| File: | src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp |
| Warning: | line 760, column 17 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===// | ||||||||||||||
| 2 | // | ||||||||||||||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||||||||||||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | ||||||||||||||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||||||||||||
| 6 | // | ||||||||||||||
| 7 | //===----------------------------------------------------------------------===// | ||||||||||||||
| 8 | // | ||||||||||||||
| 9 | // This pass performs various transformations related to eliminating memcpy | ||||||||||||||
| 10 | // calls, or transforming sets of stores into memset's. | ||||||||||||||
| 11 | // | ||||||||||||||
| 12 | //===----------------------------------------------------------------------===// | ||||||||||||||
| 13 | |||||||||||||||
| 14 | #include "llvm/Transforms/Scalar/MemCpyOptimizer.h" | ||||||||||||||
| 15 | #include "llvm/ADT/DenseSet.h" | ||||||||||||||
| 16 | #include "llvm/ADT/None.h" | ||||||||||||||
| 17 | #include "llvm/ADT/STLExtras.h" | ||||||||||||||
| 18 | #include "llvm/ADT/SmallVector.h" | ||||||||||||||
| 19 | #include "llvm/ADT/Statistic.h" | ||||||||||||||
| 20 | #include "llvm/ADT/iterator_range.h" | ||||||||||||||
| 21 | #include "llvm/Analysis/AliasAnalysis.h" | ||||||||||||||
| 22 | #include "llvm/Analysis/AssumptionCache.h" | ||||||||||||||
| 23 | #include "llvm/Analysis/GlobalsModRef.h" | ||||||||||||||
| 24 | #include "llvm/Analysis/Loads.h" | ||||||||||||||
| 25 | #include "llvm/Analysis/MemoryDependenceAnalysis.h" | ||||||||||||||
| 26 | #include "llvm/Analysis/MemoryLocation.h" | ||||||||||||||
| 27 | #include "llvm/Analysis/MemorySSA.h" | ||||||||||||||
| 28 | #include "llvm/Analysis/MemorySSAUpdater.h" | ||||||||||||||
| 29 | #include "llvm/Analysis/TargetLibraryInfo.h" | ||||||||||||||
| 30 | #include "llvm/Analysis/ValueTracking.h" | ||||||||||||||
| 31 | #include "llvm/IR/Argument.h" | ||||||||||||||
| 32 | #include "llvm/IR/BasicBlock.h" | ||||||||||||||
| 33 | #include "llvm/IR/Constants.h" | ||||||||||||||
| 34 | #include "llvm/IR/DataLayout.h" | ||||||||||||||
| 35 | #include "llvm/IR/DerivedTypes.h" | ||||||||||||||
| 36 | #include "llvm/IR/Dominators.h" | ||||||||||||||
| 37 | #include "llvm/IR/Function.h" | ||||||||||||||
| 38 | #include "llvm/IR/GetElementPtrTypeIterator.h" | ||||||||||||||
| 39 | #include "llvm/IR/GlobalVariable.h" | ||||||||||||||
| 40 | #include "llvm/IR/IRBuilder.h" | ||||||||||||||
| 41 | #include "llvm/IR/InstrTypes.h" | ||||||||||||||
| 42 | #include "llvm/IR/Instruction.h" | ||||||||||||||
| 43 | #include "llvm/IR/Instructions.h" | ||||||||||||||
| 44 | #include "llvm/IR/IntrinsicInst.h" | ||||||||||||||
| 45 | #include "llvm/IR/Intrinsics.h" | ||||||||||||||
| 46 | #include "llvm/IR/LLVMContext.h" | ||||||||||||||
| 47 | #include "llvm/IR/Module.h" | ||||||||||||||
| 48 | #include "llvm/IR/Operator.h" | ||||||||||||||
| 49 | #include "llvm/IR/PassManager.h" | ||||||||||||||
| 50 | #include "llvm/IR/Type.h" | ||||||||||||||
| 51 | #include "llvm/IR/User.h" | ||||||||||||||
| 52 | #include "llvm/IR/Value.h" | ||||||||||||||
| 53 | #include "llvm/InitializePasses.h" | ||||||||||||||
| 54 | #include "llvm/Pass.h" | ||||||||||||||
| 55 | #include "llvm/Support/Casting.h" | ||||||||||||||
| 56 | #include "llvm/Support/Debug.h" | ||||||||||||||
| 57 | #include "llvm/Support/MathExtras.h" | ||||||||||||||
| 58 | #include "llvm/Support/raw_ostream.h" | ||||||||||||||
| 59 | #include "llvm/Transforms/Scalar.h" | ||||||||||||||
| 60 | #include "llvm/Transforms/Utils/Local.h" | ||||||||||||||
| 61 | #include <algorithm> | ||||||||||||||
| 62 | #include <cassert> | ||||||||||||||
| 63 | #include <cstdint> | ||||||||||||||
| 64 | #include <utility> | ||||||||||||||
| 65 | |||||||||||||||
| 66 | using namespace llvm; | ||||||||||||||
| 67 | |||||||||||||||
| 68 | #define DEBUG_TYPE"memcpyopt" "memcpyopt" | ||||||||||||||
| 69 | |||||||||||||||
| 70 | static cl::opt<bool> | ||||||||||||||
| 71 | EnableMemorySSA("enable-memcpyopt-memoryssa", cl::init(true), cl::Hidden, | ||||||||||||||
| 72 | cl::desc("Use MemorySSA-backed MemCpyOpt.")); | ||||||||||||||
| 73 | |||||||||||||||
| 74 | STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted")static llvm::Statistic NumMemCpyInstr = {"memcpyopt", "NumMemCpyInstr" , "Number of memcpy instructions deleted"}; | ||||||||||||||
| 75 | STATISTIC(NumMemSetInfer, "Number of memsets inferred")static llvm::Statistic NumMemSetInfer = {"memcpyopt", "NumMemSetInfer" , "Number of memsets inferred"}; | ||||||||||||||
| 76 | STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy")static llvm::Statistic NumMoveToCpy = {"memcpyopt", "NumMoveToCpy" , "Number of memmoves converted to memcpy"}; | ||||||||||||||
| 77 | STATISTIC(NumCpyToSet, "Number of memcpys converted to memset")static llvm::Statistic NumCpyToSet = {"memcpyopt", "NumCpyToSet" , "Number of memcpys converted to memset"}; | ||||||||||||||
| 78 | STATISTIC(NumCallSlot, "Number of call slot optimizations performed")static llvm::Statistic NumCallSlot = {"memcpyopt", "NumCallSlot" , "Number of call slot optimizations performed"}; | ||||||||||||||
| 79 | |||||||||||||||
| 80 | namespace { | ||||||||||||||
| 81 | |||||||||||||||
| 82 | /// Represents a range of memset'd bytes with the ByteVal value. | ||||||||||||||
| 83 | /// This allows us to analyze stores like: | ||||||||||||||
| 84 | /// store 0 -> P+1 | ||||||||||||||
| 85 | /// store 0 -> P+0 | ||||||||||||||
| 86 | /// store 0 -> P+3 | ||||||||||||||
| 87 | /// store 0 -> P+2 | ||||||||||||||
| 88 | /// which sometimes happens with stores to arrays of structs etc. When we see | ||||||||||||||
| 89 | /// the first store, we make a range [1, 2). The second store extends the range | ||||||||||||||
| 90 | /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the | ||||||||||||||
| 91 | /// two ranges into [0, 3) which is memset'able. | ||||||||||||||
| 92 | struct MemsetRange { | ||||||||||||||
| 93 | // Start/End - A semi range that describes the span that this range covers. | ||||||||||||||
| 94 | // The range is closed at the start and open at the end: [Start, End). | ||||||||||||||
| 95 | int64_t Start, End; | ||||||||||||||
| 96 | |||||||||||||||
| 97 | /// StartPtr - The getelementptr instruction that points to the start of the | ||||||||||||||
| 98 | /// range. | ||||||||||||||
| 99 | Value *StartPtr; | ||||||||||||||
| 100 | |||||||||||||||
| 101 | /// Alignment - The known alignment of the first store. | ||||||||||||||
| 102 | unsigned Alignment; | ||||||||||||||
| 103 | |||||||||||||||
| 104 | /// TheStores - The actual stores that make up this range. | ||||||||||||||
| 105 | SmallVector<Instruction*, 16> TheStores; | ||||||||||||||
| 106 | |||||||||||||||
| 107 | bool isProfitableToUseMemset(const DataLayout &DL) const; | ||||||||||||||
| 108 | }; | ||||||||||||||
| 109 | |||||||||||||||
| 110 | } // end anonymous namespace | ||||||||||||||
| 111 | |||||||||||||||
| 112 | bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const { | ||||||||||||||
| 113 | // If we found more than 4 stores to merge or 16 bytes, use memset. | ||||||||||||||
| 114 | if (TheStores.size() >= 4 || End-Start >= 16) return true; | ||||||||||||||
| 115 | |||||||||||||||
| 116 | // If there is nothing to merge, don't do anything. | ||||||||||||||
| 117 | if (TheStores.size() < 2) return false; | ||||||||||||||
| 118 | |||||||||||||||
| 119 | // If any of the stores are a memset, then it is always good to extend the | ||||||||||||||
| 120 | // memset. | ||||||||||||||
| 121 | for (Instruction *SI : TheStores) | ||||||||||||||
| 122 | if (!isa<StoreInst>(SI)) | ||||||||||||||
| 123 | return true; | ||||||||||||||
| 124 | |||||||||||||||
| 125 | // Assume that the code generator is capable of merging pairs of stores | ||||||||||||||
| 126 | // together if it wants to. | ||||||||||||||
| 127 | if (TheStores.size() == 2) return false; | ||||||||||||||
| 128 | |||||||||||||||
| 129 | // If we have fewer than 8 stores, it can still be worthwhile to do this. | ||||||||||||||
| 130 | // For example, merging 4 i8 stores into an i32 store is useful almost always. | ||||||||||||||
| 131 | // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the | ||||||||||||||
| 132 | // memset will be split into 2 32-bit stores anyway) and doing so can | ||||||||||||||
| 133 | // pessimize the llvm optimizer. | ||||||||||||||
| 134 | // | ||||||||||||||
| 135 | // Since we don't have perfect knowledge here, make some assumptions: assume | ||||||||||||||
| 136 | // the maximum GPR width is the same size as the largest legal integer | ||||||||||||||
| 137 | // size. If so, check to see whether we will end up actually reducing the | ||||||||||||||
| 138 | // number of stores used. | ||||||||||||||
| 139 | unsigned Bytes = unsigned(End-Start); | ||||||||||||||
| 140 | unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8; | ||||||||||||||
| 141 | if (MaxIntSize == 0) | ||||||||||||||
| 142 | MaxIntSize = 1; | ||||||||||||||
| 143 | unsigned NumPointerStores = Bytes / MaxIntSize; | ||||||||||||||
| 144 | |||||||||||||||
| 145 | // Assume the remaining bytes if any are done a byte at a time. | ||||||||||||||
| 146 | unsigned NumByteStores = Bytes % MaxIntSize; | ||||||||||||||
| 147 | |||||||||||||||
| 148 | // If we will reduce the # stores (according to this heuristic), do the | ||||||||||||||
| 149 | // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32 | ||||||||||||||
| 150 | // etc. | ||||||||||||||
| 151 | return TheStores.size() > NumPointerStores+NumByteStores; | ||||||||||||||
| 152 | } | ||||||||||||||
| 153 | |||||||||||||||
| 154 | namespace { | ||||||||||||||
| 155 | |||||||||||||||
| 156 | class MemsetRanges { | ||||||||||||||
| 157 | using range_iterator = SmallVectorImpl<MemsetRange>::iterator; | ||||||||||||||
| 158 | |||||||||||||||
| 159 | /// A sorted list of the memset ranges. | ||||||||||||||
| 160 | SmallVector<MemsetRange, 8> Ranges; | ||||||||||||||
| 161 | |||||||||||||||
| 162 | const DataLayout &DL; | ||||||||||||||
| 163 | |||||||||||||||
| 164 | public: | ||||||||||||||
| 165 | MemsetRanges(const DataLayout &DL) : DL(DL) {} | ||||||||||||||
| 166 | |||||||||||||||
| 167 | using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator; | ||||||||||||||
| 168 | |||||||||||||||
| 169 | const_iterator begin() const { return Ranges.begin(); } | ||||||||||||||
| 170 | const_iterator end() const { return Ranges.end(); } | ||||||||||||||
| 171 | bool empty() const { return Ranges.empty(); } | ||||||||||||||
| 172 | |||||||||||||||
| 173 | void addInst(int64_t OffsetFromFirst, Instruction *Inst) { | ||||||||||||||
| 174 | if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) | ||||||||||||||
| 175 | addStore(OffsetFromFirst, SI); | ||||||||||||||
| 176 | else | ||||||||||||||
| 177 | addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst)); | ||||||||||||||
| 178 | } | ||||||||||||||
| 179 | |||||||||||||||
| 180 | void addStore(int64_t OffsetFromFirst, StoreInst *SI) { | ||||||||||||||
| 181 | TypeSize StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType()); | ||||||||||||||
| 182 | assert(!StoreSize.isScalable() && "Can't track scalable-typed stores")((void)0); | ||||||||||||||
| 183 | addRange(OffsetFromFirst, StoreSize.getFixedSize(), SI->getPointerOperand(), | ||||||||||||||
| 184 | SI->getAlign().value(), SI); | ||||||||||||||
| 185 | } | ||||||||||||||
| 186 | |||||||||||||||
| 187 | void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) { | ||||||||||||||
| 188 | int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue(); | ||||||||||||||
| 189 | addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlignment(), MSI); | ||||||||||||||
| 190 | } | ||||||||||||||
| 191 | |||||||||||||||
| 192 | void addRange(int64_t Start, int64_t Size, Value *Ptr, | ||||||||||||||
| 193 | unsigned Alignment, Instruction *Inst); | ||||||||||||||
| 194 | }; | ||||||||||||||
| 195 | |||||||||||||||
| 196 | } // end anonymous namespace | ||||||||||||||
| 197 | |||||||||||||||
| 198 | /// Add a new store to the MemsetRanges data structure. This adds a | ||||||||||||||
| 199 | /// new range for the specified store at the specified offset, merging into | ||||||||||||||
| 200 | /// existing ranges as appropriate. | ||||||||||||||
| 201 | void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr, | ||||||||||||||
| 202 | unsigned Alignment, Instruction *Inst) { | ||||||||||||||
| 203 | int64_t End = Start+Size; | ||||||||||||||
| 204 | |||||||||||||||
| 205 | range_iterator I = partition_point( | ||||||||||||||
| 206 | Ranges, [=](const MemsetRange &O) { return O.End < Start; }); | ||||||||||||||
| 207 | |||||||||||||||
| 208 | // We now know that I == E, in which case we didn't find anything to merge | ||||||||||||||
| 209 | // with, or that Start <= I->End. If End < I->Start or I == E, then we need | ||||||||||||||
| 210 | // to insert a new range. Handle this now. | ||||||||||||||
| 211 | if (I == Ranges.end() || End < I->Start) { | ||||||||||||||
| 212 | MemsetRange &R = *Ranges.insert(I, MemsetRange()); | ||||||||||||||
| 213 | R.Start = Start; | ||||||||||||||
| 214 | R.End = End; | ||||||||||||||
| 215 | R.StartPtr = Ptr; | ||||||||||||||
| 216 | R.Alignment = Alignment; | ||||||||||||||
| 217 | R.TheStores.push_back(Inst); | ||||||||||||||
| 218 | return; | ||||||||||||||
| 219 | } | ||||||||||||||
| 220 | |||||||||||||||
| 221 | // This store overlaps with I, add it. | ||||||||||||||
| 222 | I->TheStores.push_back(Inst); | ||||||||||||||
| 223 | |||||||||||||||
| 224 | // At this point, we may have an interval that completely contains our store. | ||||||||||||||
| 225 | // If so, just add it to the interval and return. | ||||||||||||||
| 226 | if (I->Start <= Start && I->End >= End) | ||||||||||||||
| 227 | return; | ||||||||||||||
| 228 | |||||||||||||||
| 229 | // Now we know that Start <= I->End and End >= I->Start so the range overlaps | ||||||||||||||
| 230 | // but is not entirely contained within the range. | ||||||||||||||
| 231 | |||||||||||||||
| 232 | // See if the range extends the start of the range. In this case, it couldn't | ||||||||||||||
| 233 | // possibly cause it to join the prior range, because otherwise we would have | ||||||||||||||
| 234 | // stopped on *it*. | ||||||||||||||
| 235 | if (Start < I->Start) { | ||||||||||||||
| 236 | I->Start = Start; | ||||||||||||||
| 237 | I->StartPtr = Ptr; | ||||||||||||||
| 238 | I->Alignment = Alignment; | ||||||||||||||
| 239 | } | ||||||||||||||
| 240 | |||||||||||||||
| 241 | // Now we know that Start <= I->End and Start >= I->Start (so the startpoint | ||||||||||||||
| 242 | // is in or right at the end of I), and that End >= I->Start. Extend I out to | ||||||||||||||
| 243 | // End. | ||||||||||||||
| 244 | if (End > I->End) { | ||||||||||||||
| 245 | I->End = End; | ||||||||||||||
| 246 | range_iterator NextI = I; | ||||||||||||||
| 247 | while (++NextI != Ranges.end() && End >= NextI->Start) { | ||||||||||||||
| 248 | // Merge the range in. | ||||||||||||||
| 249 | I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end()); | ||||||||||||||
| 250 | if (NextI->End > I->End) | ||||||||||||||
| 251 | I->End = NextI->End; | ||||||||||||||
| 252 | Ranges.erase(NextI); | ||||||||||||||
| 253 | NextI = I; | ||||||||||||||
| 254 | } | ||||||||||||||
| 255 | } | ||||||||||||||
| 256 | } | ||||||||||||||
| 257 | |||||||||||||||
| 258 | //===----------------------------------------------------------------------===// | ||||||||||||||
| 259 | // MemCpyOptLegacyPass Pass | ||||||||||||||
| 260 | //===----------------------------------------------------------------------===// | ||||||||||||||
| 261 | |||||||||||||||
| 262 | namespace { | ||||||||||||||
| 263 | |||||||||||||||
| 264 | class MemCpyOptLegacyPass : public FunctionPass { | ||||||||||||||
| 265 | MemCpyOptPass Impl; | ||||||||||||||
| 266 | |||||||||||||||
| 267 | public: | ||||||||||||||
| 268 | static char ID; // Pass identification, replacement for typeid | ||||||||||||||
| 269 | |||||||||||||||
| 270 | MemCpyOptLegacyPass() : FunctionPass(ID) { | ||||||||||||||
| 271 | initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry()); | ||||||||||||||
| 272 | } | ||||||||||||||
| 273 | |||||||||||||||
| 274 | bool runOnFunction(Function &F) override; | ||||||||||||||
| 275 | |||||||||||||||
| 276 | private: | ||||||||||||||
| 277 | // This transformation requires dominator postdominator info | ||||||||||||||
| 278 | void getAnalysisUsage(AnalysisUsage &AU) const override { | ||||||||||||||
| 279 | AU.setPreservesCFG(); | ||||||||||||||
| 280 | AU.addRequired<AssumptionCacheTracker>(); | ||||||||||||||
| 281 | AU.addRequired<DominatorTreeWrapperPass>(); | ||||||||||||||
| 282 | AU.addPreserved<DominatorTreeWrapperPass>(); | ||||||||||||||
| 283 | AU.addPreserved<GlobalsAAWrapperPass>(); | ||||||||||||||
| 284 | AU.addRequired<TargetLibraryInfoWrapperPass>(); | ||||||||||||||
| 285 | if (!EnableMemorySSA) | ||||||||||||||
| 286 | AU.addRequired<MemoryDependenceWrapperPass>(); | ||||||||||||||
| 287 | AU.addPreserved<MemoryDependenceWrapperPass>(); | ||||||||||||||
| 288 | AU.addRequired<AAResultsWrapperPass>(); | ||||||||||||||
| 289 | AU.addPreserved<AAResultsWrapperPass>(); | ||||||||||||||
| 290 | if (EnableMemorySSA) | ||||||||||||||
| 291 | AU.addRequired<MemorySSAWrapperPass>(); | ||||||||||||||
| 292 | AU.addPreserved<MemorySSAWrapperPass>(); | ||||||||||||||
| 293 | } | ||||||||||||||
| 294 | }; | ||||||||||||||
| 295 | |||||||||||||||
| 296 | } // end anonymous namespace | ||||||||||||||
| 297 | |||||||||||||||
| 298 | char MemCpyOptLegacyPass::ID = 0; | ||||||||||||||
| 299 | |||||||||||||||
| 300 | /// The public interface to this file... | ||||||||||||||
| 301 | FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); } | ||||||||||||||
| 302 | |||||||||||||||
| 303 | INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",static void *initializeMemCpyOptLegacyPassPassOnce(PassRegistry &Registry) { | ||||||||||||||
| 304 | false, false)static void *initializeMemCpyOptLegacyPassPassOnce(PassRegistry &Registry) { | ||||||||||||||
| 305 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)initializeAssumptionCacheTrackerPass(Registry); | ||||||||||||||
| 306 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)initializeDominatorTreeWrapperPassPass(Registry); | ||||||||||||||
| 307 | INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)initializeMemoryDependenceWrapperPassPass(Registry); | ||||||||||||||
| 308 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry); | ||||||||||||||
| 309 | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)initializeAAResultsWrapperPassPass(Registry); | ||||||||||||||
| 310 | INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)initializeGlobalsAAWrapperPassPass(Registry); | ||||||||||||||
| 311 | INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)initializeMemorySSAWrapperPassPass(Registry); | ||||||||||||||
| 312 | INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",PassInfo *PI = new PassInfo( "MemCpy Optimization", "memcpyopt" , &MemCpyOptLegacyPass::ID, PassInfo::NormalCtor_t(callDefaultCtor <MemCpyOptLegacyPass>), false, false); Registry.registerPass (*PI, true); return PI; } static llvm::once_flag InitializeMemCpyOptLegacyPassPassFlag ; void llvm::initializeMemCpyOptLegacyPassPass(PassRegistry & Registry) { llvm::call_once(InitializeMemCpyOptLegacyPassPassFlag , initializeMemCpyOptLegacyPassPassOnce, std::ref(Registry)); } | ||||||||||||||
| 313 | false, false)PassInfo *PI = new PassInfo( "MemCpy Optimization", "memcpyopt" , &MemCpyOptLegacyPass::ID, PassInfo::NormalCtor_t(callDefaultCtor <MemCpyOptLegacyPass>), false, false); Registry.registerPass (*PI, true); return PI; } static llvm::once_flag InitializeMemCpyOptLegacyPassPassFlag ; void llvm::initializeMemCpyOptLegacyPassPass(PassRegistry & Registry) { llvm::call_once(InitializeMemCpyOptLegacyPassPassFlag , initializeMemCpyOptLegacyPassPassOnce, std::ref(Registry)); } | ||||||||||||||
| 314 | |||||||||||||||
| 315 | // Check that V is either not accessible by the caller, or unwinding cannot | ||||||||||||||
| 316 | // occur between Start and End. | ||||||||||||||
| 317 | static bool mayBeVisibleThroughUnwinding(Value *V, Instruction *Start, | ||||||||||||||
| 318 | Instruction *End) { | ||||||||||||||
| 319 | assert(Start->getParent() == End->getParent() && "Must be in same block")((void)0); | ||||||||||||||
| 320 | if (!Start->getFunction()->doesNotThrow() && | ||||||||||||||
| 321 | !isa<AllocaInst>(getUnderlyingObject(V))) { | ||||||||||||||
| 322 | for (const Instruction &I : | ||||||||||||||
| 323 | make_range(Start->getIterator(), End->getIterator())) { | ||||||||||||||
| 324 | if (I.mayThrow()) | ||||||||||||||
| 325 | return true; | ||||||||||||||
| 326 | } | ||||||||||||||
| 327 | } | ||||||||||||||
| 328 | return false; | ||||||||||||||
| 329 | } | ||||||||||||||
| 330 | |||||||||||||||
| 331 | void MemCpyOptPass::eraseInstruction(Instruction *I) { | ||||||||||||||
| 332 | if (MSSAU) | ||||||||||||||
| 333 | MSSAU->removeMemoryAccess(I); | ||||||||||||||
| 334 | if (MD) | ||||||||||||||
| 335 | MD->removeInstruction(I); | ||||||||||||||
| 336 | I->eraseFromParent(); | ||||||||||||||
| 337 | } | ||||||||||||||
| 338 | |||||||||||||||
| 339 | // Check for mod or ref of Loc between Start and End, excluding both boundaries. | ||||||||||||||
| 340 | // Start and End must be in the same block | ||||||||||||||
| 341 | static bool accessedBetween(AliasAnalysis &AA, MemoryLocation Loc, | ||||||||||||||
| 342 | const MemoryUseOrDef *Start, | ||||||||||||||
| 343 | const MemoryUseOrDef *End) { | ||||||||||||||
| 344 | assert(Start->getBlock() == End->getBlock() && "Only local supported")((void)0); | ||||||||||||||
| 345 | for (const MemoryAccess &MA : | ||||||||||||||
| 346 | make_range(++Start->getIterator(), End->getIterator())) { | ||||||||||||||
| 347 | if (isModOrRefSet(AA.getModRefInfo(cast<MemoryUseOrDef>(MA).getMemoryInst(), | ||||||||||||||
| 348 | Loc))) | ||||||||||||||
| 349 | return true; | ||||||||||||||
| 350 | } | ||||||||||||||
| 351 | return false; | ||||||||||||||
| 352 | } | ||||||||||||||
| 353 | |||||||||||||||
| 354 | // Check for mod of Loc between Start and End, excluding both boundaries. | ||||||||||||||
| 355 | // Start and End can be in different blocks. | ||||||||||||||
| 356 | static bool writtenBetween(MemorySSA *MSSA, MemoryLocation Loc, | ||||||||||||||
| 357 | const MemoryUseOrDef *Start, | ||||||||||||||
| 358 | const MemoryUseOrDef *End) { | ||||||||||||||
| 359 | // TODO: Only walk until we hit Start. | ||||||||||||||
| 360 | MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( | ||||||||||||||
| 361 | End->getDefiningAccess(), Loc); | ||||||||||||||
| 362 | return !MSSA->dominates(Clobber, Start); | ||||||||||||||
| 363 | } | ||||||||||||||
| 364 | |||||||||||||||
| 365 | /// When scanning forward over instructions, we look for some other patterns to | ||||||||||||||
| 366 | /// fold away. In particular, this looks for stores to neighboring locations of | ||||||||||||||
| 367 | /// memory. If it sees enough consecutive ones, it attempts to merge them | ||||||||||||||
| 368 | /// together into a memcpy/memset. | ||||||||||||||
| 369 | Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst, | ||||||||||||||
| 370 | Value *StartPtr, | ||||||||||||||
| 371 | Value *ByteVal) { | ||||||||||||||
| 372 | const DataLayout &DL = StartInst->getModule()->getDataLayout(); | ||||||||||||||
| 373 | |||||||||||||||
| 374 | // We can't track scalable types | ||||||||||||||
| 375 | if (StoreInst *SI = dyn_cast<StoreInst>(StartInst)) | ||||||||||||||
| 376 | if (DL.getTypeStoreSize(SI->getOperand(0)->getType()).isScalable()) | ||||||||||||||
| 377 | return nullptr; | ||||||||||||||
| 378 | |||||||||||||||
| 379 | // Okay, so we now have a single store that can be splatable. Scan to find | ||||||||||||||
| 380 | // all subsequent stores of the same value to offset from the same pointer. | ||||||||||||||
| 381 | // Join these together into ranges, so we can decide whether contiguous blocks | ||||||||||||||
| 382 | // are stored. | ||||||||||||||
| 383 | MemsetRanges Ranges(DL); | ||||||||||||||
| 384 | |||||||||||||||
| 385 | BasicBlock::iterator BI(StartInst); | ||||||||||||||
| 386 | |||||||||||||||
| 387 | // Keeps track of the last memory use or def before the insertion point for | ||||||||||||||
| 388 | // the new memset. The new MemoryDef for the inserted memsets will be inserted | ||||||||||||||
| 389 | // after MemInsertPoint. It points to either LastMemDef or to the last user | ||||||||||||||
| 390 | // before the insertion point of the memset, if there are any such users. | ||||||||||||||
| 391 | MemoryUseOrDef *MemInsertPoint = nullptr; | ||||||||||||||
| 392 | // Keeps track of the last MemoryDef between StartInst and the insertion point | ||||||||||||||
| 393 | // for the new memset. This will become the defining access of the inserted | ||||||||||||||
| 394 | // memsets. | ||||||||||||||
| 395 | MemoryDef *LastMemDef = nullptr; | ||||||||||||||
| 396 | for (++BI; !BI->isTerminator(); ++BI) { | ||||||||||||||
| 397 | if (MSSAU) { | ||||||||||||||
| 398 | auto *CurrentAcc = cast_or_null<MemoryUseOrDef>( | ||||||||||||||
| 399 | MSSAU->getMemorySSA()->getMemoryAccess(&*BI)); | ||||||||||||||
| 400 | if (CurrentAcc) { | ||||||||||||||
| 401 | MemInsertPoint = CurrentAcc; | ||||||||||||||
| 402 | if (auto *CurrentDef = dyn_cast<MemoryDef>(CurrentAcc)) | ||||||||||||||
| 403 | LastMemDef = CurrentDef; | ||||||||||||||
| 404 | } | ||||||||||||||
| 405 | } | ||||||||||||||
| 406 | |||||||||||||||
| 407 | // Calls that only access inaccessible memory do not block merging | ||||||||||||||
| 408 | // accessible stores. | ||||||||||||||
| 409 | if (auto *CB = dyn_cast<CallBase>(BI)) { | ||||||||||||||
| 410 | if (CB->onlyAccessesInaccessibleMemory()) | ||||||||||||||
| 411 | continue; | ||||||||||||||
| 412 | } | ||||||||||||||
| 413 | |||||||||||||||
| 414 | if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) { | ||||||||||||||
| 415 | // If the instruction is readnone, ignore it, otherwise bail out. We | ||||||||||||||
| 416 | // don't even allow readonly here because we don't want something like: | ||||||||||||||
| 417 | // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A). | ||||||||||||||
| 418 | if (BI->mayWriteToMemory() || BI->mayReadFromMemory()) | ||||||||||||||
| 419 | break; | ||||||||||||||
| 420 | continue; | ||||||||||||||
| 421 | } | ||||||||||||||
| 422 | |||||||||||||||
| 423 | if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) { | ||||||||||||||
| 424 | // If this is a store, see if we can merge it in. | ||||||||||||||
| 425 | if (!NextStore->isSimple()) break; | ||||||||||||||
| 426 | |||||||||||||||
| 427 | Value *StoredVal = NextStore->getValueOperand(); | ||||||||||||||
| 428 | |||||||||||||||
| 429 | // Don't convert stores of non-integral pointer types to memsets (which | ||||||||||||||
| 430 | // stores integers). | ||||||||||||||
| 431 | if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType())) | ||||||||||||||
| 432 | break; | ||||||||||||||
| 433 | |||||||||||||||
| 434 | // We can't track ranges involving scalable types. | ||||||||||||||
| 435 | if (DL.getTypeStoreSize(StoredVal->getType()).isScalable()) | ||||||||||||||
| 436 | break; | ||||||||||||||
| 437 | |||||||||||||||
| 438 | // Check to see if this stored value is of the same byte-splattable value. | ||||||||||||||
| 439 | Value *StoredByte = isBytewiseValue(StoredVal, DL); | ||||||||||||||
| 440 | if (isa<UndefValue>(ByteVal) && StoredByte) | ||||||||||||||
| 441 | ByteVal = StoredByte; | ||||||||||||||
| 442 | if (ByteVal != StoredByte) | ||||||||||||||
| 443 | break; | ||||||||||||||
| 444 | |||||||||||||||
| 445 | // Check to see if this store is to a constant offset from the start ptr. | ||||||||||||||
| 446 | Optional<int64_t> Offset = | ||||||||||||||
| 447 | isPointerOffset(StartPtr, NextStore->getPointerOperand(), DL); | ||||||||||||||
| 448 | if (!Offset) | ||||||||||||||
| 449 | break; | ||||||||||||||
| 450 | |||||||||||||||
| 451 | Ranges.addStore(*Offset, NextStore); | ||||||||||||||
| 452 | } else { | ||||||||||||||
| 453 | MemSetInst *MSI = cast<MemSetInst>(BI); | ||||||||||||||
| 454 | |||||||||||||||
| 455 | if (MSI->isVolatile() || ByteVal != MSI->getValue() || | ||||||||||||||
| 456 | !isa<ConstantInt>(MSI->getLength())) | ||||||||||||||
| 457 | break; | ||||||||||||||
| 458 | |||||||||||||||
| 459 | // Check to see if this store is to a constant offset from the start ptr. | ||||||||||||||
| 460 | Optional<int64_t> Offset = isPointerOffset(StartPtr, MSI->getDest(), DL); | ||||||||||||||
| 461 | if (!Offset) | ||||||||||||||
| 462 | break; | ||||||||||||||
| 463 | |||||||||||||||
| 464 | Ranges.addMemSet(*Offset, MSI); | ||||||||||||||
| 465 | } | ||||||||||||||
| 466 | } | ||||||||||||||
| 467 | |||||||||||||||
| 468 | // If we have no ranges, then we just had a single store with nothing that | ||||||||||||||
| 469 | // could be merged in. This is a very common case of course. | ||||||||||||||
| 470 | if (Ranges.empty()) | ||||||||||||||
| 471 | return nullptr; | ||||||||||||||
| 472 | |||||||||||||||
| 473 | // If we had at least one store that could be merged in, add the starting | ||||||||||||||
| 474 | // store as well. We try to avoid this unless there is at least something | ||||||||||||||
| 475 | // interesting as a small compile-time optimization. | ||||||||||||||
| 476 | Ranges.addInst(0, StartInst); | ||||||||||||||
| 477 | |||||||||||||||
| 478 | // If we create any memsets, we put it right before the first instruction that | ||||||||||||||
| 479 | // isn't part of the memset block. This ensure that the memset is dominated | ||||||||||||||
| 480 | // by any addressing instruction needed by the start of the block. | ||||||||||||||
| 481 | IRBuilder<> Builder(&*BI); | ||||||||||||||
| 482 | |||||||||||||||
| 483 | // Now that we have full information about ranges, loop over the ranges and | ||||||||||||||
| 484 | // emit memset's for anything big enough to be worthwhile. | ||||||||||||||
| 485 | Instruction *AMemSet = nullptr; | ||||||||||||||
| 486 | for (const MemsetRange &Range : Ranges) { | ||||||||||||||
| 487 | if (Range.TheStores.size() == 1) continue; | ||||||||||||||
| 488 | |||||||||||||||
| 489 | // If it is profitable to lower this range to memset, do so now. | ||||||||||||||
| 490 | if (!Range.isProfitableToUseMemset(DL)) | ||||||||||||||
| 491 | continue; | ||||||||||||||
| 492 | |||||||||||||||
| 493 | // Otherwise, we do want to transform this! Create a new memset. | ||||||||||||||
| 494 | // Get the starting pointer of the block. | ||||||||||||||
| 495 | StartPtr = Range.StartPtr; | ||||||||||||||
| 496 | |||||||||||||||
| 497 | AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start, | ||||||||||||||
| 498 | MaybeAlign(Range.Alignment)); | ||||||||||||||
| 499 | LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SIdo { } while (false) | ||||||||||||||
| 500 | : Range.TheStores) dbgs()do { } while (false) | ||||||||||||||
| 501 | << *SI << '\n';do { } while (false) | ||||||||||||||
| 502 | dbgs() << "With: " << *AMemSet << '\n')do { } while (false); | ||||||||||||||
| 503 | if (!Range.TheStores.empty()) | ||||||||||||||
| 504 | AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc()); | ||||||||||||||
| 505 | |||||||||||||||
| 506 | if (MSSAU) { | ||||||||||||||
| 507 | assert(LastMemDef && MemInsertPoint &&((void)0) | ||||||||||||||
| 508 | "Both LastMemDef and MemInsertPoint need to be set")((void)0); | ||||||||||||||
| 509 | auto *NewDef = | ||||||||||||||
| 510 | cast<MemoryDef>(MemInsertPoint->getMemoryInst() == &*BI | ||||||||||||||
| 511 | ? MSSAU->createMemoryAccessBefore( | ||||||||||||||
| 512 | AMemSet, LastMemDef, MemInsertPoint) | ||||||||||||||
| 513 | : MSSAU->createMemoryAccessAfter( | ||||||||||||||
| 514 | AMemSet, LastMemDef, MemInsertPoint)); | ||||||||||||||
| 515 | MSSAU->insertDef(NewDef, /*RenameUses=*/true); | ||||||||||||||
| 516 | LastMemDef = NewDef; | ||||||||||||||
| 517 | MemInsertPoint = NewDef; | ||||||||||||||
| 518 | } | ||||||||||||||
| 519 | |||||||||||||||
| 520 | // Zap all the stores. | ||||||||||||||
| 521 | for (Instruction *SI : Range.TheStores) | ||||||||||||||
| 522 | eraseInstruction(SI); | ||||||||||||||
| 523 | |||||||||||||||
| 524 | ++NumMemSetInfer; | ||||||||||||||
| 525 | } | ||||||||||||||
| 526 | |||||||||||||||
| 527 | return AMemSet; | ||||||||||||||
| 528 | } | ||||||||||||||
| 529 | |||||||||||||||
| 530 | // This method try to lift a store instruction before position P. | ||||||||||||||
| 531 | // It will lift the store and its argument + that anything that | ||||||||||||||
| 532 | // may alias with these. | ||||||||||||||
| 533 | // The method returns true if it was successful. | ||||||||||||||
| 534 | bool MemCpyOptPass::moveUp(StoreInst *SI, Instruction *P, const LoadInst *LI) { | ||||||||||||||
| 535 | // If the store alias this position, early bail out. | ||||||||||||||
| 536 | MemoryLocation StoreLoc = MemoryLocation::get(SI); | ||||||||||||||
| 537 | if (isModOrRefSet(AA->getModRefInfo(P, StoreLoc))) | ||||||||||||||
| 538 | return false; | ||||||||||||||
| 539 | |||||||||||||||
| 540 | // Keep track of the arguments of all instruction we plan to lift | ||||||||||||||
| 541 | // so we can make sure to lift them as well if appropriate. | ||||||||||||||
| 542 | DenseSet<Instruction*> Args; | ||||||||||||||
| 543 | if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand())) | ||||||||||||||
| 544 | if (Ptr->getParent() == SI->getParent()) | ||||||||||||||
| 545 | Args.insert(Ptr); | ||||||||||||||
| 546 | |||||||||||||||
| 547 | // Instruction to lift before P. | ||||||||||||||
| 548 | SmallVector<Instruction *, 8> ToLift{SI}; | ||||||||||||||
| 549 | |||||||||||||||
| 550 | // Memory locations of lifted instructions. | ||||||||||||||
| 551 | SmallVector<MemoryLocation, 8> MemLocs{StoreLoc}; | ||||||||||||||
| 552 | |||||||||||||||
| 553 | // Lifted calls. | ||||||||||||||
| 554 | SmallVector<const CallBase *, 8> Calls; | ||||||||||||||
| 555 | |||||||||||||||
| 556 | const MemoryLocation LoadLoc = MemoryLocation::get(LI); | ||||||||||||||
| 557 | |||||||||||||||
| 558 | for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) { | ||||||||||||||
| 559 | auto *C = &*I; | ||||||||||||||
| 560 | |||||||||||||||
| 561 | // Make sure hoisting does not perform a store that was not guaranteed to | ||||||||||||||
| 562 | // happen. | ||||||||||||||
| 563 | if (!isGuaranteedToTransferExecutionToSuccessor(C)) | ||||||||||||||
| 564 | return false; | ||||||||||||||
| 565 | |||||||||||||||
| 566 | bool MayAlias = isModOrRefSet(AA->getModRefInfo(C, None)); | ||||||||||||||
| 567 | |||||||||||||||
| 568 | bool NeedLift = false; | ||||||||||||||
| 569 | if (Args.erase(C)) | ||||||||||||||
| 570 | NeedLift = true; | ||||||||||||||
| 571 | else if (MayAlias) { | ||||||||||||||
| 572 | NeedLift = llvm::any_of(MemLocs, [C, this](const MemoryLocation &ML) { | ||||||||||||||
| 573 | return isModOrRefSet(AA->getModRefInfo(C, ML)); | ||||||||||||||
| 574 | }); | ||||||||||||||
| 575 | |||||||||||||||
| 576 | if (!NeedLift) | ||||||||||||||
| 577 | NeedLift = llvm::any_of(Calls, [C, this](const CallBase *Call) { | ||||||||||||||
| 578 | return isModOrRefSet(AA->getModRefInfo(C, Call)); | ||||||||||||||
| 579 | }); | ||||||||||||||
| 580 | } | ||||||||||||||
| 581 | |||||||||||||||
| 582 | if (!NeedLift) | ||||||||||||||
| 583 | continue; | ||||||||||||||
| 584 | |||||||||||||||
| 585 | if (MayAlias) { | ||||||||||||||
| 586 | // Since LI is implicitly moved downwards past the lifted instructions, | ||||||||||||||
| 587 | // none of them may modify its source. | ||||||||||||||
| 588 | if (isModSet(AA->getModRefInfo(C, LoadLoc))) | ||||||||||||||
| 589 | return false; | ||||||||||||||
| 590 | else if (const auto *Call = dyn_cast<CallBase>(C)) { | ||||||||||||||
| 591 | // If we can't lift this before P, it's game over. | ||||||||||||||
| 592 | if (isModOrRefSet(AA->getModRefInfo(P, Call))) | ||||||||||||||
| 593 | return false; | ||||||||||||||
| 594 | |||||||||||||||
| 595 | Calls.push_back(Call); | ||||||||||||||
| 596 | } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) { | ||||||||||||||
| 597 | // If we can't lift this before P, it's game over. | ||||||||||||||
| 598 | auto ML = MemoryLocation::get(C); | ||||||||||||||
| 599 | if (isModOrRefSet(AA->getModRefInfo(P, ML))) | ||||||||||||||
| 600 | return false; | ||||||||||||||
| 601 | |||||||||||||||
| 602 | MemLocs.push_back(ML); | ||||||||||||||
| 603 | } else | ||||||||||||||
| 604 | // We don't know how to lift this instruction. | ||||||||||||||
| 605 | return false; | ||||||||||||||
| 606 | } | ||||||||||||||
| 607 | |||||||||||||||
| 608 | ToLift.push_back(C); | ||||||||||||||
| 609 | for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k) | ||||||||||||||
| 610 | if (auto *A = dyn_cast<Instruction>(C->getOperand(k))) { | ||||||||||||||
| 611 | if (A->getParent() == SI->getParent()) { | ||||||||||||||
| 612 | // Cannot hoist user of P above P | ||||||||||||||
| 613 | if(A == P) return false; | ||||||||||||||
| 614 | Args.insert(A); | ||||||||||||||
| 615 | } | ||||||||||||||
| 616 | } | ||||||||||||||
| 617 | } | ||||||||||||||
| 618 | |||||||||||||||
| 619 | // Find MSSA insertion point. Normally P will always have a corresponding | ||||||||||||||
| 620 | // memory access before which we can insert. However, with non-standard AA | ||||||||||||||
| 621 | // pipelines, there may be a mismatch between AA and MSSA, in which case we | ||||||||||||||
| 622 | // will scan for a memory access before P. In either case, we know for sure | ||||||||||||||
| 623 | // that at least the load will have a memory access. | ||||||||||||||
| 624 | // TODO: Simplify this once P will be determined by MSSA, in which case the | ||||||||||||||
| 625 | // discrepancy can no longer occur. | ||||||||||||||
| 626 | MemoryUseOrDef *MemInsertPoint = nullptr; | ||||||||||||||
| 627 | if (MSSAU) { | ||||||||||||||
| 628 | if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(P)) { | ||||||||||||||
| 629 | MemInsertPoint = cast<MemoryUseOrDef>(--MA->getIterator()); | ||||||||||||||
| 630 | } else { | ||||||||||||||
| 631 | const Instruction *ConstP = P; | ||||||||||||||
| 632 | for (const Instruction &I : make_range(++ConstP->getReverseIterator(), | ||||||||||||||
| 633 | ++LI->getReverseIterator())) { | ||||||||||||||
| 634 | if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(&I)) { | ||||||||||||||
| 635 | MemInsertPoint = MA; | ||||||||||||||
| 636 | break; | ||||||||||||||
| 637 | } | ||||||||||||||
| 638 | } | ||||||||||||||
| 639 | } | ||||||||||||||
| 640 | } | ||||||||||||||
| 641 | |||||||||||||||
| 642 | // We made it, we need to lift. | ||||||||||||||
| 643 | for (auto *I : llvm::reverse(ToLift)) { | ||||||||||||||
| 644 | LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n")do { } while (false); | ||||||||||||||
| 645 | I->moveBefore(P); | ||||||||||||||
| 646 | if (MSSAU) { | ||||||||||||||
| 647 | assert(MemInsertPoint && "Must have found insert point")((void)0); | ||||||||||||||
| 648 | if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(I)) { | ||||||||||||||
| 649 | MSSAU->moveAfter(MA, MemInsertPoint); | ||||||||||||||
| 650 | MemInsertPoint = MA; | ||||||||||||||
| 651 | } | ||||||||||||||
| 652 | } | ||||||||||||||
| 653 | } | ||||||||||||||
| 654 | |||||||||||||||
| 655 | return true; | ||||||||||||||
| 656 | } | ||||||||||||||
| 657 | |||||||||||||||
| 658 | bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) { | ||||||||||||||
| 659 | if (!SI->isSimple()) return false; | ||||||||||||||
| 660 | |||||||||||||||
| 661 | // Avoid merging nontemporal stores since the resulting | ||||||||||||||
| 662 | // memcpy/memset would not be able to preserve the nontemporal hint. | ||||||||||||||
| 663 | // In theory we could teach how to propagate the !nontemporal metadata to | ||||||||||||||
| 664 | // memset calls. However, that change would force the backend to | ||||||||||||||
| 665 | // conservatively expand !nontemporal memset calls back to sequences of | ||||||||||||||
| 666 | // store instructions (effectively undoing the merging). | ||||||||||||||
| 667 | if (SI->getMetadata(LLVMContext::MD_nontemporal)) | ||||||||||||||
| 668 | return false; | ||||||||||||||
| 669 | |||||||||||||||
| 670 | const DataLayout &DL = SI->getModule()->getDataLayout(); | ||||||||||||||
| 671 | |||||||||||||||
| 672 | Value *StoredVal = SI->getValueOperand(); | ||||||||||||||
| 673 | |||||||||||||||
| 674 | // Not all the transforms below are correct for non-integral pointers, bail | ||||||||||||||
| 675 | // until we've audited the individual pieces. | ||||||||||||||
| 676 | if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType())) | ||||||||||||||
| 677 | return false; | ||||||||||||||
| 678 | |||||||||||||||
| 679 | // Load to store forwarding can be interpreted as memcpy. | ||||||||||||||
| 680 | if (LoadInst *LI
| ||||||||||||||
| 681 | if (LI->isSimple() && LI->hasOneUse() && | ||||||||||||||
| 682 | LI->getParent() == SI->getParent()) { | ||||||||||||||
| 683 | |||||||||||||||
| 684 | auto *T = LI->getType(); | ||||||||||||||
| 685 | if (T->isAggregateType()) { | ||||||||||||||
| 686 | MemoryLocation LoadLoc = MemoryLocation::get(LI); | ||||||||||||||
| 687 | |||||||||||||||
| 688 | // We use alias analysis to check if an instruction may store to | ||||||||||||||
| 689 | // the memory we load from in between the load and the store. If | ||||||||||||||
| 690 | // such an instruction is found, we try to promote there instead | ||||||||||||||
| 691 | // of at the store position. | ||||||||||||||
| 692 | // TODO: Can use MSSA for this. | ||||||||||||||
| 693 | Instruction *P = SI; | ||||||||||||||
| 694 | for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) { | ||||||||||||||
| 695 | if (isModSet(AA->getModRefInfo(&I, LoadLoc))) { | ||||||||||||||
| 696 | P = &I; | ||||||||||||||
| 697 | break; | ||||||||||||||
| 698 | } | ||||||||||||||
| 699 | } | ||||||||||||||
| 700 | |||||||||||||||
| 701 | // We found an instruction that may write to the loaded memory. | ||||||||||||||
| 702 | // We can try to promote at this position instead of the store | ||||||||||||||
| 703 | // position if nothing aliases the store memory after this and the store | ||||||||||||||
| 704 | // destination is not in the range. | ||||||||||||||
| 705 | if (P && P != SI) { | ||||||||||||||
| 706 | if (!moveUp(SI, P, LI)) | ||||||||||||||
| 707 | P = nullptr; | ||||||||||||||
| 708 | } | ||||||||||||||
| 709 | |||||||||||||||
| 710 | // If a valid insertion position is found, then we can promote | ||||||||||||||
| 711 | // the load/store pair to a memcpy. | ||||||||||||||
| 712 | if (P) { | ||||||||||||||
| 713 | // If we load from memory that may alias the memory we store to, | ||||||||||||||
| 714 | // memmove must be used to preserve semantic. If not, memcpy can | ||||||||||||||
| 715 | // be used. | ||||||||||||||
| 716 | bool UseMemMove = false; | ||||||||||||||
| 717 | if (!AA->isNoAlias(MemoryLocation::get(SI), LoadLoc)) | ||||||||||||||
| 718 | UseMemMove = true; | ||||||||||||||
| 719 | |||||||||||||||
| 720 | uint64_t Size = DL.getTypeStoreSize(T); | ||||||||||||||
| 721 | |||||||||||||||
| 722 | IRBuilder<> Builder(P); | ||||||||||||||
| 723 | Instruction *M; | ||||||||||||||
| 724 | if (UseMemMove) | ||||||||||||||
| 725 | M = Builder.CreateMemMove( | ||||||||||||||
| 726 | SI->getPointerOperand(), SI->getAlign(), | ||||||||||||||
| 727 | LI->getPointerOperand(), LI->getAlign(), Size); | ||||||||||||||
| 728 | else | ||||||||||||||
| 729 | M = Builder.CreateMemCpy( | ||||||||||||||
| 730 | SI->getPointerOperand(), SI->getAlign(), | ||||||||||||||
| 731 | LI->getPointerOperand(), LI->getAlign(), Size); | ||||||||||||||
| 732 | |||||||||||||||
| 733 | LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => "do { } while (false) | ||||||||||||||
| 734 | << *M << "\n")do { } while (false); | ||||||||||||||
| 735 | |||||||||||||||
| 736 | if (MSSAU) { | ||||||||||||||
| 737 | auto *LastDef = | ||||||||||||||
| 738 | cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI)); | ||||||||||||||
| 739 | auto *NewAccess = | ||||||||||||||
| 740 | MSSAU->createMemoryAccessAfter(M, LastDef, LastDef); | ||||||||||||||
| 741 | MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); | ||||||||||||||
| 742 | } | ||||||||||||||
| 743 | |||||||||||||||
| 744 | eraseInstruction(SI); | ||||||||||||||
| 745 | eraseInstruction(LI); | ||||||||||||||
| 746 | ++NumMemCpyInstr; | ||||||||||||||
| 747 | |||||||||||||||
| 748 | // Make sure we do not invalidate the iterator. | ||||||||||||||
| 749 | BBI = M->getIterator(); | ||||||||||||||
| 750 | return true; | ||||||||||||||
| 751 | } | ||||||||||||||
| 752 | } | ||||||||||||||
| 753 | |||||||||||||||
| 754 | // Detect cases where we're performing call slot forwarding, but | ||||||||||||||
| 755 | // happen to be using a load-store pair to implement it, rather than | ||||||||||||||
| 756 | // a memcpy. | ||||||||||||||
| 757 | CallInst *C = nullptr; | ||||||||||||||
| 758 | if (EnableMemorySSA) { | ||||||||||||||
| 759 | if (auto *LoadClobber = dyn_cast<MemoryUseOrDef>( | ||||||||||||||
| 760 | MSSA->getWalker()->getClobberingMemoryAccess(LI))) { | ||||||||||||||
| |||||||||||||||
| 761 | // The load most post-dom the call. Limit to the same block for now. | ||||||||||||||
| 762 | // TODO: Support non-local call-slot optimization? | ||||||||||||||
| 763 | if (LoadClobber->getBlock() == SI->getParent()) | ||||||||||||||
| 764 | C = dyn_cast_or_null<CallInst>(LoadClobber->getMemoryInst()); | ||||||||||||||
| 765 | } | ||||||||||||||
| 766 | } else { | ||||||||||||||
| 767 | MemDepResult ldep = MD->getDependency(LI); | ||||||||||||||
| 768 | if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst())) | ||||||||||||||
| 769 | C = dyn_cast<CallInst>(ldep.getInst()); | ||||||||||||||
| 770 | } | ||||||||||||||
| 771 | |||||||||||||||
| 772 | if (C) { | ||||||||||||||
| 773 | // Check that nothing touches the dest of the "copy" between | ||||||||||||||
| 774 | // the call and the store. | ||||||||||||||
| 775 | MemoryLocation StoreLoc = MemoryLocation::get(SI); | ||||||||||||||
| 776 | if (EnableMemorySSA) { | ||||||||||||||
| 777 | if (accessedBetween(*AA, StoreLoc, MSSA->getMemoryAccess(C), | ||||||||||||||
| 778 | MSSA->getMemoryAccess(SI))) | ||||||||||||||
| 779 | C = nullptr; | ||||||||||||||
| 780 | } else { | ||||||||||||||
| 781 | for (BasicBlock::iterator I = --SI->getIterator(), | ||||||||||||||
| 782 | E = C->getIterator(); | ||||||||||||||
| 783 | I != E; --I) { | ||||||||||||||
| 784 | if (isModOrRefSet(AA->getModRefInfo(&*I, StoreLoc))) { | ||||||||||||||
| 785 | C = nullptr; | ||||||||||||||
| 786 | break; | ||||||||||||||
| 787 | } | ||||||||||||||
| 788 | } | ||||||||||||||
| 789 | } | ||||||||||||||
| 790 | } | ||||||||||||||
| 791 | |||||||||||||||
| 792 | if (C) { | ||||||||||||||
| 793 | bool changed = performCallSlotOptzn( | ||||||||||||||
| 794 | LI, SI, SI->getPointerOperand()->stripPointerCasts(), | ||||||||||||||
| 795 | LI->getPointerOperand()->stripPointerCasts(), | ||||||||||||||
| 796 | DL.getTypeStoreSize(SI->getOperand(0)->getType()), | ||||||||||||||
| 797 | commonAlignment(SI->getAlign(), LI->getAlign()), C); | ||||||||||||||
| 798 | if (changed) { | ||||||||||||||
| 799 | eraseInstruction(SI); | ||||||||||||||
| 800 | eraseInstruction(LI); | ||||||||||||||
| 801 | ++NumMemCpyInstr; | ||||||||||||||
| 802 | return true; | ||||||||||||||
| 803 | } | ||||||||||||||
| 804 | } | ||||||||||||||
| 805 | } | ||||||||||||||
| 806 | } | ||||||||||||||
| 807 | |||||||||||||||
| 808 | // There are two cases that are interesting for this code to handle: memcpy | ||||||||||||||
| 809 | // and memset. Right now we only handle memset. | ||||||||||||||
| 810 | |||||||||||||||
| 811 | // Ensure that the value being stored is something that can be memset'able a | ||||||||||||||
| 812 | // byte at a time like "0" or "-1" or any width, as well as things like | ||||||||||||||
| 813 | // 0xA0A0A0A0 and 0.0. | ||||||||||||||
| 814 | auto *V = SI->getOperand(0); | ||||||||||||||
| 815 | if (Value *ByteVal = isBytewiseValue(V, DL)) { | ||||||||||||||
| 816 | if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(), | ||||||||||||||
| 817 | ByteVal)) { | ||||||||||||||
| 818 | BBI = I->getIterator(); // Don't invalidate iterator. | ||||||||||||||
| 819 | return true; | ||||||||||||||
| 820 | } | ||||||||||||||
| 821 | |||||||||||||||
| 822 | // If we have an aggregate, we try to promote it to memset regardless | ||||||||||||||
| 823 | // of opportunity for merging as it can expose optimization opportunities | ||||||||||||||
| 824 | // in subsequent passes. | ||||||||||||||
| 825 | auto *T = V->getType(); | ||||||||||||||
| 826 | if (T->isAggregateType()) { | ||||||||||||||
| 827 | uint64_t Size = DL.getTypeStoreSize(T); | ||||||||||||||
| 828 | IRBuilder<> Builder(SI); | ||||||||||||||
| 829 | auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size, | ||||||||||||||
| 830 | SI->getAlign()); | ||||||||||||||
| 831 | |||||||||||||||
| 832 | LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n")do { } while (false); | ||||||||||||||
| 833 | |||||||||||||||
| 834 | if (MSSAU) { | ||||||||||||||
| 835 | assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI)))((void)0); | ||||||||||||||
| 836 | auto *LastDef = | ||||||||||||||
| 837 | cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI)); | ||||||||||||||
| 838 | auto *NewAccess = MSSAU->createMemoryAccessAfter(M, LastDef, LastDef); | ||||||||||||||
| 839 | MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); | ||||||||||||||
| 840 | } | ||||||||||||||
| 841 | |||||||||||||||
| 842 | eraseInstruction(SI); | ||||||||||||||
| 843 | NumMemSetInfer++; | ||||||||||||||
| 844 | |||||||||||||||
| 845 | // Make sure we do not invalidate the iterator. | ||||||||||||||
| 846 | BBI = M->getIterator(); | ||||||||||||||
| 847 | return true; | ||||||||||||||
| 848 | } | ||||||||||||||
| 849 | } | ||||||||||||||
| 850 | |||||||||||||||
| 851 | return false; | ||||||||||||||
| 852 | } | ||||||||||||||
| 853 | |||||||||||||||
| 854 | bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) { | ||||||||||||||
| 855 | // See if there is another memset or store neighboring this memset which | ||||||||||||||
| 856 | // allows us to widen out the memset to do a single larger store. | ||||||||||||||
| 857 | if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile()) | ||||||||||||||
| 858 | if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(), | ||||||||||||||
| 859 | MSI->getValue())) { | ||||||||||||||
| 860 | BBI = I->getIterator(); // Don't invalidate iterator. | ||||||||||||||
| 861 | return true; | ||||||||||||||
| 862 | } | ||||||||||||||
| 863 | return false; | ||||||||||||||
| 864 | } | ||||||||||||||
| 865 | |||||||||||||||
| 866 | /// Takes a memcpy and a call that it depends on, | ||||||||||||||
| 867 | /// and checks for the possibility of a call slot optimization by having | ||||||||||||||
| 868 | /// the call write its result directly into the destination of the memcpy. | ||||||||||||||
| 869 | bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpyLoad, | ||||||||||||||
| 870 | Instruction *cpyStore, Value *cpyDest, | ||||||||||||||
| 871 | Value *cpySrc, TypeSize cpySize, | ||||||||||||||
| 872 | Align cpyAlign, CallInst *C) { | ||||||||||||||
| 873 | // The general transformation to keep in mind is | ||||||||||||||
| 874 | // | ||||||||||||||
| 875 | // call @func(..., src, ...) | ||||||||||||||
| 876 | // memcpy(dest, src, ...) | ||||||||||||||
| 877 | // | ||||||||||||||
| 878 | // -> | ||||||||||||||
| 879 | // | ||||||||||||||
| 880 | // memcpy(dest, src, ...) | ||||||||||||||
| 881 | // call @func(..., dest, ...) | ||||||||||||||
| 882 | // | ||||||||||||||
| 883 | // Since moving the memcpy is technically awkward, we additionally check that | ||||||||||||||
| 884 | // src only holds uninitialized values at the moment of the call, meaning that | ||||||||||||||
| 885 | // the memcpy can be discarded rather than moved. | ||||||||||||||
| 886 | |||||||||||||||
| 887 | // We can't optimize scalable types. | ||||||||||||||
| 888 | if (cpySize.isScalable()) | ||||||||||||||
| 889 | return false; | ||||||||||||||
| 890 | |||||||||||||||
| 891 | // Lifetime marks shouldn't be operated on. | ||||||||||||||
| 892 | if (Function *F = C->getCalledFunction()) | ||||||||||||||
| 893 | if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start) | ||||||||||||||
| 894 | return false; | ||||||||||||||
| 895 | |||||||||||||||
| 896 | // Require that src be an alloca. This simplifies the reasoning considerably. | ||||||||||||||
| 897 | AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc); | ||||||||||||||
| 898 | if (!srcAlloca) | ||||||||||||||
| 899 | return false; | ||||||||||||||
| 900 | |||||||||||||||
| 901 | ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize()); | ||||||||||||||
| 902 | if (!srcArraySize) | ||||||||||||||
| 903 | return false; | ||||||||||||||
| 904 | |||||||||||||||
| 905 | const DataLayout &DL = cpyLoad->getModule()->getDataLayout(); | ||||||||||||||
| 906 | uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) * | ||||||||||||||
| 907 | srcArraySize->getZExtValue(); | ||||||||||||||
| 908 | |||||||||||||||
| 909 | if (cpySize < srcSize) | ||||||||||||||
| 910 | return false; | ||||||||||||||
| 911 | |||||||||||||||
| 912 | // Check that accessing the first srcSize bytes of dest will not cause a | ||||||||||||||
| 913 | // trap. Otherwise the transform is invalid since it might cause a trap | ||||||||||||||
| 914 | // to occur earlier than it otherwise would. | ||||||||||||||
| 915 | if (!isDereferenceableAndAlignedPointer(cpyDest, Align(1), APInt(64, cpySize), | ||||||||||||||
| 916 | DL, C, DT)) | ||||||||||||||
| 917 | return false; | ||||||||||||||
| 918 | |||||||||||||||
| 919 | // Make sure that nothing can observe cpyDest being written early. There are | ||||||||||||||
| 920 | // a number of cases to consider: | ||||||||||||||
| 921 | // 1. cpyDest cannot be accessed between C and cpyStore as a precondition of | ||||||||||||||
| 922 | // the transform. | ||||||||||||||
| 923 | // 2. C itself may not access cpyDest (prior to the transform). This is | ||||||||||||||
| 924 | // checked further below. | ||||||||||||||
| 925 | // 3. If cpyDest is accessible to the caller of this function (potentially | ||||||||||||||
| 926 | // captured and not based on an alloca), we need to ensure that we cannot | ||||||||||||||
| 927 | // unwind between C and cpyStore. This is checked here. | ||||||||||||||
| 928 | // 4. If cpyDest is potentially captured, there may be accesses to it from | ||||||||||||||
| 929 | // another thread. In this case, we need to check that cpyStore is | ||||||||||||||
| 930 | // guaranteed to be executed if C is. As it is a non-atomic access, it | ||||||||||||||
| 931 | // renders accesses from other threads undefined. | ||||||||||||||
| 932 | // TODO: This is currently not checked. | ||||||||||||||
| 933 | if (mayBeVisibleThroughUnwinding(cpyDest, C, cpyStore)) | ||||||||||||||
| 934 | return false; | ||||||||||||||
| 935 | |||||||||||||||
| 936 | // Check that dest points to memory that is at least as aligned as src. | ||||||||||||||
| 937 | Align srcAlign = srcAlloca->getAlign(); | ||||||||||||||
| 938 | bool isDestSufficientlyAligned = srcAlign <= cpyAlign; | ||||||||||||||
| 939 | // If dest is not aligned enough and we can't increase its alignment then | ||||||||||||||
| 940 | // bail out. | ||||||||||||||
| 941 | if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest)) | ||||||||||||||
| 942 | return false; | ||||||||||||||
| 943 | |||||||||||||||
| 944 | // Check that src is not accessed except via the call and the memcpy. This | ||||||||||||||
| 945 | // guarantees that it holds only undefined values when passed in (so the final | ||||||||||||||
| 946 | // memcpy can be dropped), that it is not read or written between the call and | ||||||||||||||
| 947 | // the memcpy, and that writing beyond the end of it is undefined. | ||||||||||||||
| 948 | SmallVector<User *, 8> srcUseList(srcAlloca->users()); | ||||||||||||||
| 949 | while (!srcUseList.empty()) { | ||||||||||||||
| 950 | User *U = srcUseList.pop_back_val(); | ||||||||||||||
| 951 | |||||||||||||||
| 952 | if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) { | ||||||||||||||
| 953 | append_range(srcUseList, U->users()); | ||||||||||||||
| 954 | continue; | ||||||||||||||
| 955 | } | ||||||||||||||
| 956 | if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) { | ||||||||||||||
| 957 | if (!G->hasAllZeroIndices()) | ||||||||||||||
| 958 | return false; | ||||||||||||||
| 959 | |||||||||||||||
| 960 | append_range(srcUseList, U->users()); | ||||||||||||||
| 961 | continue; | ||||||||||||||
| 962 | } | ||||||||||||||
| 963 | if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U)) | ||||||||||||||
| 964 | if (IT->isLifetimeStartOrEnd()) | ||||||||||||||
| 965 | continue; | ||||||||||||||
| 966 | |||||||||||||||
| 967 | if (U != C && U != cpyLoad) | ||||||||||||||
| 968 | return false; | ||||||||||||||
| 969 | } | ||||||||||||||
| 970 | |||||||||||||||
| 971 | // Check that src isn't captured by the called function since the | ||||||||||||||
| 972 | // transformation can cause aliasing issues in that case. | ||||||||||||||
| 973 | for (unsigned ArgI = 0, E = C->arg_size(); ArgI != E; ++ArgI) | ||||||||||||||
| 974 | if (C->getArgOperand(ArgI) == cpySrc && !C->doesNotCapture(ArgI)) | ||||||||||||||
| 975 | return false; | ||||||||||||||
| 976 | |||||||||||||||
| 977 | // Since we're changing the parameter to the callsite, we need to make sure | ||||||||||||||
| 978 | // that what would be the new parameter dominates the callsite. | ||||||||||||||
| 979 | if (!DT->dominates(cpyDest, C)) { | ||||||||||||||
| 980 | // Support moving a constant index GEP before the call. | ||||||||||||||
| 981 | auto *GEP = dyn_cast<GetElementPtrInst>(cpyDest); | ||||||||||||||
| 982 | if (GEP && GEP->hasAllConstantIndices() && | ||||||||||||||
| 983 | DT->dominates(GEP->getPointerOperand(), C)) | ||||||||||||||
| 984 | GEP->moveBefore(C); | ||||||||||||||
| 985 | else | ||||||||||||||
| 986 | return false; | ||||||||||||||
| 987 | } | ||||||||||||||
| 988 | |||||||||||||||
| 989 | // In addition to knowing that the call does not access src in some | ||||||||||||||
| 990 | // unexpected manner, for example via a global, which we deduce from | ||||||||||||||
| 991 | // the use analysis, we also need to know that it does not sneakily | ||||||||||||||
| 992 | // access dest. We rely on AA to figure this out for us. | ||||||||||||||
| 993 | ModRefInfo MR = AA->getModRefInfo(C, cpyDest, LocationSize::precise(srcSize)); | ||||||||||||||
| 994 | // If necessary, perform additional analysis. | ||||||||||||||
| 995 | if (isModOrRefSet(MR)) | ||||||||||||||
| 996 | MR = AA->callCapturesBefore(C, cpyDest, LocationSize::precise(srcSize), DT); | ||||||||||||||
| 997 | if (isModOrRefSet(MR)) | ||||||||||||||
| 998 | return false; | ||||||||||||||
| 999 | |||||||||||||||
| 1000 | // We can't create address space casts here because we don't know if they're | ||||||||||||||
| 1001 | // safe for the target. | ||||||||||||||
| 1002 | if (cpySrc->getType()->getPointerAddressSpace() != | ||||||||||||||
| 1003 | cpyDest->getType()->getPointerAddressSpace()) | ||||||||||||||
| 1004 | return false; | ||||||||||||||
| 1005 | for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI) | ||||||||||||||
| 1006 | if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc && | ||||||||||||||
| 1007 | cpySrc->getType()->getPointerAddressSpace() != | ||||||||||||||
| 1008 | C->getArgOperand(ArgI)->getType()->getPointerAddressSpace()) | ||||||||||||||
| 1009 | return false; | ||||||||||||||
| 1010 | |||||||||||||||
| 1011 | // All the checks have passed, so do the transformation. | ||||||||||||||
| 1012 | bool changedArgument = false; | ||||||||||||||
| 1013 | for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI) | ||||||||||||||
| 1014 | if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc) { | ||||||||||||||
| 1015 | Value *Dest = cpySrc->getType() == cpyDest->getType() ? cpyDest | ||||||||||||||
| 1016 | : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(), | ||||||||||||||
| 1017 | cpyDest->getName(), C); | ||||||||||||||
| 1018 | changedArgument = true; | ||||||||||||||
| 1019 | if (C->getArgOperand(ArgI)->getType() == Dest->getType()) | ||||||||||||||
| 1020 | C->setArgOperand(ArgI, Dest); | ||||||||||||||
| 1021 | else | ||||||||||||||
| 1022 | C->setArgOperand(ArgI, CastInst::CreatePointerCast( | ||||||||||||||
| 1023 | Dest, C->getArgOperand(ArgI)->getType(), | ||||||||||||||
| 1024 | Dest->getName(), C)); | ||||||||||||||
| 1025 | } | ||||||||||||||
| 1026 | |||||||||||||||
| 1027 | if (!changedArgument) | ||||||||||||||
| 1028 | return false; | ||||||||||||||
| 1029 | |||||||||||||||
| 1030 | // If the destination wasn't sufficiently aligned then increase its alignment. | ||||||||||||||
| 1031 | if (!isDestSufficientlyAligned) { | ||||||||||||||
| 1032 | assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!")((void)0); | ||||||||||||||
| 1033 | cast<AllocaInst>(cpyDest)->setAlignment(srcAlign); | ||||||||||||||
| 1034 | } | ||||||||||||||
| 1035 | |||||||||||||||
| 1036 | // Drop any cached information about the call, because we may have changed | ||||||||||||||
| 1037 | // its dependence information by changing its parameter. | ||||||||||||||
| 1038 | if (MD) | ||||||||||||||
| 1039 | MD->removeInstruction(C); | ||||||||||||||
| 1040 | |||||||||||||||
| 1041 | // Update AA metadata | ||||||||||||||
| 1042 | // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be | ||||||||||||||
| 1043 | // handled here, but combineMetadata doesn't support them yet | ||||||||||||||
| 1044 | unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, | ||||||||||||||
| 1045 | LLVMContext::MD_noalias, | ||||||||||||||
| 1046 | LLVMContext::MD_invariant_group, | ||||||||||||||
| 1047 | LLVMContext::MD_access_group}; | ||||||||||||||
| 1048 | combineMetadata(C, cpyLoad, KnownIDs, true); | ||||||||||||||
| 1049 | |||||||||||||||
| 1050 | ++NumCallSlot; | ||||||||||||||
| 1051 | return true; | ||||||||||||||
| 1052 | } | ||||||||||||||
| 1053 | |||||||||||||||
| 1054 | /// We've found that the (upward scanning) memory dependence of memcpy 'M' is | ||||||||||||||
| 1055 | /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can. | ||||||||||||||
| 1056 | bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M, | ||||||||||||||
| 1057 | MemCpyInst *MDep) { | ||||||||||||||
| 1058 | // We can only transforms memcpy's where the dest of one is the source of the | ||||||||||||||
| 1059 | // other. | ||||||||||||||
| 1060 | if (M->getSource() != MDep->getDest() || MDep->isVolatile()) | ||||||||||||||
| 1061 | return false; | ||||||||||||||
| 1062 | |||||||||||||||
| 1063 | // If dep instruction is reading from our current input, then it is a noop | ||||||||||||||
| 1064 | // transfer and substituting the input won't change this instruction. Just | ||||||||||||||
| 1065 | // ignore the input and let someone else zap MDep. This handles cases like: | ||||||||||||||
| 1066 | // memcpy(a <- a) | ||||||||||||||
| 1067 | // memcpy(b <- a) | ||||||||||||||
| 1068 | if (M->getSource() == MDep->getSource()) | ||||||||||||||
| 1069 | return false; | ||||||||||||||
| 1070 | |||||||||||||||
| 1071 | // Second, the length of the memcpy's must be the same, or the preceding one | ||||||||||||||
| 1072 | // must be larger than the following one. | ||||||||||||||
| 1073 | if (MDep->getLength() != M->getLength()) { | ||||||||||||||
| 1074 | ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength()); | ||||||||||||||
| 1075 | ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength()); | ||||||||||||||
| 1076 | if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue()) | ||||||||||||||
| 1077 | return false; | ||||||||||||||
| 1078 | } | ||||||||||||||
| 1079 | |||||||||||||||
| 1080 | // Verify that the copied-from memory doesn't change in between the two | ||||||||||||||
| 1081 | // transfers. For example, in: | ||||||||||||||
| 1082 | // memcpy(a <- b) | ||||||||||||||
| 1083 | // *b = 42; | ||||||||||||||
| 1084 | // memcpy(c <- a) | ||||||||||||||
| 1085 | // It would be invalid to transform the second memcpy into memcpy(c <- b). | ||||||||||||||
| 1086 | // | ||||||||||||||
| 1087 | // TODO: If the code between M and MDep is transparent to the destination "c", | ||||||||||||||
| 1088 | // then we could still perform the xform by moving M up to the first memcpy. | ||||||||||||||
| 1089 | if (EnableMemorySSA) { | ||||||||||||||
| 1090 | // TODO: It would be sufficient to check the MDep source up to the memcpy | ||||||||||||||
| 1091 | // size of M, rather than MDep. | ||||||||||||||
| 1092 | if (writtenBetween(MSSA, MemoryLocation::getForSource(MDep), | ||||||||||||||
| 1093 | MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(M))) | ||||||||||||||
| 1094 | return false; | ||||||||||||||
| 1095 | } else { | ||||||||||||||
| 1096 | // NOTE: This is conservative, it will stop on any read from the source loc, | ||||||||||||||
| 1097 | // not just the defining memcpy. | ||||||||||||||
| 1098 | MemDepResult SourceDep = | ||||||||||||||
| 1099 | MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false, | ||||||||||||||
| 1100 | M->getIterator(), M->getParent()); | ||||||||||||||
| 1101 | if (!SourceDep.isClobber() || SourceDep.getInst() != MDep) | ||||||||||||||
| 1102 | return false; | ||||||||||||||
| 1103 | } | ||||||||||||||
| 1104 | |||||||||||||||
| 1105 | // If the dest of the second might alias the source of the first, then the | ||||||||||||||
| 1106 | // source and dest might overlap. We still want to eliminate the intermediate | ||||||||||||||
| 1107 | // value, but we have to generate a memmove instead of memcpy. | ||||||||||||||
| 1108 | bool UseMemMove = false; | ||||||||||||||
| 1109 | if (!AA->isNoAlias(MemoryLocation::getForDest(M), | ||||||||||||||
| 1110 | MemoryLocation::getForSource(MDep))) | ||||||||||||||
| 1111 | UseMemMove = true; | ||||||||||||||
| 1112 | |||||||||||||||
| 1113 | // If all checks passed, then we can transform M. | ||||||||||||||
| 1114 | LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n"do { } while (false) | ||||||||||||||
| 1115 | << *MDep << '\n' << *M << '\n')do { } while (false); | ||||||||||||||
| 1116 | |||||||||||||||
| 1117 | // TODO: Is this worth it if we're creating a less aligned memcpy? For | ||||||||||||||
| 1118 | // example we could be moving from movaps -> movq on x86. | ||||||||||||||
| 1119 | IRBuilder<> Builder(M); | ||||||||||||||
| 1120 | Instruction *NewM; | ||||||||||||||
| 1121 | if (UseMemMove) | ||||||||||||||
| 1122 | NewM = Builder.CreateMemMove(M->getRawDest(), M->getDestAlign(), | ||||||||||||||
| 1123 | MDep->getRawSource(), MDep->getSourceAlign(), | ||||||||||||||
| 1124 | M->getLength(), M->isVolatile()); | ||||||||||||||
| 1125 | else if (isa<MemCpyInlineInst>(M)) { | ||||||||||||||
| 1126 | // llvm.memcpy may be promoted to llvm.memcpy.inline, but the converse is | ||||||||||||||
| 1127 | // never allowed since that would allow the latter to be lowered as a call | ||||||||||||||
| 1128 | // to an external function. | ||||||||||||||
| 1129 | NewM = Builder.CreateMemCpyInline( | ||||||||||||||
| 1130 | M->getRawDest(), M->getDestAlign(), MDep->getRawSource(), | ||||||||||||||
| 1131 | MDep->getSourceAlign(), M->getLength(), M->isVolatile()); | ||||||||||||||
| 1132 | } else | ||||||||||||||
| 1133 | NewM = Builder.CreateMemCpy(M->getRawDest(), M->getDestAlign(), | ||||||||||||||
| 1134 | MDep->getRawSource(), MDep->getSourceAlign(), | ||||||||||||||
| 1135 | M->getLength(), M->isVolatile()); | ||||||||||||||
| 1136 | |||||||||||||||
| 1137 | if (MSSAU) { | ||||||||||||||
| 1138 | assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)))((void)0); | ||||||||||||||
| 1139 | auto *LastDef = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)); | ||||||||||||||
| 1140 | auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); | ||||||||||||||
| 1141 | MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); | ||||||||||||||
| 1142 | } | ||||||||||||||
| 1143 | |||||||||||||||
| 1144 | // Remove the instruction we're replacing. | ||||||||||||||
| 1145 | eraseInstruction(M); | ||||||||||||||
| 1146 | ++NumMemCpyInstr; | ||||||||||||||
| 1147 | return true; | ||||||||||||||
| 1148 | } | ||||||||||||||
| 1149 | |||||||||||||||
| 1150 | /// We've found that the (upward scanning) memory dependence of \p MemCpy is | ||||||||||||||
| 1151 | /// \p MemSet. Try to simplify \p MemSet to only set the trailing bytes that | ||||||||||||||
| 1152 | /// weren't copied over by \p MemCpy. | ||||||||||||||
| 1153 | /// | ||||||||||||||
| 1154 | /// In other words, transform: | ||||||||||||||
| 1155 | /// \code | ||||||||||||||
| 1156 | /// memset(dst, c, dst_size); | ||||||||||||||
| 1157 | /// memcpy(dst, src, src_size); | ||||||||||||||
| 1158 | /// \endcode | ||||||||||||||
| 1159 | /// into: | ||||||||||||||
| 1160 | /// \code | ||||||||||||||
| 1161 | /// memcpy(dst, src, src_size); | ||||||||||||||
| 1162 | /// memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size); | ||||||||||||||
| 1163 | /// \endcode | ||||||||||||||
| 1164 | bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy, | ||||||||||||||
| 1165 | MemSetInst *MemSet) { | ||||||||||||||
| 1166 | // We can only transform memset/memcpy with the same destination. | ||||||||||||||
| 1167 | if (!AA->isMustAlias(MemSet->getDest(), MemCpy->getDest())) | ||||||||||||||
| 1168 | return false; | ||||||||||||||
| 1169 | |||||||||||||||
| 1170 | // Check that src and dst of the memcpy aren't the same. While memcpy | ||||||||||||||
| 1171 | // operands cannot partially overlap, exact equality is allowed. | ||||||||||||||
| 1172 | if (!AA->isNoAlias(MemoryLocation(MemCpy->getSource(), | ||||||||||||||
| 1173 | LocationSize::precise(1)), | ||||||||||||||
| 1174 | MemoryLocation(MemCpy->getDest(), | ||||||||||||||
| 1175 | LocationSize::precise(1)))) | ||||||||||||||
| 1176 | return false; | ||||||||||||||
| 1177 | |||||||||||||||
| 1178 | if (EnableMemorySSA) { | ||||||||||||||
| 1179 | // We know that dst up to src_size is not written. We now need to make sure | ||||||||||||||
| 1180 | // that dst up to dst_size is not accessed. (If we did not move the memset, | ||||||||||||||
| 1181 | // checking for reads would be sufficient.) | ||||||||||||||
| 1182 | if (accessedBetween(*AA, MemoryLocation::getForDest(MemSet), | ||||||||||||||
| 1183 | MSSA->getMemoryAccess(MemSet), | ||||||||||||||
| 1184 | MSSA->getMemoryAccess(MemCpy))) { | ||||||||||||||
| 1185 | return false; | ||||||||||||||
| 1186 | } | ||||||||||||||
| 1187 | } else { | ||||||||||||||
| 1188 | // We have already checked that dst up to src_size is not accessed. We | ||||||||||||||
| 1189 | // need to make sure that there are no accesses up to dst_size either. | ||||||||||||||
| 1190 | MemDepResult DstDepInfo = MD->getPointerDependencyFrom( | ||||||||||||||
| 1191 | MemoryLocation::getForDest(MemSet), false, MemCpy->getIterator(), | ||||||||||||||
| 1192 | MemCpy->getParent()); | ||||||||||||||
| 1193 | if (DstDepInfo.getInst() != MemSet) | ||||||||||||||
| 1194 | return false; | ||||||||||||||
| 1195 | } | ||||||||||||||
| 1196 | |||||||||||||||
| 1197 | // Use the same i8* dest as the memcpy, killing the memset dest if different. | ||||||||||||||
| 1198 | Value *Dest = MemCpy->getRawDest(); | ||||||||||||||
| 1199 | Value *DestSize = MemSet->getLength(); | ||||||||||||||
| 1200 | Value *SrcSize = MemCpy->getLength(); | ||||||||||||||
| 1201 | |||||||||||||||
| 1202 | if (mayBeVisibleThroughUnwinding(Dest, MemSet, MemCpy)) | ||||||||||||||
| 1203 | return false; | ||||||||||||||
| 1204 | |||||||||||||||
| 1205 | // If the sizes are the same, simply drop the memset instead of generating | ||||||||||||||
| 1206 | // a replacement with zero size. | ||||||||||||||
| 1207 | if (DestSize == SrcSize) { | ||||||||||||||
| 1208 | eraseInstruction(MemSet); | ||||||||||||||
| 1209 | return true; | ||||||||||||||
| 1210 | } | ||||||||||||||
| 1211 | |||||||||||||||
| 1212 | // By default, create an unaligned memset. | ||||||||||||||
| 1213 | unsigned Align = 1; | ||||||||||||||
| 1214 | // If Dest is aligned, and SrcSize is constant, use the minimum alignment | ||||||||||||||
| 1215 | // of the sum. | ||||||||||||||
| 1216 | const unsigned DestAlign = | ||||||||||||||
| 1217 | std::max(MemSet->getDestAlignment(), MemCpy->getDestAlignment()); | ||||||||||||||
| 1218 | if (DestAlign > 1) | ||||||||||||||
| 1219 | if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize)) | ||||||||||||||
| 1220 | Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign); | ||||||||||||||
| 1221 | |||||||||||||||
| 1222 | IRBuilder<> Builder(MemCpy); | ||||||||||||||
| 1223 | |||||||||||||||
| 1224 | // If the sizes have different types, zext the smaller one. | ||||||||||||||
| 1225 | if (DestSize->getType() != SrcSize->getType()) { | ||||||||||||||
| 1226 | if (DestSize->getType()->getIntegerBitWidth() > | ||||||||||||||
| 1227 | SrcSize->getType()->getIntegerBitWidth()) | ||||||||||||||
| 1228 | SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType()); | ||||||||||||||
| 1229 | else | ||||||||||||||
| 1230 | DestSize = Builder.CreateZExt(DestSize, SrcSize->getType()); | ||||||||||||||
| 1231 | } | ||||||||||||||
| 1232 | |||||||||||||||
| 1233 | Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize); | ||||||||||||||
| 1234 | Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize); | ||||||||||||||
| 1235 | Value *MemsetLen = Builder.CreateSelect( | ||||||||||||||
| 1236 | Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff); | ||||||||||||||
| 1237 | unsigned DestAS = Dest->getType()->getPointerAddressSpace(); | ||||||||||||||
| 1238 | Instruction *NewMemSet = Builder.CreateMemSet( | ||||||||||||||
| 1239 | Builder.CreateGEP(Builder.getInt8Ty(), | ||||||||||||||
| 1240 | Builder.CreatePointerCast(Dest, | ||||||||||||||
| 1241 | Builder.getInt8PtrTy(DestAS)), | ||||||||||||||
| 1242 | SrcSize), | ||||||||||||||
| 1243 | MemSet->getOperand(1), MemsetLen, MaybeAlign(Align)); | ||||||||||||||
| 1244 | |||||||||||||||
| 1245 | if (MSSAU) { | ||||||||||||||
