File: | src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Support/APInt.cpp |
Warning: | line 1915, column 3 Use of memory after it is freed |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===-- APInt.cpp - Implement APInt class ---------------------------------===// | ||||||||||||
2 | // | ||||||||||||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||||||||||
4 | // See https://llvm.org/LICENSE.txt for license information. | ||||||||||||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||||||||||
6 | // | ||||||||||||
7 | //===----------------------------------------------------------------------===// | ||||||||||||
8 | // | ||||||||||||
9 | // This file implements a class to represent arbitrary precision integer | ||||||||||||
10 | // constant values and provide a variety of arithmetic operations on them. | ||||||||||||
11 | // | ||||||||||||
12 | //===----------------------------------------------------------------------===// | ||||||||||||
13 | |||||||||||||
14 | #include "llvm/ADT/APInt.h" | ||||||||||||
15 | #include "llvm/ADT/ArrayRef.h" | ||||||||||||
16 | #include "llvm/ADT/FoldingSet.h" | ||||||||||||
17 | #include "llvm/ADT/Hashing.h" | ||||||||||||
18 | #include "llvm/ADT/Optional.h" | ||||||||||||
19 | #include "llvm/ADT/SmallString.h" | ||||||||||||
20 | #include "llvm/ADT/StringRef.h" | ||||||||||||
21 | #include "llvm/ADT/bit.h" | ||||||||||||
22 | #include "llvm/Config/llvm-config.h" | ||||||||||||
23 | #include "llvm/Support/Debug.h" | ||||||||||||
24 | #include "llvm/Support/ErrorHandling.h" | ||||||||||||
25 | #include "llvm/Support/MathExtras.h" | ||||||||||||
26 | #include "llvm/Support/raw_ostream.h" | ||||||||||||
27 | #include <climits> | ||||||||||||
28 | #include <cmath> | ||||||||||||
29 | #include <cstdlib> | ||||||||||||
30 | #include <cstring> | ||||||||||||
31 | using namespace llvm; | ||||||||||||
32 | |||||||||||||
33 | #define DEBUG_TYPE"apint" "apint" | ||||||||||||
34 | |||||||||||||
35 | /// A utility function for allocating memory, checking for allocation failures, | ||||||||||||
36 | /// and ensuring the contents are zeroed. | ||||||||||||
37 | inline static uint64_t* getClearedMemory(unsigned numWords) { | ||||||||||||
38 | uint64_t *result = new uint64_t[numWords]; | ||||||||||||
39 | memset(result, 0, numWords * sizeof(uint64_t)); | ||||||||||||
40 | return result; | ||||||||||||
41 | } | ||||||||||||
42 | |||||||||||||
43 | /// A utility function for allocating memory and checking for allocation | ||||||||||||
44 | /// failure. The content is not zeroed. | ||||||||||||
45 | inline static uint64_t* getMemory(unsigned numWords) { | ||||||||||||
46 | return new uint64_t[numWords]; | ||||||||||||
47 | } | ||||||||||||
48 | |||||||||||||
49 | /// A utility function that converts a character to a digit. | ||||||||||||
50 | inline static unsigned getDigit(char cdigit, uint8_t radix) { | ||||||||||||
51 | unsigned r; | ||||||||||||
52 | |||||||||||||
53 | if (radix == 16 || radix == 36) { | ||||||||||||
54 | r = cdigit - '0'; | ||||||||||||
55 | if (r <= 9) | ||||||||||||
56 | return r; | ||||||||||||
57 | |||||||||||||
58 | r = cdigit - 'A'; | ||||||||||||
59 | if (r <= radix - 11U) | ||||||||||||
60 | return r + 10; | ||||||||||||
61 | |||||||||||||
62 | r = cdigit - 'a'; | ||||||||||||
63 | if (r <= radix - 11U) | ||||||||||||
64 | return r + 10; | ||||||||||||
65 | |||||||||||||
66 | radix = 10; | ||||||||||||
67 | } | ||||||||||||
68 | |||||||||||||
69 | r = cdigit - '0'; | ||||||||||||
70 | if (r < radix) | ||||||||||||
71 | return r; | ||||||||||||
72 | |||||||||||||
73 | return -1U; | ||||||||||||
74 | } | ||||||||||||
75 | |||||||||||||
76 | |||||||||||||
77 | void APInt::initSlowCase(uint64_t val, bool isSigned) { | ||||||||||||
78 | U.pVal = getClearedMemory(getNumWords()); | ||||||||||||
79 | U.pVal[0] = val; | ||||||||||||
80 | if (isSigned && int64_t(val) < 0) | ||||||||||||
81 | for (unsigned i = 1; i < getNumWords(); ++i) | ||||||||||||
82 | U.pVal[i] = WORDTYPE_MAX; | ||||||||||||
83 | clearUnusedBits(); | ||||||||||||
84 | } | ||||||||||||
85 | |||||||||||||
86 | void APInt::initSlowCase(const APInt& that) { | ||||||||||||
87 | U.pVal = getMemory(getNumWords()); | ||||||||||||
88 | memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE); | ||||||||||||
89 | } | ||||||||||||
90 | |||||||||||||
91 | void APInt::initFromArray(ArrayRef<uint64_t> bigVal) { | ||||||||||||
92 | assert(BitWidth && "Bitwidth too small")((void)0); | ||||||||||||
93 | assert(bigVal.data() && "Null pointer detected!")((void)0); | ||||||||||||
94 | if (isSingleWord()) | ||||||||||||
95 | U.VAL = bigVal[0]; | ||||||||||||
96 | else { | ||||||||||||
97 | // Get memory, cleared to 0 | ||||||||||||
98 | U.pVal = getClearedMemory(getNumWords()); | ||||||||||||
99 | // Calculate the number of words to copy | ||||||||||||
100 | unsigned words = std::min<unsigned>(bigVal.size(), getNumWords()); | ||||||||||||
101 | // Copy the words from bigVal to pVal | ||||||||||||
102 | memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE); | ||||||||||||
103 | } | ||||||||||||
104 | // Make sure unused high bits are cleared | ||||||||||||
105 | clearUnusedBits(); | ||||||||||||
106 | } | ||||||||||||
107 | |||||||||||||
108 | APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) | ||||||||||||
109 | : BitWidth(numBits) { | ||||||||||||
110 | initFromArray(bigVal); | ||||||||||||
111 | } | ||||||||||||
112 | |||||||||||||
113 | APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]) | ||||||||||||
114 | : BitWidth(numBits) { | ||||||||||||
115 | initFromArray(makeArrayRef(bigVal, numWords)); | ||||||||||||
116 | } | ||||||||||||
117 | |||||||||||||
118 | APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix) | ||||||||||||
119 | : BitWidth(numbits) { | ||||||||||||
120 | assert(BitWidth && "Bitwidth too small")((void)0); | ||||||||||||
121 | fromString(numbits, Str, radix); | ||||||||||||
122 | } | ||||||||||||
123 | |||||||||||||
124 | void APInt::reallocate(unsigned NewBitWidth) { | ||||||||||||
125 | // If the number of words is the same we can just change the width and stop. | ||||||||||||
126 | if (getNumWords() == getNumWords(NewBitWidth)) { | ||||||||||||
127 | BitWidth = NewBitWidth; | ||||||||||||
128 | return; | ||||||||||||
129 | } | ||||||||||||
130 | |||||||||||||
131 | // If we have an allocation, delete it. | ||||||||||||
132 | if (!isSingleWord()) | ||||||||||||
133 | delete [] U.pVal; | ||||||||||||
134 | |||||||||||||
135 | // Update BitWidth. | ||||||||||||
136 | BitWidth = NewBitWidth; | ||||||||||||
137 | |||||||||||||
138 | // If we are supposed to have an allocation, create it. | ||||||||||||
139 | if (!isSingleWord()) | ||||||||||||
140 | U.pVal = getMemory(getNumWords()); | ||||||||||||
141 | } | ||||||||||||
142 | |||||||||||||
143 | void APInt::AssignSlowCase(const APInt& RHS) { | ||||||||||||
144 | // Don't do anything for X = X | ||||||||||||
145 | if (this == &RHS) | ||||||||||||
146 | return; | ||||||||||||
147 | |||||||||||||
148 | // Adjust the bit width and handle allocations as necessary. | ||||||||||||
149 | reallocate(RHS.getBitWidth()); | ||||||||||||
150 | |||||||||||||
151 | // Copy the data. | ||||||||||||
152 | if (isSingleWord()) | ||||||||||||
153 | U.VAL = RHS.U.VAL; | ||||||||||||
154 | else | ||||||||||||
155 | memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE); | ||||||||||||
156 | } | ||||||||||||
157 | |||||||||||||
158 | /// This method 'profiles' an APInt for use with FoldingSet. | ||||||||||||
159 | void APInt::Profile(FoldingSetNodeID& ID) const { | ||||||||||||
160 | ID.AddInteger(BitWidth); | ||||||||||||
161 | |||||||||||||
162 | if (isSingleWord()) { | ||||||||||||
163 | ID.AddInteger(U.VAL); | ||||||||||||
164 | return; | ||||||||||||
165 | } | ||||||||||||
166 | |||||||||||||
167 | unsigned NumWords = getNumWords(); | ||||||||||||
168 | for (unsigned i = 0; i < NumWords; ++i) | ||||||||||||
169 | ID.AddInteger(U.pVal[i]); | ||||||||||||
170 | } | ||||||||||||
171 | |||||||||||||
172 | /// Prefix increment operator. Increments the APInt by one. | ||||||||||||
173 | APInt& APInt::operator++() { | ||||||||||||
174 | if (isSingleWord()) | ||||||||||||
175 | ++U.VAL; | ||||||||||||
176 | else | ||||||||||||
177 | tcIncrement(U.pVal, getNumWords()); | ||||||||||||
178 | return clearUnusedBits(); | ||||||||||||
179 | } | ||||||||||||
180 | |||||||||||||
181 | /// Prefix decrement operator. Decrements the APInt by one. | ||||||||||||
182 | APInt& APInt::operator--() { | ||||||||||||
183 | if (isSingleWord()) | ||||||||||||
184 | --U.VAL; | ||||||||||||
185 | else | ||||||||||||
186 | tcDecrement(U.pVal, getNumWords()); | ||||||||||||
187 | return clearUnusedBits(); | ||||||||||||
188 | } | ||||||||||||
189 | |||||||||||||
190 | /// Adds the RHS APInt to this APInt. | ||||||||||||
191 | /// @returns this, after addition of RHS. | ||||||||||||
192 | /// Addition assignment operator. | ||||||||||||
193 | APInt& APInt::operator+=(const APInt& RHS) { | ||||||||||||
194 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((void)0); | ||||||||||||
195 | if (isSingleWord()) | ||||||||||||
196 | U.VAL += RHS.U.VAL; | ||||||||||||
197 | else | ||||||||||||
198 | tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords()); | ||||||||||||
199 | return clearUnusedBits(); | ||||||||||||
200 | } | ||||||||||||
201 | |||||||||||||
202 | APInt& APInt::operator+=(uint64_t RHS) { | ||||||||||||
203 | if (isSingleWord()) | ||||||||||||
204 | U.VAL += RHS; | ||||||||||||
205 | else | ||||||||||||
206 | tcAddPart(U.pVal, RHS, getNumWords()); | ||||||||||||
207 | return clearUnusedBits(); | ||||||||||||
208 | } | ||||||||||||
209 | |||||||||||||
210 | /// Subtracts the RHS APInt from this APInt | ||||||||||||
211 | /// @returns this, after subtraction | ||||||||||||
212 | /// Subtraction assignment operator. | ||||||||||||
213 | APInt& APInt::operator-=(const APInt& RHS) { | ||||||||||||
214 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((void)0); | ||||||||||||
215 | if (isSingleWord()) | ||||||||||||
216 | U.VAL -= RHS.U.VAL; | ||||||||||||
217 | else | ||||||||||||
218 | tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords()); | ||||||||||||
219 | return clearUnusedBits(); | ||||||||||||
220 | } | ||||||||||||
221 | |||||||||||||
222 | APInt& APInt::operator-=(uint64_t RHS) { | ||||||||||||
223 | if (isSingleWord()) | ||||||||||||
224 | U.VAL -= RHS; | ||||||||||||
225 | else | ||||||||||||
226 | tcSubtractPart(U.pVal, RHS, getNumWords()); | ||||||||||||
227 | return clearUnusedBits(); | ||||||||||||
228 | } | ||||||||||||
229 | |||||||||||||
230 | APInt APInt::operator*(const APInt& RHS) const { | ||||||||||||
231 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((void)0); | ||||||||||||
232 | if (isSingleWord()) | ||||||||||||
233 | return APInt(BitWidth, U.VAL * RHS.U.VAL); | ||||||||||||
234 | |||||||||||||
235 | APInt Result(getMemory(getNumWords()), getBitWidth()); | ||||||||||||
236 | |||||||||||||
237 | tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords()); | ||||||||||||
238 | |||||||||||||
239 | Result.clearUnusedBits(); | ||||||||||||
240 | return Result; | ||||||||||||
241 | } | ||||||||||||
242 | |||||||||||||
243 | void APInt::AndAssignSlowCase(const APInt& RHS) { | ||||||||||||
244 | tcAnd(U.pVal, RHS.U.pVal, getNumWords()); | ||||||||||||
245 | } | ||||||||||||
246 | |||||||||||||
247 | void APInt::OrAssignSlowCase(const APInt& RHS) { | ||||||||||||
248 | tcOr(U.pVal, RHS.U.pVal, getNumWords()); | ||||||||||||
249 | } | ||||||||||||
250 | |||||||||||||
251 | void APInt::XorAssignSlowCase(const APInt& RHS) { | ||||||||||||
252 | tcXor(U.pVal, RHS.U.pVal, getNumWords()); | ||||||||||||
253 | } | ||||||||||||
254 | |||||||||||||
255 | APInt& APInt::operator*=(const APInt& RHS) { | ||||||||||||
256 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((void)0); | ||||||||||||
257 | *this = *this * RHS; | ||||||||||||
258 | return *this; | ||||||||||||
259 | } | ||||||||||||
260 | |||||||||||||
261 | APInt& APInt::operator*=(uint64_t RHS) { | ||||||||||||
262 | if (isSingleWord()) { | ||||||||||||
263 | U.VAL *= RHS; | ||||||||||||
264 | } else { | ||||||||||||
265 | unsigned NumWords = getNumWords(); | ||||||||||||
266 | tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false); | ||||||||||||
267 | } | ||||||||||||
268 | return clearUnusedBits(); | ||||||||||||
269 | } | ||||||||||||
270 | |||||||||||||
271 | bool APInt::EqualSlowCase(const APInt& RHS) const { | ||||||||||||
272 | return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal); | ||||||||||||
273 | } | ||||||||||||
274 | |||||||||||||
275 | int APInt::compare(const APInt& RHS) const { | ||||||||||||
276 | assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison")((void)0); | ||||||||||||
277 | if (isSingleWord()) | ||||||||||||
278 | return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL; | ||||||||||||
279 | |||||||||||||
280 | return tcCompare(U.pVal, RHS.U.pVal, getNumWords()); | ||||||||||||
281 | } | ||||||||||||
282 | |||||||||||||
283 | int APInt::compareSigned(const APInt& RHS) const { | ||||||||||||
284 | assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison")((void)0); | ||||||||||||
285 | if (isSingleWord()) { | ||||||||||||
286 | int64_t lhsSext = SignExtend64(U.VAL, BitWidth); | ||||||||||||
287 | int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth); | ||||||||||||
288 | return lhsSext < rhsSext ? -1 : lhsSext > rhsSext; | ||||||||||||
289 | } | ||||||||||||
290 | |||||||||||||
291 | bool lhsNeg = isNegative(); | ||||||||||||
292 | bool rhsNeg = RHS.isNegative(); | ||||||||||||
293 | |||||||||||||
294 | // If the sign bits don't match, then (LHS < RHS) if LHS is negative | ||||||||||||
295 | if (lhsNeg != rhsNeg) | ||||||||||||
296 | return lhsNeg ? -1 : 1; | ||||||||||||
297 | |||||||||||||
298 | // Otherwise we can just use an unsigned comparison, because even negative | ||||||||||||
299 | // numbers compare correctly this way if both have the same signed-ness. | ||||||||||||
300 | return tcCompare(U.pVal, RHS.U.pVal, getNumWords()); | ||||||||||||
301 | } | ||||||||||||
302 | |||||||||||||
303 | void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) { | ||||||||||||
304 | unsigned loWord = whichWord(loBit); | ||||||||||||
305 | unsigned hiWord = whichWord(hiBit); | ||||||||||||
306 | |||||||||||||
307 | // Create an initial mask for the low word with zeros below loBit. | ||||||||||||
308 | uint64_t loMask = WORDTYPE_MAX << whichBit(loBit); | ||||||||||||
309 | |||||||||||||
310 | // If hiBit is not aligned, we need a high mask. | ||||||||||||
311 | unsigned hiShiftAmt = whichBit(hiBit); | ||||||||||||
312 | if (hiShiftAmt != 0) { | ||||||||||||
313 | // Create a high mask with zeros above hiBit. | ||||||||||||
314 | uint64_t hiMask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt); | ||||||||||||
315 | // If loWord and hiWord are equal, then we combine the masks. Otherwise, | ||||||||||||
316 | // set the bits in hiWord. | ||||||||||||
317 | if (hiWord == loWord) | ||||||||||||
318 | loMask &= hiMask; | ||||||||||||
319 | else | ||||||||||||
320 | U.pVal[hiWord] |= hiMask; | ||||||||||||
321 | } | ||||||||||||
322 | // Apply the mask to the low word. | ||||||||||||
323 | U.pVal[loWord] |= loMask; | ||||||||||||
324 | |||||||||||||
325 | // Fill any words between loWord and hiWord with all ones. | ||||||||||||
326 | for (unsigned word = loWord + 1; word < hiWord; ++word) | ||||||||||||
327 | U.pVal[word] = WORDTYPE_MAX; | ||||||||||||
328 | } | ||||||||||||
329 | |||||||||||||
330 | /// Toggle every bit to its opposite value. | ||||||||||||
331 | void APInt::flipAllBitsSlowCase() { | ||||||||||||
332 | tcComplement(U.pVal, getNumWords()); | ||||||||||||
333 | clearUnusedBits(); | ||||||||||||
334 | } | ||||||||||||
335 | |||||||||||||
336 | /// Toggle a given bit to its opposite value whose position is given | ||||||||||||
337 | /// as "bitPosition". | ||||||||||||
338 | /// Toggles a given bit to its opposite value. | ||||||||||||
339 | void APInt::flipBit(unsigned bitPosition) { | ||||||||||||
340 | assert(bitPosition < BitWidth && "Out of the bit-width range!")((void)0); | ||||||||||||
341 | setBitVal(bitPosition, !(*this)[bitPosition]); | ||||||||||||
342 | } | ||||||||||||
343 | |||||||||||||
344 | void APInt::insertBits(const APInt &subBits, unsigned bitPosition) { | ||||||||||||
345 | unsigned subBitWidth = subBits.getBitWidth(); | ||||||||||||
346 | assert(0 < subBitWidth && (subBitWidth + bitPosition) <= BitWidth &&((void)0) | ||||||||||||
347 | "Illegal bit insertion")((void)0); | ||||||||||||
348 | |||||||||||||
349 | // Insertion is a direct copy. | ||||||||||||
350 | if (subBitWidth == BitWidth) { | ||||||||||||
351 | *this = subBits; | ||||||||||||
352 | return; | ||||||||||||
353 | } | ||||||||||||
354 | |||||||||||||
355 | // Single word result can be done as a direct bitmask. | ||||||||||||
356 | if (isSingleWord()) { | ||||||||||||
357 | uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth); | ||||||||||||
358 | U.VAL &= ~(mask << bitPosition); | ||||||||||||
359 | U.VAL |= (subBits.U.VAL << bitPosition); | ||||||||||||
360 | return; | ||||||||||||
361 | } | ||||||||||||
362 | |||||||||||||
363 | unsigned loBit = whichBit(bitPosition); | ||||||||||||
364 | unsigned loWord = whichWord(bitPosition); | ||||||||||||
365 | unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1); | ||||||||||||
366 | |||||||||||||
367 | // Insertion within a single word can be done as a direct bitmask. | ||||||||||||
368 | if (loWord == hi1Word) { | ||||||||||||
369 | uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth); | ||||||||||||
370 | U.pVal[loWord] &= ~(mask << loBit); | ||||||||||||
371 | U.pVal[loWord] |= (subBits.U.VAL << loBit); | ||||||||||||
372 | return; | ||||||||||||
373 | } | ||||||||||||
374 | |||||||||||||
375 | // Insert on word boundaries. | ||||||||||||
376 | if (loBit == 0) { | ||||||||||||
377 | // Direct copy whole words. | ||||||||||||
378 | unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD; | ||||||||||||
379 | memcpy(U.pVal + loWord, subBits.getRawData(), | ||||||||||||
380 | numWholeSubWords * APINT_WORD_SIZE); | ||||||||||||
381 | |||||||||||||
382 | // Mask+insert remaining bits. | ||||||||||||
383 | unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD; | ||||||||||||
384 | if (remainingBits != 0) { | ||||||||||||
385 | uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - remainingBits); | ||||||||||||
386 | U.pVal[hi1Word] &= ~mask; | ||||||||||||
387 | U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1); | ||||||||||||
388 | } | ||||||||||||
389 | return; | ||||||||||||
390 | } | ||||||||||||
391 | |||||||||||||
392 | // General case - set/clear individual bits in dst based on src. | ||||||||||||
393 | // TODO - there is scope for optimization here, but at the moment this code | ||||||||||||
394 | // path is barely used so prefer readability over performance. | ||||||||||||
395 | for (unsigned i = 0; i != subBitWidth; ++i) | ||||||||||||
396 | setBitVal(bitPosition + i, subBits[i]); | ||||||||||||
397 | } | ||||||||||||
398 | |||||||||||||
399 | void APInt::insertBits(uint64_t subBits, unsigned bitPosition, unsigned numBits) { | ||||||||||||
400 | uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits); | ||||||||||||
401 | subBits &= maskBits; | ||||||||||||
402 | if (isSingleWord()) { | ||||||||||||
403 | U.VAL &= ~(maskBits << bitPosition); | ||||||||||||
404 | U.VAL |= subBits << bitPosition; | ||||||||||||
405 | return; | ||||||||||||
406 | } | ||||||||||||
407 | |||||||||||||
408 | unsigned loBit = whichBit(bitPosition); | ||||||||||||
409 | unsigned loWord = whichWord(bitPosition); | ||||||||||||
410 | unsigned hiWord = whichWord(bitPosition + numBits - 1); | ||||||||||||
411 | if (loWord == hiWord) { | ||||||||||||
412 | U.pVal[loWord] &= ~(maskBits << loBit); | ||||||||||||
413 | U.pVal[loWord] |= subBits << loBit; | ||||||||||||
414 | return; | ||||||||||||
415 | } | ||||||||||||
416 | |||||||||||||
417 | static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected"); | ||||||||||||
418 | unsigned wordBits = 8 * sizeof(WordType); | ||||||||||||
419 | U.pVal[loWord] &= ~(maskBits << loBit); | ||||||||||||
420 | U.pVal[loWord] |= subBits << loBit; | ||||||||||||
421 | |||||||||||||
422 | U.pVal[hiWord] &= ~(maskBits >> (wordBits - loBit)); | ||||||||||||
423 | U.pVal[hiWord] |= subBits >> (wordBits - loBit); | ||||||||||||
424 | } | ||||||||||||
425 | |||||||||||||
426 | APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const { | ||||||||||||
427 | assert(numBits > 0 && "Can't extract zero bits")((void)0); | ||||||||||||
428 | assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&((void)0) | ||||||||||||
429 | "Illegal bit extraction")((void)0); | ||||||||||||
430 | |||||||||||||
431 | if (isSingleWord()) | ||||||||||||
432 | return APInt(numBits, U.VAL >> bitPosition); | ||||||||||||
433 | |||||||||||||
434 | unsigned loBit = whichBit(bitPosition); | ||||||||||||
435 | unsigned loWord = whichWord(bitPosition); | ||||||||||||
436 | unsigned hiWord = whichWord(bitPosition + numBits - 1); | ||||||||||||
437 | |||||||||||||
438 | // Single word result extracting bits from a single word source. | ||||||||||||
439 | if (loWord == hiWord) | ||||||||||||
440 | return APInt(numBits, U.pVal[loWord] >> loBit); | ||||||||||||
441 | |||||||||||||
442 | // Extracting bits that start on a source word boundary can be done | ||||||||||||
443 | // as a fast memory copy. | ||||||||||||
444 | if (loBit == 0) | ||||||||||||
445 | return APInt(numBits, makeArrayRef(U.pVal + loWord, 1 + hiWord - loWord)); | ||||||||||||
446 | |||||||||||||
447 | // General case - shift + copy source words directly into place. | ||||||||||||
448 | APInt Result(numBits, 0); | ||||||||||||
449 | unsigned NumSrcWords = getNumWords(); | ||||||||||||
450 | unsigned NumDstWords = Result.getNumWords(); | ||||||||||||
451 | |||||||||||||
452 | uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal; | ||||||||||||
453 | for (unsigned word = 0; word < NumDstWords; ++word) { | ||||||||||||
454 | uint64_t w0 = U.pVal[loWord + word]; | ||||||||||||
455 | uint64_t w1 = | ||||||||||||
456 | (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0; | ||||||||||||
457 | DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit)); | ||||||||||||
458 | } | ||||||||||||
459 | |||||||||||||
460 | return Result.clearUnusedBits(); | ||||||||||||
461 | } | ||||||||||||
462 | |||||||||||||
463 | uint64_t APInt::extractBitsAsZExtValue(unsigned numBits, | ||||||||||||
464 | unsigned bitPosition) const { | ||||||||||||
465 | assert(numBits > 0 && "Can't extract zero bits")((void)0); | ||||||||||||
466 | assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&((void)0) | ||||||||||||
467 | "Illegal bit extraction")((void)0); | ||||||||||||
468 | assert(numBits <= 64 && "Illegal bit extraction")((void)0); | ||||||||||||
469 | |||||||||||||
470 | uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits); | ||||||||||||
471 | if (isSingleWord()) | ||||||||||||
472 | return (U.VAL >> bitPosition) & maskBits; | ||||||||||||
473 | |||||||||||||
474 | unsigned loBit = whichBit(bitPosition); | ||||||||||||
475 | unsigned loWord = whichWord(bitPosition); | ||||||||||||
476 | unsigned hiWord = whichWord(bitPosition + numBits - 1); | ||||||||||||
477 | if (loWord == hiWord) | ||||||||||||
478 | return (U.pVal[loWord] >> loBit) & maskBits; | ||||||||||||
479 | |||||||||||||
480 | static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected"); | ||||||||||||
481 | unsigned wordBits = 8 * sizeof(WordType); | ||||||||||||
482 | uint64_t retBits = U.pVal[loWord] >> loBit; | ||||||||||||
483 | retBits |= U.pVal[hiWord] << (wordBits - loBit); | ||||||||||||
484 | retBits &= maskBits; | ||||||||||||
485 | return retBits; | ||||||||||||
486 | } | ||||||||||||
487 | |||||||||||||
488 | unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) { | ||||||||||||
489 | assert(!str.empty() && "Invalid string length")((void)0); | ||||||||||||
490 | assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||((void)0) | ||||||||||||
491 | radix == 36) &&((void)0) | ||||||||||||
492 | "Radix should be 2, 8, 10, 16, or 36!")((void)0); | ||||||||||||
493 | |||||||||||||
494 | size_t slen = str.size(); | ||||||||||||
495 | |||||||||||||
496 | // Each computation below needs to know if it's negative. | ||||||||||||
497 | StringRef::iterator p = str.begin(); | ||||||||||||
498 | unsigned isNegative = *p == '-'; | ||||||||||||
499 | if (*p == '-' || *p == '+') { | ||||||||||||
500 | p++; | ||||||||||||
501 | slen--; | ||||||||||||
502 | assert(slen && "String is only a sign, needs a value.")((void)0); | ||||||||||||
503 | } | ||||||||||||
504 | |||||||||||||
505 | // For radixes of power-of-two values, the bits required is accurately and | ||||||||||||
506 | // easily computed | ||||||||||||
507 | if (radix == 2) | ||||||||||||
508 | return slen + isNegative; | ||||||||||||
509 | if (radix == 8) | ||||||||||||
510 | return slen * 3 + isNegative; | ||||||||||||
511 | if (radix == 16) | ||||||||||||
512 | return slen * 4 + isNegative; | ||||||||||||
513 | |||||||||||||
514 | // FIXME: base 36 | ||||||||||||
515 | |||||||||||||
516 | // This is grossly inefficient but accurate. We could probably do something | ||||||||||||
517 | // with a computation of roughly slen*64/20 and then adjust by the value of | ||||||||||||
518 | // the first few digits. But, I'm not sure how accurate that could be. | ||||||||||||
519 | |||||||||||||
520 | // Compute a sufficient number of bits that is always large enough but might | ||||||||||||
521 | // be too large. This avoids the assertion in the constructor. This | ||||||||||||
522 | // calculation doesn't work appropriately for the numbers 0-9, so just use 4 | ||||||||||||
523 | // bits in that case. | ||||||||||||
524 | unsigned sufficient | ||||||||||||
525 | = radix == 10? (slen == 1 ? 4 : slen * 64/18) | ||||||||||||
526 | : (slen == 1 ? 7 : slen * 16/3); | ||||||||||||
527 | |||||||||||||
528 | // Convert to the actual binary value. | ||||||||||||
529 | APInt tmp(sufficient, StringRef(p, slen), radix); | ||||||||||||
530 | |||||||||||||
531 | // Compute how many bits are required. If the log is infinite, assume we need | ||||||||||||
532 | // just bit. If the log is exact and value is negative, then the value is | ||||||||||||
533 | // MinSignedValue with (log + 1) bits. | ||||||||||||
534 | unsigned log = tmp.logBase2(); | ||||||||||||
535 | if (log == (unsigned)-1) { | ||||||||||||
536 | return isNegative + 1; | ||||||||||||
537 | } else if (isNegative && tmp.isPowerOf2()) { | ||||||||||||
538 | return isNegative + log; | ||||||||||||
539 | } else { | ||||||||||||
540 | return isNegative + log + 1; | ||||||||||||
541 | } | ||||||||||||
542 | } | ||||||||||||
543 | |||||||||||||
544 | hash_code llvm::hash_value(const APInt &Arg) { | ||||||||||||
545 | if (Arg.isSingleWord()) | ||||||||||||
546 | return hash_combine(Arg.BitWidth, Arg.U.VAL); | ||||||||||||
547 | |||||||||||||
548 | return hash_combine( | ||||||||||||
549 | Arg.BitWidth, | ||||||||||||
550 | hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords())); | ||||||||||||
551 | } | ||||||||||||
552 | |||||||||||||
553 | unsigned DenseMapInfo<APInt>::getHashValue(const APInt &Key) { | ||||||||||||
554 | return static_cast<unsigned>(hash_value(Key)); | ||||||||||||
555 | } | ||||||||||||
556 | |||||||||||||
557 | bool APInt::isSplat(unsigned SplatSizeInBits) const { | ||||||||||||
558 | assert(getBitWidth() % SplatSizeInBits == 0 &&((void)0) | ||||||||||||
559 | "SplatSizeInBits must divide width!")((void)0); | ||||||||||||
560 | // We can check that all parts of an integer are equal by making use of a | ||||||||||||
561 | // little trick: rotate and check if it's still the same value. | ||||||||||||
562 | return *this == rotl(SplatSizeInBits); | ||||||||||||
563 | } | ||||||||||||
564 | |||||||||||||
565 | /// This function returns the high "numBits" bits of this APInt. | ||||||||||||
566 | APInt APInt::getHiBits(unsigned numBits) const { | ||||||||||||
567 | return this->lshr(BitWidth - numBits); | ||||||||||||
568 | } | ||||||||||||
569 | |||||||||||||
570 | /// This function returns the low "numBits" bits of this APInt. | ||||||||||||
571 | APInt APInt::getLoBits(unsigned numBits) const { | ||||||||||||
572 | APInt Result(getLowBitsSet(BitWidth, numBits)); | ||||||||||||
573 | Result &= *this; | ||||||||||||
574 | return Result; | ||||||||||||
575 | } | ||||||||||||
576 | |||||||||||||
577 | /// Return a value containing V broadcasted over NewLen bits. | ||||||||||||
578 | APInt APInt::getSplat(unsigned NewLen, const APInt &V) { | ||||||||||||
579 | assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!")((void)0); | ||||||||||||
580 | |||||||||||||
581 | APInt Val = V.zextOrSelf(NewLen); | ||||||||||||
582 | for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1) | ||||||||||||
583 | Val |= Val << I; | ||||||||||||
584 | |||||||||||||
585 | return Val; | ||||||||||||
586 | } | ||||||||||||
587 | |||||||||||||
588 | unsigned APInt::countLeadingZerosSlowCase() const { | ||||||||||||
589 | unsigned Count = 0; | ||||||||||||
590 | for (int i = getNumWords()-1; i >= 0; --i) { | ||||||||||||
591 | uint64_t V = U.pVal[i]; | ||||||||||||
592 | if (V == 0) | ||||||||||||
593 | Count += APINT_BITS_PER_WORD; | ||||||||||||
594 | else { | ||||||||||||
595 | Count += llvm::countLeadingZeros(V); | ||||||||||||
596 | break; | ||||||||||||
597 | } | ||||||||||||
598 | } | ||||||||||||
599 | // Adjust for unused bits in the most significant word (they are zero). | ||||||||||||
600 | unsigned Mod = BitWidth % APINT_BITS_PER_WORD; | ||||||||||||
601 | Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0; | ||||||||||||
602 | return Count; | ||||||||||||
603 | } | ||||||||||||
604 | |||||||||||||
605 | unsigned APInt::countLeadingOnesSlowCase() const { | ||||||||||||
606 | unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD; | ||||||||||||
607 | unsigned shift; | ||||||||||||
608 | if (!highWordBits) { | ||||||||||||
609 | highWordBits = APINT_BITS_PER_WORD; | ||||||||||||
610 | shift = 0; | ||||||||||||
611 | } else { | ||||||||||||
612 | shift = APINT_BITS_PER_WORD - highWordBits; | ||||||||||||
613 | } | ||||||||||||
614 | int i = getNumWords() - 1; | ||||||||||||
615 | unsigned Count = llvm::countLeadingOnes(U.pVal[i] << shift); | ||||||||||||
616 | if (Count == highWordBits) { | ||||||||||||
617 | for (i--; i >= 0; --i) { | ||||||||||||
618 | if (U.pVal[i] == WORDTYPE_MAX) | ||||||||||||
619 | Count += APINT_BITS_PER_WORD; | ||||||||||||
620 | else { | ||||||||||||
621 | Count += llvm::countLeadingOnes(U.pVal[i]); | ||||||||||||
622 | break; | ||||||||||||
623 | } | ||||||||||||
624 | } | ||||||||||||
625 | } | ||||||||||||
626 | return Count; | ||||||||||||
627 | } | ||||||||||||
628 | |||||||||||||
629 | unsigned APInt::countTrailingZerosSlowCase() const { | ||||||||||||
630 | unsigned Count = 0; | ||||||||||||
