| File: | src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86/X86SpeculativeLoadHardening.cpp |
| Warning: | line 1887, column 10 The right operand of '==' is a garbage value due to array index out of bounds |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //====- X86SpeculativeLoadHardening.cpp - A Spectre v1 mitigation ---------===// | ||||||||
| 2 | // | ||||||||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||||||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | ||||||||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||||||
| 6 | // | ||||||||
| 7 | //===----------------------------------------------------------------------===// | ||||||||
| 8 | /// \file | ||||||||
| 9 | /// | ||||||||
| 10 | /// Provide a pass which mitigates speculative execution attacks which operate | ||||||||
| 11 | /// by speculating incorrectly past some predicate (a type check, bounds check, | ||||||||
| 12 | /// or other condition) to reach a load with invalid inputs and leak the data | ||||||||
| 13 | /// accessed by that load using a side channel out of the speculative domain. | ||||||||
| 14 | /// | ||||||||
| 15 | /// For details on the attacks, see the first variant in both the Project Zero | ||||||||
| 16 | /// writeup and the Spectre paper: | ||||||||
| 17 | /// https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html | ||||||||
| 18 | /// https://spectreattack.com/spectre.pdf | ||||||||
| 19 | /// | ||||||||
| 20 | //===----------------------------------------------------------------------===// | ||||||||
| 21 | |||||||||
| 22 | #include "X86.h" | ||||||||
| 23 | #include "X86InstrBuilder.h" | ||||||||
| 24 | #include "X86InstrInfo.h" | ||||||||
| 25 | #include "X86Subtarget.h" | ||||||||
| 26 | #include "llvm/ADT/ArrayRef.h" | ||||||||
| 27 | #include "llvm/ADT/DenseMap.h" | ||||||||
| 28 | #include "llvm/ADT/Optional.h" | ||||||||
| 29 | #include "llvm/ADT/STLExtras.h" | ||||||||
| 30 | #include "llvm/ADT/ScopeExit.h" | ||||||||
| 31 | #include "llvm/ADT/SmallPtrSet.h" | ||||||||
| 32 | #include "llvm/ADT/SmallSet.h" | ||||||||
| 33 | #include "llvm/ADT/SmallVector.h" | ||||||||
| 34 | #include "llvm/ADT/SparseBitVector.h" | ||||||||
| 35 | #include "llvm/ADT/Statistic.h" | ||||||||
| 36 | #include "llvm/CodeGen/MachineBasicBlock.h" | ||||||||
| 37 | #include "llvm/CodeGen/MachineConstantPool.h" | ||||||||
| 38 | #include "llvm/CodeGen/MachineFunction.h" | ||||||||
| 39 | #include "llvm/CodeGen/MachineFunctionPass.h" | ||||||||
| 40 | #include "llvm/CodeGen/MachineInstr.h" | ||||||||
| 41 | #include "llvm/CodeGen/MachineInstrBuilder.h" | ||||||||
| 42 | #include "llvm/CodeGen/MachineModuleInfo.h" | ||||||||
| 43 | #include "llvm/CodeGen/MachineOperand.h" | ||||||||
| 44 | #include "llvm/CodeGen/MachineRegisterInfo.h" | ||||||||
| 45 | #include "llvm/CodeGen/MachineSSAUpdater.h" | ||||||||
| 46 | #include "llvm/CodeGen/TargetInstrInfo.h" | ||||||||
| 47 | #include "llvm/CodeGen/TargetRegisterInfo.h" | ||||||||
| 48 | #include "llvm/CodeGen/TargetSchedule.h" | ||||||||
| 49 | #include "llvm/CodeGen/TargetSubtargetInfo.h" | ||||||||
| 50 | #include "llvm/IR/DebugLoc.h" | ||||||||
| 51 | #include "llvm/MC/MCSchedule.h" | ||||||||
| 52 | #include "llvm/Pass.h" | ||||||||
| 53 | #include "llvm/Support/CommandLine.h" | ||||||||
| 54 | #include "llvm/Support/Debug.h" | ||||||||
| 55 | #include "llvm/Support/raw_ostream.h" | ||||||||
| 56 | #include "llvm/Target/TargetMachine.h" | ||||||||
| 57 | #include <algorithm> | ||||||||
| 58 | #include <cassert> | ||||||||
| 59 | #include <iterator> | ||||||||
| 60 | #include <utility> | ||||||||
| 61 | |||||||||
| 62 | using namespace llvm; | ||||||||
| 63 | |||||||||
| 64 | #define PASS_KEY"x86-slh" "x86-slh" | ||||||||
| 65 | #define DEBUG_TYPE"x86-slh" PASS_KEY"x86-slh" | ||||||||
| 66 | |||||||||
| 67 | STATISTIC(NumCondBranchesTraced, "Number of conditional branches traced")static llvm::Statistic NumCondBranchesTraced = {"x86-slh", "NumCondBranchesTraced" , "Number of conditional branches traced"}; | ||||||||
| 68 | STATISTIC(NumBranchesUntraced, "Number of branches unable to trace")static llvm::Statistic NumBranchesUntraced = {"x86-slh", "NumBranchesUntraced" , "Number of branches unable to trace"}; | ||||||||
| 69 | STATISTIC(NumAddrRegsHardened,static llvm::Statistic NumAddrRegsHardened = {"x86-slh", "NumAddrRegsHardened" , "Number of address mode used registers hardaned"} | ||||||||
| 70 | "Number of address mode used registers hardaned")static llvm::Statistic NumAddrRegsHardened = {"x86-slh", "NumAddrRegsHardened" , "Number of address mode used registers hardaned"}; | ||||||||
| 71 | STATISTIC(NumPostLoadRegsHardened,static llvm::Statistic NumPostLoadRegsHardened = {"x86-slh", "NumPostLoadRegsHardened" , "Number of post-load register values hardened"} | ||||||||
| 72 | "Number of post-load register values hardened")static llvm::Statistic NumPostLoadRegsHardened = {"x86-slh", "NumPostLoadRegsHardened" , "Number of post-load register values hardened"}; | ||||||||
| 73 | STATISTIC(NumCallsOrJumpsHardened,static llvm::Statistic NumCallsOrJumpsHardened = {"x86-slh", "NumCallsOrJumpsHardened" , "Number of calls or jumps requiring extra hardening"} | ||||||||
| 74 | "Number of calls or jumps requiring extra hardening")static llvm::Statistic NumCallsOrJumpsHardened = {"x86-slh", "NumCallsOrJumpsHardened" , "Number of calls or jumps requiring extra hardening"}; | ||||||||
| 75 | STATISTIC(NumInstsInserted, "Number of instructions inserted")static llvm::Statistic NumInstsInserted = {"x86-slh", "NumInstsInserted" , "Number of instructions inserted"}; | ||||||||
| 76 | STATISTIC(NumLFENCEsInserted, "Number of lfence instructions inserted")static llvm::Statistic NumLFENCEsInserted = {"x86-slh", "NumLFENCEsInserted" , "Number of lfence instructions inserted"}; | ||||||||
| 77 | |||||||||
| 78 | static cl::opt<bool> EnableSpeculativeLoadHardening( | ||||||||
| 79 | "x86-speculative-load-hardening", | ||||||||
| 80 | cl::desc("Force enable speculative load hardening"), cl::init(false), | ||||||||
| 81 | cl::Hidden); | ||||||||
| 82 | |||||||||
| 83 | static cl::opt<bool> HardenEdgesWithLFENCE( | ||||||||
| 84 | PASS_KEY"x86-slh" "-lfence", | ||||||||
| 85 | cl::desc( | ||||||||
| 86 | "Use LFENCE along each conditional edge to harden against speculative " | ||||||||
| 87 | "loads rather than conditional movs and poisoned pointers."), | ||||||||
| 88 | cl::init(false), cl::Hidden); | ||||||||
| 89 | |||||||||
| 90 | static cl::opt<bool> EnablePostLoadHardening( | ||||||||
| 91 | PASS_KEY"x86-slh" "-post-load", | ||||||||
| 92 | cl::desc("Harden the value loaded *after* it is loaded by " | ||||||||
| 93 | "flushing the loaded bits to 1. This is hard to do " | ||||||||
| 94 | "in general but can be done easily for GPRs."), | ||||||||
| 95 | cl::init(true), cl::Hidden); | ||||||||
| 96 | |||||||||
| 97 | static cl::opt<bool> FenceCallAndRet( | ||||||||
| 98 | PASS_KEY"x86-slh" "-fence-call-and-ret", | ||||||||
| 99 | cl::desc("Use a full speculation fence to harden both call and ret edges " | ||||||||
| 100 | "rather than a lighter weight mitigation."), | ||||||||
| 101 | cl::init(false), cl::Hidden); | ||||||||
| 102 | |||||||||
| 103 | static cl::opt<bool> HardenInterprocedurally( | ||||||||
| 104 | PASS_KEY"x86-slh" "-ip", | ||||||||
| 105 | cl::desc("Harden interprocedurally by passing our state in and out of " | ||||||||
| 106 | "functions in the high bits of the stack pointer."), | ||||||||
| 107 | cl::init(true), cl::Hidden); | ||||||||
| 108 | |||||||||
| 109 | static cl::opt<bool> | ||||||||
| 110 | HardenLoads(PASS_KEY"x86-slh" "-loads", | ||||||||
| 111 | cl::desc("Sanitize loads from memory. When disable, no " | ||||||||
| 112 | "significant security is provided."), | ||||||||
| 113 | cl::init(true), cl::Hidden); | ||||||||
| 114 | |||||||||
| 115 | static cl::opt<bool> HardenIndirectCallsAndJumps( | ||||||||
| 116 | PASS_KEY"x86-slh" "-indirect", | ||||||||
| 117 | cl::desc("Harden indirect calls and jumps against using speculatively " | ||||||||
| 118 | "stored attacker controlled addresses. This is designed to " | ||||||||
| 119 | "mitigate Spectre v1.2 style attacks."), | ||||||||
| 120 | cl::init(true), cl::Hidden); | ||||||||
| 121 | |||||||||
| 122 | namespace { | ||||||||
| 123 | |||||||||
| 124 | class X86SpeculativeLoadHardeningPass : public MachineFunctionPass { | ||||||||
| 125 | public: | ||||||||
| 126 | X86SpeculativeLoadHardeningPass() : MachineFunctionPass(ID) { } | ||||||||
| 127 | |||||||||
| 128 | StringRef getPassName() const override { | ||||||||
| 129 | return "X86 speculative load hardening"; | ||||||||
| 130 | } | ||||||||
| 131 | bool runOnMachineFunction(MachineFunction &MF) override; | ||||||||
| 132 | void getAnalysisUsage(AnalysisUsage &AU) const override; | ||||||||
| 133 | |||||||||
| 134 | /// Pass identification, replacement for typeid. | ||||||||
| 135 | static char ID; | ||||||||
| 136 | |||||||||
| 137 | private: | ||||||||
| 138 | /// The information about a block's conditional terminators needed to trace | ||||||||
| 139 | /// our predicate state through the exiting edges. | ||||||||
| 140 | struct BlockCondInfo { | ||||||||
| 141 | MachineBasicBlock *MBB; | ||||||||
| 142 | |||||||||
| 143 | // We mostly have one conditional branch, and in extremely rare cases have | ||||||||
| 144 | // two. Three and more are so rare as to be unimportant for compile time. | ||||||||
| 145 | SmallVector<MachineInstr *, 2> CondBrs; | ||||||||
| 146 | |||||||||
| 147 | MachineInstr *UncondBr; | ||||||||
| 148 | }; | ||||||||
| 149 | |||||||||
| 150 | /// Manages the predicate state traced through the program. | ||||||||
| 151 | struct PredState { | ||||||||
| 152 | unsigned InitialReg = 0; | ||||||||
| 153 | unsigned PoisonReg = 0; | ||||||||
| 154 | |||||||||
| 155 | const TargetRegisterClass *RC; | ||||||||
| 156 | MachineSSAUpdater SSA; | ||||||||
| 157 | |||||||||
| 158 | PredState(MachineFunction &MF, const TargetRegisterClass *RC) | ||||||||
| 159 | : RC(RC), SSA(MF) {} | ||||||||
| 160 | }; | ||||||||
| 161 | |||||||||
| 162 | const X86Subtarget *Subtarget = nullptr; | ||||||||
| 163 | MachineRegisterInfo *MRI = nullptr; | ||||||||
| 164 | const X86InstrInfo *TII = nullptr; | ||||||||
| 165 | const TargetRegisterInfo *TRI = nullptr; | ||||||||
| 166 | |||||||||
| 167 | Optional<PredState> PS; | ||||||||
| 168 | |||||||||
| 169 | void hardenEdgesWithLFENCE(MachineFunction &MF); | ||||||||
| 170 | |||||||||
| 171 | SmallVector<BlockCondInfo, 16> collectBlockCondInfo(MachineFunction &MF); | ||||||||
| 172 | |||||||||
| 173 | SmallVector<MachineInstr *, 16> | ||||||||
| 174 | tracePredStateThroughCFG(MachineFunction &MF, ArrayRef<BlockCondInfo> Infos); | ||||||||
| 175 | |||||||||
| 176 | void unfoldCallAndJumpLoads(MachineFunction &MF); | ||||||||
| 177 | |||||||||
| 178 | SmallVector<MachineInstr *, 16> | ||||||||
| 179 | tracePredStateThroughIndirectBranches(MachineFunction &MF); | ||||||||
| 180 | |||||||||
| 181 | void tracePredStateThroughBlocksAndHarden(MachineFunction &MF); | ||||||||
| 182 | |||||||||
| 183 | unsigned saveEFLAGS(MachineBasicBlock &MBB, | ||||||||
| 184 | MachineBasicBlock::iterator InsertPt, DebugLoc Loc); | ||||||||
| 185 | void restoreEFLAGS(MachineBasicBlock &MBB, | ||||||||
| 186 | MachineBasicBlock::iterator InsertPt, DebugLoc Loc, | ||||||||
| 187 | Register Reg); | ||||||||
| 188 | |||||||||
| 189 | void mergePredStateIntoSP(MachineBasicBlock &MBB, | ||||||||
| 190 | MachineBasicBlock::iterator InsertPt, DebugLoc Loc, | ||||||||
| 191 | unsigned PredStateReg); | ||||||||
| 192 | unsigned extractPredStateFromSP(MachineBasicBlock &MBB, | ||||||||
| 193 | MachineBasicBlock::iterator InsertPt, | ||||||||
| 194 | DebugLoc Loc); | ||||||||
| 195 | |||||||||
| 196 | void | ||||||||
| 197 | hardenLoadAddr(MachineInstr &MI, MachineOperand &BaseMO, | ||||||||
| 198 | MachineOperand &IndexMO, | ||||||||
| 199 | SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg); | ||||||||
| 200 | MachineInstr * | ||||||||
| 201 | sinkPostLoadHardenedInst(MachineInstr &MI, | ||||||||
| 202 | SmallPtrSetImpl<MachineInstr *> &HardenedInstrs); | ||||||||
| 203 | bool canHardenRegister(Register Reg); | ||||||||
| 204 | unsigned hardenValueInRegister(Register Reg, MachineBasicBlock &MBB, | ||||||||
| 205 | MachineBasicBlock::iterator InsertPt, | ||||||||
| 206 | DebugLoc Loc); | ||||||||
| 207 | unsigned hardenPostLoad(MachineInstr &MI); | ||||||||
| 208 | void hardenReturnInstr(MachineInstr &MI); | ||||||||
| 209 | void tracePredStateThroughCall(MachineInstr &MI); | ||||||||
| 210 | void hardenIndirectCallOrJumpInstr( | ||||||||
| 211 | MachineInstr &MI, | ||||||||
| 212 | SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg); | ||||||||
| 213 | }; | ||||||||
| 214 | |||||||||
| 215 | } // end anonymous namespace | ||||||||
| 216 | |||||||||
| 217 | char X86SpeculativeLoadHardeningPass::ID = 0; | ||||||||
| 218 | |||||||||
| 219 | void X86SpeculativeLoadHardeningPass::getAnalysisUsage( | ||||||||
| 220 | AnalysisUsage &AU) const { | ||||||||
| 221 | MachineFunctionPass::getAnalysisUsage(AU); | ||||||||
| 222 | } | ||||||||
| 223 | |||||||||
| 224 | static MachineBasicBlock &splitEdge(MachineBasicBlock &MBB, | ||||||||
| 225 | MachineBasicBlock &Succ, int SuccCount, | ||||||||
| 226 | MachineInstr *Br, MachineInstr *&UncondBr, | ||||||||
| 227 | const X86InstrInfo &TII) { | ||||||||
| 228 | assert(!Succ.isEHPad() && "Shouldn't get edges to EH pads!")((void)0); | ||||||||
| 229 | |||||||||
| 230 | MachineFunction &MF = *MBB.getParent(); | ||||||||
| 231 | |||||||||
| 232 | MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock(); | ||||||||
| 233 | |||||||||
| 234 | // We have to insert the new block immediately after the current one as we | ||||||||
| 235 | // don't know what layout-successor relationships the successor has and we | ||||||||
| 236 | // may not be able to (and generally don't want to) try to fix those up. | ||||||||
| 237 | MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB); | ||||||||
| 238 | |||||||||
| 239 | // Update the branch instruction if necessary. | ||||||||
| 240 | if (Br) { | ||||||||
| 241 | assert(Br->getOperand(0).getMBB() == &Succ &&((void)0) | ||||||||
| 242 | "Didn't start with the right target!")((void)0); | ||||||||
| 243 | Br->getOperand(0).setMBB(&NewMBB); | ||||||||
| 244 | |||||||||
| 245 | // If this successor was reached through a branch rather than fallthrough, | ||||||||
| 246 | // we might have *broken* fallthrough and so need to inject a new | ||||||||
| 247 | // unconditional branch. | ||||||||
| 248 | if (!UncondBr) { | ||||||||
| 249 | MachineBasicBlock &OldLayoutSucc = | ||||||||
| 250 | *std::next(MachineFunction::iterator(&NewMBB)); | ||||||||
| 251 | assert(MBB.isSuccessor(&OldLayoutSucc) &&((void)0) | ||||||||
| 252 | "Without an unconditional branch, the old layout successor should "((void)0) | ||||||||
| 253 | "be an actual successor!")((void)0); | ||||||||
| 254 | auto BrBuilder = | ||||||||
| 255 | BuildMI(&MBB, DebugLoc(), TII.get(X86::JMP_1)).addMBB(&OldLayoutSucc); | ||||||||
| 256 | // Update the unconditional branch now that we've added one. | ||||||||
| 257 | UncondBr = &*BrBuilder; | ||||||||
| 258 | } | ||||||||
| 259 | |||||||||
| 260 | // Insert unconditional "jump Succ" instruction in the new block if | ||||||||
| 261 | // necessary. | ||||||||
| 262 | if (!NewMBB.isLayoutSuccessor(&Succ)) { | ||||||||
| 263 | SmallVector<MachineOperand, 4> Cond; | ||||||||
| 264 | TII.insertBranch(NewMBB, &Succ, nullptr, Cond, Br->getDebugLoc()); | ||||||||
| 265 | } | ||||||||
| 266 | } else { | ||||||||
| 267 | assert(!UncondBr &&((void)0) | ||||||||
| 268 | "Cannot have a branchless successor and an unconditional branch!")((void)0); | ||||||||
| 269 | assert(NewMBB.isLayoutSuccessor(&Succ) &&((void)0) | ||||||||
| 270 | "A non-branch successor must have been a layout successor before "((void)0) | ||||||||
| 271 | "and now is a layout successor of the new block.")((void)0); | ||||||||
| 272 | } | ||||||||
| 273 | |||||||||
| 274 | // If this is the only edge to the successor, we can just replace it in the | ||||||||
| 275 | // CFG. Otherwise we need to add a new entry in the CFG for the new | ||||||||
| 276 | // successor. | ||||||||
| 277 | if (SuccCount == 1) { | ||||||||
| 278 | MBB.replaceSuccessor(&Succ, &NewMBB); | ||||||||
| 279 | } else { | ||||||||
| 280 | MBB.splitSuccessor(&Succ, &NewMBB); | ||||||||
| 281 | } | ||||||||
| 282 | |||||||||
| 283 | // Hook up the edge from the new basic block to the old successor in the CFG. | ||||||||
| 284 | NewMBB.addSuccessor(&Succ); | ||||||||
| 285 | |||||||||
| 286 | // Fix PHI nodes in Succ so they refer to NewMBB instead of MBB. | ||||||||
| 287 | for (MachineInstr &MI : Succ) { | ||||||||
| 288 | if (!MI.isPHI()) | ||||||||
| 289 | break; | ||||||||
| 290 | for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps; | ||||||||
| 291 | OpIdx += 2) { | ||||||||
| 292 | MachineOperand &OpV = MI.getOperand(OpIdx); | ||||||||
| 293 | MachineOperand &OpMBB = MI.getOperand(OpIdx + 1); | ||||||||
| 294 | assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!")((void)0); | ||||||||
| 295 | if (OpMBB.getMBB() != &MBB) | ||||||||
| 296 | continue; | ||||||||
| 297 | |||||||||
| 298 | // If this is the last edge to the succesor, just replace MBB in the PHI | ||||||||
| 299 | if (SuccCount == 1) { | ||||||||
| 300 | OpMBB.setMBB(&NewMBB); | ||||||||
| 301 | break; | ||||||||
| 302 | } | ||||||||
| 303 | |||||||||
| 304 | // Otherwise, append a new pair of operands for the new incoming edge. | ||||||||
| 305 | MI.addOperand(MF, OpV); | ||||||||
| 306 | MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB)); | ||||||||
| 307 | break; | ||||||||
| 308 | } | ||||||||
| 309 | } | ||||||||
| 310 | |||||||||
| 311 | // Inherit live-ins from the successor | ||||||||
| 312 | for (auto &LI : Succ.liveins()) | ||||||||
| 313 | NewMBB.addLiveIn(LI); | ||||||||
| 314 | |||||||||
| 315 | LLVM_DEBUG(dbgs() << " Split edge from '" << MBB.getName() << "' to '"do { } while (false) | ||||||||
| 316 | << Succ.getName() << "'.\n")do { } while (false); | ||||||||
| 317 | return NewMBB; | ||||||||
| 318 | } | ||||||||
| 319 | |||||||||
| 320 | /// Removing duplicate PHI operands to leave the PHI in a canonical and | ||||||||
| 321 | /// predictable form. | ||||||||
| 322 | /// | ||||||||
| 323 | /// FIXME: It's really frustrating that we have to do this, but SSA-form in MIR | ||||||||
| 324 | /// isn't what you might expect. We may have multiple entries in PHI nodes for | ||||||||
| 325 | /// a single predecessor. This makes CFG-updating extremely complex, so here we | ||||||||
| 326 | /// simplify all PHI nodes to a model even simpler than the IR's model: exactly | ||||||||
| 327 | /// one entry per predecessor, regardless of how many edges there are. | ||||||||
| 328 | static void canonicalizePHIOperands(MachineFunction &MF) { | ||||||||
| 329 | SmallPtrSet<MachineBasicBlock *, 4> Preds; | ||||||||
| 330 | SmallVector<int, 4> DupIndices; | ||||||||
| 331 | for (auto &MBB : MF) | ||||||||
| 332 | for (auto &MI : MBB) { | ||||||||
| 333 | if (!MI.isPHI()) | ||||||||
| 334 | break; | ||||||||
| 335 | |||||||||
| 336 | // First we scan the operands of the PHI looking for duplicate entries | ||||||||
| 337 | // a particular predecessor. We retain the operand index of each duplicate | ||||||||
| 338 | // entry found. | ||||||||
| 339 | for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps; | ||||||||
| 340 | OpIdx += 2) | ||||||||
| 341 | if (!Preds.insert(MI.getOperand(OpIdx + 1).getMBB()).second) | ||||||||
| 342 | DupIndices.push_back(OpIdx); | ||||||||
| 343 | |||||||||
| 344 | // Now walk the duplicate indices, removing both the block and value. Note | ||||||||
| 345 | // that these are stored as a vector making this element-wise removal | ||||||||
| 346 | // :w | ||||||||
| 347 | // potentially quadratic. | ||||||||
| 348 | // | ||||||||
| 349 | // FIXME: It is really frustrating that we have to use a quadratic | ||||||||
| 350 | // removal algorithm here. There should be a better way, but the use-def | ||||||||
| 351 | // updates required make that impossible using the public API. | ||||||||
| 352 | // | ||||||||
| 353 | // Note that we have to process these backwards so that we don't | ||||||||
| 354 | // invalidate other indices with each removal. | ||||||||
| 355 | while (!DupIndices.empty()) { | ||||||||
| 356 | int OpIdx = DupIndices.pop_back_val(); | ||||||||
| 357 | // Remove both the block and value operand, again in reverse order to | ||||||||
| 358 | // preserve indices. | ||||||||
| 359 | MI.RemoveOperand(OpIdx + 1); | ||||||||
| 360 | MI.RemoveOperand(OpIdx); | ||||||||
| 361 | } | ||||||||
| 362 | |||||||||
| 363 | Preds.clear(); | ||||||||
| 364 | } | ||||||||
| 365 | } | ||||||||
| 366 | |||||||||
| 367 | /// Helper to scan a function for loads vulnerable to misspeculation that we | ||||||||
| 368 | /// want to harden. | ||||||||
| 369 | /// | ||||||||
| 370 | /// We use this to avoid making changes to functions where there is nothing we | ||||||||
| 371 | /// need to do to harden against misspeculation. | ||||||||
| 372 | static bool hasVulnerableLoad(MachineFunction &MF) { | ||||||||
| 373 | for (MachineBasicBlock &MBB : MF) { | ||||||||
| 374 | for (MachineInstr &MI : MBB) { | ||||||||
| 375 | // Loads within this basic block after an LFENCE are not at risk of | ||||||||
| 376 | // speculatively executing with invalid predicates from prior control | ||||||||
| 377 | // flow. So break out of this block but continue scanning the function. | ||||||||
| 378 | if (MI.getOpcode() == X86::LFENCE) | ||||||||
| 379 | break; | ||||||||
