| File: | src/lib/libcrypto/bn/bn_gcd.c |
| Warning: | line 595, column 7 Although the value stored to 'T' is used in the enclosing expression, the value is never actually read from 'T' |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* $OpenBSD: bn_gcd.c,v 1.16 2021/12/26 15:16:50 tb Exp $ */ |
| 2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| 3 | * All rights reserved. |
| 4 | * |
| 5 | * This package is an SSL implementation written |
| 6 | * by Eric Young (eay@cryptsoft.com). |
| 7 | * The implementation was written so as to conform with Netscapes SSL. |
| 8 | * |
| 9 | * This library is free for commercial and non-commercial use as long as |
| 10 | * the following conditions are aheared to. The following conditions |
| 11 | * apply to all code found in this distribution, be it the RC4, RSA, |
| 12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| 13 | * included with this distribution is covered by the same copyright terms |
| 14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| 15 | * |
| 16 | * Copyright remains Eric Young's, and as such any Copyright notices in |
| 17 | * the code are not to be removed. |
| 18 | * If this package is used in a product, Eric Young should be given attribution |
| 19 | * as the author of the parts of the library used. |
| 20 | * This can be in the form of a textual message at program startup or |
| 21 | * in documentation (online or textual) provided with the package. |
| 22 | * |
| 23 | * Redistribution and use in source and binary forms, with or without |
| 24 | * modification, are permitted provided that the following conditions |
| 25 | * are met: |
| 26 | * 1. Redistributions of source code must retain the copyright |
| 27 | * notice, this list of conditions and the following disclaimer. |
| 28 | * 2. Redistributions in binary form must reproduce the above copyright |
| 29 | * notice, this list of conditions and the following disclaimer in the |
| 30 | * documentation and/or other materials provided with the distribution. |
| 31 | * 3. All advertising materials mentioning features or use of this software |
| 32 | * must display the following acknowledgement: |
| 33 | * "This product includes cryptographic software written by |
| 34 | * Eric Young (eay@cryptsoft.com)" |
| 35 | * The word 'cryptographic' can be left out if the rouines from the library |
| 36 | * being used are not cryptographic related :-). |
| 37 | * 4. If you include any Windows specific code (or a derivative thereof) from |
| 38 | * the apps directory (application code) you must include an acknowledgement: |
| 39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| 40 | * |
| 41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| 42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| 45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 51 | * SUCH DAMAGE. |
| 52 | * |
| 53 | * The licence and distribution terms for any publically available version or |
| 54 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
| 55 | * copied and put under another distribution licence |
| 56 | * [including the GNU Public Licence.] |
| 57 | */ |
| 58 | /* ==================================================================== |
| 59 | * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved. |
| 60 | * |
| 61 | * Redistribution and use in source and binary forms, with or without |
| 62 | * modification, are permitted provided that the following conditions |
| 63 | * are met: |
| 64 | * |
| 65 | * 1. Redistributions of source code must retain the above copyright |
