| File: | src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support/Alignment.h |
| Warning: | line 85, column 47 The result of the left shift is undefined due to shifting by '255', which is greater or equal to the width of type 'uint64_t' |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// | |||
| 2 | // | |||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | |||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
| 6 | // | |||
| 7 | //===----------------------------------------------------------------------===// | |||
| 8 | // | |||
| 9 | // This file defines the function verifier interface, that can be used for some | |||
| 10 | // sanity checking of input to the system. | |||
| 11 | // | |||
| 12 | // Note that this does not provide full `Java style' security and verifications, | |||
| 13 | // instead it just tries to ensure that code is well-formed. | |||
| 14 | // | |||
| 15 | // * Both of a binary operator's parameters are of the same type | |||
| 16 | // * Verify that the indices of mem access instructions match other operands | |||
| 17 | // * Verify that arithmetic and other things are only performed on first-class | |||
| 18 | // types. Verify that shifts & logicals only happen on integrals f.e. | |||
| 19 | // * All of the constants in a switch statement are of the correct type | |||
| 20 | // * The code is in valid SSA form | |||
| 21 | // * It should be illegal to put a label into any other type (like a structure) | |||
| 22 | // or to return one. [except constant arrays!] | |||
| 23 | // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad | |||
| 24 | // * PHI nodes must have an entry for each predecessor, with no extras. | |||
| 25 | // * PHI nodes must be the first thing in a basic block, all grouped together | |||
| 26 | // * PHI nodes must have at least one entry | |||
| 27 | // * All basic blocks should only end with terminator insts, not contain them | |||
| 28 | // * The entry node to a function must not have predecessors | |||
| 29 | // * All Instructions must be embedded into a basic block | |||
| 30 | // * Functions cannot take a void-typed parameter | |||
| 31 | // * Verify that a function's argument list agrees with it's declared type. | |||
| 32 | // * It is illegal to specify a name for a void value. | |||
| 33 | // * It is illegal to have a internal global value with no initializer | |||
| 34 | // * It is illegal to have a ret instruction that returns a value that does not | |||
| 35 | // agree with the function return value type. | |||
| 36 | // * Function call argument types match the function prototype | |||
| 37 | // * A landing pad is defined by a landingpad instruction, and can be jumped to | |||
| 38 | // only by the unwind edge of an invoke instruction. | |||
| 39 | // * A landingpad instruction must be the first non-PHI instruction in the | |||
| 40 | // block. | |||
| 41 | // * Landingpad instructions must be in a function with a personality function. | |||
| 42 | // * All other things that are tested by asserts spread about the code... | |||
| 43 | // | |||
| 44 | //===----------------------------------------------------------------------===// | |||
| 45 | ||||
| 46 | #include "llvm/IR/Verifier.h" | |||
| 47 | #include "llvm/ADT/APFloat.h" | |||
| 48 | #include "llvm/ADT/APInt.h" | |||
| 49 | #include "llvm/ADT/ArrayRef.h" | |||
| 50 | #include "llvm/ADT/DenseMap.h" | |||
| 51 | #include "llvm/ADT/MapVector.h" | |||
| 52 | #include "llvm/ADT/Optional.h" | |||
| 53 | #include "llvm/ADT/STLExtras.h" | |||
| 54 | #include "llvm/ADT/SmallPtrSet.h" | |||
| 55 | #include "llvm/ADT/SmallSet.h" | |||
| 56 | #include "llvm/ADT/SmallVector.h" | |||
| 57 | #include "llvm/ADT/StringExtras.h" | |||
| 58 | #include "llvm/ADT/StringMap.h" | |||
| 59 | #include "llvm/ADT/StringRef.h" | |||
| 60 | #include "llvm/ADT/Twine.h" | |||
| 61 | #include "llvm/ADT/ilist.h" | |||
| 62 | #include "llvm/BinaryFormat/Dwarf.h" | |||
| 63 | #include "llvm/IR/Argument.h" | |||
| 64 | #include "llvm/IR/Attributes.h" | |||
| 65 | #include "llvm/IR/BasicBlock.h" | |||
| 66 | #include "llvm/IR/CFG.h" | |||
| 67 | #include "llvm/IR/CallingConv.h" | |||
| 68 | #include "llvm/IR/Comdat.h" | |||
| 69 | #include "llvm/IR/Constant.h" | |||
| 70 | #include "llvm/IR/ConstantRange.h" | |||
| 71 | #include "llvm/IR/Constants.h" | |||
| 72 | #include "llvm/IR/DataLayout.h" | |||
| 73 | #include "llvm/IR/DebugInfo.h" | |||
| 74 | #include "llvm/IR/DebugInfoMetadata.h" | |||
| 75 | #include "llvm/IR/DebugLoc.h" | |||
| 76 | #include "llvm/IR/DerivedTypes.h" | |||
| 77 | #include "llvm/IR/Dominators.h" | |||
| 78 | #include "llvm/IR/Function.h" | |||
| 79 | #include "llvm/IR/GlobalAlias.h" | |||
| 80 | #include "llvm/IR/GlobalValue.h" | |||
| 81 | #include "llvm/IR/GlobalVariable.h" | |||
| 82 | #include "llvm/IR/InlineAsm.h" | |||
| 83 | #include "llvm/IR/InstVisitor.h" | |||
| 84 | #include "llvm/IR/InstrTypes.h" | |||
| 85 | #include "llvm/IR/Instruction.h" | |||
| 86 | #include "llvm/IR/Instructions.h" | |||
| 87 | #include "llvm/IR/IntrinsicInst.h" | |||
| 88 | #include "llvm/IR/Intrinsics.h" | |||
| 89 | #include "llvm/IR/IntrinsicsWebAssembly.h" | |||
| 90 | #include "llvm/IR/LLVMContext.h" | |||
| 91 | #include "llvm/IR/Metadata.h" | |||
| 92 | #include "llvm/IR/Module.h" | |||
| 93 | #include "llvm/IR/ModuleSlotTracker.h" | |||
| 94 | #include "llvm/IR/PassManager.h" | |||
| 95 | #include "llvm/IR/Statepoint.h" | |||
| 96 | #include "llvm/IR/Type.h" | |||
| 97 | #include "llvm/IR/Use.h" | |||
| 98 | #include "llvm/IR/User.h" | |||
| 99 | #include "llvm/IR/Value.h" | |||
| 100 | #include "llvm/InitializePasses.h" | |||
| 101 | #include "llvm/Pass.h" | |||
| 102 | #include "llvm/Support/AtomicOrdering.h" | |||
| 103 | #include "llvm/Support/Casting.h" | |||
| 104 | #include "llvm/Support/CommandLine.h" | |||
| 105 | #include "llvm/Support/Debug.h" | |||
| 106 | #include "llvm/Support/ErrorHandling.h" | |||
| 107 | #include "llvm/Support/MathExtras.h" | |||
| 108 | #include "llvm/Support/raw_ostream.h" | |||
| 109 | #include <algorithm> | |||
| 110 | #include <cassert> | |||
| 111 | #include <cstdint> | |||
| 112 | #include <memory> | |||
| 113 | #include <string> | |||
| 114 | #include <utility> | |||
| 115 | ||||
| 116 | using namespace llvm; | |||
| 117 | ||||
| 118 | static cl::opt<bool> VerifyNoAliasScopeDomination( | |||
| 119 | "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false), | |||
| 120 | cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical " | |||
| 121 | "scopes are not dominating")); | |||
| 122 | ||||
| 123 | namespace llvm { | |||
| 124 | ||||
| 125 | struct VerifierSupport { | |||
| 126 | raw_ostream *OS; | |||
| 127 | const Module &M; | |||
| 128 | ModuleSlotTracker MST; | |||
| 129 | Triple TT; | |||
| 130 | const DataLayout &DL; | |||
| 131 | LLVMContext &Context; | |||
| 132 | ||||
| 133 | /// Track the brokenness of the module while recursively visiting. | |||
| 134 | bool Broken = false; | |||
| 135 | /// Broken debug info can be "recovered" from by stripping the debug info. | |||
| 136 | bool BrokenDebugInfo = false; | |||
| 137 | /// Whether to treat broken debug info as an error. | |||
| 138 | bool TreatBrokenDebugInfoAsError = true; | |||
| 139 | ||||
| 140 | explicit VerifierSupport(raw_ostream *OS, const Module &M) | |||
| 141 | : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()), | |||
| 142 | Context(M.getContext()) {} | |||
| 143 | ||||
| 144 | private: | |||
| 145 | void Write(const Module *M) { | |||
| 146 | *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; | |||
| 147 | } | |||
| 148 | ||||
| 149 | void Write(const Value *V) { | |||
| 150 | if (V) | |||
| 151 | Write(*V); | |||
| 152 | } | |||
| 153 | ||||
| 154 | void Write(const Value &V) { | |||
| 155 | if (isa<Instruction>(V)) { | |||
| 156 | V.print(*OS, MST); | |||
| 157 | *OS << '\n'; | |||
| 158 | } else { | |||
| 159 | V.printAsOperand(*OS, true, MST); | |||
| 160 | *OS << '\n'; | |||
| 161 | } | |||
| 162 | } | |||
| 163 | ||||
| 164 | void Write(const Metadata *MD) { | |||
| 165 | if (!MD) | |||
| 166 | return; | |||
| 167 | MD->print(*OS, MST, &M); | |||
| 168 | *OS << '\n'; | |||
| 169 | } | |||
| 170 | ||||
| 171 | template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { | |||
| 172 | Write(MD.get()); | |||
| 173 | } | |||
| 174 | ||||
| 175 | void Write(const NamedMDNode *NMD) { | |||
| 176 | if (!NMD) | |||
| 177 | return; | |||
| 178 | NMD->print(*OS, MST); | |||
| 179 | *OS << '\n'; | |||
| 180 | } | |||
| 181 | ||||
| 182 | void Write(Type *T) { | |||
| 183 | if (!T) | |||
| 184 | return; | |||
| 185 | *OS << ' ' << *T; | |||
| 186 | } | |||
| 187 | ||||
| 188 | void Write(const Comdat *C) { | |||
| 189 | if (!C) | |||
| 190 | return; | |||
| 191 | *OS << *C; | |||
| 192 | } | |||
| 193 | ||||
| 194 | void Write(const APInt *AI) { | |||
| 195 | if (!AI) | |||
| 196 | return; | |||
| 197 | *OS << *AI << '\n'; | |||
| 198 | } | |||
| 199 | ||||
| 200 | void Write(const unsigned i) { *OS << i << '\n'; } | |||
| 201 | ||||
| 202 | // NOLINTNEXTLINE(readability-identifier-naming) | |||
| 203 | void Write(const Attribute *A) { | |||
| 204 | if (!A) | |||
| 205 | return; | |||
| 206 | *OS << A->getAsString() << '\n'; | |||
| 207 | } | |||
| 208 | ||||
| 209 | // NOLINTNEXTLINE(readability-identifier-naming) | |||
| 210 | void Write(const AttributeSet *AS) { | |||
| 211 | if (!AS) | |||
| 212 | return; | |||
| 213 | *OS << AS->getAsString() << '\n'; | |||
| 214 | } | |||
| 215 | ||||
| 216 | // NOLINTNEXTLINE(readability-identifier-naming) | |||
| 217 | void Write(const AttributeList *AL) { | |||
| 218 | if (!AL) | |||
| 219 | return; | |||
| 220 | AL->print(*OS); | |||
| 221 | } | |||
| 222 | ||||
| 223 | template <typename T> void Write(ArrayRef<T> Vs) { | |||
| 224 | for (const T &V : Vs) | |||
| 225 | Write(V); | |||
| 226 | } | |||
| 227 | ||||
| 228 | template <typename T1, typename... Ts> | |||
| 229 | void WriteTs(const T1 &V1, const Ts &... Vs) { | |||
| 230 | Write(V1); | |||
| 231 | WriteTs(Vs...); | |||
| 232 | } | |||
| 233 | ||||
| 234 | template <typename... Ts> void WriteTs() {} | |||
| 235 | ||||
| 236 | public: | |||
| 237 | /// A check failed, so printout out the condition and the message. | |||
| 238 | /// | |||
| 239 | /// This provides a nice place to put a breakpoint if you want to see why | |||
| 240 | /// something is not correct. | |||
| 241 | void CheckFailed(const Twine &Message) { | |||
| 242 | if (OS) | |||
| 243 | *OS << Message << '\n'; | |||
| 244 | Broken = true; | |||
| 245 | } | |||
| 246 | ||||
| 247 | /// A check failed (with values to print). | |||
| 248 | /// | |||
| 249 | /// This calls the Message-only version so that the above is easier to set a | |||
| 250 | /// breakpoint on. | |||
| 251 | template <typename T1, typename... Ts> | |||
| 252 | void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { | |||
| 253 | CheckFailed(Message); | |||
| 254 | if (OS) | |||
| 255 | WriteTs(V1, Vs...); | |||
| 256 | } | |||
| 257 | ||||
| 258 | /// A debug info check failed. | |||
| 259 | void DebugInfoCheckFailed(const Twine &Message) { | |||
| 260 | if (OS) | |||
| 261 | *OS << Message << '\n'; | |||
| 262 | Broken |= TreatBrokenDebugInfoAsError; | |||
| 263 | BrokenDebugInfo = true; | |||
| 264 | } | |||
| 265 | ||||
| 266 | /// A debug info check failed (with values to print). | |||
| 267 | template <typename T1, typename... Ts> | |||
| 268 | void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, | |||
| 269 | const Ts &... Vs) { | |||
| 270 | DebugInfoCheckFailed(Message); | |||
| 271 | if (OS) | |||
| 272 | WriteTs(V1, Vs...); | |||
| 273 | } | |||
| 274 | }; | |||
| 275 | ||||
| 276 | } // namespace llvm | |||
| 277 | ||||
| 278 | namespace { | |||
| 279 | ||||
| 280 | class Verifier : public InstVisitor<Verifier>, VerifierSupport { | |||
| 281 | friend class InstVisitor<Verifier>; | |||
| 282 | ||||
| 283 | DominatorTree DT; | |||
| 284 | ||||
| 285 | /// When verifying a basic block, keep track of all of the | |||
| 286 | /// instructions we have seen so far. | |||
| 287 | /// | |||
| 288 | /// This allows us to do efficient dominance checks for the case when an | |||
| 289 | /// instruction has an operand that is an instruction in the same block. | |||
| 290 | SmallPtrSet<Instruction *, 16> InstsInThisBlock; | |||
| 291 | ||||
| 292 | /// Keep track of the metadata nodes that have been checked already. | |||
| 293 | SmallPtrSet<const Metadata *, 32> MDNodes; | |||
| 294 | ||||
| 295 | /// Keep track which DISubprogram is attached to which function. | |||
| 296 | DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; | |||
| 297 | ||||
| 298 | /// Track all DICompileUnits visited. | |||
| 299 | SmallPtrSet<const Metadata *, 2> CUVisited; | |||
| 300 | ||||
| 301 | /// The result type for a landingpad. | |||
| 302 | Type *LandingPadResultTy; | |||
| 303 | ||||
| 304 | /// Whether we've seen a call to @llvm.localescape in this function | |||
| 305 | /// already. | |||
| 306 | bool SawFrameEscape; | |||
| 307 | ||||
| 308 | /// Whether the current function has a DISubprogram attached to it. | |||
| 309 | bool HasDebugInfo = false; | |||
| 310 | ||||
| 311 | /// The current source language. | |||
| 312 | dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user; | |||
| 313 | ||||
| 314 | /// Whether source was present on the first DIFile encountered in each CU. | |||
| 315 | DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo; | |||
| 316 | ||||
| 317 | /// Stores the count of how many objects were passed to llvm.localescape for a | |||
| 318 | /// given function and the largest index passed to llvm.localrecover. | |||
| 319 | DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; | |||
| 320 | ||||
| 321 | // Maps catchswitches and cleanuppads that unwind to siblings to the | |||
| 322 | // terminators that indicate the unwind, used to detect cycles therein. | |||
| 323 | MapVector<Instruction *, Instruction *> SiblingFuncletInfo; | |||
| 324 | ||||
| 325 | /// Cache of constants visited in search of ConstantExprs. | |||
| 326 | SmallPtrSet<const Constant *, 32> ConstantExprVisited; | |||
| 327 | ||||
| 328 | /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. | |||
| 329 | SmallVector<const Function *, 4> DeoptimizeDeclarations; | |||
| 330 | ||||
| 331 | /// Cache of attribute lists verified. | |||
| 332 | SmallPtrSet<const void *, 32> AttributeListsVisited; | |||
| 333 | ||||
| 334 | // Verify that this GlobalValue is only used in this module. | |||
| 335 | // This map is used to avoid visiting uses twice. We can arrive at a user | |||
| 336 | // twice, if they have multiple operands. In particular for very large | |||
| 337 | // constant expressions, we can arrive at a particular user many times. | |||
| 338 | SmallPtrSet<const Value *, 32> GlobalValueVisited; | |||
| 339 | ||||
| 340 | // Keeps track of duplicate function argument debug info. | |||
| 341 | SmallVector<const DILocalVariable *, 16> DebugFnArgs; | |||
| 342 | ||||
| 343 | TBAAVerifier TBAAVerifyHelper; | |||
| 344 | ||||
| 345 | SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls; | |||
| 346 | ||||
| 347 | void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); | |||
| 348 | ||||
| 349 | public: | |||
| 350 | explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, | |||
| 351 | const Module &M) | |||
| 352 | : VerifierSupport(OS, M), LandingPadResultTy(nullptr), | |||
| 353 | SawFrameEscape(false), TBAAVerifyHelper(this) { | |||
| 354 | TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; | |||
| 355 | } | |||
| 356 | ||||
| 357 | bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } | |||
| 358 | ||||
| 359 | bool verify(const Function &F) { | |||
| 360 | assert(F.getParent() == &M &&((void)0) | |||
| 361 | "An instance of this class only works with a specific module!")((void)0); | |||
| 362 | ||||
| 363 | // First ensure the function is well-enough formed to compute dominance | |||
| 364 | // information, and directly compute a dominance tree. We don't rely on the | |||
| 365 | // pass manager to provide this as it isolates us from a potentially | |||
| 366 | // out-of-date dominator tree and makes it significantly more complex to run | |||
| 367 | // this code outside of a pass manager. | |||
| 368 | // FIXME: It's really gross that we have to cast away constness here. | |||
| 369 | if (!F.empty()) | |||
| 370 | DT.recalculate(const_cast<Function &>(F)); | |||
| 371 | ||||
| 372 | for (const BasicBlock &BB : F) { | |||
| 373 | if (!BB.empty() && BB.back().isTerminator()) | |||
| 374 | continue; | |||
| 375 | ||||
| 376 | if (OS) { | |||
| 377 | *OS << "Basic Block in function '" << F.getName() | |||
| 378 | << "' does not have terminator!\n"; | |||
| 379 | BB.printAsOperand(*OS, true, MST); | |||
| 380 | *OS << "\n"; | |||
| 381 | } | |||
| 382 | return false; | |||
| 383 | } | |||
| 384 | ||||
| 385 | Broken = false; | |||
| 386 | // FIXME: We strip const here because the inst visitor strips const. | |||
| 387 | visit(const_cast<Function &>(F)); | |||
| 388 | verifySiblingFuncletUnwinds(); | |||
| 389 | InstsInThisBlock.clear(); | |||
| 390 | DebugFnArgs.clear(); | |||
| 391 | LandingPadResultTy = nullptr; | |||
| 392 | SawFrameEscape = false; | |||
| 393 | SiblingFuncletInfo.clear(); | |||
| 394 | verifyNoAliasScopeDecl(); | |||
| 395 | NoAliasScopeDecls.clear(); | |||
| 396 | ||||
| 397 | return !Broken; | |||
| 398 | } | |||
| 399 | ||||
| 400 | /// Verify the module that this instance of \c Verifier was initialized with. | |||
| 401 | bool verify() { | |||
| 402 | Broken = false; | |||
| 403 | ||||
| 404 | // Collect all declarations of the llvm.experimental.deoptimize intrinsic. | |||
| 405 | for (const Function &F : M) | |||
| 406 | if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) | |||
| 407 | DeoptimizeDeclarations.push_back(&F); | |||
| 408 | ||||
| 409 | // Now that we've visited every function, verify that we never asked to | |||
| 410 | // recover a frame index that wasn't escaped. | |||
| 411 | verifyFrameRecoverIndices(); | |||
| 412 | for (const GlobalVariable &GV : M.globals()) | |||
| 413 | visitGlobalVariable(GV); | |||
| 414 | ||||
| 415 | for (const GlobalAlias &GA : M.aliases()) | |||
| 416 | visitGlobalAlias(GA); | |||
| 417 | ||||
| 418 | for (const NamedMDNode &NMD : M.named_metadata()) | |||
| 419 | visitNamedMDNode(NMD); | |||
| 420 | ||||
| 421 | for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) | |||
| 422 | visitComdat(SMEC.getValue()); | |||
| 423 | ||||
| 424 | visitModuleFlags(M); | |||
| 425 | visitModuleIdents(M); | |||
| 426 | visitModuleCommandLines(M); | |||
| 427 | ||||
| 428 | verifyCompileUnits(); | |||
| 429 | ||||
| 430 | verifyDeoptimizeCallingConvs(); | |||
| 431 | DISubprogramAttachments.clear(); | |||
| 432 | return !Broken; | |||
| 433 | } | |||
| 434 | ||||
| 435 | private: | |||
| 436 | /// Whether a metadata node is allowed to be, or contain, a DILocation. | |||
| 437 | enum class AreDebugLocsAllowed { No, Yes }; | |||
| 438 | ||||
| 439 | // Verification methods... | |||
| 440 | void visitGlobalValue(const GlobalValue &GV); | |||
| 441 | void visitGlobalVariable(const GlobalVariable &GV); | |||
| 442 | void visitGlobalAlias(const GlobalAlias &GA); | |||
| 443 | void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); | |||
| 444 | void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, | |||
| 445 | const GlobalAlias &A, const Constant &C); | |||
| 446 | void visitNamedMDNode(const NamedMDNode &NMD); | |||
| 447 | void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs); | |||
| 448 | void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); | |||
| 449 | void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); | |||
| 450 | void visitComdat(const Comdat &C); | |||
| 451 | void visitModuleIdents(const Module &M); | |||
| 452 | void visitModuleCommandLines(const Module &M); | |||
| 453 | void visitModuleFlags(const Module &M); | |||
| 454 | void visitModuleFlag(const MDNode *Op, | |||
| 455 | DenseMap<const MDString *, const MDNode *> &SeenIDs, | |||
| 456 | SmallVectorImpl<const MDNode *> &Requirements); | |||
| 457 | void visitModuleFlagCGProfileEntry(const MDOperand &MDO); | |||
| 458 | void visitFunction(const Function &F); | |||
| 459 | void visitBasicBlock(BasicBlock &BB); | |||
| 460 | void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); | |||
| 461 | void visitDereferenceableMetadata(Instruction &I, MDNode *MD); | |||
| 462 | void visitProfMetadata(Instruction &I, MDNode *MD); | |||
| 463 | void visitAnnotationMetadata(MDNode *Annotation); | |||
| 464 | ||||
| 465 | template <class Ty> bool isValidMetadataArray(const MDTuple &N); | |||
| 466 | #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); | |||
| 467 | #include "llvm/IR/Metadata.def" | |||
| 468 | void visitDIScope(const DIScope &N); | |||
| 469 | void visitDIVariable(const DIVariable &N); | |||
| 470 | void visitDILexicalBlockBase(const DILexicalBlockBase &N); | |||
| 471 | void visitDITemplateParameter(const DITemplateParameter &N); | |||
| 472 | ||||
| 473 | void visitTemplateParams(const MDNode &N, const Metadata &RawParams); | |||
| 474 | ||||
| 475 | // InstVisitor overrides... | |||
| 476 | using InstVisitor<Verifier>::visit; | |||
| 477 | void visit(Instruction &I); | |||
| 478 | ||||
| 479 | void visitTruncInst(TruncInst &I); | |||
| 480 | void visitZExtInst(ZExtInst &I); | |||
| 481 | void visitSExtInst(SExtInst &I); | |||
| 482 | void visitFPTruncInst(FPTruncInst &I); | |||
| 483 | void visitFPExtInst(FPExtInst &I); | |||
| 484 | void visitFPToUIInst(FPToUIInst &I); | |||
| 485 | void visitFPToSIInst(FPToSIInst &I); | |||
| 486 | void visitUIToFPInst(UIToFPInst &I); | |||
| 487 | void visitSIToFPInst(SIToFPInst &I); | |||
| 488 | void visitIntToPtrInst(IntToPtrInst &I); | |||
| 489 | void visitPtrToIntInst(PtrToIntInst &I); | |||
| 490 | void visitBitCastInst(BitCastInst &I); | |||
| 491 | void visitAddrSpaceCastInst(AddrSpaceCastInst &I); | |||
| 492 | void visitPHINode(PHINode &PN); | |||
| 493 | void visitCallBase(CallBase &Call); | |||
| 494 | void visitUnaryOperator(UnaryOperator &U); | |||
| 495 | void visitBinaryOperator(BinaryOperator &B); | |||
| 496 | void visitICmpInst(ICmpInst &IC); | |||
| 497 | void visitFCmpInst(FCmpInst &FC); | |||
| 498 | void visitExtractElementInst(ExtractElementInst &EI); | |||
| 499 | void visitInsertElementInst(InsertElementInst &EI); | |||
| 500 | void visitShuffleVectorInst(ShuffleVectorInst &EI); | |||
| 501 | void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } | |||
| 502 | void visitCallInst(CallInst &CI); | |||
| 503 | void visitInvokeInst(InvokeInst &II); | |||
| 504 | void visitGetElementPtrInst(GetElementPtrInst &GEP); | |||
| 505 | void visitLoadInst(LoadInst &LI); | |||
| 506 | void visitStoreInst(StoreInst &SI); | |||
| 507 | void verifyDominatesUse(Instruction &I, unsigned i); | |||
| 508 | void visitInstruction(Instruction &I); | |||
| 509 | void visitTerminator(Instruction &I); | |||
| 510 | void visitBranchInst(BranchInst &BI); | |||
| 511 | void visitReturnInst(ReturnInst &RI); | |||
| 512 | void visitSwitchInst(SwitchInst &SI); | |||
| 513 | void visitIndirectBrInst(IndirectBrInst &BI); | |||
| 514 | void visitCallBrInst(CallBrInst &CBI); | |||
| 515 | void visitSelectInst(SelectInst &SI); | |||
| 516 | void visitUserOp1(Instruction &I); | |||
| 517 | void visitUserOp2(Instruction &I) { visitUserOp1(I); } | |||
| 518 | void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); | |||
| 519 | void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); | |||
| 520 | void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); | |||
| 521 | void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); | |||
| 522 | void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); | |||
| 523 | void visitAtomicRMWInst(AtomicRMWInst &RMWI); | |||
| 524 | void visitFenceInst(FenceInst &FI); | |||
| 525 | void visitAllocaInst(AllocaInst &AI); | |||
| 526 | void visitExtractValueInst(ExtractValueInst &EVI); | |||
| 527 | void visitInsertValueInst(InsertValueInst &IVI); | |||
| 528 | void visitEHPadPredecessors(Instruction &I); | |||
| 529 | void visitLandingPadInst(LandingPadInst &LPI); | |||
| 530 | void visitResumeInst(ResumeInst &RI); | |||
| 531 | void visitCatchPadInst(CatchPadInst &CPI); | |||
| 532 | void visitCatchReturnInst(CatchReturnInst &CatchReturn); | |||
| 533 | void visitCleanupPadInst(CleanupPadInst &CPI); | |||
| 534 | void visitFuncletPadInst(FuncletPadInst &FPI); | |||
| 535 | void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); | |||
| 536 | void visitCleanupReturnInst(CleanupReturnInst &CRI); | |||
| 537 | ||||
| 538 | void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); | |||
| 539 | void verifySwiftErrorValue(const Value *SwiftErrorVal); | |||
| 540 | void verifyTailCCMustTailAttrs(AttrBuilder Attrs, StringRef Context); | |||
| 541 | void verifyMustTailCall(CallInst &CI); | |||
| 542 | bool verifyAttributeCount(AttributeList Attrs, unsigned Params); | |||
| 543 | void verifyAttributeTypes(AttributeSet Attrs, const Value *V); | |||
| 544 | void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); | |||
| 545 | void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr, | |||
| 546 | const Value *V); | |||
| 547 | void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, | |||
| 548 | const Value *V, bool IsIntrinsic); | |||
| 549 | void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); | |||
| 550 | ||||
| 551 | void visitConstantExprsRecursively(const Constant *EntryC); | |||
| 552 | void visitConstantExpr(const ConstantExpr *CE); | |||
| 553 | void verifyStatepoint(const CallBase &Call); | |||
| 554 | void verifyFrameRecoverIndices(); | |||
| 555 | void verifySiblingFuncletUnwinds(); | |||
| 556 | ||||
| 557 | void verifyFragmentExpression(const DbgVariableIntrinsic &I); | |||
| 558 | template <typename ValueOrMetadata> | |||
| 559 | void verifyFragmentExpression(const DIVariable &V, | |||
| 560 | DIExpression::FragmentInfo Fragment, | |||
| 561 | ValueOrMetadata *Desc); | |||
| 562 | void verifyFnArgs(const DbgVariableIntrinsic &I); | |||
| 563 | void verifyNotEntryValue(const DbgVariableIntrinsic &I); | |||
| 564 | ||||
| 565 | /// Module-level debug info verification... | |||
| 566 | void verifyCompileUnits(); | |||
| 567 | ||||
| 568 | /// Module-level verification that all @llvm.experimental.deoptimize | |||
| 569 | /// declarations share the same calling convention. | |||
| 570 | void verifyDeoptimizeCallingConvs(); | |||
| 571 | ||||
| 572 | /// Verify all-or-nothing property of DIFile source attribute within a CU. | |||
| 573 | void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F); | |||
| 574 | ||||
| 575 | /// Verify the llvm.experimental.noalias.scope.decl declarations | |||
| 576 | void verifyNoAliasScopeDecl(); | |||
| 577 | }; | |||
| 578 | ||||
| 579 | } // end anonymous namespace | |||
| 580 | ||||
| 581 | /// We know that cond should be true, if not print an error message. | |||
| 582 | #define Assert(C, ...)do { if (!(C)) { CheckFailed(...); return; } } while (false) \ | |||
| 583 | do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) | |||
| 584 | ||||
| 585 | /// We know that a debug info condition should be true, if not print | |||
| 586 | /// an error message. | |||
| 587 | #define AssertDI(C, ...)do { if (!(C)) { DebugInfoCheckFailed(...); return; } } while (false) \ | |||
| 588 | do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false) | |||
| 589 | ||||
| 590 | void Verifier::visit(Instruction &I) { | |||
| 591 | for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) | |||
| 592 | Assert(I.getOperand(i) != nullptr, "Operand is null", &I)do { if (!(I.getOperand(i) != nullptr)) { CheckFailed("Operand is null" , &I); return; } } while (false); | |||
| 593 | InstVisitor<Verifier>::visit(I); | |||
| 594 | } | |||
| 595 | ||||
| 596 | // Helper to recursively iterate over indirect users. By | |||
| 597 | // returning false, the callback can ask to stop recursing | |||
| 598 | // further. | |||
| 599 | static void forEachUser(const Value *User, | |||
| 600 | SmallPtrSet<const Value *, 32> &Visited, | |||
| 601 | llvm::function_ref<bool(const Value *)> Callback) { | |||
| 602 | if (!Visited.insert(User).second) | |||
| 603 | return; | |||
| 604 | for (const Value *TheNextUser : User->materialized_users()) | |||
| 605 | if (Callback(TheNextUser)) | |||
| 606 | forEachUser(TheNextUser, Visited, Callback); | |||
| 607 | } | |||
| 608 | ||||
| 609 | void Verifier::visitGlobalValue(const GlobalValue &GV) { | |||
| 610 | Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),do { if (!(!GV.isDeclaration() || GV.hasValidDeclarationLinkage ())) { CheckFailed("Global is external, but doesn't have external or weak linkage!" , &GV); return; } } while (false) | |||
| 611 | "Global is external, but doesn't have external or weak linkage!", &GV)do { if (!(!GV.isDeclaration() || GV.hasValidDeclarationLinkage ())) { CheckFailed("Global is external, but doesn't have external or weak linkage!" , &GV); return; } } while (false); | |||
| 612 | ||||
| 613 | if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) | |||
| 614 | Assert(GO->getAlignment() <= Value::MaximumAlignment,do { if (!(GO->getAlignment() <= Value::MaximumAlignment )) { CheckFailed("huge alignment values are unsupported", GO) ; return; } } while (false) | |||
| 615 | "huge alignment values are unsupported", GO)do { if (!(GO->getAlignment() <= Value::MaximumAlignment )) { CheckFailed("huge alignment values are unsupported", GO) ; return; } } while (false); | |||
| 616 | Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),do { if (!(!GV.hasAppendingLinkage() || isa<GlobalVariable >(GV))) { CheckFailed("Only global variables can have appending linkage!" , &GV); return; } } while (false) | |||
| 617 | "Only global variables can have appending linkage!", &GV)do { if (!(!GV.hasAppendingLinkage() || isa<GlobalVariable >(GV))) { CheckFailed("Only global variables can have appending linkage!" , &GV); return; } } while (false); | |||
| 618 | ||||
| 619 | if (GV.hasAppendingLinkage()) { | |||
| 620 | const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); | |||
| 621 | Assert(GVar && GVar->getValueType()->isArrayTy(),do { if (!(GVar && GVar->getValueType()->isArrayTy ())) { CheckFailed("Only global arrays can have appending linkage!" , GVar); return; } } while (false) | |||
| 622 | "Only global arrays can have appending linkage!", GVar)do { if (!(GVar && GVar->getValueType()->isArrayTy ())) { CheckFailed("Only global arrays can have appending linkage!" , GVar); return; } } while (false); | |||
| 623 | } | |||
| 624 | ||||
| 625 | if (GV.isDeclarationForLinker()) | |||
| 626 | Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV)do { if (!(!GV.hasComdat())) { CheckFailed("Declaration may not be in a Comdat!" , &GV); return; } } while (false); | |||
| 627 | ||||
| 628 | if (GV.hasDLLImportStorageClass()) { | |||
| 629 | Assert(!GV.isDSOLocal(),do { if (!(!GV.isDSOLocal())) { CheckFailed("GlobalValue with DLLImport Storage is dso_local!" , &GV); return; } } while (false) | |||
| 630 | "GlobalValue with DLLImport Storage is dso_local!", &GV)do { if (!(!GV.isDSOLocal())) { CheckFailed("GlobalValue with DLLImport Storage is dso_local!" , &GV); return; } } while (false); | |||
| 631 | ||||
| 632 | Assert((GV.isDeclaration() &&do { if (!((GV.isDeclaration() && (GV.hasExternalLinkage () || GV.hasExternalWeakLinkage())) || GV.hasAvailableExternallyLinkage ())) { CheckFailed("Global is marked as dllimport, but not external" , &GV); return; } } while (false) | |||
| 633 | (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) ||do { if (!((GV.isDeclaration() && (GV.hasExternalLinkage () || GV.hasExternalWeakLinkage())) || GV.hasAvailableExternallyLinkage ())) { CheckFailed("Global is marked as dllimport, but not external" , &GV); return; } } while (false) | |||
| 634 | GV.hasAvailableExternallyLinkage(),do { if (!((GV.isDeclaration() && (GV.hasExternalLinkage () || GV.hasExternalWeakLinkage())) || GV.hasAvailableExternallyLinkage ())) { CheckFailed("Global is marked as dllimport, but not external" , &GV); return; } } while (false) | |||
| 635 | "Global is marked as dllimport, but not external", &GV)do { if (!((GV.isDeclaration() && (GV.hasExternalLinkage () || GV.hasExternalWeakLinkage())) || GV.hasAvailableExternallyLinkage ())) { CheckFailed("Global is marked as dllimport, but not external" , &GV); return; } } while (false); | |||
| 636 | } | |||
| 637 | ||||
| 638 | if (GV.isImplicitDSOLocal()) | |||
| 639 | Assert(GV.isDSOLocal(),do { if (!(GV.isDSOLocal())) { CheckFailed("GlobalValue with local linkage or non-default " "visibility must be dso_local!", &GV); return; } } while (false) | |||
| 640 | "GlobalValue with local linkage or non-default "do { if (!(GV.isDSOLocal())) { CheckFailed("GlobalValue with local linkage or non-default " "visibility must be dso_local!", &GV); return; } } while (false) | |||
| 641 | "visibility must be dso_local!",do { if (!(GV.isDSOLocal())) { CheckFailed("GlobalValue with local linkage or non-default " "visibility must be dso_local!", &GV); return; } } while (false) | |||
| 642 | &GV)do { if (!(GV.isDSOLocal())) { CheckFailed("GlobalValue with local linkage or non-default " "visibility must be dso_local!", &GV); return; } } while (false); | |||
| 643 | ||||
| 644 | forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { | |||
| 645 | if (const Instruction *I = dyn_cast<Instruction>(V)) { | |||
| 646 | if (!I->getParent() || !I->getParent()->getParent()) | |||
| 647 | CheckFailed("Global is referenced by parentless instruction!", &GV, &M, | |||
| 648 | I); | |||
| 649 | else if (I->getParent()->getParent()->getParent() != &M) | |||
| 650 | CheckFailed("Global is referenced in a different module!", &GV, &M, I, | |||
| 651 | I->getParent()->getParent(), | |||
| 652 | I->getParent()->getParent()->getParent()); | |||
| 653 | return false; | |||
| 654 | } else if (const Function *F = dyn_cast<Function>(V)) { | |||
| 655 | if (F->getParent() != &M) | |||
| 656 | CheckFailed("Global is used by function in a different module", &GV, &M, | |||
| 657 | F, F->getParent()); | |||
| 658 | return false; | |||
| 659 | } | |||
| 660 | return true; | |||
| 661 | }); | |||
| 662 | } | |||
| 663 | ||||
| 664 | void Verifier::visitGlobalVariable(const GlobalVariable &GV) { | |||
| 665 | if (GV.hasInitializer()) { | |||
| 666 | Assert(GV.getInitializer()->getType() == GV.getValueType(),do { if (!(GV.getInitializer()->getType() == GV.getValueType ())) { CheckFailed("Global variable initializer type does not match global " "variable type!", &GV); return; } } while (false) | |||
| 667 | "Global variable initializer type does not match global "do { if (!(GV.getInitializer()->getType() == GV.getValueType ())) { CheckFailed("Global variable initializer type does not match global " "variable type!", &GV); return; } } while (false) | |||
| 668 | "variable type!",do { if (!(GV.getInitializer()->getType() == GV.getValueType ())) { CheckFailed("Global variable initializer type does not match global " "variable type!", &GV); return; } } while (false) | |||
| 669 | &GV)do { if (!(GV.getInitializer()->getType() == GV.getValueType ())) { CheckFailed("Global variable initializer type does not match global " "variable type!", &GV); return; } } while (false); | |||
| 670 | // If the global has common linkage, it must have a zero initializer and | |||
| 671 | // cannot be constant. | |||
| 672 | if (GV.hasCommonLinkage()) { | |||
| 673 | Assert(GV.getInitializer()->isNullValue(),do { if (!(GV.getInitializer()->isNullValue())) { CheckFailed ("'common' global must have a zero initializer!", &GV); return ; } } while (false) | |||
| 674 | "'common' global must have a zero initializer!", &GV)do { if (!(GV.getInitializer()->isNullValue())) { CheckFailed ("'common' global must have a zero initializer!", &GV); return ; } } while (false); | |||
| 675 | Assert(!GV.isConstant(), "'common' global may not be marked constant!",do { if (!(!GV.isConstant())) { CheckFailed("'common' global may not be marked constant!" , &GV); return; } } while (false) | |||
| 676 | &GV)do { if (!(!GV.isConstant())) { CheckFailed("'common' global may not be marked constant!" , &GV); return; } } while (false); | |||
| 677 | Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV)do { if (!(!GV.hasComdat())) { CheckFailed("'common' global may not be in a Comdat!" , &GV); return; } } while (false); | |||
| 678 | } | |||
| 679 | } | |||
| 680 | ||||
| 681 | if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || | |||
| 682 | GV.getName() == "llvm.global_dtors")) { | |||
| 683 | Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage())) { CheckFailed("invalid linkage for intrinsic global variable" , &GV); return; } } while (false) | |||
| 684 | "invalid linkage for intrinsic global variable", &GV)do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage())) { CheckFailed("invalid linkage for intrinsic global variable" , &GV); return; } } while (false); | |||
| 685 | // Don't worry about emitting an error for it not being an array, | |||
| 686 | // visitGlobalValue will complain on appending non-array. | |||
| 687 | if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { | |||
| 688 | StructType *STy = dyn_cast<StructType>(ATy->getElementType()); | |||
| 689 | PointerType *FuncPtrTy = | |||
| 690 | FunctionType::get(Type::getVoidTy(Context), false)-> | |||
| 691 | getPointerTo(DL.getProgramAddressSpace()); | |||
| 692 | Assert(STy &&do { if (!(STy && (STy->getNumElements() == 2 || STy ->getNumElements() == 3) && STy->getTypeAtIndex (0u)->isIntegerTy(32) && STy->getTypeAtIndex(1) == FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable" , &GV); return; } } while (false) | |||
| 693 | (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&do { if (!(STy && (STy->getNumElements() == 2 || STy ->getNumElements() == 3) && STy->getTypeAtIndex (0u)->isIntegerTy(32) && STy->getTypeAtIndex(1) == FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable" , &GV); return; } } while (false) | |||
| 694 | STy->getTypeAtIndex(0u)->isIntegerTy(32) &&do { if (!(STy && (STy->getNumElements() == 2 || STy ->getNumElements() == 3) && STy->getTypeAtIndex (0u)->isIntegerTy(32) && STy->getTypeAtIndex(1) == FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable" , &GV); return; } } while (false) | |||
| 695 | STy->getTypeAtIndex(1) == FuncPtrTy,do { if (!(STy && (STy->getNumElements() == 2 || STy ->getNumElements() == 3) && STy->getTypeAtIndex (0u)->isIntegerTy(32) && STy->getTypeAtIndex(1) == FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable" , &GV); return; } } while (false) | |||
| 696 | "wrong type for intrinsic global variable", &GV)do { if (!(STy && (STy->getNumElements() == 2 || STy ->getNumElements() == 3) && STy->getTypeAtIndex (0u)->isIntegerTy(32) && STy->getTypeAtIndex(1) == FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable" , &GV); return; } } while (false); | |||
| 697 | Assert(STy->getNumElements() == 3,do { if (!(STy->getNumElements() == 3)) { CheckFailed("the third field of the element type is mandatory, " "specify i8* null to migrate from the obsoleted 2-field form" ); return; } } while (false) | |||
| 698 | "the third field of the element type is mandatory, "do { if (!(STy->getNumElements() == 3)) { CheckFailed("the third field of the element type is mandatory, " "specify i8* null to migrate from the obsoleted 2-field form" ); return; } } while (false) | |||
| 699 | "specify i8* null to migrate from the obsoleted 2-field form")do { if (!(STy->getNumElements() == 3)) { CheckFailed("the third field of the element type is mandatory, " "specify i8* null to migrate from the obsoleted 2-field form" ); return; } } while (false); | |||
| 700 | Type *ETy = STy->getTypeAtIndex(2); | |||
| 701 | Type *Int8Ty = Type::getInt8Ty(ETy->getContext()); | |||
| 702 | Assert(ETy->isPointerTy() &&do { if (!(ETy->isPointerTy() && cast<PointerType >(ETy)->isOpaqueOrPointeeTypeMatches(Int8Ty))) { CheckFailed ("wrong type for intrinsic global variable", &GV); return ; } } while (false) | |||
| 703 | cast<PointerType>(ETy)->isOpaqueOrPointeeTypeMatches(Int8Ty),do { if (!(ETy->isPointerTy() && cast<PointerType >(ETy)->isOpaqueOrPointeeTypeMatches(Int8Ty))) { CheckFailed ("wrong type for intrinsic global variable", &GV); return ; } } while (false) | |||
| 704 | "wrong type for intrinsic global variable", &GV)do { if (!(ETy->isPointerTy() && cast<PointerType >(ETy)->isOpaqueOrPointeeTypeMatches(Int8Ty))) { CheckFailed ("wrong type for intrinsic global variable", &GV); return ; } } while (false); | |||
| 705 | } | |||
| 706 | } | |||
| 707 | ||||
| 708 | if (GV.hasName() && (GV.getName() == "llvm.used" || | |||
| 709 | GV.getName() == "llvm.compiler.used")) { | |||
| 710 | Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage())) { CheckFailed("invalid linkage for intrinsic global variable" , &GV); return; } } while (false) | |||
| 711 | "invalid linkage for intrinsic global variable", &GV)do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage())) { CheckFailed("invalid linkage for intrinsic global variable" , &GV); return; } } while (false); | |||
| 712 | Type *GVType = GV.getValueType(); | |||
| 713 | if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { | |||
| 714 | PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); | |||
| 715 | Assert(PTy, "wrong type for intrinsic global variable", &GV)do { if (!(PTy)) { CheckFailed("wrong type for intrinsic global variable" , &GV); return; } } while (false); | |||
| 716 | if (GV.hasInitializer()) { | |||
| 717 | const Constant *Init = GV.getInitializer(); | |||
| 718 | const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); | |||
| 719 | Assert(InitArray, "wrong initalizer for intrinsic global variable",do { if (!(InitArray)) { CheckFailed("wrong initalizer for intrinsic global variable" , Init); return; } } while (false) | |||
| 720 | Init)do { if (!(InitArray)) { CheckFailed("wrong initalizer for intrinsic global variable" , Init); return; } } while (false); | |||
| 721 | for (Value *Op : InitArray->operands()) { | |||
| 722 | Value *V = Op->stripPointerCasts(); | |||
| 723 | Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||do { if (!(isa<GlobalVariable>(V) || isa<Function> (V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member" , V); return; } } while (false) | |||
| 724 | isa<GlobalAlias>(V),do { if (!(isa<GlobalVariable>(V) || isa<Function> (V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member" , V); return; } } while (false) | |||
| 725 | "invalid llvm.used member", V)do { if (!(isa<GlobalVariable>(V) || isa<Function> (V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member" , V); return; } } while (false); | |||
| 726 | Assert(V->hasName(), "members of llvm.used must be named", V)do { if (!(V->hasName())) { CheckFailed("members of llvm.used must be named" , V); return; } } while (false); | |||
| 727 | } | |||
| 728 | } | |||
| 729 | } | |||
| 730 | } | |||
| 731 | ||||
| 732 | // Visit any debug info attachments. | |||
| 733 | SmallVector<MDNode *, 1> MDs; | |||
| 734 | GV.getMetadata(LLVMContext::MD_dbg, MDs); | |||
| 735 | for (auto *MD : MDs) { | |||
| 736 | if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) | |||
| 737 | visitDIGlobalVariableExpression(*GVE); | |||
| 738 | else | |||
| 739 | AssertDI(false, "!dbg attachment of global variable must be a "do { if (!(false)) { DebugInfoCheckFailed("!dbg attachment of global variable must be a " "DIGlobalVariableExpression"); return; } } while (false) | |||
| 740 | "DIGlobalVariableExpression")do { if (!(false)) { DebugInfoCheckFailed("!dbg attachment of global variable must be a " "DIGlobalVariableExpression"); return; } } while (false); | |||
| 741 | } | |||
| 742 | ||||
| 743 | // Scalable vectors cannot be global variables, since we don't know | |||
| 744 | // the runtime size. If the global is an array containing scalable vectors, | |||
| 745 | // that will be caught by the isValidElementType methods in StructType or | |||
| 746 | // ArrayType instead. | |||
| 747 | Assert(!isa<ScalableVectorType>(GV.getValueType()),do { if (!(!isa<ScalableVectorType>(GV.getValueType())) ) { CheckFailed("Globals cannot contain scalable vectors", & GV); return; } } while (false) | |||
| 748 | "Globals cannot contain scalable vectors", &GV)do { if (!(!isa<ScalableVectorType>(GV.getValueType())) ) { CheckFailed("Globals cannot contain scalable vectors", & GV); return; } } while (false); | |||
| 749 | ||||
| 750 | if (auto *STy = dyn_cast<StructType>(GV.getValueType())) | |||
| 751 | Assert(!STy->containsScalableVectorType(),do { if (!(!STy->containsScalableVectorType())) { CheckFailed ("Globals cannot contain scalable vectors", &GV); return; } } while (false) | |||
| 752 | "Globals cannot contain scalable vectors", &GV)do { if (!(!STy->containsScalableVectorType())) { CheckFailed ("Globals cannot contain scalable vectors", &GV); return; } } while (false); | |||
| 753 | ||||
| 754 | if (!GV.hasInitializer()) { | |||
| 755 | visitGlobalValue(GV); | |||
| 756 | return; | |||
| 757 | } | |||
| 758 | ||||
| 759 | // Walk any aggregate initializers looking for bitcasts between address spaces | |||
| 760 | visitConstantExprsRecursively(GV.getInitializer()); | |||
| 761 | ||||
| 762 | visitGlobalValue(GV); | |||
| 763 | } | |||
| 764 | ||||
| 765 | void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { | |||
| 766 | SmallPtrSet<const GlobalAlias*, 4> Visited; | |||
| 767 | Visited.insert(&GA); | |||
| 768 | visitAliaseeSubExpr(Visited, GA, C); | |||
| 769 | } | |||
| 770 | ||||
| 771 | void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, | |||
| 772 | const GlobalAlias &GA, const Constant &C) { | |||
| 773 | if (const auto *GV = dyn_cast<GlobalValue>(&C)) { | |||
| 774 | Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",do { if (!(!GV->isDeclarationForLinker())) { CheckFailed("Alias must point to a definition" , &GA); return; } } while (false) | |||
| 775 | &GA)do { if (!(!GV->isDeclarationForLinker())) { CheckFailed("Alias must point to a definition" , &GA); return; } } while (false); | |||
| 776 | ||||
| 777 | if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { | |||
| 778 | Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA)do { if (!(Visited.insert(GA2).second)) { CheckFailed("Aliases cannot form a cycle" , &GA); return; } } while (false); | |||
| 779 | ||||
| 780 | Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",do { if (!(!GA2->isInterposable())) { CheckFailed("Alias cannot point to an interposable alias" , &GA); return; } } while (false) | |||
| 781 | &GA)do { if (!(!GA2->isInterposable())) { CheckFailed("Alias cannot point to an interposable alias" , &GA); return; } } while (false); | |||
| 782 | } else { | |||
| 783 | // Only continue verifying subexpressions of GlobalAliases. | |||
| 784 | // Do not recurse into global initializers. | |||
| 785 | return; | |||
| 786 | } | |||
| 787 | } | |||
| 788 | ||||
| 789 | if (const auto *CE = dyn_cast<ConstantExpr>(&C)) | |||
| 790 | visitConstantExprsRecursively(CE); | |||
| 791 | ||||
| 792 | for (const Use &U : C.operands()) { | |||
| 793 | Value *V = &*U; | |||
| 794 | if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) | |||
| 795 | visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); | |||
| 796 | else if (const auto *C2 = dyn_cast<Constant>(V)) | |||
| 797 | visitAliaseeSubExpr(Visited, GA, *C2); | |||
| 798 | } | |||
| 799 | } | |||
| 800 | ||||
| 801 | void Verifier::visitGlobalAlias(const GlobalAlias &GA) { | |||
| 802 | Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed ("Alias should have private, internal, linkonce, weak, linkonce_odr, " "weak_odr, or external linkage!", &GA); return; } } while (false) | |||
| 803 | "Alias should have private, internal, linkonce, weak, linkonce_odr, "do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed ("Alias should have private, internal, linkonce, weak, linkonce_odr, " "weak_odr, or external linkage!", &GA); return; } } while (false) | |||
| 804 | "weak_odr, or external linkage!",do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed ("Alias should have private, internal, linkonce, weak, linkonce_odr, " "weak_odr, or external linkage!", &GA); return; } } while (false) | |||
| 805 | &GA)do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed ("Alias should have private, internal, linkonce, weak, linkonce_odr, " "weak_odr, or external linkage!", &GA); return; } } while (false); | |||
| 806 | const Constant *Aliasee = GA.getAliasee(); | |||
| 807 | Assert(Aliasee, "Aliasee cannot be NULL!", &GA)do { if (!(Aliasee)) { CheckFailed("Aliasee cannot be NULL!", &GA); return; } } while (false); | |||
| 808 | Assert(GA.getType() == Aliasee->getType(),do { if (!(GA.getType() == Aliasee->getType())) { CheckFailed ("Alias and aliasee types should match!", &GA); return; } } while (false) | |||
| 809 | "Alias and aliasee types should match!", &GA)do { if (!(GA.getType() == Aliasee->getType())) { CheckFailed ("Alias and aliasee types should match!", &GA); return; } } while (false); | |||
| 810 | ||||
| 811 | Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),do { if (!(isa<GlobalValue>(Aliasee) || isa<ConstantExpr >(Aliasee))) { CheckFailed("Aliasee should be either GlobalValue or ConstantExpr" , &GA); return; } } while (false) | |||
| 812 | "Aliasee should be either GlobalValue or ConstantExpr", &GA)do { if (!(isa<GlobalValue>(Aliasee) || isa<ConstantExpr >(Aliasee))) { CheckFailed("Aliasee should be either GlobalValue or ConstantExpr" , &GA); return; } } while (false); | |||
| 813 | ||||
| 814 | visitAliaseeSubExpr(GA, *Aliasee); | |||
| 815 | ||||
| 816 | visitGlobalValue(GA); | |||
| 817 | } | |||
| 818 | ||||
| 819 | void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { | |||
| 820 | // There used to be various other llvm.dbg.* nodes, but we don't support | |||
| 821 | // upgrading them and we want to reserve the namespace for future uses. | |||
| 822 | if (NMD.getName().startswith("llvm.dbg.")) | |||
| 823 | AssertDI(NMD.getName() == "llvm.dbg.cu",do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed ("unrecognized named metadata node in the llvm.dbg namespace" , &NMD); return; } } while (false) | |||
| 824 | "unrecognized named metadata node in the llvm.dbg namespace",do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed ("unrecognized named metadata node in the llvm.dbg namespace" , &NMD); return; } } while (false) | |||
| 825 | &NMD)do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed ("unrecognized named metadata node in the llvm.dbg namespace" , &NMD); return; } } while (false); | |||
| 826 | for (const MDNode *MD : NMD.operands()) { | |||
| 827 | if (NMD.getName() == "llvm.dbg.cu") | |||
| 828 | AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD)do { if (!(MD && isa<DICompileUnit>(MD))) { DebugInfoCheckFailed ("invalid compile unit", &NMD, MD); return; } } while (false ); | |||
| 829 | ||||
| 830 | if (!MD) | |||
| 831 | continue; | |||
| 832 | ||||
| 833 | visitMDNode(*MD, AreDebugLocsAllowed::Yes); | |||
| 834 | } | |||
| 835 | } | |||
| 836 | ||||
| 837 | void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) { | |||
| 838 | // Only visit each node once. Metadata can be mutually recursive, so this | |||
| 839 | // avoids infinite recursion here, as well as being an optimization. | |||
| 840 | if (!MDNodes.insert(&MD).second) | |||
| 841 | return; | |||
| 842 | ||||
| 843 | Assert(&MD.getContext() == &Context,do { if (!(&MD.getContext() == &Context)) { CheckFailed ("MDNode context does not match Module context!", &MD); return ; } } while (false) | |||
| 844 | "MDNode context does not match Module context!", &MD)do { if (!(&MD.getContext() == &Context)) { CheckFailed ("MDNode context does not match Module context!", &MD); return ; } } while (false); | |||
| 845 | ||||
| 846 | switch (MD.getMetadataID()) { | |||
| 847 | default: | |||
| 848 | llvm_unreachable("Invalid MDNode subclass")__builtin_unreachable(); | |||
| 849 | case Metadata::MDTupleKind: | |||
| 850 | break; | |||
| 851 | #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ | |||
| 852 | case Metadata::CLASS##Kind: \ | |||
| 853 | visit##CLASS(cast<CLASS>(MD)); \ | |||
| 854 | break; | |||
| 855 | #include "llvm/IR/Metadata.def" | |||
| 856 | } | |||
| 857 | ||||
| 858 | for (const Metadata *Op : MD.operands()) { | |||
| 859 | if (!Op) | |||
| 860 | continue; | |||
| 861 | Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",do { if (!(!isa<LocalAsMetadata>(Op))) { CheckFailed("Invalid operand for global metadata!" , &MD, Op); return; } } while (false) | |||
| 862 | &MD, Op)do { if (!(!isa<LocalAsMetadata>(Op))) { CheckFailed("Invalid operand for global metadata!" , &MD, Op); return; } } while (false); | |||
| 863 | AssertDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes,do { if (!(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed ::Yes)) { DebugInfoCheckFailed("DILocation not allowed within this metadata node" , &MD, Op); return; } } while (false) | |||
| 864 | "DILocation not allowed within this metadata node", &MD, Op)do { if (!(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed ::Yes)) { DebugInfoCheckFailed("DILocation not allowed within this metadata node" , &MD, Op); return; } } while (false); | |||
| 865 | if (auto *N = dyn_cast<MDNode>(Op)) { | |||
| 866 | visitMDNode(*N, AllowLocs); | |||
| 867 | continue; | |||
| 868 | } | |||
| 869 | if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { | |||
| 870 | visitValueAsMetadata(*V, nullptr); | |||
| 871 | continue; | |||
| 872 | } | |||
| 873 | } | |||
| 874 | ||||
| 875 | // Check these last, so we diagnose problems in operands first. | |||
| 876 | Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD)do { if (!(!MD.isTemporary())) { CheckFailed("Expected no forward declarations!" , &MD); return; } } while (false); | |||
| 877 | Assert(MD.isResolved(), "All nodes should be resolved!", &MD)do { if (!(MD.isResolved())) { CheckFailed("All nodes should be resolved!" , &MD); return; } } while (false); | |||
| 878 | } | |||
| 879 | ||||
| 880 | void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { | |||
| 881 | Assert(MD.getValue(), "Expected valid value", &MD)do { if (!(MD.getValue())) { CheckFailed("Expected valid value" , &MD); return; } } while (false); | |||
| 882 | Assert(!MD.getValue()->getType()->isMetadataTy(),do { if (!(!MD.getValue()->getType()->isMetadataTy())) { CheckFailed("Unexpected metadata round-trip through values", &MD, MD.getValue()); return; } } while (false) | |||
| 883 | "Unexpected metadata round-trip through values", &MD, MD.getValue())do { if (!(!MD.getValue()->getType()->isMetadataTy())) { CheckFailed("Unexpected metadata round-trip through values", &MD, MD.getValue()); return; } } while (false); | |||
| 884 | ||||
| 885 | auto *L = dyn_cast<LocalAsMetadata>(&MD); | |||
| 886 | if (!L) | |||
| 887 | return; | |||
| 888 | ||||
| 889 | Assert(F, "function-local metadata used outside a function", L)do { if (!(F)) { CheckFailed("function-local metadata used outside a function" , L); return; } } while (false); | |||
| 890 | ||||
| 891 | // If this was an instruction, bb, or argument, verify that it is in the | |||
| 892 | // function that we expect. | |||
| 893 | Function *ActualF = nullptr; | |||
| 894 | if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { | |||
| 895 | Assert(I->getParent(), "function-local metadata not in basic block", L, I)do { if (!(I->getParent())) { CheckFailed("function-local metadata not in basic block" , L, I); return; } } while (false); | |||
| 896 | ActualF = I->getParent()->getParent(); | |||
| 897 | } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) | |||
| 898 | ActualF = BB->getParent(); | |||
| 899 | else if (Argument *A = dyn_cast<Argument>(L->getValue())) | |||
| 900 | ActualF = A->getParent(); | |||
| 901 | assert(ActualF && "Unimplemented function local metadata case!")((void)0); | |||
| 902 | ||||
| 903 | Assert(ActualF == F, "function-local metadata used in wrong function", L)do { if (!(ActualF == F)) { CheckFailed("function-local metadata used in wrong function" , L); return; } } while (false); | |||
| 904 | } | |||
| 905 | ||||
| 906 | void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { | |||
| 907 | Metadata *MD = MDV.getMetadata(); | |||
| 908 | if (auto *N = dyn_cast<MDNode>(MD)) { | |||
| 909 | visitMDNode(*N, AreDebugLocsAllowed::No); | |||
| 910 | return; | |||
| 911 | } | |||
| 912 | ||||
| 913 | // Only visit each node once. Metadata can be mutually recursive, so this | |||
| 914 | // avoids infinite recursion here, as well as being an optimization. | |||
| 915 | if (!MDNodes.insert(MD).second) | |||
| 916 | return; | |||
| 917 | ||||
| 918 | if (auto *V = dyn_cast<ValueAsMetadata>(MD)) | |||
| 919 | visitValueAsMetadata(*V, F); | |||
| 920 | } | |||
| 921 | ||||
| 922 | static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } | |||
| 923 | static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } | |||
| 924 | static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } | |||
| 925 | ||||
| 926 | void Verifier::visitDILocation(const DILocation &N) { | |||
| 927 | AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope> (N.getRawScope()))) { DebugInfoCheckFailed("location requires a valid scope" , &N, N.getRawScope()); return; } } while (false) | |||
| 928 | "location requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope> (N.getRawScope()))) { DebugInfoCheckFailed("location requires a valid scope" , &N, N.getRawScope()); return; } } while (false); | |||
| 929 | if (auto *IA = N.getRawInlinedAt()) | |||
| 930 | AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA)do { if (!(isa<DILocation>(IA))) { DebugInfoCheckFailed ("inlined-at should be a location", &N, IA); return; } } while (false); | |||
| 931 | if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) | |||
| 932 | AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N)do { if (!(SP->isDefinition())) { DebugInfoCheckFailed("scope points into the type hierarchy" , &N); return; } } while (false); | |||
| 933 | } | |||
| 934 | ||||
| 935 | void Verifier::visitGenericDINode(const GenericDINode &N) { | |||
| 936 | AssertDI(N.getTag(), "invalid tag", &N)do { if (!(N.getTag())) { DebugInfoCheckFailed("invalid tag", &N); return; } } while (false); | |||
| 937 | } | |||
| 938 | ||||
| 939 | void Verifier::visitDIScope(const DIScope &N) { | |||
| 940 | if (auto *F = N.getRawFile()) | |||
| 941 | AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file" , &N, F); return; } } while (false); | |||
| 942 | } | |||
| 943 | ||||
| 944 | void Verifier::visitDISubrange(const DISubrange &N) { | |||
| 945 | AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subrange_type)) { DebugInfoCheckFailed ("invalid tag", &N); return; } } while (false); | |||
| 946 | bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang); | |||
| 947 | AssertDI(HasAssumedSizedArraySupport || N.getRawCountNode() ||do { if (!(HasAssumedSizedArraySupport || N.getRawCountNode() || N.getRawUpperBound())) { DebugInfoCheckFailed("Subrange must contain count or upperBound" , &N); return; } } while (false) | |||
| 948 | N.getRawUpperBound(),do { if (!(HasAssumedSizedArraySupport || N.getRawCountNode() || N.getRawUpperBound())) { DebugInfoCheckFailed("Subrange must contain count or upperBound" , &N); return; } } while (false) | |||
| 949 | "Subrange must contain count or upperBound", &N)do { if (!(HasAssumedSizedArraySupport || N.getRawCountNode() || N.getRawUpperBound())) { DebugInfoCheckFailed("Subrange must contain count or upperBound" , &N); return; } } while (false); | |||
| 950 | AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(),do { if (!(!N.getRawCountNode() || !N.getRawUpperBound())) { DebugInfoCheckFailed ("Subrange can have any one of count or upperBound", &N); return; } } while (false) | |||
| 951 | "Subrange can have any one of count or upperBound", &N)do { if (!(!N.getRawCountNode() || !N.getRawUpperBound())) { DebugInfoCheckFailed ("Subrange can have any one of count or upperBound", &N); return; } } while (false); | |||
| 952 | auto *CBound = N.getRawCountNode(); | |||
| 953 | AssertDI(!CBound || isa<ConstantAsMetadata>(CBound) ||do { if (!(!CBound || isa<ConstantAsMetadata>(CBound) || isa<DIVariable>(CBound) || isa<DIExpression>(CBound ))) { DebugInfoCheckFailed("Count must be signed constant or DIVariable or DIExpression" , &N); return; } } while (false) | |||
| 954 | isa<DIVariable>(CBound) || isa<DIExpression>(CBound),do { if (!(!CBound || isa<ConstantAsMetadata>(CBound) || isa<DIVariable>(CBound) || isa<DIExpression>(CBound ))) { DebugInfoCheckFailed("Count must be signed constant or DIVariable or DIExpression" , &N); return; } } while (false) | |||
| 955 | "Count must be signed constant or DIVariable or DIExpression", &N)do { if (!(!CBound || isa<ConstantAsMetadata>(CBound) || isa<DIVariable>(CBound) || isa<DIExpression>(CBound ))) { DebugInfoCheckFailed("Count must be signed constant or DIVariable or DIExpression" , &N); return; } } while (false); | |||
| 956 | auto Count = N.getCount(); | |||
| 957 | AssertDI(!Count || !Count.is<ConstantInt *>() ||do { if (!(!Count || !Count.is<ConstantInt *>() || Count .get<ConstantInt *>()->getSExtValue() >= -1)) { DebugInfoCheckFailed ("invalid subrange count", &N); return; } } while (false) | |||
| 958 | Count.get<ConstantInt *>()->getSExtValue() >= -1,do { if (!(!Count || !Count.is<ConstantInt *>() || Count .get<ConstantInt *>()->getSExtValue() >= -1)) { DebugInfoCheckFailed ("invalid subrange count", &N); return; } } while (false) | |||
| 959 | "invalid subrange count", &N)do { if (!(!Count || !Count.is<ConstantInt *>() || Count .get<ConstantInt *>()->getSExtValue() >= -1)) { DebugInfoCheckFailed ("invalid subrange count", &N); return; } } while (false); | |||
| 960 | auto *LBound = N.getRawLowerBound(); | |||
| 961 | AssertDI(!LBound || isa<ConstantAsMetadata>(LBound) ||do { if (!(!LBound || isa<ConstantAsMetadata>(LBound) || isa<DIVariable>(LBound) || isa<DIExpression>(LBound ))) { DebugInfoCheckFailed("LowerBound must be signed constant or DIVariable or DIExpression" , &N); return; } } while (false) | |||
| 962 | isa<DIVariable>(LBound) || isa<DIExpression>(LBound),do { if (!(!LBound || isa<ConstantAsMetadata>(LBound) || isa<DIVariable>(LBound) || isa<DIExpression>(LBound ))) { DebugInfoCheckFailed("LowerBound must be signed constant or DIVariable or DIExpression" , &N); return; } } while (false) | |||
| 963 | "LowerBound must be signed constant or DIVariable or DIExpression",do { if (!(!LBound || isa<ConstantAsMetadata>(LBound) || isa<DIVariable>(LBound) || isa<DIExpression>(LBound ))) { DebugInfoCheckFailed("LowerBound must be signed constant or DIVariable or DIExpression" , &N); return; } } while (false) | |||
| 964 | &N)do { if (!(!LBound || isa<ConstantAsMetadata>(LBound) || isa<DIVariable>(LBound) || isa<DIExpression>(LBound ))) { DebugInfoCheckFailed("LowerBound must be signed constant or DIVariable or DIExpression" , &N); return; } } while (false); | |||
| 965 | auto *UBound = N.getRawUpperBound(); | |||
| 966 | AssertDI(!UBound || isa<ConstantAsMetadata>(UBound) ||do { if (!(!UBound || isa<ConstantAsMetadata>(UBound) || isa<DIVariable>(UBound) || isa<DIExpression>(UBound ))) { DebugInfoCheckFailed("UpperBound must be signed constant or DIVariable or DIExpression" , &N); return; } } while (false) | |||
| 967 | isa<DIVariable>(UBound) || isa<DIExpression>(UBound),do { if (!(!UBound || isa<ConstantAsMetadata>(UBound) || isa<DIVariable>(UBound) || isa<DIExpression>(UBound ))) { DebugInfoCheckFailed("UpperBound must be signed constant or DIVariable or DIExpression" , &N); return; } } while (false) | |||
| 968 | "UpperBound must be signed constant or DIVariable or DIExpression",do { if (!(!UBound || isa<ConstantAsMetadata>(UBound) || isa<DIVariable>(UBound) || isa<DIExpression>(UBound ))) { DebugInfoCheckFailed("UpperBound must be signed constant or DIVariable or DIExpression" , &N); return; } } while (false) | |||
| 969 | &N)do { if (!(!UBound || isa<ConstantAsMetadata>(UBound) || isa<DIVariable>(UBound) || isa<DIExpression>(UBound ))) { DebugInfoCheckFailed("UpperBound must be signed constant or DIVariable or DIExpression" , &N); return; } } while (false); | |||
| 970 | auto *Stride = N.getRawStride(); | |||
| 971 | AssertDI(!Stride || isa<ConstantAsMetadata>(Stride) ||do { if (!(!Stride || isa<ConstantAsMetadata>(Stride) || isa<DIVariable>(Stride) || isa<DIExpression>(Stride ))) { DebugInfoCheckFailed("Stride must be signed constant or DIVariable or DIExpression" , &N); return; } } while (false) | |||
| 972 | isa<DIVariable>(Stride) || isa<DIExpression>(Stride),do { if (!(!Stride || isa<ConstantAsMetadata>(Stride) || isa<DIVariable>(Stride) || isa<DIExpression>(Stride ))) { DebugInfoCheckFailed("Stride must be signed constant or DIVariable or DIExpression" , &N); return; } } while (false) | |||
| 973 | "Stride must be signed constant or DIVariable or DIExpression", &N)do { if (!(!Stride || isa<ConstantAsMetadata>(Stride) || isa<DIVariable>(Stride) || isa<DIExpression>(Stride ))) { DebugInfoCheckFailed("Stride must be signed constant or DIVariable or DIExpression" , &N); return; } } while (false); | |||
| 974 | } | |||
| 975 | ||||
| 976 | void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) { | |||
| 977 | AssertDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_generic_subrange)) { DebugInfoCheckFailed ("invalid tag", &N); return; } } while (false); | |||
| 978 | AssertDI(N.getRawCountNode() || N.getRawUpperBound(),do { if (!(N.getRawCountNode() || N.getRawUpperBound())) { DebugInfoCheckFailed ("GenericSubrange must contain count or upperBound", &N); return; } } while (false) | |||
| 979 | "GenericSubrange must contain count or upperBound", &N)do { if (!(N.getRawCountNode() || N.getRawUpperBound())) { DebugInfoCheckFailed ("GenericSubrange must contain count or upperBound", &N); return; } } while (false); | |||
| 980 | AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(),do { if (!(!N.getRawCountNode() || !N.getRawUpperBound())) { DebugInfoCheckFailed ("GenericSubrange can have any one of count or upperBound", & N); return; } } while (false) | |||
| 981 | "GenericSubrange can have any one of count or upperBound", &N)do { if (!(!N.getRawCountNode() || !N.getRawUpperBound())) { DebugInfoCheckFailed ("GenericSubrange can have any one of count or upperBound", & N); return; } } while (false); | |||
| 982 | auto *CBound = N.getRawCountNode(); | |||
| 983 | AssertDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound),do { if (!(!CBound || isa<DIVariable>(CBound) || isa< DIExpression>(CBound))) { DebugInfoCheckFailed("Count must be signed constant or DIVariable or DIExpression" , &N); return; } } while (false) | |||
| 984 | "Count must be signed constant or DIVariable or DIExpression", &N)do { if (!(!CBound || isa<DIVariable>(CBound) || isa< DIExpression>(CBound))) { DebugInfoCheckFailed("Count must be signed constant or DIVariable or DIExpression" , &N); return; } } while (false); | |||
| 985 | auto *LBound = N.getRawLowerBound(); | |||
| 986 | AssertDI(LBound, "GenericSubrange must contain lowerBound", &N)do { if (!(LBound)) { DebugInfoCheckFailed("GenericSubrange must contain lowerBound" , &N); return; } } while (false); | |||
| 987 | AssertDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound),do { if (!(isa<DIVariable>(LBound) || isa<DIExpression >(LBound))) { DebugInfoCheckFailed("LowerBound must be signed constant or DIVariable or DIExpression" , &N); return; } } while (false) | |||
| 988 | "LowerBound must be signed constant or DIVariable or DIExpression",do { if (!(isa<DIVariable>(LBound) || isa<DIExpression >(LBound))) { DebugInfoCheckFailed("LowerBound must be signed constant or DIVariable or DIExpression" , &N); return; } } while (false) | |||
| 989 | &N)do { if (!(isa<DIVariable>(LBound) || isa<DIExpression >(LBound))) { DebugInfoCheckFailed("LowerBound must be signed constant or DIVariable or DIExpression" , &N); return; } } while (false); | |||
| 990 | auto *UBound = N.getRawUpperBound(); | |||
| 991 | AssertDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound),do { if (!(!UBound || isa<DIVariable>(UBound) || isa< DIExpression>(UBound))) { DebugInfoCheckFailed("UpperBound must be signed constant or DIVariable or DIExpression" , &N); return; } } while (false) | |||
| 992 | "UpperBound must be signed constant or DIVariable or DIExpression",do { if (!(!UBound || isa<DIVariable>(UBound) || isa< DIExpression>(UBound))) { DebugInfoCheckFailed("UpperBound must be signed constant or DIVariable or DIExpression" , &N); return; } } while (false) | |||
| 993 | &N)do { if (!(!UBound || isa<DIVariable>(UBound) || isa< DIExpression>(UBound))) { DebugInfoCheckFailed("UpperBound must be signed constant or DIVariable or DIExpression" , &N); return; } } while (false); | |||
| 994 | auto *Stride = N.getRawStride(); | |||
| 995 | AssertDI(Stride, "GenericSubrange must contain stride", &N)do { if (!(Stride)) { DebugInfoCheckFailed("GenericSubrange must contain stride" , &N); return; } } while (false); | |||
| 996 | AssertDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride),do { if (!(isa<DIVariable>(Stride) || isa<DIExpression >(Stride))) { DebugInfoCheckFailed("Stride must be signed constant or DIVariable or DIExpression" , &N); return; } } while (false) | |||
| 997 | "Stride must be signed constant or DIVariable or DIExpression", &N)do { if (!(isa<DIVariable>(Stride) || isa<DIExpression >(Stride))) { DebugInfoCheckFailed("Stride must be signed constant or DIVariable or DIExpression" , &N); return; } } while (false); | |||
| 998 | } | |||
| 999 | ||||
| 1000 | void Verifier::visitDIEnumerator(const DIEnumerator &N) { | |||
| 1001 | AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_enumerator)) { DebugInfoCheckFailed ("invalid tag", &N); return; } } while (false); | |||
| 1002 | } | |||
| 1003 | ||||
| 1004 | void Verifier::visitDIBasicType(const DIBasicType &N) { | |||
| 1005 | AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag( ) == dwarf::DW_TAG_unspecified_type || N.getTag() == dwarf::DW_TAG_string_type )) { DebugInfoCheckFailed("invalid tag", &N); return; } } while (false) | |||
| 1006 | N.getTag() == dwarf::DW_TAG_unspecified_type ||do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag( ) == dwarf::DW_TAG_unspecified_type || N.getTag() == dwarf::DW_TAG_string_type )) { DebugInfoCheckFailed("invalid tag", &N); return; } } while (false) | |||
| 1007 | N.getTag() == dwarf::DW_TAG_string_type,do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag( ) == dwarf::DW_TAG_unspecified_type || N.getTag() == dwarf::DW_TAG_string_type )) { DebugInfoCheckFailed("invalid tag", &N); return; } } while (false) | |||
| 1008 | "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag( ) == dwarf::DW_TAG_unspecified_type || N.getTag() == dwarf::DW_TAG_string_type )) { DebugInfoCheckFailed("invalid tag", &N); return; } } while (false); | |||
| 1009 | } | |||
| 1010 | ||||
| 1011 | void Verifier::visitDIStringType(const DIStringType &N) { | |||
| 1012 | AssertDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_string_type)) { DebugInfoCheckFailed ("invalid tag", &N); return; } } while (false); | |||
| 1013 | AssertDI(!(N.isBigEndian() && N.isLittleEndian()) ,do { if (!(!(N.isBigEndian() && N.isLittleEndian()))) { DebugInfoCheckFailed("has conflicting flags", &N); return ; } } while (false) | |||
| 1014 | "has conflicting flags", &N)do { if (!(!(N.isBigEndian() && N.isLittleEndian()))) { DebugInfoCheckFailed("has conflicting flags", &N); return ; } } while (false); | |||
| 1015 | } | |||
| 1016 | ||||
| 1017 | void Verifier::visitDIDerivedType(const DIDerivedType &N) { | |||
| 1018 | // Common scope checks. | |||
| 1019 | visitDIScope(N); | |||
| 1020 | ||||
| 1021 | AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type || N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf:: DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type || N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() == dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member || N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf ::DW_TAG_friend || N.getTag() == dwarf::DW_TAG_set_type)) { DebugInfoCheckFailed ("invalid tag", &N); return; } } while (false) | |||
