 | /* Read the relocations. */ | |||
| 1977 | if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size) | |||
| 1978 | return FALSE0; | |||
| 1979 | ||||
| 1980 | symtab_hdr = &elf_tdata (abfd)((abfd) -> tdata.elf_obj_data)->symtab_hdr; | |||
| 1981 | nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize; | |||
| 1982 | ||||
| 1983 | bed = get_elf_backend_data (abfd)((const struct elf_backend_data *) (abfd)->xvec->backend_data ); | |||
| 1984 | ||||
| 1985 | /* Convert the external relocations to the internal format. */ | |||
| 1986 | if (shdr->sh_entsize == bed->s->sizeof_rel) | |||
| 1987 | swap_in = bed->s->swap_reloc_in; | |||
| 1988 | else if (shdr->sh_entsize == bed->s->sizeof_rela) | |||
| 1989 | swap_in = bed->s->swap_reloca_in; | |||
| 1990 | else | |||
| 1991 | { | |||
| 1992 | bfd_set_error (bfd_error_wrong_format); | |||
| 1993 | return FALSE0; | |||
| 1994 | } | |||
| 1995 | ||||
| 1996 | erela = external_relocs; | |||
| 1997 | erelaend = erela + shdr->sh_size; | |||
| 1998 | irela = internal_relocs; | |||
| 1999 | while (erela < erelaend) | |||
| 2000 | { | |||
| 2001 | bfd_vma r_symndx; | |||
| 2002 | ||||
| 2003 | (*swap_in) (abfd, erela, irela); | |||
| 2004 | r_symndx = ELF32_R_SYM (irela->r_info)((irela->r_info) >> 8); | |||
| 2005 | if (bed->s->arch_size == 64) | |||
| 2006 | r_symndx >>= 24; | |||
| 2007 | if ((size_t) r_symndx >= nsyms) | |||
| 2008 | { | |||
| 2009 | (*_bfd_error_handler) | |||
| 2010 | (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"("%B: bad reloc symbol index (0x%lx >= 0x%lx)" " for offset 0x%lx in section `%A'" ) | |||
| 2011 | " for offset 0x%lx in section `%A'")("%B: bad reloc symbol index (0x%lx >= 0x%lx)" " for offset 0x%lx in section `%A'" ), | |||
| 2012 | abfd, sec, | |||
| 2013 | (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset); | |||
| 2014 | bfd_set_error (bfd_error_bad_value); | |||
| 2015 | return FALSE0; | |||
| 2016 | } | |||
| 2017 | irela += bed->s->int_rels_per_ext_rel; | |||
| 2018 | erela += shdr->sh_entsize; | |||
| 2019 | } | |||
| 2020 | ||||
| 2021 | return TRUE1; | |||
| 2022 | } | |||
| 2023 | ||||
| 2024 | /* Read and swap the relocs for a section O. They may have been | |||
| 2025 | cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are | |||
| 2026 | not NULL, they are used as buffers to read into. They are known to | |||
| 2027 | be large enough. If the INTERNAL_RELOCS relocs argument is NULL, | |||
| 2028 | the return value is allocated using either malloc or bfd_alloc, | |||
| 2029 | according to the KEEP_MEMORY argument. If O has two relocation | |||
| 2030 | sections (both REL and RELA relocations), then the REL_HDR | |||
| 2031 | relocations will appear first in INTERNAL_RELOCS, followed by the | |||
| 2032 | REL_HDR2 relocations. */ | |||
| 2033 | ||||
| 2034 | Elf_Internal_Rela * | |||
| 2035 | _bfd_elf_link_read_relocs (bfd *abfd, | |||
| 2036 | asection *o, | |||
| 2037 | void *external_relocs, | |||
| 2038 | Elf_Internal_Rela *internal_relocs, | |||
| 2039 | bfd_boolean keep_memory) | |||
| 2040 | { | |||
| 2041 | Elf_Internal_Shdr *rel_hdr; | |||
| 2042 | void *alloc1 = NULL((void*)0); | |||
| 2043 | Elf_Internal_Rela *alloc2 = NULL((void*)0); | |||
| 2044 | const struct elf_backend_data *bed = get_elf_backend_data (abfd)((const struct elf_backend_data *) (abfd)->xvec->backend_data ); | |||
| 2045 | ||||
| 2046 | if (elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->relocs != NULL((void*)0)) | |||
| 2047 | return elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->relocs; | |||
| 2048 | ||||
| 2049 | if (o->reloc_count == 0) | |||
| 2050 | return NULL((void*)0); | |||
| 2051 | ||||
| 2052 | rel_hdr = &elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->rel_hdr; | |||
| 2053 | ||||
| 2054 | if (internal_relocs == NULL((void*)0)) | |||
| 2055 | { | |||
| 2056 | bfd_size_type size; | |||
| 2057 | ||||
| 2058 | size = o->reloc_count; | |||
| 2059 | size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela); | |||
| 2060 | if (keep_memory) | |||
| 2061 | internal_relocs = bfd_alloc (abfd, size); | |||
| 2062 | else | |||
| 2063 | internal_relocs = alloc2 = bfd_malloc (size); | |||
| 2064 | if (internal_relocs == NULL((void*)0)) | |||
| 2065 | goto error_return; | |||
| 2066 | } | |||
| 2067 | ||||
| 2068 | if (external_relocs == NULL((void*)0)) | |||
| 2069 | { | |||
| 2070 | bfd_size_type size = rel_hdr->sh_size; | |||
| 2071 | ||||
| 2072 | if (elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->rel_hdr2) | |||
| 2073 | size += elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->rel_hdr2->sh_size; | |||
| 2074 | alloc1 = bfd_malloc (size); | |||
| 2075 | if (alloc1 == NULL((void*)0)) | |||
| 2076 | goto error_return; | |||
| 2077 | external_relocs = alloc1; | |||
| 2078 | } | |||
| 2079 | ||||
| 2080 | if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr, | |||
| 2081 | external_relocs, | |||
| 2082 | internal_relocs)) | |||
| 2083 | goto error_return; | |||
| 2084 | if (elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->rel_hdr2 | |||
| 2085 | && (!elf_link_read_relocs_from_section | |||
| 2086 | (abfd, o, | |||
| 2087 | elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->rel_hdr2, | |||
| 2088 | ((bfd_byte *) external_relocs) + rel_hdr->sh_size, | |||
| 2089 | internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)((rel_hdr)->sh_size / (rel_hdr)->sh_entsize) | |||
| 2090 | * bed->s->int_rels_per_ext_rel)))) | |||
| 2091 | goto error_return; | |||
| 2092 | ||||
| 2093 | /* Cache the results for next time, if we can. */ | |||
| 2094 | if (keep_memory) | |||
| 2095 | elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->relocs = internal_relocs; | |||
| 2096 | ||||
| 2097 | if (alloc1 != NULL((void*)0)) | |||
| 2098 | free (alloc1); | |||
| 2099 | ||||
| 2100 | /* Don't free alloc2, since if it was allocated we are passing it | |||
| 2101 | back (under the name of internal_relocs). */ | |||
| 2102 | ||||
| 2103 | return internal_relocs; | |||
| 2104 | ||||
| 2105 | error_return: | |||
| 2106 | if (alloc1 != NULL((void*)0)) | |||
| 2107 | free (alloc1); | |||
| 2108 | if (alloc2 != NULL((void*)0)) | |||
| 2109 | free (alloc2); | |||
| 2110 | return NULL((void*)0); | |||
| 2111 | } | |||
| 2112 | ||||
| 2113 | /* Compute the size of, and allocate space for, REL_HDR which is the | |||
| 2114 | section header for a section containing relocations for O. */ | |||
| 2115 | ||||
| 2116 | bfd_boolean | |||
| 2117 | _bfd_elf_link_size_reloc_section (bfd *abfd, | |||
| 2118 | Elf_Internal_Shdr *rel_hdr, | |||
| 2119 | asection *o) | |||
| 2120 | { | |||
| 2121 | bfd_size_type reloc_count; | |||
| 2122 | bfd_size_type num_rel_hashes; | |||
| 2123 | ||||
| 2124 | /* Figure out how many relocations there will be. */ | |||
| 2125 | if (rel_hdr == &elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->rel_hdr) | |||
| 2126 | reloc_count = elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->rel_count; | |||
| 2127 | else | |||
| 2128 | reloc_count = elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->rel_count2; | |||
| 2129 | ||||
| 2130 | num_rel_hashes = o->reloc_count; | |||
| 2131 | if (num_rel_hashes < reloc_count) | |||
| 2132 | num_rel_hashes = reloc_count; | |||
| 2133 | ||||
| 2134 | /* That allows us to calculate the size of the section. */ | |||
| 2135 | rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count; | |||
| 2136 | ||||
| 2137 | /* The contents field must last into write_object_contents, so we | |||
| 2138 | allocate it with bfd_alloc rather than malloc. Also since we | |||
| 2139 | cannot be sure that the contents will actually be filled in, | |||
| 2140 | we zero the allocated space. */ | |||
| 2141 | rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size); | |||
| 2142 | if (rel_hdr->contents == NULL((void*)0) && rel_hdr->sh_size != 0) | |||
| 2143 | return FALSE0; | |||
| 2144 | ||||
| 2145 | /* We only allocate one set of hash entries, so we only do it the | |||
| 2146 | first time we are called. */ | |||
| 2147 | if (elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->rel_hashes == NULL((void*)0) | |||
| 2148 | && num_rel_hashes) | |||
| 2149 | { | |||
| 2150 | struct elf_link_hash_entry **p; | |||
| 2151 | ||||
| 2152 | p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *)); | |||
| 2153 | if (p == NULL((void*)0)) | |||
| 2154 | return FALSE0; | |||
| 2155 | ||||
| 2156 | elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->rel_hashes = p; | |||
| 2157 | } | |||
| 2158 | ||||
| 2159 | return TRUE1; | |||
| 2160 | } | |||
| 2161 | ||||
| 2162 | /* Copy the relocations indicated by the INTERNAL_RELOCS (which | |||
| 2163 | originated from the section given by INPUT_REL_HDR) to the | |||
| 2164 | OUTPUT_BFD. */ | |||
| 2165 | ||||
| 2166 | bfd_boolean | |||
| 2167 | _bfd_elf_link_output_relocs (bfd *output_bfd, | |||
| 2168 | asection *input_section, | |||
| 2169 | Elf_Internal_Shdr *input_rel_hdr, | |||
| 2170 | Elf_Internal_Rela *internal_relocs, | |||
| 2171 | struct elf_link_hash_entry **rel_hash | |||
| 2172 | ATTRIBUTE_UNUSED__attribute__ ((__unused__))) | |||
| 2173 | { | |||
| 2174 | Elf_Internal_Rela *irela; | |||
| 2175 | Elf_Internal_Rela *irelaend; | |||
| 2176 | bfd_byte *erel; | |||
| 2177 | Elf_Internal_Shdr *output_rel_hdr; | |||
| 2178 | asection *output_section; | |||
| 2179 | unsigned int *rel_countp = NULL((void*)0); | |||
| 2180 | const struct elf_backend_data *bed; | |||
| 2181 | void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); | |||
| 2182 | ||||
| 2183 | output_section = input_section->output_section; | |||
| 2184 | output_rel_hdr = NULL((void*)0); | |||
| 2185 | ||||
| 2186 | if (elf_section_data (output_section)((struct bfd_elf_section_data*)(output_section)->used_by_bfd )->rel_hdr.sh_entsize | |||
| 2187 | == input_rel_hdr->sh_entsize) | |||
| 2188 | { | |||
| 2189 | output_rel_hdr = &elf_section_data (output_section)((struct bfd_elf_section_data*)(output_section)->used_by_bfd )->rel_hdr; | |||
| 2190 | rel_countp = &elf_section_data (output_section)((struct bfd_elf_section_data*)(output_section)->used_by_bfd )->rel_count; | |||
| 2191 | } | |||
| 2192 | else if (elf_section_data (output_section)((struct bfd_elf_section_data*)(output_section)->used_by_bfd )->rel_hdr2 | |||
| 2193 | && (elf_section_data (output_section)((struct bfd_elf_section_data*)(output_section)->used_by_bfd )->rel_hdr2->sh_entsize | |||
| 2194 | == input_rel_hdr->sh_entsize)) | |||
| 2195 | { | |||
| 2196 | output_rel_hdr = elf_section_data (output_section)((struct bfd_elf_section_data*)(output_section)->used_by_bfd )->rel_hdr2; | |||
| 2197 | rel_countp = &elf_section_data (output_section)((struct bfd_elf_section_data*)(output_section)->used_by_bfd )->rel_count2; | |||
| 2198 | } | |||
| 2199 | else | |||
| 2200 | { | |||
| 2201 | (*_bfd_error_handler) | |||
| 2202 | (_("%B: relocation size mismatch in %B section %A")("%B: relocation size mismatch in %B section %A"), | |||
| 2203 | output_bfd, input_section->owner, input_section); | |||
| 2204 | bfd_set_error (bfd_error_wrong_object_format); | |||
| 2205 | return FALSE0; | |||
| 2206 | } | |||
| 2207 | ||||
| 2208 | bed = get_elf_backend_data (output_bfd)((const struct elf_backend_data *) (output_bfd)->xvec-> backend_data); | |||
| 2209 | if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel) | |||
| 2210 | swap_out = bed->s->swap_reloc_out; | |||
| 2211 | else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela) | |||
| 2212 | swap_out = bed->s->swap_reloca_out; | |||
| 2213 | else | |||
| 2214 | abort ()_bfd_abort ("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" , 2214, __PRETTY_FUNCTION__); | |||
| 2215 | ||||
| 2216 | erel = output_rel_hdr->contents; | |||
| 2217 | erel += *rel_countp * input_rel_hdr->sh_entsize; | |||
| 2218 | irela = internal_relocs; | |||
| 2219 | irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)((input_rel_hdr)->sh_size / (input_rel_hdr)->sh_entsize ) | |||
| 2220 | * bed->s->int_rels_per_ext_rel); | |||
| 2221 | while (irela < irelaend) | |||
| 2222 | { | |||
| 2223 | (*swap_out) (output_bfd, irela, erel); | |||
| 2224 | irela += bed->s->int_rels_per_ext_rel; | |||
| 2225 | erel += input_rel_hdr->sh_entsize; | |||
| 2226 | } | |||
| 2227 | ||||
| 2228 | /* Bump the counter, so that we know where to add the next set of | |||
| 2229 | relocations. */ | |||
| 2230 | *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr)((input_rel_hdr)->sh_size / (input_rel_hdr)->sh_entsize ); | |||
| 2231 | ||||
| 2232 | return TRUE1; | |||
| 2233 | } | |||
| 2234 | ||||
| 2235 | /* Make weak undefined symbols in PIE dynamic. */ | |||
| 2236 | ||||
| 2237 | bfd_boolean | |||
| 2238 | _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info, | |||
| 2239 | struct elf_link_hash_entry *h) | |||
| 2240 | { | |||
| 2241 | if (info->pie | |||
| 2242 | && h->dynindx == -1 | |||
| 2243 | && h->root.type == bfd_link_hash_undefweak) | |||
| 2244 | return bfd_elf_link_record_dynamic_symbol (info, h); | |||
| 2245 | ||||
| 2246 | return TRUE1; | |||
| 2247 | } | |||
| 2248 | ||||
| 2249 | /* Fix up the flags for a symbol. This handles various cases which | |||
| 2250 | can only be fixed after all the input files are seen. This is | |||
| 2251 | currently called by both adjust_dynamic_symbol and | |||
| 2252 | assign_sym_version, which is unnecessary but perhaps more robust in | |||
| 2253 | the face of future changes. */ | |||
| 2254 | ||||
| 2255 | bfd_boolean | |||
| 2256 | _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h, | |||
| 2257 | struct elf_info_failed *eif) | |||
| 2258 | { | |||
| 2259 | const struct elf_backend_data *bed = NULL((void*)0); | |||
| 2260 | ||||
| 2261 | /* If this symbol was mentioned in a non-ELF file, try to set | |||
| 2262 | DEF_REGULAR and REF_REGULAR correctly. This is the only way to | |||
| 2263 | permit a non-ELF file to correctly refer to a symbol defined in | |||
| 2264 | an ELF dynamic object. */ | |||
| 2265 | if (h->non_elf) | |||
| 2266 | { | |||
| 2267 | while (h->root.type == bfd_link_hash_indirect) | |||
| 2268 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |||
| 2269 | ||||
| 2270 | if (h->root.type != bfd_link_hash_defined | |||
| 2271 | && h->root.type != bfd_link_hash_defweak) | |||
| 2272 | { | |||
| 2273 | h->ref_regular = 1; | |||
| 2274 | h->ref_regular_nonweak = 1; | |||
| 2275 | } | |||
| 2276 | else | |||
| 2277 | { | |||
| 2278 | if (h->root.u.def.section->owner != NULL((void*)0) | |||
| 2279 | && (bfd_get_flavour (h->root.u.def.section->owner)((h->root.u.def.section->owner)->xvec->flavour) | |||
| 2280 | == bfd_target_elf_flavour)) | |||
| 2281 | { | |||
| 2282 | h->ref_regular = 1; | |||
| 2283 | h->ref_regular_nonweak = 1; | |||
| 2284 | } | |||
| 2285 | else | |||
| 2286 | h->def_regular = 1; | |||
| 2287 | } | |||
| 2288 | ||||
| 2289 | if (h->dynindx == -1 | |||
| 2290 | && (h->def_dynamic | |||
| 2291 | || h->ref_dynamic)) | |||
| 2292 | { | |||
| 2293 | if (! bfd_elf_link_record_dynamic_symbol (eif->info, h)) | |||
| 2294 | { | |||
| 2295 | eif->failed = TRUE1; | |||
| 2296 | return FALSE0; | |||
| 2297 | } | |||
| 2298 | } | |||
| 2299 | } | |||
| 2300 | else | |||
| 2301 | { | |||
| 2302 | /* Unfortunately, NON_ELF is only correct if the symbol | |||
| 2303 | was first seen in a non-ELF file. Fortunately, if the symbol | |||
| 2304 | was first seen in an ELF file, we're probably OK unless the | |||
| 2305 | symbol was defined in a non-ELF file. Catch that case here. | |||
| 2306 | FIXME: We're still in trouble if the symbol was first seen in | |||
| 2307 | a dynamic object, and then later in a non-ELF regular object. */ | |||
| 2308 | if ((h->root.type == bfd_link_hash_defined | |||
| 2309 | || h->root.type == bfd_link_hash_defweak) | |||
| 2310 | && !h->def_regular | |||
| 2311 | && (h->root.u.def.section->owner != NULL((void*)0) | |||
| 2312 | ? (bfd_get_flavour (h->root.u.def.section->owner)((h->root.u.def.section->owner)->xvec->flavour) | |||
| 2313 | != bfd_target_elf_flavour) | |||
| 2314 | : (bfd_is_abs_section (h->root.u.def.section)((h->root.u.def.section) == ((asection *) &bfd_abs_section )) | |||
| 2315 | && !h->def_dynamic))) | |||
| 2316 | h->def_regular = 1; | |||
| 2317 | } | |||
| 2318 | ||||
| 2319 | /* Backend specific symbol fixup. */ | |||
| 2320 | if (elf_hash_table (eif->info)((struct elf_link_hash_table *) ((eif->info)->hash))->dynobj) | |||
| 2321 | { | |||
| 2322 | bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj)((const struct elf_backend_data *) (((struct elf_link_hash_table *) ((eif->info)->hash))->dynobj)->xvec->backend_data ); | |||
| 2323 | if (bed->elf_backend_fixup_symbol | |||
| 2324 | && !(*bed->elf_backend_fixup_symbol) (eif->info, h)) | |||
| 2325 | return FALSE0; | |||
| 2326 | } | |||
| 2327 | ||||
| 2328 | /* If this is a final link, and the symbol was defined as a common | |||
| 2329 | symbol in a regular object file, and there was no definition in | |||
| 2330 | any dynamic object, then the linker will have allocated space for | |||
| 2331 | the symbol in a common section but the DEF_REGULAR | |||
| 2332 | flag will not have been set. */ | |||
| 2333 | if (h->root.type == bfd_link_hash_defined | |||
| 2334 | && !h->def_regular | |||
| 2335 | && h->ref_regular | |||
| 2336 | && !h->def_dynamic | |||
| 2337 | && (h->root.u.def.section->owner->flags & DYNAMIC0x40) == 0) | |||
| 2338 | h->def_regular = 1; | |||
| 2339 | ||||
| 2340 | /* If -Bsymbolic was used (which means to bind references to global | |||
| 2341 | symbols to the definition within the shared object), and this | |||
| 2342 | symbol was defined in a regular object, then it actually doesn't | |||
| 2343 | need a PLT entry. Likewise, if the symbol has non-default | |||
| 2344 | visibility. If the symbol has hidden or internal visibility, we | |||
| 2345 | will force it local. */ | |||
| 2346 | if (h->needs_plt | |||
| 2347 | && eif->info->shared | |||
| 2348 | && is_elf_hash_table (eif->info->hash)(((struct bfd_link_hash_table *) (eif->info->hash))-> type == bfd_link_elf_hash_table) | |||
| 2349 | && (eif->info->symbolic || eif->info->static_link | |||
| 2350 | || ELF_ST_VISIBILITY (h->other)((h->other) & 0x3) != STV_DEFAULT0) | |||
| 2351 | && h->def_regular) | |||
| 2352 | { | |||
| 2353 | bfd_boolean force_local; | |||
| 2354 | ||||
| 2355 | force_local = (ELF_ST_VISIBILITY (h->other)((h->other) & 0x3) == STV_INTERNAL1 | |||
| 2356 | || ELF_ST_VISIBILITY (h->other)((h->other) & 0x3) == STV_HIDDEN2); | |||
| 2357 | (*bed->elf_backend_hide_symbol) (eif->info, h, force_local); | |||
| 2358 | } | |||
| 2359 | ||||
| 2360 | /* If a weak undefined symbol has non-default visibility, we also | |||
| 2361 | hide it from the dynamic linker. */ | |||
| 2362 | if (ELF_ST_VISIBILITY (h->other)((h->other) & 0x3) != STV_DEFAULT0 | |||
| 2363 | && h->root.type == bfd_link_hash_undefweak) | |||
| 2364 | { | |||
| 2365 | const struct elf_backend_data *bed; | |||
| 2366 | bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj)((const struct elf_backend_data *) (((struct elf_link_hash_table *) ((eif->info)->hash))->dynobj)->xvec->backend_data ); | |||
| 2367 | (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE1); | |||
| 2368 | } | |||
| 2369 | ||||
| 2370 | /* If this is a weak defined symbol in a dynamic object, and we know | |||
| 2371 | the real definition in the dynamic object, copy interesting flags | |||
| 2372 | over to the real definition. */ | |||
| 2373 | if (h->u.weakdef != NULL((void*)0)) | |||
| 2374 | { | |||
| 2375 | struct elf_link_hash_entry *weakdef; | |||
| 2376 | ||||
| 2377 | weakdef = h->u.weakdef; | |||
| 2378 | if (h->root.type == bfd_link_hash_indirect) | |||
| 2379 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |||
| 2380 | ||||
| 2381 | BFD_ASSERT (h->root.type == bfd_link_hash_defineddo { if (!(h->root.type == bfd_link_hash_defined || h-> root.type == bfd_link_hash_defweak)) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,2382); } while (0) | |||
| 2382 | || h->root.type == bfd_link_hash_defweak)do { if (!(h->root.type == bfd_link_hash_defined || h-> root.type == bfd_link_hash_defweak)) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,2382); } while (0); | |||
| 2383 | BFD_ASSERT (weakdef->root.type == bfd_link_hash_defineddo { if (!(weakdef->root.type == bfd_link_hash_defined || weakdef ->root.type == bfd_link_hash_defweak)) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,2384); } while (0) | |||
| 2384 | || weakdef->root.type == bfd_link_hash_defweak)do { if (!(weakdef->root.type == bfd_link_hash_defined || weakdef ->root.type == bfd_link_hash_defweak)) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,2384); } while (0); | |||
| 2385 | BFD_ASSERT (weakdef->def_dynamic)do { if (!(weakdef->def_dynamic)) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,2385); } while (0); | |||
| 2386 | ||||
| 2387 | /* If the real definition is defined by a regular object file, | |||
| 2388 | don't do anything special. See the longer description in | |||
| 2389 | _bfd_elf_adjust_dynamic_symbol, below. */ | |||
| 2390 | if (weakdef->def_regular) | |||
| 2391 | h->u.weakdef = NULL((void*)0); | |||
| 2392 | else | |||
| 2393 | (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, | |||
| 2394 | h); | |||
| 2395 | } | |||
| 2396 | ||||
| 2397 | return TRUE1; | |||
| 2398 | } | |||
| 2399 | ||||
| 2400 | /* Make the backend pick a good value for a dynamic symbol. This is | |||
| 2401 | called via elf_link_hash_traverse, and also calls itself | |||
| 2402 | recursively. */ | |||
| 2403 | ||||
| 2404 | bfd_boolean | |||
| 2405 | _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data) | |||
| 2406 | { | |||
| 2407 | struct elf_info_failed *eif = data; | |||
| 2408 | bfd *dynobj; | |||
| 2409 | const struct elf_backend_data *bed; | |||
| 2410 | ||||
| 2411 | if (! is_elf_hash_table (eif->info->hash)(((struct bfd_link_hash_table *) (eif->info->hash))-> type == bfd_link_elf_hash_table)) | |||
| 2412 | return FALSE0; | |||
| 2413 | ||||
| 2414 | if (h->root.type == bfd_link_hash_warning) | |||
| 2415 | { | |||
| 2416 | h->got = elf_hash_table (eif->info)((struct elf_link_hash_table *) ((eif->info)->hash))->init_got_offset; | |||
| 2417 | h->plt = elf_hash_table (eif->info)((struct elf_link_hash_table *) ((eif->info)->hash))->init_plt_offset; | |||
| 2418 | ||||
| 2419 | /* When warning symbols are created, they **replace** the "real" | |||
| 2420 | entry in the hash table, thus we never get to see the real | |||
| 2421 | symbol in a hash traversal. So look at it now. */ | |||
| 2422 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |||
| 2423 | } | |||
| 2424 | ||||
| 2425 | /* Ignore indirect symbols. These are added by the versioning code. */ | |||
| 2426 | if (h->root.type == bfd_link_hash_indirect) | |||
| 2427 | return TRUE1; | |||
| 2428 | ||||
| 2429 | /* Fix the symbol flags. */ | |||
| 2430 | if (! _bfd_elf_fix_symbol_flags (h, eif)) | |||
| 2431 | return FALSE0; | |||
| 2432 | ||||
| 2433 | /* If this symbol does not require a PLT entry, and it is not | |||
| 2434 | defined by a dynamic object, or is not referenced by a regular | |||
| 2435 | object, ignore it. We do have to handle a weak defined symbol, | |||
| 2436 | even if no regular object refers to it, if we decided to add it | |||
| 2437 | to the dynamic symbol table. FIXME: Do we normally need to worry | |||
| 2438 | about symbols which are defined by one dynamic object and | |||
| 2439 | referenced by another one? */ | |||
| 2440 | if (!h->needs_plt | |||
| 2441 | && (h->def_regular | |||
| 2442 | || !h->def_dynamic | |||
| 2443 | || (!h->ref_regular | |||
| 2444 | && (h->u.weakdef == NULL((void*)0) || h->u.weakdef->dynindx == -1)))) | |||
| 2445 | { | |||
| 2446 | h->plt = elf_hash_table (eif->info)((struct elf_link_hash_table *) ((eif->info)->hash))->init_plt_offset; | |||
| 2447 | return TRUE1; | |||
| 2448 | } | |||
| 2449 | ||||
| 2450 | /* If we've already adjusted this symbol, don't do it again. This | |||
| 2451 | can happen via a recursive call. */ | |||
| 2452 | if (h->dynamic_adjusted) | |||
| 2453 | return TRUE1; | |||
| 2454 | ||||
| 2455 | /* Don't look at this symbol again. Note that we must set this | |||
| 2456 | after checking the above conditions, because we may look at a | |||
| 2457 | symbol once, decide not to do anything, and then get called | |||
| 2458 | recursively later after REF_REGULAR is set below. */ | |||
| 2459 | h->dynamic_adjusted = 1; | |||
| 2460 | ||||
| 2461 | /* If this is a weak definition, and we know a real definition, and | |||
| 2462 | the real symbol is not itself defined by a regular object file, | |||
| 2463 | then get a good value for the real definition. We handle the | |||
| 2464 | real symbol first, for the convenience of the backend routine. | |||
| 2465 | ||||
| 2466 | Note that there is a confusing case here. If the real definition | |||
| 2467 | is defined by a regular object file, we don't get the real symbol | |||
| 2468 | from the dynamic object, but we do get the weak symbol. If the | |||
| 2469 | processor backend uses a COPY reloc, then if some routine in the | |||
| 2470 | dynamic object changes the real symbol, we will not see that | |||
| 2471 | change in the corresponding weak symbol. This is the way other | |||
| 2472 | ELF linkers work as well, and seems to be a result of the shared | |||
| 2473 | library model. | |||
| 2474 | ||||
| 2475 | I will clarify this issue. Most SVR4 shared libraries define the | |||
| 2476 | variable _timezone and define timezone as a weak synonym. The | |||
| 2477 | tzset call changes _timezone. If you write | |||
| 2478 | extern int timezone; | |||
| 2479 | int _timezone = 5; | |||
| 2480 | int main () { tzset (); printf ("%d %d\n", timezone, _timezone); } | |||
| 2481 | you might expect that, since timezone is a synonym for _timezone, | |||
| 2482 | the same number will print both times. However, if the processor | |||
| 2483 | backend uses a COPY reloc, then actually timezone will be copied | |||
| 2484 | into your process image, and, since you define _timezone | |||
| 2485 | yourself, _timezone will not. Thus timezone and _timezone will | |||
| 2486 | wind up at different memory locations. The tzset call will set | |||
| 2487 | _timezone, leaving timezone unchanged. */ | |||
| 2488 | ||||
| 2489 | if (h->u.weakdef != NULL((void*)0)) | |||
| 2490 | { | |||
| 2491 | /* If we get to this point, we know there is an implicit | |||
| 2492 | reference by a regular object file via the weak symbol H. | |||
| 2493 | FIXME: Is this really true? What if the traversal finds | |||
| 2494 | H->U.WEAKDEF before it finds H? */ | |||
| 2495 | h->u.weakdef->ref_regular = 1; | |||
| 2496 | ||||
| 2497 | if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif)) | |||
| 2498 | return FALSE0; | |||
| 2499 | } | |||
| 2500 | ||||
| 2501 | /* If a symbol has no type and no size and does not require a PLT | |||
| 2502 | entry, then we are probably about to do the wrong thing here: we | |||
| 2503 | are probably going to create a COPY reloc for an empty object. | |||
| 2504 | This case can arise when a shared object is built with assembly | |||
| 2505 | code, and the assembly code fails to set the symbol type. */ | |||
| 2506 | if (h->size == 0 | |||
| 2507 | && h->type == STT_NOTYPE0 | |||
| 2508 | && !h->needs_plt) | |||
| 2509 | (*_bfd_error_handler) | |||
| 2510 | (_("warning: type and size of dynamic symbol `%s' are not defined")("warning: type and size of dynamic symbol `%s' are not defined" ), | |||
| 2511 | h->root.root.string); | |||
| 2512 | ||||
| 2513 | dynobj = elf_hash_table (eif->info)((struct elf_link_hash_table *) ((eif->info)->hash))->dynobj; | |||
| 2514 | bed = get_elf_backend_data (dynobj)((const struct elf_backend_data *) (dynobj)->xvec->backend_data ); | |||
| 2515 | if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h)) | |||
| 2516 | { | |||
| 2517 | eif->failed = TRUE1; | |||
| 2518 | return FALSE0; | |||
| 2519 | } | |||
| 2520 | ||||
| 2521 | return TRUE1; | |||
| 2522 | } | |||
| 2523 | ||||
| 2524 | /* Adjust all external symbols pointing into SEC_MERGE sections | |||
| 2525 | to reflect the object merging within the sections. */ | |||
| 2526 | ||||
| 2527 | bfd_boolean | |||
| 2528 | _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data) | |||
| 2529 | { | |||
| 2530 | asection *sec; | |||
| 2531 | ||||
| 2532 | if (h->root.type == bfd_link_hash_warning) | |||
| 2533 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |||
| 2534 | ||||
| 2535 | if ((h->root.type == bfd_link_hash_defined | |||
| 2536 | || h->root.type == bfd_link_hash_defweak) | |||
| 2537 | && ((sec = h->root.u.def.section)->flags & SEC_MERGE0x1000000) | |||
| 2538 | && sec->sec_info_type == ELF_INFO_TYPE_MERGE2) | |||
| 2539 | { | |||
| 2540 | bfd *output_bfd = data; | |||
| 2541 | ||||
| 2542 | h->root.u.def.value = | |||
| 2543 | _bfd_merged_section_offset (output_bfd, | |||
| 2544 | &h->root.u.def.section, | |||
| 2545 | elf_section_data (sec)((struct bfd_elf_section_data*)(sec)->used_by_bfd)->sec_info, | |||
| 2546 | h->root.u.def.value); | |||
| 2547 | } | |||
| 2548 | ||||
| 2549 | return TRUE1; | |||
| 2550 | } | |||
| 2551 | ||||
| 2552 | /* Returns false if the symbol referred to by H should be considered | |||
| 2553 | to resolve local to the current module, and true if it should be | |||
| 2554 | considered to bind dynamically. */ | |||
| 2555 | ||||
| 2556 | bfd_boolean | |||
| 2557 | _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h, | |||
| 2558 | struct bfd_link_info *info, | |||
| 2559 | bfd_boolean ignore_protected) | |||
| 2560 | { | |||
| 2561 | bfd_boolean binding_stays_local_p; | |||
| 2562 | ||||
| 2563 | if (h == NULL((void*)0)) | |||
| 2564 | return FALSE0; | |||
| 2565 | ||||
| 2566 | while (h->root.type == bfd_link_hash_indirect | |||
| 2567 | || h->root.type == bfd_link_hash_warning) | |||
| 2568 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |||
| 2569 | ||||
| 2570 | /* If it was forced local, then clearly it's not dynamic. */ | |||
| 2571 | if (h->dynindx == -1) | |||
| 2572 | return FALSE0; | |||
| 2573 | if (h->forced_local) | |||
| 2574 | return FALSE0; | |||
| 2575 | ||||
| 2576 | /* Identify the cases where name binding rules say that a | |||
| 2577 | visible symbol resolves locally. */ | |||
| 2578 | binding_stays_local_p = info->executable || info->symbolic; | |||
| 2579 | ||||
| 2580 | switch (ELF_ST_VISIBILITY (h->other)((h->other) & 0x3)) | |||
| 2581 | { | |||
| 2582 | case STV_INTERNAL1: | |||
| 2583 | case STV_HIDDEN2: | |||
| 2584 | return FALSE0; | |||
| 2585 | ||||
| 2586 | case STV_PROTECTED3: | |||
| 2587 | /* Proper resolution for function pointer equality may require | |||
| 2588 | that these symbols perhaps be resolved dynamically, even though | |||
| 2589 | we should be resolving them to the current module. */ | |||
| 2590 | if (!ignore_protected || h->type != STT_FUNC2) | |||
| 2591 | binding_stays_local_p = TRUE1; | |||
| 2592 | break; | |||
| 2593 | ||||
| 2594 | default: | |||
| 2595 | break; | |||
| 2596 | } | |||
| 2597 | ||||
| 2598 | /* If it isn't defined locally, then clearly it's dynamic. */ | |||
| 2599 | if (!h->def_regular) | |||
| 2600 | return TRUE1; | |||
| 2601 | ||||
| 2602 | /* Otherwise, the symbol is dynamic if binding rules don't tell | |||
| 2603 | us that it remains local. */ | |||
| 2604 | return !binding_stays_local_p; | |||
| 2605 | } | |||
| 2606 | ||||
| 2607 | /* Return true if the symbol referred to by H should be considered | |||
| 2608 | to resolve local to the current module, and false otherwise. Differs | |||
| 2609 | from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of | |||
| 2610 | undefined symbols and weak symbols. */ | |||
| 2611 | ||||
| 2612 | bfd_boolean | |||
| 2613 | _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h, | |||
| 2614 | struct bfd_link_info *info, | |||
| 2615 | bfd_boolean local_protected) | |||
| 2616 | { | |||
| 2617 | /* If it's a local sym, of course we resolve locally. */ | |||
| 2618 | if (h == NULL((void*)0)) | |||
| 2619 | return TRUE1; | |||
| 2620 | ||||
| 2621 | /* Common symbols that become definitions don't get the DEF_REGULAR | |||
| 2622 | flag set, so test it first, and don't bail out. */ | |||
| 2623 | if (ELF_COMMON_DEF_P (h)(!(h)->def_regular && !(h)->def_dynamic && (h)->root.type == bfd_link_hash_defined)) | |||
| 2624 | /* Do nothing. */; | |||
| 2625 | /* If we don't have a definition in a regular file, then we can't | |||
| 2626 | resolve locally. The sym is either undefined or dynamic. */ | |||
| 2627 | else if (!h->def_regular) | |||
| 2628 | return FALSE0; | |||
| 2629 | ||||
| 2630 | /* Forced local symbols resolve locally. */ | |||
| 2631 | if (h->forced_local) | |||
| 2632 | return TRUE1; | |||
| 2633 | ||||
| 2634 | /* As do non-dynamic symbols. */ | |||
| 2635 | if (h->dynindx == -1) | |||
| 2636 | return TRUE1; | |||
| 2637 | ||||
| 2638 | /* At this point, we know the symbol is defined and dynamic. In an | |||
| 2639 | executable it must resolve locally, likewise when building symbolic | |||
| 2640 | shared libraries. */ | |||
| 2641 | if (info->executable || info->symbolic) | |||
| 2642 | return TRUE1; | |||
| 2643 | ||||
| 2644 | /* Now deal with defined dynamic symbols in shared libraries. Ones | |||
| 2645 | with default visibility might not resolve locally. */ | |||
| 2646 | if (ELF_ST_VISIBILITY (h->other)((h->other) & 0x3) == STV_DEFAULT0) | |||
| 2647 | return FALSE0; | |||
| 2648 | ||||
| 2649 | /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */ | |||
| 2650 | if (ELF_ST_VISIBILITY (h->other)((h->other) & 0x3) != STV_PROTECTED3) | |||
| 2651 | return TRUE1; | |||
| 2652 | ||||
| 2653 | /* STV_PROTECTED non-function symbols are local. */ | |||
| 2654 | if (h->type != STT_FUNC2) | |||
| 2655 | return TRUE1; | |||
| 2656 | ||||
| 2657 | /* Function pointer equality tests may require that STV_PROTECTED | |||
| 2658 | symbols be treated as dynamic symbols, even when we know that the | |||
| 2659 | dynamic linker will resolve them locally. */ | |||
| 2660 | return local_protected; | |||
| 2661 | } | |||
| 2662 | ||||
| 2663 | /* Caches some TLS segment info, and ensures that the TLS segment vma is | |||
| 2664 | aligned. Returns the first TLS output section. */ | |||
| 2665 | ||||
| 2666 | struct bfd_section * | |||
| 2667 | _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info) | |||
| 2668 | { | |||
| 2669 | struct bfd_section *sec, *tls; | |||
| 2670 | unsigned int align = 0; | |||
| 2671 | ||||
| 2672 | for (sec = obfd->sections; sec != NULL((void*)0); sec = sec->next) | |||
| 2673 | if ((sec->flags & SEC_THREAD_LOCAL0x400) != 0) | |||
| 2674 | break; | |||
| 2675 | tls = sec; | |||
| 2676 | ||||
| 2677 | for (; sec != NULL((void*)0) && (sec->flags & SEC_THREAD_LOCAL0x400) != 0; sec = sec->next) | |||
| 2678 | if (sec->alignment_power > align) | |||
| 2679 | align = sec->alignment_power; | |||
| 2680 | ||||
| 2681 | elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->tls_sec = tls; | |||
| 2682 | ||||
| 2683 | /* Ensure the alignment of the first section is the largest alignment, | |||
| 2684 | so that the tls segment starts aligned. */ | |||
| 2685 | if (tls != NULL((void*)0)) | |||
| 2686 | tls->alignment_power = align; | |||
| 2687 | ||||
| 2688 | return tls; | |||
| 2689 | } | |||
| 2690 | ||||
| 2691 | /* Return TRUE iff this is a non-common, definition of a non-function symbol. */ | |||
| 2692 | static bfd_boolean | |||
| 2693 | is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED__attribute__ ((__unused__)), | |||
| 2694 | Elf_Internal_Sym *sym) | |||
| 2695 | { | |||
| 2696 | const struct elf_backend_data *bed; | |||
| 2697 | ||||
| 2698 | /* Local symbols do not count, but target specific ones might. */ | |||
| 2699 | if (ELF_ST_BIND (sym->st_info)(((unsigned int)(sym->st_info)) >> 4) != STB_GLOBAL1 | |||
| 2700 | && ELF_ST_BIND (sym->st_info)(((unsigned int)(sym->st_info)) >> 4) < STB_LOOS10) | |||
| 2701 | return FALSE0; | |||
| 2702 | ||||
| 2703 | /* Function symbols do not count. */ | |||
| 2704 | if (ELF_ST_TYPE (sym->st_info)((sym->st_info) & 0xF) == STT_FUNC2) | |||
| 2705 | return FALSE0; | |||
| 2706 | ||||
| 2707 | /* If the section is undefined, then so is the symbol. */ | |||
| 2708 | if (sym->st_shndx == SHN_UNDEF0) | |||
| 2709 | return FALSE0; | |||
| 2710 | ||||
| 2711 | /* If the symbol is defined in the common section, then | |||
| 2712 | it is a common definition and so does not count. */ | |||
| 2713 | bed = get_elf_backend_data (abfd)((const struct elf_backend_data *) (abfd)->xvec->backend_data ); | |||
| 2714 | if (bed->common_definition (sym)) | |||
| 2715 | return FALSE0; | |||
| 2716 | ||||
| 2717 | /* If the symbol is in a target specific section then we | |||
| 2718 | must rely upon the backend to tell us what it is. */ | |||
| 2719 | if (sym->st_shndx >= SHN_LORESERVE0xFF00 && sym->st_shndx < SHN_ABS0xFFF1) | |||
| 2720 | /* FIXME - this function is not coded yet: | |||
| 2721 | ||||
| 2722 | return _bfd_is_global_symbol_definition (abfd, sym); | |||
| 2723 | ||||
| 2724 | Instead for now assume that the definition is not global, | |||
| 2725 | Even if this is wrong, at least the linker will behave | |||
| 2726 | in the same way that it used to do. */ | |||
| 2727 | return FALSE0; | |||
| 2728 | ||||
| 2729 | return TRUE1; | |||
| 2730 | } | |||
| 2731 | ||||
| 2732 | /* Search the symbol table of the archive element of the archive ABFD | |||
| 2733 | whose archive map contains a mention of SYMDEF, and determine if | |||
| 2734 | the symbol is defined in this element. */ | |||
| 2735 | static bfd_boolean | |||
| 2736 | elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef) | |||
| 2737 | { | |||
| 2738 | Elf_Internal_Shdr * hdr; | |||
| 2739 | bfd_size_type symcount; | |||
| 2740 | bfd_size_type extsymcount; | |||
| 2741 | bfd_size_type extsymoff; | |||
| 2742 | Elf_Internal_Sym *isymbuf; | |||
| 2743 | Elf_Internal_Sym *isym; | |||
| 2744 | Elf_Internal_Sym *isymend; | |||
| 2745 | bfd_boolean result; | |||
| 2746 | ||||
| 2747 | abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset); | |||
| 2748 | if (abfd == NULL((void*)0)) | |||
| 2749 | return FALSE0; | |||
| 2750 | ||||
| 2751 | if (! bfd_check_format (abfd, bfd_object)) | |||
| 2752 | return FALSE0; | |||
| 2753 | ||||
| 2754 | /* If we have already included the element containing this symbol in the | |||
| 2755 | link then we do not need to include it again. Just claim that any symbol | |||
| 2756 | it contains is not a definition, so that our caller will not decide to | |||
| 2757 | (re)include this element. */ | |||
| 2758 | if (abfd->archive_pass) | |||
| 2759 | return FALSE0; | |||
| 2760 | ||||
| 2761 | /* Select the appropriate symbol table. */ | |||
| 2762 | if ((abfd->flags & DYNAMIC0x40) == 0 || elf_dynsymtab (abfd)(((abfd) -> tdata.elf_obj_data) -> dynsymtab_section) == 0) | |||
| 2763 | hdr = &elf_tdata (abfd)((abfd) -> tdata.elf_obj_data)->symtab_hdr; | |||
| 2764 | else | |||
| 2765 | hdr = &elf_tdata (abfd)((abfd) -> tdata.elf_obj_data)->dynsymtab_hdr; | |||
| 2766 | ||||
| 2767 | symcount = hdr->sh_size / get_elf_backend_data (abfd)((const struct elf_backend_data *) (abfd)->xvec->backend_data )->s->sizeof_sym; | |||
| 2768 | ||||
| 2769 | /* The sh_info field of the symtab header tells us where the | |||
| 2770 | external symbols start. We don't care about the local symbols. */ | |||
| 2771 | if (elf_bad_symtab (abfd)(((abfd) -> tdata.elf_obj_data) -> bad_symtab)) | |||
| 2772 | { | |||
| 2773 | extsymcount = symcount; | |||
| 2774 | extsymoff = 0; | |||
| 2775 | } | |||
| 2776 | else | |||
| 2777 | { | |||
| 2778 | extsymcount = symcount - hdr->sh_info; | |||
| 2779 | extsymoff = hdr->sh_info; | |||
| 2780 | } | |||
| 2781 | ||||
| 2782 | if (extsymcount == 0) | |||
| 2783 | return FALSE0; | |||
| 2784 | ||||
| 2785 | /* Read in the symbol table. */ | |||
| 2786 | isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff, | |||
| 2787 | NULL((void*)0), NULL((void*)0), NULL((void*)0)); | |||
| 2788 | if (isymbuf == NULL((void*)0)) | |||
| 2789 | return FALSE0; | |||
| 2790 | ||||
| 2791 | /* Scan the symbol table looking for SYMDEF. */ | |||
| 2792 | result = FALSE0; | |||
| 2793 | for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++) | |||
| 2794 | { | |||
| 2795 | const char *name; | |||
| 2796 | ||||
| 2797 | name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, | |||
| 2798 | isym->st_name); | |||
| 2799 | if (name == NULL((void*)0)) | |||
| 2800 | break; | |||
| 2801 | ||||
| 2802 | if (strcmp (name, symdef->name) == 0) | |||
| 2803 | { | |||
| 2804 | result = is_global_data_symbol_definition (abfd, isym); | |||
| 2805 | break; | |||
| 2806 | } | |||
| 2807 | } | |||
| 2808 | ||||
| 2809 | free (isymbuf); | |||
| 2810 | ||||
| 2811 | return result; | |||
| 2812 | } | |||
| 2813 | ||||
| 2814 | /* Add an entry to the .dynamic table. */ | |||
| 2815 | ||||
| 2816 | bfd_boolean | |||
| 2817 | _bfd_elf_add_dynamic_entry (struct bfd_link_info *info, | |||
| 2818 | bfd_vma tag, | |||
| 2819 | bfd_vma val) | |||
| 2820 | { | |||
| 2821 | struct elf_link_hash_table *hash_table; | |||
| 2822 | const struct elf_backend_data *bed; | |||
| 2823 | asection *s; | |||
| 2824 | bfd_size_type newsize; | |||
| 2825 | bfd_byte *newcontents; | |||
| 2826 | Elf_Internal_Dyn dyn; | |||
| 2827 | ||||
| 2828 | hash_table = elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash)); | |||
| 2829 | if (! is_elf_hash_table (hash_table)(((struct bfd_link_hash_table *) (hash_table))->type == bfd_link_elf_hash_table )) | |||
| 2830 | return FALSE0; | |||
| 2831 | ||||
| 2832 | bed = get_elf_backend_data (hash_table->dynobj)((const struct elf_backend_data *) (hash_table->dynobj)-> xvec->backend_data); | |||
| 2833 | s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic"); | |||
| 2834 | BFD_ASSERT (s != NULL)do { if (!(s != ((void*)0))) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,2834); } while (0); | |||
| 2835 | ||||
| 2836 | newsize = s->size + bed->s->sizeof_dyn; | |||
| 2837 | newcontents = bfd_realloc (s->contents, newsize); | |||
| 2838 | if (newcontents == NULL((void*)0)) | |||
| 2839 | return FALSE0; | |||
| 2840 | ||||
| 2841 | dyn.d_tag = tag; | |||
| 2842 | dyn.d_un.d_val = val; | |||
| 2843 | bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size); | |||
| 2844 | ||||
| 2845 | s->size = newsize; | |||
| 2846 | s->contents = newcontents; | |||
| 2847 | ||||
| 2848 | return TRUE1; | |||
| 2849 | } | |||
| 2850 | ||||
| 2851 | /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true, | |||
| 2852 | otherwise just check whether one already exists. Returns -1 on error, | |||
| 2853 | 1 if a DT_NEEDED tag already exists, and 0 on success. */ | |||
| 2854 | ||||
| 2855 | static int | |||
| 2856 | elf_add_dt_needed_tag (bfd *abfd, | |||
| 2857 | struct bfd_link_info *info, | |||
| 2858 | const char *soname, | |||
| 2859 | bfd_boolean do_it) | |||
| 2860 | { | |||
| 2861 | struct elf_link_hash_table *hash_table; | |||
| 2862 | bfd_size_type oldsize; | |||
| 2863 | bfd_size_type strindex; | |||
| 2864 | ||||
| 2865 | if (!_bfd_elf_link_create_dynstrtab (abfd, info)) | |||
| 2866 | return -1; | |||
| 2867 | ||||
| 2868 | hash_table = elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash)); | |||
| 2869 | oldsize = _bfd_elf_strtab_size (hash_table->dynstr); | |||
| 2870 | strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE0); | |||
| 2871 | if (strindex == (bfd_size_type) -1) | |||
| 2872 | return -1; | |||
| 2873 | ||||
| 2874 | if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr)) | |||
| 2875 | { | |||
| 2876 | asection *sdyn; | |||
| 2877 | const struct elf_backend_data *bed; | |||
| 2878 | bfd_byte *extdyn; | |||
| 2879 | ||||
| 2880 | bed = get_elf_backend_data (hash_table->dynobj)((const struct elf_backend_data *) (hash_table->dynobj)-> xvec->backend_data); | |||
| 2881 | sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic"); | |||
| 2882 | if (sdyn != NULL((void*)0)) | |||
| 2883 | for (extdyn = sdyn->contents; | |||
| 2884 | extdyn < sdyn->contents + sdyn->size; | |||
| 2885 | extdyn += bed->s->sizeof_dyn) | |||
| 2886 | { | |||
| 2887 | Elf_Internal_Dyn dyn; | |||
| 2888 | ||||
| 2889 | bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn); | |||
| 2890 | if (dyn.d_tag == DT_NEEDED1 | |||
| 2891 | && dyn.d_un.d_val == strindex) | |||
| 2892 | { | |||
| 2893 | _bfd_elf_strtab_delref (hash_table->dynstr, strindex); | |||
| 2894 | return 1; | |||
| 2895 | } | |||
| 2896 | } | |||
| 2897 | } | |||
| 2898 | ||||
| 2899 | if (do_it) | |||
| 2900 | { | |||
| 2901 | if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info)) | |||
| 2902 | return -1; | |||
| 2903 | ||||
| 2904 | if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED1, strindex)) | |||
| 2905 | return -1; | |||
| 2906 | } | |||
| 2907 | else | |||
| 2908 | /* We were just checking for existence of the tag. */ | |||
| 2909 | _bfd_elf_strtab_delref (hash_table->dynstr, strindex); | |||
| 2910 | ||||
| 2911 | return 0; | |||
| 2912 | } | |||
| 2913 | ||||
| 2914 | /* Sort symbol by value and section. */ | |||
| 2915 | static int | |||
| 2916 | elf_sort_symbol (const void *arg1, const void *arg2) | |||
| 2917 | { | |||
| 2918 | const struct elf_link_hash_entry *h1; | |||
| 2919 | const struct elf_link_hash_entry *h2; | |||
| 2920 | bfd_signed_vma vdiff; | |||
| 2921 | ||||
| 2922 | h1 = *(const struct elf_link_hash_entry **) arg1; | |||
| 2923 | h2 = *(const struct elf_link_hash_entry **) arg2; | |||
| 2924 | vdiff = h1->root.u.def.value - h2->root.u.def.value; | |||
| 2925 | if (vdiff != 0) | |||
| 2926 | return vdiff > 0 ? 1 : -1; | |||
| 2927 | else | |||
| 2928 | { | |||
| 2929 | long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id; | |||
| 2930 | if (sdiff != 0) | |||
| 2931 | return sdiff > 0 ? 1 : -1; | |||
| 2932 | } | |||
| 2933 | return 0; | |||
| 2934 | } | |||
| 2935 | ||||
| 2936 | /* This function is used to adjust offsets into .dynstr for | |||
| 2937 | dynamic symbols. This is called via elf_link_hash_traverse. */ | |||
| 2938 | ||||
| 2939 | static bfd_boolean | |||
| 2940 | elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data) | |||
| 2941 | { | |||
| 2942 | struct elf_strtab_hash *dynstr = data; | |||
| 2943 | ||||
| 2944 | if (h->root.type == bfd_link_hash_warning) | |||
| 2945 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |||
| 2946 | ||||
| 2947 | if (h->dynindx != -1) | |||
| 2948 | h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index); | |||
| 2949 | return TRUE1; | |||
| 2950 | } | |||
| 2951 | ||||
| 2952 | /* Assign string offsets in .dynstr, update all structures referencing | |||
| 2953 | them. */ | |||
| 2954 | ||||
| 2955 | static bfd_boolean | |||
| 2956 | elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info) | |||
| 2957 | { | |||
| 2958 | struct elf_link_hash_table *hash_table = elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash)); | |||
| 2959 | struct elf_link_local_dynamic_entry *entry; | |||
| 2960 | struct elf_strtab_hash *dynstr = hash_table->dynstr; | |||
| 2961 | bfd *dynobj = hash_table->dynobj; | |||
| 2962 | asection *sdyn; | |||
| 2963 | bfd_size_type size; | |||
| 2964 | const struct elf_backend_data *bed; | |||
| 2965 | bfd_byte *extdyn; | |||
| 2966 | ||||
| 2967 | _bfd_elf_strtab_finalize (dynstr); | |||
| 2968 | size = _bfd_elf_strtab_size (dynstr); | |||
| 2969 | ||||
| 2970 | bed = get_elf_backend_data (dynobj)((const struct elf_backend_data *) (dynobj)->xvec->backend_data ); | |||
| 2971 | sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); | |||
| 2972 | BFD_ASSERT (sdyn != NULL)do { if (!(sdyn != ((void*)0))) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,2972); } while (0); | |||
| 2973 | ||||
| 2974 | /* Update all .dynamic entries referencing .dynstr strings. */ | |||
| 2975 | for (extdyn = sdyn->contents; | |||
| 2976 | extdyn < sdyn->contents + sdyn->size; | |||
| 2977 | extdyn += bed->s->sizeof_dyn) | |||
| 2978 | { | |||
| 2979 | Elf_Internal_Dyn dyn; | |||
| 2980 | ||||
| 2981 | bed->s->swap_dyn_in (dynobj, extdyn, &dyn); | |||
| 2982 | switch (dyn.d_tag) | |||
| 2983 | { | |||
| 2984 | case DT_STRSZ10: | |||
| 2985 | dyn.d_un.d_val = size; | |||