| 66 | * notice, this list of conditions and the following disclaimer. |
| 67 | * |
| 68 | * 2. Redistributions in binary form must reproduce the above copyright |
| 69 | * notice, this list of conditions and the following disclaimer in |
| 70 | * the documentation and/or other materials provided with the |
| 71 | * distribution. |
| 72 | * |
| 73 | * 3. All advertising materials mentioning features or use of this |
| 74 | * software must display the following acknowledgment: |
| 75 | * "This product includes software developed by the OpenSSL Project |
| 76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| 77 | * |
| 78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| 79 | * endorse or promote products derived from this software without |
| 80 | * prior written permission. For written permission, please contact |
| 81 | * openssl-core@openssl.org. |
| 82 | * |
| 83 | * 5. Products derived from this software may not be called "OpenSSL" |
| 84 | * nor may "OpenSSL" appear in their names without prior written |
| 85 | * permission of the OpenSSL Project. |
| 86 | * |
| 87 | * 6. Redistributions of any form whatsoever must retain the following |
| 88 | * acknowledgment: |
| 89 | * "This product includes software developed by the OpenSSL Project |
| 90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| 91 | * |
| 92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| 93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| 96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| 98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| 101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| 103 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
| 104 | * ==================================================================== |
| 105 | * |
| 106 | * This product includes cryptographic software written by Eric Young |
| 107 | * (eay@cryptsoft.com). This product includes software written by Tim |
| 108 | * Hudson (tjh@cryptsoft.com). |
| 109 | * |
| 110 | */ |
| 111 | |
| 112 | #include <openssl/err.h> |
| 113 | |
| 114 | #include "bn_lcl.h" |
| 115 | |
| 116 | static BIGNUM *euclid(BIGNUM *a, BIGNUM *b); |
| 117 | static BIGNUM *BN_gcd_no_branch(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, |
| 118 | BN_CTX *ctx); |
| 119 | |
| 120 | int |
| 121 | BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx) |
| 122 | { |
| 123 | BIGNUM *a, *b, *t; |
| 124 | int ret = 0; |
| 125 | |
| 126 | bn_check_top(in_a); |
| 127 | bn_check_top(in_b); |
| 128 | |
| 129 | BN_CTX_start(ctx); |
| 130 | if ((a = BN_CTX_get(ctx)) == NULL((void *)0)) |
| 131 | goto err; |
| 132 | if ((b = BN_CTX_get(ctx)) == NULL((void *)0)) |
| 133 | goto err; |
| 134 | |
| 135 | if (BN_copy(a, in_a) == NULL((void *)0)) |
| 136 | goto err; |
| 137 | if (BN_copy(b, in_b) == NULL((void *)0)) |
| 138 | goto err; |
| 139 | a->neg = 0; |
| 140 | b->neg = 0; |
| 141 | |
| 142 | if (BN_cmp(a, b) < 0) { |
| 143 | t = a; |
| 144 | a = b; |
| 145 | b = t; |
| 146 | } |
| 147 | t = euclid(a, b); |
| 148 | if (t == NULL((void *)0)) |
| 149 | goto err; |
| 150 | |
| 151 | if (BN_copy(r, t) == NULL((void *)0)) |
| 152 | goto err; |
| 153 | ret = 1; |
| 154 | |
| 155 | err: |
| 156 | BN_CTX_end(ctx); |
| 157 | bn_check_top(r); |
| 158 | return (ret); |
| 159 | } |
| 160 | |
| 161 | int |
| 162 | BN_gcd_ct(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx) |
| 163 | { |
| 164 | if (BN_gcd_no_branch(r, in_a, in_b, ctx) == NULL((void *)0)) |
| 165 | return 0; |
| 166 | return 1; |