631 | unsigned i = 0; | ||||||||||||
632 | for (; i < getNumWords() && U.pVal[i] == 0; ++i) | ||||||||||||
633 | Count += APINT_BITS_PER_WORD; | ||||||||||||
634 | if (i < getNumWords()) | ||||||||||||
635 | Count += llvm::countTrailingZeros(U.pVal[i]); | ||||||||||||
636 | return std::min(Count, BitWidth); | ||||||||||||
637 | } | ||||||||||||
638 | |||||||||||||
639 | unsigned APInt::countTrailingOnesSlowCase() const { | ||||||||||||
640 | unsigned Count = 0; | ||||||||||||
641 | unsigned i = 0; | ||||||||||||
642 | for (; i < getNumWords() && U.pVal[i] == WORDTYPE_MAX; ++i) | ||||||||||||
643 | Count += APINT_BITS_PER_WORD; | ||||||||||||
644 | if (i < getNumWords()) | ||||||||||||
645 | Count += llvm::countTrailingOnes(U.pVal[i]); | ||||||||||||
646 | assert(Count <= BitWidth)((void)0); | ||||||||||||
647 | return Count; | ||||||||||||
648 | } | ||||||||||||
649 | |||||||||||||
650 | unsigned APInt::countPopulationSlowCase() const { | ||||||||||||
651 | unsigned Count = 0; | ||||||||||||
652 | for (unsigned i = 0; i < getNumWords(); ++i) | ||||||||||||
653 | Count += llvm::countPopulation(U.pVal[i]); | ||||||||||||
654 | return Count; | ||||||||||||
655 | } | ||||||||||||
656 | |||||||||||||
657 | bool APInt::intersectsSlowCase(const APInt &RHS) const { | ||||||||||||
658 | for (unsigned i = 0, e = getNumWords(); i != e; ++i) | ||||||||||||
659 | if ((U.pVal[i] & RHS.U.pVal[i]) != 0) | ||||||||||||
660 | return true; | ||||||||||||
661 | |||||||||||||
662 | return false; | ||||||||||||
663 | } | ||||||||||||
664 | |||||||||||||
665 | bool APInt::isSubsetOfSlowCase(const APInt &RHS) const { | ||||||||||||
666 | for (unsigned i = 0, e = getNumWords(); i != e; ++i) | ||||||||||||
667 | if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0) | ||||||||||||
668 | return false; | ||||||||||||
669 | |||||||||||||
670 | return true; | ||||||||||||
671 | } | ||||||||||||
672 | |||||||||||||
673 | APInt APInt::byteSwap() const { | ||||||||||||
674 | assert(BitWidth >= 16 && BitWidth % 8 == 0 && "Cannot byteswap!")((void)0); | ||||||||||||
675 | if (BitWidth == 16) | ||||||||||||
676 | return APInt(BitWidth, ByteSwap_16(uint16_t(U.VAL))); | ||||||||||||
677 | if (BitWidth == 32) | ||||||||||||
678 | return APInt(BitWidth, ByteSwap_32(unsigned(U.VAL))); | ||||||||||||
679 | if (BitWidth <= 64) { | ||||||||||||
680 | uint64_t Tmp1 = ByteSwap_64(U.VAL); | ||||||||||||
681 | Tmp1 >>= (64 - BitWidth); | ||||||||||||
682 | return APInt(BitWidth, Tmp1); | ||||||||||||
683 | } | ||||||||||||
684 | |||||||||||||
685 | APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0); | ||||||||||||
686 | for (unsigned I = 0, N = getNumWords(); I != N; ++I) | ||||||||||||
687 | Result.U.pVal[I] = ByteSwap_64(U.pVal[N - I - 1]); | ||||||||||||
688 | if (Result.BitWidth != BitWidth) { | ||||||||||||
689 | Result.lshrInPlace(Result.BitWidth - BitWidth); | ||||||||||||
690 | Result.BitWidth = BitWidth; | ||||||||||||
691 | } | ||||||||||||
692 | return Result; | ||||||||||||
693 | } | ||||||||||||
694 | |||||||||||||
695 | APInt APInt::reverseBits() const { | ||||||||||||
696 | switch (BitWidth) { | ||||||||||||
697 | case 64: | ||||||||||||
698 | return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL)); | ||||||||||||
699 | case 32: | ||||||||||||
700 | return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL)); | ||||||||||||
701 | case 16: | ||||||||||||
702 | return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL)); | ||||||||||||
703 | case 8: | ||||||||||||
704 | return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL)); | ||||||||||||
705 | default: | ||||||||||||
706 | break; | ||||||||||||
707 | } | ||||||||||||
708 | |||||||||||||
709 | APInt Val(*this); | ||||||||||||
710 | APInt Reversed(BitWidth, 0); | ||||||||||||
711 | unsigned S = BitWidth; | ||||||||||||
712 | |||||||||||||
713 | for (; Val != 0; Val.lshrInPlace(1)) { | ||||||||||||
714 | Reversed <<= 1; | ||||||||||||
715 | Reversed |= Val[0]; | ||||||||||||
716 | --S; | ||||||||||||
717 | } | ||||||||||||
718 | |||||||||||||
719 | Reversed <<= S; | ||||||||||||
720 | return Reversed; | ||||||||||||
721 | } | ||||||||||||
722 | |||||||||||||
723 | APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) { | ||||||||||||
724 | // Fast-path a common case. | ||||||||||||
725 | if (A == B) return A; | ||||||||||||
726 | |||||||||||||
727 | // Corner cases: if either operand is zero, the other is the gcd. | ||||||||||||
728 | if (!A) return B; | ||||||||||||
729 | if (!B) return A; | ||||||||||||
730 | |||||||||||||
731 | // Count common powers of 2 and remove all other powers of 2. | ||||||||||||
732 | unsigned Pow2; | ||||||||||||
733 | { | ||||||||||||
734 | unsigned Pow2_A = A.countTrailingZeros(); | ||||||||||||
735 | unsigned Pow2_B = B.countTrailingZeros(); | ||||||||||||
736 | if (Pow2_A > Pow2_B) { | ||||||||||||
737 | A.lshrInPlace(Pow2_A - Pow2_B); | ||||||||||||
738 | Pow2 = Pow2_B; | ||||||||||||
739 | } else if (Pow2_B > Pow2_A) { | ||||||||||||
740 | B.lshrInPlace(Pow2_B - Pow2_A); | ||||||||||||
741 | Pow2 = Pow2_A; | ||||||||||||
742 | } else { | ||||||||||||
743 | Pow2 = Pow2_A; | ||||||||||||
744 | } | ||||||||||||
745 | } | ||||||||||||
746 | |||||||||||||
747 | // Both operands are odd multiples of 2^Pow_2: | ||||||||||||
748 | // | ||||||||||||
749 | // gcd(a, b) = gcd(|a - b| / 2^i, min(a, b)) | ||||||||||||
750 | // | ||||||||||||
751 | // This is a modified version of Stein's algorithm, taking advantage of | ||||||||||||
752 | // efficient countTrailingZeros(). | ||||||||||||
753 | while (A != B) { | ||||||||||||
754 | if (A.ugt(B)) { | ||||||||||||
755 | A -= B; | ||||||||||||
756 | A.lshrInPlace(A.countTrailingZeros() - Pow2); | ||||||||||||
757 | } else { | ||||||||||||
758 | B -= A; | ||||||||||||
759 | B.lshrInPlace(B.countTrailingZeros() - Pow2); | ||||||||||||
760 | } | ||||||||||||
761 | } | ||||||||||||
762 | |||||||||||||
763 | return A; | ||||||||||||
764 | } | ||||||||||||
765 | |||||||||||||
766 | APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) { | ||||||||||||
767 | uint64_t I = bit_cast<uint64_t>(Double); | ||||||||||||
768 | |||||||||||||
769 | // Get the sign bit from the highest order bit | ||||||||||||
770 | bool isNeg = I >> 63; | ||||||||||||
771 | |||||||||||||
772 | // Get the 11-bit exponent and adjust for the 1023 bit bias | ||||||||||||
773 | int64_t exp = ((I >> 52) & 0x7ff) - 1023; | ||||||||||||
774 | |||||||||||||
775 | // If the exponent is negative, the value is < 0 so just return 0. | ||||||||||||
776 | if (exp < 0) | ||||||||||||
777 | return APInt(width, 0u); | ||||||||||||
778 | |||||||||||||
779 | // Extract the mantissa by clearing the top 12 bits (sign + exponent). | ||||||||||||
780 | uint64_t mantissa = (I & (~0ULL >> 12)) | 1ULL << 52; | ||||||||||||
781 | |||||||||||||
782 | // If the exponent doesn't shift all bits out of the mantissa | ||||||||||||
783 | if (exp < 52) | ||||||||||||
784 | return isNeg ? -APInt(width, mantissa >> (52 - exp)) : | ||||||||||||
785 | APInt(width, mantissa >> (52 - exp)); | ||||||||||||
786 | |||||||||||||
787 | // If the client didn't provide enough bits for us to shift the mantissa into | ||||||||||||
788 | // then the result is undefined, just return 0 | ||||||||||||
789 | if (width <= exp - 52) | ||||||||||||
790 | return APInt(width, 0); | ||||||||||||
791 | |||||||||||||
792 | // Otherwise, we have to shift the mantissa bits up to the right location | ||||||||||||
793 | APInt Tmp(width, mantissa); | ||||||||||||
794 | Tmp <<= (unsigned)exp - 52; | ||||||||||||
795 | return isNeg ? -Tmp : Tmp; | ||||||||||||
796 | } | ||||||||||||
797 | |||||||||||||
798 | /// This function converts this APInt to a double. | ||||||||||||
799 | /// The layout for double is as following (IEEE Standard 754): | ||||||||||||
800 | /// -------------------------------------- | ||||||||||||
801 | /// | Sign Exponent Fraction Bias | | ||||||||||||
802 | /// |-------------------------------------- | | ||||||||||||
803 | /// | 1[63] 11[62-52] 52[51-00] 1023 | | ||||||||||||
804 | /// -------------------------------------- | ||||||||||||
805 | double APInt::roundToDouble(bool isSigned) const { | ||||||||||||
806 | |||||||||||||
807 | // Handle the simple case where the value is contained in one uint64_t. | ||||||||||||
808 | // It is wrong to optimize getWord(0) to VAL; there might be more than one word. | ||||||||||||
809 | if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) { | ||||||||||||
810 | if (isSigned) { | ||||||||||||
811 | int64_t sext = SignExtend64(getWord(0), BitWidth); | ||||||||||||
812 | return double(sext); | ||||||||||||
813 | } else | ||||||||||||
814 | return double(getWord(0)); | ||||||||||||
815 | } | ||||||||||||
816 | |||||||||||||
817 | // Determine if the value is negative. | ||||||||||||
818 | bool isNeg = isSigned ? (*this)[BitWidth-1] : false; | ||||||||||||
819 | |||||||||||||
820 | // Construct the absolute value if we're negative. | ||||||||||||
821 | APInt Tmp(isNeg ? -(*this) : (*this)); | ||||||||||||
822 | |||||||||||||
823 | // Figure out how many bits we're using. | ||||||||||||
824 | unsigned n = Tmp.getActiveBits(); | ||||||||||||
825 | |||||||||||||
826 | // The exponent (without bias normalization) is just the number of bits | ||||||||||||
827 | // we are using. Note that the sign bit is gone since we constructed the | ||||||||||||
828 | // absolute value. | ||||||||||||
829 | uint64_t exp = n; | ||||||||||||
830 | |||||||||||||
831 | // Return infinity for exponent overflow | ||||||||||||
832 | if (exp > 1023) { | ||||||||||||
833 | if (!isSigned || !isNeg) | ||||||||||||
834 | return std::numeric_limits<double>::infinity(); | ||||||||||||
835 | else | ||||||||||||
836 | return -std::numeric_limits<double>::infinity(); | ||||||||||||
837 | } | ||||||||||||
838 | exp += 1023; // Increment for 1023 bias | ||||||||||||
839 | |||||||||||||
840 | // Number of bits in mantissa is 52. To obtain the mantissa value, we must | ||||||||||||
841 | // extract the high 52 bits from the correct words in pVal. | ||||||||||||
842 | uint64_t mantissa; | ||||||||||||
843 | unsigned hiWord = whichWord(n-1); | ||||||||||||
844 | if (hiWord == 0) { | ||||||||||||
845 | mantissa = Tmp.U.pVal[0]; | ||||||||||||
846 | if (n > 52) | ||||||||||||
847 | mantissa >>= n - 52; // shift down, we want the top 52 bits. | ||||||||||||
848 | } else { | ||||||||||||
849 | assert(hiWord > 0 && "huh?")((void)0); | ||||||||||||
850 | uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD); | ||||||||||||
851 | uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD); | ||||||||||||
852 | mantissa = hibits | lobits; | ||||||||||||
853 | } | ||||||||||||
854 | |||||||||||||
855 | // The leading bit of mantissa is implicit, so get rid of it. | ||||||||||||
856 | uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0; | ||||||||||||
857 | uint64_t I = sign | (exp << 52) | mantissa; | ||||||||||||
858 | return bit_cast<double>(I); | ||||||||||||
859 | } | ||||||||||||
860 | |||||||||||||
861 | // Truncate to new width. | ||||||||||||
862 | APInt APInt::trunc(unsigned width) const { | ||||||||||||
863 | assert(width < BitWidth && "Invalid APInt Truncate request")((void)0); | ||||||||||||
864 | assert(width && "Can't truncate to 0 bits")((void)0); | ||||||||||||
865 | |||||||||||||
866 | if (width <= APINT_BITS_PER_WORD) | ||||||||||||
867 | return APInt(width, getRawData()[0]); | ||||||||||||
868 | |||||||||||||
869 | APInt Result(getMemory(getNumWords(width)), width); | ||||||||||||
870 | |||||||||||||
871 | // Copy full words. | ||||||||||||
872 | unsigned i; | ||||||||||||
873 | for (i = 0; i != width / APINT_BITS_PER_WORD; i++) | ||||||||||||
874 | Result.U.pVal[i] = U.pVal[i]; | ||||||||||||
875 | |||||||||||||
876 | // Truncate and copy any partial word. | ||||||||||||
877 | unsigned bits = (0 - width) % APINT_BITS_PER_WORD; | ||||||||||||
878 | if (bits != 0) | ||||||||||||
879 | Result.U.pVal[i] = U.pVal[i] << bits >> bits; | ||||||||||||
880 | |||||||||||||
881 | return Result; | ||||||||||||
882 | } | ||||||||||||
883 | |||||||||||||
884 | // Truncate to new width with unsigned saturation. | ||||||||||||
885 | APInt APInt::truncUSat(unsigned width) const { | ||||||||||||
886 | assert(width < BitWidth && "Invalid APInt Truncate request")((void)0); | ||||||||||||
887 | assert(width && "Can't truncate to 0 bits")((void)0); | ||||||||||||
888 | |||||||||||||
889 | // Can we just losslessly truncate it? | ||||||||||||
890 | if (isIntN(width)) | ||||||||||||
891 | return trunc(width); | ||||||||||||
892 | // If not, then just return the new limit. | ||||||||||||
893 | return APInt::getMaxValue(width); | ||||||||||||
894 | } | ||||||||||||
895 | |||||||||||||
896 | // Truncate to new width with signed saturation. | ||||||||||||
897 | APInt APInt::truncSSat(unsigned width) const { | ||||||||||||
898 | assert(width < BitWidth && "Invalid APInt Truncate request")((void)0); | ||||||||||||
899 | assert(width && "Can't truncate to 0 bits")((void)0); | ||||||||||||
900 | |||||||||||||
901 | // Can we just losslessly truncate it? | ||||||||||||
902 | if (isSignedIntN(width)) | ||||||||||||
903 | return trunc(width); | ||||||||||||
904 | // If not, then just return the new limits. | ||||||||||||
905 | return isNegative() ? APInt::getSignedMinValue(width) | ||||||||||||
906 | : APInt::getSignedMaxValue(width); | ||||||||||||
907 | } | ||||||||||||
908 | |||||||||||||
909 | // Sign extend to a new width. | ||||||||||||
910 | APInt APInt::sext(unsigned Width) const { | ||||||||||||
911 | assert(Width > BitWidth && "Invalid APInt SignExtend request")((void)0); | ||||||||||||
912 | |||||||||||||
913 | if (Width <= APINT_BITS_PER_WORD) | ||||||||||||
914 | return APInt(Width, SignExtend64(U.VAL, BitWidth)); | ||||||||||||
915 | |||||||||||||
916 | APInt Result(getMemory(getNumWords(Width)), Width); | ||||||||||||
917 | |||||||||||||
918 | // Copy words. | ||||||||||||
919 | std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE); | ||||||||||||
920 | |||||||||||||
921 | // Sign extend the last word since there may be unused bits in the input. | ||||||||||||
922 | Result.U.pVal[getNumWords() - 1] = | ||||||||||||
923 | SignExtend64(Result.U.pVal[getNumWords() - 1], | ||||||||||||
924 | ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1); | ||||||||||||
925 | |||||||||||||
926 | // Fill with sign bits. | ||||||||||||
927 | std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0, | ||||||||||||
928 | (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE); | ||||||||||||
929 | Result.clearUnusedBits(); | ||||||||||||
930 | return Result; | ||||||||||||
931 | } | ||||||||||||
932 | |||||||||||||
933 | // Zero extend to a new width. | ||||||||||||
934 | APInt APInt::zext(unsigned width) const { | ||||||||||||
935 | assert(width > BitWidth && "Invalid APInt ZeroExtend request")((void)0); | ||||||||||||
936 | |||||||||||||
937 | if (width <= APINT_BITS_PER_WORD) | ||||||||||||
938 | return APInt(width, U.VAL); | ||||||||||||
939 | |||||||||||||
940 | APInt Result(getMemory(getNumWords(width)), width); | ||||||||||||
941 | |||||||||||||
942 | // Copy words. | ||||||||||||
943 | std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE); | ||||||||||||
944 | |||||||||||||
945 | // Zero remaining words. | ||||||||||||
946 | std::memset(Result.U.pVal + getNumWords(), 0, | ||||||||||||
947 | (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE); | ||||||||||||
948 | |||||||||||||
949 | return Result; | ||||||||||||
950 | } | ||||||||||||
951 | |||||||||||||
952 | APInt APInt::zextOrTrunc(unsigned width) const { | ||||||||||||
953 | if (BitWidth < width) | ||||||||||||
954 | return zext(width); | ||||||||||||
955 | if (BitWidth > width) | ||||||||||||
956 | return trunc(width); | ||||||||||||
957 | return *this; | ||||||||||||
958 | } | ||||||||||||
959 | |||||||||||||
960 | APInt APInt::sextOrTrunc(unsigned width) const { | ||||||||||||
961 | if (BitWidth < width) | ||||||||||||
962 | return sext(width); | ||||||||||||
963 | if (BitWidth > width) | ||||||||||||
964 | return trunc(width); | ||||||||||||
965 | return *this; | ||||||||||||
966 | } | ||||||||||||
967 | |||||||||||||
968 | APInt APInt::truncOrSelf(unsigned width) const { | ||||||||||||
969 | if (BitWidth > width) | ||||||||||||
970 | return trunc(width); | ||||||||||||
971 | return *this; | ||||||||||||
972 | } | ||||||||||||
973 | |||||||||||||
974 | APInt APInt::zextOrSelf(unsigned width) const { | ||||||||||||
975 | if (BitWidth < width) | ||||||||||||
976 | return zext(width); | ||||||||||||
977 | return *this; | ||||||||||||
978 | } | ||||||||||||
979 | |||||||||||||
980 | APInt APInt::sextOrSelf(unsigned width) const { | ||||||||||||
981 | if (BitWidth < width) | ||||||||||||
982 | return sext(width); | ||||||||||||
983 | return *this; | ||||||||||||
984 | } | ||||||||||||
985 | |||||||||||||
986 | /// Arithmetic right-shift this APInt by shiftAmt. | ||||||||||||
987 | /// Arithmetic right-shift function. | ||||||||||||
988 | void APInt::ashrInPlace(const APInt &shiftAmt) { | ||||||||||||
989 | ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth)); | ||||||||||||
990 | } | ||||||||||||
991 | |||||||||||||
992 | /// Arithmetic right-shift this APInt by shiftAmt. | ||||||||||||
993 | /// Arithmetic right-shift function. | ||||||||||||
994 | void APInt::ashrSlowCase(unsigned ShiftAmt) { | ||||||||||||
995 | // Don't bother performing a no-op shift. | ||||||||||||
996 | if (!ShiftAmt) | ||||||||||||
997 | return; | ||||||||||||
998 | |||||||||||||
999 | // Save the original sign bit for later. | ||||||||||||
1000 | bool Negative = isNegative(); | ||||||||||||
1001 | |||||||||||||
1002 | // WordShift is the inter-part shift; BitShift is intra-part shift. | ||||||||||||
1003 | unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD; | ||||||||||||
1004 | unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD; | ||||||||||||
1005 | |||||||||||||
1006 | unsigned WordsToMove = getNumWords() - WordShift; | ||||||||||||
1007 | if (WordsToMove != 0) { | ||||||||||||
1008 | // Sign extend the last word to fill in the unused bits. | ||||||||||||
1009 | U.pVal[getNumWords() - 1] = SignExtend64( | ||||||||||||
1010 | U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1); | ||||||||||||
1011 | |||||||||||||
1012 | // Fastpath for moving by whole words. | ||||||||||||
1013 | if (BitShift == 0) { | ||||||||||||
1014 | std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE); | ||||||||||||
1015 | } else { | ||||||||||||
1016 | // Move the words containing significant bits. | ||||||||||||
1017 | for (unsigned i = 0; i != WordsToMove - 1; ++i) | ||||||||||||
1018 | U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) | | ||||||||||||
1019 | (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift)); | ||||||||||||
1020 | |||||||||||||
1021 | // Handle the last word which has no high bits to copy. | ||||||||||||
1022 | U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift; | ||||||||||||
1023 | // Sign extend one more time. | ||||||||||||
1024 | U.pVal[WordsToMove - 1] = | ||||||||||||
1025 | SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift); | ||||||||||||
1026 | } | ||||||||||||
1027 | } | ||||||||||||
1028 | |||||||||||||
1029 | // Fill in the remainder based on the original sign. | ||||||||||||
1030 | std::memset(U.pVal + WordsToMove, Negative ? -1 : 0, | ||||||||||||
1031 | WordShift * APINT_WORD_SIZE); | ||||||||||||
1032 | clearUnusedBits(); | ||||||||||||
1033 | } | ||||||||||||
1034 | |||||||||||||
1035 | /// Logical right-shift this APInt by shiftAmt. | ||||||||||||
1036 | /// Logical right-shift function. | ||||||||||||
1037 | void APInt::lshrInPlace(const APInt &shiftAmt) { | ||||||||||||
1038 | lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth)); | ||||||||||||
1039 | } | ||||||||||||
1040 | |||||||||||||
1041 | /// Logical right-shift this APInt by shiftAmt. | ||||||||||||
1042 | /// Logical right-shift function. | ||||||||||||
1043 | void APInt::lshrSlowCase(unsigned ShiftAmt) { | ||||||||||||
1044 | tcShiftRight(U.pVal, getNumWords(), ShiftAmt); | ||||||||||||
1045 | } | ||||||||||||
1046 | |||||||||||||
1047 | /// Left-shift this APInt by shiftAmt. | ||||||||||||
1048 | /// Left-shift function. | ||||||||||||
1049 | APInt &APInt::operator<<=(const APInt &shiftAmt) { | ||||||||||||
1050 | // It's undefined behavior in C to shift by BitWidth or greater. | ||||||||||||
1051 | *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth); | ||||||||||||
1052 | return *this; | ||||||||||||
1053 | } | ||||||||||||
1054 | |||||||||||||
1055 | void APInt::shlSlowCase(unsigned ShiftAmt) { | ||||||||||||
1056 | tcShiftLeft(U.pVal, getNumWords(), ShiftAmt); | ||||||||||||
1057 | clearUnusedBits(); | ||||||||||||
1058 | } | ||||||||||||
1059 | |||||||||||||
1060 | // Calculate the rotate amount modulo the bit width. | ||||||||||||
1061 | static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) { | ||||||||||||
1062 | unsigned rotBitWidth = rotateAmt.getBitWidth(); | ||||||||||||
1063 | APInt rot = rotateAmt; | ||||||||||||
1064 | if (rotBitWidth < BitWidth) { | ||||||||||||
1065 | // Extend the rotate APInt, so that the urem doesn't divide by 0. | ||||||||||||
1066 | // e.g. APInt(1, 32) would give APInt(1, 0). | ||||||||||||
1067 | rot = rotateAmt.zext(BitWidth); | ||||||||||||
1068 | } | ||||||||||||
1069 | rot = rot.urem(APInt(rot.getBitWidth(), BitWidth)); | ||||||||||||
1070 | return rot.getLimitedValue(BitWidth); | ||||||||||||
1071 | } | ||||||||||||
1072 | |||||||||||||
1073 | APInt APInt::rotl(const APInt &rotateAmt) const { | ||||||||||||
1074 | return rotl(rotateModulo(BitWidth, rotateAmt)); | ||||||||||||
1075 | } | ||||||||||||
1076 | |||||||||||||
1077 | APInt APInt::rotl(unsigned rotateAmt) const { | ||||||||||||
1078 | rotateAmt %= BitWidth; | ||||||||||||
1079 | if (rotateAmt == 0) | ||||||||||||
1080 | return *this; | ||||||||||||
1081 | return shl(rotateAmt) | lshr(BitWidth - rotateAmt); | ||||||||||||
1082 | } | ||||||||||||
1083 | |||||||||||||
1084 | APInt APInt::rotr(const APInt &rotateAmt) const { | ||||||||||||
1085 | return rotr(rotateModulo(BitWidth, rotateAmt)); | ||||||||||||
1086 | } | ||||||||||||
1087 | |||||||||||||
1088 | APInt APInt::rotr(unsigned rotateAmt) const { | ||||||||||||
1089 | rotateAmt %= BitWidth; | ||||||||||||
1090 | if (rotateAmt == 0) | ||||||||||||
1091 | return *this; | ||||||||||||
1092 | return lshr(rotateAmt) | shl(BitWidth - rotateAmt); | ||||||||||||
1093 | } | ||||||||||||
1094 | |||||||||||||
1095 | // Square Root - this method computes and returns the square root of "this". | ||||||||||||
1096 | // Three mechanisms are used for computation. For small values (<= 5 bits), | ||||||||||||
1097 | // a table lookup is done. This gets some performance for common cases. For | ||||||||||||
1098 | // values using less than 52 bits, the value is converted to double and then | ||||||||||||
1099 | // the libc sqrt function is called. The result is rounded and then converted | ||||||||||||
1100 | // back to a uint64_t which is then used to construct the result. Finally, | ||||||||||||
1101 | // the Babylonian method for computing square roots is used. | ||||||||||||
1102 | APInt APInt::sqrt() const { | ||||||||||||
1103 | |||||||||||||
1104 | // Determine the magnitude of the value. | ||||||||||||
1105 | unsigned magnitude = getActiveBits(); | ||||||||||||
1106 | |||||||||||||
1107 | // Use a fast table for some small values. This also gets rid of some | ||||||||||||
1108 | // rounding errors in libc sqrt for small values. | ||||||||||||
1109 | if (magnitude <= 5) { | ||||||||||||
1110 | static const uint8_t results[32] = { | ||||||||||||
1111 | /* 0 */ 0, | ||||||||||||
1112 | /* 1- 2 */ 1, 1, | ||||||||||||
1113 | /* 3- 6 */ 2, 2, 2, 2, | ||||||||||||
1114 | /* 7-12 */ 3, 3, 3, 3, 3, 3, | ||||||||||||
1115 | /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4, | ||||||||||||
1116 | /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, | ||||||||||||
1117 | /* 31 */ 6 | ||||||||||||
1118 | }; | ||||||||||||
1119 | return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]); | ||||||||||||
1120 | } | ||||||||||||
1121 | |||||||||||||
1122 | // If the magnitude of the value fits in less than 52 bits (the precision of | ||||||||||||
1123 | // an IEEE double precision floating point value), then we can use the | ||||||||||||
1124 | // libc sqrt function which will probably use a hardware sqrt computation. | ||||||||||||
1125 | // This should be faster than the algorithm below. | ||||||||||||
1126 | if (magnitude < 52) { | ||||||||||||
1127 | return APInt(BitWidth, | ||||||||||||
1128 | uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL | ||||||||||||
1129 | : U.pVal[0]))))); | ||||||||||||
1130 | } | ||||||||||||
1131 | |||||||||||||
1132 | // Okay, all the short cuts are exhausted. We must compute it. The following | ||||||||||||
1133 | // is a classical Babylonian method for computing the square root. This code | ||||||||||||
1134 | // was adapted to APInt from a wikipedia article on such computations. | ||||||||||||
1135 | // See http://www.wikipedia.org/ and go to the page named | ||||||||||||
1136 | // Calculate_an_integer_square_root. | ||||||||||||
1137 | unsigned nbits = BitWidth, i = 4; | ||||||||||||
1138 | APInt testy(BitWidth, 16); | ||||||||||||
1139 | APInt x_old(BitWidth, 1); | ||||||||||||
1140 | APInt x_new(BitWidth, 0); | ||||||||||||
1141 | APInt two(BitWidth, 2); | ||||||||||||
1142 | |||||||||||||
1143 | // Select a good starting value using binary logarithms. | ||||||||||||
1144 | for (;; i += 2, testy = testy.shl(2)) | ||||||||||||
1145 | if (i >= nbits || this->ule(testy)) { | ||||||||||||
1146 | x_old = x_old.shl(i / 2); | ||||||||||||
1147 | break; | ||||||||||||
1148 | } | ||||||||||||
1149 | |||||||||||||
1150 | // Use the Babylonian method to arrive at the integer square root: | ||||||||||||
1151 | for (;;) { | ||||||||||||
1152 | x_new = (this->udiv(x_old) + x_old).udiv(two); | ||||||||||||
1153 | if (x_old.ule(x_new)) | ||||||||||||
1154 | break; | ||||||||||||
1155 | x_old = x_new; | ||||||||||||
1156 | } | ||||||||||||
1157 | |||||||||||||
1158 | // Make sure we return the closest approximation | ||||||||||||
1159 | // NOTE: The rounding calculation below is correct. It will produce an | ||||||||||||
1160 | // off-by-one discrepancy with results from pari/gp. That discrepancy has been | ||||||||||||
1161 | // determined to be a rounding issue with pari/gp as it begins to use a | ||||||||||||
1162 | // floating point representation after 192 bits. There are no discrepancies | ||||||||||||
1163 | // between this algorithm and pari/gp for bit widths < 192 bits. | ||||||||||||
1164 | APInt square(x_old * x_old); | ||||||||||||
1165 | APInt nextSquare((x_old + 1) * (x_old +1)); | ||||||||||||
1166 | if (this->ult(square)) | ||||||||||||
1167 | return x_old; | ||||||||||||
1168 | assert(this->ule(nextSquare) && "Error in APInt::sqrt computation")((void)0); | ||||||||||||
1169 | APInt midpoint((nextSquare - square).udiv(two)); | ||||||||||||
1170 | APInt offset(*this - square); | ||||||||||||
1171 | if (offset.ult(midpoint)) | ||||||||||||
1172 | return x_old; | ||||||||||||
1173 | return x_old + 1; | ||||||||||||
1174 | } | ||||||||||||
1175 | |||||||||||||
1176 | /// Computes the multiplicative inverse of this APInt for a given modulo. The | ||||||||||||
1177 | /// iterative extended Euclidean algorithm is used to solve for this value, | ||||||||||||
1178 | /// however we simplify it to speed up calculating only the inverse, and take | ||||||||||||
1179 | /// advantage of div+rem calculations. We also use some tricks to avoid copying | ||||||||||||
1180 | /// (potentially large) APInts around. | ||||||||||||
1181 | /// WARNING: a value of '0' may be returned, | ||||||||||||
1182 | /// signifying that no multiplicative inverse exists! | ||||||||||||
1183 | APInt APInt::multiplicativeInverse(const APInt& modulo) const { | ||||||||||||
1184 | assert(ult(modulo) && "This APInt must be smaller than the modulo")((void)0); | ||||||||||||
1185 | |||||||||||||
1186 | // Using the properties listed at the following web page (accessed 06/21/08): | ||||||||||||
1187 | // http://www.numbertheory.org/php/euclid.html | ||||||||||||
1188 | // (especially the properties numbered 3, 4 and 9) it can be proved that | ||||||||||||
1189 | // BitWidth bits suffice for all the computations in the algorithm implemented | ||||||||||||
1190 | // below. More precisely, this number of bits suffice if the multiplicative | ||||||||||||
1191 | // inverse exists, but may not suffice for the general extended Euclidean | ||||||||||||
1192 | // algorithm. | ||||||||||||
1193 | |||||||||||||
1194 | APInt r[2] = { modulo, *this }; | ||||||||||||
1195 | APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) }; | ||||||||||||
1196 | APInt q(BitWidth, 0); | ||||||||||||
1197 | |||||||||||||
1198 | unsigned i; | ||||||||||||
1199 | for (i = 0; r[i^1] != 0; i ^= 1) { | ||||||||||||
1200 | // An overview of the math without the confusing bit-flipping: | ||||||||||||
1201 | // q = r[i-2] / r[i-1] | ||||||||||||
1202 | // r[i] = r[i-2] % r[i-1] | ||||||||||||
1203 | // t[i] = t[i-2] - t[i-1] * q | ||||||||||||
1204 | udivrem(r[i], r[i^1], q, r[i]); | ||||||||||||
1205 | t[i] -= t[i^1] * q; | ||||||||||||
1206 | } | ||||||||||||
1207 | |||||||||||||
1208 | // If this APInt and the modulo are not coprime, there is no multiplicative | ||||||||||||
1209 | // inverse, so return 0. We check this by looking at the next-to-last | ||||||||||||
1210 | // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean | ||||||||||||
1211 | // algorithm. | ||||||||||||
1212 | if (r[i] != 1) | ||||||||||||
1213 | return APInt(BitWidth, 0); | ||||||||||||
1214 | |||||||||||||
1215 | // The next-to-last t is the multiplicative inverse. However, we are | ||||||||||||
1216 | // interested in a positive inverse. Calculate a positive one from a negative | ||||||||||||
1217 | // one if necessary. A simple addition of the modulo suffices because | ||||||||||||
1218 | // abs(t[i]) is known to be less than *this/2 (see the link above). | ||||||||||||
1219 | if (t[i].isNegative()) | ||||||||||||
1220 | t[i] += modulo; | ||||||||||||
1221 | |||||||||||||
1222 | return std::move(t[i]); | ||||||||||||
1223 | } | ||||||||||||
1224 | |||||||||||||
1225 | /// Calculate the magic numbers required to implement a signed integer division | ||||||||||||
1226 | /// by a constant as a sequence of multiplies, adds and shifts. Requires that | ||||||||||||
1227 | /// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S. | ||||||||||||
1228 | /// Warren, Jr., chapter 10. | ||||||||||||
1229 | APInt::ms APInt::magic() const { | ||||||||||||
1230 | const APInt& d = *this; | ||||||||||||
1231 | unsigned p; | ||||||||||||
1232 | APInt ad, anc, delta, q1, r1, q2, r2, t; | ||||||||||||
1233 | APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); | ||||||||||||
1234 | struct ms mag; | ||||||||||||