| 1022 | N.getTag() == dwarf::DW_TAG_pointer_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type || N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf:: DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type || N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() == dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member || N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf ::DW_TAG_friend || N.getTag() == dwarf::DW_TAG_set_type)) { DebugInfoCheckFailed ("invalid tag", &N); return; } } while (false) | |||
| 1023 | N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type || N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf:: DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type || N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() == dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member || N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf ::DW_TAG_friend || N.getTag() == dwarf::DW_TAG_set_type)) { DebugInfoCheckFailed ("invalid tag", &N); return; } } while (false) | |||
| 1024 | N.getTag() == dwarf::DW_TAG_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type || N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf:: DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type || N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() == dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member || N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf ::DW_TAG_friend || N.getTag() == dwarf::DW_TAG_set_type)) { DebugInfoCheckFailed ("invalid tag", &N); return; } } while (false) | |||
| 1025 | N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type || N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf:: DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type || N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() == dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member || N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf ::DW_TAG_friend || N.getTag() == dwarf::DW_TAG_set_type)) { DebugInfoCheckFailed ("invalid tag", &N); return; } } while (false) | |||
| 1026 | N.getTag() == dwarf::DW_TAG_const_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type || N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf:: DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type || N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() == dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member || N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf ::DW_TAG_friend || N.getTag() == dwarf::DW_TAG_set_type)) { DebugInfoCheckFailed ("invalid tag", &N); return; } } while (false) | |||
| 1027 | N.getTag() == dwarf::DW_TAG_volatile_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type || N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf:: DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type || N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() == dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member || N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf ::DW_TAG_friend || N.getTag() == dwarf::DW_TAG_set_type)) { DebugInfoCheckFailed ("invalid tag", &N); return; } } while (false) | |||
| 1028 | N.getTag() == dwarf::DW_TAG_restrict_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type || N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf:: DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type || N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() == dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member || N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf ::DW_TAG_friend || N.getTag() == dwarf::DW_TAG_set_type)) { DebugInfoCheckFailed ("invalid tag", &N); return; } } while (false) | |||
| 1029 | N.getTag() == dwarf::DW_TAG_atomic_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type || N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf:: DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type || N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() == dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member || N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf ::DW_TAG_friend || N.getTag() == dwarf::DW_TAG_set_type)) { DebugInfoCheckFailed ("invalid tag", &N); return; } } while (false) | |||
| 1030 | N.getTag() == dwarf::DW_TAG_member ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type || N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf:: DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type || N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() == dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member || N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf ::DW_TAG_friend || N.getTag() == dwarf::DW_TAG_set_type)) { DebugInfoCheckFailed ("invalid tag", &N); return; } } while (false) | |||
| 1031 | N.getTag() == dwarf::DW_TAG_inheritance ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type || N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf:: DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type || N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() == dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member || N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf ::DW_TAG_friend || N.getTag() == dwarf::DW_TAG_set_type)) { DebugInfoCheckFailed ("invalid tag", &N); return; } } while (false) | |||
| 1032 | N.getTag() == dwarf::DW_TAG_friend ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type || N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf:: DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type || N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() == dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member || N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf ::DW_TAG_friend || N.getTag() == dwarf::DW_TAG_set_type)) { DebugInfoCheckFailed ("invalid tag", &N); return; } } while (false) | |||
| 1033 | N.getTag() == dwarf::DW_TAG_set_type,do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type || N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf:: DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type || N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() == dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member || N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf ::DW_TAG_friend || N.getTag() == dwarf::DW_TAG_set_type)) { DebugInfoCheckFailed ("invalid tag", &N); return; } } while (false) | |||
| 1034 | "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type || N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf:: DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type || N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() == dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member || N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf ::DW_TAG_friend || N.getTag() == dwarf::DW_TAG_set_type)) { DebugInfoCheckFailed ("invalid tag", &N); return; } } while (false); | |||
| 1035 | if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { | |||
| 1036 | AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,do { if (!(isType(N.getRawExtraData()))) { DebugInfoCheckFailed ("invalid pointer to member type", &N, N.getRawExtraData( )); return; } } while (false) | |||
| 1037 | N.getRawExtraData())do { if (!(isType(N.getRawExtraData()))) { DebugInfoCheckFailed ("invalid pointer to member type", &N, N.getRawExtraData( )); return; } } while (false); | |||
| 1038 | } | |||
| 1039 | ||||
| 1040 | if (N.getTag() == dwarf::DW_TAG_set_type) { | |||
| 1041 | if (auto *T = N.getRawBaseType()) { | |||
| 1042 | auto *Enum = dyn_cast_or_null<DICompositeType>(T); | |||
| 1043 | auto *Basic = dyn_cast_or_null<DIBasicType>(T); | |||
| 1044 | AssertDI(do { if (!((Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type ) || (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned || Basic->getEncoding() == dwarf::DW_ATE_signed || Basic-> getEncoding() == dwarf::DW_ATE_unsigned_char || Basic->getEncoding () == dwarf::DW_ATE_signed_char || Basic->getEncoding() == dwarf::DW_ATE_boolean)))) { DebugInfoCheckFailed("invalid set base type" , &N, T); return; } } while (false) | |||
| 1045 | (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) ||do { if (!((Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type ) || (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned || Basic->getEncoding() == dwarf::DW_ATE_signed || Basic-> getEncoding() == dwarf::DW_ATE_unsigned_char || Basic->getEncoding () == dwarf::DW_ATE_signed_char || Basic->getEncoding() == dwarf::DW_ATE_boolean)))) { DebugInfoCheckFailed("invalid set base type" , &N, T); return; } } while (false) | |||
| 1046 | (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned ||do { if (!((Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type ) || (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned || Basic->getEncoding() == dwarf::DW_ATE_signed || Basic-> getEncoding() == dwarf::DW_ATE_unsigned_char || Basic->getEncoding () == dwarf::DW_ATE_signed_char || Basic->getEncoding() == dwarf::DW_ATE_boolean)))) { DebugInfoCheckFailed("invalid set base type" , &N, T); return; } } while (false) | |||
| 1047 | Basic->getEncoding() == dwarf::DW_ATE_signed ||do { if (!((Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type ) || (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned || Basic->getEncoding() == dwarf::DW_ATE_signed || Basic-> getEncoding() == dwarf::DW_ATE_unsigned_char || Basic->getEncoding () == dwarf::DW_ATE_signed_char || Basic->getEncoding() == dwarf::DW_ATE_boolean)))) { DebugInfoCheckFailed("invalid set base type" , &N, T); return; } } while (false) | |||
| 1048 | Basic->getEncoding() == dwarf::DW_ATE_unsigned_char ||do { if (!((Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type ) || (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned || Basic->getEncoding() == dwarf::DW_ATE_signed || Basic-> getEncoding() == dwarf::DW_ATE_unsigned_char || Basic->getEncoding () == dwarf::DW_ATE_signed_char || Basic->getEncoding() == dwarf::DW_ATE_boolean)))) { DebugInfoCheckFailed("invalid set base type" , &N, T); return; } } while (false) | |||
| 1049 | Basic->getEncoding() == dwarf::DW_ATE_signed_char ||do { if (!((Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type ) || (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned || Basic->getEncoding() == dwarf::DW_ATE_signed || Basic-> getEncoding() == dwarf::DW_ATE_unsigned_char || Basic->getEncoding () == dwarf::DW_ATE_signed_char || Basic->getEncoding() == dwarf::DW_ATE_boolean)))) { DebugInfoCheckFailed("invalid set base type" , &N, T); return; } } while (false) | |||
| 1050 | Basic->getEncoding() == dwarf::DW_ATE_boolean)),do { if (!((Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type ) || (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned || Basic->getEncoding() == dwarf::DW_ATE_signed || Basic-> getEncoding() == dwarf::DW_ATE_unsigned_char || Basic->getEncoding () == dwarf::DW_ATE_signed_char || Basic->getEncoding() == dwarf::DW_ATE_boolean)))) { DebugInfoCheckFailed("invalid set base type" , &N, T); return; } } while (false) | |||
| 1051 | "invalid set base type", &N, T)do { if (!((Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type ) || (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned || Basic->getEncoding() == dwarf::DW_ATE_signed || Basic-> getEncoding() == dwarf::DW_ATE_unsigned_char || Basic->getEncoding () == dwarf::DW_ATE_signed_char || Basic->getEncoding() == dwarf::DW_ATE_boolean)))) { DebugInfoCheckFailed("invalid set base type" , &N, T); return; } } while (false); | |||
| 1052 | } | |||
| 1053 | } | |||
| 1054 | ||||
| 1055 | AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed( "invalid scope", &N, N.getRawScope()); return; } } while ( false); | |||
| 1056 | AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed ("invalid base type", &N, N.getRawBaseType()); return; } } while (false) | |||
| 1057 | N.getRawBaseType())do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed ("invalid base type", &N, N.getRawBaseType()); return; } } while (false); | |||
| 1058 | ||||
| 1059 | if (N.getDWARFAddressSpace()) { | |||
| 1060 | AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag () == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type )) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types" , &N); return; } } while (false) | |||
| 1061 | N.getTag() == dwarf::DW_TAG_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag () == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type )) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types" , &N); return; } } while (false) | |||
| 1062 | N.getTag() == dwarf::DW_TAG_rvalue_reference_type,do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag () == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type )) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types" , &N); return; } } while (false) | |||
| 1063 | "DWARF address space only applies to pointer or reference types",do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag () == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type )) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types" , &N); return; } } while (false) | |||
| 1064 | &N)do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag () == dwarf::DW_TAG_reference_type || N.getTag() == dwarf::DW_TAG_rvalue_reference_type )) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types" , &N); return; } } while (false); | |||
| 1065 | } | |||
| 1066 | } | |||
| 1067 | ||||
| 1068 | /// Detect mutually exclusive flags. | |||
| 1069 | static bool hasConflictingReferenceFlags(unsigned Flags) { | |||
| 1070 | return ((Flags & DINode::FlagLValueReference) && | |||
| 1071 | (Flags & DINode::FlagRValueReference)) || | |||
| 1072 | ((Flags & DINode::FlagTypePassByValue) && | |||
| 1073 | (Flags & DINode::FlagTypePassByReference)); | |||
| 1074 | } | |||
| 1075 | ||||
| 1076 | void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { | |||
| 1077 | auto *Params = dyn_cast<MDTuple>(&RawParams); | |||
| 1078 | AssertDI(Params, "invalid template params", &N, &RawParams)do { if (!(Params)) { DebugInfoCheckFailed("invalid template params" , &N, &RawParams); return; } } while (false); | |||
| 1079 | for (Metadata *Op : Params->operands()) { | |||
| 1080 | AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",do { if (!(Op && isa<DITemplateParameter>(Op))) { DebugInfoCheckFailed("invalid template parameter", &N, Params, Op); return; } } while (false) | |||
| 1081 | &N, Params, Op)do { if (!(Op && isa<DITemplateParameter>(Op))) { DebugInfoCheckFailed("invalid template parameter", &N, Params, Op); return; } } while (false); | |||
| 1082 | } | |||
| 1083 | } | |||
| 1084 | ||||
| 1085 | void Verifier::visitDICompositeType(const DICompositeType &N) { | |||
| 1086 | // Common scope checks. | |||
| 1087 | visitDIScope(N); | |||
| 1088 | ||||
| 1089 | AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag () == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type || N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag( ) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part )) { DebugInfoCheckFailed("invalid tag", &N); return; } } while (false) | |||
| 1090 | N.getTag() == dwarf::DW_TAG_structure_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag () == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type || N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag( ) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part )) { DebugInfoCheckFailed("invalid tag", &N); return; } } while (false) | |||
| 1091 | N.getTag() == dwarf::DW_TAG_union_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag () == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type || N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag( ) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part )) { DebugInfoCheckFailed("invalid tag", &N); return; } } while (false) | |||
| 1092 | N.getTag() == dwarf::DW_TAG_enumeration_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag () == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type || N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag( ) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part )) { DebugInfoCheckFailed("invalid tag", &N); return; } } while (false) | |||
| 1093 | N.getTag() == dwarf::DW_TAG_class_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag () == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type || N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag( ) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part )) { DebugInfoCheckFailed("invalid tag", &N); return; } } while (false) | |||
| 1094 | N.getTag() == dwarf::DW_TAG_variant_part,do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag () == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type || N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag( ) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part )) { DebugInfoCheckFailed("invalid tag", &N); return; } } while (false) | |||
| 1095 | "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag () == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type || N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag( ) == dwarf::DW_TAG_class_type || N.getTag() == dwarf::DW_TAG_variant_part )) { DebugInfoCheckFailed("invalid tag", &N); return; } } while (false); | |||
| 1096 | ||||
| 1097 | AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed( "invalid scope", &N, N.getRawScope()); return; } } while ( false); | |||
| 1098 | AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed ("invalid base type", &N, N.getRawBaseType()); return; } } while (false) | |||
| 1099 | N.getRawBaseType())do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed ("invalid base type", &N, N.getRawBaseType()); return; } } while (false); | |||
| 1100 | ||||
| 1101 | AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),do { if (!(!N.getRawElements() || isa<MDTuple>(N.getRawElements ()))) { DebugInfoCheckFailed("invalid composite elements", & N, N.getRawElements()); return; } } while (false) | |||
| 1102 | "invalid composite elements", &N, N.getRawElements())do { if (!(!N.getRawElements() || isa<MDTuple>(N.getRawElements ()))) { DebugInfoCheckFailed("invalid composite elements", & N, N.getRawElements()); return; } } while (false); | |||
| 1103 | AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,do { if (!(isType(N.getRawVTableHolder()))) { DebugInfoCheckFailed ("invalid vtable holder", &N, N.getRawVTableHolder()); return ; } } while (false) | |||
| 1104 | N.getRawVTableHolder())do { if (!(isType(N.getRawVTableHolder()))) { DebugInfoCheckFailed ("invalid vtable holder", &N, N.getRawVTableHolder()); return ; } } while (false); | |||
| 1105 | AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed ("invalid reference flags", &N); return; } } while (false ) | |||
| 1106 | "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed ("invalid reference flags", &N); return; } } while (false ); | |||
| 1107 | unsigned DIBlockByRefStruct = 1 << 4; | |||
| 1108 | AssertDI((N.getFlags() & DIBlockByRefStruct) == 0,do { if (!((N.getFlags() & DIBlockByRefStruct) == 0)) { DebugInfoCheckFailed ("DIBlockByRefStruct on DICompositeType is no longer supported" , &N); return; } } while (false) | |||
| 1109 | "DIBlockByRefStruct on DICompositeType is no longer supported", &N)do { if (!((N.getFlags() & DIBlockByRefStruct) == 0)) { DebugInfoCheckFailed ("DIBlockByRefStruct on DICompositeType is no longer supported" , &N); return; } } while (false); | |||
| 1110 | ||||
| 1111 | if (N.isVector()) { | |||
| 1112 | const DINodeArray Elements = N.getElements(); | |||
| 1113 | AssertDI(Elements.size() == 1 &&do { if (!(Elements.size() == 1 && Elements[0]->getTag () == dwarf::DW_TAG_subrange_type)) { DebugInfoCheckFailed("invalid vector, expected one element of type subrange" , &N); return; } } while (false) | |||
| 1114 | Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,do { if (!(Elements.size() == 1 && Elements[0]->getTag () == dwarf::DW_TAG_subrange_type)) { DebugInfoCheckFailed("invalid vector, expected one element of type subrange" , &N); return; } } while (false) | |||
| 1115 | "invalid vector, expected one element of type subrange", &N)do { if (!(Elements.size() == 1 && Elements[0]->getTag () == dwarf::DW_TAG_subrange_type)) { DebugInfoCheckFailed("invalid vector, expected one element of type subrange" , &N); return; } } while (false); | |||
| 1116 | } | |||
| 1117 | ||||
| 1118 | if (auto *Params = N.getRawTemplateParams()) | |||
| 1119 | visitTemplateParams(N, *Params); | |||
| 1120 | ||||
| 1121 | if (auto *D = N.getRawDiscriminator()) { | |||
| 1122 | AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,do { if (!(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part)) { DebugInfoCheckFailed("discriminator can only appear on variant part" ); return; } } while (false) | |||
| 1123 | "discriminator can only appear on variant part")do { if (!(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part)) { DebugInfoCheckFailed("discriminator can only appear on variant part" ); return; } } while (false); | |||
| 1124 | } | |||
| 1125 | ||||
| 1126 | if (N.getRawDataLocation()) { | |||
| 1127 | AssertDI(N.getTag() == dwarf::DW_TAG_array_type,do { if (!(N.getTag() == dwarf::DW_TAG_array_type)) { DebugInfoCheckFailed ("dataLocation can only appear in array type"); return; } } while (false) | |||
| 1128 | "dataLocation can only appear in array type")do { if (!(N.getTag() == dwarf::DW_TAG_array_type)) { DebugInfoCheckFailed ("dataLocation can only appear in array type"); return; } } while (false); | |||
| 1129 | } | |||
| 1130 | ||||
| 1131 | if (N.getRawAssociated()) { | |||
| 1132 | AssertDI(N.getTag() == dwarf::DW_TAG_array_type,do { if (!(N.getTag() == dwarf::DW_TAG_array_type)) { DebugInfoCheckFailed ("associated can only appear in array type"); return; } } while (false) | |||
| 1133 | "associated can only appear in array type")do { if (!(N.getTag() == dwarf::DW_TAG_array_type)) { DebugInfoCheckFailed ("associated can only appear in array type"); return; } } while (false); | |||
| 1134 | } | |||
| 1135 | ||||
| 1136 | if (N.getRawAllocated()) { | |||
| 1137 | AssertDI(N.getTag() == dwarf::DW_TAG_array_type,do { if (!(N.getTag() == dwarf::DW_TAG_array_type)) { DebugInfoCheckFailed ("allocated can only appear in array type"); return; } } while (false) | |||
| 1138 | "allocated can only appear in array type")do { if (!(N.getTag() == dwarf::DW_TAG_array_type)) { DebugInfoCheckFailed ("allocated can only appear in array type"); return; } } while (false); | |||
| 1139 | } | |||
| 1140 | ||||
| 1141 | if (N.getRawRank()) { | |||
| 1142 | AssertDI(N.getTag() == dwarf::DW_TAG_array_type,do { if (!(N.getTag() == dwarf::DW_TAG_array_type)) { DebugInfoCheckFailed ("rank can only appear in array type"); return; } } while (false ) | |||
| 1143 | "rank can only appear in array type")do { if (!(N.getTag() == dwarf::DW_TAG_array_type)) { DebugInfoCheckFailed ("rank can only appear in array type"); return; } } while (false ); | |||
| 1144 | } | |||
| 1145 | } | |||
| 1146 | ||||
| 1147 | void Verifier::visitDISubroutineType(const DISubroutineType &N) { | |||
| 1148 | AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subroutine_type)) { DebugInfoCheckFailed ("invalid tag", &N); return; } } while (false); | |||
| 1149 | if (auto *Types = N.getRawTypeArray()) { | |||
| 1150 | AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types)do { if (!(isa<MDTuple>(Types))) { DebugInfoCheckFailed ("invalid composite elements", &N, Types); return; } } while (false); | |||
| 1151 | for (Metadata *Ty : N.getTypeArray()->operands()) { | |||
| 1152 | AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty)do { if (!(isType(Ty))) { DebugInfoCheckFailed("invalid subroutine type ref" , &N, Types, Ty); return; } } while (false); | |||
| 1153 | } | |||
| 1154 | } | |||
| 1155 | AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed ("invalid reference flags", &N); return; } } while (false ) | |||
| 1156 | "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed ("invalid reference flags", &N); return; } } while (false ); | |||
| 1157 | } | |||
| 1158 | ||||
| 1159 | void Verifier::visitDIFile(const DIFile &N) { | |||
| 1160 | AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_file_type)) { DebugInfoCheckFailed ("invalid tag", &N); return; } } while (false); | |||
| 1161 | Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); | |||
| 1162 | if (Checksum) { | |||
| 1163 | AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,do { if (!(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last )) { DebugInfoCheckFailed("invalid checksum kind", &N); return ; } } while (false) | |||
| 1164 | "invalid checksum kind", &N)do { if (!(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last )) { DebugInfoCheckFailed("invalid checksum kind", &N); return ; } } while (false); | |||
| 1165 | size_t Size; | |||
| 1166 | switch (Checksum->Kind) { | |||
| 1167 | case DIFile::CSK_MD5: | |||
| 1168 | Size = 32; | |||
| 1169 | break; | |||
| 1170 | case DIFile::CSK_SHA1: | |||
| 1171 | Size = 40; | |||
| 1172 | break; | |||
| 1173 | case DIFile::CSK_SHA256: | |||
| 1174 | Size = 64; | |||
| 1175 | break; | |||
| 1176 | } | |||
| 1177 | AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N)do { if (!(Checksum->Value.size() == Size)) { DebugInfoCheckFailed ("invalid checksum length", &N); return; } } while (false ); | |||
| 1178 | AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,do { if (!(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos)) { DebugInfoCheckFailed("invalid checksum", &N); return; } } while (false) | |||
| 1179 | "invalid checksum", &N)do { if (!(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos)) { DebugInfoCheckFailed("invalid checksum", &N); return; } } while (false); | |||
| 1180 | } | |||
| 1181 | } | |||
| 1182 | ||||
| 1183 | void Verifier::visitDICompileUnit(const DICompileUnit &N) { | |||
| 1184 | AssertDI(N.isDistinct(), "compile units must be distinct", &N)do { if (!(N.isDistinct())) { DebugInfoCheckFailed("compile units must be distinct" , &N); return; } } while (false); | |||
| 1185 | AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_compile_unit)) { DebugInfoCheckFailed ("invalid tag", &N); return; } } while (false); | |||
| 1186 | ||||
| 1187 | // Don't bother verifying the compilation directory or producer string | |||
| 1188 | // as those could be empty. | |||
| 1189 | AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,do { if (!(N.getRawFile() && isa<DIFile>(N.getRawFile ()))) { DebugInfoCheckFailed("invalid file", &N, N.getRawFile ()); return; } } while (false) | |||
| 1190 | N.getRawFile())do { if (!(N.getRawFile() && isa<DIFile>(N.getRawFile ()))) { DebugInfoCheckFailed("invalid file", &N, N.getRawFile ()); return; } } while (false); | |||
| 1191 | AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,do { if (!(!N.getFile()->getFilename().empty())) { DebugInfoCheckFailed ("invalid filename", &N, N.getFile()); return; } } while ( false) | |||
| 1192 | N.getFile())do { if (!(!N.getFile()->getFilename().empty())) { DebugInfoCheckFailed ("invalid filename", &N, N.getFile()); return; } } while ( false); | |||
| 1193 | ||||
| 1194 | CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage(); | |||
| 1195 | ||||
| 1196 | verifySourceDebugInfo(N, *N.getFile()); | |||
| 1197 | ||||
| 1198 | AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),do { if (!((N.getEmissionKind() <= DICompileUnit::LastEmissionKind ))) { DebugInfoCheckFailed("invalid emission kind", &N); return ; } } while (false) | |||
| 1199 | "invalid emission kind", &N)do { if (!((N.getEmissionKind() <= DICompileUnit::LastEmissionKind ))) { DebugInfoCheckFailed("invalid emission kind", &N); return ; } } while (false); | |||
| 1200 | ||||
| 1201 | if (auto *Array = N.getRawEnumTypes()) { | |||
| 1202 | AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed ("invalid enum list", &N, Array); return; } } while (false ); | |||
| 1203 | for (Metadata *Op : N.getEnumTypes()->operands()) { | |||
| 1204 | auto *Enum = dyn_cast_or_null<DICompositeType>(Op); | |||
| 1205 | AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,do { if (!(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type )) { DebugInfoCheckFailed("invalid enum type", &N, N.getEnumTypes (), Op); return; } } while (false) | |||
| 1206 | "invalid enum type", &N, N.getEnumTypes(), Op)do { if (!(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type )) { DebugInfoCheckFailed("invalid enum type", &N, N.getEnumTypes (), Op); return; } } while (false); | |||
| 1207 | } | |||
| 1208 | } | |||
| 1209 | if (auto *Array = N.getRawRetainedTypes()) { | |||
| 1210 | AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed ("invalid retained type list", &N, Array); return; } } while (false); | |||
| 1211 | for (Metadata *Op : N.getRetainedTypes()->operands()) { | |||
| 1212 | AssertDI(Op && (isa<DIType>(Op) ||do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram >(Op) && !cast<DISubprogram>(Op)->isDefinition ())))) { DebugInfoCheckFailed("invalid retained type", &N , Op); return; } } while (false) | |||
| 1213 | (isa<DISubprogram>(Op) &&do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram >(Op) && !cast<DISubprogram>(Op)->isDefinition ())))) { DebugInfoCheckFailed("invalid retained type", &N , Op); return; } } while (false) | |||
| 1214 | !cast<DISubprogram>(Op)->isDefinition())),do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram >(Op) && !cast<DISubprogram>(Op)->isDefinition ())))) { DebugInfoCheckFailed("invalid retained type", &N , Op); return; } } while (false) | |||
| 1215 | "invalid retained type", &N, Op)do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram >(Op) && !cast<DISubprogram>(Op)->isDefinition ())))) { DebugInfoCheckFailed("invalid retained type", &N , Op); return; } } while (false); | |||
| 1216 | } | |||
| 1217 | } | |||
| 1218 | if (auto *Array = N.getRawGlobalVariables()) { | |||
| 1219 | AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed ("invalid global variable list", &N, Array); return; } } while (false); | |||
| 1220 | for (Metadata *Op : N.getGlobalVariables()->operands()) { | |||
| 1221 | AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),do { if (!(Op && (isa<DIGlobalVariableExpression> (Op)))) { DebugInfoCheckFailed("invalid global variable ref", &N, Op); return; } } while (false) | |||
| 1222 | "invalid global variable ref", &N, Op)do { if (!(Op && (isa<DIGlobalVariableExpression> (Op)))) { DebugInfoCheckFailed("invalid global variable ref", &N, Op); return; } } while (false); | |||
| 1223 | } | |||
| 1224 | } | |||
| 1225 | if (auto *Array = N.getRawImportedEntities()) { | |||
| 1226 | AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed ("invalid imported entity list", &N, Array); return; } } while (false); | |||
| 1227 | for (Metadata *Op : N.getImportedEntities()->operands()) { | |||
| 1228 | AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",do { if (!(Op && isa<DIImportedEntity>(Op))) { DebugInfoCheckFailed ("invalid imported entity ref", &N, Op); return; } } while (false) | |||
| 1229 | &N, Op)do { if (!(Op && isa<DIImportedEntity>(Op))) { DebugInfoCheckFailed ("invalid imported entity ref", &N, Op); return; } } while (false); | |||
| 1230 | } | |||
| 1231 | } | |||
| 1232 | if (auto *Array = N.getRawMacros()) { | |||
| 1233 | AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed ("invalid macro list", &N, Array); return; } } while (false ); | |||
| 1234 | for (Metadata *Op : N.getMacros()->operands()) { | |||
| 1235 | AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op)do { if (!(Op && isa<DIMacroNode>(Op))) { DebugInfoCheckFailed ("invalid macro ref", &N, Op); return; } } while (false); | |||
| 1236 | } | |||
| 1237 | } | |||
| 1238 | CUVisited.insert(&N); | |||
| 1239 | } | |||
| 1240 | ||||
| 1241 | void Verifier::visitDISubprogram(const DISubprogram &N) { | |||
| 1242 | AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subprogram)) { DebugInfoCheckFailed ("invalid tag", &N); return; } } while (false); | |||
| 1243 | AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed( "invalid scope", &N, N.getRawScope()); return; } } while ( false); | |||
| 1244 | if (auto *F = N.getRawFile()) | |||
| 1245 | AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file" , &N, F); return; } } while (false); | |||
| 1246 | else | |||
| 1247 | AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine())do { if (!(N.getLine() == 0)) { DebugInfoCheckFailed("line specified with no file" , &N, N.getLine()); return; } } while (false); | |||
| 1248 | if (auto *T = N.getRawType()) | |||
| 1249 | AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T)do { if (!(isa<DISubroutineType>(T))) { DebugInfoCheckFailed ("invalid subroutine type", &N, T); return; } } while (false ); | |||
| 1250 | AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,do { if (!(isType(N.getRawContainingType()))) { DebugInfoCheckFailed ("invalid containing type", &N, N.getRawContainingType()) ; return; } } while (false) | |||
| 1251 | N.getRawContainingType())do { if (!(isType(N.getRawContainingType()))) { DebugInfoCheckFailed ("invalid containing type", &N, N.getRawContainingType()) ; return; } } while (false); | |||
| 1252 | if (auto *Params = N.getRawTemplateParams()) | |||
| 1253 | visitTemplateParams(N, *Params); | |||
| 1254 | if (auto *S = N.getRawDeclaration()) | |||
| 1255 | AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),do { if (!(isa<DISubprogram>(S) && !cast<DISubprogram >(S)->isDefinition())) { DebugInfoCheckFailed("invalid subprogram declaration" , &N, S); return; } } while (false) | |||
| 1256 | "invalid subprogram declaration", &N, S)do { if (!(isa<DISubprogram>(S) && !cast<DISubprogram >(S)->isDefinition())) { DebugInfoCheckFailed("invalid subprogram declaration" , &N, S); return; } } while (false); | |||
| 1257 | if (auto *RawNode = N.getRawRetainedNodes()) { | |||
| 1258 | auto *Node = dyn_cast<MDTuple>(RawNode); | |||
| 1259 | AssertDI(Node, "invalid retained nodes list", &N, RawNode)do { if (!(Node)) { DebugInfoCheckFailed("invalid retained nodes list" , &N, RawNode); return; } } while (false); | |||
| 1260 | for (Metadata *Op : Node->operands()) { | |||
| 1261 | AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),do { if (!(Op && (isa<DILocalVariable>(Op) || isa <DILabel>(Op)))) { DebugInfoCheckFailed("invalid retained nodes, expected DILocalVariable or DILabel" , &N, Node, Op); return; } } while (false) | |||
| 1262 | "invalid retained nodes, expected DILocalVariable or DILabel",do { if (!(Op && (isa<DILocalVariable>(Op) || isa <DILabel>(Op)))) { DebugInfoCheckFailed("invalid retained nodes, expected DILocalVariable or DILabel" , &N, Node, Op); return; } } while (false) | |||
| 1263 | &N, Node, Op)do { if (!(Op && (isa<DILocalVariable>(Op) || isa <DILabel>(Op)))) { DebugInfoCheckFailed("invalid retained nodes, expected DILocalVariable or DILabel" , &N, Node, Op); return; } } while (false); | |||
| 1264 | } | |||
| 1265 | } | |||
| 1266 | AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed ("invalid reference flags", &N); return; } } while (false ) | |||
| 1267 | "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed ("invalid reference flags", &N); return; } } while (false ); | |||
| 1268 | ||||
| 1269 | auto *Unit = N.getRawUnit(); | |||
| 1270 | if (N.isDefinition()) { | |||
| 1271 | // Subprogram definitions (not part of the type hierarchy). | |||
| 1272 | AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N)do { if (!(N.isDistinct())) { DebugInfoCheckFailed("subprogram definitions must be distinct" , &N); return; } } while (false); | |||
| 1273 | AssertDI(Unit, "subprogram definitions must have a compile unit", &N)do { if (!(Unit)) { DebugInfoCheckFailed("subprogram definitions must have a compile unit" , &N); return; } } while (false); | |||
| 1274 | AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit)do { if (!(isa<DICompileUnit>(Unit))) { DebugInfoCheckFailed ("invalid unit type", &N, Unit); return; } } while (false ); | |||
| 1275 | if (N.getFile()) | |||
| 1276 | verifySourceDebugInfo(*N.getUnit(), *N.getFile()); | |||
| 1277 | } else { | |||
| 1278 | // Subprogram declarations (part of the type hierarchy). | |||
| 1279 | AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N)do { if (!(!Unit)) { DebugInfoCheckFailed("subprogram declarations must not have a compile unit" , &N); return; } } while (false); | |||
| 1280 | } | |||
| 1281 | ||||
| 1282 | if (auto *RawThrownTypes = N.getRawThrownTypes()) { | |||
| 1283 | auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); | |||
| 1284 | AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes)do { if (!(ThrownTypes)) { DebugInfoCheckFailed("invalid thrown types list" , &N, RawThrownTypes); return; } } while (false); | |||
| 1285 | for (Metadata *Op : ThrownTypes->operands()) | |||
| 1286 | AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,do { if (!(Op && isa<DIType>(Op))) { DebugInfoCheckFailed ("invalid thrown type", &N, ThrownTypes, Op); return; } } while (false) | |||
| 1287 | Op)do { if (!(Op && isa<DIType>(Op))) { DebugInfoCheckFailed ("invalid thrown type", &N, ThrownTypes, Op); return; } } while (false); | |||
| 1288 | } | |||
| 1289 | ||||
| 1290 | if (N.areAllCallsDescribed()) | |||
| 1291 | AssertDI(N.isDefinition(),do { if (!(N.isDefinition())) { DebugInfoCheckFailed("DIFlagAllCallsDescribed must be attached to a definition" ); return; } } while (false) | |||
| 1292 | "DIFlagAllCallsDescribed must be attached to a definition")do { if (!(N.isDefinition())) { DebugInfoCheckFailed("DIFlagAllCallsDescribed must be attached to a definition" ); return; } } while (false); | |||
| 1293 | } | |||
| 1294 | ||||
| 1295 | void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { | |||
| 1296 | AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_lexical_block)) { DebugInfoCheckFailed ("invalid tag", &N); return; } } while (false); | |||
| 1297 | AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope> (N.getRawScope()))) { DebugInfoCheckFailed("invalid local scope" , &N, N.getRawScope()); return; } } while (false) | |||
| 1298 | "invalid local scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope> (N.getRawScope()))) { DebugInfoCheckFailed("invalid local scope" , &N, N.getRawScope()); return; } } while (false); | |||
| 1299 | if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) | |||
| 1300 | AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N)do { if (!(SP->isDefinition())) { DebugInfoCheckFailed("scope points into the type hierarchy" , &N); return; } } while (false); | |||
| 1301 | } | |||
| 1302 | ||||
| 1303 | void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { | |||
| 1304 | visitDILexicalBlockBase(N); | |||
| 1305 | ||||
| 1306 | AssertDI(N.getLine() || !N.getColumn(),do { if (!(N.getLine() || !N.getColumn())) { DebugInfoCheckFailed ("cannot have column info without line info", &N); return ; } } while (false) | |||
| 1307 | "cannot have column info without line info", &N)do { if (!(N.getLine() || !N.getColumn())) { DebugInfoCheckFailed ("cannot have column info without line info", &N); return ; } } while (false); | |||
| 1308 | } | |||
| 1309 | ||||
| 1310 | void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { | |||
| 1311 | visitDILexicalBlockBase(N); | |||
| 1312 | } | |||
| 1313 | ||||
| 1314 | void Verifier::visitDICommonBlock(const DICommonBlock &N) { | |||
| 1315 | AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_common_block)) { DebugInfoCheckFailed ("invalid tag", &N); return; } } while (false); | |||
| 1316 | if (auto *S = N.getRawScope()) | |||
| 1317 | AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope ref" , &N, S); return; } } while (false); | |||
| 1318 | if (auto *S = N.getRawDecl()) | |||
| 1319 | AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S)do { if (!(isa<DIGlobalVariable>(S))) { DebugInfoCheckFailed ("invalid declaration", &N, S); return; } } while (false); | |||
| 1320 | } | |||
| 1321 | ||||
| 1322 | void Verifier::visitDINamespace(const DINamespace &N) { | |||
| 1323 | AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_namespace)) { DebugInfoCheckFailed ("invalid tag", &N); return; } } while (false); | |||
| 1324 | if (auto *S = N.getRawScope()) | |||
| 1325 | AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope ref" , &N, S); return; } } while (false); | |||
| 1326 | } | |||
| 1327 | ||||
| 1328 | void Verifier::visitDIMacro(const DIMacro &N) { | |||
| 1329 | AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N .getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed ("invalid macinfo type", &N); return; } } while (false) | |||
| 1330 | N.getMacinfoType() == dwarf::DW_MACINFO_undef,do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N .getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed ("invalid macinfo type", &N); return; } } while (false) | |||
| 1331 | "invalid macinfo type", &N)do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N .getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed ("invalid macinfo type", &N); return; } } while (false); | |||
| 1332 | AssertDI(!N.getName().empty(), "anonymous macro", &N)do { if (!(!N.getName().empty())) { DebugInfoCheckFailed("anonymous macro" , &N); return; } } while (false); | |||
| 1333 | if (!N.getValue().empty()) { | |||
| 1334 | assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix")((void)0); | |||
| 1335 | } | |||
| 1336 | } | |||
| 1337 | ||||
| 1338 | void Verifier::visitDIMacroFile(const DIMacroFile &N) { | |||
| 1339 | AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_start_file )) { DebugInfoCheckFailed("invalid macinfo type", &N); return ; } } while (false) | |||
| 1340 | "invalid macinfo type", &N)do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_start_file )) { DebugInfoCheckFailed("invalid macinfo type", &N); return ; } } while (false); | |||
| 1341 | if (auto *F = N.getRawFile()) | |||
| 1342 | AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file" , &N, F); return; } } while (false); | |||
| 1343 | ||||
| 1344 | if (auto *Array = N.getRawElements()) { | |||
| 1345 | AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed ("invalid macro list", &N, Array); return; } } while (false ); | |||
| 1346 | for (Metadata *Op : N.getElements()->operands()) { | |||
| 1347 | AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op)do { if (!(Op && isa<DIMacroNode>(Op))) { DebugInfoCheckFailed ("invalid macro ref", &N, Op); return; } } while (false); | |||
| 1348 | } | |||
| 1349 | } | |||
| 1350 | } | |||
| 1351 | ||||
| 1352 | void Verifier::visitDIArgList(const DIArgList &N) { | |||
| 1353 | AssertDI(!N.getNumOperands(),do { if (!(!N.getNumOperands())) { DebugInfoCheckFailed("DIArgList should have no operands other than a list of " "ValueAsMetadata", &N); return; } } while (false) | |||
| 1354 | "DIArgList should have no operands other than a list of "do { if (!(!N.getNumOperands())) { DebugInfoCheckFailed("DIArgList should have no operands other than a list of " "ValueAsMetadata", &N); return; } } while (false) | |||
| 1355 | "ValueAsMetadata",do { if (!(!N.getNumOperands())) { DebugInfoCheckFailed("DIArgList should have no operands other than a list of " "ValueAsMetadata", &N); return; } } while (false) | |||
| 1356 | &N)do { if (!(!N.getNumOperands())) { DebugInfoCheckFailed("DIArgList should have no operands other than a list of " "ValueAsMetadata", &N); return; } } while (false); | |||
| 1357 | } | |||
| 1358 | ||||
| 1359 | void Verifier::visitDIModule(const DIModule &N) { | |||
| 1360 | AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_module)) { DebugInfoCheckFailed ("invalid tag", &N); return; } } while (false); | |||
| 1361 | AssertDI(!N.getName().empty(), "anonymous module", &N)do { if (!(!N.getName().empty())) { DebugInfoCheckFailed("anonymous module" , &N); return; } } while (false); | |||
| 1362 | } | |||
| 1363 | ||||
| 1364 | void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { | |||
| 1365 | AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { DebugInfoCheckFailed("invalid type ref" , &N, N.getRawType()); return; } } while (false); | |||
| 1366 | } | |||
| 1367 | ||||
| 1368 | void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { | |||
| 1369 | visitDITemplateParameter(N); | |||
| 1370 | ||||
| 1371 | AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",do { if (!(N.getTag() == dwarf::DW_TAG_template_type_parameter )) { DebugInfoCheckFailed("invalid tag", &N); return; } } while (false) | |||
| 1372 | &N)do { if (!(N.getTag() == dwarf::DW_TAG_template_type_parameter )) { DebugInfoCheckFailed("invalid tag", &N); return; } } while (false); | |||
| 1373 | } | |||
| 1374 | ||||
| 1375 | void Verifier::visitDITemplateValueParameter( | |||
| 1376 | const DITemplateValueParameter &N) { | |||
| 1377 | visitDITemplateParameter(N); | |||
| 1378 | ||||
| 1379 | AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter || N.getTag() == dwarf::DW_TAG_GNU_template_template_param || N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed ("invalid tag", &N); return; } } while (false) | |||
| 1380 | N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter || N.getTag() == dwarf::DW_TAG_GNU_template_template_param || N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed ("invalid tag", &N); return; } } while (false) | |||
| 1381 | N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter || N.getTag() == dwarf::DW_TAG_GNU_template_template_param || N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed ("invalid tag", &N); return; } } while (false) | |||
| 1382 | "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter || N.getTag() == dwarf::DW_TAG_GNU_template_template_param || N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed ("invalid tag", &N); return; } } while (false); | |||
| 1383 | } | |||
| 1384 | ||||
| 1385 | void Verifier::visitDIVariable(const DIVariable &N) { | |||
| 1386 | if (auto *S = N.getRawScope()) | |||
| 1387 | AssertDI(isa<DIScope>(S), "invalid scope", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope" , &N, S); return; } } while (false); | |||
| 1388 | if (auto *F = N.getRawFile()) | |||
| 1389 | AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file" , &N, F); return; } } while (false); | |||
| 1390 | } | |||
| 1391 | ||||
| 1392 | void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { | |||
| 1393 | // Checks common to all variables. | |||
| 1394 | visitDIVariable(N); | |||
| 1395 | ||||
| 1396 | AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_variable)) { DebugInfoCheckFailed ("invalid tag", &N); return; } } while (false); | |||
| 1397 | AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { DebugInfoCheckFailed("invalid type ref" , &N, N.getRawType()); return; } } while (false); | |||
| 1398 | // Assert only if the global variable is not an extern | |||
| 1399 | if (N.isDefinition()) | |||
| 1400 | AssertDI(N.getType(), "missing global variable type", &N)do { if (!(N.getType())) { DebugInfoCheckFailed("missing global variable type" , &N); return; } } while (false); | |||
| 1401 | if (auto *Member = N.getRawStaticDataMemberDeclaration()) { | |||
| 1402 | AssertDI(isa<DIDerivedType>(Member),do { if (!(isa<DIDerivedType>(Member))) { DebugInfoCheckFailed ("invalid static data member declaration", &N, Member); return ; } } while (false) | |||
| 1403 | "invalid static data member declaration", &N, Member)do { if (!(isa<DIDerivedType>(Member))) { DebugInfoCheckFailed ("invalid static data member declaration", &N, Member); return ; } } while (false); | |||
| 1404 | } | |||
| 1405 | } | |||
| 1406 | ||||
| 1407 | void Verifier::visitDILocalVariable(const DILocalVariable &N) { | |||
| 1408 | // Checks common to all variables. | |||
| 1409 | visitDIVariable(N); | |||
| 1410 | ||||
| 1411 | AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { DebugInfoCheckFailed("invalid type ref" , &N, N.getRawType()); return; } } while (false); | |||
| 1412 | AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_variable)) { DebugInfoCheckFailed ("invalid tag", &N); return; } } while (false); | |||
| 1413 | AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope> (N.getRawScope()))) { DebugInfoCheckFailed("local variable requires a valid scope" , &N, N.getRawScope()); return; } } while (false) | |||
| 1414 | "local variable requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope> (N.getRawScope()))) { DebugInfoCheckFailed("local variable requires a valid scope" , &N, N.getRawScope()); return; } } while (false); | |||
| 1415 | if (auto Ty = N.getType()) | |||
| 1416 | AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType())do { if (!(!isa<DISubroutineType>(Ty))) { DebugInfoCheckFailed ("invalid type", &N, N.getType()); return; } } while (false ); | |||
| 1417 | } | |||
| 1418 | ||||
| 1419 | void Verifier::visitDILabel(const DILabel &N) { | |||
| 1420 | if (auto *S = N.getRawScope()) | |||
| 1421 | AssertDI(isa<DIScope>(S), "invalid scope", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope" , &N, S); return; } } while (false); | |||
| 1422 | if (auto *F = N.getRawFile()) | |||
| 1423 | AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file" , &N, F); return; } } while (false); | |||
| 1424 | ||||
| 1425 | AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_label)) { DebugInfoCheckFailed ("invalid tag", &N); return; } } while (false); | |||
| 1426 | AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope> (N.getRawScope()))) { DebugInfoCheckFailed("label requires a valid scope" , &N, N.getRawScope()); return; } } while (false) | |||
| 1427 | "label requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope> (N.getRawScope()))) { DebugInfoCheckFailed("label requires a valid scope" , &N, N.getRawScope()); return; } } while (false); | |||
| 1428 | } | |||
| 1429 | ||||
| 1430 | void Verifier::visitDIExpression(const DIExpression &N) { | |||
| 1431 | AssertDI(N.isValid(), "invalid expression", &N)do { if (!(N.isValid())) { DebugInfoCheckFailed("invalid expression" , &N); return; } } while (false); | |||
| 1432 | } | |||
| 1433 | ||||
| 1434 | void Verifier::visitDIGlobalVariableExpression( | |||
| 1435 | const DIGlobalVariableExpression &GVE) { | |||
| 1436 | AssertDI(GVE.getVariable(), "missing variable")do { if (!(GVE.getVariable())) { DebugInfoCheckFailed("missing variable" ); return; } } while (false); | |||
| 1437 | if (auto *Var = GVE.getVariable()) | |||
| 1438 | visitDIGlobalVariable(*Var); | |||
| 1439 | if (auto *Expr = GVE.getExpression()) { | |||
| 1440 | visitDIExpression(*Expr); | |||
| 1441 | if (auto Fragment = Expr->getFragmentInfo()) | |||
| 1442 | verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); | |||
| 1443 | } | |||
| 1444 | } | |||
| 1445 | ||||
| 1446 | void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { | |||
| 1447 | AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_APPLE_property)) { DebugInfoCheckFailed ("invalid tag", &N); return; } } while (false); | |||
| 1448 | if (auto *T = N.getRawType()) | |||
| 1449 | AssertDI(isType(T), "invalid type ref", &N, T)do { if (!(isType(T))) { DebugInfoCheckFailed("invalid type ref" , &N, T); return; } } while (false); | |||
| 1450 | if (auto *F = N.getRawFile()) | |||
| 1451 | AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file" , &N, F); return; } } while (false); | |||
| 1452 | } | |||
| 1453 | ||||
| 1454 | void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { | |||
| 1455 | AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag () == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed ("invalid tag", &N); return; } } while (false) | |||
| 1456 | N.getTag() == dwarf::DW_TAG_imported_declaration,do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag () == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed ("invalid tag", &N); return; } } while (false) | |||
| 1457 | "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag () == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed ("invalid tag", &N); return; } } while (false); | |||
| 1458 | if (auto *S = N.getRawScope()) | |||
| 1459 | AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope for imported entity" , &N, S); return; } } while (false); | |||
| 1460 | AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,do { if (!(isDINode(N.getRawEntity()))) { DebugInfoCheckFailed ("invalid imported entity", &N, N.getRawEntity()); return ; } } while (false) | |||
| 1461 | N.getRawEntity())do { if (!(isDINode(N.getRawEntity()))) { DebugInfoCheckFailed ("invalid imported entity", &N, N.getRawEntity()); return ; } } while (false); | |||
| 1462 | } | |||
| 1463 | ||||
| 1464 | void Verifier::visitComdat(const Comdat &C) { | |||
| 1465 | // In COFF the Module is invalid if the GlobalValue has private linkage. | |||
| 1466 | // Entities with private linkage don't have entries in the symbol table. | |||
| 1467 | if (TT.isOSBinFormatCOFF()) | |||
| 1468 | if (const GlobalValue *GV = M.getNamedValue(C.getName())) | |||
| 1469 | Assert(!GV->hasPrivateLinkage(),do { if (!(!GV->hasPrivateLinkage())) { CheckFailed("comdat global value has private linkage" , GV); return; } } while (false) | |||
| 1470 | "comdat global value has private linkage", GV)do { if (!(!GV->hasPrivateLinkage())) { CheckFailed("comdat global value has private linkage" , GV); return; } } while (false); | |||
| 1471 | } | |||
| 1472 | ||||
| 1473 | void Verifier::visitModuleIdents(const Module &M) { | |||
| 1474 | const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); | |||
| 1475 | if (!Idents) | |||
| 1476 | return; | |||
| 1477 | ||||
| 1478 | // llvm.ident takes a list of metadata entry. Each entry has only one string. | |||
| 1479 | // Scan each llvm.ident entry and make sure that this requirement is met. | |||
| 1480 | for (const MDNode *N : Idents->operands()) { | |||
| 1481 | Assert(N->getNumOperands() == 1,do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.ident metadata" , N); return; } } while (false) | |||
| 1482 | "incorrect number of operands in llvm.ident metadata", N)do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.ident metadata" , N); return; } } while (false); | |||
| 1483 | Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),do { if (!(dyn_cast_or_null<MDString>(N->getOperand( 0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand" "(the operand should be a string)"), N->getOperand(0)); return ; } } while (false) | |||
| 1484 | ("invalid value for llvm.ident metadata entry operand"do { if (!(dyn_cast_or_null<MDString>(N->getOperand( 0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand" "(the operand should be a string)"), N->getOperand(0)); return ; } } while (false) | |||
| 1485 | "(the operand should be a string)"),do { if (!(dyn_cast_or_null<MDString>(N->getOperand( 0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand" "(the operand should be a string)"), N->getOperand(0)); return ; } } while (false) | |||
| 1486 | N->getOperand(0))do { if (!(dyn_cast_or_null<MDString>(N->getOperand( 0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand" "(the operand should be a string)"), N->getOperand(0)); return ; } } while (false); | |||
| 1487 | } | |||
| 1488 | } | |||
| 1489 | ||||
| 1490 | void Verifier::visitModuleCommandLines(const Module &M) { | |||
| 1491 | const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); | |||
| 1492 | if (!CommandLines) | |||
| 1493 | return; | |||
| 1494 | ||||
| 1495 | // llvm.commandline takes a list of metadata entry. Each entry has only one | |||
| 1496 | // string. Scan each llvm.commandline entry and make sure that this | |||
| 1497 | // requirement is met. | |||
| 1498 | for (const MDNode *N : CommandLines->operands()) { | |||
| 1499 | Assert(N->getNumOperands() == 1,do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.commandline metadata" , N); return; } } while (false) | |||
| 1500 | "incorrect number of operands in llvm.commandline metadata", N)do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.commandline metadata" , N); return; } } while (false); | |||
| 1501 | Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),do { if (!(dyn_cast_or_null<MDString>(N->getOperand( 0)))) { CheckFailed(("invalid value for llvm.commandline metadata entry operand" "(the operand should be a string)"), N->getOperand(0)); return ; } } while (false) | |||
| 1502 | ("invalid value for llvm.commandline metadata entry operand"do { if (!(dyn_cast_or_null<MDString>(N->getOperand( 0)))) { CheckFailed(("invalid value for llvm.commandline metadata entry operand" "(the operand should be a string)"), N->getOperand(0)); return ; } } while (false) | |||
| 1503 | "(the operand should be a string)"),do { if (!(dyn_cast_or_null<MDString>(N->getOperand( 0)))) { CheckFailed(("invalid value for llvm.commandline metadata entry operand" "(the operand should be a string)"), N->getOperand(0)); return ; } } while (false) | |||
| 1504 | N->getOperand(0))do { if (!(dyn_cast_or_null<MDString>(N->getOperand( 0)))) { CheckFailed(("invalid value for llvm.commandline metadata entry operand" "(the operand should be a string)"), N->getOperand(0)); return ; } } while (false); | |||
| 1505 | } | |||
| 1506 | } | |||
| 1507 | ||||
| 1508 | void Verifier::visitModuleFlags(const Module &M) { | |||
| 1509 | const NamedMDNode *Flags = M.getModuleFlagsMetadata(); | |||
| 1510 | if (!Flags) return; | |||
| 1511 | ||||
| 1512 | // Scan each flag, and track the flags and requirements. | |||
| 1513 | DenseMap<const MDString*, const MDNode*> SeenIDs; | |||
| 1514 | SmallVector<const MDNode*, 16> Requirements; | |||
| 1515 | for (const MDNode *MDN : Flags->operands()) | |||
| 1516 | visitModuleFlag(MDN, SeenIDs, Requirements); | |||
| 1517 | ||||
| 1518 | // Validate that the requirements in the module are valid. | |||
| 1519 | for (const MDNode *Requirement : Requirements) { | |||
| 1520 | const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); | |||
| 1521 | const Metadata *ReqValue = Requirement->getOperand(1); | |||
| 1522 | ||||
| 1523 | const MDNode *Op = SeenIDs.lookup(Flag); | |||
| 1524 | if (!Op) { | |||
| 1525 | CheckFailed("invalid requirement on flag, flag is not present in module", | |||
| 1526 | Flag); | |||
| 1527 | continue; | |||
| 1528 | } | |||
| 1529 | ||||
| 1530 | if (Op->getOperand(2) != ReqValue) { | |||
| 1531 | CheckFailed(("invalid requirement on flag, " | |||
| 1532 | "flag does not have the required value"), | |||
| 1533 | Flag); | |||
| 1534 | continue; | |||
| 1535 | } | |||
| 1536 | } | |||
| 1537 | } | |||
| 1538 | ||||
| 1539 | void | |||
| 1540 | Verifier::visitModuleFlag(const MDNode *Op, | |||
| 1541 | DenseMap<const MDString *, const MDNode *> &SeenIDs, | |||
| 1542 | SmallVectorImpl<const MDNode *> &Requirements) { | |||
| 1543 | // Each module flag should have three arguments, the merge behavior (a | |||
| 1544 | // constant int), the flag ID (an MDString), and the value. | |||
| 1545 | Assert(Op->getNumOperands() == 3,do { if (!(Op->getNumOperands() == 3)) { CheckFailed("incorrect number of operands in module flag" , Op); return; } } while (false) | |||
| 1546 | "incorrect number of operands in module flag", Op)do { if (!(Op->getNumOperands() == 3)) { CheckFailed("incorrect number of operands in module flag" , Op); return; } } while (false); | |||
| 1547 | Module::ModFlagBehavior MFB; | |||
| 1548 | if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { | |||
| 1549 | Assert(do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op ->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)" , Op->getOperand(0)); return; } } while (false) | |||
| 1550 | mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op ->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)" , Op->getOperand(0)); return; } } while (false) | |||
| 1551 | "invalid behavior operand in module flag (expected constant integer)",do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op ->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)" , Op->getOperand(0)); return; } } while (false) | |||
| 1552 | Op->getOperand(0))do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op ->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)" , Op->getOperand(0)); return; } } while (false); | |||
| 1553 | Assert(false,do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)" , Op->getOperand(0)); return; } } while (false) | |||
| 1554 | "invalid behavior operand in module flag (unexpected constant)",do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)" , Op->getOperand(0)); return; } } while (false) | |||
| 1555 | Op->getOperand(0))do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)" , Op->getOperand(0)); return; } } while (false); | |||
| 1556 | } | |||
| 1557 | MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); | |||
| 1558 | Assert(ID, "invalid ID operand in module flag (expected metadata string)",do { if (!(ID)) { CheckFailed("invalid ID operand in module flag (expected metadata string)" , Op->getOperand(1)); return; } } while (false) | |||
| 1559 | Op->getOperand(1))do { if (!(ID)) { CheckFailed("invalid ID operand in module flag (expected metadata string)" , Op->getOperand(1)); return; } } while (false); | |||
| 1560 | ||||
| 1561 | // Sanity check the values for behaviors with additional requirements. | |||
| 1562 | switch (MFB) { | |||
| 1563 | case Module::Error: | |||
| 1564 | case Module::Warning: | |||
| 1565 | case Module::Override: | |||
| 1566 | // These behavior types accept any value. | |||
| 1567 | break; | |||
| 1568 | ||||
| 1569 | case Module::Max: { | |||
| 1570 | Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op ->getOperand(2)))) { CheckFailed("invalid value for 'max' module flag (expected constant integer)" , Op->getOperand(2)); return; } } while (false) | |||
| 1571 | "invalid value for 'max' module flag (expected constant integer)",do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op ->getOperand(2)))) { CheckFailed("invalid value for 'max' module flag (expected constant integer)" , Op->getOperand(2)); return; } } while (false) | |||
| 1572 | Op->getOperand(2))do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op ->getOperand(2)))) { CheckFailed("invalid value for 'max' module flag (expected constant integer)" , Op->getOperand(2)); return; } } while (false); | |||
| 1573 | break; | |||
| 1574 | } | |||
| 1575 | ||||
| 1576 | case Module::Require: { | |||
| 1577 | // The value should itself be an MDNode with two operands, a flag ID (an | |||
| 1578 | // MDString), and a value. | |||
| 1579 | MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); | |||
| 1580 | Assert(Value && Value->getNumOperands() == 2,do { if (!(Value && Value->getNumOperands() == 2)) { CheckFailed("invalid value for 'require' module flag (expected metadata pair)" , Op->getOperand(2)); return; } } while (false) | |||
| 1581 | "invalid value for 'require' module flag (expected metadata pair)",do { if (!(Value && Value->getNumOperands() == 2)) { CheckFailed("invalid value for 'require' module flag (expected metadata pair)" , Op->getOperand(2)); return; } } while (false) | |||
| 1582 | Op->getOperand(2))do { if (!(Value && Value->getNumOperands() == 2)) { CheckFailed("invalid value for 'require' module flag (expected metadata pair)" , Op->getOperand(2)); return; } } while (false); | |||
| 1583 | Assert(isa<MDString>(Value->getOperand(0)),do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed (("invalid value for 'require' module flag " "(first value operand should be a string)" ), Value->getOperand(0)); return; } } while (false) | |||
| 1584 | ("invalid value for 'require' module flag "do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed (("invalid value for 'require' module flag " "(first value operand should be a string)" ), Value->getOperand(0)); return; } } while (false) | |||
| 1585 | "(first value operand should be a string)"),do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed (("invalid value for 'require' module flag " "(first value operand should be a string)" ), Value->getOperand(0)); return; } } while (false) | |||
| 1586 | Value->getOperand(0))do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed (("invalid value for 'require' module flag " "(first value operand should be a string)" ), Value->getOperand(0)); return; } } while (false); | |||
| 1587 | ||||
| 1588 | // Append it to the list of requirements, to check once all module flags are | |||
| 1589 | // scanned. | |||
| 1590 | Requirements.push_back(Value); | |||
| 1591 | break; | |||
| 1592 | } | |||
| 1593 | ||||
| 1594 | case Module::Append: | |||
| 1595 | case Module::AppendUnique: { | |||
| 1596 | // These behavior types require the operand be an MDNode. | |||
| 1597 | Assert(isa<MDNode>(Op->getOperand(2)),do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed ("invalid value for 'append'-type module flag " "(expected a metadata node)" , Op->getOperand(2)); return; } } while (false) | |||
| 1598 | "invalid value for 'append'-type module flag "do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed ("invalid value for 'append'-type module flag " "(expected a metadata node)" , Op->getOperand(2)); return; } } while (false) | |||
| 1599 | "(expected a metadata node)",do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed ("invalid value for 'append'-type module flag " "(expected a metadata node)" , Op->getOperand(2)); return; } } while (false) | |||
| 1600 | Op->getOperand(2))do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed ("invalid value for 'append'-type module flag " "(expected a metadata node)" , Op->getOperand(2)); return; } } while (false); | |||
| 1601 | break; | |||
| 1602 | } | |||
| 1603 | } | |||
| 1604 | ||||
| 1605 | // Unless this is a "requires" flag, check the ID is unique. | |||
| 1606 | if (MFB != Module::Require) { | |||
| 1607 | bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; | |||
| 1608 | Assert(Inserted,do { if (!(Inserted)) { CheckFailed("module flag identifiers must be unique (or of 'require' type)" , ID); return; } } while (false) | |||
| 1609 | "module flag identifiers must be unique (or of 'require' type)", ID)do { if (!(Inserted)) { CheckFailed("module flag identifiers must be unique (or of 'require' type)" , ID); return; } } while (false); | |||
| 1610 | } | |||
| 1611 | ||||
| 1612 | if (ID->getString() == "wchar_size") { | |||
| 1613 | ConstantInt *Value | |||
| 1614 | = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); | |||
| 1615 | Assert(Value, "wchar_size metadata requires constant integer argument")do { if (!(Value)) { CheckFailed("wchar_size metadata requires constant integer argument" ); return; } } while (false); | |||
| 1616 | } | |||
| 1617 | ||||
| 1618 | if (ID->getString() == "Linker Options") { | |||
| 1619 | // If the llvm.linker.options named metadata exists, we assume that the | |||
| 1620 | // bitcode reader has upgraded the module flag. Otherwise the flag might | |||
| 1621 | // have been created by a client directly. | |||
| 1622 | Assert(M.getNamedMetadata("llvm.linker.options"),do { if (!(M.getNamedMetadata("llvm.linker.options"))) { CheckFailed ("'Linker Options' named metadata no longer supported"); return ; } } while (false) | |||
| 1623 | "'Linker Options' named metadata no longer supported")do { if (!(M.getNamedMetadata("llvm.linker.options"))) { CheckFailed ("'Linker Options' named metadata no longer supported"); return ; } } while (false); | |||
| 1624 | } | |||
| 1625 | ||||
| 1626 | if (ID->getString() == "SemanticInterposition") { | |||
| 1627 | ConstantInt *Value = | |||
| 1628 | mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); | |||
| 1629 | Assert(Value,do { if (!(Value)) { CheckFailed("SemanticInterposition metadata requires constant integer argument" ); return; } } while (false) | |||
| 1630 | "SemanticInterposition metadata requires constant integer argument")do { if (!(Value)) { CheckFailed("SemanticInterposition metadata requires constant integer argument" ); return; } } while (false); | |||
| 1631 | } | |||
| 1632 | ||||
| 1633 | if (ID->getString() == "CG Profile") { | |||
| 1634 | for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) | |||
| 1635 | visitModuleFlagCGProfileEntry(MDO); | |||
| 1636 | } | |||
| 1637 | } | |||
| 1638 | ||||
| 1639 | void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { | |||
| 1640 | auto CheckFunction = [&](const MDOperand &FuncMDO) { | |||
| 1641 | if (!FuncMDO) | |||
| 1642 | return; | |||
| 1643 | auto F = dyn_cast<ValueAsMetadata>(FuncMDO); | |||
| 1644 | Assert(F && isa<Function>(F->getValue()->stripPointerCasts()),do { if (!(F && isa<Function>(F->getValue()-> stripPointerCasts()))) { CheckFailed("expected a Function or null" , FuncMDO); return; } } while (false) | |||
| 1645 | "expected a Function or null", FuncMDO)do { if (!(F && isa<Function>(F->getValue()-> stripPointerCasts()))) { CheckFailed("expected a Function or null" , FuncMDO); return; } } while (false); | |||
| 1646 | }; | |||
| 1647 | auto Node = dyn_cast_or_null<MDNode>(MDO); | |||
| 1648 | Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO)do { if (!(Node && Node->getNumOperands() == 3)) { CheckFailed("expected a MDNode triple", MDO); return; } } while (false); | |||
| 1649 | CheckFunction(Node->getOperand(0)); | |||
| 1650 | CheckFunction(Node->getOperand(1)); | |||
| 1651 | auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); | |||
| 1652 | Assert(Count && Count->getType()->isIntegerTy(),do { if (!(Count && Count->getType()->isIntegerTy ())) { CheckFailed("expected an integer constant", Node->getOperand (2)); return; } } while (false) | |||
| 1653 | "expected an integer constant", Node->getOperand(2))do { if (!(Count && Count->getType()->isIntegerTy ())) { CheckFailed("expected an integer constant", Node->getOperand (2)); return; } } while (false); | |||
| 1654 | } | |||
| 1655 | ||||
| 1656 | void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) { | |||
| 1657 | for (Attribute A : Attrs) { | |||
| 1658 | ||||
| 1659 | if (A.isStringAttribute()) { | |||
| 1660 | #define GET_ATTR_NAMES | |||
| 1661 | #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) | |||
| 1662 | #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME) \ | |||
| 1663 | if (A.getKindAsString() == #DISPLAY_NAME) { \ | |||
| 1664 | auto V = A.getValueAsString(); \ | |||
| 1665 | if (!(V.empty() || V == "true" || V == "false")) \ | |||
| 1666 | CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V + \ | |||
| 1667 | ""); \ | |||
| 1668 | } | |||
| 1669 | ||||
| 1670 | #include "llvm/IR/Attributes.inc" | |||
| 1671 | continue; | |||
| 1672 | } | |||
| 1673 | ||||
| 1674 | if (A.isIntAttribute() != Attribute::isIntAttrKind(A.getKindAsEnum())) { | |||
| 1675 | CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument", | |||
| 1676 | V); | |||
| 1677 | return; | |||
| 1678 | } | |||
| 1679 | } | |||
| 1680 | } | |||
| 1681 | ||||
| 1682 | // VerifyParameterAttrs - Check the given attributes for an argument or return | |||
| 1683 | // value of the specified type. The value V is printed in error messages. | |||
| 1684 | void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, | |||
| 1685 | const Value *V) { | |||
| 1686 | if (!Attrs.hasAttributes()) | |||
| 1687 | return; | |||
| 1688 | ||||
| 1689 | verifyAttributeTypes(Attrs, V); | |||
| 1690 | ||||
| 1691 | for (Attribute Attr : Attrs) | |||
| 1692 | Assert(Attr.isStringAttribute() ||do { if (!(Attr.isStringAttribute() || Attribute::canUseAsParamAttr (Attr.getKindAsEnum()))) { CheckFailed("Attribute '" + Attr.getAsString () + "' does not apply to parameters", V); return; } } while ( false) | |||
| 1693 | Attribute::canUseAsParamAttr(Attr.getKindAsEnum()),do { if (!(Attr.isStringAttribute() || Attribute::canUseAsParamAttr (Attr.getKindAsEnum()))) { CheckFailed("Attribute '" + Attr.getAsString () + "' does not apply to parameters", V); return; } } while ( false) | |||
| 1694 | "Attribute '" + Attr.getAsString() +do { if (!(Attr.isStringAttribute() || Attribute::canUseAsParamAttr (Attr.getKindAsEnum()))) { CheckFailed("Attribute '" + Attr.getAsString () + "' does not apply to parameters", V); return; } } while ( false) | |||