| 167 | } |
| 168 | |
| 169 | int |
| 170 | BN_gcd_nonct(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx) |
| 171 | { |
| 172 | return BN_gcd(r, in_a, in_b, ctx); |
| 173 | } |
| 174 | |
| 175 | |
| 176 | static BIGNUM * |
| 177 | euclid(BIGNUM *a, BIGNUM *b) |
| 178 | { |
| 179 | BIGNUM *t; |
| 180 | int shifts = 0; |
| 181 | |
| 182 | bn_check_top(a); |
| 183 | bn_check_top(b); |
| 184 | |
| 185 | /* 0 <= b <= a */ |
| 186 | while (!BN_is_zero(b)) { |
| 187 | /* 0 < b <= a */ |
| 188 | |
| 189 | if (BN_is_odd(a)) { |
| 190 | if (BN_is_odd(b)) { |
| 191 | if (!BN_sub(a, a, b)) |
| 192 | goto err; |
| 193 | if (!BN_rshift1(a, a)) |
| 194 | goto err; |
| 195 | if (BN_cmp(a, b) < 0) { |
| 196 | t = a; |
| 197 | a = b; |
| 198 | b = t; |
| 199 | } |
| 200 | } |
| 201 | else /* a odd - b even */ |
| 202 | { |
| 203 | if (!BN_rshift1(b, b)) |
| 204 | goto err; |
| 205 | if (BN_cmp(a, b) < 0) { |
| 206 | t = a; |
| 207 | a = b; |
| 208 | b = t; |
| 209 | } |
| 210 | } |
| 211 | } |
| 212 | else /* a is even */ |
| 213 | { |
| 214 | if (BN_is_odd(b)) { |
| 215 | if (!BN_rshift1(a, a)) |
| 216 | goto err; |
| 217 | if (BN_cmp(a, b) < 0) { |
| 218 | t = a; |
| 219 | a = b; |
| 220 | b = t; |
| 221 | } |
| 222 | } |
| 223 | else /* a even - b even */ |
| 224 | { |
| 225 | if (!BN_rshift1(a, a)) |
| 226 | goto err; |
| 227 | if (!BN_rshift1(b, b)) |
| 228 | goto err; |
| 229 | shifts++; |
| 230 | } |
| 231 | } |
| 232 | /* 0 <= b <= a */ |
| 233 | } |
| 234 | |
| 235 | if (shifts) { |
| 236 | if (!BN_lshift(a, a, shifts)) |
| 237 | goto err; |
| 238 | } |
| 239 | bn_check_top(a); |
| 240 | return (a); |
| 241 | |
| 242 | err: |
| 243 | return (NULL((void *)0)); |
| 244 | } |
| 245 | |
| 246 | |
| 247 | /* solves ax == 1 (mod n) */ |
| 248 | static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in, const BIGNUM *a, |
| 249 | const BIGNUM *n, BN_CTX *ctx); |
| 250 | |
| 251 | static BIGNUM * |
| 252 | BN_mod_inverse_internal(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx, |
| 253 | int ct) |
| 254 | { |
| 255 | BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL((void *)0); |
| 256 | BIGNUM *ret = NULL((void *)0); |
| 257 | int sign; |
| 258 | |
| 259 | if (ct) |
| 260 | return BN_mod_inverse_no_branch(in, a, n, ctx); |
| 261 | |
| 262 | bn_check_top(a); |
| 263 | bn_check_top(n); |
| 264 | |
| 265 | BN_CTX_start(ctx); |
| 266 | if ((A = BN_CTX_get(ctx)) == NULL((void *)0)) |
| 267 | goto err; |
| 268 | if ((B = BN_CTX_get(ctx)) == NULL((void *)0)) |
| 269 | goto err; |
| 270 | if ((X = BN_CTX_get(ctx)) == NULL((void *)0)) |
| 271 | goto err; |
| 272 | if ((D = BN_CTX_get(ctx)) == NULL((void *)0)) |
| 273 | goto err; |
| 274 | if ((M = BN_CTX_get(ctx)) == NULL((void *)0)) |
| 275 | goto err; |
| 276 | if ((Y = BN_CTX_get(ctx)) == NULL((void *)0)) |
| 277 | goto err; |
| 278 | if ((T = BN_CTX_get(ctx)) == NULL((void *)0)) |
| 279 | goto err; |
| 280 | |
| 281 | if (in == NULL((void *)0)) |
| 282 | R = BN_new(); |
| 283 | else |
| 284 | R = in; |
| 285 | if (R == NULL((void *)0)) |
| 286 | goto err; |
| 287 | |
| 288 | BN_one(X)BN_set_word((X), 1); |
| 289 | BN_zero(Y)(BN_set_word((Y),0)); |
| 290 | if (BN_copy(B, a) == NULL((void *)0)) |
| 291 | goto err; |
| 292 | if (BN_copy(A, n) == NULL((void *)0)) |
| 293 | goto err; |
| 294 | A->neg = 0; |
| 295 | if (B->neg || (BN_ucmp(B, A) >= 0)) { |
| 296 | if (!BN_nnmod(B, B, A, ctx)) |
| 297 | goto err; |
| 298 | } |
| 299 | sign = -1; |
| 300 | /* From B = a mod |n|, A = |n| it follows that |
| 301 | * |