| 2986 | break; | |||
| 2987 | case DT_NEEDED1: | |||
| 2988 | case DT_SONAME14: | |||
| 2989 | case DT_RPATH15: | |||
| 2990 | case DT_RUNPATH29: | |||
| 2991 | case DT_FILTER0x7fffffff: | |||
| 2992 | case DT_AUXILIARY0x7ffffffd: | |||
| 2993 | dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val); | |||
| 2994 | break; | |||
| 2995 | default: | |||
| 2996 | continue; | |||
| 2997 | } | |||
| 2998 | bed->s->swap_dyn_out (dynobj, &dyn, extdyn); | |||
| 2999 | } | |||
| 3000 | ||||
| 3001 | /* Now update local dynamic symbols. */ | |||
| 3002 | for (entry = hash_table->dynlocal; entry ; entry = entry->next) | |||
| 3003 | entry->isym.st_name = _bfd_elf_strtab_offset (dynstr, | |||
| 3004 | entry->isym.st_name); | |||
| 3005 | ||||
| 3006 | /* And the rest of dynamic symbols. */ | |||
| 3007 | elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr)(bfd_link_hash_traverse (&(hash_table)->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (elf_adjust_dynstr_offsets ), (dynstr))); | |||
| 3008 | ||||
| 3009 | /* Adjust version definitions. */ | |||
| 3010 | if (elf_tdata (output_bfd)((output_bfd) -> tdata.elf_obj_data)->cverdefs) | |||
| 3011 | { | |||
| 3012 | asection *s; | |||
| 3013 | bfd_byte *p; | |||
| 3014 | bfd_size_type i; | |||
| 3015 | Elf_Internal_Verdef def; | |||
| 3016 | Elf_Internal_Verdaux defaux; | |||
| 3017 | ||||
| 3018 | s = bfd_get_section_by_name (dynobj, ".gnu.version_d"); | |||
| 3019 | p = s->contents; | |||
| 3020 | do | |||
| 3021 | { | |||
| 3022 | _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p, | |||
| 3023 | &def); | |||
| 3024 | p += sizeof (Elf_External_Verdef); | |||
| 3025 | if (def.vd_aux != sizeof (Elf_External_Verdef)) | |||
| 3026 | continue; | |||
| 3027 | for (i = 0; i < def.vd_cnt; ++i) | |||
| 3028 | { | |||
| 3029 | _bfd_elf_swap_verdaux_in (output_bfd, | |||
| 3030 | (Elf_External_Verdaux *) p, &defaux); | |||
| 3031 | defaux.vda_name = _bfd_elf_strtab_offset (dynstr, | |||
| 3032 | defaux.vda_name); | |||
| 3033 | _bfd_elf_swap_verdaux_out (output_bfd, | |||
| 3034 | &defaux, (Elf_External_Verdaux *) p); | |||
| 3035 | p += sizeof (Elf_External_Verdaux); | |||
| 3036 | } | |||
| 3037 | } | |||
| 3038 | while (def.vd_next); | |||
| 3039 | } | |||
| 3040 | ||||
| 3041 | /* Adjust version references. */ | |||
| 3042 | if (elf_tdata (output_bfd)((output_bfd) -> tdata.elf_obj_data)->verref) | |||
| 3043 | { | |||
| 3044 | asection *s; | |||
| 3045 | bfd_byte *p; | |||
| 3046 | bfd_size_type i; | |||
| 3047 | Elf_Internal_Verneed need; | |||
| 3048 | Elf_Internal_Vernaux needaux; | |||
| 3049 | ||||
| 3050 | s = bfd_get_section_by_name (dynobj, ".gnu.version_r"); | |||
| 3051 | p = s->contents; | |||
| 3052 | do | |||
| 3053 | { | |||
| 3054 | _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p, | |||
| 3055 | &need); | |||
| 3056 | need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file); | |||
| 3057 | _bfd_elf_swap_verneed_out (output_bfd, &need, | |||
| 3058 | (Elf_External_Verneed *) p); | |||
| 3059 | p += sizeof (Elf_External_Verneed); | |||
| 3060 | for (i = 0; i < need.vn_cnt; ++i) | |||
| 3061 | { | |||
| 3062 | _bfd_elf_swap_vernaux_in (output_bfd, | |||
| 3063 | (Elf_External_Vernaux *) p, &needaux); | |||
| 3064 | needaux.vna_name = _bfd_elf_strtab_offset (dynstr, | |||
| 3065 | needaux.vna_name); | |||
| 3066 | _bfd_elf_swap_vernaux_out (output_bfd, | |||
| 3067 | &needaux, | |||
| 3068 | (Elf_External_Vernaux *) p); | |||
| 3069 | p += sizeof (Elf_External_Vernaux); | |||
| 3070 | } | |||
| 3071 | } | |||
| 3072 | while (need.vn_next); | |||
| 3073 | } | |||
| 3074 | ||||
| 3075 | return TRUE1; | |||
| 3076 | } | |||
| 3077 | ||||
| 3078 | /* Add symbols from an ELF object file to the linker hash table. */ | |||
| 3079 | ||||
| 3080 | static bfd_boolean | |||
| 3081 | elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info) | |||
| 3082 | { | |||
| 3083 | Elf_Internal_Shdr *hdr; | |||
| 3084 | bfd_size_type symcount; | |||
| 3085 | bfd_size_type extsymcount; | |||
| 3086 | bfd_size_type extsymoff; | |||
| 3087 | struct elf_link_hash_entry **sym_hash; | |||
| 3088 | bfd_boolean dynamic; | |||
| 3089 | Elf_External_Versym *extversym = NULL((void*)0); | |||
| 3090 | Elf_External_Versym *ever; | |||
| 3091 | struct elf_link_hash_entry *weaks; | |||
| 3092 | struct elf_link_hash_entry **nondeflt_vers = NULL((void*)0); | |||
| 3093 | bfd_size_type nondeflt_vers_cnt = 0; | |||
| 3094 | Elf_Internal_Sym *isymbuf = NULL((void*)0); | |||
| 3095 | Elf_Internal_Sym *isym; | |||
| 3096 | Elf_Internal_Sym *isymend; | |||
| 3097 | const struct elf_backend_data *bed; | |||
| 3098 | bfd_boolean add_needed; | |||
| 3099 | struct elf_link_hash_table *htab; | |||
| 3100 | bfd_size_type amt; | |||
| 3101 | void *alloc_mark = NULL((void*)0); | |||
| 3102 | void *old_tab = NULL((void*)0); | |||
| 3103 | void *old_hash; | |||
| 3104 | void *old_ent; | |||
| 3105 | struct bfd_link_hash_entry *old_undefs = NULL((void*)0); | |||
| 3106 | struct bfd_link_hash_entry *old_undefs_tail = NULL((void*)0); | |||
| 3107 | long old_dynsymcount = 0; | |||
| 3108 | size_t tabsize = 0; | |||
| 3109 | size_t hashsize = 0; | |||
| 3110 | ||||
| 3111 | htab = elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash)); | |||
| 3112 | bed = get_elf_backend_data (abfd)((const struct elf_backend_data *) (abfd)->xvec->backend_data ); | |||
| 3113 | ||||
| 3114 | if ((abfd->flags & DYNAMIC0x40) == 0) | |||
| 3115 | dynamic = FALSE0; | |||
| 3116 | else | |||
| 3117 | { | |||
| 3118 | dynamic = TRUE1; | |||
| 3119 | ||||
| 3120 | /* You can't use -r against a dynamic object. Also, there's no | |||
| 3121 | hope of using a dynamic object which does not exactly match | |||
| 3122 | the format of the output file. */ | |||
| 3123 | if (info->relocatable | |||
| 3124 | || !is_elf_hash_table (htab)(((struct bfd_link_hash_table *) (htab))->type == bfd_link_elf_hash_table ) | |||
| 3125 | || htab->root.creator != abfd->xvec) | |||
| 3126 | { | |||
| 3127 | if (info->relocatable) | |||
| 3128 | bfd_set_error (bfd_error_invalid_operation); | |||
| 3129 | else | |||
| 3130 | bfd_set_error (bfd_error_wrong_format); | |||
| 3131 | goto error_return; | |||
| 3132 | } | |||
| 3133 | } | |||
| 3134 | ||||
| 3135 | /* As a GNU extension, any input sections which are named | |||
| 3136 | .gnu.warning.SYMBOL are treated as warning symbols for the given | |||
| 3137 | symbol. This differs from .gnu.warning sections, which generate | |||
| 3138 | warnings when they are included in an output file. */ | |||
| 3139 | if (info->executable) | |||
| 3140 | { | |||
| 3141 | asection *s; | |||
| 3142 | ||||
| 3143 | for (s = abfd->sections; s != NULL((void*)0); s = s->next) | |||
| 3144 | { | |||
| 3145 | const char *name; | |||
| 3146 | ||||
| 3147 | name = bfd_get_section_name (abfd, s)((s)->name + 0); | |||
| 3148 | if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0) | |||
| 3149 | { | |||
| 3150 | char *msg; | |||
| 3151 | bfd_size_type sz; | |||
| 3152 | ||||
| 3153 | name += sizeof ".gnu.warning." - 1; | |||
| 3154 | ||||
| 3155 | /* If this is a shared object, then look up the symbol | |||
| 3156 | in the hash table. If it is there, and it is already | |||
| 3157 | been defined, then we will not be using the entry | |||
| 3158 | from this shared object, so we don't need to warn. | |||
| 3159 | FIXME: If we see the definition in a regular object | |||
| 3160 | later on, we will warn, but we shouldn't. The only | |||
| 3161 | fix is to keep track of what warnings we are supposed | |||
| 3162 | to emit, and then handle them all at the end of the | |||
| 3163 | link. */ | |||
| 3164 | if (dynamic) | |||
| 3165 | { | |||
| 3166 | struct elf_link_hash_entry *h; | |||
| 3167 | ||||
| 3168 | h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE)((struct elf_link_hash_entry *) bfd_link_hash_lookup (&(htab )->root, (name), (0), (0), (1))); | |||
| 3169 | ||||
| 3170 | /* FIXME: What about bfd_link_hash_common? */ | |||
| 3171 | if (h != NULL((void*)0) | |||
| 3172 | && (h->root.type == bfd_link_hash_defined | |||
| 3173 | || h->root.type == bfd_link_hash_defweak)) | |||
| 3174 | { | |||
| 3175 | /* We don't want to issue this warning. Clobber | |||
| 3176 | the section size so that the warning does not | |||
| 3177 | get copied into the output file. */ | |||
| 3178 | s->size = 0; | |||
| 3179 | continue; | |||
| 3180 | } | |||
| 3181 | } | |||
| 3182 | ||||
| 3183 | sz = s->size; | |||
| 3184 | msg = bfd_alloc (abfd, sz + 1); | |||
| 3185 | if (msg == NULL((void*)0)) | |||
| 3186 | goto error_return; | |||
| 3187 | ||||
| 3188 | if (! bfd_get_section_contents (abfd, s, msg, 0, sz)) | |||
| 3189 | goto error_return; | |||
| 3190 | ||||
| 3191 | msg[sz] = '\0'; | |||
| 3192 | ||||
| 3193 | if (! (_bfd_generic_link_add_one_symbol | |||
| 3194 | (info, abfd, name, BSF_WARNING0x1000, s, 0, msg, | |||
| 3195 | FALSE0, bed->collect, NULL((void*)0)))) | |||
| 3196 | goto error_return; | |||
| 3197 | ||||
| 3198 | if (! info->relocatable) | |||
| 3199 | { | |||
| 3200 | /* Clobber the section size so that the warning does | |||
| 3201 | not get copied into the output file. */ | |||
| 3202 | s->size = 0; | |||
| 3203 | ||||
| 3204 | /* Also set SEC_EXCLUDE, so that symbols defined in | |||
| 3205 | the warning section don't get copied to the output. */ | |||
| 3206 | s->flags |= SEC_EXCLUDE0x8000; | |||
| 3207 | } | |||
| 3208 | } | |||
| 3209 | } | |||
| 3210 | } | |||
| 3211 | ||||
| 3212 | add_needed = TRUE1; | |||
| 3213 | if (! dynamic) | |||
| 3214 | { | |||
| 3215 | /* If we are creating a shared library, create all the dynamic | |||
| 3216 | sections immediately. We need to attach them to something, | |||
| 3217 | so we attach them to this BFD, provided it is the right | |||
| 3218 | format. FIXME: If there are no input BFD's of the same | |||
| 3219 | format as the output, we can't make a shared library. */ | |||
| 3220 | if (info->shared | |||
| 3221 | && is_elf_hash_table (htab)(((struct bfd_link_hash_table *) (htab))->type == bfd_link_elf_hash_table ) | |||
| 3222 | && htab->root.creator == abfd->xvec | |||
| 3223 | && !htab->dynamic_sections_created) | |||
| 3224 | { | |||
| 3225 | if (! _bfd_elf_link_create_dynamic_sections (abfd, info)) | |||
| 3226 | goto error_return; | |||
| 3227 | } | |||
| 3228 | } | |||
| 3229 | else if (!is_elf_hash_table (htab)(((struct bfd_link_hash_table *) (htab))->type == bfd_link_elf_hash_table )) | |||
| 3230 | goto error_return; | |||
| 3231 | else | |||
| 3232 | { | |||
| 3233 | asection *s; | |||
| 3234 | const char *soname = NULL((void*)0); | |||
| 3235 | struct bfd_link_needed_list *rpath = NULL((void*)0), *runpath = NULL((void*)0); | |||
| 3236 | int ret; | |||
| 3237 | ||||
| 3238 | /* ld --just-symbols and dynamic objects don't mix very well. | |||
| 3239 | ld shouldn't allow it. */ | |||
| 3240 | if ((s = abfd->sections) != NULL((void*)0) | |||
| 3241 | && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS4) | |||
| 3242 | abort ()_bfd_abort ("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" , 3242, __PRETTY_FUNCTION__); | |||
| 3243 | ||||
| 3244 | /* If this dynamic lib was specified on the command line with | |||
| 3245 | --as-needed in effect, then we don't want to add a DT_NEEDED | |||
| 3246 | tag unless the lib is actually used. Similary for libs brought | |||
| 3247 | in by another lib's DT_NEEDED. When --no-add-needed is used | |||
| 3248 | on a dynamic lib, we don't want to add a DT_NEEDED entry for | |||
| 3249 | any dynamic library in DT_NEEDED tags in the dynamic lib at | |||
| 3250 | all. */ | |||
| 3251 | add_needed = (elf_dyn_lib_class (abfd)(((abfd) -> tdata.elf_obj_data) -> dyn_lib_class) | |||
| 3252 | & (DYN_AS_NEEDED | DYN_DT_NEEDED | |||
| 3253 | | DYN_NO_NEEDED)) == 0; | |||
| 3254 | ||||
| 3255 | s = bfd_get_section_by_name (abfd, ".dynamic"); | |||
| 3256 | if (s != NULL((void*)0)) | |||
| 3257 | { | |||
| 3258 | bfd_byte *dynbuf; | |||
| 3259 | bfd_byte *extdyn; | |||
| 3260 | int elfsec; | |||
| 3261 | unsigned long shlink; | |||
| 3262 | ||||
| 3263 | if (!bfd_malloc_and_get_section (abfd, s, &dynbuf)) | |||
| 3264 | goto error_free_dyn; | |||
| 3265 | ||||
| 3266 | elfsec = _bfd_elf_section_from_bfd_section (abfd, s); | |||
| 3267 | if (elfsec == -1) | |||
| 3268 | goto error_free_dyn; | |||
| 3269 | shlink = elf_elfsections (abfd)(((abfd) -> tdata.elf_obj_data) -> elf_sect_ptr)[elfsec]->sh_link; | |||
| 3270 | ||||
| 3271 | for (extdyn = dynbuf; | |||
| 3272 | extdyn < dynbuf + s->size; | |||
| 3273 | extdyn += bed->s->sizeof_dyn) | |||
| 3274 | { | |||
| 3275 | Elf_Internal_Dyn dyn; | |||
| 3276 | ||||
| 3277 | bed->s->swap_dyn_in (abfd, extdyn, &dyn); | |||
| 3278 | if (dyn.d_tag == DT_SONAME14) | |||
| 3279 | { | |||
| 3280 | unsigned int tagv = dyn.d_un.d_val; | |||
| 3281 | soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv); | |||
| 3282 | if (soname == NULL((void*)0)) | |||
| 3283 | goto error_free_dyn; | |||
| 3284 | } | |||
| 3285 | if (dyn.d_tag == DT_NEEDED1) | |||
| 3286 | { | |||
| 3287 | struct bfd_link_needed_list *n, **pn; | |||
| 3288 | char *fnm, *anm; | |||
| 3289 | unsigned int tagv = dyn.d_un.d_val; | |||
| 3290 | ||||
| 3291 | amt = sizeof (struct bfd_link_needed_list); | |||
| 3292 | n = bfd_alloc (abfd, amt); | |||
| 3293 | fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); | |||
| 3294 | if (n == NULL((void*)0) || fnm == NULL((void*)0)) | |||
| 3295 | goto error_free_dyn; | |||
| 3296 | amt = strlen (fnm) + 1; | |||
| 3297 | anm = bfd_alloc (abfd, amt); | |||
| 3298 | if (anm == NULL((void*)0)) | |||
| 3299 | goto error_free_dyn; | |||
| 3300 | memcpy (anm, fnm, amt); | |||
| 3301 | n->name = anm; | |||
| 3302 | n->by = abfd; | |||
| 3303 | n->next = NULL((void*)0); | |||
| 3304 | for (pn = &htab->needed; *pn != NULL((void*)0); pn = &(*pn)->next) | |||
| 3305 | ; | |||
| 3306 | *pn = n; | |||
| 3307 | } | |||
| 3308 | if (dyn.d_tag == DT_RUNPATH29) | |||
| 3309 | { | |||
| 3310 | struct bfd_link_needed_list *n, **pn; | |||
| 3311 | char *fnm, *anm; | |||
| 3312 | unsigned int tagv = dyn.d_un.d_val; | |||
| 3313 | ||||
| 3314 | amt = sizeof (struct bfd_link_needed_list); | |||
| 3315 | n = bfd_alloc (abfd, amt); | |||
| 3316 | fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); | |||
| 3317 | if (n == NULL((void*)0) || fnm == NULL((void*)0)) | |||
| 3318 | goto error_free_dyn; | |||
| 3319 | amt = strlen (fnm) + 1; | |||
| 3320 | anm = bfd_alloc (abfd, amt); | |||
| 3321 | if (anm == NULL((void*)0)) | |||
| 3322 | goto error_free_dyn; | |||
| 3323 | memcpy (anm, fnm, amt); | |||
| 3324 | n->name = anm; | |||
| 3325 | n->by = abfd; | |||
| 3326 | n->next = NULL((void*)0); | |||
| 3327 | for (pn = & runpath; | |||
| 3328 | *pn != NULL((void*)0); | |||
| 3329 | pn = &(*pn)->next) | |||
| 3330 | ; | |||
| 3331 | *pn = n; | |||
| 3332 | } | |||
| 3333 | /* Ignore DT_RPATH if we have seen DT_RUNPATH. */ | |||
| 3334 | if (!runpath && dyn.d_tag == DT_RPATH15) | |||
| 3335 | { | |||
| 3336 | struct bfd_link_needed_list *n, **pn; | |||
| 3337 | char *fnm, *anm; | |||
| 3338 | unsigned int tagv = dyn.d_un.d_val; | |||
| 3339 | ||||
| 3340 | amt = sizeof (struct bfd_link_needed_list); | |||
| 3341 | n = bfd_alloc (abfd, amt); | |||
| 3342 | fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); | |||
| 3343 | if (n == NULL((void*)0) || fnm == NULL((void*)0)) | |||
| 3344 | goto error_free_dyn; | |||
| 3345 | amt = strlen (fnm) + 1; | |||
| 3346 | anm = bfd_alloc (abfd, amt); | |||
| 3347 | if (anm == NULL((void*)0)) | |||
| 3348 | { | |||
| 3349 | error_free_dyn: | |||
| 3350 | free (dynbuf); | |||
| 3351 | goto error_return; | |||
| 3352 | } | |||
| 3353 | memcpy (anm, fnm, amt); | |||
| 3354 | n->name = anm; | |||
| 3355 | n->by = abfd; | |||
| 3356 | n->next = NULL((void*)0); | |||
| 3357 | for (pn = & rpath; | |||
| 3358 | *pn != NULL((void*)0); | |||
| 3359 | pn = &(*pn)->next) | |||
| 3360 | ; | |||
| 3361 | *pn = n; | |||
| 3362 | } | |||
| 3363 | } | |||
| 3364 | ||||
| 3365 | free (dynbuf); | |||
| 3366 | } | |||
| 3367 | ||||
| 3368 | /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that | |||
| 3369 | frees all more recently bfd_alloc'd blocks as well. */ | |||
| 3370 | if (runpath) | |||
| 3371 | rpath = runpath; | |||
| 3372 | ||||
| 3373 | if (rpath) | |||
| 3374 | { | |||
| 3375 | struct bfd_link_needed_list **pn; | |||
| 3376 | for (pn = &htab->runpath; *pn != NULL((void*)0); pn = &(*pn)->next) | |||
| 3377 | ; | |||
| 3378 | *pn = rpath; | |||
| 3379 | } | |||
| 3380 | ||||
| 3381 | /* We do not want to include any of the sections in a dynamic | |||
| 3382 | object in the output file. We hack by simply clobbering the | |||
| 3383 | list of sections in the BFD. This could be handled more | |||
| 3384 | cleanly by, say, a new section flag; the existing | |||
| 3385 | SEC_NEVER_LOAD flag is not the one we want, because that one | |||
| 3386 | still implies that the section takes up space in the output | |||
| 3387 | file. */ | |||
| 3388 | bfd_section_list_clear (abfd); | |||
| 3389 | ||||
| 3390 | /* Find the name to use in a DT_NEEDED entry that refers to this | |||
| 3391 | object. If the object has a DT_SONAME entry, we use it. | |||
| 3392 | Otherwise, if the generic linker stuck something in | |||
| 3393 | elf_dt_name, we use that. Otherwise, we just use the file | |||
| 3394 | name. */ | |||
| 3395 | if (soname == NULL((void*)0) || *soname == '\0') | |||
| 3396 | { | |||
| 3397 | soname = elf_dt_name (abfd)(((abfd) -> tdata.elf_obj_data) -> dt_name); | |||
| 3398 | if (soname == NULL((void*)0) || *soname == '\0') | |||
| 3399 | soname = bfd_get_filename (abfd)((char *) (abfd)->filename); | |||
| 3400 | } | |||
| 3401 | ||||
| 3402 | /* Save the SONAME because sometimes the linker emulation code | |||
| 3403 | will need to know it. */ | |||
| 3404 | elf_dt_name (abfd)(((abfd) -> tdata.elf_obj_data) -> dt_name) = soname; | |||
| 3405 | ||||
| 3406 | ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed); | |||
| 3407 | if (ret < 0) | |||
| 3408 | goto error_return; | |||
| 3409 | ||||
| 3410 | /* If we have already included this dynamic object in the | |||
| 3411 | link, just ignore it. There is no reason to include a | |||
| 3412 | particular dynamic object more than once. */ | |||
| 3413 | if (ret > 0) | |||
| 3414 | return TRUE1; | |||
| 3415 | } | |||
| 3416 | ||||
| 3417 | /* If this is a dynamic object, we always link against the .dynsym | |||
| 3418 | symbol table, not the .symtab symbol table. The dynamic linker | |||
| 3419 | will only see the .dynsym symbol table, so there is no reason to | |||
| 3420 | look at .symtab for a dynamic object. */ | |||
| 3421 | ||||
| 3422 | if (! dynamic || elf_dynsymtab (abfd)(((abfd) -> tdata.elf_obj_data) -> dynsymtab_section) == 0) | |||
| 3423 | hdr = &elf_tdata (abfd)((abfd) -> tdata.elf_obj_data)->symtab_hdr; | |||
| 3424 | else | |||
| 3425 | hdr = &elf_tdata (abfd)((abfd) -> tdata.elf_obj_data)->dynsymtab_hdr; | |||
| 3426 | ||||
| 3427 | symcount = hdr->sh_size / bed->s->sizeof_sym; | |||
| 3428 | ||||
| 3429 | /* The sh_info field of the symtab header tells us where the | |||
| 3430 | external symbols start. We don't care about the local symbols at | |||
| 3431 | this point. */ | |||
| 3432 | if (elf_bad_symtab (abfd)(((abfd) -> tdata.elf_obj_data) -> bad_symtab)) | |||
| 3433 | { | |||
| 3434 | extsymcount = symcount; | |||
| 3435 | extsymoff = 0; | |||
| 3436 | } | |||
| 3437 | else | |||
| 3438 | { | |||
| 3439 | extsymcount = symcount - hdr->sh_info; | |||
| 3440 | extsymoff = hdr->sh_info; | |||
| 3441 | } | |||
| 3442 | ||||
| 3443 | sym_hash = NULL((void*)0); | |||
| 3444 | if (extsymcount != 0) | |||
| 3445 | { | |||
| 3446 | isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff, | |||
| 3447 | NULL((void*)0), NULL((void*)0), NULL((void*)0)); | |||
| 3448 | if (isymbuf == NULL((void*)0)) | |||
| 3449 | goto error_return; | |||
| 3450 | ||||
| 3451 | /* We store a pointer to the hash table entry for each external | |||
| 3452 | symbol. */ | |||
| 3453 | amt = extsymcount * sizeof (struct elf_link_hash_entry *); | |||
| 3454 | sym_hash = bfd_alloc (abfd, amt); | |||
| 3455 | if (sym_hash == NULL((void*)0)) | |||
| 3456 | goto error_free_sym; | |||
| 3457 | elf_sym_hashes (abfd)(((abfd) -> tdata.elf_obj_data) -> sym_hashes) = sym_hash; | |||
| 3458 | } | |||
| 3459 | ||||
| 3460 | if (dynamic) | |||
| 3461 | { | |||
| 3462 | /* Read in any version definitions. */ | |||
| 3463 | if (!_bfd_elf_slurp_version_tables (abfd, | |||
| 3464 | info->default_imported_symver)) | |||
| 3465 | goto error_free_sym; | |||
| 3466 | ||||
| 3467 | /* Read in the symbol versions, but don't bother to convert them | |||
| 3468 | to internal format. */ | |||
| 3469 | if (elf_dynversym (abfd)(((abfd) -> tdata.elf_obj_data) -> dynversym_section) != 0) | |||
| 3470 | { | |||
| 3471 | Elf_Internal_Shdr *versymhdr; | |||
| 3472 | ||||
| 3473 | versymhdr = &elf_tdata (abfd)((abfd) -> tdata.elf_obj_data)->dynversym_hdr; | |||
| 3474 | extversym = bfd_malloc (versymhdr->sh_size); | |||
| 3475 | if (extversym == NULL((void*)0)) | |||
| 3476 | goto error_free_sym; | |||
| 3477 | amt = versymhdr->sh_size; | |||
| 3478 | if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET0) != 0 | |||
| 3479 | || bfd_bread (extversym, amt, abfd) != amt) | |||
| 3480 | goto error_free_vers; | |||
| 3481 | } | |||
| 3482 | } | |||
| 3483 | ||||
| 3484 | /* If we are loading an as-needed shared lib, save the symbol table | |||
| 3485 | state before we start adding symbols. If the lib turns out | |||
| 3486 | to be unneeded, restore the state. */ | |||
| 3487 | if ((elf_dyn_lib_class (abfd)(((abfd) -> tdata.elf_obj_data) -> dyn_lib_class) & DYN_AS_NEEDED) != 0) | |||
| 3488 | { | |||
| 3489 | unsigned int i; | |||
| 3490 | size_t entsize; | |||
| 3491 | ||||
| 3492 | for (entsize = 0, i = 0; i < htab->root.table.size; i++) | |||
| 3493 | { | |||
| 3494 | struct bfd_hash_entry *p; | |||
| 3495 | struct elf_link_hash_entry *h; | |||
| 3496 | ||||
| 3497 | for (p = htab->root.table.table[i]; p != NULL((void*)0); p = p->next) | |||
| 3498 | { | |||
| 3499 | h = (struct elf_link_hash_entry *) p; | |||
| 3500 | entsize += htab->root.table.entsize; | |||
| 3501 | if (h->root.type == bfd_link_hash_warning) | |||
| 3502 | entsize += htab->root.table.entsize; | |||
| 3503 | } | |||
| 3504 | } | |||
| 3505 | ||||
| 3506 | tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *); | |||
| 3507 | hashsize = extsymcount * sizeof (struct elf_link_hash_entry *); | |||
| 3508 | old_tab = bfd_malloc (tabsize + entsize + hashsize); | |||
| 3509 | if (old_tab == NULL((void*)0)) | |||
| 3510 | goto error_free_vers; | |||
| 3511 | ||||
| 3512 | /* Remember the current objalloc pointer, so that all mem for | |||
| 3513 | symbols added can later be reclaimed. */ | |||
| 3514 | alloc_mark = bfd_hash_allocate (&htab->root.table, 1); | |||
| 3515 | if (alloc_mark == NULL((void*)0)) | |||
| 3516 | goto error_free_vers; | |||
| 3517 | ||||
| 3518 | /* Clone the symbol table and sym hashes. Remember some | |||
| 3519 | pointers into the symbol table, and dynamic symbol count. */ | |||
| 3520 | old_hash = (char *) old_tab + tabsize; | |||
| 3521 | old_ent = (char *) old_hash + hashsize; | |||
| 3522 | memcpy (old_tab, htab->root.table.table, tabsize); | |||
| 3523 | memcpy (old_hash, sym_hash, hashsize); | |||
| 3524 | old_undefs = htab->root.undefs; | |||
| 3525 | old_undefs_tail = htab->root.undefs_tail; | |||
| 3526 | old_dynsymcount = htab->dynsymcount; | |||
| 3527 | ||||
| 3528 | for (i = 0; i < htab->root.table.size; i++) | |||
| 3529 | { | |||
| 3530 | struct bfd_hash_entry *p; | |||
| 3531 | struct elf_link_hash_entry *h; | |||
| 3532 | ||||
| 3533 | for (p = htab->root.table.table[i]; p != NULL((void*)0); p = p->next) | |||
| 3534 | { | |||
| 3535 | memcpy (old_ent, p, htab->root.table.entsize); | |||
| 3536 | old_ent = (char *) old_ent + htab->root.table.entsize; | |||
| 3537 | h = (struct elf_link_hash_entry *) p; | |||
| 3538 | if (h->root.type == bfd_link_hash_warning) | |||
| 3539 | { | |||
| 3540 | memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize); | |||
| 3541 | old_ent = (char *) old_ent + htab->root.table.entsize; | |||
| 3542 | } | |||
| 3543 | } | |||
| 3544 | } | |||
| 3545 | } | |||
| 3546 | ||||
| 3547 | weaks = NULL((void*)0); | |||
| 3548 | ever = extversym != NULL((void*)0) ? extversym + extsymoff : NULL((void*)0); | |||
| 3549 | for (isym = isymbuf, isymend = isymbuf + extsymcount; | |||
| 3550 | isym < isymend; | |||
| 3551 | isym++, sym_hash++, ever = (ever != NULL((void*)0) ? ever + 1 : NULL((void*)0))) | |||
| 3552 | { | |||
| 3553 | int bind; | |||
| 3554 | bfd_vma value; | |||
| 3555 | asection *sec, *new_sec; | |||
| 3556 | flagword flags; | |||
| 3557 | const char *name; | |||
| 3558 | struct elf_link_hash_entry *h; | |||
| 3559 | bfd_boolean definition; | |||
| 3560 | bfd_boolean size_change_ok; | |||
| 3561 | bfd_boolean type_change_ok; | |||
| 3562 | bfd_boolean new_weakdef; | |||
| 3563 | bfd_boolean override; | |||
| 3564 | bfd_boolean common; | |||
| 3565 | unsigned int old_alignment; | |||
| 3566 | bfd *old_bfd; | |||
| 3567 | ||||
| 3568 | override = FALSE0; | |||
| 3569 | ||||
| 3570 | flags = BSF_NO_FLAGS0x00; | |||
| 3571 | sec = NULL((void*)0); | |||
| 3572 | value = isym->st_value; | |||
| 3573 | *sym_hash = NULL((void*)0); | |||
| 3574 | common = bed->common_definition (isym); | |||
| 3575 | ||||
| 3576 | bind = ELF_ST_BIND (isym->st_info)(((unsigned int)(isym->st_info)) >> 4); | |||
| 3577 | if (bind == STB_LOCAL0) | |||
| 3578 | { | |||
| 3579 | /* This should be impossible, since ELF requires that all | |||
| 3580 | global symbols follow all local symbols, and that sh_info | |||
| 3581 | point to the first global symbol. Unfortunately, Irix 5 | |||
| 3582 | screws this up. */ | |||
| 3583 | continue; | |||
| 3584 | } | |||
| 3585 | else if (bind == STB_GLOBAL1) | |||
| 3586 | { | |||
| 3587 | if (isym->st_shndx != SHN_UNDEF0 && !common) | |||
| 3588 | flags = BSF_GLOBAL0x02; | |||
| 3589 | } | |||
| 3590 | else if (bind == STB_WEAK2) | |||
| 3591 | flags = BSF_WEAK0x80; | |||
| 3592 | else | |||
| 3593 | { | |||
| 3594 | /* Leave it up to the processor backend. */ | |||
| 3595 | } | |||
| 3596 | ||||
| 3597 | if (isym->st_shndx == SHN_UNDEF0) | |||
| 3598 | sec = bfd_und_section_ptr((asection *) &bfd_und_section); | |||
| 3599 | else if (isym->st_shndx < SHN_LORESERVE0xFF00 | |||
| 3600 | || isym->st_shndx > SHN_HIRESERVE0xFFFF) | |||
| 3601 | { | |||
| 3602 | sec = bfd_section_from_elf_index (abfd, isym->st_shndx); | |||
| 3603 | if (sec == NULL((void*)0)) | |||
| 3604 | sec = bfd_abs_section_ptr((asection *) &bfd_abs_section); | |||
| 3605 | else if (sec->kept_section) | |||
| 3606 | { | |||
| 3607 | /* Symbols from discarded section are undefined. We keep | |||
| 3608 | its visibility. */ | |||
| 3609 | sec = bfd_und_section_ptr((asection *) &bfd_und_section); | |||
| 3610 | isym->st_shndx = SHN_UNDEF0; | |||
| 3611 | } | |||
| 3612 | else if ((abfd->flags & (EXEC_P0x02 | DYNAMIC0x40)) != 0) | |||
| 3613 | value -= sec->vma; | |||
| 3614 | } | |||
| 3615 | else if (isym->st_shndx == SHN_ABS0xFFF1) | |||
| 3616 | sec = bfd_abs_section_ptr((asection *) &bfd_abs_section); | |||
| 3617 | else if (isym->st_shndx == SHN_COMMON0xFFF2) | |||
| 3618 | { | |||
| 3619 | sec = bfd_com_section_ptr((asection *) &bfd_com_section); | |||
| 3620 | /* What ELF calls the size we call the value. What ELF | |||
| 3621 | calls the value we call the alignment. */ | |||
| 3622 | value = isym->st_size; | |||
| 3623 | } | |||
| 3624 | else | |||
| 3625 | { | |||
| 3626 | /* Leave it up to the processor backend. */ | |||
| 3627 | } | |||
| 3628 | ||||
| 3629 | name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, | |||
| 3630 | isym->st_name); | |||
| 3631 | if (name == NULL((void*)0)) | |||
| 3632 | goto error_free_vers; | |||
| 3633 | ||||
| 3634 | if (isym->st_shndx == SHN_COMMON0xFFF2 | |||
| 3635 | && ELF_ST_TYPE (isym->st_info)((isym->st_info) & 0xF) == STT_TLS6) | |||
| 3636 | { | |||
| 3637 | asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon"); | |||
| 3638 | ||||
| 3639 | if (tcomm == NULL((void*)0)) | |||
| 3640 | { | |||
| 3641 | tcomm = bfd_make_section_with_flags (abfd, ".tcommon", | |||
| 3642 | (SEC_ALLOC0x001 | |||
| 3643 | | SEC_IS_COMMON0x1000 | |||
| 3644 | | SEC_LINKER_CREATED0x200000 | |||
| 3645 | | SEC_THREAD_LOCAL0x400)); | |||
| 3646 | if (tcomm == NULL((void*)0)) | |||
| 3647 | goto error_free_vers; | |||
| 3648 | } | |||
| 3649 | sec = tcomm; | |||
| 3650 | } | |||
| 3651 | else if (bed->elf_add_symbol_hook) | |||
| 3652 | { | |||
| 3653 | if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags, | |||
| 3654 | &sec, &value)) | |||
| 3655 | goto error_free_vers; | |||
| 3656 | ||||
| 3657 | /* The hook function sets the name to NULL if this symbol | |||
| 3658 | should be skipped for some reason. */ | |||
| 3659 | if (name == NULL((void*)0)) | |||
| 3660 | continue; | |||
| 3661 | } | |||
| 3662 | ||||
| 3663 | /* Sanity check that all possibilities were handled. */ | |||
| 3664 | if (sec == NULL((void*)0)) | |||
| 3665 | { | |||
| 3666 | bfd_set_error (bfd_error_bad_value); | |||
| 3667 | goto error_free_vers; | |||
| 3668 | } | |||
| 3669 | ||||
| 3670 | if (bfd_is_und_section (sec)((sec) == ((asection *) &bfd_und_section)) | |||
| 3671 | || bfd_is_com_section (sec)(((sec)->flags & 0x1000) != 0)) | |||
| 3672 | definition = FALSE0; | |||
| 3673 | else | |||
| 3674 | definition = TRUE1; | |||
| 3675 | ||||
| 3676 | size_change_ok = FALSE0; | |||
| 3677 | type_change_ok = bed->type_change_ok; | |||
| 3678 | old_alignment = 0; | |||
| 3679 | old_bfd = NULL((void*)0); | |||
| 3680 | new_sec = sec; | |||
| 3681 | ||||
| 3682 | if (is_elf_hash_table (htab)(((struct bfd_link_hash_table *) (htab))->type == bfd_link_elf_hash_table )) | |||
| 3683 | { | |||
| 3684 | Elf_Internal_Versym iver; | |||
| 3685 | unsigned int vernum = 0; | |||
| 3686 | bfd_boolean skip; | |||
| 3687 | ||||
| 3688 | if (ever == NULL((void*)0)) | |||
| 3689 | { | |||
| 3690 | if (info->default_imported_symver) | |||
| 3691 | /* Use the default symbol version created earlier. */ | |||
| 3692 | iver.vs_vers = elf_tdata (abfd)((abfd) -> tdata.elf_obj_data)->cverdefs; | |||
| 3693 | else | |||
| 3694 | iver.vs_vers = 0; | |||
| 3695 | } | |||
| 3696 | else | |||
| 3697 | _bfd_elf_swap_versym_in (abfd, ever, &iver); | |||
| 3698 | ||||
| 3699 | vernum = iver.vs_vers & VERSYM_VERSION0x7fff; | |||
| 3700 | ||||
| 3701 | /* If this is a hidden symbol, or if it is not version | |||
| 3702 | 1, we append the version name to the symbol name. | |||
| 3703 | However, we do not modify a non-hidden absolute symbol | |||
| 3704 | if it is not a function, because it might be the version | |||
| 3705 | symbol itself. FIXME: What if it isn't? */ | |||
| 3706 | if ((iver.vs_vers & VERSYM_HIDDEN0x8000) != 0 | |||
| 3707 | || (vernum > 1 && (! bfd_is_abs_section (sec)((sec) == ((asection *) &bfd_abs_section)) | |||
| 3708 | || ELF_ST_TYPE (isym->st_info)((isym->st_info) & 0xF) == STT_FUNC2))) | |||
| 3709 | { | |||
| 3710 | const char *verstr; | |||
| 3711 | size_t namelen, verlen, newlen; | |||
| 3712 | char *newname, *p; | |||
| 3713 | ||||
| 3714 | if (isym->st_shndx != SHN_UNDEF0) | |||
| 3715 | { | |||
| 3716 | if (vernum > elf_tdata (abfd)((abfd) -> tdata.elf_obj_data)->cverdefs) | |||
| 3717 | verstr = NULL((void*)0); | |||
| 3718 | else if (vernum > 1) | |||
| 3719 | verstr = | |||
| 3720 | elf_tdata (abfd)((abfd) -> tdata.elf_obj_data)->verdef[vernum - 1].vd_nodename; | |||
| 3721 | else | |||
| 3722 | verstr = ""; | |||
| 3723 | ||||
| 3724 | if (verstr == NULL((void*)0)) | |||
| 3725 | { | |||
| 3726 | (*_bfd_error_handler) | |||
| 3727 | (_("%B: %s: invalid version %u (max %d)")("%B: %s: invalid version %u (max %d)"), | |||
| 3728 | abfd, name, vernum, | |||
| 3729 | elf_tdata (abfd)((abfd) -> tdata.elf_obj_data)->cverdefs); | |||
| 3730 | bfd_set_error (bfd_error_bad_value); | |||
| 3731 | goto error_free_vers; | |||
| 3732 | } | |||
| 3733 | } | |||
| 3734 | else | |||
| 3735 | { | |||
| 3736 | /* We cannot simply test for the number of | |||
| 3737 | entries in the VERNEED section since the | |||
| 3738 | numbers for the needed versions do not start | |||
| 3739 | at 0. */ | |||
| 3740 | Elf_Internal_Verneed *t; | |||
| 3741 | ||||
| 3742 | verstr = NULL((void*)0); | |||
| 3743 | for (t = elf_tdata (abfd)((abfd) -> tdata.elf_obj_data)->verref; | |||
| 3744 | t != NULL((void*)0); | |||
| 3745 | t = t->vn_nextref) | |||
| 3746 | { | |||
| 3747 | Elf_Internal_Vernaux *a; | |||
| 3748 | ||||
| 3749 | for (a = t->vn_auxptr; a != NULL((void*)0); a = a->vna_nextptr) | |||
| 3750 | { | |||
| 3751 | if (a->vna_other == vernum) | |||
| 3752 | { | |||
| 3753 | verstr = a->vna_nodename; | |||
| 3754 | break; | |||
| 3755 | } | |||
| 3756 | } | |||
| 3757 | if (a != NULL((void*)0)) | |||
| 3758 | break; | |||
| 3759 | } | |||
| 3760 | if (verstr == NULL((void*)0)) | |||
| 3761 | { | |||
| 3762 | (*_bfd_error_handler) | |||
| 3763 | (_("%B: %s: invalid needed version %d")("%B: %s: invalid needed version %d"), | |||
| 3764 | abfd, name, vernum); | |||
| 3765 | bfd_set_error (bfd_error_bad_value); | |||
| 3766 | goto error_free_vers; | |||
| 3767 | } | |||
| 3768 | } | |||
| 3769 | ||||
| 3770 | namelen = strlen (name); | |||
| 3771 | verlen = strlen (verstr); | |||
| 3772 | newlen = namelen + verlen + 2; | |||
| 3773 | if ((iver.vs_vers & VERSYM_HIDDEN0x8000) == 0 | |||
| 3774 | && isym->st_shndx != SHN_UNDEF0) | |||
| 3775 | ++newlen; | |||
| 3776 | ||||
| 3777 | newname = bfd_hash_allocate (&htab->root.table, newlen); | |||
| 3778 | if (newname == NULL((void*)0)) | |||
| 3779 | goto error_free_vers; | |||
| 3780 | memcpy (newname, name, namelen); | |||
| 3781 | p = newname + namelen; | |||
| 3782 | *p++ = ELF_VER_CHR'@'; | |||
| 3783 | /* If this is a defined non-hidden version symbol, | |||
| 3784 | we add another @ to the name. This indicates the | |||
| 3785 | default version of the symbol. */ | |||
| 3786 | if ((iver.vs_vers & VERSYM_HIDDEN0x8000) == 0 | |||
| 3787 | && isym->st_shndx != SHN_UNDEF0) | |||
| 3788 | *p++ = ELF_VER_CHR'@'; | |||
| 3789 | memcpy (p, verstr, verlen + 1); | |||
| 3790 | ||||
| 3791 | name = newname; | |||
| 3792 | } | |||
| 3793 | ||||
| 3794 | if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, | |||
| 3795 | &value, &old_alignment, | |||
| 3796 | sym_hash, &skip, &override, | |||
| 3797 | &type_change_ok, &size_change_ok)) | |||
| 3798 | goto error_free_vers; | |||
| 3799 | ||||
| 3800 | if (skip) | |||
| 3801 | continue; | |||
| 3802 | ||||
| 3803 | if (override) | |||
| 3804 | definition = FALSE0; | |||
| 3805 | ||||
| 3806 | h = *sym_hash; | |||
| 3807 | while (h->root.type == bfd_link_hash_indirect | |||
| 3808 | || h->root.type == bfd_link_hash_warning) | |||
| 3809 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |||
| 3810 | ||||
| 3811 | /* Remember the old alignment if this is a common symbol, so | |||
| 3812 | that we don't reduce the alignment later on. We can't | |||
| 3813 | check later, because _bfd_generic_link_add_one_symbol | |||
| 3814 | will set a default for the alignment which we want to | |||
| 3815 | override. We also remember the old bfd where the existing | |||
| 3816 | definition comes from. */ | |||
| 3817 | switch (h->root.type) | |||
| 3818 | { | |||
| 3819 | default: | |||
| 3820 | break; | |||
| 3821 | ||||
| 3822 | case bfd_link_hash_defined: | |||
| 3823 | case bfd_link_hash_defweak: | |||
| 3824 | old_bfd = h->root.u.def.section->owner; | |||
| 3825 | break; | |||
| 3826 | ||||
| 3827 | case bfd_link_hash_common: | |||
| 3828 | old_bfd = h->root.u.c.p->section->owner; | |||
| 3829 | old_alignment = h->root.u.c.p->alignment_power; | |||
| 3830 | break; | |||
| 3831 | } | |||
| 3832 | ||||
| 3833 | if (elf_tdata (abfd)((abfd) -> tdata.elf_obj_data)->verdef != NULL((void*)0) | |||
| 3834 | && ! override | |||
| 3835 | && vernum > 1 | |||
| 3836 | && definition) | |||
| 3837 | h->verinfo.verdef = &elf_tdata (abfd)((abfd) -> tdata.elf_obj_data)->verdef[vernum - 1]; | |||
| 3838 | } | |||
| 3839 | ||||
| 3840 | if (! (_bfd_generic_link_add_one_symbol | |||
| 3841 | (info, abfd, name, flags, sec, value, NULL((void*)0), FALSE0, bed->collect, | |||
| 3842 | (struct bfd_link_hash_entry **) sym_hash))) | |||
| 3843 | goto error_free_vers; | |||
| 3844 | ||||
| 3845 | h = *sym_hash; | |||
| 3846 | while (h->root.type == bfd_link_hash_indirect | |||
| 3847 | || h->root.type == bfd_link_hash_warning) | |||
| 3848 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |||
| 3849 | *sym_hash = h; | |||
| 3850 | ||||
| 3851 | new_weakdef = FALSE0; | |||
| 3852 | if (dynamic | |||
| 3853 | && definition | |||
| 3854 | && (flags & BSF_WEAK0x80) != 0 | |||
| 3855 | && ELF_ST_TYPE (isym->st_info)((isym->st_info) & 0xF) != STT_FUNC2 | |||
| 3856 | && is_elf_hash_table (htab)(((struct bfd_link_hash_table *) (htab))->type == bfd_link_elf_hash_table ) | |||
| 3857 | && h->u.weakdef == NULL((void*)0)) | |||
| 3858 | { | |||
| 3859 | /* Keep a list of all weak defined non function symbols from | |||
| 3860 | a dynamic object, using the weakdef field. Later in this | |||
| 3861 | function we will set the weakdef field to the correct | |||
| 3862 | value. We only put non-function symbols from dynamic | |||
| 3863 | objects on this list, because that happens to be the only | |||
| 3864 | time we need to know the normal symbol corresponding to a | |||
| 3865 | weak symbol, and the information is time consuming to | |||
| 3866 | figure out. If the weakdef field is not already NULL, | |||
| 3867 | then this symbol was already defined by some previous | |||
| 3868 | dynamic object, and we will be using that previous | |||
| 3869 | definition anyhow. */ | |||
| 3870 | ||||
| 3871 | h->u.weakdef = weaks; | |||
| 3872 | weaks = h; | |||
| 3873 | new_weakdef = TRUE1; | |||
| 3874 | } | |||
| 3875 | ||||
| 3876 | /* Set the alignment of a common symbol. */ | |||
| 3877 | if ((common || bfd_is_com_section (sec)(((sec)->flags & 0x1000) != 0)) | |||
| 3878 | && h->root.type == bfd_link_hash_common) | |||
| 3879 | { | |||
| 3880 | unsigned int align; | |||
| 3881 | ||||
| 3882 | if (common) | |||
| 3883 | align = bfd_log2 (isym->st_value); | |||
| 3884 | else | |||
| 3885 | { | |||
| 3886 | /* The new symbol is a common symbol in a shared object. | |||
| 3887 | We need to get the alignment from the section. */ | |||
| 3888 | align = new_sec->alignment_power; | |||
| 3889 | } | |||
| 3890 | if (align > old_alignment | |||
| 3891 | /* Permit an alignment power of zero if an alignment of one | |||
| 3892 | is specified and no other alignments have been specified. */ | |||
| 3893 | || (isym->st_value == 1 && old_alignment == 0)) | |||
| 3894 | h->root.u.c.p->alignment_power = align; | |||
| 3895 | else | |||
| 3896 | h->root.u.c.p->alignment_power = old_alignment; | |||
| 3897 | } | |||
| 3898 | ||||
| 3899 | if (is_elf_hash_table (htab)(((struct bfd_link_hash_table *) (htab))->type == bfd_link_elf_hash_table )) | |||
| 3900 | { | |||
| 3901 | bfd_boolean dynsym; | |||
| 3902 | ||||
| 3903 | /* Check the alignment when a common symbol is involved. This | |||
| 3904 | can change when a common symbol is overridden by a normal | |||
| 3905 | definition or a common symbol is ignored due to the old | |||
| 3906 | normal definition. We need to make sure the maximum | |||
| 3907 | alignment is maintained. */ | |||
| 3908 | if ((old_alignment || common) | |||
| 3909 | && h->root.type != bfd_link_hash_common) | |||
| 3910 | { | |||
| 3911 | unsigned int common_align; | |||
| 3912 | unsigned int normal_align; | |||
| 3913 | unsigned int symbol_align; | |||
| 3914 | bfd *normal_bfd; | |||
| 3915 | bfd *common_bfd; | |||
| 3916 | ||||
| 3917 | symbol_align = ffs (h->root.u.def.value) - 1; | |||
| 3918 | if (h->root.u.def.section->owner != NULL((void*)0) | |||
| 3919 | && (h->root.u.def.section->owner->flags & DYNAMIC0x40) == 0) | |||
| 3920 | { | |||
| 3921 | normal_align = h->root.u.def.section->alignment_power; | |||
| 3922 | if (normal_align > symbol_align) | |||
| 3923 | normal_align = symbol_align; | |||
| 3924 | } | |||
| 3925 | else | |||
| 3926 | normal_align = symbol_align; | |||
| 3927 | ||||
| 3928 | if (old_alignment) | |||
| 3929 | { | |||
| 3930 | common_align = old_alignment; | |||
| 3931 | common_bfd = old_bfd; | |||
| 3932 | normal_bfd = abfd; | |||
| 3933 | } | |||
| 3934 | else | |||
| 3935 | { | |||
| 3936 | common_align = bfd_log2 (isym->st_value); | |||
| 3937 | common_bfd = abfd; | |||
| 3938 | normal_bfd = old_bfd; | |||
| 3939 | } | |||
| 3940 | ||||
| 3941 | if (normal_align < common_align) | |||
| 3942 | (*_bfd_error_handler) | |||
| 3943 | (_("Warning: alignment %u of symbol `%s' in %B"("Warning: alignment %u of symbol `%s' in %B" " is smaller than %u in %B" ) | |||
| 3944 | " is smaller than %u in %B")("Warning: alignment %u of symbol `%s' in %B" " is smaller than %u in %B" ), | |||
| 3945 | normal_bfd, common_bfd, | |||
| 3946 | 1 << normal_align, name, 1 << common_align); | |||
| 3947 | } | |||
| 3948 | ||||
| 3949 | /* Remember the symbol size and type. */ | |||
| 3950 | if (isym->st_size != 0 | |||
| 3951 | && (definition || h->size == 0)) | |||
| 3952 | { | |||
| 3953 | if (h->size != 0 && h->size != isym->st_size && ! size_change_ok) | |||
| 3954 | (*_bfd_error_handler) | |||
| 3955 | (_("Warning: size of symbol `%s' changed"("Warning: size of symbol `%s' changed" " from %lu in %B to %lu in %B" ) | |||
| 3956 | " from %lu in %B to %lu in %B")("Warning: size of symbol `%s' changed" " from %lu in %B to %lu in %B" ), | |||
| 3957 | old_bfd, abfd, | |||
| 3958 | name, (unsigned long) h->size, | |||
| 3959 | (unsigned long) isym->st_size); | |||
| 3960 | ||||
| 3961 | h->size = isym->st_size; | |||
| 3962 | } | |||
| 3963 | ||||
| 3964 | /* If this is a common symbol, then we always want H->SIZE | |||
| 3965 | to be the size of the common symbol. The code just above | |||
| 3966 | won't fix the size if a common symbol becomes larger. We | |||
| 3967 | don't warn about a size change here, because that is | |||
| 3968 | covered by --warn-common. */ | |||
| 3969 | if (h->root.type == bfd_link_hash_common) | |||
| 3970 | h->size = h->root.u.c.size; | |||
| 3971 | ||||
| 3972 | if (ELF_ST_TYPE (isym->st_info)((isym->st_info) & 0xF) != STT_NOTYPE0 | |||
| 3973 | && (definition || h->type == STT_NOTYPE0)) | |||
| 3974 | { | |||
| 3975 | if (h->type != STT_NOTYPE0 | |||
| 3976 | && h->type != ELF_ST_TYPE (isym->st_info)((isym->st_info) & 0xF) | |||
| 3977 | && ! type_change_ok) | |||
| 3978 | (*_bfd_error_handler) | |||
| 3979 | (_("Warning: type of symbol `%s' changed"("Warning: type of symbol `%s' changed" " from %d to %d in %B" ) | |||
| 3980 | " from %d to %d in %B")("Warning: type of symbol `%s' changed" " from %d to %d in %B" ), | |||
| 3981 | abfd, name, h->type, ELF_ST_TYPE (isym->st_info)((isym->st_info) & 0xF)); | |||
| 3982 | ||||
| 3983 | h->type = ELF_ST_TYPE (isym->st_info)((isym->st_info) & 0xF); | |||
| 3984 | } | |||
| 3985 | ||||
| 3986 | /* If st_other has a processor-specific meaning, specific | |||
| 3987 | code might be needed here. We never merge the visibility | |||
| 3988 | attribute with the one from a dynamic object. */ | |||
| 3989 | if (bed->elf_backend_merge_symbol_attribute) | |||
| 3990 | (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition, | |||
| 3991 | dynamic); | |||
| 3992 | ||||
| 3993 | /* If this symbol has default visibility and the user has requested | |||
| 3994 | we not re-export it, then mark it as hidden. */ | |||
| 3995 | if (definition && !dynamic | |||
| 3996 | && (abfd->no_export | |||
| 3997 | || (abfd->my_archive && abfd->my_archive->no_export)) | |||
| 3998 | && ELF_ST_VISIBILITY (isym->st_other)((isym->st_other) & 0x3) != STV_INTERNAL1) | |||
| 3999 | isym->st_other = (STV_HIDDEN2 | |||
| 4000 | | (isym->st_other & ~ELF_ST_VISIBILITY (-1)((-1) & 0x3))); | |||
| 4001 | ||||
| 4002 | if (isym->st_other != 0 && !dynamic) | |||
| 4003 | { | |||
| 4004 | unsigned char hvis, symvis, other, nvis; | |||
| 4005 | ||||
| 4006 | /* Take the balance of OTHER from the definition. */ | |||
| 4007 | other = (definition ? isym->st_other : h->other); | |||
| 4008 | other &= ~ ELF_ST_VISIBILITY (-1)((-1) & 0x3); | |||
| 4009 | ||||
| 4010 | /* Combine visibilities, using the most constraining one. */ | |||
| 4011 | hvis = ELF_ST_VISIBILITY (h->other)((h->other) & 0x3); | |||
| 4012 | symvis = ELF_ST_VISIBILITY (isym->st_other)((isym->st_other) & 0x3); | |||
| 4013 | if (! hvis) | |||
| 4014 | nvis = symvis; | |||
| 4015 | else if (! symvis) | |||
| 4016 | nvis = hvis; | |||
| 4017 | else | |||
| 4018 | nvis = hvis < symvis ? hvis : symvis; | |||
| 4019 | ||||
| 4020 | h->other = other | nvis; | |||
| 4021 | } | |||
| 4022 | ||||
| 4023 | /* Set a flag in the hash table entry indicating the type of | |||
| 4024 | reference or definition we just found. Keep a count of | |||
| 4025 | the number of dynamic symbols we find. A dynamic symbol | |||
| 4026 | is one which is referenced or defined by both a regular | |||
| 4027 | object and a shared object. */ | |||
| 4028 | dynsym = FALSE0; | |||
| 4029 | if (! dynamic) | |||
| 4030 | { | |||
| 4031 | if (! definition) | |||
| 4032 | { | |||
| 4033 | h->ref_regular = 1; | |||
| 4034 | if (bind != STB_WEAK2) | |||
| 4035 | h->ref_regular_nonweak = 1; | |||
| 4036 | } | |||
| 4037 | else | |||
| 4038 | h->def_regular = 1; | |||
| 4039 | if (! info->executable | |||
| 4040 | || h->def_dynamic | |||
| 4041 | || h->ref_dynamic) | |||
| 4042 | dynsym = TRUE1; | |||
| 4043 | } | |||
| 4044 | else | |||
| 4045 | { | |||
| 4046 | if (! definition) | |||
| 4047 | h->ref_dynamic = 1; | |||
| 4048 | else | |||
| 4049 | h->def_dynamic = 1; | |||
| 4050 | if (h->def_regular | |||
| 4051 | || h->ref_regular | |||
| 4052 | || (h->u.weakdef != NULL((void*)0) | |||
| 4053 | && ! new_weakdef | |||
| 4054 | && h->u.weakdef->dynindx != -1)) | |||
| 4055 | dynsym = TRUE1; | |||
| 4056 | } | |||
| 4057 | ||||
| 4058 | /* Check to see if we need to add an indirect symbol for | |||
| 4059 | the default name. */ | |||
| 4060 | if (definition || h->root.type == bfd_link_hash_common) | |||
| 4061 | if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym, | |||
| 4062 | &sec, &value, &dynsym, | |||
| 4063 | override)) | |||
| 4064 | goto error_free_vers; | |||
| 4065 | ||||
| 4066 | if (definition && !dynamic) | |||
| 4067 | { | |||
| 4068 | char *p = strchr (name, ELF_VER_CHR'@'); | |||
| 4069 | if (p != NULL((void*)0) && p[1] != ELF_VER_CHR'@') | |||
| 4070 | { | |||
| 4071 | /* Queue non-default versions so that .symver x, x@FOO | |||
| 4072 | aliases can be checked. */ | |||
| 4073 | if (!nondeflt_vers) | |||
| 4074 | { | |||
| 4075 | amt = ((isymend - isym + 1) | |||
| 4076 | * sizeof (struct elf_link_hash_entry *)); | |||
| 4077 | nondeflt_vers = bfd_malloc (amt); | |||
| 4078 | } | |||
| 4079 | nondeflt_vers[nondeflt_vers_cnt++] = h; | |||
| 4080 | } | |||
| 4081 | } | |||
| 4082 | ||||
| 4083 | if (dynsym && h->dynindx == -1) | |||
| 4084 | { | |||
| 4085 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) | |||
| 4086 | goto error_free_vers; | |||
| 4087 | if (h->u.weakdef != NULL((void*)0) | |||
| 4088 | && ! new_weakdef | |||
| 4089 | && h->u.weakdef->dynindx == -1) | |||
| 4090 | { | |||
| 4091 | if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef)) | |||
| 4092 | goto error_free_vers; | |||
| 4093 | } | |||
| 4094 | } | |||
| 4095 | else if (dynsym && h->dynindx != -1) | |||
| 4096 | /* If the symbol already has a dynamic index, but | |||
| 4097 | visibility says it should not be visible, turn it into | |||
| 4098 | a local symbol. */ | |||
| 4099 | switch (ELF_ST_VISIBILITY (h->other)((h->other) & 0x3)) | |||
| 4100 | { | |||
| 4101 | case STV_INTERNAL1: | |||
| 4102 | case STV_HIDDEN2: | |||
| 4103 | (*bed->elf_backend_hide_symbol) (info, h, TRUE1); | |||
| 4104 | dynsym = FALSE0; | |||
| 4105 | break; | |||
| 4106 | } | |||
| 4107 | ||||
| 4108 | if (!add_needed | |||
| 4109 | && definition | |||
| 4110 | && dynsym | |||
| 4111 | && h->ref_regular) | |||
| 4112 | { | |||
| 4113 | int ret; | |||