| 380 | |||||||||
| 381 | // Looking for loads only. | ||||||||
| 382 | if (!MI.mayLoad()) | ||||||||
| 383 | continue; | ||||||||
| 384 | |||||||||
| 385 | // An MFENCE is modeled as a load but isn't vulnerable to misspeculation. | ||||||||
| 386 | if (MI.getOpcode() == X86::MFENCE) | ||||||||
| 387 | continue; | ||||||||
| 388 | |||||||||
| 389 | // We found a load. | ||||||||
| 390 | return true; | ||||||||
| 391 | } | ||||||||
| 392 | } | ||||||||
| 393 | |||||||||
| 394 | // No loads found. | ||||||||
| 395 | return false; | ||||||||
| 396 | } | ||||||||
| 397 | |||||||||
| 398 | bool X86SpeculativeLoadHardeningPass::runOnMachineFunction( | ||||||||
| 399 | MachineFunction &MF) { | ||||||||
| 400 | LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()do { } while (false) | ||||||||
| |||||||||
| 401 | << " **********\n")do { } while (false); | ||||||||
| 402 | |||||||||
| 403 | // Only run if this pass is forced enabled or we detect the relevant function | ||||||||
| 404 | // attribute requesting SLH. | ||||||||
| 405 | if (!EnableSpeculativeLoadHardening && | ||||||||
| 406 | !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening)) | ||||||||
| 407 | return false; | ||||||||
| 408 | |||||||||
| 409 | Subtarget = &MF.getSubtarget<X86Subtarget>(); | ||||||||
| 410 | MRI = &MF.getRegInfo(); | ||||||||
| 411 | TII = Subtarget->getInstrInfo(); | ||||||||
| 412 | TRI = Subtarget->getRegisterInfo(); | ||||||||
| 413 | |||||||||
| 414 | // FIXME: Support for 32-bit. | ||||||||
| 415 | PS.emplace(MF, &X86::GR64_NOSPRegClass); | ||||||||
| 416 | |||||||||
| 417 | if (MF.begin() == MF.end()) | ||||||||
| 418 | // Nothing to do for a degenerate empty function... | ||||||||
| 419 | return false; | ||||||||
| 420 | |||||||||
| 421 | // We support an alternative hardening technique based on a debug flag. | ||||||||
| 422 | if (HardenEdgesWithLFENCE) { | ||||||||
| 423 | hardenEdgesWithLFENCE(MF); | ||||||||
| 424 | return true; | ||||||||
| 425 | } | ||||||||
| 426 | |||||||||
| 427 | // Create a dummy debug loc to use for all the generated code here. | ||||||||
| 428 | DebugLoc Loc; | ||||||||
| 429 | |||||||||
| 430 | MachineBasicBlock &Entry = *MF.begin(); | ||||||||
| 431 | auto EntryInsertPt = Entry.SkipPHIsLabelsAndDebug(Entry.begin()); | ||||||||
| 432 | |||||||||
| 433 | // Do a quick scan to see if we have any checkable loads. | ||||||||
| 434 | bool HasVulnerableLoad = hasVulnerableLoad(MF); | ||||||||
| 435 | |||||||||
| 436 | // See if we have any conditional branching blocks that we will need to trace | ||||||||
| 437 | // predicate state through. | ||||||||
| 438 | SmallVector<BlockCondInfo, 16> Infos = collectBlockCondInfo(MF); | ||||||||
| 439 | |||||||||
| 440 | // If we have no interesting conditions or loads, nothing to do here. | ||||||||
| 441 | if (!HasVulnerableLoad
| ||||||||
| 442 | return true; | ||||||||
| 443 | |||||||||
| 444 | // The poison value is required to be an all-ones value for many aspects of | ||||||||
| 445 | // this mitigation. | ||||||||
| 446 | const int PoisonVal = -1; | ||||||||
| 447 | PS->PoisonReg = MRI->createVirtualRegister(PS->RC); | ||||||||
| 448 | BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV64ri32), PS->PoisonReg) | ||||||||
| 449 | .addImm(PoisonVal); | ||||||||
| 450 | ++NumInstsInserted; | ||||||||
| 451 | |||||||||
| 452 | // If we have loads being hardened and we've asked for call and ret edges to | ||||||||
| 453 | // get a full fence-based mitigation, inject that fence. | ||||||||
| 454 | if (HasVulnerableLoad
| ||||||||
| 455 | // We need to insert an LFENCE at the start of the function to suspend any | ||||||||
| 456 | // incoming misspeculation from the caller. This helps two-fold: the caller | ||||||||
| 457 | // may not have been protected as this code has been, and this code gets to | ||||||||
| 458 | // not take any specific action to protect across calls. | ||||||||
| 459 | // FIXME: We could skip this for functions which unconditionally return | ||||||||
| 460 | // a constant. | ||||||||
| 461 | BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::LFENCE)); | ||||||||
| 462 | ++NumInstsInserted; | ||||||||
| 463 | ++NumLFENCEsInserted; | ||||||||
| 464 | } | ||||||||
| 465 | |||||||||
| 466 | // If we guarded the entry with an LFENCE and have no conditionals to protect | ||||||||
| 467 | // in blocks, then we're done. | ||||||||
| 468 | if (FenceCallAndRet && Infos.empty()) | ||||||||
| 469 | // We may have changed the function's code at this point to insert fences. | ||||||||
| 470 | return true; | ||||||||
| 471 | |||||||||
| 472 | // For every basic block in the function which can b | ||||||||
| 473 | if (HardenInterprocedurally && !FenceCallAndRet) { | ||||||||
| 474 | // Set up the predicate state by extracting it from the incoming stack | ||||||||
| 475 | // pointer so we pick up any misspeculation in our caller. | ||||||||
| 476 | PS->InitialReg = extractPredStateFromSP(Entry, EntryInsertPt, Loc); | ||||||||
| 477 | } else { | ||||||||
| 478 | // Otherwise, just build the predicate state itself by zeroing a register | ||||||||
| 479 | // as we don't need any initial state. | ||||||||
| 480 | PS->InitialReg = MRI->createVirtualRegister(PS->RC); | ||||||||
| 481 | Register PredStateSubReg = MRI->createVirtualRegister(&X86::GR32RegClass); | ||||||||
| 482 | auto ZeroI = BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV32r0), | ||||||||
| 483 | PredStateSubReg); | ||||||||
| 484 | ++NumInstsInserted; | ||||||||
| 485 | MachineOperand *ZeroEFLAGSDefOp = | ||||||||
| 486 | ZeroI->findRegisterDefOperand(X86::EFLAGS); | ||||||||
| 487 | assert(ZeroEFLAGSDefOp && ZeroEFLAGSDefOp->isImplicit() &&((void)0) | ||||||||
| 488 | "Must have an implicit def of EFLAGS!")((void)0); | ||||||||
| 489 | ZeroEFLAGSDefOp->setIsDead(true); | ||||||||
| 490 | BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::SUBREG_TO_REG), | ||||||||
| 491 | PS->InitialReg) | ||||||||
| 492 | .addImm(0) | ||||||||
| 493 | .addReg(PredStateSubReg) | ||||||||
| 494 | .addImm(X86::sub_32bit); | ||||||||
| 495 | } | ||||||||
| 496 | |||||||||
| 497 | // We're going to need to trace predicate state throughout the function's | ||||||||
| 498 | // CFG. Prepare for this by setting up our initial state of PHIs with unique | ||||||||
| 499 | // predecessor entries and all the initial predicate state. | ||||||||
| 500 | canonicalizePHIOperands(MF); | ||||||||
| 501 | |||||||||
| 502 | // Track the updated values in an SSA updater to rewrite into SSA form at the | ||||||||
| 503 | // end. | ||||||||
| 504 | PS->SSA.Initialize(PS->InitialReg); | ||||||||
| 505 | PS->SSA.AddAvailableValue(&Entry, PS->InitialReg); | ||||||||
| 506 | |||||||||
| 507 | // Trace through the CFG. | ||||||||
| 508 | auto CMovs = tracePredStateThroughCFG(MF, Infos); | ||||||||
| 509 | |||||||||
| 510 | // We may also enter basic blocks in this function via exception handling | ||||||||
| 511 | // control flow. Here, if we are hardening interprocedurally, we need to | ||||||||
| 512 | // re-capture the predicate state from the throwing code. In the Itanium ABI, | ||||||||
| 513 | // the throw will always look like a call to __cxa_throw and will have the | ||||||||
| 514 | // predicate state in the stack pointer, so extract fresh predicate state from | ||||||||
| 515 | // the stack pointer and make it available in SSA. | ||||||||
| 516 | // FIXME: Handle non-itanium ABI EH models. | ||||||||
| 517 | if (HardenInterprocedurally) { | ||||||||
| 518 | for (MachineBasicBlock &MBB : MF) { | ||||||||
| 519 | assert(!MBB.isEHScopeEntry() && "Only Itanium ABI EH supported!")((void)0); | ||||||||
| 520 | assert(!MBB.isEHFuncletEntry() && "Only Itanium ABI EH supported!")((void)0); | ||||||||
| 521 | assert(!MBB.isCleanupFuncletEntry() && "Only Itanium ABI EH supported!")((void)0); | ||||||||
| 522 | if (!MBB.isEHPad()) | ||||||||
| 523 | continue; | ||||||||
| 524 | PS->SSA.AddAvailableValue( | ||||||||
| 525 | &MBB, | ||||||||
| 526 | extractPredStateFromSP(MBB, MBB.SkipPHIsAndLabels(MBB.begin()), Loc)); | ||||||||
| 527 | } | ||||||||
| 528 | } | ||||||||
| 529 | |||||||||
| 530 | if (HardenIndirectCallsAndJumps) { | ||||||||
| 531 | // If we are going to harden calls and jumps we need to unfold their memory | ||||||||
| 532 | // operands. | ||||||||
| 533 | unfoldCallAndJumpLoads(MF); | ||||||||
| 534 | |||||||||
| 535 | // Then we trace predicate state through the indirect branches. | ||||||||
| 536 | auto IndirectBrCMovs = tracePredStateThroughIndirectBranches(MF); | ||||||||
| 537 | CMovs.append(IndirectBrCMovs.begin(), IndirectBrCMovs.end()); | ||||||||
| 538 | } | ||||||||
| 539 | |||||||||
| 540 | // Now that we have the predicate state available at the start of each block | ||||||||
| 541 | // in the CFG, trace it through each block, hardening vulnerable instructions | ||||||||
| 542 | // as we go. | ||||||||
| 543 | tracePredStateThroughBlocksAndHarden(MF); | ||||||||
| 544 | |||||||||
| 545 | // Now rewrite all the uses of the pred state using the SSA updater to insert | ||||||||
| 546 | // PHIs connecting the state between blocks along the CFG edges. | ||||||||
| 547 | for (MachineInstr *CMovI : CMovs) | ||||||||
| 548 | for (MachineOperand &Op : CMovI->operands()) { | ||||||||
| 549 | if (!Op.isReg() || Op.getReg() != PS->InitialReg) | ||||||||
| 550 | continue; | ||||||||
| 551 | |||||||||
| 552 | PS->SSA.RewriteUse(Op); | ||||||||
| 553 | } | ||||||||
| 554 | |||||||||
| 555 | LLVM_DEBUG(dbgs() << "Final speculative load hardened function:\n"; MF.dump();do { } while (false) | ||||||||
| 556 | dbgs() << "\n"; MF.verify(this))do { } while (false); | ||||||||
| 557 | return true; | ||||||||
| 558 | } | ||||||||
| 559 | |||||||||
| 560 | /// Implements the naive hardening approach of putting an LFENCE after every | ||||||||
| 561 | /// potentially mis-predicted control flow construct. | ||||||||
| 562 | /// | ||||||||
| 563 | /// We include this as an alternative mostly for the purpose of comparison. The | ||||||||
| 564 | /// performance impact of this is expected to be extremely severe and not | ||||||||
| 565 | /// practical for any real-world users. | ||||||||
| 566 | void X86SpeculativeLoadHardeningPass::hardenEdgesWithLFENCE( | ||||||||
| 567 | MachineFunction &MF) { | ||||||||
| 568 | // First, we scan the function looking for blocks that are reached along edges | ||||||||
| 569 | // that we might want to harden. | ||||||||
| 570 | SmallSetVector<MachineBasicBlock *, 8> Blocks; | ||||||||
| 571 | for (MachineBasicBlock &MBB : MF) { | ||||||||
| 572 | // If there are no or only one successor, nothing to do here. | ||||||||
| 573 | if (MBB.succ_size() <= 1) | ||||||||
| 574 | continue; | ||||||||
| 575 | |||||||||
| 576 | // Skip blocks unless their terminators start with a branch. Other | ||||||||
| 577 | // terminators don't seem interesting for guarding against misspeculation. | ||||||||
| 578 | auto TermIt = MBB.getFirstTerminator(); | ||||||||
| 579 | if (TermIt == MBB.end() || !TermIt->isBranch()) | ||||||||
| 580 | continue; | ||||||||
| 581 | |||||||||
| 582 | // Add all the non-EH-pad succossors to the blocks we want to harden. We | ||||||||
| 583 | // skip EH pads because there isn't really a condition of interest on | ||||||||
| 584 | // entering. | ||||||||
| 585 | for (MachineBasicBlock *SuccMBB : MBB.successors()) | ||||||||
| 586 | if (!SuccMBB->isEHPad()) | ||||||||
| 587 | Blocks.insert(SuccMBB); | ||||||||
| 588 | } | ||||||||
| 589 | |||||||||
| 590 | for (MachineBasicBlock *MBB : Blocks) { | ||||||||
| 591 | auto InsertPt = MBB->SkipPHIsAndLabels(MBB->begin()); | ||||||||
| 592 | BuildMI(*MBB, InsertPt, DebugLoc(), TII->get(X86::LFENCE)); | ||||||||
| 593 | ++NumInstsInserted; | ||||||||
| 594 | ++NumLFENCEsInserted; | ||||||||
| 595 | } | ||||||||
| 596 | } | ||||||||
| 597 | |||||||||
| 598 | SmallVector<X86SpeculativeLoadHardeningPass::BlockCondInfo, 16> | ||||||||
| 599 | X86SpeculativeLoadHardeningPass::collectBlockCondInfo(MachineFunction &MF) { | ||||||||
| 600 | SmallVector<BlockCondInfo, 16> Infos; | ||||||||
| 601 | |||||||||
| 602 | // Walk the function and build up a summary for each block's conditions that | ||||||||
| 603 | // we need to trace through. | ||||||||
| 604 | for (MachineBasicBlock &MBB : MF) { | ||||||||
| 605 | // If there are no or only one successor, nothing to do here. | ||||||||
| 606 | if (MBB.succ_size() <= 1) | ||||||||
| 607 | continue; | ||||||||
| 608 | |||||||||
| 609 | // We want to reliably handle any conditional branch terminators in the | ||||||||
| 610 | // MBB, so we manually analyze the branch. We can handle all of the | ||||||||
| 611 | // permutations here, including ones that analyze branch cannot. | ||||||||
| 612 | // | ||||||||
| 613 | // The approach is to walk backwards across the terminators, resetting at | ||||||||
| 614 | // any unconditional non-indirect branch, and track all conditional edges | ||||||||
| 615 | // to basic blocks as well as the fallthrough or unconditional successor | ||||||||
| 616 | // edge. For each conditional edge, we track the target and the opposite | ||||||||
| 617 | // condition code in order to inject a "no-op" cmov into that successor | ||||||||
| 618 | // that will harden the predicate. For the fallthrough/unconditional | ||||||||
| 619 | // edge, we inject a separate cmov for each conditional branch with | ||||||||
| 620 | // matching condition codes. This effectively implements an "and" of the | ||||||||
| 621 | // condition flags, even if there isn't a single condition flag that would | ||||||||
| 622 | // directly implement that. We don't bother trying to optimize either of | ||||||||
| 623 | // these cases because if such an optimization is possible, LLVM should | ||||||||
| 624 | // have optimized the conditional *branches* in that way already to reduce | ||||||||
| 625 | // instruction count. This late, we simply assume the minimal number of | ||||||||
| 626 | // branch instructions is being emitted and use that to guide our cmov | ||||||||
| 627 | // insertion. | ||||||||
| 628 | |||||||||
| 629 | BlockCondInfo Info = {&MBB, {}, nullptr}; | ||||||||
| 630 | |||||||||
| 631 | // Now walk backwards through the terminators and build up successors they | ||||||||
| 632 | // reach and the conditions. | ||||||||
| 633 | for (MachineInstr &MI : llvm::reverse(MBB)) { | ||||||||
| 634 | // Once we've handled all the terminators, we're done. | ||||||||
| 635 | if (!MI.isTerminator()) | ||||||||
| 636 | break; | ||||||||
| 637 | |||||||||
| 638 | // If we see a non-branch terminator, we can't handle anything so bail. | ||||||||
| 639 | if (!MI.isBranch()) { | ||||||||
| 640 | Info.CondBrs.clear(); | ||||||||
| 641 | break; | ||||||||
| 642 | } | ||||||||
| 643 | |||||||||
| 644 | // If we see an unconditional branch, reset our state, clear any | ||||||||
| 645 | // fallthrough, and set this is the "else" successor. | ||||||||
| 646 | if (MI.getOpcode() == X86::JMP_1) { | ||||||||
| 647 | Info.CondBrs.clear(); | ||||||||
| 648 | Info.UncondBr = &MI; | ||||||||
| 649 | continue; | ||||||||
| 650 | } | ||||||||
| 651 | |||||||||
| 652 | // If we get an invalid condition, we have an indirect branch or some | ||||||||
| 653 | // other unanalyzable "fallthrough" case. We model this as a nullptr for | ||||||||
| 654 | // the destination so we can still guard any conditional successors. | ||||||||
| 655 | // Consider code sequences like: | ||||||||
| 656 | // ``` | ||||||||
| 657 | // jCC L1 | ||||||||
| 658 | // jmpq *%rax | ||||||||
| 659 | // ``` | ||||||||
| 660 | // We still want to harden the edge to `L1`. | ||||||||
| 661 | if (X86::getCondFromBranch(MI) == X86::COND_INVALID) { | ||||||||
| 662 | Info.CondBrs.clear(); | ||||||||
| 663 | Info.UncondBr = &MI; | ||||||||
| 664 | continue; | ||||||||
| 665 | } | ||||||||
| 666 | |||||||||
| 667 | // We have a vanilla conditional branch, add it to our list. | ||||||||
| 668 | Info.CondBrs.push_back(&MI); | ||||||||
| 669 | } | ||||||||
| 670 | if (Info.CondBrs.empty()) { | ||||||||
| 671 | ++NumBranchesUntraced; | ||||||||
| 672 | LLVM_DEBUG(dbgs() << "WARNING: unable to secure successors of block:\n";do { } while (false) | ||||||||
| 673 | MBB.dump())do { } while (false); | ||||||||
| 674 | continue; | ||||||||
| 675 | } | ||||||||
| 676 | |||||||||
| 677 | Infos.push_back(Info); | ||||||||
| 678 | } | ||||||||
| 679 | |||||||||
| 680 | return Infos; | ||||||||
| 681 | } | ||||||||
| 682 | |||||||||
| 683 | /// Trace the predicate state through the CFG, instrumenting each conditional | ||||||||
| 684 | /// branch such that misspeculation through an edge will poison the predicate | ||||||||
| 685 | /// state. | ||||||||
| 686 | /// | ||||||||
| 687 | /// Returns the list of inserted CMov instructions so that they can have their | ||||||||
| 688 | /// uses of the predicate state rewritten into proper SSA form once it is | ||||||||
| 689 | /// complete. | ||||||||
| 690 | SmallVector<MachineInstr *, 16> | ||||||||
| 691 | X86SpeculativeLoadHardeningPass::tracePredStateThroughCFG( | ||||||||
| 692 | MachineFunction &MF, ArrayRef<BlockCondInfo> Infos) { | ||||||||
| 693 | // Collect the inserted cmov instructions so we can rewrite their uses of the | ||||||||
| 694 | // predicate state into SSA form. | ||||||||
| 695 | SmallVector<MachineInstr *, 16> CMovs; | ||||||||
| 696 | |||||||||
| 697 | // Now walk all of the basic blocks looking for ones that end in conditional | ||||||||
| 698 | // jumps where we need to update this register along each edge. | ||||||||
| 699 | for (const BlockCondInfo &Info : Infos) { | ||||||||
| 700 | MachineBasicBlock &MBB = *Info.MBB; | ||||||||
| 701 | const SmallVectorImpl<MachineInstr *> &CondBrs = Info.CondBrs; | ||||||||
| 702 | MachineInstr *UncondBr = Info.UncondBr; | ||||||||
| 703 | |||||||||
| 704 | LLVM_DEBUG(dbgs() << "Tracing predicate through block: " << MBB.getName()do { } while (false) | ||||||||
| 705 | << "\n")do { } while (false); | ||||||||
| 706 | ++NumCondBranchesTraced; | ||||||||
| 707 | |||||||||
| 708 | // Compute the non-conditional successor as either the target of any | ||||||||
| 709 | // unconditional branch or the layout successor. | ||||||||
| 710 | MachineBasicBlock *UncondSucc = | ||||||||
| 711 | UncondBr ? (UncondBr->getOpcode() == X86::JMP_1 | ||||||||
| 712 | ? UncondBr->getOperand(0).getMBB() | ||||||||
| 713 | : nullptr) | ||||||||
| 714 | : &*std::next(MachineFunction::iterator(&MBB)); | ||||||||
| 715 | |||||||||
| 716 | // Count how many edges there are to any given successor. | ||||||||
| 717 | SmallDenseMap<MachineBasicBlock *, int> SuccCounts; | ||||||||
| 718 | if (UncondSucc) | ||||||||
| 719 | ++SuccCounts[UncondSucc]; | ||||||||
| 720 | for (auto *CondBr : CondBrs) | ||||||||
| 721 | ++SuccCounts[CondBr->getOperand(0).getMBB()]; | ||||||||
| 722 | |||||||||
| 723 | // A lambda to insert cmov instructions into a block checking all of the | ||||||||
| 724 | // condition codes in a sequence. | ||||||||
| 725 | auto BuildCheckingBlockForSuccAndConds = | ||||||||
| 726 | [&](MachineBasicBlock &MBB, MachineBasicBlock &Succ, int SuccCount, | ||||||||
| 727 | MachineInstr *Br, MachineInstr *&UncondBr, | ||||||||
| 728 | ArrayRef<X86::CondCode> Conds) { | ||||||||
| 729 | // First, we split the edge to insert the checking block into a safe | ||||||||
| 730 | // location. | ||||||||
| 731 | auto &CheckingMBB = | ||||||||
| 732 | (SuccCount == 1 && Succ.pred_size() == 1) | ||||||||
| 733 | ? Succ | ||||||||
| 734 | : splitEdge(MBB, Succ, SuccCount, Br, UncondBr, *TII); | ||||||||
| 735 | |||||||||
| 736 | bool LiveEFLAGS = Succ.isLiveIn(X86::EFLAGS); | ||||||||
| 737 | if (!LiveEFLAGS) | ||||||||
| 738 | CheckingMBB.addLiveIn(X86::EFLAGS); | ||||||||
| 739 | |||||||||
| 740 | // Now insert the cmovs to implement the checks. | ||||||||
| 741 | auto InsertPt = CheckingMBB.begin(); | ||||||||
| 742 | assert((InsertPt == CheckingMBB.end() || !InsertPt->isPHI()) &&((void)0) | ||||||||
| 743 | "Should never have a PHI in the initial checking block as it "((void)0) | ||||||||
| 744 | "always has a single predecessor!")((void)0); | ||||||||
| 745 | |||||||||
| 746 | // We will wire each cmov to each other, but need to start with the | ||||||||
| 747 | // incoming pred state. | ||||||||
| 748 | unsigned CurStateReg = PS->InitialReg; | ||||||||
| 749 | |||||||||
| 750 | for (X86::CondCode Cond : Conds) { | ||||||||
| 751 | int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8; | ||||||||
| 752 | auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes); | ||||||||
| 753 | |||||||||
| 754 | Register UpdatedStateReg = MRI->createVirtualRegister(PS->RC); | ||||||||
| 755 | // Note that we intentionally use an empty debug location so that | ||||||||
| 756 | // this picks up the preceding location. | ||||||||
| 757 | auto CMovI = BuildMI(CheckingMBB, InsertPt, DebugLoc(), | ||||||||
| 758 | TII->get(CMovOp), UpdatedStateReg) | ||||||||
| 759 | .addReg(CurStateReg) | ||||||||
| 760 | .addReg(PS->PoisonReg) | ||||||||
| 761 | .addImm(Cond); | ||||||||
| 762 | // If this is the last cmov and the EFLAGS weren't originally | ||||||||
| 763 | // live-in, mark them as killed. | ||||||||
| 764 | if (!LiveEFLAGS && Cond == Conds.back()) | ||||||||
| 765 | CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true); | ||||||||
| 766 | |||||||||
| 767 | ++NumInstsInserted; | ||||||||
| 768 | LLVM_DEBUG(dbgs() << " Inserting cmov: "; CMovI->dump();do { } while (false) | ||||||||
| 769 | dbgs() << "\n")do { } while (false); | ||||||||
| 770 | |||||||||
| 771 | // The first one of the cmovs will be using the top level | ||||||||
| 772 | // `PredStateReg` and need to get rewritten into SSA form. | ||||||||
