| File: | src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Transforms/Scalar/LICM.cpp |
| Warning: | line 1229, column 33 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===// | ||||||||
| 2 | // | ||||||||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||||||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | ||||||||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||||||
| 6 | // | ||||||||
| 7 | //===----------------------------------------------------------------------===// | ||||||||
| 8 | // | ||||||||
| 9 | // This pass performs loop invariant code motion, attempting to remove as much | ||||||||
| 10 | // code from the body of a loop as possible. It does this by either hoisting | ||||||||
| 11 | // code into the preheader block, or by sinking code to the exit blocks if it is | ||||||||
| 12 | // safe. This pass also promotes must-aliased memory locations in the loop to | ||||||||
| 13 | // live in registers, thus hoisting and sinking "invariant" loads and stores. | ||||||||
| 14 | // | ||||||||
| 15 | // Hoisting operations out of loops is a canonicalization transform. It | ||||||||
| 16 | // enables and simplifies subsequent optimizations in the middle-end. | ||||||||
| 17 | // Rematerialization of hoisted instructions to reduce register pressure is the | ||||||||
| 18 | // responsibility of the back-end, which has more accurate information about | ||||||||
| 19 | // register pressure and also handles other optimizations than LICM that | ||||||||
| 20 | // increase live-ranges. | ||||||||
| 21 | // | ||||||||
| 22 | // This pass uses alias analysis for two purposes: | ||||||||
| 23 | // | ||||||||
| 24 | // 1. Moving loop invariant loads and calls out of loops. If we can determine | ||||||||
| 25 | // that a load or call inside of a loop never aliases anything stored to, | ||||||||
| 26 | // we can hoist it or sink it like any other instruction. | ||||||||
| 27 | // 2. Scalar Promotion of Memory - If there is a store instruction inside of | ||||||||
| 28 | // the loop, we try to move the store to happen AFTER the loop instead of | ||||||||
| 29 | // inside of the loop. This can only happen if a few conditions are true: | ||||||||
| 30 | // A. The pointer stored through is loop invariant | ||||||||
| 31 | // B. There are no stores or loads in the loop which _may_ alias the | ||||||||
| 32 | // pointer. There are no calls in the loop which mod/ref the pointer. | ||||||||
| 33 | // If these conditions are true, we can promote the loads and stores in the | ||||||||
| 34 | // loop of the pointer to use a temporary alloca'd variable. We then use | ||||||||
| 35 | // the SSAUpdater to construct the appropriate SSA form for the value. | ||||||||
| 36 | // | ||||||||
| 37 | //===----------------------------------------------------------------------===// | ||||||||
| 38 | |||||||||
| 39 | #include "llvm/Transforms/Scalar/LICM.h" | ||||||||
| 40 | #include "llvm/ADT/SetOperations.h" | ||||||||
| 41 | #include "llvm/ADT/Statistic.h" | ||||||||
| 42 | #include "llvm/Analysis/AliasAnalysis.h" | ||||||||
| 43 | #include "llvm/Analysis/AliasSetTracker.h" | ||||||||
| 44 | #include "llvm/Analysis/BasicAliasAnalysis.h" | ||||||||
| 45 | #include "llvm/Analysis/BlockFrequencyInfo.h" | ||||||||
| 46 | #include "llvm/Analysis/CaptureTracking.h" | ||||||||
| 47 | #include "llvm/Analysis/ConstantFolding.h" | ||||||||
| 48 | #include "llvm/Analysis/GlobalsModRef.h" | ||||||||
| 49 | #include "llvm/Analysis/GuardUtils.h" | ||||||||
| 50 | #include "llvm/Analysis/LazyBlockFrequencyInfo.h" | ||||||||
| 51 | #include "llvm/Analysis/Loads.h" | ||||||||
| 52 | #include "llvm/Analysis/LoopInfo.h" | ||||||||
| 53 | #include "llvm/Analysis/LoopIterator.h" | ||||||||
| 54 | #include "llvm/Analysis/LoopPass.h" | ||||||||
| 55 | #include "llvm/Analysis/MemoryBuiltins.h" | ||||||||
| 56 | #include "llvm/Analysis/MemorySSA.h" | ||||||||
| 57 | #include "llvm/Analysis/MemorySSAUpdater.h" | ||||||||
| 58 | #include "llvm/Analysis/MustExecute.h" | ||||||||
| 59 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" | ||||||||
| 60 | #include "llvm/Analysis/ScalarEvolution.h" | ||||||||
| 61 | #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" | ||||||||
| 62 | #include "llvm/Analysis/TargetLibraryInfo.h" | ||||||||
| 63 | #include "llvm/Analysis/ValueTracking.h" | ||||||||
| 64 | #include "llvm/IR/CFG.h" | ||||||||
| 65 | #include "llvm/IR/Constants.h" | ||||||||
| 66 | #include "llvm/IR/DataLayout.h" | ||||||||
| 67 | #include "llvm/IR/DebugInfoMetadata.h" | ||||||||
| 68 | #include "llvm/IR/DerivedTypes.h" | ||||||||
| 69 | #include "llvm/IR/Dominators.h" | ||||||||
| 70 | #include "llvm/IR/Instructions.h" | ||||||||
| 71 | #include "llvm/IR/IntrinsicInst.h" | ||||||||
| 72 | #include "llvm/IR/LLVMContext.h" | ||||||||
| 73 | #include "llvm/IR/Metadata.h" | ||||||||
| 74 | #include "llvm/IR/PatternMatch.h" | ||||||||
| 75 | #include "llvm/IR/PredIteratorCache.h" | ||||||||
| 76 | #include "llvm/InitializePasses.h" | ||||||||
| 77 | #include "llvm/Support/CommandLine.h" | ||||||||
| 78 | #include "llvm/Support/Debug.h" | ||||||||
| 79 | #include "llvm/Support/raw_ostream.h" | ||||||||
| 80 | #include "llvm/Transforms/Scalar.h" | ||||||||
| 81 | #include "llvm/Transforms/Scalar/LoopPassManager.h" | ||||||||
| 82 | #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" | ||||||||
| 83 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | ||||||||
| 84 | #include "llvm/Transforms/Utils/Local.h" | ||||||||
| 85 | #include "llvm/Transforms/Utils/LoopUtils.h" | ||||||||
| 86 | #include "llvm/Transforms/Utils/SSAUpdater.h" | ||||||||
| 87 | #include <algorithm> | ||||||||
| 88 | #include <utility> | ||||||||
| 89 | using namespace llvm; | ||||||||
| 90 | |||||||||
| 91 | #define DEBUG_TYPE"licm" "licm" | ||||||||
| 92 | |||||||||
| 93 | STATISTIC(NumCreatedBlocks, "Number of blocks created")static llvm::Statistic NumCreatedBlocks = {"licm", "NumCreatedBlocks" , "Number of blocks created"}; | ||||||||
| 94 | STATISTIC(NumClonedBranches, "Number of branches cloned")static llvm::Statistic NumClonedBranches = {"licm", "NumClonedBranches" , "Number of branches cloned"}; | ||||||||
| 95 | STATISTIC(NumSunk, "Number of instructions sunk out of loop")static llvm::Statistic NumSunk = {"licm", "NumSunk", "Number of instructions sunk out of loop" }; | ||||||||
| 96 | STATISTIC(NumHoisted, "Number of instructions hoisted out of loop")static llvm::Statistic NumHoisted = {"licm", "NumHoisted", "Number of instructions hoisted out of loop" }; | ||||||||
| 97 | STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk")static llvm::Statistic NumMovedLoads = {"licm", "NumMovedLoads" , "Number of load insts hoisted or sunk"}; | ||||||||
| 98 | STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk")static llvm::Statistic NumMovedCalls = {"licm", "NumMovedCalls" , "Number of call insts hoisted or sunk"}; | ||||||||
| 99 | STATISTIC(NumPromoted, "Number of memory locations promoted to registers")static llvm::Statistic NumPromoted = {"licm", "NumPromoted", "Number of memory locations promoted to registers" }; | ||||||||
| 100 | |||||||||
| 101 | /// Memory promotion is enabled by default. | ||||||||
| 102 | static cl::opt<bool> | ||||||||
| 103 | DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false), | ||||||||
| 104 | cl::desc("Disable memory promotion in LICM pass")); | ||||||||
| 105 | |||||||||
| 106 | static cl::opt<bool> ControlFlowHoisting( | ||||||||
| 107 | "licm-control-flow-hoisting", cl::Hidden, cl::init(false), | ||||||||
| 108 | cl::desc("Enable control flow (and PHI) hoisting in LICM")); | ||||||||
| 109 | |||||||||
| 110 | static cl::opt<unsigned> HoistSinkColdnessThreshold( | ||||||||
| 111 | "licm-coldness-threshold", cl::Hidden, cl::init(4), | ||||||||
| 112 | cl::desc("Relative coldness Threshold of hoisting/sinking destination " | ||||||||
| 113 | "block for LICM to be considered beneficial")); | ||||||||
| 114 | |||||||||
| 115 | static cl::opt<uint32_t> MaxNumUsesTraversed( | ||||||||
| 116 | "licm-max-num-uses-traversed", cl::Hidden, cl::init(8), | ||||||||
| 117 | cl::desc("Max num uses visited for identifying load " | ||||||||
| 118 | "invariance in loop using invariant start (default = 8)")); | ||||||||
| 119 | |||||||||
| 120 | // Default value of zero implies we use the regular alias set tracker mechanism | ||||||||
| 121 | // instead of the cross product using AA to identify aliasing of the memory | ||||||||
| 122 | // location we are interested in. | ||||||||
| 123 | static cl::opt<int> | ||||||||
| 124 | LICMN2Theshold("licm-n2-threshold", cl::Hidden, cl::init(0), | ||||||||
| 125 | cl::desc("How many instruction to cross product using AA")); | ||||||||
| 126 | |||||||||
| 127 | // Experimental option to allow imprecision in LICM in pathological cases, in | ||||||||
| 128 | // exchange for faster compile. This is to be removed if MemorySSA starts to | ||||||||
| 129 | // address the same issue. This flag applies only when LICM uses MemorySSA | ||||||||
| 130 | // instead on AliasSetTracker. LICM calls MemorySSAWalker's | ||||||||
| 131 | // getClobberingMemoryAccess, up to the value of the Cap, getting perfect | ||||||||
| 132 | // accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess, | ||||||||
| 133 | // which may not be precise, since optimizeUses is capped. The result is | ||||||||
| 134 | // correct, but we may not get as "far up" as possible to get which access is | ||||||||
| 135 | // clobbering the one queried. | ||||||||
| 136 | cl::opt<unsigned> llvm::SetLicmMssaOptCap( | ||||||||
| 137 | "licm-mssa-optimization-cap", cl::init(100), cl::Hidden, | ||||||||
| 138 | cl::desc("Enable imprecision in LICM in pathological cases, in exchange " | ||||||||
| 139 | "for faster compile. Caps the MemorySSA clobbering calls.")); | ||||||||
| 140 | |||||||||
| 141 | // Experimentally, memory promotion carries less importance than sinking and | ||||||||
| 142 | // hoisting. Limit when we do promotion when using MemorySSA, in order to save | ||||||||
| 143 | // compile time. | ||||||||
| 144 | cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap( | ||||||||
| 145 | "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden, | ||||||||
| 146 | cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no " | ||||||||
| 147 | "effect. When MSSA in LICM is enabled, then this is the maximum " | ||||||||
| 148 | "number of accesses allowed to be present in a loop in order to " | ||||||||
| 149 | "enable memory promotion.")); | ||||||||
| 150 | |||||||||
| 151 | static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI); | ||||||||
| 152 | static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop, | ||||||||
| 153 | const LoopSafetyInfo *SafetyInfo, | ||||||||
| 154 | TargetTransformInfo *TTI, bool &FreeInLoop); | ||||||||
| 155 | static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop, | ||||||||
| 156 | BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo, | ||||||||
| 157 | MemorySSAUpdater *MSSAU, ScalarEvolution *SE, | ||||||||
| 158 | OptimizationRemarkEmitter *ORE); | ||||||||
| 159 | static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT, | ||||||||
| 160 | BlockFrequencyInfo *BFI, const Loop *CurLoop, | ||||||||
| 161 | ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU, | ||||||||
| 162 | OptimizationRemarkEmitter *ORE); | ||||||||
| 163 | static bool isSafeToExecuteUnconditionally(Instruction &Inst, | ||||||||
| 164 | const DominatorTree *DT, | ||||||||
| 165 | const TargetLibraryInfo *TLI, | ||||||||
| 166 | const Loop *CurLoop, | ||||||||
| 167 | const LoopSafetyInfo *SafetyInfo, | ||||||||
| 168 | OptimizationRemarkEmitter *ORE, | ||||||||
| 169 | const Instruction *CtxI = nullptr); | ||||||||
| 170 | static bool pointerInvalidatedByLoop(MemoryLocation MemLoc, | ||||||||
| 171 | AliasSetTracker *CurAST, Loop *CurLoop, | ||||||||
| 172 | AAResults *AA); | ||||||||
| 173 | static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU, | ||||||||
| 174 | Loop *CurLoop, Instruction &I, | ||||||||
| 175 | SinkAndHoistLICMFlags &Flags); | ||||||||
| 176 | static bool pointerInvalidatedByBlockWithMSSA(BasicBlock &BB, MemorySSA &MSSA, | ||||||||
| 177 | MemoryUse &MU); | ||||||||
| 178 | static Instruction *cloneInstructionInExitBlock( | ||||||||
| 179 | Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI, | ||||||||
| 180 | const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU); | ||||||||
| 181 | |||||||||
| 182 | static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, | ||||||||
| 183 | AliasSetTracker *AST, MemorySSAUpdater *MSSAU); | ||||||||
| 184 | |||||||||
| 185 | static void moveInstructionBefore(Instruction &I, Instruction &Dest, | ||||||||
| 186 | ICFLoopSafetyInfo &SafetyInfo, | ||||||||
| 187 | MemorySSAUpdater *MSSAU, ScalarEvolution *SE); | ||||||||
| 188 | |||||||||
| 189 | static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L, | ||||||||
| 190 | function_ref<void(Instruction *)> Fn); | ||||||||
| 191 | static SmallVector<SmallSetVector<Value *, 8>, 0> | ||||||||
| 192 | collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L); | ||||||||
| 193 | |||||||||
| 194 | namespace { | ||||||||
| 195 | struct LoopInvariantCodeMotion { | ||||||||
| 196 | bool runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT, | ||||||||
| 197 | BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI, | ||||||||
| 198 | TargetTransformInfo *TTI, ScalarEvolution *SE, MemorySSA *MSSA, | ||||||||
| 199 | OptimizationRemarkEmitter *ORE, bool LoopNestMode = false); | ||||||||
| 200 | |||||||||
| 201 | LoopInvariantCodeMotion(unsigned LicmMssaOptCap, | ||||||||
| 202 | unsigned LicmMssaNoAccForPromotionCap) | ||||||||
| 203 | : LicmMssaOptCap(LicmMssaOptCap), | ||||||||
| 204 | LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap) {} | ||||||||
| 205 | |||||||||
| 206 | private: | ||||||||
| 207 | unsigned LicmMssaOptCap; | ||||||||
| 208 | unsigned LicmMssaNoAccForPromotionCap; | ||||||||
| 209 | |||||||||
| 210 | std::unique_ptr<AliasSetTracker> | ||||||||
| 211 | collectAliasInfoForLoop(Loop *L, LoopInfo *LI, AAResults *AA); | ||||||||
| 212 | }; | ||||||||
| 213 | |||||||||
| 214 | struct LegacyLICMPass : public LoopPass { | ||||||||
| 215 | static char ID; // Pass identification, replacement for typeid | ||||||||
| 216 | LegacyLICMPass( | ||||||||
| 217 | unsigned LicmMssaOptCap = SetLicmMssaOptCap, | ||||||||
| 218 | unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap) | ||||||||
| 219 | : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap) { | ||||||||
| 220 | initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry()); | ||||||||
| 221 | } | ||||||||
| 222 | |||||||||
| 223 | bool runOnLoop(Loop *L, LPPassManager &LPM) override { | ||||||||
| 224 | if (skipLoop(L)) | ||||||||
| 225 | return false; | ||||||||
| 226 | |||||||||
| 227 | LLVM_DEBUG(dbgs() << "Perform LICM on Loop with header at block "do { } while (false) | ||||||||
| 228 | << L->getHeader()->getNameOrAsOperand() << "\n")do { } while (false); | ||||||||
| 229 | |||||||||
| 230 | auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); | ||||||||
| 231 | MemorySSA *MSSA = EnableMSSALoopDependency | ||||||||
| 232 | ? (&getAnalysis<MemorySSAWrapperPass>().getMSSA()) | ||||||||
| 233 | : nullptr; | ||||||||
| 234 | bool hasProfileData = L->getHeader()->getParent()->hasProfileData(); | ||||||||
| 235 | BlockFrequencyInfo *BFI = | ||||||||
| 236 | hasProfileData ? &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() | ||||||||
| 237 | : nullptr; | ||||||||
| 238 | // For the old PM, we can't use OptimizationRemarkEmitter as an analysis | ||||||||
| 239 | // pass. Function analyses need to be preserved across loop transformations | ||||||||
| 240 | // but ORE cannot be preserved (see comment before the pass definition). | ||||||||
| 241 | OptimizationRemarkEmitter ORE(L->getHeader()->getParent()); | ||||||||
| 242 | return LICM.runOnLoop( | ||||||||
| 243 | L, &getAnalysis<AAResultsWrapperPass>().getAAResults(), | ||||||||
| 244 | &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), | ||||||||
| 245 | &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), BFI, | ||||||||
| 246 | &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( | ||||||||
| 247 | *L->getHeader()->getParent()), | ||||||||
| 248 | &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( | ||||||||
| 249 | *L->getHeader()->getParent()), | ||||||||
| 250 | SE ? &SE->getSE() : nullptr, MSSA, &ORE); | ||||||||
| 251 | } | ||||||||
| 252 | |||||||||
| 253 | /// This transformation requires natural loop information & requires that | ||||||||
| 254 | /// loop preheaders be inserted into the CFG... | ||||||||
| 255 | /// | ||||||||
| 256 | void getAnalysisUsage(AnalysisUsage &AU) const override { | ||||||||
| 257 | AU.addPreserved<DominatorTreeWrapperPass>(); | ||||||||
| 258 | AU.addPreserved<LoopInfoWrapperPass>(); | ||||||||
| 259 | AU.addRequired<TargetLibraryInfoWrapperPass>(); | ||||||||
| 260 | if (EnableMSSALoopDependency) { | ||||||||
| 261 | AU.addRequired<MemorySSAWrapperPass>(); | ||||||||
| 262 | AU.addPreserved<MemorySSAWrapperPass>(); | ||||||||
| 263 | } | ||||||||
| 264 | AU.addRequired<TargetTransformInfoWrapperPass>(); | ||||||||
| 265 | getLoopAnalysisUsage(AU); | ||||||||
| 266 | LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); | ||||||||
| 267 | AU.addPreserved<LazyBlockFrequencyInfoPass>(); | ||||||||
| 268 | AU.addPreserved<LazyBranchProbabilityInfoPass>(); | ||||||||
| 269 | } | ||||||||
| 270 | |||||||||
| 271 | private: | ||||||||
| 272 | LoopInvariantCodeMotion LICM; | ||||||||
| 273 | }; | ||||||||
| 274 | } // namespace | ||||||||
| 275 | |||||||||
| 276 | PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM, | ||||||||
| 277 | LoopStandardAnalysisResults &AR, LPMUpdater &) { | ||||||||
| 278 | // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis | ||||||||
| 279 | // pass. Function analyses need to be preserved across loop transformations | ||||||||
| 280 | // but ORE cannot be preserved (see comment before the pass definition). | ||||||||
| 281 | OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); | ||||||||
| 282 | |||||||||
| 283 | LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap); | ||||||||
| 284 | if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, AR.BFI, &AR.TLI, &AR.TTI, | ||||||||
| 285 | &AR.SE, AR.MSSA, &ORE)) | ||||||||
| 286 | return PreservedAnalyses::all(); | ||||||||
| 287 | |||||||||
| 288 | auto PA = getLoopPassPreservedAnalyses(); | ||||||||
| 289 | |||||||||
| 290 | PA.preserve<DominatorTreeAnalysis>(); | ||||||||
| 291 | PA.preserve<LoopAnalysis>(); | ||||||||
| 292 | if (AR.MSSA) | ||||||||
| 293 | PA.preserve<MemorySSAAnalysis>(); | ||||||||
| 294 | |||||||||
| 295 | return PA; | ||||||||
| 296 | } | ||||||||
| 297 | |||||||||
| 298 | PreservedAnalyses LNICMPass::run(LoopNest &LN, LoopAnalysisManager &AM, | ||||||||
| 299 | LoopStandardAnalysisResults &AR, | ||||||||
| 300 | LPMUpdater &) { | ||||||||
| 301 | // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis | ||||||||
| 302 | // pass. Function analyses need to be preserved across loop transformations | ||||||||
| 303 | // but ORE cannot be preserved (see comment before the pass definition). | ||||||||
| 304 | OptimizationRemarkEmitter ORE(LN.getParent()); | ||||||||
| 305 | |||||||||
| 306 | LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap); | ||||||||
| 307 | |||||||||
| 308 | Loop &OutermostLoop = LN.getOutermostLoop(); | ||||||||
| 309 | bool Changed = LICM.runOnLoop(&OutermostLoop, &AR.AA, &AR.LI, &AR.DT, AR.BFI, | ||||||||
| 310 | &AR.TLI, &AR.TTI, &AR.SE, AR.MSSA, &ORE, true); | ||||||||
| 311 | |||||||||
| 312 | if (!Changed) | ||||||||
| 313 | return PreservedAnalyses::all(); | ||||||||
| 314 | |||||||||
| 315 | auto PA = getLoopPassPreservedAnalyses(); | ||||||||
| 316 | |||||||||
| 317 | PA.preserve<DominatorTreeAnalysis>(); | ||||||||
| 318 | PA.preserve<LoopAnalysis>(); | ||||||||
| 319 | if (AR.MSSA) | ||||||||
| 320 | PA.preserve<MemorySSAAnalysis>(); | ||||||||
| 321 | |||||||||
| 322 | return PA; | ||||||||
| 323 | } | ||||||||
| 324 | |||||||||
| 325 | char LegacyLICMPass::ID = 0; | ||||||||
| 326 | INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion",static void *initializeLegacyLICMPassPassOnce(PassRegistry & Registry) { | ||||||||
| 327 | false, false)static void *initializeLegacyLICMPassPassOnce(PassRegistry & Registry) { | ||||||||
| 328 | INITIALIZE_PASS_DEPENDENCY(LoopPass)initializeLoopPassPass(Registry); | ||||||||
| 329 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry); | ||||||||
| 330 | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)initializeTargetTransformInfoWrapperPassPass(Registry); | ||||||||
| 331 | INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)initializeMemorySSAWrapperPassPass(Registry); | ||||||||
| 332 | INITIALIZE_PASS_DEPENDENCY(LazyBFIPass)initializeLazyBFIPassPass(Registry); | ||||||||
| 333 | INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false,PassInfo *PI = new PassInfo( "Loop Invariant Code Motion", "licm" , &LegacyLICMPass::ID, PassInfo::NormalCtor_t(callDefaultCtor <LegacyLICMPass>), false, false); Registry.registerPass (*PI, true); return PI; } static llvm::once_flag InitializeLegacyLICMPassPassFlag ; void llvm::initializeLegacyLICMPassPass(PassRegistry &Registry ) { llvm::call_once(InitializeLegacyLICMPassPassFlag, initializeLegacyLICMPassPassOnce , std::ref(Registry)); } | ||||||||
| 334 | false)PassInfo *PI = new PassInfo( "Loop Invariant Code Motion", "licm" , &LegacyLICMPass::ID, PassInfo::NormalCtor_t(callDefaultCtor <LegacyLICMPass>), false, false); Registry.registerPass (*PI, true); return PI; } static llvm::once_flag InitializeLegacyLICMPassPassFlag ; void llvm::initializeLegacyLICMPassPass(PassRegistry &Registry ) { llvm::call_once(InitializeLegacyLICMPassPassFlag, initializeLegacyLICMPassPassOnce , std::ref(Registry)); } | ||||||||
| 335 | |||||||||
| 336 | Pass *llvm::createLICMPass() { return new LegacyLICMPass(); } | ||||||||
| 337 | Pass *llvm::createLICMPass(unsigned LicmMssaOptCap, | ||||||||
| 338 | unsigned LicmMssaNoAccForPromotionCap) { | ||||||||
| 339 | return new LegacyLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap); | ||||||||
| 340 | } | ||||||||
| 341 | |||||||||
| 342 | llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(bool IsSink, Loop *L, | ||||||||
| 343 | MemorySSA *MSSA) | ||||||||
| 344 | : SinkAndHoistLICMFlags(SetLicmMssaOptCap, SetLicmMssaNoAccForPromotionCap, | ||||||||
| 345 | IsSink, L, MSSA) {} | ||||||||
| 346 | |||||||||
| 347 | llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags( | ||||||||
| 348 | unsigned LicmMssaOptCap, unsigned LicmMssaNoAccForPromotionCap, bool IsSink, | ||||||||
| 349 | Loop *L, MemorySSA *MSSA) | ||||||||
| 350 | : LicmMssaOptCap(LicmMssaOptCap), | ||||||||
| 351 | LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap), | ||||||||
| 352 | IsSink(IsSink) { | ||||||||
| 353 | assert(((L != nullptr) == (MSSA != nullptr)) &&((void)0) | ||||||||
| 354 | "Unexpected values for SinkAndHoistLICMFlags")((void)0); | ||||||||
| 355 | if (!MSSA) | ||||||||
| 356 | return; | ||||||||
| 357 | |||||||||
| 358 | unsigned AccessCapCount = 0; | ||||||||
| 359 | for (auto *BB : L->getBlocks()) | ||||||||
| 360 | if (const auto *Accesses = MSSA->getBlockAccesses(BB)) | ||||||||
| 361 | for (const auto &MA : *Accesses) { | ||||||||
| 362 | (void)MA; | ||||||||
| 363 | ++AccessCapCount; | ||||||||
| 364 | if (AccessCapCount > LicmMssaNoAccForPromotionCap) { | ||||||||
| 365 | NoOfMemAccTooLarge = true; | ||||||||
| 366 | return; | ||||||||
| 367 | } | ||||||||
| 368 | } | ||||||||
| 369 | } | ||||||||
| 370 | |||||||||
| 371 | /// Hoist expressions out of the specified loop. Note, alias info for inner | ||||||||
| 372 | /// loop is not preserved so it is not a good idea to run LICM multiple | ||||||||
| 373 | /// times on one loop. | ||||||||
| 374 | bool LoopInvariantCodeMotion::runOnLoop( | ||||||||
| 375 | Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT, | ||||||||
| 376 | BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI, TargetTransformInfo *TTI, | ||||||||
| 377 | ScalarEvolution *SE, MemorySSA *MSSA, OptimizationRemarkEmitter *ORE, | ||||||||
| 378 | bool LoopNestMode) { | ||||||||
| 379 | bool Changed = false; | ||||||||
| 380 | |||||||||
| 381 | assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.")((void)0); | ||||||||
| 382 | |||||||||
| 383 | // If this loop has metadata indicating that LICM is not to be performed then | ||||||||
| 384 | // just exit. | ||||||||
| 385 | if (hasDisableLICMTransformsHint(L)) { | ||||||||
| 386 | return false; | ||||||||
| 387 | } | ||||||||
| 388 | |||||||||
| 389 | std::unique_ptr<AliasSetTracker> CurAST; | ||||||||
| 390 | std::unique_ptr<MemorySSAUpdater> MSSAU; | ||||||||
| 391 | std::unique_ptr<SinkAndHoistLICMFlags> Flags; | ||||||||
| 392 | |||||||||
| 393 | // Don't sink stores from loops with coroutine suspend instructions. | ||||||||
| 394 | // LICM would sink instructions into the default destination of | ||||||||
| 395 | // the coroutine switch. The default destination of the switch is to | ||||||||
| 396 | // handle the case where the coroutine is suspended, by which point the | ||||||||
| 397 | // coroutine frame may have been destroyed. No instruction can be sunk there. | ||||||||
| 398 | // FIXME: This would unfortunately hurt the performance of coroutines, however | ||||||||
| 399 | // there is currently no general solution for this. Similar issues could also | ||||||||
| 400 | // potentially happen in other passes where instructions are being moved | ||||||||
| 401 | // across that edge. | ||||||||
| 402 | bool HasCoroSuspendInst = llvm::any_of(L->getBlocks(), [](BasicBlock *BB) { | ||||||||
| 403 | return llvm::any_of(*BB, [](Instruction &I) { | ||||||||
| 404 | IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); | ||||||||
| 405 | return II && II->getIntrinsicID() == Intrinsic::coro_suspend; | ||||||||
| 406 | }); | ||||||||
| 407 | }); | ||||||||
| 408 | |||||||||
| 409 | if (!MSSA) { | ||||||||
| 410 | LLVM_DEBUG(dbgs() << "LICM: Using Alias Set Tracker.\n")do { } while (false); | ||||||||
| 411 | CurAST = collectAliasInfoForLoop(L, LI, AA); | ||||||||
| 412 | Flags = std::make_unique<SinkAndHoistLICMFlags>( | ||||||||
| 413 | LicmMssaOptCap, LicmMssaNoAccForPromotionCap, /*IsSink=*/true); | ||||||||
| 414 | } else { | ||||||||
| 415 | LLVM_DEBUG(dbgs() << "LICM: Using MemorySSA.\n")do { } while (false); | ||||||||
| 416 | MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); | ||||||||
| 417 | Flags = std::make_unique<SinkAndHoistLICMFlags>( | ||||||||
| 418 | LicmMssaOptCap, LicmMssaNoAccForPromotionCap, /*IsSink=*/true, L, MSSA); | ||||||||
| 419 | } | ||||||||
| 420 | |||||||||
| 421 | // Get the preheader block to move instructions into... | ||||||||
| 422 | BasicBlock *Preheader = L->getLoopPreheader(); | ||||||||
| 423 | |||||||||
| 424 | // Compute loop safety information. | ||||||||
| 425 | ICFLoopSafetyInfo SafetyInfo; | ||||||||
| 426 | SafetyInfo.computeLoopSafetyInfo(L); | ||||||||
| 427 | |||||||||
| 428 | // We want to visit all of the instructions in this loop... that are not parts | ||||||||
| 429 | // of our subloops (they have already had their invariants hoisted out of | ||||||||
| 430 | // their loop, into this loop, so there is no need to process the BODIES of | ||||||||
| 431 | // the subloops). | ||||||||
| 432 | // | ||||||||
| 433 | // Traverse the body of the loop in depth first order on the dominator tree so | ||||||||
| 434 | // that we are guaranteed to see definitions before we see uses. This allows | ||||||||
| 435 | // us to sink instructions in one pass, without iteration. After sinking | ||||||||
| 436 | // instructions, we perform another pass to hoist them out of the loop. | ||||||||
| 437 | if (L->hasDedicatedExits()) | ||||||||
| 438 | Changed |= | ||||||||
| 439 | sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI, TTI, L, | ||||||||
| 440 | CurAST.get(), MSSAU.get(), &SafetyInfo, *Flags.get(), ORE); | ||||||||
| 441 | Flags->setIsSink(false); | ||||||||
| 442 | if (Preheader) | ||||||||
| 443 | Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI, L, | ||||||||
| 444 | CurAST.get(), MSSAU.get(), SE, &SafetyInfo, | ||||||||
| 445 | *Flags.get(), ORE, LoopNestMode); | ||||||||
| 446 | |||||||||
| 447 | // Now that all loop invariants have been removed from the loop, promote any | ||||||||
| 448 | // memory references to scalars that we can. | ||||||||
| 449 | // Don't sink stores from loops without dedicated block exits. Exits | ||||||||
| 450 | // containing indirect branches are not transformed by loop simplify, | ||||||||
| 451 | // make sure we catch that. An additional load may be generated in the | ||||||||
| 452 | // preheader for SSA updater, so also avoid sinking when no preheader | ||||||||
| 453 | // is available. | ||||||||
| 454 | if (!DisablePromotion && Preheader && L->hasDedicatedExits() && | ||||||||
| 455 | !Flags->tooManyMemoryAccesses() && !HasCoroSuspendInst) { | ||||||||
| 456 | // Figure out the loop exits and their insertion points | ||||||||
| 457 | SmallVector<BasicBlock *, 8> ExitBlocks; | ||||||||
| 458 | L->getUniqueExitBlocks(ExitBlocks); | ||||||||
| 459 | |||||||||
| 460 | // We can't insert into a catchswitch. | ||||||||
| 461 | bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) { | ||||||||
| 462 | return isa<CatchSwitchInst>(Exit->getTerminator()); | ||||||||
| 463 | }); | ||||||||
| 464 | |||||||||
| 465 | if (!HasCatchSwitch) { | ||||||||
| 466 | SmallVector<Instruction *, 8> InsertPts; | ||||||||
| 467 | SmallVector<MemoryAccess *, 8> MSSAInsertPts; | ||||||||
| 468 | InsertPts.reserve(ExitBlocks.size()); | ||||||||
| 469 | if (MSSAU) | ||||||||
| 470 | MSSAInsertPts.reserve(ExitBlocks.size()); | ||||||||
| 471 | for (BasicBlock *ExitBlock : ExitBlocks) { | ||||||||
| 472 | InsertPts.push_back(&*ExitBlock->getFirstInsertionPt()); | ||||||||
| 473 | if (MSSAU) | ||||||||
| 474 | MSSAInsertPts.push_back(nullptr); | ||||||||
| 475 | } | ||||||||
| 476 | |||||||||
| 477 | PredIteratorCache PIC; | ||||||||
| 478 | |||||||||
| 479 | bool Promoted = false; | ||||||||
| 480 | if (CurAST.get()) { | ||||||||
| 481 | // Loop over all of the alias sets in the tracker object. | ||||||||
| 482 | for (AliasSet &AS : *CurAST) { | ||||||||
| 483 | // We can promote this alias set if it has a store, if it is a "Must" | ||||||||
| 484 | // alias set, if the pointer is loop invariant, and if we are not | ||||||||
| 485 | // eliminating any volatile loads or stores. | ||||||||
| 486 | if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() || | ||||||||
| 487 | !L->isLoopInvariant(AS.begin()->getValue())) | ||||||||
| 488 | continue; | ||||||||
| 489 | |||||||||
| 490 | assert(((void)0) | ||||||||
| 491 | !AS.empty() &&((void)0) | ||||||||
| 492 | "Must alias set should have at least one pointer element in it!")((void)0); | ||||||||
| 493 | |||||||||
| 494 | SmallSetVector<Value *, 8> PointerMustAliases; | ||||||||
| 495 | for (const auto &ASI : AS) | ||||||||
| 496 | PointerMustAliases.insert(ASI.getValue()); | ||||||||
| 497 | |||||||||
| 498 | Promoted |= promoteLoopAccessesToScalars( | ||||||||
| 499 | PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI, | ||||||||
| 500 | DT, TLI, L, CurAST.get(), MSSAU.get(), &SafetyInfo, ORE); | ||||||||
| 501 | } | ||||||||
| 502 | } else { | ||||||||
| 503 | // Promoting one set of accesses may make the pointers for another set | ||||||||
| 504 | // loop invariant, so run this in a loop (with the MaybePromotable set | ||||||||
| 505 | // decreasing in size over time). | ||||||||
| 506 | bool LocalPromoted; | ||||||||
| 507 | do { | ||||||||
| 508 | LocalPromoted = false; | ||||||||
| 509 | for (const SmallSetVector<Value *, 8> &PointerMustAliases : | ||||||||
| 510 | collectPromotionCandidates(MSSA, AA, L)) { | ||||||||
| 511 | LocalPromoted |= promoteLoopAccessesToScalars( | ||||||||
| 512 | PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, | ||||||||
| 513 | LI, DT, TLI, L, /*AST*/nullptr, MSSAU.get(), &SafetyInfo, ORE); | ||||||||
| 514 | } | ||||||||
| 515 | Promoted |= LocalPromoted; | ||||||||
| 516 | } while (LocalPromoted); | ||||||||
| 517 | } | ||||||||
| 518 | |||||||||
| 519 | // Once we have promoted values across the loop body we have to | ||||||||
| 520 | // recursively reform LCSSA as any nested loop may now have values defined | ||||||||
| 521 | // within the loop used in the outer loop. | ||||||||
| 522 | // FIXME: This is really heavy handed. It would be a bit better to use an | ||||||||
| 523 | // SSAUpdater strategy during promotion that was LCSSA aware and reformed | ||||||||
| 524 | // it as it went. | ||||||||
| 525 | if (Promoted) | ||||||||
| 526 | formLCSSARecursively(*L, *DT, LI, SE); | ||||||||
| 527 | |||||||||
| 528 | Changed |= Promoted; | ||||||||
| 529 | } | ||||||||
| 530 | } | ||||||||
| 531 | |||||||||
| 532 | // Check that neither this loop nor its parent have had LCSSA broken. LICM is | ||||||||
| 533 | // specifically moving instructions across the loop boundary and so it is | ||||||||
| 534 | // especially in need of sanity checking here. | ||||||||
| 535 | assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!")((void)0); | ||||||||
| 536 | assert((L->isOutermost() || L->getParentLoop()->isLCSSAForm(*DT)) &&((void)0) | ||||||||
| 537 | "Parent loop not left in LCSSA form after LICM!")((void)0); | ||||||||
| 538 | |||||||||
| 539 | if (MSSAU.get() && VerifyMemorySSA) | ||||||||
| 540 | MSSAU->getMemorySSA()->verifyMemorySSA(); | ||||||||
| 541 | |||||||||
| 542 | if (Changed && SE) | ||||||||
| 543 | SE->forgetLoopDispositions(L); | ||||||||
| 544 | return Changed; | ||||||||
| 545 | } | ||||||||
| 546 | |||||||||
| 547 | /// Walk the specified region of the CFG (defined by all blocks dominated by | ||||||||
| 548 | /// the specified block, and that are in the current loop) in reverse depth | ||||||||
| 549 | /// first order w.r.t the DominatorTree. This allows us to visit uses before | ||||||||
| 550 | /// definitions, allowing us to sink a loop body in one pass without iteration. | ||||||||
| 551 | /// | ||||||||
| 552 | bool llvm::sinkRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI, | ||||||||
| 553 | DominatorTree *DT, BlockFrequencyInfo *BFI, | ||||||||
| 554 | TargetLibraryInfo *TLI, TargetTransformInfo *TTI, | ||||||||
| 555 | Loop *CurLoop, AliasSetTracker *CurAST, | ||||||||
| 556 | MemorySSAUpdater *MSSAU, ICFLoopSafetyInfo *SafetyInfo, | ||||||||
| 557 | SinkAndHoistLICMFlags &Flags, | ||||||||
| 558 | OptimizationRemarkEmitter *ORE) { | ||||||||
| 559 | |||||||||
| 560 | // Verify inputs. | ||||||||
| 561 | assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&((void)0) | ||||||||
| 562 | CurLoop != nullptr && SafetyInfo != nullptr &&((void)0) | ||||||||
| 563 | "Unexpected input to sinkRegion.")((void)0); | ||||||||
| 564 | assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&((void)0) | ||||||||
| 565 | "Either AliasSetTracker or MemorySSA should be initialized.")((void)0); | ||||||||
| 566 | |||||||||
| 567 | // We want to visit children before parents. We will enque all the parents | ||||||||
| 568 | // before their children in the worklist and process the worklist in reverse | ||||||||
| 569 | // order. | ||||||||
| 570 | SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop); | ||||||||
| 571 | |||||||||
| 572 | bool Changed = false; | ||||||||
| 573 | for (DomTreeNode *DTN : reverse(Worklist)) { | ||||||||
| 574 | BasicBlock *BB = DTN->getBlock(); | ||||||||
| 575 | // Only need to process the contents of this block if it is not part of a | ||||||||
| 576 | // subloop (which would already have been processed). | ||||||||
| 577 | if (inSubLoop(BB, CurLoop, LI)) | ||||||||
| 578 | continue; | ||||||||
| 579 | |||||||||
| 580 | for (BasicBlock::iterator II = BB->end(); II != BB->begin();) { | ||||||||
| 581 | Instruction &I = *--II; | ||||||||
| 582 | |||||||||
| 583 | // The instruction is not used in the loop if it is dead. In this case, | ||||||||
| 584 | // we just delete it instead of sinking it. | ||||||||
| 585 | if (isInstructionTriviallyDead(&I, TLI)) { | ||||||||
| 586 | LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n')do { } while (false); | ||||||||
| 587 | salvageKnowledge(&I); | ||||||||
| 588 | salvageDebugInfo(I); | ||||||||
| 589 | ++II; | ||||||||
| 590 | eraseInstruction(I, *SafetyInfo, CurAST, MSSAU); | ||||||||
| 591 | Changed = true; | ||||||||
| 592 | continue; | ||||||||
| 593 | } | ||||||||
| 594 | |||||||||
| 595 | // Check to see if we can sink this instruction to the exit blocks | ||||||||
| 596 | // of the loop. We can do this if the all users of the instruction are | ||||||||
| 597 | // outside of the loop. In this case, it doesn't even matter if the | ||||||||
| 598 | // operands of the instruction are loop invariant. | ||||||||
| 599 | // | ||||||||
| 600 | bool FreeInLoop = false; | ||||||||
| 601 | if (!I.mayHaveSideEffects() && | ||||||||
| 602 | isNotUsedOrFreeInLoop(I, CurLoop, SafetyInfo, TTI, FreeInLoop) && | ||||||||
| 603 | canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags, | ||||||||
| 604 | ORE)) { | ||||||||
| 605 | if (sink(I, LI, DT, BFI, CurLoop, SafetyInfo, MSSAU, ORE)) { | ||||||||
| 606 | if (!FreeInLoop) { | ||||||||
| 607 | ++II; | ||||||||
| 608 | salvageDebugInfo(I); | ||||||||
| 609 | eraseInstruction(I, *SafetyInfo, CurAST, MSSAU); | ||||||||
| 610 | } | ||||||||
| 611 | Changed = true; | ||||||||
| 612 | } | ||||||||
| 613 | } | ||||||||
| 614 | } | ||||||||
| 615 | } | ||||||||
| 616 | if (MSSAU && VerifyMemorySSA) | ||||||||
| 617 | MSSAU->getMemorySSA()->verifyMemorySSA(); | ||||||||
| 618 | return Changed; | ||||||||
| 619 | } | ||||||||
| 620 | |||||||||
| 621 | namespace { | ||||||||
| 622 | // This is a helper class for hoistRegion to make it able to hoist control flow | ||||||||
| 623 | // in order to be able to hoist phis. The way this works is that we initially | ||||||||
| 624 | // start hoisting to the loop preheader, and when we see a loop invariant branch | ||||||||
| 625 | // we make note of this. When we then come to hoist an instruction that's | ||||||||
| 626 | // conditional on such a branch we duplicate the branch and the relevant control | ||||||||
| 627 | // flow, then hoist the instruction into the block corresponding to its original | ||||||||
| 628 | // block in the duplicated control flow. | ||||||||
| 629 | class ControlFlowHoister { | ||||||||
| 630 | private: | ||||||||
| 631 | // Information about the loop we are hoisting from | ||||||||
| 632 | LoopInfo *LI; | ||||||||
| 633 | DominatorTree *DT; | ||||||||
| 634 | Loop *CurLoop; | ||||||||
| 635 | MemorySSAUpdater *MSSAU; | ||||||||
| 636 | |||||||||
| 637 | // A map of blocks in the loop to the block their instructions will be hoisted | ||||||||
| 638 | // to. | ||||||||
| 639 | DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap; | ||||||||
| 640 | |||||||||
| 641 | // The branches that we can hoist, mapped to the block that marks a | ||||||||
| 642 | // convergence point of their control flow. | ||||||||
| 643 | DenseMap<BranchInst *, BasicBlock *> HoistableBranches; | ||||||||
| 644 | |||||||||
| 645 | public: | ||||||||
| 646 | ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop, | ||||||||
| 647 | MemorySSAUpdater *MSSAU) | ||||||||
| 648 | : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {} | ||||||||
| 649 | |||||||||
| 650 | void registerPossiblyHoistableBranch(BranchInst *BI) { | ||||||||
| 651 | // We can only hoist conditional branches with loop invariant operands. | ||||||||
| 652 | if (!ControlFlowHoisting || !BI->isConditional() || | ||||||||
| 653 | !CurLoop->hasLoopInvariantOperands(BI)) | ||||||||
| 654 | return; | ||||||||
| 655 | |||||||||
| 656 | // The branch destinations need to be in the loop, and we don't gain | ||||||||
| 657 | // anything by duplicating conditional branches with duplicate successors, | ||||||||
| 658 | // as it's essentially the same as an unconditional branch. | ||||||||
| 659 | BasicBlock *TrueDest = BI->getSuccessor(0); | ||||||||
| 660 | BasicBlock *FalseDest = BI->getSuccessor(1); | ||||||||
| 661 | if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) || | ||||||||
| 662 | TrueDest == FalseDest) | ||||||||
| 663 | return; | ||||||||
| 664 | |||||||||
| 665 | // We can hoist BI if one branch destination is the successor of the other, | ||||||||
| 666 | // or both have common successor which we check by seeing if the | ||||||||
| 667 | // intersection of their successors is non-empty. | ||||||||
| 668 | // TODO: This could be expanded to allowing branches where both ends | ||||||||
| 669 | // eventually converge to a single block. | ||||||||
| 670 | SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc; | ||||||||
| 671 | TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest)); | ||||||||
| 672 | FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest)); | ||||||||
| 673 | BasicBlock *CommonSucc = nullptr; | ||||||||
| 674 | if (TrueDestSucc.count(FalseDest)) { | ||||||||
| 675 | CommonSucc = FalseDest; | ||||||||
| 676 | } else if (FalseDestSucc.count(TrueDest)) { | ||||||||
| 677 | CommonSucc = TrueDest; | ||||||||
| 678 | } else { | ||||||||
| 679 | set_intersect(TrueDestSucc, FalseDestSucc); | ||||||||
| 680 | // If there's one common successor use that. | ||||||||
| 681 | if (TrueDestSucc.size() == 1) | ||||||||
| 682 | CommonSucc = *TrueDestSucc.begin(); | ||||||||
| 683 | // If there's more than one pick whichever appears first in the block list | ||||||||
| 684 | // (we can't use the value returned by TrueDestSucc.begin() as it's | ||||||||
| 685 | // unpredicatable which element gets returned). | ||||||||
| 686 | else if (!TrueDestSucc.empty()) { | ||||||||
| 687 | Function *F = TrueDest->getParent(); | ||||||||
| 688 | auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); }; | ||||||||
| 689 | auto It = llvm::find_if(*F, IsSucc); | ||||||||
| 690 | assert(It != F->end() && "Could not find successor in function")((void)0); | ||||||||
| 691 | CommonSucc = &*It; | ||||||||
| 692 | } | ||||||||
| 693 | } | ||||||||
| 694 | // The common successor has to be dominated by the branch, as otherwise | ||||||||
| 695 | // there will be some other path to the successor that will not be | ||||||||
| 696 | // controlled by this branch so any phi we hoist would be controlled by the | ||||||||
| 697 | // wrong condition. This also takes care of avoiding hoisting of loop back | ||||||||
| 698 | // edges. | ||||||||
| 699 | // TODO: In some cases this could be relaxed if the successor is dominated | ||||||||
| 700 | // by another block that's been hoisted and we can guarantee that the | ||||||||
| 701 | // control flow has been replicated exactly. | ||||||||
| 702 | if (CommonSucc && DT->dominates(BI, CommonSucc)) | ||||||||
| 703 | HoistableBranches[BI] = CommonSucc; | ||||||||
| 704 | } | ||||||||
| 705 | |||||||||
| 706 | bool canHoistPHI(PHINode *PN) { | ||||||||
| 707 | // The phi must have loop invariant operands. | ||||||||
| 708 | if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN)) | ||||||||
| 709 | return false; | ||||||||
| 710 | // We can hoist phis if the block they are in is the target of hoistable | ||||||||
| 711 | // branches which cover all of the predecessors of the block. | ||||||||
| 712 | SmallPtrSet<BasicBlock *, 8> PredecessorBlocks; | ||||||||
| 713 | BasicBlock *BB = PN->getParent(); | ||||||||
| 714 | for (BasicBlock *PredBB : predecessors(BB)) | ||||||||
| 715 | PredecessorBlocks.insert(PredBB); | ||||||||
| 716 | // If we have less predecessor blocks than predecessors then the phi will | ||||||||
| 717 | // have more than one incoming value for the same block which we can't | ||||||||
| 718 | // handle. | ||||||||
| 719 | // TODO: This could be handled be erasing some of the duplicate incoming | ||||||||
| 720 | // values. | ||||||||
| 721 | if (PredecessorBlocks.size() != pred_size(BB)) | ||||||||
| 722 | return false; | ||||||||
| 723 | for (auto &Pair : HoistableBranches) { | ||||||||
| 724 | if (Pair.second == BB) { | ||||||||
| 725 | // Which blocks are predecessors via this branch depends on if the | ||||||||
| 726 | // branch is triangle-like or diamond-like. | ||||||||
| 727 | if (Pair.first->getSuccessor(0) == BB) { | ||||||||
| 728 | PredecessorBlocks.erase(Pair.first->getParent()); | ||||||||
| 729 | PredecessorBlocks.erase(Pair.first->getSuccessor(1)); | ||||||||
| 730 | } else if (Pair.first->getSuccessor(1) == BB) { | ||||||||
| 731 | PredecessorBlocks.erase(Pair.first->getParent()); | ||||||||
| 732 | PredecessorBlocks.erase(Pair.first->getSuccessor(0)); | ||||||||
| 733 | } else { | ||||||||
| 734 | PredecessorBlocks.erase(Pair.first->getSuccessor(0)); | ||||||||
| 735 | PredecessorBlocks.erase(Pair.first->getSuccessor(1)); | ||||||||
| 736 | } | ||||||||
| 737 | } | ||||||||
| 738 | } | ||||||||
| 739 | // PredecessorBlocks will now be empty if for every predecessor of BB we | ||||||||
| 740 | // found a hoistable branch source. | ||||||||
| 741 | return PredecessorBlocks.empty(); | ||||||||
| 742 | } | ||||||||
| 743 | |||||||||
| 744 | BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) { | ||||||||
| 745 | if (!ControlFlowHoisting) | ||||||||
| 746 | return CurLoop->getLoopPreheader(); | ||||||||
| 747 | // If BB has already been hoisted, return that | ||||||||
| 748 | if (HoistDestinationMap.count(BB)) | ||||||||
| 749 | return HoistDestinationMap[BB]; | ||||||||
| 750 | |||||||||
| 751 | // Check if this block is conditional based on a pending branch | ||||||||
| 752 | auto HasBBAsSuccessor = | ||||||||
| 753 | [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) { | ||||||||
| 754 | return BB != Pair.second && (Pair.first->getSuccessor(0) == BB || | ||||||||
| 755 | Pair.first->getSuccessor(1) == BB); | ||||||||
| 756 | }; | ||||||||
| 757 | auto It = llvm::find_if(HoistableBranches, HasBBAsSuccessor); | ||||||||
| 758 | |||||||||
| 759 | // If not involved in a pending branch, hoist to preheader | ||||||||
| 760 | BasicBlock *InitialPreheader = CurLoop->getLoopPreheader(); | ||||||||
| 761 | if (It == HoistableBranches.end()) { | ||||||||
| 762 | LLVM_DEBUG(dbgs() << "LICM using "do { } while (false) | ||||||||
| 763 | << InitialPreheader->getNameOrAsOperand()do { } while (false) | ||||||||
| 764 | << " as hoist destination for "do { } while (false) | ||||||||
| 765 | << BB->getNameOrAsOperand() << "\n")do { } while (false); | ||||||||
| 766 | HoistDestinationMap[BB] = InitialPreheader; | ||||||||
| 767 | return InitialPreheader; | ||||||||
| 768 | } | ||||||||
| 769 | BranchInst *BI = It->first; | ||||||||
| 770 | assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) ==((void)0) | ||||||||
| 771 | HoistableBranches.end() &&((void)0) | ||||||||
| 772 | "BB is expected to be the target of at most one branch")((void)0); | ||||||||
| 773 | |||||||||
| 774 | LLVMContext &C = BB->getContext(); | ||||||||
| 775 | BasicBlock *TrueDest = BI->getSuccessor(0); | ||||||||
| 776 | BasicBlock *FalseDest = BI->getSuccessor(1); | ||||||||
| 777 | BasicBlock *CommonSucc = HoistableBranches[BI]; | ||||||||
| 778 | BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent()); | ||||||||
| 779 | |||||||||
| 780 | // Create hoisted versions of blocks that currently don't have them | ||||||||
| 781 | auto CreateHoistedBlock = [&](BasicBlock *Orig) { | ||||||||
| 782 | if (HoistDestinationMap.count(Orig)) | ||||||||
| 783 | return HoistDestinationMap[Orig]; | ||||||||
| 784 | BasicBlock *New = | ||||||||
| 785 | BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent()); | ||||||||
| 786 | HoistDestinationMap[Orig] = New; | ||||||||
| 787 | DT->addNewBlock(New, HoistTarget); | ||||||||
| 788 | if (CurLoop->getParentLoop()) | ||||||||
| 789 | CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI); | ||||||||
| 790 | ++NumCreatedBlocks; | ||||||||
| 791 | LLVM_DEBUG(dbgs() << "LICM created " << New->getName()do { } while (false) | ||||||||
| 792 | << " as hoist destination for " << Orig->getName()do { } while (false) | ||||||||
| 793 | << "\n")do { } while (false); | ||||||||
| 794 | return New; | ||||||||
| 795 | }; | ||||||||
| 796 | BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest); | ||||||||
| 797 | BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest); | ||||||||
| 798 | BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc); | ||||||||
| 799 | |||||||||
| 800 | // Link up these blocks with branches. | ||||||||
| 801 | if (!HoistCommonSucc->getTerminator()) { | ||||||||
| 802 | // The new common successor we've generated will branch to whatever that | ||||||||
| 803 | // hoist target branched to. | ||||||||
| 804 | BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor(); | ||||||||
| 805 | assert(TargetSucc && "Expected hoist target to have a single successor")((void)0); | ||||||||
| 806 | HoistCommonSucc->moveBefore(TargetSucc); | ||||||||
| 807 | BranchInst::Create(TargetSucc, HoistCommonSucc); | ||||||||
| 808 | } | ||||||||
| 809 | if (!HoistTrueDest->getTerminator()) { | ||||||||
| 810 | HoistTrueDest->moveBefore(HoistCommonSucc); | ||||||||
| 811 | BranchInst::Create(HoistCommonSucc, HoistTrueDest); | ||||||||
| 812 | } | ||||||||
| 813 | if (!HoistFalseDest->getTerminator()) { | ||||||||
| 814 | HoistFalseDest->moveBefore(HoistCommonSucc); | ||||||||
| 815 | BranchInst::Create(HoistCommonSucc, HoistFalseDest); | ||||||||
| 816 | } | ||||||||
| 817 | |||||||||
| 818 | // If BI is being cloned to what was originally the preheader then | ||||||||
| 819 | // HoistCommonSucc will now be the new preheader. | ||||||||
| 820 | if (HoistTarget == InitialPreheader) { | ||||||||
| 821 | // Phis in the loop header now need to use the new preheader. | ||||||||
| 822 | InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc); | ||||||||
| 823 | if (MSSAU) | ||||||||
| 824 | MSSAU->wireOldPredecessorsToNewImmediatePredecessor( | ||||||||
| 825 | HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget}); | ||||||||
| 826 | // The new preheader dominates the loop header. | ||||||||
| 827 | DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc); | ||||||||
| 828 | DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader()); | ||||||||
| 829 | DT->changeImmediateDominator(HeaderNode, PreheaderNode); | ||||||||
| 830 | // The preheader hoist destination is now the new preheader, with the | ||||||||
| 831 | // exception of the hoist destination of this branch. | ||||||||
| 832 | for (auto &Pair : HoistDestinationMap) | ||||||||
| 833 | if (Pair.second == InitialPreheader && Pair.first != BI->getParent()) | ||||||||
| 834 | Pair.second = HoistCommonSucc; | ||||||||
| 835 | } | ||||||||
| 836 | |||||||||
| 837 | // Now finally clone BI. | ||||||||
| 838 | ReplaceInstWithInst( | ||||||||
| 839 | HoistTarget->getTerminator(), | ||||||||
| 840 | BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition())); | ||||||||
| 841 | ++NumClonedBranches; | ||||||||
| 842 | |||||||||
| 843 | assert(CurLoop->getLoopPreheader() &&((void)0) | ||||||||
| 844 | "Hoisting blocks should not have destroyed preheader")((void)0); | ||||||||
| 845 | return HoistDestinationMap[BB]; | ||||||||
| 846 | } | ||||||||
| 847 | }; | ||||||||
| 848 | } // namespace | ||||||||
| 849 | |||||||||
| 850 | // Hoisting/sinking instruction out of a loop isn't always beneficial. It's only | ||||||||
| 851 | // only worthwhile if the destination block is actually colder than current | ||||||||
| 852 | // block. | ||||||||
| 853 | static bool worthSinkOrHoistInst(Instruction &I, BasicBlock *DstBlock, | ||||||||
| 854 | OptimizationRemarkEmitter *ORE, | ||||||||
| 855 | BlockFrequencyInfo *BFI) { | ||||||||
| 856 | // Check block frequency only when runtime profile is available | ||||||||
| 857 | // to avoid pathological cases. With static profile, lean towards | ||||||||
| 858 | // hosting because it helps canonicalize the loop for vectorizer. | ||||||||
| 859 | if (!DstBlock->getParent()->hasProfileData()) | ||||||||
| 860 | return true; | ||||||||
| 861 | |||||||||
| 862 | if (!HoistSinkColdnessThreshold || !BFI) | ||||||||
| 863 | return true; | ||||||||
| 864 | |||||||||
| 865 | BasicBlock *SrcBlock = I.getParent(); | ||||||||
| 866 | if (BFI->getBlockFreq(DstBlock).getFrequency() / HoistSinkColdnessThreshold > | ||||||||
| 867 | BFI->getBlockFreq(SrcBlock).getFrequency()) { | ||||||||
| 868 | ORE->emit([&]() { | ||||||||
| 869 | return OptimizationRemarkMissed(DEBUG_TYPE"licm", "SinkHoistInst", &I) | ||||||||
| 870 | << "failed to sink or hoist instruction because containing block " | ||||||||
| 871 | "has lower frequency than destination block"; | ||||||||
| 872 | }); | ||||||||
| 873 | return false; | ||||||||
| 874 | } | ||||||||
| 875 | |||||||||
| 876 | return true; | ||||||||
| 877 | } | ||||||||
| 878 | |||||||||
| 879 | /// Walk the specified region of the CFG (defined by all blocks dominated by | ||||||||
| 880 | /// the specified block, and that are in the current loop) in depth first | ||||||||
| 881 | /// order w.r.t the DominatorTree. This allows us to visit definitions before | ||||||||
| 882 | /// uses, allowing us to hoist a loop body in one pass without iteration. | ||||||||
| 883 | /// | ||||||||
| 884 | bool llvm::hoistRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI, | ||||||||
| 885 | DominatorTree *DT, BlockFrequencyInfo *BFI, | ||||||||
| 886 | TargetLibraryInfo *TLI, Loop *CurLoop, | ||||||||
| 887 | AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU, | ||||||||
| 888 | ScalarEvolution *SE, ICFLoopSafetyInfo *SafetyInfo, | ||||||||
| 889 | SinkAndHoistLICMFlags &Flags, | ||||||||
| 890 | OptimizationRemarkEmitter *ORE, bool LoopNestMode) { | ||||||||
| 891 | // Verify inputs. | ||||||||
| 892 | assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&((void)0) | ||||||||
| 893 | CurLoop != nullptr && SafetyInfo != nullptr &&((void)0) | ||||||||
| 894 | "Unexpected input to hoistRegion.")((void)0); | ||||||||
| 895 | assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&((void)0) | ||||||||
| 896 | "Either AliasSetTracker or MemorySSA should be initialized.")((void)0); | ||||||||
| 897 | |||||||||
| 898 | ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU); | ||||||||
| 899 | |||||||||
| 900 | // Keep track of instructions that have been hoisted, as they may need to be | ||||||||
| 901 | // re-hoisted if they end up not dominating all of their uses. | ||||||||
| 902 | SmallVector<Instruction *, 16> HoistedInstructions; | ||||||||
| 903 | |||||||||
| 904 | // For PHI hoisting to work we need to hoist blocks before their successors. | ||||||||
| 905 | // We can do this by iterating through the blocks in the loop in reverse | ||||||||
| 906 | // post-order. | ||||||||
| 907 | LoopBlocksRPO Worklist(CurLoop); | ||||||||
| 908 | Worklist.perform(LI); | ||||||||
| 909 | bool Changed = false; | ||||||||
| 910 | for (BasicBlock *BB : Worklist) { | ||||||||
| 911 | // Only need to process the contents of this block if it is not part of a | ||||||||
| 912 | // subloop (which would already have been processed). | ||||||||
| 913 | if (!LoopNestMode && inSubLoop(BB, CurLoop, LI)) | ||||||||
| 914 | continue; | ||||||||
| 915 | |||||||||
| 916 | for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) { | ||||||||
| 917 | Instruction &I = *II++; | ||||||||
| 918 | // Try constant folding this instruction. If all the operands are | ||||||||
| 919 | // constants, it is technically hoistable, but it would be better to | ||||||||
| 920 | // just fold it. | ||||||||
| 921 | if (Constant *C = ConstantFoldInstruction( | ||||||||
| 922 | &I, I.getModule()->getDataLayout(), TLI)) { | ||||||||
| 923 | LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *Cdo { } while (false) | ||||||||
| 924 | << '\n')do { } while (false); | ||||||||
| 925 | if (CurAST) | ||||||||
| 926 | CurAST->copyValue(&I, C); | ||||||||
| 927 | // FIXME MSSA: Such replacements may make accesses unoptimized (D51960). | ||||||||
| 928 | I.replaceAllUsesWith(C); | ||||||||
| 929 | if (isInstructionTriviallyDead(&I, TLI)) | ||||||||
| 930 | eraseInstruction(I, *SafetyInfo, CurAST, MSSAU); | ||||||||
| 931 | Changed = true; | ||||||||
| 932 | continue; | ||||||||
| 933 | } | ||||||||
| 934 | |||||||||
| 935 | // Try hoisting the instruction out to the preheader. We can only do | ||||||||
| 936 | // this if all of the operands of the instruction are loop invariant and | ||||||||
| 937 | // if it is safe to hoist the instruction. We also check block frequency | ||||||||
| 938 | // to make sure instruction only gets hoisted into colder blocks. | ||||||||
| 939 | // TODO: It may be safe to hoist if we are hoisting to a conditional block | ||||||||