| 4114 | const char *soname = elf_dt_name (abfd)(((abfd) -> tdata.elf_obj_data) -> dt_name); | |||
| 4115 | ||||
| 4116 | /* A symbol from a library loaded via DT_NEEDED of some | |||
| 4117 | other library is referenced by a regular object. | |||
| 4118 | Add a DT_NEEDED entry for it. Issue an error if | |||
| 4119 | --no-add-needed is used. */ | |||
| 4120 | if ((elf_dyn_lib_class (abfd)(((abfd) -> tdata.elf_obj_data) -> dyn_lib_class) & DYN_NO_NEEDED) != 0) | |||
| 4121 | { | |||
| 4122 | (*_bfd_error_handler) | |||
| 4123 | (_("%s: invalid DSO for symbol `%s' definition")("%s: invalid DSO for symbol `%s' definition"), | |||
| 4124 | abfd, name); | |||
| 4125 | bfd_set_error (bfd_error_bad_value); | |||
| 4126 | goto error_free_vers; | |||
| 4127 | } | |||
| 4128 | ||||
| 4129 | elf_dyn_lib_class (abfd)(((abfd) -> tdata.elf_obj_data) -> dyn_lib_class) &= ~DYN_AS_NEEDED; | |||
| 4130 | ||||
| 4131 | add_needed = TRUE1; | |||
| 4132 | ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed); | |||
| 4133 | if (ret < 0) | |||
| 4134 | goto error_free_vers; | |||
| 4135 | ||||
| 4136 | BFD_ASSERT (ret == 0)do { if (!(ret == 0)) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,4136); } while (0); | |||
| 4137 | } | |||
| 4138 | } | |||
| 4139 | } | |||
| 4140 | ||||
| 4141 | if (extversym != NULL((void*)0)) | |||
| 4142 | { | |||
| 4143 | free (extversym); | |||
| 4144 | extversym = NULL((void*)0); | |||
| 4145 | } | |||
| 4146 | ||||
| 4147 | if (isymbuf != NULL((void*)0)) | |||
| 4148 | { | |||
| 4149 | free (isymbuf); | |||
| 4150 | isymbuf = NULL((void*)0); | |||
| 4151 | } | |||
| 4152 | ||||
| 4153 | if ((elf_dyn_lib_class (abfd)(((abfd) -> tdata.elf_obj_data) -> dyn_lib_class) & DYN_AS_NEEDED) != 0) | |||
| 4154 | { | |||
| 4155 | unsigned int i; | |||
| 4156 | ||||
| 4157 | /* Restore the symbol table. */ | |||
| 4158 | old_hash = (char *) old_tab + tabsize; | |||
| 4159 | old_ent = (char *) old_hash + hashsize; | |||
| 4160 | sym_hash = elf_sym_hashes (abfd)(((abfd) -> tdata.elf_obj_data) -> sym_hashes); | |||
| 4161 | memcpy (htab->root.table.table, old_tab, tabsize); | |||
| 4162 | memcpy (sym_hash, old_hash, hashsize); | |||
| 4163 | htab->root.undefs = old_undefs; | |||
| 4164 | htab->root.undefs_tail = old_undefs_tail; | |||
| 4165 | for (i = 0; i < htab->root.table.size; i++) | |||
| 4166 | { | |||
| 4167 | struct bfd_hash_entry *p; | |||
| 4168 | struct elf_link_hash_entry *h; | |||
| 4169 | ||||
| 4170 | for (p = htab->root.table.table[i]; p != NULL((void*)0); p = p->next) | |||
| 4171 | { | |||
| 4172 | h = (struct elf_link_hash_entry *) p; | |||
| 4173 | if (h->root.type == bfd_link_hash_warning) | |||
| 4174 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |||
| 4175 | if (h->dynindx >= old_dynsymcount) | |||
| 4176 | _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index); | |||
| 4177 | ||||
| 4178 | memcpy (p, old_ent, htab->root.table.entsize); | |||
| 4179 | old_ent = (char *) old_ent + htab->root.table.entsize; | |||
| 4180 | h = (struct elf_link_hash_entry *) p; | |||
| 4181 | if (h->root.type == bfd_link_hash_warning) | |||
| 4182 | { | |||
| 4183 | memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize); | |||
| 4184 | old_ent = (char *) old_ent + htab->root.table.entsize; | |||
| 4185 | } | |||
| 4186 | } | |||
| 4187 | } | |||
| 4188 | ||||
| 4189 | free (old_tab); | |||
| 4190 | objalloc_free_block ((struct objalloc *) htab->root.table.memory, | |||
| 4191 | alloc_mark); | |||
| 4192 | if (nondeflt_vers != NULL((void*)0)) | |||
| 4193 | free (nondeflt_vers); | |||
| 4194 | return TRUE1; | |||
| 4195 | } | |||
| 4196 | ||||
| 4197 | if (old_tab != NULL((void*)0)) | |||
| 4198 | { | |||
| 4199 | free (old_tab); | |||
| 4200 | old_tab = NULL((void*)0); | |||
| 4201 | } | |||
| 4202 | ||||
| 4203 | /* Now that all the symbols from this input file are created, handle | |||
| 4204 | .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */ | |||
| 4205 | if (nondeflt_vers != NULL((void*)0)) | |||
| 4206 | { | |||
| 4207 | bfd_size_type cnt, symidx; | |||
| 4208 | ||||
| 4209 | for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt) | |||
| 4210 | { | |||
| 4211 | struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi; | |||
| 4212 | char *shortname, *p; | |||
| 4213 | ||||
| 4214 | p = strchr (h->root.root.string, ELF_VER_CHR'@'); | |||
| 4215 | if (p == NULL((void*)0) | |||
| 4216 | || (h->root.type != bfd_link_hash_defined | |||
| 4217 | && h->root.type != bfd_link_hash_defweak)) | |||
| 4218 | continue; | |||
| 4219 | ||||
| 4220 | amt = p - h->root.root.string; | |||
| 4221 | shortname = bfd_malloc (amt + 1); | |||
| 4222 | memcpy (shortname, h->root.root.string, amt); | |||
| 4223 | shortname[amt] = '\0'; | |||
| 4224 | ||||
| 4225 | hi = (struct elf_link_hash_entry *) | |||
| 4226 | bfd_link_hash_lookup (&htab->root, shortname, | |||
| 4227 | FALSE0, FALSE0, FALSE0); | |||
| 4228 | if (hi != NULL((void*)0) | |||
| 4229 | && hi->root.type == h->root.type | |||
| 4230 | && hi->root.u.def.value == h->root.u.def.value | |||
| 4231 | && hi->root.u.def.section == h->root.u.def.section) | |||
| 4232 | { | |||
| 4233 | (*bed->elf_backend_hide_symbol) (info, hi, TRUE1); | |||
| 4234 | hi->root.type = bfd_link_hash_indirect; | |||
| 4235 | hi->root.u.i.link = (struct bfd_link_hash_entry *) h; | |||
| 4236 | (*bed->elf_backend_copy_indirect_symbol) (info, h, hi); | |||
| 4237 | sym_hash = elf_sym_hashes (abfd)(((abfd) -> tdata.elf_obj_data) -> sym_hashes); | |||
| 4238 | if (sym_hash) | |||
| 4239 | for (symidx = 0; symidx < extsymcount; ++symidx) | |||
| 4240 | if (sym_hash[symidx] == hi) | |||
| 4241 | { | |||
| 4242 | sym_hash[symidx] = h; | |||
| 4243 | break; | |||
| 4244 | } | |||
| 4245 | } | |||
| 4246 | free (shortname); | |||
| 4247 | } | |||
| 4248 | free (nondeflt_vers); | |||
| 4249 | nondeflt_vers = NULL((void*)0); | |||
| 4250 | } | |||
| 4251 | ||||
| 4252 | /* Now set the weakdefs field correctly for all the weak defined | |||
| 4253 | symbols we found. The only way to do this is to search all the | |||
| 4254 | symbols. Since we only need the information for non functions in | |||
| 4255 | dynamic objects, that's the only time we actually put anything on | |||
| 4256 | the list WEAKS. We need this information so that if a regular | |||
| 4257 | object refers to a symbol defined weakly in a dynamic object, the | |||
| 4258 | real symbol in the dynamic object is also put in the dynamic | |||
| 4259 | symbols; we also must arrange for both symbols to point to the | |||
| 4260 | same memory location. We could handle the general case of symbol | |||
| 4261 | aliasing, but a general symbol alias can only be generated in | |||
| 4262 | assembler code, handling it correctly would be very time | |||
| 4263 | consuming, and other ELF linkers don't handle general aliasing | |||
| 4264 | either. */ | |||
| 4265 | if (weaks != NULL((void*)0)) | |||
| 4266 | { | |||
| 4267 | struct elf_link_hash_entry **hpp; | |||
| 4268 | struct elf_link_hash_entry **hppend; | |||
| 4269 | struct elf_link_hash_entry **sorted_sym_hash; | |||
| 4270 | struct elf_link_hash_entry *h; | |||
| 4271 | size_t sym_count; | |||
| 4272 | ||||
| 4273 | /* Since we have to search the whole symbol list for each weak | |||
| 4274 | defined symbol, search time for N weak defined symbols will be | |||
| 4275 | O(N^2). Binary search will cut it down to O(NlogN). */ | |||
| 4276 | amt = extsymcount * sizeof (struct elf_link_hash_entry *); | |||
| 4277 | sorted_sym_hash = bfd_malloc (amt); | |||
| 4278 | if (sorted_sym_hash == NULL((void*)0)) | |||
| 4279 | goto error_return; | |||
| 4280 | sym_hash = sorted_sym_hash; | |||
| 4281 | hpp = elf_sym_hashes (abfd)(((abfd) -> tdata.elf_obj_data) -> sym_hashes); | |||
| 4282 | hppend = hpp + extsymcount; | |||
| 4283 | sym_count = 0; | |||
| 4284 | for (; hpp < hppend; hpp++) | |||
| 4285 | { | |||
| 4286 | h = *hpp; | |||
| 4287 | if (h != NULL((void*)0) | |||
| 4288 | && h->root.type == bfd_link_hash_defined | |||
| 4289 | && h->type != STT_FUNC2) | |||
| 4290 | { | |||
| 4291 | *sym_hash = h; | |||
| 4292 | sym_hash++; | |||
| 4293 | sym_count++; | |||
| 4294 | } | |||
| 4295 | } | |||
| 4296 | ||||
| 4297 | qsort (sorted_sym_hash, sym_count, | |||
| 4298 | sizeof (struct elf_link_hash_entry *), | |||
| 4299 | elf_sort_symbol); | |||
| 4300 | ||||
| 4301 | while (weaks != NULL((void*)0)) | |||
| 4302 | { | |||
| 4303 | struct elf_link_hash_entry *hlook; | |||
| 4304 | asection *slook; | |||
| 4305 | bfd_vma vlook; | |||
| 4306 | long ilook; | |||
| 4307 | size_t i, j, idx; | |||
| 4308 | ||||
| 4309 | hlook = weaks; | |||
| 4310 | weaks = hlook->u.weakdef; | |||
| 4311 | hlook->u.weakdef = NULL((void*)0); | |||
| 4312 | ||||
| 4313 | BFD_ASSERT (hlook->root.type == bfd_link_hash_defineddo { if (!(hlook->root.type == bfd_link_hash_defined || hlook ->root.type == bfd_link_hash_defweak || hlook->root.type == bfd_link_hash_common || hlook->root.type == bfd_link_hash_indirect )) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,4316); } while (0) | |||
| 4314 | || hlook->root.type == bfd_link_hash_defweakdo { if (!(hlook->root.type == bfd_link_hash_defined || hlook ->root.type == bfd_link_hash_defweak || hlook->root.type == bfd_link_hash_common || hlook->root.type == bfd_link_hash_indirect )) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,4316); } while (0) | |||
| 4315 | || hlook->root.type == bfd_link_hash_commondo { if (!(hlook->root.type == bfd_link_hash_defined || hlook ->root.type == bfd_link_hash_defweak || hlook->root.type == bfd_link_hash_common || hlook->root.type == bfd_link_hash_indirect )) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,4316); } while (0) | |||
| 4316 | || hlook->root.type == bfd_link_hash_indirect)do { if (!(hlook->root.type == bfd_link_hash_defined || hlook ->root.type == bfd_link_hash_defweak || hlook->root.type == bfd_link_hash_common || hlook->root.type == bfd_link_hash_indirect )) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,4316); } while (0); | |||
| 4317 | slook = hlook->root.u.def.section; | |||
| 4318 | vlook = hlook->root.u.def.value; | |||
| 4319 | ||||
| 4320 | ilook = -1; | |||
| 4321 | i = 0; | |||
| 4322 | j = sym_count; | |||
| 4323 | while (i < j) | |||
| 4324 | { | |||
| 4325 | bfd_signed_vma vdiff; | |||
| 4326 | idx = (i + j) / 2; | |||
| 4327 | h = sorted_sym_hash [idx]; | |||
| 4328 | vdiff = vlook - h->root.u.def.value; | |||
| 4329 | if (vdiff < 0) | |||
| 4330 | j = idx; | |||
| 4331 | else if (vdiff > 0) | |||
| 4332 | i = idx + 1; | |||
| 4333 | else | |||
| 4334 | { | |||
| 4335 | long sdiff = slook->id - h->root.u.def.section->id; | |||
| 4336 | if (sdiff < 0) | |||
| 4337 | j = idx; | |||
| 4338 | else if (sdiff > 0) | |||
| 4339 | i = idx + 1; | |||
| 4340 | else | |||
| 4341 | { | |||
| 4342 | ilook = idx; | |||
| 4343 | break; | |||
| 4344 | } | |||
| 4345 | } | |||
| 4346 | } | |||
| 4347 | ||||
| 4348 | /* We didn't find a value/section match. */ | |||
| 4349 | if (ilook == -1) | |||
| 4350 | continue; | |||
| 4351 | ||||
| 4352 | for (i = ilook; i < sym_count; i++) | |||
| 4353 | { | |||
| 4354 | h = sorted_sym_hash [i]; | |||
| 4355 | ||||
| 4356 | /* Stop if value or section doesn't match. */ | |||
| 4357 | if (h->root.u.def.value != vlook | |||
| 4358 | || h->root.u.def.section != slook) | |||
| 4359 | break; | |||
| 4360 | else if (h != hlook) | |||
| 4361 | { | |||
| 4362 | hlook->u.weakdef = h; | |||
| 4363 | ||||
| 4364 | /* If the weak definition is in the list of dynamic | |||
| 4365 | symbols, make sure the real definition is put | |||
| 4366 | there as well. */ | |||
| 4367 | if (hlook->dynindx != -1 && h->dynindx == -1) | |||
| 4368 | { | |||
| 4369 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) | |||
| 4370 | goto error_return; | |||
| 4371 | } | |||
| 4372 | ||||
| 4373 | /* If the real definition is in the list of dynamic | |||
| 4374 | symbols, make sure the weak definition is put | |||
| 4375 | there as well. If we don't do this, then the | |||
| 4376 | dynamic loader might not merge the entries for the | |||
| 4377 | real definition and the weak definition. */ | |||
| 4378 | if (h->dynindx != -1 && hlook->dynindx == -1) | |||
| 4379 | { | |||
| 4380 | if (! bfd_elf_link_record_dynamic_symbol (info, hlook)) | |||
| 4381 | goto error_return; | |||
| 4382 | } | |||
| 4383 | break; | |||
| 4384 | } | |||
| 4385 | } | |||
| 4386 | } | |||
| 4387 | ||||
| 4388 | free (sorted_sym_hash); | |||
| 4389 | } | |||
| 4390 | ||||
| 4391 | if (bed->check_directives) | |||
| 4392 | (*bed->check_directives) (abfd, info); | |||
| 4393 | ||||
| 4394 | /* If this object is the same format as the output object, and it is | |||
| 4395 | not a shared library, then let the backend look through the | |||
| 4396 | relocs. | |||
| 4397 | ||||
| 4398 | This is required to build global offset table entries and to | |||
| 4399 | arrange for dynamic relocs. It is not required for the | |||
| 4400 | particular common case of linking non PIC code, even when linking | |||
| 4401 | against shared libraries, but unfortunately there is no way of | |||
| 4402 | knowing whether an object file has been compiled PIC or not. | |||
| 4403 | Looking through the relocs is not particularly time consuming. | |||
| 4404 | The problem is that we must either (1) keep the relocs in memory, | |||
| 4405 | which causes the linker to require additional runtime memory or | |||
| 4406 | (2) read the relocs twice from the input file, which wastes time. | |||
| 4407 | This would be a good case for using mmap. | |||
| 4408 | ||||
| 4409 | I have no idea how to handle linking PIC code into a file of a | |||
| 4410 | different format. It probably can't be done. */ | |||
| 4411 | if (! dynamic | |||
| 4412 | && is_elf_hash_table (htab)(((struct bfd_link_hash_table *) (htab))->type == bfd_link_elf_hash_table ) | |||
| 4413 | && htab->root.creator == abfd->xvec | |||
| 4414 | && bed->check_relocs != NULL((void*)0)) | |||
| 4415 | { | |||
| 4416 | asection *o; | |||
| 4417 | ||||
| 4418 | for (o = abfd->sections; o != NULL((void*)0); o = o->next) | |||
| 4419 | { | |||
| 4420 | Elf_Internal_Rela *internal_relocs; | |||
| 4421 | bfd_boolean ok; | |||
| 4422 | ||||
| 4423 | if ((o->flags & SEC_RELOC0x004) == 0 | |||
| 4424 | || o->reloc_count == 0 | |||
| 4425 | || ((info->strip == strip_all || info->strip == strip_debugger) | |||
| 4426 | && (o->flags & SEC_DEBUGGING0x2000) != 0) | |||
| 4427 | || bfd_is_abs_section (o->output_section)((o->output_section) == ((asection *) &bfd_abs_section ))) | |||
| 4428 | continue; | |||
| 4429 | ||||
| 4430 | internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL((void*)0), NULL((void*)0), | |||
| 4431 | info->keep_memory); | |||
| 4432 | if (internal_relocs == NULL((void*)0)) | |||
| 4433 | goto error_return; | |||
| 4434 | ||||
| 4435 | ok = (*bed->check_relocs) (abfd, info, o, internal_relocs); | |||
| 4436 | ||||
| 4437 | if (elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->relocs != internal_relocs) | |||
| 4438 | free (internal_relocs); | |||
| 4439 | ||||
| 4440 | if (! ok) | |||
| 4441 | goto error_return; | |||
| 4442 | } | |||
| 4443 | } | |||
| 4444 | ||||
| 4445 | /* If this is a non-traditional link, try to optimize the handling | |||
| 4446 | of the .stab/.stabstr sections. */ | |||
| 4447 | if (! dynamic | |||
| 4448 | && ! info->traditional_format | |||
| 4449 | && is_elf_hash_table (htab)(((struct bfd_link_hash_table *) (htab))->type == bfd_link_elf_hash_table ) | |||
| 4450 | && (info->strip != strip_all && info->strip != strip_debugger)) | |||
| 4451 | { | |||
| 4452 | asection *stabstr; | |||
| 4453 | ||||
| 4454 | stabstr = bfd_get_section_by_name (abfd, ".stabstr"); | |||
| 4455 | if (stabstr != NULL((void*)0)) | |||
| 4456 | { | |||
| 4457 | bfd_size_type string_offset = 0; | |||
| 4458 | asection *stab; | |||
| 4459 | ||||
| 4460 | for (stab = abfd->sections; stab; stab = stab->next) | |||
| 4461 | if (strncmp (".stab", stab->name, 5) == 0 | |||
| 4462 | && (!stab->name[5] || | |||
| 4463 | (stab->name[5] == '.' && ISDIGIT (stab->name[6])(_sch_istable[(stab->name[6]) & 0xff] & (unsigned short )(_sch_isdigit)))) | |||
| 4464 | && (stab->flags & SEC_MERGE0x1000000) == 0 | |||
| 4465 | && !bfd_is_abs_section (stab->output_section)((stab->output_section) == ((asection *) &bfd_abs_section ))) | |||
| 4466 | { | |||
| 4467 | struct bfd_elf_section_data *secdata; | |||
| 4468 | ||||
| 4469 | secdata = elf_section_data (stab)((struct bfd_elf_section_data*)(stab)->used_by_bfd); | |||
| 4470 | if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab, | |||
| 4471 | stabstr, &secdata->sec_info, | |||
| 4472 | &string_offset)) | |||
| 4473 | goto error_return; | |||
| 4474 | if (secdata->sec_info) | |||
| 4475 | stab->sec_info_type = ELF_INFO_TYPE_STABS1; | |||
| 4476 | } | |||
| 4477 | } | |||
| 4478 | } | |||
| 4479 | ||||
| 4480 | if (is_elf_hash_table (htab)(((struct bfd_link_hash_table *) (htab))->type == bfd_link_elf_hash_table ) && add_needed) | |||
| 4481 | { | |||
| 4482 | /* Add this bfd to the loaded list. */ | |||
| 4483 | struct elf_link_loaded_list *n; | |||
| 4484 | ||||
| 4485 | n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list)); | |||
| 4486 | if (n == NULL((void*)0)) | |||
| 4487 | goto error_return; | |||
| 4488 | n->abfd = abfd; | |||
| 4489 | n->next = htab->loaded; | |||
| 4490 | htab->loaded = n; | |||
| 4491 | } | |||
| 4492 | ||||
| 4493 | return TRUE1; | |||
| 4494 | ||||
| 4495 | error_free_vers: | |||
| 4496 | if (old_tab != NULL((void*)0)) | |||
| 4497 | free (old_tab); | |||
| 4498 | if (nondeflt_vers != NULL((void*)0)) | |||
| 4499 | free (nondeflt_vers); | |||
| 4500 | if (extversym != NULL((void*)0)) | |||
| 4501 | free (extversym); | |||
| 4502 | error_free_sym: | |||
| 4503 | if (isymbuf != NULL((void*)0)) | |||
| 4504 | free (isymbuf); | |||
| 4505 | error_return: | |||
| 4506 | return FALSE0; | |||
| 4507 | } | |||
| 4508 | ||||
| 4509 | /* Return the linker hash table entry of a symbol that might be | |||
| 4510 | satisfied by an archive symbol. Return -1 on error. */ | |||
| 4511 | ||||
| 4512 | struct elf_link_hash_entry * | |||
| 4513 | _bfd_elf_archive_symbol_lookup (bfd *abfd, | |||
| 4514 | struct bfd_link_info *info, | |||
| 4515 | const char *name) | |||
| 4516 | { | |||
| 4517 | struct elf_link_hash_entry *h; | |||
| 4518 | char *p, *copy; | |||
| 4519 | size_t len, first; | |||
| 4520 | ||||
| 4521 | h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE)((struct elf_link_hash_entry *) bfd_link_hash_lookup (&(( (struct elf_link_hash_table *) ((info)->hash)))->root, ( name), (0), (0), (0))); | |||
| 4522 | if (h != NULL((void*)0)) | |||
| 4523 | return h; | |||
| 4524 | ||||
| 4525 | /* If this is a default version (the name contains @@), look up the | |||
| 4526 | symbol again with only one `@' as well as without the version. | |||
| 4527 | The effect is that references to the symbol with and without the | |||
| 4528 | version will be matched by the default symbol in the archive. */ | |||
| 4529 | ||||
| 4530 | p = strchr (name, ELF_VER_CHR'@'); | |||
| 4531 | if (p == NULL((void*)0) || p[1] != ELF_VER_CHR'@') | |||
| 4532 | return h; | |||
| 4533 | ||||
| 4534 | /* First check with only one `@'. */ | |||
| 4535 | len = strlen (name); | |||
| 4536 | copy = bfd_alloc (abfd, len); | |||
| 4537 | if (copy == NULL((void*)0)) | |||
| 4538 | return (struct elf_link_hash_entry *) -1; | |||
| 4539 | ||||
| 4540 | first = p - name + 1; | |||
| 4541 | memcpy (copy, name, first); | |||
| 4542 | memcpy (copy + first, name + first + 1, len - first); | |||
| 4543 | ||||
| 4544 | h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE)((struct elf_link_hash_entry *) bfd_link_hash_lookup (&(( (struct elf_link_hash_table *) ((info)->hash)))->root, ( copy), (0), (0), (0))); | |||
| 4545 | if (h == NULL((void*)0)) | |||
| 4546 | { | |||
| 4547 | /* We also need to check references to the symbol without the | |||
| 4548 | version. */ | |||
| 4549 | copy[first - 1] = '\0'; | |||
| 4550 | h = elf_link_hash_lookup (elf_hash_table (info), copy,((struct elf_link_hash_entry *) bfd_link_hash_lookup (&(( (struct elf_link_hash_table *) ((info)->hash)))->root, ( copy), (0), (0), (0))) | |||
| 4551 | FALSE, FALSE, FALSE)((struct elf_link_hash_entry *) bfd_link_hash_lookup (&(( (struct elf_link_hash_table *) ((info)->hash)))->root, ( copy), (0), (0), (0))); | |||
| 4552 | } | |||
| 4553 | ||||
| 4554 | bfd_release (abfd, copy); | |||
| 4555 | return h; | |||
| 4556 | } | |||
| 4557 | ||||
| 4558 | /* Add symbols from an ELF archive file to the linker hash table. We | |||
| 4559 | don't use _bfd_generic_link_add_archive_symbols because of a | |||
| 4560 | problem which arises on UnixWare. The UnixWare libc.so is an | |||
| 4561 | archive which includes an entry libc.so.1 which defines a bunch of | |||
| 4562 | symbols. The libc.so archive also includes a number of other | |||
| 4563 | object files, which also define symbols, some of which are the same | |||
| 4564 | as those defined in libc.so.1. Correct linking requires that we | |||
| 4565 | consider each object file in turn, and include it if it defines any | |||
| 4566 | symbols we need. _bfd_generic_link_add_archive_symbols does not do | |||
| 4567 | this; it looks through the list of undefined symbols, and includes | |||
| 4568 | any object file which defines them. When this algorithm is used on | |||
| 4569 | UnixWare, it winds up pulling in libc.so.1 early and defining a | |||
| 4570 | bunch of symbols. This means that some of the other objects in the | |||
| 4571 | archive are not included in the link, which is incorrect since they | |||
| 4572 | precede libc.so.1 in the archive. | |||
| 4573 | ||||
| 4574 | Fortunately, ELF archive handling is simpler than that done by | |||
| 4575 | _bfd_generic_link_add_archive_symbols, which has to allow for a.out | |||
| 4576 | oddities. In ELF, if we find a symbol in the archive map, and the | |||
| 4577 | symbol is currently undefined, we know that we must pull in that | |||
| 4578 | object file. | |||
| 4579 | ||||
| 4580 | Unfortunately, we do have to make multiple passes over the symbol | |||
| 4581 | table until nothing further is resolved. */ | |||
| 4582 | ||||
| 4583 | static bfd_boolean | |||
| 4584 | elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info) | |||
| 4585 | { | |||
| 4586 | symindex c; | |||
| 4587 | bfd_boolean *defined = NULL((void*)0); | |||
| 4588 | bfd_boolean *included = NULL((void*)0); | |||
| 4589 | carsym *symdefs; | |||
| 4590 | bfd_boolean loop; | |||
| 4591 | bfd_size_type amt; | |||
| 4592 | const struct elf_backend_data *bed; | |||
| 4593 | struct elf_link_hash_entry * (*archive_symbol_lookup) | |||
| 4594 | (bfd *, struct bfd_link_info *, const char *); | |||
| 4595 | ||||
| 4596 | if (! bfd_has_map (abfd)((abfd)->has_armap)) | |||
| 4597 | { | |||
| 4598 | /* An empty archive is a special case. */ | |||
| 4599 | if (bfd_openr_next_archived_file (abfd, NULL((void*)0)) == NULL((void*)0)) | |||
| 4600 | return TRUE1; | |||
| 4601 | bfd_set_error (bfd_error_no_armap); | |||
| 4602 | return FALSE0; | |||
| 4603 | } | |||
| 4604 | ||||
| 4605 | /* Keep track of all symbols we know to be already defined, and all | |||
| 4606 | files we know to be already included. This is to speed up the | |||
| 4607 | second and subsequent passes. */ | |||
| 4608 | c = bfd_ardata (abfd)((abfd)->tdata.aout_ar_data)->symdef_count; | |||
| 4609 | if (c == 0) | |||
| 4610 | return TRUE1; | |||
| 4611 | amt = c; | |||
| 4612 | amt *= sizeof (bfd_boolean); | |||
| 4613 | defined = bfd_zmalloc (amt); | |||
| 4614 | included = bfd_zmalloc (amt); | |||
| 4615 | if (defined == NULL((void*)0) || included == NULL((void*)0)) | |||
| 4616 | goto error_return; | |||
| 4617 | ||||
| 4618 | symdefs = bfd_ardata (abfd)((abfd)->tdata.aout_ar_data)->symdefs; | |||
| 4619 | bed = get_elf_backend_data (abfd)((const struct elf_backend_data *) (abfd)->xvec->backend_data ); | |||
| 4620 | archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup; | |||
| 4621 | ||||
| 4622 | do | |||
| 4623 | { | |||
| 4624 | file_ptr last; | |||
| 4625 | symindex i; | |||
| 4626 | carsym *symdef; | |||
| 4627 | carsym *symdefend; | |||
| 4628 | ||||
| 4629 | loop = FALSE0; | |||
| 4630 | last = -1; | |||
| 4631 | ||||
| 4632 | symdef = symdefs; | |||
| 4633 | symdefend = symdef + c; | |||
| 4634 | for (i = 0; symdef < symdefend; symdef++, i++) | |||
| 4635 | { | |||
| 4636 | struct elf_link_hash_entry *h; | |||
| 4637 | bfd *element; | |||
| 4638 | struct bfd_link_hash_entry *undefs_tail; | |||
| 4639 | symindex mark; | |||
| 4640 | ||||
| 4641 | if (defined[i] || included[i]) | |||
| 4642 | continue; | |||
| 4643 | if (symdef->file_offset == last) | |||
| 4644 | { | |||
| 4645 | included[i] = TRUE1; | |||
| 4646 | continue; | |||
| 4647 | } | |||
| 4648 | ||||
| 4649 | h = archive_symbol_lookup (abfd, info, symdef->name); | |||
| 4650 | if (h == (struct elf_link_hash_entry *) -1) | |||
| 4651 | goto error_return; | |||
| 4652 | ||||
| 4653 | if (h == NULL((void*)0)) | |||
| 4654 | continue; | |||
| 4655 | ||||
| 4656 | if (h->root.type == bfd_link_hash_common) | |||
| 4657 | { | |||
| 4658 | /* We currently have a common symbol. The archive map contains | |||
| 4659 | a reference to this symbol, so we may want to include it. We | |||
| 4660 | only want to include it however, if this archive element | |||
| 4661 | contains a definition of the symbol, not just another common | |||
| 4662 | declaration of it. | |||
| 4663 | ||||
| 4664 | Unfortunately some archivers (including GNU ar) will put | |||
| 4665 | declarations of common symbols into their archive maps, as | |||
| 4666 | well as real definitions, so we cannot just go by the archive | |||
| 4667 | map alone. Instead we must read in the element's symbol | |||
| 4668 | table and check that to see what kind of symbol definition | |||
| 4669 | this is. */ | |||
| 4670 | if (! elf_link_is_defined_archive_symbol (abfd, symdef)) | |||
| 4671 | continue; | |||
| 4672 | } | |||
| 4673 | else if (h->root.type != bfd_link_hash_undefined) | |||
| 4674 | { | |||
| 4675 | if (h->root.type != bfd_link_hash_undefweak) | |||
| 4676 | defined[i] = TRUE1; | |||
| 4677 | continue; | |||
| 4678 | } | |||
| 4679 | ||||
| 4680 | /* We need to include this archive member. */ | |||
| 4681 | element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset); | |||
| 4682 | if (element == NULL((void*)0)) | |||
| 4683 | goto error_return; | |||
| 4684 | ||||
| 4685 | if (! bfd_check_format (element, bfd_object)) | |||
| 4686 | goto error_return; | |||
| 4687 | ||||
| 4688 | /* Doublecheck that we have not included this object | |||
| 4689 | already--it should be impossible, but there may be | |||
| 4690 | something wrong with the archive. */ | |||
| 4691 | if (element->archive_pass != 0) | |||
| 4692 | { | |||
| 4693 | bfd_set_error (bfd_error_bad_value); | |||
| 4694 | goto error_return; | |||
| 4695 | } | |||
| 4696 | element->archive_pass = 1; | |||
| 4697 | ||||
| 4698 | undefs_tail = info->hash->undefs_tail; | |||
| 4699 | ||||
| 4700 | if (! (*info->callbacks->add_archive_element) (info, element, | |||
| 4701 | symdef->name)) | |||
| 4702 | goto error_return; | |||
| 4703 | if (! bfd_link_add_symbols (element, info)((*((element)->xvec->_bfd_link_add_symbols)) (element, info ))) | |||
| 4704 | goto error_return; | |||
| 4705 | ||||
| 4706 | /* If there are any new undefined symbols, we need to make | |||
| 4707 | another pass through the archive in order to see whether | |||
| 4708 | they can be defined. FIXME: This isn't perfect, because | |||
| 4709 | common symbols wind up on undefs_tail and because an | |||
| 4710 | undefined symbol which is defined later on in this pass | |||
| 4711 | does not require another pass. This isn't a bug, but it | |||
| 4712 | does make the code less efficient than it could be. */ | |||
| 4713 | if (undefs_tail != info->hash->undefs_tail) | |||
| 4714 | loop = TRUE1; | |||
| 4715 | ||||
| 4716 | /* Look backward to mark all symbols from this object file | |||
| 4717 | which we have already seen in this pass. */ | |||
| 4718 | mark = i; | |||
| 4719 | do | |||
| 4720 | { | |||
| 4721 | included[mark] = TRUE1; | |||
| 4722 | if (mark == 0) | |||
| 4723 | break; | |||
| 4724 | --mark; | |||
| 4725 | } | |||
| 4726 | while (symdefs[mark].file_offset == symdef->file_offset); | |||
| 4727 | ||||
| 4728 | /* We mark subsequent symbols from this object file as we go | |||
| 4729 | on through the loop. */ | |||
| 4730 | last = symdef->file_offset; | |||
| 4731 | } | |||
| 4732 | } | |||
| 4733 | while (loop); | |||
| 4734 | ||||
| 4735 | free (defined); | |||
| 4736 | free (included); | |||
| 4737 | ||||
| 4738 | return TRUE1; | |||
| 4739 | ||||
| 4740 | error_return: | |||
| 4741 | if (defined != NULL((void*)0)) | |||
| 4742 | free (defined); | |||
| 4743 | if (included != NULL((void*)0)) | |||
| 4744 | free (included); | |||
| 4745 | return FALSE0; | |||
| 4746 | } | |||
| 4747 | ||||
| 4748 | /* Given an ELF BFD, add symbols to the global hash table as | |||
| 4749 | appropriate. */ | |||
| 4750 | ||||
| 4751 | bfd_boolean | |||
| 4752 | bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info) | |||
| 4753 | { | |||
| 4754 | switch (bfd_get_format (abfd)((abfd)->format)) | |||
| 4755 | { | |||
| 4756 | case bfd_object: | |||
| 4757 | return elf_link_add_object_symbols (abfd, info); | |||
| 4758 | case bfd_archive: | |||
| 4759 | return elf_link_add_archive_symbols (abfd, info); | |||
| 4760 | default: | |||
| 4761 | bfd_set_error (bfd_error_wrong_format); | |||
| 4762 | return FALSE0; | |||
| 4763 | } | |||
| 4764 | } | |||
| 4765 | ||||
| 4766 | /* This function will be called though elf_link_hash_traverse to store | |||
| 4767 | all hash value of the exported symbols in an array. */ | |||
| 4768 | ||||
| 4769 | static bfd_boolean | |||
| 4770 | elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data) | |||
| 4771 | { | |||
| 4772 | unsigned long **valuep = data; | |||
| 4773 | const char *name; | |||
| 4774 | char *p; | |||
| 4775 | unsigned long ha; | |||
| 4776 | char *alc = NULL((void*)0); | |||
| 4777 | ||||
| 4778 | if (h->root.type == bfd_link_hash_warning) | |||
| 4779 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |||
| 4780 | ||||
| 4781 | /* Ignore indirect symbols. These are added by the versioning code. */ | |||
| 4782 | if (h->dynindx == -1) | |||
| 4783 | return TRUE1; | |||
| 4784 | ||||
| 4785 | name = h->root.root.string; | |||
| 4786 | p = strchr (name, ELF_VER_CHR'@'); | |||
| 4787 | if (p != NULL((void*)0)) | |||
| 4788 | { | |||
| 4789 | alc = bfd_malloc (p - name + 1); | |||
| 4790 | memcpy (alc, name, p - name); | |||
| 4791 | alc[p - name] = '\0'; | |||
| 4792 | name = alc; | |||
| 4793 | } | |||
| 4794 | ||||
| 4795 | /* Compute the hash value. */ | |||
| 4796 | ha = bfd_elf_hash (name); | |||
| 4797 | ||||
| 4798 | /* Store the found hash value in the array given as the argument. */ | |||
| 4799 | *(*valuep)++ = ha; | |||
| 4800 | ||||
| 4801 | /* And store it in the struct so that we can put it in the hash table | |||
| 4802 | later. */ | |||
| 4803 | h->u.elf_hash_value = ha; | |||
| 4804 | ||||
| 4805 | if (alc != NULL((void*)0)) | |||
| 4806 | free (alc); | |||
| 4807 | ||||
| 4808 | return TRUE1; | |||
| 4809 | } | |||
| 4810 | ||||
| 4811 | struct collect_gnu_hash_codes | |||
| 4812 | { | |||
| 4813 | bfd *output_bfd; | |||
| 4814 | const struct elf_backend_data *bed; | |||
| 4815 | unsigned long int nsyms; | |||
| 4816 | unsigned long int maskbits; | |||
| 4817 | unsigned long int *hashcodes; | |||
| 4818 | unsigned long int *hashval; | |||
| 4819 | unsigned long int *indx; | |||
| 4820 | unsigned long int *counts; | |||
| 4821 | bfd_vma *bitmask; | |||
| 4822 | bfd_byte *contents; | |||
| 4823 | long int min_dynindx; | |||
| 4824 | unsigned long int bucketcount; | |||
| 4825 | unsigned long int symindx; | |||
| 4826 | long int local_indx; | |||
| 4827 | long int shift1, shift2; | |||
| 4828 | unsigned long int mask; | |||
| 4829 | }; | |||
| 4830 | ||||
| 4831 | /* This function will be called though elf_link_hash_traverse to store | |||
| 4832 | all hash value of the exported symbols in an array. */ | |||
| 4833 | ||||
| 4834 | static bfd_boolean | |||
| 4835 | elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data) | |||
| 4836 | { | |||
| 4837 | struct collect_gnu_hash_codes *s = data; | |||
| 4838 | const char *name; | |||
| 4839 | char *p; | |||
| 4840 | unsigned long ha; | |||
| 4841 | char *alc = NULL((void*)0); | |||
| 4842 | ||||
| 4843 | if (h->root.type == bfd_link_hash_warning) | |||
| 4844 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |||
| 4845 | ||||
| 4846 | /* Ignore indirect symbols. These are added by the versioning code. */ | |||
| 4847 | if (h->dynindx == -1) | |||
| 4848 | return TRUE1; | |||
| 4849 | ||||
| 4850 | /* Ignore also local symbols and undefined symbols. */ | |||
| 4851 | if (! (*s->bed->elf_hash_symbol) (h)) | |||
| 4852 | return TRUE1; | |||
| 4853 | ||||
| 4854 | name = h->root.root.string; | |||
| 4855 | p = strchr (name, ELF_VER_CHR'@'); | |||
| 4856 | if (p != NULL((void*)0)) | |||
| 4857 | { | |||
| 4858 | alc = bfd_malloc (p - name + 1); | |||
| 4859 | memcpy (alc, name, p - name); | |||
| 4860 | alc[p - name] = '\0'; | |||
| 4861 | name = alc; | |||
| 4862 | } | |||
| 4863 | ||||
| 4864 | /* Compute the hash value. */ | |||
| 4865 | ha = bfd_elf_gnu_hash (name); | |||
| 4866 | ||||
| 4867 | /* Store the found hash value in the array for compute_bucket_count, | |||
| 4868 | and also for .dynsym reordering purposes. */ | |||
| 4869 | s->hashcodes[s->nsyms] = ha; | |||
| 4870 | s->hashval[h->dynindx] = ha; | |||
| 4871 | ++s->nsyms; | |||
| 4872 | if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx) | |||
| 4873 | s->min_dynindx = h->dynindx; | |||
| 4874 | ||||
| 4875 | if (alc != NULL((void*)0)) | |||
| 4876 | free (alc); | |||
| 4877 | ||||
| 4878 | return TRUE1; | |||
| 4879 | } | |||
| 4880 | ||||
| 4881 | /* This function will be called though elf_link_hash_traverse to do | |||
| 4882 | final dynaminc symbol renumbering. */ | |||
| 4883 | ||||
| 4884 | static bfd_boolean | |||
| 4885 | elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data) | |||
| 4886 | { | |||
| 4887 | struct collect_gnu_hash_codes *s = data; | |||
| 4888 | unsigned long int bucket; | |||
| 4889 | unsigned long int val; | |||
| 4890 | ||||
| 4891 | if (h->root.type == bfd_link_hash_warning) | |||
| 4892 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |||
| 4893 | ||||
| 4894 | /* Ignore indirect symbols. */ | |||
| 4895 | if (h->dynindx == -1) | |||
| 4896 | return TRUE1; | |||
| 4897 | ||||
| 4898 | /* Ignore also local symbols and undefined symbols. */ | |||
| 4899 | if (! (*s->bed->elf_hash_symbol) (h)) | |||
| 4900 | { | |||
| 4901 | if (h->dynindx >= s->min_dynindx) | |||
| 4902 | h->dynindx = s->local_indx++; | |||
| 4903 | return TRUE1; | |||
| 4904 | } | |||
| 4905 | ||||
| 4906 | bucket = s->hashval[h->dynindx] % s->bucketcount; | |||
| 4907 | val = (s->hashval[h->dynindx] >> s->shift1) | |||
| 4908 | & ((s->maskbits >> s->shift1) - 1); | |||
| 4909 | s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask); | |||
| 4910 | s->bitmask[val] | |||
| 4911 | |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask); | |||
| 4912 | val = s->hashval[h->dynindx] & ~(unsigned long int) 1; | |||
| 4913 | if (s->counts[bucket] == 1) | |||
| 4914 | /* Last element terminates the chain. */ | |||
| 4915 | val |= 1; | |||
| 4916 | bfd_put_32 (s->output_bfd, val,((*((s->output_bfd)->xvec->bfd_putx32)) ((val),(s-> contents + (s->indx[bucket] - s->symindx) * 4))) | |||
| 4917 | s->contents + (s->indx[bucket] - s->symindx) * 4)((*((s->output_bfd)->xvec->bfd_putx32)) ((val),(s-> contents + (s->indx[bucket] - s->symindx) * 4))); | |||
| 4918 | --s->counts[bucket]; | |||
| 4919 | h->dynindx = s->indx[bucket]++; | |||
| 4920 | return TRUE1; | |||
| 4921 | } | |||
| 4922 | ||||
| 4923 | /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */ | |||
| 4924 | ||||
| 4925 | bfd_boolean | |||
| 4926 | _bfd_elf_hash_symbol (struct elf_link_hash_entry *h) | |||
| 4927 | { | |||
| 4928 | return !(h->forced_local | |||
| 4929 | || h->root.type == bfd_link_hash_undefined | |||
| 4930 | || h->root.type == bfd_link_hash_undefweak | |||
| 4931 | || ((h->root.type == bfd_link_hash_defined | |||
| 4932 | || h->root.type == bfd_link_hash_defweak) | |||
| 4933 | && h->root.u.def.section->output_section == NULL((void*)0))); | |||
| 4934 | } | |||
| 4935 | ||||
| 4936 | /* Array used to determine the number of hash table buckets to use | |||
| 4937 | based on the number of symbols there are. If there are fewer than | |||
| 4938 | 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets, | |||
| 4939 | fewer than 37 we use 17 buckets, and so forth. We never use more | |||
| 4940 | than 32771 buckets. */ | |||
| 4941 | ||||
| 4942 | static const size_t elf_buckets[] = | |||
| 4943 | { | |||
| 4944 | 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209, | |||
| 4945 | 16411, 32771, 0 | |||
| 4946 | }; | |||
| 4947 | ||||
| 4948 | /* Compute bucket count for hashing table. We do not use a static set | |||
| 4949 | of possible tables sizes anymore. Instead we determine for all | |||
| 4950 | possible reasonable sizes of the table the outcome (i.e., the | |||
| 4951 | number of collisions etc) and choose the best solution. The | |||
| 4952 | weighting functions are not too simple to allow the table to grow | |||
| 4953 | without bounds. Instead one of the weighting factors is the size. | |||
| 4954 | Therefore the result is always a good payoff between few collisions | |||
| 4955 | (= short chain lengths) and table size. */ | |||
| 4956 | static size_t | |||
| 4957 | compute_bucket_count (struct bfd_link_info *info, unsigned long int *hashcodes, | |||
| 4958 | unsigned long int nsyms, int gnu_hash) | |||
| 4959 | { | |||
| 4960 | size_t dynsymcount = elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynsymcount; | |||
| 4961 | size_t best_size = 0; | |||
| 4962 | unsigned long int i; | |||
| 4963 | bfd_size_type amt; | |||
| 4964 | ||||
| 4965 | /* We have a problem here. The following code to optimize the table | |||
| 4966 | size requires an integer type with more the 32 bits. If | |||
| 4967 | BFD_HOST_U_64_BIT is set we know about such a type. */ | |||
| 4968 | #ifdef BFD_HOST_U_64_BITunsigned long | |||
| 4969 | if (info->optimize) | |||
| 4970 | { | |||
| 4971 | size_t minsize; | |||
| 4972 | size_t maxsize; | |||
| 4973 | BFD_HOST_U_64_BITunsigned long best_chlen = ~((BFD_HOST_U_64_BITunsigned long) 0); | |||
| 4974 | bfd *dynobj = elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynobj; | |||
| 4975 | const struct elf_backend_data *bed = get_elf_backend_data (dynobj)((const struct elf_backend_data *) (dynobj)->xvec->backend_data ); | |||
| 4976 | unsigned long int *counts; | |||
| 4977 | ||||
| 4978 | /* Possible optimization parameters: if we have NSYMS symbols we say | |||
| 4979 | that the hashing table must at least have NSYMS/4 and at most | |||
| 4980 | 2*NSYMS buckets. */ | |||
| 4981 | minsize = nsyms / 4; | |||
| 4982 | if (minsize == 0) | |||
| 4983 | minsize = 1; | |||
| 4984 | best_size = maxsize = nsyms * 2; | |||
| 4985 | if (gnu_hash) | |||
| 4986 | { | |||
| 4987 | if (minsize < 2) | |||
| 4988 | minsize = 2; | |||
| 4989 | if ((best_size & 31) == 0) | |||
| 4990 | ++best_size; | |||
| 4991 | } | |||
| 4992 | ||||
| 4993 | /* Create array where we count the collisions in. We must use bfd_malloc | |||
| 4994 | since the size could be large. */ | |||
| 4995 | amt = maxsize; | |||
| 4996 | amt *= sizeof (unsigned long int); | |||
| 4997 | counts = bfd_malloc (amt); | |||
| 4998 | if (counts == NULL((void*)0)) | |||
| 4999 | return 0; | |||
| 5000 | ||||
| 5001 | /* Compute the "optimal" size for the hash table. The criteria is a | |||
| 5002 | minimal chain length. The minor criteria is (of course) the size | |||
| 5003 | of the table. */ | |||
| 5004 | for (i = minsize; i < maxsize; ++i) | |||
| 5005 | { | |||
| 5006 | /* Walk through the array of hashcodes and count the collisions. */ | |||
| 5007 | BFD_HOST_U_64_BITunsigned long max; | |||
| 5008 | unsigned long int j; | |||
| 5009 | unsigned long int fact; | |||
| 5010 | ||||
| 5011 | if (gnu_hash && (i & 31) == 0) | |||
| 5012 | continue; | |||
| 5013 | ||||
| 5014 | memset (counts, '\0', i * sizeof (unsigned long int)); | |||
| 5015 | ||||
| 5016 | /* Determine how often each hash bucket is used. */ | |||
| 5017 | for (j = 0; j < nsyms; ++j) | |||
| 5018 | ++counts[hashcodes[j] % i]; | |||
| 5019 | ||||
| 5020 | /* For the weight function we need some information about the | |||
| 5021 | pagesize on the target. This is information need not be 100% | |||
| 5022 | accurate. Since this information is not available (so far) we | |||
| 5023 | define it here to a reasonable default value. If it is crucial | |||
| 5024 | to have a better value some day simply define this value. */ | |||
| 5025 | # ifndef BFD_TARGET_PAGESIZE(4096) | |||
| 5026 | # define BFD_TARGET_PAGESIZE(4096) (4096) | |||
| 5027 | # endif | |||
| 5028 | ||||
| 5029 | /* We in any case need 2 + DYNSYMCOUNT entries for the size values | |||
| 5030 | and the chains. */ | |||
| 5031 | max = (2 + dynsymcount) * bed->s->sizeof_hash_entry; | |||
| 5032 | ||||
| 5033 | # if 1 | |||
| 5034 | /* Variant 1: optimize for short chains. We add the squares | |||
| 5035 | of all the chain lengths (which favors many small chain | |||
| 5036 | over a few long chains). */ | |||
| 5037 | for (j = 0; j < i; ++j) | |||
| 5038 | max += counts[j] * counts[j]; | |||
| 5039 | ||||
| 5040 | /* This adds penalties for the overall size of the table. */ | |||
| 5041 | fact = i / (BFD_TARGET_PAGESIZE(4096) / bed->s->sizeof_hash_entry) + 1; | |||
| 5042 | max *= fact * fact; | |||
| 5043 | # else | |||
| 5044 | /* Variant 2: Optimize a lot more for small table. Here we | |||
| 5045 | also add squares of the size but we also add penalties for | |||
| 5046 | empty slots (the +1 term). */ | |||
| 5047 | for (j = 0; j < i; ++j) | |||
| 5048 | max += (1 + counts[j]) * (1 + counts[j]); | |||
| 5049 | ||||
| 5050 | /* The overall size of the table is considered, but not as | |||
| 5051 | strong as in variant 1, where it is squared. */ | |||
| 5052 | fact = i / (BFD_TARGET_PAGESIZE(4096) / bed->s->sizeof_hash_entry) + 1; | |||
| 5053 | max *= fact; | |||
| 5054 | # endif | |||
| 5055 | ||||
| 5056 | /* Compare with current best results. */ | |||
| 5057 | if (max < best_chlen) | |||
| 5058 | { | |||
| 5059 | best_chlen = max; | |||
| 5060 | best_size = i; | |||
| 5061 | } | |||
| 5062 | } | |||
| 5063 | ||||
| 5064 | free (counts); | |||
| 5065 | } | |||
| 5066 | else | |||
| 5067 | #endif /* defined (BFD_HOST_U_64_BIT) */ | |||
| 5068 | { | |||
| 5069 | /* This is the fallback solution if no 64bit type is available or if we | |||
| 5070 | are not supposed to spend much time on optimizations. We select the | |||
| 5071 | bucket count using a fixed set of numbers. */ | |||
| 5072 | for (i = 0; elf_buckets[i] != 0; i++) | |||
| 5073 | { | |||
| 5074 | best_size = elf_buckets[i]; | |||
| 5075 | if (nsyms < elf_buckets[i + 1]) | |||
| 5076 | break; | |||
| 5077 | } | |||
| 5078 | if (gnu_hash && best_size < 2) | |||
| 5079 | best_size = 2; | |||
| 5080 | } | |||
| 5081 | ||||
| 5082 | return best_size; | |||
| 5083 | } | |||
| 5084 | ||||
| 5085 | /* Set up the sizes and contents of the ELF dynamic sections. This is | |||
| 5086 | called by the ELF linker emulation before_allocation routine. We | |||
| 5087 | must set the sizes of the sections before the linker sets the | |||
| 5088 | addresses of the various sections. */ | |||
| 5089 | ||||
| 5090 | bfd_boolean | |||
| 5091 | bfd_elf_size_dynamic_sections (bfd *output_bfd, | |||
| 5092 | const char *soname, | |||
| 5093 | const char *rpath, | |||
| 5094 | const char *filter_shlib, | |||
| 5095 | const char * const *auxiliary_filters, | |||
| 5096 | struct bfd_link_info *info, | |||
| 5097 | asection **sinterpptr, | |||
| 5098 | struct bfd_elf_version_tree *verdefs) | |||
| 5099 | { | |||
| 5100 | bfd_size_type soname_indx; | |||
| 5101 | bfd *dynobj; | |||
| 5102 | const struct elf_backend_data *bed; | |||
| 5103 | struct elf_assign_sym_version_info asvinfo; | |||
| 5104 | ||||
| 5105 | *sinterpptr = NULL((void*)0); | |||
| 5106 | ||||
| 5107 | soname_indx = (bfd_size_type) -1; | |||
| 5108 | ||||
| 5109 | if (!is_elf_hash_table (info->hash)(((struct bfd_link_hash_table *) (info->hash))->type == bfd_link_elf_hash_table)) | |||
| ||||
| 5110 | return TRUE1; | |||
| 5111 | ||||
| 5112 | elf_tdata (output_bfd)((output_bfd) -> tdata.elf_obj_data)->relro = info->relro; | |||
| 5113 | elf_tdata (output_bfd)((output_bfd) -> tdata.elf_obj_data)->wxneeded = info->wxneeded; | |||
| 5114 | elf_tdata (output_bfd)((output_bfd) -> tdata.elf_obj_data)->executable = info->executable; | |||
| 5115 | if (info->execstack) | |||
| 5116 | elf_tdata (output_bfd)((output_bfd) -> tdata.elf_obj_data)->stack_flags = PF_R(1 << 2) | PF_W(1 << 1) | PF_X(1 << 0); | |||
| 5117 | else if (info->noexecstack) | |||
| 5118 | elf_tdata (output_bfd)((output_bfd) -> tdata.elf_obj_data)->stack_flags = PF_R(1 << 2) | PF_W(1 << 1); | |||
| 5119 | else | |||
| 5120 | { | |||
| 5121 | bfd *inputobj; | |||
| 5122 | asection *notesec = NULL((void*)0); | |||
| 5123 | int exec = 0; | |||
| 5124 | ||||
| 5125 | for (inputobj = info->input_bfds; | |||
| 5126 | inputobj; | |||
| 5127 | inputobj = inputobj->link_next) | |||
| 5128 | { | |||
| 5129 | asection *s; | |||
| 5130 | ||||
| 5131 | if (inputobj->flags & (DYNAMIC0x40 | BFD_LINKER_CREATED0x2000)) | |||
| 5132 | continue; | |||
| 5133 | s = bfd_get_section_by_name (inputobj, ".note.GNU-stack"); | |||
| 5134 | if (s) | |||
| 5135 | { | |||
| 5136 | if (s->flags & SEC_CODE0x010) | |||
| 5137 | exec = PF_X(1 << 0); | |||
| 5138 | notesec = s; | |||
| 5139 | } | |||
| 5140 | else | |||
| 5141 | exec = PF_X(1 << 0); | |||
| 5142 | } | |||
| 5143 | if (notesec) | |||
| 5144 | { | |||
| 5145 | elf_tdata (output_bfd)((output_bfd) -> tdata.elf_obj_data)->stack_flags = PF_R(1 << 2) | PF_W(1 << 1) | exec; | |||
| 5146 | if (exec && info->relocatable | |||
| 5147 | && notesec->output_section != bfd_abs_section_ptr((asection *) &bfd_abs_section)) | |||
| 5148 | notesec->output_section->flags |= SEC_CODE0x010; | |||
| 5149 | } | |||
| 5150 | } | |||
| 5151 | ||||
| 5152 | /* Any syms created from now on start with -1 in | |||
| 5153 | got.refcount/offset and plt.refcount/offset. */ | |||
| 5154 | elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->init_got_refcount | |||
| 5155 | = elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->init_got_offset; | |||
| 5156 | elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->init_plt_refcount | |||
| 5157 | = elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->init_plt_offset; | |||
| 5158 | ||||
| 5159 | /* The backend may have to create some sections regardless of whether | |||
| 5160 | we're dynamic or not. */ | |||
| 5161 | bed = get_elf_backend_data (output_bfd)((const struct elf_backend_data *) (output_bfd)->xvec-> backend_data); | |||
| 5162 | if (bed->elf_backend_always_size_sections | |||
| 5163 | && ! (*bed->elf_backend_always_size_sections) (output_bfd, info)) | |||
| 5164 | return FALSE0; | |||
| 5165 | ||||
| 5166 | dynobj = elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynobj; | |||
| 5167 | ||||
| 5168 | /* If there were no dynamic objects in the link, there is nothing to | |||
| 5169 | do here. */ | |||
| 5170 | if (dynobj == NULL((void*)0)) | |||
| 5171 | return TRUE1; | |||
| 5172 | ||||
| 5173 | if (! _bfd_elf_maybe_strip_eh_frame_hdr (info)) | |||
| 5174 | return FALSE0; | |||
| 5175 | ||||
| 5176 | if (elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynamic_sections_created) | |||
| 5177 | { | |||
| 5178 | struct elf_info_failed eif; | |||
| 5179 | struct elf_link_hash_entry *h; | |||
| 5180 | asection *dynstr; | |||
| 5181 | struct bfd_elf_version_tree *t; | |||
| 5182 | struct bfd_elf_version_expr *d; | |||
| 5183 | asection *s; | |||
| 5184 | bfd_boolean all_defined; | |||
| 5185 | ||||