| 1246 | assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)) &&((void)0) | ||||||||||||||
| 1247 | "MemCpy must be a MemoryDef")((void)0); | ||||||||||||||
| 1248 | // The new memset is inserted after the memcpy, but it is known that its | ||||||||||||||
| 1249 | // defining access is the memset about to be removed which immediately | ||||||||||||||
| 1250 | // precedes the memcpy. | ||||||||||||||
| 1251 | auto *LastDef = | ||||||||||||||
| 1252 | cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)); | ||||||||||||||
| 1253 | auto *NewAccess = MSSAU->createMemoryAccessBefore( | ||||||||||||||
| 1254 | NewMemSet, LastDef->getDefiningAccess(), LastDef); | ||||||||||||||
| 1255 | MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); | ||||||||||||||
| 1256 | } | ||||||||||||||
| 1257 | |||||||||||||||
| 1258 | eraseInstruction(MemSet); | ||||||||||||||
| 1259 | return true; | ||||||||||||||
| 1260 | } | ||||||||||||||
| 1261 | |||||||||||||||
| 1262 | /// Determine whether the instruction has undefined content for the given Size, | ||||||||||||||
| 1263 | /// either because it was freshly alloca'd or started its lifetime. | ||||||||||||||
| 1264 | static bool hasUndefContents(Instruction *I, Value *Size) { | ||||||||||||||
| 1265 | if (isa<AllocaInst>(I)) | ||||||||||||||
| 1266 | return true; | ||||||||||||||
| 1267 | |||||||||||||||
| 1268 | if (ConstantInt *CSize = dyn_cast<ConstantInt>(Size)) { | ||||||||||||||
| 1269 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) | ||||||||||||||
| 1270 | if (II->getIntrinsicID() == Intrinsic::lifetime_start) | ||||||||||||||
| 1271 | if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0))) | ||||||||||||||
| 1272 | if (LTSize->getZExtValue() >= CSize->getZExtValue()) | ||||||||||||||
| 1273 | return true; | ||||||||||||||
| 1274 | } | ||||||||||||||
| 1275 | |||||||||||||||
| 1276 | return false; | ||||||||||||||
| 1277 | } | ||||||||||||||
| 1278 | |||||||||||||||
| 1279 | static bool hasUndefContentsMSSA(MemorySSA *MSSA, AliasAnalysis *AA, Value *V, | ||||||||||||||
| 1280 | MemoryDef *Def, Value *Size) { | ||||||||||||||
| 1281 | if (MSSA->isLiveOnEntryDef(Def)) | ||||||||||||||
| 1282 | return isa<AllocaInst>(getUnderlyingObject(V)); | ||||||||||||||
| 1283 | |||||||||||||||
| 1284 | if (IntrinsicInst *II = | ||||||||||||||
| 1285 | dyn_cast_or_null<IntrinsicInst>(Def->getMemoryInst())) { | ||||||||||||||
| 1286 | if (II->getIntrinsicID() == Intrinsic::lifetime_start) { | ||||||||||||||
| 1287 | ConstantInt *LTSize = cast<ConstantInt>(II->getArgOperand(0)); | ||||||||||||||
| 1288 | |||||||||||||||
| 1289 | if (ConstantInt *CSize = dyn_cast<ConstantInt>(Size)) { | ||||||||||||||
| 1290 | if (AA->isMustAlias(V, II->getArgOperand(1)) && | ||||||||||||||
| 1291 | LTSize->getZExtValue() >= CSize->getZExtValue()) | ||||||||||||||
| 1292 | return true; | ||||||||||||||
| 1293 | } | ||||||||||||||
| 1294 | |||||||||||||||
| 1295 | // If the lifetime.start covers a whole alloca (as it almost always | ||||||||||||||
| 1296 | // does) and we're querying a pointer based on that alloca, then we know | ||||||||||||||
| 1297 | // the memory is definitely undef, regardless of how exactly we alias. | ||||||||||||||
| 1298 | // The size also doesn't matter, as an out-of-bounds access would be UB. | ||||||||||||||
| 1299 | AllocaInst *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(V)); | ||||||||||||||
| 1300 | if (getUnderlyingObject(II->getArgOperand(1)) == Alloca) { | ||||||||||||||
| 1301 | const DataLayout &DL = Alloca->getModule()->getDataLayout(); | ||||||||||||||
| 1302 | if (Optional<TypeSize> AllocaSize = Alloca->getAllocationSizeInBits(DL)) | ||||||||||||||
| 1303 | if (*AllocaSize == LTSize->getValue() * 8) | ||||||||||||||
| 1304 | return true; | ||||||||||||||
| 1305 | } | ||||||||||||||
| 1306 | } | ||||||||||||||
| 1307 | } | ||||||||||||||
| 1308 | |||||||||||||||
| 1309 | return false; | ||||||||||||||
| 1310 | } | ||||||||||||||
| 1311 | |||||||||||||||
| 1312 | /// Transform memcpy to memset when its source was just memset. | ||||||||||||||
| 1313 | /// In other words, turn: | ||||||||||||||
| 1314 | /// \code | ||||||||||||||
| 1315 | /// memset(dst1, c, dst1_size); | ||||||||||||||
| 1316 | /// memcpy(dst2, dst1, dst2_size); | ||||||||||||||
| 1317 | /// \endcode | ||||||||||||||
| 1318 | /// into: | ||||||||||||||
| 1319 | /// \code | ||||||||||||||
| 1320 | /// memset(dst1, c, dst1_size); | ||||||||||||||
| 1321 | /// memset(dst2, c, dst2_size); | ||||||||||||||
| 1322 | /// \endcode | ||||||||||||||
| 1323 | /// When dst2_size <= dst1_size. | ||||||||||||||
| 1324 | bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy, | ||||||||||||||
| 1325 | MemSetInst *MemSet) { | ||||||||||||||
| 1326 | // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and | ||||||||||||||
| 1327 | // memcpying from the same address. Otherwise it is hard to reason about. | ||||||||||||||
| 1328 | if (!AA->isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource())) | ||||||||||||||
| 1329 | return false; | ||||||||||||||
| 1330 | |||||||||||||||
| 1331 | Value *MemSetSize = MemSet->getLength(); | ||||||||||||||
| 1332 | Value *CopySize = MemCpy->getLength(); | ||||||||||||||
| 1333 | |||||||||||||||
| 1334 | if (MemSetSize != CopySize) { | ||||||||||||||
| 1335 | // Make sure the memcpy doesn't read any more than what the memset wrote. | ||||||||||||||
| 1336 | // Don't worry about sizes larger than i64. | ||||||||||||||
| 1337 | |||||||||||||||
| 1338 | // A known memset size is required. | ||||||||||||||
| 1339 | ConstantInt *CMemSetSize = dyn_cast<ConstantInt>(MemSetSize); | ||||||||||||||
| 1340 | if (!CMemSetSize) | ||||||||||||||
| 1341 | return false; | ||||||||||||||
| 1342 | |||||||||||||||
| 1343 | // A known memcpy size is also required. | ||||||||||||||
| 1344 | ConstantInt *CCopySize = dyn_cast<ConstantInt>(CopySize); | ||||||||||||||
| 1345 | if (!CCopySize) | ||||||||||||||
| 1346 | return false; | ||||||||||||||
| 1347 | if (CCopySize->getZExtValue() > CMemSetSize->getZExtValue()) { | ||||||||||||||
| 1348 | // If the memcpy is larger than the memset, but the memory was undef prior | ||||||||||||||
| 1349 | // to the memset, we can just ignore the tail. Technically we're only | ||||||||||||||
| 1350 | // interested in the bytes from MemSetSize..CopySize here, but as we can't | ||||||||||||||
| 1351 | // easily represent this location, we use the full 0..CopySize range. | ||||||||||||||
| 1352 | MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy); | ||||||||||||||
| 1353 | bool CanReduceSize = false; | ||||||||||||||
| 1354 | if (EnableMemorySSA) { | ||||||||||||||
| 1355 | MemoryUseOrDef *MemSetAccess = MSSA->getMemoryAccess(MemSet); | ||||||||||||||
| 1356 | MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( | ||||||||||||||
| 1357 | MemSetAccess->getDefiningAccess(), MemCpyLoc); | ||||||||||||||
| 1358 | if (auto *MD = dyn_cast<MemoryDef>(Clobber)) | ||||||||||||||
| 1359 | if (hasUndefContentsMSSA(MSSA, AA, MemCpy->getSource(), MD, CopySize)) | ||||||||||||||
| 1360 | CanReduceSize = true; | ||||||||||||||
| 1361 | } else { | ||||||||||||||
| 1362 | MemDepResult DepInfo = MD->getPointerDependencyFrom( | ||||||||||||||
| 1363 | MemCpyLoc, true, MemSet->getIterator(), MemSet->getParent()); | ||||||||||||||
| 1364 | if (DepInfo.isDef() && hasUndefContents(DepInfo.getInst(), CopySize)) | ||||||||||||||
| 1365 | CanReduceSize = true; | ||||||||||||||
| 1366 | } | ||||||||||||||
| 1367 | |||||||||||||||
| 1368 | if (!CanReduceSize) | ||||||||||||||
| 1369 | return false; | ||||||||||||||
| 1370 | CopySize = MemSetSize; | ||||||||||||||
| 1371 | } | ||||||||||||||
| 1372 | } | ||||||||||||||
| 1373 | |||||||||||||||
| 1374 | IRBuilder<> Builder(MemCpy); | ||||||||||||||
| 1375 | Instruction *NewM = | ||||||||||||||
| 1376 | Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1), | ||||||||||||||
| 1377 | CopySize, MaybeAlign(MemCpy->getDestAlignment())); | ||||||||||||||
| 1378 | if (MSSAU) { | ||||||||||||||
| 1379 | auto *LastDef = | ||||||||||||||
| 1380 | cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)); | ||||||||||||||
| 1381 | auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); | ||||||||||||||
| 1382 | MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); | ||||||||||||||
| 1383 | } | ||||||||||||||
| 1384 | |||||||||||||||
| 1385 | return true; | ||||||||||||||
| 1386 | } | ||||||||||||||
| 1387 | |||||||||||||||
| 1388 | /// Perform simplification of memcpy's. If we have memcpy A | ||||||||||||||
| 1389 | /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite | ||||||||||||||
| 1390 | /// B to be a memcpy from X to Z (or potentially a memmove, depending on | ||||||||||||||
| 1391 | /// circumstances). This allows later passes to remove the first memcpy | ||||||||||||||
| 1392 | /// altogether. | ||||||||||||||
| 1393 | bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) { | ||||||||||||||
| 1394 | // We can only optimize non-volatile memcpy's. | ||||||||||||||
| 1395 | if (M->isVolatile()) return false; | ||||||||||||||
| 1396 | |||||||||||||||
| 1397 | // If the source and destination of the memcpy are the same, then zap it. | ||||||||||||||
| 1398 | if (M->getSource() == M->getDest()) { | ||||||||||||||
| 1399 | ++BBI; | ||||||||||||||
| 1400 | eraseInstruction(M); | ||||||||||||||
| 1401 | return true; | ||||||||||||||
| 1402 | } | ||||||||||||||
| 1403 | |||||||||||||||
| 1404 | // If copying from a constant, try to turn the memcpy into a memset. | ||||||||||||||
| 1405 | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource())) | ||||||||||||||
| 1406 | if (GV->isConstant() && GV->hasDefinitiveInitializer()) | ||||||||||||||
| 1407 | if (Value *ByteVal = isBytewiseValue(GV->getInitializer(), | ||||||||||||||
| 1408 | M->getModule()->getDataLayout())) { | ||||||||||||||
| 1409 | IRBuilder<> Builder(M); | ||||||||||||||
| 1410 | Instruction *NewM = | ||||||||||||||
| 1411 | Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(), | ||||||||||||||
| 1412 | MaybeAlign(M->getDestAlignment()), false); | ||||||||||||||
| 1413 | if (MSSAU) { | ||||||||||||||
| 1414 | auto *LastDef = | ||||||||||||||
| 1415 | cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)); | ||||||||||||||
| 1416 | auto *NewAccess = | ||||||||||||||
| 1417 | MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); | ||||||||||||||
| 1418 | MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); | ||||||||||||||
| 1419 | } | ||||||||||||||
| 1420 | |||||||||||||||
| 1421 | eraseInstruction(M); | ||||||||||||||
| 1422 | ++NumCpyToSet; | ||||||||||||||
| 1423 | return true; | ||||||||||||||
| 1424 | } | ||||||||||||||
| 1425 | |||||||||||||||
| 1426 | if (EnableMemorySSA) { | ||||||||||||||
| 1427 | MemoryUseOrDef *MA = MSSA->getMemoryAccess(M); | ||||||||||||||
| 1428 | MemoryAccess *AnyClobber = MSSA->getWalker()->getClobberingMemoryAccess(MA); | ||||||||||||||
| 1429 | MemoryLocation DestLoc = MemoryLocation::getForDest(M); | ||||||||||||||
| 1430 | const MemoryAccess *DestClobber = | ||||||||||||||
| 1431 | MSSA->getWalker()->getClobberingMemoryAccess(AnyClobber, DestLoc); | ||||||||||||||
| 1432 | |||||||||||||||
| 1433 | // Try to turn a partially redundant memset + memcpy into | ||||||||||||||
| 1434 | // memcpy + smaller memset. We don't need the memcpy size for this. | ||||||||||||||
| 1435 | // The memcpy most post-dom the memset, so limit this to the same basic | ||||||||||||||
| 1436 | // block. A non-local generalization is likely not worthwhile. | ||||||||||||||
| 1437 | if (auto *MD = dyn_cast<MemoryDef>(DestClobber)) | ||||||||||||||
| 1438 | if (auto *MDep = dyn_cast_or_null<MemSetInst>(MD->getMemoryInst())) | ||||||||||||||
| 1439 | if (DestClobber->getBlock() == M->getParent()) | ||||||||||||||
| 1440 | if (processMemSetMemCpyDependence(M, MDep)) | ||||||||||||||
| 1441 | return true; | ||||||||||||||
| 1442 | |||||||||||||||
| 1443 | MemoryAccess *SrcClobber = MSSA->getWalker()->getClobberingMemoryAccess( | ||||||||||||||
| 1444 | AnyClobber, MemoryLocation::getForSource(M)); | ||||||||||||||
| 1445 | |||||||||||||||
| 1446 | // There are four possible optimizations we can do for memcpy: | ||||||||||||||
| 1447 | // a) memcpy-memcpy xform which exposes redundance for DSE. | ||||||||||||||
| 1448 | // b) call-memcpy xform for return slot optimization. | ||||||||||||||
| 1449 | // c) memcpy from freshly alloca'd space or space that has just started | ||||||||||||||
| 1450 | // its lifetime copies undefined data, and we can therefore eliminate | ||||||||||||||
| 1451 | // the memcpy in favor of the data that was already at the destination. | ||||||||||||||
| 1452 | // d) memcpy from a just-memset'd source can be turned into memset. | ||||||||||||||
| 1453 | if (auto *MD = dyn_cast<MemoryDef>(SrcClobber)) { | ||||||||||||||
| 1454 | if (Instruction *MI = MD->getMemoryInst()) { | ||||||||||||||
| 1455 | if (ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength())) { | ||||||||||||||
| 1456 | if (auto *C = dyn_cast<CallInst>(MI)) { | ||||||||||||||
| 1457 | // The memcpy must post-dom the call. Limit to the same block for | ||||||||||||||
| 1458 | // now. Additionally, we need to ensure that there are no accesses | ||||||||||||||
| 1459 | // to dest between the call and the memcpy. Accesses to src will be | ||||||||||||||
| 1460 | // checked by performCallSlotOptzn(). | ||||||||||||||
| 1461 | // TODO: Support non-local call-slot optimization? | ||||||||||||||
| 1462 | if (C->getParent() == M->getParent() && | ||||||||||||||
| 1463 | !accessedBetween(*AA, DestLoc, MD, MA)) { | ||||||||||||||
| 1464 | // FIXME: Can we pass in either of dest/src alignment here instead | ||||||||||||||
| 1465 | // of conservatively taking the minimum? | ||||||||||||||
| 1466 | Align Alignment = std::min(M->getDestAlign().valueOrOne(), | ||||||||||||||
| 1467 | M->getSourceAlign().valueOrOne()); | ||||||||||||||
| 1468 | if (performCallSlotOptzn( | ||||||||||||||
| 1469 | M, M, M->getDest(), M->getSource(), | ||||||||||||||
| 1470 | TypeSize::getFixed(CopySize->getZExtValue()), Alignment, | ||||||||||||||
| 1471 | C)) { | ||||||||||||||
| 1472 | LLVM_DEBUG(dbgs() << "Performed call slot optimization:\n"do { } while (false) | ||||||||||||||
| 1473 | << " call: " << *C << "\n"do { } while (false) | ||||||||||||||
| 1474 | << " memcpy: " << *M << "\n")do { } while (false); | ||||||||||||||
| 1475 | eraseInstruction(M); | ||||||||||||||
| 1476 | ++NumMemCpyInstr; | ||||||||||||||
| 1477 | return true; | ||||||||||||||
| 1478 | } | ||||||||||||||
| 1479 | } | ||||||||||||||
| 1480 | } | ||||||||||||||
| 1481 | } | ||||||||||||||
| 1482 | if (auto *MDep = dyn_cast<MemCpyInst>(MI)) | ||||||||||||||
| 1483 | return processMemCpyMemCpyDependence(M, MDep); | ||||||||||||||
| 1484 | if (auto *MDep = dyn_cast<MemSetInst>(MI)) { | ||||||||||||||
| 1485 | if (performMemCpyToMemSetOptzn(M, MDep)) { | ||||||||||||||
| 1486 | LLVM_DEBUG(dbgs() << "Converted memcpy to memset\n")do { } while (false); | ||||||||||||||
| 1487 | eraseInstruction(M); | ||||||||||||||
| 1488 | ++NumCpyToSet; | ||||||||||||||
| 1489 | return true; | ||||||||||||||
| 1490 | } | ||||||||||||||
| 1491 | } | ||||||||||||||
| 1492 | } | ||||||||||||||
| 1493 | |||||||||||||||
| 1494 | if (hasUndefContentsMSSA(MSSA, AA, M->getSource(), MD, M->getLength())) { | ||||||||||||||
| 1495 | LLVM_DEBUG(dbgs() << "Removed memcpy from undef\n")do { } while (false); | ||||||||||||||
| 1496 | eraseInstruction(M); | ||||||||||||||
| 1497 | ++NumMemCpyInstr; | ||||||||||||||
| 1498 | return true; | ||||||||||||||
| 1499 | } | ||||||||||||||
| 1500 | } | ||||||||||||||
| 1501 | } else { | ||||||||||||||
| 1502 | MemDepResult DepInfo = MD->getDependency(M); | ||||||||||||||
| 1503 | |||||||||||||||
| 1504 | // Try to turn a partially redundant memset + memcpy into | ||||||||||||||
| 1505 | // memcpy + smaller memset. We don't need the memcpy size for this. | ||||||||||||||
| 1506 | if (DepInfo.isClobber()) | ||||||||||||||
| 1507 | if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst())) | ||||||||||||||
| 1508 | if (processMemSetMemCpyDependence(M, MDep)) | ||||||||||||||
| 1509 | return true; | ||||||||||||||
| 1510 | |||||||||||||||
| 1511 | // There are four possible optimizations we can do for memcpy: | ||||||||||||||
| 1512 | // a) memcpy-memcpy xform which exposes redundance for DSE. | ||||||||||||||
| 1513 | // b) call-memcpy xform for return slot optimization. | ||||||||||||||
| 1514 | // c) memcpy from freshly alloca'd space or space that has just started | ||||||||||||||
| 1515 | // its lifetime copies undefined data, and we can therefore eliminate | ||||||||||||||
| 1516 | // the memcpy in favor of the data that was already at the destination. | ||||||||||||||
| 1517 | // d) memcpy from a just-memset'd source can be turned into memset. | ||||||||||||||
| 1518 | if (ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength())) { | ||||||||||||||
| 1519 | if (DepInfo.isClobber()) { | ||||||||||||||
| 1520 | if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) { | ||||||||||||||
| 1521 | // FIXME: Can we pass in either of dest/src alignment here instead | ||||||||||||||
| 1522 | // of conservatively taking the minimum? | ||||||||||||||
| 1523 | Align Alignment = std::min(M->getDestAlign().valueOrOne(), | ||||||||||||||
| 1524 | M->getSourceAlign().valueOrOne()); | ||||||||||||||
| 1525 | if (performCallSlotOptzn(M, M, M->getDest(), M->getSource(), | ||||||||||||||
| 1526 | TypeSize::getFixed(CopySize->getZExtValue()), | ||||||||||||||
| 1527 | Alignment, C)) { | ||||||||||||||
| 1528 | eraseInstruction(M); | ||||||||||||||
| 1529 | ++NumMemCpyInstr; | ||||||||||||||
| 1530 | return true; | ||||||||||||||
| 1531 | } | ||||||||||||||
| 1532 | } | ||||||||||||||
| 1533 | } | ||||||||||||||
| 1534 | } | ||||||||||||||
| 1535 | |||||||||||||||
| 1536 | MemoryLocation SrcLoc = MemoryLocation::getForSource(M); | ||||||||||||||
| 1537 | MemDepResult SrcDepInfo = MD->getPointerDependencyFrom( | ||||||||||||||
| 1538 | SrcLoc, true, M->getIterator(), M->getParent()); | ||||||||||||||
| 1539 | |||||||||||||||
| 1540 | if (SrcDepInfo.isClobber()) { | ||||||||||||||
| 1541 | if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst())) | ||||||||||||||
| 1542 | return processMemCpyMemCpyDependence(M, MDep); | ||||||||||||||
| 1543 | } else if (SrcDepInfo.isDef()) { | ||||||||||||||
| 1544 | if (hasUndefContents(SrcDepInfo.getInst(), M->getLength())) { | ||||||||||||||
| 1545 | eraseInstruction(M); | ||||||||||||||
| 1546 | ++NumMemCpyInstr; | ||||||||||||||
| 1547 | return true; | ||||||||||||||
| 1548 | } | ||||||||||||||
| 1549 | } | ||||||||||||||
| 1550 | |||||||||||||||
| 1551 | if (SrcDepInfo.isClobber()) | ||||||||||||||
| 1552 | if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst())) | ||||||||||||||
| 1553 | if (performMemCpyToMemSetOptzn(M, MDep)) { | ||||||||||||||
| 1554 | eraseInstruction(M); | ||||||||||||||
| 1555 | ++NumCpyToSet; | ||||||||||||||
| 1556 | return true; | ||||||||||||||
| 1557 | } | ||||||||||||||
| 1558 | } | ||||||||||||||
| 1559 | |||||||||||||||
| 1560 | return false; | ||||||||||||||
| 1561 | } | ||||||||||||||
| 1562 | |||||||||||||||
| 1563 | /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed | ||||||||||||||
| 1564 | /// not to alias. | ||||||||||||||
| 1565 | bool MemCpyOptPass::processMemMove(MemMoveInst *M) { | ||||||||||||||
| 1566 | if (!TLI->has(LibFunc_memmove)) | ||||||||||||||
| 1567 | return false; | ||||||||||||||
| 1568 | |||||||||||||||
| 1569 | // See if the pointers alias. | ||||||||||||||
| 1570 | if (!AA->isNoAlias(MemoryLocation::getForDest(M), | ||||||||||||||
| 1571 | MemoryLocation::getForSource(M))) | ||||||||||||||
| 1572 | return false; | ||||||||||||||
| 1573 | |||||||||||||||
| 1574 | LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *Mdo { } while (false) | ||||||||||||||
| 1575 | << "\n")do { } while (false); | ||||||||||||||
| 1576 | |||||||||||||||
| 1577 | // If not, then we know we can transform this. | ||||||||||||||
| 1578 | Type *ArgTys[3] = { M->getRawDest()->getType(), | ||||||||||||||
| 1579 | M->getRawSource()->getType(), | ||||||||||||||
| 1580 | M->getLength()->getType() }; | ||||||||||||||
| 1581 | M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(), | ||||||||||||||
| 1582 | Intrinsic::memcpy, ArgTys)); | ||||||||||||||
| 1583 | |||||||||||||||
| 1584 | // For MemorySSA nothing really changes (except that memcpy may imply stricter | ||||||||||||||
| 1585 | // aliasing guarantees). | ||||||||||||||
| 1586 | |||||||||||||||
| 1587 | // MemDep may have over conservative information about this instruction, just | ||||||||||||||
| 1588 | // conservatively flush it from the cache. | ||||||||||||||
| 1589 | if (MD) | ||||||||||||||
| 1590 | MD->removeInstruction(M); | ||||||||||||||
| 1591 | |||||||||||||||
| 1592 | ++NumMoveToCpy; | ||||||||||||||
| 1593 | return true; | ||||||||||||||
| 1594 | } | ||||||||||||||
| 1595 | |||||||||||||||
| 1596 | /// This is called on every byval argument in call sites. | ||||||||||||||
| 1597 | bool MemCpyOptPass::processByValArgument(CallBase &CB, unsigned ArgNo) { | ||||||||||||||
| 1598 | const DataLayout &DL = CB.getCaller()->getParent()->getDataLayout(); | ||||||||||||||
| 1599 | // Find out what feeds this byval argument. | ||||||||||||||
| 1600 | Value *ByValArg = CB.getArgOperand(ArgNo); | ||||||||||||||
| 1601 | Type *ByValTy = CB.getParamByValType(ArgNo); | ||||||||||||||
| 1602 | TypeSize ByValSize = DL.getTypeAllocSize(ByValTy); | ||||||||||||||
| 1603 | MemoryLocation Loc(ByValArg, LocationSize::precise(ByValSize)); | ||||||||||||||
| 1604 | MemCpyInst *MDep = nullptr; | ||||||||||||||
| 1605 | if (EnableMemorySSA) { | ||||||||||||||
| 1606 | MemoryUseOrDef *CallAccess = MSSA->getMemoryAccess(&CB); | ||||||||||||||
| 1607 | if (!CallAccess) | ||||||||||||||
| 1608 | return false; | ||||||||||||||
| 1609 | MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( | ||||||||||||||
| 1610 | CallAccess->getDefiningAccess(), Loc); | ||||||||||||||
| 1611 | if (auto *MD = dyn_cast<MemoryDef>(Clobber)) | ||||||||||||||
| 1612 | MDep = dyn_cast_or_null<MemCpyInst>(MD->getMemoryInst()); | ||||||||||||||
| 1613 | } else { | ||||||||||||||
| 1614 | MemDepResult DepInfo = MD->getPointerDependencyFrom( | ||||||||||||||
| 1615 | Loc, true, CB.getIterator(), CB.getParent()); | ||||||||||||||
| 1616 | if (!DepInfo.isClobber()) | ||||||||||||||
| 1617 | return false; | ||||||||||||||
| 1618 | MDep = dyn_cast<MemCpyInst>(DepInfo.getInst()); | ||||||||||||||
| 1619 | } | ||||||||||||||
| 1620 | |||||||||||||||
| 1621 | // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by | ||||||||||||||
| 1622 | // a memcpy, see if we can byval from the source of the memcpy instead of the | ||||||||||||||
| 1623 | // result. | ||||||||||||||
| 1624 | if (!MDep || MDep->isVolatile() || | ||||||||||||||
| 1625 | ByValArg->stripPointerCasts() != MDep->getDest()) | ||||||||||||||
| 1626 | return false; | ||||||||||||||
| 1627 | |||||||||||||||
| 1628 | // The length of the memcpy must be larger or equal to the size of the byval. | ||||||||||||||
| 1629 | ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength()); | ||||||||||||||
| 1630 | if (!C1 || !TypeSize::isKnownGE( | ||||||||||||||
| 1631 | TypeSize::getFixed(C1->getValue().getZExtValue()), ByValSize)) | ||||||||||||||
| 1632 | return false; | ||||||||||||||
| 1633 | |||||||||||||||
| 1634 | // Get the alignment of the byval. If the call doesn't specify the alignment, | ||||||||||||||
| 1635 | // then it is some target specific value that we can't know. | ||||||||||||||
| 1636 | MaybeAlign ByValAlign = CB.getParamAlign(ArgNo); | ||||||||||||||
| 1637 | if (!ByValAlign) return false; | ||||||||||||||
| 1638 | |||||||||||||||
| 1639 | // If it is greater than the memcpy, then we check to see if we can force the | ||||||||||||||
| 1640 | // source of the memcpy to the alignment we need. If we fail, we bail out. | ||||||||||||||
| 1641 | MaybeAlign MemDepAlign = MDep->getSourceAlign(); | ||||||||||||||
| 1642 | if ((!MemDepAlign || *MemDepAlign < *ByValAlign) && | ||||||||||||||
| 1643 | getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &CB, AC, | ||||||||||||||
| 1644 | DT) < *ByValAlign) | ||||||||||||||
| 1645 | return false; | ||||||||||||||
| 1646 | |||||||||||||||
| 1647 | // The address space of the memcpy source must match the byval argument | ||||||||||||||
| 1648 | if (MDep->getSource()->getType()->getPointerAddressSpace() != | ||||||||||||||
| 1649 | ByValArg->getType()->getPointerAddressSpace()) | ||||||||||||||
| 1650 | return false; | ||||||||||||||
| 1651 | |||||||||||||||
| 1652 | // Verify that the copied-from memory doesn't change in between the memcpy and | ||||||||||||||
| 1653 | // the byval call. | ||||||||||||||
| 1654 | // memcpy(a <- b) | ||||||||||||||
| 1655 | // *b = 42; | ||||||||||||||
| 1656 | // foo(*a) | ||||||||||||||
| 1657 | // It would be invalid to transform the second memcpy into foo(*b). | ||||||||||||||
| 1658 | if (EnableMemorySSA) { | ||||||||||||||
| 1659 | if (writtenBetween(MSSA, MemoryLocation::getForSource(MDep), | ||||||||||||||
| 1660 | MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(&CB))) | ||||||||||||||
| 1661 | return false; | ||||||||||||||
| 1662 | } else { | ||||||||||||||
| 1663 | // NOTE: This is conservative, it will stop on any read from the source loc, | ||||||||||||||
| 1664 | // not just the defining memcpy. | ||||||||||||||
| 1665 | MemDepResult SourceDep = MD->getPointerDependencyFrom( | ||||||||||||||
| 1666 | MemoryLocation::getForSource(MDep), false, | ||||||||||||||
| 1667 | CB.getIterator(), MDep->getParent()); | ||||||||||||||
| 1668 | if (!SourceDep.isClobber() || SourceDep.getInst() != MDep) | ||||||||||||||
| 1669 | return false; | ||||||||||||||
| 1670 | } | ||||||||||||||
| 1671 | |||||||||||||||
| 1672 | Value *TmpCast = MDep->getSource(); | ||||||||||||||
| 1673 | if (MDep->getSource()->getType() != ByValArg->getType()) { | ||||||||||||||
| 1674 | BitCastInst *TmpBitCast = new BitCastInst(MDep->getSource(), ByValArg->getType(), | ||||||||||||||
| 1675 | "tmpcast", &CB); | ||||||||||||||
| 1676 | // Set the tmpcast's DebugLoc to MDep's | ||||||||||||||
| 1677 | TmpBitCast->setDebugLoc(MDep->getDebugLoc()); | ||||||||||||||
| 1678 | TmpCast = TmpBitCast; | ||||||||||||||
| 1679 | } | ||||||||||||||
| 1680 | |||||||||||||||
| 1681 | LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"do { } while (false) | ||||||||||||||
| 1682 | << " " << *MDep << "\n"do { } while (false) | ||||||||||||||
| 1683 | << " " << CB << "\n")do { } while (false); | ||||||||||||||
| 1684 | |||||||||||||||
| 1685 | // Otherwise we're good! Update the byval argument. | ||||||||||||||
| 1686 | CB.setArgOperand(ArgNo, TmpCast); | ||||||||||||||
| 1687 | ++NumMemCpyInstr; | ||||||||||||||
| 1688 | return true; | ||||||||||||||
| 1689 | } | ||||||||||||||
| 1690 | |||||||||||||||
| 1691 | /// Executes one iteration of MemCpyOptPass. | ||||||||||||||
| 1692 | bool MemCpyOptPass::iterateOnFunction(Function &F) { | ||||||||||||||
| 1693 | bool MadeChange = false; | ||||||||||||||
| 1694 | |||||||||||||||
| 1695 | // Walk all instruction in the function. | ||||||||||||||
| 1696 | for (BasicBlock &BB : F) { | ||||||||||||||
| 1697 | // Skip unreachable blocks. For example processStore assumes that an | ||||||||||||||
| 1698 | // instruction in a BB can't be dominated by a later instruction in the | ||||||||||||||
| 1699 | // same BB (which is a scenario that can happen for an unreachable BB that | ||||||||||||||
| 1700 | // has itself as a predecessor). | ||||||||||||||
| 1701 | if (!DT->isReachableFromEntry(&BB)) | ||||||||||||||
| 1702 | continue; | ||||||||||||||
| 1703 | |||||||||||||||
| 1704 | for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { | ||||||||||||||
| 1705 | // Avoid invalidating the iterator. | ||||||||||||||
| 1706 | Instruction *I = &*BI++; | ||||||||||||||
| 1707 | |||||||||||||||
| 1708 | bool RepeatInstruction = false; | ||||||||||||||
| 1709 | |||||||||||||||
| 1710 | if (StoreInst *SI
| ||||||||||||||
| 1711 | MadeChange |= processStore(SI, BI); | ||||||||||||||
| 1712 | else if (MemSetInst *M = dyn_cast<MemSetInst>(I)) | ||||||||||||||
| 1713 | RepeatInstruction = processMemSet(M, BI); | ||||||||||||||
| 1714 | else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I)) | ||||||||||||||
| 1715 | RepeatInstruction = processMemCpy(M, BI); | ||||||||||||||
| 1716 | else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I)) | ||||||||||||||
| 1717 | RepeatInstruction = processMemMove(M); | ||||||||||||||
| 1718 | else if (auto *CB = dyn_cast<CallBase>(I)) { | ||||||||||||||
| 1719 | for (unsigned i = 0, e = CB->arg_size(); i != e; ++i) | ||||||||||||||
| 1720 | if (CB->isByValArgument(i)) | ||||||||||||||
| 1721 | MadeChange |= processByValArgument(*CB, i); | ||||||||||||||
| 1722 | } | ||||||||||||||
| 1723 | |||||||||||||||
| 1724 | // Reprocess the instruction if desired. | ||||||||||||||
| 1725 | if (RepeatInstruction) { | ||||||||||||||
| 1726 | if (BI != BB.begin()) | ||||||||||||||
| 1727 | --BI; | ||||||||||||||
| 1728 | MadeChange = true; | ||||||||||||||
| 1729 | } | ||||||||||||||
| 1730 | } | ||||||||||||||
| 1731 | } | ||||||||||||||
| 1732 | |||||||||||||||
| 1733 | return MadeChange; | ||||||||||||||
| 1734 | } | ||||||||||||||
| 1735 | |||||||||||||||
| 1736 | PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) { | ||||||||||||||
| 1737 | auto *MD = !EnableMemorySSA ? &AM.getResult<MemoryDependenceAnalysis>(F) | ||||||||||||||
| 1738 | : AM.getCachedResult<MemoryDependenceAnalysis>(F); | ||||||||||||||
| 1739 | auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); | ||||||||||||||
| 1740 | auto *AA = &AM.getResult<AAManager>(F); | ||||||||||||||
| 1741 | auto *AC = &AM.getResult<AssumptionAnalysis>(F); | ||||||||||||||
| 1742 | auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); | ||||||||||||||
| 1743 | auto *MSSA = EnableMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F) | ||||||||||||||
| 1744 | : AM.getCachedResult<MemorySSAAnalysis>(F); | ||||||||||||||
| 1745 | |||||||||||||||
| 1746 | bool MadeChange = | ||||||||||||||
| 1747 | runImpl(F, MD, &TLI, AA, AC, DT, MSSA ? &MSSA->getMSSA() : nullptr); | ||||||||||||||
| 1748 | if (!MadeChange) | ||||||||||||||
| 1749 | return PreservedAnalyses::all(); | ||||||||||||||
| 1750 | |||||||||||||||
| 1751 | PreservedAnalyses PA; | ||||||||||||||
| 1752 | PA.preserveSet<CFGAnalyses>(); | ||||||||||||||
| 1753 | if (MD) | ||||||||||||||
| 1754 | PA.preserve<MemoryDependenceAnalysis>(); | ||||||||||||||
| 1755 | if (MSSA) | ||||||||||||||
| 1756 | PA.preserve<MemorySSAAnalysis>(); | ||||||||||||||
| 1757 | return PA; | ||||||||||||||
| 1758 | } | ||||||||||||||
| 1759 | |||||||||||||||
| 1760 | bool MemCpyOptPass::runImpl(Function &F, MemoryDependenceResults *MD_, | ||||||||||||||
| 1761 | TargetLibraryInfo *TLI_, AliasAnalysis *AA_, | ||||||||||||||
| 1762 | AssumptionCache *AC_, DominatorTree *DT_, | ||||||||||||||
| 1763 | MemorySSA *MSSA_) { | ||||||||||||||
| 1764 | bool MadeChange = false; | ||||||||||||||
| 1765 | MD = MD_; | ||||||||||||||
| 1766 | TLI = TLI_; | ||||||||||||||
| 1767 | AA = AA_; | ||||||||||||||
| 1768 | AC = AC_; | ||||||||||||||
| 1769 | DT = DT_; | ||||||||||||||
| 1770 | MSSA = MSSA_; | ||||||||||||||
| 1771 | MemorySSAUpdater MSSAU_(MSSA_); | ||||||||||||||
| 1772 | MSSAU = MSSA_
| ||||||||||||||
| 1773 | // If we don't have at least memset and memcpy, there is little point of doing | ||||||||||||||
| 1774 | // anything here. These are required by a freestanding implementation, so if | ||||||||||||||
| 1775 | // even they are disabled, there is no point in trying hard. | ||||||||||||||
| 1776 | if (!TLI->has(LibFunc_memset) || !TLI->has(LibFunc_memcpy)) | ||||||||||||||
| 1777 | return false; | ||||||||||||||
| 1778 | |||||||||||||||
| 1779 | while (true) { | ||||||||||||||
| 1780 | if (!iterateOnFunction(F)) | ||||||||||||||
| 1781 | break; | ||||||||||||||
| 1782 | MadeChange = true; | ||||||||||||||
| 1783 | } | ||||||||||||||
| 1784 | |||||||||||||||
| 1785 | if (MSSA_ && VerifyMemorySSA) | ||||||||||||||
| 1786 | MSSA_->verifyMemorySSA(); | ||||||||||||||
| 1787 | |||||||||||||||
| 1788 | MD = nullptr; | ||||||||||||||
| 1789 | return MadeChange; | ||||||||||||||
| 1790 | } | ||||||||||||||
| 1791 | |||||||||||||||
| 1792 | /// This is the main transformation entry point for a function. | ||||||||||||||
| 1793 | bool MemCpyOptLegacyPass::runOnFunction(Function &F) { | ||||||||||||||
| 1794 | if (skipFunction(F)) | ||||||||||||||
| |||||||||||||||
| 1795 | return false; | ||||||||||||||
| 1796 | |||||||||||||||
| 1797 | auto *MDWP = !EnableMemorySSA | ||||||||||||||
| 1798 | ? &getAnalysis<MemoryDependenceWrapperPass>() | ||||||||||||||
| 1799 | : getAnalysisIfAvailable<MemoryDependenceWrapperPass>(); | ||||||||||||||
| 1800 | auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); | ||||||||||||||
| 1801 | auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); | ||||||||||||||
| 1802 | auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); | ||||||||||||||
| 1803 | auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | ||||||||||||||
| 1804 | auto *MSSAWP = EnableMemorySSA | ||||||||||||||
| 1805 | ? &getAnalysis<MemorySSAWrapperPass>() | ||||||||||||||
| 1806 | : getAnalysisIfAvailable<MemorySSAWrapperPass>(); | ||||||||||||||
| 1807 | |||||||||||||||
| 1808 | return Impl.runImpl(F, MDWP ? & MDWP->getMemDep() : nullptr, TLI, AA, AC, DT, | ||||||||||||||
| 1809 | MSSAWP
| ||||||||||||||
| 1810 | } |
| 1 | //===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file exposes the class definitions of all of the subclasses of the |
| 10 | // Instruction class. This is meant to be an easy way to get access to all |
| 11 | // instruction subclasses. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #ifndef LLVM_IR_INSTRUCTIONS_H |
| 16 | #define LLVM_IR_INSTRUCTIONS_H |
| 17 | |
| 18 | #include "llvm/ADT/ArrayRef.h" |
| 19 | #include "llvm/ADT/Bitfields.h" |
| 20 | #include "llvm/ADT/MapVector.h" |
| 21 | #include "llvm/ADT/None.h" |
| 22 | #include "llvm/ADT/STLExtras.h" |
| 23 | #include "llvm/ADT/SmallVector.h" |
| 24 | #include "llvm/ADT/StringRef.h" |
| 25 | #include "llvm/ADT/Twine.h" |
| 26 | #include "llvm/ADT/iterator.h" |
| 27 | #include "llvm/ADT/iterator_range.h" |
| 28 | #include "llvm/IR/Attributes.h" |
| 29 | #include "llvm/IR/BasicBlock.h" |
| 30 | #include "llvm/IR/CallingConv.h" |
| 31 | #include "llvm/IR/CFG.h" |
| 32 | #include "llvm/IR/Constant.h" |
| 33 | #include "llvm/IR/DerivedTypes.h" |
| 34 | #include "llvm/IR/Function.h" |
| 35 | #include "llvm/IR/InstrTypes.h" |
| 36 | #include "llvm/IR/Instruction.h" |
| 37 | #include "llvm/IR/OperandTraits.h" |
| 38 | #include "llvm/IR/Type.h" |
| 39 | #include "llvm/IR/Use.h" |
| 40 | #include "llvm/IR/User.h" |
| 41 | #include "llvm/IR/Value.h" |
| 42 | #include "llvm/Support/AtomicOrdering.h" |
| 43 | #include "llvm/Support/Casting.h" |
| 44 | #include "llvm/Support/ErrorHandling.h" |
| 45 | #include <cassert> |
| 46 | #include <cstddef> |
| 47 | #include <cstdint> |
| 48 | #include <iterator> |
| 49 | |
| 50 | namespace llvm { |
| 51 | |
| 52 | class APInt; |
| 53 | class ConstantInt; |
| 54 | class DataLayout; |
| 55 | class LLVMContext; |
| 56 | |
| 57 | //===----------------------------------------------------------------------===// |
| 58 | // AllocaInst Class |
| 59 | //===----------------------------------------------------------------------===// |
| 60 | |
| 61 | /// an instruction to allocate memory on the stack |
| 62 | class AllocaInst : public UnaryInstruction { |
| 63 | Type *AllocatedType; |
| 64 | |
| 65 | using AlignmentField = AlignmentBitfieldElementT<0>; |
| 66 | using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>; |
| 67 | using SwiftErrorField = BoolBitfieldElementT<UsedWithInAllocaField::NextBit>; |
| 68 | static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField, |
| 69 | SwiftErrorField>(), |
| 70 | "Bitfields must be contiguous"); |
| 71 | |
| 72 | protected: |
| 73 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 74 | friend class Instruction; |
| 75 | |
| 76 | AllocaInst *cloneImpl() const; |
| 77 | |
| 78 | public: |
| 79 | explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, |
| 80 | const Twine &Name, Instruction *InsertBefore); |
| 81 | AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, |
| 82 | const Twine &Name, BasicBlock *InsertAtEnd); |
| 83 | |
| 84 | AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name, |
| 85 | Instruction *InsertBefore); |
| 86 | AllocaInst(Type *Ty, unsigned AddrSpace, |
| 87 | const Twine &Name, BasicBlock *InsertAtEnd); |
| 88 | |
| 89 | AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align, |
| 90 | const Twine &Name = "", Instruction *InsertBefore = nullptr); |
| 91 | AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align, |
| 92 | const Twine &Name, BasicBlock *InsertAtEnd); |
| 93 | |
| 94 | /// Return true if there is an allocation size parameter to the allocation |
| 95 | /// instruction that is not 1. |
| 96 | bool isArrayAllocation() const; |
| 97 | |
| 98 | /// Get the number of elements allocated. For a simple allocation of a single |
| 99 | /// element, this will return a constant 1 value. |
| 100 | const Value *getArraySize() const { return getOperand(0); } |
| 101 | Value *getArraySize() { return getOperand(0); } |
| 102 | |
| 103 | /// Overload to return most specific pointer type. |
| 104 | PointerType *getType() const { |
| 105 | return cast<PointerType>(Instruction::getType()); |
| 106 | } |
| 107 | |
| 108 | /// Get allocation size in bits. Returns None if size can't be determined, |
| 109 | /// e.g. in case of a VLA. |
| 110 | Optional<TypeSize> getAllocationSizeInBits(const DataLayout &DL) const; |
| 111 | |
| 112 | /// Return the type that is being allocated by the instruction. |
| 113 | Type *getAllocatedType() const { return AllocatedType; } |
| 114 | /// for use only in special circumstances that need to generically |
| 115 | /// transform a whole instruction (eg: IR linking and vectorization). |
| 116 | void setAllocatedType(Type *Ty) { AllocatedType = Ty; } |
| 117 | |
| 118 | /// Return the alignment of the memory that is being allocated by the |
| 119 | /// instruction. |
| 120 | Align getAlign() const { |
| 121 | return Align(1ULL << getSubclassData<AlignmentField>()); |
| 122 | } |
| 123 | |
| 124 | void setAlignment(Align Align) { |
| 125 | setSubclassData<AlignmentField>(Log2(Align)); |
| 126 | } |
| 127 | |
| 128 | // FIXME: Remove this one transition to Align is over. |
| 129 | unsigned getAlignment() const { return getAlign().value(); } |
| 130 | |
| 131 | /// Return true if this alloca is in the entry block of the function and is a |
| 132 | /// constant size. If so, the code generator will fold it into the |
| 133 | /// prolog/epilog code, so it is basically free. |
| 134 | bool isStaticAlloca() const; |
| 135 | |
| 136 | /// Return true if this alloca is used as an inalloca argument to a call. Such |
| 137 | /// allocas are never considered static even if they are in the entry block. |
| 138 | bool isUsedWithInAlloca() const { |
| 139 | return getSubclassData<UsedWithInAllocaField>(); |
| 140 | } |
| 141 | |
| 142 | /// Specify whether this alloca is used to represent the arguments to a call. |
| 143 | void setUsedWithInAlloca(bool V) { |
| 144 | setSubclassData<UsedWithInAllocaField>(V); |
| 145 | } |
| 146 | |
| 147 | /// Return true if this alloca is used as a swifterror argument to a call. |
| 148 | bool isSwiftError() const { return getSubclassData<SwiftErrorField>(); } |
| 149 | /// Specify whether this alloca is used to represent a swifterror. |
| 150 | void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); } |
| 151 | |
| 152 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 153 | static bool classof(const Instruction *I) { |
| 154 | return (I->getOpcode() == Instruction::Alloca); |
| 155 | } |
| 156 | static bool classof(const Value *V) { |
| 157 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 158 | } |
| 159 | |
| 160 | private: |
| 161 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 162 | // method so that subclasses cannot accidentally use it. |
| 163 | template <typename Bitfield> |
| 164 | void setSubclassData(typename Bitfield::Type Value) { |
| 165 | Instruction::setSubclassData<Bitfield>(Value); |
| 166 | } |
| 167 | }; |
| 168 | |
| 169 | //===----------------------------------------------------------------------===// |
| 170 | // LoadInst Class |
| 171 | //===----------------------------------------------------------------------===// |
| 172 | |
| 173 | /// An instruction for reading from memory. This uses the SubclassData field in |
| 174 | /// Value to store whether or not the load is volatile. |
| 175 | class LoadInst : public UnaryInstruction { |
| 176 | using VolatileField = BoolBitfieldElementT<0>; |
| 177 | using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>; |
| 178 | using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>; |
| 179 | static_assert( |
| 180 | Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(), |
| 181 | "Bitfields must be contiguous"); |
| 182 | |
| 183 | void AssertOK(); |
| 184 | |
| 185 | protected: |
| 186 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 187 | friend class Instruction; |
| 188 | |
| 189 | LoadInst *cloneImpl() const; |
| 190 | |
| 191 | public: |
| 192 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, |
| 193 | Instruction *InsertBefore); |
| 194 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 195 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
| 196 | Instruction *InsertBefore); |
| 197 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
| 198 | BasicBlock *InsertAtEnd); |
| 199 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
| 200 | Align Align, Instruction *InsertBefore = nullptr); |
| 201 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
| 202 | Align Align, BasicBlock *InsertAtEnd); |
| 203 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
| 204 | Align Align, AtomicOrdering Order, |
| 205 | SyncScope::ID SSID = SyncScope::System, |
| 206 | Instruction *InsertBefore = nullptr); |
| 207 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
| 208 | Align Align, AtomicOrdering Order, SyncScope::ID SSID, |
| 209 | BasicBlock *InsertAtEnd); |
| 210 | |
| 211 | /// Return true if this is a load from a volatile memory location. |
| 212 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
| 213 | |
| 214 | /// Specify whether this is a volatile load or not. |
| 215 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
| 216 | |
| 217 | /// Return the alignment of the access that is being performed. |
| 218 | /// FIXME: Remove this function once transition to Align is over. |
| 219 | /// Use getAlign() instead. |
| 220 | unsigned getAlignment() const { return getAlign().value(); } |
| 221 | |
| 222 | /// Return the alignment of the access that is being performed. |
| 223 | Align getAlign() const { |
| 224 | return Align(1ULL << (getSubclassData<AlignmentField>())); |
| 225 | } |
| 226 | |
| 227 | void setAlignment(Align Align) { |
| 228 | setSubclassData<AlignmentField>(Log2(Align)); |
| 229 | } |
| 230 | |
| 231 | /// Returns the ordering constraint of this load instruction. |
| 232 | AtomicOrdering getOrdering() const { |
| 233 | return getSubclassData<OrderingField>(); |
| 234 | } |
| 235 | /// Sets the ordering constraint of this load instruction. May not be Release |
| 236 | /// or AcquireRelease. |
| 237 | void setOrdering(AtomicOrdering Ordering) { |
| 238 | setSubclassData<OrderingField>(Ordering); |
| 239 | } |
| 240 | |
| 241 | /// Returns the synchronization scope ID of this load instruction. |
| 242 | SyncScope::ID getSyncScopeID() const { |
| 243 | return SSID; |
| 244 | } |
| 245 | |
| 246 | /// Sets the synchronization scope ID of this load instruction. |
| 247 | void setSyncScopeID(SyncScope::ID SSID) { |
| 248 | this->SSID = SSID; |
| 249 | } |
| 250 | |
| 251 | /// Sets the ordering constraint and the synchronization scope ID of this load |
| 252 | /// instruction. |
| 253 | void setAtomic(AtomicOrdering Ordering, |
| 254 | SyncScope::ID SSID = SyncScope::System) { |
| 255 | setOrdering(Ordering); |
| 256 | setSyncScopeID(SSID); |
| 257 | } |
| 258 | |
| 259 | bool isSimple() const { return !isAtomic() && !isVolatile(); } |
| 260 | |
| 261 | bool isUnordered() const { |
| 262 | return (getOrdering() == AtomicOrdering::NotAtomic || |
| 263 | getOrdering() == AtomicOrdering::Unordered) && |
| 264 | !isVolatile(); |
| 265 | } |
| 266 | |
| 267 | Value *getPointerOperand() { return getOperand(0); } |
| 268 | const Value *getPointerOperand() const { return getOperand(0); } |
| 269 | static unsigned getPointerOperandIndex() { return 0U; } |
| 270 | Type *getPointerOperandType() const { return getPointerOperand()->getType(); } |
| 271 | |
| 272 | /// Returns the address space of the pointer operand. |
| 273 | unsigned getPointerAddressSpace() const { |
| 274 | return getPointerOperandType()->getPointerAddressSpace(); |
| 275 | } |
| 276 | |
| 277 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 278 | static bool classof(const Instruction *I) { |
| 279 | return I->getOpcode() == Instruction::Load; |
| 280 | } |
| 281 | static bool classof(const Value *V) { |
| 282 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 283 | } |
| 284 | |
| 285 | private: |
| 286 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 287 | // method so that subclasses cannot accidentally use it. |
| 288 | template <typename Bitfield> |
| 289 | void setSubclassData(typename Bitfield::Type Value) { |
| 290 | Instruction::setSubclassData<Bitfield>(Value); |
| 291 | } |
| 292 | |
| 293 | /// The synchronization scope ID of this load instruction. Not quite enough |
| 294 | /// room in SubClassData for everything, so synchronization scope ID gets its |
| 295 | /// own field. |
| 296 | SyncScope::ID SSID; |
| 297 | }; |
| 298 | |
| 299 | //===----------------------------------------------------------------------===// |
| 300 | // StoreInst Class |
| 301 | //===----------------------------------------------------------------------===// |
| 302 | |
| 303 | /// An instruction for storing to memory. |
| 304 | class StoreInst : public Instruction { |
| 305 | using VolatileField = BoolBitfieldElementT<0>; |
| 306 | using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>; |
| 307 | using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>; |
| 308 | static_assert( |
| 309 | Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(), |
| 310 | "Bitfields must be contiguous"); |
| 311 | |
| 312 | void AssertOK(); |
| 313 | |
| 314 | protected: |
| 315 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 316 | friend class Instruction; |
| 317 | |
| 318 | StoreInst *cloneImpl() const; |
| 319 | |
| 320 | public: |
| 321 | StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore); |
| 322 | StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd); |
| 323 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Instruction *InsertBefore); |
| 324 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd); |
| 325 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
| 326 | Instruction *InsertBefore = nullptr); |
| 327 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
| 328 | BasicBlock *InsertAtEnd); |
| 329 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
| 330 | AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System, |
| 331 | Instruction *InsertBefore = nullptr); |
| 332 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
| 333 | AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd); |
| 334 | |
| 335 | // allocate space for exactly two operands |
| 336 | void *operator new(size_t S) { return User::operator new(S, 2); } |
| 337 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 338 | |
| 339 | /// Return true if this is a store to a volatile memory location. |
| 340 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
| 341 | |
| 342 | /// Specify whether this is a volatile store or not. |
| 343 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
| 344 | |
| 345 | /// Transparently provide more efficient getOperand methods. |
| 346 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 347 | |
| 348 | /// Return the alignment of the access that is being performed |
| 349 | /// FIXME: Remove this function once transition to Align is over. |
| 350 | /// Use getAlign() instead. |
| 351 | unsigned getAlignment() const { return getAlign().value(); } |
| 352 | |
| 353 | Align getAlign() const { |
| 354 | return Align(1ULL << (getSubclassData<AlignmentField>())); |
| 355 | } |
| 356 | |
| 357 | void setAlignment(Align Align) { |
| 358 | setSubclassData<AlignmentField>(Log2(Align)); |
| 359 | } |
| 360 | |
| 361 | /// Returns the ordering constraint of this store instruction. |
| 362 | AtomicOrdering getOrdering() const { |
| 363 | return getSubclassData<OrderingField>(); |
| 364 | } |
| 365 | |
| 366 | /// Sets the ordering constraint of this store instruction. May not be |
| 367 | /// Acquire or AcquireRelease. |
| 368 | void setOrdering(AtomicOrdering Ordering) { |
| 369 | setSubclassData<OrderingField>(Ordering); |
| 370 | } |
| 371 | |
| 372 | /// Returns the synchronization scope ID of this store instruction. |
| 373 | SyncScope::ID getSyncScopeID() const { |
| 374 | return SSID; |
| 375 | } |
| 376 | |
| 377 | /// Sets the synchronization scope ID of this store instruction. |
| 378 | void setSyncScopeID(SyncScope::ID SSID) { |
| 379 | this->SSID = SSID; |
| 380 | } |
| 381 | |
| 382 | /// Sets the ordering constraint and the synchronization scope ID of this |
| 383 | /// store instruction. |
| 384 | void setAtomic(AtomicOrdering Ordering, |
| 385 | SyncScope::ID SSID = SyncScope::System) { |
| 386 | setOrdering(Ordering); |
| 387 | setSyncScopeID(SSID); |
| 388 | } |
| 389 | |
| 390 | bool isSimple() const { return !isAtomic() && !isVolatile(); } |
| 391 | |
| 392 | bool isUnordered() const { |
| 393 | return (getOrdering() == AtomicOrdering::NotAtomic || |
| 394 | getOrdering() == AtomicOrdering::Unordered) && |
| 395 | !isVolatile(); |
| 396 | } |
| 397 | |
| 398 | Value *getValueOperand() { return getOperand(0); } |
| 399 | const Value *getValueOperand() const { return getOperand(0); } |
| 400 | |
| 401 | Value *getPointerOperand() { return getOperand(1); } |
| 402 | const Value *getPointerOperand() const { return getOperand(1); } |
| 403 | static unsigned getPointerOperandIndex() { return 1U; } |
| 404 | Type *getPointerOperandType() const { return getPointerOperand()->getType(); } |
| 405 | |
| 406 | /// Returns the address space of the pointer operand. |
| 407 | unsigned getPointerAddressSpace() const { |
| 408 | return getPointerOperandType()->getPointerAddressSpace(); |
| 409 | } |
| 410 | |
| 411 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 412 | static bool classof(const Instruction *I) { |
| 413 | return I->getOpcode() == Instruction::Store; |
| 414 | } |
| 415 | static bool classof(const Value *V) { |
| 416 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 417 | } |
| 418 | |
| 419 | private: |
| 420 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 421 | // method so that subclasses cannot accidentally use it. |
| 422 | template <typename Bitfield> |
| 423 | void setSubclassData(typename Bitfield::Type Value) { |
| 424 | Instruction::setSubclassData<Bitfield>(Value); |
| 425 | } |
| 426 | |
| 427 | /// The synchronization scope ID of this store instruction. Not quite enough |
| 428 | /// room in SubClassData for everything, so synchronization scope ID gets its |
| 429 | /// own field. |
| 430 | SyncScope::ID SSID; |
| 431 | }; |
| 432 | |
| 433 | template <> |
| 434 | struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> { |
| 435 | }; |
| 436 | |
| 437 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)StoreInst::op_iterator StoreInst::op_begin() { return OperandTraits <StoreInst>::op_begin(this); } StoreInst::const_op_iterator StoreInst::op_begin() const { return OperandTraits<StoreInst >::op_begin(const_cast<StoreInst*>(this)); } StoreInst ::op_iterator StoreInst::op_end() { return OperandTraits<StoreInst >::op_end(this); } StoreInst::const_op_iterator StoreInst:: op_end() const { return OperandTraits<StoreInst>::op_end (const_cast<StoreInst*>(this)); } Value *StoreInst::getOperand (unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<StoreInst>::op_begin(const_cast <StoreInst*>(this))[i_nocapture].get()); } void StoreInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<StoreInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned StoreInst::getNumOperands() const { return OperandTraits<StoreInst>::operands(this); } template <int Idx_nocapture> Use &StoreInst::Op() { return this ->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture > const Use &StoreInst::Op() const { return this->OpFrom <Idx_nocapture>(this); } |
| 438 | |
| 439 | //===----------------------------------------------------------------------===// |
| 440 | // FenceInst Class |
| 441 | //===----------------------------------------------------------------------===// |
| 442 | |
| 443 | /// An instruction for ordering other memory operations. |
| 444 | class FenceInst : public Instruction { |
| 445 | using OrderingField = AtomicOrderingBitfieldElementT<0>; |
| 446 | |
| 447 | void Init(AtomicOrdering Ordering, SyncScope::ID SSID); |
| 448 | |
| 449 | protected: |
| 450 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 451 | friend class Instruction; |
| 452 | |
| 453 | FenceInst *cloneImpl() const; |
| 454 | |
| 455 | public: |
| 456 | // Ordering may only be Acquire, Release, AcquireRelease, or |
| 457 | // SequentiallyConsistent. |
| 458 | FenceInst(LLVMContext &C, AtomicOrdering Ordering, |
| 459 | SyncScope::ID SSID = SyncScope::System, |
| 460 | Instruction *InsertBefore = nullptr); |
| 461 | FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID, |
| 462 | BasicBlock *InsertAtEnd); |
| 463 | |
| 464 | // allocate space for exactly zero operands |
| 465 | void *operator new(size_t S) { return User::operator new(S, 0); } |
| 466 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 467 | |
| 468 | /// Returns the ordering constraint of this fence instruction. |
| 469 | AtomicOrdering getOrdering() const { |
| 470 | return getSubclassData<OrderingField>(); |
| 471 | } |
| 472 | |
| 473 | /// Sets the ordering constraint of this fence instruction. May only be |
| 474 | /// Acquire, Release, AcquireRelease, or SequentiallyConsistent. |
| 475 | void setOrdering(AtomicOrdering Ordering) { |
| 476 | setSubclassData<OrderingField>(Ordering); |
| 477 | } |
| 478 | |
| 479 | /// Returns the synchronization scope ID of this fence instruction. |
| 480 | SyncScope::ID getSyncScopeID() const { |
| 481 | return SSID; |
| 482 | } |
| 483 | |
| 484 | /// Sets the synchronization scope ID of this fence instruction. |
| 485 | void setSyncScopeID(SyncScope::ID SSID) { |
| 486 | this->SSID = SSID; |
| 487 | } |
| 488 | |
| 489 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 490 | static bool classof(const Instruction *I) { |
| 491 | return I->getOpcode() == Instruction::Fence; |
| 492 | } |
| 493 | static bool classof(const Value *V) { |
| 494 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 495 | } |
| 496 | |
| 497 | private: |
| 498 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 499 | // method so that subclasses cannot accidentally use it. |
| 500 | template <typename Bitfield> |
| 501 | void setSubclassData(typename Bitfield::Type Value) { |
| 502 | Instruction::setSubclassData<Bitfield>(Value); |
| 503 | } |
| 504 | |
| 505 | /// The synchronization scope ID of this fence instruction. Not quite enough |
| 506 | /// room in SubClassData for everything, so synchronization scope ID gets its |
| 507 | /// own field. |
| 508 | SyncScope::ID SSID; |
| 509 | }; |
| 510 | |
| 511 | //===----------------------------------------------------------------------===// |
| 512 | // AtomicCmpXchgInst Class |
| 513 | //===----------------------------------------------------------------------===// |
| 514 | |
| 515 | /// An instruction that atomically checks whether a |
| 516 | /// specified value is in a memory location, and, if it is, stores a new value |
| 517 | /// there. The value returned by this instruction is a pair containing the |
| 518 | /// original value as first element, and an i1 indicating success (true) or |
| 519 | /// failure (false) as second element. |
| 520 | /// |
| 521 | class AtomicCmpXchgInst : public Instruction { |
| 522 | void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align, |
| 523 | AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, |
| 524 | SyncScope::ID SSID); |
| 525 | |
| 526 | template <unsigned Offset> |
| 527 | using AtomicOrderingBitfieldElement = |
| 528 | typename Bitfield::Element<AtomicOrdering, Offset, 3, |
| 529 | AtomicOrdering::LAST>; |
| 530 | |
| 531 | protected: |
| 532 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 533 | friend class Instruction; |
| 534 | |
| 535 | AtomicCmpXchgInst *cloneImpl() const; |
| 536 | |
| 537 | public: |
| 538 | AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment, |
| 539 | AtomicOrdering SuccessOrdering, |
| 540 | AtomicOrdering FailureOrdering, SyncScope::ID SSID, |
| 541 | Instruction *InsertBefore = nullptr); |
| 542 | AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment, |
| 543 | AtomicOrdering SuccessOrdering, |
| 544 | AtomicOrdering FailureOrdering, SyncScope::ID SSID, |
| 545 | BasicBlock *InsertAtEnd); |
| 546 | |
| 547 | // allocate space for exactly three operands |
| 548 | void *operator new(size_t S) { return User::operator new(S, 3); } |
| 549 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 550 | |
| 551 | using VolatileField = BoolBitfieldElementT<0>; |
| 552 | using WeakField = BoolBitfieldElementT<VolatileField::NextBit>; |
| 553 | using SuccessOrderingField = |
| 554 | AtomicOrderingBitfieldElementT<WeakField::NextBit>; |
| 555 | using FailureOrderingField = |
| 556 | AtomicOrderingBitfieldElementT<SuccessOrderingField::NextBit>; |
| 557 | using AlignmentField = |
| 558 | AlignmentBitfieldElementT<FailureOrderingField::NextBit>; |
| 559 | static_assert( |
| 560 | Bitfield::areContiguous<VolatileField, WeakField, SuccessOrderingField, |
| 561 | FailureOrderingField, AlignmentField>(), |
| 562 | "Bitfields must be contiguous"); |
| 563 | |
| 564 | /// Return the alignment of the memory that is being allocated by the |
| 565 | /// instruction. |
| 566 | Align getAlign() const { |
| 567 | return Align(1ULL << getSubclassData<AlignmentField>()); |
| 568 | } |
| 569 | |
| 570 | void setAlignment(Align Align) { |
| 571 | setSubclassData<AlignmentField>(Log2(Align)); |
| 572 | } |
| 573 | |
| 574 | /// Return true if this is a cmpxchg from a volatile memory |
| 575 | /// location. |
| 576 | /// |
| 577 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
| 578 | |
| 579 | /// Specify whether this is a volatile cmpxchg. |
| 580 | /// |
| 581 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
| 582 | |
| 583 | /// Return true if this cmpxchg may spuriously fail. |
| 584 | bool isWeak() const { return getSubclassData<WeakField>(); } |
| 585 | |
| 586 | void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); } |
| 587 | |
| 588 | /// Transparently provide more efficient getOperand methods. |
| 589 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 590 | |
| 591 | static bool isValidSuccessOrdering(AtomicOrdering Ordering) { |
| 592 | return Ordering != AtomicOrdering::NotAtomic && |
| 593 | Ordering != AtomicOrdering::Unordered; |
| 594 | } |
| 595 | |
| 596 | static bool isValidFailureOrdering(AtomicOrdering Ordering) { |
| 597 | return Ordering != AtomicOrdering::NotAtomic && |
| 598 | Ordering != AtomicOrdering::Unordered && |
| 599 | Ordering != AtomicOrdering::AcquireRelease && |
| 600 | Ordering != AtomicOrdering::Release; |
| 601 | } |
| 602 | |
| 603 | /// Returns the success ordering constraint of this cmpxchg instruction. |
| 604 | AtomicOrdering getSuccessOrdering() const { |
| 605 | return getSubclassData<SuccessOrderingField>(); |
| 606 | } |
| 607 | |
| 608 | /// Sets the success ordering constraint of this cmpxchg instruction. |
| 609 | void setSuccessOrdering(AtomicOrdering Ordering) { |
| 610 | assert(isValidSuccessOrdering(Ordering) &&((void)0) |
| 611 | "invalid CmpXchg success ordering")((void)0); |
| 612 | setSubclassData<SuccessOrderingField>(Ordering); |
| 613 | } |
| 614 | |
| 615 | /// Returns the failure ordering constraint of this cmpxchg instruction. |
| 616 | AtomicOrdering getFailureOrdering() const { |
| 617 | return getSubclassData<FailureOrderingField>(); |
| 618 | } |
| 619 | |
| 620 | /// Sets the failure ordering constraint of this cmpxchg instruction. |
| 621 | void setFailureOrdering(AtomicOrdering Ordering) { |
| 622 | assert(isValidFailureOrdering(Ordering) &&((void)0) |
| 623 | "invalid CmpXchg failure ordering")((void)0); |
| 624 | setSubclassData<FailureOrderingField>(Ordering); |
| 625 | } |
| 626 | |
| 627 | /// Returns a single ordering which is at least as strong as both the |
| 628 | /// success and failure orderings for this cmpxchg. |
| 629 | AtomicOrdering getMergedOrdering() const { |
| 630 | if (getFailureOrdering() == AtomicOrdering::SequentiallyConsistent) |
| 631 | return AtomicOrdering::SequentiallyConsistent; |
| 632 | if (getFailureOrdering() == AtomicOrdering::Acquire) { |
| 633 | if (getSuccessOrdering() == AtomicOrdering::Monotonic) |
| 634 | return AtomicOrdering::Acquire; |
| 635 | if (getSuccessOrdering() == AtomicOrdering::Release) |
| 636 | return AtomicOrdering::AcquireRelease; |
| 637 | } |
| 638 | return getSuccessOrdering(); |
| 639 | } |
| 640 | |
| 641 | /// Returns the synchronization scope ID of this cmpxchg instruction. |
| 642 | SyncScope::ID getSyncScopeID() const { |
| 643 | return SSID; |
| 644 | } |
| 645 | |
| 646 | /// Sets the synchronization scope ID of this cmpxchg instruction. |
| 647 | void setSyncScopeID(SyncScope::ID SSID) { |
| 648 | this->SSID = SSID; |
| 649 | } |
| 650 | |
| 651 | Value *getPointerOperand() { return getOperand(0); } |
| 652 | const Value *getPointerOperand() const { return getOperand(0); } |
| 653 | static unsigned getPointerOperandIndex() { return 0U; } |
| 654 | |
| 655 | Value *getCompareOperand() { return getOperand(1); } |
| 656 | const Value *getCompareOperand() const { return getOperand(1); } |
| 657 | |
| 658 | Value *getNewValOperand() { return getOperand(2); } |
| 659 | const Value *getNewValOperand() const { return getOperand(2); } |
| 660 | |
| 661 | /// Returns the address space of the pointer operand. |
| 662 | unsigned getPointerAddressSpace() const { |
| 663 | return getPointerOperand()->getType()->getPointerAddressSpace(); |
| 664 | } |
| 665 | |
| 666 | /// Returns the strongest permitted ordering on failure, given the |
| 667 | /// desired ordering on success. |
| 668 | /// |
| 669 | /// If the comparison in a cmpxchg operation fails, there is no atomic store |
| 670 | /// so release semantics cannot be provided. So this function drops explicit |
| 671 | /// Release requests from the AtomicOrdering. A SequentiallyConsistent |
| 672 | /// operation would remain SequentiallyConsistent. |
| 673 | static AtomicOrdering |
| 674 | getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) { |
| 675 | switch (SuccessOrdering) { |
| 676 | default: |
| 677 | llvm_unreachable("invalid cmpxchg success ordering")__builtin_unreachable(); |
| 678 | case AtomicOrdering::Release: |
| 679 | case AtomicOrdering::Monotonic: |
| 680 | return AtomicOrdering::Monotonic; |
| 681 | case AtomicOrdering::AcquireRelease: |
| 682 | case AtomicOrdering::Acquire: |
| 683 | return AtomicOrdering::Acquire; |
| 684 | case AtomicOrdering::SequentiallyConsistent: |
| 685 | return AtomicOrdering::SequentiallyConsistent; |
| 686 | } |
| 687 | } |
| 688 | |
| 689 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 690 | static bool classof(const Instruction *I) { |
| 691 | return I->getOpcode() == Instruction::AtomicCmpXchg; |
| 692 | } |
| 693 | static bool classof(const Value *V) { |
| 694 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 695 | } |
| 696 | |
| 697 | private: |
| 698 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 699 | // method so that subclasses cannot accidentally use it. |
| 700 | template <typename Bitfield> |
| 701 | void setSubclassData(typename Bitfield::Type Value) { |
| 702 | Instruction::setSubclassData<Bitfield>(Value); |
| 703 | } |
| 704 | |
| 705 | /// The synchronization scope ID of this cmpxchg instruction. Not quite |
| 706 | /// enough room in SubClassData for everything, so synchronization scope ID |
| 707 | /// gets its own field. |
| 708 | SyncScope::ID SSID; |
| 709 | }; |
| 710 | |
| 711 | template <> |
| 712 | struct OperandTraits<AtomicCmpXchgInst> : |
| 713 | public FixedNumOperandTraits<AtomicCmpXchgInst, 3> { |
| 714 | }; |
| 715 | |
| 716 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)AtomicCmpXchgInst::op_iterator AtomicCmpXchgInst::op_begin() { return OperandTraits<AtomicCmpXchgInst>::op_begin(this ); } AtomicCmpXchgInst::const_op_iterator AtomicCmpXchgInst:: op_begin() const { return OperandTraits<AtomicCmpXchgInst> ::op_begin(const_cast<AtomicCmpXchgInst*>(this)); } AtomicCmpXchgInst ::op_iterator AtomicCmpXchgInst::op_end() { return OperandTraits <AtomicCmpXchgInst>::op_end(this); } AtomicCmpXchgInst:: const_op_iterator AtomicCmpXchgInst::op_end() const { return OperandTraits <AtomicCmpXchgInst>::op_end(const_cast<AtomicCmpXchgInst *>(this)); } Value *AtomicCmpXchgInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<AtomicCmpXchgInst>::op_begin(const_cast <AtomicCmpXchgInst*>(this))[i_nocapture].get()); } void AtomicCmpXchgInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<AtomicCmpXchgInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned AtomicCmpXchgInst ::getNumOperands() const { return OperandTraits<AtomicCmpXchgInst >::operands(this); } template <int Idx_nocapture> Use &AtomicCmpXchgInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & AtomicCmpXchgInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
| 717 | |
| 718 | //===----------------------------------------------------------------------===// |
| 719 | // AtomicRMWInst Class |
| 720 | //===----------------------------------------------------------------------===// |
| 721 | |
| 722 | /// an instruction that atomically reads a memory location, |
| 723 | /// combines it with another value, and then stores the result back. Returns |
| 724 | /// the old value. |
| 725 | /// |
| 726 | class AtomicRMWInst : public Instruction { |
| 727 | protected: |
| 728 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 729 | friend class Instruction; |
| 730 | |
| 731 | AtomicRMWInst *cloneImpl() const; |
| 732 | |
| 733 | public: |
| 734 | /// This enumeration lists the possible modifications atomicrmw can make. In |
| 735 | /// the descriptions, 'p' is the pointer to the instruction's memory location, |
| 736 | /// 'old' is the initial value of *p, and 'v' is the other value passed to the |
| 737 | /// instruction. These instructions always return 'old'. |
| 738 | enum BinOp : unsigned { |
| 739 | /// *p = v |
| 740 | Xchg, |
| 741 | /// *p = old + v |
| 742 | Add, |
| 743 | /// *p = old - v |
| 744 | Sub, |
| 745 | /// *p = old & v |
| 746 | And, |
| 747 | /// *p = ~(old & v) |
| 748 | Nand, |
| 749 | /// *p = old | v |
| 750 | Or, |
| 751 | /// *p = old ^ v |
| 752 | Xor, |
| 753 | /// *p = old >signed v ? old : v |
| 754 | Max, |
| 755 | /// *p = old <signed v ? old : v |
| 756 | Min, |
| 757 | /// *p = old >unsigned v ? old : v |
| 758 | UMax, |
| 759 | /// *p = old <unsigned v ? old : v |
| 760 | UMin, |
| 761 | |
| 762 | /// *p = old + v |
| 763 | FAdd, |
| 764 | |
| 765 | /// *p = old - v |
| 766 | FSub, |
| 767 | |
| 768 | FIRST_BINOP = Xchg, |
| 769 | LAST_BINOP = FSub, |
| 770 | BAD_BINOP |
| 771 | }; |
| 772 | |
| 773 | private: |
| 774 | template <unsigned Offset> |
| 775 | using AtomicOrderingBitfieldElement = |
| 776 | typename Bitfield::Element<AtomicOrdering, Offset, 3, |
| 777 | AtomicOrdering::LAST>; |
| 778 | |
| 779 | template <unsigned Offset> |
| 780 | using BinOpBitfieldElement = |
| 781 | typename Bitfield::Element<BinOp, Offset, 4, BinOp::LAST_BINOP>; |
| 782 | |
| 783 | public: |
| 784 | AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment, |
| 785 | AtomicOrdering Ordering, SyncScope::ID SSID, |
| 786 | Instruction *InsertBefore = nullptr); |
| 787 | AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment, |
| 788 | AtomicOrdering Ordering, SyncScope::ID SSID, |
| 789 | BasicBlock *InsertAtEnd); |
| 790 | |
| 791 | // allocate space for exactly two operands |
| 792 | void *operator new(size_t S) { return User::operator new(S, 2); } |
| 793 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 794 | |
| 795 | using VolatileField = BoolBitfieldElementT<0>; |
| 796 | using AtomicOrderingField = |
| 797 | AtomicOrderingBitfieldElementT<VolatileField::NextBit>; |
| 798 | using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>; |
| 799 | using AlignmentField = AlignmentBitfieldElementT<OperationField::NextBit>; |
| 800 | static_assert(Bitfield::areContiguous<VolatileField, AtomicOrderingField, |
| 801 | OperationField, AlignmentField>(), |
| 802 | "Bitfields must be contiguous"); |
| 803 | |
| 804 | BinOp getOperation() const { return getSubclassData<OperationField>(); } |
| 805 | |
| 806 | static StringRef getOperationName(BinOp Op); |
| 807 | |
| 808 | static bool isFPOperation(BinOp Op) { |
| 809 | switch (Op) { |
| 810 | case AtomicRMWInst::FAdd: |
| 811 | case AtomicRMWInst::FSub: |
| 812 | return true; |
| 813 | default: |
| 814 | return false; |
| 815 | } |
| 816 | } |
| 817 | |
| 818 | void setOperation(BinOp Operation) { |
| 819 | setSubclassData<OperationField>(Operation); |
| 820 | } |
| 821 | |
| 822 | /// Return the alignment of the memory that is being allocated by the |
| 823 | /// instruction. |
| 824 | Align getAlign() const { |
| 825 | return Align(1ULL << getSubclassData<AlignmentField>()); |
| 826 | } |
| 827 | |
| 828 | void setAlignment(Align Align) { |
| 829 | setSubclassData<AlignmentField>(Log2(Align)); |
| 830 | } |
| 831 | |
| 832 | /// Return true if this is a RMW on a volatile memory location. |
| 833 | /// |
| 834 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
| 835 | |
| 836 | /// Specify whether this is a volatile RMW or not. |
| 837 | /// |
| 838 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
| 839 | |
| 840 | /// Transparently provide more efficient getOperand methods. |
| 841 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 842 | |
| 843 | /// Returns the ordering constraint of this rmw instruction. |
| 844 | AtomicOrdering getOrdering() const { |
| 845 | return getSubclassData<AtomicOrderingField>(); |
| 846 | } |
| 847 | |
| 848 | /// Sets the ordering constraint of this rmw instruction. |
| 849 | void setOrdering(AtomicOrdering Ordering) { |
| 850 | assert(Ordering != AtomicOrdering::NotAtomic &&((void)0) |
| 851 | "atomicrmw instructions can only be atomic.")((void)0); |
| 852 | setSubclassData<AtomicOrderingField>(Ordering); |
| 853 | } |
| 854 | |
| 855 | /// Returns the synchronization scope ID of this rmw instruction. |
| 856 | SyncScope::ID getSyncScopeID() const { |
| 857 | return SSID; |
| 858 | } |
| 859 | |
| 860 | /// Sets the synchronization scope ID of this rmw instruction. |
| 861 | void setSyncScopeID(SyncScope::ID SSID) { |
| 862 | this->SSID = SSID; |
| 863 | } |
| 864 | |
| 865 | Value *getPointerOperand() { return getOperand(0); } |
| 866 | const Value *getPointerOperand() const { return getOperand(0); } |
| 867 | static unsigned getPointerOperandIndex() { return 0U; } |
| 868 | |
| 869 | Value *getValOperand() { return getOperand(1); } |
| 870 | const Value *getValOperand() const { return getOperand(1); } |
| 871 | |
| 872 | /// Returns the address space of the pointer operand. |
| 873 | unsigned getPointerAddressSpace() const { |
| 874 | return getPointerOperand()->getType()->getPointerAddressSpace(); |
| 875 | } |
| 876 | |
| 877 | bool isFloatingPointOperation() const { |
| 878 | return isFPOperation(getOperation()); |
| 879 | } |
| 880 | |
| 881 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 882 | static bool classof(const Instruction *I) { |
| 883 | return I->getOpcode() == Instruction::AtomicRMW; |
| 884 | } |
| 885 | static bool classof(const Value *V) { |
| 886 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 887 | } |
| 888 | |
| 889 | private: |
| 890 | void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align, |
| 891 | AtomicOrdering Ordering, SyncScope::ID SSID); |
| 892 | |
| 893 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 894 | // method so that subclasses cannot accidentally use it. |
| 895 | template <typename Bitfield> |
| 896 | void setSubclassData(typename Bitfield::Type Value) { |
| 897 | Instruction::setSubclassData<Bitfield>(Value); |
| 898 | } |
| 899 | |
| 900 | /// The synchronization scope ID of this rmw instruction. Not quite enough |
| 901 | /// room in SubClassData for everything, so synchronization scope ID gets its |
| 902 | /// own field. |
| 903 | SyncScope::ID SSID; |
| 904 | }; |
| 905 | |
| 906 | template <> |
| 907 | struct OperandTraits<AtomicRMWInst> |
| 908 | : public FixedNumOperandTraits<AtomicRMWInst,2> { |
| 909 | }; |
| 910 | |
| 911 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)AtomicRMWInst::op_iterator AtomicRMWInst::op_begin() { return OperandTraits<AtomicRMWInst>::op_begin(this); } AtomicRMWInst ::const_op_iterator AtomicRMWInst::op_begin() const { return OperandTraits <AtomicRMWInst>::op_begin(const_cast<AtomicRMWInst*> (this)); } AtomicRMWInst::op_iterator AtomicRMWInst::op_end() { return OperandTraits<AtomicRMWInst>::op_end(this); } AtomicRMWInst::const_op_iterator AtomicRMWInst::op_end() const { return OperandTraits<AtomicRMWInst>::op_end(const_cast <AtomicRMWInst*>(this)); } Value *AtomicRMWInst::getOperand (unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<AtomicRMWInst>::op_begin(const_cast <AtomicRMWInst*>(this))[i_nocapture].get()); } void AtomicRMWInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<AtomicRMWInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned AtomicRMWInst::getNumOperands() const { return OperandTraits<AtomicRMWInst>::operands( this); } template <int Idx_nocapture> Use &AtomicRMWInst ::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &AtomicRMWInst ::Op() const { return this->OpFrom<Idx_nocapture>(this ); } |