| 940 | // and we have accurately duplicated the control flow from the loop header | ||||||||
| 941 | // to that block. | ||||||||
| 942 | if (CurLoop->hasLoopInvariantOperands(&I) && | ||||||||
| 943 | canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags, | ||||||||
| 944 | ORE) && | ||||||||
| 945 | worthSinkOrHoistInst(I, CurLoop->getLoopPreheader(), ORE, BFI) && | ||||||||
| 946 | isSafeToExecuteUnconditionally( | ||||||||
| 947 | I, DT, TLI, CurLoop, SafetyInfo, ORE, | ||||||||
| 948 | CurLoop->getLoopPreheader()->getTerminator())) { | ||||||||
| 949 | hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, | ||||||||
| 950 | MSSAU, SE, ORE); | ||||||||
| 951 | HoistedInstructions.push_back(&I); | ||||||||
| 952 | Changed = true; | ||||||||
| 953 | continue; | ||||||||
| 954 | } | ||||||||
| 955 | |||||||||
| 956 | // Attempt to remove floating point division out of the loop by | ||||||||
| 957 | // converting it to a reciprocal multiplication. | ||||||||
| 958 | if (I.getOpcode() == Instruction::FDiv && I.hasAllowReciprocal() && | ||||||||
| 959 | CurLoop->isLoopInvariant(I.getOperand(1))) { | ||||||||
| 960 | auto Divisor = I.getOperand(1); | ||||||||
| 961 | auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0); | ||||||||
| 962 | auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor); | ||||||||
| 963 | ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags()); | ||||||||
| 964 | SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent()); | ||||||||
| 965 | ReciprocalDivisor->insertBefore(&I); | ||||||||
| 966 | |||||||||
| 967 | auto Product = | ||||||||
| 968 | BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor); | ||||||||
| 969 | Product->setFastMathFlags(I.getFastMathFlags()); | ||||||||
| 970 | SafetyInfo->insertInstructionTo(Product, I.getParent()); | ||||||||
| 971 | Product->insertAfter(&I); | ||||||||
| 972 | I.replaceAllUsesWith(Product); | ||||||||
| 973 | eraseInstruction(I, *SafetyInfo, CurAST, MSSAU); | ||||||||
| 974 | |||||||||
| 975 | hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), | ||||||||
| 976 | SafetyInfo, MSSAU, SE, ORE); | ||||||||
| 977 | HoistedInstructions.push_back(ReciprocalDivisor); | ||||||||
| 978 | Changed = true; | ||||||||
| 979 | continue; | ||||||||
| 980 | } | ||||||||
| 981 | |||||||||
| 982 | auto IsInvariantStart = [&](Instruction &I) { | ||||||||
| 983 | using namespace PatternMatch; | ||||||||
| 984 | return I.use_empty() && | ||||||||
| 985 | match(&I, m_Intrinsic<Intrinsic::invariant_start>()); | ||||||||
| 986 | }; | ||||||||
| 987 | auto MustExecuteWithoutWritesBefore = [&](Instruction &I) { | ||||||||
| 988 | return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) && | ||||||||
| 989 | SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop); | ||||||||
| 990 | }; | ||||||||
| 991 | if ((IsInvariantStart(I) || isGuard(&I)) && | ||||||||
| 992 | CurLoop->hasLoopInvariantOperands(&I) && | ||||||||
| 993 | MustExecuteWithoutWritesBefore(I)) { | ||||||||
| 994 | hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, | ||||||||
| 995 | MSSAU, SE, ORE); | ||||||||
| 996 | HoistedInstructions.push_back(&I); | ||||||||
| 997 | Changed = true; | ||||||||
| 998 | continue; | ||||||||
| 999 | } | ||||||||
| 1000 | |||||||||
| 1001 | if (PHINode *PN = dyn_cast<PHINode>(&I)) { | ||||||||
| 1002 | if (CFH.canHoistPHI(PN)) { | ||||||||
| 1003 | // Redirect incoming blocks first to ensure that we create hoisted | ||||||||
| 1004 | // versions of those blocks before we hoist the phi. | ||||||||
| 1005 | for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i) | ||||||||
| 1006 | PN->setIncomingBlock( | ||||||||
| 1007 | i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i))); | ||||||||
| 1008 | hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, | ||||||||
| 1009 | MSSAU, SE, ORE); | ||||||||
| 1010 | assert(DT->dominates(PN, BB) && "Conditional PHIs not expected")((void)0); | ||||||||
| 1011 | Changed = true; | ||||||||
| 1012 | continue; | ||||||||
| 1013 | } | ||||||||
| 1014 | } | ||||||||
| 1015 | |||||||||
| 1016 | // Remember possibly hoistable branches so we can actually hoist them | ||||||||
| 1017 | // later if needed. | ||||||||
| 1018 | if (BranchInst *BI = dyn_cast<BranchInst>(&I)) | ||||||||
| 1019 | CFH.registerPossiblyHoistableBranch(BI); | ||||||||
| 1020 | } | ||||||||
| 1021 | } | ||||||||
| 1022 | |||||||||
| 1023 | // If we hoisted instructions to a conditional block they may not dominate | ||||||||
| 1024 | // their uses that weren't hoisted (such as phis where some operands are not | ||||||||
| 1025 | // loop invariant). If so make them unconditional by moving them to their | ||||||||
| 1026 | // immediate dominator. We iterate through the instructions in reverse order | ||||||||
| 1027 | // which ensures that when we rehoist an instruction we rehoist its operands, | ||||||||
| 1028 | // and also keep track of where in the block we are rehoisting to to make sure | ||||||||
| 1029 | // that we rehoist instructions before the instructions that use them. | ||||||||
| 1030 | Instruction *HoistPoint = nullptr; | ||||||||
| 1031 | if (ControlFlowHoisting) { | ||||||||
| 1032 | for (Instruction *I : reverse(HoistedInstructions)) { | ||||||||
| 1033 | if (!llvm::all_of(I->uses(), | ||||||||
| 1034 | [&](Use &U) { return DT->dominates(I, U); })) { | ||||||||
| 1035 | BasicBlock *Dominator = | ||||||||
| 1036 | DT->getNode(I->getParent())->getIDom()->getBlock(); | ||||||||
| 1037 | if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) { | ||||||||
| 1038 | if (HoistPoint) | ||||||||
| 1039 | assert(DT->dominates(Dominator, HoistPoint->getParent()) &&((void)0) | ||||||||
| 1040 | "New hoist point expected to dominate old hoist point")((void)0); | ||||||||
| 1041 | HoistPoint = Dominator->getTerminator(); | ||||||||
| 1042 | } | ||||||||
| 1043 | LLVM_DEBUG(dbgs() << "LICM rehoisting to "do { } while (false) | ||||||||
| 1044 | << HoistPoint->getParent()->getNameOrAsOperand()do { } while (false) | ||||||||
| 1045 | << ": " << *I << "\n")do { } while (false); | ||||||||
| 1046 | moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU, SE); | ||||||||
| 1047 | HoistPoint = I; | ||||||||
| 1048 | Changed = true; | ||||||||
| 1049 | } | ||||||||
| 1050 | } | ||||||||
| 1051 | } | ||||||||
| 1052 | if (MSSAU && VerifyMemorySSA) | ||||||||
| 1053 | MSSAU->getMemorySSA()->verifyMemorySSA(); | ||||||||
| 1054 | |||||||||
| 1055 | // Now that we've finished hoisting make sure that LI and DT are still | ||||||||
| 1056 | // valid. | ||||||||
| 1057 | #ifdef EXPENSIVE_CHECKS | ||||||||
| 1058 | if (Changed) { | ||||||||
| 1059 | assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&((void)0) | ||||||||
| 1060 | "Dominator tree verification failed")((void)0); | ||||||||
| 1061 | LI->verify(*DT); | ||||||||
| 1062 | } | ||||||||
| 1063 | #endif | ||||||||
| 1064 | |||||||||
| 1065 | return Changed; | ||||||||
| 1066 | } | ||||||||
| 1067 | |||||||||
| 1068 | // Return true if LI is invariant within scope of the loop. LI is invariant if | ||||||||
| 1069 | // CurLoop is dominated by an invariant.start representing the same memory | ||||||||
| 1070 | // location and size as the memory location LI loads from, and also the | ||||||||
| 1071 | // invariant.start has no uses. | ||||||||
| 1072 | static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT, | ||||||||
| 1073 | Loop *CurLoop) { | ||||||||
| 1074 | Value *Addr = LI->getOperand(0); | ||||||||
| 1075 | const DataLayout &DL = LI->getModule()->getDataLayout(); | ||||||||
| 1076 | const TypeSize LocSizeInBits = DL.getTypeSizeInBits(LI->getType()); | ||||||||
| 1077 | |||||||||
| 1078 | // It is not currently possible for clang to generate an invariant.start | ||||||||
| 1079 | // intrinsic with scalable vector types because we don't support thread local | ||||||||
| 1080 | // sizeless types and we don't permit sizeless types in structs or classes. | ||||||||
| 1081 | // Furthermore, even if support is added for this in future the intrinsic | ||||||||
| 1082 | // itself is defined to have a size of -1 for variable sized objects. This | ||||||||
| 1083 | // makes it impossible to verify if the intrinsic envelops our region of | ||||||||
| 1084 | // interest. For example, both <vscale x 32 x i8> and <vscale x 16 x i8> | ||||||||
| 1085 | // types would have a -1 parameter, but the former is clearly double the size | ||||||||
| 1086 | // of the latter. | ||||||||
| 1087 | if (LocSizeInBits.isScalable()) | ||||||||
| 1088 | return false; | ||||||||
| 1089 | |||||||||
| 1090 | // if the type is i8 addrspace(x)*, we know this is the type of | ||||||||
| 1091 | // llvm.invariant.start operand | ||||||||
| 1092 | auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()), | ||||||||
| 1093 | LI->getPointerAddressSpace()); | ||||||||
| 1094 | unsigned BitcastsVisited = 0; | ||||||||
| 1095 | // Look through bitcasts until we reach the i8* type (this is invariant.start | ||||||||
| 1096 | // operand type). | ||||||||
| 1097 | while (Addr->getType() != PtrInt8Ty) { | ||||||||
| 1098 | auto *BC = dyn_cast<BitCastInst>(Addr); | ||||||||
| 1099 | // Avoid traversing high number of bitcast uses. | ||||||||
| 1100 | if (++BitcastsVisited > MaxNumUsesTraversed || !BC) | ||||||||
| 1101 | return false; | ||||||||
| 1102 | Addr = BC->getOperand(0); | ||||||||
| 1103 | } | ||||||||
| 1104 | |||||||||
| 1105 | unsigned UsesVisited = 0; | ||||||||
| 1106 | // Traverse all uses of the load operand value, to see if invariant.start is | ||||||||
| 1107 | // one of the uses, and whether it dominates the load instruction. | ||||||||
| 1108 | for (auto *U : Addr->users()) { | ||||||||
| 1109 | // Avoid traversing for Load operand with high number of users. | ||||||||
| 1110 | if (++UsesVisited > MaxNumUsesTraversed) | ||||||||
| 1111 | return false; | ||||||||
| 1112 | IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); | ||||||||
| 1113 | // If there are escaping uses of invariant.start instruction, the load maybe | ||||||||
| 1114 | // non-invariant. | ||||||||
| 1115 | if (!II || II->getIntrinsicID() != Intrinsic::invariant_start || | ||||||||
| 1116 | !II->use_empty()) | ||||||||
| 1117 | continue; | ||||||||
| 1118 | ConstantInt *InvariantSize = cast<ConstantInt>(II->getArgOperand(0)); | ||||||||
| 1119 | // The intrinsic supports having a -1 argument for variable sized objects | ||||||||
| 1120 | // so we should check for that here. | ||||||||
| 1121 | if (InvariantSize->isNegative()) | ||||||||
| 1122 | continue; | ||||||||
| 1123 | uint64_t InvariantSizeInBits = InvariantSize->getSExtValue() * 8; | ||||||||
| 1124 | // Confirm the invariant.start location size contains the load operand size | ||||||||
| 1125 | // in bits. Also, the invariant.start should dominate the load, and we | ||||||||
| 1126 | // should not hoist the load out of a loop that contains this dominating | ||||||||
| 1127 | // invariant.start. | ||||||||
| 1128 | if (LocSizeInBits.getFixedSize() <= InvariantSizeInBits && | ||||||||
| 1129 | DT->properlyDominates(II->getParent(), CurLoop->getHeader())) | ||||||||
| 1130 | return true; | ||||||||
| 1131 | } | ||||||||
| 1132 | |||||||||
| 1133 | return false; | ||||||||
| 1134 | } | ||||||||
| 1135 | |||||||||
| 1136 | namespace { | ||||||||
| 1137 | /// Return true if-and-only-if we know how to (mechanically) both hoist and | ||||||||
| 1138 | /// sink a given instruction out of a loop. Does not address legality | ||||||||
| 1139 | /// concerns such as aliasing or speculation safety. | ||||||||
| 1140 | bool isHoistableAndSinkableInst(Instruction &I) { | ||||||||
| 1141 | // Only these instructions are hoistable/sinkable. | ||||||||
| 1142 | return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || | ||||||||
| 1143 | isa<FenceInst>(I) || isa<CastInst>(I) || isa<UnaryOperator>(I) || | ||||||||
| 1144 | isa<BinaryOperator>(I) || isa<SelectInst>(I) || | ||||||||
| 1145 | isa<GetElementPtrInst>(I) || isa<CmpInst>(I) || | ||||||||
| 1146 | isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || | ||||||||
| 1147 | isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) || | ||||||||
| 1148 | isa<InsertValueInst>(I) || isa<FreezeInst>(I)); | ||||||||
| 1149 | } | ||||||||
| 1150 | /// Return true if all of the alias sets within this AST are known not to | ||||||||
| 1151 | /// contain a Mod, or if MSSA knows there are no MemoryDefs in the loop. | ||||||||
| 1152 | bool isReadOnly(AliasSetTracker *CurAST, const MemorySSAUpdater *MSSAU, | ||||||||
| 1153 | const Loop *L) { | ||||||||
| 1154 | if (CurAST) { | ||||||||
| 1155 | for (AliasSet &AS : *CurAST) { | ||||||||
| 1156 | if (!AS.isForwardingAliasSet() && AS.isMod()) { | ||||||||
| 1157 | return false; | ||||||||
| 1158 | } | ||||||||
| 1159 | } | ||||||||
| 1160 | return true; | ||||||||
| 1161 | } else { /*MSSAU*/ | ||||||||
| 1162 | for (auto *BB : L->getBlocks()) | ||||||||
| 1163 | if (MSSAU->getMemorySSA()->getBlockDefs(BB)) | ||||||||
| 1164 | return false; | ||||||||
| 1165 | return true; | ||||||||
| 1166 | } | ||||||||
| 1167 | } | ||||||||
| 1168 | |||||||||
| 1169 | /// Return true if I is the only Instruction with a MemoryAccess in L. | ||||||||
| 1170 | bool isOnlyMemoryAccess(const Instruction *I, const Loop *L, | ||||||||
| 1171 | const MemorySSAUpdater *MSSAU) { | ||||||||
| 1172 | for (auto *BB : L->getBlocks()) | ||||||||
| 1173 | if (auto *Accs = MSSAU->getMemorySSA()->getBlockAccesses(BB)) { | ||||||||
| 1174 | int NotAPhi = 0; | ||||||||
| 1175 | for (const auto &Acc : *Accs) { | ||||||||
| 1176 | if (isa<MemoryPhi>(&Acc)) | ||||||||
| 1177 | continue; | ||||||||
| 1178 | const auto *MUD = cast<MemoryUseOrDef>(&Acc); | ||||||||
| 1179 | if (MUD->getMemoryInst() != I || NotAPhi++ == 1) | ||||||||
| 1180 | return false; | ||||||||
| 1181 | } | ||||||||
| 1182 | } | ||||||||
| 1183 | return true; | ||||||||
| 1184 | } | ||||||||
| 1185 | } | ||||||||
| 1186 | |||||||||
| 1187 | bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT, | ||||||||
| 1188 | Loop *CurLoop, AliasSetTracker *CurAST, | ||||||||
| 1189 | MemorySSAUpdater *MSSAU, | ||||||||
| 1190 | bool TargetExecutesOncePerLoop, | ||||||||
| 1191 | SinkAndHoistLICMFlags *Flags, | ||||||||
| 1192 | OptimizationRemarkEmitter *ORE) { | ||||||||
| 1193 | assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&((void)0) | ||||||||
| 1194 | "Either AliasSetTracker or MemorySSA should be initialized.")((void)0); | ||||||||
| 1195 | |||||||||
| 1196 | // If we don't understand the instruction, bail early. | ||||||||
| 1197 | if (!isHoistableAndSinkableInst(I)) | ||||||||
| |||||||||
| 1198 | return false; | ||||||||
| 1199 | |||||||||
| 1200 | MemorySSA *MSSA = MSSAU ? MSSAU->getMemorySSA() : nullptr; | ||||||||
| 1201 | if (MSSA
| ||||||||
| 1202 | assert(Flags != nullptr && "Flags cannot be null.")((void)0); | ||||||||
| 1203 | |||||||||
| 1204 | // Loads have extra constraints we have to verify before we can hoist them. | ||||||||
| 1205 | if (LoadInst *LI
| ||||||||
| 1206 | if (!LI->isUnordered()) | ||||||||
| 1207 | return false; // Don't sink/hoist volatile or ordered atomic loads! | ||||||||
| 1208 | |||||||||
| 1209 | // Loads from constant memory are always safe to move, even if they end up | ||||||||
| 1210 | // in the same alias set as something that ends up being modified. | ||||||||
| 1211 | if (AA->pointsToConstantMemory(LI->getOperand(0))) | ||||||||
| 1212 | return true; | ||||||||
| 1213 | if (LI->hasMetadata(LLVMContext::MD_invariant_load)) | ||||||||
| 1214 | return true; | ||||||||
| 1215 | |||||||||
| 1216 | if (LI->isAtomic() && !TargetExecutesOncePerLoop) | ||||||||
| 1217 | return false; // Don't risk duplicating unordered loads | ||||||||
| 1218 | |||||||||
| 1219 | // This checks for an invariant.start dominating the load. | ||||||||
| 1220 | if (isLoadInvariantInLoop(LI, DT, CurLoop)) | ||||||||
| 1221 | return true; | ||||||||
| 1222 | |||||||||
| 1223 | bool Invalidated; | ||||||||
| 1224 | if (CurAST) | ||||||||
| 1225 | Invalidated = pointerInvalidatedByLoop(MemoryLocation::get(LI), CurAST, | ||||||||
| 1226 | CurLoop, AA); | ||||||||
| 1227 | else | ||||||||
| 1228 | Invalidated = pointerInvalidatedByLoopWithMSSA( | ||||||||
| 1229 | MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(LI)), CurLoop, I, *Flags); | ||||||||
| |||||||||
| 1230 | // Check loop-invariant address because this may also be a sinkable load | ||||||||
| 1231 | // whose address is not necessarily loop-invariant. | ||||||||
| 1232 | if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand())) | ||||||||
| 1233 | ORE->emit([&]() { | ||||||||
| 1234 | return OptimizationRemarkMissed( | ||||||||
| 1235 | DEBUG_TYPE"licm", "LoadWithLoopInvariantAddressInvalidated", LI) | ||||||||
| 1236 | << "failed to move load with loop-invariant address " | ||||||||
| 1237 | "because the loop may invalidate its value"; | ||||||||
| 1238 | }); | ||||||||
| 1239 | |||||||||
| 1240 | return !Invalidated; | ||||||||
| 1241 | } else if (CallInst *CI = dyn_cast<CallInst>(&I)) { | ||||||||
| 1242 | // Don't sink or hoist dbg info; it's legal, but not useful. | ||||||||
| 1243 | if (isa<DbgInfoIntrinsic>(I)) | ||||||||
| 1244 | return false; | ||||||||
| 1245 | |||||||||
| 1246 | // Don't sink calls which can throw. | ||||||||
| 1247 | if (CI->mayThrow()) | ||||||||
| 1248 | return false; | ||||||||
| 1249 | |||||||||
| 1250 | // Convergent attribute has been used on operations that involve | ||||||||
| 1251 | // inter-thread communication which results are implicitly affected by the | ||||||||
| 1252 | // enclosing control flows. It is not safe to hoist or sink such operations | ||||||||
| 1253 | // across control flow. | ||||||||
| 1254 | if (CI->isConvergent()) | ||||||||
| 1255 | return false; | ||||||||
| 1256 | |||||||||
| 1257 | using namespace PatternMatch; | ||||||||
| 1258 | if (match(CI, m_Intrinsic<Intrinsic::assume>())) | ||||||||
| 1259 | // Assumes don't actually alias anything or throw | ||||||||
| 1260 | return true; | ||||||||
| 1261 | |||||||||
| 1262 | if (match(CI, m_Intrinsic<Intrinsic::experimental_widenable_condition>())) | ||||||||
| 1263 | // Widenable conditions don't actually alias anything or throw | ||||||||
| 1264 | return true; | ||||||||
| 1265 | |||||||||
| 1266 | // Handle simple cases by querying alias analysis. | ||||||||
| 1267 | FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI); | ||||||||
| 1268 | if (Behavior == FMRB_DoesNotAccessMemory) | ||||||||
| 1269 | return true; | ||||||||
| 1270 | if (AAResults::onlyReadsMemory(Behavior)) { | ||||||||
| 1271 | // A readonly argmemonly function only reads from memory pointed to by | ||||||||
| 1272 | // it's arguments with arbitrary offsets. If we can prove there are no | ||||||||
| 1273 | // writes to this memory in the loop, we can hoist or sink. | ||||||||
| 1274 | if (AAResults::onlyAccessesArgPointees(Behavior)) { | ||||||||
| 1275 | // TODO: expand to writeable arguments | ||||||||
| 1276 | for (Value *Op : CI->arg_operands()) | ||||||||
| 1277 | if (Op->getType()->isPointerTy()) { | ||||||||
| 1278 | bool Invalidated; | ||||||||
| 1279 | if (CurAST) | ||||||||
| 1280 | Invalidated = pointerInvalidatedByLoop( | ||||||||
| 1281 | MemoryLocation::getBeforeOrAfter(Op), CurAST, CurLoop, AA); | ||||||||
| 1282 | else | ||||||||
| 1283 | Invalidated = pointerInvalidatedByLoopWithMSSA( | ||||||||
| 1284 | MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop, I, | ||||||||
| 1285 | *Flags); | ||||||||
| 1286 | if (Invalidated) | ||||||||
| 1287 | return false; | ||||||||
| 1288 | } | ||||||||
| 1289 | return true; | ||||||||
| 1290 | } | ||||||||
| 1291 | |||||||||
| 1292 | // If this call only reads from memory and there are no writes to memory | ||||||||
| 1293 | // in the loop, we can hoist or sink the call as appropriate. | ||||||||
| 1294 | if (isReadOnly(CurAST, MSSAU, CurLoop)) | ||||||||
| 1295 | return true; | ||||||||
| 1296 | } | ||||||||
| 1297 | |||||||||
| 1298 | // FIXME: This should use mod/ref information to see if we can hoist or | ||||||||
| 1299 | // sink the call. | ||||||||
| 1300 | |||||||||
| 1301 | return false; | ||||||||
| 1302 | } else if (auto *FI = dyn_cast<FenceInst>(&I)) { | ||||||||
| 1303 | // Fences alias (most) everything to provide ordering. For the moment, | ||||||||
| 1304 | // just give up if there are any other memory operations in the loop. | ||||||||
| 1305 | if (CurAST) { | ||||||||
| 1306 | auto Begin = CurAST->begin(); | ||||||||
| 1307 | assert(Begin != CurAST->end() && "must contain FI")((void)0); | ||||||||
| 1308 | if (std::next(Begin) != CurAST->end()) | ||||||||
| 1309 | // constant memory for instance, TODO: handle better | ||||||||
| 1310 | return false; | ||||||||
| 1311 | auto *UniqueI = Begin->getUniqueInstruction(); | ||||||||
| 1312 | if (!UniqueI) | ||||||||
| 1313 | // other memory op, give up | ||||||||
| 1314 | return false; | ||||||||
| 1315 | (void)FI; // suppress unused variable warning | ||||||||
| 1316 | assert(UniqueI == FI && "AS must contain FI")((void)0); | ||||||||
| 1317 | return true; | ||||||||
| 1318 | } else // MSSAU | ||||||||
| 1319 | return isOnlyMemoryAccess(FI, CurLoop, MSSAU); | ||||||||
| 1320 | } else if (auto *SI = dyn_cast<StoreInst>(&I)) { | ||||||||
| 1321 | if (!SI->isUnordered()) | ||||||||
| 1322 | return false; // Don't sink/hoist volatile or ordered atomic store! | ||||||||
| 1323 | |||||||||
| 1324 | // We can only hoist a store that we can prove writes a value which is not | ||||||||
| 1325 | // read or overwritten within the loop. For those cases, we fallback to | ||||||||
| 1326 | // load store promotion instead. TODO: We can extend this to cases where | ||||||||
| 1327 | // there is exactly one write to the location and that write dominates an | ||||||||
| 1328 | // arbitrary number of reads in the loop. | ||||||||
| 1329 | if (CurAST) { | ||||||||
| 1330 | auto &AS = CurAST->getAliasSetFor(MemoryLocation::get(SI)); | ||||||||
| 1331 | |||||||||
| 1332 | if (AS.isRef() || !AS.isMustAlias()) | ||||||||
| 1333 | // Quick exit test, handled by the full path below as well. | ||||||||
| 1334 | return false; | ||||||||
| 1335 | auto *UniqueI = AS.getUniqueInstruction(); | ||||||||
| 1336 | if (!UniqueI) | ||||||||
| 1337 | // other memory op, give up | ||||||||
| 1338 | return false; | ||||||||
| 1339 | assert(UniqueI == SI && "AS must contain SI")((void)0); | ||||||||
| 1340 | return true; | ||||||||
| 1341 | } else { // MSSAU | ||||||||
| 1342 | if (isOnlyMemoryAccess(SI, CurLoop, MSSAU)) | ||||||||
| 1343 | return true; | ||||||||
| 1344 | // If there are more accesses than the Promotion cap or no "quota" to | ||||||||
| 1345 | // check clobber, then give up as we're not walking a list that long. | ||||||||
| 1346 | if (Flags->tooManyMemoryAccesses() || Flags->tooManyClobberingCalls()) | ||||||||
| 1347 | return false; | ||||||||
| 1348 | // If there are interfering Uses (i.e. their defining access is in the | ||||||||
| 1349 | // loop), or ordered loads (stored as Defs!), don't move this store. | ||||||||
| 1350 | // Could do better here, but this is conservatively correct. | ||||||||
| 1351 | // TODO: Cache set of Uses on the first walk in runOnLoop, update when | ||||||||
| 1352 | // moving accesses. Can also extend to dominating uses. | ||||||||
| 1353 | auto *SIMD = MSSA->getMemoryAccess(SI); | ||||||||
| 1354 | for (auto *BB : CurLoop->getBlocks()) | ||||||||
| 1355 | if (auto *Accesses = MSSA->getBlockAccesses(BB)) { | ||||||||
| 1356 | for (const auto &MA : *Accesses) | ||||||||
| 1357 | if (const auto *MU = dyn_cast<MemoryUse>(&MA)) { | ||||||||
| 1358 | auto *MD = MU->getDefiningAccess(); | ||||||||
| 1359 | if (!MSSA->isLiveOnEntryDef(MD) && | ||||||||
| 1360 | CurLoop->contains(MD->getBlock())) | ||||||||
| 1361 | return false; | ||||||||
| 1362 | // Disable hoisting past potentially interfering loads. Optimized | ||||||||
| 1363 | // Uses may point to an access outside the loop, as getClobbering | ||||||||
| 1364 | // checks the previous iteration when walking the backedge. | ||||||||
| 1365 | // FIXME: More precise: no Uses that alias SI. | ||||||||
| 1366 | if (!Flags->getIsSink() && !MSSA->dominates(SIMD, MU)) | ||||||||
| 1367 | return false; | ||||||||
| 1368 | } else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) { | ||||||||
| 1369 | if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) { | ||||||||
| 1370 | (void)LI; // Silence warning. | ||||||||
| 1371 | assert(!LI->isUnordered() && "Expected unordered load")((void)0); | ||||||||
| 1372 | return false; | ||||||||
| 1373 | } | ||||||||
| 1374 | // Any call, while it may not be clobbering SI, it may be a use. | ||||||||
| 1375 | if (auto *CI = dyn_cast<CallInst>(MD->getMemoryInst())) { | ||||||||
| 1376 | // Check if the call may read from the memory location written | ||||||||
| 1377 | // to by SI. Check CI's attributes and arguments; the number of | ||||||||
| 1378 | // such checks performed is limited above by NoOfMemAccTooLarge. | ||||||||
| 1379 | ModRefInfo MRI = AA->getModRefInfo(CI, MemoryLocation::get(SI)); | ||||||||
| 1380 | if (isModOrRefSet(MRI)) | ||||||||
| 1381 | return false; | ||||||||
| 1382 | } | ||||||||
| 1383 | } | ||||||||
| 1384 | } | ||||||||
| 1385 | auto *Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(SI); | ||||||||
| 1386 | Flags->incrementClobberingCalls(); | ||||||||
| 1387 | // If there are no clobbering Defs in the loop, store is safe to hoist. | ||||||||
| 1388 | return MSSA->isLiveOnEntryDef(Source) || | ||||||||
| 1389 | !CurLoop->contains(Source->getBlock()); | ||||||||
| 1390 | } | ||||||||
| 1391 | } | ||||||||
| 1392 | |||||||||
| 1393 | assert(!I.mayReadOrWriteMemory() && "unhandled aliasing")((void)0); | ||||||||
| 1394 | |||||||||
| 1395 | // We've established mechanical ability and aliasing, it's up to the caller | ||||||||
| 1396 | // to check fault safety | ||||||||
| 1397 | return true; | ||||||||
| 1398 | } | ||||||||
| 1399 | |||||||||
| 1400 | /// Returns true if a PHINode is a trivially replaceable with an | ||||||||
| 1401 | /// Instruction. | ||||||||
| 1402 | /// This is true when all incoming values are that instruction. | ||||||||
| 1403 | /// This pattern occurs most often with LCSSA PHI nodes. | ||||||||
| 1404 | /// | ||||||||
| 1405 | static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) { | ||||||||
| 1406 | for (const Value *IncValue : PN.incoming_values()) | ||||||||
| 1407 | if (IncValue != &I) | ||||||||
| 1408 | return false; | ||||||||
| 1409 | |||||||||
| 1410 | return true; | ||||||||
| 1411 | } | ||||||||
| 1412 | |||||||||
| 1413 | /// Return true if the instruction is free in the loop. | ||||||||
| 1414 | static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop, | ||||||||
| 1415 | const TargetTransformInfo *TTI) { | ||||||||
| 1416 | |||||||||
| 1417 | if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) { | ||||||||
| 1418 | if (TTI->getUserCost(GEP, TargetTransformInfo::TCK_SizeAndLatency) != | ||||||||
| 1419 | TargetTransformInfo::TCC_Free) | ||||||||
| 1420 | return false; | ||||||||
| 1421 | // For a GEP, we cannot simply use getUserCost because currently it | ||||||||
| 1422 | // optimistically assume that a GEP will fold into addressing mode | ||||||||
| 1423 | // regardless of its users. | ||||||||
| 1424 | const BasicBlock *BB = GEP->getParent(); | ||||||||
| 1425 | for (const User *U : GEP->users()) { | ||||||||
| 1426 | const Instruction *UI = cast<Instruction>(U); | ||||||||
| 1427 | if (CurLoop->contains(UI) && | ||||||||
| 1428 | (BB != UI->getParent() || | ||||||||
| 1429 | (!isa<StoreInst>(UI) && !isa<LoadInst>(UI)))) | ||||||||
| 1430 | return false; | ||||||||
| 1431 | } | ||||||||
| 1432 | return true; | ||||||||
| 1433 | } else | ||||||||
| 1434 | return TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == | ||||||||
| 1435 | TargetTransformInfo::TCC_Free; | ||||||||
| 1436 | } | ||||||||
| 1437 | |||||||||
| 1438 | /// Return true if the only users of this instruction are outside of | ||||||||
| 1439 | /// the loop. If this is true, we can sink the instruction to the exit | ||||||||
| 1440 | /// blocks of the loop. | ||||||||
| 1441 | /// | ||||||||
| 1442 | /// We also return true if the instruction could be folded away in lowering. | ||||||||
| 1443 | /// (e.g., a GEP can be folded into a load as an addressing mode in the loop). | ||||||||
| 1444 | static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop, | ||||||||
| 1445 | const LoopSafetyInfo *SafetyInfo, | ||||||||
| 1446 | TargetTransformInfo *TTI, bool &FreeInLoop) { | ||||||||
| 1447 | const auto &BlockColors = SafetyInfo->getBlockColors(); | ||||||||
| 1448 | bool IsFree = isFreeInLoop(I, CurLoop, TTI); | ||||||||
| 1449 | for (const User *U : I.users()) { | ||||||||
| 1450 | const Instruction *UI = cast<Instruction>(U); | ||||||||
| 1451 | if (const PHINode *PN = dyn_cast<PHINode>(UI)) { | ||||||||
| 1452 | const BasicBlock *BB = PN->getParent(); | ||||||||
| 1453 | // We cannot sink uses in catchswitches. | ||||||||
| 1454 | if (isa<CatchSwitchInst>(BB->getTerminator())) | ||||||||
| 1455 | return false; | ||||||||
| 1456 | |||||||||
| 1457 | // We need to sink a callsite to a unique funclet. Avoid sinking if the | ||||||||
| 1458 | // phi use is too muddled. | ||||||||
| 1459 | if (isa<CallInst>(I)) | ||||||||
| 1460 | if (!BlockColors.empty() && | ||||||||
| 1461 | BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1) | ||||||||
| 1462 | return false; | ||||||||
| 1463 | } | ||||||||
| 1464 | |||||||||
| 1465 | if (CurLoop->contains(UI)) { | ||||||||
| 1466 | if (IsFree) { | ||||||||
| 1467 | FreeInLoop = true; | ||||||||
| 1468 | continue; | ||||||||
| 1469 | } | ||||||||
| 1470 | return false; | ||||||||
| 1471 | } | ||||||||
| 1472 | } | ||||||||
| 1473 | return true; | ||||||||
| 1474 | } | ||||||||
| 1475 | |||||||||
| 1476 | static Instruction *cloneInstructionInExitBlock( | ||||||||
| 1477 | Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI, | ||||||||
| 1478 | const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU) { | ||||||||
| 1479 | Instruction *New; | ||||||||
| 1480 | if (auto *CI = dyn_cast<CallInst>(&I)) { | ||||||||
| 1481 | const auto &BlockColors = SafetyInfo->getBlockColors(); | ||||||||
| 1482 | |||||||||
| 1483 | // Sinking call-sites need to be handled differently from other | ||||||||
| 1484 | // instructions. The cloned call-site needs a funclet bundle operand | ||||||||
| 1485 | // appropriate for its location in the CFG. | ||||||||
| 1486 | SmallVector<OperandBundleDef, 1> OpBundles; | ||||||||
| 1487 | for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles(); | ||||||||
| 1488 | BundleIdx != BundleEnd; ++BundleIdx) { | ||||||||
| 1489 | OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx); | ||||||||
| 1490 | if (Bundle.getTagID() == LLVMContext::OB_funclet) | ||||||||
| 1491 | continue; | ||||||||
| 1492 | |||||||||
| 1493 | OpBundles.emplace_back(Bundle); | ||||||||
| 1494 | } | ||||||||
| 1495 | |||||||||
| 1496 | if (!BlockColors.empty()) { | ||||||||
| 1497 | const ColorVector &CV = BlockColors.find(&ExitBlock)->second; | ||||||||
| 1498 | assert(CV.size() == 1 && "non-unique color for exit block!")((void)0); | ||||||||
| 1499 | BasicBlock *BBColor = CV.front(); | ||||||||
| 1500 | Instruction *EHPad = BBColor->getFirstNonPHI(); | ||||||||
| 1501 | if (EHPad->isEHPad()) | ||||||||
| 1502 | OpBundles.emplace_back("funclet", EHPad); | ||||||||
| 1503 | } | ||||||||
| 1504 | |||||||||
| 1505 | New = CallInst::Create(CI, OpBundles); | ||||||||
| 1506 | } else { | ||||||||
| 1507 | New = I.clone(); | ||||||||
| 1508 | } | ||||||||
| 1509 | |||||||||
| 1510 | ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New); | ||||||||
| 1511 | if (!I.getName().empty()) | ||||||||
| 1512 | New->setName(I.getName() + ".le"); | ||||||||
| 1513 | |||||||||
| 1514 | if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) { | ||||||||
| 1515 | // Create a new MemoryAccess and let MemorySSA set its defining access. | ||||||||
| 1516 | MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( | ||||||||
| 1517 | New, nullptr, New->getParent(), MemorySSA::Beginning); | ||||||||
| 1518 | if (NewMemAcc) { | ||||||||
| 1519 | if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc)) | ||||||||
| 1520 | MSSAU->insertDef(MemDef, /*RenameUses=*/true); | ||||||||
| 1521 | else { | ||||||||
| 1522 | auto *MemUse = cast<MemoryUse>(NewMemAcc); | ||||||||
| 1523 | MSSAU->insertUse(MemUse, /*RenameUses=*/true); | ||||||||
| 1524 | } | ||||||||
| 1525 | } | ||||||||
| 1526 | } | ||||||||
| 1527 | |||||||||
| 1528 | // Build LCSSA PHI nodes for any in-loop operands (if legal). Note that | ||||||||
| 1529 | // this is particularly cheap because we can rip off the PHI node that we're | ||||||||
| 1530 | // replacing for the number and blocks of the predecessors. | ||||||||
| 1531 | // OPT: If this shows up in a profile, we can instead finish sinking all | ||||||||
| 1532 | // invariant instructions, and then walk their operands to re-establish | ||||||||
| 1533 | // LCSSA. That will eliminate creating PHI nodes just to nuke them when | ||||||||
| 1534 | // sinking bottom-up. | ||||||||
| 1535 | for (Use &Op : New->operands()) | ||||||||
| 1536 | if (LI->wouldBeOutOfLoopUseRequiringLCSSA(Op.get(), PN.getParent())) { | ||||||||
| 1537 | auto *OInst = cast<Instruction>(Op.get()); | ||||||||
| 1538 | PHINode *OpPN = | ||||||||
| 1539 | PHINode::Create(OInst->getType(), PN.getNumIncomingValues(), | ||||||||
| 1540 | OInst->getName() + ".lcssa", &ExitBlock.front()); | ||||||||
| 1541 | for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) | ||||||||
| 1542 | OpPN->addIncoming(OInst, PN.getIncomingBlock(i)); | ||||||||
| 1543 | Op = OpPN; | ||||||||
| 1544 | } | ||||||||
| 1545 | return New; | ||||||||
| 1546 | } | ||||||||
| 1547 | |||||||||
| 1548 | static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, | ||||||||
| 1549 | AliasSetTracker *AST, MemorySSAUpdater *MSSAU) { | ||||||||
| 1550 | if (AST) | ||||||||
| 1551 | AST->deleteValue(&I); | ||||||||
| 1552 | if (MSSAU) | ||||||||
| 1553 | MSSAU->removeMemoryAccess(&I); | ||||||||
| 1554 | SafetyInfo.removeInstruction(&I); | ||||||||
| 1555 | I.eraseFromParent(); | ||||||||
| 1556 | } | ||||||||
| 1557 | |||||||||
| 1558 | static void moveInstructionBefore(Instruction &I, Instruction &Dest, | ||||||||
| 1559 | ICFLoopSafetyInfo &SafetyInfo, | ||||||||
| 1560 | MemorySSAUpdater *MSSAU, | ||||||||
| 1561 | ScalarEvolution *SE) { | ||||||||
| 1562 | SafetyInfo.removeInstruction(&I); | ||||||||
| 1563 | SafetyInfo.insertInstructionTo(&I, Dest.getParent()); | ||||||||
| 1564 | I.moveBefore(&Dest); | ||||||||
| 1565 | if (MSSAU) | ||||||||
| 1566 | if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>( | ||||||||
| 1567 | MSSAU->getMemorySSA()->getMemoryAccess(&I))) | ||||||||
| 1568 | MSSAU->moveToPlace(OldMemAcc, Dest.getParent(), | ||||||||
| 1569 | MemorySSA::BeforeTerminator); | ||||||||
| 1570 | if (SE) | ||||||||
| 1571 | SE->forgetValue(&I); | ||||||||
| 1572 | } | ||||||||
| 1573 | |||||||||
| 1574 | static Instruction *sinkThroughTriviallyReplaceablePHI( | ||||||||
| 1575 | PHINode *TPN, Instruction *I, LoopInfo *LI, | ||||||||
| 1576 | SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies, | ||||||||
| 1577 | const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop, | ||||||||
| 1578 | MemorySSAUpdater *MSSAU) { | ||||||||
| 1579 | assert(isTriviallyReplaceablePHI(*TPN, *I) &&((void)0) | ||||||||
| 1580 | "Expect only trivially replaceable PHI")((void)0); | ||||||||
| 1581 | BasicBlock *ExitBlock = TPN->getParent(); | ||||||||
| 1582 | Instruction *New; | ||||||||
| 1583 | auto It = SunkCopies.find(ExitBlock); | ||||||||
| 1584 | if (It != SunkCopies.end()) | ||||||||
| 1585 | New = It->second; | ||||||||
| 1586 | else | ||||||||
| 1587 | New = SunkCopies[ExitBlock] = cloneInstructionInExitBlock( | ||||||||
| 1588 | *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU); | ||||||||
| 1589 | return New; | ||||||||
| 1590 | } | ||||||||
| 1591 | |||||||||
| 1592 | static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) { | ||||||||
| 1593 | BasicBlock *BB = PN->getParent(); | ||||||||
| 1594 | if (!BB->canSplitPredecessors()) | ||||||||
| 1595 | return false; | ||||||||
| 1596 | // It's not impossible to split EHPad blocks, but if BlockColors already exist | ||||||||
| 1597 | // it require updating BlockColors for all offspring blocks accordingly. By | ||||||||
| 1598 | // skipping such corner case, we can make updating BlockColors after splitting | ||||||||
| 1599 | // predecessor fairly simple. | ||||||||
| 1600 | if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad()) | ||||||||
| 1601 | return false; | ||||||||
| 1602 | for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { | ||||||||
| 1603 | BasicBlock *BBPred = *PI; | ||||||||
| 1604 | if (isa<IndirectBrInst>(BBPred->getTerminator()) || | ||||||||
| 1605 | isa<CallBrInst>(BBPred->getTerminator())) | ||||||||
| 1606 | return false; | ||||||||
| 1607 | } | ||||||||
| 1608 | return true; | ||||||||
| 1609 | } | ||||||||
| 1610 | |||||||||
| 1611 | static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT, | ||||||||
| 1612 | LoopInfo *LI, const Loop *CurLoop, | ||||||||
| 1613 | LoopSafetyInfo *SafetyInfo, | ||||||||
| 1614 | MemorySSAUpdater *MSSAU) { | ||||||||
| 1615 | #ifndef NDEBUG1 | ||||||||
| 1616 | SmallVector<BasicBlock *, 32> ExitBlocks; | ||||||||
| 1617 | CurLoop->getUniqueExitBlocks(ExitBlocks); | ||||||||
| 1618 | SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(), | ||||||||
| 1619 | ExitBlocks.end()); | ||||||||
| 1620 | #endif | ||||||||
| 1621 | BasicBlock *ExitBB = PN->getParent(); | ||||||||
| 1622 | assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block.")((void)0); | ||||||||
| 1623 | |||||||||
| 1624 | // Split predecessors of the loop exit to make instructions in the loop are | ||||||||
| 1625 | // exposed to exit blocks through trivially replaceable PHIs while keeping the | ||||||||
| 1626 | // loop in the canonical form where each predecessor of each exit block should | ||||||||
| 1627 | // be contained within the loop. For example, this will convert the loop below | ||||||||
| 1628 | // from | ||||||||
| 1629 | // | ||||||||
| 1630 | // LB1: | ||||||||
| 1631 | // %v1 = | ||||||||
| 1632 | // br %LE, %LB2 | ||||||||
| 1633 | // LB2: | ||||||||
| 1634 | // %v2 = | ||||||||
| 1635 | // br %LE, %LB1 | ||||||||
| 1636 | // LE: | ||||||||
| 1637 | // %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable | ||||||||
| 1638 | // | ||||||||
| 1639 | // to | ||||||||
| 1640 | // | ||||||||
| 1641 | // LB1: | ||||||||
| 1642 | // %v1 = | ||||||||
| 1643 | // br %LE.split, %LB2 | ||||||||
| 1644 | // LB2: | ||||||||
| 1645 | // %v2 = | ||||||||
| 1646 | // br %LE.split2, %LB1 | ||||||||
| 1647 | // LE.split: | ||||||||
| 1648 | // %p1 = phi [%v1, %LB1] <-- trivially replaceable | ||||||||
| 1649 | // br %LE | ||||||||
| 1650 | // LE.split2: | ||||||||
| 1651 | // %p2 = phi [%v2, %LB2] <-- trivially replaceable | ||||||||
| 1652 | // br %LE | ||||||||
| 1653 | // LE: | ||||||||
| 1654 | // %p = phi [%p1, %LE.split], [%p2, %LE.split2] | ||||||||
| 1655 | // | ||||||||
| 1656 | const auto &BlockColors = SafetyInfo->getBlockColors(); | ||||||||
| 1657 | SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB)); | ||||||||
| 1658 | while (!PredBBs.empty()) { | ||||||||
| 1659 | BasicBlock *PredBB = *PredBBs.begin(); | ||||||||
| 1660 | assert(CurLoop->contains(PredBB) &&((void)0) | ||||||||
| 1661 | "Expect all predecessors are in the loop")((void)0); | ||||||||
| 1662 | if (PN->getBasicBlockIndex(PredBB) >= 0) { | ||||||||
| 1663 | BasicBlock *NewPred = SplitBlockPredecessors( | ||||||||
| 1664 | ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true); | ||||||||
| 1665 | // Since we do not allow splitting EH-block with BlockColors in | ||||||||
| 1666 | // canSplitPredecessors(), we can simply assign predecessor's color to | ||||||||
| 1667 | // the new block. | ||||||||
| 1668 | if (!BlockColors.empty()) | ||||||||
| 1669 | // Grab a reference to the ColorVector to be inserted before getting the | ||||||||
| 1670 | // reference to the vector we are copying because inserting the new | ||||||||
| 1671 | // element in BlockColors might cause the map to be reallocated. | ||||||||
| 1672 | SafetyInfo->copyColors(NewPred, PredBB); | ||||||||
| 1673 | } | ||||||||
| 1674 | PredBBs.remove(PredBB); | ||||||||
| 1675 | } | ||||||||
| 1676 | } | ||||||||
| 1677 | |||||||||
| 1678 | /// When an instruction is found to only be used outside of the loop, this | ||||||||
| 1679 | /// function moves it to the exit blocks and patches up SSA form as needed. | ||||||||
| 1680 | /// This method is guaranteed to remove the original instruction from its | ||||||||
| 1681 | /// position, and may either delete it or move it to outside of the loop. | ||||||||
| 1682 | /// | ||||||||
| 1683 | static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT, | ||||||||
| 1684 | BlockFrequencyInfo *BFI, const Loop *CurLoop, | ||||||||
| 1685 | ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU, | ||||||||
| 1686 | OptimizationRemarkEmitter *ORE) { | ||||||||
| 1687 | bool Changed = false; | ||||||||
| 1688 | LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n")do { } while (false); | ||||||||
| 1689 | |||||||||
| 1690 | // Iterate over users to be ready for actual sinking. Replace users via | ||||||||
| 1691 | // unreachable blocks with undef and make all user PHIs trivially replaceable. | ||||||||
| 1692 | SmallPtrSet<Instruction *, 8> VisitedUsers; | ||||||||
| 1693 | for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) { | ||||||||
| 1694 | auto *User = cast<Instruction>(*UI); | ||||||||
| 1695 | Use &U = UI.getUse(); | ||||||||
| 1696 | ++UI; | ||||||||
| 1697 | |||||||||
| 1698 | if (VisitedUsers.count(User) || CurLoop->contains(User)) | ||||||||
| 1699 | continue; | ||||||||
| 1700 | |||||||||
| 1701 | if (!DT->isReachableFromEntry(User->getParent())) { | ||||||||
| 1702 | U = UndefValue::get(I.getType()); | ||||||||
| 1703 | Changed = true; | ||||||||
| 1704 | continue; | ||||||||
| 1705 | } | ||||||||
| 1706 | |||||||||
| 1707 | // The user must be a PHI node. | ||||||||
| 1708 | PHINode *PN = cast<PHINode>(User); | ||||||||
| 1709 | |||||||||
| 1710 | // Surprisingly, instructions can be used outside of loops without any | ||||||||
| 1711 | // exits. This can only happen in PHI nodes if the incoming block is | ||||||||
| 1712 | // unreachable. | ||||||||
| 1713 | BasicBlock *BB = PN->getIncomingBlock(U); | ||||||||
| 1714 | if (!DT->isReachableFromEntry(BB)) { | ||||||||
| 1715 | U = UndefValue::get(I.getType()); | ||||||||
| 1716 | Changed = true; | ||||||||
| 1717 | continue; | ||||||||
| 1718 | } | ||||||||
| 1719 | |||||||||
| 1720 | VisitedUsers.insert(PN); | ||||||||
| 1721 | if (isTriviallyReplaceablePHI(*PN, I)) | ||||||||
| 1722 | continue; | ||||||||
| 1723 | |||||||||
| 1724 | if (!canSplitPredecessors(PN, SafetyInfo)) | ||||||||
| 1725 | return Changed; | ||||||||
| 1726 | |||||||||
| 1727 | // Split predecessors of the PHI so that we can make users trivially | ||||||||
| 1728 | // replaceable. | ||||||||
| 1729 | splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, MSSAU); | ||||||||
| 1730 | |||||||||
| 1731 | // Should rebuild the iterators, as they may be invalidated by | ||||||||
| 1732 | // splitPredecessorsOfLoopExit(). | ||||||||
| 1733 | UI = I.user_begin(); | ||||||||
| 1734 | UE = I.user_end(); | ||||||||
| 1735 | } | ||||||||
| 1736 | |||||||||
| 1737 | if (VisitedUsers.empty()) | ||||||||
| 1738 | return Changed; | ||||||||
| 1739 | |||||||||
| 1740 | ORE->emit([&]() { | ||||||||
| 1741 | return OptimizationRemark(DEBUG_TYPE"licm", "InstSunk", &I) | ||||||||
| 1742 | << "sinking " << ore::NV("Inst", &I); | ||||||||
| 1743 | }); | ||||||||
| 1744 | if (isa<LoadInst>(I)) | ||||||||
| 1745 | ++NumMovedLoads; | ||||||||
| 1746 | else if (isa<CallInst>(I)) | ||||||||
| 1747 | ++NumMovedCalls; | ||||||||
| 1748 | ++NumSunk; | ||||||||
| 1749 | |||||||||
| 1750 | #ifndef NDEBUG1 | ||||||||
| 1751 | SmallVector<BasicBlock *, 32> ExitBlocks; | ||||||||
| 1752 | CurLoop->getUniqueExitBlocks(ExitBlocks); | ||||||||
| 1753 | SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(), | ||||||||
| 1754 | ExitBlocks.end()); | ||||||||
| 1755 | #endif | ||||||||
| 1756 | |||||||||
| 1757 | // Clones of this instruction. Don't create more than one per exit block! | ||||||||
| 1758 | SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies; | ||||||||
| 1759 | |||||||||
| 1760 | // If this instruction is only used outside of the loop, then all users are | ||||||||
| 1761 | // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of | ||||||||
| 1762 | // the instruction. | ||||||||
| 1763 | // First check if I is worth sinking for all uses. Sink only when it is worth | ||||||||
| 1764 | // across all uses. | ||||||||
| 1765 | SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end()); | ||||||||
| 1766 | SmallVector<PHINode *, 8> ExitPNs; | ||||||||
| 1767 | for (auto *UI : Users) { | ||||||||
| 1768 | auto *User = cast<Instruction>(UI); | ||||||||
| 1769 | |||||||||
| 1770 | if (CurLoop->contains(User)) | ||||||||
| 1771 | continue; | ||||||||
| 1772 | |||||||||
| 1773 | PHINode *PN = cast<PHINode>(User); | ||||||||
| 1774 | assert(ExitBlockSet.count(PN->getParent()) &&((void)0) | ||||||||
| 1775 | "The LCSSA PHI is not in an exit block!")((void)0); | ||||||||
| 1776 | if (!worthSinkOrHoistInst(I, PN->getParent(), ORE, BFI)) { | ||||||||
| 1777 | return Changed; | ||||||||
| 1778 | } | ||||||||
| 1779 | |||||||||
| 1780 | ExitPNs.push_back(PN); | ||||||||
| 1781 | } | ||||||||
| 1782 | |||||||||
| 1783 | for (auto *PN : ExitPNs) { | ||||||||
| 1784 | |||||||||
| 1785 | // The PHI must be trivially replaceable. | ||||||||
| 1786 | Instruction *New = sinkThroughTriviallyReplaceablePHI( | ||||||||
| 1787 | PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU); | ||||||||
| 1788 | PN->replaceAllUsesWith(New); | ||||||||
| 1789 | eraseInstruction(*PN, *SafetyInfo, nullptr, nullptr); | ||||||||
| 1790 | Changed = true; | ||||||||
| 1791 | } | ||||||||
| 1792 | return Changed; | ||||||||
| 1793 | } | ||||||||
| 1794 | |||||||||
| 1795 | /// When an instruction is found to only use loop invariant operands that | ||||||||
| 1796 | /// is safe to hoist, this instruction is called to do the dirty work. | ||||||||
| 1797 | /// | ||||||||
| 1798 | static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop, | ||||||||
| 1799 | BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo, | ||||||||
| 1800 | MemorySSAUpdater *MSSAU, ScalarEvolution *SE, | ||||||||
| 1801 | OptimizationRemarkEmitter *ORE) { | ||||||||
| 1802 | LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getNameOrAsOperand() << ": "do { } while (false) | ||||||||
| 1803 | << I << "\n")do { } while (false); | ||||||||
| 1804 | ORE->emit([&]() { | ||||||||
| 1805 | return OptimizationRemark(DEBUG_TYPE"licm", "Hoisted", &I) << "hoisting " | ||||||||
| 1806 | << ore::NV("Inst", &I); | ||||||||
| 1807 | }); | ||||||||
| 1808 | |||||||||
| 1809 | // Metadata can be dependent on conditions we are hoisting above. | ||||||||
| 1810 | // Conservatively strip all metadata on the instruction unless we were | ||||||||
| 1811 | // guaranteed to execute I if we entered the loop, in which case the metadata | ||||||||
| 1812 | // is valid in the loop preheader. | ||||||||
| 1813 | // Similarly, If I is a call and it is not guaranteed to execute in the loop, | ||||||||
| 1814 | // then moving to the preheader means we should strip attributes on the call | ||||||||
| 1815 | // that can cause UB since we may be hoisting above conditions that allowed | ||||||||
| 1816 | // inferring those attributes. They may not be valid at the preheader. | ||||||||
| 1817 | if ((I.hasMetadataOtherThanDebugLoc() || isa<CallInst>(I)) && | ||||||||
| 1818 | // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning | ||||||||
| 1819 | // time in isGuaranteedToExecute if we don't actually have anything to | ||||||||
| 1820 | // drop. It is a compile time optimization, not required for correctness. | ||||||||
| 1821 | !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop)) | ||||||||
| 1822 | I.dropUndefImplyingAttrsAndUnknownMetadata(); | ||||||||
| 1823 | |||||||||
| 1824 | if (isa<PHINode>(I)) | ||||||||
| 1825 | // Move the new node to the end of the phi list in the destination block. | ||||||||
| 1826 | moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU, SE); | ||||||||
| 1827 | else | ||||||||
| 1828 | // Move the new node to the destination block, before its terminator. | ||||||||
| 1829 | moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU, SE); | ||||||||
| 1830 | |||||||||
| 1831 | I.updateLocationAfterHoist(); | ||||||||
| 1832 | |||||||||
| 1833 | if (isa<LoadInst>(I)) | ||||||||
| 1834 | ++NumMovedLoads; | ||||||||
| 1835 | else if (isa<CallInst>(I)) | ||||||||
| 1836 | ++NumMovedCalls; | ||||||||
| 1837 | ++NumHoisted; | ||||||||
| 1838 | } | ||||||||
| 1839 | |||||||||
| 1840 | /// Only sink or hoist an instruction if it is not a trapping instruction, | ||||||||
| 1841 | /// or if the instruction is known not to trap when moved to the preheader. | ||||||||
| 1842 | /// or if it is a trapping instruction and is guaranteed to execute. | ||||||||
| 1843 | static bool isSafeToExecuteUnconditionally(Instruction &Inst, | ||||||||
| 1844 | const DominatorTree *DT, | ||||||||
| 1845 | const TargetLibraryInfo *TLI, | ||||||||
| 1846 | const Loop *CurLoop, | ||||||||
| 1847 | const LoopSafetyInfo *SafetyInfo, | ||||||||
| 1848 | OptimizationRemarkEmitter *ORE, | ||||||||
| 1849 | const Instruction *CtxI) { | ||||||||
| 1850 | if (isSafeToSpeculativelyExecute(&Inst, CtxI, DT, TLI)) | ||||||||
| 1851 | return true; | ||||||||
| 1852 | |||||||||
| 1853 | bool GuaranteedToExecute = | ||||||||
| 1854 | SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop); | ||||||||
| 1855 | |||||||||
| 1856 | if (!GuaranteedToExecute) { | ||||||||
| 1857 | auto *LI = dyn_cast<LoadInst>(&Inst); | ||||||||
| 1858 | if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand())) | ||||||||
| 1859 | ORE->emit([&]() { | ||||||||
| 1860 | return OptimizationRemarkMissed( | ||||||||
| 1861 | DEBUG_TYPE"licm", "LoadWithLoopInvariantAddressCondExecuted", LI) | ||||||||
| 1862 | << "failed to hoist load with loop-invariant address " | ||||||||
| 1863 | "because load is conditionally executed"; | ||||||||
| 1864 | }); | ||||||||
| 1865 | } | ||||||||
| 1866 | |||||||||
| 1867 | return GuaranteedToExecute; | ||||||||
| 1868 | } | ||||||||
| 1869 | |||||||||
| 1870 | namespace { | ||||||||
| 1871 | class LoopPromoter : public LoadAndStorePromoter { | ||||||||
| 1872 | Value *SomePtr; // Designated pointer to store to. | ||||||||
| 1873 | const SmallSetVector<Value *, 8> &PointerMustAliases; | ||||||||
| 1874 | SmallVectorImpl<BasicBlock *> &LoopExitBlocks; | ||||||||
| 1875 | SmallVectorImpl<Instruction *> &LoopInsertPts; | ||||||||
| 1876 | SmallVectorImpl<MemoryAccess *> &MSSAInsertPts; | ||||||||
| 1877 | PredIteratorCache &PredCache; | ||||||||
| 1878 | AliasSetTracker *AST; | ||||||||
| 1879 | MemorySSAUpdater *MSSAU; | ||||||||
| 1880 | LoopInfo &LI; | ||||||||
| 1881 | DebugLoc DL; | ||||||||
| 1882 | int Alignment; | ||||||||
| 1883 | bool UnorderedAtomic; | ||||||||
| 1884 | AAMDNodes AATags; | ||||||||
| 1885 | ICFLoopSafetyInfo &SafetyInfo; | ||||||||
| 1886 | |||||||||
| 1887 | // We're about to add a use of V in a loop exit block. Insert an LCSSA phi | ||||||||
| 1888 | // (if legal) if doing so would add an out-of-loop use to an instruction | ||||||||
| 1889 | // defined in-loop. | ||||||||
| 1890 | Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const { | ||||||||
| 1891 | if (!LI.wouldBeOutOfLoopUseRequiringLCSSA(V, BB)) | ||||||||
| 1892 | return V; | ||||||||
| 1893 | |||||||||
| 1894 | Instruction *I = cast<Instruction>(V); | ||||||||
| 1895 | // We need to create an LCSSA PHI node for the incoming value and | ||||||||
| 1896 | // store that. | ||||||||
| 1897 | PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB), | ||||||||
| 1898 | I->getName() + ".lcssa", &BB->front()); | ||||||||
| 1899 | for (BasicBlock *Pred : PredCache.get(BB)) | ||||||||
| 1900 | PN->addIncoming(I, Pred); | ||||||||
| 1901 | return PN; | ||||||||
| 1902 | } | ||||||||
| 1903 | |||||||||
| 1904 | public: | ||||||||
| 1905 | LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S, | ||||||||
| 1906 | const SmallSetVector<Value *, 8> &PMA, | ||||||||
| 1907 | SmallVectorImpl<BasicBlock *> &LEB, | ||||||||
| 1908 | SmallVectorImpl<Instruction *> &LIP, | ||||||||
| 1909 | SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC, | ||||||||
| 1910 | AliasSetTracker *ast, MemorySSAUpdater *MSSAU, LoopInfo &li, | ||||||||
| 1911 | DebugLoc dl, int alignment, bool UnorderedAtomic, | ||||||||
| 1912 | const AAMDNodes &AATags, ICFLoopSafetyInfo &SafetyInfo) | ||||||||
| 1913 | : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA), | ||||||||
| 1914 | LoopExitBlocks(LEB), LoopInsertPts(LIP), MSSAInsertPts(MSSAIP), | ||||||||
| 1915 | PredCache(PIC), AST(ast), MSSAU(MSSAU), LI(li), DL(std::move(dl)), | ||||||||
| 1916 | Alignment(alignment), UnorderedAtomic(UnorderedAtomic), AATags(AATags), | ||||||||
| 1917 | SafetyInfo(SafetyInfo) {} | ||||||||
| 1918 | |||||||||
| 1919 | bool isInstInList(Instruction *I, | ||||||||
| 1920 | const SmallVectorImpl<Instruction *> &) const override { | ||||||||
| 1921 | Value *Ptr; | ||||||||
| 1922 | if (LoadInst *LI = dyn_cast<LoadInst>(I)) | ||||||||
| 1923 | Ptr = LI->getOperand(0); | ||||||||
| 1924 | else | ||||||||
| 1925 | Ptr = cast<StoreInst>(I)->getPointerOperand(); | ||||||||
| 1926 | return PointerMustAliases.count(Ptr); | ||||||||
| 1927 | } | ||||||||
| 1928 | |||||||||
| 1929 | void doExtraRewritesBeforeFinalDeletion() override { | ||||||||
| 1930 | // Insert stores after in the loop exit blocks. Each exit block gets a | ||||||||
| 1931 | // store of the live-out values that feed them. Since we've already told | ||||||||
| 1932 | // the SSA updater about the defs in the loop and the preheader | ||||||||
| 1933 | // definition, it is all set and we can start using it. | ||||||||
| 1934 | for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) { | ||||||||
| 1935 | BasicBlock *ExitBlock = LoopExitBlocks[i]; | ||||||||
| 1936 | Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock); | ||||||||
| 1937 | LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock); | ||||||||
| 1938 | Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock); | ||||||||
| 1939 | Instruction *InsertPos = LoopInsertPts[i]; | ||||||||
| 1940 | StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos); | ||||||||
| 1941 | if (UnorderedAtomic) | ||||||||
| 1942 | NewSI->setOrdering(AtomicOrdering::Unordered); | ||||||||
| 1943 | NewSI->setAlignment(Align(Alignment)); | ||||||||
| 1944 | NewSI->setDebugLoc(DL); | ||||||||
| 1945 | if (AATags) | ||||||||
| 1946 | NewSI->setAAMetadata(AATags); | ||||||||
| 1947 | |||||||||
| 1948 | if (MSSAU) { | ||||||||
| 1949 | MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i]; | ||||||||
| 1950 | MemoryAccess *NewMemAcc; | ||||||||
| 1951 | if (!MSSAInsertPoint) { | ||||||||
| 1952 | NewMemAcc = MSSAU->createMemoryAccessInBB( | ||||||||
| 1953 | NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning); | ||||||||
| 1954 | } else { | ||||||||
| 1955 | NewMemAcc = | ||||||||
| 1956 | MSSAU->createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint); | ||||||||
| 1957 | } | ||||||||
| 1958 | MSSAInsertPts[i] = NewMemAcc; | ||||||||
| 1959 | MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true); | ||||||||
| 1960 | // FIXME: true for safety, false may still be correct. | ||||||||
| 1961 | } | ||||||||
| 1962 | } | ||||||||
| 1963 | } | ||||||||
| 1964 | |||||||||
| 1965 | void replaceLoadWithValue(LoadInst *LI, Value *V) const override { | ||||||||
| 1966 | // Update alias analysis. | ||||||||
| 1967 | if (AST) | ||||||||
| 1968 | AST->copyValue(LI, V); | ||||||||
| 1969 | } | ||||||||
| 1970 | void instructionDeleted(Instruction *I) const override { | ||||||||
| 1971 | SafetyInfo.removeInstruction(I); | ||||||||
| 1972 | if (AST) | ||||||||
| 1973 | AST->deleteValue(I); | ||||||||
| 1974 | if (MSSAU) | ||||||||
| 1975 | MSSAU->removeMemoryAccess(I); | ||||||||
| 1976 | } | ||||||||
| 1977 | }; | ||||||||
| 1978 | |||||||||
| 1979 | bool isNotCapturedBeforeOrInLoop(const Value *V, const Loop *L, | ||||||||
| 1980 | DominatorTree *DT) { | ||||||||
| 1981 | // We can perform the captured-before check against any instruction in the | ||||||||
| 1982 | // loop header, as the loop header is reachable from any instruction inside | ||||||||
| 1983 | // the loop. | ||||||||