| 5186 | *sinterpptr = bfd_get_section_by_name (dynobj, ".interp"); | |||
| 5187 | ||||
| 5188 | if (soname != NULL((void*)0)) | |||
| 5189 | { | |||
| 5190 | soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynstr, | |||
| 5191 | soname, TRUE1); | |||
| 5192 | if (soname_indx == (bfd_size_type) -1 | |||
| 5193 | || !_bfd_elf_add_dynamic_entry (info, DT_SONAME14, soname_indx)) | |||
| 5194 | return FALSE0; | |||
| 5195 | } | |||
| 5196 | ||||
| 5197 | if (info->symbolic) | |||
| 5198 | { | |||
| 5199 | if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC16, 0)) | |||
| 5200 | return FALSE0; | |||
| 5201 | info->flags |= DF_SYMBOLIC(1 << 1); | |||
| 5202 | } | |||
| 5203 | ||||
| 5204 | if (rpath != NULL((void*)0)) | |||
| 5205 | { | |||
| 5206 | bfd_size_type indx; | |||
| 5207 | ||||
| 5208 | indx = _bfd_elf_strtab_add (elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynstr, rpath, | |||
| 5209 | TRUE1); | |||
| 5210 | if (indx == (bfd_size_type) -1 | |||
| 5211 | || !_bfd_elf_add_dynamic_entry (info, DT_RPATH15, indx)) | |||
| 5212 | return FALSE0; | |||
| 5213 | ||||
| 5214 | if (info->new_dtags) | |||
| 5215 | { | |||
| 5216 | _bfd_elf_strtab_addref (elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynstr, indx); | |||
| 5217 | if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH29, indx)) | |||
| 5218 | return FALSE0; | |||
| 5219 | } | |||
| 5220 | } | |||
| 5221 | ||||
| 5222 | if (filter_shlib != NULL((void*)0)) | |||
| 5223 | { | |||
| 5224 | bfd_size_type indx; | |||
| 5225 | ||||
| 5226 | indx = _bfd_elf_strtab_add (elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynstr, | |||
| 5227 | filter_shlib, TRUE1); | |||
| 5228 | if (indx == (bfd_size_type) -1 | |||
| 5229 | || !_bfd_elf_add_dynamic_entry (info, DT_FILTER0x7fffffff, indx)) | |||
| 5230 | return FALSE0; | |||
| 5231 | } | |||
| 5232 | ||||
| 5233 | if (auxiliary_filters != NULL((void*)0)) | |||
| 5234 | { | |||
| 5235 | const char * const *p; | |||
| 5236 | ||||
| 5237 | for (p = auxiliary_filters; *p != NULL((void*)0); p++) | |||
| 5238 | { | |||
| 5239 | bfd_size_type indx; | |||
| 5240 | ||||
| 5241 | indx = _bfd_elf_strtab_add (elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynstr, | |||
| 5242 | *p, TRUE1); | |||
| 5243 | if (indx == (bfd_size_type) -1 | |||
| 5244 | || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY0x7ffffffd, indx)) | |||
| 5245 | return FALSE0; | |||
| 5246 | } | |||
| 5247 | } | |||
| 5248 | ||||
| 5249 | eif.info = info; | |||
| 5250 | eif.verdefs = verdefs; | |||
| 5251 | eif.failed = FALSE0; | |||
| 5252 | ||||
| 5253 | /* If we are supposed to export all symbols into the dynamic symbol | |||
| 5254 | table (this is not the normal case), then do so. */ | |||
| 5255 | if (info->export_dynamic) | |||
| 5256 | { | |||
| 5257 | elf_link_hash_traverse (elf_hash_table (info),(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (_bfd_elf_export_symbol), (&eif))) | |||
| 5258 | _bfd_elf_export_symbol,(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (_bfd_elf_export_symbol), (&eif))) | |||
| 5259 | &eif)(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (_bfd_elf_export_symbol), (&eif))); | |||
| 5260 | if (eif.failed) | |||
| 5261 | return FALSE0; | |||
| 5262 | } | |||
| 5263 | ||||
| 5264 | /* Make all global versions with definition. */ | |||
| 5265 | for (t = verdefs; t != NULL((void*)0); t = t->next) | |||
| 5266 | for (d = t->globals.list; d != NULL((void*)0); d = d->next) | |||
| 5267 | if (!d->symver && d->symbol) | |||
| 5268 | { | |||
| 5269 | const char *verstr, *name; | |||
| 5270 | size_t namelen, verlen, newlen; | |||
| 5271 | char *newname, *p; | |||
| 5272 | struct elf_link_hash_entry *newh; | |||
| 5273 | ||||
| 5274 | name = d->symbol; | |||
| 5275 | namelen = strlen (name); | |||
| 5276 | verstr = t->name; | |||
| 5277 | verlen = strlen (verstr); | |||
| 5278 | newlen = namelen + verlen + 3; | |||
| 5279 | ||||
| 5280 | newname = bfd_malloc (newlen); | |||
| 5281 | if (newname == NULL((void*)0)) | |||
| 5282 | return FALSE0; | |||
| 5283 | memcpy (newname, name, namelen); | |||
| 5284 | ||||
| 5285 | /* Check the hidden versioned definition. */ | |||
| 5286 | p = newname + namelen; | |||
| 5287 | *p++ = ELF_VER_CHR'@'; | |||
| 5288 | memcpy (p, verstr, verlen + 1); | |||
| 5289 | newh = elf_link_hash_lookup (elf_hash_table (info),((struct elf_link_hash_entry *) bfd_link_hash_lookup (&(( (struct elf_link_hash_table *) ((info)->hash)))->root, ( newname), (0), (0), (0))) | |||
| 5290 | newname, FALSE, FALSE,((struct elf_link_hash_entry *) bfd_link_hash_lookup (&(( (struct elf_link_hash_table *) ((info)->hash)))->root, ( newname), (0), (0), (0))) | |||
| 5291 | FALSE)((struct elf_link_hash_entry *) bfd_link_hash_lookup (&(( (struct elf_link_hash_table *) ((info)->hash)))->root, ( newname), (0), (0), (0))); | |||
| 5292 | if (newh == NULL((void*)0) | |||
| 5293 | || (newh->root.type != bfd_link_hash_defined | |||
| 5294 | && newh->root.type != bfd_link_hash_defweak)) | |||
| 5295 | { | |||
| 5296 | /* Check the default versioned definition. */ | |||
| 5297 | *p++ = ELF_VER_CHR'@'; | |||
| 5298 | memcpy (p, verstr, verlen + 1); | |||
| 5299 | newh = elf_link_hash_lookup (elf_hash_table (info),((struct elf_link_hash_entry *) bfd_link_hash_lookup (&(( (struct elf_link_hash_table *) ((info)->hash)))->root, ( newname), (0), (0), (0))) | |||
| 5300 | newname, FALSE, FALSE,((struct elf_link_hash_entry *) bfd_link_hash_lookup (&(( (struct elf_link_hash_table *) ((info)->hash)))->root, ( newname), (0), (0), (0))) | |||
| 5301 | FALSE)((struct elf_link_hash_entry *) bfd_link_hash_lookup (&(( (struct elf_link_hash_table *) ((info)->hash)))->root, ( newname), (0), (0), (0))); | |||
| 5302 | } | |||
| 5303 | free (newname); | |||
| 5304 | ||||
| 5305 | /* Mark this version if there is a definition and it is | |||
| 5306 | not defined in a shared object. */ | |||
| 5307 | if (newh != NULL((void*)0) | |||
| 5308 | && !newh->def_dynamic | |||
| 5309 | && (newh->root.type == bfd_link_hash_defined | |||
| 5310 | || newh->root.type == bfd_link_hash_defweak)) | |||
| 5311 | d->symver = 1; | |||
| 5312 | } | |||
| 5313 | ||||
| 5314 | /* Attach all the symbols to their version information. */ | |||
| 5315 | asvinfo.output_bfd = output_bfd; | |||
| 5316 | asvinfo.info = info; | |||
| 5317 | asvinfo.verdefs = verdefs; | |||
| 5318 | asvinfo.failed = FALSE0; | |||
| 5319 | ||||
| 5320 | elf_link_hash_traverse (elf_hash_table (info),(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (_bfd_elf_link_assign_sym_version), (&asvinfo ))) | |||
| 5321 | _bfd_elf_link_assign_sym_version,(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (_bfd_elf_link_assign_sym_version), (&asvinfo ))) | |||
| 5322 | &asvinfo)(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (_bfd_elf_link_assign_sym_version), (&asvinfo ))); | |||
| 5323 | if (asvinfo.failed) | |||
| 5324 | return FALSE0; | |||
| 5325 | ||||
| 5326 | if (!info->allow_undefined_version) | |||
| 5327 | { | |||
| 5328 | /* Check if all global versions have a definition. */ | |||
| 5329 | all_defined = TRUE1; | |||
| 5330 | for (t = verdefs; t != NULL((void*)0); t = t->next) | |||
| 5331 | for (d = t->globals.list; d != NULL((void*)0); d = d->next) | |||
| 5332 | if (!d->symver && !d->script) | |||
| 5333 | { | |||
| 5334 | (*_bfd_error_handler) | |||
| 5335 | (_("%s: undefined version: %s")("%s: undefined version: %s"), | |||
| 5336 | d->pattern, t->name); | |||
| 5337 | all_defined = FALSE0; | |||
| 5338 | } | |||
| 5339 | ||||
| 5340 | if (!all_defined) | |||
| 5341 | { | |||
| 5342 | bfd_set_error (bfd_error_bad_value); | |||
| 5343 | return FALSE0; | |||
| 5344 | } | |||
| 5345 | } | |||
| 5346 | ||||
| 5347 | /* Find all symbols which were defined in a dynamic object and make | |||
| 5348 | the backend pick a reasonable value for them. */ | |||
| 5349 | elf_link_hash_traverse (elf_hash_table (info),(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (_bfd_elf_adjust_dynamic_symbol), (&eif))) | |||
| 5350 | _bfd_elf_adjust_dynamic_symbol,(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (_bfd_elf_adjust_dynamic_symbol), (&eif))) | |||
| 5351 | &eif)(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (_bfd_elf_adjust_dynamic_symbol), (&eif))); | |||
| 5352 | if (eif.failed) | |||
| 5353 | return FALSE0; | |||
| 5354 | ||||
| 5355 | /* Add some entries to the .dynamic section. We fill in some of the | |||
| 5356 | values later, in bfd_elf_final_link, but we must add the entries | |||
| 5357 | now so that we know the final size of the .dynamic section. */ | |||
| 5358 | ||||
| 5359 | /* If there are initialization and/or finalization functions to | |||
| 5360 | call then add the corresponding DT_INIT/DT_FINI entries. */ | |||
| 5361 | h = (info->init_function | |||
| 5362 | ? elf_link_hash_lookup (elf_hash_table (info),((struct elf_link_hash_entry *) bfd_link_hash_lookup (&(( (struct elf_link_hash_table *) ((info)->hash)))->root, ( info->init_function), (0), (0), (0))) | |||
| 5363 | info->init_function, FALSE,((struct elf_link_hash_entry *) bfd_link_hash_lookup (&(( (struct elf_link_hash_table *) ((info)->hash)))->root, ( info->init_function), (0), (0), (0))) | |||
| 5364 | FALSE, FALSE)((struct elf_link_hash_entry *) bfd_link_hash_lookup (&(( (struct elf_link_hash_table *) ((info)->hash)))->root, ( info->init_function), (0), (0), (0))) | |||
| 5365 | : NULL((void*)0)); | |||
| 5366 | if (h != NULL((void*)0) | |||
| 5367 | && (h->ref_regular | |||
| 5368 | || h->def_regular)) | |||
| 5369 | { | |||
| 5370 | if (!_bfd_elf_add_dynamic_entry (info, DT_INIT12, 0)) | |||
| 5371 | return FALSE0; | |||
| 5372 | } | |||
| 5373 | h = (info->fini_function | |||
| 5374 | ? elf_link_hash_lookup (elf_hash_table (info),((struct elf_link_hash_entry *) bfd_link_hash_lookup (&(( (struct elf_link_hash_table *) ((info)->hash)))->root, ( info->fini_function), (0), (0), (0))) | |||
| 5375 | info->fini_function, FALSE,((struct elf_link_hash_entry *) bfd_link_hash_lookup (&(( (struct elf_link_hash_table *) ((info)->hash)))->root, ( info->fini_function), (0), (0), (0))) | |||
| 5376 | FALSE, FALSE)((struct elf_link_hash_entry *) bfd_link_hash_lookup (&(( (struct elf_link_hash_table *) ((info)->hash)))->root, ( info->fini_function), (0), (0), (0))) | |||
| 5377 | : NULL((void*)0)); | |||
| 5378 | if (h != NULL((void*)0) | |||
| 5379 | && (h->ref_regular | |||
| 5380 | || h->def_regular)) | |||
| 5381 | { | |||
| 5382 | if (!_bfd_elf_add_dynamic_entry (info, DT_FINI13, 0)) | |||
| 5383 | return FALSE0; | |||
| 5384 | } | |||
| 5385 | ||||
| 5386 | s = bfd_get_section_by_name (output_bfd, ".preinit_array"); | |||
| 5387 | if (s != NULL((void*)0) && s->linker_has_input) | |||
| 5388 | { | |||
| 5389 | /* DT_PREINIT_ARRAY is not allowed in shared library. */ | |||
| 5390 | if (! info->executable) | |||
| 5391 | { | |||
| 5392 | bfd *sub; | |||
| 5393 | asection *o; | |||
| 5394 | ||||
| 5395 | for (sub = info->input_bfds; sub != NULL((void*)0); | |||
| 5396 | sub = sub->link_next) | |||
| 5397 | for (o = sub->sections; o != NULL((void*)0); o = o->next) | |||
| 5398 | if (elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->this_hdr.sh_type | |||
| 5399 | == SHT_PREINIT_ARRAY16) | |||
| 5400 | { | |||
| 5401 | (*_bfd_error_handler) | |||
| 5402 | (_("%B: .preinit_array section is not allowed in DSO")("%B: .preinit_array section is not allowed in DSO"), | |||
| 5403 | sub); | |||
| 5404 | break; | |||
| 5405 | } | |||
| 5406 | ||||
| 5407 | bfd_set_error (bfd_error_nonrepresentable_section); | |||
| 5408 | return FALSE0; | |||
| 5409 | } | |||
| 5410 | ||||
| 5411 | if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY32, 0) | |||
| 5412 | || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ33, 0)) | |||
| 5413 | return FALSE0; | |||
| 5414 | } | |||
| 5415 | s = bfd_get_section_by_name (output_bfd, ".init_array"); | |||
| 5416 | if (s != NULL((void*)0) && s->linker_has_input) | |||
| 5417 | { | |||
| 5418 | if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY25, 0) | |||
| 5419 | || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ27, 0)) | |||
| 5420 | return FALSE0; | |||
| 5421 | } | |||
| 5422 | s = bfd_get_section_by_name (output_bfd, ".fini_array"); | |||
| 5423 | if (s != NULL((void*)0) && s->linker_has_input) | |||
| 5424 | { | |||
| 5425 | if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY26, 0) | |||
| 5426 | || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ28, 0)) | |||
| 5427 | return FALSE0; | |||
| 5428 | } | |||
| 5429 | ||||
| 5430 | dynstr = bfd_get_section_by_name (dynobj, ".dynstr"); | |||
| 5431 | /* If .dynstr is excluded from the link, we don't want any of | |||
| 5432 | these tags. Strictly, we should be checking each section | |||
| 5433 | individually; This quick check covers for the case where | |||
| 5434 | someone does a /DISCARD/ : { *(*) }. */ | |||
| 5435 | if (dynstr != NULL((void*)0) && dynstr->output_section != bfd_abs_section_ptr((asection *) &bfd_abs_section)) | |||
| 5436 | { | |||
| 5437 | bfd_size_type strsize; | |||
| 5438 | ||||
| 5439 | strsize = _bfd_elf_strtab_size (elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynstr); | |||
| 5440 | if ((info->emit_hash | |||
| 5441 | && !_bfd_elf_add_dynamic_entry (info, DT_HASH4, 0)) | |||
| 5442 | || (info->emit_gnu_hash | |||
| 5443 | && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH0x6ffffef5, 0)) | |||
| 5444 | || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB5, 0) | |||
| 5445 | || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB6, 0) | |||
| 5446 | || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ10, strsize) | |||
| 5447 | || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT11, | |||
| 5448 | bed->s->sizeof_sym)) | |||
| 5449 | return FALSE0; | |||
| 5450 | } | |||
| 5451 | } | |||
| 5452 | ||||
| 5453 | /* The backend must work out the sizes of all the other dynamic | |||
| 5454 | sections. */ | |||
| 5455 | if (bed->elf_backend_size_dynamic_sections | |||
| 5456 | && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info)) | |||
| 5457 | return FALSE0; | |||
| 5458 | ||||
| 5459 | if (elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynamic_sections_created) | |||
| 5460 | { | |||
| 5461 | unsigned long section_sym_count; | |||
| 5462 | asection *s; | |||
| 5463 | ||||
| 5464 | /* Set up the version definition section. */ | |||
| 5465 | s = bfd_get_section_by_name (dynobj, ".gnu.version_d"); | |||
| 5466 | BFD_ASSERT (s != NULL)do { if (!(s != ((void*)0))) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,5466); } while (0); | |||
| 5467 | ||||
| 5468 | /* We may have created additional version definitions if we are | |||
| 5469 | just linking a regular application. */ | |||
| 5470 | verdefs = asvinfo.verdefs; | |||
| ||||
| 5471 | ||||
| 5472 | /* Skip anonymous version tag. */ | |||
| 5473 | if (verdefs != NULL((void*)0) && verdefs->vernum == 0) | |||
| 5474 | verdefs = verdefs->next; | |||
| 5475 | ||||
| 5476 | if (verdefs == NULL((void*)0) && !info->create_default_symver) | |||
| 5477 | s->flags |= SEC_EXCLUDE0x8000; | |||
| 5478 | else | |||
| 5479 | { | |||
| 5480 | unsigned int cdefs; | |||
| 5481 | bfd_size_type size; | |||
| 5482 | struct bfd_elf_version_tree *t; | |||
| 5483 | bfd_byte *p; | |||
| 5484 | Elf_Internal_Verdef def; | |||
| 5485 | Elf_Internal_Verdaux defaux; | |||
| 5486 | struct bfd_link_hash_entry *bh; | |||
| 5487 | struct elf_link_hash_entry *h; | |||
| 5488 | const char *name; | |||
| 5489 | ||||
| 5490 | cdefs = 0; | |||
| 5491 | size = 0; | |||
| 5492 | ||||
| 5493 | /* Make space for the base version. */ | |||
| 5494 | size += sizeof (Elf_External_Verdef); | |||
| 5495 | size += sizeof (Elf_External_Verdaux); | |||
| 5496 | ++cdefs; | |||
| 5497 | ||||
| 5498 | /* Make space for the default version. */ | |||
| 5499 | if (info->create_default_symver) | |||
| 5500 | { | |||
| 5501 | size += sizeof (Elf_External_Verdef); | |||
| 5502 | ++cdefs; | |||
| 5503 | } | |||
| 5504 | ||||
| 5505 | for (t = verdefs; t != NULL((void*)0); t = t->next) | |||
| 5506 | { | |||
| 5507 | struct bfd_elf_version_deps *n; | |||
| 5508 | ||||
| 5509 | size += sizeof (Elf_External_Verdef); | |||
| 5510 | size += sizeof (Elf_External_Verdaux); | |||
| 5511 | ++cdefs; | |||
| 5512 | ||||
| 5513 | for (n = t->deps; n != NULL((void*)0); n = n->next) | |||
| 5514 | size += sizeof (Elf_External_Verdaux); | |||
| 5515 | } | |||
| 5516 | ||||
| 5517 | s->size = size; | |||
| 5518 | s->contents = bfd_alloc (output_bfd, s->size); | |||
| 5519 | if (s->contents == NULL((void*)0) && s->size != 0) | |||
| 5520 | return FALSE0; | |||
| 5521 | ||||
| 5522 | /* Fill in the version definition section. */ | |||
| 5523 | ||||
| 5524 | p = s->contents; | |||
| 5525 | ||||
| 5526 | def.vd_version = VER_DEF_CURRENT1; | |||
| 5527 | def.vd_flags = VER_FLG_BASE0x1; | |||
| 5528 | def.vd_ndx = 1; | |||
| 5529 | def.vd_cnt = 1; | |||
| 5530 | if (info->create_default_symver) | |||
| 5531 | { | |||
| 5532 | def.vd_aux = 2 * sizeof (Elf_External_Verdef); | |||
| 5533 | def.vd_next = sizeof (Elf_External_Verdef); | |||
| 5534 | } | |||
| 5535 | else | |||
| 5536 | { | |||
| 5537 | def.vd_aux = sizeof (Elf_External_Verdef); | |||
| 5538 | def.vd_next = (sizeof (Elf_External_Verdef) | |||
| 5539 | + sizeof (Elf_External_Verdaux)); | |||
| 5540 | } | |||
| 5541 | ||||
| 5542 | if (soname_indx != (bfd_size_type) -1) | |||
| 5543 | { | |||
| 5544 | _bfd_elf_strtab_addref (elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynstr, | |||
| 5545 | soname_indx); | |||
| 5546 | def.vd_hash = bfd_elf_hash (soname); | |||
| 5547 | defaux.vda_name = soname_indx; | |||
| 5548 | name = soname; | |||
| 5549 | } | |||
| 5550 | else | |||
| 5551 | { | |||
| 5552 | bfd_size_type indx; | |||
| 5553 | ||||
| 5554 | name = lbasename (output_bfd->filename); | |||
| 5555 | def.vd_hash = bfd_elf_hash (name); | |||
| 5556 | indx = _bfd_elf_strtab_add (elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynstr, | |||
| 5557 | name, FALSE0); | |||
| 5558 | if (indx == (bfd_size_type) -1) | |||
| 5559 | return FALSE0; | |||
| 5560 | defaux.vda_name = indx; | |||
| 5561 | } | |||
| 5562 | defaux.vda_next = 0; | |||
| 5563 | ||||
| 5564 | _bfd_elf_swap_verdef_out (output_bfd, &def, | |||
| 5565 | (Elf_External_Verdef *) p); | |||
| 5566 | p += sizeof (Elf_External_Verdef); | |||
| 5567 | if (info->create_default_symver) | |||
| 5568 | { | |||
| 5569 | /* Add a symbol representing this version. */ | |||
| 5570 | bh = NULL((void*)0); | |||
| 5571 | if (! (_bfd_generic_link_add_one_symbol | |||
| 5572 | (info, dynobj, name, BSF_GLOBAL0x02, bfd_abs_section_ptr((asection *) &bfd_abs_section), | |||
| 5573 | 0, NULL((void*)0), FALSE0, | |||
| 5574 | get_elf_backend_data (dynobj)((const struct elf_backend_data *) (dynobj)->xvec->backend_data )->collect, &bh))) | |||
| 5575 | return FALSE0; | |||
| 5576 | h = (struct elf_link_hash_entry *) bh; | |||
| 5577 | h->non_elf = 0; | |||
| 5578 | h->def_regular = 1; | |||
| 5579 | h->type = STT_OBJECT1; | |||
| 5580 | h->verinfo.vertree = NULL((void*)0); | |||
| 5581 | ||||
| 5582 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) | |||
| 5583 | return FALSE0; | |||
| 5584 | ||||
| 5585 | /* Create a duplicate of the base version with the same | |||
| 5586 | aux block, but different flags. */ | |||
| 5587 | def.vd_flags = 0; | |||
| 5588 | def.vd_ndx = 2; | |||
| 5589 | def.vd_aux = sizeof (Elf_External_Verdef); | |||
| 5590 | if (verdefs) | |||
| 5591 | def.vd_next = (sizeof (Elf_External_Verdef) | |||
| 5592 | + sizeof (Elf_External_Verdaux)); | |||
| 5593 | else | |||
| 5594 | def.vd_next = 0; | |||
| 5595 | _bfd_elf_swap_verdef_out (output_bfd, &def, | |||
| 5596 | (Elf_External_Verdef *) p); | |||
| 5597 | p += sizeof (Elf_External_Verdef); | |||
| 5598 | } | |||
| 5599 | _bfd_elf_swap_verdaux_out (output_bfd, &defaux, | |||
| 5600 | (Elf_External_Verdaux *) p); | |||
| 5601 | p += sizeof (Elf_External_Verdaux); | |||
| 5602 | ||||
| 5603 | for (t = verdefs; t != NULL((void*)0); t = t->next) | |||
| 5604 | { | |||
| 5605 | unsigned int cdeps; | |||
| 5606 | struct bfd_elf_version_deps *n; | |||
| 5607 | ||||
| 5608 | cdeps = 0; | |||
| 5609 | for (n = t->deps; n != NULL((void*)0); n = n->next) | |||
| 5610 | ++cdeps; | |||
| 5611 | ||||
| 5612 | /* Add a symbol representing this version. */ | |||
| 5613 | bh = NULL((void*)0); | |||
| 5614 | if (! (_bfd_generic_link_add_one_symbol | |||
| 5615 | (info, dynobj, t->name, BSF_GLOBAL0x02, bfd_abs_section_ptr((asection *) &bfd_abs_section), | |||
| 5616 | 0, NULL((void*)0), FALSE0, | |||
| 5617 | get_elf_backend_data (dynobj)((const struct elf_backend_data *) (dynobj)->xvec->backend_data )->collect, &bh))) | |||
| 5618 | return FALSE0; | |||
| 5619 | h = (struct elf_link_hash_entry *) bh; | |||
| 5620 | h->non_elf = 0; | |||
| 5621 | h->def_regular = 1; | |||
| 5622 | h->type = STT_OBJECT1; | |||
| 5623 | h->verinfo.vertree = t; | |||
| 5624 | ||||
| 5625 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) | |||
| 5626 | return FALSE0; | |||
| 5627 | ||||
| 5628 | def.vd_version = VER_DEF_CURRENT1; | |||
| 5629 | def.vd_flags = 0; | |||
| 5630 | if (t->globals.list == NULL((void*)0) | |||
| 5631 | && t->locals.list == NULL((void*)0) | |||
| 5632 | && ! t->used) | |||
| 5633 | def.vd_flags |= VER_FLG_WEAK0x2; | |||
| 5634 | def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1); | |||
| 5635 | def.vd_cnt = cdeps + 1; | |||
| 5636 | def.vd_hash = bfd_elf_hash (t->name); | |||
| 5637 | def.vd_aux = sizeof (Elf_External_Verdef); | |||
| 5638 | def.vd_next = 0; | |||
| 5639 | if (t->next != NULL((void*)0)) | |||
| 5640 | def.vd_next = (sizeof (Elf_External_Verdef) | |||
| 5641 | + (cdeps + 1) * sizeof (Elf_External_Verdaux)); | |||
| 5642 | ||||
| 5643 | _bfd_elf_swap_verdef_out (output_bfd, &def, | |||
| 5644 | (Elf_External_Verdef *) p); | |||
| 5645 | p += sizeof (Elf_External_Verdef); | |||
| 5646 | ||||
| 5647 | defaux.vda_name = h->dynstr_index; | |||
| 5648 | _bfd_elf_strtab_addref (elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynstr, | |||
| 5649 | h->dynstr_index); | |||
| 5650 | defaux.vda_next = 0; | |||
| 5651 | if (t->deps != NULL((void*)0)) | |||
| 5652 | defaux.vda_next = sizeof (Elf_External_Verdaux); | |||
| 5653 | t->name_indx = defaux.vda_name; | |||
| 5654 | ||||
| 5655 | _bfd_elf_swap_verdaux_out (output_bfd, &defaux, | |||
| 5656 | (Elf_External_Verdaux *) p); | |||
| 5657 | p += sizeof (Elf_External_Verdaux); | |||
| 5658 | ||||
| 5659 | for (n = t->deps; n != NULL((void*)0); n = n->next) | |||
| 5660 | { | |||
| 5661 | if (n->version_needed == NULL((void*)0)) | |||
| 5662 | { | |||
| 5663 | /* This can happen if there was an error in the | |||
| 5664 | version script. */ | |||
| 5665 | defaux.vda_name = 0; | |||
| 5666 | } | |||
| 5667 | else | |||
| 5668 | { | |||
| 5669 | defaux.vda_name = n->version_needed->name_indx; | |||
| 5670 | _bfd_elf_strtab_addref (elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynstr, | |||
| 5671 | defaux.vda_name); | |||
| 5672 | } | |||
| 5673 | if (n->next == NULL((void*)0)) | |||
| 5674 | defaux.vda_next = 0; | |||
| 5675 | else | |||
| 5676 | defaux.vda_next = sizeof (Elf_External_Verdaux); | |||
| 5677 | ||||
| 5678 | _bfd_elf_swap_verdaux_out (output_bfd, &defaux, | |||
| 5679 | (Elf_External_Verdaux *) p); | |||
| 5680 | p += sizeof (Elf_External_Verdaux); | |||
| 5681 | } | |||
| 5682 | } | |||
| 5683 | ||||
| 5684 | if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF0x6ffffffc, 0) | |||
| 5685 | || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM0x6ffffffd, cdefs)) | |||
| 5686 | return FALSE0; | |||
| 5687 | ||||
| 5688 | elf_tdata (output_bfd)((output_bfd) -> tdata.elf_obj_data)->cverdefs = cdefs; | |||
| 5689 | } | |||
| 5690 | ||||
| 5691 | if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS(1 << 4))) | |||
| 5692 | { | |||
| 5693 | if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS30, info->flags)) | |||
| 5694 | return FALSE0; | |||
| 5695 | } | |||
| 5696 | else if (info->flags & DF_BIND_NOW(1 << 3)) | |||
| 5697 | { | |||
| 5698 | if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW24, 0)) | |||
| 5699 | return FALSE0; | |||
| 5700 | } | |||
| 5701 | ||||
| 5702 | if (info->flags_1) | |||
| 5703 | { | |||
| 5704 | if (info->executable) | |||
| 5705 | info->flags_1 &= ~ (DF_1_INITFIRST0x00000020 | |||
| 5706 | | DF_1_NODELETE0x00000008 | |||
| 5707 | | DF_1_NOOPEN0x00000040); | |||
| 5708 | if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_10x6ffffffb, info->flags_1)) | |||
| 5709 | return FALSE0; | |||
| 5710 | } | |||
| 5711 | ||||
| 5712 | /* Work out the size of the version reference section. */ | |||
| 5713 | ||||
| 5714 | s = bfd_get_section_by_name (dynobj, ".gnu.version_r"); | |||
| 5715 | BFD_ASSERT (s != NULL)do { if (!(s != ((void*)0))) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,5715); } while (0); | |||
| 5716 | { | |||
| 5717 | struct elf_find_verdep_info sinfo; | |||
| 5718 | ||||
| 5719 | sinfo.output_bfd = output_bfd; | |||
| 5720 | sinfo.info = info; | |||
| 5721 | sinfo.vers = elf_tdata (output_bfd)((output_bfd) -> tdata.elf_obj_data)->cverdefs; | |||
| 5722 | if (sinfo.vers == 0) | |||
| 5723 | sinfo.vers = 1; | |||
| 5724 | sinfo.failed = FALSE0; | |||
| 5725 | ||||
| 5726 | elf_link_hash_traverse (elf_hash_table (info),(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (_bfd_elf_link_find_version_dependencies), (& sinfo))) | |||
| 5727 | _bfd_elf_link_find_version_dependencies,(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (_bfd_elf_link_find_version_dependencies), (& sinfo))) | |||
| 5728 | &sinfo)(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (_bfd_elf_link_find_version_dependencies), (& sinfo))); | |||
| 5729 | ||||
| 5730 | if (elf_tdata (output_bfd)((output_bfd) -> tdata.elf_obj_data)->verref == NULL((void*)0)) | |||
| 5731 | s->flags |= SEC_EXCLUDE0x8000; | |||
| 5732 | else | |||
| 5733 | { | |||
| 5734 | Elf_Internal_Verneed *t; | |||
| 5735 | unsigned int size; | |||
| 5736 | unsigned int crefs; | |||
| 5737 | bfd_byte *p; | |||
| 5738 | ||||
| 5739 | /* Build the version definition section. */ | |||
| 5740 | size = 0; | |||
| 5741 | crefs = 0; | |||
| 5742 | for (t = elf_tdata (output_bfd)((output_bfd) -> tdata.elf_obj_data)->verref; | |||
| 5743 | t != NULL((void*)0); | |||
| 5744 | t = t->vn_nextref) | |||
| 5745 | { | |||
| 5746 | Elf_Internal_Vernaux *a; | |||
| 5747 | ||||
| 5748 | size += sizeof (Elf_External_Verneed); | |||
| 5749 | ++crefs; | |||
| 5750 | for (a = t->vn_auxptr; a != NULL((void*)0); a = a->vna_nextptr) | |||
| 5751 | size += sizeof (Elf_External_Vernaux); | |||
| 5752 | } | |||
| 5753 | ||||
| 5754 | s->size = size; | |||
| 5755 | s->contents = bfd_alloc (output_bfd, s->size); | |||
| 5756 | if (s->contents == NULL((void*)0)) | |||
| 5757 | return FALSE0; | |||
| 5758 | ||||
| 5759 | p = s->contents; | |||
| 5760 | for (t = elf_tdata (output_bfd)((output_bfd) -> tdata.elf_obj_data)->verref; | |||
| 5761 | t != NULL((void*)0); | |||
| 5762 | t = t->vn_nextref) | |||
| 5763 | { | |||
| 5764 | unsigned int caux; | |||
| 5765 | Elf_Internal_Vernaux *a; | |||
| 5766 | bfd_size_type indx; | |||
| 5767 | ||||
| 5768 | caux = 0; | |||
| 5769 | for (a = t->vn_auxptr; a != NULL((void*)0); a = a->vna_nextptr) | |||
| 5770 | ++caux; | |||
| 5771 | ||||
| 5772 | t->vn_version = VER_NEED_CURRENT1; | |||
| 5773 | t->vn_cnt = caux; | |||
| 5774 | indx = _bfd_elf_strtab_add (elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynstr, | |||
| 5775 | elf_dt_name (t->vn_bfd)(((t->vn_bfd) -> tdata.elf_obj_data) -> dt_name) != NULL((void*)0) | |||
| 5776 | ? elf_dt_name (t->vn_bfd)(((t->vn_bfd) -> tdata.elf_obj_data) -> dt_name) | |||
| 5777 | : lbasename (t->vn_bfd->filename), | |||
| 5778 | FALSE0); | |||
| 5779 | if (indx == (bfd_size_type) -1) | |||
| 5780 | return FALSE0; | |||
| 5781 | t->vn_file = indx; | |||
| 5782 | t->vn_aux = sizeof (Elf_External_Verneed); | |||
| 5783 | if (t->vn_nextref == NULL((void*)0)) | |||
| 5784 | t->vn_next = 0; | |||
| 5785 | else | |||
| 5786 | t->vn_next = (sizeof (Elf_External_Verneed) | |||
| 5787 | + caux * sizeof (Elf_External_Vernaux)); | |||
| 5788 | ||||
| 5789 | _bfd_elf_swap_verneed_out (output_bfd, t, | |||
| 5790 | (Elf_External_Verneed *) p); | |||
| 5791 | p += sizeof (Elf_External_Verneed); | |||
| 5792 | ||||
| 5793 | for (a = t->vn_auxptr; a != NULL((void*)0); a = a->vna_nextptr) | |||
| 5794 | { | |||
| 5795 | a->vna_hash = bfd_elf_hash (a->vna_nodename); | |||
| 5796 | indx = _bfd_elf_strtab_add (elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynstr, | |||
| 5797 | a->vna_nodename, FALSE0); | |||
| 5798 | if (indx == (bfd_size_type) -1) | |||
| 5799 | return FALSE0; | |||
| 5800 | a->vna_name = indx; | |||
| 5801 | if (a->vna_nextptr == NULL((void*)0)) | |||
| 5802 | a->vna_next = 0; | |||
| 5803 | else | |||
| 5804 | a->vna_next = sizeof (Elf_External_Vernaux); | |||
| 5805 | ||||
| 5806 | _bfd_elf_swap_vernaux_out (output_bfd, a, | |||
| 5807 | (Elf_External_Vernaux *) p); | |||
| 5808 | p += sizeof (Elf_External_Vernaux); | |||
| 5809 | } | |||
| 5810 | } | |||
| 5811 | ||||
| 5812 | if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED0x6ffffffe, 0) | |||
| 5813 | || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM0x6fffffff, crefs)) | |||
| 5814 | return FALSE0; | |||
| 5815 | ||||
| 5816 | elf_tdata (output_bfd)((output_bfd) -> tdata.elf_obj_data)->cverrefs = crefs; | |||
| 5817 | } | |||
| 5818 | } | |||
| 5819 | ||||
| 5820 | if ((elf_tdata (output_bfd)((output_bfd) -> tdata.elf_obj_data)->cverrefs == 0 | |||
| 5821 | && elf_tdata (output_bfd)((output_bfd) -> tdata.elf_obj_data)->cverdefs == 0) | |||
| 5822 | || _bfd_elf_link_renumber_dynsyms (output_bfd, info, | |||
| 5823 | §ion_sym_count) == 0) | |||
| 5824 | { | |||
| 5825 | s = bfd_get_section_by_name (dynobj, ".gnu.version"); | |||
| 5826 | s->flags |= SEC_EXCLUDE0x8000; | |||
| 5827 | } | |||
| 5828 | } | |||
| 5829 | return TRUE1; | |||
| 5830 | } | |||
| 5831 | ||||
| 5832 | bfd_boolean | |||
| 5833 | bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info) | |||
| 5834 | { | |||
| 5835 | if (!is_elf_hash_table (info->hash)(((struct bfd_link_hash_table *) (info->hash))->type == bfd_link_elf_hash_table)) | |||
| 5836 | return TRUE1; | |||
| 5837 | ||||
| 5838 | if (elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynamic_sections_created) | |||
| 5839 | { | |||
| 5840 | bfd *dynobj; | |||
| 5841 | const struct elf_backend_data *bed; | |||
| 5842 | asection *s; | |||
| 5843 | bfd_size_type dynsymcount; | |||
| 5844 | unsigned long section_sym_count; | |||
| 5845 | unsigned int dtagcount; | |||
| 5846 | ||||
| 5847 | dynobj = elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynobj; | |||
| 5848 | ||||
| 5849 | /* Assign dynsym indicies. In a shared library we generate a | |||
| 5850 | section symbol for each output section, which come first. | |||
| 5851 | Next come all of the back-end allocated local dynamic syms, | |||
| 5852 | followed by the rest of the global symbols. */ | |||
| 5853 | ||||
| 5854 | dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info, | |||
| 5855 | §ion_sym_count); | |||
| 5856 | ||||
| 5857 | /* Work out the size of the symbol version section. */ | |||
| 5858 | s = bfd_get_section_by_name (dynobj, ".gnu.version"); | |||
| 5859 | BFD_ASSERT (s != NULL)do { if (!(s != ((void*)0))) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,5859); } while (0); | |||
| 5860 | if (dynsymcount != 0 | |||
| 5861 | && (s->flags & SEC_EXCLUDE0x8000) == 0) | |||
| 5862 | { | |||
| 5863 | s->size = dynsymcount * sizeof (Elf_External_Versym); | |||
| 5864 | s->contents = bfd_zalloc (output_bfd, s->size); | |||
| 5865 | if (s->contents == NULL((void*)0)) | |||
| 5866 | return FALSE0; | |||
| 5867 | ||||
| 5868 | if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM0x6ffffff0, 0)) | |||
| 5869 | return FALSE0; | |||
| 5870 | } | |||
| 5871 | ||||
| 5872 | /* Set the size of the .dynsym and .hash sections. We counted | |||
| 5873 | the number of dynamic symbols in elf_link_add_object_symbols. | |||
| 5874 | We will build the contents of .dynsym and .hash when we build | |||
| 5875 | the final symbol table, because until then we do not know the | |||
| 5876 | correct value to give the symbols. We built the .dynstr | |||
| 5877 | section as we went along in elf_link_add_object_symbols. */ | |||
| 5878 | s = bfd_get_section_by_name (dynobj, ".dynsym"); | |||
| 5879 | BFD_ASSERT (s != NULL)do { if (!(s != ((void*)0))) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,5879); } while (0); | |||
| 5880 | bed = get_elf_backend_data (output_bfd)((const struct elf_backend_data *) (output_bfd)->xvec-> backend_data); | |||
| 5881 | s->size = dynsymcount * bed->s->sizeof_sym; | |||
| 5882 | ||||
| 5883 | if (dynsymcount != 0) | |||
| 5884 | { | |||
| 5885 | s->contents = bfd_alloc (output_bfd, s->size); | |||
| 5886 | if (s->contents == NULL((void*)0)) | |||
| 5887 | return FALSE0; | |||
| 5888 | ||||
| 5889 | /* The first entry in .dynsym is a dummy symbol. | |||
| 5890 | Clear all the section syms, in case we don't output them all. */ | |||
| 5891 | ++section_sym_count; | |||
| 5892 | memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym); | |||
| 5893 | } | |||
| 5894 | ||||
| 5895 | elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->bucketcount = 0; | |||
| 5896 | ||||
| 5897 | /* Compute the size of the hashing table. As a side effect this | |||
| 5898 | computes the hash values for all the names we export. */ | |||
| 5899 | if (info->emit_hash) | |||
| 5900 | { | |||
| 5901 | unsigned long int *hashcodes; | |||
| 5902 | unsigned long int *hashcodesp; | |||
| 5903 | bfd_size_type amt; | |||
| 5904 | unsigned long int nsyms; | |||
| 5905 | size_t bucketcount; | |||
| 5906 | size_t hash_entry_size; | |||
| 5907 | ||||
| 5908 | /* Compute the hash values for all exported symbols. At the same | |||
| 5909 | time store the values in an array so that we could use them for | |||
| 5910 | optimizations. */ | |||
| 5911 | amt = dynsymcount * sizeof (unsigned long int); | |||
| 5912 | hashcodes = bfd_malloc (amt); | |||
| 5913 | if (hashcodes == NULL((void*)0)) | |||
| 5914 | return FALSE0; | |||
| 5915 | hashcodesp = hashcodes; | |||
| 5916 | ||||
| 5917 | /* Put all hash values in HASHCODES. */ | |||
| 5918 | elf_link_hash_traverse (elf_hash_table (info),(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (elf_collect_hash_codes), (&hashcodesp))) | |||
| 5919 | elf_collect_hash_codes, &hashcodesp)(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (elf_collect_hash_codes), (&hashcodesp))); | |||
| 5920 | ||||
| 5921 | nsyms = hashcodesp - hashcodes; | |||
| 5922 | bucketcount | |||
| 5923 | = compute_bucket_count (info, hashcodes, nsyms, 0); | |||
| 5924 | free (hashcodes); | |||
| 5925 | ||||
| 5926 | if (bucketcount == 0) | |||
| 5927 | return FALSE0; | |||
| 5928 | ||||
| 5929 | elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->bucketcount = bucketcount; | |||
| 5930 | ||||
| 5931 | s = bfd_get_section_by_name (dynobj, ".hash"); | |||
| 5932 | BFD_ASSERT (s != NULL)do { if (!(s != ((void*)0))) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,5932); } while (0); | |||
| 5933 | hash_entry_size = elf_section_data (s)((struct bfd_elf_section_data*)(s)->used_by_bfd)->this_hdr.sh_entsize; | |||
| 5934 | s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size); | |||
| 5935 | s->contents = bfd_zalloc (output_bfd, s->size); | |||
| 5936 | if (s->contents == NULL((void*)0)) | |||
| 5937 | return FALSE0; | |||
| 5938 | ||||
| 5939 | bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents)((8 * hash_entry_size) == 8 ? ((void) (*((unsigned char *) (s ->contents)) = (bucketcount) & 0xff)) : (8 * hash_entry_size ) == 16 ? ((*((output_bfd)->xvec->bfd_putx16)) ((bucketcount ),(s->contents))) : (8 * hash_entry_size) == 32 ? ((*((output_bfd )->xvec->bfd_putx32)) ((bucketcount),(s->contents))) : (8 * hash_entry_size) == 64 ? ((*((output_bfd)->xvec-> bfd_putx64)) ((bucketcount), (s->contents))) : (_bfd_abort ("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c", 5939, __PRETTY_FUNCTION__ ), (void) 0)); | |||
| 5940 | bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,((8 * hash_entry_size) == 8 ? ((void) (*((unsigned char *) (s ->contents + hash_entry_size)) = (dynsymcount) & 0xff) ) : (8 * hash_entry_size) == 16 ? ((*((output_bfd)->xvec-> bfd_putx16)) ((dynsymcount),(s->contents + hash_entry_size ))) : (8 * hash_entry_size) == 32 ? ((*((output_bfd)->xvec ->bfd_putx32)) ((dynsymcount),(s->contents + hash_entry_size ))) : (8 * hash_entry_size) == 64 ? ((*((output_bfd)->xvec ->bfd_putx64)) ((dynsymcount), (s->contents + hash_entry_size ))) : (_bfd_abort ("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" , 5941, __PRETTY_FUNCTION__), (void) 0)) | |||
| 5941 | s->contents + hash_entry_size)((8 * hash_entry_size) == 8 ? ((void) (*((unsigned char *) (s ->contents + hash_entry_size)) = (dynsymcount) & 0xff) ) : (8 * hash_entry_size) == 16 ? ((*((output_bfd)->xvec-> bfd_putx16)) ((dynsymcount),(s->contents + hash_entry_size ))) : (8 * hash_entry_size) == 32 ? ((*((output_bfd)->xvec ->bfd_putx32)) ((dynsymcount),(s->contents + hash_entry_size ))) : (8 * hash_entry_size) == 64 ? ((*((output_bfd)->xvec ->bfd_putx64)) ((dynsymcount), (s->contents + hash_entry_size ))) : (_bfd_abort ("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" , 5941, __PRETTY_FUNCTION__), (void) 0)); | |||
| 5942 | } | |||
| 5943 | ||||
| 5944 | if (info->emit_gnu_hash) | |||
| 5945 | { | |||
| 5946 | size_t i, cnt; | |||
| 5947 | unsigned char *contents; | |||
| 5948 | struct collect_gnu_hash_codes cinfo; | |||
| 5949 | bfd_size_type amt; | |||
| 5950 | size_t bucketcount; | |||
| 5951 | ||||
| 5952 | memset (&cinfo, 0, sizeof (cinfo)); | |||
| 5953 | ||||
| 5954 | /* Compute the hash values for all exported symbols. At the same | |||
| 5955 | time store the values in an array so that we could use them for | |||
| 5956 | optimizations. */ | |||
| 5957 | amt = dynsymcount * 2 * sizeof (unsigned long int); | |||
| 5958 | cinfo.hashcodes = bfd_malloc (amt); | |||
| 5959 | if (cinfo.hashcodes == NULL((void*)0)) | |||
| 5960 | return FALSE0; | |||
| 5961 | ||||
| 5962 | cinfo.hashval = cinfo.hashcodes + dynsymcount; | |||
| 5963 | cinfo.min_dynindx = -1; | |||
| 5964 | cinfo.output_bfd = output_bfd; | |||
| 5965 | cinfo.bed = bed; | |||
| 5966 | ||||
| 5967 | /* Put all hash values in HASHCODES. */ | |||
| 5968 | elf_link_hash_traverse (elf_hash_table (info),(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (elf_collect_gnu_hash_codes), (&cinfo))) | |||
| 5969 | elf_collect_gnu_hash_codes, &cinfo)(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (elf_collect_gnu_hash_codes), (&cinfo))); | |||
| 5970 | ||||
| 5971 | bucketcount | |||
| 5972 | = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1); | |||
| 5973 | ||||
| 5974 | if (bucketcount == 0) | |||
| 5975 | { | |||
| 5976 | free (cinfo.hashcodes); | |||
| 5977 | return FALSE0; | |||
| 5978 | } | |||
| 5979 | ||||
| 5980 | s = bfd_get_section_by_name (dynobj, ".gnu.hash"); | |||
| 5981 | BFD_ASSERT (s != NULL)do { if (!(s != ((void*)0))) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,5981); } while (0); | |||
| 5982 | ||||
| 5983 | if (cinfo.nsyms == 0) | |||
| 5984 | { | |||
| 5985 | /* Empty .gnu.hash section is special. */ | |||
| 5986 | BFD_ASSERT (cinfo.min_dynindx == -1)do { if (!(cinfo.min_dynindx == -1)) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,5986); } while (0); | |||
| 5987 | free (cinfo.hashcodes); | |||
| 5988 | s->size = 5 * 4 + bed->s->arch_size / 8; | |||
| 5989 | contents = bfd_zalloc (output_bfd, s->size); | |||
| 5990 | if (contents == NULL((void*)0)) | |||
| 5991 | return FALSE0; | |||
| 5992 | s->contents = contents; | |||
| 5993 | /* 1 empty bucket. */ | |||
| 5994 | bfd_put_32 (output_bfd, 1, contents)((*((output_bfd)->xvec->bfd_putx32)) ((1),(contents))); | |||
| 5995 | /* SYMIDX above the special symbol 0. */ | |||
| 5996 | bfd_put_32 (output_bfd, 1, contents + 4)((*((output_bfd)->xvec->bfd_putx32)) ((1),(contents + 4 ))); | |||
| 5997 | /* Just one word for bitmask. */ | |||
| 5998 | bfd_put_32 (output_bfd, 1, contents + 8)((*((output_bfd)->xvec->bfd_putx32)) ((1),(contents + 8 ))); | |||
| 5999 | /* Only hash fn bloom filter. */ | |||
| 6000 | bfd_put_32 (output_bfd, 0, contents + 12)((*((output_bfd)->xvec->bfd_putx32)) ((0),(contents + 12 ))); | |||
| 6001 | /* No hashes are valid - empty bitmask. */ | |||
| 6002 | bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16)((bed->s->arch_size) == 8 ? ((void) (*((unsigned char * ) (contents + 16)) = (0) & 0xff)) : (bed->s->arch_size ) == 16 ? ((*((output_bfd)->xvec->bfd_putx16)) ((0),(contents + 16))) : (bed->s->arch_size) == 32 ? ((*((output_bfd) ->xvec->bfd_putx32)) ((0),(contents + 16))) : (bed-> s->arch_size) == 64 ? ((*((output_bfd)->xvec->bfd_putx64 )) ((0), (contents + 16))) : (_bfd_abort ("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" , 6002, __PRETTY_FUNCTION__), (void) 0)); | |||
| 6003 | /* No hashes in the only bucket. */ | |||
| 6004 | bfd_put_32 (output_bfd, 0,((*((output_bfd)->xvec->bfd_putx32)) ((0),(contents + 16 + bed->s->arch_size / 8))) | |||
| 6005 | contents + 16 + bed->s->arch_size / 8)((*((output_bfd)->xvec->bfd_putx32)) ((0),(contents + 16 + bed->s->arch_size / 8))); | |||
| 6006 | } | |||
| 6007 | else | |||
| 6008 | { | |||
| 6009 | BFD_ASSERT (cinfo.min_dynindx != -1)do { if (!(cinfo.min_dynindx != -1)) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,6009); } while (0); | |||
| 6010 | unsigned long int maskwords, maskbitslog2; | |||
| 6011 | ||||
| 6012 | maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1; | |||
| 6013 | if (maskbitslog2 < 3) | |||
| 6014 | maskbitslog2 = 5; | |||
| 6015 | else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms) | |||
| 6016 | maskbitslog2 = maskbitslog2 + 3; | |||
| 6017 | else | |||
| 6018 | maskbitslog2 = maskbitslog2 + 2; | |||
| 6019 | if (bed->s->arch_size == 64) | |||
| 6020 | { | |||
| 6021 | if (maskbitslog2 == 5) | |||
| 6022 | maskbitslog2 = 6; | |||
| 6023 | cinfo.shift1 = 6; | |||
| 6024 | } | |||
| 6025 | else | |||
| 6026 | cinfo.shift1 = 5; | |||
| 6027 | cinfo.mask = (1 << cinfo.shift1) - 1; | |||
| 6028 | cinfo.shift2 = maskbitslog2; | |||
| 6029 | cinfo.maskbits = 1 << maskbitslog2; | |||
| 6030 | maskwords = 1 << (maskbitslog2 - cinfo.shift1); | |||
| 6031 | amt = bucketcount * sizeof (unsigned long int) * 2; | |||
| 6032 | amt += maskwords * sizeof (bfd_vma); | |||
| 6033 | cinfo.bitmask = bfd_malloc (amt); | |||
| 6034 | if (cinfo.bitmask == NULL((void*)0)) | |||
| 6035 | { | |||
| 6036 | free (cinfo.hashcodes); | |||
| 6037 | return FALSE0; | |||
| 6038 | } | |||
| 6039 | ||||
| 6040 | cinfo.counts = (void *) (cinfo.bitmask + maskwords); | |||
| 6041 | cinfo.indx = cinfo.counts + bucketcount; | |||
| 6042 | cinfo.symindx = dynsymcount - cinfo.nsyms; | |||
| 6043 | memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma)); | |||
| 6044 | ||||
| 6045 | /* Determine how often each hash bucket is used. */ | |||
| 6046 | memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0])); | |||
| 6047 | for (i = 0; i < cinfo.nsyms; ++i) | |||
| 6048 | ++cinfo.counts[cinfo.hashcodes[i] % bucketcount]; | |||
| 6049 | ||||
| 6050 | for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i) | |||
| 6051 | if (cinfo.counts[i] != 0) | |||
| 6052 | { | |||
| 6053 | cinfo.indx[i] = cnt; | |||
| 6054 | cnt += cinfo.counts[i]; | |||
| 6055 | } | |||
| 6056 | BFD_ASSERT (cnt == dynsymcount)do { if (!(cnt == dynsymcount)) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,6056); } while (0); | |||
| 6057 | cinfo.bucketcount = bucketcount; | |||
| 6058 | cinfo.local_indx = cinfo.min_dynindx; | |||
| 6059 | ||||
| 6060 | s->size = (4 + bucketcount + cinfo.nsyms) * 4; | |||
| 6061 | s->size += cinfo.maskbits / 8; | |||
| 6062 | contents = bfd_zalloc (output_bfd, s->size); | |||
| 6063 | if (contents == NULL((void*)0)) | |||
| 6064 | { | |||
| 6065 | free (cinfo.bitmask); | |||
| 6066 | free (cinfo.hashcodes); | |||
| 6067 | return FALSE0; | |||
| 6068 | } | |||
| 6069 | ||||
| 6070 | s->contents = contents; | |||
| 6071 | bfd_put_32 (output_bfd, bucketcount, contents)((*((output_bfd)->xvec->bfd_putx32)) ((bucketcount),(contents ))); | |||
| 6072 | bfd_put_32 (output_bfd, cinfo.symindx, contents + 4)((*((output_bfd)->xvec->bfd_putx32)) ((cinfo.symindx),( contents + 4))); | |||
| 6073 | bfd_put_32 (output_bfd, maskwords, contents + 8)((*((output_bfd)->xvec->bfd_putx32)) ((maskwords),(contents + 8))); | |||
| 6074 | bfd_put_32 (output_bfd, cinfo.shift2, contents + 12)((*((output_bfd)->xvec->bfd_putx32)) ((cinfo.shift2),(contents + 12))); | |||
| 6075 | contents += 16 + cinfo.maskbits / 8; | |||
| 6076 | ||||
| 6077 | for (i = 0; i < bucketcount; ++i) | |||
| 6078 | { | |||
| 6079 | if (cinfo.counts[i] == 0) | |||
| 6080 | bfd_put_32 (output_bfd, 0, contents)((*((output_bfd)->xvec->bfd_putx32)) ((0),(contents))); | |||
| 6081 | else | |||
| 6082 | bfd_put_32 (output_bfd, cinfo.indx[i], contents)((*((output_bfd)->xvec->bfd_putx32)) ((cinfo.indx[i]),( contents))); | |||
| 6083 | contents += 4; | |||
| 6084 | } | |||
| 6085 | ||||
| 6086 | cinfo.contents = contents; | |||
| 6087 | ||||
| 6088 | /* Renumber dynamic symbols, populate .gnu.hash section. */ | |||
| 6089 | elf_link_hash_traverse (elf_hash_table (info),(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (elf_renumber_gnu_hash_syms), (&cinfo))) | |||
| 6090 | elf_renumber_gnu_hash_syms, &cinfo)(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (elf_renumber_gnu_hash_syms), (&cinfo))); | |||
| 6091 | ||||
| 6092 | contents = s->contents + 16; | |||
| 6093 | for (i = 0; i < maskwords; ++i) | |||
| 6094 | { | |||
| 6095 | bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],((bed->s->arch_size) == 8 ? ((void) (*((unsigned char * ) (contents)) = (cinfo.bitmask[i]) & 0xff)) : (bed->s-> arch_size) == 16 ? ((*((output_bfd)->xvec->bfd_putx16)) ((cinfo.bitmask[i]),(contents))) : (bed->s->arch_size) == 32 ? ((*((output_bfd)->xvec->bfd_putx32)) ((cinfo.bitmask [i]),(contents))) : (bed->s->arch_size) == 64 ? ((*((output_bfd )->xvec->bfd_putx64)) ((cinfo.bitmask[i]), (contents))) : (_bfd_abort ("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" , 6096, __PRETTY_FUNCTION__), (void) 0)) | |||
| 6096 | contents)((bed->s->arch_size) == 8 ? ((void) (*((unsigned char * ) (contents)) = (cinfo.bitmask[i]) & 0xff)) : (bed->s-> arch_size) == 16 ? ((*((output_bfd)->xvec->bfd_putx16)) ((cinfo.bitmask[i]),(contents))) : (bed->s->arch_size) == 32 ? ((*((output_bfd)->xvec->bfd_putx32)) ((cinfo.bitmask [i]),(contents))) : (bed->s->arch_size) == 64 ? ((*((output_bfd )->xvec->bfd_putx64)) ((cinfo.bitmask[i]), (contents))) : (_bfd_abort ("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" , 6096, __PRETTY_FUNCTION__), (void) 0)); | |||
| 6097 | contents += bed->s->arch_size / 8; | |||
| 6098 | } | |||
| 6099 | ||||
| 6100 | free (cinfo.bitmask); | |||
| 6101 | free (cinfo.hashcodes); | |||
| 6102 | } | |||
| 6103 | } | |||
| 6104 | ||||
| 6105 | s = bfd_get_section_by_name (dynobj, ".dynstr"); | |||
| 6106 | BFD_ASSERT (s != NULL)do { if (!(s != ((void*)0))) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,6106); } while (0); | |||
| 6107 | ||||
| 6108 | elf_finalize_dynstr (output_bfd, info); | |||
| 6109 | ||||
| 6110 | s->size = _bfd_elf_strtab_size (elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynstr); | |||
| 6111 | ||||
| 6112 | for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount) | |||
| 6113 | if (!_bfd_elf_add_dynamic_entry (info, DT_NULL0, 0)) | |||
| 6114 | return FALSE0; | |||
| 6115 | } | |||
| 6116 | ||||
| 6117 | return TRUE1; | |||
| 6118 | } | |||
| 6119 | ||||
| 6120 | /* Final phase of ELF linker. */ | |||
| 6121 | ||||
| 6122 | /* A structure we use to avoid passing large numbers of arguments. */ | |||
| 6123 | ||||
| 6124 | struct elf_final_link_info | |||
| 6125 | { | |||
| 6126 | /* General link information. */ | |||
| 6127 | struct bfd_link_info *info; | |||
| 6128 | /* Output BFD. */ | |||
| 6129 | bfd *output_bfd; | |||