1235 | |||||||||||||
1236 | ad = d.abs(); | ||||||||||||
1237 | t = signedMin + (d.lshr(d.getBitWidth() - 1)); | ||||||||||||
1238 | anc = t - 1 - t.urem(ad); // absolute value of nc | ||||||||||||
1239 | p = d.getBitWidth() - 1; // initialize p | ||||||||||||
1240 | q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc) | ||||||||||||
1241 | r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc)) | ||||||||||||
1242 | q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d) | ||||||||||||
1243 | r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d)) | ||||||||||||
1244 | do { | ||||||||||||
1245 | p = p + 1; | ||||||||||||
1246 | q1 = q1<<1; // update q1 = 2p/abs(nc) | ||||||||||||
1247 | r1 = r1<<1; // update r1 = rem(2p/abs(nc)) | ||||||||||||
1248 | if (r1.uge(anc)) { // must be unsigned comparison | ||||||||||||
1249 | q1 = q1 + 1; | ||||||||||||
1250 | r1 = r1 - anc; | ||||||||||||
1251 | } | ||||||||||||
1252 | q2 = q2<<1; // update q2 = 2p/abs(d) | ||||||||||||
1253 | r2 = r2<<1; // update r2 = rem(2p/abs(d)) | ||||||||||||
1254 | if (r2.uge(ad)) { // must be unsigned comparison | ||||||||||||
1255 | q2 = q2 + 1; | ||||||||||||
1256 | r2 = r2 - ad; | ||||||||||||
1257 | } | ||||||||||||
1258 | delta = ad - r2; | ||||||||||||
1259 | } while (q1.ult(delta) || (q1 == delta && r1 == 0)); | ||||||||||||
1260 | |||||||||||||
1261 | mag.m = q2 + 1; | ||||||||||||
1262 | if (d.isNegative()) mag.m = -mag.m; // resulting magic number | ||||||||||||
1263 | mag.s = p - d.getBitWidth(); // resulting shift | ||||||||||||
1264 | return mag; | ||||||||||||
1265 | } | ||||||||||||
1266 | |||||||||||||
1267 | /// Calculate the magic numbers required to implement an unsigned integer | ||||||||||||
1268 | /// division by a constant as a sequence of multiplies, adds and shifts. | ||||||||||||
1269 | /// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry | ||||||||||||
1270 | /// S. Warren, Jr., chapter 10. | ||||||||||||
1271 | /// LeadingZeros can be used to simplify the calculation if the upper bits | ||||||||||||
1272 | /// of the divided value are known zero. | ||||||||||||
1273 | APInt::mu APInt::magicu(unsigned LeadingZeros) const { | ||||||||||||
1274 | const APInt& d = *this; | ||||||||||||
1275 | unsigned p; | ||||||||||||
1276 | APInt nc, delta, q1, r1, q2, r2; | ||||||||||||
1277 | struct mu magu; | ||||||||||||
1278 | magu.a = 0; // initialize "add" indicator | ||||||||||||
1279 | APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros); | ||||||||||||
1280 | APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); | ||||||||||||
1281 | APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth()); | ||||||||||||
1282 | |||||||||||||
1283 | nc = allOnes - (allOnes - d).urem(d); | ||||||||||||
1284 | p = d.getBitWidth() - 1; // initialize p | ||||||||||||
1285 | q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc | ||||||||||||
1286 | r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc) | ||||||||||||
1287 | q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d | ||||||||||||
1288 | r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d) | ||||||||||||
1289 | do { | ||||||||||||
1290 | p = p + 1; | ||||||||||||
1291 | if (r1.uge(nc - r1)) { | ||||||||||||
1292 | q1 = q1 + q1 + 1; // update q1 | ||||||||||||
1293 | r1 = r1 + r1 - nc; // update r1 | ||||||||||||
1294 | } | ||||||||||||
1295 | else { | ||||||||||||
1296 | q1 = q1+q1; // update q1 | ||||||||||||
1297 | r1 = r1+r1; // update r1 | ||||||||||||
1298 | } | ||||||||||||
1299 | if ((r2 + 1).uge(d - r2)) { | ||||||||||||
1300 | if (q2.uge(signedMax)) magu.a = 1; | ||||||||||||
1301 | q2 = q2+q2 + 1; // update q2 | ||||||||||||
1302 | r2 = r2+r2 + 1 - d; // update r2 | ||||||||||||
1303 | } | ||||||||||||
1304 | else { | ||||||||||||
1305 | if (q2.uge(signedMin)) magu.a = 1; | ||||||||||||
1306 | q2 = q2+q2; // update q2 | ||||||||||||
1307 | r2 = r2+r2 + 1; // update r2 | ||||||||||||
1308 | } | ||||||||||||
1309 | delta = d - 1 - r2; | ||||||||||||
1310 | } while (p < d.getBitWidth()*2 && | ||||||||||||
1311 | (q1.ult(delta) || (q1 == delta && r1 == 0))); | ||||||||||||
1312 | magu.m = q2 + 1; // resulting magic number | ||||||||||||
1313 | magu.s = p - d.getBitWidth(); // resulting shift | ||||||||||||
1314 | return magu; | ||||||||||||
1315 | } | ||||||||||||
1316 | |||||||||||||
1317 | /// Implementation of Knuth's Algorithm D (Division of nonnegative integers) | ||||||||||||
1318 | /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The | ||||||||||||
1319 | /// variables here have the same names as in the algorithm. Comments explain | ||||||||||||
1320 | /// the algorithm and any deviation from it. | ||||||||||||
1321 | static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, | ||||||||||||
1322 | unsigned m, unsigned n) { | ||||||||||||
1323 | assert(u && "Must provide dividend")((void)0); | ||||||||||||
1324 | assert(v && "Must provide divisor")((void)0); | ||||||||||||
1325 | assert(q && "Must provide quotient")((void)0); | ||||||||||||
1326 | assert(u != v && u != q && v != q && "Must use different memory")((void)0); | ||||||||||||
1327 | assert(n>1 && "n must be > 1")((void)0); | ||||||||||||
1328 | |||||||||||||
1329 | // b denotes the base of the number system. In our case b is 2^32. | ||||||||||||
1330 | const uint64_t b = uint64_t(1) << 32; | ||||||||||||
1331 | |||||||||||||
1332 | // The DEBUG macros here tend to be spam in the debug output if you're not | ||||||||||||
1333 | // debugging this code. Disable them unless KNUTH_DEBUG is defined. | ||||||||||||
1334 | #ifdef KNUTH_DEBUG | ||||||||||||
1335 | #define DEBUG_KNUTH(X)do {} while(false) LLVM_DEBUG(X)do { } while (false) | ||||||||||||
1336 | #else | ||||||||||||
1337 | #define DEBUG_KNUTH(X)do {} while(false) do {} while(false) | ||||||||||||
1338 | #endif | ||||||||||||
1339 | |||||||||||||
1340 | DEBUG_KNUTH(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n')do {} while(false); | ||||||||||||
1341 | DEBUG_KNUTH(dbgs() << "KnuthDiv: original:")do {} while(false); | ||||||||||||
1342 | DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i])do {} while(false); | ||||||||||||
1343 | DEBUG_KNUTH(dbgs() << " by")do {} while(false); | ||||||||||||
1344 | DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1])do {} while(false); | ||||||||||||
1345 | DEBUG_KNUTH(dbgs() << '\n')do {} while(false); | ||||||||||||
1346 | // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of | ||||||||||||
1347 | // u and v by d. Note that we have taken Knuth's advice here to use a power | ||||||||||||
1348 | // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of | ||||||||||||
1349 | // 2 allows us to shift instead of multiply and it is easy to determine the | ||||||||||||
1350 | // shift amount from the leading zeros. We are basically normalizing the u | ||||||||||||
1351 | // and v so that its high bits are shifted to the top of v's range without | ||||||||||||
1352 | // overflow. Note that this can require an extra word in u so that u must | ||||||||||||
1353 | // be of length m+n+1. | ||||||||||||
1354 | unsigned shift = countLeadingZeros(v[n-1]); | ||||||||||||
1355 | uint32_t v_carry = 0; | ||||||||||||
1356 | uint32_t u_carry = 0; | ||||||||||||
1357 | if (shift) { | ||||||||||||
1358 | for (unsigned i = 0; i < m+n; ++i) { | ||||||||||||
1359 | uint32_t u_tmp = u[i] >> (32 - shift); | ||||||||||||
1360 | u[i] = (u[i] << shift) | u_carry; | ||||||||||||
1361 | u_carry = u_tmp; | ||||||||||||
1362 | } | ||||||||||||
1363 | for (unsigned i = 0; i < n; ++i) { | ||||||||||||
1364 | uint32_t v_tmp = v[i] >> (32 - shift); | ||||||||||||
1365 | v[i] = (v[i] << shift) | v_carry; | ||||||||||||
1366 | v_carry = v_tmp; | ||||||||||||
1367 | } | ||||||||||||
1368 | } | ||||||||||||
1369 | u[m+n] = u_carry; | ||||||||||||
1370 | |||||||||||||
1371 | DEBUG_KNUTH(dbgs() << "KnuthDiv: normal:")do {} while(false); | ||||||||||||
1372 | DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i])do {} while(false); | ||||||||||||
1373 | DEBUG_KNUTH(dbgs() << " by")do {} while(false); | ||||||||||||
1374 | DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1])do {} while(false); | ||||||||||||
1375 | DEBUG_KNUTH(dbgs() << '\n')do {} while(false); | ||||||||||||
1376 | |||||||||||||
1377 | // D2. [Initialize j.] Set j to m. This is the loop counter over the places. | ||||||||||||
1378 | int j = m; | ||||||||||||
1379 | do { | ||||||||||||
1380 | DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient digit #" << j << '\n')do {} while(false); | ||||||||||||
1381 | // D3. [Calculate q'.]. | ||||||||||||
1382 | // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q') | ||||||||||||
1383 | // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r') | ||||||||||||
1384 | // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease | ||||||||||||
1385 | // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test | ||||||||||||
1386 | // on v[n-2] determines at high speed most of the cases in which the trial | ||||||||||||
1387 | // value qp is one too large, and it eliminates all cases where qp is two | ||||||||||||
1388 | // too large. | ||||||||||||
1389 | uint64_t dividend = Make_64(u[j+n], u[j+n-1]); | ||||||||||||
1390 | DEBUG_KNUTH(dbgs() << "KnuthDiv: dividend == " << dividend << '\n')do {} while(false); | ||||||||||||
1391 | uint64_t qp = dividend / v[n-1]; | ||||||||||||
1392 | uint64_t rp = dividend % v[n-1]; | ||||||||||||
1393 | if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) { | ||||||||||||
1394 | qp--; | ||||||||||||
1395 | rp += v[n-1]; | ||||||||||||
1396 | if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2])) | ||||||||||||
1397 | qp--; | ||||||||||||
1398 | } | ||||||||||||
1399 | DEBUG_KNUTH(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n')do {} while(false); | ||||||||||||
1400 | |||||||||||||
1401 | // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with | ||||||||||||
1402 | // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation | ||||||||||||
1403 | // consists of a simple multiplication by a one-place number, combined with | ||||||||||||
1404 | // a subtraction. | ||||||||||||
1405 | // The digits (u[j+n]...u[j]) should be kept positive; if the result of | ||||||||||||
1406 | // this step is actually negative, (u[j+n]...u[j]) should be left as the | ||||||||||||
1407 | // true value plus b**(n+1), namely as the b's complement of | ||||||||||||
1408 | // the true value, and a "borrow" to the left should be remembered. | ||||||||||||
1409 | int64_t borrow = 0; | ||||||||||||
1410 | for (unsigned i = 0; i < n; ++i) { | ||||||||||||
1411 | uint64_t p = uint64_t(qp) * uint64_t(v[i]); | ||||||||||||
1412 | int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p); | ||||||||||||
1413 | u[j+i] = Lo_32(subres); | ||||||||||||
1414 | borrow = Hi_32(p) - Hi_32(subres); | ||||||||||||
1415 | DEBUG_KNUTH(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i]do {} while(false) | ||||||||||||
1416 | << ", borrow = " << borrow << '\n')do {} while(false); | ||||||||||||
1417 | } | ||||||||||||
1418 | bool isNeg = u[j+n] < borrow; | ||||||||||||
1419 | u[j+n] -= Lo_32(borrow); | ||||||||||||
1420 | |||||||||||||
1421 | DEBUG_KNUTH(dbgs() << "KnuthDiv: after subtraction:")do {} while(false); | ||||||||||||
1422 | DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i])do {} while(false); | ||||||||||||
1423 | DEBUG_KNUTH(dbgs() << '\n')do {} while(false); | ||||||||||||
1424 | |||||||||||||
1425 | // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was | ||||||||||||
1426 | // negative, go to step D6; otherwise go on to step D7. | ||||||||||||
1427 | q[j] = Lo_32(qp); | ||||||||||||
1428 | if (isNeg) { | ||||||||||||
1429 | // D6. [Add back]. The probability that this step is necessary is very | ||||||||||||
1430 | // small, on the order of only 2/b. Make sure that test data accounts for | ||||||||||||
1431 | // this possibility. Decrease q[j] by 1 | ||||||||||||
1432 | q[j]--; | ||||||||||||
1433 | // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]). | ||||||||||||
1434 | // A carry will occur to the left of u[j+n], and it should be ignored | ||||||||||||
1435 | // since it cancels with the borrow that occurred in D4. | ||||||||||||
1436 | bool carry = false; | ||||||||||||
1437 | for (unsigned i = 0; i < n; i++) { | ||||||||||||
1438 | uint32_t limit = std::min(u[j+i],v[i]); | ||||||||||||
1439 | u[j+i] += v[i] + carry; | ||||||||||||
1440 | carry = u[j+i] < limit || (carry && u[j+i] == limit); | ||||||||||||
1441 | } | ||||||||||||
1442 | u[j+n] += carry; | ||||||||||||
1443 | } | ||||||||||||
1444 | DEBUG_KNUTH(dbgs() << "KnuthDiv: after correction:")do {} while(false); | ||||||||||||
1445 | DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i])do {} while(false); | ||||||||||||
1446 | DEBUG_KNUTH(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n')do {} while(false); | ||||||||||||
1447 | |||||||||||||
1448 | // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3. | ||||||||||||
1449 | } while (--j >= 0); | ||||||||||||
1450 | |||||||||||||
1451 | DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient:")do {} while(false); | ||||||||||||
1452 | DEBUG_KNUTH(for (int i = m; i >= 0; i--) dbgs() << " " << q[i])do {} while(false); | ||||||||||||
1453 | DEBUG_KNUTH(dbgs() << '\n')do {} while(false); | ||||||||||||
1454 | |||||||||||||
1455 | // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired | ||||||||||||
1456 | // remainder may be obtained by dividing u[...] by d. If r is non-null we | ||||||||||||
1457 | // compute the remainder (urem uses this). | ||||||||||||
1458 | if (r) { | ||||||||||||
1459 | // The value d is expressed by the "shift" value above since we avoided | ||||||||||||
1460 | // multiplication by d by using a shift left. So, all we have to do is | ||||||||||||
1461 | // shift right here. | ||||||||||||
1462 | if (shift) { | ||||||||||||
1463 | uint32_t carry = 0; | ||||||||||||
1464 | DEBUG_KNUTH(dbgs() << "KnuthDiv: remainder:")do {} while(false); | ||||||||||||
1465 | for (int i = n-1; i >= 0; i--) { | ||||||||||||
1466 | r[i] = (u[i] >> shift) | carry; | ||||||||||||
1467 | carry = u[i] << (32 - shift); | ||||||||||||
1468 | DEBUG_KNUTH(dbgs() << " " << r[i])do {} while(false); | ||||||||||||
1469 | } | ||||||||||||
1470 | } else { | ||||||||||||
1471 | for (int i = n-1; i >= 0; i--) { | ||||||||||||
1472 | r[i] = u[i]; | ||||||||||||
1473 | DEBUG_KNUTH(dbgs() << " " << r[i])do {} while(false); | ||||||||||||
1474 | } | ||||||||||||
1475 | } | ||||||||||||
1476 | DEBUG_KNUTH(dbgs() << '\n')do {} while(false); | ||||||||||||
1477 | } | ||||||||||||
1478 | DEBUG_KNUTH(dbgs() << '\n')do {} while(false); | ||||||||||||
1479 | } | ||||||||||||
1480 | |||||||||||||
1481 | void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS, | ||||||||||||
1482 | unsigned rhsWords, WordType *Quotient, WordType *Remainder) { | ||||||||||||
1483 | assert(lhsWords >= rhsWords && "Fractional result")((void)0); | ||||||||||||
1484 | |||||||||||||
1485 | // First, compose the values into an array of 32-bit words instead of | ||||||||||||
1486 | // 64-bit words. This is a necessity of both the "short division" algorithm | ||||||||||||
1487 | // and the Knuth "classical algorithm" which requires there to be native | ||||||||||||
1488 | // operations for +, -, and * on an m bit value with an m*2 bit result. We | ||||||||||||
1489 | // can't use 64-bit operands here because we don't have native results of | ||||||||||||
1490 | // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't | ||||||||||||
1491 | // work on large-endian machines. | ||||||||||||
1492 | unsigned n = rhsWords * 2; | ||||||||||||
1493 | unsigned m = (lhsWords * 2) - n; | ||||||||||||
1494 | |||||||||||||
1495 | // Allocate space for the temporary values we need either on the stack, if | ||||||||||||
1496 | // it will fit, or on the heap if it won't. | ||||||||||||
1497 | uint32_t SPACE[128]; | ||||||||||||
1498 | uint32_t *U = nullptr; | ||||||||||||
1499 | uint32_t *V = nullptr; | ||||||||||||
1500 | uint32_t *Q = nullptr; | ||||||||||||
1501 | uint32_t *R = nullptr; | ||||||||||||
1502 | if ((Remainder?4:3)*n+2*m+1 <= 128) { | ||||||||||||
1503 | U = &SPACE[0]; | ||||||||||||
1504 | V = &SPACE[m+n+1]; | ||||||||||||
1505 | Q = &SPACE[(m+n+1) + n]; | ||||||||||||
1506 | if (Remainder) | ||||||||||||
1507 | R = &SPACE[(m+n+1) + n + (m+n)]; | ||||||||||||
1508 | } else { | ||||||||||||
1509 | U = new uint32_t[m + n + 1]; | ||||||||||||
1510 | V = new uint32_t[n]; | ||||||||||||
1511 | Q = new uint32_t[m+n]; | ||||||||||||
1512 | if (Remainder) | ||||||||||||
1513 | R = new uint32_t[n]; | ||||||||||||
1514 | } | ||||||||||||
1515 | |||||||||||||
1516 | // Initialize the dividend | ||||||||||||
1517 | memset(U, 0, (m+n+1)*sizeof(uint32_t)); | ||||||||||||
1518 | for (unsigned i = 0; i < lhsWords; ++i) { | ||||||||||||
1519 | uint64_t tmp = LHS[i]; | ||||||||||||
1520 | U[i * 2] = Lo_32(tmp); | ||||||||||||
1521 | U[i * 2 + 1] = Hi_32(tmp); | ||||||||||||
1522 | } | ||||||||||||
1523 | U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm. | ||||||||||||
1524 | |||||||||||||
1525 | // Initialize the divisor | ||||||||||||
1526 | memset(V, 0, (n)*sizeof(uint32_t)); | ||||||||||||
1527 | for (unsigned i = 0; i < rhsWords; ++i) { | ||||||||||||
1528 | uint64_t tmp = RHS[i]; | ||||||||||||
1529 | V[i * 2] = Lo_32(tmp); | ||||||||||||
1530 | V[i * 2 + 1] = Hi_32(tmp); | ||||||||||||
1531 | } | ||||||||||||
1532 | |||||||||||||
1533 | // initialize the quotient and remainder | ||||||||||||
1534 | memset(Q, 0, (m+n) * sizeof(uint32_t)); | ||||||||||||
1535 | if (Remainder) | ||||||||||||
1536 | memset(R, 0, n * sizeof(uint32_t)); | ||||||||||||
1537 | |||||||||||||
1538 | // Now, adjust m and n for the Knuth division. n is the number of words in | ||||||||||||
1539 | // the divisor. m is the number of words by which the dividend exceeds the | ||||||||||||
1540 | // divisor (i.e. m+n is the length of the dividend). These sizes must not | ||||||||||||
1541 | // contain any zero words or the Knuth algorithm fails. | ||||||||||||
1542 | for (unsigned i = n; i > 0 && V[i-1] == 0; i--) { | ||||||||||||
1543 | n--; | ||||||||||||
1544 | m++; | ||||||||||||
1545 | } | ||||||||||||
1546 | for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--) | ||||||||||||
1547 | m--; | ||||||||||||
1548 | |||||||||||||
1549 | // If we're left with only a single word for the divisor, Knuth doesn't work | ||||||||||||
1550 | // so we implement the short division algorithm here. This is much simpler | ||||||||||||
1551 | // and faster because we are certain that we can divide a 64-bit quantity | ||||||||||||
1552 | // by a 32-bit quantity at hardware speed and short division is simply a | ||||||||||||
1553 | // series of such operations. This is just like doing short division but we | ||||||||||||
1554 | // are using base 2^32 instead of base 10. | ||||||||||||
1555 | assert(n != 0 && "Divide by zero?")((void)0); | ||||||||||||
1556 | if (n == 1) { | ||||||||||||
1557 | uint32_t divisor = V[0]; | ||||||||||||
1558 | uint32_t remainder = 0; | ||||||||||||
1559 | for (int i = m; i >= 0; i--) { | ||||||||||||
1560 | uint64_t partial_dividend = Make_64(remainder, U[i]); | ||||||||||||
1561 | if (partial_dividend == 0) { | ||||||||||||
1562 | Q[i] = 0; | ||||||||||||
1563 | remainder = 0; | ||||||||||||
1564 | } else if (partial_dividend < divisor) { | ||||||||||||
1565 | Q[i] = 0; | ||||||||||||
1566 | remainder = Lo_32(partial_dividend); | ||||||||||||
1567 | } else if (partial_dividend == divisor) { | ||||||||||||
1568 | Q[i] = 1; | ||||||||||||
1569 | remainder = 0; | ||||||||||||
1570 | } else { | ||||||||||||
1571 | Q[i] = Lo_32(partial_dividend / divisor); | ||||||||||||
1572 | remainder = Lo_32(partial_dividend - (Q[i] * divisor)); | ||||||||||||
1573 | } | ||||||||||||
1574 | } | ||||||||||||
1575 | if (R) | ||||||||||||
1576 | R[0] = remainder; | ||||||||||||
1577 | } else { | ||||||||||||
1578 | // Now we're ready to invoke the Knuth classical divide algorithm. In this | ||||||||||||
1579 | // case n > 1. | ||||||||||||
1580 | KnuthDiv(U, V, Q, R, m, n); | ||||||||||||
1581 | } | ||||||||||||
1582 | |||||||||||||
1583 | // If the caller wants the quotient | ||||||||||||
1584 | if (Quotient) { | ||||||||||||
1585 | for (unsigned i = 0; i < lhsWords; ++i) | ||||||||||||
1586 | Quotient[i] = Make_64(Q[i*2+1], Q[i*2]); | ||||||||||||
1587 | } | ||||||||||||
1588 | |||||||||||||
1589 | // If the caller wants the remainder | ||||||||||||
1590 | if (Remainder) { | ||||||||||||
1591 | for (unsigned i = 0; i < rhsWords; ++i) | ||||||||||||
1592 | Remainder[i] = Make_64(R[i*2+1], R[i*2]); | ||||||||||||
1593 | } | ||||||||||||
1594 | |||||||||||||
1595 | // Clean up the memory we allocated. | ||||||||||||
1596 | if (U != &SPACE[0]) { | ||||||||||||
1597 | delete [] U; | ||||||||||||
1598 | delete [] V; | ||||||||||||
1599 | delete [] Q; | ||||||||||||
1600 | delete [] R; | ||||||||||||
1601 | } | ||||||||||||
1602 | } | ||||||||||||
1603 | |||||||||||||
1604 | APInt APInt::udiv(const APInt &RHS) const { | ||||||||||||
1605 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((void)0); | ||||||||||||
1606 | |||||||||||||
1607 | // First, deal with the easy case | ||||||||||||
1608 | if (isSingleWord()) { | ||||||||||||
1609 | assert(RHS.U.VAL != 0 && "Divide by zero?")((void)0); | ||||||||||||
1610 | return APInt(BitWidth, U.VAL / RHS.U.VAL); | ||||||||||||
1611 | } | ||||||||||||
1612 | |||||||||||||
1613 | // Get some facts about the LHS and RHS number of bits and words | ||||||||||||
1614 | unsigned lhsWords = getNumWords(getActiveBits()); | ||||||||||||
1615 | unsigned rhsBits = RHS.getActiveBits(); | ||||||||||||
1616 | unsigned rhsWords = getNumWords(rhsBits); | ||||||||||||
1617 | assert(rhsWords && "Divided by zero???")((void)0); | ||||||||||||
1618 | |||||||||||||
1619 | // Deal with some degenerate cases | ||||||||||||
1620 | if (!lhsWords) | ||||||||||||
1621 | // 0 / X ===> 0 | ||||||||||||
1622 | return APInt(BitWidth, 0); | ||||||||||||
1623 | if (rhsBits == 1) | ||||||||||||
1624 | // X / 1 ===> X | ||||||||||||
1625 | return *this; | ||||||||||||
1626 | if (lhsWords < rhsWords || this->ult(RHS)) | ||||||||||||
1627 | // X / Y ===> 0, iff X < Y | ||||||||||||
1628 | return APInt(BitWidth, 0); | ||||||||||||
1629 | if (*this == RHS) | ||||||||||||
1630 | // X / X ===> 1 | ||||||||||||
1631 | return APInt(BitWidth, 1); | ||||||||||||
1632 | if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1. | ||||||||||||
1633 | // All high words are zero, just use native divide | ||||||||||||
1634 | return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]); | ||||||||||||
1635 | |||||||||||||
1636 | // We have to compute it the hard way. Invoke the Knuth divide algorithm. | ||||||||||||
1637 | APInt Quotient(BitWidth, 0); // to hold result. | ||||||||||||
1638 | divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr); | ||||||||||||
1639 | return Quotient; | ||||||||||||
1640 | } | ||||||||||||
1641 | |||||||||||||
1642 | APInt APInt::udiv(uint64_t RHS) const { | ||||||||||||
1643 | assert(RHS != 0 && "Divide by zero?")((void)0); | ||||||||||||
1644 | |||||||||||||
1645 | // First, deal with the easy case | ||||||||||||
1646 | if (isSingleWord()) | ||||||||||||
1647 | return APInt(BitWidth, U.VAL / RHS); | ||||||||||||
1648 | |||||||||||||
1649 | // Get some facts about the LHS words. | ||||||||||||
1650 | unsigned lhsWords = getNumWords(getActiveBits()); | ||||||||||||
1651 | |||||||||||||
1652 | // Deal with some degenerate cases | ||||||||||||
1653 | if (!lhsWords) | ||||||||||||
1654 | // 0 / X ===> 0 | ||||||||||||
1655 | return APInt(BitWidth, 0); | ||||||||||||
1656 | if (RHS == 1) | ||||||||||||
1657 | // X / 1 ===> X | ||||||||||||
1658 | return *this; | ||||||||||||
1659 | if (this->ult(RHS)) | ||||||||||||
1660 | // X / Y ===> 0, iff X < Y | ||||||||||||
1661 | return APInt(BitWidth, 0); | ||||||||||||
1662 | if (*this == RHS) | ||||||||||||
1663 | // X / X ===> 1 | ||||||||||||
1664 | return APInt(BitWidth, 1); | ||||||||||||
1665 | if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1. | ||||||||||||
1666 | // All high words are zero, just use native divide | ||||||||||||
1667 | return APInt(BitWidth, this->U.pVal[0] / RHS); | ||||||||||||
1668 | |||||||||||||
1669 | // We have to compute it the hard way. Invoke the Knuth divide algorithm. | ||||||||||||
1670 | APInt Quotient(BitWidth, 0); // to hold result. | ||||||||||||
1671 | divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr); | ||||||||||||
1672 | return Quotient; | ||||||||||||
1673 | } | ||||||||||||
1674 | |||||||||||||
1675 | APInt APInt::sdiv(const APInt &RHS) const { | ||||||||||||
1676 | if (isNegative()) { | ||||||||||||
1677 | if (RHS.isNegative()) | ||||||||||||
1678 | return (-(*this)).udiv(-RHS); | ||||||||||||
1679 | return -((-(*this)).udiv(RHS)); | ||||||||||||
1680 | } | ||||||||||||
1681 | if (RHS.isNegative()) | ||||||||||||
1682 | return -(this->udiv(-RHS)); | ||||||||||||
1683 | return this->udiv(RHS); | ||||||||||||
1684 | } | ||||||||||||
1685 | |||||||||||||
1686 | APInt APInt::sdiv(int64_t RHS) const { | ||||||||||||
1687 | if (isNegative()) { | ||||||||||||
1688 | if (RHS < 0) | ||||||||||||
1689 | return (-(*this)).udiv(-RHS); | ||||||||||||
1690 | return -((-(*this)).udiv(RHS)); | ||||||||||||
1691 | } | ||||||||||||
1692 | if (RHS < 0) | ||||||||||||
1693 | return -(this->udiv(-RHS)); | ||||||||||||
1694 | return this->udiv(RHS); | ||||||||||||
1695 | } | ||||||||||||
1696 | |||||||||||||
1697 | APInt APInt::urem(const APInt &RHS) const { | ||||||||||||
1698 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((void)0); | ||||||||||||
1699 | if (isSingleWord()) { | ||||||||||||
1700 | assert(RHS.U.VAL != 0 && "Remainder by zero?")((void)0); | ||||||||||||
1701 | return APInt(BitWidth, U.VAL % RHS.U.VAL); | ||||||||||||
1702 | } | ||||||||||||
1703 | |||||||||||||
1704 | // Get some facts about the LHS | ||||||||||||
1705 | unsigned lhsWords = getNumWords(getActiveBits()); | ||||||||||||
1706 | |||||||||||||
1707 | // Get some facts about the RHS | ||||||||||||
1708 | unsigned rhsBits = RHS.getActiveBits(); | ||||||||||||
1709 | unsigned rhsWords = getNumWords(rhsBits); | ||||||||||||
1710 | assert(rhsWords && "Performing remainder operation by zero ???")((void)0); | ||||||||||||
1711 | |||||||||||||
1712 | // Check the degenerate cases | ||||||||||||
1713 | if (lhsWords == 0) | ||||||||||||
1714 | // 0 % Y ===> 0 | ||||||||||||
1715 | return APInt(BitWidth, 0); | ||||||||||||
1716 | if (rhsBits == 1) | ||||||||||||
1717 | // X % 1 ===> 0 | ||||||||||||
1718 | return APInt(BitWidth, 0); | ||||||||||||
1719 | if (lhsWords < rhsWords || this->ult(RHS)) | ||||||||||||
1720 | // X % Y ===> X, iff X < Y | ||||||||||||
1721 | return *this; | ||||||||||||
1722 | if (*this == RHS) | ||||||||||||
1723 | // X % X == 0; | ||||||||||||
1724 | return APInt(BitWidth, 0); | ||||||||||||
1725 | if (lhsWords == 1) | ||||||||||||
1726 | // All high words are zero, just use native remainder | ||||||||||||
1727 | return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]); | ||||||||||||
1728 | |||||||||||||
1729 | // We have to compute it the hard way. Invoke the Knuth divide algorithm. | ||||||||||||
1730 | APInt Remainder(BitWidth, 0); | ||||||||||||
1731 | divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal); | ||||||||||||
1732 | return Remainder; | ||||||||||||
1733 | } | ||||||||||||
1734 | |||||||||||||
1735 | uint64_t APInt::urem(uint64_t RHS) const { | ||||||||||||
1736 | assert(RHS != 0 && "Remainder by zero?")((void)0); | ||||||||||||
1737 | |||||||||||||
1738 | if (isSingleWord()) | ||||||||||||
1739 | return U.VAL % RHS; | ||||||||||||
1740 | |||||||||||||
1741 | // Get some facts about the LHS | ||||||||||||
1742 | unsigned lhsWords = getNumWords(getActiveBits()); | ||||||||||||
1743 | |||||||||||||
1744 | // Check the degenerate cases | ||||||||||||
1745 | if (lhsWords == 0) | ||||||||||||
1746 | // 0 % Y ===> 0 | ||||||||||||
1747 | return 0; | ||||||||||||
1748 | if (RHS == 1) | ||||||||||||
1749 | // X % 1 ===> 0 | ||||||||||||
1750 | return 0; | ||||||||||||
1751 | if (this->ult(RHS)) | ||||||||||||
1752 | // X % Y ===> X, iff X < Y | ||||||||||||
1753 | return getZExtValue(); | ||||||||||||
1754 | if (*this == RHS) | ||||||||||||
1755 | // X % X == 0; | ||||||||||||
1756 | return 0; | ||||||||||||
1757 | if (lhsWords == 1) | ||||||||||||
1758 | // All high words are zero, just use native remainder | ||||||||||||
1759 | return U.pVal[0] % RHS; | ||||||||||||
1760 | |||||||||||||
1761 | // We have to compute it the hard way. Invoke the Knuth divide algorithm. | ||||||||||||
1762 | uint64_t Remainder; | ||||||||||||
1763 | divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder); | ||||||||||||
1764 | return Remainder; | ||||||||||||
1765 | } | ||||||||||||
1766 | |||||||||||||
1767 | APInt APInt::srem(const APInt &RHS) const { | ||||||||||||
1768 | if (isNegative()) { | ||||||||||||
1769 | if (RHS.isNegative()) | ||||||||||||
1770 | return -((-(*this)).urem(-RHS)); | ||||||||||||
1771 | return -((-(*this)).urem(RHS)); | ||||||||||||
1772 | } | ||||||||||||
1773 | if (RHS.isNegative()) | ||||||||||||
1774 | return this->urem(-RHS); | ||||||||||||
1775 | return this->urem(RHS); | ||||||||||||
1776 | } | ||||||||||||
1777 | |||||||||||||
1778 | int64_t APInt::srem(int64_t RHS) const { | ||||||||||||
1779 | if (isNegative()) { | ||||||||||||
1780 | if (RHS < 0) | ||||||||||||
1781 | return -((-(*this)).urem(-RHS)); | ||||||||||||
1782 | return -((-(*this)).urem(RHS)); | ||||||||||||
1783 | } | ||||||||||||
1784 | if (RHS < 0) | ||||||||||||
1785 | return this->urem(-RHS); | ||||||||||||
1786 | return this->urem(RHS); | ||||||||||||
1787 | } | ||||||||||||
1788 | |||||||||||||
1789 | void APInt::udivrem(const APInt &LHS, const APInt &RHS, | ||||||||||||
1790 | APInt &Quotient, APInt &Remainder) { | ||||||||||||
1791 | assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same")((void)0); | ||||||||||||
1792 | unsigned BitWidth = LHS.BitWidth; | ||||||||||||
1793 | |||||||||||||
1794 | // First, deal with the easy case | ||||||||||||
1795 | if (LHS.isSingleWord()) { | ||||||||||||
1796 | assert(RHS.U.VAL != 0 && "Divide by zero?")((void)0); | ||||||||||||
1797 | uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL; | ||||||||||||
1798 | uint64_t RemVal = LHS.U.VAL % RHS.U.VAL; | ||||||||||||
1799 | Quotient = APInt(BitWidth, QuotVal); | ||||||||||||
1800 | Remainder = APInt(BitWidth, RemVal); | ||||||||||||
1801 | return; | ||||||||||||
1802 | } | ||||||||||||
1803 | |||||||||||||
1804 | // Get some size facts about the dividend and divisor | ||||||||||||
1805 | unsigned lhsWords = getNumWords(LHS.getActiveBits()); | ||||||||||||
1806 | unsigned rhsBits = RHS.getActiveBits(); | ||||||||||||
1807 | unsigned rhsWords = getNumWords(rhsBits); | ||||||||||||
1808 | assert(rhsWords && "Performing divrem operation by zero ???")((void)0); | ||||||||||||
1809 | |||||||||||||