| 1984 | // TODO: ReturnCaptures=true shouldn't be necessary here. | ||||||||
| 1985 | return !PointerMayBeCapturedBefore(V, /* ReturnCaptures */ true, | ||||||||
| 1986 | /* StoreCaptures */ true, | ||||||||
| 1987 | L->getHeader()->getTerminator(), DT); | ||||||||
| 1988 | } | ||||||||
| 1989 | |||||||||
| 1990 | /// Return true iff we can prove that a caller of this function can not inspect | ||||||||
| 1991 | /// the contents of the provided object in a well defined program. | ||||||||
| 1992 | bool isKnownNonEscaping(Value *Object, const Loop *L, | ||||||||
| 1993 | const TargetLibraryInfo *TLI, DominatorTree *DT) { | ||||||||
| 1994 | if (isa<AllocaInst>(Object)) | ||||||||
| 1995 | // Since the alloca goes out of scope, we know the caller can't retain a | ||||||||
| 1996 | // reference to it and be well defined. Thus, we don't need to check for | ||||||||
| 1997 | // capture. | ||||||||
| 1998 | return true; | ||||||||
| 1999 | |||||||||
| 2000 | // For all other objects we need to know that the caller can't possibly | ||||||||
| 2001 | // have gotten a reference to the object. There are two components of | ||||||||
| 2002 | // that: | ||||||||
| 2003 | // 1) Object can't be escaped by this function. This is what | ||||||||
| 2004 | // PointerMayBeCaptured checks. | ||||||||
| 2005 | // 2) Object can't have been captured at definition site. For this, we | ||||||||
| 2006 | // need to know the return value is noalias. At the moment, we use a | ||||||||
| 2007 | // weaker condition and handle only AllocLikeFunctions (which are | ||||||||
| 2008 | // known to be noalias). TODO | ||||||||
| 2009 | return isAllocLikeFn(Object, TLI) && | ||||||||
| 2010 | isNotCapturedBeforeOrInLoop(Object, L, DT); | ||||||||
| 2011 | } | ||||||||
| 2012 | |||||||||
| 2013 | } // namespace | ||||||||
| 2014 | |||||||||
| 2015 | /// Try to promote memory values to scalars by sinking stores out of the | ||||||||
| 2016 | /// loop and moving loads to before the loop. We do this by looping over | ||||||||
| 2017 | /// the stores in the loop, looking for stores to Must pointers which are | ||||||||
| 2018 | /// loop invariant. | ||||||||
| 2019 | /// | ||||||||
| 2020 | bool llvm::promoteLoopAccessesToScalars( | ||||||||
| 2021 | const SmallSetVector<Value *, 8> &PointerMustAliases, | ||||||||
| 2022 | SmallVectorImpl<BasicBlock *> &ExitBlocks, | ||||||||
| 2023 | SmallVectorImpl<Instruction *> &InsertPts, | ||||||||
| 2024 | SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC, | ||||||||
| 2025 | LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, | ||||||||
| 2026 | Loop *CurLoop, AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU, | ||||||||
| 2027 | ICFLoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE) { | ||||||||
| 2028 | // Verify inputs. | ||||||||
| 2029 | assert(LI != nullptr && DT != nullptr && CurLoop != nullptr &&((void)0) | ||||||||
| 2030 | SafetyInfo != nullptr &&((void)0) | ||||||||
| 2031 | "Unexpected Input to promoteLoopAccessesToScalars")((void)0); | ||||||||
| 2032 | |||||||||
| 2033 | Value *SomePtr = *PointerMustAliases.begin(); | ||||||||
| 2034 | BasicBlock *Preheader = CurLoop->getLoopPreheader(); | ||||||||
| 2035 | |||||||||
| 2036 | // It is not safe to promote a load/store from the loop if the load/store is | ||||||||
| 2037 | // conditional. For example, turning: | ||||||||
| 2038 | // | ||||||||
| 2039 | // for () { if (c) *P += 1; } | ||||||||
| 2040 | // | ||||||||
| 2041 | // into: | ||||||||
| 2042 | // | ||||||||
| 2043 | // tmp = *P; for () { if (c) tmp +=1; } *P = tmp; | ||||||||
| 2044 | // | ||||||||
| 2045 | // is not safe, because *P may only be valid to access if 'c' is true. | ||||||||
| 2046 | // | ||||||||
| 2047 | // The safety property divides into two parts: | ||||||||
| 2048 | // p1) The memory may not be dereferenceable on entry to the loop. In this | ||||||||
| 2049 | // case, we can't insert the required load in the preheader. | ||||||||
| 2050 | // p2) The memory model does not allow us to insert a store along any dynamic | ||||||||
| 2051 | // path which did not originally have one. | ||||||||
| 2052 | // | ||||||||
| 2053 | // If at least one store is guaranteed to execute, both properties are | ||||||||
| 2054 | // satisfied, and promotion is legal. | ||||||||
| 2055 | // | ||||||||
| 2056 | // This, however, is not a necessary condition. Even if no store/load is | ||||||||
| 2057 | // guaranteed to execute, we can still establish these properties. | ||||||||
| 2058 | // We can establish (p1) by proving that hoisting the load into the preheader | ||||||||
| 2059 | // is safe (i.e. proving dereferenceability on all paths through the loop). We | ||||||||
| 2060 | // can use any access within the alias set to prove dereferenceability, | ||||||||
| 2061 | // since they're all must alias. | ||||||||
| 2062 | // | ||||||||
| 2063 | // There are two ways establish (p2): | ||||||||
| 2064 | // a) Prove the location is thread-local. In this case the memory model | ||||||||
| 2065 | // requirement does not apply, and stores are safe to insert. | ||||||||
| 2066 | // b) Prove a store dominates every exit block. In this case, if an exit | ||||||||
| 2067 | // blocks is reached, the original dynamic path would have taken us through | ||||||||
| 2068 | // the store, so inserting a store into the exit block is safe. Note that this | ||||||||
| 2069 | // is different from the store being guaranteed to execute. For instance, | ||||||||
| 2070 | // if an exception is thrown on the first iteration of the loop, the original | ||||||||
| 2071 | // store is never executed, but the exit blocks are not executed either. | ||||||||
| 2072 | |||||||||
| 2073 | bool DereferenceableInPH = false; | ||||||||
| 2074 | bool SafeToInsertStore = false; | ||||||||
| 2075 | |||||||||
| 2076 | SmallVector<Instruction *, 64> LoopUses; | ||||||||
| 2077 | |||||||||
| 2078 | // We start with an alignment of one and try to find instructions that allow | ||||||||
| 2079 | // us to prove better alignment. | ||||||||
| 2080 | Align Alignment; | ||||||||
| 2081 | // Keep track of which types of access we see | ||||||||
| 2082 | bool SawUnorderedAtomic = false; | ||||||||
| 2083 | bool SawNotAtomic = false; | ||||||||
| 2084 | AAMDNodes AATags; | ||||||||
| 2085 | |||||||||
| 2086 | const DataLayout &MDL = Preheader->getModule()->getDataLayout(); | ||||||||
| 2087 | |||||||||
| 2088 | bool IsKnownThreadLocalObject = false; | ||||||||
| 2089 | if (SafetyInfo->anyBlockMayThrow()) { | ||||||||
| 2090 | // If a loop can throw, we have to insert a store along each unwind edge. | ||||||||
| 2091 | // That said, we can't actually make the unwind edge explicit. Therefore, | ||||||||
| 2092 | // we have to prove that the store is dead along the unwind edge. We do | ||||||||
| 2093 | // this by proving that the caller can't have a reference to the object | ||||||||
| 2094 | // after return and thus can't possibly load from the object. | ||||||||
| 2095 | Value *Object = getUnderlyingObject(SomePtr); | ||||||||
| 2096 | if (!isKnownNonEscaping(Object, CurLoop, TLI, DT)) | ||||||||
| 2097 | return false; | ||||||||
| 2098 | // Subtlety: Alloca's aren't visible to callers, but *are* potentially | ||||||||
| 2099 | // visible to other threads if captured and used during their lifetimes. | ||||||||
| 2100 | IsKnownThreadLocalObject = !isa<AllocaInst>(Object); | ||||||||
| 2101 | } | ||||||||
| 2102 | |||||||||
| 2103 | // Check that all of the pointers in the alias set have the same type. We | ||||||||
| 2104 | // cannot (yet) promote a memory location that is loaded and stored in | ||||||||
| 2105 | // different sizes. While we are at it, collect alignment and AA info. | ||||||||
| 2106 | for (Value *ASIV : PointerMustAliases) { | ||||||||
| 2107 | // Check that all of the pointers in the alias set have the same type. We | ||||||||
| 2108 | // cannot (yet) promote a memory location that is loaded and stored in | ||||||||
| 2109 | // different sizes. | ||||||||
| 2110 | if (SomePtr->getType() != ASIV->getType()) | ||||||||
| 2111 | return false; | ||||||||
| 2112 | |||||||||
| 2113 | for (User *U : ASIV->users()) { | ||||||||
| 2114 | // Ignore instructions that are outside the loop. | ||||||||
| 2115 | Instruction *UI = dyn_cast<Instruction>(U); | ||||||||
| 2116 | if (!UI || !CurLoop->contains(UI)) | ||||||||
| 2117 | continue; | ||||||||
| 2118 | |||||||||
| 2119 | // If there is an non-load/store instruction in the loop, we can't promote | ||||||||
| 2120 | // it. | ||||||||
| 2121 | if (LoadInst *Load = dyn_cast<LoadInst>(UI)) { | ||||||||
| 2122 | if (!Load->isUnordered()) | ||||||||
| 2123 | return false; | ||||||||
| 2124 | |||||||||
| 2125 | SawUnorderedAtomic |= Load->isAtomic(); | ||||||||
| 2126 | SawNotAtomic |= !Load->isAtomic(); | ||||||||
| 2127 | |||||||||
| 2128 | Align InstAlignment = Load->getAlign(); | ||||||||
| 2129 | |||||||||
| 2130 | // Note that proving a load safe to speculate requires proving | ||||||||
| 2131 | // sufficient alignment at the target location. Proving it guaranteed | ||||||||
| 2132 | // to execute does as well. Thus we can increase our guaranteed | ||||||||
| 2133 | // alignment as well. | ||||||||
| 2134 | if (!DereferenceableInPH || (InstAlignment > Alignment)) | ||||||||
| 2135 | if (isSafeToExecuteUnconditionally(*Load, DT, TLI, CurLoop, | ||||||||
| 2136 | SafetyInfo, ORE, | ||||||||
| 2137 | Preheader->getTerminator())) { | ||||||||
| 2138 | DereferenceableInPH = true; | ||||||||
| 2139 | Alignment = std::max(Alignment, InstAlignment); | ||||||||
| 2140 | } | ||||||||
| 2141 | } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) { | ||||||||
| 2142 | // Stores *of* the pointer are not interesting, only stores *to* the | ||||||||
| 2143 | // pointer. | ||||||||
| 2144 | if (UI->getOperand(1) != ASIV) | ||||||||
| 2145 | continue; | ||||||||
| 2146 | if (!Store->isUnordered()) | ||||||||
| 2147 | return false; | ||||||||
| 2148 | |||||||||
| 2149 | SawUnorderedAtomic |= Store->isAtomic(); | ||||||||
| 2150 | SawNotAtomic |= !Store->isAtomic(); | ||||||||
| 2151 | |||||||||
| 2152 | // If the store is guaranteed to execute, both properties are satisfied. | ||||||||
| 2153 | // We may want to check if a store is guaranteed to execute even if we | ||||||||
| 2154 | // already know that promotion is safe, since it may have higher | ||||||||
| 2155 | // alignment than any other guaranteed stores, in which case we can | ||||||||
| 2156 | // raise the alignment on the promoted store. | ||||||||
| 2157 | Align InstAlignment = Store->getAlign(); | ||||||||
| 2158 | |||||||||
| 2159 | if (!DereferenceableInPH || !SafeToInsertStore || | ||||||||
| 2160 | (InstAlignment > Alignment)) { | ||||||||
| 2161 | if (SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop)) { | ||||||||
| 2162 | DereferenceableInPH = true; | ||||||||
| 2163 | SafeToInsertStore = true; | ||||||||
| 2164 | Alignment = std::max(Alignment, InstAlignment); | ||||||||
| 2165 | } | ||||||||
| 2166 | } | ||||||||
| 2167 | |||||||||
| 2168 | // If a store dominates all exit blocks, it is safe to sink. | ||||||||
| 2169 | // As explained above, if an exit block was executed, a dominating | ||||||||
| 2170 | // store must have been executed at least once, so we are not | ||||||||
| 2171 | // introducing stores on paths that did not have them. | ||||||||
| 2172 | // Note that this only looks at explicit exit blocks. If we ever | ||||||||
| 2173 | // start sinking stores into unwind edges (see above), this will break. | ||||||||
| 2174 | if (!SafeToInsertStore) | ||||||||
| 2175 | SafeToInsertStore = llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) { | ||||||||
| 2176 | return DT->dominates(Store->getParent(), Exit); | ||||||||
| 2177 | }); | ||||||||
| 2178 | |||||||||
| 2179 | // If the store is not guaranteed to execute, we may still get | ||||||||
| 2180 | // deref info through it. | ||||||||
| 2181 | if (!DereferenceableInPH) { | ||||||||
| 2182 | DereferenceableInPH = isDereferenceableAndAlignedPointer( | ||||||||
| 2183 | Store->getPointerOperand(), Store->getValueOperand()->getType(), | ||||||||
| 2184 | Store->getAlign(), MDL, Preheader->getTerminator(), DT, TLI); | ||||||||
| 2185 | } | ||||||||
| 2186 | } else | ||||||||
| 2187 | return false; // Not a load or store. | ||||||||
| 2188 | |||||||||
| 2189 | // Merge the AA tags. | ||||||||
| 2190 | if (LoopUses.empty()) { | ||||||||
| 2191 | // On the first load/store, just take its AA tags. | ||||||||
| 2192 | UI->getAAMetadata(AATags); | ||||||||
| 2193 | } else if (AATags) { | ||||||||
| 2194 | UI->getAAMetadata(AATags, /* Merge = */ true); | ||||||||
| 2195 | } | ||||||||
| 2196 | |||||||||
| 2197 | LoopUses.push_back(UI); | ||||||||
| 2198 | } | ||||||||
| 2199 | } | ||||||||
| 2200 | |||||||||
| 2201 | // If we found both an unordered atomic instruction and a non-atomic memory | ||||||||
| 2202 | // access, bail. We can't blindly promote non-atomic to atomic since we | ||||||||
| 2203 | // might not be able to lower the result. We can't downgrade since that | ||||||||
| 2204 | // would violate memory model. Also, align 0 is an error for atomics. | ||||||||
| 2205 | if (SawUnorderedAtomic && SawNotAtomic) | ||||||||
| 2206 | return false; | ||||||||
| 2207 | |||||||||
| 2208 | // If we're inserting an atomic load in the preheader, we must be able to | ||||||||
| 2209 | // lower it. We're only guaranteed to be able to lower naturally aligned | ||||||||
| 2210 | // atomics. | ||||||||
| 2211 | auto *SomePtrElemType = SomePtr->getType()->getPointerElementType(); | ||||||||
| 2212 | if (SawUnorderedAtomic && | ||||||||
| 2213 | Alignment < MDL.getTypeStoreSize(SomePtrElemType)) | ||||||||
| 2214 | return false; | ||||||||
| 2215 | |||||||||
| 2216 | // If we couldn't prove we can hoist the load, bail. | ||||||||
| 2217 | if (!DereferenceableInPH) | ||||||||
| 2218 | return false; | ||||||||
| 2219 | |||||||||
| 2220 | // We know we can hoist the load, but don't have a guaranteed store. | ||||||||
| 2221 | // Check whether the location is thread-local. If it is, then we can insert | ||||||||
| 2222 | // stores along paths which originally didn't have them without violating the | ||||||||
| 2223 | // memory model. | ||||||||
| 2224 | if (!SafeToInsertStore) { | ||||||||
| 2225 | if (IsKnownThreadLocalObject) | ||||||||
| 2226 | SafeToInsertStore = true; | ||||||||
| 2227 | else { | ||||||||
| 2228 | Value *Object = getUnderlyingObject(SomePtr); | ||||||||
| 2229 | SafeToInsertStore = | ||||||||
| 2230 | (isAllocLikeFn(Object, TLI) || isa<AllocaInst>(Object)) && | ||||||||
| 2231 | isNotCapturedBeforeOrInLoop(Object, CurLoop, DT); | ||||||||
| 2232 | } | ||||||||
| 2233 | } | ||||||||
| 2234 | |||||||||
| 2235 | // If we've still failed to prove we can sink the store, give up. | ||||||||
| 2236 | if (!SafeToInsertStore) | ||||||||
| 2237 | return false; | ||||||||
| 2238 | |||||||||
| 2239 | // Otherwise, this is safe to promote, lets do it! | ||||||||
| 2240 | LLVM_DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " << *SomePtrdo { } while (false) | ||||||||
| 2241 | << '\n')do { } while (false); | ||||||||
| 2242 | ORE->emit([&]() { | ||||||||
| 2243 | return OptimizationRemark(DEBUG_TYPE"licm", "PromoteLoopAccessesToScalar", | ||||||||
| 2244 | LoopUses[0]) | ||||||||
| 2245 | << "Moving accesses to memory location out of the loop"; | ||||||||
| 2246 | }); | ||||||||
| 2247 | ++NumPromoted; | ||||||||
| 2248 | |||||||||
| 2249 | // Look at all the loop uses, and try to merge their locations. | ||||||||
| 2250 | std::vector<const DILocation *> LoopUsesLocs; | ||||||||
| 2251 | for (auto U : LoopUses) | ||||||||
| 2252 | LoopUsesLocs.push_back(U->getDebugLoc().get()); | ||||||||
| 2253 | auto DL = DebugLoc(DILocation::getMergedLocations(LoopUsesLocs)); | ||||||||
| 2254 | |||||||||
| 2255 | // We use the SSAUpdater interface to insert phi nodes as required. | ||||||||
| 2256 | SmallVector<PHINode *, 16> NewPHIs; | ||||||||
| 2257 | SSAUpdater SSA(&NewPHIs); | ||||||||
| 2258 | LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks, | ||||||||
| 2259 | InsertPts, MSSAInsertPts, PIC, CurAST, MSSAU, *LI, DL, | ||||||||
| 2260 | Alignment.value(), SawUnorderedAtomic, AATags, | ||||||||
| 2261 | *SafetyInfo); | ||||||||
| 2262 | |||||||||
| 2263 | // Set up the preheader to have a definition of the value. It is the live-out | ||||||||
| 2264 | // value from the preheader that uses in the loop will use. | ||||||||
| 2265 | LoadInst *PreheaderLoad = new LoadInst( | ||||||||
| 2266 | SomePtr->getType()->getPointerElementType(), SomePtr, | ||||||||
| 2267 | SomePtr->getName() + ".promoted", Preheader->getTerminator()); | ||||||||
| 2268 | if (SawUnorderedAtomic) | ||||||||
| 2269 | PreheaderLoad->setOrdering(AtomicOrdering::Unordered); | ||||||||
| 2270 | PreheaderLoad->setAlignment(Alignment); | ||||||||
| 2271 | PreheaderLoad->setDebugLoc(DebugLoc()); | ||||||||
| 2272 | if (AATags) | ||||||||
| 2273 | PreheaderLoad->setAAMetadata(AATags); | ||||||||
| 2274 | SSA.AddAvailableValue(Preheader, PreheaderLoad); | ||||||||
| 2275 | |||||||||
| 2276 | if (MSSAU) { | ||||||||
| 2277 | MemoryAccess *PreheaderLoadMemoryAccess = MSSAU->createMemoryAccessInBB( | ||||||||
| 2278 | PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End); | ||||||||
| 2279 | MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess); | ||||||||
| 2280 | MSSAU->insertUse(NewMemUse, /*RenameUses=*/true); | ||||||||
| 2281 | } | ||||||||
| 2282 | |||||||||
| 2283 | if (MSSAU && VerifyMemorySSA) | ||||||||
| 2284 | MSSAU->getMemorySSA()->verifyMemorySSA(); | ||||||||
| 2285 | // Rewrite all the loads in the loop and remember all the definitions from | ||||||||
| 2286 | // stores in the loop. | ||||||||
| 2287 | Promoter.run(LoopUses); | ||||||||
| 2288 | |||||||||
| 2289 | if (MSSAU && VerifyMemorySSA) | ||||||||
| 2290 | MSSAU->getMemorySSA()->verifyMemorySSA(); | ||||||||
| 2291 | // If the SSAUpdater didn't use the load in the preheader, just zap it now. | ||||||||
| 2292 | if (PreheaderLoad->use_empty()) | ||||||||
| 2293 | eraseInstruction(*PreheaderLoad, *SafetyInfo, CurAST, MSSAU); | ||||||||
| 2294 | |||||||||
| 2295 | return true; | ||||||||
| 2296 | } | ||||||||
| 2297 | |||||||||
| 2298 | static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L, | ||||||||
| 2299 | function_ref<void(Instruction *)> Fn) { | ||||||||
| 2300 | for (const BasicBlock *BB : L->blocks()) | ||||||||
| 2301 | if (const auto *Accesses = MSSA->getBlockAccesses(BB)) | ||||||||
| 2302 | for (const auto &Access : *Accesses) | ||||||||
| 2303 | if (const auto *MUD = dyn_cast<MemoryUseOrDef>(&Access)) | ||||||||
| 2304 | Fn(MUD->getMemoryInst()); | ||||||||
| 2305 | } | ||||||||
| 2306 | |||||||||
| 2307 | static SmallVector<SmallSetVector<Value *, 8>, 0> | ||||||||
| 2308 | collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L) { | ||||||||
| 2309 | AliasSetTracker AST(*AA); | ||||||||
| 2310 | |||||||||
| 2311 | auto IsPotentiallyPromotable = [L](const Instruction *I) { | ||||||||
| 2312 | if (const auto *SI = dyn_cast<StoreInst>(I)) | ||||||||
| 2313 | return L->isLoopInvariant(SI->getPointerOperand()); | ||||||||
| 2314 | if (const auto *LI = dyn_cast<LoadInst>(I)) | ||||||||
| 2315 | return L->isLoopInvariant(LI->getPointerOperand()); | ||||||||
| 2316 | return false; | ||||||||
| 2317 | }; | ||||||||
| 2318 | |||||||||
| 2319 | // Populate AST with potentially promotable accesses and remove them from | ||||||||
| 2320 | // MaybePromotable, so they will not be checked again on the next iteration. | ||||||||
| 2321 | SmallPtrSet<Value *, 16> AttemptingPromotion; | ||||||||
| 2322 | foreachMemoryAccess(MSSA, L, [&](Instruction *I) { | ||||||||
| 2323 | if (IsPotentiallyPromotable(I)) { | ||||||||
| 2324 | AttemptingPromotion.insert(I); | ||||||||
| 2325 | AST.add(I); | ||||||||
| 2326 | } | ||||||||
| 2327 | }); | ||||||||
| 2328 | |||||||||
| 2329 | // We're only interested in must-alias sets that contain a mod. | ||||||||
| 2330 | SmallVector<const AliasSet *, 8> Sets; | ||||||||
| 2331 | for (AliasSet &AS : AST) | ||||||||
| 2332 | if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias()) | ||||||||
| 2333 | Sets.push_back(&AS); | ||||||||
| 2334 | |||||||||
| 2335 | if (Sets.empty()) | ||||||||
| 2336 | return {}; // Nothing to promote... | ||||||||
| 2337 | |||||||||
| 2338 | // Discard any sets for which there is an aliasing non-promotable access. | ||||||||
| 2339 | foreachMemoryAccess(MSSA, L, [&](Instruction *I) { | ||||||||
| 2340 | if (AttemptingPromotion.contains(I)) | ||||||||
| 2341 | return; | ||||||||
| 2342 | |||||||||
| 2343 | llvm::erase_if(Sets, [&](const AliasSet *AS) { | ||||||||
| 2344 | return AS->aliasesUnknownInst(I, *AA); | ||||||||
| 2345 | }); | ||||||||
| 2346 | }); | ||||||||
| 2347 | |||||||||
| 2348 | SmallVector<SmallSetVector<Value *, 8>, 0> Result; | ||||||||
| 2349 | for (const AliasSet *Set : Sets) { | ||||||||
| 2350 | SmallSetVector<Value *, 8> PointerMustAliases; | ||||||||
| 2351 | for (const auto &ASI : *Set) | ||||||||
| 2352 | PointerMustAliases.insert(ASI.getValue()); | ||||||||
| 2353 | Result.push_back(std::move(PointerMustAliases)); | ||||||||
| 2354 | } | ||||||||
| 2355 | |||||||||
| 2356 | return Result; | ||||||||
| 2357 | } | ||||||||
| 2358 | |||||||||
| 2359 | /// Returns an owning pointer to an alias set which incorporates aliasing info | ||||||||
| 2360 | /// from L and all subloops of L. | ||||||||
| 2361 | std::unique_ptr<AliasSetTracker> | ||||||||
| 2362 | LoopInvariantCodeMotion::collectAliasInfoForLoop(Loop *L, LoopInfo *LI, | ||||||||
| 2363 | AAResults *AA) { | ||||||||
| 2364 | auto CurAST = std::make_unique<AliasSetTracker>(*AA); | ||||||||
| 2365 | |||||||||
| 2366 | // Add everything from all the sub loops. | ||||||||
| 2367 | for (Loop *InnerL : L->getSubLoops()) | ||||||||
| 2368 | for (BasicBlock *BB : InnerL->blocks()) | ||||||||
| 2369 | CurAST->add(*BB); | ||||||||
| 2370 | |||||||||
| 2371 | // And merge in this loop (without anything from inner loops). | ||||||||
| 2372 | for (BasicBlock *BB : L->blocks()) | ||||||||
| 2373 | if (LI->getLoopFor(BB) == L) | ||||||||
| 2374 | CurAST->add(*BB); | ||||||||
| 2375 | |||||||||
| 2376 | return CurAST; | ||||||||
| 2377 | } | ||||||||
| 2378 | |||||||||
| 2379 | static bool pointerInvalidatedByLoop(MemoryLocation MemLoc, | ||||||||
| 2380 | AliasSetTracker *CurAST, Loop *CurLoop, | ||||||||
| 2381 | AAResults *AA) { | ||||||||
| 2382 | // First check to see if any of the basic blocks in CurLoop invalidate *V. | ||||||||
| 2383 | bool isInvalidatedAccordingToAST = CurAST->getAliasSetFor(MemLoc).isMod(); | ||||||||
| 2384 | |||||||||
| 2385 | if (!isInvalidatedAccordingToAST || !LICMN2Theshold) | ||||||||
| 2386 | return isInvalidatedAccordingToAST; | ||||||||
| 2387 | |||||||||
| 2388 | // Check with a diagnostic analysis if we can refine the information above. | ||||||||
| 2389 | // This is to identify the limitations of using the AST. | ||||||||
| 2390 | // The alias set mechanism used by LICM has a major weakness in that it | ||||||||
| 2391 | // combines all things which may alias into a single set *before* asking | ||||||||
| 2392 | // modref questions. As a result, a single readonly call within a loop will | ||||||||
| 2393 | // collapse all loads and stores into a single alias set and report | ||||||||
| 2394 | // invalidation if the loop contains any store. For example, readonly calls | ||||||||
| 2395 | // with deopt states have this form and create a general alias set with all | ||||||||
| 2396 | // loads and stores. In order to get any LICM in loops containing possible | ||||||||
| 2397 | // deopt states we need a more precise invalidation of checking the mod ref | ||||||||
| 2398 | // info of each instruction within the loop and LI. This has a complexity of | ||||||||
| 2399 | // O(N^2), so currently, it is used only as a diagnostic tool since the | ||||||||
| 2400 | // default value of LICMN2Threshold is zero. | ||||||||
| 2401 | |||||||||
| 2402 | // Don't look at nested loops. | ||||||||
| 2403 | if (CurLoop->begin() != CurLoop->end()) | ||||||||
| 2404 | return true; | ||||||||
| 2405 | |||||||||
| 2406 | int N = 0; | ||||||||
| 2407 | for (BasicBlock *BB : CurLoop->getBlocks()) | ||||||||
| 2408 | for (Instruction &I : *BB) { | ||||||||
| 2409 | if (N >= LICMN2Theshold) { | ||||||||
| 2410 | LLVM_DEBUG(dbgs() << "Alasing N2 threshold exhausted for "do { } while (false) | ||||||||
| 2411 | << *(MemLoc.Ptr) << "\n")do { } while (false); | ||||||||
| 2412 | return true; | ||||||||
| 2413 | } | ||||||||
| 2414 | N++; | ||||||||
| 2415 | auto Res = AA->getModRefInfo(&I, MemLoc); | ||||||||
| 2416 | if (isModSet(Res)) { | ||||||||
| 2417 | LLVM_DEBUG(dbgs() << "Aliasing failed on " << I << " for "do { } while (false) | ||||||||
| 2418 | << *(MemLoc.Ptr) << "\n")do { } while (false); | ||||||||
| 2419 | return true; | ||||||||
| 2420 | } | ||||||||
| 2421 | } | ||||||||
| 2422 | LLVM_DEBUG(dbgs() << "Aliasing okay for " << *(MemLoc.Ptr) << "\n")do { } while (false); | ||||||||
| 2423 | return false; | ||||||||
| 2424 | } | ||||||||
| 2425 | |||||||||
| 2426 | bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU, | ||||||||
| 2427 | Loop *CurLoop, Instruction &I, | ||||||||
| 2428 | SinkAndHoistLICMFlags &Flags) { | ||||||||
| 2429 | // For hoisting, use the walker to determine safety | ||||||||
| 2430 | if (!Flags.getIsSink()) { | ||||||||
| 2431 | MemoryAccess *Source; | ||||||||
| 2432 | // See declaration of SetLicmMssaOptCap for usage details. | ||||||||
| 2433 | if (Flags.tooManyClobberingCalls()) | ||||||||
| 2434 | Source = MU->getDefiningAccess(); | ||||||||
| 2435 | else { | ||||||||
| 2436 | Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(MU); | ||||||||
| 2437 | Flags.incrementClobberingCalls(); | ||||||||
| 2438 | } | ||||||||
| 2439 | return !MSSA->isLiveOnEntryDef(Source) && | ||||||||
| 2440 | CurLoop->contains(Source->getBlock()); | ||||||||
| 2441 | } | ||||||||
| 2442 | |||||||||
| 2443 | // For sinking, we'd need to check all Defs below this use. The getClobbering | ||||||||
| 2444 | // call will look on the backedge of the loop, but will check aliasing with | ||||||||
| 2445 | // the instructions on the previous iteration. | ||||||||
| 2446 | // For example: | ||||||||
| 2447 | // for (i ... ) | ||||||||
| 2448 | // load a[i] ( Use (LoE) | ||||||||
| 2449 | // store a[i] ( 1 = Def (2), with 2 = Phi for the loop. | ||||||||
| 2450 | // i++; | ||||||||
| 2451 | // The load sees no clobbering inside the loop, as the backedge alias check | ||||||||
| 2452 | // does phi translation, and will check aliasing against store a[i-1]. | ||||||||
| 2453 | // However sinking the load outside the loop, below the store is incorrect. | ||||||||
| 2454 | |||||||||
| 2455 | // For now, only sink if there are no Defs in the loop, and the existing ones | ||||||||
| 2456 | // precede the use and are in the same block. | ||||||||
| 2457 | // FIXME: Increase precision: Safe to sink if Use post dominates the Def; | ||||||||
| 2458 | // needs PostDominatorTreeAnalysis. | ||||||||
| 2459 | // FIXME: More precise: no Defs that alias this Use. | ||||||||
| 2460 | if (Flags.tooManyMemoryAccesses()) | ||||||||
| 2461 | return true; | ||||||||
| 2462 | for (auto *BB : CurLoop->getBlocks()) | ||||||||
| 2463 | if (pointerInvalidatedByBlockWithMSSA(*BB, *MSSA, *MU)) | ||||||||
| 2464 | return true; | ||||||||
| 2465 | // When sinking, the source block may not be part of the loop so check it. | ||||||||
| 2466 | if (!CurLoop->contains(&I)) | ||||||||
| 2467 | return pointerInvalidatedByBlockWithMSSA(*I.getParent(), *MSSA, *MU); | ||||||||
| 2468 | |||||||||
| 2469 | return false; | ||||||||
| 2470 | } | ||||||||
| 2471 | |||||||||
| 2472 | bool pointerInvalidatedByBlockWithMSSA(BasicBlock &BB, MemorySSA &MSSA, | ||||||||
| 2473 | MemoryUse &MU) { | ||||||||
| 2474 | if (const auto *Accesses = MSSA.getBlockDefs(&BB)) | ||||||||
| 2475 | for (const auto &MA : *Accesses) | ||||||||
| 2476 | if (const auto *MD = dyn_cast<MemoryDef>(&MA)) | ||||||||
| 2477 | if (MU.getBlock() != MD->getBlock() || !MSSA.locallyDominates(MD, &MU)) | ||||||||
| 2478 | return true; | ||||||||
| 2479 | return false; | ||||||||
| 2480 | } | ||||||||
| 2481 | |||||||||
| 2482 | /// Little predicate that returns true if the specified basic block is in | ||||||||
| 2483 | /// a subloop of the current one, not the current one itself. | ||||||||
| 2484 | /// | ||||||||
| 2485 | static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) { | ||||||||
| 2486 | assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop")((void)0); | ||||||||
| 2487 | return LI->getLoopFor(BB) != CurLoop; | ||||||||
| 2488 | } |
| 1 | //===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file exposes the class definitions of all of the subclasses of the |
| 10 | // Instruction class. This is meant to be an easy way to get access to all |
| 11 | // instruction subclasses. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #ifndef LLVM_IR_INSTRUCTIONS_H |
| 16 | #define LLVM_IR_INSTRUCTIONS_H |
| 17 | |
| 18 | #include "llvm/ADT/ArrayRef.h" |
| 19 | #include "llvm/ADT/Bitfields.h" |
| 20 | #include "llvm/ADT/MapVector.h" |
| 21 | #include "llvm/ADT/None.h" |
| 22 | #include "llvm/ADT/STLExtras.h" |
| 23 | #include "llvm/ADT/SmallVector.h" |
| 24 | #include "llvm/ADT/StringRef.h" |
| 25 | #include "llvm/ADT/Twine.h" |
| 26 | #include "llvm/ADT/iterator.h" |
| 27 | #include "llvm/ADT/iterator_range.h" |
| 28 | #include "llvm/IR/Attributes.h" |
| 29 | #include "llvm/IR/BasicBlock.h" |
| 30 | #include "llvm/IR/CallingConv.h" |
| 31 | #include "llvm/IR/CFG.h" |
| 32 | #include "llvm/IR/Constant.h" |
| 33 | #include "llvm/IR/DerivedTypes.h" |
| 34 | #include "llvm/IR/Function.h" |
| 35 | #include "llvm/IR/InstrTypes.h" |
| 36 | #include "llvm/IR/Instruction.h" |
| 37 | #include "llvm/IR/OperandTraits.h" |
| 38 | #include "llvm/IR/Type.h" |
| 39 | #include "llvm/IR/Use.h" |
| 40 | #include "llvm/IR/User.h" |
| 41 | #include "llvm/IR/Value.h" |
| 42 | #include "llvm/Support/AtomicOrdering.h" |
| 43 | #include "llvm/Support/Casting.h" |
| 44 | #include "llvm/Support/ErrorHandling.h" |
| 45 | #include <cassert> |
| 46 | #include <cstddef> |
| 47 | #include <cstdint> |
| 48 | #include <iterator> |
| 49 | |
| 50 | namespace llvm { |
| 51 | |
| 52 | class APInt; |
| 53 | class ConstantInt; |
| 54 | class DataLayout; |
| 55 | class LLVMContext; |
| 56 | |
| 57 | //===----------------------------------------------------------------------===// |
| 58 | // AllocaInst Class |
| 59 | //===----------------------------------------------------------------------===// |
| 60 | |
| 61 | /// an instruction to allocate memory on the stack |
| 62 | class AllocaInst : public UnaryInstruction { |
| 63 | Type *AllocatedType; |
| 64 | |
| 65 | using AlignmentField = AlignmentBitfieldElementT<0>; |
| 66 | using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>; |
| 67 | using SwiftErrorField = BoolBitfieldElementT<UsedWithInAllocaField::NextBit>; |
| 68 | static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField, |
| 69 | SwiftErrorField>(), |
| 70 | "Bitfields must be contiguous"); |
| 71 | |
| 72 | protected: |
| 73 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 74 | friend class Instruction; |
| 75 | |
| 76 | AllocaInst *cloneImpl() const; |
| 77 | |
| 78 | public: |
| 79 | explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, |
| 80 | const Twine &Name, Instruction *InsertBefore); |
| 81 | AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, |
| 82 | const Twine &Name, BasicBlock *InsertAtEnd); |
| 83 | |
| 84 | AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name, |
| 85 | Instruction *InsertBefore); |
| 86 | AllocaInst(Type *Ty, unsigned AddrSpace, |
| 87 | const Twine &Name, BasicBlock *InsertAtEnd); |
| 88 | |
| 89 | AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align, |
| 90 | const Twine &Name = "", Instruction *InsertBefore = nullptr); |
| 91 | AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align, |
| 92 | const Twine &Name, BasicBlock *InsertAtEnd); |
| 93 | |
| 94 | /// Return true if there is an allocation size parameter to the allocation |
| 95 | /// instruction that is not 1. |
| 96 | bool isArrayAllocation() const; |
| 97 | |
| 98 | /// Get the number of elements allocated. For a simple allocation of a single |
| 99 | /// element, this will return a constant 1 value. |
| 100 | const Value *getArraySize() const { return getOperand(0); } |
| 101 | Value *getArraySize() { return getOperand(0); } |
| 102 | |
| 103 | /// Overload to return most specific pointer type. |
| 104 | PointerType *getType() const { |
| 105 | return cast<PointerType>(Instruction::getType()); |
| 106 | } |
| 107 | |
| 108 | /// Get allocation size in bits. Returns None if size can't be determined, |
| 109 | /// e.g. in case of a VLA. |
| 110 | Optional<TypeSize> getAllocationSizeInBits(const DataLayout &DL) const; |
| 111 | |
| 112 | /// Return the type that is being allocated by the instruction. |
| 113 | Type *getAllocatedType() const { return AllocatedType; } |
| 114 | /// for use only in special circumstances that need to generically |
| 115 | /// transform a whole instruction (eg: IR linking and vectorization). |
| 116 | void setAllocatedType(Type *Ty) { AllocatedType = Ty; } |
| 117 | |
| 118 | /// Return the alignment of the memory that is being allocated by the |
| 119 | /// instruction. |
| 120 | Align getAlign() const { |
| 121 | return Align(1ULL << getSubclassData<AlignmentField>()); |
| 122 | } |
| 123 | |
| 124 | void setAlignment(Align Align) { |
| 125 | setSubclassData<AlignmentField>(Log2(Align)); |
| 126 | } |
| 127 | |
| 128 | // FIXME: Remove this one transition to Align is over. |
| 129 | unsigned getAlignment() const { return getAlign().value(); } |
| 130 | |
| 131 | /// Return true if this alloca is in the entry block of the function and is a |
| 132 | /// constant size. If so, the code generator will fold it into the |
| 133 | /// prolog/epilog code, so it is basically free. |
| 134 | bool isStaticAlloca() const; |
| 135 | |
| 136 | /// Return true if this alloca is used as an inalloca argument to a call. Such |
| 137 | /// allocas are never considered static even if they are in the entry block. |
| 138 | bool isUsedWithInAlloca() const { |
| 139 | return getSubclassData<UsedWithInAllocaField>(); |
| 140 | } |
| 141 | |
| 142 | /// Specify whether this alloca is used to represent the arguments to a call. |
| 143 | void setUsedWithInAlloca(bool V) { |
| 144 | setSubclassData<UsedWithInAllocaField>(V); |
| 145 | } |
| 146 | |
| 147 | /// Return true if this alloca is used as a swifterror argument to a call. |
| 148 | bool isSwiftError() const { return getSubclassData<SwiftErrorField>(); } |
| 149 | /// Specify whether this alloca is used to represent a swifterror. |
| 150 | void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); } |
| 151 | |
| 152 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 153 | static bool classof(const Instruction *I) { |
| 154 | return (I->getOpcode() == Instruction::Alloca); |
| 155 | } |
| 156 | static bool classof(const Value *V) { |
| 157 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 158 | } |
| 159 | |
| 160 | private: |
| 161 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 162 | // method so that subclasses cannot accidentally use it. |
| 163 | template <typename Bitfield> |
| 164 | void setSubclassData(typename Bitfield::Type Value) { |
| 165 | Instruction::setSubclassData<Bitfield>(Value); |
| 166 | } |
| 167 | }; |
| 168 | |
| 169 | //===----------------------------------------------------------------------===// |
| 170 | // LoadInst Class |
| 171 | //===----------------------------------------------------------------------===// |
| 172 | |
| 173 | /// An instruction for reading from memory. This uses the SubclassData field in |
| 174 | /// Value to store whether or not the load is volatile. |
| 175 | class LoadInst : public UnaryInstruction { |
| 176 | using VolatileField = BoolBitfieldElementT<0>; |
| 177 | using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>; |
| 178 | using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>; |
| 179 | static_assert( |
| 180 | Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(), |
| 181 | "Bitfields must be contiguous"); |
| 182 | |
| 183 | void AssertOK(); |
| 184 | |
| 185 | protected: |
| 186 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 187 | friend class Instruction; |
| 188 | |
| 189 | LoadInst *cloneImpl() const; |
| 190 | |
| 191 | public: |
| 192 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, |
| 193 | Instruction *InsertBefore); |
| 194 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 195 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
| 196 | Instruction *InsertBefore); |
| 197 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
| 198 | BasicBlock *InsertAtEnd); |
| 199 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
| 200 | Align Align, Instruction *InsertBefore = nullptr); |
| 201 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
| 202 | Align Align, BasicBlock *InsertAtEnd); |
| 203 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
| 204 | Align Align, AtomicOrdering Order, |
| 205 | SyncScope::ID SSID = SyncScope::System, |
| 206 | Instruction *InsertBefore = nullptr); |
| 207 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
| 208 | Align Align, AtomicOrdering Order, SyncScope::ID SSID, |
| 209 | BasicBlock *InsertAtEnd); |
| 210 | |
| 211 | /// Return true if this is a load from a volatile memory location. |
| 212 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
| 213 | |
| 214 | /// Specify whether this is a volatile load or not. |
| 215 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
| 216 | |
| 217 | /// Return the alignment of the access that is being performed. |
| 218 | /// FIXME: Remove this function once transition to Align is over. |
| 219 | /// Use getAlign() instead. |
| 220 | unsigned getAlignment() const { return getAlign().value(); } |
| 221 | |
| 222 | /// Return the alignment of the access that is being performed. |
| 223 | Align getAlign() const { |
| 224 | return Align(1ULL << (getSubclassData<AlignmentField>())); |
| 225 | } |
| 226 | |
| 227 | void setAlignment(Align Align) { |
| 228 | setSubclassData<AlignmentField>(Log2(Align)); |
| 229 | } |
| 230 | |
| 231 | /// Returns the ordering constraint of this load instruction. |
| 232 | AtomicOrdering getOrdering() const { |
| 233 | return getSubclassData<OrderingField>(); |
| 234 | } |
| 235 | /// Sets the ordering constraint of this load instruction. May not be Release |
| 236 | /// or AcquireRelease. |
| 237 | void setOrdering(AtomicOrdering Ordering) { |
| 238 | setSubclassData<OrderingField>(Ordering); |
| 239 | } |
| 240 | |
| 241 | /// Returns the synchronization scope ID of this load instruction. |
| 242 | SyncScope::ID getSyncScopeID() const { |
| 243 | return SSID; |
| 244 | } |
| 245 | |
| 246 | /// Sets the synchronization scope ID of this load instruction. |
| 247 | void setSyncScopeID(SyncScope::ID SSID) { |
| 248 | this->SSID = SSID; |
| 249 | } |
| 250 | |
| 251 | /// Sets the ordering constraint and the synchronization scope ID of this load |
| 252 | /// instruction. |
| 253 | void setAtomic(AtomicOrdering Ordering, |
| 254 | SyncScope::ID SSID = SyncScope::System) { |
| 255 | setOrdering(Ordering); |
| 256 | setSyncScopeID(SSID); |
| 257 | } |
| 258 | |
| 259 | bool isSimple() const { return !isAtomic() && !isVolatile(); } |
| 260 | |
| 261 | bool isUnordered() const { |
| 262 | return (getOrdering() == AtomicOrdering::NotAtomic || |
| 263 | getOrdering() == AtomicOrdering::Unordered) && |
| 264 | !isVolatile(); |
| 265 | } |
| 266 | |
| 267 | Value *getPointerOperand() { return getOperand(0); } |
| 268 | const Value *getPointerOperand() const { return getOperand(0); } |
| 269 | static unsigned getPointerOperandIndex() { return 0U; } |
| 270 | Type *getPointerOperandType() const { return getPointerOperand()->getType(); } |
| 271 | |
| 272 | /// Returns the address space of the pointer operand. |
| 273 | unsigned getPointerAddressSpace() const { |
| 274 | return getPointerOperandType()->getPointerAddressSpace(); |
| 275 | } |
| 276 | |
| 277 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 278 | static bool classof(const Instruction *I) { |
| 279 | return I->getOpcode() == Instruction::Load; |
| 280 | } |
| 281 | static bool classof(const Value *V) { |
| 282 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 283 | } |
| 284 | |
| 285 | private: |
| 286 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 287 | // method so that subclasses cannot accidentally use it. |
| 288 | template <typename Bitfield> |
| 289 | void setSubclassData(typename Bitfield::Type Value) { |
| 290 | Instruction::setSubclassData<Bitfield>(Value); |
| 291 | } |
| 292 | |
| 293 | /// The synchronization scope ID of this load instruction. Not quite enough |
| 294 | /// room in SubClassData for everything, so synchronization scope ID gets its |
| 295 | /// own field. |
| 296 | SyncScope::ID SSID; |
| 297 | }; |
| 298 | |
| 299 | //===----------------------------------------------------------------------===// |
| 300 | // StoreInst Class |
| 301 | //===----------------------------------------------------------------------===// |
| 302 | |
| 303 | /// An instruction for storing to memory. |
| 304 | class StoreInst : public Instruction { |
| 305 | using VolatileField = BoolBitfieldElementT<0>; |
| 306 | using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>; |
| 307 | using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>; |
| 308 | static_assert( |
| 309 | Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(), |
| 310 | "Bitfields must be contiguous"); |
| 311 | |
| 312 | void AssertOK(); |
| 313 | |
| 314 | protected: |
| 315 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 316 | friend class Instruction; |
| 317 | |
| 318 | StoreInst *cloneImpl() const; |
| 319 | |
| 320 | public: |
| 321 | StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore); |
| 322 | StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd); |
| 323 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Instruction *InsertBefore); |
| 324 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd); |
| 325 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
| 326 | Instruction *InsertBefore = nullptr); |
| 327 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
| 328 | BasicBlock *InsertAtEnd); |
| 329 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
| 330 | AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System, |
| 331 | Instruction *InsertBefore = nullptr); |
| 332 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
| 333 | AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd); |
| 334 | |
| 335 | // allocate space for exactly two operands |
| 336 | void *operator new(size_t S) { return User::operator new(S, 2); } |
| 337 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 338 | |
| 339 | /// Return true if this is a store to a volatile memory location. |
| 340 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
| 341 | |
| 342 | /// Specify whether this is a volatile store or not. |
| 343 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
| 344 | |
| 345 | /// Transparently provide more efficient getOperand methods. |
| 346 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 347 | |
| 348 | /// Return the alignment of the access that is being performed |
| 349 | /// FIXME: Remove this function once transition to Align is over. |
| 350 | /// Use getAlign() instead. |
| 351 | unsigned getAlignment() const { return getAlign().value(); } |
| 352 | |
| 353 | Align getAlign() const { |
| 354 | return Align(1ULL << (getSubclassData<AlignmentField>())); |
| 355 | } |
| 356 | |
| 357 | void setAlignment(Align Align) { |
| 358 | setSubclassData<AlignmentField>(Log2(Align)); |
| 359 | } |
| 360 | |
| 361 | /// Returns the ordering constraint of this store instruction. |
| 362 | AtomicOrdering getOrdering() const { |
| 363 | return getSubclassData<OrderingField>(); |
| 364 | } |
| 365 | |
| 366 | /// Sets the ordering constraint of this store instruction. May not be |
| 367 | /// Acquire or AcquireRelease. |
| 368 | void setOrdering(AtomicOrdering Ordering) { |
| 369 | setSubclassData<OrderingField>(Ordering); |
| 370 | } |
| 371 | |
| 372 | /// Returns the synchronization scope ID of this store instruction. |
| 373 | SyncScope::ID getSyncScopeID() const { |
| 374 | return SSID; |
| 375 | } |
| 376 | |
| 377 | /// Sets the synchronization scope ID of this store instruction. |
| 378 | void setSyncScopeID(SyncScope::ID SSID) { |
| 379 | this->SSID = SSID; |
| 380 | } |
| 381 | |
| 382 | /// Sets the ordering constraint and the synchronization scope ID of this |
| 383 | /// store instruction. |
| 384 | void setAtomic(AtomicOrdering Ordering, |
| 385 | SyncScope::ID SSID = SyncScope::System) { |
| 386 | setOrdering(Ordering); |
| 387 | setSyncScopeID(SSID); |
| 388 | } |
| 389 | |
| 390 | bool isSimple() const { return !isAtomic() && !isVolatile(); } |
| 391 | |
| 392 | bool isUnordered() const { |
| 393 | return (getOrdering() == AtomicOrdering::NotAtomic || |
| 394 | getOrdering() == AtomicOrdering::Unordered) && |
| 395 | !isVolatile(); |
| 396 | } |
| 397 | |
| 398 | Value *getValueOperand() { return getOperand(0); } |
| 399 | const Value *getValueOperand() const { return getOperand(0); } |
| 400 | |
| 401 | Value *getPointerOperand() { return getOperand(1); } |
| 402 | const Value *getPointerOperand() const { return getOperand(1); } |
| 403 | static unsigned getPointerOperandIndex() { return 1U; } |
| 404 | Type *getPointerOperandType() const { return getPointerOperand()->getType(); } |
| 405 | |
| 406 | /// Returns the address space of the pointer operand. |
| 407 | unsigned getPointerAddressSpace() const { |
| 408 | return getPointerOperandType()->getPointerAddressSpace(); |
| 409 | } |
| 410 | |
| 411 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 412 | static bool classof(const Instruction *I) { |
| 413 | return I->getOpcode() == Instruction::Store; |
| 414 | } |
| 415 | static bool classof(const Value *V) { |
| 416 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 417 | } |
| 418 | |
| 419 | private: |
| 420 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 421 | // method so that subclasses cannot accidentally use it. |
| 422 | template <typename Bitfield> |
| 423 | void setSubclassData(typename Bitfield::Type Value) { |
| 424 | Instruction::setSubclassData<Bitfield>(Value); |
| 425 | } |
| 426 | |
| 427 | /// The synchronization scope ID of this store instruction. Not quite enough |
| 428 | /// room in SubClassData for everything, so synchronization scope ID gets its |
| 429 | /// own field. |
| 430 | SyncScope::ID SSID; |
| 431 | }; |
| 432 | |
| 433 | template <> |
| 434 | struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> { |
| 435 | }; |
| 436 | |
| 437 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)StoreInst::op_iterator StoreInst::op_begin() { return OperandTraits <StoreInst>::op_begin(this); } StoreInst::const_op_iterator StoreInst::op_begin() const { return OperandTraits<StoreInst >::op_begin(const_cast<StoreInst*>(this)); } StoreInst ::op_iterator StoreInst::op_end() { return OperandTraits<StoreInst >::op_end(this); } StoreInst::const_op_iterator StoreInst:: op_end() const { return OperandTraits<StoreInst>::op_end (const_cast<StoreInst*>(this)); } Value *StoreInst::getOperand (unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<StoreInst>::op_begin(const_cast <StoreInst*>(this))[i_nocapture].get()); } void StoreInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<StoreInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned StoreInst::getNumOperands() const { return OperandTraits<StoreInst>::operands(this); } template <int Idx_nocapture> Use &StoreInst::Op() { return this ->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture > const Use &StoreInst::Op() const { return this->OpFrom <Idx_nocapture>(this); } |
| 438 | |
| 439 | //===----------------------------------------------------------------------===// |
| 440 | // FenceInst Class |
| 441 | //===----------------------------------------------------------------------===// |
| 442 | |
| 443 | /// An instruction for ordering other memory operations. |
| 444 | class FenceInst : public Instruction { |
| 445 | using OrderingField = AtomicOrderingBitfieldElementT<0>; |
| 446 | |
| 447 | void Init(AtomicOrdering Ordering, SyncScope::ID SSID); |
| 448 | |
| 449 | protected: |
| 450 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 451 | friend class Instruction; |
| 452 | |
| 453 | FenceInst *cloneImpl() const; |
| 454 | |
| 455 | public: |
| 456 | // Ordering may only be Acquire, Release, AcquireRelease, or |
| 457 | // SequentiallyConsistent. |
| 458 | FenceInst(LLVMContext &C, AtomicOrdering Ordering, |
| 459 | SyncScope::ID SSID = SyncScope::System, |
| 460 | Instruction *InsertBefore = nullptr); |
| 461 | FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID, |
| 462 | BasicBlock *InsertAtEnd); |
| 463 | |
| 464 | // allocate space for exactly zero operands |
| 465 | void *operator new(size_t S) { return User::operator new(S, 0); } |
| 466 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 467 | |
| 468 | /// Returns the ordering constraint of this fence instruction. |
| 469 | AtomicOrdering getOrdering() const { |
| 470 | return getSubclassData<OrderingField>(); |
| 471 | } |
| 472 | |
| 473 | /// Sets the ordering constraint of this fence instruction. May only be |
| 474 | /// Acquire, Release, AcquireRelease, or SequentiallyConsistent. |
| 475 | void setOrdering(AtomicOrdering Ordering) { |
| 476 | setSubclassData<OrderingField>(Ordering); |
| 477 | } |
| 478 | |
| 479 | /// Returns the synchronization scope ID of this fence instruction. |
| 480 | SyncScope::ID getSyncScopeID() const { |
| 481 | return SSID; |
| 482 | } |
| 483 | |
| 484 | /// Sets the synchronization scope ID of this fence instruction. |
| 485 | void setSyncScopeID(SyncScope::ID SSID) { |
| 486 | this->SSID = SSID; |
| 487 | } |
| 488 | |
| 489 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 490 | static bool classof(const Instruction *I) { |
| 491 | return I->getOpcode() == Instruction::Fence; |
| 492 | } |
| 493 | static bool classof(const Value *V) { |
| 494 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 495 | } |
| 496 | |
| 497 | private: |
| 498 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 499 | // method so that subclasses cannot accidentally use it. |
| 500 | template <typename Bitfield> |
| 501 | void setSubclassData(typename Bitfield::Type Value) { |
| 502 | Instruction::setSubclassData<Bitfield>(Value); |
| 503 | } |
| 504 | |
| 505 | /// The synchronization scope ID of this fence instruction. Not quite enough |
| 506 | /// room in SubClassData for everything, so synchronization scope ID gets its |
| 507 | /// own field. |
| 508 | SyncScope::ID SSID; |
| 509 | }; |
| 510 | |
| 511 | //===----------------------------------------------------------------------===// |
| 512 | // AtomicCmpXchgInst Class |
| 513 | //===----------------------------------------------------------------------===// |
| 514 | |
| 515 | /// An instruction that atomically checks whether a |
| 516 | /// specified value is in a memory location, and, if it is, stores a new value |
| 517 | /// there. The value returned by this instruction is a pair containing the |
| 518 | /// original value as first element, and an i1 indicating success (true) or |
| 519 | /// failure (false) as second element. |
| 520 | /// |
| 521 | class AtomicCmpXchgInst : public Instruction { |
| 522 | void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align, |
| 523 | AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, |
| 524 | SyncScope::ID SSID); |
| 525 | |
| 526 | template <unsigned Offset> |
| 527 | using AtomicOrderingBitfieldElement = |
| 528 | typename Bitfield::Element<AtomicOrdering, Offset, 3, |
| 529 | AtomicOrdering::LAST>; |
| 530 | |
| 531 | protected: |
| 532 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 533 | friend class Instruction; |
| 534 | |
| 535 | AtomicCmpXchgInst *cloneImpl() const; |
| 536 | |
| 537 | public: |
| 538 | AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment, |
| 539 | AtomicOrdering SuccessOrdering, |
| 540 | AtomicOrdering FailureOrdering, SyncScope::ID SSID, |
| 541 | Instruction *InsertBefore = nullptr); |
| 542 | AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment, |
| 543 | AtomicOrdering SuccessOrdering, |
| 544 | AtomicOrdering FailureOrdering, SyncScope::ID SSID, |
| 545 | BasicBlock *InsertAtEnd); |
| 546 | |
| 547 | // allocate space for exactly three operands |
| 548 | void *operator new(size_t S) { return User::operator new(S, 3); } |
| 549 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 550 | |
| 551 | using VolatileField = BoolBitfieldElementT<0>; |
| 552 | using WeakField = BoolBitfieldElementT<VolatileField::NextBit>; |
| 553 | using SuccessOrderingField = |
| 554 | AtomicOrderingBitfieldElementT<WeakField::NextBit>; |
| 555 | using FailureOrderingField = |
| 556 | AtomicOrderingBitfieldElementT<SuccessOrderingField::NextBit>; |
| 557 | using AlignmentField = |
| 558 | AlignmentBitfieldElementT<FailureOrderingField::NextBit>; |
| 559 | static_assert( |
| 560 | Bitfield::areContiguous<VolatileField, WeakField, SuccessOrderingField, |
| 561 | FailureOrderingField, AlignmentField>(), |
| 562 | "Bitfields must be contiguous"); |
| 563 | |
| 564 | /// Return the alignment of the memory that is being allocated by the |
| 565 | /// instruction. |
| 566 | Align getAlign() const { |
| 567 | return Align(1ULL << getSubclassData<AlignmentField>()); |
| 568 | } |
| 569 | |
| 570 | void setAlignment(Align Align) { |
| 571 | setSubclassData<AlignmentField>(Log2(Align)); |
| 572 | } |
| 573 | |
| 574 | /// Return true if this is a cmpxchg from a volatile memory |
| 575 | /// location. |
| 576 | /// |
| 577 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
| 578 | |
| 579 | /// Specify whether this is a volatile cmpxchg. |
| 580 | /// |
| 581 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
| 582 | |
| 583 | /// Return true if this cmpxchg may spuriously fail. |
| 584 | bool isWeak() const { return getSubclassData<WeakField>(); } |
| 585 | |
| 586 | void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); } |
| 587 | |
| 588 | /// Transparently provide more efficient getOperand methods. |
| 589 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 590 | |
| 591 | static bool isValidSuccessOrdering(AtomicOrdering Ordering) { |
| 592 | return Ordering != AtomicOrdering::NotAtomic && |
| 593 | Ordering != AtomicOrdering::Unordered; |
| 594 | } |
| 595 | |
| 596 | static bool isValidFailureOrdering(AtomicOrdering Ordering) { |
| 597 | return Ordering != AtomicOrdering::NotAtomic && |
| 598 | Ordering != AtomicOrdering::Unordered && |
| 599 | Ordering != AtomicOrdering::AcquireRelease && |
| 600 | Ordering != AtomicOrdering::Release; |
| 601 | } |
| 602 | |
| 603 | /// Returns the success ordering constraint of this cmpxchg instruction. |
| 604 | AtomicOrdering getSuccessOrdering() const { |
| 605 | return getSubclassData<SuccessOrderingField>(); |
| 606 | } |
| 607 | |
| 608 | /// Sets the success ordering constraint of this cmpxchg instruction. |
| 609 | void setSuccessOrdering(AtomicOrdering Ordering) { |
| 610 | assert(isValidSuccessOrdering(Ordering) &&((void)0) |
| 611 | "invalid CmpXchg success ordering")((void)0); |
| 612 | setSubclassData<SuccessOrderingField>(Ordering); |
| 613 | } |
| 614 | |
| 615 | /// Returns the failure ordering constraint of this cmpxchg instruction. |
| 616 | AtomicOrdering getFailureOrdering() const { |
| 617 | return getSubclassData<FailureOrderingField>(); |
| 618 | } |
| 619 | |
| 620 | /// Sets the failure ordering constraint of this cmpxchg instruction. |
| 621 | void setFailureOrdering(AtomicOrdering Ordering) { |
| 622 | assert(isValidFailureOrdering(Ordering) &&((void)0) |
| 623 | "invalid CmpXchg failure ordering")((void)0); |
| 624 | setSubclassData<FailureOrderingField>(Ordering); |
| 625 | } |
| 626 | |
| 627 | /// Returns a single ordering which is at least as strong as both the |
| 628 | /// success and failure orderings for this cmpxchg. |
| 629 | AtomicOrdering getMergedOrdering() const { |
| 630 | if (getFailureOrdering() == AtomicOrdering::SequentiallyConsistent) |
| 631 | return AtomicOrdering::SequentiallyConsistent; |
| 632 | if (getFailureOrdering() == AtomicOrdering::Acquire) { |
| 633 | if (getSuccessOrdering() == AtomicOrdering::Monotonic) |
| 634 | return AtomicOrdering::Acquire; |
| 635 | if (getSuccessOrdering() == AtomicOrdering::Release) |
| 636 | return AtomicOrdering::AcquireRelease; |