| 773 | if (CurStateReg == PS->InitialReg) | ||||||||
| 774 | CMovs.push_back(&*CMovI); | ||||||||
| 775 | |||||||||
| 776 | // The next cmov should start from this one's def. | ||||||||
| 777 | CurStateReg = UpdatedStateReg; | ||||||||
| 778 | } | ||||||||
| 779 | |||||||||
| 780 | // And put the last one into the available values for SSA form of our | ||||||||
| 781 | // predicate state. | ||||||||
| 782 | PS->SSA.AddAvailableValue(&CheckingMBB, CurStateReg); | ||||||||
| 783 | }; | ||||||||
| 784 | |||||||||
| 785 | std::vector<X86::CondCode> UncondCodeSeq; | ||||||||
| 786 | for (auto *CondBr : CondBrs) { | ||||||||
| 787 | MachineBasicBlock &Succ = *CondBr->getOperand(0).getMBB(); | ||||||||
| 788 | int &SuccCount = SuccCounts[&Succ]; | ||||||||
| 789 | |||||||||
| 790 | X86::CondCode Cond = X86::getCondFromBranch(*CondBr); | ||||||||
| 791 | X86::CondCode InvCond = X86::GetOppositeBranchCondition(Cond); | ||||||||
| 792 | UncondCodeSeq.push_back(Cond); | ||||||||
| 793 | |||||||||
| 794 | BuildCheckingBlockForSuccAndConds(MBB, Succ, SuccCount, CondBr, UncondBr, | ||||||||
| 795 | {InvCond}); | ||||||||
| 796 | |||||||||
| 797 | // Decrement the successor count now that we've split one of the edges. | ||||||||
| 798 | // We need to keep the count of edges to the successor accurate in order | ||||||||
| 799 | // to know above when to *replace* the successor in the CFG vs. just | ||||||||
| 800 | // adding the new successor. | ||||||||
| 801 | --SuccCount; | ||||||||
| 802 | } | ||||||||
| 803 | |||||||||
| 804 | // Since we may have split edges and changed the number of successors, | ||||||||
| 805 | // normalize the probabilities. This avoids doing it each time we split an | ||||||||
| 806 | // edge. | ||||||||
| 807 | MBB.normalizeSuccProbs(); | ||||||||
| 808 | |||||||||
| 809 | // Finally, we need to insert cmovs into the "fallthrough" edge. Here, we | ||||||||
| 810 | // need to intersect the other condition codes. We can do this by just | ||||||||
| 811 | // doing a cmov for each one. | ||||||||
| 812 | if (!UncondSucc) | ||||||||
| 813 | // If we have no fallthrough to protect (perhaps it is an indirect jump?) | ||||||||
| 814 | // just skip this and continue. | ||||||||
| 815 | continue; | ||||||||
| 816 | |||||||||
| 817 | assert(SuccCounts[UncondSucc] == 1 &&((void)0) | ||||||||
| 818 | "We should never have more than one edge to the unconditional "((void)0) | ||||||||
| 819 | "successor at this point because every other edge must have been "((void)0) | ||||||||
| 820 | "split above!")((void)0); | ||||||||
| 821 | |||||||||
| 822 | // Sort and unique the codes to minimize them. | ||||||||
| 823 | llvm::sort(UncondCodeSeq); | ||||||||
| 824 | UncondCodeSeq.erase(std::unique(UncondCodeSeq.begin(), UncondCodeSeq.end()), | ||||||||
| 825 | UncondCodeSeq.end()); | ||||||||
| 826 | |||||||||
| 827 | // Build a checking version of the successor. | ||||||||
| 828 | BuildCheckingBlockForSuccAndConds(MBB, *UncondSucc, /*SuccCount*/ 1, | ||||||||
| 829 | UncondBr, UncondBr, UncondCodeSeq); | ||||||||
| 830 | } | ||||||||
| 831 | |||||||||
| 832 | return CMovs; | ||||||||
| 833 | } | ||||||||
| 834 | |||||||||
| 835 | /// Compute the register class for the unfolded load. | ||||||||
| 836 | /// | ||||||||
| 837 | /// FIXME: This should probably live in X86InstrInfo, potentially by adding | ||||||||
| 838 | /// a way to unfold into a newly created vreg rather than requiring a register | ||||||||
| 839 | /// input. | ||||||||
| 840 | static const TargetRegisterClass * | ||||||||
| 841 | getRegClassForUnfoldedLoad(MachineFunction &MF, const X86InstrInfo &TII, | ||||||||
| 842 | unsigned Opcode) { | ||||||||
| 843 | unsigned Index; | ||||||||
| 844 | unsigned UnfoldedOpc = TII.getOpcodeAfterMemoryUnfold( | ||||||||
| 845 | Opcode, /*UnfoldLoad*/ true, /*UnfoldStore*/ false, &Index); | ||||||||
| 846 | const MCInstrDesc &MCID = TII.get(UnfoldedOpc); | ||||||||
| 847 | return TII.getRegClass(MCID, Index, &TII.getRegisterInfo(), MF); | ||||||||
| 848 | } | ||||||||
| 849 | |||||||||
| 850 | void X86SpeculativeLoadHardeningPass::unfoldCallAndJumpLoads( | ||||||||
| 851 | MachineFunction &MF) { | ||||||||
| 852 | for (MachineBasicBlock &MBB : MF) | ||||||||
| 853 | for (auto MII = MBB.instr_begin(), MIE = MBB.instr_end(); MII != MIE;) { | ||||||||
| 854 | // Grab a reference and increment the iterator so we can remove this | ||||||||
| 855 | // instruction if needed without disturbing the iteration. | ||||||||
| 856 | MachineInstr &MI = *MII++; | ||||||||
| 857 | |||||||||
| 858 | // Must either be a call or a branch. | ||||||||
| 859 | if (!MI.isCall() && !MI.isBranch()) | ||||||||
| 860 | continue; | ||||||||
| 861 | // We only care about loading variants of these instructions. | ||||||||
| 862 | if (!MI.mayLoad()) | ||||||||
| 863 | continue; | ||||||||
| 864 | |||||||||
| 865 | switch (MI.getOpcode()) { | ||||||||
| 866 | default: { | ||||||||
| 867 | LLVM_DEBUG(do { } while (false) | ||||||||
| 868 | dbgs() << "ERROR: Found an unexpected loading branch or call "do { } while (false) | ||||||||
| 869 | "instruction:\n";do { } while (false) | ||||||||
| 870 | MI.dump(); dbgs() << "\n")do { } while (false); | ||||||||
| 871 | report_fatal_error("Unexpected loading branch or call!"); | ||||||||
| 872 | } | ||||||||
| 873 | |||||||||
| 874 | case X86::FARCALL16m: | ||||||||
| 875 | case X86::FARCALL32m: | ||||||||
| 876 | case X86::FARCALL64m: | ||||||||
| 877 | case X86::FARJMP16m: | ||||||||
| 878 | case X86::FARJMP32m: | ||||||||
| 879 | case X86::FARJMP64m: | ||||||||
| 880 | // We cannot mitigate far jumps or calls, but we also don't expect them | ||||||||
| 881 | // to be vulnerable to Spectre v1.2 style attacks. | ||||||||
| 882 | continue; | ||||||||
| 883 | |||||||||
| 884 | case X86::CALL16m: | ||||||||
| 885 | case X86::CALL16m_NT: | ||||||||
| 886 | case X86::CALL32m: | ||||||||
| 887 | case X86::CALL32m_NT: | ||||||||
| 888 | case X86::CALL64m: | ||||||||
| 889 | case X86::CALL64m_NT: | ||||||||
| 890 | case X86::JMP16m: | ||||||||
| 891 | case X86::JMP16m_NT: | ||||||||
| 892 | case X86::JMP32m: | ||||||||
| 893 | case X86::JMP32m_NT: | ||||||||
| 894 | case X86::JMP64m: | ||||||||
| 895 | case X86::JMP64m_NT: | ||||||||
| 896 | case X86::TAILJMPm64: | ||||||||
| 897 | case X86::TAILJMPm64_REX: | ||||||||
| 898 | case X86::TAILJMPm: | ||||||||
| 899 | case X86::TCRETURNmi64: | ||||||||
| 900 | case X86::TCRETURNmi: { | ||||||||
| 901 | // Use the generic unfold logic now that we know we're dealing with | ||||||||
| 902 | // expected instructions. | ||||||||
| 903 | // FIXME: We don't have test coverage for all of these! | ||||||||
| 904 | auto *UnfoldedRC = getRegClassForUnfoldedLoad(MF, *TII, MI.getOpcode()); | ||||||||
| 905 | if (!UnfoldedRC) { | ||||||||
| 906 | LLVM_DEBUG(dbgs()do { } while (false) | ||||||||
| 907 | << "ERROR: Unable to unfold load from instruction:\n";do { } while (false) | ||||||||
| 908 | MI.dump(); dbgs() << "\n")do { } while (false); | ||||||||
| 909 | report_fatal_error("Unable to unfold load!"); | ||||||||
| 910 | } | ||||||||
| 911 | Register Reg = MRI->createVirtualRegister(UnfoldedRC); | ||||||||
| 912 | SmallVector<MachineInstr *, 2> NewMIs; | ||||||||
| 913 | // If we were able to compute an unfolded reg class, any failure here | ||||||||
| 914 | // is just a programming error so just assert. | ||||||||
| 915 | bool Unfolded = | ||||||||
| 916 | TII->unfoldMemoryOperand(MF, MI, Reg, /*UnfoldLoad*/ true, | ||||||||
| 917 | /*UnfoldStore*/ false, NewMIs); | ||||||||
| 918 | (void)Unfolded; | ||||||||
| 919 | assert(Unfolded &&((void)0) | ||||||||
| 920 | "Computed unfolded register class but failed to unfold")((void)0); | ||||||||
| 921 | // Now stitch the new instructions into place and erase the old one. | ||||||||
| 922 | for (auto *NewMI : NewMIs) | ||||||||
| 923 | MBB.insert(MI.getIterator(), NewMI); | ||||||||
| 924 | |||||||||
| 925 | // Update the call site info. | ||||||||
| 926 | if (MI.isCandidateForCallSiteEntry()) | ||||||||
| 927 | MF.eraseCallSiteInfo(&MI); | ||||||||
| 928 | |||||||||
| 929 | MI.eraseFromParent(); | ||||||||
| 930 | LLVM_DEBUG({do { } while (false) | ||||||||
| 931 | dbgs() << "Unfolded load successfully into:\n";do { } while (false) | ||||||||
| 932 | for (auto *NewMI : NewMIs) {do { } while (false) | ||||||||
| 933 | NewMI->dump();do { } while (false) | ||||||||
| 934 | dbgs() << "\n";do { } while (false) | ||||||||
| 935 | }do { } while (false) | ||||||||
| 936 | })do { } while (false); | ||||||||
| 937 | continue; | ||||||||
| 938 | } | ||||||||
| 939 | } | ||||||||
| 940 | llvm_unreachable("Escaped switch with default!")__builtin_unreachable(); | ||||||||
| 941 | } | ||||||||
| 942 | } | ||||||||
| 943 | |||||||||
| 944 | /// Trace the predicate state through indirect branches, instrumenting them to | ||||||||
| 945 | /// poison the state if a target is reached that does not match the expected | ||||||||
| 946 | /// target. | ||||||||
| 947 | /// | ||||||||
| 948 | /// This is designed to mitigate Spectre variant 1 attacks where an indirect | ||||||||
| 949 | /// branch is trained to predict a particular target and then mispredicts that | ||||||||
| 950 | /// target in a way that can leak data. Despite using an indirect branch, this | ||||||||
| 951 | /// is really a variant 1 style attack: it does not steer execution to an | ||||||||
| 952 | /// arbitrary or attacker controlled address, and it does not require any | ||||||||
| 953 | /// special code executing next to the victim. This attack can also be mitigated | ||||||||
| 954 | /// through retpolines, but those require either replacing indirect branches | ||||||||
| 955 | /// with conditional direct branches or lowering them through a device that | ||||||||
| 956 | /// blocks speculation. This mitigation can replace these retpoline-style | ||||||||
| 957 | /// mitigations for jump tables and other indirect branches within a function | ||||||||
| 958 | /// when variant 2 isn't a risk while allowing limited speculation. Indirect | ||||||||
| 959 | /// calls, however, cannot be mitigated through this technique without changing | ||||||||
| 960 | /// the ABI in a fundamental way. | ||||||||
| 961 | SmallVector<MachineInstr *, 16> | ||||||||
| 962 | X86SpeculativeLoadHardeningPass::tracePredStateThroughIndirectBranches( | ||||||||
| 963 | MachineFunction &MF) { | ||||||||
| 964 | // We use the SSAUpdater to insert PHI nodes for the target addresses of | ||||||||
| 965 | // indirect branches. We don't actually need the full power of the SSA updater | ||||||||
| 966 | // in this particular case as we always have immediately available values, but | ||||||||
| 967 | // this avoids us having to re-implement the PHI construction logic. | ||||||||
| 968 | MachineSSAUpdater TargetAddrSSA(MF); | ||||||||
| 969 | TargetAddrSSA.Initialize(MRI->createVirtualRegister(&X86::GR64RegClass)); | ||||||||
| 970 | |||||||||
| 971 | // Track which blocks were terminated with an indirect branch. | ||||||||
| 972 | SmallPtrSet<MachineBasicBlock *, 4> IndirectTerminatedMBBs; | ||||||||
| 973 | |||||||||
| 974 | // We need to know what blocks end up reached via indirect branches. We | ||||||||
| 975 | // expect this to be a subset of those whose address is taken and so track it | ||||||||
| 976 | // directly via the CFG. | ||||||||
| 977 | SmallPtrSet<MachineBasicBlock *, 4> IndirectTargetMBBs; | ||||||||
| 978 | |||||||||
| 979 | // Walk all the blocks which end in an indirect branch and make the | ||||||||
| 980 | // target address available. | ||||||||
| 981 | for (MachineBasicBlock &MBB : MF) { | ||||||||
| 982 | // Find the last terminator. | ||||||||
| 983 | auto MII = MBB.instr_rbegin(); | ||||||||
| 984 | while (MII != MBB.instr_rend() && MII->isDebugInstr()) | ||||||||
| 985 | ++MII; | ||||||||
| 986 | if (MII == MBB.instr_rend()) | ||||||||
| 987 | continue; | ||||||||
| 988 | MachineInstr &TI = *MII; | ||||||||
| 989 | if (!TI.isTerminator() || !TI.isBranch()) | ||||||||
| 990 | // No terminator or non-branch terminator. | ||||||||
| 991 | continue; | ||||||||
| 992 | |||||||||
| 993 | unsigned TargetReg; | ||||||||
| 994 | |||||||||
| 995 | switch (TI.getOpcode()) { | ||||||||
| 996 | default: | ||||||||
| 997 | // Direct branch or conditional branch (leading to fallthrough). | ||||||||
| 998 | continue; | ||||||||
| 999 | |||||||||
| 1000 | case X86::FARJMP16m: | ||||||||
| 1001 | case X86::FARJMP32m: | ||||||||
| 1002 | case X86::FARJMP64m: | ||||||||
| 1003 | // We cannot mitigate far jumps or calls, but we also don't expect them | ||||||||
| 1004 | // to be vulnerable to Spectre v1.2 or v2 (self trained) style attacks. | ||||||||
| 1005 | continue; | ||||||||
| 1006 | |||||||||
| 1007 | case X86::JMP16m: | ||||||||
| 1008 | case X86::JMP16m_NT: | ||||||||
| 1009 | case X86::JMP32m: | ||||||||
| 1010 | case X86::JMP32m_NT: | ||||||||
| 1011 | case X86::JMP64m: | ||||||||
| 1012 | case X86::JMP64m_NT: | ||||||||
| 1013 | // Mostly as documentation. | ||||||||
| 1014 | report_fatal_error("Memory operand jumps should have been unfolded!"); | ||||||||
| 1015 | |||||||||
| 1016 | case X86::JMP16r: | ||||||||
| 1017 | report_fatal_error( | ||||||||
| 1018 | "Support for 16-bit indirect branches is not implemented."); | ||||||||
| 1019 | case X86::JMP32r: | ||||||||
| 1020 | report_fatal_error( | ||||||||
| 1021 | "Support for 32-bit indirect branches is not implemented."); | ||||||||
| 1022 | |||||||||
| 1023 | case X86::JMP64r: | ||||||||
| 1024 | TargetReg = TI.getOperand(0).getReg(); | ||||||||
| 1025 | } | ||||||||
| 1026 | |||||||||
| 1027 | // We have definitely found an indirect branch. Verify that there are no | ||||||||
| 1028 | // preceding conditional branches as we don't yet support that. | ||||||||
| 1029 | if (llvm::any_of(MBB.terminators(), [&](MachineInstr &OtherTI) { | ||||||||
| 1030 | return !OtherTI.isDebugInstr() && &OtherTI != &TI; | ||||||||
| 1031 | })) { | ||||||||
| 1032 | LLVM_DEBUG({do { } while (false) | ||||||||
| 1033 | dbgs() << "ERROR: Found other terminators in a block with an indirect "do { } while (false) | ||||||||
| 1034 | "branch! This is not yet supported! Terminator sequence:\n";do { } while (false) | ||||||||
| 1035 | for (MachineInstr &MI : MBB.terminators()) {do { } while (false) | ||||||||
| 1036 | MI.dump();do { } while (false) | ||||||||
| 1037 | dbgs() << '\n';do { } while (false) | ||||||||
| 1038 | }do { } while (false) | ||||||||
| 1039 | })do { } while (false); | ||||||||
| 1040 | report_fatal_error("Unimplemented terminator sequence!"); | ||||||||
| 1041 | } | ||||||||
| 1042 | |||||||||
| 1043 | // Make the target register an available value for this block. | ||||||||
| 1044 | TargetAddrSSA.AddAvailableValue(&MBB, TargetReg); | ||||||||
| 1045 | IndirectTerminatedMBBs.insert(&MBB); | ||||||||
| 1046 | |||||||||
| 1047 | // Add all the successors to our target candidates. | ||||||||
| 1048 | for (MachineBasicBlock *Succ : MBB.successors()) | ||||||||
| 1049 | IndirectTargetMBBs.insert(Succ); | ||||||||
| 1050 | } | ||||||||
| 1051 | |||||||||
| 1052 | // Keep track of the cmov instructions we insert so we can return them. | ||||||||
| 1053 | SmallVector<MachineInstr *, 16> CMovs; | ||||||||
| 1054 | |||||||||
| 1055 | // If we didn't find any indirect branches with targets, nothing to do here. | ||||||||
| 1056 | if (IndirectTargetMBBs.empty()) | ||||||||
| 1057 | return CMovs; | ||||||||
| 1058 | |||||||||
| 1059 | // We found indirect branches and targets that need to be instrumented to | ||||||||
| 1060 | // harden loads within them. Walk the blocks of the function (to get a stable | ||||||||
| 1061 | // ordering) and instrument each target of an indirect branch. | ||||||||
| 1062 | for (MachineBasicBlock &MBB : MF) { | ||||||||
| 1063 | // Skip the blocks that aren't candidate targets. | ||||||||
| 1064 | if (!IndirectTargetMBBs.count(&MBB)) | ||||||||
| 1065 | continue; | ||||||||
| 1066 | |||||||||
| 1067 | // We don't expect EH pads to ever be reached via an indirect branch. If | ||||||||
| 1068 | // this is desired for some reason, we could simply skip them here rather | ||||||||
| 1069 | // than asserting. | ||||||||
| 1070 | assert(!MBB.isEHPad() &&((void)0) | ||||||||
| 1071 | "Unexpected EH pad as target of an indirect branch!")((void)0); | ||||||||
| 1072 | |||||||||
| 1073 | // We should never end up threading EFLAGS into a block to harden | ||||||||
| 1074 | // conditional jumps as there would be an additional successor via the | ||||||||
| 1075 | // indirect branch. As a consequence, all such edges would be split before | ||||||||
| 1076 | // reaching here, and the inserted block will handle the EFLAGS-based | ||||||||
| 1077 | // hardening. | ||||||||
| 1078 | assert(!MBB.isLiveIn(X86::EFLAGS) &&((void)0) | ||||||||
| 1079 | "Cannot check within a block that already has live-in EFLAGS!")((void)0); | ||||||||
| 1080 | |||||||||
| 1081 | // We can't handle having non-indirect edges into this block unless this is | ||||||||
| 1082 | // the only successor and we can synthesize the necessary target address. | ||||||||
| 1083 | for (MachineBasicBlock *Pred : MBB.predecessors()) { | ||||||||
| 1084 | // If we've already handled this by extracting the target directly, | ||||||||
| 1085 | // nothing to do. | ||||||||
| 1086 | if (IndirectTerminatedMBBs.count(Pred)) | ||||||||
| 1087 | continue; | ||||||||
| 1088 | |||||||||
| 1089 | // Otherwise, we have to be the only successor. We generally expect this | ||||||||
| 1090 | // to be true as conditional branches should have had a critical edge | ||||||||
| 1091 | // split already. We don't however need to worry about EH pad successors | ||||||||
| 1092 | // as they'll happily ignore the target and their hardening strategy is | ||||||||
| 1093 | // resilient to all ways in which they could be reached speculatively. | ||||||||
| 1094 | if (!llvm::all_of(Pred->successors(), [&](MachineBasicBlock *Succ) { | ||||||||
| 1095 | return Succ->isEHPad() || Succ == &MBB; | ||||||||
| 1096 | })) { | ||||||||
| 1097 | LLVM_DEBUG({do { } while (false) | ||||||||
| 1098 | dbgs() << "ERROR: Found conditional entry to target of indirect "do { } while (false) | ||||||||
| 1099 | "branch!\n";do { } while (false) | ||||||||
| 1100 | Pred->dump();do { } while (false) | ||||||||
| 1101 | MBB.dump();do { } while (false) | ||||||||
| 1102 | })do { } while (false); | ||||||||
| 1103 | report_fatal_error("Cannot harden a conditional entry to a target of " | ||||||||
| 1104 | "an indirect branch!"); | ||||||||
| 1105 | } | ||||||||
| 1106 | |||||||||
| 1107 | // Now we need to compute the address of this block and install it as a | ||||||||
| 1108 | // synthetic target in the predecessor. We do this at the bottom of the | ||||||||
| 1109 | // predecessor. | ||||||||
| 1110 | auto InsertPt = Pred->getFirstTerminator(); | ||||||||
| 1111 | Register TargetReg = MRI->createVirtualRegister(&X86::GR64RegClass); | ||||||||
| 1112 | if (MF.getTarget().getCodeModel() == CodeModel::Small && | ||||||||
| 1113 | !Subtarget->isPositionIndependent()) { | ||||||||
| 1114 | // Directly materialize it into an immediate. | ||||||||
| 1115 | auto AddrI = BuildMI(*Pred, InsertPt, DebugLoc(), | ||||||||
| 1116 | TII->get(X86::MOV64ri32), TargetReg) | ||||||||
| 1117 | .addMBB(&MBB); | ||||||||
| 1118 | ++NumInstsInserted; | ||||||||
| 1119 | (void)AddrI; | ||||||||
| 1120 | LLVM_DEBUG(dbgs() << " Inserting mov: "; AddrI->dump();do { } while (false) | ||||||||
| 1121 | dbgs() << "\n")do { } while (false); | ||||||||
| 1122 | } else { | ||||||||
| 1123 | auto AddrI = BuildMI(*Pred, InsertPt, DebugLoc(), TII->get(X86::LEA64r), | ||||||||
| 1124 | TargetReg) | ||||||||
| 1125 | .addReg(/*Base*/ X86::RIP) | ||||||||
| 1126 | .addImm(/*Scale*/ 1) | ||||||||
| 1127 | .addReg(/*Index*/ 0) | ||||||||
| 1128 | .addMBB(&MBB) | ||||||||
| 1129 | .addReg(/*Segment*/ 0); | ||||||||
| 1130 | ++NumInstsInserted; | ||||||||
| 1131 | (void)AddrI; | ||||||||
| 1132 | LLVM_DEBUG(dbgs() << " Inserting lea: "; AddrI->dump();do { } while (false) | ||||||||
| 1133 | dbgs() << "\n")do { } while (false); | ||||||||
| 1134 | } | ||||||||
| 1135 | // And make this available. | ||||||||
| 1136 | TargetAddrSSA.AddAvailableValue(Pred, TargetReg); | ||||||||
| 1137 | } | ||||||||
| 1138 | |||||||||
| 1139 | // Materialize the needed SSA value of the target. Note that we need the | ||||||||
| 1140 | // middle of the block as this block might at the bottom have an indirect | ||||||||
| 1141 | // branch back to itself. We can do this here because at this point, every | ||||||||
| 1142 | // predecessor of this block has an available value. This is basically just | ||||||||
| 1143 | // automating the construction of a PHI node for this target. | ||||||||
| 1144 | unsigned TargetReg = TargetAddrSSA.GetValueInMiddleOfBlock(&MBB); | ||||||||
| 1145 | |||||||||
| 1146 | // Insert a comparison of the incoming target register with this block's | ||||||||
| 1147 | // address. This also requires us to mark the block as having its address | ||||||||
| 1148 | // taken explicitly. | ||||||||
| 1149 | MBB.setHasAddressTaken(); | ||||||||
| 1150 | auto InsertPt = MBB.SkipPHIsLabelsAndDebug(MBB.begin()); | ||||||||
| 1151 | if (MF.getTarget().getCodeModel() == CodeModel::Small && | ||||||||
| 1152 | !Subtarget->isPositionIndependent()) { | ||||||||
| 1153 | // Check directly against a relocated immediate when we can. | ||||||||
| 1154 | auto CheckI = BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::CMP64ri32)) | ||||||||
| 1155 | .addReg(TargetReg, RegState::Kill) | ||||||||
| 1156 | .addMBB(&MBB); | ||||||||
| 1157 | ++NumInstsInserted; | ||||||||
| 1158 | (void)CheckI; | ||||||||