| 912 | |
| 913 | //===----------------------------------------------------------------------===// |
| 914 | // GetElementPtrInst Class |
| 915 | //===----------------------------------------------------------------------===// |
| 916 | |
| 917 | // checkGEPType - Simple wrapper function to give a better assertion failure |
| 918 | // message on bad indexes for a gep instruction. |
| 919 | // |
| 920 | inline Type *checkGEPType(Type *Ty) { |
| 921 | assert(Ty && "Invalid GetElementPtrInst indices for type!")((void)0); |
| 922 | return Ty; |
| 923 | } |
| 924 | |
| 925 | /// an instruction for type-safe pointer arithmetic to |
| 926 | /// access elements of arrays and structs |
| 927 | /// |
| 928 | class GetElementPtrInst : public Instruction { |
| 929 | Type *SourceElementType; |
| 930 | Type *ResultElementType; |
| 931 | |
| 932 | GetElementPtrInst(const GetElementPtrInst &GEPI); |
| 933 | |
| 934 | /// Constructors - Create a getelementptr instruction with a base pointer an |
| 935 | /// list of indices. The first ctor can optionally insert before an existing |
| 936 | /// instruction, the second appends the new instruction to the specified |
| 937 | /// BasicBlock. |
| 938 | inline GetElementPtrInst(Type *PointeeType, Value *Ptr, |
| 939 | ArrayRef<Value *> IdxList, unsigned Values, |
| 940 | const Twine &NameStr, Instruction *InsertBefore); |
| 941 | inline GetElementPtrInst(Type *PointeeType, Value *Ptr, |
| 942 | ArrayRef<Value *> IdxList, unsigned Values, |
| 943 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 944 | |
| 945 | void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr); |
| 946 | |
| 947 | protected: |
| 948 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 949 | friend class Instruction; |
| 950 | |
| 951 | GetElementPtrInst *cloneImpl() const; |
| 952 | |
| 953 | public: |
| 954 | static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr, |
| 955 | ArrayRef<Value *> IdxList, |
| 956 | const Twine &NameStr = "", |
| 957 | Instruction *InsertBefore = nullptr) { |
| 958 | unsigned Values = 1 + unsigned(IdxList.size()); |
| 959 | assert(PointeeType && "Must specify element type")((void)0); |
| 960 | assert(cast<PointerType>(Ptr->getType()->getScalarType())((void)0) |
| 961 | ->isOpaqueOrPointeeTypeMatches(PointeeType))((void)0); |
| 962 | return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values, |
| 963 | NameStr, InsertBefore); |
| 964 | } |
| 965 | |
| 966 | static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr, |
| 967 | ArrayRef<Value *> IdxList, |
| 968 | const Twine &NameStr, |
| 969 | BasicBlock *InsertAtEnd) { |
| 970 | unsigned Values = 1 + unsigned(IdxList.size()); |
| 971 | assert(PointeeType && "Must specify element type")((void)0); |
| 972 | assert(cast<PointerType>(Ptr->getType()->getScalarType())((void)0) |
| 973 | ->isOpaqueOrPointeeTypeMatches(PointeeType))((void)0); |
| 974 | return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values, |
| 975 | NameStr, InsertAtEnd); |
| 976 | } |
| 977 | |
| 978 | LLVM_ATTRIBUTE_DEPRECATED(static GetElementPtrInst *CreateInBounds([[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) |
| 979 | Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr = "",[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) |
| 980 | Instruction *InsertBefore = nullptr),[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) |
| 981 | "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) { |
| 982 | return CreateInBounds( |
| 983 | Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, IdxList, |
| 984 | NameStr, InsertBefore); |
| 985 | } |
| 986 | |
| 987 | /// Create an "inbounds" getelementptr. See the documentation for the |
| 988 | /// "inbounds" flag in LangRef.html for details. |
| 989 | static GetElementPtrInst * |
| 990 | CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList, |
| 991 | const Twine &NameStr = "", |
| 992 | Instruction *InsertBefore = nullptr) { |
| 993 | GetElementPtrInst *GEP = |
| 994 | Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore); |
| 995 | GEP->setIsInBounds(true); |
| 996 | return GEP; |
| 997 | } |
| 998 | |
| 999 | LLVM_ATTRIBUTE_DEPRECATED(static GetElementPtrInst *CreateInBounds([[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) |
| 1000 | Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr,[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) |
| 1001 | BasicBlock *InsertAtEnd),[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) |
| 1002 | "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 1003 | return CreateInBounds( |
| 1004 | Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, IdxList, |
| 1005 | NameStr, InsertAtEnd); |
| 1006 | } |
| 1007 | |
| 1008 | static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr, |
| 1009 | ArrayRef<Value *> IdxList, |
| 1010 | const Twine &NameStr, |
| 1011 | BasicBlock *InsertAtEnd) { |
| 1012 | GetElementPtrInst *GEP = |
| 1013 | Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd); |
| 1014 | GEP->setIsInBounds(true); |
| 1015 | return GEP; |
| 1016 | } |
| 1017 | |
| 1018 | /// Transparently provide more efficient getOperand methods. |
| 1019 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 1020 | |
| 1021 | Type *getSourceElementType() const { return SourceElementType; } |
| 1022 | |
| 1023 | void setSourceElementType(Type *Ty) { SourceElementType = Ty; } |
| 1024 | void setResultElementType(Type *Ty) { ResultElementType = Ty; } |
| 1025 | |
| 1026 | Type *getResultElementType() const { |
| 1027 | assert(cast<PointerType>(getType()->getScalarType())((void)0) |
| 1028 | ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0); |
| 1029 | return ResultElementType; |
| 1030 | } |
| 1031 | |
| 1032 | /// Returns the address space of this instruction's pointer type. |
| 1033 | unsigned getAddressSpace() const { |
| 1034 | // Note that this is always the same as the pointer operand's address space |
| 1035 | // and that is cheaper to compute, so cheat here. |
| 1036 | return getPointerAddressSpace(); |
| 1037 | } |
| 1038 | |
| 1039 | /// Returns the result type of a getelementptr with the given source |
| 1040 | /// element type and indexes. |
| 1041 | /// |
| 1042 | /// Null is returned if the indices are invalid for the specified |
| 1043 | /// source element type. |
| 1044 | static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList); |
| 1045 | static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList); |
| 1046 | static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList); |
| 1047 | |
| 1048 | /// Return the type of the element at the given index of an indexable |
| 1049 | /// type. This is equivalent to "getIndexedType(Agg, {Zero, Idx})". |
| 1050 | /// |
| 1051 | /// Returns null if the type can't be indexed, or the given index is not |
| 1052 | /// legal for the given type. |
| 1053 | static Type *getTypeAtIndex(Type *Ty, Value *Idx); |
| 1054 | static Type *getTypeAtIndex(Type *Ty, uint64_t Idx); |
| 1055 | |
| 1056 | inline op_iterator idx_begin() { return op_begin()+1; } |
| 1057 | inline const_op_iterator idx_begin() const { return op_begin()+1; } |
| 1058 | inline op_iterator idx_end() { return op_end(); } |
| 1059 | inline const_op_iterator idx_end() const { return op_end(); } |
| 1060 | |
| 1061 | inline iterator_range<op_iterator> indices() { |
| 1062 | return make_range(idx_begin(), idx_end()); |
| 1063 | } |
| 1064 | |
| 1065 | inline iterator_range<const_op_iterator> indices() const { |
| 1066 | return make_range(idx_begin(), idx_end()); |
| 1067 | } |
| 1068 | |
| 1069 | Value *getPointerOperand() { |
| 1070 | return getOperand(0); |
| 1071 | } |
| 1072 | const Value *getPointerOperand() const { |
| 1073 | return getOperand(0); |
| 1074 | } |
| 1075 | static unsigned getPointerOperandIndex() { |
| 1076 | return 0U; // get index for modifying correct operand. |
| 1077 | } |
| 1078 | |
| 1079 | /// Method to return the pointer operand as a |
| 1080 | /// PointerType. |
| 1081 | Type *getPointerOperandType() const { |
| 1082 | return getPointerOperand()->getType(); |
| 1083 | } |
| 1084 | |
| 1085 | /// Returns the address space of the pointer operand. |
| 1086 | unsigned getPointerAddressSpace() const { |
| 1087 | return getPointerOperandType()->getPointerAddressSpace(); |
| 1088 | } |
| 1089 | |
| 1090 | /// Returns the pointer type returned by the GEP |
| 1091 | /// instruction, which may be a vector of pointers. |
| 1092 | static Type *getGEPReturnType(Type *ElTy, Value *Ptr, |
| 1093 | ArrayRef<Value *> IdxList) { |
| 1094 | PointerType *OrigPtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); |
| 1095 | unsigned AddrSpace = OrigPtrTy->getAddressSpace(); |
| 1096 | Type *ResultElemTy = checkGEPType(getIndexedType(ElTy, IdxList)); |
| 1097 | Type *PtrTy = OrigPtrTy->isOpaque() |
| 1098 | ? PointerType::get(OrigPtrTy->getContext(), AddrSpace) |
| 1099 | : PointerType::get(ResultElemTy, AddrSpace); |
| 1100 | // Vector GEP |
| 1101 | if (auto *PtrVTy = dyn_cast<VectorType>(Ptr->getType())) { |
| 1102 | ElementCount EltCount = PtrVTy->getElementCount(); |
| 1103 | return VectorType::get(PtrTy, EltCount); |
| 1104 | } |
| 1105 | for (Value *Index : IdxList) |
| 1106 | if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) { |
| 1107 | ElementCount EltCount = IndexVTy->getElementCount(); |
| 1108 | return VectorType::get(PtrTy, EltCount); |
| 1109 | } |
| 1110 | // Scalar GEP |
| 1111 | return PtrTy; |
| 1112 | } |
| 1113 | |
| 1114 | unsigned getNumIndices() const { // Note: always non-negative |
| 1115 | return getNumOperands() - 1; |
| 1116 | } |
| 1117 | |
| 1118 | bool hasIndices() const { |
| 1119 | return getNumOperands() > 1; |
| 1120 | } |
| 1121 | |
| 1122 | /// Return true if all of the indices of this GEP are |
| 1123 | /// zeros. If so, the result pointer and the first operand have the same |
| 1124 | /// value, just potentially different types. |
| 1125 | bool hasAllZeroIndices() const; |
| 1126 | |
| 1127 | /// Return true if all of the indices of this GEP are |
| 1128 | /// constant integers. If so, the result pointer and the first operand have |
| 1129 | /// a constant offset between them. |
| 1130 | bool hasAllConstantIndices() const; |
| 1131 | |
| 1132 | /// Set or clear the inbounds flag on this GEP instruction. |
| 1133 | /// See LangRef.html for the meaning of inbounds on a getelementptr. |
| 1134 | void setIsInBounds(bool b = true); |
| 1135 | |
| 1136 | /// Determine whether the GEP has the inbounds flag. |
| 1137 | bool isInBounds() const; |
| 1138 | |
| 1139 | /// Accumulate the constant address offset of this GEP if possible. |
| 1140 | /// |
| 1141 | /// This routine accepts an APInt into which it will accumulate the constant |
| 1142 | /// offset of this GEP if the GEP is in fact constant. If the GEP is not |
| 1143 | /// all-constant, it returns false and the value of the offset APInt is |
| 1144 | /// undefined (it is *not* preserved!). The APInt passed into this routine |
| 1145 | /// must be at least as wide as the IntPtr type for the address space of |
| 1146 | /// the base GEP pointer. |
| 1147 | bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const; |
| 1148 | bool collectOffset(const DataLayout &DL, unsigned BitWidth, |
| 1149 | MapVector<Value *, APInt> &VariableOffsets, |
| 1150 | APInt &ConstantOffset) const; |
| 1151 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1152 | static bool classof(const Instruction *I) { |
| 1153 | return (I->getOpcode() == Instruction::GetElementPtr); |
| 1154 | } |
| 1155 | static bool classof(const Value *V) { |
| 1156 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1157 | } |
| 1158 | }; |
| 1159 | |
| 1160 | template <> |
| 1161 | struct OperandTraits<GetElementPtrInst> : |
| 1162 | public VariadicOperandTraits<GetElementPtrInst, 1> { |
| 1163 | }; |
| 1164 | |
| 1165 | GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr, |
| 1166 | ArrayRef<Value *> IdxList, unsigned Values, |
| 1167 | const Twine &NameStr, |
| 1168 | Instruction *InsertBefore) |
| 1169 | : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr, |
| 1170 | OperandTraits<GetElementPtrInst>::op_end(this) - Values, |
| 1171 | Values, InsertBefore), |
| 1172 | SourceElementType(PointeeType), |
| 1173 | ResultElementType(getIndexedType(PointeeType, IdxList)) { |
| 1174 | assert(cast<PointerType>(getType()->getScalarType())((void)0) |
| 1175 | ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0); |
| 1176 | init(Ptr, IdxList, NameStr); |
| 1177 | } |
| 1178 | |
| 1179 | GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr, |
| 1180 | ArrayRef<Value *> IdxList, unsigned Values, |
| 1181 | const Twine &NameStr, |
| 1182 | BasicBlock *InsertAtEnd) |
| 1183 | : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr, |
| 1184 | OperandTraits<GetElementPtrInst>::op_end(this) - Values, |
| 1185 | Values, InsertAtEnd), |
| 1186 | SourceElementType(PointeeType), |
| 1187 | ResultElementType(getIndexedType(PointeeType, IdxList)) { |
| 1188 | assert(cast<PointerType>(getType()->getScalarType())((void)0) |
| 1189 | ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0); |
| 1190 | init(Ptr, IdxList, NameStr); |
| 1191 | } |
| 1192 | |
| 1193 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)GetElementPtrInst::op_iterator GetElementPtrInst::op_begin() { return OperandTraits<GetElementPtrInst>::op_begin(this ); } GetElementPtrInst::const_op_iterator GetElementPtrInst:: op_begin() const { return OperandTraits<GetElementPtrInst> ::op_begin(const_cast<GetElementPtrInst*>(this)); } GetElementPtrInst ::op_iterator GetElementPtrInst::op_end() { return OperandTraits <GetElementPtrInst>::op_end(this); } GetElementPtrInst:: const_op_iterator GetElementPtrInst::op_end() const { return OperandTraits <GetElementPtrInst>::op_end(const_cast<GetElementPtrInst *>(this)); } Value *GetElementPtrInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<GetElementPtrInst>::op_begin(const_cast <GetElementPtrInst*>(this))[i_nocapture].get()); } void GetElementPtrInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<GetElementPtrInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned GetElementPtrInst ::getNumOperands() const { return OperandTraits<GetElementPtrInst >::operands(this); } template <int Idx_nocapture> Use &GetElementPtrInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & GetElementPtrInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
| 1194 | |
| 1195 | //===----------------------------------------------------------------------===// |
| 1196 | // ICmpInst Class |
| 1197 | //===----------------------------------------------------------------------===// |
| 1198 | |
| 1199 | /// This instruction compares its operands according to the predicate given |
| 1200 | /// to the constructor. It only operates on integers or pointers. The operands |
| 1201 | /// must be identical types. |
| 1202 | /// Represent an integer comparison operator. |
| 1203 | class ICmpInst: public CmpInst { |
| 1204 | void AssertOK() { |
| 1205 | assert(isIntPredicate() &&((void)0) |
| 1206 | "Invalid ICmp predicate value")((void)0); |
| 1207 | assert(getOperand(0)->getType() == getOperand(1)->getType() &&((void)0) |
| 1208 | "Both operands to ICmp instruction are not of the same type!")((void)0); |
| 1209 | // Check that the operands are the right type |
| 1210 | assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||((void)0) |
| 1211 | getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&((void)0) |
| 1212 | "Invalid operand types for ICmp instruction")((void)0); |
| 1213 | } |
| 1214 | |
| 1215 | protected: |
| 1216 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1217 | friend class Instruction; |
| 1218 | |
| 1219 | /// Clone an identical ICmpInst |
| 1220 | ICmpInst *cloneImpl() const; |
| 1221 | |
| 1222 | public: |
| 1223 | /// Constructor with insert-before-instruction semantics. |
| 1224 | ICmpInst( |
| 1225 | Instruction *InsertBefore, ///< Where to insert |
| 1226 | Predicate pred, ///< The predicate to use for the comparison |
| 1227 | Value *LHS, ///< The left-hand-side of the expression |
| 1228 | Value *RHS, ///< The right-hand-side of the expression |
| 1229 | const Twine &NameStr = "" ///< Name of the instruction |
| 1230 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
| 1231 | Instruction::ICmp, pred, LHS, RHS, NameStr, |
| 1232 | InsertBefore) { |
| 1233 | #ifndef NDEBUG1 |
| 1234 | AssertOK(); |
| 1235 | #endif |
| 1236 | } |
| 1237 | |
| 1238 | /// Constructor with insert-at-end semantics. |
| 1239 | ICmpInst( |
| 1240 | BasicBlock &InsertAtEnd, ///< Block to insert into. |
| 1241 | Predicate pred, ///< The predicate to use for the comparison |
| 1242 | Value *LHS, ///< The left-hand-side of the expression |
| 1243 | Value *RHS, ///< The right-hand-side of the expression |
| 1244 | const Twine &NameStr = "" ///< Name of the instruction |
| 1245 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
| 1246 | Instruction::ICmp, pred, LHS, RHS, NameStr, |
| 1247 | &InsertAtEnd) { |
| 1248 | #ifndef NDEBUG1 |
| 1249 | AssertOK(); |
| 1250 | #endif |
| 1251 | } |
| 1252 | |
| 1253 | /// Constructor with no-insertion semantics |
| 1254 | ICmpInst( |
| 1255 | Predicate pred, ///< The predicate to use for the comparison |
| 1256 | Value *LHS, ///< The left-hand-side of the expression |
| 1257 | Value *RHS, ///< The right-hand-side of the expression |
| 1258 | const Twine &NameStr = "" ///< Name of the instruction |
| 1259 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
| 1260 | Instruction::ICmp, pred, LHS, RHS, NameStr) { |
| 1261 | #ifndef NDEBUG1 |
| 1262 | AssertOK(); |
| 1263 | #endif |
| 1264 | } |
| 1265 | |
| 1266 | /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc. |
| 1267 | /// @returns the predicate that would be the result if the operand were |
| 1268 | /// regarded as signed. |
| 1269 | /// Return the signed version of the predicate |
| 1270 | Predicate getSignedPredicate() const { |
| 1271 | return getSignedPredicate(getPredicate()); |
| 1272 | } |
| 1273 | |
| 1274 | /// This is a static version that you can use without an instruction. |
| 1275 | /// Return the signed version of the predicate. |
| 1276 | static Predicate getSignedPredicate(Predicate pred); |
| 1277 | |
| 1278 | /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc. |
| 1279 | /// @returns the predicate that would be the result if the operand were |
| 1280 | /// regarded as unsigned. |
| 1281 | /// Return the unsigned version of the predicate |
| 1282 | Predicate getUnsignedPredicate() const { |
| 1283 | return getUnsignedPredicate(getPredicate()); |
| 1284 | } |
| 1285 | |
| 1286 | /// This is a static version that you can use without an instruction. |
| 1287 | /// Return the unsigned version of the predicate. |
| 1288 | static Predicate getUnsignedPredicate(Predicate pred); |
| 1289 | |
| 1290 | /// Return true if this predicate is either EQ or NE. This also |
| 1291 | /// tests for commutativity. |
| 1292 | static bool isEquality(Predicate P) { |
| 1293 | return P == ICMP_EQ || P == ICMP_NE; |
| 1294 | } |
| 1295 | |
| 1296 | /// Return true if this predicate is either EQ or NE. This also |
| 1297 | /// tests for commutativity. |
| 1298 | bool isEquality() const { |
| 1299 | return isEquality(getPredicate()); |
| 1300 | } |
| 1301 | |
| 1302 | /// @returns true if the predicate of this ICmpInst is commutative |
| 1303 | /// Determine if this relation is commutative. |
| 1304 | bool isCommutative() const { return isEquality(); } |
| 1305 | |
| 1306 | /// Return true if the predicate is relational (not EQ or NE). |
| 1307 | /// |
| 1308 | bool isRelational() const { |
| 1309 | return !isEquality(); |
| 1310 | } |
| 1311 | |
| 1312 | /// Return true if the predicate is relational (not EQ or NE). |
| 1313 | /// |
| 1314 | static bool isRelational(Predicate P) { |
| 1315 | return !isEquality(P); |
| 1316 | } |
| 1317 | |
| 1318 | /// Return true if the predicate is SGT or UGT. |
| 1319 | /// |
| 1320 | static bool isGT(Predicate P) { |
| 1321 | return P == ICMP_SGT || P == ICMP_UGT; |
| 1322 | } |
| 1323 | |
| 1324 | /// Return true if the predicate is SLT or ULT. |
| 1325 | /// |
| 1326 | static bool isLT(Predicate P) { |
| 1327 | return P == ICMP_SLT || P == ICMP_ULT; |
| 1328 | } |
| 1329 | |
| 1330 | /// Return true if the predicate is SGE or UGE. |
| 1331 | /// |
| 1332 | static bool isGE(Predicate P) { |
| 1333 | return P == ICMP_SGE || P == ICMP_UGE; |
| 1334 | } |
| 1335 | |
| 1336 | /// Return true if the predicate is SLE or ULE. |
| 1337 | /// |
| 1338 | static bool isLE(Predicate P) { |
| 1339 | return P == ICMP_SLE || P == ICMP_ULE; |
| 1340 | } |
| 1341 | |
| 1342 | /// Exchange the two operands to this instruction in such a way that it does |
| 1343 | /// not modify the semantics of the instruction. The predicate value may be |
| 1344 | /// changed to retain the same result if the predicate is order dependent |
| 1345 | /// (e.g. ult). |
| 1346 | /// Swap operands and adjust predicate. |
| 1347 | void swapOperands() { |
| 1348 | setPredicate(getSwappedPredicate()); |
| 1349 | Op<0>().swap(Op<1>()); |
| 1350 | } |
| 1351 | |
| 1352 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1353 | static bool classof(const Instruction *I) { |
| 1354 | return I->getOpcode() == Instruction::ICmp; |
| 1355 | } |
| 1356 | static bool classof(const Value *V) { |
| 1357 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1358 | } |
| 1359 | }; |
| 1360 | |
| 1361 | //===----------------------------------------------------------------------===// |
| 1362 | // FCmpInst Class |
| 1363 | //===----------------------------------------------------------------------===// |
| 1364 | |
| 1365 | /// This instruction compares its operands according to the predicate given |
| 1366 | /// to the constructor. It only operates on floating point values or packed |
| 1367 | /// vectors of floating point values. The operands must be identical types. |
| 1368 | /// Represents a floating point comparison operator. |
| 1369 | class FCmpInst: public CmpInst { |
| 1370 | void AssertOK() { |
| 1371 | assert(isFPPredicate() && "Invalid FCmp predicate value")((void)0); |
| 1372 | assert(getOperand(0)->getType() == getOperand(1)->getType() &&((void)0) |
| 1373 | "Both operands to FCmp instruction are not of the same type!")((void)0); |
| 1374 | // Check that the operands are the right type |
| 1375 | assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&((void)0) |
| 1376 | "Invalid operand types for FCmp instruction")((void)0); |
| 1377 | } |
| 1378 | |
| 1379 | protected: |
| 1380 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1381 | friend class Instruction; |
| 1382 | |
| 1383 | /// Clone an identical FCmpInst |
| 1384 | FCmpInst *cloneImpl() const; |
| 1385 | |
| 1386 | public: |
| 1387 | /// Constructor with insert-before-instruction semantics. |
| 1388 | FCmpInst( |
| 1389 | Instruction *InsertBefore, ///< Where to insert |
| 1390 | Predicate pred, ///< The predicate to use for the comparison |
| 1391 | Value *LHS, ///< The left-hand-side of the expression |
| 1392 | Value *RHS, ///< The right-hand-side of the expression |
| 1393 | const Twine &NameStr = "" ///< Name of the instruction |
| 1394 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
| 1395 | Instruction::FCmp, pred, LHS, RHS, NameStr, |
| 1396 | InsertBefore) { |
| 1397 | AssertOK(); |
| 1398 | } |
| 1399 | |
| 1400 | /// Constructor with insert-at-end semantics. |
| 1401 | FCmpInst( |
| 1402 | BasicBlock &InsertAtEnd, ///< Block to insert into. |
| 1403 | Predicate pred, ///< The predicate to use for the comparison |
| 1404 | Value *LHS, ///< The left-hand-side of the expression |
| 1405 | Value *RHS, ///< The right-hand-side of the expression |
| 1406 | const Twine &NameStr = "" ///< Name of the instruction |
| 1407 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
| 1408 | Instruction::FCmp, pred, LHS, RHS, NameStr, |
| 1409 | &InsertAtEnd) { |
| 1410 | AssertOK(); |
| 1411 | } |
| 1412 | |
| 1413 | /// Constructor with no-insertion semantics |
| 1414 | FCmpInst( |
| 1415 | Predicate Pred, ///< The predicate to use for the comparison |
| 1416 | Value *LHS, ///< The left-hand-side of the expression |
| 1417 | Value *RHS, ///< The right-hand-side of the expression |
| 1418 | const Twine &NameStr = "", ///< Name of the instruction |
| 1419 | Instruction *FlagsSource = nullptr |
| 1420 | ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS, |
| 1421 | RHS, NameStr, nullptr, FlagsSource) { |
| 1422 | AssertOK(); |
| 1423 | } |
| 1424 | |
| 1425 | /// @returns true if the predicate of this instruction is EQ or NE. |
| 1426 | /// Determine if this is an equality predicate. |
| 1427 | static bool isEquality(Predicate Pred) { |
| 1428 | return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ || |
| 1429 | Pred == FCMP_UNE; |
| 1430 | } |
| 1431 | |
| 1432 | /// @returns true if the predicate of this instruction is EQ or NE. |
| 1433 | /// Determine if this is an equality predicate. |
| 1434 | bool isEquality() const { return isEquality(getPredicate()); } |
| 1435 | |
| 1436 | /// @returns true if the predicate of this instruction is commutative. |
| 1437 | /// Determine if this is a commutative predicate. |
| 1438 | bool isCommutative() const { |
| 1439 | return isEquality() || |
| 1440 | getPredicate() == FCMP_FALSE || |
| 1441 | getPredicate() == FCMP_TRUE || |
| 1442 | getPredicate() == FCMP_ORD || |
| 1443 | getPredicate() == FCMP_UNO; |
| 1444 | } |
| 1445 | |
| 1446 | /// @returns true if the predicate is relational (not EQ or NE). |
| 1447 | /// Determine if this a relational predicate. |
| 1448 | bool isRelational() const { return !isEquality(); } |
| 1449 | |
| 1450 | /// Exchange the two operands to this instruction in such a way that it does |
| 1451 | /// not modify the semantics of the instruction. The predicate value may be |
| 1452 | /// changed to retain the same result if the predicate is order dependent |
| 1453 | /// (e.g. ult). |
| 1454 | /// Swap operands and adjust predicate. |
| 1455 | void swapOperands() { |
| 1456 | setPredicate(getSwappedPredicate()); |
| 1457 | Op<0>().swap(Op<1>()); |
| 1458 | } |
| 1459 | |
| 1460 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1461 | static bool classof(const Instruction *I) { |
| 1462 | return I->getOpcode() == Instruction::FCmp; |
| 1463 | } |
| 1464 | static bool classof(const Value *V) { |
| 1465 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1466 | } |
| 1467 | }; |
| 1468 | |
| 1469 | //===----------------------------------------------------------------------===// |
| 1470 | /// This class represents a function call, abstracting a target |
| 1471 | /// machine's calling convention. This class uses low bit of the SubClassData |
| 1472 | /// field to indicate whether or not this is a tail call. The rest of the bits |
| 1473 | /// hold the calling convention of the call. |
| 1474 | /// |
| 1475 | class CallInst : public CallBase { |
| 1476 | CallInst(const CallInst &CI); |
| 1477 | |
| 1478 | /// Construct a CallInst given a range of arguments. |
| 1479 | /// Construct a CallInst from a range of arguments |
| 1480 | inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1481 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
| 1482 | Instruction *InsertBefore); |
| 1483 | |
| 1484 | inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1485 | const Twine &NameStr, Instruction *InsertBefore) |
| 1486 | : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {} |
| 1487 | |
| 1488 | /// Construct a CallInst given a range of arguments. |
| 1489 | /// Construct a CallInst from a range of arguments |
| 1490 | inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1491 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
| 1492 | BasicBlock *InsertAtEnd); |
| 1493 | |
| 1494 | explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr, |
| 1495 | Instruction *InsertBefore); |
| 1496 | |
| 1497 | CallInst(FunctionType *ty, Value *F, const Twine &NameStr, |
| 1498 | BasicBlock *InsertAtEnd); |
| 1499 | |
| 1500 | void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args, |
| 1501 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr); |
| 1502 | void init(FunctionType *FTy, Value *Func, const Twine &NameStr); |
| 1503 | |
| 1504 | /// Compute the number of operands to allocate. |
| 1505 | static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) { |
| 1506 | // We need one operand for the called function, plus the input operand |
| 1507 | // counts provided. |
| 1508 | return 1 + NumArgs + NumBundleInputs; |
| 1509 | } |
| 1510 | |
| 1511 | protected: |
| 1512 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1513 | friend class Instruction; |
| 1514 | |
| 1515 | CallInst *cloneImpl() const; |
| 1516 | |
| 1517 | public: |
| 1518 | static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "", |
| 1519 | Instruction *InsertBefore = nullptr) { |
| 1520 | return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore); |
| 1521 | } |
| 1522 | |
| 1523 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1524 | const Twine &NameStr, |
| 1525 | Instruction *InsertBefore = nullptr) { |
| 1526 | return new (ComputeNumOperands(Args.size())) |
| 1527 | CallInst(Ty, Func, Args, None, NameStr, InsertBefore); |
| 1528 | } |
| 1529 | |
| 1530 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1531 | ArrayRef<OperandBundleDef> Bundles = None, |
| 1532 | const Twine &NameStr = "", |
| 1533 | Instruction *InsertBefore = nullptr) { |
| 1534 | const int NumOperands = |
| 1535 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); |
| 1536 | const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
| 1537 | |
| 1538 | return new (NumOperands, DescriptorBytes) |
| 1539 | CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore); |
| 1540 | } |
| 1541 | |
| 1542 | static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr, |
| 1543 | BasicBlock *InsertAtEnd) { |
| 1544 | return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd); |
| 1545 | } |
| 1546 | |
| 1547 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1548 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 1549 | return new (ComputeNumOperands(Args.size())) |
| 1550 | CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd); |
| 1551 | } |
| 1552 | |
| 1553 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1554 | ArrayRef<OperandBundleDef> Bundles, |
| 1555 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 1556 | const int NumOperands = |
| 1557 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); |
| 1558 | const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
| 1559 | |
| 1560 | return new (NumOperands, DescriptorBytes) |
| 1561 | CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd); |
| 1562 | } |
| 1563 | |
| 1564 | static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "", |
| 1565 | Instruction *InsertBefore = nullptr) { |
| 1566 | return Create(Func.getFunctionType(), Func.getCallee(), NameStr, |
| 1567 | InsertBefore); |
| 1568 | } |
| 1569 | |
| 1570 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
| 1571 | ArrayRef<OperandBundleDef> Bundles = None, |
| 1572 | const Twine &NameStr = "", |
| 1573 | Instruction *InsertBefore = nullptr) { |
| 1574 | return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles, |
| 1575 | NameStr, InsertBefore); |
| 1576 | } |
| 1577 | |
| 1578 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
| 1579 | const Twine &NameStr, |
| 1580 | Instruction *InsertBefore = nullptr) { |
| 1581 | return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr, |
| 1582 | InsertBefore); |
| 1583 | } |
| 1584 | |
| 1585 | static CallInst *Create(FunctionCallee Func, const Twine &NameStr, |
| 1586 | BasicBlock *InsertAtEnd) { |
| 1587 | return Create(Func.getFunctionType(), Func.getCallee(), NameStr, |
| 1588 | InsertAtEnd); |
| 1589 | } |
| 1590 | |
| 1591 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
| 1592 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 1593 | return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr, |
| 1594 | InsertAtEnd); |
| 1595 | } |
| 1596 | |
| 1597 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
| 1598 | ArrayRef<OperandBundleDef> Bundles, |
| 1599 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 1600 | return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles, |
| 1601 | NameStr, InsertAtEnd); |
| 1602 | } |
| 1603 | |
| 1604 | /// Create a clone of \p CI with a different set of operand bundles and |
| 1605 | /// insert it before \p InsertPt. |
| 1606 | /// |
| 1607 | /// The returned call instruction is identical \p CI in every way except that |
| 1608 | /// the operand bundles for the new instruction are set to the operand bundles |
| 1609 | /// in \p Bundles. |
| 1610 | static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles, |
| 1611 | Instruction *InsertPt = nullptr); |
| 1612 | |
| 1613 | /// Generate the IR for a call to malloc: |
| 1614 | /// 1. Compute the malloc call's argument as the specified type's size, |
| 1615 | /// possibly multiplied by the array size if the array size is not |
| 1616 | /// constant 1. |
| 1617 | /// 2. Call malloc with that argument. |
| 1618 | /// 3. Bitcast the result of the malloc call to the specified type. |
| 1619 | static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy, |
| 1620 | Type *AllocTy, Value *AllocSize, |
| 1621 | Value *ArraySize = nullptr, |
| 1622 | Function *MallocF = nullptr, |
| 1623 | const Twine &Name = ""); |
| 1624 | static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy, |
| 1625 | Type *AllocTy, Value *AllocSize, |
| 1626 | Value *ArraySize = nullptr, |
| 1627 | Function *MallocF = nullptr, |
| 1628 | const Twine &Name = ""); |
| 1629 | static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy, |
| 1630 | Type *AllocTy, Value *AllocSize, |
| 1631 | Value *ArraySize = nullptr, |
| 1632 | ArrayRef<OperandBundleDef> Bundles = None, |
| 1633 | Function *MallocF = nullptr, |
| 1634 | const Twine &Name = ""); |
| 1635 | static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy, |
| 1636 | Type *AllocTy, Value *AllocSize, |
| 1637 | Value *ArraySize = nullptr, |
| 1638 | ArrayRef<OperandBundleDef> Bundles = None, |
| 1639 | Function *MallocF = nullptr, |
| 1640 | const Twine &Name = ""); |
| 1641 | /// Generate the IR for a call to the builtin free function. |
| 1642 | static Instruction *CreateFree(Value *Source, Instruction *InsertBefore); |
| 1643 | static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd); |
| 1644 | static Instruction *CreateFree(Value *Source, |
| 1645 | ArrayRef<OperandBundleDef> Bundles, |
| 1646 | Instruction *InsertBefore); |
| 1647 | static Instruction *CreateFree(Value *Source, |
| 1648 | ArrayRef<OperandBundleDef> Bundles, |
| 1649 | BasicBlock *InsertAtEnd); |
| 1650 | |
| 1651 | // Note that 'musttail' implies 'tail'. |
| 1652 | enum TailCallKind : unsigned { |
| 1653 | TCK_None = 0, |
| 1654 | TCK_Tail = 1, |
| 1655 | TCK_MustTail = 2, |
| 1656 | TCK_NoTail = 3, |
| 1657 | TCK_LAST = TCK_NoTail |
| 1658 | }; |
| 1659 | |
| 1660 | using TailCallKindField = Bitfield::Element<TailCallKind, 0, 2, TCK_LAST>; |
| 1661 | static_assert( |
| 1662 | Bitfield::areContiguous<TailCallKindField, CallBase::CallingConvField>(), |
| 1663 | "Bitfields must be contiguous"); |
| 1664 | |
| 1665 | TailCallKind getTailCallKind() const { |
| 1666 | return getSubclassData<TailCallKindField>(); |
| 1667 | } |
| 1668 | |
| 1669 | bool isTailCall() const { |
| 1670 | TailCallKind Kind = getTailCallKind(); |
| 1671 | return Kind == TCK_Tail || Kind == TCK_MustTail; |
| 1672 | } |
| 1673 | |
| 1674 | bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; } |
| 1675 | |
| 1676 | bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; } |
| 1677 | |
| 1678 | void setTailCallKind(TailCallKind TCK) { |
| 1679 | setSubclassData<TailCallKindField>(TCK); |
| 1680 | } |
| 1681 | |
| 1682 | void setTailCall(bool IsTc = true) { |
| 1683 | setTailCallKind(IsTc ? TCK_Tail : TCK_None); |
| 1684 | } |
| 1685 | |
| 1686 | /// Return true if the call can return twice |
| 1687 | bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); } |
| 1688 | void setCanReturnTwice() { |
| 1689 | addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice); |
| 1690 | } |
| 1691 | |
| 1692 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1693 | static bool classof(const Instruction *I) { |
| 1694 | return I->getOpcode() == Instruction::Call; |
| 1695 | } |
| 1696 | static bool classof(const Value *V) { |
| 1697 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1698 | } |
| 1699 | |
| 1700 | /// Updates profile metadata by scaling it by \p S / \p T. |
| 1701 | void updateProfWeight(uint64_t S, uint64_t T); |
| 1702 | |
| 1703 | private: |
| 1704 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 1705 | // method so that subclasses cannot accidentally use it. |
| 1706 | template <typename Bitfield> |
| 1707 | void setSubclassData(typename Bitfield::Type Value) { |
| 1708 | Instruction::setSubclassData<Bitfield>(Value); |
| 1709 | } |
| 1710 | }; |
| 1711 | |
| 1712 | CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1713 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
| 1714 | BasicBlock *InsertAtEnd) |
| 1715 | : CallBase(Ty->getReturnType(), Instruction::Call, |
| 1716 | OperandTraits<CallBase>::op_end(this) - |
| 1717 | (Args.size() + CountBundleInputs(Bundles) + 1), |
| 1718 | unsigned(Args.size() + CountBundleInputs(Bundles) + 1), |
| 1719 | InsertAtEnd) { |
| 1720 | init(Ty, Func, Args, Bundles, NameStr); |
| 1721 | } |
| 1722 | |
| 1723 | CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1724 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
| 1725 | Instruction *InsertBefore) |
| 1726 | : CallBase(Ty->getReturnType(), Instruction::Call, |
| 1727 | OperandTraits<CallBase>::op_end(this) - |
| 1728 | (Args.size() + CountBundleInputs(Bundles) + 1), |
| 1729 | unsigned(Args.size() + CountBundleInputs(Bundles) + 1), |
| 1730 | InsertBefore) { |
| 1731 | init(Ty, Func, Args, Bundles, NameStr); |
| 1732 | } |
| 1733 | |
| 1734 | //===----------------------------------------------------------------------===// |
| 1735 | // SelectInst Class |
| 1736 | //===----------------------------------------------------------------------===// |
| 1737 | |
| 1738 | /// This class represents the LLVM 'select' instruction. |
| 1739 | /// |
| 1740 | class SelectInst : public Instruction { |
| 1741 | SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr, |
| 1742 | Instruction *InsertBefore) |
| 1743 | : Instruction(S1->getType(), Instruction::Select, |
| 1744 | &Op<0>(), 3, InsertBefore) { |
| 1745 | init(C, S1, S2); |
| 1746 | setName(NameStr); |
| 1747 | } |
| 1748 | |
| 1749 | SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr, |
| 1750 | BasicBlock *InsertAtEnd) |
| 1751 | : Instruction(S1->getType(), Instruction::Select, |
| 1752 | &Op<0>(), 3, InsertAtEnd) { |
| 1753 | init(C, S1, S2); |
| 1754 | setName(NameStr); |
| 1755 | } |
| 1756 | |
| 1757 | void init(Value *C, Value *S1, Value *S2) { |
| 1758 | assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select")((void)0); |
| 1759 | Op<0>() = C; |
| 1760 | Op<1>() = S1; |
| 1761 | Op<2>() = S2; |
| 1762 | } |
| 1763 | |
| 1764 | protected: |
| 1765 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1766 | friend class Instruction; |
| 1767 | |
| 1768 | SelectInst *cloneImpl() const; |
| 1769 | |
| 1770 | public: |
| 1771 | static SelectInst *Create(Value *C, Value *S1, Value *S2, |
| 1772 | const Twine &NameStr = "", |
| 1773 | Instruction *InsertBefore = nullptr, |
| 1774 | Instruction *MDFrom = nullptr) { |
| 1775 | SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore); |
| 1776 | if (MDFrom) |
| 1777 | Sel->copyMetadata(*MDFrom); |
| 1778 | return Sel; |
| 1779 | } |
| 1780 | |
| 1781 | static SelectInst *Create(Value *C, Value *S1, Value *S2, |
| 1782 | const Twine &NameStr, |
| 1783 | BasicBlock *InsertAtEnd) { |
| 1784 | return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd); |
| 1785 | } |
| 1786 | |
| 1787 | const Value *getCondition() const { return Op<0>(); } |
| 1788 | const Value *getTrueValue() const { return Op<1>(); } |
| 1789 | const Value *getFalseValue() const { return Op<2>(); } |
| 1790 | Value *getCondition() { return Op<0>(); } |
| 1791 | Value *getTrueValue() { return Op<1>(); } |
| 1792 | Value *getFalseValue() { return Op<2>(); } |
| 1793 | |
| 1794 | void setCondition(Value *V) { Op<0>() = V; } |
| 1795 | void setTrueValue(Value *V) { Op<1>() = V; } |
| 1796 | void setFalseValue(Value *V) { Op<2>() = V; } |
| 1797 | |
| 1798 | /// Swap the true and false values of the select instruction. |
| 1799 | /// This doesn't swap prof metadata. |
| 1800 | void swapValues() { Op<1>().swap(Op<2>()); } |
| 1801 | |
| 1802 | /// Return a string if the specified operands are invalid |
| 1803 | /// for a select operation, otherwise return null. |
| 1804 | static const char *areInvalidOperands(Value *Cond, Value *True, Value *False); |
| 1805 | |
| 1806 | /// Transparently provide more efficient getOperand methods. |
| 1807 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 1808 | |
| 1809 | OtherOps getOpcode() const { |
| 1810 | return static_cast<OtherOps>(Instruction::getOpcode()); |
| 1811 | } |
| 1812 | |
| 1813 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1814 | static bool classof(const Instruction *I) { |
| 1815 | return I->getOpcode() == Instruction::Select; |
| 1816 | } |
| 1817 | static bool classof(const Value *V) { |
| 1818 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1819 | } |
| 1820 | }; |
| 1821 | |
| 1822 | template <> |
| 1823 | struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> { |
| 1824 | }; |
| 1825 | |
| 1826 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)SelectInst::op_iterator SelectInst::op_begin() { return OperandTraits <SelectInst>::op_begin(this); } SelectInst::const_op_iterator SelectInst::op_begin() const { return OperandTraits<SelectInst >::op_begin(const_cast<SelectInst*>(this)); } SelectInst ::op_iterator SelectInst::op_end() { return OperandTraits< SelectInst>::op_end(this); } SelectInst::const_op_iterator SelectInst::op_end() const { return OperandTraits<SelectInst >::op_end(const_cast<SelectInst*>(this)); } Value *SelectInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<SelectInst>::op_begin(const_cast <SelectInst*>(this))[i_nocapture].get()); } void SelectInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<SelectInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned SelectInst::getNumOperands() const { return OperandTraits<SelectInst>::operands(this); } template <int Idx_nocapture> Use &SelectInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &SelectInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
| 1827 | |
| 1828 | //===----------------------------------------------------------------------===// |
| 1829 | // VAArgInst Class |
| 1830 | //===----------------------------------------------------------------------===// |
| 1831 | |
| 1832 | /// This class represents the va_arg llvm instruction, which returns |
| 1833 | /// an argument of the specified type given a va_list and increments that list |
| 1834 | /// |
| 1835 | class VAArgInst : public UnaryInstruction { |
| 1836 | protected: |
| 1837 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1838 | friend class Instruction; |
| 1839 | |
| 1840 | VAArgInst *cloneImpl() const; |
| 1841 | |
| 1842 | public: |
| 1843 | VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "", |
| 1844 | Instruction *InsertBefore = nullptr) |
| 1845 | : UnaryInstruction(Ty, VAArg, List, InsertBefore) { |
| 1846 | setName(NameStr); |
| 1847 | } |
| 1848 | |
| 1849 | VAArgInst(Value *List, Type *Ty, const Twine &NameStr, |
| 1850 | BasicBlock *InsertAtEnd) |
| 1851 | : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) { |
| 1852 | setName(NameStr); |
| 1853 | } |
| 1854 | |
| 1855 | Value *getPointerOperand() { return getOperand(0); } |
| 1856 | const Value *getPointerOperand() const { return getOperand(0); } |
| 1857 | static unsigned getPointerOperandIndex() { return 0U; } |
| 1858 | |
| 1859 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1860 | static bool classof(const Instruction *I) { |
| 1861 | return I->getOpcode() == VAArg; |
| 1862 | } |
| 1863 | static bool classof(const Value *V) { |
| 1864 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1865 | } |
| 1866 | }; |
| 1867 | |
| 1868 | //===----------------------------------------------------------------------===// |
| 1869 | // ExtractElementInst Class |
| 1870 | //===----------------------------------------------------------------------===// |
| 1871 | |
| 1872 | /// This instruction extracts a single (scalar) |
| 1873 | /// element from a VectorType value |
| 1874 | /// |
| 1875 | class ExtractElementInst : public Instruction { |
| 1876 | ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "", |
| 1877 | Instruction *InsertBefore = nullptr); |
| 1878 | ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr, |
| 1879 | BasicBlock *InsertAtEnd); |
| 1880 | |
| 1881 | protected: |
| 1882 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1883 | friend class Instruction; |
| 1884 | |
| 1885 | ExtractElementInst *cloneImpl() const; |
| 1886 | |
| 1887 | public: |
| 1888 | static ExtractElementInst *Create(Value *Vec, Value *Idx, |
| 1889 | const Twine &NameStr = "", |
| 1890 | Instruction *InsertBefore = nullptr) { |
| 1891 | return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore); |
| 1892 | } |
| 1893 | |
| 1894 | static ExtractElementInst *Create(Value *Vec, Value *Idx, |
| 1895 | const Twine &NameStr, |
| 1896 | BasicBlock *InsertAtEnd) { |
| 1897 | return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd); |
| 1898 | } |
| 1899 | |
| 1900 | /// Return true if an extractelement instruction can be |
| 1901 | /// formed with the specified operands. |
| 1902 | static bool isValidOperands(const Value *Vec, const Value *Idx); |
| 1903 | |
| 1904 | Value *getVectorOperand() { return Op<0>(); } |
| 1905 | Value *getIndexOperand() { return Op<1>(); } |
| 1906 | const Value *getVectorOperand() const { return Op<0>(); } |
| 1907 | const Value *getIndexOperand() const { return Op<1>(); } |
| 1908 | |
| 1909 | VectorType *getVectorOperandType() const { |
| 1910 | return cast<VectorType>(getVectorOperand()->getType()); |
| 1911 | } |
| 1912 | |
| 1913 | /// Transparently provide more efficient getOperand methods. |
| 1914 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 1915 | |
| 1916 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1917 | static bool classof(const Instruction *I) { |
| 1918 | return I->getOpcode() == Instruction::ExtractElement; |
| 1919 | } |
| 1920 | static bool classof(const Value *V) { |
| 1921 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1922 | } |
| 1923 | }; |
| 1924 | |
| 1925 | template <> |
| 1926 | struct OperandTraits<ExtractElementInst> : |
| 1927 | public FixedNumOperandTraits<ExtractElementInst, 2> { |
| 1928 | }; |
| 1929 | |
| 1930 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)ExtractElementInst::op_iterator ExtractElementInst::op_begin( ) { return OperandTraits<ExtractElementInst>::op_begin( this); } ExtractElementInst::const_op_iterator ExtractElementInst ::op_begin() const { return OperandTraits<ExtractElementInst >::op_begin(const_cast<ExtractElementInst*>(this)); } ExtractElementInst::op_iterator ExtractElementInst::op_end() { return OperandTraits<ExtractElementInst>::op_end(this ); } ExtractElementInst::const_op_iterator ExtractElementInst ::op_end() const { return OperandTraits<ExtractElementInst >::op_end(const_cast<ExtractElementInst*>(this)); } Value *ExtractElementInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value>( OperandTraits< ExtractElementInst>::op_begin(const_cast<ExtractElementInst *>(this))[i_nocapture].get()); } void ExtractElementInst:: setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void )0); OperandTraits<ExtractElementInst>::op_begin(this)[ i_nocapture] = Val_nocapture; } unsigned ExtractElementInst:: getNumOperands() const { return OperandTraits<ExtractElementInst >::operands(this); } template <int Idx_nocapture> Use &ExtractElementInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & ExtractElementInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
| 1931 | |
| 1932 | //===----------------------------------------------------------------------===// |
| 1933 | // InsertElementInst Class |
| 1934 | //===----------------------------------------------------------------------===// |
| 1935 | |
| 1936 | /// This instruction inserts a single (scalar) |
| 1937 | /// element into a VectorType value |
| 1938 | /// |
| 1939 | class InsertElementInst : public Instruction { |
| 1940 | InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, |
| 1941 | const Twine &NameStr = "", |
| 1942 | Instruction *InsertBefore = nullptr); |
| 1943 | InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr, |
| 1944 | BasicBlock *InsertAtEnd); |
| 1945 | |
| 1946 | protected: |
| 1947 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1948 | friend class Instruction; |
| 1949 | |
| 1950 | InsertElementInst *cloneImpl() const; |
| 1951 | |
| 1952 | public: |
| 1953 | static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, |
| 1954 | const Twine &NameStr = "", |
| 1955 | Instruction *InsertBefore = nullptr) { |
| 1956 | return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore); |
| 1957 | } |
| 1958 | |
| 1959 | static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, |
| 1960 | const Twine &NameStr, |
| 1961 | BasicBlock *InsertAtEnd) { |
| 1962 | return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd); |
| 1963 | } |
| 1964 | |
| 1965 | /// Return true if an insertelement instruction can be |
| 1966 | /// formed with the specified operands. |
| 1967 | static bool isValidOperands(const Value *Vec, const Value *NewElt, |
| 1968 | const Value *Idx); |
| 1969 | |
| 1970 | /// Overload to return most specific vector type. |
| 1971 | /// |
| 1972 | VectorType *getType() const { |
| 1973 | return cast<VectorType>(Instruction::getType()); |
| 1974 | } |
| 1975 | |
| 1976 | /// Transparently provide more efficient getOperand methods. |
| 1977 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 1978 | |
| 1979 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1980 | static bool classof(const Instruction *I) { |
| 1981 | return I->getOpcode() == Instruction::InsertElement; |
| 1982 | } |
| 1983 | static bool classof(const Value *V) { |
| 1984 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1985 | } |
| 1986 | }; |
| 1987 | |
| 1988 | template <> |
| 1989 | struct OperandTraits<InsertElementInst> : |
| 1990 | public FixedNumOperandTraits<InsertElementInst, 3> { |
| 1991 | }; |
| 1992 | |
| 1993 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)InsertElementInst::op_iterator InsertElementInst::op_begin() { return OperandTraits<InsertElementInst>::op_begin(this ); } InsertElementInst::const_op_iterator InsertElementInst:: op_begin() const { return OperandTraits<InsertElementInst> ::op_begin(const_cast<InsertElementInst*>(this)); } InsertElementInst ::op_iterator InsertElementInst::op_end() { return OperandTraits <InsertElementInst>::op_end(this); } InsertElementInst:: const_op_iterator InsertElementInst::op_end() const { return OperandTraits <InsertElementInst>::op_end(const_cast<InsertElementInst *>(this)); } Value *InsertElementInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<InsertElementInst>::op_begin(const_cast <InsertElementInst*>(this))[i_nocapture].get()); } void InsertElementInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<InsertElementInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned InsertElementInst ::getNumOperands() const { return OperandTraits<InsertElementInst >::operands(this); } template <int Idx_nocapture> Use &InsertElementInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & InsertElementInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
| 1994 | |
| 1995 | //===----------------------------------------------------------------------===// |
| 1996 | // ShuffleVectorInst Class |
| 1997 | //===----------------------------------------------------------------------===// |
| 1998 | |
| 1999 | constexpr int UndefMaskElem = -1; |
| 2000 | |
| 2001 | /// This instruction constructs a fixed permutation of two |
| 2002 | /// input vectors. |
| 2003 | /// |
| 2004 | /// For each element of the result vector, the shuffle mask selects an element |
| 2005 | /// from one of the input vectors to copy to the result. Non-negative elements |
| 2006 | /// in the mask represent an index into the concatenated pair of input vectors. |
| 2007 | /// UndefMaskElem (-1) specifies that the result element is undefined. |
| 2008 | /// |
| 2009 | /// For scalable vectors, all the elements of the mask must be 0 or -1. This |
| 2010 | /// requirement may be relaxed in the future. |
| 2011 | class ShuffleVectorInst : public Instruction { |
| 2012 | SmallVector<int, 4> ShuffleMask; |
| 2013 | Constant *ShuffleMaskForBitcode; |
| 2014 | |
| 2015 | protected: |
| 2016 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 2017 | friend class Instruction; |
| 2018 | |
| 2019 | ShuffleVectorInst *cloneImpl() const; |
| 2020 | |
| 2021 | public: |
| 2022 | ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, |
| 2023 | const Twine &NameStr = "", |
| 2024 | Instruction *InsertBefor = nullptr); |
| 2025 | ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, |
| 2026 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 2027 | ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask, |
| 2028 | const Twine &NameStr = "", |
| 2029 | Instruction *InsertBefor = nullptr); |
| 2030 | ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask, |
| 2031 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 2032 | |
| 2033 | void *operator new(size_t S) { return User::operator new(S, 2); } |
| 2034 | void operator delete(void *Ptr) { return User::operator delete(Ptr); } |
| 2035 | |
| 2036 | /// Swap the operands and adjust the mask to preserve the semantics |
| 2037 | /// of the instruction. |
| 2038 | void commute(); |
| 2039 | |
| 2040 | /// Return true if a shufflevector instruction can be |
| 2041 | /// formed with the specified operands. |
| 2042 | static bool isValidOperands(const Value *V1, const Value *V2, |
| 2043 | const Value *Mask); |
| 2044 | static bool isValidOperands(const Value *V1, const Value *V2, |
| 2045 | ArrayRef<int> Mask); |
| 2046 | |
| 2047 | /// Overload to return most specific vector type. |
| 2048 | /// |
| 2049 | VectorType *getType() const { |
| 2050 | return cast<VectorType>(Instruction::getType()); |
| 2051 | } |
| 2052 | |
| 2053 | /// Transparently provide more efficient getOperand methods. |
| 2054 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 2055 | |
| 2056 | /// Return the shuffle mask value of this instruction for the given element |
| 2057 | /// index. Return UndefMaskElem if the element is undef. |
| 2058 | int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; } |
| 2059 | |
| 2060 | /// Convert the input shuffle mask operand to a vector of integers. Undefined |
| 2061 | /// elements of the mask are returned as UndefMaskElem. |
| 2062 | static void getShuffleMask(const Constant *Mask, |
| 2063 | SmallVectorImpl<int> &Result); |
| 2064 | |
| 2065 | /// Return the mask for this instruction as a vector of integers. Undefined |
| 2066 | /// elements of the mask are returned as UndefMaskElem. |
| 2067 | void getShuffleMask(SmallVectorImpl<int> &Result) const { |
| 2068 | Result.assign(ShuffleMask.begin(), ShuffleMask.end()); |
| 2069 | } |
| 2070 | |
| 2071 | /// Return the mask for this instruction, for use in bitcode. |
| 2072 | /// |
| 2073 | /// TODO: This is temporary until we decide a new bitcode encoding for |
| 2074 | /// shufflevector. |
| 2075 | Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; } |
| 2076 | |
| 2077 | static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask, |
| 2078 | Type *ResultTy); |
| 2079 | |
| 2080 | void setShuffleMask(ArrayRef<int> Mask); |
| 2081 | |
| 2082 | ArrayRef<int> getShuffleMask() const { return ShuffleMask; } |
| 2083 | |
| 2084 | /// Return true if this shuffle returns a vector with a different number of |
| 2085 | /// elements than its source vectors. |
| 2086 | /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3> |
| 2087 | /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5> |
| 2088 | bool changesLength() const { |
| 2089 | unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType()) |
| 2090 | ->getElementCount() |
| 2091 | .getKnownMinValue(); |
| 2092 | unsigned NumMaskElts = ShuffleMask.size(); |
| 2093 | return NumSourceElts != NumMaskElts; |
| 2094 | } |
| 2095 | |
| 2096 | /// Return true if this shuffle returns a vector with a greater number of |
| 2097 | /// elements than its source vectors. |
| 2098 | /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3> |
| 2099 | bool increasesLength() const { |
| 2100 | unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType()) |
| 2101 | ->getElementCount() |
| 2102 | .getKnownMinValue(); |
| 2103 | unsigned NumMaskElts = ShuffleMask.size(); |
| 2104 | return NumSourceElts < NumMaskElts; |
| 2105 | } |
| 2106 | |
| 2107 | /// Return true if this shuffle mask chooses elements from exactly one source |
| 2108 | /// vector. |
| 2109 | /// Example: <7,5,undef,7> |
| 2110 | /// This assumes that vector operands are the same length as the mask. |
| 2111 | static bool isSingleSourceMask(ArrayRef<int> Mask); |
| 2112 | static bool isSingleSourceMask(const Constant *Mask) { |
| 2113 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
| 2114 | SmallVector<int, 16> MaskAsInts; |
| 2115 | getShuffleMask(Mask, MaskAsInts); |
| 2116 | return isSingleSourceMask(MaskAsInts); |
| 2117 | } |
| 2118 | |
| 2119 | /// Return true if this shuffle chooses elements from exactly one source |
| 2120 | /// vector without changing the length of that vector. |
| 2121 | /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3> |
| 2122 | /// TODO: Optionally allow length-changing shuffles. |
| 2123 | bool isSingleSource() const { |
| 2124 | return !changesLength() && isSingleSourceMask(ShuffleMask); |
| 2125 | } |
| 2126 | |
| 2127 | /// Return true if this shuffle mask chooses elements from exactly one source |
| 2128 | /// vector without lane crossings. A shuffle using this mask is not |
| 2129 | /// necessarily a no-op because it may change the number of elements from its |
| 2130 | /// input vectors or it may provide demanded bits knowledge via undef lanes. |
| 2131 | /// Example: <undef,undef,2,3> |
| 2132 | static bool isIdentityMask(ArrayRef<int> Mask); |
| 2133 | static bool isIdentityMask(const Constant *Mask) { |
| 2134 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
| 2135 | SmallVector<int, 16> MaskAsInts; |
| 2136 | getShuffleMask(Mask, MaskAsInts); |
| 2137 | return isIdentityMask(MaskAsInts); |
| 2138 | } |
| 2139 | |
| 2140 | /// Return true if this shuffle chooses elements from exactly one source |
| 2141 | /// vector without lane crossings and does not change the number of elements |
| 2142 | /// from its input vectors. |
| 2143 | /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef> |
| 2144 | bool isIdentity() const { |
| 2145 | return !changesLength() && isIdentityMask(ShuffleMask); |
| 2146 | } |
| 2147 | |
| 2148 | /// Return true if this shuffle lengthens exactly one source vector with |
| 2149 | /// undefs in the high elements. |
| 2150 | bool isIdentityWithPadding() const; |
| 2151 | |
| 2152 | /// Return true if this shuffle extracts the first N elements of exactly one |
| 2153 | /// source vector. |
| 2154 | bool isIdentityWithExtract() const; |
| 2155 | |
| 2156 | /// Return true if this shuffle concatenates its 2 source vectors. This |
| 2157 | /// returns false if either input is undefined. In that case, the shuffle is |
| 2158 | /// is better classified as an identity with padding operation. |
| 2159 | bool isConcat() const; |
| 2160 | |
| 2161 | /// Return true if this shuffle mask chooses elements from its source vectors |
| 2162 | /// without lane crossings. A shuffle using this mask would be |
| 2163 | /// equivalent to a vector select with a constant condition operand. |
| 2164 | /// Example: <4,1,6,undef> |
| 2165 | /// This returns false if the mask does not choose from both input vectors. |
| 2166 | /// In that case, the shuffle is better classified as an identity shuffle. |
| 2167 | /// This assumes that vector operands are the same length as the mask |
| 2168 | /// (a length-changing shuffle can never be equivalent to a vector select). |
| 2169 | static bool isSelectMask(ArrayRef<int> Mask); |
| 2170 | static bool isSelectMask(const Constant *Mask) { |
| 2171 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
| 2172 | SmallVector<int, 16> MaskAsInts; |
| 2173 | getShuffleMask(Mask, MaskAsInts); |
| 2174 | return isSelectMask(MaskAsInts); |
| 2175 | } |
| 2176 | |
| 2177 | /// Return true if this shuffle chooses elements from its source vectors |
| 2178 | /// without lane crossings and all operands have the same number of elements. |
| 2179 | /// In other words, this shuffle is equivalent to a vector select with a |
| 2180 | /// constant condition operand. |
| 2181 | /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3> |
| 2182 | /// This returns false if the mask does not choose from both input vectors. |
| 2183 | /// In that case, the shuffle is better classified as an identity shuffle. |
| 2184 | /// TODO: Optionally allow length-changing shuffles. |
| 2185 | bool isSelect() const { |
| 2186 | return !changesLength() && isSelectMask(ShuffleMask); |
| 2187 | } |
| 2188 | |
| 2189 | /// Return true if this shuffle mask swaps the order of elements from exactly |
| 2190 | /// one source vector. |
| 2191 | /// Example: <7,6,undef,4> |
| 2192 | /// This assumes that vector operands are the same length as the mask. |
| 2193 | static bool isReverseMask(ArrayRef<int> Mask); |
| 2194 | static bool isReverseMask(const Constant *Mask) { |
| 2195 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
| 2196 | SmallVector<int, 16> MaskAsInts; |
| 2197 | getShuffleMask(Mask, MaskAsInts); |
| 2198 | return isReverseMask(MaskAsInts); |
| 2199 | } |
| 2200 | |
| 2201 | /// Return true if this shuffle swaps the order of elements from exactly |
| 2202 | /// one source vector. |
| 2203 | /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef> |
| 2204 | /// TODO: Optionally allow length-changing shuffles. |
| 2205 | bool isReverse() const { |
| 2206 | return !changesLength() && isReverseMask(ShuffleMask); |
| 2207 | } |
| 2208 | |
| 2209 | /// Return true if this shuffle mask chooses all elements with the same value |
| 2210 | /// as the first element of exactly one source vector. |
| 2211 | /// Example: <4,undef,undef,4> |
| 2212 | /// This assumes that vector operands are the same length as the mask. |
| 2213 | static bool isZeroEltSplatMask(ArrayRef<int> Mask); |
| 2214 | static bool isZeroEltSplatMask(const Constant *Mask) { |
| 2215 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
| 2216 | SmallVector<int, 16> MaskAsInts; |
| 2217 | getShuffleMask(Mask, MaskAsInts); |
| 2218 | return isZeroEltSplatMask(MaskAsInts); |
| 2219 | } |
| 2220 | |
| 2221 | /// Return true if all elements of this shuffle are the same value as the |
| 2222 | /// first element of exactly one source vector without changing the length |
| 2223 | /// of that vector. |
| 2224 | /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0> |
| 2225 | /// TODO: Optionally allow length-changing shuffles. |
| 2226 | /// TODO: Optionally allow splats from other elements. |
| 2227 | bool isZeroEltSplat() const { |
| 2228 | return !changesLength() && isZeroEltSplatMask(ShuffleMask); |
| 2229 | } |
| 2230 | |
| 2231 | /// Return true if this shuffle mask is a transpose mask. |
| 2232 | /// Transpose vector masks transpose a 2xn matrix. They read corresponding |
| 2233 | /// even- or odd-numbered vector elements from two n-dimensional source |
| 2234 | /// vectors and write each result into consecutive elements of an |
| 2235 | /// n-dimensional destination vector. Two shuffles are necessary to complete |
| 2236 | /// the transpose, one for the even elements and another for the odd elements. |
| 2237 | /// This description closely follows how the TRN1 and TRN2 AArch64 |
| 2238 | /// instructions operate. |
| 2239 | /// |
| 2240 | /// For example, a simple 2x2 matrix can be transposed with: |
| 2241 | /// |
| 2242 | /// ; Original matrix |
| 2243 | /// m0 = < a, b > |
| 2244 | /// m1 = < c, d > |
| 2245 | /// |
| 2246 | /// ; Transposed matrix |
| 2247 | /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 > |
| 2248 | /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 > |
| 2249 | /// |
| 2250 | /// For matrices having greater than n columns, the resulting nx2 transposed |
| 2251 | /// matrix is stored in two result vectors such that one vector contains |
| 2252 | /// interleaved elements from all the even-numbered rows and the other vector |
| 2253 | /// contains interleaved elements from all the odd-numbered rows. For example, |
| 2254 | /// a 2x4 matrix can be transposed with: |
| 2255 | /// |
| 2256 | /// ; Original matrix |
| 2257 | /// m0 = < a, b, c, d > |
| 2258 | /// m1 = < e, f, g, h > |
| 2259 | /// |
| 2260 | /// ; Transposed matrix |
| 2261 | /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 > |
| 2262 | /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 > |
| 2263 | static bool isTransposeMask(ArrayRef<int> Mask); |
| 2264 | static bool isTransposeMask(const Constant *Mask) { |
| 2265 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
| 2266 | SmallVector<int, 16> MaskAsInts; |
| 2267 | getShuffleMask(Mask, MaskAsInts); |
| 2268 | return isTransposeMask(MaskAsInts); |
| 2269 | } |
| 2270 | |
| 2271 | /// Return true if this shuffle transposes the elements of its inputs without |
| 2272 | /// changing the length of the vectors. This operation may also be known as a |
| 2273 | /// merge or interleave. See the description for isTransposeMask() for the |
| 2274 | /// exact specification. |
| 2275 | /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6> |
| 2276 | bool isTranspose() const { |
| 2277 | return !changesLength() && isTransposeMask(ShuffleMask); |
| 2278 | } |
| 2279 | |
| 2280 | /// Return true if this shuffle mask is an extract subvector mask. |
| 2281 | /// A valid extract subvector mask returns a smaller vector from a single |
| 2282 | /// source operand. The base extraction index is returned as well. |
| 2283 | static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts, |
| 2284 | int &Index); |
| 2285 | static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts, |
| 2286 | int &Index) { |
| 2287 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
| 2288 | // Not possible to express a shuffle mask for a scalable vector for this |
| 2289 | // case. |
| 2290 | if (isa<ScalableVectorType>(Mask->getType())) |
| 2291 | return false; |
| 2292 | SmallVector<int, 16> MaskAsInts; |
| 2293 | getShuffleMask(Mask, MaskAsInts); |
| 2294 | return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index); |
| 2295 | } |
| 2296 | |
| 2297 | /// Return true if this shuffle mask is an extract subvector mask. |
| 2298 | bool isExtractSubvectorMask(int &Index) const { |
| 2299 | // Not possible to express a shuffle mask for a scalable vector for this |
| 2300 | // case. |
| 2301 | if (isa<ScalableVectorType>(getType())) |
| 2302 | return false; |
| 2303 | |
| 2304 | int NumSrcElts = |
| 2305 | cast<FixedVectorType>(Op<0>()->getType())->getNumElements(); |
| 2306 | return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index); |
| 2307 | } |
| 2308 | |
| 2309 | /// Change values in a shuffle permute mask assuming the two vector operands |
| 2310 | /// of length InVecNumElts have swapped position. |
| 2311 | static void commuteShuffleMask(MutableArrayRef<int> Mask, |
| 2312 | unsigned InVecNumElts) { |
| 2313 | for (int &Idx : Mask) { |
| 2314 | if (Idx == -1) |
| 2315 | continue; |
| 2316 | Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts; |
| 2317 | assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&((void)0) |
| 2318 | "shufflevector mask index out of range")((void)0); |
| 2319 | } |
| 2320 | } |
| 2321 | |
| 2322 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 2323 | static bool classof(const Instruction *I) { |
| 2324 | return I->getOpcode() == Instruction::ShuffleVector; |
| 2325 | } |
| 2326 | static bool classof(const Value *V) { |
| 2327 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 2328 | } |
| 2329 | }; |
| 2330 | |
| 2331 | template <> |
| 2332 | struct OperandTraits<ShuffleVectorInst> |
| 2333 | : public FixedNumOperandTraits<ShuffleVectorInst, 2> {}; |
| 2334 | |
| 2335 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)ShuffleVectorInst::op_iterator ShuffleVectorInst::op_begin() { return OperandTraits<ShuffleVectorInst>::op_begin(this ); } ShuffleVectorInst::const_op_iterator ShuffleVectorInst:: op_begin() const { return OperandTraits<ShuffleVectorInst> ::op_begin(const_cast<ShuffleVectorInst*>(this)); } ShuffleVectorInst ::op_iterator ShuffleVectorInst::op_end() { return OperandTraits <ShuffleVectorInst>::op_end(this); } ShuffleVectorInst:: const_op_iterator ShuffleVectorInst::op_end() const { return OperandTraits <ShuffleVectorInst>::op_end(const_cast<ShuffleVectorInst *>(this)); } Value *ShuffleVectorInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<ShuffleVectorInst>::op_begin(const_cast <ShuffleVectorInst*>(this))[i_nocapture].get()); } void ShuffleVectorInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<ShuffleVectorInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned ShuffleVectorInst ::getNumOperands() const { return OperandTraits<ShuffleVectorInst >::operands(this); } template <int Idx_nocapture> Use &ShuffleVectorInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & ShuffleVectorInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
| 2336 | |
| 2337 | //===----------------------------------------------------------------------===// |
| 2338 | // ExtractValueInst Class |
| 2339 | //===----------------------------------------------------------------------===// |
| 2340 | |
| 2341 | /// This instruction extracts a struct member or array |
| 2342 | /// element value from an aggregate value. |
| 2343 | /// |
| 2344 | class ExtractValueInst : public UnaryInstruction { |
| 2345 | SmallVector<unsigned, 4> Indices; |
| 2346 | |
| 2347 | ExtractValueInst(const ExtractValueInst &EVI); |
| 2348 | |
| 2349 | /// Constructors - Create a extractvalue instruction with a base aggregate |
| 2350 | /// value and a list of indices. The first ctor can optionally insert before |
| 2351 | /// an existing instruction, the second appends the new instruction to the |
| 2352 | /// specified BasicBlock. |
| 2353 | inline ExtractValueInst(Value *Agg, |
| 2354 | ArrayRef<unsigned> Idxs, |
| 2355 | const Twine &NameStr, |
| 2356 | Instruction *InsertBefore); |
| 2357 | inline ExtractValueInst(Value *Agg, |
| 2358 | ArrayRef<unsigned> Idxs, |
| 2359 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 2360 | |
| 2361 | void init(ArrayRef<unsigned> Idxs, const Twine &NameStr); |
| 2362 | |
| 2363 | protected: |
| 2364 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 2365 | friend class Instruction; |
| 2366 | |
| 2367 | ExtractValueInst *cloneImpl() const; |
| 2368 | |
| 2369 | public: |
| 2370 | static ExtractValueInst *Create(Value *Agg, |
| 2371 | ArrayRef<unsigned> Idxs, |
| 2372 | const Twine &NameStr = "", |
| 2373 | Instruction *InsertBefore = nullptr) { |
| 2374 | return new |
| 2375 | ExtractValueInst(Agg, Idxs, NameStr, InsertBefore); |
| 2376 | } |
| 2377 | |
| 2378 | static ExtractValueInst *Create(Value *Agg, |
| 2379 | ArrayRef<unsigned> Idxs, |
| 2380 | const Twine &NameStr, |
| 2381 | BasicBlock *InsertAtEnd) { |
| 2382 | return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd); |
| 2383 | } |
| 2384 | |
| 2385 | /// Returns the type of the element that would be extracted |
| 2386 | /// with an extractvalue instruction with the specified parameters. |
| 2387 | /// |
| 2388 | /// Null is returned if the indices are invalid for the specified type. |
| 2389 | static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs); |
| 2390 | |
| 2391 | using idx_iterator = const unsigned*; |
| 2392 | |
| 2393 | inline idx_iterator idx_begin() const { return Indices.begin(); } |
| 2394 | inline idx_iterator idx_end() const { return Indices.end(); } |
| 2395 | inline iterator_range<idx_iterator> indices() const { |
| 2396 | return make_range(idx_begin(), idx_end()); |
| 2397 | } |
| 2398 | |
| 2399 | Value *getAggregateOperand() { |
| 2400 | return getOperand(0); |
| 2401 | } |
| 2402 | const Value *getAggregateOperand() const { |
| 2403 | return getOperand(0); |
| 2404 | } |
| 2405 | static unsigned getAggregateOperandIndex() { |
| 2406 | return 0U; // get index for modifying correct operand |
| 2407 | } |
| 2408 | |
| 2409 | ArrayRef<unsigned> getIndices() const { |
| 2410 | return Indices; |
| 2411 | } |
| 2412 | |
| 2413 | unsigned getNumIndices() const { |
| 2414 | return (unsigned)Indices.size(); |
| 2415 | } |
| 2416 | |
| 2417 | bool hasIndices() const { |
| 2418 | return true; |
| 2419 | } |
| 2420 | |
| 2421 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 2422 | static bool classof(const Instruction *I) { |
| 2423 | return I->getOpcode() == Instruction::ExtractValue; |
| 2424 | } |
| 2425 | static bool classof(const Value *V) { |
| 2426 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 2427 | } |
| 2428 | }; |
| 2429 | |
| 2430 | ExtractValueInst::ExtractValueInst(Value *Agg, |
| 2431 | ArrayRef<unsigned> Idxs, |
| 2432 | const Twine &NameStr, |
| 2433 | Instruction *InsertBefore) |
| 2434 | : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)), |
| 2435 | ExtractValue, Agg, InsertBefore) { |
| 2436 | init(Idxs, NameStr); |
| 2437 | } |
| 2438 | |
| 2439 | ExtractValueInst::ExtractValueInst(Value *Agg, |
| 2440 | ArrayRef<unsigned> Idxs, |
| 2441 | const Twine &NameStr, |
| 2442 | BasicBlock *InsertAtEnd) |
| 2443 | : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)), |
| 2444 | ExtractValue, Agg, InsertAtEnd) { |
| 2445 | init(Idxs, NameStr); |
| 2446 | } |
| 2447 | |
| 2448 | //===----------------------------------------------------------------------===// |
| 2449 | // InsertValueInst Class |
| 2450 | //===----------------------------------------------------------------------===// |