| 6130 | /* Symbol string table. */ | |||
| 6131 | struct bfd_strtab_hash *symstrtab; | |||
| 6132 | /* .dynsym section. */ | |||
| 6133 | asection *dynsym_sec; | |||
| 6134 | /* .hash section. */ | |||
| 6135 | asection *hash_sec; | |||
| 6136 | /* symbol version section (.gnu.version). */ | |||
| 6137 | asection *symver_sec; | |||
| 6138 | /* Buffer large enough to hold contents of any section. */ | |||
| 6139 | bfd_byte *contents; | |||
| 6140 | /* Buffer large enough to hold external relocs of any section. */ | |||
| 6141 | void *external_relocs; | |||
| 6142 | /* Buffer large enough to hold internal relocs of any section. */ | |||
| 6143 | Elf_Internal_Rela *internal_relocs; | |||
| 6144 | /* Buffer large enough to hold external local symbols of any input | |||
| 6145 | BFD. */ | |||
| 6146 | bfd_byte *external_syms; | |||
| 6147 | /* And a buffer for symbol section indices. */ | |||
| 6148 | Elf_External_Sym_Shndx *locsym_shndx; | |||
| 6149 | /* Buffer large enough to hold internal local symbols of any input | |||
| 6150 | BFD. */ | |||
| 6151 | Elf_Internal_Sym *internal_syms; | |||
| 6152 | /* Array large enough to hold a symbol index for each local symbol | |||
| 6153 | of any input BFD. */ | |||
| 6154 | long *indices; | |||
| 6155 | /* Array large enough to hold a section pointer for each local | |||
| 6156 | symbol of any input BFD. */ | |||
| 6157 | asection **sections; | |||
| 6158 | /* Buffer to hold swapped out symbols. */ | |||
| 6159 | bfd_byte *symbuf; | |||
| 6160 | /* And one for symbol section indices. */ | |||
| 6161 | Elf_External_Sym_Shndx *symshndxbuf; | |||
| 6162 | /* Number of swapped out symbols in buffer. */ | |||
| 6163 | size_t symbuf_count; | |||
| 6164 | /* Number of symbols which fit in symbuf. */ | |||
| 6165 | size_t symbuf_size; | |||
| 6166 | /* And same for symshndxbuf. */ | |||
| 6167 | size_t shndxbuf_size; | |||
| 6168 | }; | |||
| 6169 | ||||
| 6170 | /* This struct is used to pass information to elf_link_output_extsym. */ | |||
| 6171 | ||||
| 6172 | struct elf_outext_info | |||
| 6173 | { | |||
| 6174 | bfd_boolean failed; | |||
| 6175 | bfd_boolean localsyms; | |||
| 6176 | struct elf_final_link_info *finfo; | |||
| 6177 | }; | |||
| 6178 | ||||
| 6179 | /* When performing a relocatable link, the input relocations are | |||
| 6180 | preserved. But, if they reference global symbols, the indices | |||
| 6181 | referenced must be updated. Update all the relocations in | |||
| 6182 | REL_HDR (there are COUNT of them), using the data in REL_HASH. */ | |||
| 6183 | ||||
| 6184 | static void | |||
| 6185 | elf_link_adjust_relocs (bfd *abfd, | |||
| 6186 | Elf_Internal_Shdr *rel_hdr, | |||
| 6187 | unsigned int count, | |||
| 6188 | struct elf_link_hash_entry **rel_hash) | |||
| 6189 | { | |||
| 6190 | unsigned int i; | |||
| 6191 | const struct elf_backend_data *bed = get_elf_backend_data (abfd)((const struct elf_backend_data *) (abfd)->xvec->backend_data ); | |||
| 6192 | bfd_byte *erela; | |||
| 6193 | void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); | |||
| 6194 | void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); | |||
| 6195 | bfd_vma r_type_mask; | |||
| 6196 | int r_sym_shift; | |||
| 6197 | ||||
| 6198 | if (rel_hdr->sh_entsize == bed->s->sizeof_rel) | |||
| 6199 | { | |||
| 6200 | swap_in = bed->s->swap_reloc_in; | |||
| 6201 | swap_out = bed->s->swap_reloc_out; | |||
| 6202 | } | |||
| 6203 | else if (rel_hdr->sh_entsize == bed->s->sizeof_rela) | |||
| 6204 | { | |||
| 6205 | swap_in = bed->s->swap_reloca_in; | |||
| 6206 | swap_out = bed->s->swap_reloca_out; | |||
| 6207 | } | |||
| 6208 | else | |||
| 6209 | abort ()_bfd_abort ("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" , 6209, __PRETTY_FUNCTION__); | |||
| 6210 | ||||
| 6211 | if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL3) | |||
| 6212 | abort ()_bfd_abort ("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" , 6212, __PRETTY_FUNCTION__); | |||
| 6213 | ||||
| 6214 | if (bed->s->arch_size == 32) | |||
| 6215 | { | |||
| 6216 | r_type_mask = 0xff; | |||
| 6217 | r_sym_shift = 8; | |||
| 6218 | } | |||
| 6219 | else | |||
| 6220 | { | |||
| 6221 | r_type_mask = 0xffffffff; | |||
| 6222 | r_sym_shift = 32; | |||
| 6223 | } | |||
| 6224 | ||||
| 6225 | erela = rel_hdr->contents; | |||
| 6226 | for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize) | |||
| 6227 | { | |||
| 6228 | Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL3]; | |||
| 6229 | unsigned int j; | |||
| 6230 | ||||
| 6231 | if (*rel_hash == NULL((void*)0)) | |||
| 6232 | continue; | |||
| 6233 | ||||
| 6234 | BFD_ASSERT ((*rel_hash)->indx >= 0)do { if (!((*rel_hash)->indx >= 0)) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,6234); } while (0); | |||
| 6235 | ||||
| 6236 | (*swap_in) (abfd, erela, irela); | |||
| 6237 | for (j = 0; j < bed->s->int_rels_per_ext_rel; j++) | |||
| 6238 | irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift | |||
| 6239 | | (irela[j].r_info & r_type_mask)); | |||
| 6240 | (*swap_out) (abfd, irela, erela); | |||
| 6241 | } | |||
| 6242 | } | |||
| 6243 | ||||
| 6244 | struct elf_link_sort_rela | |||
| 6245 | { | |||
| 6246 | union { | |||
| 6247 | bfd_vma offset; | |||
| 6248 | bfd_vma sym_mask; | |||
| 6249 | } u; | |||
| 6250 | enum elf_reloc_type_class type; | |||
| 6251 | /* We use this as an array of size int_rels_per_ext_rel. */ | |||
| 6252 | Elf_Internal_Rela rela[1]; | |||
| 6253 | }; | |||
| 6254 | ||||
| 6255 | static int | |||
| 6256 | elf_link_sort_cmp1 (const void *A, const void *B) | |||
| 6257 | { | |||
| 6258 | const struct elf_link_sort_rela *a = A; | |||
| 6259 | const struct elf_link_sort_rela *b = B; | |||
| 6260 | int relativea, relativeb; | |||
| 6261 | ||||
| 6262 | relativea = a->type == reloc_class_relative; | |||
| 6263 | relativeb = b->type == reloc_class_relative; | |||
| 6264 | ||||
| 6265 | if (relativea < relativeb) | |||
| 6266 | return 1; | |||
| 6267 | if (relativea > relativeb) | |||
| 6268 | return -1; | |||
| 6269 | if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask)) | |||
| 6270 | return -1; | |||
| 6271 | if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask)) | |||
| 6272 | return 1; | |||
| 6273 | if (a->rela->r_offset < b->rela->r_offset) | |||
| 6274 | return -1; | |||
| 6275 | if (a->rela->r_offset > b->rela->r_offset) | |||
| 6276 | return 1; | |||
| 6277 | return 0; | |||
| 6278 | } | |||
| 6279 | ||||
| 6280 | static int | |||
| 6281 | elf_link_sort_cmp2 (const void *A, const void *B) | |||
| 6282 | { | |||
| 6283 | const struct elf_link_sort_rela *a = A; | |||
| 6284 | const struct elf_link_sort_rela *b = B; | |||
| 6285 | int copya, copyb; | |||
| 6286 | ||||
| 6287 | if (a->u.offset < b->u.offset) | |||
| 6288 | return -1; | |||
| 6289 | if (a->u.offset > b->u.offset) | |||
| 6290 | return 1; | |||
| 6291 | copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt); | |||
| 6292 | copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt); | |||
| 6293 | if (copya < copyb) | |||
| 6294 | return -1; | |||
| 6295 | if (copya > copyb) | |||
| 6296 | return 1; | |||
| 6297 | if (a->rela->r_offset < b->rela->r_offset) | |||
| 6298 | return -1; | |||
| 6299 | if (a->rela->r_offset > b->rela->r_offset) | |||
| 6300 | return 1; | |||
| 6301 | return 0; | |||
| 6302 | } | |||
| 6303 | ||||
| 6304 | static size_t | |||
| 6305 | elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec) | |||
| 6306 | { | |||
| 6307 | asection *reldyn; | |||
| 6308 | bfd_size_type count, size; | |||
| 6309 | size_t i, ret, sort_elt, ext_size; | |||
| 6310 | bfd_byte *sort, *s_non_relative, *p; | |||
| 6311 | struct elf_link_sort_rela *sq; | |||
| 6312 | const struct elf_backend_data *bed = get_elf_backend_data (abfd)((const struct elf_backend_data *) (abfd)->xvec->backend_data ); | |||
| 6313 | int i2e = bed->s->int_rels_per_ext_rel; | |||
| 6314 | void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); | |||
| 6315 | void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); | |||
| 6316 | struct bfd_link_order *lo; | |||
| 6317 | bfd_vma r_sym_mask; | |||
| 6318 | ||||
| 6319 | reldyn = bfd_get_section_by_name (abfd, ".rela.dyn"); | |||
| 6320 | if (reldyn == NULL((void*)0) || reldyn->size == 0) | |||
| 6321 | { | |||
| 6322 | reldyn = bfd_get_section_by_name (abfd, ".rel.dyn"); | |||
| 6323 | if (reldyn == NULL((void*)0) || reldyn->size == 0) | |||
| 6324 | return 0; | |||
| 6325 | ext_size = bed->s->sizeof_rel; | |||
| 6326 | swap_in = bed->s->swap_reloc_in; | |||
| 6327 | swap_out = bed->s->swap_reloc_out; | |||
| 6328 | } | |||
| 6329 | else | |||
| 6330 | { | |||
| 6331 | ext_size = bed->s->sizeof_rela; | |||
| 6332 | swap_in = bed->s->swap_reloca_in; | |||
| 6333 | swap_out = bed->s->swap_reloca_out; | |||
| 6334 | } | |||
| 6335 | count = reldyn->size / ext_size; | |||
| 6336 | ||||
| 6337 | size = 0; | |||
| 6338 | for (lo = reldyn->map_head.link_order; lo != NULL((void*)0); lo = lo->next) | |||
| 6339 | if (lo->type == bfd_indirect_link_order) | |||
| 6340 | { | |||
| 6341 | asection *o = lo->u.indirect.section; | |||
| 6342 | size += o->size; | |||
| 6343 | } | |||
| 6344 | ||||
| 6345 | if (size != reldyn->size) | |||
| 6346 | return 0; | |||
| 6347 | ||||
| 6348 | sort_elt = (sizeof (struct elf_link_sort_rela) | |||
| 6349 | + (i2e - 1) * sizeof (Elf_Internal_Rela)); | |||
| 6350 | sort = bfd_zmalloc (sort_elt * count); | |||
| 6351 | if (sort == NULL((void*)0)) | |||
| 6352 | { | |||
| 6353 | (*info->callbacks->warning) | |||
| 6354 | (info, _("Not enough memory to sort relocations")("Not enough memory to sort relocations"), 0, abfd, 0, 0); | |||
| 6355 | return 0; | |||
| 6356 | } | |||
| 6357 | ||||
| 6358 | if (bed->s->arch_size == 32) | |||
| 6359 | r_sym_mask = ~(bfd_vma) 0xff; | |||
| 6360 | else | |||
| 6361 | r_sym_mask = ~(bfd_vma) 0xffffffff; | |||
| 6362 | ||||
| 6363 | for (lo = reldyn->map_head.link_order; lo != NULL((void*)0); lo = lo->next) | |||
| 6364 | if (lo->type == bfd_indirect_link_order) | |||
| 6365 | { | |||
| 6366 | bfd_byte *erel, *erelend; | |||
| 6367 | asection *o = lo->u.indirect.section; | |||
| 6368 | ||||
| 6369 | if (o->contents == NULL((void*)0) && o->size != 0) | |||
| 6370 | { | |||
| 6371 | /* This is a reloc section that is being handled as a normal | |||
| 6372 | section. See bfd_section_from_shdr. We can't combine | |||
| 6373 | relocs in this case. */ | |||
| 6374 | free (sort); | |||
| 6375 | return 0; | |||
| 6376 | } | |||
| 6377 | erel = o->contents; | |||
| 6378 | erelend = o->contents + o->size; | |||
| 6379 | p = sort + o->output_offset / ext_size * sort_elt; | |||
| 6380 | while (erel < erelend) | |||
| 6381 | { | |||
| 6382 | struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p; | |||
| 6383 | (*swap_in) (abfd, erel, s->rela); | |||
| 6384 | s->type = (*bed->elf_backend_reloc_type_class) (s->rela); | |||
| 6385 | s->u.sym_mask = r_sym_mask; | |||
| 6386 | p += sort_elt; | |||
| 6387 | erel += ext_size; | |||
| 6388 | } | |||
| 6389 | } | |||
| 6390 | ||||
| 6391 | qsort (sort, count, sort_elt, elf_link_sort_cmp1); | |||
| 6392 | ||||
| 6393 | for (i = 0, p = sort; i < count; i++, p += sort_elt) | |||
| 6394 | { | |||
| 6395 | struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p; | |||
| 6396 | if (s->type != reloc_class_relative) | |||
| 6397 | break; | |||
| 6398 | } | |||
| 6399 | ret = i; | |||
| 6400 | s_non_relative = p; | |||
| 6401 | ||||
| 6402 | sq = (struct elf_link_sort_rela *) s_non_relative; | |||
| 6403 | for (; i < count; i++, p += sort_elt) | |||
| 6404 | { | |||
| 6405 | struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p; | |||
| 6406 | if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0) | |||
| 6407 | sq = sp; | |||
| 6408 | sp->u.offset = sq->rela->r_offset; | |||
| 6409 | } | |||
| 6410 | ||||
| 6411 | qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2); | |||
| 6412 | ||||
| 6413 | for (lo = reldyn->map_head.link_order; lo != NULL((void*)0); lo = lo->next) | |||
| 6414 | if (lo->type == bfd_indirect_link_order) | |||
| 6415 | { | |||
| 6416 | bfd_byte *erel, *erelend; | |||
| 6417 | asection *o = lo->u.indirect.section; | |||
| 6418 | ||||
| 6419 | erel = o->contents; | |||
| 6420 | erelend = o->contents + o->size; | |||
| 6421 | p = sort + o->output_offset / ext_size * sort_elt; | |||
| 6422 | while (erel < erelend) | |||
| 6423 | { | |||
| 6424 | struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p; | |||
| 6425 | (*swap_out) (abfd, s->rela, erel); | |||
| 6426 | p += sort_elt; | |||
| 6427 | erel += ext_size; | |||
| 6428 | } | |||
| 6429 | } | |||
| 6430 | ||||
| 6431 | free (sort); | |||
| 6432 | *psec = reldyn; | |||
| 6433 | return ret; | |||
| 6434 | } | |||
| 6435 | ||||
| 6436 | /* Flush the output symbols to the file. */ | |||
| 6437 | ||||
| 6438 | static bfd_boolean | |||
| 6439 | elf_link_flush_output_syms (struct elf_final_link_info *finfo, | |||
| 6440 | const struct elf_backend_data *bed) | |||
| 6441 | { | |||
| 6442 | if (finfo->symbuf_count > 0) | |||
| 6443 | { | |||
| 6444 | Elf_Internal_Shdr *hdr; | |||
| 6445 | file_ptr pos; | |||
| 6446 | bfd_size_type amt; | |||
| 6447 | ||||
| 6448 | hdr = &elf_tdata (finfo->output_bfd)((finfo->output_bfd) -> tdata.elf_obj_data)->symtab_hdr; | |||
| 6449 | pos = hdr->sh_offset + hdr->sh_size; | |||
| 6450 | amt = finfo->symbuf_count * bed->s->sizeof_sym; | |||
| 6451 | if (bfd_seek (finfo->output_bfd, pos, SEEK_SET0) != 0 | |||
| 6452 | || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt) | |||
| 6453 | return FALSE0; | |||
| 6454 | ||||
| 6455 | hdr->sh_size += amt; | |||
| 6456 | finfo->symbuf_count = 0; | |||
| 6457 | } | |||
| 6458 | ||||
| 6459 | return TRUE1; | |||
| 6460 | } | |||
| 6461 | ||||
| 6462 | /* Add a symbol to the output symbol table. */ | |||
| 6463 | ||||
| 6464 | static bfd_boolean | |||
| 6465 | elf_link_output_sym (struct elf_final_link_info *finfo, | |||
| 6466 | const char *name, | |||
| 6467 | Elf_Internal_Sym *elfsym, | |||
| 6468 | asection *input_sec, | |||
| 6469 | struct elf_link_hash_entry *h) | |||
| 6470 | { | |||
| 6471 | bfd_byte *dest; | |||
| 6472 | Elf_External_Sym_Shndx *destshndx; | |||
| 6473 | bfd_boolean (*output_symbol_hook) | |||
| 6474 | (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *, | |||
| 6475 | struct elf_link_hash_entry *); | |||
| 6476 | const struct elf_backend_data *bed; | |||
| 6477 | ||||
| 6478 | bed = get_elf_backend_data (finfo->output_bfd)((const struct elf_backend_data *) (finfo->output_bfd)-> xvec->backend_data); | |||
| 6479 | output_symbol_hook = bed->elf_backend_link_output_symbol_hook; | |||
| 6480 | if (output_symbol_hook != NULL((void*)0)) | |||
| 6481 | { | |||
| 6482 | if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h)) | |||
| 6483 | return FALSE0; | |||
| 6484 | } | |||
| 6485 | ||||
| 6486 | if (name == NULL((void*)0) || *name == '\0') | |||
| 6487 | elfsym->st_name = 0; | |||
| 6488 | else if (input_sec->flags & SEC_EXCLUDE0x8000) | |||
| 6489 | elfsym->st_name = 0; | |||
| 6490 | else | |||
| 6491 | { | |||
| 6492 | elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab, | |||
| 6493 | name, TRUE1, FALSE0); | |||
| 6494 | if (elfsym->st_name == (unsigned long) -1) | |||
| 6495 | return FALSE0; | |||
| 6496 | } | |||
| 6497 | ||||
| 6498 | if (finfo->symbuf_count >= finfo->symbuf_size) | |||
| 6499 | { | |||
| 6500 | if (! elf_link_flush_output_syms (finfo, bed)) | |||
| 6501 | return FALSE0; | |||
| 6502 | } | |||
| 6503 | ||||
| 6504 | dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym; | |||
| 6505 | destshndx = finfo->symshndxbuf; | |||
| 6506 | if (destshndx != NULL((void*)0)) | |||
| 6507 | { | |||
| 6508 | if (bfd_get_symcount (finfo->output_bfd)((finfo->output_bfd)->symcount) >= finfo->shndxbuf_size) | |||
| 6509 | { | |||
| 6510 | bfd_size_type amt; | |||
| 6511 | ||||
| 6512 | amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx); | |||
| 6513 | finfo->symshndxbuf = destshndx = bfd_realloc (destshndx, amt * 2); | |||
| 6514 | if (destshndx == NULL((void*)0)) | |||
| 6515 | return FALSE0; | |||
| 6516 | memset ((char *) destshndx + amt, 0, amt); | |||
| 6517 | finfo->shndxbuf_size *= 2; | |||
| 6518 | } | |||
| 6519 | destshndx += bfd_get_symcount (finfo->output_bfd)((finfo->output_bfd)->symcount); | |||
| 6520 | } | |||
| 6521 | ||||
| 6522 | bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx); | |||
| 6523 | finfo->symbuf_count += 1; | |||
| 6524 | bfd_get_symcount (finfo->output_bfd)((finfo->output_bfd)->symcount) += 1; | |||
| 6525 | ||||
| 6526 | return TRUE1; | |||
| 6527 | } | |||
| 6528 | ||||
| 6529 | /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */ | |||
| 6530 | ||||
| 6531 | static bfd_boolean | |||
| 6532 | check_dynsym (bfd *abfd, Elf_Internal_Sym *sym) | |||
| 6533 | { | |||
| 6534 | if (sym->st_shndx > SHN_HIRESERVE0xFFFF) | |||
| 6535 | { | |||
| 6536 | /* The gABI doesn't support dynamic symbols in output sections | |||
| 6537 | beyond 64k. */ | |||
| 6538 | (*_bfd_error_handler) | |||
| 6539 | (_("%B: Too many sections: %d (>= %d)")("%B: Too many sections: %d (>= %d)"), | |||
| 6540 | abfd, bfd_count_sections (abfd)((abfd)->section_count), SHN_LORESERVE0xFF00); | |||
| 6541 | bfd_set_error (bfd_error_nonrepresentable_section); | |||
| 6542 | return FALSE0; | |||
| 6543 | } | |||
| 6544 | return TRUE1; | |||
| 6545 | } | |||
| 6546 | ||||
| 6547 | /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in | |||
| 6548 | allowing an unsatisfied unversioned symbol in the DSO to match a | |||
| 6549 | versioned symbol that would normally require an explicit version. | |||
| 6550 | We also handle the case that a DSO references a hidden symbol | |||
| 6551 | which may be satisfied by a versioned symbol in another DSO. */ | |||
| 6552 | ||||
| 6553 | static bfd_boolean | |||
| 6554 | elf_link_check_versioned_symbol (struct bfd_link_info *info, | |||
| 6555 | const struct elf_backend_data *bed, | |||
| 6556 | struct elf_link_hash_entry *h) | |||
| 6557 | { | |||
| 6558 | bfd *abfd; | |||
| 6559 | struct elf_link_loaded_list *loaded; | |||
| 6560 | ||||
| 6561 | if (!is_elf_hash_table (info->hash)(((struct bfd_link_hash_table *) (info->hash))->type == bfd_link_elf_hash_table)) | |||
| 6562 | return FALSE0; | |||
| 6563 | ||||
| 6564 | switch (h->root.type) | |||
| 6565 | { | |||
| 6566 | default: | |||
| 6567 | abfd = NULL((void*)0); | |||
| 6568 | break; | |||
| 6569 | ||||
| 6570 | case bfd_link_hash_undefined: | |||
| 6571 | case bfd_link_hash_undefweak: | |||
| 6572 | abfd = h->root.u.undef.abfd; | |||
| 6573 | if ((abfd->flags & DYNAMIC0x40) == 0 | |||
| 6574 | || (elf_dyn_lib_class (abfd)(((abfd) -> tdata.elf_obj_data) -> dyn_lib_class) & DYN_DT_NEEDED) == 0) | |||
| 6575 | return FALSE0; | |||
| 6576 | break; | |||
| 6577 | ||||
| 6578 | case bfd_link_hash_defined: | |||
| 6579 | case bfd_link_hash_defweak: | |||
| 6580 | abfd = h->root.u.def.section->owner; | |||
| 6581 | break; | |||
| 6582 | ||||
| 6583 | case bfd_link_hash_common: | |||
| 6584 | abfd = h->root.u.c.p->section->owner; | |||
| 6585 | break; | |||
| 6586 | } | |||
| 6587 | BFD_ASSERT (abfd != NULL)do { if (!(abfd != ((void*)0))) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,6587); } while (0); | |||
| 6588 | ||||
| 6589 | for (loaded = elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->loaded; | |||
| 6590 | loaded != NULL((void*)0); | |||
| 6591 | loaded = loaded->next) | |||
| 6592 | { | |||
| 6593 | bfd *input; | |||
| 6594 | Elf_Internal_Shdr *hdr; | |||
| 6595 | bfd_size_type symcount; | |||
| 6596 | bfd_size_type extsymcount; | |||
| 6597 | bfd_size_type extsymoff; | |||
| 6598 | Elf_Internal_Shdr *versymhdr; | |||
| 6599 | Elf_Internal_Sym *isym; | |||
| 6600 | Elf_Internal_Sym *isymend; | |||
| 6601 | Elf_Internal_Sym *isymbuf; | |||
| 6602 | Elf_External_Versym *ever; | |||
| 6603 | Elf_External_Versym *extversym; | |||
| 6604 | ||||
| 6605 | input = loaded->abfd; | |||
| 6606 | ||||
| 6607 | /* We check each DSO for a possible hidden versioned definition. */ | |||
| 6608 | if (input == abfd | |||
| 6609 | || (input->flags & DYNAMIC0x40) == 0 | |||
| 6610 | || elf_dynversym (input)(((input) -> tdata.elf_obj_data) -> dynversym_section) == 0) | |||
| 6611 | continue; | |||
| 6612 | ||||
| 6613 | hdr = &elf_tdata (input)((input) -> tdata.elf_obj_data)->dynsymtab_hdr; | |||
| 6614 | ||||
| 6615 | symcount = hdr->sh_size / bed->s->sizeof_sym; | |||
| 6616 | if (elf_bad_symtab (input)(((input) -> tdata.elf_obj_data) -> bad_symtab)) | |||
| 6617 | { | |||
| 6618 | extsymcount = symcount; | |||
| 6619 | extsymoff = 0; | |||
| 6620 | } | |||
| 6621 | else | |||
| 6622 | { | |||
| 6623 | extsymcount = symcount - hdr->sh_info; | |||
| 6624 | extsymoff = hdr->sh_info; | |||
| 6625 | } | |||
| 6626 | ||||
| 6627 | if (extsymcount == 0) | |||
| 6628 | continue; | |||
| 6629 | ||||
| 6630 | isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff, | |||
| 6631 | NULL((void*)0), NULL((void*)0), NULL((void*)0)); | |||
| 6632 | if (isymbuf == NULL((void*)0)) | |||
| 6633 | return FALSE0; | |||
| 6634 | ||||
| 6635 | /* Read in any version definitions. */ | |||
| 6636 | versymhdr = &elf_tdata (input)((input) -> tdata.elf_obj_data)->dynversym_hdr; | |||
| 6637 | extversym = bfd_malloc (versymhdr->sh_size); | |||
| 6638 | if (extversym == NULL((void*)0)) | |||
| 6639 | goto error_ret; | |||
| 6640 | ||||
| 6641 | if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET0) != 0 | |||
| 6642 | || (bfd_bread (extversym, versymhdr->sh_size, input) | |||
| 6643 | != versymhdr->sh_size)) | |||
| 6644 | { | |||
| 6645 | free (extversym); | |||
| 6646 | error_ret: | |||
| 6647 | free (isymbuf); | |||
| 6648 | return FALSE0; | |||
| 6649 | } | |||
| 6650 | ||||
| 6651 | ever = extversym + extsymoff; | |||
| 6652 | isymend = isymbuf + extsymcount; | |||
| 6653 | for (isym = isymbuf; isym < isymend; isym++, ever++) | |||
| 6654 | { | |||
| 6655 | const char *name; | |||
| 6656 | Elf_Internal_Versym iver; | |||
| 6657 | unsigned short version_index; | |||
| 6658 | ||||
| 6659 | if (ELF_ST_BIND (isym->st_info)(((unsigned int)(isym->st_info)) >> 4) == STB_LOCAL0 | |||
| 6660 | || isym->st_shndx == SHN_UNDEF0) | |||
| 6661 | continue; | |||
| 6662 | ||||
| 6663 | name = bfd_elf_string_from_elf_section (input, | |||
| 6664 | hdr->sh_link, | |||
| 6665 | isym->st_name); | |||
| 6666 | if (strcmp (name, h->root.root.string) != 0) | |||
| 6667 | continue; | |||
| 6668 | ||||
| 6669 | _bfd_elf_swap_versym_in (input, ever, &iver); | |||
| 6670 | ||||
| 6671 | if ((iver.vs_vers & VERSYM_HIDDEN0x8000) == 0) | |||
| 6672 | { | |||
| 6673 | /* If we have a non-hidden versioned sym, then it should | |||
| 6674 | have provided a definition for the undefined sym. */ | |||
| 6675 | abort ()_bfd_abort ("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" , 6675, __PRETTY_FUNCTION__); | |||
| 6676 | } | |||
| 6677 | ||||
| 6678 | version_index = iver.vs_vers & VERSYM_VERSION0x7fff; | |||
| 6679 | if (version_index == 1 || version_index == 2) | |||
| 6680 | { | |||
| 6681 | /* This is the base or first version. We can use it. */ | |||
| 6682 | free (extversym); | |||
| 6683 | free (isymbuf); | |||
| 6684 | return TRUE1; | |||
| 6685 | } | |||
| 6686 | } | |||
| 6687 | ||||
| 6688 | free (extversym); | |||
| 6689 | free (isymbuf); | |||
| 6690 | } | |||
| 6691 | ||||
| 6692 | return FALSE0; | |||
| 6693 | } | |||
| 6694 | ||||
| 6695 | /* Add an external symbol to the symbol table. This is called from | |||
| 6696 | the hash table traversal routine. When generating a shared object, | |||
| 6697 | we go through the symbol table twice. The first time we output | |||
| 6698 | anything that might have been forced to local scope in a version | |||
| 6699 | script. The second time we output the symbols that are still | |||
| 6700 | global symbols. */ | |||
| 6701 | ||||
| 6702 | static bfd_boolean | |||
| 6703 | elf_link_output_extsym (struct elf_link_hash_entry *h, void *data) | |||
| 6704 | { | |||
| 6705 | struct elf_outext_info *eoinfo = data; | |||
| 6706 | struct elf_final_link_info *finfo = eoinfo->finfo; | |||
| 6707 | bfd_boolean strip; | |||
| 6708 | Elf_Internal_Sym sym; | |||
| 6709 | asection *input_sec; | |||
| 6710 | const struct elf_backend_data *bed; | |||
| 6711 | ||||
| 6712 | if (h->root.type == bfd_link_hash_warning) | |||
| 6713 | { | |||
| 6714 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |||
| 6715 | if (h->root.type == bfd_link_hash_new) | |||
| 6716 | return TRUE1; | |||
| 6717 | } | |||
| 6718 | ||||
| 6719 | /* Decide whether to output this symbol in this pass. */ | |||
| 6720 | if (eoinfo->localsyms) | |||
| 6721 | { | |||
| 6722 | if (!h->forced_local) | |||
| 6723 | return TRUE1; | |||
| 6724 | } | |||
| 6725 | else | |||
| 6726 | { | |||
| 6727 | if (h->forced_local) | |||
| 6728 | return TRUE1; | |||
| 6729 | } | |||
| 6730 | ||||
| 6731 | bed = get_elf_backend_data (finfo->output_bfd)((const struct elf_backend_data *) (finfo->output_bfd)-> xvec->backend_data); | |||
| 6732 | ||||
| 6733 | if (h->root.type == bfd_link_hash_undefined) | |||
| 6734 | { | |||
| 6735 | /* If we have an undefined symbol reference here then it must have | |||
| 6736 | come from a shared library that is being linked in. (Undefined | |||
| 6737 | references in regular files have already been handled). */ | |||
| 6738 | bfd_boolean ignore_undef = FALSE0; | |||
| 6739 | ||||
| 6740 | /* Some symbols may be special in that the fact that they're | |||
| 6741 | undefined can be safely ignored - let backend determine that. */ | |||
| 6742 | if (bed->elf_backend_ignore_undef_symbol) | |||
| 6743 | ignore_undef = bed->elf_backend_ignore_undef_symbol (h); | |||
| 6744 | ||||
| 6745 | /* If we are reporting errors for this situation then do so now. */ | |||
| 6746 | if (ignore_undef == FALSE0 | |||
| 6747 | && h->ref_dynamic | |||
| 6748 | && ! h->ref_regular | |||
| 6749 | && ! elf_link_check_versioned_symbol (finfo->info, bed, h) | |||
| 6750 | && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE) | |||
| 6751 | { | |||
| 6752 | if (! (finfo->info->callbacks->undefined_symbol | |||
| 6753 | (finfo->info, h->root.root.string, h->root.u.undef.abfd, | |||
| 6754 | NULL((void*)0), 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR))) | |||
| 6755 | { | |||
| 6756 | eoinfo->failed = TRUE1; | |||
| 6757 | return FALSE0; | |||
| 6758 | } | |||
| 6759 | } | |||
| 6760 | } | |||
| 6761 | ||||
| 6762 | /* We should also warn if a forced local symbol is referenced from | |||
| 6763 | shared libraries. */ | |||
| 6764 | if (! finfo->info->relocatable | |||
| 6765 | && (! finfo->info->shared) | |||
| 6766 | && h->forced_local | |||
| 6767 | && h->ref_dynamic | |||
| 6768 | && !h->dynamic_def | |||
| 6769 | && !h->dynamic_weak | |||
| 6770 | && ! elf_link_check_versioned_symbol (finfo->info, bed, h)) | |||
| 6771 | { | |||
| 6772 | (*_bfd_error_handler) | |||
| 6773 | (_("%B: %s symbol `%s' in %B is referenced by DSO")("%B: %s symbol `%s' in %B is referenced by DSO"), | |||
| 6774 | finfo->output_bfd, | |||
| 6775 | h->root.u.def.section == bfd_abs_section_ptr((asection *) &bfd_abs_section) | |||
| 6776 | ? finfo->output_bfd : h->root.u.def.section->owner, | |||
| 6777 | ELF_ST_VISIBILITY (h->other)((h->other) & 0x3) == STV_INTERNAL1 | |||
| 6778 | ? "internal" | |||
| 6779 | : ELF_ST_VISIBILITY (h->other)((h->other) & 0x3) == STV_HIDDEN2 | |||
| 6780 | ? "hidden" : "local", | |||
| 6781 | h->root.root.string); | |||
| 6782 | eoinfo->failed = TRUE1; | |||
| 6783 | return FALSE0; | |||
| 6784 | } | |||
| 6785 | ||||
| 6786 | /* We don't want to output symbols that have never been mentioned by | |||
| 6787 | a regular file, or that we have been told to strip. However, if | |||
| 6788 | h->indx is set to -2, the symbol is used by a reloc and we must | |||
| 6789 | output it. */ | |||
| 6790 | if (h->indx == -2) | |||
| 6791 | strip = FALSE0; | |||
| 6792 | else if ((h->def_dynamic | |||
| 6793 | || h->ref_dynamic | |||
| 6794 | || h->root.type == bfd_link_hash_new) | |||
| 6795 | && !h->def_regular | |||
| 6796 | && !h->ref_regular) | |||
| 6797 | strip = TRUE1; | |||
| 6798 | else if (finfo->info->strip == strip_all) | |||
| 6799 | strip = TRUE1; | |||
| 6800 | else if (finfo->info->strip == strip_some | |||
| 6801 | && bfd_hash_lookup (finfo->info->keep_hash, | |||
| 6802 | h->root.root.string, FALSE0, FALSE0) == NULL((void*)0)) | |||
| 6803 | strip = TRUE1; | |||
| 6804 | else if (finfo->info->strip_discarded | |||
| 6805 | && (h->root.type == bfd_link_hash_defined | |||
| 6806 | || h->root.type == bfd_link_hash_defweak) | |||
| 6807 | && elf_discarded_section (h->root.u.def.section)(!((h->root.u.def.section) == ((asection *) &bfd_abs_section )) && (((h->root.u.def.section)->output_section ) == ((asection *) &bfd_abs_section)) && (h->root .u.def.section)->sec_info_type != 2 && (h->root .u.def.section)->sec_info_type != 4)) | |||
| 6808 | strip = TRUE1; | |||
| 6809 | else | |||
| 6810 | strip = FALSE0; | |||
| 6811 | ||||
| 6812 | /* If we're stripping it, and it's not a dynamic symbol, there's | |||
| 6813 | nothing else to do unless it is a forced local symbol. */ | |||
| 6814 | if (strip | |||
| 6815 | && h->dynindx == -1 | |||
| 6816 | && !h->forced_local) | |||
| 6817 | return TRUE1; | |||
| 6818 | ||||
| 6819 | sym.st_value = 0; | |||
| 6820 | sym.st_size = h->size; | |||
| 6821 | sym.st_other = h->other; | |||
| 6822 | if (h->forced_local) | |||
| 6823 | sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type)(((0) << 4) + ((h->type) & 0xF)); | |||
| 6824 | else if (h->root.type == bfd_link_hash_undefweak | |||
| 6825 | || h->root.type == bfd_link_hash_defweak) | |||
| 6826 | sym.st_info = ELF_ST_INFO (STB_WEAK, h->type)(((2) << 4) + ((h->type) & 0xF)); | |||
| 6827 | else | |||
| 6828 | sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type)(((1) << 4) + ((h->type) & 0xF)); | |||
| 6829 | ||||
| 6830 | switch (h->root.type) | |||
| 6831 | { | |||
| 6832 | default: | |||
| 6833 | case bfd_link_hash_new: | |||
| 6834 | case bfd_link_hash_warning: | |||
| 6835 | abort ()_bfd_abort ("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" , 6835, __PRETTY_FUNCTION__); | |||
| 6836 | return FALSE0; | |||
| 6837 | ||||
| 6838 | case bfd_link_hash_undefined: | |||
| 6839 | case bfd_link_hash_undefweak: | |||
| 6840 | input_sec = bfd_und_section_ptr((asection *) &bfd_und_section); | |||
| 6841 | sym.st_shndx = SHN_UNDEF0; | |||
| 6842 | break; | |||
| 6843 | ||||
| 6844 | case bfd_link_hash_defined: | |||
| 6845 | case bfd_link_hash_defweak: | |||
| 6846 | { | |||
| 6847 | input_sec = h->root.u.def.section; | |||
| 6848 | if (input_sec->output_section != NULL((void*)0)) | |||
| 6849 | { | |||
| 6850 | sym.st_shndx = | |||
| 6851 | _bfd_elf_section_from_bfd_section (finfo->output_bfd, | |||
| 6852 | input_sec->output_section); | |||
| 6853 | if (sym.st_shndx == SHN_BAD((unsigned) -1)) | |||
| 6854 | { | |||
| 6855 | (*_bfd_error_handler) | |||
| 6856 | (_("%B: could not find output section %A for input section %A")("%B: could not find output section %A for input section %A"), | |||
| 6857 | finfo->output_bfd, input_sec->output_section, input_sec); | |||
| 6858 | eoinfo->failed = TRUE1; | |||
| 6859 | return FALSE0; | |||
| 6860 | } | |||
| 6861 | ||||
| 6862 | /* ELF symbols in relocatable files are section relative, | |||
| 6863 | but in nonrelocatable files they are virtual | |||
| 6864 | addresses. */ | |||
| 6865 | sym.st_value = h->root.u.def.value + input_sec->output_offset; | |||
| 6866 | if (! finfo->info->relocatable) | |||
| 6867 | { | |||
| 6868 | sym.st_value += input_sec->output_section->vma; | |||
| 6869 | if (h->type == STT_TLS6) | |||
| 6870 | { | |||
| 6871 | /* STT_TLS symbols are relative to PT_TLS segment | |||
| 6872 | base. */ | |||
| 6873 | BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL)do { if (!(((struct elf_link_hash_table *) ((finfo->info)-> hash))->tls_sec != ((void*)0))) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,6873); } while (0); | |||
| 6874 | sym.st_value -= elf_hash_table (finfo->info)((struct elf_link_hash_table *) ((finfo->info)->hash))->tls_sec->vma; | |||
| 6875 | } | |||
| 6876 | } | |||
| 6877 | } | |||
| 6878 | else | |||
| 6879 | { | |||
| 6880 | BFD_ASSERT (input_sec->owner == NULLdo { if (!(input_sec->owner == ((void*)0) || (input_sec-> owner->flags & 0x40) != 0)) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,6881); } while (0) | |||
| 6881 | || (input_sec->owner->flags & DYNAMIC) != 0)do { if (!(input_sec->owner == ((void*)0) || (input_sec-> owner->flags & 0x40) != 0)) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,6881); } while (0); | |||
| 6882 | sym.st_shndx = SHN_UNDEF0; | |||
| 6883 | input_sec = bfd_und_section_ptr((asection *) &bfd_und_section); | |||
| 6884 | } | |||
| 6885 | } | |||
| 6886 | break; | |||
| 6887 | ||||
| 6888 | case bfd_link_hash_common: | |||
| 6889 | input_sec = h->root.u.c.p->section; | |||
| 6890 | sym.st_shndx = bed->common_section_index (input_sec); | |||
| 6891 | sym.st_value = 1 << h->root.u.c.p->alignment_power; | |||
| 6892 | break; | |||
| 6893 | ||||
| 6894 | case bfd_link_hash_indirect: | |||
| 6895 | /* These symbols are created by symbol versioning. They point | |||
| 6896 | to the decorated version of the name. For example, if the | |||
| 6897 | symbol foo@@GNU_1.2 is the default, which should be used when | |||
| 6898 | foo is used with no version, then we add an indirect symbol | |||
| 6899 | foo which points to foo@@GNU_1.2. We ignore these symbols, | |||
| 6900 | since the indirected symbol is already in the hash table. */ | |||
| 6901 | return TRUE1; | |||
| 6902 | } | |||
| 6903 | ||||
| 6904 | /* Give the processor backend a chance to tweak the symbol value, | |||
| 6905 | and also to finish up anything that needs to be done for this | |||
| 6906 | symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for | |||
| 6907 | forced local syms when non-shared is due to a historical quirk. */ | |||
| 6908 | if ((h->dynindx != -1 | |||
| 6909 | || h->forced_local) | |||
| 6910 | && ((finfo->info->shared | |||
| 6911 | && (ELF_ST_VISIBILITY (h->other)((h->other) & 0x3) == STV_DEFAULT0 | |||
| 6912 | || h->root.type != bfd_link_hash_undefweak)) | |||
| 6913 | || !h->forced_local) | |||
| 6914 | && elf_hash_table (finfo->info)((struct elf_link_hash_table *) ((finfo->info)->hash))->dynamic_sections_created) | |||
| 6915 | { | |||
| 6916 | if (! ((*bed->elf_backend_finish_dynamic_symbol) | |||
| 6917 | (finfo->output_bfd, finfo->info, h, &sym))) | |||
| 6918 | { | |||
| 6919 | eoinfo->failed = TRUE1; | |||
| 6920 | return FALSE0; | |||
| 6921 | } | |||
| 6922 | } | |||
| 6923 | ||||
| 6924 | /* If we are marking the symbol as undefined, and there are no | |||
| 6925 | non-weak references to this symbol from a regular object, then | |||
| 6926 | mark the symbol as weak undefined; if there are non-weak | |||
| 6927 | references, mark the symbol as strong. We can't do this earlier, | |||
| 6928 | because it might not be marked as undefined until the | |||
| 6929 | finish_dynamic_symbol routine gets through with it. */ | |||
| 6930 | if (sym.st_shndx == SHN_UNDEF0 | |||
| 6931 | && h->ref_regular | |||
| 6932 | && (ELF_ST_BIND (sym.st_info)(((unsigned int)(sym.st_info)) >> 4) == STB_GLOBAL1 | |||
| 6933 | || ELF_ST_BIND (sym.st_info)(((unsigned int)(sym.st_info)) >> 4) == STB_WEAK2)) | |||
| 6934 | { | |||
| 6935 | int bindtype; | |||
| 6936 | ||||
| 6937 | if (h->ref_regular_nonweak) | |||
| 6938 | bindtype = STB_GLOBAL1; | |||
| 6939 | else | |||
| 6940 | bindtype = STB_WEAK2; | |||
| 6941 | sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info))(((bindtype) << 4) + ((((sym.st_info) & 0xF)) & 0xF)); | |||
| 6942 | } | |||
| 6943 | ||||
| 6944 | /* If a non-weak symbol with non-default visibility is not defined | |||
| 6945 | locally, it is a fatal error. */ | |||
| 6946 | if (! finfo->info->relocatable | |||
| 6947 | && ELF_ST_VISIBILITY (sym.st_other)((sym.st_other) & 0x3) != STV_DEFAULT0 | |||
| 6948 | && ELF_ST_BIND (sym.st_info)(((unsigned int)(sym.st_info)) >> 4) != STB_WEAK2 | |||
| 6949 | && h->root.type == bfd_link_hash_undefined | |||
| 6950 | && !h->def_regular) | |||
| 6951 | { | |||
| 6952 | (*_bfd_error_handler) | |||
| 6953 | (_("%B: %s symbol `%s' isn't defined")("%B: %s symbol `%s' isn't defined"), | |||
| 6954 | finfo->output_bfd, | |||
| 6955 | ELF_ST_VISIBILITY (sym.st_other)((sym.st_other) & 0x3) == STV_PROTECTED3 | |||
| 6956 | ? "protected" | |||
| 6957 | : ELF_ST_VISIBILITY (sym.st_other)((sym.st_other) & 0x3) == STV_INTERNAL1 | |||
| 6958 | ? "internal" : "hidden", | |||
| 6959 | h->root.root.string); | |||
| 6960 | eoinfo->failed = TRUE1; | |||
| 6961 | return FALSE0; | |||
| 6962 | } | |||
| 6963 | ||||
| 6964 | /* If this symbol should be put in the .dynsym section, then put it | |||
| 6965 | there now. We already know the symbol index. We also fill in | |||
| 6966 | the entry in the .hash section. */ | |||
| 6967 | if (h->dynindx != -1 | |||
| 6968 | && elf_hash_table (finfo->info)((struct elf_link_hash_table *) ((finfo->info)->hash))->dynamic_sections_created) | |||
| 6969 | { | |||
| 6970 | size_t bucketcount; | |||
| 6971 | size_t bucket; | |||
| 6972 | bfd_byte *esym; | |||
| 6973 | ||||
| 6974 | sym.st_name = h->dynstr_index; | |||
| 6975 | esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym; | |||
| 6976 | if (! check_dynsym (finfo->output_bfd, &sym)) | |||
| 6977 | { | |||
| 6978 | eoinfo->failed = TRUE1; | |||
| 6979 | return FALSE0; | |||
| 6980 | } | |||
| 6981 | bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0); | |||
| 6982 | ||||
| 6983 | bucketcount = elf_hash_table (finfo->info)((struct elf_link_hash_table *) ((finfo->info)->hash))->bucketcount; | |||
| 6984 | bucket = h->u.elf_hash_value % bucketcount; | |||
| 6985 | ||||
| 6986 | if (finfo->hash_sec != NULL((void*)0)) | |||
| 6987 | { | |||
| 6988 | size_t hash_entry_size; | |||
| 6989 | bfd_byte *bucketpos; | |||
| 6990 | bfd_vma chain; | |||
| 6991 | ||||
| 6992 | hash_entry_size | |||
| 6993 | = elf_section_data (finfo->hash_sec)((struct bfd_elf_section_data*)(finfo->hash_sec)->used_by_bfd )->this_hdr.sh_entsize; | |||
| 6994 | bucketpos = ((bfd_byte *) finfo->hash_sec->contents | |||
| 6995 | + (bucket + 2) * hash_entry_size); | |||
| 6996 | chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos)((8 * hash_entry_size) == 8 ? (bfd_vma) (*(unsigned char *) ( bucketpos) & 0xff) : (8 * hash_entry_size) == 16 ? ((*((finfo ->output_bfd)->xvec->bfd_getx16)) (bucketpos)) : (8 * hash_entry_size) == 32 ? ((*((finfo->output_bfd)->xvec ->bfd_getx32)) (bucketpos)) : (8 * hash_entry_size) == 64 ? ((*((finfo->output_bfd)->xvec->bfd_getx64)) (bucketpos )) : (_bfd_abort ("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" , 6996, __PRETTY_FUNCTION__), (bfd_vma) - 1)); | |||
| 6997 | bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos)((8 * hash_entry_size) == 8 ? ((void) (*((unsigned char *) (bucketpos )) = (h->dynindx) & 0xff)) : (8 * hash_entry_size) == 16 ? ((*((finfo->output_bfd)->xvec->bfd_putx16)) ((h-> dynindx),(bucketpos))) : (8 * hash_entry_size) == 32 ? ((*((finfo ->output_bfd)->xvec->bfd_putx32)) ((h->dynindx),( bucketpos))) : (8 * hash_entry_size) == 64 ? ((*((finfo->output_bfd )->xvec->bfd_putx64)) ((h->dynindx), (bucketpos))) : (_bfd_abort ("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" , 6997, __PRETTY_FUNCTION__), (void) 0)); | |||
| 6998 | bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,((8 * hash_entry_size) == 8 ? ((void) (*((unsigned char *) (( (bfd_byte *) finfo->hash_sec->contents + (bucketcount + 2 + h->dynindx) * hash_entry_size))) = (chain) & 0xff )) : (8 * hash_entry_size) == 16 ? ((*((finfo->output_bfd) ->xvec->bfd_putx16)) ((chain),(((bfd_byte *) finfo-> hash_sec->contents + (bucketcount + 2 + h->dynindx) * hash_entry_size )))) : (8 * hash_entry_size) == 32 ? ((*((finfo->output_bfd )->xvec->bfd_putx32)) ((chain),(((bfd_byte *) finfo-> hash_sec->contents + (bucketcount + 2 + h->dynindx) * hash_entry_size )))) : (8 * hash_entry_size) == 64 ? ((*((finfo->output_bfd )->xvec->bfd_putx64)) ((chain), (((bfd_byte *) finfo-> hash_sec->contents + (bucketcount + 2 + h->dynindx) * hash_entry_size )))) : (_bfd_abort ("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" , 7000, __PRETTY_FUNCTION__), (void) 0)) | |||
| 6999 | ((bfd_byte *) finfo->hash_sec->contents((8 * hash_entry_size) == 8 ? ((void) (*((unsigned char *) (( (bfd_byte *) finfo->hash_sec->contents + (bucketcount + 2 + h->dynindx) * hash_entry_size))) = (chain) & 0xff )) : (8 * hash_entry_size) == 16 ? ((*((finfo->output_bfd) ->xvec->bfd_putx16)) ((chain),(((bfd_byte *) finfo-> hash_sec->contents + (bucketcount + 2 + h->dynindx) * hash_entry_size )))) : (8 * hash_entry_size) == 32 ? ((*((finfo->output_bfd )->xvec->bfd_putx32)) ((chain),(((bfd_byte *) finfo-> hash_sec->contents + (bucketcount + 2 + h->dynindx) * hash_entry_size )))) : (8 * hash_entry_size) == 64 ? ((*((finfo->output_bfd )->xvec->bfd_putx64)) ((chain), (((bfd_byte *) finfo-> hash_sec->contents + (bucketcount + 2 + h->dynindx) * hash_entry_size )))) : (_bfd_abort ("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" , 7000, __PRETTY_FUNCTION__), (void) 0)) | |||
| 7000 | + (bucketcount + 2 + h->dynindx) * hash_entry_size))((8 * hash_entry_size) == 8 ? ((void) (*((unsigned char *) (( (bfd_byte *) finfo->hash_sec->contents + (bucketcount + 2 + h->dynindx) * hash_entry_size))) = (chain) & 0xff )) : (8 * hash_entry_size) == 16 ? ((*((finfo->output_bfd) ->xvec->bfd_putx16)) ((chain),(((bfd_byte *) finfo-> hash_sec->contents + (bucketcount + 2 + h->dynindx) * hash_entry_size )))) : (8 * hash_entry_size) == 32 ? ((*((finfo->output_bfd )->xvec->bfd_putx32)) ((chain),(((bfd_byte *) finfo-> hash_sec->contents + (bucketcount + 2 + h->dynindx) * hash_entry_size )))) : (8 * hash_entry_size) == 64 ? ((*((finfo->output_bfd )->xvec->bfd_putx64)) ((chain), (((bfd_byte *) finfo-> hash_sec->contents + (bucketcount + 2 + h->dynindx) * hash_entry_size )))) : (_bfd_abort ("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" , 7000, __PRETTY_FUNCTION__), (void) 0)); | |||
| 7001 | } | |||
| 7002 | ||||
| 7003 | if (finfo->symver_sec != NULL((void*)0) && finfo->symver_sec->contents != NULL((void*)0)) | |||
| 7004 | { | |||
| 7005 | Elf_Internal_Versym iversym; | |||
| 7006 | Elf_External_Versym *eversym; | |||
| 7007 | ||||
| 7008 | if (!h->def_regular) | |||
| 7009 | { | |||
| 7010 | if (h->verinfo.verdef == NULL((void*)0)) | |||
| 7011 | iversym.vs_vers = 0; | |||
| 7012 | else | |||
| 7013 | iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1; | |||
| 7014 | } | |||
| 7015 | else | |||
| 7016 | { | |||
| 7017 | if (h->verinfo.vertree == NULL((void*)0)) | |||
| 7018 | iversym.vs_vers = 1; | |||
| 7019 | else | |||
| 7020 | iversym.vs_vers = h->verinfo.vertree->vernum + 1; | |||
| 7021 | if (finfo->info->create_default_symver) | |||
| 7022 | iversym.vs_vers++; | |||
| 7023 | } | |||
| 7024 | ||||
| 7025 | if (h->hidden) | |||
| 7026 | iversym.vs_vers |= VERSYM_HIDDEN0x8000; | |||
| 7027 | ||||
| 7028 | eversym = (Elf_External_Versym *) finfo->symver_sec->contents; | |||
| 7029 | eversym += h->dynindx; | |||
| 7030 | _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym); | |||
| 7031 | } | |||
| 7032 | } | |||
| 7033 | ||||
| 7034 | /* If we're stripping it, then it was just a dynamic symbol, and | |||
| 7035 | there's nothing else to do. */ | |||
| 7036 | if (strip || (input_sec->flags & SEC_EXCLUDE0x8000) != 0) | |||
| 7037 | return TRUE1; | |||
| 7038 | ||||
| 7039 | h->indx = bfd_get_symcount (finfo->output_bfd)((finfo->output_bfd)->symcount); | |||
| 7040 | ||||
| 7041 | if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h)) | |||
| 7042 | { | |||
| 7043 | eoinfo->failed = TRUE1; | |||
| 7044 | return FALSE0; | |||
| 7045 | } | |||
| 7046 | ||||
| 7047 | return TRUE1; | |||
| 7048 | } | |||
| 7049 | ||||
| 7050 | /* Return TRUE if special handling is done for relocs in SEC against | |||
| 7051 | symbols defined in discarded sections. */ | |||
| 7052 | ||||
| 7053 | static bfd_boolean | |||
| 7054 | elf_section_ignore_discarded_relocs (asection *sec) | |||
| 7055 | { | |||
| 7056 | const struct elf_backend_data *bed; | |||
| 7057 | ||||
| 7058 | switch (sec->sec_info_type) | |||
| 7059 | { | |||
| 7060 | case ELF_INFO_TYPE_STABS1: | |||
| 7061 | case ELF_INFO_TYPE_EH_FRAME3: | |||
| 7062 | return TRUE1; | |||
| 7063 | default: | |||
| 7064 | break; | |||
| 7065 | } | |||
| 7066 | ||||
| 7067 | bed = get_elf_backend_data (sec->owner)((const struct elf_backend_data *) (sec->owner)->xvec-> backend_data); | |||
| 7068 | if (bed->elf_backend_ignore_discarded_relocs != NULL((void*)0) | |||
| 7069 | && (*bed->elf_backend_ignore_discarded_relocs) (sec)) | |||
| 7070 | return TRUE1; | |||
| 7071 | ||||
| 7072 | return FALSE0; | |||
| 7073 | } | |||
| 7074 | ||||
| 7075 | /* Return a mask saying how ld should treat relocations in SEC against | |||
| 7076 | symbols defined in discarded sections. If this function returns | |||
| 7077 | COMPLAIN set, ld will issue a warning message. If this function | |||
| 7078 | returns PRETEND set, and the discarded section was link-once and the | |||
| 7079 | same size as the kept link-once section, ld will pretend that the | |||
| 7080 | symbol was actually defined in the kept section. Otherwise ld will | |||
| 7081 | zero the reloc (at least that is the intent, but some cooperation by | |||
| 7082 | the target dependent code is needed, particularly for REL targets). */ | |||
| 7083 | ||||
| 7084 | unsigned int | |||
| 7085 | _bfd_elf_default_action_discarded (asection *sec) | |||
| 7086 | { | |||
| 7087 | if (sec->flags & SEC_DEBUGGING0x2000) | |||
| 7088 | return PRETEND; | |||
| 7089 | ||||
| 7090 | if (strcmp (".eh_frame", sec->name) == 0) | |||
| 7091 | return 0; | |||
| 7092 | ||||
| 7093 | if (strcmp (".gcc_except_table", sec->name) == 0) | |||
| 7094 | return 0; | |||
| 7095 | ||||
| 7096 | return COMPLAIN | PRETEND; | |||
| 7097 | } | |||
| 7098 | ||||
| 7099 | /* Find a match between a section and a member of a section group. */ | |||
| 7100 | ||||
| 7101 | static asection * | |||
| 7102 | match_group_member (asection *sec, asection *group, | |||
| 7103 | struct bfd_link_info *info) | |||
| 7104 | { | |||
| 7105 | asection *first = elf_next_in_group (group)(((struct bfd_elf_section_data*)(group)->used_by_bfd)-> next_in_group); | |||
| 7106 | asection *s = first; | |||
| 7107 | ||||
| 7108 | while (s != NULL((void*)0)) | |||
| 7109 | { | |||
| 7110 | if (bfd_elf_match_symbols_in_sections (s, sec, info)) | |||
| 7111 | return s; | |||
| 7112 | ||||
| 7113 | s = elf_next_in_group (s)(((struct bfd_elf_section_data*)(s)->used_by_bfd)->next_in_group ); | |||
| 7114 | if (s == first) | |||
| 7115 | break; | |||
| 7116 | } | |||
| 7117 | ||||
| 7118 | return NULL((void*)0); | |||
| 7119 | } | |||
| 7120 | ||||
| 7121 | /* Check if the kept section of a discarded section SEC can be used | |||
| 7122 | to replace it. Return the replacement if it is OK. Otherwise return | |||
| 7123 | NULL. */ | |||
| 7124 | ||||
| 7125 | asection * | |||
| 7126 | _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info) | |||
| 7127 | { | |||
| 7128 | asection *kept; | |||
| 7129 | ||||
| 7130 | kept = sec->kept_section; | |||
| 7131 | if (kept != NULL((void*)0)) | |||
| 7132 | { | |||
| 7133 | if (elf_sec_group (sec)(((struct bfd_elf_section_data*)(sec)->used_by_bfd)->sec_group ) != NULL((void*)0)) | |||
| 7134 | kept = match_group_member (sec, kept, info); | |||
| 7135 | if (kept != NULL((void*)0) && sec->size != kept->size) | |||
| 7136 | kept = NULL((void*)0); | |||
| 7137 | } | |||
| 7138 | return kept; | |||
| 7139 | } | |||
| 7140 | ||||
| 7141 | /* Link an input file into the linker output file. This function | |||
| 7142 | handles all the sections and relocations of the input file at once. | |||
| 7143 | This is so that we only have to read the local symbols once, and | |||
| 7144 | don't have to keep them in memory. */ | |||
| 7145 | ||||
| 7146 | static bfd_boolean | |||
| 7147 | elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd) | |||
| 7148 | { | |||
| 7149 | bfd_boolean (*relocate_section) | |||
| 7150 | (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, | |||