| 302 | * 0 <= B < A, |
| 303 | * -sign*X*a == B (mod |n|), |
| 304 | * sign*Y*a == A (mod |n|). |
| 305 | */ |
| 306 | |
| 307 | if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS128 <= 32 ? 450 : 2048))) { |
| 308 | /* Binary inversion algorithm; requires odd modulus. |
| 309 | * This is faster than the general algorithm if the modulus |
| 310 | * is sufficiently small (about 400 .. 500 bits on 32-bit |
| 311 | * sytems, but much more on 64-bit systems) */ |
| 312 | int shift; |
| 313 | |
| 314 | while (!BN_is_zero(B)) { |
| 315 | /* |
| 316 | * 0 < B < |n|, |
| 317 | * 0 < A <= |n|, |
| 318 | * (1) -sign*X*a == B (mod |n|), |
| 319 | * (2) sign*Y*a == A (mod |n|) |
| 320 | */ |
| 321 | |
| 322 | /* Now divide B by the maximum possible power of two in the integers, |
| 323 | * and divide X by the same value mod |n|. |
| 324 | * When we're done, (1) still holds. */ |
| 325 | shift = 0; |
| 326 | while (!BN_is_bit_set(B, shift)) /* note that 0 < B */ |
| 327 | { |
| 328 | shift++; |
| 329 | |
| 330 | if (BN_is_odd(X)) { |
| 331 | if (!BN_uadd(X, X, n)) |
| 332 | goto err; |
| 333 | } |
| 334 | /* now X is even, so we can easily divide it by two */ |
| 335 | if (!BN_rshift1(X, X)) |
| 336 | goto err; |
| 337 | } |
| 338 | if (shift > 0) { |
| 339 | if (!BN_rshift(B, B, shift)) |
| 340 | goto err; |
| 341 | } |
| 342 | |
| 343 | |
| 344 | /* Same for A and Y. Afterwards, (2) still holds. */ |
| 345 | shift = 0; |
| 346 | while (!BN_is_bit_set(A, shift)) /* note that 0 < A */ |
| 347 | { |
| 348 | shift++; |
| 349 | |
| 350 | if (BN_is_odd(Y)) { |
| 351 | if (!BN_uadd(Y, Y, n)) |
| 352 | goto err; |
| 353 | } |
| 354 | /* now Y is even */ |
| 355 | if (!BN_rshift1(Y, Y)) |
| 356 | goto err; |
| 357 | } |
| 358 | if (shift > 0) { |
| 359 | if (!BN_rshift(A, A, shift)) |
| 360 | goto err; |
| 361 | } |
| 362 | |
| 363 | |
| 364 | /* We still have (1) and (2). |
| 365 | * Both A and B are odd. |
| 366 | * The following computations ensure that |
| 367 | * |
| 368 | * 0 <= B < |n|, |
| 369 | * 0 < A < |n|, |
| 370 | * (1) -sign*X*a == B (mod |n|), |
| 371 | * (2) sign*Y*a == A (mod |n|), |
| 372 | * |
| 373 | * and that either A or B is even in the next iteration. |
| 374 | */ |
| 375 | if (BN_ucmp(B, A) >= 0) { |
| 376 | /* -sign*(X + Y)*a == B - A (mod |n|) */ |
| 377 | if (!BN_uadd(X, X, Y)) |
| 378 | goto err; |
| 379 | /* NB: we could use BN_mod_add_quick(X, X, Y, n), but that |
| 380 | * actually makes the algorithm slower */ |
| 381 | if (!BN_usub(B, B, A)) |
| 382 | goto err; |
| 383 | } else { |
| 384 | /* sign*(X + Y)*a == A - B (mod |n|) */ |
| 385 | if (!BN_uadd(Y, Y, X)) |
| 386 | goto err; |
| 387 | /* as above, BN_mod_add_quick(Y, Y, X, n) would slow things down */ |
| 388 | if (!BN_usub(A, A, B)) |
| 389 | goto err; |
| 390 | } |
| 391 | } |
| 392 | } else { |
| 393 | /* general inversion algorithm */ |
| 394 | |
| 395 | while (!BN_is_zero(B)) { |
| 396 | BIGNUM *tmp; |
| 397 | |
| 398 | /* |
| 399 | * 0 < B < A, |
| 400 | * (*) -sign*X*a == B (mod |n|), |
| 401 | * sign*Y*a == A (mod |n|) |
| 402 | */ |
| 403 | |
| 404 | /* (D, M) := (A/B, A%B) ... */ |
| 405 | if (BN_num_bits(A) == BN_num_bits(B)) { |
| 406 | if (!BN_one(D)BN_set_word((D), 1)) |
| 407 | goto err; |
| 408 | if (!BN_sub(M, A, B)) |
| 409 | goto err; |
| 410 | } else if (BN_num_bits(A) == BN_num_bits(B) + 1) { |
| 411 | /* A/B is 1, 2, or 3 */ |
| 412 | if (!BN_lshift1(T, B)) |
| 413 | goto err; |
| 414 | if (BN_ucmp(A, T) < 0) { |
| 415 | /* A < 2*B, so D=1 */ |
| 416 | if (!BN_one(D)BN_set_word((D), 1)) |