| 2451 | |
| 2452 | /// This instruction inserts a struct field of array element |
| 2453 | /// value into an aggregate value. |
| 2454 | /// |
| 2455 | class InsertValueInst : public Instruction { |
| 2456 | SmallVector<unsigned, 4> Indices; |
| 2457 | |
| 2458 | InsertValueInst(const InsertValueInst &IVI); |
| 2459 | |
| 2460 | /// Constructors - Create a insertvalue instruction with a base aggregate |
| 2461 | /// value, a value to insert, and a list of indices. The first ctor can |
| 2462 | /// optionally insert before an existing instruction, the second appends |
| 2463 | /// the new instruction to the specified BasicBlock. |
| 2464 | inline InsertValueInst(Value *Agg, Value *Val, |
| 2465 | ArrayRef<unsigned> Idxs, |
| 2466 | const Twine &NameStr, |
| 2467 | Instruction *InsertBefore); |
| 2468 | inline InsertValueInst(Value *Agg, Value *Val, |
| 2469 | ArrayRef<unsigned> Idxs, |
| 2470 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 2471 | |
| 2472 | /// Constructors - These two constructors are convenience methods because one |
| 2473 | /// and two index insertvalue instructions are so common. |
| 2474 | InsertValueInst(Value *Agg, Value *Val, unsigned Idx, |
| 2475 | const Twine &NameStr = "", |
| 2476 | Instruction *InsertBefore = nullptr); |
| 2477 | InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr, |
| 2478 | BasicBlock *InsertAtEnd); |
| 2479 | |
| 2480 | void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, |
| 2481 | const Twine &NameStr); |
| 2482 | |
| 2483 | protected: |
| 2484 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 2485 | friend class Instruction; |
| 2486 | |
| 2487 | InsertValueInst *cloneImpl() const; |
| 2488 | |
| 2489 | public: |
| 2490 | // allocate space for exactly two operands |
| 2491 | void *operator new(size_t S) { return User::operator new(S, 2); } |
| 2492 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 2493 | |
| 2494 | static InsertValueInst *Create(Value *Agg, Value *Val, |
| 2495 | ArrayRef<unsigned> Idxs, |
| 2496 | const Twine &NameStr = "", |
| 2497 | Instruction *InsertBefore = nullptr) { |
| 2498 | return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore); |
| 2499 | } |
| 2500 | |
| 2501 | static InsertValueInst *Create(Value *Agg, Value *Val, |
| 2502 | ArrayRef<unsigned> Idxs, |
| 2503 | const Twine &NameStr, |
| 2504 | BasicBlock *InsertAtEnd) { |
| 2505 | return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd); |
| 2506 | } |
| 2507 | |
| 2508 | /// Transparently provide more efficient getOperand methods. |
| 2509 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 2510 | |
| 2511 | using idx_iterator = const unsigned*; |
| 2512 | |
| 2513 | inline idx_iterator idx_begin() const { return Indices.begin(); } |
| 2514 | inline idx_iterator idx_end() const { return Indices.end(); } |
| 2515 | inline iterator_range<idx_iterator> indices() const { |
| 2516 | return make_range(idx_begin(), idx_end()); |
| 2517 | } |
| 2518 | |
| 2519 | Value *getAggregateOperand() { |
| 2520 | return getOperand(0); |
| 2521 | } |
| 2522 | const Value *getAggregateOperand() const { |
| 2523 | return getOperand(0); |
| 2524 | } |
| 2525 | static unsigned getAggregateOperandIndex() { |
| 2526 | return 0U; // get index for modifying correct operand |
| 2527 | } |
| 2528 | |
| 2529 | Value *getInsertedValueOperand() { |
| 2530 | return getOperand(1); |
| 2531 | } |
| 2532 | const Value *getInsertedValueOperand() const { |
| 2533 | return getOperand(1); |
| 2534 | } |
| 2535 | static unsigned getInsertedValueOperandIndex() { |
| 2536 | return 1U; // get index for modifying correct operand |
| 2537 | } |
| 2538 | |
| 2539 | ArrayRef<unsigned> getIndices() const { |
| 2540 | return Indices; |
| 2541 | } |
| 2542 | |
| 2543 | unsigned getNumIndices() const { |
| 2544 | return (unsigned)Indices.size(); |
| 2545 | } |
| 2546 | |
| 2547 | bool hasIndices() const { |
| 2548 | return true; |
| 2549 | } |
| 2550 | |
| 2551 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 2552 | static bool classof(const Instruction *I) { |
| 2553 | return I->getOpcode() == Instruction::InsertValue; |
| 2554 | } |
| 2555 | static bool classof(const Value *V) { |
| 2556 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 2557 | } |
| 2558 | }; |
| 2559 | |
| 2560 | template <> |
| 2561 | struct OperandTraits<InsertValueInst> : |
| 2562 | public FixedNumOperandTraits<InsertValueInst, 2> { |
| 2563 | }; |
| 2564 | |
| 2565 | InsertValueInst::InsertValueInst(Value *Agg, |
| 2566 | Value *Val, |
| 2567 | ArrayRef<unsigned> Idxs, |
| 2568 | const Twine &NameStr, |
| 2569 | Instruction *InsertBefore) |
| 2570 | : Instruction(Agg->getType(), InsertValue, |
| 2571 | OperandTraits<InsertValueInst>::op_begin(this), |
| 2572 | 2, InsertBefore) { |
| 2573 | init(Agg, Val, Idxs, NameStr); |
| 2574 | } |
| 2575 | |
| 2576 | InsertValueInst::InsertValueInst(Value *Agg, |
| 2577 | Value *Val, |
| 2578 | ArrayRef<unsigned> Idxs, |
| 2579 | const Twine &NameStr, |
| 2580 | BasicBlock *InsertAtEnd) |
| 2581 | : Instruction(Agg->getType(), InsertValue, |
| 2582 | OperandTraits<InsertValueInst>::op_begin(this), |
| 2583 | 2, InsertAtEnd) { |
| 2584 | init(Agg, Val, Idxs, NameStr); |
| 2585 | } |
| 2586 | |
| 2587 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)InsertValueInst::op_iterator InsertValueInst::op_begin() { return OperandTraits<InsertValueInst>::op_begin(this); } InsertValueInst ::const_op_iterator InsertValueInst::op_begin() const { return OperandTraits<InsertValueInst>::op_begin(const_cast< InsertValueInst*>(this)); } InsertValueInst::op_iterator InsertValueInst ::op_end() { return OperandTraits<InsertValueInst>::op_end (this); } InsertValueInst::const_op_iterator InsertValueInst:: op_end() const { return OperandTraits<InsertValueInst>:: op_end(const_cast<InsertValueInst*>(this)); } Value *InsertValueInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<InsertValueInst>::op_begin (const_cast<InsertValueInst*>(this))[i_nocapture].get() ); } void InsertValueInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<InsertValueInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned InsertValueInst::getNumOperands() const { return OperandTraits <InsertValueInst>::operands(this); } template <int Idx_nocapture > Use &InsertValueInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &InsertValueInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
| 2588 | |
| 2589 | //===----------------------------------------------------------------------===// |
| 2590 | // PHINode Class |
| 2591 | //===----------------------------------------------------------------------===// |
| 2592 | |
| 2593 | // PHINode - The PHINode class is used to represent the magical mystical PHI |
| 2594 | // node, that can not exist in nature, but can be synthesized in a computer |
| 2595 | // scientist's overactive imagination. |
| 2596 | // |
| 2597 | class PHINode : public Instruction { |
| 2598 | /// The number of operands actually allocated. NumOperands is |
| 2599 | /// the number actually in use. |
| 2600 | unsigned ReservedSpace; |
| 2601 | |
| 2602 | PHINode(const PHINode &PN); |
| 2603 | |
| 2604 | explicit PHINode(Type *Ty, unsigned NumReservedValues, |
| 2605 | const Twine &NameStr = "", |
| 2606 | Instruction *InsertBefore = nullptr) |
| 2607 | : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore), |
| 2608 | ReservedSpace(NumReservedValues) { |
| 2609 | assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")((void)0); |
| 2610 | setName(NameStr); |
| 2611 | allocHungoffUses(ReservedSpace); |
| 2612 | } |
| 2613 | |
| 2614 | PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr, |
| 2615 | BasicBlock *InsertAtEnd) |
| 2616 | : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd), |
| 2617 | ReservedSpace(NumReservedValues) { |
| 2618 | assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")((void)0); |
| 2619 | setName(NameStr); |
| 2620 | allocHungoffUses(ReservedSpace); |
| 2621 | } |
| 2622 | |
| 2623 | protected: |
| 2624 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 2625 | friend class Instruction; |
| 2626 | |
| 2627 | PHINode *cloneImpl() const; |
| 2628 | |
| 2629 | // allocHungoffUses - this is more complicated than the generic |
| 2630 | // User::allocHungoffUses, because we have to allocate Uses for the incoming |
| 2631 | // values and pointers to the incoming blocks, all in one allocation. |
| 2632 | void allocHungoffUses(unsigned N) { |
| 2633 | User::allocHungoffUses(N, /* IsPhi */ true); |
| 2634 | } |
| 2635 | |
| 2636 | public: |
| 2637 | /// Constructors - NumReservedValues is a hint for the number of incoming |
| 2638 | /// edges that this phi node will have (use 0 if you really have no idea). |
| 2639 | static PHINode *Create(Type *Ty, unsigned NumReservedValues, |
| 2640 | const Twine &NameStr = "", |
| 2641 | Instruction *InsertBefore = nullptr) { |
| 2642 | return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore); |
| 2643 | } |
| 2644 | |
| 2645 | static PHINode *Create(Type *Ty, unsigned NumReservedValues, |
| 2646 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 2647 | return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd); |
| 2648 | } |
| 2649 | |
| 2650 | /// Provide fast operand accessors |
| 2651 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 2652 | |
| 2653 | // Block iterator interface. This provides access to the list of incoming |
| 2654 | // basic blocks, which parallels the list of incoming values. |
| 2655 | |
| 2656 | using block_iterator = BasicBlock **; |
| 2657 | using const_block_iterator = BasicBlock * const *; |
| 2658 | |
| 2659 | block_iterator block_begin() { |
| 2660 | return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace); |
| 2661 | } |
| 2662 | |
| 2663 | const_block_iterator block_begin() const { |
| 2664 | return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace); |
| 2665 | } |
| 2666 | |
| 2667 | block_iterator block_end() { |
| 2668 | return block_begin() + getNumOperands(); |
| 2669 | } |
| 2670 | |
| 2671 | const_block_iterator block_end() const { |
| 2672 | return block_begin() + getNumOperands(); |
| 2673 | } |
| 2674 | |
| 2675 | iterator_range<block_iterator> blocks() { |
| 2676 | return make_range(block_begin(), block_end()); |
| 2677 | } |
| 2678 | |
| 2679 | iterator_range<const_block_iterator> blocks() const { |
| 2680 | return make_range(block_begin(), block_end()); |
| 2681 | } |
| 2682 | |
| 2683 | op_range incoming_values() { return operands(); } |
| 2684 | |
| 2685 | const_op_range incoming_values() const { return operands(); } |
| 2686 | |
| 2687 | /// Return the number of incoming edges |
| 2688 | /// |
| 2689 | unsigned getNumIncomingValues() const { return getNumOperands(); } |
| 2690 | |
| 2691 | /// Return incoming value number x |
| 2692 | /// |
| 2693 | Value *getIncomingValue(unsigned i) const { |
| 2694 | return getOperand(i); |
| 2695 | } |
| 2696 | void setIncomingValue(unsigned i, Value *V) { |
| 2697 | assert(V && "PHI node got a null value!")((void)0); |
| 2698 | assert(getType() == V->getType() &&((void)0) |
| 2699 | "All operands to PHI node must be the same type as the PHI node!")((void)0); |
| 2700 | setOperand(i, V); |
| 2701 | } |
| 2702 | |
| 2703 | static unsigned getOperandNumForIncomingValue(unsigned i) { |
| 2704 | return i; |
| 2705 | } |
| 2706 | |
| 2707 | static unsigned getIncomingValueNumForOperand(unsigned i) { |
| 2708 | return i; |
| 2709 | } |
| 2710 | |
| 2711 | /// Return incoming basic block number @p i. |
| 2712 | /// |
| 2713 | BasicBlock *getIncomingBlock(unsigned i) const { |
| 2714 | return block_begin()[i]; |
| 2715 | } |
| 2716 | |
| 2717 | /// Return incoming basic block corresponding |
| 2718 | /// to an operand of the PHI. |
| 2719 | /// |
| 2720 | BasicBlock *getIncomingBlock(const Use &U) const { |
| 2721 | assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?")((void)0); |
| 2722 | return getIncomingBlock(unsigned(&U - op_begin())); |
| 2723 | } |
| 2724 | |
| 2725 | /// Return incoming basic block corresponding |
| 2726 | /// to value use iterator. |
| 2727 | /// |
| 2728 | BasicBlock *getIncomingBlock(Value::const_user_iterator I) const { |
| 2729 | return getIncomingBlock(I.getUse()); |
| 2730 | } |
| 2731 | |
| 2732 | void setIncomingBlock(unsigned i, BasicBlock *BB) { |
| 2733 | assert(BB && "PHI node got a null basic block!")((void)0); |
| 2734 | block_begin()[i] = BB; |
| 2735 | } |
| 2736 | |
| 2737 | /// Replace every incoming basic block \p Old to basic block \p New. |
| 2738 | void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) { |
| 2739 | assert(New && Old && "PHI node got a null basic block!")((void)0); |
| 2740 | for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op) |
| 2741 | if (getIncomingBlock(Op) == Old) |
| 2742 | setIncomingBlock(Op, New); |
| 2743 | } |
| 2744 | |
| 2745 | /// Add an incoming value to the end of the PHI list |
| 2746 | /// |
| 2747 | void addIncoming(Value *V, BasicBlock *BB) { |
| 2748 | if (getNumOperands() == ReservedSpace) |
| 2749 | growOperands(); // Get more space! |
| 2750 | // Initialize some new operands. |
| 2751 | setNumHungOffUseOperands(getNumOperands() + 1); |
| 2752 | setIncomingValue(getNumOperands() - 1, V); |
| 2753 | setIncomingBlock(getNumOperands() - 1, BB); |
| 2754 | } |
| 2755 | |
| 2756 | /// Remove an incoming value. This is useful if a |
| 2757 | /// predecessor basic block is deleted. The value removed is returned. |
| 2758 | /// |
| 2759 | /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty |
| 2760 | /// is true), the PHI node is destroyed and any uses of it are replaced with |
| 2761 | /// dummy values. The only time there should be zero incoming values to a PHI |
| 2762 | /// node is when the block is dead, so this strategy is sound. |
| 2763 | /// |
| 2764 | Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true); |
| 2765 | |
| 2766 | Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) { |
| 2767 | int Idx = getBasicBlockIndex(BB); |
| 2768 | assert(Idx >= 0 && "Invalid basic block argument to remove!")((void)0); |
| 2769 | return removeIncomingValue(Idx, DeletePHIIfEmpty); |
| 2770 | } |
| 2771 | |
| 2772 | /// Return the first index of the specified basic |
| 2773 | /// block in the value list for this PHI. Returns -1 if no instance. |
| 2774 | /// |
| 2775 | int getBasicBlockIndex(const BasicBlock *BB) const { |
| 2776 | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) |
| 2777 | if (block_begin()[i] == BB) |
| 2778 | return i; |
| 2779 | return -1; |
| 2780 | } |
| 2781 | |
| 2782 | Value *getIncomingValueForBlock(const BasicBlock *BB) const { |
| 2783 | int Idx = getBasicBlockIndex(BB); |
| 2784 | assert(Idx >= 0 && "Invalid basic block argument!")((void)0); |
| 2785 | return getIncomingValue(Idx); |
| 2786 | } |
| 2787 | |
| 2788 | /// Set every incoming value(s) for block \p BB to \p V. |
| 2789 | void setIncomingValueForBlock(const BasicBlock *BB, Value *V) { |
| 2790 | assert(BB && "PHI node got a null basic block!")((void)0); |
| 2791 | bool Found = false; |
| 2792 | for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op) |
| 2793 | if (getIncomingBlock(Op) == BB) { |
| 2794 | Found = true; |
| 2795 | setIncomingValue(Op, V); |
| 2796 | } |
| 2797 | (void)Found; |
| 2798 | assert(Found && "Invalid basic block argument to set!")((void)0); |
| 2799 | } |
| 2800 | |
| 2801 | /// If the specified PHI node always merges together the |
| 2802 | /// same value, return the value, otherwise return null. |
| 2803 | Value *hasConstantValue() const; |
| 2804 | |
| 2805 | /// Whether the specified PHI node always merges |
| 2806 | /// together the same value, assuming undefs are equal to a unique |
| 2807 | /// non-undef value. |
| 2808 | bool hasConstantOrUndefValue() const; |
| 2809 | |
| 2810 | /// If the PHI node is complete which means all of its parent's predecessors |
| 2811 | /// have incoming value in this PHI, return true, otherwise return false. |
| 2812 | bool isComplete() const { |
| 2813 | return llvm::all_of(predecessors(getParent()), |
| 2814 | [this](const BasicBlock *Pred) { |
| 2815 | return getBasicBlockIndex(Pred) >= 0; |
| 2816 | }); |
| 2817 | } |
| 2818 | |
| 2819 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 2820 | static bool classof(const Instruction *I) { |
| 2821 | return I->getOpcode() == Instruction::PHI; |
| 2822 | } |
| 2823 | static bool classof(const Value *V) { |
| 2824 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 2825 | } |
| 2826 | |
| 2827 | private: |
| 2828 | void growOperands(); |
| 2829 | }; |
| 2830 | |
| 2831 | template <> |
| 2832 | struct OperandTraits<PHINode> : public HungoffOperandTraits<2> { |
| 2833 | }; |
| 2834 | |
| 2835 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)PHINode::op_iterator PHINode::op_begin() { return OperandTraits <PHINode>::op_begin(this); } PHINode::const_op_iterator PHINode::op_begin() const { return OperandTraits<PHINode> ::op_begin(const_cast<PHINode*>(this)); } PHINode::op_iterator PHINode::op_end() { return OperandTraits<PHINode>::op_end (this); } PHINode::const_op_iterator PHINode::op_end() const { return OperandTraits<PHINode>::op_end(const_cast<PHINode *>(this)); } Value *PHINode::getOperand(unsigned i_nocapture ) const { ((void)0); return cast_or_null<Value>( OperandTraits <PHINode>::op_begin(const_cast<PHINode*>(this))[i_nocapture ].get()); } void PHINode::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<PHINode>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned PHINode::getNumOperands () const { return OperandTraits<PHINode>::operands(this ); } template <int Idx_nocapture> Use &PHINode::Op( ) { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &PHINode::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
| 2836 | |
| 2837 | //===----------------------------------------------------------------------===// |
| 2838 | // LandingPadInst Class |
| 2839 | //===----------------------------------------------------------------------===// |
| 2840 | |
| 2841 | //===--------------------------------------------------------------------------- |
| 2842 | /// The landingpad instruction holds all of the information |
| 2843 | /// necessary to generate correct exception handling. The landingpad instruction |
| 2844 | /// cannot be moved from the top of a landing pad block, which itself is |
| 2845 | /// accessible only from the 'unwind' edge of an invoke. This uses the |
| 2846 | /// SubclassData field in Value to store whether or not the landingpad is a |
| 2847 | /// cleanup. |
| 2848 | /// |
| 2849 | class LandingPadInst : public Instruction { |
| 2850 | using CleanupField = BoolBitfieldElementT<0>; |
| 2851 | |
| 2852 | /// The number of operands actually allocated. NumOperands is |
| 2853 | /// the number actually in use. |
| 2854 | unsigned ReservedSpace; |
| 2855 | |
| 2856 | LandingPadInst(const LandingPadInst &LP); |
| 2857 | |
| 2858 | public: |
| 2859 | enum ClauseType { Catch, Filter }; |
| 2860 | |
| 2861 | private: |
| 2862 | explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues, |
| 2863 | const Twine &NameStr, Instruction *InsertBefore); |
| 2864 | explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues, |
| 2865 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 2866 | |
| 2867 | // Allocate space for exactly zero operands. |
| 2868 | void *operator new(size_t S) { return User::operator new(S); } |
| 2869 | |
| 2870 | void growOperands(unsigned Size); |
| 2871 | void init(unsigned NumReservedValues, const Twine &NameStr); |
| 2872 | |
| 2873 | protected: |
| 2874 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 2875 | friend class Instruction; |
| 2876 | |
| 2877 | LandingPadInst *cloneImpl() const; |
| 2878 | |
| 2879 | public: |
| 2880 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 2881 | |
| 2882 | /// Constructors - NumReservedClauses is a hint for the number of incoming |
| 2883 | /// clauses that this landingpad will have (use 0 if you really have no idea). |
| 2884 | static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses, |
| 2885 | const Twine &NameStr = "", |
| 2886 | Instruction *InsertBefore = nullptr); |
| 2887 | static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses, |
| 2888 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 2889 | |
| 2890 | /// Provide fast operand accessors |
| 2891 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 2892 | |
| 2893 | /// Return 'true' if this landingpad instruction is a |
| 2894 | /// cleanup. I.e., it should be run when unwinding even if its landing pad |
| 2895 | /// doesn't catch the exception. |
| 2896 | bool isCleanup() const { return getSubclassData<CleanupField>(); } |
| 2897 | |
| 2898 | /// Indicate that this landingpad instruction is a cleanup. |
| 2899 | void setCleanup(bool V) { setSubclassData<CleanupField>(V); } |
| 2900 | |
| 2901 | /// Add a catch or filter clause to the landing pad. |
| 2902 | void addClause(Constant *ClauseVal); |
| 2903 | |
| 2904 | /// Get the value of the clause at index Idx. Use isCatch/isFilter to |
| 2905 | /// determine what type of clause this is. |
| 2906 | Constant *getClause(unsigned Idx) const { |
| 2907 | return cast<Constant>(getOperandList()[Idx]); |
| 2908 | } |
| 2909 | |
| 2910 | /// Return 'true' if the clause and index Idx is a catch clause. |
| 2911 | bool isCatch(unsigned Idx) const { |
| 2912 | return !isa<ArrayType>(getOperandList()[Idx]->getType()); |
| 2913 | } |
| 2914 | |
| 2915 | /// Return 'true' if the clause and index Idx is a filter clause. |
| 2916 | bool isFilter(unsigned Idx) const { |
| 2917 | return isa<ArrayType>(getOperandList()[Idx]->getType()); |
| 2918 | } |
| 2919 | |
| 2920 | /// Get the number of clauses for this landing pad. |
| 2921 | unsigned getNumClauses() const { return getNumOperands(); } |
| 2922 | |
| 2923 | /// Grow the size of the operand list to accommodate the new |
| 2924 | /// number of clauses. |
| 2925 | void reserveClauses(unsigned Size) { growOperands(Size); } |
| 2926 | |
| 2927 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 2928 | static bool classof(const Instruction *I) { |
| 2929 | return I->getOpcode() == Instruction::LandingPad; |
| 2930 | } |
| 2931 | static bool classof(const Value *V) { |
| 2932 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 2933 | } |
| 2934 | }; |
| 2935 | |
| 2936 | template <> |
| 2937 | struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> { |
| 2938 | }; |
| 2939 | |
| 2940 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)LandingPadInst::op_iterator LandingPadInst::op_begin() { return OperandTraits<LandingPadInst>::op_begin(this); } LandingPadInst ::const_op_iterator LandingPadInst::op_begin() const { return OperandTraits<LandingPadInst>::op_begin(const_cast< LandingPadInst*>(this)); } LandingPadInst::op_iterator LandingPadInst ::op_end() { return OperandTraits<LandingPadInst>::op_end (this); } LandingPadInst::const_op_iterator LandingPadInst::op_end () const { return OperandTraits<LandingPadInst>::op_end (const_cast<LandingPadInst*>(this)); } Value *LandingPadInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<LandingPadInst>::op_begin( const_cast<LandingPadInst*>(this))[i_nocapture].get()); } void LandingPadInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<LandingPadInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned LandingPadInst::getNumOperands() const { return OperandTraits <LandingPadInst>::operands(this); } template <int Idx_nocapture > Use &LandingPadInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &LandingPadInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
| 2941 | |
| 2942 | //===----------------------------------------------------------------------===// |
| 2943 | // ReturnInst Class |
| 2944 | //===----------------------------------------------------------------------===// |
| 2945 | |
| 2946 | //===--------------------------------------------------------------------------- |
| 2947 | /// Return a value (possibly void), from a function. Execution |
| 2948 | /// does not continue in this function any longer. |
| 2949 | /// |
| 2950 | class ReturnInst : public Instruction { |
| 2951 | ReturnInst(const ReturnInst &RI); |
| 2952 | |
| 2953 | private: |
| 2954 | // ReturnInst constructors: |
| 2955 | // ReturnInst() - 'ret void' instruction |
| 2956 | // ReturnInst( null) - 'ret void' instruction |
| 2957 | // ReturnInst(Value* X) - 'ret X' instruction |
| 2958 | // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I |
| 2959 | // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I |
| 2960 | // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B |
| 2961 | // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B |
| 2962 | // |
| 2963 | // NOTE: If the Value* passed is of type void then the constructor behaves as |
| 2964 | // if it was passed NULL. |
| 2965 | explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr, |
| 2966 | Instruction *InsertBefore = nullptr); |
| 2967 | ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd); |
| 2968 | explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd); |
| 2969 | |
| 2970 | protected: |
| 2971 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 2972 | friend class Instruction; |
| 2973 | |
| 2974 | ReturnInst *cloneImpl() const; |
| 2975 | |
| 2976 | public: |
| 2977 | static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr, |
| 2978 | Instruction *InsertBefore = nullptr) { |
| 2979 | return new(!!retVal) ReturnInst(C, retVal, InsertBefore); |
| 2980 | } |
| 2981 | |
| 2982 | static ReturnInst* Create(LLVMContext &C, Value *retVal, |
| 2983 | BasicBlock *InsertAtEnd) { |
| 2984 | return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd); |
| 2985 | } |
| 2986 | |
| 2987 | static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) { |
| 2988 | return new(0) ReturnInst(C, InsertAtEnd); |
| 2989 | } |
| 2990 | |
| 2991 | /// Provide fast operand accessors |
| 2992 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 2993 | |
| 2994 | /// Convenience accessor. Returns null if there is no return value. |
| 2995 | Value *getReturnValue() const { |
| 2996 | return getNumOperands() != 0 ? getOperand(0) : nullptr; |
| 2997 | } |
| 2998 | |
| 2999 | unsigned getNumSuccessors() const { return 0; } |
| 3000 | |
| 3001 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 3002 | static bool classof(const Instruction *I) { |
| 3003 | return (I->getOpcode() == Instruction::Ret); |
| 3004 | } |
| 3005 | static bool classof(const Value *V) { |
| 3006 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 3007 | } |
| 3008 | |
| 3009 | private: |
| 3010 | BasicBlock *getSuccessor(unsigned idx) const { |
| 3011 | llvm_unreachable("ReturnInst has no successors!")__builtin_unreachable(); |
| 3012 | } |
| 3013 | |
| 3014 | void setSuccessor(unsigned idx, BasicBlock *B) { |
| 3015 | llvm_unreachable("ReturnInst has no successors!")__builtin_unreachable(); |
| 3016 | } |
| 3017 | }; |
| 3018 | |
| 3019 | template <> |
| 3020 | struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> { |
| 3021 | }; |
| 3022 | |
| 3023 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)ReturnInst::op_iterator ReturnInst::op_begin() { return OperandTraits <ReturnInst>::op_begin(this); } ReturnInst::const_op_iterator ReturnInst::op_begin() const { return OperandTraits<ReturnInst >::op_begin(const_cast<ReturnInst*>(this)); } ReturnInst ::op_iterator ReturnInst::op_end() { return OperandTraits< ReturnInst>::op_end(this); } ReturnInst::const_op_iterator ReturnInst::op_end() const { return OperandTraits<ReturnInst >::op_end(const_cast<ReturnInst*>(this)); } Value *ReturnInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<ReturnInst>::op_begin(const_cast <ReturnInst*>(this))[i_nocapture].get()); } void ReturnInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<ReturnInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned ReturnInst::getNumOperands() const { return OperandTraits<ReturnInst>::operands(this); } template <int Idx_nocapture> Use &ReturnInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &ReturnInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
| 3024 | |
| 3025 | //===----------------------------------------------------------------------===// |
| 3026 | // BranchInst Class |
| 3027 | //===----------------------------------------------------------------------===// |
| 3028 | |
| 3029 | //===--------------------------------------------------------------------------- |
| 3030 | /// Conditional or Unconditional Branch instruction. |
| 3031 | /// |
| 3032 | class BranchInst : public Instruction { |
| 3033 | /// Ops list - Branches are strange. The operands are ordered: |
| 3034 | /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because |
| 3035 | /// they don't have to check for cond/uncond branchness. These are mostly |
| 3036 | /// accessed relative from op_end(). |
| 3037 | BranchInst(const BranchInst &BI); |
| 3038 | // BranchInst constructors (where {B, T, F} are blocks, and C is a condition): |
| 3039 | // BranchInst(BB *B) - 'br B' |
| 3040 | // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F' |
| 3041 | // BranchInst(BB* B, Inst *I) - 'br B' insert before I |
| 3042 | // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I |
| 3043 | // BranchInst(BB* B, BB *I) - 'br B' insert at end |
| 3044 | // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end |
| 3045 | explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr); |
| 3046 | BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, |
| 3047 | Instruction *InsertBefore = nullptr); |
| 3048 | BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd); |
| 3049 | BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, |
| 3050 | BasicBlock *InsertAtEnd); |
| 3051 | |
| 3052 | void AssertOK(); |
| 3053 | |
| 3054 | protected: |
| 3055 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 3056 | friend class Instruction; |
| 3057 | |
| 3058 | BranchInst *cloneImpl() const; |
| 3059 | |
| 3060 | public: |
| 3061 | /// Iterator type that casts an operand to a basic block. |
| 3062 | /// |
| 3063 | /// This only makes sense because the successors are stored as adjacent |
| 3064 | /// operands for branch instructions. |
| 3065 | struct succ_op_iterator |
| 3066 | : iterator_adaptor_base<succ_op_iterator, value_op_iterator, |
| 3067 | std::random_access_iterator_tag, BasicBlock *, |
| 3068 | ptrdiff_t, BasicBlock *, BasicBlock *> { |
| 3069 | explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {} |
| 3070 | |
| 3071 | BasicBlock *operator*() const { return cast<BasicBlock>(*I); } |
| 3072 | BasicBlock *operator->() const { return operator*(); } |
| 3073 | }; |
| 3074 | |
| 3075 | /// The const version of `succ_op_iterator`. |
| 3076 | struct const_succ_op_iterator |
| 3077 | : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator, |
| 3078 | std::random_access_iterator_tag, |
| 3079 | const BasicBlock *, ptrdiff_t, const BasicBlock *, |
| 3080 | const BasicBlock *> { |
| 3081 | explicit const_succ_op_iterator(const_value_op_iterator I) |
| 3082 | : iterator_adaptor_base(I) {} |
| 3083 | |
| 3084 | const BasicBlock *operator*() const { return cast<BasicBlock>(*I); } |
| 3085 | const BasicBlock *operator->() const { return operator*(); } |
| 3086 | }; |
| 3087 | |
| 3088 | static BranchInst *Create(BasicBlock *IfTrue, |
| 3089 | Instruction *InsertBefore = nullptr) { |
| 3090 | return new(1) BranchInst(IfTrue, InsertBefore); |
| 3091 | } |
| 3092 | |
| 3093 | static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, |
| 3094 | Value *Cond, Instruction *InsertBefore = nullptr) { |
| 3095 | return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore); |
| 3096 | } |
| 3097 | |
| 3098 | static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) { |
| 3099 | return new(1) BranchInst(IfTrue, InsertAtEnd); |
| 3100 | } |
| 3101 | |
| 3102 | static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, |
| 3103 | Value *Cond, BasicBlock *InsertAtEnd) { |
| 3104 | return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd); |
| 3105 | } |
| 3106 | |
| 3107 | /// Transparently provide more efficient getOperand methods. |
| 3108 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 3109 | |
| 3110 | bool isUnconditional() const { return getNumOperands() == 1; } |
| 3111 | bool isConditional() const { return getNumOperands() == 3; } |
| 3112 | |
| 3113 | Value *getCondition() const { |
| 3114 | assert(isConditional() && "Cannot get condition of an uncond branch!")((void)0); |
| 3115 | return Op<-3>(); |
| 3116 | } |
| 3117 | |
| 3118 | void setCondition(Value *V) { |
| 3119 | assert(isConditional() && "Cannot set condition of unconditional branch!")((void)0); |
| 3120 | Op<-3>() = V; |
| 3121 | } |
| 3122 | |
| 3123 | unsigned getNumSuccessors() const { return 1+isConditional(); } |
| 3124 | |
| 3125 | BasicBlock *getSuccessor(unsigned i) const { |
| 3126 | assert(i < getNumSuccessors() && "Successor # out of range for Branch!")((void)0); |
| 3127 | return cast_or_null<BasicBlock>((&Op<-1>() - i)->get()); |
| 3128 | } |
| 3129 | |
| 3130 | void setSuccessor(unsigned idx, BasicBlock *NewSucc) { |
| 3131 | assert(idx < getNumSuccessors() && "Successor # out of range for Branch!")((void)0); |
| 3132 | *(&Op<-1>() - idx) = NewSucc; |
| 3133 | } |
| 3134 | |
| 3135 | /// Swap the successors of this branch instruction. |
| 3136 | /// |
| 3137 | /// Swaps the successors of the branch instruction. This also swaps any |
| 3138 | /// branch weight metadata associated with the instruction so that it |
| 3139 | /// continues to map correctly to each operand. |
| 3140 | void swapSuccessors(); |
| 3141 | |
| 3142 | iterator_range<succ_op_iterator> successors() { |
| 3143 | return make_range( |
| 3144 | succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)), |
| 3145 | succ_op_iterator(value_op_end())); |
| 3146 | } |
| 3147 | |
| 3148 | iterator_range<const_succ_op_iterator> successors() const { |
| 3149 | return make_range(const_succ_op_iterator( |
| 3150 | std::next(value_op_begin(), isConditional() ? 1 : 0)), |
| 3151 | const_succ_op_iterator(value_op_end())); |
| 3152 | } |
| 3153 | |
| 3154 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 3155 | static bool classof(const Instruction *I) { |
| 3156 | return (I->getOpcode() == Instruction::Br); |
| 3157 | } |
| 3158 | static bool classof(const Value *V) { |
| 3159 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 3160 | } |
| 3161 | }; |
| 3162 | |
| 3163 | template <> |
| 3164 | struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> { |
| 3165 | }; |
| 3166 | |
| 3167 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)BranchInst::op_iterator BranchInst::op_begin() { return OperandTraits <BranchInst>::op_begin(this); } BranchInst::const_op_iterator BranchInst::op_begin() const { return OperandTraits<BranchInst >::op_begin(const_cast<BranchInst*>(this)); } BranchInst ::op_iterator BranchInst::op_end() { return OperandTraits< BranchInst>::op_end(this); } BranchInst::const_op_iterator BranchInst::op_end() const { return OperandTraits<BranchInst >::op_end(const_cast<BranchInst*>(this)); } Value *BranchInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<BranchInst>::op_begin(const_cast <BranchInst*>(this))[i_nocapture].get()); } void BranchInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<BranchInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned BranchInst::getNumOperands() const { return OperandTraits<BranchInst>::operands(this); } template <int Idx_nocapture> Use &BranchInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &BranchInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
| 3168 | |
| 3169 | //===----------------------------------------------------------------------===// |
| 3170 | // SwitchInst Class |
| 3171 | //===----------------------------------------------------------------------===// |
| 3172 | |
| 3173 | //===--------------------------------------------------------------------------- |
| 3174 | /// Multiway switch |
| 3175 | /// |
| 3176 | class SwitchInst : public Instruction { |
| 3177 | unsigned ReservedSpace; |
| 3178 | |
| 3179 | // Operand[0] = Value to switch on |
| 3180 | // Operand[1] = Default basic block destination |
| 3181 | // Operand[2n ] = Value to match |
| 3182 | // Operand[2n+1] = BasicBlock to go to on match |
| 3183 | SwitchInst(const SwitchInst &SI); |
| 3184 | |
| 3185 | /// Create a new switch instruction, specifying a value to switch on and a |
| 3186 | /// default destination. The number of additional cases can be specified here |
| 3187 | /// to make memory allocation more efficient. This constructor can also |
| 3188 | /// auto-insert before another instruction. |
| 3189 | SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, |
| 3190 | Instruction *InsertBefore); |
| 3191 | |
| 3192 | /// Create a new switch instruction, specifying a value to switch on and a |
| 3193 | /// default destination. The number of additional cases can be specified here |
| 3194 | /// to make memory allocation more efficient. This constructor also |
| 3195 | /// auto-inserts at the end of the specified BasicBlock. |
| 3196 | SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, |
| 3197 | BasicBlock *InsertAtEnd); |
| 3198 | |
| 3199 | // allocate space for exactly zero operands |
| 3200 | void *operator new(size_t S) { return User::operator new(S); } |
| 3201 | |
| 3202 | void init(Value *Value, BasicBlock *Default, unsigned NumReserved); |
| 3203 | void growOperands(); |
| 3204 | |
| 3205 | protected: |
| 3206 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 3207 | friend class Instruction; |
| 3208 | |
| 3209 | SwitchInst *cloneImpl() const; |
| 3210 | |
| 3211 | public: |
| 3212 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 3213 | |
| 3214 | // -2 |
| 3215 | static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1); |
| 3216 | |
| 3217 | template <typename CaseHandleT> class CaseIteratorImpl; |
| 3218 | |
| 3219 | /// A handle to a particular switch case. It exposes a convenient interface |
| 3220 | /// to both the case value and the successor block. |
| 3221 | /// |
| 3222 | /// We define this as a template and instantiate it to form both a const and |
| 3223 | /// non-const handle. |
| 3224 | template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT> |
| 3225 | class CaseHandleImpl { |
| 3226 | // Directly befriend both const and non-const iterators. |
| 3227 | friend class SwitchInst::CaseIteratorImpl< |
| 3228 | CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>; |
| 3229 | |
| 3230 | protected: |
| 3231 | // Expose the switch type we're parameterized with to the iterator. |
| 3232 | using SwitchInstType = SwitchInstT; |
| 3233 | |
| 3234 | SwitchInstT *SI; |
| 3235 | ptrdiff_t Index; |
| 3236 | |
| 3237 | CaseHandleImpl() = default; |
| 3238 | CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {} |
| 3239 | |
| 3240 | public: |
| 3241 | /// Resolves case value for current case. |
| 3242 | ConstantIntT *getCaseValue() const { |
| 3243 | assert((unsigned)Index < SI->getNumCases() &&((void)0) |
| 3244 | "Index out the number of cases.")((void)0); |
| 3245 | return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2)); |
| 3246 | } |
| 3247 | |
| 3248 | /// Resolves successor for current case. |
| 3249 | BasicBlockT *getCaseSuccessor() const { |
| 3250 | assert(((unsigned)Index < SI->getNumCases() ||((void)0) |
| 3251 | (unsigned)Index == DefaultPseudoIndex) &&((void)0) |
| 3252 | "Index out the number of cases.")((void)0); |
| 3253 | return SI->getSuccessor(getSuccessorIndex()); |
| 3254 | } |
| 3255 | |
| 3256 | /// Returns number of current case. |
| 3257 | unsigned getCaseIndex() const { return Index; } |
| 3258 | |
| 3259 | /// Returns successor index for current case successor. |
| 3260 | unsigned getSuccessorIndex() const { |
| 3261 | assert(((unsigned)Index == DefaultPseudoIndex ||((void)0) |
| 3262 | (unsigned)Index < SI->getNumCases()) &&((void)0) |
| 3263 | "Index out the number of cases.")((void)0); |
| 3264 | return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0; |
| 3265 | } |
| 3266 | |
| 3267 | bool operator==(const CaseHandleImpl &RHS) const { |
| 3268 | assert(SI == RHS.SI && "Incompatible operators.")((void)0); |
| 3269 | return Index == RHS.Index; |
| 3270 | } |
| 3271 | }; |
| 3272 | |
| 3273 | using ConstCaseHandle = |
| 3274 | CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>; |
| 3275 | |
| 3276 | class CaseHandle |
| 3277 | : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> { |
| 3278 | friend class SwitchInst::CaseIteratorImpl<CaseHandle>; |
| 3279 | |
| 3280 | public: |
| 3281 | CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {} |
| 3282 | |
| 3283 | /// Sets the new value for current case. |
| 3284 | void setValue(ConstantInt *V) { |
| 3285 | assert((unsigned)Index < SI->getNumCases() &&((void)0) |
| 3286 | "Index out the number of cases.")((void)0); |
| 3287 | SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V)); |
| 3288 | } |
| 3289 | |
| 3290 | /// Sets the new successor for current case. |
| 3291 | void setSuccessor(BasicBlock *S) { |
| 3292 | SI->setSuccessor(getSuccessorIndex(), S); |
| 3293 | } |
| 3294 | }; |
| 3295 | |
| 3296 | template <typename CaseHandleT> |
| 3297 | class CaseIteratorImpl |
| 3298 | : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>, |
| 3299 | std::random_access_iterator_tag, |
| 3300 | CaseHandleT> { |
| 3301 | using SwitchInstT = typename CaseHandleT::SwitchInstType; |
| 3302 | |
| 3303 | CaseHandleT Case; |
| 3304 | |
| 3305 | public: |
| 3306 | /// Default constructed iterator is in an invalid state until assigned to |
| 3307 | /// a case for a particular switch. |
| 3308 | CaseIteratorImpl() = default; |
| 3309 | |
| 3310 | /// Initializes case iterator for given SwitchInst and for given |
| 3311 | /// case number. |
| 3312 | CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {} |
| 3313 | |
| 3314 | /// Initializes case iterator for given SwitchInst and for given |
| 3315 | /// successor index. |
| 3316 | static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI, |
| 3317 | unsigned SuccessorIndex) { |
| 3318 | assert(SuccessorIndex < SI->getNumSuccessors() &&((void)0) |
| 3319 | "Successor index # out of range!")((void)0); |
| 3320 | return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1) |
| 3321 | : CaseIteratorImpl(SI, DefaultPseudoIndex); |
| 3322 | } |
| 3323 | |
| 3324 | /// Support converting to the const variant. This will be a no-op for const |
| 3325 | /// variant. |
| 3326 | operator CaseIteratorImpl<ConstCaseHandle>() const { |
| 3327 | return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index); |
| 3328 | } |
| 3329 | |
| 3330 | CaseIteratorImpl &operator+=(ptrdiff_t N) { |
| 3331 | // Check index correctness after addition. |
| 3332 | // Note: Index == getNumCases() means end(). |
| 3333 | assert(Case.Index + N >= 0 &&((void)0) |
| 3334 | (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&((void)0) |
| 3335 | "Case.Index out the number of cases.")((void)0); |
| 3336 | Case.Index += N; |
| 3337 | return *this; |
| 3338 | } |
| 3339 | CaseIteratorImpl &operator-=(ptrdiff_t N) { |
| 3340 | // Check index correctness after subtraction. |
| 3341 | // Note: Case.Index == getNumCases() means end(). |
| 3342 | assert(Case.Index - N >= 0 &&((void)0) |
| 3343 | (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&((void)0) |
| 3344 | "Case.Index out the number of cases.")((void)0); |
| 3345 | Case.Index -= N; |
| 3346 | return *this; |
| 3347 | } |
| 3348 | ptrdiff_t operator-(const CaseIteratorImpl &RHS) const { |
| 3349 | assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((void)0); |
| 3350 | return Case.Index - RHS.Case.Index; |
| 3351 | } |
| 3352 | bool operator==(const CaseIteratorImpl &RHS) const { |
| 3353 | return Case == RHS.Case; |
| 3354 | } |
| 3355 | bool operator<(const CaseIteratorImpl &RHS) const { |
| 3356 | assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((void)0); |
| 3357 | return Case.Index < RHS.Case.Index; |
| 3358 | } |
| 3359 | CaseHandleT &operator*() { return Case; } |
| 3360 | const CaseHandleT &operator*() const { return Case; } |
| 3361 | }; |
| 3362 | |
| 3363 | using CaseIt = CaseIteratorImpl<CaseHandle>; |
| 3364 | using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>; |
| 3365 | |
| 3366 | static SwitchInst *Create(Value *Value, BasicBlock *Default, |
| 3367 | unsigned NumCases, |
| 3368 | Instruction *InsertBefore = nullptr) { |
| 3369 | return new SwitchInst(Value, Default, NumCases, InsertBefore); |
| 3370 | } |
| 3371 | |
| 3372 | static SwitchInst *Create(Value *Value, BasicBlock *Default, |
| 3373 | unsigned NumCases, BasicBlock *InsertAtEnd) { |
| 3374 | return new SwitchInst(Value, Default, NumCases, InsertAtEnd); |
| 3375 | } |
| 3376 | |
| 3377 | /// Provide fast operand accessors |
| 3378 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 3379 | |
| 3380 | // Accessor Methods for Switch stmt |
| 3381 | Value *getCondition() const { return getOperand(0); } |
| 3382 | void setCondition(Value *V) { setOperand(0, V); } |
| 3383 | |
| 3384 | BasicBlock *getDefaultDest() const { |
| 3385 | return cast<BasicBlock>(getOperand(1)); |
| 3386 | } |
| 3387 | |
| 3388 | void setDefaultDest(BasicBlock *DefaultCase) { |
| 3389 | setOperand(1, reinterpret_cast<Value*>(DefaultCase)); |
| 3390 | } |
| 3391 | |
| 3392 | /// Return the number of 'cases' in this switch instruction, excluding the |
| 3393 | /// default case. |
| 3394 | unsigned getNumCases() const { |
| 3395 | return getNumOperands()/2 - 1; |
| 3396 | } |
| 3397 | |
| 3398 | /// Returns a read/write iterator that points to the first case in the |
| 3399 | /// SwitchInst. |
| 3400 | CaseIt case_begin() { |
| 3401 | return CaseIt(this, 0); |
| 3402 | } |
| 3403 | |
| 3404 | /// Returns a read-only iterator that points to the first case in the |
| 3405 | /// SwitchInst. |
| 3406 | ConstCaseIt case_begin() const { |
| 3407 | return ConstCaseIt(this, 0); |
| 3408 | } |
| 3409 | |
| 3410 | /// Returns a read/write iterator that points one past the last in the |
| 3411 | /// SwitchInst. |
| 3412 | CaseIt case_end() { |
| 3413 | return CaseIt(this, getNumCases()); |
| 3414 | } |
| 3415 | |
| 3416 | /// Returns a read-only iterator that points one past the last in the |
| 3417 | /// SwitchInst. |
| 3418 | ConstCaseIt case_end() const { |
| 3419 | return ConstCaseIt(this, getNumCases()); |
| 3420 | } |
| 3421 | |
| 3422 | /// Iteration adapter for range-for loops. |
| 3423 | iterator_range<CaseIt> cases() { |
| 3424 | return make_range(case_begin(), case_end()); |
| 3425 | } |
| 3426 | |
| 3427 | /// Constant iteration adapter for range-for loops. |
| 3428 | iterator_range<ConstCaseIt> cases() const { |
| 3429 | return make_range(case_begin(), case_end()); |
| 3430 | } |
| 3431 | |
| 3432 | /// Returns an iterator that points to the default case. |
| 3433 | /// Note: this iterator allows to resolve successor only. Attempt |
| 3434 | /// to resolve case value causes an assertion. |
| 3435 | /// Also note, that increment and decrement also causes an assertion and |
| 3436 | /// makes iterator invalid. |
| 3437 | CaseIt case_default() { |
| 3438 | return CaseIt(this, DefaultPseudoIndex); |
| 3439 | } |
| 3440 | ConstCaseIt case_default() const { |
| 3441 | return ConstCaseIt(this, DefaultPseudoIndex); |
| 3442 | } |
| 3443 | |
| 3444 | /// Search all of the case values for the specified constant. If it is |
| 3445 | /// explicitly handled, return the case iterator of it, otherwise return |
| 3446 | /// default case iterator to indicate that it is handled by the default |
| 3447 | /// handler. |
| 3448 | CaseIt findCaseValue(const ConstantInt *C) { |
| 3449 | CaseIt I = llvm::find_if( |
| 3450 | cases(), [C](CaseHandle &Case) { return Case.getCaseValue() == C; }); |
| 3451 | if (I != case_end()) |
| 3452 | return I; |
| 3453 | |
| 3454 | return case_default(); |
| 3455 | } |
| 3456 | ConstCaseIt findCaseValue(const ConstantInt *C) const { |
| 3457 | ConstCaseIt I = llvm::find_if(cases(), [C](ConstCaseHandle &Case) { |
| 3458 | return Case.getCaseValue() == C; |
| 3459 | }); |
| 3460 | if (I != case_end()) |
| 3461 | return I; |
| 3462 | |
| 3463 | return case_default(); |
| 3464 | } |
| 3465 | |
| 3466 | /// Finds the unique case value for a given successor. Returns null if the |
| 3467 | /// successor is not found, not unique, or is the default case. |
| 3468 | ConstantInt *findCaseDest(BasicBlock *BB) { |
| 3469 | if (BB == getDefaultDest()) |
| 3470 | return nullptr; |
| 3471 | |
| 3472 | ConstantInt *CI = nullptr; |
| 3473 | for (auto Case : cases()) { |
| 3474 | if (Case.getCaseSuccessor() != BB) |
| 3475 | continue; |
| 3476 | |
| 3477 | if (CI) |
| 3478 | return nullptr; // Multiple cases lead to BB. |
| 3479 | |
| 3480 | CI = Case.getCaseValue(); |
| 3481 | } |
| 3482 | |
| 3483 | return CI; |
| 3484 | } |
| 3485 | |
| 3486 | /// Add an entry to the switch instruction. |
| 3487 | /// Note: |
| 3488 | /// This action invalidates case_end(). Old case_end() iterator will |
| 3489 | /// point to the added case. |
| 3490 | void addCase(ConstantInt *OnVal, BasicBlock *Dest); |
| 3491 | |
| 3492 | /// This method removes the specified case and its successor from the switch |
| 3493 | /// instruction. Note that this operation may reorder the remaining cases at |
| 3494 | /// index idx and above. |
| 3495 | /// Note: |
| 3496 | /// This action invalidates iterators for all cases following the one removed, |
| 3497 | /// including the case_end() iterator. It returns an iterator for the next |
| 3498 | /// case. |
| 3499 | CaseIt removeCase(CaseIt I); |
| 3500 | |
| 3501 | unsigned getNumSuccessors() const { return getNumOperands()/2; } |
| 3502 | BasicBlock *getSuccessor(unsigned idx) const { |
| 3503 | assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!")((void)0); |
| 3504 | return cast<BasicBlock>(getOperand(idx*2+1)); |
| 3505 | } |
| 3506 | void setSuccessor(unsigned idx, BasicBlock *NewSucc) { |
| 3507 | assert(idx < getNumSuccessors() && "Successor # out of range for switch!")((void)0); |
| 3508 | setOperand(idx * 2 + 1, NewSucc); |
| 3509 | } |
| 3510 | |
| 3511 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 3512 | static bool classof(const Instruction *I) { |
| 3513 | return I->getOpcode() == Instruction::Switch; |
| 3514 | } |
| 3515 | static bool classof(const Value *V) { |
| 3516 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 3517 | } |
| 3518 | }; |
| 3519 | |
| 3520 | /// A wrapper class to simplify modification of SwitchInst cases along with |
| 3521 | /// their prof branch_weights metadata. |
| 3522 | class SwitchInstProfUpdateWrapper { |
| 3523 | SwitchInst &SI; |
| 3524 | Optional<SmallVector<uint32_t, 8> > Weights = None; |
| 3525 | bool Changed = false; |
| 3526 | |
| 3527 | protected: |
| 3528 | static MDNode *getProfBranchWeightsMD(const SwitchInst &SI); |
| 3529 | |
| 3530 | MDNode *buildProfBranchWeightsMD(); |
| 3531 | |
| 3532 | void init(); |
| 3533 | |
| 3534 | public: |
| 3535 | using CaseWeightOpt = Optional<uint32_t>; |
| 3536 | SwitchInst *operator->() { return &SI; } |
| 3537 | SwitchInst &operator*() { return SI; } |
| 3538 | operator SwitchInst *() { return &SI; } |
| 3539 | |
| 3540 | SwitchInstProfUpdateWrapper(SwitchInst &SI) : SI(SI) { init(); } |
| 3541 | |
| 3542 | ~SwitchInstProfUpdateWrapper() { |
| 3543 | if (Changed) |
| 3544 | SI.setMetadata(LLVMContext::MD_prof, buildProfBranchWeightsMD()); |
| 3545 | } |
| 3546 | |
| 3547 | /// Delegate the call to the underlying SwitchInst::removeCase() and remove |
| 3548 | /// correspondent branch weight. |
| 3549 | SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I); |
| 3550 | |
| 3551 | /// Delegate the call to the underlying SwitchInst::addCase() and set the |
| 3552 | /// specified branch weight for the added case. |
| 3553 | void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W); |
| 3554 | |
| 3555 | /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark |
| 3556 | /// this object to not touch the underlying SwitchInst in destructor. |
| 3557 | SymbolTableList<Instruction>::iterator eraseFromParent(); |
| 3558 | |
| 3559 | void setSuccessorWeight(unsigned idx, CaseWeightOpt W); |
| 3560 | CaseWeightOpt getSuccessorWeight(unsigned idx); |
| 3561 | |
| 3562 | static CaseWeightOpt getSuccessorWeight(const SwitchInst &SI, unsigned idx); |
| 3563 | }; |
| 3564 | |
| 3565 | template <> |
| 3566 | struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> { |
| 3567 | }; |
| 3568 | |
| 3569 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)SwitchInst::op_iterator SwitchInst::op_begin() { return OperandTraits <SwitchInst>::op_begin(this); } SwitchInst::const_op_iterator SwitchInst::op_begin() const { return OperandTraits<SwitchInst >::op_begin(const_cast<SwitchInst*>(this)); } SwitchInst ::op_iterator SwitchInst::op_end() { return OperandTraits< SwitchInst>::op_end(this); } SwitchInst::const_op_iterator SwitchInst::op_end() const { return OperandTraits<SwitchInst >::op_end(const_cast<SwitchInst*>(this)); } Value *SwitchInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<SwitchInst>::op_begin(const_cast <SwitchInst*>(this))[i_nocapture].get()); } void SwitchInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<SwitchInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned SwitchInst::getNumOperands() const { return OperandTraits<SwitchInst>::operands(this); } template <int Idx_nocapture> Use &SwitchInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &SwitchInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
| 3570 | |
| 3571 | //===----------------------------------------------------------------------===// |
| 3572 | // IndirectBrInst Class |
| 3573 | //===----------------------------------------------------------------------===// |
| 3574 | |
| 3575 | //===--------------------------------------------------------------------------- |
| 3576 | /// Indirect Branch Instruction. |
| 3577 | /// |
| 3578 | class IndirectBrInst : public Instruction { |
| 3579 | unsigned ReservedSpace; |
| 3580 | |
| 3581 | // Operand[0] = Address to jump to |
| 3582 | // Operand[n+1] = n-th destination |
| 3583 | IndirectBrInst(const IndirectBrInst &IBI); |
| 3584 | |
| 3585 | /// Create a new indirectbr instruction, specifying an |
| 3586 | /// Address to jump to. The number of expected destinations can be specified |
| 3587 | /// here to make memory allocation more efficient. This constructor can also |
| 3588 | /// autoinsert before another instruction. |
| 3589 | IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore); |
| 3590 | |
| 3591 | /// Create a new indirectbr instruction, specifying an |
| 3592 | /// Address to jump to. The number of expected destinations can be specified |
| 3593 | /// here to make memory allocation more efficient. This constructor also |
| 3594 | /// autoinserts at the end of the specified BasicBlock. |
| 3595 | IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd); |
| 3596 | |
| 3597 | // allocate space for exactly zero operands |
| 3598 | void *operator new(size_t S) { return User::operator new(S); } |
| 3599 | |
| 3600 | void init(Value *Address, unsigned NumDests); |
| 3601 | void growOperands(); |
| 3602 | |
| 3603 | protected: |
| 3604 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 3605 | friend class Instruction; |
| 3606 | |
| 3607 | IndirectBrInst *cloneImpl() const; |
| 3608 | |
| 3609 | public: |
| 3610 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 3611 | |
| 3612 | /// Iterator type that casts an operand to a basic block. |
| 3613 | /// |
| 3614 | /// This only makes sense because the successors are stored as adjacent |
| 3615 | /// operands for indirectbr instructions. |
| 3616 | struct succ_op_iterator |
| 3617 | : iterator_adaptor_base<succ_op_iterator, value_op_iterator, |
| 3618 | std::random_access_iterator_tag, BasicBlock *, |
| 3619 | ptrdiff_t, BasicBlock *, BasicBlock *> { |
| 3620 | explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {} |
| 3621 | |
| 3622 | BasicBlock *operator*() const { return cast<BasicBlock>(*I); } |
| 3623 | BasicBlock *operator->() const { return operator*(); } |
| 3624 | }; |
| 3625 | |
| 3626 | /// The const version of `succ_op_iterator`. |
| 3627 | struct const_succ_op_iterator |
| 3628 | : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator, |
| 3629 | std::random_access_iterator_tag, |
| 3630 | const BasicBlock *, ptrdiff_t, const BasicBlock *, |
| 3631 | const BasicBlock *> { |
| 3632 | explicit const_succ_op_iterator(const_value_op_iterator I) |
| 3633 | : iterator_adaptor_base(I) {} |
| 3634 | |
| 3635 | const BasicBlock *operator*() const { return cast<BasicBlock>(*I); } |
| 3636 | const BasicBlock *operator->() const { return operator*(); } |
| 3637 | }; |
| 3638 | |
| 3639 | static IndirectBrInst *Create(Value *Address, unsigned NumDests, |
| 3640 | Instruction *InsertBefore = nullptr) { |
| 3641 | return new IndirectBrInst(Address, NumDests, InsertBefore); |
| 3642 | } |
| 3643 | |
| 3644 | static IndirectBrInst *Create(Value *Address, unsigned NumDests, |
| 3645 | BasicBlock *InsertAtEnd) { |
| 3646 | return new IndirectBrInst(Address, NumDests, InsertAtEnd); |
| 3647 | } |
| 3648 | |
| 3649 | /// Provide fast operand accessors. |
| 3650 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 3651 | |
| 3652 | // Accessor Methods for IndirectBrInst instruction. |
| 3653 | Value *getAddress() { return getOperand(0); } |
| 3654 | const Value *getAddress() const { return getOperand(0); } |
| 3655 | void setAddress(Value *V) { setOperand(0, V); } |
| 3656 | |
| 3657 | /// return the number of possible destinations in this |
| 3658 | /// indirectbr instruction. |
| 3659 | unsigned getNumDestinations() const { return getNumOperands()-1; } |
| 3660 | |
| 3661 | /// Return the specified destination. |
| 3662 | BasicBlock *getDestination(unsigned i) { return getSuccessor(i); } |
| 3663 | const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); } |
| 3664 | |
| 3665 | /// Add a destination. |
| 3666 | /// |
| 3667 | void addDestination(BasicBlock *Dest); |
| 3668 | |
| 3669 | /// This method removes the specified successor from the |
| 3670 | /// indirectbr instruction. |
| 3671 | void removeDestination(unsigned i); |
| 3672 | |
| 3673 | unsigned getNumSuccessors() const { return getNumOperands()-1; } |
| 3674 | BasicBlock *getSuccessor(unsigned i) const { |
| 3675 | return cast<BasicBlock>(getOperand(i+1)); |
| 3676 | } |
| 3677 | void setSuccessor(unsigned i, BasicBlock *NewSucc) { |
| 3678 | setOperand(i + 1, NewSucc); |
| 3679 | } |
| 3680 | |
| 3681 | iterator_range<succ_op_iterator> successors() { |
| 3682 | return make_range(succ_op_iterator(std::next(value_op_begin())), |
| 3683 | succ_op_iterator(value_op_end())); |
| 3684 | } |
| 3685 | |
| 3686 | iterator_range<const_succ_op_iterator> successors() const { |
| 3687 | return make_range(const_succ_op_iterator(std::next(value_op_begin())), |
| 3688 | const_succ_op_iterator(value_op_end())); |
| 3689 | } |
| 3690 | |
| 3691 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 3692 | static bool classof(const Instruction *I) { |
| 3693 | return I->getOpcode() == Instruction::IndirectBr; |
| 3694 | } |
| 3695 | static bool classof(const Value *V) { |
| 3696 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 3697 | } |
| 3698 | }; |
| 3699 | |
| 3700 | template <> |
| 3701 | struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> { |
| 3702 | }; |
| 3703 | |
| 3704 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)IndirectBrInst::op_iterator IndirectBrInst::op_begin() { return OperandTraits<IndirectBrInst>::op_begin(this); } IndirectBrInst ::const_op_iterator IndirectBrInst::op_begin() const { return OperandTraits<IndirectBrInst>::op_begin(const_cast< IndirectBrInst*>(this)); } IndirectBrInst::op_iterator IndirectBrInst ::op_end() { return OperandTraits<IndirectBrInst>::op_end (this); } IndirectBrInst::const_op_iterator IndirectBrInst::op_end () const { return OperandTraits<IndirectBrInst>::op_end (const_cast<IndirectBrInst*>(this)); } Value *IndirectBrInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<IndirectBrInst>::op_begin( const_cast<IndirectBrInst*>(this))[i_nocapture].get()); } void IndirectBrInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<IndirectBrInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned IndirectBrInst::getNumOperands() const { return OperandTraits <IndirectBrInst>::operands(this); } template <int Idx_nocapture > Use &IndirectBrInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &IndirectBrInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
| 3705 | |
| 3706 | //===----------------------------------------------------------------------===// |
| 3707 | // InvokeInst Class |
| 3708 | //===----------------------------------------------------------------------===// |
| 3709 | |
| 3710 | /// Invoke instruction. The SubclassData field is used to hold the |
| 3711 | /// calling convention of the call. |
| 3712 | /// |
| 3713 | class InvokeInst : public CallBase { |
| 3714 | /// The number of operands for this call beyond the called function, |
| 3715 | /// arguments, and operand bundles. |
| 3716 | static constexpr int NumExtraOperands = 2; |
| 3717 | |
| 3718 | /// The index from the end of the operand array to the normal destination. |
| 3719 | static constexpr int NormalDestOpEndIdx = -3; |
| 3720 | |
| 3721 | /// The index from the end of the operand array to the unwind destination. |
| 3722 | static constexpr int UnwindDestOpEndIdx = -2; |
| 3723 | |
| 3724 | InvokeInst(const InvokeInst &BI); |
| 3725 | |
| 3726 | /// Construct an InvokeInst given a range of arguments. |
| 3727 | /// |
| 3728 | /// Construct an InvokeInst from a range of arguments |
| 3729 | inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3730 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3731 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 3732 | const Twine &NameStr, Instruction *InsertBefore); |
| 3733 | |
| 3734 | inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3735 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3736 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 3737 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 3738 | |
| 3739 | void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3740 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3741 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr); |
| 3742 | |
| 3743 | /// Compute the number of operands to allocate. |
| 3744 | static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) { |
| 3745 | // We need one operand for the called function, plus our extra operands and |
| 3746 | // the input operand counts provided. |
| 3747 | return 1 + NumExtraOperands + NumArgs + NumBundleInputs; |
| 3748 | } |
| 3749 | |
| 3750 | protected: |
| 3751 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 3752 | friend class Instruction; |
| 3753 | |
| 3754 | InvokeInst *cloneImpl() const; |
| 3755 | |
| 3756 | public: |
| 3757 | static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3758 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3759 | const Twine &NameStr, |
| 3760 | Instruction *InsertBefore = nullptr) { |
| 3761 | int NumOperands = ComputeNumOperands(Args.size()); |
| 3762 | return new (NumOperands) |
| 3763 | InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands, |
| 3764 | NameStr, InsertBefore); |
| 3765 | } |
| 3766 | |
| 3767 | static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3768 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3769 | ArrayRef<OperandBundleDef> Bundles = None, |
| 3770 | const Twine &NameStr = "", |
| 3771 | Instruction *InsertBefore = nullptr) { |
| 3772 | int NumOperands = |
| 3773 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); |
| 3774 | unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
| 3775 | |
| 3776 | return new (NumOperands, DescriptorBytes) |
| 3777 | InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands, |
| 3778 | NameStr, InsertBefore); |
| 3779 | } |
| 3780 | |
| 3781 | static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3782 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3783 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 3784 | int NumOperands = ComputeNumOperands(Args.size()); |
| 3785 | return new (NumOperands) |
| 3786 | InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands, |
| 3787 | NameStr, InsertAtEnd); |
| 3788 | } |
| 3789 | |
| 3790 | static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3791 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3792 | ArrayRef<OperandBundleDef> Bundles, |
| 3793 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 3794 | int NumOperands = |
| 3795 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); |
| 3796 | unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
| 3797 | |
| 3798 | return new (NumOperands, DescriptorBytes) |
| 3799 | InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands, |
| 3800 | NameStr, InsertAtEnd); |
| 3801 | } |
| 3802 | |
| 3803 | static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, |
| 3804 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3805 | const Twine &NameStr, |
| 3806 | Instruction *InsertBefore = nullptr) { |
| 3807 | return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, |
| 3808 | IfException, Args, None, NameStr, InsertBefore); |
| 3809 | } |
| 3810 | |
| 3811 | static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, |
| 3812 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3813 | ArrayRef<OperandBundleDef> Bundles = None, |
| 3814 | const Twine &NameStr = "", |
| 3815 | Instruction *InsertBefore = nullptr) { |
| 3816 | return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, |
| 3817 | IfException, Args, Bundles, NameStr, InsertBefore); |
| 3818 | } |
| 3819 | |
| 3820 | static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, |
| 3821 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3822 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 3823 | return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, |
| 3824 | IfException, Args, NameStr, InsertAtEnd); |
| 3825 | } |
| 3826 | |
| 3827 | static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, |
| 3828 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3829 | ArrayRef<OperandBundleDef> Bundles, |
| 3830 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 3831 | return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, |
| 3832 | IfException, Args, Bundles, NameStr, InsertAtEnd); |
| 3833 | } |
| 3834 | |
| 3835 | /// Create a clone of \p II with a different set of operand bundles and |
| 3836 | /// insert it before \p InsertPt. |
| 3837 | /// |
| 3838 | /// The returned invoke instruction is identical to \p II in every way except |
| 3839 | /// that the operand bundles for the new instruction are set to the operand |
| 3840 | /// bundles in \p Bundles. |
| 3841 | static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles, |
| 3842 | Instruction *InsertPt = nullptr); |
| 3843 | |
| 3844 | // get*Dest - Return the destination basic blocks... |
| 3845 | BasicBlock *getNormalDest() const { |
| 3846 | return cast<BasicBlock>(Op<NormalDestOpEndIdx>()); |
| 3847 | } |
| 3848 | BasicBlock *getUnwindDest() const { |
| 3849 | return cast<BasicBlock>(Op<UnwindDestOpEndIdx>()); |
| 3850 | } |
| 3851 | void setNormalDest(BasicBlock *B) { |
| 3852 | Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B); |
| 3853 | } |
| 3854 | void setUnwindDest(BasicBlock *B) { |
| 3855 | Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B); |
| 3856 | } |
| 3857 | |
| 3858 | /// Get the landingpad instruction from the landing pad |
| 3859 | /// block (the unwind destination). |
| 3860 | LandingPadInst *getLandingPadInst() const; |
| 3861 | |
| 3862 | BasicBlock *getSuccessor(unsigned i) const { |
| 3863 | assert(i < 2 && "Successor # out of range for invoke!")((void)0); |
| 3864 | return i == 0 ? getNormalDest() : getUnwindDest(); |
| 3865 | } |
| 3866 | |
| 3867 | void setSuccessor(unsigned i, BasicBlock *NewSucc) { |
| 3868 | assert(i < 2 && "Successor # out of range for invoke!")((void)0); |
| 3869 | if (i == 0) |
| 3870 | setNormalDest(NewSucc); |
| 3871 | else |
| 3872 | setUnwindDest(NewSucc); |
| 3873 | } |
| 3874 | |
| 3875 | unsigned getNumSuccessors() const { return 2; } |
| 3876 | |
| 3877 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 3878 | static bool classof(const Instruction *I) { |
| 3879 | return (I->getOpcode() == Instruction::Invoke); |
| 3880 | } |
| 3881 | static bool classof(const Value *V) { |
| 3882 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 3883 | } |
| 3884 | |
| 3885 | private: |
| 3886 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 3887 | // method so that subclasses cannot accidentally use it. |
| 3888 | template <typename Bitfield> |
| 3889 | void setSubclassData(typename Bitfield::Type Value) { |
| 3890 | Instruction::setSubclassData<Bitfield>(Value); |
| 3891 | } |
| 3892 | }; |
| 3893 | |
| 3894 | InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3895 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3896 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 3897 | const Twine &NameStr, Instruction *InsertBefore) |
| 3898 | : CallBase(Ty->getReturnType(), Instruction::Invoke, |
| 3899 | OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, |
| 3900 | InsertBefore) { |
| 3901 | init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr); |
| 3902 | } |
| 3903 | |
| 3904 | InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3905 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3906 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 3907 | const Twine &NameStr, BasicBlock *InsertAtEnd) |
| 3908 | : CallBase(Ty->getReturnType(), Instruction::Invoke, |
| 3909 | OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, |
| 3910 | InsertAtEnd) { |
| 3911 | init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr); |
| 3912 | } |
| 3913 | |
| 3914 | //===----------------------------------------------------------------------===// |
| 3915 | // CallBrInst Class |
| 3916 | //===----------------------------------------------------------------------===// |
| 3917 | |
| 3918 | /// CallBr instruction, tracking function calls that may not return control but |
| 3919 | /// instead transfer it to a third location. The SubclassData field is used to |
| 3920 | /// hold the calling convention of the call. |
| 3921 | /// |
| 3922 | class CallBrInst : public CallBase { |
| 3923 | |
| 3924 | unsigned NumIndirectDests; |
| 3925 | |
| 3926 | CallBrInst(const CallBrInst &BI); |
| 3927 | |
| 3928 | /// Construct a CallBrInst given a range of arguments. |
| 3929 | /// |
| 3930 | /// Construct a CallBrInst from a range of arguments |
| 3931 | inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, |
| 3932 | ArrayRef<BasicBlock *> IndirectDests, |
| 3933 | ArrayRef<Value *> Args, |
| 3934 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 3935 | const Twine &NameStr, Instruction *InsertBefore); |
| 3936 | |
| 3937 | inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, |
| 3938 | ArrayRef<BasicBlock *> IndirectDests, |
| 3939 | ArrayRef<Value *> Args, |
| 3940 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 3941 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 3942 | |
| 3943 | void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest, |
| 3944 | ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args, |
| 3945 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr); |
| 3946 | |
| 3947 | /// Should the Indirect Destinations change, scan + update the Arg list. |
| 3948 | void updateArgBlockAddresses(unsigned i, BasicBlock *B); |
| 3949 | |
| 3950 | /// Compute the number of operands to allocate. |
| 3951 | static int ComputeNumOperands(int NumArgs, int NumIndirectDests, |
| 3952 | int NumBundleInputs = 0) { |
| 3953 | // We need one operand for the called function, plus our extra operands and |
| 3954 | // the input operand counts provided. |
| 3955 | return 2 + NumIndirectDests + NumArgs + NumBundleInputs; |
| 3956 | } |
| 3957 | |
| 3958 | protected: |
| 3959 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 3960 | friend class Instruction; |
| 3961 | |
| 3962 | CallBrInst *cloneImpl() const; |
| 3963 | |
| 3964 | public: |
| 3965 | static CallBrInst *Create(FunctionType *Ty, Value *Func, |
| 3966 | BasicBlock *DefaultDest, |
| 3967 | ArrayRef<BasicBlock *> IndirectDests, |
| 3968 | ArrayRef<Value *> Args, const Twine &NameStr, |
| 3969 | Instruction *InsertBefore = nullptr) { |
| 3970 | int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size()); |
| 3971 | return new (NumOperands) |
| 3972 | CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None, |
| 3973 | NumOperands, NameStr, InsertBefore); |
| 3974 | } |
| 3975 | |
| 3976 | static CallBrInst *Create(FunctionType *Ty, Value *Func, |
| 3977 | BasicBlock *DefaultDest, |
| 3978 | ArrayRef<BasicBlock *> IndirectDests, |
| 3979 | ArrayRef<Value *> Args, |
| 3980 | ArrayRef<OperandBundleDef> Bundles = None, |
| 3981 | const Twine &NameStr = "", |
| 3982 | Instruction *InsertBefore = nullptr) { |
| 3983 | int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(), |
| 3984 | CountBundleInputs(Bundles)); |
| 3985 | unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
| 3986 | |
| 3987 | return new (NumOperands, DescriptorBytes) |
| 3988 | CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, |
| 3989 | NumOperands, NameStr, InsertBefore); |
| 3990 | } |
| 3991 | |
| 3992 | static CallBrInst *Create(FunctionType *Ty, Value *Func, |
| 3993 | BasicBlock *DefaultDest, |
| 3994 | ArrayRef<BasicBlock *> IndirectDests, |
| 3995 | ArrayRef<Value *> Args, const Twine &NameStr, |
| 3996 | BasicBlock *InsertAtEnd) { |
| 3997 | int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size()); |
| 3998 | return new (NumOperands) |
| 3999 | CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None, |
| 4000 | NumOperands, NameStr, InsertAtEnd); |
| 4001 | } |
| 4002 | |
| 4003 | static CallBrInst *Create(FunctionType *Ty, Value *Func, |
| 4004 | BasicBlock *DefaultDest, |
| 4005 | ArrayRef<BasicBlock *> IndirectDests, |
| 4006 | ArrayRef<Value *> Args, |
| 4007 | ArrayRef<OperandBundleDef> Bundles, |
| 4008 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 4009 | int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(), |
| 4010 | CountBundleInputs(Bundles)); |
| 4011 | unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
| 4012 | |
| 4013 | return new (NumOperands, DescriptorBytes) |
| 4014 | CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, |
| 4015 | NumOperands, NameStr, InsertAtEnd); |