| 1159 | LLVM_DEBUG(dbgs() << " Inserting cmp: "; CheckI->dump(); dbgs() << "\n")do { } while (false); | ||||||||
| 1160 | } else { | ||||||||
| 1161 | // Otherwise compute the address into a register first. | ||||||||
| 1162 | Register AddrReg = MRI->createVirtualRegister(&X86::GR64RegClass); | ||||||||
| 1163 | auto AddrI = | ||||||||
| 1164 | BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::LEA64r), AddrReg) | ||||||||
| 1165 | .addReg(/*Base*/ X86::RIP) | ||||||||
| 1166 | .addImm(/*Scale*/ 1) | ||||||||
| 1167 | .addReg(/*Index*/ 0) | ||||||||
| 1168 | .addMBB(&MBB) | ||||||||
| 1169 | .addReg(/*Segment*/ 0); | ||||||||
| 1170 | ++NumInstsInserted; | ||||||||
| 1171 | (void)AddrI; | ||||||||
| 1172 | LLVM_DEBUG(dbgs() << " Inserting lea: "; AddrI->dump(); dbgs() << "\n")do { } while (false); | ||||||||
| 1173 | auto CheckI = BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::CMP64rr)) | ||||||||
| 1174 | .addReg(TargetReg, RegState::Kill) | ||||||||
| 1175 | .addReg(AddrReg, RegState::Kill); | ||||||||
| 1176 | ++NumInstsInserted; | ||||||||
| 1177 | (void)CheckI; | ||||||||
| 1178 | LLVM_DEBUG(dbgs() << " Inserting cmp: "; CheckI->dump(); dbgs() << "\n")do { } while (false); | ||||||||
| 1179 | } | ||||||||
| 1180 | |||||||||
| 1181 | // Now cmov over the predicate if the comparison wasn't equal. | ||||||||
| 1182 | int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8; | ||||||||
| 1183 | auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes); | ||||||||
| 1184 | Register UpdatedStateReg = MRI->createVirtualRegister(PS->RC); | ||||||||
| 1185 | auto CMovI = | ||||||||
| 1186 | BuildMI(MBB, InsertPt, DebugLoc(), TII->get(CMovOp), UpdatedStateReg) | ||||||||
| 1187 | .addReg(PS->InitialReg) | ||||||||
| 1188 | .addReg(PS->PoisonReg) | ||||||||
| 1189 | .addImm(X86::COND_NE); | ||||||||
| 1190 | CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true); | ||||||||
| 1191 | ++NumInstsInserted; | ||||||||
| 1192 | LLVM_DEBUG(dbgs() << " Inserting cmov: "; CMovI->dump(); dbgs() << "\n")do { } while (false); | ||||||||
| 1193 | CMovs.push_back(&*CMovI); | ||||||||
| 1194 | |||||||||
| 1195 | // And put the new value into the available values for SSA form of our | ||||||||
| 1196 | // predicate state. | ||||||||
| 1197 | PS->SSA.AddAvailableValue(&MBB, UpdatedStateReg); | ||||||||
| 1198 | } | ||||||||
| 1199 | |||||||||
| 1200 | // Return all the newly inserted cmov instructions of the predicate state. | ||||||||
| 1201 | return CMovs; | ||||||||
| 1202 | } | ||||||||
| 1203 | |||||||||
| 1204 | // Returns true if the MI has EFLAGS as a register def operand and it's live, | ||||||||
| 1205 | // otherwise it returns false | ||||||||
| 1206 | static bool isEFLAGSDefLive(const MachineInstr &MI) { | ||||||||
| 1207 | if (const MachineOperand *DefOp = MI.findRegisterDefOperand(X86::EFLAGS)) { | ||||||||
| 1208 | return !DefOp->isDead(); | ||||||||
| 1209 | } | ||||||||
| 1210 | return false; | ||||||||
| 1211 | } | ||||||||
| 1212 | |||||||||
| 1213 | static bool isEFLAGSLive(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, | ||||||||
| 1214 | const TargetRegisterInfo &TRI) { | ||||||||
| 1215 | // Check if EFLAGS are alive by seeing if there is a def of them or they | ||||||||
| 1216 | // live-in, and then seeing if that def is in turn used. | ||||||||
| 1217 | for (MachineInstr &MI : llvm::reverse(llvm::make_range(MBB.begin(), I))) { | ||||||||
| 1218 | if (MachineOperand *DefOp = MI.findRegisterDefOperand(X86::EFLAGS)) { | ||||||||
| 1219 | // If the def is dead, then EFLAGS is not live. | ||||||||
| 1220 | if (DefOp->isDead()) | ||||||||
| 1221 | return false; | ||||||||
| 1222 | |||||||||
| 1223 | // Otherwise we've def'ed it, and it is live. | ||||||||
| 1224 | return true; | ||||||||
| 1225 | } | ||||||||
| 1226 | // While at this instruction, also check if we use and kill EFLAGS | ||||||||
| 1227 | // which means it isn't live. | ||||||||
| 1228 | if (MI.killsRegister(X86::EFLAGS, &TRI)) | ||||||||
| 1229 | return false; | ||||||||
| 1230 | } | ||||||||
| 1231 | |||||||||
| 1232 | // If we didn't find anything conclusive (neither definitely alive or | ||||||||
| 1233 | // definitely dead) return whether it lives into the block. | ||||||||
| 1234 | return MBB.isLiveIn(X86::EFLAGS); | ||||||||
| 1235 | } | ||||||||
| 1236 | |||||||||
| 1237 | /// Trace the predicate state through each of the blocks in the function, | ||||||||
| 1238 | /// hardening everything necessary along the way. | ||||||||
| 1239 | /// | ||||||||
| 1240 | /// We call this routine once the initial predicate state has been established | ||||||||
| 1241 | /// for each basic block in the function in the SSA updater. This routine traces | ||||||||
| 1242 | /// it through the instructions within each basic block, and for non-returning | ||||||||
| 1243 | /// blocks informs the SSA updater about the final state that lives out of the | ||||||||
| 1244 | /// block. Along the way, it hardens any vulnerable instruction using the | ||||||||
| 1245 | /// currently valid predicate state. We have to do these two things together | ||||||||
| 1246 | /// because the SSA updater only works across blocks. Within a block, we track | ||||||||
| 1247 | /// the current predicate state directly and update it as it changes. | ||||||||
| 1248 | /// | ||||||||
| 1249 | /// This operates in two passes over each block. First, we analyze the loads in | ||||||||
| 1250 | /// the block to determine which strategy will be used to harden them: hardening | ||||||||
| 1251 | /// the address or hardening the loaded value when loaded into a register | ||||||||
| 1252 | /// amenable to hardening. We have to process these first because the two | ||||||||
| 1253 | /// strategies may interact -- later hardening may change what strategy we wish | ||||||||
| 1254 | /// to use. We also will analyze data dependencies between loads and avoid | ||||||||
| 1255 | /// hardening those loads that are data dependent on a load with a hardened | ||||||||
| 1256 | /// address. We also skip hardening loads already behind an LFENCE as that is | ||||||||
| 1257 | /// sufficient to harden them against misspeculation. | ||||||||
| 1258 | /// | ||||||||
| 1259 | /// Second, we actively trace the predicate state through the block, applying | ||||||||
| 1260 | /// the hardening steps we determined necessary in the first pass as we go. | ||||||||
| 1261 | /// | ||||||||
| 1262 | /// These two passes are applied to each basic block. We operate one block at a | ||||||||
| 1263 | /// time to simplify reasoning about reachability and sequencing. | ||||||||
| 1264 | void X86SpeculativeLoadHardeningPass::tracePredStateThroughBlocksAndHarden( | ||||||||
| 1265 | MachineFunction &MF) { | ||||||||
| 1266 | SmallPtrSet<MachineInstr *, 16> HardenPostLoad; | ||||||||
| 1267 | SmallPtrSet<MachineInstr *, 16> HardenLoadAddr; | ||||||||
| 1268 | |||||||||
| 1269 | SmallSet<unsigned, 16> HardenedAddrRegs; | ||||||||
| 1270 | |||||||||
| 1271 | SmallDenseMap<unsigned, unsigned, 32> AddrRegToHardenedReg; | ||||||||
| 1272 | |||||||||
| 1273 | // Track the set of load-dependent registers through the basic block. Because | ||||||||
| 1274 | // the values of these registers have an existing data dependency on a loaded | ||||||||
| 1275 | // value which we would have checked, we can omit any checks on them. | ||||||||
| 1276 | SparseBitVector<> LoadDepRegs; | ||||||||
| 1277 | |||||||||
| 1278 | for (MachineBasicBlock &MBB : MF) { | ||||||||
| 1279 | // The first pass over the block: collect all the loads which can have their | ||||||||
| 1280 | // loaded value hardened and all the loads that instead need their address | ||||||||
| 1281 | // hardened. During this walk we propagate load dependence for address | ||||||||
| 1282 | // hardened loads and also look for LFENCE to stop hardening wherever | ||||||||
| 1283 | // possible. When deciding whether or not to harden the loaded value or not, | ||||||||
| 1284 | // we check to see if any registers used in the address will have been | ||||||||
| 1285 | // hardened at this point and if so, harden any remaining address registers | ||||||||
| 1286 | // as that often successfully re-uses hardened addresses and minimizes | ||||||||
| 1287 | // instructions. | ||||||||
| 1288 | // | ||||||||
| 1289 | // FIXME: We should consider an aggressive mode where we continue to keep as | ||||||||
| 1290 | // many loads value hardened even when some address register hardening would | ||||||||
| 1291 | // be free (due to reuse). | ||||||||
| 1292 | // | ||||||||
| 1293 | // Note that we only need this pass if we are actually hardening loads. | ||||||||
| 1294 | if (HardenLoads) | ||||||||
| 1295 | for (MachineInstr &MI : MBB) { | ||||||||
| 1296 | // We naively assume that all def'ed registers of an instruction have | ||||||||
| 1297 | // a data dependency on all of their operands. | ||||||||
| 1298 | // FIXME: Do a more careful analysis of x86 to build a conservative | ||||||||
| 1299 | // model here. | ||||||||
| 1300 | if (llvm::any_of(MI.uses(), [&](MachineOperand &Op) { | ||||||||
| 1301 | return Op.isReg() && LoadDepRegs.test(Op.getReg()); | ||||||||
| 1302 | })) | ||||||||
| 1303 | for (MachineOperand &Def : MI.defs()) | ||||||||
| 1304 | if (Def.isReg()) | ||||||||
| 1305 | LoadDepRegs.set(Def.getReg()); | ||||||||
| 1306 | |||||||||
| 1307 | // Both Intel and AMD are guiding that they will change the semantics of | ||||||||
| 1308 | // LFENCE to be a speculation barrier, so if we see an LFENCE, there is | ||||||||
| 1309 | // no more need to guard things in this block. | ||||||||
| 1310 | if (MI.getOpcode() == X86::LFENCE) | ||||||||
| 1311 | break; | ||||||||
| 1312 | |||||||||
| 1313 | // If this instruction cannot load, nothing to do. | ||||||||
| 1314 | if (!MI.mayLoad()) | ||||||||
| 1315 | continue; | ||||||||
| 1316 | |||||||||
| 1317 | // Some instructions which "load" are trivially safe or unimportant. | ||||||||
| 1318 | if (MI.getOpcode() == X86::MFENCE) | ||||||||
| 1319 | continue; | ||||||||
| 1320 | |||||||||
| 1321 | // Extract the memory operand information about this instruction. | ||||||||
| 1322 | // FIXME: This doesn't handle loading pseudo instructions which we often | ||||||||
| 1323 | // could handle with similarly generic logic. We probably need to add an | ||||||||
| 1324 | // MI-layer routine similar to the MC-layer one we use here which maps | ||||||||
| 1325 | // pseudos much like this maps real instructions. | ||||||||
| 1326 | const MCInstrDesc &Desc = MI.getDesc(); | ||||||||
| 1327 | int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags); | ||||||||
| 1328 | if (MemRefBeginIdx < 0) { | ||||||||
| 1329 | LLVM_DEBUG(dbgs()do { } while (false) | ||||||||
| 1330 | << "WARNING: unable to harden loading instruction: ";do { } while (false) | ||||||||
| 1331 | MI.dump())do { } while (false); | ||||||||
| 1332 | continue; | ||||||||
| 1333 | } | ||||||||
| 1334 | |||||||||
| 1335 | MemRefBeginIdx += X86II::getOperandBias(Desc); | ||||||||
| 1336 | |||||||||
| 1337 | MachineOperand &BaseMO = | ||||||||
| 1338 | MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg); | ||||||||
| 1339 | MachineOperand &IndexMO = | ||||||||
| 1340 | MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg); | ||||||||
| 1341 | |||||||||
| 1342 | // If we have at least one (non-frame-index, non-RIP) register operand, | ||||||||
| 1343 | // and neither operand is load-dependent, we need to check the load. | ||||||||
| 1344 | unsigned BaseReg = 0, IndexReg = 0; | ||||||||
| 1345 | if (!BaseMO.isFI() && BaseMO.getReg() != X86::RIP && | ||||||||
| 1346 | BaseMO.getReg() != X86::NoRegister) | ||||||||
| 1347 | BaseReg = BaseMO.getReg(); | ||||||||
| 1348 | if (IndexMO.getReg() != X86::NoRegister) | ||||||||
| 1349 | IndexReg = IndexMO.getReg(); | ||||||||
| 1350 | |||||||||
| 1351 | if (!BaseReg
| ||||||||
| 1352 | // No register operands! | ||||||||
| 1353 | continue; | ||||||||
| 1354 | |||||||||
| 1355 | // If any register operand is dependent, this load is dependent and we | ||||||||
| 1356 | // needn't check it. | ||||||||
| 1357 | // FIXME: Is this true in the case where we are hardening loads after | ||||||||
| 1358 | // they complete? Unclear, need to investigate. | ||||||||
| 1359 | if ((BaseReg
| ||||||||
| 1360 | (IndexReg
| ||||||||
| 1361 | continue; | ||||||||
| 1362 | |||||||||
| 1363 | // If post-load hardening is enabled, this load is compatible with | ||||||||
| 1364 | // post-load hardening, and we aren't already going to harden one of the | ||||||||
| 1365 | // address registers, queue it up to be hardened post-load. Notably, | ||||||||
| 1366 | // even once hardened this won't introduce a useful dependency that | ||||||||
| 1367 | // could prune out subsequent loads. | ||||||||
| 1368 | if (EnablePostLoadHardening && X86InstrInfo::isDataInvariantLoad(MI) && | ||||||||
| 1369 | !isEFLAGSDefLive(MI) && MI.getDesc().getNumDefs() == 1 && | ||||||||
| 1370 | MI.getOperand(0).isReg() && | ||||||||
| 1371 | canHardenRegister(MI.getOperand(0).getReg()) && | ||||||||
| 1372 | !HardenedAddrRegs.count(BaseReg) && | ||||||||
| 1373 | !HardenedAddrRegs.count(IndexReg)) { | ||||||||
| 1374 | HardenPostLoad.insert(&MI); | ||||||||
| 1375 | HardenedAddrRegs.insert(MI.getOperand(0).getReg()); | ||||||||
| 1376 | continue; | ||||||||
| 1377 | } | ||||||||
| 1378 | |||||||||
| 1379 | // Record this instruction for address hardening and record its register | ||||||||
| 1380 | // operands as being address-hardened. | ||||||||
| 1381 | HardenLoadAddr.insert(&MI); | ||||||||
| 1382 | if (BaseReg) | ||||||||
| 1383 | HardenedAddrRegs.insert(BaseReg); | ||||||||
| 1384 | if (IndexReg) | ||||||||
| 1385 | HardenedAddrRegs.insert(IndexReg); | ||||||||
| 1386 | |||||||||
| 1387 | for (MachineOperand &Def : MI.defs()) | ||||||||
| 1388 | if (Def.isReg()) | ||||||||
| 1389 | LoadDepRegs.set(Def.getReg()); | ||||||||
| 1390 | } | ||||||||
| 1391 | |||||||||
| 1392 | // Now re-walk the instructions in the basic block, and apply whichever | ||||||||
| 1393 | // hardening strategy we have elected. Note that we do this in a second | ||||||||
| 1394 | // pass specifically so that we have the complete set of instructions for | ||||||||
| 1395 | // which we will do post-load hardening and can defer it in certain | ||||||||
| 1396 | // circumstances. | ||||||||
| 1397 | for (MachineInstr &MI : MBB) { | ||||||||
| 1398 | if (HardenLoads) { | ||||||||
| 1399 | // We cannot both require hardening the def of a load and its address. | ||||||||
| 1400 | assert(!(HardenLoadAddr.count(&MI) && HardenPostLoad.count(&MI)) &&((void)0) | ||||||||
| 1401 | "Requested to harden both the address and def of a load!")((void)0); | ||||||||
| 1402 | |||||||||
| 1403 | // Check if this is a load whose address needs to be hardened. | ||||||||
| 1404 | if (HardenLoadAddr.erase(&MI)) { | ||||||||
| 1405 | const MCInstrDesc &Desc = MI.getDesc(); | ||||||||
| 1406 | int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags); | ||||||||
| 1407 | assert(MemRefBeginIdx >= 0 && "Cannot have an invalid index here!")((void)0); | ||||||||
| 1408 | |||||||||
| 1409 | MemRefBeginIdx += X86II::getOperandBias(Desc); | ||||||||
| 1410 | |||||||||
| 1411 | MachineOperand &BaseMO = | ||||||||
| 1412 | MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg); | ||||||||
| 1413 | MachineOperand &IndexMO = | ||||||||
| 1414 | MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg); | ||||||||
| 1415 | hardenLoadAddr(MI, BaseMO, IndexMO, AddrRegToHardenedReg); | ||||||||
| 1416 | continue; | ||||||||
| 1417 | } | ||||||||
| 1418 | |||||||||
| 1419 | // Test if this instruction is one of our post load instructions (and | ||||||||
| 1420 | // remove it from the set if so). | ||||||||
| 1421 | if (HardenPostLoad.erase(&MI)) { | ||||||||
| 1422 | assert(!MI.isCall() && "Must not try to post-load harden a call!")((void)0); | ||||||||
| 1423 | |||||||||
| 1424 | // If this is a data-invariant load and there is no EFLAGS | ||||||||
| 1425 | // interference, we want to try and sink any hardening as far as | ||||||||
| 1426 | // possible. | ||||||||
| 1427 | if (X86InstrInfo::isDataInvariantLoad(MI) && !isEFLAGSDefLive(MI)) { | ||||||||
| 1428 | // Sink the instruction we'll need to harden as far as we can down | ||||||||
| 1429 | // the graph. | ||||||||
| 1430 | MachineInstr *SunkMI = sinkPostLoadHardenedInst(MI, HardenPostLoad); | ||||||||
| 1431 | |||||||||
| 1432 | // If we managed to sink this instruction, update everything so we | ||||||||
| 1433 | // harden that instruction when we reach it in the instruction | ||||||||
| 1434 | // sequence. | ||||||||
| 1435 | if (SunkMI != &MI) { | ||||||||
| 1436 | // If in sinking there was no instruction needing to be hardened, | ||||||||
| 1437 | // we're done. | ||||||||
| 1438 | if (!SunkMI) | ||||||||
| 1439 | continue; | ||||||||
| 1440 | |||||||||
| 1441 | // Otherwise, add this to the set of defs we harden. | ||||||||
| 1442 | HardenPostLoad.insert(SunkMI); | ||||||||
| 1443 | continue; | ||||||||
| 1444 | } | ||||||||
| 1445 | } | ||||||||
| 1446 | |||||||||
| 1447 | unsigned HardenedReg = hardenPostLoad(MI); | ||||||||
| 1448 | |||||||||
| 1449 | // Mark the resulting hardened register as such so we don't re-harden. | ||||||||
| 1450 | AddrRegToHardenedReg[HardenedReg] = HardenedReg; | ||||||||
| 1451 | |||||||||
| 1452 | continue; | ||||||||
| 1453 | } | ||||||||
| 1454 | |||||||||
| 1455 | // Check for an indirect call or branch that may need its input hardened | ||||||||
| 1456 | // even if we couldn't find the specific load used, or were able to | ||||||||
| 1457 | // avoid hardening it for some reason. Note that here we cannot break | ||||||||
| 1458 | // out afterward as we may still need to handle any call aspect of this | ||||||||
| 1459 | // instruction. | ||||||||
| 1460 | if ((MI.isCall() || MI.isBranch()) && HardenIndirectCallsAndJumps) | ||||||||
| 1461 | hardenIndirectCallOrJumpInstr(MI, AddrRegToHardenedReg); | ||||||||
| 1462 | } | ||||||||
| 1463 | |||||||||
| 1464 | // After we finish hardening loads we handle interprocedural hardening if | ||||||||
| 1465 | // enabled and relevant for this instruction. | ||||||||
| 1466 | if (!HardenInterprocedurally) | ||||||||
| 1467 | continue; | ||||||||
| 1468 | if (!MI.isCall() && !MI.isReturn()) | ||||||||
| 1469 | continue; | ||||||||
| 1470 | |||||||||
| 1471 | // If this is a direct return (IE, not a tail call) just directly harden | ||||||||
| 1472 | // it. | ||||||||
| 1473 | if (MI.isReturn() && !MI.isCall()) { | ||||||||
| 1474 | hardenReturnInstr(MI); | ||||||||
| 1475 | continue; | ||||||||
| 1476 | } | ||||||||
| 1477 | |||||||||
| 1478 | // Otherwise we have a call. We need to handle transferring the predicate | ||||||||
| 1479 | // state into a call and recovering it after the call returns (unless this | ||||||||
| 1480 | // is a tail call). | ||||||||
| 1481 | assert(MI.isCall() && "Should only reach here for calls!")((void)0); | ||||||||
| 1482 | tracePredStateThroughCall(MI); | ||||||||
| 1483 | } | ||||||||
| 1484 | |||||||||
| 1485 | HardenPostLoad.clear(); | ||||||||
| 1486 | HardenLoadAddr.clear(); | ||||||||
| 1487 | HardenedAddrRegs.clear(); | ||||||||
| 1488 | AddrRegToHardenedReg.clear(); | ||||||||
| 1489 | |||||||||
| 1490 | // Currently, we only track data-dependent loads within a basic block. | ||||||||
| 1491 | // FIXME: We should see if this is necessary or if we could be more | ||||||||
| 1492 | // aggressive here without opening up attack avenues. | ||||||||
| 1493 | LoadDepRegs.clear(); | ||||||||
| 1494 | } | ||||||||
| 1495 | } | ||||||||
| 1496 | |||||||||
| 1497 | /// Save EFLAGS into the returned GPR. This can in turn be restored with | ||||||||
| 1498 | /// `restoreEFLAGS`. | ||||||||
| 1499 | /// | ||||||||
| 1500 | /// Note that LLVM can only lower very simple patterns of saved and restored | ||||||||
| 1501 | /// EFLAGS registers. The restore should always be within the same basic block | ||||||||
| 1502 | /// as the save so that no PHI nodes are inserted. | ||||||||
| 1503 | unsigned X86SpeculativeLoadHardeningPass::saveEFLAGS( | ||||||||
| 1504 | MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, | ||||||||
| 1505 | DebugLoc Loc) { | ||||||||
| 1506 | // FIXME: Hard coding this to a 32-bit register class seems weird, but matches | ||||||||
| 1507 | // what instruction selection does. | ||||||||
| 1508 | Register Reg = MRI->createVirtualRegister(&X86::GR32RegClass); | ||||||||
| 1509 | // We directly copy the FLAGS register and rely on later lowering to clean | ||||||||
| 1510 | // this up into the appropriate setCC instructions. | ||||||||
| 1511 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), Reg).addReg(X86::EFLAGS); | ||||||||
| 1512 | ++NumInstsInserted; | ||||||||
| 1513 | return Reg; | ||||||||
| 1514 | } | ||||||||
| 1515 | |||||||||
| 1516 | /// Restore EFLAGS from the provided GPR. This should be produced by | ||||||||
| 1517 | /// `saveEFLAGS`. | ||||||||
| 1518 | /// | ||||||||
| 1519 | /// This must be done within the same basic block as the save in order to | ||||||||
| 1520 | /// reliably lower. | ||||||||
| 1521 | void X86SpeculativeLoadHardeningPass::restoreEFLAGS( | ||||||||
| 1522 | MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc, | ||||||||
| 1523 | Register Reg) { | ||||||||
| 1524 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), X86::EFLAGS).addReg(Reg); | ||||||||
| 1525 | ++NumInstsInserted; | ||||||||
| 1526 | } | ||||||||
| 1527 | |||||||||
| 1528 | /// Takes the current predicate state (in a register) and merges it into the | ||||||||
| 1529 | /// stack pointer. The state is essentially a single bit, but we merge this in | ||||||||