| 417 | goto err; |
| 418 | if (!BN_sub(M, A, B)) |
| 419 | goto err; |
| 420 | } else { |
| 421 | /* A >= 2*B, so D=2 or D=3 */ |
| 422 | if (!BN_sub(M, A, T)) |
| 423 | goto err; |
| 424 | if (!BN_add(D,T,B)) goto err; /* use D (:= 3*B) as temp */ |
| 425 | if (BN_ucmp(A, D) < 0) { |
| 426 | /* A < 3*B, so D=2 */ |
| 427 | if (!BN_set_word(D, 2)) |
| 428 | goto err; |
| 429 | /* M (= A - 2*B) already has the correct value */ |
| 430 | } else { |
| 431 | /* only D=3 remains */ |
| 432 | if (!BN_set_word(D, 3)) |
| 433 | goto err; |
| 434 | /* currently M = A - 2*B, but we need M = A - 3*B */ |
| 435 | if (!BN_sub(M, M, B)) |
| 436 | goto err; |
| 437 | } |
| 438 | } |
| 439 | } else { |
| 440 | if (!BN_div_nonct(D, M, A, B, ctx)) |
| 441 | goto err; |
| 442 | } |
| 443 | |
| 444 | /* Now |
| 445 | * A = D*B + M; |
| 446 | * thus we have |
| 447 | * (**) sign*Y*a == D*B + M (mod |n|). |
| 448 | */ |
| 449 | tmp = A; /* keep the BIGNUM object, the value does not matter */ |
| 450 | |
| 451 | /* (A, B) := (B, A mod B) ... */ |
| 452 | A = B; |
| 453 | B = M; |
| 454 | /* ... so we have 0 <= B < A again */ |
| 455 | |
| 456 | /* Since the former M is now B and the former B is now A, |
| 457 | * (**) translates into |
| 458 | * sign*Y*a == D*A + B (mod |n|), |
| 459 | * i.e. |
| 460 | * sign*Y*a - D*A == B (mod |n|). |
| 461 | * Similarly, (*) translates into |
| 462 | * -sign*X*a == A (mod |n|). |
| 463 | * |
| 464 | * Thus, |
| 465 | * sign*Y*a + D*sign*X*a == B (mod |n|), |
| 466 | * i.e. |
| 467 | * sign*(Y + D*X)*a == B (mod |n|). |
| 468 | * |
| 469 | * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at |
| 470 | * -sign*X*a == B (mod |n|), |
| 471 | * sign*Y*a == A (mod |n|). |
| 472 | * Note that X and Y stay non-negative all the time. |
| 473 | */ |
| 474 | |
| 475 | /* most of the time D is very small, so we can optimize tmp := D*X+Y */ |
| 476 | if (BN_is_one(D)) { |
| 477 | if (!BN_add(tmp, X, Y)) |
| 478 | goto err; |
| 479 | } else { |
| 480 | if (BN_is_word(D, 2)) { |
| 481 | if (!BN_lshift1(tmp, X)) |
| 482 | goto err; |
| 483 | } else if (BN_is_word(D, 4)) { |
| 484 | if (!BN_lshift(tmp, X, 2)) |
| 485 | goto err; |
| 486 | } else if (D->top == 1) { |
| 487 | if (!BN_copy(tmp, X)) |
| 488 | goto err; |
| 489 | if (!BN_mul_word(tmp, D->d[0])) |
| 490 | goto err; |
| 491 | } else { |
| 492 | if (!BN_mul(tmp, D,X, ctx)) |
| 493 | goto err; |
| 494 | } |
| 495 | if (!BN_add(tmp, tmp, Y)) |
| 496 | goto err; |
| 497 | } |
| 498 | |
| 499 | M = Y; /* keep the BIGNUM object, the value does not matter */ |
| 500 | Y = X; |
| 501 | X = tmp; |
| 502 | sign = -sign; |
| 503 | } |
| 504 | } |
| 505 | |
| 506 | /* |
| 507 | * The while loop (Euclid's algorithm) ends when |
| 508 | * A == gcd(a,n); |
| 509 | * we have |
| 510 | * sign*Y*a == A (mod |n|), |
| 511 | * where Y is non-negative. |
| 512 | */ |
| 513 | |
| 514 | if (sign < 0) { |
| 515 | if (!BN_sub(Y, n, Y)) |
| 516 | goto err; |
| 517 | } |
| 518 | /* Now Y*a == A (mod |n|). */ |
| 519 | |
| 520 | if (BN_is_one(A)) { |
| 521 | /* Y*a == 1 (mod |n|) */ |
| 522 | if (!Y->neg && BN_ucmp(Y, n) < 0) { |
| 523 | if (!BN_copy(R, Y)) |
| 524 | goto err; |
| 525 | } else { |
| 526 | if (!BN_nnmod(R, Y,n, ctx)) |
| 527 | goto err; |
| 528 | } |
| 529 | } else { |
| 530 | BNerror(BN_R_NO_INVERSE)ERR_put_error(3,(0xfff),(108),"/usr/src/lib/libcrypto/bn/bn_gcd.c" ,530); |
| 531 | goto err; |
| 532 | } |
| 533 | ret = R; |
| 534 | |
| 535 | err: |
| 536 | if ((ret == NULL((void *)0)) && (in == NULL((void *)0))) |