| 637 | } |
| 638 | return getSuccessOrdering(); |
| 639 | } |
| 640 | |
| 641 | /// Returns the synchronization scope ID of this cmpxchg instruction. |
| 642 | SyncScope::ID getSyncScopeID() const { |
| 643 | return SSID; |
| 644 | } |
| 645 | |
| 646 | /// Sets the synchronization scope ID of this cmpxchg instruction. |
| 647 | void setSyncScopeID(SyncScope::ID SSID) { |
| 648 | this->SSID = SSID; |
| 649 | } |
| 650 | |
| 651 | Value *getPointerOperand() { return getOperand(0); } |
| 652 | const Value *getPointerOperand() const { return getOperand(0); } |
| 653 | static unsigned getPointerOperandIndex() { return 0U; } |
| 654 | |
| 655 | Value *getCompareOperand() { return getOperand(1); } |
| 656 | const Value *getCompareOperand() const { return getOperand(1); } |
| 657 | |
| 658 | Value *getNewValOperand() { return getOperand(2); } |
| 659 | const Value *getNewValOperand() const { return getOperand(2); } |
| 660 | |
| 661 | /// Returns the address space of the pointer operand. |
| 662 | unsigned getPointerAddressSpace() const { |
| 663 | return getPointerOperand()->getType()->getPointerAddressSpace(); |
| 664 | } |
| 665 | |
| 666 | /// Returns the strongest permitted ordering on failure, given the |
| 667 | /// desired ordering on success. |
| 668 | /// |
| 669 | /// If the comparison in a cmpxchg operation fails, there is no atomic store |
| 670 | /// so release semantics cannot be provided. So this function drops explicit |
| 671 | /// Release requests from the AtomicOrdering. A SequentiallyConsistent |
| 672 | /// operation would remain SequentiallyConsistent. |
| 673 | static AtomicOrdering |
| 674 | getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) { |
| 675 | switch (SuccessOrdering) { |
| 676 | default: |
| 677 | llvm_unreachable("invalid cmpxchg success ordering")__builtin_unreachable(); |
| 678 | case AtomicOrdering::Release: |
| 679 | case AtomicOrdering::Monotonic: |
| 680 | return AtomicOrdering::Monotonic; |
| 681 | case AtomicOrdering::AcquireRelease: |
| 682 | case AtomicOrdering::Acquire: |
| 683 | return AtomicOrdering::Acquire; |
| 684 | case AtomicOrdering::SequentiallyConsistent: |
| 685 | return AtomicOrdering::SequentiallyConsistent; |
| 686 | } |
| 687 | } |
| 688 | |
| 689 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 690 | static bool classof(const Instruction *I) { |
| 691 | return I->getOpcode() == Instruction::AtomicCmpXchg; |
| 692 | } |
| 693 | static bool classof(const Value *V) { |
| 694 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 695 | } |
| 696 | |
| 697 | private: |
| 698 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 699 | // method so that subclasses cannot accidentally use it. |
| 700 | template <typename Bitfield> |
| 701 | void setSubclassData(typename Bitfield::Type Value) { |
| 702 | Instruction::setSubclassData<Bitfield>(Value); |
| 703 | } |
| 704 | |
| 705 | /// The synchronization scope ID of this cmpxchg instruction. Not quite |
| 706 | /// enough room in SubClassData for everything, so synchronization scope ID |
| 707 | /// gets its own field. |
| 708 | SyncScope::ID SSID; |
| 709 | }; |
| 710 | |
| 711 | template <> |
| 712 | struct OperandTraits<AtomicCmpXchgInst> : |
| 713 | public FixedNumOperandTraits<AtomicCmpXchgInst, 3> { |
| 714 | }; |
| 715 | |
| 716 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)AtomicCmpXchgInst::op_iterator AtomicCmpXchgInst::op_begin() { return OperandTraits<AtomicCmpXchgInst>::op_begin(this ); } AtomicCmpXchgInst::const_op_iterator AtomicCmpXchgInst:: op_begin() const { return OperandTraits<AtomicCmpXchgInst> ::op_begin(const_cast<AtomicCmpXchgInst*>(this)); } AtomicCmpXchgInst ::op_iterator AtomicCmpXchgInst::op_end() { return OperandTraits <AtomicCmpXchgInst>::op_end(this); } AtomicCmpXchgInst:: const_op_iterator AtomicCmpXchgInst::op_end() const { return OperandTraits <AtomicCmpXchgInst>::op_end(const_cast<AtomicCmpXchgInst *>(this)); } Value *AtomicCmpXchgInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<AtomicCmpXchgInst>::op_begin(const_cast <AtomicCmpXchgInst*>(this))[i_nocapture].get()); } void AtomicCmpXchgInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<AtomicCmpXchgInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned AtomicCmpXchgInst ::getNumOperands() const { return OperandTraits<AtomicCmpXchgInst >::operands(this); } template <int Idx_nocapture> Use &AtomicCmpXchgInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & AtomicCmpXchgInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
| 717 | |
| 718 | //===----------------------------------------------------------------------===// |
| 719 | // AtomicRMWInst Class |
| 720 | //===----------------------------------------------------------------------===// |
| 721 | |
| 722 | /// an instruction that atomically reads a memory location, |
| 723 | /// combines it with another value, and then stores the result back. Returns |
| 724 | /// the old value. |
| 725 | /// |
| 726 | class AtomicRMWInst : public Instruction { |
| 727 | protected: |
| 728 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 729 | friend class Instruction; |
| 730 | |
| 731 | AtomicRMWInst *cloneImpl() const; |
| 732 | |
| 733 | public: |
| 734 | /// This enumeration lists the possible modifications atomicrmw can make. In |
| 735 | /// the descriptions, 'p' is the pointer to the instruction's memory location, |
| 736 | /// 'old' is the initial value of *p, and 'v' is the other value passed to the |
| 737 | /// instruction. These instructions always return 'old'. |
| 738 | enum BinOp : unsigned { |
| 739 | /// *p = v |
| 740 | Xchg, |
| 741 | /// *p = old + v |
| 742 | Add, |
| 743 | /// *p = old - v |
| 744 | Sub, |
| 745 | /// *p = old & v |
| 746 | And, |
| 747 | /// *p = ~(old & v) |
| 748 | Nand, |
| 749 | /// *p = old | v |
| 750 | Or, |
| 751 | /// *p = old ^ v |
| 752 | Xor, |
| 753 | /// *p = old >signed v ? old : v |
| 754 | Max, |
| 755 | /// *p = old <signed v ? old : v |
| 756 | Min, |
| 757 | /// *p = old >unsigned v ? old : v |
| 758 | UMax, |
| 759 | /// *p = old <unsigned v ? old : v |
| 760 | UMin, |
| 761 | |
| 762 | /// *p = old + v |
| 763 | FAdd, |
| 764 | |
| 765 | /// *p = old - v |
| 766 | FSub, |
| 767 | |
| 768 | FIRST_BINOP = Xchg, |
| 769 | LAST_BINOP = FSub, |
| 770 | BAD_BINOP |
| 771 | }; |
| 772 | |
| 773 | private: |
| 774 | template <unsigned Offset> |
| 775 | using AtomicOrderingBitfieldElement = |
| 776 | typename Bitfield::Element<AtomicOrdering, Offset, 3, |
| 777 | AtomicOrdering::LAST>; |
| 778 | |
| 779 | template <unsigned Offset> |
| 780 | using BinOpBitfieldElement = |
| 781 | typename Bitfield::Element<BinOp, Offset, 4, BinOp::LAST_BINOP>; |
| 782 | |
| 783 | public: |
| 784 | AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment, |
| 785 | AtomicOrdering Ordering, SyncScope::ID SSID, |
| 786 | Instruction *InsertBefore = nullptr); |
| 787 | AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment, |
| 788 | AtomicOrdering Ordering, SyncScope::ID SSID, |
| 789 | BasicBlock *InsertAtEnd); |
| 790 | |
| 791 | // allocate space for exactly two operands |
| 792 | void *operator new(size_t S) { return User::operator new(S, 2); } |
| 793 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 794 | |
| 795 | using VolatileField = BoolBitfieldElementT<0>; |
| 796 | using AtomicOrderingField = |
| 797 | AtomicOrderingBitfieldElementT<VolatileField::NextBit>; |
| 798 | using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>; |
| 799 | using AlignmentField = AlignmentBitfieldElementT<OperationField::NextBit>; |
| 800 | static_assert(Bitfield::areContiguous<VolatileField, AtomicOrderingField, |
| 801 | OperationField, AlignmentField>(), |
| 802 | "Bitfields must be contiguous"); |
| 803 | |
| 804 | BinOp getOperation() const { return getSubclassData<OperationField>(); } |
| 805 | |
| 806 | static StringRef getOperationName(BinOp Op); |
| 807 | |
| 808 | static bool isFPOperation(BinOp Op) { |
| 809 | switch (Op) { |
| 810 | case AtomicRMWInst::FAdd: |
| 811 | case AtomicRMWInst::FSub: |
| 812 | return true; |
| 813 | default: |
| 814 | return false; |
| 815 | } |
| 816 | } |
| 817 | |
| 818 | void setOperation(BinOp Operation) { |
| 819 | setSubclassData<OperationField>(Operation); |
| 820 | } |
| 821 | |
| 822 | /// Return the alignment of the memory that is being allocated by the |
| 823 | /// instruction. |
| 824 | Align getAlign() const { |
| 825 | return Align(1ULL << getSubclassData<AlignmentField>()); |
| 826 | } |
| 827 | |
| 828 | void setAlignment(Align Align) { |
| 829 | setSubclassData<AlignmentField>(Log2(Align)); |
| 830 | } |
| 831 | |
| 832 | /// Return true if this is a RMW on a volatile memory location. |
| 833 | /// |
| 834 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
| 835 | |
| 836 | /// Specify whether this is a volatile RMW or not. |
| 837 | /// |
| 838 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
| 839 | |
| 840 | /// Transparently provide more efficient getOperand methods. |
| 841 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 842 | |
| 843 | /// Returns the ordering constraint of this rmw instruction. |
| 844 | AtomicOrdering getOrdering() const { |
| 845 | return getSubclassData<AtomicOrderingField>(); |
| 846 | } |
| 847 | |
| 848 | /// Sets the ordering constraint of this rmw instruction. |
| 849 | void setOrdering(AtomicOrdering Ordering) { |
| 850 | assert(Ordering != AtomicOrdering::NotAtomic &&((void)0) |
| 851 | "atomicrmw instructions can only be atomic.")((void)0); |
| 852 | setSubclassData<AtomicOrderingField>(Ordering); |
| 853 | } |
| 854 | |
| 855 | /// Returns the synchronization scope ID of this rmw instruction. |
| 856 | SyncScope::ID getSyncScopeID() const { |
| 857 | return SSID; |
| 858 | } |
| 859 | |
| 860 | /// Sets the synchronization scope ID of this rmw instruction. |
| 861 | void setSyncScopeID(SyncScope::ID SSID) { |
| 862 | this->SSID = SSID; |
| 863 | } |
| 864 | |
| 865 | Value *getPointerOperand() { return getOperand(0); } |
| 866 | const Value *getPointerOperand() const { return getOperand(0); } |
| 867 | static unsigned getPointerOperandIndex() { return 0U; } |
| 868 | |
| 869 | Value *getValOperand() { return getOperand(1); } |
| 870 | const Value *getValOperand() const { return getOperand(1); } |
| 871 | |
| 872 | /// Returns the address space of the pointer operand. |
| 873 | unsigned getPointerAddressSpace() const { |
| 874 | return getPointerOperand()->getType()->getPointerAddressSpace(); |
| 875 | } |
| 876 | |
| 877 | bool isFloatingPointOperation() const { |
| 878 | return isFPOperation(getOperation()); |
| 879 | } |
| 880 | |
| 881 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 882 | static bool classof(const Instruction *I) { |
| 883 | return I->getOpcode() == Instruction::AtomicRMW; |
| 884 | } |
| 885 | static bool classof(const Value *V) { |
| 886 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 887 | } |
| 888 | |
| 889 | private: |
| 890 | void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align, |
| 891 | AtomicOrdering Ordering, SyncScope::ID SSID); |
| 892 | |
| 893 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 894 | // method so that subclasses cannot accidentally use it. |
| 895 | template <typename Bitfield> |
| 896 | void setSubclassData(typename Bitfield::Type Value) { |
| 897 | Instruction::setSubclassData<Bitfield>(Value); |
| 898 | } |
| 899 | |
| 900 | /// The synchronization scope ID of this rmw instruction. Not quite enough |
| 901 | /// room in SubClassData for everything, so synchronization scope ID gets its |
| 902 | /// own field. |
| 903 | SyncScope::ID SSID; |
| 904 | }; |
| 905 | |
| 906 | template <> |
| 907 | struct OperandTraits<AtomicRMWInst> |
| 908 | : public FixedNumOperandTraits<AtomicRMWInst,2> { |
| 909 | }; |
| 910 | |
| 911 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)AtomicRMWInst::op_iterator AtomicRMWInst::op_begin() { return OperandTraits<AtomicRMWInst>::op_begin(this); } AtomicRMWInst ::const_op_iterator AtomicRMWInst::op_begin() const { return OperandTraits <AtomicRMWInst>::op_begin(const_cast<AtomicRMWInst*> (this)); } AtomicRMWInst::op_iterator AtomicRMWInst::op_end() { return OperandTraits<AtomicRMWInst>::op_end(this); } AtomicRMWInst::const_op_iterator AtomicRMWInst::op_end() const { return OperandTraits<AtomicRMWInst>::op_end(const_cast <AtomicRMWInst*>(this)); } Value *AtomicRMWInst::getOperand (unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<AtomicRMWInst>::op_begin(const_cast <AtomicRMWInst*>(this))[i_nocapture].get()); } void AtomicRMWInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<AtomicRMWInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned AtomicRMWInst::getNumOperands() const { return OperandTraits<AtomicRMWInst>::operands( this); } template <int Idx_nocapture> Use &AtomicRMWInst ::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &AtomicRMWInst ::Op() const { return this->OpFrom<Idx_nocapture>(this ); } |
| 912 | |
| 913 | //===----------------------------------------------------------------------===// |
| 914 | // GetElementPtrInst Class |
| 915 | //===----------------------------------------------------------------------===// |
| 916 | |
| 917 | // checkGEPType - Simple wrapper function to give a better assertion failure |
| 918 | // message on bad indexes for a gep instruction. |
| 919 | // |
| 920 | inline Type *checkGEPType(Type *Ty) { |
| 921 | assert(Ty && "Invalid GetElementPtrInst indices for type!")((void)0); |
| 922 | return Ty; |
| 923 | } |
| 924 | |
| 925 | /// an instruction for type-safe pointer arithmetic to |
| 926 | /// access elements of arrays and structs |
| 927 | /// |
| 928 | class GetElementPtrInst : public Instruction { |
| 929 | Type *SourceElementType; |
| 930 | Type *ResultElementType; |
| 931 | |
| 932 | GetElementPtrInst(const GetElementPtrInst &GEPI); |
| 933 | |
| 934 | /// Constructors - Create a getelementptr instruction with a base pointer an |
| 935 | /// list of indices. The first ctor can optionally insert before an existing |
| 936 | /// instruction, the second appends the new instruction to the specified |
| 937 | /// BasicBlock. |
| 938 | inline GetElementPtrInst(Type *PointeeType, Value *Ptr, |
| 939 | ArrayRef<Value *> IdxList, unsigned Values, |
| 940 | const Twine &NameStr, Instruction *InsertBefore); |
| 941 | inline GetElementPtrInst(Type *PointeeType, Value *Ptr, |
| 942 | ArrayRef<Value *> IdxList, unsigned Values, |
| 943 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 944 | |
| 945 | void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr); |
| 946 | |
| 947 | protected: |
| 948 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 949 | friend class Instruction; |
| 950 | |
| 951 | GetElementPtrInst *cloneImpl() const; |
| 952 | |
| 953 | public: |
| 954 | static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr, |
| 955 | ArrayRef<Value *> IdxList, |
| 956 | const Twine &NameStr = "", |
| 957 | Instruction *InsertBefore = nullptr) { |
| 958 | unsigned Values = 1 + unsigned(IdxList.size()); |
| 959 | assert(PointeeType && "Must specify element type")((void)0); |
| 960 | assert(cast<PointerType>(Ptr->getType()->getScalarType())((void)0) |
| 961 | ->isOpaqueOrPointeeTypeMatches(PointeeType))((void)0); |
| 962 | return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values, |
| 963 | NameStr, InsertBefore); |
| 964 | } |
| 965 | |
| 966 | static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr, |
| 967 | ArrayRef<Value *> IdxList, |
| 968 | const Twine &NameStr, |
| 969 | BasicBlock *InsertAtEnd) { |
| 970 | unsigned Values = 1 + unsigned(IdxList.size()); |
| 971 | assert(PointeeType && "Must specify element type")((void)0); |
| 972 | assert(cast<PointerType>(Ptr->getType()->getScalarType())((void)0) |
| 973 | ->isOpaqueOrPointeeTypeMatches(PointeeType))((void)0); |
| 974 | return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values, |
| 975 | NameStr, InsertAtEnd); |
| 976 | } |
| 977 | |
| 978 | LLVM_ATTRIBUTE_DEPRECATED(static GetElementPtrInst *CreateInBounds([[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) |
| 979 | Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr = "",[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) |
| 980 | Instruction *InsertBefore = nullptr),[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) |
| 981 | "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) { |
| 982 | return CreateInBounds( |
| 983 | Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, IdxList, |
| 984 | NameStr, InsertBefore); |
| 985 | } |
| 986 | |
| 987 | /// Create an "inbounds" getelementptr. See the documentation for the |
| 988 | /// "inbounds" flag in LangRef.html for details. |
| 989 | static GetElementPtrInst * |
| 990 | CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList, |
| 991 | const Twine &NameStr = "", |
| 992 | Instruction *InsertBefore = nullptr) { |
| 993 | GetElementPtrInst *GEP = |
| 994 | Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore); |
| 995 | GEP->setIsInBounds(true); |
| 996 | return GEP; |
| 997 | } |
| 998 | |
| 999 | LLVM_ATTRIBUTE_DEPRECATED(static GetElementPtrInst *CreateInBounds([[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) |
| 1000 | Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr,[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) |
| 1001 | BasicBlock *InsertAtEnd),[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) |
| 1002 | "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 1003 | return CreateInBounds( |
| 1004 | Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, IdxList, |
| 1005 | NameStr, InsertAtEnd); |
| 1006 | } |
| 1007 | |
| 1008 | static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr, |
| 1009 | ArrayRef<Value *> IdxList, |
| 1010 | const Twine &NameStr, |
| 1011 | BasicBlock *InsertAtEnd) { |
| 1012 | GetElementPtrInst *GEP = |
| 1013 | Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd); |
| 1014 | GEP->setIsInBounds(true); |
| 1015 | return GEP; |
| 1016 | } |
| 1017 | |
| 1018 | /// Transparently provide more efficient getOperand methods. |
| 1019 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 1020 | |
| 1021 | Type *getSourceElementType() const { return SourceElementType; } |
| 1022 | |
| 1023 | void setSourceElementType(Type *Ty) { SourceElementType = Ty; } |
| 1024 | void setResultElementType(Type *Ty) { ResultElementType = Ty; } |
| 1025 | |
| 1026 | Type *getResultElementType() const { |
| 1027 | assert(cast<PointerType>(getType()->getScalarType())((void)0) |
| 1028 | ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0); |
| 1029 | return ResultElementType; |
| 1030 | } |
| 1031 | |
| 1032 | /// Returns the address space of this instruction's pointer type. |
| 1033 | unsigned getAddressSpace() const { |
| 1034 | // Note that this is always the same as the pointer operand's address space |
| 1035 | // and that is cheaper to compute, so cheat here. |
| 1036 | return getPointerAddressSpace(); |
| 1037 | } |
| 1038 | |
| 1039 | /// Returns the result type of a getelementptr with the given source |
| 1040 | /// element type and indexes. |
| 1041 | /// |
| 1042 | /// Null is returned if the indices are invalid for the specified |
| 1043 | /// source element type. |
| 1044 | static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList); |
| 1045 | static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList); |
| 1046 | static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList); |
| 1047 | |
| 1048 | /// Return the type of the element at the given index of an indexable |
| 1049 | /// type. This is equivalent to "getIndexedType(Agg, {Zero, Idx})". |
| 1050 | /// |
| 1051 | /// Returns null if the type can't be indexed, or the given index is not |
| 1052 | /// legal for the given type. |
| 1053 | static Type *getTypeAtIndex(Type *Ty, Value *Idx); |
| 1054 | static Type *getTypeAtIndex(Type *Ty, uint64_t Idx); |
| 1055 | |
| 1056 | inline op_iterator idx_begin() { return op_begin()+1; } |
| 1057 | inline const_op_iterator idx_begin() const { return op_begin()+1; } |
| 1058 | inline op_iterator idx_end() { return op_end(); } |
| 1059 | inline const_op_iterator idx_end() const { return op_end(); } |
| 1060 | |
| 1061 | inline iterator_range<op_iterator> indices() { |
| 1062 | return make_range(idx_begin(), idx_end()); |
| 1063 | } |
| 1064 | |
| 1065 | inline iterator_range<const_op_iterator> indices() const { |
| 1066 | return make_range(idx_begin(), idx_end()); |
| 1067 | } |
| 1068 | |
| 1069 | Value *getPointerOperand() { |
| 1070 | return getOperand(0); |
| 1071 | } |
| 1072 | const Value *getPointerOperand() const { |
| 1073 | return getOperand(0); |
| 1074 | } |
| 1075 | static unsigned getPointerOperandIndex() { |
| 1076 | return 0U; // get index for modifying correct operand. |
| 1077 | } |
| 1078 | |
| 1079 | /// Method to return the pointer operand as a |
| 1080 | /// PointerType. |
| 1081 | Type *getPointerOperandType() const { |
| 1082 | return getPointerOperand()->getType(); |
| 1083 | } |
| 1084 | |
| 1085 | /// Returns the address space of the pointer operand. |
| 1086 | unsigned getPointerAddressSpace() const { |
| 1087 | return getPointerOperandType()->getPointerAddressSpace(); |
| 1088 | } |
| 1089 | |
| 1090 | /// Returns the pointer type returned by the GEP |
| 1091 | /// instruction, which may be a vector of pointers. |
| 1092 | static Type *getGEPReturnType(Type *ElTy, Value *Ptr, |
| 1093 | ArrayRef<Value *> IdxList) { |
| 1094 | PointerType *OrigPtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); |
| 1095 | unsigned AddrSpace = OrigPtrTy->getAddressSpace(); |
| 1096 | Type *ResultElemTy = checkGEPType(getIndexedType(ElTy, IdxList)); |
| 1097 | Type *PtrTy = OrigPtrTy->isOpaque() |
| 1098 | ? PointerType::get(OrigPtrTy->getContext(), AddrSpace) |
| 1099 | : PointerType::get(ResultElemTy, AddrSpace); |
| 1100 | // Vector GEP |
| 1101 | if (auto *PtrVTy = dyn_cast<VectorType>(Ptr->getType())) { |
| 1102 | ElementCount EltCount = PtrVTy->getElementCount(); |
| 1103 | return VectorType::get(PtrTy, EltCount); |
| 1104 | } |
| 1105 | for (Value *Index : IdxList) |
| 1106 | if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) { |
| 1107 | ElementCount EltCount = IndexVTy->getElementCount(); |
| 1108 | return VectorType::get(PtrTy, EltCount); |
| 1109 | } |
| 1110 | // Scalar GEP |
| 1111 | return PtrTy; |
| 1112 | } |
| 1113 | |
| 1114 | unsigned getNumIndices() const { // Note: always non-negative |
| 1115 | return getNumOperands() - 1; |
| 1116 | } |
| 1117 | |
| 1118 | bool hasIndices() const { |
| 1119 | return getNumOperands() > 1; |
| 1120 | } |
| 1121 | |
| 1122 | /// Return true if all of the indices of this GEP are |
| 1123 | /// zeros. If so, the result pointer and the first operand have the same |
| 1124 | /// value, just potentially different types. |
| 1125 | bool hasAllZeroIndices() const; |
| 1126 | |
| 1127 | /// Return true if all of the indices of this GEP are |
| 1128 | /// constant integers. If so, the result pointer and the first operand have |
| 1129 | /// a constant offset between them. |
| 1130 | bool hasAllConstantIndices() const; |
| 1131 | |
| 1132 | /// Set or clear the inbounds flag on this GEP instruction. |
| 1133 | /// See LangRef.html for the meaning of inbounds on a getelementptr. |
| 1134 | void setIsInBounds(bool b = true); |
| 1135 | |
| 1136 | /// Determine whether the GEP has the inbounds flag. |
| 1137 | bool isInBounds() const; |
| 1138 | |
| 1139 | /// Accumulate the constant address offset of this GEP if possible. |
| 1140 | /// |
| 1141 | /// This routine accepts an APInt into which it will accumulate the constant |
| 1142 | /// offset of this GEP if the GEP is in fact constant. If the GEP is not |
| 1143 | /// all-constant, it returns false and the value of the offset APInt is |
| 1144 | /// undefined (it is *not* preserved!). The APInt passed into this routine |
| 1145 | /// must be at least as wide as the IntPtr type for the address space of |
| 1146 | /// the base GEP pointer. |
| 1147 | bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const; |
| 1148 | bool collectOffset(const DataLayout &DL, unsigned BitWidth, |
| 1149 | MapVector<Value *, APInt> &VariableOffsets, |
| 1150 | APInt &ConstantOffset) const; |
| 1151 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1152 | static bool classof(const Instruction *I) { |
| 1153 | return (I->getOpcode() == Instruction::GetElementPtr); |
| 1154 | } |
| 1155 | static bool classof(const Value *V) { |
| 1156 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1157 | } |
| 1158 | }; |
| 1159 | |
| 1160 | template <> |
| 1161 | struct OperandTraits<GetElementPtrInst> : |
| 1162 | public VariadicOperandTraits<GetElementPtrInst, 1> { |
| 1163 | }; |
| 1164 | |
| 1165 | GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr, |
| 1166 | ArrayRef<Value *> IdxList, unsigned Values, |
| 1167 | const Twine &NameStr, |
| 1168 | Instruction *InsertBefore) |
| 1169 | : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr, |
| 1170 | OperandTraits<GetElementPtrInst>::op_end(this) - Values, |
| 1171 | Values, InsertBefore), |
| 1172 | SourceElementType(PointeeType), |
| 1173 | ResultElementType(getIndexedType(PointeeType, IdxList)) { |
| 1174 | assert(cast<PointerType>(getType()->getScalarType())((void)0) |
| 1175 | ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0); |
| 1176 | init(Ptr, IdxList, NameStr); |
| 1177 | } |
| 1178 | |
| 1179 | GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr, |
| 1180 | ArrayRef<Value *> IdxList, unsigned Values, |
| 1181 | const Twine &NameStr, |
| 1182 | BasicBlock *InsertAtEnd) |
| 1183 | : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr, |
| 1184 | OperandTraits<GetElementPtrInst>::op_end(this) - Values, |
| 1185 | Values, InsertAtEnd), |
| 1186 | SourceElementType(PointeeType), |
| 1187 | ResultElementType(getIndexedType(PointeeType, IdxList)) { |
| 1188 | assert(cast<PointerType>(getType()->getScalarType())((void)0) |
| 1189 | ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0); |
| 1190 | init(Ptr, IdxList, NameStr); |
| 1191 | } |
| 1192 | |
| 1193 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)GetElementPtrInst::op_iterator GetElementPtrInst::op_begin() { return OperandTraits<GetElementPtrInst>::op_begin(this ); } GetElementPtrInst::const_op_iterator GetElementPtrInst:: op_begin() const { return OperandTraits<GetElementPtrInst> ::op_begin(const_cast<GetElementPtrInst*>(this)); } GetElementPtrInst ::op_iterator GetElementPtrInst::op_end() { return OperandTraits <GetElementPtrInst>::op_end(this); } GetElementPtrInst:: const_op_iterator GetElementPtrInst::op_end() const { return OperandTraits <GetElementPtrInst>::op_end(const_cast<GetElementPtrInst *>(this)); } Value *GetElementPtrInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<GetElementPtrInst>::op_begin(const_cast <GetElementPtrInst*>(this))[i_nocapture].get()); } void GetElementPtrInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<GetElementPtrInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned GetElementPtrInst ::getNumOperands() const { return OperandTraits<GetElementPtrInst >::operands(this); } template <int Idx_nocapture> Use &GetElementPtrInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & GetElementPtrInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
| 1194 | |
| 1195 | //===----------------------------------------------------------------------===// |
| 1196 | // ICmpInst Class |
| 1197 | //===----------------------------------------------------------------------===// |
| 1198 | |
| 1199 | /// This instruction compares its operands according to the predicate given |
| 1200 | /// to the constructor. It only operates on integers or pointers. The operands |
| 1201 | /// must be identical types. |
| 1202 | /// Represent an integer comparison operator. |
| 1203 | class ICmpInst: public CmpInst { |
| 1204 | void AssertOK() { |
| 1205 | assert(isIntPredicate() &&((void)0) |
| 1206 | "Invalid ICmp predicate value")((void)0); |
| 1207 | assert(getOperand(0)->getType() == getOperand(1)->getType() &&((void)0) |
| 1208 | "Both operands to ICmp instruction are not of the same type!")((void)0); |
| 1209 | // Check that the operands are the right type |
| 1210 | assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||((void)0) |
| 1211 | getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&((void)0) |
| 1212 | "Invalid operand types for ICmp instruction")((void)0); |
| 1213 | } |
| 1214 | |
| 1215 | protected: |
| 1216 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1217 | friend class Instruction; |
| 1218 | |
| 1219 | /// Clone an identical ICmpInst |
| 1220 | ICmpInst *cloneImpl() const; |
| 1221 | |
| 1222 | public: |
| 1223 | /// Constructor with insert-before-instruction semantics. |
| 1224 | ICmpInst( |
| 1225 | Instruction *InsertBefore, ///< Where to insert |
| 1226 | Predicate pred, ///< The predicate to use for the comparison |
| 1227 | Value *LHS, ///< The left-hand-side of the expression |
| 1228 | Value *RHS, ///< The right-hand-side of the expression |
| 1229 | const Twine &NameStr = "" ///< Name of the instruction |
| 1230 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
| 1231 | Instruction::ICmp, pred, LHS, RHS, NameStr, |
| 1232 | InsertBefore) { |
| 1233 | #ifndef NDEBUG1 |
| 1234 | AssertOK(); |
| 1235 | #endif |
| 1236 | } |
| 1237 | |
| 1238 | /// Constructor with insert-at-end semantics. |
| 1239 | ICmpInst( |
| 1240 | BasicBlock &InsertAtEnd, ///< Block to insert into. |
| 1241 | Predicate pred, ///< The predicate to use for the comparison |
| 1242 | Value *LHS, ///< The left-hand-side of the expression |
| 1243 | Value *RHS, ///< The right-hand-side of the expression |
| 1244 | const Twine &NameStr = "" ///< Name of the instruction |
| 1245 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
| 1246 | Instruction::ICmp, pred, LHS, RHS, NameStr, |
| 1247 | &InsertAtEnd) { |
| 1248 | #ifndef NDEBUG1 |
| 1249 | AssertOK(); |
| 1250 | #endif |
| 1251 | } |
| 1252 | |
| 1253 | /// Constructor with no-insertion semantics |
| 1254 | ICmpInst( |
| 1255 | Predicate pred, ///< The predicate to use for the comparison |
| 1256 | Value *LHS, ///< The left-hand-side of the expression |
| 1257 | Value *RHS, ///< The right-hand-side of the expression |
| 1258 | const Twine &NameStr = "" ///< Name of the instruction |
| 1259 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
| 1260 | Instruction::ICmp, pred, LHS, RHS, NameStr) { |
| 1261 | #ifndef NDEBUG1 |
| 1262 | AssertOK(); |
| 1263 | #endif |
| 1264 | } |
| 1265 | |
| 1266 | /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc. |
| 1267 | /// @returns the predicate that would be the result if the operand were |
| 1268 | /// regarded as signed. |
| 1269 | /// Return the signed version of the predicate |
| 1270 | Predicate getSignedPredicate() const { |
| 1271 | return getSignedPredicate(getPredicate()); |
| 1272 | } |
| 1273 | |
| 1274 | /// This is a static version that you can use without an instruction. |
| 1275 | /// Return the signed version of the predicate. |
| 1276 | static Predicate getSignedPredicate(Predicate pred); |
| 1277 | |
| 1278 | /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc. |
| 1279 | /// @returns the predicate that would be the result if the operand were |
| 1280 | /// regarded as unsigned. |
| 1281 | /// Return the unsigned version of the predicate |
| 1282 | Predicate getUnsignedPredicate() const { |
| 1283 | return getUnsignedPredicate(getPredicate()); |
| 1284 | } |
| 1285 | |
| 1286 | /// This is a static version that you can use without an instruction. |
| 1287 | /// Return the unsigned version of the predicate. |
| 1288 | static Predicate getUnsignedPredicate(Predicate pred); |
| 1289 | |
| 1290 | /// Return true if this predicate is either EQ or NE. This also |
| 1291 | /// tests for commutativity. |
| 1292 | static bool isEquality(Predicate P) { |
| 1293 | return P == ICMP_EQ || P == ICMP_NE; |
| 1294 | } |
| 1295 | |
| 1296 | /// Return true if this predicate is either EQ or NE. This also |
| 1297 | /// tests for commutativity. |
| 1298 | bool isEquality() const { |
| 1299 | return isEquality(getPredicate()); |
| 1300 | } |
| 1301 | |
| 1302 | /// @returns true if the predicate of this ICmpInst is commutative |
| 1303 | /// Determine if this relation is commutative. |
| 1304 | bool isCommutative() const { return isEquality(); } |
| 1305 | |
| 1306 | /// Return true if the predicate is relational (not EQ or NE). |
| 1307 | /// |
| 1308 | bool isRelational() const { |
| 1309 | return !isEquality(); |
| 1310 | } |
| 1311 | |
| 1312 | /// Return true if the predicate is relational (not EQ or NE). |
| 1313 | /// |
| 1314 | static bool isRelational(Predicate P) { |
| 1315 | return !isEquality(P); |
| 1316 | } |
| 1317 | |
| 1318 | /// Return true if the predicate is SGT or UGT. |
| 1319 | /// |
| 1320 | static bool isGT(Predicate P) { |
| 1321 | return P == ICMP_SGT || P == ICMP_UGT; |
| 1322 | } |
| 1323 | |
| 1324 | /// Return true if the predicate is SLT or ULT. |
| 1325 | /// |
| 1326 | static bool isLT(Predicate P) { |
| 1327 | return P == ICMP_SLT || P == ICMP_ULT; |
| 1328 | } |
| 1329 | |
| 1330 | /// Return true if the predicate is SGE or UGE. |
| 1331 | /// |
| 1332 | static bool isGE(Predicate P) { |
| 1333 | return P == ICMP_SGE || P == ICMP_UGE; |
| 1334 | } |
| 1335 | |
| 1336 | /// Return true if the predicate is SLE or ULE. |
| 1337 | /// |
| 1338 | static bool isLE(Predicate P) { |
| 1339 | return P == ICMP_SLE || P == ICMP_ULE; |
| 1340 | } |
| 1341 | |
| 1342 | /// Exchange the two operands to this instruction in such a way that it does |
| 1343 | /// not modify the semantics of the instruction. The predicate value may be |
| 1344 | /// changed to retain the same result if the predicate is order dependent |
| 1345 | /// (e.g. ult). |
| 1346 | /// Swap operands and adjust predicate. |
| 1347 | void swapOperands() { |
| 1348 | setPredicate(getSwappedPredicate()); |
| 1349 | Op<0>().swap(Op<1>()); |
| 1350 | } |
| 1351 | |
| 1352 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1353 | static bool classof(const Instruction *I) { |
| 1354 | return I->getOpcode() == Instruction::ICmp; |
| 1355 | } |
| 1356 | static bool classof(const Value *V) { |
| 1357 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1358 | } |
| 1359 | }; |
| 1360 | |
| 1361 | //===----------------------------------------------------------------------===// |
| 1362 | // FCmpInst Class |
| 1363 | //===----------------------------------------------------------------------===// |
| 1364 | |
| 1365 | /// This instruction compares its operands according to the predicate given |
| 1366 | /// to the constructor. It only operates on floating point values or packed |
| 1367 | /// vectors of floating point values. The operands must be identical types. |
| 1368 | /// Represents a floating point comparison operator. |
| 1369 | class FCmpInst: public CmpInst { |
| 1370 | void AssertOK() { |
| 1371 | assert(isFPPredicate() && "Invalid FCmp predicate value")((void)0); |
| 1372 | assert(getOperand(0)->getType() == getOperand(1)->getType() &&((void)0) |
| 1373 | "Both operands to FCmp instruction are not of the same type!")((void)0); |
| 1374 | // Check that the operands are the right type |
| 1375 | assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&((void)0) |
| 1376 | "Invalid operand types for FCmp instruction")((void)0); |
| 1377 | } |
| 1378 | |
| 1379 | protected: |
| 1380 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1381 | friend class Instruction; |
| 1382 | |
| 1383 | /// Clone an identical FCmpInst |
| 1384 | FCmpInst *cloneImpl() const; |
| 1385 | |
| 1386 | public: |
| 1387 | /// Constructor with insert-before-instruction semantics. |
| 1388 | FCmpInst( |
| 1389 | Instruction *InsertBefore, ///< Where to insert |
| 1390 | Predicate pred, ///< The predicate to use for the comparison |
| 1391 | Value *LHS, ///< The left-hand-side of the expression |
| 1392 | Value *RHS, ///< The right-hand-side of the expression |
| 1393 | const Twine &NameStr = "" ///< Name of the instruction |
| 1394 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
| 1395 | Instruction::FCmp, pred, LHS, RHS, NameStr, |
| 1396 | InsertBefore) { |
| 1397 | AssertOK(); |
| 1398 | } |
| 1399 | |
| 1400 | /// Constructor with insert-at-end semantics. |
| 1401 | FCmpInst( |
| 1402 | BasicBlock &InsertAtEnd, ///< Block to insert into. |
| 1403 | Predicate pred, ///< The predicate to use for the comparison |
| 1404 | Value *LHS, ///< The left-hand-side of the expression |
| 1405 | Value *RHS, ///< The right-hand-side of the expression |
| 1406 | const Twine &NameStr = "" ///< Name of the instruction |
| 1407 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
| 1408 | Instruction::FCmp, pred, LHS, RHS, NameStr, |
| 1409 | &InsertAtEnd) { |
| 1410 | AssertOK(); |
| 1411 | } |
| 1412 | |
| 1413 | /// Constructor with no-insertion semantics |
| 1414 | FCmpInst( |
| 1415 | Predicate Pred, ///< The predicate to use for the comparison |
| 1416 | Value *LHS, ///< The left-hand-side of the expression |
| 1417 | Value *RHS, ///< The right-hand-side of the expression |
| 1418 | const Twine &NameStr = "", ///< Name of the instruction |
| 1419 | Instruction *FlagsSource = nullptr |
| 1420 | ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS, |
| 1421 | RHS, NameStr, nullptr, FlagsSource) { |
| 1422 | AssertOK(); |
| 1423 | } |
| 1424 | |
| 1425 | /// @returns true if the predicate of this instruction is EQ or NE. |
| 1426 | /// Determine if this is an equality predicate. |
| 1427 | static bool isEquality(Predicate Pred) { |
| 1428 | return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ || |
| 1429 | Pred == FCMP_UNE; |
| 1430 | } |
| 1431 | |
| 1432 | /// @returns true if the predicate of this instruction is EQ or NE. |
| 1433 | /// Determine if this is an equality predicate. |
| 1434 | bool isEquality() const { return isEquality(getPredicate()); } |
| 1435 | |
| 1436 | /// @returns true if the predicate of this instruction is commutative. |
| 1437 | /// Determine if this is a commutative predicate. |
| 1438 | bool isCommutative() const { |
| 1439 | return isEquality() || |
| 1440 | getPredicate() == FCMP_FALSE || |
| 1441 | getPredicate() == FCMP_TRUE || |
| 1442 | getPredicate() == FCMP_ORD || |
| 1443 | getPredicate() == FCMP_UNO; |
| 1444 | } |
| 1445 | |
| 1446 | /// @returns true if the predicate is relational (not EQ or NE). |
| 1447 | /// Determine if this a relational predicate. |
| 1448 | bool isRelational() const { return !isEquality(); } |
| 1449 | |
| 1450 | /// Exchange the two operands to this instruction in such a way that it does |
| 1451 | /// not modify the semantics of the instruction. The predicate value may be |
| 1452 | /// changed to retain the same result if the predicate is order dependent |
| 1453 | /// (e.g. ult). |
| 1454 | /// Swap operands and adjust predicate. |
| 1455 | void swapOperands() { |
| 1456 | setPredicate(getSwappedPredicate()); |
| 1457 | Op<0>().swap(Op<1>()); |
| 1458 | } |
| 1459 | |
| 1460 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1461 | static bool classof(const Instruction *I) { |
| 1462 | return I->getOpcode() == Instruction::FCmp; |
| 1463 | } |
| 1464 | static bool classof(const Value *V) { |
| 1465 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1466 | } |
| 1467 | }; |
| 1468 | |
| 1469 | //===----------------------------------------------------------------------===// |
| 1470 | /// This class represents a function call, abstracting a target |
| 1471 | /// machine's calling convention. This class uses low bit of the SubClassData |
| 1472 | /// field to indicate whether or not this is a tail call. The rest of the bits |
| 1473 | /// hold the calling convention of the call. |
| 1474 | /// |
| 1475 | class CallInst : public CallBase { |
| 1476 | CallInst(const CallInst &CI); |
| 1477 | |
| 1478 | /// Construct a CallInst given a range of arguments. |
| 1479 | /// Construct a CallInst from a range of arguments |
| 1480 | inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1481 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
| 1482 | Instruction *InsertBefore); |
| 1483 | |
| 1484 | inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1485 | const Twine &NameStr, Instruction *InsertBefore) |
| 1486 | : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {} |
| 1487 | |
| 1488 | /// Construct a CallInst given a range of arguments. |
| 1489 | /// Construct a CallInst from a range of arguments |
| 1490 | inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1491 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
| 1492 | BasicBlock *InsertAtEnd); |
| 1493 | |
| 1494 | explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr, |
| 1495 | Instruction *InsertBefore); |
| 1496 | |
| 1497 | CallInst(FunctionType *ty, Value *F, const Twine &NameStr, |
| 1498 | BasicBlock *InsertAtEnd); |
| 1499 | |
| 1500 | void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args, |
| 1501 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr); |
| 1502 | void init(FunctionType *FTy, Value *Func, const Twine &NameStr); |
| 1503 | |
| 1504 | /// Compute the number of operands to allocate. |
| 1505 | static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) { |
| 1506 | // We need one operand for the called function, plus the input operand |
| 1507 | // counts provided. |
| 1508 | return 1 + NumArgs + NumBundleInputs; |
| 1509 | } |
| 1510 | |
| 1511 | protected: |
| 1512 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1513 | friend class Instruction; |
| 1514 | |
| 1515 | CallInst *cloneImpl() const; |
| 1516 | |
| 1517 | public: |
| 1518 | static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "", |
| 1519 | Instruction *InsertBefore = nullptr) { |
| 1520 | return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore); |
| 1521 | } |
| 1522 | |
| 1523 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1524 | const Twine &NameStr, |
| 1525 | Instruction *InsertBefore = nullptr) { |
| 1526 | return new (ComputeNumOperands(Args.size())) |
| 1527 | CallInst(Ty, Func, Args, None, NameStr, InsertBefore); |
| 1528 | } |
| 1529 | |
| 1530 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1531 | ArrayRef<OperandBundleDef> Bundles = None, |
| 1532 | const Twine &NameStr = "", |
| 1533 | Instruction *InsertBefore = nullptr) { |
| 1534 | const int NumOperands = |
| 1535 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); |
| 1536 | const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
| 1537 | |
| 1538 | return new (NumOperands, DescriptorBytes) |
| 1539 | CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore); |
| 1540 | } |
| 1541 | |
| 1542 | static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr, |
| 1543 | BasicBlock *InsertAtEnd) { |
| 1544 | return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd); |
| 1545 | } |
| 1546 | |
| 1547 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1548 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 1549 | return new (ComputeNumOperands(Args.size())) |
| 1550 | CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd); |
| 1551 | } |
| 1552 | |
| 1553 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1554 | ArrayRef<OperandBundleDef> Bundles, |
| 1555 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 1556 | const int NumOperands = |
| 1557 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); |
| 1558 | const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
| 1559 | |
| 1560 | return new (NumOperands, DescriptorBytes) |
| 1561 | CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd); |
| 1562 | } |
| 1563 | |
| 1564 | static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "", |
| 1565 | Instruction *InsertBefore = nullptr) { |
| 1566 | return Create(Func.getFunctionType(), Func.getCallee(), NameStr, |
| 1567 | InsertBefore); |
| 1568 | } |
| 1569 | |
| 1570 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
| 1571 | ArrayRef<OperandBundleDef> Bundles = None, |
| 1572 | const Twine &NameStr = "", |
| 1573 | Instruction *InsertBefore = nullptr) { |
| 1574 | return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles, |
| 1575 | NameStr, InsertBefore); |
| 1576 | } |
| 1577 | |
| 1578 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
| 1579 | const Twine &NameStr, |
| 1580 | Instruction *InsertBefore = nullptr) { |
| 1581 | return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr, |
| 1582 | InsertBefore); |
| 1583 | } |
| 1584 | |
| 1585 | static CallInst *Create(FunctionCallee Func, const Twine &NameStr, |
| 1586 | BasicBlock *InsertAtEnd) { |
| 1587 | return Create(Func.getFunctionType(), Func.getCallee(), NameStr, |
| 1588 | InsertAtEnd); |
| 1589 | } |
| 1590 | |
| 1591 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
| 1592 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 1593 | return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr, |
| 1594 | InsertAtEnd); |
| 1595 | } |
| 1596 | |
| 1597 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
| 1598 | ArrayRef<OperandBundleDef> Bundles, |
| 1599 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 1600 | return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles, |
| 1601 | NameStr, InsertAtEnd); |
| 1602 | } |
| 1603 | |
| 1604 | /// Create a clone of \p CI with a different set of operand bundles and |
| 1605 | /// insert it before \p InsertPt. |
| 1606 | /// |
| 1607 | /// The returned call instruction is identical \p CI in every way except that |
| 1608 | /// the operand bundles for the new instruction are set to the operand bundles |
| 1609 | /// in \p Bundles. |
| 1610 | static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles, |
| 1611 | Instruction *InsertPt = nullptr); |
| 1612 | |
| 1613 | /// Generate the IR for a call to malloc: |
| 1614 | /// 1. Compute the malloc call's argument as the specified type's size, |
| 1615 | /// possibly multiplied by the array size if the array size is not |
| 1616 | /// constant 1. |
| 1617 | /// 2. Call malloc with that argument. |
| 1618 | /// 3. Bitcast the result of the malloc call to the specified type. |
| 1619 | static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy, |
| 1620 | Type *AllocTy, Value *AllocSize, |
| 1621 | Value *ArraySize = nullptr, |
| 1622 | Function *MallocF = nullptr, |
| 1623 | const Twine &Name = ""); |
| 1624 | static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy, |
| 1625 | Type *AllocTy, Value *AllocSize, |
| 1626 | Value *ArraySize = nullptr, |
| 1627 | Function *MallocF = nullptr, |
| 1628 | const Twine &Name = ""); |
| 1629 | static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy, |
| 1630 | Type *AllocTy, Value *AllocSize, |
| 1631 | Value *ArraySize = nullptr, |
| 1632 | ArrayRef<OperandBundleDef> Bundles = None, |
| 1633 | Function *MallocF = nullptr, |
| 1634 | const Twine &Name = ""); |
| 1635 | static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy, |
| 1636 | Type *AllocTy, Value *AllocSize, |
| 1637 | Value *ArraySize = nullptr, |
| 1638 | ArrayRef<OperandBundleDef> Bundles = None, |
| 1639 | Function *MallocF = nullptr, |
| 1640 | const Twine &Name = ""); |
| 1641 | /// Generate the IR for a call to the builtin free function. |
| 1642 | static Instruction *CreateFree(Value *Source, Instruction *InsertBefore); |
| 1643 | static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd); |
| 1644 | static Instruction *CreateFree(Value *Source, |
| 1645 | ArrayRef<OperandBundleDef> Bundles, |
| 1646 | Instruction *InsertBefore); |
| 1647 | static Instruction *CreateFree(Value *Source, |
| 1648 | ArrayRef<OperandBundleDef> Bundles, |
| 1649 | BasicBlock *InsertAtEnd); |
| 1650 | |
| 1651 | // Note that 'musttail' implies 'tail'. |
| 1652 | enum TailCallKind : unsigned { |
| 1653 | TCK_None = 0, |
| 1654 | TCK_Tail = 1, |
| 1655 | TCK_MustTail = 2, |
| 1656 | TCK_NoTail = 3, |
| 1657 | TCK_LAST = TCK_NoTail |
| 1658 | }; |
| 1659 | |
| 1660 | using TailCallKindField = Bitfield::Element<TailCallKind, 0, 2, TCK_LAST>; |
| 1661 | static_assert( |
| 1662 | Bitfield::areContiguous<TailCallKindField, CallBase::CallingConvField>(), |
| 1663 | "Bitfields must be contiguous"); |
| 1664 | |
| 1665 | TailCallKind getTailCallKind() const { |
| 1666 | return getSubclassData<TailCallKindField>(); |
| 1667 | } |
| 1668 | |
| 1669 | bool isTailCall() const { |
| 1670 | TailCallKind Kind = getTailCallKind(); |
| 1671 | return Kind == TCK_Tail || Kind == TCK_MustTail; |
| 1672 | } |
| 1673 | |
| 1674 | bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; } |
| 1675 | |
| 1676 | bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; } |
| 1677 | |
| 1678 | void setTailCallKind(TailCallKind TCK) { |
| 1679 | setSubclassData<TailCallKindField>(TCK); |
| 1680 | } |
| 1681 | |
| 1682 | void setTailCall(bool IsTc = true) { |
| 1683 | setTailCallKind(IsTc ? TCK_Tail : TCK_None); |
| 1684 | } |
| 1685 | |
| 1686 | /// Return true if the call can return twice |
| 1687 | bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); } |
| 1688 | void setCanReturnTwice() { |
| 1689 | addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice); |
| 1690 | } |
| 1691 | |
| 1692 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1693 | static bool classof(const Instruction *I) { |
| 1694 | return I->getOpcode() == Instruction::Call; |
| 1695 | } |
| 1696 | static bool classof(const Value *V) { |
| 1697 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1698 | } |
| 1699 | |
| 1700 | /// Updates profile metadata by scaling it by \p S / \p T. |
| 1701 | void updateProfWeight(uint64_t S, uint64_t T); |
| 1702 | |
| 1703 | private: |
| 1704 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 1705 | // method so that subclasses cannot accidentally use it. |
| 1706 | template <typename Bitfield> |
| 1707 | void setSubclassData(typename Bitfield::Type Value) { |
| 1708 | Instruction::setSubclassData<Bitfield>(Value); |
| 1709 | } |
| 1710 | }; |
| 1711 | |
| 1712 | CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1713 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
| 1714 | BasicBlock *InsertAtEnd) |
| 1715 | : CallBase(Ty->getReturnType(), Instruction::Call, |
| 1716 | OperandTraits<CallBase>::op_end(this) - |
| 1717 | (Args.size() + CountBundleInputs(Bundles) + 1), |
| 1718 | unsigned(Args.size() + CountBundleInputs(Bundles) + 1), |
| 1719 | InsertAtEnd) { |
| 1720 | init(Ty, Func, Args, Bundles, NameStr); |
| 1721 | } |
| 1722 | |
| 1723 | CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1724 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
| 1725 | Instruction *InsertBefore) |
| 1726 | : CallBase(Ty->getReturnType(), Instruction::Call, |
| 1727 | OperandTraits<CallBase>::op_end(this) - |
| 1728 | (Args.size() + CountBundleInputs(Bundles) + 1), |
| 1729 | unsigned(Args.size() + CountBundleInputs(Bundles) + 1), |
| 1730 | InsertBefore) { |
| 1731 | init(Ty, Func, Args, Bundles, NameStr); |
| 1732 | } |
| 1733 | |
| 1734 | //===----------------------------------------------------------------------===// |
| 1735 | // SelectInst Class |
| 1736 | //===----------------------------------------------------------------------===// |
| 1737 | |
| 1738 | /// This class represents the LLVM 'select' instruction. |
| 1739 | /// |
| 1740 | class SelectInst : public Instruction { |
| 1741 | SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr, |
| 1742 | Instruction *InsertBefore) |
| 1743 | : Instruction(S1->getType(), Instruction::Select, |
| 1744 | &Op<0>(), 3, InsertBefore) { |
| 1745 | init(C, S1, S2); |
| 1746 | setName(NameStr); |
| 1747 | } |
| 1748 | |
| 1749 | SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr, |
| 1750 | BasicBlock *InsertAtEnd) |
| 1751 | : Instruction(S1->getType(), Instruction::Select, |
| 1752 | &Op<0>(), 3, InsertAtEnd) { |
| 1753 | init(C, S1, S2); |
| 1754 | setName(NameStr); |
| 1755 | } |
| 1756 | |
| 1757 | void init(Value *C, Value *S1, Value *S2) { |
| 1758 | assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select")((void)0); |
| 1759 | Op<0>() = C; |
| 1760 | Op<1>() = S1; |
| 1761 | Op<2>() = S2; |
| 1762 | } |
| 1763 | |
| 1764 | protected: |
| 1765 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1766 | friend class Instruction; |
| 1767 | |
| 1768 | SelectInst *cloneImpl() const; |
| 1769 | |
| 1770 | public: |
| 1771 | static SelectInst *Create(Value *C, Value *S1, Value *S2, |
| 1772 | const Twine &NameStr = "", |
| 1773 | Instruction *InsertBefore = nullptr, |
| 1774 | Instruction *MDFrom = nullptr) { |
| 1775 | SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore); |
| 1776 | if (MDFrom) |
| 1777 | Sel->copyMetadata(*MDFrom); |
| 1778 | return Sel; |
| 1779 | } |
| 1780 | |
| 1781 | static SelectInst *Create(Value *C, Value *S1, Value *S2, |
| 1782 | const Twine &NameStr, |
| 1783 | BasicBlock *InsertAtEnd) { |
| 1784 | return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd); |
| 1785 | } |
| 1786 | |
| 1787 | const Value *getCondition() const { return Op<0>(); } |
| 1788 | const Value *getTrueValue() const { return Op<1>(); } |
| 1789 | const Value *getFalseValue() const { return Op<2>(); } |
| 1790 | Value *getCondition() { return Op<0>(); } |
| 1791 | Value *getTrueValue() { return Op<1>(); } |
| 1792 | Value *getFalseValue() { return Op<2>(); } |
| 1793 | |
| 1794 | void setCondition(Value *V) { Op<0>() = V; } |
| 1795 | void setTrueValue(Value *V) { Op<1>() = V; } |
| 1796 | void setFalseValue(Value *V) { Op<2>() = V; } |
| 1797 | |
| 1798 | /// Swap the true and false values of the select instruction. |
| 1799 | /// This doesn't swap prof metadata. |
| 1800 | void swapValues() { Op<1>().swap(Op<2>()); } |
| 1801 | |
| 1802 | /// Return a string if the specified operands are invalid |
| 1803 | /// for a select operation, otherwise return null. |
| 1804 | static const char *areInvalidOperands(Value *Cond, Value *True, Value *False); |
| 1805 | |
| 1806 | /// Transparently provide more efficient getOperand methods. |
| 1807 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 1808 | |
| 1809 | OtherOps getOpcode() const { |
| 1810 | return static_cast<OtherOps>(Instruction::getOpcode()); |
| 1811 | } |
| 1812 | |
| 1813 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1814 | static bool classof(const Instruction *I) { |
| 1815 | return I->getOpcode() == Instruction::Select; |
| 1816 | } |
| 1817 | static bool classof(const Value *V) { |
| 1818 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1819 | } |
| 1820 | }; |
| 1821 | |
| 1822 | template <> |
| 1823 | struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> { |
| 1824 | }; |
| 1825 | |
| 1826 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)SelectInst::op_iterator SelectInst::op_begin() { return OperandTraits <SelectInst>::op_begin(this); } SelectInst::const_op_iterator SelectInst::op_begin() const { return OperandTraits<SelectInst >::op_begin(const_cast<SelectInst*>(this)); } SelectInst ::op_iterator SelectInst::op_end() { return OperandTraits< SelectInst>::op_end(this); } SelectInst::const_op_iterator SelectInst::op_end() const { return OperandTraits<SelectInst >::op_end(const_cast<SelectInst*>(this)); } Value *SelectInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<SelectInst>::op_begin(const_cast <SelectInst*>(this))[i_nocapture].get()); } void SelectInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<SelectInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned SelectInst::getNumOperands() const { return OperandTraits<SelectInst>::operands(this); } template <int Idx_nocapture> Use &SelectInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &SelectInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
| 1827 | |
| 1828 | //===----------------------------------------------------------------------===// |
| 1829 | // VAArgInst Class |
| 1830 | //===----------------------------------------------------------------------===// |
| 1831 | |
| 1832 | /// This class represents the va_arg llvm instruction, which returns |
| 1833 | /// an argument of the specified type given a va_list and increments that list |
| 1834 | /// |
| 1835 | class VAArgInst : public UnaryInstruction { |
| 1836 | protected: |
| 1837 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1838 | friend class Instruction; |
| 1839 | |
| 1840 | VAArgInst *cloneImpl() const; |
| 1841 | |
| 1842 | public: |
| 1843 | VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "", |
| 1844 | Instruction *InsertBefore = nullptr) |
| 1845 | : UnaryInstruction(Ty, VAArg, List, InsertBefore) { |
| 1846 | setName(NameStr); |
| 1847 | } |
| 1848 | |
| 1849 | VAArgInst(Value *List, Type *Ty, const Twine &NameStr, |
| 1850 | BasicBlock *InsertAtEnd) |
| 1851 | : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) { |
| 1852 | setName(NameStr); |
| 1853 | } |
| 1854 | |