| 7151 | Elf_Internal_Rela *, Elf_Internal_Sym *, asection **); | |||
| 7152 | bfd *output_bfd; | |||
| 7153 | Elf_Internal_Shdr *symtab_hdr; | |||
| 7154 | size_t locsymcount; | |||
| 7155 | size_t extsymoff; | |||
| 7156 | Elf_Internal_Sym *isymbuf; | |||
| 7157 | Elf_Internal_Sym *isym; | |||
| 7158 | Elf_Internal_Sym *isymend; | |||
| 7159 | long *pindex; | |||
| 7160 | asection **ppsection; | |||
| 7161 | asection *o; | |||
| 7162 | const struct elf_backend_data *bed; | |||
| 7163 | bfd_boolean emit_relocs; | |||
| 7164 | struct elf_link_hash_entry **sym_hashes; | |||
| 7165 | ||||
| 7166 | output_bfd = finfo->output_bfd; | |||
| 7167 | bed = get_elf_backend_data (output_bfd)((const struct elf_backend_data *) (output_bfd)->xvec-> backend_data); | |||
| 7168 | relocate_section = bed->elf_backend_relocate_section; | |||
| 7169 | ||||
| 7170 | /* If this is a dynamic object, we don't want to do anything here: | |||
| 7171 | we don't want the local symbols, and we don't want the section | |||
| 7172 | contents. */ | |||
| 7173 | if ((input_bfd->flags & DYNAMIC0x40) != 0) | |||
| 7174 | return TRUE1; | |||
| 7175 | ||||
| 7176 | emit_relocs = (finfo->info->relocatable | |||
| 7177 | || finfo->info->emitrelocations); | |||
| 7178 | ||||
| 7179 | symtab_hdr = &elf_tdata (input_bfd)((input_bfd) -> tdata.elf_obj_data)->symtab_hdr; | |||
| 7180 | if (elf_bad_symtab (input_bfd)(((input_bfd) -> tdata.elf_obj_data) -> bad_symtab)) | |||
| 7181 | { | |||
| 7182 | locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym; | |||
| 7183 | extsymoff = 0; | |||
| 7184 | } | |||
| 7185 | else | |||
| 7186 | { | |||
| 7187 | locsymcount = symtab_hdr->sh_info; | |||
| 7188 | extsymoff = symtab_hdr->sh_info; | |||
| 7189 | } | |||
| 7190 | ||||
| 7191 | /* Read the local symbols. */ | |||
| 7192 | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; | |||
| 7193 | if (isymbuf == NULL((void*)0) && locsymcount != 0) | |||
| 7194 | { | |||
| 7195 | isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0, | |||
| 7196 | finfo->internal_syms, | |||
| 7197 | finfo->external_syms, | |||
| 7198 | finfo->locsym_shndx); | |||
| 7199 | if (isymbuf == NULL((void*)0)) | |||
| 7200 | return FALSE0; | |||
| 7201 | } | |||
| 7202 | ||||
| 7203 | /* Find local symbol sections and adjust values of symbols in | |||
| 7204 | SEC_MERGE sections. Write out those local symbols we know are | |||
| 7205 | going into the output file. */ | |||
| 7206 | isymend = isymbuf + locsymcount; | |||
| 7207 | for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections; | |||
| 7208 | isym < isymend; | |||
| 7209 | isym++, pindex++, ppsection++) | |||
| 7210 | { | |||
| 7211 | asection *isec; | |||
| 7212 | const char *name; | |||
| 7213 | Elf_Internal_Sym osym; | |||
| 7214 | ||||
| 7215 | *pindex = -1; | |||
| 7216 | ||||
| 7217 | if (elf_bad_symtab (input_bfd)(((input_bfd) -> tdata.elf_obj_data) -> bad_symtab)) | |||
| 7218 | { | |||
| 7219 | if (ELF_ST_BIND (isym->st_info)(((unsigned int)(isym->st_info)) >> 4) != STB_LOCAL0) | |||
| 7220 | { | |||
| 7221 | *ppsection = NULL((void*)0); | |||
| 7222 | continue; | |||
| 7223 | } | |||
| 7224 | } | |||
| 7225 | ||||
| 7226 | if (isym->st_shndx == SHN_UNDEF0) | |||
| 7227 | isec = bfd_und_section_ptr((asection *) &bfd_und_section); | |||
| 7228 | else if (isym->st_shndx < SHN_LORESERVE0xFF00 | |||
| 7229 | || isym->st_shndx > SHN_HIRESERVE0xFFFF) | |||
| 7230 | { | |||
| 7231 | isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx); | |||
| 7232 | if (isec | |||
| 7233 | && isec->sec_info_type == ELF_INFO_TYPE_MERGE2 | |||
| 7234 | && ELF_ST_TYPE (isym->st_info)((isym->st_info) & 0xF) != STT_SECTION3) | |||
| 7235 | isym->st_value = | |||
| 7236 | _bfd_merged_section_offset (output_bfd, &isec, | |||
| 7237 | elf_section_data (isec)((struct bfd_elf_section_data*)(isec)->used_by_bfd)->sec_info, | |||
| 7238 | isym->st_value); | |||
| 7239 | } | |||
| 7240 | else if (isym->st_shndx == SHN_ABS0xFFF1) | |||
| 7241 | isec = bfd_abs_section_ptr((asection *) &bfd_abs_section); | |||
| 7242 | else if (isym->st_shndx == SHN_COMMON0xFFF2) | |||
| 7243 | isec = bfd_com_section_ptr((asection *) &bfd_com_section); | |||
| 7244 | else | |||
| 7245 | { | |||
| 7246 | /* Don't attempt to output symbols with st_shnx in the | |||
| 7247 | reserved range other than SHN_ABS and SHN_COMMON. */ | |||
| 7248 | *ppsection = NULL((void*)0); | |||
| 7249 | continue; | |||
| 7250 | } | |||
| 7251 | ||||
| 7252 | *ppsection = isec; | |||
| 7253 | ||||
| 7254 | /* Don't output the first, undefined, symbol. */ | |||
| 7255 | if (ppsection == finfo->sections) | |||
| 7256 | continue; | |||
| 7257 | ||||
| 7258 | if (ELF_ST_TYPE (isym->st_info)((isym->st_info) & 0xF) == STT_SECTION3) | |||
| 7259 | { | |||
| 7260 | /* We never output section symbols. Instead, we use the | |||
| 7261 | section symbol of the corresponding section in the output | |||
| 7262 | file. */ | |||
| 7263 | continue; | |||
| 7264 | } | |||
| 7265 | ||||
| 7266 | /* If we are stripping all symbols, we don't want to output this | |||
| 7267 | one. */ | |||
| 7268 | if (finfo->info->strip == strip_all) | |||
| 7269 | continue; | |||
| 7270 | ||||
| 7271 | /* If we are discarding all local symbols, we don't want to | |||
| 7272 | output this one. If we are generating a relocatable output | |||
| 7273 | file, then some of the local symbols may be required by | |||
| 7274 | relocs; we output them below as we discover that they are | |||
| 7275 | needed. */ | |||
| 7276 | if (finfo->info->discard == discard_all) | |||
| 7277 | continue; | |||
| 7278 | ||||
| 7279 | /* If this symbol is defined in a section which we are | |||
| 7280 | discarding, we don't need to keep it. */ | |||
| 7281 | if (isym->st_shndx != SHN_UNDEF0 | |||
| 7282 | && (isym->st_shndx < SHN_LORESERVE0xFF00 || isym->st_shndx > SHN_HIRESERVE0xFFFF) | |||
| 7283 | && (isec == NULL((void*)0) | |||
| 7284 | || bfd_section_removed_from_list (output_bfd,((isec->output_section)->next == ((void*)0) ? (output_bfd )->section_last != (isec->output_section) : (isec->output_section )->next->prev != (isec->output_section)) | |||
| 7285 | isec->output_section)((isec->output_section)->next == ((void*)0) ? (output_bfd )->section_last != (isec->output_section) : (isec->output_section )->next->prev != (isec->output_section)))) | |||
| 7286 | continue; | |||
| 7287 | ||||
| 7288 | /* Get the name of the symbol. */ | |||
| 7289 | name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, | |||
| 7290 | isym->st_name); | |||
| 7291 | if (name == NULL((void*)0)) | |||
| 7292 | return FALSE0; | |||
| 7293 | ||||
| 7294 | /* See if we are discarding symbols with this name. */ | |||
| 7295 | if ((finfo->info->strip == strip_some | |||
| 7296 | && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE0, FALSE0) | |||
| 7297 | == NULL((void*)0))) | |||
| 7298 | || (((finfo->info->discard == discard_sec_merge | |||
| 7299 | && (isec->flags & SEC_MERGE0x1000000) && ! finfo->info->relocatable) | |||
| 7300 | || finfo->info->discard == discard_l) | |||
| 7301 | && bfd_is_local_label_name (input_bfd, name)((*((input_bfd)->xvec->_bfd_is_local_label_name)) (input_bfd , name)))) | |||
| 7302 | continue; | |||
| 7303 | ||||
| 7304 | /* If we get here, we are going to output this symbol. */ | |||
| 7305 | ||||
| 7306 | osym = *isym; | |||
| 7307 | ||||
| 7308 | /* Adjust the section index for the output file. */ | |||
| 7309 | osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, | |||
| 7310 | isec->output_section); | |||
| 7311 | if (osym.st_shndx == SHN_BAD((unsigned) -1)) | |||
| 7312 | return FALSE0; | |||
| 7313 | ||||
| 7314 | *pindex = bfd_get_symcount (output_bfd)((output_bfd)->symcount); | |||
| 7315 | ||||
| 7316 | /* ELF symbols in relocatable files are section relative, but | |||
| 7317 | in executable files they are virtual addresses. Note that | |||
| 7318 | this code assumes that all ELF sections have an associated | |||
| 7319 | BFD section with a reasonable value for output_offset; below | |||
| 7320 | we assume that they also have a reasonable value for | |||
| 7321 | output_section. Any special sections must be set up to meet | |||
| 7322 | these requirements. */ | |||
| 7323 | osym.st_value += isec->output_offset; | |||
| 7324 | if (! finfo->info->relocatable) | |||
| 7325 | { | |||
| 7326 | osym.st_value += isec->output_section->vma; | |||
| 7327 | if (ELF_ST_TYPE (osym.st_info)((osym.st_info) & 0xF) == STT_TLS6) | |||
| 7328 | { | |||
| 7329 | /* STT_TLS symbols are relative to PT_TLS segment base. */ | |||
| 7330 | BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL)do { if (!(((struct elf_link_hash_table *) ((finfo->info)-> hash))->tls_sec != ((void*)0))) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,7330); } while (0); | |||
| 7331 | osym.st_value -= elf_hash_table (finfo->info)((struct elf_link_hash_table *) ((finfo->info)->hash))->tls_sec->vma; | |||
| 7332 | } | |||
| 7333 | } | |||
| 7334 | ||||
| 7335 | if (! elf_link_output_sym (finfo, name, &osym, isec, NULL((void*)0))) | |||
| 7336 | return FALSE0; | |||
| 7337 | } | |||
| 7338 | ||||
| 7339 | /* Relocate the contents of each section. */ | |||
| 7340 | sym_hashes = elf_sym_hashes (input_bfd)(((input_bfd) -> tdata.elf_obj_data) -> sym_hashes); | |||
| 7341 | for (o = input_bfd->sections; o != NULL((void*)0); o = o->next) | |||
| 7342 | { | |||
| 7343 | bfd_byte *contents; | |||
| 7344 | ||||
| 7345 | if (! o->linker_mark) | |||
| 7346 | { | |||
| 7347 | /* This section was omitted from the link. */ | |||
| 7348 | continue; | |||
| 7349 | } | |||
| 7350 | ||||
| 7351 | if ((o->flags & SEC_HAS_CONTENTS0x100) == 0 | |||
| 7352 | || (o->size == 0 && (o->flags & SEC_RELOC0x004) == 0)) | |||
| 7353 | continue; | |||
| 7354 | ||||
| 7355 | if ((o->flags & SEC_LINKER_CREATED0x200000) != 0) | |||
| 7356 | { | |||
| 7357 | /* Section was created by _bfd_elf_link_create_dynamic_sections | |||
| 7358 | or somesuch. */ | |||
| 7359 | continue; | |||
| 7360 | } | |||
| 7361 | ||||
| 7362 | /* Get the contents of the section. They have been cached by a | |||
| 7363 | relaxation routine. Note that o is a section in an input | |||
| 7364 | file, so the contents field will not have been set by any of | |||
| 7365 | the routines which work on output files. */ | |||
| 7366 | if (elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->this_hdr.contents != NULL((void*)0)) | |||
| 7367 | contents = elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->this_hdr.contents; | |||
| 7368 | else | |||
| 7369 | { | |||
| 7370 | bfd_size_type amt = o->rawsize ? o->rawsize : o->size; | |||
| 7371 | ||||
| 7372 | contents = finfo->contents; | |||
| 7373 | if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt)) | |||
| 7374 | return FALSE0; | |||
| 7375 | } | |||
| 7376 | ||||
| 7377 | if ((o->flags & SEC_RELOC0x004) != 0) | |||
| 7378 | { | |||
| 7379 | Elf_Internal_Rela *internal_relocs; | |||
| 7380 | bfd_vma r_type_mask; | |||
| 7381 | int r_sym_shift; | |||
| 7382 | ||||
| 7383 | /* Get the swapped relocs. */ | |||
| 7384 | internal_relocs | |||
| 7385 | = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs, | |||
| 7386 | finfo->internal_relocs, FALSE0); | |||
| 7387 | if (internal_relocs == NULL((void*)0) | |||
| 7388 | && o->reloc_count > 0) | |||
| 7389 | return FALSE0; | |||
| 7390 | ||||
| 7391 | if (bed->s->arch_size == 32) | |||
| 7392 | { | |||
| 7393 | r_type_mask = 0xff; | |||
| 7394 | r_sym_shift = 8; | |||
| 7395 | } | |||
| 7396 | else | |||
| 7397 | { | |||
| 7398 | r_type_mask = 0xffffffff; | |||
| 7399 | r_sym_shift = 32; | |||
| 7400 | } | |||
| 7401 | ||||
| 7402 | /* Run through the relocs looking for any against symbols | |||
| 7403 | from discarded sections and section symbols from | |||
| 7404 | removed link-once sections. Complain about relocs | |||
| 7405 | against discarded sections. Zero relocs against removed | |||
| 7406 | link-once sections. */ | |||
| 7407 | if (!elf_section_ignore_discarded_relocs (o)) | |||
| 7408 | { | |||
| 7409 | Elf_Internal_Rela *rel, *relend; | |||
| 7410 | unsigned int action = (*bed->action_discarded) (o); | |||
| 7411 | ||||
| 7412 | rel = internal_relocs; | |||
| 7413 | relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel; | |||
| 7414 | for ( ; rel < relend; rel++) | |||
| 7415 | { | |||
| 7416 | unsigned long r_symndx = rel->r_info >> r_sym_shift; | |||
| 7417 | asection **ps, *sec; | |||
| 7418 | struct elf_link_hash_entry *h = NULL((void*)0); | |||
| 7419 | const char *sym_name; | |||
| 7420 | ||||
| 7421 | if (r_symndx == STN_UNDEF0) | |||
| 7422 | continue; | |||
| 7423 | ||||
| 7424 | if (r_symndx >= locsymcount | |||
| 7425 | || (elf_bad_symtab (input_bfd)(((input_bfd) -> tdata.elf_obj_data) -> bad_symtab) | |||
| 7426 | && finfo->sections[r_symndx] == NULL((void*)0))) | |||
| 7427 | { | |||
| 7428 | h = sym_hashes[r_symndx - extsymoff]; | |||
| 7429 | ||||
| 7430 | /* Badly formatted input files can contain relocs that | |||
| 7431 | reference non-existant symbols. Check here so that | |||
| 7432 | we do not seg fault. */ | |||
| 7433 | if (h == NULL((void*)0)) | |||
| 7434 | { | |||
| 7435 | char buffer [32]; | |||
| 7436 | ||||
| 7437 | sprintf_vma (buffer, rel->r_info)sprintf (buffer, "%016lx", rel->r_info); | |||
| 7438 | (*_bfd_error_handler) | |||
| 7439 | (_("error: %B contains a reloc (0x%s) for section %A "("error: %B contains a reloc (0x%s) for section %A " "that references a non-existent global symbol" ) | |||
| 7440 | "that references a non-existent global symbol")("error: %B contains a reloc (0x%s) for section %A " "that references a non-existent global symbol" ), | |||
| 7441 | input_bfd, o, buffer); | |||
| 7442 | bfd_set_error (bfd_error_bad_value); | |||
| 7443 | return FALSE0; | |||
| 7444 | } | |||
| 7445 | ||||
| 7446 | while (h->root.type == bfd_link_hash_indirect | |||
| 7447 | || h->root.type == bfd_link_hash_warning) | |||
| 7448 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |||
| 7449 | ||||
| 7450 | if (h->root.type != bfd_link_hash_defined | |||
| 7451 | && h->root.type != bfd_link_hash_defweak) | |||
| 7452 | continue; | |||
| 7453 | ||||
| 7454 | ps = &h->root.u.def.section; | |||
| 7455 | sym_name = h->root.root.string; | |||
| 7456 | } | |||
| 7457 | else | |||
| 7458 | { | |||
| 7459 | Elf_Internal_Sym *sym = isymbuf + r_symndx; | |||
| 7460 | ps = &finfo->sections[r_symndx]; | |||
| 7461 | sym_name = bfd_elf_sym_name (input_bfd, | |||
| 7462 | symtab_hdr, | |||
| 7463 | sym, *ps); | |||
| 7464 | } | |||
| 7465 | ||||
| 7466 | /* Complain if the definition comes from a | |||
| 7467 | discarded section. */ | |||
| 7468 | if ((sec = *ps) != NULL((void*)0) && elf_discarded_section (sec)(!((sec) == ((asection *) &bfd_abs_section)) && ( ((sec)->output_section) == ((asection *) &bfd_abs_section )) && (sec)->sec_info_type != 2 && (sec)-> sec_info_type != 4)) | |||
| 7469 | { | |||
| 7470 | BFD_ASSERT (r_symndx != 0)do { if (!(r_symndx != 0)) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,7470); } while (0); | |||
| 7471 | if (action & COMPLAIN) | |||
| 7472 | (*finfo->info->callbacks->einfo) | |||
| 7473 | (_("%X`%s' referenced in section `%A' of %B: "("%X`%s' referenced in section `%A' of %B: " "defined in discarded section `%A' of %B\n" ) | |||
| 7474 | "defined in discarded section `%A' of %B\n")("%X`%s' referenced in section `%A' of %B: " "defined in discarded section `%A' of %B\n" ), | |||
| 7475 | sym_name, o, input_bfd, sec, sec->owner); | |||
| 7476 | ||||
| 7477 | /* Try to do the best we can to support buggy old | |||
| 7478 | versions of gcc. Pretend that the symbol is | |||
| 7479 | really defined in the kept linkonce section. | |||
| 7480 | FIXME: This is quite broken. Modifying the | |||
| 7481 | symbol here means we will be changing all later | |||
| 7482 | uses of the symbol, not just in this section. */ | |||
| 7483 | if (action & PRETEND) | |||
| 7484 | { | |||
| 7485 | asection *kept; | |||
| 7486 | ||||
| 7487 | kept = _bfd_elf_check_kept_section (sec, | |||
| 7488 | finfo->info); | |||
| 7489 | if (kept != NULL((void*)0)) | |||
| 7490 | { | |||
| 7491 | *ps = kept; | |||
| 7492 | continue; | |||
| 7493 | } | |||
| 7494 | } | |||
| 7495 | ||||
| 7496 | /* Remove the symbol reference from the reloc, but | |||
| 7497 | don't kill the reloc completely. This is so that | |||
| 7498 | a zero value will be written into the section, | |||
| 7499 | which may have non-zero contents put there by the | |||
| 7500 | assembler. Zero in things like an eh_frame fde | |||
| 7501 | pc_begin allows stack unwinders to recognize the | |||
| 7502 | fde as bogus. */ | |||
| 7503 | rel->r_info &= r_type_mask; | |||
| 7504 | rel->r_addend = 0; | |||
| 7505 | } | |||
| 7506 | } | |||
| 7507 | } | |||
| 7508 | ||||
| 7509 | /* Relocate the section by invoking a back end routine. | |||
| 7510 | ||||
| 7511 | The back end routine is responsible for adjusting the | |||
| 7512 | section contents as necessary, and (if using Rela relocs | |||
| 7513 | and generating a relocatable output file) adjusting the | |||
| 7514 | reloc addend as necessary. | |||
| 7515 | ||||
| 7516 | The back end routine does not have to worry about setting | |||
| 7517 | the reloc address or the reloc symbol index. | |||
| 7518 | ||||
| 7519 | The back end routine is given a pointer to the swapped in | |||
| 7520 | internal symbols, and can access the hash table entries | |||
| 7521 | for the external symbols via elf_sym_hashes (input_bfd). | |||
| 7522 | ||||
| 7523 | When generating relocatable output, the back end routine | |||
| 7524 | must handle STB_LOCAL/STT_SECTION symbols specially. The | |||
| 7525 | output symbol is going to be a section symbol | |||
| 7526 | corresponding to the output section, which will require | |||
| 7527 | the addend to be adjusted. */ | |||
| 7528 | ||||
| 7529 | if (! (*relocate_section) (output_bfd, finfo->info, | |||
| 7530 | input_bfd, o, contents, | |||
| 7531 | internal_relocs, | |||
| 7532 | isymbuf, | |||
| 7533 | finfo->sections)) | |||
| 7534 | return FALSE0; | |||
| 7535 | ||||
| 7536 | if (emit_relocs) | |||
| 7537 | { | |||
| 7538 | Elf_Internal_Rela *irela; | |||
| 7539 | Elf_Internal_Rela *irelaend; | |||
| 7540 | bfd_vma last_offset; | |||
| 7541 | struct elf_link_hash_entry **rel_hash; | |||
| 7542 | struct elf_link_hash_entry **rel_hash_list; | |||
| 7543 | Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2; | |||
| 7544 | unsigned int next_erel; | |||
| 7545 | bfd_boolean rela_normal; | |||
| 7546 | ||||
| 7547 | input_rel_hdr = &elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->rel_hdr; | |||
| 7548 | rela_normal = (bed->rela_normal | |||
| 7549 | && (input_rel_hdr->sh_entsize | |||
| 7550 | == bed->s->sizeof_rela)); | |||
| 7551 | ||||
| 7552 | /* Adjust the reloc addresses and symbol indices. */ | |||
| 7553 | ||||
| 7554 | irela = internal_relocs; | |||
| 7555 | irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel; | |||
| 7556 | rel_hash = (elf_section_data (o->output_section)((struct bfd_elf_section_data*)(o->output_section)->used_by_bfd )->rel_hashes | |||
| 7557 | + elf_section_data (o->output_section)((struct bfd_elf_section_data*)(o->output_section)->used_by_bfd )->rel_count | |||
| 7558 | + elf_section_data (o->output_section)((struct bfd_elf_section_data*)(o->output_section)->used_by_bfd )->rel_count2); | |||
| 7559 | rel_hash_list = rel_hash; | |||
| 7560 | last_offset = o->output_offset; | |||
| 7561 | if (!finfo->info->relocatable) | |||
| 7562 | last_offset += o->output_section->vma; | |||
| 7563 | for (next_erel = 0; irela < irelaend; irela++, next_erel++) | |||
| 7564 | { | |||
| 7565 | unsigned long r_symndx; | |||
| 7566 | asection *sec; | |||
| 7567 | Elf_Internal_Sym sym; | |||
| 7568 | ||||
| 7569 | if (next_erel == bed->s->int_rels_per_ext_rel) | |||
| 7570 | { | |||
| 7571 | rel_hash++; | |||
| 7572 | next_erel = 0; | |||
| 7573 | } | |||
| 7574 | ||||
| 7575 | irela->r_offset = _bfd_elf_section_offset (output_bfd, | |||
| 7576 | finfo->info, o, | |||
| 7577 | irela->r_offset); | |||
| 7578 | if (irela->r_offset >= (bfd_vma) -2) | |||
| 7579 | { | |||
| 7580 | /* This is a reloc for a deleted entry or somesuch. | |||
| 7581 | Turn it into an R_*_NONE reloc, at the same | |||
| 7582 | offset as the last reloc. elf_eh_frame.c and | |||
| 7583 | elf_bfd_discard_info rely on reloc offsets | |||
| 7584 | being ordered. */ | |||
| 7585 | irela->r_offset = last_offset; | |||
| 7586 | irela->r_info = 0; | |||
| 7587 | irela->r_addend = 0; | |||
| 7588 | continue; | |||
| 7589 | } | |||
| 7590 | ||||
| 7591 | irela->r_offset += o->output_offset; | |||
| 7592 | ||||
| 7593 | /* Relocs in an executable have to be virtual addresses. */ | |||
| 7594 | if (!finfo->info->relocatable) | |||
| 7595 | irela->r_offset += o->output_section->vma; | |||
| 7596 | ||||
| 7597 | last_offset = irela->r_offset; | |||
| 7598 | ||||
| 7599 | r_symndx = irela->r_info >> r_sym_shift; | |||
| 7600 | if (r_symndx == STN_UNDEF0) | |||
| 7601 | continue; | |||
| 7602 | ||||
| 7603 | if (r_symndx >= locsymcount | |||
| 7604 | || (elf_bad_symtab (input_bfd)(((input_bfd) -> tdata.elf_obj_data) -> bad_symtab) | |||
| 7605 | && finfo->sections[r_symndx] == NULL((void*)0))) | |||
| 7606 | { | |||
| 7607 | struct elf_link_hash_entry *rh; | |||
| 7608 | unsigned long indx; | |||
| 7609 | ||||
| 7610 | /* This is a reloc against a global symbol. We | |||
| 7611 | have not yet output all the local symbols, so | |||
| 7612 | we do not know the symbol index of any global | |||
| 7613 | symbol. We set the rel_hash entry for this | |||
| 7614 | reloc to point to the global hash table entry | |||
| 7615 | for this symbol. The symbol index is then | |||
| 7616 | set at the end of bfd_elf_final_link. */ | |||
| 7617 | indx = r_symndx - extsymoff; | |||
| 7618 | rh = elf_sym_hashes (input_bfd)(((input_bfd) -> tdata.elf_obj_data) -> sym_hashes)[indx]; | |||
| 7619 | while (rh->root.type == bfd_link_hash_indirect | |||
| 7620 | || rh->root.type == bfd_link_hash_warning) | |||
| 7621 | rh = (struct elf_link_hash_entry *) rh->root.u.i.link; | |||
| 7622 | ||||
| 7623 | /* Setting the index to -2 tells | |||
| 7624 | elf_link_output_extsym that this symbol is | |||
| 7625 | used by a reloc. */ | |||
| 7626 | BFD_ASSERT (rh->indx < 0)do { if (!(rh->indx < 0)) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,7626); } while (0); | |||
| 7627 | rh->indx = -2; | |||
| 7628 | ||||
| 7629 | *rel_hash = rh; | |||
| 7630 | ||||
| 7631 | continue; | |||
| 7632 | } | |||
| 7633 | ||||
| 7634 | /* This is a reloc against a local symbol. */ | |||
| 7635 | ||||
| 7636 | *rel_hash = NULL((void*)0); | |||
| 7637 | sym = isymbuf[r_symndx]; | |||
| 7638 | sec = finfo->sections[r_symndx]; | |||
| 7639 | if (ELF_ST_TYPE (sym.st_info)((sym.st_info) & 0xF) == STT_SECTION3) | |||
| 7640 | { | |||
| 7641 | /* I suppose the backend ought to fill in the | |||
| 7642 | section of any STT_SECTION symbol against a | |||
| 7643 | processor specific section. */ | |||
| 7644 | r_symndx = 0; | |||
| 7645 | if (bfd_is_abs_section (sec)((sec) == ((asection *) &bfd_abs_section))) | |||
| 7646 | ; | |||
| 7647 | else if (sec == NULL((void*)0) || sec->owner == NULL((void*)0)) | |||
| 7648 | { | |||
| 7649 | bfd_set_error (bfd_error_bad_value); | |||
| 7650 | return FALSE0; | |||
| 7651 | } | |||
| 7652 | else | |||
| 7653 | { | |||
| 7654 | asection *osec = sec->output_section; | |||
| 7655 | ||||
| 7656 | /* If we have discarded a section, the output | |||
| 7657 | section will be the absolute section. In | |||
| 7658 | case of discarded link-once and discarded | |||
| 7659 | SEC_MERGE sections, use the kept section. */ | |||
| 7660 | if (bfd_is_abs_section (osec)((osec) == ((asection *) &bfd_abs_section)) | |||
| 7661 | && sec->kept_section != NULL((void*)0) | |||
| 7662 | && sec->kept_section->output_section != NULL((void*)0)) | |||
| 7663 | { | |||
| 7664 | osec = sec->kept_section->output_section; | |||
| 7665 | irela->r_addend -= osec->vma; | |||
| 7666 | } | |||
| 7667 | ||||
| 7668 | if (!bfd_is_abs_section (osec)((osec) == ((asection *) &bfd_abs_section))) | |||
| 7669 | { | |||
| 7670 | r_symndx = osec->target_index; | |||
| 7671 | BFD_ASSERT (r_symndx != 0)do { if (!(r_symndx != 0)) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,7671); } while (0); | |||
| 7672 | } | |||
| 7673 | } | |||
| 7674 | ||||
| 7675 | /* Adjust the addend according to where the | |||
| 7676 | section winds up in the output section. */ | |||
| 7677 | if (rela_normal) | |||
| 7678 | irela->r_addend += sec->output_offset; | |||
| 7679 | } | |||
| 7680 | else | |||
| 7681 | { | |||
| 7682 | if (finfo->indices[r_symndx] == -1) | |||
| 7683 | { | |||
| 7684 | unsigned long shlink; | |||
| 7685 | const char *name; | |||
| 7686 | asection *osec; | |||
| 7687 | ||||
| 7688 | if (finfo->info->strip == strip_all) | |||
| 7689 | { | |||
| 7690 | /* You can't do ld -r -s. */ | |||
| 7691 | bfd_set_error (bfd_error_invalid_operation); | |||
| 7692 | return FALSE0; | |||
| 7693 | } | |||
| 7694 | ||||
| 7695 | /* This symbol was skipped earlier, but | |||
| 7696 | since it is needed by a reloc, we | |||
| 7697 | must output it now. */ | |||
| 7698 | shlink = symtab_hdr->sh_link; | |||
| 7699 | name = (bfd_elf_string_from_elf_section | |||
| 7700 | (input_bfd, shlink, sym.st_name)); | |||
| 7701 | if (name == NULL((void*)0)) | |||
| 7702 | return FALSE0; | |||
| 7703 | ||||
| 7704 | osec = sec->output_section; | |||
| 7705 | sym.st_shndx = | |||
| 7706 | _bfd_elf_section_from_bfd_section (output_bfd, | |||
| 7707 | osec); | |||
| 7708 | if (sym.st_shndx == SHN_BAD((unsigned) -1)) | |||
| 7709 | return FALSE0; | |||
| 7710 | ||||
| 7711 | sym.st_value += sec->output_offset; | |||
| 7712 | if (! finfo->info->relocatable) | |||
| 7713 | { | |||
| 7714 | sym.st_value += osec->vma; | |||
| 7715 | if (ELF_ST_TYPE (sym.st_info)((sym.st_info) & 0xF) == STT_TLS6) | |||
| 7716 | { | |||
| 7717 | /* STT_TLS symbols are relative to PT_TLS | |||
| 7718 | segment base. */ | |||
| 7719 | BFD_ASSERT (elf_hash_table (finfo->info)do { if (!(((struct elf_link_hash_table *) ((finfo->info)-> hash)) ->tls_sec != ((void*)0))) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,7720); } while (0) | |||
| 7720 | ->tls_sec != NULL)do { if (!(((struct elf_link_hash_table *) ((finfo->info)-> hash)) ->tls_sec != ((void*)0))) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,7720); } while (0); | |||
| 7721 | sym.st_value -= (elf_hash_table (finfo->info)((struct elf_link_hash_table *) ((finfo->info)->hash)) | |||
| 7722 | ->tls_sec->vma); | |||
| 7723 | } | |||
| 7724 | } | |||
| 7725 | ||||
| 7726 | finfo->indices[r_symndx] | |||
| 7727 | = bfd_get_symcount (output_bfd)((output_bfd)->symcount); | |||
| 7728 | ||||
| 7729 | if (! elf_link_output_sym (finfo, name, &sym, sec, | |||
| 7730 | NULL((void*)0))) | |||
| 7731 | return FALSE0; | |||
| 7732 | } | |||
| 7733 | ||||
| 7734 | r_symndx = finfo->indices[r_symndx]; | |||
| 7735 | } | |||
| 7736 | ||||
| 7737 | irela->r_info = ((bfd_vma) r_symndx << r_sym_shift | |||
| 7738 | | (irela->r_info & r_type_mask)); | |||
| 7739 | } | |||
| 7740 | ||||
| 7741 | /* Swap out the relocs. */ | |||
| 7742 | if (input_rel_hdr->sh_size != 0 | |||
| 7743 | && !bed->elf_backend_emit_relocs (output_bfd, o, | |||
| 7744 | input_rel_hdr, | |||
| 7745 | internal_relocs, | |||
| 7746 | rel_hash_list)) | |||
| 7747 | return FALSE0; | |||
| 7748 | ||||
| 7749 | input_rel_hdr2 = elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->rel_hdr2; | |||
| 7750 | if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0) | |||
| 7751 | { | |||
| 7752 | internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)((input_rel_hdr)->sh_size / (input_rel_hdr)->sh_entsize ) | |||
| 7753 | * bed->s->int_rels_per_ext_rel); | |||
| 7754 | rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr)((input_rel_hdr)->sh_size / (input_rel_hdr)->sh_entsize ); | |||
| 7755 | if (!bed->elf_backend_emit_relocs (output_bfd, o, | |||
| 7756 | input_rel_hdr2, | |||
| 7757 | internal_relocs, | |||
| 7758 | rel_hash_list)) | |||
| 7759 | return FALSE0; | |||
| 7760 | } | |||
| 7761 | } | |||
| 7762 | } | |||
| 7763 | ||||
| 7764 | /* Write out the modified section contents. */ | |||
| 7765 | if (bed->elf_backend_write_section | |||
| 7766 | && (*bed->elf_backend_write_section) (output_bfd, o, contents)) | |||
| 7767 | { | |||
| 7768 | /* Section written out. */ | |||
| 7769 | } | |||
| 7770 | else switch (o->sec_info_type) | |||
| 7771 | { | |||
| 7772 | case ELF_INFO_TYPE_STABS1: | |||
| 7773 | if (! (_bfd_write_section_stabs | |||
| 7774 | (output_bfd, | |||
| 7775 | &elf_hash_table (finfo->info)((struct elf_link_hash_table *) ((finfo->info)->hash))->stab_info, | |||
| 7776 | o, &elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->sec_info, contents))) | |||
| 7777 | return FALSE0; | |||
| 7778 | break; | |||
| 7779 | case ELF_INFO_TYPE_MERGE2: | |||
| 7780 | if (! _bfd_write_merged_section (output_bfd, o, | |||
| 7781 | elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->sec_info)) | |||
| 7782 | return FALSE0; | |||
| 7783 | break; | |||
| 7784 | case ELF_INFO_TYPE_EH_FRAME3: | |||
| 7785 | { | |||
| 7786 | if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info, | |||
| 7787 | o, contents)) | |||
| 7788 | return FALSE0; | |||
| 7789 | } | |||
| 7790 | break; | |||
| 7791 | default: | |||
| 7792 | { | |||
| 7793 | if (! (o->flags & SEC_EXCLUDE0x8000) | |||
| 7794 | && ! bfd_set_section_contents (output_bfd, o->output_section, | |||
| 7795 | contents, | |||
| 7796 | (file_ptr) o->output_offset, | |||
| 7797 | o->size)) | |||
| 7798 | return FALSE0; | |||
| 7799 | } | |||
| 7800 | break; | |||
| 7801 | } | |||
| 7802 | } | |||
| 7803 | ||||
| 7804 | return TRUE1; | |||
| 7805 | } | |||
| 7806 | ||||
| 7807 | /* Generate a reloc when linking an ELF file. This is a reloc | |||
| 7808 | requested by the linker, and does not come from any input file. This | |||
| 7809 | is used to build constructor and destructor tables when linking | |||
| 7810 | with -Ur. */ | |||
| 7811 | ||||
| 7812 | static bfd_boolean | |||
| 7813 | elf_reloc_link_order (bfd *output_bfd, | |||
| 7814 | struct bfd_link_info *info, | |||
| 7815 | asection *output_section, | |||
| 7816 | struct bfd_link_order *link_order) | |||
| 7817 | { | |||
| 7818 | reloc_howto_type *howto; | |||
| 7819 | long indx; | |||
| 7820 | bfd_vma offset; | |||
| 7821 | bfd_vma addend; | |||
| 7822 | struct elf_link_hash_entry **rel_hash_ptr; | |||
| 7823 | Elf_Internal_Shdr *rel_hdr; | |||
| 7824 | const struct elf_backend_data *bed = get_elf_backend_data (output_bfd)((const struct elf_backend_data *) (output_bfd)->xvec-> backend_data); | |||
| 7825 | Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL3]; | |||
| 7826 | bfd_byte *erel; | |||
| 7827 | unsigned int i; | |||
| 7828 | ||||
| 7829 | howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc); | |||
| 7830 | if (howto == NULL((void*)0)) | |||
| 7831 | { | |||
| 7832 | bfd_set_error (bfd_error_bad_value); | |||
| 7833 | return FALSE0; | |||
| 7834 | } | |||
| 7835 | ||||
| 7836 | addend = link_order->u.reloc.p->addend; | |||
| 7837 | ||||
| 7838 | /* Figure out the symbol index. */ | |||
| 7839 | rel_hash_ptr = (elf_section_data (output_section)((struct bfd_elf_section_data*)(output_section)->used_by_bfd )->rel_hashes | |||
| 7840 | + elf_section_data (output_section)((struct bfd_elf_section_data*)(output_section)->used_by_bfd )->rel_count | |||
| 7841 | + elf_section_data (output_section)((struct bfd_elf_section_data*)(output_section)->used_by_bfd )->rel_count2); | |||
| 7842 | if (link_order->type == bfd_section_reloc_link_order) | |||
| 7843 | { | |||
| 7844 | indx = link_order->u.reloc.p->u.section->target_index; | |||
| 7845 | BFD_ASSERT (indx != 0)do { if (!(indx != 0)) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,7845); } while (0); | |||
| 7846 | *rel_hash_ptr = NULL((void*)0); | |||
| 7847 | } | |||
| 7848 | else | |||
| 7849 | { | |||
| 7850 | struct elf_link_hash_entry *h; | |||
| 7851 | ||||
| 7852 | /* Treat a reloc against a defined symbol as though it were | |||
| 7853 | actually against the section. */ | |||
| 7854 | h = ((struct elf_link_hash_entry *) | |||
| 7855 | bfd_wrapped_link_hash_lookup (output_bfd, info, | |||
| 7856 | link_order->u.reloc.p->u.name, | |||
| 7857 | FALSE0, FALSE0, TRUE1)); | |||
| 7858 | if (h != NULL((void*)0) | |||
| 7859 | && (h->root.type == bfd_link_hash_defined | |||
| 7860 | || h->root.type == bfd_link_hash_defweak)) | |||
| 7861 | { | |||
| 7862 | asection *section; | |||
| 7863 | ||||
| 7864 | section = h->root.u.def.section; | |||
| 7865 | indx = section->output_section->target_index; | |||
| 7866 | *rel_hash_ptr = NULL((void*)0); | |||
| 7867 | /* It seems that we ought to add the symbol value to the | |||
| 7868 | addend here, but in practice it has already been added | |||
| 7869 | because it was passed to constructor_callback. */ | |||
| 7870 | addend += section->output_section->vma + section->output_offset; | |||
| 7871 | } | |||
| 7872 | else if (h != NULL((void*)0)) | |||
| 7873 | { | |||
| 7874 | /* Setting the index to -2 tells elf_link_output_extsym that | |||
| 7875 | this symbol is used by a reloc. */ | |||
| 7876 | h->indx = -2; | |||
| 7877 | *rel_hash_ptr = h; | |||
| 7878 | indx = 0; | |||
| 7879 | } | |||
| 7880 | else | |||
| 7881 | { | |||
| 7882 | if (! ((*info->callbacks->unattached_reloc) | |||
| 7883 | (info, link_order->u.reloc.p->u.name, NULL((void*)0), NULL((void*)0), 0))) | |||
| 7884 | return FALSE0; | |||
| 7885 | indx = 0; | |||
| 7886 | } | |||
| 7887 | } | |||
| 7888 | ||||
| 7889 | /* If this is an inplace reloc, we must write the addend into the | |||
| 7890 | object file. */ | |||
| 7891 | if (howto->partial_inplace && addend != 0) | |||
| 7892 | { | |||
| 7893 | bfd_size_type size; | |||
| 7894 | bfd_reloc_status_type rstat; | |||
| 7895 | bfd_byte *buf; | |||
| 7896 | bfd_boolean ok; | |||
| 7897 | const char *sym_name; | |||
| 7898 | ||||
| 7899 | size = bfd_get_reloc_size (howto); | |||
| 7900 | buf = bfd_zmalloc (size); | |||
| 7901 | if (buf == NULL((void*)0)) | |||
| 7902 | return FALSE0; | |||
| 7903 | rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf); | |||
| 7904 | switch (rstat) | |||
| 7905 | { | |||
| 7906 | case bfd_reloc_ok: | |||
| 7907 | break; | |||
| 7908 | ||||
| 7909 | default: | |||
| 7910 | case bfd_reloc_outofrange: | |||
| 7911 | abort ()_bfd_abort ("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" , 7911, __PRETTY_FUNCTION__); | |||
| 7912 | ||||
| 7913 | case bfd_reloc_overflow: | |||
| 7914 | if (link_order->type == bfd_section_reloc_link_order) | |||
| 7915 | sym_name = bfd_section_name (output_bfd,((link_order->u.reloc.p->u.section)->name) | |||
| 7916 | link_order->u.reloc.p->u.section)((link_order->u.reloc.p->u.section)->name); | |||
| 7917 | else | |||
| 7918 | sym_name = link_order->u.reloc.p->u.name; | |||
| 7919 | if (! ((*info->callbacks->reloc_overflow) | |||
| 7920 | (info, NULL((void*)0), sym_name, howto->name, addend, NULL((void*)0), | |||
| 7921 | NULL((void*)0), (bfd_vma) 0))) | |||
| 7922 | { | |||
| 7923 | free (buf); | |||
| 7924 | return FALSE0; | |||
| 7925 | } | |||
| 7926 | break; | |||
| 7927 | } | |||
| 7928 | ok = bfd_set_section_contents (output_bfd, output_section, buf, | |||
| 7929 | link_order->offset, size); | |||
| 7930 | free (buf); | |||
| 7931 | if (! ok) | |||
| 7932 | return FALSE0; | |||
| 7933 | } | |||
| 7934 | ||||
| 7935 | /* The address of a reloc is relative to the section in a | |||
| 7936 | relocatable file, and is a virtual address in an executable | |||
| 7937 | file. */ | |||
| 7938 | offset = link_order->offset; | |||
| 7939 | if (! info->relocatable) | |||
| 7940 | offset += output_section->vma; | |||
| 7941 | ||||
| 7942 | for (i = 0; i < bed->s->int_rels_per_ext_rel; i++) | |||
| 7943 | { | |||
| 7944 | irel[i].r_offset = offset; | |||
| 7945 | irel[i].r_info = 0; | |||
| 7946 | irel[i].r_addend = 0; | |||
| 7947 | } | |||
| 7948 | if (bed->s->arch_size == 32) | |||
| 7949 | irel[0].r_info = ELF32_R_INFO (indx, howto->type)(((indx) << 8) + ((howto->type) & 0xff)); | |||
| 7950 | else | |||
| 7951 | irel[0].r_info = ELF64_R_INFO (indx, howto->type)(((bfd_vma) (indx) << 31 << 1) + (bfd_vma) (howto ->type)); | |||
| 7952 | ||||
| 7953 | rel_hdr = &elf_section_data (output_section)((struct bfd_elf_section_data*)(output_section)->used_by_bfd )->rel_hdr; | |||
| 7954 | erel = rel_hdr->contents; | |||
| 7955 | if (rel_hdr->sh_type == SHT_REL9) | |||
| 7956 | { | |||
| 7957 | erel += (elf_section_data (output_section)((struct bfd_elf_section_data*)(output_section)->used_by_bfd )->rel_count | |||
| 7958 | * bed->s->sizeof_rel); | |||
| 7959 | (*bed->s->swap_reloc_out) (output_bfd, irel, erel); | |||
| 7960 | } | |||
| 7961 | else | |||
| 7962 | { | |||
| 7963 | irel[0].r_addend = addend; | |||
| 7964 | erel += (elf_section_data (output_section)((struct bfd_elf_section_data*)(output_section)->used_by_bfd )->rel_count | |||
| 7965 | * bed->s->sizeof_rela); | |||
| 7966 | (*bed->s->swap_reloca_out) (output_bfd, irel, erel); | |||
| 7967 | } | |||
| 7968 | ||||
| 7969 | ++elf_section_data (output_section)((struct bfd_elf_section_data*)(output_section)->used_by_bfd )->rel_count; | |||
| 7970 | ||||
| 7971 | return TRUE1; | |||
| 7972 | } | |||
| 7973 | ||||
| 7974 | ||||
| 7975 | /* Get the output vma of the section pointed to by the sh_link field. */ | |||
| 7976 | ||||
| 7977 | static bfd_vma | |||
| 7978 | elf_get_linked_section_vma (struct bfd_link_order *p) | |||
| 7979 | { | |||
| 7980 | Elf_Internal_Shdr **elf_shdrp; | |||
| 7981 | asection *s; | |||
| 7982 | int elfsec; | |||
| 7983 | ||||
| 7984 | s = p->u.indirect.section; | |||
| 7985 | elf_shdrp = elf_elfsections (s->owner)(((s->owner) -> tdata.elf_obj_data) -> elf_sect_ptr); | |||
| 7986 | elfsec = _bfd_elf_section_from_bfd_section (s->owner, s); | |||
| 7987 | elfsec = elf_shdrp[elfsec]->sh_link; | |||
| 7988 | /* PR 290: | |||
| 7989 | The Intel C compiler generates SHT_IA_64_UNWIND with | |||
| 7990 | SHF_LINK_ORDER. But it doesn't set the sh_link or | |||
| 7991 | sh_info fields. Hence we could get the situation | |||
| 7992 | where elfsec is 0. */ | |||
| 7993 | if (elfsec == 0) | |||
| 7994 | { | |||
| 7995 | const struct elf_backend_data *bed | |||
| 7996 | = get_elf_backend_data (s->owner)((const struct elf_backend_data *) (s->owner)->xvec-> backend_data); | |||
| 7997 | if (bed->link_order_error_handler) | |||
| 7998 | bed->link_order_error_handler | |||
| 7999 | (_("%B: warning: sh_link not set for section `%A'")("%B: warning: sh_link not set for section `%A'"), s->owner, s); | |||
| 8000 | return 0; | |||
| 8001 | } | |||
| 8002 | else | |||
| 8003 | { | |||
| 8004 | s = elf_shdrp[elfsec]->bfd_section; | |||
| 8005 | return s->output_section->vma + s->output_offset; | |||
| 8006 | } | |||
| 8007 | } | |||
| 8008 | ||||
| 8009 | ||||
| 8010 | /* Compare two sections based on the locations of the sections they are | |||
| 8011 | linked to. Used by elf_fixup_link_order. */ | |||
| 8012 | ||||
| 8013 | static int | |||
| 8014 | compare_link_order (const void * a, const void * b) | |||
| 8015 | { | |||
| 8016 | bfd_vma apos; | |||
| 8017 | bfd_vma bpos; | |||
| 8018 | ||||
| 8019 | apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a); | |||
| 8020 | bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b); | |||
| 8021 | if (apos < bpos) | |||
| 8022 | return -1; | |||
| 8023 | return apos > bpos; | |||
| 8024 | } | |||
| 8025 | ||||
| 8026 | ||||
| 8027 | /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same | |||
| 8028 | order as their linked sections. Returns false if this could not be done | |||
| 8029 | because an output section includes both ordered and unordered | |||
| 8030 | sections. Ideally we'd do this in the linker proper. */ | |||
| 8031 | ||||
| 8032 | static bfd_boolean | |||
| 8033 | elf_fixup_link_order (bfd *abfd, asection *o) | |||
| 8034 | { | |||
| 8035 | int seen_linkorder; | |||
| 8036 | int seen_other; | |||
| 8037 | int n; | |||
| 8038 | struct bfd_link_order *p; | |||
| 8039 | bfd *sub; | |||
| 8040 | const struct elf_backend_data *bed = get_elf_backend_data (abfd)((const struct elf_backend_data *) (abfd)->xvec->backend_data ); | |||
| 8041 | unsigned elfsec; | |||
| 8042 | struct bfd_link_order **sections; | |||
| 8043 | asection *s, *other_sec, *linkorder_sec; | |||
| 8044 | bfd_vma offset; | |||
| 8045 | ||||
| 8046 | other_sec = NULL((void*)0); | |||
| 8047 | linkorder_sec = NULL((void*)0); | |||
| 8048 | seen_other = 0; | |||
| 8049 | seen_linkorder = 0; | |||
| 8050 | for (p = o->map_head.link_order; p != NULL((void*)0); p = p->next) | |||
| 8051 | { | |||
| 8052 | if (p->type == bfd_indirect_link_order) | |||
| 8053 | { | |||
| 8054 | s = p->u.indirect.section; | |||
| 8055 | sub = s->owner; | |||
| 8056 | if (bfd_get_flavour (sub)((sub)->xvec->flavour) == bfd_target_elf_flavour | |||
| 8057 | && elf_elfheader (sub)(((sub) -> tdata.elf_obj_data) -> elf_header)->e_ident[EI_CLASS4] == bed->s->elfclass | |||
| 8058 | && (elfsec = _bfd_elf_section_from_bfd_section (sub, s)) | |||
| 8059 | && elfsec < elf_numsections (sub)(((sub) -> tdata.elf_obj_data) -> num_elf_sections) | |||
| 8060 | && elf_elfsections (sub)(((sub) -> tdata.elf_obj_data) -> elf_sect_ptr)[elfsec]->sh_flags & SHF_LINK_ORDER(1 << 7)) | |||
| 8061 | { | |||
| 8062 | seen_linkorder++; | |||
| 8063 | linkorder_sec = s; | |||
| 8064 | } | |||
| 8065 | else | |||
| 8066 | { | |||
| 8067 | seen_other++; | |||
| 8068 | other_sec = s; | |||
| 8069 | } | |||
| 8070 | } | |||
| 8071 | else | |||
| 8072 | seen_other++; | |||
| 8073 | ||||
| 8074 | if (seen_other && seen_linkorder) | |||
| 8075 | { | |||
| 8076 | if (other_sec && linkorder_sec) | |||
| 8077 | (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections")("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections" ), | |||
| 8078 | o, linkorder_sec, | |||
| 8079 | linkorder_sec->owner, other_sec, | |||
| 8080 | other_sec->owner); | |||
| 8081 | else | |||
| 8082 | (*_bfd_error_handler) (_("%A has both ordered and unordered sections")("%A has both ordered and unordered sections"), | |||
| 8083 | o); | |||
| 8084 | bfd_set_error (bfd_error_bad_value); | |||
| 8085 | return FALSE0; | |||
| 8086 | } | |||
| 8087 | } | |||
| 8088 | ||||
| 8089 | if (!seen_linkorder) | |||
| 8090 | return TRUE1; | |||
| 8091 | ||||
| 8092 | sections = (struct bfd_link_order **) | |||
| 8093 | xmalloc (seen_linkorder * sizeof (struct bfd_link_order *)); | |||
| 8094 | seen_linkorder = 0; | |||
| 8095 | ||||
| 8096 | for (p = o->map_head.link_order; p != NULL((void*)0); p = p->next) | |||
| 8097 | { | |||
| 8098 | sections[seen_linkorder++] = p; | |||
| 8099 | } | |||
| 8100 | /* Sort the input sections in the order of their linked section. */ | |||
| 8101 | qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *), | |||
| 8102 | compare_link_order); | |||
| 8103 | ||||
| 8104 | /* Change the offsets of the sections. */ | |||
| 8105 | offset = 0; | |||
| 8106 | for (n = 0; n < seen_linkorder; n++) | |||
| 8107 | { | |||
| 8108 | s = sections[n]->u.indirect.section; | |||
| 8109 | offset &= ~(bfd_vma)((1 << s->alignment_power) - 1); | |||
| 8110 | s->output_offset = offset; | |||
| 8111 | sections[n]->offset = offset; | |||
| 8112 | offset += sections[n]->size; | |||
| 8113 | } | |||
| 8114 | ||||
| 8115 | return TRUE1; | |||
| 8116 | } | |||
| 8117 | ||||
| 8118 | ||||
| 8119 | /* Do the final step of an ELF link. */ | |||
| 8120 | ||||
| 8121 | bfd_boolean | |||
| 8122 | bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info) | |||
| 8123 | { | |||
| 8124 | bfd_boolean dynamic; | |||
| 8125 | bfd_boolean emit_relocs; | |||
| 8126 | bfd *dynobj; | |||
| 8127 | struct elf_final_link_info finfo; | |||
| 8128 | register asection *o; | |||
| 8129 | register struct bfd_link_order *p; | |||
| 8130 | register bfd *sub; | |||
| 8131 | bfd_size_type max_contents_size; | |||
| 8132 | bfd_size_type max_external_reloc_size; | |||
| 8133 | bfd_size_type max_internal_reloc_count; | |||
| 8134 | bfd_size_type max_sym_count; | |||
| 8135 | bfd_size_type max_sym_shndx_count; | |||
| 8136 | file_ptr off; | |||
| 8137 | Elf_Internal_Sym elfsym; | |||
| 8138 | unsigned int i; | |||
| 8139 | Elf_Internal_Shdr *symtab_hdr; | |||
| 8140 | Elf_Internal_Shdr *symtab_shndx_hdr; | |||
| 8141 | Elf_Internal_Shdr *symstrtab_hdr; | |||
| 8142 | const struct elf_backend_data *bed = get_elf_backend_data (abfd)((const struct elf_backend_data *) (abfd)->xvec->backend_data ); | |||
| 8143 | struct elf_outext_info eoinfo; | |||
| 8144 | bfd_boolean merged; | |||
| 8145 | size_t relativecount = 0; | |||
| 8146 | asection *reldyn = 0; | |||
| 8147 | bfd_size_type amt; | |||
| 8148 | ||||
| 8149 | if (! is_elf_hash_table (info->hash)(((struct bfd_link_hash_table *) (info->hash))->type == bfd_link_elf_hash_table)) | |||
| 8150 | return FALSE0; | |||
| 8151 | ||||
| 8152 | if (info->shared) | |||
| 8153 | abfd->flags |= DYNAMIC0x40; | |||
| 8154 | ||||
| 8155 | dynamic = elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynamic_sections_created; | |||
| 8156 | dynobj = elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynobj; | |||
| 8157 | ||||
| 8158 | emit_relocs = (info->relocatable | |||
| 8159 | || info->emitrelocations); | |||
| 8160 | ||||
| 8161 | finfo.info = info; | |||
| 8162 | finfo.output_bfd = abfd; | |||
| 8163 | finfo.symstrtab = _bfd_elf_stringtab_init (); | |||
| 8164 | if (finfo.symstrtab == NULL((void*)0)) | |||
| 8165 | return FALSE0; | |||
| 8166 | ||||
| 8167 | if (! dynamic) | |||
| 8168 | { | |||
| 8169 | finfo.dynsym_sec = NULL((void*)0); | |||
| 8170 | finfo.hash_sec = NULL((void*)0); | |||
| 8171 | finfo.symver_sec = NULL((void*)0); | |||
| 8172 | } | |||
| 8173 | else | |||
| 8174 | { | |||
| 8175 | finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym"); | |||
| 8176 | finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash"); | |||
| 8177 | BFD_ASSERT (finfo.dynsym_sec != NULL)do { if (!(finfo.dynsym_sec != ((void*)0))) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,8177); } while (0); | |||
| 8178 | finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version"); | |||
| 8179 | /* Note that it is OK if symver_sec is NULL. */ | |||
| 8180 | } | |||
| 8181 | ||||
| 8182 | finfo.contents = NULL((void*)0); | |||
| 8183 | finfo.external_relocs = NULL((void*)0); | |||
| 8184 | finfo.internal_relocs = NULL((void*)0); | |||
| 8185 | finfo.external_syms = NULL((void*)0); | |||
| 8186 | finfo.locsym_shndx = NULL((void*)0); | |||
| 8187 | finfo.internal_syms = NULL((void*)0); | |||
| 8188 | finfo.indices = NULL((void*)0); | |||
| 8189 | finfo.sections = NULL((void*)0); | |||
| 8190 | finfo.symbuf = NULL((void*)0); | |||
| 8191 | finfo.symshndxbuf = NULL((void*)0); | |||
| 8192 | finfo.symbuf_count = 0; | |||
| 8193 | finfo.shndxbuf_size = 0; | |||
| 8194 | ||||
| 8195 | /* Count up the number of relocations we will output for each output | |||
| 8196 | section, so that we know the sizes of the reloc sections. We | |||
| 8197 | also figure out some maximum sizes. */ | |||
| 8198 | max_contents_size = 0; | |||
| 8199 | max_external_reloc_size = 0; | |||
| 8200 | max_internal_reloc_count = 0; | |||
| 8201 | max_sym_count = 0; | |||
| 8202 | max_sym_shndx_count = 0; | |||
| 8203 | merged = FALSE0; | |||
| 8204 | for (o = abfd->sections; o != NULL((void*)0); o = o->next) | |||
| 8205 | { | |||
| 8206 | struct bfd_elf_section_data *esdo = elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd); | |||
| 8207 | o->reloc_count = 0; | |||
| 8208 | ||||
| 8209 | for (p = o->map_head.link_order; p != NULL((void*)0); p = p->next) | |||
| 8210 | { | |||
| 8211 | unsigned int reloc_count = 0; | |||
| 8212 | struct bfd_elf_section_data *esdi = NULL((void*)0); | |||
| 8213 | unsigned int *rel_count1; | |||
| 8214 | ||||
| 8215 | if (p->type == bfd_section_reloc_link_order | |||
| 8216 | || p->type == bfd_symbol_reloc_link_order) | |||
| 8217 | reloc_count = 1; | |||
| 8218 | else if (p->type == bfd_indirect_link_order) | |||
| 8219 | { | |||
| 8220 | asection *sec; | |||
| 8221 | ||||
| 8222 | sec = p->u.indirect.section; | |||