| 4016 | } |
| 4017 | |
| 4018 | static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest, |
| 4019 | ArrayRef<BasicBlock *> IndirectDests, |
| 4020 | ArrayRef<Value *> Args, const Twine &NameStr, |
| 4021 | Instruction *InsertBefore = nullptr) { |
| 4022 | return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, |
| 4023 | IndirectDests, Args, NameStr, InsertBefore); |
| 4024 | } |
| 4025 | |
| 4026 | static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest, |
| 4027 | ArrayRef<BasicBlock *> IndirectDests, |
| 4028 | ArrayRef<Value *> Args, |
| 4029 | ArrayRef<OperandBundleDef> Bundles = None, |
| 4030 | const Twine &NameStr = "", |
| 4031 | Instruction *InsertBefore = nullptr) { |
| 4032 | return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, |
| 4033 | IndirectDests, Args, Bundles, NameStr, InsertBefore); |
| 4034 | } |
| 4035 | |
| 4036 | static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest, |
| 4037 | ArrayRef<BasicBlock *> IndirectDests, |
| 4038 | ArrayRef<Value *> Args, const Twine &NameStr, |
| 4039 | BasicBlock *InsertAtEnd) { |
| 4040 | return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, |
| 4041 | IndirectDests, Args, NameStr, InsertAtEnd); |
| 4042 | } |
| 4043 | |
| 4044 | static CallBrInst *Create(FunctionCallee Func, |
| 4045 | BasicBlock *DefaultDest, |
| 4046 | ArrayRef<BasicBlock *> IndirectDests, |
| 4047 | ArrayRef<Value *> Args, |
| 4048 | ArrayRef<OperandBundleDef> Bundles, |
| 4049 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 4050 | return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, |
| 4051 | IndirectDests, Args, Bundles, NameStr, InsertAtEnd); |
| 4052 | } |
| 4053 | |
| 4054 | /// Create a clone of \p CBI with a different set of operand bundles and |
| 4055 | /// insert it before \p InsertPt. |
| 4056 | /// |
| 4057 | /// The returned callbr instruction is identical to \p CBI in every way |
| 4058 | /// except that the operand bundles for the new instruction are set to the |
| 4059 | /// operand bundles in \p Bundles. |
| 4060 | static CallBrInst *Create(CallBrInst *CBI, |
| 4061 | ArrayRef<OperandBundleDef> Bundles, |
| 4062 | Instruction *InsertPt = nullptr); |
| 4063 | |
| 4064 | /// Return the number of callbr indirect dest labels. |
| 4065 | /// |
| 4066 | unsigned getNumIndirectDests() const { return NumIndirectDests; } |
| 4067 | |
| 4068 | /// getIndirectDestLabel - Return the i-th indirect dest label. |
| 4069 | /// |
| 4070 | Value *getIndirectDestLabel(unsigned i) const { |
| 4071 | assert(i < getNumIndirectDests() && "Out of bounds!")((void)0); |
| 4072 | return getOperand(i + getNumArgOperands() + getNumTotalBundleOperands() + |
| 4073 | 1); |
| 4074 | } |
| 4075 | |
| 4076 | Value *getIndirectDestLabelUse(unsigned i) const { |
| 4077 | assert(i < getNumIndirectDests() && "Out of bounds!")((void)0); |
| 4078 | return getOperandUse(i + getNumArgOperands() + getNumTotalBundleOperands() + |
| 4079 | 1); |
| 4080 | } |
| 4081 | |
| 4082 | // Return the destination basic blocks... |
| 4083 | BasicBlock *getDefaultDest() const { |
| 4084 | return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1)); |
| 4085 | } |
| 4086 | BasicBlock *getIndirectDest(unsigned i) const { |
| 4087 | return cast_or_null<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() + i)); |
| 4088 | } |
| 4089 | SmallVector<BasicBlock *, 16> getIndirectDests() const { |
| 4090 | SmallVector<BasicBlock *, 16> IndirectDests; |
| 4091 | for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i) |
| 4092 | IndirectDests.push_back(getIndirectDest(i)); |
| 4093 | return IndirectDests; |
| 4094 | } |
| 4095 | void setDefaultDest(BasicBlock *B) { |
| 4096 | *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B); |
| 4097 | } |
| 4098 | void setIndirectDest(unsigned i, BasicBlock *B) { |
| 4099 | updateArgBlockAddresses(i, B); |
| 4100 | *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B); |
| 4101 | } |
| 4102 | |
| 4103 | BasicBlock *getSuccessor(unsigned i) const { |
| 4104 | assert(i < getNumSuccessors() + 1 &&((void)0) |
| 4105 | "Successor # out of range for callbr!")((void)0); |
| 4106 | return i == 0 ? getDefaultDest() : getIndirectDest(i - 1); |
| 4107 | } |
| 4108 | |
| 4109 | void setSuccessor(unsigned i, BasicBlock *NewSucc) { |
| 4110 | assert(i < getNumIndirectDests() + 1 &&((void)0) |
| 4111 | "Successor # out of range for callbr!")((void)0); |
| 4112 | return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc); |
| 4113 | } |
| 4114 | |
| 4115 | unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; } |
| 4116 | |
| 4117 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4118 | static bool classof(const Instruction *I) { |
| 4119 | return (I->getOpcode() == Instruction::CallBr); |
| 4120 | } |
| 4121 | static bool classof(const Value *V) { |
| 4122 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4123 | } |
| 4124 | |
| 4125 | private: |
| 4126 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 4127 | // method so that subclasses cannot accidentally use it. |
| 4128 | template <typename Bitfield> |
| 4129 | void setSubclassData(typename Bitfield::Type Value) { |
| 4130 | Instruction::setSubclassData<Bitfield>(Value); |
| 4131 | } |
| 4132 | }; |
| 4133 | |
| 4134 | CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, |
| 4135 | ArrayRef<BasicBlock *> IndirectDests, |
| 4136 | ArrayRef<Value *> Args, |
| 4137 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 4138 | const Twine &NameStr, Instruction *InsertBefore) |
| 4139 | : CallBase(Ty->getReturnType(), Instruction::CallBr, |
| 4140 | OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, |
| 4141 | InsertBefore) { |
| 4142 | init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr); |
| 4143 | } |
| 4144 | |
| 4145 | CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, |
| 4146 | ArrayRef<BasicBlock *> IndirectDests, |
| 4147 | ArrayRef<Value *> Args, |
| 4148 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 4149 | const Twine &NameStr, BasicBlock *InsertAtEnd) |
| 4150 | : CallBase(Ty->getReturnType(), Instruction::CallBr, |
| 4151 | OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, |
| 4152 | InsertAtEnd) { |
| 4153 | init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr); |
| 4154 | } |
| 4155 | |
| 4156 | //===----------------------------------------------------------------------===// |
| 4157 | // ResumeInst Class |
| 4158 | //===----------------------------------------------------------------------===// |
| 4159 | |
| 4160 | //===--------------------------------------------------------------------------- |
| 4161 | /// Resume the propagation of an exception. |
| 4162 | /// |
| 4163 | class ResumeInst : public Instruction { |
| 4164 | ResumeInst(const ResumeInst &RI); |
| 4165 | |
| 4166 | explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr); |
| 4167 | ResumeInst(Value *Exn, BasicBlock *InsertAtEnd); |
| 4168 | |
| 4169 | protected: |
| 4170 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4171 | friend class Instruction; |
| 4172 | |
| 4173 | ResumeInst *cloneImpl() const; |
| 4174 | |
| 4175 | public: |
| 4176 | static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) { |
| 4177 | return new(1) ResumeInst(Exn, InsertBefore); |
| 4178 | } |
| 4179 | |
| 4180 | static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) { |
| 4181 | return new(1) ResumeInst(Exn, InsertAtEnd); |
| 4182 | } |
| 4183 | |
| 4184 | /// Provide fast operand accessors |
| 4185 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 4186 | |
| 4187 | /// Convenience accessor. |
| 4188 | Value *getValue() const { return Op<0>(); } |
| 4189 | |
| 4190 | unsigned getNumSuccessors() const { return 0; } |
| 4191 | |
| 4192 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4193 | static bool classof(const Instruction *I) { |
| 4194 | return I->getOpcode() == Instruction::Resume; |
| 4195 | } |
| 4196 | static bool classof(const Value *V) { |
| 4197 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4198 | } |
| 4199 | |
| 4200 | private: |
| 4201 | BasicBlock *getSuccessor(unsigned idx) const { |
| 4202 | llvm_unreachable("ResumeInst has no successors!")__builtin_unreachable(); |
| 4203 | } |
| 4204 | |
| 4205 | void setSuccessor(unsigned idx, BasicBlock *NewSucc) { |
| 4206 | llvm_unreachable("ResumeInst has no successors!")__builtin_unreachable(); |
| 4207 | } |
| 4208 | }; |
| 4209 | |
| 4210 | template <> |
| 4211 | struct OperandTraits<ResumeInst> : |
| 4212 | public FixedNumOperandTraits<ResumeInst, 1> { |
| 4213 | }; |
| 4214 | |
| 4215 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)ResumeInst::op_iterator ResumeInst::op_begin() { return OperandTraits <ResumeInst>::op_begin(this); } ResumeInst::const_op_iterator ResumeInst::op_begin() const { return OperandTraits<ResumeInst >::op_begin(const_cast<ResumeInst*>(this)); } ResumeInst ::op_iterator ResumeInst::op_end() { return OperandTraits< ResumeInst>::op_end(this); } ResumeInst::const_op_iterator ResumeInst::op_end() const { return OperandTraits<ResumeInst >::op_end(const_cast<ResumeInst*>(this)); } Value *ResumeInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<ResumeInst>::op_begin(const_cast <ResumeInst*>(this))[i_nocapture].get()); } void ResumeInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<ResumeInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned ResumeInst::getNumOperands() const { return OperandTraits<ResumeInst>::operands(this); } template <int Idx_nocapture> Use &ResumeInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &ResumeInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
| 4216 | |
| 4217 | //===----------------------------------------------------------------------===// |
| 4218 | // CatchSwitchInst Class |
| 4219 | //===----------------------------------------------------------------------===// |
| 4220 | class CatchSwitchInst : public Instruction { |
| 4221 | using UnwindDestField = BoolBitfieldElementT<0>; |
| 4222 | |
| 4223 | /// The number of operands actually allocated. NumOperands is |
| 4224 | /// the number actually in use. |
| 4225 | unsigned ReservedSpace; |
| 4226 | |
| 4227 | // Operand[0] = Outer scope |
| 4228 | // Operand[1] = Unwind block destination |
| 4229 | // Operand[n] = BasicBlock to go to on match |
| 4230 | CatchSwitchInst(const CatchSwitchInst &CSI); |
| 4231 | |
| 4232 | /// Create a new switch instruction, specifying a |
| 4233 | /// default destination. The number of additional handlers can be specified |
| 4234 | /// here to make memory allocation more efficient. |
| 4235 | /// This constructor can also autoinsert before another instruction. |
| 4236 | CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, |
| 4237 | unsigned NumHandlers, const Twine &NameStr, |
| 4238 | Instruction *InsertBefore); |
| 4239 | |
| 4240 | /// Create a new switch instruction, specifying a |
| 4241 | /// default destination. The number of additional handlers can be specified |
| 4242 | /// here to make memory allocation more efficient. |
| 4243 | /// This constructor also autoinserts at the end of the specified BasicBlock. |
| 4244 | CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, |
| 4245 | unsigned NumHandlers, const Twine &NameStr, |
| 4246 | BasicBlock *InsertAtEnd); |
| 4247 | |
| 4248 | // allocate space for exactly zero operands |
| 4249 | void *operator new(size_t S) { return User::operator new(S); } |
| 4250 | |
| 4251 | void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved); |
| 4252 | void growOperands(unsigned Size); |
| 4253 | |
| 4254 | protected: |
| 4255 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4256 | friend class Instruction; |
| 4257 | |
| 4258 | CatchSwitchInst *cloneImpl() const; |
| 4259 | |
| 4260 | public: |
| 4261 | void operator delete(void *Ptr) { return User::operator delete(Ptr); } |
| 4262 | |
| 4263 | static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest, |
| 4264 | unsigned NumHandlers, |
| 4265 | const Twine &NameStr = "", |
| 4266 | Instruction *InsertBefore = nullptr) { |
| 4267 | return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr, |
| 4268 | InsertBefore); |
| 4269 | } |
| 4270 | |
| 4271 | static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest, |
| 4272 | unsigned NumHandlers, const Twine &NameStr, |
| 4273 | BasicBlock *InsertAtEnd) { |
| 4274 | return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr, |
| 4275 | InsertAtEnd); |
| 4276 | } |
| 4277 | |
| 4278 | /// Provide fast operand accessors |
| 4279 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 4280 | |
| 4281 | // Accessor Methods for CatchSwitch stmt |
| 4282 | Value *getParentPad() const { return getOperand(0); } |
| 4283 | void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); } |
| 4284 | |
| 4285 | // Accessor Methods for CatchSwitch stmt |
| 4286 | bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); } |
| 4287 | bool unwindsToCaller() const { return !hasUnwindDest(); } |
| 4288 | BasicBlock *getUnwindDest() const { |
| 4289 | if (hasUnwindDest()) |
| 4290 | return cast<BasicBlock>(getOperand(1)); |
| 4291 | return nullptr; |
| 4292 | } |
| 4293 | void setUnwindDest(BasicBlock *UnwindDest) { |
| 4294 | assert(UnwindDest)((void)0); |
| 4295 | assert(hasUnwindDest())((void)0); |
| 4296 | setOperand(1, UnwindDest); |
| 4297 | } |
| 4298 | |
| 4299 | /// return the number of 'handlers' in this catchswitch |
| 4300 | /// instruction, except the default handler |
| 4301 | unsigned getNumHandlers() const { |
| 4302 | if (hasUnwindDest()) |
| 4303 | return getNumOperands() - 2; |
| 4304 | return getNumOperands() - 1; |
| 4305 | } |
| 4306 | |
| 4307 | private: |
| 4308 | static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); } |
| 4309 | static const BasicBlock *handler_helper(const Value *V) { |
| 4310 | return cast<BasicBlock>(V); |
| 4311 | } |
| 4312 | |
| 4313 | public: |
| 4314 | using DerefFnTy = BasicBlock *(*)(Value *); |
| 4315 | using handler_iterator = mapped_iterator<op_iterator, DerefFnTy>; |
| 4316 | using handler_range = iterator_range<handler_iterator>; |
| 4317 | using ConstDerefFnTy = const BasicBlock *(*)(const Value *); |
| 4318 | using const_handler_iterator = |
| 4319 | mapped_iterator<const_op_iterator, ConstDerefFnTy>; |
| 4320 | using const_handler_range = iterator_range<const_handler_iterator>; |
| 4321 | |
| 4322 | /// Returns an iterator that points to the first handler in CatchSwitchInst. |
| 4323 | handler_iterator handler_begin() { |
| 4324 | op_iterator It = op_begin() + 1; |
| 4325 | if (hasUnwindDest()) |
| 4326 | ++It; |
| 4327 | return handler_iterator(It, DerefFnTy(handler_helper)); |
| 4328 | } |
| 4329 | |
| 4330 | /// Returns an iterator that points to the first handler in the |
| 4331 | /// CatchSwitchInst. |
| 4332 | const_handler_iterator handler_begin() const { |
| 4333 | const_op_iterator It = op_begin() + 1; |
| 4334 | if (hasUnwindDest()) |
| 4335 | ++It; |
| 4336 | return const_handler_iterator(It, ConstDerefFnTy(handler_helper)); |
| 4337 | } |
| 4338 | |
| 4339 | /// Returns a read-only iterator that points one past the last |
| 4340 | /// handler in the CatchSwitchInst. |
| 4341 | handler_iterator handler_end() { |
| 4342 | return handler_iterator(op_end(), DerefFnTy(handler_helper)); |
| 4343 | } |
| 4344 | |
| 4345 | /// Returns an iterator that points one past the last handler in the |
| 4346 | /// CatchSwitchInst. |
| 4347 | const_handler_iterator handler_end() const { |
| 4348 | return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper)); |
| 4349 | } |
| 4350 | |
| 4351 | /// iteration adapter for range-for loops. |
| 4352 | handler_range handlers() { |
| 4353 | return make_range(handler_begin(), handler_end()); |
| 4354 | } |
| 4355 | |
| 4356 | /// iteration adapter for range-for loops. |
| 4357 | const_handler_range handlers() const { |
| 4358 | return make_range(handler_begin(), handler_end()); |
| 4359 | } |
| 4360 | |
| 4361 | /// Add an entry to the switch instruction... |
| 4362 | /// Note: |
| 4363 | /// This action invalidates handler_end(). Old handler_end() iterator will |
| 4364 | /// point to the added handler. |
| 4365 | void addHandler(BasicBlock *Dest); |
| 4366 | |
| 4367 | void removeHandler(handler_iterator HI); |
| 4368 | |
| 4369 | unsigned getNumSuccessors() const { return getNumOperands() - 1; } |
| 4370 | BasicBlock *getSuccessor(unsigned Idx) const { |
| 4371 | assert(Idx < getNumSuccessors() &&((void)0) |
| 4372 | "Successor # out of range for catchswitch!")((void)0); |
| 4373 | return cast<BasicBlock>(getOperand(Idx + 1)); |
| 4374 | } |
| 4375 | void setSuccessor(unsigned Idx, BasicBlock *NewSucc) { |
| 4376 | assert(Idx < getNumSuccessors() &&((void)0) |
| 4377 | "Successor # out of range for catchswitch!")((void)0); |
| 4378 | setOperand(Idx + 1, NewSucc); |
| 4379 | } |
| 4380 | |
| 4381 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4382 | static bool classof(const Instruction *I) { |
| 4383 | return I->getOpcode() == Instruction::CatchSwitch; |
| 4384 | } |
| 4385 | static bool classof(const Value *V) { |
| 4386 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4387 | } |
| 4388 | }; |
| 4389 | |
| 4390 | template <> |
| 4391 | struct OperandTraits<CatchSwitchInst> : public HungoffOperandTraits<2> {}; |
| 4392 | |
| 4393 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value)CatchSwitchInst::op_iterator CatchSwitchInst::op_begin() { return OperandTraits<CatchSwitchInst>::op_begin(this); } CatchSwitchInst ::const_op_iterator CatchSwitchInst::op_begin() const { return OperandTraits<CatchSwitchInst>::op_begin(const_cast< CatchSwitchInst*>(this)); } CatchSwitchInst::op_iterator CatchSwitchInst ::op_end() { return OperandTraits<CatchSwitchInst>::op_end (this); } CatchSwitchInst::const_op_iterator CatchSwitchInst:: op_end() const { return OperandTraits<CatchSwitchInst>:: op_end(const_cast<CatchSwitchInst*>(this)); } Value *CatchSwitchInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<CatchSwitchInst>::op_begin (const_cast<CatchSwitchInst*>(this))[i_nocapture].get() ); } void CatchSwitchInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<CatchSwitchInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned CatchSwitchInst::getNumOperands() const { return OperandTraits <CatchSwitchInst>::operands(this); } template <int Idx_nocapture > Use &CatchSwitchInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &CatchSwitchInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
| 4394 | |
| 4395 | //===----------------------------------------------------------------------===// |
| 4396 | // CleanupPadInst Class |
| 4397 | //===----------------------------------------------------------------------===// |
| 4398 | class CleanupPadInst : public FuncletPadInst { |
| 4399 | private: |
| 4400 | explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args, |
| 4401 | unsigned Values, const Twine &NameStr, |
| 4402 | Instruction *InsertBefore) |
| 4403 | : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values, |
| 4404 | NameStr, InsertBefore) {} |
| 4405 | explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args, |
| 4406 | unsigned Values, const Twine &NameStr, |
| 4407 | BasicBlock *InsertAtEnd) |
| 4408 | : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values, |
| 4409 | NameStr, InsertAtEnd) {} |
| 4410 | |
| 4411 | public: |
| 4412 | static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args = None, |
| 4413 | const Twine &NameStr = "", |
| 4414 | Instruction *InsertBefore = nullptr) { |
| 4415 | unsigned Values = 1 + Args.size(); |
| 4416 | return new (Values) |
| 4417 | CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore); |
| 4418 | } |
| 4419 | |
| 4420 | static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args, |
| 4421 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 4422 | unsigned Values = 1 + Args.size(); |
| 4423 | return new (Values) |
| 4424 | CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd); |
| 4425 | } |
| 4426 | |
| 4427 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4428 | static bool classof(const Instruction *I) { |
| 4429 | return I->getOpcode() == Instruction::CleanupPad; |
| 4430 | } |
| 4431 | static bool classof(const Value *V) { |
| 4432 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4433 | } |
| 4434 | }; |
| 4435 | |
| 4436 | //===----------------------------------------------------------------------===// |
| 4437 | // CatchPadInst Class |
| 4438 | //===----------------------------------------------------------------------===// |
| 4439 | class CatchPadInst : public FuncletPadInst { |
| 4440 | private: |
| 4441 | explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args, |
| 4442 | unsigned Values, const Twine &NameStr, |
| 4443 | Instruction *InsertBefore) |
| 4444 | : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values, |
| 4445 | NameStr, InsertBefore) {} |
| 4446 | explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args, |
| 4447 | unsigned Values, const Twine &NameStr, |
| 4448 | BasicBlock *InsertAtEnd) |
| 4449 | : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values, |
| 4450 | NameStr, InsertAtEnd) {} |
| 4451 | |
| 4452 | public: |
| 4453 | static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args, |
| 4454 | const Twine &NameStr = "", |
| 4455 | Instruction *InsertBefore = nullptr) { |
| 4456 | unsigned Values = 1 + Args.size(); |
| 4457 | return new (Values) |
| 4458 | CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore); |
| 4459 | } |
| 4460 | |
| 4461 | static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args, |
| 4462 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 4463 | unsigned Values = 1 + Args.size(); |
| 4464 | return new (Values) |
| 4465 | CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd); |
| 4466 | } |
| 4467 | |
| 4468 | /// Convenience accessors |
| 4469 | CatchSwitchInst *getCatchSwitch() const { |
| 4470 | return cast<CatchSwitchInst>(Op<-1>()); |
| 4471 | } |
| 4472 | void setCatchSwitch(Value *CatchSwitch) { |
| 4473 | assert(CatchSwitch)((void)0); |
| 4474 | Op<-1>() = CatchSwitch; |
| 4475 | } |
| 4476 | |
| 4477 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4478 | static bool classof(const Instruction *I) { |
| 4479 | return I->getOpcode() == Instruction::CatchPad; |
| 4480 | } |
| 4481 | static bool classof(const Value *V) { |
| 4482 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4483 | } |
| 4484 | }; |
| 4485 | |
| 4486 | //===----------------------------------------------------------------------===// |
| 4487 | // CatchReturnInst Class |
| 4488 | //===----------------------------------------------------------------------===// |
| 4489 | |
| 4490 | class CatchReturnInst : public Instruction { |
| 4491 | CatchReturnInst(const CatchReturnInst &RI); |
| 4492 | CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore); |
| 4493 | CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd); |
| 4494 | |
| 4495 | void init(Value *CatchPad, BasicBlock *BB); |
| 4496 | |
| 4497 | protected: |
| 4498 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4499 | friend class Instruction; |
| 4500 | |
| 4501 | CatchReturnInst *cloneImpl() const; |
| 4502 | |
| 4503 | public: |
| 4504 | static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB, |
| 4505 | Instruction *InsertBefore = nullptr) { |
| 4506 | assert(CatchPad)((void)0); |
| 4507 | assert(BB)((void)0); |
| 4508 | return new (2) CatchReturnInst(CatchPad, BB, InsertBefore); |
| 4509 | } |
| 4510 | |
| 4511 | static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB, |
| 4512 | BasicBlock *InsertAtEnd) { |
| 4513 | assert(CatchPad)((void)0); |
| 4514 | assert(BB)((void)0); |
| 4515 | return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd); |
| 4516 | } |
| 4517 | |
| 4518 | /// Provide fast operand accessors |
| 4519 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 4520 | |
| 4521 | /// Convenience accessors. |
| 4522 | CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); } |
| 4523 | void setCatchPad(CatchPadInst *CatchPad) { |
| 4524 | assert(CatchPad)((void)0); |
| 4525 | Op<0>() = CatchPad; |
| 4526 | } |
| 4527 | |
| 4528 | BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); } |
| 4529 | void setSuccessor(BasicBlock *NewSucc) { |
| 4530 | assert(NewSucc)((void)0); |
| 4531 | Op<1>() = NewSucc; |
| 4532 | } |
| 4533 | unsigned getNumSuccessors() const { return 1; } |
| 4534 | |
| 4535 | /// Get the parentPad of this catchret's catchpad's catchswitch. |
| 4536 | /// The successor block is implicitly a member of this funclet. |
| 4537 | Value *getCatchSwitchParentPad() const { |
| 4538 | return getCatchPad()->getCatchSwitch()->getParentPad(); |
| 4539 | } |
| 4540 | |
| 4541 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4542 | static bool classof(const Instruction *I) { |
| 4543 | return (I->getOpcode() == Instruction::CatchRet); |
| 4544 | } |
| 4545 | static bool classof(const Value *V) { |
| 4546 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4547 | } |
| 4548 | |
| 4549 | private: |
| 4550 | BasicBlock *getSuccessor(unsigned Idx) const { |
| 4551 | assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")((void)0); |
| 4552 | return getSuccessor(); |
| 4553 | } |
| 4554 | |
| 4555 | void setSuccessor(unsigned Idx, BasicBlock *B) { |
| 4556 | assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")((void)0); |
| 4557 | setSuccessor(B); |
| 4558 | } |
| 4559 | }; |
| 4560 | |
| 4561 | template <> |
| 4562 | struct OperandTraits<CatchReturnInst> |
| 4563 | : public FixedNumOperandTraits<CatchReturnInst, 2> {}; |
| 4564 | |
| 4565 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value)CatchReturnInst::op_iterator CatchReturnInst::op_begin() { return OperandTraits<CatchReturnInst>::op_begin(this); } CatchReturnInst ::const_op_iterator CatchReturnInst::op_begin() const { return OperandTraits<CatchReturnInst>::op_begin(const_cast< CatchReturnInst*>(this)); } CatchReturnInst::op_iterator CatchReturnInst ::op_end() { return OperandTraits<CatchReturnInst>::op_end (this); } CatchReturnInst::const_op_iterator CatchReturnInst:: op_end() const { return OperandTraits<CatchReturnInst>:: op_end(const_cast<CatchReturnInst*>(this)); } Value *CatchReturnInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<CatchReturnInst>::op_begin (const_cast<CatchReturnInst*>(this))[i_nocapture].get() ); } void CatchReturnInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<CatchReturnInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned CatchReturnInst::getNumOperands() const { return OperandTraits <CatchReturnInst>::operands(this); } template <int Idx_nocapture > Use &CatchReturnInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &CatchReturnInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
| 4566 | |
| 4567 | //===----------------------------------------------------------------------===// |
| 4568 | // CleanupReturnInst Class |
| 4569 | //===----------------------------------------------------------------------===// |
| 4570 | |
| 4571 | class CleanupReturnInst : public Instruction { |
| 4572 | using UnwindDestField = BoolBitfieldElementT<0>; |
| 4573 | |
| 4574 | private: |
| 4575 | CleanupReturnInst(const CleanupReturnInst &RI); |
| 4576 | CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values, |
| 4577 | Instruction *InsertBefore = nullptr); |
| 4578 | CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values, |
| 4579 | BasicBlock *InsertAtEnd); |
| 4580 | |
| 4581 | void init(Value *CleanupPad, BasicBlock *UnwindBB); |
| 4582 | |
| 4583 | protected: |
| 4584 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4585 | friend class Instruction; |
| 4586 | |
| 4587 | CleanupReturnInst *cloneImpl() const; |
| 4588 | |
| 4589 | public: |
| 4590 | static CleanupReturnInst *Create(Value *CleanupPad, |
| 4591 | BasicBlock *UnwindBB = nullptr, |
| 4592 | Instruction *InsertBefore = nullptr) { |
| 4593 | assert(CleanupPad)((void)0); |
| 4594 | unsigned Values = 1; |
| 4595 | if (UnwindBB) |
| 4596 | ++Values; |
| 4597 | return new (Values) |
| 4598 | CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore); |
| 4599 | } |
| 4600 | |
| 4601 | static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB, |
| 4602 | BasicBlock *InsertAtEnd) { |
| 4603 | assert(CleanupPad)((void)0); |
| 4604 | unsigned Values = 1; |
| 4605 | if (UnwindBB) |
| 4606 | ++Values; |
| 4607 | return new (Values) |
| 4608 | CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd); |
| 4609 | } |
| 4610 | |
| 4611 | /// Provide fast operand accessors |
| 4612 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 4613 | |
| 4614 | bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); } |
| 4615 | bool unwindsToCaller() const { return !hasUnwindDest(); } |
| 4616 | |
| 4617 | /// Convenience accessor. |
| 4618 | CleanupPadInst *getCleanupPad() const { |
| 4619 | return cast<CleanupPadInst>(Op<0>()); |
| 4620 | } |
| 4621 | void setCleanupPad(CleanupPadInst *CleanupPad) { |
| 4622 | assert(CleanupPad)((void)0); |
| 4623 | Op<0>() = CleanupPad; |
| 4624 | } |
| 4625 | |
| 4626 | unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; } |
| 4627 | |
| 4628 | BasicBlock *getUnwindDest() const { |
| 4629 | return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr; |
| 4630 | } |
| 4631 | void setUnwindDest(BasicBlock *NewDest) { |
| 4632 | assert(NewDest)((void)0); |
| 4633 | assert(hasUnwindDest())((void)0); |
| 4634 | Op<1>() = NewDest; |
| 4635 | } |
| 4636 | |
| 4637 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4638 | static bool classof(const Instruction *I) { |
| 4639 | return (I->getOpcode() == Instruction::CleanupRet); |
| 4640 | } |
| 4641 | static bool classof(const Value *V) { |
| 4642 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4643 | } |
| 4644 | |
| 4645 | private: |
| 4646 | BasicBlock *getSuccessor(unsigned Idx) const { |
| 4647 | assert(Idx == 0)((void)0); |
| 4648 | return getUnwindDest(); |
| 4649 | } |
| 4650 | |
| 4651 | void setSuccessor(unsigned Idx, BasicBlock *B) { |
| 4652 | assert(Idx == 0)((void)0); |
| 4653 | setUnwindDest(B); |
| 4654 | } |
| 4655 | |
| 4656 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 4657 | // method so that subclasses cannot accidentally use it. |
| 4658 | template <typename Bitfield> |
| 4659 | void setSubclassData(typename Bitfield::Type Value) { |
| 4660 | Instruction::setSubclassData<Bitfield>(Value); |
| 4661 | } |
| 4662 | }; |
| 4663 | |
| 4664 | template <> |
| 4665 | struct OperandTraits<CleanupReturnInst> |
| 4666 | : public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {}; |
| 4667 | |
| 4668 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value)CleanupReturnInst::op_iterator CleanupReturnInst::op_begin() { return OperandTraits<CleanupReturnInst>::op_begin(this ); } CleanupReturnInst::const_op_iterator CleanupReturnInst:: op_begin() const { return OperandTraits<CleanupReturnInst> ::op_begin(const_cast<CleanupReturnInst*>(this)); } CleanupReturnInst ::op_iterator CleanupReturnInst::op_end() { return OperandTraits <CleanupReturnInst>::op_end(this); } CleanupReturnInst:: const_op_iterator CleanupReturnInst::op_end() const { return OperandTraits <CleanupReturnInst>::op_end(const_cast<CleanupReturnInst *>(this)); } Value *CleanupReturnInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<CleanupReturnInst>::op_begin(const_cast <CleanupReturnInst*>(this))[i_nocapture].get()); } void CleanupReturnInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<CleanupReturnInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned CleanupReturnInst ::getNumOperands() const { return OperandTraits<CleanupReturnInst >::operands(this); } template <int Idx_nocapture> Use &CleanupReturnInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & CleanupReturnInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
| 4669 | |
| 4670 | //===----------------------------------------------------------------------===// |
| 4671 | // UnreachableInst Class |
| 4672 | //===----------------------------------------------------------------------===// |
| 4673 | |
| 4674 | //===--------------------------------------------------------------------------- |
| 4675 | /// This function has undefined behavior. In particular, the |
| 4676 | /// presence of this instruction indicates some higher level knowledge that the |
| 4677 | /// end of the block cannot be reached. |
| 4678 | /// |
| 4679 | class UnreachableInst : public Instruction { |
| 4680 | protected: |
| 4681 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4682 | friend class Instruction; |
| 4683 | |
| 4684 | UnreachableInst *cloneImpl() const; |
| 4685 | |
| 4686 | public: |
| 4687 | explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr); |
| 4688 | explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd); |
| 4689 | |
| 4690 | // allocate space for exactly zero operands |
| 4691 | void *operator new(size_t S) { return User::operator new(S, 0); } |
| 4692 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 4693 | |
| 4694 | unsigned getNumSuccessors() const { return 0; } |
| 4695 | |
| 4696 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4697 | static bool classof(const Instruction *I) { |
| 4698 | return I->getOpcode() == Instruction::Unreachable; |
| 4699 | } |
| 4700 | static bool classof(const Value *V) { |
| 4701 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4702 | } |
| 4703 | |
| 4704 | private: |
| 4705 | BasicBlock *getSuccessor(unsigned idx) const { |
| 4706 | llvm_unreachable("UnreachableInst has no successors!")__builtin_unreachable(); |
| 4707 | } |
| 4708 | |
| 4709 | void setSuccessor(unsigned idx, BasicBlock *B) { |
| 4710 | llvm_unreachable("UnreachableInst has no successors!")__builtin_unreachable(); |
| 4711 | } |
| 4712 | }; |
| 4713 | |
| 4714 | //===----------------------------------------------------------------------===// |
| 4715 | // TruncInst Class |
| 4716 | //===----------------------------------------------------------------------===// |
| 4717 | |
| 4718 | /// This class represents a truncation of integer types. |
| 4719 | class TruncInst : public CastInst { |
| 4720 | protected: |
| 4721 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4722 | friend class Instruction; |
| 4723 | |
| 4724 | /// Clone an identical TruncInst |
| 4725 | TruncInst *cloneImpl() const; |
| 4726 | |
| 4727 | public: |
| 4728 | /// Constructor with insert-before-instruction semantics |
| 4729 | TruncInst( |
| 4730 | Value *S, ///< The value to be truncated |
| 4731 | Type *Ty, ///< The (smaller) type to truncate to |
| 4732 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4733 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4734 | ); |
| 4735 | |
| 4736 | /// Constructor with insert-at-end-of-block semantics |
| 4737 | TruncInst( |
| 4738 | Value *S, ///< The value to be truncated |
| 4739 | Type *Ty, ///< The (smaller) type to truncate to |
| 4740 | const Twine &NameStr, ///< A name for the new instruction |
| 4741 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4742 | ); |
| 4743 | |
| 4744 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4745 | static bool classof(const Instruction *I) { |
| 4746 | return I->getOpcode() == Trunc; |
| 4747 | } |
| 4748 | static bool classof(const Value *V) { |
| 4749 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4750 | } |
| 4751 | }; |
| 4752 | |
| 4753 | //===----------------------------------------------------------------------===// |
| 4754 | // ZExtInst Class |
| 4755 | //===----------------------------------------------------------------------===// |
| 4756 | |
| 4757 | /// This class represents zero extension of integer types. |
| 4758 | class ZExtInst : public CastInst { |
| 4759 | protected: |
| 4760 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4761 | friend class Instruction; |
| 4762 | |
| 4763 | /// Clone an identical ZExtInst |
| 4764 | ZExtInst *cloneImpl() const; |
| 4765 | |
| 4766 | public: |
| 4767 | /// Constructor with insert-before-instruction semantics |
| 4768 | ZExtInst( |
| 4769 | Value *S, ///< The value to be zero extended |
| 4770 | Type *Ty, ///< The type to zero extend to |
| 4771 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4772 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4773 | ); |
| 4774 | |
| 4775 | /// Constructor with insert-at-end semantics. |
| 4776 | ZExtInst( |
| 4777 | Value *S, ///< The value to be zero extended |
| 4778 | Type *Ty, ///< The type to zero extend to |
| 4779 | const Twine &NameStr, ///< A name for the new instruction |
| 4780 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4781 | ); |
| 4782 | |
| 4783 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4784 | static bool classof(const Instruction *I) { |
| 4785 | return I->getOpcode() == ZExt; |
| 4786 | } |
| 4787 | static bool classof(const Value *V) { |
| 4788 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4789 | } |
| 4790 | }; |
| 4791 | |
| 4792 | //===----------------------------------------------------------------------===// |
| 4793 | // SExtInst Class |
| 4794 | //===----------------------------------------------------------------------===// |
| 4795 | |
| 4796 | /// This class represents a sign extension of integer types. |
| 4797 | class SExtInst : public CastInst { |
| 4798 | protected: |
| 4799 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4800 | friend class Instruction; |
| 4801 | |
| 4802 | /// Clone an identical SExtInst |
| 4803 | SExtInst *cloneImpl() const; |
| 4804 | |
| 4805 | public: |
| 4806 | /// Constructor with insert-before-instruction semantics |
| 4807 | SExtInst( |
| 4808 | Value *S, ///< The value to be sign extended |
| 4809 | Type *Ty, ///< The type to sign extend to |
| 4810 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4811 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4812 | ); |
| 4813 | |
| 4814 | /// Constructor with insert-at-end-of-block semantics |
| 4815 | SExtInst( |
| 4816 | Value *S, ///< The value to be sign extended |
| 4817 | Type *Ty, ///< The type to sign extend to |
| 4818 | const Twine &NameStr, ///< A name for the new instruction |
| 4819 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4820 | ); |
| 4821 | |
| 4822 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4823 | static bool classof(const Instruction *I) { |
| 4824 | return I->getOpcode() == SExt; |
| 4825 | } |
| 4826 | static bool classof(const Value *V) { |
| 4827 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4828 | } |
| 4829 | }; |
| 4830 | |
| 4831 | //===----------------------------------------------------------------------===// |
| 4832 | // FPTruncInst Class |
| 4833 | //===----------------------------------------------------------------------===// |
| 4834 | |
| 4835 | /// This class represents a truncation of floating point types. |
| 4836 | class FPTruncInst : public CastInst { |
| 4837 | protected: |
| 4838 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4839 | friend class Instruction; |
| 4840 | |
| 4841 | /// Clone an identical FPTruncInst |
| 4842 | FPTruncInst *cloneImpl() const; |
| 4843 | |
| 4844 | public: |
| 4845 | /// Constructor with insert-before-instruction semantics |
| 4846 | FPTruncInst( |
| 4847 | Value *S, ///< The value to be truncated |
| 4848 | Type *Ty, ///< The type to truncate to |
| 4849 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4850 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4851 | ); |
| 4852 | |
| 4853 | /// Constructor with insert-before-instruction semantics |
| 4854 | FPTruncInst( |
| 4855 | Value *S, ///< The value to be truncated |
| 4856 | Type *Ty, ///< The type to truncate to |
| 4857 | const Twine &NameStr, ///< A name for the new instruction |
| 4858 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4859 | ); |
| 4860 | |
| 4861 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4862 | static bool classof(const Instruction *I) { |
| 4863 | return I->getOpcode() == FPTrunc; |
| 4864 | } |
| 4865 | static bool classof(const Value *V) { |
| 4866 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4867 | } |
| 4868 | }; |
| 4869 | |
| 4870 | //===----------------------------------------------------------------------===// |
| 4871 | // FPExtInst Class |
| 4872 | //===----------------------------------------------------------------------===// |
| 4873 | |
| 4874 | /// This class represents an extension of floating point types. |
| 4875 | class FPExtInst : public CastInst { |
| 4876 | protected: |
| 4877 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4878 | friend class Instruction; |
| 4879 | |
| 4880 | /// Clone an identical FPExtInst |
| 4881 | FPExtInst *cloneImpl() const; |
| 4882 | |
| 4883 | public: |
| 4884 | /// Constructor with insert-before-instruction semantics |
| 4885 | FPExtInst( |
| 4886 | Value *S, ///< The value to be extended |
| 4887 | Type *Ty, ///< The type to extend to |
| 4888 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4889 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4890 | ); |
| 4891 | |
| 4892 | /// Constructor with insert-at-end-of-block semantics |
| 4893 | FPExtInst( |
| 4894 | Value *S, ///< The value to be extended |
| 4895 | Type *Ty, ///< The type to extend to |
| 4896 | const Twine &NameStr, ///< A name for the new instruction |
| 4897 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4898 | ); |
| 4899 | |
| 4900 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4901 | static bool classof(const Instruction *I) { |
| 4902 | return I->getOpcode() == FPExt; |
| 4903 | } |
| 4904 | static bool classof(const Value *V) { |
| 4905 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4906 | } |
| 4907 | }; |
| 4908 | |
| 4909 | //===----------------------------------------------------------------------===// |
| 4910 | // UIToFPInst Class |
| 4911 | //===----------------------------------------------------------------------===// |
| 4912 | |
| 4913 | /// This class represents a cast unsigned integer to floating point. |
| 4914 | class UIToFPInst : public CastInst { |
| 4915 | protected: |
| 4916 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4917 | friend class Instruction; |
| 4918 | |
| 4919 | /// Clone an identical UIToFPInst |
| 4920 | UIToFPInst *cloneImpl() const; |
| 4921 | |
| 4922 | public: |
| 4923 | /// Constructor with insert-before-instruction semantics |
| 4924 | UIToFPInst( |
| 4925 | Value *S, ///< The value to be converted |
| 4926 | Type *Ty, ///< The type to convert to |
| 4927 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4928 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4929 | ); |
| 4930 | |
| 4931 | /// Constructor with insert-at-end-of-block semantics |
| 4932 | UIToFPInst( |
| 4933 | Value *S, ///< The value to be converted |
| 4934 | Type *Ty, ///< The type to convert to |
| 4935 | const Twine &NameStr, ///< A name for the new instruction |
| 4936 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4937 | ); |
| 4938 | |
| 4939 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4940 | static bool classof(const Instruction *I) { |
| 4941 | return I->getOpcode() == UIToFP; |
| 4942 | } |
| 4943 | static bool classof(const Value *V) { |
| 4944 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4945 | } |
| 4946 | }; |
| 4947 | |
| 4948 | //===----------------------------------------------------------------------===// |
| 4949 | // SIToFPInst Class |
| 4950 | //===----------------------------------------------------------------------===// |
| 4951 | |
| 4952 | /// This class represents a cast from signed integer to floating point. |
| 4953 | class SIToFPInst : public CastInst { |
| 4954 | protected: |
| 4955 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4956 | friend class Instruction; |
| 4957 | |
| 4958 | /// Clone an identical SIToFPInst |
| 4959 | SIToFPInst *cloneImpl() const; |
| 4960 | |
| 4961 | public: |
| 4962 | /// Constructor with insert-before-instruction semantics |
| 4963 | SIToFPInst( |
| 4964 | Value *S, ///< The value to be converted |
| 4965 | Type *Ty, ///< The type to convert to |
| 4966 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4967 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4968 | ); |
| 4969 | |
| 4970 | /// Constructor with insert-at-end-of-block semantics |
| 4971 | SIToFPInst( |
| 4972 | Value *S, ///< The value to be converted |
| 4973 | Type *Ty, ///< The type to convert to |
| 4974 | const Twine &NameStr, ///< A name for the new instruction |
| 4975 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4976 | ); |
| 4977 | |
| 4978 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4979 | static bool classof(const Instruction *I) { |
| 4980 | return I->getOpcode() == SIToFP; |
| 4981 | } |
| 4982 | static bool classof(const Value *V) { |
| 4983 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4984 | } |
| 4985 | }; |
| 4986 | |
| 4987 | //===----------------------------------------------------------------------===// |
| 4988 | // FPToUIInst Class |
| 4989 | //===----------------------------------------------------------------------===// |
| 4990 | |
| 4991 | /// This class represents a cast from floating point to unsigned integer |
| 4992 | class FPToUIInst : public CastInst { |
| 4993 | protected: |
| 4994 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4995 | friend class Instruction; |
| 4996 | |
| 4997 | /// Clone an identical FPToUIInst |
| 4998 | FPToUIInst *cloneImpl() const; |
| 4999 | |
| 5000 | public: |
| 5001 | /// Constructor with insert-before-instruction semantics |
| 5002 | FPToUIInst( |
| 5003 | Value *S, ///< The value to be converted |
| 5004 | Type *Ty, ///< The type to convert to |
| 5005 | const Twine &NameStr = "", ///< A name for the new instruction |
| 5006 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 5007 | ); |
| 5008 | |
| 5009 | /// Constructor with insert-at-end-of-block semantics |
| 5010 | FPToUIInst( |
| 5011 | Value *S, ///< The value to be converted |
| 5012 | Type *Ty, ///< The type to convert to |
| 5013 | const Twine &NameStr, ///< A name for the new instruction |
| 5014 | BasicBlock *InsertAtEnd ///< Where to insert the new instruction |
| 5015 | ); |
| 5016 | |
| 5017 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5018 | static bool classof(const Instruction *I) { |
| 5019 | return I->getOpcode() == FPToUI; |
| 5020 | } |
| 5021 | static bool classof(const Value *V) { |
| 5022 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5023 | } |
| 5024 | }; |
| 5025 | |
| 5026 | //===----------------------------------------------------------------------===// |
| 5027 | // FPToSIInst Class |
| 5028 | //===----------------------------------------------------------------------===// |
| 5029 | |
| 5030 | /// This class represents a cast from floating point to signed integer. |
| 5031 | class FPToSIInst : public CastInst { |
| 5032 | protected: |
| 5033 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 5034 | friend class Instruction; |
| 5035 | |
| 5036 | /// Clone an identical FPToSIInst |
| 5037 | FPToSIInst *cloneImpl() const; |
| 5038 | |
| 5039 | public: |
| 5040 | /// Constructor with insert-before-instruction semantics |
| 5041 | FPToSIInst( |
| 5042 | Value *S, ///< The value to be converted |
| 5043 | Type *Ty, ///< The type to convert to |
| 5044 | const Twine &NameStr = "", ///< A name for the new instruction |
| 5045 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 5046 | ); |
| 5047 | |
| 5048 | /// Constructor with insert-at-end-of-block semantics |
| 5049 | FPToSIInst( |
| 5050 | Value *S, ///< The value to be converted |
| 5051 | Type *Ty, ///< The type to convert to |
| 5052 | const Twine &NameStr, ///< A name for the new instruction |
| 5053 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 5054 | ); |
| 5055 | |
| 5056 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5057 | static bool classof(const Instruction *I) { |
| 5058 | return I->getOpcode() == FPToSI; |
| 5059 | } |
| 5060 | static bool classof(const Value *V) { |
| 5061 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5062 | } |
| 5063 | }; |
| 5064 | |
| 5065 | //===----------------------------------------------------------------------===// |
| 5066 | // IntToPtrInst Class |
| 5067 | //===----------------------------------------------------------------------===// |
| 5068 | |
| 5069 | /// This class represents a cast from an integer to a pointer. |
| 5070 | class IntToPtrInst : public CastInst { |
| 5071 | public: |
| 5072 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 5073 | friend class Instruction; |
| 5074 | |
| 5075 | /// Constructor with insert-before-instruction semantics |
| 5076 | IntToPtrInst( |
| 5077 | Value *S, ///< The value to be converted |
| 5078 | Type *Ty, ///< The type to convert to |
| 5079 | const Twine &NameStr = "", ///< A name for the new instruction |
| 5080 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 5081 | ); |
| 5082 | |
| 5083 | /// Constructor with insert-at-end-of-block semantics |
| 5084 | IntToPtrInst( |
| 5085 | Value *S, ///< The value to be converted |
| 5086 | Type *Ty, ///< The type to convert to |
| 5087 | const Twine &NameStr, ///< A name for the new instruction |
| 5088 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 5089 | ); |
| 5090 | |
| 5091 | /// Clone an identical IntToPtrInst. |
| 5092 | IntToPtrInst *cloneImpl() const; |
| 5093 | |
| 5094 | /// Returns the address space of this instruction's pointer type. |
| 5095 | unsigned getAddressSpace() const { |
| 5096 | return getType()->getPointerAddressSpace(); |
| 5097 | } |
| 5098 | |
| 5099 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5100 | static bool classof(const Instruction *I) { |
| 5101 | return I->getOpcode() == IntToPtr; |
| 5102 | } |
| 5103 | static bool classof(const Value *V) { |
| 5104 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5105 | } |
| 5106 | }; |
| 5107 | |
| 5108 | //===----------------------------------------------------------------------===// |
| 5109 | // PtrToIntInst Class |
| 5110 | //===----------------------------------------------------------------------===// |
| 5111 | |
| 5112 | /// This class represents a cast from a pointer to an integer. |
| 5113 | class PtrToIntInst : public CastInst { |
| 5114 | protected: |
| 5115 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 5116 | friend class Instruction; |
| 5117 | |
| 5118 | /// Clone an identical PtrToIntInst. |
| 5119 | PtrToIntInst *cloneImpl() const; |
| 5120 | |
| 5121 | public: |
| 5122 | /// Constructor with insert-before-instruction semantics |
| 5123 | PtrToIntInst( |
| 5124 | Value *S, ///< The value to be converted |
| 5125 | Type *Ty, ///< The type to convert to |
| 5126 | const Twine &NameStr = "", ///< A name for the new instruction |
| 5127 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 5128 | ); |
| 5129 | |
| 5130 | /// Constructor with insert-at-end-of-block semantics |
| 5131 | PtrToIntInst( |
| 5132 | Value *S, ///< The value to be converted |
| 5133 | Type *Ty, ///< The type to convert to |
| 5134 | const Twine &NameStr, ///< A name for the new instruction |
| 5135 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 5136 | ); |
| 5137 | |
| 5138 | /// Gets the pointer operand. |
| 5139 | Value *getPointerOperand() { return getOperand(0); } |
| 5140 | /// Gets the pointer operand. |
| 5141 | const Value *getPointerOperand() const { return getOperand(0); } |
| 5142 | /// Gets the operand index of the pointer operand. |
| 5143 | static unsigned getPointerOperandIndex() { return 0U; } |
| 5144 | |
| 5145 | /// Returns the address space of the pointer operand. |
| 5146 | unsigned getPointerAddressSpace() const { |
| 5147 | return getPointerOperand()->getType()->getPointerAddressSpace(); |
| 5148 | } |
| 5149 | |
| 5150 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5151 | static bool classof(const Instruction *I) { |
| 5152 | return I->getOpcode() == PtrToInt; |
| 5153 | } |
| 5154 | static bool classof(const Value *V) { |
| 5155 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5156 | } |
| 5157 | }; |
| 5158 | |
| 5159 | //===----------------------------------------------------------------------===// |
| 5160 | // BitCastInst Class |
| 5161 | //===----------------------------------------------------------------------===// |
| 5162 | |
| 5163 | /// This class represents a no-op cast from one type to another. |
| 5164 | class BitCastInst : public CastInst { |
| 5165 | protected: |
| 5166 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 5167 | friend class Instruction; |
| 5168 | |
| 5169 | /// Clone an identical BitCastInst. |
| 5170 | BitCastInst *cloneImpl() const; |
| 5171 | |
| 5172 | public: |
| 5173 | /// Constructor with insert-before-instruction semantics |
| 5174 | BitCastInst( |
| 5175 | Value *S, ///< The value to be casted |
| 5176 | Type *Ty, ///< The type to casted to |
| 5177 | const Twine &NameStr = "", ///< A name for the new instruction |
| 5178 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 5179 | ); |
| 5180 | |
| 5181 | /// Constructor with insert-at-end-of-block semantics |
| 5182 | BitCastInst( |
| 5183 | Value *S, ///< The value to be casted |
| 5184 | Type *Ty, ///< The type to casted to |
| 5185 | const Twine &NameStr, ///< A name for the new instruction |
| 5186 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 5187 | ); |
| 5188 | |
| 5189 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5190 | static bool classof(const Instruction *I) { |
| 5191 | return I->getOpcode() == BitCast; |
| 5192 | } |
| 5193 | static bool classof(const Value *V) { |
| 5194 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5195 | } |
| 5196 | }; |
| 5197 | |
| 5198 | //===----------------------------------------------------------------------===// |
| 5199 | // AddrSpaceCastInst Class |
| 5200 | //===----------------------------------------------------------------------===// |
| 5201 | |
| 5202 | /// This class represents a conversion between pointers from one address space |
| 5203 | /// to another. |
| 5204 | class AddrSpaceCastInst : public CastInst { |
| 5205 | protected: |
| 5206 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 5207 | friend class Instruction; |
| 5208 | |
| 5209 | /// Clone an identical AddrSpaceCastInst. |
| 5210 | AddrSpaceCastInst *cloneImpl() const; |
| 5211 | |
| 5212 | public: |
| 5213 | /// Constructor with insert-before-instruction semantics |
| 5214 | AddrSpaceCastInst( |
| 5215 | Value *S, ///< The value to be casted |
| 5216 | Type *Ty, ///< The type to casted to |
| 5217 | const Twine &NameStr = "", ///< A name for the new instruction |
| 5218 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 5219 | ); |
| 5220 | |
| 5221 | /// Constructor with insert-at-end-of-block semantics |
| 5222 | AddrSpaceCastInst( |
| 5223 | Value *S, ///< The value to be casted |
| 5224 | Type *Ty, ///< The type to casted to |
| 5225 | const Twine &NameStr, ///< A name for the new instruction |
| 5226 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 5227 | ); |
| 5228 | |
| 5229 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5230 | static bool classof(const Instruction *I) { |
| 5231 | return I->getOpcode() == AddrSpaceCast; |
| 5232 | } |
| 5233 | static bool classof(const Value *V) { |
| 5234 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5235 | } |
| 5236 | |
| 5237 | /// Gets the pointer operand. |
| 5238 | Value *getPointerOperand() { |
| 5239 | return getOperand(0); |
| 5240 | } |
| 5241 | |
| 5242 | /// Gets the pointer operand. |
| 5243 | const Value *getPointerOperand() const { |
| 5244 | return getOperand(0); |
| 5245 | } |
| 5246 | |
| 5247 | /// Gets the operand index of the pointer operand. |
| 5248 | static unsigned getPointerOperandIndex() { |
| 5249 | return 0U; |
| 5250 | } |
| 5251 | |
| 5252 | /// Returns the address space of the pointer operand. |
| 5253 | unsigned getSrcAddressSpace() const { |
| 5254 | return getPointerOperand()->getType()->getPointerAddressSpace(); |
| 5255 | } |
| 5256 | |
| 5257 | /// Returns the address space of the result. |
| 5258 | unsigned getDestAddressSpace() const { |
| 5259 | return getType()->getPointerAddressSpace(); |
| 5260 | } |
| 5261 | }; |
| 5262 | |
| 5263 | /// A helper function that returns the pointer operand of a load or store |
| 5264 | /// instruction. Returns nullptr if not load or store. |
| 5265 | inline const Value *getLoadStorePointerOperand(const Value *V) { |
| 5266 | if (auto *Load = dyn_cast<LoadInst>(V)) |
| 5267 | return Load->getPointerOperand(); |
| 5268 | if (auto *Store = dyn_cast<StoreInst>(V)) |
| 5269 | return Store->getPointerOperand(); |
| 5270 | return nullptr; |
| 5271 | } |
| 5272 | inline Value *getLoadStorePointerOperand(Value *V) { |
| 5273 | return const_cast<Value *>( |
| 5274 | getLoadStorePointerOperand(static_cast<const Value *>(V))); |
| 5275 | } |
| 5276 | |
| 5277 | /// A helper function that returns the pointer operand of a load, store |
| 5278 | /// or GEP instruction. Returns nullptr if not load, store, or GEP. |
| 5279 | inline const Value *getPointerOperand(const Value *V) { |
| 5280 | if (auto *Ptr = getLoadStorePointerOperand(V)) |
| 5281 | return Ptr; |
| 5282 | if (auto *Gep = dyn_cast<GetElementPtrInst>(V)) |
| 5283 | return Gep->getPointerOperand(); |
| 5284 | return nullptr; |
| 5285 | } |
| 5286 | inline Value *getPointerOperand(Value *V) { |
| 5287 | return const_cast<Value *>(getPointerOperand(static_cast<const Value *>(V))); |
| 5288 | } |
| 5289 | |
| 5290 | /// A helper function that returns the alignment of load or store instruction. |
| 5291 | inline Align getLoadStoreAlignment(Value *I) { |
| 5292 | assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&((void)0) |
| 5293 | "Expected Load or Store instruction")((void)0); |
| 5294 | if (auto *LI = dyn_cast<LoadInst>(I)) |
| 5295 | return LI->getAlign(); |
| 5296 | return cast<StoreInst>(I)->getAlign(); |
| 5297 | } |
| 5298 | |
| 5299 | /// A helper function that returns the address space of the pointer operand of |
| 5300 | /// load or store instruction. |
| 5301 | inline unsigned getLoadStoreAddressSpace(Value *I) { |
| 5302 | assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&((void)0) |
| 5303 | "Expected Load or Store instruction")((void)0); |
| 5304 | if (auto *LI = dyn_cast<LoadInst>(I)) |
| 5305 | return LI->getPointerAddressSpace(); |
| 5306 | return cast<StoreInst>(I)->getPointerAddressSpace(); |
| 5307 | } |
| 5308 | |
| 5309 | /// A helper function that returns the type of a load or store instruction. |
| 5310 | inline Type *getLoadStoreType(Value *I) { |
| 5311 | assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&((void)0) |
| 5312 | "Expected Load or Store instruction")((void)0); |
| 5313 | if (auto *LI = dyn_cast<LoadInst>(I)) |
| 5314 | return LI->getType(); |
| 5315 | return cast<StoreInst>(I)->getValueOperand()->getType(); |
| 5316 | } |
| 5317 | |
| 5318 | //===----------------------------------------------------------------------===// |
| 5319 | // FreezeInst Class |
| 5320 | //===----------------------------------------------------------------------===// |
| 5321 | |
| 5322 | /// This class represents a freeze function that returns random concrete |
| 5323 | /// value if an operand is either a poison value or an undef value |
| 5324 | class FreezeInst : public UnaryInstruction { |
| 5325 | protected: |
| 5326 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 5327 | friend class Instruction; |
| 5328 | |
| 5329 | /// Clone an identical FreezeInst |
| 5330 | FreezeInst *cloneImpl() const; |
| 5331 | |
| 5332 | public: |
| 5333 | explicit FreezeInst(Value *S, |
| 5334 | const Twine &NameStr = "", |
| 5335 | Instruction *InsertBefore = nullptr); |
| 5336 | FreezeInst(Value *S, const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 5337 | |
| 5338 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5339 | static inline bool classof(const Instruction *I) { |
| 5340 | return I->getOpcode() == Freeze; |
| 5341 | } |
| 5342 | static inline bool classof(const Value *V) { |
| 5343 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5344 | } |
| 5345 | }; |
| 5346 | |
| 5347 | } // end namespace llvm |
| 5348 | |
| 5349 | #endif // LLVM_IR_INSTRUCTIONS_H |
| 1 | //===-- llvm/Instruction.h - Instruction class definition -------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains the declaration of the Instruction class, which is the |
| 10 | // base class for all of the LLVM instructions. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #ifndef LLVM_IR_INSTRUCTION_H |
| 15 | #define LLVM_IR_INSTRUCTION_H |
| 16 | |
| 17 | #include "llvm/ADT/ArrayRef.h" |
| 18 | #include "llvm/ADT/Bitfields.h" |
| 19 | #include "llvm/ADT/None.h" |
| 20 | #include "llvm/ADT/StringRef.h" |
| 21 | #include "llvm/ADT/ilist_node.h" |
| 22 | #include "llvm/IR/DebugLoc.h" |
| 23 | #include "llvm/IR/SymbolTableListTraits.h" |
| 24 | #include "llvm/IR/User.h" |
| 25 | #include "llvm/IR/Value.h" |
| 26 | #include "llvm/Support/AtomicOrdering.h" |
| 27 | #include "llvm/Support/Casting.h" |
| 28 | #include <algorithm> |
| 29 | #include <cassert> |
| 30 | #include <cstdint> |
| 31 | #include <utility> |
| 32 | |
| 33 | namespace llvm { |
| 34 | |
| 35 | class BasicBlock; |
| 36 | class FastMathFlags; |
| 37 | class MDNode; |
| 38 | class Module; |
| 39 | struct AAMDNodes; |
| 40 | |
| 41 | template <> struct ilist_alloc_traits<Instruction> { |
| 42 | static inline void deleteNode(Instruction *V); |
| 43 | }; |
| 44 | |
| 45 | class Instruction : public User, |
| 46 | public ilist_node_with_parent<Instruction, BasicBlock> { |
| 47 | BasicBlock *Parent; |
| 48 | DebugLoc DbgLoc; // 'dbg' Metadata cache. |
| 49 | |
| 50 | /// Relative order of this instruction in its parent basic block. Used for |
| 51 | /// O(1) local dominance checks between instructions. |
| 52 | mutable unsigned Order = 0; |
| 53 | |
| 54 | protected: |
| 55 | // The 15 first bits of `Value::SubclassData` are available for subclasses of |
| 56 | // `Instruction` to use. |
| 57 | using OpaqueField = Bitfield::Element<uint16_t, 0, 15>; |
| 58 | |
| 59 | // Template alias so that all Instruction storing alignment use the same |
| 60 | // definiton. |
| 61 | // Valid alignments are powers of two from 2^0 to 2^MaxAlignmentExponent = |
| 62 | // 2^29. We store them as Log2(Alignment), so we need 5 bits to encode the 30 |
| 63 | // possible values. |
| 64 | template <unsigned Offset> |
| 65 | using AlignmentBitfieldElementT = |
| 66 | typename Bitfield::Element<unsigned, Offset, 5, |
| 67 | Value::MaxAlignmentExponent>; |
| 68 | |
| 69 | template <unsigned Offset> |
| 70 | using BoolBitfieldElementT = typename Bitfield::Element<bool, Offset, 1>; |
| 71 | |
| 72 | template <unsigned Offset> |
| 73 | using AtomicOrderingBitfieldElementT = |
| 74 | typename Bitfield::Element<AtomicOrdering, Offset, 3, |
| 75 | AtomicOrdering::LAST>; |
| 76 | |
| 77 | private: |
| 78 | // The last bit is used to store whether the instruction has metadata attached |
| 79 | // or not. |
| 80 | using HasMetadataField = Bitfield::Element<bool, 15, 1>; |
| 81 | |
| 82 | protected: |
| 83 | ~Instruction(); // Use deleteValue() to delete a generic Instruction. |
| 84 | |
| 85 | public: |
| 86 | Instruction(const Instruction &) = delete; |
| 87 | Instruction &operator=(const Instruction &) = delete; |
| 88 | |
| 89 | /// Specialize the methods defined in Value, as we know that an instruction |
| 90 | /// can only be used by other instructions. |
| 91 | Instruction *user_back() { return cast<Instruction>(*user_begin());} |
| 92 | const Instruction *user_back() const { return cast<Instruction>(*user_begin());} |
| 93 | |
| 94 | inline const BasicBlock *getParent() const { return Parent; } |
| 95 | inline BasicBlock *getParent() { return Parent; } |
| 96 | |
| 97 | /// Return the module owning the function this instruction belongs to |
| 98 | /// or nullptr it the function does not have a module. |
| 99 | /// |
| 100 | /// Note: this is undefined behavior if the instruction does not have a |
| 101 | /// parent, or the parent basic block does not have a parent function. |
| 102 | const Module *getModule() const; |
| 103 | Module *getModule() { |
| 104 | return const_cast<Module *>( |
| 105 | static_cast<const Instruction *>(this)->getModule()); |
| 106 | } |
| 107 | |
| 108 | /// Return the function this instruction belongs to. |
| 109 | /// |
| 110 | /// Note: it is undefined behavior to call this on an instruction not |
| 111 | /// currently inserted into a function. |
| 112 | const Function *getFunction() const; |
| 113 | Function *getFunction() { |
| 114 | return const_cast<Function *>( |
| 115 | static_cast<const Instruction *>(this)->getFunction()); |
| 116 | } |
| 117 | |
| 118 | /// This method unlinks 'this' from the containing basic block, but does not |
| 119 | /// delete it. |
| 120 | void removeFromParent(); |
| 121 | |
| 122 | /// This method unlinks 'this' from the containing basic block and deletes it. |
| 123 | /// |
| 124 | /// \returns an iterator pointing to the element after the erased one |
| 125 | SymbolTableList<Instruction>::iterator eraseFromParent(); |
| 126 | |
| 127 | /// Insert an unlinked instruction into a basic block immediately before |
| 128 | /// the specified instruction. |
| 129 | void insertBefore(Instruction *InsertPos); |
| 130 | |
| 131 | /// Insert an unlinked instruction into a basic block immediately after the |
| 132 | /// specified instruction. |
| 133 | void insertAfter(Instruction *InsertPos); |
| 134 | |
| 135 | /// Unlink this instruction from its current basic block and insert it into |
| 136 | /// the basic block that MovePos lives in, right before MovePos. |
| 137 | void moveBefore(Instruction *MovePos); |
| 138 | |
| 139 | /// Unlink this instruction and insert into BB before I. |
| 140 | /// |
| 141 | /// \pre I is a valid iterator into BB. |
| 142 | void moveBefore(BasicBlock &BB, SymbolTableList<Instruction>::iterator I); |
| 143 | |
| 144 | /// Unlink this instruction from its current basic block and insert it into |
| 145 | /// the basic block that MovePos lives in, right after MovePos. |
| 146 | void moveAfter(Instruction *MovePos); |
| 147 | |
| 148 | /// Given an instruction Other in the same basic block as this instruction, |
| 149 | /// return true if this instruction comes before Other. In this worst case, |
| 150 | /// this takes linear time in the number of instructions in the block. The |
| 151 | /// results are cached, so in common cases when the block remains unmodified, |
| 152 | /// it takes constant time. |
| 153 | bool comesBefore(const Instruction *Other) const; |
| 154 | |
| 155 | //===--------------------------------------------------------------------===// |
| 156 | // Subclass classification. |
| 157 | //===--------------------------------------------------------------------===// |
| 158 | |
| 159 | /// Returns a member of one of the enums like Instruction::Add. |
| 160 | unsigned getOpcode() const { return getValueID() - InstructionVal; } |
| 161 | |
| 162 | const char *getOpcodeName() const { return getOpcodeName(getOpcode()); } |
| 163 | bool isTerminator() const { return isTerminator(getOpcode()); } |
| 164 | bool isUnaryOp() const { return isUnaryOp(getOpcode()); } |
| 165 | bool isBinaryOp() const { return isBinaryOp(getOpcode()); } |
| 166 | bool isIntDivRem() const { return isIntDivRem(getOpcode()); } |
| 167 | bool isShift() const { return isShift(getOpcode()); } |
| 168 | bool isCast() const { return isCast(getOpcode()); } |
| 169 | bool isFuncletPad() const { return isFuncletPad(getOpcode()); } |
| 170 | bool isExceptionalTerminator() const { |
| 171 | return isExceptionalTerminator(getOpcode()); |
| 172 | } |
| 173 | |
| 174 | /// It checks if this instruction is the only user of at least one of |
| 175 | /// its operands. |
| 176 | bool isOnlyUserOfAnyOperand(); |
| 177 | |
| 178 | bool isIndirectTerminator() const { |
| 179 | return isIndirectTerminator(getOpcode()); |
| 180 | } |
| 181 | |
| 182 | static const char* getOpcodeName(unsigned OpCode); |
| 183 | |
| 184 | static inline bool isTerminator(unsigned OpCode) { |
| 185 | return OpCode >= TermOpsBegin && OpCode < TermOpsEnd; |
| 186 | } |
| 187 | |
| 188 | static inline bool isUnaryOp(unsigned Opcode) { |
| 189 | return Opcode >= UnaryOpsBegin && Opcode < UnaryOpsEnd; |
| 190 | } |
| 191 | static inline bool isBinaryOp(unsigned Opcode) { |
| 192 | return Opcode >= BinaryOpsBegin && Opcode < BinaryOpsEnd; |
| 193 | } |
| 194 | |
| 195 | static inline bool isIntDivRem(unsigned Opcode) { |
| 196 | return Opcode == UDiv || Opcode == SDiv || Opcode == URem || Opcode == SRem; |
| 197 | } |
| 198 | |
| 199 | /// Determine if the Opcode is one of the shift instructions. |
| 200 | static inline bool isShift(unsigned Opcode) { |
| 201 | return Opcode >= Shl && Opcode <= AShr; |
| 202 | } |
| 203 | |
| 204 | /// Return true if this is a logical shift left or a logical shift right. |
| 205 | inline bool isLogicalShift() const { |
| 206 | return getOpcode() == Shl || getOpcode() == LShr; |
| 207 | } |
| 208 | |
| 209 | /// Return true if this is an arithmetic shift right. |
| 210 | inline bool isArithmeticShift() const { |
| 211 | return getOpcode() == AShr; |
| 212 | } |
| 213 | |
| 214 | /// Determine if the Opcode is and/or/xor. |
| 215 | static inline bool isBitwiseLogicOp(unsigned Opcode) { |
| 216 | return Opcode == And || Opcode == Or || Opcode == Xor; |
| 217 | } |
| 218 | |
| 219 | /// Return true if this is and/or/xor. |
| 220 | inline bool isBitwiseLogicOp() const { |
| 221 | return isBitwiseLogicOp(getOpcode()); |
| 222 | } |
| 223 | |
| 224 | /// Determine if the OpCode is one of the CastInst instructions. |
| 225 | static inline bool isCast(unsigned OpCode) { |
| 226 | return OpCode >= CastOpsBegin && OpCode < CastOpsEnd; |
| 227 | } |
| 228 | |
| 229 | /// Determine if the OpCode is one of the FuncletPadInst instructions. |
| 230 | static inline bool isFuncletPad(unsigned OpCode) { |
| 231 | return OpCode >= FuncletPadOpsBegin && OpCode < FuncletPadOpsEnd; |
| 232 | } |
| 233 | |
| 234 | /// Returns true if the OpCode is a terminator related to exception handling. |
| 235 | static inline bool isExceptionalTerminator(unsigned OpCode) { |
| 236 | switch (OpCode) { |
| 237 | case Instruction::CatchSwitch: |
| 238 | case Instruction::CatchRet: |
| 239 | case Instruction::CleanupRet: |
| 240 | case Instruction::Invoke: |
| 241 | case Instruction::Resume: |
| 242 | return true; |
| 243 | default: |
| 244 | return false; |
| 245 | } |
| 246 | } |
| 247 | |
| 248 | /// Returns true if the OpCode is a terminator with indirect targets. |
| 249 | static inline bool isIndirectTerminator(unsigned OpCode) { |
| 250 | switch (OpCode) { |
| 251 | case Instruction::IndirectBr: |
| 252 | case Instruction::CallBr: |
| 253 | return true; |
| 254 | default: |
| 255 | return false; |
| 256 | } |
| 257 | } |
| 258 | |
| 259 | //===--------------------------------------------------------------------===// |
| 260 | // Metadata manipulation. |
| 261 | //===--------------------------------------------------------------------===// |
| 262 | |
| 263 | /// Return true if this instruction has any metadata attached to it. |
| 264 | bool hasMetadata() const { return DbgLoc || Value::hasMetadata(); } |
| 265 | |
| 266 | /// Return true if this instruction has metadata attached to it other than a |
| 267 | /// debug location. |
| 268 | bool hasMetadataOtherThanDebugLoc() const { return Value::hasMetadata(); } |
| 269 | |
| 270 | /// Return true if this instruction has the given type of metadata attached. |
| 271 | bool hasMetadata(unsigned KindID) const { |
| 272 | return getMetadata(KindID) != nullptr; |
| 273 | } |
| 274 | |
| 275 | /// Return true if this instruction has the given type of metadata attached. |
| 276 | bool hasMetadata(StringRef Kind) const { |
| 277 | return getMetadata(Kind) != nullptr; |
| 278 | } |
| 279 | |
| 280 | /// Get the metadata of given kind attached to this Instruction. |
| 281 | /// If the metadata is not found then return null. |
| 282 | MDNode *getMetadata(unsigned KindID) const { |
| 283 | if (!hasMetadata()) return nullptr; |
| 284 | return getMetadataImpl(KindID); |
| 285 | } |
| 286 | |
| 287 | /// Get the metadata of given kind attached to this Instruction. |
| 288 | /// If the metadata is not found then return null. |
| 289 | MDNode *getMetadata(StringRef Kind) const { |
| 290 | if (!hasMetadata()) return nullptr; |
| 291 | return getMetadataImpl(Kind); |
| 292 | } |
| 293 | |
| 294 | /// Get all metadata attached to this Instruction. The first element of each |
| 295 | /// pair returned is the KindID, the second element is the metadata value. |
| 296 | /// This list is returned sorted by the KindID. |
| 297 | void |
| 298 | getAllMetadata(SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const { |
| 299 | if (hasMetadata()) |
| 300 | getAllMetadataImpl(MDs); |
| 301 | } |
| 302 | |
| 303 | /// This does the same thing as getAllMetadata, except that it filters out the |
| 304 | /// debug location. |
| 305 | void getAllMetadataOtherThanDebugLoc( |
| 306 | SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const { |
| 307 | Value::getAllMetadata(MDs); |
| 308 | } |
| 309 | |
| 310 | /// Fills the AAMDNodes structure with AA metadata from this instruction. |
| 311 | /// When Merge is true, the existing AA metadata is merged with that from this |
| 312 | /// instruction providing the most-general result. |
| 313 | void getAAMetadata(AAMDNodes &N, bool Merge = false) const; |
| 314 | |
| 315 | /// Set the metadata of the specified kind to the specified node. This updates |
| 316 | /// or replaces metadata if already present, or removes it if Node is null. |
| 317 | void setMetadata(unsigned KindID, MDNode *Node); |
| 318 | void setMetadata(StringRef Kind, MDNode *Node); |
| 319 | |
| 320 | /// Copy metadata from \p SrcInst to this instruction. \p WL, if not empty, |
| 321 | /// specifies the list of meta data that needs to be copied. If \p WL is |
| 322 | /// empty, all meta data will be copied. |
| 323 | void copyMetadata(const Instruction &SrcInst, |
| 324 | ArrayRef<unsigned> WL = ArrayRef<unsigned>()); |
| 325 | |
| 326 | /// If the instruction has "branch_weights" MD_prof metadata and the MDNode |
| 327 | /// has three operands (including name string), swap the order of the |
| 328 | /// metadata. |
| 329 | void swapProfMetadata(); |
| 330 | |
| 331 | /// Drop all unknown metadata except for debug locations. |
| 332 | /// @{ |
| 333 | /// Passes are required to drop metadata they don't understand. This is a |
| 334 | /// convenience method for passes to do so. |
| 335 | /// dropUndefImplyingAttrsAndUnknownMetadata should be used instead of |
| 336 | /// this API if the Instruction being modified is a call. |