| 1855 | Value *getPointerOperand() { return getOperand(0); } |
| 1856 | const Value *getPointerOperand() const { return getOperand(0); } |
| 1857 | static unsigned getPointerOperandIndex() { return 0U; } |
| 1858 | |
| 1859 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1860 | static bool classof(const Instruction *I) { |
| 1861 | return I->getOpcode() == VAArg; |
| 1862 | } |
| 1863 | static bool classof(const Value *V) { |
| 1864 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1865 | } |
| 1866 | }; |
| 1867 | |
| 1868 | //===----------------------------------------------------------------------===// |
| 1869 | // ExtractElementInst Class |
| 1870 | //===----------------------------------------------------------------------===// |
| 1871 | |
| 1872 | /// This instruction extracts a single (scalar) |
| 1873 | /// element from a VectorType value |
| 1874 | /// |
| 1875 | class ExtractElementInst : public Instruction { |
| 1876 | ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "", |
| 1877 | Instruction *InsertBefore = nullptr); |
| 1878 | ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr, |
| 1879 | BasicBlock *InsertAtEnd); |
| 1880 | |
| 1881 | protected: |
| 1882 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1883 | friend class Instruction; |
| 1884 | |
| 1885 | ExtractElementInst *cloneImpl() const; |
| 1886 | |
| 1887 | public: |
| 1888 | static ExtractElementInst *Create(Value *Vec, Value *Idx, |
| 1889 | const Twine &NameStr = "", |
| 1890 | Instruction *InsertBefore = nullptr) { |
| 1891 | return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore); |
| 1892 | } |
| 1893 | |
| 1894 | static ExtractElementInst *Create(Value *Vec, Value *Idx, |
| 1895 | const Twine &NameStr, |
| 1896 | BasicBlock *InsertAtEnd) { |
| 1897 | return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd); |
| 1898 | } |
| 1899 | |
| 1900 | /// Return true if an extractelement instruction can be |
| 1901 | /// formed with the specified operands. |
| 1902 | static bool isValidOperands(const Value *Vec, const Value *Idx); |
| 1903 | |
| 1904 | Value *getVectorOperand() { return Op<0>(); } |
| 1905 | Value *getIndexOperand() { return Op<1>(); } |
| 1906 | const Value *getVectorOperand() const { return Op<0>(); } |
| 1907 | const Value *getIndexOperand() const { return Op<1>(); } |
| 1908 | |
| 1909 | VectorType *getVectorOperandType() const { |
| 1910 | return cast<VectorType>(getVectorOperand()->getType()); |
| 1911 | } |
| 1912 | |
| 1913 | /// Transparently provide more efficient getOperand methods. |
| 1914 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 1915 | |
| 1916 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1917 | static bool classof(const Instruction *I) { |
| 1918 | return I->getOpcode() == Instruction::ExtractElement; |
| 1919 | } |
| 1920 | static bool classof(const Value *V) { |
| 1921 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1922 | } |
| 1923 | }; |
| 1924 | |
| 1925 | template <> |
| 1926 | struct OperandTraits<ExtractElementInst> : |
| 1927 | public FixedNumOperandTraits<ExtractElementInst, 2> { |
| 1928 | }; |
| 1929 | |
| 1930 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)ExtractElementInst::op_iterator ExtractElementInst::op_begin( ) { return OperandTraits<ExtractElementInst>::op_begin( this); } ExtractElementInst::const_op_iterator ExtractElementInst ::op_begin() const { return OperandTraits<ExtractElementInst >::op_begin(const_cast<ExtractElementInst*>(this)); } ExtractElementInst::op_iterator ExtractElementInst::op_end() { return OperandTraits<ExtractElementInst>::op_end(this ); } ExtractElementInst::const_op_iterator ExtractElementInst ::op_end() const { return OperandTraits<ExtractElementInst >::op_end(const_cast<ExtractElementInst*>(this)); } Value *ExtractElementInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value>( OperandTraits< ExtractElementInst>::op_begin(const_cast<ExtractElementInst *>(this))[i_nocapture].get()); } void ExtractElementInst:: setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void )0); OperandTraits<ExtractElementInst>::op_begin(this)[ i_nocapture] = Val_nocapture; } unsigned ExtractElementInst:: getNumOperands() const { return OperandTraits<ExtractElementInst >::operands(this); } template <int Idx_nocapture> Use &ExtractElementInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & ExtractElementInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
| 1931 | |
| 1932 | //===----------------------------------------------------------------------===// |
| 1933 | // InsertElementInst Class |
| 1934 | //===----------------------------------------------------------------------===// |
| 1935 | |
| 1936 | /// This instruction inserts a single (scalar) |
| 1937 | /// element into a VectorType value |
| 1938 | /// |
| 1939 | class InsertElementInst : public Instruction { |
| 1940 | InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, |
| 1941 | const Twine &NameStr = "", |
| 1942 | Instruction *InsertBefore = nullptr); |
| 1943 | InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr, |
| 1944 | BasicBlock *InsertAtEnd); |
| 1945 | |
| 1946 | protected: |
| 1947 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1948 | friend class Instruction; |
| 1949 | |
| 1950 | InsertElementInst *cloneImpl() const; |
| 1951 | |
| 1952 | public: |
| 1953 | static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, |
| 1954 | const Twine &NameStr = "", |
| 1955 | Instruction *InsertBefore = nullptr) { |
| 1956 | return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore); |
| 1957 | } |
| 1958 | |
| 1959 | static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, |
| 1960 | const Twine &NameStr, |
| 1961 | BasicBlock *InsertAtEnd) { |
| 1962 | return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd); |
| 1963 | } |
| 1964 | |
| 1965 | /// Return true if an insertelement instruction can be |
| 1966 | /// formed with the specified operands. |
| 1967 | static bool isValidOperands(const Value *Vec, const Value *NewElt, |
| 1968 | const Value *Idx); |
| 1969 | |
| 1970 | /// Overload to return most specific vector type. |
| 1971 | /// |
| 1972 | VectorType *getType() const { |
| 1973 | return cast<VectorType>(Instruction::getType()); |
| 1974 | } |
| 1975 | |
| 1976 | /// Transparently provide more efficient getOperand methods. |
| 1977 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 1978 | |
| 1979 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1980 | static bool classof(const Instruction *I) { |
| 1981 | return I->getOpcode() == Instruction::InsertElement; |
| 1982 | } |
| 1983 | static bool classof(const Value *V) { |
| 1984 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1985 | } |
| 1986 | }; |
| 1987 | |
| 1988 | template <> |
| 1989 | struct OperandTraits<InsertElementInst> : |
| 1990 | public FixedNumOperandTraits<InsertElementInst, 3> { |
| 1991 | }; |
| 1992 | |
| 1993 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)InsertElementInst::op_iterator InsertElementInst::op_begin() { return OperandTraits<InsertElementInst>::op_begin(this ); } InsertElementInst::const_op_iterator InsertElementInst:: op_begin() const { return OperandTraits<InsertElementInst> ::op_begin(const_cast<InsertElementInst*>(this)); } InsertElementInst ::op_iterator InsertElementInst::op_end() { return OperandTraits <InsertElementInst>::op_end(this); } InsertElementInst:: const_op_iterator InsertElementInst::op_end() const { return OperandTraits <InsertElementInst>::op_end(const_cast<InsertElementInst *>(this)); } Value *InsertElementInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<InsertElementInst>::op_begin(const_cast <InsertElementInst*>(this))[i_nocapture].get()); } void InsertElementInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<InsertElementInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned InsertElementInst ::getNumOperands() const { return OperandTraits<InsertElementInst >::operands(this); } template <int Idx_nocapture> Use &InsertElementInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & InsertElementInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
| 1994 | |
| 1995 | //===----------------------------------------------------------------------===// |
| 1996 | // ShuffleVectorInst Class |
| 1997 | //===----------------------------------------------------------------------===// |
| 1998 | |
| 1999 | constexpr int UndefMaskElem = -1; |
| 2000 | |
| 2001 | /// This instruction constructs a fixed permutation of two |
| 2002 | /// input vectors. |
| 2003 | /// |
| 2004 | /// For each element of the result vector, the shuffle mask selects an element |
| 2005 | /// from one of the input vectors to copy to the result. Non-negative elements |
| 2006 | /// in the mask represent an index into the concatenated pair of input vectors. |
| 2007 | /// UndefMaskElem (-1) specifies that the result element is undefined. |
| 2008 | /// |
| 2009 | /// For scalable vectors, all the elements of the mask must be 0 or -1. This |
| 2010 | /// requirement may be relaxed in the future. |
| 2011 | class ShuffleVectorInst : public Instruction { |
| 2012 | SmallVector<int, 4> ShuffleMask; |
| 2013 | Constant *ShuffleMaskForBitcode; |
| 2014 | |
| 2015 | protected: |
| 2016 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 2017 | friend class Instruction; |
| 2018 | |
| 2019 | ShuffleVectorInst *cloneImpl() const; |
| 2020 | |
| 2021 | public: |
| 2022 | ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, |
| 2023 | const Twine &NameStr = "", |
| 2024 | Instruction *InsertBefor = nullptr); |
| 2025 | ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, |
| 2026 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 2027 | ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask, |
| 2028 | const Twine &NameStr = "", |
| 2029 | Instruction *InsertBefor = nullptr); |
| 2030 | ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask, |
| 2031 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 2032 | |
| 2033 | void *operator new(size_t S) { return User::operator new(S, 2); } |
| 2034 | void operator delete(void *Ptr) { return User::operator delete(Ptr); } |
| 2035 | |
| 2036 | /// Swap the operands and adjust the mask to preserve the semantics |
| 2037 | /// of the instruction. |
| 2038 | void commute(); |
| 2039 | |
| 2040 | /// Return true if a shufflevector instruction can be |
| 2041 | /// formed with the specified operands. |
| 2042 | static bool isValidOperands(const Value *V1, const Value *V2, |
| 2043 | const Value *Mask); |
| 2044 | static bool isValidOperands(const Value *V1, const Value *V2, |
| 2045 | ArrayRef<int> Mask); |
| 2046 | |
| 2047 | /// Overload to return most specific vector type. |
| 2048 | /// |
| 2049 | VectorType *getType() const { |
| 2050 | return cast<VectorType>(Instruction::getType()); |
| 2051 | } |
| 2052 | |
| 2053 | /// Transparently provide more efficient getOperand methods. |
| 2054 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 2055 | |
| 2056 | /// Return the shuffle mask value of this instruction for the given element |
| 2057 | /// index. Return UndefMaskElem if the element is undef. |
| 2058 | int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; } |
| 2059 | |
| 2060 | /// Convert the input shuffle mask operand to a vector of integers. Undefined |
| 2061 | /// elements of the mask are returned as UndefMaskElem. |
| 2062 | static void getShuffleMask(const Constant *Mask, |
| 2063 | SmallVectorImpl<int> &Result); |
| 2064 | |
| 2065 | /// Return the mask for this instruction as a vector of integers. Undefined |
| 2066 | /// elements of the mask are returned as UndefMaskElem. |
| 2067 | void getShuffleMask(SmallVectorImpl<int> &Result) const { |
| 2068 | Result.assign(ShuffleMask.begin(), ShuffleMask.end()); |
| 2069 | } |
| 2070 | |
| 2071 | /// Return the mask for this instruction, for use in bitcode. |
| 2072 | /// |
| 2073 | /// TODO: This is temporary until we decide a new bitcode encoding for |
| 2074 | /// shufflevector. |
| 2075 | Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; } |
| 2076 | |
| 2077 | static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask, |
| 2078 | Type *ResultTy); |
| 2079 | |
| 2080 | void setShuffleMask(ArrayRef<int> Mask); |
| 2081 | |
| 2082 | ArrayRef<int> getShuffleMask() const { return ShuffleMask; } |
| 2083 | |
| 2084 | /// Return true if this shuffle returns a vector with a different number of |
| 2085 | /// elements than its source vectors. |
| 2086 | /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3> |
| 2087 | /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5> |
| 2088 | bool changesLength() const { |
| 2089 | unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType()) |
| 2090 | ->getElementCount() |
| 2091 | .getKnownMinValue(); |
| 2092 | unsigned NumMaskElts = ShuffleMask.size(); |
| 2093 | return NumSourceElts != NumMaskElts; |
| 2094 | } |
| 2095 | |
| 2096 | /// Return true if this shuffle returns a vector with a greater number of |
| 2097 | /// elements than its source vectors. |
| 2098 | /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3> |
| 2099 | bool increasesLength() const { |
| 2100 | unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType()) |
| 2101 | ->getElementCount() |
| 2102 | .getKnownMinValue(); |
| 2103 | unsigned NumMaskElts = ShuffleMask.size(); |
| 2104 | return NumSourceElts < NumMaskElts; |
| 2105 | } |
| 2106 | |
| 2107 | /// Return true if this shuffle mask chooses elements from exactly one source |
| 2108 | /// vector. |
| 2109 | /// Example: <7,5,undef,7> |
| 2110 | /// This assumes that vector operands are the same length as the mask. |
| 2111 | static bool isSingleSourceMask(ArrayRef<int> Mask); |
| 2112 | static bool isSingleSourceMask(const Constant *Mask) { |
| 2113 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
| 2114 | SmallVector<int, 16> MaskAsInts; |
| 2115 | getShuffleMask(Mask, MaskAsInts); |
| 2116 | return isSingleSourceMask(MaskAsInts); |
| 2117 | } |
| 2118 | |
| 2119 | /// Return true if this shuffle chooses elements from exactly one source |
| 2120 | /// vector without changing the length of that vector. |
| 2121 | /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3> |
| 2122 | /// TODO: Optionally allow length-changing shuffles. |
| 2123 | bool isSingleSource() const { |
| 2124 | return !changesLength() && isSingleSourceMask(ShuffleMask); |
| 2125 | } |
| 2126 | |
| 2127 | /// Return true if this shuffle mask chooses elements from exactly one source |
| 2128 | /// vector without lane crossings. A shuffle using this mask is not |
| 2129 | /// necessarily a no-op because it may change the number of elements from its |
| 2130 | /// input vectors or it may provide demanded bits knowledge via undef lanes. |
| 2131 | /// Example: <undef,undef,2,3> |
| 2132 | static bool isIdentityMask(ArrayRef<int> Mask); |
| 2133 | static bool isIdentityMask(const Constant *Mask) { |
| 2134 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
| 2135 | SmallVector<int, 16> MaskAsInts; |
| 2136 | getShuffleMask(Mask, MaskAsInts); |
| 2137 | return isIdentityMask(MaskAsInts); |
| 2138 | } |
| 2139 | |
| 2140 | /// Return true if this shuffle chooses elements from exactly one source |
| 2141 | /// vector without lane crossings and does not change the number of elements |
| 2142 | /// from its input vectors. |
| 2143 | /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef> |
| 2144 | bool isIdentity() const { |
| 2145 | return !changesLength() && isIdentityMask(ShuffleMask); |
| 2146 | } |
| 2147 | |
| 2148 | /// Return true if this shuffle lengthens exactly one source vector with |
| 2149 | /// undefs in the high elements. |
| 2150 | bool isIdentityWithPadding() const; |
| 2151 | |
| 2152 | /// Return true if this shuffle extracts the first N elements of exactly one |
| 2153 | /// source vector. |
| 2154 | bool isIdentityWithExtract() const; |
| 2155 | |
| 2156 | /// Return true if this shuffle concatenates its 2 source vectors. This |
| 2157 | /// returns false if either input is undefined. In that case, the shuffle is |
| 2158 | /// is better classified as an identity with padding operation. |
| 2159 | bool isConcat() const; |
| 2160 | |
| 2161 | /// Return true if this shuffle mask chooses elements from its source vectors |
| 2162 | /// without lane crossings. A shuffle using this mask would be |
| 2163 | /// equivalent to a vector select with a constant condition operand. |
| 2164 | /// Example: <4,1,6,undef> |
| 2165 | /// This returns false if the mask does not choose from both input vectors. |
| 2166 | /// In that case, the shuffle is better classified as an identity shuffle. |
| 2167 | /// This assumes that vector operands are the same length as the mask |
| 2168 | /// (a length-changing shuffle can never be equivalent to a vector select). |
| 2169 | static bool isSelectMask(ArrayRef<int> Mask); |
| 2170 | static bool isSelectMask(const Constant *Mask) { |
| 2171 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
| 2172 | SmallVector<int, 16> MaskAsInts; |
| 2173 | getShuffleMask(Mask, MaskAsInts); |
| 2174 | return isSelectMask(MaskAsInts); |
| 2175 | } |
| 2176 | |
| 2177 | /// Return true if this shuffle chooses elements from its source vectors |
| 2178 | /// without lane crossings and all operands have the same number of elements. |
| 2179 | /// In other words, this shuffle is equivalent to a vector select with a |
| 2180 | /// constant condition operand. |
| 2181 | /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3> |
| 2182 | /// This returns false if the mask does not choose from both input vectors. |
| 2183 | /// In that case, the shuffle is better classified as an identity shuffle. |
| 2184 | /// TODO: Optionally allow length-changing shuffles. |
| 2185 | bool isSelect() const { |
| 2186 | return !changesLength() && isSelectMask(ShuffleMask); |
| 2187 | } |
| 2188 | |
| 2189 | /// Return true if this shuffle mask swaps the order of elements from exactly |
| 2190 | /// one source vector. |
| 2191 | /// Example: <7,6,undef,4> |
| 2192 | /// This assumes that vector operands are the same length as the mask. |
| 2193 | static bool isReverseMask(ArrayRef<int> Mask); |
| 2194 | static bool isReverseMask(const Constant *Mask) { |
| 2195 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
| 2196 | SmallVector<int, 16> MaskAsInts; |
| 2197 | getShuffleMask(Mask, MaskAsInts); |
| 2198 | return isReverseMask(MaskAsInts); |
| 2199 | } |
| 2200 | |
| 2201 | /// Return true if this shuffle swaps the order of elements from exactly |
| 2202 | /// one source vector. |
| 2203 | /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef> |
| 2204 | /// TODO: Optionally allow length-changing shuffles. |
| 2205 | bool isReverse() const { |
| 2206 | return !changesLength() && isReverseMask(ShuffleMask); |
| 2207 | } |
| 2208 | |
| 2209 | /// Return true if this shuffle mask chooses all elements with the same value |
| 2210 | /// as the first element of exactly one source vector. |
| 2211 | /// Example: <4,undef,undef,4> |
| 2212 | /// This assumes that vector operands are the same length as the mask. |
| 2213 | static bool isZeroEltSplatMask(ArrayRef<int> Mask); |
| 2214 | static bool isZeroEltSplatMask(const Constant *Mask) { |
| 2215 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
| 2216 | SmallVector<int, 16> MaskAsInts; |
| 2217 | getShuffleMask(Mask, MaskAsInts); |
| 2218 | return isZeroEltSplatMask(MaskAsInts); |
| 2219 | } |
| 2220 | |
| 2221 | /// Return true if all elements of this shuffle are the same value as the |
| 2222 | /// first element of exactly one source vector without changing the length |
| 2223 | /// of that vector. |
| 2224 | /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0> |
| 2225 | /// TODO: Optionally allow length-changing shuffles. |
| 2226 | /// TODO: Optionally allow splats from other elements. |
| 2227 | bool isZeroEltSplat() const { |
| 2228 | return !changesLength() && isZeroEltSplatMask(ShuffleMask); |
| 2229 | } |
| 2230 | |
| 2231 | /// Return true if this shuffle mask is a transpose mask. |
| 2232 | /// Transpose vector masks transpose a 2xn matrix. They read corresponding |
| 2233 | /// even- or odd-numbered vector elements from two n-dimensional source |
| 2234 | /// vectors and write each result into consecutive elements of an |
| 2235 | /// n-dimensional destination vector. Two shuffles are necessary to complete |
| 2236 | /// the transpose, one for the even elements and another for the odd elements. |
| 2237 | /// This description closely follows how the TRN1 and TRN2 AArch64 |
| 2238 | /// instructions operate. |
| 2239 | /// |
| 2240 | /// For example, a simple 2x2 matrix can be transposed with: |
| 2241 | /// |
| 2242 | /// ; Original matrix |
| 2243 | /// m0 = < a, b > |
| 2244 | /// m1 = < c, d > |
| 2245 | /// |
| 2246 | /// ; Transposed matrix |
| 2247 | /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 > |
| 2248 | /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 > |
| 2249 | /// |
| 2250 | /// For matrices having greater than n columns, the resulting nx2 transposed |
| 2251 | /// matrix is stored in two result vectors such that one vector contains |
| 2252 | /// interleaved elements from all the even-numbered rows and the other vector |
| 2253 | /// contains interleaved elements from all the odd-numbered rows. For example, |
| 2254 | /// a 2x4 matrix can be transposed with: |
| 2255 | /// |
| 2256 | /// ; Original matrix |
| 2257 | /// m0 = < a, b, c, d > |
| 2258 | /// m1 = < e, f, g, h > |
| 2259 | /// |
| 2260 | /// ; Transposed matrix |
| 2261 | /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 > |
| 2262 | /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 > |
| 2263 | static bool isTransposeMask(ArrayRef<int> Mask); |
| 2264 | static bool isTransposeMask(const Constant *Mask) { |
| 2265 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
| 2266 | SmallVector<int, 16> MaskAsInts; |
| 2267 | getShuffleMask(Mask, MaskAsInts); |
| 2268 | return isTransposeMask(MaskAsInts); |
| 2269 | } |
| 2270 | |
| 2271 | /// Return true if this shuffle transposes the elements of its inputs without |
| 2272 | /// changing the length of the vectors. This operation may also be known as a |
| 2273 | /// merge or interleave. See the description for isTransposeMask() for the |
| 2274 | /// exact specification. |
| 2275 | /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6> |
| 2276 | bool isTranspose() const { |
| 2277 | return !changesLength() && isTransposeMask(ShuffleMask); |
| 2278 | } |
| 2279 | |
| 2280 | /// Return true if this shuffle mask is an extract subvector mask. |
| 2281 | /// A valid extract subvector mask returns a smaller vector from a single |
| 2282 | /// source operand. The base extraction index is returned as well. |
| 2283 | static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts, |
| 2284 | int &Index); |
| 2285 | static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts, |
| 2286 | int &Index) { |
| 2287 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
| 2288 | // Not possible to express a shuffle mask for a scalable vector for this |
| 2289 | // case. |
| 2290 | if (isa<ScalableVectorType>(Mask->getType())) |
| 2291 | return false; |
| 2292 | SmallVector<int, 16> MaskAsInts; |
| 2293 | getShuffleMask(Mask, MaskAsInts); |
| 2294 | return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index); |
| 2295 | } |
| 2296 | |
| 2297 | /// Return true if this shuffle mask is an extract subvector mask. |
| 2298 | bool isExtractSubvectorMask(int &Index) const { |
| 2299 | // Not possible to express a shuffle mask for a scalable vector for this |
| 2300 | // case. |
| 2301 | if (isa<ScalableVectorType>(getType())) |
| 2302 | return false; |
| 2303 | |
| 2304 | int NumSrcElts = |
| 2305 | cast<FixedVectorType>(Op<0>()->getType())->getNumElements(); |
| 2306 | return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index); |
| 2307 | } |
| 2308 | |
| 2309 | /// Change values in a shuffle permute mask assuming the two vector operands |
| 2310 | /// of length InVecNumElts have swapped position. |
| 2311 | static void commuteShuffleMask(MutableArrayRef<int> Mask, |
| 2312 | unsigned InVecNumElts) { |
| 2313 | for (int &Idx : Mask) { |
| 2314 | if (Idx == -1) |
| 2315 | continue; |
| 2316 | Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts; |
| 2317 | assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&((void)0) |
| 2318 | "shufflevector mask index out of range")((void)0); |
| 2319 | } |
| 2320 | } |
| 2321 | |
| 2322 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 2323 | static bool classof(const Instruction *I) { |
| 2324 | return I->getOpcode() == Instruction::ShuffleVector; |
| 2325 | } |
| 2326 | static bool classof(const Value *V) { |
| 2327 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 2328 | } |
| 2329 | }; |
| 2330 | |
| 2331 | template <> |
| 2332 | struct OperandTraits<ShuffleVectorInst> |
| 2333 | : public FixedNumOperandTraits<ShuffleVectorInst, 2> {}; |
| 2334 | |
| 2335 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)ShuffleVectorInst::op_iterator ShuffleVectorInst::op_begin() { return OperandTraits<ShuffleVectorInst>::op_begin(this ); } ShuffleVectorInst::const_op_iterator ShuffleVectorInst:: op_begin() const { return OperandTraits<ShuffleVectorInst> ::op_begin(const_cast<ShuffleVectorInst*>(this)); } ShuffleVectorInst ::op_iterator ShuffleVectorInst::op_end() { return OperandTraits <ShuffleVectorInst>::op_end(this); } ShuffleVectorInst:: const_op_iterator ShuffleVectorInst::op_end() const { return OperandTraits <ShuffleVectorInst>::op_end(const_cast<ShuffleVectorInst *>(this)); } Value *ShuffleVectorInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<ShuffleVectorInst>::op_begin(const_cast <ShuffleVectorInst*>(this))[i_nocapture].get()); } void ShuffleVectorInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<ShuffleVectorInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned ShuffleVectorInst ::getNumOperands() const { return OperandTraits<ShuffleVectorInst >::operands(this); } template <int Idx_nocapture> Use &ShuffleVectorInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & ShuffleVectorInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
| 2336 | |
| 2337 | //===----------------------------------------------------------------------===// |
| 2338 | // ExtractValueInst Class |
| 2339 | //===----------------------------------------------------------------------===// |
| 2340 | |
| 2341 | /// This instruction extracts a struct member or array |
| 2342 | /// element value from an aggregate value. |
| 2343 | /// |
| 2344 | class ExtractValueInst : public UnaryInstruction { |
| 2345 | SmallVector<unsigned, 4> Indices; |
| 2346 | |
| 2347 | ExtractValueInst(const ExtractValueInst &EVI); |
| 2348 | |
| 2349 | /// Constructors - Create a extractvalue instruction with a base aggregate |
| 2350 | /// value and a list of indices. The first ctor can optionally insert before |
| 2351 | /// an existing instruction, the second appends the new instruction to the |
| 2352 | /// specified BasicBlock. |
| 2353 | inline ExtractValueInst(Value *Agg, |
| 2354 | ArrayRef<unsigned> Idxs, |
| 2355 | const Twine &NameStr, |
| 2356 | Instruction *InsertBefore); |
| 2357 | inline ExtractValueInst(Value *Agg, |
| 2358 | ArrayRef<unsigned> Idxs, |
| 2359 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 2360 | |
| 2361 | void init(ArrayRef<unsigned> Idxs, const Twine &NameStr); |
| 2362 | |
| 2363 | protected: |
| 2364 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 2365 | friend class Instruction; |
| 2366 | |
| 2367 | ExtractValueInst *cloneImpl() const; |
| 2368 | |
| 2369 | public: |
| 2370 | static ExtractValueInst *Create(Value *Agg, |
| 2371 | ArrayRef<unsigned> Idxs, |
| 2372 | const Twine &NameStr = "", |
| 2373 | Instruction *InsertBefore = nullptr) { |
| 2374 | return new |
| 2375 | ExtractValueInst(Agg, Idxs, NameStr, InsertBefore); |
| 2376 | } |
| 2377 | |
| 2378 | static ExtractValueInst *Create(Value *Agg, |
| 2379 | ArrayRef<unsigned> Idxs, |
| 2380 | const Twine &NameStr, |
| 2381 | BasicBlock *InsertAtEnd) { |
| 2382 | return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd); |
| 2383 | } |
| 2384 | |
| 2385 | /// Returns the type of the element that would be extracted |
| 2386 | /// with an extractvalue instruction with the specified parameters. |
| 2387 | /// |
| 2388 | /// Null is returned if the indices are invalid for the specified type. |
| 2389 | static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs); |
| 2390 | |
| 2391 | using idx_iterator = const unsigned*; |
| 2392 | |
| 2393 | inline idx_iterator idx_begin() const { return Indices.begin(); } |
| 2394 | inline idx_iterator idx_end() const { return Indices.end(); } |
| 2395 | inline iterator_range<idx_iterator> indices() const { |
| 2396 | return make_range(idx_begin(), idx_end()); |
| 2397 | } |
| 2398 | |
| 2399 | Value *getAggregateOperand() { |
| 2400 | return getOperand(0); |
| 2401 | } |
| 2402 | const Value *getAggregateOperand() const { |
| 2403 | return getOperand(0); |
| 2404 | } |
| 2405 | static unsigned getAggregateOperandIndex() { |
| 2406 | return 0U; // get index for modifying correct operand |
| 2407 | } |
| 2408 | |
| 2409 | ArrayRef<unsigned> getIndices() const { |
| 2410 | return Indices; |
| 2411 | } |
| 2412 | |
| 2413 | unsigned getNumIndices() const { |
| 2414 | return (unsigned)Indices.size(); |
| 2415 | } |
| 2416 | |
| 2417 | bool hasIndices() const { |
| 2418 | return true; |
| 2419 | } |
| 2420 | |
| 2421 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 2422 | static bool classof(const Instruction *I) { |
| 2423 | return I->getOpcode() == Instruction::ExtractValue; |
| 2424 | } |
| 2425 | static bool classof(const Value *V) { |
| 2426 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 2427 | } |
| 2428 | }; |
| 2429 | |
| 2430 | ExtractValueInst::ExtractValueInst(Value *Agg, |
| 2431 | ArrayRef<unsigned> Idxs, |
| 2432 | const Twine &NameStr, |
| 2433 | Instruction *InsertBefore) |
| 2434 | : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)), |
| 2435 | ExtractValue, Agg, InsertBefore) { |
| 2436 | init(Idxs, NameStr); |
| 2437 | } |
| 2438 | |
| 2439 | ExtractValueInst::ExtractValueInst(Value *Agg, |
| 2440 | ArrayRef<unsigned> Idxs, |
| 2441 | const Twine &NameStr, |
| 2442 | BasicBlock *InsertAtEnd) |
| 2443 | : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)), |
| 2444 | ExtractValue, Agg, InsertAtEnd) { |
| 2445 | init(Idxs, NameStr); |
| 2446 | } |
| 2447 | |
| 2448 | //===----------------------------------------------------------------------===// |
| 2449 | // InsertValueInst Class |
| 2450 | //===----------------------------------------------------------------------===// |
| 2451 | |
| 2452 | /// This instruction inserts a struct field of array element |
| 2453 | /// value into an aggregate value. |
| 2454 | /// |
| 2455 | class InsertValueInst : public Instruction { |
| 2456 | SmallVector<unsigned, 4> Indices; |
| 2457 | |
| 2458 | InsertValueInst(const InsertValueInst &IVI); |
| 2459 | |
| 2460 | /// Constructors - Create a insertvalue instruction with a base aggregate |
| 2461 | /// value, a value to insert, and a list of indices. The first ctor can |
| 2462 | /// optionally insert before an existing instruction, the second appends |
| 2463 | /// the new instruction to the specified BasicBlock. |
| 2464 | inline InsertValueInst(Value *Agg, Value *Val, |
| 2465 | ArrayRef<unsigned> Idxs, |
| 2466 | const Twine &NameStr, |
| 2467 | Instruction *InsertBefore); |
| 2468 | inline InsertValueInst(Value *Agg, Value *Val, |
| 2469 | ArrayRef<unsigned> Idxs, |
| 2470 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 2471 | |
| 2472 | /// Constructors - These two constructors are convenience methods because one |
| 2473 | /// and two index insertvalue instructions are so common. |
| 2474 | InsertValueInst(Value *Agg, Value *Val, unsigned Idx, |
| 2475 | const Twine &NameStr = "", |
| 2476 | Instruction *InsertBefore = nullptr); |
| 2477 | InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr, |
| 2478 | BasicBlock *InsertAtEnd); |
| 2479 | |
| 2480 | void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, |
| 2481 | const Twine &NameStr); |
| 2482 | |
| 2483 | protected: |
| 2484 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 2485 | friend class Instruction; |
| 2486 | |
| 2487 | InsertValueInst *cloneImpl() const; |
| 2488 | |
| 2489 | public: |
| 2490 | // allocate space for exactly two operands |
| 2491 | void *operator new(size_t S) { return User::operator new(S, 2); } |
| 2492 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 2493 | |
| 2494 | static InsertValueInst *Create(Value *Agg, Value *Val, |
| 2495 | ArrayRef<unsigned> Idxs, |
| 2496 | const Twine &NameStr = "", |
| 2497 | Instruction *InsertBefore = nullptr) { |
| 2498 | return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore); |
| 2499 | } |
| 2500 | |
| 2501 | static InsertValueInst *Create(Value *Agg, Value *Val, |
| 2502 | ArrayRef<unsigned> Idxs, |
| 2503 | const Twine &NameStr, |
| 2504 | BasicBlock *InsertAtEnd) { |
| 2505 | return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd); |
| 2506 | } |
| 2507 | |
| 2508 | /// Transparently provide more efficient getOperand methods. |
| 2509 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 2510 | |
| 2511 | using idx_iterator = const unsigned*; |
| 2512 | |
| 2513 | inline idx_iterator idx_begin() const { return Indices.begin(); } |
| 2514 | inline idx_iterator idx_end() const { return Indices.end(); } |
| 2515 | inline iterator_range<idx_iterator> indices() const { |
| 2516 | return make_range(idx_begin(), idx_end()); |
| 2517 | } |
| 2518 | |
| 2519 | Value *getAggregateOperand() { |
| 2520 | return getOperand(0); |
| 2521 | } |
| 2522 | const Value *getAggregateOperand() const { |
| 2523 | return getOperand(0); |
| 2524 | } |
| 2525 | static unsigned getAggregateOperandIndex() { |
| 2526 | return 0U; // get index for modifying correct operand |
| 2527 | } |
| 2528 | |
| 2529 | Value *getInsertedValueOperand() { |
| 2530 | return getOperand(1); |
| 2531 | } |
| 2532 | const Value *getInsertedValueOperand() const { |
| 2533 | return getOperand(1); |
| 2534 | } |
| 2535 | static unsigned getInsertedValueOperandIndex() { |
| 2536 | return 1U; // get index for modifying correct operand |
| 2537 | } |
| 2538 | |
| 2539 | ArrayRef<unsigned> getIndices() const { |
| 2540 | return Indices; |
| 2541 | } |
| 2542 | |
| 2543 | unsigned getNumIndices() const { |
| 2544 | return (unsigned)Indices.size(); |
| 2545 | } |
| 2546 | |
| 2547 | bool hasIndices() const { |
| 2548 | return true; |
| 2549 | } |
| 2550 | |
| 2551 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 2552 | static bool classof(const Instruction *I) { |
| 2553 | return I->getOpcode() == Instruction::InsertValue; |
| 2554 | } |
| 2555 | static bool classof(const Value *V) { |
| 2556 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 2557 | } |
| 2558 | }; |
| 2559 | |
| 2560 | template <> |
| 2561 | struct OperandTraits<InsertValueInst> : |
| 2562 | public FixedNumOperandTraits<InsertValueInst, 2> { |
| 2563 | }; |
| 2564 | |
| 2565 | InsertValueInst::InsertValueInst(Value *Agg, |
| 2566 | Value *Val, |
| 2567 | ArrayRef<unsigned> Idxs, |
| 2568 | const Twine &NameStr, |
| 2569 | Instruction *InsertBefore) |
| 2570 | : Instruction(Agg->getType(), InsertValue, |
| 2571 | OperandTraits<InsertValueInst>::op_begin(this), |
| 2572 | 2, InsertBefore) { |
| 2573 | init(Agg, Val, Idxs, NameStr); |
| 2574 | } |
| 2575 | |
| 2576 | InsertValueInst::InsertValueInst(Value *Agg, |
| 2577 | Value *Val, |
| 2578 | ArrayRef<unsigned> Idxs, |
| 2579 | const Twine &NameStr, |
| 2580 | BasicBlock *InsertAtEnd) |
| 2581 | : Instruction(Agg->getType(), InsertValue, |
| 2582 | OperandTraits<InsertValueInst>::op_begin(this), |
| 2583 | 2, InsertAtEnd) { |
| 2584 | init(Agg, Val, Idxs, NameStr); |
| 2585 | } |
| 2586 | |
| 2587 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)InsertValueInst::op_iterator InsertValueInst::op_begin() { return OperandTraits<InsertValueInst>::op_begin(this); } InsertValueInst ::const_op_iterator InsertValueInst::op_begin() const { return OperandTraits<InsertValueInst>::op_begin(const_cast< InsertValueInst*>(this)); } InsertValueInst::op_iterator InsertValueInst ::op_end() { return OperandTraits<InsertValueInst>::op_end (this); } InsertValueInst::const_op_iterator InsertValueInst:: op_end() const { return OperandTraits<InsertValueInst>:: op_end(const_cast<InsertValueInst*>(this)); } Value *InsertValueInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<InsertValueInst>::op_begin (const_cast<InsertValueInst*>(this))[i_nocapture].get() ); } void InsertValueInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<InsertValueInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned InsertValueInst::getNumOperands() const { return OperandTraits <InsertValueInst>::operands(this); } template <int Idx_nocapture > Use &InsertValueInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &InsertValueInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
| 2588 | |
| 2589 | //===----------------------------------------------------------------------===// |
| 2590 | // PHINode Class |
| 2591 | //===----------------------------------------------------------------------===// |
| 2592 | |
| 2593 | // PHINode - The PHINode class is used to represent the magical mystical PHI |
| 2594 | // node, that can not exist in nature, but can be synthesized in a computer |
| 2595 | // scientist's overactive imagination. |
| 2596 | // |
| 2597 | class PHINode : public Instruction { |
| 2598 | /// The number of operands actually allocated. NumOperands is |
| 2599 | /// the number actually in use. |
| 2600 | unsigned ReservedSpace; |
| 2601 | |
| 2602 | PHINode(const PHINode &PN); |
| 2603 | |
| 2604 | explicit PHINode(Type *Ty, unsigned NumReservedValues, |
| 2605 | const Twine &NameStr = "", |
| 2606 | Instruction *InsertBefore = nullptr) |
| 2607 | : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore), |
| 2608 | ReservedSpace(NumReservedValues) { |
| 2609 | assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")((void)0); |
| 2610 | setName(NameStr); |
| 2611 | allocHungoffUses(ReservedSpace); |
| 2612 | } |
| 2613 | |
| 2614 | PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr, |
| 2615 | BasicBlock *InsertAtEnd) |
| 2616 | : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd), |
| 2617 | ReservedSpace(NumReservedValues) { |
| 2618 | assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")((void)0); |
| 2619 | setName(NameStr); |
| 2620 | allocHungoffUses(ReservedSpace); |
| 2621 | } |
| 2622 | |
| 2623 | protected: |
| 2624 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 2625 | friend class Instruction; |
| 2626 | |
| 2627 | PHINode *cloneImpl() const; |
| 2628 | |
| 2629 | // allocHungoffUses - this is more complicated than the generic |
| 2630 | // User::allocHungoffUses, because we have to allocate Uses for the incoming |
| 2631 | // values and pointers to the incoming blocks, all in one allocation. |
| 2632 | void allocHungoffUses(unsigned N) { |
| 2633 | User::allocHungoffUses(N, /* IsPhi */ true); |
| 2634 | } |
| 2635 | |
| 2636 | public: |
| 2637 | /// Constructors - NumReservedValues is a hint for the number of incoming |
| 2638 | /// edges that this phi node will have (use 0 if you really have no idea). |
| 2639 | static PHINode *Create(Type *Ty, unsigned NumReservedValues, |
| 2640 | const Twine &NameStr = "", |
| 2641 | Instruction *InsertBefore = nullptr) { |
| 2642 | return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore); |
| 2643 | } |
| 2644 | |
| 2645 | static PHINode *Create(Type *Ty, unsigned NumReservedValues, |
| 2646 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 2647 | return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd); |
| 2648 | } |
| 2649 | |
| 2650 | /// Provide fast operand accessors |
| 2651 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 2652 | |
| 2653 | // Block iterator interface. This provides access to the list of incoming |
| 2654 | // basic blocks, which parallels the list of incoming values. |
| 2655 | |
| 2656 | using block_iterator = BasicBlock **; |
| 2657 | using const_block_iterator = BasicBlock * const *; |
| 2658 | |
| 2659 | block_iterator block_begin() { |
| 2660 | return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace); |
| 2661 | } |
| 2662 | |
| 2663 | const_block_iterator block_begin() const { |
| 2664 | return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace); |
| 2665 | } |
| 2666 | |
| 2667 | block_iterator block_end() { |
| 2668 | return block_begin() + getNumOperands(); |
| 2669 | } |
| 2670 | |
| 2671 | const_block_iterator block_end() const { |
| 2672 | return block_begin() + getNumOperands(); |
| 2673 | } |
| 2674 | |
| 2675 | iterator_range<block_iterator> blocks() { |
| 2676 | return make_range(block_begin(), block_end()); |
| 2677 | } |
| 2678 | |
| 2679 | iterator_range<const_block_iterator> blocks() const { |
| 2680 | return make_range(block_begin(), block_end()); |
| 2681 | } |
| 2682 | |
| 2683 | op_range incoming_values() { return operands(); } |
| 2684 | |
| 2685 | const_op_range incoming_values() const { return operands(); } |
| 2686 | |
| 2687 | /// Return the number of incoming edges |
| 2688 | /// |
| 2689 | unsigned getNumIncomingValues() const { return getNumOperands(); } |
| 2690 | |
| 2691 | /// Return incoming value number x |
| 2692 | /// |
| 2693 | Value *getIncomingValue(unsigned i) const { |
| 2694 | return getOperand(i); |
| 2695 | } |
| 2696 | void setIncomingValue(unsigned i, Value *V) { |
| 2697 | assert(V && "PHI node got a null value!")((void)0); |
| 2698 | assert(getType() == V->getType() &&((void)0) |
| 2699 | "All operands to PHI node must be the same type as the PHI node!")((void)0); |
| 2700 | setOperand(i, V); |
| 2701 | } |
| 2702 | |
| 2703 | static unsigned getOperandNumForIncomingValue(unsigned i) { |
| 2704 | return i; |
| 2705 | } |
| 2706 | |
| 2707 | static unsigned getIncomingValueNumForOperand(unsigned i) { |
| 2708 | return i; |
| 2709 | } |
| 2710 | |
| 2711 | /// Return incoming basic block number @p i. |
| 2712 | /// |
| 2713 | BasicBlock *getIncomingBlock(unsigned i) const { |
| 2714 | return block_begin()[i]; |
| 2715 | } |
| 2716 | |
| 2717 | /// Return incoming basic block corresponding |
| 2718 | /// to an operand of the PHI. |
| 2719 | /// |
| 2720 | BasicBlock *getIncomingBlock(const Use &U) const { |
| 2721 | assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?")((void)0); |
| 2722 | return getIncomingBlock(unsigned(&U - op_begin())); |
| 2723 | } |
| 2724 | |
| 2725 | /// Return incoming basic block corresponding |
| 2726 | /// to value use iterator. |
| 2727 | /// |
| 2728 | BasicBlock *getIncomingBlock(Value::const_user_iterator I) const { |
| 2729 | return getIncomingBlock(I.getUse()); |
| 2730 | } |
| 2731 | |
| 2732 | void setIncomingBlock(unsigned i, BasicBlock *BB) { |
| 2733 | assert(BB && "PHI node got a null basic block!")((void)0); |
| 2734 | block_begin()[i] = BB; |
| 2735 | } |
| 2736 | |
| 2737 | /// Replace every incoming basic block \p Old to basic block \p New. |
| 2738 | void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) { |
| 2739 | assert(New && Old && "PHI node got a null basic block!")((void)0); |
| 2740 | for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op) |
| 2741 | if (getIncomingBlock(Op) == Old) |
| 2742 | setIncomingBlock(Op, New); |
| 2743 | } |
| 2744 | |
| 2745 | /// Add an incoming value to the end of the PHI list |
| 2746 | /// |
| 2747 | void addIncoming(Value *V, BasicBlock *BB) { |
| 2748 | if (getNumOperands() == ReservedSpace) |
| 2749 | growOperands(); // Get more space! |
| 2750 | // Initialize some new operands. |
| 2751 | setNumHungOffUseOperands(getNumOperands() + 1); |
| 2752 | setIncomingValue(getNumOperands() - 1, V); |
| 2753 | setIncomingBlock(getNumOperands() - 1, BB); |
| 2754 | } |
| 2755 | |
| 2756 | /// Remove an incoming value. This is useful if a |
| 2757 | /// predecessor basic block is deleted. The value removed is returned. |
| 2758 | /// |
| 2759 | /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty |
| 2760 | /// is true), the PHI node is destroyed and any uses of it are replaced with |
| 2761 | /// dummy values. The only time there should be zero incoming values to a PHI |
| 2762 | /// node is when the block is dead, so this strategy is sound. |
| 2763 | /// |
| 2764 | Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true); |
| 2765 | |
| 2766 | Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) { |
| 2767 | int Idx = getBasicBlockIndex(BB); |
| 2768 | assert(Idx >= 0 && "Invalid basic block argument to remove!")((void)0); |
| 2769 | return removeIncomingValue(Idx, DeletePHIIfEmpty); |
| 2770 | } |
| 2771 | |
| 2772 | /// Return the first index of the specified basic |
| 2773 | /// block in the value list for this PHI. Returns -1 if no instance. |
| 2774 | /// |
| 2775 | int getBasicBlockIndex(const BasicBlock *BB) const { |
| 2776 | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) |
| 2777 | if (block_begin()[i] == BB) |
| 2778 | return i; |
| 2779 | return -1; |
| 2780 | } |
| 2781 | |
| 2782 | Value *getIncomingValueForBlock(const BasicBlock *BB) const { |
| 2783 | int Idx = getBasicBlockIndex(BB); |
| 2784 | assert(Idx >= 0 && "Invalid basic block argument!")((void)0); |
| 2785 | return getIncomingValue(Idx); |
| 2786 | } |
| 2787 | |
| 2788 | /// Set every incoming value(s) for block \p BB to \p V. |
| 2789 | void setIncomingValueForBlock(const BasicBlock *BB, Value *V) { |
| 2790 | assert(BB && "PHI node got a null basic block!")((void)0); |
| 2791 | bool Found = false; |
| 2792 | for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op) |
| 2793 | if (getIncomingBlock(Op) == BB) { |
| 2794 | Found = true; |
| 2795 | setIncomingValue(Op, V); |
| 2796 | } |
| 2797 | (void)Found; |
| 2798 | assert(Found && "Invalid basic block argument to set!")((void)0); |
| 2799 | } |
| 2800 | |
| 2801 | /// If the specified PHI node always merges together the |
| 2802 | /// same value, return the value, otherwise return null. |
| 2803 | Value *hasConstantValue() const; |
| 2804 | |
| 2805 | /// Whether the specified PHI node always merges |
| 2806 | /// together the same value, assuming undefs are equal to a unique |
| 2807 | /// non-undef value. |
| 2808 | bool hasConstantOrUndefValue() const; |
| 2809 | |
| 2810 | /// If the PHI node is complete which means all of its parent's predecessors |
| 2811 | /// have incoming value in this PHI, return true, otherwise return false. |
| 2812 | bool isComplete() const { |
| 2813 | return llvm::all_of(predecessors(getParent()), |
| 2814 | [this](const BasicBlock *Pred) { |
| 2815 | return getBasicBlockIndex(Pred) >= 0; |
| 2816 | }); |
| 2817 | } |
| 2818 | |
| 2819 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 2820 | static bool classof(const Instruction *I) { |
| 2821 | return I->getOpcode() == Instruction::PHI; |
| 2822 | } |
| 2823 | static bool classof(const Value *V) { |
| 2824 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 2825 | } |
| 2826 | |
| 2827 | private: |
| 2828 | void growOperands(); |
| 2829 | }; |
| 2830 | |
| 2831 | template <> |
| 2832 | struct OperandTraits<PHINode> : public HungoffOperandTraits<2> { |
| 2833 | }; |
| 2834 | |
| 2835 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)PHINode::op_iterator PHINode::op_begin() { return OperandTraits <PHINode>::op_begin(this); } PHINode::const_op_iterator PHINode::op_begin() const { return OperandTraits<PHINode> ::op_begin(const_cast<PHINode*>(this)); } PHINode::op_iterator PHINode::op_end() { return OperandTraits<PHINode>::op_end (this); } PHINode::const_op_iterator PHINode::op_end() const { return OperandTraits<PHINode>::op_end(const_cast<PHINode *>(this)); } Value *PHINode::getOperand(unsigned i_nocapture ) const { ((void)0); return cast_or_null<Value>( OperandTraits <PHINode>::op_begin(const_cast<PHINode*>(this))[i_nocapture ].get()); } void PHINode::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<PHINode>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned PHINode::getNumOperands () const { return OperandTraits<PHINode>::operands(this ); } template <int Idx_nocapture> Use &PHINode::Op( ) { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &PHINode::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
| 2836 | |
| 2837 | //===----------------------------------------------------------------------===// |
| 2838 | // LandingPadInst Class |
| 2839 | //===----------------------------------------------------------------------===// |
| 2840 | |
| 2841 | //===--------------------------------------------------------------------------- |
| 2842 | /// The landingpad instruction holds all of the information |
| 2843 | /// necessary to generate correct exception handling. The landingpad instruction |
| 2844 | /// cannot be moved from the top of a landing pad block, which itself is |
| 2845 | /// accessible only from the 'unwind' edge of an invoke. This uses the |
| 2846 | /// SubclassData field in Value to store whether or not the landingpad is a |
| 2847 | /// cleanup. |
| 2848 | /// |
| 2849 | class LandingPadInst : public Instruction { |
| 2850 | using CleanupField = BoolBitfieldElementT<0>; |
| 2851 | |
| 2852 | /// The number of operands actually allocated. NumOperands is |
| 2853 | /// the number actually in use. |
| 2854 | unsigned ReservedSpace; |
| 2855 | |
| 2856 | LandingPadInst(const LandingPadInst &LP); |
| 2857 | |
| 2858 | public: |
| 2859 | enum ClauseType { Catch, Filter }; |
| 2860 | |
| 2861 | private: |
| 2862 | explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues, |
| 2863 | const Twine &NameStr, Instruction *InsertBefore); |
| 2864 | explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues, |
| 2865 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 2866 | |
| 2867 | // Allocate space for exactly zero operands. |
| 2868 | void *operator new(size_t S) { return User::operator new(S); } |
| 2869 | |
| 2870 | void growOperands(unsigned Size); |
| 2871 | void init(unsigned NumReservedValues, const Twine &NameStr); |
| 2872 | |
| 2873 | protected: |
| 2874 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 2875 | friend class Instruction; |
| 2876 | |
| 2877 | LandingPadInst *cloneImpl() const; |
| 2878 | |
| 2879 | public: |
| 2880 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 2881 | |
| 2882 | /// Constructors - NumReservedClauses is a hint for the number of incoming |
| 2883 | /// clauses that this landingpad will have (use 0 if you really have no idea). |
| 2884 | static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses, |
| 2885 | const Twine &NameStr = "", |
| 2886 | Instruction *InsertBefore = nullptr); |
| 2887 | static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses, |
| 2888 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 2889 | |
| 2890 | /// Provide fast operand accessors |
| 2891 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 2892 | |
| 2893 | /// Return 'true' if this landingpad instruction is a |
| 2894 | /// cleanup. I.e., it should be run when unwinding even if its landing pad |
| 2895 | /// doesn't catch the exception. |
| 2896 | bool isCleanup() const { return getSubclassData<CleanupField>(); } |
| 2897 | |
| 2898 | /// Indicate that this landingpad instruction is a cleanup. |
| 2899 | void setCleanup(bool V) { setSubclassData<CleanupField>(V); } |
| 2900 | |
| 2901 | /// Add a catch or filter clause to the landing pad. |
| 2902 | void addClause(Constant *ClauseVal); |
| 2903 | |
| 2904 | /// Get the value of the clause at index Idx. Use isCatch/isFilter to |
| 2905 | /// determine what type of clause this is. |
| 2906 | Constant *getClause(unsigned Idx) const { |
| 2907 | return cast<Constant>(getOperandList()[Idx]); |
| 2908 | } |
| 2909 | |
| 2910 | /// Return 'true' if the clause and index Idx is a catch clause. |
| 2911 | bool isCatch(unsigned Idx) const { |
| 2912 | return !isa<ArrayType>(getOperandList()[Idx]->getType()); |
| 2913 | } |
| 2914 | |
| 2915 | /// Return 'true' if the clause and index Idx is a filter clause. |
| 2916 | bool isFilter(unsigned Idx) const { |
| 2917 | return isa<ArrayType>(getOperandList()[Idx]->getType()); |
| 2918 | } |
| 2919 | |
| 2920 | /// Get the number of clauses for this landing pad. |
| 2921 | unsigned getNumClauses() const { return getNumOperands(); } |
| 2922 | |
| 2923 | /// Grow the size of the operand list to accommodate the new |
| 2924 | /// number of clauses. |
| 2925 | void reserveClauses(unsigned Size) { growOperands(Size); } |
| 2926 | |
| 2927 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 2928 | static bool classof(const Instruction *I) { |
| 2929 | return I->getOpcode() == Instruction::LandingPad; |
| 2930 | } |
| 2931 | static bool classof(const Value *V) { |
| 2932 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 2933 | } |
| 2934 | }; |
| 2935 | |
| 2936 | template <> |
| 2937 | struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> { |
| 2938 | }; |
| 2939 | |
| 2940 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)LandingPadInst::op_iterator LandingPadInst::op_begin() { return OperandTraits<LandingPadInst>::op_begin(this); } LandingPadInst ::const_op_iterator LandingPadInst::op_begin() const { return OperandTraits<LandingPadInst>::op_begin(const_cast< LandingPadInst*>(this)); } LandingPadInst::op_iterator LandingPadInst ::op_end() { return OperandTraits<LandingPadInst>::op_end (this); } LandingPadInst::const_op_iterator LandingPadInst::op_end () const { return OperandTraits<LandingPadInst>::op_end (const_cast<LandingPadInst*>(this)); } Value *LandingPadInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<LandingPadInst>::op_begin( const_cast<LandingPadInst*>(this))[i_nocapture].get()); } void LandingPadInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<LandingPadInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned LandingPadInst::getNumOperands() const { return OperandTraits <LandingPadInst>::operands(this); } template <int Idx_nocapture > Use &LandingPadInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &LandingPadInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
| 2941 | |
| 2942 | //===----------------------------------------------------------------------===// |
| 2943 | // ReturnInst Class |
| 2944 | //===----------------------------------------------------------------------===// |
| 2945 | |
| 2946 | //===--------------------------------------------------------------------------- |
| 2947 | /// Return a value (possibly void), from a function. Execution |
| 2948 | /// does not continue in this function any longer. |
| 2949 | /// |
| 2950 | class ReturnInst : public Instruction { |
| 2951 | ReturnInst(const ReturnInst &RI); |
| 2952 | |
| 2953 | private: |
| 2954 | // ReturnInst constructors: |
| 2955 | // ReturnInst() - 'ret void' instruction |
| 2956 | // ReturnInst( null) - 'ret void' instruction |
| 2957 | // ReturnInst(Value* X) - 'ret X' instruction |
| 2958 | // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I |
| 2959 | // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I |
| 2960 | // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B |
| 2961 | // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B |
| 2962 | // |
| 2963 | // NOTE: If the Value* passed is of type void then the constructor behaves as |
| 2964 | // if it was passed NULL. |
| 2965 | explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr, |
| 2966 | Instruction *InsertBefore = nullptr); |
| 2967 | ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd); |
| 2968 | explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd); |
| 2969 | |
| 2970 | protected: |
| 2971 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 2972 | friend class Instruction; |
| 2973 | |
| 2974 | ReturnInst *cloneImpl() const; |
| 2975 | |
| 2976 | public: |
| 2977 | static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr, |
| 2978 | Instruction *InsertBefore = nullptr) { |
| 2979 | return new(!!retVal) ReturnInst(C, retVal, InsertBefore); |
| 2980 | } |
| 2981 | |
| 2982 | static ReturnInst* Create(LLVMContext &C, Value *retVal, |
| 2983 | BasicBlock *InsertAtEnd) { |
| 2984 | return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd); |
| 2985 | } |
| 2986 | |
| 2987 | static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) { |
| 2988 | return new(0) ReturnInst(C, InsertAtEnd); |
| 2989 | } |
| 2990 | |
| 2991 | /// Provide fast operand accessors |
| 2992 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 2993 | |
| 2994 | /// Convenience accessor. Returns null if there is no return value. |
| 2995 | Value *getReturnValue() const { |
| 2996 | return getNumOperands() != 0 ? getOperand(0) : nullptr; |