| 1695 | "' does not apply to parameters",do { if (!(Attr.isStringAttribute() || Attribute::canUseAsParamAttr (Attr.getKindAsEnum()))) { CheckFailed("Attribute '" + Attr.getAsString () + "' does not apply to parameters", V); return; } } while ( false) | |||
| 1696 | V)do { if (!(Attr.isStringAttribute() || Attribute::canUseAsParamAttr (Attr.getKindAsEnum()))) { CheckFailed("Attribute '" + Attr.getAsString () + "' does not apply to parameters", V); return; } } while ( false); | |||
| 1697 | ||||
| 1698 | if (Attrs.hasAttribute(Attribute::ImmArg)) { | |||
| 1699 | Assert(Attrs.getNumAttributes() == 1,do { if (!(Attrs.getNumAttributes() == 1)) { CheckFailed("Attribute 'immarg' is incompatible with other attributes" , V); return; } } while (false) | |||
| 1700 | "Attribute 'immarg' is incompatible with other attributes", V)do { if (!(Attrs.getNumAttributes() == 1)) { CheckFailed("Attribute 'immarg' is incompatible with other attributes" , V); return; } } while (false); | |||
| 1701 | } | |||
| 1702 | ||||
| 1703 | // Check for mutually incompatible attributes. Only inreg is compatible with | |||
| 1704 | // sret. | |||
| 1705 | unsigned AttrCount = 0; | |||
| 1706 | AttrCount += Attrs.hasAttribute(Attribute::ByVal); | |||
| 1707 | AttrCount += Attrs.hasAttribute(Attribute::InAlloca); | |||
| 1708 | AttrCount += Attrs.hasAttribute(Attribute::Preallocated); | |||
| 1709 | AttrCount += Attrs.hasAttribute(Attribute::StructRet) || | |||
| 1710 | Attrs.hasAttribute(Attribute::InReg); | |||
| 1711 | AttrCount += Attrs.hasAttribute(Attribute::Nest); | |||
| 1712 | AttrCount += Attrs.hasAttribute(Attribute::ByRef); | |||
| 1713 | Assert(AttrCount <= 1,do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', " "'byref', and 'sret' are incompatible!", V); return; } } while (false) | |||
| 1714 | "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', " "'byref', and 'sret' are incompatible!", V); return; } } while (false) | |||
| 1715 | "'byref', and 'sret' are incompatible!",do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', " "'byref', and 'sret' are incompatible!", V); return; } } while (false) | |||
| 1716 | V)do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', " "'byref', and 'sret' are incompatible!", V); return; } } while (false); | |||
| 1717 | ||||
| 1718 | Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) && Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes " "'inalloca and readonly' are incompatible!", V); return; } } while (false) | |||
| 1719 | Attrs.hasAttribute(Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) && Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes " "'inalloca and readonly' are incompatible!", V); return; } } while (false) | |||
| 1720 | "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) && Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes " "'inalloca and readonly' are incompatible!", V); return; } } while (false) | |||
| 1721 | "'inalloca and readonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) && Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes " "'inalloca and readonly' are incompatible!", V); return; } } while (false) | |||
| 1722 | V)do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) && Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes " "'inalloca and readonly' are incompatible!", V); return; } } while (false); | |||
| 1723 | ||||
| 1724 | Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) && Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes " "'sret and returned' are incompatible!", V); return; } } while (false) | |||
| 1725 | Attrs.hasAttribute(Attribute::Returned)),do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) && Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes " "'sret and returned' are incompatible!", V); return; } } while (false) | |||
| 1726 | "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) && Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes " "'sret and returned' are incompatible!", V); return; } } while (false) | |||
| 1727 | "'sret and returned' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) && Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes " "'sret and returned' are incompatible!", V); return; } } while (false) | |||
| 1728 | V)do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) && Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes " "'sret and returned' are incompatible!", V); return; } } while (false); | |||
| 1729 | ||||
| 1730 | Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs .hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes " "'zeroext and signext' are incompatible!", V); return; } } while (false) | |||
| 1731 | Attrs.hasAttribute(Attribute::SExt)),do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs .hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes " "'zeroext and signext' are incompatible!", V); return; } } while (false) | |||
| 1732 | "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs .hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes " "'zeroext and signext' are incompatible!", V); return; } } while (false) | |||
| 1733 | "'zeroext and signext' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs .hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes " "'zeroext and signext' are incompatible!", V); return; } } while (false) | |||
| 1734 | V)do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs .hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes " "'zeroext and signext' are incompatible!", V); return; } } while (false); | |||
| 1735 | ||||
| 1736 | Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) && Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes " "'readnone and readonly' are incompatible!", V); return; } } while (false) | |||
| 1737 | Attrs.hasAttribute(Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) && Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes " "'readnone and readonly' are incompatible!", V); return; } } while (false) | |||
| 1738 | "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) && Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes " "'readnone and readonly' are incompatible!", V); return; } } while (false) | |||
| 1739 | "'readnone and readonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) && Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes " "'readnone and readonly' are incompatible!", V); return; } } while (false) | |||
| 1740 | V)do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) && Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes " "'readnone and readonly' are incompatible!", V); return; } } while (false); | |||
| 1741 | ||||
| 1742 | Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) && Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes " "'readnone and writeonly' are incompatible!", V); return; } } while (false) | |||
| 1743 | Attrs.hasAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) && Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes " "'readnone and writeonly' are incompatible!", V); return; } } while (false) | |||
| 1744 | "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) && Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes " "'readnone and writeonly' are incompatible!", V); return; } } while (false) | |||
| 1745 | "'readnone and writeonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) && Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes " "'readnone and writeonly' are incompatible!", V); return; } } while (false) | |||
| 1746 | V)do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) && Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes " "'readnone and writeonly' are incompatible!", V); return; } } while (false); | |||
| 1747 | ||||
| 1748 | Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) && Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes " "'readonly and writeonly' are incompatible!", V); return; } } while (false) | |||
| 1749 | Attrs.hasAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) && Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes " "'readonly and writeonly' are incompatible!", V); return; } } while (false) | |||
| 1750 | "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) && Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes " "'readonly and writeonly' are incompatible!", V); return; } } while (false) | |||
| 1751 | "'readonly and writeonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) && Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes " "'readonly and writeonly' are incompatible!", V); return; } } while (false) | |||
| 1752 | V)do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) && Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes " "'readonly and writeonly' are incompatible!", V); return; } } while (false); | |||
| 1753 | ||||
| 1754 | Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) && Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed ("Attributes " "'noinline and alwaysinline' are incompatible!" , V); return; } } while (false) | |||
| 1755 | Attrs.hasAttribute(Attribute::AlwaysInline)),do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) && Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed ("Attributes " "'noinline and alwaysinline' are incompatible!" , V); return; } } while (false) | |||
| 1756 | "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) && Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed ("Attributes " "'noinline and alwaysinline' are incompatible!" , V); return; } } while (false) | |||
| 1757 | "'noinline and alwaysinline' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) && Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed ("Attributes " "'noinline and alwaysinline' are incompatible!" , V); return; } } while (false) | |||
| 1758 | V)do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) && Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed ("Attributes " "'noinline and alwaysinline' are incompatible!" , V); return; } } while (false); | |||
| 1759 | ||||
| 1760 | AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); | |||
| 1761 | for (Attribute Attr : Attrs) { | |||
| 1762 | if (!Attr.isStringAttribute() && | |||
| 1763 | IncompatibleAttrs.contains(Attr.getKindAsEnum())) { | |||
| 1764 | CheckFailed("Attribute '" + Attr.getAsString() + | |||
| 1765 | "' applied to incompatible type!", V); | |||
| 1766 | return; | |||
| 1767 | } | |||
| 1768 | } | |||
| 1769 | ||||
| 1770 | if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { | |||
| 1771 | if (Attrs.hasAttribute(Attribute::ByVal)) { | |||
| 1772 | SmallPtrSet<Type *, 4> Visited; | |||
| 1773 | Assert(Attrs.getByValType()->isSized(&Visited),do { if (!(Attrs.getByValType()->isSized(&Visited))) { CheckFailed("Attribute 'byval' does not support unsized types!" , V); return; } } while (false) | |||
| 1774 | "Attribute 'byval' does not support unsized types!", V)do { if (!(Attrs.getByValType()->isSized(&Visited))) { CheckFailed("Attribute 'byval' does not support unsized types!" , V); return; } } while (false); | |||
| 1775 | } | |||
| 1776 | if (Attrs.hasAttribute(Attribute::ByRef)) { | |||
| 1777 | SmallPtrSet<Type *, 4> Visited; | |||
| 1778 | Assert(Attrs.getByRefType()->isSized(&Visited),do { if (!(Attrs.getByRefType()->isSized(&Visited))) { CheckFailed("Attribute 'byref' does not support unsized types!" , V); return; } } while (false) | |||
| 1779 | "Attribute 'byref' does not support unsized types!", V)do { if (!(Attrs.getByRefType()->isSized(&Visited))) { CheckFailed("Attribute 'byref' does not support unsized types!" , V); return; } } while (false); | |||
| 1780 | } | |||
| 1781 | if (Attrs.hasAttribute(Attribute::InAlloca)) { | |||
| 1782 | SmallPtrSet<Type *, 4> Visited; | |||
| 1783 | Assert(Attrs.getInAllocaType()->isSized(&Visited),do { if (!(Attrs.getInAllocaType()->isSized(&Visited)) ) { CheckFailed("Attribute 'inalloca' does not support unsized types!" , V); return; } } while (false) | |||
| 1784 | "Attribute 'inalloca' does not support unsized types!", V)do { if (!(Attrs.getInAllocaType()->isSized(&Visited)) ) { CheckFailed("Attribute 'inalloca' does not support unsized types!" , V); return; } } while (false); | |||
| 1785 | } | |||
| 1786 | if (Attrs.hasAttribute(Attribute::Preallocated)) { | |||
| 1787 | SmallPtrSet<Type *, 4> Visited; | |||
| 1788 | Assert(Attrs.getPreallocatedType()->isSized(&Visited),do { if (!(Attrs.getPreallocatedType()->isSized(&Visited ))) { CheckFailed("Attribute 'preallocated' does not support unsized types!" , V); return; } } while (false) | |||
| 1789 | "Attribute 'preallocated' does not support unsized types!", V)do { if (!(Attrs.getPreallocatedType()->isSized(&Visited ))) { CheckFailed("Attribute 'preallocated' does not support unsized types!" , V); return; } } while (false); | |||
| 1790 | } | |||
| 1791 | if (!PTy->isOpaque()) { | |||
| 1792 | if (!isa<PointerType>(PTy->getElementType())) | |||
| 1793 | Assert(!Attrs.hasAttribute(Attribute::SwiftError),do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed ("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!" , V); return; } } while (false) | |||
| 1794 | "Attribute 'swifterror' only applies to parameters "do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed ("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!" , V); return; } } while (false) | |||
| 1795 | "with pointer to pointer type!",do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed ("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!" , V); return; } } while (false) | |||
| 1796 | V)do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed ("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!" , V); return; } } while (false); | |||
| 1797 | if (Attrs.hasAttribute(Attribute::ByRef)) { | |||
| 1798 | Assert(Attrs.getByRefType() == PTy->getElementType(),do { if (!(Attrs.getByRefType() == PTy->getElementType())) { CheckFailed("Attribute 'byref' type does not match parameter!" , V); return; } } while (false) | |||
| 1799 | "Attribute 'byref' type does not match parameter!", V)do { if (!(Attrs.getByRefType() == PTy->getElementType())) { CheckFailed("Attribute 'byref' type does not match parameter!" , V); return; } } while (false); | |||
| 1800 | } | |||
| 1801 | ||||
| 1802 | if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) { | |||
| 1803 | Assert(Attrs.getByValType() == PTy->getElementType(),do { if (!(Attrs.getByValType() == PTy->getElementType())) { CheckFailed("Attribute 'byval' type does not match parameter!" , V); return; } } while (false) | |||
| 1804 | "Attribute 'byval' type does not match parameter!", V)do { if (!(Attrs.getByValType() == PTy->getElementType())) { CheckFailed("Attribute 'byval' type does not match parameter!" , V); return; } } while (false); | |||
| 1805 | } | |||
| 1806 | ||||
| 1807 | if (Attrs.hasAttribute(Attribute::Preallocated)) { | |||
| 1808 | Assert(Attrs.getPreallocatedType() == PTy->getElementType(),do { if (!(Attrs.getPreallocatedType() == PTy->getElementType ())) { CheckFailed("Attribute 'preallocated' type does not match parameter!" , V); return; } } while (false) | |||
| 1809 | "Attribute 'preallocated' type does not match parameter!", V)do { if (!(Attrs.getPreallocatedType() == PTy->getElementType ())) { CheckFailed("Attribute 'preallocated' type does not match parameter!" , V); return; } } while (false); | |||
| 1810 | } | |||
| 1811 | ||||
| 1812 | if (Attrs.hasAttribute(Attribute::InAlloca)) { | |||
| 1813 | Assert(Attrs.getInAllocaType() == PTy->getElementType(),do { if (!(Attrs.getInAllocaType() == PTy->getElementType( ))) { CheckFailed("Attribute 'inalloca' type does not match parameter!" , V); return; } } while (false) | |||
| 1814 | "Attribute 'inalloca' type does not match parameter!", V)do { if (!(Attrs.getInAllocaType() == PTy->getElementType( ))) { CheckFailed("Attribute 'inalloca' type does not match parameter!" , V); return; } } while (false); | |||
| 1815 | } | |||
| 1816 | ||||
| 1817 | if (Attrs.hasAttribute(Attribute::ElementType)) { | |||
| 1818 | Assert(Attrs.getElementType() == PTy->getElementType(),do { if (!(Attrs.getElementType() == PTy->getElementType() )) { CheckFailed("Attribute 'elementtype' type does not match parameter!" , V); return; } } while (false) | |||
| 1819 | "Attribute 'elementtype' type does not match parameter!", V)do { if (!(Attrs.getElementType() == PTy->getElementType() )) { CheckFailed("Attribute 'elementtype' type does not match parameter!" , V); return; } } while (false); | |||
| 1820 | } | |||
| 1821 | } | |||
| 1822 | } | |||
| 1823 | } | |||
| 1824 | ||||
| 1825 | void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr, | |||
| 1826 | const Value *V) { | |||
| 1827 | if (Attrs.hasFnAttribute(Attr)) { | |||
| 1828 | StringRef S = Attrs.getAttribute(AttributeList::FunctionIndex, Attr) | |||
| 1829 | .getValueAsString(); | |||
| 1830 | unsigned N; | |||
| 1831 | if (S.getAsInteger(10, N)) | |||
| 1832 | CheckFailed("\"" + Attr + "\" takes an unsigned integer: " + S, V); | |||
| 1833 | } | |||
| 1834 | } | |||
| 1835 | ||||
| 1836 | // Check parameter attributes against a function type. | |||
| 1837 | // The value V is printed in error messages. | |||
| 1838 | void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, | |||
| 1839 | const Value *V, bool IsIntrinsic) { | |||
| 1840 | if (Attrs.isEmpty()) | |||
| 1841 | return; | |||
| 1842 | ||||
| 1843 | if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) { | |||
| 1844 | Assert(Attrs.hasParentContext(Context),do { if (!(Attrs.hasParentContext(Context))) { CheckFailed("Attribute list does not match Module context!" , &Attrs, V); return; } } while (false) | |||
| 1845 | "Attribute list does not match Module context!", &Attrs, V)do { if (!(Attrs.hasParentContext(Context))) { CheckFailed("Attribute list does not match Module context!" , &Attrs, V); return; } } while (false); | |||
| 1846 | for (const auto &AttrSet : Attrs) { | |||
| 1847 | Assert(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context),do { if (!(!AttrSet.hasAttributes() || AttrSet.hasParentContext (Context))) { CheckFailed("Attribute set does not match Module context!" , &AttrSet, V); return; } } while (false) | |||
| 1848 | "Attribute set does not match Module context!", &AttrSet, V)do { if (!(!AttrSet.hasAttributes() || AttrSet.hasParentContext (Context))) { CheckFailed("Attribute set does not match Module context!" , &AttrSet, V); return; } } while (false); | |||
| 1849 | for (const auto &A : AttrSet) { | |||
| 1850 | Assert(A.hasParentContext(Context),do { if (!(A.hasParentContext(Context))) { CheckFailed("Attribute does not match Module context!" , &A, V); return; } } while (false) | |||
| 1851 | "Attribute does not match Module context!", &A, V)do { if (!(A.hasParentContext(Context))) { CheckFailed("Attribute does not match Module context!" , &A, V); return; } } while (false); | |||
| 1852 | } | |||
| 1853 | } | |||
| 1854 | } | |||
| 1855 | ||||
| 1856 | bool SawNest = false; | |||
| 1857 | bool SawReturned = false; | |||
| 1858 | bool SawSRet = false; | |||
| 1859 | bool SawSwiftSelf = false; | |||
| 1860 | bool SawSwiftAsync = false; | |||
| 1861 | bool SawSwiftError = false; | |||
| 1862 | ||||
| 1863 | // Verify return value attributes. | |||
| 1864 | AttributeSet RetAttrs = Attrs.getRetAttributes(); | |||
| 1865 | for (Attribute RetAttr : RetAttrs) | |||
| 1866 | Assert(RetAttr.isStringAttribute() ||do { if (!(RetAttr.isStringAttribute() || Attribute::canUseAsRetAttr (RetAttr.getKindAsEnum()))) { CheckFailed("Attribute '" + RetAttr .getAsString() + "' does not apply to function return values" , V); return; } } while (false) | |||
| 1867 | Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()),do { if (!(RetAttr.isStringAttribute() || Attribute::canUseAsRetAttr (RetAttr.getKindAsEnum()))) { CheckFailed("Attribute '" + RetAttr .getAsString() + "' does not apply to function return values" , V); return; } } while (false) | |||
| 1868 | "Attribute '" + RetAttr.getAsString() +do { if (!(RetAttr.isStringAttribute() || Attribute::canUseAsRetAttr (RetAttr.getKindAsEnum()))) { CheckFailed("Attribute '" + RetAttr .getAsString() + "' does not apply to function return values" , V); return; } } while (false) | |||
| 1869 | "' does not apply to function return values",do { if (!(RetAttr.isStringAttribute() || Attribute::canUseAsRetAttr (RetAttr.getKindAsEnum()))) { CheckFailed("Attribute '" + RetAttr .getAsString() + "' does not apply to function return values" , V); return; } } while (false) | |||
| 1870 | V)do { if (!(RetAttr.isStringAttribute() || Attribute::canUseAsRetAttr (RetAttr.getKindAsEnum()))) { CheckFailed("Attribute '" + RetAttr .getAsString() + "' does not apply to function return values" , V); return; } } while (false); | |||
| 1871 | ||||
| 1872 | verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); | |||
| 1873 | ||||
| 1874 | // Verify parameter attributes. | |||
| 1875 | for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { | |||
| 1876 | Type *Ty = FT->getParamType(i); | |||
| 1877 | AttributeSet ArgAttrs = Attrs.getParamAttributes(i); | |||
| 1878 | ||||
| 1879 | if (!IsIntrinsic) { | |||
| 1880 | Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg),do { if (!(!ArgAttrs.hasAttribute(Attribute::ImmArg))) { CheckFailed ("immarg attribute only applies to intrinsics",V); return; } } while (false) | |||
| 1881 | "immarg attribute only applies to intrinsics",V)do { if (!(!ArgAttrs.hasAttribute(Attribute::ImmArg))) { CheckFailed ("immarg attribute only applies to intrinsics",V); return; } } while (false); | |||
| 1882 | Assert(!ArgAttrs.hasAttribute(Attribute::ElementType),do { if (!(!ArgAttrs.hasAttribute(Attribute::ElementType))) { CheckFailed("Attribute 'elementtype' can only be applied to intrinsics." , V); return; } } while (false) | |||
| 1883 | "Attribute 'elementtype' can only be applied to intrinsics.", V)do { if (!(!ArgAttrs.hasAttribute(Attribute::ElementType))) { CheckFailed("Attribute 'elementtype' can only be applied to intrinsics." , V); return; } } while (false); | |||
| 1884 | } | |||
| 1885 | ||||
| 1886 | verifyParameterAttrs(ArgAttrs, Ty, V); | |||
| 1887 | ||||
| 1888 | if (ArgAttrs.hasAttribute(Attribute::Nest)) { | |||
| 1889 | Assert(!SawNest, "More than one parameter has attribute nest!", V)do { if (!(!SawNest)) { CheckFailed("More than one parameter has attribute nest!" , V); return; } } while (false); | |||
| 1890 | SawNest = true; | |||
| 1891 | } | |||
| 1892 | ||||
| 1893 | if (ArgAttrs.hasAttribute(Attribute::Returned)) { | |||
| 1894 | Assert(!SawReturned, "More than one parameter has attribute returned!",do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!" , V); return; } } while (false) | |||
| 1895 | V)do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!" , V); return; } } while (false); | |||
| 1896 | Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType ()))) { CheckFailed("Incompatible argument and return types for 'returned' attribute" , V); return; } } while (false) | |||
| 1897 | "Incompatible argument and return types for 'returned' attribute",do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType ()))) { CheckFailed("Incompatible argument and return types for 'returned' attribute" , V); return; } } while (false) | |||
| 1898 | V)do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType ()))) { CheckFailed("Incompatible argument and return types for 'returned' attribute" , V); return; } } while (false); | |||
| 1899 | SawReturned = true; | |||
| 1900 | } | |||
| 1901 | ||||
| 1902 | if (ArgAttrs.hasAttribute(Attribute::StructRet)) { | |||
| 1903 | Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V)do { if (!(!SawSRet)) { CheckFailed("Cannot have multiple 'sret' parameters!" , V); return; } } while (false); | |||
| 1904 | Assert(i == 0 || i == 1,do { if (!(i == 0 || i == 1)) { CheckFailed("Attribute 'sret' is not on first or second parameter!" , V); return; } } while (false) | |||
| 1905 | "Attribute 'sret' is not on first or second parameter!", V)do { if (!(i == 0 || i == 1)) { CheckFailed("Attribute 'sret' is not on first or second parameter!" , V); return; } } while (false); | |||
| 1906 | SawSRet = true; | |||
| 1907 | } | |||
| 1908 | ||||
| 1909 | if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { | |||
| 1910 | Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V)do { if (!(!SawSwiftSelf)) { CheckFailed("Cannot have multiple 'swiftself' parameters!" , V); return; } } while (false); | |||
| 1911 | SawSwiftSelf = true; | |||
| 1912 | } | |||
| 1913 | ||||
| 1914 | if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) { | |||
| 1915 | Assert(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V)do { if (!(!SawSwiftAsync)) { CheckFailed("Cannot have multiple 'swiftasync' parameters!" , V); return; } } while (false); | |||
| 1916 | SawSwiftAsync = true; | |||
| 1917 | } | |||
| 1918 | ||||
| 1919 | if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { | |||
| 1920 | Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",do { if (!(!SawSwiftError)) { CheckFailed("Cannot have multiple 'swifterror' parameters!" , V); return; } } while (false) | |||
| 1921 | V)do { if (!(!SawSwiftError)) { CheckFailed("Cannot have multiple 'swifterror' parameters!" , V); return; } } while (false); | |||
| 1922 | SawSwiftError = true; | |||
| 1923 | } | |||
| 1924 | ||||
| 1925 | if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { | |||
| 1926 | Assert(i == FT->getNumParams() - 1,do { if (!(i == FT->getNumParams() - 1)) { CheckFailed("inalloca isn't on the last parameter!" , V); return; } } while (false) | |||
| 1927 | "inalloca isn't on the last parameter!", V)do { if (!(i == FT->getNumParams() - 1)) { CheckFailed("inalloca isn't on the last parameter!" , V); return; } } while (false); | |||
| 1928 | } | |||
| 1929 | } | |||
| 1930 | ||||
| 1931 | if (!Attrs.hasAttributes(AttributeList::FunctionIndex)) | |||
| 1932 | return; | |||
| 1933 | ||||
| 1934 | verifyAttributeTypes(Attrs.getFnAttributes(), V); | |||
| 1935 | for (Attribute FnAttr : Attrs.getFnAttributes()) | |||
| 1936 | Assert(FnAttr.isStringAttribute() ||do { if (!(FnAttr.isStringAttribute() || Attribute::canUseAsFnAttr (FnAttr.getKindAsEnum()))) { CheckFailed("Attribute '" + FnAttr .getAsString() + "' does not apply to functions!", V); return ; } } while (false) | |||
| 1937 | Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()),do { if (!(FnAttr.isStringAttribute() || Attribute::canUseAsFnAttr (FnAttr.getKindAsEnum()))) { CheckFailed("Attribute '" + FnAttr .getAsString() + "' does not apply to functions!", V); return ; } } while (false) | |||
| 1938 | "Attribute '" + FnAttr.getAsString() +do { if (!(FnAttr.isStringAttribute() || Attribute::canUseAsFnAttr (FnAttr.getKindAsEnum()))) { CheckFailed("Attribute '" + FnAttr .getAsString() + "' does not apply to functions!", V); return ; } } while (false) | |||
| 1939 | "' does not apply to functions!",do { if (!(FnAttr.isStringAttribute() || Attribute::canUseAsFnAttr (FnAttr.getKindAsEnum()))) { CheckFailed("Attribute '" + FnAttr .getAsString() + "' does not apply to functions!", V); return ; } } while (false) | |||
| 1940 | V)do { if (!(FnAttr.isStringAttribute() || Attribute::canUseAsFnAttr (FnAttr.getKindAsEnum()))) { CheckFailed("Attribute '" + FnAttr .getAsString() + "' does not apply to functions!", V); return ; } } while (false); | |||
| 1941 | ||||
| 1942 | Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) && Attrs.hasFnAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!" , V); return; } } while (false) | |||
| 1943 | Attrs.hasFnAttribute(Attribute::ReadOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) && Attrs.hasFnAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!" , V); return; } } while (false) | |||
| 1944 | "Attributes 'readnone and readonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) && Attrs.hasFnAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!" , V); return; } } while (false); | |||
| 1945 | ||||
| 1946 | Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) && Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed( "Attributes 'readnone and writeonly' are incompatible!", V); return ; } } while (false) | |||
| 1947 | Attrs.hasFnAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) && Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed( "Attributes 'readnone and writeonly' are incompatible!", V); return ; } } while (false) | |||
| 1948 | "Attributes 'readnone and writeonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) && Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed( "Attributes 'readnone and writeonly' are incompatible!", V); return ; } } while (false); | |||
| 1949 | ||||
| 1950 | Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadOnly) && Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed( "Attributes 'readonly and writeonly' are incompatible!", V); return ; } } while (false) | |||
| 1951 | Attrs.hasFnAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadOnly) && Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed( "Attributes 'readonly and writeonly' are incompatible!", V); return ; } } while (false) | |||
| 1952 | "Attributes 'readonly and writeonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadOnly) && Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed( "Attributes 'readonly and writeonly' are incompatible!", V); return ; } } while (false); | |||
| 1953 | ||||
| 1954 | Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) && Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly) ))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are " "incompatible!", V); return; } } while (false) | |||
| 1955 | Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) && Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly) ))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are " "incompatible!", V); return; } } while (false) | |||
| 1956 | "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) && Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly) ))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are " "incompatible!", V); return; } } while (false) | |||
| 1957 | "incompatible!",do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) && Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly) ))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are " "incompatible!", V); return; } } while (false) | |||
| 1958 | V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) && Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly) ))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are " "incompatible!", V); return; } } while (false); | |||
| 1959 | ||||
| 1960 | Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) && Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)))) { CheckFailed ("Attributes 'readnone and inaccessiblememonly' are incompatible!" , V); return; } } while (false) | |||
| 1961 | Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) && Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)))) { CheckFailed ("Attributes 'readnone and inaccessiblememonly' are incompatible!" , V); return; } } while (false) | |||
| 1962 | "Attributes 'readnone and inaccessiblememonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) && Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)))) { CheckFailed ("Attributes 'readnone and inaccessiblememonly' are incompatible!" , V); return; } } while (false); | |||
| 1963 | ||||
| 1964 | Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::NoInline) && Attrs.hasFnAttribute(Attribute::AlwaysInline)))) { CheckFailed ("Attributes 'noinline and alwaysinline' are incompatible!", V ); return; } } while (false) | |||
| 1965 | Attrs.hasFnAttribute(Attribute::AlwaysInline)),do { if (!(!(Attrs.hasFnAttribute(Attribute::NoInline) && Attrs.hasFnAttribute(Attribute::AlwaysInline)))) { CheckFailed ("Attributes 'noinline and alwaysinline' are incompatible!", V ); return; } } while (false) | |||
| 1966 | "Attributes 'noinline and alwaysinline' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::NoInline) && Attrs.hasFnAttribute(Attribute::AlwaysInline)))) { CheckFailed ("Attributes 'noinline and alwaysinline' are incompatible!", V ); return; } } while (false); | |||
| 1967 | ||||
| 1968 | if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) { | |||
| 1969 | Assert(Attrs.hasFnAttribute(Attribute::NoInline),do { if (!(Attrs.hasFnAttribute(Attribute::NoInline))) { CheckFailed ("Attribute 'optnone' requires 'noinline'!", V); return; } } while (false) | |||
| 1970 | "Attribute 'optnone' requires 'noinline'!", V)do { if (!(Attrs.hasFnAttribute(Attribute::NoInline))) { CheckFailed ("Attribute 'optnone' requires 'noinline'!", V); return; } } while (false); | |||
| 1971 | ||||
| 1972 | Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),do { if (!(!Attrs.hasFnAttribute(Attribute::OptimizeForSize)) ) { CheckFailed("Attributes 'optsize and optnone' are incompatible!" , V); return; } } while (false) | |||
| 1973 | "Attributes 'optsize and optnone' are incompatible!", V)do { if (!(!Attrs.hasFnAttribute(Attribute::OptimizeForSize)) ) { CheckFailed("Attributes 'optsize and optnone' are incompatible!" , V); return; } } while (false); | |||
| 1974 | ||||
| 1975 | Assert(!Attrs.hasFnAttribute(Attribute::MinSize),do { if (!(!Attrs.hasFnAttribute(Attribute::MinSize))) { CheckFailed ("Attributes 'minsize and optnone' are incompatible!", V); return ; } } while (false) | |||
| 1976 | "Attributes 'minsize and optnone' are incompatible!", V)do { if (!(!Attrs.hasFnAttribute(Attribute::MinSize))) { CheckFailed ("Attributes 'minsize and optnone' are incompatible!", V); return ; } } while (false); | |||
| 1977 | } | |||
| 1978 | ||||
| 1979 | if (Attrs.hasFnAttribute(Attribute::JumpTable)) { | |||
| 1980 | const GlobalValue *GV = cast<GlobalValue>(V); | |||
| 1981 | Assert(GV->hasGlobalUnnamedAddr(),do { if (!(GV->hasGlobalUnnamedAddr())) { CheckFailed("Attribute 'jumptable' requires 'unnamed_addr'" , V); return; } } while (false) | |||
| 1982 | "Attribute 'jumptable' requires 'unnamed_addr'", V)do { if (!(GV->hasGlobalUnnamedAddr())) { CheckFailed("Attribute 'jumptable' requires 'unnamed_addr'" , V); return; } } while (false); | |||
| 1983 | } | |||
| 1984 | ||||
| 1985 | if (Attrs.hasFnAttribute(Attribute::AllocSize)) { | |||
| 1986 | std::pair<unsigned, Optional<unsigned>> Args = | |||
| 1987 | Attrs.getAllocSizeArgs(AttributeList::FunctionIndex); | |||
| 1988 | ||||
| 1989 | auto CheckParam = [&](StringRef Name, unsigned ParamNo) { | |||
| 1990 | if (ParamNo >= FT->getNumParams()) { | |||
| 1991 | CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); | |||
| 1992 | return false; | |||
| 1993 | } | |||
| 1994 | ||||
| 1995 | if (!FT->getParamType(ParamNo)->isIntegerTy()) { | |||
| 1996 | CheckFailed("'allocsize' " + Name + | |||
| 1997 | " argument must refer to an integer parameter", | |||
| 1998 | V); | |||
| 1999 | return false; | |||
| 2000 | } | |||
| 2001 | ||||
| 2002 | return true; | |||
| 2003 | }; | |||
| 2004 | ||||
| 2005 | if (!CheckParam("element size", Args.first)) | |||
| 2006 | return; | |||
| 2007 | ||||
| 2008 | if (Args.second && !CheckParam("number of elements", *Args.second)) | |||
| 2009 | return; | |||
| 2010 | } | |||
| 2011 | ||||
| 2012 | if (Attrs.hasFnAttribute(Attribute::VScaleRange)) { | |||
| 2013 | std::pair<unsigned, unsigned> Args = | |||
| 2014 | Attrs.getVScaleRangeArgs(AttributeList::FunctionIndex); | |||
| 2015 | ||||
| 2016 | if (Args.first > Args.second && Args.second != 0) | |||
| 2017 | CheckFailed("'vscale_range' minimum cannot be greater than maximum", V); | |||
| 2018 | } | |||
| 2019 | ||||
| 2020 | if (Attrs.hasFnAttribute("frame-pointer")) { | |||
| 2021 | StringRef FP = Attrs.getAttribute(AttributeList::FunctionIndex, | |||
| 2022 | "frame-pointer").getValueAsString(); | |||
| 2023 | if (FP != "all" && FP != "non-leaf" && FP != "none") | |||
| 2024 | CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V); | |||
| 2025 | } | |||
| 2026 | ||||
| 2027 | checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-prefix", V); | |||
| 2028 | checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-entry", V); | |||
| 2029 | checkUnsignedBaseTenFuncAttr(Attrs, "warn-stack-size", V); | |||
| 2030 | } | |||
| 2031 | ||||
| 2032 | void Verifier::verifyFunctionMetadata( | |||
| 2033 | ArrayRef<std::pair<unsigned, MDNode *>> MDs) { | |||
| 2034 | for (const auto &Pair : MDs) { | |||
| 2035 | if (Pair.first == LLVMContext::MD_prof) { | |||
| 2036 | MDNode *MD = Pair.second; | |||
| 2037 | Assert(MD->getNumOperands() >= 2,do { if (!(MD->getNumOperands() >= 2)) { CheckFailed("!prof annotations should have no less than 2 operands" , MD); return; } } while (false) | |||
| 2038 | "!prof annotations should have no less than 2 operands", MD)do { if (!(MD->getNumOperands() >= 2)) { CheckFailed("!prof annotations should have no less than 2 operands" , MD); return; } } while (false); | |||
| 2039 | ||||
| 2040 | // Check first operand. | |||
| 2041 | Assert(MD->getOperand(0) != nullptr, "first operand should not be null",do { if (!(MD->getOperand(0) != nullptr)) { CheckFailed("first operand should not be null" , MD); return; } } while (false) | |||
| 2042 | MD)do { if (!(MD->getOperand(0) != nullptr)) { CheckFailed("first operand should not be null" , MD); return; } } while (false); | |||
| 2043 | Assert(isa<MDString>(MD->getOperand(0)),do { if (!(isa<MDString>(MD->getOperand(0)))) { CheckFailed ("expected string with name of the !prof annotation", MD); return ; } } while (false) | |||
| 2044 | "expected string with name of the !prof annotation", MD)do { if (!(isa<MDString>(MD->getOperand(0)))) { CheckFailed ("expected string with name of the !prof annotation", MD); return ; } } while (false); | |||
| 2045 | MDString *MDS = cast<MDString>(MD->getOperand(0)); | |||
| 2046 | StringRef ProfName = MDS->getString(); | |||
| 2047 | Assert(ProfName.equals("function_entry_count") ||do { if (!(ProfName.equals("function_entry_count") || ProfName .equals("synthetic_function_entry_count"))) { CheckFailed("first operand should be 'function_entry_count'" " or 'synthetic_function_entry_count'", MD); return; } } while (false) | |||
| 2048 | ProfName.equals("synthetic_function_entry_count"),do { if (!(ProfName.equals("function_entry_count") || ProfName .equals("synthetic_function_entry_count"))) { CheckFailed("first operand should be 'function_entry_count'" " or 'synthetic_function_entry_count'", MD); return; } } while (false) | |||
| 2049 | "first operand should be 'function_entry_count'"do { if (!(ProfName.equals("function_entry_count") || ProfName .equals("synthetic_function_entry_count"))) { CheckFailed("first operand should be 'function_entry_count'" " or 'synthetic_function_entry_count'", MD); return; } } while (false) | |||
| 2050 | " or 'synthetic_function_entry_count'",do { if (!(ProfName.equals("function_entry_count") || ProfName .equals("synthetic_function_entry_count"))) { CheckFailed("first operand should be 'function_entry_count'" " or 'synthetic_function_entry_count'", MD); return; } } while (false) | |||
| 2051 | MD)do { if (!(ProfName.equals("function_entry_count") || ProfName .equals("synthetic_function_entry_count"))) { CheckFailed("first operand should be 'function_entry_count'" " or 'synthetic_function_entry_count'", MD); return; } } while (false); | |||
| 2052 | ||||
| 2053 | // Check second operand. | |||
| 2054 | Assert(MD->getOperand(1) != nullptr, "second operand should not be null",do { if (!(MD->getOperand(1) != nullptr)) { CheckFailed("second operand should not be null" , MD); return; } } while (false) | |||
| 2055 | MD)do { if (!(MD->getOperand(1) != nullptr)) { CheckFailed("second operand should not be null" , MD); return; } } while (false); | |||
| 2056 | Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),do { if (!(isa<ConstantAsMetadata>(MD->getOperand(1) ))) { CheckFailed("expected integer argument to function_entry_count" , MD); return; } } while (false) | |||
| 2057 | "expected integer argument to function_entry_count", MD)do { if (!(isa<ConstantAsMetadata>(MD->getOperand(1) ))) { CheckFailed("expected integer argument to function_entry_count" , MD); return; } } while (false); | |||
| 2058 | } | |||
| 2059 | } | |||
| 2060 | } | |||
| 2061 | ||||
| 2062 | void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { | |||
| 2063 | if (!ConstantExprVisited.insert(EntryC).second) | |||
| 2064 | return; | |||
| 2065 | ||||
| 2066 | SmallVector<const Constant *, 16> Stack; | |||
| 2067 | Stack.push_back(EntryC); | |||
| 2068 | ||||
| 2069 | while (!Stack.empty()) { | |||
| 2070 | const Constant *C = Stack.pop_back_val(); | |||
| 2071 | ||||
| 2072 | // Check this constant expression. | |||
| 2073 | if (const auto *CE = dyn_cast<ConstantExpr>(C)) | |||
| 2074 | visitConstantExpr(CE); | |||
| 2075 | ||||
| 2076 | if (const auto *GV = dyn_cast<GlobalValue>(C)) { | |||
| 2077 | // Global Values get visited separately, but we do need to make sure | |||
| 2078 | // that the global value is in the correct module | |||
| 2079 | Assert(GV->getParent() == &M, "Referencing global in another module!",do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!" , EntryC, &M, GV, GV->getParent()); return; } } while ( false) | |||
| 2080 | EntryC, &M, GV, GV->getParent())do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!" , EntryC, &M, GV, GV->getParent()); return; } } while ( false); | |||
| 2081 | continue; | |||
| 2082 | } | |||
| 2083 | ||||
| 2084 | // Visit all sub-expressions. | |||
| 2085 | for (const Use &U : C->operands()) { | |||
| 2086 | const auto *OpC = dyn_cast<Constant>(U); | |||
| 2087 | if (!OpC) | |||
| 2088 | continue; | |||
| 2089 | if (!ConstantExprVisited.insert(OpC).second) | |||
| 2090 | continue; | |||
| 2091 | Stack.push_back(OpC); | |||
| 2092 | } | |||
| 2093 | } | |||
| 2094 | } | |||
| 2095 | ||||
| 2096 | void Verifier::visitConstantExpr(const ConstantExpr *CE) { | |||
| 2097 | if (CE->getOpcode() == Instruction::BitCast) | |||
| 2098 | Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),do { if (!(CastInst::castIsValid(Instruction::BitCast, CE-> getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast" , CE); return; } } while (false) | |||
| 2099 | CE->getType()),do { if (!(CastInst::castIsValid(Instruction::BitCast, CE-> getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast" , CE); return; } } while (false) | |||
| 2100 | "Invalid bitcast", CE)do { if (!(CastInst::castIsValid(Instruction::BitCast, CE-> getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast" , CE); return; } } while (false); | |||
| 2101 | } | |||
| 2102 | ||||
| 2103 | bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { | |||
| 2104 | // There shouldn't be more attribute sets than there are parameters plus the | |||
| 2105 | // function and return value. | |||
| 2106 | return Attrs.getNumAttrSets() <= Params + 2; | |||
| 2107 | } | |||
| 2108 | ||||
| 2109 | /// Verify that statepoint intrinsic is well formed. | |||
| 2110 | void Verifier::verifyStatepoint(const CallBase &Call) { | |||
| 2111 | assert(Call.getCalledFunction() &&((void)0) | |||
| 2112 | Call.getCalledFunction()->getIntrinsicID() ==((void)0) | |||
| 2113 | Intrinsic::experimental_gc_statepoint)((void)0); | |||
| 2114 | ||||
| 2115 | Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&do { if (!(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory () && !Call.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve " "reordering restrictions required by safepoint semantics", Call ); return; } } while (false) | |||
| 2116 | !Call.onlyAccessesArgMemory(),do { if (!(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory () && !Call.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve " "reordering restrictions required by safepoint semantics", Call ); return; } } while (false) | |||
| 2117 | "gc.statepoint must read and write all memory to preserve "do { if (!(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory () && !Call.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve " "reordering restrictions required by safepoint semantics", Call ); return; } } while (false) | |||
| 2118 | "reordering restrictions required by safepoint semantics",do { if (!(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory () && !Call.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve " "reordering restrictions required by safepoint semantics", Call ); return; } } while (false) | |||
| 2119 | Call)do { if (!(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory () && !Call.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve " "reordering restrictions required by safepoint semantics", Call ); return; } } while (false); | |||
| 2120 | ||||
| 2121 | const int64_t NumPatchBytes = | |||
| 2122 | cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue(); | |||
| 2123 | assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!")((void)0); | |||
| 2124 | Assert(NumPatchBytes >= 0,do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be " "positive", Call); return; } } while (false) | |||
| 2125 | "gc.statepoint number of patchable bytes must be "do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be " "positive", Call); return; } } while (false) | |||
| 2126 | "positive",do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be " "positive", Call); return; } } while (false) | |||
| 2127 | Call)do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be " "positive", Call); return; } } while (false); | |||
| 2128 | ||||
| 2129 | const Value *Target = Call.getArgOperand(2); | |||
| 2130 | auto *PT = dyn_cast<PointerType>(Target->getType()); | |||
| 2131 | Assert(PT && PT->getElementType()->isFunctionTy(),do { if (!(PT && PT->getElementType()->isFunctionTy ())) { CheckFailed("gc.statepoint callee must be of function pointer type" , Call, Target); return; } } while (false) | |||
| 2132 | "gc.statepoint callee must be of function pointer type", Call, Target)do { if (!(PT && PT->getElementType()->isFunctionTy ())) { CheckFailed("gc.statepoint callee must be of function pointer type" , Call, Target); return; } } while (false); | |||
| 2133 | FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); | |||
| 2134 | ||||
| 2135 | const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); | |||
| 2136 | Assert(NumCallArgs >= 0,do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call " "must be positive", Call); return; } } while (false) | |||
| 2137 | "gc.statepoint number of arguments to underlying call "do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call " "must be positive", Call); return; } } while (false) | |||
| 2138 | "must be positive",do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call " "must be positive", Call); return; } } while (false) | |||
| 2139 | Call)do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call " "must be positive", Call); return; } } while (false); | |||
| 2140 | const int NumParams = (int)TargetFuncType->getNumParams(); | |||
| 2141 | if (TargetFuncType->isVarArg()) { | |||
| 2142 | Assert(NumCallArgs >= NumParams,do { if (!(NumCallArgs >= NumParams)) { CheckFailed("gc.statepoint mismatch in number of vararg call args" , Call); return; } } while (false) | |||
| 2143 | "gc.statepoint mismatch in number of vararg call args", Call)do { if (!(NumCallArgs >= NumParams)) { CheckFailed("gc.statepoint mismatch in number of vararg call args" , Call); return; } } while (false); | |||
| 2144 | ||||
| 2145 | // TODO: Remove this limitation | |||
| 2146 | Assert(TargetFuncType->getReturnType()->isVoidTy(),do { if (!(TargetFuncType->getReturnType()->isVoidTy()) ) { CheckFailed("gc.statepoint doesn't support wrapping non-void " "vararg functions yet", Call); return; } } while (false) | |||
| 2147 | "gc.statepoint doesn't support wrapping non-void "do { if (!(TargetFuncType->getReturnType()->isVoidTy()) ) { CheckFailed("gc.statepoint doesn't support wrapping non-void " "vararg functions yet", Call); return; } } while (false) | |||
| 2148 | "vararg functions yet",do { if (!(TargetFuncType->getReturnType()->isVoidTy()) ) { CheckFailed("gc.statepoint doesn't support wrapping non-void " "vararg functions yet", Call); return; } } while (false) | |||
| 2149 | Call)do { if (!(TargetFuncType->getReturnType()->isVoidTy()) ) { CheckFailed("gc.statepoint doesn't support wrapping non-void " "vararg functions yet", Call); return; } } while (false); | |||
| 2150 | } else | |||
| 2151 | Assert(NumCallArgs == NumParams,do { if (!(NumCallArgs == NumParams)) { CheckFailed("gc.statepoint mismatch in number of call args" , Call); return; } } while (false) | |||
| 2152 | "gc.statepoint mismatch in number of call args", Call)do { if (!(NumCallArgs == NumParams)) { CheckFailed("gc.statepoint mismatch in number of call args" , Call); return; } } while (false); | |||
| 2153 | ||||
| 2154 | const uint64_t Flags | |||
| 2155 | = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); | |||
| 2156 | Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,do { if (!((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0)) { CheckFailed("unknown flag used in gc.statepoint flags argument" , Call); return; } } while (false) | |||
| 2157 | "unknown flag used in gc.statepoint flags argument", Call)do { if (!((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0)) { CheckFailed("unknown flag used in gc.statepoint flags argument" , Call); return; } } while (false); | |||
| 2158 | ||||
| 2159 | // Verify that the types of the call parameter arguments match | |||
| 2160 | // the type of the wrapped callee. | |||
| 2161 | AttributeList Attrs = Call.getAttributes(); | |||
| 2162 | for (int i = 0; i < NumParams; i++) { | |||
| 2163 | Type *ParamType = TargetFuncType->getParamType(i); | |||
| 2164 | Type *ArgType = Call.getArgOperand(5 + i)->getType(); | |||
| 2165 | Assert(ArgType == ParamType,do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped " "function type", Call); return; } } while (false) | |||
| 2166 | "gc.statepoint call argument does not match wrapped "do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped " "function type", Call); return; } } while (false) | |||
| 2167 | "function type",do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped " "function type", Call); return; } } while (false) | |||
| 2168 | Call)do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped " "function type", Call); return; } } while (false); | |||
| 2169 | ||||
| 2170 | if (TargetFuncType->isVarArg()) { | |||
| 2171 | AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i); | |||
| 2172 | Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed ("Attribute 'sret' cannot be used for vararg call arguments!" , Call); return; } } while (false) | |||
| 2173 | "Attribute 'sret' cannot be used for vararg call arguments!",do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed ("Attribute 'sret' cannot be used for vararg call arguments!" , Call); return; } } while (false) | |||
| 2174 | Call)do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed ("Attribute 'sret' cannot be used for vararg call arguments!" , Call); return; } } while (false); | |||
| 2175 | } | |||
| 2176 | } | |||
| 2177 | ||||
| 2178 | const int EndCallArgsInx = 4 + NumCallArgs; | |||
| 2179 | ||||
| 2180 | const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); | |||
| 2181 | Assert(isa<ConstantInt>(NumTransitionArgsV),do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed ("gc.statepoint number of transition arguments " "must be constant integer" , Call); return; } } while (false) | |||
| 2182 | "gc.statepoint number of transition arguments "do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed ("gc.statepoint number of transition arguments " "must be constant integer" , Call); return; } } while (false) | |||
| 2183 | "must be constant integer",do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed ("gc.statepoint number of transition arguments " "must be constant integer" , Call); return; } } while (false) | |||
| 2184 | Call)do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed ("gc.statepoint number of transition arguments " "must be constant integer" , Call); return; } } while (false); | |||
| 2185 | const int NumTransitionArgs = | |||
| 2186 | cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); | |||
| 2187 | Assert(NumTransitionArgs == 0,do { if (!(NumTransitionArgs == 0)) { CheckFailed("gc.statepoint w/inline transition bundle is deprecated" , Call); return; } } while (false) | |||
| 2188 | "gc.statepoint w/inline transition bundle is deprecated", Call)do { if (!(NumTransitionArgs == 0)) { CheckFailed("gc.statepoint w/inline transition bundle is deprecated" , Call); return; } } while (false); | |||
| 2189 | const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; | |||
| 2190 | ||||
| 2191 | const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); | |||
| 2192 | Assert(isa<ConstantInt>(NumDeoptArgsV),do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed ("gc.statepoint number of deoptimization arguments " "must be constant integer" , Call); return; } } while (false) | |||
| 2193 | "gc.statepoint number of deoptimization arguments "do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed ("gc.statepoint number of deoptimization arguments " "must be constant integer" , Call); return; } } while (false) | |||
| 2194 | "must be constant integer",do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed ("gc.statepoint number of deoptimization arguments " "must be constant integer" , Call); return; } } while (false) | |||
| 2195 | Call)do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed ("gc.statepoint number of deoptimization arguments " "must be constant integer" , Call); return; } } while (false); | |||
| 2196 | const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); | |||
| 2197 | Assert(NumDeoptArgs == 0,do { if (!(NumDeoptArgs == 0)) { CheckFailed("gc.statepoint w/inline deopt operands is deprecated" , Call); return; } } while (false) | |||
| 2198 | "gc.statepoint w/inline deopt operands is deprecated", Call)do { if (!(NumDeoptArgs == 0)) { CheckFailed("gc.statepoint w/inline deopt operands is deprecated" , Call); return; } } while (false); | |||
| 2199 | ||||
| 2200 | const int ExpectedNumArgs = 7 + NumCallArgs; | |||
| 2201 | Assert(ExpectedNumArgs == (int)Call.arg_size(),do { if (!(ExpectedNumArgs == (int)Call.arg_size())) { CheckFailed ("gc.statepoint too many arguments", Call); return; } } while (false) | |||
| 2202 | "gc.statepoint too many arguments", Call)do { if (!(ExpectedNumArgs == (int)Call.arg_size())) { CheckFailed ("gc.statepoint too many arguments", Call); return; } } while (false); | |||
| 2203 | ||||
| 2204 | // Check that the only uses of this gc.statepoint are gc.result or | |||
| 2205 | // gc.relocate calls which are tied to this statepoint and thus part | |||
| 2206 | // of the same statepoint sequence | |||
| 2207 | for (const User *U : Call.users()) { | |||
| 2208 | const CallInst *UserCall = dyn_cast<const CallInst>(U); | |||
| 2209 | Assert(UserCall, "illegal use of statepoint token", Call, U)do { if (!(UserCall)) { CheckFailed("illegal use of statepoint token" , Call, U); return; } } while (false); | |||
| 2210 | if (!UserCall) | |||
| 2211 | continue; | |||
| 2212 | Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),do { if (!(isa<GCRelocateInst>(UserCall) || isa<GCResultInst >(UserCall))) { CheckFailed("gc.result or gc.relocate are the only value uses " "of a gc.statepoint", Call, U); return; } } while (false) | |||
| 2213 | "gc.result or gc.relocate are the only value uses "do { if (!(isa<GCRelocateInst>(UserCall) || isa<GCResultInst >(UserCall))) { CheckFailed("gc.result or gc.relocate are the only value uses " "of a gc.statepoint", Call, U); return; } } while (false) | |||
| 2214 | "of a gc.statepoint",do { if (!(isa<GCRelocateInst>(UserCall) || isa<GCResultInst >(UserCall))) { CheckFailed("gc.result or gc.relocate are the only value uses " "of a gc.statepoint", Call, U); return; } } while (false) | |||
| 2215 | Call, U)do { if (!(isa<GCRelocateInst>(UserCall) || isa<GCResultInst >(UserCall))) { CheckFailed("gc.result or gc.relocate are the only value uses " "of a gc.statepoint", Call, U); return; } } while (false); | |||
| 2216 | if (isa<GCResultInst>(UserCall)) { | |||
| 2217 | Assert(UserCall->getArgOperand(0) == &Call,do { if (!(UserCall->getArgOperand(0) == &Call)) { CheckFailed ("gc.result connected to wrong gc.statepoint", Call, UserCall ); return; } } while (false) | |||
| 2218 | "gc.result connected to wrong gc.statepoint", Call, UserCall)do { if (!(UserCall->getArgOperand(0) == &Call)) { CheckFailed ("gc.result connected to wrong gc.statepoint", Call, UserCall ); return; } } while (false); | |||
| 2219 | } else if (isa<GCRelocateInst>(Call)) { | |||
| 2220 | Assert(UserCall->getArgOperand(0) == &Call,do { if (!(UserCall->getArgOperand(0) == &Call)) { CheckFailed ("gc.relocate connected to wrong gc.statepoint", Call, UserCall ); return; } } while (false) | |||
| 2221 | "gc.relocate connected to wrong gc.statepoint", Call, UserCall)do { if (!(UserCall->getArgOperand(0) == &Call)) { CheckFailed ("gc.relocate connected to wrong gc.statepoint", Call, UserCall ); return; } } while (false); | |||
| 2222 | } | |||
| 2223 | } | |||
| 2224 | ||||
| 2225 | // Note: It is legal for a single derived pointer to be listed multiple | |||
| 2226 | // times. It's non-optimal, but it is legal. It can also happen after | |||
| 2227 | // insertion if we strip a bitcast away. | |||
| 2228 | // Note: It is really tempting to check that each base is relocated and | |||
| 2229 | // that a derived pointer is never reused as a base pointer. This turns | |||
| 2230 | // out to be problematic since optimizations run after safepoint insertion | |||
| 2231 | // can recognize equality properties that the insertion logic doesn't know | |||
| 2232 | // about. See example statepoint.ll in the verifier subdirectory | |||
| 2233 | } | |||
| 2234 | ||||
| 2235 | void Verifier::verifyFrameRecoverIndices() { | |||
| 2236 | for (auto &Counts : FrameEscapeInfo) { | |||
| 2237 | Function *F = Counts.first; | |||
| 2238 | unsigned EscapedObjectCount = Counts.second.first; | |||
| 2239 | unsigned MaxRecoveredIndex = Counts.second.second; | |||
| 2240 | Assert(MaxRecoveredIndex <= EscapedObjectCount,do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed ("all indices passed to llvm.localrecover must be less than the " "number of arguments passed to llvm.localescape in the parent " "function", F); return; } } while (false) | |||
| 2241 | "all indices passed to llvm.localrecover must be less than the "do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed ("all indices passed to llvm.localrecover must be less than the " "number of arguments passed to llvm.localescape in the parent " "function", F); return; } } while (false) | |||
| 2242 | "number of arguments passed to llvm.localescape in the parent "do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed ("all indices passed to llvm.localrecover must be less than the " "number of arguments passed to llvm.localescape in the parent " "function", F); return; } } while (false) | |||
| 2243 | "function",do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed ("all indices passed to llvm.localrecover must be less than the " "number of arguments passed to llvm.localescape in the parent " "function", F); return; } } while (false) | |||
| 2244 | F)do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed ("all indices passed to llvm.localrecover must be less than the " "number of arguments passed to llvm.localescape in the parent " "function", F); return; } } while (false); | |||
| 2245 | } | |||
| 2246 | } | |||
| 2247 | ||||
| 2248 | static Instruction *getSuccPad(Instruction *Terminator) { | |||
| 2249 | BasicBlock *UnwindDest; | |||
| 2250 | if (auto *II = dyn_cast<InvokeInst>(Terminator)) | |||
| 2251 | UnwindDest = II->getUnwindDest(); | |||
| 2252 | else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) | |||
| 2253 | UnwindDest = CSI->getUnwindDest(); | |||
| 2254 | else | |||
| 2255 | UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); | |||
| 2256 | return UnwindDest->getFirstNonPHI(); | |||
| 2257 | } | |||
| 2258 | ||||
| 2259 | void Verifier::verifySiblingFuncletUnwinds() { | |||
| 2260 | SmallPtrSet<Instruction *, 8> Visited; | |||
| 2261 | SmallPtrSet<Instruction *, 8> Active; | |||
| 2262 | for (const auto &Pair : SiblingFuncletInfo) { | |||
| 2263 | Instruction *PredPad = Pair.first; | |||
| 2264 | if (Visited.count(PredPad)) | |||
| 2265 | continue; | |||
| 2266 | Active.insert(PredPad); | |||
| 2267 | Instruction *Terminator = Pair.second; | |||
| 2268 | do { | |||
| 2269 | Instruction *SuccPad = getSuccPad(Terminator); | |||
| 2270 | if (Active.count(SuccPad)) { | |||
| 2271 | // Found a cycle; report error | |||
| 2272 | Instruction *CyclePad = SuccPad; | |||
| 2273 | SmallVector<Instruction *, 8> CycleNodes; | |||
| 2274 | do { | |||
| 2275 | CycleNodes.push_back(CyclePad); | |||
| 2276 | Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; | |||
| 2277 | if (CycleTerminator != CyclePad) | |||
| 2278 | CycleNodes.push_back(CycleTerminator); | |||
| 2279 | CyclePad = getSuccPad(CycleTerminator); | |||
| 2280 | } while (CyclePad != SuccPad); | |||
| 2281 | Assert(false, "EH pads can't handle each other's exceptions",do { if (!(false)) { CheckFailed("EH pads can't handle each other's exceptions" , ArrayRef<Instruction *>(CycleNodes)); return; } } while (false) | |||
| 2282 | ArrayRef<Instruction *>(CycleNodes))do { if (!(false)) { CheckFailed("EH pads can't handle each other's exceptions" , ArrayRef<Instruction *>(CycleNodes)); return; } } while (false); | |||
| 2283 | } | |||
| 2284 | // Don't re-walk a node we've already checked | |||
| 2285 | if (!Visited.insert(SuccPad).second) | |||
| 2286 | break; | |||
| 2287 | // Walk to this successor if it has a map entry. | |||
| 2288 | PredPad = SuccPad; | |||
| 2289 | auto TermI = SiblingFuncletInfo.find(PredPad); | |||
| 2290 | if (TermI == SiblingFuncletInfo.end()) | |||
| 2291 | break; | |||
| 2292 | Terminator = TermI->second; | |||
| 2293 | Active.insert(PredPad); | |||
| 2294 | } while (true); | |||
| 2295 | // Each node only has one successor, so we've walked all the active | |||
| 2296 | // nodes' successors. | |||
| 2297 | Active.clear(); | |||
| 2298 | } | |||
| 2299 | } | |||
| 2300 | ||||
| 2301 | // visitFunction - Verify that a function is ok. | |||
| 2302 | // | |||
| 2303 | void Verifier::visitFunction(const Function &F) { | |||
| 2304 | visitGlobalValue(F); | |||
| 2305 | ||||
| 2306 | // Check function arguments. | |||
| 2307 | FunctionType *FT = F.getFunctionType(); | |||
| 2308 | unsigned NumArgs = F.arg_size(); | |||
| 2309 | ||||
| 2310 | Assert(&Context == &F.getContext(),do { if (!(&Context == &F.getContext())) { CheckFailed ("Function context does not match Module context!", &F); return ; } } while (false) | |||
| 2311 | "Function context does not match Module context!", &F)do { if (!(&Context == &F.getContext())) { CheckFailed ("Function context does not match Module context!", &F); return ; } } while (false); | |||
| 2312 | ||||
| 2313 | Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F)do { if (!(!F.hasCommonLinkage())) { CheckFailed("Functions may not have common linkage" , &F); return; } } while (false); | |||
| 2314 | Assert(FT->getNumParams() == NumArgs,do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!" , &F, FT); return; } } while (false) | |||
| 2315 | "# formal arguments must match # of arguments for function type!", &F,do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!" , &F, FT); return; } } while (false) | |||
| 2316 | FT)do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!" , &F, FT); return; } } while (false); | |||
| 2317 | Assert(F.getReturnType()->isFirstClassType() ||do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType ()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed ("Functions cannot return aggregate values!", &F); return ; } } while (false) | |||
| 2318 | F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType ()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed ("Functions cannot return aggregate values!", &F); return ; } } while (false) | |||
| 2319 | "Functions cannot return aggregate values!", &F)do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType ()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed ("Functions cannot return aggregate values!", &F); return ; } } while (false); | |||
| 2320 | ||||
| 2321 | Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),do { if (!(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy ())) { CheckFailed("Invalid struct return type!", &F); return ; } } while (false) | |||
| 2322 | "Invalid struct return type!", &F)do { if (!(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy ())) { CheckFailed("Invalid struct return type!", &F); return ; } } while (false); | |||
| 2323 | ||||
| 2324 | AttributeList Attrs = F.getAttributes(); | |||
| 2325 | ||||
| 2326 | Assert(verifyAttributeCount(Attrs, FT->getNumParams()),do { if (!(verifyAttributeCount(Attrs, FT->getNumParams()) )) { CheckFailed("Attribute after last parameter!", &F); return ; } } while (false) | |||
| 2327 | "Attribute after last parameter!", &F)do { if (!(verifyAttributeCount(Attrs, FT->getNumParams()) )) { CheckFailed("Attribute after last parameter!", &F); return ; } } while (false); | |||
| 2328 | ||||
| 2329 | bool IsIntrinsic = F.isIntrinsic(); | |||
| 2330 | ||||
| 2331 | // Check function attributes. | |||
| 2332 | verifyFunctionAttrs(FT, Attrs, &F, IsIntrinsic); | |||
| 2333 | ||||
| 2334 | // On function declarations/definitions, we do not support the builtin | |||
| 2335 | // attribute. We do not check this in VerifyFunctionAttrs since that is | |||
| 2336 | // checking for Attributes that can/can not ever be on functions. | |||
| 2337 | Assert(!Attrs.hasFnAttribute(Attribute::Builtin),do { if (!(!Attrs.hasFnAttribute(Attribute::Builtin))) { CheckFailed ("Attribute 'builtin' can only be applied to a callsite.", & F); return; } } while (false) | |||
| 2338 | "Attribute 'builtin' can only be applied to a callsite.", &F)do { if (!(!Attrs.hasFnAttribute(Attribute::Builtin))) { CheckFailed ("Attribute 'builtin' can only be applied to a callsite.", & F); return; } } while (false); | |||
| 2339 | ||||
| 2340 | Assert(!Attrs.hasAttrSomewhere(Attribute::ElementType),do { if (!(!Attrs.hasAttrSomewhere(Attribute::ElementType))) { CheckFailed("Attribute 'elementtype' can only be applied to a callsite." , &F); return; } } while (false) | |||
| 2341 | "Attribute 'elementtype' can only be applied to a callsite.", &F)do { if (!(!Attrs.hasAttrSomewhere(Attribute::ElementType))) { CheckFailed("Attribute 'elementtype' can only be applied to a callsite." , &F); return; } } while (false); | |||
| 2342 | ||||
| 2343 | // Check that this function meets the restrictions on this calling convention. | |||
| 2344 | // Sometimes varargs is used for perfectly forwarding thunks, so some of these | |||
| 2345 | // restrictions can be lifted. | |||
| 2346 | switch (F.getCallingConv()) { | |||
| 2347 | default: | |||
| 2348 | case CallingConv::C: | |||
| 2349 | break; | |||
| 2350 | case CallingConv::X86_INTR: { | |||
| 2351 | Assert(F.arg_empty() || Attrs.hasParamAttribute(0, Attribute::ByVal),do { if (!(F.arg_empty() || Attrs.hasParamAttribute(0, Attribute ::ByVal))) { CheckFailed("Calling convention parameter requires byval" , &F); return; } } while (false) | |||
| 2352 | "Calling convention parameter requires byval", &F)do { if (!(F.arg_empty() || Attrs.hasParamAttribute(0, Attribute ::ByVal))) { CheckFailed("Calling convention parameter requires byval" , &F); return; } } while (false); | |||
| 2353 | break; | |||
| 2354 | } | |||
| 2355 | case CallingConv::AMDGPU_KERNEL: | |||
| 2356 | case CallingConv::SPIR_KERNEL: | |||
| 2357 | Assert(F.getReturnType()->isVoidTy(),do { if (!(F.getReturnType()->isVoidTy())) { CheckFailed("Calling convention requires void return type" , &F); return; } } while (false) | |||
| 2358 | "Calling convention requires void return type", &F)do { if (!(F.getReturnType()->isVoidTy())) { CheckFailed("Calling convention requires void return type" , &F); return; } } while (false); | |||
| 2359 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | |||
| 2360 | case CallingConv::AMDGPU_VS: | |||
| 2361 | case CallingConv::AMDGPU_HS: | |||
| 2362 | case CallingConv::AMDGPU_GS: | |||
| 2363 | case CallingConv::AMDGPU_PS: | |||
| 2364 | case CallingConv::AMDGPU_CS: | |||
| 2365 | Assert(!F.hasStructRetAttr(),do { if (!(!F.hasStructRetAttr())) { CheckFailed("Calling convention does not allow sret" , &F); return; } } while (false) | |||
| 2366 | "Calling convention does not allow sret", &F)do { if (!(!F.hasStructRetAttr())) { CheckFailed("Calling convention does not allow sret" , &F); return; } } while (false); | |||
| 2367 | if (F.getCallingConv() != CallingConv::SPIR_KERNEL) { | |||
| 2368 | const unsigned StackAS = DL.getAllocaAddrSpace(); | |||
| 2369 | unsigned i = 0; | |||
| 2370 | for (const Argument &Arg : F.args()) { | |||
| 2371 | Assert(!Attrs.hasParamAttribute(i, Attribute::ByVal),do { if (!(!Attrs.hasParamAttribute(i, Attribute::ByVal))) { CheckFailed ("Calling convention disallows byval", &F); return; } } while (false) | |||
| 2372 | "Calling convention disallows byval", &F)do { if (!(!Attrs.hasParamAttribute(i, Attribute::ByVal))) { CheckFailed ("Calling convention disallows byval", &F); return; } } while (false); | |||
| 2373 | Assert(!Attrs.hasParamAttribute(i, Attribute::Preallocated),do { if (!(!Attrs.hasParamAttribute(i, Attribute::Preallocated ))) { CheckFailed("Calling convention disallows preallocated" , &F); return; } } while (false) | |||
| 2374 | "Calling convention disallows preallocated", &F)do { if (!(!Attrs.hasParamAttribute(i, Attribute::Preallocated ))) { CheckFailed("Calling convention disallows preallocated" , &F); return; } } while (false); | |||
| 2375 | Assert(!Attrs.hasParamAttribute(i, Attribute::InAlloca),do { if (!(!Attrs.hasParamAttribute(i, Attribute::InAlloca))) { CheckFailed("Calling convention disallows inalloca", & F); return; } } while (false) | |||
| 2376 | "Calling convention disallows inalloca", &F)do { if (!(!Attrs.hasParamAttribute(i, Attribute::InAlloca))) { CheckFailed("Calling convention disallows inalloca", & F); return; } } while (false); | |||
| 2377 | ||||
| 2378 | if (Attrs.hasParamAttribute(i, Attribute::ByRef)) { | |||
| 2379 | // FIXME: Should also disallow LDS and GDS, but we don't have the enum | |||
| 2380 | // value here. | |||
| 2381 | Assert(Arg.getType()->getPointerAddressSpace() != StackAS,do { if (!(Arg.getType()->getPointerAddressSpace() != StackAS )) { CheckFailed("Calling convention disallows stack byref", & F); return; } } while (false) | |||
| 2382 | "Calling convention disallows stack byref", &F)do { if (!(Arg.getType()->getPointerAddressSpace() != StackAS )) { CheckFailed("Calling convention disallows stack byref", & F); return; } } while (false); | |||
| 2383 | } | |||
| 2384 | ||||
| 2385 | ++i; | |||
| 2386 | } | |||
| 2387 | } | |||
| 2388 | ||||
| 2389 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | |||
| 2390 | case CallingConv::Fast: | |||
| 2391 | case CallingConv::Cold: | |||
| 2392 | case CallingConv::Intel_OCL_BI: | |||
| 2393 | case CallingConv::PTX_Kernel: | |||
| 2394 | case CallingConv::PTX_Device: | |||
| 2395 | Assert(!F.isVarArg(), "Calling convention does not support varargs or "do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or " "perfect forwarding!", &F); return; } } while (false) | |||
| 2396 | "perfect forwarding!",do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or " "perfect forwarding!", &F); return; } } while (false) | |||
| 2397 | &F)do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or " "perfect forwarding!", &F); return; } } while (false); | |||
| 2398 | break; | |||
| 2399 | } | |||
| 2400 | ||||
| 2401 | // Check that the argument values match the function type for this function... | |||
| 2402 | unsigned i = 0; | |||
| 2403 | for (const Argument &Arg : F.args()) { | |||