1810 | // Check the degenerate cases | ||||||||||||
1811 | if (lhsWords == 0) { | ||||||||||||
1812 | Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0 | ||||||||||||
1813 | Remainder = APInt(BitWidth, 0); // 0 % Y ===> 0 | ||||||||||||
1814 | return; | ||||||||||||
1815 | } | ||||||||||||
1816 | |||||||||||||
1817 | if (rhsBits == 1) { | ||||||||||||
1818 | Quotient = LHS; // X / 1 ===> X | ||||||||||||
1819 | Remainder = APInt(BitWidth, 0); // X % 1 ===> 0 | ||||||||||||
1820 | } | ||||||||||||
1821 | |||||||||||||
1822 | if (lhsWords < rhsWords || LHS.ult(RHS)) { | ||||||||||||
1823 | Remainder = LHS; // X % Y ===> X, iff X < Y | ||||||||||||
1824 | Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y | ||||||||||||
1825 | return; | ||||||||||||
1826 | } | ||||||||||||
1827 | |||||||||||||
1828 | if (LHS == RHS) { | ||||||||||||
1829 | Quotient = APInt(BitWidth, 1); // X / X ===> 1 | ||||||||||||
1830 | Remainder = APInt(BitWidth, 0); // X % X ===> 0; | ||||||||||||
1831 | return; | ||||||||||||
1832 | } | ||||||||||||
1833 | |||||||||||||
1834 | // Make sure there is enough space to hold the results. | ||||||||||||
1835 | // NOTE: This assumes that reallocate won't affect any bits if it doesn't | ||||||||||||
1836 | // change the size. This is necessary if Quotient or Remainder is aliased | ||||||||||||
1837 | // with LHS or RHS. | ||||||||||||
1838 | Quotient.reallocate(BitWidth); | ||||||||||||
1839 | Remainder.reallocate(BitWidth); | ||||||||||||
1840 | |||||||||||||
1841 | if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1. | ||||||||||||
1842 | // There is only one word to consider so use the native versions. | ||||||||||||
1843 | uint64_t lhsValue = LHS.U.pVal[0]; | ||||||||||||
1844 | uint64_t rhsValue = RHS.U.pVal[0]; | ||||||||||||
1845 | Quotient = lhsValue / rhsValue; | ||||||||||||
1846 | Remainder = lhsValue % rhsValue; | ||||||||||||
1847 | return; | ||||||||||||
1848 | } | ||||||||||||
1849 | |||||||||||||
1850 | // Okay, lets do it the long way | ||||||||||||
1851 | divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, | ||||||||||||
1852 | Remainder.U.pVal); | ||||||||||||
1853 | // Clear the rest of the Quotient and Remainder. | ||||||||||||
1854 | std::memset(Quotient.U.pVal + lhsWords, 0, | ||||||||||||
1855 | (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE); | ||||||||||||
1856 | std::memset(Remainder.U.pVal + rhsWords, 0, | ||||||||||||
1857 | (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE); | ||||||||||||
1858 | } | ||||||||||||
1859 | |||||||||||||
1860 | void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient, | ||||||||||||
1861 | uint64_t &Remainder) { | ||||||||||||
1862 | assert(RHS != 0 && "Divide by zero?")((void)0); | ||||||||||||
1863 | unsigned BitWidth = LHS.BitWidth; | ||||||||||||
1864 | |||||||||||||
1865 | // First, deal with the easy case | ||||||||||||
1866 | if (LHS.isSingleWord()) { | ||||||||||||
1867 | uint64_t QuotVal = LHS.U.VAL / RHS; | ||||||||||||
1868 | Remainder = LHS.U.VAL % RHS; | ||||||||||||
1869 | Quotient = APInt(BitWidth, QuotVal); | ||||||||||||
1870 | return; | ||||||||||||
1871 | } | ||||||||||||
1872 | |||||||||||||
1873 | // Get some size facts about the dividend and divisor | ||||||||||||
1874 | unsigned lhsWords = getNumWords(LHS.getActiveBits()); | ||||||||||||
1875 | |||||||||||||
1876 | // Check the degenerate cases | ||||||||||||
1877 | if (lhsWords == 0) { | ||||||||||||
1878 | Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0 | ||||||||||||
1879 | Remainder = 0; // 0 % Y ===> 0 | ||||||||||||
1880 | return; | ||||||||||||
1881 | } | ||||||||||||
1882 | |||||||||||||
1883 | if (RHS
| ||||||||||||
1884 | Quotient = LHS; // X / 1 ===> X | ||||||||||||
1885 | Remainder = 0; // X % 1 ===> 0 | ||||||||||||
1886 | return; | ||||||||||||
1887 | } | ||||||||||||
1888 | |||||||||||||
1889 | if (LHS.ult(RHS)) { | ||||||||||||
1890 | Remainder = LHS.getZExtValue(); // X % Y ===> X, iff X < Y | ||||||||||||
1891 | Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y | ||||||||||||
1892 | return; | ||||||||||||
1893 | } | ||||||||||||
1894 | |||||||||||||
1895 | if (LHS == RHS) { | ||||||||||||
1896 | Quotient = APInt(BitWidth, 1); // X / X ===> 1 | ||||||||||||
1897 | Remainder = 0; // X % X ===> 0; | ||||||||||||
1898 | return; | ||||||||||||
1899 | } | ||||||||||||
1900 | |||||||||||||
1901 | // Make sure there is enough space to hold the results. | ||||||||||||
1902 | // NOTE: This assumes that reallocate won't affect any bits if it doesn't | ||||||||||||
1903 | // change the size. This is necessary if Quotient is aliased with LHS. | ||||||||||||
1904 | Quotient.reallocate(BitWidth); | ||||||||||||
1905 | |||||||||||||
1906 | if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1. | ||||||||||||
1907 | // There is only one word to consider so use the native versions. | ||||||||||||
1908 | uint64_t lhsValue = LHS.U.pVal[0]; | ||||||||||||
1909 | Quotient = lhsValue / RHS; | ||||||||||||
1910 | Remainder = lhsValue % RHS; | ||||||||||||
1911 | return; | ||||||||||||
1912 | } | ||||||||||||
1913 | |||||||||||||
1914 | // Okay, lets do it the long way | ||||||||||||
1915 | divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder); | ||||||||||||
| |||||||||||||
1916 | // Clear the rest of the Quotient. | ||||||||||||
1917 | std::memset(Quotient.U.pVal + lhsWords, 0, | ||||||||||||
1918 | (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE); | ||||||||||||
1919 | } | ||||||||||||
1920 | |||||||||||||
1921 | void APInt::sdivrem(const APInt &LHS, const APInt &RHS, | ||||||||||||
1922 | APInt &Quotient, APInt &Remainder) { | ||||||||||||
1923 | if (LHS.isNegative()) { | ||||||||||||
1924 | if (RHS.isNegative()) | ||||||||||||
1925 | APInt::udivrem(-LHS, -RHS, Quotient, Remainder); | ||||||||||||
1926 | else { | ||||||||||||
1927 | APInt::udivrem(-LHS, RHS, Quotient, Remainder); | ||||||||||||
1928 | Quotient.negate(); | ||||||||||||
1929 | } | ||||||||||||
1930 | Remainder.negate(); | ||||||||||||
1931 | } else if (RHS.isNegative()) { | ||||||||||||
1932 | APInt::udivrem(LHS, -RHS, Quotient, Remainder); | ||||||||||||
1933 | Quotient.negate(); | ||||||||||||
1934 | } else { | ||||||||||||
1935 | APInt::udivrem(LHS, RHS, Quotient, Remainder); | ||||||||||||
1936 | } | ||||||||||||
1937 | } | ||||||||||||
1938 | |||||||||||||
1939 | void APInt::sdivrem(const APInt &LHS, int64_t RHS, | ||||||||||||
1940 | APInt &Quotient, int64_t &Remainder) { | ||||||||||||
1941 | uint64_t R = Remainder; | ||||||||||||
1942 | if (LHS.isNegative()) { | ||||||||||||
1943 | if (RHS < 0) | ||||||||||||
1944 | APInt::udivrem(-LHS, -RHS, Quotient, R); | ||||||||||||
1945 | else { | ||||||||||||
1946 | APInt::udivrem(-LHS, RHS, Quotient, R); | ||||||||||||
1947 | Quotient.negate(); | ||||||||||||
1948 | } | ||||||||||||
1949 | R = -R; | ||||||||||||
1950 | } else if (RHS < 0) { | ||||||||||||
1951 | APInt::udivrem(LHS, -RHS, Quotient, R); | ||||||||||||
1952 | Quotient.negate(); | ||||||||||||
1953 | } else { | ||||||||||||
1954 | APInt::udivrem(LHS, RHS, Quotient, R); | ||||||||||||
1955 | } | ||||||||||||
1956 | Remainder = R; | ||||||||||||
1957 | } | ||||||||||||
1958 | |||||||||||||
1959 | APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const { | ||||||||||||
1960 | APInt Res = *this+RHS; | ||||||||||||
1961 | Overflow = isNonNegative() == RHS.isNonNegative() && | ||||||||||||
1962 | Res.isNonNegative() != isNonNegative(); | ||||||||||||
1963 | return Res; | ||||||||||||
1964 | } | ||||||||||||
1965 | |||||||||||||
1966 | APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const { | ||||||||||||
1967 | APInt Res = *this+RHS; | ||||||||||||
1968 | Overflow = Res.ult(RHS); | ||||||||||||
1969 | return Res; | ||||||||||||
1970 | } | ||||||||||||
1971 | |||||||||||||
1972 | APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const { | ||||||||||||
1973 | APInt Res = *this - RHS; | ||||||||||||
1974 | Overflow = isNonNegative() != RHS.isNonNegative() && | ||||||||||||
1975 | Res.isNonNegative() != isNonNegative(); | ||||||||||||
1976 | return Res; | ||||||||||||
1977 | } | ||||||||||||
1978 | |||||||||||||
1979 | APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const { | ||||||||||||
1980 | APInt Res = *this-RHS; | ||||||||||||
1981 | Overflow = Res.ugt(*this); | ||||||||||||
1982 | return Res; | ||||||||||||
1983 | } | ||||||||||||
1984 | |||||||||||||
1985 | APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const { | ||||||||||||
1986 | // MININT/-1 --> overflow. | ||||||||||||
1987 | Overflow = isMinSignedValue() && RHS.isAllOnesValue(); | ||||||||||||
1988 | return sdiv(RHS); | ||||||||||||
1989 | } | ||||||||||||
1990 | |||||||||||||
1991 | APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const { | ||||||||||||
1992 | APInt Res = *this * RHS; | ||||||||||||
1993 | |||||||||||||
1994 | if (*this != 0 && RHS != 0) | ||||||||||||
1995 | Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS; | ||||||||||||
1996 | else | ||||||||||||
1997 | Overflow = false; | ||||||||||||
1998 | return Res; | ||||||||||||
1999 | } | ||||||||||||
2000 | |||||||||||||
2001 | APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const { | ||||||||||||
2002 | if (countLeadingZeros() + RHS.countLeadingZeros() + 2 <= BitWidth) { | ||||||||||||
2003 | Overflow = true; | ||||||||||||
2004 | return *this * RHS; | ||||||||||||
2005 | } | ||||||||||||
2006 | |||||||||||||
2007 | APInt Res = lshr(1) * RHS; | ||||||||||||
2008 | Overflow = Res.isNegative(); | ||||||||||||
2009 | Res <<= 1; | ||||||||||||
2010 | if ((*this)[0]) { | ||||||||||||
2011 | Res += RHS; | ||||||||||||
2012 | if (Res.ult(RHS)) | ||||||||||||
2013 | Overflow = true; | ||||||||||||
2014 | } | ||||||||||||
2015 | return Res; | ||||||||||||
2016 | } | ||||||||||||
2017 | |||||||||||||
2018 | APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const { | ||||||||||||
2019 | Overflow = ShAmt.uge(getBitWidth()); | ||||||||||||
2020 | if (Overflow) | ||||||||||||
2021 | return APInt(BitWidth, 0); | ||||||||||||
2022 | |||||||||||||
2023 | if (isNonNegative()) // Don't allow sign change. | ||||||||||||
2024 | Overflow = ShAmt.uge(countLeadingZeros()); | ||||||||||||
2025 | else | ||||||||||||
2026 | Overflow = ShAmt.uge(countLeadingOnes()); | ||||||||||||
2027 | |||||||||||||
2028 | return *this << ShAmt; | ||||||||||||
2029 | } | ||||||||||||
2030 | |||||||||||||
2031 | APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const { | ||||||||||||
2032 | Overflow = ShAmt.uge(getBitWidth()); | ||||||||||||
2033 | if (Overflow) | ||||||||||||
2034 | return APInt(BitWidth, 0); | ||||||||||||
2035 | |||||||||||||
2036 | Overflow = ShAmt.ugt(countLeadingZeros()); | ||||||||||||
2037 | |||||||||||||
2038 | return *this << ShAmt; | ||||||||||||
2039 | } | ||||||||||||
2040 | |||||||||||||
2041 | APInt APInt::sadd_sat(const APInt &RHS) const { | ||||||||||||
2042 | bool Overflow; | ||||||||||||
2043 | APInt Res = sadd_ov(RHS, Overflow); | ||||||||||||
2044 | if (!Overflow) | ||||||||||||
2045 | return Res; | ||||||||||||
2046 | |||||||||||||
2047 | return isNegative() ? APInt::getSignedMinValue(BitWidth) | ||||||||||||
2048 | : APInt::getSignedMaxValue(BitWidth); | ||||||||||||
2049 | } | ||||||||||||
2050 | |||||||||||||
2051 | APInt APInt::uadd_sat(const APInt &RHS) const { | ||||||||||||
2052 | bool Overflow; | ||||||||||||
2053 | APInt Res = uadd_ov(RHS, Overflow); | ||||||||||||
2054 | if (!Overflow) | ||||||||||||
2055 | return Res; | ||||||||||||
2056 | |||||||||||||
2057 | return APInt::getMaxValue(BitWidth); | ||||||||||||
2058 | } | ||||||||||||
2059 | |||||||||||||
2060 | APInt APInt::ssub_sat(const APInt &RHS) const { | ||||||||||||
2061 | bool Overflow; | ||||||||||||
2062 | APInt Res = ssub_ov(RHS, Overflow); | ||||||||||||
2063 | if (!Overflow) | ||||||||||||
2064 | return Res; | ||||||||||||
2065 | |||||||||||||
2066 | return isNegative() ? APInt::getSignedMinValue(BitWidth) | ||||||||||||
2067 | : APInt::getSignedMaxValue(BitWidth); | ||||||||||||
2068 | } | ||||||||||||
2069 | |||||||||||||
2070 | APInt APInt::usub_sat(const APInt &RHS) const { | ||||||||||||
2071 | bool Overflow; | ||||||||||||
2072 | APInt Res = usub_ov(RHS, Overflow); | ||||||||||||
2073 | if (!Overflow) | ||||||||||||
2074 | return Res; | ||||||||||||
2075 | |||||||||||||
2076 | return APInt(BitWidth, 0); | ||||||||||||
2077 | } | ||||||||||||
2078 | |||||||||||||
2079 | APInt APInt::smul_sat(const APInt &RHS) const { | ||||||||||||
2080 | bool Overflow; | ||||||||||||
2081 | APInt Res = smul_ov(RHS, Overflow); | ||||||||||||
2082 | if (!Overflow) | ||||||||||||
2083 | return Res; | ||||||||||||
2084 | |||||||||||||
2085 | // The result is negative if one and only one of inputs is negative. | ||||||||||||
2086 | bool ResIsNegative = isNegative() ^ RHS.isNegative(); | ||||||||||||
2087 | |||||||||||||
2088 | return ResIsNegative ? APInt::getSignedMinValue(BitWidth) | ||||||||||||
2089 | : APInt::getSignedMaxValue(BitWidth); | ||||||||||||
2090 | } | ||||||||||||
2091 | |||||||||||||
2092 | APInt APInt::umul_sat(const APInt &RHS) const { | ||||||||||||
2093 | bool Overflow; | ||||||||||||
2094 | APInt Res = umul_ov(RHS, Overflow); | ||||||||||||
2095 | if (!Overflow) | ||||||||||||
2096 | return Res; | ||||||||||||
2097 | |||||||||||||
2098 | return APInt::getMaxValue(BitWidth); | ||||||||||||
2099 | } | ||||||||||||
2100 | |||||||||||||
2101 | APInt APInt::sshl_sat(const APInt &RHS) const { | ||||||||||||
2102 | bool Overflow; | ||||||||||||
2103 | APInt Res = sshl_ov(RHS, Overflow); | ||||||||||||
2104 | if (!Overflow) | ||||||||||||
2105 | return Res; | ||||||||||||
2106 | |||||||||||||
2107 | return isNegative() ? APInt::getSignedMinValue(BitWidth) | ||||||||||||
2108 | : APInt::getSignedMaxValue(BitWidth); | ||||||||||||
2109 | } | ||||||||||||
2110 | |||||||||||||
2111 | APInt APInt::ushl_sat(const APInt &RHS) const { | ||||||||||||
2112 | bool Overflow; | ||||||||||||
2113 | APInt Res = ushl_ov(RHS, Overflow); | ||||||||||||
2114 | if (!Overflow) | ||||||||||||
2115 | return Res; | ||||||||||||
2116 | |||||||||||||
2117 | return APInt::getMaxValue(BitWidth); | ||||||||||||
2118 | } | ||||||||||||
2119 | |||||||||||||
2120 | void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) { | ||||||||||||
2121 | // Check our assumptions here | ||||||||||||
2122 | assert(!str.empty() && "Invalid string length")((void)0); | ||||||||||||
2123 | assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||((void)0) | ||||||||||||
2124 | radix == 36) &&((void)0) | ||||||||||||
2125 | "Radix should be 2, 8, 10, 16, or 36!")((void)0); | ||||||||||||
2126 | |||||||||||||
2127 | StringRef::iterator p = str.begin(); | ||||||||||||
2128 | size_t slen = str.size(); | ||||||||||||
2129 | bool isNeg = *p == '-'; | ||||||||||||
2130 | if (*p == '-' || *p == '+') { | ||||||||||||
2131 | p++; | ||||||||||||
2132 | slen--; | ||||||||||||
2133 | assert(slen && "String is only a sign, needs a value.")((void)0); | ||||||||||||
2134 | } | ||||||||||||
2135 | assert((slen <= numbits || radix != 2) && "Insufficient bit width")((void)0); | ||||||||||||
2136 | assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width")((void)0); | ||||||||||||
2137 | assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width")((void)0); | ||||||||||||
2138 | assert((((slen-1)*64)/22 <= numbits || radix != 10) &&((void)0) | ||||||||||||
2139 | "Insufficient bit width")((void)0); | ||||||||||||
2140 | |||||||||||||
2141 | // Allocate memory if needed | ||||||||||||
2142 | if (isSingleWord()) | ||||||||||||
2143 | U.VAL = 0; | ||||||||||||
2144 | else | ||||||||||||
2145 | U.pVal = getClearedMemory(getNumWords()); | ||||||||||||
2146 | |||||||||||||
2147 | // Figure out if we can shift instead of multiply | ||||||||||||
2148 | unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0); | ||||||||||||
2149 | |||||||||||||
2150 | // Enter digit traversal loop | ||||||||||||
2151 | for (StringRef::iterator e = str.end(); p != e; ++p) { | ||||||||||||
2152 | unsigned digit = getDigit(*p, radix); | ||||||||||||
2153 | assert(digit < radix && "Invalid character in digit string")((void)0); | ||||||||||||
2154 | |||||||||||||
2155 | // Shift or multiply the value by the radix | ||||||||||||
2156 | if (slen > 1) { | ||||||||||||
2157 | if (shift) | ||||||||||||
2158 | *this <<= shift; | ||||||||||||
2159 | else | ||||||||||||
2160 | *this *= radix; | ||||||||||||
2161 | } | ||||||||||||
2162 | |||||||||||||
2163 | // Add in the digit we just interpreted | ||||||||||||
2164 | *this += digit; | ||||||||||||
2165 | } | ||||||||||||
2166 | // If its negative, put it in two's complement form | ||||||||||||
2167 | if (isNeg) | ||||||||||||
2168 | this->negate(); | ||||||||||||
2169 | } | ||||||||||||
2170 | |||||||||||||
2171 | void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix, | ||||||||||||
2172 | bool Signed, bool formatAsCLiteral) const { | ||||||||||||
2173 | assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||((void)0) | ||||||||||||
2174 | Radix == 36) &&((void)0) | ||||||||||||
2175 | "Radix should be 2, 8, 10, 16, or 36!")((void)0); | ||||||||||||
2176 | |||||||||||||
2177 | const char *Prefix = ""; | ||||||||||||
2178 | if (formatAsCLiteral
| ||||||||||||
2179 | switch (Radix) { | ||||||||||||
2180 | case 2: | ||||||||||||
2181 | // Binary literals are a non-standard extension added in gcc 4.3: | ||||||||||||
2182 | // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html | ||||||||||||
2183 | Prefix = "0b"; | ||||||||||||
2184 | break; | ||||||||||||
2185 | case 8: | ||||||||||||
2186 | Prefix = "0"; | ||||||||||||
2187 | break; | ||||||||||||
2188 | case 10: | ||||||||||||
2189 | break; // No prefix | ||||||||||||
2190 | case 16: | ||||||||||||
2191 | Prefix = "0x"; | ||||||||||||
2192 | break; | ||||||||||||
2193 | default: | ||||||||||||
2194 | llvm_unreachable("Invalid radix!")__builtin_unreachable(); | ||||||||||||
2195 | } | ||||||||||||
2196 | } | ||||||||||||
2197 | |||||||||||||
2198 | // First, check for a zero value and just short circuit the logic below. | ||||||||||||
2199 | if (*this == 0) { | ||||||||||||
2200 | while (*Prefix) { | ||||||||||||
2201 | Str.push_back(*Prefix); | ||||||||||||
2202 | ++Prefix; | ||||||||||||
2203 | }; | ||||||||||||
2204 | Str.push_back('0'); | ||||||||||||
2205 | return; | ||||||||||||
2206 | } | ||||||||||||
2207 | |||||||||||||
2208 | static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; | ||||||||||||
2209 | |||||||||||||
2210 | if (isSingleWord()) { | ||||||||||||
2211 | char Buffer[65]; | ||||||||||||
2212 | char *BufPtr = std::end(Buffer); | ||||||||||||
2213 | |||||||||||||
2214 | uint64_t N; | ||||||||||||
2215 | if (!Signed) { | ||||||||||||
2216 | N = getZExtValue(); | ||||||||||||
2217 | } else { | ||||||||||||
2218 | int64_t I = getSExtValue(); | ||||||||||||
2219 | if (I >= 0) { | ||||||||||||
2220 | N = I; | ||||||||||||
2221 | } else { | ||||||||||||
2222 | Str.push_back('-'); | ||||||||||||
2223 | N = -(uint64_t)I; | ||||||||||||
2224 | } | ||||||||||||
2225 | } | ||||||||||||
2226 | |||||||||||||
2227 | while (*Prefix) { | ||||||||||||
2228 | Str.push_back(*Prefix); | ||||||||||||
2229 | ++Prefix; | ||||||||||||
2230 | }; | ||||||||||||
2231 | |||||||||||||
2232 | while (N) { | ||||||||||||
2233 | *--BufPtr = Digits[N % Radix]; | ||||||||||||
2234 | N /= Radix; | ||||||||||||
2235 | } | ||||||||||||
2236 | Str.append(BufPtr, std::end(Buffer)); | ||||||||||||
2237 | return; | ||||||||||||
2238 | } | ||||||||||||
2239 | |||||||||||||
2240 | APInt Tmp(*this); | ||||||||||||
2241 | |||||||||||||
2242 | if (Signed && isNegative()) { | ||||||||||||
2243 | // They want to print the signed version and it is a negative value | ||||||||||||
2244 | // Flip the bits and add one to turn it into the equivalent positive | ||||||||||||
2245 | // value and put a '-' in the result. | ||||||||||||
2246 | Tmp.negate(); | ||||||||||||
2247 | Str.push_back('-'); | ||||||||||||
2248 | } | ||||||||||||
2249 | |||||||||||||
2250 | while (*Prefix) { | ||||||||||||
2251 | Str.push_back(*Prefix); | ||||||||||||
2252 | ++Prefix; | ||||||||||||
2253 | }; | ||||||||||||
2254 | |||||||||||||
2255 | // We insert the digits backward, then reverse them to get the right order. | ||||||||||||
2256 | unsigned StartDig = Str.size(); | ||||||||||||
2257 | |||||||||||||
2258 | // For the 2, 8 and 16 bit cases, we can just shift instead of divide | ||||||||||||
2259 | // because the number of bits per digit (1, 3 and 4 respectively) divides | ||||||||||||
2260 | // equally. We just shift until the value is zero. | ||||||||||||
2261 | if (Radix
| ||||||||||||
2262 | // Just shift tmp right for each digit width until it becomes zero | ||||||||||||
2263 | unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1)); | ||||||||||||
2264 | unsigned MaskAmt = Radix - 1; | ||||||||||||
2265 | |||||||||||||
2266 | while (Tmp.getBoolValue()) { | ||||||||||||
2267 | unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt; | ||||||||||||
2268 | Str.push_back(Digits[Digit]); | ||||||||||||
2269 | Tmp.lshrInPlace(ShiftAmt); | ||||||||||||
2270 | } | ||||||||||||
2271 | } else { | ||||||||||||
2272 | while (Tmp.getBoolValue()) { | ||||||||||||
2273 | uint64_t Digit; | ||||||||||||
2274 | udivrem(Tmp, Radix, Tmp, Digit); | ||||||||||||
2275 | assert(Digit < Radix && "divide failed")((void)0); | ||||||||||||
2276 | Str.push_back(Digits[Digit]); | ||||||||||||
2277 | } | ||||||||||||
2278 | } | ||||||||||||
2279 | |||||||||||||
2280 | // Reverse the digits before returning. | ||||||||||||
2281 | std::reverse(Str.begin()+StartDig, Str.end()); | ||||||||||||
2282 | } | ||||||||||||
2283 | |||||||||||||
2284 | #if !defined(NDEBUG1) || defined(LLVM_ENABLE_DUMP) | ||||||||||||
2285 | LLVM_DUMP_METHOD__attribute__((noinline)) void APInt::dump() const { | ||||||||||||
2286 | SmallString<40> S, U; | ||||||||||||
2287 | this->toStringUnsigned(U); | ||||||||||||
2288 | this->toStringSigned(S); | ||||||||||||
2289 | dbgs() << "APInt(" << BitWidth << "b, " | ||||||||||||
2290 | << U << "u " << S << "s)\n"; | ||||||||||||
2291 | } | ||||||||||||
2292 | #endif | ||||||||||||
2293 | |||||||||||||
2294 | void APInt::print(raw_ostream &OS, bool isSigned) const { | ||||||||||||
2295 | SmallString<40> S; | ||||||||||||
2296 | this->toString(S, 10, isSigned, /* formatAsCLiteral = */false); | ||||||||||||
| |||||||||||||
2297 | OS << S; | ||||||||||||
2298 | } | ||||||||||||
2299 | |||||||||||||
2300 | // This implements a variety of operations on a representation of | ||||||||||||
2301 | // arbitrary precision, two's-complement, bignum integer values. | ||||||||||||
2302 | |||||||||||||
2303 | // Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe | ||||||||||||
2304 | // and unrestricting assumption. | ||||||||||||
2305 | static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0, | ||||||||||||
2306 | "Part width must be divisible by 2!"); | ||||||||||||
2307 | |||||||||||||
2308 | /* Some handy functions local to this file. */ | ||||||||||||
2309 | |||||||||||||
2310 | /* Returns the integer part with the least significant BITS set. | ||||||||||||
2311 | BITS cannot be zero. */ | ||||||||||||
2312 | static inline APInt::WordType lowBitMask(unsigned bits) { | ||||||||||||
2313 | assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD)((void)0); | ||||||||||||
2314 | |||||||||||||
2315 | return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits); | ||||||||||||
2316 | } | ||||||||||||
2317 | |||||||||||||
2318 | /* Returns the value of the lower half of PART. */ | ||||||||||||
2319 | static inline APInt::WordType lowHalf(APInt::WordType part) { | ||||||||||||
2320 | return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2); | ||||||||||||
2321 | } | ||||||||||||
2322 | |||||||||||||
2323 | /* Returns the value of the upper half of PART. */ | ||||||||||||
2324 | static inline APInt::WordType highHalf(APInt::WordType part) { | ||||||||||||
2325 | return part >> (APInt::APINT_BITS_PER_WORD / 2); | ||||||||||||
2326 | } | ||||||||||||
2327 | |||||||||||||
2328 | /* Returns the bit number of the most significant set bit of a part. | ||||||||||||
2329 | If the input number has no bits set -1U is returned. */ | ||||||||||||
2330 | static unsigned partMSB(APInt::WordType value) { | ||||||||||||
2331 | return findLastSet(value, ZB_Max); | ||||||||||||
2332 | } | ||||||||||||
2333 | |||||||||||||
2334 | /* Returns the bit number of the least significant set bit of a | ||||||||||||
2335 | part. If the input number has no bits set -1U is returned. */ | ||||||||||||
2336 | static unsigned partLSB(APInt::WordType value) { | ||||||||||||
2337 | return findFirstSet(value, ZB_Max); | ||||||||||||
2338 | } | ||||||||||||
2339 | |||||||||||||
2340 | /* Sets the least significant part of a bignum to the input value, and | ||||||||||||
2341 | zeroes out higher parts. */ | ||||||||||||
2342 | void APInt::tcSet(WordType *dst, WordType part, unsigned parts) { | ||||||||||||
2343 | assert(parts > 0)((void)0); | ||||||||||||
2344 | |||||||||||||
2345 | dst[0] = part; | ||||||||||||
2346 | for (unsigned i = 1; i < parts; i++) | ||||||||||||
2347 | dst[i] = 0; | ||||||||||||
2348 | } | ||||||||||||
2349 | |||||||||||||
2350 | /* Assign one bignum to another. */ | ||||||||||||
2351 | void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) { | ||||||||||||
2352 | for (unsigned i = 0; i < parts; i++) | ||||||||||||
2353 | dst[i] = src[i]; | ||||||||||||
2354 | } | ||||||||||||
2355 | |||||||||||||
2356 | /* Returns true if a bignum is zero, false otherwise. */ | ||||||||||||
2357 | bool APInt::tcIsZero(const WordType *src, unsigned parts) { | ||||||||||||
2358 | for (unsigned i = 0; i < parts; i++) | ||||||||||||
2359 | if (src[i]) | ||||||||||||
2360 | return false; | ||||||||||||
2361 | |||||||||||||
2362 | return true; | ||||||||||||
2363 | } | ||||||||||||
2364 | |||||||||||||
2365 | /* Extract the given bit of a bignum; returns 0 or 1. */ | ||||||||||||
2366 | int APInt::tcExtractBit(const WordType *parts, unsigned bit) { | ||||||||||||
2367 | return (parts[whichWord(bit)] & maskBit(bit)) != 0; | ||||||||||||
2368 | } | ||||||||||||
2369 | |||||||||||||
2370 | /* Set the given bit of a bignum. */ | ||||||||||||
2371 | void APInt::tcSetBit(WordType *parts, unsigned bit) { | ||||||||||||
2372 | parts[whichWord(bit)] |= maskBit(bit); | ||||||||||||
2373 | } | ||||||||||||
2374 | |||||||||||||
2375 | /* Clears the given bit of a bignum. */ | ||||||||||||
2376 | void APInt::tcClearBit(WordType *parts, unsigned bit) { | ||||||||||||
2377 | parts[whichWord(bit)] &= ~maskBit(bit); | ||||||||||||
2378 | } | ||||||||||||
2379 | |||||||||||||
2380 | /* Returns the bit number of the least significant set bit of a | ||||||||||||
2381 | number. If the input number has no bits set -1U is returned. */ | ||||||||||||
2382 | unsigned APInt::tcLSB(const WordType *parts, unsigned n) { | ||||||||||||
2383 | for (unsigned i = 0; i < n; i++) { | ||||||||||||
2384 | if (parts[i] != 0) { | ||||||||||||
2385 | unsigned lsb = partLSB(parts[i]); | ||||||||||||
2386 | |||||||||||||
2387 | return lsb + i * APINT_BITS_PER_WORD; | ||||||||||||
2388 | } | ||||||||||||
2389 | } | ||||||||||||
2390 | |||||||||||||
2391 | return -1U; | ||||||||||||
2392 | } | ||||||||||||
2393 | |||||||||||||
2394 | /* Returns the bit number of the most significant set bit of a number. | ||||||||||||
2395 | If the input number has no bits set -1U is returned. */ | ||||||||||||
2396 | unsigned APInt::tcMSB(const WordType *parts, unsigned n) { | ||||||||||||
2397 | do { | ||||||||||||
2398 | --n; | ||||||||||||
2399 | |||||||||||||
2400 | if (parts[n] != 0) { | ||||||||||||
2401 | unsigned msb = partMSB(parts[n]); | ||||||||||||
2402 | |||||||||||||
2403 | return msb + n * APINT_BITS_PER_WORD; | ||||||||||||
2404 | } | ||||||||||||
2405 | } while (n); | ||||||||||||
2406 | |||||||||||||
2407 | return -1U; | ||||||||||||
2408 | } | ||||||||||||
2409 | |||||||||||||
2410 | /* Copy the bit vector of width srcBITS from SRC, starting at bit | ||||||||||||
2411 | srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes | ||||||||||||
2412 | the least significant bit of DST. All high bits above srcBITS in | ||||||||||||
2413 | DST are zero-filled. */ | ||||||||||||
2414 | void | ||||||||||||
2415 | APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src, | ||||||||||||
2416 | unsigned srcBits, unsigned srcLSB) { | ||||||||||||
2417 | unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; | ||||||||||||
2418 | assert(dstParts <= dstCount)((void)0); | ||||||||||||
2419 | |||||||||||||
2420 | unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD; | ||||||||||||
2421 | tcAssign (dst, src + firstSrcPart, dstParts); | ||||||||||||
2422 | |||||||||||||
2423 | unsigned shift = srcLSB % APINT_BITS_PER_WORD; | ||||||||||||
2424 | tcShiftRight (dst, dstParts, shift); | ||||||||||||
2425 | |||||||||||||
2426 | /* We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC | ||||||||||||
2427 | in DST. If this is less that srcBits, append the rest, else | ||||||||||||
2428 | clear the high bits. */ | ||||||||||||
2429 | unsigned n = dstParts * APINT_BITS_PER_WORD - shift; | ||||||||||||
2430 | if (n < srcBits) { | ||||||||||||
2431 | WordType mask = lowBitMask (srcBits - n); | ||||||||||||
2432 | dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask) | ||||||||||||
2433 | << n % APINT_BITS_PER_WORD); | ||||||||||||
2434 | } else if (n > srcBits) { | ||||||||||||
2435 | if (srcBits % APINT_BITS_PER_WORD) | ||||||||||||
2436 | dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD); | ||||||||||||
2437 | } | ||||||||||||
2438 | |||||||||||||
2439 | /* Clear high parts. */ | ||||||||||||
2440 | while (dstParts < dstCount) | ||||||||||||
2441 | dst[dstParts++] = 0; | ||||||||||||
2442 | } | ||||||||||||
2443 | |||||||||||||
2444 | /* DST += RHS + C where C is zero or one. Returns the carry flag. */ | ||||||||||||
2445 | APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs, | ||||||||||||
2446 | WordType c, unsigned parts) { | ||||||||||||
2447 | assert(c <= 1)((void)0); | ||||||||||||
2448 | |||||||||||||
2449 | for (unsigned i = 0; i < parts; i++) { | ||||||||||||
2450 | WordType l = dst[i]; | ||||||||||||
2451 | if (c) { | ||||||||||||
2452 | dst[i] += rhs[i] + 1; | ||||||||||||
2453 | c = (dst[i] <= l); | ||||||||||||
2454 | } else { | ||||||||||||
2455 | dst[i] += rhs[i]; | ||||||||||||
2456 | c = (dst[i] < l); | ||||||||||||
2457 | } | ||||||||||||
2458 | } | ||||||||||||
2459 | |||||||||||||
2460 | return c; | ||||||||||||
2461 | } | ||||||||||||
2462 | |||||||||||||
2463 | /// This function adds a single "word" integer, src, to the multiple | ||||||||||||
2464 | /// "word" integer array, dst[]. dst[] is modified to reflect the addition and | ||||||||||||
2465 | /// 1 is returned if there is a carry out, otherwise 0 is returned. | ||||||||||||
2466 | /// @returns the carry of the addition. | ||||||||||||
2467 | APInt::WordType APInt::tcAddPart(WordType *dst, WordType src, | ||||||||||||