| 1530 | /// a way that won't form non-canonical pointers and also will be preserved | ||||||||
| 1531 | /// across normal stack adjustments. | ||||||||
| 1532 | void X86SpeculativeLoadHardeningPass::mergePredStateIntoSP( | ||||||||
| 1533 | MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc, | ||||||||
| 1534 | unsigned PredStateReg) { | ||||||||
| 1535 | Register TmpReg = MRI->createVirtualRegister(PS->RC); | ||||||||
| 1536 | // FIXME: This hard codes a shift distance based on the number of bits needed | ||||||||
| 1537 | // to stay canonical on 64-bit. We should compute this somehow and support | ||||||||
| 1538 | // 32-bit as part of that. | ||||||||
| 1539 | auto ShiftI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHL64ri), TmpReg) | ||||||||
| 1540 | .addReg(PredStateReg, RegState::Kill) | ||||||||
| 1541 | .addImm(47); | ||||||||
| 1542 | ShiftI->addRegisterDead(X86::EFLAGS, TRI); | ||||||||
| 1543 | ++NumInstsInserted; | ||||||||
| 1544 | auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), X86::RSP) | ||||||||
| 1545 | .addReg(X86::RSP) | ||||||||
| 1546 | .addReg(TmpReg, RegState::Kill); | ||||||||
| 1547 | OrI->addRegisterDead(X86::EFLAGS, TRI); | ||||||||
| 1548 | ++NumInstsInserted; | ||||||||
| 1549 | } | ||||||||
| 1550 | |||||||||
| 1551 | /// Extracts the predicate state stored in the high bits of the stack pointer. | ||||||||
| 1552 | unsigned X86SpeculativeLoadHardeningPass::extractPredStateFromSP( | ||||||||
| 1553 | MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, | ||||||||
| 1554 | DebugLoc Loc) { | ||||||||
| 1555 | Register PredStateReg = MRI->createVirtualRegister(PS->RC); | ||||||||
| 1556 | Register TmpReg = MRI->createVirtualRegister(PS->RC); | ||||||||
| 1557 | |||||||||
| 1558 | // We know that the stack pointer will have any preserved predicate state in | ||||||||
| 1559 | // its high bit. We just want to smear this across the other bits. Turns out, | ||||||||
| 1560 | // this is exactly what an arithmetic right shift does. | ||||||||
| 1561 | BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), TmpReg) | ||||||||
| 1562 | .addReg(X86::RSP); | ||||||||
| 1563 | auto ShiftI = | ||||||||
| 1564 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::SAR64ri), PredStateReg) | ||||||||
| 1565 | .addReg(TmpReg, RegState::Kill) | ||||||||
| 1566 | .addImm(TRI->getRegSizeInBits(*PS->RC) - 1); | ||||||||
| 1567 | ShiftI->addRegisterDead(X86::EFLAGS, TRI); | ||||||||
| 1568 | ++NumInstsInserted; | ||||||||
| 1569 | |||||||||
| 1570 | return PredStateReg; | ||||||||
| 1571 | } | ||||||||
| 1572 | |||||||||
| 1573 | void X86SpeculativeLoadHardeningPass::hardenLoadAddr( | ||||||||
| 1574 | MachineInstr &MI, MachineOperand &BaseMO, MachineOperand &IndexMO, | ||||||||
| 1575 | SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg) { | ||||||||
| 1576 | MachineBasicBlock &MBB = *MI.getParent(); | ||||||||
| 1577 | const DebugLoc &Loc = MI.getDebugLoc(); | ||||||||
| 1578 | |||||||||
| 1579 | // Check if EFLAGS are alive by seeing if there is a def of them or they | ||||||||
| 1580 | // live-in, and then seeing if that def is in turn used. | ||||||||
| 1581 | bool EFLAGSLive = isEFLAGSLive(MBB, MI.getIterator(), *TRI); | ||||||||
| 1582 | |||||||||
| 1583 | SmallVector<MachineOperand *, 2> HardenOpRegs; | ||||||||
| 1584 | |||||||||
| 1585 | if (BaseMO.isFI()) { | ||||||||
| 1586 | // A frame index is never a dynamically controllable load, so only | ||||||||
| 1587 | // harden it if we're covering fixed address loads as well. | ||||||||
| 1588 | LLVM_DEBUG(do { } while (false) | ||||||||
| 1589 | dbgs() << " Skipping hardening base of explicit stack frame load: ";do { } while (false) | ||||||||
| 1590 | MI.dump(); dbgs() << "\n")do { } while (false); | ||||||||
| 1591 | } else if (BaseMO.getReg() == X86::RSP) { | ||||||||
| 1592 | // Some idempotent atomic operations are lowered directly to a locked | ||||||||
| 1593 | // OR with 0 to the top of stack(or slightly offset from top) which uses an | ||||||||
| 1594 | // explicit RSP register as the base. | ||||||||
| 1595 | assert(IndexMO.getReg() == X86::NoRegister &&((void)0) | ||||||||
| 1596 | "Explicit RSP access with dynamic index!")((void)0); | ||||||||
| 1597 | LLVM_DEBUG(do { } while (false) | ||||||||
| 1598 | dbgs() << " Cannot harden base of explicit RSP offset in a load!")do { } while (false); | ||||||||
| 1599 | } else if (BaseMO.getReg() == X86::RIP || | ||||||||
| 1600 | BaseMO.getReg() == X86::NoRegister) { | ||||||||
| 1601 | // For both RIP-relative addressed loads or absolute loads, we cannot | ||||||||
| 1602 | // meaningfully harden them because the address being loaded has no | ||||||||
| 1603 | // dynamic component. | ||||||||
| 1604 | // | ||||||||
| 1605 | // FIXME: When using a segment base (like TLS does) we end up with the | ||||||||
| 1606 | // dynamic address being the base plus -1 because we can't mutate the | ||||||||
| 1607 | // segment register here. This allows the signed 32-bit offset to point at | ||||||||
| 1608 | // valid segment-relative addresses and load them successfully. | ||||||||
| 1609 | LLVM_DEBUG(do { } while (false) | ||||||||
| 1610 | dbgs() << " Cannot harden base of "do { } while (false) | ||||||||
| 1611 | << (BaseMO.getReg() == X86::RIP ? "RIP-relative" : "no-base")do { } while (false) | ||||||||
| 1612 | << " address in a load!")do { } while (false); | ||||||||
| 1613 | } else { | ||||||||
| 1614 | assert(BaseMO.isReg() &&((void)0) | ||||||||
| 1615 | "Only allowed to have a frame index or register base.")((void)0); | ||||||||
| 1616 | HardenOpRegs.push_back(&BaseMO); | ||||||||
| 1617 | } | ||||||||
| 1618 | |||||||||
| 1619 | if (IndexMO.getReg() != X86::NoRegister && | ||||||||
| 1620 | (HardenOpRegs.empty() || | ||||||||
| 1621 | HardenOpRegs.front()->getReg() != IndexMO.getReg())) | ||||||||
| 1622 | HardenOpRegs.push_back(&IndexMO); | ||||||||
| 1623 | |||||||||
| 1624 | assert((HardenOpRegs.size() == 1 || HardenOpRegs.size() == 2) &&((void)0) | ||||||||
| 1625 | "Should have exactly one or two registers to harden!")((void)0); | ||||||||
| 1626 | assert((HardenOpRegs.size() == 1 ||((void)0) | ||||||||
| 1627 | HardenOpRegs[0]->getReg() != HardenOpRegs[1]->getReg()) &&((void)0) | ||||||||
| 1628 | "Should not have two of the same registers!")((void)0); | ||||||||
| 1629 | |||||||||
| 1630 | // Remove any registers that have alreaded been checked. | ||||||||
| 1631 | llvm::erase_if(HardenOpRegs, [&](MachineOperand *Op) { | ||||||||
| 1632 | // See if this operand's register has already been checked. | ||||||||
| 1633 | auto It = AddrRegToHardenedReg.find(Op->getReg()); | ||||||||
| 1634 | if (It == AddrRegToHardenedReg.end()) | ||||||||
| 1635 | // Not checked, so retain this one. | ||||||||
| 1636 | return false; | ||||||||
| 1637 | |||||||||
| 1638 | // Otherwise, we can directly update this operand and remove it. | ||||||||
| 1639 | Op->setReg(It->second); | ||||||||
| 1640 | return true; | ||||||||
| 1641 | }); | ||||||||
| 1642 | // If there are none left, we're done. | ||||||||
| 1643 | if (HardenOpRegs.empty()) | ||||||||
| 1644 | return; | ||||||||
| 1645 | |||||||||
| 1646 | // Compute the current predicate state. | ||||||||
| 1647 | unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB); | ||||||||
| 1648 | |||||||||
| 1649 | auto InsertPt = MI.getIterator(); | ||||||||
| 1650 | |||||||||
| 1651 | // If EFLAGS are live and we don't have access to instructions that avoid | ||||||||
| 1652 | // clobbering EFLAGS we need to save and restore them. This in turn makes | ||||||||
| 1653 | // the EFLAGS no longer live. | ||||||||
| 1654 | unsigned FlagsReg = 0; | ||||||||
| 1655 | if (EFLAGSLive && !Subtarget->hasBMI2()) { | ||||||||
| 1656 | EFLAGSLive = false; | ||||||||
| 1657 | FlagsReg = saveEFLAGS(MBB, InsertPt, Loc); | ||||||||
| 1658 | } | ||||||||
| 1659 | |||||||||
| 1660 | for (MachineOperand *Op : HardenOpRegs) { | ||||||||
| 1661 | Register OpReg = Op->getReg(); | ||||||||
| 1662 | auto *OpRC = MRI->getRegClass(OpReg); | ||||||||
| 1663 | Register TmpReg = MRI->createVirtualRegister(OpRC); | ||||||||
| 1664 | |||||||||
| 1665 | // If this is a vector register, we'll need somewhat custom logic to handle | ||||||||
| 1666 | // hardening it. | ||||||||
| 1667 | if (!Subtarget->hasVLX() && (OpRC->hasSuperClassEq(&X86::VR128RegClass) || | ||||||||
| 1668 | OpRC->hasSuperClassEq(&X86::VR256RegClass))) { | ||||||||
| 1669 | assert(Subtarget->hasAVX2() && "AVX2-specific register classes!")((void)0); | ||||||||
| 1670 | bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128RegClass); | ||||||||
| 1671 | |||||||||
| 1672 | // Move our state into a vector register. | ||||||||
| 1673 | // FIXME: We could skip this at the cost of longer encodings with AVX-512 | ||||||||
| 1674 | // but that doesn't seem likely worth it. | ||||||||
| 1675 | Register VStateReg = MRI->createVirtualRegister(&X86::VR128RegClass); | ||||||||
| 1676 | auto MovI = | ||||||||
| 1677 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::VMOV64toPQIrr), VStateReg) | ||||||||
| 1678 | .addReg(StateReg); | ||||||||
| 1679 | (void)MovI; | ||||||||
| 1680 | ++NumInstsInserted; | ||||||||
| 1681 | LLVM_DEBUG(dbgs() << " Inserting mov: "; MovI->dump(); dbgs() << "\n")do { } while (false); | ||||||||
| 1682 | |||||||||
| 1683 | // Broadcast it across the vector register. | ||||||||
| 1684 | Register VBStateReg = MRI->createVirtualRegister(OpRC); | ||||||||
| 1685 | auto BroadcastI = BuildMI(MBB, InsertPt, Loc, | ||||||||
| 1686 | TII->get(Is128Bit ? X86::VPBROADCASTQrr | ||||||||
| 1687 | : X86::VPBROADCASTQYrr), | ||||||||
| 1688 | VBStateReg) | ||||||||
| 1689 | .addReg(VStateReg); | ||||||||
| 1690 | (void)BroadcastI; | ||||||||
| 1691 | ++NumInstsInserted; | ||||||||
| 1692 | LLVM_DEBUG(dbgs() << " Inserting broadcast: "; BroadcastI->dump();do { } while (false) | ||||||||
| 1693 | dbgs() << "\n")do { } while (false); | ||||||||
| 1694 | |||||||||
| 1695 | // Merge our potential poison state into the value with a vector or. | ||||||||
| 1696 | auto OrI = | ||||||||
| 1697 | BuildMI(MBB, InsertPt, Loc, | ||||||||
| 1698 | TII->get(Is128Bit ? X86::VPORrr : X86::VPORYrr), TmpReg) | ||||||||
| 1699 | .addReg(VBStateReg) | ||||||||
| 1700 | .addReg(OpReg); | ||||||||
| 1701 | (void)OrI; | ||||||||
| 1702 | ++NumInstsInserted; | ||||||||
| 1703 | LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n")do { } while (false); | ||||||||
| 1704 | } else if (OpRC->hasSuperClassEq(&X86::VR128XRegClass) || | ||||||||
| 1705 | OpRC->hasSuperClassEq(&X86::VR256XRegClass) || | ||||||||
| 1706 | OpRC->hasSuperClassEq(&X86::VR512RegClass)) { | ||||||||
| 1707 | assert(Subtarget->hasAVX512() && "AVX512-specific register classes!")((void)0); | ||||||||
| 1708 | bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128XRegClass); | ||||||||
| 1709 | bool Is256Bit = OpRC->hasSuperClassEq(&X86::VR256XRegClass); | ||||||||
| 1710 | if (Is128Bit || Is256Bit) | ||||||||
| 1711 | assert(Subtarget->hasVLX() && "AVX512VL-specific register classes!")((void)0); | ||||||||
| 1712 | |||||||||
| 1713 | // Broadcast our state into a vector register. | ||||||||
| 1714 | Register VStateReg = MRI->createVirtualRegister(OpRC); | ||||||||
| 1715 | unsigned BroadcastOp = Is128Bit ? X86::VPBROADCASTQrZ128rr | ||||||||
| 1716 | : Is256Bit ? X86::VPBROADCASTQrZ256rr | ||||||||
| 1717 | : X86::VPBROADCASTQrZrr; | ||||||||
| 1718 | auto BroadcastI = | ||||||||
| 1719 | BuildMI(MBB, InsertPt, Loc, TII->get(BroadcastOp), VStateReg) | ||||||||
| 1720 | .addReg(StateReg); | ||||||||
| 1721 | (void)BroadcastI; | ||||||||
| 1722 | ++NumInstsInserted; | ||||||||
| 1723 | LLVM_DEBUG(dbgs() << " Inserting broadcast: "; BroadcastI->dump();do { } while (false) | ||||||||
| 1724 | dbgs() << "\n")do { } while (false); | ||||||||
| 1725 | |||||||||
| 1726 | // Merge our potential poison state into the value with a vector or. | ||||||||
| 1727 | unsigned OrOp = Is128Bit ? X86::VPORQZ128rr | ||||||||
| 1728 | : Is256Bit ? X86::VPORQZ256rr : X86::VPORQZrr; | ||||||||
| 1729 | auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOp), TmpReg) | ||||||||
| 1730 | .addReg(VStateReg) | ||||||||
| 1731 | .addReg(OpReg); | ||||||||
| 1732 | (void)OrI; | ||||||||
| 1733 | ++NumInstsInserted; | ||||||||
| 1734 | LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n")do { } while (false); | ||||||||
| 1735 | } else { | ||||||||
| 1736 | // FIXME: Need to support GR32 here for 32-bit code. | ||||||||
| 1737 | assert(OpRC->hasSuperClassEq(&X86::GR64RegClass) &&((void)0) | ||||||||
| 1738 | "Not a supported register class for address hardening!")((void)0); | ||||||||
| 1739 | |||||||||
| 1740 | if (!EFLAGSLive) { | ||||||||
| 1741 | // Merge our potential poison state into the value with an or. | ||||||||
| 1742 | auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), TmpReg) | ||||||||
| 1743 | .addReg(StateReg) | ||||||||
| 1744 | .addReg(OpReg); | ||||||||
| 1745 | OrI->addRegisterDead(X86::EFLAGS, TRI); | ||||||||
| 1746 | ++NumInstsInserted; | ||||||||
| 1747 | LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n")do { } while (false); | ||||||||
| 1748 | } else { | ||||||||
| 1749 | // We need to avoid touching EFLAGS so shift out all but the least | ||||||||
| 1750 | // significant bit using the instruction that doesn't update flags. | ||||||||
| 1751 | auto ShiftI = | ||||||||
| 1752 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHRX64rr), TmpReg) | ||||||||
| 1753 | .addReg(OpReg) | ||||||||
| 1754 | .addReg(StateReg); | ||||||||
| 1755 | (void)ShiftI; | ||||||||
| 1756 | ++NumInstsInserted; | ||||||||
| 1757 | LLVM_DEBUG(dbgs() << " Inserting shrx: "; ShiftI->dump();do { } while (false) | ||||||||
| 1758 | dbgs() << "\n")do { } while (false); | ||||||||
| 1759 | } | ||||||||
| 1760 | } | ||||||||
| 1761 | |||||||||
| 1762 | // Record this register as checked and update the operand. | ||||||||
| 1763 | assert(!AddrRegToHardenedReg.count(Op->getReg()) &&((void)0) | ||||||||
| 1764 | "Should not have checked this register yet!")((void)0); | ||||||||
| 1765 | AddrRegToHardenedReg[Op->getReg()] = TmpReg; | ||||||||
| 1766 | Op->setReg(TmpReg); | ||||||||
| 1767 | ++NumAddrRegsHardened; | ||||||||
| 1768 | } | ||||||||
| 1769 | |||||||||
| 1770 | // And restore the flags if needed. | ||||||||
| 1771 | if (FlagsReg) | ||||||||
| 1772 | restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg); | ||||||||
| 1773 | } | ||||||||
| 1774 | |||||||||
| 1775 | MachineInstr *X86SpeculativeLoadHardeningPass::sinkPostLoadHardenedInst( | ||||||||
| 1776 | MachineInstr &InitialMI, SmallPtrSetImpl<MachineInstr *> &HardenedInstrs) { | ||||||||
| 1777 | assert(X86InstrInfo::isDataInvariantLoad(InitialMI) &&((void)0) | ||||||||
| 1778 | "Cannot get here with a non-invariant load!")((void)0); | ||||||||
| 1779 | assert(!isEFLAGSDefLive(InitialMI) &&((void)0) | ||||||||
| 1780 | "Cannot get here with a data invariant load "((void)0) | ||||||||
| 1781 | "that interferes with EFLAGS!")((void)0); | ||||||||
| 1782 | |||||||||
| 1783 | // See if we can sink hardening the loaded value. | ||||||||
| 1784 | auto SinkCheckToSingleUse = | ||||||||
| 1785 | [&](MachineInstr &MI) -> Optional<MachineInstr *> { | ||||||||
| 1786 | Register DefReg = MI.getOperand(0).getReg(); | ||||||||
| 1787 | |||||||||
| 1788 | // We need to find a single use which we can sink the check. We can | ||||||||
| 1789 | // primarily do this because many uses may already end up checked on their | ||||||||
| 1790 | // own. | ||||||||
| 1791 | MachineInstr *SingleUseMI = nullptr; | ||||||||
| 1792 | for (MachineInstr &UseMI : MRI->use_instructions(DefReg)) { | ||||||||
| 1793 | // If we're already going to harden this use, it is data invariant, it | ||||||||
| 1794 | // does not interfere with EFLAGS, and within our block. | ||||||||
| 1795 | if (HardenedInstrs.count(&UseMI)) { | ||||||||
| 1796 | if (!X86InstrInfo::isDataInvariantLoad(UseMI) || isEFLAGSDefLive(UseMI)) { | ||||||||
| 1797 | // If we've already decided to harden a non-load, we must have sunk | ||||||||
| 1798 | // some other post-load hardened instruction to it and it must itself | ||||||||
| 1799 | // be data-invariant. | ||||||||
| 1800 | assert(X86InstrInfo::isDataInvariant(UseMI) &&((void)0) | ||||||||
| 1801 | "Data variant instruction being hardened!")((void)0); | ||||||||
| 1802 | continue; | ||||||||
| 1803 | } | ||||||||
| 1804 | |||||||||
| 1805 | // Otherwise, this is a load and the load component can't be data | ||||||||
| 1806 | // invariant so check how this register is being used. | ||||||||
| 1807 | const MCInstrDesc &Desc = UseMI.getDesc(); | ||||||||
| 1808 | int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags); | ||||||||
| 1809 | assert(MemRefBeginIdx >= 0 &&((void)0) | ||||||||
| 1810 | "Should always have mem references here!")((void)0); | ||||||||
| 1811 | MemRefBeginIdx += X86II::getOperandBias(Desc); | ||||||||
| 1812 | |||||||||
| 1813 | MachineOperand &BaseMO = | ||||||||
| 1814 | UseMI.getOperand(MemRefBeginIdx + X86::AddrBaseReg); | ||||||||
| 1815 | MachineOperand &IndexMO = | ||||||||
| 1816 | UseMI.getOperand(MemRefBeginIdx + X86::AddrIndexReg); | ||||||||
| 1817 | if ((BaseMO.isReg() && BaseMO.getReg() == DefReg) || | ||||||||
| 1818 | (IndexMO.isReg() && IndexMO.getReg() == DefReg)) | ||||||||
| 1819 | // The load uses the register as part of its address making it not | ||||||||
| 1820 | // invariant. | ||||||||
| 1821 | return {}; | ||||||||
| 1822 | |||||||||
| 1823 | continue; | ||||||||
| 1824 | } | ||||||||
| 1825 | |||||||||
| 1826 | if (SingleUseMI) | ||||||||
| 1827 | // We already have a single use, this would make two. Bail. | ||||||||
| 1828 | return {}; | ||||||||
| 1829 | |||||||||
| 1830 | // If this single use isn't data invariant, isn't in this block, or has | ||||||||
| 1831 | // interfering EFLAGS, we can't sink the hardening to it. | ||||||||
| 1832 | if (!X86InstrInfo::isDataInvariant(UseMI) || UseMI.getParent() != MI.getParent() || | ||||||||
| 1833 | isEFLAGSDefLive(UseMI)) | ||||||||
| 1834 | return {}; | ||||||||
| 1835 | |||||||||
| 1836 | // If this instruction defines multiple registers bail as we won't harden | ||||||||
| 1837 | // all of them. | ||||||||
| 1838 | if (UseMI.getDesc().getNumDefs() > 1) | ||||||||
| 1839 | return {}; | ||||||||
| 1840 | |||||||||
| 1841 | // If this register isn't a virtual register we can't walk uses of sanely, | ||||||||
| 1842 | // just bail. Also check that its register class is one of the ones we | ||||||||
| 1843 | // can harden. | ||||||||
| 1844 | Register UseDefReg = UseMI.getOperand(0).getReg(); | ||||||||
| 1845 | if (!UseDefReg.isVirtual() || !canHardenRegister(UseDefReg)) | ||||||||
| 1846 | return {}; | ||||||||
| 1847 | |||||||||
| 1848 | SingleUseMI = &UseMI; | ||||||||
| 1849 | } | ||||||||
| 1850 | |||||||||
| 1851 | // If SingleUseMI is still null, there is no use that needs its own | ||||||||
| 1852 | // checking. Otherwise, it is the single use that needs checking. | ||||||||
| 1853 | return {SingleUseMI}; | ||||||||
| 1854 | }; | ||||||||
| 1855 | |||||||||
| 1856 | MachineInstr *MI = &InitialMI; | ||||||||
| 1857 | while (Optional<MachineInstr *> SingleUse = SinkCheckToSingleUse(*MI)) { | ||||||||
| 1858 | // Update which MI we're checking now. | ||||||||
| 1859 | MI = *SingleUse; | ||||||||
| 1860 | if (!MI) | ||||||||
| 1861 | break; | ||||||||
| 1862 | } | ||||||||
| 1863 | |||||||||
| 1864 | return MI; | ||||||||
| 1865 | } | ||||||||
| 1866 | |||||||||
| 1867 | bool X86SpeculativeLoadHardeningPass::canHardenRegister(Register Reg) { | ||||||||
| 1868 | auto *RC = MRI->getRegClass(Reg); | ||||||||
| 1869 | int RegBytes = TRI->getRegSizeInBits(*RC) / 8; | ||||||||
| 1870 | if (RegBytes > 8) | ||||||||
| 1871 | // We don't support post-load hardening of vectors. | ||||||||
| 1872 | return false; | ||||||||
| 1873 | |||||||||
| 1874 | unsigned RegIdx = Log2_32(RegBytes); | ||||||||
| 1875 | assert(RegIdx < 4 && "Unsupported register size")((void)0); | ||||||||
| 1876 | |||||||||
| 1877 | // If this register class is explicitly constrained to a class that doesn't | ||||||||
| 1878 | // require REX prefix, we may not be able to satisfy that constraint when | ||||||||
| 1879 | // emitting the hardening instructions, so bail out here. | ||||||||
| 1880 | // FIXME: This seems like a pretty lame hack. The way this comes up is when we | ||||||||
| 1881 | // end up both with a NOREX and REX-only register as operands to the hardening | ||||||||
| 1882 | // instructions. It would be better to fix that code to handle this situation | ||||||||
| 1883 | // rather than hack around it in this way. | ||||||||
| 1884 | const TargetRegisterClass *NOREXRegClasses[] = { | ||||||||
| 1885 | &X86::GR8_NOREXRegClass, &X86::GR16_NOREXRegClass, | ||||||||
| 1886 | &X86::GR32_NOREXRegClass, &X86::GR64_NOREXRegClass}; | ||||||||
| 1887 | if (RC == NOREXRegClasses[RegIdx]) | ||||||||
| |||||||||
| 1888 | return false; | ||||||||
| 1889 | |||||||||
| 1890 | const TargetRegisterClass *GPRRegClasses[] = { | ||||||||
| 1891 | &X86::GR8RegClass, &X86::GR16RegClass, &X86::GR32RegClass, | ||||||||
| 1892 | &X86::GR64RegClass}; | ||||||||
| 1893 | return RC->hasSuperClassEq(GPRRegClasses[RegIdx]); | ||||||||
| 1894 | } | ||||||||
| 1895 | |||||||||
| 1896 | /// Harden a value in a register. | ||||||||
| 1897 | /// | ||||||||
| 1898 | /// This is the low-level logic to fully harden a value sitting in a register | ||||||||
| 1899 | /// against leaking during speculative execution. | ||||||||
| 1900 | /// | ||||||||
| 1901 | /// Unlike hardening an address that is used by a load, this routine is required | ||||||||
| 1902 | /// to hide *all* incoming bits in the register. | ||||||||
| 1903 | /// | ||||||||