| 2404 | Assert(Arg.getType() == FT->getParamType(i),do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed ("Argument value does not match function argument type!", & Arg, FT->getParamType(i)); return; } } while (false) | |||
| 2405 | "Argument value does not match function argument type!", &Arg,do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed ("Argument value does not match function argument type!", & Arg, FT->getParamType(i)); return; } } while (false) | |||
| 2406 | FT->getParamType(i))do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed ("Argument value does not match function argument type!", & Arg, FT->getParamType(i)); return; } } while (false); | |||
| 2407 | Assert(Arg.getType()->isFirstClassType(),do { if (!(Arg.getType()->isFirstClassType())) { CheckFailed ("Function arguments must have first-class types!", &Arg) ; return; } } while (false) | |||
| 2408 | "Function arguments must have first-class types!", &Arg)do { if (!(Arg.getType()->isFirstClassType())) { CheckFailed ("Function arguments must have first-class types!", &Arg) ; return; } } while (false); | |||
| 2409 | if (!IsIntrinsic) { | |||
| 2410 | Assert(!Arg.getType()->isMetadataTy(),do { if (!(!Arg.getType()->isMetadataTy())) { CheckFailed( "Function takes metadata but isn't an intrinsic", &Arg, & F); return; } } while (false) | |||
| 2411 | "Function takes metadata but isn't an intrinsic", &Arg, &F)do { if (!(!Arg.getType()->isMetadataTy())) { CheckFailed( "Function takes metadata but isn't an intrinsic", &Arg, & F); return; } } while (false); | |||
| 2412 | Assert(!Arg.getType()->isTokenTy(),do { if (!(!Arg.getType()->isTokenTy())) { CheckFailed("Function takes token but isn't an intrinsic" , &Arg, &F); return; } } while (false) | |||
| 2413 | "Function takes token but isn't an intrinsic", &Arg, &F)do { if (!(!Arg.getType()->isTokenTy())) { CheckFailed("Function takes token but isn't an intrinsic" , &Arg, &F); return; } } while (false); | |||
| 2414 | Assert(!Arg.getType()->isX86_AMXTy(),do { if (!(!Arg.getType()->isX86_AMXTy())) { CheckFailed("Function takes x86_amx but isn't an intrinsic" , &Arg, &F); return; } } while (false) | |||
| 2415 | "Function takes x86_amx but isn't an intrinsic", &Arg, &F)do { if (!(!Arg.getType()->isX86_AMXTy())) { CheckFailed("Function takes x86_amx but isn't an intrinsic" , &Arg, &F); return; } } while (false); | |||
| 2416 | } | |||
| 2417 | ||||
| 2418 | // Check that swifterror argument is only used by loads and stores. | |||
| 2419 | if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) { | |||
| 2420 | verifySwiftErrorValue(&Arg); | |||
| 2421 | } | |||
| 2422 | ++i; | |||
| 2423 | } | |||
| 2424 | ||||
| 2425 | if (!IsIntrinsic) { | |||
| 2426 | Assert(!F.getReturnType()->isTokenTy(),do { if (!(!F.getReturnType()->isTokenTy())) { CheckFailed ("Function returns a token but isn't an intrinsic", &F); return ; } } while (false) | |||
| 2427 | "Function returns a token but isn't an intrinsic", &F)do { if (!(!F.getReturnType()->isTokenTy())) { CheckFailed ("Function returns a token but isn't an intrinsic", &F); return ; } } while (false); | |||
| 2428 | Assert(!F.getReturnType()->isX86_AMXTy(),do { if (!(!F.getReturnType()->isX86_AMXTy())) { CheckFailed ("Function returns a x86_amx but isn't an intrinsic", &F) ; return; } } while (false) | |||
| 2429 | "Function returns a x86_amx but isn't an intrinsic", &F)do { if (!(!F.getReturnType()->isX86_AMXTy())) { CheckFailed ("Function returns a x86_amx but isn't an intrinsic", &F) ; return; } } while (false); | |||
| 2430 | } | |||
| 2431 | ||||
| 2432 | // Get the function metadata attachments. | |||
| 2433 | SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; | |||
| 2434 | F.getAllMetadata(MDs); | |||
| 2435 | assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync")((void)0); | |||
| 2436 | verifyFunctionMetadata(MDs); | |||
| 2437 | ||||
| 2438 | // Check validity of the personality function | |||
| 2439 | if (F.hasPersonalityFn()) { | |||
| 2440 | auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); | |||
| 2441 | if (Per) | |||
| 2442 | Assert(Per->getParent() == F.getParent(),do { if (!(Per->getParent() == F.getParent())) { CheckFailed ("Referencing personality function in another module!", & F, F.getParent(), Per, Per->getParent()); return; } } while (false) | |||
| 2443 | "Referencing personality function in another module!",do { if (!(Per->getParent() == F.getParent())) { CheckFailed ("Referencing personality function in another module!", & F, F.getParent(), Per, Per->getParent()); return; } } while (false) | |||
| 2444 | &F, F.getParent(), Per, Per->getParent())do { if (!(Per->getParent() == F.getParent())) { CheckFailed ("Referencing personality function in another module!", & F, F.getParent(), Per, Per->getParent()); return; } } while (false); | |||
| 2445 | } | |||
| 2446 | ||||
| 2447 | if (F.isMaterializable()) { | |||
| 2448 | // Function has a body somewhere we can't see. | |||
| 2449 | Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,do { if (!(MDs.empty())) { CheckFailed("unmaterialized function cannot have metadata" , &F, MDs.empty() ? nullptr : MDs.front().second); return ; } } while (false) | |||
| 2450 | MDs.empty() ? nullptr : MDs.front().second)do { if (!(MDs.empty())) { CheckFailed("unmaterialized function cannot have metadata" , &F, MDs.empty() ? nullptr : MDs.front().second); return ; } } while (false); | |||
| 2451 | } else if (F.isDeclaration()) { | |||
| 2452 | for (const auto &I : MDs) { | |||
| 2453 | // This is used for call site debug information. | |||
| 2454 | AssertDI(I.first != LLVMContext::MD_dbg ||do { if (!(I.first != LLVMContext::MD_dbg || !cast<DISubprogram >(I.second)->isDistinct())) { DebugInfoCheckFailed("function declaration may only have a unique !dbg attachment" , &F); return; } } while (false) | |||
| 2455 | !cast<DISubprogram>(I.second)->isDistinct(),do { if (!(I.first != LLVMContext::MD_dbg || !cast<DISubprogram >(I.second)->isDistinct())) { DebugInfoCheckFailed("function declaration may only have a unique !dbg attachment" , &F); return; } } while (false) | |||
| 2456 | "function declaration may only have a unique !dbg attachment",do { if (!(I.first != LLVMContext::MD_dbg || !cast<DISubprogram >(I.second)->isDistinct())) { DebugInfoCheckFailed("function declaration may only have a unique !dbg attachment" , &F); return; } } while (false) | |||
| 2457 | &F)do { if (!(I.first != LLVMContext::MD_dbg || !cast<DISubprogram >(I.second)->isDistinct())) { DebugInfoCheckFailed("function declaration may only have a unique !dbg attachment" , &F); return; } } while (false); | |||
| 2458 | Assert(I.first != LLVMContext::MD_prof,do { if (!(I.first != LLVMContext::MD_prof)) { CheckFailed("function declaration may not have a !prof attachment" , &F); return; } } while (false) | |||
| 2459 | "function declaration may not have a !prof attachment", &F)do { if (!(I.first != LLVMContext::MD_prof)) { CheckFailed("function declaration may not have a !prof attachment" , &F); return; } } while (false); | |||
| 2460 | ||||
| 2461 | // Verify the metadata itself. | |||
| 2462 | visitMDNode(*I.second, AreDebugLocsAllowed::Yes); | |||
| 2463 | } | |||
| 2464 | Assert(!F.hasPersonalityFn(),do { if (!(!F.hasPersonalityFn())) { CheckFailed("Function declaration shouldn't have a personality routine" , &F); return; } } while (false) | |||
| 2465 | "Function declaration shouldn't have a personality routine", &F)do { if (!(!F.hasPersonalityFn())) { CheckFailed("Function declaration shouldn't have a personality routine" , &F); return; } } while (false); | |||
| 2466 | } else { | |||
| 2467 | // Verify that this function (which has a body) is not named "llvm.*". It | |||
| 2468 | // is not legal to define intrinsics. | |||
| 2469 | Assert(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F)do { if (!(!IsIntrinsic)) { CheckFailed("llvm intrinsics cannot be defined!" , &F); return; } } while (false); | |||
| 2470 | ||||
| 2471 | // Check the entry node | |||
| 2472 | const BasicBlock *Entry = &F.getEntryBlock(); | |||
| 2473 | Assert(pred_empty(Entry),do { if (!(pred_empty(Entry))) { CheckFailed("Entry block to function must not have predecessors!" , Entry); return; } } while (false) | |||
| 2474 | "Entry block to function must not have predecessors!", Entry)do { if (!(pred_empty(Entry))) { CheckFailed("Entry block to function must not have predecessors!" , Entry); return; } } while (false); | |||
| 2475 | ||||
| 2476 | // The address of the entry block cannot be taken, unless it is dead. | |||
| 2477 | if (Entry->hasAddressTaken()) { | |||
| 2478 | Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),do { if (!(!BlockAddress::lookup(Entry)->isConstantUsed()) ) { CheckFailed("blockaddress may not be used with the entry block!" , Entry); return; } } while (false) | |||
| 2479 | "blockaddress may not be used with the entry block!", Entry)do { if (!(!BlockAddress::lookup(Entry)->isConstantUsed()) ) { CheckFailed("blockaddress may not be used with the entry block!" , Entry); return; } } while (false); | |||
| 2480 | } | |||
| 2481 | ||||
| 2482 | unsigned NumDebugAttachments = 0, NumProfAttachments = 0; | |||
| 2483 | // Visit metadata attachments. | |||
| 2484 | for (const auto &I : MDs) { | |||
| 2485 | // Verify that the attachment is legal. | |||
| 2486 | auto AllowLocs = AreDebugLocsAllowed::No; | |||
| 2487 | switch (I.first) { | |||
| 2488 | default: | |||
| 2489 | break; | |||
| 2490 | case LLVMContext::MD_dbg: { | |||
| 2491 | ++NumDebugAttachments; | |||
| 2492 | AssertDI(NumDebugAttachments == 1,do { if (!(NumDebugAttachments == 1)) { DebugInfoCheckFailed( "function must have a single !dbg attachment", &F, I.second ); return; } } while (false) | |||
| 2493 | "function must have a single !dbg attachment", &F, I.second)do { if (!(NumDebugAttachments == 1)) { DebugInfoCheckFailed( "function must have a single !dbg attachment", &F, I.second ); return; } } while (false); | |||
| 2494 | AssertDI(isa<DISubprogram>(I.second),do { if (!(isa<DISubprogram>(I.second))) { DebugInfoCheckFailed ("function !dbg attachment must be a subprogram", &F, I.second ); return; } } while (false) | |||
| 2495 | "function !dbg attachment must be a subprogram", &F, I.second)do { if (!(isa<DISubprogram>(I.second))) { DebugInfoCheckFailed ("function !dbg attachment must be a subprogram", &F, I.second ); return; } } while (false); | |||
| 2496 | AssertDI(cast<DISubprogram>(I.second)->isDistinct(),do { if (!(cast<DISubprogram>(I.second)->isDistinct( ))) { DebugInfoCheckFailed("function definition may only have a distinct !dbg attachment" , &F); return; } } while (false) | |||
| 2497 | "function definition may only have a distinct !dbg attachment",do { if (!(cast<DISubprogram>(I.second)->isDistinct( ))) { DebugInfoCheckFailed("function definition may only have a distinct !dbg attachment" , &F); return; } } while (false) | |||
| 2498 | &F)do { if (!(cast<DISubprogram>(I.second)->isDistinct( ))) { DebugInfoCheckFailed("function definition may only have a distinct !dbg attachment" , &F); return; } } while (false); | |||
| 2499 | ||||
| 2500 | auto *SP = cast<DISubprogram>(I.second); | |||
| 2501 | const Function *&AttachedTo = DISubprogramAttachments[SP]; | |||
| 2502 | AssertDI(!AttachedTo || AttachedTo == &F,do { if (!(!AttachedTo || AttachedTo == &F)) { DebugInfoCheckFailed ("DISubprogram attached to more than one function", SP, & F); return; } } while (false) | |||
| 2503 | "DISubprogram attached to more than one function", SP, &F)do { if (!(!AttachedTo || AttachedTo == &F)) { DebugInfoCheckFailed ("DISubprogram attached to more than one function", SP, & F); return; } } while (false); | |||
| 2504 | AttachedTo = &F; | |||
| 2505 | AllowLocs = AreDebugLocsAllowed::Yes; | |||
| 2506 | break; | |||
| 2507 | } | |||
| 2508 | case LLVMContext::MD_prof: | |||
| 2509 | ++NumProfAttachments; | |||
| 2510 | Assert(NumProfAttachments == 1,do { if (!(NumProfAttachments == 1)) { CheckFailed("function must have a single !prof attachment" , &F, I.second); return; } } while (false) | |||
| 2511 | "function must have a single !prof attachment", &F, I.second)do { if (!(NumProfAttachments == 1)) { CheckFailed("function must have a single !prof attachment" , &F, I.second); return; } } while (false); | |||
| 2512 | break; | |||
| 2513 | } | |||
| 2514 | ||||
| 2515 | // Verify the metadata itself. | |||
| 2516 | visitMDNode(*I.second, AllowLocs); | |||
| 2517 | } | |||
| 2518 | } | |||
| 2519 | ||||
| 2520 | // If this function is actually an intrinsic, verify that it is only used in | |||
| 2521 | // direct call/invokes, never having its "address taken". | |||
| 2522 | // Only do this if the module is materialized, otherwise we don't have all the | |||
| 2523 | // uses. | |||
| 2524 | if (F.isIntrinsic() && F.getParent()->isMaterialized()) { | |||
| 2525 | const User *U; | |||
| 2526 | if (F.hasAddressTaken(&U)) | |||
| 2527 | Assert(false, "Invalid user of intrinsic instruction!", U)do { if (!(false)) { CheckFailed("Invalid user of intrinsic instruction!" , U); return; } } while (false); | |||
| 2528 | } | |||
| 2529 | ||||
| 2530 | // Check intrinsics' signatures. | |||
| 2531 | switch (F.getIntrinsicID()) { | |||
| 2532 | case Intrinsic::experimental_gc_get_pointer_base: { | |||
| 2533 | FunctionType *FT = F.getFunctionType(); | |||
| 2534 | Assert(FT->getNumParams() == 1, "wrong number of parameters", F)do { if (!(FT->getNumParams() == 1)) { CheckFailed("wrong number of parameters" , F); return; } } while (false); | |||
| 2535 | Assert(isa<PointerType>(F.getReturnType()),do { if (!(isa<PointerType>(F.getReturnType()))) { CheckFailed ("gc.get.pointer.base must return a pointer", F); return; } } while (false) | |||
| 2536 | "gc.get.pointer.base must return a pointer", F)do { if (!(isa<PointerType>(F.getReturnType()))) { CheckFailed ("gc.get.pointer.base must return a pointer", F); return; } } while (false); | |||
| 2537 | Assert(FT->getParamType(0) == F.getReturnType(),do { if (!(FT->getParamType(0) == F.getReturnType())) { CheckFailed ("gc.get.pointer.base operand and result must be of the same type" , F); return; } } while (false) | |||
| 2538 | "gc.get.pointer.base operand and result must be of the same type",do { if (!(FT->getParamType(0) == F.getReturnType())) { CheckFailed ("gc.get.pointer.base operand and result must be of the same type" , F); return; } } while (false) | |||
| 2539 | F)do { if (!(FT->getParamType(0) == F.getReturnType())) { CheckFailed ("gc.get.pointer.base operand and result must be of the same type" , F); return; } } while (false); | |||
| 2540 | break; | |||
| 2541 | } | |||
| 2542 | case Intrinsic::experimental_gc_get_pointer_offset: { | |||
| 2543 | FunctionType *FT = F.getFunctionType(); | |||
| 2544 | Assert(FT->getNumParams() == 1, "wrong number of parameters", F)do { if (!(FT->getNumParams() == 1)) { CheckFailed("wrong number of parameters" , F); return; } } while (false); | |||
| 2545 | Assert(isa<PointerType>(FT->getParamType(0)),do { if (!(isa<PointerType>(FT->getParamType(0)))) { CheckFailed("gc.get.pointer.offset operand must be a pointer" , F); return; } } while (false) | |||
| 2546 | "gc.get.pointer.offset operand must be a pointer", F)do { if (!(isa<PointerType>(FT->getParamType(0)))) { CheckFailed("gc.get.pointer.offset operand must be a pointer" , F); return; } } while (false); | |||
| 2547 | Assert(F.getReturnType()->isIntegerTy(),do { if (!(F.getReturnType()->isIntegerTy())) { CheckFailed ("gc.get.pointer.offset must return integer", F); return; } } while (false) | |||
| 2548 | "gc.get.pointer.offset must return integer", F)do { if (!(F.getReturnType()->isIntegerTy())) { CheckFailed ("gc.get.pointer.offset must return integer", F); return; } } while (false); | |||
| 2549 | break; | |||
| 2550 | } | |||
| 2551 | } | |||
| 2552 | ||||
| 2553 | auto *N = F.getSubprogram(); | |||
| 2554 | HasDebugInfo = (N != nullptr); | |||
| 2555 | if (!HasDebugInfo) | |||
| 2556 | return; | |||
| 2557 | ||||
| 2558 | // Check that all !dbg attachments lead to back to N. | |||
| 2559 | // | |||
| 2560 | // FIXME: Check this incrementally while visiting !dbg attachments. | |||
| 2561 | // FIXME: Only check when N is the canonical subprogram for F. | |||
| 2562 | SmallPtrSet<const MDNode *, 32> Seen; | |||
| 2563 | auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) { | |||
| 2564 | // Be careful about using DILocation here since we might be dealing with | |||
| 2565 | // broken code (this is the Verifier after all). | |||
| 2566 | const DILocation *DL = dyn_cast_or_null<DILocation>(Node); | |||
| 2567 | if (!DL) | |||
| 2568 | return; | |||
| 2569 | if (!Seen.insert(DL).second) | |||
| 2570 | return; | |||
| 2571 | ||||
| 2572 | Metadata *Parent = DL->getRawScope(); | |||
| 2573 | AssertDI(Parent && isa<DILocalScope>(Parent),do { if (!(Parent && isa<DILocalScope>(Parent)) ) { DebugInfoCheckFailed("DILocation's scope must be a DILocalScope" , N, &F, &I, DL, Parent); return; } } while (false) | |||
| 2574 | "DILocation's scope must be a DILocalScope", N, &F, &I, DL,do { if (!(Parent && isa<DILocalScope>(Parent)) ) { DebugInfoCheckFailed("DILocation's scope must be a DILocalScope" , N, &F, &I, DL, Parent); return; } } while (false) | |||
| 2575 | Parent)do { if (!(Parent && isa<DILocalScope>(Parent)) ) { DebugInfoCheckFailed("DILocation's scope must be a DILocalScope" , N, &F, &I, DL, Parent); return; } } while (false); | |||
| 2576 | ||||
| 2577 | DILocalScope *Scope = DL->getInlinedAtScope(); | |||
| 2578 | Assert(Scope, "Failed to find DILocalScope", DL)do { if (!(Scope)) { CheckFailed("Failed to find DILocalScope" , DL); return; } } while (false); | |||
| 2579 | ||||
| 2580 | if (!Seen.insert(Scope).second) | |||
| 2581 | return; | |||
| 2582 | ||||
| 2583 | DISubprogram *SP = Scope->getSubprogram(); | |||
| 2584 | ||||
| 2585 | // Scope and SP could be the same MDNode and we don't want to skip | |||
| 2586 | // validation in that case | |||
| 2587 | if (SP && ((Scope != SP) && !Seen.insert(SP).second)) | |||
| 2588 | return; | |||
| 2589 | ||||
| 2590 | AssertDI(SP->describes(&F),do { if (!(SP->describes(&F))) { DebugInfoCheckFailed( "!dbg attachment points at wrong subprogram for function", N, &F, &I, DL, Scope, SP); return; } } while (false) | |||
| 2591 | "!dbg attachment points at wrong subprogram for function", N, &F,do { if (!(SP->describes(&F))) { DebugInfoCheckFailed( "!dbg attachment points at wrong subprogram for function", N, &F, &I, DL, Scope, SP); return; } } while (false) | |||
| 2592 | &I, DL, Scope, SP)do { if (!(SP->describes(&F))) { DebugInfoCheckFailed( "!dbg attachment points at wrong subprogram for function", N, &F, &I, DL, Scope, SP); return; } } while (false); | |||
| 2593 | }; | |||
| 2594 | for (auto &BB : F) | |||
| 2595 | for (auto &I : BB) { | |||
| 2596 | VisitDebugLoc(I, I.getDebugLoc().getAsMDNode()); | |||
| 2597 | // The llvm.loop annotations also contain two DILocations. | |||
| 2598 | if (auto MD = I.getMetadata(LLVMContext::MD_loop)) | |||
| 2599 | for (unsigned i = 1; i < MD->getNumOperands(); ++i) | |||
| 2600 | VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i))); | |||
| 2601 | if (BrokenDebugInfo) | |||
| 2602 | return; | |||
| 2603 | } | |||
| 2604 | } | |||
| 2605 | ||||
| 2606 | // verifyBasicBlock - Verify that a basic block is well formed... | |||
| 2607 | // | |||
| 2608 | void Verifier::visitBasicBlock(BasicBlock &BB) { | |||
| 2609 | InstsInThisBlock.clear(); | |||
| 2610 | ||||
| 2611 | // Ensure that basic blocks have terminators! | |||
| 2612 | Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB)do { if (!(BB.getTerminator())) { CheckFailed("Basic Block does not have terminator!" , &BB); return; } } while (false); | |||
| 2613 | ||||
| 2614 | // Check constraints that this basic block imposes on all of the PHI nodes in | |||
| 2615 | // it. | |||
| 2616 | if (isa<PHINode>(BB.front())) { | |||
| 2617 | SmallVector<BasicBlock *, 8> Preds(predecessors(&BB)); | |||
| 2618 | SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; | |||
| 2619 | llvm::sort(Preds); | |||
| 2620 | for (const PHINode &PN : BB.phis()) { | |||
| 2621 | Assert(PN.getNumIncomingValues() == Preds.size(),do { if (!(PN.getNumIncomingValues() == Preds.size())) { CheckFailed ("PHINode should have one entry for each predecessor of its " "parent basic block!", &PN); return; } } while (false) | |||
| 2622 | "PHINode should have one entry for each predecessor of its "do { if (!(PN.getNumIncomingValues() == Preds.size())) { CheckFailed ("PHINode should have one entry for each predecessor of its " "parent basic block!", &PN); return; } } while (false) | |||
| 2623 | "parent basic block!",do { if (!(PN.getNumIncomingValues() == Preds.size())) { CheckFailed ("PHINode should have one entry for each predecessor of its " "parent basic block!", &PN); return; } } while (false) | |||
| 2624 | &PN)do { if (!(PN.getNumIncomingValues() == Preds.size())) { CheckFailed ("PHINode should have one entry for each predecessor of its " "parent basic block!", &PN); return; } } while (false); | |||
| 2625 | ||||
| 2626 | // Get and sort all incoming values in the PHI node... | |||
| 2627 | Values.clear(); | |||
| 2628 | Values.reserve(PN.getNumIncomingValues()); | |||
| 2629 | for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) | |||
| 2630 | Values.push_back( | |||
| 2631 | std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); | |||
| 2632 | llvm::sort(Values); | |||
| 2633 | ||||
| 2634 | for (unsigned i = 0, e = Values.size(); i != e; ++i) { | |||
| 2635 | // Check to make sure that if there is more than one entry for a | |||
| 2636 | // particular basic block in this PHI node, that the incoming values are | |||
| 2637 | // all identical. | |||
| 2638 | // | |||
| 2639 | Assert(i == 0 || Values[i].first != Values[i - 1].first ||do { if (!(i == 0 || Values[i].first != Values[i - 1].first || Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with " "different incoming values!", &PN, Values[i].first, Values [i].second, Values[i - 1].second); return; } } while (false) | |||
| 2640 | Values[i].second == Values[i - 1].second,do { if (!(i == 0 || Values[i].first != Values[i - 1].first || Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with " "different incoming values!", &PN, Values[i].first, Values [i].second, Values[i - 1].second); return; } } while (false) | |||
| 2641 | "PHI node has multiple entries for the same basic block with "do { if (!(i == 0 || Values[i].first != Values[i - 1].first || Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with " "different incoming values!", &PN, Values[i].first, Values [i].second, Values[i - 1].second); return; } } while (false) | |||
| 2642 | "different incoming values!",do { if (!(i == 0 || Values[i].first != Values[i - 1].first || Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with " "different incoming values!", &PN, Values[i].first, Values [i].second, Values[i - 1].second); return; } } while (false) | |||
| 2643 | &PN, Values[i].first, Values[i].second, Values[i - 1].second)do { if (!(i == 0 || Values[i].first != Values[i - 1].first || Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with " "different incoming values!", &PN, Values[i].first, Values [i].second, Values[i - 1].second); return; } } while (false); | |||
| 2644 | ||||
| 2645 | // Check to make sure that the predecessors and PHI node entries are | |||
| 2646 | // matched up. | |||
| 2647 | Assert(Values[i].first == Preds[i],do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!" , &PN, Values[i].first, Preds[i]); return; } } while (false ) | |||
| 2648 | "PHI node entries do not match predecessors!", &PN,do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!" , &PN, Values[i].first, Preds[i]); return; } } while (false ) | |||
| 2649 | Values[i].first, Preds[i])do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!" , &PN, Values[i].first, Preds[i]); return; } } while (false ); | |||
| 2650 | } | |||
| 2651 | } | |||
| 2652 | } | |||
| 2653 | ||||
| 2654 | // Check that all instructions have their parent pointers set up correctly. | |||
| 2655 | for (auto &I : BB) | |||
| 2656 | { | |||
| 2657 | Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!")do { if (!(I.getParent() == &BB)) { CheckFailed("Instruction has bogus parent pointer!" ); return; } } while (false); | |||
| 2658 | } | |||
| 2659 | } | |||
| 2660 | ||||
| 2661 | void Verifier::visitTerminator(Instruction &I) { | |||
| 2662 | // Ensure that terminators only exist at the end of the basic block. | |||
| 2663 | Assert(&I == I.getParent()->getTerminator(),do { if (!(&I == I.getParent()->getTerminator())) { CheckFailed ("Terminator found in the middle of a basic block!", I.getParent ()); return; } } while (false) | |||
| 2664 | "Terminator found in the middle of a basic block!", I.getParent())do { if (!(&I == I.getParent()->getTerminator())) { CheckFailed ("Terminator found in the middle of a basic block!", I.getParent ()); return; } } while (false); | |||
| 2665 | visitInstruction(I); | |||
| 2666 | } | |||
| 2667 | ||||
| 2668 | void Verifier::visitBranchInst(BranchInst &BI) { | |||
| 2669 | if (BI.isConditional()) { | |||
| 2670 | Assert(BI.getCondition()->getType()->isIntegerTy(1),do { if (!(BI.getCondition()->getType()->isIntegerTy(1) )) { CheckFailed("Branch condition is not 'i1' type!", &BI , BI.getCondition()); return; } } while (false) | |||
| 2671 | "Branch condition is not 'i1' type!", &BI, BI.getCondition())do { if (!(BI.getCondition()->getType()->isIntegerTy(1) )) { CheckFailed("Branch condition is not 'i1' type!", &BI , BI.getCondition()); return; } } while (false); | |||
| 2672 | } | |||
| 2673 | visitTerminator(BI); | |||
| 2674 | } | |||
| 2675 | ||||
| 2676 | void Verifier::visitReturnInst(ReturnInst &RI) { | |||
| 2677 | Function *F = RI.getParent()->getParent(); | |||
| 2678 | unsigned N = RI.getNumOperands(); | |||
| 2679 | if (F->getReturnType()->isVoidTy()) | |||
| 2680 | Assert(N == 0,do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void " "return type!", &RI, F->getReturnType()); return; } } while (false) | |||
| 2681 | "Found return instr that returns non-void in Function of void "do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void " "return type!", &RI, F->getReturnType()); return; } } while (false) | |||
| 2682 | "return type!",do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void " "return type!", &RI, F->getReturnType()); return; } } while (false) | |||
| 2683 | &RI, F->getReturnType())do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void " "return type!", &RI, F->getReturnType()); return; } } while (false); | |||
| 2684 | else | |||
| 2685 | Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),do { if (!(N == 1 && F->getReturnType() == RI.getOperand (0)->getType())) { CheckFailed("Function return type does not match operand " "type of return inst!", &RI, F->getReturnType()); return ; } } while (false) | |||
| 2686 | "Function return type does not match operand "do { if (!(N == 1 && F->getReturnType() == RI.getOperand (0)->getType())) { CheckFailed("Function return type does not match operand " "type of return inst!", &RI, F->getReturnType()); return ; } } while (false) | |||
| 2687 | "type of return inst!",do { if (!(N == 1 && F->getReturnType() == RI.getOperand (0)->getType())) { CheckFailed("Function return type does not match operand " "type of return inst!", &RI, F->getReturnType()); return ; } } while (false) | |||
| 2688 | &RI, F->getReturnType())do { if (!(N == 1 && F->getReturnType() == RI.getOperand (0)->getType())) { CheckFailed("Function return type does not match operand " "type of return inst!", &RI, F->getReturnType()); return ; } } while (false); | |||
| 2689 | ||||
| 2690 | // Check to make sure that the return value has necessary properties for | |||
| 2691 | // terminators... | |||
| 2692 | visitTerminator(RI); | |||
| 2693 | } | |||
| 2694 | ||||
| 2695 | void Verifier::visitSwitchInst(SwitchInst &SI) { | |||
| 2696 | // Check to make sure that all of the constants in the switch instruction | |||
| 2697 | // have the same type as the switched-on value. | |||
| 2698 | Type *SwitchTy = SI.getCondition()->getType(); | |||
| 2699 | SmallPtrSet<ConstantInt*, 32> Constants; | |||
| 2700 | for (auto &Case : SI.cases()) { | |||
| 2701 | Assert(Case.getCaseValue()->getType() == SwitchTy,do { if (!(Case.getCaseValue()->getType() == SwitchTy)) { CheckFailed ("Switch constants must all be same type as switch value!", & SI); return; } } while (false) | |||
| 2702 | "Switch constants must all be same type as switch value!", &SI)do { if (!(Case.getCaseValue()->getType() == SwitchTy)) { CheckFailed ("Switch constants must all be same type as switch value!", & SI); return; } } while (false); | |||
| 2703 | Assert(Constants.insert(Case.getCaseValue()).second,do { if (!(Constants.insert(Case.getCaseValue()).second)) { CheckFailed ("Duplicate integer as switch case", &SI, Case.getCaseValue ()); return; } } while (false) | |||
| 2704 | "Duplicate integer as switch case", &SI, Case.getCaseValue())do { if (!(Constants.insert(Case.getCaseValue()).second)) { CheckFailed ("Duplicate integer as switch case", &SI, Case.getCaseValue ()); return; } } while (false); | |||
| 2705 | } | |||
| 2706 | ||||
| 2707 | visitTerminator(SI); | |||
| 2708 | } | |||
| 2709 | ||||
| 2710 | void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { | |||
| 2711 | Assert(BI.getAddress()->getType()->isPointerTy(),do { if (!(BI.getAddress()->getType()->isPointerTy())) { CheckFailed("Indirectbr operand must have pointer type!", & BI); return; } } while (false) | |||
| 2712 | "Indirectbr operand must have pointer type!", &BI)do { if (!(BI.getAddress()->getType()->isPointerTy())) { CheckFailed("Indirectbr operand must have pointer type!", & BI); return; } } while (false); | |||
| 2713 | for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) | |||
| 2714 | Assert(BI.getDestination(i)->getType()->isLabelTy(),do { if (!(BI.getDestination(i)->getType()->isLabelTy() )) { CheckFailed("Indirectbr destinations must all have pointer type!" , &BI); return; } } while (false) | |||
| 2715 | "Indirectbr destinations must all have pointer type!", &BI)do { if (!(BI.getDestination(i)->getType()->isLabelTy() )) { CheckFailed("Indirectbr destinations must all have pointer type!" , &BI); return; } } while (false); | |||
| 2716 | ||||
| 2717 | visitTerminator(BI); | |||
| 2718 | } | |||
| 2719 | ||||
| 2720 | void Verifier::visitCallBrInst(CallBrInst &CBI) { | |||
| 2721 | Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!",do { if (!(CBI.isInlineAsm())) { CheckFailed("Callbr is currently only used for asm-goto!" , &CBI); return; } } while (false) | |||
| 2722 | &CBI)do { if (!(CBI.isInlineAsm())) { CheckFailed("Callbr is currently only used for asm-goto!" , &CBI); return; } } while (false); | |||
| 2723 | const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand()); | |||
| 2724 | Assert(!IA->canThrow(), "Unwinding from Callbr is not allowed")do { if (!(!IA->canThrow())) { CheckFailed("Unwinding from Callbr is not allowed" ); return; } } while (false); | |||
| 2725 | for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i) | |||
| 2726 | Assert(CBI.getSuccessor(i)->getType()->isLabelTy(),do { if (!(CBI.getSuccessor(i)->getType()->isLabelTy()) ) { CheckFailed("Callbr successors must all have pointer type!" , &CBI); return; } } while (false) | |||
| 2727 | "Callbr successors must all have pointer type!", &CBI)do { if (!(CBI.getSuccessor(i)->getType()->isLabelTy()) ) { CheckFailed("Callbr successors must all have pointer type!" , &CBI); return; } } while (false); | |||
| 2728 | for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) { | |||
| 2729 | Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)),do { if (!(i >= CBI.getNumArgOperands() || !isa<BasicBlock >(CBI.getOperand(i)))) { CheckFailed("Using an unescaped label as a callbr argument!" , &CBI); return; } } while (false) | |||
| 2730 | "Using an unescaped label as a callbr argument!", &CBI)do { if (!(i >= CBI.getNumArgOperands() || !isa<BasicBlock >(CBI.getOperand(i)))) { CheckFailed("Using an unescaped label as a callbr argument!" , &CBI); return; } } while (false); | |||
| 2731 | if (isa<BasicBlock>(CBI.getOperand(i))) | |||
| 2732 | for (unsigned j = i + 1; j != e; ++j) | |||
| 2733 | Assert(CBI.getOperand(i) != CBI.getOperand(j),do { if (!(CBI.getOperand(i) != CBI.getOperand(j))) { CheckFailed ("Duplicate callbr destination!", &CBI); return; } } while (false) | |||
| 2734 | "Duplicate callbr destination!", &CBI)do { if (!(CBI.getOperand(i) != CBI.getOperand(j))) { CheckFailed ("Duplicate callbr destination!", &CBI); return; } } while (false); | |||
| 2735 | } | |||
| 2736 | { | |||
| 2737 | SmallPtrSet<BasicBlock *, 4> ArgBBs; | |||
| 2738 | for (Value *V : CBI.args()) | |||
| 2739 | if (auto *BA = dyn_cast<BlockAddress>(V)) | |||
| 2740 | ArgBBs.insert(BA->getBasicBlock()); | |||
| 2741 | for (BasicBlock *BB : CBI.getIndirectDests()) | |||
| 2742 | Assert(ArgBBs.count(BB), "Indirect label missing from arglist.", &CBI)do { if (!(ArgBBs.count(BB))) { CheckFailed("Indirect label missing from arglist." , &CBI); return; } } while (false); | |||
| 2743 | } | |||
| 2744 | ||||
| 2745 | visitTerminator(CBI); | |||
| 2746 | } | |||
| 2747 | ||||
| 2748 | void Verifier::visitSelectInst(SelectInst &SI) { | |||
| 2749 | Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI .getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!" , &SI); return; } } while (false) | |||
| 2750 | SI.getOperand(2)),do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI .getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!" , &SI); return; } } while (false) | |||
| 2751 | "Invalid operands for select instruction!", &SI)do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI .getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!" , &SI); return; } } while (false); | |||
| 2752 | ||||
| 2753 | Assert(SI.getTrueValue()->getType() == SI.getType(),do { if (!(SI.getTrueValue()->getType() == SI.getType())) { CheckFailed("Select values must have same type as select instruction!" , &SI); return; } } while (false) | |||
| 2754 | "Select values must have same type as select instruction!", &SI)do { if (!(SI.getTrueValue()->getType() == SI.getType())) { CheckFailed("Select values must have same type as select instruction!" , &SI); return; } } while (false); | |||
| 2755 | visitInstruction(SI); | |||
| 2756 | } | |||
| 2757 | ||||
| 2758 | /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of | |||
| 2759 | /// a pass, if any exist, it's an error. | |||
| 2760 | /// | |||
| 2761 | void Verifier::visitUserOp1(Instruction &I) { | |||
| 2762 | Assert(false, "User-defined operators should not live outside of a pass!", &I)do { if (!(false)) { CheckFailed("User-defined operators should not live outside of a pass!" , &I); return; } } while (false); | |||
| 2763 | } | |||
| 2764 | ||||
| 2765 | void Verifier::visitTruncInst(TruncInst &I) { | |||
| 2766 | // Get the source and destination types | |||
| 2767 | Type *SrcTy = I.getOperand(0)->getType(); | |||
| 2768 | Type *DestTy = I.getType(); | |||
| 2769 | ||||
| 2770 | // Get the size of the types in bits, we'll need this later | |||
| 2771 | unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); | |||
| 2772 | unsigned DestBitSize = DestTy->getScalarSizeInBits(); | |||
| 2773 | ||||
| 2774 | Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("Trunc only operates on integer" , &I); return; } } while (false); | |||
| 2775 | Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("Trunc only produces integer" , &I); return; } } while (false); | |||
| 2776 | Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy()) ) { CheckFailed("trunc source and destination must both be a vector or neither" , &I); return; } } while (false) | |||
| 2777 | "trunc source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy()) ) { CheckFailed("trunc source and destination must both be a vector or neither" , &I); return; } } while (false); | |||
| 2778 | Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I)do { if (!(SrcBitSize > DestBitSize)) { CheckFailed("DestTy too big for Trunc" , &I); return; } } while (false); | |||
| 2779 | ||||
| 2780 | visitInstruction(I); | |||
| 2781 | } | |||
| 2782 | ||||
| 2783 | void Verifier::visitZExtInst(ZExtInst &I) { | |||
| 2784 | // Get the source and destination types | |||
| 2785 | Type *SrcTy = I.getOperand(0)->getType(); | |||
| 2786 | Type *DestTy = I.getType(); | |||
| 2787 | ||||
| 2788 | // Get the size of the types in bits, we'll need this later | |||
| 2789 | Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("ZExt only operates on integer" , &I); return; } } while (false); | |||
| 2790 | Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("ZExt only produces an integer" , &I); return; } } while (false); | |||
| 2791 | Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy()) ) { CheckFailed("zext source and destination must both be a vector or neither" , &I); return; } } while (false) | |||
| 2792 | "zext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy()) ) { CheckFailed("zext source and destination must both be a vector or neither" , &I); return; } } while (false); | |||
| 2793 | unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); | |||
| 2794 | unsigned DestBitSize = DestTy->getScalarSizeInBits(); | |||
| 2795 | ||||
| 2796 | Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("Type too small for ZExt" , &I); return; } } while (false); | |||
| 2797 | ||||
| 2798 | visitInstruction(I); | |||
| 2799 | } | |||
| 2800 | ||||
| 2801 | void Verifier::visitSExtInst(SExtInst &I) { | |||
| 2802 | // Get the source and destination types | |||
| 2803 | Type *SrcTy = I.getOperand(0)->getType(); | |||
| 2804 | Type *DestTy = I.getType(); | |||
| 2805 | ||||
| 2806 | // Get the size of the types in bits, we'll need this later | |||
| 2807 | unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); | |||
| 2808 | unsigned DestBitSize = DestTy->getScalarSizeInBits(); | |||
| 2809 | ||||
| 2810 | Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SExt only operates on integer" , &I); return; } } while (false); | |||
| 2811 | Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("SExt only produces an integer" , &I); return; } } while (false); | |||
| 2812 | Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy()) ) { CheckFailed("sext source and destination must both be a vector or neither" , &I); return; } } while (false) | |||
| 2813 | "sext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy()) ) { CheckFailed("sext source and destination must both be a vector or neither" , &I); return; } } while (false); | |||
| 2814 | Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("Type too small for SExt" , &I); return; } } while (false); | |||
| 2815 | ||||
| 2816 | visitInstruction(I); | |||
| 2817 | } | |||
| 2818 | ||||
| 2819 | void Verifier::visitFPTruncInst(FPTruncInst &I) { | |||
| 2820 | // Get the source and destination types | |||
| 2821 | Type *SrcTy = I.getOperand(0)->getType(); | |||
| 2822 | Type *DestTy = I.getType(); | |||
| 2823 | // Get the size of the types in bits, we'll need this later | |||
| 2824 | unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); | |||
| 2825 | unsigned DestBitSize = DestTy->getScalarSizeInBits(); | |||
| 2826 | ||||
| 2827 | Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPTrunc only operates on FP" , &I); return; } } while (false); | |||
| 2828 | Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("FPTrunc only produces an FP" , &I); return; } } while (false); | |||
| 2829 | Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy()) ) { CheckFailed("fptrunc source and destination must both be a vector or neither" , &I); return; } } while (false) | |||
| 2830 | "fptrunc source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy()) ) { CheckFailed("fptrunc source and destination must both be a vector or neither" , &I); return; } } while (false); | |||
| 2831 | Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I)do { if (!(SrcBitSize > DestBitSize)) { CheckFailed("DestTy too big for FPTrunc" , &I); return; } } while (false); | |||
| 2832 | ||||
| 2833 | visitInstruction(I); | |||
| 2834 | } | |||
| 2835 | ||||
| 2836 | void Verifier::visitFPExtInst(FPExtInst &I) { | |||
| 2837 | // Get the source and destination types | |||
| 2838 | Type *SrcTy = I.getOperand(0)->getType(); | |||
| 2839 | Type *DestTy = I.getType(); | |||
| 2840 | ||||
| 2841 | // Get the size of the types in bits, we'll need this later | |||
| 2842 | unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); | |||
| 2843 | unsigned DestBitSize = DestTy->getScalarSizeInBits(); | |||
| 2844 | ||||
| 2845 | Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPExt only operates on FP" , &I); return; } } while (false); | |||
| 2846 | Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("FPExt only produces an FP" , &I); return; } } while (false); | |||
| 2847 | Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy()) ) { CheckFailed("fpext source and destination must both be a vector or neither" , &I); return; } } while (false) | |||
| 2848 | "fpext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy()) ) { CheckFailed("fpext source and destination must both be a vector or neither" , &I); return; } } while (false); | |||
| 2849 | Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("DestTy too small for FPExt" , &I); return; } } while (false); | |||
| 2850 | ||||
| 2851 | visitInstruction(I); | |||
| 2852 | } | |||
| 2853 | ||||
| 2854 | void Verifier::visitUIToFPInst(UIToFPInst &I) { | |||
| 2855 | // Get the source and destination types | |||
| 2856 | Type *SrcTy = I.getOperand(0)->getType(); | |||
| 2857 | Type *DestTy = I.getType(); | |||
| 2858 | ||||
| 2859 | bool SrcVec = SrcTy->isVectorTy(); | |||
| 2860 | bool DstVec = DestTy->isVectorTy(); | |||
| 2861 | ||||
| 2862 | Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("UIToFP source and dest must both be vector or scalar" , &I); return; } } while (false) | |||
| 2863 | "UIToFP source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("UIToFP source and dest must both be vector or scalar" , &I); return; } } while (false); | |||
| 2864 | Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("UIToFP source must be integer or integer vector" , &I); return; } } while (false) | |||
| 2865 | "UIToFP source must be integer or integer vector", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("UIToFP source must be integer or integer vector" , &I); return; } } while (false); | |||
| 2866 | Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("UIToFP result must be FP or FP vector" , &I); return; } } while (false) | |||
| 2867 | &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("UIToFP result must be FP or FP vector" , &I); return; } } while (false); | |||
| 2868 | ||||
| 2869 | if (SrcVec && DstVec) | |||
| 2870 | Assert(cast<VectorType>(SrcTy)->getElementCount() ==do { if (!(cast<VectorType>(SrcTy)->getElementCount( ) == cast<VectorType>(DestTy)->getElementCount())) { CheckFailed("UIToFP source and dest vector length mismatch", &I); return; } } while (false) | |||
| 2871 | cast<VectorType>(DestTy)->getElementCount(),do { if (!(cast<VectorType>(SrcTy)->getElementCount( ) == cast<VectorType>(DestTy)->getElementCount())) { CheckFailed("UIToFP source and dest vector length mismatch", &I); return; } } while (false) | |||
| 2872 | "UIToFP source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getElementCount( ) == cast<VectorType>(DestTy)->getElementCount())) { CheckFailed("UIToFP source and dest vector length mismatch", &I); return; } } while (false); | |||
| 2873 | ||||
| 2874 | visitInstruction(I); | |||
| 2875 | } | |||
| 2876 | ||||
| 2877 | void Verifier::visitSIToFPInst(SIToFPInst &I) { | |||
| 2878 | // Get the source and destination types | |||
| 2879 | Type *SrcTy = I.getOperand(0)->getType(); | |||
| 2880 | Type *DestTy = I.getType(); | |||
| 2881 | ||||
| 2882 | bool SrcVec = SrcTy->isVectorTy(); | |||
| 2883 | bool DstVec = DestTy->isVectorTy(); | |||
| 2884 | ||||
| 2885 | Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("SIToFP source and dest must both be vector or scalar" , &I); return; } } while (false) | |||
| 2886 | "SIToFP source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("SIToFP source and dest must both be vector or scalar" , &I); return; } } while (false); | |||
| 2887 | Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SIToFP source must be integer or integer vector" , &I); return; } } while (false) | |||
| 2888 | "SIToFP source must be integer or integer vector", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SIToFP source must be integer or integer vector" , &I); return; } } while (false); | |||
| 2889 | Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("SIToFP result must be FP or FP vector" , &I); return; } } while (false) | |||
| 2890 | &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("SIToFP result must be FP or FP vector" , &I); return; } } while (false); | |||
| 2891 | ||||
| 2892 | if (SrcVec && DstVec) | |||
| 2893 | Assert(cast<VectorType>(SrcTy)->getElementCount() ==do { if (!(cast<VectorType>(SrcTy)->getElementCount( ) == cast<VectorType>(DestTy)->getElementCount())) { CheckFailed("SIToFP source and dest vector length mismatch", &I); return; } } while (false) | |||
| 2894 | cast<VectorType>(DestTy)->getElementCount(),do { if (!(cast<VectorType>(SrcTy)->getElementCount( ) == cast<VectorType>(DestTy)->getElementCount())) { CheckFailed("SIToFP source and dest vector length mismatch", &I); return; } } while (false) | |||
| 2895 | "SIToFP source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getElementCount( ) == cast<VectorType>(DestTy)->getElementCount())) { CheckFailed("SIToFP source and dest vector length mismatch", &I); return; } } while (false); | |||
| 2896 | ||||
| 2897 | visitInstruction(I); | |||
| 2898 | } | |||
| 2899 | ||||
| 2900 | void Verifier::visitFPToUIInst(FPToUIInst &I) { | |||
| 2901 | // Get the source and destination types | |||
| 2902 | Type *SrcTy = I.getOperand(0)->getType(); | |||
| 2903 | Type *DestTy = I.getType(); | |||
| 2904 | ||||
| 2905 | bool SrcVec = SrcTy->isVectorTy(); | |||
| 2906 | bool DstVec = DestTy->isVectorTy(); | |||
| 2907 | ||||
| 2908 | Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("FPToUI source and dest must both be vector or scalar" , &I); return; } } while (false) | |||
| 2909 | "FPToUI source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("FPToUI source and dest must both be vector or scalar" , &I); return; } } while (false); | |||
| 2910 | Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToUI source must be FP or FP vector" , &I); return; } } while (false) | |||
| 2911 | &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToUI source must be FP or FP vector" , &I); return; } } while (false); | |||
| 2912 | Assert(DestTy->isIntOrIntVectorTy(),do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToUI result must be integer or integer vector" , &I); return; } } while (false) | |||
| 2913 | "FPToUI result must be integer or integer vector", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToUI result must be integer or integer vector" , &I); return; } } while (false); | |||
| 2914 | ||||
| 2915 | if (SrcVec && DstVec) | |||
| 2916 | Assert(cast<VectorType>(SrcTy)->getElementCount() ==do { if (!(cast<VectorType>(SrcTy)->getElementCount( ) == cast<VectorType>(DestTy)->getElementCount())) { CheckFailed("FPToUI source and dest vector length mismatch", &I); return; } } while (false) | |||
| 2917 | cast<VectorType>(DestTy)->getElementCount(),do { if (!(cast<VectorType>(SrcTy)->getElementCount( ) == cast<VectorType>(DestTy)->getElementCount())) { CheckFailed("FPToUI source and dest vector length mismatch", &I); return; } } while (false) | |||
| 2918 | "FPToUI source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getElementCount( ) == cast<VectorType>(DestTy)->getElementCount())) { CheckFailed("FPToUI source and dest vector length mismatch", &I); return; } } while (false); | |||
| 2919 | ||||
| 2920 | visitInstruction(I); | |||
| 2921 | } | |||
| 2922 | ||||
| 2923 | void Verifier::visitFPToSIInst(FPToSIInst &I) { | |||
| 2924 | // Get the source and destination types | |||
| 2925 | Type *SrcTy = I.getOperand(0)->getType(); | |||
| 2926 | Type *DestTy = I.getType(); | |||
| 2927 | ||||
| 2928 | bool SrcVec = SrcTy->isVectorTy(); | |||
| 2929 | bool DstVec = DestTy->isVectorTy(); | |||
| 2930 | ||||
| 2931 | Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("FPToSI source and dest must both be vector or scalar" , &I); return; } } while (false) | |||
| 2932 | "FPToSI source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("FPToSI source and dest must both be vector or scalar" , &I); return; } } while (false); | |||
| 2933 | Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToSI source must be FP or FP vector" , &I); return; } } while (false) | |||
| 2934 | &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToSI source must be FP or FP vector" , &I); return; } } while (false); | |||
| 2935 | Assert(DestTy->isIntOrIntVectorTy(),do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToSI result must be integer or integer vector" , &I); return; } } while (false) | |||
| 2936 | "FPToSI result must be integer or integer vector", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToSI result must be integer or integer vector" , &I); return; } } while (false); | |||
| 2937 | ||||
| 2938 | if (SrcVec && DstVec) | |||
| 2939 | Assert(cast<VectorType>(SrcTy)->getElementCount() ==do { if (!(cast<VectorType>(SrcTy)->getElementCount( ) == cast<VectorType>(DestTy)->getElementCount())) { CheckFailed("FPToSI source and dest vector length mismatch", &I); return; } } while (false) | |||
| 2940 | cast<VectorType>(DestTy)->getElementCount(),do { if (!(cast<VectorType>(SrcTy)->getElementCount( ) == cast<VectorType>(DestTy)->getElementCount())) { CheckFailed("FPToSI source and dest vector length mismatch", &I); return; } } while (false) | |||
| 2941 | "FPToSI source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getElementCount( ) == cast<VectorType>(DestTy)->getElementCount())) { CheckFailed("FPToSI source and dest vector length mismatch", &I); return; } } while (false); | |||
| 2942 | ||||
| 2943 | visitInstruction(I); | |||
| 2944 | } | |||
| 2945 | ||||
| 2946 | void Verifier::visitPtrToIntInst(PtrToIntInst &I) { | |||
| 2947 | // Get the source and destination types | |||
| 2948 | Type *SrcTy = I.getOperand(0)->getType(); | |||
| 2949 | Type *DestTy = I.getType(); | |||
| 2950 | ||||
| 2951 | Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I)do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("PtrToInt source must be pointer" , &I); return; } } while (false); | |||
| 2952 | ||||
| 2953 | Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("PtrToInt result must be integral" , &I); return; } } while (false); | |||
| 2954 | Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy()) ) { CheckFailed("PtrToInt type mismatch", &I); return; } } while (false) | |||
| 2955 | &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy()) ) { CheckFailed("PtrToInt type mismatch", &I); return; } } while (false); | |||
| 2956 | ||||
| 2957 | if (SrcTy->isVectorTy()) { | |||
| 2958 | auto *VSrc = cast<VectorType>(SrcTy); | |||
| 2959 | auto *VDest = cast<VectorType>(DestTy); | |||
| 2960 | Assert(VSrc->getElementCount() == VDest->getElementCount(),do { if (!(VSrc->getElementCount() == VDest->getElementCount ())) { CheckFailed("PtrToInt Vector width mismatch", &I); return; } } while (false) | |||
| 2961 | "PtrToInt Vector width mismatch", &I)do { if (!(VSrc->getElementCount() == VDest->getElementCount ())) { CheckFailed("PtrToInt Vector width mismatch", &I); return; } } while (false); | |||
| 2962 | } | |||
| 2963 | ||||
| 2964 | visitInstruction(I); | |||
| 2965 | } | |||
| 2966 | ||||
| 2967 | void Verifier::visitIntToPtrInst(IntToPtrInst &I) { | |||
| 2968 | // Get the source and destination types | |||
| 2969 | Type *SrcTy = I.getOperand(0)->getType(); | |||
| 2970 | Type *DestTy = I.getType(); | |||
| 2971 | ||||
| 2972 | Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("IntToPtr source must be an integral" , &I); return; } } while (false) | |||
| 2973 | "IntToPtr source must be an integral", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("IntToPtr source must be an integral" , &I); return; } } while (false); | |||
| 2974 | Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I)do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("IntToPtr result must be a pointer" , &I); return; } } while (false); | |||
| 2975 | ||||
| 2976 | Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy()) ) { CheckFailed("IntToPtr type mismatch", &I); return; } } while (false) | |||
| 2977 | &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy()) ) { CheckFailed("IntToPtr type mismatch", &I); return; } } while (false); | |||
| 2978 | if (SrcTy->isVectorTy()) { | |||
| 2979 | auto *VSrc = cast<VectorType>(SrcTy); | |||
| 2980 | auto *VDest = cast<VectorType>(DestTy); | |||
| 2981 | Assert(VSrc->getElementCount() == VDest->getElementCount(),do { if (!(VSrc->getElementCount() == VDest->getElementCount ())) { CheckFailed("IntToPtr Vector width mismatch", &I); return; } } while (false) | |||
| 2982 | "IntToPtr Vector width mismatch", &I)do { if (!(VSrc->getElementCount() == VDest->getElementCount ())) { CheckFailed("IntToPtr Vector width mismatch", &I); return; } } while (false); | |||
| 2983 | } | |||
| 2984 | visitInstruction(I); | |||
| 2985 | } | |||
| 2986 | ||||
| 2987 | void Verifier::visitBitCastInst(BitCastInst &I) { | |||
| 2988 | Assert(do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand (0), I.getType()))) { CheckFailed("Invalid bitcast", &I); return; } } while (false) | |||
| 2989 | CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand (0), I.getType()))) { CheckFailed("Invalid bitcast", &I); return; } } while (false) | |||
| 2990 | "Invalid bitcast", &I)do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand (0), I.getType()))) { CheckFailed("Invalid bitcast", &I); return; } } while (false); | |||
| 2991 | visitInstruction(I); | |||
| 2992 | } | |||
| 2993 | ||||
| 2994 | void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { | |||
| 2995 | Type *SrcTy = I.getOperand(0)->getType(); | |||
| 2996 | Type *DestTy = I.getType(); | |||
| 2997 | ||||
| 2998 | Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast source must be a pointer" , &I); return; } } while (false) | |||
| 2999 | &I)do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast source must be a pointer" , &I); return; } } while (false); | |||
| 3000 | Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast result must be a pointer" , &I); return; } } while (false) | |||
| 3001 | &I)do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast result must be a pointer" , &I); return; } } while (false); | |||
| 3002 | Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),do { if (!(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace ())) { CheckFailed("AddrSpaceCast must be between different address spaces" , &I); return; } } while (false) | |||
| 3003 | "AddrSpaceCast must be between different address spaces", &I)do { if (!(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace ())) { CheckFailed("AddrSpaceCast must be between different address spaces" , &I); return; } } while (false); | |||
| 3004 | if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy)) | |||
| 3005 | Assert(SrcVTy->getElementCount() ==do { if (!(SrcVTy->getElementCount() == cast<VectorType >(DestTy)->getElementCount())) { CheckFailed("AddrSpaceCast vector pointer number of elements mismatch" , &I); return; } } while (false) | |||
| 3006 | cast<VectorType>(DestTy)->getElementCount(),do { if (!(SrcVTy->getElementCount() == cast<VectorType >(DestTy)->getElementCount())) { CheckFailed("AddrSpaceCast vector pointer number of elements mismatch" , &I); return; } } while (false) | |||
| 3007 | "AddrSpaceCast vector pointer number of elements mismatch", &I)do { if (!(SrcVTy->getElementCount() == cast<VectorType >(DestTy)->getElementCount())) { CheckFailed("AddrSpaceCast vector pointer number of elements mismatch" , &I); return; } } while (false); | |||
| 3008 | visitInstruction(I); | |||
| 3009 | } | |||
| 3010 | ||||
| 3011 | /// visitPHINode - Ensure that a PHI node is well formed. | |||
| 3012 | /// | |||
| 3013 | void Verifier::visitPHINode(PHINode &PN) { | |||
| 3014 | // Ensure that the PHI nodes are all grouped together at the top of the block. | |||
| 3015 | // This can be tested by checking whether the instruction before this is | |||
| 3016 | // either nonexistent (because this is begin()) or is a PHI node. If not, | |||
| 3017 | // then there is some other instruction before a PHI. | |||
| 3018 | Assert(&PN == &PN.getParent()->front() ||do { if (!(&PN == &PN.getParent()->front() || isa< PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed( "PHI nodes not grouped at top of basic block!", &PN, PN.getParent ()); return; } } while (false) | |||
| 3019 | isa<PHINode>(--BasicBlock::iterator(&PN)),do { if (!(&PN == &PN.getParent()->front() || isa< PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed( "PHI nodes not grouped at top of basic block!", &PN, PN.getParent ()); return; } } while (false) | |||
| 3020 | "PHI nodes not grouped at top of basic block!", &PN, PN.getParent())do { if (!(&PN == &PN.getParent()->front() || isa< PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed( "PHI nodes not grouped at top of basic block!", &PN, PN.getParent ()); return; } } while (false); | |||
| 3021 | ||||
| 3022 | // Check that a PHI doesn't yield a Token. | |||
| 3023 | Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!")do { if (!(!PN.getType()->isTokenTy())) { CheckFailed("PHI nodes cannot have token type!" ); return; } } while (false); | |||
| 3024 | ||||
| 3025 | // Check that all of the values of the PHI node have the same type as the | |||
| 3026 | // result, and that the incoming blocks are really basic blocks. | |||
| 3027 | for (Value *IncValue : PN.incoming_values()) { | |||
| 3028 | Assert(PN.getType() == IncValue->getType(),do { if (!(PN.getType() == IncValue->getType())) { CheckFailed ("PHI node operands are not the same type as the result!", & PN); return; } } while (false) | |||
| 3029 | "PHI node operands are not the same type as the result!", &PN)do { if (!(PN.getType() == IncValue->getType())) { CheckFailed ("PHI node operands are not the same type as the result!", & PN); return; } } while (false); | |||
| 3030 | } | |||
| 3031 | ||||
| 3032 | // All other PHI node constraints are checked in the visitBasicBlock method. | |||
| 3033 | ||||
| 3034 | visitInstruction(PN); | |||
| 3035 | } | |||
| 3036 | ||||
| 3037 | void Verifier::visitCallBase(CallBase &Call) { | |||
| 3038 | Assert(Call.getCalledOperand()->getType()->isPointerTy(),do { if (!(Call.getCalledOperand()->getType()->isPointerTy ())) { CheckFailed("Called function must be a pointer!", Call ); return; } } while (false) | |||
| 3039 | "Called function must be a pointer!", Call)do { if (!(Call.getCalledOperand()->getType()->isPointerTy ())) { CheckFailed("Called function must be a pointer!", Call ); return; } } while (false); | |||
| 3040 | PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType()); | |||
| 3041 | ||||
| 3042 | Assert(FPTy->isOpaqueOrPointeeTypeMatches(Call.getFunctionType()),do { if (!(FPTy->isOpaqueOrPointeeTypeMatches(Call.getFunctionType ()))) { CheckFailed("Called function is not the same type as the call!" , Call); return; } } while (false) | |||
| 3043 | "Called function is not the same type as the call!", Call)do { if (!(FPTy->isOpaqueOrPointeeTypeMatches(Call.getFunctionType ()))) { CheckFailed("Called function is not the same type as the call!" , Call); return; } } while (false); | |||
| 3044 | ||||
| 3045 | FunctionType *FTy = Call.getFunctionType(); | |||
| 3046 | ||||
| 3047 | // Verify that the correct number of arguments are being passed | |||
| 3048 | if (FTy->isVarArg()) | |||
| 3049 | Assert(Call.arg_size() >= FTy->getNumParams(),do { if (!(Call.arg_size() >= FTy->getNumParams())) { CheckFailed ("Called function requires more parameters than were provided!" , Call); return; } } while (false) | |||
| 3050 | "Called function requires more parameters than were provided!",do { if (!(Call.arg_size() >= FTy->getNumParams())) { CheckFailed ("Called function requires more parameters than were provided!" , Call); return; } } while (false) | |||
| 3051 | Call)do { if (!(Call.arg_size() >= FTy->getNumParams())) { CheckFailed ("Called function requires more parameters than were provided!" , Call); return; } } while (false); | |||
| 3052 | else | |||
| 3053 | Assert(Call.arg_size() == FTy->getNumParams(),do { if (!(Call.arg_size() == FTy->getNumParams())) { CheckFailed ("Incorrect number of arguments passed to called function!", Call ); return; } } while (false) | |||
| 3054 | "Incorrect number of arguments passed to called function!", Call)do { if (!(Call.arg_size() == FTy->getNumParams())) { CheckFailed ("Incorrect number of arguments passed to called function!", Call ); return; } } while (false); | |||
| 3055 | ||||
| 3056 | // Verify that all arguments to the call match the function type. | |||
| 3057 | for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) | |||
| 3058 | Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i),do { if (!(Call.getArgOperand(i)->getType() == FTy->getParamType (i))) { CheckFailed("Call parameter type does not match function signature!" , Call.getArgOperand(i), FTy->getParamType(i), Call); return ; } } while (false) | |||
| 3059 | "Call parameter type does not match function signature!",do { if (!(Call.getArgOperand(i)->getType() == FTy->getParamType (i))) { CheckFailed("Call parameter type does not match function signature!" , Call.getArgOperand(i), FTy->getParamType(i), Call); return ; } } while (false) | |||
| 3060 | Call.getArgOperand(i), FTy->getParamType(i), Call)do { if (!(Call.getArgOperand(i)->getType() == FTy->getParamType (i))) { CheckFailed("Call parameter type does not match function signature!" , Call.getArgOperand(i), FTy->getParamType(i), Call); return ; } } while (false); | |||
| 3061 | ||||
| 3062 | AttributeList Attrs = Call.getAttributes(); | |||
| 3063 | ||||
| 3064 | Assert(verifyAttributeCount(Attrs, Call.arg_size()),do { if (!(verifyAttributeCount(Attrs, Call.arg_size()))) { CheckFailed ("Attribute after last parameter!", Call); return; } } while ( false) | |||
| 3065 | "Attribute after last parameter!", Call)do { if (!(verifyAttributeCount(Attrs, Call.arg_size()))) { CheckFailed ("Attribute after last parameter!", Call); return; } } while ( false); | |||
| 3066 | ||||
| 3067 | Function *Callee = | |||
| 3068 | dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts()); | |||
| 3069 | bool IsIntrinsic = Callee && Callee->isIntrinsic(); | |||
| 3070 | if (IsIntrinsic) | |||
| 3071 | Assert(Callee->getValueType() == FTy,do { if (!(Callee->getValueType() == FTy)) { CheckFailed("Intrinsic called with incompatible signature" , Call); return; } } while (false) | |||
| 3072 | "Intrinsic called with incompatible signature", Call)do { if (!(Callee->getValueType() == FTy)) { CheckFailed("Intrinsic called with incompatible signature" , Call); return; } } while (false); | |||
| 3073 | ||||
| 3074 | if (Attrs.hasFnAttribute(Attribute::Speculatable)) { | |||
| 3075 | // Don't allow speculatable on call sites, unless the underlying function | |||
| 3076 | // declaration is also speculatable. | |||
| 3077 | Assert(Callee && Callee->isSpeculatable(),do { if (!(Callee && Callee->isSpeculatable())) { CheckFailed ("speculatable attribute may not apply to call sites", Call); return; } } while (false) | |||
| 3078 | "speculatable attribute may not apply to call sites", Call)do { if (!(Callee && Callee->isSpeculatable())) { CheckFailed ("speculatable attribute may not apply to call sites", Call); return; } } while (false); | |||
| 3079 | } | |||
| 3080 | ||||
| 3081 | if (Attrs.hasFnAttribute(Attribute::Preallocated)) { | |||
| 3082 | Assert(Call.getCalledFunction()->getIntrinsicID() ==do { if (!(Call.getCalledFunction()->getIntrinsicID() == Intrinsic ::call_preallocated_arg)) { CheckFailed("preallocated as a call site attribute can only be on " "llvm.call.preallocated.arg"); return; } } while (false) | |||
| 3083 | Intrinsic::call_preallocated_arg,do { if (!(Call.getCalledFunction()->getIntrinsicID() == Intrinsic ::call_preallocated_arg)) { CheckFailed("preallocated as a call site attribute can only be on " "llvm.call.preallocated.arg"); return; } } while (false) | |||
| 3084 | "preallocated as a call site attribute can only be on "do { if (!(Call.getCalledFunction()->getIntrinsicID() == Intrinsic ::call_preallocated_arg)) { CheckFailed("preallocated as a call site attribute can only be on " "llvm.call.preallocated.arg"); return; } } while (false) | |||
| 3085 | "llvm.call.preallocated.arg")do { if (!(Call.getCalledFunction()->getIntrinsicID() == Intrinsic ::call_preallocated_arg)) { CheckFailed("preallocated as a call site attribute can only be on " "llvm.call.preallocated.arg"); return; } } while (false); | |||
| 3086 | } | |||
| 3087 | ||||
| 3088 | // Verify call attributes. | |||
| 3089 | verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic); | |||
| 3090 | ||||
| 3091 | // Conservatively check the inalloca argument. | |||
| 3092 | // We have a bug if we can find that there is an underlying alloca without | |||
| 3093 | // inalloca. | |||
| 3094 | if (Call.hasInAllocaArgument()) { | |||
| 3095 | Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1); | |||
| 3096 | if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) | |||
| 3097 | Assert(AI->isUsedWithInAlloca(),do { if (!(AI->isUsedWithInAlloca())) { CheckFailed("inalloca argument for call has mismatched alloca" , AI, Call); return; } } while (false) | |||
| 3098 | "inalloca argument for call has mismatched alloca", AI, Call)do { if (!(AI->isUsedWithInAlloca())) { CheckFailed("inalloca argument for call has mismatched alloca" , AI, Call); return; } } while (false); | |||
| 3099 | } | |||
| 3100 | ||||
| 3101 | // For each argument of the callsite, if it has the swifterror argument, | |||
| 3102 | // make sure the underlying alloca/parameter it comes from has a swifterror as | |||
| 3103 | // well. | |||
| 3104 | for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { | |||
| 3105 | if (Call.paramHasAttr(i, Attribute::SwiftError)) { | |||
| 3106 | Value *SwiftErrorArg = Call.getArgOperand(i); | |||
| 3107 | if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { | |||
| 3108 | Assert(AI->isSwiftError(),do { if (!(AI->isSwiftError())) { CheckFailed("swifterror argument for call has mismatched alloca" , AI, Call); return; } } while (false) | |||
| 3109 | "swifterror argument for call has mismatched alloca", AI, Call)do { if (!(AI->isSwiftError())) { CheckFailed("swifterror argument for call has mismatched alloca" , AI, Call); return; } } while (false); | |||
| 3110 | continue; | |||
| 3111 | } | |||
| 3112 | auto ArgI = dyn_cast<Argument>(SwiftErrorArg); | |||
| 3113 | Assert(ArgI,do { if (!(ArgI)) { CheckFailed("swifterror argument should come from an alloca or parameter" , SwiftErrorArg, Call); return; } } while (false) | |||
| 3114 | "swifterror argument should come from an alloca or parameter",do { if (!(ArgI)) { CheckFailed("swifterror argument should come from an alloca or parameter" , SwiftErrorArg, Call); return; } } while (false) | |||
| 3115 | SwiftErrorArg, Call)do { if (!(ArgI)) { CheckFailed("swifterror argument should come from an alloca or parameter" , SwiftErrorArg, Call); return; } } while (false); | |||
| 3116 | Assert(ArgI->hasSwiftErrorAttr(),do { if (!(ArgI->hasSwiftErrorAttr())) { CheckFailed("swifterror argument for call has mismatched parameter" , ArgI, Call); return; } } while (false) | |||
| 3117 | "swifterror argument for call has mismatched parameter", ArgI,do { if (!(ArgI->hasSwiftErrorAttr())) { CheckFailed("swifterror argument for call has mismatched parameter" , ArgI, Call); return; } } while (false) | |||
| 3118 | Call)do { if (!(ArgI->hasSwiftErrorAttr())) { CheckFailed("swifterror argument for call has mismatched parameter" , ArgI, Call); return; } } while (false); | |||
| 3119 | } | |||
| 3120 | ||||
| 3121 | if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) { | |||
| 3122 | // Don't allow immarg on call sites, unless the underlying declaration | |||
| 3123 | // also has the matching immarg. | |||
| 3124 | Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),do { if (!(Callee && Callee->hasParamAttribute(i, Attribute ::ImmArg))) { CheckFailed("immarg may not apply only to call sites" , Call.getArgOperand(i), Call); return; } } while (false) | |||
| 3125 | "immarg may not apply only to call sites",do { if (!(Callee && Callee->hasParamAttribute(i, Attribute ::ImmArg))) { CheckFailed("immarg may not apply only to call sites" , Call.getArgOperand(i), Call); return; } } while (false) | |||
| 3126 | Call.getArgOperand(i), Call)do { if (!(Callee && Callee->hasParamAttribute(i, Attribute ::ImmArg))) { CheckFailed("immarg may not apply only to call sites" , Call.getArgOperand(i), Call); return; } } while (false); | |||
| 3127 | } | |||
| 3128 | ||||
| 3129 | if (Call.paramHasAttr(i, Attribute::ImmArg)) { | |||
| 3130 | Value *ArgVal = Call.getArgOperand(i); | |||
| 3131 | Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),do { if (!(isa<ConstantInt>(ArgVal) || isa<ConstantFP >(ArgVal))) { CheckFailed("immarg operand has non-immediate parameter" , ArgVal, Call); return; } } while (false) | |||
| 3132 | "immarg operand has non-immediate parameter", ArgVal, Call)do { if (!(isa<ConstantInt>(ArgVal) || isa<ConstantFP >(ArgVal))) { CheckFailed("immarg operand has non-immediate parameter" , ArgVal, Call); return; } } while (false); | |||
| 3133 | } | |||
| 3134 | ||||
| 3135 | if (Call.paramHasAttr(i, Attribute::Preallocated)) { | |||
| 3136 | Value *ArgVal = Call.getArgOperand(i); | |||
| 3137 | bool hasOB = | |||
| 3138 | Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0; | |||
| 3139 | bool isMustTail = Call.isMustTailCall(); | |||
| 3140 | Assert(hasOB != isMustTail,do { if (!(hasOB != isMustTail)) { CheckFailed("preallocated operand either requires a preallocated bundle or " "the call to be musttail (but not both)", ArgVal, Call); return ; } } while (false) | |||
| 3141 | "preallocated operand either requires a preallocated bundle or "do { if (!(hasOB != isMustTail)) { CheckFailed("preallocated operand either requires a preallocated bundle or " "the call to be musttail (but not both)", ArgVal, Call); return ; } } while (false) | |||
| 3142 | "the call to be musttail (but not both)",do { if (!(hasOB != isMustTail)) { CheckFailed("preallocated operand either requires a preallocated bundle or " "the call to be musttail (but not both)", ArgVal, Call); return ; } } while (false) | |||
| 3143 | ArgVal, Call)do { if (!(hasOB != isMustTail)) { CheckFailed("preallocated operand either requires a preallocated bundle or " "the call to be musttail (but not both)", ArgVal, Call); return ; } } while (false); | |||
| 3144 | } | |||
| 3145 | } | |||
| 3146 | ||||
| 3147 | if (FTy->isVarArg()) { | |||
| 3148 | // FIXME? is 'nest' even legal here? | |||
| 3149 | bool SawNest = false; | |||
| 3150 | bool SawReturned = false; | |||
| 3151 | ||||
| 3152 | for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { | |||
| 3153 | if (Attrs.hasParamAttribute(Idx, Attribute::Nest)) | |||
| 3154 | SawNest = true; | |||
| 3155 | if (Attrs.hasParamAttribute(Idx, Attribute::Returned)) | |||
| 3156 | SawReturned = true; | |||
| 3157 | } | |||
| 3158 | ||||
| 3159 | // Check attributes on the varargs part. | |||
| 3160 | for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) { | |||
| 3161 | Type *Ty = Call.getArgOperand(Idx)->getType(); | |||
| 3162 | AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx); | |||
| 3163 | verifyParameterAttrs(ArgAttrs, Ty, &Call); | |||
| 3164 | ||||
| 3165 | if (ArgAttrs.hasAttribute(Attribute::Nest)) { | |||