2468 | unsigned parts) { | ||||||||||||
2469 | for (unsigned i = 0; i < parts; ++i) { | ||||||||||||
2470 | dst[i] += src; | ||||||||||||
2471 | if (dst[i] >= src) | ||||||||||||
2472 | return 0; // No need to carry so exit early. | ||||||||||||
2473 | src = 1; // Carry one to next digit. | ||||||||||||
2474 | } | ||||||||||||
2475 | |||||||||||||
2476 | return 1; | ||||||||||||
2477 | } | ||||||||||||
2478 | |||||||||||||
2479 | /* DST -= RHS + C where C is zero or one. Returns the carry flag. */ | ||||||||||||
2480 | APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs, | ||||||||||||
2481 | WordType c, unsigned parts) { | ||||||||||||
2482 | assert(c <= 1)((void)0); | ||||||||||||
2483 | |||||||||||||
2484 | for (unsigned i = 0; i < parts; i++) { | ||||||||||||
2485 | WordType l = dst[i]; | ||||||||||||
2486 | if (c) { | ||||||||||||
2487 | dst[i] -= rhs[i] + 1; | ||||||||||||
2488 | c = (dst[i] >= l); | ||||||||||||
2489 | } else { | ||||||||||||
2490 | dst[i] -= rhs[i]; | ||||||||||||
2491 | c = (dst[i] > l); | ||||||||||||
2492 | } | ||||||||||||
2493 | } | ||||||||||||
2494 | |||||||||||||
2495 | return c; | ||||||||||||
2496 | } | ||||||||||||
2497 | |||||||||||||
2498 | /// This function subtracts a single "word" (64-bit word), src, from | ||||||||||||
2499 | /// the multi-word integer array, dst[], propagating the borrowed 1 value until | ||||||||||||
2500 | /// no further borrowing is needed or it runs out of "words" in dst. The result | ||||||||||||
2501 | /// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not | ||||||||||||
2502 | /// exhausted. In other words, if src > dst then this function returns 1, | ||||||||||||
2503 | /// otherwise 0. | ||||||||||||
2504 | /// @returns the borrow out of the subtraction | ||||||||||||
2505 | APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src, | ||||||||||||
2506 | unsigned parts) { | ||||||||||||
2507 | for (unsigned i = 0; i < parts; ++i) { | ||||||||||||
2508 | WordType Dst = dst[i]; | ||||||||||||
2509 | dst[i] -= src; | ||||||||||||
2510 | if (src <= Dst) | ||||||||||||
2511 | return 0; // No need to borrow so exit early. | ||||||||||||
2512 | src = 1; // We have to "borrow 1" from next "word" | ||||||||||||
2513 | } | ||||||||||||
2514 | |||||||||||||
2515 | return 1; | ||||||||||||
2516 | } | ||||||||||||
2517 | |||||||||||||
2518 | /* Negate a bignum in-place. */ | ||||||||||||
2519 | void APInt::tcNegate(WordType *dst, unsigned parts) { | ||||||||||||
2520 | tcComplement(dst, parts); | ||||||||||||
2521 | tcIncrement(dst, parts); | ||||||||||||
2522 | } | ||||||||||||
2523 | |||||||||||||
2524 | /* DST += SRC * MULTIPLIER + CARRY if add is true | ||||||||||||
2525 | DST = SRC * MULTIPLIER + CARRY if add is false | ||||||||||||
2526 | |||||||||||||
2527 | Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC | ||||||||||||
2528 | they must start at the same point, i.e. DST == SRC. | ||||||||||||
2529 | |||||||||||||
2530 | If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is | ||||||||||||
2531 | returned. Otherwise DST is filled with the least significant | ||||||||||||
2532 | DSTPARTS parts of the result, and if all of the omitted higher | ||||||||||||
2533 | parts were zero return zero, otherwise overflow occurred and | ||||||||||||
2534 | return one. */ | ||||||||||||
2535 | int APInt::tcMultiplyPart(WordType *dst, const WordType *src, | ||||||||||||
2536 | WordType multiplier, WordType carry, | ||||||||||||
2537 | unsigned srcParts, unsigned dstParts, | ||||||||||||
2538 | bool add) { | ||||||||||||
2539 | /* Otherwise our writes of DST kill our later reads of SRC. */ | ||||||||||||
2540 | assert(dst <= src || dst >= src + srcParts)((void)0); | ||||||||||||
2541 | assert(dstParts <= srcParts + 1)((void)0); | ||||||||||||
2542 | |||||||||||||
2543 | /* N loops; minimum of dstParts and srcParts. */ | ||||||||||||
2544 | unsigned n = std::min(dstParts, srcParts); | ||||||||||||
2545 | |||||||||||||
2546 | for (unsigned i = 0; i < n; i++) { | ||||||||||||
2547 | WordType low, mid, high, srcPart; | ||||||||||||
2548 | |||||||||||||
2549 | /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY. | ||||||||||||
2550 | |||||||||||||
2551 | This cannot overflow, because | ||||||||||||
2552 | |||||||||||||
2553 | (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1) | ||||||||||||
2554 | |||||||||||||
2555 | which is less than n^2. */ | ||||||||||||
2556 | |||||||||||||
2557 | srcPart = src[i]; | ||||||||||||
2558 | |||||||||||||
2559 | if (multiplier == 0 || srcPart == 0) { | ||||||||||||
2560 | low = carry; | ||||||||||||
2561 | high = 0; | ||||||||||||
2562 | } else { | ||||||||||||
2563 | low = lowHalf(srcPart) * lowHalf(multiplier); | ||||||||||||
2564 | high = highHalf(srcPart) * highHalf(multiplier); | ||||||||||||
2565 | |||||||||||||
2566 | mid = lowHalf(srcPart) * highHalf(multiplier); | ||||||||||||
2567 | high += highHalf(mid); | ||||||||||||
2568 | mid <<= APINT_BITS_PER_WORD / 2; | ||||||||||||
2569 | if (low + mid < low) | ||||||||||||
2570 | high++; | ||||||||||||
2571 | low += mid; | ||||||||||||
2572 | |||||||||||||
2573 | mid = highHalf(srcPart) * lowHalf(multiplier); | ||||||||||||
2574 | high += highHalf(mid); | ||||||||||||
2575 | mid <<= APINT_BITS_PER_WORD / 2; | ||||||||||||
2576 | if (low + mid < low) | ||||||||||||
2577 | high++; | ||||||||||||
2578 | low += mid; | ||||||||||||
2579 | |||||||||||||
2580 | /* Now add carry. */ | ||||||||||||
2581 | if (low + carry < low) | ||||||||||||
2582 | high++; | ||||||||||||
2583 | low += carry; | ||||||||||||
2584 | } | ||||||||||||
2585 | |||||||||||||
2586 | if (add) { | ||||||||||||
2587 | /* And now DST[i], and store the new low part there. */ | ||||||||||||
2588 | if (low + dst[i] < low) | ||||||||||||
2589 | high++; | ||||||||||||
2590 | dst[i] += low; | ||||||||||||
2591 | } else | ||||||||||||
2592 | dst[i] = low; | ||||||||||||
2593 | |||||||||||||
2594 | carry = high; | ||||||||||||
2595 | } | ||||||||||||
2596 | |||||||||||||
2597 | if (srcParts < dstParts) { | ||||||||||||
2598 | /* Full multiplication, there is no overflow. */ | ||||||||||||
2599 | assert(srcParts + 1 == dstParts)((void)0); | ||||||||||||
2600 | dst[srcParts] = carry; | ||||||||||||
2601 | return 0; | ||||||||||||
2602 | } | ||||||||||||
2603 | |||||||||||||
2604 | /* We overflowed if there is carry. */ | ||||||||||||
2605 | if (carry) | ||||||||||||
2606 | return 1; | ||||||||||||
2607 | |||||||||||||
2608 | /* We would overflow if any significant unwritten parts would be | ||||||||||||
2609 | non-zero. This is true if any remaining src parts are non-zero | ||||||||||||
2610 | and the multiplier is non-zero. */ | ||||||||||||
2611 | if (multiplier) | ||||||||||||
2612 | for (unsigned i = dstParts; i < srcParts; i++) | ||||||||||||
2613 | if (src[i]) | ||||||||||||
2614 | return 1; | ||||||||||||
2615 | |||||||||||||
2616 | /* We fitted in the narrow destination. */ | ||||||||||||
2617 | return 0; | ||||||||||||
2618 | } | ||||||||||||
2619 | |||||||||||||
2620 | /* DST = LHS * RHS, where DST has the same width as the operands and | ||||||||||||
2621 | is filled with the least significant parts of the result. Returns | ||||||||||||
2622 | one if overflow occurred, otherwise zero. DST must be disjoint | ||||||||||||
2623 | from both operands. */ | ||||||||||||
2624 | int APInt::tcMultiply(WordType *dst, const WordType *lhs, | ||||||||||||
2625 | const WordType *rhs, unsigned parts) { | ||||||||||||
2626 | assert(dst != lhs && dst != rhs)((void)0); | ||||||||||||
2627 | |||||||||||||
2628 | int overflow = 0; | ||||||||||||
2629 | tcSet(dst, 0, parts); | ||||||||||||
2630 | |||||||||||||
2631 | for (unsigned i = 0; i < parts; i++) | ||||||||||||
2632 | overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts, | ||||||||||||
2633 | parts - i, true); | ||||||||||||
2634 | |||||||||||||
2635 | return overflow; | ||||||||||||
2636 | } | ||||||||||||
2637 | |||||||||||||
2638 | /// DST = LHS * RHS, where DST has width the sum of the widths of the | ||||||||||||
2639 | /// operands. No overflow occurs. DST must be disjoint from both operands. | ||||||||||||
2640 | void APInt::tcFullMultiply(WordType *dst, const WordType *lhs, | ||||||||||||
2641 | const WordType *rhs, unsigned lhsParts, | ||||||||||||
2642 | unsigned rhsParts) { | ||||||||||||
2643 | /* Put the narrower number on the LHS for less loops below. */ | ||||||||||||
2644 | if (lhsParts > rhsParts) | ||||||||||||
2645 | return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts); | ||||||||||||
2646 | |||||||||||||
2647 | assert(dst != lhs && dst != rhs)((void)0); | ||||||||||||
2648 | |||||||||||||
2649 | tcSet(dst, 0, rhsParts); | ||||||||||||
2650 | |||||||||||||
2651 | for (unsigned i = 0; i < lhsParts; i++) | ||||||||||||
2652 | tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true); | ||||||||||||
2653 | } | ||||||||||||
2654 | |||||||||||||
2655 | /* If RHS is zero LHS and REMAINDER are left unchanged, return one. | ||||||||||||
2656 | Otherwise set LHS to LHS / RHS with the fractional part discarded, | ||||||||||||
2657 | set REMAINDER to the remainder, return zero. i.e. | ||||||||||||
2658 | |||||||||||||
2659 | OLD_LHS = RHS * LHS + REMAINDER | ||||||||||||
2660 | |||||||||||||
2661 | SCRATCH is a bignum of the same size as the operands and result for | ||||||||||||
2662 | use by the routine; its contents need not be initialized and are | ||||||||||||
2663 | destroyed. LHS, REMAINDER and SCRATCH must be distinct. | ||||||||||||
2664 | */ | ||||||||||||
2665 | int APInt::tcDivide(WordType *lhs, const WordType *rhs, | ||||||||||||
2666 | WordType *remainder, WordType *srhs, | ||||||||||||
2667 | unsigned parts) { | ||||||||||||
2668 | assert(lhs != remainder && lhs != srhs && remainder != srhs)((void)0); | ||||||||||||
2669 | |||||||||||||
2670 | unsigned shiftCount = tcMSB(rhs, parts) + 1; | ||||||||||||
2671 | if (shiftCount == 0) | ||||||||||||
2672 | return true; | ||||||||||||
2673 | |||||||||||||
2674 | shiftCount = parts * APINT_BITS_PER_WORD - shiftCount; | ||||||||||||
2675 | unsigned n = shiftCount / APINT_BITS_PER_WORD; | ||||||||||||
2676 | WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD); | ||||||||||||
2677 | |||||||||||||
2678 | tcAssign(srhs, rhs, parts); | ||||||||||||
2679 | tcShiftLeft(srhs, parts, shiftCount); | ||||||||||||
2680 | tcAssign(remainder, lhs, parts); | ||||||||||||
2681 | tcSet(lhs, 0, parts); | ||||||||||||
2682 | |||||||||||||
2683 | /* Loop, subtracting SRHS if REMAINDER is greater and adding that to | ||||||||||||
2684 | the total. */ | ||||||||||||
2685 | for (;;) { | ||||||||||||
2686 | int compare = tcCompare(remainder, srhs, parts); | ||||||||||||
2687 | if (compare >= 0) { | ||||||||||||
2688 | tcSubtract(remainder, srhs, 0, parts); | ||||||||||||
2689 | lhs[n] |= mask; | ||||||||||||
2690 | } | ||||||||||||
2691 | |||||||||||||
2692 | if (shiftCount == 0) | ||||||||||||
2693 | break; | ||||||||||||
2694 | shiftCount--; | ||||||||||||
2695 | tcShiftRight(srhs, parts, 1); | ||||||||||||
2696 | if ((mask >>= 1) == 0) { | ||||||||||||
2697 | mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1); | ||||||||||||
2698 | n--; | ||||||||||||
2699 | } | ||||||||||||
2700 | } | ||||||||||||
2701 | |||||||||||||
2702 | return false; | ||||||||||||
2703 | } | ||||||||||||
2704 | |||||||||||||
2705 | /// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are | ||||||||||||
2706 | /// no restrictions on Count. | ||||||||||||
2707 | void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) { | ||||||||||||
2708 | // Don't bother performing a no-op shift. | ||||||||||||
2709 | if (!Count) | ||||||||||||
2710 | return; | ||||||||||||
2711 | |||||||||||||
2712 | // WordShift is the inter-part shift; BitShift is the intra-part shift. | ||||||||||||
2713 | unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words); | ||||||||||||
2714 | unsigned BitShift = Count % APINT_BITS_PER_WORD; | ||||||||||||
2715 | |||||||||||||
2716 | // Fastpath for moving by whole words. | ||||||||||||
2717 | if (BitShift == 0) { | ||||||||||||
2718 | std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE); | ||||||||||||
2719 | } else { | ||||||||||||
2720 | while (Words-- > WordShift) { | ||||||||||||
2721 | Dst[Words] = Dst[Words - WordShift] << BitShift; | ||||||||||||
2722 | if (Words > WordShift) | ||||||||||||
2723 | Dst[Words] |= | ||||||||||||
2724 | Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift); | ||||||||||||
2725 | } | ||||||||||||
2726 | } | ||||||||||||
2727 | |||||||||||||
2728 | // Fill in the remainder with 0s. | ||||||||||||
2729 | std::memset(Dst, 0, WordShift * APINT_WORD_SIZE); | ||||||||||||
2730 | } | ||||||||||||
2731 | |||||||||||||
2732 | /// Shift a bignum right Count bits in-place. Shifted in bits are zero. There | ||||||||||||
2733 | /// are no restrictions on Count. | ||||||||||||
2734 | void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) { | ||||||||||||
2735 | // Don't bother performing a no-op shift. | ||||||||||||
2736 | if (!Count) | ||||||||||||
2737 | return; | ||||||||||||
2738 | |||||||||||||
2739 | // WordShift is the inter-part shift; BitShift is the intra-part shift. | ||||||||||||
2740 | unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words); | ||||||||||||
2741 | unsigned BitShift = Count % APINT_BITS_PER_WORD; | ||||||||||||
2742 | |||||||||||||
2743 | unsigned WordsToMove = Words - WordShift; | ||||||||||||
2744 | // Fastpath for moving by whole words. | ||||||||||||
2745 | if (BitShift == 0) { | ||||||||||||
2746 | std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE); | ||||||||||||
2747 | } else { | ||||||||||||
2748 | for (unsigned i = 0; i != WordsToMove; ++i) { | ||||||||||||
2749 | Dst[i] = Dst[i + WordShift] >> BitShift; | ||||||||||||
2750 | if (i + 1 != WordsToMove) | ||||||||||||
2751 | Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift); | ||||||||||||
2752 | } | ||||||||||||
2753 | } | ||||||||||||
2754 | |||||||||||||
2755 | // Fill in the remainder with 0s. | ||||||||||||
2756 | std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE); | ||||||||||||
2757 | } | ||||||||||||
2758 | |||||||||||||
2759 | /* Bitwise and of two bignums. */ | ||||||||||||
2760 | void APInt::tcAnd(WordType *dst, const WordType *rhs, unsigned parts) { | ||||||||||||
2761 | for (unsigned i = 0; i < parts; i++) | ||||||||||||
2762 | dst[i] &= rhs[i]; | ||||||||||||
2763 | } | ||||||||||||
2764 | |||||||||||||
2765 | /* Bitwise inclusive or of two bignums. */ | ||||||||||||
2766 | void APInt::tcOr(WordType *dst, const WordType *rhs, unsigned parts) { | ||||||||||||
2767 | for (unsigned i = 0; i < parts; i++) | ||||||||||||
2768 | dst[i] |= rhs[i]; | ||||||||||||
2769 | } | ||||||||||||
2770 | |||||||||||||
2771 | /* Bitwise exclusive or of two bignums. */ | ||||||||||||
2772 | void APInt::tcXor(WordType *dst, const WordType *rhs, unsigned parts) { | ||||||||||||
2773 | for (unsigned i = 0; i < parts; i++) | ||||||||||||
2774 | dst[i] ^= rhs[i]; | ||||||||||||
2775 | } | ||||||||||||
2776 | |||||||||||||
2777 | /* Complement a bignum in-place. */ | ||||||||||||
2778 | void APInt::tcComplement(WordType *dst, unsigned parts) { | ||||||||||||
2779 | for (unsigned i = 0; i < parts; i++) | ||||||||||||
2780 | dst[i] = ~dst[i]; | ||||||||||||
2781 | } | ||||||||||||
2782 | |||||||||||||
2783 | /* Comparison (unsigned) of two bignums. */ | ||||||||||||
2784 | int APInt::tcCompare(const WordType *lhs, const WordType *rhs, | ||||||||||||
2785 | unsigned parts) { | ||||||||||||
2786 | while (parts) { | ||||||||||||
2787 | parts--; | ||||||||||||
2788 | if (lhs[parts] != rhs[parts]) | ||||||||||||
2789 | return (lhs[parts] > rhs[parts]) ? 1 : -1; | ||||||||||||
2790 | } | ||||||||||||
2791 | |||||||||||||
2792 | return 0; | ||||||||||||
2793 | } | ||||||||||||
2794 | |||||||||||||
2795 | /* Set the least significant BITS bits of a bignum, clear the | ||||||||||||
2796 | rest. */ | ||||||||||||
2797 | void APInt::tcSetLeastSignificantBits(WordType *dst, unsigned parts, | ||||||||||||
2798 | unsigned bits) { | ||||||||||||
2799 | unsigned i = 0; | ||||||||||||
2800 | while (bits > APINT_BITS_PER_WORD) { | ||||||||||||
2801 | dst[i++] = ~(WordType) 0; | ||||||||||||
2802 | bits -= APINT_BITS_PER_WORD; | ||||||||||||
2803 | } | ||||||||||||
2804 | |||||||||||||
2805 | if (bits) | ||||||||||||
2806 | dst[i++] = ~(WordType) 0 >> (APINT_BITS_PER_WORD - bits); | ||||||||||||
2807 | |||||||||||||
2808 | while (i < parts) | ||||||||||||
2809 | dst[i++] = 0; | ||||||||||||
2810 | } | ||||||||||||
2811 | |||||||||||||
2812 | APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B, | ||||||||||||
2813 | APInt::Rounding RM) { | ||||||||||||
2814 | // Currently udivrem always rounds down. | ||||||||||||
2815 | switch (RM) { | ||||||||||||
2816 | case APInt::Rounding::DOWN: | ||||||||||||
2817 | case APInt::Rounding::TOWARD_ZERO: | ||||||||||||
2818 | return A.udiv(B); | ||||||||||||
2819 | case APInt::Rounding::UP: { | ||||||||||||
2820 | APInt Quo, Rem; | ||||||||||||
2821 | APInt::udivrem(A, B, Quo, Rem); | ||||||||||||
2822 | if (Rem == 0) | ||||||||||||
2823 | return Quo; | ||||||||||||
2824 | return Quo + 1; | ||||||||||||
2825 | } | ||||||||||||
2826 | } | ||||||||||||
2827 | llvm_unreachable("Unknown APInt::Rounding enum")__builtin_unreachable(); | ||||||||||||
2828 | } | ||||||||||||
2829 | |||||||||||||
2830 | APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B, | ||||||||||||
2831 | APInt::Rounding RM) { | ||||||||||||
2832 | switch (RM) { | ||||||||||||
2833 | case APInt::Rounding::DOWN: | ||||||||||||
2834 | case APInt::Rounding::UP: { | ||||||||||||
2835 | APInt Quo, Rem; | ||||||||||||
2836 | APInt::sdivrem(A, B, Quo, Rem); | ||||||||||||
2837 | if (Rem == 0) | ||||||||||||
2838 | return Quo; | ||||||||||||
2839 | // This algorithm deals with arbitrary rounding mode used by sdivrem. | ||||||||||||
2840 | // We want to check whether the non-integer part of the mathematical value | ||||||||||||
2841 | // is negative or not. If the non-integer part is negative, we need to round | ||||||||||||
2842 | // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's | ||||||||||||
2843 | // already rounded down. | ||||||||||||
2844 | if (RM == APInt::Rounding::DOWN) { | ||||||||||||
2845 | if (Rem.isNegative() != B.isNegative()) | ||||||||||||
2846 | return Quo - 1; | ||||||||||||
2847 | return Quo; | ||||||||||||
2848 | } | ||||||||||||
2849 | if (Rem.isNegative() != B.isNegative()) | ||||||||||||
2850 | return Quo; | ||||||||||||
2851 | return Quo + 1; | ||||||||||||
2852 | } | ||||||||||||
2853 | // Currently sdiv rounds towards zero. | ||||||||||||
2854 | case APInt::Rounding::TOWARD_ZERO: | ||||||||||||
2855 | return A.sdiv(B); | ||||||||||||
2856 | } | ||||||||||||
2857 | llvm_unreachable("Unknown APInt::Rounding enum")__builtin_unreachable(); | ||||||||||||
2858 | } | ||||||||||||
2859 | |||||||||||||
2860 | Optional<APInt> | ||||||||||||
2861 | llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C, | ||||||||||||
2862 | unsigned RangeWidth) { | ||||||||||||
2863 | unsigned CoeffWidth = A.getBitWidth(); | ||||||||||||
2864 | assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth())((void)0); | ||||||||||||
2865 | assert(RangeWidth <= CoeffWidth &&((void)0) | ||||||||||||
2866 | "Value range width should be less than coefficient width")((void)0); | ||||||||||||
2867 | assert(RangeWidth > 1 && "Value range bit width should be > 1")((void)0); | ||||||||||||
2868 | |||||||||||||
2869 | LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << Bdo { } while (false) | ||||||||||||
2870 | << "x + " << C << ", rw:" << RangeWidth << '\n')do { } while (false); | ||||||||||||
2871 | |||||||||||||
2872 | // Identify 0 as a (non)solution immediately. | ||||||||||||
2873 | if (C.sextOrTrunc(RangeWidth).isNullValue() ) { | ||||||||||||
2874 | LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n")do { } while (false); | ||||||||||||
2875 | return APInt(CoeffWidth, 0); | ||||||||||||
2876 | } | ||||||||||||
2877 | |||||||||||||
2878 | // The result of APInt arithmetic has the same bit width as the operands, | ||||||||||||
2879 | // so it can actually lose high bits. A product of two n-bit integers needs | ||||||||||||
2880 | // 2n-1 bits to represent the full value. | ||||||||||||
2881 | // The operation done below (on quadratic coefficients) that can produce | ||||||||||||
2882 | // the largest value is the evaluation of the equation during bisection, | ||||||||||||
2883 | // which needs 3 times the bitwidth of the coefficient, so the total number | ||||||||||||
2884 | // of required bits is 3n. | ||||||||||||
2885 | // | ||||||||||||
2886 | // The purpose of this extension is to simulate the set Z of all integers, | ||||||||||||
2887 | // where n+1 > n for all n in Z. In Z it makes sense to talk about positive | ||||||||||||
2888 | // and negative numbers (not so much in a modulo arithmetic). The method | ||||||||||||
2889 | // used to solve the equation is based on the standard formula for real | ||||||||||||
2890 | // numbers, and uses the concepts of "positive" and "negative" with their | ||||||||||||
2891 | // usual meanings. | ||||||||||||
2892 | CoeffWidth *= 3; | ||||||||||||
2893 | A = A.sext(CoeffWidth); | ||||||||||||
2894 | B = B.sext(CoeffWidth); | ||||||||||||
2895 | C = C.sext(CoeffWidth); | ||||||||||||
2896 | |||||||||||||
2897 | // Make A > 0 for simplicity. Negate cannot overflow at this point because | ||||||||||||
2898 | // the bit width has increased. | ||||||||||||
2899 | if (A.isNegative()) { | ||||||||||||
2900 | A.negate(); | ||||||||||||
2901 | B.negate(); | ||||||||||||
2902 | C.negate(); | ||||||||||||
2903 | } | ||||||||||||
2904 | |||||||||||||
2905 | // Solving an equation q(x) = 0 with coefficients in modular arithmetic | ||||||||||||
2906 | // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ..., | ||||||||||||
2907 | // and R = 2^BitWidth. | ||||||||||||
2908 | // Since we're trying not only to find exact solutions, but also values | ||||||||||||
2909 | // that "wrap around", such a set will always have a solution, i.e. an x | ||||||||||||
2910 | // that satisfies at least one of the equations, or such that |q(x)| | ||||||||||||
2911 | // exceeds kR, while |q(x-1)| for the same k does not. | ||||||||||||
2912 | // | ||||||||||||
2913 | // We need to find a value k, such that Ax^2 + Bx + C = kR will have a | ||||||||||||
2914 | // positive solution n (in the above sense), and also such that the n | ||||||||||||
2915 | // will be the least among all solutions corresponding to k = 0, 1, ... | ||||||||||||
2916 | // (more precisely, the least element in the set | ||||||||||||
2917 | // { n(k) | k is such that a solution n(k) exists }). | ||||||||||||
2918 | // | ||||||||||||
2919 | // Consider the parabola (over real numbers) that corresponds to the | ||||||||||||
2920 | // quadratic equation. Since A > 0, the arms of the parabola will point | ||||||||||||
2921 | // up. Picking different values of k will shift it up and down by R. | ||||||||||||
2922 | // | ||||||||||||
2923 | // We want to shift the parabola in such a way as to reduce the problem | ||||||||||||
2924 | // of solving q(x) = kR to solving shifted_q(x) = 0. | ||||||||||||
2925 | // (The interesting solutions are the ceilings of the real number | ||||||||||||
2926 | // solutions.) | ||||||||||||
2927 | APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth); | ||||||||||||
2928 | APInt TwoA = 2 * A; | ||||||||||||
2929 | APInt SqrB = B * B; | ||||||||||||
2930 | bool PickLow; | ||||||||||||
2931 | |||||||||||||
2932 | auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt { | ||||||||||||
2933 | assert(A.isStrictlyPositive())((void)0); | ||||||||||||
2934 | APInt T = V.abs().urem(A); | ||||||||||||
2935 | if (T.isNullValue()) | ||||||||||||
2936 | return V; | ||||||||||||
2937 | return V.isNegative() ? V+T : V+(A-T); | ||||||||||||
2938 | }; | ||||||||||||
2939 | |||||||||||||
2940 | // The vertex of the parabola is at -B/2A, but since A > 0, it's negative | ||||||||||||
2941 | // iff B is positive. | ||||||||||||
2942 | if (B.isNonNegative()) { | ||||||||||||
2943 | // If B >= 0, the vertex it at a negative location (or at 0), so in | ||||||||||||
2944 | // order to have a non-negative solution we need to pick k that makes | ||||||||||||
2945 | // C-kR negative. To satisfy all the requirements for the solution | ||||||||||||
2946 | // that we are looking for, it needs to be closest to 0 of all k. | ||||||||||||
2947 | C = C.srem(R); | ||||||||||||
2948 | if (C.isStrictlyPositive()) | ||||||||||||
2949 | C -= R; | ||||||||||||
2950 | // Pick the greater solution. | ||||||||||||
2951 | PickLow = false; | ||||||||||||
2952 | } else { | ||||||||||||
2953 | // If B < 0, the vertex is at a positive location. For any solution | ||||||||||||
2954 | // to exist, the discriminant must be non-negative. This means that | ||||||||||||
2955 | // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a | ||||||||||||
2956 | // lower bound on values of k: kR >= C - B^2/4A. | ||||||||||||
2957 | APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0. | ||||||||||||
2958 | // Round LowkR up (towards +inf) to the nearest kR. | ||||||||||||
2959 | LowkR = RoundUp(LowkR, R); | ||||||||||||
2960 | |||||||||||||
2961 | // If there exists k meeting the condition above, and such that | ||||||||||||
2962 | // C-kR > 0, there will be two positive real number solutions of | ||||||||||||
2963 | // q(x) = kR. Out of all such values of k, pick the one that makes | ||||||||||||
2964 | // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0). | ||||||||||||
2965 | // In other words, find maximum k such that LowkR <= kR < C. | ||||||||||||
2966 | if (C.sgt(LowkR)) { | ||||||||||||
2967 | // If LowkR < C, then such a k is guaranteed to exist because | ||||||||||||
2968 | // LowkR itself is a multiple of R. | ||||||||||||
2969 | C -= -RoundUp(-C, R); // C = C - RoundDown(C, R) | ||||||||||||
2970 | // Pick the smaller solution. | ||||||||||||
2971 | PickLow = true; | ||||||||||||
2972 | } else { | ||||||||||||
2973 | // If C-kR < 0 for all potential k's, it means that one solution | ||||||||||||
2974 | // will be negative, while the other will be positive. The positive | ||||||||||||
2975 | // solution will shift towards 0 if the parabola is moved up. | ||||||||||||
2976 | // Pick the kR closest to the lower bound (i.e. make C-kR closest | ||||||||||||
2977 | // to 0, or in other words, out of all parabolas that have solutions, | ||||||||||||
2978 | // pick the one that is the farthest "up"). | ||||||||||||
2979 | // Since LowkR is itself a multiple of R, simply take C-LowkR. | ||||||||||||
2980 | C -= LowkR; | ||||||||||||
2981 | // Pick the greater solution. | ||||||||||||
2982 | PickLow = false; | ||||||||||||
2983 | } | ||||||||||||
2984 | } | ||||||||||||
2985 | |||||||||||||
2986 | LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + "do { } while (false) | ||||||||||||
2987 | << B << "x + " << C << ", rw:" << RangeWidth << '\n')do { } while (false); | ||||||||||||
2988 | |||||||||||||
2989 | APInt D = SqrB - 4*A*C; | ||||||||||||
2990 | assert(D.isNonNegative() && "Negative discriminant")((void)0); | ||||||||||||
2991 | APInt SQ = D.sqrt(); | ||||||||||||
2992 | |||||||||||||
2993 | APInt Q = SQ * SQ; | ||||||||||||
2994 | bool InexactSQ = Q != D; | ||||||||||||
2995 | // The calculated SQ may actually be greater than the exact (non-integer) | ||||||||||||
2996 | // value. If that's the case, decrement SQ to get a value that is lower. | ||||||||||||
2997 | if (Q.sgt(D)) | ||||||||||||
2998 | SQ -= 1; | ||||||||||||
2999 | |||||||||||||
3000 | APInt X; | ||||||||||||
3001 | APInt Rem; | ||||||||||||
3002 | |||||||||||||
3003 | // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact. | ||||||||||||
3004 | // When using the quadratic formula directly, the calculated low root | ||||||||||||
3005 | // may be greater than the exact one, since we would be subtracting SQ. | ||||||||||||
3006 | // To make sure that the calculated root is not greater than the exact | ||||||||||||
3007 | // one, subtract SQ+1 when calculating the low root (for inexact value | ||||||||||||
3008 | // of SQ). | ||||||||||||
3009 | if (PickLow) | ||||||||||||
3010 | APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem); | ||||||||||||
3011 | else | ||||||||||||
3012 | APInt::sdivrem(-B + SQ, TwoA, X, Rem); | ||||||||||||
3013 | |||||||||||||
3014 | // The updated coefficients should be such that the (exact) solution is | ||||||||||||
3015 | // positive. Since APInt division rounds towards 0, the calculated one | ||||||||||||
3016 | // can be 0, but cannot be negative. | ||||||||||||
3017 | assert(X.isNonNegative() && "Solution should be non-negative")((void)0); | ||||||||||||
3018 | |||||||||||||
3019 | if (!InexactSQ && Rem.isNullValue()) { | ||||||||||||
3020 | LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n')do { } while (false); | ||||||||||||
3021 | return X; | ||||||||||||
3022 | } | ||||||||||||
3023 | |||||||||||||
3024 | assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D")((void)0); | ||||||||||||
3025 | // The exact value of the square root of D should be between SQ and SQ+1. | ||||||||||||
3026 | // This implies that the solution should be between that corresponding to | ||||||||||||
3027 | // SQ (i.e. X) and that corresponding to SQ+1. | ||||||||||||
3028 | // | ||||||||||||
3029 | // The calculated X cannot be greater than the exact (real) solution. | ||||||||||||
3030 | // Actually it must be strictly less than the exact solution, while | ||||||||||||
3031 | // X+1 will be greater than or equal to it. | ||||||||||||
3032 | |||||||||||||
3033 | APInt VX = (A*X + B)*X + C; | ||||||||||||
3034 | APInt VY = VX + TwoA*X + A + B; | ||||||||||||
3035 | bool SignChange = VX.isNegative() != VY.isNegative() || | ||||||||||||
3036 | VX.isNullValue() != VY.isNullValue(); | ||||||||||||
3037 | // If the sign did not change between X and X+1, X is not a valid solution. | ||||||||||||
3038 | // This could happen when the actual (exact) roots don't have an integer | ||||||||||||
3039 | // between them, so they would both be contained between X and X+1. | ||||||||||||
3040 | if (!SignChange) { | ||||||||||||
3041 | LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n")do { } while (false); | ||||||||||||
3042 | return None; | ||||||||||||
3043 | } | ||||||||||||
3044 | |||||||||||||
3045 | X += 1; | ||||||||||||
3046 | LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n')do { } while (false); | ||||||||||||
3047 | return X; | ||||||||||||
3048 | } | ||||||||||||
3049 | |||||||||||||
3050 | Optional<unsigned> | ||||||||||||
3051 | llvm::APIntOps::GetMostSignificantDifferentBit(const APInt &A, const APInt &B) { | ||||||||||||
3052 | assert(A.getBitWidth() == B.getBitWidth() && "Must have the same bitwidth")((void)0); | ||||||||||||
3053 | if (A == B) | ||||||||||||
3054 | return llvm::None; | ||||||||||||
3055 | return A.getBitWidth() - ((A ^ B).countLeadingZeros() + 1); | ||||||||||||