| 8223 | esdi = elf_section_data (sec)((struct bfd_elf_section_data*)(sec)->used_by_bfd); | |||
| 8224 | ||||
| 8225 | /* Mark all sections which are to be included in the | |||
| 8226 | link. This will normally be every section. We need | |||
| 8227 | to do this so that we can identify any sections which | |||
| 8228 | the linker has decided to not include. */ | |||
| 8229 | sec->linker_mark = TRUE1; | |||
| 8230 | ||||
| 8231 | if (sec->flags & SEC_MERGE0x1000000) | |||
| 8232 | merged = TRUE1; | |||
| 8233 | ||||
| 8234 | if (info->relocatable || info->emitrelocations) | |||
| 8235 | reloc_count = sec->reloc_count; | |||
| 8236 | else if (bed->elf_backend_count_relocs) | |||
| 8237 | { | |||
| 8238 | Elf_Internal_Rela * relocs; | |||
| 8239 | ||||
| 8240 | relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL((void*)0), NULL((void*)0), | |||
| 8241 | info->keep_memory); | |||
| 8242 | ||||
| 8243 | reloc_count = (*bed->elf_backend_count_relocs) (sec, relocs); | |||
| 8244 | ||||
| 8245 | if (elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->relocs != relocs) | |||
| 8246 | free (relocs); | |||
| 8247 | } | |||
| 8248 | ||||
| 8249 | if (sec->rawsize > max_contents_size) | |||
| 8250 | max_contents_size = sec->rawsize; | |||
| 8251 | if (sec->size > max_contents_size) | |||
| 8252 | max_contents_size = sec->size; | |||
| 8253 | ||||
| 8254 | /* We are interested in just local symbols, not all | |||
| 8255 | symbols. */ | |||
| 8256 | if (bfd_get_flavour (sec->owner)((sec->owner)->xvec->flavour) == bfd_target_elf_flavour | |||
| 8257 | && (sec->owner->flags & DYNAMIC0x40) == 0) | |||
| 8258 | { | |||
| 8259 | size_t sym_count; | |||
| 8260 | ||||
| 8261 | if (elf_bad_symtab (sec->owner)(((sec->owner) -> tdata.elf_obj_data) -> bad_symtab)) | |||
| 8262 | sym_count = (elf_tdata (sec->owner)((sec->owner) -> tdata.elf_obj_data)->symtab_hdr.sh_size | |||
| 8263 | / bed->s->sizeof_sym); | |||
| 8264 | else | |||
| 8265 | sym_count = elf_tdata (sec->owner)((sec->owner) -> tdata.elf_obj_data)->symtab_hdr.sh_info; | |||
| 8266 | ||||
| 8267 | if (sym_count > max_sym_count) | |||
| 8268 | max_sym_count = sym_count; | |||
| 8269 | ||||
| 8270 | if (sym_count > max_sym_shndx_count | |||
| 8271 | && elf_symtab_shndx (sec->owner)(((sec->owner) -> tdata.elf_obj_data) -> symtab_shndx_section ) != 0) | |||
| 8272 | max_sym_shndx_count = sym_count; | |||
| 8273 | ||||
| 8274 | if ((sec->flags & SEC_RELOC0x004) != 0) | |||
| 8275 | { | |||
| 8276 | size_t ext_size; | |||
| 8277 | ||||
| 8278 | ext_size = elf_section_data (sec)((struct bfd_elf_section_data*)(sec)->used_by_bfd)->rel_hdr.sh_size; | |||
| 8279 | if (ext_size > max_external_reloc_size) | |||
| 8280 | max_external_reloc_size = ext_size; | |||
| 8281 | if (sec->reloc_count > max_internal_reloc_count) | |||
| 8282 | max_internal_reloc_count = sec->reloc_count; | |||
| 8283 | } | |||
| 8284 | } | |||
| 8285 | } | |||
| 8286 | ||||
| 8287 | if (reloc_count == 0) | |||
| 8288 | continue; | |||
| 8289 | ||||
| 8290 | o->reloc_count += reloc_count; | |||
| 8291 | ||||
| 8292 | /* MIPS may have a mix of REL and RELA relocs on sections. | |||
| 8293 | To support this curious ABI we keep reloc counts in | |||
| 8294 | elf_section_data too. We must be careful to add the | |||
| 8295 | relocations from the input section to the right output | |||
| 8296 | count. FIXME: Get rid of one count. We have | |||
| 8297 | o->reloc_count == esdo->rel_count + esdo->rel_count2. */ | |||
| 8298 | rel_count1 = &esdo->rel_count; | |||
| 8299 | if (esdi != NULL((void*)0)) | |||
| 8300 | { | |||
| 8301 | bfd_boolean same_size; | |||
| 8302 | bfd_size_type entsize1; | |||
| 8303 | ||||
| 8304 | entsize1 = esdi->rel_hdr.sh_entsize; | |||
| 8305 | BFD_ASSERT (entsize1 == bed->s->sizeof_reldo { if (!(entsize1 == bed->s->sizeof_rel || entsize1 == bed->s->sizeof_rela)) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,8306); } while (0) | |||
| 8306 | || entsize1 == bed->s->sizeof_rela)do { if (!(entsize1 == bed->s->sizeof_rel || entsize1 == bed->s->sizeof_rela)) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,8306); } while (0); | |||
| 8307 | same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel); | |||
| 8308 | ||||
| 8309 | if (!same_size) | |||
| 8310 | rel_count1 = &esdo->rel_count2; | |||
| 8311 | ||||
| 8312 | if (esdi->rel_hdr2 != NULL((void*)0)) | |||
| 8313 | { | |||
| 8314 | bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize; | |||
| 8315 | unsigned int alt_count; | |||
| 8316 | unsigned int *rel_count2; | |||
| 8317 | ||||
| 8318 | BFD_ASSERT (entsize2 != entsize1do { if (!(entsize2 != entsize1 && (entsize2 == bed-> s->sizeof_rel || entsize2 == bed->s->sizeof_rela))) bfd_assert ("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c",8320); } while (0) | |||
| 8319 | && (entsize2 == bed->s->sizeof_reldo { if (!(entsize2 != entsize1 && (entsize2 == bed-> s->sizeof_rel || entsize2 == bed->s->sizeof_rela))) bfd_assert ("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c",8320); } while (0) | |||
| 8320 | || entsize2 == bed->s->sizeof_rela))do { if (!(entsize2 != entsize1 && (entsize2 == bed-> s->sizeof_rel || entsize2 == bed->s->sizeof_rela))) bfd_assert ("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c",8320); } while (0); | |||
| 8321 | ||||
| 8322 | rel_count2 = &esdo->rel_count2; | |||
| 8323 | if (!same_size) | |||
| 8324 | rel_count2 = &esdo->rel_count; | |||
| 8325 | ||||
| 8326 | /* The following is probably too simplistic if the | |||
| 8327 | backend counts output relocs unusually. */ | |||
| 8328 | BFD_ASSERT (bed->elf_backend_count_relocs == NULL)do { if (!(bed->elf_backend_count_relocs == ((void*)0))) bfd_assert ("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c",8328); } while (0); | |||
| 8329 | alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2)((esdi->rel_hdr2)->sh_size / (esdi->rel_hdr2)->sh_entsize ); | |||
| 8330 | *rel_count2 += alt_count; | |||
| 8331 | reloc_count -= alt_count; | |||
| 8332 | } | |||
| 8333 | } | |||
| 8334 | *rel_count1 += reloc_count; | |||
| 8335 | } | |||
| 8336 | ||||
| 8337 | if (o->reloc_count > 0) | |||
| 8338 | o->flags |= SEC_RELOC0x004; | |||
| 8339 | else | |||
| 8340 | { | |||
| 8341 | /* Explicitly clear the SEC_RELOC flag. The linker tends to | |||
| 8342 | set it (this is probably a bug) and if it is set | |||
| 8343 | assign_section_numbers will create a reloc section. */ | |||
| 8344 | o->flags &=~ SEC_RELOC0x004; | |||
| 8345 | } | |||
| 8346 | ||||
| 8347 | /* If the SEC_ALLOC flag is not set, force the section VMA to | |||
| 8348 | zero. This is done in elf_fake_sections as well, but forcing | |||
| 8349 | the VMA to 0 here will ensure that relocs against these | |||
| 8350 | sections are handled correctly. */ | |||
| 8351 | if ((o->flags & SEC_ALLOC0x001) == 0 | |||
| 8352 | && ! o->user_set_vma) | |||
| 8353 | o->vma = 0; | |||
| 8354 | } | |||
| 8355 | ||||
| 8356 | if (! info->relocatable && merged) | |||
| 8357 | elf_link_hash_traverse (elf_hash_table (info),(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (_bfd_elf_link_sec_merge_syms), (abfd))) | |||
| 8358 | _bfd_elf_link_sec_merge_syms, abfd)(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (_bfd_elf_link_sec_merge_syms), (abfd))); | |||
| 8359 | ||||
| 8360 | /* Figure out the file positions for everything but the symbol table | |||
| 8361 | and the relocs. We set symcount to force assign_section_numbers | |||
| 8362 | to create a symbol table. */ | |||
| 8363 | bfd_get_symcount (abfd)((abfd)->symcount) = info->strip == strip_all ? 0 : 1; | |||
| 8364 | BFD_ASSERT (! abfd->output_has_begun)do { if (!(! abfd->output_has_begun)) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,8364); } while (0); | |||
| 8365 | if (! _bfd_elf_compute_section_file_positions (abfd, info)) | |||
| 8366 | goto error_return; | |||
| 8367 | ||||
| 8368 | /* Set sizes, and assign file positions for reloc sections. */ | |||
| 8369 | for (o = abfd->sections; o != NULL((void*)0); o = o->next) | |||
| 8370 | { | |||
| 8371 | if ((o->flags & SEC_RELOC0x004) != 0) | |||
| 8372 | { | |||
| 8373 | if (!(_bfd_elf_link_size_reloc_section | |||
| 8374 | (abfd, &elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->rel_hdr, o))) | |||
| 8375 | goto error_return; | |||
| 8376 | ||||
| 8377 | if (elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->rel_hdr2 | |||
| 8378 | && !(_bfd_elf_link_size_reloc_section | |||
| 8379 | (abfd, elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->rel_hdr2, o))) | |||
| 8380 | goto error_return; | |||
| 8381 | } | |||
| 8382 | ||||
| 8383 | /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them | |||
| 8384 | to count upwards while actually outputting the relocations. */ | |||
| 8385 | elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->rel_count = 0; | |||
| 8386 | elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->rel_count2 = 0; | |||
| 8387 | } | |||
| 8388 | ||||
| 8389 | _bfd_elf_assign_file_positions_for_relocs (abfd); | |||
| 8390 | ||||
| 8391 | /* We have now assigned file positions for all the sections except | |||
| 8392 | .symtab and .strtab. We start the .symtab section at the current | |||
| 8393 | file position, and write directly to it. We build the .strtab | |||
| 8394 | section in memory. */ | |||
| 8395 | bfd_get_symcount (abfd)((abfd)->symcount) = 0; | |||
| 8396 | symtab_hdr = &elf_tdata (abfd)((abfd) -> tdata.elf_obj_data)->symtab_hdr; | |||
| 8397 | /* sh_name is set in prep_headers. */ | |||
| 8398 | symtab_hdr->sh_type = SHT_SYMTAB2; | |||
| 8399 | /* sh_flags, sh_addr and sh_size all start off zero. */ | |||
| 8400 | symtab_hdr->sh_entsize = bed->s->sizeof_sym; | |||
| 8401 | /* sh_link is set in assign_section_numbers. */ | |||
| 8402 | /* sh_info is set below. */ | |||
| 8403 | /* sh_offset is set just below. */ | |||
| 8404 | symtab_hdr->sh_addralign = 1 << bed->s->log_file_align; | |||
| 8405 | ||||
| 8406 | off = elf_tdata (abfd)((abfd) -> tdata.elf_obj_data)->next_file_pos; | |||
| 8407 | off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE1); | |||
| 8408 | ||||
| 8409 | /* Note that at this point elf_tdata (abfd)->next_file_pos is | |||
| 8410 | incorrect. We do not yet know the size of the .symtab section. | |||
| 8411 | We correct next_file_pos below, after we do know the size. */ | |||
| 8412 | ||||
| 8413 | /* Allocate a buffer to hold swapped out symbols. This is to avoid | |||
| 8414 | continuously seeking to the right position in the file. */ | |||
| 8415 | if (! info->keep_memory || max_sym_count < 20) | |||
| 8416 | finfo.symbuf_size = 20; | |||
| 8417 | else | |||
| 8418 | finfo.symbuf_size = max_sym_count; | |||
| 8419 | amt = finfo.symbuf_size; | |||
| 8420 | amt *= bed->s->sizeof_sym; | |||
| 8421 | finfo.symbuf = bfd_malloc (amt); | |||
| 8422 | if (finfo.symbuf == NULL((void*)0)) | |||
| 8423 | goto error_return; | |||
| 8424 | if (elf_numsections (abfd)(((abfd) -> tdata.elf_obj_data) -> num_elf_sections) > SHN_LORESERVE0xFF00) | |||
| 8425 | { | |||
| 8426 | /* Wild guess at number of output symbols. realloc'd as needed. */ | |||
| 8427 | amt = 2 * max_sym_count + elf_numsections (abfd)(((abfd) -> tdata.elf_obj_data) -> num_elf_sections) + 1000; | |||
| 8428 | finfo.shndxbuf_size = amt; | |||
| 8429 | amt *= sizeof (Elf_External_Sym_Shndx); | |||
| 8430 | finfo.symshndxbuf = bfd_zmalloc (amt); | |||
| 8431 | if (finfo.symshndxbuf == NULL((void*)0)) | |||
| 8432 | goto error_return; | |||
| 8433 | } | |||
| 8434 | ||||
| 8435 | /* Start writing out the symbol table. The first symbol is always a | |||
| 8436 | dummy symbol. */ | |||
| 8437 | if (info->strip != strip_all | |||
| 8438 | || emit_relocs) | |||
| 8439 | { | |||
| 8440 | elfsym.st_value = 0; | |||
| 8441 | elfsym.st_size = 0; | |||
| 8442 | elfsym.st_info = 0; | |||
| 8443 | elfsym.st_other = 0; | |||
| 8444 | elfsym.st_shndx = SHN_UNDEF0; | |||
| 8445 | if (! elf_link_output_sym (&finfo, NULL((void*)0), &elfsym, bfd_und_section_ptr((asection *) &bfd_und_section), | |||
| 8446 | NULL((void*)0))) | |||
| 8447 | goto error_return; | |||
| 8448 | } | |||
| 8449 | ||||
| 8450 | /* Output a symbol for each section. We output these even if we are | |||
| 8451 | discarding local symbols, since they are used for relocs. These | |||
| 8452 | symbols have no names. We store the index of each one in the | |||
| 8453 | index field of the section, so that we can find it again when | |||
| 8454 | outputting relocs. */ | |||
| 8455 | if (info->strip != strip_all | |||
| 8456 | || emit_relocs) | |||
| 8457 | { | |||
| 8458 | elfsym.st_size = 0; | |||
| 8459 | elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION)(((0) << 4) + ((3) & 0xF)); | |||
| 8460 | elfsym.st_other = 0; | |||
| 8461 | for (i = 1; i < elf_numsections (abfd)(((abfd) -> tdata.elf_obj_data) -> num_elf_sections); i++) | |||
| 8462 | { | |||
| 8463 | o = bfd_section_from_elf_index (abfd, i); | |||
| 8464 | if (o != NULL((void*)0)) | |||
| 8465 | o->target_index = bfd_get_symcount (abfd)((abfd)->symcount); | |||
| 8466 | elfsym.st_shndx = i; | |||
| 8467 | if (info->relocatable || o == NULL((void*)0)) | |||
| 8468 | elfsym.st_value = 0; | |||
| 8469 | else | |||
| 8470 | elfsym.st_value = o->vma; | |||
| 8471 | if (! elf_link_output_sym (&finfo, NULL((void*)0), &elfsym, o, NULL((void*)0))) | |||
| 8472 | goto error_return; | |||
| 8473 | if (i == SHN_LORESERVE0xFF00 - 1) | |||
| 8474 | i += SHN_HIRESERVE0xFFFF + 1 - SHN_LORESERVE0xFF00; | |||
| 8475 | } | |||
| 8476 | } | |||
| 8477 | ||||
| 8478 | /* Allocate some memory to hold information read in from the input | |||
| 8479 | files. */ | |||
| 8480 | if (max_contents_size != 0) | |||
| 8481 | { | |||
| 8482 | finfo.contents = bfd_malloc (max_contents_size); | |||
| 8483 | if (finfo.contents == NULL((void*)0)) | |||
| 8484 | goto error_return; | |||
| 8485 | } | |||
| 8486 | ||||
| 8487 | if (max_external_reloc_size != 0) | |||
| 8488 | { | |||
| 8489 | finfo.external_relocs = bfd_malloc (max_external_reloc_size); | |||
| 8490 | if (finfo.external_relocs == NULL((void*)0)) | |||
| 8491 | goto error_return; | |||
| 8492 | } | |||
| 8493 | ||||
| 8494 | if (max_internal_reloc_count != 0) | |||
| 8495 | { | |||
| 8496 | amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel; | |||
| 8497 | amt *= sizeof (Elf_Internal_Rela); | |||
| 8498 | finfo.internal_relocs = bfd_malloc (amt); | |||
| 8499 | if (finfo.internal_relocs == NULL((void*)0)) | |||
| 8500 | goto error_return; | |||
| 8501 | } | |||
| 8502 | ||||
| 8503 | if (max_sym_count != 0) | |||
| 8504 | { | |||
| 8505 | amt = max_sym_count * bed->s->sizeof_sym; | |||
| 8506 | finfo.external_syms = bfd_malloc (amt); | |||
| 8507 | if (finfo.external_syms == NULL((void*)0)) | |||
| 8508 | goto error_return; | |||
| 8509 | ||||
| 8510 | amt = max_sym_count * sizeof (Elf_Internal_Sym); | |||
| 8511 | finfo.internal_syms = bfd_malloc (amt); | |||
| 8512 | if (finfo.internal_syms == NULL((void*)0)) | |||
| 8513 | goto error_return; | |||
| 8514 | ||||
| 8515 | amt = max_sym_count * sizeof (long); | |||
| 8516 | finfo.indices = bfd_malloc (amt); | |||
| 8517 | if (finfo.indices == NULL((void*)0)) | |||
| 8518 | goto error_return; | |||
| 8519 | ||||
| 8520 | amt = max_sym_count * sizeof (asection *); | |||
| 8521 | finfo.sections = bfd_malloc (amt); | |||
| 8522 | if (finfo.sections == NULL((void*)0)) | |||
| 8523 | goto error_return; | |||
| 8524 | } | |||
| 8525 | ||||
| 8526 | if (max_sym_shndx_count != 0) | |||
| 8527 | { | |||
| 8528 | amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx); | |||
| 8529 | finfo.locsym_shndx = bfd_malloc (amt); | |||
| 8530 | if (finfo.locsym_shndx == NULL((void*)0)) | |||
| 8531 | goto error_return; | |||
| 8532 | } | |||
| 8533 | ||||
| 8534 | if (elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->tls_sec) | |||
| 8535 | { | |||
| 8536 | bfd_vma base, end = 0; | |||
| 8537 | asection *sec; | |||
| 8538 | ||||
| 8539 | for (sec = elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->tls_sec; | |||
| 8540 | sec && (sec->flags & SEC_THREAD_LOCAL0x400); | |||
| 8541 | sec = sec->next) | |||
| 8542 | { | |||
| 8543 | bfd_size_type size = sec->size; | |||
| 8544 | ||||
| 8545 | if (size == 0 | |||
| 8546 | && (sec->flags & SEC_HAS_CONTENTS0x100) == 0) | |||
| 8547 | { | |||
| 8548 | struct bfd_link_order *o = sec->map_tail.link_order; | |||
| 8549 | if (o != NULL((void*)0)) | |||
| 8550 | size = o->offset + o->size; | |||
| 8551 | } | |||
| 8552 | end = sec->vma + size; | |||
| 8553 | } | |||
| 8554 | base = elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->tls_sec->vma; | |||
| 8555 | end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power)(((end) + ((bfd_vma) 1 << (((struct elf_link_hash_table *) ((info)->hash))->tls_sec->alignment_power)) - 1) & ((bfd_vma) -1 << (((struct elf_link_hash_table * ) ((info)->hash))->tls_sec->alignment_power))); | |||
| 8556 | elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->tls_size = end - base; | |||
| 8557 | } | |||
| 8558 | ||||
| 8559 | /* Reorder SHF_LINK_ORDER sections. */ | |||
| 8560 | for (o = abfd->sections; o != NULL((void*)0); o = o->next) | |||
| 8561 | { | |||
| 8562 | if (!elf_fixup_link_order (abfd, o)) | |||
| 8563 | return FALSE0; | |||
| 8564 | } | |||
| 8565 | ||||
| 8566 | /* Since ELF permits relocations to be against local symbols, we | |||
| 8567 | must have the local symbols available when we do the relocations. | |||
| 8568 | Since we would rather only read the local symbols once, and we | |||
| 8569 | would rather not keep them in memory, we handle all the | |||
| 8570 | relocations for a single input file at the same time. | |||
| 8571 | ||||
| 8572 | Unfortunately, there is no way to know the total number of local | |||
| 8573 | symbols until we have seen all of them, and the local symbol | |||
| 8574 | indices precede the global symbol indices. This means that when | |||
| 8575 | we are generating relocatable output, and we see a reloc against | |||
| 8576 | a global symbol, we can not know the symbol index until we have | |||
| 8577 | finished examining all the local symbols to see which ones we are | |||
| 8578 | going to output. To deal with this, we keep the relocations in | |||
| 8579 | memory, and don't output them until the end of the link. This is | |||
| 8580 | an unfortunate waste of memory, but I don't see a good way around | |||
| 8581 | it. Fortunately, it only happens when performing a relocatable | |||
| 8582 | link, which is not the common case. FIXME: If keep_memory is set | |||
| 8583 | we could write the relocs out and then read them again; I don't | |||
| 8584 | know how bad the memory loss will be. */ | |||
| 8585 | ||||
| 8586 | for (sub = info->input_bfds; sub != NULL((void*)0); sub = sub->link_next) | |||
| 8587 | sub->output_has_begun = FALSE0; | |||
| 8588 | for (o = abfd->sections; o != NULL((void*)0); o = o->next) | |||
| 8589 | { | |||
| 8590 | for (p = o->map_head.link_order; p != NULL((void*)0); p = p->next) | |||
| 8591 | { | |||
| 8592 | if (p->type == bfd_indirect_link_order | |||
| 8593 | && (bfd_get_flavour ((sub = p->u.indirect.section->owner))(((sub = p->u.indirect.section->owner))->xvec->flavour ) | |||
| 8594 | == bfd_target_elf_flavour) | |||
| 8595 | && elf_elfheader (sub)(((sub) -> tdata.elf_obj_data) -> elf_header)->e_ident[EI_CLASS4] == bed->s->elfclass) | |||
| 8596 | { | |||
| 8597 | if (! sub->output_has_begun) | |||
| 8598 | { | |||
| 8599 | if (! elf_link_input_bfd (&finfo, sub)) | |||
| 8600 | goto error_return; | |||
| 8601 | sub->output_has_begun = TRUE1; | |||
| 8602 | } | |||
| 8603 | } | |||
| 8604 | else if (p->type == bfd_section_reloc_link_order | |||
| 8605 | || p->type == bfd_symbol_reloc_link_order) | |||
| 8606 | { | |||
| 8607 | if (! elf_reloc_link_order (abfd, info, o, p)) | |||
| 8608 | goto error_return; | |||
| 8609 | } | |||
| 8610 | else | |||
| 8611 | { | |||
| 8612 | if (! _bfd_default_link_order (abfd, info, o, p)) | |||
| 8613 | goto error_return; | |||
| 8614 | } | |||
| 8615 | } | |||
| 8616 | } | |||
| 8617 | ||||
| 8618 | /* Free symbol buffer if needed. */ | |||
| 8619 | if (!info->reduce_memory_overheads) | |||
| 8620 | { | |||
| 8621 | for (sub = info->input_bfds; sub != NULL((void*)0); sub = sub->link_next) | |||
| 8622 | { | |||
| 8623 | if (bfd_get_flavour (sub)((sub)->xvec->flavour) == bfd_target_elf_flavour) | |||
| 8624 | { | |||
| 8625 | free (elf_tdata (sub)((sub) -> tdata.elf_obj_data)->symbuf); | |||
| 8626 | elf_tdata (sub)((sub) -> tdata.elf_obj_data)->symbuf = NULL((void*)0); | |||
| 8627 | } | |||
| 8628 | } | |||
| 8629 | } | |||
| 8630 | ||||
| 8631 | /* Output any global symbols that got converted to local in a | |||
| 8632 | version script or due to symbol visibility. We do this in a | |||
| 8633 | separate step since ELF requires all local symbols to appear | |||
| 8634 | prior to any global symbols. FIXME: We should only do this if | |||
| 8635 | some global symbols were, in fact, converted to become local. | |||
| 8636 | FIXME: Will this work correctly with the Irix 5 linker? */ | |||
| 8637 | eoinfo.failed = FALSE0; | |||
| 8638 | eoinfo.finfo = &finfo; | |||
| 8639 | eoinfo.localsyms = TRUE1; | |||
| 8640 | elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (elf_link_output_extsym), (&eoinfo))) | |||
| 8641 | &eoinfo)(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (elf_link_output_extsym), (&eoinfo))); | |||
| 8642 | if (eoinfo.failed) | |||
| 8643 | return FALSE0; | |||
| 8644 | ||||
| 8645 | /* That wrote out all the local symbols. Finish up the symbol table | |||
| 8646 | with the global symbols. Even if we want to strip everything we | |||
| 8647 | can, we still need to deal with those global symbols that got | |||
| 8648 | converted to local in a version script. */ | |||
| 8649 | ||||
| 8650 | /* The sh_info field records the index of the first non local symbol. */ | |||
| 8651 | symtab_hdr->sh_info = bfd_get_symcount (abfd)((abfd)->symcount); | |||
| 8652 | ||||
| 8653 | if (dynamic | |||
| 8654 | && finfo.dynsym_sec->output_section != bfd_abs_section_ptr((asection *) &bfd_abs_section)) | |||
| 8655 | { | |||
| 8656 | Elf_Internal_Sym sym; | |||
| 8657 | bfd_byte *dynsym = finfo.dynsym_sec->contents; | |||
| 8658 | long last_local = 0; | |||
| 8659 | ||||
| 8660 | /* Write out the section symbols for the output sections. */ | |||
| 8661 | if (info->shared || elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->is_relocatable_executable) | |||
| 8662 | { | |||
| 8663 | asection *s; | |||
| 8664 | ||||
| 8665 | sym.st_size = 0; | |||
| 8666 | sym.st_name = 0; | |||
| 8667 | sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION)(((0) << 4) + ((3) & 0xF)); | |||
| 8668 | sym.st_other = 0; | |||
| 8669 | ||||
| 8670 | for (s = abfd->sections; s != NULL((void*)0); s = s->next) | |||
| 8671 | { | |||
| 8672 | int indx; | |||
| 8673 | bfd_byte *dest; | |||
| 8674 | long dynindx; | |||
| 8675 | ||||
| 8676 | dynindx = elf_section_data (s)((struct bfd_elf_section_data*)(s)->used_by_bfd)->dynindx; | |||
| 8677 | if (dynindx <= 0) | |||
| 8678 | continue; | |||
| 8679 | indx = elf_section_data (s)((struct bfd_elf_section_data*)(s)->used_by_bfd)->this_idx; | |||
| 8680 | BFD_ASSERT (indx > 0)do { if (!(indx > 0)) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,8680); } while (0); | |||
| 8681 | sym.st_shndx = indx; | |||
| 8682 | if (! check_dynsym (abfd, &sym)) | |||
| 8683 | return FALSE0; | |||
| 8684 | sym.st_value = s->vma; | |||
| 8685 | dest = dynsym + dynindx * bed->s->sizeof_sym; | |||
| 8686 | if (last_local < dynindx) | |||
| 8687 | last_local = dynindx; | |||
| 8688 | bed->s->swap_symbol_out (abfd, &sym, dest, 0); | |||
| 8689 | } | |||
| 8690 | } | |||
| 8691 | ||||
| 8692 | /* Write out the local dynsyms. */ | |||
| 8693 | if (elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynlocal) | |||
| 8694 | { | |||
| 8695 | struct elf_link_local_dynamic_entry *e; | |||
| 8696 | for (e = elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynlocal; e ; e = e->next) | |||
| 8697 | { | |||
| 8698 | asection *s; | |||
| 8699 | bfd_byte *dest; | |||
| 8700 | ||||
| 8701 | sym.st_size = e->isym.st_size; | |||
| 8702 | sym.st_other = e->isym.st_other; | |||
| 8703 | ||||
| 8704 | /* Copy the internal symbol as is. | |||
| 8705 | Note that we saved a word of storage and overwrote | |||
| 8706 | the original st_name with the dynstr_index. */ | |||
| 8707 | sym = e->isym; | |||
| 8708 | ||||
| 8709 | if (e->isym.st_shndx != SHN_UNDEF0 | |||
| 8710 | && (e->isym.st_shndx < SHN_LORESERVE0xFF00 | |||
| 8711 | || e->isym.st_shndx > SHN_HIRESERVE0xFFFF)) | |||
| 8712 | { | |||
| 8713 | s = bfd_section_from_elf_index (e->input_bfd, | |||
| 8714 | e->isym.st_shndx); | |||
| 8715 | ||||
| 8716 | sym.st_shndx = | |||
| 8717 | elf_section_data (s->output_section)((struct bfd_elf_section_data*)(s->output_section)->used_by_bfd )->this_idx; | |||
| 8718 | if (! check_dynsym (abfd, &sym)) | |||
| 8719 | return FALSE0; | |||
| 8720 | sym.st_value = (s->output_section->vma | |||
| 8721 | + s->output_offset | |||
| 8722 | + e->isym.st_value); | |||
| 8723 | } | |||
| 8724 | ||||
| 8725 | if (last_local < e->dynindx) | |||
| 8726 | last_local = e->dynindx; | |||
| 8727 | ||||
| 8728 | dest = dynsym + e->dynindx * bed->s->sizeof_sym; | |||
| 8729 | bed->s->swap_symbol_out (abfd, &sym, dest, 0); | |||
| 8730 | } | |||
| 8731 | } | |||
| 8732 | ||||
| 8733 | elf_section_data (finfo.dynsym_sec->output_section)((struct bfd_elf_section_data*)(finfo.dynsym_sec->output_section )->used_by_bfd)->this_hdr.sh_info = | |||
| 8734 | last_local + 1; | |||
| 8735 | } | |||
| 8736 | ||||
| 8737 | /* We get the global symbols from the hash table. */ | |||
| 8738 | eoinfo.failed = FALSE0; | |||
| 8739 | eoinfo.localsyms = FALSE0; | |||
| 8740 | eoinfo.finfo = &finfo; | |||
| 8741 | elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (elf_link_output_extsym), (&eoinfo))) | |||
| 8742 | &eoinfo)(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (elf_link_output_extsym), (&eoinfo))); | |||
| 8743 | if (eoinfo.failed) | |||
| 8744 | return FALSE0; | |||
| 8745 | ||||
| 8746 | /* If backend needs to output some symbols not present in the hash | |||
| 8747 | table, do it now. */ | |||
| 8748 | if (bed->elf_backend_output_arch_syms) | |||
| 8749 | { | |||
| 8750 | typedef bfd_boolean (*out_sym_func) | |||
| 8751 | (void *, const char *, Elf_Internal_Sym *, asection *, | |||
| 8752 | struct elf_link_hash_entry *); | |||
| 8753 | ||||
| 8754 | if (! ((*bed->elf_backend_output_arch_syms) | |||
| 8755 | (abfd, info, &finfo, (out_sym_func) elf_link_output_sym))) | |||
| 8756 | return FALSE0; | |||
| 8757 | } | |||
| 8758 | ||||
| 8759 | /* Flush all symbols to the file. */ | |||
| 8760 | if (! elf_link_flush_output_syms (&finfo, bed)) | |||
| 8761 | return FALSE0; | |||
| 8762 | ||||
| 8763 | /* Now we know the size of the symtab section. */ | |||
| 8764 | off += symtab_hdr->sh_size; | |||
| 8765 | ||||
| 8766 | symtab_shndx_hdr = &elf_tdata (abfd)((abfd) -> tdata.elf_obj_data)->symtab_shndx_hdr; | |||
| 8767 | if (symtab_shndx_hdr->sh_name != 0) | |||
| 8768 | { | |||
| 8769 | symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX18; | |||
| 8770 | symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx); | |||
| 8771 | symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx); | |||
| 8772 | amt = bfd_get_symcount (abfd)((abfd)->symcount) * sizeof (Elf_External_Sym_Shndx); | |||
| 8773 | symtab_shndx_hdr->sh_size = amt; | |||
| 8774 | ||||
| 8775 | off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr, | |||
| 8776 | off, TRUE1); | |||
| 8777 | ||||
| 8778 | if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET0) != 0 | |||
| 8779 | || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt)) | |||
| 8780 | return FALSE0; | |||
| 8781 | } | |||
| 8782 | ||||
| 8783 | ||||
| 8784 | /* Finish up and write out the symbol string table (.strtab) | |||
| 8785 | section. */ | |||
| 8786 | symstrtab_hdr = &elf_tdata (abfd)((abfd) -> tdata.elf_obj_data)->strtab_hdr; | |||
| 8787 | /* sh_name was set in prep_headers. */ | |||
| 8788 | symstrtab_hdr->sh_type = SHT_STRTAB3; | |||
| 8789 | symstrtab_hdr->sh_flags = 0; | |||
| 8790 | symstrtab_hdr->sh_addr = 0; | |||
| 8791 | symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab); | |||
| 8792 | symstrtab_hdr->sh_entsize = 0; | |||
| 8793 | symstrtab_hdr->sh_link = 0; | |||
| 8794 | symstrtab_hdr->sh_info = 0; | |||
| 8795 | /* sh_offset is set just below. */ | |||
| 8796 | symstrtab_hdr->sh_addralign = 1; | |||
| 8797 | ||||
| 8798 | off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE1); | |||
| 8799 | elf_tdata (abfd)((abfd) -> tdata.elf_obj_data)->next_file_pos = off; | |||
| 8800 | ||||
| 8801 | if (bfd_get_symcount (abfd)((abfd)->symcount) > 0) | |||
| 8802 | { | |||
| 8803 | if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET0) != 0 | |||
| 8804 | || ! _bfd_stringtab_emit (abfd, finfo.symstrtab)) | |||
| 8805 | return FALSE0; | |||
| 8806 | } | |||
| 8807 | ||||
| 8808 | /* Adjust the relocs to have the correct symbol indices. */ | |||
| 8809 | for (o = abfd->sections; o != NULL((void*)0); o = o->next) | |||
| 8810 | { | |||
| 8811 | if ((o->flags & SEC_RELOC0x004) == 0) | |||
| 8812 | continue; | |||
| 8813 | ||||
| 8814 | elf_link_adjust_relocs (abfd, &elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->rel_hdr, | |||
| 8815 | elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->rel_count, | |||
| 8816 | elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->rel_hashes); | |||
| 8817 | if (elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->rel_hdr2 != NULL((void*)0)) | |||
| 8818 | elf_link_adjust_relocs (abfd, elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->rel_hdr2, | |||
| 8819 | elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->rel_count2, | |||
| 8820 | (elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->rel_hashes | |||
| 8821 | + elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->rel_count)); | |||
| 8822 | ||||
| 8823 | /* Set the reloc_count field to 0 to prevent write_relocs from | |||
| 8824 | trying to swap the relocs out itself. */ | |||
| 8825 | o->reloc_count = 0; | |||
| 8826 | } | |||
| 8827 | ||||
| 8828 | if (dynamic && info->combreloc && dynobj != NULL((void*)0)) | |||
| 8829 | relativecount = elf_link_sort_relocs (abfd, info, &reldyn); | |||
| 8830 | ||||
| 8831 | /* If we are linking against a dynamic object, or generating a | |||
| 8832 | shared library, finish up the dynamic linking information. */ | |||
| 8833 | if (dynamic) | |||
| 8834 | { | |||
| 8835 | bfd_byte *dyncon, *dynconend; | |||
| 8836 | ||||
| 8837 | /* Fix up .dynamic entries. */ | |||
| 8838 | o = bfd_get_section_by_name (dynobj, ".dynamic"); | |||
| 8839 | BFD_ASSERT (o != NULL)do { if (!(o != ((void*)0))) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,8839); } while (0); | |||
| 8840 | ||||
| 8841 | dyncon = o->contents; | |||
| 8842 | dynconend = o->contents + o->size; | |||
| 8843 | for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn) | |||
| 8844 | { | |||
| 8845 | Elf_Internal_Dyn dyn; | |||
| 8846 | const char *name; | |||
| 8847 | unsigned int type; | |||
| 8848 | ||||
| 8849 | bed->s->swap_dyn_in (dynobj, dyncon, &dyn); | |||
| 8850 | ||||
| 8851 | switch (dyn.d_tag) | |||
| 8852 | { | |||
| 8853 | default: | |||
| 8854 | continue; | |||
| 8855 | case DT_NULL0: | |||
| 8856 | if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend) | |||
| 8857 | { | |||
| 8858 | switch (elf_section_data (reldyn)((struct bfd_elf_section_data*)(reldyn)->used_by_bfd)->this_hdr.sh_type) | |||
| 8859 | { | |||
| 8860 | case SHT_REL9: dyn.d_tag = DT_RELCOUNT0x6ffffffa; break; | |||
| 8861 | case SHT_RELA4: dyn.d_tag = DT_RELACOUNT0x6ffffff9; break; | |||
| 8862 | default: continue; | |||
| 8863 | } | |||
| 8864 | dyn.d_un.d_val = relativecount; | |||
| 8865 | relativecount = 0; | |||
| 8866 | break; | |||
| 8867 | } | |||
| 8868 | continue; | |||
| 8869 | ||||
| 8870 | case DT_INIT12: | |||
| 8871 | name = info->init_function; | |||
| 8872 | goto get_sym; | |||
| 8873 | case DT_FINI13: | |||
| 8874 | name = info->fini_function; | |||
| 8875 | get_sym: | |||
| 8876 | { | |||
| 8877 | struct elf_link_hash_entry *h; | |||
| 8878 | ||||
| 8879 | h = elf_link_hash_lookup (elf_hash_table (info), name,((struct elf_link_hash_entry *) bfd_link_hash_lookup (&(( (struct elf_link_hash_table *) ((info)->hash)))->root, ( name), (0), (0), (1))) | |||
| 8880 | FALSE, FALSE, TRUE)((struct elf_link_hash_entry *) bfd_link_hash_lookup (&(( (struct elf_link_hash_table *) ((info)->hash)))->root, ( name), (0), (0), (1))); | |||
| 8881 | if (h != NULL((void*)0) | |||
| 8882 | && (h->root.type == bfd_link_hash_defined | |||
| 8883 | || h->root.type == bfd_link_hash_defweak)) | |||
| 8884 | { | |||
| 8885 | dyn.d_un.d_val = h->root.u.def.value; | |||
| 8886 | o = h->root.u.def.section; | |||
| 8887 | if (o->output_section != NULL((void*)0)) | |||
| 8888 | dyn.d_un.d_val += (o->output_section->vma | |||
| 8889 | + o->output_offset); | |||
| 8890 | else | |||
| 8891 | { | |||
| 8892 | /* The symbol is imported from another shared | |||
| 8893 | library and does not apply to this one. */ | |||
| 8894 | dyn.d_un.d_val = 0; | |||
| 8895 | } | |||
| 8896 | break; | |||
| 8897 | } | |||
| 8898 | } | |||
| 8899 | continue; | |||
| 8900 | ||||
| 8901 | case DT_PREINIT_ARRAYSZ33: | |||
| 8902 | name = ".preinit_array"; | |||
| 8903 | goto get_size; | |||
| 8904 | case DT_INIT_ARRAYSZ27: | |||
| 8905 | name = ".init_array"; | |||
| 8906 | goto get_size; | |||
| 8907 | case DT_FINI_ARRAYSZ28: | |||
| 8908 | name = ".fini_array"; | |||
| 8909 | get_size: | |||
| 8910 | o = bfd_get_section_by_name (abfd, name); | |||
| 8911 | if (o == NULL((void*)0)) | |||
| 8912 | { | |||
| 8913 | (*_bfd_error_handler) | |||
| 8914 | (_("%B: could not find output section %s")("%B: could not find output section %s"), abfd, name); | |||
| 8915 | goto error_return; | |||
| 8916 | } | |||
| 8917 | if (o->size == 0) | |||
| 8918 | (*_bfd_error_handler) | |||
| 8919 | (_("warning: %s section has zero size")("warning: %s section has zero size"), name); | |||
| 8920 | dyn.d_un.d_val = o->size; | |||
| 8921 | break; | |||
| 8922 | ||||
| 8923 | case DT_PREINIT_ARRAY32: | |||
| 8924 | name = ".preinit_array"; | |||
| 8925 | goto get_vma; | |||
| 8926 | case DT_INIT_ARRAY25: | |||
| 8927 | name = ".init_array"; | |||
| 8928 | goto get_vma; | |||
| 8929 | case DT_FINI_ARRAY26: | |||
| 8930 | name = ".fini_array"; | |||
| 8931 | goto get_vma; | |||
| 8932 | ||||
| 8933 | case DT_HASH4: | |||
| 8934 | name = ".hash"; | |||
| 8935 | goto get_vma; | |||
| 8936 | case DT_GNU_HASH0x6ffffef5: | |||
| 8937 | name = ".gnu.hash"; | |||
| 8938 | goto get_vma; | |||
| 8939 | case DT_STRTAB5: | |||
| 8940 | name = ".dynstr"; | |||
| 8941 | goto get_vma; | |||
| 8942 | case DT_SYMTAB6: | |||
| 8943 | name = ".dynsym"; | |||
| 8944 | goto get_vma; | |||
| 8945 | case DT_VERDEF0x6ffffffc: | |||
| 8946 | name = ".gnu.version_d"; | |||
| 8947 | goto get_vma; | |||
| 8948 | case DT_VERNEED0x6ffffffe: | |||
| 8949 | name = ".gnu.version_r"; | |||
| 8950 | goto get_vma; | |||
| 8951 | case DT_VERSYM0x6ffffff0: | |||
| 8952 | name = ".gnu.version"; | |||
| 8953 | get_vma: | |||
| 8954 | o = bfd_get_section_by_name (abfd, name); | |||
| 8955 | if (o == NULL((void*)0)) | |||
| 8956 | { | |||
| 8957 | (*_bfd_error_handler) | |||
| 8958 | (_("%B: could not find output section %s")("%B: could not find output section %s"), abfd, name); | |||
| 8959 | goto error_return; | |||
| 8960 | } | |||
| 8961 | dyn.d_un.d_ptr = o->vma; | |||
| 8962 | break; | |||
| 8963 | ||||
| 8964 | case DT_REL17: | |||
| 8965 | case DT_RELA7: | |||
| 8966 | case DT_RELSZ18: | |||
| 8967 | case DT_RELASZ8: | |||
| 8968 | if (dyn.d_tag == DT_REL17 || dyn.d_tag == DT_RELSZ18) | |||
| 8969 | type = SHT_REL9; | |||
| 8970 | else | |||
| 8971 | type = SHT_RELA4; | |||
| 8972 | dyn.d_un.d_val = 0; | |||
| 8973 | for (i = 1; i < elf_numsections (abfd)(((abfd) -> tdata.elf_obj_data) -> num_elf_sections); i++) | |||
| 8974 | { | |||
| 8975 | Elf_Internal_Shdr *hdr; | |||
| 8976 | ||||
| 8977 | hdr = elf_elfsections (abfd)(((abfd) -> tdata.elf_obj_data) -> elf_sect_ptr)[i]; | |||
| 8978 | if (hdr->sh_type == type | |||
| 8979 | && (hdr->sh_flags & SHF_ALLOC(1 << 1)) != 0) | |||
| 8980 | { | |||
| 8981 | if (dyn.d_tag == DT_RELSZ18 || dyn.d_tag == DT_RELASZ8) | |||
| 8982 | dyn.d_un.d_val += hdr->sh_size; | |||
| 8983 | else | |||
| 8984 | { | |||
| 8985 | if (dyn.d_un.d_val == 0 | |||
| 8986 | || hdr->sh_addr < dyn.d_un.d_val) | |||
| 8987 | dyn.d_un.d_val = hdr->sh_addr; | |||
| 8988 | } | |||
| 8989 | } | |||
| 8990 | } | |||
| 8991 | break; | |||
| 8992 | } | |||
| 8993 | bed->s->swap_dyn_out (dynobj, &dyn, dyncon); | |||
| 8994 | } | |||
| 8995 | } | |||
| 8996 | ||||
| 8997 | /* If we have created any dynamic sections, then output them. */ | |||
| 8998 | if (dynobj != NULL((void*)0)) | |||
| 8999 | { | |||
| 9000 | if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info)) | |||
| 9001 | goto error_return; | |||
| 9002 | ||||
| 9003 | /* Check for DT_TEXTREL (late, in case the backend removes it). */ | |||
| 9004 | if (!info->allow_textrel || (info->warn_shared_textrel && info->shared)) | |||
| 9005 | { | |||
| 9006 | bfd_byte *dyncon, *dynconend; | |||
| 9007 | ||||
| 9008 | /* Fix up .dynamic entries. */ | |||
| 9009 | o = bfd_get_section_by_name (dynobj, ".dynamic"); | |||
| 9010 | if (o != NULL((void*)0)) | |||
| 9011 | { | |||
| 9012 | dyncon = o->contents; | |||
| 9013 | dynconend = o->contents + o->size; | |||
| 9014 | for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn) | |||
| 9015 | { | |||
| 9016 | Elf_Internal_Dyn dyn; | |||
| 9017 | ||||
| 9018 | bed->s->swap_dyn_in (dynobj, dyncon, &dyn); | |||
| 9019 | ||||
| 9020 | if (dyn.d_tag == DT_TEXTREL22) | |||
| 9021 | { | |||
| 9022 | _bfd_error_handler | |||
| 9023 | (_("warning: creating a DT_TEXTREL in a shared object.")("warning: creating a DT_TEXTREL in a shared object.")); | |||
| 9024 | #if 0 | |||
| 9025 | if (!info->allow_textrel) | |||
| 9026 | goto error_return; | |||
| 9027 | #endif | |||
| 9028 | break; | |||
| 9029 | } | |||
| 9030 | } | |||
| 9031 | } | |||
| 9032 | } | |||
| 9033 | ||||
| 9034 | for (o = dynobj->sections; o != NULL((void*)0); o = o->next) | |||
| 9035 | { | |||
| 9036 | if ((o->flags & SEC_HAS_CONTENTS0x100) == 0 | |||
| 9037 | || o->size == 0 | |||
| 9038 | || o->output_section == bfd_abs_section_ptr((asection *) &bfd_abs_section)) | |||
| 9039 | continue; | |||
| 9040 | if ((o->flags & SEC_LINKER_CREATED0x200000) == 0) | |||
| 9041 | { | |||
| 9042 | /* At this point, we are only interested in sections | |||
| 9043 | created by _bfd_elf_link_create_dynamic_sections. */ | |||
| 9044 | continue; | |||
| 9045 | } | |||
| 9046 | if (elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->stab_info.stabstr == o) | |||
| 9047 | continue; | |||
| 9048 | if (elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->eh_info.hdr_sec == o) | |||
| 9049 | continue; | |||
| 9050 | if ((elf_section_data (o->output_section)((struct bfd_elf_section_data*)(o->output_section)->used_by_bfd )->this_hdr.sh_type | |||
| 9051 | != SHT_STRTAB3) | |||
| 9052 | || strcmp (bfd_get_section_name (abfd, o)((o)->name + 0), ".dynstr") != 0) | |||
| 9053 | { | |||
| 9054 | if (! bfd_set_section_contents (abfd, o->output_section, | |||
| 9055 | o->contents, | |||
| 9056 | (file_ptr) o->output_offset, | |||
| 9057 | o->size)) | |||
| 9058 | goto error_return; | |||
| 9059 | } | |||
| 9060 | else | |||
| 9061 | { | |||
| 9062 | /* The contents of the .dynstr section are actually in a | |||
| 9063 | stringtab. */ | |||
| 9064 | off = elf_section_data (o->output_section)((struct bfd_elf_section_data*)(o->output_section)->used_by_bfd )->this_hdr.sh_offset; | |||
| 9065 | if (bfd_seek (abfd, off, SEEK_SET0) != 0 | |||
| 9066 | || ! _bfd_elf_strtab_emit (abfd, | |||
| 9067 | elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynstr)) | |||
| 9068 | goto error_return; | |||
| 9069 | } | |||
| 9070 | } | |||
| 9071 | } | |||
| 9072 | ||||
| 9073 | if (info->relocatable) | |||
| 9074 | { | |||
| 9075 | bfd_boolean failed = FALSE0; | |||
| 9076 | ||||
| 9077 | bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed); | |||
| 9078 | if (failed) | |||
| 9079 | goto error_return; | |||
| 9080 | } | |||
| 9081 | ||||
| 9082 | /* If we have optimized stabs strings, output them. */ | |||
| 9083 | if (elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->stab_info.stabstr != NULL((void*)0)) | |||
| 9084 | { | |||
| 9085 | if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->stab_info)) | |||
| 9086 | goto error_return; | |||
| 9087 | } | |||
| 9088 | ||||
| 9089 | if (info->eh_frame_hdr) | |||
| 9090 | { | |||
| 9091 | if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info)) | |||
| 9092 | goto error_return; | |||
| 9093 | } | |||
| 9094 | ||||
| 9095 | if (finfo.symstrtab != NULL((void*)0)) | |||
| 9096 | _bfd_stringtab_free (finfo.symstrtab); | |||
| 9097 | if (finfo.contents != NULL((void*)0)) | |||
| 9098 | free (finfo.contents); | |||
| 9099 | if (finfo.external_relocs != NULL((void*)0)) | |||
| 9100 | free (finfo.external_relocs); | |||
| 9101 | if (finfo.internal_relocs != NULL((void*)0)) | |||
| 9102 | free (finfo.internal_relocs); | |||
| 9103 | if (finfo.external_syms != NULL((void*)0)) | |||
| 9104 | free (finfo.external_syms); | |||
| 9105 | if (finfo.locsym_shndx != NULL((void*)0)) | |||
| 9106 | free (finfo.locsym_shndx); | |||
| 9107 | if (finfo.internal_syms != NULL((void*)0)) | |||
| 9108 | free (finfo.internal_syms); | |||
| 9109 | if (finfo.indices != NULL((void*)0)) | |||
| 9110 | free (finfo.indices); | |||
| 9111 | if (finfo.sections != NULL((void*)0)) | |||
| 9112 | free (finfo.sections); | |||
| 9113 | if (finfo.symbuf != NULL((void*)0)) | |||
| 9114 | free (finfo.symbuf); | |||
| 9115 | if (finfo.symshndxbuf != NULL((void*)0)) | |||
| 9116 | free (finfo.symshndxbuf); | |||
| 9117 | for (o = abfd->sections; o != NULL((void*)0); o = o->next) | |||
| 9118 | { | |||
| 9119 | if ((o->flags & SEC_RELOC0x004) != 0 | |||
| 9120 | && elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->rel_hashes != NULL((void*)0)) | |||
| 9121 | free (elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->rel_hashes); | |||
| 9122 | } | |||
| 9123 | ||||
| 9124 | elf_tdata (abfd)((abfd) -> tdata.elf_obj_data)->linker = TRUE1; | |||
| 9125 | ||||
| 9126 | return TRUE1; | |||
| 9127 | ||||
| 9128 | error_return: | |||
| 9129 | if (finfo.symstrtab != NULL((void*)0)) | |||
| 9130 | _bfd_stringtab_free (finfo.symstrtab); | |||
| 9131 | if (finfo.contents != NULL((void*)0)) | |||
| 9132 | free (finfo.contents); | |||
| 9133 | if (finfo.external_relocs != NULL((void*)0)) | |||
| 9134 | free (finfo.external_relocs); | |||
| 9135 | if (finfo.internal_relocs != NULL((void*)0)) | |||
| 9136 | free (finfo.internal_relocs); | |||
| 9137 | if (finfo.external_syms != NULL((void*)0)) | |||
| 9138 | free (finfo.external_syms); | |||
| 9139 | if (finfo.locsym_shndx != NULL((void*)0)) | |||
| 9140 | free (finfo.locsym_shndx); | |||
| 9141 | if (finfo.internal_syms != NULL((void*)0)) | |||
| 9142 | free (finfo.internal_syms); | |||
| 9143 | if (finfo.indices != NULL((void*)0)) | |||
| 9144 | free (finfo.indices); | |||
| 9145 | if (finfo.sections != NULL((void*)0)) | |||
| 9146 | free (finfo.sections); | |||
| 9147 | if (finfo.symbuf != NULL((void*)0)) | |||
| 9148 | free (finfo.symbuf); | |||
| 9149 | if (finfo.symshndxbuf != NULL((void*)0)) | |||
| 9150 | free (finfo.symshndxbuf); | |||
| 9151 | for (o = abfd->sections; o != NULL((void*)0); o = o->next) | |||
| 9152 | { | |||
| 9153 | if ((o->flags & SEC_RELOC0x004) != 0 | |||
| 9154 | && elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->rel_hashes != NULL((void*)0)) | |||
| 9155 | free (elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->rel_hashes); | |||
| 9156 | } | |||
| 9157 | ||||
| 9158 | return FALSE0; | |||
| 9159 | } | |||
| 9160 | ||||
| 9161 | /* Garbage collect unused sections. */ | |||
| 9162 | ||||
| 9163 | /* The mark phase of garbage collection. For a given section, mark | |||
| 9164 | it and any sections in this section's group, and all the sections | |||
| 9165 | which define symbols to which it refers. */ | |||
| 9166 | ||||
| 9167 | typedef asection * (*gc_mark_hook_fn) | |||
| 9168 | (asection *, struct bfd_link_info *, Elf_Internal_Rela *, | |||
| 9169 | struct elf_link_hash_entry *, Elf_Internal_Sym *); | |||
| 9170 | ||||
| 9171 | bfd_boolean | |||
| 9172 | _bfd_elf_gc_mark (struct bfd_link_info *info, | |||
| 9173 | asection *sec, | |||
| 9174 | gc_mark_hook_fn gc_mark_hook) | |||
| 9175 | { | |||
| 9176 | bfd_boolean ret; | |||
| 9177 | bfd_boolean is_eh; | |||
| 9178 | asection *group_sec; | |||
| 9179 | ||||
| 9180 | sec->gc_mark = 1; | |||
| 9181 | ||||
| 9182 | /* Mark all the sections in the group. */ | |||
| 9183 | group_sec = elf_section_data (sec)((struct bfd_elf_section_data*)(sec)->used_by_bfd)->next_in_group; | |||
| 9184 | if (group_sec && !group_sec->gc_mark) | |||
| 9185 | if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook)) | |||
| 9186 | return FALSE0; | |||
| 9187 | ||||
| 9188 | /* Look through the section relocs. */ | |||
| 9189 | ret = TRUE1; | |||
| 9190 | is_eh = strcmp (sec->name, ".eh_frame") == 0; | |||
| 9191 | if ((sec->flags & SEC_RELOC0x004) != 0 && sec->reloc_count > 0) | |||
| 9192 | { | |||
| 9193 | Elf_Internal_Rela *relstart, *rel, *relend; | |||
| 9194 | Elf_Internal_Shdr *symtab_hdr; | |||
| 9195 | struct elf_link_hash_entry **sym_hashes; | |||
| 9196 | size_t nlocsyms; | |||
| 9197 | size_t extsymoff; | |||
| 9198 | bfd *input_bfd = sec->owner; | |||
| 9199 | const struct elf_backend_data *bed = get_elf_backend_data (input_bfd)((const struct elf_backend_data *) (input_bfd)->xvec->backend_data ); | |||
| 9200 | Elf_Internal_Sym *isym = NULL((void*)0); | |||
| 9201 | int r_sym_shift; | |||
| 9202 | ||||
| 9203 | symtab_hdr = &elf_tdata (input_bfd)((input_bfd) -> tdata.elf_obj_data)->symtab_hdr; | |||
| 9204 | sym_hashes = elf_sym_hashes (input_bfd)(((input_bfd) -> tdata.elf_obj_data) -> sym_hashes); | |||
| 9205 | ||||
| 9206 | /* Read the local symbols. */ | |||
| 9207 | if (elf_bad_symtab (input_bfd)(((input_bfd) -> tdata.elf_obj_data) -> bad_symtab)) | |||
| 9208 | { | |||
| 9209 | nlocsyms = symtab_hdr->sh_size / bed->s->sizeof_sym; | |||
| 9210 | extsymoff = 0; | |||
| 9211 | } | |||
| 9212 | else | |||
| 9213 | extsymoff = nlocsyms = symtab_hdr->sh_info; | |||
| 9214 | ||||
| 9215 | isym = (Elf_Internal_Sym *) symtab_hdr->contents; | |||
| 9216 | if (isym == NULL((void*)0) && nlocsyms != 0) | |||
| 9217 | { | |||
| 9218 | isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0, | |||
| 9219 | NULL((void*)0), NULL((void*)0), NULL((void*)0)); | |||
| 9220 | if (isym == NULL((void*)0)) | |||
| 9221 | return FALSE0; | |||
| 9222 | } | |||
| 9223 | ||||
| 9224 | /* Read the relocations. */ | |||
| 9225 | relstart = _bfd_elf_link_read_relocs (input_bfd, sec, NULL((void*)0), NULL((void*)0), | |||
| 9226 | info->keep_memory); | |||
| 9227 | if (relstart == NULL((void*)0)) | |||
| 9228 | { | |||
| 9229 | ret = FALSE0; | |||
| 9230 | goto out1; | |||
| 9231 | } | |||
| 9232 | relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel; | |||
| 9233 | ||||
| 9234 | if (bed->s->arch_size == 32) | |||
| 9235 | r_sym_shift = 8; | |||
| 9236 | else | |||
| 9237 | r_sym_shift = 32; | |||
| 9238 | ||||
| 9239 | for (rel = relstart; rel < relend; rel++) | |||
| 9240 | { | |||
| 9241 | unsigned long r_symndx; | |||
| 9242 | asection *rsec; | |||
| 9243 | struct elf_link_hash_entry *h; | |||
| 9244 | ||||
| 9245 | r_symndx = rel->r_info >> r_sym_shift; | |||
| 9246 | if (r_symndx == 0) | |||
| 9247 | continue; | |||
| 9248 | ||||
| 9249 | if (r_symndx >= nlocsyms | |||
| 9250 | || ELF_ST_BIND (isym[r_symndx].st_info)(((unsigned int)(isym[r_symndx].st_info)) >> 4) != STB_LOCAL0) | |||
| 9251 | { | |||
| 9252 | h = sym_hashes[r_symndx - extsymoff]; | |||
| 9253 | while (h->root.type == bfd_link_hash_indirect | |||
| 9254 | || h->root.type == bfd_link_hash_warning) | |||