| 3166 | Assert(!SawNest, "More than one parameter has attribute nest!", Call)do { if (!(!SawNest)) { CheckFailed("More than one parameter has attribute nest!" , Call); return; } } while (false); | |||
| 3167 | SawNest = true; | |||
| 3168 | } | |||
| 3169 | ||||
| 3170 | if (ArgAttrs.hasAttribute(Attribute::Returned)) { | |||
| 3171 | Assert(!SawReturned, "More than one parameter has attribute returned!",do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!" , Call); return; } } while (false) | |||
| 3172 | Call)do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!" , Call); return; } } while (false); | |||
| 3173 | Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType ()))) { CheckFailed("Incompatible argument and return types for 'returned' " "attribute", Call); return; } } while (false) | |||
| 3174 | "Incompatible argument and return types for 'returned' "do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType ()))) { CheckFailed("Incompatible argument and return types for 'returned' " "attribute", Call); return; } } while (false) | |||
| 3175 | "attribute",do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType ()))) { CheckFailed("Incompatible argument and return types for 'returned' " "attribute", Call); return; } } while (false) | |||
| 3176 | Call)do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType ()))) { CheckFailed("Incompatible argument and return types for 'returned' " "attribute", Call); return; } } while (false); | |||
| 3177 | SawReturned = true; | |||
| 3178 | } | |||
| 3179 | ||||
| 3180 | // Statepoint intrinsic is vararg but the wrapped function may be not. | |||
| 3181 | // Allow sret here and check the wrapped function in verifyStatepoint. | |||
| 3182 | if (!Call.getCalledFunction() || | |||
| 3183 | Call.getCalledFunction()->getIntrinsicID() != | |||
| 3184 | Intrinsic::experimental_gc_statepoint) | |||
| 3185 | Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed ("Attribute 'sret' cannot be used for vararg call arguments!" , Call); return; } } while (false) | |||
| 3186 | "Attribute 'sret' cannot be used for vararg call arguments!",do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed ("Attribute 'sret' cannot be used for vararg call arguments!" , Call); return; } } while (false) | |||
| 3187 | Call)do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed ("Attribute 'sret' cannot be used for vararg call arguments!" , Call); return; } } while (false); | |||
| 3188 | ||||
| 3189 | if (ArgAttrs.hasAttribute(Attribute::InAlloca)) | |||
| 3190 | Assert(Idx == Call.arg_size() - 1,do { if (!(Idx == Call.arg_size() - 1)) { CheckFailed("inalloca isn't on the last argument!" , Call); return; } } while (false) | |||
| 3191 | "inalloca isn't on the last argument!", Call)do { if (!(Idx == Call.arg_size() - 1)) { CheckFailed("inalloca isn't on the last argument!" , Call); return; } } while (false); | |||
| 3192 | } | |||
| 3193 | } | |||
| 3194 | ||||
| 3195 | // Verify that there's no metadata unless it's a direct call to an intrinsic. | |||
| 3196 | if (!IsIntrinsic) { | |||
| 3197 | for (Type *ParamTy : FTy->params()) { | |||
| 3198 | Assert(!ParamTy->isMetadataTy(),do { if (!(!ParamTy->isMetadataTy())) { CheckFailed("Function has metadata parameter but isn't an intrinsic" , Call); return; } } while (false) | |||
| 3199 | "Function has metadata parameter but isn't an intrinsic", Call)do { if (!(!ParamTy->isMetadataTy())) { CheckFailed("Function has metadata parameter but isn't an intrinsic" , Call); return; } } while (false); | |||
| 3200 | Assert(!ParamTy->isTokenTy(),do { if (!(!ParamTy->isTokenTy())) { CheckFailed("Function has token parameter but isn't an intrinsic" , Call); return; } } while (false) | |||
| 3201 | "Function has token parameter but isn't an intrinsic", Call)do { if (!(!ParamTy->isTokenTy())) { CheckFailed("Function has token parameter but isn't an intrinsic" , Call); return; } } while (false); | |||
| 3202 | } | |||
| 3203 | } | |||
| 3204 | ||||
| 3205 | // Verify that indirect calls don't return tokens. | |||
| 3206 | if (!Call.getCalledFunction()) { | |||
| 3207 | Assert(!FTy->getReturnType()->isTokenTy(),do { if (!(!FTy->getReturnType()->isTokenTy())) { CheckFailed ("Return type cannot be token for indirect call!"); return; } } while (false) | |||
| 3208 | "Return type cannot be token for indirect call!")do { if (!(!FTy->getReturnType()->isTokenTy())) { CheckFailed ("Return type cannot be token for indirect call!"); return; } } while (false); | |||
| 3209 | Assert(!FTy->getReturnType()->isX86_AMXTy(),do { if (!(!FTy->getReturnType()->isX86_AMXTy())) { CheckFailed ("Return type cannot be x86_amx for indirect call!"); return; } } while (false) | |||
| 3210 | "Return type cannot be x86_amx for indirect call!")do { if (!(!FTy->getReturnType()->isX86_AMXTy())) { CheckFailed ("Return type cannot be x86_amx for indirect call!"); return; } } while (false); | |||
| 3211 | } | |||
| 3212 | ||||
| 3213 | if (Function *F = Call.getCalledFunction()) | |||
| 3214 | if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) | |||
| 3215 | visitIntrinsicCall(ID, Call); | |||
| 3216 | ||||
| 3217 | // Verify that a callsite has at most one "deopt", at most one "funclet", at | |||
| 3218 | // most one "gc-transition", at most one "cfguardtarget", | |||
| 3219 | // and at most one "preallocated" operand bundle. | |||
| 3220 | bool FoundDeoptBundle = false, FoundFuncletBundle = false, | |||
| 3221 | FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false, | |||
| 3222 | FoundPreallocatedBundle = false, FoundGCLiveBundle = false, | |||
| 3223 | FoundAttachedCallBundle = false; | |||
| 3224 | for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) { | |||
| 3225 | OperandBundleUse BU = Call.getOperandBundleAt(i); | |||
| 3226 | uint32_t Tag = BU.getTagID(); | |||
| 3227 | if (Tag == LLVMContext::OB_deopt) { | |||
| 3228 | Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call)do { if (!(!FoundDeoptBundle)) { CheckFailed("Multiple deopt operand bundles" , Call); return; } } while (false); | |||
| 3229 | FoundDeoptBundle = true; | |||
| 3230 | } else if (Tag == LLVMContext::OB_gc_transition) { | |||
| 3231 | Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",do { if (!(!FoundGCTransitionBundle)) { CheckFailed("Multiple gc-transition operand bundles" , Call); return; } } while (false) | |||
| 3232 | Call)do { if (!(!FoundGCTransitionBundle)) { CheckFailed("Multiple gc-transition operand bundles" , Call); return; } } while (false); | |||
| 3233 | FoundGCTransitionBundle = true; | |||
| 3234 | } else if (Tag == LLVMContext::OB_funclet) { | |||
| 3235 | Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call)do { if (!(!FoundFuncletBundle)) { CheckFailed("Multiple funclet operand bundles" , Call); return; } } while (false); | |||
| 3236 | FoundFuncletBundle = true; | |||
| 3237 | Assert(BU.Inputs.size() == 1,do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one funclet bundle operand" , Call); return; } } while (false) | |||
| 3238 | "Expected exactly one funclet bundle operand", Call)do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one funclet bundle operand" , Call); return; } } while (false); | |||
| 3239 | Assert(isa<FuncletPadInst>(BU.Inputs.front()),do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed ("Funclet bundle operands should correspond to a FuncletPadInst" , Call); return; } } while (false) | |||
| 3240 | "Funclet bundle operands should correspond to a FuncletPadInst",do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed ("Funclet bundle operands should correspond to a FuncletPadInst" , Call); return; } } while (false) | |||
| 3241 | Call)do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed ("Funclet bundle operands should correspond to a FuncletPadInst" , Call); return; } } while (false); | |||
| 3242 | } else if (Tag == LLVMContext::OB_cfguardtarget) { | |||
| 3243 | Assert(!FoundCFGuardTargetBundle,do { if (!(!FoundCFGuardTargetBundle)) { CheckFailed("Multiple CFGuardTarget operand bundles" , Call); return; } } while (false) | |||
| 3244 | "Multiple CFGuardTarget operand bundles", Call)do { if (!(!FoundCFGuardTargetBundle)) { CheckFailed("Multiple CFGuardTarget operand bundles" , Call); return; } } while (false); | |||
| 3245 | FoundCFGuardTargetBundle = true; | |||
| 3246 | Assert(BU.Inputs.size() == 1,do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one cfguardtarget bundle operand" , Call); return; } } while (false) | |||
| 3247 | "Expected exactly one cfguardtarget bundle operand", Call)do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one cfguardtarget bundle operand" , Call); return; } } while (false); | |||
| 3248 | } else if (Tag == LLVMContext::OB_preallocated) { | |||
| 3249 | Assert(!FoundPreallocatedBundle, "Multiple preallocated operand bundles",do { if (!(!FoundPreallocatedBundle)) { CheckFailed("Multiple preallocated operand bundles" , Call); return; } } while (false) | |||
| 3250 | Call)do { if (!(!FoundPreallocatedBundle)) { CheckFailed("Multiple preallocated operand bundles" , Call); return; } } while (false); | |||
| 3251 | FoundPreallocatedBundle = true; | |||
| 3252 | Assert(BU.Inputs.size() == 1,do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one preallocated bundle operand" , Call); return; } } while (false) | |||
| 3253 | "Expected exactly one preallocated bundle operand", Call)do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one preallocated bundle operand" , Call); return; } } while (false); | |||
| 3254 | auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front()); | |||
| 3255 | Assert(Input &&do { if (!(Input && Input->getIntrinsicID() == Intrinsic ::call_preallocated_setup)) { CheckFailed("\"preallocated\" argument must be a token from " "llvm.call.preallocated.setup", Call); return; } } while (false ) | |||
| 3256 | Input->getIntrinsicID() == Intrinsic::call_preallocated_setup,do { if (!(Input && Input->getIntrinsicID() == Intrinsic ::call_preallocated_setup)) { CheckFailed("\"preallocated\" argument must be a token from " "llvm.call.preallocated.setup", Call); return; } } while (false ) | |||
| 3257 | "\"preallocated\" argument must be a token from "do { if (!(Input && Input->getIntrinsicID() == Intrinsic ::call_preallocated_setup)) { CheckFailed("\"preallocated\" argument must be a token from " "llvm.call.preallocated.setup", Call); return; } } while (false ) | |||
| 3258 | "llvm.call.preallocated.setup",do { if (!(Input && Input->getIntrinsicID() == Intrinsic ::call_preallocated_setup)) { CheckFailed("\"preallocated\" argument must be a token from " "llvm.call.preallocated.setup", Call); return; } } while (false ) | |||
| 3259 | Call)do { if (!(Input && Input->getIntrinsicID() == Intrinsic ::call_preallocated_setup)) { CheckFailed("\"preallocated\" argument must be a token from " "llvm.call.preallocated.setup", Call); return; } } while (false ); | |||
| 3260 | } else if (Tag == LLVMContext::OB_gc_live) { | |||
| 3261 | Assert(!FoundGCLiveBundle, "Multiple gc-live operand bundles",do { if (!(!FoundGCLiveBundle)) { CheckFailed("Multiple gc-live operand bundles" , Call); return; } } while (false) | |||
| 3262 | Call)do { if (!(!FoundGCLiveBundle)) { CheckFailed("Multiple gc-live operand bundles" , Call); return; } } while (false); | |||
| 3263 | FoundGCLiveBundle = true; | |||
| 3264 | } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) { | |||
| 3265 | Assert(!FoundAttachedCallBundle,do { if (!(!FoundAttachedCallBundle)) { CheckFailed("Multiple \"clang.arc.attachedcall\" operand bundles" , Call); return; } } while (false) | |||
| 3266 | "Multiple \"clang.arc.attachedcall\" operand bundles", Call)do { if (!(!FoundAttachedCallBundle)) { CheckFailed("Multiple \"clang.arc.attachedcall\" operand bundles" , Call); return; } } while (false); | |||
| 3267 | FoundAttachedCallBundle = true; | |||
| 3268 | } | |||
| 3269 | } | |||
| 3270 | ||||
| 3271 | if (FoundAttachedCallBundle) | |||
| 3272 | Assert((FTy->getReturnType()->isPointerTy() ||do { if (!((FTy->getReturnType()->isPointerTy() || (Call .doesNotReturn() && FTy->getReturnType()->isVoidTy ())))) { CheckFailed("a call with operand bundle \"clang.arc.attachedcall\" must call a " "function returning a pointer or a non-returning function that has " "a void return type", Call); return; } } while (false) | |||
| 3273 | (Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())),do { if (!((FTy->getReturnType()->isPointerTy() || (Call .doesNotReturn() && FTy->getReturnType()->isVoidTy ())))) { CheckFailed("a call with operand bundle \"clang.arc.attachedcall\" must call a " "function returning a pointer or a non-returning function that has " "a void return type", Call); return; } } while (false) | |||
| 3274 | "a call with operand bundle \"clang.arc.attachedcall\" must call a "do { if (!((FTy->getReturnType()->isPointerTy() || (Call .doesNotReturn() && FTy->getReturnType()->isVoidTy ())))) { CheckFailed("a call with operand bundle \"clang.arc.attachedcall\" must call a " "function returning a pointer or a non-returning function that has " "a void return type", Call); return; } } while (false) | |||
| 3275 | "function returning a pointer or a non-returning function that has "do { if (!((FTy->getReturnType()->isPointerTy() || (Call .doesNotReturn() && FTy->getReturnType()->isVoidTy ())))) { CheckFailed("a call with operand bundle \"clang.arc.attachedcall\" must call a " "function returning a pointer or a non-returning function that has " "a void return type", Call); return; } } while (false) | |||
| 3276 | "a void return type",do { if (!((FTy->getReturnType()->isPointerTy() || (Call .doesNotReturn() && FTy->getReturnType()->isVoidTy ())))) { CheckFailed("a call with operand bundle \"clang.arc.attachedcall\" must call a " "function returning a pointer or a non-returning function that has " "a void return type", Call); return; } } while (false) | |||
| 3277 | Call)do { if (!((FTy->getReturnType()->isPointerTy() || (Call .doesNotReturn() && FTy->getReturnType()->isVoidTy ())))) { CheckFailed("a call with operand bundle \"clang.arc.attachedcall\" must call a " "function returning a pointer or a non-returning function that has " "a void return type", Call); return; } } while (false); | |||
| 3278 | ||||
| 3279 | // Verify that each inlinable callsite of a debug-info-bearing function in a | |||
| 3280 | // debug-info-bearing function has a debug location attached to it. Failure to | |||
| 3281 | // do so causes assertion failures when the inliner sets up inline scope info. | |||
| 3282 | if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() && | |||
| 3283 | Call.getCalledFunction()->getSubprogram()) | |||
| 3284 | AssertDI(Call.getDebugLoc(),do { if (!(Call.getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with " "debug info must have a !dbg location", Call); return; } } while (false) | |||
| 3285 | "inlinable function call in a function with "do { if (!(Call.getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with " "debug info must have a !dbg location", Call); return; } } while (false) | |||
| 3286 | "debug info must have a !dbg location",do { if (!(Call.getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with " "debug info must have a !dbg location", Call); return; } } while (false) | |||
| 3287 | Call)do { if (!(Call.getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with " "debug info must have a !dbg location", Call); return; } } while (false); | |||
| 3288 | ||||
| 3289 | visitInstruction(Call); | |||
| 3290 | } | |||
| 3291 | ||||
| 3292 | void Verifier::verifyTailCCMustTailAttrs(AttrBuilder Attrs, | |||
| 3293 | StringRef Context) { | |||
| 3294 | Assert(!Attrs.contains(Attribute::InAlloca),do { if (!(!Attrs.contains(Attribute::InAlloca))) { CheckFailed (Twine("inalloca attribute not allowed in ") + Context); return ; } } while (false) | |||
| 3295 | Twine("inalloca attribute not allowed in ") + Context)do { if (!(!Attrs.contains(Attribute::InAlloca))) { CheckFailed (Twine("inalloca attribute not allowed in ") + Context); return ; } } while (false); | |||
| 3296 | Assert(!Attrs.contains(Attribute::InReg),do { if (!(!Attrs.contains(Attribute::InReg))) { CheckFailed( Twine("inreg attribute not allowed in ") + Context); return; } } while (false) | |||
| 3297 | Twine("inreg attribute not allowed in ") + Context)do { if (!(!Attrs.contains(Attribute::InReg))) { CheckFailed( Twine("inreg attribute not allowed in ") + Context); return; } } while (false); | |||
| 3298 | Assert(!Attrs.contains(Attribute::SwiftError),do { if (!(!Attrs.contains(Attribute::SwiftError))) { CheckFailed (Twine("swifterror attribute not allowed in ") + Context); return ; } } while (false) | |||
| 3299 | Twine("swifterror attribute not allowed in ") + Context)do { if (!(!Attrs.contains(Attribute::SwiftError))) { CheckFailed (Twine("swifterror attribute not allowed in ") + Context); return ; } } while (false); | |||
| 3300 | Assert(!Attrs.contains(Attribute::Preallocated),do { if (!(!Attrs.contains(Attribute::Preallocated))) { CheckFailed (Twine("preallocated attribute not allowed in ") + Context); return ; } } while (false) | |||
| 3301 | Twine("preallocated attribute not allowed in ") + Context)do { if (!(!Attrs.contains(Attribute::Preallocated))) { CheckFailed (Twine("preallocated attribute not allowed in ") + Context); return ; } } while (false); | |||
| 3302 | Assert(!Attrs.contains(Attribute::ByRef),do { if (!(!Attrs.contains(Attribute::ByRef))) { CheckFailed( Twine("byref attribute not allowed in ") + Context); return; } } while (false) | |||
| 3303 | Twine("byref attribute not allowed in ") + Context)do { if (!(!Attrs.contains(Attribute::ByRef))) { CheckFailed( Twine("byref attribute not allowed in ") + Context); return; } } while (false); | |||
| 3304 | } | |||
| 3305 | ||||
| 3306 | /// Two types are "congruent" if they are identical, or if they are both pointer | |||
| 3307 | /// types with different pointee types and the same address space. | |||
| 3308 | static bool isTypeCongruent(Type *L, Type *R) { | |||
| 3309 | if (L == R) | |||
| 3310 | return true; | |||
| 3311 | PointerType *PL = dyn_cast<PointerType>(L); | |||
| 3312 | PointerType *PR = dyn_cast<PointerType>(R); | |||
| 3313 | if (!PL || !PR) | |||
| 3314 | return false; | |||
| 3315 | return PL->getAddressSpace() == PR->getAddressSpace(); | |||
| 3316 | } | |||
| 3317 | ||||
| 3318 | static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) { | |||
| 3319 | static const Attribute::AttrKind ABIAttrs[] = { | |||
| 3320 | Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, | |||
| 3321 | Attribute::InReg, Attribute::StackAlignment, Attribute::SwiftSelf, | |||
| 3322 | Attribute::SwiftAsync, Attribute::SwiftError, Attribute::Preallocated, | |||
| 3323 | Attribute::ByRef}; | |||
| 3324 | AttrBuilder Copy; | |||
| 3325 | for (auto AK : ABIAttrs) { | |||
| 3326 | Attribute Attr = Attrs.getParamAttributes(I).getAttribute(AK); | |||
| 3327 | if (Attr.isValid()) | |||
| 3328 | Copy.addAttribute(Attr); | |||
| 3329 | } | |||
| 3330 | ||||
| 3331 | // `align` is ABI-affecting only in combination with `byval` or `byref`. | |||
| 3332 | if (Attrs.hasParamAttribute(I, Attribute::Alignment) && | |||
| 3333 | (Attrs.hasParamAttribute(I, Attribute::ByVal) || | |||
| 3334 | Attrs.hasParamAttribute(I, Attribute::ByRef))) | |||
| 3335 | Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); | |||
| 3336 | return Copy; | |||
| 3337 | } | |||
| 3338 | ||||
| 3339 | void Verifier::verifyMustTailCall(CallInst &CI) { | |||
| 3340 | Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI)do { if (!(!CI.isInlineAsm())) { CheckFailed("cannot use musttail call with inline asm" , &CI); return; } } while (false); | |||
| 3341 | ||||
| 3342 | Function *F = CI.getParent()->getParent(); | |||
| 3343 | FunctionType *CallerTy = F->getFunctionType(); | |||
| 3344 | FunctionType *CalleeTy = CI.getFunctionType(); | |||
| 3345 | Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),do { if (!(CallerTy->isVarArg() == CalleeTy->isVarArg() )) { CheckFailed("cannot guarantee tail call due to mismatched varargs" , &CI); return; } } while (false) | |||
| 3346 | "cannot guarantee tail call due to mismatched varargs", &CI)do { if (!(CallerTy->isVarArg() == CalleeTy->isVarArg() )) { CheckFailed("cannot guarantee tail call due to mismatched varargs" , &CI); return; } } while (false); | |||
| 3347 | Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),do { if (!(isTypeCongruent(CallerTy->getReturnType(), CalleeTy ->getReturnType()))) { CheckFailed("cannot guarantee tail call due to mismatched return types" , &CI); return; } } while (false) | |||
| 3348 | "cannot guarantee tail call due to mismatched return types", &CI)do { if (!(isTypeCongruent(CallerTy->getReturnType(), CalleeTy ->getReturnType()))) { CheckFailed("cannot guarantee tail call due to mismatched return types" , &CI); return; } } while (false); | |||
| 3349 | ||||
| 3350 | // - The calling conventions of the caller and callee must match. | |||
| 3351 | Assert(F->getCallingConv() == CI.getCallingConv(),do { if (!(F->getCallingConv() == CI.getCallingConv())) { CheckFailed ("cannot guarantee tail call due to mismatched calling conv", &CI); return; } } while (false) | |||
| 3352 | "cannot guarantee tail call due to mismatched calling conv", &CI)do { if (!(F->getCallingConv() == CI.getCallingConv())) { CheckFailed ("cannot guarantee tail call due to mismatched calling conv", &CI); return; } } while (false); | |||
| 3353 | ||||
| 3354 | // - The call must immediately precede a :ref:`ret <i_ret>` instruction, | |||
| 3355 | // or a pointer bitcast followed by a ret instruction. | |||
| 3356 | // - The ret instruction must return the (possibly bitcasted) value | |||
| 3357 | // produced by the call or void. | |||
| 3358 | Value *RetVal = &CI; | |||
| 3359 | Instruction *Next = CI.getNextNode(); | |||
| 3360 | ||||
| 3361 | // Handle the optional bitcast. | |||
| 3362 | if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { | |||
| 3363 | Assert(BI->getOperand(0) == RetVal,do { if (!(BI->getOperand(0) == RetVal)) { CheckFailed("bitcast following musttail call must use the call" , BI); return; } } while (false) | |||
| 3364 | "bitcast following musttail call must use the call", BI)do { if (!(BI->getOperand(0) == RetVal)) { CheckFailed("bitcast following musttail call must use the call" , BI); return; } } while (false); | |||
| 3365 | RetVal = BI; | |||
| 3366 | Next = BI->getNextNode(); | |||
| 3367 | } | |||
| 3368 | ||||
| 3369 | // Check the return. | |||
| 3370 | ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); | |||
| 3371 | Assert(Ret, "musttail call must precede a ret with an optional bitcast",do { if (!(Ret)) { CheckFailed("musttail call must precede a ret with an optional bitcast" , &CI); return; } } while (false) | |||
| 3372 | &CI)do { if (!(Ret)) { CheckFailed("musttail call must precede a ret with an optional bitcast" , &CI); return; } } while (false); | |||
| 3373 | Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal ||do { if (!(!Ret->getReturnValue() || Ret->getReturnValue () == RetVal || isa<UndefValue>(Ret->getReturnValue( )))) { CheckFailed("musttail call result must be returned", Ret ); return; } } while (false) | |||
| 3374 | isa<UndefValue>(Ret->getReturnValue()),do { if (!(!Ret->getReturnValue() || Ret->getReturnValue () == RetVal || isa<UndefValue>(Ret->getReturnValue( )))) { CheckFailed("musttail call result must be returned", Ret ); return; } } while (false) | |||
| 3375 | "musttail call result must be returned", Ret)do { if (!(!Ret->getReturnValue() || Ret->getReturnValue () == RetVal || isa<UndefValue>(Ret->getReturnValue( )))) { CheckFailed("musttail call result must be returned", Ret ); return; } } while (false); | |||
| 3376 | ||||
| 3377 | AttributeList CallerAttrs = F->getAttributes(); | |||
| 3378 | AttributeList CalleeAttrs = CI.getAttributes(); | |||
| 3379 | if (CI.getCallingConv() == CallingConv::SwiftTail || | |||
| 3380 | CI.getCallingConv() == CallingConv::Tail) { | |||
| 3381 | StringRef CCName = | |||
| 3382 | CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc"; | |||
| 3383 | ||||
| 3384 | // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes | |||
| 3385 | // are allowed in swifttailcc call | |||
| 3386 | for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { | |||
| 3387 | AttrBuilder ABIAttrs = getParameterABIAttributes(I, CallerAttrs); | |||
| 3388 | SmallString<32> Context{CCName, StringRef(" musttail caller")}; | |||
| 3389 | verifyTailCCMustTailAttrs(ABIAttrs, Context); | |||
| 3390 | } | |||
| 3391 | for (int I = 0, E = CalleeTy->getNumParams(); I != E; ++I) { | |||
| 3392 | AttrBuilder ABIAttrs = getParameterABIAttributes(I, CalleeAttrs); | |||
| 3393 | SmallString<32> Context{CCName, StringRef(" musttail callee")}; | |||
| 3394 | verifyTailCCMustTailAttrs(ABIAttrs, Context); | |||
| 3395 | } | |||
| 3396 | // - Varargs functions are not allowed | |||
| 3397 | Assert(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName +do { if (!(!CallerTy->isVarArg())) { CheckFailed(Twine("cannot guarantee " ) + CCName + " tail call for varargs function"); return; } } while (false) | |||
| 3398 | " tail call for varargs function")do { if (!(!CallerTy->isVarArg())) { CheckFailed(Twine("cannot guarantee " ) + CCName + " tail call for varargs function"); return; } } while (false); | |||
| 3399 | return; | |||
| 3400 | } | |||
| 3401 | ||||
| 3402 | // - The caller and callee prototypes must match. Pointer types of | |||
| 3403 | // parameters or return types may differ in pointee type, but not | |||
| 3404 | // address space. | |||
| 3405 | if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { | |||
| 3406 | Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams ())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts" , &CI); return; } } while (false) | |||
| 3407 | "cannot guarantee tail call due to mismatched parameter counts",do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams ())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts" , &CI); return; } } while (false) | |||
| 3408 | &CI)do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams ())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts" , &CI); return; } } while (false); | |||
| 3409 | for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { | |||
| 3410 | Assert(do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy ->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types" , &CI); return; } } while (false) | |||
| 3411 | isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy ->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types" , &CI); return; } } while (false) | |||
| 3412 | "cannot guarantee tail call due to mismatched parameter types", &CI)do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy ->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types" , &CI); return; } } while (false); | |||
| 3413 | } | |||
| 3414 | } | |||
| 3415 | ||||
| 3416 | // - All ABI-impacting function attributes, such as sret, byval, inreg, | |||
| 3417 | // returned, preallocated, and inalloca, must match. | |||
| 3418 | for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { | |||
| 3419 | AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); | |||
| 3420 | AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); | |||
| 3421 | Assert(CallerABIAttrs == CalleeABIAttrs,do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting " "function attributes", &CI, CI.getOperand(I)); return; } } while (false) | |||
| 3422 | "cannot guarantee tail call due to mismatched ABI impacting "do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting " "function attributes", &CI, CI.getOperand(I)); return; } } while (false) | |||
| 3423 | "function attributes",do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting " "function attributes", &CI, CI.getOperand(I)); return; } } while (false) | |||
| 3424 | &CI, CI.getOperand(I))do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting " "function attributes", &CI, CI.getOperand(I)); return; } } while (false); | |||
| 3425 | } | |||
| 3426 | } | |||
| 3427 | ||||
| 3428 | void Verifier::visitCallInst(CallInst &CI) { | |||
| 3429 | visitCallBase(CI); | |||
| 3430 | ||||
| 3431 | if (CI.isMustTailCall()) | |||
| 3432 | verifyMustTailCall(CI); | |||
| 3433 | } | |||
| 3434 | ||||
| 3435 | void Verifier::visitInvokeInst(InvokeInst &II) { | |||
| 3436 | visitCallBase(II); | |||
| 3437 | ||||
| 3438 | // Verify that the first non-PHI instruction of the unwind destination is an | |||
| 3439 | // exception handling instruction. | |||
| 3440 | Assert(do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!" , &II); return; } } while (false) | |||
| 3441 | II.getUnwindDest()->isEHPad(),do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!" , &II); return; } } while (false) | |||
| 3442 | "The unwind destination does not have an exception handling instruction!",do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!" , &II); return; } } while (false) | |||
| 3443 | &II)do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!" , &II); return; } } while (false); | |||
| 3444 | ||||
| 3445 | visitTerminator(II); | |||
| 3446 | } | |||
| 3447 | ||||
| 3448 | /// visitUnaryOperator - Check the argument to the unary operator. | |||
| 3449 | /// | |||
| 3450 | void Verifier::visitUnaryOperator(UnaryOperator &U) { | |||
| 3451 | Assert(U.getType() == U.getOperand(0)->getType(),do { if (!(U.getType() == U.getOperand(0)->getType())) { CheckFailed ("Unary operators must have same type for" "operands and result!" , &U); return; } } while (false) | |||
| 3452 | "Unary operators must have same type for"do { if (!(U.getType() == U.getOperand(0)->getType())) { CheckFailed ("Unary operators must have same type for" "operands and result!" , &U); return; } } while (false) | |||
| 3453 | "operands and result!",do { if (!(U.getType() == U.getOperand(0)->getType())) { CheckFailed ("Unary operators must have same type for" "operands and result!" , &U); return; } } while (false) | |||
| 3454 | &U)do { if (!(U.getType() == U.getOperand(0)->getType())) { CheckFailed ("Unary operators must have same type for" "operands and result!" , &U); return; } } while (false); | |||
| 3455 | ||||
| 3456 | switch (U.getOpcode()) { | |||
| 3457 | // Check that floating-point arithmetic operators are only used with | |||
| 3458 | // floating-point operands. | |||
| 3459 | case Instruction::FNeg: | |||
| 3460 | Assert(U.getType()->isFPOrFPVectorTy(),do { if (!(U.getType()->isFPOrFPVectorTy())) { CheckFailed ("FNeg operator only works with float types!", &U); return ; } } while (false) | |||
| 3461 | "FNeg operator only works with float types!", &U)do { if (!(U.getType()->isFPOrFPVectorTy())) { CheckFailed ("FNeg operator only works with float types!", &U); return ; } } while (false); | |||
| 3462 | break; | |||
| 3463 | default: | |||
| 3464 | llvm_unreachable("Unknown UnaryOperator opcode!")__builtin_unreachable(); | |||
| 3465 | } | |||
| 3466 | ||||
| 3467 | visitInstruction(U); | |||
| 3468 | } | |||
| 3469 | ||||
| 3470 | /// visitBinaryOperator - Check that both arguments to the binary operator are | |||
| 3471 | /// of the same type! | |||
| 3472 | /// | |||
| 3473 | void Verifier::visitBinaryOperator(BinaryOperator &B) { | |||
| 3474 | Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),do { if (!(B.getOperand(0)->getType() == B.getOperand(1)-> getType())) { CheckFailed("Both operands to a binary operator are not of the same type!" , &B); return; } } while (false) | |||
| 3475 | "Both operands to a binary operator are not of the same type!", &B)do { if (!(B.getOperand(0)->getType() == B.getOperand(1)-> getType())) { CheckFailed("Both operands to a binary operator are not of the same type!" , &B); return; } } while (false); | |||
| 3476 | ||||
| 3477 | switch (B.getOpcode()) { | |||
| 3478 | // Check that integer arithmetic operators are only used with | |||
| 3479 | // integral operands. | |||
| 3480 | case Instruction::Add: | |||
| 3481 | case Instruction::Sub: | |||
| 3482 | case Instruction::Mul: | |||
| 3483 | case Instruction::SDiv: | |||
| 3484 | case Instruction::UDiv: | |||
| 3485 | case Instruction::SRem: | |||
| 3486 | case Instruction::URem: | |||
| 3487 | Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed ("Integer arithmetic operators only work with integral types!" , &B); return; } } while (false) | |||
| 3488 | "Integer arithmetic operators only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed ("Integer arithmetic operators only work with integral types!" , &B); return; } } while (false); | |||
| 3489 | Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed ("Integer arithmetic operators must have same type " "for operands and result!" , &B); return; } } while (false) | |||
| 3490 | "Integer arithmetic operators must have same type "do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed ("Integer arithmetic operators must have same type " "for operands and result!" , &B); return; } } while (false) | |||
| 3491 | "for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed ("Integer arithmetic operators must have same type " "for operands and result!" , &B); return; } } while (false) | |||
| 3492 | &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed ("Integer arithmetic operators must have same type " "for operands and result!" , &B); return; } } while (false); | |||
| 3493 | break; | |||
| 3494 | // Check that floating-point arithmetic operators are only used with | |||
| 3495 | // floating-point operands. | |||
| 3496 | case Instruction::FAdd: | |||
| 3497 | case Instruction::FSub: | |||
| 3498 | case Instruction::FMul: | |||
| 3499 | case Instruction::FDiv: | |||
| 3500 | case Instruction::FRem: | |||
| 3501 | Assert(B.getType()->isFPOrFPVectorTy(),do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed ("Floating-point arithmetic operators only work with " "floating-point types!" , &B); return; } } while (false) | |||
| 3502 | "Floating-point arithmetic operators only work with "do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed ("Floating-point arithmetic operators only work with " "floating-point types!" , &B); return; } } while (false) | |||
| 3503 | "floating-point types!",do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed ("Floating-point arithmetic operators only work with " "floating-point types!" , &B); return; } } while (false) | |||
| 3504 | &B)do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed ("Floating-point arithmetic operators only work with " "floating-point types!" , &B); return; } } while (false); | |||
| 3505 | Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed ("Floating-point arithmetic operators must have same type " "for operands and result!" , &B); return; } } while (false) | |||
| 3506 | "Floating-point arithmetic operators must have same type "do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed ("Floating-point arithmetic operators must have same type " "for operands and result!" , &B); return; } } while (false) | |||
| 3507 | "for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed ("Floating-point arithmetic operators must have same type " "for operands and result!" , &B); return; } } while (false) | |||
| 3508 | &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed ("Floating-point arithmetic operators must have same type " "for operands and result!" , &B); return; } } while (false); | |||
| 3509 | break; | |||
| 3510 | // Check that logical operators are only used with integral operands. | |||
| 3511 | case Instruction::And: | |||
| 3512 | case Instruction::Or: | |||
| 3513 | case Instruction::Xor: | |||
| 3514 | Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed ("Logical operators only work with integral types!", &B); return; } } while (false) | |||
| 3515 | "Logical operators only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed ("Logical operators only work with integral types!", &B); return; } } while (false); | |||
| 3516 | Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed ("Logical operators must have same type for operands and result!" , &B); return; } } while (false) | |||
| 3517 | "Logical operators must have same type for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed ("Logical operators must have same type for operands and result!" , &B); return; } } while (false) | |||
| 3518 | &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed ("Logical operators must have same type for operands and result!" , &B); return; } } while (false); | |||
| 3519 | break; | |||
| 3520 | case Instruction::Shl: | |||
| 3521 | case Instruction::LShr: | |||
| 3522 | case Instruction::AShr: | |||
| 3523 | Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed ("Shifts only work with integral types!", &B); return; } } while (false) | |||
| 3524 | "Shifts only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed ("Shifts only work with integral types!", &B); return; } } while (false); | |||
| 3525 | Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed ("Shift return type must be same as operands!", &B); return ; } } while (false) | |||
| 3526 | "Shift return type must be same as operands!", &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed ("Shift return type must be same as operands!", &B); return ; } } while (false); | |||
| 3527 | break; | |||
| 3528 | default: | |||
| 3529 | llvm_unreachable("Unknown BinaryOperator opcode!")__builtin_unreachable(); | |||
| 3530 | } | |||
| 3531 | ||||
| 3532 | visitInstruction(B); | |||
| 3533 | } | |||
| 3534 | ||||
| 3535 | void Verifier::visitICmpInst(ICmpInst &IC) { | |||
| 3536 | // Check that the operands are the same type | |||
| 3537 | Type *Op0Ty = IC.getOperand(0)->getType(); | |||
| 3538 | Type *Op1Ty = IC.getOperand(1)->getType(); | |||
| 3539 | Assert(Op0Ty == Op1Ty,do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to ICmp instruction are not of the same type!" , &IC); return; } } while (false) | |||
| 3540 | "Both operands to ICmp instruction are not of the same type!", &IC)do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to ICmp instruction are not of the same type!" , &IC); return; } } while (false); | |||
| 3541 | // Check that the operands are the right type | |||
| 3542 | Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),do { if (!(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy ())) { CheckFailed("Invalid operand types for ICmp instruction" , &IC); return; } } while (false) | |||
| 3543 | "Invalid operand types for ICmp instruction", &IC)do { if (!(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy ())) { CheckFailed("Invalid operand types for ICmp instruction" , &IC); return; } } while (false); | |||
| 3544 | // Check that the predicate is valid. | |||
| 3545 | Assert(IC.isIntPredicate(),do { if (!(IC.isIntPredicate())) { CheckFailed("Invalid predicate in ICmp instruction!" , &IC); return; } } while (false) | |||
| 3546 | "Invalid predicate in ICmp instruction!", &IC)do { if (!(IC.isIntPredicate())) { CheckFailed("Invalid predicate in ICmp instruction!" , &IC); return; } } while (false); | |||
| 3547 | ||||
| 3548 | visitInstruction(IC); | |||
| 3549 | } | |||
| 3550 | ||||
| 3551 | void Verifier::visitFCmpInst(FCmpInst &FC) { | |||
| 3552 | // Check that the operands are the same type | |||
| 3553 | Type *Op0Ty = FC.getOperand(0)->getType(); | |||
| 3554 | Type *Op1Ty = FC.getOperand(1)->getType(); | |||
| 3555 | Assert(Op0Ty == Op1Ty,do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to FCmp instruction are not of the same type!" , &FC); return; } } while (false) | |||
| 3556 | "Both operands to FCmp instruction are not of the same type!", &FC)do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to FCmp instruction are not of the same type!" , &FC); return; } } while (false); | |||
| 3557 | // Check that the operands are the right type | |||
| 3558 | Assert(Op0Ty->isFPOrFPVectorTy(),do { if (!(Op0Ty->isFPOrFPVectorTy())) { CheckFailed("Invalid operand types for FCmp instruction" , &FC); return; } } while (false) | |||
| 3559 | "Invalid operand types for FCmp instruction", &FC)do { if (!(Op0Ty->isFPOrFPVectorTy())) { CheckFailed("Invalid operand types for FCmp instruction" , &FC); return; } } while (false); | |||
| 3560 | // Check that the predicate is valid. | |||
| 3561 | Assert(FC.isFPPredicate(),do { if (!(FC.isFPPredicate())) { CheckFailed("Invalid predicate in FCmp instruction!" , &FC); return; } } while (false) | |||
| 3562 | "Invalid predicate in FCmp instruction!", &FC)do { if (!(FC.isFPPredicate())) { CheckFailed("Invalid predicate in FCmp instruction!" , &FC); return; } } while (false); | |||
| 3563 | ||||
| 3564 | visitInstruction(FC); | |||
| 3565 | } | |||
| 3566 | ||||
| 3567 | void Verifier::visitExtractElementInst(ExtractElementInst &EI) { | |||
| 3568 | Assert(do { if (!(ExtractElementInst::isValidOperands(EI.getOperand( 0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!" , &EI); return; } } while (false) | |||
| 3569 | ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),do { if (!(ExtractElementInst::isValidOperands(EI.getOperand( 0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!" , &EI); return; } } while (false) | |||
| 3570 | "Invalid extractelement operands!", &EI)do { if (!(ExtractElementInst::isValidOperands(EI.getOperand( 0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!" , &EI); return; } } while (false); | |||
| 3571 | visitInstruction(EI); | |||
| 3572 | } | |||
| 3573 | ||||
| 3574 | void Verifier::visitInsertElementInst(InsertElementInst &IE) { | |||
| 3575 | Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0 ), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!" , &IE); return; } } while (false) | |||
| 3576 | IE.getOperand(2)),do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0 ), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!" , &IE); return; } } while (false) | |||
| 3577 | "Invalid insertelement operands!", &IE)do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0 ), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!" , &IE); return; } } while (false); | |||
| 3578 | visitInstruction(IE); | |||
| 3579 | } | |||
| 3580 | ||||
| 3581 | void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { | |||
| 3582 | Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0 ), SV.getOperand(1), SV.getShuffleMask()))) { CheckFailed("Invalid shufflevector operands!" , &SV); return; } } while (false) | |||
| 3583 | SV.getShuffleMask()),do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0 ), SV.getOperand(1), SV.getShuffleMask()))) { CheckFailed("Invalid shufflevector operands!" , &SV); return; } } while (false) | |||
| 3584 | "Invalid shufflevector operands!", &SV)do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0 ), SV.getOperand(1), SV.getShuffleMask()))) { CheckFailed("Invalid shufflevector operands!" , &SV); return; } } while (false); | |||
| 3585 | visitInstruction(SV); | |||
| 3586 | } | |||
| 3587 | ||||
| 3588 | void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { | |||
| 3589 | Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); | |||
| 3590 | ||||
| 3591 | Assert(isa<PointerType>(TargetTy),do { if (!(isa<PointerType>(TargetTy))) { CheckFailed("GEP base pointer is not a vector or a vector of pointers" , &GEP); return; } } while (false) | |||
| 3592 | "GEP base pointer is not a vector or a vector of pointers", &GEP)do { if (!(isa<PointerType>(TargetTy))) { CheckFailed("GEP base pointer is not a vector or a vector of pointers" , &GEP); return; } } while (false); | |||
| 3593 | Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP)do { if (!(GEP.getSourceElementType()->isSized())) { CheckFailed ("GEP into unsized type!", &GEP); return; } } while (false ); | |||
| 3594 | ||||
| 3595 | SmallVector<Value *, 16> Idxs(GEP.indices()); | |||
| 3596 | Assert(all_of(do { if (!(all_of( Idxs, [](Value* V) { return V->getType( )->isIntOrIntVectorTy(); }))) { CheckFailed("GEP indexes must be integers" , &GEP); return; } } while (false) | |||
| 3597 | Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),do { if (!(all_of( Idxs, [](Value* V) { return V->getType( )->isIntOrIntVectorTy(); }))) { CheckFailed("GEP indexes must be integers" , &GEP); return; } } while (false) | |||
| 3598 | "GEP indexes must be integers", &GEP)do { if (!(all_of( Idxs, [](Value* V) { return V->getType( )->isIntOrIntVectorTy(); }))) { CheckFailed("GEP indexes must be integers" , &GEP); return; } } while (false); | |||
| 3599 | Type *ElTy = | |||
| 3600 | GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); | |||
| 3601 | Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP)do { if (!(ElTy)) { CheckFailed("Invalid indices for GEP pointer type!" , &GEP); return; } } while (false); | |||
| 3602 | ||||
| 3603 | Assert(GEP.getType()->isPtrOrPtrVectorTy() &&do { if (!(GEP.getType()->isPtrOrPtrVectorTy() && GEP .getResultElementType() == ElTy)) { CheckFailed("GEP is not of right type for indices!" , &GEP, ElTy); return; } } while (false) | |||
| 3604 | GEP.getResultElementType() == ElTy,do { if (!(GEP.getType()->isPtrOrPtrVectorTy() && GEP .getResultElementType() == ElTy)) { CheckFailed("GEP is not of right type for indices!" , &GEP, ElTy); return; } } while (false) | |||
| 3605 | "GEP is not of right type for indices!", &GEP, ElTy)do { if (!(GEP.getType()->isPtrOrPtrVectorTy() && GEP .getResultElementType() == ElTy)) { CheckFailed("GEP is not of right type for indices!" , &GEP, ElTy); return; } } while (false); | |||
| 3606 | ||||
| 3607 | if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) { | |||
| 3608 | // Additional checks for vector GEPs. | |||
| 3609 | ElementCount GEPWidth = GEPVTy->getElementCount(); | |||
| 3610 | if (GEP.getPointerOperandType()->isVectorTy()) | |||
| 3611 | Assert(do { if (!(GEPWidth == cast<VectorType>(GEP.getPointerOperandType ())->getElementCount())) { CheckFailed("Vector GEP result width doesn't match operand's" , &GEP); return; } } while (false) | |||
| 3612 | GEPWidth ==do { if (!(GEPWidth == cast<VectorType>(GEP.getPointerOperandType ())->getElementCount())) { CheckFailed("Vector GEP result width doesn't match operand's" , &GEP); return; } } while (false) | |||
| 3613 | cast<VectorType>(GEP.getPointerOperandType())->getElementCount(),do { if (!(GEPWidth == cast<VectorType>(GEP.getPointerOperandType ())->getElementCount())) { CheckFailed("Vector GEP result width doesn't match operand's" , &GEP); return; } } while (false) | |||
| 3614 | "Vector GEP result width doesn't match operand's", &GEP)do { if (!(GEPWidth == cast<VectorType>(GEP.getPointerOperandType ())->getElementCount())) { CheckFailed("Vector GEP result width doesn't match operand's" , &GEP); return; } } while (false); | |||
| 3615 | for (Value *Idx : Idxs) { | |||
| 3616 | Type *IndexTy = Idx->getType(); | |||
| 3617 | if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) { | |||
| 3618 | ElementCount IndexWidth = IndexVTy->getElementCount(); | |||
| 3619 | Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP)do { if (!(IndexWidth == GEPWidth)) { CheckFailed("Invalid GEP index vector width" , &GEP); return; } } while (false); | |||
| 3620 | } | |||
| 3621 | Assert(IndexTy->isIntOrIntVectorTy(),do { if (!(IndexTy->isIntOrIntVectorTy())) { CheckFailed("All GEP indices should be of integer type" ); return; } } while (false) | |||
| 3622 | "All GEP indices should be of integer type")do { if (!(IndexTy->isIntOrIntVectorTy())) { CheckFailed("All GEP indices should be of integer type" ); return; } } while (false); | |||
| 3623 | } | |||
| 3624 | } | |||
| 3625 | ||||
| 3626 | if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) { | |||
| 3627 | Assert(GEP.getAddressSpace() == PTy->getAddressSpace(),do { if (!(GEP.getAddressSpace() == PTy->getAddressSpace() )) { CheckFailed("GEP address space doesn't match type", & GEP); return; } } while (false) | |||
| 3628 | "GEP address space doesn't match type", &GEP)do { if (!(GEP.getAddressSpace() == PTy->getAddressSpace() )) { CheckFailed("GEP address space doesn't match type", & GEP); return; } } while (false); | |||
| 3629 | } | |||
| 3630 | ||||
| 3631 | visitInstruction(GEP); | |||
| 3632 | } | |||
| 3633 | ||||
| 3634 | static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { | |||
| 3635 | return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); | |||
| 3636 | } | |||
| 3637 | ||||
| 3638 | void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { | |||
| 3639 | assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&((void)0) | |||
| 3640 | "precondition violation")((void)0); | |||
| 3641 | ||||
| 3642 | unsigned NumOperands = Range->getNumOperands(); | |||
| 3643 | Assert(NumOperands % 2 == 0, "Unfinished range!", Range)do { if (!(NumOperands % 2 == 0)) { CheckFailed("Unfinished range!" , Range); return; } } while (false); | |||
| 3644 | unsigned NumRanges = NumOperands / 2; | |||
| 3645 | Assert(NumRanges >= 1, "It should have at least one range!", Range)do { if (!(NumRanges >= 1)) { CheckFailed("It should have at least one range!" , Range); return; } } while (false); | |||
| 3646 | ||||
| 3647 | ConstantRange LastRange(1, true); // Dummy initial value | |||
| 3648 | for (unsigned i = 0; i < NumRanges; ++i) { | |||
| 3649 | ConstantInt *Low = | |||
| 3650 | mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); | |||
| 3651 | Assert(Low, "The lower limit must be an integer!", Low)do { if (!(Low)) { CheckFailed("The lower limit must be an integer!" , Low); return; } } while (false); | |||
| 3652 | ConstantInt *High = | |||
| 3653 | mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); | |||
| 3654 | Assert(High, "The upper limit must be an integer!", High)do { if (!(High)) { CheckFailed("The upper limit must be an integer!" , High); return; } } while (false); | |||
| 3655 | Assert(High->getType() == Low->getType() && High->getType() == Ty,do { if (!(High->getType() == Low->getType() && High->getType() == Ty)) { CheckFailed("Range types must match instruction type!" , &I); return; } } while (false) | |||
| 3656 | "Range types must match instruction type!", &I)do { if (!(High->getType() == Low->getType() && High->getType() == Ty)) { CheckFailed("Range types must match instruction type!" , &I); return; } } while (false); | |||
| 3657 | ||||
| 3658 | APInt HighV = High->getValue(); | |||
| 3659 | APInt LowV = Low->getValue(); | |||
| 3660 | ConstantRange CurRange(LowV, HighV); | |||
| 3661 | Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),do { if (!(!CurRange.isEmptySet() && !CurRange.isFullSet ())) { CheckFailed("Range must not be empty!", Range); return ; } } while (false) | |||
| 3662 | "Range must not be empty!", Range)do { if (!(!CurRange.isEmptySet() && !CurRange.isFullSet ())) { CheckFailed("Range must not be empty!", Range); return ; } } while (false); | |||
| 3663 | if (i != 0) { | |||
| 3664 | Assert(CurRange.intersectWith(LastRange).isEmptySet(),do { if (!(CurRange.intersectWith(LastRange).isEmptySet())) { CheckFailed("Intervals are overlapping", Range); return; } } while (false) | |||
| 3665 | "Intervals are overlapping", Range)do { if (!(CurRange.intersectWith(LastRange).isEmptySet())) { CheckFailed("Intervals are overlapping", Range); return; } } while (false); | |||
| 3666 | Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",do { if (!(LowV.sgt(LastRange.getLower()))) { CheckFailed("Intervals are not in order" , Range); return; } } while (false) | |||
| 3667 | Range)do { if (!(LowV.sgt(LastRange.getLower()))) { CheckFailed("Intervals are not in order" , Range); return; } } while (false); | |||
| 3668 | Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",do { if (!(!isContiguous(CurRange, LastRange))) { CheckFailed ("Intervals are contiguous", Range); return; } } while (false ) | |||
| 3669 | Range)do { if (!(!isContiguous(CurRange, LastRange))) { CheckFailed ("Intervals are contiguous", Range); return; } } while (false ); | |||
| 3670 | } | |||
| 3671 | LastRange = ConstantRange(LowV, HighV); | |||
| 3672 | } | |||
| 3673 | if (NumRanges > 2) { | |||
| 3674 | APInt FirstLow = | |||
| 3675 | mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); | |||
| 3676 | APInt FirstHigh = | |||
| 3677 | mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); | |||
| 3678 | ConstantRange FirstRange(FirstLow, FirstHigh); | |||
| 3679 | Assert(FirstRange.intersectWith(LastRange).isEmptySet(),do { if (!(FirstRange.intersectWith(LastRange).isEmptySet())) { CheckFailed("Intervals are overlapping", Range); return; } } while (false) | |||
| 3680 | "Intervals are overlapping", Range)do { if (!(FirstRange.intersectWith(LastRange).isEmptySet())) { CheckFailed("Intervals are overlapping", Range); return; } } while (false); | |||
| 3681 | Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",do { if (!(!isContiguous(FirstRange, LastRange))) { CheckFailed ("Intervals are contiguous", Range); return; } } while (false ) | |||
| 3682 | Range)do { if (!(!isContiguous(FirstRange, LastRange))) { CheckFailed ("Intervals are contiguous", Range); return; } } while (false ); | |||
| 3683 | } | |||
| 3684 | } | |||
| 3685 | ||||
| 3686 | void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { | |||
| 3687 | unsigned Size = DL.getTypeSizeInBits(Ty); | |||
| 3688 | Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I)do { if (!(Size >= 8)) { CheckFailed("atomic memory access' size must be byte-sized" , Ty, I); return; } } while (false); | |||
| 3689 | Assert(!(Size & (Size - 1)),do { if (!(!(Size & (Size - 1)))) { CheckFailed("atomic memory access' operand must have a power-of-two size" , Ty, I); return; } } while (false) | |||
| 3690 | "atomic memory access' operand must have a power-of-two size", Ty, I)do { if (!(!(Size & (Size - 1)))) { CheckFailed("atomic memory access' operand must have a power-of-two size" , Ty, I); return; } } while (false); | |||
| 3691 | } | |||
| 3692 | ||||
| 3693 | void Verifier::visitLoadInst(LoadInst &LI) { | |||
| 3694 | PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); | |||
| ||||
| 3695 | Assert(PTy, "Load operand must be a pointer.", &LI)do { if (!(PTy)) { CheckFailed("Load operand must be a pointer." , &LI); return; } } while (false); | |||
| 3696 | Type *ElTy = LI.getType(); | |||
| 3697 | Assert(LI.getAlignment() <= Value::MaximumAlignment,do { if (!(LI.getAlignment() <= Value::MaximumAlignment)) { CheckFailed("huge alignment values are unsupported", &LI ); return; } } while (false) | |||
| 3698 | "huge alignment values are unsupported", &LI)do { if (!(LI.getAlignment() <= Value::MaximumAlignment)) { CheckFailed("huge alignment values are unsupported", &LI ); return; } } while (false); | |||
| 3699 | Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI)do { if (!(ElTy->isSized())) { CheckFailed("loading unsized types is not allowed" , &LI); return; } } while (false); | |||
| 3700 | if (LI.isAtomic()) { | |||
| 3701 | Assert(LI.getOrdering() != AtomicOrdering::Release &&do { if (!(LI.getOrdering() != AtomicOrdering::Release && LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed ("Load cannot have Release ordering", &LI); return; } } while (false) | |||
| 3702 | LI.getOrdering() != AtomicOrdering::AcquireRelease,do { if (!(LI.getOrdering() != AtomicOrdering::Release && LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed ("Load cannot have Release ordering", &LI); return; } } while (false) | |||
| 3703 | "Load cannot have Release ordering", &LI)do { if (!(LI.getOrdering() != AtomicOrdering::Release && LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed ("Load cannot have Release ordering", &LI); return; } } while (false); | |||
| 3704 | Assert(LI.getAlignment() != 0,do { if (!(LI.getAlignment() != 0)) { CheckFailed("Atomic load must specify explicit alignment" , &LI); return; } } while (false) | |||
| 3705 | "Atomic load must specify explicit alignment", &LI)do { if (!(LI.getAlignment() != 0)) { CheckFailed("Atomic load must specify explicit alignment" , &LI); return; } } while (false); | |||
| 3706 | Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy ())) { CheckFailed("atomic load operand must have integer, pointer, or floating point " "type!", ElTy, &LI); return; } } while (false) | |||
| 3707 | "atomic load operand must have integer, pointer, or floating point "do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy ())) { CheckFailed("atomic load operand must have integer, pointer, or floating point " "type!", ElTy, &LI); return; } } while (false) | |||
| 3708 | "type!",do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy ())) { CheckFailed("atomic load operand must have integer, pointer, or floating point " "type!", ElTy, &LI); return; } } while (false) | |||
| 3709 | ElTy, &LI)do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy ())) { CheckFailed("atomic load operand must have integer, pointer, or floating point " "type!", ElTy, &LI); return; } } while (false); | |||
| 3710 | checkAtomicMemAccessSize(ElTy, &LI); | |||
| 3711 | } else { | |||
| 3712 | Assert(LI.getSyncScopeID() == SyncScope::System,do { if (!(LI.getSyncScopeID() == SyncScope::System)) { CheckFailed ("Non-atomic load cannot have SynchronizationScope specified" , &LI); return; } } while (false) | |||
| 3713 | "Non-atomic load cannot have SynchronizationScope specified", &LI)do { if (!(LI.getSyncScopeID() == SyncScope::System)) { CheckFailed ("Non-atomic load cannot have SynchronizationScope specified" , &LI); return; } } while (false); | |||
| 3714 | } | |||
| 3715 | ||||
| 3716 | visitInstruction(LI); | |||
| 3717 | } | |||
| 3718 | ||||
| 3719 | void Verifier::visitStoreInst(StoreInst &SI) { | |||
| 3720 | PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); | |||
| 3721 | Assert(PTy, "Store operand must be a pointer.", &SI)do { if (!(PTy)) { CheckFailed("Store operand must be a pointer." , &SI); return; } } while (false); | |||
| 3722 | Type *ElTy = SI.getOperand(0)->getType(); | |||
| 3723 | Assert(PTy->isOpaqueOrPointeeTypeMatches(ElTy),do { if (!(PTy->isOpaqueOrPointeeTypeMatches(ElTy))) { CheckFailed ("Stored value type does not match pointer operand type!", & SI, ElTy); return; } } while (false) | |||
| 3724 | "Stored value type does not match pointer operand type!", &SI, ElTy)do { if (!(PTy->isOpaqueOrPointeeTypeMatches(ElTy))) { CheckFailed ("Stored value type does not match pointer operand type!", & SI, ElTy); return; } } while (false); | |||
| 3725 | Assert(SI.getAlignment() <= Value::MaximumAlignment,do { if (!(SI.getAlignment() <= Value::MaximumAlignment)) { CheckFailed("huge alignment values are unsupported", &SI ); return; } } while (false) | |||
| 3726 | "huge alignment values are unsupported", &SI)do { if (!(SI.getAlignment() <= Value::MaximumAlignment)) { CheckFailed("huge alignment values are unsupported", &SI ); return; } } while (false); | |||
| 3727 | Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI)do { if (!(ElTy->isSized())) { CheckFailed("storing unsized types is not allowed" , &SI); return; } } while (false); | |||
| 3728 | if (SI.isAtomic()) { | |||
| 3729 | Assert(SI.getOrdering() != AtomicOrdering::Acquire &&do { if (!(SI.getOrdering() != AtomicOrdering::Acquire && SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed ("Store cannot have Acquire ordering", &SI); return; } } while (false) | |||
| 3730 | SI.getOrdering() != AtomicOrdering::AcquireRelease,do { if (!(SI.getOrdering() != AtomicOrdering::Acquire && SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed ("Store cannot have Acquire ordering", &SI); return; } } while (false) | |||
| 3731 | "Store cannot have Acquire ordering", &SI)do { if (!(SI.getOrdering() != AtomicOrdering::Acquire && SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed ("Store cannot have Acquire ordering", &SI); return; } } while (false); | |||
| 3732 | Assert(SI.getAlignment() != 0,do { if (!(SI.getAlignment() != 0)) { CheckFailed("Atomic store must specify explicit alignment" , &SI); return; } } while (false) | |||
| 3733 | "Atomic store must specify explicit alignment", &SI)do { if (!(SI.getAlignment() != 0)) { CheckFailed("Atomic store must specify explicit alignment" , &SI); return; } } while (false); | |||
| 3734 | Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy ())) { CheckFailed("atomic store operand must have integer, pointer, or floating point " "type!", ElTy, &SI); return; } } while (false) | |||
| 3735 | "atomic store operand must have integer, pointer, or floating point "do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy ())) { CheckFailed("atomic store operand must have integer, pointer, or floating point " "type!", ElTy, &SI); return; } } while (false) | |||
| 3736 | "type!",do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy ())) { CheckFailed("atomic store operand must have integer, pointer, or floating point " "type!", ElTy, &SI); return; } } while (false) | |||
| 3737 | ElTy, &SI)do { if (!(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy ())) { CheckFailed("atomic store operand must have integer, pointer, or floating point " "type!", ElTy, &SI); return; } } while (false); | |||
| 3738 | checkAtomicMemAccessSize(ElTy, &SI); | |||
| 3739 | } else { | |||
| 3740 | Assert(SI.getSyncScopeID() == SyncScope::System,do { if (!(SI.getSyncScopeID() == SyncScope::System)) { CheckFailed ("Non-atomic store cannot have SynchronizationScope specified" , &SI); return; } } while (false) | |||
| 3741 | "Non-atomic store cannot have SynchronizationScope specified", &SI)do { if (!(SI.getSyncScopeID() == SyncScope::System)) { CheckFailed ("Non-atomic store cannot have SynchronizationScope specified" , &SI); return; } } while (false); | |||
| 3742 | } | |||
| 3743 | visitInstruction(SI); | |||
| 3744 | } | |||
| 3745 | ||||
| 3746 | /// Check that SwiftErrorVal is used as a swifterror argument in CS. | |||
| 3747 | void Verifier::verifySwiftErrorCall(CallBase &Call, | |||
| 3748 | const Value *SwiftErrorVal) { | |||
| 3749 | for (const auto &I : llvm::enumerate(Call.args())) { | |||
| 3750 | if (I.value() == SwiftErrorVal) { | |||
| 3751 | Assert(Call.paramHasAttr(I.index(), Attribute::SwiftError),do { if (!(Call.paramHasAttr(I.index(), Attribute::SwiftError ))) { CheckFailed("swifterror value when used in a callsite should be marked " "with swifterror attribute", SwiftErrorVal, Call); return; } } while (false) | |||
| 3752 | "swifterror value when used in a callsite should be marked "do { if (!(Call.paramHasAttr(I.index(), Attribute::SwiftError ))) { CheckFailed("swifterror value when used in a callsite should be marked " "with swifterror attribute", SwiftErrorVal, Call); return; } } while (false) | |||
| 3753 | "with swifterror attribute",do { if (!(Call.paramHasAttr(I.index(), Attribute::SwiftError ))) { CheckFailed("swifterror value when used in a callsite should be marked " "with swifterror attribute", SwiftErrorVal, Call); return; } } while (false) | |||
| 3754 | SwiftErrorVal, Call)do { if (!(Call.paramHasAttr(I.index(), Attribute::SwiftError ))) { CheckFailed("swifterror value when used in a callsite should be marked " "with swifterror attribute", SwiftErrorVal, Call); return; } } while (false); | |||
| 3755 | } | |||
| 3756 | } | |||
| 3757 | } | |||
| 3758 | ||||
| 3759 | void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { | |||
| 3760 | // Check that swifterror value is only used by loads, stores, or as | |||
| 3761 | // a swifterror argument. | |||
| 3762 | for (const User *U : SwiftErrorVal->users()) { | |||
| 3763 | Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed ("swifterror value can only be loaded and stored from, or " "as a swifterror argument!" , SwiftErrorVal, U); return; } } while (false) | |||
| 3764 | isa<InvokeInst>(U),do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed ("swifterror value can only be loaded and stored from, or " "as a swifterror argument!" , SwiftErrorVal, U); return; } } while (false) | |||
| 3765 | "swifterror value can only be loaded and stored from, or "do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed ("swifterror value can only be loaded and stored from, or " "as a swifterror argument!" , SwiftErrorVal, U); return; } } while (false) | |||
| 3766 | "as a swifterror argument!",do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed ("swifterror value can only be loaded and stored from, or " "as a swifterror argument!" , SwiftErrorVal, U); return; } } while (false) | |||
| 3767 | SwiftErrorVal, U)do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed ("swifterror value can only be loaded and stored from, or " "as a swifterror argument!" , SwiftErrorVal, U); return; } } while (false); | |||
| 3768 | // If it is used by a store, check it is the second operand. | |||
| 3769 | if (auto StoreI = dyn_cast<StoreInst>(U)) | |||
| 3770 | Assert(StoreI->getOperand(1) == SwiftErrorVal,do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed ("swifterror value should be the second operand when used " "by stores" , SwiftErrorVal, U); return; } } while (false) | |||
| 3771 | "swifterror value should be the second operand when used "do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed ("swifterror value should be the second operand when used " "by stores" , SwiftErrorVal, U); return; } } while (false) | |||
| 3772 | "by stores", SwiftErrorVal, U)do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed ("swifterror value should be the second operand when used " "by stores" , SwiftErrorVal, U); return; } } while (false); | |||
| 3773 | if (auto *Call = dyn_cast<CallBase>(U)) | |||
| 3774 | verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal); | |||
| 3775 | } | |||
| 3776 | } | |||
| 3777 | ||||
| 3778 | void Verifier::visitAllocaInst(AllocaInst &AI) { | |||
| 3779 | SmallPtrSet<Type*, 4> Visited; | |||
| 3780 | Assert(AI.getAllocatedType()->isSized(&Visited),do { if (!(AI.getAllocatedType()->isSized(&Visited))) { CheckFailed("Cannot allocate unsized type", &AI); return ; } } while (false) | |||
| 3781 | "Cannot allocate unsized type", &AI)do { if (!(AI.getAllocatedType()->isSized(&Visited))) { CheckFailed("Cannot allocate unsized type", &AI); return ; } } while (false); | |||
| 3782 | Assert(AI.getArraySize()->getType()->isIntegerTy(),do { if (!(AI.getArraySize()->getType()->isIntegerTy()) ) { CheckFailed("Alloca array size must have integer type", & AI); return; } } while (false) | |||
| 3783 | "Alloca array size must have integer type", &AI)do { if (!(AI.getArraySize()->getType()->isIntegerTy()) ) { CheckFailed("Alloca array size must have integer type", & AI); return; } } while (false); | |||
| 3784 | Assert(AI.getAlignment() <= Value::MaximumAlignment,do { if (!(AI.getAlignment() <= Value::MaximumAlignment)) { CheckFailed("huge alignment values are unsupported", &AI ); return; } } while (false) | |||
| 3785 | "huge alignment values are unsupported", &AI)do { if (!(AI.getAlignment() <= Value::MaximumAlignment)) { CheckFailed("huge alignment values are unsupported", &AI ); return; } } while (false); | |||
| 3786 | ||||
| 3787 | if (AI.isSwiftError()) { | |||
| 3788 | verifySwiftErrorValue(&AI); | |||
| 3789 | } | |||
| 3790 | ||||
| 3791 | visitInstruction(AI); | |||
| 3792 | } | |||
| 3793 | ||||
| 3794 | void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { | |||
| 3795 | Type *ElTy = CXI.getOperand(1)->getType(); | |||
| 3796 | Assert(ElTy->isIntOrPtrTy(),do { if (!(ElTy->isIntOrPtrTy())) { CheckFailed("cmpxchg operand must have integer or pointer type" , ElTy, &CXI); return; } } while (false) | |||
| 3797 | "cmpxchg operand must have integer or pointer type", ElTy, &CXI)do { if (!(ElTy->isIntOrPtrTy())) { CheckFailed("cmpxchg operand must have integer or pointer type" , ElTy, &CXI); return; } } while (false); | |||
| 3798 | checkAtomicMemAccessSize(ElTy, &CXI); | |||
| 3799 | visitInstruction(CXI); | |||
| 3800 | } | |||
| 3801 | ||||
| 3802 | void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { | |||
| 3803 | Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,do { if (!(RMWI.getOrdering() != AtomicOrdering::Unordered)) { CheckFailed("atomicrmw instructions cannot be unordered.", & RMWI); return; } } while (false) | |||
| 3804 | "atomicrmw instructions cannot be unordered.", &RMWI)do { if (!(RMWI.getOrdering() != AtomicOrdering::Unordered)) { CheckFailed("atomicrmw instructions cannot be unordered.", & RMWI); return; } } while (false); | |||
| 3805 | auto Op = RMWI.getOperation(); | |||
| 3806 | Type *ElTy = RMWI.getOperand(1)->getType(); | |||
| 3807 | if (Op == AtomicRMWInst::Xchg) { | |||
| 3808 | Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " +do { if (!(ElTy->isIntegerTy() || ElTy->isFloatingPointTy ())) { CheckFailed("atomicrmw " + AtomicRMWInst::getOperationName (Op) + " operand must have integer or floating point type!", & RMWI, ElTy); return; } } while (false) | |||
| 3809 | AtomicRMWInst::getOperationName(Op) +do { if (!(ElTy->isIntegerTy() || ElTy->isFloatingPointTy ())) { CheckFailed("atomicrmw " + AtomicRMWInst::getOperationName (Op) + " operand must have integer or floating point type!", & RMWI, ElTy); return; } } while (false) | |||
| 3810 | " operand must have integer or floating point type!",do { if (!(ElTy->isIntegerTy() || ElTy->isFloatingPointTy ())) { CheckFailed("atomicrmw " + AtomicRMWInst::getOperationName (Op) + " operand must have integer or floating point type!", & RMWI, ElTy); return; } } while (false) | |||
| 3811 | &RMWI, ElTy)do { if (!(ElTy->isIntegerTy() || ElTy->isFloatingPointTy ())) { CheckFailed("atomicrmw " + AtomicRMWInst::getOperationName (Op) + " operand must have integer or floating point type!", & RMWI, ElTy); return; } } while (false); | |||
| 3812 | } else if (AtomicRMWInst::isFPOperation(Op)) { | |||
| 3813 | Assert(ElTy->isFloatingPointTy(), "atomicrmw " +do { if (!(ElTy->isFloatingPointTy())) { CheckFailed("atomicrmw " + AtomicRMWInst::getOperationName(Op) + " operand must have floating point type!" , &RMWI, ElTy); return; } } while (false) | |||
| 3814 | AtomicRMWInst::getOperationName(Op) +do { if (!(ElTy->isFloatingPointTy())) { CheckFailed("atomicrmw " + AtomicRMWInst::getOperationName(Op) + " operand must have floating point type!" , &RMWI, ElTy); return; } } while (false) | |||
| 3815 | " operand must have floating point type!",do { if (!(ElTy->isFloatingPointTy())) { CheckFailed("atomicrmw " + AtomicRMWInst::getOperationName(Op) + " operand must have floating point type!" , &RMWI, ElTy); return; } } while (false) | |||
| 3816 | &RMWI, ElTy)do { if (!(ElTy->isFloatingPointTy())) { CheckFailed("atomicrmw " + AtomicRMWInst::getOperationName(Op) + " operand must have floating point type!" , &RMWI, ElTy); return; } } while (false); | |||
| 3817 | } else { | |||
| 3818 | Assert(ElTy->isIntegerTy(), "atomicrmw " +do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw " + AtomicRMWInst::getOperationName(Op) + " operand must have integer type!" , &RMWI, ElTy); return; } } while (false) | |||
| 3819 | AtomicRMWInst::getOperationName(Op) +do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw " + AtomicRMWInst::getOperationName(Op) + " operand must have integer type!" , &RMWI, ElTy); return; } } while (false) | |||
| 3820 | " operand must have integer type!",do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw " + AtomicRMWInst::getOperationName(Op) + " operand must have integer type!" , &RMWI, ElTy); return; } } while (false) | |||
| 3821 | &RMWI, ElTy)do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw " + AtomicRMWInst::getOperationName(Op) + " operand must have integer type!" , &RMWI, ElTy); return; } } while (false); | |||
| 3822 | } | |||
| 3823 | checkAtomicMemAccessSize(ElTy, &RMWI); | |||
| 3824 | Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,do { if (!(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP)) { CheckFailed("Invalid binary operation!" , &RMWI); return; } } while (false) | |||
| 3825 | "Invalid binary operation!", &RMWI)do { if (!(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP)) { CheckFailed("Invalid binary operation!" , &RMWI); return; } } while (false); | |||
| 3826 | visitInstruction(RMWI); | |||
| 3827 | } | |||
| 3828 | ||||
| 3829 | void Verifier::visitFenceInst(FenceInst &FI) { | |||
| 3830 | const AtomicOrdering Ordering = FI.getOrdering(); | |||