3056 | } | ||||||||||||
3057 | |||||||||||||
3058 | /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst | ||||||||||||
3059 | /// with the integer held in IntVal. | ||||||||||||
3060 | void llvm::StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, | ||||||||||||
3061 | unsigned StoreBytes) { | ||||||||||||
3062 | assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!")((void)0); | ||||||||||||
3063 | const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); | ||||||||||||
3064 | |||||||||||||
3065 | if (sys::IsLittleEndianHost) { | ||||||||||||
3066 | // Little-endian host - the source is ordered from LSB to MSB. Order the | ||||||||||||
3067 | // destination from LSB to MSB: Do a straight copy. | ||||||||||||
3068 | memcpy(Dst, Src, StoreBytes); | ||||||||||||
3069 | } else { | ||||||||||||
3070 | // Big-endian host - the source is an array of 64 bit words ordered from | ||||||||||||
3071 | // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination | ||||||||||||
3072 | // from MSB to LSB: Reverse the word order, but not the bytes in a word. | ||||||||||||
3073 | while (StoreBytes > sizeof(uint64_t)) { | ||||||||||||
3074 | StoreBytes -= sizeof(uint64_t); | ||||||||||||
3075 | // May not be aligned so use memcpy. | ||||||||||||
3076 | memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); | ||||||||||||
3077 | Src += sizeof(uint64_t); | ||||||||||||
3078 | } | ||||||||||||
3079 | |||||||||||||
3080 | memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); | ||||||||||||
3081 | } | ||||||||||||
3082 | } | ||||||||||||
3083 | |||||||||||||
3084 | /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting | ||||||||||||
3085 | /// from Src into IntVal, which is assumed to be wide enough and to hold zero. | ||||||||||||
3086 | void llvm::LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, | ||||||||||||
3087 | unsigned LoadBytes) { | ||||||||||||
3088 | assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!")((void)0); | ||||||||||||
3089 | uint8_t *Dst = reinterpret_cast<uint8_t *>( | ||||||||||||
3090 | const_cast<uint64_t *>(IntVal.getRawData())); | ||||||||||||
3091 | |||||||||||||
3092 | if (sys::IsLittleEndianHost) | ||||||||||||
3093 | // Little-endian host - the destination must be ordered from LSB to MSB. | ||||||||||||
3094 | // The source is ordered from LSB to MSB: Do a straight copy. | ||||||||||||
3095 | memcpy(Dst, Src, LoadBytes); | ||||||||||||
3096 | else { | ||||||||||||
3097 | // Big-endian - the destination is an array of 64 bit words ordered from | ||||||||||||
3098 | // LSW to MSW. Each word must be ordered from MSB to LSB. The source is | ||||||||||||
3099 | // ordered from MSB to LSB: Reverse the word order, but not the bytes in | ||||||||||||
3100 | // a word. | ||||||||||||
3101 | while (LoadBytes > sizeof(uint64_t)) { | ||||||||||||
3102 | LoadBytes -= sizeof(uint64_t); | ||||||||||||
3103 | // May not be aligned so use memcpy. | ||||||||||||
3104 | memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); | ||||||||||||
3105 | Dst += sizeof(uint64_t); | ||||||||||||
3106 | } | ||||||||||||
3107 | |||||||||||||
3108 | memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); | ||||||||||||
3109 | } | ||||||||||||
3110 | } |
1 | //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// |
9 | /// \file |
10 | /// This file implements a class to represent arbitrary precision |
11 | /// integral constant values and operations on them. |
12 | /// |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #ifndef LLVM_ADT_APINT_H |
16 | #define LLVM_ADT_APINT_H |
17 | |
18 | #include "llvm/Support/Compiler.h" |
19 | #include "llvm/Support/MathExtras.h" |
20 | #include <cassert> |
21 | #include <climits> |
22 | #include <cstring> |
23 | #include <utility> |
24 | |
25 | namespace llvm { |
26 | class FoldingSetNodeID; |
27 | class StringRef; |
28 | class hash_code; |
29 | class raw_ostream; |
30 | |
31 | template <typename T> class SmallVectorImpl; |
32 | template <typename T> class ArrayRef; |
33 | template <typename T> class Optional; |
34 | template <typename T> struct DenseMapInfo; |
35 | |
36 | class APInt; |
37 | |
38 | inline APInt operator-(APInt); |
39 | |
40 | //===----------------------------------------------------------------------===// |
41 | // APInt Class |
42 | //===----------------------------------------------------------------------===// |
43 | |
44 | /// Class for arbitrary precision integers. |
45 | /// |
46 | /// APInt is a functional replacement for common case unsigned integer type like |
47 | /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width |
48 | /// integer sizes and large integer value types such as 3-bits, 15-bits, or more |
49 | /// than 64-bits of precision. APInt provides a variety of arithmetic operators |
50 | /// and methods to manipulate integer values of any bit-width. It supports both |
51 | /// the typical integer arithmetic and comparison operations as well as bitwise |
52 | /// manipulation. |
53 | /// |
54 | /// The class has several invariants worth noting: |
55 | /// * All bit, byte, and word positions are zero-based. |
56 | /// * Once the bit width is set, it doesn't change except by the Truncate, |
57 | /// SignExtend, or ZeroExtend operations. |
58 | /// * All binary operators must be on APInt instances of the same bit width. |
59 | /// Attempting to use these operators on instances with different bit |
60 | /// widths will yield an assertion. |
61 | /// * The value is stored canonically as an unsigned value. For operations |
62 | /// where it makes a difference, there are both signed and unsigned variants |
63 | /// of the operation. For example, sdiv and udiv. However, because the bit |
64 | /// widths must be the same, operations such as Mul and Add produce the same |
65 | /// results regardless of whether the values are interpreted as signed or |
66 | /// not. |
67 | /// * In general, the class tries to follow the style of computation that LLVM |
68 | /// uses in its IR. This simplifies its use for LLVM. |
69 | /// |
70 | class LLVM_NODISCARD[[clang::warn_unused_result]] APInt { |
71 | public: |
72 | typedef uint64_t WordType; |
73 | |
74 | /// This enum is used to hold the constants we needed for APInt. |
75 | enum : unsigned { |
76 | /// Byte size of a word. |
77 | APINT_WORD_SIZE = sizeof(WordType), |
78 | /// Bits in a word. |
79 | APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT8 |
80 | }; |
81 | |
82 | enum class Rounding { |
83 | DOWN, |
84 | TOWARD_ZERO, |
85 | UP, |
86 | }; |
87 | |
88 | static constexpr WordType WORDTYPE_MAX = ~WordType(0); |
89 | |
90 | private: |
91 | /// This union is used to store the integer value. When the |
92 | /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal. |
93 | union { |
94 | uint64_t VAL; ///< Used to store the <= 64 bits integer value. |
95 | uint64_t *pVal; ///< Used to store the >64 bits integer value. |
96 | } U; |
97 | |
98 | unsigned BitWidth; ///< The number of bits in this APInt. |
99 | |
100 | friend struct DenseMapInfo<APInt>; |
101 | |
102 | friend class APSInt; |
103 | |
104 | /// Fast internal constructor |
105 | /// |
106 | /// This constructor is used only internally for speed of construction of |
107 | /// temporaries. It is unsafe for general use so it is not public. |
108 | APInt(uint64_t *val, unsigned bits) : BitWidth(bits) { |
109 | U.pVal = val; |
110 | } |
111 | |
112 | /// Determine which word a bit is in. |
113 | /// |
114 | /// \returns the word position for the specified bit position. |
115 | static unsigned whichWord(unsigned bitPosition) { |
116 | return bitPosition / APINT_BITS_PER_WORD; |
117 | } |
118 | |
119 | /// Determine which bit in a word a bit is in. |
120 | /// |
121 | /// \returns the bit position in a word for the specified bit position |
122 | /// in the APInt. |
123 | static unsigned whichBit(unsigned bitPosition) { |
124 | return bitPosition % APINT_BITS_PER_WORD; |
125 | } |
126 | |
127 | /// Get a single bit mask. |
128 | /// |
129 | /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set |
130 | /// This method generates and returns a uint64_t (word) mask for a single |
131 | /// bit at a specific bit position. This is used to mask the bit in the |
132 | /// corresponding word. |
133 | static uint64_t maskBit(unsigned bitPosition) { |
134 | return 1ULL << whichBit(bitPosition); |
135 | } |
136 | |
137 | /// Clear unused high order bits |
138 | /// |
139 | /// This method is used internally to clear the top "N" bits in the high order |
140 | /// word that are not used by the APInt. This is needed after the most |
141 | /// significant word is assigned a value to ensure that those bits are |
142 | /// zero'd out. |
143 | APInt &clearUnusedBits() { |
144 | // Compute how many bits are used in the final word |
145 | unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1; |
146 | |
147 | // Mask out the high bits. |
148 | uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits); |
149 | if (isSingleWord()) |
150 | U.VAL &= mask; |
151 | else |
152 | U.pVal[getNumWords() - 1] &= mask; |
153 | return *this; |
154 | } |
155 | |
156 | /// Get the word corresponding to a bit position |
157 | /// \returns the corresponding word for the specified bit position. |
158 | uint64_t getWord(unsigned bitPosition) const { |
159 | return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)]; |
160 | } |
161 | |
162 | /// Utility method to change the bit width of this APInt to new bit width, |
163 | /// allocating and/or deallocating as necessary. There is no guarantee on the |
164 | /// value of any bits upon return. Caller should populate the bits after. |
165 | void reallocate(unsigned NewBitWidth); |
166 | |
167 | /// Convert a char array into an APInt |
168 | /// |
169 | /// \param radix 2, 8, 10, 16, or 36 |
170 | /// Converts a string into a number. The string must be non-empty |
171 | /// and well-formed as a number of the given base. The bit-width |
172 | /// must be sufficient to hold the result. |
173 | /// |
174 | /// This is used by the constructors that take string arguments. |
175 | /// |
176 | /// StringRef::getAsInteger is superficially similar but (1) does |
177 | /// not assume that the string is well-formed and (2) grows the |
178 | /// result to hold the input. |
179 | void fromString(unsigned numBits, StringRef str, uint8_t radix); |
180 | |
181 | /// An internal division function for dividing APInts. |
182 | /// |
183 | /// This is used by the toString method to divide by the radix. It simply |
184 | /// provides a more convenient form of divide for internal use since KnuthDiv |
185 | /// has specific constraints on its inputs. If those constraints are not met |
186 | /// then it provides a simpler form of divide. |
187 | static void divide(const WordType *LHS, unsigned lhsWords, |
188 | const WordType *RHS, unsigned rhsWords, WordType *Quotient, |
189 | WordType *Remainder); |
190 | |
191 | /// out-of-line slow case for inline constructor |
192 | void initSlowCase(uint64_t val, bool isSigned); |
193 | |
194 | /// shared code between two array constructors |
195 | void initFromArray(ArrayRef<uint64_t> array); |
196 | |
197 | /// out-of-line slow case for inline copy constructor |
198 | void initSlowCase(const APInt &that); |
199 | |
200 | /// out-of-line slow case for shl |
201 | void shlSlowCase(unsigned ShiftAmt); |
202 | |
203 | /// out-of-line slow case for lshr. |
204 | void lshrSlowCase(unsigned ShiftAmt); |
205 | |
206 | /// out-of-line slow case for ashr. |
207 | void ashrSlowCase(unsigned ShiftAmt); |
208 | |
209 | /// out-of-line slow case for operator= |
210 | void AssignSlowCase(const APInt &RHS); |
211 | |
212 | /// out-of-line slow case for operator== |
213 | bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__)); |
214 | |
215 | /// out-of-line slow case for countLeadingZeros |
216 | unsigned countLeadingZerosSlowCase() const LLVM_READONLY__attribute__((__pure__)); |
217 | |
218 | /// out-of-line slow case for countLeadingOnes. |
219 | unsigned countLeadingOnesSlowCase() const LLVM_READONLY__attribute__((__pure__)); |
220 | |
221 | /// out-of-line slow case for countTrailingZeros. |
222 | unsigned countTrailingZerosSlowCase() const LLVM_READONLY__attribute__((__pure__)); |
223 | |
224 | /// out-of-line slow case for countTrailingOnes |
225 | unsigned countTrailingOnesSlowCase() const LLVM_READONLY__attribute__((__pure__)); |
226 | |
227 | /// out-of-line slow case for countPopulation |
228 | unsigned countPopulationSlowCase() const LLVM_READONLY__attribute__((__pure__)); |
229 | |
230 | /// out-of-line slow case for intersects. |
231 | bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__)); |
232 | |
233 | /// out-of-line slow case for isSubsetOf. |
234 | bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__)); |
235 | |
236 | /// out-of-line slow case for setBits. |
237 | void setBitsSlowCase(unsigned loBit, unsigned hiBit); |
238 | |
239 | /// out-of-line slow case for flipAllBits. |
240 | void flipAllBitsSlowCase(); |
241 | |
242 | /// out-of-line slow case for operator&=. |
243 | void AndAssignSlowCase(const APInt& RHS); |
244 | |
245 | /// out-of-line slow case for operator|=. |
246 | void OrAssignSlowCase(const APInt& RHS); |
247 | |
248 | /// out-of-line slow case for operator^=. |
249 | void XorAssignSlowCase(const APInt& RHS); |
250 | |
251 | /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal |
252 | /// to, or greater than RHS. |
253 | int compare(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__)); |
254 | |
255 | /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal |
256 | /// to, or greater than RHS. |
257 | int compareSigned(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__)); |
258 | |
259 | public: |
260 | /// \name Constructors |
261 | /// @{ |
262 | |
263 | /// Create a new APInt of numBits width, initialized as val. |
264 | /// |
265 | /// If isSigned is true then val is treated as if it were a signed value |
266 | /// (i.e. as an int64_t) and the appropriate sign extension to the bit width |
267 | /// will be done. Otherwise, no sign extension occurs (high order bits beyond |
268 | /// the range of val are zero filled). |
269 | /// |
270 | /// \param numBits the bit width of the constructed APInt |
271 | /// \param val the initial value of the APInt |
272 | /// \param isSigned how to treat signedness of val |
273 | APInt(unsigned numBits, uint64_t val, bool isSigned = false) |
274 | : BitWidth(numBits) { |
275 | assert(BitWidth && "bitwidth too small")((void)0); |
276 | if (isSingleWord()) { |
277 | U.VAL = val; |
278 | clearUnusedBits(); |
279 | } else { |
280 | initSlowCase(val, isSigned); |
281 | } |
282 | } |
283 | |
284 | /// Construct an APInt of numBits width, initialized as bigVal[]. |
285 | /// |
286 | /// Note that bigVal.size() can be smaller or larger than the corresponding |
287 | /// bit width but any extraneous bits will be dropped. |
288 | /// |
289 | /// \param numBits the bit width of the constructed APInt |
290 | /// \param bigVal a sequence of words to form the initial value of the APInt |
291 | APInt(unsigned numBits, ArrayRef<uint64_t> bigVal); |
292 | |
293 | /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but |
294 | /// deprecated because this constructor is prone to ambiguity with the |
295 | /// APInt(unsigned, uint64_t, bool) constructor. |
296 | /// |
297 | /// If this overload is ever deleted, care should be taken to prevent calls |
298 | /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool) |
299 | /// constructor. |
300 | APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]); |
301 | |
302 | /// Construct an APInt from a string representation. |
303 | /// |
304 | /// This constructor interprets the string \p str in the given radix. The |
305 | /// interpretation stops when the first character that is not suitable for the |
306 | /// radix is encountered, or the end of the string. Acceptable radix values |
307 | /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the |
308 | /// string to require more bits than numBits. |
309 | /// |
310 | /// \param numBits the bit width of the constructed APInt |
311 | /// \param str the string to be interpreted |
312 | /// \param radix the radix to use for the conversion |
313 | APInt(unsigned numBits, StringRef str, uint8_t radix); |
314 | |
315 | /// Simply makes *this a copy of that. |
316 | /// Copy Constructor. |
317 | APInt(const APInt &that) : BitWidth(that.BitWidth) { |
318 | if (isSingleWord()) |
319 | U.VAL = that.U.VAL; |
320 | else |
321 | initSlowCase(that); |
322 | } |
323 | |
324 | /// Move Constructor. |
325 | APInt(APInt &&that) : BitWidth(that.BitWidth) { |
326 | memcpy(&U, &that.U, sizeof(U)); |
327 | that.BitWidth = 0; |
328 | } |
329 | |
330 | /// Destructor. |
331 | ~APInt() { |
332 | if (needsCleanup()) |
333 | delete[] U.pVal; |
334 | } |
335 | |
336 | /// Default constructor that creates an uninteresting APInt |
337 | /// representing a 1-bit zero value. |
338 | /// |
339 | /// This is useful for object deserialization (pair this with the static |
340 | /// method Read). |
341 | explicit APInt() : BitWidth(1) { U.VAL = 0; } |
342 | |
343 | /// Returns whether this instance allocated memory. |
344 | bool needsCleanup() const { return !isSingleWord(); } |
345 | |
346 | /// Used to insert APInt objects, or objects that contain APInt objects, into |
347 | /// FoldingSets. |
348 | void Profile(FoldingSetNodeID &id) const; |
349 | |
350 | /// @} |
351 | /// \name Value Tests |
352 | /// @{ |
353 | |
354 | /// Determine if this APInt just has one word to store value. |
355 | /// |
356 | /// \returns true if the number of bits <= 64, false otherwise. |
357 | bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; } |
358 | |
359 | /// Determine sign of this APInt. |
360 | /// |
361 | /// This tests the high bit of this APInt to determine if it is set. |
362 | /// |
363 | /// \returns true if this APInt is negative, false otherwise |
364 | bool isNegative() const { return (*this)[BitWidth - 1]; } |
365 | |
366 | /// Determine if this APInt Value is non-negative (>= 0) |
367 | /// |
368 | /// This tests the high bit of the APInt to determine if it is unset. |
369 | bool isNonNegative() const { return !isNegative(); } |
370 | |
371 | /// Determine if sign bit of this APInt is set. |
372 | /// |
373 | /// This tests the high bit of this APInt to determine if it is set. |
374 | /// |
375 | /// \returns true if this APInt has its sign bit set, false otherwise. |
376 | bool isSignBitSet() const { return (*this)[BitWidth-1]; } |
377 | |
378 | /// Determine if sign bit of this APInt is clear. |
379 | /// |
380 | /// This tests the high bit of this APInt to determine if it is clear. |
381 | /// |
382 | /// \returns true if this APInt has its sign bit clear, false otherwise. |
383 | bool isSignBitClear() const { return !isSignBitSet(); } |
384 | |
385 | /// Determine if this APInt Value is positive. |
386 | /// |
387 | /// This tests if the value of this APInt is positive (> 0). Note |
388 | /// that 0 is not a positive value. |
389 | /// |
390 | /// \returns true if this APInt is positive. |
391 | bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); } |
392 | |
393 | /// Determine if this APInt Value is non-positive (<= 0). |
394 | /// |
395 | /// \returns true if this APInt is non-positive. |
396 | bool isNonPositive() const { return !isStrictlyPositive(); } |
397 | |
398 | /// Determine if all bits are set |
399 | /// |
400 | /// This checks to see if the value has all bits of the APInt are set or not. |
401 | bool isAllOnesValue() const { |
402 | if (isSingleWord()) |
403 | return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth); |
404 | return countTrailingOnesSlowCase() == BitWidth; |
405 | } |
406 | |
407 | /// Determine if all bits are clear |
408 | /// |
409 | /// This checks to see if the value has all bits of the APInt are clear or |
410 | /// not. |
411 | bool isNullValue() const { return !*this; } |
412 | |
413 | /// Determine if this is a value of 1. |
414 | /// |
415 | /// This checks to see if the value of this APInt is one. |
416 | bool isOneValue() const { |
417 | if (isSingleWord()) |
418 | return U.VAL == 1; |
419 | return countLeadingZerosSlowCase() == BitWidth - 1; |
420 | } |
421 | |
422 | /// Determine if this is the largest unsigned value. |
423 | /// |
424 | /// This checks to see if the value of this APInt is the maximum unsigned |
425 | /// value for the APInt's bit width. |
426 | bool isMaxValue() const { return isAllOnesValue(); } |
427 | |
428 | /// Determine if this is the largest signed value. |
429 | /// |
430 | /// This checks to see if the value of this APInt is the maximum signed |
431 | /// value for the APInt's bit width. |
432 | bool isMaxSignedValue() const { |
433 | if (isSingleWord()) |
434 | return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1); |
435 | return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1; |
436 | } |
437 | |
438 | /// Determine if this is the smallest unsigned value. |
439 | /// |
440 | /// This checks to see if the value of this APInt is the minimum unsigned |
441 | /// value for the APInt's bit width. |
442 | bool isMinValue() const { return isNullValue(); } |
443 | |
444 | /// Determine if this is the smallest signed value. |
445 | /// |
446 | /// This checks to see if the value of this APInt is the minimum signed |
447 | /// value for the APInt's bit width. |
448 | bool isMinSignedValue() const { |
449 | if (isSingleWord()) |
450 | return U.VAL == (WordType(1) << (BitWidth - 1)); |
451 | return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1; |
452 | } |
453 | |
454 | /// Check if this APInt has an N-bits unsigned integer value. |
455 | bool isIntN(unsigned N) const { |
456 | assert(N && "N == 0 ???")((void)0); |
457 | return getActiveBits() <= N; |
458 | } |
459 | |
460 | /// Check if this APInt has an N-bits signed integer value. |
461 | bool isSignedIntN(unsigned N) const { |
462 | assert(N && "N == 0 ???")((void)0); |
463 | return getMinSignedBits() <= N; |
464 | } |
465 | |
466 | /// Check if this APInt's value is a power of two greater than zero. |
467 | /// |
468 | /// \returns true if the argument APInt value is a power of two > 0. |
469 | bool isPowerOf2() const { |
470 | if (isSingleWord()) |
471 | return isPowerOf2_64(U.VAL); |
472 | return countPopulationSlowCase() == 1; |
473 | } |
474 | |
475 | /// Check if the APInt's value is returned by getSignMask. |
476 | /// |
477 | /// \returns true if this is the value returned by getSignMask. |
478 | bool isSignMask() const { return isMinSignedValue(); } |
479 | |
480 | /// Convert APInt to a boolean value. |
481 | /// |
482 | /// This converts the APInt to a boolean value as a test against zero. |
483 | bool getBoolValue() const { return !!*this; } |
484 | |
485 | /// If this value is smaller than the specified limit, return it, otherwise |
486 | /// return the limit value. This causes the value to saturate to the limit. |
487 | uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX0xffffffffffffffffULL) const { |
488 | return ugt(Limit) ? Limit : getZExtValue(); |
489 | } |
490 | |
491 | /// Check if the APInt consists of a repeated bit pattern. |
492 | /// |
493 | /// e.g. 0x01010101 satisfies isSplat(8). |
494 | /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit |
495 | /// width without remainder. |
496 | bool isSplat(unsigned SplatSizeInBits) const; |
497 | |
498 | /// \returns true if this APInt value is a sequence of \param numBits ones |
499 | /// starting at the least significant bit with the remainder zero. |
500 | bool isMask(unsigned numBits) const { |
501 | assert(numBits != 0 && "numBits must be non-zero")((void)0); |
502 | assert(numBits <= BitWidth && "numBits out of range")((void)0); |
503 | if (isSingleWord()) |
504 | return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits)); |
505 | unsigned Ones = countTrailingOnesSlowCase(); |
506 | return (numBits == Ones) && |
507 | ((Ones + countLeadingZerosSlowCase()) == BitWidth); |
508 | } |
509 | |
510 | /// \returns true if this APInt is a non-empty sequence of ones starting at |
511 | /// the least significant bit with the remainder zero. |
512 | /// Ex. isMask(0x0000FFFFU) == true. |
513 | bool isMask() const { |
514 | if (isSingleWord()) |
515 | return isMask_64(U.VAL); |
516 | unsigned Ones = countTrailingOnesSlowCase(); |
517 | return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth); |
518 | } |
519 | |
520 | /// Return true if this APInt value contains a sequence of ones with |
521 | /// the remainder zero. |
522 | bool isShiftedMask() const { |
523 | if (isSingleWord()) |
524 | return isShiftedMask_64(U.VAL); |
525 | unsigned Ones = countPopulationSlowCase(); |
526 | unsigned LeadZ = countLeadingZerosSlowCase(); |
527 | return (Ones + LeadZ + countTrailingZeros()) == BitWidth; |
528 | } |
529 | |
530 | /// @} |
531 | /// \name Value Generators |
532 | /// @{ |
533 | |
534 | /// Gets maximum unsigned value of APInt for specific bit width. |
535 | static APInt getMaxValue(unsigned numBits) { |
536 | return getAllOnesValue(numBits); |
537 | } |
538 | |
539 | /// Gets maximum signed value of APInt for a specific bit width. |
540 | static APInt getSignedMaxValue(unsigned numBits) { |
541 | APInt API = getAllOnesValue(numBits); |
542 | API.clearBit(numBits - 1); |
543 | return API; |
544 | } |
545 | |
546 | /// Gets minimum unsigned value of APInt for a specific bit width. |
547 | static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); } |
548 | |
549 | /// Gets minimum signed value of APInt for a specific bit width. |
550 | static APInt getSignedMinValue(unsigned numBits) { |
551 | APInt API(numBits, 0); |
552 | API.setBit(numBits - 1); |
553 | return API; |
554 | } |
555 | |
556 | /// Get the SignMask for a specific bit width. |
557 | /// |
558 | /// This is just a wrapper function of getSignedMinValue(), and it helps code |
559 | /// readability when we want to get a SignMask. |
560 | static APInt getSignMask(unsigned BitWidth) { |
561 | return getSignedMinValue(BitWidth); |
562 | } |
563 | |
564 | /// Get the all-ones value. |
565 | /// |
566 | /// \returns the all-ones value for an APInt of the specified bit-width. |
567 | static APInt getAllOnesValue(unsigned numBits) { |
568 | return APInt(numBits, WORDTYPE_MAX, true); |
569 | } |
570 | |
571 | /// Get the '0' value. |
572 | /// |
573 | /// \returns the '0' value for an APInt of the specified bit-width. |
574 | static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); } |
575 | |
576 | /// Compute an APInt containing numBits highbits from this APInt. |
577 | /// |
578 | /// Get an APInt with the same BitWidth as this APInt, just zero mask |
579 | /// the low bits and right shift to the least significant bit. |
580 | /// |
581 | /// \returns the high "numBits" bits of this APInt. |
582 | APInt getHiBits(unsigned numBits) const; |
583 | |
584 | /// Compute an APInt containing numBits lowbits from this APInt. |
585 | /// |
586 | /// Get an APInt with the same BitWidth as this APInt, just zero mask |
587 | /// the high bits. |
588 | /// |
589 | /// \returns the low "numBits" bits of this APInt. |
590 | APInt getLoBits(unsigned numBits) const; |
591 | |
592 | /// Return an APInt with exactly one bit set in the result. |
593 | static APInt getOneBitSet(unsigned numBits, unsigned BitNo) { |
594 | APInt Res(numBits, 0); |
595 | Res.setBit(BitNo); |
596 | return Res; |
597 | } |
598 | |
599 | /// Get a value with a block of bits set. |
600 | /// |
601 | /// Constructs an APInt value that has a contiguous range of bits set. The |
602 | /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other |
603 | /// bits will be zero. For example, with parameters(32, 0, 16) you would get |
604 | /// 0x0000FFFF. Please call getBitsSetWithWrap if \p loBit may be greater than |
605 | /// \p hiBit. |
606 | /// |
607 | /// \param numBits the intended bit width of the result |
608 | /// \param loBit the index of the lowest bit set. |
609 | /// \param hiBit the index of the highest bit set. |
610 | /// |
611 | /// \returns An APInt value with the requested bits set. |
612 | static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) { |
613 | assert(loBit <= hiBit && "loBit greater than hiBit")((void)0); |
614 | APInt Res(numBits, 0); |
615 | Res.setBits(loBit, hiBit); |
616 | return Res; |
617 | } |
618 | |
619 | /// Wrap version of getBitsSet. |
620 | /// If \p hiBit is bigger than \p loBit, this is same with getBitsSet. |
621 | /// If \p hiBit is not bigger than \p loBit, the set bits "wrap". For example, |
622 | /// with parameters (32, 28, 4), you would get 0xF000000F. |
623 | /// If \p hiBit is equal to \p loBit, you would get a result with all bits |
624 | /// set. |
625 | static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit, |
626 | unsigned hiBit) { |
627 | APInt Res(numBits, 0); |
628 | Res.setBitsWithWrap(loBit, hiBit); |
629 | return Res; |
630 | } |
631 | |
632 | /// Get a value with upper bits starting at loBit set. |
633 | /// |
634 | /// Constructs an APInt value that has a contiguous range of bits set. The |
635 | /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other |
636 | /// bits will be zero. For example, with parameters(32, 12) you would get |
637 | /// 0xFFFFF000. |
638 | /// |
639 | /// \param numBits the intended bit width of the result |
640 | /// \param loBit the index of the lowest bit to set. |
641 | /// |
642 | /// \returns An APInt value with the requested bits set. |
643 | static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) { |
644 | APInt Res(numBits, 0); |
645 | Res.setBitsFrom(loBit); |
646 | return Res; |
647 | } |
648 | |
649 | /// Get a value with high bits set |
650 | /// |
651 | /// Constructs an APInt value that has the top hiBitsSet bits set. |
652 | /// |
653 | /// \param numBits the bitwidth of the result |
654 | /// \param hiBitsSet the number of high-order bits set in the result. |
655 | static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) { |
656 | APInt Res(numBits, 0); |
657 | Res.setHighBits(hiBitsSet); |
658 | return Res; |
659 | } |
660 | |
661 | /// Get a value with low bits set |
662 | /// |
663 | /// Constructs an APInt value that has the bottom loBitsSet bits set. |
664 | /// |
665 | /// \param numBits the bitwidth of the result |
666 | /// \param loBitsSet the number of low-order bits set in the result. |
667 | static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) { |
668 | APInt Res(numBits, 0); |
669 | Res.setLowBits(loBitsSet); |
670 | return Res; |
671 | } |
672 | |
673 | /// Return a value containing V broadcasted over NewLen bits. |
674 | static APInt getSplat(unsigned NewLen, const APInt &V); |
675 | |
676 | /// Determine if two APInts have the same value, after zero-extending |
677 | /// one of them (if needed!) to ensure that the bit-widths match. |
678 | static bool isSameValue(const APInt &I1, const APInt &I2) { |
679 | if (I1.getBitWidth() == I2.getBitWidth()) |
680 | return I1 == I2; |
681 | |
682 | if (I1.getBitWidth() > I2.getBitWidth()) |