| 1904 | /// `Reg` must be a virtual register. Currently, it is required to be a GPR no | ||||||||
| 1905 | /// larger than the predicate state register. FIXME: We should support vector | ||||||||
| 1906 | /// registers here by broadcasting the predicate state. | ||||||||
| 1907 | /// | ||||||||
| 1908 | /// The new, hardened virtual register is returned. It will have the same | ||||||||
| 1909 | /// register class as `Reg`. | ||||||||
| 1910 | unsigned X86SpeculativeLoadHardeningPass::hardenValueInRegister( | ||||||||
| 1911 | Register Reg, MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, | ||||||||
| 1912 | DebugLoc Loc) { | ||||||||
| 1913 | assert(canHardenRegister(Reg) && "Cannot harden this register!")((void)0); | ||||||||
| 1914 | assert(Reg.isVirtual() && "Cannot harden a physical register!")((void)0); | ||||||||
| 1915 | |||||||||
| 1916 | auto *RC = MRI->getRegClass(Reg); | ||||||||
| 1917 | int Bytes = TRI->getRegSizeInBits(*RC) / 8; | ||||||||
| 1918 | unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB); | ||||||||
| 1919 | assert((Bytes == 1 || Bytes == 2 || Bytes == 4 || Bytes == 8) &&((void)0) | ||||||||
| 1920 | "Unknown register size")((void)0); | ||||||||
| 1921 | |||||||||
| 1922 | // FIXME: Need to teach this about 32-bit mode. | ||||||||
| 1923 | if (Bytes != 8) { | ||||||||
| 1924 | unsigned SubRegImms[] = {X86::sub_8bit, X86::sub_16bit, X86::sub_32bit}; | ||||||||
| 1925 | unsigned SubRegImm = SubRegImms[Log2_32(Bytes)]; | ||||||||
| 1926 | Register NarrowStateReg = MRI->createVirtualRegister(RC); | ||||||||
| 1927 | BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), NarrowStateReg) | ||||||||
| 1928 | .addReg(StateReg, 0, SubRegImm); | ||||||||
| 1929 | StateReg = NarrowStateReg; | ||||||||
| 1930 | } | ||||||||
| 1931 | |||||||||
| 1932 | unsigned FlagsReg = 0; | ||||||||
| 1933 | if (isEFLAGSLive(MBB, InsertPt, *TRI)) | ||||||||
| 1934 | FlagsReg = saveEFLAGS(MBB, InsertPt, Loc); | ||||||||
| 1935 | |||||||||
| 1936 | Register NewReg = MRI->createVirtualRegister(RC); | ||||||||
| 1937 | unsigned OrOpCodes[] = {X86::OR8rr, X86::OR16rr, X86::OR32rr, X86::OR64rr}; | ||||||||
| 1938 | unsigned OrOpCode = OrOpCodes[Log2_32(Bytes)]; | ||||||||
| 1939 | auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOpCode), NewReg) | ||||||||
| 1940 | .addReg(StateReg) | ||||||||
| 1941 | .addReg(Reg); | ||||||||
| 1942 | OrI->addRegisterDead(X86::EFLAGS, TRI); | ||||||||
| 1943 | ++NumInstsInserted; | ||||||||
| 1944 | LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n")do { } while (false); | ||||||||
| 1945 | |||||||||
| 1946 | if (FlagsReg) | ||||||||
| 1947 | restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg); | ||||||||
| 1948 | |||||||||
| 1949 | return NewReg; | ||||||||
| 1950 | } | ||||||||
| 1951 | |||||||||
| 1952 | /// Harden a load by hardening the loaded value in the defined register. | ||||||||
| 1953 | /// | ||||||||
| 1954 | /// We can harden a non-leaking load into a register without touching the | ||||||||
| 1955 | /// address by just hiding all of the loaded bits during misspeculation. We use | ||||||||
| 1956 | /// an `or` instruction to do this because we set up our poison value as all | ||||||||
| 1957 | /// ones. And the goal is just for the loaded bits to not be exposed to | ||||||||
| 1958 | /// execution and coercing them to one is sufficient. | ||||||||
| 1959 | /// | ||||||||
| 1960 | /// Returns the newly hardened register. | ||||||||
| 1961 | unsigned X86SpeculativeLoadHardeningPass::hardenPostLoad(MachineInstr &MI) { | ||||||||
| 1962 | MachineBasicBlock &MBB = *MI.getParent(); | ||||||||
| 1963 | const DebugLoc &Loc = MI.getDebugLoc(); | ||||||||
| 1964 | |||||||||
| 1965 | auto &DefOp = MI.getOperand(0); | ||||||||
| 1966 | Register OldDefReg = DefOp.getReg(); | ||||||||
| 1967 | auto *DefRC = MRI->getRegClass(OldDefReg); | ||||||||
| 1968 | |||||||||
| 1969 | // Because we want to completely replace the uses of this def'ed value with | ||||||||
| 1970 | // the hardened value, create a dedicated new register that will only be used | ||||||||
| 1971 | // to communicate the unhardened value to the hardening. | ||||||||
| 1972 | Register UnhardenedReg = MRI->createVirtualRegister(DefRC); | ||||||||
| 1973 | DefOp.setReg(UnhardenedReg); | ||||||||
| 1974 | |||||||||
| 1975 | // Now harden this register's value, getting a hardened reg that is safe to | ||||||||
| 1976 | // use. Note that we insert the instructions to compute this *after* the | ||||||||
| 1977 | // defining instruction, not before it. | ||||||||
| 1978 | unsigned HardenedReg = hardenValueInRegister( | ||||||||
| 1979 | UnhardenedReg, MBB, std::next(MI.getIterator()), Loc); | ||||||||
| 1980 | |||||||||
| 1981 | // Finally, replace the old register (which now only has the uses of the | ||||||||
| 1982 | // original def) with the hardened register. | ||||||||
| 1983 | MRI->replaceRegWith(/*FromReg*/ OldDefReg, /*ToReg*/ HardenedReg); | ||||||||
| 1984 | |||||||||
| 1985 | ++NumPostLoadRegsHardened; | ||||||||
| 1986 | return HardenedReg; | ||||||||
| 1987 | } | ||||||||
| 1988 | |||||||||
| 1989 | /// Harden a return instruction. | ||||||||
| 1990 | /// | ||||||||
| 1991 | /// Returns implicitly perform a load which we need to harden. Without hardening | ||||||||
| 1992 | /// this load, an attacker my speculatively write over the return address to | ||||||||
| 1993 | /// steer speculation of the return to an attacker controlled address. This is | ||||||||
| 1994 | /// called Spectre v1.1 or Bounds Check Bypass Store (BCBS) and is described in | ||||||||
| 1995 | /// this paper: | ||||||||
| 1996 | /// https://people.csail.mit.edu/vlk/spectre11.pdf | ||||||||
| 1997 | /// | ||||||||
| 1998 | /// We can harden this by introducing an LFENCE that will delay any load of the | ||||||||
| 1999 | /// return address until prior instructions have retired (and thus are not being | ||||||||
| 2000 | /// speculated), or we can harden the address used by the implicit load: the | ||||||||
| 2001 | /// stack pointer. | ||||||||
| 2002 | /// | ||||||||
| 2003 | /// If we are not using an LFENCE, hardening the stack pointer has an additional | ||||||||
| 2004 | /// benefit: it allows us to pass the predicate state accumulated in this | ||||||||
| 2005 | /// function back to the caller. In the absence of a BCBS attack on the return, | ||||||||
| 2006 | /// the caller will typically be resumed and speculatively executed due to the | ||||||||
| 2007 | /// Return Stack Buffer (RSB) prediction which is very accurate and has a high | ||||||||
| 2008 | /// priority. It is possible that some code from the caller will be executed | ||||||||
| 2009 | /// speculatively even during a BCBS-attacked return until the steering takes | ||||||||
| 2010 | /// effect. Whenever this happens, the caller can recover the (poisoned) | ||||||||
| 2011 | /// predicate state from the stack pointer and continue to harden loads. | ||||||||
| 2012 | void X86SpeculativeLoadHardeningPass::hardenReturnInstr(MachineInstr &MI) { | ||||||||
| 2013 | MachineBasicBlock &MBB = *MI.getParent(); | ||||||||
| 2014 | const DebugLoc &Loc = MI.getDebugLoc(); | ||||||||
| 2015 | auto InsertPt = MI.getIterator(); | ||||||||
| 2016 | |||||||||
| 2017 | if (FenceCallAndRet) | ||||||||
| 2018 | // No need to fence here as we'll fence at the return site itself. That | ||||||||
| 2019 | // handles more cases than we can handle here. | ||||||||
| 2020 | return; | ||||||||
| 2021 | |||||||||
| 2022 | // Take our predicate state, shift it to the high 17 bits (so that we keep | ||||||||
| 2023 | // pointers canonical) and merge it into RSP. This will allow the caller to | ||||||||
| 2024 | // extract it when we return (speculatively). | ||||||||
| 2025 | mergePredStateIntoSP(MBB, InsertPt, Loc, PS->SSA.GetValueAtEndOfBlock(&MBB)); | ||||||||
| 2026 | } | ||||||||
| 2027 | |||||||||
| 2028 | /// Trace the predicate state through a call. | ||||||||
| 2029 | /// | ||||||||
| 2030 | /// There are several layers of this needed to handle the full complexity of | ||||||||
| 2031 | /// calls. | ||||||||
| 2032 | /// | ||||||||
| 2033 | /// First, we need to send the predicate state into the called function. We do | ||||||||
| 2034 | /// this by merging it into the high bits of the stack pointer. | ||||||||
| 2035 | /// | ||||||||
| 2036 | /// For tail calls, this is all we need to do. | ||||||||
| 2037 | /// | ||||||||
| 2038 | /// For calls where we might return and resume the control flow, we need to | ||||||||
| 2039 | /// extract the predicate state from the high bits of the stack pointer after | ||||||||
| 2040 | /// control returns from the called function. | ||||||||
| 2041 | /// | ||||||||
| 2042 | /// We also need to verify that we intended to return to this location in the | ||||||||
| 2043 | /// code. An attacker might arrange for the processor to mispredict the return | ||||||||
| 2044 | /// to this valid but incorrect return address in the program rather than the | ||||||||
| 2045 | /// correct one. See the paper on this attack, called "ret2spec" by the | ||||||||
| 2046 | /// researchers, here: | ||||||||
| 2047 | /// https://christian-rossow.de/publications/ret2spec-ccs2018.pdf | ||||||||
| 2048 | /// | ||||||||
| 2049 | /// The way we verify that we returned to the correct location is by preserving | ||||||||
| 2050 | /// the expected return address across the call. One technique involves taking | ||||||||
| 2051 | /// advantage of the red-zone to load the return address from `8(%rsp)` where it | ||||||||
| 2052 | /// was left by the RET instruction when it popped `%rsp`. Alternatively, we can | ||||||||
| 2053 | /// directly save the address into a register that will be preserved across the | ||||||||
| 2054 | /// call. We compare this intended return address against the address | ||||||||
| 2055 | /// immediately following the call (the observed return address). If these | ||||||||
| 2056 | /// mismatch, we have detected misspeculation and can poison our predicate | ||||||||
| 2057 | /// state. | ||||||||
| 2058 | void X86SpeculativeLoadHardeningPass::tracePredStateThroughCall( | ||||||||
| 2059 | MachineInstr &MI) { | ||||||||
| 2060 | MachineBasicBlock &MBB = *MI.getParent(); | ||||||||
| 2061 | MachineFunction &MF = *MBB.getParent(); | ||||||||
| 2062 | auto InsertPt = MI.getIterator(); | ||||||||
| 2063 | const DebugLoc &Loc = MI.getDebugLoc(); | ||||||||
| 2064 | |||||||||
| 2065 | if (FenceCallAndRet) { | ||||||||
| 2066 | if (MI.isReturn()) | ||||||||
| 2067 | // Tail call, we don't return to this function. | ||||||||
| 2068 | // FIXME: We should also handle noreturn calls. | ||||||||
| 2069 | return; | ||||||||
| 2070 | |||||||||
| 2071 | // We don't need to fence before the call because the function should fence | ||||||||
| 2072 | // in its entry. However, we do need to fence after the call returns. | ||||||||
| 2073 | // Fencing before the return doesn't correctly handle cases where the return | ||||||||
| 2074 | // itself is mispredicted. | ||||||||
| 2075 | BuildMI(MBB, std::next(InsertPt), Loc, TII->get(X86::LFENCE)); | ||||||||
| 2076 | ++NumInstsInserted; | ||||||||
| 2077 | ++NumLFENCEsInserted; | ||||||||
| 2078 | return; | ||||||||
| 2079 | } | ||||||||
| 2080 | |||||||||
| 2081 | // First, we transfer the predicate state into the called function by merging | ||||||||
| 2082 | // it into the stack pointer. This will kill the current def of the state. | ||||||||
| 2083 | unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB); | ||||||||
| 2084 | mergePredStateIntoSP(MBB, InsertPt, Loc, StateReg); | ||||||||
| 2085 | |||||||||
| 2086 | // If this call is also a return, it is a tail call and we don't need anything | ||||||||
| 2087 | // else to handle it so just return. Also, if there are no further | ||||||||
| 2088 | // instructions and no successors, this call does not return so we can also | ||||||||
| 2089 | // bail. | ||||||||
| 2090 | if (MI.isReturn() || (std::next(InsertPt) == MBB.end() && MBB.succ_empty())) | ||||||||
| 2091 | return; | ||||||||
| 2092 | |||||||||
| 2093 | // Create a symbol to track the return address and attach it to the call | ||||||||
| 2094 | // machine instruction. We will lower extra symbols attached to call | ||||||||
| 2095 | // instructions as label immediately following the call. | ||||||||
| 2096 | MCSymbol *RetSymbol = | ||||||||
| 2097 | MF.getContext().createTempSymbol("slh_ret_addr", | ||||||||
| 2098 | /*AlwaysAddSuffix*/ true); | ||||||||
| 2099 | MI.setPostInstrSymbol(MF, RetSymbol); | ||||||||
| 2100 | |||||||||
| 2101 | const TargetRegisterClass *AddrRC = &X86::GR64RegClass; | ||||||||
| 2102 | unsigned ExpectedRetAddrReg = 0; | ||||||||
| 2103 | |||||||||
| 2104 | // If we have no red zones or if the function returns twice (possibly without | ||||||||
| 2105 | // using the `ret` instruction) like setjmp, we need to save the expected | ||||||||
| 2106 | // return address prior to the call. | ||||||||
| 2107 | if (!Subtarget->getFrameLowering()->has128ByteRedZone(MF) || | ||||||||
| 2108 | MF.exposesReturnsTwice()) { | ||||||||
| 2109 | // If we don't have red zones, we need to compute the expected return | ||||||||
| 2110 | // address prior to the call and store it in a register that lives across | ||||||||
| 2111 | // the call. | ||||||||
| 2112 | // | ||||||||
| 2113 | // In some ways, this is doubly satisfying as a mitigation because it will | ||||||||
| 2114 | // also successfully detect stack smashing bugs in some cases (typically, | ||||||||
| 2115 | // when a callee-saved register is used and the callee doesn't push it onto | ||||||||
| 2116 | // the stack). But that isn't our primary goal, so we only use it as | ||||||||
| 2117 | // a fallback. | ||||||||
| 2118 | // | ||||||||
| 2119 | // FIXME: It isn't clear that this is reliable in the face of | ||||||||
| 2120 | // rematerialization in the register allocator. We somehow need to force | ||||||||
| 2121 | // that to not occur for this particular instruction, and instead to spill | ||||||||
| 2122 | // or otherwise preserve the value computed *prior* to the call. | ||||||||
| 2123 | // | ||||||||
| 2124 | // FIXME: It is even less clear why MachineCSE can't just fold this when we | ||||||||
| 2125 | // end up having to use identical instructions both before and after the | ||||||||
| 2126 | // call to feed the comparison. | ||||||||
| 2127 | ExpectedRetAddrReg = MRI->createVirtualRegister(AddrRC); | ||||||||
| 2128 | if (MF.getTarget().getCodeModel() == CodeModel::Small && | ||||||||
| 2129 | !Subtarget->isPositionIndependent()) { | ||||||||
| 2130 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::MOV64ri32), ExpectedRetAddrReg) | ||||||||
| 2131 | .addSym(RetSymbol); | ||||||||
| 2132 | } else { | ||||||||
| 2133 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::LEA64r), ExpectedRetAddrReg) | ||||||||
| 2134 | .addReg(/*Base*/ X86::RIP) | ||||||||
| 2135 | .addImm(/*Scale*/ 1) | ||||||||
| 2136 | .addReg(/*Index*/ 0) | ||||||||
| 2137 | .addSym(RetSymbol) | ||||||||
| 2138 | .addReg(/*Segment*/ 0); | ||||||||
| 2139 | } | ||||||||
| 2140 | } | ||||||||
| 2141 | |||||||||
| 2142 | // Step past the call to handle when it returns. | ||||||||
| 2143 | ++InsertPt; | ||||||||
| 2144 | |||||||||
| 2145 | // If we didn't pre-compute the expected return address into a register, then | ||||||||
| 2146 | // red zones are enabled and the return address is still available on the | ||||||||
| 2147 | // stack immediately after the call. As the very first instruction, we load it | ||||||||
| 2148 | // into a register. | ||||||||
| 2149 | if (!ExpectedRetAddrReg) { | ||||||||
| 2150 | ExpectedRetAddrReg = MRI->createVirtualRegister(AddrRC); | ||||||||
| 2151 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::MOV64rm), ExpectedRetAddrReg) | ||||||||
| 2152 | .addReg(/*Base*/ X86::RSP) | ||||||||
| 2153 | .addImm(/*Scale*/ 1) | ||||||||
| 2154 | .addReg(/*Index*/ 0) | ||||||||
| 2155 | .addImm(/*Displacement*/ -8) // The stack pointer has been popped, so | ||||||||
| 2156 | // the return address is 8-bytes past it. | ||||||||
| 2157 | .addReg(/*Segment*/ 0); | ||||||||
| 2158 | } | ||||||||
| 2159 | |||||||||
| 2160 | // Now we extract the callee's predicate state from the stack pointer. | ||||||||
| 2161 | unsigned NewStateReg = extractPredStateFromSP(MBB, InsertPt, Loc); | ||||||||
| 2162 | |||||||||
| 2163 | // Test the expected return address against our actual address. If we can | ||||||||
| 2164 | // form this basic block's address as an immediate, this is easy. Otherwise | ||||||||
| 2165 | // we compute it. | ||||||||
| 2166 | if (MF.getTarget().getCodeModel() == CodeModel::Small && | ||||||||
| 2167 | !Subtarget->isPositionIndependent()) { | ||||||||
| 2168 | // FIXME: Could we fold this with the load? It would require careful EFLAGS | ||||||||
| 2169 | // management. | ||||||||
| 2170 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::CMP64ri32)) | ||||||||
| 2171 | .addReg(ExpectedRetAddrReg, RegState::Kill) | ||||||||
| 2172 | .addSym(RetSymbol); | ||||||||
| 2173 | } else { | ||||||||
| 2174 | Register ActualRetAddrReg = MRI->createVirtualRegister(AddrRC); | ||||||||
| 2175 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::LEA64r), ActualRetAddrReg) | ||||||||
| 2176 | .addReg(/*Base*/ X86::RIP) | ||||||||
| 2177 | .addImm(/*Scale*/ 1) | ||||||||
| 2178 | .addReg(/*Index*/ 0) | ||||||||
| 2179 | .addSym(RetSymbol) | ||||||||
| 2180 | .addReg(/*Segment*/ 0); | ||||||||
| 2181 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::CMP64rr)) | ||||||||
| 2182 | .addReg(ExpectedRetAddrReg, RegState::Kill) | ||||||||
| 2183 | .addReg(ActualRetAddrReg, RegState::Kill); | ||||||||
| 2184 | } | ||||||||
| 2185 | |||||||||
| 2186 | // Now conditionally update the predicate state we just extracted if we ended | ||||||||
| 2187 | // up at a different return address than expected. | ||||||||
| 2188 | int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8; | ||||||||
| 2189 | auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes); | ||||||||
| 2190 | |||||||||
| 2191 | Register UpdatedStateReg = MRI->createVirtualRegister(PS->RC); | ||||||||
| 2192 | auto CMovI = BuildMI(MBB, InsertPt, Loc, TII->get(CMovOp), UpdatedStateReg) | ||||||||
| 2193 | .addReg(NewStateReg, RegState::Kill) | ||||||||
| 2194 | .addReg(PS->PoisonReg) | ||||||||
| 2195 | .addImm(X86::COND_NE); | ||||||||
| 2196 | CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true); | ||||||||
| 2197 | ++NumInstsInserted; | ||||||||
| 2198 | LLVM_DEBUG(dbgs() << " Inserting cmov: "; CMovI->dump(); dbgs() << "\n")do { } while (false); | ||||||||
| 2199 | |||||||||
| 2200 | PS->SSA.AddAvailableValue(&MBB, UpdatedStateReg); | ||||||||
| 2201 | } | ||||||||
| 2202 | |||||||||
| 2203 | /// An attacker may speculatively store over a value that is then speculatively | ||||||||
| 2204 | /// loaded and used as the target of an indirect call or jump instruction. This | ||||||||
| 2205 | /// is called Spectre v1.2 or Bounds Check Bypass Store (BCBS) and is described | ||||||||
| 2206 | /// in this paper: | ||||||||
| 2207 | /// https://people.csail.mit.edu/vlk/spectre11.pdf | ||||||||
| 2208 | /// | ||||||||
| 2209 | /// When this happens, the speculative execution of the call or jump will end up | ||||||||
| 2210 | /// being steered to this attacker controlled address. While most such loads | ||||||||
| 2211 | /// will be adequately hardened already, we want to ensure that they are | ||||||||
| 2212 | /// definitively treated as needing post-load hardening. While address hardening | ||||||||
| 2213 | /// is sufficient to prevent secret data from leaking to the attacker, it may | ||||||||
| 2214 | /// not be sufficient to prevent an attacker from steering speculative | ||||||||
| 2215 | /// execution. We forcibly unfolded all relevant loads above and so will always | ||||||||
| 2216 | /// have an opportunity to post-load harden here, we just need to scan for cases | ||||||||
| 2217 | /// not already flagged and add them. | ||||||||
| 2218 | void X86SpeculativeLoadHardeningPass::hardenIndirectCallOrJumpInstr( | ||||||||
| 2219 | MachineInstr &MI, | ||||||||
| 2220 | SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg) { | ||||||||
| 2221 | switch (MI.getOpcode()) { | ||||||||
| 2222 | case X86::FARCALL16m: | ||||||||
| 2223 | case X86::FARCALL32m: | ||||||||
| 2224 | case X86::FARCALL64m: | ||||||||
| 2225 | case X86::FARJMP16m: | ||||||||
| 2226 | case X86::FARJMP32m: | ||||||||
| 2227 | case X86::FARJMP64m: | ||||||||
| 2228 | // We don't need to harden either far calls or far jumps as they are | ||||||||
| 2229 | // safe from Spectre. | ||||||||
| 2230 | return; | ||||||||
| 2231 | |||||||||
| 2232 | default: | ||||||||
| 2233 | break; | ||||||||
| 2234 | } | ||||||||
| 2235 | |||||||||
| 2236 | // We should never see a loading instruction at this point, as those should | ||||||||
| 2237 | // have been unfolded. | ||||||||
| 2238 | assert(!MI.mayLoad() && "Found a lingering loading instruction!")((void)0); | ||||||||
| 2239 | |||||||||
| 2240 | // If the first operand isn't a register, this is a branch or call | ||||||||
| 2241 | // instruction with an immediate operand which doesn't need to be hardened. | ||||||||
| 2242 | if (!MI.getOperand(0).isReg()) | ||||||||
| 2243 | return; | ||||||||
| 2244 | |||||||||
| 2245 | // For all of these, the target register is the first operand of the | ||||||||
| 2246 | // instruction. | ||||||||
| 2247 | auto &TargetOp = MI.getOperand(0); | ||||||||
| 2248 | Register OldTargetReg = TargetOp.getReg(); | ||||||||
| 2249 | |||||||||
| 2250 | // Try to lookup a hardened version of this register. We retain a reference | ||||||||