| 2997 | } |
| 2998 | |
| 2999 | unsigned getNumSuccessors() const { return 0; } |
| 3000 | |
| 3001 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 3002 | static bool classof(const Instruction *I) { |
| 3003 | return (I->getOpcode() == Instruction::Ret); |
| 3004 | } |
| 3005 | static bool classof(const Value *V) { |
| 3006 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 3007 | } |
| 3008 | |
| 3009 | private: |
| 3010 | BasicBlock *getSuccessor(unsigned idx) const { |
| 3011 | llvm_unreachable("ReturnInst has no successors!")__builtin_unreachable(); |
| 3012 | } |
| 3013 | |
| 3014 | void setSuccessor(unsigned idx, BasicBlock *B) { |
| 3015 | llvm_unreachable("ReturnInst has no successors!")__builtin_unreachable(); |
| 3016 | } |
| 3017 | }; |
| 3018 | |
| 3019 | template <> |
| 3020 | struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> { |
| 3021 | }; |
| 3022 | |
| 3023 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)ReturnInst::op_iterator ReturnInst::op_begin() { return OperandTraits <ReturnInst>::op_begin(this); } ReturnInst::const_op_iterator ReturnInst::op_begin() const { return OperandTraits<ReturnInst >::op_begin(const_cast<ReturnInst*>(this)); } ReturnInst ::op_iterator ReturnInst::op_end() { return OperandTraits< ReturnInst>::op_end(this); } ReturnInst::const_op_iterator ReturnInst::op_end() const { return OperandTraits<ReturnInst >::op_end(const_cast<ReturnInst*>(this)); } Value *ReturnInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<ReturnInst>::op_begin(const_cast <ReturnInst*>(this))[i_nocapture].get()); } void ReturnInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<ReturnInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned ReturnInst::getNumOperands() const { return OperandTraits<ReturnInst>::operands(this); } template <int Idx_nocapture> Use &ReturnInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &ReturnInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
| 3024 | |
| 3025 | //===----------------------------------------------------------------------===// |
| 3026 | // BranchInst Class |
| 3027 | //===----------------------------------------------------------------------===// |
| 3028 | |
| 3029 | //===--------------------------------------------------------------------------- |
| 3030 | /// Conditional or Unconditional Branch instruction. |
| 3031 | /// |
| 3032 | class BranchInst : public Instruction { |
| 3033 | /// Ops list - Branches are strange. The operands are ordered: |
| 3034 | /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because |
| 3035 | /// they don't have to check for cond/uncond branchness. These are mostly |
| 3036 | /// accessed relative from op_end(). |
| 3037 | BranchInst(const BranchInst &BI); |
| 3038 | // BranchInst constructors (where {B, T, F} are blocks, and C is a condition): |
| 3039 | // BranchInst(BB *B) - 'br B' |
| 3040 | // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F' |
| 3041 | // BranchInst(BB* B, Inst *I) - 'br B' insert before I |
| 3042 | // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I |
| 3043 | // BranchInst(BB* B, BB *I) - 'br B' insert at end |
| 3044 | // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end |
| 3045 | explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr); |
| 3046 | BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, |
| 3047 | Instruction *InsertBefore = nullptr); |
| 3048 | BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd); |
| 3049 | BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, |
| 3050 | BasicBlock *InsertAtEnd); |
| 3051 | |
| 3052 | void AssertOK(); |
| 3053 | |
| 3054 | protected: |
| 3055 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 3056 | friend class Instruction; |
| 3057 | |
| 3058 | BranchInst *cloneImpl() const; |
| 3059 | |
| 3060 | public: |
| 3061 | /// Iterator type that casts an operand to a basic block. |
| 3062 | /// |
| 3063 | /// This only makes sense because the successors are stored as adjacent |
| 3064 | /// operands for branch instructions. |
| 3065 | struct succ_op_iterator |
| 3066 | : iterator_adaptor_base<succ_op_iterator, value_op_iterator, |
| 3067 | std::random_access_iterator_tag, BasicBlock *, |
| 3068 | ptrdiff_t, BasicBlock *, BasicBlock *> { |
| 3069 | explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {} |
| 3070 | |
| 3071 | BasicBlock *operator*() const { return cast<BasicBlock>(*I); } |
| 3072 | BasicBlock *operator->() const { return operator*(); } |
| 3073 | }; |
| 3074 | |
| 3075 | /// The const version of `succ_op_iterator`. |
| 3076 | struct const_succ_op_iterator |
| 3077 | : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator, |
| 3078 | std::random_access_iterator_tag, |
| 3079 | const BasicBlock *, ptrdiff_t, const BasicBlock *, |
| 3080 | const BasicBlock *> { |
| 3081 | explicit const_succ_op_iterator(const_value_op_iterator I) |
| 3082 | : iterator_adaptor_base(I) {} |
| 3083 | |
| 3084 | const BasicBlock *operator*() const { return cast<BasicBlock>(*I); } |
| 3085 | const BasicBlock *operator->() const { return operator*(); } |
| 3086 | }; |
| 3087 | |
| 3088 | static BranchInst *Create(BasicBlock *IfTrue, |
| 3089 | Instruction *InsertBefore = nullptr) { |
| 3090 | return new(1) BranchInst(IfTrue, InsertBefore); |
| 3091 | } |
| 3092 | |
| 3093 | static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, |
| 3094 | Value *Cond, Instruction *InsertBefore = nullptr) { |
| 3095 | return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore); |
| 3096 | } |
| 3097 | |
| 3098 | static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) { |
| 3099 | return new(1) BranchInst(IfTrue, InsertAtEnd); |
| 3100 | } |
| 3101 | |
| 3102 | static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, |
| 3103 | Value *Cond, BasicBlock *InsertAtEnd) { |
| 3104 | return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd); |
| 3105 | } |
| 3106 | |
| 3107 | /// Transparently provide more efficient getOperand methods. |
| 3108 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 3109 | |
| 3110 | bool isUnconditional() const { return getNumOperands() == 1; } |
| 3111 | bool isConditional() const { return getNumOperands() == 3; } |
| 3112 | |
| 3113 | Value *getCondition() const { |
| 3114 | assert(isConditional() && "Cannot get condition of an uncond branch!")((void)0); |
| 3115 | return Op<-3>(); |
| 3116 | } |
| 3117 | |
| 3118 | void setCondition(Value *V) { |
| 3119 | assert(isConditional() && "Cannot set condition of unconditional branch!")((void)0); |
| 3120 | Op<-3>() = V; |
| 3121 | } |
| 3122 | |
| 3123 | unsigned getNumSuccessors() const { return 1+isConditional(); } |
| 3124 | |
| 3125 | BasicBlock *getSuccessor(unsigned i) const { |
| 3126 | assert(i < getNumSuccessors() && "Successor # out of range for Branch!")((void)0); |
| 3127 | return cast_or_null<BasicBlock>((&Op<-1>() - i)->get()); |
| 3128 | } |
| 3129 | |
| 3130 | void setSuccessor(unsigned idx, BasicBlock *NewSucc) { |
| 3131 | assert(idx < getNumSuccessors() && "Successor # out of range for Branch!")((void)0); |
| 3132 | *(&Op<-1>() - idx) = NewSucc; |
| 3133 | } |
| 3134 | |
| 3135 | /// Swap the successors of this branch instruction. |
| 3136 | /// |
| 3137 | /// Swaps the successors of the branch instruction. This also swaps any |
| 3138 | /// branch weight metadata associated with the instruction so that it |
| 3139 | /// continues to map correctly to each operand. |
| 3140 | void swapSuccessors(); |
| 3141 | |
| 3142 | iterator_range<succ_op_iterator> successors() { |
| 3143 | return make_range( |
| 3144 | succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)), |
| 3145 | succ_op_iterator(value_op_end())); |
| 3146 | } |
| 3147 | |
| 3148 | iterator_range<const_succ_op_iterator> successors() const { |
| 3149 | return make_range(const_succ_op_iterator( |
| 3150 | std::next(value_op_begin(), isConditional() ? 1 : 0)), |
| 3151 | const_succ_op_iterator(value_op_end())); |
| 3152 | } |
| 3153 | |
| 3154 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 3155 | static bool classof(const Instruction *I) { |
| 3156 | return (I->getOpcode() == Instruction::Br); |
| 3157 | } |
| 3158 | static bool classof(const Value *V) { |
| 3159 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 3160 | } |
| 3161 | }; |
| 3162 | |
| 3163 | template <> |
| 3164 | struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> { |
| 3165 | }; |
| 3166 | |
| 3167 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)BranchInst::op_iterator BranchInst::op_begin() { return OperandTraits <BranchInst>::op_begin(this); } BranchInst::const_op_iterator BranchInst::op_begin() const { return OperandTraits<BranchInst >::op_begin(const_cast<BranchInst*>(this)); } BranchInst ::op_iterator BranchInst::op_end() { return OperandTraits< BranchInst>::op_end(this); } BranchInst::const_op_iterator BranchInst::op_end() const { return OperandTraits<BranchInst >::op_end(const_cast<BranchInst*>(this)); } Value *BranchInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<BranchInst>::op_begin(const_cast <BranchInst*>(this))[i_nocapture].get()); } void BranchInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<BranchInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned BranchInst::getNumOperands() const { return OperandTraits<BranchInst>::operands(this); } template <int Idx_nocapture> Use &BranchInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &BranchInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
| 3168 | |
| 3169 | //===----------------------------------------------------------------------===// |
| 3170 | // SwitchInst Class |
| 3171 | //===----------------------------------------------------------------------===// |
| 3172 | |
| 3173 | //===--------------------------------------------------------------------------- |
| 3174 | /// Multiway switch |
| 3175 | /// |
| 3176 | class SwitchInst : public Instruction { |
| 3177 | unsigned ReservedSpace; |
| 3178 | |
| 3179 | // Operand[0] = Value to switch on |
| 3180 | // Operand[1] = Default basic block destination |
| 3181 | // Operand[2n ] = Value to match |
| 3182 | // Operand[2n+1] = BasicBlock to go to on match |
| 3183 | SwitchInst(const SwitchInst &SI); |
| 3184 | |
| 3185 | /// Create a new switch instruction, specifying a value to switch on and a |
| 3186 | /// default destination. The number of additional cases can be specified here |
| 3187 | /// to make memory allocation more efficient. This constructor can also |
| 3188 | /// auto-insert before another instruction. |
| 3189 | SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, |
| 3190 | Instruction *InsertBefore); |
| 3191 | |
| 3192 | /// Create a new switch instruction, specifying a value to switch on and a |
| 3193 | /// default destination. The number of additional cases can be specified here |
| 3194 | /// to make memory allocation more efficient. This constructor also |
| 3195 | /// auto-inserts at the end of the specified BasicBlock. |
| 3196 | SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, |
| 3197 | BasicBlock *InsertAtEnd); |
| 3198 | |
| 3199 | // allocate space for exactly zero operands |
| 3200 | void *operator new(size_t S) { return User::operator new(S); } |
| 3201 | |
| 3202 | void init(Value *Value, BasicBlock *Default, unsigned NumReserved); |
| 3203 | void growOperands(); |
| 3204 | |
| 3205 | protected: |
| 3206 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 3207 | friend class Instruction; |
| 3208 | |
| 3209 | SwitchInst *cloneImpl() const; |
| 3210 | |
| 3211 | public: |
| 3212 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 3213 | |
| 3214 | // -2 |
| 3215 | static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1); |
| 3216 | |
| 3217 | template <typename CaseHandleT> class CaseIteratorImpl; |
| 3218 | |
| 3219 | /// A handle to a particular switch case. It exposes a convenient interface |
| 3220 | /// to both the case value and the successor block. |
| 3221 | /// |
| 3222 | /// We define this as a template and instantiate it to form both a const and |
| 3223 | /// non-const handle. |
| 3224 | template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT> |
| 3225 | class CaseHandleImpl { |
| 3226 | // Directly befriend both const and non-const iterators. |
| 3227 | friend class SwitchInst::CaseIteratorImpl< |
| 3228 | CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>; |
| 3229 | |
| 3230 | protected: |
| 3231 | // Expose the switch type we're parameterized with to the iterator. |
| 3232 | using SwitchInstType = SwitchInstT; |
| 3233 | |
| 3234 | SwitchInstT *SI; |
| 3235 | ptrdiff_t Index; |
| 3236 | |
| 3237 | CaseHandleImpl() = default; |
| 3238 | CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {} |
| 3239 | |
| 3240 | public: |
| 3241 | /// Resolves case value for current case. |
| 3242 | ConstantIntT *getCaseValue() const { |
| 3243 | assert((unsigned)Index < SI->getNumCases() &&((void)0) |
| 3244 | "Index out the number of cases.")((void)0); |
| 3245 | return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2)); |
| 3246 | } |
| 3247 | |
| 3248 | /// Resolves successor for current case. |
| 3249 | BasicBlockT *getCaseSuccessor() const { |
| 3250 | assert(((unsigned)Index < SI->getNumCases() ||((void)0) |
| 3251 | (unsigned)Index == DefaultPseudoIndex) &&((void)0) |
| 3252 | "Index out the number of cases.")((void)0); |
| 3253 | return SI->getSuccessor(getSuccessorIndex()); |
| 3254 | } |
| 3255 | |
| 3256 | /// Returns number of current case. |
| 3257 | unsigned getCaseIndex() const { return Index; } |
| 3258 | |
| 3259 | /// Returns successor index for current case successor. |
| 3260 | unsigned getSuccessorIndex() const { |
| 3261 | assert(((unsigned)Index == DefaultPseudoIndex ||((void)0) |
| 3262 | (unsigned)Index < SI->getNumCases()) &&((void)0) |
| 3263 | "Index out the number of cases.")((void)0); |
| 3264 | return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0; |
| 3265 | } |
| 3266 | |
| 3267 | bool operator==(const CaseHandleImpl &RHS) const { |
| 3268 | assert(SI == RHS.SI && "Incompatible operators.")((void)0); |
| 3269 | return Index == RHS.Index; |
| 3270 | } |
| 3271 | }; |
| 3272 | |
| 3273 | using ConstCaseHandle = |
| 3274 | CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>; |
| 3275 | |
| 3276 | class CaseHandle |
| 3277 | : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> { |
| 3278 | friend class SwitchInst::CaseIteratorImpl<CaseHandle>; |
| 3279 | |
| 3280 | public: |
| 3281 | CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {} |
| 3282 | |
| 3283 | /// Sets the new value for current case. |
| 3284 | void setValue(ConstantInt *V) { |
| 3285 | assert((unsigned)Index < SI->getNumCases() &&((void)0) |
| 3286 | "Index out the number of cases.")((void)0); |
| 3287 | SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V)); |
| 3288 | } |
| 3289 | |
| 3290 | /// Sets the new successor for current case. |
| 3291 | void setSuccessor(BasicBlock *S) { |
| 3292 | SI->setSuccessor(getSuccessorIndex(), S); |
| 3293 | } |
| 3294 | }; |
| 3295 | |
| 3296 | template <typename CaseHandleT> |
| 3297 | class CaseIteratorImpl |
| 3298 | : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>, |
| 3299 | std::random_access_iterator_tag, |
| 3300 | CaseHandleT> { |
| 3301 | using SwitchInstT = typename CaseHandleT::SwitchInstType; |
| 3302 | |
| 3303 | CaseHandleT Case; |
| 3304 | |
| 3305 | public: |
| 3306 | /// Default constructed iterator is in an invalid state until assigned to |
| 3307 | /// a case for a particular switch. |
| 3308 | CaseIteratorImpl() = default; |
| 3309 | |
| 3310 | /// Initializes case iterator for given SwitchInst and for given |
| 3311 | /// case number. |
| 3312 | CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {} |
| 3313 | |
| 3314 | /// Initializes case iterator for given SwitchInst and for given |
| 3315 | /// successor index. |
| 3316 | static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI, |
| 3317 | unsigned SuccessorIndex) { |
| 3318 | assert(SuccessorIndex < SI->getNumSuccessors() &&((void)0) |
| 3319 | "Successor index # out of range!")((void)0); |
| 3320 | return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1) |
| 3321 | : CaseIteratorImpl(SI, DefaultPseudoIndex); |
| 3322 | } |
| 3323 | |
| 3324 | /// Support converting to the const variant. This will be a no-op for const |
| 3325 | /// variant. |
| 3326 | operator CaseIteratorImpl<ConstCaseHandle>() const { |
| 3327 | return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index); |
| 3328 | } |
| 3329 | |
| 3330 | CaseIteratorImpl &operator+=(ptrdiff_t N) { |
| 3331 | // Check index correctness after addition. |
| 3332 | // Note: Index == getNumCases() means end(). |
| 3333 | assert(Case.Index + N >= 0 &&((void)0) |
| 3334 | (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&((void)0) |
| 3335 | "Case.Index out the number of cases.")((void)0); |
| 3336 | Case.Index += N; |
| 3337 | return *this; |
| 3338 | } |
| 3339 | CaseIteratorImpl &operator-=(ptrdiff_t N) { |
| 3340 | // Check index correctness after subtraction. |
| 3341 | // Note: Case.Index == getNumCases() means end(). |
| 3342 | assert(Case.Index - N >= 0 &&((void)0) |
| 3343 | (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&((void)0) |
| 3344 | "Case.Index out the number of cases.")((void)0); |
| 3345 | Case.Index -= N; |
| 3346 | return *this; |
| 3347 | } |
| 3348 | ptrdiff_t operator-(const CaseIteratorImpl &RHS) const { |
| 3349 | assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((void)0); |
| 3350 | return Case.Index - RHS.Case.Index; |
| 3351 | } |
| 3352 | bool operator==(const CaseIteratorImpl &RHS) const { |
| 3353 | return Case == RHS.Case; |
| 3354 | } |
| 3355 | bool operator<(const CaseIteratorImpl &RHS) const { |
| 3356 | assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((void)0); |
| 3357 | return Case.Index < RHS.Case.Index; |
| 3358 | } |
| 3359 | CaseHandleT &operator*() { return Case; } |
| 3360 | const CaseHandleT &operator*() const { return Case; } |
| 3361 | }; |
| 3362 | |
| 3363 | using CaseIt = CaseIteratorImpl<CaseHandle>; |
| 3364 | using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>; |
| 3365 | |
| 3366 | static SwitchInst *Create(Value *Value, BasicBlock *Default, |
| 3367 | unsigned NumCases, |
| 3368 | Instruction *InsertBefore = nullptr) { |
| 3369 | return new SwitchInst(Value, Default, NumCases, InsertBefore); |
| 3370 | } |
| 3371 | |
| 3372 | static SwitchInst *Create(Value *Value, BasicBlock *Default, |
| 3373 | unsigned NumCases, BasicBlock *InsertAtEnd) { |
| 3374 | return new SwitchInst(Value, Default, NumCases, InsertAtEnd); |
| 3375 | } |
| 3376 | |
| 3377 | /// Provide fast operand accessors |
| 3378 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 3379 | |
| 3380 | // Accessor Methods for Switch stmt |
| 3381 | Value *getCondition() const { return getOperand(0); } |
| 3382 | void setCondition(Value *V) { setOperand(0, V); } |
| 3383 | |
| 3384 | BasicBlock *getDefaultDest() const { |
| 3385 | return cast<BasicBlock>(getOperand(1)); |
| 3386 | } |
| 3387 | |
| 3388 | void setDefaultDest(BasicBlock *DefaultCase) { |
| 3389 | setOperand(1, reinterpret_cast<Value*>(DefaultCase)); |
| 3390 | } |
| 3391 | |
| 3392 | /// Return the number of 'cases' in this switch instruction, excluding the |
| 3393 | /// default case. |
| 3394 | unsigned getNumCases() const { |
| 3395 | return getNumOperands()/2 - 1; |
| 3396 | } |
| 3397 | |
| 3398 | /// Returns a read/write iterator that points to the first case in the |
| 3399 | /// SwitchInst. |
| 3400 | CaseIt case_begin() { |
| 3401 | return CaseIt(this, 0); |
| 3402 | } |
| 3403 | |
| 3404 | /// Returns a read-only iterator that points to the first case in the |
| 3405 | /// SwitchInst. |
| 3406 | ConstCaseIt case_begin() const { |
| 3407 | return ConstCaseIt(this, 0); |
| 3408 | } |
| 3409 | |
| 3410 | /// Returns a read/write iterator that points one past the last in the |
| 3411 | /// SwitchInst. |
| 3412 | CaseIt case_end() { |
| 3413 | return CaseIt(this, getNumCases()); |
| 3414 | } |
| 3415 | |
| 3416 | /// Returns a read-only iterator that points one past the last in the |
| 3417 | /// SwitchInst. |
| 3418 | ConstCaseIt case_end() const { |
| 3419 | return ConstCaseIt(this, getNumCases()); |
| 3420 | } |
| 3421 | |
| 3422 | /// Iteration adapter for range-for loops. |
| 3423 | iterator_range<CaseIt> cases() { |
| 3424 | return make_range(case_begin(), case_end()); |
| 3425 | } |
| 3426 | |
| 3427 | /// Constant iteration adapter for range-for loops. |
| 3428 | iterator_range<ConstCaseIt> cases() const { |
| 3429 | return make_range(case_begin(), case_end()); |
| 3430 | } |
| 3431 | |
| 3432 | /// Returns an iterator that points to the default case. |
| 3433 | /// Note: this iterator allows to resolve successor only. Attempt |
| 3434 | /// to resolve case value causes an assertion. |
| 3435 | /// Also note, that increment and decrement also causes an assertion and |
| 3436 | /// makes iterator invalid. |
| 3437 | CaseIt case_default() { |
| 3438 | return CaseIt(this, DefaultPseudoIndex); |
| 3439 | } |
| 3440 | ConstCaseIt case_default() const { |
| 3441 | return ConstCaseIt(this, DefaultPseudoIndex); |
| 3442 | } |
| 3443 | |
| 3444 | /// Search all of the case values for the specified constant. If it is |
| 3445 | /// explicitly handled, return the case iterator of it, otherwise return |
| 3446 | /// default case iterator to indicate that it is handled by the default |
| 3447 | /// handler. |
| 3448 | CaseIt findCaseValue(const ConstantInt *C) { |
| 3449 | CaseIt I = llvm::find_if( |
| 3450 | cases(), [C](CaseHandle &Case) { return Case.getCaseValue() == C; }); |
| 3451 | if (I != case_end()) |
| 3452 | return I; |
| 3453 | |
| 3454 | return case_default(); |
| 3455 | } |
| 3456 | ConstCaseIt findCaseValue(const ConstantInt *C) const { |
| 3457 | ConstCaseIt I = llvm::find_if(cases(), [C](ConstCaseHandle &Case) { |
| 3458 | return Case.getCaseValue() == C; |
| 3459 | }); |
| 3460 | if (I != case_end()) |
| 3461 | return I; |
| 3462 | |
| 3463 | return case_default(); |
| 3464 | } |
| 3465 | |
| 3466 | /// Finds the unique case value for a given successor. Returns null if the |
| 3467 | /// successor is not found, not unique, or is the default case. |
| 3468 | ConstantInt *findCaseDest(BasicBlock *BB) { |
| 3469 | if (BB == getDefaultDest()) |
| 3470 | return nullptr; |
| 3471 | |
| 3472 | ConstantInt *CI = nullptr; |
| 3473 | for (auto Case : cases()) { |
| 3474 | if (Case.getCaseSuccessor() != BB) |
| 3475 | continue; |
| 3476 | |
| 3477 | if (CI) |
| 3478 | return nullptr; // Multiple cases lead to BB. |
| 3479 | |
| 3480 | CI = Case.getCaseValue(); |
| 3481 | } |
| 3482 | |
| 3483 | return CI; |
| 3484 | } |
| 3485 | |
| 3486 | /// Add an entry to the switch instruction. |
| 3487 | /// Note: |
| 3488 | /// This action invalidates case_end(). Old case_end() iterator will |
| 3489 | /// point to the added case. |
| 3490 | void addCase(ConstantInt *OnVal, BasicBlock *Dest); |
| 3491 | |
| 3492 | /// This method removes the specified case and its successor from the switch |
| 3493 | /// instruction. Note that this operation may reorder the remaining cases at |
| 3494 | /// index idx and above. |
| 3495 | /// Note: |
| 3496 | /// This action invalidates iterators for all cases following the one removed, |
| 3497 | /// including the case_end() iterator. It returns an iterator for the next |
| 3498 | /// case. |
| 3499 | CaseIt removeCase(CaseIt I); |
| 3500 | |
| 3501 | unsigned getNumSuccessors() const { return getNumOperands()/2; } |
| 3502 | BasicBlock *getSuccessor(unsigned idx) const { |
| 3503 | assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!")((void)0); |
| 3504 | return cast<BasicBlock>(getOperand(idx*2+1)); |
| 3505 | } |
| 3506 | void setSuccessor(unsigned idx, BasicBlock *NewSucc) { |
| 3507 | assert(idx < getNumSuccessors() && "Successor # out of range for switch!")((void)0); |
| 3508 | setOperand(idx * 2 + 1, NewSucc); |
| 3509 | } |
| 3510 | |
| 3511 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 3512 | static bool classof(const Instruction *I) { |
| 3513 | return I->getOpcode() == Instruction::Switch; |
| 3514 | } |
| 3515 | static bool classof(const Value *V) { |
| 3516 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 3517 | } |
| 3518 | }; |
| 3519 | |
| 3520 | /// A wrapper class to simplify modification of SwitchInst cases along with |
| 3521 | /// their prof branch_weights metadata. |
| 3522 | class SwitchInstProfUpdateWrapper { |
| 3523 | SwitchInst &SI; |
| 3524 | Optional<SmallVector<uint32_t, 8> > Weights = None; |
| 3525 | bool Changed = false; |
| 3526 | |
| 3527 | protected: |
| 3528 | static MDNode *getProfBranchWeightsMD(const SwitchInst &SI); |
| 3529 | |
| 3530 | MDNode *buildProfBranchWeightsMD(); |
| 3531 | |
| 3532 | void init(); |
| 3533 | |
| 3534 | public: |
| 3535 | using CaseWeightOpt = Optional<uint32_t>; |
| 3536 | SwitchInst *operator->() { return &SI; } |
| 3537 | SwitchInst &operator*() { return SI; } |
| 3538 | operator SwitchInst *() { return &SI; } |
| 3539 | |
| 3540 | SwitchInstProfUpdateWrapper(SwitchInst &SI) : SI(SI) { init(); } |
| 3541 | |
| 3542 | ~SwitchInstProfUpdateWrapper() { |
| 3543 | if (Changed) |
| 3544 | SI.setMetadata(LLVMContext::MD_prof, buildProfBranchWeightsMD()); |
| 3545 | } |
| 3546 | |
| 3547 | /// Delegate the call to the underlying SwitchInst::removeCase() and remove |
| 3548 | /// correspondent branch weight. |
| 3549 | SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I); |
| 3550 | |
| 3551 | /// Delegate the call to the underlying SwitchInst::addCase() and set the |
| 3552 | /// specified branch weight for the added case. |
| 3553 | void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W); |
| 3554 | |
| 3555 | /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark |
| 3556 | /// this object to not touch the underlying SwitchInst in destructor. |
| 3557 | SymbolTableList<Instruction>::iterator eraseFromParent(); |
| 3558 | |
| 3559 | void setSuccessorWeight(unsigned idx, CaseWeightOpt W); |
| 3560 | CaseWeightOpt getSuccessorWeight(unsigned idx); |
| 3561 | |
| 3562 | static CaseWeightOpt getSuccessorWeight(const SwitchInst &SI, unsigned idx); |
| 3563 | }; |
| 3564 | |
| 3565 | template <> |
| 3566 | struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> { |
| 3567 | }; |
| 3568 | |
| 3569 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)SwitchInst::op_iterator SwitchInst::op_begin() { return OperandTraits <SwitchInst>::op_begin(this); } SwitchInst::const_op_iterator SwitchInst::op_begin() const { return OperandTraits<SwitchInst >::op_begin(const_cast<SwitchInst*>(this)); } SwitchInst ::op_iterator SwitchInst::op_end() { return OperandTraits< SwitchInst>::op_end(this); } SwitchInst::const_op_iterator SwitchInst::op_end() const { return OperandTraits<SwitchInst >::op_end(const_cast<SwitchInst*>(this)); } Value *SwitchInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<SwitchInst>::op_begin(const_cast <SwitchInst*>(this))[i_nocapture].get()); } void SwitchInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<SwitchInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned SwitchInst::getNumOperands() const { return OperandTraits<SwitchInst>::operands(this); } template <int Idx_nocapture> Use &SwitchInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &SwitchInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
| 3570 | |
| 3571 | //===----------------------------------------------------------------------===// |
| 3572 | // IndirectBrInst Class |
| 3573 | //===----------------------------------------------------------------------===// |
| 3574 | |
| 3575 | //===--------------------------------------------------------------------------- |
| 3576 | /// Indirect Branch Instruction. |
| 3577 | /// |
| 3578 | class IndirectBrInst : public Instruction { |
| 3579 | unsigned ReservedSpace; |
| 3580 | |
| 3581 | // Operand[0] = Address to jump to |
| 3582 | // Operand[n+1] = n-th destination |
| 3583 | IndirectBrInst(const IndirectBrInst &IBI); |
| 3584 | |
| 3585 | /// Create a new indirectbr instruction, specifying an |
| 3586 | /// Address to jump to. The number of expected destinations can be specified |
| 3587 | /// here to make memory allocation more efficient. This constructor can also |
| 3588 | /// autoinsert before another instruction. |
| 3589 | IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore); |
| 3590 | |
| 3591 | /// Create a new indirectbr instruction, specifying an |
| 3592 | /// Address to jump to. The number of expected destinations can be specified |
| 3593 | /// here to make memory allocation more efficient. This constructor also |
| 3594 | /// autoinserts at the end of the specified BasicBlock. |
| 3595 | IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd); |
| 3596 | |
| 3597 | // allocate space for exactly zero operands |
| 3598 | void *operator new(size_t S) { return User::operator new(S); } |
| 3599 | |
| 3600 | void init(Value *Address, unsigned NumDests); |
| 3601 | void growOperands(); |
| 3602 | |
| 3603 | protected: |
| 3604 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 3605 | friend class Instruction; |
| 3606 | |
| 3607 | IndirectBrInst *cloneImpl() const; |
| 3608 | |
| 3609 | public: |
| 3610 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 3611 | |
| 3612 | /// Iterator type that casts an operand to a basic block. |
| 3613 | /// |
| 3614 | /// This only makes sense because the successors are stored as adjacent |
| 3615 | /// operands for indirectbr instructions. |
| 3616 | struct succ_op_iterator |
| 3617 | : iterator_adaptor_base<succ_op_iterator, value_op_iterator, |
| 3618 | std::random_access_iterator_tag, BasicBlock *, |
| 3619 | ptrdiff_t, BasicBlock *, BasicBlock *> { |
| 3620 | explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {} |
| 3621 | |
| 3622 | BasicBlock *operator*() const { return cast<BasicBlock>(*I); } |
| 3623 | BasicBlock *operator->() const { return operator*(); } |
| 3624 | }; |
| 3625 | |
| 3626 | /// The const version of `succ_op_iterator`. |
| 3627 | struct const_succ_op_iterator |
| 3628 | : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator, |
| 3629 | std::random_access_iterator_tag, |
| 3630 | const BasicBlock *, ptrdiff_t, const BasicBlock *, |
| 3631 | const BasicBlock *> { |
| 3632 | explicit const_succ_op_iterator(const_value_op_iterator I) |
| 3633 | : iterator_adaptor_base(I) {} |
| 3634 | |
| 3635 | const BasicBlock *operator*() const { return cast<BasicBlock>(*I); } |
| 3636 | const BasicBlock *operator->() const { return operator*(); } |
| 3637 | }; |
| 3638 | |
| 3639 | static IndirectBrInst *Create(Value *Address, unsigned NumDests, |
| 3640 | Instruction *InsertBefore = nullptr) { |
| 3641 | return new IndirectBrInst(Address, NumDests, InsertBefore); |
| 3642 | } |
| 3643 | |
| 3644 | static IndirectBrInst *Create(Value *Address, unsigned NumDests, |
| 3645 | BasicBlock *InsertAtEnd) { |
| 3646 | return new IndirectBrInst(Address, NumDests, InsertAtEnd); |
| 3647 | } |
| 3648 | |
| 3649 | /// Provide fast operand accessors. |
| 3650 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 3651 | |
| 3652 | // Accessor Methods for IndirectBrInst instruction. |
| 3653 | Value *getAddress() { return getOperand(0); } |
| 3654 | const Value *getAddress() const { return getOperand(0); } |
| 3655 | void setAddress(Value *V) { setOperand(0, V); } |
| 3656 | |
| 3657 | /// return the number of possible destinations in this |
| 3658 | /// indirectbr instruction. |
| 3659 | unsigned getNumDestinations() const { return getNumOperands()-1; } |
| 3660 | |
| 3661 | /// Return the specified destination. |
| 3662 | BasicBlock *getDestination(unsigned i) { return getSuccessor(i); } |
| 3663 | const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); } |
| 3664 | |
| 3665 | /// Add a destination. |
| 3666 | /// |
| 3667 | void addDestination(BasicBlock *Dest); |
| 3668 | |
| 3669 | /// This method removes the specified successor from the |
| 3670 | /// indirectbr instruction. |
| 3671 | void removeDestination(unsigned i); |
| 3672 | |
| 3673 | unsigned getNumSuccessors() const { return getNumOperands()-1; } |
| 3674 | BasicBlock *getSuccessor(unsigned i) const { |
| 3675 | return cast<BasicBlock>(getOperand(i+1)); |
| 3676 | } |
| 3677 | void setSuccessor(unsigned i, BasicBlock *NewSucc) { |
| 3678 | setOperand(i + 1, NewSucc); |
| 3679 | } |
| 3680 | |
| 3681 | iterator_range<succ_op_iterator> successors() { |
| 3682 | return make_range(succ_op_iterator(std::next(value_op_begin())), |
| 3683 | succ_op_iterator(value_op_end())); |
| 3684 | } |
| 3685 | |
| 3686 | iterator_range<const_succ_op_iterator> successors() const { |
| 3687 | return make_range(const_succ_op_iterator(std::next(value_op_begin())), |
| 3688 | const_succ_op_iterator(value_op_end())); |
| 3689 | } |
| 3690 | |
| 3691 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 3692 | static bool classof(const Instruction *I) { |
| 3693 | return I->getOpcode() == Instruction::IndirectBr; |
| 3694 | } |
| 3695 | static bool classof(const Value *V) { |
| 3696 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 3697 | } |
| 3698 | }; |
| 3699 | |
| 3700 | template <> |
| 3701 | struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> { |
| 3702 | }; |
| 3703 | |
| 3704 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)IndirectBrInst::op_iterator IndirectBrInst::op_begin() { return OperandTraits<IndirectBrInst>::op_begin(this); } IndirectBrInst ::const_op_iterator IndirectBrInst::op_begin() const { return OperandTraits<IndirectBrInst>::op_begin(const_cast< IndirectBrInst*>(this)); } IndirectBrInst::op_iterator IndirectBrInst ::op_end() { return OperandTraits<IndirectBrInst>::op_end (this); } IndirectBrInst::const_op_iterator IndirectBrInst::op_end () const { return OperandTraits<IndirectBrInst>::op_end (const_cast<IndirectBrInst*>(this)); } Value *IndirectBrInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<IndirectBrInst>::op_begin( const_cast<IndirectBrInst*>(this))[i_nocapture].get()); } void IndirectBrInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<IndirectBrInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned IndirectBrInst::getNumOperands() const { return OperandTraits <IndirectBrInst>::operands(this); } template <int Idx_nocapture > Use &IndirectBrInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &IndirectBrInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
| 3705 | |
| 3706 | //===----------------------------------------------------------------------===// |
| 3707 | // InvokeInst Class |
| 3708 | //===----------------------------------------------------------------------===// |
| 3709 | |
| 3710 | /// Invoke instruction. The SubclassData field is used to hold the |
| 3711 | /// calling convention of the call. |
| 3712 | /// |
| 3713 | class InvokeInst : public CallBase { |
| 3714 | /// The number of operands for this call beyond the called function, |
| 3715 | /// arguments, and operand bundles. |
| 3716 | static constexpr int NumExtraOperands = 2; |
| 3717 | |
| 3718 | /// The index from the end of the operand array to the normal destination. |
| 3719 | static constexpr int NormalDestOpEndIdx = -3; |
| 3720 | |
| 3721 | /// The index from the end of the operand array to the unwind destination. |
| 3722 | static constexpr int UnwindDestOpEndIdx = -2; |
| 3723 | |
| 3724 | InvokeInst(const InvokeInst &BI); |
| 3725 | |
| 3726 | /// Construct an InvokeInst given a range of arguments. |
| 3727 | /// |
| 3728 | /// Construct an InvokeInst from a range of arguments |
| 3729 | inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3730 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3731 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 3732 | const Twine &NameStr, Instruction *InsertBefore); |
| 3733 | |
| 3734 | inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3735 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3736 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 3737 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 3738 | |
| 3739 | void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3740 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3741 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr); |
| 3742 | |
| 3743 | /// Compute the number of operands to allocate. |
| 3744 | static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) { |
| 3745 | // We need one operand for the called function, plus our extra operands and |
| 3746 | // the input operand counts provided. |
| 3747 | return 1 + NumExtraOperands + NumArgs + NumBundleInputs; |
| 3748 | } |
| 3749 | |
| 3750 | protected: |
| 3751 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 3752 | friend class Instruction; |
| 3753 | |
| 3754 | InvokeInst *cloneImpl() const; |
| 3755 | |
| 3756 | public: |
| 3757 | static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3758 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3759 | const Twine &NameStr, |
| 3760 | Instruction *InsertBefore = nullptr) { |
| 3761 | int NumOperands = ComputeNumOperands(Args.size()); |
| 3762 | return new (NumOperands) |
| 3763 | InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands, |
| 3764 | NameStr, InsertBefore); |
| 3765 | } |
| 3766 | |
| 3767 | static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3768 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3769 | ArrayRef<OperandBundleDef> Bundles = None, |
| 3770 | const Twine &NameStr = "", |
| 3771 | Instruction *InsertBefore = nullptr) { |
| 3772 | int NumOperands = |
| 3773 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); |
| 3774 | unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
| 3775 | |
| 3776 | return new (NumOperands, DescriptorBytes) |
| 3777 | InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands, |
| 3778 | NameStr, InsertBefore); |
| 3779 | } |
| 3780 | |
| 3781 | static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3782 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3783 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 3784 | int NumOperands = ComputeNumOperands(Args.size()); |
| 3785 | return new (NumOperands) |
| 3786 | InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands, |
| 3787 | NameStr, InsertAtEnd); |
| 3788 | } |
| 3789 | |
| 3790 | static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3791 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3792 | ArrayRef<OperandBundleDef> Bundles, |
| 3793 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 3794 | int NumOperands = |
| 3795 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); |
| 3796 | unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
| 3797 | |
| 3798 | return new (NumOperands, DescriptorBytes) |
| 3799 | InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands, |
| 3800 | NameStr, InsertAtEnd); |
| 3801 | } |
| 3802 | |
| 3803 | static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, |
| 3804 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3805 | const Twine &NameStr, |
| 3806 | Instruction *InsertBefore = nullptr) { |
| 3807 | return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, |
| 3808 | IfException, Args, None, NameStr, InsertBefore); |
| 3809 | } |
| 3810 | |
| 3811 | static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, |
| 3812 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3813 | ArrayRef<OperandBundleDef> Bundles = None, |
| 3814 | const Twine &NameStr = "", |
| 3815 | Instruction *InsertBefore = nullptr) { |
| 3816 | return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, |
| 3817 | IfException, Args, Bundles, NameStr, InsertBefore); |
| 3818 | } |
| 3819 | |
| 3820 | static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, |
| 3821 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3822 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 3823 | return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, |
| 3824 | IfException, Args, NameStr, InsertAtEnd); |
| 3825 | } |
| 3826 | |
| 3827 | static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, |
| 3828 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3829 | ArrayRef<OperandBundleDef> Bundles, |
| 3830 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 3831 | return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, |
| 3832 | IfException, Args, Bundles, NameStr, InsertAtEnd); |
| 3833 | } |
| 3834 | |
| 3835 | /// Create a clone of \p II with a different set of operand bundles and |
| 3836 | /// insert it before \p InsertPt. |
| 3837 | /// |
| 3838 | /// The returned invoke instruction is identical to \p II in every way except |
| 3839 | /// that the operand bundles for the new instruction are set to the operand |
| 3840 | /// bundles in \p Bundles. |
| 3841 | static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles, |
| 3842 | Instruction *InsertPt = nullptr); |
| 3843 | |
| 3844 | // get*Dest - Return the destination basic blocks... |
| 3845 | BasicBlock *getNormalDest() const { |
| 3846 | return cast<BasicBlock>(Op<NormalDestOpEndIdx>()); |
| 3847 | } |
| 3848 | BasicBlock *getUnwindDest() const { |
| 3849 | return cast<BasicBlock>(Op<UnwindDestOpEndIdx>()); |
| 3850 | } |
| 3851 | void setNormalDest(BasicBlock *B) { |
| 3852 | Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B); |
| 3853 | } |
| 3854 | void setUnwindDest(BasicBlock *B) { |
| 3855 | Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B); |
| 3856 | } |
| 3857 | |
| 3858 | /// Get the landingpad instruction from the landing pad |
| 3859 | /// block (the unwind destination). |
| 3860 | LandingPadInst *getLandingPadInst() const; |
| 3861 | |
| 3862 | BasicBlock *getSuccessor(unsigned i) const { |
| 3863 | assert(i < 2 && "Successor # out of range for invoke!")((void)0); |
| 3864 | return i == 0 ? getNormalDest() : getUnwindDest(); |
| 3865 | } |
| 3866 | |
| 3867 | void setSuccessor(unsigned i, BasicBlock *NewSucc) { |
| 3868 | assert(i < 2 && "Successor # out of range for invoke!")((void)0); |
| 3869 | if (i == 0) |
| 3870 | setNormalDest(NewSucc); |
| 3871 | else |
| 3872 | setUnwindDest(NewSucc); |
| 3873 | } |
| 3874 | |
| 3875 | unsigned getNumSuccessors() const { return 2; } |
| 3876 | |
| 3877 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 3878 | static bool classof(const Instruction *I) { |
| 3879 | return (I->getOpcode() == Instruction::Invoke); |
| 3880 | } |
| 3881 | static bool classof(const Value *V) { |
| 3882 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 3883 | } |
| 3884 | |
| 3885 | private: |
| 3886 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 3887 | // method so that subclasses cannot accidentally use it. |
| 3888 | template <typename Bitfield> |
| 3889 | void setSubclassData(typename Bitfield::Type Value) { |
| 3890 | Instruction::setSubclassData<Bitfield>(Value); |
| 3891 | } |
| 3892 | }; |
| 3893 | |
| 3894 | InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3895 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3896 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 3897 | const Twine &NameStr, Instruction *InsertBefore) |
| 3898 | : CallBase(Ty->getReturnType(), Instruction::Invoke, |
| 3899 | OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, |
| 3900 | InsertBefore) { |
| 3901 | init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr); |
| 3902 | } |
| 3903 | |
| 3904 | InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3905 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3906 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 3907 | const Twine &NameStr, BasicBlock *InsertAtEnd) |
| 3908 | : CallBase(Ty->getReturnType(), Instruction::Invoke, |
| 3909 | OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, |
| 3910 | InsertAtEnd) { |
| 3911 | init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr); |
| 3912 | } |
| 3913 | |
| 3914 | //===----------------------------------------------------------------------===// |
| 3915 | // CallBrInst Class |
| 3916 | //===----------------------------------------------------------------------===// |
| 3917 | |
| 3918 | /// CallBr instruction, tracking function calls that may not return control but |
| 3919 | /// instead transfer it to a third location. The SubclassData field is used to |
| 3920 | /// hold the calling convention of the call. |
| 3921 | /// |
| 3922 | class CallBrInst : public CallBase { |
| 3923 | |
| 3924 | unsigned NumIndirectDests; |
| 3925 | |
| 3926 | CallBrInst(const CallBrInst &BI); |
| 3927 | |
| 3928 | /// Construct a CallBrInst given a range of arguments. |
| 3929 | /// |
| 3930 | /// Construct a CallBrInst from a range of arguments |
| 3931 | inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, |
| 3932 | ArrayRef<BasicBlock *> IndirectDests, |
| 3933 | ArrayRef<Value *> Args, |
| 3934 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 3935 | const Twine &NameStr, Instruction *InsertBefore); |
| 3936 | |
| 3937 | inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, |
| 3938 | ArrayRef<BasicBlock *> IndirectDests, |
| 3939 | ArrayRef<Value *> Args, |
| 3940 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 3941 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 3942 | |
| 3943 | void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest, |
| 3944 | ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args, |
| 3945 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr); |
| 3946 | |
| 3947 | /// Should the Indirect Destinations change, scan + update the Arg list. |
| 3948 | void updateArgBlockAddresses(unsigned i, BasicBlock *B); |
| 3949 | |
| 3950 | /// Compute the number of operands to allocate. |
| 3951 | static int ComputeNumOperands(int NumArgs, int NumIndirectDests, |
| 3952 | int NumBundleInputs = 0) { |
| 3953 | // We need one operand for the called function, plus our extra operands and |
| 3954 | // the input operand counts provided. |
| 3955 | return 2 + NumIndirectDests + NumArgs + NumBundleInputs; |
| 3956 | } |
| 3957 | |
| 3958 | protected: |
| 3959 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 3960 | friend class Instruction; |
| 3961 | |
| 3962 | CallBrInst *cloneImpl() const; |
| 3963 | |
| 3964 | public: |
| 3965 | static CallBrInst *Create(FunctionType *Ty, Value *Func, |
| 3966 | BasicBlock *DefaultDest, |
| 3967 | ArrayRef<BasicBlock *> IndirectDests, |
| 3968 | ArrayRef<Value *> Args, const Twine &NameStr, |
| 3969 | Instruction *InsertBefore = nullptr) { |
| 3970 | int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size()); |
| 3971 | return new (NumOperands) |
| 3972 | CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None, |
| 3973 | NumOperands, NameStr, InsertBefore); |
| 3974 | } |
| 3975 | |
| 3976 | static CallBrInst *Create(FunctionType *Ty, Value *Func, |
| 3977 | BasicBlock *DefaultDest, |
| 3978 | ArrayRef<BasicBlock *> IndirectDests, |
| 3979 | ArrayRef<Value *> Args, |
| 3980 | ArrayRef<OperandBundleDef> Bundles = None, |
| 3981 | const Twine &NameStr = "", |
| 3982 | Instruction *InsertBefore = nullptr) { |
| 3983 | int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(), |
| 3984 | CountBundleInputs(Bundles)); |
| 3985 | unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
| 3986 | |
| 3987 | return new (NumOperands, DescriptorBytes) |
| 3988 | CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, |
| 3989 | NumOperands, NameStr, InsertBefore); |
| 3990 | } |
| 3991 | |
| 3992 | static CallBrInst *Create(FunctionType *Ty, Value *Func, |
| 3993 | BasicBlock *DefaultDest, |
| 3994 | ArrayRef<BasicBlock *> IndirectDests, |
| 3995 | ArrayRef<Value *> Args, const Twine &NameStr, |
| 3996 | BasicBlock *InsertAtEnd) { |
| 3997 | int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size()); |
| 3998 | return new (NumOperands) |
| 3999 | CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None, |
| 4000 | NumOperands, NameStr, InsertAtEnd); |
| 4001 | } |
| 4002 | |
| 4003 | static CallBrInst *Create(FunctionType *Ty, Value *Func, |
| 4004 | BasicBlock *DefaultDest, |
| 4005 | ArrayRef<BasicBlock *> IndirectDests, |
| 4006 | ArrayRef<Value *> Args, |
| 4007 | ArrayRef<OperandBundleDef> Bundles, |
| 4008 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 4009 | int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(), |
| 4010 | CountBundleInputs(Bundles)); |
| 4011 | unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
| 4012 | |
| 4013 | return new (NumOperands, DescriptorBytes) |
| 4014 | CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, |
| 4015 | NumOperands, NameStr, InsertAtEnd); |
| 4016 | } |
| 4017 | |
| 4018 | static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest, |
| 4019 | ArrayRef<BasicBlock *> IndirectDests, |
| 4020 | ArrayRef<Value *> Args, const Twine &NameStr, |
| 4021 | Instruction *InsertBefore = nullptr) { |
| 4022 | return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, |
| 4023 | IndirectDests, Args, NameStr, InsertBefore); |
| 4024 | } |
| 4025 | |
| 4026 | static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest, |
| 4027 | ArrayRef<BasicBlock *> IndirectDests, |
| 4028 | ArrayRef<Value *> Args, |
| 4029 | ArrayRef<OperandBundleDef> Bundles = None, |
| 4030 | const Twine &NameStr = "", |
| 4031 | Instruction *InsertBefore = nullptr) { |
| 4032 | return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, |
| 4033 | IndirectDests, Args, Bundles, NameStr, InsertBefore); |
| 4034 | } |
| 4035 | |
| 4036 | static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest, |
| 4037 | ArrayRef<BasicBlock *> IndirectDests, |
| 4038 | ArrayRef<Value *> Args, const Twine &NameStr, |
| 4039 | BasicBlock *InsertAtEnd) { |
| 4040 | return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, |
| 4041 | IndirectDests, Args, NameStr, InsertAtEnd); |
| 4042 | } |
| 4043 | |
| 4044 | static CallBrInst *Create(FunctionCallee Func, |
| 4045 | BasicBlock *DefaultDest, |
| 4046 | ArrayRef<BasicBlock *> IndirectDests, |
| 4047 | ArrayRef<Value *> Args, |
| 4048 | ArrayRef<OperandBundleDef> Bundles, |
| 4049 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 4050 | return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, |
| 4051 | IndirectDests, Args, Bundles, NameStr, InsertAtEnd); |
| 4052 | } |
| 4053 | |
| 4054 | /// Create a clone of \p CBI with a different set of operand bundles and |
| 4055 | /// insert it before \p InsertPt. |
| 4056 | /// |
| 4057 | /// The returned callbr instruction is identical to \p CBI in every way |
| 4058 | /// except that the operand bundles for the new instruction are set to the |
| 4059 | /// operand bundles in \p Bundles. |
| 4060 | static CallBrInst *Create(CallBrInst *CBI, |
| 4061 | ArrayRef<OperandBundleDef> Bundles, |
| 4062 | Instruction *InsertPt = nullptr); |
| 4063 | |
| 4064 | /// Return the number of callbr indirect dest labels. |
| 4065 | /// |
| 4066 | unsigned getNumIndirectDests() const { return NumIndirectDests; } |
| 4067 | |
| 4068 | /// getIndirectDestLabel - Return the i-th indirect dest label. |
| 4069 | /// |
| 4070 | Value *getIndirectDestLabel(unsigned i) const { |
| 4071 | assert(i < getNumIndirectDests() && "Out of bounds!")((void)0); |
| 4072 | return getOperand(i + getNumArgOperands() + getNumTotalBundleOperands() + |
| 4073 | 1); |
| 4074 | } |
| 4075 | |
| 4076 | Value *getIndirectDestLabelUse(unsigned i) const { |
| 4077 | assert(i < getNumIndirectDests() && "Out of bounds!")((void)0); |
| 4078 | return getOperandUse(i + getNumArgOperands() + getNumTotalBundleOperands() + |
| 4079 | 1); |
| 4080 | } |
| 4081 | |
| 4082 | // Return the destination basic blocks... |
| 4083 | BasicBlock *getDefaultDest() const { |
| 4084 | return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1)); |
| 4085 | } |
| 4086 | BasicBlock *getIndirectDest(unsigned i) const { |
| 4087 | return cast_or_null<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() + i)); |
| 4088 | } |
| 4089 | SmallVector<BasicBlock *, 16> getIndirectDests() const { |
| 4090 | SmallVector<BasicBlock *, 16> IndirectDests; |
| 4091 | for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i) |
| 4092 | IndirectDests.push_back(getIndirectDest(i)); |
| 4093 | return IndirectDests; |
| 4094 | } |
| 4095 | void setDefaultDest(BasicBlock *B) { |
| 4096 | *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B); |
| 4097 | } |
| 4098 | void setIndirectDest(unsigned i, BasicBlock *B) { |
| 4099 | updateArgBlockAddresses(i, B); |
| 4100 | *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B); |
| 4101 | } |
| 4102 | |
| 4103 | BasicBlock *getSuccessor(unsigned i) const { |
| 4104 | assert(i < getNumSuccessors() + 1 &&((void)0) |
| 4105 | "Successor # out of range for callbr!")((void)0); |
| 4106 | return i == 0 ? getDefaultDest() : getIndirectDest(i - 1); |
| 4107 | } |
| 4108 | |
| 4109 | void setSuccessor(unsigned i, BasicBlock *NewSucc) { |
| 4110 | assert(i < getNumIndirectDests() + 1 &&((void)0) |
| 4111 | "Successor # out of range for callbr!")((void)0); |
| 4112 | return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc); |
| 4113 | } |
| 4114 | |
| 4115 | unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; } |
| 4116 | |
| 4117 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4118 | static bool classof(const Instruction *I) { |
| 4119 | return (I->getOpcode() == Instruction::CallBr); |
| 4120 | } |
| 4121 | static bool classof(const Value *V) { |
| 4122 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4123 | } |
| 4124 | |
| 4125 | private: |
| 4126 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 4127 | // method so that subclasses cannot accidentally use it. |
| 4128 | template <typename Bitfield> |
| 4129 | void setSubclassData(typename Bitfield::Type Value) { |
| 4130 | Instruction::setSubclassData<Bitfield>(Value); |
| 4131 | } |
| 4132 | }; |
| 4133 | |
| 4134 | CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, |
| 4135 | ArrayRef<BasicBlock *> IndirectDests, |
| 4136 | ArrayRef<Value *> Args, |
| 4137 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 4138 | const Twine &NameStr, Instruction *InsertBefore) |
| 4139 | : CallBase(Ty->getReturnType(), Instruction::CallBr, |
| 4140 | OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, |
| 4141 | InsertBefore) { |
| 4142 | init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr); |
| 4143 | } |
| 4144 | |
| 4145 | CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, |
| 4146 | ArrayRef<BasicBlock *> IndirectDests, |
| 4147 | ArrayRef<Value *> Args, |
| 4148 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 4149 | const Twine &NameStr, BasicBlock *InsertAtEnd) |
| 4150 | : CallBase(Ty->getReturnType(), Instruction::CallBr, |
| 4151 | OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, |
| 4152 | InsertAtEnd) { |
| 4153 | init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr); |
| 4154 | } |
| 4155 | |
| 4156 | //===----------------------------------------------------------------------===// |
| 4157 | // ResumeInst Class |
| 4158 | //===----------------------------------------------------------------------===// |
| 4159 | |
| 4160 | //===--------------------------------------------------------------------------- |
| 4161 | /// Resume the propagation of an exception. |
| 4162 | /// |
| 4163 | class ResumeInst : public Instruction { |
| 4164 | ResumeInst(const ResumeInst &RI); |
| 4165 | |
| 4166 | explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr); |
| 4167 | ResumeInst(Value *Exn, BasicBlock *InsertAtEnd); |
| 4168 | |
| 4169 | protected: |
| 4170 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4171 | friend class Instruction; |
| 4172 | |
| 4173 | ResumeInst *cloneImpl() const; |
| 4174 | |
| 4175 | public: |
| 4176 | static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) { |
| 4177 | return new(1) ResumeInst(Exn, InsertBefore); |
| 4178 | } |
| 4179 | |
| 4180 | static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) { |
| 4181 | return new(1) ResumeInst(Exn, InsertAtEnd); |
| 4182 | } |
| 4183 | |
| 4184 | /// Provide fast operand accessors |
| 4185 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 4186 | |
| 4187 | /// Convenience accessor. |
| 4188 | Value *getValue() const { return Op<0>(); } |
| 4189 | |
| 4190 | unsigned getNumSuccessors() const { return 0; } |
| 4191 | |
| 4192 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4193 | static bool classof(const Instruction *I) { |
| 4194 | return I->getOpcode() == Instruction::Resume; |
| 4195 | } |
| 4196 | static bool classof(const Value *V) { |
| 4197 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4198 | } |
| 4199 | |
| 4200 | private: |
| 4201 | BasicBlock *getSuccessor(unsigned idx) const { |
| 4202 | llvm_unreachable("ResumeInst has no successors!")__builtin_unreachable(); |
| 4203 | } |
| 4204 | |
| 4205 | void setSuccessor(unsigned idx, BasicBlock *NewSucc) { |