683 | return I1 == I2.zext(I1.getBitWidth()); |
684 | |
685 | return I1.zext(I2.getBitWidth()) == I2; |
686 | } |
687 | |
688 | /// Overload to compute a hash_code for an APInt value. |
689 | friend hash_code hash_value(const APInt &Arg); |
690 | |
691 | /// This function returns a pointer to the internal storage of the APInt. |
692 | /// This is useful for writing out the APInt in binary form without any |
693 | /// conversions. |
694 | const uint64_t *getRawData() const { |
695 | if (isSingleWord()) |
696 | return &U.VAL; |
697 | return &U.pVal[0]; |
698 | } |
699 | |
700 | /// @} |
701 | /// \name Unary Operators |
702 | /// @{ |
703 | |
704 | /// Postfix increment operator. |
705 | /// |
706 | /// Increments *this by 1. |
707 | /// |
708 | /// \returns a new APInt value representing the original value of *this. |
709 | const APInt operator++(int) { |
710 | APInt API(*this); |
711 | ++(*this); |
712 | return API; |
713 | } |
714 | |
715 | /// Prefix increment operator. |
716 | /// |
717 | /// \returns *this incremented by one |
718 | APInt &operator++(); |
719 | |
720 | /// Postfix decrement operator. |
721 | /// |
722 | /// Decrements *this by 1. |
723 | /// |
724 | /// \returns a new APInt value representing the original value of *this. |
725 | const APInt operator--(int) { |
726 | APInt API(*this); |
727 | --(*this); |
728 | return API; |
729 | } |
730 | |
731 | /// Prefix decrement operator. |
732 | /// |
733 | /// \returns *this decremented by one. |
734 | APInt &operator--(); |
735 | |
736 | /// Logical negation operator. |
737 | /// |
738 | /// Performs logical negation operation on this APInt. |
739 | /// |
740 | /// \returns true if *this is zero, false otherwise. |
741 | bool operator!() const { |
742 | if (isSingleWord()) |
743 | return U.VAL == 0; |
744 | return countLeadingZerosSlowCase() == BitWidth; |
745 | } |
746 | |
747 | /// @} |
748 | /// \name Assignment Operators |
749 | /// @{ |
750 | |
751 | /// Copy assignment operator. |
752 | /// |
753 | /// \returns *this after assignment of RHS. |
754 | APInt &operator=(const APInt &RHS) { |
755 | // If the bitwidths are the same, we can avoid mucking with memory |
756 | if (isSingleWord() && RHS.isSingleWord()) { |
757 | U.VAL = RHS.U.VAL; |
758 | BitWidth = RHS.BitWidth; |
759 | return clearUnusedBits(); |
760 | } |
761 | |
762 | AssignSlowCase(RHS); |
763 | return *this; |
764 | } |
765 | |
766 | /// Move assignment operator. |
767 | APInt &operator=(APInt &&that) { |
768 | #ifdef EXPENSIVE_CHECKS |
769 | // Some std::shuffle implementations still do self-assignment. |
770 | if (this == &that) |
771 | return *this; |
772 | #endif |
773 | assert(this != &that && "Self-move not supported")((void)0); |
774 | if (!isSingleWord()) |
775 | delete[] U.pVal; |
776 | |
777 | // Use memcpy so that type based alias analysis sees both VAL and pVal |
778 | // as modified. |
779 | memcpy(&U, &that.U, sizeof(U)); |
780 | |
781 | BitWidth = that.BitWidth; |
782 | that.BitWidth = 0; |
783 | |
784 | return *this; |
785 | } |
786 | |
787 | /// Assignment operator. |
788 | /// |
789 | /// The RHS value is assigned to *this. If the significant bits in RHS exceed |
790 | /// the bit width, the excess bits are truncated. If the bit width is larger |
791 | /// than 64, the value is zero filled in the unspecified high order bits. |
792 | /// |
793 | /// \returns *this after assignment of RHS value. |
794 | APInt &operator=(uint64_t RHS) { |
795 | if (isSingleWord()) { |
796 | U.VAL = RHS; |
797 | return clearUnusedBits(); |
798 | } |
799 | U.pVal[0] = RHS; |
800 | memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); |
801 | return *this; |
802 | } |
803 | |
804 | /// Bitwise AND assignment operator. |
805 | /// |
806 | /// Performs a bitwise AND operation on this APInt and RHS. The result is |
807 | /// assigned to *this. |
808 | /// |
809 | /// \returns *this after ANDing with RHS. |
810 | APInt &operator&=(const APInt &RHS) { |
811 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((void)0); |
812 | if (isSingleWord()) |
813 | U.VAL &= RHS.U.VAL; |
814 | else |
815 | AndAssignSlowCase(RHS); |
816 | return *this; |
817 | } |
818 | |
819 | /// Bitwise AND assignment operator. |
820 | /// |
821 | /// Performs a bitwise AND operation on this APInt and RHS. RHS is |
822 | /// logically zero-extended or truncated to match the bit-width of |
823 | /// the LHS. |
824 | APInt &operator&=(uint64_t RHS) { |
825 | if (isSingleWord()) { |
826 | U.VAL &= RHS; |
827 | return *this; |
828 | } |
829 | U.pVal[0] &= RHS; |
830 | memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); |
831 | return *this; |
832 | } |
833 | |
834 | /// Bitwise OR assignment operator. |
835 | /// |
836 | /// Performs a bitwise OR operation on this APInt and RHS. The result is |
837 | /// assigned *this; |
838 | /// |
839 | /// \returns *this after ORing with RHS. |
840 | APInt &operator|=(const APInt &RHS) { |
841 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((void)0); |
842 | if (isSingleWord()) |
843 | U.VAL |= RHS.U.VAL; |
844 | else |
845 | OrAssignSlowCase(RHS); |
846 | return *this; |
847 | } |
848 | |
849 | /// Bitwise OR assignment operator. |
850 | /// |
851 | /// Performs a bitwise OR operation on this APInt and RHS. RHS is |
852 | /// logically zero-extended or truncated to match the bit-width of |
853 | /// the LHS. |
854 | APInt &operator|=(uint64_t RHS) { |
855 | if (isSingleWord()) { |
856 | U.VAL |= RHS; |
857 | return clearUnusedBits(); |
858 | } |
859 | U.pVal[0] |= RHS; |
860 | return *this; |
861 | } |
862 | |
863 | /// Bitwise XOR assignment operator. |
864 | /// |
865 | /// Performs a bitwise XOR operation on this APInt and RHS. The result is |
866 | /// assigned to *this. |
867 | /// |
868 | /// \returns *this after XORing with RHS. |
869 | APInt &operator^=(const APInt &RHS) { |
870 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((void)0); |
871 | if (isSingleWord()) |
872 | U.VAL ^= RHS.U.VAL; |
873 | else |
874 | XorAssignSlowCase(RHS); |
875 | return *this; |
876 | } |
877 | |
878 | /// Bitwise XOR assignment operator. |
879 | /// |
880 | /// Performs a bitwise XOR operation on this APInt and RHS. RHS is |
881 | /// logically zero-extended or truncated to match the bit-width of |
882 | /// the LHS. |
883 | APInt &operator^=(uint64_t RHS) { |
884 | if (isSingleWord()) { |
885 | U.VAL ^= RHS; |
886 | return clearUnusedBits(); |
887 | } |
888 | U.pVal[0] ^= RHS; |
889 | return *this; |
890 | } |
891 | |
892 | /// Multiplication assignment operator. |
893 | /// |
894 | /// Multiplies this APInt by RHS and assigns the result to *this. |
895 | /// |
896 | /// \returns *this |
897 | APInt &operator*=(const APInt &RHS); |
898 | APInt &operator*=(uint64_t RHS); |
899 | |
900 | /// Addition assignment operator. |
901 | /// |
902 | /// Adds RHS to *this and assigns the result to *this. |
903 | /// |
904 | /// \returns *this |
905 | APInt &operator+=(const APInt &RHS); |
906 | APInt &operator+=(uint64_t RHS); |
907 | |
908 | /// Subtraction assignment operator. |
909 | /// |
910 | /// Subtracts RHS from *this and assigns the result to *this. |
911 | /// |
912 | /// \returns *this |
913 | APInt &operator-=(const APInt &RHS); |
914 | APInt &operator-=(uint64_t RHS); |
915 | |
916 | /// Left-shift assignment function. |
917 | /// |
918 | /// Shifts *this left by shiftAmt and assigns the result to *this. |
919 | /// |
920 | /// \returns *this after shifting left by ShiftAmt |
921 | APInt &operator<<=(unsigned ShiftAmt) { |
922 | assert(ShiftAmt <= BitWidth && "Invalid shift amount")((void)0); |
923 | if (isSingleWord()) { |
924 | if (ShiftAmt == BitWidth) |
925 | U.VAL = 0; |
926 | else |
927 | U.VAL <<= ShiftAmt; |
928 | return clearUnusedBits(); |
929 | } |
930 | shlSlowCase(ShiftAmt); |
931 | return *this; |
932 | } |
933 | |
934 | /// Left-shift assignment function. |
935 | /// |
936 | /// Shifts *this left by shiftAmt and assigns the result to *this. |
937 | /// |
938 | /// \returns *this after shifting left by ShiftAmt |
939 | APInt &operator<<=(const APInt &ShiftAmt); |
940 | |
941 | /// @} |
942 | /// \name Binary Operators |
943 | /// @{ |
944 | |
945 | /// Multiplication operator. |
946 | /// |
947 | /// Multiplies this APInt by RHS and returns the result. |
948 | APInt operator*(const APInt &RHS) const; |
949 | |
950 | /// Left logical shift operator. |
951 | /// |
952 | /// Shifts this APInt left by \p Bits and returns the result. |
953 | APInt operator<<(unsigned Bits) const { return shl(Bits); } |
954 | |
955 | /// Left logical shift operator. |
956 | /// |
957 | /// Shifts this APInt left by \p Bits and returns the result. |
958 | APInt operator<<(const APInt &Bits) const { return shl(Bits); } |
959 | |
960 | /// Arithmetic right-shift function. |
961 | /// |
962 | /// Arithmetic right-shift this APInt by shiftAmt. |
963 | APInt ashr(unsigned ShiftAmt) const { |
964 | APInt R(*this); |
965 | R.ashrInPlace(ShiftAmt); |
966 | return R; |
967 | } |
968 | |
969 | /// Arithmetic right-shift this APInt by ShiftAmt in place. |
970 | void ashrInPlace(unsigned ShiftAmt) { |
971 | assert(ShiftAmt <= BitWidth && "Invalid shift amount")((void)0); |
972 | if (isSingleWord()) { |
973 | int64_t SExtVAL = SignExtend64(U.VAL, BitWidth); |
974 | if (ShiftAmt == BitWidth) |
975 | U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit. |
976 | else |
977 | U.VAL = SExtVAL >> ShiftAmt; |
978 | clearUnusedBits(); |
979 | return; |
980 | } |
981 | ashrSlowCase(ShiftAmt); |
982 | } |
983 | |
984 | /// Logical right-shift function. |
985 | /// |
986 | /// Logical right-shift this APInt by shiftAmt. |
987 | APInt lshr(unsigned shiftAmt) const { |
988 | APInt R(*this); |
989 | R.lshrInPlace(shiftAmt); |
990 | return R; |
991 | } |
992 | |
993 | /// Logical right-shift this APInt by ShiftAmt in place. |
994 | void lshrInPlace(unsigned ShiftAmt) { |
995 | assert(ShiftAmt <= BitWidth && "Invalid shift amount")((void)0); |
996 | if (isSingleWord()) { |
997 | if (ShiftAmt == BitWidth) |
998 | U.VAL = 0; |
999 | else |
1000 | U.VAL >>= ShiftAmt; |
1001 | return; |
1002 | } |
1003 | lshrSlowCase(ShiftAmt); |
1004 | } |
1005 | |
1006 | /// Left-shift function. |
1007 | /// |
1008 | /// Left-shift this APInt by shiftAmt. |
1009 | APInt shl(unsigned shiftAmt) const { |
1010 | APInt R(*this); |
1011 | R <<= shiftAmt; |
1012 | return R; |
1013 | } |
1014 | |
1015 | /// Rotate left by rotateAmt. |
1016 | APInt rotl(unsigned rotateAmt) const; |
1017 | |
1018 | /// Rotate right by rotateAmt. |
1019 | APInt rotr(unsigned rotateAmt) const; |
1020 | |
1021 | /// Arithmetic right-shift function. |
1022 | /// |
1023 | /// Arithmetic right-shift this APInt by shiftAmt. |
1024 | APInt ashr(const APInt &ShiftAmt) const { |
1025 | APInt R(*this); |
1026 | R.ashrInPlace(ShiftAmt); |
1027 | return R; |
1028 | } |
1029 | |
1030 | /// Arithmetic right-shift this APInt by shiftAmt in place. |
1031 | void ashrInPlace(const APInt &shiftAmt); |
1032 | |
1033 | /// Logical right-shift function. |
1034 | /// |
1035 | /// Logical right-shift this APInt by shiftAmt. |
1036 | APInt lshr(const APInt &ShiftAmt) const { |
1037 | APInt R(*this); |
1038 | R.lshrInPlace(ShiftAmt); |
1039 | return R; |
1040 | } |
1041 | |
1042 | /// Logical right-shift this APInt by ShiftAmt in place. |
1043 | void lshrInPlace(const APInt &ShiftAmt); |
1044 | |
1045 | /// Left-shift function. |
1046 | /// |
1047 | /// Left-shift this APInt by shiftAmt. |
1048 | APInt shl(const APInt &ShiftAmt) const { |
1049 | APInt R(*this); |
1050 | R <<= ShiftAmt; |
1051 | return R; |
1052 | } |
1053 | |
1054 | /// Rotate left by rotateAmt. |
1055 | APInt rotl(const APInt &rotateAmt) const; |
1056 | |
1057 | /// Rotate right by rotateAmt. |
1058 | APInt rotr(const APInt &rotateAmt) const; |
1059 | |
1060 | /// Unsigned division operation. |
1061 | /// |
1062 | /// Perform an unsigned divide operation on this APInt by RHS. Both this and |
1063 | /// RHS are treated as unsigned quantities for purposes of this division. |
1064 | /// |
1065 | /// \returns a new APInt value containing the division result, rounded towards |
1066 | /// zero. |
1067 | APInt udiv(const APInt &RHS) const; |
1068 | APInt udiv(uint64_t RHS) const; |
1069 | |
1070 | /// Signed division function for APInt. |
1071 | /// |
1072 | /// Signed divide this APInt by APInt RHS. |
1073 | /// |
1074 | /// The result is rounded towards zero. |
1075 | APInt sdiv(const APInt &RHS) const; |
1076 | APInt sdiv(int64_t RHS) const; |
1077 | |
1078 | /// Unsigned remainder operation. |
1079 | /// |
1080 | /// Perform an unsigned remainder operation on this APInt with RHS being the |
1081 | /// divisor. Both this and RHS are treated as unsigned quantities for purposes |
1082 | /// of this operation. Note that this is a true remainder operation and not a |
1083 | /// modulo operation because the sign follows the sign of the dividend which |
1084 | /// is *this. |
1085 | /// |
1086 | /// \returns a new APInt value containing the remainder result |
1087 | APInt urem(const APInt &RHS) const; |
1088 | uint64_t urem(uint64_t RHS) const; |
1089 | |
1090 | /// Function for signed remainder operation. |
1091 | /// |
1092 | /// Signed remainder operation on APInt. |
1093 | APInt srem(const APInt &RHS) const; |
1094 | int64_t srem(int64_t RHS) const; |
1095 | |
1096 | /// Dual division/remainder interface. |
1097 | /// |
1098 | /// Sometimes it is convenient to divide two APInt values and obtain both the |
1099 | /// quotient and remainder. This function does both operations in the same |
1100 | /// computation making it a little more efficient. The pair of input arguments |
1101 | /// may overlap with the pair of output arguments. It is safe to call |
1102 | /// udivrem(X, Y, X, Y), for example. |
1103 | static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, |
1104 | APInt &Remainder); |
1105 | static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient, |
1106 | uint64_t &Remainder); |
1107 | |
1108 | static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, |
1109 | APInt &Remainder); |
1110 | static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient, |
1111 | int64_t &Remainder); |
1112 | |
1113 | // Operations that return overflow indicators. |
1114 | APInt sadd_ov(const APInt &RHS, bool &Overflow) const; |
1115 | APInt uadd_ov(const APInt &RHS, bool &Overflow) const; |
1116 | APInt ssub_ov(const APInt &RHS, bool &Overflow) const; |
1117 | APInt usub_ov(const APInt &RHS, bool &Overflow) const; |
1118 | APInt sdiv_ov(const APInt &RHS, bool &Overflow) const; |
1119 | APInt smul_ov(const APInt &RHS, bool &Overflow) const; |
1120 | APInt umul_ov(const APInt &RHS, bool &Overflow) const; |
1121 | APInt sshl_ov(const APInt &Amt, bool &Overflow) const; |
1122 | APInt ushl_ov(const APInt &Amt, bool &Overflow) const; |
1123 | |
1124 | // Operations that saturate |
1125 | APInt sadd_sat(const APInt &RHS) const; |
1126 | APInt uadd_sat(const APInt &RHS) const; |
1127 | APInt ssub_sat(const APInt &RHS) const; |
1128 | APInt usub_sat(const APInt &RHS) const; |
1129 | APInt smul_sat(const APInt &RHS) const; |
1130 | APInt umul_sat(const APInt &RHS) const; |
1131 | APInt sshl_sat(const APInt &RHS) const; |
1132 | APInt ushl_sat(const APInt &RHS) const; |
1133 | |
1134 | /// Array-indexing support. |
1135 | /// |
1136 | /// \returns the bit value at bitPosition |
1137 | bool operator[](unsigned bitPosition) const { |
1138 | assert(bitPosition < getBitWidth() && "Bit position out of bounds!")((void)0); |
1139 | return (maskBit(bitPosition) & getWord(bitPosition)) != 0; |
1140 | } |
1141 | |
1142 | /// @} |
1143 | /// \name Comparison Operators |
1144 | /// @{ |
1145 | |
1146 | /// Equality operator. |
1147 | /// |
1148 | /// Compares this APInt with RHS for the validity of the equality |
1149 | /// relationship. |
1150 | bool operator==(const APInt &RHS) const { |
1151 | assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths")((void)0); |
1152 | if (isSingleWord()) |
1153 | return U.VAL == RHS.U.VAL; |
1154 | return EqualSlowCase(RHS); |
1155 | } |
1156 | |
1157 | /// Equality operator. |
1158 | /// |
1159 | /// Compares this APInt with a uint64_t for the validity of the equality |
1160 | /// relationship. |
1161 | /// |
1162 | /// \returns true if *this == Val |
1163 | bool operator==(uint64_t Val) const { |
1164 | return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val; |
1165 | } |
1166 | |
1167 | /// Equality comparison. |
1168 | /// |
1169 | /// Compares this APInt with RHS for the validity of the equality |
1170 | /// relationship. |
1171 | /// |
1172 | /// \returns true if *this == Val |
1173 | bool eq(const APInt &RHS) const { return (*this) == RHS; } |
1174 | |
1175 | /// Inequality operator. |
1176 | /// |
1177 | /// Compares this APInt with RHS for the validity of the inequality |
1178 | /// relationship. |
1179 | /// |
1180 | /// \returns true if *this != Val |
1181 | bool operator!=(const APInt &RHS) const { return !((*this) == RHS); } |
1182 | |
1183 | /// Inequality operator. |
1184 | /// |
1185 | /// Compares this APInt with a uint64_t for the validity of the inequality |
1186 | /// relationship. |
1187 | /// |
1188 | /// \returns true if *this != Val |
1189 | bool operator!=(uint64_t Val) const { return !((*this) == Val); } |
1190 | |
1191 | /// Inequality comparison |
1192 | /// |
1193 | /// Compares this APInt with RHS for the validity of the inequality |
1194 | /// relationship. |
1195 | /// |
1196 | /// \returns true if *this != Val |
1197 | bool ne(const APInt &RHS) const { return !((*this) == RHS); } |
1198 | |
1199 | /// Unsigned less than comparison |
1200 | /// |
1201 | /// Regards both *this and RHS as unsigned quantities and compares them for |
1202 | /// the validity of the less-than relationship. |
1203 | /// |
1204 | /// \returns true if *this < RHS when both are considered unsigned. |
1205 | bool ult(const APInt &RHS) const { return compare(RHS) < 0; } |
1206 | |
1207 | /// Unsigned less than comparison |
1208 | /// |
1209 | /// Regards both *this as an unsigned quantity and compares it with RHS for |
1210 | /// the validity of the less-than relationship. |
1211 | /// |
1212 | /// \returns true if *this < RHS when considered unsigned. |
1213 | bool ult(uint64_t RHS) const { |
1214 | // Only need to check active bits if not a single word. |
1215 | return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS; |
1216 | } |
1217 | |
1218 | /// Signed less than comparison |
1219 | /// |
1220 | /// Regards both *this and RHS as signed quantities and compares them for |
1221 | /// validity of the less-than relationship. |
1222 | /// |
1223 | /// \returns true if *this < RHS when both are considered signed. |
1224 | bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; } |
1225 | |
1226 | /// Signed less than comparison |
1227 | /// |
1228 | /// Regards both *this as a signed quantity and compares it with RHS for |
1229 | /// the validity of the less-than relationship. |
1230 | /// |
1231 | /// \returns true if *this < RHS when considered signed. |
1232 | bool slt(int64_t RHS) const { |
1233 | return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative() |
1234 | : getSExtValue() < RHS; |
1235 | } |
1236 | |
1237 | /// Unsigned less or equal comparison |
1238 | /// |
1239 | /// Regards both *this and RHS as unsigned quantities and compares them for |
1240 | /// validity of the less-or-equal relationship. |
1241 | /// |
1242 | /// \returns true if *this <= RHS when both are considered unsigned. |
1243 | bool ule(const APInt &RHS) const { return compare(RHS) <= 0; } |
1244 | |
1245 | /// Unsigned less or equal comparison |
1246 | /// |
1247 | /// Regards both *this as an unsigned quantity and compares it with RHS for |
1248 | /// the validity of the less-or-equal relationship. |
1249 | /// |
1250 | /// \returns true if *this <= RHS when considered unsigned. |
1251 | bool ule(uint64_t RHS) const { return !ugt(RHS); } |
1252 | |
1253 | /// Signed less or equal comparison |
1254 | /// |
1255 | /// Regards both *this and RHS as signed quantities and compares them for |
1256 | /// validity of the less-or-equal relationship. |
1257 | /// |
1258 | /// \returns true if *this <= RHS when both are considered signed. |
1259 | bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; } |
1260 | |
1261 | /// Signed less or equal comparison |
1262 | /// |
1263 | /// Regards both *this as a signed quantity and compares it with RHS for the |
1264 | /// validity of the less-or-equal relationship. |
1265 | /// |
1266 | /// \returns true if *this <= RHS when considered signed. |
1267 | bool sle(uint64_t RHS) const { return !sgt(RHS); } |
1268 | |
1269 | /// Unsigned greater than comparison |
1270 | /// |
1271 | /// Regards both *this and RHS as unsigned quantities and compares them for |
1272 | /// the validity of the greater-than relationship. |
1273 | /// |
1274 | /// \returns true if *this > RHS when both are considered unsigned. |
1275 | bool ugt(const APInt &RHS) const { return !ule(RHS); } |
1276 | |
1277 | /// Unsigned greater than comparison |
1278 | /// |
1279 | /// Regards both *this as an unsigned quantity and compares it with RHS for |
1280 | /// the validity of the greater-than relationship. |
1281 | /// |
1282 | /// \returns true if *this > RHS when considered unsigned. |
1283 | bool ugt(uint64_t RHS) const { |
1284 | // Only need to check active bits if not a single word. |
1285 | return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS; |
1286 | } |
1287 | |
1288 | /// Signed greater than comparison |
1289 | /// |
1290 | /// Regards both *this and RHS as signed quantities and compares them for the |
1291 | /// validity of the greater-than relationship. |
1292 | /// |
1293 | /// \returns true if *this > RHS when both are considered signed. |
1294 | bool sgt(const APInt &RHS) const { return !sle(RHS); } |
1295 | |
1296 | /// Signed greater than comparison |
1297 | /// |
1298 | /// Regards both *this as a signed quantity and compares it with RHS for |
1299 | /// the validity of the greater-than relationship. |
1300 | /// |
1301 | /// \returns true if *this > RHS when considered signed. |
1302 | bool sgt(int64_t RHS) const { |
1303 | return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative() |
1304 | : getSExtValue() > RHS; |
1305 | } |
1306 | |
1307 | /// Unsigned greater or equal comparison |
1308 | /// |
1309 | /// Regards both *this and RHS as unsigned quantities and compares them for |
1310 | /// validity of the greater-or-equal relationship. |
1311 | /// |
1312 | /// \returns true if *this >= RHS when both are considered unsigned. |
1313 | bool uge(const APInt &RHS) const { return !ult(RHS); } |
1314 | |
1315 | /// Unsigned greater or equal comparison |
1316 | /// |
1317 | /// Regards both *this as an unsigned quantity and compares it with RHS for |
1318 | /// the validity of the greater-or-equal relationship. |
1319 | /// |
1320 | /// \returns true if *this >= RHS when considered unsigned. |
1321 | bool uge(uint64_t RHS) const { return !ult(RHS); } |
1322 | |
1323 | /// Signed greater or equal comparison |
1324 | /// |
1325 | /// Regards both *this and RHS as signed quantities and compares them for |
1326 | /// validity of the greater-or-equal relationship. |
1327 | /// |
1328 | /// \returns true if *this >= RHS when both are considered signed. |
1329 | bool sge(const APInt &RHS) const { return !slt(RHS); } |
1330 | |
1331 | /// Signed greater or equal comparison |
1332 | /// |
1333 | /// Regards both *this as a signed quantity and compares it with RHS for |
1334 | /// the validity of the greater-or-equal relationship. |
1335 | /// |
1336 | /// \returns true if *this >= RHS when considered signed. |
1337 | bool sge(int64_t RHS) const { return !slt(RHS); } |
1338 | |
1339 | /// This operation tests if there are any pairs of corresponding bits |
1340 | /// between this APInt and RHS that are both set. |
1341 | bool intersects(const APInt &RHS) const { |
1342 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((void)0); |
1343 | if (isSingleWord()) |
1344 | return (U.VAL & RHS.U.VAL) != 0; |
1345 | return intersectsSlowCase(RHS); |
1346 | } |
1347 | |
1348 | /// This operation checks that all bits set in this APInt are also set in RHS. |
1349 | bool isSubsetOf(const APInt &RHS) const { |
1350 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((void)0); |
1351 | if (isSingleWord()) |
1352 | return (U.VAL & ~RHS.U.VAL) == 0; |
1353 | return isSubsetOfSlowCase(RHS); |
1354 | } |
1355 | |
1356 | /// @} |
1357 | /// \name Resizing Operators |
1358 | /// @{ |
1359 | |
1360 | /// Truncate to new width. |
1361 | /// |
1362 | /// Truncate the APInt to a specified width. It is an error to specify a width |
1363 | /// that is greater than or equal to the current width. |
1364 | APInt trunc(unsigned width) const; |
1365 | |
1366 | /// Truncate to new width with unsigned saturation. |
1367 | /// |
1368 | /// If the APInt, treated as unsigned integer, can be losslessly truncated to |
1369 | /// the new bitwidth, then return truncated APInt. Else, return max value. |
1370 | APInt truncUSat(unsigned width) const; |
1371 | |
1372 | /// Truncate to new width with signed saturation. |
1373 | /// |
1374 | /// If this APInt, treated as signed integer, can be losslessly truncated to |
1375 | /// the new bitwidth, then return truncated APInt. Else, return either |
1376 | /// signed min value if the APInt was negative, or signed max value. |
1377 | APInt truncSSat(unsigned width) const; |
1378 | |
1379 | /// Sign extend to a new width. |
1380 | /// |
1381 | /// This operation sign extends the APInt to a new width. If the high order |
1382 | /// bit is set, the fill on the left will be done with 1 bits, otherwise zero. |
1383 | /// It is an error to specify a width that is less than or equal to the |
1384 | /// current width. |
1385 | APInt sext(unsigned width) const; |
1386 | |
1387 | /// Zero extend to a new width. |
1388 | /// |
1389 | /// This operation zero extends the APInt to a new width. The high order bits |
1390 | /// are filled with 0 bits. It is an error to specify a width that is less |
1391 | /// than or equal to the current width. |
1392 | APInt zext(unsigned width) const; |
1393 | |
1394 | /// Sign extend or truncate to width |
1395 | /// |
1396 | /// Make this APInt have the bit width given by \p width. The value is sign |
1397 | /// extended, truncated, or left alone to make it that width. |
1398 | APInt sextOrTrunc(unsigned width) const; |
1399 | |
1400 | /// Zero extend or truncate to width |
1401 | /// |
1402 | /// Make this APInt have the bit width given by \p width. The value is zero |
1403 | /// extended, truncated, or left alone to make it that width. |
1404 | APInt zextOrTrunc(unsigned width) const; |
1405 | |
1406 | /// Truncate to width |
1407 | /// |
1408 | /// Make this APInt have the bit width given by \p width. The value is |
1409 | /// truncated or left alone to make it that width. |
1410 | APInt truncOrSelf(unsigned width) const; |
1411 | |
1412 | /// Sign extend or truncate to width |
1413 | /// |
1414 | /// Make this APInt have the bit width given by \p width. The value is sign |
1415 | /// extended, or left alone to make it that width. |
1416 | APInt sextOrSelf(unsigned width) const; |
1417 | |
1418 | /// Zero extend or truncate to width |
1419 | /// |
1420 | /// Make this APInt have the bit width given by \p width. The value is zero |
1421 | /// extended, or left alone to make it that width. |
1422 | APInt zextOrSelf(unsigned width) const; |
1423 | |
1424 | /// @} |
1425 | /// \name Bit Manipulation Operators |
1426 | /// @{ |
1427 | |
1428 | /// Set every bit to 1. |
1429 | void setAllBits() { |
1430 | if (isSingleWord()) |
1431 | U.VAL = WORDTYPE_MAX; |
1432 | else |
1433 | // Set all the bits in all the words. |
1434 | memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE); |
1435 | // Clear the unused ones |
1436 | clearUnusedBits(); |
1437 | } |
1438 | |
1439 | /// Set a given bit to 1. |
1440 | /// |
1441 | /// Set the given bit to 1 whose position is given as "bitPosition". |
1442 | void setBit(unsigned BitPosition) { |
1443 | assert(BitPosition < BitWidth && "BitPosition out of range")((void)0); |
1444 | WordType Mask = maskBit(BitPosition); |
1445 | if (isSingleWord()) |
1446 | U.VAL |= Mask; |
1447 | else |
1448 | U.pVal[whichWord(BitPosition)] |= Mask; |
1449 | } |
1450 | |
1451 | /// Set the sign bit to 1. |
1452 | void setSignBit() { |
1453 | setBit(BitWidth - 1); |
1454 | } |
1455 | |
1456 | /// Set a given bit to a given value. |
1457 | void setBitVal(unsigned BitPosition, bool BitValue) { |
1458 | if (BitValue) |
1459 | setBit(BitPosition); |
1460 | else |
1461 | clearBit(BitPosition); |
1462 | } |
1463 | |
1464 | /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1. |
1465 | /// This function handles "wrap" case when \p loBit >= \p hiBit, and calls |
1466 | /// setBits when \p loBit < \p hiBit. |
1467 | /// For \p loBit == \p hiBit wrap case, set every bit to 1. |
1468 | void setBitsWithWrap(unsigned loBit, unsigned hiBit) { |
1469 | assert(hiBit <= BitWidth && "hiBit out of range")((void)0); |
1470 | assert(loBit <= BitWidth && "loBit out of range")((void)0); |
1471 | if (loBit < hiBit) { |
1472 | setBits(loBit, hiBit); |
1473 | return; |
1474 | } |
1475 | setLowBits(hiBit); |
1476 | setHighBits(BitWidth - loBit); |
1477 | } |
1478 | |
1479 | /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1. |
1480 | /// This function handles case when \p loBit <= \p hiBit. |
1481 | void setBits(unsigned loBit, unsigned hiBit) { |
1482 | assert(hiBit <= BitWidth && "hiBit out of range")((void)0); |
1483 | assert(loBit <= BitWidth && "loBit out of range")((void)0); |
1484 | assert(loBit <= hiBit && "loBit greater than hiBit")((void)0); |
1485 | if (loBit == hiBit) |
1486 | return; |
1487 | if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) { |
1488 | uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit)); |
1489 | mask <<= loBit; |
1490 | if (isSingleWord()) |
1491 | U.VAL |= mask; |
1492 | else |
1493 | U.pVal[0] |= mask; |
1494 | } else { |
1495 | setBitsSlowCase(loBit, hiBit); |
1496 | } |
1497 | } |
1498 | |
1499 | /// Set the top bits starting from loBit. |
1500 | void setBitsFrom(unsigned loBit) { |
1501 | return setBits(loBit, BitWidth); |
1502 | } |
1503 | |
1504 | /// Set the bottom loBits bits. |
1505 | void setLowBits(unsigned loBits) { |
1506 | return setBits(0, loBits); |
1507 | } |
1508 | |
1509 | /// Set the top hiBits bits. |
1510 | void setHighBits(unsigned hiBits) { |
1511 | return setBits(BitWidth - hiBits, BitWidth); |
1512 | } |
1513 | |
1514 | /// Set every bit to 0. |
1515 | void clearAllBits() { |
1516 | if (isSingleWord()) |
1517 | U.VAL = 0; |
1518 | else |
1519 | memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE); |
1520 | } |
1521 | |
1522 | /// Set a given bit to 0. |
1523 | /// |
1524 | /// Set the given bit to 0 whose position is given as "bitPosition". |
1525 | void clearBit(unsigned BitPosition) { |
1526 | assert(BitPosition < BitWidth && "BitPosition out of range")((void)0); |
1527 | WordType Mask = ~maskBit(BitPosition); |