| 337 | void dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs); |
| 338 | void dropUnknownNonDebugMetadata() { |
| 339 | return dropUnknownNonDebugMetadata(None); |
| 340 | } |
| 341 | void dropUnknownNonDebugMetadata(unsigned ID1) { |
| 342 | return dropUnknownNonDebugMetadata(makeArrayRef(ID1)); |
| 343 | } |
| 344 | void dropUnknownNonDebugMetadata(unsigned ID1, unsigned ID2) { |
| 345 | unsigned IDs[] = {ID1, ID2}; |
| 346 | return dropUnknownNonDebugMetadata(IDs); |
| 347 | } |
| 348 | /// @} |
| 349 | |
| 350 | /// Adds an !annotation metadata node with \p Annotation to this instruction. |
| 351 | /// If this instruction already has !annotation metadata, append \p Annotation |
| 352 | /// to the existing node. |
| 353 | void addAnnotationMetadata(StringRef Annotation); |
| 354 | |
| 355 | /// Sets the metadata on this instruction from the AAMDNodes structure. |
| 356 | void setAAMetadata(const AAMDNodes &N); |
| 357 | |
| 358 | /// Retrieve the raw weight values of a conditional branch or select. |
| 359 | /// Returns true on success with profile weights filled in. |
| 360 | /// Returns false if no metadata or invalid metadata was found. |
| 361 | bool extractProfMetadata(uint64_t &TrueVal, uint64_t &FalseVal) const; |
| 362 | |
| 363 | /// Retrieve total raw weight values of a branch. |
| 364 | /// Returns true on success with profile total weights filled in. |
| 365 | /// Returns false if no metadata was found. |
| 366 | bool extractProfTotalWeight(uint64_t &TotalVal) const; |
| 367 | |
| 368 | /// Set the debug location information for this instruction. |
| 369 | void setDebugLoc(DebugLoc Loc) { DbgLoc = std::move(Loc); } |
| 370 | |
| 371 | /// Return the debug location for this node as a DebugLoc. |
| 372 | const DebugLoc &getDebugLoc() const { return DbgLoc; } |
| 373 | |
| 374 | /// Set or clear the nuw flag on this instruction, which must be an operator |
| 375 | /// which supports this flag. See LangRef.html for the meaning of this flag. |
| 376 | void setHasNoUnsignedWrap(bool b = true); |
| 377 | |
| 378 | /// Set or clear the nsw flag on this instruction, which must be an operator |
| 379 | /// which supports this flag. See LangRef.html for the meaning of this flag. |
| 380 | void setHasNoSignedWrap(bool b = true); |
| 381 | |
| 382 | /// Set or clear the exact flag on this instruction, which must be an operator |
| 383 | /// which supports this flag. See LangRef.html for the meaning of this flag. |
| 384 | void setIsExact(bool b = true); |
| 385 | |
| 386 | /// Determine whether the no unsigned wrap flag is set. |
| 387 | bool hasNoUnsignedWrap() const; |
| 388 | |
| 389 | /// Determine whether the no signed wrap flag is set. |
| 390 | bool hasNoSignedWrap() const; |
| 391 | |
| 392 | /// Drops flags that may cause this instruction to evaluate to poison despite |
| 393 | /// having non-poison inputs. |
| 394 | void dropPoisonGeneratingFlags(); |
| 395 | |
| 396 | /// This function drops non-debug unknown metadata (through |
| 397 | /// dropUnknownNonDebugMetadata). For calls, it also drops parameter and |
| 398 | /// return attributes that can cause undefined behaviour. Both of these should |
| 399 | /// be done by passes which move instructions in IR. |
| 400 | void |
| 401 | dropUndefImplyingAttrsAndUnknownMetadata(ArrayRef<unsigned> KnownIDs = {}); |
| 402 | |
| 403 | /// Determine whether the exact flag is set. |
| 404 | bool isExact() const; |
| 405 | |
| 406 | /// Set or clear all fast-math-flags on this instruction, which must be an |
| 407 | /// operator which supports this flag. See LangRef.html for the meaning of |
| 408 | /// this flag. |
| 409 | void setFast(bool B); |
| 410 | |
| 411 | /// Set or clear the reassociation flag on this instruction, which must be |
| 412 | /// an operator which supports this flag. See LangRef.html for the meaning of |
| 413 | /// this flag. |
| 414 | void setHasAllowReassoc(bool B); |
| 415 | |
| 416 | /// Set or clear the no-nans flag on this instruction, which must be an |
| 417 | /// operator which supports this flag. See LangRef.html for the meaning of |
| 418 | /// this flag. |
| 419 | void setHasNoNaNs(bool B); |
| 420 | |
| 421 | /// Set or clear the no-infs flag on this instruction, which must be an |
| 422 | /// operator which supports this flag. See LangRef.html for the meaning of |
| 423 | /// this flag. |
| 424 | void setHasNoInfs(bool B); |
| 425 | |
| 426 | /// Set or clear the no-signed-zeros flag on this instruction, which must be |
| 427 | /// an operator which supports this flag. See LangRef.html for the meaning of |
| 428 | /// this flag. |
| 429 | void setHasNoSignedZeros(bool B); |
| 430 | |
| 431 | /// Set or clear the allow-reciprocal flag on this instruction, which must be |
| 432 | /// an operator which supports this flag. See LangRef.html for the meaning of |
| 433 | /// this flag. |
| 434 | void setHasAllowReciprocal(bool B); |
| 435 | |
| 436 | /// Set or clear the allow-contract flag on this instruction, which must be |
| 437 | /// an operator which supports this flag. See LangRef.html for the meaning of |
| 438 | /// this flag. |
| 439 | void setHasAllowContract(bool B); |
| 440 | |
| 441 | /// Set or clear the approximate-math-functions flag on this instruction, |
| 442 | /// which must be an operator which supports this flag. See LangRef.html for |
| 443 | /// the meaning of this flag. |
| 444 | void setHasApproxFunc(bool B); |
| 445 | |
| 446 | /// Convenience function for setting multiple fast-math flags on this |
| 447 | /// instruction, which must be an operator which supports these flags. See |
| 448 | /// LangRef.html for the meaning of these flags. |
| 449 | void setFastMathFlags(FastMathFlags FMF); |
| 450 | |
| 451 | /// Convenience function for transferring all fast-math flag values to this |
| 452 | /// instruction, which must be an operator which supports these flags. See |
| 453 | /// LangRef.html for the meaning of these flags. |
| 454 | void copyFastMathFlags(FastMathFlags FMF); |
| 455 | |
| 456 | /// Determine whether all fast-math-flags are set. |
| 457 | bool isFast() const; |
| 458 | |
| 459 | /// Determine whether the allow-reassociation flag is set. |
| 460 | bool hasAllowReassoc() const; |
| 461 | |
| 462 | /// Determine whether the no-NaNs flag is set. |
| 463 | bool hasNoNaNs() const; |
| 464 | |
| 465 | /// Determine whether the no-infs flag is set. |
| 466 | bool hasNoInfs() const; |
| 467 | |
| 468 | /// Determine whether the no-signed-zeros flag is set. |
| 469 | bool hasNoSignedZeros() const; |
| 470 | |
| 471 | /// Determine whether the allow-reciprocal flag is set. |
| 472 | bool hasAllowReciprocal() const; |
| 473 | |
| 474 | /// Determine whether the allow-contract flag is set. |
| 475 | bool hasAllowContract() const; |
| 476 | |
| 477 | /// Determine whether the approximate-math-functions flag is set. |
| 478 | bool hasApproxFunc() const; |
| 479 | |
| 480 | /// Convenience function for getting all the fast-math flags, which must be an |
| 481 | /// operator which supports these flags. See LangRef.html for the meaning of |
| 482 | /// these flags. |
| 483 | FastMathFlags getFastMathFlags() const; |
| 484 | |
| 485 | /// Copy I's fast-math flags |
| 486 | void copyFastMathFlags(const Instruction *I); |
| 487 | |
| 488 | /// Convenience method to copy supported exact, fast-math, and (optionally) |
| 489 | /// wrapping flags from V to this instruction. |
| 490 | void copyIRFlags(const Value *V, bool IncludeWrapFlags = true); |
| 491 | |
| 492 | /// Logical 'and' of any supported wrapping, exact, and fast-math flags of |
| 493 | /// V and this instruction. |
| 494 | void andIRFlags(const Value *V); |
| 495 | |
| 496 | /// Merge 2 debug locations and apply it to the Instruction. If the |
| 497 | /// instruction is a CallIns, we need to traverse the inline chain to find |
| 498 | /// the common scope. This is not efficient for N-way merging as each time |
| 499 | /// you merge 2 iterations, you need to rebuild the hashmap to find the |
| 500 | /// common scope. However, we still choose this API because: |
| 501 | /// 1) Simplicity: it takes 2 locations instead of a list of locations. |
| 502 | /// 2) In worst case, it increases the complexity from O(N*I) to |
| 503 | /// O(2*N*I), where N is # of Instructions to merge, and I is the |
| 504 | /// maximum level of inline stack. So it is still linear. |
| 505 | /// 3) Merging of call instructions should be extremely rare in real |
| 506 | /// applications, thus the N-way merging should be in code path. |
| 507 | /// The DebugLoc attached to this instruction will be overwritten by the |
| 508 | /// merged DebugLoc. |
| 509 | void applyMergedLocation(const DILocation *LocA, const DILocation *LocB); |
| 510 | |
| 511 | /// Updates the debug location given that the instruction has been hoisted |
| 512 | /// from a block to a predecessor of that block. |
| 513 | /// Note: it is undefined behavior to call this on an instruction not |
| 514 | /// currently inserted into a function. |
| 515 | void updateLocationAfterHoist(); |
| 516 | |
| 517 | /// Drop the instruction's debug location. This does not guarantee removal |
| 518 | /// of the !dbg source location attachment, as it must set a line 0 location |
| 519 | /// with scope information attached on call instructions. To guarantee |
| 520 | /// removal of the !dbg attachment, use the \ref setDebugLoc() API. |
| 521 | /// Note: it is undefined behavior to call this on an instruction not |
| 522 | /// currently inserted into a function. |
| 523 | void dropLocation(); |
| 524 | |
| 525 | private: |
| 526 | // These are all implemented in Metadata.cpp. |
| 527 | MDNode *getMetadataImpl(unsigned KindID) const; |
| 528 | MDNode *getMetadataImpl(StringRef Kind) const; |
| 529 | void |
| 530 | getAllMetadataImpl(SmallVectorImpl<std::pair<unsigned, MDNode *>> &) const; |
| 531 | |
| 532 | public: |
| 533 | //===--------------------------------------------------------------------===// |
| 534 | // Predicates and helper methods. |
| 535 | //===--------------------------------------------------------------------===// |
| 536 | |
| 537 | /// Return true if the instruction is associative: |
| 538 | /// |
| 539 | /// Associative operators satisfy: x op (y op z) === (x op y) op z |
| 540 | /// |
| 541 | /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative. |
| 542 | /// |
| 543 | bool isAssociative() const LLVM_READONLY__attribute__((__pure__)); |
| 544 | static bool isAssociative(unsigned Opcode) { |
| 545 | return Opcode == And || Opcode == Or || Opcode == Xor || |
| 546 | Opcode == Add || Opcode == Mul; |
| 547 | } |
| 548 | |
| 549 | /// Return true if the instruction is commutative: |
| 550 | /// |
| 551 | /// Commutative operators satisfy: (x op y) === (y op x) |
| 552 | /// |
| 553 | /// In LLVM, these are the commutative operators, plus SetEQ and SetNE, when |
| 554 | /// applied to any type. |
| 555 | /// |
| 556 | bool isCommutative() const LLVM_READONLY__attribute__((__pure__)); |
| 557 | static bool isCommutative(unsigned Opcode) { |
| 558 | switch (Opcode) { |
| 559 | case Add: case FAdd: |
| 560 | case Mul: case FMul: |
| 561 | case And: case Or: case Xor: |
| 562 | return true; |
| 563 | default: |
| 564 | return false; |
| 565 | } |
| 566 | } |
| 567 | |
| 568 | /// Return true if the instruction is idempotent: |
| 569 | /// |
| 570 | /// Idempotent operators satisfy: x op x === x |
| 571 | /// |
| 572 | /// In LLVM, the And and Or operators are idempotent. |
| 573 | /// |
| 574 | bool isIdempotent() const { return isIdempotent(getOpcode()); } |
| 575 | static bool isIdempotent(unsigned Opcode) { |
| 576 | return Opcode == And || Opcode == Or; |
| 577 | } |
| 578 | |
| 579 | /// Return true if the instruction is nilpotent: |
| 580 | /// |
| 581 | /// Nilpotent operators satisfy: x op x === Id, |
| 582 | /// |
| 583 | /// where Id is the identity for the operator, i.e. a constant such that |
| 584 | /// x op Id === x and Id op x === x for all x. |
| 585 | /// |
| 586 | /// In LLVM, the Xor operator is nilpotent. |
| 587 | /// |
| 588 | bool isNilpotent() const { return isNilpotent(getOpcode()); } |
| 589 | static bool isNilpotent(unsigned Opcode) { |
| 590 | return Opcode == Xor; |
| 591 | } |
| 592 | |
| 593 | /// Return true if this instruction may modify memory. |
| 594 | bool mayWriteToMemory() const; |
| 595 | |
| 596 | /// Return true if this instruction may read memory. |
| 597 | bool mayReadFromMemory() const; |
| 598 | |
| 599 | /// Return true if this instruction may read or write memory. |
| 600 | bool mayReadOrWriteMemory() const { |
| 601 | return mayReadFromMemory() || mayWriteToMemory(); |
| 602 | } |
| 603 | |
| 604 | /// Return true if this instruction has an AtomicOrdering of unordered or |
| 605 | /// higher. |
| 606 | bool isAtomic() const; |
| 607 | |
| 608 | /// Return true if this atomic instruction loads from memory. |
| 609 | bool hasAtomicLoad() const; |
| 610 | |
| 611 | /// Return true if this atomic instruction stores to memory. |
| 612 | bool hasAtomicStore() const; |
| 613 | |
| 614 | /// Return true if this instruction has a volatile memory access. |
| 615 | bool isVolatile() const; |
| 616 | |
| 617 | /// Return true if this instruction may throw an exception. |
| 618 | bool mayThrow() const; |
| 619 | |
| 620 | /// Return true if this instruction behaves like a memory fence: it can load |
| 621 | /// or store to memory location without being given a memory location. |
| 622 | bool isFenceLike() const { |
| 623 | switch (getOpcode()) { |
| 624 | default: |
| 625 | return false; |
| 626 | // This list should be kept in sync with the list in mayWriteToMemory for |
| 627 | // all opcodes which don't have a memory location. |
| 628 | case Instruction::Fence: |
| 629 | case Instruction::CatchPad: |
| 630 | case Instruction::CatchRet: |
| 631 | case Instruction::Call: |
| 632 | case Instruction::Invoke: |
| 633 | return true; |
| 634 | } |
| 635 | } |
| 636 | |
| 637 | /// Return true if the instruction may have side effects. |
| 638 | /// |
| 639 | /// Side effects are: |
| 640 | /// * Writing to memory. |
| 641 | /// * Unwinding. |
| 642 | /// * Not returning (e.g. an infinite loop). |
| 643 | /// |
| 644 | /// Note that this does not consider malloc and alloca to have side |
| 645 | /// effects because the newly allocated memory is completely invisible to |
| 646 | /// instructions which don't use the returned value. For cases where this |
| 647 | /// matters, isSafeToSpeculativelyExecute may be more appropriate. |
| 648 | bool mayHaveSideEffects() const; |
| 649 | |
| 650 | /// Return true if the instruction can be removed if the result is unused. |
| 651 | /// |
| 652 | /// When constant folding some instructions cannot be removed even if their |
| 653 | /// results are unused. Specifically terminator instructions and calls that |
| 654 | /// may have side effects cannot be removed without semantically changing the |
| 655 | /// generated program. |
| 656 | bool isSafeToRemove() const; |
| 657 | |
| 658 | /// Return true if the instruction will return (unwinding is considered as |
| 659 | /// a form of returning control flow here). |
| 660 | bool willReturn() const; |
| 661 | |
| 662 | /// Return true if the instruction is a variety of EH-block. |
| 663 | bool isEHPad() const { |
| 664 | switch (getOpcode()) { |
| 665 | case Instruction::CatchSwitch: |
| 666 | case Instruction::CatchPad: |
| 667 | case Instruction::CleanupPad: |
| 668 | case Instruction::LandingPad: |
| 669 | return true; |
| 670 | default: |
| 671 | return false; |
| 672 | } |
| 673 | } |
| 674 | |
| 675 | /// Return true if the instruction is a llvm.lifetime.start or |
| 676 | /// llvm.lifetime.end marker. |
| 677 | bool isLifetimeStartOrEnd() const; |
| 678 | |
| 679 | /// Return true if the instruction is a llvm.launder.invariant.group or |
| 680 | /// llvm.strip.invariant.group. |
| 681 | bool isLaunderOrStripInvariantGroup() const; |
| 682 | |
| 683 | /// Return true if the instruction is a DbgInfoIntrinsic or PseudoProbeInst. |
| 684 | bool isDebugOrPseudoInst() const; |
| 685 | |
| 686 | /// Return a pointer to the next non-debug instruction in the same basic |
| 687 | /// block as 'this', or nullptr if no such instruction exists. Skip any pseudo |
| 688 | /// operations if \c SkipPseudoOp is true. |
| 689 | const Instruction * |
| 690 | getNextNonDebugInstruction(bool SkipPseudoOp = false) const; |
| 691 | Instruction *getNextNonDebugInstruction(bool SkipPseudoOp = false) { |
| 692 | return const_cast<Instruction *>( |
| 693 | static_cast<const Instruction *>(this)->getNextNonDebugInstruction( |
| 694 | SkipPseudoOp)); |
| 695 | } |
| 696 | |
| 697 | /// Return a pointer to the previous non-debug instruction in the same basic |
| 698 | /// block as 'this', or nullptr if no such instruction exists. Skip any pseudo |
| 699 | /// operations if \c SkipPseudoOp is true. |
| 700 | const Instruction * |
| 701 | getPrevNonDebugInstruction(bool SkipPseudoOp = false) const; |
| 702 | Instruction *getPrevNonDebugInstruction(bool SkipPseudoOp = false) { |
| 703 | return const_cast<Instruction *>( |
| 704 | static_cast<const Instruction *>(this)->getPrevNonDebugInstruction( |
| 705 | SkipPseudoOp)); |
| 706 | } |
| 707 | |
| 708 | /// Create a copy of 'this' instruction that is identical in all ways except |
| 709 | /// the following: |
| 710 | /// * The instruction has no parent |
| 711 | /// * The instruction has no name |
| 712 | /// |
| 713 | Instruction *clone() const; |
| 714 | |
| 715 | /// Return true if the specified instruction is exactly identical to the |
| 716 | /// current one. This means that all operands match and any extra information |
| 717 | /// (e.g. load is volatile) agree. |
| 718 | bool isIdenticalTo(const Instruction *I) const; |
| 719 | |
| 720 | /// This is like isIdenticalTo, except that it ignores the |
| 721 | /// SubclassOptionalData flags, which may specify conditions under which the |
| 722 | /// instruction's result is undefined. |
| 723 | bool isIdenticalToWhenDefined(const Instruction *I) const; |
| 724 | |
| 725 | /// When checking for operation equivalence (using isSameOperationAs) it is |
| 726 | /// sometimes useful to ignore certain attributes. |
| 727 | enum OperationEquivalenceFlags { |
| 728 | /// Check for equivalence ignoring load/store alignment. |
| 729 | CompareIgnoringAlignment = 1<<0, |
| 730 | /// Check for equivalence treating a type and a vector of that type |
| 731 | /// as equivalent. |
| 732 | CompareUsingScalarTypes = 1<<1 |
| 733 | }; |
| 734 | |
| 735 | /// This function determines if the specified instruction executes the same |
| 736 | /// operation as the current one. This means that the opcodes, type, operand |
| 737 | /// types and any other factors affecting the operation must be the same. This |
| 738 | /// is similar to isIdenticalTo except the operands themselves don't have to |
| 739 | /// be identical. |
| 740 | /// @returns true if the specified instruction is the same operation as |
| 741 | /// the current one. |
| 742 | /// Determine if one instruction is the same operation as another. |
| 743 | bool isSameOperationAs(const Instruction *I, unsigned flags = 0) const; |
| 744 | |
| 745 | /// Return true if there are any uses of this instruction in blocks other than |
| 746 | /// the specified block. Note that PHI nodes are considered to evaluate their |
| 747 | /// operands in the corresponding predecessor block. |
| 748 | bool isUsedOutsideOfBlock(const BasicBlock *BB) const; |
| 749 | |
| 750 | /// Return the number of successors that this instruction has. The instruction |
| 751 | /// must be a terminator. |
| 752 | unsigned getNumSuccessors() const; |
| 753 | |
| 754 | /// Return the specified successor. This instruction must be a terminator. |
| 755 | BasicBlock *getSuccessor(unsigned Idx) const; |
| 756 | |
| 757 | /// Update the specified successor to point at the provided block. This |
| 758 | /// instruction must be a terminator. |
| 759 | void setSuccessor(unsigned Idx, BasicBlock *BB); |
| 760 | |
| 761 | /// Replace specified successor OldBB to point at the provided block. |
| 762 | /// This instruction must be a terminator. |
| 763 | void replaceSuccessorWith(BasicBlock *OldBB, BasicBlock *NewBB); |
| 764 | |
| 765 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 766 | static bool classof(const Value *V) { |
| 767 | return V->getValueID() >= Value::InstructionVal; |
| 768 | } |
| 769 | |
| 770 | //---------------------------------------------------------------------- |
| 771 | // Exported enumerations. |
| 772 | // |
| 773 | enum TermOps { // These terminate basic blocks |
| 774 | #define FIRST_TERM_INST(N) TermOpsBegin = N, |
| 775 | #define HANDLE_TERM_INST(N, OPC, CLASS) OPC = N, |
| 776 | #define LAST_TERM_INST(N) TermOpsEnd = N+1 |
| 777 | #include "llvm/IR/Instruction.def" |
| 778 | }; |
| 779 | |
| 780 | enum UnaryOps { |
| 781 | #define FIRST_UNARY_INST(N) UnaryOpsBegin = N, |
| 782 | #define HANDLE_UNARY_INST(N, OPC, CLASS) OPC = N, |
| 783 | #define LAST_UNARY_INST(N) UnaryOpsEnd = N+1 |
| 784 | #include "llvm/IR/Instruction.def" |
| 785 | }; |
| 786 | |
| 787 | enum BinaryOps { |
| 788 | #define FIRST_BINARY_INST(N) BinaryOpsBegin = N, |
| 789 | #define HANDLE_BINARY_INST(N, OPC, CLASS) OPC = N, |
| 790 | #define LAST_BINARY_INST(N) BinaryOpsEnd = N+1 |
| 791 | #include "llvm/IR/Instruction.def" |
| 792 | }; |
| 793 | |
| 794 | enum MemoryOps { |
| 795 | #define FIRST_MEMORY_INST(N) MemoryOpsBegin = N, |
| 796 | #define HANDLE_MEMORY_INST(N, OPC, CLASS) OPC = N, |
| 797 | #define LAST_MEMORY_INST(N) MemoryOpsEnd = N+1 |
| 798 | #include "llvm/IR/Instruction.def" |
| 799 | }; |
| 800 | |
| 801 | enum CastOps { |
| 802 | #define FIRST_CAST_INST(N) CastOpsBegin = N, |
| 803 | #define HANDLE_CAST_INST(N, OPC, CLASS) OPC = N, |
| 804 | #define LAST_CAST_INST(N) CastOpsEnd = N+1 |
| 805 | #include "llvm/IR/Instruction.def" |
| 806 | }; |
| 807 | |
| 808 | enum FuncletPadOps { |
| 809 | #define FIRST_FUNCLETPAD_INST(N) FuncletPadOpsBegin = N, |
| 810 | #define HANDLE_FUNCLETPAD_INST(N, OPC, CLASS) OPC = N, |
| 811 | #define LAST_FUNCLETPAD_INST(N) FuncletPadOpsEnd = N+1 |
| 812 | #include "llvm/IR/Instruction.def" |
| 813 | }; |
| 814 | |
| 815 | enum OtherOps { |
| 816 | #define FIRST_OTHER_INST(N) OtherOpsBegin = N, |
| 817 | #define HANDLE_OTHER_INST(N, OPC, CLASS) OPC = N, |
| 818 | #define LAST_OTHER_INST(N) OtherOpsEnd = N+1 |
| 819 | #include "llvm/IR/Instruction.def" |
| 820 | }; |
| 821 | |
| 822 | private: |
| 823 | friend class SymbolTableListTraits<Instruction>; |
| 824 | friend class BasicBlock; // For renumbering. |
| 825 | |
| 826 | // Shadow Value::setValueSubclassData with a private forwarding method so that |
| 827 | // subclasses cannot accidentally use it. |
| 828 | void setValueSubclassData(unsigned short D) { |
| 829 | Value::setValueSubclassData(D); |
| 830 | } |
| 831 | |
| 832 | unsigned short getSubclassDataFromValue() const { |
| 833 | return Value::getSubclassDataFromValue(); |
| 834 | } |
| 835 | |
| 836 | void setParent(BasicBlock *P); |
| 837 | |
| 838 | protected: |
| 839 | // Instruction subclasses can stick up to 15 bits of stuff into the |
| 840 | // SubclassData field of instruction with these members. |
| 841 | |
| 842 | template <typename BitfieldElement> |
| 843 | typename BitfieldElement::Type getSubclassData() const { |
| 844 | static_assert( |
| 845 | std::is_same<BitfieldElement, HasMetadataField>::value || |
| 846 | !Bitfield::isOverlapping<BitfieldElement, HasMetadataField>(), |
| 847 | "Must not overlap with the metadata bit"); |
| 848 | return Bitfield::get<BitfieldElement>(getSubclassDataFromValue()); |
| 849 | } |
| 850 | |
| 851 | template <typename BitfieldElement> |
| 852 | void setSubclassData(typename BitfieldElement::Type Value) { |
| 853 | static_assert( |
| 854 | std::is_same<BitfieldElement, HasMetadataField>::value || |
| 855 | !Bitfield::isOverlapping<BitfieldElement, HasMetadataField>(), |
| 856 | "Must not overlap with the metadata bit"); |
| 857 | auto Storage = getSubclassDataFromValue(); |
| 858 | Bitfield::set<BitfieldElement>(Storage, Value); |
| 859 | setValueSubclassData(Storage); |
| 860 | } |
| 861 | |
| 862 | Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps, |
| 863 | Instruction *InsertBefore = nullptr); |
| 864 | Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps, |
| 865 | BasicBlock *InsertAtEnd); |
| 866 | |
| 867 | private: |
| 868 | /// Create a copy of this instruction. |
| 869 | Instruction *cloneImpl() const; |
| 870 | }; |
| 871 | |
| 872 | inline void ilist_alloc_traits<Instruction>::deleteNode(Instruction *V) { |
| 873 | V->deleteValue(); |
| 874 | } |
| 875 | |
| 876 | } // end namespace llvm |
| 877 | |
| 878 | #endif // LLVM_IR_INSTRUCTION_H |
| 1 | //===- llvm/DataLayout.h - Data size & alignment info -----------*- C++ -*-===// | ||||||||||||||
| 2 | // | ||||||||||||||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||||||||||||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | ||||||||||||||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||||||||||||
| 6 | // | ||||||||||||||
| 7 | //===----------------------------------------------------------------------===// | ||||||||||||||
| 8 | // | ||||||||||||||
| 9 | // This file defines layout properties related to datatype size/offset/alignment | ||||||||||||||
| 10 | // information. It uses lazy annotations to cache information about how | ||||||||||||||
| 11 | // structure types are laid out and used. | ||||||||||||||
| 12 | // | ||||||||||||||
| 13 | // This structure should be created once, filled in if the defaults are not | ||||||||||||||
| 14 | // correct and then passed around by const&. None of the members functions | ||||||||||||||
| 15 | // require modification to the object. | ||||||||||||||
| 16 | // | ||||||||||||||
| 17 | //===----------------------------------------------------------------------===// | ||||||||||||||
| 18 | |||||||||||||||
| 19 | #ifndef LLVM_IR_DATALAYOUT_H | ||||||||||||||
| 20 | #define LLVM_IR_DATALAYOUT_H | ||||||||||||||
| 21 | |||||||||||||||
| 22 | #include "llvm/ADT/ArrayRef.h" | ||||||||||||||
| 23 | #include "llvm/ADT/STLExtras.h" | ||||||||||||||
| 24 | #include "llvm/ADT/SmallVector.h" | ||||||||||||||
| 25 | #include "llvm/ADT/StringRef.h" | ||||||||||||||
| 26 | #include "llvm/IR/DerivedTypes.h" | ||||||||||||||
| 27 | #include "llvm/IR/Type.h" | ||||||||||||||
| 28 | #include "llvm/Support/Casting.h" | ||||||||||||||
| 29 | #include "llvm/Support/ErrorHandling.h" | ||||||||||||||
| 30 | #include "llvm/Support/MathExtras.h" | ||||||||||||||
| 31 | #include "llvm/Support/Alignment.h" | ||||||||||||||
| 32 | #include "llvm/Support/TrailingObjects.h" | ||||||||||||||
| 33 | #include "llvm/Support/TypeSize.h" | ||||||||||||||
| 34 | #include <cassert> | ||||||||||||||
| 35 | #include <cstdint> | ||||||||||||||
| 36 | #include <string> | ||||||||||||||
| 37 | |||||||||||||||
| 38 | // This needs to be outside of the namespace, to avoid conflict with llvm-c | ||||||||||||||
| 39 | // decl. | ||||||||||||||
| 40 | using LLVMTargetDataRef = struct LLVMOpaqueTargetData *; | ||||||||||||||
| 41 | |||||||||||||||
| 42 | namespace llvm { | ||||||||||||||
| 43 | |||||||||||||||
| 44 | class GlobalVariable; | ||||||||||||||
| 45 | class LLVMContext; | ||||||||||||||
| 46 | class Module; | ||||||||||||||
| 47 | class StructLayout; | ||||||||||||||
| 48 | class Triple; | ||||||||||||||
| 49 | class Value; | ||||||||||||||
| 50 | |||||||||||||||
| 51 | /// Enum used to categorize the alignment types stored by LayoutAlignElem | ||||||||||||||
| 52 | enum AlignTypeEnum { | ||||||||||||||
| 53 | INVALID_ALIGN = 0, | ||||||||||||||
| 54 | INTEGER_ALIGN = 'i', | ||||||||||||||
| 55 | VECTOR_ALIGN = 'v', | ||||||||||||||
| 56 | FLOAT_ALIGN = 'f', | ||||||||||||||
| 57 | AGGREGATE_ALIGN = 'a' | ||||||||||||||
| 58 | }; | ||||||||||||||
| 59 | |||||||||||||||
| 60 | // FIXME: Currently the DataLayout string carries a "preferred alignment" | ||||||||||||||
| 61 | // for types. As the DataLayout is module/global, this should likely be | ||||||||||||||
| 62 | // sunk down to an FTTI element that is queried rather than a global | ||||||||||||||
| 63 | // preference. | ||||||||||||||
| 64 | |||||||||||||||
| 65 | /// Layout alignment element. | ||||||||||||||
| 66 | /// | ||||||||||||||
| 67 | /// Stores the alignment data associated with a given alignment type (integer, | ||||||||||||||
| 68 | /// vector, float) and type bit width. | ||||||||||||||
| 69 | /// | ||||||||||||||
| 70 | /// \note The unusual order of elements in the structure attempts to reduce | ||||||||||||||
| 71 | /// padding and make the structure slightly more cache friendly. | ||||||||||||||
| 72 | struct LayoutAlignElem { | ||||||||||||||
| 73 | /// Alignment type from \c AlignTypeEnum | ||||||||||||||
| 74 | unsigned AlignType : 8; | ||||||||||||||
| 75 | unsigned TypeBitWidth : 24; | ||||||||||||||
| 76 | Align ABIAlign; | ||||||||||||||
| 77 | Align PrefAlign; | ||||||||||||||
| 78 | |||||||||||||||
| 79 | static LayoutAlignElem get(AlignTypeEnum align_type, Align abi_align, | ||||||||||||||
| 80 | Align pref_align, uint32_t bit_width); | ||||||||||||||
| 81 | |||||||||||||||
| 82 | bool operator==(const LayoutAlignElem &rhs) const; | ||||||||||||||
| 83 | }; | ||||||||||||||
| 84 | |||||||||||||||
| 85 | /// Layout pointer alignment element. | ||||||||||||||
| 86 | /// | ||||||||||||||
| 87 | /// Stores the alignment data associated with a given pointer and address space. | ||||||||||||||
| 88 | /// | ||||||||||||||
| 89 | /// \note The unusual order of elements in the structure attempts to reduce | ||||||||||||||
| 90 | /// padding and make the structure slightly more cache friendly. | ||||||||||||||
| 91 | struct PointerAlignElem { | ||||||||||||||
| 92 | Align ABIAlign; | ||||||||||||||
| 93 | Align PrefAlign; | ||||||||||||||
| 94 | uint32_t TypeByteWidth; | ||||||||||||||
| 95 | uint32_t AddressSpace; | ||||||||||||||
| 96 | uint32_t IndexWidth; | ||||||||||||||
| 97 | |||||||||||||||
| 98 | /// Initializer | ||||||||||||||
| 99 | static PointerAlignElem get(uint32_t AddressSpace, Align ABIAlign, | ||||||||||||||
| 100 | Align PrefAlign, uint32_t TypeByteWidth, | ||||||||||||||
| 101 | uint32_t IndexWidth); | ||||||||||||||
| 102 | |||||||||||||||
| 103 | bool operator==(const PointerAlignElem &rhs) const; | ||||||||||||||
| 104 | }; | ||||||||||||||
| 105 | |||||||||||||||
| 106 | /// A parsed version of the target data layout string in and methods for | ||||||||||||||
| 107 | /// querying it. | ||||||||||||||
| 108 | /// | ||||||||||||||
| 109 | /// The target data layout string is specified *by the target* - a frontend | ||||||||||||||
| 110 | /// generating LLVM IR is required to generate the right target data for the | ||||||||||||||
| 111 | /// target being codegen'd to. | ||||||||||||||
| 112 | class DataLayout { | ||||||||||||||
| 113 | public: | ||||||||||||||
| 114 | enum class FunctionPtrAlignType { | ||||||||||||||
| 115 | /// The function pointer alignment is independent of the function alignment. | ||||||||||||||
| 116 | Independent, | ||||||||||||||
| 117 | /// The function pointer alignment is a multiple of the function alignment. | ||||||||||||||
| 118 | MultipleOfFunctionAlign, | ||||||||||||||
| 119 | }; | ||||||||||||||
| 120 | private: | ||||||||||||||
| 121 | /// Defaults to false. | ||||||||||||||
| 122 | bool BigEndian; | ||||||||||||||
| 123 | |||||||||||||||
| 124 | unsigned AllocaAddrSpace; | ||||||||||||||
| 125 | MaybeAlign StackNaturalAlign; | ||||||||||||||
| 126 | unsigned ProgramAddrSpace; | ||||||||||||||
| 127 | unsigned DefaultGlobalsAddrSpace; | ||||||||||||||
| 128 | |||||||||||||||
| 129 | MaybeAlign FunctionPtrAlign; | ||||||||||||||
| 130 | FunctionPtrAlignType TheFunctionPtrAlignType; | ||||||||||||||
| 131 | |||||||||||||||
| 132 | enum ManglingModeT { | ||||||||||||||
| 133 | MM_None, | ||||||||||||||
| 134 | MM_ELF, | ||||||||||||||
| 135 | MM_MachO, | ||||||||||||||
| 136 | MM_WinCOFF, | ||||||||||||||
| 137 | MM_WinCOFFX86, | ||||||||||||||
| 138 | MM_Mips, | ||||||||||||||
| 139 | MM_XCOFF | ||||||||||||||
| 140 | }; | ||||||||||||||
| 141 | ManglingModeT ManglingMode; | ||||||||||||||
| 142 | |||||||||||||||
| 143 | SmallVector<unsigned char, 8> LegalIntWidths; | ||||||||||||||
| 144 | |||||||||||||||
| 145 | /// Primitive type alignment data. This is sorted by type and bit | ||||||||||||||
| 146 | /// width during construction. | ||||||||||||||
| 147 | using AlignmentsTy = SmallVector<LayoutAlignElem, 16>; | ||||||||||||||
| 148 | AlignmentsTy Alignments; | ||||||||||||||
| 149 | |||||||||||||||
| 150 | AlignmentsTy::const_iterator | ||||||||||||||
| 151 | findAlignmentLowerBound(AlignTypeEnum AlignType, uint32_t BitWidth) const { | ||||||||||||||
| 152 | return const_cast<DataLayout *>(this)->findAlignmentLowerBound(AlignType, | ||||||||||||||
| 153 | BitWidth); | ||||||||||||||
| 154 | } | ||||||||||||||
| 155 | |||||||||||||||
| 156 | AlignmentsTy::iterator | ||||||||||||||
| 157 | findAlignmentLowerBound(AlignTypeEnum AlignType, uint32_t BitWidth); | ||||||||||||||
| 158 | |||||||||||||||
| 159 | /// The string representation used to create this DataLayout | ||||||||||||||
| 160 | std::string StringRepresentation; | ||||||||||||||
| 161 | |||||||||||||||
| 162 | using PointersTy = SmallVector<PointerAlignElem, 8>; | ||||||||||||||
| 163 | PointersTy Pointers; | ||||||||||||||
| 164 | |||||||||||||||
| 165 | const PointerAlignElem &getPointerAlignElem(uint32_t AddressSpace) const; | ||||||||||||||
| 166 | |||||||||||||||
| 167 | // The StructType -> StructLayout map. | ||||||||||||||
| 168 | mutable void *LayoutMap = nullptr; | ||||||||||||||
| 169 | |||||||||||||||
| 170 | /// Pointers in these address spaces are non-integral, and don't have a | ||||||||||||||
| 171 | /// well-defined bitwise representation. | ||||||||||||||
| 172 | SmallVector<unsigned, 8> NonIntegralAddressSpaces; | ||||||||||||||
| 173 | |||||||||||||||
| 174 | /// Attempts to set the alignment of the given type. Returns an error | ||||||||||||||
| 175 | /// description on failure. | ||||||||||||||
| 176 | Error setAlignment(AlignTypeEnum align_type, Align abi_align, | ||||||||||||||
| 177 | Align pref_align, uint32_t bit_width); | ||||||||||||||
| 178 | |||||||||||||||
| 179 | /// Attempts to set the alignment of a pointer in the given address space. | ||||||||||||||
| 180 | /// Returns an error description on failure. | ||||||||||||||
| 181 | Error setPointerAlignment(uint32_t AddrSpace, Align ABIAlign, Align PrefAlign, | ||||||||||||||
| 182 | uint32_t TypeByteWidth, uint32_t IndexWidth); | ||||||||||||||
| 183 | |||||||||||||||
| 184 | /// Internal helper to get alignment for integer of given bitwidth. | ||||||||||||||
| 185 | Align getIntegerAlignment(uint32_t BitWidth, bool abi_or_pref) const; | ||||||||||||||
| 186 | |||||||||||||||
| 187 | /// Internal helper method that returns requested alignment for type. | ||||||||||||||
| 188 | Align getAlignment(Type *Ty, bool abi_or_pref) const; | ||||||||||||||
| 189 | |||||||||||||||
| 190 | /// Attempts to parse a target data specification string and reports an error | ||||||||||||||
| 191 | /// if the string is malformed. | ||||||||||||||
| 192 | Error parseSpecifier(StringRef Desc); | ||||||||||||||
| 193 | |||||||||||||||
| 194 | // Free all internal data structures. | ||||||||||||||
| 195 | void clear(); | ||||||||||||||
| 196 | |||||||||||||||
| 197 | public: | ||||||||||||||
| 198 | /// Constructs a DataLayout from a specification string. See reset(). | ||||||||||||||
| 199 | explicit DataLayout(StringRef LayoutDescription) { | ||||||||||||||
| 200 | reset(LayoutDescription); | ||||||||||||||
| 201 | } | ||||||||||||||
| 202 | |||||||||||||||
| 203 | /// Initialize target data from properties stored in the module. | ||||||||||||||
| 204 | explicit DataLayout(const Module *M); | ||||||||||||||
| 205 | |||||||||||||||
| 206 | DataLayout(const DataLayout &DL) { *this = DL; } | ||||||||||||||
| 207 | |||||||||||||||
| 208 | ~DataLayout(); // Not virtual, do not subclass this class | ||||||||||||||
| 209 | |||||||||||||||
| 210 | DataLayout &operator=(const DataLayout &DL) { | ||||||||||||||
| 211 | clear(); | ||||||||||||||
| 212 | StringRepresentation = DL.StringRepresentation; | ||||||||||||||
| 213 | BigEndian = DL.isBigEndian(); | ||||||||||||||
| 214 | AllocaAddrSpace = DL.AllocaAddrSpace; | ||||||||||||||
| 215 | StackNaturalAlign = DL.StackNaturalAlign; | ||||||||||||||
| 216 | FunctionPtrAlign = DL.FunctionPtrAlign; | ||||||||||||||
| 217 | TheFunctionPtrAlignType = DL.TheFunctionPtrAlignType; | ||||||||||||||
| 218 | ProgramAddrSpace = DL.ProgramAddrSpace; | ||||||||||||||
| 219 | DefaultGlobalsAddrSpace = DL.DefaultGlobalsAddrSpace; | ||||||||||||||
| 220 | ManglingMode = DL.ManglingMode; | ||||||||||||||
| 221 | LegalIntWidths = DL.LegalIntWidths; | ||||||||||||||
| 222 | Alignments = DL.Alignments; | ||||||||||||||
| 223 | Pointers = DL.Pointers; | ||||||||||||||
| 224 | NonIntegralAddressSpaces = DL.NonIntegralAddressSpaces; | ||||||||||||||
| 225 | return *this; | ||||||||||||||
| 226 | } | ||||||||||||||
| 227 | |||||||||||||||
| 228 | bool operator==(const DataLayout &Other) const; | ||||||||||||||
| 229 | bool operator!=(const DataLayout &Other) const { return !(*this == Other); } | ||||||||||||||
| 230 | |||||||||||||||
| 231 | void init(const Module *M); | ||||||||||||||
| 232 | |||||||||||||||
| 233 | /// Parse a data layout string (with fallback to default values). | ||||||||||||||
| 234 | void reset(StringRef LayoutDescription); | ||||||||||||||
| 235 | |||||||||||||||
| 236 | /// Parse a data layout string and return the layout. Return an error | ||||||||||||||
| 237 | /// description on failure. | ||||||||||||||
| 238 | static Expected<DataLayout> parse(StringRef LayoutDescription); | ||||||||||||||
| 239 | |||||||||||||||
| 240 | /// Layout endianness... | ||||||||||||||
| 241 | bool isLittleEndian() const { return !BigEndian; } | ||||||||||||||
| 242 | bool isBigEndian() const { return BigEndian; } | ||||||||||||||
| 243 | |||||||||||||||
| 244 | /// Returns the string representation of the DataLayout. | ||||||||||||||
| 245 | /// | ||||||||||||||
| 246 | /// This representation is in the same format accepted by the string | ||||||||||||||
| 247 | /// constructor above. This should not be used to compare two DataLayout as | ||||||||||||||
| 248 | /// different string can represent the same layout. | ||||||||||||||
| 249 | const std::string &getStringRepresentation() const { | ||||||||||||||
| 250 | return StringRepresentation; | ||||||||||||||
| 251 | } | ||||||||||||||
| 252 | |||||||||||||||
| 253 | /// Test if the DataLayout was constructed from an empty string. | ||||||||||||||
| 254 | bool isDefault() const { return StringRepresentation.empty(); } | ||||||||||||||
| 255 | |||||||||||||||
| 256 | /// Returns true if the specified type is known to be a native integer | ||||||||||||||
| 257 | /// type supported by the CPU. | ||||||||||||||
| 258 | /// | ||||||||||||||
| 259 | /// For example, i64 is not native on most 32-bit CPUs and i37 is not native | ||||||||||||||
| 260 | /// on any known one. This returns false if the integer width is not legal. | ||||||||||||||
| 261 | /// | ||||||||||||||
| 262 | /// The width is specified in bits. | ||||||||||||||
| 263 | bool isLegalInteger(uint64_t Width) const { | ||||||||||||||
| 264 | return llvm::is_contained(LegalIntWidths, Width); | ||||||||||||||
| 265 | } | ||||||||||||||
| 266 | |||||||||||||||
| 267 | bool isIllegalInteger(uint64_t Width) const { return !isLegalInteger(Width); } | ||||||||||||||
| 268 | |||||||||||||||
| 269 | /// Returns true if the given alignment exceeds the natural stack alignment. | ||||||||||||||
| 270 | bool exceedsNaturalStackAlignment(Align Alignment) const { | ||||||||||||||
| 271 | return StackNaturalAlign && (Alignment > *StackNaturalAlign); | ||||||||||||||
| 272 | } | ||||||||||||||
| 273 | |||||||||||||||
| 274 | Align getStackAlignment() const { | ||||||||||||||
| 275 | assert(StackNaturalAlign && "StackNaturalAlign must be defined")((void)0); | ||||||||||||||
| 276 | return *StackNaturalAlign; | ||||||||||||||
| 277 | } | ||||||||||||||
| 278 | |||||||||||||||
| 279 | unsigned getAllocaAddrSpace() const { return AllocaAddrSpace; } | ||||||||||||||
| 280 | |||||||||||||||
| 281 | /// Returns the alignment of function pointers, which may or may not be | ||||||||||||||
| 282 | /// related to the alignment of functions. | ||||||||||||||
| 283 | /// \see getFunctionPtrAlignType | ||||||||||||||
| 284 | MaybeAlign getFunctionPtrAlign() const { return FunctionPtrAlign; } | ||||||||||||||
| 285 | |||||||||||||||
| 286 | /// Return the type of function pointer alignment. | ||||||||||||||
| 287 | /// \see getFunctionPtrAlign | ||||||||||||||
| 288 | FunctionPtrAlignType getFunctionPtrAlignType() const { | ||||||||||||||
| 289 | return TheFunctionPtrAlignType; | ||||||||||||||
| 290 | } | ||||||||||||||
| 291 | |||||||||||||||
| 292 | unsigned getProgramAddressSpace() const { return ProgramAddrSpace; } | ||||||||||||||
| 293 | unsigned getDefaultGlobalsAddressSpace() const { | ||||||||||||||
| 294 | return DefaultGlobalsAddrSpace; | ||||||||||||||
| 295 | } | ||||||||||||||
| 296 | |||||||||||||||
| 297 | bool hasMicrosoftFastStdCallMangling() const { | ||||||||||||||
| 298 | return ManglingMode == MM_WinCOFFX86; | ||||||||||||||
| 299 | } | ||||||||||||||
| 300 | |||||||||||||||
| 301 | /// Returns true if symbols with leading question marks should not receive IR | ||||||||||||||
| 302 | /// mangling. True for Windows mangling modes. | ||||||||||||||
| 303 | bool doNotMangleLeadingQuestionMark() const { | ||||||||||||||
| 304 | return ManglingMode == MM_WinCOFF || ManglingMode == MM_WinCOFFX86; | ||||||||||||||
| 305 | } | ||||||||||||||
| 306 | |||||||||||||||
| 307 | bool hasLinkerPrivateGlobalPrefix() const { return ManglingMode == MM_MachO; } | ||||||||||||||
| 308 | |||||||||||||||
| 309 | StringRef getLinkerPrivateGlobalPrefix() const { | ||||||||||||||
| 310 | if (ManglingMode == MM_MachO) | ||||||||||||||
| 311 | return "l"; | ||||||||||||||
| 312 | return ""; | ||||||||||||||
| 313 | } | ||||||||||||||
| 314 | |||||||||||||||
| 315 | char getGlobalPrefix() const { | ||||||||||||||
| 316 | switch (ManglingMode) { | ||||||||||||||
| 317 | case MM_None: | ||||||||||||||
| 318 | case MM_ELF: | ||||||||||||||
| 319 | case MM_Mips: | ||||||||||||||
| 320 | case MM_WinCOFF: | ||||||||||||||
| 321 | case MM_XCOFF: | ||||||||||||||
| 322 | return '\0'; | ||||||||||||||
| 323 | case MM_MachO: | ||||||||||||||
| 324 | case MM_WinCOFFX86: | ||||||||||||||
| 325 | return '_'; | ||||||||||||||
| 326 | } | ||||||||||||||
| 327 | llvm_unreachable("invalid mangling mode")__builtin_unreachable(); | ||||||||||||||
| 328 | } | ||||||||||||||
| 329 | |||||||||||||||
| 330 | StringRef getPrivateGlobalPrefix() const { | ||||||||||||||
| 331 | switch (ManglingMode) { | ||||||||||||||
| 332 | case MM_None: | ||||||||||||||
| 333 | return ""; | ||||||||||||||
| 334 | case MM_ELF: | ||||||||||||||
| 335 | case MM_WinCOFF: | ||||||||||||||
| 336 | return ".L"; | ||||||||||||||
| 337 | case MM_Mips: | ||||||||||||||
| 338 | return "$"; | ||||||||||||||
| 339 | case MM_MachO: | ||||||||||||||
| 340 | case MM_WinCOFFX86: | ||||||||||||||
| 341 | return "L"; | ||||||||||||||
| 342 | case MM_XCOFF: | ||||||||||||||
| 343 | return "L.."; | ||||||||||||||
| 344 | } | ||||||||||||||
| 345 | llvm_unreachable("invalid mangling mode")__builtin_unreachable(); | ||||||||||||||
| 346 | } | ||||||||||||||
| 347 | |||||||||||||||
| 348 | static const char *getManglingComponent(const Triple &T); | ||||||||||||||
| 349 | |||||||||||||||
| 350 | /// Returns true if the specified type fits in a native integer type | ||||||||||||||
| 351 | /// supported by the CPU. | ||||||||||||||
| 352 | /// | ||||||||||||||
| 353 | /// For example, if the CPU only supports i32 as a native integer type, then | ||||||||||||||
| 354 | /// i27 fits in a legal integer type but i45 does not. | ||||||||||||||
| 355 | bool fitsInLegalInteger(unsigned Width) const { | ||||||||||||||
| 356 | for (unsigned LegalIntWidth : LegalIntWidths) | ||||||||||||||
| 357 | if (Width <= LegalIntWidth) | ||||||||||||||
| 358 | return true; | ||||||||||||||
| 359 | return false; | ||||||||||||||
| 360 | } | ||||||||||||||
| 361 | |||||||||||||||
| 362 | /// Layout pointer alignment | ||||||||||||||
| 363 | Align getPointerABIAlignment(unsigned AS) const; | ||||||||||||||
| 364 | |||||||||||||||
| 365 | /// Return target's alignment for stack-based pointers | ||||||||||||||
| 366 | /// FIXME: The defaults need to be removed once all of | ||||||||||||||
| 367 | /// the backends/clients are updated. | ||||||||||||||
| 368 | Align getPointerPrefAlignment(unsigned AS = 0) const; | ||||||||||||||
| 369 | |||||||||||||||
| 370 | /// Layout pointer size | ||||||||||||||
| 371 | /// FIXME: The defaults need to be removed once all of | ||||||||||||||
| 372 | /// the backends/clients are updated. | ||||||||||||||
| 373 | unsigned getPointerSize(unsigned AS = 0) const; | ||||||||||||||
| 374 | |||||||||||||||
| 375 | /// Returns the maximum pointer size over all address spaces. | ||||||||||||||
| 376 | unsigned getMaxPointerSize() const; | ||||||||||||||
| 377 | |||||||||||||||
| 378 | // Index size used for address calculation. | ||||||||||||||
| 379 | unsigned getIndexSize(unsigned AS) const; | ||||||||||||||
| 380 | |||||||||||||||
| 381 | /// Return the address spaces containing non-integral pointers. Pointers in | ||||||||||||||
| 382 | /// this address space don't have a well-defined bitwise representation. | ||||||||||||||
| 383 | ArrayRef<unsigned> getNonIntegralAddressSpaces() const { | ||||||||||||||
| 384 | return NonIntegralAddressSpaces; | ||||||||||||||
| 385 | } | ||||||||||||||
| 386 | |||||||||||||||
| 387 | bool isNonIntegralAddressSpace(unsigned AddrSpace) const { | ||||||||||||||
| 388 | ArrayRef<unsigned> NonIntegralSpaces = getNonIntegralAddressSpaces(); | ||||||||||||||
| 389 | return is_contained(NonIntegralSpaces, AddrSpace); | ||||||||||||||
| 390 | } | ||||||||||||||
| 391 | |||||||||||||||
| 392 | bool isNonIntegralPointerType(PointerType *PT) const { | ||||||||||||||
| 393 | return isNonIntegralAddressSpace(PT->getAddressSpace()); | ||||||||||||||
| 394 | } | ||||||||||||||
| 395 | |||||||||||||||
| 396 | bool isNonIntegralPointerType(Type *Ty) const { | ||||||||||||||
| 397 | auto *PTy = dyn_cast<PointerType>(Ty); | ||||||||||||||
| 398 | return PTy
| ||||||||||||||
| 399 | } | ||||||||||||||
| 400 | |||||||||||||||
| 401 | /// Layout pointer size, in bits | ||||||||||||||
| 402 | /// FIXME: The defaults need to be removed once all of | ||||||||||||||
| 403 | /// the backends/clients are updated. | ||||||||||||||
| 404 | unsigned getPointerSizeInBits(unsigned AS = 0) const { | ||||||||||||||
| 405 | return getPointerSize(AS) * 8; | ||||||||||||||
| 406 | } | ||||||||||||||
| 407 | |||||||||||||||
| 408 | /// Returns the maximum pointer size over all address spaces. | ||||||||||||||
| 409 | unsigned getMaxPointerSizeInBits() const { | ||||||||||||||
| 410 | return getMaxPointerSize() * 8; | ||||||||||||||
| 411 | } | ||||||||||||||
| 412 | |||||||||||||||
| 413 | /// Size in bits of index used for address calculation in getelementptr. | ||||||||||||||
| 414 | unsigned getIndexSizeInBits(unsigned AS) const { | ||||||||||||||
| 415 | return getIndexSize(AS) * 8; | ||||||||||||||
| 416 | } | ||||||||||||||
| 417 | |||||||||||||||
| 418 | /// Layout pointer size, in bits, based on the type. If this function is | ||||||||||||||
| 419 | /// called with a pointer type, then the type size of the pointer is returned. | ||||||||||||||
| 420 | /// If this function is called with a vector of pointers, then the type size | ||||||||||||||
| 421 | /// of the pointer is returned. This should only be called with a pointer or | ||||||||||||||
| 422 | /// vector of pointers. | ||||||||||||||
| 423 | unsigned getPointerTypeSizeInBits(Type *) const; | ||||||||||||||
| 424 | |||||||||||||||
| 425 | /// Layout size of the index used in GEP calculation. | ||||||||||||||
| 426 | /// The function should be called with pointer or vector of pointers type. | ||||||||||||||
| 427 | unsigned getIndexTypeSizeInBits(Type *Ty) const; | ||||||||||||||
| 428 | |||||||||||||||
| 429 | unsigned getPointerTypeSize(Type *Ty) const { | ||||||||||||||
| 430 | return getPointerTypeSizeInBits(Ty) / 8; | ||||||||||||||
| 431 | } | ||||||||||||||
| 432 | |||||||||||||||
| 433 | /// Size examples: | ||||||||||||||
| 434 | /// | ||||||||||||||
| 435 | /// Type SizeInBits StoreSizeInBits AllocSizeInBits[*] | ||||||||||||||
| 436 | /// ---- ---------- --------------- --------------- | ||||||||||||||
| 437 | /// i1 1 8 8 | ||||||||||||||
| 438 | /// i8 8 8 8 | ||||||||||||||
| 439 | /// i19 19 24 32 | ||||||||||||||
| 440 | /// i32 32 32 32 | ||||||||||||||
| 441 | /// i100 100 104 128 | ||||||||||||||
| 442 | /// i128 128 128 128 | ||||||||||||||
| 443 | /// Float 32 32 32 | ||||||||||||||
| 444 | /// Double 64 64 64 | ||||||||||||||
| 445 | /// X86_FP80 80 80 96 | ||||||||||||||
| 446 | /// | ||||||||||||||
| 447 | /// [*] The alloc size depends on the alignment, and thus on the target. | ||||||||||||||
| 448 | /// These values are for x86-32 linux. | ||||||||||||||
| 449 | |||||||||||||||
| 450 | /// Returns the number of bits necessary to hold the specified type. | ||||||||||||||
| 451 | /// | ||||||||||||||
| 452 | /// If Ty is a scalable vector type, the scalable property will be set and | ||||||||||||||
| 453 | /// the runtime size will be a positive integer multiple of the base size. | ||||||||||||||
| 454 | /// | ||||||||||||||
| 455 | /// For example, returns 36 for i36 and 80 for x86_fp80. The type passed must | ||||||||||||||
| 456 | /// have a size (Type::isSized() must return true). | ||||||||||||||
| 457 | TypeSize getTypeSizeInBits(Type *Ty) const; | ||||||||||||||
| 458 | |||||||||||||||
| 459 | /// Returns the maximum number of bytes that may be overwritten by | ||||||||||||||
| 460 | /// storing the specified type. | ||||||||||||||
| 461 | /// | ||||||||||||||
| 462 | /// If Ty is a scalable vector type, the scalable property will be set and | ||||||||||||||
| 463 | /// the runtime size will be a positive integer multiple of the base size. | ||||||||||||||
| 464 | /// | ||||||||||||||
| 465 | /// For example, returns 5 for i36 and 10 for x86_fp80. | ||||||||||||||
| 466 | TypeSize getTypeStoreSize(Type *Ty) const { | ||||||||||||||
| 467 | TypeSize BaseSize = getTypeSizeInBits(Ty); | ||||||||||||||
| 468 | return { (BaseSize.getKnownMinSize() + 7) / 8, BaseSize.isScalable() }; | ||||||||||||||
| 469 | } | ||||||||||||||
| 470 | |||||||||||||||
| 471 | /// Returns the maximum number of bits that may be overwritten by | ||||||||||||||
| 472 | /// storing the specified type; always a multiple of 8. | ||||||||||||||
| 473 | /// | ||||||||||||||
| 474 | /// If Ty is a scalable vector type, the scalable property will be set and | ||||||||||||||
| 475 | /// the runtime size will be a positive integer multiple of the base size. | ||||||||||||||
| 476 | /// | ||||||||||||||
| 477 | /// For example, returns 40 for i36 and 80 for x86_fp80. | ||||||||||||||
| 478 | TypeSize getTypeStoreSizeInBits(Type *Ty) const { | ||||||||||||||
| 479 | return 8 * getTypeStoreSize(Ty); | ||||||||||||||
| 480 | } | ||||||||||||||
| 481 | |||||||||||||||
| 482 | /// Returns true if no extra padding bits are needed when storing the | ||||||||||||||
| 483 | /// specified type. | ||||||||||||||
| 484 | /// | ||||||||||||||
| 485 | /// For example, returns false for i19 that has a 24-bit store size. | ||||||||||||||
| 486 | bool typeSizeEqualsStoreSize(Type *Ty) const { | ||||||||||||||
| 487 | return getTypeSizeInBits(Ty) == getTypeStoreSizeInBits(Ty); | ||||||||||||||
| 488 | } | ||||||||||||||
| 489 | |||||||||||||||
| 490 | /// Returns the offset in bytes between successive objects of the | ||||||||||||||
| 491 | /// specified type, including alignment padding. | ||||||||||||||
| 492 | /// | ||||||||||||||
| 493 | /// If Ty is a scalable vector type, the scalable property will be set and | ||||||||||||||
| 494 | /// the runtime size will be a positive integer multiple of the base size. | ||||||||||||||
| 495 | /// | ||||||||||||||
| 496 | /// This is the amount that alloca reserves for this type. For example, | ||||||||||||||
| 497 | /// returns 12 or 16 for x86_fp80, depending on alignment. | ||||||||||||||
| 498 | TypeSize getTypeAllocSize(Type *Ty) const { | ||||||||||||||
| 499 | // Round up to the next alignment boundary. | ||||||||||||||
| 500 | return alignTo(getTypeStoreSize(Ty), getABITypeAlignment(Ty)); | ||||||||||||||
| 501 | } | ||||||||||||||
| 502 | |||||||||||||||
| 503 | /// Returns the offset in bits between successive objects of the | ||||||||||||||
| 504 | /// specified type, including alignment padding; always a multiple of 8. | ||||||||||||||
| 505 | /// | ||||||||||||||
| 506 | /// If Ty is a scalable vector type, the scalable property will be set and | ||||||||||||||
| 507 | /// the runtime size will be a positive integer multiple of the base size. | ||||||||||||||
| 508 | /// | ||||||||||||||
| 509 | /// This is the amount that alloca reserves for this type. For example, | ||||||||||||||
| 510 | /// returns 96 or 128 for x86_fp80, depending on alignment. | ||||||||||||||
| 511 | TypeSize getTypeAllocSizeInBits(Type *Ty) const { | ||||||||||||||
| 512 | return 8 * getTypeAllocSize(Ty); | ||||||||||||||
| 513 | } | ||||||||||||||
| 514 | |||||||||||||||
| 515 | /// Returns the minimum ABI-required alignment for the specified type. | ||||||||||||||
| 516 | /// FIXME: Deprecate this function once migration to Align is over. | ||||||||||||||
| 517 | unsigned getABITypeAlignment(Type *Ty) const; | ||||||||||||||
| 518 | |||||||||||||||
| 519 | /// Returns the minimum ABI-required alignment for the specified type. | ||||||||||||||
| 520 | Align getABITypeAlign(Type *Ty) const; | ||||||||||||||
| 521 | |||||||||||||||
| 522 | /// Helper function to return `Alignment` if it's set or the result of | ||||||||||||||
| 523 | /// `getABITypeAlignment(Ty)`, in any case the result is a valid alignment. | ||||||||||||||
| 524 | inline Align getValueOrABITypeAlignment(MaybeAlign Alignment, | ||||||||||||||
| 525 | Type *Ty) const { | ||||||||||||||
| 526 | return Alignment ? *Alignment : getABITypeAlign(Ty); | ||||||||||||||
| 527 | } | ||||||||||||||
| 528 | |||||||||||||||
| 529 | /// Returns the minimum ABI-required alignment for an integer type of | ||||||||||||||
| 530 | /// the specified bitwidth. | ||||||||||||||
| 531 | Align getABIIntegerTypeAlignment(unsigned BitWidth) const { | ||||||||||||||
| 532 | return getIntegerAlignment(BitWidth, /* abi_or_pref */ true); | ||||||||||||||
| 533 | } | ||||||||||||||
| 534 | |||||||||||||||
| 535 | /// Returns the preferred stack/global alignment for the specified | ||||||||||||||
| 536 | /// type. | ||||||||||||||
| 537 | /// | ||||||||||||||
| 538 | /// This is always at least as good as the ABI alignment. | ||||||||||||||
| 539 | /// FIXME: Deprecate this function once migration to Align is over. | ||||||||||||||
| 540 | unsigned getPrefTypeAlignment(Type *Ty) const; | ||||||||||||||
| 541 | |||||||||||||||
| 542 | /// Returns the preferred stack/global alignment for the specified | ||||||||||||||
| 543 | /// type. | ||||||||||||||
| 544 | /// | ||||||||||||||
| 545 | /// This is always at least as good as the ABI alignment. | ||||||||||||||
| 546 | Align getPrefTypeAlign(Type *Ty) const; | ||||||||||||||
| 547 | |||||||||||||||
| 548 | /// Returns an integer type with size at least as big as that of a | ||||||||||||||
| 549 | /// pointer in the given address space. | ||||||||||||||
| 550 | IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const; | ||||||||||||||
| 551 | |||||||||||||||
| 552 | /// Returns an integer (vector of integer) type with size at least as | ||||||||||||||
| 553 | /// big as that of a pointer of the given pointer (vector of pointer) type. | ||||||||||||||
| 554 | Type *getIntPtrType(Type *) const; | ||||||||||||||
| 555 | |||||||||||||||
| 556 | /// Returns the smallest integer type with size at least as big as | ||||||||||||||
| 557 | /// Width bits. | ||||||||||||||
| 558 | Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const; | ||||||||||||||
| 559 | |||||||||||||||
| 560 | /// Returns the largest legal integer type, or null if none are set. | ||||||||||||||
| 561 | Type *getLargestLegalIntType(LLVMContext &C) const { | ||||||||||||||
| 562 | unsigned LargestSize = getLargestLegalIntTypeSizeInBits(); | ||||||||||||||
| 563 | return (LargestSize == 0) ? nullptr : Type::getIntNTy(C, LargestSize); | ||||||||||||||
| 564 | } | ||||||||||||||
| 565 | |||||||||||||||
| 566 | /// Returns the size of largest legal integer type size, or 0 if none | ||||||||||||||
| 567 | /// are set. | ||||||||||||||
| 568 | unsigned getLargestLegalIntTypeSizeInBits() const; | ||||||||||||||
| 569 | |||||||||||||||
| 570 | /// Returns the type of a GEP index. | ||||||||||||||
| 571 | /// If it was not specified explicitly, it will be the integer type of the | ||||||||||||||
| 572 | /// pointer width - IntPtrType. | ||||||||||||||
| 573 | Type *getIndexType(Type *PtrTy) const; | ||||||||||||||
| 574 | |||||||||||||||
| 575 | /// Returns the offset from the beginning of the type for the specified | ||||||||||||||
| 576 | /// indices. | ||||||||||||||
| 577 | /// | ||||||||||||||
| 578 | /// Note that this takes the element type, not the pointer type. | ||||||||||||||
| 579 | /// This is used to implement getelementptr. | ||||||||||||||
| 580 | int64_t getIndexedOffsetInType(Type *ElemTy, ArrayRef<Value *> Indices) const; | ||||||||||||||
| 581 | |||||||||||||||
| 582 | /// Returns a StructLayout object, indicating the alignment of the | ||||||||||||||
| 583 | /// struct, its size, and the offsets of its fields. | ||||||||||||||
| 584 | /// | ||||||||||||||
| 585 | /// Note that this information is lazily cached. | ||||||||||||||
| 586 | const StructLayout *getStructLayout(StructType *Ty) const; | ||||||||||||||
| 587 | |||||||||||||||
| 588 | /// Returns the preferred alignment of the specified global. | ||||||||||||||
| 589 | /// | ||||||||||||||
| 590 | /// This includes an explicitly requested alignment (if the global has one). | ||||||||||||||
| 591 | Align getPreferredAlign(const GlobalVariable *GV) const; | ||||||||||||||
| 592 | }; | ||||||||||||||
| 593 | |||||||||||||||
| 594 | inline DataLayout *unwrap(LLVMTargetDataRef P) { | ||||||||||||||
| 595 | return reinterpret_cast<DataLayout *>(P); | ||||||||||||||
| 596 | } | ||||||||||||||
| 597 | |||||||||||||||
| 598 | inline LLVMTargetDataRef wrap(const DataLayout *P) { | ||||||||||||||
| 599 | return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout *>(P)); | ||||||||||||||
| 600 | } | ||||||||||||||
| 601 | |||||||||||||||
| 602 | /// Used to lazily calculate structure layout information for a target machine, | ||||||||||||||
| 603 | /// based on the DataLayout structure. | ||||||||||||||
| 604 | class StructLayout final : public TrailingObjects<StructLayout, uint64_t> { | ||||||||||||||
| 605 | uint64_t StructSize; | ||||||||||||||
| 606 | Align StructAlignment; | ||||||||||||||
| 607 | unsigned IsPadded : 1; | ||||||||||||||
| 608 | unsigned NumElements : 31; | ||||||||||||||
| 609 | |||||||||||||||
| 610 | public: | ||||||||||||||
| 611 | uint64_t getSizeInBytes() const { return StructSize; } | ||||||||||||||
| 612 | |||||||||||||||
| 613 | uint64_t getSizeInBits() const { return 8 * StructSize; } | ||||||||||||||
| 614 | |||||||||||||||
| 615 | Align getAlignment() const { return StructAlignment; } | ||||||||||||||
| 616 | |||||||||||||||
| 617 | /// Returns whether the struct has padding or not between its fields. | ||||||||||||||
| 618 | /// NB: Padding in nested element is not taken into account. | ||||||||||||||
| 619 | bool hasPadding() const { return IsPadded; } | ||||||||||||||
| 620 | |||||||||||||||
| 621 | /// Given a valid byte offset into the structure, returns the structure | ||||||||||||||
| 622 | /// index that contains it. | ||||||||||||||
| 623 | unsigned getElementContainingOffset(uint64_t Offset) const; | ||||||||||||||
| 624 | |||||||||||||||
| 625 | MutableArrayRef<uint64_t> getMemberOffsets() { | ||||||||||||||
| 626 | return llvm::makeMutableArrayRef(getTrailingObjects<uint64_t>(), | ||||||||||||||
| 627 | NumElements); | ||||||||||||||
| 628 | } | ||||||||||||||
| 629 | |||||||||||||||
| 630 | ArrayRef<uint64_t> getMemberOffsets() const { | ||||||||||||||
| 631 | return llvm::makeArrayRef(getTrailingObjects<uint64_t>(), NumElements); | ||||||||||||||
| 632 | } | ||||||||||||||
| 633 | |||||||||||||||
| 634 | uint64_t getElementOffset(unsigned Idx) const { | ||||||||||||||
| 635 | assert(Idx < NumElements && "Invalid element idx!")((void)0); | ||||||||||||||
| 636 | return getMemberOffsets()[Idx]; | ||||||||||||||
| 637 | } | ||||||||||||||
| 638 | |||||||||||||||
| 639 | uint64_t getElementOffsetInBits(unsigned Idx) const { | ||||||||||||||
| 640 | return getElementOffset(Idx) * 8; | ||||||||||||||
| 641 | } | ||||||||||||||
| 642 | |||||||||||||||
| 643 | private: | ||||||||||||||
| 644 | friend class DataLayout; // Only DataLayout can create this class | ||||||||||||||
| 645 | |||||||||||||||
| 646 | StructLayout(StructType *ST, const DataLayout &DL); | ||||||||||||||
| 647 | |||||||||||||||
| 648 | size_t numTrailingObjects(OverloadToken<uint64_t>) const { | ||||||||||||||
| 649 | return NumElements; | ||||||||||||||
| 650 | } | ||||||||||||||
| 651 | }; | ||||||||||||||
| 652 | |||||||||||||||
| 653 | // The implementation of this method is provided inline as it is particularly | ||||||||||||||
| 654 | // well suited to constant folding when called on a specific Type subclass. | ||||||||||||||
| 655 | inline TypeSize DataLayout::getTypeSizeInBits(Type *Ty) const { | ||||||||||||||
| 656 | assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!")((void)0); | ||||||||||||||
| 657 | switch (Ty->getTypeID()) { | ||||||||||||||
| 658 | case Type::LabelTyID: | ||||||||||||||
| 659 | return TypeSize::Fixed(getPointerSizeInBits(0)); | ||||||||||||||
| 660 | case Type::PointerTyID: | ||||||||||||||
| 661 | return TypeSize::Fixed(getPointerSizeInBits(Ty->getPointerAddressSpace())); | ||||||||||||||
| 662 | case Type::ArrayTyID: { | ||||||||||||||
| 663 | ArrayType *ATy = cast<ArrayType>(Ty); | ||||||||||||||
| 664 | return ATy->getNumElements() * | ||||||||||||||
| 665 | getTypeAllocSizeInBits(ATy->getElementType()); | ||||||||||||||
| 666 | } | ||||||||||||||
| 667 | case Type::StructTyID: | ||||||||||||||
| 668 | // Get the layout annotation... which is lazily created on demand. | ||||||||||||||
| 669 | return TypeSize::Fixed( | ||||||||||||||
| 670 | getStructLayout(cast<StructType>(Ty))->getSizeInBits()); | ||||||||||||||
| 671 | case Type::IntegerTyID: | ||||||||||||||
| 672 | return TypeSize::Fixed(Ty->getIntegerBitWidth()); | ||||||||||||||
| 673 | case Type::HalfTyID: | ||||||||||||||
| 674 | case Type::BFloatTyID: | ||||||||||||||
| 675 | return TypeSize::Fixed(16); | ||||||||||||||
| 676 | case Type::FloatTyID: | ||||||||||||||
| 677 | return TypeSize::Fixed(32); | ||||||||||||||
| 678 | case Type::DoubleTyID: | ||||||||||||||
| 679 | case Type::X86_MMXTyID: | ||||||||||||||
| 680 | return TypeSize::Fixed(64); | ||||||||||||||
| 681 | case Type::PPC_FP128TyID: | ||||||||||||||
| 682 | case Type::FP128TyID: | ||||||||||||||
| 683 | return TypeSize::Fixed(128); | ||||||||||||||
| 684 | case Type::X86_AMXTyID: | ||||||||||||||
| 685 | return TypeSize::Fixed(8192); | ||||||||||||||
| 686 | // In memory objects this is always aligned to a higher boundary, but | ||||||||||||||
| 687 | // only 80 bits contain information. | ||||||||||||||
| 688 | case Type::X86_FP80TyID: | ||||||||||||||
| 689 | return TypeSize::Fixed(80); | ||||||||||||||
| 690 | case Type::FixedVectorTyID: | ||||||||||||||
| 691 | case Type::ScalableVectorTyID: { | ||||||||||||||
| 692 | VectorType *VTy = cast<VectorType>(Ty); | ||||||||||||||
| 693 | auto EltCnt = VTy->getElementCount(); | ||||||||||||||
| 694 | uint64_t MinBits = EltCnt.getKnownMinValue() * | ||||||||||||||
| 695 | getTypeSizeInBits(VTy->getElementType()).getFixedSize(); | ||||||||||||||
| 696 | return TypeSize(MinBits, EltCnt.isScalable()); | ||||||||||||||
| 697 | } | ||||||||||||||
| 698 | default: | ||||||||||||||
| 699 | llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type")__builtin_unreachable(); | ||||||||||||||
| 700 | } | ||||||||||||||
| 701 | } | ||||||||||||||
| 702 | |||||||||||||||
| 703 | } // end namespace llvm | ||||||||||||||
| 704 | |||||||||||||||
| 705 | #endif // LLVM_IR_DATALAYOUT_H |
| 1 | //===- llvm/Value.h - Definition of the Value class -------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file declares the Value class. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #ifndef LLVM_IR_VALUE_H |
| 14 | #define LLVM_IR_VALUE_H |
| 15 | |
| 16 | #include "llvm-c/Types.h" |
| 17 | #include "llvm/ADT/STLExtras.h" |
| 18 | #include "llvm/ADT/StringRef.h" |
| 19 | #include "llvm/ADT/iterator_range.h" |
| 20 | #include "llvm/IR/Use.h" |
| 21 | #include "llvm/Support/Alignment.h" |
| 22 | #include "llvm/Support/CBindingWrapping.h" |
| 23 | #include "llvm/Support/Casting.h" |
| 24 | #include <cassert> |
| 25 | #include <iterator> |
| 26 | #include <memory> |
| 27 | |
| 28 | namespace llvm { |
| 29 | |
| 30 | class APInt; |
| 31 | class Argument; |
| 32 | class BasicBlock; |
| 33 | class Constant; |
| 34 | class ConstantData; |
| 35 | class ConstantAggregate; |
| 36 | class DataLayout; |
| 37 | class Function; |
| 38 | class GlobalAlias; |
| 39 | class GlobalIFunc; |
| 40 | class GlobalIndirectSymbol; |
| 41 | class GlobalObject; |
| 42 | class GlobalValue; |
| 43 | class GlobalVariable; |
| 44 | class InlineAsm; |
| 45 | class Instruction; |
| 46 | class LLVMContext; |
| 47 | class MDNode; |
| 48 | class Module; |
| 49 | class ModuleSlotTracker; |
| 50 | class raw_ostream; |
| 51 | template<typename ValueTy> class StringMapEntry; |
| 52 | class Twine; |
| 53 | class Type; |
| 54 | class User; |
| 55 | |
| 56 | using ValueName = StringMapEntry<Value *>; |
| 57 | |
| 58 | //===----------------------------------------------------------------------===// |
| 59 | // Value Class |
| 60 | //===----------------------------------------------------------------------===// |
| 61 | |
| 62 | /// LLVM Value Representation |
| 63 | /// |
| 64 | /// This is a very important LLVM class. It is the base class of all values |
| 65 | /// computed by a program that may be used as operands to other values. Value is |
| 66 | /// the super class of other important classes such as Instruction and Function. |
| 67 | /// All Values have a Type. Type is not a subclass of Value. Some values can |
| 68 | /// have a name and they belong to some Module. Setting the name on the Value |
| 69 | /// automatically updates the module's symbol table. |
| 70 | /// |
| 71 | /// Every value has a "use list" that keeps track of which other Values are |
| 72 | /// using this Value. A Value can also have an arbitrary number of ValueHandle |
| 73 | /// objects that watch it and listen to RAUW and Destroy events. See |
| 74 | /// llvm/IR/ValueHandle.h for details. |
| 75 | class Value { |
| 76 | Type *VTy; |
| 77 | Use *UseList; |
| 78 | |
| 79 | friend class ValueAsMetadata; // Allow access to IsUsedByMD. |
| 80 | friend class ValueHandleBase; |
| 81 | |
| 82 | const unsigned char SubclassID; // Subclass identifier (for isa/dyn_cast) |
| 83 | unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this? |
| 84 | |
| 85 | protected: |
| 86 | /// Hold subclass data that can be dropped. |
| 87 | /// |
| 88 | /// This member is similar to SubclassData, however it is for holding |
| 89 | /// information which may be used to aid optimization, but which may be |
| 90 | /// cleared to zero without affecting conservative interpretation. |
| 91 | unsigned char SubclassOptionalData : 7; |
| 92 | |
| 93 | private: |
| 94 | /// Hold arbitrary subclass data. |
| 95 | /// |
| 96 | /// This member is defined by this class, but is not used for anything. |
| 97 | /// Subclasses can use it to hold whatever state they find useful. This |
| 98 | /// field is initialized to zero by the ctor. |
| 99 | unsigned short SubclassData; |
| 100 | |
| 101 | protected: |
| 102 | /// The number of operands in the subclass. |
| 103 | /// |
| 104 | /// This member is defined by this class, but not used for anything. |
| 105 | /// Subclasses can use it to store their number of operands, if they have |
| 106 | /// any. |
| 107 | /// |
| 108 | /// This is stored here to save space in User on 64-bit hosts. Since most |
| 109 | /// instances of Value have operands, 32-bit hosts aren't significantly |
| 110 | /// affected. |
| 111 | /// |
| 112 | /// Note, this should *NOT* be used directly by any class other than User. |
| 113 | /// User uses this value to find the Use list. |
| 114 | enum : unsigned { NumUserOperandsBits = 27 }; |
| 115 | unsigned NumUserOperands : NumUserOperandsBits; |
| 116 | |
| 117 | // Use the same type as the bitfield above so that MSVC will pack them. |
| 118 | unsigned IsUsedByMD : 1; |
| 119 | unsigned HasName : 1; |
| 120 | unsigned HasMetadata : 1; // Has metadata attached to this? |
| 121 | unsigned HasHungOffUses : 1; |
| 122 | unsigned HasDescriptor : 1; |
| 123 | |
| 124 | private: |
| 125 | template <typename UseT> // UseT == 'Use' or 'const Use' |
| 126 | class use_iterator_impl { |
| 127 | friend class Value; |
| 128 | |
| 129 | UseT *U; |
| 130 | |
| 131 | explicit use_iterator_impl(UseT *u) : U(u) {} |
| 132 | |
| 133 | public: |
| 134 | using iterator_category = std::forward_iterator_tag; |
| 135 | using value_type = UseT *; |
| 136 | using difference_type = std::ptrdiff_t; |
| 137 | using pointer = value_type *; |
| 138 | using reference = value_type &; |
| 139 | |
| 140 | use_iterator_impl() : U() {} |
| 141 | |
| 142 | bool operator==(const use_iterator_impl &x) const { return U == x.U; } |
| 143 | bool operator!=(const use_iterator_impl &x) const { return !operator==(x); } |
| 144 | |
| 145 | use_iterator_impl &operator++() { // Preincrement |
| 146 | assert(U && "Cannot increment end iterator!")((void)0); |
| 147 | U = U->getNext(); |
| 148 | return *this; |
| 149 | } |
| 150 | |
| 151 | use_iterator_impl operator++(int) { // Postincrement |
| 152 | auto tmp = *this; |
| 153 | ++*this; |
| 154 | return tmp; |
| 155 | } |
| 156 | |
| 157 | UseT &operator*() const { |
| 158 | assert(U && "Cannot dereference end iterator!")((void)0); |
| 159 | return *U; |
| 160 | } |
| 161 | |
| 162 | UseT *operator->() const { return &operator*(); } |
| 163 | |
| 164 | operator use_iterator_impl<const UseT>() const { |
| 165 | return use_iterator_impl<const UseT>(U); |
| 166 | } |
| 167 | }; |
| 168 | |
| 169 | template <typename UserTy> // UserTy == 'User' or 'const User' |
| 170 | class user_iterator_impl { |
| 171 | use_iterator_impl<Use> UI; |
| 172 | explicit user_iterator_impl(Use *U) : UI(U) {} |
| 173 | friend class Value; |
| 174 | |
| 175 | public: |
| 176 | using iterator_category = std::forward_iterator_tag; |
| 177 | using value_type = UserTy *; |
| 178 | using difference_type = std::ptrdiff_t; |
| 179 | using pointer = value_type *; |
| 180 | using reference = value_type &; |
| 181 | |
| 182 | user_iterator_impl() = default; |
| 183 | |
| 184 | bool operator==(const user_iterator_impl &x) const { return UI == x.UI; } |
| 185 | bool operator!=(const user_iterator_impl &x) const { return !operator==(x); } |
| 186 | |
| 187 | /// Returns true if this iterator is equal to user_end() on the value. |
| 188 | bool atEnd() const { return *this == user_iterator_impl(); } |
| 189 | |
| 190 | user_iterator_impl &operator++() { // Preincrement |
| 191 | ++UI; |
| 192 | return *this; |
| 193 | } |
| 194 | |
| 195 | user_iterator_impl operator++(int) { // Postincrement |
| 196 | auto tmp = *this; |
| 197 | ++*this; |
| 198 | return tmp; |
| 199 | } |
| 200 | |
| 201 | // Retrieve a pointer to the current User. |
| 202 | UserTy *operator*() const { |
| 203 | return UI->getUser(); |
| 204 | } |
| 205 | |
| 206 | UserTy *operator->() const { return operator*(); } |
| 207 | |
| 208 | operator user_iterator_impl<const UserTy>() const { |
| 209 | return user_iterator_impl<const UserTy>(*UI); |
| 210 | } |
| 211 | |
| 212 | Use &getUse() const { return *UI; } |
| 213 | }; |
| 214 | |
| 215 | protected: |
| 216 | Value(Type *Ty, unsigned scid); |
| 217 | |
| 218 | /// Value's destructor should be virtual by design, but that would require |
| 219 | /// that Value and all of its subclasses have a vtable that effectively |
| 220 | /// duplicates the information in the value ID. As a size optimization, the |
| 221 | /// destructor has been protected, and the caller should manually call |
| 222 | /// deleteValue. |
| 223 | ~Value(); // Use deleteValue() to delete a generic Value. |
| 224 | |
| 225 | public: |
| 226 | Value(const Value &) = delete; |
| 227 | Value &operator=(const Value &) = delete; |
| 228 | |
| 229 | /// Delete a pointer to a generic Value. |
| 230 | void deleteValue(); |
| 231 | |
| 232 | /// Support for debugging, callable in GDB: V->dump() |
| 233 | void dump() const; |
| 234 | |
| 235 | /// Implement operator<< on Value. |
| 236 | /// @{ |
| 237 | void print(raw_ostream &O, bool IsForDebug = false) const; |
| 238 | void print(raw_ostream &O, ModuleSlotTracker &MST, |
| 239 | bool IsForDebug = false) const; |
| 240 | /// @} |
| 241 | |
| 242 | /// Print the name of this Value out to the specified raw_ostream. |
| 243 | /// |
| 244 | /// This is useful when you just want to print 'int %reg126', not the |
| 245 | /// instruction that generated it. If you specify a Module for context, then |
| 246 | /// even constanst get pretty-printed; for example, the type of a null |
| 247 | /// pointer is printed symbolically. |
| 248 | /// @{ |
| 249 | void printAsOperand(raw_ostream &O, bool PrintType = true, |
| 250 | const Module *M = nullptr) const; |
| 251 | void printAsOperand(raw_ostream &O, bool PrintType, |
| 252 | ModuleSlotTracker &MST) const; |
| 253 | /// @} |
| 254 | |
| 255 | /// All values are typed, get the type of this value. |
| 256 | Type *getType() const { return VTy; } |
| 257 | |
| 258 | /// All values hold a context through their type. |
| 259 | LLVMContext &getContext() const; |
| 260 | |
| 261 | // All values can potentially be named. |