| 3831 | Assert(Ordering == AtomicOrdering::Acquire ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering == AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease || Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed ("fence instructions may only have acquire, release, acq_rel, or " "seq_cst ordering.", &FI); return; } } while (false) | |||
| 3832 | Ordering == AtomicOrdering::Release ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering == AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease || Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed ("fence instructions may only have acquire, release, acq_rel, or " "seq_cst ordering.", &FI); return; } } while (false) | |||
| 3833 | Ordering == AtomicOrdering::AcquireRelease ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering == AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease || Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed ("fence instructions may only have acquire, release, acq_rel, or " "seq_cst ordering.", &FI); return; } } while (false) | |||
| 3834 | Ordering == AtomicOrdering::SequentiallyConsistent,do { if (!(Ordering == AtomicOrdering::Acquire || Ordering == AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease || Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed ("fence instructions may only have acquire, release, acq_rel, or " "seq_cst ordering.", &FI); return; } } while (false) | |||
| 3835 | "fence instructions may only have acquire, release, acq_rel, or "do { if (!(Ordering == AtomicOrdering::Acquire || Ordering == AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease || Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed ("fence instructions may only have acquire, release, acq_rel, or " "seq_cst ordering.", &FI); return; } } while (false) | |||
| 3836 | "seq_cst ordering.",do { if (!(Ordering == AtomicOrdering::Acquire || Ordering == AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease || Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed ("fence instructions may only have acquire, release, acq_rel, or " "seq_cst ordering.", &FI); return; } } while (false) | |||
| 3837 | &FI)do { if (!(Ordering == AtomicOrdering::Acquire || Ordering == AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease || Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed ("fence instructions may only have acquire, release, acq_rel, or " "seq_cst ordering.", &FI); return; } } while (false); | |||
| 3838 | visitInstruction(FI); | |||
| 3839 | } | |||
| 3840 | ||||
| 3841 | void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { | |||
| 3842 | Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand ()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed ("Invalid ExtractValueInst operands!", &EVI); return; } } while (false) | |||
| 3843 | EVI.getIndices()) == EVI.getType(),do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand ()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed ("Invalid ExtractValueInst operands!", &EVI); return; } } while (false) | |||
| 3844 | "Invalid ExtractValueInst operands!", &EVI)do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand ()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed ("Invalid ExtractValueInst operands!", &EVI); return; } } while (false); | |||
| 3845 | ||||
| 3846 | visitInstruction(EVI); | |||
| 3847 | } | |||
| 3848 | ||||
| 3849 | void Verifier::visitInsertValueInst(InsertValueInst &IVI) { | |||
| 3850 | Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand ()->getType(), IVI.getIndices()) == IVI.getOperand(1)-> getType())) { CheckFailed("Invalid InsertValueInst operands!" , &IVI); return; } } while (false) | |||
| 3851 | IVI.getIndices()) ==do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand ()->getType(), IVI.getIndices()) == IVI.getOperand(1)-> getType())) { CheckFailed("Invalid InsertValueInst operands!" , &IVI); return; } } while (false) | |||
| 3852 | IVI.getOperand(1)->getType(),do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand ()->getType(), IVI.getIndices()) == IVI.getOperand(1)-> getType())) { CheckFailed("Invalid InsertValueInst operands!" , &IVI); return; } } while (false) | |||
| 3853 | "Invalid InsertValueInst operands!", &IVI)do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand ()->getType(), IVI.getIndices()) == IVI.getOperand(1)-> getType())) { CheckFailed("Invalid InsertValueInst operands!" , &IVI); return; } } while (false); | |||
| 3854 | ||||
| 3855 | visitInstruction(IVI); | |||
| 3856 | } | |||
| 3857 | ||||
| 3858 | static Value *getParentPad(Value *EHPad) { | |||
| 3859 | if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) | |||
| 3860 | return FPI->getParentPad(); | |||
| 3861 | ||||
| 3862 | return cast<CatchSwitchInst>(EHPad)->getParentPad(); | |||
| 3863 | } | |||
| 3864 | ||||
| 3865 | void Verifier::visitEHPadPredecessors(Instruction &I) { | |||
| 3866 | assert(I.isEHPad())((void)0); | |||
| 3867 | ||||
| 3868 | BasicBlock *BB = I.getParent(); | |||
| 3869 | Function *F = BB->getParent(); | |||
| 3870 | ||||
| 3871 | Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I)do { if (!(BB != &F->getEntryBlock())) { CheckFailed("EH pad cannot be in entry block." , &I); return; } } while (false); | |||
| 3872 | ||||
| 3873 | if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { | |||
| 3874 | // The landingpad instruction defines its parent as a landing pad block. The | |||
| 3875 | // landing pad block may be branched to only by the unwind edge of an | |||
| 3876 | // invoke. | |||
| 3877 | for (BasicBlock *PredBB : predecessors(BB)) { | |||
| 3878 | const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); | |||
| 3879 | Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,do { if (!(II && II->getUnwindDest() == BB && II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to " "only by the unwind edge of an invoke.", LPI); return; } } while (false) | |||
| 3880 | "Block containing LandingPadInst must be jumped to "do { if (!(II && II->getUnwindDest() == BB && II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to " "only by the unwind edge of an invoke.", LPI); return; } } while (false) | |||
| 3881 | "only by the unwind edge of an invoke.",do { if (!(II && II->getUnwindDest() == BB && II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to " "only by the unwind edge of an invoke.", LPI); return; } } while (false) | |||
| 3882 | LPI)do { if (!(II && II->getUnwindDest() == BB && II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to " "only by the unwind edge of an invoke.", LPI); return; } } while (false); | |||
| 3883 | } | |||
| 3884 | return; | |||
| 3885 | } | |||
| 3886 | if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { | |||
| 3887 | if (!pred_empty(BB)) | |||
| 3888 | Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch ()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to " "only by its catchswitch.", CPI); return; } } while (false) | |||
| 3889 | "Block containg CatchPadInst must be jumped to "do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch ()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to " "only by its catchswitch.", CPI); return; } } while (false) | |||
| 3890 | "only by its catchswitch.",do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch ()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to " "only by its catchswitch.", CPI); return; } } while (false) | |||
| 3891 | CPI)do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch ()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to " "only by its catchswitch.", CPI); return; } } while (false); | |||
| 3892 | Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest() )) { CheckFailed("Catchswitch cannot unwind to one of its catchpads" , CPI->getCatchSwitch(), CPI); return; } } while (false) | |||
| 3893 | "Catchswitch cannot unwind to one of its catchpads",do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest() )) { CheckFailed("Catchswitch cannot unwind to one of its catchpads" , CPI->getCatchSwitch(), CPI); return; } } while (false) | |||
| 3894 | CPI->getCatchSwitch(), CPI)do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest() )) { CheckFailed("Catchswitch cannot unwind to one of its catchpads" , CPI->getCatchSwitch(), CPI); return; } } while (false); | |||
| 3895 | return; | |||
| 3896 | } | |||
| 3897 | ||||
| 3898 | // Verify that each pred has a legal terminator with a legal to/from EH | |||
| 3899 | // pad relationship. | |||
| 3900 | Instruction *ToPad = &I; | |||
| 3901 | Value *ToPadParent = getParentPad(ToPad); | |||
| 3902 | for (BasicBlock *PredBB : predecessors(BB)) { | |||
| 3903 | Instruction *TI = PredBB->getTerminator(); | |||
| 3904 | Value *FromPad; | |||
| 3905 | if (auto *II = dyn_cast<InvokeInst>(TI)) { | |||
| 3906 | Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,do { if (!(II->getUnwindDest() == BB && II->getNormalDest () != BB)) { CheckFailed("EH pad must be jumped to via an unwind edge" , ToPad, II); return; } } while (false) | |||
| 3907 | "EH pad must be jumped to via an unwind edge", ToPad, II)do { if (!(II->getUnwindDest() == BB && II->getNormalDest () != BB)) { CheckFailed("EH pad must be jumped to via an unwind edge" , ToPad, II); return; } } while (false); | |||
| 3908 | if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) | |||
| 3909 | FromPad = Bundle->Inputs[0]; | |||
| 3910 | else | |||
| 3911 | FromPad = ConstantTokenNone::get(II->getContext()); | |||
| 3912 | } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { | |||
| 3913 | FromPad = CRI->getOperand(0); | |||
| 3914 | Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI)do { if (!(FromPad != ToPadParent)) { CheckFailed("A cleanupret must exit its cleanup" , CRI); return; } } while (false); | |||
| 3915 | } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { | |||
| 3916 | FromPad = CSI; | |||
| 3917 | } else { | |||
| 3918 | Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI)do { if (!(false)) { CheckFailed("EH pad must be jumped to via an unwind edge" , ToPad, TI); return; } } while (false); | |||
| 3919 | } | |||
| 3920 | ||||
| 3921 | // The edge may exit from zero or more nested pads. | |||
| 3922 | SmallSet<Value *, 8> Seen; | |||
| 3923 | for (;; FromPad = getParentPad(FromPad)) { | |||
| 3924 | Assert(FromPad != ToPad,do { if (!(FromPad != ToPad)) { CheckFailed("EH pad cannot handle exceptions raised within it" , FromPad, TI); return; } } while (false) | |||
| 3925 | "EH pad cannot handle exceptions raised within it", FromPad, TI)do { if (!(FromPad != ToPad)) { CheckFailed("EH pad cannot handle exceptions raised within it" , FromPad, TI); return; } } while (false); | |||
| 3926 | if (FromPad == ToPadParent) { | |||
| 3927 | // This is a legal unwind edge. | |||
| 3928 | break; | |||
| 3929 | } | |||
| 3930 | Assert(!isa<ConstantTokenNone>(FromPad),do { if (!(!isa<ConstantTokenNone>(FromPad))) { CheckFailed ("A single unwind edge may only enter one EH pad", TI); return ; } } while (false) | |||
| 3931 | "A single unwind edge may only enter one EH pad", TI)do { if (!(!isa<ConstantTokenNone>(FromPad))) { CheckFailed ("A single unwind edge may only enter one EH pad", TI); return ; } } while (false); | |||
| 3932 | Assert(Seen.insert(FromPad).second,do { if (!(Seen.insert(FromPad).second)) { CheckFailed("EH pad jumps through a cycle of pads" , FromPad); return; } } while (false) | |||
| 3933 | "EH pad jumps through a cycle of pads", FromPad)do { if (!(Seen.insert(FromPad).second)) { CheckFailed("EH pad jumps through a cycle of pads" , FromPad); return; } } while (false); | |||
| 3934 | } | |||
| 3935 | } | |||
| 3936 | } | |||
| 3937 | ||||
| 3938 | void Verifier::visitLandingPadInst(LandingPadInst &LPI) { | |||
| 3939 | // The landingpad instruction is ill-formed if it doesn't have any clauses and | |||
| 3940 | // isn't a cleanup. | |||
| 3941 | Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),do { if (!(LPI.getNumClauses() > 0 || LPI.isCleanup())) { CheckFailed ("LandingPadInst needs at least one clause or to be a cleanup." , &LPI); return; } } while (false) | |||
| 3942 | "LandingPadInst needs at least one clause or to be a cleanup.", &LPI)do { if (!(LPI.getNumClauses() > 0 || LPI.isCleanup())) { CheckFailed ("LandingPadInst needs at least one clause or to be a cleanup." , &LPI); return; } } while (false); | |||
| 3943 | ||||
| 3944 | visitEHPadPredecessors(LPI); | |||
| 3945 | ||||
| 3946 | if (!LandingPadResultTy) | |||
| 3947 | LandingPadResultTy = LPI.getType(); | |||
| 3948 | else | |||
| 3949 | Assert(LandingPadResultTy == LPI.getType(),do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed ("The landingpad instruction should have a consistent result type " "inside a function.", &LPI); return; } } while (false) | |||
| 3950 | "The landingpad instruction should have a consistent result type "do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed ("The landingpad instruction should have a consistent result type " "inside a function.", &LPI); return; } } while (false) | |||
| 3951 | "inside a function.",do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed ("The landingpad instruction should have a consistent result type " "inside a function.", &LPI); return; } } while (false) | |||
| 3952 | &LPI)do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed ("The landingpad instruction should have a consistent result type " "inside a function.", &LPI); return; } } while (false); | |||
| 3953 | ||||
| 3954 | Function *F = LPI.getParent()->getParent(); | |||
| 3955 | Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("LandingPadInst needs to be in a function with a personality." , &LPI); return; } } while (false) | |||
| 3956 | "LandingPadInst needs to be in a function with a personality.", &LPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("LandingPadInst needs to be in a function with a personality." , &LPI); return; } } while (false); | |||
| 3957 | ||||
| 3958 | // The landingpad instruction must be the first non-PHI instruction in the | |||
| 3959 | // block. | |||
| 3960 | Assert(LPI.getParent()->getLandingPadInst() == &LPI,do { if (!(LPI.getParent()->getLandingPadInst() == &LPI )) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block." , &LPI); return; } } while (false) | |||
| 3961 | "LandingPadInst not the first non-PHI instruction in the block.",do { if (!(LPI.getParent()->getLandingPadInst() == &LPI )) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block." , &LPI); return; } } while (false) | |||
| 3962 | &LPI)do { if (!(LPI.getParent()->getLandingPadInst() == &LPI )) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block." , &LPI); return; } } while (false); | |||
| 3963 | ||||
| 3964 | for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { | |||
| 3965 | Constant *Clause = LPI.getClause(i); | |||
| 3966 | if (LPI.isCatch(i)) { | |||
| 3967 | Assert(isa<PointerType>(Clause->getType()),do { if (!(isa<PointerType>(Clause->getType()))) { CheckFailed ("Catch operand does not have pointer type!", &LPI); return ; } } while (false) | |||
| 3968 | "Catch operand does not have pointer type!", &LPI)do { if (!(isa<PointerType>(Clause->getType()))) { CheckFailed ("Catch operand does not have pointer type!", &LPI); return ; } } while (false); | |||
| 3969 | } else { | |||
| 3970 | Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI)do { if (!(LPI.isFilter(i))) { CheckFailed("Clause is neither catch nor filter!" , &LPI); return; } } while (false); | |||
| 3971 | Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),do { if (!(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero >(Clause))) { CheckFailed("Filter operand is not an array of constants!" , &LPI); return; } } while (false) | |||
| 3972 | "Filter operand is not an array of constants!", &LPI)do { if (!(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero >(Clause))) { CheckFailed("Filter operand is not an array of constants!" , &LPI); return; } } while (false); | |||
| 3973 | } | |||
| 3974 | } | |||
| 3975 | ||||
| 3976 | visitInstruction(LPI); | |||
| 3977 | } | |||
| 3978 | ||||
| 3979 | void Verifier::visitResumeInst(ResumeInst &RI) { | |||
| 3980 | Assert(RI.getFunction()->hasPersonalityFn(),do { if (!(RI.getFunction()->hasPersonalityFn())) { CheckFailed ("ResumeInst needs to be in a function with a personality.", & RI); return; } } while (false) | |||
| 3981 | "ResumeInst needs to be in a function with a personality.", &RI)do { if (!(RI.getFunction()->hasPersonalityFn())) { CheckFailed ("ResumeInst needs to be in a function with a personality.", & RI); return; } } while (false); | |||
| 3982 | ||||
| 3983 | if (!LandingPadResultTy) | |||
| 3984 | LandingPadResultTy = RI.getValue()->getType(); | |||
| 3985 | else | |||
| 3986 | Assert(LandingPadResultTy == RI.getValue()->getType(),do { if (!(LandingPadResultTy == RI.getValue()->getType()) ) { CheckFailed("The resume instruction should have a consistent result type " "inside a function.", &RI); return; } } while (false) | |||
| 3987 | "The resume instruction should have a consistent result type "do { if (!(LandingPadResultTy == RI.getValue()->getType()) ) { CheckFailed("The resume instruction should have a consistent result type " "inside a function.", &RI); return; } } while (false) | |||
| 3988 | "inside a function.",do { if (!(LandingPadResultTy == RI.getValue()->getType()) ) { CheckFailed("The resume instruction should have a consistent result type " "inside a function.", &RI); return; } } while (false) | |||
| 3989 | &RI)do { if (!(LandingPadResultTy == RI.getValue()->getType()) ) { CheckFailed("The resume instruction should have a consistent result type " "inside a function.", &RI); return; } } while (false); | |||
| 3990 | ||||
| 3991 | visitTerminator(RI); | |||
| 3992 | } | |||
| 3993 | ||||
| 3994 | void Verifier::visitCatchPadInst(CatchPadInst &CPI) { | |||
| 3995 | BasicBlock *BB = CPI.getParent(); | |||
| 3996 | ||||
| 3997 | Function *F = BB->getParent(); | |||
| 3998 | Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchPadInst needs to be in a function with a personality." , &CPI); return; } } while (false) | |||
| 3999 | "CatchPadInst needs to be in a function with a personality.", &CPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchPadInst needs to be in a function with a personality." , &CPI); return; } } while (false); | |||
| 4000 | ||||
| 4001 | Assert(isa<CatchSwitchInst>(CPI.getParentPad()),do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) { CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst." , CPI.getParentPad()); return; } } while (false) | |||
| 4002 | "CatchPadInst needs to be directly nested in a CatchSwitchInst.",do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) { CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst." , CPI.getParentPad()); return; } } while (false) | |||
| 4003 | CPI.getParentPad())do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) { CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst." , CPI.getParentPad()); return; } } while (false); | |||
| 4004 | ||||
| 4005 | // The catchpad instruction must be the first non-PHI instruction in the | |||
| 4006 | // block. | |||
| 4007 | Assert(BB->getFirstNonPHI() == &CPI,do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed ("CatchPadInst not the first non-PHI instruction in the block." , &CPI); return; } } while (false) | |||
| 4008 | "CatchPadInst not the first non-PHI instruction in the block.", &CPI)do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed ("CatchPadInst not the first non-PHI instruction in the block." , &CPI); return; } } while (false); | |||
| 4009 | ||||
| 4010 | visitEHPadPredecessors(CPI); | |||
| 4011 | visitFuncletPadInst(CPI); | |||
| 4012 | } | |||
| 4013 | ||||
| 4014 | void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { | |||
| 4015 | Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0)) )) { CheckFailed("CatchReturnInst needs to be provided a CatchPad" , &CatchReturn, CatchReturn.getOperand(0)); return; } } while (false) | |||
| 4016 | "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0)) )) { CheckFailed("CatchReturnInst needs to be provided a CatchPad" , &CatchReturn, CatchReturn.getOperand(0)); return; } } while (false) | |||
| 4017 | CatchReturn.getOperand(0))do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0)) )) { CheckFailed("CatchReturnInst needs to be provided a CatchPad" , &CatchReturn, CatchReturn.getOperand(0)); return; } } while (false); | |||
| 4018 | ||||
| 4019 | visitTerminator(CatchReturn); | |||
| 4020 | } | |||
| 4021 | ||||
| 4022 | void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { | |||
| 4023 | BasicBlock *BB = CPI.getParent(); | |||
| 4024 | ||||
| 4025 | Function *F = BB->getParent(); | |||
| 4026 | Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CleanupPadInst needs to be in a function with a personality." , &CPI); return; } } while (false) | |||
| 4027 | "CleanupPadInst needs to be in a function with a personality.", &CPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("CleanupPadInst needs to be in a function with a personality." , &CPI); return; } } while (false); | |||
| 4028 | ||||
| 4029 | // The cleanuppad instruction must be the first non-PHI instruction in the | |||
| 4030 | // block. | |||
| 4031 | Assert(BB->getFirstNonPHI() == &CPI,do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed ("CleanupPadInst not the first non-PHI instruction in the block." , &CPI); return; } } while (false) | |||
| 4032 | "CleanupPadInst not the first non-PHI instruction in the block.",do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed ("CleanupPadInst not the first non-PHI instruction in the block." , &CPI); return; } } while (false) | |||
| 4033 | &CPI)do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed ("CleanupPadInst not the first non-PHI instruction in the block." , &CPI); return; } } while (false); | |||
| 4034 | ||||
| 4035 | auto *ParentPad = CPI.getParentPad(); | |||
| 4036 | Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),do { if (!(isa<ConstantTokenNone>(ParentPad) || isa< FuncletPadInst>(ParentPad))) { CheckFailed("CleanupPadInst has an invalid parent." , &CPI); return; } } while (false) | |||
| 4037 | "CleanupPadInst has an invalid parent.", &CPI)do { if (!(isa<ConstantTokenNone>(ParentPad) || isa< FuncletPadInst>(ParentPad))) { CheckFailed("CleanupPadInst has an invalid parent." , &CPI); return; } } while (false); | |||
| 4038 | ||||
| 4039 | visitEHPadPredecessors(CPI); | |||
| 4040 | visitFuncletPadInst(CPI); | |||
| 4041 | } | |||
| 4042 | ||||
| 4043 | void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { | |||
| 4044 | User *FirstUser = nullptr; | |||
| 4045 | Value *FirstUnwindPad = nullptr; | |||
| 4046 | SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); | |||
| 4047 | SmallSet<FuncletPadInst *, 8> Seen; | |||
| 4048 | ||||
| 4049 | while (!Worklist.empty()) { | |||
| 4050 | FuncletPadInst *CurrentPad = Worklist.pop_back_val(); | |||
| 4051 | Assert(Seen.insert(CurrentPad).second,do { if (!(Seen.insert(CurrentPad).second)) { CheckFailed("FuncletPadInst must not be nested within itself" , CurrentPad); return; } } while (false) | |||
| 4052 | "FuncletPadInst must not be nested within itself", CurrentPad)do { if (!(Seen.insert(CurrentPad).second)) { CheckFailed("FuncletPadInst must not be nested within itself" , CurrentPad); return; } } while (false); | |||
| 4053 | Value *UnresolvedAncestorPad = nullptr; | |||
| 4054 | for (User *U : CurrentPad->users()) { | |||
| 4055 | BasicBlock *UnwindDest; | |||
| 4056 | if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { | |||
| 4057 | UnwindDest = CRI->getUnwindDest(); | |||
| 4058 | } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { | |||
| 4059 | // We allow catchswitch unwind to caller to nest | |||
| 4060 | // within an outer pad that unwinds somewhere else, | |||
| 4061 | // because catchswitch doesn't have a nounwind variant. | |||
| 4062 | // See e.g. SimplifyCFGOpt::SimplifyUnreachable. | |||
| 4063 | if (CSI->unwindsToCaller()) | |||
| 4064 | continue; | |||
| 4065 | UnwindDest = CSI->getUnwindDest(); | |||
| 4066 | } else if (auto *II = dyn_cast<InvokeInst>(U)) { | |||
| 4067 | UnwindDest = II->getUnwindDest(); | |||
| 4068 | } else if (isa<CallInst>(U)) { | |||
| 4069 | // Calls which don't unwind may be found inside funclet | |||
| 4070 | // pads that unwind somewhere else. We don't *require* | |||
| 4071 | // such calls to be annotated nounwind. | |||
| 4072 | continue; | |||
| 4073 | } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { | |||
| 4074 | // The unwind dest for a cleanup can only be found by | |||
| 4075 | // recursive search. Add it to the worklist, and we'll | |||
| 4076 | // search for its first use that determines where it unwinds. | |||
| 4077 | Worklist.push_back(CPI); | |||
| 4078 | continue; | |||
| 4079 | } else { | |||
| 4080 | Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U)do { if (!(isa<CatchReturnInst>(U))) { CheckFailed("Bogus funclet pad use" , U); return; } } while (false); | |||
| 4081 | continue; | |||
| 4082 | } | |||
| 4083 | ||||
| 4084 | Value *UnwindPad; | |||
| 4085 | bool ExitsFPI; | |||
| 4086 | if (UnwindDest) { | |||
| 4087 | UnwindPad = UnwindDest->getFirstNonPHI(); | |||
| 4088 | if (!cast<Instruction>(UnwindPad)->isEHPad()) | |||
| 4089 | continue; | |||
| 4090 | Value *UnwindParent = getParentPad(UnwindPad); | |||
| 4091 | // Ignore unwind edges that don't exit CurrentPad. | |||
| 4092 | if (UnwindParent == CurrentPad) | |||
| 4093 | continue; | |||
| 4094 | // Determine whether the original funclet pad is exited, | |||
| 4095 | // and if we are scanning nested pads determine how many | |||
| 4096 | // of them are exited so we can stop searching their | |||
| 4097 | // children. | |||
| 4098 | Value *ExitedPad = CurrentPad; | |||
| 4099 | ExitsFPI = false; | |||
| 4100 | do { | |||
| 4101 | if (ExitedPad == &FPI) { | |||
| 4102 | ExitsFPI = true; | |||
| 4103 | // Now we can resolve any ancestors of CurrentPad up to | |||
| 4104 | // FPI, but not including FPI since we need to make sure | |||
| 4105 | // to check all direct users of FPI for consistency. | |||
| 4106 | UnresolvedAncestorPad = &FPI; | |||
| 4107 | break; | |||
| 4108 | } | |||
| 4109 | Value *ExitedParent = getParentPad(ExitedPad); | |||
| 4110 | if (ExitedParent == UnwindParent) { | |||
| 4111 | // ExitedPad is the ancestor-most pad which this unwind | |||
| 4112 | // edge exits, so we can resolve up to it, meaning that | |||
| 4113 | // ExitedParent is the first ancestor still unresolved. | |||
| 4114 | UnresolvedAncestorPad = ExitedParent; | |||
| 4115 | break; | |||
| 4116 | } | |||
| 4117 | ExitedPad = ExitedParent; | |||
| 4118 | } while (!isa<ConstantTokenNone>(ExitedPad)); | |||
| 4119 | } else { | |||
| 4120 | // Unwinding to caller exits all pads. | |||
| 4121 | UnwindPad = ConstantTokenNone::get(FPI.getContext()); | |||
| 4122 | ExitsFPI = true; | |||
| 4123 | UnresolvedAncestorPad = &FPI; | |||
| 4124 | } | |||
| 4125 | ||||
| 4126 | if (ExitsFPI) { | |||
| 4127 | // This unwind edge exits FPI. Make sure it agrees with other | |||
| 4128 | // such edges. | |||
| 4129 | if (FirstUser) { | |||
| 4130 | Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet " "pad must have the same unwind " "dest", &FPI, U, FirstUser ); return; } } while (false) | |||
| 4131 | "pad must have the same unwind "do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet " "pad must have the same unwind " "dest", &FPI, U, FirstUser ); return; } } while (false) | |||
| 4132 | "dest",do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet " "pad must have the same unwind " "dest", &FPI, U, FirstUser ); return; } } while (false) | |||
| 4133 | &FPI, U, FirstUser)do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet " "pad must have the same unwind " "dest", &FPI, U, FirstUser ); return; } } while (false); | |||
| 4134 | } else { | |||
| 4135 | FirstUser = U; | |||
| 4136 | FirstUnwindPad = UnwindPad; | |||
| 4137 | // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds | |||
| 4138 | if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && | |||
| 4139 | getParentPad(UnwindPad) == getParentPad(&FPI)) | |||
| 4140 | SiblingFuncletInfo[&FPI] = cast<Instruction>(U); | |||
| 4141 | } | |||
| 4142 | } | |||
| 4143 | // Make sure we visit all uses of FPI, but for nested pads stop as | |||
| 4144 | // soon as we know where they unwind to. | |||
| 4145 | if (CurrentPad != &FPI) | |||
| 4146 | break; | |||
| 4147 | } | |||
| 4148 | if (UnresolvedAncestorPad) { | |||
| 4149 | if (CurrentPad == UnresolvedAncestorPad) { | |||
| 4150 | // When CurrentPad is FPI itself, we don't mark it as resolved even if | |||
| 4151 | // we've found an unwind edge that exits it, because we need to verify | |||
| 4152 | // all direct uses of FPI. | |||
| 4153 | assert(CurrentPad == &FPI)((void)0); | |||
| 4154 | continue; | |||
| 4155 | } | |||
| 4156 | // Pop off the worklist any nested pads that we've found an unwind | |||
| 4157 | // destination for. The pads on the worklist are the uncles, | |||
| 4158 | // great-uncles, etc. of CurrentPad. We've found an unwind destination | |||
| 4159 | // for all ancestors of CurrentPad up to but not including | |||
| 4160 | // UnresolvedAncestorPad. | |||
| 4161 | Value *ResolvedPad = CurrentPad; | |||
| 4162 | while (!Worklist.empty()) { | |||
| 4163 | Value *UnclePad = Worklist.back(); | |||
| 4164 | Value *AncestorPad = getParentPad(UnclePad); | |||
| 4165 | // Walk ResolvedPad up the ancestor list until we either find the | |||
| 4166 | // uncle's parent or the last resolved ancestor. | |||
| 4167 | while (ResolvedPad != AncestorPad) { | |||
| 4168 | Value *ResolvedParent = getParentPad(ResolvedPad); | |||
| 4169 | if (ResolvedParent == UnresolvedAncestorPad) { | |||
| 4170 | break; | |||
| 4171 | } | |||
| 4172 | ResolvedPad = ResolvedParent; | |||
| 4173 | } | |||
| 4174 | // If the resolved ancestor search didn't find the uncle's parent, | |||
| 4175 | // then the uncle is not yet resolved. | |||
| 4176 | if (ResolvedPad != AncestorPad) | |||
| 4177 | break; | |||
| 4178 | // This uncle is resolved, so pop it from the worklist. | |||
| 4179 | Worklist.pop_back(); | |||
| 4180 | } | |||
| 4181 | } | |||
| 4182 | } | |||
| 4183 | ||||
| 4184 | if (FirstUnwindPad) { | |||
| 4185 | if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { | |||
| 4186 | BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); | |||
| 4187 | Value *SwitchUnwindPad; | |||
| 4188 | if (SwitchUnwindDest) | |||
| 4189 | SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); | |||
| 4190 | else | |||
| 4191 | SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); | |||
| 4192 | Assert(SwitchUnwindPad == FirstUnwindPad,do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed( "Unwind edges out of a catch must have the same unwind dest as " "the parent catchswitch", &FPI, FirstUser, CatchSwitch); return; } } while (false) | |||
| 4193 | "Unwind edges out of a catch must have the same unwind dest as "do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed( "Unwind edges out of a catch must have the same unwind dest as " "the parent catchswitch", &FPI, FirstUser, CatchSwitch); return; } } while (false) | |||
| 4194 | "the parent catchswitch",do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed( "Unwind edges out of a catch must have the same unwind dest as " "the parent catchswitch", &FPI, FirstUser, CatchSwitch); return; } } while (false) | |||
| 4195 | &FPI, FirstUser, CatchSwitch)do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed( "Unwind edges out of a catch must have the same unwind dest as " "the parent catchswitch", &FPI, FirstUser, CatchSwitch); return; } } while (false); | |||
| 4196 | } | |||
| 4197 | } | |||
| 4198 | ||||
| 4199 | visitInstruction(FPI); | |||
| 4200 | } | |||
| 4201 | ||||
| 4202 | void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { | |||
| 4203 | BasicBlock *BB = CatchSwitch.getParent(); | |||
| 4204 | ||||
| 4205 | Function *F = BB->getParent(); | |||
| 4206 | Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality." , &CatchSwitch); return; } } while (false) | |||
| 4207 | "CatchSwitchInst needs to be in a function with a personality.",do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality." , &CatchSwitch); return; } } while (false) | |||
| 4208 | &CatchSwitch)do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality." , &CatchSwitch); return; } } while (false); | |||
| 4209 | ||||
| 4210 | // The catchswitch instruction must be the first non-PHI instruction in the | |||
| 4211 | // block. | |||
| 4212 | Assert(BB->getFirstNonPHI() == &CatchSwitch,do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed ("CatchSwitchInst not the first non-PHI instruction in the block." , &CatchSwitch); return; } } while (false) | |||
| 4213 | "CatchSwitchInst not the first non-PHI instruction in the block.",do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed ("CatchSwitchInst not the first non-PHI instruction in the block." , &CatchSwitch); return; } } while (false) | |||
| 4214 | &CatchSwitch)do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed ("CatchSwitchInst not the first non-PHI instruction in the block." , &CatchSwitch); return; } } while (false); | |||
| 4215 | ||||
| 4216 | auto *ParentPad = CatchSwitch.getParentPad(); | |||
| 4217 | Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),do { if (!(isa<ConstantTokenNone>(ParentPad) || isa< FuncletPadInst>(ParentPad))) { CheckFailed("CatchSwitchInst has an invalid parent." , ParentPad); return; } } while (false) | |||
| 4218 | "CatchSwitchInst has an invalid parent.", ParentPad)do { if (!(isa<ConstantTokenNone>(ParentPad) || isa< FuncletPadInst>(ParentPad))) { CheckFailed("CatchSwitchInst has an invalid parent." , ParentPad); return; } } while (false); | |||
| 4219 | ||||
| 4220 | if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { | |||
| 4221 | Instruction *I = UnwindDest->getFirstNonPHI(); | |||
| 4222 | Assert(I->isEHPad() && !isa<LandingPadInst>(I),do { if (!(I->isEHPad() && !isa<LandingPadInst> (I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a " "landingpad.", &CatchSwitch); return; } } while (false) | |||
| 4223 | "CatchSwitchInst must unwind to an EH block which is not a "do { if (!(I->isEHPad() && !isa<LandingPadInst> (I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a " "landingpad.", &CatchSwitch); return; } } while (false) | |||
| 4224 | "landingpad.",do { if (!(I->isEHPad() && !isa<LandingPadInst> (I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a " "landingpad.", &CatchSwitch); return; } } while (false) | |||
| 4225 | &CatchSwitch)do { if (!(I->isEHPad() && !isa<LandingPadInst> (I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a " "landingpad.", &CatchSwitch); return; } } while (false); | |||
| 4226 | ||||
| 4227 | // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds | |||
| 4228 | if (getParentPad(I) == ParentPad) | |||
| 4229 | SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; | |||
| 4230 | } | |||
| 4231 | ||||
| 4232 | Assert(CatchSwitch.getNumHandlers() != 0,do { if (!(CatchSwitch.getNumHandlers() != 0)) { CheckFailed( "CatchSwitchInst cannot have empty handler list", &CatchSwitch ); return; } } while (false) | |||
| 4233 | "CatchSwitchInst cannot have empty handler list", &CatchSwitch)do { if (!(CatchSwitch.getNumHandlers() != 0)) { CheckFailed( "CatchSwitchInst cannot have empty handler list", &CatchSwitch ); return; } } while (false); | |||
| 4234 | ||||
| 4235 | for (BasicBlock *Handler : CatchSwitch.handlers()) { | |||
| 4236 | Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),do { if (!(isa<CatchPadInst>(Handler->getFirstNonPHI ()))) { CheckFailed("CatchSwitchInst handlers must be catchpads" , &CatchSwitch, Handler); return; } } while (false) | |||
| 4237 | "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler)do { if (!(isa<CatchPadInst>(Handler->getFirstNonPHI ()))) { CheckFailed("CatchSwitchInst handlers must be catchpads" , &CatchSwitch, Handler); return; } } while (false); | |||
| 4238 | } | |||
| 4239 | ||||
| 4240 | visitEHPadPredecessors(CatchSwitch); | |||
| 4241 | visitTerminator(CatchSwitch); | |||
| 4242 | } | |||
| 4243 | ||||
| 4244 | void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { | |||
| 4245 | Assert(isa<CleanupPadInst>(CRI.getOperand(0)),do { if (!(isa<CleanupPadInst>(CRI.getOperand(0)))) { CheckFailed ("CleanupReturnInst needs to be provided a CleanupPad", & CRI, CRI.getOperand(0)); return; } } while (false) | |||
| 4246 | "CleanupReturnInst needs to be provided a CleanupPad", &CRI,do { if (!(isa<CleanupPadInst>(CRI.getOperand(0)))) { CheckFailed ("CleanupReturnInst needs to be provided a CleanupPad", & CRI, CRI.getOperand(0)); return; } } while (false) | |||
| 4247 | CRI.getOperand(0))do { if (!(isa<CleanupPadInst>(CRI.getOperand(0)))) { CheckFailed ("CleanupReturnInst needs to be provided a CleanupPad", & CRI, CRI.getOperand(0)); return; } } while (false); | |||
| 4248 | ||||
| 4249 | if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { | |||
| 4250 | Instruction *I = UnwindDest->getFirstNonPHI(); | |||
| 4251 | Assert(I->isEHPad() && !isa<LandingPadInst>(I),do { if (!(I->isEHPad() && !isa<LandingPadInst> (I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a " "landingpad.", &CRI); return; } } while (false) | |||
| 4252 | "CleanupReturnInst must unwind to an EH block which is not a "do { if (!(I->isEHPad() && !isa<LandingPadInst> (I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a " "landingpad.", &CRI); return; } } while (false) | |||
| 4253 | "landingpad.",do { if (!(I->isEHPad() && !isa<LandingPadInst> (I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a " "landingpad.", &CRI); return; } } while (false) | |||
| 4254 | &CRI)do { if (!(I->isEHPad() && !isa<LandingPadInst> (I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a " "landingpad.", &CRI); return; } } while (false); | |||
| 4255 | } | |||
| 4256 | ||||
| 4257 | visitTerminator(CRI); | |||
| 4258 | } | |||
| 4259 | ||||
| 4260 | void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { | |||
| 4261 | Instruction *Op = cast<Instruction>(I.getOperand(i)); | |||
| 4262 | // If the we have an invalid invoke, don't try to compute the dominance. | |||
| 4263 | // We already reject it in the invoke specific checks and the dominance | |||
| 4264 | // computation doesn't handle multiple edges. | |||
| 4265 | if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { | |||
| 4266 | if (II->getNormalDest() == II->getUnwindDest()) | |||
| 4267 | return; | |||
| 4268 | } | |||
| 4269 | ||||
| 4270 | // Quick check whether the def has already been encountered in the same block. | |||
| 4271 | // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI | |||
| 4272 | // uses are defined to happen on the incoming edge, not at the instruction. | |||
| 4273 | // | |||
| 4274 | // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) | |||
| 4275 | // wrapping an SSA value, assert that we've already encountered it. See | |||
| 4276 | // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. | |||
| 4277 | if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) | |||
| 4278 | return; | |||
| 4279 | ||||
| 4280 | const Use &U = I.getOperandUse(i); | |||
| 4281 | Assert(DT.dominates(Op, U),do { if (!(DT.dominates(Op, U))) { CheckFailed("Instruction does not dominate all uses!" , Op, &I); return; } } while (false) | |||
| 4282 | "Instruction does not dominate all uses!", Op, &I)do { if (!(DT.dominates(Op, U))) { CheckFailed("Instruction does not dominate all uses!" , Op, &I); return; } } while (false); | |||
| 4283 | } | |||
| 4284 | ||||
| 4285 | void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { | |||
| 4286 | Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "do { if (!(I.getType()->isPointerTy())) { CheckFailed("dereferenceable, dereferenceable_or_null " "apply only to pointer types", &I); return; } } while (false ) | |||
| 4287 | "apply only to pointer types", &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("dereferenceable, dereferenceable_or_null " "apply only to pointer types", &I); return; } } while (false ); | |||
| 4288 | Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)),do { if (!((isa<LoadInst>(I) || isa<IntToPtrInst> (I)))) { CheckFailed("dereferenceable, dereferenceable_or_null apply only to load" " and inttoptr instructions, use attributes for calls or invokes" , &I); return; } } while (false) | |||
| 4289 | "dereferenceable, dereferenceable_or_null apply only to load"do { if (!((isa<LoadInst>(I) || isa<IntToPtrInst> (I)))) { CheckFailed("dereferenceable, dereferenceable_or_null apply only to load" " and inttoptr instructions, use attributes for calls or invokes" , &I); return; } } while (false) | |||
| 4290 | " and inttoptr instructions, use attributes for calls or invokes", &I)do { if (!((isa<LoadInst>(I) || isa<IntToPtrInst> (I)))) { CheckFailed("dereferenceable, dereferenceable_or_null apply only to load" " and inttoptr instructions, use attributes for calls or invokes" , &I); return; } } while (false); | |||
| 4291 | Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "do { if (!(MD->getNumOperands() == 1)) { CheckFailed("dereferenceable, dereferenceable_or_null " "take one operand!", &I); return; } } while (false) | |||
| 4292 | "take one operand!", &I)do { if (!(MD->getNumOperands() == 1)) { CheckFailed("dereferenceable, dereferenceable_or_null " "take one operand!", &I); return; } } while (false); | |||
| 4293 | ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); | |||
| 4294 | Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "do { if (!(CI && CI->getType()->isIntegerTy(64) )) { CheckFailed("dereferenceable, " "dereferenceable_or_null metadata value must be an i64!" , &I); return; } } while (false) | |||
| 4295 | "dereferenceable_or_null metadata value must be an i64!", &I)do { if (!(CI && CI->getType()->isIntegerTy(64) )) { CheckFailed("dereferenceable, " "dereferenceable_or_null metadata value must be an i64!" , &I); return; } } while (false); | |||
| 4296 | } | |||
| 4297 | ||||
| 4298 | void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) { | |||
| 4299 | Assert(MD->getNumOperands() >= 2,do { if (!(MD->getNumOperands() >= 2)) { CheckFailed("!prof annotations should have no less than 2 operands" , MD); return; } } while (false) | |||
| 4300 | "!prof annotations should have no less than 2 operands", MD)do { if (!(MD->getNumOperands() >= 2)) { CheckFailed("!prof annotations should have no less than 2 operands" , MD); return; } } while (false); | |||
| 4301 | ||||
| 4302 | // Check first operand. | |||
| 4303 | Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD)do { if (!(MD->getOperand(0) != nullptr)) { CheckFailed("first operand should not be null" , MD); return; } } while (false); | |||
| 4304 | Assert(isa<MDString>(MD->getOperand(0)),do { if (!(isa<MDString>(MD->getOperand(0)))) { CheckFailed ("expected string with name of the !prof annotation", MD); return ; } } while (false) | |||
| 4305 | "expected string with name of the !prof annotation", MD)do { if (!(isa<MDString>(MD->getOperand(0)))) { CheckFailed ("expected string with name of the !prof annotation", MD); return ; } } while (false); | |||
| 4306 | MDString *MDS = cast<MDString>(MD->getOperand(0)); | |||
| 4307 | StringRef ProfName = MDS->getString(); | |||
| 4308 | ||||
| 4309 | // Check consistency of !prof branch_weights metadata. | |||
| 4310 | if (ProfName.equals("branch_weights")) { | |||
| 4311 | if (isa<InvokeInst>(&I)) { | |||
| 4312 | Assert(MD->getNumOperands() == 2 || MD->getNumOperands() == 3,do { if (!(MD->getNumOperands() == 2 || MD->getNumOperands () == 3)) { CheckFailed("Wrong number of InvokeInst branch_weights operands" , MD); return; } } while (false) | |||
| 4313 | "Wrong number of InvokeInst branch_weights operands", MD)do { if (!(MD->getNumOperands() == 2 || MD->getNumOperands () == 3)) { CheckFailed("Wrong number of InvokeInst branch_weights operands" , MD); return; } } while (false); | |||
| 4314 | } else { | |||
| 4315 | unsigned ExpectedNumOperands = 0; | |||
| 4316 | if (BranchInst *BI = dyn_cast<BranchInst>(&I)) | |||
| 4317 | ExpectedNumOperands = BI->getNumSuccessors(); | |||
| 4318 | else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) | |||
| 4319 | ExpectedNumOperands = SI->getNumSuccessors(); | |||
| 4320 | else if (isa<CallInst>(&I)) | |||
| 4321 | ExpectedNumOperands = 1; | |||
| 4322 | else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) | |||
| 4323 | ExpectedNumOperands = IBI->getNumDestinations(); | |||
| 4324 | else if (isa<SelectInst>(&I)) | |||
| 4325 | ExpectedNumOperands = 2; | |||
| 4326 | else | |||
| 4327 | CheckFailed("!prof branch_weights are not allowed for this instruction", | |||
| 4328 | MD); | |||
| 4329 | ||||
| 4330 | Assert(MD->getNumOperands() == 1 + ExpectedNumOperands,do { if (!(MD->getNumOperands() == 1 + ExpectedNumOperands )) { CheckFailed("Wrong number of operands", MD); return; } } while (false) | |||
| 4331 | "Wrong number of operands", MD)do { if (!(MD->getNumOperands() == 1 + ExpectedNumOperands )) { CheckFailed("Wrong number of operands", MD); return; } } while (false); | |||
| 4332 | } | |||
| 4333 | for (unsigned i = 1; i < MD->getNumOperands(); ++i) { | |||
| 4334 | auto &MDO = MD->getOperand(i); | |||
| 4335 | Assert(MDO, "second operand should not be null", MD)do { if (!(MDO)) { CheckFailed("second operand should not be null" , MD); return; } } while (false); | |||
| 4336 | Assert(mdconst::dyn_extract<ConstantInt>(MDO),do { if (!(mdconst::dyn_extract<ConstantInt>(MDO))) { CheckFailed ("!prof brunch_weights operand is not a const int"); return; } } while (false) | |||
| 4337 | "!prof brunch_weights operand is not a const int")do { if (!(mdconst::dyn_extract<ConstantInt>(MDO))) { CheckFailed ("!prof brunch_weights operand is not a const int"); return; } } while (false); | |||
| 4338 | } | |||
| 4339 | } | |||
| 4340 | } | |||
| 4341 | ||||
| 4342 | void Verifier::visitAnnotationMetadata(MDNode *Annotation) { | |||
| 4343 | Assert(isa<MDTuple>(Annotation), "annotation must be a tuple")do { if (!(isa<MDTuple>(Annotation))) { CheckFailed("annotation must be a tuple" ); return; } } while (false); | |||
| 4344 | Assert(Annotation->getNumOperands() >= 1,do { if (!(Annotation->getNumOperands() >= 1)) { CheckFailed ("annotation must have at least one operand"); return; } } while (false) | |||
| 4345 | "annotation must have at least one operand")do { if (!(Annotation->getNumOperands() >= 1)) { CheckFailed ("annotation must have at least one operand"); return; } } while (false); | |||
| 4346 | for (const MDOperand &Op : Annotation->operands()) | |||
| 4347 | Assert(isa<MDString>(Op.get()), "operands must be strings")do { if (!(isa<MDString>(Op.get()))) { CheckFailed("operands must be strings" ); return; } } while (false); | |||
| 4348 | } | |||
| 4349 | ||||
| 4350 | /// verifyInstruction - Verify that an instruction is well formed. | |||
| 4351 | /// | |||
| 4352 | void Verifier::visitInstruction(Instruction &I) { | |||
| 4353 | BasicBlock *BB = I.getParent(); | |||
| 4354 | Assert(BB, "Instruction not embedded in basic block!", &I)do { if (!(BB)) { CheckFailed("Instruction not embedded in basic block!" , &I); return; } } while (false); | |||
| 4355 | ||||
| 4356 | if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential | |||
| 4357 | for (User *U : I.users()) { | |||
| 4358 | Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),do { if (!(U != (User *)&I || !DT.isReachableFromEntry(BB ))) { CheckFailed("Only PHI nodes may reference their own value!" , &I); return; } } while (false) | |||
| 4359 | "Only PHI nodes may reference their own value!", &I)do { if (!(U != (User *)&I || !DT.isReachableFromEntry(BB ))) { CheckFailed("Only PHI nodes may reference their own value!" , &I); return; } } while (false); | |||
| 4360 | } | |||
| 4361 | } | |||
| 4362 | ||||
| 4363 | // Check that void typed values don't have names | |||
| 4364 | Assert(!I.getType()->isVoidTy() || !I.hasName(),do { if (!(!I.getType()->isVoidTy() || !I.hasName())) { CheckFailed ("Instruction has a name, but provides a void value!", &I ); return; } } while (false) | |||
| 4365 | "Instruction has a name, but provides a void value!", &I)do { if (!(!I.getType()->isVoidTy() || !I.hasName())) { CheckFailed ("Instruction has a name, but provides a void value!", &I ); return; } } while (false); | |||
| 4366 | ||||
| 4367 | // Check that the return value of the instruction is either void or a legal | |||
| 4368 | // value type. | |||
| 4369 | Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),do { if (!(I.getType()->isVoidTy() || I.getType()->isFirstClassType ())) { CheckFailed("Instruction returns a non-scalar type!", & I); return; } } while (false) | |||
| 4370 | "Instruction returns a non-scalar type!", &I)do { if (!(I.getType()->isVoidTy() || I.getType()->isFirstClassType ())) { CheckFailed("Instruction returns a non-scalar type!", & I); return; } } while (false); | |||
| 4371 | ||||
| 4372 | // Check that the instruction doesn't produce metadata. Calls are already | |||
| 4373 | // checked against the callee type. | |||
| 4374 | Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),do { if (!(!I.getType()->isMetadataTy() || isa<CallInst >(I) || isa<InvokeInst>(I))) { CheckFailed("Invalid use of metadata!" , &I); return; } } while (false) | |||
| 4375 | "Invalid use of metadata!", &I)do { if (!(!I.getType()->isMetadataTy() || isa<CallInst >(I) || isa<InvokeInst>(I))) { CheckFailed("Invalid use of metadata!" , &I); return; } } while (false); | |||
| 4376 | ||||
| 4377 | // Check that all uses of the instruction, if they are instructions | |||
| 4378 | // themselves, actually have parent basic blocks. If the use is not an | |||
| 4379 | // instruction, it is an error! | |||
| 4380 | for (Use &U : I.uses()) { | |||
| 4381 | if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) | |||
| 4382 | Assert(Used->getParent() != nullptr,do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing" " instruction not embedded in a basic block!", &I, Used) ; return; } } while (false) | |||
| 4383 | "Instruction referencing"do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing" " instruction not embedded in a basic block!", &I, Used) ; return; } } while (false) | |||
| 4384 | " instruction not embedded in a basic block!",do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing" " instruction not embedded in a basic block!", &I, Used) ; return; } } while (false) | |||
| 4385 | &I, Used)do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing" " instruction not embedded in a basic block!", &I, Used) ; return; } } while (false); | |||
| 4386 | else { | |||
| 4387 | CheckFailed("Use of instruction is not an instruction!", U); | |||
| 4388 | return; | |||
| 4389 | } | |||
| 4390 | } | |||
| 4391 | ||||
| 4392 | // Get a pointer to the call base of the instruction if it is some form of | |||
| 4393 | // call. | |||
| 4394 | const CallBase *CBI = dyn_cast<CallBase>(&I); | |||
| 4395 | ||||
| 4396 | for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { | |||
| 4397 | Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I)do { if (!(I.getOperand(i) != nullptr)) { CheckFailed("Instruction has null operand!" , &I); return; } } while (false); | |||
| 4398 | ||||
| 4399 | // Check to make sure that only first-class-values are operands to | |||
| 4400 | // instructions. | |||
| 4401 | if (!I.getOperand(i)->getType()->isFirstClassType()) { | |||
| 4402 | Assert(false, "Instruction operands must be first-class values!", &I)do { if (!(false)) { CheckFailed("Instruction operands must be first-class values!" , &I); return; } } while (false); | |||
| 4403 | } | |||
| 4404 | ||||
| 4405 | if (Function *F = dyn_cast<Function>(I.getOperand(i))) { | |||
| 4406 | // Check to make sure that the "address of" an intrinsic function is never | |||
| 4407 | // taken. | |||
| 4408 | Assert(!F->isIntrinsic() ||do { if (!(!F->isIntrinsic() || (CBI && &CBI-> getCalledOperandUse() == &I.getOperandUse(i)))) { CheckFailed ("Cannot take the address of an intrinsic!", &I); return; } } while (false) | |||
| 4409 | (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)),do { if (!(!F->isIntrinsic() || (CBI && &CBI-> getCalledOperandUse() == &I.getOperandUse(i)))) { CheckFailed ("Cannot take the address of an intrinsic!", &I); return; } } while (false) | |||
| 4410 | "Cannot take the address of an intrinsic!", &I)do { if (!(!F->isIntrinsic() || (CBI && &CBI-> getCalledOperandUse() == &I.getOperandUse(i)))) { CheckFailed ("Cannot take the address of an intrinsic!", &I); return; } } while (false); | |||
| 4411 | Assert(do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F ->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID () == Intrinsic::seh_try_begin || F->getIntrinsicID() == Intrinsic ::seh_try_end || F->getIntrinsicID() == Intrinsic::seh_scope_begin || F->getIntrinsicID() == Intrinsic::seh_scope_end || F-> getIntrinsicID() == Intrinsic::coro_resume || F->getIntrinsicID () == Intrinsic::coro_destroy || F->getIntrinsicID() == Intrinsic ::experimental_patchpoint_void || F->getIntrinsicID() == Intrinsic ::experimental_patchpoint_i64 || F->getIntrinsicID() == Intrinsic ::experimental_gc_statepoint || F->getIntrinsicID() == Intrinsic ::wasm_rethrow)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, " "statepoint, coro_resume or coro_destroy", &I); return; } } while (false) | |||
| 4412 | !F->isIntrinsic() || isa<CallInst>(I) ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F ->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID () == Intrinsic::seh_try_begin || F->getIntrinsicID() == Intrinsic ::seh_try_end || F->getIntrinsicID() == Intrinsic::seh_scope_begin || F->getIntrinsicID() == Intrinsic::seh_scope_end || F-> getIntrinsicID() == Intrinsic::coro_resume || F->getIntrinsicID () == Intrinsic::coro_destroy || F->getIntrinsicID() == Intrinsic ::experimental_patchpoint_void || F->getIntrinsicID() == Intrinsic ::experimental_patchpoint_i64 || F->getIntrinsicID() == Intrinsic ::experimental_gc_statepoint || F->getIntrinsicID() == Intrinsic ::wasm_rethrow)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, " "statepoint, coro_resume or coro_destroy", &I); return; } } while (false) | |||
| 4413 | F->getIntrinsicID() == Intrinsic::donothing ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F ->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID () == Intrinsic::seh_try_begin || F->getIntrinsicID() == Intrinsic ::seh_try_end || F->getIntrinsicID() == Intrinsic::seh_scope_begin || F->getIntrinsicID() == Intrinsic::seh_scope_end || F-> getIntrinsicID() == Intrinsic::coro_resume || F->getIntrinsicID () == Intrinsic::coro_destroy || F->getIntrinsicID() == Intrinsic ::experimental_patchpoint_void || F->getIntrinsicID() == Intrinsic ::experimental_patchpoint_i64 || F->getIntrinsicID() == Intrinsic ::experimental_gc_statepoint || F->getIntrinsicID() == Intrinsic ::wasm_rethrow)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, " "statepoint, coro_resume or coro_destroy", &I); return; } } while (false) | |||
| 4414 | F->getIntrinsicID() == Intrinsic::seh_try_begin ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F ->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID () == Intrinsic::seh_try_begin || F->getIntrinsicID() == Intrinsic ::seh_try_end || F->getIntrinsicID() == Intrinsic::seh_scope_begin || F->getIntrinsicID() == Intrinsic::seh_scope_end || F-> getIntrinsicID() == Intrinsic::coro_resume || F->getIntrinsicID () == Intrinsic::coro_destroy || F->getIntrinsicID() == Intrinsic ::experimental_patchpoint_void || F->getIntrinsicID() == Intrinsic ::experimental_patchpoint_i64 || F->getIntrinsicID() == Intrinsic ::experimental_gc_statepoint || F->getIntrinsicID() == Intrinsic ::wasm_rethrow)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, " "statepoint, coro_resume or coro_destroy", &I); return; } } while (false) | |||
| 4415 | F->getIntrinsicID() == Intrinsic::seh_try_end ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F ->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID () == Intrinsic::seh_try_begin || F->getIntrinsicID() == Intrinsic ::seh_try_end || F->getIntrinsicID() == Intrinsic::seh_scope_begin || F->getIntrinsicID() == Intrinsic::seh_scope_end || F-> getIntrinsicID() == Intrinsic::coro_resume || F->getIntrinsicID () == Intrinsic::coro_destroy || F->getIntrinsicID() == Intrinsic ::experimental_patchpoint_void || F->getIntrinsicID() == Intrinsic ::experimental_patchpoint_i64 || F->getIntrinsicID() == Intrinsic ::experimental_gc_statepoint || F->getIntrinsicID() == Intrinsic ::wasm_rethrow)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, " "statepoint, coro_resume or coro_destroy", &I); return; } } while (false) | |||
| 4416 | F->getIntrinsicID() == Intrinsic::seh_scope_begin ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F ->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID () == Intrinsic::seh_try_begin || F->getIntrinsicID() == Intrinsic ::seh_try_end || F->getIntrinsicID() == Intrinsic::seh_scope_begin || F->getIntrinsicID() == Intrinsic::seh_scope_end || F-> getIntrinsicID() == Intrinsic::coro_resume || F->getIntrinsicID () == Intrinsic::coro_destroy || F->getIntrinsicID() == Intrinsic ::experimental_patchpoint_void || F->getIntrinsicID() == Intrinsic ::experimental_patchpoint_i64 || F->getIntrinsicID() == Intrinsic ::experimental_gc_statepoint || F->getIntrinsicID() == Intrinsic ::wasm_rethrow)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, " "statepoint, coro_resume or coro_destroy", &I); return; } } while (false) | |||
| 4417 | F->getIntrinsicID() == Intrinsic::seh_scope_end ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F ->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID () == Intrinsic::seh_try_begin || F->getIntrinsicID() == Intrinsic ::seh_try_end || F->getIntrinsicID() == Intrinsic::seh_scope_begin || F->getIntrinsicID() == Intrinsic::seh_scope_end || F-> getIntrinsicID() == Intrinsic::coro_resume || F->getIntrinsicID () == Intrinsic::coro_destroy || F->getIntrinsicID() == Intrinsic ::experimental_patchpoint_void || F->getIntrinsicID() == Intrinsic ::experimental_patchpoint_i64 || F->getIntrinsicID() == Intrinsic ::experimental_gc_statepoint || F->getIntrinsicID() == Intrinsic ::wasm_rethrow)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, " "statepoint, coro_resume or coro_destroy", &I); return; } } while (false) | |||
| 4418 | F->getIntrinsicID() == Intrinsic::coro_resume ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F ->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID () == Intrinsic::seh_try_begin || F->getIntrinsicID() == Intrinsic ::seh_try_end || F->getIntrinsicID() == Intrinsic::seh_scope_begin || F->getIntrinsicID() == Intrinsic::seh_scope_end || F-> getIntrinsicID() == Intrinsic::coro_resume || F->getIntrinsicID () == Intrinsic::coro_destroy || F->getIntrinsicID() == Intrinsic ::experimental_patchpoint_void || F->getIntrinsicID() == Intrinsic ::experimental_patchpoint_i64 || F->getIntrinsicID() == Intrinsic ::experimental_gc_statepoint || F->getIntrinsicID() == Intrinsic ::wasm_rethrow)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, " "statepoint, coro_resume or coro_destroy", &I); return; } } while (false) | |||
| 4419 | F->getIntrinsicID() == Intrinsic::coro_destroy ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F ->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID () == Intrinsic::seh_try_begin || F->getIntrinsicID() == Intrinsic ::seh_try_end || F->getIntrinsicID() == Intrinsic::seh_scope_begin || F->getIntrinsicID() == Intrinsic::seh_scope_end || F-> getIntrinsicID() == Intrinsic::coro_resume || F->getIntrinsicID () == Intrinsic::coro_destroy || F->getIntrinsicID() == Intrinsic ::experimental_patchpoint_void || F->getIntrinsicID() == Intrinsic ::experimental_patchpoint_i64 || F->getIntrinsicID() == Intrinsic ::experimental_gc_statepoint || F->getIntrinsicID() == Intrinsic ::wasm_rethrow)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, " "statepoint, coro_resume or coro_destroy", &I); return; } } while (false) | |||
| 4420 | F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F ->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID () == Intrinsic::seh_try_begin || F->getIntrinsicID() == Intrinsic ::seh_try_end || F->getIntrinsicID() == Intrinsic::seh_scope_begin || F->getIntrinsicID() == Intrinsic::seh_scope_end || F-> getIntrinsicID() == Intrinsic::coro_resume || F->getIntrinsicID () == Intrinsic::coro_destroy || F->getIntrinsicID() == Intrinsic ::experimental_patchpoint_void || F->getIntrinsicID() == Intrinsic ::experimental_patchpoint_i64 || F->getIntrinsicID() == Intrinsic ::experimental_gc_statepoint || F->getIntrinsicID() == Intrinsic ::wasm_rethrow)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, " "statepoint, coro_resume or coro_destroy", &I); return; } } while (false) | |||
| 4421 | F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F ->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID () == Intrinsic::seh_try_begin || F->getIntrinsicID() == Intrinsic ::seh_try_end || F->getIntrinsicID() == Intrinsic::seh_scope_begin || F->getIntrinsicID() == Intrinsic::seh_scope_end || F-> getIntrinsicID() == Intrinsic::coro_resume || F->getIntrinsicID () == Intrinsic::coro_destroy || F->getIntrinsicID() == Intrinsic ::experimental_patchpoint_void || F->getIntrinsicID() == Intrinsic ::experimental_patchpoint_i64 || F->getIntrinsicID() == Intrinsic ::experimental_gc_statepoint || F->getIntrinsicID() == Intrinsic ::wasm_rethrow)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, " "statepoint, coro_resume or coro_destroy", &I); return; } } while (false) | |||
| 4422 | F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F ->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID () == Intrinsic::seh_try_begin || F->getIntrinsicID() == Intrinsic ::seh_try_end || F->getIntrinsicID() == Intrinsic::seh_scope_begin || F->getIntrinsicID() == Intrinsic::seh_scope_end || F-> getIntrinsicID() == Intrinsic::coro_resume || F->getIntrinsicID () == Intrinsic::coro_destroy || F->getIntrinsicID() == Intrinsic ::experimental_patchpoint_void || F->getIntrinsicID() == Intrinsic ::experimental_patchpoint_i64 || F->getIntrinsicID() == Intrinsic ::experimental_gc_statepoint || F->getIntrinsicID() == Intrinsic ::wasm_rethrow)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, " "statepoint, coro_resume or coro_destroy", &I); return; } } while (false) | |||
| 4423 | F->getIntrinsicID() == Intrinsic::wasm_rethrow,do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F ->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID () == Intrinsic::seh_try_begin || F->getIntrinsicID() == Intrinsic ::seh_try_end || F->getIntrinsicID() == Intrinsic::seh_scope_begin || F->getIntrinsicID() == Intrinsic::seh_scope_end || F-> getIntrinsicID() == Intrinsic::coro_resume || F->getIntrinsicID () == Intrinsic::coro_destroy || F->getIntrinsicID() == Intrinsic ::experimental_patchpoint_void || F->getIntrinsicID() == Intrinsic ::experimental_patchpoint_i64 || F->getIntrinsicID() == Intrinsic ::experimental_gc_statepoint || F->getIntrinsicID() == Intrinsic ::wasm_rethrow)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, " "statepoint, coro_resume or coro_destroy", &I); return; } } while (false) | |||
| 4424 | "Cannot invoke an intrinsic other than donothing, patchpoint, "do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F ->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID () == Intrinsic::seh_try_begin || F->getIntrinsicID() == Intrinsic ::seh_try_end || F->getIntrinsicID() == Intrinsic::seh_scope_begin || F->getIntrinsicID() == Intrinsic::seh_scope_end || F-> getIntrinsicID() == Intrinsic::coro_resume || F->getIntrinsicID () == Intrinsic::coro_destroy || F->getIntrinsicID() == Intrinsic ::experimental_patchpoint_void || F->getIntrinsicID() == Intrinsic ::experimental_patchpoint_i64 || F->getIntrinsicID() == Intrinsic ::experimental_gc_statepoint || F->getIntrinsicID() == Intrinsic ::wasm_rethrow)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, " "statepoint, coro_resume or coro_destroy", &I); return; } } while (false) | |||
| 4425 | "statepoint, coro_resume or coro_destroy",do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F ->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID () == Intrinsic::seh_try_begin || F->getIntrinsicID() == Intrinsic ::seh_try_end || F->getIntrinsicID() == Intrinsic::seh_scope_begin || F->getIntrinsicID() == Intrinsic::seh_scope_end || F-> getIntrinsicID() == Intrinsic::coro_resume || F->getIntrinsicID () == Intrinsic::coro_destroy || F->getIntrinsicID() == Intrinsic ::experimental_patchpoint_void || F->getIntrinsicID() == Intrinsic ::experimental_patchpoint_i64 || F->getIntrinsicID() == Intrinsic ::experimental_gc_statepoint || F->getIntrinsicID() == Intrinsic ::wasm_rethrow)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, " "statepoint, coro_resume or coro_destroy", &I); return; } } while (false) | |||
| 4426 | &I)do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F ->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID () == Intrinsic::seh_try_begin || F->getIntrinsicID() == Intrinsic ::seh_try_end || F->getIntrinsicID() == Intrinsic::seh_scope_begin || F->getIntrinsicID() == Intrinsic::seh_scope_end || F-> getIntrinsicID() == Intrinsic::coro_resume || F->getIntrinsicID () == Intrinsic::coro_destroy || F->getIntrinsicID() == Intrinsic ::experimental_patchpoint_void || F->getIntrinsicID() == Intrinsic ::experimental_patchpoint_i64 || F->getIntrinsicID() == Intrinsic ::experimental_gc_statepoint || F->getIntrinsicID() == Intrinsic ::wasm_rethrow)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, " "statepoint, coro_resume or coro_destroy", &I); return; } } while (false); | |||
| 4427 | Assert(F->getParent() == &M, "Referencing function in another module!",do { if (!(F->getParent() == &M)) { CheckFailed("Referencing function in another module!" , &I, &M, F, F->getParent()); return; } } while (false ) | |||
| 4428 | &I, &M, F, F->getParent())do { if (!(F->getParent() == &M)) { CheckFailed("Referencing function in another module!" , &I, &M, F, F->getParent()); return; } } while (false ); | |||
| 4429 | } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { | |||
| 4430 | Assert(OpBB->getParent() == BB->getParent(),do { if (!(OpBB->getParent() == BB->getParent())) { CheckFailed ("Referring to a basic block in another function!", &I); return ; } } while (false) | |||
| 4431 | "Referring to a basic block in another function!", &I)do { if (!(OpBB->getParent() == BB->getParent())) { CheckFailed ("Referring to a basic block in another function!", &I); return ; } } while (false); | |||
| 4432 | } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { | |||
| 4433 | Assert(OpArg->getParent() == BB->getParent(),do { if (!(OpArg->getParent() == BB->getParent())) { CheckFailed ("Referring to an argument in another function!", &I); return ; } } while (false) | |||
| 4434 | "Referring to an argument in another function!", &I)do { if (!(OpArg->getParent() == BB->getParent())) { CheckFailed ("Referring to an argument in another function!", &I); return ; } } while (false); | |||
| 4435 | } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { | |||
| 4436 | Assert(GV->getParent() == &M, "Referencing global in another module!", &I,do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!" , &I, &M, GV, GV->getParent()); return; } } while ( false) | |||
| 4437 | &M, GV, GV->getParent())do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!" , &I, &M, GV, GV->getParent()); return; } } while ( false); | |||
| 4438 | } else if (isa<Instruction>(I.getOperand(i))) { | |||
| 4439 | verifyDominatesUse(I, i); | |||
| 4440 | } else if (isa<InlineAsm>(I.getOperand(i))) { | |||
| 4441 | Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),do { if (!(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i))) { CheckFailed("Cannot take the address of an inline asm!" , &I); return; } } while (false) | |||
| 4442 | "Cannot take the address of an inline asm!", &I)do { if (!(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i))) { CheckFailed("Cannot take the address of an inline asm!" , &I); return; } } while (false); | |||
| 4443 | } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { | |||
| 4444 | if (CE->getType()->isPtrOrPtrVectorTy()) { | |||
| 4445 | // If we have a ConstantExpr pointer, we need to see if it came from an | |||
| 4446 | // illegal bitcast. | |||
| 4447 | visitConstantExprsRecursively(CE); | |||
| 4448 | } | |||
| 4449 | } | |||
| 4450 | } | |||
| 4451 | ||||
| 4452 | if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { | |||
| 4453 | Assert(I.getType()->isFPOrFPVectorTy(),do { if (!(I.getType()->isFPOrFPVectorTy())) { CheckFailed ("fpmath requires a floating point result!", &I); return; } } while (false) | |||
| 4454 | "fpmath requires a floating point result!", &I)do { if (!(I.getType()->isFPOrFPVectorTy())) { CheckFailed ("fpmath requires a floating point result!", &I); return; } } while (false); | |||
| 4455 | Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I)do { if (!(MD->getNumOperands() == 1)) { CheckFailed("fpmath takes one operand!" , &I); return; } } while (false); | |||
| 4456 | if (ConstantFP *CFP0 = | |||
| 4457 | mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { | |||
| 4458 | const APFloat &Accuracy = CFP0->getValueAPF(); | |||
| 4459 | Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),do { if (!(&Accuracy.getSemantics() == &APFloat::IEEEsingle ())) { CheckFailed("fpmath accuracy must have float type", & I); return; } } while (false) | |||
| 4460 | "fpmath accuracy must have float type", &I)do { if (!(&Accuracy.getSemantics() == &APFloat::IEEEsingle ())) { CheckFailed("fpmath accuracy must have float type", & I); return; } } while (false); | |||
| 4461 | Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),do { if (!(Accuracy.isFiniteNonZero() && !Accuracy.isNegative ())) { CheckFailed("fpmath accuracy not a positive number!", & I); return; } } while (false) | |||
| 4462 | "fpmath accuracy not a positive number!", &I)do { if (!(Accuracy.isFiniteNonZero() && !Accuracy.isNegative ())) { CheckFailed("fpmath accuracy not a positive number!", & I); return; } } while (false); | |||
| 4463 | } else { | |||
| 4464 | Assert(false, "invalid fpmath accuracy!", &I)do { if (!(false)) { CheckFailed("invalid fpmath accuracy!", & I); return; } } while (false); | |||
| 4465 | } | |||
| 4466 | } | |||
| 4467 | ||||
| 4468 | if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { | |||
| 4469 | Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),do { if (!(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I))) { CheckFailed("Ranges are only for loads, calls and invokes!" , &I); return; } } while (false) | |||
| 4470 | "Ranges are only for loads, calls and invokes!", &I)do { if (!(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I))) { CheckFailed("Ranges are only for loads, calls and invokes!" , &I); return; } } while (false); | |||
| 4471 | visitRangeMetadata(I, Range, I.getType()); | |||
| 4472 | } | |||
| 4473 | ||||
| 4474 | if (I.getMetadata(LLVMContext::MD_nonnull)) { | |||
| 4475 | Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",do { if (!(I.getType()->isPointerTy())) { CheckFailed("nonnull applies only to pointer types" , &I); return; } } while (false) | |||
| 4476 | &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("nonnull applies only to pointer types" , &I); return; } } while (false); | |||
| 4477 | Assert(isa<LoadInst>(I),do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes" " for calls or invokes", &I); return; } } while (false) | |||
| 4478 | "nonnull applies only to load instructions, use attributes"do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes" " for calls or invokes", &I); return; } } while (false) | |||
| 4479 | " for calls or invokes",do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes" " for calls or invokes", &I); return; } } while (false) | |||
| 4480 | &I)do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes" " for calls or invokes", &I); return; } } while (false); | |||
| 4481 | } | |||
| 4482 | ||||