| 537 | BN_free(R); |
| 538 | BN_CTX_end(ctx); |
| 539 | bn_check_top(ret); |
| 540 | return (ret); |
| 541 | } |
| 542 | |
| 543 | BIGNUM * |
| 544 | BN_mod_inverse(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) |
| 545 | { |
| 546 | int ct = ((BN_get_flags(a, BN_FLG_CONSTTIME0x04) != 0) || |
| 547 | (BN_get_flags(n, BN_FLG_CONSTTIME0x04) != 0)); |
| 548 | return BN_mod_inverse_internal(in, a, n, ctx, ct); |
| 549 | } |
| 550 | |
| 551 | BIGNUM * |
| 552 | BN_mod_inverse_nonct(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) |
| 553 | { |
| 554 | return BN_mod_inverse_internal(in, a, n, ctx, 0); |
| 555 | } |
| 556 | |
| 557 | BIGNUM * |
| 558 | BN_mod_inverse_ct(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) |
| 559 | { |
| 560 | return BN_mod_inverse_internal(in, a, n, ctx, 1); |
| 561 | } |
| 562 | |
| 563 | /* BN_mod_inverse_no_branch is a special version of BN_mod_inverse. |
| 564 | * It does not contain branches that may leak sensitive information. |
| 565 | */ |
| 566 | static BIGNUM * |
| 567 | BN_mod_inverse_no_branch(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, |
| 568 | BN_CTX *ctx) |
| 569 | { |
| 570 | BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL((void *)0); |
| 571 | BIGNUM local_A, local_B; |
| 572 | BIGNUM *pA, *pB; |
| 573 | BIGNUM *ret = NULL((void *)0); |
| 574 | int sign; |
| 575 | |
| 576 | bn_check_top(a); |
| 577 | bn_check_top(n); |
| 578 | |
| 579 | BN_init(&local_A); |
| 580 | BN_init(&local_B); |
| 581 | |
| 582 | BN_CTX_start(ctx); |
| 583 | if ((A = BN_CTX_get(ctx)) == NULL((void *)0)) |
| 584 | goto err; |
| 585 | if ((B = BN_CTX_get(ctx)) == NULL((void *)0)) |
| 586 | goto err; |
| 587 | if ((X = BN_CTX_get(ctx)) == NULL((void *)0)) |
| 588 | goto err; |
| 589 | if ((D = BN_CTX_get(ctx)) == NULL((void *)0)) |
| 590 | goto err; |
| 591 | if ((M = BN_CTX_get(ctx)) == NULL((void *)0)) |
| 592 | goto err; |
| 593 | if ((Y = BN_CTX_get(ctx)) == NULL((void *)0)) |
| 594 | goto err; |
| 595 | if ((T = BN_CTX_get(ctx)) == NULL((void *)0)) |
Although the value stored to 'T' is used in the enclosing expression, the value is never actually read from 'T' | |
| 596 | goto err; |
| 597 | |
| 598 | if (in == NULL((void *)0)) |
| 599 | R = BN_new(); |
| 600 | else |
| 601 | R = in; |
| 602 | if (R == NULL((void *)0)) |
| 603 | goto err; |
| 604 | |
| 605 | BN_one(X)BN_set_word((X), 1); |
| 606 | BN_zero(Y)(BN_set_word((Y),0)); |
| 607 | if (BN_copy(B, a) == NULL((void *)0)) |
| 608 | goto err; |
| 609 | if (BN_copy(A, n) == NULL((void *)0)) |
| 610 | goto err; |
| 611 | A->neg = 0; |
| 612 | |
| 613 | if (B->neg || (BN_ucmp(B, A) >= 0)) { |
| 614 | /* |
| 615 | * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, |
| 616 | * BN_div_no_branch will be called eventually. |
| 617 | */ |
| 618 | pB = &local_B; |
| 619 | /* BN_init() done at the top of the function. */ |
| 620 | BN_with_flags(pB, B, BN_FLG_CONSTTIME0x04); |
| 621 | if (!BN_nnmod(B, pB, A, ctx)) |
| 622 | goto err; |
| 623 | } |
| 624 | sign = -1; |
| 625 | /* From B = a mod |n|, A = |n| it follows that |
| 626 | * |
| 627 | * 0 <= B < A, |
| 628 | * -sign*X*a == B (mod |n|), |
| 629 | * sign*Y*a == A (mod |n|). |
| 630 | */ |
| 631 | |
| 632 | while (!BN_is_zero(B)) { |
| 633 | BIGNUM *tmp; |
| 634 | |
| 635 | /* |
| 636 | * 0 < B < A, |
| 637 | * (*) -sign*X*a == B (mod |n|), |
| 638 | * sign*Y*a == A (mod |n|) |
| 639 | */ |
| 640 | |
| 641 | /* |
| 642 | * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, |