| 2251 | // here as we want to update the map to track any newly computed hardened | ||||||||
| 2252 | // register. | ||||||||
| 2253 | unsigned &HardenedTargetReg = AddrRegToHardenedReg[OldTargetReg]; | ||||||||
| 2254 | |||||||||
| 2255 | // If we don't have a hardened register yet, compute one. Otherwise, just use | ||||||||
| 2256 | // the already hardened register. | ||||||||
| 2257 | // | ||||||||
| 2258 | // FIXME: It is a little suspect that we use partially hardened registers that | ||||||||
| 2259 | // only feed addresses. The complexity of partial hardening with SHRX | ||||||||
| 2260 | // continues to pile up. Should definitively measure its value and consider | ||||||||
| 2261 | // eliminating it. | ||||||||
| 2262 | if (!HardenedTargetReg) | ||||||||
| 2263 | HardenedTargetReg = hardenValueInRegister( | ||||||||
| 2264 | OldTargetReg, *MI.getParent(), MI.getIterator(), MI.getDebugLoc()); | ||||||||
| 2265 | |||||||||
| 2266 | // Set the target operand to the hardened register. | ||||||||
| 2267 | TargetOp.setReg(HardenedTargetReg); | ||||||||
| 2268 | |||||||||
| 2269 | ++NumCallsOrJumpsHardened; | ||||||||
| 2270 | } | ||||||||
| 2271 | |||||||||
| 2272 | INITIALIZE_PASS_BEGIN(X86SpeculativeLoadHardeningPass, PASS_KEY,static void *initializeX86SpeculativeLoadHardeningPassPassOnce (PassRegistry &Registry) { | ||||||||
| 2273 | "X86 speculative load hardener", false, false)static void *initializeX86SpeculativeLoadHardeningPassPassOnce (PassRegistry &Registry) { | ||||||||
| 2274 | INITIALIZE_PASS_END(X86SpeculativeLoadHardeningPass, PASS_KEY,PassInfo *PI = new PassInfo( "X86 speculative load hardener", "x86-slh", &X86SpeculativeLoadHardeningPass::ID, PassInfo ::NormalCtor_t(callDefaultCtor<X86SpeculativeLoadHardeningPass >), false, false); Registry.registerPass(*PI, true); return PI; } static llvm::once_flag InitializeX86SpeculativeLoadHardeningPassPassFlag ; void llvm::initializeX86SpeculativeLoadHardeningPassPass(PassRegistry &Registry) { llvm::call_once(InitializeX86SpeculativeLoadHardeningPassPassFlag , initializeX86SpeculativeLoadHardeningPassPassOnce, std::ref (Registry)); } | ||||||||
| 2275 | "X86 speculative load hardener", false, false)PassInfo *PI = new PassInfo( "X86 speculative load hardener", "x86-slh", &X86SpeculativeLoadHardeningPass::ID, PassInfo ::NormalCtor_t(callDefaultCtor<X86SpeculativeLoadHardeningPass >), false, false); Registry.registerPass(*PI, true); return PI; } static llvm::once_flag InitializeX86SpeculativeLoadHardeningPassPassFlag ; void llvm::initializeX86SpeculativeLoadHardeningPassPass(PassRegistry &Registry) { llvm::call_once(InitializeX86SpeculativeLoadHardeningPassPassFlag , initializeX86SpeculativeLoadHardeningPassPassOnce, std::ref (Registry)); } | ||||||||
| 2276 | |||||||||
| 2277 | FunctionPass *llvm::createX86SpeculativeLoadHardeningPass() { | ||||||||
| 2278 | return new X86SpeculativeLoadHardeningPass(); | ||||||||
| 2279 | } |
| 1 | //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains some functions that are useful for math stuff. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #ifndef LLVM_SUPPORT_MATHEXTRAS_H |
| 14 | #define LLVM_SUPPORT_MATHEXTRAS_H |
| 15 | |
| 16 | #include "llvm/Support/Compiler.h" |
| 17 | #include <cassert> |
| 18 | #include <climits> |
| 19 | #include <cmath> |
| 20 | #include <cstdint> |
| 21 | #include <cstring> |
| 22 | #include <limits> |
| 23 | #include <type_traits> |
| 24 | |
| 25 | #ifdef __ANDROID_NDK__ |
| 26 | #include <android/api-level.h> |
| 27 | #endif |
| 28 | |
| 29 | #ifdef _MSC_VER |
| 30 | // Declare these intrinsics manually rather including intrin.h. It's very |
| 31 | // expensive, and MathExtras.h is popular. |
| 32 | // #include <intrin.h> |
| 33 | extern "C" { |
| 34 | unsigned char _BitScanForward(unsigned long *_Index, unsigned long _Mask); |
| 35 | unsigned char _BitScanForward64(unsigned long *_Index, unsigned __int64 _Mask); |
| 36 | unsigned char _BitScanReverse(unsigned long *_Index, unsigned long _Mask); |
| 37 | unsigned char _BitScanReverse64(unsigned long *_Index, unsigned __int64 _Mask); |
| 38 | } |
| 39 | #endif |
| 40 | |
| 41 | namespace llvm { |
| 42 | |
| 43 | /// The behavior an operation has on an input of 0. |
| 44 | enum ZeroBehavior { |
| 45 | /// The returned value is undefined. |
| 46 | ZB_Undefined, |
| 47 | /// The returned value is numeric_limits<T>::max() |
| 48 | ZB_Max, |
| 49 | /// The returned value is numeric_limits<T>::digits |
| 50 | ZB_Width |
| 51 | }; |
| 52 | |
| 53 | /// Mathematical constants. |
| 54 | namespace numbers { |
| 55 | // TODO: Track C++20 std::numbers. |
| 56 | // TODO: Favor using the hexadecimal FP constants (requires C++17). |
| 57 | constexpr double e = 2.7182818284590452354, // (0x1.5bf0a8b145749P+1) https://oeis.org/A001113 |
| 58 | egamma = .57721566490153286061, // (0x1.2788cfc6fb619P-1) https://oeis.org/A001620 |
| 59 | ln2 = .69314718055994530942, // (0x1.62e42fefa39efP-1) https://oeis.org/A002162 |
| 60 | ln10 = 2.3025850929940456840, // (0x1.24bb1bbb55516P+1) https://oeis.org/A002392 |
| 61 | log2e = 1.4426950408889634074, // (0x1.71547652b82feP+0) |
| 62 | log10e = .43429448190325182765, // (0x1.bcb7b1526e50eP-2) |
| 63 | pi = 3.1415926535897932385, // (0x1.921fb54442d18P+1) https://oeis.org/A000796 |
| 64 | inv_pi = .31830988618379067154, // (0x1.45f306bc9c883P-2) https://oeis.org/A049541 |
| 65 | sqrtpi = 1.7724538509055160273, // (0x1.c5bf891b4ef6bP+0) https://oeis.org/A002161 |
| 66 | inv_sqrtpi = .56418958354775628695, // (0x1.20dd750429b6dP-1) https://oeis.org/A087197 |
| 67 | sqrt2 = 1.4142135623730950488, // (0x1.6a09e667f3bcdP+0) https://oeis.org/A00219 |
| 68 | inv_sqrt2 = .70710678118654752440, // (0x1.6a09e667f3bcdP-1) |
| 69 | sqrt3 = 1.7320508075688772935, // (0x1.bb67ae8584caaP+0) https://oeis.org/A002194 |
| 70 | inv_sqrt3 = .57735026918962576451, // (0x1.279a74590331cP-1) |
| 71 | phi = 1.6180339887498948482; // (0x1.9e3779b97f4a8P+0) https://oeis.org/A001622 |
| 72 | constexpr float ef = 2.71828183F, // (0x1.5bf0a8P+1) https://oeis.org/A001113 |
| 73 | egammaf = .577215665F, // (0x1.2788d0P-1) https://oeis.org/A001620 |
| 74 | ln2f = .693147181F, // (0x1.62e430P-1) https://oeis.org/A002162 |
| 75 | ln10f = 2.30258509F, // (0x1.26bb1cP+1) https://oeis.org/A002392 |
| 76 | log2ef = 1.44269504F, // (0x1.715476P+0) |
| 77 | log10ef = .434294482F, // (0x1.bcb7b2P-2) |
| 78 | pif = 3.14159265F, // (0x1.921fb6P+1) https://oeis.org/A000796 |
| 79 | inv_pif = .318309886F, // (0x1.45f306P-2) https://oeis.org/A049541 |
| 80 | sqrtpif = 1.77245385F, // (0x1.c5bf8aP+0) https://oeis.org/A002161 |
| 81 | inv_sqrtpif = .564189584F, // (0x1.20dd76P-1) https://oeis.org/A087197 |
| 82 | sqrt2f = 1.41421356F, // (0x1.6a09e6P+0) https://oeis.org/A002193 |
| 83 | inv_sqrt2f = .707106781F, // (0x1.6a09e6P-1) |
| 84 | sqrt3f = 1.73205081F, // (0x1.bb67aeP+0) https://oeis.org/A002194 |
| 85 | inv_sqrt3f = .577350269F, // (0x1.279a74P-1) |
| 86 | phif = 1.61803399F; // (0x1.9e377aP+0) https://oeis.org/A001622 |
| 87 | } // namespace numbers |
| 88 | |
| 89 | namespace detail { |
| 90 | template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter { |
| 91 | static unsigned count(T Val, ZeroBehavior) { |
| 92 | if (!Val) |
| 93 | return std::numeric_limits<T>::digits; |
| 94 | if (Val & 0x1) |
| 95 | return 0; |
| 96 | |
| 97 | // Bisection method. |
| 98 | unsigned ZeroBits = 0; |
| 99 | T Shift = std::numeric_limits<T>::digits >> 1; |
| 100 | T Mask = std::numeric_limits<T>::max() >> Shift; |
| 101 | while (Shift) { |
| 102 | if ((Val & Mask) == 0) { |
| 103 | Val >>= Shift; |
| 104 | ZeroBits |= Shift; |
| 105 | } |
| 106 | Shift >>= 1; |
| 107 | Mask >>= Shift; |
| 108 | } |
| 109 | return ZeroBits; |
| 110 | } |
| 111 | }; |
| 112 | |
| 113 | #if defined(__GNUC__4) || defined(_MSC_VER) |
| 114 | template <typename T> struct TrailingZerosCounter<T, 4> { |
| 115 | static unsigned count(T Val, ZeroBehavior ZB) { |
| 116 | if (ZB != ZB_Undefined && Val == 0) |
| 117 | return 32; |
| 118 | |
| 119 | #if __has_builtin(__builtin_ctz)1 || defined(__GNUC__4) |
| 120 | return __builtin_ctz(Val); |
| 121 | #elif defined(_MSC_VER) |
| 122 | unsigned long Index; |
| 123 | _BitScanForward(&Index, Val); |
| 124 | return Index; |
| 125 | #endif |
| 126 | } |
| 127 | }; |
| 128 | |
| 129 | #if !defined(_MSC_VER) || defined(_M_X64) |
| 130 | template <typename T> struct TrailingZerosCounter<T, 8> { |
| 131 | static unsigned count(T Val, ZeroBehavior ZB) { |
| 132 | if (ZB != ZB_Undefined && Val == 0) |
| 133 | return 64; |
| 134 | |
| 135 | #if __has_builtin(__builtin_ctzll)1 || defined(__GNUC__4) |
| 136 | return __builtin_ctzll(Val); |
| 137 | #elif defined(_MSC_VER) |
| 138 | unsigned long Index; |
| 139 | _BitScanForward64(&Index, Val); |
| 140 | return Index; |
| 141 | #endif |
| 142 | } |
| 143 | }; |
| 144 | #endif |
| 145 | #endif |
| 146 | } // namespace detail |
| 147 | |
| 148 | /// Count number of 0's from the least significant bit to the most |
| 149 | /// stopping at the first 1. |
| 150 | /// |
| 151 | /// Only unsigned integral types are allowed. |
| 152 | /// |
| 153 | /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are |
| 154 | /// valid arguments. |
| 155 | template <typename T> |
| 156 | unsigned countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) { |
| 157 | static_assert(std::numeric_limits<T>::is_integer && |
| 158 | !std::numeric_limits<T>::is_signed, |
| 159 | "Only unsigned integral types are allowed."); |
| 160 | return llvm::detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB); |
| 161 | } |
| 162 | |
| 163 | namespace detail { |
| 164 | template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter { |
| 165 | static unsigned count(T Val, ZeroBehavior) { |
| 166 | if (!Val) |
| 167 | return std::numeric_limits<T>::digits; |
| 168 | |
| 169 | // Bisection method. |
| 170 | unsigned ZeroBits = 0; |
| 171 | for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) { |
| 172 | T Tmp = Val >> Shift; |
| 173 | if (Tmp) |
| 174 | Val = Tmp; |
| 175 | else |
| 176 | ZeroBits |= Shift; |
| 177 | } |
| 178 | return ZeroBits; |
| 179 | } |
| 180 | }; |
| 181 | |
| 182 | #if defined(__GNUC__4) || defined(_MSC_VER) |
| 183 | template <typename T> struct LeadingZerosCounter<T, 4> { |
| 184 | static unsigned count(T Val, ZeroBehavior ZB) { |
| 185 | if (ZB != ZB_Undefined && Val == 0) |
| 186 | return 32; |
| 187 | |
| 188 | #if __has_builtin(__builtin_clz)1 || defined(__GNUC__4) |
| 189 | return __builtin_clz(Val); |
| 190 | #elif defined(_MSC_VER) |
| 191 | unsigned long Index; |
| 192 | _BitScanReverse(&Index, Val); |
| 193 | return Index ^ 31; |
| 194 | #endif |
| 195 | } |
| 196 | }; |
| 197 | |
| 198 | #if !defined(_MSC_VER) || defined(_M_X64) |
| 199 | template <typename T> struct LeadingZerosCounter<T, 8> { |
| 200 | static unsigned count(T Val, ZeroBehavior ZB) { |
| 201 | if (ZB != ZB_Undefined && Val == 0) |
| 202 | return 64; |
| 203 | |
| 204 | #if __has_builtin(__builtin_clzll)1 || defined(__GNUC__4) |
| 205 | return __builtin_clzll(Val); |
| 206 | #elif defined(_MSC_VER) |
| 207 | unsigned long Index; |
| 208 | _BitScanReverse64(&Index, Val); |
| 209 | return Index ^ 63; |
| 210 | #endif |
| 211 | } |
| 212 | }; |
| 213 | #endif |
| 214 | #endif |
| 215 | } // namespace detail |
| 216 | |
| 217 | /// Count number of 0's from the most significant bit to the least |
| 218 | /// stopping at the first 1. |
| 219 | /// |
| 220 | /// Only unsigned integral types are allowed. |
| 221 | /// |
| 222 | /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are |
| 223 | /// valid arguments. |
| 224 | template <typename T> |
| 225 | unsigned countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) { |
| 226 | static_assert(std::numeric_limits<T>::is_integer && |
| 227 | !std::numeric_limits<T>::is_signed, |
| 228 | "Only unsigned integral types are allowed."); |
| 229 | return llvm::detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB); |
| 230 | } |
| 231 | |
| 232 | /// Get the index of the first set bit starting from the least |
| 233 | /// significant bit. |
| 234 | /// |
| 235 | /// Only unsigned integral types are allowed. |
| 236 | /// |
| 237 | /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are |
| 238 | /// valid arguments. |
| 239 | template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) { |
| 240 | if (ZB == ZB_Max && Val == 0) |
| 241 | return std::numeric_limits<T>::max(); |
| 242 | |
| 243 | return countTrailingZeros(Val, ZB_Undefined); |
| 244 | } |
| 245 | |
| 246 | /// Create a bitmask with the N right-most bits set to 1, and all other |
| 247 | /// bits set to 0. Only unsigned types are allowed. |
| 248 | template <typename T> T maskTrailingOnes(unsigned N) { |
| 249 | static_assert(std::is_unsigned<T>::value, "Invalid type!"); |
| 250 | const unsigned Bits = CHAR_BIT8 * sizeof(T); |
| 251 | assert(N <= Bits && "Invalid bit index")((void)0); |
| 252 | return N == 0 ? 0 : (T(-1) >> (Bits - N)); |
| 253 | } |
| 254 | |
| 255 | /// Create a bitmask with the N left-most bits set to 1, and all other |
| 256 | /// bits set to 0. Only unsigned types are allowed. |
| 257 | template <typename T> T maskLeadingOnes(unsigned N) { |
| 258 | return ~maskTrailingOnes<T>(CHAR_BIT8 * sizeof(T) - N); |
| 259 | } |
| 260 | |
| 261 | /// Create a bitmask with the N right-most bits set to 0, and all other |
| 262 | /// bits set to 1. Only unsigned types are allowed. |
| 263 | template <typename T> T maskTrailingZeros(unsigned N) { |
| 264 | return maskLeadingOnes<T>(CHAR_BIT8 * sizeof(T) - N); |
| 265 | } |
| 266 | |
| 267 | /// Create a bitmask with the N left-most bits set to 0, and all other |
| 268 | /// bits set to 1. Only unsigned types are allowed. |
| 269 | template <typename T> T maskLeadingZeros(unsigned N) { |
| 270 | return maskTrailingOnes<T>(CHAR_BIT8 * sizeof(T) - N); |
| 271 | } |
| 272 | |
| 273 | /// Get the index of the last set bit starting from the least |
| 274 | /// significant bit. |
| 275 | /// |
| 276 | /// Only unsigned integral types are allowed. |
| 277 | /// |
| 278 | /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are |
| 279 | /// valid arguments. |
| 280 | template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) { |
| 281 | if (ZB == ZB_Max && Val == 0) |
| 282 | return std::numeric_limits<T>::max(); |
| 283 | |
| 284 | // Use ^ instead of - because both gcc and llvm can remove the associated ^ |
| 285 | // in the __builtin_clz intrinsic on x86. |
| 286 | return countLeadingZeros(Val, ZB_Undefined) ^ |
| 287 | (std::numeric_limits<T>::digits - 1); |
| 288 | } |
| 289 | |
| 290 | /// Macro compressed bit reversal table for 256 bits. |
| 291 | /// |
| 292 | /// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable |
| 293 | static const unsigned char BitReverseTable256[256] = { |
| 294 | #define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64 |
| 295 | #define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16) |
| 296 | #define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4) |
| 297 | R6(0), R6(2), R6(1), R6(3) |
| 298 | #undef R2 |
| 299 | #undef R4 |
| 300 | #undef R6 |
| 301 | }; |
| 302 | |
| 303 | /// Reverse the bits in \p Val. |
| 304 | template <typename T> |
| 305 | T reverseBits(T Val) { |
| 306 | unsigned char in[sizeof(Val)]; |
| 307 | unsigned char out[sizeof(Val)]; |
| 308 | std::memcpy(in, &Val, sizeof(Val)); |
| 309 | for (unsigned i = 0; i < sizeof(Val); ++i) |
| 310 | out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]]; |
| 311 | std::memcpy(&Val, out, sizeof(Val)); |
| 312 | return Val; |
| 313 | } |
| 314 | |
| 315 | #if __has_builtin(__builtin_bitreverse8)1 |
| 316 | template<> |
| 317 | inline uint8_t reverseBits<uint8_t>(uint8_t Val) { |
| 318 | return __builtin_bitreverse8(Val); |
| 319 | } |
| 320 | #endif |
| 321 | |
| 322 | #if __has_builtin(__builtin_bitreverse16)1 |
| 323 | template<> |
| 324 | inline uint16_t reverseBits<uint16_t>(uint16_t Val) { |
| 325 | return __builtin_bitreverse16(Val); |
| 326 | } |
| 327 | #endif |
| 328 | |
| 329 | #if __has_builtin(__builtin_bitreverse32)1 |
| 330 | template<> |
| 331 | inline uint32_t reverseBits<uint32_t>(uint32_t Val) { |
| 332 | return __builtin_bitreverse32(Val); |
| 333 | } |
| 334 | #endif |
| 335 | |
| 336 | #if __has_builtin(__builtin_bitreverse64)1 |
| 337 | template<> |
| 338 | inline uint64_t reverseBits<uint64_t>(uint64_t Val) { |
| 339 | return __builtin_bitreverse64(Val); |
| 340 | } |
| 341 | #endif |
| 342 | |
| 343 | // NOTE: The following support functions use the _32/_64 extensions instead of |
| 344 | // type overloading so that signed and unsigned integers can be used without |
| 345 | // ambiguity. |
| 346 | |
| 347 | /// Return the high 32 bits of a 64 bit value. |
| 348 | constexpr inline uint32_t Hi_32(uint64_t Value) { |
| 349 | return static_cast<uint32_t>(Value >> 32); |
| 350 | } |
| 351 | |
| 352 | /// Return the low 32 bits of a 64 bit value. |
| 353 | constexpr inline uint32_t Lo_32(uint64_t Value) { |
| 354 | return static_cast<uint32_t>(Value); |
| 355 | } |
| 356 | |
| 357 | /// Make a 64-bit integer from a high / low pair of 32-bit integers. |
| 358 | constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) { |
| 359 | return ((uint64_t)High << 32) | (uint64_t)Low; |
| 360 | } |
| 361 | |
| 362 | /// Checks if an integer fits into the given bit width. |
| 363 | template <unsigned N> constexpr inline bool isInt(int64_t x) { |
| 364 | return N >= 64 || (-(INT64_C(1)1LL<<(N-1)) <= x && x < (INT64_C(1)1LL<<(N-1))); |
| 365 | } |
| 366 | // Template specializations to get better code for common cases. |
| 367 | template <> constexpr inline bool isInt<8>(int64_t x) { |
| 368 | return static_cast<int8_t>(x) == x; |
| 369 | } |
| 370 | template <> constexpr inline bool isInt<16>(int64_t x) { |
| 371 | return static_cast<int16_t>(x) == x; |
| 372 | } |
| 373 | template <> constexpr inline bool isInt<32>(int64_t x) { |
| 374 | return static_cast<int32_t>(x) == x; |
| 375 | } |
| 376 | |
| 377 | /// Checks if a signed integer is an N bit number shifted left by S. |
| 378 | template <unsigned N, unsigned S> |
| 379 | constexpr inline bool isShiftedInt(int64_t x) { |
| 380 | static_assert( |
| 381 | N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number."); |
| 382 | static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide."); |
| 383 | return isInt<N + S>(x) && (x % (UINT64_C(1)1ULL << S) == 0); |
| 384 | } |
| 385 | |
| 386 | /// Checks if an unsigned integer fits into the given bit width. |
| 387 | /// |
| 388 | /// This is written as two functions rather than as simply |
| 389 | /// |
| 390 | /// return N >= 64 || X < (UINT64_C(1) << N); |
| 391 | /// |
| 392 | /// to keep MSVC from (incorrectly) warning on isUInt<64> that we're shifting |
| 393 | /// left too many places. |
| 394 | template <unsigned N> |
| 395 | constexpr inline std::enable_if_t<(N < 64), bool> isUInt(uint64_t X) { |
| 396 | static_assert(N > 0, "isUInt<0> doesn't make sense"); |
| 397 | return X < (UINT64_C(1)1ULL << (N)); |
| 398 | } |
| 399 | template <unsigned N> |
| 400 | constexpr inline std::enable_if_t<N >= 64, bool> isUInt(uint64_t) { |
| 401 | return true; |
| 402 | } |
| 403 | |
| 404 | // Template specializations to get better code for common cases. |
| 405 | template <> constexpr inline bool isUInt<8>(uint64_t x) { |
| 406 | return static_cast<uint8_t>(x) == x; |
| 407 | } |
| 408 | template <> constexpr inline bool isUInt<16>(uint64_t x) { |
| 409 | return static_cast<uint16_t>(x) == x; |
| 410 | } |
| 411 | template <> constexpr inline bool isUInt<32>(uint64_t x) { |
| 412 | return static_cast<uint32_t>(x) == x; |
| 413 | } |
| 414 | |
| 415 | /// Checks if a unsigned integer is an N bit number shifted left by S. |
| 416 | template <unsigned N, unsigned S> |
| 417 | constexpr inline bool isShiftedUInt(uint64_t x) { |
| 418 | static_assert( |
| 419 | N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)"); |
| 420 | static_assert(N + S <= 64, |
| 421 | "isShiftedUInt<N, S> with N + S > 64 is too wide."); |
| 422 | // Per the two static_asserts above, S must be strictly less than 64. So |
| 423 | // 1 << S is not undefined behavior. |
| 424 | return isUInt<N + S>(x) && (x % (UINT64_C(1)1ULL << S) == 0); |
| 425 | } |
| 426 | |
| 427 | /// Gets the maximum value for a N-bit unsigned integer. |
| 428 | inline uint64_t maxUIntN(uint64_t N) { |
| 429 | assert(N > 0 && N <= 64 && "integer width out of range")((void)0); |
| 430 | |
| 431 | // uint64_t(1) << 64 is undefined behavior, so we can't do |
| 432 | // (uint64_t(1) << N) - 1 |
| 433 | // without checking first that N != 64. But this works and doesn't have a |
| 434 | // branch. |
| 435 | return UINT64_MAX0xffffffffffffffffULL >> (64 - N); |
| 436 | } |
| 437 | |
| 438 | /// Gets the minimum value for a N-bit signed integer. |
| 439 | inline int64_t minIntN(int64_t N) { |
| 440 | assert(N > 0 && N <= 64 && "integer width out of range")((void)0); |
| 441 | |
| 442 | return UINT64_C(1)1ULL + ~(UINT64_C(1)1ULL << (N - 1)); |
| 443 | } |
| 444 | |
| 445 | /// Gets the maximum value for a N-bit signed integer. |
| 446 | inline int64_t maxIntN(int64_t N) { |
| 447 | assert(N > 0 && N <= 64 && "integer width out of range")((void)0); |
| 448 | |
| 449 | // This relies on two's complement wraparound when N == 64, so we convert to |
| 450 | // int64_t only at the very end to avoid UB. |
| 451 | return (UINT64_C(1)1ULL << (N - 1)) - 1; |
| 452 | } |
| 453 | |
| 454 | /// Checks if an unsigned integer fits into the given (dynamic) bit width. |
| 455 | inline bool isUIntN(unsigned N, uint64_t x) { |
| 456 | return N >= 64 || x <= maxUIntN(N); |
| 457 | } |
| 458 | |