1528 | if (isSingleWord()) |
1529 | U.VAL &= Mask; |
1530 | else |
1531 | U.pVal[whichWord(BitPosition)] &= Mask; |
1532 | } |
1533 | |
1534 | /// Set bottom loBits bits to 0. |
1535 | void clearLowBits(unsigned loBits) { |
1536 | assert(loBits <= BitWidth && "More bits than bitwidth")((void)0); |
1537 | APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits); |
1538 | *this &= Keep; |
1539 | } |
1540 | |
1541 | /// Set the sign bit to 0. |
1542 | void clearSignBit() { |
1543 | clearBit(BitWidth - 1); |
1544 | } |
1545 | |
1546 | /// Toggle every bit to its opposite value. |
1547 | void flipAllBits() { |
1548 | if (isSingleWord()) { |
1549 | U.VAL ^= WORDTYPE_MAX; |
1550 | clearUnusedBits(); |
1551 | } else { |
1552 | flipAllBitsSlowCase(); |
1553 | } |
1554 | } |
1555 | |
1556 | /// Toggles a given bit to its opposite value. |
1557 | /// |
1558 | /// Toggle a given bit to its opposite value whose position is given |
1559 | /// as "bitPosition". |
1560 | void flipBit(unsigned bitPosition); |
1561 | |
1562 | /// Negate this APInt in place. |
1563 | void negate() { |
1564 | flipAllBits(); |
1565 | ++(*this); |
1566 | } |
1567 | |
1568 | /// Insert the bits from a smaller APInt starting at bitPosition. |
1569 | void insertBits(const APInt &SubBits, unsigned bitPosition); |
1570 | void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits); |
1571 | |
1572 | /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits). |
1573 | APInt extractBits(unsigned numBits, unsigned bitPosition) const; |
1574 | uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const; |
1575 | |
1576 | /// @} |
1577 | /// \name Value Characterization Functions |
1578 | /// @{ |
1579 | |
1580 | /// Return the number of bits in the APInt. |
1581 | unsigned getBitWidth() const { return BitWidth; } |
1582 | |
1583 | /// Get the number of words. |
1584 | /// |
1585 | /// Here one word's bitwidth equals to that of uint64_t. |
1586 | /// |
1587 | /// \returns the number of words to hold the integer value of this APInt. |
1588 | unsigned getNumWords() const { return getNumWords(BitWidth); } |
1589 | |
1590 | /// Get the number of words. |
1591 | /// |
1592 | /// *NOTE* Here one word's bitwidth equals to that of uint64_t. |
1593 | /// |
1594 | /// \returns the number of words to hold the integer value with a given bit |
1595 | /// width. |
1596 | static unsigned getNumWords(unsigned BitWidth) { |
1597 | return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; |
1598 | } |
1599 | |
1600 | /// Compute the number of active bits in the value |
1601 | /// |
1602 | /// This function returns the number of active bits which is defined as the |
1603 | /// bit width minus the number of leading zeros. This is used in several |
1604 | /// computations to see how "wide" the value is. |
1605 | unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); } |
1606 | |
1607 | /// Compute the number of active words in the value of this APInt. |
1608 | /// |
1609 | /// This is used in conjunction with getActiveData to extract the raw value of |
1610 | /// the APInt. |
1611 | unsigned getActiveWords() const { |
1612 | unsigned numActiveBits = getActiveBits(); |
1613 | return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1; |
1614 | } |
1615 | |
1616 | /// Get the minimum bit size for this signed APInt |
1617 | /// |
1618 | /// Computes the minimum bit width for this APInt while considering it to be a |
1619 | /// signed (and probably negative) value. If the value is not negative, this |
1620 | /// function returns the same value as getActiveBits()+1. Otherwise, it |
1621 | /// returns the smallest bit width that will retain the negative value. For |
1622 | /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so |
1623 | /// for -1, this function will always return 1. |
1624 | unsigned getMinSignedBits() const { return BitWidth - getNumSignBits() + 1; } |
1625 | |
1626 | /// Get zero extended value |
1627 | /// |
1628 | /// This method attempts to return the value of this APInt as a zero extended |
1629 | /// uint64_t. The bitwidth must be <= 64 or the value must fit within a |
1630 | /// uint64_t. Otherwise an assertion will result. |
1631 | uint64_t getZExtValue() const { |
1632 | if (isSingleWord()) |
1633 | return U.VAL; |
1634 | assert(getActiveBits() <= 64 && "Too many bits for uint64_t")((void)0); |
1635 | return U.pVal[0]; |
1636 | } |
1637 | |
1638 | /// Get sign extended value |
1639 | /// |
1640 | /// This method attempts to return the value of this APInt as a sign extended |
1641 | /// int64_t. The bit width must be <= 64 or the value must fit within an |
1642 | /// int64_t. Otherwise an assertion will result. |
1643 | int64_t getSExtValue() const { |
1644 | if (isSingleWord()) |
1645 | return SignExtend64(U.VAL, BitWidth); |
1646 | assert(getMinSignedBits() <= 64 && "Too many bits for int64_t")((void)0); |
1647 | return int64_t(U.pVal[0]); |
1648 | } |
1649 | |
1650 | /// Get bits required for string value. |
1651 | /// |
1652 | /// This method determines how many bits are required to hold the APInt |
1653 | /// equivalent of the string given by \p str. |
1654 | static unsigned getBitsNeeded(StringRef str, uint8_t radix); |
1655 | |
1656 | /// The APInt version of the countLeadingZeros functions in |
1657 | /// MathExtras.h. |
1658 | /// |
1659 | /// It counts the number of zeros from the most significant bit to the first |
1660 | /// one bit. |
1661 | /// |
1662 | /// \returns BitWidth if the value is zero, otherwise returns the number of |
1663 | /// zeros from the most significant bit to the first one bits. |
1664 | unsigned countLeadingZeros() const { |
1665 | if (isSingleWord()) { |
1666 | unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth; |
1667 | return llvm::countLeadingZeros(U.VAL) - unusedBits; |
1668 | } |
1669 | return countLeadingZerosSlowCase(); |
1670 | } |
1671 | |
1672 | /// Count the number of leading one bits. |
1673 | /// |
1674 | /// This function is an APInt version of the countLeadingOnes |
1675 | /// functions in MathExtras.h. It counts the number of ones from the most |
1676 | /// significant bit to the first zero bit. |
1677 | /// |
1678 | /// \returns 0 if the high order bit is not set, otherwise returns the number |
1679 | /// of 1 bits from the most significant to the least |
1680 | unsigned countLeadingOnes() const { |
1681 | if (isSingleWord()) |
1682 | return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth)); |
1683 | return countLeadingOnesSlowCase(); |
1684 | } |
1685 | |
1686 | /// Computes the number of leading bits of this APInt that are equal to its |
1687 | /// sign bit. |
1688 | unsigned getNumSignBits() const { |
1689 | return isNegative() ? countLeadingOnes() : countLeadingZeros(); |
1690 | } |
1691 | |
1692 | /// Count the number of trailing zero bits. |
1693 | /// |
1694 | /// This function is an APInt version of the countTrailingZeros |
1695 | /// functions in MathExtras.h. It counts the number of zeros from the least |
1696 | /// significant bit to the first set bit. |
1697 | /// |
1698 | /// \returns BitWidth if the value is zero, otherwise returns the number of |
1699 | /// zeros from the least significant bit to the first one bit. |
1700 | unsigned countTrailingZeros() const { |
1701 | if (isSingleWord()) { |
1702 | unsigned TrailingZeros = llvm::countTrailingZeros(U.VAL); |
1703 | return (TrailingZeros > BitWidth ? BitWidth : TrailingZeros); |
1704 | } |
1705 | return countTrailingZerosSlowCase(); |
1706 | } |
1707 | |
1708 | /// Count the number of trailing one bits. |
1709 | /// |
1710 | /// This function is an APInt version of the countTrailingOnes |
1711 | /// functions in MathExtras.h. It counts the number of ones from the least |
1712 | /// significant bit to the first zero bit. |
1713 | /// |
1714 | /// \returns BitWidth if the value is all ones, otherwise returns the number |
1715 | /// of ones from the least significant bit to the first zero bit. |
1716 | unsigned countTrailingOnes() const { |
1717 | if (isSingleWord()) |
1718 | return llvm::countTrailingOnes(U.VAL); |
1719 | return countTrailingOnesSlowCase(); |
1720 | } |
1721 | |
1722 | /// Count the number of bits set. |
1723 | /// |
1724 | /// This function is an APInt version of the countPopulation functions |
1725 | /// in MathExtras.h. It counts the number of 1 bits in the APInt value. |
1726 | /// |
1727 | /// \returns 0 if the value is zero, otherwise returns the number of set bits. |
1728 | unsigned countPopulation() const { |
1729 | if (isSingleWord()) |
1730 | return llvm::countPopulation(U.VAL); |
1731 | return countPopulationSlowCase(); |
1732 | } |
1733 | |
1734 | /// @} |
1735 | /// \name Conversion Functions |
1736 | /// @{ |
1737 | void print(raw_ostream &OS, bool isSigned) const; |
1738 | |
1739 | /// Converts an APInt to a string and append it to Str. Str is commonly a |
1740 | /// SmallString. |
1741 | void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed, |
1742 | bool formatAsCLiteral = false) const; |
1743 | |
1744 | /// Considers the APInt to be unsigned and converts it into a string in the |
1745 | /// radix given. The radix can be 2, 8, 10 16, or 36. |
1746 | void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { |
1747 | toString(Str, Radix, false, false); |
1748 | } |
1749 | |
1750 | /// Considers the APInt to be signed and converts it into a string in the |
1751 | /// radix given. The radix can be 2, 8, 10, 16, or 36. |
1752 | void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { |
1753 | toString(Str, Radix, true, false); |
1754 | } |
1755 | |
1756 | /// \returns a byte-swapped representation of this APInt Value. |
1757 | APInt byteSwap() const; |
1758 | |
1759 | /// \returns the value with the bit representation reversed of this APInt |
1760 | /// Value. |
1761 | APInt reverseBits() const; |
1762 | |
1763 | /// Converts this APInt to a double value. |
1764 | double roundToDouble(bool isSigned) const; |
1765 | |
1766 | /// Converts this unsigned APInt to a double value. |
1767 | double roundToDouble() const { return roundToDouble(false); } |
1768 | |
1769 | /// Converts this signed APInt to a double value. |
1770 | double signedRoundToDouble() const { return roundToDouble(true); } |
1771 | |
1772 | /// Converts APInt bits to a double |
1773 | /// |
1774 | /// The conversion does not do a translation from integer to double, it just |
1775 | /// re-interprets the bits as a double. Note that it is valid to do this on |
1776 | /// any bit width. Exactly 64 bits will be translated. |
1777 | double bitsToDouble() const { |
1778 | return BitsToDouble(getWord(0)); |
1779 | } |
1780 | |
1781 | /// Converts APInt bits to a float |
1782 | /// |
1783 | /// The conversion does not do a translation from integer to float, it just |
1784 | /// re-interprets the bits as a float. Note that it is valid to do this on |
1785 | /// any bit width. Exactly 32 bits will be translated. |
1786 | float bitsToFloat() const { |
1787 | return BitsToFloat(static_cast<uint32_t>(getWord(0))); |
1788 | } |
1789 | |
1790 | /// Converts a double to APInt bits. |
1791 | /// |
1792 | /// The conversion does not do a translation from double to integer, it just |
1793 | /// re-interprets the bits of the double. |
1794 | static APInt doubleToBits(double V) { |
1795 | return APInt(sizeof(double) * CHAR_BIT8, DoubleToBits(V)); |
1796 | } |
1797 | |
1798 | /// Converts a float to APInt bits. |
1799 | /// |
1800 | /// The conversion does not do a translation from float to integer, it just |
1801 | /// re-interprets the bits of the float. |
1802 | static APInt floatToBits(float V) { |
1803 | return APInt(sizeof(float) * CHAR_BIT8, FloatToBits(V)); |
1804 | } |
1805 | |
1806 | /// @} |
1807 | /// \name Mathematics Operations |
1808 | /// @{ |
1809 | |
1810 | /// \returns the floor log base 2 of this APInt. |
1811 | unsigned logBase2() const { return getActiveBits() - 1; } |
1812 | |
1813 | /// \returns the ceil log base 2 of this APInt. |
1814 | unsigned ceilLogBase2() const { |
1815 | APInt temp(*this); |
1816 | --temp; |
1817 | return temp.getActiveBits(); |
1818 | } |
1819 | |
1820 | /// \returns the nearest log base 2 of this APInt. Ties round up. |
1821 | /// |
1822 | /// NOTE: When we have a BitWidth of 1, we define: |
1823 | /// |
1824 | /// log2(0) = UINT32_MAX |
1825 | /// log2(1) = 0 |
1826 | /// |
1827 | /// to get around any mathematical concerns resulting from |
1828 | /// referencing 2 in a space where 2 does no exist. |
1829 | unsigned nearestLogBase2() const { |
1830 | // Special case when we have a bitwidth of 1. If VAL is 1, then we |
1831 | // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to |
1832 | // UINT32_MAX. |
1833 | if (BitWidth == 1) |
1834 | return U.VAL - 1; |
1835 | |
1836 | // Handle the zero case. |
1837 | if (isNullValue()) |
1838 | return UINT32_MAX0xffffffffU; |
1839 | |
1840 | // The non-zero case is handled by computing: |
1841 | // |
1842 | // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1]. |
1843 | // |
1844 | // where x[i] is referring to the value of the ith bit of x. |
1845 | unsigned lg = logBase2(); |
1846 | return lg + unsigned((*this)[lg - 1]); |
1847 | } |
1848 | |
1849 | /// \returns the log base 2 of this APInt if its an exact power of two, -1 |
1850 | /// otherwise |
1851 | int32_t exactLogBase2() const { |
1852 | if (!isPowerOf2()) |
1853 | return -1; |
1854 | return logBase2(); |
1855 | } |
1856 | |
1857 | /// Compute the square root |
1858 | APInt sqrt() const; |
1859 | |
1860 | /// Get the absolute value; |
1861 | /// |
1862 | /// If *this is < 0 then return -(*this), otherwise *this; |
1863 | APInt abs() const { |
1864 | if (isNegative()) |
1865 | return -(*this); |
1866 | return *this; |
1867 | } |
1868 | |
1869 | /// \returns the multiplicative inverse for a given modulo. |
1870 | APInt multiplicativeInverse(const APInt &modulo) const; |
1871 | |
1872 | /// @} |
1873 | /// \name Support for division by constant |
1874 | /// @{ |
1875 | |
1876 | /// Calculate the magic number for signed division by a constant. |
1877 | struct ms; |
1878 | ms magic() const; |
1879 | |
1880 | /// Calculate the magic number for unsigned division by a constant. |
1881 | struct mu; |
1882 | mu magicu(unsigned LeadingZeros = 0) const; |
1883 | |
1884 | /// @} |
1885 | /// \name Building-block Operations for APInt and APFloat |
1886 | /// @{ |
1887 | |
1888 | // These building block operations operate on a representation of arbitrary |
1889 | // precision, two's-complement, bignum integer values. They should be |
1890 | // sufficient to implement APInt and APFloat bignum requirements. Inputs are |
1891 | // generally a pointer to the base of an array of integer parts, representing |
1892 | // an unsigned bignum, and a count of how many parts there are. |
1893 | |
1894 | /// Sets the least significant part of a bignum to the input value, and zeroes |
1895 | /// out higher parts. |
1896 | static void tcSet(WordType *, WordType, unsigned); |
1897 | |
1898 | /// Assign one bignum to another. |
1899 | static void tcAssign(WordType *, const WordType *, unsigned); |
1900 | |
1901 | /// Returns true if a bignum is zero, false otherwise. |
1902 | static bool tcIsZero(const WordType *, unsigned); |
1903 | |
1904 | /// Extract the given bit of a bignum; returns 0 or 1. Zero-based. |
1905 | static int tcExtractBit(const WordType *, unsigned bit); |
1906 | |
1907 | /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to |
1908 | /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least |
1909 | /// significant bit of DST. All high bits above srcBITS in DST are |
1910 | /// zero-filled. |
1911 | static void tcExtract(WordType *, unsigned dstCount, |
1912 | const WordType *, unsigned srcBits, |
1913 | unsigned srcLSB); |
1914 | |
1915 | /// Set the given bit of a bignum. Zero-based. |
1916 | static void tcSetBit(WordType *, unsigned bit); |
1917 | |
1918 | /// Clear the given bit of a bignum. Zero-based. |
1919 | static void tcClearBit(WordType *, unsigned bit); |
1920 | |
1921 | /// Returns the bit number of the least or most significant set bit of a |
1922 | /// number. If the input number has no bits set -1U is returned. |
1923 | static unsigned tcLSB(const WordType *, unsigned n); |
1924 | static unsigned tcMSB(const WordType *parts, unsigned n); |
1925 | |
1926 | /// Negate a bignum in-place. |
1927 | static void tcNegate(WordType *, unsigned); |
1928 | |
1929 | /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag. |
1930 | static WordType tcAdd(WordType *, const WordType *, |
1931 | WordType carry, unsigned); |
1932 | /// DST += RHS. Returns the carry flag. |
1933 | static WordType tcAddPart(WordType *, WordType, unsigned); |
1934 | |
1935 | /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag. |
1936 | static WordType tcSubtract(WordType *, const WordType *, |
1937 | WordType carry, unsigned); |
1938 | /// DST -= RHS. Returns the carry flag. |
1939 | static WordType tcSubtractPart(WordType *, WordType, unsigned); |
1940 | |
1941 | /// DST += SRC * MULTIPLIER + PART if add is true |
1942 | /// DST = SRC * MULTIPLIER + PART if add is false |
1943 | /// |
1944 | /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must |
1945 | /// start at the same point, i.e. DST == SRC. |
1946 | /// |
1947 | /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned. |
1948 | /// Otherwise DST is filled with the least significant DSTPARTS parts of the |
1949 | /// result, and if all of the omitted higher parts were zero return zero, |
1950 | /// otherwise overflow occurred and return one. |
1951 | static int tcMultiplyPart(WordType *dst, const WordType *src, |
1952 | WordType multiplier, WordType carry, |
1953 | unsigned srcParts, unsigned dstParts, |
1954 | bool add); |
1955 | |
1956 | /// DST = LHS * RHS, where DST has the same width as the operands and is |
1957 | /// filled with the least significant parts of the result. Returns one if |
1958 | /// overflow occurred, otherwise zero. DST must be disjoint from both |
1959 | /// operands. |
1960 | static int tcMultiply(WordType *, const WordType *, const WordType *, |
1961 | unsigned); |
1962 | |
1963 | /// DST = LHS * RHS, where DST has width the sum of the widths of the |
1964 | /// operands. No overflow occurs. DST must be disjoint from both operands. |
1965 | static void tcFullMultiply(WordType *, const WordType *, |
1966 | const WordType *, unsigned, unsigned); |
1967 | |
1968 | /// If RHS is zero LHS and REMAINDER are left unchanged, return one. |
1969 | /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set |
1970 | /// REMAINDER to the remainder, return zero. i.e. |
1971 | /// |
1972 | /// OLD_LHS = RHS * LHS + REMAINDER |
1973 | /// |
1974 | /// SCRATCH is a bignum of the same size as the operands and result for use by |
1975 | /// the routine; its contents need not be initialized and are destroyed. LHS, |
1976 | /// REMAINDER and SCRATCH must be distinct. |
1977 | static int tcDivide(WordType *lhs, const WordType *rhs, |
1978 | WordType *remainder, WordType *scratch, |
1979 | unsigned parts); |
1980 | |
1981 | /// Shift a bignum left Count bits. Shifted in bits are zero. There are no |
1982 | /// restrictions on Count. |
1983 | static void tcShiftLeft(WordType *, unsigned Words, unsigned Count); |
1984 | |
1985 | /// Shift a bignum right Count bits. Shifted in bits are zero. There are no |
1986 | /// restrictions on Count. |
1987 | static void tcShiftRight(WordType *, unsigned Words, unsigned Count); |
1988 | |
1989 | /// The obvious AND, OR and XOR and complement operations. |
1990 | static void tcAnd(WordType *, const WordType *, unsigned); |
1991 | static void tcOr(WordType *, const WordType *, unsigned); |
1992 | static void tcXor(WordType *, const WordType *, unsigned); |
1993 | static void tcComplement(WordType *, unsigned); |
1994 | |
1995 | /// Comparison (unsigned) of two bignums. |
1996 | static int tcCompare(const WordType *, const WordType *, unsigned); |
1997 | |
1998 | /// Increment a bignum in-place. Return the carry flag. |
1999 | static WordType tcIncrement(WordType *dst, unsigned parts) { |
2000 | return tcAddPart(dst, 1, parts); |
2001 | } |
2002 | |
2003 | /// Decrement a bignum in-place. Return the borrow flag. |
2004 | static WordType tcDecrement(WordType *dst, unsigned parts) { |
2005 | return tcSubtractPart(dst, 1, parts); |
2006 | } |
2007 | |
2008 | /// Set the least significant BITS and clear the rest. |
2009 | static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits); |
2010 | |
2011 | /// debug method |
2012 | void dump() const; |
2013 | |
2014 | /// @} |
2015 | }; |
2016 | |
2017 | /// Magic data for optimising signed division by a constant. |
2018 | struct APInt::ms { |
2019 | APInt m; ///< magic number |
2020 | unsigned s; ///< shift amount |
2021 | }; |
2022 | |
2023 | /// Magic data for optimising unsigned division by a constant. |
2024 | struct APInt::mu { |
2025 | APInt m; ///< magic number |
2026 | bool a; ///< add indicator |
2027 | unsigned s; ///< shift amount |
2028 | }; |
2029 | |
2030 | inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; } |
2031 | |
2032 | inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; } |
2033 | |
2034 | /// Unary bitwise complement operator. |
2035 | /// |
2036 | /// \returns an APInt that is the bitwise complement of \p v. |
2037 | inline APInt operator~(APInt v) { |
2038 | v.flipAllBits(); |
2039 | return v; |
2040 | } |
2041 | |
2042 | inline APInt operator&(APInt a, const APInt &b) { |
2043 | a &= b; |
2044 | return a; |
2045 | } |
2046 | |
2047 | inline APInt operator&(const APInt &a, APInt &&b) { |
2048 | b &= a; |
2049 | return std::move(b); |
2050 | } |
2051 | |
2052 | inline APInt operator&(APInt a, uint64_t RHS) { |
2053 | a &= RHS; |
2054 | return a; |
2055 | } |
2056 | |
2057 | inline APInt operator&(uint64_t LHS, APInt b) { |
2058 | b &= LHS; |
2059 | return b; |
2060 | } |
2061 | |
2062 | inline APInt operator|(APInt a, const APInt &b) { |
2063 | a |= b; |
2064 | return a; |
2065 | } |
2066 | |
2067 | inline APInt operator|(const APInt &a, APInt &&b) { |
2068 | b |= a; |
2069 | return std::move(b); |
2070 | } |
2071 | |
2072 | inline APInt operator|(APInt a, uint64_t RHS) { |
2073 | a |= RHS; |
2074 | return a; |
2075 | } |
2076 | |
2077 | inline APInt operator|(uint64_t LHS, APInt b) { |
2078 | b |= LHS; |
2079 | return b; |
2080 | } |
2081 | |
2082 | inline APInt operator^(APInt a, const APInt &b) { |
2083 | a ^= b; |
2084 | return a; |
2085 | } |
2086 | |
2087 | inline APInt operator^(const APInt &a, APInt &&b) { |
2088 | b ^= a; |
2089 | return std::move(b); |
2090 | } |
2091 | |
2092 | inline APInt operator^(APInt a, uint64_t RHS) { |
2093 | a ^= RHS; |
2094 | return a; |
2095 | } |
2096 | |
2097 | inline APInt operator^(uint64_t LHS, APInt b) { |
2098 | b ^= LHS; |
2099 | return b; |
2100 | } |
2101 | |
2102 | inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) { |
2103 | I.print(OS, true); |
2104 | return OS; |
2105 | } |
2106 | |
2107 | inline APInt operator-(APInt v) { |
2108 | v.negate(); |
2109 | return v; |
2110 | } |
2111 | |
2112 | inline APInt operator+(APInt a, const APInt &b) { |
2113 | a += b; |
2114 | return a; |
2115 | } |
2116 | |
2117 | inline APInt operator+(const APInt &a, APInt &&b) { |
2118 | b += a; |
2119 | return std::move(b); |
2120 | } |
2121 | |
2122 | inline APInt operator+(APInt a, uint64_t RHS) { |
2123 | a += RHS; |
2124 | return a; |
2125 | } |
2126 | |
2127 | inline APInt operator+(uint64_t LHS, APInt b) { |
2128 | b += LHS; |
2129 | return b; |
2130 | } |
2131 | |
2132 | inline APInt operator-(APInt a, const APInt &b) { |
2133 | a -= b; |
2134 | return a; |
2135 | } |
2136 | |
2137 | inline APInt operator-(const APInt &a, APInt &&b) { |
2138 | b.negate(); |
2139 | b += a; |
2140 | return std::move(b); |
2141 | } |
2142 | |
2143 | inline APInt operator-(APInt a, uint64_t RHS) { |
2144 | a -= RHS; |
2145 | return a; |
2146 | } |
2147 | |
2148 | inline APInt operator-(uint64_t LHS, APInt b) { |
2149 | b.negate(); |
2150 | b += LHS; |
2151 | return b; |
2152 | } |
2153 | |
2154 | inline APInt operator*(APInt a, uint64_t RHS) { |
2155 | a *= RHS; |
2156 | return a; |
2157 | } |
2158 | |
2159 | inline APInt operator*(uint64_t LHS, APInt b) { |
2160 | b *= LHS; |
2161 | return b; |
2162 | } |
2163 | |
2164 | |
2165 | namespace APIntOps { |
2166 | |
2167 | /// Determine the smaller of two APInts considered to be signed. |
2168 | inline const APInt &smin(const APInt &A, const APInt &B) { |
2169 | return A.slt(B) ? A : B; |
2170 | } |
2171 | |
2172 | /// Determine the larger of two APInts considered to be signed. |
2173 | inline const APInt &smax(const APInt &A, const APInt &B) { |
2174 | return A.sgt(B) ? A : B; |
2175 | } |
2176 | |
2177 | /// Determine the smaller of two APInts considered to be unsigned. |
2178 | inline const APInt &umin(const APInt &A, const APInt &B) { |
2179 | return A.ult(B) ? A : B; |
2180 | } |
2181 | |
2182 | /// Determine the larger of two APInts considered to be unsigned. |
2183 | inline const APInt &umax(const APInt &A, const APInt &B) { |
2184 | return A.ugt(B) ? A : B; |
2185 | } |
2186 | |
2187 | /// Compute GCD of two unsigned APInt values. |
2188 | /// |
2189 | /// This function returns the greatest common divisor of the two APInt values |
2190 | /// using Stein's algorithm. |
2191 | /// |
2192 | /// \returns the greatest common divisor of A and B. |
2193 | APInt GreatestCommonDivisor(APInt A, APInt B); |
2194 | |
2195 | /// Converts the given APInt to a double value. |
2196 | /// |
2197 | /// Treats the APInt as an unsigned value for conversion purposes. |
2198 | inline double RoundAPIntToDouble(const APInt &APIVal) { |
2199 | return APIVal.roundToDouble(); |
2200 | } |
2201 | |
2202 | /// Converts the given APInt to a double value. |
2203 | /// |
2204 | /// Treats the APInt as a signed value for conversion purposes. |
2205 | inline double RoundSignedAPIntToDouble(const APInt &APIVal) { |
2206 | return APIVal.signedRoundToDouble(); |
2207 | } |
2208 | |
2209 | /// Converts the given APInt to a float value. |
2210 | inline float RoundAPIntToFloat(const APInt &APIVal) { |
2211 | return float(RoundAPIntToDouble(APIVal)); |
2212 | } |
2213 | |
2214 | /// Converts the given APInt to a float value. |
2215 | /// |
2216 | /// Treats the APInt as a signed value for conversion purposes. |
2217 | inline float RoundSignedAPIntToFloat(const APInt &APIVal) { |
2218 | return float(APIVal.signedRoundToDouble()); |
2219 | } |
2220 | |
2221 | /// Converts the given double value into a APInt. |
2222 | /// |
2223 | /// This function convert a double value to an APInt value. |
2224 | APInt RoundDoubleToAPInt(double Double, unsigned width); |
2225 | |
2226 | /// Converts a float value into a APInt. |
2227 | /// |
2228 | /// Converts a float value into an APInt value. |
2229 | inline APInt RoundFloatToAPInt(float Float, unsigned width) { |
2230 | return RoundDoubleToAPInt(double(Float), width); |
2231 | } |
2232 | |
2233 | /// Return A unsign-divided by B, rounded by the given rounding mode. |
2234 | APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM); |
2235 | |
2236 | /// Return A sign-divided by B, rounded by the given rounding mode. |
2237 | APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM); |
2238 | |
2239 | /// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range |
2240 | /// (e.g. 32 for i32). |
2241 | /// This function finds the smallest number n, such that |
2242 | /// (a) n >= 0 and q(n) = 0, or |
2243 | /// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all |
2244 | /// integers, belong to two different intervals [Rk, Rk+R), |
2245 | /// where R = 2^BW, and k is an integer. |
2246 | /// The idea here is to find when q(n) "overflows" 2^BW, while at the |
2247 | /// same time "allowing" subtraction. In unsigned modulo arithmetic a |
2248 | /// subtraction (treated as addition of negated numbers) would always |
2249 | /// count as an overflow, but here we want to allow values to decrease |
2250 | /// and increase as long as they are within the same interval. |
2251 | /// Specifically, adding of two negative numbers should not cause an |
2252 | /// overflow (as long as the magnitude does not exceed the bit width). |
2253 | /// On the other hand, given a positive number, adding a negative |
2254 | /// number to it can give a negative result, which would cause the |
2255 | /// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is |
2256 | /// treated as a special case of an overflow. |
2257 | /// |
2258 | /// This function returns None if after finding k that minimizes the |
2259 | /// positive solution to q(n) = kR, both solutions are contained between |
2260 | /// two consecutive integers. |
2261 | /// |
2262 | /// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation |
2263 | /// in arithmetic modulo 2^BW, and treating the values as signed) by the |
2264 | /// virtue of *signed* overflow. This function will *not* find such an n, |
2265 | /// however it may find a value of n satisfying the inequalities due to |
2266 | /// an *unsigned* overflow (if the values are treated as unsigned). |
2267 | /// To find a solution for a signed overflow, treat it as a problem of |
2268 | /// finding an unsigned overflow with a range with of BW-1. |
2269 | /// |
2270 | /// The returned value may have a different bit width from the input |
2271 | /// coefficients. |
2272 | Optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C, |
2273 | unsigned RangeWidth); |
2274 | |
2275 | /// Compare two values, and if they are different, return the position of the |
2276 | /// most significant bit that is different in the values. |
2277 | Optional<unsigned> GetMostSignificantDifferentBit(const APInt &A, |
2278 | const APInt &B); |
2279 | |
2280 | } // End of APIntOps namespace |
2281 | |
2282 | // See friend declaration above. This additional declaration is required in |
2283 | // order to compile LLVM with IBM xlC compiler. |
2284 | hash_code hash_value(const APInt &Arg); |
2285 | |
2286 | /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst |
2287 | /// with the integer held in IntVal. |
2288 | void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes); |
2289 | |
2290 | /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting |
2291 | /// from Src into IntVal, which is assumed to be wide enough and to hold zero. |
2292 | void LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, unsigned LoadBytes); |
2293 | |
2294 | /// Provide DenseMapInfo for APInt. |
2295 | template <> struct DenseMapInfo<APInt> { |
2296 | static inline APInt getEmptyKey() { |
2297 | APInt V(nullptr, 0); |
2298 | V.U.VAL = 0; |
2299 | return V; |
2300 | } |
2301 | |
2302 | static inline APInt getTombstoneKey() { |
2303 | APInt V(nullptr, 0); |
2304 | V.U.VAL = 1; |
2305 | return V; |
2306 | } |
2307 | |
2308 | static unsigned getHashValue(const APInt &Key); |
2309 | |
2310 | static bool isEqual(const APInt &LHS, const APInt &RHS) { |
2311 | return LHS.getBitWidth() == RHS.getBitWidth() && LHS == RHS; |
2312 | } |
2313 | }; |
2314 | |
2315 | } // namespace llvm |
2316 | |
2317 | #endif |