| 4206 | llvm_unreachable("ResumeInst has no successors!")__builtin_unreachable(); |
| 4207 | } |
| 4208 | }; |
| 4209 | |
| 4210 | template <> |
| 4211 | struct OperandTraits<ResumeInst> : |
| 4212 | public FixedNumOperandTraits<ResumeInst, 1> { |
| 4213 | }; |
| 4214 | |
| 4215 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)ResumeInst::op_iterator ResumeInst::op_begin() { return OperandTraits <ResumeInst>::op_begin(this); } ResumeInst::const_op_iterator ResumeInst::op_begin() const { return OperandTraits<ResumeInst >::op_begin(const_cast<ResumeInst*>(this)); } ResumeInst ::op_iterator ResumeInst::op_end() { return OperandTraits< ResumeInst>::op_end(this); } ResumeInst::const_op_iterator ResumeInst::op_end() const { return OperandTraits<ResumeInst >::op_end(const_cast<ResumeInst*>(this)); } Value *ResumeInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<ResumeInst>::op_begin(const_cast <ResumeInst*>(this))[i_nocapture].get()); } void ResumeInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<ResumeInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned ResumeInst::getNumOperands() const { return OperandTraits<ResumeInst>::operands(this); } template <int Idx_nocapture> Use &ResumeInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &ResumeInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
| 4216 | |
| 4217 | //===----------------------------------------------------------------------===// |
| 4218 | // CatchSwitchInst Class |
| 4219 | //===----------------------------------------------------------------------===// |
| 4220 | class CatchSwitchInst : public Instruction { |
| 4221 | using UnwindDestField = BoolBitfieldElementT<0>; |
| 4222 | |
| 4223 | /// The number of operands actually allocated. NumOperands is |
| 4224 | /// the number actually in use. |
| 4225 | unsigned ReservedSpace; |
| 4226 | |
| 4227 | // Operand[0] = Outer scope |
| 4228 | // Operand[1] = Unwind block destination |
| 4229 | // Operand[n] = BasicBlock to go to on match |
| 4230 | CatchSwitchInst(const CatchSwitchInst &CSI); |
| 4231 | |
| 4232 | /// Create a new switch instruction, specifying a |
| 4233 | /// default destination. The number of additional handlers can be specified |
| 4234 | /// here to make memory allocation more efficient. |
| 4235 | /// This constructor can also autoinsert before another instruction. |
| 4236 | CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, |
| 4237 | unsigned NumHandlers, const Twine &NameStr, |
| 4238 | Instruction *InsertBefore); |
| 4239 | |
| 4240 | /// Create a new switch instruction, specifying a |
| 4241 | /// default destination. The number of additional handlers can be specified |
| 4242 | /// here to make memory allocation more efficient. |
| 4243 | /// This constructor also autoinserts at the end of the specified BasicBlock. |
| 4244 | CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, |
| 4245 | unsigned NumHandlers, const Twine &NameStr, |
| 4246 | BasicBlock *InsertAtEnd); |
| 4247 | |
| 4248 | // allocate space for exactly zero operands |
| 4249 | void *operator new(size_t S) { return User::operator new(S); } |
| 4250 | |
| 4251 | void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved); |
| 4252 | void growOperands(unsigned Size); |
| 4253 | |
| 4254 | protected: |
| 4255 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4256 | friend class Instruction; |
| 4257 | |
| 4258 | CatchSwitchInst *cloneImpl() const; |
| 4259 | |
| 4260 | public: |
| 4261 | void operator delete(void *Ptr) { return User::operator delete(Ptr); } |
| 4262 | |
| 4263 | static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest, |
| 4264 | unsigned NumHandlers, |
| 4265 | const Twine &NameStr = "", |
| 4266 | Instruction *InsertBefore = nullptr) { |
| 4267 | return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr, |
| 4268 | InsertBefore); |
| 4269 | } |
| 4270 | |
| 4271 | static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest, |
| 4272 | unsigned NumHandlers, const Twine &NameStr, |
| 4273 | BasicBlock *InsertAtEnd) { |
| 4274 | return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr, |
| 4275 | InsertAtEnd); |
| 4276 | } |
| 4277 | |
| 4278 | /// Provide fast operand accessors |
| 4279 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 4280 | |
| 4281 | // Accessor Methods for CatchSwitch stmt |
| 4282 | Value *getParentPad() const { return getOperand(0); } |
| 4283 | void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); } |
| 4284 | |
| 4285 | // Accessor Methods for CatchSwitch stmt |
| 4286 | bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); } |
| 4287 | bool unwindsToCaller() const { return !hasUnwindDest(); } |
| 4288 | BasicBlock *getUnwindDest() const { |
| 4289 | if (hasUnwindDest()) |
| 4290 | return cast<BasicBlock>(getOperand(1)); |
| 4291 | return nullptr; |
| 4292 | } |
| 4293 | void setUnwindDest(BasicBlock *UnwindDest) { |
| 4294 | assert(UnwindDest)((void)0); |
| 4295 | assert(hasUnwindDest())((void)0); |
| 4296 | setOperand(1, UnwindDest); |
| 4297 | } |
| 4298 | |
| 4299 | /// return the number of 'handlers' in this catchswitch |
| 4300 | /// instruction, except the default handler |
| 4301 | unsigned getNumHandlers() const { |
| 4302 | if (hasUnwindDest()) |
| 4303 | return getNumOperands() - 2; |
| 4304 | return getNumOperands() - 1; |
| 4305 | } |
| 4306 | |
| 4307 | private: |
| 4308 | static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); } |
| 4309 | static const BasicBlock *handler_helper(const Value *V) { |
| 4310 | return cast<BasicBlock>(V); |
| 4311 | } |
| 4312 | |
| 4313 | public: |
| 4314 | using DerefFnTy = BasicBlock *(*)(Value *); |
| 4315 | using handler_iterator = mapped_iterator<op_iterator, DerefFnTy>; |
| 4316 | using handler_range = iterator_range<handler_iterator>; |
| 4317 | using ConstDerefFnTy = const BasicBlock *(*)(const Value *); |
| 4318 | using const_handler_iterator = |
| 4319 | mapped_iterator<const_op_iterator, ConstDerefFnTy>; |
| 4320 | using const_handler_range = iterator_range<const_handler_iterator>; |
| 4321 | |
| 4322 | /// Returns an iterator that points to the first handler in CatchSwitchInst. |
| 4323 | handler_iterator handler_begin() { |
| 4324 | op_iterator It = op_begin() + 1; |
| 4325 | if (hasUnwindDest()) |
| 4326 | ++It; |
| 4327 | return handler_iterator(It, DerefFnTy(handler_helper)); |
| 4328 | } |
| 4329 | |
| 4330 | /// Returns an iterator that points to the first handler in the |
| 4331 | /// CatchSwitchInst. |
| 4332 | const_handler_iterator handler_begin() const { |
| 4333 | const_op_iterator It = op_begin() + 1; |
| 4334 | if (hasUnwindDest()) |
| 4335 | ++It; |
| 4336 | return const_handler_iterator(It, ConstDerefFnTy(handler_helper)); |
| 4337 | } |
| 4338 | |
| 4339 | /// Returns a read-only iterator that points one past the last |
| 4340 | /// handler in the CatchSwitchInst. |
| 4341 | handler_iterator handler_end() { |
| 4342 | return handler_iterator(op_end(), DerefFnTy(handler_helper)); |
| 4343 | } |
| 4344 | |
| 4345 | /// Returns an iterator that points one past the last handler in the |
| 4346 | /// CatchSwitchInst. |
| 4347 | const_handler_iterator handler_end() const { |
| 4348 | return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper)); |
| 4349 | } |
| 4350 | |
| 4351 | /// iteration adapter for range-for loops. |
| 4352 | handler_range handlers() { |
| 4353 | return make_range(handler_begin(), handler_end()); |
| 4354 | } |
| 4355 | |
| 4356 | /// iteration adapter for range-for loops. |
| 4357 | const_handler_range handlers() const { |
| 4358 | return make_range(handler_begin(), handler_end()); |
| 4359 | } |
| 4360 | |
| 4361 | /// Add an entry to the switch instruction... |
| 4362 | /// Note: |
| 4363 | /// This action invalidates handler_end(). Old handler_end() iterator will |
| 4364 | /// point to the added handler. |
| 4365 | void addHandler(BasicBlock *Dest); |
| 4366 | |
| 4367 | void removeHandler(handler_iterator HI); |
| 4368 | |
| 4369 | unsigned getNumSuccessors() const { return getNumOperands() - 1; } |
| 4370 | BasicBlock *getSuccessor(unsigned Idx) const { |
| 4371 | assert(Idx < getNumSuccessors() &&((void)0) |
| 4372 | "Successor # out of range for catchswitch!")((void)0); |
| 4373 | return cast<BasicBlock>(getOperand(Idx + 1)); |
| 4374 | } |
| 4375 | void setSuccessor(unsigned Idx, BasicBlock *NewSucc) { |
| 4376 | assert(Idx < getNumSuccessors() &&((void)0) |
| 4377 | "Successor # out of range for catchswitch!")((void)0); |
| 4378 | setOperand(Idx + 1, NewSucc); |
| 4379 | } |
| 4380 | |
| 4381 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4382 | static bool classof(const Instruction *I) { |
| 4383 | return I->getOpcode() == Instruction::CatchSwitch; |
| 4384 | } |
| 4385 | static bool classof(const Value *V) { |
| 4386 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4387 | } |
| 4388 | }; |
| 4389 | |
| 4390 | template <> |
| 4391 | struct OperandTraits<CatchSwitchInst> : public HungoffOperandTraits<2> {}; |
| 4392 | |
| 4393 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value)CatchSwitchInst::op_iterator CatchSwitchInst::op_begin() { return OperandTraits<CatchSwitchInst>::op_begin(this); } CatchSwitchInst ::const_op_iterator CatchSwitchInst::op_begin() const { return OperandTraits<CatchSwitchInst>::op_begin(const_cast< CatchSwitchInst*>(this)); } CatchSwitchInst::op_iterator CatchSwitchInst ::op_end() { return OperandTraits<CatchSwitchInst>::op_end (this); } CatchSwitchInst::const_op_iterator CatchSwitchInst:: op_end() const { return OperandTraits<CatchSwitchInst>:: op_end(const_cast<CatchSwitchInst*>(this)); } Value *CatchSwitchInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<CatchSwitchInst>::op_begin (const_cast<CatchSwitchInst*>(this))[i_nocapture].get() ); } void CatchSwitchInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<CatchSwitchInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned CatchSwitchInst::getNumOperands() const { return OperandTraits <CatchSwitchInst>::operands(this); } template <int Idx_nocapture > Use &CatchSwitchInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &CatchSwitchInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
| 4394 | |
| 4395 | //===----------------------------------------------------------------------===// |
| 4396 | // CleanupPadInst Class |
| 4397 | //===----------------------------------------------------------------------===// |
| 4398 | class CleanupPadInst : public FuncletPadInst { |
| 4399 | private: |
| 4400 | explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args, |
| 4401 | unsigned Values, const Twine &NameStr, |
| 4402 | Instruction *InsertBefore) |
| 4403 | : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values, |
| 4404 | NameStr, InsertBefore) {} |
| 4405 | explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args, |
| 4406 | unsigned Values, const Twine &NameStr, |
| 4407 | BasicBlock *InsertAtEnd) |
| 4408 | : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values, |
| 4409 | NameStr, InsertAtEnd) {} |
| 4410 | |
| 4411 | public: |
| 4412 | static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args = None, |
| 4413 | const Twine &NameStr = "", |
| 4414 | Instruction *InsertBefore = nullptr) { |
| 4415 | unsigned Values = 1 + Args.size(); |
| 4416 | return new (Values) |
| 4417 | CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore); |
| 4418 | } |
| 4419 | |
| 4420 | static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args, |
| 4421 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 4422 | unsigned Values = 1 + Args.size(); |
| 4423 | return new (Values) |
| 4424 | CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd); |
| 4425 | } |
| 4426 | |
| 4427 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4428 | static bool classof(const Instruction *I) { |
| 4429 | return I->getOpcode() == Instruction::CleanupPad; |
| 4430 | } |
| 4431 | static bool classof(const Value *V) { |
| 4432 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4433 | } |
| 4434 | }; |
| 4435 | |
| 4436 | //===----------------------------------------------------------------------===// |
| 4437 | // CatchPadInst Class |
| 4438 | //===----------------------------------------------------------------------===// |
| 4439 | class CatchPadInst : public FuncletPadInst { |
| 4440 | private: |
| 4441 | explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args, |
| 4442 | unsigned Values, const Twine &NameStr, |
| 4443 | Instruction *InsertBefore) |
| 4444 | : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values, |
| 4445 | NameStr, InsertBefore) {} |
| 4446 | explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args, |
| 4447 | unsigned Values, const Twine &NameStr, |
| 4448 | BasicBlock *InsertAtEnd) |
| 4449 | : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values, |
| 4450 | NameStr, InsertAtEnd) {} |
| 4451 | |
| 4452 | public: |
| 4453 | static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args, |
| 4454 | const Twine &NameStr = "", |
| 4455 | Instruction *InsertBefore = nullptr) { |
| 4456 | unsigned Values = 1 + Args.size(); |
| 4457 | return new (Values) |
| 4458 | CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore); |
| 4459 | } |
| 4460 | |
| 4461 | static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args, |
| 4462 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 4463 | unsigned Values = 1 + Args.size(); |
| 4464 | return new (Values) |
| 4465 | CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd); |
| 4466 | } |
| 4467 | |
| 4468 | /// Convenience accessors |
| 4469 | CatchSwitchInst *getCatchSwitch() const { |
| 4470 | return cast<CatchSwitchInst>(Op<-1>()); |
| 4471 | } |
| 4472 | void setCatchSwitch(Value *CatchSwitch) { |
| 4473 | assert(CatchSwitch)((void)0); |
| 4474 | Op<-1>() = CatchSwitch; |
| 4475 | } |
| 4476 | |
| 4477 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4478 | static bool classof(const Instruction *I) { |
| 4479 | return I->getOpcode() == Instruction::CatchPad; |
| 4480 | } |
| 4481 | static bool classof(const Value *V) { |
| 4482 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4483 | } |
| 4484 | }; |
| 4485 | |
| 4486 | //===----------------------------------------------------------------------===// |
| 4487 | // CatchReturnInst Class |
| 4488 | //===----------------------------------------------------------------------===// |
| 4489 | |
| 4490 | class CatchReturnInst : public Instruction { |
| 4491 | CatchReturnInst(const CatchReturnInst &RI); |
| 4492 | CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore); |
| 4493 | CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd); |
| 4494 | |
| 4495 | void init(Value *CatchPad, BasicBlock *BB); |
| 4496 | |
| 4497 | protected: |
| 4498 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4499 | friend class Instruction; |
| 4500 | |
| 4501 | CatchReturnInst *cloneImpl() const; |
| 4502 | |
| 4503 | public: |
| 4504 | static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB, |
| 4505 | Instruction *InsertBefore = nullptr) { |
| 4506 | assert(CatchPad)((void)0); |
| 4507 | assert(BB)((void)0); |
| 4508 | return new (2) CatchReturnInst(CatchPad, BB, InsertBefore); |
| 4509 | } |
| 4510 | |
| 4511 | static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB, |
| 4512 | BasicBlock *InsertAtEnd) { |
| 4513 | assert(CatchPad)((void)0); |
| 4514 | assert(BB)((void)0); |
| 4515 | return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd); |
| 4516 | } |
| 4517 | |
| 4518 | /// Provide fast operand accessors |
| 4519 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 4520 | |
| 4521 | /// Convenience accessors. |
| 4522 | CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); } |
| 4523 | void setCatchPad(CatchPadInst *CatchPad) { |
| 4524 | assert(CatchPad)((void)0); |
| 4525 | Op<0>() = CatchPad; |
| 4526 | } |
| 4527 | |
| 4528 | BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); } |
| 4529 | void setSuccessor(BasicBlock *NewSucc) { |
| 4530 | assert(NewSucc)((void)0); |
| 4531 | Op<1>() = NewSucc; |
| 4532 | } |
| 4533 | unsigned getNumSuccessors() const { return 1; } |
| 4534 | |
| 4535 | /// Get the parentPad of this catchret's catchpad's catchswitch. |
| 4536 | /// The successor block is implicitly a member of this funclet. |
| 4537 | Value *getCatchSwitchParentPad() const { |
| 4538 | return getCatchPad()->getCatchSwitch()->getParentPad(); |
| 4539 | } |
| 4540 | |
| 4541 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4542 | static bool classof(const Instruction *I) { |
| 4543 | return (I->getOpcode() == Instruction::CatchRet); |
| 4544 | } |
| 4545 | static bool classof(const Value *V) { |
| 4546 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4547 | } |
| 4548 | |
| 4549 | private: |
| 4550 | BasicBlock *getSuccessor(unsigned Idx) const { |
| 4551 | assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")((void)0); |
| 4552 | return getSuccessor(); |
| 4553 | } |
| 4554 | |
| 4555 | void setSuccessor(unsigned Idx, BasicBlock *B) { |
| 4556 | assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")((void)0); |
| 4557 | setSuccessor(B); |
| 4558 | } |
| 4559 | }; |
| 4560 | |
| 4561 | template <> |
| 4562 | struct OperandTraits<CatchReturnInst> |
| 4563 | : public FixedNumOperandTraits<CatchReturnInst, 2> {}; |
| 4564 | |
| 4565 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value)CatchReturnInst::op_iterator CatchReturnInst::op_begin() { return OperandTraits<CatchReturnInst>::op_begin(this); } CatchReturnInst ::const_op_iterator CatchReturnInst::op_begin() const { return OperandTraits<CatchReturnInst>::op_begin(const_cast< CatchReturnInst*>(this)); } CatchReturnInst::op_iterator CatchReturnInst ::op_end() { return OperandTraits<CatchReturnInst>::op_end (this); } CatchReturnInst::const_op_iterator CatchReturnInst:: op_end() const { return OperandTraits<CatchReturnInst>:: op_end(const_cast<CatchReturnInst*>(this)); } Value *CatchReturnInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<CatchReturnInst>::op_begin (const_cast<CatchReturnInst*>(this))[i_nocapture].get() ); } void CatchReturnInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<CatchReturnInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned CatchReturnInst::getNumOperands() const { return OperandTraits <CatchReturnInst>::operands(this); } template <int Idx_nocapture > Use &CatchReturnInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &CatchReturnInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
| 4566 | |
| 4567 | //===----------------------------------------------------------------------===// |
| 4568 | // CleanupReturnInst Class |
| 4569 | //===----------------------------------------------------------------------===// |
| 4570 | |
| 4571 | class CleanupReturnInst : public Instruction { |
| 4572 | using UnwindDestField = BoolBitfieldElementT<0>; |
| 4573 | |
| 4574 | private: |
| 4575 | CleanupReturnInst(const CleanupReturnInst &RI); |
| 4576 | CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values, |
| 4577 | Instruction *InsertBefore = nullptr); |
| 4578 | CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values, |
| 4579 | BasicBlock *InsertAtEnd); |
| 4580 | |
| 4581 | void init(Value *CleanupPad, BasicBlock *UnwindBB); |
| 4582 | |
| 4583 | protected: |
| 4584 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4585 | friend class Instruction; |
| 4586 | |
| 4587 | CleanupReturnInst *cloneImpl() const; |
| 4588 | |
| 4589 | public: |
| 4590 | static CleanupReturnInst *Create(Value *CleanupPad, |
| 4591 | BasicBlock *UnwindBB = nullptr, |
| 4592 | Instruction *InsertBefore = nullptr) { |
| 4593 | assert(CleanupPad)((void)0); |
| 4594 | unsigned Values = 1; |
| 4595 | if (UnwindBB) |
| 4596 | ++Values; |
| 4597 | return new (Values) |
| 4598 | CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore); |
| 4599 | } |
| 4600 | |
| 4601 | static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB, |
| 4602 | BasicBlock *InsertAtEnd) { |
| 4603 | assert(CleanupPad)((void)0); |
| 4604 | unsigned Values = 1; |
| 4605 | if (UnwindBB) |
| 4606 | ++Values; |
| 4607 | return new (Values) |
| 4608 | CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd); |
| 4609 | } |
| 4610 | |
| 4611 | /// Provide fast operand accessors |
| 4612 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 4613 | |
| 4614 | bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); } |
| 4615 | bool unwindsToCaller() const { return !hasUnwindDest(); } |
| 4616 | |
| 4617 | /// Convenience accessor. |
| 4618 | CleanupPadInst *getCleanupPad() const { |
| 4619 | return cast<CleanupPadInst>(Op<0>()); |
| 4620 | } |
| 4621 | void setCleanupPad(CleanupPadInst *CleanupPad) { |
| 4622 | assert(CleanupPad)((void)0); |
| 4623 | Op<0>() = CleanupPad; |
| 4624 | } |
| 4625 | |
| 4626 | unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; } |
| 4627 | |
| 4628 | BasicBlock *getUnwindDest() const { |
| 4629 | return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr; |
| 4630 | } |
| 4631 | void setUnwindDest(BasicBlock *NewDest) { |
| 4632 | assert(NewDest)((void)0); |
| 4633 | assert(hasUnwindDest())((void)0); |
| 4634 | Op<1>() = NewDest; |
| 4635 | } |
| 4636 | |
| 4637 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4638 | static bool classof(const Instruction *I) { |
| 4639 | return (I->getOpcode() == Instruction::CleanupRet); |
| 4640 | } |
| 4641 | static bool classof(const Value *V) { |
| 4642 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4643 | } |
| 4644 | |
| 4645 | private: |
| 4646 | BasicBlock *getSuccessor(unsigned Idx) const { |
| 4647 | assert(Idx == 0)((void)0); |
| 4648 | return getUnwindDest(); |
| 4649 | } |
| 4650 | |
| 4651 | void setSuccessor(unsigned Idx, BasicBlock *B) { |
| 4652 | assert(Idx == 0)((void)0); |
| 4653 | setUnwindDest(B); |
| 4654 | } |
| 4655 | |
| 4656 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 4657 | // method so that subclasses cannot accidentally use it. |
| 4658 | template <typename Bitfield> |
| 4659 | void setSubclassData(typename Bitfield::Type Value) { |
| 4660 | Instruction::setSubclassData<Bitfield>(Value); |
| 4661 | } |
| 4662 | }; |
| 4663 | |
| 4664 | template <> |
| 4665 | struct OperandTraits<CleanupReturnInst> |
| 4666 | : public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {}; |
| 4667 | |
| 4668 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value)CleanupReturnInst::op_iterator CleanupReturnInst::op_begin() { return OperandTraits<CleanupReturnInst>::op_begin(this ); } CleanupReturnInst::const_op_iterator CleanupReturnInst:: op_begin() const { return OperandTraits<CleanupReturnInst> ::op_begin(const_cast<CleanupReturnInst*>(this)); } CleanupReturnInst ::op_iterator CleanupReturnInst::op_end() { return OperandTraits <CleanupReturnInst>::op_end(this); } CleanupReturnInst:: const_op_iterator CleanupReturnInst::op_end() const { return OperandTraits <CleanupReturnInst>::op_end(const_cast<CleanupReturnInst *>(this)); } Value *CleanupReturnInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<CleanupReturnInst>::op_begin(const_cast <CleanupReturnInst*>(this))[i_nocapture].get()); } void CleanupReturnInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<CleanupReturnInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned CleanupReturnInst ::getNumOperands() const { return OperandTraits<CleanupReturnInst >::operands(this); } template <int Idx_nocapture> Use &CleanupReturnInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & CleanupReturnInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
| 4669 | |
| 4670 | //===----------------------------------------------------------------------===// |
| 4671 | // UnreachableInst Class |
| 4672 | //===----------------------------------------------------------------------===// |
| 4673 | |
| 4674 | //===--------------------------------------------------------------------------- |
| 4675 | /// This function has undefined behavior. In particular, the |
| 4676 | /// presence of this instruction indicates some higher level knowledge that the |
| 4677 | /// end of the block cannot be reached. |
| 4678 | /// |
| 4679 | class UnreachableInst : public Instruction { |
| 4680 | protected: |
| 4681 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4682 | friend class Instruction; |
| 4683 | |
| 4684 | UnreachableInst *cloneImpl() const; |
| 4685 | |
| 4686 | public: |
| 4687 | explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr); |
| 4688 | explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd); |
| 4689 | |
| 4690 | // allocate space for exactly zero operands |
| 4691 | void *operator new(size_t S) { return User::operator new(S, 0); } |
| 4692 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 4693 | |
| 4694 | unsigned getNumSuccessors() const { return 0; } |
| 4695 | |
| 4696 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4697 | static bool classof(const Instruction *I) { |
| 4698 | return I->getOpcode() == Instruction::Unreachable; |
| 4699 | } |
| 4700 | static bool classof(const Value *V) { |
| 4701 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4702 | } |
| 4703 | |
| 4704 | private: |
| 4705 | BasicBlock *getSuccessor(unsigned idx) const { |
| 4706 | llvm_unreachable("UnreachableInst has no successors!")__builtin_unreachable(); |
| 4707 | } |
| 4708 | |
| 4709 | void setSuccessor(unsigned idx, BasicBlock *B) { |
| 4710 | llvm_unreachable("UnreachableInst has no successors!")__builtin_unreachable(); |
| 4711 | } |
| 4712 | }; |
| 4713 | |
| 4714 | //===----------------------------------------------------------------------===// |
| 4715 | // TruncInst Class |
| 4716 | //===----------------------------------------------------------------------===// |
| 4717 | |
| 4718 | /// This class represents a truncation of integer types. |
| 4719 | class TruncInst : public CastInst { |
| 4720 | protected: |
| 4721 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4722 | friend class Instruction; |
| 4723 | |
| 4724 | /// Clone an identical TruncInst |
| 4725 | TruncInst *cloneImpl() const; |
| 4726 | |
| 4727 | public: |
| 4728 | /// Constructor with insert-before-instruction semantics |
| 4729 | TruncInst( |
| 4730 | Value *S, ///< The value to be truncated |
| 4731 | Type *Ty, ///< The (smaller) type to truncate to |
| 4732 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4733 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4734 | ); |
| 4735 | |
| 4736 | /// Constructor with insert-at-end-of-block semantics |
| 4737 | TruncInst( |
| 4738 | Value *S, ///< The value to be truncated |
| 4739 | Type *Ty, ///< The (smaller) type to truncate to |
| 4740 | const Twine &NameStr, ///< A name for the new instruction |
| 4741 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4742 | ); |
| 4743 | |
| 4744 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4745 | static bool classof(const Instruction *I) { |
| 4746 | return I->getOpcode() == Trunc; |
| 4747 | } |
| 4748 | static bool classof(const Value *V) { |
| 4749 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4750 | } |
| 4751 | }; |
| 4752 | |
| 4753 | //===----------------------------------------------------------------------===// |
| 4754 | // ZExtInst Class |
| 4755 | //===----------------------------------------------------------------------===// |
| 4756 | |
| 4757 | /// This class represents zero extension of integer types. |
| 4758 | class ZExtInst : public CastInst { |
| 4759 | protected: |
| 4760 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4761 | friend class Instruction; |
| 4762 | |
| 4763 | /// Clone an identical ZExtInst |
| 4764 | ZExtInst *cloneImpl() const; |
| 4765 | |
| 4766 | public: |
| 4767 | /// Constructor with insert-before-instruction semantics |
| 4768 | ZExtInst( |
| 4769 | Value *S, ///< The value to be zero extended |
| 4770 | Type *Ty, ///< The type to zero extend to |
| 4771 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4772 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4773 | ); |
| 4774 | |
| 4775 | /// Constructor with insert-at-end semantics. |
| 4776 | ZExtInst( |
| 4777 | Value *S, ///< The value to be zero extended |
| 4778 | Type *Ty, ///< The type to zero extend to |
| 4779 | const Twine &NameStr, ///< A name for the new instruction |
| 4780 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4781 | ); |
| 4782 | |
| 4783 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4784 | static bool classof(const Instruction *I) { |
| 4785 | return I->getOpcode() == ZExt; |
| 4786 | } |
| 4787 | static bool classof(const Value *V) { |
| 4788 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4789 | } |
| 4790 | }; |
| 4791 | |
| 4792 | //===----------------------------------------------------------------------===// |
| 4793 | // SExtInst Class |
| 4794 | //===----------------------------------------------------------------------===// |
| 4795 | |
| 4796 | /// This class represents a sign extension of integer types. |
| 4797 | class SExtInst : public CastInst { |
| 4798 | protected: |
| 4799 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4800 | friend class Instruction; |
| 4801 | |
| 4802 | /// Clone an identical SExtInst |
| 4803 | SExtInst *cloneImpl() const; |
| 4804 | |
| 4805 | public: |
| 4806 | /// Constructor with insert-before-instruction semantics |
| 4807 | SExtInst( |
| 4808 | Value *S, ///< The value to be sign extended |
| 4809 | Type *Ty, ///< The type to sign extend to |
| 4810 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4811 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4812 | ); |
| 4813 | |
| 4814 | /// Constructor with insert-at-end-of-block semantics |
| 4815 | SExtInst( |
| 4816 | Value *S, ///< The value to be sign extended |
| 4817 | Type *Ty, ///< The type to sign extend to |
| 4818 | const Twine &NameStr, ///< A name for the new instruction |
| 4819 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4820 | ); |
| 4821 | |
| 4822 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4823 | static bool classof(const Instruction *I) { |
| 4824 | return I->getOpcode() == SExt; |
| 4825 | } |
| 4826 | static bool classof(const Value *V) { |
| 4827 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4828 | } |
| 4829 | }; |
| 4830 | |
| 4831 | //===----------------------------------------------------------------------===// |
| 4832 | // FPTruncInst Class |
| 4833 | //===----------------------------------------------------------------------===// |
| 4834 | |
| 4835 | /// This class represents a truncation of floating point types. |
| 4836 | class FPTruncInst : public CastInst { |
| 4837 | protected: |
| 4838 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4839 | friend class Instruction; |
| 4840 | |
| 4841 | /// Clone an identical FPTruncInst |
| 4842 | FPTruncInst *cloneImpl() const; |
| 4843 | |
| 4844 | public: |
| 4845 | /// Constructor with insert-before-instruction semantics |
| 4846 | FPTruncInst( |
| 4847 | Value *S, ///< The value to be truncated |
| 4848 | Type *Ty, ///< The type to truncate to |
| 4849 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4850 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4851 | ); |
| 4852 | |
| 4853 | /// Constructor with insert-before-instruction semantics |
| 4854 | FPTruncInst( |
| 4855 | Value *S, ///< The value to be truncated |
| 4856 | Type *Ty, ///< The type to truncate to |
| 4857 | const Twine &NameStr, ///< A name for the new instruction |
| 4858 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4859 | ); |
| 4860 | |
| 4861 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4862 | static bool classof(const Instruction *I) { |
| 4863 | return I->getOpcode() == FPTrunc; |
| 4864 | } |
| 4865 | static bool classof(const Value *V) { |
| 4866 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4867 | } |
| 4868 | }; |
| 4869 | |
| 4870 | //===----------------------------------------------------------------------===// |
| 4871 | // FPExtInst Class |
| 4872 | //===----------------------------------------------------------------------===// |
| 4873 | |
| 4874 | /// This class represents an extension of floating point types. |
| 4875 | class FPExtInst : public CastInst { |
| 4876 | protected: |
| 4877 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4878 | friend class Instruction; |
| 4879 | |
| 4880 | /// Clone an identical FPExtInst |
| 4881 | FPExtInst *cloneImpl() const; |
| 4882 | |
| 4883 | public: |
| 4884 | /// Constructor with insert-before-instruction semantics |
| 4885 | FPExtInst( |
| 4886 | Value *S, ///< The value to be extended |
| 4887 | Type *Ty, ///< The type to extend to |
| 4888 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4889 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4890 | ); |
| 4891 | |
| 4892 | /// Constructor with insert-at-end-of-block semantics |
| 4893 | FPExtInst( |
| 4894 | Value *S, ///< The value to be extended |
| 4895 | Type *Ty, ///< The type to extend to |
| 4896 | const Twine &NameStr, ///< A name for the new instruction |
| 4897 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4898 | ); |
| 4899 | |
| 4900 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4901 | static bool classof(const Instruction *I) { |
| 4902 | return I->getOpcode() == FPExt; |
| 4903 | } |
| 4904 | static bool classof(const Value *V) { |
| 4905 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4906 | } |
| 4907 | }; |
| 4908 | |
| 4909 | //===----------------------------------------------------------------------===// |
| 4910 | // UIToFPInst Class |
| 4911 | //===----------------------------------------------------------------------===// |
| 4912 | |
| 4913 | /// This class represents a cast unsigned integer to floating point. |
| 4914 | class UIToFPInst : public CastInst { |
| 4915 | protected: |
| 4916 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4917 | friend class Instruction; |
| 4918 | |
| 4919 | /// Clone an identical UIToFPInst |
| 4920 | UIToFPInst *cloneImpl() const; |
| 4921 | |
| 4922 | public: |
| 4923 | /// Constructor with insert-before-instruction semantics |
| 4924 | UIToFPInst( |
| 4925 | Value *S, ///< The value to be converted |
| 4926 | Type *Ty, ///< The type to convert to |
| 4927 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4928 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4929 | ); |
| 4930 | |
| 4931 | /// Constructor with insert-at-end-of-block semantics |
| 4932 | UIToFPInst( |
| 4933 | Value *S, ///< The value to be converted |
| 4934 | Type *Ty, ///< The type to convert to |
| 4935 | const Twine &NameStr, ///< A name for the new instruction |
| 4936 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4937 | ); |
| 4938 | |
| 4939 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4940 | static bool classof(const Instruction *I) { |
| 4941 | return I->getOpcode() == UIToFP; |
| 4942 | } |
| 4943 | static bool classof(const Value *V) { |
| 4944 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4945 | } |
| 4946 | }; |
| 4947 | |
| 4948 | //===----------------------------------------------------------------------===// |
| 4949 | // SIToFPInst Class |
| 4950 | //===----------------------------------------------------------------------===// |
| 4951 | |
| 4952 | /// This class represents a cast from signed integer to floating point. |
| 4953 | class SIToFPInst : public CastInst { |
| 4954 | protected: |
| 4955 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4956 | friend class Instruction; |
| 4957 | |
| 4958 | /// Clone an identical SIToFPInst |
| 4959 | SIToFPInst *cloneImpl() const; |
| 4960 | |
| 4961 | public: |
| 4962 | /// Constructor with insert-before-instruction semantics |
| 4963 | SIToFPInst( |
| 4964 | Value *S, ///< The value to be converted |
| 4965 | Type *Ty, ///< The type to convert to |
| 4966 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4967 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4968 | ); |
| 4969 | |
| 4970 | /// Constructor with insert-at-end-of-block semantics |
| 4971 | SIToFPInst( |
| 4972 | Value *S, ///< The value to be converted |
| 4973 | Type *Ty, ///< The type to convert to |
| 4974 | const Twine &NameStr, ///< A name for the new instruction |
| 4975 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4976 | ); |
| 4977 | |
| 4978 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4979 | static bool classof(const Instruction *I) { |
| 4980 | return I->getOpcode() == SIToFP; |
| 4981 | } |
| 4982 | static bool classof(const Value *V) { |
| 4983 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4984 | } |
| 4985 | }; |
| 4986 | |
| 4987 | //===----------------------------------------------------------------------===// |
| 4988 | // FPToUIInst Class |
| 4989 | //===----------------------------------------------------------------------===// |
| 4990 | |
| 4991 | /// This class represents a cast from floating point to unsigned integer |
| 4992 | class FPToUIInst : public CastInst { |
| 4993 | protected: |
| 4994 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4995 | friend class Instruction; |
| 4996 | |
| 4997 | /// Clone an identical FPToUIInst |
| 4998 | FPToUIInst *cloneImpl() const; |
| 4999 | |
| 5000 | public: |
| 5001 | /// Constructor with insert-before-instruction semantics |
| 5002 | FPToUIInst( |
| 5003 | Value *S, ///< The value to be converted |
| 5004 | Type *Ty, ///< The type to convert to |
| 5005 | const Twine &NameStr = "", ///< A name for the new instruction |
| 5006 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 5007 | ); |
| 5008 | |
| 5009 | /// Constructor with insert-at-end-of-block semantics |
| 5010 | FPToUIInst( |
| 5011 | Value *S, ///< The value to be converted |
| 5012 | Type *Ty, ///< The type to convert to |
| 5013 | const Twine &NameStr, ///< A name for the new instruction |
| 5014 | BasicBlock *InsertAtEnd ///< Where to insert the new instruction |
| 5015 | ); |
| 5016 | |
| 5017 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5018 | static bool classof(const Instruction *I) { |
| 5019 | return I->getOpcode() == FPToUI; |
| 5020 | } |
| 5021 | static bool classof(const Value *V) { |
| 5022 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5023 | } |
| 5024 | }; |
| 5025 | |
| 5026 | //===----------------------------------------------------------------------===// |
| 5027 | // FPToSIInst Class |
| 5028 | //===----------------------------------------------------------------------===// |
| 5029 | |
| 5030 | /// This class represents a cast from floating point to signed integer. |
| 5031 | class FPToSIInst : public CastInst { |
| 5032 | protected: |
| 5033 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 5034 | friend class Instruction; |
| 5035 | |
| 5036 | /// Clone an identical FPToSIInst |
| 5037 | FPToSIInst *cloneImpl() const; |
| 5038 | |
| 5039 | public: |
| 5040 | /// Constructor with insert-before-instruction semantics |
| 5041 | FPToSIInst( |
| 5042 | Value *S, ///< The value to be converted |
| 5043 | Type *Ty, ///< The type to convert to |
| 5044 | const Twine &NameStr = "", ///< A name for the new instruction |
| 5045 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 5046 | ); |
| 5047 | |
| 5048 | /// Constructor with insert-at-end-of-block semantics |
| 5049 | FPToSIInst( |
| 5050 | Value *S, ///< The value to be converted |
| 5051 | Type *Ty, ///< The type to convert to |
| 5052 | const Twine &NameStr, ///< A name for the new instruction |
| 5053 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 5054 | ); |
| 5055 | |
| 5056 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5057 | static bool classof(const Instruction *I) { |
| 5058 | return I->getOpcode() == FPToSI; |
| 5059 | } |
| 5060 | static bool classof(const Value *V) { |
| 5061 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5062 | } |
| 5063 | }; |
| 5064 | |
| 5065 | //===----------------------------------------------------------------------===// |
| 5066 | // IntToPtrInst Class |
| 5067 | //===----------------------------------------------------------------------===// |
| 5068 | |
| 5069 | /// This class represents a cast from an integer to a pointer. |
| 5070 | class IntToPtrInst : public CastInst { |
| 5071 | public: |
| 5072 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 5073 | friend class Instruction; |
| 5074 | |
| 5075 | /// Constructor with insert-before-instruction semantics |
| 5076 | IntToPtrInst( |
| 5077 | Value *S, ///< The value to be converted |
| 5078 | Type *Ty, ///< The type to convert to |
| 5079 | const Twine &NameStr = "", ///< A name for the new instruction |
| 5080 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 5081 | ); |
| 5082 | |
| 5083 | /// Constructor with insert-at-end-of-block semantics |
| 5084 | IntToPtrInst( |
| 5085 | Value *S, ///< The value to be converted |
| 5086 | Type *Ty, ///< The type to convert to |
| 5087 | const Twine &NameStr, ///< A name for the new instruction |
| 5088 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 5089 | ); |
| 5090 | |
| 5091 | /// Clone an identical IntToPtrInst. |
| 5092 | IntToPtrInst *cloneImpl() const; |
| 5093 | |
| 5094 | /// Returns the address space of this instruction's pointer type. |
| 5095 | unsigned getAddressSpace() const { |
| 5096 | return getType()->getPointerAddressSpace(); |
| 5097 | } |
| 5098 | |
| 5099 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5100 | static bool classof(const Instruction *I) { |
| 5101 | return I->getOpcode() == IntToPtr; |
| 5102 | } |
| 5103 | static bool classof(const Value *V) { |
| 5104 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5105 | } |
| 5106 | }; |
| 5107 | |
| 5108 | //===----------------------------------------------------------------------===// |
| 5109 | // PtrToIntInst Class |
| 5110 | //===----------------------------------------------------------------------===// |
| 5111 | |
| 5112 | /// This class represents a cast from a pointer to an integer. |
| 5113 | class PtrToIntInst : public CastInst { |
| 5114 | protected: |
| 5115 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 5116 | friend class Instruction; |
| 5117 | |
| 5118 | /// Clone an identical PtrToIntInst. |
| 5119 | PtrToIntInst *cloneImpl() const; |
| 5120 | |
| 5121 | public: |
| 5122 | /// Constructor with insert-before-instruction semantics |
| 5123 | PtrToIntInst( |
| 5124 | Value *S, ///< The value to be converted |
| 5125 | Type *Ty, ///< The type to convert to |
| 5126 | const Twine &NameStr = "", ///< A name for the new instruction |
| 5127 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 5128 | ); |
| 5129 | |
| 5130 | /// Constructor with insert-at-end-of-block semantics |
| 5131 | PtrToIntInst( |
| 5132 | Value *S, ///< The value to be converted |
| 5133 | Type *Ty, ///< The type to convert to |
| 5134 | const Twine &NameStr, ///< A name for the new instruction |
| 5135 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 5136 | ); |
| 5137 | |
| 5138 | /// Gets the pointer operand. |
| 5139 | Value *getPointerOperand() { return getOperand(0); } |
| 5140 | /// Gets the pointer operand. |
| 5141 | const Value *getPointerOperand() const { return getOperand(0); } |
| 5142 | /// Gets the operand index of the pointer operand. |
| 5143 | static unsigned getPointerOperandIndex() { return 0U; } |
| 5144 | |
| 5145 | /// Returns the address space of the pointer operand. |
| 5146 | unsigned getPointerAddressSpace() const { |
| 5147 | return getPointerOperand()->getType()->getPointerAddressSpace(); |
| 5148 | } |
| 5149 | |
| 5150 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5151 | static bool classof(const Instruction *I) { |
| 5152 | return I->getOpcode() == PtrToInt; |
| 5153 | } |
| 5154 | static bool classof(const Value *V) { |
| 5155 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5156 | } |
| 5157 | }; |
| 5158 | |
| 5159 | //===----------------------------------------------------------------------===// |
| 5160 | // BitCastInst Class |
| 5161 | //===----------------------------------------------------------------------===// |
| 5162 | |
| 5163 | /// This class represents a no-op cast from one type to another. |
| 5164 | class BitCastInst : public CastInst { |
| 5165 | protected: |
| 5166 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 5167 | friend class Instruction; |
| 5168 | |
| 5169 | /// Clone an identical BitCastInst. |
| 5170 | BitCastInst *cloneImpl() const; |
| 5171 | |
| 5172 | public: |
| 5173 | /// Constructor with insert-before-instruction semantics |
| 5174 | BitCastInst( |
| 5175 | Value *S, ///< The value to be casted |
| 5176 | Type *Ty, ///< The type to casted to |
| 5177 | const Twine &NameStr = "", ///< A name for the new instruction |
| 5178 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 5179 | ); |
| 5180 | |
| 5181 | /// Constructor with insert-at-end-of-block semantics |
| 5182 | BitCastInst( |
| 5183 | Value *S, ///< The value to be casted |
| 5184 | Type *Ty, ///< The type to casted to |
| 5185 | const Twine &NameStr, ///< A name for the new instruction |
| 5186 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 5187 | ); |
| 5188 | |
| 5189 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5190 | static bool classof(const Instruction *I) { |
| 5191 | return I->getOpcode() == BitCast; |
| 5192 | } |
| 5193 | static bool classof(const Value *V) { |
| 5194 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5195 | } |
| 5196 | }; |
| 5197 | |
| 5198 | //===----------------------------------------------------------------------===// |
| 5199 | // AddrSpaceCastInst Class |
| 5200 | //===----------------------------------------------------------------------===// |
| 5201 | |
| 5202 | /// This class represents a conversion between pointers from one address space |
| 5203 | /// to another. |
| 5204 | class AddrSpaceCastInst : public CastInst { |
| 5205 | protected: |
| 5206 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 5207 | friend class Instruction; |
| 5208 | |
| 5209 | /// Clone an identical AddrSpaceCastInst. |
| 5210 | AddrSpaceCastInst *cloneImpl() const; |
| 5211 | |
| 5212 | public: |
| 5213 | /// Constructor with insert-before-instruction semantics |
| 5214 | AddrSpaceCastInst( |
| 5215 | Value *S, ///< The value to be casted |
| 5216 | Type *Ty, ///< The type to casted to |
| 5217 | const Twine &NameStr = "", ///< A name for the new instruction |
| 5218 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 5219 | ); |
| 5220 | |
| 5221 | /// Constructor with insert-at-end-of-block semantics |
| 5222 | AddrSpaceCastInst( |
| 5223 | Value *S, ///< The value to be casted |
| 5224 | Type *Ty, ///< The type to casted to |
| 5225 | const Twine &NameStr, ///< A name for the new instruction |
| 5226 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 5227 | ); |
| 5228 | |
| 5229 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5230 | static bool classof(const Instruction *I) { |
| 5231 | return I->getOpcode() == AddrSpaceCast; |
| 5232 | } |
| 5233 | static bool classof(const Value *V) { |
| 5234 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5235 | } |
| 5236 | |
| 5237 | /// Gets the pointer operand. |
| 5238 | Value *getPointerOperand() { |
| 5239 | return getOperand(0); |
| 5240 | } |
| 5241 | |
| 5242 | /// Gets the pointer operand. |
| 5243 | const Value *getPointerOperand() const { |
| 5244 | return getOperand(0); |
| 5245 | } |
| 5246 | |
| 5247 | /// Gets the operand index of the pointer operand. |
| 5248 | static unsigned getPointerOperandIndex() { |
| 5249 | return 0U; |
| 5250 | } |
| 5251 | |
| 5252 | /// Returns the address space of the pointer operand. |
| 5253 | unsigned getSrcAddressSpace() const { |
| 5254 | return getPointerOperand()->getType()->getPointerAddressSpace(); |
| 5255 | } |
| 5256 | |
| 5257 | /// Returns the address space of the result. |
| 5258 | unsigned getDestAddressSpace() const { |
| 5259 | return getType()->getPointerAddressSpace(); |
| 5260 | } |
| 5261 | }; |
| 5262 | |
| 5263 | /// A helper function that returns the pointer operand of a load or store |
| 5264 | /// instruction. Returns nullptr if not load or store. |
| 5265 | inline const Value *getLoadStorePointerOperand(const Value *V) { |
| 5266 | if (auto *Load = dyn_cast<LoadInst>(V)) |
| 5267 | return Load->getPointerOperand(); |
| 5268 | if (auto *Store = dyn_cast<StoreInst>(V)) |
| 5269 | return Store->getPointerOperand(); |
| 5270 | return nullptr; |
| 5271 | } |
| 5272 | inline Value *getLoadStorePointerOperand(Value *V) { |
| 5273 | return const_cast<Value *>( |
| 5274 | getLoadStorePointerOperand(static_cast<const Value *>(V))); |
| 5275 | } |
| 5276 | |
| 5277 | /// A helper function that returns the pointer operand of a load, store |
| 5278 | /// or GEP instruction. Returns nullptr if not load, store, or GEP. |
| 5279 | inline const Value *getPointerOperand(const Value *V) { |
| 5280 | if (auto *Ptr = getLoadStorePointerOperand(V)) |
| 5281 | return Ptr; |
| 5282 | if (auto *Gep = dyn_cast<GetElementPtrInst>(V)) |
| 5283 | return Gep->getPointerOperand(); |
| 5284 | return nullptr; |
| 5285 | } |
| 5286 | inline Value *getPointerOperand(Value *V) { |
| 5287 | return const_cast<Value *>(getPointerOperand(static_cast<const Value *>(V))); |
| 5288 | } |
| 5289 | |
| 5290 | /// A helper function that returns the alignment of load or store instruction. |
| 5291 | inline Align getLoadStoreAlignment(Value *I) { |
| 5292 | assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&((void)0) |
| 5293 | "Expected Load or Store instruction")((void)0); |
| 5294 | if (auto *LI = dyn_cast<LoadInst>(I)) |
| 5295 | return LI->getAlign(); |
| 5296 | return cast<StoreInst>(I)->getAlign(); |
| 5297 | } |
| 5298 | |
| 5299 | /// A helper function that returns the address space of the pointer operand of |
| 5300 | /// load or store instruction. |
| 5301 | inline unsigned getLoadStoreAddressSpace(Value *I) { |
| 5302 | assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&((void)0) |
| 5303 | "Expected Load or Store instruction")((void)0); |
| 5304 | if (auto *LI = dyn_cast<LoadInst>(I)) |
| 5305 | return LI->getPointerAddressSpace(); |
| 5306 | return cast<StoreInst>(I)->getPointerAddressSpace(); |
| 5307 | } |
| 5308 | |
| 5309 | /// A helper function that returns the type of a load or store instruction. |
| 5310 | inline Type *getLoadStoreType(Value *I) { |
| 5311 | assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&((void)0) |
| 5312 | "Expected Load or Store instruction")((void)0); |
| 5313 | if (auto *LI = dyn_cast<LoadInst>(I)) |
| 5314 | return LI->getType(); |
| 5315 | return cast<StoreInst>(I)->getValueOperand()->getType(); |
| 5316 | } |
| 5317 | |
| 5318 | //===----------------------------------------------------------------------===// |
| 5319 | // FreezeInst Class |
| 5320 | //===----------------------------------------------------------------------===// |
| 5321 | |
| 5322 | /// This class represents a freeze function that returns random concrete |
| 5323 | /// value if an operand is either a poison value or an undef value |
| 5324 | class FreezeInst : public UnaryInstruction { |
| 5325 | protected: |
| 5326 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 5327 | friend class Instruction; |
| 5328 | |
| 5329 | /// Clone an identical FreezeInst |
| 5330 | FreezeInst *cloneImpl() const; |
| 5331 | |
| 5332 | public: |
| 5333 | explicit FreezeInst(Value *S, |
| 5334 | const Twine &NameStr = "", |
| 5335 | Instruction *InsertBefore = nullptr); |
| 5336 | FreezeInst(Value *S, const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 5337 | |
| 5338 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5339 | static inline bool classof(const Instruction *I) { |
| 5340 | return I->getOpcode() == Freeze; |
| 5341 | } |
| 5342 | static inline bool classof(const Value *V) { |
| 5343 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5344 | } |
| 5345 | }; |
| 5346 | |
| 5347 | } // end namespace llvm |
| 5348 | |
| 5349 | #endif // LLVM_IR_INSTRUCTIONS_H |
| 1 | //===-- llvm/Instruction.h - Instruction class definition -------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains the declaration of the Instruction class, which is the |
| 10 | // base class for all of the LLVM instructions. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #ifndef LLVM_IR_INSTRUCTION_H |
| 15 | #define LLVM_IR_INSTRUCTION_H |
| 16 | |
| 17 | #include "llvm/ADT/ArrayRef.h" |
| 18 | #include "llvm/ADT/Bitfields.h" |
| 19 | #include "llvm/ADT/None.h" |
| 20 | #include "llvm/ADT/StringRef.h" |
| 21 | #include "llvm/ADT/ilist_node.h" |
| 22 | #include "llvm/IR/DebugLoc.h" |
| 23 | #include "llvm/IR/SymbolTableListTraits.h" |
| 24 | #include "llvm/IR/User.h" |
| 25 | #include "llvm/IR/Value.h" |
| 26 | #include "llvm/Support/AtomicOrdering.h" |
| 27 | #include "llvm/Support/Casting.h" |
| 28 | #include <algorithm> |
| 29 | #include <cassert> |
| 30 | #include <cstdint> |
| 31 | #include <utility> |
| 32 | |
| 33 | namespace llvm { |
| 34 | |
| 35 | class BasicBlock; |
| 36 | class FastMathFlags; |
| 37 | class MDNode; |
| 38 | class Module; |
| 39 | struct AAMDNodes; |
| 40 | |
| 41 | template <> struct ilist_alloc_traits<Instruction> { |
| 42 | static inline void deleteNode(Instruction *V); |
| 43 | }; |
| 44 | |
| 45 | class Instruction : public User, |
| 46 | public ilist_node_with_parent<Instruction, BasicBlock> { |
| 47 | BasicBlock *Parent; |
| 48 | DebugLoc DbgLoc; // 'dbg' Metadata cache. |
| 49 | |
| 50 | /// Relative order of this instruction in its parent basic block. Used for |
| 51 | /// O(1) local dominance checks between instructions. |
| 52 | mutable unsigned Order = 0; |
| 53 | |
| 54 | protected: |
| 55 | // The 15 first bits of `Value::SubclassData` are available for subclasses of |
| 56 | // `Instruction` to use. |
| 57 | using OpaqueField = Bitfield::Element<uint16_t, 0, 15>; |
| 58 | |
| 59 | // Template alias so that all Instruction storing alignment use the same |
| 60 | // definiton. |
| 61 | // Valid alignments are powers of two from 2^0 to 2^MaxAlignmentExponent = |
| 62 | // 2^29. We store them as Log2(Alignment), so we need 5 bits to encode the 30 |
| 63 | // possible values. |
| 64 | template <unsigned Offset> |
| 65 | using AlignmentBitfieldElementT = |
| 66 | typename Bitfield::Element<unsigned, Offset, 5, |
| 67 | Value::MaxAlignmentExponent>; |
| 68 | |
| 69 | template <unsigned Offset> |
| 70 | using BoolBitfieldElementT = typename Bitfield::Element<bool, Offset, 1>; |
| 71 | |
| 72 | template <unsigned Offset> |
| 73 | using AtomicOrderingBitfieldElementT = |
| 74 | typename Bitfield::Element<AtomicOrdering, Offset, 3, |
| 75 | AtomicOrdering::LAST>; |
| 76 | |
| 77 | private: |
| 78 | // The last bit is used to store whether the instruction has metadata attached |
| 79 | // or not. |
| 80 | using HasMetadataField = Bitfield::Element<bool, 15, 1>; |
| 81 | |
| 82 | protected: |
| 83 | ~Instruction(); // Use deleteValue() to delete a generic Instruction. |
| 84 | |
| 85 | public: |
| 86 | Instruction(const Instruction &) = delete; |
| 87 | Instruction &operator=(const Instruction &) = delete; |
| 88 | |
| 89 | /// Specialize the methods defined in Value, as we know that an instruction |
| 90 | /// can only be used by other instructions. |
| 91 | Instruction *user_back() { return cast<Instruction>(*user_begin());} |
| 92 | const Instruction *user_back() const { return cast<Instruction>(*user_begin());} |
| 93 | |
| 94 | inline const BasicBlock *getParent() const { return Parent; } |
| 95 | inline BasicBlock *getParent() { return Parent; } |
| 96 | |
| 97 | /// Return the module owning the function this instruction belongs to |
| 98 | /// or nullptr it the function does not have a module. |
| 99 | /// |
| 100 | /// Note: this is undefined behavior if the instruction does not have a |
| 101 | /// parent, or the parent basic block does not have a parent function. |
| 102 | const Module *getModule() const; |
| 103 | Module *getModule() { |
| 104 | return const_cast<Module *>( |
| 105 | static_cast<const Instruction *>(this)->getModule()); |
| 106 | } |
| 107 | |
| 108 | /// Return the function this instruction belongs to. |
| 109 | /// |
| 110 | /// Note: it is undefined behavior to call this on an instruction not |
| 111 | /// currently inserted into a function. |
| 112 | const Function *getFunction() const; |
| 113 | Function *getFunction() { |
| 114 | return const_cast<Function *>( |
| 115 | static_cast<const Instruction *>(this)->getFunction()); |
| 116 | } |
| 117 | |
| 118 | /// This method unlinks 'this' from the containing basic block, but does not |
| 119 | /// delete it. |
| 120 | void removeFromParent(); |
| 121 | |
| 122 | /// This method unlinks 'this' from the containing basic block and deletes it. |
| 123 | /// |
| 124 | /// \returns an iterator pointing to the element after the erased one |
| 125 | SymbolTableList<Instruction>::iterator eraseFromParent(); |
| 126 | |
| 127 | /// Insert an unlinked instruction into a basic block immediately before |