| 459 | /// Checks if an signed integer fits into the given (dynamic) bit width. |
| 460 | inline bool isIntN(unsigned N, int64_t x) { |
| 461 | return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N)); |
| 462 | } |
| 463 | |
| 464 | /// Return true if the argument is a non-empty sequence of ones starting at the |
| 465 | /// least significant bit with the remainder zero (32 bit version). |
| 466 | /// Ex. isMask_32(0x0000FFFFU) == true. |
| 467 | constexpr inline bool isMask_32(uint32_t Value) { |
| 468 | return Value && ((Value + 1) & Value) == 0; |
| 469 | } |
| 470 | |
| 471 | /// Return true if the argument is a non-empty sequence of ones starting at the |
| 472 | /// least significant bit with the remainder zero (64 bit version). |
| 473 | constexpr inline bool isMask_64(uint64_t Value) { |
| 474 | return Value && ((Value + 1) & Value) == 0; |
| 475 | } |
| 476 | |
| 477 | /// Return true if the argument contains a non-empty sequence of ones with the |
| 478 | /// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true. |
| 479 | constexpr inline bool isShiftedMask_32(uint32_t Value) { |
| 480 | return Value && isMask_32((Value - 1) | Value); |
| 481 | } |
| 482 | |
| 483 | /// Return true if the argument contains a non-empty sequence of ones with the |
| 484 | /// remainder zero (64 bit version.) |
| 485 | constexpr inline bool isShiftedMask_64(uint64_t Value) { |
| 486 | return Value && isMask_64((Value - 1) | Value); |
| 487 | } |
| 488 | |
| 489 | /// Return true if the argument is a power of two > 0. |
| 490 | /// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.) |
| 491 | constexpr inline bool isPowerOf2_32(uint32_t Value) { |
| 492 | return Value && !(Value & (Value - 1)); |
| 493 | } |
| 494 | |
| 495 | /// Return true if the argument is a power of two > 0 (64 bit edition.) |
| 496 | constexpr inline bool isPowerOf2_64(uint64_t Value) { |
| 497 | return Value && !(Value & (Value - 1)); |
| 498 | } |
| 499 | |
| 500 | /// Count the number of ones from the most significant bit to the first |
| 501 | /// zero bit. |
| 502 | /// |
| 503 | /// Ex. countLeadingOnes(0xFF0FFF00) == 8. |
| 504 | /// Only unsigned integral types are allowed. |
| 505 | /// |
| 506 | /// \param ZB the behavior on an input of all ones. Only ZB_Width and |
| 507 | /// ZB_Undefined are valid arguments. |
| 508 | template <typename T> |
| 509 | unsigned countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) { |
| 510 | static_assert(std::numeric_limits<T>::is_integer && |
| 511 | !std::numeric_limits<T>::is_signed, |
| 512 | "Only unsigned integral types are allowed."); |
| 513 | return countLeadingZeros<T>(~Value, ZB); |
| 514 | } |
| 515 | |
| 516 | /// Count the number of ones from the least significant bit to the first |
| 517 | /// zero bit. |
| 518 | /// |
| 519 | /// Ex. countTrailingOnes(0x00FF00FF) == 8. |
| 520 | /// Only unsigned integral types are allowed. |
| 521 | /// |
| 522 | /// \param ZB the behavior on an input of all ones. Only ZB_Width and |
| 523 | /// ZB_Undefined are valid arguments. |
| 524 | template <typename T> |
| 525 | unsigned countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) { |
| 526 | static_assert(std::numeric_limits<T>::is_integer && |
| 527 | !std::numeric_limits<T>::is_signed, |
| 528 | "Only unsigned integral types are allowed."); |
| 529 | return countTrailingZeros<T>(~Value, ZB); |
| 530 | } |
| 531 | |
| 532 | namespace detail { |
| 533 | template <typename T, std::size_t SizeOfT> struct PopulationCounter { |
| 534 | static unsigned count(T Value) { |
| 535 | // Generic version, forward to 32 bits. |
| 536 | static_assert(SizeOfT <= 4, "Not implemented!"); |
| 537 | #if defined(__GNUC__4) |
| 538 | return __builtin_popcount(Value); |
| 539 | #else |
| 540 | uint32_t v = Value; |
| 541 | v = v - ((v >> 1) & 0x55555555); |
| 542 | v = (v & 0x33333333) + ((v >> 2) & 0x33333333); |
| 543 | return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; |
| 544 | #endif |
| 545 | } |
| 546 | }; |
| 547 | |
| 548 | template <typename T> struct PopulationCounter<T, 8> { |
| 549 | static unsigned count(T Value) { |
| 550 | #if defined(__GNUC__4) |
| 551 | return __builtin_popcountll(Value); |
| 552 | #else |
| 553 | uint64_t v = Value; |
| 554 | v = v - ((v >> 1) & 0x5555555555555555ULL); |
| 555 | v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL); |
| 556 | v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL; |
| 557 | return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56); |
| 558 | #endif |
| 559 | } |
| 560 | }; |
| 561 | } // namespace detail |
| 562 | |
| 563 | /// Count the number of set bits in a value. |
| 564 | /// Ex. countPopulation(0xF000F000) = 8 |
| 565 | /// Returns 0 if the word is zero. |
| 566 | template <typename T> |
| 567 | inline unsigned countPopulation(T Value) { |
| 568 | static_assert(std::numeric_limits<T>::is_integer && |
| 569 | !std::numeric_limits<T>::is_signed, |
| 570 | "Only unsigned integral types are allowed."); |
| 571 | return detail::PopulationCounter<T, sizeof(T)>::count(Value); |
| 572 | } |
| 573 | |
| 574 | /// Compile time Log2. |
| 575 | /// Valid only for positive powers of two. |
| 576 | template <size_t kValue> constexpr inline size_t CTLog2() { |
| 577 | static_assert(kValue > 0 && llvm::isPowerOf2_64(kValue), |
| 578 | "Value is not a valid power of 2"); |
| 579 | return 1 + CTLog2<kValue / 2>(); |
| 580 | } |
| 581 | |
| 582 | template <> constexpr inline size_t CTLog2<1>() { return 0; } |
| 583 | |
| 584 | /// Return the log base 2 of the specified value. |
| 585 | inline double Log2(double Value) { |
| 586 | #if defined(__ANDROID_API__) && __ANDROID_API__ < 18 |
| 587 | return __builtin_log(Value) / __builtin_log(2.0); |
| 588 | #else |
| 589 | return log2(Value); |
| 590 | #endif |
| 591 | } |
| 592 | |
| 593 | /// Return the floor log base 2 of the specified value, -1 if the value is zero. |
| 594 | /// (32 bit edition.) |
| 595 | /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2 |
| 596 | inline unsigned Log2_32(uint32_t Value) { |
| 597 | return 31 - countLeadingZeros(Value); |
| 598 | } |
| 599 | |
| 600 | /// Return the floor log base 2 of the specified value, -1 if the value is zero. |
| 601 | /// (64 bit edition.) |
| 602 | inline unsigned Log2_64(uint64_t Value) { |
| 603 | return 63 - countLeadingZeros(Value); |
| 604 | } |
| 605 | |
| 606 | /// Return the ceil log base 2 of the specified value, 32 if the value is zero. |
| 607 | /// (32 bit edition). |
| 608 | /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3 |
| 609 | inline unsigned Log2_32_Ceil(uint32_t Value) { |
| 610 | return 32 - countLeadingZeros(Value - 1); |
| 611 | } |
| 612 | |
| 613 | /// Return the ceil log base 2 of the specified value, 64 if the value is zero. |
| 614 | /// (64 bit edition.) |
| 615 | inline unsigned Log2_64_Ceil(uint64_t Value) { |
| 616 | return 64 - countLeadingZeros(Value - 1); |
| 617 | } |
| 618 | |
| 619 | /// Return the greatest common divisor of the values using Euclid's algorithm. |
| 620 | template <typename T> |
| 621 | inline T greatestCommonDivisor(T A, T B) { |
| 622 | while (B) { |
| 623 | T Tmp = B; |
| 624 | B = A % B; |
| 625 | A = Tmp; |
| 626 | } |
| 627 | return A; |
| 628 | } |
| 629 | |
| 630 | inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) { |
| 631 | return greatestCommonDivisor<uint64_t>(A, B); |
| 632 | } |
| 633 | |
| 634 | /// This function takes a 64-bit integer and returns the bit equivalent double. |
| 635 | inline double BitsToDouble(uint64_t Bits) { |
| 636 | double D; |
| 637 | static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes"); |
| 638 | memcpy(&D, &Bits, sizeof(Bits)); |
| 639 | return D; |
| 640 | } |
| 641 | |
| 642 | /// This function takes a 32-bit integer and returns the bit equivalent float. |
| 643 | inline float BitsToFloat(uint32_t Bits) { |
| 644 | float F; |
| 645 | static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes"); |
| 646 | memcpy(&F, &Bits, sizeof(Bits)); |
| 647 | return F; |
| 648 | } |
| 649 | |
| 650 | /// This function takes a double and returns the bit equivalent 64-bit integer. |
| 651 | /// Note that copying doubles around changes the bits of NaNs on some hosts, |
| 652 | /// notably x86, so this routine cannot be used if these bits are needed. |
| 653 | inline uint64_t DoubleToBits(double Double) { |
| 654 | uint64_t Bits; |
| 655 | static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes"); |
| 656 | memcpy(&Bits, &Double, sizeof(Double)); |
| 657 | return Bits; |
| 658 | } |
| 659 | |
| 660 | /// This function takes a float and returns the bit equivalent 32-bit integer. |
| 661 | /// Note that copying floats around changes the bits of NaNs on some hosts, |
| 662 | /// notably x86, so this routine cannot be used if these bits are needed. |
| 663 | inline uint32_t FloatToBits(float Float) { |
| 664 | uint32_t Bits; |
| 665 | static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes"); |
| 666 | memcpy(&Bits, &Float, sizeof(Float)); |
| 667 | return Bits; |
| 668 | } |
| 669 | |
| 670 | /// A and B are either alignments or offsets. Return the minimum alignment that |
| 671 | /// may be assumed after adding the two together. |
| 672 | constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) { |
| 673 | // The largest power of 2 that divides both A and B. |
| 674 | // |
| 675 | // Replace "-Value" by "1+~Value" in the following commented code to avoid |
| 676 | // MSVC warning C4146 |
| 677 | // return (A | B) & -(A | B); |
| 678 | return (A | B) & (1 + ~(A | B)); |
| 679 | } |
| 680 | |
| 681 | /// Returns the next power of two (in 64-bits) that is strictly greater than A. |
| 682 | /// Returns zero on overflow. |
| 683 | inline uint64_t NextPowerOf2(uint64_t A) { |
| 684 | A |= (A >> 1); |
| 685 | A |= (A >> 2); |
| 686 | A |= (A >> 4); |
| 687 | A |= (A >> 8); |
| 688 | A |= (A >> 16); |
| 689 | A |= (A >> 32); |
| 690 | return A + 1; |
| 691 | } |
| 692 | |
| 693 | /// Returns the power of two which is less than or equal to the given value. |
| 694 | /// Essentially, it is a floor operation across the domain of powers of two. |
| 695 | inline uint64_t PowerOf2Floor(uint64_t A) { |
| 696 | if (!A) return 0; |
| 697 | return 1ull << (63 - countLeadingZeros(A, ZB_Undefined)); |
| 698 | } |
| 699 | |
| 700 | /// Returns the power of two which is greater than or equal to the given value. |
| 701 | /// Essentially, it is a ceil operation across the domain of powers of two. |
| 702 | inline uint64_t PowerOf2Ceil(uint64_t A) { |
| 703 | if (!A) |
| 704 | return 0; |
| 705 | return NextPowerOf2(A - 1); |
| 706 | } |
| 707 | |
| 708 | /// Returns the next integer (mod 2**64) that is greater than or equal to |
| 709 | /// \p Value and is a multiple of \p Align. \p Align must be non-zero. |
| 710 | /// |
| 711 | /// If non-zero \p Skew is specified, the return value will be a minimal |
| 712 | /// integer that is greater than or equal to \p Value and equal to |
| 713 | /// \p Align * N + \p Skew for some integer N. If \p Skew is larger than |
| 714 | /// \p Align, its value is adjusted to '\p Skew mod \p Align'. |
| 715 | /// |
| 716 | /// Examples: |
| 717 | /// \code |
| 718 | /// alignTo(5, 8) = 8 |
| 719 | /// alignTo(17, 8) = 24 |
| 720 | /// alignTo(~0LL, 8) = 0 |
| 721 | /// alignTo(321, 255) = 510 |
| 722 | /// |
| 723 | /// alignTo(5, 8, 7) = 7 |
| 724 | /// alignTo(17, 8, 1) = 17 |
| 725 | /// alignTo(~0LL, 8, 3) = 3 |
| 726 | /// alignTo(321, 255, 42) = 552 |
| 727 | /// \endcode |
| 728 | inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) { |
| 729 | assert(Align != 0u && "Align can't be 0.")((void)0); |
| 730 | Skew %= Align; |
| 731 | return (Value + Align - 1 - Skew) / Align * Align + Skew; |
| 732 | } |
| 733 | |
| 734 | /// Returns the next integer (mod 2**64) that is greater than or equal to |
| 735 | /// \p Value and is a multiple of \c Align. \c Align must be non-zero. |
| 736 | template <uint64_t Align> constexpr inline uint64_t alignTo(uint64_t Value) { |
| 737 | static_assert(Align != 0u, "Align must be non-zero"); |
| 738 | return (Value + Align - 1) / Align * Align; |
| 739 | } |
| 740 | |
| 741 | /// Returns the integer ceil(Numerator / Denominator). |
| 742 | inline uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) { |
| 743 | return alignTo(Numerator, Denominator) / Denominator; |
| 744 | } |
| 745 | |
| 746 | /// Returns the integer nearest(Numerator / Denominator). |
| 747 | inline uint64_t divideNearest(uint64_t Numerator, uint64_t Denominator) { |
| 748 | return (Numerator + (Denominator / 2)) / Denominator; |
| 749 | } |
| 750 | |
| 751 | /// Returns the largest uint64_t less than or equal to \p Value and is |
| 752 | /// \p Skew mod \p Align. \p Align must be non-zero |
| 753 | inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) { |
| 754 | assert(Align != 0u && "Align can't be 0.")((void)0); |
| 755 | Skew %= Align; |
| 756 | return (Value - Skew) / Align * Align + Skew; |
| 757 | } |
| 758 | |
| 759 | /// Sign-extend the number in the bottom B bits of X to a 32-bit integer. |
| 760 | /// Requires 0 < B <= 32. |
| 761 | template <unsigned B> constexpr inline int32_t SignExtend32(uint32_t X) { |
| 762 | static_assert(B > 0, "Bit width can't be 0."); |
| 763 | static_assert(B <= 32, "Bit width out of range."); |
| 764 | return int32_t(X << (32 - B)) >> (32 - B); |
| 765 | } |
| 766 | |
| 767 | /// Sign-extend the number in the bottom B bits of X to a 32-bit integer. |
| 768 | /// Requires 0 < B <= 32. |
| 769 | inline int32_t SignExtend32(uint32_t X, unsigned B) { |
| 770 | assert(B > 0 && "Bit width can't be 0.")((void)0); |
| 771 | assert(B <= 32 && "Bit width out of range.")((void)0); |
| 772 | return int32_t(X << (32 - B)) >> (32 - B); |
| 773 | } |
| 774 | |
| 775 | /// Sign-extend the number in the bottom B bits of X to a 64-bit integer. |
| 776 | /// Requires 0 < B <= 64. |
| 777 | template <unsigned B> constexpr inline int64_t SignExtend64(uint64_t x) { |
| 778 | static_assert(B > 0, "Bit width can't be 0."); |
| 779 | static_assert(B <= 64, "Bit width out of range."); |
| 780 | return int64_t(x << (64 - B)) >> (64 - B); |
| 781 | } |
| 782 | |
| 783 | /// Sign-extend the number in the bottom B bits of X to a 64-bit integer. |
| 784 | /// Requires 0 < B <= 64. |
| 785 | inline int64_t SignExtend64(uint64_t X, unsigned B) { |
| 786 | assert(B > 0 && "Bit width can't be 0.")((void)0); |
| 787 | assert(B <= 64 && "Bit width out of range.")((void)0); |
| 788 | return int64_t(X << (64 - B)) >> (64 - B); |
| 789 | } |
| 790 | |
| 791 | /// Subtract two unsigned integers, X and Y, of type T and return the absolute |
| 792 | /// value of the result. |
| 793 | template <typename T> |
| 794 | std::enable_if_t<std::is_unsigned<T>::value, T> AbsoluteDifference(T X, T Y) { |
| 795 | return X > Y ? (X - Y) : (Y - X); |
| 796 | } |
| 797 | |
| 798 | /// Add two unsigned integers, X and Y, of type T. Clamp the result to the |
| 799 | /// maximum representable value of T on overflow. ResultOverflowed indicates if |
| 800 | /// the result is larger than the maximum representable value of type T. |
| 801 | template <typename T> |
| 802 | std::enable_if_t<std::is_unsigned<T>::value, T> |
| 803 | SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) { |
| 804 | bool Dummy; |
| 805 | bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; |
| 806 | // Hacker's Delight, p. 29 |
| 807 | T Z = X + Y; |
| 808 | Overflowed = (Z < X || Z < Y); |
| 809 | if (Overflowed) |
| 810 | return std::numeric_limits<T>::max(); |
| 811 | else |
| 812 | return Z; |
| 813 | } |
| 814 | |
| 815 | /// Multiply two unsigned integers, X and Y, of type T. Clamp the result to the |
| 816 | /// maximum representable value of T on overflow. ResultOverflowed indicates if |
| 817 | /// the result is larger than the maximum representable value of type T. |
| 818 | template <typename T> |
| 819 | std::enable_if_t<std::is_unsigned<T>::value, T> |
| 820 | SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) { |
| 821 | bool Dummy; |
| 822 | bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; |
| 823 | |
| 824 | // Hacker's Delight, p. 30 has a different algorithm, but we don't use that |
| 825 | // because it fails for uint16_t (where multiplication can have undefined |
| 826 | // behavior due to promotion to int), and requires a division in addition |
| 827 | // to the multiplication. |
| 828 | |
| 829 | Overflowed = false; |
| 830 | |
| 831 | // Log2(Z) would be either Log2Z or Log2Z + 1. |
| 832 | // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z |
| 833 | // will necessarily be less than Log2Max as desired. |
| 834 | int Log2Z = Log2_64(X) + Log2_64(Y); |
| 835 | const T Max = std::numeric_limits<T>::max(); |
| 836 | int Log2Max = Log2_64(Max); |
| 837 | if (Log2Z < Log2Max) { |
| 838 | return X * Y; |
| 839 | } |
| 840 | if (Log2Z > Log2Max) { |
| 841 | Overflowed = true; |
| 842 | return Max; |
| 843 | } |
| 844 | |
| 845 | // We're going to use the top bit, and maybe overflow one |
| 846 | // bit past it. Multiply all but the bottom bit then add |
| 847 | // that on at the end. |
| 848 | T Z = (X >> 1) * Y; |
| 849 | if (Z & ~(Max >> 1)) { |
| 850 | Overflowed = true; |
| 851 | return Max; |
| 852 | } |
| 853 | Z <<= 1; |
| 854 | if (X & 1) |
| 855 | return SaturatingAdd(Z, Y, ResultOverflowed); |
| 856 | |
| 857 | return Z; |
| 858 | } |
| 859 | |
| 860 | /// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to |
| 861 | /// the product. Clamp the result to the maximum representable value of T on |
| 862 | /// overflow. ResultOverflowed indicates if the result is larger than the |
| 863 | /// maximum representable value of type T. |
| 864 | template <typename T> |
| 865 | std::enable_if_t<std::is_unsigned<T>::value, T> |
| 866 | SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) { |
| 867 | bool Dummy; |
| 868 | bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; |
| 869 | |
| 870 | T Product = SaturatingMultiply(X, Y, &Overflowed); |
| 871 | if (Overflowed) |
| 872 | return Product; |
| 873 | |
| 874 | return SaturatingAdd(A, Product, &Overflowed); |
| 875 | } |
| 876 | |
| 877 | /// Use this rather than HUGE_VALF; the latter causes warnings on MSVC. |
| 878 | extern const float huge_valf; |
| 879 | |
| 880 | |
| 881 | /// Add two signed integers, computing the two's complement truncated result, |
| 882 | /// returning true if overflow occured. |
| 883 | template <typename T> |
| 884 | std::enable_if_t<std::is_signed<T>::value, T> AddOverflow(T X, T Y, T &Result) { |
| 885 | #if __has_builtin(__builtin_add_overflow)1 |
| 886 | return __builtin_add_overflow(X, Y, &Result); |
| 887 | #else |
| 888 | // Perform the unsigned addition. |
| 889 | using U = std::make_unsigned_t<T>; |
| 890 | const U UX = static_cast<U>(X); |
| 891 | const U UY = static_cast<U>(Y); |
| 892 | const U UResult = UX + UY; |
| 893 | |
| 894 | // Convert to signed. |
| 895 | Result = static_cast<T>(UResult); |
| 896 | |
| 897 | // Adding two positive numbers should result in a positive number. |
| 898 | if (X > 0 && Y > 0) |
| 899 | return Result <= 0; |
| 900 | // Adding two negatives should result in a negative number. |
| 901 | if (X < 0 && Y < 0) |
| 902 | return Result >= 0; |
| 903 | return false; |
| 904 | #endif |
| 905 | } |
| 906 | |
| 907 | /// Subtract two signed integers, computing the two's complement truncated |
| 908 | /// result, returning true if an overflow ocurred. |
| 909 | template <typename T> |
| 910 | std::enable_if_t<std::is_signed<T>::value, T> SubOverflow(T X, T Y, T &Result) { |
| 911 | #if __has_builtin(__builtin_sub_overflow)1 |
| 912 | return __builtin_sub_overflow(X, Y, &Result); |
| 913 | #else |
| 914 | // Perform the unsigned addition. |
| 915 | using U = std::make_unsigned_t<T>; |
| 916 | const U UX = static_cast<U>(X); |
| 917 | const U UY = static_cast<U>(Y); |
| 918 | const U UResult = UX - UY; |
| 919 | |
| 920 | // Convert to signed. |
| 921 | Result = static_cast<T>(UResult); |
| 922 | |
| 923 | // Subtracting a positive number from a negative results in a negative number. |
| 924 | if (X <= 0 && Y > 0) |
| 925 | return Result >= 0; |
| 926 | // Subtracting a negative number from a positive results in a positive number. |
| 927 | if (X >= 0 && Y < 0) |
| 928 | return Result <= 0; |
| 929 | return false; |
| 930 | #endif |
| 931 | } |
| 932 | |
| 933 | /// Multiply two signed integers, computing the two's complement truncated |
| 934 | /// result, returning true if an overflow ocurred. |
| 935 | template <typename T> |
| 936 | std::enable_if_t<std::is_signed<T>::value, T> MulOverflow(T X, T Y, T &Result) { |
| 937 | // Perform the unsigned multiplication on absolute values. |
| 938 | using U = std::make_unsigned_t<T>; |
| 939 | const U UX = X < 0 ? (0 - static_cast<U>(X)) : static_cast<U>(X); |
| 940 | const U UY = Y < 0 ? (0 - static_cast<U>(Y)) : static_cast<U>(Y); |
| 941 | const U UResult = UX * UY; |
| 942 | |
| 943 | // Convert to signed. |
| 944 | const bool IsNegative = (X < 0) ^ (Y < 0); |
| 945 | Result = IsNegative ? (0 - UResult) : UResult; |
| 946 | |
| 947 | // If any of the args was 0, result is 0 and no overflow occurs. |
| 948 | if (UX == 0 || UY == 0) |
| 949 | return false; |
| 950 | |
| 951 | // UX and UY are in [1, 2^n], where n is the number of digits. |
| 952 | // Check how the max allowed absolute value (2^n for negative, 2^(n-1) for |
| 953 | // positive) divided by an argument compares to the other. |
| 954 | if (IsNegative) |
| 955 | return UX > (static_cast<U>(std::numeric_limits<T>::max()) + U(1)) / UY; |
| 956 | else |
| 957 | return UX > (static_cast<U>(std::numeric_limits<T>::max())) / UY; |
| 958 | } |
| 959 | |
| 960 | } // End llvm namespace |
| 961 | |
| 962 | #endif |