| 4483 | if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) | |||
| 4484 | visitDereferenceableMetadata(I, MD); | |||
| 4485 | ||||
| 4486 | if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) | |||
| 4487 | visitDereferenceableMetadata(I, MD); | |||
| 4488 | ||||
| 4489 | if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) | |||
| 4490 | TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); | |||
| 4491 | ||||
| 4492 | if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { | |||
| 4493 | Assert(I.getType()->isPointerTy(), "align applies only to pointer types",do { if (!(I.getType()->isPointerTy())) { CheckFailed("align applies only to pointer types" , &I); return; } } while (false) | |||
| 4494 | &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("align applies only to pointer types" , &I); return; } } while (false); | |||
| 4495 | Assert(isa<LoadInst>(I), "align applies only to load instructions, "do { if (!(isa<LoadInst>(I))) { CheckFailed("align applies only to load instructions, " "use attributes for calls or invokes", &I); return; } } while (false) | |||
| 4496 | "use attributes for calls or invokes", &I)do { if (!(isa<LoadInst>(I))) { CheckFailed("align applies only to load instructions, " "use attributes for calls or invokes", &I); return; } } while (false); | |||
| 4497 | Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I)do { if (!(AlignMD->getNumOperands() == 1)) { CheckFailed( "align takes one operand!", &I); return; } } while (false ); | |||
| 4498 | ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); | |||
| 4499 | Assert(CI && CI->getType()->isIntegerTy(64),do { if (!(CI && CI->getType()->isIntegerTy(64) )) { CheckFailed("align metadata value must be an i64!", & I); return; } } while (false) | |||
| 4500 | "align metadata value must be an i64!", &I)do { if (!(CI && CI->getType()->isIntegerTy(64) )) { CheckFailed("align metadata value must be an i64!", & I); return; } } while (false); | |||
| 4501 | uint64_t Align = CI->getZExtValue(); | |||
| 4502 | Assert(isPowerOf2_64(Align),do { if (!(isPowerOf2_64(Align))) { CheckFailed("align metadata value must be a power of 2!" , &I); return; } } while (false) | |||
| 4503 | "align metadata value must be a power of 2!", &I)do { if (!(isPowerOf2_64(Align))) { CheckFailed("align metadata value must be a power of 2!" , &I); return; } } while (false); | |||
| 4504 | Assert(Align <= Value::MaximumAlignment,do { if (!(Align <= Value::MaximumAlignment)) { CheckFailed ("alignment is larger that implementation defined limit", & I); return; } } while (false) | |||
| 4505 | "alignment is larger that implementation defined limit", &I)do { if (!(Align <= Value::MaximumAlignment)) { CheckFailed ("alignment is larger that implementation defined limit", & I); return; } } while (false); | |||
| 4506 | } | |||
| 4507 | ||||
| 4508 | if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof)) | |||
| 4509 | visitProfMetadata(I, MD); | |||
| 4510 | ||||
| 4511 | if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation)) | |||
| 4512 | visitAnnotationMetadata(Annotation); | |||
| 4513 | ||||
| 4514 | if (MDNode *N = I.getDebugLoc().getAsMDNode()) { | |||
| 4515 | AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N)do { if (!(isa<DILocation>(N))) { DebugInfoCheckFailed( "invalid !dbg metadata attachment", &I, N); return; } } while (false); | |||
| 4516 | visitMDNode(*N, AreDebugLocsAllowed::Yes); | |||
| 4517 | } | |||
| 4518 | ||||
| 4519 | if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { | |||
| 4520 | verifyFragmentExpression(*DII); | |||
| 4521 | verifyNotEntryValue(*DII); | |||
| 4522 | } | |||
| 4523 | ||||
| 4524 | SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; | |||
| 4525 | I.getAllMetadata(MDs); | |||
| 4526 | for (auto Attachment : MDs) { | |||
| 4527 | unsigned Kind = Attachment.first; | |||
| 4528 | auto AllowLocs = | |||
| 4529 | (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop) | |||
| 4530 | ? AreDebugLocsAllowed::Yes | |||
| 4531 | : AreDebugLocsAllowed::No; | |||
| 4532 | visitMDNode(*Attachment.second, AllowLocs); | |||
| 4533 | } | |||
| 4534 | ||||
| 4535 | InstsInThisBlock.insert(&I); | |||
| 4536 | } | |||
| 4537 | ||||
| 4538 | /// Allow intrinsics to be verified in different ways. | |||
| 4539 | void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) { | |||
| 4540 | Function *IF = Call.getCalledFunction(); | |||
| 4541 | Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",do { if (!(IF->isDeclaration())) { CheckFailed("Intrinsic functions should never be defined!" , IF); return; } } while (false) | |||
| 4542 | IF)do { if (!(IF->isDeclaration())) { CheckFailed("Intrinsic functions should never be defined!" , IF); return; } } while (false); | |||
| 4543 | ||||
| 4544 | // Verify that the intrinsic prototype lines up with what the .td files | |||
| 4545 | // describe. | |||
| 4546 | FunctionType *IFTy = IF->getFunctionType(); | |||
| 4547 | bool IsVarArg = IFTy->isVarArg(); | |||
| 4548 | ||||
| 4549 | SmallVector<Intrinsic::IITDescriptor, 8> Table; | |||
| 4550 | getIntrinsicInfoTableEntries(ID, Table); | |||
| 4551 | ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; | |||
| 4552 | ||||
| 4553 | // Walk the descriptors to extract overloaded types. | |||
| 4554 | SmallVector<Type *, 4> ArgTys; | |||
| 4555 | Intrinsic::MatchIntrinsicTypesResult Res = | |||
| 4556 | Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys); | |||
| 4557 | Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,do { if (!(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet)) { CheckFailed("Intrinsic has incorrect return type!", IF); return ; } } while (false) | |||
| 4558 | "Intrinsic has incorrect return type!", IF)do { if (!(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet)) { CheckFailed("Intrinsic has incorrect return type!", IF); return ; } } while (false); | |||
| 4559 | Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,do { if (!(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg)) { CheckFailed("Intrinsic has incorrect argument type!", IF); return; } } while (false) | |||
| 4560 | "Intrinsic has incorrect argument type!", IF)do { if (!(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg)) { CheckFailed("Intrinsic has incorrect argument type!", IF); return; } } while (false); | |||
| 4561 | ||||
| 4562 | // Verify if the intrinsic call matches the vararg property. | |||
| 4563 | if (IsVarArg) | |||
| 4564 | Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef ))) { CheckFailed("Intrinsic was not defined with variable arguments!" , IF); return; } } while (false) | |||
| 4565 | "Intrinsic was not defined with variable arguments!", IF)do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef ))) { CheckFailed("Intrinsic was not defined with variable arguments!" , IF); return; } } while (false); | |||
| 4566 | else | |||
| 4567 | Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef ))) { CheckFailed("Callsite was not defined with variable arguments!" , IF); return; } } while (false) | |||
| 4568 | "Callsite was not defined with variable arguments!", IF)do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef ))) { CheckFailed("Callsite was not defined with variable arguments!" , IF); return; } } while (false); | |||
| 4569 | ||||
| 4570 | // All descriptors should be absorbed by now. | |||
| 4571 | Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF)do { if (!(TableRef.empty())) { CheckFailed("Intrinsic has too few arguments!" , IF); return; } } while (false); | |||
| 4572 | ||||
| 4573 | // Now that we have the intrinsic ID and the actual argument types (and we | |||
| 4574 | // know they are legal for the intrinsic!) get the intrinsic name through the | |||
| 4575 | // usual means. This allows us to verify the mangling of argument types into | |||
| 4576 | // the name. | |||
| 4577 | const std::string ExpectedName = | |||
| 4578 | Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy); | |||
| 4579 | Assert(ExpectedName == IF->getName(),do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! " "Should be: " + ExpectedName, IF); return; } } while (false) | |||
| 4580 | "Intrinsic name not mangled correctly for type arguments! "do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! " "Should be: " + ExpectedName, IF); return; } } while (false) | |||
| 4581 | "Should be: " +do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! " "Should be: " + ExpectedName, IF); return; } } while (false) | |||
| 4582 | ExpectedName,do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! " "Should be: " + ExpectedName, IF); return; } } while (false) | |||
| 4583 | IF)do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! " "Should be: " + ExpectedName, IF); return; } } while (false); | |||
| 4584 | ||||
| 4585 | // If the intrinsic takes MDNode arguments, verify that they are either global | |||
| 4586 | // or are local to *this* function. | |||
| 4587 | for (Value *V : Call.args()) { | |||
| 4588 | if (auto *MD = dyn_cast<MetadataAsValue>(V)) | |||
| 4589 | visitMetadataAsValue(*MD, Call.getCaller()); | |||
| 4590 | if (auto *Const = dyn_cast<Constant>(V)) | |||
| 4591 | Assert(!Const->getType()->isX86_AMXTy(),do { if (!(!Const->getType()->isX86_AMXTy())) { CheckFailed ("const x86_amx is not allowed in argument!"); return; } } while (false) | |||
| 4592 | "const x86_amx is not allowed in argument!")do { if (!(!Const->getType()->isX86_AMXTy())) { CheckFailed ("const x86_amx is not allowed in argument!"); return; } } while (false); | |||
| 4593 | } | |||
| 4594 | ||||
| 4595 | switch (ID) { | |||
| 4596 | default: | |||
| 4597 | break; | |||
| 4598 | case Intrinsic::assume: { | |||
| 4599 | for (auto &Elem : Call.bundle_op_infos()) { | |||
| 4600 | Assert(Elem.Tag->getKey() == "ignore" ||do { if (!(Elem.Tag->getKey() == "ignore" || Attribute::isExistingAttribute (Elem.Tag->getKey()))) { CheckFailed("tags must be valid attribute names" ); return; } } while (false) | |||
| 4601 | Attribute::isExistingAttribute(Elem.Tag->getKey()),do { if (!(Elem.Tag->getKey() == "ignore" || Attribute::isExistingAttribute (Elem.Tag->getKey()))) { CheckFailed("tags must be valid attribute names" ); return; } } while (false) | |||
| 4602 | "tags must be valid attribute names")do { if (!(Elem.Tag->getKey() == "ignore" || Attribute::isExistingAttribute (Elem.Tag->getKey()))) { CheckFailed("tags must be valid attribute names" ); return; } } while (false); | |||
| 4603 | Attribute::AttrKind Kind = | |||
| 4604 | Attribute::getAttrKindFromName(Elem.Tag->getKey()); | |||
| 4605 | unsigned ArgCount = Elem.End - Elem.Begin; | |||
| 4606 | if (Kind == Attribute::Alignment) { | |||
| 4607 | Assert(ArgCount <= 3 && ArgCount >= 2,do { if (!(ArgCount <= 3 && ArgCount >= 2)) { CheckFailed ("alignment assumptions should have 2 or 3 arguments"); return ; } } while (false) | |||
| 4608 | "alignment assumptions should have 2 or 3 arguments")do { if (!(ArgCount <= 3 && ArgCount >= 2)) { CheckFailed ("alignment assumptions should have 2 or 3 arguments"); return ; } } while (false); | |||
| 4609 | Assert(Call.getOperand(Elem.Begin)->getType()->isPointerTy(),do { if (!(Call.getOperand(Elem.Begin)->getType()->isPointerTy ())) { CheckFailed("first argument should be a pointer"); return ; } } while (false) | |||
| 4610 | "first argument should be a pointer")do { if (!(Call.getOperand(Elem.Begin)->getType()->isPointerTy ())) { CheckFailed("first argument should be a pointer"); return ; } } while (false); | |||
| 4611 | Assert(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(),do { if (!(Call.getOperand(Elem.Begin + 1)->getType()-> isIntegerTy())) { CheckFailed("second argument should be an integer" ); return; } } while (false) | |||
| 4612 | "second argument should be an integer")do { if (!(Call.getOperand(Elem.Begin + 1)->getType()-> isIntegerTy())) { CheckFailed("second argument should be an integer" ); return; } } while (false); | |||
| 4613 | if (ArgCount == 3) | |||
| 4614 | Assert(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(),do { if (!(Call.getOperand(Elem.Begin + 2)->getType()-> isIntegerTy())) { CheckFailed("third argument should be an integer if present" ); return; } } while (false) | |||
| 4615 | "third argument should be an integer if present")do { if (!(Call.getOperand(Elem.Begin + 2)->getType()-> isIntegerTy())) { CheckFailed("third argument should be an integer if present" ); return; } } while (false); | |||
| 4616 | return; | |||
| 4617 | } | |||
| 4618 | Assert(ArgCount <= 2, "to many arguments")do { if (!(ArgCount <= 2)) { CheckFailed("to many arguments" ); return; } } while (false); | |||
| 4619 | if (Kind == Attribute::None) | |||
| 4620 | break; | |||
| 4621 | if (Attribute::isIntAttrKind(Kind)) { | |||
| 4622 | Assert(ArgCount == 2, "this attribute should have 2 arguments")do { if (!(ArgCount == 2)) { CheckFailed("this attribute should have 2 arguments" ); return; } } while (false); | |||
| 4623 | Assert(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)),do { if (!(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)))) { CheckFailed("the second argument should be a constant integral value" ); return; } } while (false) | |||
| 4624 | "the second argument should be a constant integral value")do { if (!(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)))) { CheckFailed("the second argument should be a constant integral value" ); return; } } while (false); | |||
| 4625 | } else if (Attribute::canUseAsParamAttr(Kind)) { | |||
| 4626 | Assert((ArgCount) == 1, "this attribute should have one argument")do { if (!((ArgCount) == 1)) { CheckFailed("this attribute should have one argument" ); return; } } while (false); | |||
| 4627 | } else if (Attribute::canUseAsFnAttr(Kind)) { | |||
| 4628 | Assert((ArgCount) == 0, "this attribute has no argument")do { if (!((ArgCount) == 0)) { CheckFailed("this attribute has no argument" ); return; } } while (false); | |||
| 4629 | } | |||
| 4630 | } | |||
| 4631 | break; | |||
| 4632 | } | |||
| 4633 | case Intrinsic::coro_id: { | |||
| 4634 | auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts(); | |||
| 4635 | if (isa<ConstantPointerNull>(InfoArg)) | |||
| 4636 | break; | |||
| 4637 | auto *GV = dyn_cast<GlobalVariable>(InfoArg); | |||
| 4638 | Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),do { if (!(GV && GV->isConstant() && GV-> hasDefinitiveInitializer())) { CheckFailed("info argument of llvm.coro.id must refer to an initialized " "constant"); return; } } while (false) | |||
| 4639 | "info argument of llvm.coro.id must refer to an initialized "do { if (!(GV && GV->isConstant() && GV-> hasDefinitiveInitializer())) { CheckFailed("info argument of llvm.coro.id must refer to an initialized " "constant"); return; } } while (false) | |||
| 4640 | "constant")do { if (!(GV && GV->isConstant() && GV-> hasDefinitiveInitializer())) { CheckFailed("info argument of llvm.coro.id must refer to an initialized " "constant"); return; } } while (false); | |||
| 4641 | Constant *Init = GV->getInitializer(); | |||
| 4642 | Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),do { if (!(isa<ConstantStruct>(Init) || isa<ConstantArray >(Init))) { CheckFailed("info argument of llvm.coro.id must refer to either a struct or " "an array"); return; } } while (false) | |||
| 4643 | "info argument of llvm.coro.id must refer to either a struct or "do { if (!(isa<ConstantStruct>(Init) || isa<ConstantArray >(Init))) { CheckFailed("info argument of llvm.coro.id must refer to either a struct or " "an array"); return; } } while (false) | |||
| 4644 | "an array")do { if (!(isa<ConstantStruct>(Init) || isa<ConstantArray >(Init))) { CheckFailed("info argument of llvm.coro.id must refer to either a struct or " "an array"); return; } } while (false); | |||
| 4645 | break; | |||
| 4646 | } | |||
| 4647 | #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \ | |||
| 4648 | case Intrinsic::INTRINSIC: | |||
| 4649 | #include "llvm/IR/ConstrainedOps.def" | |||
| 4650 | visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call)); | |||
| 4651 | break; | |||
| 4652 | case Intrinsic::dbg_declare: // llvm.dbg.declare | |||
| 4653 | Assert(isa<MetadataAsValue>(Call.getArgOperand(0)),do { if (!(isa<MetadataAsValue>(Call.getArgOperand(0))) ) { CheckFailed("invalid llvm.dbg.declare intrinsic call 1", Call ); return; } } while (false) | |||
| 4654 | "invalid llvm.dbg.declare intrinsic call 1", Call)do { if (!(isa<MetadataAsValue>(Call.getArgOperand(0))) ) { CheckFailed("invalid llvm.dbg.declare intrinsic call 1", Call ); return; } } while (false); | |||
| 4655 | visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call)); | |||
| 4656 | break; | |||
| 4657 | case Intrinsic::dbg_addr: // llvm.dbg.addr | |||
| 4658 | visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call)); | |||
| 4659 | break; | |||
| 4660 | case Intrinsic::dbg_value: // llvm.dbg.value | |||
| 4661 | visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call)); | |||
| 4662 | break; | |||
| 4663 | case Intrinsic::dbg_label: // llvm.dbg.label | |||
| 4664 | visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call)); | |||
| 4665 | break; | |||
| 4666 | case Intrinsic::memcpy: | |||
| 4667 | case Intrinsic::memcpy_inline: | |||
| 4668 | case Intrinsic::memmove: | |||
| 4669 | case Intrinsic::memset: { | |||
| 4670 | const auto *MI = cast<MemIntrinsic>(&Call); | |||
| 4671 | auto IsValidAlignment = [&](unsigned Alignment) -> bool { | |||
| 4672 | return Alignment == 0 || isPowerOf2_32(Alignment); | |||
| 4673 | }; | |||
| 4674 | Assert(IsValidAlignment(MI->getDestAlignment()),do { if (!(IsValidAlignment(MI->getDestAlignment()))) { CheckFailed ("alignment of arg 0 of memory intrinsic must be 0 or a power of 2" , Call); return; } } while (false) | |||
| 4675 | "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",do { if (!(IsValidAlignment(MI->getDestAlignment()))) { CheckFailed ("alignment of arg 0 of memory intrinsic must be 0 or a power of 2" , Call); return; } } while (false) | |||
| 4676 | Call)do { if (!(IsValidAlignment(MI->getDestAlignment()))) { CheckFailed ("alignment of arg 0 of memory intrinsic must be 0 or a power of 2" , Call); return; } } while (false); | |||
| 4677 | if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { | |||
| 4678 | Assert(IsValidAlignment(MTI->getSourceAlignment()),do { if (!(IsValidAlignment(MTI->getSourceAlignment()))) { CheckFailed("alignment of arg 1 of memory intrinsic must be 0 or a power of 2" , Call); return; } } while (false) | |||
| 4679 | "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",do { if (!(IsValidAlignment(MTI->getSourceAlignment()))) { CheckFailed("alignment of arg 1 of memory intrinsic must be 0 or a power of 2" , Call); return; } } while (false) | |||
| 4680 | Call)do { if (!(IsValidAlignment(MTI->getSourceAlignment()))) { CheckFailed("alignment of arg 1 of memory intrinsic must be 0 or a power of 2" , Call); return; } } while (false); | |||
| 4681 | } | |||
| 4682 | ||||
| 4683 | break; | |||
| 4684 | } | |||
| 4685 | case Intrinsic::memcpy_element_unordered_atomic: | |||
| 4686 | case Intrinsic::memmove_element_unordered_atomic: | |||
| 4687 | case Intrinsic::memset_element_unordered_atomic: { | |||
| 4688 | const auto *AMI = cast<AtomicMemIntrinsic>(&Call); | |||
| 4689 | ||||
| 4690 | ConstantInt *ElementSizeCI = | |||
| 4691 | cast<ConstantInt>(AMI->getRawElementSizeInBytes()); | |||
| 4692 | const APInt &ElementSizeVal = ElementSizeCI->getValue(); | |||
| 4693 | Assert(ElementSizeVal.isPowerOf2(),do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic " "must be a power of 2", Call); return; } } while (false) | |||
| 4694 | "element size of the element-wise atomic memory intrinsic "do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic " "must be a power of 2", Call); return; } } while (false) | |||
| 4695 | "must be a power of 2",do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic " "must be a power of 2", Call); return; } } while (false) | |||
| 4696 | Call)do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic " "must be a power of 2", Call); return; } } while (false); | |||
| 4697 | ||||
| 4698 | auto IsValidAlignment = [&](uint64_t Alignment) { | |||
| 4699 | return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); | |||
| 4700 | }; | |||
| 4701 | uint64_t DstAlignment = AMI->getDestAlignment(); | |||
| 4702 | Assert(IsValidAlignment(DstAlignment),do { if (!(IsValidAlignment(DstAlignment))) { CheckFailed("incorrect alignment of the destination argument" , Call); return; } } while (false) | |||
| 4703 | "incorrect alignment of the destination argument", Call)do { if (!(IsValidAlignment(DstAlignment))) { CheckFailed("incorrect alignment of the destination argument" , Call); return; } } while (false); | |||
| 4704 | if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { | |||
| 4705 | uint64_t SrcAlignment = AMT->getSourceAlignment(); | |||
| 4706 | Assert(IsValidAlignment(SrcAlignment),do { if (!(IsValidAlignment(SrcAlignment))) { CheckFailed("incorrect alignment of the source argument" , Call); return; } } while (false) | |||
| 4707 | "incorrect alignment of the source argument", Call)do { if (!(IsValidAlignment(SrcAlignment))) { CheckFailed("incorrect alignment of the source argument" , Call); return; } } while (false); | |||
| 4708 | } | |||
| 4709 | break; | |||
| 4710 | } | |||
| 4711 | case Intrinsic::call_preallocated_setup: { | |||
| 4712 | auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0)); | |||
| 4713 | Assert(NumArgs != nullptr,do { if (!(NumArgs != nullptr)) { CheckFailed("llvm.call.preallocated.setup argument must be a constant" ); return; } } while (false) | |||
| 4714 | "llvm.call.preallocated.setup argument must be a constant")do { if (!(NumArgs != nullptr)) { CheckFailed("llvm.call.preallocated.setup argument must be a constant" ); return; } } while (false); | |||
| 4715 | bool FoundCall = false; | |||
| 4716 | for (User *U : Call.users()) { | |||
| 4717 | auto *UseCall = dyn_cast<CallBase>(U); | |||
| 4718 | Assert(UseCall != nullptr,do { if (!(UseCall != nullptr)) { CheckFailed("Uses of llvm.call.preallocated.setup must be calls" ); return; } } while (false) | |||
| 4719 | "Uses of llvm.call.preallocated.setup must be calls")do { if (!(UseCall != nullptr)) { CheckFailed("Uses of llvm.call.preallocated.setup must be calls" ); return; } } while (false); | |||
| 4720 | const Function *Fn = UseCall->getCalledFunction(); | |||
| 4721 | if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) { | |||
| 4722 | auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1)); | |||
| 4723 | Assert(AllocArgIndex != nullptr,do { if (!(AllocArgIndex != nullptr)) { CheckFailed("llvm.call.preallocated.alloc arg index must be a constant" ); return; } } while (false) | |||
| 4724 | "llvm.call.preallocated.alloc arg index must be a constant")do { if (!(AllocArgIndex != nullptr)) { CheckFailed("llvm.call.preallocated.alloc arg index must be a constant" ); return; } } while (false); | |||
| 4725 | auto AllocArgIndexInt = AllocArgIndex->getValue(); | |||
| 4726 | Assert(AllocArgIndexInt.sge(0) &&do { if (!(AllocArgIndexInt.sge(0) && AllocArgIndexInt .slt(NumArgs->getValue()))) { CheckFailed("llvm.call.preallocated.alloc arg index must be between 0 and " "corresponding " "llvm.call.preallocated.setup's argument count" ); return; } } while (false) | |||
| 4727 | AllocArgIndexInt.slt(NumArgs->getValue()),do { if (!(AllocArgIndexInt.sge(0) && AllocArgIndexInt .slt(NumArgs->getValue()))) { CheckFailed("llvm.call.preallocated.alloc arg index must be between 0 and " "corresponding " "llvm.call.preallocated.setup's argument count" ); return; } } while (false) | |||
| 4728 | "llvm.call.preallocated.alloc arg index must be between 0 and "do { if (!(AllocArgIndexInt.sge(0) && AllocArgIndexInt .slt(NumArgs->getValue()))) { CheckFailed("llvm.call.preallocated.alloc arg index must be between 0 and " "corresponding " "llvm.call.preallocated.setup's argument count" ); return; } } while (false) | |||
| 4729 | "corresponding "do { if (!(AllocArgIndexInt.sge(0) && AllocArgIndexInt .slt(NumArgs->getValue()))) { CheckFailed("llvm.call.preallocated.alloc arg index must be between 0 and " "corresponding " "llvm.call.preallocated.setup's argument count" ); return; } } while (false) | |||
| 4730 | "llvm.call.preallocated.setup's argument count")do { if (!(AllocArgIndexInt.sge(0) && AllocArgIndexInt .slt(NumArgs->getValue()))) { CheckFailed("llvm.call.preallocated.alloc arg index must be between 0 and " "corresponding " "llvm.call.preallocated.setup's argument count" ); return; } } while (false); | |||
| 4731 | } else if (Fn && Fn->getIntrinsicID() == | |||
| 4732 | Intrinsic::call_preallocated_teardown) { | |||
| 4733 | // nothing to do | |||
| 4734 | } else { | |||
| 4735 | Assert(!FoundCall, "Can have at most one call corresponding to a "do { if (!(!FoundCall)) { CheckFailed("Can have at most one call corresponding to a " "llvm.call.preallocated.setup"); return; } } while (false) | |||
| 4736 | "llvm.call.preallocated.setup")do { if (!(!FoundCall)) { CheckFailed("Can have at most one call corresponding to a " "llvm.call.preallocated.setup"); return; } } while (false); | |||
| 4737 | FoundCall = true; | |||
| 4738 | size_t NumPreallocatedArgs = 0; | |||
| 4739 | for (unsigned i = 0; i < UseCall->getNumArgOperands(); i++) { | |||
| 4740 | if (UseCall->paramHasAttr(i, Attribute::Preallocated)) { | |||
| 4741 | ++NumPreallocatedArgs; | |||
| 4742 | } | |||
| 4743 | } | |||
| 4744 | Assert(NumPreallocatedArgs != 0,do { if (!(NumPreallocatedArgs != 0)) { CheckFailed("cannot use preallocated intrinsics on a call without " "preallocated arguments"); return; } } while (false) | |||
| 4745 | "cannot use preallocated intrinsics on a call without "do { if (!(NumPreallocatedArgs != 0)) { CheckFailed("cannot use preallocated intrinsics on a call without " "preallocated arguments"); return; } } while (false) | |||
| 4746 | "preallocated arguments")do { if (!(NumPreallocatedArgs != 0)) { CheckFailed("cannot use preallocated intrinsics on a call without " "preallocated arguments"); return; } } while (false); | |||
| 4747 | Assert(NumArgs->equalsInt(NumPreallocatedArgs),do { if (!(NumArgs->equalsInt(NumPreallocatedArgs))) { CheckFailed ("llvm.call.preallocated.setup arg size must be equal to number " "of preallocated arguments " "at call site", Call, *UseCall) ; return; } } while (false) | |||
| 4748 | "llvm.call.preallocated.setup arg size must be equal to number "do { if (!(NumArgs->equalsInt(NumPreallocatedArgs))) { CheckFailed ("llvm.call.preallocated.setup arg size must be equal to number " "of preallocated arguments " "at call site", Call, *UseCall) ; return; } } while (false) | |||
| 4749 | "of preallocated arguments "do { if (!(NumArgs->equalsInt(NumPreallocatedArgs))) { CheckFailed ("llvm.call.preallocated.setup arg size must be equal to number " "of preallocated arguments " "at call site", Call, *UseCall) ; return; } } while (false) | |||
| 4750 | "at call site",do { if (!(NumArgs->equalsInt(NumPreallocatedArgs))) { CheckFailed ("llvm.call.preallocated.setup arg size must be equal to number " "of preallocated arguments " "at call site", Call, *UseCall) ; return; } } while (false) | |||
| 4751 | Call, *UseCall)do { if (!(NumArgs->equalsInt(NumPreallocatedArgs))) { CheckFailed ("llvm.call.preallocated.setup arg size must be equal to number " "of preallocated arguments " "at call site", Call, *UseCall) ; return; } } while (false); | |||
| 4752 | // getOperandBundle() cannot be called if more than one of the operand | |||
| 4753 | // bundle exists. There is already a check elsewhere for this, so skip | |||
| 4754 | // here if we see more than one. | |||
| 4755 | if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) > | |||
| 4756 | 1) { | |||
| 4757 | return; | |||
| 4758 | } | |||
| 4759 | auto PreallocatedBundle = | |||
| 4760 | UseCall->getOperandBundle(LLVMContext::OB_preallocated); | |||
| 4761 | Assert(PreallocatedBundle,do { if (!(PreallocatedBundle)) { CheckFailed("Use of llvm.call.preallocated.setup outside intrinsics " "must be in \"preallocated\" operand bundle"); return; } } while (false) | |||
| 4762 | "Use of llvm.call.preallocated.setup outside intrinsics "do { if (!(PreallocatedBundle)) { CheckFailed("Use of llvm.call.preallocated.setup outside intrinsics " "must be in \"preallocated\" operand bundle"); return; } } while (false) | |||
| 4763 | "must be in \"preallocated\" operand bundle")do { if (!(PreallocatedBundle)) { CheckFailed("Use of llvm.call.preallocated.setup outside intrinsics " "must be in \"preallocated\" operand bundle"); return; } } while (false); | |||
| 4764 | Assert(PreallocatedBundle->Inputs.front().get() == &Call,do { if (!(PreallocatedBundle->Inputs.front().get() == & Call)) { CheckFailed("preallocated bundle must have token from corresponding " "llvm.call.preallocated.setup"); return; } } while (false) | |||
| 4765 | "preallocated bundle must have token from corresponding "do { if (!(PreallocatedBundle->Inputs.front().get() == & Call)) { CheckFailed("preallocated bundle must have token from corresponding " "llvm.call.preallocated.setup"); return; } } while (false) | |||
| 4766 | "llvm.call.preallocated.setup")do { if (!(PreallocatedBundle->Inputs.front().get() == & Call)) { CheckFailed("preallocated bundle must have token from corresponding " "llvm.call.preallocated.setup"); return; } } while (false); | |||
| 4767 | } | |||
| 4768 | } | |||
| 4769 | break; | |||
| 4770 | } | |||
| 4771 | case Intrinsic::call_preallocated_arg: { | |||
| 4772 | auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); | |||
| 4773 | Assert(Token && Token->getCalledFunction()->getIntrinsicID() ==do { if (!(Token && Token->getCalledFunction()-> getIntrinsicID() == Intrinsic::call_preallocated_setup)) { CheckFailed ("llvm.call.preallocated.arg token argument must be a " "llvm.call.preallocated.setup" ); return; } } while (false) | |||
| 4774 | Intrinsic::call_preallocated_setup,do { if (!(Token && Token->getCalledFunction()-> getIntrinsicID() == Intrinsic::call_preallocated_setup)) { CheckFailed ("llvm.call.preallocated.arg token argument must be a " "llvm.call.preallocated.setup" ); return; } } while (false) | |||
| 4775 | "llvm.call.preallocated.arg token argument must be a "do { if (!(Token && Token->getCalledFunction()-> getIntrinsicID() == Intrinsic::call_preallocated_setup)) { CheckFailed ("llvm.call.preallocated.arg token argument must be a " "llvm.call.preallocated.setup" ); return; } } while (false) | |||
| 4776 | "llvm.call.preallocated.setup")do { if (!(Token && Token->getCalledFunction()-> getIntrinsicID() == Intrinsic::call_preallocated_setup)) { CheckFailed ("llvm.call.preallocated.arg token argument must be a " "llvm.call.preallocated.setup" ); return; } } while (false); | |||
| 4777 | Assert(Call.hasFnAttr(Attribute::Preallocated),do { if (!(Call.hasFnAttr(Attribute::Preallocated))) { CheckFailed ("llvm.call.preallocated.arg must be called with a \"preallocated\" " "call site attribute"); return; } } while (false) | |||
| 4778 | "llvm.call.preallocated.arg must be called with a \"preallocated\" "do { if (!(Call.hasFnAttr(Attribute::Preallocated))) { CheckFailed ("llvm.call.preallocated.arg must be called with a \"preallocated\" " "call site attribute"); return; } } while (false) | |||
| 4779 | "call site attribute")do { if (!(Call.hasFnAttr(Attribute::Preallocated))) { CheckFailed ("llvm.call.preallocated.arg must be called with a \"preallocated\" " "call site attribute"); return; } } while (false); | |||
| 4780 | break; | |||
| 4781 | } | |||
| 4782 | case Intrinsic::call_preallocated_teardown: { | |||
| 4783 | auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); | |||
| 4784 | Assert(Token && Token->getCalledFunction()->getIntrinsicID() ==do { if (!(Token && Token->getCalledFunction()-> getIntrinsicID() == Intrinsic::call_preallocated_setup)) { CheckFailed ("llvm.call.preallocated.teardown token argument must be a " "llvm.call.preallocated.setup" ); return; } } while (false) | |||
| 4785 | Intrinsic::call_preallocated_setup,do { if (!(Token && Token->getCalledFunction()-> getIntrinsicID() == Intrinsic::call_preallocated_setup)) { CheckFailed ("llvm.call.preallocated.teardown token argument must be a " "llvm.call.preallocated.setup" ); return; } } while (false) | |||
| 4786 | "llvm.call.preallocated.teardown token argument must be a "do { if (!(Token && Token->getCalledFunction()-> getIntrinsicID() == Intrinsic::call_preallocated_setup)) { CheckFailed ("llvm.call.preallocated.teardown token argument must be a " "llvm.call.preallocated.setup" ); return; } } while (false) | |||
| 4787 | "llvm.call.preallocated.setup")do { if (!(Token && Token->getCalledFunction()-> getIntrinsicID() == Intrinsic::call_preallocated_setup)) { CheckFailed ("llvm.call.preallocated.teardown token argument must be a " "llvm.call.preallocated.setup" ); return; } } while (false); | |||
| 4788 | break; | |||
| 4789 | } | |||
| 4790 | case Intrinsic::gcroot: | |||
| 4791 | case Intrinsic::gcwrite: | |||
| 4792 | case Intrinsic::gcread: | |||
| 4793 | if (ID == Intrinsic::gcroot) { | |||
| 4794 | AllocaInst *AI = | |||
| 4795 | dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts()); | |||
| 4796 | Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call)do { if (!(AI)) { CheckFailed("llvm.gcroot parameter #1 must be an alloca." , Call); return; } } while (false); | |||
| 4797 | Assert(isa<Constant>(Call.getArgOperand(1)),do { if (!(isa<Constant>(Call.getArgOperand(1)))) { CheckFailed ("llvm.gcroot parameter #2 must be a constant.", Call); return ; } } while (false) | |||
| 4798 | "llvm.gcroot parameter #2 must be a constant.", Call)do { if (!(isa<Constant>(Call.getArgOperand(1)))) { CheckFailed ("llvm.gcroot parameter #2 must be a constant.", Call); return ; } } while (false); | |||
| 4799 | if (!AI->getAllocatedType()->isPointerTy()) { | |||
| 4800 | Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)),do { if (!(!isa<ConstantPointerNull>(Call.getArgOperand (1)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, " "or argument #2 must be a non-null constant.", Call); return ; } } while (false) | |||
| 4801 | "llvm.gcroot parameter #1 must either be a pointer alloca, "do { if (!(!isa<ConstantPointerNull>(Call.getArgOperand (1)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, " "or argument #2 must be a non-null constant.", Call); return ; } } while (false) | |||
| 4802 | "or argument #2 must be a non-null constant.",do { if (!(!isa<ConstantPointerNull>(Call.getArgOperand (1)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, " "or argument #2 must be a non-null constant.", Call); return ; } } while (false) | |||
| 4803 | Call)do { if (!(!isa<ConstantPointerNull>(Call.getArgOperand (1)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, " "or argument #2 must be a non-null constant.", Call); return ; } } while (false); | |||
| 4804 | } | |||
| 4805 | } | |||
| 4806 | ||||
| 4807 | Assert(Call.getParent()->getParent()->hasGC(),do { if (!(Call.getParent()->getParent()->hasGC())) { CheckFailed ("Enclosing function does not use GC.", Call); return; } } while (false) | |||
| 4808 | "Enclosing function does not use GC.", Call)do { if (!(Call.getParent()->getParent()->hasGC())) { CheckFailed ("Enclosing function does not use GC.", Call); return; } } while (false); | |||
| 4809 | break; | |||
| 4810 | case Intrinsic::init_trampoline: | |||
| 4811 | Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),do { if (!(isa<Function>(Call.getArgOperand(1)->stripPointerCasts ()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function." , Call); return; } } while (false) | |||
| 4812 | "llvm.init_trampoline parameter #2 must resolve to a function.",do { if (!(isa<Function>(Call.getArgOperand(1)->stripPointerCasts ()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function." , Call); return; } } while (false) | |||
| 4813 | Call)do { if (!(isa<Function>(Call.getArgOperand(1)->stripPointerCasts ()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function." , Call); return; } } while (false); | |||
| 4814 | break; | |||
| 4815 | case Intrinsic::prefetch: | |||
| 4816 | Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 &&do { if (!(cast<ConstantInt>(Call.getArgOperand(1))-> getZExtValue() < 2 && cast<ConstantInt>(Call .getArgOperand(2))->getZExtValue() < 4)) { CheckFailed( "invalid arguments to llvm.prefetch", Call); return; } } while (false) | |||
| 4817 | cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,do { if (!(cast<ConstantInt>(Call.getArgOperand(1))-> getZExtValue() < 2 && cast<ConstantInt>(Call .getArgOperand(2))->getZExtValue() < 4)) { CheckFailed( "invalid arguments to llvm.prefetch", Call); return; } } while (false) | |||
| 4818 | "invalid arguments to llvm.prefetch", Call)do { if (!(cast<ConstantInt>(Call.getArgOperand(1))-> getZExtValue() < 2 && cast<ConstantInt>(Call .getArgOperand(2))->getZExtValue() < 4)) { CheckFailed( "invalid arguments to llvm.prefetch", Call); return; } } while (false); | |||
| 4819 | break; | |||
| 4820 | case Intrinsic::stackprotector: | |||
| 4821 | Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),do { if (!(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts ()))) { CheckFailed("llvm.stackprotector parameter #2 must resolve to an alloca." , Call); return; } } while (false) | |||
| 4822 | "llvm.stackprotector parameter #2 must resolve to an alloca.", Call)do { if (!(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts ()))) { CheckFailed("llvm.stackprotector parameter #2 must resolve to an alloca." , Call); return; } } while (false); | |||
| 4823 | break; | |||
| 4824 | case Intrinsic::localescape: { | |||
| 4825 | BasicBlock *BB = Call.getParent(); | |||
| 4826 | Assert(BB == &BB->getParent()->front(),do { if (!(BB == &BB->getParent()->front())) { CheckFailed ("llvm.localescape used outside of entry block", Call); return ; } } while (false) | |||
| 4827 | "llvm.localescape used outside of entry block", Call)do { if (!(BB == &BB->getParent()->front())) { CheckFailed ("llvm.localescape used outside of entry block", Call); return ; } } while (false); | |||
| 4828 | Assert(!SawFrameEscape,do { if (!(!SawFrameEscape)) { CheckFailed("multiple calls to llvm.localescape in one function" , Call); return; } } while (false) | |||
| 4829 | "multiple calls to llvm.localescape in one function", Call)do { if (!(!SawFrameEscape)) { CheckFailed("multiple calls to llvm.localescape in one function" , Call); return; } } while (false); | |||
| 4830 | for (Value *Arg : Call.args()) { | |||
| 4831 | if (isa<ConstantPointerNull>(Arg)) | |||
| 4832 | continue; // Null values are allowed as placeholders. | |||
| 4833 | auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); | |||
| 4834 | Assert(AI && AI->isStaticAlloca(),do { if (!(AI && AI->isStaticAlloca())) { CheckFailed ("llvm.localescape only accepts static allocas", Call); return ; } } while (false) | |||
| 4835 | "llvm.localescape only accepts static allocas", Call)do { if (!(AI && AI->isStaticAlloca())) { CheckFailed ("llvm.localescape only accepts static allocas", Call); return ; } } while (false); | |||
| 4836 | } | |||
| 4837 | FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands(); | |||
| 4838 | SawFrameEscape = true; | |||
| 4839 | break; | |||
| 4840 | } | |||
| 4841 | case Intrinsic::localrecover: { | |||
| 4842 | Value *FnArg = Call.getArgOperand(0)->stripPointerCasts(); | |||
| 4843 | Function *Fn = dyn_cast<Function>(FnArg); | |||
| 4844 | Assert(Fn && !Fn->isDeclaration(),do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed ("llvm.localrecover first " "argument must be function defined in this module" , Call); return; } } while (false) | |||
| 4845 | "llvm.localrecover first "do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed ("llvm.localrecover first " "argument must be function defined in this module" , Call); return; } } while (false) | |||
| 4846 | "argument must be function defined in this module",do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed ("llvm.localrecover first " "argument must be function defined in this module" , Call); return; } } while (false) | |||
| 4847 | Call)do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed ("llvm.localrecover first " "argument must be function defined in this module" , Call); return; } } while (false); | |||
| 4848 | auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2)); | |||
| 4849 | auto &Entry = FrameEscapeInfo[Fn]; | |||
| 4850 | Entry.second = unsigned( | |||
| 4851 | std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); | |||
| 4852 | break; | |||
| 4853 | } | |||
| 4854 | ||||
| 4855 | case Intrinsic::experimental_gc_statepoint: | |||
| 4856 | if (auto *CI = dyn_cast<CallInst>(&Call)) | |||
| 4857 | Assert(!CI->isInlineAsm(),do { if (!(!CI->isInlineAsm())) { CheckFailed("gc.statepoint support for inline assembly unimplemented" , CI); return; } } while (false) | |||
| 4858 | "gc.statepoint support for inline assembly unimplemented", CI)do { if (!(!CI->isInlineAsm())) { CheckFailed("gc.statepoint support for inline assembly unimplemented" , CI); return; } } while (false); | |||
| 4859 | Assert(Call.getParent()->getParent()->hasGC(),do { if (!(Call.getParent()->getParent()->hasGC())) { CheckFailed ("Enclosing function does not use GC.", Call); return; } } while (false) | |||
| 4860 | "Enclosing function does not use GC.", Call)do { if (!(Call.getParent()->getParent()->hasGC())) { CheckFailed ("Enclosing function does not use GC.", Call); return; } } while (false); | |||
| 4861 | ||||
| 4862 | verifyStatepoint(Call); | |||
| 4863 | break; | |||
| 4864 | case Intrinsic::experimental_gc_result: { | |||
| 4865 | Assert(Call.getParent()->getParent()->hasGC(),do { if (!(Call.getParent()->getParent()->hasGC())) { CheckFailed ("Enclosing function does not use GC.", Call); return; } } while (false) | |||
| 4866 | "Enclosing function does not use GC.", Call)do { if (!(Call.getParent()->getParent()->hasGC())) { CheckFailed ("Enclosing function does not use GC.", Call); return; } } while (false); | |||
| 4867 | // Are we tied to a statepoint properly? | |||
| 4868 | const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0)); | |||
| 4869 | const Function *StatepointFn = | |||
| 4870 | StatepointCall ? StatepointCall->getCalledFunction() : nullptr; | |||
| 4871 | Assert(StatepointFn && StatepointFn->isDeclaration() &&do { if (!(StatepointFn && StatepointFn->isDeclaration () && StatepointFn->getIntrinsicID() == Intrinsic:: experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint" , Call, Call.getArgOperand(0)); return; } } while (false) | |||
| 4872 | StatepointFn->getIntrinsicID() ==do { if (!(StatepointFn && StatepointFn->isDeclaration () && StatepointFn->getIntrinsicID() == Intrinsic:: experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint" , Call, Call.getArgOperand(0)); return; } } while (false) | |||
| 4873 | Intrinsic::experimental_gc_statepoint,do { if (!(StatepointFn && StatepointFn->isDeclaration () && StatepointFn->getIntrinsicID() == Intrinsic:: experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint" , Call, Call.getArgOperand(0)); return; } } while (false) | |||
| 4874 | "gc.result operand #1 must be from a statepoint", Call,do { if (!(StatepointFn && StatepointFn->isDeclaration () && StatepointFn->getIntrinsicID() == Intrinsic:: experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint" , Call, Call.getArgOperand(0)); return; } } while (false) | |||
| 4875 | Call.getArgOperand(0))do { if (!(StatepointFn && StatepointFn->isDeclaration () && StatepointFn->getIntrinsicID() == Intrinsic:: experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint" , Call, Call.getArgOperand(0)); return; } } while (false); | |||
| 4876 | ||||
| 4877 | // Assert that result type matches wrapped callee. | |||
| 4878 | const Value *Target = StatepointCall->getArgOperand(2); | |||
| 4879 | auto *PT = cast<PointerType>(Target->getType()); | |||
| 4880 | auto *TargetFuncType = cast<FunctionType>(PT->getElementType()); | |||
| 4881 | Assert(Call.getType() == TargetFuncType->getReturnType(),do { if (!(Call.getType() == TargetFuncType->getReturnType ())) { CheckFailed("gc.result result type does not match wrapped callee" , Call); return; } } while (false) | |||
| 4882 | "gc.result result type does not match wrapped callee", Call)do { if (!(Call.getType() == TargetFuncType->getReturnType ())) { CheckFailed("gc.result result type does not match wrapped callee" , Call); return; } } while (false); | |||
| 4883 | break; | |||
| 4884 | } | |||
| 4885 | case Intrinsic::experimental_gc_relocate: { | |||
| 4886 | Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call)do { if (!(Call.getNumArgOperands() == 3)) { CheckFailed("wrong number of arguments" , Call); return; } } while (false); | |||
| 4887 | ||||
| 4888 | Assert(isa<PointerType>(Call.getType()->getScalarType()),do { if (!(isa<PointerType>(Call.getType()->getScalarType ()))) { CheckFailed("gc.relocate must return a pointer or a vector of pointers" , Call); return; } } while (false) | |||
| 4889 | "gc.relocate must return a pointer or a vector of pointers", Call)do { if (!(isa<PointerType>(Call.getType()->getScalarType ()))) { CheckFailed("gc.relocate must return a pointer or a vector of pointers" , Call); return; } } while (false); | |||
| 4890 | ||||
| 4891 | // Check that this relocate is correctly tied to the statepoint | |||
| 4892 | ||||
| 4893 | // This is case for relocate on the unwinding path of an invoke statepoint | |||
| 4894 | if (LandingPadInst *LandingPad = | |||
| 4895 | dyn_cast<LandingPadInst>(Call.getArgOperand(0))) { | |||
| 4896 | ||||
| 4897 | const BasicBlock *InvokeBB = | |||
| 4898 | LandingPad->getParent()->getUniquePredecessor(); | |||
| 4899 | ||||
| 4900 | // Landingpad relocates should have only one predecessor with invoke | |||
| 4901 | // statepoint terminator | |||
| 4902 | Assert(InvokeBB, "safepoints should have unique landingpads",do { if (!(InvokeBB)) { CheckFailed("safepoints should have unique landingpads" , LandingPad->getParent()); return; } } while (false) | |||
| 4903 | LandingPad->getParent())do { if (!(InvokeBB)) { CheckFailed("safepoints should have unique landingpads" , LandingPad->getParent()); return; } } while (false); | |||
| 4904 | Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",do { if (!(InvokeBB->getTerminator())) { CheckFailed("safepoint block should be well formed" , InvokeBB); return; } } while (false) | |||
| 4905 | InvokeBB)do { if (!(InvokeBB->getTerminator())) { CheckFailed("safepoint block should be well formed" , InvokeBB); return; } } while (false); | |||
| 4906 | Assert(isa<GCStatepointInst>(InvokeBB->getTerminator()),do { if (!(isa<GCStatepointInst>(InvokeBB->getTerminator ()))) { CheckFailed("gc relocate should be linked to a statepoint" , InvokeBB); return; } } while (false) | |||
| 4907 | "gc relocate should be linked to a statepoint", InvokeBB)do { if (!(isa<GCStatepointInst>(InvokeBB->getTerminator ()))) { CheckFailed("gc relocate should be linked to a statepoint" , InvokeBB); return; } } while (false); | |||
| 4908 | } else { | |||
| 4909 | // In all other cases relocate should be tied to the statepoint directly. | |||
| 4910 | // This covers relocates on a normal return path of invoke statepoint and | |||
| 4911 | // relocates of a call statepoint. | |||
| 4912 | auto Token = Call.getArgOperand(0); | |||
| 4913 | Assert(isa<GCStatepointInst>(Token),do { if (!(isa<GCStatepointInst>(Token))) { CheckFailed ("gc relocate is incorrectly tied to the statepoint", Call, Token ); return; } } while (false) | |||
| 4914 | "gc relocate is incorrectly tied to the statepoint", Call, Token)do { if (!(isa<GCStatepointInst>(Token))) { CheckFailed ("gc relocate is incorrectly tied to the statepoint", Call, Token ); return; } } while (false); | |||
| 4915 | } | |||
| 4916 | ||||
| 4917 | // Verify rest of the relocate arguments. | |||
| 4918 | const CallBase &StatepointCall = | |||
| 4919 | *cast<GCRelocateInst>(Call).getStatepoint(); | |||
| 4920 | ||||
| 4921 | // Both the base and derived must be piped through the safepoint. | |||
| 4922 | Value *Base = Call.getArgOperand(1); | |||
| 4923 | Assert(isa<ConstantInt>(Base),do { if (!(isa<ConstantInt>(Base))) { CheckFailed("gc.relocate operand #2 must be integer offset" , Call); return; } } while (false) | |||
| 4924 | "gc.relocate operand #2 must be integer offset", Call)do { if (!(isa<ConstantInt>(Base))) { CheckFailed("gc.relocate operand #2 must be integer offset" , Call); return; } } while (false); | |||
| 4925 | ||||
| 4926 | Value *Derived = Call.getArgOperand(2); | |||
| 4927 | Assert(isa<ConstantInt>(Derived),do { if (!(isa<ConstantInt>(Derived))) { CheckFailed("gc.relocate operand #3 must be integer offset" , Call); return; } } while (false) | |||
| 4928 | "gc.relocate operand #3 must be integer offset", Call)do { if (!(isa<ConstantInt>(Derived))) { CheckFailed("gc.relocate operand #3 must be integer offset" , Call); return; } } while (false); | |||
| 4929 | ||||
| 4930 | const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); | |||
| 4931 | const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); | |||
| 4932 | ||||
| 4933 | // Check the bounds | |||
| 4934 | if (auto Opt = StatepointCall.getOperandBundle(LLVMContext::OB_gc_live)) { | |||
| 4935 | Assert(BaseIndex < Opt->Inputs.size(),do { if (!(BaseIndex < Opt->Inputs.size())) { CheckFailed ("gc.relocate: statepoint base index out of bounds", Call); return ; } } while (false) | |||
| 4936 | "gc.relocate: statepoint base index out of bounds", Call)do { if (!(BaseIndex < Opt->Inputs.size())) { CheckFailed ("gc.relocate: statepoint base index out of bounds", Call); return ; } } while (false); | |||
| 4937 | Assert(DerivedIndex < Opt->Inputs.size(),do { if (!(DerivedIndex < Opt->Inputs.size())) { CheckFailed ("gc.relocate: statepoint derived index out of bounds", Call) ; return; } } while (false) | |||
| 4938 | "gc.relocate: statepoint derived index out of bounds", Call)do { if (!(DerivedIndex < Opt->Inputs.size())) { CheckFailed ("gc.relocate: statepoint derived index out of bounds", Call) ; return; } } while (false); | |||
| 4939 | } | |||
| 4940 | ||||
| 4941 | // Relocated value must be either a pointer type or vector-of-pointer type, | |||
| 4942 | // but gc_relocate does not need to return the same pointer type as the | |||
| 4943 | // relocated pointer. It can be casted to the correct type later if it's | |||
| 4944 | // desired. However, they must have the same address space and 'vectorness' | |||
| 4945 | GCRelocateInst &Relocate = cast<GCRelocateInst>(Call); | |||
| 4946 | Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),do { if (!(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy ())) { CheckFailed("gc.relocate: relocated value must be a gc pointer" , Call); return; } } while (false) | |||
| 4947 | "gc.relocate: relocated value must be a gc pointer", Call)do { if (!(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy ())) { CheckFailed("gc.relocate: relocated value must be a gc pointer" , Call); return; } } while (false); | |||
| 4948 | ||||
| 4949 | auto ResultType = Call.getType(); | |||
| 4950 | auto DerivedType = Relocate.getDerivedPtr()->getType(); | |||
| 4951 | Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),do { if (!(ResultType->isVectorTy() == DerivedType->isVectorTy ())) { CheckFailed("gc.relocate: vector relocates to vector and pointer to pointer" , Call); return; } } while (false) | |||
| 4952 | "gc.relocate: vector relocates to vector and pointer to pointer",do { if (!(ResultType->isVectorTy() == DerivedType->isVectorTy ())) { CheckFailed("gc.relocate: vector relocates to vector and pointer to pointer" , Call); return; } } while (false) | |||
| 4953 | Call)do { if (!(ResultType->isVectorTy() == DerivedType->isVectorTy ())) { CheckFailed("gc.relocate: vector relocates to vector and pointer to pointer" , Call); return; } } while (false); | |||
| 4954 | Assert(do { if (!(ResultType->getPointerAddressSpace() == DerivedType ->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space" , Call); return; } } while (false) | |||
| 4955 | ResultType->getPointerAddressSpace() ==do { if (!(ResultType->getPointerAddressSpace() == DerivedType ->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space" , Call); return; } } while (false) | |||
| 4956 | DerivedType->getPointerAddressSpace(),do { if (!(ResultType->getPointerAddressSpace() == DerivedType ->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space" , Call); return; } } while (false) | |||
| 4957 | "gc.relocate: relocating a pointer shouldn't change its address space",do { if (!(ResultType->getPointerAddressSpace() == DerivedType ->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space" , Call); return; } } while (false) | |||
| 4958 | Call)do { if (!(ResultType->getPointerAddressSpace() == DerivedType ->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space" , Call); return; } } while (false); | |||
| 4959 | break; | |||
| 4960 | } | |||
| 4961 | case Intrinsic::eh_exceptioncode: | |||
| 4962 | case Intrinsic::eh_exceptionpointer: { | |||
| 4963 | Assert(isa<CatchPadInst>(Call.getArgOperand(0)),do { if (!(isa<CatchPadInst>(Call.getArgOperand(0)))) { CheckFailed("eh.exceptionpointer argument must be a catchpad" , Call); return; } } while (false) | |||
| 4964 | "eh.exceptionpointer argument must be a catchpad", Call)do { if (!(isa<CatchPadInst>(Call.getArgOperand(0)))) { CheckFailed("eh.exceptionpointer argument must be a catchpad" , Call); return; } } while (false); | |||
| 4965 | break; | |||
| 4966 | } | |||
| 4967 | case Intrinsic::get_active_lane_mask: { | |||
| 4968 | Assert(Call.getType()->isVectorTy(), "get_active_lane_mask: must return a "do { if (!(Call.getType()->isVectorTy())) { CheckFailed("get_active_lane_mask: must return a " "vector", Call); return; } } while (false) | |||
| 4969 | "vector", Call)do { if (!(Call.getType()->isVectorTy())) { CheckFailed("get_active_lane_mask: must return a " "vector", Call); return; } } while (false); | |||
| 4970 | auto *ElemTy = Call.getType()->getScalarType(); | |||
| 4971 | Assert(ElemTy->isIntegerTy(1), "get_active_lane_mask: element type is not "do { if (!(ElemTy->isIntegerTy(1))) { CheckFailed("get_active_lane_mask: element type is not " "i1", Call); return; } } while (false) | |||
| 4972 | "i1", Call)do { if (!(ElemTy->isIntegerTy(1))) { CheckFailed("get_active_lane_mask: element type is not " "i1", Call); return; } } while (false); | |||
| 4973 | break; | |||
| 4974 | } | |||
| 4975 | case Intrinsic::masked_load: { | |||
| 4976 | Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector",do { if (!(Call.getType()->isVectorTy())) { CheckFailed("masked_load: must return a vector" , Call); return; } } while (false) | |||
| 4977 | Call)do { if (!(Call.getType()->isVectorTy())) { CheckFailed("masked_load: must return a vector" , Call); return; } } while (false); | |||
| 4978 | ||||
| 4979 | Value *Ptr = Call.getArgOperand(0); | |||
| 4980 | ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1)); | |||
| 4981 | Value *Mask = Call.getArgOperand(2); | |||
| 4982 | Value *PassThru = Call.getArgOperand(3); | |||
| 4983 | Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",do { if (!(Mask->getType()->isVectorTy())) { CheckFailed ("masked_load: mask must be vector", Call); return; } } while (false) | |||
| 4984 | Call)do { if (!(Mask->getType()->isVectorTy())) { CheckFailed ("masked_load: mask must be vector", Call); return; } } while (false); | |||
| 4985 | Assert(Alignment->getValue().isPowerOf2(),do { if (!(Alignment->getValue().isPowerOf2())) { CheckFailed ("masked_load: alignment must be a power of 2", Call); return ; } } while (false) | |||
| 4986 | "masked_load: alignment must be a power of 2", Call)do { if (!(Alignment->getValue().isPowerOf2())) { CheckFailed ("masked_load: alignment must be a power of 2", Call); return ; } } while (false); | |||
| 4987 | ||||
| 4988 | PointerType *PtrTy = cast<PointerType>(Ptr->getType()); | |||
| 4989 | Assert(PtrTy->isOpaqueOrPointeeTypeMatches(Call.getType()),do { if (!(PtrTy->isOpaqueOrPointeeTypeMatches(Call.getType ()))) { CheckFailed("masked_load: return must match pointer type" , Call); return; } } while (false) | |||
| 4990 | "masked_load: return must match pointer type", Call)do { if (!(PtrTy->isOpaqueOrPointeeTypeMatches(Call.getType ()))) { CheckFailed("masked_load: return must match pointer type" , Call); return; } } while (false); | |||
| 4991 | Assert(PassThru->getType() == Call.getType(),do { if (!(PassThru->getType() == Call.getType())) { CheckFailed ("masked_load: pass through and return type must match", Call ); return; } } while (false) | |||
| 4992 | "masked_load: pass through and return type must match", Call)do { if (!(PassThru->getType() == Call.getType())) { CheckFailed ("masked_load: pass through and return type must match", Call ); return; } } while (false); | |||
| 4993 | Assert(cast<VectorType>(Mask->getType())->getElementCount() ==do { if (!(cast<VectorType>(Mask->getType())->getElementCount () == cast<VectorType>(Call.getType())->getElementCount ())) { CheckFailed("masked_load: vector mask must be same length as return" , Call); return; } } while (false) | |||
| 4994 | cast<VectorType>(Call.getType())->getElementCount(),do { if (!(cast<VectorType>(Mask->getType())->getElementCount () == cast<VectorType>(Call.getType())->getElementCount ())) { CheckFailed("masked_load: vector mask must be same length as return" , Call); return; } } while (false) | |||
| 4995 | "masked_load: vector mask must be same length as return", Call)do { if (!(cast<VectorType>(Mask->getType())->getElementCount () == cast<VectorType>(Call.getType())->getElementCount ())) { CheckFailed("masked_load: vector mask must be same length as return" , Call); return; } } while (false); | |||
| 4996 | break; | |||
| 4997 | } | |||
| 4998 | case Intrinsic::masked_store: { | |||
| 4999 | Value *Val = Call.getArgOperand(0); | |||
| 5000 | Value *Ptr = Call.getArgOperand(1); | |||
| 5001 | ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2)); | |||
| 5002 | Value *Mask = Call.getArgOperand(3); | |||
| 5003 | Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",do { if (!(Mask->getType()->isVectorTy())) { CheckFailed ("masked_store: mask must be vector", Call); return; } } while (false) | |||
| 5004 | Call)do { if (!(Mask->getType()->isVectorTy())) { CheckFailed ("masked_store: mask must be vector", Call); return; } } while (false); | |||
| 5005 | Assert(Alignment->getValue().isPowerOf2(),do { if (!(Alignment->getValue().isPowerOf2())) { CheckFailed ("masked_store: alignment must be a power of 2", Call); return ; } } while (false) | |||
| 5006 | "masked_store: alignment must be a power of 2", Call)do { if (!(Alignment->getValue().isPowerOf2())) { CheckFailed ("masked_store: alignment must be a power of 2", Call); return ; } } while (false); | |||
| 5007 | ||||
| 5008 | PointerType *PtrTy = cast<PointerType>(Ptr->getType()); | |||
| 5009 | Assert(PtrTy->isOpaqueOrPointeeTypeMatches(Val->getType()),do { if (!(PtrTy->isOpaqueOrPointeeTypeMatches(Val->getType ()))) { CheckFailed("masked_store: storee must match pointer type" , Call); return; } } while (false) | |||
| 5010 | "masked_store: storee must match pointer type", Call)do { if (!(PtrTy->isOpaqueOrPointeeTypeMatches(Val->getType ()))) { CheckFailed("masked_store: storee must match pointer type" , Call); return; } } while (false); | |||
| 5011 | Assert(cast<VectorType>(Mask->getType())->getElementCount() ==do { if (!(cast<VectorType>(Mask->getType())->getElementCount () == cast<VectorType>(Val->getType())->getElementCount ())) { CheckFailed("masked_store: vector mask must be same length as value" , Call); return; } } while (false) | |||
| 5012 | cast<VectorType>(Val->getType())->getElementCount(),do { if (!(cast<VectorType>(Mask->getType())->getElementCount () == cast<VectorType>(Val->getType())->getElementCount ())) { CheckFailed("masked_store: vector mask must be same length as value" , Call); return; } } while (false) | |||
| 5013 | "masked_store: vector mask must be same length as value", Call)do { if (!(cast<VectorType>(Mask->getType())->getElementCount () == cast<VectorType>(Val->getType())->getElementCount ())) { CheckFailed("masked_store: vector mask must be same length as value" , Call); return; } } while (false); | |||
| 5014 | break; | |||
| 5015 | } | |||
| 5016 | ||||
| 5017 | case Intrinsic::masked_gather: { | |||
| 5018 | const APInt &Alignment = | |||
| 5019 | cast<ConstantInt>(Call.getArgOperand(1))->getValue(); | |||
| 5020 | Assert(Alignment.isNullValue() || Alignment.isPowerOf2(),do { if (!(Alignment.isNullValue() || Alignment.isPowerOf2()) ) { CheckFailed("masked_gather: alignment must be 0 or a power of 2" , Call); return; } } while (false) | |||
| 5021 | "masked_gather: alignment must be 0 or a power of 2", Call)do { if (!(Alignment.isNullValue() || Alignment.isPowerOf2()) ) { CheckFailed("masked_gather: alignment must be 0 or a power of 2" , Call); return; } } while (false); | |||
| 5022 | break; | |||
| 5023 | } | |||
| 5024 | case Intrinsic::masked_scatter: { | |||
| 5025 | const APInt &Alignment = | |||
| 5026 | cast<ConstantInt>(Call.getArgOperand(2))->getValue(); | |||
| 5027 | Assert(Alignment.isNullValue() || Alignment.isPowerOf2(),do { if (!(Alignment.isNullValue() || Alignment.isPowerOf2()) ) { CheckFailed("masked_scatter: alignment must be 0 or a power of 2" , Call); return; } } while (false) | |||
| 5028 | "masked_scatter: alignment must be 0 or a power of 2", Call)do { if (!(Alignment.isNullValue() || Alignment.isPowerOf2()) ) { CheckFailed("masked_scatter: alignment must be 0 or a power of 2" , Call); return; } } while (false); | |||
| 5029 | break; | |||
| 5030 | } | |||
| 5031 | ||||
| 5032 | case Intrinsic::experimental_guard: { | |||
| 5033 | Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call)do { if (!(isa<CallInst>(Call))) { CheckFailed("experimental_guard cannot be invoked" , Call); return; } } while (false); | |||
| 5034 | Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,do { if (!(Call.countOperandBundlesOfType(LLVMContext::OB_deopt ) == 1)) { CheckFailed("experimental_guard must have exactly one " "\"deopt\" operand bundle"); return; } } while (false) | |||
| 5035 | "experimental_guard must have exactly one "do { if (!(Call.countOperandBundlesOfType(LLVMContext::OB_deopt ) == 1)) { CheckFailed("experimental_guard must have exactly one " "\"deopt\" operand bundle"); return; } } while (false) | |||
| 5036 | "\"deopt\" operand bundle")do { if (!(Call.countOperandBundlesOfType(LLVMContext::OB_deopt ) == 1)) { CheckFailed("experimental_guard must have exactly one " "\"deopt\" operand bundle"); return; } } while (false); | |||
| 5037 | break; | |||
| 5038 | } | |||
| 5039 | ||||
| 5040 | case Intrinsic::experimental_deoptimize: { | |||
| 5041 | Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",do { if (!(isa<CallInst>(Call))) { CheckFailed("experimental_deoptimize cannot be invoked" , Call); return; } } while (false) | |||
| 5042 | Call)do { if (!(isa<CallInst>(Call))) { CheckFailed("experimental_deoptimize cannot be invoked" , Call); return; } } while (false); | |||
| 5043 | Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,do { if (!(Call.countOperandBundlesOfType(LLVMContext::OB_deopt ) == 1)) { CheckFailed("experimental_deoptimize must have exactly one " "\"deopt\" operand bundle"); return; } } while (false) | |||
| 5044 | "experimental_deoptimize must have exactly one "do { if (!(Call.countOperandBundlesOfType(LLVMContext::OB_deopt ) == 1)) { CheckFailed("experimental_deoptimize must have exactly one " "\"deopt\" operand bundle"); return; } } while (false) | |||
| 5045 | "\"deopt\" operand bundle")do { if (!(Call.countOperandBundlesOfType(LLVMContext::OB_deopt ) == 1)) { CheckFailed("experimental_deoptimize must have exactly one " "\"deopt\" operand bundle"); return; } } while (false); | |||
| 5046 | Assert(Call.getType() == Call.getFunction()->getReturnType(),do { if (!(Call.getType() == Call.getFunction()->getReturnType ())) { CheckFailed("experimental_deoptimize return type must match caller return type" ); return; } } while (false) | |||
| 5047 | "experimental_deoptimize return type must match caller return type")do { if (!(Call.getType() == Call.getFunction()->getReturnType ())) { CheckFailed("experimental_deoptimize return type must match caller return type" ); return; } } while (false); | |||
| 5048 | ||||
| 5049 | if (isa<CallInst>(Call)) { | |||
| 5050 | auto *RI = dyn_cast<ReturnInst>(Call.getNextNode()); | |||
| 5051 | Assert(RI,do { if (!(RI)) { CheckFailed("calls to experimental_deoptimize must be followed by a return" ); return; } } while (false) | |||
| 5052 | "calls to experimental_deoptimize must be followed by a return")do { if (!(RI)) { CheckFailed("calls to experimental_deoptimize must be followed by a return" ); return; } } while (false); | |||
| 5053 | ||||
| 5054 | if (!Call.getType()->isVoidTy() && RI) | |||
| 5055 | Assert(RI->getReturnValue() == &Call,do { if (!(RI->getReturnValue() == &Call)) { CheckFailed ("calls to experimental_deoptimize must be followed by a return " "of the value computed by experimental_deoptimize"); return; } } while (false) | |||
| 5056 | "calls to experimental_deoptimize must be followed by a return "do { if (!(RI->getReturnValue() == &Call)) { CheckFailed ("calls to experimental_deoptimize must be followed by a return " "of the value computed by experimental_deoptimize"); return; } } while (false) | |||
| 5057 | "of the value computed by experimental_deoptimize")do { if (!(RI->getReturnValue() == &Call)) { CheckFailed ("calls to experimental_deoptimize must be followed by a return " "of the value computed by experimental_deoptimize"); return; } } while (false); | |||
| 5058 | } | |||
| 5059 | ||||
| 5060 | break; | |||
| 5061 | } | |||
| 5062 | case Intrinsic::vector_reduce_and: | |||
| 5063 | case Intrinsic::vector_reduce_or: | |||
| 5064 | case Intrinsic::vector_reduce_xor: | |||
| 5065 | case Intrinsic::vector_reduce_add: | |||
| 5066 | case Intrinsic::vector_reduce_mul: | |||
| 5067 | case Intrinsic::vector_reduce_smax: | |||
| 5068 | case Intrinsic::vector_reduce_smin: | |||
| 5069 | case Intrinsic::vector_reduce_umax: | |||
| 5070 | case Intrinsic::vector_reduce_umin: { | |||
| 5071 | Type *ArgTy = Call.getArgOperand(0)->getType(); | |||
| 5072 | Assert(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(),do { if (!(ArgTy->isIntOrIntVectorTy() && ArgTy-> isVectorTy())) { CheckFailed("Intrinsic has incorrect argument type!" ); return; } } while (false) | |||
| 5073 | "Intrinsic has incorrect argument type!")do { if (!(ArgTy->isIntOrIntVectorTy() && ArgTy-> isVectorTy())) { CheckFailed("Intrinsic has incorrect argument type!" ); return; } } while (false); | |||
| 5074 | break; | |||
| 5075 | } | |||
| 5076 | case Intrinsic::vector_reduce_fmax: | |||
| 5077 | case Intrinsic::vector_reduce_fmin: { | |||
| 5078 | Type *ArgTy = Call.getArgOperand(0)->getType(); | |||
| 5079 | Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),do { if (!(ArgTy->isFPOrFPVectorTy() && ArgTy-> isVectorTy())) { CheckFailed("Intrinsic has incorrect argument type!" ); return; } } while (false) | |||
| 5080 | "Intrinsic has incorrect argument type!")do { if (!(ArgTy->isFPOrFPVectorTy() && ArgTy-> isVectorTy())) { CheckFailed("Intrinsic has incorrect argument type!" ); return; } } while (false); | |||
| 5081 | break; | |||
| 5082 | } | |||
| 5083 | case Intrinsic::vector_reduce_fadd: | |||
| 5084 | case Intrinsic::vector_reduce_fmul: { | |||
| 5085 | // Unlike the other reductions, the first argument is a start value. The | |||
| 5086 | // second argument is the vector to be reduced. | |||
| 5087 | Type *ArgTy = Call.getArgOperand(1)->getType(); | |||
| 5088 | Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),do { if (!(ArgTy->isFPOrFPVectorTy() && ArgTy-> isVectorTy())) { CheckFailed("Intrinsic has incorrect argument type!" ); return; } } while (false) | |||
| 5089 | "Intrinsic has incorrect argument type!")do { if (!(ArgTy->isFPOrFPVectorTy() && ArgTy-> isVectorTy())) { CheckFailed("Intrinsic has incorrect argument type!" ); return; } } while (false); | |||
| 5090 | break; | |||
| 5091 | } | |||
| 5092 | case Intrinsic::smul_fix: | |||
| 5093 | case Intrinsic::smul_fix_sat: | |||
| 5094 | case Intrinsic::umul_fix: | |||
| 5095 | case Intrinsic::umul_fix_sat: | |||
| 5096 | case Intrinsic::sdiv_fix: | |||
| 5097 | case Intrinsic::sdiv_fix_sat: | |||
| 5098 | case Intrinsic::udiv_fix: | |||
| 5099 | case Intrinsic::udiv_fix_sat: { | |||
| 5100 | Value *Op1 = Call.getArgOperand(0); | |||
| 5101 | Value *Op2 = Call.getArgOperand(1); | |||
| 5102 | Assert(Op1->getType()->isIntOrIntVectorTy(),do { if (!(Op1->getType()->isIntOrIntVectorTy())) { CheckFailed ("first operand of [us][mul|div]_fix[_sat] must be an int type or " "vector of ints"); return; } } while (false) | |||
| 5103 | "first operand of [us][mul|div]_fix[_sat] must be an int type or "do { if (!(Op1->getType()->isIntOrIntVectorTy())) { CheckFailed ("first operand of [us][mul|div]_fix[_sat] must be an int type or " "vector of ints"); return; } } while (false) | |||
| 5104 | "vector of ints")do { if (!(Op1->getType()->isIntOrIntVectorTy())) { CheckFailed ("first operand of [us][mul|div]_fix[_sat] must be an int type or " "vector of ints"); return; } } while (false); | |||
| 5105 | Assert(Op2->getType()->isIntOrIntVectorTy(),do { if (!(Op2->getType()->isIntOrIntVectorTy())) { CheckFailed ("second operand of [us][mul|div]_fix[_sat] must be an int type or " "vector of ints"); return; } } while (false) | |||
| 5106 | "second operand of [us][mul|div]_fix[_sat] must be an int type or "do { if (!(Op2->getType()->isIntOrIntVectorTy())) { CheckFailed ("second operand of [us][mul|div]_fix[_sat] must be an int type or " "vector of ints"); return; } } while (false) | |||
| 5107 | "vector of ints")do { if (!(Op2->getType()->isIntOrIntVectorTy())) { CheckFailed ("second operand of [us][mul|div]_fix[_sat] must be an int type or " "vector of ints"); return; } } while (false); | |||
| 5108 | ||||
| 5109 | auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2)); | |||
| 5110 | Assert(Op3->getType()->getBitWidth() <= 32,do { if (!(Op3->getType()->getBitWidth() <= 32)) { CheckFailed ("third argument of [us][mul|div]_fix[_sat] must fit within 32 bits" ); return; } } while (false) | |||
| 5111 | "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits")do { if (!(Op3->getType()->getBitWidth() <= 32)) { CheckFailed ("third argument of [us][mul|div]_fix[_sat] must fit within 32 bits" ); return; } } while (false); | |||
| 5112 | ||||
| 5113 | if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat || | |||
| 5114 | ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) { | |||
| 5115 | Assert(do { if (!(Op3->getZExtValue() < Op1->getType()-> getScalarSizeInBits())) { CheckFailed("the scale of s[mul|div]_fix[_sat] must be less than the width of " "the operands"); return; } } while (false) | |||
| 5116 | Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),do { if (!(Op3->getZExtValue() < Op1->getType()-> getScalarSizeInBits())) { CheckFailed("the scale of s[mul|div]_fix[_sat] must be less than the width of " "the operands"); return; } } while (false) | |||
| 5117 | "the scale of s[mul|div]_fix[_sat] must be less than the width of "do { if (!(Op3->getZExtValue() < Op1->getType()-> getScalarSizeInBits())) { CheckFailed("the scale of s[mul|div]_fix[_sat] must be less than the width of " "the operands"); return; } } while (false) | |||
| 5118 | "the operands")do { if (!(Op3->getZExtValue() < Op1->getType()-> getScalarSizeInBits())) { CheckFailed("the scale of s[mul|div]_fix[_sat] must be less than the width of " "the operands"); return; } } while (false); | |||
| 5119 | } else { | |||
| 5120 | Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),do { if (!(Op3->getZExtValue() <= Op1->getType()-> getScalarSizeInBits())) { CheckFailed("the scale of u[mul|div]_fix[_sat] must be less than or equal " "to the width of the operands"); return; } } while (false) | |||