| 643 | * BN_div_no_branch will be called eventually. |
| 644 | */ |
| 645 | pA = &local_A; |
| 646 | /* BN_init() done at the top of the function. */ |
| 647 | BN_with_flags(pA, A, BN_FLG_CONSTTIME0x04); |
| 648 | |
| 649 | /* (D, M) := (A/B, A%B) ... */ |
| 650 | if (!BN_div_ct(D, M, pA, B, ctx)) |
| 651 | goto err; |
| 652 | |
| 653 | /* Now |
| 654 | * A = D*B + M; |
| 655 | * thus we have |
| 656 | * (**) sign*Y*a == D*B + M (mod |n|). |
| 657 | */ |
| 658 | tmp = A; /* keep the BIGNUM object, the value does not matter */ |
| 659 | |
| 660 | /* (A, B) := (B, A mod B) ... */ |
| 661 | A = B; |
| 662 | B = M; |
| 663 | /* ... so we have 0 <= B < A again */ |
| 664 | |
| 665 | /* Since the former M is now B and the former B is now A, |
| 666 | * (**) translates into |
| 667 | * sign*Y*a == D*A + B (mod |n|), |
| 668 | * i.e. |
| 669 | * sign*Y*a - D*A == B (mod |n|). |
| 670 | * Similarly, (*) translates into |
| 671 | * -sign*X*a == A (mod |n|). |
| 672 | * |
| 673 | * Thus, |
| 674 | * sign*Y*a + D*sign*X*a == B (mod |n|), |
| 675 | * i.e. |
| 676 | * sign*(Y + D*X)*a == B (mod |n|). |
| 677 | * |
| 678 | * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at |
| 679 | * -sign*X*a == B (mod |n|), |
| 680 | * sign*Y*a == A (mod |n|). |
| 681 | * Note that X and Y stay non-negative all the time. |
| 682 | */ |
| 683 | |
| 684 | if (!BN_mul(tmp, D, X, ctx)) |
| 685 | goto err; |
| 686 | if (!BN_add(tmp, tmp, Y)) |
| 687 | goto err; |
| 688 | |
| 689 | M = Y; /* keep the BIGNUM object, the value does not matter */ |
| 690 | Y = X; |
| 691 | X = tmp; |
| 692 | sign = -sign; |
| 693 | } |
| 694 | |
| 695 | /* |
| 696 | * The while loop (Euclid's algorithm) ends when |
| 697 | * A == gcd(a,n); |
| 698 | * we have |
| 699 | * sign*Y*a == A (mod |n|), |
| 700 | * where Y is non-negative. |
| 701 | */ |
| 702 | |
| 703 | if (sign < 0) { |
| 704 | if (!BN_sub(Y, n, Y)) |
| 705 | goto err; |
| 706 | } |
| 707 | /* Now Y*a == A (mod |n|). */ |
| 708 | |
| 709 | if (BN_is_one(A)) { |
| 710 | /* Y*a == 1 (mod |n|) */ |
| 711 | if (!Y->neg && BN_ucmp(Y, n) < 0) { |
| 712 | if (!BN_copy(R, Y)) |
| 713 | goto err; |
| 714 | } else { |
| 715 | if (!BN_nnmod(R, Y, n, ctx)) |
| 716 | goto err; |
| 717 | } |
| 718 | } else { |
| 719 | BNerror(BN_R_NO_INVERSE)ERR_put_error(3,(0xfff),(108),"/usr/src/lib/libcrypto/bn/bn_gcd.c" ,719); |
| 720 | goto err; |
| 721 | } |
| 722 | ret = R; |
| 723 | |
| 724 | err: |
| 725 | if ((ret == NULL((void *)0)) && (in == NULL((void *)0))) |
| 726 | BN_free(R); |
| 727 | BN_CTX_end(ctx); |
| 728 | bn_check_top(ret); |
| 729 | return (ret); |
| 730 | } |
| 731 | |
| 732 | /* |
| 733 | * BN_gcd_no_branch is a special version of BN_mod_inverse_no_branch. |
| 734 | * that returns the GCD. |
| 735 | */ |
| 736 | static BIGNUM * |
| 737 | BN_gcd_no_branch(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, |
| 738 | BN_CTX *ctx) |
| 739 | { |
| 740 | BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL((void *)0); |
| 741 | BIGNUM local_A, local_B; |
| 742 | BIGNUM *pA, *pB; |
| 743 | BIGNUM *ret = NULL((void *)0); |
| 744 | int sign; |
| 745 | |
| 746 | if (in == NULL((void *)0)) |
| 747 | goto err; |
| 748 | R = in; |
| 749 | |
| 750 | BN_init(&local_A); |
| 751 | BN_init(&local_B); |
| 752 | |
| 753 | bn_check_top(a); |
| 754 | bn_check_top(n); |
| 755 | |
| 756 | BN_CTX_start(ctx); |
| 757 | if ((A = BN_CTX_get(ctx)) == NULL((void *)0)) |
| 758 | goto err; |
| 759 | if ((B = BN_CTX_get(ctx)) == NULL((void *)0)) |
| 760 | goto err; |