| 262 | bool hasName() const { return HasName; } |
| 263 | ValueName *getValueName() const; |
| 264 | void setValueName(ValueName *VN); |
| 265 | |
| 266 | private: |
| 267 | void destroyValueName(); |
| 268 | enum class ReplaceMetadataUses { No, Yes }; |
| 269 | void doRAUW(Value *New, ReplaceMetadataUses); |
| 270 | void setNameImpl(const Twine &Name); |
| 271 | |
| 272 | public: |
| 273 | /// Return a constant reference to the value's name. |
| 274 | /// |
| 275 | /// This guaranteed to return the same reference as long as the value is not |
| 276 | /// modified. If the value has a name, this does a hashtable lookup, so it's |
| 277 | /// not free. |
| 278 | StringRef getName() const; |
| 279 | |
| 280 | /// Change the name of the value. |
| 281 | /// |
| 282 | /// Choose a new unique name if the provided name is taken. |
| 283 | /// |
| 284 | /// \param Name The new name; or "" if the value's name should be removed. |
| 285 | void setName(const Twine &Name); |
| 286 | |
| 287 | /// Transfer the name from V to this value. |
| 288 | /// |
| 289 | /// After taking V's name, sets V's name to empty. |
| 290 | /// |
| 291 | /// \note It is an error to call V->takeName(V). |
| 292 | void takeName(Value *V); |
| 293 | |
| 294 | #ifndef NDEBUG1 |
| 295 | std::string getNameOrAsOperand() const; |
| 296 | #endif |
| 297 | |
| 298 | /// Change all uses of this to point to a new Value. |
| 299 | /// |
| 300 | /// Go through the uses list for this definition and make each use point to |
| 301 | /// "V" instead of "this". After this completes, 'this's use list is |
| 302 | /// guaranteed to be empty. |
| 303 | void replaceAllUsesWith(Value *V); |
| 304 | |
| 305 | /// Change non-metadata uses of this to point to a new Value. |
| 306 | /// |
| 307 | /// Go through the uses list for this definition and make each use point to |
| 308 | /// "V" instead of "this". This function skips metadata entries in the list. |
| 309 | void replaceNonMetadataUsesWith(Value *V); |
| 310 | |
| 311 | /// Go through the uses list for this definition and make each use point |
| 312 | /// to "V" if the callback ShouldReplace returns true for the given Use. |
| 313 | /// Unlike replaceAllUsesWith() this function does not support basic block |
| 314 | /// values. |
| 315 | void replaceUsesWithIf(Value *New, |
| 316 | llvm::function_ref<bool(Use &U)> ShouldReplace); |
| 317 | |
| 318 | /// replaceUsesOutsideBlock - Go through the uses list for this definition and |
| 319 | /// make each use point to "V" instead of "this" when the use is outside the |
| 320 | /// block. 'This's use list is expected to have at least one element. |
| 321 | /// Unlike replaceAllUsesWith() this function does not support basic block |
| 322 | /// values. |
| 323 | void replaceUsesOutsideBlock(Value *V, BasicBlock *BB); |
| 324 | |
| 325 | //---------------------------------------------------------------------- |
| 326 | // Methods for handling the chain of uses of this Value. |
| 327 | // |
| 328 | // Materializing a function can introduce new uses, so these methods come in |
| 329 | // two variants: |
| 330 | // The methods that start with materialized_ check the uses that are |
| 331 | // currently known given which functions are materialized. Be very careful |
| 332 | // when using them since you might not get all uses. |
| 333 | // The methods that don't start with materialized_ assert that modules is |
| 334 | // fully materialized. |
| 335 | void assertModuleIsMaterializedImpl() const; |
| 336 | // This indirection exists so we can keep assertModuleIsMaterializedImpl() |
| 337 | // around in release builds of Value.cpp to be linked with other code built |
| 338 | // in debug mode. But this avoids calling it in any of the release built code. |
| 339 | void assertModuleIsMaterialized() const { |
| 340 | #ifndef NDEBUG1 |
| 341 | assertModuleIsMaterializedImpl(); |
| 342 | #endif |
| 343 | } |
| 344 | |
| 345 | bool use_empty() const { |
| 346 | assertModuleIsMaterialized(); |
| 347 | return UseList == nullptr; |
| 348 | } |
| 349 | |
| 350 | bool materialized_use_empty() const { |
| 351 | return UseList == nullptr; |
| 352 | } |
| 353 | |
| 354 | using use_iterator = use_iterator_impl<Use>; |
| 355 | using const_use_iterator = use_iterator_impl<const Use>; |
| 356 | |
| 357 | use_iterator materialized_use_begin() { return use_iterator(UseList); } |
| 358 | const_use_iterator materialized_use_begin() const { |
| 359 | return const_use_iterator(UseList); |
| 360 | } |
| 361 | use_iterator use_begin() { |
| 362 | assertModuleIsMaterialized(); |
| 363 | return materialized_use_begin(); |
| 364 | } |
| 365 | const_use_iterator use_begin() const { |
| 366 | assertModuleIsMaterialized(); |
| 367 | return materialized_use_begin(); |
| 368 | } |
| 369 | use_iterator use_end() { return use_iterator(); } |
| 370 | const_use_iterator use_end() const { return const_use_iterator(); } |
| 371 | iterator_range<use_iterator> materialized_uses() { |
| 372 | return make_range(materialized_use_begin(), use_end()); |
| 373 | } |
| 374 | iterator_range<const_use_iterator> materialized_uses() const { |
| 375 | return make_range(materialized_use_begin(), use_end()); |
| 376 | } |
| 377 | iterator_range<use_iterator> uses() { |
| 378 | assertModuleIsMaterialized(); |
| 379 | return materialized_uses(); |
| 380 | } |
| 381 | iterator_range<const_use_iterator> uses() const { |
| 382 | assertModuleIsMaterialized(); |
| 383 | return materialized_uses(); |
| 384 | } |
| 385 | |
| 386 | bool user_empty() const { |
| 387 | assertModuleIsMaterialized(); |
| 388 | return UseList == nullptr; |
| 389 | } |
| 390 | |
| 391 | using user_iterator = user_iterator_impl<User>; |
| 392 | using const_user_iterator = user_iterator_impl<const User>; |
| 393 | |
| 394 | user_iterator materialized_user_begin() { return user_iterator(UseList); } |
| 395 | const_user_iterator materialized_user_begin() const { |
| 396 | return const_user_iterator(UseList); |
| 397 | } |
| 398 | user_iterator user_begin() { |
| 399 | assertModuleIsMaterialized(); |
| 400 | return materialized_user_begin(); |
| 401 | } |
| 402 | const_user_iterator user_begin() const { |
| 403 | assertModuleIsMaterialized(); |
| 404 | return materialized_user_begin(); |
| 405 | } |
| 406 | user_iterator user_end() { return user_iterator(); } |
| 407 | const_user_iterator user_end() const { return const_user_iterator(); } |
| 408 | User *user_back() { |
| 409 | assertModuleIsMaterialized(); |
| 410 | return *materialized_user_begin(); |
| 411 | } |
| 412 | const User *user_back() const { |
| 413 | assertModuleIsMaterialized(); |
| 414 | return *materialized_user_begin(); |
| 415 | } |
| 416 | iterator_range<user_iterator> materialized_users() { |
| 417 | return make_range(materialized_user_begin(), user_end()); |
| 418 | } |
| 419 | iterator_range<const_user_iterator> materialized_users() const { |
| 420 | return make_range(materialized_user_begin(), user_end()); |
| 421 | } |
| 422 | iterator_range<user_iterator> users() { |
| 423 | assertModuleIsMaterialized(); |
| 424 | return materialized_users(); |
| 425 | } |
| 426 | iterator_range<const_user_iterator> users() const { |
| 427 | assertModuleIsMaterialized(); |
| 428 | return materialized_users(); |
| 429 | } |
| 430 | |
| 431 | /// Return true if there is exactly one use of this value. |
| 432 | /// |
| 433 | /// This is specialized because it is a common request and does not require |
| 434 | /// traversing the whole use list. |
| 435 | bool hasOneUse() const { return hasSingleElement(uses()); } |
| 436 | |
| 437 | /// Return true if this Value has exactly N uses. |
| 438 | bool hasNUses(unsigned N) const; |
| 439 | |
| 440 | /// Return true if this value has N uses or more. |
| 441 | /// |
| 442 | /// This is logically equivalent to getNumUses() >= N. |
| 443 | bool hasNUsesOrMore(unsigned N) const; |
| 444 | |
| 445 | /// Return true if there is exactly one user of this value. |
| 446 | /// |
| 447 | /// Note that this is not the same as "has one use". If a value has one use, |
| 448 | /// then there certainly is a single user. But if value has several uses, |
| 449 | /// it is possible that all uses are in a single user, or not. |
| 450 | /// |
| 451 | /// This check is potentially costly, since it requires traversing, |
| 452 | /// in the worst case, the whole use list of a value. |
| 453 | bool hasOneUser() const; |
| 454 | |
| 455 | /// Return true if there is exactly one use of this value that cannot be |
| 456 | /// dropped. |
| 457 | /// |
| 458 | /// This is specialized because it is a common request and does not require |
| 459 | /// traversing the whole use list. |
| 460 | Use *getSingleUndroppableUse(); |
| 461 | const Use *getSingleUndroppableUse() const { |
| 462 | return const_cast<Value *>(this)->getSingleUndroppableUse(); |
| 463 | } |
| 464 | |
| 465 | /// Return true if there this value. |
| 466 | /// |
| 467 | /// This is specialized because it is a common request and does not require |
| 468 | /// traversing the whole use list. |
| 469 | bool hasNUndroppableUses(unsigned N) const; |
| 470 | |
| 471 | /// Return true if this value has N uses or more. |
| 472 | /// |
| 473 | /// This is logically equivalent to getNumUses() >= N. |
| 474 | bool hasNUndroppableUsesOrMore(unsigned N) const; |
| 475 | |
| 476 | /// Remove every uses that can safely be removed. |
| 477 | /// |
| 478 | /// This will remove for example uses in llvm.assume. |
| 479 | /// This should be used when performing want to perform a tranformation but |
| 480 | /// some Droppable uses pervent it. |
| 481 | /// This function optionally takes a filter to only remove some droppable |
| 482 | /// uses. |
| 483 | void dropDroppableUses(llvm::function_ref<bool(const Use *)> ShouldDrop = |
| 484 | [](const Use *) { return true; }); |
| 485 | |
| 486 | /// Remove every use of this value in \p User that can safely be removed. |
| 487 | void dropDroppableUsesIn(User &Usr); |
| 488 | |
| 489 | /// Remove the droppable use \p U. |
| 490 | static void dropDroppableUse(Use &U); |
| 491 | |
| 492 | /// Check if this value is used in the specified basic block. |
| 493 | bool isUsedInBasicBlock(const BasicBlock *BB) const; |
| 494 | |
| 495 | /// This method computes the number of uses of this Value. |
| 496 | /// |
| 497 | /// This is a linear time operation. Use hasOneUse, hasNUses, or |
| 498 | /// hasNUsesOrMore to check for specific values. |
| 499 | unsigned getNumUses() const; |
| 500 | |
| 501 | /// This method should only be used by the Use class. |
| 502 | void addUse(Use &U) { U.addToList(&UseList); } |
| 503 | |
| 504 | /// Concrete subclass of this. |
| 505 | /// |
| 506 | /// An enumeration for keeping track of the concrete subclass of Value that |
| 507 | /// is actually instantiated. Values of this enumeration are kept in the |
| 508 | /// Value classes SubclassID field. They are used for concrete type |
| 509 | /// identification. |
| 510 | enum ValueTy { |
| 511 | #define HANDLE_VALUE(Name) Name##Val, |
| 512 | #include "llvm/IR/Value.def" |
| 513 | |
| 514 | // Markers: |
| 515 | #define HANDLE_CONSTANT_MARKER(Marker, Constant) Marker = Constant##Val, |
| 516 | #include "llvm/IR/Value.def" |
| 517 | }; |
| 518 | |
| 519 | /// Return an ID for the concrete type of this object. |
| 520 | /// |
| 521 | /// This is used to implement the classof checks. This should not be used |
| 522 | /// for any other purpose, as the values may change as LLVM evolves. Also, |
| 523 | /// note that for instructions, the Instruction's opcode is added to |
| 524 | /// InstructionVal. So this means three things: |
| 525 | /// # there is no value with code InstructionVal (no opcode==0). |
| 526 | /// # there are more possible values for the value type than in ValueTy enum. |
| 527 | /// # the InstructionVal enumerator must be the highest valued enumerator in |
| 528 | /// the ValueTy enum. |
| 529 | unsigned getValueID() const { |
| 530 | return SubclassID; |
| 531 | } |
| 532 | |
| 533 | /// Return the raw optional flags value contained in this value. |
| 534 | /// |
| 535 | /// This should only be used when testing two Values for equivalence. |
| 536 | unsigned getRawSubclassOptionalData() const { |
| 537 | return SubclassOptionalData; |
| 538 | } |
| 539 | |
| 540 | /// Clear the optional flags contained in this value. |
| 541 | void clearSubclassOptionalData() { |
| 542 | SubclassOptionalData = 0; |
| 543 | } |
| 544 | |
| 545 | /// Check the optional flags for equality. |
| 546 | bool hasSameSubclassOptionalData(const Value *V) const { |
| 547 | return SubclassOptionalData == V->SubclassOptionalData; |
| 548 | } |
| 549 | |
| 550 | /// Return true if there is a value handle associated with this value. |
| 551 | bool hasValueHandle() const { return HasValueHandle; } |
| 552 | |
| 553 | /// Return true if there is metadata referencing this value. |
| 554 | bool isUsedByMetadata() const { return IsUsedByMD; } |
| 555 | |
| 556 | // Return true if this value is only transitively referenced by metadata. |
| 557 | bool isTransitiveUsedByMetadataOnly() const; |
| 558 | |
| 559 | protected: |
| 560 | /// Get the current metadata attachments for the given kind, if any. |
| 561 | /// |
| 562 | /// These functions require that the value have at most a single attachment |
| 563 | /// of the given kind, and return \c nullptr if such an attachment is missing. |
| 564 | /// @{ |
| 565 | MDNode *getMetadata(unsigned KindID) const; |
| 566 | MDNode *getMetadata(StringRef Kind) const; |
| 567 | /// @} |
| 568 | |
| 569 | /// Appends all attachments with the given ID to \c MDs in insertion order. |
| 570 | /// If the Value has no attachments with the given ID, or if ID is invalid, |
| 571 | /// leaves MDs unchanged. |
| 572 | /// @{ |
| 573 | void getMetadata(unsigned KindID, SmallVectorImpl<MDNode *> &MDs) const; |
| 574 | void getMetadata(StringRef Kind, SmallVectorImpl<MDNode *> &MDs) const; |
| 575 | /// @} |
| 576 | |
| 577 | /// Appends all metadata attached to this value to \c MDs, sorting by |
| 578 | /// KindID. The first element of each pair returned is the KindID, the second |
| 579 | /// element is the metadata value. Attachments with the same ID appear in |
| 580 | /// insertion order. |
| 581 | void |
| 582 | getAllMetadata(SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const; |
| 583 | |
| 584 | /// Return true if this value has any metadata attached to it. |
| 585 | bool hasMetadata() const { return (bool)HasMetadata; } |
| 586 | |
| 587 | /// Return true if this value has the given type of metadata attached. |
| 588 | /// @{ |
| 589 | bool hasMetadata(unsigned KindID) const { |
| 590 | return getMetadata(KindID) != nullptr; |
| 591 | } |
| 592 | bool hasMetadata(StringRef Kind) const { |
| 593 | return getMetadata(Kind) != nullptr; |
| 594 | } |
| 595 | /// @} |
| 596 | |
| 597 | /// Set a particular kind of metadata attachment. |
| 598 | /// |
| 599 | /// Sets the given attachment to \c MD, erasing it if \c MD is \c nullptr or |
| 600 | /// replacing it if it already exists. |
| 601 | /// @{ |
| 602 | void setMetadata(unsigned KindID, MDNode *Node); |
| 603 | void setMetadata(StringRef Kind, MDNode *Node); |
| 604 | /// @} |
| 605 | |
| 606 | /// Add a metadata attachment. |
| 607 | /// @{ |
| 608 | void addMetadata(unsigned KindID, MDNode &MD); |
| 609 | void addMetadata(StringRef Kind, MDNode &MD); |
| 610 | /// @} |
| 611 | |
| 612 | /// Erase all metadata attachments with the given kind. |
| 613 | /// |
| 614 | /// \returns true if any metadata was removed. |
| 615 | bool eraseMetadata(unsigned KindID); |
| 616 | |
| 617 | /// Erase all metadata attached to this Value. |
| 618 | void clearMetadata(); |
| 619 | |
| 620 | public: |
| 621 | /// Return true if this value is a swifterror value. |
| 622 | /// |
| 623 | /// swifterror values can be either a function argument or an alloca with a |
| 624 | /// swifterror attribute. |
| 625 | bool isSwiftError() const; |
| 626 | |
| 627 | /// Strip off pointer casts, all-zero GEPs and address space casts. |
| 628 | /// |
| 629 | /// Returns the original uncasted value. If this is called on a non-pointer |
| 630 | /// value, it returns 'this'. |
| 631 | const Value *stripPointerCasts() const; |
| 632 | Value *stripPointerCasts() { |
| 633 | return const_cast<Value *>( |
| 634 | static_cast<const Value *>(this)->stripPointerCasts()); |
| 635 | } |
| 636 | |
| 637 | /// Strip off pointer casts, all-zero GEPs, address space casts, and aliases. |
| 638 | /// |
| 639 | /// Returns the original uncasted value. If this is called on a non-pointer |
| 640 | /// value, it returns 'this'. |
| 641 | const Value *stripPointerCastsAndAliases() const; |
| 642 | Value *stripPointerCastsAndAliases() { |
| 643 | return const_cast<Value *>( |
| 644 | static_cast<const Value *>(this)->stripPointerCastsAndAliases()); |
| 645 | } |
| 646 | |
| 647 | /// Strip off pointer casts, all-zero GEPs and address space casts |
| 648 | /// but ensures the representation of the result stays the same. |
| 649 | /// |
| 650 | /// Returns the original uncasted value with the same representation. If this |
| 651 | /// is called on a non-pointer value, it returns 'this'. |
| 652 | const Value *stripPointerCastsSameRepresentation() const; |
| 653 | Value *stripPointerCastsSameRepresentation() { |
| 654 | return const_cast<Value *>(static_cast<const Value *>(this) |
| 655 | ->stripPointerCastsSameRepresentation()); |
| 656 | } |
| 657 | |
| 658 | /// Strip off pointer casts, all-zero GEPs, single-argument phi nodes and |
| 659 | /// invariant group info. |
| 660 | /// |
| 661 | /// Returns the original uncasted value. If this is called on a non-pointer |
| 662 | /// value, it returns 'this'. This function should be used only in |
| 663 | /// Alias analysis. |
| 664 | const Value *stripPointerCastsForAliasAnalysis() const; |
| 665 | Value *stripPointerCastsForAliasAnalysis() { |
| 666 | return const_cast<Value *>(static_cast<const Value *>(this) |
| 667 | ->stripPointerCastsForAliasAnalysis()); |
| 668 | } |
| 669 | |
| 670 | /// Strip off pointer casts and all-constant inbounds GEPs. |
| 671 | /// |
| 672 | /// Returns the original pointer value. If this is called on a non-pointer |
| 673 | /// value, it returns 'this'. |
| 674 | const Value *stripInBoundsConstantOffsets() const; |
| 675 | Value *stripInBoundsConstantOffsets() { |
| 676 | return const_cast<Value *>( |
| 677 | static_cast<const Value *>(this)->stripInBoundsConstantOffsets()); |
| 678 | } |
| 679 | |
| 680 | /// Accumulate the constant offset this value has compared to a base pointer. |
| 681 | /// Only 'getelementptr' instructions (GEPs) are accumulated but other |
| 682 | /// instructions, e.g., casts, are stripped away as well. |
| 683 | /// The accumulated constant offset is added to \p Offset and the base |
| 684 | /// pointer is returned. |
| 685 | /// |
| 686 | /// The APInt \p Offset has to have a bit-width equal to the IntPtr type for |
| 687 | /// the address space of 'this' pointer value, e.g., use |
| 688 | /// DataLayout::getIndexTypeSizeInBits(Ty). |
| 689 | /// |
| 690 | /// If \p AllowNonInbounds is true, offsets in GEPs are stripped and |
| 691 | /// accumulated even if the GEP is not "inbounds". |
| 692 | /// |
| 693 | /// If \p ExternalAnalysis is provided it will be used to calculate a offset |
| 694 | /// when a operand of GEP is not constant. |
| 695 | /// For example, for a value \p ExternalAnalysis might try to calculate a |
| 696 | /// lower bound. If \p ExternalAnalysis is successful, it should return true. |
| 697 | /// |
| 698 | /// If this is called on a non-pointer value, it returns 'this' and the |
| 699 | /// \p Offset is not modified. |
| 700 | /// |
| 701 | /// Note that this function will never return a nullptr. It will also never |
| 702 | /// manipulate the \p Offset in a way that would not match the difference |
| 703 | /// between the underlying value and the returned one. Thus, if no constant |
| 704 | /// offset was found, the returned value is the underlying one and \p Offset |
| 705 | /// is unchanged. |
| 706 | const Value *stripAndAccumulateConstantOffsets( |
| 707 | const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, |
| 708 | function_ref<bool(Value &Value, APInt &Offset)> ExternalAnalysis = |
| 709 | nullptr) const; |
| 710 | Value *stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, |
| 711 | bool AllowNonInbounds) { |
| 712 | return const_cast<Value *>( |
| 713 | static_cast<const Value *>(this)->stripAndAccumulateConstantOffsets( |
| 714 | DL, Offset, AllowNonInbounds)); |
| 715 | } |
| 716 | |
| 717 | /// This is a wrapper around stripAndAccumulateConstantOffsets with the |
| 718 | /// in-bounds requirement set to false. |
| 719 | const Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, |
| 720 | APInt &Offset) const { |
| 721 | return stripAndAccumulateConstantOffsets(DL, Offset, |
| 722 | /* AllowNonInbounds */ false); |
| 723 | } |
| 724 | Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, |
| 725 | APInt &Offset) { |
| 726 | return stripAndAccumulateConstantOffsets(DL, Offset, |
| 727 | /* AllowNonInbounds */ false); |
| 728 | } |
| 729 | |
| 730 | /// Strip off pointer casts and inbounds GEPs. |
| 731 | /// |
| 732 | /// Returns the original pointer value. If this is called on a non-pointer |
| 733 | /// value, it returns 'this'. |
| 734 | const Value *stripInBoundsOffsets(function_ref<void(const Value *)> Func = |
| 735 | [](const Value *) {}) const; |
| 736 | inline Value *stripInBoundsOffsets(function_ref<void(const Value *)> Func = |
| 737 | [](const Value *) {}) { |
| 738 | return const_cast<Value *>( |
| 739 | static_cast<const Value *>(this)->stripInBoundsOffsets(Func)); |
| 740 | } |
| 741 | |
| 742 | /// Return true if the memory object referred to by V can by freed in the |
| 743 | /// scope for which the SSA value defining the allocation is statically |
| 744 | /// defined. E.g. deallocation after the static scope of a value does not |
| 745 | /// count, but a deallocation before that does. |
| 746 | bool canBeFreed() const; |
| 747 | |
| 748 | /// Returns the number of bytes known to be dereferenceable for the |
| 749 | /// pointer value. |
| 750 | /// |
| 751 | /// If CanBeNull is set by this function the pointer can either be null or be |
| 752 | /// dereferenceable up to the returned number of bytes. |
| 753 | /// |
| 754 | /// IF CanBeFreed is true, the pointer is known to be dereferenceable at |
| 755 | /// point of definition only. Caller must prove that allocation is not |
| 756 | /// deallocated between point of definition and use. |
| 757 | uint64_t getPointerDereferenceableBytes(const DataLayout &DL, |
| 758 | bool &CanBeNull, |
| 759 | bool &CanBeFreed) const; |
| 760 | |
| 761 | /// Returns an alignment of the pointer value. |
| 762 | /// |
| 763 | /// Returns an alignment which is either specified explicitly, e.g. via |
| 764 | /// align attribute of a function argument, or guaranteed by DataLayout. |
| 765 | Align getPointerAlignment(const DataLayout &DL) const; |
| 766 | |
| 767 | /// Translate PHI node to its predecessor from the given basic block. |
| 768 | /// |
| 769 | /// If this value is a PHI node with CurBB as its parent, return the value in |
| 770 | /// the PHI node corresponding to PredBB. If not, return ourself. This is |
| 771 | /// useful if you want to know the value something has in a predecessor |
| 772 | /// block. |
| 773 | const Value *DoPHITranslation(const BasicBlock *CurBB, |
| 774 | const BasicBlock *PredBB) const; |
| 775 | Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) { |
| 776 | return const_cast<Value *>( |
| 777 | static_cast<const Value *>(this)->DoPHITranslation(CurBB, PredBB)); |
| 778 | } |
| 779 | |
| 780 | /// The maximum alignment for instructions. |
| 781 | /// |
| 782 | /// This is the greatest alignment value supported by load, store, and alloca |
| 783 | /// instructions, and global values. |
| 784 | static const unsigned MaxAlignmentExponent = 29; |
| 785 | static const unsigned MaximumAlignment = 1u << MaxAlignmentExponent; |
| 786 | |
| 787 | /// Mutate the type of this Value to be of the specified type. |
| 788 | /// |
| 789 | /// Note that this is an extremely dangerous operation which can create |
| 790 | /// completely invalid IR very easily. It is strongly recommended that you |
| 791 | /// recreate IR objects with the right types instead of mutating them in |
| 792 | /// place. |
| 793 | void mutateType(Type *Ty) { |
| 794 | VTy = Ty; |
| 795 | } |
| 796 | |
| 797 | /// Sort the use-list. |
| 798 | /// |
| 799 | /// Sorts the Value's use-list by Cmp using a stable mergesort. Cmp is |
| 800 | /// expected to compare two \a Use references. |
| 801 | template <class Compare> void sortUseList(Compare Cmp); |
| 802 | |
| 803 | /// Reverse the use-list. |
| 804 | void reverseUseList(); |
| 805 | |
| 806 | private: |
| 807 | /// Merge two lists together. |
| 808 | /// |
| 809 | /// Merges \c L and \c R using \c Cmp. To enable stable sorts, always pushes |
| 810 | /// "equal" items from L before items from R. |
| 811 | /// |
| 812 | /// \return the first element in the list. |
| 813 | /// |
| 814 | /// \note Completely ignores \a Use::Prev (doesn't read, doesn't update). |
| 815 | template <class Compare> |
| 816 | static Use *mergeUseLists(Use *L, Use *R, Compare Cmp) { |
| 817 | Use *Merged; |
| 818 | Use **Next = &Merged; |
| 819 | |
| 820 | while (true) { |
| 821 | if (!L) { |
| 822 | *Next = R; |
| 823 | break; |
| 824 | } |
| 825 | if (!R) { |
| 826 | *Next = L; |
| 827 | break; |
| 828 | } |
| 829 | if (Cmp(*R, *L)) { |
| 830 | *Next = R; |
| 831 | Next = &R->Next; |
| 832 | R = R->Next; |
| 833 | } else { |
| 834 | *Next = L; |
| 835 | Next = &L->Next; |
| 836 | L = L->Next; |
| 837 | } |
| 838 | } |
| 839 | |
| 840 | return Merged; |
| 841 | } |
| 842 | |
| 843 | protected: |
| 844 | unsigned short getSubclassDataFromValue() const { return SubclassData; } |
| 845 | void setValueSubclassData(unsigned short D) { SubclassData = D; } |
| 846 | }; |
| 847 | |
| 848 | struct ValueDeleter { void operator()(Value *V) { V->deleteValue(); } }; |
| 849 | |
| 850 | /// Use this instead of std::unique_ptr<Value> or std::unique_ptr<Instruction>. |
| 851 | /// Those don't work because Value and Instruction's destructors are protected, |
| 852 | /// aren't virtual, and won't destroy the complete object. |
| 853 | using unique_value = std::unique_ptr<Value, ValueDeleter>; |
| 854 | |
| 855 | inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) { |
| 856 | V.print(OS); |
| 857 | return OS; |
| 858 | } |
| 859 | |
| 860 | void Use::set(Value *V) { |
| 861 | if (Val) removeFromList(); |
| 862 | Val = V; |
| 863 | if (V) V->addUse(*this); |
| 864 | } |
| 865 | |
| 866 | Value *Use::operator=(Value *RHS) { |
| 867 | set(RHS); |
| 868 | return RHS; |
| 869 | } |
| 870 | |
| 871 | const Use &Use::operator=(const Use &RHS) { |
| 872 | set(RHS.Val); |
| 873 | return *this; |
| 874 | } |
| 875 | |
| 876 | template <class Compare> void Value::sortUseList(Compare Cmp) { |
| 877 | if (!UseList || !UseList->Next) |
| 878 | // No need to sort 0 or 1 uses. |
| 879 | return; |
| 880 | |
| 881 | // Note: this function completely ignores Prev pointers until the end when |
| 882 | // they're fixed en masse. |
| 883 | |
| 884 | // Create a binomial vector of sorted lists, visiting uses one at a time and |
| 885 | // merging lists as necessary. |
| 886 | const unsigned MaxSlots = 32; |
| 887 | Use *Slots[MaxSlots]; |
| 888 | |
| 889 | // Collect the first use, turning it into a single-item list. |
| 890 | Use *Next = UseList->Next; |
| 891 | UseList->Next = nullptr; |
| 892 | unsigned NumSlots = 1; |
| 893 | Slots[0] = UseList; |
| 894 | |
| 895 | // Collect all but the last use. |
| 896 | while (Next->Next) { |
| 897 | Use *Current = Next; |
| 898 | Next = Current->Next; |
| 899 | |
| 900 | // Turn Current into a single-item list. |
| 901 | Current->Next = nullptr; |
| 902 | |
| 903 | // Save Current in the first available slot, merging on collisions. |
| 904 | unsigned I; |
| 905 | for (I = 0; I < NumSlots; ++I) { |
| 906 | if (!Slots[I]) |
| 907 | break; |
| 908 | |
| 909 | // Merge two lists, doubling the size of Current and emptying slot I. |
| 910 | // |
| 911 | // Since the uses in Slots[I] originally preceded those in Current, send |
| 912 | // Slots[I] in as the left parameter to maintain a stable sort. |
| 913 | Current = mergeUseLists(Slots[I], Current, Cmp); |
| 914 | Slots[I] = nullptr; |
| 915 | } |
| 916 | // Check if this is a new slot. |
| 917 | if (I == NumSlots) { |
| 918 | ++NumSlots; |
| 919 | assert(NumSlots <= MaxSlots && "Use list bigger than 2^32")((void)0); |
| 920 | } |
| 921 | |
| 922 | // Found an open slot. |
| 923 | Slots[I] = Current; |
| 924 | } |
| 925 | |
| 926 | // Merge all the lists together. |
| 927 | assert(Next && "Expected one more Use")((void)0); |
| 928 | assert(!Next->Next && "Expected only one Use")((void)0); |
| 929 | UseList = Next; |
| 930 | for (unsigned I = 0; I < NumSlots; ++I) |
| 931 | if (Slots[I]) |
| 932 | // Since the uses in Slots[I] originally preceded those in UseList, send |
| 933 | // Slots[I] in as the left parameter to maintain a stable sort. |
| 934 | UseList = mergeUseLists(Slots[I], UseList, Cmp); |
| 935 | |
| 936 | // Fix the Prev pointers. |
| 937 | for (Use *I = UseList, **Prev = &UseList; I; I = I->Next) { |
| 938 | I->Prev = Prev; |
| 939 | Prev = &I->Next; |
| 940 | } |
| 941 | } |
| 942 | |
| 943 | // isa - Provide some specializations of isa so that we don't have to include |
| 944 | // the subtype header files to test to see if the value is a subclass... |
| 945 | // |
| 946 | template <> struct isa_impl<Constant, Value> { |
| 947 | static inline bool doit(const Value &Val) { |
| 948 | static_assert(Value::ConstantFirstVal == 0, "Val.getValueID() >= Value::ConstantFirstVal"); |
| 949 | return Val.getValueID() <= Value::ConstantLastVal; |
| 950 | } |
| 951 | }; |
| 952 | |
| 953 | template <> struct isa_impl<ConstantData, Value> { |
| 954 | static inline bool doit(const Value &Val) { |
| 955 | return Val.getValueID() >= Value::ConstantDataFirstVal && |
| 956 | Val.getValueID() <= Value::ConstantDataLastVal; |
| 957 | } |
| 958 | }; |
| 959 | |
| 960 | template <> struct isa_impl<ConstantAggregate, Value> { |
| 961 | static inline bool doit(const Value &Val) { |
| 962 | return Val.getValueID() >= Value::ConstantAggregateFirstVal && |
| 963 | Val.getValueID() <= Value::ConstantAggregateLastVal; |
| 964 | } |
| 965 | }; |
| 966 | |
| 967 | template <> struct isa_impl<Argument, Value> { |
| 968 | static inline bool doit (const Value &Val) { |
| 969 | return Val.getValueID() == Value::ArgumentVal; |
| 970 | } |
| 971 | }; |
| 972 | |
| 973 | template <> struct isa_impl<InlineAsm, Value> { |
| 974 | static inline bool doit(const Value &Val) { |
| 975 | return Val.getValueID() == Value::InlineAsmVal; |
| 976 | } |
| 977 | }; |
| 978 | |
| 979 | template <> struct isa_impl<Instruction, Value> { |
| 980 | static inline bool doit(const Value &Val) { |
| 981 | return Val.getValueID() >= Value::InstructionVal; |
| 982 | } |
| 983 | }; |
| 984 | |
| 985 | template <> struct isa_impl<BasicBlock, Value> { |
| 986 | static inline bool doit(const Value &Val) { |
| 987 | return Val.getValueID() == Value::BasicBlockVal; |
| 988 | } |
| 989 | }; |
| 990 | |
| 991 | template <> struct isa_impl<Function, Value> { |
| 992 | static inline bool doit(const Value &Val) { |
| 993 | return Val.getValueID() == Value::FunctionVal; |
| 994 | } |
| 995 | }; |
| 996 | |
| 997 | template <> struct isa_impl<GlobalVariable, Value> { |
| 998 | static inline bool doit(const Value &Val) { |
| 999 | return Val.getValueID() == Value::GlobalVariableVal; |
| 1000 | } |
| 1001 | }; |
| 1002 | |
| 1003 | template <> struct isa_impl<GlobalAlias, Value> { |
| 1004 | static inline bool doit(const Value &Val) { |
| 1005 | return Val.getValueID() == Value::GlobalAliasVal; |
| 1006 | } |
| 1007 | }; |
| 1008 | |
| 1009 | template <> struct isa_impl<GlobalIFunc, Value> { |
| 1010 | static inline bool doit(const Value &Val) { |
| 1011 | return Val.getValueID() == Value::GlobalIFuncVal; |
| 1012 | } |
| 1013 | }; |
| 1014 | |
| 1015 | template <> struct isa_impl<GlobalIndirectSymbol, Value> { |
| 1016 | static inline bool doit(const Value &Val) { |
| 1017 | return isa<GlobalAlias>(Val) || isa<GlobalIFunc>(Val); |
| 1018 | } |
| 1019 | }; |
| 1020 | |
| 1021 | template <> struct isa_impl<GlobalValue, Value> { |
| 1022 | static inline bool doit(const Value &Val) { |
| 1023 | return isa<GlobalObject>(Val) || isa<GlobalIndirectSymbol>(Val); |
| 1024 | } |
| 1025 | }; |
| 1026 | |
| 1027 | template <> struct isa_impl<GlobalObject, Value> { |
| 1028 | static inline bool doit(const Value &Val) { |
| 1029 | return isa<GlobalVariable>(Val) || isa<Function>(Val); |
| 1030 | } |
| 1031 | }; |
| 1032 | |
| 1033 | // Create wrappers for C Binding types (see CBindingWrapping.h). |
| 1034 | DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef)inline Value *unwrap(LLVMValueRef P) { return reinterpret_cast <Value*>(P); } inline LLVMValueRef wrap(const Value *P) { return reinterpret_cast<LLVMValueRef>(const_cast< Value*>(P)); } template<typename T> inline T *unwrap (LLVMValueRef P) { return cast<T>(unwrap(P)); } |
| 1035 | |
| 1036 | // Specialized opaque value conversions. |
| 1037 | inline Value **unwrap(LLVMValueRef *Vals) { |
| 1038 | return reinterpret_cast<Value**>(Vals); |
| 1039 | } |
| 1040 | |
| 1041 | template<typename T> |
| 1042 | inline T **unwrap(LLVMValueRef *Vals, unsigned Length) { |
| 1043 | #ifndef NDEBUG1 |
| 1044 | for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I) |
| 1045 | unwrap<T>(*I); // For side effect of calling assert on invalid usage. |
| 1046 | #endif |
| 1047 | (void)Length; |
| 1048 | return reinterpret_cast<T**>(Vals); |
| 1049 | } |
| 1050 | |
| 1051 | inline LLVMValueRef *wrap(const Value **Vals) { |
| 1052 | return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals)); |
| 1053 | } |
| 1054 | |
| 1055 | } // end namespace llvm |
| 1056 | |
| 1057 | #endif // LLVM_IR_VALUE_H |
| 1 | //===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains some templates that are useful if you are working with the |
| 10 | // STL at all. |
| 11 | // |
| 12 | // No library is required when using these functions. |
| 13 | // |
| 14 | //===----------------------------------------------------------------------===// |
| 15 | |
| 16 | #ifndef LLVM_ADT_STLEXTRAS_H |
| 17 | #define LLVM_ADT_STLEXTRAS_H |
| 18 | |
| 19 | #include "llvm/ADT/Optional.h" |
| 20 | #include "llvm/ADT/STLForwardCompat.h" |
| 21 | #include "llvm/ADT/iterator.h" |
| 22 | #include "llvm/ADT/iterator_range.h" |
| 23 | #include "llvm/Config/abi-breaking.h" |
| 24 | #include "llvm/Support/ErrorHandling.h" |
| 25 | #include <algorithm> |
| 26 | #include <cassert> |
| 27 | #include <cstddef> |
| 28 | #include <cstdint> |
| 29 | #include <cstdlib> |
| 30 | #include <functional> |
| 31 | #include <initializer_list> |
| 32 | #include <iterator> |
| 33 | #include <limits> |
| 34 | #include <memory> |
| 35 | #include <tuple> |
| 36 | #include <type_traits> |
| 37 | #include <utility> |
| 38 | |
| 39 | #ifdef EXPENSIVE_CHECKS |
| 40 | #include <random> // for std::mt19937 |
| 41 | #endif |
| 42 | |
| 43 | namespace llvm { |
| 44 | |
| 45 | // Only used by compiler if both template types are the same. Useful when |
| 46 | // using SFINAE to test for the existence of member functions. |
| 47 | template <typename T, T> struct SameType; |
| 48 | |
| 49 | namespace detail { |
| 50 | |
| 51 | template <typename RangeT> |
| 52 | using IterOfRange = decltype(std::begin(std::declval<RangeT &>())); |
| 53 | |
| 54 | template <typename RangeT> |
| 55 | using ValueOfRange = typename std::remove_reference<decltype( |
| 56 | *std::begin(std::declval<RangeT &>()))>::type; |
| 57 | |
| 58 | } // end namespace detail |
| 59 | |
| 60 | //===----------------------------------------------------------------------===// |
| 61 | // Extra additions to <type_traits> |
| 62 | //===----------------------------------------------------------------------===// |
| 63 | |
| 64 | template <typename T> struct make_const_ptr { |
| 65 | using type = |
| 66 | typename std::add_pointer<typename std::add_const<T>::type>::type; |
| 67 | }; |
| 68 | |
| 69 | template <typename T> struct make_const_ref { |
| 70 | using type = typename std::add_lvalue_reference< |
| 71 | typename std::add_const<T>::type>::type; |
| 72 | }; |
| 73 | |
| 74 | namespace detail { |
| 75 | template <typename...> using void_t = void; |
| 76 | template <class, template <class...> class Op, class... Args> struct detector { |
| 77 | using value_t = std::false_type; |
| 78 | }; |
| 79 | template <template <class...> class Op, class... Args> |
| 80 | struct detector<void_t<Op<Args...>>, Op, Args...> { |
| 81 | using value_t = std::true_type; |
| 82 | }; |
| 83 | } // end namespace detail |
| 84 | |
| 85 | /// Detects if a given trait holds for some set of arguments 'Args'. |
| 86 | /// For example, the given trait could be used to detect if a given type |
| 87 | /// has a copy assignment operator: |
| 88 | /// template<class T> |
| 89 | /// using has_copy_assign_t = decltype(std::declval<T&>() |
| 90 | /// = std::declval<const T&>()); |
| 91 | /// bool fooHasCopyAssign = is_detected<has_copy_assign_t, FooClass>::value; |
| 92 | template <template <class...> class Op, class... Args> |
| 93 | using is_detected = typename detail::detector<void, Op, Args...>::value_t; |
| 94 | |
| 95 | namespace detail { |
| 96 | template <typename Callable, typename... Args> |
| 97 | using is_invocable = |
| 98 | decltype(std::declval<Callable &>()(std::declval<Args>()...)); |
| 99 | } // namespace detail |
| 100 | |
| 101 | /// Check if a Callable type can be invoked with the given set of arg types. |
| 102 | template <typename Callable, typename... Args> |
| 103 | using is_invocable = is_detected<detail::is_invocable, Callable, Args...>; |
| 104 | |
| 105 | /// This class provides various trait information about a callable object. |
| 106 | /// * To access the number of arguments: Traits::num_args |
| 107 | /// * To access the type of an argument: Traits::arg_t<Index> |
| 108 | /// * To access the type of the result: Traits::result_t |
| 109 | template <typename T, bool isClass = std::is_class<T>::value> |
| 110 | struct function_traits : public function_traits<decltype(&T::operator())> {}; |
| 111 | |
| 112 | /// Overload for class function types. |
| 113 | template <typename ClassType, typename ReturnType, typename... Args> |
| 114 | struct function_traits<ReturnType (ClassType::*)(Args...) const, false> { |
| 115 | /// The number of arguments to this function. |
| 116 | enum { num_args = sizeof...(Args) }; |
| 117 | |
| 118 | /// The result type of this function. |
| 119 | using result_t = ReturnType; |
| 120 | |
| 121 | /// The type of an argument to this function. |
| 122 | template <size_t Index> |
| 123 | using arg_t = typename std::tuple_element<Index, std::tuple<Args...>>::type; |
| 124 | }; |
| 125 | /// Overload for class function types. |
| 126 | template <typename ClassType, typename ReturnType, typename... Args> |
| 127 | struct function_traits<ReturnType (ClassType::*)(Args...), false> |
| 128 | : function_traits<ReturnType (ClassType::*)(Args...) const> {}; |
| 129 | /// Overload for non-class function types. |
| 130 | template <typename ReturnType, typename... Args> |
| 131 | struct function_traits<ReturnType (*)(Args...), false> { |
| 132 | /// The number of arguments to this function. |
| 133 | enum { num_args = sizeof...(Args) }; |
| 134 | |
| 135 | /// The result type of this function. |
| 136 | using result_t = ReturnType; |
| 137 | |
| 138 | /// The type of an argument to this function. |
| 139 | template <size_t i> |
| 140 | using arg_t = typename std::tuple_element<i, std::tuple<Args...>>::type; |
| 141 | }; |
| 142 | /// Overload for non-class function type references. |
| 143 | template <typename ReturnType, typename... Args> |
| 144 | struct function_traits<ReturnType (&)(Args...), false> |
| 145 | : public function_traits<ReturnType (*)(Args...)> {}; |
| 146 | |
| 147 | //===----------------------------------------------------------------------===// |
| 148 | // Extra additions to <functional> |
| 149 | //===----------------------------------------------------------------------===// |
| 150 | |
| 151 | template <class Ty> struct identity { |
| 152 | using argument_type = Ty; |
| 153 | |
| 154 | Ty &operator()(Ty &self) const { |
| 155 | return self; |
| 156 | } |
| 157 | const Ty &operator()(const Ty &self) const { |
| 158 | return self; |
| 159 | } |
| 160 | }; |
| 161 | |
| 162 | /// An efficient, type-erasing, non-owning reference to a callable. This is |
| 163 | /// intended for use as the type of a function parameter that is not used |
| 164 | /// after the function in question returns. |
| 165 | /// |
| 166 | /// This class does not own the callable, so it is not in general safe to store |
| 167 | /// a function_ref. |
| 168 | template<typename Fn> class function_ref; |
| 169 | |
| 170 | template<typename Ret, typename ...Params> |
| 171 | class function_ref<Ret(Params...)> { |
| 172 | Ret (*callback)(intptr_t callable, Params ...params) = nullptr; |
| 173 | intptr_t callable; |
| 174 | |
| 175 | template<typename Callable> |
| 176 | static Ret callback_fn(intptr_t callable, Params ...params) { |
| 177 | return (*reinterpret_cast<Callable*>(callable))( |
| 178 | std::forward<Params>(params)...); |
| 179 | } |
| 180 | |
| 181 | public: |
| 182 | function_ref() = default; |
| 183 | function_ref(std::nullptr_t) {} |
| 184 | |
| 185 | template <typename Callable> |
| 186 | function_ref( |
| 187 | Callable &&callable, |
| 188 | // This is not the copy-constructor. |
| 189 | std::enable_if_t<!std::is_same<remove_cvref_t<Callable>, |
| 190 | function_ref>::value> * = nullptr, |
| 191 | // Functor must be callable and return a suitable type. |
| 192 | std::enable_if_t<std::is_void<Ret>::value || |
| 193 | std::is_convertible<decltype(std::declval<Callable>()( |
| 194 | std::declval<Params>()...)), |
| 195 | Ret>::value> * = nullptr) |
| 196 | : callback(callback_fn<typename std::remove_reference<Callable>::type>), |
| 197 | callable(reinterpret_cast<intptr_t>(&callable)) {} |
| 198 | |
| 199 | Ret operator()(Params ...params) const { |
| 200 | return callback(callable, std::forward<Params>(params)...); |
| 201 | } |
| 202 | |
| 203 | explicit operator bool() const { return callback; } |
| 204 | }; |
| 205 | |
| 206 | //===----------------------------------------------------------------------===// |
| 207 | // Extra additions to <iterator> |
| 208 | //===----------------------------------------------------------------------===// |
| 209 | |
| 210 | namespace adl_detail { |
| 211 | |
| 212 | using std::begin; |
| 213 | |
| 214 | template <typename ContainerTy> |
| 215 | decltype(auto) adl_begin(ContainerTy &&container) { |
| 216 | return begin(std::forward<ContainerTy>(container)); |
| 217 | } |
| 218 | |
| 219 | using std::end; |
| 220 | |
| 221 | template <typename ContainerTy> |
| 222 | decltype(auto) adl_end(ContainerTy &&container) { |
| 223 | return end(std::forward<ContainerTy>(container)); |
| 224 | } |
| 225 | |
| 226 | using std::swap; |
| 227 | |
| 228 | template <typename T> |
| 229 | void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(), |
| 230 | std::declval<T>()))) { |
| 231 | swap(std::forward<T>(lhs), std::forward<T>(rhs)); |
| 232 | } |
| 233 | |
| 234 | } // end namespace adl_detail |
| 235 | |
| 236 | template <typename ContainerTy> |
| 237 | decltype(auto) adl_begin(ContainerTy &&container) { |
| 238 | return adl_detail::adl_begin(std::forward<ContainerTy>(container)); |
| 239 | } |
| 240 | |
| 241 | template <typename ContainerTy> |
| 242 | decltype(auto) adl_end(ContainerTy &&container) { |
| 243 | return adl_detail::adl_end(std::forward<ContainerTy>(container)); |
| 244 | } |
| 245 | |
| 246 | template <typename T> |
| 247 | void adl_swap(T &&lhs, T &&rhs) noexcept( |
| 248 | noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) { |
| 249 | adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs)); |
| 250 | } |
| 251 | |
| 252 | /// Test whether \p RangeOrContainer is empty. Similar to C++17 std::empty. |
| 253 | template <typename T> |
| 254 | constexpr bool empty(const T &RangeOrContainer) { |
| 255 | return adl_begin(RangeOrContainer) == adl_end(RangeOrContainer); |
| 256 | } |
| 257 | |
| 258 | /// Returns true if the given container only contains a single element. |
| 259 | template <typename ContainerTy> bool hasSingleElement(ContainerTy &&C) { |
| 260 | auto B = std::begin(C), E = std::end(C); |
| 261 | return B != E && std::next(B) == E; |
| 262 | } |
| 263 | |
| 264 | /// Return a range covering \p RangeOrContainer with the first N elements |
| 265 | /// excluded. |
| 266 | template <typename T> auto drop_begin(T &&RangeOrContainer, size_t N = 1) { |
| 267 | return make_range(std::next(adl_begin(RangeOrContainer), N), |
| 268 | adl_end(RangeOrContainer)); |
| 269 | } |
| 270 | |
| 271 | // mapped_iterator - This is a simple iterator adapter that causes a function to |
| 272 | // be applied whenever operator* is invoked on the iterator. |
| 273 | |
| 274 | template <typename ItTy, typename FuncTy, |
| 275 | typename FuncReturnTy = |
| 276 | decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))> |
| 277 | class mapped_iterator |
| 278 | : public iterator_adaptor_base< |
| 279 | mapped_iterator<ItTy, FuncTy>, ItTy, |
| 280 | typename std::iterator_traits<ItTy>::iterator_category, |
| 281 | typename std::remove_reference<FuncReturnTy>::type> { |
| 282 | public: |
| 283 | mapped_iterator(ItTy U, FuncTy F) |
| 284 | : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {} |
| 285 | |
| 286 | ItTy getCurrent() { return this->I; } |
| 287 | |
| 288 | FuncReturnTy operator*() const { return F(*this->I); } |
| 289 | |
| 290 | private: |
| 291 | FuncTy F; |
| 292 | }; |
| 293 | |
| 294 | // map_iterator - Provide a convenient way to create mapped_iterators, just like |
| 295 | // make_pair is useful for creating pairs... |
| 296 | template <class ItTy, class FuncTy> |
| 297 | inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) { |
| 298 | return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F)); |
| 299 | } |
| 300 | |
| 301 | template <class ContainerTy, class FuncTy> |
| 302 | auto map_range(ContainerTy &&C, FuncTy F) { |
| 303 | return make_range(map_iterator(C.begin(), F), map_iterator(C.end(), F)); |
| 304 | } |
| 305 | |
| 306 | /// Helper to determine if type T has a member called rbegin(). |
| 307 | template <typename Ty> class has_rbegin_impl { |
| 308 | using yes = char[1]; |
| 309 | using no = char[2]; |
| 310 | |
| 311 | template <typename Inner> |
| 312 | static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr); |
| 313 | |
| 314 | template <typename> |
| 315 | static no& test(...); |
| 316 | |
| 317 | public: |
| 318 | static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes); |
| 319 | }; |
| 320 | |
| 321 | /// Metafunction to determine if T& or T has a member called rbegin(). |
| 322 | template <typename Ty> |
| 323 | struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> { |
| 324 | }; |
| 325 | |
| 326 | // Returns an iterator_range over the given container which iterates in reverse. |
| 327 | // Note that the container must have rbegin()/rend() methods for this to work. |
| 328 | template <typename ContainerTy> |
| 329 | auto reverse(ContainerTy &&C, |
| 330 | std::enable_if_t<has_rbegin<ContainerTy>::value> * = nullptr) { |
| 331 | return make_range(C.rbegin(), C.rend()); |
| 332 | } |
| 333 | |
| 334 | // Returns a std::reverse_iterator wrapped around the given iterator. |
| 335 | template <typename IteratorTy> |
| 336 | std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) { |
| 337 | return std::reverse_iterator<IteratorTy>(It); |
| 338 | } |
| 339 | |
| 340 | // Returns an iterator_range over the given container which iterates in reverse. |
| 341 | // Note that the container must have begin()/end() methods which return |
| 342 | // bidirectional iterators for this to work. |
| 343 | template <typename ContainerTy> |
| 344 | auto reverse(ContainerTy &&C, |
| 345 | std::enable_if_t<!has_rbegin<ContainerTy>::value> * = nullptr) { |
| 346 | return make_range(llvm::make_reverse_iterator(std::end(C)), |
| 347 | llvm::make_reverse_iterator(std::begin(C))); |
| 348 | } |
| 349 | |
| 350 | /// An iterator adaptor that filters the elements of given inner iterators. |
| 351 | /// |
| 352 | /// The predicate parameter should be a callable object that accepts the wrapped |
| 353 | /// iterator's reference type and returns a bool. When incrementing or |
| 354 | /// decrementing the iterator, it will call the predicate on each element and |
| 355 | /// skip any where it returns false. |
| 356 | /// |
| 357 | /// \code |
| 358 | /// int A[] = { 1, 2, 3, 4 }; |
| 359 | /// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; }); |
| 360 | /// // R contains { 1, 3 }. |
| 361 | /// \endcode |
| 362 | /// |
| 363 | /// Note: filter_iterator_base implements support for forward iteration. |
| 364 | /// filter_iterator_impl exists to provide support for bidirectional iteration, |
| 365 | /// conditional on whether the wrapped iterator supports it. |
| 366 | template <typename WrappedIteratorT, typename PredicateT, typename IterTag> |
| 367 | class filter_iterator_base |
| 368 | : public iterator_adaptor_base< |
| 369 | filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>, |
| 370 | WrappedIteratorT, |
| 371 | typename std::common_type< |
| 372 | IterTag, typename std::iterator_traits< |
| 373 | WrappedIteratorT>::iterator_category>::type> { |
| 374 | using BaseT = iterator_adaptor_base< |
| 375 | filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>, |
| 376 | WrappedIteratorT, |
| 377 | typename std::common_type< |
| 378 | IterTag, typename std::iterator_traits< |
| 379 | WrappedIteratorT>::iterator_category>::type>; |
| 380 | |
| 381 | protected: |
| 382 | WrappedIteratorT End; |
| 383 | PredicateT Pred; |
| 384 | |
| 385 | void findNextValid() { |
| 386 | while (this->I != End && !Pred(*this->I)) |
| 387 | BaseT::operator++(); |
| 388 | } |
| 389 | |
| 390 | // Construct the iterator. The begin iterator needs to know where the end |
| 391 | // is, so that it can properly stop when it gets there. The end iterator only |
| 392 | // needs the predicate to support bidirectional iteration. |
| 393 | filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End, |
| 394 | PredicateT Pred) |
| 395 | : BaseT(Begin), End(End), Pred(Pred) { |
| 396 | findNextValid(); |
| 397 | } |
| 398 | |
| 399 | public: |
| 400 | using BaseT::operator++; |
| 401 | |
| 402 | filter_iterator_base &operator++() { |
| 403 | BaseT::operator++(); |
| 404 | findNextValid(); |
| 405 | return *this; |
| 406 | } |
| 407 | }; |
| 408 | |
| 409 | /// Specialization of filter_iterator_base for forward iteration only. |
| 410 | template <typename WrappedIteratorT, typename PredicateT, |
| 411 | typename IterTag = std::forward_iterator_tag> |
| 412 | class filter_iterator_impl |
| 413 | : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> { |
| 414 | using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>; |
| 415 | |
| 416 | public: |
| 417 | filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End, |
| 418 | PredicateT Pred) |
| 419 | : BaseT(Begin, End, Pred) {} |
| 420 | }; |
| 421 | |
| 422 | /// Specialization of filter_iterator_base for bidirectional iteration. |
| 423 | template <typename WrappedIteratorT, typename PredicateT> |
| 424 | class filter_iterator_impl<WrappedIteratorT, PredicateT, |
| 425 | std::bidirectional_iterator_tag> |
| 426 | : public filter_iterator_base<WrappedIteratorT, PredicateT, |
| 427 | std::bidirectional_iterator_tag> { |
| 428 | using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, |
| 429 | std::bidirectional_iterator_tag>; |
| 430 | void findPrevValid() { |
| 431 | while (!this->Pred(*this->I)) |
| 432 | BaseT::operator--(); |
| 433 | } |
| 434 | |
| 435 | public: |
| 436 | using BaseT::operator--; |
| 437 | |
| 438 | filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End, |
| 439 | PredicateT Pred) |
| 440 | : BaseT(Begin, End, Pred) {} |
| 441 | |
| 442 | filter_iterator_impl &operator--() { |
| 443 | BaseT::operator--(); |
| 444 | findPrevValid(); |
| 445 | return *this; |
| 446 | } |
| 447 | }; |
| 448 | |
| 449 | namespace detail { |
| 450 | |
| 451 | template <bool is_bidirectional> struct fwd_or_bidi_tag_impl { |
| 452 | using type = std::forward_iterator_tag; |
| 453 | }; |
| 454 | |
| 455 | template <> struct fwd_or_bidi_tag_impl<true> { |
| 456 | using type = std::bidirectional_iterator_tag; |
| 457 | }; |
| 458 | |
| 459 | /// Helper which sets its type member to forward_iterator_tag if the category |
| 460 | /// of \p IterT does not derive from bidirectional_iterator_tag, and to |
| 461 | /// bidirectional_iterator_tag otherwise. |
| 462 | template <typename IterT> struct fwd_or_bidi_tag { |
| 463 | using type = typename fwd_or_bidi_tag_impl<std::is_base_of< |
| 464 | std::bidirectional_iterator_tag, |
| 465 | typename std::iterator_traits<IterT>::iterator_category>::value>::type; |
| 466 | }; |
| 467 | |
| 468 | } // namespace detail |
| 469 | |
| 470 | /// Defines filter_iterator to a suitable specialization of |
| 471 | /// filter_iterator_impl, based on the underlying iterator's category. |
| 472 | template <typename WrappedIteratorT, typename PredicateT> |
| 473 | using filter_iterator = filter_iterator_impl< |
| 474 | WrappedIteratorT, PredicateT, |
| 475 | typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>; |
| 476 | |
| 477 | /// Convenience function that takes a range of elements and a predicate, |
| 478 | /// and return a new filter_iterator range. |
| 479 | /// |
| 480 | /// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the |
| 481 | /// lifetime of that temporary is not kept by the returned range object, and the |
| 482 | /// temporary is going to be dropped on the floor after the make_iterator_range |
| 483 | /// full expression that contains this function call. |
| 484 | template <typename RangeT, typename PredicateT> |
| 485 | iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>> |
| 486 | make_filter_range(RangeT &&Range, PredicateT Pred) { |
| 487 | using FilterIteratorT = |
| 488 | filter_iterator<detail::IterOfRange<RangeT>, PredicateT>; |
| 489 | return make_range( |
| 490 | FilterIteratorT(std::begin(std::forward<RangeT>(Range)), |
| 491 | std::end(std::forward<RangeT>(Range)), Pred), |
| 492 | FilterIteratorT(std::end(std::forward<RangeT>(Range)), |
| 493 | std::end(std::forward<RangeT>(Range)), Pred)); |
| 494 | } |
| 495 | |
| 496 | /// A pseudo-iterator adaptor that is designed to implement "early increment" |
| 497 | /// style loops. |
| 498 | /// |
| 499 | /// This is *not a normal iterator* and should almost never be used directly. It |
| 500 | /// is intended primarily to be used with range based for loops and some range |
| 501 | /// algorithms. |
| 502 | /// |
| 503 | /// The iterator isn't quite an `OutputIterator` or an `InputIterator` but |
| 504 | /// somewhere between them. The constraints of these iterators are: |
| 505 | /// |
| 506 | /// - On construction or after being incremented, it is comparable and |
| 507 | /// dereferencable. It is *not* incrementable. |
| 508 | /// - After being dereferenced, it is neither comparable nor dereferencable, it |
| 509 | /// is only incrementable. |
| 510 | /// |
| 511 | /// This means you can only dereference the iterator once, and you can only |
| 512 | /// increment it once between dereferences. |
| 513 | template <typename WrappedIteratorT> |
| 514 | class early_inc_iterator_impl |
| 515 | : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>, |
| 516 | WrappedIteratorT, std::input_iterator_tag> { |
| 517 | using BaseT = |
| 518 | iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>, |
| 519 | WrappedIteratorT, std::input_iterator_tag>; |
| 520 | |
| 521 | using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer; |
| 522 | |
| 523 | protected: |
| 524 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS0 |
| 525 | bool IsEarlyIncremented = false; |
| 526 | #endif |
| 527 | |
| 528 | public: |
| 529 | early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {} |
| 530 | |
| 531 | using BaseT::operator*; |
| 532 | decltype(*std::declval<WrappedIteratorT>()) operator*() { |
| 533 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS0 |
| 534 | assert(!IsEarlyIncremented && "Cannot dereference twice!")((void)0); |
| 535 | IsEarlyIncremented = true; |
| 536 | #endif |
| 537 | return *(this->I)++; |
| 538 | } |
| 539 | |
| 540 | using BaseT::operator++; |
| 541 | early_inc_iterator_impl &operator++() { |
| 542 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS0 |
| 543 | assert(IsEarlyIncremented && "Cannot increment before dereferencing!")((void)0); |
| 544 | IsEarlyIncremented = false; |
| 545 | #endif |
| 546 | return *this; |
| 547 | } |
| 548 | |
| 549 | friend bool operator==(const early_inc_iterator_impl &LHS, |
| 550 | const early_inc_iterator_impl &RHS) { |
| 551 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS0 |
| 552 | assert(!LHS.IsEarlyIncremented && "Cannot compare after dereferencing!")((void)0); |
| 553 | #endif |
| 554 | return (const BaseT &)LHS == (const BaseT &)RHS; |
| 555 | } |
| 556 | }; |
| 557 | |
| 558 | /// Make a range that does early increment to allow mutation of the underlying |
| 559 | /// range without disrupting iteration. |
| 560 | /// |
| 561 | /// The underlying iterator will be incremented immediately after it is |
| 562 | /// dereferenced, allowing deletion of the current node or insertion of nodes to |
| 563 | /// not disrupt iteration provided they do not invalidate the *next* iterator -- |
| 564 | /// the current iterator can be invalidated. |
| 565 | /// |
| 566 | /// This requires a very exact pattern of use that is only really suitable to |
| 567 | /// range based for loops and other range algorithms that explicitly guarantee |
| 568 | /// to dereference exactly once each element, and to increment exactly once each |
| 569 | /// element. |
| 570 | template <typename RangeT> |
| 571 | iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>> |
| 572 | make_early_inc_range(RangeT &&Range) { |
| 573 | using EarlyIncIteratorT = |
| 574 | early_inc_iterator_impl<detail::IterOfRange<RangeT>>; |
| 575 | return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))), |
| 576 | EarlyIncIteratorT(std::end(std::forward<RangeT>(Range)))); |
| 577 | } |
| 578 | |
| 579 | // forward declarations required by zip_shortest/zip_first/zip_longest |
| 580 | template <typename R, typename UnaryPredicate> |
| 581 | bool all_of(R &&range, UnaryPredicate P); |
| 582 | template <typename R, typename UnaryPredicate> |
| 583 | bool any_of(R &&range, UnaryPredicate P); |
| 584 | |
| 585 | namespace detail { |
| 586 | |
| 587 | using std::declval; |
| 588 | |
| 589 | // We have to alias this since inlining the actual type at the usage site |
| 590 | // in the parameter list of iterator_facade_base<> below ICEs MSVC 2017. |
| 591 | template<typename... Iters> struct ZipTupleType { |
| 592 | using type = std::tuple<decltype(*declval<Iters>())...>; |
| 593 | }; |
| 594 | |
| 595 | template <typename ZipType, typename... Iters> |
| 596 | using zip_traits = iterator_facade_base< |
| 597 | ZipType, typename std::common_type<std::bidirectional_iterator_tag, |
| 598 | typename std::iterator_traits< |
| 599 | Iters>::iterator_category...>::type, |
| 600 | // ^ TODO: Implement random access methods. |
| 601 | typename ZipTupleType<Iters...>::type, |
| 602 | typename std::iterator_traits<typename std::tuple_element< |
| 603 | 0, std::tuple<Iters...>>::type>::difference_type, |
| 604 | // ^ FIXME: This follows boost::make_zip_iterator's assumption that all |
| 605 | // inner iterators have the same difference_type. It would fail if, for |
| 606 | // instance, the second field's difference_type were non-numeric while the |
| 607 | // first is. |
| 608 | typename ZipTupleType<Iters...>::type *, |
| 609 | typename ZipTupleType<Iters...>::type>; |
| 610 | |
| 611 | template <typename ZipType, typename... Iters> |
| 612 | struct zip_common : public zip_traits<ZipType, Iters...> { |
| 613 | using Base = zip_traits<ZipType, Iters...>; |
| 614 | using value_type = typename Base::value_type; |
| 615 | |
| 616 | std::tuple<Iters...> iterators; |
| 617 | |
| 618 | protected: |
| 619 | template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const { |
| 620 | return value_type(*std::get<Ns>(iterators)...); |
| 621 | } |
| 622 | |
| 623 | template <size_t... Ns> |
| 624 | decltype(iterators) tup_inc(std::index_sequence<Ns...>) const { |
| 625 | return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...); |
| 626 | } |
| 627 | |
| 628 | template <size_t... Ns> |
| 629 | decltype(iterators) tup_dec(std::index_sequence<Ns...>) const { |
| 630 | return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...); |
| 631 | } |
| 632 | |
| 633 | public: |
| 634 | zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {} |
| 635 | |
| 636 | value_type operator*() { return deref(std::index_sequence_for<Iters...>{}); } |
| 637 | |
| 638 | const value_type operator*() const { |
| 639 | return deref(std::index_sequence_for<Iters...>{}); |
| 640 | } |
| 641 | |
| 642 | ZipType &operator++() { |
| 643 | iterators = tup_inc(std::index_sequence_for<Iters...>{}); |
| 644 | return *reinterpret_cast<ZipType *>(this); |
| 645 | } |
| 646 | |
| 647 | ZipType &operator--() { |
| 648 | static_assert(Base::IsBidirectional, |
| 649 | "All inner iterators must be at least bidirectional."); |
| 650 | iterators = tup_dec(std::index_sequence_for<Iters...>{}); |
| 651 | return *reinterpret_cast<ZipType *>(this); |
| 652 | } |
| 653 | }; |
| 654 | |
| 655 | template <typename... Iters> |
| 656 | struct zip_first : public zip_common<zip_first<Iters...>, Iters...> { |
| 657 | using Base = zip_common<zip_first<Iters...>, Iters...>; |
| 658 | |
| 659 | bool operator==(const zip_first<Iters...> &other) const { |
| 660 | return std::get<0>(this->iterators) == std::get<0>(other.iterators); |
| 661 | } |
| 662 | |
| 663 | zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {} |
| 664 | }; |
| 665 | |
| 666 | template <typename... Iters> |
| 667 | class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> { |
| 668 | template <size_t... Ns> |
| 669 | bool test(const zip_shortest<Iters...> &other, |
| 670 | std::index_sequence<Ns...>) const { |
| 671 | return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) != |
| 672 | std::get<Ns>(other.iterators)...}, |
| 673 | identity<bool>{}); |
| 674 | } |
| 675 | |
| 676 | public: |
| 677 | using Base = zip_common<zip_shortest<Iters...>, Iters...>; |
| 678 | |
| 679 | zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {} |
| 680 | |
| 681 | bool operator==(const zip_shortest<Iters...> &other) const { |
| 682 | return !test(other, std::index_sequence_for<Iters...>{}); |
| 683 | } |
| 684 | }; |
| 685 | |
| 686 | template <template <typename...> class ItType, typename... Args> class zippy { |
| 687 | public: |
| 688 | using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>; |
| 689 | using iterator_category = typename iterator::iterator_category; |
| 690 | using value_type = typename iterator::value_type; |
| 691 | using difference_type = typename iterator::difference_type; |
| 692 | using pointer = typename iterator::pointer; |
| 693 | using reference = typename iterator::reference; |
| 694 | |
| 695 | private: |
| 696 | std::tuple<Args...> ts; |
| 697 | |
| 698 | template <size_t... Ns> |
| 699 | iterator begin_impl(std::index_sequence<Ns...>) const { |
| 700 | return iterator(std::begin(std::get<Ns>(ts))...); |
| 701 | } |
| 702 | template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const { |
| 703 | return iterator(std::end(std::get<Ns>(ts))...); |
| 704 | } |
| 705 | |
| 706 | public: |
| 707 | zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {} |
| 708 | |
| 709 | iterator begin() const { |
| 710 | return begin_impl(std::index_sequence_for<Args...>{}); |
| 711 | } |
| 712 | iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); } |
| 713 | }; |
| 714 | |
| 715 | } // end namespace detail |
| 716 | |
| 717 | /// zip iterator for two or more iteratable types. |
| 718 | template <typename T, typename U, typename... Args> |
| 719 | detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u, |
| 720 | Args &&... args) { |
| 721 | return detail::zippy<detail::zip_shortest, T, U, Args...>( |
| 722 | std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); |
| 723 | } |
| 724 | |
| 725 | /// zip iterator that, for the sake of efficiency, assumes the first iteratee to |
| 726 | /// be the shortest. |
| 727 | template <typename T, typename U, typename... Args> |
| 728 | detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u, |
| 729 | Args &&... args) { |
| 730 | return detail::zippy<detail::zip_first, T, U, Args...>( |
| 731 | std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); |
| 732 | } |
| 733 | |
| 734 | namespace detail { |
| 735 | template <typename Iter> |
| 736 | Iter next_or_end(const Iter &I, const Iter &End) { |
| 737 | if (I == End) |
| 738 | return End; |
| 739 | return std::next(I); |
| 740 | } |
| 741 | |
| 742 | template <typename Iter> |
| 743 | auto deref_or_none(const Iter &I, const Iter &End) -> llvm::Optional< |
| 744 | std::remove_const_t<std::remove_reference_t<decltype(*I)>>> { |
| 745 | if (I == End) |
| 746 | return None; |
| 747 | return *I; |
| 748 | } |
| 749 | |
| 750 | template <typename Iter> struct ZipLongestItemType { |
| 751 | using type = |
| 752 | llvm::Optional<typename std::remove_const<typename std::remove_reference< |
| 753 | decltype(*std::declval<Iter>())>::type>::type>; |
| 754 | }; |
| 755 | |
| 756 | template <typename... Iters> struct ZipLongestTupleType { |
| 757 | using type = std::tuple<typename ZipLongestItemType<Iters>::type...>; |
| 758 | }; |
| 759 | |
| 760 | template <typename... Iters> |
| 761 | class zip_longest_iterator |
| 762 | : public iterator_facade_base< |
| 763 | zip_longest_iterator<Iters...>, |
| 764 | typename std::common_type< |
| 765 | std::forward_iterator_tag, |
| 766 | typename std::iterator_traits<Iters>::iterator_category...>::type, |
| 767 | typename ZipLongestTupleType<Iters...>::type, |
| 768 | typename std::iterator_traits<typename std::tuple_element< |
| 769 | 0, std::tuple<Iters...>>::type>::difference_type, |
| 770 | typename ZipLongestTupleType<Iters...>::type *, |
| 771 | typename ZipLongestTupleType<Iters...>::type> { |
| 772 | public: |
| 773 | using value_type = typename ZipLongestTupleType<Iters...>::type; |
| 774 | |
| 775 | private: |
| 776 | std::tuple<Iters...> iterators; |
| 777 | std::tuple<Iters...> end_iterators; |
| 778 | |
| 779 | template <size_t... Ns> |
| 780 | bool test(const zip_longest_iterator<Iters...> &other, |
| 781 | std::index_sequence<Ns...>) const { |
| 782 | return llvm::any_of( |
| 783 | std::initializer_list<bool>{std::get<Ns>(this->iterators) != |
| 784 | std::get<Ns>(other.iterators)...}, |
| 785 | identity<bool>{}); |
| 786 | } |
| 787 | |
| 788 | template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const { |
| 789 | return value_type( |
| 790 | deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...); |
| 791 | } |
| 792 | |
| 793 | template <size_t... Ns> |
| 794 | decltype(iterators) tup_inc(std::index_sequence<Ns...>) const { |
| 795 | return std::tuple<Iters...>( |
| 796 | next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...); |
| 797 | } |
| 798 | |
| 799 | public: |
| 800 | zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts) |
| 801 | : iterators(std::forward<Iters>(ts.first)...), |
| 802 | end_iterators(std::forward<Iters>(ts.second)...) {} |
| 803 | |
| 804 | value_type operator*() { return deref(std::index_sequence_for<Iters...>{}); } |
| 805 | |
| 806 | value_type operator*() const { |
| 807 | return deref(std::index_sequence_for<Iters...>{}); |
| 808 | } |
| 809 | |
| 810 | zip_longest_iterator<Iters...> &operator++() { |
| 811 | iterators = tup_inc(std::index_sequence_for<Iters...>{}); |
| 812 | return *this; |
| 813 | } |
| 814 | |
| 815 | bool operator==(const zip_longest_iterator<Iters...> &other) const { |
| 816 | return !test(other, std::index_sequence_for<Iters...>{}); |
| 817 | } |
| 818 | }; |
| 819 | |
| 820 | template <typename... Args> class zip_longest_range { |
| 821 | public: |
| 822 | using iterator = |
| 823 | zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>; |
| 824 | using iterator_category = typename iterator::iterator_category; |
| 825 | using value_type = typename iterator::value_type; |
| 826 | using difference_type = typename iterator::difference_type; |
| 827 | using pointer = typename iterator::pointer; |
| 828 | using reference = typename iterator::reference; |
| 829 | |
| 830 | private: |
| 831 | std::tuple<Args...> ts; |
| 832 | |
| 833 | template <size_t... Ns> |
| 834 | iterator begin_impl(std::index_sequence<Ns...>) const { |
| 835 | return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)), |
| 836 | adl_end(std::get<Ns>(ts)))...); |
| 837 | } |
| 838 | |
| 839 | template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const { |
| 840 | return iterator(std::make_pair(adl_end(std::get<Ns>(ts)), |
| 841 | adl_end(std::get<Ns>(ts)))...); |
| 842 | } |
| 843 | |
| 844 | public: |
| 845 | zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {} |
| 846 | |
| 847 | iterator begin() const { |
| 848 | return begin_impl(std::index_sequence_for<Args...>{}); |
| 849 | } |
| 850 | iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); } |
| 851 | }; |
| 852 | } // namespace detail |
| 853 | |
| 854 | /// Iterate over two or more iterators at the same time. Iteration continues |
| 855 | /// until all iterators reach the end. The llvm::Optional only contains a value |
| 856 | /// if the iterator has not reached the end. |
| 857 | template <typename T, typename U, typename... Args> |
| 858 | detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u, |
| 859 | Args &&... args) { |
| 860 | return detail::zip_longest_range<T, U, Args...>( |
| 861 | std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); |
| 862 | } |
| 863 | |
| 864 | /// Iterator wrapper that concatenates sequences together. |
| 865 | /// |
| 866 | /// This can concatenate different iterators, even with different types, into |
| 867 | /// a single iterator provided the value types of all the concatenated |
| 868 | /// iterators expose `reference` and `pointer` types that can be converted to |
| 869 | /// `ValueT &` and `ValueT *` respectively. It doesn't support more |
| 870 | /// interesting/customized pointer or reference types. |
| 871 | /// |
| 872 | /// Currently this only supports forward or higher iterator categories as |
| 873 | /// inputs and always exposes a forward iterator interface. |
| 874 | template <typename ValueT, typename... IterTs> |
| 875 | class concat_iterator |
| 876 | : public iterator_facade_base<concat_iterator<ValueT, IterTs...>, |
| 877 | std::forward_iterator_tag, ValueT> { |
| 878 | using BaseT = typename concat_iterator::iterator_facade_base; |
| 879 | |
| 880 | /// We store both the current and end iterators for each concatenated |
| 881 | /// sequence in a tuple of pairs. |
| 882 | /// |
| 883 | /// Note that something like iterator_range seems nice at first here, but the |
| 884 | /// range properties are of little benefit and end up getting in the way |
| 885 | /// because we need to do mutation on the current iterators. |
| 886 | std::tuple<IterTs...> Begins; |
| 887 | std::tuple<IterTs...> Ends; |
| 888 | |
| 889 | /// Attempts to increment a specific iterator. |
| 890 | /// |
| 891 | /// Returns true if it was able to increment the iterator. Returns false if |
| 892 | /// the iterator is already at the end iterator. |
| 893 | template <size_t Index> bool incrementHelper() { |
| 894 | auto &Begin = std::get<Index>(Begins); |
| 895 | auto &End = std::get<Index>(Ends); |
| 896 | if (Begin == End) |
| 897 | return false; |
| 898 | |
| 899 | ++Begin; |
| 900 | return true; |
| 901 | } |
| 902 | |
| 903 | /// Increments the first non-end iterator. |
| 904 | /// |
| 905 | /// It is an error to call this with all iterators at the end. |
| 906 | template <size_t... Ns> void increment(std::index_sequence<Ns...>) { |
| 907 | // Build a sequence of functions to increment each iterator if possible. |
| 908 | bool (concat_iterator::*IncrementHelperFns[])() = { |
| 909 | &concat_iterator::incrementHelper<Ns>...}; |
| 910 | |
| 911 | // Loop over them, and stop as soon as we succeed at incrementing one. |
| 912 | for (auto &IncrementHelperFn : IncrementHelperFns) |
| 913 | if ((this->*IncrementHelperFn)()) |
| 914 | return; |
| 915 | |
| 916 | llvm_unreachable("Attempted to increment an end concat iterator!")__builtin_unreachable(); |
| 917 | } |
| 918 | |
| 919 | /// Returns null if the specified iterator is at the end. Otherwise, |
| 920 | /// dereferences the iterator and returns the address of the resulting |
| 921 | /// reference. |
| 922 | template <size_t Index> ValueT *getHelper() const { |
| 923 | auto &Begin = std::get<Index>(Begins); |
| 924 | auto &End = std::get<Index>(Ends); |
| 925 | if (Begin == End) |
| 926 | return nullptr; |
| 927 | |
| 928 | return &*Begin; |
| 929 | } |
| 930 | |
| 931 | /// Finds the first non-end iterator, dereferences, and returns the resulting |
| 932 | /// reference. |
| 933 | /// |
| 934 | /// It is an error to call this with all iterators at the end. |
| 935 | template <size_t... Ns> ValueT &get(std::index_sequence<Ns...>) const { |
| 936 | // Build a sequence of functions to get from iterator if possible. |
| 937 | ValueT *(concat_iterator::*GetHelperFns[])() const = { |
| 938 | &concat_iterator::getHelper<Ns>...}; |
| 939 | |
| 940 | // Loop over them, and return the first result we find. |
| 941 | for (auto &GetHelperFn : GetHelperFns) |
| 942 | if (ValueT *P = (this->*GetHelperFn)()) |
| 943 | return *P; |
| 944 | |
| 945 | llvm_unreachable("Attempted to get a pointer from an end concat iterator!")__builtin_unreachable(); |
| 946 | } |
| 947 | |
| 948 | public: |
| 949 | /// Constructs an iterator from a sequence of ranges. |
| 950 | /// |
| 951 | /// We need the full range to know how to switch between each of the |
| 952 | /// iterators. |
| 953 | template <typename... RangeTs> |
| 954 | explicit concat_iterator(RangeTs &&... Ranges) |