| 9255 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |||
| 9256 | rsec = (*gc_mark_hook) (sec, info, rel, h, NULL((void*)0)); | |||
| 9257 | } | |||
| 9258 | else | |||
| 9259 | { | |||
| 9260 | rsec = (*gc_mark_hook) (sec, info, rel, NULL((void*)0), &isym[r_symndx]); | |||
| 9261 | } | |||
| 9262 | ||||
| 9263 | if (rsec && !rsec->gc_mark) | |||
| 9264 | { | |||
| 9265 | if (bfd_get_flavour (rsec->owner)((rsec->owner)->xvec->flavour) != bfd_target_elf_flavour) | |||
| 9266 | rsec->gc_mark = 1; | |||
| 9267 | else if (is_eh) | |||
| 9268 | rsec->gc_mark_from_eh = 1; | |||
| 9269 | else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook)) | |||
| 9270 | { | |||
| 9271 | ret = FALSE0; | |||
| 9272 | goto out2; | |||
| 9273 | } | |||
| 9274 | } | |||
| 9275 | } | |||
| 9276 | ||||
| 9277 | out2: | |||
| 9278 | if (elf_section_data (sec)((struct bfd_elf_section_data*)(sec)->used_by_bfd)->relocs != relstart) | |||
| 9279 | free (relstart); | |||
| 9280 | out1: | |||
| 9281 | if (isym != NULL((void*)0) && symtab_hdr->contents != (unsigned char *) isym) | |||
| 9282 | { | |||
| 9283 | if (! info->keep_memory) | |||
| 9284 | free (isym); | |||
| 9285 | else | |||
| 9286 | symtab_hdr->contents = (unsigned char *) isym; | |||
| 9287 | } | |||
| 9288 | } | |||
| 9289 | ||||
| 9290 | return ret; | |||
| 9291 | } | |||
| 9292 | ||||
| 9293 | /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */ | |||
| 9294 | ||||
| 9295 | struct elf_gc_sweep_symbol_info { | |||
| 9296 | struct bfd_link_info *info; | |||
| 9297 | void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *, | |||
| 9298 | bfd_boolean); | |||
| 9299 | }; | |||
| 9300 | ||||
| 9301 | static bfd_boolean | |||
| 9302 | elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data) | |||
| 9303 | { | |||
| 9304 | if (h->root.type == bfd_link_hash_warning) | |||
| 9305 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |||
| 9306 | ||||
| 9307 | if ((h->root.type == bfd_link_hash_defined | |||
| 9308 | || h->root.type == bfd_link_hash_defweak) | |||
| 9309 | && !h->root.u.def.section->gc_mark | |||
| 9310 | && !(h->root.u.def.section->owner->flags & DYNAMIC0x40)) | |||
| 9311 | { | |||
| 9312 | struct elf_gc_sweep_symbol_info *inf = data; | |||
| 9313 | (*inf->hide_symbol) (inf->info, h, TRUE1); | |||
| 9314 | } | |||
| 9315 | ||||
| 9316 | return TRUE1; | |||
| 9317 | } | |||
| 9318 | ||||
| 9319 | /* The sweep phase of garbage collection. Remove all garbage sections. */ | |||
| 9320 | ||||
| 9321 | typedef bfd_boolean (*gc_sweep_hook_fn) | |||
| 9322 | (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *); | |||
| 9323 | ||||
| 9324 | static bfd_boolean | |||
| 9325 | elf_gc_sweep (bfd *abfd, struct bfd_link_info *info) | |||
| 9326 | { | |||
| 9327 | bfd *sub; | |||
| 9328 | const struct elf_backend_data *bed = get_elf_backend_data (abfd)((const struct elf_backend_data *) (abfd)->xvec->backend_data ); | |||
| 9329 | gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook; | |||
| 9330 | unsigned long section_sym_count; | |||
| 9331 | struct elf_gc_sweep_symbol_info sweep_info; | |||
| 9332 | ||||
| 9333 | for (sub = info->input_bfds; sub != NULL((void*)0); sub = sub->link_next) | |||
| 9334 | { | |||
| 9335 | asection *o; | |||
| 9336 | ||||
| 9337 | if (bfd_get_flavour (sub)((sub)->xvec->flavour) != bfd_target_elf_flavour) | |||
| 9338 | continue; | |||
| 9339 | ||||
| 9340 | for (o = sub->sections; o != NULL((void*)0); o = o->next) | |||
| 9341 | { | |||
| 9342 | /* Keep debug and special sections. */ | |||
| 9343 | if ((o->flags & (SEC_DEBUGGING0x2000 | SEC_LINKER_CREATED0x200000)) != 0 | |||
| 9344 | || elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->this_hdr.sh_type == SHT_NOTE7 | |||
| 9345 | || (o->flags & (SEC_ALLOC0x001 | SEC_LOAD0x002 | SEC_RELOC0x004)) == 0) | |||
| 9346 | o->gc_mark = 1; | |||
| 9347 | ||||
| 9348 | if (o->gc_mark) | |||
| 9349 | continue; | |||
| 9350 | ||||
| 9351 | /* Skip sweeping sections already excluded. */ | |||
| 9352 | if (o->flags & SEC_EXCLUDE0x8000) | |||
| 9353 | continue; | |||
| 9354 | ||||
| 9355 | /* Since this is early in the link process, it is simple | |||
| 9356 | to remove a section from the output. */ | |||
| 9357 | o->flags |= SEC_EXCLUDE0x8000; | |||
| 9358 | ||||
| 9359 | /* But we also have to update some of the relocation | |||
| 9360 | info we collected before. */ | |||
| 9361 | if (gc_sweep_hook | |||
| 9362 | && (o->flags & SEC_RELOC0x004) != 0 | |||
| 9363 | && o->reloc_count > 0 | |||
| 9364 | && !bfd_is_abs_section (o->output_section)((o->output_section) == ((asection *) &bfd_abs_section ))) | |||
| 9365 | { | |||
| 9366 | Elf_Internal_Rela *internal_relocs; | |||
| 9367 | bfd_boolean r; | |||
| 9368 | ||||
| 9369 | internal_relocs | |||
| 9370 | = _bfd_elf_link_read_relocs (o->owner, o, NULL((void*)0), NULL((void*)0), | |||
| 9371 | info->keep_memory); | |||
| 9372 | if (internal_relocs == NULL((void*)0)) | |||
| 9373 | return FALSE0; | |||
| 9374 | ||||
| 9375 | r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs); | |||
| 9376 | ||||
| 9377 | if (elf_section_data (o)((struct bfd_elf_section_data*)(o)->used_by_bfd)->relocs != internal_relocs) | |||
| 9378 | free (internal_relocs); | |||
| 9379 | ||||
| 9380 | if (!r) | |||
| 9381 | return FALSE0; | |||
| 9382 | } | |||
| 9383 | } | |||
| 9384 | } | |||
| 9385 | ||||
| 9386 | /* Remove the symbols that were in the swept sections from the dynamic | |||
| 9387 | symbol table. GCFIXME: Anyone know how to get them out of the | |||
| 9388 | static symbol table as well? */ | |||
| 9389 | sweep_info.info = info; | |||
| 9390 | sweep_info.hide_symbol = bed->elf_backend_hide_symbol; | |||
| 9391 | elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (elf_gc_sweep_symbol), (&sweep_info))) | |||
| 9392 | &sweep_info)(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (elf_gc_sweep_symbol), (&sweep_info))); | |||
| 9393 | ||||
| 9394 | _bfd_elf_link_renumber_dynsyms (abfd, info, §ion_sym_count); | |||
| 9395 | return TRUE1; | |||
| 9396 | } | |||
| 9397 | ||||
| 9398 | /* Propagate collected vtable information. This is called through | |||
| 9399 | elf_link_hash_traverse. */ | |||
| 9400 | ||||
| 9401 | static bfd_boolean | |||
| 9402 | elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp) | |||
| 9403 | { | |||
| 9404 | if (h->root.type == bfd_link_hash_warning) | |||
| 9405 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |||
| 9406 | ||||
| 9407 | /* Those that are not vtables. */ | |||
| 9408 | if (h->vtable == NULL((void*)0) || h->vtable->parent == NULL((void*)0)) | |||
| 9409 | return TRUE1; | |||
| 9410 | ||||
| 9411 | /* Those vtables that do not have parents, we cannot merge. */ | |||
| 9412 | if (h->vtable->parent == (struct elf_link_hash_entry *) -1) | |||
| 9413 | return TRUE1; | |||
| 9414 | ||||
| 9415 | /* If we've already been done, exit. */ | |||
| 9416 | if (h->vtable->used && h->vtable->used[-1]) | |||
| 9417 | return TRUE1; | |||
| 9418 | ||||
| 9419 | /* Make sure the parent's table is up to date. */ | |||
| 9420 | elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp); | |||
| 9421 | ||||
| 9422 | if (h->vtable->used == NULL((void*)0)) | |||
| 9423 | { | |||
| 9424 | /* None of this table's entries were referenced. Re-use the | |||
| 9425 | parent's table. */ | |||
| 9426 | h->vtable->used = h->vtable->parent->vtable->used; | |||
| 9427 | h->vtable->size = h->vtable->parent->vtable->size; | |||
| 9428 | } | |||
| 9429 | else | |||
| 9430 | { | |||
| 9431 | size_t n; | |||
| 9432 | bfd_boolean *cu, *pu; | |||
| 9433 | ||||
| 9434 | /* Or the parent's entries into ours. */ | |||
| 9435 | cu = h->vtable->used; | |||
| 9436 | cu[-1] = TRUE1; | |||
| 9437 | pu = h->vtable->parent->vtable->used; | |||
| 9438 | if (pu != NULL((void*)0)) | |||
| 9439 | { | |||
| 9440 | const struct elf_backend_data *bed; | |||
| 9441 | unsigned int log_file_align; | |||
| 9442 | ||||
| 9443 | bed = get_elf_backend_data (h->root.u.def.section->owner)((const struct elf_backend_data *) (h->root.u.def.section-> owner)->xvec->backend_data); | |||
| 9444 | log_file_align = bed->s->log_file_align; | |||
| 9445 | n = h->vtable->parent->vtable->size >> log_file_align; | |||
| 9446 | while (n--) | |||
| 9447 | { | |||
| 9448 | if (*pu) | |||
| 9449 | *cu = TRUE1; | |||
| 9450 | pu++; | |||
| 9451 | cu++; | |||
| 9452 | } | |||
| 9453 | } | |||
| 9454 | } | |||
| 9455 | ||||
| 9456 | return TRUE1; | |||
| 9457 | } | |||
| 9458 | ||||
| 9459 | static bfd_boolean | |||
| 9460 | elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp) | |||
| 9461 | { | |||
| 9462 | asection *sec; | |||
| 9463 | bfd_vma hstart, hend; | |||
| 9464 | Elf_Internal_Rela *relstart, *relend, *rel; | |||
| 9465 | const struct elf_backend_data *bed; | |||
| 9466 | unsigned int log_file_align; | |||
| 9467 | ||||
| 9468 | if (h->root.type == bfd_link_hash_warning) | |||
| 9469 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |||
| 9470 | ||||
| 9471 | /* Take care of both those symbols that do not describe vtables as | |||
| 9472 | well as those that are not loaded. */ | |||
| 9473 | if (h->vtable == NULL((void*)0) || h->vtable->parent == NULL((void*)0)) | |||
| 9474 | return TRUE1; | |||
| 9475 | ||||
| 9476 | BFD_ASSERT (h->root.type == bfd_link_hash_defineddo { if (!(h->root.type == bfd_link_hash_defined || h-> root.type == bfd_link_hash_defweak)) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,9477); } while (0) | |||
| 9477 | || h->root.type == bfd_link_hash_defweak)do { if (!(h->root.type == bfd_link_hash_defined || h-> root.type == bfd_link_hash_defweak)) bfd_assert("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" ,9477); } while (0); | |||
| 9478 | ||||
| 9479 | sec = h->root.u.def.section; | |||
| 9480 | hstart = h->root.u.def.value; | |||
| 9481 | hend = hstart + h->size; | |||
| 9482 | ||||
| 9483 | relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL((void*)0), NULL((void*)0), TRUE1); | |||
| 9484 | if (!relstart) | |||
| 9485 | return *(bfd_boolean *) okp = FALSE0; | |||
| 9486 | bed = get_elf_backend_data (sec->owner)((const struct elf_backend_data *) (sec->owner)->xvec-> backend_data); | |||
| 9487 | log_file_align = bed->s->log_file_align; | |||
| 9488 | ||||
| 9489 | relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel; | |||
| 9490 | ||||
| 9491 | for (rel = relstart; rel < relend; ++rel) | |||
| 9492 | if (rel->r_offset >= hstart && rel->r_offset < hend) | |||
| 9493 | { | |||
| 9494 | /* If the entry is in use, do nothing. */ | |||
| 9495 | if (h->vtable->used | |||
| 9496 | && (rel->r_offset - hstart) < h->vtable->size) | |||
| 9497 | { | |||
| 9498 | bfd_vma entry = (rel->r_offset - hstart) >> log_file_align; | |||
| 9499 | if (h->vtable->used[entry]) | |||
| 9500 | continue; | |||
| 9501 | } | |||
| 9502 | /* Otherwise, kill it. */ | |||
| 9503 | rel->r_offset = rel->r_info = rel->r_addend = 0; | |||
| 9504 | } | |||
| 9505 | ||||
| 9506 | return TRUE1; | |||
| 9507 | } | |||
| 9508 | ||||
| 9509 | /* Mark sections containing dynamically referenced symbols. When | |||
| 9510 | building shared libraries, we must assume that any visible symbol is | |||
| 9511 | referenced. */ | |||
| 9512 | ||||
| 9513 | bfd_boolean | |||
| 9514 | bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf) | |||
| 9515 | { | |||
| 9516 | struct bfd_link_info *info = (struct bfd_link_info *) inf; | |||
| 9517 | ||||
| 9518 | if (h->root.type == bfd_link_hash_warning) | |||
| 9519 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |||
| 9520 | ||||
| 9521 | if ((h->root.type == bfd_link_hash_defined | |||
| 9522 | || h->root.type == bfd_link_hash_defweak) | |||
| 9523 | && (h->ref_dynamic | |||
| 9524 | || (!info->executable | |||
| 9525 | && h->def_regular | |||
| 9526 | && ELF_ST_VISIBILITY (h->other)((h->other) & 0x3) != STV_INTERNAL1 | |||
| 9527 | && ELF_ST_VISIBILITY (h->other)((h->other) & 0x3) != STV_HIDDEN2))) | |||
| 9528 | h->root.u.def.section->flags |= SEC_KEEP0x400000; | |||
| 9529 | ||||
| 9530 | return TRUE1; | |||
| 9531 | } | |||
| 9532 | ||||
| 9533 | /* Do mark and sweep of unused sections. */ | |||
| 9534 | ||||
| 9535 | bfd_boolean | |||
| 9536 | bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info) | |||
| 9537 | { | |||
| 9538 | bfd_boolean ok = TRUE1; | |||
| 9539 | bfd *sub; | |||
| 9540 | asection * (*gc_mark_hook) | |||
| 9541 | (asection *, struct bfd_link_info *, Elf_Internal_Rela *, | |||
| 9542 | struct elf_link_hash_entry *h, Elf_Internal_Sym *); | |||
| 9543 | const struct elf_backend_data *bed = get_elf_backend_data (abfd)((const struct elf_backend_data *) (abfd)->xvec->backend_data ); | |||
| 9544 | ||||
| 9545 | if (!bed->can_gc_sections | |||
| 9546 | || info->relocatable | |||
| 9547 | || info->emitrelocations | |||
| 9548 | || !is_elf_hash_table (info->hash)(((struct bfd_link_hash_table *) (info->hash))->type == bfd_link_elf_hash_table)) | |||
| 9549 | { | |||
| 9550 | (*_bfd_error_handler)(_("Warning: gc-sections option ignored")("Warning: gc-sections option ignored")); | |||
| 9551 | return TRUE1; | |||
| 9552 | } | |||
| 9553 | ||||
| 9554 | /* Apply transitive closure to the vtable entry usage info. */ | |||
| 9555 | elf_link_hash_traverse (elf_hash_table (info),(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (elf_gc_propagate_vtable_entries_used), (&ok ))) | |||
| 9556 | elf_gc_propagate_vtable_entries_used,(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (elf_gc_propagate_vtable_entries_used), (&ok ))) | |||
| 9557 | &ok)(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (elf_gc_propagate_vtable_entries_used), (&ok ))); | |||
| 9558 | if (!ok) | |||
| 9559 | return FALSE0; | |||
| 9560 | ||||
| 9561 | /* Kill the vtable relocations that were not used. */ | |||
| 9562 | elf_link_hash_traverse (elf_hash_table (info),(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (elf_gc_smash_unused_vtentry_relocs), (&ok)) ) | |||
| 9563 | elf_gc_smash_unused_vtentry_relocs,(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (elf_gc_smash_unused_vtentry_relocs), (&ok)) ) | |||
| 9564 | &ok)(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (elf_gc_smash_unused_vtentry_relocs), (&ok)) ); | |||
| 9565 | if (!ok) | |||
| 9566 | return FALSE0; | |||
| 9567 | ||||
| 9568 | /* Mark dynamically referenced symbols. */ | |||
| 9569 | if (elf_hash_table (info)((struct elf_link_hash_table *) ((info)->hash))->dynamic_sections_created) | |||
| 9570 | elf_link_hash_traverse (elf_hash_table (info),(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (bed->gc_mark_dynamic_ref), (info))) | |||
| 9571 | bed->gc_mark_dynamic_ref,(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (bed->gc_mark_dynamic_ref), (info))) | |||
| 9572 | info)(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (bed->gc_mark_dynamic_ref), (info))); | |||
| 9573 | ||||
| 9574 | /* Grovel through relocs to find out who stays ... */ | |||
| 9575 | gc_mark_hook = bed->gc_mark_hook; | |||
| 9576 | for (sub = info->input_bfds; sub != NULL((void*)0); sub = sub->link_next) | |||
| 9577 | { | |||
| 9578 | asection *o; | |||
| 9579 | ||||
| 9580 | if (bfd_get_flavour (sub)((sub)->xvec->flavour) != bfd_target_elf_flavour) | |||
| 9581 | continue; | |||
| 9582 | ||||
| 9583 | for (o = sub->sections; o != NULL((void*)0); o = o->next) | |||
| 9584 | if ((o->flags & SEC_KEEP0x400000) != 0 && !o->gc_mark) | |||
| 9585 | if (!_bfd_elf_gc_mark (info, o, gc_mark_hook)) | |||
| 9586 | return FALSE0; | |||
| 9587 | } | |||
| 9588 | ||||
| 9589 | /* ... again for sections marked from eh_frame. */ | |||
| 9590 | for (sub = info->input_bfds; sub != NULL((void*)0); sub = sub->link_next) | |||
| 9591 | { | |||
| 9592 | asection *o; | |||
| 9593 | ||||
| 9594 | if (bfd_get_flavour (sub)((sub)->xvec->flavour) != bfd_target_elf_flavour) | |||
| 9595 | continue; | |||
| 9596 | ||||
| 9597 | /* Keep .gcc_except_table.* if the associated .text.* is | |||
| 9598 | marked. This isn't very nice, but the proper solution, | |||
| 9599 | splitting .eh_frame up and using comdat doesn't pan out | |||
| 9600 | easily due to needing special relocs to handle the | |||
| 9601 | difference of two symbols in separate sections. | |||
| 9602 | Don't keep code sections referenced by .eh_frame. */ | |||
| 9603 | for (o = sub->sections; o != NULL((void*)0); o = o->next) | |||
| 9604 | if (!o->gc_mark && o->gc_mark_from_eh && (o->flags & SEC_CODE0x010) == 0) | |||
| 9605 | { | |||
| 9606 | if (strncmp (o->name, ".gcc_except_table.", 18) == 0) | |||
| 9607 | { | |||
| 9608 | unsigned long len; | |||
| 9609 | char *fn_name; | |||
| 9610 | asection *fn_text; | |||
| 9611 | ||||
| 9612 | len = strlen (o->name + 18) + 1; | |||
| 9613 | fn_name = bfd_malloc (len + 6); | |||
| 9614 | if (fn_name == NULL((void*)0)) | |||
| 9615 | return FALSE0; | |||
| 9616 | memcpy (fn_name, ".text.", 6); | |||
| 9617 | memcpy (fn_name + 6, o->name + 18, len); | |||
| 9618 | fn_text = bfd_get_section_by_name (sub, fn_name); | |||
| 9619 | free (fn_name); | |||
| 9620 | if (fn_text == NULL((void*)0) || !fn_text->gc_mark) | |||
| 9621 | continue; | |||
| 9622 | } | |||
| 9623 | ||||
| 9624 | /* If not using specially named exception table section, | |||
| 9625 | then keep whatever we are using. */ | |||
| 9626 | if (!_bfd_elf_gc_mark (info, o, gc_mark_hook)) | |||
| 9627 | return FALSE0; | |||
| 9628 | } | |||
| 9629 | } | |||
| 9630 | ||||
| 9631 | /* ... and mark SEC_EXCLUDE for those that go. */ | |||
| 9632 | return elf_gc_sweep (abfd, info); | |||
| 9633 | } | |||
| 9634 | ||||
| 9635 | /* Called from check_relocs to record the existence of a VTINHERIT reloc. */ | |||
| 9636 | ||||
| 9637 | bfd_boolean | |||
| 9638 | bfd_elf_gc_record_vtinherit (bfd *abfd, | |||
| 9639 | asection *sec, | |||
| 9640 | struct elf_link_hash_entry *h, | |||
| 9641 | bfd_vma offset) | |||
| 9642 | { | |||
| 9643 | struct elf_link_hash_entry **sym_hashes, **sym_hashes_end; | |||
| 9644 | struct elf_link_hash_entry **search, *child; | |||
| 9645 | bfd_size_type extsymcount; | |||
| 9646 | const struct elf_backend_data *bed = get_elf_backend_data (abfd)((const struct elf_backend_data *) (abfd)->xvec->backend_data ); | |||
| 9647 | ||||
| 9648 | /* The sh_info field of the symtab header tells us where the | |||
| 9649 | external symbols start. We don't care about the local symbols at | |||
| 9650 | this point. */ | |||
| 9651 | extsymcount = elf_tdata (abfd)((abfd) -> tdata.elf_obj_data)->symtab_hdr.sh_size / bed->s->sizeof_sym; | |||
| 9652 | if (!elf_bad_symtab (abfd)(((abfd) -> tdata.elf_obj_data) -> bad_symtab)) | |||
| 9653 | extsymcount -= elf_tdata (abfd)((abfd) -> tdata.elf_obj_data)->symtab_hdr.sh_info; | |||
| 9654 | ||||
| 9655 | sym_hashes = elf_sym_hashes (abfd)(((abfd) -> tdata.elf_obj_data) -> sym_hashes); | |||
| 9656 | sym_hashes_end = sym_hashes + extsymcount; | |||
| 9657 | ||||
| 9658 | /* Hunt down the child symbol, which is in this section at the same | |||
| 9659 | offset as the relocation. */ | |||
| 9660 | for (search = sym_hashes; search != sym_hashes_end; ++search) | |||
| 9661 | { | |||
| 9662 | if ((child = *search) != NULL((void*)0) | |||
| 9663 | && (child->root.type == bfd_link_hash_defined | |||
| 9664 | || child->root.type == bfd_link_hash_defweak) | |||
| 9665 | && child->root.u.def.section == sec | |||
| 9666 | && child->root.u.def.value == offset) | |||
| 9667 | goto win; | |||
| 9668 | } | |||
| 9669 | ||||
| 9670 | (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT", | |||
| 9671 | abfd, sec, (unsigned long) offset); | |||
| 9672 | bfd_set_error (bfd_error_invalid_operation); | |||
| 9673 | return FALSE0; | |||
| 9674 | ||||
| 9675 | win: | |||
| 9676 | if (!child->vtable) | |||
| 9677 | { | |||
| 9678 | child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable)); | |||
| 9679 | if (!child->vtable) | |||
| 9680 | return FALSE0; | |||
| 9681 | } | |||
| 9682 | if (!h) | |||
| 9683 | { | |||
| 9684 | /* This *should* only be the absolute section. It could potentially | |||
| 9685 | be that someone has defined a non-global vtable though, which | |||
| 9686 | would be bad. It isn't worth paging in the local symbols to be | |||
| 9687 | sure though; that case should simply be handled by the assembler. */ | |||
| 9688 | ||||
| 9689 | child->vtable->parent = (struct elf_link_hash_entry *) -1; | |||
| 9690 | } | |||
| 9691 | else | |||
| 9692 | child->vtable->parent = h; | |||
| 9693 | ||||
| 9694 | return TRUE1; | |||
| 9695 | } | |||
| 9696 | ||||
| 9697 | /* Called from check_relocs to record the existence of a VTENTRY reloc. */ | |||
| 9698 | ||||
| 9699 | bfd_boolean | |||
| 9700 | bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED__attribute__ ((__unused__)), | |||
| 9701 | asection *sec ATTRIBUTE_UNUSED__attribute__ ((__unused__)), | |||
| 9702 | struct elf_link_hash_entry *h, | |||
| 9703 | bfd_vma addend) | |||
| 9704 | { | |||
| 9705 | const struct elf_backend_data *bed = get_elf_backend_data (abfd)((const struct elf_backend_data *) (abfd)->xvec->backend_data ); | |||
| 9706 | unsigned int log_file_align = bed->s->log_file_align; | |||
| 9707 | ||||
| 9708 | if (!h->vtable) | |||
| 9709 | { | |||
| 9710 | h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable)); | |||
| 9711 | if (!h->vtable) | |||
| 9712 | return FALSE0; | |||
| 9713 | } | |||
| 9714 | ||||
| 9715 | if (addend >= h->vtable->size) | |||
| 9716 | { | |||
| 9717 | size_t size, bytes, file_align; | |||
| 9718 | bfd_boolean *ptr = h->vtable->used; | |||
| 9719 | ||||
| 9720 | /* While the symbol is undefined, we have to be prepared to handle | |||
| 9721 | a zero size. */ | |||
| 9722 | file_align = 1 << log_file_align; | |||
| 9723 | if (h->root.type == bfd_link_hash_undefined) | |||
| 9724 | size = addend + file_align; | |||
| 9725 | else | |||
| 9726 | { | |||
| 9727 | size = h->size; | |||
| 9728 | if (addend >= size) | |||
| 9729 | { | |||
| 9730 | /* Oops! We've got a reference past the defined end of | |||
| 9731 | the table. This is probably a bug -- shall we warn? */ | |||
| 9732 | size = addend + file_align; | |||
| 9733 | } | |||
| 9734 | } | |||
| 9735 | size = (size + file_align - 1) & -file_align; | |||
| 9736 | ||||
| 9737 | /* Allocate one extra entry for use as a "done" flag for the | |||
| 9738 | consolidation pass. */ | |||
| 9739 | bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean); | |||
| 9740 | ||||
| 9741 | if (ptr) | |||
| 9742 | { | |||
| 9743 | ptr = bfd_realloc (ptr - 1, bytes); | |||
| 9744 | ||||
| 9745 | if (ptr != NULL((void*)0)) | |||
| 9746 | { | |||
| 9747 | size_t oldbytes; | |||
| 9748 | ||||
| 9749 | oldbytes = (((h->vtable->size >> log_file_align) + 1) | |||
| 9750 | * sizeof (bfd_boolean)); | |||
| 9751 | memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes); | |||
| 9752 | } | |||
| 9753 | } | |||
| 9754 | else | |||
| 9755 | ptr = bfd_zmalloc (bytes); | |||
| 9756 | ||||
| 9757 | if (ptr == NULL((void*)0)) | |||
| 9758 | return FALSE0; | |||
| 9759 | ||||
| 9760 | /* And arrange for that done flag to be at index -1. */ | |||
| 9761 | h->vtable->used = ptr + 1; | |||
| 9762 | h->vtable->size = size; | |||
| 9763 | } | |||
| 9764 | ||||
| 9765 | h->vtable->used[addend >> log_file_align] = TRUE1; | |||
| 9766 | ||||
| 9767 | return TRUE1; | |||
| 9768 | } | |||
| 9769 | ||||
| 9770 | struct alloc_got_off_arg { | |||
| 9771 | bfd_vma gotoff; | |||
| 9772 | unsigned int got_elt_size; | |||
| 9773 | }; | |||
| 9774 | ||||
| 9775 | /* We need a special top-level link routine to convert got reference counts | |||
| 9776 | to real got offsets. */ | |||
| 9777 | ||||
| 9778 | static bfd_boolean | |||
| 9779 | elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg) | |||
| 9780 | { | |||
| 9781 | struct alloc_got_off_arg *gofarg = arg; | |||
| 9782 | ||||
| 9783 | if (h->root.type == bfd_link_hash_warning) | |||
| 9784 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |||
| 9785 | ||||
| 9786 | if (h->got.refcount > 0) | |||
| 9787 | { | |||
| 9788 | h->got.offset = gofarg->gotoff; | |||
| 9789 | gofarg->gotoff += gofarg->got_elt_size; | |||
| 9790 | } | |||
| 9791 | else | |||
| 9792 | h->got.offset = (bfd_vma) -1; | |||
| 9793 | ||||
| 9794 | return TRUE1; | |||
| 9795 | } | |||
| 9796 | ||||
| 9797 | /* And an accompanying bit to work out final got entry offsets once | |||
| 9798 | we're done. Should be called from final_link. */ | |||
| 9799 | ||||
| 9800 | bfd_boolean | |||
| 9801 | bfd_elf_gc_common_finalize_got_offsets (bfd *abfd, | |||
| 9802 | struct bfd_link_info *info) | |||
| 9803 | { | |||
| 9804 | bfd *i; | |||
| 9805 | const struct elf_backend_data *bed = get_elf_backend_data (abfd)((const struct elf_backend_data *) (abfd)->xvec->backend_data ); | |||
| 9806 | bfd_vma gotoff; | |||
| 9807 | unsigned int got_elt_size = bed->s->arch_size / 8; | |||
| 9808 | struct alloc_got_off_arg gofarg; | |||
| 9809 | ||||
| 9810 | if (! is_elf_hash_table (info->hash)(((struct bfd_link_hash_table *) (info->hash))->type == bfd_link_elf_hash_table)) | |||
| 9811 | return FALSE0; | |||
| 9812 | ||||
| 9813 | /* The GOT offset is relative to the .got section, but the GOT header is | |||
| 9814 | put into the .got.plt section, if the backend uses it. */ | |||
| 9815 | if (bed->want_got_plt) | |||
| 9816 | gotoff = 0; | |||
| 9817 | else | |||
| 9818 | gotoff = bed->got_header_size; | |||
| 9819 | ||||
| 9820 | /* Do the local .got entries first. */ | |||
| 9821 | for (i = info->input_bfds; i; i = i->link_next) | |||
| 9822 | { | |||
| 9823 | bfd_signed_vma *local_got; | |||
| 9824 | bfd_size_type j, locsymcount; | |||
| 9825 | Elf_Internal_Shdr *symtab_hdr; | |||
| 9826 | ||||
| 9827 | if (bfd_get_flavour (i)((i)->xvec->flavour) != bfd_target_elf_flavour) | |||
| 9828 | continue; | |||
| 9829 | ||||
| 9830 | local_got = elf_local_got_refcounts (i)(((i) -> tdata.elf_obj_data) -> local_got.refcounts); | |||
| 9831 | if (!local_got) | |||
| 9832 | continue; | |||
| 9833 | ||||
| 9834 | symtab_hdr = &elf_tdata (i)((i) -> tdata.elf_obj_data)->symtab_hdr; | |||
| 9835 | if (elf_bad_symtab (i)(((i) -> tdata.elf_obj_data) -> bad_symtab)) | |||
| 9836 | locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym; | |||
| 9837 | else | |||
| 9838 | locsymcount = symtab_hdr->sh_info; | |||
| 9839 | ||||
| 9840 | for (j = 0; j < locsymcount; ++j) | |||
| 9841 | { | |||
| 9842 | if (local_got[j] > 0) | |||
| 9843 | { | |||
| 9844 | local_got[j] = gotoff; | |||
| 9845 | gotoff += got_elt_size; | |||
| 9846 | } | |||
| 9847 | else | |||
| 9848 | local_got[j] = (bfd_vma) -1; | |||
| 9849 | } | |||
| 9850 | } | |||
| 9851 | ||||
| 9852 | /* Then the global .got entries. .plt refcounts are handled by | |||
| 9853 | adjust_dynamic_symbol */ | |||
| 9854 | gofarg.gotoff = gotoff; | |||
| 9855 | gofarg.got_elt_size = got_elt_size; | |||
| 9856 | elf_link_hash_traverse (elf_hash_table (info),(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (elf_gc_allocate_got_offsets), (&gofarg))) | |||
| 9857 | elf_gc_allocate_got_offsets,(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (elf_gc_allocate_got_offsets), (&gofarg))) | |||
| 9858 | &gofarg)(bfd_link_hash_traverse (&(((struct elf_link_hash_table * ) ((info)->hash)))->root, (bfd_boolean (*) (struct bfd_link_hash_entry *, void *)) (elf_gc_allocate_got_offsets), (&gofarg))); | |||
| 9859 | return TRUE1; | |||
| 9860 | } | |||
| 9861 | ||||
| 9862 | /* Many folk need no more in the way of final link than this, once | |||
| 9863 | got entry reference counting is enabled. */ | |||
| 9864 | ||||
| 9865 | bfd_boolean | |||
| 9866 | bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info) | |||
| 9867 | { | |||
| 9868 | if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info)) | |||
| 9869 | return FALSE0; | |||
| 9870 | ||||
| 9871 | /* Invoke the regular ELF backend linker to do all the work. */ | |||
| 9872 | return bfd_elf_final_link (abfd, info); | |||
| 9873 | } | |||
| 9874 | ||||
| 9875 | bfd_boolean | |||
| 9876 | bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie) | |||
| 9877 | { | |||
| 9878 | struct elf_reloc_cookie *rcookie = cookie; | |||
| 9879 | ||||
| 9880 | if (rcookie->bad_symtab) | |||
| 9881 | rcookie->rel = rcookie->rels; | |||
| 9882 | ||||
| 9883 | for (; rcookie->rel < rcookie->relend; rcookie->rel++) | |||
| 9884 | { | |||
| 9885 | unsigned long r_symndx; | |||
| 9886 | ||||
| 9887 | if (! rcookie->bad_symtab) | |||
| 9888 | if (rcookie->rel->r_offset > offset) | |||
| 9889 | return FALSE0; | |||
| 9890 | if (rcookie->rel->r_offset != offset) | |||
| 9891 | continue; | |||
| 9892 | ||||
| 9893 | r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift; | |||
| 9894 | if (r_symndx == SHN_UNDEF0) | |||
| 9895 | return TRUE1; | |||
| 9896 | ||||
| 9897 | if (r_symndx >= rcookie->locsymcount | |||
| 9898 | || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info)(((unsigned int)(rcookie->locsyms[r_symndx].st_info)) >> 4) != STB_LOCAL0) | |||
| 9899 | { | |||
| 9900 | struct elf_link_hash_entry *h; | |||
| 9901 | ||||
| 9902 | h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff]; | |||
| 9903 | ||||
| 9904 | while (h->root.type == bfd_link_hash_indirect | |||
| 9905 | || h->root.type == bfd_link_hash_warning) | |||
| 9906 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |||
| 9907 | ||||
| 9908 | if ((h->root.type == bfd_link_hash_defined | |||
| 9909 | || h->root.type == bfd_link_hash_defweak) | |||
| 9910 | && elf_discarded_section (h->root.u.def.section)(!((h->root.u.def.section) == ((asection *) &bfd_abs_section )) && (((h->root.u.def.section)->output_section ) == ((asection *) &bfd_abs_section)) && (h->root .u.def.section)->sec_info_type != 2 && (h->root .u.def.section)->sec_info_type != 4)) | |||
| 9911 | return TRUE1; | |||
| 9912 | else | |||
| 9913 | return FALSE0; | |||
| 9914 | } | |||
| 9915 | else | |||
| 9916 | { | |||
| 9917 | /* It's not a relocation against a global symbol, | |||
| 9918 | but it could be a relocation against a local | |||
| 9919 | symbol for a discarded section. */ | |||
| 9920 | asection *isec; | |||
| 9921 | Elf_Internal_Sym *isym; | |||
| 9922 | ||||
| 9923 | /* Need to: get the symbol; get the section. */ | |||
| 9924 | isym = &rcookie->locsyms[r_symndx]; | |||
| 9925 | if (isym->st_shndx < SHN_LORESERVE0xFF00 || isym->st_shndx > SHN_HIRESERVE0xFFFF) | |||
| 9926 | { | |||
| 9927 | isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx); | |||
| 9928 | if (isec != NULL((void*)0) && elf_discarded_section (isec)(!((isec) == ((asection *) &bfd_abs_section)) && ( ((isec)->output_section) == ((asection *) &bfd_abs_section )) && (isec)->sec_info_type != 2 && (isec) ->sec_info_type != 4)) | |||
| 9929 | return TRUE1; | |||
| 9930 | } | |||
| 9931 | } | |||
| 9932 | return FALSE0; | |||
| 9933 | } | |||
| 9934 | return FALSE0; | |||
| 9935 | } | |||
| 9936 | ||||
| 9937 | /* Discard unneeded references to discarded sections. | |||
| 9938 | Returns TRUE if any section's size was changed. */ | |||
| 9939 | /* This function assumes that the relocations are in sorted order, | |||
| 9940 | which is true for all known assemblers. */ | |||
| 9941 | ||||
| 9942 | bfd_boolean | |||
| 9943 | bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info) | |||
| 9944 | { | |||
| 9945 | struct elf_reloc_cookie cookie; | |||
| 9946 | asection *stab, *eh; | |||
| 9947 | Elf_Internal_Shdr *symtab_hdr; | |||
| 9948 | const struct elf_backend_data *bed; | |||
| 9949 | bfd *abfd; | |||
| 9950 | unsigned int count; | |||
| 9951 | bfd_boolean ret = FALSE0; | |||
| 9952 | ||||
| 9953 | if (info->traditional_format | |||
| 9954 | || !is_elf_hash_table (info->hash)(((struct bfd_link_hash_table *) (info->hash))->type == bfd_link_elf_hash_table)) | |||
| 9955 | return FALSE0; | |||
| 9956 | ||||
| 9957 | for (abfd = info->input_bfds; abfd != NULL((void*)0); abfd = abfd->link_next) | |||
| 9958 | { | |||
| 9959 | if (bfd_get_flavour (abfd)((abfd)->xvec->flavour) != bfd_target_elf_flavour) | |||
| 9960 | continue; | |||
| 9961 | ||||
| 9962 | bed = get_elf_backend_data (abfd)((const struct elf_backend_data *) (abfd)->xvec->backend_data ); | |||
| 9963 | ||||
| 9964 | if ((abfd->flags & DYNAMIC0x40) != 0) | |||
| 9965 | continue; | |||
| 9966 | ||||
| 9967 | eh = bfd_get_section_by_name (abfd, ".eh_frame"); | |||
| 9968 | if (info->relocatable | |||
| 9969 | || (eh != NULL((void*)0) | |||
| 9970 | && (eh->size == 0 | |||
| 9971 | || bfd_is_abs_section (eh->output_section)((eh->output_section) == ((asection *) &bfd_abs_section ))))) | |||
| 9972 | eh = NULL((void*)0); | |||
| 9973 | ||||
| 9974 | stab = bfd_get_section_by_name (abfd, ".stab"); | |||
| 9975 | if (stab != NULL((void*)0) | |||
| 9976 | && (stab->size == 0 | |||
| 9977 | || bfd_is_abs_section (stab->output_section)((stab->output_section) == ((asection *) &bfd_abs_section )) | |||
| 9978 | || stab->sec_info_type != ELF_INFO_TYPE_STABS1)) | |||
| 9979 | stab = NULL((void*)0); | |||
| 9980 | ||||
| 9981 | if (stab == NULL((void*)0) | |||
| 9982 | && eh == NULL((void*)0) | |||
| 9983 | && bed->elf_backend_discard_info == NULL((void*)0)) | |||
| 9984 | continue; | |||
| 9985 | ||||
| 9986 | symtab_hdr = &elf_tdata (abfd)((abfd) -> tdata.elf_obj_data)->symtab_hdr; | |||
| 9987 | cookie.abfd = abfd; | |||
| 9988 | cookie.sym_hashes = elf_sym_hashes (abfd)(((abfd) -> tdata.elf_obj_data) -> sym_hashes); | |||
| 9989 | cookie.bad_symtab = elf_bad_symtab (abfd)(((abfd) -> tdata.elf_obj_data) -> bad_symtab); | |||
| 9990 | if (cookie.bad_symtab) | |||
| 9991 | { | |||
| 9992 | cookie.locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym; | |||
| 9993 | cookie.extsymoff = 0; | |||
| 9994 | } | |||
| 9995 | else | |||
| 9996 | { | |||
| 9997 | cookie.locsymcount = symtab_hdr->sh_info; | |||
| 9998 | cookie.extsymoff = symtab_hdr->sh_info; | |||
| 9999 | } | |||
| 10000 | ||||
| 10001 | if (bed->s->arch_size == 32) | |||
| 10002 | cookie.r_sym_shift = 8; | |||
| 10003 | else | |||
| 10004 | cookie.r_sym_shift = 32; | |||
| 10005 | ||||
| 10006 | cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents; | |||
| 10007 | if (cookie.locsyms == NULL((void*)0) && cookie.locsymcount != 0) | |||
| 10008 | { | |||
| 10009 | cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr, | |||
| 10010 | cookie.locsymcount, 0, | |||
| 10011 | NULL((void*)0), NULL((void*)0), NULL((void*)0)); | |||
| 10012 | if (cookie.locsyms == NULL((void*)0)) | |||
| 10013 | return FALSE0; | |||
| 10014 | } | |||
| 10015 | ||||
| 10016 | if (stab != NULL((void*)0)) | |||
| 10017 | { | |||
| 10018 | cookie.rels = NULL((void*)0); | |||
| 10019 | count = stab->reloc_count; | |||
| 10020 | if (count != 0) | |||
| 10021 | cookie.rels = _bfd_elf_link_read_relocs (abfd, stab, NULL((void*)0), NULL((void*)0), | |||
| 10022 | info->keep_memory); | |||
| 10023 | if (cookie.rels != NULL((void*)0)) | |||
| 10024 | { | |||
| 10025 | cookie.rel = cookie.rels; | |||
| 10026 | cookie.relend = cookie.rels; | |||
| 10027 | cookie.relend += count * bed->s->int_rels_per_ext_rel; | |||
| 10028 | if (_bfd_discard_section_stabs (abfd, stab, | |||
| 10029 | elf_section_data (stab)((struct bfd_elf_section_data*)(stab)->used_by_bfd)->sec_info, | |||
| 10030 | bfd_elf_reloc_symbol_deleted_p, | |||
| 10031 | &cookie)) | |||
| 10032 | ret = TRUE1; | |||
| 10033 | if (elf_section_data (stab)((struct bfd_elf_section_data*)(stab)->used_by_bfd)->relocs != cookie.rels) | |||
| 10034 | free (cookie.rels); | |||
| 10035 | } | |||
| 10036 | } | |||
| 10037 | ||||
| 10038 | if (eh != NULL((void*)0)) | |||
| 10039 | { | |||
| 10040 | cookie.rels = NULL((void*)0); | |||
| 10041 | count = eh->reloc_count; | |||
| 10042 | if (count != 0) | |||
| 10043 | cookie.rels = _bfd_elf_link_read_relocs (abfd, eh, NULL((void*)0), NULL((void*)0), | |||
| 10044 | info->keep_memory); | |||
| 10045 | cookie.rel = cookie.rels; | |||
| 10046 | cookie.relend = cookie.rels; | |||
| 10047 | if (cookie.rels != NULL((void*)0)) | |||
| 10048 | cookie.relend += count * bed->s->int_rels_per_ext_rel; | |||
| 10049 | ||||
| 10050 | if (_bfd_elf_discard_section_eh_frame (abfd, info, eh, | |||
| 10051 | bfd_elf_reloc_symbol_deleted_p, | |||
| 10052 | &cookie)) | |||
| 10053 | ret = TRUE1; | |||
| 10054 | ||||
| 10055 | if (cookie.rels != NULL((void*)0) | |||
| 10056 | && elf_section_data (eh)((struct bfd_elf_section_data*)(eh)->used_by_bfd)->relocs != cookie.rels) | |||
| 10057 | free (cookie.rels); | |||
| 10058 | } | |||
| 10059 | ||||
| 10060 | if (bed->elf_backend_discard_info != NULL((void*)0) | |||
| 10061 | && (*bed->elf_backend_discard_info) (abfd, &cookie, info)) | |||
| 10062 | ret = TRUE1; | |||
| 10063 | ||||
| 10064 | if (cookie.locsyms != NULL((void*)0) | |||
| 10065 | && symtab_hdr->contents != (unsigned char *) cookie.locsyms) | |||
| 10066 | { | |||
| 10067 | if (! info->keep_memory) | |||
| 10068 | free (cookie.locsyms); | |||
| 10069 | else | |||
| 10070 | symtab_hdr->contents = (unsigned char *) cookie.locsyms; | |||
| 10071 | } | |||
| 10072 | } | |||
| 10073 | ||||
| 10074 | if (info->eh_frame_hdr | |||
| 10075 | && !info->relocatable | |||
| 10076 | && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info)) | |||
| 10077 | ret = TRUE1; | |||
| 10078 | ||||
| 10079 | return ret; | |||
| 10080 | } | |||
| 10081 | ||||
| 10082 | void | |||
| 10083 | _bfd_elf_section_already_linked (bfd *abfd, struct bfd_section *sec, | |||
| 10084 | struct bfd_link_info *info) | |||
| 10085 | { | |||
| 10086 | flagword flags; | |||
| 10087 | const char *name, *p; | |||
| 10088 | struct bfd_section_already_linked *l; | |||
| 10089 | struct bfd_section_already_linked_hash_entry *already_linked_list; | |||
| 10090 | asection *group; | |||
| 10091 | ||||
| 10092 | /* A single member comdat group section may be discarded by a | |||
| 10093 | linkonce section. See below. */ | |||
| 10094 | if (sec->output_section == bfd_abs_section_ptr((asection *) &bfd_abs_section)) | |||
| 10095 | return; | |||
| 10096 | ||||
| 10097 | flags = sec->flags; | |||
| 10098 | ||||
| 10099 | /* Check if it belongs to a section group. */ | |||
| 10100 | group = elf_sec_group (sec)(((struct bfd_elf_section_data*)(sec)->used_by_bfd)->sec_group ); | |||
| 10101 | ||||
| 10102 | /* Return if it isn't a linkonce section nor a member of a group. A | |||
| 10103 | comdat group section also has SEC_LINK_ONCE set. */ | |||
| 10104 | if ((flags & SEC_LINK_ONCE0x20000) == 0 && group == NULL((void*)0)) | |||
| 10105 | return; | |||
| 10106 | ||||
| 10107 | if (group) | |||
| 10108 | { | |||
| 10109 | /* If this is the member of a single member comdat group, check if | |||
| 10110 | the group should be discarded. */ | |||
| 10111 | if (elf_next_in_group (sec)(((struct bfd_elf_section_data*)(sec)->used_by_bfd)->next_in_group ) == sec | |||
| 10112 | && (group->flags & SEC_LINK_ONCE0x20000) != 0) | |||
| 10113 | sec = group; | |||
| 10114 | else | |||
| 10115 | return; | |||
| 10116 | } | |||
| 10117 | ||||
| 10118 | /* FIXME: When doing a relocatable link, we may have trouble | |||
| 10119 | copying relocations in other sections that refer to local symbols | |||
| 10120 | in the section being discarded. Those relocations will have to | |||
| 10121 | be converted somehow; as of this writing I'm not sure that any of | |||
| 10122 | the backends handle that correctly. | |||
| 10123 | ||||
| 10124 | It is tempting to instead not discard link once sections when | |||
| 10125 | doing a relocatable link (technically, they should be discarded | |||
| 10126 | whenever we are building constructors). However, that fails, | |||
| 10127 | because the linker winds up combining all the link once sections | |||
| 10128 | into a single large link once section, which defeats the purpose | |||
| 10129 | of having link once sections in the first place. | |||
| 10130 | ||||
| 10131 | Also, not merging link once sections in a relocatable link | |||
| 10132 | causes trouble for MIPS ELF, which relies on link once semantics | |||
| 10133 | to handle the .reginfo section correctly. */ | |||
| 10134 | ||||
| 10135 | name = bfd_get_section_name (abfd, sec)((sec)->name + 0); | |||
| 10136 | ||||
| 10137 | if (strncmp (name, ".gnu.linkonce.", sizeof (".gnu.linkonce.") - 1) == 0 | |||
| 10138 | && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL((void*)0)) | |||
| 10139 | p++; | |||
| 10140 | else | |||
| 10141 | p = name; | |||
| 10142 | ||||
| 10143 | already_linked_list = bfd_section_already_linked_table_lookup (p); | |||
| 10144 | ||||
| 10145 | for (l = already_linked_list->entry; l != NULL((void*)0); l = l->next) | |||
| 10146 | { | |||
| 10147 | /* We may have 3 different sections on the list: group section, | |||
| 10148 | comdat section and linkonce section. SEC may be a linkonce or | |||
| 10149 | group section. We match a group section with a group section, | |||
| 10150 | a linkonce section with a linkonce section, and ignore comdat | |||
| 10151 | section. */ | |||
| 10152 | if ((flags & SEC_GROUP0x4000000) == (l->sec->flags & SEC_GROUP0x4000000) | |||
| 10153 | && strcmp (name, l->sec->name) == 0 | |||
| 10154 | && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL((void*)0)) | |||
| 10155 | { | |||
| 10156 | /* The section has already been linked. See if we should | |||
| 10157 | issue a warning. */ | |||
| 10158 | switch (flags & SEC_LINK_DUPLICATES0x40000) | |||
| 10159 | { | |||
| 10160 | default: | |||
| 10161 | abort ()_bfd_abort ("/usr/src/gnu/usr.bin/binutils-2.17/bfd/elflink.c" , 10161, __PRETTY_FUNCTION__); | |||
| 10162 | ||||
| 10163 | case SEC_LINK_DUPLICATES_DISCARD0x0: | |||
| 10164 | break; | |||
| 10165 | ||||
| 10166 | case SEC_LINK_DUPLICATES_ONE_ONLY0x80000: | |||
| 10167 | (*_bfd_error_handler) | |||
| 10168 | (_("%B: ignoring duplicate section `%A'")("%B: ignoring duplicate section `%A'"), | |||
| 10169 | abfd, sec); | |||
| 10170 | break; | |||
| 10171 | ||||
| 10172 | case SEC_LINK_DUPLICATES_SAME_SIZE0x100000: | |||
| 10173 | if (sec->size != l->sec->size) | |||
| 10174 | (*_bfd_error_handler) | |||
| 10175 | (_("%B: duplicate section `%A' has different size")("%B: duplicate section `%A' has different size"), | |||
| 10176 | abfd, sec); | |||
| 10177 | break; | |||
| 10178 | ||||
| 10179 | case SEC_LINK_DUPLICATES_SAME_CONTENTS(0x80000 | 0x100000): | |||
| 10180 | if (sec->size != l->sec->size) | |||
| 10181 | (*_bfd_error_handler) | |||
| 10182 | (_("%B: duplicate section `%A' has different size")("%B: duplicate section `%A' has different size"), | |||
| 10183 | abfd, sec); | |||
| 10184 | else if (sec->size != 0) | |||
| 10185 | { | |||
| 10186 | bfd_byte *sec_contents = NULL((void*)0), *l_sec_contents = NULL((void*)0); | |||
| 10187 | ||||
| 10188 | if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents)) | |||
| 10189 | (*_bfd_error_handler) | |||
| 10190 | (_("%B: warning: could not read contents of section `%A'")("%B: warning: could not read contents of section `%A'"), | |||
| 10191 | abfd, sec); | |||
| 10192 | else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec, | |||
| 10193 | &l_sec_contents)) | |||
| 10194 | (*_bfd_error_handler) | |||
| 10195 | (_("%B: warning: could not read contents of section `%A'")("%B: warning: could not read contents of section `%A'"), | |||
| 10196 | l->sec->owner, l->sec); | |||
| 10197 | else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0) | |||
| 10198 | (*_bfd_error_handler) | |||
| 10199 | (_("%B: warning: duplicate section `%A' has different contents")("%B: warning: duplicate section `%A' has different contents" ), | |||
| 10200 | abfd, sec); | |||
| 10201 | ||||
| 10202 | if (sec_contents) | |||
| 10203 | free (sec_contents); | |||
| 10204 | if (l_sec_contents) | |||
| 10205 | free (l_sec_contents); | |||
| 10206 | } | |||
| 10207 | break; | |||
| 10208 | } | |||
| 10209 | ||||
| 10210 | /* Set the output_section field so that lang_add_section | |||
| 10211 | does not create a lang_input_section structure for this | |||
| 10212 | section. Since there might be a symbol in the section | |||
| 10213 | being discarded, we must retain a pointer to the section | |||
| 10214 | which we are really going to use. */ | |||
| 10215 | sec->output_section = bfd_abs_section_ptr((asection *) &bfd_abs_section); | |||
| 10216 | sec->kept_section = l->sec; | |||
| 10217 | ||||
| 10218 | if (flags & SEC_GROUP0x4000000) | |||
| 10219 | { | |||
| 10220 | asection *first = elf_next_in_group (sec)(((struct bfd_elf_section_data*)(sec)->used_by_bfd)->next_in_group ); | |||
| 10221 | asection *s = first; | |||
| 10222 | ||||
| 10223 | while (s != NULL((void*)0)) | |||
| 10224 | { | |||
| 10225 | s->output_section = bfd_abs_section_ptr((asection *) &bfd_abs_section); | |||
| 10226 | /* Record which group discards it. */ | |||
| 10227 | s->kept_section = l->sec; | |||
| 10228 | s = elf_next_in_group (s)(((struct bfd_elf_section_data*)(s)->used_by_bfd)->next_in_group ); | |||
| 10229 | /* These lists are circular. */ | |||
| 10230 | if (s == first) | |||
| 10231 | break; | |||
| 10232 | } | |||
| 10233 | } | |||
| 10234 | ||||
| 10235 | return; | |||
| 10236 | } | |||
| 10237 | } | |||
| 10238 | ||||
| 10239 | if (group) | |||
| 10240 | { | |||
| 10241 | /* If this is the member of a single member comdat group and the | |||
| 10242 | group hasn't be discarded, we check if it matches a linkonce | |||
| 10243 | section. We only record the discarded comdat group. Otherwise | |||
| 10244 | the undiscarded group will be discarded incorrectly later since | |||
| 10245 | itself has been recorded. */ | |||
| 10246 | for (l = already_linked_list->entry; l != NULL((void*)0); l = l->next) | |||
| 10247 | if ((l->sec->flags & SEC_GROUP0x4000000) == 0 | |||
| 10248 | && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL((void*)0) | |||
| 10249 | && bfd_elf_match_symbols_in_sections (l->sec, | |||
| 10250 | elf_next_in_group (sec)(((struct bfd_elf_section_data*)(sec)->used_by_bfd)->next_in_group ), | |||
| 10251 | info)) | |||
| 10252 | { | |||
| 10253 | elf_next_in_group (sec)(((struct bfd_elf_section_data*)(sec)->used_by_bfd)->next_in_group )->output_section = bfd_abs_section_ptr((asection *) &bfd_abs_section); | |||
| 10254 | elf_next_in_group (sec)(((struct bfd_elf_section_data*)(sec)->used_by_bfd)->next_in_group )->kept_section = l->sec; | |||
| 10255 | group->output_section = bfd_abs_section_ptr((asection *) &bfd_abs_section); | |||
| 10256 | break; | |||
| 10257 | } | |||
| 10258 | if (l == NULL((void*)0)) | |||
| 10259 | return; | |||
| 10260 | } | |||
| 10261 | else | |||
| 10262 | /* There is no direct match. But for linkonce section, we should | |||
| 10263 | check if there is a match with comdat group member. We always | |||
| 10264 | record the linkonce section, discarded or not. */ | |||
| 10265 | for (l = already_linked_list->entry; l != NULL((void*)0); l = l->next) | |||
| 10266 | if (l->sec->flags & SEC_GROUP0x4000000) | |||
| 10267 | { | |||
| 10268 | asection *first = elf_next_in_group (l->sec)(((struct bfd_elf_section_data*)(l->sec)->used_by_bfd)-> next_in_group); | |||
| 10269 | ||||
| 10270 | if (first != NULL((void*)0) | |||
| 10271 | && elf_next_in_group (first)(((struct bfd_elf_section_data*)(first)->used_by_bfd)-> next_in_group) == first | |||
| 10272 | && bfd_elf_match_symbols_in_sections (first, sec, info)) | |||
| 10273 | { | |||
| 10274 | sec->output_section = bfd_abs_section_ptr((asection *) &bfd_abs_section); | |||
| 10275 | sec->kept_section = l->sec; | |||
| 10276 | break; | |||
| 10277 | } | |||
| 10278 | } | |||
| 10279 | ||||
| 10280 | /* This is the first section with this name. Record it. */ | |||
| 10281 | bfd_section_already_linked_table_insert (already_linked_list, sec); | |||
| 10282 | } | |||
| 10283 | ||||
| 10284 | bfd_boolean | |||
| 10285 | _bfd_elf_common_definition (Elf_Internal_Sym *sym) | |||
| 10286 | { | |||
| 10287 | return sym->st_shndx == SHN_COMMON0xFFF2; | |||
| 10288 | } | |||
| 10289 | ||||
| 10290 | unsigned int | |||
| 10291 | _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED__attribute__ ((__unused__))) | |||
| 10292 | { | |||
| 10293 | return SHN_COMMON0xFFF2; | |||
| 10294 | } | |||
| 10295 | ||||
| 10296 | asection * | |||
| 10297 | _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED__attribute__ ((__unused__))) | |||
| 10298 | { | |||
| 10299 | return bfd_com_section_ptr((asection *) &bfd_com_section); | |||
| 10300 | } |