| 761 | if ((X = BN_CTX_get(ctx)) == NULL((void *)0)) |
| 762 | goto err; |
| 763 | if ((D = BN_CTX_get(ctx)) == NULL((void *)0)) |
| 764 | goto err; |
| 765 | if ((M = BN_CTX_get(ctx)) == NULL((void *)0)) |
| 766 | goto err; |
| 767 | if ((Y = BN_CTX_get(ctx)) == NULL((void *)0)) |
| 768 | goto err; |
| 769 | if ((T = BN_CTX_get(ctx)) == NULL((void *)0)) |
| 770 | goto err; |
| 771 | |
| 772 | BN_one(X)BN_set_word((X), 1); |
| 773 | BN_zero(Y)(BN_set_word((Y),0)); |
| 774 | if (BN_copy(B, a) == NULL((void *)0)) |
| 775 | goto err; |
| 776 | if (BN_copy(A, n) == NULL((void *)0)) |
| 777 | goto err; |
| 778 | A->neg = 0; |
| 779 | |
| 780 | if (B->neg || (BN_ucmp(B, A) >= 0)) { |
| 781 | /* |
| 782 | * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, |
| 783 | * BN_div_no_branch will be called eventually. |
| 784 | */ |
| 785 | pB = &local_B; |
| 786 | /* BN_init() done at the top of the function. */ |
| 787 | BN_with_flags(pB, B, BN_FLG_CONSTTIME0x04); |
| 788 | if (!BN_nnmod(B, pB, A, ctx)) |
| 789 | goto err; |
| 790 | } |
| 791 | sign = -1; |
| 792 | /* From B = a mod |n|, A = |n| it follows that |
| 793 | * |
| 794 | * 0 <= B < A, |
| 795 | * -sign*X*a == B (mod |n|), |
| 796 | * sign*Y*a == A (mod |n|). |
| 797 | */ |
| 798 | |
| 799 | while (!BN_is_zero(B)) { |
| 800 | BIGNUM *tmp; |
| 801 | |
| 802 | /* |
| 803 | * 0 < B < A, |
| 804 | * (*) -sign*X*a == B (mod |n|), |
| 805 | * sign*Y*a == A (mod |n|) |
| 806 | */ |
| 807 | |
| 808 | /* |
| 809 | * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, |
| 810 | * BN_div_no_branch will be called eventually. |
| 811 | */ |
| 812 | pA = &local_A; |
| 813 | /* BN_init() done at the top of the function. */ |
| 814 | BN_with_flags(pA, A, BN_FLG_CONSTTIME0x04); |
| 815 | |
| 816 | /* (D, M) := (A/B, A%B) ... */ |
| 817 | if (!BN_div_ct(D, M, pA, B, ctx)) |
| 818 | goto err; |
| 819 | |
| 820 | /* Now |
| 821 | * A = D*B + M; |
| 822 | * thus we have |
| 823 | * (**) sign*Y*a == D*B + M (mod |n|). |
| 824 | */ |
| 825 | tmp = A; /* keep the BIGNUM object, the value does not matter */ |
| 826 | |
| 827 | /* (A, B) := (B, A mod B) ... */ |
| 828 | A = B; |
| 829 | B = M; |
| 830 | /* ... so we have 0 <= B < A again */ |
| 831 | |
| 832 | /* Since the former M is now B and the former B is now A, |
| 833 | * (**) translates into |
| 834 | * sign*Y*a == D*A + B (mod |n|), |
| 835 | * i.e. |
| 836 | * sign*Y*a - D*A == B (mod |n|). |
| 837 | * Similarly, (*) translates into |
| 838 | * -sign*X*a == A (mod |n|). |
| 839 | * |
| 840 | * Thus, |
| 841 | * sign*Y*a + D*sign*X*a == B (mod |n|), |
| 842 | * i.e. |
| 843 | * sign*(Y + D*X)*a == B (mod |n|). |
| 844 | * |
| 845 | * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at |
| 846 | * -sign*X*a == B (mod |n|), |
| 847 | * sign*Y*a == A (mod |n|). |
| 848 | * Note that X and Y stay non-negative all the time. |
| 849 | */ |
| 850 | |
| 851 | if (!BN_mul(tmp, D, X, ctx)) |
| 852 | goto err; |
| 853 | if (!BN_add(tmp, tmp, Y)) |
| 854 | goto err; |
| 855 | |
| 856 | M = Y; /* keep the BIGNUM object, the value does not matter */ |
| 857 | Y = X; |
| 858 | X = tmp; |
| 859 | sign = -sign; |
| 860 | } |
| 861 | |
| 862 | /* |
| 863 | * The while loop (Euclid's algorithm) ends when |
| 864 | * A == gcd(a,n); |
| 865 | */ |
| 866 | |
| 867 | if (!BN_copy(R, A)) |
| 868 | goto err; |
| 869 | ret = R; |
| 870 | err: |
| 871 | if ((ret == NULL((void *)0)) && (in == NULL((void *)0))) |
| 872 | BN_free(R); |
| 873 | BN_CTX_end(ctx); |
| 874 | bn_check_top(ret); |
| 875 | return (ret); |
| 876 | } |