| 128 | /// the specified instruction. |
| 129 | void insertBefore(Instruction *InsertPos); |
| 130 | |
| 131 | /// Insert an unlinked instruction into a basic block immediately after the |
| 132 | /// specified instruction. |
| 133 | void insertAfter(Instruction *InsertPos); |
| 134 | |
| 135 | /// Unlink this instruction from its current basic block and insert it into |
| 136 | /// the basic block that MovePos lives in, right before MovePos. |
| 137 | void moveBefore(Instruction *MovePos); |
| 138 | |
| 139 | /// Unlink this instruction and insert into BB before I. |
| 140 | /// |
| 141 | /// \pre I is a valid iterator into BB. |
| 142 | void moveBefore(BasicBlock &BB, SymbolTableList<Instruction>::iterator I); |
| 143 | |
| 144 | /// Unlink this instruction from its current basic block and insert it into |
| 145 | /// the basic block that MovePos lives in, right after MovePos. |
| 146 | void moveAfter(Instruction *MovePos); |
| 147 | |
| 148 | /// Given an instruction Other in the same basic block as this instruction, |
| 149 | /// return true if this instruction comes before Other. In this worst case, |
| 150 | /// this takes linear time in the number of instructions in the block. The |
| 151 | /// results are cached, so in common cases when the block remains unmodified, |
| 152 | /// it takes constant time. |
| 153 | bool comesBefore(const Instruction *Other) const; |
| 154 | |
| 155 | //===--------------------------------------------------------------------===// |
| 156 | // Subclass classification. |
| 157 | //===--------------------------------------------------------------------===// |
| 158 | |
| 159 | /// Returns a member of one of the enums like Instruction::Add. |
| 160 | unsigned getOpcode() const { return getValueID() - InstructionVal; } |
| 161 | |
| 162 | const char *getOpcodeName() const { return getOpcodeName(getOpcode()); } |
| 163 | bool isTerminator() const { return isTerminator(getOpcode()); } |
| 164 | bool isUnaryOp() const { return isUnaryOp(getOpcode()); } |
| 165 | bool isBinaryOp() const { return isBinaryOp(getOpcode()); } |
| 166 | bool isIntDivRem() const { return isIntDivRem(getOpcode()); } |
| 167 | bool isShift() const { return isShift(getOpcode()); } |
| 168 | bool isCast() const { return isCast(getOpcode()); } |
| 169 | bool isFuncletPad() const { return isFuncletPad(getOpcode()); } |
| 170 | bool isExceptionalTerminator() const { |
| 171 | return isExceptionalTerminator(getOpcode()); |
| 172 | } |
| 173 | |
| 174 | /// It checks if this instruction is the only user of at least one of |
| 175 | /// its operands. |
| 176 | bool isOnlyUserOfAnyOperand(); |
| 177 | |
| 178 | bool isIndirectTerminator() const { |
| 179 | return isIndirectTerminator(getOpcode()); |
| 180 | } |
| 181 | |
| 182 | static const char* getOpcodeName(unsigned OpCode); |
| 183 | |
| 184 | static inline bool isTerminator(unsigned OpCode) { |
| 185 | return OpCode >= TermOpsBegin && OpCode < TermOpsEnd; |
| 186 | } |
| 187 | |
| 188 | static inline bool isUnaryOp(unsigned Opcode) { |
| 189 | return Opcode >= UnaryOpsBegin && Opcode < UnaryOpsEnd; |
| 190 | } |
| 191 | static inline bool isBinaryOp(unsigned Opcode) { |
| 192 | return Opcode >= BinaryOpsBegin && Opcode < BinaryOpsEnd; |
| 193 | } |
| 194 | |
| 195 | static inline bool isIntDivRem(unsigned Opcode) { |
| 196 | return Opcode == UDiv || Opcode == SDiv || Opcode == URem || Opcode == SRem; |
| 197 | } |
| 198 | |
| 199 | /// Determine if the Opcode is one of the shift instructions. |
| 200 | static inline bool isShift(unsigned Opcode) { |
| 201 | return Opcode >= Shl && Opcode <= AShr; |
| 202 | } |
| 203 | |
| 204 | /// Return true if this is a logical shift left or a logical shift right. |
| 205 | inline bool isLogicalShift() const { |
| 206 | return getOpcode() == Shl || getOpcode() == LShr; |
| 207 | } |
| 208 | |
| 209 | /// Return true if this is an arithmetic shift right. |
| 210 | inline bool isArithmeticShift() const { |
| 211 | return getOpcode() == AShr; |
| 212 | } |
| 213 | |
| 214 | /// Determine if the Opcode is and/or/xor. |
| 215 | static inline bool isBitwiseLogicOp(unsigned Opcode) { |
| 216 | return Opcode == And || Opcode == Or || Opcode == Xor; |
| 217 | } |
| 218 | |
| 219 | /// Return true if this is and/or/xor. |
| 220 | inline bool isBitwiseLogicOp() const { |
| 221 | return isBitwiseLogicOp(getOpcode()); |
| 222 | } |
| 223 | |
| 224 | /// Determine if the OpCode is one of the CastInst instructions. |
| 225 | static inline bool isCast(unsigned OpCode) { |
| 226 | return OpCode >= CastOpsBegin && OpCode < CastOpsEnd; |
| 227 | } |
| 228 | |
| 229 | /// Determine if the OpCode is one of the FuncletPadInst instructions. |
| 230 | static inline bool isFuncletPad(unsigned OpCode) { |
| 231 | return OpCode >= FuncletPadOpsBegin && OpCode < FuncletPadOpsEnd; |
| 232 | } |
| 233 | |
| 234 | /// Returns true if the OpCode is a terminator related to exception handling. |
| 235 | static inline bool isExceptionalTerminator(unsigned OpCode) { |
| 236 | switch (OpCode) { |
| 237 | case Instruction::CatchSwitch: |
| 238 | case Instruction::CatchRet: |
| 239 | case Instruction::CleanupRet: |
| 240 | case Instruction::Invoke: |
| 241 | case Instruction::Resume: |
| 242 | return true; |
| 243 | default: |
| 244 | return false; |
| 245 | } |
| 246 | } |
| 247 | |
| 248 | /// Returns true if the OpCode is a terminator with indirect targets. |
| 249 | static inline bool isIndirectTerminator(unsigned OpCode) { |
| 250 | switch (OpCode) { |
| 251 | case Instruction::IndirectBr: |
| 252 | case Instruction::CallBr: |
| 253 | return true; |
| 254 | default: |
| 255 | return false; |
| 256 | } |
| 257 | } |
| 258 | |
| 259 | //===--------------------------------------------------------------------===// |
| 260 | // Metadata manipulation. |
| 261 | //===--------------------------------------------------------------------===// |
| 262 | |
| 263 | /// Return true if this instruction has any metadata attached to it. |
| 264 | bool hasMetadata() const { return DbgLoc || Value::hasMetadata(); } |
| 265 | |
| 266 | /// Return true if this instruction has metadata attached to it other than a |
| 267 | /// debug location. |
| 268 | bool hasMetadataOtherThanDebugLoc() const { return Value::hasMetadata(); } |
| 269 | |
| 270 | /// Return true if this instruction has the given type of metadata attached. |
| 271 | bool hasMetadata(unsigned KindID) const { |
| 272 | return getMetadata(KindID) != nullptr; |
| 273 | } |
| 274 | |
| 275 | /// Return true if this instruction has the given type of metadata attached. |
| 276 | bool hasMetadata(StringRef Kind) const { |
| 277 | return getMetadata(Kind) != nullptr; |
| 278 | } |
| 279 | |
| 280 | /// Get the metadata of given kind attached to this Instruction. |
| 281 | /// If the metadata is not found then return null. |
| 282 | MDNode *getMetadata(unsigned KindID) const { |
| 283 | if (!hasMetadata()) return nullptr; |
| 284 | return getMetadataImpl(KindID); |
| 285 | } |
| 286 | |
| 287 | /// Get the metadata of given kind attached to this Instruction. |
| 288 | /// If the metadata is not found then return null. |
| 289 | MDNode *getMetadata(StringRef Kind) const { |
| 290 | if (!hasMetadata()) return nullptr; |
| 291 | return getMetadataImpl(Kind); |
| 292 | } |
| 293 | |
| 294 | /// Get all metadata attached to this Instruction. The first element of each |
| 295 | /// pair returned is the KindID, the second element is the metadata value. |
| 296 | /// This list is returned sorted by the KindID. |
| 297 | void |
| 298 | getAllMetadata(SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const { |
| 299 | if (hasMetadata()) |
| 300 | getAllMetadataImpl(MDs); |
| 301 | } |
| 302 | |
| 303 | /// This does the same thing as getAllMetadata, except that it filters out the |
| 304 | /// debug location. |
| 305 | void getAllMetadataOtherThanDebugLoc( |
| 306 | SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const { |
| 307 | Value::getAllMetadata(MDs); |
| 308 | } |
| 309 | |
| 310 | /// Fills the AAMDNodes structure with AA metadata from this instruction. |
| 311 | /// When Merge is true, the existing AA metadata is merged with that from this |
| 312 | /// instruction providing the most-general result. |
| 313 | void getAAMetadata(AAMDNodes &N, bool Merge = false) const; |
| 314 | |
| 315 | /// Set the metadata of the specified kind to the specified node. This updates |
| 316 | /// or replaces metadata if already present, or removes it if Node is null. |
| 317 | void setMetadata(unsigned KindID, MDNode *Node); |
| 318 | void setMetadata(StringRef Kind, MDNode *Node); |
| 319 | |
| 320 | /// Copy metadata from \p SrcInst to this instruction. \p WL, if not empty, |
| 321 | /// specifies the list of meta data that needs to be copied. If \p WL is |
| 322 | /// empty, all meta data will be copied. |
| 323 | void copyMetadata(const Instruction &SrcInst, |
| 324 | ArrayRef<unsigned> WL = ArrayRef<unsigned>()); |
| 325 | |
| 326 | /// If the instruction has "branch_weights" MD_prof metadata and the MDNode |
| 327 | /// has three operands (including name string), swap the order of the |
| 328 | /// metadata. |
| 329 | void swapProfMetadata(); |
| 330 | |
| 331 | /// Drop all unknown metadata except for debug locations. |
| 332 | /// @{ |
| 333 | /// Passes are required to drop metadata they don't understand. This is a |
| 334 | /// convenience method for passes to do so. |
| 335 | /// dropUndefImplyingAttrsAndUnknownMetadata should be used instead of |
| 336 | /// this API if the Instruction being modified is a call. |
| 337 | void dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs); |
| 338 | void dropUnknownNonDebugMetadata() { |
| 339 | return dropUnknownNonDebugMetadata(None); |
| 340 | } |
| 341 | void dropUnknownNonDebugMetadata(unsigned ID1) { |
| 342 | return dropUnknownNonDebugMetadata(makeArrayRef(ID1)); |
| 343 | } |
| 344 | void dropUnknownNonDebugMetadata(unsigned ID1, unsigned ID2) { |
| 345 | unsigned IDs[] = {ID1, ID2}; |
| 346 | return dropUnknownNonDebugMetadata(IDs); |
| 347 | } |
| 348 | /// @} |
| 349 | |
| 350 | /// Adds an !annotation metadata node with \p Annotation to this instruction. |
| 351 | /// If this instruction already has !annotation metadata, append \p Annotation |
| 352 | /// to the existing node. |
| 353 | void addAnnotationMetadata(StringRef Annotation); |
| 354 | |
| 355 | /// Sets the metadata on this instruction from the AAMDNodes structure. |
| 356 | void setAAMetadata(const AAMDNodes &N); |
| 357 | |
| 358 | /// Retrieve the raw weight values of a conditional branch or select. |
| 359 | /// Returns true on success with profile weights filled in. |
| 360 | /// Returns false if no metadata or invalid metadata was found. |
| 361 | bool extractProfMetadata(uint64_t &TrueVal, uint64_t &FalseVal) const; |
| 362 | |
| 363 | /// Retrieve total raw weight values of a branch. |
| 364 | /// Returns true on success with profile total weights filled in. |
| 365 | /// Returns false if no metadata was found. |
| 366 | bool extractProfTotalWeight(uint64_t &TotalVal) const; |
| 367 | |
| 368 | /// Set the debug location information for this instruction. |
| 369 | void setDebugLoc(DebugLoc Loc) { DbgLoc = std::move(Loc); } |
| 370 | |
| 371 | /// Return the debug location for this node as a DebugLoc. |
| 372 | const DebugLoc &getDebugLoc() const { return DbgLoc; } |
| 373 | |
| 374 | /// Set or clear the nuw flag on this instruction, which must be an operator |
| 375 | /// which supports this flag. See LangRef.html for the meaning of this flag. |
| 376 | void setHasNoUnsignedWrap(bool b = true); |
| 377 | |
| 378 | /// Set or clear the nsw flag on this instruction, which must be an operator |
| 379 | /// which supports this flag. See LangRef.html for the meaning of this flag. |
| 380 | void setHasNoSignedWrap(bool b = true); |
| 381 | |
| 382 | /// Set or clear the exact flag on this instruction, which must be an operator |
| 383 | /// which supports this flag. See LangRef.html for the meaning of this flag. |
| 384 | void setIsExact(bool b = true); |
| 385 | |
| 386 | /// Determine whether the no unsigned wrap flag is set. |
| 387 | bool hasNoUnsignedWrap() const; |
| 388 | |
| 389 | /// Determine whether the no signed wrap flag is set. |
| 390 | bool hasNoSignedWrap() const; |
| 391 | |
| 392 | /// Drops flags that may cause this instruction to evaluate to poison despite |
| 393 | /// having non-poison inputs. |
| 394 | void dropPoisonGeneratingFlags(); |
| 395 | |
| 396 | /// This function drops non-debug unknown metadata (through |
| 397 | /// dropUnknownNonDebugMetadata). For calls, it also drops parameter and |
| 398 | /// return attributes that can cause undefined behaviour. Both of these should |
| 399 | /// be done by passes which move instructions in IR. |
| 400 | void |
| 401 | dropUndefImplyingAttrsAndUnknownMetadata(ArrayRef<unsigned> KnownIDs = {}); |
| 402 | |
| 403 | /// Determine whether the exact flag is set. |
| 404 | bool isExact() const; |
| 405 | |
| 406 | /// Set or clear all fast-math-flags on this instruction, which must be an |
| 407 | /// operator which supports this flag. See LangRef.html for the meaning of |
| 408 | /// this flag. |
| 409 | void setFast(bool B); |
| 410 | |
| 411 | /// Set or clear the reassociation flag on this instruction, which must be |
| 412 | /// an operator which supports this flag. See LangRef.html for the meaning of |
| 413 | /// this flag. |
| 414 | void setHasAllowReassoc(bool B); |
| 415 | |
| 416 | /// Set or clear the no-nans flag on this instruction, which must be an |
| 417 | /// operator which supports this flag. See LangRef.html for the meaning of |
| 418 | /// this flag. |
| 419 | void setHasNoNaNs(bool B); |
| 420 | |
| 421 | /// Set or clear the no-infs flag on this instruction, which must be an |
| 422 | /// operator which supports this flag. See LangRef.html for the meaning of |
| 423 | /// this flag. |
| 424 | void setHasNoInfs(bool B); |
| 425 | |
| 426 | /// Set or clear the no-signed-zeros flag on this instruction, which must be |
| 427 | /// an operator which supports this flag. See LangRef.html for the meaning of |
| 428 | /// this flag. |
| 429 | void setHasNoSignedZeros(bool B); |
| 430 | |
| 431 | /// Set or clear the allow-reciprocal flag on this instruction, which must be |
| 432 | /// an operator which supports this flag. See LangRef.html for the meaning of |
| 433 | /// this flag. |
| 434 | void setHasAllowReciprocal(bool B); |
| 435 | |
| 436 | /// Set or clear the allow-contract flag on this instruction, which must be |
| 437 | /// an operator which supports this flag. See LangRef.html for the meaning of |
| 438 | /// this flag. |
| 439 | void setHasAllowContract(bool B); |
| 440 | |
| 441 | /// Set or clear the approximate-math-functions flag on this instruction, |
| 442 | /// which must be an operator which supports this flag. See LangRef.html for |
| 443 | /// the meaning of this flag. |
| 444 | void setHasApproxFunc(bool B); |
| 445 | |
| 446 | /// Convenience function for setting multiple fast-math flags on this |
| 447 | /// instruction, which must be an operator which supports these flags. See |
| 448 | /// LangRef.html for the meaning of these flags. |
| 449 | void setFastMathFlags(FastMathFlags FMF); |
| 450 | |
| 451 | /// Convenience function for transferring all fast-math flag values to this |
| 452 | /// instruction, which must be an operator which supports these flags. See |
| 453 | /// LangRef.html for the meaning of these flags. |
| 454 | void copyFastMathFlags(FastMathFlags FMF); |
| 455 | |
| 456 | /// Determine whether all fast-math-flags are set. |
| 457 | bool isFast() const; |
| 458 | |
| 459 | /// Determine whether the allow-reassociation flag is set. |
| 460 | bool hasAllowReassoc() const; |
| 461 | |
| 462 | /// Determine whether the no-NaNs flag is set. |
| 463 | bool hasNoNaNs() const; |
| 464 | |
| 465 | /// Determine whether the no-infs flag is set. |
| 466 | bool hasNoInfs() const; |
| 467 | |
| 468 | /// Determine whether the no-signed-zeros flag is set. |
| 469 | bool hasNoSignedZeros() const; |
| 470 | |
| 471 | /// Determine whether the allow-reciprocal flag is set. |
| 472 | bool hasAllowReciprocal() const; |
| 473 | |
| 474 | /// Determine whether the allow-contract flag is set. |
| 475 | bool hasAllowContract() const; |
| 476 | |
| 477 | /// Determine whether the approximate-math-functions flag is set. |
| 478 | bool hasApproxFunc() const; |
| 479 | |
| 480 | /// Convenience function for getting all the fast-math flags, which must be an |
| 481 | /// operator which supports these flags. See LangRef.html for the meaning of |
| 482 | /// these flags. |
| 483 | FastMathFlags getFastMathFlags() const; |
| 484 | |
| 485 | /// Copy I's fast-math flags |
| 486 | void copyFastMathFlags(const Instruction *I); |
| 487 | |
| 488 | /// Convenience method to copy supported exact, fast-math, and (optionally) |
| 489 | /// wrapping flags from V to this instruction. |
| 490 | void copyIRFlags(const Value *V, bool IncludeWrapFlags = true); |
| 491 | |
| 492 | /// Logical 'and' of any supported wrapping, exact, and fast-math flags of |
| 493 | /// V and this instruction. |
| 494 | void andIRFlags(const Value *V); |
| 495 | |
| 496 | /// Merge 2 debug locations and apply it to the Instruction. If the |
| 497 | /// instruction is a CallIns, we need to traverse the inline chain to find |
| 498 | /// the common scope. This is not efficient for N-way merging as each time |
| 499 | /// you merge 2 iterations, you need to rebuild the hashmap to find the |
| 500 | /// common scope. However, we still choose this API because: |
| 501 | /// 1) Simplicity: it takes 2 locations instead of a list of locations. |
| 502 | /// 2) In worst case, it increases the complexity from O(N*I) to |
| 503 | /// O(2*N*I), where N is # of Instructions to merge, and I is the |
| 504 | /// maximum level of inline stack. So it is still linear. |
| 505 | /// 3) Merging of call instructions should be extremely rare in real |
| 506 | /// applications, thus the N-way merging should be in code path. |
| 507 | /// The DebugLoc attached to this instruction will be overwritten by the |
| 508 | /// merged DebugLoc. |
| 509 | void applyMergedLocation(const DILocation *LocA, const DILocation *LocB); |
| 510 | |
| 511 | /// Updates the debug location given that the instruction has been hoisted |
| 512 | /// from a block to a predecessor of that block. |
| 513 | /// Note: it is undefined behavior to call this on an instruction not |
| 514 | /// currently inserted into a function. |
| 515 | void updateLocationAfterHoist(); |
| 516 | |
| 517 | /// Drop the instruction's debug location. This does not guarantee removal |
| 518 | /// of the !dbg source location attachment, as it must set a line 0 location |
| 519 | /// with scope information attached on call instructions. To guarantee |
| 520 | /// removal of the !dbg attachment, use the \ref setDebugLoc() API. |
| 521 | /// Note: it is undefined behavior to call this on an instruction not |
| 522 | /// currently inserted into a function. |
| 523 | void dropLocation(); |
| 524 | |
| 525 | private: |
| 526 | // These are all implemented in Metadata.cpp. |
| 527 | MDNode *getMetadataImpl(unsigned KindID) const; |
| 528 | MDNode *getMetadataImpl(StringRef Kind) const; |
| 529 | void |
| 530 | getAllMetadataImpl(SmallVectorImpl<std::pair<unsigned, MDNode *>> &) const; |
| 531 | |
| 532 | public: |
| 533 | //===--------------------------------------------------------------------===// |
| 534 | // Predicates and helper methods. |
| 535 | //===--------------------------------------------------------------------===// |
| 536 | |
| 537 | /// Return true if the instruction is associative: |
| 538 | /// |
| 539 | /// Associative operators satisfy: x op (y op z) === (x op y) op z |
| 540 | /// |
| 541 | /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative. |
| 542 | /// |
| 543 | bool isAssociative() const LLVM_READONLY__attribute__((__pure__)); |
| 544 | static bool isAssociative(unsigned Opcode) { |
| 545 | return Opcode == And || Opcode == Or || Opcode == Xor || |
| 546 | Opcode == Add || Opcode == Mul; |
| 547 | } |
| 548 | |
| 549 | /// Return true if the instruction is commutative: |
| 550 | /// |
| 551 | /// Commutative operators satisfy: (x op y) === (y op x) |
| 552 | /// |
| 553 | /// In LLVM, these are the commutative operators, plus SetEQ and SetNE, when |
| 554 | /// applied to any type. |
| 555 | /// |
| 556 | bool isCommutative() const LLVM_READONLY__attribute__((__pure__)); |
| 557 | static bool isCommutative(unsigned Opcode) { |
| 558 | switch (Opcode) { |
| 559 | case Add: case FAdd: |
| 560 | case Mul: case FMul: |
| 561 | case And: case Or: case Xor: |
| 562 | return true; |
| 563 | default: |
| 564 | return false; |
| 565 | } |
| 566 | } |
| 567 | |
| 568 | /// Return true if the instruction is idempotent: |
| 569 | /// |
| 570 | /// Idempotent operators satisfy: x op x === x |
| 571 | /// |
| 572 | /// In LLVM, the And and Or operators are idempotent. |
| 573 | /// |
| 574 | bool isIdempotent() const { return isIdempotent(getOpcode()); } |
| 575 | static bool isIdempotent(unsigned Opcode) { |
| 576 | return Opcode == And || Opcode == Or; |
| 577 | } |
| 578 | |
| 579 | /// Return true if the instruction is nilpotent: |
| 580 | /// |
| 581 | /// Nilpotent operators satisfy: x op x === Id, |
| 582 | /// |
| 583 | /// where Id is the identity for the operator, i.e. a constant such that |
| 584 | /// x op Id === x and Id op x === x for all x. |
| 585 | /// |
| 586 | /// In LLVM, the Xor operator is nilpotent. |
| 587 | /// |
| 588 | bool isNilpotent() const { return isNilpotent(getOpcode()); } |
| 589 | static bool isNilpotent(unsigned Opcode) { |
| 590 | return Opcode == Xor; |
| 591 | } |
| 592 | |
| 593 | /// Return true if this instruction may modify memory. |
| 594 | bool mayWriteToMemory() const; |
| 595 | |
| 596 | /// Return true if this instruction may read memory. |
| 597 | bool mayReadFromMemory() const; |
| 598 | |
| 599 | /// Return true if this instruction may read or write memory. |
| 600 | bool mayReadOrWriteMemory() const { |
| 601 | return mayReadFromMemory() || mayWriteToMemory(); |
| 602 | } |
| 603 | |
| 604 | /// Return true if this instruction has an AtomicOrdering of unordered or |
| 605 | /// higher. |
| 606 | bool isAtomic() const; |
| 607 | |
| 608 | /// Return true if this atomic instruction loads from memory. |
| 609 | bool hasAtomicLoad() const; |
| 610 | |
| 611 | /// Return true if this atomic instruction stores to memory. |
| 612 | bool hasAtomicStore() const; |
| 613 | |
| 614 | /// Return true if this instruction has a volatile memory access. |
| 615 | bool isVolatile() const; |
| 616 | |
| 617 | /// Return true if this instruction may throw an exception. |
| 618 | bool mayThrow() const; |
| 619 | |
| 620 | /// Return true if this instruction behaves like a memory fence: it can load |
| 621 | /// or store to memory location without being given a memory location. |
| 622 | bool isFenceLike() const { |
| 623 | switch (getOpcode()) { |
| 624 | default: |
| 625 | return false; |
| 626 | // This list should be kept in sync with the list in mayWriteToMemory for |
| 627 | // all opcodes which don't have a memory location. |
| 628 | case Instruction::Fence: |
| 629 | case Instruction::CatchPad: |
| 630 | case Instruction::CatchRet: |
| 631 | case Instruction::Call: |
| 632 | case Instruction::Invoke: |
| 633 | return true; |
| 634 | } |
| 635 | } |
| 636 | |
| 637 | /// Return true if the instruction may have side effects. |
| 638 | /// |
| 639 | /// Side effects are: |
| 640 | /// * Writing to memory. |
| 641 | /// * Unwinding. |
| 642 | /// * Not returning (e.g. an infinite loop). |
| 643 | /// |
| 644 | /// Note that this does not consider malloc and alloca to have side |
| 645 | /// effects because the newly allocated memory is completely invisible to |
| 646 | /// instructions which don't use the returned value. For cases where this |
| 647 | /// matters, isSafeToSpeculativelyExecute may be more appropriate. |
| 648 | bool mayHaveSideEffects() const; |
| 649 | |
| 650 | /// Return true if the instruction can be removed if the result is unused. |
| 651 | /// |
| 652 | /// When constant folding some instructions cannot be removed even if their |
| 653 | /// results are unused. Specifically terminator instructions and calls that |
| 654 | /// may have side effects cannot be removed without semantically changing the |
| 655 | /// generated program. |
| 656 | bool isSafeToRemove() const; |
| 657 | |
| 658 | /// Return true if the instruction will return (unwinding is considered as |
| 659 | /// a form of returning control flow here). |
| 660 | bool willReturn() const; |
| 661 | |
| 662 | /// Return true if the instruction is a variety of EH-block. |
| 663 | bool isEHPad() const { |
| 664 | switch (getOpcode()) { |
| 665 | case Instruction::CatchSwitch: |
| 666 | case Instruction::CatchPad: |
| 667 | case Instruction::CleanupPad: |
| 668 | case Instruction::LandingPad: |
| 669 | return true; |
| 670 | default: |
| 671 | return false; |
| 672 | } |
| 673 | } |
| 674 | |
| 675 | /// Return true if the instruction is a llvm.lifetime.start or |
| 676 | /// llvm.lifetime.end marker. |
| 677 | bool isLifetimeStartOrEnd() const; |
| 678 | |
| 679 | /// Return true if the instruction is a llvm.launder.invariant.group or |
| 680 | /// llvm.strip.invariant.group. |
| 681 | bool isLaunderOrStripInvariantGroup() const; |
| 682 | |
| 683 | /// Return true if the instruction is a DbgInfoIntrinsic or PseudoProbeInst. |
| 684 | bool isDebugOrPseudoInst() const; |
| 685 | |
| 686 | /// Return a pointer to the next non-debug instruction in the same basic |
| 687 | /// block as 'this', or nullptr if no such instruction exists. Skip any pseudo |
| 688 | /// operations if \c SkipPseudoOp is true. |
| 689 | const Instruction * |
| 690 | getNextNonDebugInstruction(bool SkipPseudoOp = false) const; |
| 691 | Instruction *getNextNonDebugInstruction(bool SkipPseudoOp = false) { |
| 692 | return const_cast<Instruction *>( |
| 693 | static_cast<const Instruction *>(this)->getNextNonDebugInstruction( |
| 694 | SkipPseudoOp)); |
| 695 | } |
| 696 | |
| 697 | /// Return a pointer to the previous non-debug instruction in the same basic |
| 698 | /// block as 'this', or nullptr if no such instruction exists. Skip any pseudo |
| 699 | /// operations if \c SkipPseudoOp is true. |
| 700 | const Instruction * |
| 701 | getPrevNonDebugInstruction(bool SkipPseudoOp = false) const; |
| 702 | Instruction *getPrevNonDebugInstruction(bool SkipPseudoOp = false) { |
| 703 | return const_cast<Instruction *>( |
| 704 | static_cast<const Instruction *>(this)->getPrevNonDebugInstruction( |
| 705 | SkipPseudoOp)); |
| 706 | } |
| 707 | |
| 708 | /// Create a copy of 'this' instruction that is identical in all ways except |
| 709 | /// the following: |
| 710 | /// * The instruction has no parent |
| 711 | /// * The instruction has no name |
| 712 | /// |
| 713 | Instruction *clone() const; |
| 714 | |
| 715 | /// Return true if the specified instruction is exactly identical to the |
| 716 | /// current one. This means that all operands match and any extra information |
| 717 | /// (e.g. load is volatile) agree. |
| 718 | bool isIdenticalTo(const Instruction *I) const; |
| 719 | |
| 720 | /// This is like isIdenticalTo, except that it ignores the |
| 721 | /// SubclassOptionalData flags, which may specify conditions under which the |
| 722 | /// instruction's result is undefined. |
| 723 | bool isIdenticalToWhenDefined(const Instruction *I) const; |
| 724 | |
| 725 | /// When checking for operation equivalence (using isSameOperationAs) it is |
| 726 | /// sometimes useful to ignore certain attributes. |
| 727 | enum OperationEquivalenceFlags { |
| 728 | /// Check for equivalence ignoring load/store alignment. |
| 729 | CompareIgnoringAlignment = 1<<0, |
| 730 | /// Check for equivalence treating a type and a vector of that type |
| 731 | /// as equivalent. |
| 732 | CompareUsingScalarTypes = 1<<1 |
| 733 | }; |
| 734 | |
| 735 | /// This function determines if the specified instruction executes the same |
| 736 | /// operation as the current one. This means that the opcodes, type, operand |
| 737 | /// types and any other factors affecting the operation must be the same. This |
| 738 | /// is similar to isIdenticalTo except the operands themselves don't have to |
| 739 | /// be identical. |
| 740 | /// @returns true if the specified instruction is the same operation as |
| 741 | /// the current one. |
| 742 | /// Determine if one instruction is the same operation as another. |
| 743 | bool isSameOperationAs(const Instruction *I, unsigned flags = 0) const; |
| 744 | |
| 745 | /// Return true if there are any uses of this instruction in blocks other than |
| 746 | /// the specified block. Note that PHI nodes are considered to evaluate their |
| 747 | /// operands in the corresponding predecessor block. |
| 748 | bool isUsedOutsideOfBlock(const BasicBlock *BB) const; |
| 749 | |
| 750 | /// Return the number of successors that this instruction has. The instruction |
| 751 | /// must be a terminator. |
| 752 | unsigned getNumSuccessors() const; |
| 753 | |
| 754 | /// Return the specified successor. This instruction must be a terminator. |
| 755 | BasicBlock *getSuccessor(unsigned Idx) const; |
| 756 | |
| 757 | /// Update the specified successor to point at the provided block. This |
| 758 | /// instruction must be a terminator. |
| 759 | void setSuccessor(unsigned Idx, BasicBlock *BB); |
| 760 | |
| 761 | /// Replace specified successor OldBB to point at the provided block. |
| 762 | /// This instruction must be a terminator. |
| 763 | void replaceSuccessorWith(BasicBlock *OldBB, BasicBlock *NewBB); |
| 764 | |
| 765 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 766 | static bool classof(const Value *V) { |
| 767 | return V->getValueID() >= Value::InstructionVal; |
| 768 | } |
| 769 | |
| 770 | //---------------------------------------------------------------------- |
| 771 | // Exported enumerations. |
| 772 | // |
| 773 | enum TermOps { // These terminate basic blocks |
| 774 | #define FIRST_TERM_INST(N) TermOpsBegin = N, |
| 775 | #define HANDLE_TERM_INST(N, OPC, CLASS) OPC = N, |
| 776 | #define LAST_TERM_INST(N) TermOpsEnd = N+1 |
| 777 | #include "llvm/IR/Instruction.def" |
| 778 | }; |
| 779 | |
| 780 | enum UnaryOps { |
| 781 | #define FIRST_UNARY_INST(N) UnaryOpsBegin = N, |
| 782 | #define HANDLE_UNARY_INST(N, OPC, CLASS) OPC = N, |
| 783 | #define LAST_UNARY_INST(N) UnaryOpsEnd = N+1 |
| 784 | #include "llvm/IR/Instruction.def" |
| 785 | }; |
| 786 | |
| 787 | enum BinaryOps { |
| 788 | #define FIRST_BINARY_INST(N) BinaryOpsBegin = N, |
| 789 | #define HANDLE_BINARY_INST(N, OPC, CLASS) OPC = N, |
| 790 | #define LAST_BINARY_INST(N) BinaryOpsEnd = N+1 |
| 791 | #include "llvm/IR/Instruction.def" |
| 792 | }; |
| 793 | |
| 794 | enum MemoryOps { |
| 795 | #define FIRST_MEMORY_INST(N) MemoryOpsBegin = N, |
| 796 | #define HANDLE_MEMORY_INST(N, OPC, CLASS) OPC = N, |
| 797 | #define LAST_MEMORY_INST(N) MemoryOpsEnd = N+1 |
| 798 | #include "llvm/IR/Instruction.def" |
| 799 | }; |
| 800 | |
| 801 | enum CastOps { |
| 802 | #define FIRST_CAST_INST(N) CastOpsBegin = N, |
| 803 | #define HANDLE_CAST_INST(N, OPC, CLASS) OPC = N, |
| 804 | #define LAST_CAST_INST(N) CastOpsEnd = N+1 |
| 805 | #include "llvm/IR/Instruction.def" |
| 806 | }; |
| 807 | |
| 808 | enum FuncletPadOps { |
| 809 | #define FIRST_FUNCLETPAD_INST(N) FuncletPadOpsBegin = N, |
| 810 | #define HANDLE_FUNCLETPAD_INST(N, OPC, CLASS) OPC = N, |
| 811 | #define LAST_FUNCLETPAD_INST(N) FuncletPadOpsEnd = N+1 |
| 812 | #include "llvm/IR/Instruction.def" |
| 813 | }; |
| 814 | |
| 815 | enum OtherOps { |
| 816 | #define FIRST_OTHER_INST(N) OtherOpsBegin = N, |
| 817 | #define HANDLE_OTHER_INST(N, OPC, CLASS) OPC = N, |
| 818 | #define LAST_OTHER_INST(N) OtherOpsEnd = N+1 |
| 819 | #include "llvm/IR/Instruction.def" |
| 820 | }; |
| 821 | |
| 822 | private: |
| 823 | friend class SymbolTableListTraits<Instruction>; |
| 824 | friend class BasicBlock; // For renumbering. |
| 825 | |
| 826 | // Shadow Value::setValueSubclassData with a private forwarding method so that |
| 827 | // subclasses cannot accidentally use it. |
| 828 | void setValueSubclassData(unsigned short D) { |
| 829 | Value::setValueSubclassData(D); |
| 830 | } |
| 831 | |
| 832 | unsigned short getSubclassDataFromValue() const { |
| 833 | return Value::getSubclassDataFromValue(); |
| 834 | } |
| 835 | |
| 836 | void setParent(BasicBlock *P); |
| 837 | |
| 838 | protected: |
| 839 | // Instruction subclasses can stick up to 15 bits of stuff into the |
| 840 | // SubclassData field of instruction with these members. |
| 841 | |
| 842 | template <typename BitfieldElement> |
| 843 | typename BitfieldElement::Type getSubclassData() const { |
| 844 | static_assert( |
| 845 | std::is_same<BitfieldElement, HasMetadataField>::value || |
| 846 | !Bitfield::isOverlapping<BitfieldElement, HasMetadataField>(), |
| 847 | "Must not overlap with the metadata bit"); |
| 848 | return Bitfield::get<BitfieldElement>(getSubclassDataFromValue()); |
| 849 | } |
| 850 | |
| 851 | template <typename BitfieldElement> |
| 852 | void setSubclassData(typename BitfieldElement::Type Value) { |
| 853 | static_assert( |
| 854 | std::is_same<BitfieldElement, HasMetadataField>::value || |
| 855 | !Bitfield::isOverlapping<BitfieldElement, HasMetadataField>(), |
| 856 | "Must not overlap with the metadata bit"); |
| 857 | auto Storage = getSubclassDataFromValue(); |
| 858 | Bitfield::set<BitfieldElement>(Storage, Value); |
| 859 | setValueSubclassData(Storage); |
| 860 | } |
| 861 | |
| 862 | Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps, |
| 863 | Instruction *InsertBefore = nullptr); |
| 864 | Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps, |
| 865 | BasicBlock *InsertAtEnd); |
| 866 | |
| 867 | private: |
| 868 | /// Create a copy of this instruction. |
| 869 | Instruction *cloneImpl() const; |
| 870 | }; |
| 871 | |
| 872 | inline void ilist_alloc_traits<Instruction>::deleteNode(Instruction *V) { |
| 873 | V->deleteValue(); |
| 874 | } |
| 875 | |
| 876 | } // end namespace llvm |
| 877 | |
| 878 | #endif // LLVM_IR_INSTRUCTION_H |
| 1 | //===- TypeSize.h - Wrapper around type sizes -------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file provides a struct that can be used to query the size of IR types |
| 10 | // which may be scalable vectors. It provides convenience operators so that |
| 11 | // it can be used in much the same way as a single scalar value. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #ifndef LLVM_SUPPORT_TYPESIZE_H |
| 16 | #define LLVM_SUPPORT_TYPESIZE_H |
| 17 | |
| 18 | #include "llvm/ADT/ArrayRef.h" |
| 19 | #include "llvm/Support/MathExtras.h" |
| 20 | #include "llvm/Support/WithColor.h" |
| 21 | |
| 22 | #include <algorithm> |
| 23 | #include <array> |
| 24 | #include <cassert> |
| 25 | #include <cstdint> |
| 26 | #include <type_traits> |
| 27 | |
| 28 | namespace llvm { |
| 29 | |
| 30 | /// Reports a diagnostic message to indicate an invalid size request has been |
| 31 | /// done on a scalable vector. This function may not return. |
| 32 | void reportInvalidSizeRequest(const char *Msg); |
| 33 | |
| 34 | template <typename LeafTy> struct LinearPolyBaseTypeTraits {}; |
| 35 | |
| 36 | //===----------------------------------------------------------------------===// |
| 37 | // LinearPolyBase - a base class for linear polynomials with multiple |
| 38 | // dimensions. This can e.g. be used to describe offsets that are have both a |
| 39 | // fixed and scalable component. |
| 40 | //===----------------------------------------------------------------------===// |
| 41 | |
| 42 | /// LinearPolyBase describes a linear polynomial: |
| 43 | /// c0 * scale0 + c1 * scale1 + ... + cK * scaleK |
| 44 | /// where the scale is implicit, so only the coefficients are encoded. |
| 45 | template <typename LeafTy> |
| 46 | class LinearPolyBase { |
| 47 | public: |
| 48 | using ScalarTy = typename LinearPolyBaseTypeTraits<LeafTy>::ScalarTy; |
| 49 | static constexpr auto Dimensions = LinearPolyBaseTypeTraits<LeafTy>::Dimensions; |
| 50 | static_assert(Dimensions != std::numeric_limits<unsigned>::max(), |
| 51 | "Dimensions out of range"); |
| 52 | |
| 53 | private: |
| 54 | std::array<ScalarTy, Dimensions> Coefficients; |
| 55 | |
| 56 | protected: |
| 57 | LinearPolyBase(ArrayRef<ScalarTy> Values) { |
| 58 | std::copy(Values.begin(), Values.end(), Coefficients.begin()); |
| 59 | } |
| 60 | |
| 61 | public: |
| 62 | friend LeafTy &operator+=(LeafTy &LHS, const LeafTy &RHS) { |
| 63 | for (unsigned I=0; I<Dimensions; ++I) |
| 64 | LHS.Coefficients[I] += RHS.Coefficients[I]; |
| 65 | return LHS; |
| 66 | } |
| 67 | |
| 68 | friend LeafTy &operator-=(LeafTy &LHS, const LeafTy &RHS) { |
| 69 | for (unsigned I=0; I<Dimensions; ++I) |
| 70 | LHS.Coefficients[I] -= RHS.Coefficients[I]; |
| 71 | return LHS; |
| 72 | } |
| 73 | |
| 74 | friend LeafTy &operator*=(LeafTy &LHS, ScalarTy RHS) { |
| 75 | for (auto &C : LHS.Coefficients) |
| 76 | C *= RHS; |
| 77 | return LHS; |
| 78 | } |
| 79 | |
| 80 | friend LeafTy operator+(const LeafTy &LHS, const LeafTy &RHS) { |
| 81 | LeafTy Copy = LHS; |
| 82 | return Copy += RHS; |
| 83 | } |
| 84 | |
| 85 | friend LeafTy operator-(const LeafTy &LHS, const LeafTy &RHS) { |
| 86 | LeafTy Copy = LHS; |
| 87 | return Copy -= RHS; |
| 88 | } |
| 89 | |
| 90 | friend LeafTy operator*(const LeafTy &LHS, ScalarTy RHS) { |
| 91 | LeafTy Copy = LHS; |
| 92 | return Copy *= RHS; |
| 93 | } |
| 94 | |
| 95 | template <typename U = ScalarTy> |
| 96 | friend typename std::enable_if_t<std::is_signed<U>::value, LeafTy> |
| 97 | operator-(const LeafTy &LHS) { |
| 98 | LeafTy Copy = LHS; |
| 99 | return Copy *= -1; |
| 100 | } |
| 101 | |
| 102 | bool operator==(const LinearPolyBase &RHS) const { |
| 103 | return std::equal(Coefficients.begin(), Coefficients.end(), |
| 104 | RHS.Coefficients.begin()); |
| 105 | } |
| 106 | |
| 107 | bool operator!=(const LinearPolyBase &RHS) const { |
| 108 | return !(*this == RHS); |
| 109 | } |
| 110 | |
| 111 | bool isZero() const { |
| 112 | return all_of(Coefficients, [](const ScalarTy &C) { return C == 0; }); |
| 113 | } |
| 114 | bool isNonZero() const { return !isZero(); } |
| 115 | explicit operator bool() const { return isNonZero(); } |
| 116 | |
| 117 | ScalarTy getValue(unsigned Dim) const { return Coefficients[Dim]; } |
| 118 | }; |
| 119 | |
| 120 | //===----------------------------------------------------------------------===// |
| 121 | // StackOffset - Represent an offset with named fixed and scalable components. |
| 122 | //===----------------------------------------------------------------------===// |
| 123 | |
| 124 | class StackOffset; |
| 125 | template <> struct LinearPolyBaseTypeTraits<StackOffset> { |
| 126 | using ScalarTy = int64_t; |
| 127 | static constexpr unsigned Dimensions = 2; |
| 128 | }; |
| 129 | |
| 130 | /// StackOffset is a class to represent an offset with 2 dimensions, |
| 131 | /// named fixed and scalable, respectively. This class allows a value for both |
| 132 | /// dimensions to depict e.g. "8 bytes and 16 scalable bytes", which is needed |
| 133 | /// to represent stack offsets. |
| 134 | class StackOffset : public LinearPolyBase<StackOffset> { |
| 135 | protected: |
| 136 | StackOffset(ScalarTy Fixed, ScalarTy Scalable) |
| 137 | : LinearPolyBase<StackOffset>({Fixed, Scalable}) {} |
| 138 | |
| 139 | public: |
| 140 | StackOffset() : StackOffset({0, 0}) {} |
| 141 | StackOffset(const LinearPolyBase<StackOffset> &Other) |
| 142 | : LinearPolyBase<StackOffset>(Other) {} |
| 143 | static StackOffset getFixed(ScalarTy Fixed) { return {Fixed, 0}; } |
| 144 | static StackOffset getScalable(ScalarTy Scalable) { return {0, Scalable}; } |
| 145 | static StackOffset get(ScalarTy Fixed, ScalarTy Scalable) { |
| 146 | return {Fixed, Scalable}; |
| 147 | } |
| 148 | |
| 149 | ScalarTy getFixed() const { return this->getValue(0); } |
| 150 | ScalarTy getScalable() const { return this->getValue(1); } |
| 151 | }; |
| 152 | |
| 153 | //===----------------------------------------------------------------------===// |
| 154 | // UnivariateLinearPolyBase - a base class for linear polynomials with multiple |
| 155 | // dimensions, but where only one dimension can be set at any time. |
| 156 | // This can e.g. be used to describe sizes that are either fixed or scalable. |
| 157 | //===----------------------------------------------------------------------===// |
| 158 | |
| 159 | /// UnivariateLinearPolyBase is a base class for ElementCount and TypeSize. |
| 160 | /// Like LinearPolyBase it tries to represent a linear polynomial |
| 161 | /// where only one dimension can be set at any time, e.g. |
| 162 | /// 0 * scale0 + 0 * scale1 + ... + cJ * scaleJ + ... + 0 * scaleK |
| 163 | /// The dimension that is set is the univariate dimension. |
| 164 | template <typename LeafTy> |
| 165 | class UnivariateLinearPolyBase { |
| 166 | public: |
| 167 | using ScalarTy = typename LinearPolyBaseTypeTraits<LeafTy>::ScalarTy; |
| 168 | static constexpr auto Dimensions = LinearPolyBaseTypeTraits<LeafTy>::Dimensions; |
| 169 | static_assert(Dimensions != std::numeric_limits<unsigned>::max(), |
| 170 | "Dimensions out of range"); |
| 171 | |
| 172 | protected: |
| 173 | ScalarTy Value; // The value at the univeriate dimension. |
| 174 | unsigned UnivariateDim; // The univeriate dimension. |
| 175 | |
| 176 | UnivariateLinearPolyBase(ScalarTy Val, unsigned UnivariateDim) |
| 177 | : Value(Val), UnivariateDim(UnivariateDim) { |
| 178 | assert(UnivariateDim < Dimensions && "Dimension out of range")((void)0); |
| 179 | } |
| 180 | |
| 181 | friend LeafTy &operator+=(LeafTy &LHS, const LeafTy &RHS) { |
| 182 | assert(LHS.UnivariateDim == RHS.UnivariateDim && "Invalid dimensions")((void)0); |
| 183 | LHS.Value += RHS.Value; |
| 184 | return LHS; |
| 185 | } |
| 186 | |
| 187 | friend LeafTy &operator-=(LeafTy &LHS, const LeafTy &RHS) { |
| 188 | assert(LHS.UnivariateDim == RHS.UnivariateDim && "Invalid dimensions")((void)0); |
| 189 | LHS.Value -= RHS.Value; |
| 190 | return LHS; |
| 191 | } |
| 192 | |
| 193 | friend LeafTy &operator*=(LeafTy &LHS, ScalarTy RHS) { |
| 194 | LHS.Value *= RHS; |
| 195 | return LHS; |
| 196 | } |
| 197 | |
| 198 | friend LeafTy operator+(const LeafTy &LHS, const LeafTy &RHS) { |
| 199 | LeafTy Copy = LHS; |
| 200 | return Copy += RHS; |
| 201 | } |
| 202 | |
| 203 | friend LeafTy operator-(const LeafTy &LHS, const LeafTy &RHS) { |
| 204 | LeafTy Copy = LHS; |
| 205 | return Copy -= RHS; |
| 206 | } |
| 207 | |
| 208 | friend LeafTy operator*(const LeafTy &LHS, ScalarTy RHS) { |
| 209 | LeafTy Copy = LHS; |
| 210 | return Copy *= RHS; |
| 211 | } |
| 212 | |
| 213 | template <typename U = ScalarTy> |
| 214 | friend typename std::enable_if<std::is_signed<U>::value, LeafTy>::type |
| 215 | operator-(const LeafTy &LHS) { |
| 216 | LeafTy Copy = LHS; |
| 217 | return Copy *= -1; |
| 218 | } |
| 219 | |
| 220 | public: |
| 221 | bool operator==(const UnivariateLinearPolyBase &RHS) const { |
| 222 | return Value == RHS.Value && UnivariateDim == RHS.UnivariateDim; |
| 223 | } |
| 224 | |
| 225 | bool operator!=(const UnivariateLinearPolyBase &RHS) const { |
| 226 | return !(*this == RHS); |
| 227 | } |
| 228 | |
| 229 | bool isZero() const { return !Value; } |
| 230 | bool isNonZero() const { return !isZero(); } |
| 231 | explicit operator bool() const { return isNonZero(); } |
| 232 | ScalarTy getValue() const { return Value; } |
| 233 | ScalarTy getValue(unsigned Dim) const { |
| 234 | return Dim == UnivariateDim ? Value : 0; |
| 235 | } |
| 236 | |
| 237 | /// Add \p RHS to the value at the univariate dimension. |
| 238 | LeafTy getWithIncrement(ScalarTy RHS) const { |
| 239 | return static_cast<LeafTy>( |
| 240 | UnivariateLinearPolyBase(Value + RHS, UnivariateDim)); |
| 241 | } |
| 242 | |
| 243 | /// Subtract \p RHS from the value at the univariate dimension. |
| 244 | LeafTy getWithDecrement(ScalarTy RHS) const { |
| 245 | return static_cast<LeafTy>( |
| 246 | UnivariateLinearPolyBase(Value - RHS, UnivariateDim)); |
| 247 | } |
| 248 | }; |
| 249 | |
| 250 | |
| 251 | //===----------------------------------------------------------------------===// |
| 252 | // LinearPolySize - base class for fixed- or scalable sizes. |
| 253 | // ^ ^ |
| 254 | // | | |
| 255 | // | +----- ElementCount - Leaf class to represent an element count |
| 256 | // | (vscale x unsigned) |
| 257 | // | |
| 258 | // +-------- TypeSize - Leaf class to represent a type size |
| 259 | // (vscale x uint64_t) |
| 260 | //===----------------------------------------------------------------------===// |
| 261 | |
| 262 | /// LinearPolySize is a base class to represent sizes. It is either |
| 263 | /// fixed-sized or it is scalable-sized, but it cannot be both. |
| 264 | template <typename LeafTy> |
| 265 | class LinearPolySize : public UnivariateLinearPolyBase<LeafTy> { |
| 266 | // Make the parent class a friend, so that it can access the protected |
| 267 | // conversion/copy-constructor for UnivariatePolyBase<LeafTy> -> |
| 268 | // LinearPolySize<LeafTy>. |
| 269 | friend class UnivariateLinearPolyBase<LeafTy>; |
| 270 | |
| 271 | public: |
| 272 | using ScalarTy = typename UnivariateLinearPolyBase<LeafTy>::ScalarTy; |
| 273 | enum Dims : unsigned { FixedDim = 0, ScalableDim = 1 }; |
| 274 | |
| 275 | protected: |
| 276 | LinearPolySize(ScalarTy MinVal, Dims D) |
| 277 | : UnivariateLinearPolyBase<LeafTy>(MinVal, D) {} |
| 278 | |
| 279 | LinearPolySize(const UnivariateLinearPolyBase<LeafTy> &V) |
| 280 | : UnivariateLinearPolyBase<LeafTy>(V) {} |
| 281 | |
| 282 | public: |
| 283 | |
| 284 | static LeafTy getFixed(ScalarTy MinVal) { |
| 285 | return static_cast<LeafTy>(LinearPolySize(MinVal, FixedDim)); |
| 286 | } |
| 287 | static LeafTy getScalable(ScalarTy MinVal) { |
| 288 | return static_cast<LeafTy>(LinearPolySize(MinVal, ScalableDim)); |
| 289 | } |
| 290 | static LeafTy get(ScalarTy MinVal, bool Scalable) { |
| 291 | return static_cast<LeafTy>( |
| 292 | LinearPolySize(MinVal, Scalable ? ScalableDim : FixedDim)); |
| 293 | } |
| 294 | static LeafTy getNull() { return get(0, false); } |
| 295 | |
| 296 | /// Returns the minimum value this size can represent. |
| 297 | ScalarTy getKnownMinValue() const { return this->getValue(); } |
| 298 | /// Returns whether the size is scaled by a runtime quantity (vscale). |
| 299 | bool isScalable() const { return this->UnivariateDim == ScalableDim; } |
| 300 | /// A return value of true indicates we know at compile time that the number |
| 301 | /// of elements (vscale * Min) is definitely even. However, returning false |
| 302 | /// does not guarantee that the total number of elements is odd. |
| 303 | bool isKnownEven() const { return (getKnownMinValue() & 0x1) == 0; } |
| 304 | /// This function tells the caller whether the element count is known at |
| 305 | /// compile time to be a multiple of the scalar value RHS. |
| 306 | bool isKnownMultipleOf(ScalarTy RHS) const { |
| 307 | return getKnownMinValue() % RHS == 0; |
| 308 | } |
| 309 | |
| 310 | // Return the minimum value with the assumption that the count is exact. |
| 311 | // Use in places where a scalable count doesn't make sense (e.g. non-vector |
| 312 | // types, or vectors in backends which don't support scalable vectors). |
| 313 | ScalarTy getFixedValue() const { |
| 314 | assert(!isScalable() &&((void)0) |
| 315 | "Request for a fixed element count on a scalable object")((void)0); |
| 316 | return getKnownMinValue(); |
| 317 | } |
| 318 | |
| 319 | // For some cases, size ordering between scalable and fixed size types cannot |
| 320 | // be determined at compile time, so such comparisons aren't allowed. |
| 321 | // |
| 322 | // e.g. <vscale x 2 x i16> could be bigger than <4 x i32> with a runtime |
| 323 | // vscale >= 5, equal sized with a vscale of 4, and smaller with |
| 324 | // a vscale <= 3. |
| 325 | // |
| 326 | // All the functions below make use of the fact vscale is always >= 1, which |
| 327 | // means that <vscale x 4 x i32> is guaranteed to be >= <4 x i32>, etc. |
| 328 | |
| 329 | static bool isKnownLT(const LinearPolySize &LHS, const LinearPolySize &RHS) { |
| 330 | if (!LHS.isScalable() || RHS.isScalable()) |
| 331 | return LHS.getKnownMinValue() < RHS.getKnownMinValue(); |
| 332 | return false; |
| 333 | } |
| 334 | |
| 335 | static bool isKnownGT(const LinearPolySize &LHS, const LinearPolySize &RHS) { |
| 336 | if (LHS.isScalable() || !RHS.isScalable()) |
| 337 | return LHS.getKnownMinValue() > RHS.getKnownMinValue(); |
| 338 | return false; |
| 339 | } |
| 340 | |
| 341 | static bool isKnownLE(const LinearPolySize &LHS, const LinearPolySize &RHS) { |
| 342 | if (!LHS.isScalable() || RHS.isScalable()) |
| 343 | return LHS.getKnownMinValue() <= RHS.getKnownMinValue(); |
| 344 | return false; |
| 345 | } |
| 346 | |
| 347 | static bool isKnownGE(const LinearPolySize &LHS, const LinearPolySize &RHS) { |
| 348 | if (LHS.isScalable() || !RHS.isScalable()) |
| 349 | return LHS.getKnownMinValue() >= RHS.getKnownMinValue(); |
| 350 | return false; |
| 351 | } |
| 352 | |
| 353 | /// We do not provide the '/' operator here because division for polynomial |
| 354 | /// types does not work in the same way as for normal integer types. We can |
| 355 | /// only divide the minimum value (or coefficient) by RHS, which is not the |
| 356 | /// same as |
| 357 | /// (Min * Vscale) / RHS |
| 358 | /// The caller is recommended to use this function in combination with |
| 359 | /// isKnownMultipleOf(RHS), which lets the caller know if it's possible to |
| 360 | /// perform a lossless divide by RHS. |
| 361 | LeafTy divideCoefficientBy(ScalarTy RHS) const { |
| 362 | return static_cast<LeafTy>( |
| 363 | LinearPolySize::get(getKnownMinValue() / RHS, isScalable())); |
| 364 | } |
| 365 | |
| 366 | LeafTy coefficientNextPowerOf2() const { |
| 367 | return static_cast<LeafTy>(LinearPolySize::get( |
| 368 | static_cast<ScalarTy>(llvm::NextPowerOf2(getKnownMinValue())), |
| 369 | isScalable())); |
| 370 | } |
| 371 | |
| 372 | /// Printing function. |
| 373 | void print(raw_ostream &OS) const { |
| 374 | if (isScalable()) |
| 375 | OS << "vscale x "; |
| 376 | OS << getKnownMinValue(); |
| 377 | } |
| 378 | }; |
| 379 | |
| 380 | class ElementCount; |
| 381 | template <> struct LinearPolyBaseTypeTraits<ElementCount> { |
| 382 | using ScalarTy = unsigned; |
| 383 | static constexpr unsigned Dimensions = 2; |
| 384 | }; |
| 385 | |
| 386 | class ElementCount : public LinearPolySize<ElementCount> { |
| 387 | public: |
| 388 | ElementCount() : LinearPolySize(LinearPolySize::getNull()) {} |
| 389 | |
| 390 | ElementCount(const LinearPolySize<ElementCount> &V) : LinearPolySize(V) {} |
| 391 | |
| 392 | /// Counting predicates. |
| 393 | /// |
| 394 | ///@{ Number of elements.. |
| 395 | /// Exactly one element. |
| 396 | bool isScalar() const { return !isScalable() && getKnownMinValue() == 1; } |
| 397 | /// One or more elements. |
| 398 | bool isVector() const { |
| 399 | return (isScalable() && getKnownMinValue() != 0) || getKnownMinValue() > 1; |
| 400 | } |
| 401 | ///@} |
| 402 | }; |
| 403 | |
| 404 | // This class is used to represent the size of types. If the type is of fixed |
| 405 | class TypeSize; |
| 406 | template <> struct LinearPolyBaseTypeTraits<TypeSize> { |
| 407 | using ScalarTy = uint64_t; |
| 408 | static constexpr unsigned Dimensions = 2; |
| 409 | }; |
| 410 | |
| 411 | // TODO: Most functionality in this class will gradually be phased out |
| 412 | // so it will resemble LinearPolySize as much as possible. |
| 413 | // |
| 414 | // TypeSize is used to represent the size of types. If the type is of fixed |
| 415 | // size, it will represent the exact size. If the type is a scalable vector, |
| 416 | // it will represent the known minimum size. |
| 417 | class TypeSize : public LinearPolySize<TypeSize> { |
| 418 | public: |
| 419 | TypeSize(const LinearPolySize<TypeSize> &V) : LinearPolySize(V) {} |
| 420 | TypeSize(ScalarTy MinVal, bool IsScalable) |
| 421 | : LinearPolySize(LinearPolySize::get(MinVal, IsScalable)) {} |
| 422 | |
| 423 | static TypeSize Fixed(ScalarTy MinVal) { return TypeSize(MinVal, false); } |
| 424 | static TypeSize Scalable(ScalarTy MinVal) { return TypeSize(MinVal, true); } |
| 425 | |
| 426 | ScalarTy getFixedSize() const { return getFixedValue(); } |
| 427 | ScalarTy getKnownMinSize() const { return getKnownMinValue(); } |
| 428 | |
| 429 | // All code for this class below this point is needed because of the |
| 430 | // temporary implicit conversion to uint64_t. The operator overloads are |
| 431 | // needed because otherwise the conversion of the parent class |
| 432 | // UnivariateLinearPolyBase -> TypeSize is ambiguous. |
| 433 | // TODO: Remove the implicit conversion. |
| 434 | |
| 435 | // Casts to a uint64_t if this is a fixed-width size. |
| 436 | // |
| 437 | // This interface is deprecated and will be removed in a future version |
| 438 | // of LLVM in favour of upgrading uses that rely on this implicit conversion |
| 439 | // to uint64_t. Calls to functions that return a TypeSize should use the |
| 440 | // proper interfaces to TypeSize. |
| 441 | // In practice this is mostly calls to MVT/EVT::getSizeInBits(). |
| 442 | // |
| 443 | // To determine how to upgrade the code: |
| 444 | // |
| 445 | // if (<algorithm works for both scalable and fixed-width vectors>) |
| 446 | // use getKnownMinValue() |
| 447 | // else if (<algorithm works only for fixed-width vectors>) { |
| 448 | // if <algorithm can be adapted for both scalable and fixed-width vectors> |
| 449 | // update the algorithm and use getKnownMinValue() |
| 450 | // else |
| 451 | // bail out early for scalable vectors and use getFixedValue() |
| 452 | // } |
| 453 | operator ScalarTy() const; |
| 454 | |
| 455 | // Additional operators needed to avoid ambiguous parses |
| 456 | // because of the implicit conversion hack. |
| 457 | friend TypeSize operator*(const TypeSize &LHS, const int RHS) { |
| 458 | return LHS * (ScalarTy)RHS; |
| 459 | } |
| 460 | friend TypeSize operator*(const TypeSize &LHS, const unsigned RHS) { |
| 461 | return LHS * (ScalarTy)RHS; |
| 462 | } |
| 463 | friend TypeSize operator*(const TypeSize &LHS, const int64_t RHS) { |
| 464 | return LHS * (ScalarTy)RHS; |
| 465 | } |
| 466 | friend TypeSize operator*(const int LHS, const TypeSize &RHS) { |
| 467 | return RHS * LHS; |
| 468 | } |
| 469 | friend TypeSize operator*(const unsigned LHS, const TypeSize &RHS) { |
| 470 | return RHS * LHS; |
| 471 | } |
| 472 | friend TypeSize operator*(const int64_t LHS, const TypeSize &RHS) { |
| 473 | return RHS * LHS; |
| 474 | } |
| 475 | friend TypeSize operator*(const uint64_t LHS, const TypeSize &RHS) { |
| 476 | return RHS * LHS; |
| 477 | } |
| 478 | }; |
| 479 | |
| 480 | //===----------------------------------------------------------------------===// |
| 481 | // Utilities |
| 482 | //===----------------------------------------------------------------------===// |
| 483 | |
| 484 | /// Returns a TypeSize with a known minimum size that is the next integer |
| 485 | /// (mod 2**64) that is greater than or equal to \p Value and is a multiple |
| 486 | /// of \p Align. \p Align must be non-zero. |
| 487 | /// |
| 488 | /// Similar to the alignTo functions in MathExtras.h |
| 489 | inline TypeSize alignTo(TypeSize Size, uint64_t Align) { |
| 490 | assert(Align != 0u && "Align must be non-zero")((void)0); |
| 491 | return {(Size.getKnownMinValue() + Align - 1) / Align * Align, |
| 492 | Size.isScalable()}; |
| 493 | } |
| 494 | |
| 495 | /// Stream operator function for `LinearPolySize`. |
| 496 | template <typename LeafTy> |
| 497 | inline raw_ostream &operator<<(raw_ostream &OS, |
| 498 | const LinearPolySize<LeafTy> &PS) { |
| 499 | PS.print(OS); |
| 500 | return OS; |
| 501 | } |
| 502 | |
| 503 | template <typename T> struct DenseMapInfo; |
| 504 | template <> struct DenseMapInfo<ElementCount> { |
| 505 | static inline ElementCount getEmptyKey() { |
| 506 | return ElementCount::getScalable(~0U); |
| 507 | } |
| 508 | static inline ElementCount getTombstoneKey() { |
| 509 | return ElementCount::getFixed(~0U - 1); |
| 510 | } |
| 511 | static unsigned getHashValue(const ElementCount &EltCnt) { |
| 512 | unsigned HashVal = EltCnt.getKnownMinValue() * 37U; |
| 513 | if (EltCnt.isScalable()) |
| 514 | return (HashVal - 1U); |
| 515 | |
| 516 | return HashVal; |
| 517 | } |
| 518 | |
| 519 | static bool isEqual(const ElementCount &LHS, const ElementCount &RHS) { |
| 520 | return LHS == RHS; |
| 521 | } |
| 522 | }; |
| 523 | |
| 524 | } // end namespace llvm |
| 525 | |
| 526 | #endif // LLVM_SUPPORT_TYPESIZE_H |