| 955 | : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {} |
| 956 | |
| 957 | using BaseT::operator++; |
| 958 | |
| 959 | concat_iterator &operator++() { |
| 960 | increment(std::index_sequence_for<IterTs...>()); |
| 961 | return *this; |
| 962 | } |
| 963 | |
| 964 | ValueT &operator*() const { |
| 965 | return get(std::index_sequence_for<IterTs...>()); |
| 966 | } |
| 967 | |
| 968 | bool operator==(const concat_iterator &RHS) const { |
| 969 | return Begins == RHS.Begins && Ends == RHS.Ends; |
| 970 | } |
| 971 | }; |
| 972 | |
| 973 | namespace detail { |
| 974 | |
| 975 | /// Helper to store a sequence of ranges being concatenated and access them. |
| 976 | /// |
| 977 | /// This is designed to facilitate providing actual storage when temporaries |
| 978 | /// are passed into the constructor such that we can use it as part of range |
| 979 | /// based for loops. |
| 980 | template <typename ValueT, typename... RangeTs> class concat_range { |
| 981 | public: |
| 982 | using iterator = |
| 983 | concat_iterator<ValueT, |
| 984 | decltype(std::begin(std::declval<RangeTs &>()))...>; |
| 985 | |
| 986 | private: |
| 987 | std::tuple<RangeTs...> Ranges; |
| 988 | |
| 989 | template <size_t... Ns> iterator begin_impl(std::index_sequence<Ns...>) { |
| 990 | return iterator(std::get<Ns>(Ranges)...); |
| 991 | } |
| 992 | template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) { |
| 993 | return iterator(make_range(std::end(std::get<Ns>(Ranges)), |
| 994 | std::end(std::get<Ns>(Ranges)))...); |
| 995 | } |
| 996 | |
| 997 | public: |
| 998 | concat_range(RangeTs &&... Ranges) |
| 999 | : Ranges(std::forward<RangeTs>(Ranges)...) {} |
| 1000 | |
| 1001 | iterator begin() { return begin_impl(std::index_sequence_for<RangeTs...>{}); } |
| 1002 | iterator end() { return end_impl(std::index_sequence_for<RangeTs...>{}); } |
| 1003 | }; |
| 1004 | |
| 1005 | } // end namespace detail |
| 1006 | |
| 1007 | /// Concatenated range across two or more ranges. |
| 1008 | /// |
| 1009 | /// The desired value type must be explicitly specified. |
| 1010 | template <typename ValueT, typename... RangeTs> |
| 1011 | detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) { |
| 1012 | static_assert(sizeof...(RangeTs) > 1, |
| 1013 | "Need more than one range to concatenate!"); |
| 1014 | return detail::concat_range<ValueT, RangeTs...>( |
| 1015 | std::forward<RangeTs>(Ranges)...); |
| 1016 | } |
| 1017 | |
| 1018 | /// A utility class used to implement an iterator that contains some base object |
| 1019 | /// and an index. The iterator moves the index but keeps the base constant. |
| 1020 | template <typename DerivedT, typename BaseT, typename T, |
| 1021 | typename PointerT = T *, typename ReferenceT = T &> |
| 1022 | class indexed_accessor_iterator |
| 1023 | : public llvm::iterator_facade_base<DerivedT, |
| 1024 | std::random_access_iterator_tag, T, |
| 1025 | std::ptrdiff_t, PointerT, ReferenceT> { |
| 1026 | public: |
| 1027 | ptrdiff_t operator-(const indexed_accessor_iterator &rhs) const { |
| 1028 | assert(base == rhs.base && "incompatible iterators")((void)0); |
| 1029 | return index - rhs.index; |
| 1030 | } |
| 1031 | bool operator==(const indexed_accessor_iterator &rhs) const { |
| 1032 | return base == rhs.base && index == rhs.index; |
| 1033 | } |
| 1034 | bool operator<(const indexed_accessor_iterator &rhs) const { |
| 1035 | assert(base == rhs.base && "incompatible iterators")((void)0); |
| 1036 | return index < rhs.index; |
| 1037 | } |
| 1038 | |
| 1039 | DerivedT &operator+=(ptrdiff_t offset) { |
| 1040 | this->index += offset; |
| 1041 | return static_cast<DerivedT &>(*this); |
| 1042 | } |
| 1043 | DerivedT &operator-=(ptrdiff_t offset) { |
| 1044 | this->index -= offset; |
| 1045 | return static_cast<DerivedT &>(*this); |
| 1046 | } |
| 1047 | |
| 1048 | /// Returns the current index of the iterator. |
| 1049 | ptrdiff_t getIndex() const { return index; } |
| 1050 | |
| 1051 | /// Returns the current base of the iterator. |
| 1052 | const BaseT &getBase() const { return base; } |
| 1053 | |
| 1054 | protected: |
| 1055 | indexed_accessor_iterator(BaseT base, ptrdiff_t index) |
| 1056 | : base(base), index(index) {} |
| 1057 | BaseT base; |
| 1058 | ptrdiff_t index; |
| 1059 | }; |
| 1060 | |
| 1061 | namespace detail { |
| 1062 | /// The class represents the base of a range of indexed_accessor_iterators. It |
| 1063 | /// provides support for many different range functionalities, e.g. |
| 1064 | /// drop_front/slice/etc.. Derived range classes must implement the following |
| 1065 | /// static methods: |
| 1066 | /// * ReferenceT dereference_iterator(const BaseT &base, ptrdiff_t index) |
| 1067 | /// - Dereference an iterator pointing to the base object at the given |
| 1068 | /// index. |
| 1069 | /// * BaseT offset_base(const BaseT &base, ptrdiff_t index) |
| 1070 | /// - Return a new base that is offset from the provide base by 'index' |
| 1071 | /// elements. |
| 1072 | template <typename DerivedT, typename BaseT, typename T, |
| 1073 | typename PointerT = T *, typename ReferenceT = T &> |
| 1074 | class indexed_accessor_range_base { |
| 1075 | public: |
| 1076 | using RangeBaseT = |
| 1077 | indexed_accessor_range_base<DerivedT, BaseT, T, PointerT, ReferenceT>; |
| 1078 | |
| 1079 | /// An iterator element of this range. |
| 1080 | class iterator : public indexed_accessor_iterator<iterator, BaseT, T, |
| 1081 | PointerT, ReferenceT> { |
| 1082 | public: |
| 1083 | // Index into this iterator, invoking a static method on the derived type. |
| 1084 | ReferenceT operator*() const { |
| 1085 | return DerivedT::dereference_iterator(this->getBase(), this->getIndex()); |
| 1086 | } |
| 1087 | |
| 1088 | private: |
| 1089 | iterator(BaseT owner, ptrdiff_t curIndex) |
| 1090 | : indexed_accessor_iterator<iterator, BaseT, T, PointerT, ReferenceT>( |
| 1091 | owner, curIndex) {} |
| 1092 | |
| 1093 | /// Allow access to the constructor. |
| 1094 | friend indexed_accessor_range_base<DerivedT, BaseT, T, PointerT, |
| 1095 | ReferenceT>; |
| 1096 | }; |
| 1097 | |
| 1098 | indexed_accessor_range_base(iterator begin, iterator end) |
| 1099 | : base(offset_base(begin.getBase(), begin.getIndex())), |
| 1100 | count(end.getIndex() - begin.getIndex()) {} |
| 1101 | indexed_accessor_range_base(const iterator_range<iterator> &range) |
| 1102 | : indexed_accessor_range_base(range.begin(), range.end()) {} |
| 1103 | indexed_accessor_range_base(BaseT base, ptrdiff_t count) |
| 1104 | : base(base), count(count) {} |
| 1105 | |
| 1106 | iterator begin() const { return iterator(base, 0); } |
| 1107 | iterator end() const { return iterator(base, count); } |
| 1108 | ReferenceT operator[](size_t Index) const { |
| 1109 | assert(Index < size() && "invalid index for value range")((void)0); |
| 1110 | return DerivedT::dereference_iterator(base, static_cast<ptrdiff_t>(Index)); |
| 1111 | } |
| 1112 | ReferenceT front() const { |
| 1113 | assert(!empty() && "expected non-empty range")((void)0); |
| 1114 | return (*this)[0]; |
| 1115 | } |
| 1116 | ReferenceT back() const { |
| 1117 | assert(!empty() && "expected non-empty range")((void)0); |
| 1118 | return (*this)[size() - 1]; |
| 1119 | } |
| 1120 | |
| 1121 | /// Compare this range with another. |
| 1122 | template <typename OtherT> bool operator==(const OtherT &other) const { |
| 1123 | return size() == |
| 1124 | static_cast<size_t>(std::distance(other.begin(), other.end())) && |
| 1125 | std::equal(begin(), end(), other.begin()); |
| 1126 | } |
| 1127 | template <typename OtherT> bool operator!=(const OtherT &other) const { |
| 1128 | return !(*this == other); |
| 1129 | } |
| 1130 | |
| 1131 | /// Return the size of this range. |
| 1132 | size_t size() const { return count; } |
| 1133 | |
| 1134 | /// Return if the range is empty. |
| 1135 | bool empty() const { return size() == 0; } |
| 1136 | |
| 1137 | /// Drop the first N elements, and keep M elements. |
| 1138 | DerivedT slice(size_t n, size_t m) const { |
| 1139 | assert(n + m <= size() && "invalid size specifiers")((void)0); |
| 1140 | return DerivedT(offset_base(base, n), m); |
| 1141 | } |
| 1142 | |
| 1143 | /// Drop the first n elements. |
| 1144 | DerivedT drop_front(size_t n = 1) const { |
| 1145 | assert(size() >= n && "Dropping more elements than exist")((void)0); |
| 1146 | return slice(n, size() - n); |
| 1147 | } |
| 1148 | /// Drop the last n elements. |
| 1149 | DerivedT drop_back(size_t n = 1) const { |
| 1150 | assert(size() >= n && "Dropping more elements than exist")((void)0); |
| 1151 | return DerivedT(base, size() - n); |
| 1152 | } |
| 1153 | |
| 1154 | /// Take the first n elements. |
| 1155 | DerivedT take_front(size_t n = 1) const { |
| 1156 | return n < size() ? drop_back(size() - n) |
| 1157 | : static_cast<const DerivedT &>(*this); |
| 1158 | } |
| 1159 | |
| 1160 | /// Take the last n elements. |
| 1161 | DerivedT take_back(size_t n = 1) const { |
| 1162 | return n < size() ? drop_front(size() - n) |
| 1163 | : static_cast<const DerivedT &>(*this); |
| 1164 | } |
| 1165 | |
| 1166 | /// Allow conversion to any type accepting an iterator_range. |
| 1167 | template <typename RangeT, typename = std::enable_if_t<std::is_constructible< |
| 1168 | RangeT, iterator_range<iterator>>::value>> |
| 1169 | operator RangeT() const { |
| 1170 | return RangeT(iterator_range<iterator>(*this)); |
| 1171 | } |
| 1172 | |
| 1173 | /// Returns the base of this range. |
| 1174 | const BaseT &getBase() const { return base; } |
| 1175 | |
| 1176 | private: |
| 1177 | /// Offset the given base by the given amount. |
| 1178 | static BaseT offset_base(const BaseT &base, size_t n) { |
| 1179 | return n == 0 ? base : DerivedT::offset_base(base, n); |
| 1180 | } |
| 1181 | |
| 1182 | protected: |
| 1183 | indexed_accessor_range_base(const indexed_accessor_range_base &) = default; |
| 1184 | indexed_accessor_range_base(indexed_accessor_range_base &&) = default; |
| 1185 | indexed_accessor_range_base & |
| 1186 | operator=(const indexed_accessor_range_base &) = default; |
| 1187 | |
| 1188 | /// The base that owns the provided range of values. |
| 1189 | BaseT base; |
| 1190 | /// The size from the owning range. |
| 1191 | ptrdiff_t count; |
| 1192 | }; |
| 1193 | } // end namespace detail |
| 1194 | |
| 1195 | /// This class provides an implementation of a range of |
| 1196 | /// indexed_accessor_iterators where the base is not indexable. Ranges with |
| 1197 | /// bases that are offsetable should derive from indexed_accessor_range_base |
| 1198 | /// instead. Derived range classes are expected to implement the following |
| 1199 | /// static method: |
| 1200 | /// * ReferenceT dereference(const BaseT &base, ptrdiff_t index) |
| 1201 | /// - Dereference an iterator pointing to a parent base at the given index. |
| 1202 | template <typename DerivedT, typename BaseT, typename T, |
| 1203 | typename PointerT = T *, typename ReferenceT = T &> |
| 1204 | class indexed_accessor_range |
| 1205 | : public detail::indexed_accessor_range_base< |
| 1206 | DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT> { |
| 1207 | public: |
| 1208 | indexed_accessor_range(BaseT base, ptrdiff_t startIndex, ptrdiff_t count) |
| 1209 | : detail::indexed_accessor_range_base< |
| 1210 | DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT>( |
| 1211 | std::make_pair(base, startIndex), count) {} |
| 1212 | using detail::indexed_accessor_range_base< |
| 1213 | DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, |
| 1214 | ReferenceT>::indexed_accessor_range_base; |
| 1215 | |
| 1216 | /// Returns the current base of the range. |
| 1217 | const BaseT &getBase() const { return this->base.first; } |
| 1218 | |
| 1219 | /// Returns the current start index of the range. |
| 1220 | ptrdiff_t getStartIndex() const { return this->base.second; } |
| 1221 | |
| 1222 | /// See `detail::indexed_accessor_range_base` for details. |
| 1223 | static std::pair<BaseT, ptrdiff_t> |
| 1224 | offset_base(const std::pair<BaseT, ptrdiff_t> &base, ptrdiff_t index) { |
| 1225 | // We encode the internal base as a pair of the derived base and a start |
| 1226 | // index into the derived base. |
| 1227 | return std::make_pair(base.first, base.second + index); |
| 1228 | } |
| 1229 | /// See `detail::indexed_accessor_range_base` for details. |
| 1230 | static ReferenceT |
| 1231 | dereference_iterator(const std::pair<BaseT, ptrdiff_t> &base, |
| 1232 | ptrdiff_t index) { |
| 1233 | return DerivedT::dereference(base.first, base.second + index); |
| 1234 | } |
| 1235 | }; |
| 1236 | |
| 1237 | /// Given a container of pairs, return a range over the first elements. |
| 1238 | template <typename ContainerTy> auto make_first_range(ContainerTy &&c) { |
| 1239 | return llvm::map_range( |
| 1240 | std::forward<ContainerTy>(c), |
| 1241 | [](decltype((*std::begin(c))) elt) -> decltype((elt.first)) { |
| 1242 | return elt.first; |
| 1243 | }); |
| 1244 | } |
| 1245 | |
| 1246 | /// Given a container of pairs, return a range over the second elements. |
| 1247 | template <typename ContainerTy> auto make_second_range(ContainerTy &&c) { |
| 1248 | return llvm::map_range( |
| 1249 | std::forward<ContainerTy>(c), |
| 1250 | [](decltype((*std::begin(c))) elt) -> decltype((elt.second)) { |
| 1251 | return elt.second; |
| 1252 | }); |
| 1253 | } |
| 1254 | |
| 1255 | //===----------------------------------------------------------------------===// |
| 1256 | // Extra additions to <utility> |
| 1257 | //===----------------------------------------------------------------------===// |
| 1258 | |
| 1259 | /// Function object to check whether the first component of a std::pair |
| 1260 | /// compares less than the first component of another std::pair. |
| 1261 | struct less_first { |
| 1262 | template <typename T> bool operator()(const T &lhs, const T &rhs) const { |
| 1263 | return lhs.first < rhs.first; |
| 1264 | } |
| 1265 | }; |
| 1266 | |
| 1267 | /// Function object to check whether the second component of a std::pair |
| 1268 | /// compares less than the second component of another std::pair. |
| 1269 | struct less_second { |
| 1270 | template <typename T> bool operator()(const T &lhs, const T &rhs) const { |
| 1271 | return lhs.second < rhs.second; |
| 1272 | } |
| 1273 | }; |
| 1274 | |
| 1275 | /// \brief Function object to apply a binary function to the first component of |
| 1276 | /// a std::pair. |
| 1277 | template<typename FuncTy> |
| 1278 | struct on_first { |
| 1279 | FuncTy func; |
| 1280 | |
| 1281 | template <typename T> |
| 1282 | decltype(auto) operator()(const T &lhs, const T &rhs) const { |
| 1283 | return func(lhs.first, rhs.first); |
| 1284 | } |
| 1285 | }; |
| 1286 | |
| 1287 | /// Utility type to build an inheritance chain that makes it easy to rank |
| 1288 | /// overload candidates. |
| 1289 | template <int N> struct rank : rank<N - 1> {}; |
| 1290 | template <> struct rank<0> {}; |
| 1291 | |
| 1292 | /// traits class for checking whether type T is one of any of the given |
| 1293 | /// types in the variadic list. |
| 1294 | template <typename T, typename... Ts> |
| 1295 | using is_one_of = disjunction<std::is_same<T, Ts>...>; |
| 1296 | |
| 1297 | /// traits class for checking whether type T is a base class for all |
| 1298 | /// the given types in the variadic list. |
| 1299 | template <typename T, typename... Ts> |
| 1300 | using are_base_of = conjunction<std::is_base_of<T, Ts>...>; |
| 1301 | |
| 1302 | namespace detail { |
| 1303 | template <typename... Ts> struct Visitor; |
| 1304 | |
| 1305 | template <typename HeadT, typename... TailTs> |
| 1306 | struct Visitor<HeadT, TailTs...> : remove_cvref_t<HeadT>, Visitor<TailTs...> { |
| 1307 | explicit constexpr Visitor(HeadT &&Head, TailTs &&...Tail) |
| 1308 | : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)), |
| 1309 | Visitor<TailTs...>(std::forward<TailTs>(Tail)...) {} |
| 1310 | using remove_cvref_t<HeadT>::operator(); |
| 1311 | using Visitor<TailTs...>::operator(); |
| 1312 | }; |
| 1313 | |
| 1314 | template <typename HeadT> struct Visitor<HeadT> : remove_cvref_t<HeadT> { |
| 1315 | explicit constexpr Visitor(HeadT &&Head) |
| 1316 | : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)) {} |
| 1317 | using remove_cvref_t<HeadT>::operator(); |
| 1318 | }; |
| 1319 | } // namespace detail |
| 1320 | |
| 1321 | /// Returns an opaquely-typed Callable object whose operator() overload set is |
| 1322 | /// the sum of the operator() overload sets of each CallableT in CallableTs. |
| 1323 | /// |
| 1324 | /// The type of the returned object derives from each CallableT in CallableTs. |
| 1325 | /// The returned object is constructed by invoking the appropriate copy or move |
| 1326 | /// constructor of each CallableT, as selected by overload resolution on the |
| 1327 | /// corresponding argument to makeVisitor. |
| 1328 | /// |
| 1329 | /// Example: |
| 1330 | /// |
| 1331 | /// \code |
| 1332 | /// auto visitor = makeVisitor([](auto) { return "unhandled type"; }, |
| 1333 | /// [](int i) { return "int"; }, |
| 1334 | /// [](std::string s) { return "str"; }); |
| 1335 | /// auto a = visitor(42); // `a` is now "int". |
| 1336 | /// auto b = visitor("foo"); // `b` is now "str". |
| 1337 | /// auto c = visitor(3.14f); // `c` is now "unhandled type". |
| 1338 | /// \endcode |
| 1339 | /// |
| 1340 | /// Example of making a visitor with a lambda which captures a move-only type: |
| 1341 | /// |
| 1342 | /// \code |
| 1343 | /// std::unique_ptr<FooHandler> FH = /* ... */; |
| 1344 | /// auto visitor = makeVisitor( |
| 1345 | /// [FH{std::move(FH)}](Foo F) { return FH->handle(F); }, |
| 1346 | /// [](int i) { return i; }, |
| 1347 | /// [](std::string s) { return atoi(s); }); |
| 1348 | /// \endcode |
| 1349 | template <typename... CallableTs> |
| 1350 | constexpr decltype(auto) makeVisitor(CallableTs &&...Callables) { |
| 1351 | return detail::Visitor<CallableTs...>(std::forward<CallableTs>(Callables)...); |
| 1352 | } |
| 1353 | |
| 1354 | //===----------------------------------------------------------------------===// |
| 1355 | // Extra additions for arrays |
| 1356 | //===----------------------------------------------------------------------===// |
| 1357 | |
| 1358 | // We have a copy here so that LLVM behaves the same when using different |
| 1359 | // standard libraries. |
| 1360 | template <class Iterator, class RNG> |
| 1361 | void shuffle(Iterator first, Iterator last, RNG &&g) { |
| 1362 | // It would be better to use a std::uniform_int_distribution, |
| 1363 | // but that would be stdlib dependent. |
| 1364 | typedef |
| 1365 | typename std::iterator_traits<Iterator>::difference_type difference_type; |
| 1366 | for (auto size = last - first; size > 1; ++first, (void)--size) { |
| 1367 | difference_type offset = g() % size; |
| 1368 | // Avoid self-assignment due to incorrect assertions in libstdc++ |
| 1369 | // containers (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85828). |
| 1370 | if (offset != difference_type(0)) |
| 1371 | std::iter_swap(first, first + offset); |
| 1372 | } |
| 1373 | } |
| 1374 | |
| 1375 | /// Find the length of an array. |
| 1376 | template <class T, std::size_t N> |
| 1377 | constexpr inline size_t array_lengthof(T (&)[N]) { |
| 1378 | return N; |
| 1379 | } |
| 1380 | |
| 1381 | /// Adapt std::less<T> for array_pod_sort. |
| 1382 | template<typename T> |
| 1383 | inline int array_pod_sort_comparator(const void *P1, const void *P2) { |
| 1384 | if (std::less<T>()(*reinterpret_cast<const T*>(P1), |
| 1385 | *reinterpret_cast<const T*>(P2))) |
| 1386 | return -1; |
| 1387 | if (std::less<T>()(*reinterpret_cast<const T*>(P2), |
| 1388 | *reinterpret_cast<const T*>(P1))) |
| 1389 | return 1; |
| 1390 | return 0; |
| 1391 | } |
| 1392 | |
| 1393 | /// get_array_pod_sort_comparator - This is an internal helper function used to |
| 1394 | /// get type deduction of T right. |
| 1395 | template<typename T> |
| 1396 | inline int (*get_array_pod_sort_comparator(const T &)) |
| 1397 | (const void*, const void*) { |
| 1398 | return array_pod_sort_comparator<T>; |
| 1399 | } |
| 1400 | |
| 1401 | #ifdef EXPENSIVE_CHECKS |
| 1402 | namespace detail { |
| 1403 | |
| 1404 | inline unsigned presortShuffleEntropy() { |
| 1405 | static unsigned Result(std::random_device{}()); |
| 1406 | return Result; |
| 1407 | } |
| 1408 | |
| 1409 | template <class IteratorTy> |
| 1410 | inline void presortShuffle(IteratorTy Start, IteratorTy End) { |
| 1411 | std::mt19937 Generator(presortShuffleEntropy()); |
| 1412 | llvm::shuffle(Start, End, Generator); |
| 1413 | } |
| 1414 | |
| 1415 | } // end namespace detail |
| 1416 | #endif |
| 1417 | |
| 1418 | /// array_pod_sort - This sorts an array with the specified start and end |
| 1419 | /// extent. This is just like std::sort, except that it calls qsort instead of |
| 1420 | /// using an inlined template. qsort is slightly slower than std::sort, but |
| 1421 | /// most sorts are not performance critical in LLVM and std::sort has to be |
| 1422 | /// template instantiated for each type, leading to significant measured code |
| 1423 | /// bloat. This function should generally be used instead of std::sort where |
| 1424 | /// possible. |
| 1425 | /// |
| 1426 | /// This function assumes that you have simple POD-like types that can be |
| 1427 | /// compared with std::less and can be moved with memcpy. If this isn't true, |
| 1428 | /// you should use std::sort. |
| 1429 | /// |
| 1430 | /// NOTE: If qsort_r were portable, we could allow a custom comparator and |
| 1431 | /// default to std::less. |
| 1432 | template<class IteratorTy> |
| 1433 | inline void array_pod_sort(IteratorTy Start, IteratorTy End) { |
| 1434 | // Don't inefficiently call qsort with one element or trigger undefined |
| 1435 | // behavior with an empty sequence. |
| 1436 | auto NElts = End - Start; |
| 1437 | if (NElts <= 1) return; |
| 1438 | #ifdef EXPENSIVE_CHECKS |
| 1439 | detail::presortShuffle<IteratorTy>(Start, End); |
| 1440 | #endif |
| 1441 | qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start)); |
| 1442 | } |
| 1443 | |
| 1444 | template <class IteratorTy> |
| 1445 | inline void array_pod_sort( |
| 1446 | IteratorTy Start, IteratorTy End, |
| 1447 | int (*Compare)( |
| 1448 | const typename std::iterator_traits<IteratorTy>::value_type *, |
| 1449 | const typename std::iterator_traits<IteratorTy>::value_type *)) { |
| 1450 | // Don't inefficiently call qsort with one element or trigger undefined |
| 1451 | // behavior with an empty sequence. |
| 1452 | auto NElts = End - Start; |
| 1453 | if (NElts <= 1) return; |
| 1454 | #ifdef EXPENSIVE_CHECKS |
| 1455 | detail::presortShuffle<IteratorTy>(Start, End); |
| 1456 | #endif |
| 1457 | qsort(&*Start, NElts, sizeof(*Start), |
| 1458 | reinterpret_cast<int (*)(const void *, const void *)>(Compare)); |
| 1459 | } |
| 1460 | |
| 1461 | namespace detail { |
| 1462 | template <typename T> |
| 1463 | // We can use qsort if the iterator type is a pointer and the underlying value |
| 1464 | // is trivially copyable. |
| 1465 | using sort_trivially_copyable = conjunction< |
| 1466 | std::is_pointer<T>, |
| 1467 | std::is_trivially_copyable<typename std::iterator_traits<T>::value_type>>; |
| 1468 | } // namespace detail |
| 1469 | |
| 1470 | // Provide wrappers to std::sort which shuffle the elements before sorting |
| 1471 | // to help uncover non-deterministic behavior (PR35135). |
| 1472 | template <typename IteratorTy, |
| 1473 | std::enable_if_t<!detail::sort_trivially_copyable<IteratorTy>::value, |
| 1474 | int> = 0> |
| 1475 | inline void sort(IteratorTy Start, IteratorTy End) { |
| 1476 | #ifdef EXPENSIVE_CHECKS |
| 1477 | detail::presortShuffle<IteratorTy>(Start, End); |
| 1478 | #endif |
| 1479 | std::sort(Start, End); |
| 1480 | } |
| 1481 | |
| 1482 | // Forward trivially copyable types to array_pod_sort. This avoids a large |
| 1483 | // amount of code bloat for a minor performance hit. |
| 1484 | template <typename IteratorTy, |
| 1485 | std::enable_if_t<detail::sort_trivially_copyable<IteratorTy>::value, |
| 1486 | int> = 0> |
| 1487 | inline void sort(IteratorTy Start, IteratorTy End) { |
| 1488 | array_pod_sort(Start, End); |
| 1489 | } |
| 1490 | |
| 1491 | template <typename Container> inline void sort(Container &&C) { |
| 1492 | llvm::sort(adl_begin(C), adl_end(C)); |
| 1493 | } |
| 1494 | |
| 1495 | template <typename IteratorTy, typename Compare> |
| 1496 | inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) { |
| 1497 | #ifdef EXPENSIVE_CHECKS |
| 1498 | detail::presortShuffle<IteratorTy>(Start, End); |
| 1499 | #endif |
| 1500 | std::sort(Start, End, Comp); |
| 1501 | } |
| 1502 | |
| 1503 | template <typename Container, typename Compare> |
| 1504 | inline void sort(Container &&C, Compare Comp) { |
| 1505 | llvm::sort(adl_begin(C), adl_end(C), Comp); |
| 1506 | } |
| 1507 | |
| 1508 | //===----------------------------------------------------------------------===// |
| 1509 | // Extra additions to <algorithm> |
| 1510 | //===----------------------------------------------------------------------===// |
| 1511 | |
| 1512 | /// Get the size of a range. This is a wrapper function around std::distance |
| 1513 | /// which is only enabled when the operation is O(1). |
| 1514 | template <typename R> |
| 1515 | auto size(R &&Range, |
| 1516 | std::enable_if_t< |
| 1517 | std::is_base_of<std::random_access_iterator_tag, |
| 1518 | typename std::iterator_traits<decltype( |
| 1519 | Range.begin())>::iterator_category>::value, |
| 1520 | void> * = nullptr) { |
| 1521 | return std::distance(Range.begin(), Range.end()); |
| 1522 | } |
| 1523 | |
| 1524 | /// Provide wrappers to std::for_each which take ranges instead of having to |
| 1525 | /// pass begin/end explicitly. |
| 1526 | template <typename R, typename UnaryFunction> |
| 1527 | UnaryFunction for_each(R &&Range, UnaryFunction F) { |
| 1528 | return std::for_each(adl_begin(Range), adl_end(Range), F); |
| 1529 | } |
| 1530 | |
| 1531 | /// Provide wrappers to std::all_of which take ranges instead of having to pass |
| 1532 | /// begin/end explicitly. |
| 1533 | template <typename R, typename UnaryPredicate> |
| 1534 | bool all_of(R &&Range, UnaryPredicate P) { |
| 1535 | return std::all_of(adl_begin(Range), adl_end(Range), P); |
| 1536 | } |
| 1537 | |
| 1538 | /// Provide wrappers to std::any_of which take ranges instead of having to pass |
| 1539 | /// begin/end explicitly. |
| 1540 | template <typename R, typename UnaryPredicate> |
| 1541 | bool any_of(R &&Range, UnaryPredicate P) { |
| 1542 | return std::any_of(adl_begin(Range), adl_end(Range), P); |
| 1543 | } |
| 1544 | |
| 1545 | /// Provide wrappers to std::none_of which take ranges instead of having to pass |
| 1546 | /// begin/end explicitly. |
| 1547 | template <typename R, typename UnaryPredicate> |
| 1548 | bool none_of(R &&Range, UnaryPredicate P) { |
| 1549 | return std::none_of(adl_begin(Range), adl_end(Range), P); |
| 1550 | } |
| 1551 | |
| 1552 | /// Provide wrappers to std::find which take ranges instead of having to pass |
| 1553 | /// begin/end explicitly. |
| 1554 | template <typename R, typename T> auto find(R &&Range, const T &Val) { |
| 1555 | return std::find(adl_begin(Range), adl_end(Range), Val); |
| 1556 | } |
| 1557 | |
| 1558 | /// Provide wrappers to std::find_if which take ranges instead of having to pass |
| 1559 | /// begin/end explicitly. |
| 1560 | template <typename R, typename UnaryPredicate> |
| 1561 | auto find_if(R &&Range, UnaryPredicate P) { |
| 1562 | return std::find_if(adl_begin(Range), adl_end(Range), P); |
| 1563 | } |
| 1564 | |
| 1565 | template <typename R, typename UnaryPredicate> |
| 1566 | auto find_if_not(R &&Range, UnaryPredicate P) { |
| 1567 | return std::find_if_not(adl_begin(Range), adl_end(Range), P); |
| 1568 | } |
| 1569 | |
| 1570 | /// Provide wrappers to std::remove_if which take ranges instead of having to |
| 1571 | /// pass begin/end explicitly. |
| 1572 | template <typename R, typename UnaryPredicate> |
| 1573 | auto remove_if(R &&Range, UnaryPredicate P) { |
| 1574 | return std::remove_if(adl_begin(Range), adl_end(Range), P); |
| 1575 | } |
| 1576 | |
| 1577 | /// Provide wrappers to std::copy_if which take ranges instead of having to |
| 1578 | /// pass begin/end explicitly. |
| 1579 | template <typename R, typename OutputIt, typename UnaryPredicate> |
| 1580 | OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) { |
| 1581 | return std::copy_if(adl_begin(Range), adl_end(Range), Out, P); |
| 1582 | } |
| 1583 | |
| 1584 | template <typename R, typename OutputIt> |
| 1585 | OutputIt copy(R &&Range, OutputIt Out) { |
| 1586 | return std::copy(adl_begin(Range), adl_end(Range), Out); |
| 1587 | } |
| 1588 | |
| 1589 | /// Provide wrappers to std::move which take ranges instead of having to |
| 1590 | /// pass begin/end explicitly. |
| 1591 | template <typename R, typename OutputIt> |
| 1592 | OutputIt move(R &&Range, OutputIt Out) { |
| 1593 | return std::move(adl_begin(Range), adl_end(Range), Out); |
| 1594 | } |
| 1595 | |
| 1596 | /// Wrapper function around std::find to detect if an element exists |
| 1597 | /// in a container. |
| 1598 | template <typename R, typename E> |
| 1599 | bool is_contained(R &&Range, const E &Element) { |
| 1600 | return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range); |
| 1601 | } |
| 1602 | |
| 1603 | /// Wrapper function around std::is_sorted to check if elements in a range \p R |
| 1604 | /// are sorted with respect to a comparator \p C. |
| 1605 | template <typename R, typename Compare> bool is_sorted(R &&Range, Compare C) { |
| 1606 | return std::is_sorted(adl_begin(Range), adl_end(Range), C); |
| 1607 | } |
| 1608 | |
| 1609 | /// Wrapper function around std::is_sorted to check if elements in a range \p R |
| 1610 | /// are sorted in non-descending order. |
| 1611 | template <typename R> bool is_sorted(R &&Range) { |
| 1612 | return std::is_sorted(adl_begin(Range), adl_end(Range)); |
| 1613 | } |
| 1614 | |
| 1615 | /// Wrapper function around std::count to count the number of times an element |
| 1616 | /// \p Element occurs in the given range \p Range. |
| 1617 | template <typename R, typename E> auto count(R &&Range, const E &Element) { |
| 1618 | return std::count(adl_begin(Range), adl_end(Range), Element); |
| 1619 | } |
| 1620 | |
| 1621 | /// Wrapper function around std::count_if to count the number of times an |
| 1622 | /// element satisfying a given predicate occurs in a range. |
| 1623 | template <typename R, typename UnaryPredicate> |
| 1624 | auto count_if(R &&Range, UnaryPredicate P) { |
| 1625 | return std::count_if(adl_begin(Range), adl_end(Range), P); |
| 1626 | } |
| 1627 | |
| 1628 | /// Wrapper function around std::transform to apply a function to a range and |
| 1629 | /// store the result elsewhere. |
| 1630 | template <typename R, typename OutputIt, typename UnaryFunction> |
| 1631 | OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F) { |
| 1632 | return std::transform(adl_begin(Range), adl_end(Range), d_first, F); |
| 1633 | } |
| 1634 | |
| 1635 | /// Provide wrappers to std::partition which take ranges instead of having to |
| 1636 | /// pass begin/end explicitly. |
| 1637 | template <typename R, typename UnaryPredicate> |
| 1638 | auto partition(R &&Range, UnaryPredicate P) { |
| 1639 | return std::partition(adl_begin(Range), adl_end(Range), P); |
| 1640 | } |
| 1641 | |
| 1642 | /// Provide wrappers to std::lower_bound which take ranges instead of having to |
| 1643 | /// pass begin/end explicitly. |
| 1644 | template <typename R, typename T> auto lower_bound(R &&Range, T &&Value) { |
| 1645 | return std::lower_bound(adl_begin(Range), adl_end(Range), |
| 1646 | std::forward<T>(Value)); |
| 1647 | } |
| 1648 | |
| 1649 | template <typename R, typename T, typename Compare> |
| 1650 | auto lower_bound(R &&Range, T &&Value, Compare C) { |
| 1651 | return std::lower_bound(adl_begin(Range), adl_end(Range), |
| 1652 | std::forward<T>(Value), C); |
| 1653 | } |
| 1654 | |
| 1655 | /// Provide wrappers to std::upper_bound which take ranges instead of having to |
| 1656 | /// pass begin/end explicitly. |
| 1657 | template <typename R, typename T> auto upper_bound(R &&Range, T &&Value) { |
| 1658 | return std::upper_bound(adl_begin(Range), adl_end(Range), |
| 1659 | std::forward<T>(Value)); |
| 1660 | } |
| 1661 | |
| 1662 | template <typename R, typename T, typename Compare> |
| 1663 | auto upper_bound(R &&Range, T &&Value, Compare C) { |
| 1664 | return std::upper_bound(adl_begin(Range), adl_end(Range), |
| 1665 | std::forward<T>(Value), C); |
| 1666 | } |
| 1667 | |
| 1668 | template <typename R> |
| 1669 | void stable_sort(R &&Range) { |
| 1670 | std::stable_sort(adl_begin(Range), adl_end(Range)); |
| 1671 | } |
| 1672 | |
| 1673 | template <typename R, typename Compare> |
| 1674 | void stable_sort(R &&Range, Compare C) { |
| 1675 | std::stable_sort(adl_begin(Range), adl_end(Range), C); |
| 1676 | } |
| 1677 | |
| 1678 | /// Binary search for the first iterator in a range where a predicate is false. |
| 1679 | /// Requires that C is always true below some limit, and always false above it. |
| 1680 | template <typename R, typename Predicate, |
| 1681 | typename Val = decltype(*adl_begin(std::declval<R>()))> |
| 1682 | auto partition_point(R &&Range, Predicate P) { |
| 1683 | return std::partition_point(adl_begin(Range), adl_end(Range), P); |
| 1684 | } |
| 1685 | |
| 1686 | template<typename Range, typename Predicate> |
| 1687 | auto unique(Range &&R, Predicate P) { |
| 1688 | return std::unique(adl_begin(R), adl_end(R), P); |
| 1689 | } |
| 1690 | |
| 1691 | /// Wrapper function around std::equal to detect if pair-wise elements between |
| 1692 | /// two ranges are the same. |
| 1693 | template <typename L, typename R> bool equal(L &&LRange, R &&RRange) { |
| 1694 | return std::equal(adl_begin(LRange), adl_end(LRange), adl_begin(RRange), |
| 1695 | adl_end(RRange)); |
| 1696 | } |
| 1697 | |
| 1698 | /// Wrapper function around std::equal to detect if all elements |
| 1699 | /// in a container are same. |
| 1700 | template <typename R> |
| 1701 | bool is_splat(R &&Range) { |
| 1702 | size_t range_size = size(Range); |
| 1703 | return range_size != 0 && (range_size == 1 || |
| 1704 | std::equal(adl_begin(Range) + 1, adl_end(Range), adl_begin(Range))); |
| 1705 | } |
| 1706 | |
| 1707 | /// Provide a container algorithm similar to C++ Library Fundamentals v2's |
| 1708 | /// `erase_if` which is equivalent to: |
| 1709 | /// |
| 1710 | /// C.erase(remove_if(C, pred), C.end()); |
| 1711 | /// |
| 1712 | /// This version works for any container with an erase method call accepting |
| 1713 | /// two iterators. |
| 1714 | template <typename Container, typename UnaryPredicate> |
| 1715 | void erase_if(Container &C, UnaryPredicate P) { |
| 1716 | C.erase(remove_if(C, P), C.end()); |
| 1717 | } |
| 1718 | |
| 1719 | /// Wrapper function to remove a value from a container: |
| 1720 | /// |
| 1721 | /// C.erase(remove(C.begin(), C.end(), V), C.end()); |
| 1722 | template <typename Container, typename ValueType> |
| 1723 | void erase_value(Container &C, ValueType V) { |
| 1724 | C.erase(std::remove(C.begin(), C.end(), V), C.end()); |
| 1725 | } |
| 1726 | |
| 1727 | /// Wrapper function to append a range to a container. |
| 1728 | /// |
| 1729 | /// C.insert(C.end(), R.begin(), R.end()); |
| 1730 | template <typename Container, typename Range> |
| 1731 | inline void append_range(Container &C, Range &&R) { |
| 1732 | C.insert(C.end(), R.begin(), R.end()); |
| 1733 | } |
| 1734 | |
| 1735 | /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with |
| 1736 | /// the range [ValIt, ValEnd) (which is not from the same container). |
| 1737 | template<typename Container, typename RandomAccessIterator> |
| 1738 | void replace(Container &Cont, typename Container::iterator ContIt, |
| 1739 | typename Container::iterator ContEnd, RandomAccessIterator ValIt, |
| 1740 | RandomAccessIterator ValEnd) { |
| 1741 | while (true) { |
| 1742 | if (ValIt == ValEnd) { |
| 1743 | Cont.erase(ContIt, ContEnd); |
| 1744 | return; |
| 1745 | } else if (ContIt == ContEnd) { |
| 1746 | Cont.insert(ContIt, ValIt, ValEnd); |
| 1747 | return; |
| 1748 | } |
| 1749 | *ContIt++ = *ValIt++; |
| 1750 | } |
| 1751 | } |
| 1752 | |
| 1753 | /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with |
| 1754 | /// the range R. |
| 1755 | template<typename Container, typename Range = std::initializer_list< |
| 1756 | typename Container::value_type>> |
| 1757 | void replace(Container &Cont, typename Container::iterator ContIt, |
| 1758 | typename Container::iterator ContEnd, Range R) { |
| 1759 | replace(Cont, ContIt, ContEnd, R.begin(), R.end()); |
| 1760 | } |
| 1761 | |
| 1762 | /// An STL-style algorithm similar to std::for_each that applies a second |
| 1763 | /// functor between every pair of elements. |
| 1764 | /// |
| 1765 | /// This provides the control flow logic to, for example, print a |
| 1766 | /// comma-separated list: |
| 1767 | /// \code |
| 1768 | /// interleave(names.begin(), names.end(), |
| 1769 | /// [&](StringRef name) { os << name; }, |
| 1770 | /// [&] { os << ", "; }); |
| 1771 | /// \endcode |
| 1772 | template <typename ForwardIterator, typename UnaryFunctor, |
| 1773 | typename NullaryFunctor, |
| 1774 | typename = typename std::enable_if< |
| 1775 | !std::is_constructible<StringRef, UnaryFunctor>::value && |
| 1776 | !std::is_constructible<StringRef, NullaryFunctor>::value>::type> |
| 1777 | inline void interleave(ForwardIterator begin, ForwardIterator end, |
| 1778 | UnaryFunctor each_fn, NullaryFunctor between_fn) { |
| 1779 | if (begin == end) |
| 1780 | return; |
| 1781 | each_fn(*begin); |
| 1782 | ++begin; |
| 1783 | for (; begin != end; ++begin) { |
| 1784 | between_fn(); |
| 1785 | each_fn(*begin); |
| 1786 | } |
| 1787 | } |
| 1788 | |
| 1789 | template <typename Container, typename UnaryFunctor, typename NullaryFunctor, |
| 1790 | typename = typename std::enable_if< |
| 1791 | !std::is_constructible<StringRef, UnaryFunctor>::value && |
| 1792 | !std::is_constructible<StringRef, NullaryFunctor>::value>::type> |
| 1793 | inline void interleave(const Container &c, UnaryFunctor each_fn, |
| 1794 | NullaryFunctor between_fn) { |
| 1795 | interleave(c.begin(), c.end(), each_fn, between_fn); |
| 1796 | } |
| 1797 | |
| 1798 | /// Overload of interleave for the common case of string separator. |
| 1799 | template <typename Container, typename UnaryFunctor, typename StreamT, |
| 1800 | typename T = detail::ValueOfRange<Container>> |
| 1801 | inline void interleave(const Container &c, StreamT &os, UnaryFunctor each_fn, |
| 1802 | const StringRef &separator) { |
| 1803 | interleave(c.begin(), c.end(), each_fn, [&] { os << separator; }); |
| 1804 | } |
| 1805 | template <typename Container, typename StreamT, |
| 1806 | typename T = detail::ValueOfRange<Container>> |
| 1807 | inline void interleave(const Container &c, StreamT &os, |
| 1808 | const StringRef &separator) { |
| 1809 | interleave( |
| 1810 | c, os, [&](const T &a) { os << a; }, separator); |
| 1811 | } |
| 1812 | |
| 1813 | template <typename Container, typename UnaryFunctor, typename StreamT, |
| 1814 | typename T = detail::ValueOfRange<Container>> |
| 1815 | inline void interleaveComma(const Container &c, StreamT &os, |
| 1816 | UnaryFunctor each_fn) { |
| 1817 | interleave(c, os, each_fn, ", "); |
| 1818 | } |
| 1819 | template <typename Container, typename StreamT, |
| 1820 | typename T = detail::ValueOfRange<Container>> |
| 1821 | inline void interleaveComma(const Container &c, StreamT &os) { |
| 1822 | interleaveComma(c, os, [&](const T &a) { os << a; }); |
| 1823 | } |
| 1824 | |
| 1825 | //===----------------------------------------------------------------------===// |
| 1826 | // Extra additions to <memory> |
| 1827 | //===----------------------------------------------------------------------===// |
| 1828 | |
| 1829 | struct FreeDeleter { |
| 1830 | void operator()(void* v) { |
| 1831 | ::free(v); |
| 1832 | } |
| 1833 | }; |
| 1834 | |
| 1835 | template<typename First, typename Second> |
| 1836 | struct pair_hash { |
| 1837 | size_t operator()(const std::pair<First, Second> &P) const { |
| 1838 | return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second); |
| 1839 | } |
| 1840 | }; |
| 1841 | |
| 1842 | /// Binary functor that adapts to any other binary functor after dereferencing |
| 1843 | /// operands. |
| 1844 | template <typename T> struct deref { |
| 1845 | T func; |
| 1846 | |
| 1847 | // Could be further improved to cope with non-derivable functors and |
| 1848 | // non-binary functors (should be a variadic template member function |
| 1849 | // operator()). |
| 1850 | template <typename A, typename B> auto operator()(A &lhs, B &rhs) const { |
| 1851 | assert(lhs)((void)0); |
| 1852 | assert(rhs)((void)0); |
| 1853 | return func(*lhs, *rhs); |
| 1854 | } |
| 1855 | }; |
| 1856 | |
| 1857 | namespace detail { |
| 1858 | |
| 1859 | template <typename R> class enumerator_iter; |
| 1860 | |
| 1861 | template <typename R> struct result_pair { |
| 1862 | using value_reference = |
| 1863 | typename std::iterator_traits<IterOfRange<R>>::reference; |
| 1864 | |
| 1865 | friend class enumerator_iter<R>; |
| 1866 | |
| 1867 | result_pair() = default; |
| 1868 | result_pair(std::size_t Index, IterOfRange<R> Iter) |
| 1869 | : Index(Index), Iter(Iter) {} |
| 1870 | |
| 1871 | result_pair(const result_pair<R> &Other) |
| 1872 | : Index(Other.Index), Iter(Other.Iter) {} |
| 1873 | result_pair &operator=(const result_pair &Other) { |
| 1874 | Index = Other.Index; |
| 1875 | Iter = Other.Iter; |
| 1876 | return *this; |
| 1877 | } |
| 1878 | |
| 1879 | std::size_t index() const { return Index; } |
| 1880 | const value_reference value() const { return *Iter; } |
| 1881 | value_reference value() { return *Iter; } |
| 1882 | |
| 1883 | private: |
| 1884 | std::size_t Index = std::numeric_limits<std::size_t>::max(); |
| 1885 | IterOfRange<R> Iter; |
| 1886 | }; |
| 1887 | |
| 1888 | template <typename R> |
| 1889 | class enumerator_iter |
| 1890 | : public iterator_facade_base< |
| 1891 | enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>, |
| 1892 | typename std::iterator_traits<IterOfRange<R>>::difference_type, |
| 1893 | typename std::iterator_traits<IterOfRange<R>>::pointer, |
| 1894 | typename std::iterator_traits<IterOfRange<R>>::reference> { |
| 1895 | using result_type = result_pair<R>; |
| 1896 | |
| 1897 | public: |
| 1898 | explicit enumerator_iter(IterOfRange<R> EndIter) |
| 1899 | : Result(std::numeric_limits<size_t>::max(), EndIter) {} |
| 1900 | |
| 1901 | enumerator_iter(std::size_t Index, IterOfRange<R> Iter) |
| 1902 | : Result(Index, Iter) {} |
| 1903 | |
| 1904 | result_type &operator*() { return Result; } |
| 1905 | const result_type &operator*() const { return Result; } |
| 1906 | |
| 1907 | enumerator_iter &operator++() { |
| 1908 | assert(Result.Index != std::numeric_limits<size_t>::max())((void)0); |
| 1909 | ++Result.Iter; |
| 1910 | ++Result.Index; |
| 1911 | return *this; |
| 1912 | } |
| 1913 | |
| 1914 | bool operator==(const enumerator_iter &RHS) const { |
| 1915 | // Don't compare indices here, only iterators. It's possible for an end |
| 1916 | // iterator to have different indices depending on whether it was created |
| 1917 | // by calling std::end() versus incrementing a valid iterator. |
| 1918 | return Result.Iter == RHS.Result.Iter; |
| 1919 | } |
| 1920 | |
| 1921 | enumerator_iter(const enumerator_iter &Other) : Result(Other.Result) {} |
| 1922 | enumerator_iter &operator=(const enumerator_iter &Other) { |
| 1923 | Result = Other.Result; |
| 1924 | return *this; |
| 1925 | } |
| 1926 | |
| 1927 | private: |
| 1928 | result_type Result; |
| 1929 | }; |
| 1930 | |
| 1931 | template <typename R> class enumerator { |
| 1932 | public: |
| 1933 | explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {} |
| 1934 | |
| 1935 | enumerator_iter<R> begin() { |
| 1936 | return enumerator_iter<R>(0, std::begin(TheRange)); |
| 1937 | } |
| 1938 | |
| 1939 | enumerator_iter<R> end() { |
| 1940 | return enumerator_iter<R>(std::end(TheRange)); |
| 1941 | } |
| 1942 | |
| 1943 | private: |
| 1944 | R TheRange; |
| 1945 | }; |
| 1946 | |
| 1947 | } // end namespace detail |
| 1948 | |
| 1949 | /// Given an input range, returns a new range whose values are are pair (A,B) |
| 1950 | /// such that A is the 0-based index of the item in the sequence, and B is |
| 1951 | /// the value from the original sequence. Example: |
| 1952 | /// |
| 1953 | /// std::vector<char> Items = {'A', 'B', 'C', 'D'}; |
| 1954 | /// for (auto X : enumerate(Items)) { |
| 1955 | /// printf("Item %d - %c\n", X.index(), X.value()); |
| 1956 | /// } |
| 1957 | /// |
| 1958 | /// Output: |
| 1959 | /// Item 0 - A |
| 1960 | /// Item 1 - B |
| 1961 | /// Item 2 - C |
| 1962 | /// Item 3 - D |
| 1963 | /// |
| 1964 | template <typename R> detail::enumerator<R> enumerate(R &&TheRange) { |
| 1965 | return detail::enumerator<R>(std::forward<R>(TheRange)); |
| 1966 | } |
| 1967 | |
| 1968 | namespace detail { |
| 1969 | |
| 1970 | template <typename F, typename Tuple, std::size_t... I> |
| 1971 | decltype(auto) apply_tuple_impl(F &&f, Tuple &&t, std::index_sequence<I...>) { |
| 1972 | return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...); |
| 1973 | } |
| 1974 | |
| 1975 | } // end namespace detail |
| 1976 | |
| 1977 | /// Given an input tuple (a1, a2, ..., an), pass the arguments of the |
| 1978 | /// tuple variadically to f as if by calling f(a1, a2, ..., an) and |
| 1979 | /// return the result. |
| 1980 | template <typename F, typename Tuple> |
| 1981 | decltype(auto) apply_tuple(F &&f, Tuple &&t) { |
| 1982 | using Indices = std::make_index_sequence< |
| 1983 | std::tuple_size<typename std::decay<Tuple>::type>::value>; |
| 1984 | |
| 1985 | return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t), |
| 1986 | Indices{}); |
| 1987 | } |
| 1988 | |
| 1989 | /// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N) |
| 1990 | /// time. Not meant for use with random-access iterators. |
| 1991 | /// Can optionally take a predicate to filter lazily some items. |
| 1992 | template <typename IterTy, |
| 1993 | typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)> |
| 1994 | bool hasNItems( |
| 1995 | IterTy &&Begin, IterTy &&End, unsigned N, |
| 1996 | Pred &&ShouldBeCounted = |
| 1997 | [](const decltype(*std::declval<IterTy>()) &) { return true; }, |
| 1998 | std::enable_if_t< |
| 1999 | !std::is_base_of<std::random_access_iterator_tag, |
| 2000 | typename std::iterator_traits<std::remove_reference_t< |
| 2001 | decltype(Begin)>>::iterator_category>::value, |
| 2002 | void> * = nullptr) { |
| 2003 | for (; N; ++Begin) { |
| 2004 | if (Begin == End) |
| 2005 | return false; // Too few. |
| 2006 | N -= ShouldBeCounted(*Begin); |
| 2007 | } |
| 2008 | for (; Begin != End; ++Begin) |
| 2009 | if (ShouldBeCounted(*Begin)) |
| 2010 | return false; // Too many. |
| 2011 | return true; |
| 2012 | } |
| 2013 | |
| 2014 | /// Return true if the sequence [Begin, End) has N or more items. Runs in O(N) |
| 2015 | /// time. Not meant for use with random-access iterators. |
| 2016 | /// Can optionally take a predicate to lazily filter some items. |
| 2017 | template <typename IterTy, |
| 2018 | typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)> |
| 2019 | bool hasNItemsOrMore( |
| 2020 | IterTy &&Begin, IterTy &&End, unsigned N, |
| 2021 | Pred &&ShouldBeCounted = |
| 2022 | [](const decltype(*std::declval<IterTy>()) &) { return true; }, |
| 2023 | std::enable_if_t< |
| 2024 | !std::is_base_of<std::random_access_iterator_tag, |
| 2025 | typename std::iterator_traits<std::remove_reference_t< |
| 2026 | decltype(Begin)>>::iterator_category>::value, |
| 2027 | void> * = nullptr) { |
| 2028 | for (; N; ++Begin) { |
| 2029 | if (Begin == End) |
| 2030 | return false; // Too few. |
| 2031 | N -= ShouldBeCounted(*Begin); |
| 2032 | } |
| 2033 | return true; |
| 2034 | } |
| 2035 | |
| 2036 | /// Returns true if the sequence [Begin, End) has N or less items. Can |
| 2037 | /// optionally take a predicate to lazily filter some items. |
| 2038 | template <typename IterTy, |
| 2039 | typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)> |
| 2040 | bool hasNItemsOrLess( |
| 2041 | IterTy &&Begin, IterTy &&End, unsigned N, |
| 2042 | Pred &&ShouldBeCounted = [](const decltype(*std::declval<IterTy>()) &) { |
| 2043 | return true; |
| 2044 | }) { |
| 2045 | assert(N != std::numeric_limits<unsigned>::max())((void)0); |
| 2046 | return !hasNItemsOrMore(Begin, End, N + 1, ShouldBeCounted); |
| 2047 | } |
| 2048 | |
| 2049 | /// Returns true if the given container has exactly N items |
| 2050 | template <typename ContainerTy> bool hasNItems(ContainerTy &&C, unsigned N) { |
| 2051 | return hasNItems(std::begin(C), std::end(C), N); |
| 2052 | } |
| 2053 | |
| 2054 | /// Returns true if the given container has N or more items |
| 2055 | template <typename ContainerTy> |
| 2056 | bool hasNItemsOrMore(ContainerTy &&C, unsigned N) { |
| 2057 | return hasNItemsOrMore(std::begin(C), std::end(C), N); |
| 2058 | } |
| 2059 | |
| 2060 | /// Returns true if the given container has N or less items |
| 2061 | template <typename ContainerTy> |
| 2062 | bool hasNItemsOrLess(ContainerTy &&C, unsigned N) { |
| 2063 | return hasNItemsOrLess(std::begin(C), std::end(C), N); |
| 2064 | } |
| 2065 | |
| 2066 | /// Returns a raw pointer that represents the same address as the argument. |
| 2067 | /// |
| 2068 | /// This implementation can be removed once we move to C++20 where it's defined |
| 2069 | /// as std::to_address(). |
| 2070 | /// |
| 2071 | /// The std::pointer_traits<>::to_address(p) variations of these overloads has |
| 2072 | /// not been implemented. |
| 2073 | template <class Ptr> auto to_address(const Ptr &P) { return P.operator->(); } |
| 2074 | template <class T> constexpr T *to_address(T *P) { return P; } |
| 2075 | |
| 2076 | } // end namespace llvm |
| 2077 | |
| 2078 | #endif // LLVM_ADT_STLEXTRAS_H |
| 1 | //===- llvm/Type.h - Classes for handling data types ------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains the declaration of the Type class. For more "Type" |
| 10 | // stuff, look in DerivedTypes.h. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #ifndef LLVM_IR_TYPE_H |
| 15 | #define LLVM_IR_TYPE_H |
| 16 | |
| 17 | #include "llvm/ADT/APFloat.h" |
| 18 | #include "llvm/ADT/ArrayRef.h" |
| 19 | #include "llvm/ADT/SmallPtrSet.h" |
| 20 | #include "llvm/Support/CBindingWrapping.h" |
| 21 | #include "llvm/Support/Casting.h" |
| 22 | #include "llvm/Support/Compiler.h" |
| 23 | #include "llvm/Support/ErrorHandling.h" |
| 24 | #include "llvm/Support/TypeSize.h" |
| 25 | #include <cassert> |
| 26 | #include <cstdint> |
| 27 | #include <iterator> |
| 28 | |
| 29 | namespace llvm { |
| 30 | |
| 31 | class IntegerType; |
| 32 | class LLVMContext; |
| 33 | class PointerType; |
| 34 | class raw_ostream; |
| 35 | class StringRef; |
| 36 | |
| 37 | /// The instances of the Type class are immutable: once they are created, |
| 38 | /// they are never changed. Also note that only one instance of a particular |
| 39 | /// type is ever created. Thus seeing if two types are equal is a matter of |
| 40 | /// doing a trivial pointer comparison. To enforce that no two equal instances |
| 41 | /// are created, Type instances can only be created via static factory methods |
| 42 | /// in class Type and in derived classes. Once allocated, Types are never |
| 43 | /// free'd. |
| 44 | /// |
| 45 | class Type { |
| 46 | public: |
| 47 | //===--------------------------------------------------------------------===// |
| 48 | /// Definitions of all of the base types for the Type system. Based on this |
| 49 | /// value, you can cast to a class defined in DerivedTypes.h. |
| 50 | /// Note: If you add an element to this, you need to add an element to the |
| 51 | /// Type::getPrimitiveType function, or else things will break! |
| 52 | /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding. |
| 53 | /// |
| 54 | enum TypeID { |
| 55 | // PrimitiveTypes |
| 56 | HalfTyID = 0, ///< 16-bit floating point type |
| 57 | BFloatTyID, ///< 16-bit floating point type (7-bit significand) |
| 58 | FloatTyID, ///< 32-bit floating point type |
| 59 | DoubleTyID, ///< 64-bit floating point type |
| 60 | X86_FP80TyID, ///< 80-bit floating point type (X87) |
| 61 | FP128TyID, ///< 128-bit floating point type (112-bit significand) |
| 62 | PPC_FP128TyID, ///< 128-bit floating point type (two 64-bits, PowerPC) |
| 63 | VoidTyID, ///< type with no size |
| 64 | LabelTyID, ///< Labels |
| 65 | MetadataTyID, ///< Metadata |
| 66 | X86_MMXTyID, ///< MMX vectors (64 bits, X86 specific) |
| 67 | X86_AMXTyID, ///< AMX vectors (8192 bits, X86 specific) |
| 68 | TokenTyID, ///< Tokens |
| 69 | |
| 70 | // Derived types... see DerivedTypes.h file. |
| 71 | IntegerTyID, ///< Arbitrary bit width integers |
| 72 | FunctionTyID, ///< Functions |
| 73 | PointerTyID, ///< Pointers |
| 74 | StructTyID, ///< Structures |
| 75 | ArrayTyID, ///< Arrays |
| 76 | FixedVectorTyID, ///< Fixed width SIMD vector type |
| 77 | ScalableVectorTyID ///< Scalable SIMD vector type |
| 78 | }; |
| 79 | |
| 80 | private: |
| 81 | /// This refers to the LLVMContext in which this type was uniqued. |
| 82 | LLVMContext &Context; |
| 83 | |
| 84 | TypeID ID : 8; // The current base type of this type. |
| 85 | unsigned SubclassData : 24; // Space for subclasses to store data. |
| 86 | // Note that this should be synchronized with |
| 87 | // MAX_INT_BITS value in IntegerType class. |
| 88 | |
| 89 | protected: |
| 90 | friend class LLVMContextImpl; |
| 91 | |
| 92 | explicit Type(LLVMContext &C, TypeID tid) |
| 93 | : Context(C), ID(tid), SubclassData(0) {} |
| 94 | ~Type() = default; |
| 95 | |
| 96 | unsigned getSubclassData() const { return SubclassData; } |
| 97 | |
| 98 | void setSubclassData(unsigned val) { |
| 99 | SubclassData = val; |
| 100 | // Ensure we don't have any accidental truncation. |
| 101 | assert(getSubclassData() == val && "Subclass data too large for field")((void)0); |
| 102 | } |
| 103 | |
| 104 | /// Keeps track of how many Type*'s there are in the ContainedTys list. |
| 105 | unsigned NumContainedTys = 0; |
| 106 | |
| 107 | /// A pointer to the array of Types contained by this Type. For example, this |
| 108 | /// includes the arguments of a function type, the elements of a structure, |
| 109 | /// the pointee of a pointer, the element type of an array, etc. This pointer |
| 110 | /// may be 0 for types that don't contain other types (Integer, Double, |
| 111 | /// Float). |
| 112 | Type * const *ContainedTys = nullptr; |
| 113 | |
| 114 | public: |
| 115 | /// Print the current type. |
| 116 | /// Omit the type details if \p NoDetails == true. |
| 117 | /// E.g., let %st = type { i32, i16 } |
| 118 | /// When \p NoDetails is true, we only print %st. |
| 119 | /// Put differently, \p NoDetails prints the type as if |
| 120 | /// inlined with the operands when printing an instruction. |
| 121 | void print(raw_ostream &O, bool IsForDebug = false, |
| 122 | bool NoDetails = false) const; |
| 123 | |
| 124 | void dump() const; |
| 125 | |
| 126 | /// Return the LLVMContext in which this type was uniqued. |
| 127 | LLVMContext &getContext() const { return Context; } |
| 128 | |
| 129 | //===--------------------------------------------------------------------===// |
| 130 | // Accessors for working with types. |
| 131 | // |
| 132 | |
| 133 | /// Return the type id for the type. This will return one of the TypeID enum |
| 134 | /// elements defined above. |
| 135 | TypeID getTypeID() const { return ID; } |
| 136 | |
| 137 | /// Return true if this is 'void'. |
| 138 | bool isVoidTy() const { return getTypeID() == VoidTyID; } |
| 139 | |
| 140 | /// Return true if this is 'half', a 16-bit IEEE fp type. |
| 141 | bool isHalfTy() const { return getTypeID() == HalfTyID; } |
| 142 | |
| 143 | /// Return true if this is 'bfloat', a 16-bit bfloat type. |
| 144 | bool isBFloatTy() const { return getTypeID() == BFloatTyID; } |
| 145 | |
| 146 | /// Return true if this is 'float', a 32-bit IEEE fp type. |
| 147 | bool isFloatTy() const { return getTypeID() == FloatTyID; } |
| 148 | |
| 149 | /// Return true if this is 'double', a 64-bit IEEE fp type. |
| 150 | bool isDoubleTy() const { return getTypeID() == DoubleTyID; } |
| 151 | |
| 152 | /// Return true if this is x86 long double. |
| 153 | bool isX86_FP80Ty() const { return getTypeID() == X86_FP80TyID; } |
| 154 | |
| 155 | /// Return true if this is 'fp128'. |
| 156 | bool isFP128Ty() const { return getTypeID() == FP128TyID; } |
| 157 | |
| 158 | /// Return true if this is powerpc long double. |
| 159 | bool isPPC_FP128Ty() const { return getTypeID() == PPC_FP128TyID; } |
| 160 | |
| 161 | /// Return true if this is one of the six floating-point types |
| 162 | bool isFloatingPointTy() const { |
| 163 | return getTypeID() == HalfTyID || getTypeID() == BFloatTyID || |
| 164 | getTypeID() == FloatTyID || getTypeID() == DoubleTyID || |
| 165 | getTypeID() == X86_FP80TyID || getTypeID() == FP128TyID || |
| 166 | getTypeID() == PPC_FP128TyID; |
| 167 | } |
| 168 | |
| 169 | const fltSemantics &getFltSemantics() const { |
| 170 | switch (getTypeID()) { |
| 171 | case HalfTyID: return APFloat::IEEEhalf(); |
| 172 | case BFloatTyID: return APFloat::BFloat(); |
| 173 | case FloatTyID: return APFloat::IEEEsingle(); |
| 174 | case DoubleTyID: return APFloat::IEEEdouble(); |
| 175 | case X86_FP80TyID: return APFloat::x87DoubleExtended(); |
| 176 | case FP128TyID: return APFloat::IEEEquad(); |
| 177 | case PPC_FP128TyID: return APFloat::PPCDoubleDouble(); |
| 178 | default: llvm_unreachable("Invalid floating type")__builtin_unreachable(); |
| 179 | } |
| 180 | } |
| 181 | |
| 182 | /// Return true if this is X86 MMX. |
| 183 | bool isX86_MMXTy() const { return getTypeID() == X86_MMXTyID; } |
| 184 | |
| 185 | /// Return true if this is X86 AMX. |
| 186 | bool isX86_AMXTy() const { return getTypeID() == X86_AMXTyID; } |
| 187 | |
| 188 | /// Return true if this is a FP type or a vector of FP. |
| 189 | bool isFPOrFPVectorTy() const { return getScalarType()->isFloatingPointTy(); } |
| 190 | |
| 191 | /// Return true if this is 'label'. |
| 192 | bool isLabelTy() const { return getTypeID() == LabelTyID; } |
| 193 | |
| 194 | /// Return true if this is 'metadata'. |
| 195 | bool isMetadataTy() const { return getTypeID() == MetadataTyID; } |
| 196 | |
| 197 | /// Return true if this is 'token'. |
| 198 | bool isTokenTy() const { return getTypeID() == TokenTyID; } |
| 199 | |
| 200 | /// True if this is an instance of IntegerType. |
| 201 | bool isIntegerTy() const { return getTypeID() == IntegerTyID; } |
| 202 | |
| 203 | /// Return true if this is an IntegerType of the given width. |
| 204 | bool isIntegerTy(unsigned Bitwidth) const; |
| 205 | |
| 206 | /// Return true if this is an integer type or a vector of integer types. |
| 207 | bool isIntOrIntVectorTy() const { return getScalarType()->isIntegerTy(); } |
| 208 | |
| 209 | /// Return true if this is an integer type or a vector of integer types of |
| 210 | /// the given width. |
| 211 | bool isIntOrIntVectorTy(unsigned BitWidth) const { |
| 212 | return getScalarType()->isIntegerTy(BitWidth); |
| 213 | } |
| 214 | |
| 215 | /// Return true if this is an integer type or a pointer type. |
| 216 | bool isIntOrPtrTy() const { return isIntegerTy() || isPointerTy(); } |
| 217 | |
| 218 | /// True if this is an instance of FunctionType. |
| 219 | bool isFunctionTy() const { return getTypeID() == FunctionTyID; } |
| 220 | |
| 221 | /// True if this is an instance of StructType. |
| 222 | bool isStructTy() const { return getTypeID() == StructTyID; } |
| 223 | |
| 224 | /// True if this is an instance of ArrayType. |
| 225 | bool isArrayTy() const { return getTypeID() == ArrayTyID; } |
| 226 | |
| 227 | /// True if this is an instance of PointerType. |
| 228 | bool isPointerTy() const { return getTypeID() == PointerTyID; } |
| 229 | |
| 230 | /// True if this is an instance of an opaque PointerType. |
| 231 | bool isOpaquePointerTy() const; |
| 232 | |
| 233 | /// Return true if this is a pointer type or a vector of pointer types. |
| 234 | bool isPtrOrPtrVectorTy() const { return getScalarType()->isPointerTy(); } |
| 235 | |
| 236 | /// True if this is an instance of VectorType. |
| 237 | inline bool isVectorTy() const { |
| 238 | return getTypeID() == ScalableVectorTyID || getTypeID() == FixedVectorTyID; |
| 239 | } |
| 240 | |
| 241 | /// Return true if this type could be converted with a lossless BitCast to |
| 242 | /// type 'Ty'. For example, i8* to i32*. BitCasts are valid for types of the |
| 243 | /// same size only where no re-interpretation of the bits is done. |
| 244 | /// Determine if this type could be losslessly bitcast to Ty |
| 245 | bool canLosslesslyBitCastTo(Type *Ty) const; |
| 246 | |
| 247 | /// Return true if this type is empty, that is, it has no elements or all of |
| 248 | /// its elements are empty. |
| 249 | bool isEmptyTy() const; |
| 250 | |
| 251 | /// Return true if the type is "first class", meaning it is a valid type for a |
| 252 | /// Value. |
| 253 | bool isFirstClassType() const { |
| 254 | return getTypeID() != FunctionTyID && getTypeID() != VoidTyID; |
| 255 | } |
| 256 | |
| 257 | /// Return true if the type is a valid type for a register in codegen. This |
| 258 | /// includes all first-class types except struct and array types. |
| 259 | bool isSingleValueType() const { |
| 260 | return isFloatingPointTy() || isX86_MMXTy() || isIntegerTy() || |
| 261 | isPointerTy() || isVectorTy() || isX86_AMXTy(); |
| 262 | } |
| 263 | |
| 264 | /// Return true if the type is an aggregate type. This means it is valid as |
| 265 | /// the first operand of an insertvalue or extractvalue instruction. This |
| 266 | /// includes struct and array types, but does not include vector types. |
| 267 | bool isAggregateType() const { |
| 268 | return getTypeID() == StructTyID || getTypeID() == ArrayTyID; |
| 269 | } |
| 270 | |
| 271 | /// Return true if it makes sense to take the size of this type. To get the |
| 272 | /// actual size for a particular target, it is reasonable to use the |
| 273 | /// DataLayout subsystem to do this. |
| 274 | bool isSized(SmallPtrSetImpl<Type*> *Visited = nullptr) const { |
| 275 | // If it's a primitive, it is always sized. |
| 276 | if (getTypeID() == IntegerTyID || isFloatingPointTy() || |
| 277 | getTypeID() == PointerTyID || getTypeID() == X86_MMXTyID || |
| 278 | getTypeID() == X86_AMXTyID) |
| 279 | return true; |
| 280 | // If it is not something that can have a size (e.g. a function or label), |
| 281 | // it doesn't have a size. |
| 282 | if (getTypeID() != StructTyID && getTypeID() != ArrayTyID && !isVectorTy()) |
| 283 | return false; |
| 284 | // Otherwise we have to try harder to decide. |
| 285 | return isSizedDerivedType(Visited); |
| 286 | } |
| 287 | |
| 288 | /// Return the basic size of this type if it is a primitive type. These are |
| 289 | /// fixed by LLVM and are not target-dependent. |
| 290 | /// This will return zero if the type does not have a size or is not a |
| 291 | /// primitive type. |
| 292 | /// |
| 293 | /// If this is a scalable vector type, the scalable property will be set and |
| 294 | /// the runtime size will be a positive integer multiple of the base size. |
| 295 | /// |
| 296 | /// Note that this may not reflect the size of memory allocated for an |
| 297 | /// instance of the type or the number of bytes that are written when an |
| 298 | /// instance of the type is stored to memory. The DataLayout class provides |
| 299 | /// additional query functions to provide this information. |
| 300 | /// |
| 301 | TypeSize getPrimitiveSizeInBits() const LLVM_READONLY__attribute__((__pure__)); |
| 302 | |
| 303 | /// If this is a vector type, return the getPrimitiveSizeInBits value for the |
| 304 | /// element type. Otherwise return the getPrimitiveSizeInBits value for this |
| 305 | /// type. |
| 306 | unsigned getScalarSizeInBits() const LLVM_READONLY__attribute__((__pure__)); |
| 307 | |
| 308 | /// Return the width of the mantissa of this type. This is only valid on |
| 309 | /// floating-point types. If the FP type does not have a stable mantissa (e.g. |
| 310 | /// ppc long double), this method returns -1. |
| 311 | int getFPMantissaWidth() const; |
| 312 | |
| 313 | /// Return whether the type is IEEE compatible, as defined by the eponymous |
| 314 | /// method in APFloat. |
| 315 | bool isIEEE() const { return APFloat::getZero(getFltSemantics()).isIEEE(); } |
| 316 | |
| 317 | /// If this is a vector type, return the element type, otherwise return |
| 318 | /// 'this'. |
| 319 | inline Type *getScalarType() const { |
| 320 | if (isVectorTy()) |
| 321 | return getContainedType(0); |
| 322 | return const_cast<Type *>(this); |
| 323 | } |
| 324 | |
| 325 | //===--------------------------------------------------------------------===// |
| 326 | // Type Iteration support. |
| 327 | // |
| 328 | using subtype_iterator = Type * const *; |
| 329 | |
| 330 | subtype_iterator subtype_begin() const { return ContainedTys; } |
| 331 | subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];} |
| 332 | ArrayRef<Type*> subtypes() const { |
| 333 | return makeArrayRef(subtype_begin(), subtype_end()); |
| 334 | } |
| 335 | |
| 336 | using subtype_reverse_iterator = std::reverse_iterator<subtype_iterator>; |
| 337 | |
| 338 | subtype_reverse_iterator subtype_rbegin() const { |
| 339 | return subtype_reverse_iterator(subtype_end()); |
| 340 | } |
| 341 | subtype_reverse_iterator subtype_rend() const { |
| 342 | return subtype_reverse_iterator(subtype_begin()); |
| 343 | } |
| 344 | |
| 345 | /// This method is used to implement the type iterator (defined at the end of |
| 346 | /// the file). For derived types, this returns the types 'contained' in the |
| 347 | /// derived type. |
| 348 | Type *getContainedType(unsigned i) const { |
| 349 | assert(i < NumContainedTys && "Index out of range!")((void)0); |
| 350 | return ContainedTys[i]; |
| 351 | } |
| 352 | |
| 353 | /// Return the number of types in the derived type. |
| 354 | unsigned getNumContainedTypes() const { return NumContainedTys; } |
| 355 | |
| 356 | //===--------------------------------------------------------------------===// |
| 357 | // Helper methods corresponding to subclass methods. This forces a cast to |
| 358 | // the specified subclass and calls its accessor. "getArrayNumElements" (for |
| 359 | // example) is shorthand for cast<ArrayType>(Ty)->getNumElements(). This is |
| 360 | // only intended to cover the core methods that are frequently used, helper |
| 361 | // methods should not be added here. |
| 362 | |
| 363 | inline unsigned getIntegerBitWidth() const; |
| 364 | |
| 365 | inline Type *getFunctionParamType(unsigned i) const; |
| 366 | inline unsigned getFunctionNumParams() const; |
| 367 | inline bool isFunctionVarArg() const; |
| 368 | |
| 369 | inline StringRef getStructName() const; |
| 370 | inline unsigned getStructNumElements() const; |
| 371 | inline Type *getStructElementType(unsigned N) const; |
| 372 | |
| 373 | inline uint64_t getArrayNumElements() const; |
| 374 | |
| 375 | Type *getArrayElementType() const { |
| 376 | assert(getTypeID() == ArrayTyID)((void)0); |
| 377 | return ContainedTys[0]; |
| 378 | } |
| 379 | |
| 380 | Type *getPointerElementType() const { |
| 381 | assert(getTypeID() == PointerTyID)((void)0); |
| 382 | return ContainedTys[0]; |
| 383 | } |
| 384 | |
| 385 | /// Given vector type, change the element type, |
| 386 | /// whilst keeping the old number of elements. |
| 387 | /// For non-vectors simply returns \p EltTy. |
| 388 | inline Type *getWithNewType(Type *EltTy) const; |
| 389 | |
| 390 | /// Given an integer or vector type, change the lane bitwidth to NewBitwidth, |
| 391 | /// whilst keeping the old number of lanes. |
| 392 | inline Type *getWithNewBitWidth(unsigned NewBitWidth) const; |
| 393 | |
| 394 | /// Given scalar/vector integer type, returns a type with elements twice as |
| 395 | /// wide as in the original type. For vectors, preserves element count. |
| 396 | inline Type *getExtendedType() const; |
| 397 | |
| 398 | /// Get the address space of this pointer or pointer vector type. |
| 399 | inline unsigned getPointerAddressSpace() const; |
| 400 | |
| 401 | //===--------------------------------------------------------------------===// |
| 402 | // Static members exported by the Type class itself. Useful for getting |
| 403 | // instances of Type. |
| 404 | // |
| 405 | |
| 406 | /// Return a type based on an identifier. |
| 407 | static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber); |
| 408 | |
| 409 | //===--------------------------------------------------------------------===// |
| 410 | // These are the builtin types that are always available. |
| 411 | // |
| 412 | static Type *getVoidTy(LLVMContext &C); |
| 413 | static Type *getLabelTy(LLVMContext &C); |
| 414 | static Type *getHalfTy(LLVMContext &C); |
| 415 | static Type *getBFloatTy(LLVMContext &C); |
| 416 | static Type *getFloatTy(LLVMContext &C); |
| 417 | static Type *getDoubleTy(LLVMContext &C); |
| 418 | static Type *getMetadataTy(LLVMContext &C); |
| 419 | static Type *getX86_FP80Ty(LLVMContext &C); |
| 420 | static Type *getFP128Ty(LLVMContext &C); |
| 421 | static Type *getPPC_FP128Ty(LLVMContext &C); |
| 422 | static Type *getX86_MMXTy(LLVMContext &C); |
| 423 | static Type *getX86_AMXTy(LLVMContext &C); |
| 424 | static Type *getTokenTy(LLVMContext &C); |
| 425 | static IntegerType *getIntNTy(LLVMContext &C, unsigned N); |
| 426 | static IntegerType *getInt1Ty(LLVMContext &C); |
| 427 | static IntegerType *getInt8Ty(LLVMContext &C); |
| 428 | static IntegerType *getInt16Ty(LLVMContext &C); |
| 429 | static IntegerType *getInt32Ty(LLVMContext &C); |
| 430 | static IntegerType *getInt64Ty(LLVMContext &C); |
| 431 | static IntegerType *getInt128Ty(LLVMContext &C); |
| 432 | template <typename ScalarTy> static Type *getScalarTy(LLVMContext &C) { |
| 433 | int noOfBits = sizeof(ScalarTy) * CHAR_BIT8; |
| 434 | if (std::is_integral<ScalarTy>::value) { |
| 435 | return (Type*) Type::getIntNTy(C, noOfBits); |
| 436 | } else if (std::is_floating_point<ScalarTy>::value) { |
| 437 | switch (noOfBits) { |
| 438 | case 32: |
| 439 | return Type::getFloatTy(C); |
| 440 | case 64: |
| 441 | return Type::getDoubleTy(C); |
| 442 | } |
| 443 | } |
| 444 | llvm_unreachable("Unsupported type in Type::getScalarTy")__builtin_unreachable(); |
| 445 | } |
| 446 | static Type *getFloatingPointTy(LLVMContext &C, const fltSemantics &S) { |
| 447 | Type *Ty; |
| 448 | if (&S == &APFloat::IEEEhalf()) |
| 449 | Ty = Type::getHalfTy(C); |
| 450 | else if (&S == &APFloat::BFloat()) |
| 451 | Ty = Type::getBFloatTy(C); |
| 452 | else if (&S == &APFloat::IEEEsingle()) |
| 453 | Ty = Type::getFloatTy(C); |
| 454 | else if (&S == &APFloat::IEEEdouble()) |
| 455 | Ty = Type::getDoubleTy(C); |
| 456 | else if (&S == &APFloat::x87DoubleExtended()) |
| 457 | Ty = Type::getX86_FP80Ty(C); |
| 458 | else if (&S == &APFloat::IEEEquad()) |
| 459 | Ty = Type::getFP128Ty(C); |
| 460 | else { |
| 461 | assert(&S == &APFloat::PPCDoubleDouble() && "Unknown FP format")((void)0); |
| 462 | Ty = Type::getPPC_FP128Ty(C); |
| 463 | } |
| 464 | return Ty; |
| 465 | } |
| 466 | |
| 467 | //===--------------------------------------------------------------------===// |
| 468 | // Convenience methods for getting pointer types with one of the above builtin |
| 469 | // types as pointee. |
| 470 | // |
| 471 | static PointerType *getHalfPtrTy(LLVMContext &C, unsigned AS = 0); |
| 472 | static PointerType *getBFloatPtrTy(LLVMContext &C, unsigned AS = 0); |
| 473 | static PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0); |
| 474 | static PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0); |
| 475 | static PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0); |
| 476 | static PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0); |
| 477 | static PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0); |
| 478 | static PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0); |
| 479 | static PointerType *getX86_AMXPtrTy(LLVMContext &C, unsigned AS = 0); |
| 480 | static PointerType *getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS = 0); |
| 481 | static PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0); |
| 482 | static PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0); |
| 483 | static PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0); |
| 484 | static PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0); |
| 485 | static PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0); |
| 486 | |
| 487 | /// Return a pointer to the current type. This is equivalent to |
| 488 | /// PointerType::get(Foo, AddrSpace). |
| 489 | /// TODO: Remove this after opaque pointer transition is complete. |
| 490 | PointerType *getPointerTo(unsigned AddrSpace = 0) const; |
| 491 | |
| 492 | private: |
| 493 | /// Derived types like structures and arrays are sized iff all of the members |
| 494 | /// of the type are sized as well. Since asking for their size is relatively |
| 495 | /// uncommon, move this operation out-of-line. |
| 496 | bool isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited = nullptr) const; |
| 497 | }; |
| 498 | |
| 499 | // Printing of types. |
| 500 | inline raw_ostream &operator<<(raw_ostream &OS, const Type &T) { |
| 501 | T.print(OS); |
| 502 | return OS; |
| 503 | } |
| 504 | |
| 505 | // allow isa<PointerType>(x) to work without DerivedTypes.h included. |
| 506 | template <> struct isa_impl<PointerType, Type> { |
| 507 | static inline bool doit(const Type &Ty) { |
| 508 | return Ty.getTypeID() == Type::PointerTyID; |
| 509 | } |
| 510 | }; |
| 511 | |
| 512 | // Create wrappers for C Binding types (see CBindingWrapping.h). |
| 513 | DEFINE_ISA_CONVERSION_FUNCTIONS(Type, LLVMTypeRef)inline Type *unwrap(LLVMTypeRef P) { return reinterpret_cast< Type*>(P); } inline LLVMTypeRef wrap(const Type *P) { return reinterpret_cast<LLVMTypeRef>(const_cast<Type*>( P)); } template<typename T> inline T *unwrap(LLVMTypeRef P) { return cast<T>(unwrap(P)); } |
| 514 | |
| 515 | /* Specialized opaque type conversions. |
| 516 | */ |
| 517 | inline Type **unwrap(LLVMTypeRef* Tys) { |
| 518 | return reinterpret_cast<Type**>(Tys); |
| 519 | } |
| 520 | |
| 521 | inline LLVMTypeRef *wrap(Type **Tys) { |
| 522 | return reinterpret_cast<LLVMTypeRef*>(const_cast<Type**>(Tys)); |
| 523 | } |
| 524 | |
| 525 | } // end namespace llvm |
| 526 | |
| 527 | #endif // LLVM_IR_TYPE_H |