| 5121 | "the scale of u[mul|div]_fix[_sat] must be less than or equal "do { if (!(Op3->getZExtValue() <= Op1->getType()-> getScalarSizeInBits())) { CheckFailed("the scale of u[mul|div]_fix[_sat] must be less than or equal " "to the width of the operands"); return; } } while (false) | |||
| 5122 | "to the width of the operands")do { if (!(Op3->getZExtValue() <= Op1->getType()-> getScalarSizeInBits())) { CheckFailed("the scale of u[mul|div]_fix[_sat] must be less than or equal " "to the width of the operands"); return; } } while (false); | |||
| 5123 | } | |||
| 5124 | break; | |||
| 5125 | } | |||
| 5126 | case Intrinsic::lround: | |||
| 5127 | case Intrinsic::llround: | |||
| 5128 | case Intrinsic::lrint: | |||
| 5129 | case Intrinsic::llrint: { | |||
| 5130 | Type *ValTy = Call.getArgOperand(0)->getType(); | |||
| 5131 | Type *ResultTy = Call.getType(); | |||
| 5132 | Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),do { if (!(!ValTy->isVectorTy() && !ResultTy->isVectorTy ())) { CheckFailed("Intrinsic does not support vectors", & Call); return; } } while (false) | |||
| 5133 | "Intrinsic does not support vectors", &Call)do { if (!(!ValTy->isVectorTy() && !ResultTy->isVectorTy ())) { CheckFailed("Intrinsic does not support vectors", & Call); return; } } while (false); | |||
| 5134 | break; | |||
| 5135 | } | |||
| 5136 | case Intrinsic::bswap: { | |||
| 5137 | Type *Ty = Call.getType(); | |||
| 5138 | unsigned Size = Ty->getScalarSizeInBits(); | |||
| 5139 | Assert(Size % 16 == 0, "bswap must be an even number of bytes", &Call)do { if (!(Size % 16 == 0)) { CheckFailed("bswap must be an even number of bytes" , &Call); return; } } while (false); | |||
| 5140 | break; | |||
| 5141 | } | |||
| 5142 | case Intrinsic::invariant_start: { | |||
| 5143 | ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0)); | |||
| 5144 | Assert(InvariantSize &&do { if (!(InvariantSize && (!InvariantSize->isNegative () || InvariantSize->isMinusOne()))) { CheckFailed("invariant_start parameter must be -1, 0 or a positive number" , &Call); return; } } while (false) | |||
| 5145 | (!InvariantSize->isNegative() || InvariantSize->isMinusOne()),do { if (!(InvariantSize && (!InvariantSize->isNegative () || InvariantSize->isMinusOne()))) { CheckFailed("invariant_start parameter must be -1, 0 or a positive number" , &Call); return; } } while (false) | |||
| 5146 | "invariant_start parameter must be -1, 0 or a positive number",do { if (!(InvariantSize && (!InvariantSize->isNegative () || InvariantSize->isMinusOne()))) { CheckFailed("invariant_start parameter must be -1, 0 or a positive number" , &Call); return; } } while (false) | |||
| 5147 | &Call)do { if (!(InvariantSize && (!InvariantSize->isNegative () || InvariantSize->isMinusOne()))) { CheckFailed("invariant_start parameter must be -1, 0 or a positive number" , &Call); return; } } while (false); | |||
| 5148 | break; | |||
| 5149 | } | |||
| 5150 | case Intrinsic::matrix_multiply: | |||
| 5151 | case Intrinsic::matrix_transpose: | |||
| 5152 | case Intrinsic::matrix_column_major_load: | |||
| 5153 | case Intrinsic::matrix_column_major_store: { | |||
| 5154 | Function *IF = Call.getCalledFunction(); | |||
| 5155 | ConstantInt *Stride = nullptr; | |||
| 5156 | ConstantInt *NumRows; | |||
| 5157 | ConstantInt *NumColumns; | |||
| 5158 | VectorType *ResultTy; | |||
| 5159 | Type *Op0ElemTy = nullptr; | |||
| 5160 | Type *Op1ElemTy = nullptr; | |||
| 5161 | switch (ID) { | |||
| 5162 | case Intrinsic::matrix_multiply: | |||
| 5163 | NumRows = cast<ConstantInt>(Call.getArgOperand(2)); | |||
| 5164 | NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); | |||
| 5165 | ResultTy = cast<VectorType>(Call.getType()); | |||
| 5166 | Op0ElemTy = | |||
| 5167 | cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); | |||
| 5168 | Op1ElemTy = | |||
| 5169 | cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType(); | |||
| 5170 | break; | |||
| 5171 | case Intrinsic::matrix_transpose: | |||
| 5172 | NumRows = cast<ConstantInt>(Call.getArgOperand(1)); | |||
| 5173 | NumColumns = cast<ConstantInt>(Call.getArgOperand(2)); | |||
| 5174 | ResultTy = cast<VectorType>(Call.getType()); | |||
| 5175 | Op0ElemTy = | |||
| 5176 | cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); | |||
| 5177 | break; | |||
| 5178 | case Intrinsic::matrix_column_major_load: | |||
| 5179 | Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1)); | |||
| 5180 | NumRows = cast<ConstantInt>(Call.getArgOperand(3)); | |||
| 5181 | NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); | |||
| 5182 | ResultTy = cast<VectorType>(Call.getType()); | |||
| 5183 | Op0ElemTy = | |||
| 5184 | cast<PointerType>(Call.getArgOperand(0)->getType())->getElementType(); | |||
| 5185 | break; | |||
| 5186 | case Intrinsic::matrix_column_major_store: | |||
| 5187 | Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2)); | |||
| 5188 | NumRows = cast<ConstantInt>(Call.getArgOperand(4)); | |||
| 5189 | NumColumns = cast<ConstantInt>(Call.getArgOperand(5)); | |||
| 5190 | ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType()); | |||
| 5191 | Op0ElemTy = | |||
| 5192 | cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); | |||
| 5193 | Op1ElemTy = | |||
| 5194 | cast<PointerType>(Call.getArgOperand(1)->getType())->getElementType(); | |||
| 5195 | break; | |||
| 5196 | default: | |||
| 5197 | llvm_unreachable("unexpected intrinsic")__builtin_unreachable(); | |||
| 5198 | } | |||
| 5199 | ||||
| 5200 | Assert(ResultTy->getElementType()->isIntegerTy() ||do { if (!(ResultTy->getElementType()->isIntegerTy() || ResultTy->getElementType()->isFloatingPointTy())) { CheckFailed ("Result type must be an integer or floating-point type!", IF ); return; } } while (false) | |||
| 5201 | ResultTy->getElementType()->isFloatingPointTy(),do { if (!(ResultTy->getElementType()->isIntegerTy() || ResultTy->getElementType()->isFloatingPointTy())) { CheckFailed ("Result type must be an integer or floating-point type!", IF ); return; } } while (false) | |||
| 5202 | "Result type must be an integer or floating-point type!", IF)do { if (!(ResultTy->getElementType()->isIntegerTy() || ResultTy->getElementType()->isFloatingPointTy())) { CheckFailed ("Result type must be an integer or floating-point type!", IF ); return; } } while (false); | |||
| 5203 | ||||
| 5204 | Assert(ResultTy->getElementType() == Op0ElemTy,do { if (!(ResultTy->getElementType() == Op0ElemTy)) { CheckFailed ("Vector element type mismatch of the result and first operand " "vector!", IF); return; } } while (false) | |||
| 5205 | "Vector element type mismatch of the result and first operand "do { if (!(ResultTy->getElementType() == Op0ElemTy)) { CheckFailed ("Vector element type mismatch of the result and first operand " "vector!", IF); return; } } while (false) | |||
| 5206 | "vector!", IF)do { if (!(ResultTy->getElementType() == Op0ElemTy)) { CheckFailed ("Vector element type mismatch of the result and first operand " "vector!", IF); return; } } while (false); | |||
| 5207 | ||||
| 5208 | if (Op1ElemTy) | |||
| 5209 | Assert(ResultTy->getElementType() == Op1ElemTy,do { if (!(ResultTy->getElementType() == Op1ElemTy)) { CheckFailed ("Vector element type mismatch of the result and second operand " "vector!", IF); return; } } while (false) | |||
| 5210 | "Vector element type mismatch of the result and second operand "do { if (!(ResultTy->getElementType() == Op1ElemTy)) { CheckFailed ("Vector element type mismatch of the result and second operand " "vector!", IF); return; } } while (false) | |||
| 5211 | "vector!", IF)do { if (!(ResultTy->getElementType() == Op1ElemTy)) { CheckFailed ("Vector element type mismatch of the result and second operand " "vector!", IF); return; } } while (false); | |||
| 5212 | ||||
| 5213 | Assert(cast<FixedVectorType>(ResultTy)->getNumElements() ==do { if (!(cast<FixedVectorType>(ResultTy)->getNumElements () == NumRows->getZExtValue() * NumColumns->getZExtValue ())) { CheckFailed("Result of a matrix operation does not fit in the returned vector!" ); return; } } while (false) | |||
| 5214 | NumRows->getZExtValue() * NumColumns->getZExtValue(),do { if (!(cast<FixedVectorType>(ResultTy)->getNumElements () == NumRows->getZExtValue() * NumColumns->getZExtValue ())) { CheckFailed("Result of a matrix operation does not fit in the returned vector!" ); return; } } while (false) | |||
| 5215 | "Result of a matrix operation does not fit in the returned vector!")do { if (!(cast<FixedVectorType>(ResultTy)->getNumElements () == NumRows->getZExtValue() * NumColumns->getZExtValue ())) { CheckFailed("Result of a matrix operation does not fit in the returned vector!" ); return; } } while (false); | |||
| 5216 | ||||
| 5217 | if (Stride) | |||
| 5218 | Assert(Stride->getZExtValue() >= NumRows->getZExtValue(),do { if (!(Stride->getZExtValue() >= NumRows->getZExtValue ())) { CheckFailed("Stride must be greater or equal than the number of rows!" , IF); return; } } while (false) | |||
| 5219 | "Stride must be greater or equal than the number of rows!", IF)do { if (!(Stride->getZExtValue() >= NumRows->getZExtValue ())) { CheckFailed("Stride must be greater or equal than the number of rows!" , IF); return; } } while (false); | |||
| 5220 | ||||
| 5221 | break; | |||
| 5222 | } | |||
| 5223 | case Intrinsic::experimental_stepvector: { | |||
| 5224 | VectorType *VecTy = dyn_cast<VectorType>(Call.getType()); | |||
| 5225 | Assert(VecTy && VecTy->getScalarType()->isIntegerTy() &&do { if (!(VecTy && VecTy->getScalarType()->isIntegerTy () && VecTy->getScalarSizeInBits() >= 8)) { CheckFailed ("experimental_stepvector only supported for vectors of integers " "with a bitwidth of at least 8.", &Call); return; } } while (false) | |||
| 5226 | VecTy->getScalarSizeInBits() >= 8,do { if (!(VecTy && VecTy->getScalarType()->isIntegerTy () && VecTy->getScalarSizeInBits() >= 8)) { CheckFailed ("experimental_stepvector only supported for vectors of integers " "with a bitwidth of at least 8.", &Call); return; } } while (false) | |||
| 5227 | "experimental_stepvector only supported for vectors of integers "do { if (!(VecTy && VecTy->getScalarType()->isIntegerTy () && VecTy->getScalarSizeInBits() >= 8)) { CheckFailed ("experimental_stepvector only supported for vectors of integers " "with a bitwidth of at least 8.", &Call); return; } } while (false) | |||
| 5228 | "with a bitwidth of at least 8.",do { if (!(VecTy && VecTy->getScalarType()->isIntegerTy () && VecTy->getScalarSizeInBits() >= 8)) { CheckFailed ("experimental_stepvector only supported for vectors of integers " "with a bitwidth of at least 8.", &Call); return; } } while (false) | |||
| 5229 | &Call)do { if (!(VecTy && VecTy->getScalarType()->isIntegerTy () && VecTy->getScalarSizeInBits() >= 8)) { CheckFailed ("experimental_stepvector only supported for vectors of integers " "with a bitwidth of at least 8.", &Call); return; } } while (false); | |||
| 5230 | break; | |||
| 5231 | } | |||
| 5232 | case Intrinsic::experimental_vector_insert: { | |||
| 5233 | Value *Vec = Call.getArgOperand(0); | |||
| 5234 | Value *SubVec = Call.getArgOperand(1); | |||
| 5235 | Value *Idx = Call.getArgOperand(2); | |||
| 5236 | unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); | |||
| 5237 | ||||
| 5238 | VectorType *VecTy = cast<VectorType>(Vec->getType()); | |||
| 5239 | VectorType *SubVecTy = cast<VectorType>(SubVec->getType()); | |||
| 5240 | ||||
| 5241 | ElementCount VecEC = VecTy->getElementCount(); | |||
| 5242 | ElementCount SubVecEC = SubVecTy->getElementCount(); | |||
| 5243 | Assert(VecTy->getElementType() == SubVecTy->getElementType(),do { if (!(VecTy->getElementType() == SubVecTy->getElementType ())) { CheckFailed("experimental_vector_insert parameters must have the same element " "type.", &Call); return; } } while (false) | |||
| 5244 | "experimental_vector_insert parameters must have the same element "do { if (!(VecTy->getElementType() == SubVecTy->getElementType ())) { CheckFailed("experimental_vector_insert parameters must have the same element " "type.", &Call); return; } } while (false) | |||
| 5245 | "type.",do { if (!(VecTy->getElementType() == SubVecTy->getElementType ())) { CheckFailed("experimental_vector_insert parameters must have the same element " "type.", &Call); return; } } while (false) | |||
| 5246 | &Call)do { if (!(VecTy->getElementType() == SubVecTy->getElementType ())) { CheckFailed("experimental_vector_insert parameters must have the same element " "type.", &Call); return; } } while (false); | |||
| 5247 | Assert(IdxN % SubVecEC.getKnownMinValue() == 0,do { if (!(IdxN % SubVecEC.getKnownMinValue() == 0)) { CheckFailed ("experimental_vector_insert index must be a constant multiple of " "the subvector's known minimum vector length."); return; } } while (false) | |||
| 5248 | "experimental_vector_insert index must be a constant multiple of "do { if (!(IdxN % SubVecEC.getKnownMinValue() == 0)) { CheckFailed ("experimental_vector_insert index must be a constant multiple of " "the subvector's known minimum vector length."); return; } } while (false) | |||
| 5249 | "the subvector's known minimum vector length.")do { if (!(IdxN % SubVecEC.getKnownMinValue() == 0)) { CheckFailed ("experimental_vector_insert index must be a constant multiple of " "the subvector's known minimum vector length."); return; } } while (false); | |||
| 5250 | ||||
| 5251 | // If this insertion is not the 'mixed' case where a fixed vector is | |||
| 5252 | // inserted into a scalable vector, ensure that the insertion of the | |||
| 5253 | // subvector does not overrun the parent vector. | |||
| 5254 | if (VecEC.isScalable() == SubVecEC.isScalable()) { | |||
| 5255 | Assert(do { if (!(IdxN < VecEC.getKnownMinValue() && IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue() )) { CheckFailed("subvector operand of experimental_vector_insert would overrun the " "vector being inserted into."); return; } } while (false) | |||
| 5256 | IdxN < VecEC.getKnownMinValue() &&do { if (!(IdxN < VecEC.getKnownMinValue() && IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue() )) { CheckFailed("subvector operand of experimental_vector_insert would overrun the " "vector being inserted into."); return; } } while (false) | |||
| 5257 | IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue(),do { if (!(IdxN < VecEC.getKnownMinValue() && IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue() )) { CheckFailed("subvector operand of experimental_vector_insert would overrun the " "vector being inserted into."); return; } } while (false) | |||
| 5258 | "subvector operand of experimental_vector_insert would overrun the "do { if (!(IdxN < VecEC.getKnownMinValue() && IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue() )) { CheckFailed("subvector operand of experimental_vector_insert would overrun the " "vector being inserted into."); return; } } while (false) | |||
| 5259 | "vector being inserted into.")do { if (!(IdxN < VecEC.getKnownMinValue() && IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue() )) { CheckFailed("subvector operand of experimental_vector_insert would overrun the " "vector being inserted into."); return; } } while (false); | |||
| 5260 | } | |||
| 5261 | break; | |||
| 5262 | } | |||
| 5263 | case Intrinsic::experimental_vector_extract: { | |||
| 5264 | Value *Vec = Call.getArgOperand(0); | |||
| 5265 | Value *Idx = Call.getArgOperand(1); | |||
| 5266 | unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); | |||
| 5267 | ||||
| 5268 | VectorType *ResultTy = cast<VectorType>(Call.getType()); | |||
| 5269 | VectorType *VecTy = cast<VectorType>(Vec->getType()); | |||
| 5270 | ||||
| 5271 | ElementCount VecEC = VecTy->getElementCount(); | |||
| 5272 | ElementCount ResultEC = ResultTy->getElementCount(); | |||
| 5273 | ||||
| 5274 | Assert(ResultTy->getElementType() == VecTy->getElementType(),do { if (!(ResultTy->getElementType() == VecTy->getElementType ())) { CheckFailed("experimental_vector_extract result must have the same element " "type as the input vector.", &Call); return; } } while ( false) | |||
| 5275 | "experimental_vector_extract result must have the same element "do { if (!(ResultTy->getElementType() == VecTy->getElementType ())) { CheckFailed("experimental_vector_extract result must have the same element " "type as the input vector.", &Call); return; } } while ( false) | |||
| 5276 | "type as the input vector.",do { if (!(ResultTy->getElementType() == VecTy->getElementType ())) { CheckFailed("experimental_vector_extract result must have the same element " "type as the input vector.", &Call); return; } } while ( false) | |||
| 5277 | &Call)do { if (!(ResultTy->getElementType() == VecTy->getElementType ())) { CheckFailed("experimental_vector_extract result must have the same element " "type as the input vector.", &Call); return; } } while ( false); | |||
| 5278 | Assert(IdxN % ResultEC.getKnownMinValue() == 0,do { if (!(IdxN % ResultEC.getKnownMinValue() == 0)) { CheckFailed ("experimental_vector_extract index must be a constant multiple of " "the result type's known minimum vector length."); return; } } while (false) | |||
| 5279 | "experimental_vector_extract index must be a constant multiple of "do { if (!(IdxN % ResultEC.getKnownMinValue() == 0)) { CheckFailed ("experimental_vector_extract index must be a constant multiple of " "the result type's known minimum vector length."); return; } } while (false) | |||
| 5280 | "the result type's known minimum vector length.")do { if (!(IdxN % ResultEC.getKnownMinValue() == 0)) { CheckFailed ("experimental_vector_extract index must be a constant multiple of " "the result type's known minimum vector length."); return; } } while (false); | |||
| 5281 | ||||
| 5282 | // If this extraction is not the 'mixed' case where a fixed vector is is | |||
| 5283 | // extracted from a scalable vector, ensure that the extraction does not | |||
| 5284 | // overrun the parent vector. | |||
| 5285 | if (VecEC.isScalable() == ResultEC.isScalable()) { | |||
| 5286 | Assert(IdxN < VecEC.getKnownMinValue() &&do { if (!(IdxN < VecEC.getKnownMinValue() && IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue() )) { CheckFailed("experimental_vector_extract would overrun." ); return; } } while (false) | |||
| 5287 | IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue(),do { if (!(IdxN < VecEC.getKnownMinValue() && IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue() )) { CheckFailed("experimental_vector_extract would overrun." ); return; } } while (false) | |||
| 5288 | "experimental_vector_extract would overrun.")do { if (!(IdxN < VecEC.getKnownMinValue() && IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue() )) { CheckFailed("experimental_vector_extract would overrun." ); return; } } while (false); | |||
| 5289 | } | |||
| 5290 | break; | |||
| 5291 | } | |||
| 5292 | case Intrinsic::experimental_noalias_scope_decl: { | |||
| 5293 | NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call)); | |||
| 5294 | break; | |||
| 5295 | } | |||
| 5296 | case Intrinsic::preserve_array_access_index: | |||
| 5297 | case Intrinsic::preserve_struct_access_index: { | |||
| 5298 | Type *ElemTy = Call.getAttributes().getParamElementType(0); | |||
| 5299 | Assert(ElemTy,do { if (!(ElemTy)) { CheckFailed("Intrinsic requires elementtype attribute on first argument." , &Call); return; } } while (false) | |||
| 5300 | "Intrinsic requires elementtype attribute on first argument.",do { if (!(ElemTy)) { CheckFailed("Intrinsic requires elementtype attribute on first argument." , &Call); return; } } while (false) | |||
| 5301 | &Call)do { if (!(ElemTy)) { CheckFailed("Intrinsic requires elementtype attribute on first argument." , &Call); return; } } while (false); | |||
| 5302 | break; | |||
| 5303 | } | |||
| 5304 | }; | |||
| 5305 | } | |||
| 5306 | ||||
| 5307 | /// Carefully grab the subprogram from a local scope. | |||
| 5308 | /// | |||
| 5309 | /// This carefully grabs the subprogram from a local scope, avoiding the | |||
| 5310 | /// built-in assertions that would typically fire. | |||
| 5311 | static DISubprogram *getSubprogram(Metadata *LocalScope) { | |||
| 5312 | if (!LocalScope) | |||
| 5313 | return nullptr; | |||
| 5314 | ||||
| 5315 | if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) | |||
| 5316 | return SP; | |||
| 5317 | ||||
| 5318 | if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) | |||
| 5319 | return getSubprogram(LB->getRawScope()); | |||
| 5320 | ||||
| 5321 | // Just return null; broken scope chains are checked elsewhere. | |||
| 5322 | assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope")((void)0); | |||
| 5323 | return nullptr; | |||
| 5324 | } | |||
| 5325 | ||||
| 5326 | void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { | |||
| 5327 | unsigned NumOperands; | |||
| 5328 | bool HasRoundingMD; | |||
| 5329 | switch (FPI.getIntrinsicID()) { | |||
| 5330 | #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ | |||
| 5331 | case Intrinsic::INTRINSIC: \ | |||
| 5332 | NumOperands = NARG; \ | |||
| 5333 | HasRoundingMD = ROUND_MODE; \ | |||
| 5334 | break; | |||
| 5335 | #include "llvm/IR/ConstrainedOps.def" | |||
| 5336 | default: | |||
| 5337 | llvm_unreachable("Invalid constrained FP intrinsic!")__builtin_unreachable(); | |||
| 5338 | } | |||
| 5339 | NumOperands += (1 + HasRoundingMD); | |||
| 5340 | // Compare intrinsics carry an extra predicate metadata operand. | |||
| 5341 | if (isa<ConstrainedFPCmpIntrinsic>(FPI)) | |||
| 5342 | NumOperands += 1; | |||
| 5343 | Assert((FPI.getNumArgOperands() == NumOperands),do { if (!((FPI.getNumArgOperands() == NumOperands))) { CheckFailed ("invalid arguments for constrained FP intrinsic", &FPI); return; } } while (false) | |||
| 5344 | "invalid arguments for constrained FP intrinsic", &FPI)do { if (!((FPI.getNumArgOperands() == NumOperands))) { CheckFailed ("invalid arguments for constrained FP intrinsic", &FPI); return; } } while (false); | |||
| 5345 | ||||
| 5346 | switch (FPI.getIntrinsicID()) { | |||
| 5347 | case Intrinsic::experimental_constrained_lrint: | |||
| 5348 | case Intrinsic::experimental_constrained_llrint: { | |||
| 5349 | Type *ValTy = FPI.getArgOperand(0)->getType(); | |||
| 5350 | Type *ResultTy = FPI.getType(); | |||
| 5351 | Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),do { if (!(!ValTy->isVectorTy() && !ResultTy->isVectorTy ())) { CheckFailed("Intrinsic does not support vectors", & FPI); return; } } while (false) | |||
| 5352 | "Intrinsic does not support vectors", &FPI)do { if (!(!ValTy->isVectorTy() && !ResultTy->isVectorTy ())) { CheckFailed("Intrinsic does not support vectors", & FPI); return; } } while (false); | |||
| 5353 | } | |||
| 5354 | break; | |||
| 5355 | ||||
| 5356 | case Intrinsic::experimental_constrained_lround: | |||
| 5357 | case Intrinsic::experimental_constrained_llround: { | |||
| 5358 | Type *ValTy = FPI.getArgOperand(0)->getType(); | |||
| 5359 | Type *ResultTy = FPI.getType(); | |||
| 5360 | Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),do { if (!(!ValTy->isVectorTy() && !ResultTy->isVectorTy ())) { CheckFailed("Intrinsic does not support vectors", & FPI); return; } } while (false) | |||
| 5361 | "Intrinsic does not support vectors", &FPI)do { if (!(!ValTy->isVectorTy() && !ResultTy->isVectorTy ())) { CheckFailed("Intrinsic does not support vectors", & FPI); return; } } while (false); | |||
| 5362 | break; | |||
| 5363 | } | |||
| 5364 | ||||
| 5365 | case Intrinsic::experimental_constrained_fcmp: | |||
| 5366 | case Intrinsic::experimental_constrained_fcmps: { | |||
| 5367 | auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate(); | |||
| 5368 | Assert(CmpInst::isFPPredicate(Pred),do { if (!(CmpInst::isFPPredicate(Pred))) { CheckFailed("invalid predicate for constrained FP comparison intrinsic" , &FPI); return; } } while (false) | |||
| 5369 | "invalid predicate for constrained FP comparison intrinsic", &FPI)do { if (!(CmpInst::isFPPredicate(Pred))) { CheckFailed("invalid predicate for constrained FP comparison intrinsic" , &FPI); return; } } while (false); | |||
| 5370 | break; | |||
| 5371 | } | |||
| 5372 | ||||
| 5373 | case Intrinsic::experimental_constrained_fptosi: | |||
| 5374 | case Intrinsic::experimental_constrained_fptoui: { | |||
| 5375 | Value *Operand = FPI.getArgOperand(0); | |||
| 5376 | uint64_t NumSrcElem = 0; | |||
| 5377 | Assert(Operand->getType()->isFPOrFPVectorTy(),do { if (!(Operand->getType()->isFPOrFPVectorTy())) { CheckFailed ("Intrinsic first argument must be floating point", &FPI) ; return; } } while (false) | |||
| 5378 | "Intrinsic first argument must be floating point", &FPI)do { if (!(Operand->getType()->isFPOrFPVectorTy())) { CheckFailed ("Intrinsic first argument must be floating point", &FPI) ; return; } } while (false); | |||
| 5379 | if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { | |||
| 5380 | NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements(); | |||
| 5381 | } | |||
| 5382 | ||||
| 5383 | Operand = &FPI; | |||
| 5384 | Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),do { if (!((NumSrcElem > 0) == Operand->getType()->isVectorTy ())) { CheckFailed("Intrinsic first argument and result disagree on vector use" , &FPI); return; } } while (false) | |||
| 5385 | "Intrinsic first argument and result disagree on vector use", &FPI)do { if (!((NumSrcElem > 0) == Operand->getType()->isVectorTy ())) { CheckFailed("Intrinsic first argument and result disagree on vector use" , &FPI); return; } } while (false); | |||
| 5386 | Assert(Operand->getType()->isIntOrIntVectorTy(),do { if (!(Operand->getType()->isIntOrIntVectorTy())) { CheckFailed("Intrinsic result must be an integer", &FPI) ; return; } } while (false) | |||
| 5387 | "Intrinsic result must be an integer", &FPI)do { if (!(Operand->getType()->isIntOrIntVectorTy())) { CheckFailed("Intrinsic result must be an integer", &FPI) ; return; } } while (false); | |||
| 5388 | if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { | |||
| 5389 | Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(),do { if (!(NumSrcElem == cast<FixedVectorType>(OperandT )->getNumElements())) { CheckFailed("Intrinsic first argument and result vector lengths must be equal" , &FPI); return; } } while (false) | |||
| 5390 | "Intrinsic first argument and result vector lengths must be equal",do { if (!(NumSrcElem == cast<FixedVectorType>(OperandT )->getNumElements())) { CheckFailed("Intrinsic first argument and result vector lengths must be equal" , &FPI); return; } } while (false) | |||
| 5391 | &FPI)do { if (!(NumSrcElem == cast<FixedVectorType>(OperandT )->getNumElements())) { CheckFailed("Intrinsic first argument and result vector lengths must be equal" , &FPI); return; } } while (false); | |||
| 5392 | } | |||
| 5393 | } | |||
| 5394 | break; | |||
| 5395 | ||||
| 5396 | case Intrinsic::experimental_constrained_sitofp: | |||
| 5397 | case Intrinsic::experimental_constrained_uitofp: { | |||
| 5398 | Value *Operand = FPI.getArgOperand(0); | |||
| 5399 | uint64_t NumSrcElem = 0; | |||
| 5400 | Assert(Operand->getType()->isIntOrIntVectorTy(),do { if (!(Operand->getType()->isIntOrIntVectorTy())) { CheckFailed("Intrinsic first argument must be integer", & FPI); return; } } while (false) | |||
| 5401 | "Intrinsic first argument must be integer", &FPI)do { if (!(Operand->getType()->isIntOrIntVectorTy())) { CheckFailed("Intrinsic first argument must be integer", & FPI); return; } } while (false); | |||
| 5402 | if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { | |||
| 5403 | NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements(); | |||
| 5404 | } | |||
| 5405 | ||||
| 5406 | Operand = &FPI; | |||
| 5407 | Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),do { if (!((NumSrcElem > 0) == Operand->getType()->isVectorTy ())) { CheckFailed("Intrinsic first argument and result disagree on vector use" , &FPI); return; } } while (false) | |||
| 5408 | "Intrinsic first argument and result disagree on vector use", &FPI)do { if (!((NumSrcElem > 0) == Operand->getType()->isVectorTy ())) { CheckFailed("Intrinsic first argument and result disagree on vector use" , &FPI); return; } } while (false); | |||
| 5409 | Assert(Operand->getType()->isFPOrFPVectorTy(),do { if (!(Operand->getType()->isFPOrFPVectorTy())) { CheckFailed ("Intrinsic result must be a floating point", &FPI); return ; } } while (false) | |||
| 5410 | "Intrinsic result must be a floating point", &FPI)do { if (!(Operand->getType()->isFPOrFPVectorTy())) { CheckFailed ("Intrinsic result must be a floating point", &FPI); return ; } } while (false); | |||
| 5411 | if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { | |||
| 5412 | Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(),do { if (!(NumSrcElem == cast<FixedVectorType>(OperandT )->getNumElements())) { CheckFailed("Intrinsic first argument and result vector lengths must be equal" , &FPI); return; } } while (false) | |||
| 5413 | "Intrinsic first argument and result vector lengths must be equal",do { if (!(NumSrcElem == cast<FixedVectorType>(OperandT )->getNumElements())) { CheckFailed("Intrinsic first argument and result vector lengths must be equal" , &FPI); return; } } while (false) | |||
| 5414 | &FPI)do { if (!(NumSrcElem == cast<FixedVectorType>(OperandT )->getNumElements())) { CheckFailed("Intrinsic first argument and result vector lengths must be equal" , &FPI); return; } } while (false); | |||
| 5415 | } | |||
| 5416 | } break; | |||
| 5417 | ||||
| 5418 | case Intrinsic::experimental_constrained_fptrunc: | |||
| 5419 | case Intrinsic::experimental_constrained_fpext: { | |||
| 5420 | Value *Operand = FPI.getArgOperand(0); | |||
| 5421 | Type *OperandTy = Operand->getType(); | |||
| 5422 | Value *Result = &FPI; | |||
| 5423 | Type *ResultTy = Result->getType(); | |||
| 5424 | Assert(OperandTy->isFPOrFPVectorTy(),do { if (!(OperandTy->isFPOrFPVectorTy())) { CheckFailed("Intrinsic first argument must be FP or FP vector" , &FPI); return; } } while (false) | |||
| 5425 | "Intrinsic first argument must be FP or FP vector", &FPI)do { if (!(OperandTy->isFPOrFPVectorTy())) { CheckFailed("Intrinsic first argument must be FP or FP vector" , &FPI); return; } } while (false); | |||
| 5426 | Assert(ResultTy->isFPOrFPVectorTy(),do { if (!(ResultTy->isFPOrFPVectorTy())) { CheckFailed("Intrinsic result must be FP or FP vector" , &FPI); return; } } while (false) | |||
| 5427 | "Intrinsic result must be FP or FP vector", &FPI)do { if (!(ResultTy->isFPOrFPVectorTy())) { CheckFailed("Intrinsic result must be FP or FP vector" , &FPI); return; } } while (false); | |||
| 5428 | Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(),do { if (!(OperandTy->isVectorTy() == ResultTy->isVectorTy ())) { CheckFailed("Intrinsic first argument and result disagree on vector use" , &FPI); return; } } while (false) | |||
| 5429 | "Intrinsic first argument and result disagree on vector use", &FPI)do { if (!(OperandTy->isVectorTy() == ResultTy->isVectorTy ())) { CheckFailed("Intrinsic first argument and result disagree on vector use" , &FPI); return; } } while (false); | |||
| 5430 | if (OperandTy->isVectorTy()) { | |||
| 5431 | Assert(cast<FixedVectorType>(OperandTy)->getNumElements() ==do { if (!(cast<FixedVectorType>(OperandTy)->getNumElements () == cast<FixedVectorType>(ResultTy)->getNumElements ())) { CheckFailed("Intrinsic first argument and result vector lengths must be equal" , &FPI); return; } } while (false) | |||
| 5432 | cast<FixedVectorType>(ResultTy)->getNumElements(),do { if (!(cast<FixedVectorType>(OperandTy)->getNumElements () == cast<FixedVectorType>(ResultTy)->getNumElements ())) { CheckFailed("Intrinsic first argument and result vector lengths must be equal" , &FPI); return; } } while (false) | |||
| 5433 | "Intrinsic first argument and result vector lengths must be equal",do { if (!(cast<FixedVectorType>(OperandTy)->getNumElements () == cast<FixedVectorType>(ResultTy)->getNumElements ())) { CheckFailed("Intrinsic first argument and result vector lengths must be equal" , &FPI); return; } } while (false) | |||
| 5434 | &FPI)do { if (!(cast<FixedVectorType>(OperandTy)->getNumElements () == cast<FixedVectorType>(ResultTy)->getNumElements ())) { CheckFailed("Intrinsic first argument and result vector lengths must be equal" , &FPI); return; } } while (false); | |||
| 5435 | } | |||
| 5436 | if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { | |||
| 5437 | Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),do { if (!(OperandTy->getScalarSizeInBits() > ResultTy-> getScalarSizeInBits())) { CheckFailed("Intrinsic first argument's type must be larger than result type" , &FPI); return; } } while (false) | |||
| 5438 | "Intrinsic first argument's type must be larger than result type",do { if (!(OperandTy->getScalarSizeInBits() > ResultTy-> getScalarSizeInBits())) { CheckFailed("Intrinsic first argument's type must be larger than result type" , &FPI); return; } } while (false) | |||
| 5439 | &FPI)do { if (!(OperandTy->getScalarSizeInBits() > ResultTy-> getScalarSizeInBits())) { CheckFailed("Intrinsic first argument's type must be larger than result type" , &FPI); return; } } while (false); | |||
| 5440 | } else { | |||
| 5441 | Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),do { if (!(OperandTy->getScalarSizeInBits() < ResultTy-> getScalarSizeInBits())) { CheckFailed("Intrinsic first argument's type must be smaller than result type" , &FPI); return; } } while (false) | |||
| 5442 | "Intrinsic first argument's type must be smaller than result type",do { if (!(OperandTy->getScalarSizeInBits() < ResultTy-> getScalarSizeInBits())) { CheckFailed("Intrinsic first argument's type must be smaller than result type" , &FPI); return; } } while (false) | |||
| 5443 | &FPI)do { if (!(OperandTy->getScalarSizeInBits() < ResultTy-> getScalarSizeInBits())) { CheckFailed("Intrinsic first argument's type must be smaller than result type" , &FPI); return; } } while (false); | |||
| 5444 | } | |||
| 5445 | } | |||
| 5446 | break; | |||
| 5447 | ||||
| 5448 | default: | |||
| 5449 | break; | |||
| 5450 | } | |||
| 5451 | ||||
| 5452 | // If a non-metadata argument is passed in a metadata slot then the | |||
| 5453 | // error will be caught earlier when the incorrect argument doesn't | |||
| 5454 | // match the specification in the intrinsic call table. Thus, no | |||
| 5455 | // argument type check is needed here. | |||
| 5456 | ||||
| 5457 | Assert(FPI.getExceptionBehavior().hasValue(),do { if (!(FPI.getExceptionBehavior().hasValue())) { CheckFailed ("invalid exception behavior argument", &FPI); return; } } while (false) | |||
| 5458 | "invalid exception behavior argument", &FPI)do { if (!(FPI.getExceptionBehavior().hasValue())) { CheckFailed ("invalid exception behavior argument", &FPI); return; } } while (false); | |||
| 5459 | if (HasRoundingMD) { | |||
| 5460 | Assert(FPI.getRoundingMode().hasValue(),do { if (!(FPI.getRoundingMode().hasValue())) { CheckFailed("invalid rounding mode argument" , &FPI); return; } } while (false) | |||
| 5461 | "invalid rounding mode argument", &FPI)do { if (!(FPI.getRoundingMode().hasValue())) { CheckFailed("invalid rounding mode argument" , &FPI); return; } } while (false); | |||
| 5462 | } | |||
| 5463 | } | |||
| 5464 | ||||
| 5465 | void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { | |||
| 5466 | auto *MD = DII.getRawLocation(); | |||
| 5467 | AssertDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) ||do { if (!(isa<ValueAsMetadata>(MD) || isa<DIArgList >(MD) || (isa<MDNode>(MD) && !cast<MDNode >(MD)->getNumOperands()))) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); return; } } while (false) | |||
| 5468 | (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),do { if (!(isa<ValueAsMetadata>(MD) || isa<DIArgList >(MD) || (isa<MDNode>(MD) && !cast<MDNode >(MD)->getNumOperands()))) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); return; } } while (false) | |||
| 5469 | "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD)do { if (!(isa<ValueAsMetadata>(MD) || isa<DIArgList >(MD) || (isa<MDNode>(MD) && !cast<MDNode >(MD)->getNumOperands()))) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); return; } } while (false); | |||
| 5470 | AssertDI(isa<DILocalVariable>(DII.getRawVariable()),do { if (!(isa<DILocalVariable>(DII.getRawVariable()))) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable" , &DII, DII.getRawVariable()); return; } } while (false) | |||
| 5471 | "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,do { if (!(isa<DILocalVariable>(DII.getRawVariable()))) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable" , &DII, DII.getRawVariable()); return; } } while (false) | |||
| 5472 | DII.getRawVariable())do { if (!(isa<DILocalVariable>(DII.getRawVariable()))) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable" , &DII, DII.getRawVariable()); return; } } while (false); | |||
| 5473 | AssertDI(isa<DIExpression>(DII.getRawExpression()),do { if (!(isa<DIExpression>(DII.getRawExpression()))) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression" , &DII, DII.getRawExpression()); return; } } while (false ) | |||
| 5474 | "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,do { if (!(isa<DIExpression>(DII.getRawExpression()))) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression" , &DII, DII.getRawExpression()); return; } } while (false ) | |||
| 5475 | DII.getRawExpression())do { if (!(isa<DIExpression>(DII.getRawExpression()))) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression" , &DII, DII.getRawExpression()); return; } } while (false ); | |||
| 5476 | ||||
| 5477 | // Ignore broken !dbg attachments; they're checked elsewhere. | |||
| 5478 | if (MDNode *N = DII.getDebugLoc().getAsMDNode()) | |||
| 5479 | if (!isa<DILocation>(N)) | |||
| 5480 | return; | |||
| 5481 | ||||
| 5482 | BasicBlock *BB = DII.getParent(); | |||
| 5483 | Function *F = BB ? BB->getParent() : nullptr; | |||
| 5484 | ||||
| 5485 | // The scopes for variables and !dbg attachments must agree. | |||
| 5486 | DILocalVariable *Var = DII.getVariable(); | |||
| 5487 | DILocation *Loc = DII.getDebugLoc(); | |||
| 5488 | AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",do { if (!(Loc)) { DebugInfoCheckFailed("llvm.dbg." + Kind + " intrinsic requires a !dbg attachment" , &DII, BB, F); return; } } while (false) | |||
| 5489 | &DII, BB, F)do { if (!(Loc)) { DebugInfoCheckFailed("llvm.dbg." + Kind + " intrinsic requires a !dbg attachment" , &DII, BB, F); return; } } while (false); | |||
| 5490 | ||||
| 5491 | DISubprogram *VarSP = getSubprogram(Var->getRawScope()); | |||
| 5492 | DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); | |||
| 5493 | if (!VarSP || !LocSP) | |||
| 5494 | return; // Broken scope chains are checked elsewhere. | |||
| 5495 | ||||
| 5496 | AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg." + Kind + " variable and !dbg attachment", &DII, BB, F, Var , Var->getScope()->getSubprogram(), Loc, Loc->getScope ()->getSubprogram()); return; } } while (false) | |||
| 5497 | " variable and !dbg attachment",do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg." + Kind + " variable and !dbg attachment", &DII, BB, F, Var , Var->getScope()->getSubprogram(), Loc, Loc->getScope ()->getSubprogram()); return; } } while (false) | |||
| 5498 | &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg." + Kind + " variable and !dbg attachment", &DII, BB, F, Var , Var->getScope()->getSubprogram(), Loc, Loc->getScope ()->getSubprogram()); return; } } while (false) | |||
| 5499 | Loc->getScope()->getSubprogram())do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg." + Kind + " variable and !dbg attachment", &DII, BB, F, Var , Var->getScope()->getSubprogram(), Loc, Loc->getScope ()->getSubprogram()); return; } } while (false); | |||
| 5500 | ||||
| 5501 | // This check is redundant with one in visitLocalVariable(). | |||
| 5502 | AssertDI(isType(Var->getRawType()), "invalid type ref", Var,do { if (!(isType(Var->getRawType()))) { DebugInfoCheckFailed ("invalid type ref", Var, Var->getRawType()); return; } } while (false) | |||
| 5503 | Var->getRawType())do { if (!(isType(Var->getRawType()))) { DebugInfoCheckFailed ("invalid type ref", Var, Var->getRawType()); return; } } while (false); | |||
| 5504 | verifyFnArgs(DII); | |||
| 5505 | } | |||
| 5506 | ||||
| 5507 | void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { | |||
| 5508 | AssertDI(isa<DILabel>(DLI.getRawLabel()),do { if (!(isa<DILabel>(DLI.getRawLabel()))) { DebugInfoCheckFailed ("invalid llvm.dbg." + Kind + " intrinsic variable", &DLI , DLI.getRawLabel()); return; } } while (false) | |||
| 5509 | "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,do { if (!(isa<DILabel>(DLI.getRawLabel()))) { DebugInfoCheckFailed ("invalid llvm.dbg." + Kind + " intrinsic variable", &DLI , DLI.getRawLabel()); return; } } while (false) | |||
| 5510 | DLI.getRawLabel())do { if (!(isa<DILabel>(DLI.getRawLabel()))) { DebugInfoCheckFailed ("invalid llvm.dbg." + Kind + " intrinsic variable", &DLI , DLI.getRawLabel()); return; } } while (false); | |||
| 5511 | ||||
| 5512 | // Ignore broken !dbg attachments; they're checked elsewhere. | |||
| 5513 | if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) | |||
| 5514 | if (!isa<DILocation>(N)) | |||
| 5515 | return; | |||
| 5516 | ||||
| 5517 | BasicBlock *BB = DLI.getParent(); | |||
| 5518 | Function *F = BB ? BB->getParent() : nullptr; | |||
| 5519 | ||||
| 5520 | // The scopes for variables and !dbg attachments must agree. | |||
| 5521 | DILabel *Label = DLI.getLabel(); | |||
| 5522 | DILocation *Loc = DLI.getDebugLoc(); | |||
| 5523 | Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",do { if (!(Loc)) { CheckFailed("llvm.dbg." + Kind + " intrinsic requires a !dbg attachment" , &DLI, BB, F); return; } } while (false) | |||
| 5524 | &DLI, BB, F)do { if (!(Loc)) { CheckFailed("llvm.dbg." + Kind + " intrinsic requires a !dbg attachment" , &DLI, BB, F); return; } } while (false); | |||
| 5525 | ||||
| 5526 | DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); | |||
| 5527 | DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); | |||
| 5528 | if (!LabelSP || !LocSP) | |||
| 5529 | return; | |||
| 5530 | ||||
| 5531 | AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +do { if (!(LabelSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg." + Kind + " label and !dbg attachment", &DLI, BB, F, Label , Label->getScope()->getSubprogram(), Loc, Loc->getScope ()->getSubprogram()); return; } } while (false) | |||
| 5532 | " label and !dbg attachment",do { if (!(LabelSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg." + Kind + " label and !dbg attachment", &DLI, BB, F, Label , Label->getScope()->getSubprogram(), Loc, Loc->getScope ()->getSubprogram()); return; } } while (false) | |||
| 5533 | &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,do { if (!(LabelSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg." + Kind + " label and !dbg attachment", &DLI, BB, F, Label , Label->getScope()->getSubprogram(), Loc, Loc->getScope ()->getSubprogram()); return; } } while (false) | |||
| 5534 | Loc->getScope()->getSubprogram())do { if (!(LabelSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg." + Kind + " label and !dbg attachment", &DLI, BB, F, Label , Label->getScope()->getSubprogram(), Loc, Loc->getScope ()->getSubprogram()); return; } } while (false); | |||
| 5535 | } | |||
| 5536 | ||||
| 5537 | void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { | |||
| 5538 | DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); | |||
| 5539 | DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); | |||
| 5540 | ||||
| 5541 | // We don't know whether this intrinsic verified correctly. | |||
| 5542 | if (!V || !E || !E->isValid()) | |||
| 5543 | return; | |||
| 5544 | ||||
| 5545 | // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. | |||
| 5546 | auto Fragment = E->getFragmentInfo(); | |||
| 5547 | if (!Fragment) | |||
| 5548 | return; | |||
| 5549 | ||||
| 5550 | // The frontend helps out GDB by emitting the members of local anonymous | |||
| 5551 | // unions as artificial local variables with shared storage. When SROA splits | |||
| 5552 | // the storage for artificial local variables that are smaller than the entire | |||
| 5553 | // union, the overhang piece will be outside of the allotted space for the | |||
| 5554 | // variable and this check fails. | |||
| 5555 | // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. | |||
| 5556 | if (V->isArtificial()) | |||
| 5557 | return; | |||
| 5558 | ||||
| 5559 | verifyFragmentExpression(*V, *Fragment, &I); | |||
| 5560 | } | |||
| 5561 | ||||
| 5562 | template <typename ValueOrMetadata> | |||
| 5563 | void Verifier::verifyFragmentExpression(const DIVariable &V, | |||
| 5564 | DIExpression::FragmentInfo Fragment, | |||
| 5565 | ValueOrMetadata *Desc) { | |||
| 5566 | // If there's no size, the type is broken, but that should be checked | |||
| 5567 | // elsewhere. | |||
| 5568 | auto VarSize = V.getSizeInBits(); | |||
| 5569 | if (!VarSize) | |||
| 5570 | return; | |||
| 5571 | ||||
| 5572 | unsigned FragSize = Fragment.SizeInBits; | |||
| 5573 | unsigned FragOffset = Fragment.OffsetInBits; | |||
| 5574 | AssertDI(FragSize + FragOffset <= *VarSize,do { if (!(FragSize + FragOffset <= *VarSize)) { DebugInfoCheckFailed ("fragment is larger than or outside of variable", Desc, & V); return; } } while (false) | |||
| 5575 | "fragment is larger than or outside of variable", Desc, &V)do { if (!(FragSize + FragOffset <= *VarSize)) { DebugInfoCheckFailed ("fragment is larger than or outside of variable", Desc, & V); return; } } while (false); | |||
| 5576 | AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V)do { if (!(FragSize != *VarSize)) { DebugInfoCheckFailed("fragment covers entire variable" , Desc, &V); return; } } while (false); | |||
| 5577 | } | |||
| 5578 | ||||
| 5579 | void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { | |||
| 5580 | // This function does not take the scope of noninlined function arguments into | |||
| 5581 | // account. Don't run it if current function is nodebug, because it may | |||
| 5582 | // contain inlined debug intrinsics. | |||
| 5583 | if (!HasDebugInfo) | |||
| 5584 | return; | |||
| 5585 | ||||
| 5586 | // For performance reasons only check non-inlined ones. | |||
| 5587 | if (I.getDebugLoc()->getInlinedAt()) | |||
| 5588 | return; | |||
| 5589 | ||||
| 5590 | DILocalVariable *Var = I.getVariable(); | |||
| 5591 | AssertDI(Var, "dbg intrinsic without variable")do { if (!(Var)) { DebugInfoCheckFailed("dbg intrinsic without variable" ); return; } } while (false); | |||
| 5592 | ||||
| 5593 | unsigned ArgNo = Var->getArg(); | |||
| 5594 | if (!ArgNo) | |||
| 5595 | return; | |||
| 5596 | ||||
| 5597 | // Verify there are no duplicate function argument debug info entries. | |||
| 5598 | // These will cause hard-to-debug assertions in the DWARF backend. | |||
| 5599 | if (DebugFnArgs.size() < ArgNo) | |||
| 5600 | DebugFnArgs.resize(ArgNo, nullptr); | |||
| 5601 | ||||
| 5602 | auto *Prev = DebugFnArgs[ArgNo - 1]; | |||
| 5603 | DebugFnArgs[ArgNo - 1] = Var; | |||
| 5604 | AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,do { if (!(!Prev || (Prev == Var))) { DebugInfoCheckFailed("conflicting debug info for argument" , &I, Prev, Var); return; } } while (false) | |||
| 5605 | Prev, Var)do { if (!(!Prev || (Prev == Var))) { DebugInfoCheckFailed("conflicting debug info for argument" , &I, Prev, Var); return; } } while (false); | |||
| 5606 | } | |||
| 5607 | ||||
| 5608 | void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) { | |||
| 5609 | DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); | |||
| 5610 | ||||
| 5611 | // We don't know whether this intrinsic verified correctly. | |||
| 5612 | if (!E || !E->isValid()) | |||
| 5613 | return; | |||
| 5614 | ||||
| 5615 | AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I)do { if (!(!E->isEntryValue())) { DebugInfoCheckFailed("Entry values are only allowed in MIR" , &I); return; } } while (false); | |||
| 5616 | } | |||
| 5617 | ||||
| 5618 | void Verifier::verifyCompileUnits() { | |||
| 5619 | // When more than one Module is imported into the same context, such as during | |||
| 5620 | // an LTO build before linking the modules, ODR type uniquing may cause types | |||
| 5621 | // to point to a different CU. This check does not make sense in this case. | |||
| 5622 | if (M.getContext().isODRUniquingDebugTypes()) | |||
| 5623 | return; | |||
| 5624 | auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); | |||
| 5625 | SmallPtrSet<const Metadata *, 2> Listed; | |||
| 5626 | if (CUs) | |||
| 5627 | Listed.insert(CUs->op_begin(), CUs->op_end()); | |||
| 5628 | for (auto *CU : CUVisited) | |||
| 5629 | AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU)do { if (!(Listed.count(CU))) { DebugInfoCheckFailed("DICompileUnit not listed in llvm.dbg.cu" , CU); return; } } while (false); | |||
| 5630 | CUVisited.clear(); | |||
| 5631 | } | |||
| 5632 | ||||
| 5633 | void Verifier::verifyDeoptimizeCallingConvs() { | |||
| 5634 | if (DeoptimizeDeclarations.empty()) | |||
| 5635 | return; | |||
| 5636 | ||||
| 5637 | const Function *First = DeoptimizeDeclarations[0]; | |||
| 5638 | for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) { | |||
| 5639 | Assert(First->getCallingConv() == F->getCallingConv(),do { if (!(First->getCallingConv() == F->getCallingConv ())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same " "calling convention", First, F); return; } } while (false) | |||
| 5640 | "All llvm.experimental.deoptimize declarations must have the same "do { if (!(First->getCallingConv() == F->getCallingConv ())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same " "calling convention", First, F); return; } } while (false) | |||
| 5641 | "calling convention",do { if (!(First->getCallingConv() == F->getCallingConv ())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same " "calling convention", First, F); return; } } while (false) | |||
| 5642 | First, F)do { if (!(First->getCallingConv() == F->getCallingConv ())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same " "calling convention", First, F); return; } } while (false); | |||
| 5643 | } | |||
| 5644 | } | |||
| 5645 | ||||
| 5646 | void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) { | |||
| 5647 | bool HasSource = F.getSource().hasValue(); | |||
| 5648 | if (!HasSourceDebugInfo.count(&U)) | |||
| 5649 | HasSourceDebugInfo[&U] = HasSource; | |||
| 5650 | AssertDI(HasSource == HasSourceDebugInfo[&U],do { if (!(HasSource == HasSourceDebugInfo[&U])) { DebugInfoCheckFailed ("inconsistent use of embedded source"); return; } } while (false ) | |||
| 5651 | "inconsistent use of embedded source")do { if (!(HasSource == HasSourceDebugInfo[&U])) { DebugInfoCheckFailed ("inconsistent use of embedded source"); return; } } while (false ); | |||
| 5652 | } | |||
| 5653 | ||||
| 5654 | void Verifier::verifyNoAliasScopeDecl() { | |||
| 5655 | if (NoAliasScopeDecls.empty()) | |||
| 5656 | return; | |||
| 5657 | ||||
| 5658 | // only a single scope must be declared at a time. | |||
| 5659 | for (auto *II : NoAliasScopeDecls) { | |||
| 5660 | assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl &&((void)0) | |||
| 5661 | "Not a llvm.experimental.noalias.scope.decl ?")((void)0); | |||
| 5662 | const auto *ScopeListMV = dyn_cast<MetadataAsValue>( | |||
| 5663 | II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg)); | |||
| 5664 | Assert(ScopeListMV != nullptr,do { if (!(ScopeListMV != nullptr)) { CheckFailed("llvm.experimental.noalias.scope.decl must have a MetadataAsValue " "argument", II); return; } } while (false) | |||
| 5665 | "llvm.experimental.noalias.scope.decl must have a MetadataAsValue "do { if (!(ScopeListMV != nullptr)) { CheckFailed("llvm.experimental.noalias.scope.decl must have a MetadataAsValue " "argument", II); return; } } while (false) | |||
| 5666 | "argument",do { if (!(ScopeListMV != nullptr)) { CheckFailed("llvm.experimental.noalias.scope.decl must have a MetadataAsValue " "argument", II); return; } } while (false) | |||
| 5667 | II)do { if (!(ScopeListMV != nullptr)) { CheckFailed("llvm.experimental.noalias.scope.decl must have a MetadataAsValue " "argument", II); return; } } while (false); | |||
| 5668 | ||||
| 5669 | const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata()); | |||
| 5670 | Assert(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode",do { if (!(ScopeListMD != nullptr)) { CheckFailed("!id.scope.list must point to an MDNode" , II); return; } } while (false) | |||
| 5671 | II)do { if (!(ScopeListMD != nullptr)) { CheckFailed("!id.scope.list must point to an MDNode" , II); return; } } while (false); | |||
| 5672 | Assert(ScopeListMD->getNumOperands() == 1,do { if (!(ScopeListMD->getNumOperands() == 1)) { CheckFailed ("!id.scope.list must point to a list with a single scope", II ); return; } } while (false) | |||
| 5673 | "!id.scope.list must point to a list with a single scope", II)do { if (!(ScopeListMD->getNumOperands() == 1)) { CheckFailed ("!id.scope.list must point to a list with a single scope", II ); return; } } while (false); | |||
| 5674 | } | |||
| 5675 | ||||
| 5676 | // Only check the domination rule when requested. Once all passes have been | |||
| 5677 | // adapted this option can go away. | |||
| 5678 | if (!VerifyNoAliasScopeDomination) | |||
| 5679 | return; | |||
| 5680 | ||||
| 5681 | // Now sort the intrinsics based on the scope MDNode so that declarations of | |||
| 5682 | // the same scopes are next to each other. | |||
| 5683 | auto GetScope = [](IntrinsicInst *II) { | |||
| 5684 | const auto *ScopeListMV = cast<MetadataAsValue>( | |||
| 5685 | II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg)); | |||
| 5686 | return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0); | |||
| 5687 | }; | |||
| 5688 | ||||
| 5689 | // We are sorting on MDNode pointers here. For valid input IR this is ok. | |||
| 5690 | // TODO: Sort on Metadata ID to avoid non-deterministic error messages. | |||
| 5691 | auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) { | |||
| 5692 | return GetScope(Lhs) < GetScope(Rhs); | |||
| 5693 | }; | |||
| 5694 | ||||
| 5695 | llvm::sort(NoAliasScopeDecls, Compare); | |||
| 5696 | ||||
| 5697 | // Go over the intrinsics and check that for the same scope, they are not | |||
| 5698 | // dominating each other. | |||
| 5699 | auto ItCurrent = NoAliasScopeDecls.begin(); | |||
| 5700 | while (ItCurrent != NoAliasScopeDecls.end()) { | |||
| 5701 | auto CurScope = GetScope(*ItCurrent); | |||
| 5702 | auto ItNext = ItCurrent; | |||
| 5703 | do { | |||
| 5704 | ++ItNext; | |||
| 5705 | } while (ItNext != NoAliasScopeDecls.end() && | |||
| 5706 | GetScope(*ItNext) == CurScope); | |||
| 5707 | ||||
| 5708 | // [ItCurrent, ItNext) represents the declarations for the same scope. | |||
| 5709 | // Ensure they are not dominating each other.. but only if it is not too | |||
| 5710 | // expensive. | |||
| 5711 | if (ItNext - ItCurrent < 32) | |||
| 5712 | for (auto *I : llvm::make_range(ItCurrent, ItNext)) | |||
| 5713 | for (auto *J : llvm::make_range(ItCurrent, ItNext)) | |||
| 5714 | if (I != J) | |||
| 5715 | Assert(!DT.dominates(I, J),do { if (!(!DT.dominates(I, J))) { CheckFailed("llvm.experimental.noalias.scope.decl dominates another one " "with the same scope", I); return; } } while (false) | |||
| 5716 | "llvm.experimental.noalias.scope.decl dominates another one "do { if (!(!DT.dominates(I, J))) { CheckFailed("llvm.experimental.noalias.scope.decl dominates another one " "with the same scope", I); return; } } while (false) | |||
| 5717 | "with the same scope",do { if (!(!DT.dominates(I, J))) { CheckFailed("llvm.experimental.noalias.scope.decl dominates another one " "with the same scope", I); return; } } while (false) | |||
| 5718 | I)do { if (!(!DT.dominates(I, J))) { CheckFailed("llvm.experimental.noalias.scope.decl dominates another one " "with the same scope", I); return; } } while (false); | |||
| 5719 | ItCurrent = ItNext; | |||
| 5720 | } | |||
| 5721 | } | |||
| 5722 | ||||
| 5723 | //===----------------------------------------------------------------------===// | |||
| 5724 | // Implement the public interfaces to this file... | |||
| 5725 | //===----------------------------------------------------------------------===// | |||
| 5726 | ||||
| 5727 | bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { | |||
| 5728 | Function &F = const_cast<Function &>(f); | |||
| 5729 | ||||
| 5730 | // Don't use a raw_null_ostream. Printing IR is expensive. | |||
| 5731 | Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); | |||
| 5732 | ||||
| 5733 | // Note that this function's return value is inverted from what you would | |||
| 5734 | // expect of a function called "verify". | |||
| 5735 | return !V.verify(F); | |||
| 5736 | } | |||
| 5737 | ||||
| 5738 | bool llvm::verifyModule(const Module &M, raw_ostream *OS, | |||
| 5739 | bool *BrokenDebugInfo) { | |||
| 5740 | // Don't use a raw_null_ostream. Printing IR is expensive. | |||
| 5741 | Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); | |||
| 5742 | ||||
| 5743 | bool Broken = false; | |||
| 5744 | for (const Function &F : M) | |||
| 5745 | Broken |= !V.verify(F); | |||
| 5746 | ||||
| 5747 | Broken |= !V.verify(); | |||
| 5748 | if (BrokenDebugInfo) | |||
| 5749 | *BrokenDebugInfo = V.hasBrokenDebugInfo(); | |||
| 5750 | // Note that this function's return value is inverted from what you would | |||
| 5751 | // expect of a function called "verify". | |||
| 5752 | return Broken; | |||
| 5753 | } | |||
| 5754 | ||||
| 5755 | namespace { | |||
| 5756 | ||||
| 5757 | struct VerifierLegacyPass : public FunctionPass { | |||
| 5758 | static char ID; | |||
| 5759 | ||||
| 5760 | std::unique_ptr<Verifier> V; | |||
| 5761 | bool FatalErrors = true; | |||
| 5762 | ||||
| 5763 | VerifierLegacyPass() : FunctionPass(ID) { | |||
| 5764 | initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); | |||
| 5765 | } | |||
| 5766 | explicit VerifierLegacyPass(bool FatalErrors) | |||
| 5767 | : FunctionPass(ID), | |||
| 5768 | FatalErrors(FatalErrors) { | |||
| 5769 | initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); | |||
| 5770 | } | |||
| 5771 | ||||
| 5772 | bool doInitialization(Module &M) override { | |||
| 5773 | V = std::make_unique<Verifier>( | |||
| 5774 | &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); | |||
| 5775 | return false; | |||
| 5776 | } | |||
| 5777 | ||||
| 5778 | bool runOnFunction(Function &F) override { | |||
| 5779 | if (!V->verify(F) && FatalErrors) { | |||
| 5780 | errs() << "in function " << F.getName() << '\n'; | |||
| 5781 | report_fatal_error("Broken function found, compilation aborted!"); | |||
| 5782 | } | |||
| 5783 | return false; | |||
| 5784 | } | |||
| 5785 | ||||
| 5786 | bool doFinalization(Module &M) override { | |||
| 5787 | bool HasErrors = false; | |||
| 5788 | for (Function &F : M) | |||
| 5789 | if (F.isDeclaration()) | |||
| 5790 | HasErrors |= !V->verify(F); | |||
| 5791 | ||||
| 5792 | HasErrors |= !V->verify(); | |||
| 5793 | if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) | |||
| 5794 | report_fatal_error("Broken module found, compilation aborted!"); | |||
| 5795 | return false; | |||
| 5796 | } | |||
| 5797 | ||||
| 5798 | void getAnalysisUsage(AnalysisUsage &AU) const override { | |||
| 5799 | AU.setPreservesAll(); | |||
| 5800 | } | |||
| 5801 | }; | |||
| 5802 | ||||
| 5803 | } // end anonymous namespace | |||
| 5804 | ||||
| 5805 | /// Helper to issue failure from the TBAA verification | |||
| 5806 | template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { | |||
| 5807 | if (Diagnostic) | |||
| 5808 | return Diagnostic->CheckFailed(Args...); | |||
| 5809 | } | |||
| 5810 | ||||
| 5811 | #define AssertTBAA(C, ...)do { if (!(C)) { CheckFailed(...); return false; } } while (false ) \ | |||
| 5812 | do { \ | |||
| 5813 | if (!(C)) { \ | |||
| 5814 | CheckFailed(__VA_ARGS__); \ | |||
| 5815 | return false; \ | |||
| 5816 | } \ | |||
| 5817 | } while (false) | |||
| 5818 | ||||
| 5819 | /// Verify that \p BaseNode can be used as the "base type" in the struct-path | |||
| 5820 | /// TBAA scheme. This means \p BaseNode is either a scalar node, or a | |||
| 5821 | /// struct-type node describing an aggregate data structure (like a struct). | |||
| 5822 | TBAAVerifier::TBAABaseNodeSummary | |||
| 5823 | TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, | |||
| 5824 | bool IsNewFormat) { | |||
| 5825 | if (BaseNode->getNumOperands() < 2) { | |||
| 5826 | CheckFailed("Base nodes must have at least two operands", &I, BaseNode); | |||
| 5827 | return {true, ~0u}; | |||
| 5828 | } | |||
| 5829 | ||||
| 5830 | auto Itr = TBAABaseNodes.find(BaseNode); | |||
| 5831 | if (Itr != TBAABaseNodes.end()) | |||
| 5832 | return Itr->second; | |||
| 5833 | ||||
| 5834 | auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); | |||
| 5835 | auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); | |||
| 5836 | (void)InsertResult; | |||
| 5837 | assert(InsertResult.second && "We just checked!")((void)0); | |||
| 5838 | return Result; | |||
| 5839 | } | |||
| 5840 | ||||
| 5841 | TBAAVerifier::TBAABaseNodeSummary | |||
| 5842 | TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, | |||
| 5843 | bool IsNewFormat) { | |||
| 5844 | const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; | |||
| 5845 | ||||
| 5846 | if (BaseNode->getNumOperands() == 2) { | |||
| 5847 | // Scalar nodes can only be accessed at offset 0. | |||
| 5848 | return isValidScalarTBAANode(BaseNode) | |||
| 5849 | ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) | |||
| 5850 | : InvalidNode; | |||
| 5851 | } | |||
| 5852 | ||||
| 5853 | if (IsNewFormat) { | |||
| 5854 | if (BaseNode->getNumOperands() % 3 != 0) { | |||
| 5855 | CheckFailed("Access tag nodes must have the number of operands that is a " | |||
| 5856 | "multiple of 3!", BaseNode); | |||
| 5857 | return InvalidNode; | |||
| 5858 | } | |||
| 5859 | } else { | |||
| 5860 | if (BaseNode->getNumOperands() % 2 != 1) { | |||
| 5861 | CheckFailed("Struct tag nodes must have an odd number of operands!", | |||
| 5862 | BaseNode); | |||
| 5863 | return InvalidNode; | |||
| 5864 | } | |||
| 5865 | } | |||
| 5866 | ||||
| 5867 | // Check the type size field. | |||
| 5868 | if (IsNewFormat) { | |||
| 5869 | auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( | |||
| 5870 | BaseNode->getOperand(1)); | |||
| 5871 | if (!TypeSizeNode) { | |||
| 5872 | CheckFailed("Type size nodes must be constants!", &I, BaseNode); | |||
| 5873 | return InvalidNode; | |||
| 5874 | } | |||
| 5875 | } | |||
| 5876 | ||||
| 5877 | // Check the type name field. In the new format it can be anything. | |||
| 5878 | if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { | |||
| 5879 | CheckFailed("Struct tag nodes have a string as their first operand", | |||
| 5880 | BaseNode); | |||
| 5881 | return InvalidNode; | |||
| 5882 | } | |||
| 5883 | ||||
| 5884 | bool Failed = false; | |||
| 5885 | ||||
| 5886 | Optional<APInt> PrevOffset; | |||
| 5887 | unsigned BitWidth = ~0u; | |||
| 5888 | ||||
| 5889 | // We've already checked that BaseNode is not a degenerate root node with one | |||
| 5890 | // operand in \c verifyTBAABaseNode, so this loop should run at least once. | |||
| 5891 | unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; | |||
| 5892 | unsigned NumOpsPerField = IsNewFormat ? 3 : 2; | |||
| 5893 | for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); | |||
| 5894 | Idx += NumOpsPerField) { | |||
| 5895 | const MDOperand &FieldTy = BaseNode->getOperand(Idx); | |||
| 5896 | const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); | |||
| 5897 | if (!isa<MDNode>(FieldTy)) { | |||
| 5898 | CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); | |||
| 5899 | Failed = true; | |||
| 5900 | continue; | |||
| 5901 | } | |||
| 5902 | ||||
| 5903 | auto *OffsetEntryCI = | |||
| 5904 | mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); | |||
| 5905 | if (!OffsetEntryCI) { | |||
| 5906 | CheckFailed("Offset entries must be constants!", &I, BaseNode); | |||
| 5907 | Failed = true; | |||
| 5908 | continue; | |||
| 5909 | } | |||
| 5910 | ||||
| 5911 | if (BitWidth == ~0u) | |||
| 5912 | BitWidth = OffsetEntryCI->getBitWidth(); | |||
| 5913 | ||||
| 5914 | if (OffsetEntryCI->getBitWidth() != BitWidth) { | |||
| 5915 | CheckFailed( | |||
| 5916 | "Bitwidth between the offsets and struct type entries must match", &I, | |||
| 5917 | BaseNode); | |||
| 5918 | Failed = true; | |||
| 5919 | continue; | |||
| 5920 | } | |||
| 5921 | ||||
| 5922 | // NB! As far as I can tell, we generate a non-strictly increasing offset | |||
| 5923 | // sequence only from structs that have zero size bit fields. When | |||
| 5924 | // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we | |||
| 5925 | // pick the field lexically the latest in struct type metadata node. This | |||
| 5926 | // mirrors the actual behavior of the alias analysis implementation. | |||
| 5927 | bool IsAscending = | |||
| 5928 | !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); | |||
| 5929 | ||||
| 5930 | if (!IsAscending) { | |||
| 5931 | CheckFailed("Offsets must be increasing!", &I, BaseNode); | |||
| 5932 | Failed = true; | |||
| 5933 | } | |||
| 5934 | ||||
| 5935 | PrevOffset = OffsetEntryCI->getValue(); | |||
| 5936 | ||||
| 5937 | if (IsNewFormat) { | |||
| 5938 | auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( | |||
| 5939 | BaseNode->getOperand(Idx + 2)); | |||
| 5940 | if (!MemberSizeNode) { | |||
| 5941 | CheckFailed("Member size entries must be constants!", &I, BaseNode); | |||
| 5942 | Failed = true; | |||
| 5943 | continue; | |||
| 5944 | } | |||
| 5945 | } | |||
| 5946 | } | |||
| 5947 | ||||
| 5948 | return Failed ? InvalidNode | |||
| 5949 | : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); | |||
| 5950 | } | |||
| 5951 | ||||
| 5952 | static bool IsRootTBAANode(const MDNode *MD) { | |||
| 5953 | return MD->getNumOperands() < 2; | |||
| 5954 | } | |||
| 5955 | ||||
| 5956 | static bool IsScalarTBAANodeImpl(const MDNode *MD, | |||
| 5957 | SmallPtrSetImpl<const MDNode *> &Visited) { | |||
| 5958 | if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) | |||
| 5959 | return false; | |||
| 5960 | ||||
| 5961 | if (!isa<MDString>(MD->getOperand(0))) | |||
| 5962 | return false; | |||
| 5963 | ||||
| 5964 | if (MD->getNumOperands() == 3) { | |||
| 5965 | auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); | |||
| 5966 | if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) | |||
| 5967 | return false; | |||
| 5968 | } | |||
| 5969 | ||||
| 5970 | auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); | |||
| 5971 | return Parent && Visited.insert(Parent).second && | |||
| 5972 | (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); | |||
| 5973 | } | |||
| 5974 | ||||
| 5975 | bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { | |||
| 5976 | auto ResultIt = TBAAScalarNodes.find(MD); | |||
| 5977 | if (ResultIt != TBAAScalarNodes.end()) | |||
| 5978 | return ResultIt->second; | |||
| 5979 | ||||
| 5980 | SmallPtrSet<const MDNode *, 4> Visited; | |||
| 5981 | bool Result = IsScalarTBAANodeImpl(MD, Visited); | |||
| 5982 | auto InsertResult = TBAAScalarNodes.insert({MD, Result}); | |||
| 5983 | (void)InsertResult; | |||
| 5984 | assert(InsertResult.second && "Just checked!")((void)0); | |||
| 5985 | ||||
| 5986 | return Result; | |||
| 5987 | } | |||
| 5988 | ||||
| 5989 | /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p | |||
| 5990 | /// Offset in place to be the offset within the field node returned. | |||
| 5991 | /// | |||
| 5992 | /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. | |||
| 5993 | MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, | |||
| 5994 | const MDNode *BaseNode, | |||
| 5995 | APInt &Offset, | |||
| 5996 | bool IsNewFormat) { | |||
| 5997 | assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!")((void)0); | |||
| 5998 | ||||
| 5999 | // Scalar nodes have only one possible "field" -- their parent in the access | |||
| 6000 | // hierarchy. Offset must be zero at this point, but our caller is supposed | |||
| 6001 | // to Assert that. | |||
| 6002 | if (BaseNode->getNumOperands() == 2) | |||
| 6003 | return cast<MDNode>(BaseNode->getOperand(1)); | |||
| 6004 | ||||
| 6005 | unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; | |||
| 6006 | unsigned NumOpsPerField = IsNewFormat ? 3 : 2; | |||
| 6007 | for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); | |||
| 6008 | Idx += NumOpsPerField) { | |||
| 6009 | auto *OffsetEntryCI = | |||
| 6010 | mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); | |||
| 6011 | if (OffsetEntryCI->getValue().ugt(Offset)) { | |||
| 6012 | if (Idx == FirstFieldOpNo) { | |||
| 6013 | CheckFailed("Could not find TBAA parent in struct type node", &I, | |||
| 6014 | BaseNode, &Offset); | |||
| 6015 | return nullptr; | |||
| 6016 | } | |||
| 6017 | ||||
| 6018 | unsigned PrevIdx = Idx - NumOpsPerField; | |||
| 6019 | auto *PrevOffsetEntryCI = | |||
| 6020 | mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); | |||
| 6021 | Offset -= PrevOffsetEntryCI->getValue(); | |||
| 6022 | return cast<MDNode>(BaseNode->getOperand(PrevIdx)); | |||
| 6023 | } | |||
| 6024 | } | |||
| 6025 | ||||
| 6026 | unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; | |||
| 6027 | auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( | |||
| 6028 | BaseNode->getOperand(LastIdx + 1)); | |||
| 6029 | Offset -= LastOffsetEntryCI->getValue(); | |||
| 6030 | return cast<MDNode>(BaseNode->getOperand(LastIdx)); | |||
| 6031 | } | |||
| 6032 | ||||
| 6033 | static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { | |||
| 6034 | if (!Type || Type->getNumOperands() < 3) | |||
| 6035 | return false; | |||
| 6036 | ||||
| 6037 | // In the new format type nodes shall have a reference to the parent type as | |||
| 6038 | // its first operand. | |||
| 6039 | MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0)); | |||
| 6040 | if (!Parent) | |||
| 6041 | return false; | |||
| 6042 | ||||
| 6043 | return true; | |||
| 6044 | } | |||
| 6045 | ||||
| 6046 | bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { | |||
| 6047 | AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || isa<VAArgInst>(I) || isa< AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed ("This instruction shall not have a TBAA access tag!", &I ); return false; } } while (false) | |||
| 6048 | isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || isa<VAArgInst>(I) || isa< AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed ("This instruction shall not have a TBAA access tag!", &I ); return false; } } while (false) | |||
| 6049 | isa<AtomicCmpXchgInst>(I),do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || isa<VAArgInst>(I) || isa< AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed ("This instruction shall not have a TBAA access tag!", &I ); return false; } } while (false) | |||
| 6050 | "This instruction shall not have a TBAA access tag!", &I)do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || isa<VAArgInst>(I) || isa< AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed ("This instruction shall not have a TBAA access tag!", &I ); return false; } } while (false); | |||
| 6051 | ||||
| 6052 | bool IsStructPathTBAA = | |||
| 6053 | isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; | |||
| 6054 | ||||
| 6055 | AssertTBAA(do { if (!(IsStructPathTBAA)) { CheckFailed("Old-style TBAA is no longer allowed, use struct-path TBAA instead" , &I); return false; } } while (false) | |||
| 6056 | IsStructPathTBAA,do { if (!(IsStructPathTBAA)) { CheckFailed("Old-style TBAA is no longer allowed, use struct-path TBAA instead" , &I); return false; } } while (false) | |||
| 6057 | "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I)do { if (!(IsStructPathTBAA)) { CheckFailed("Old-style TBAA is no longer allowed, use struct-path TBAA instead" , &I); return false; } } while (false); | |||
| 6058 | ||||
| 6059 | MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); | |||
| 6060 | MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); | |||
| 6061 | ||||
| 6062 | bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); | |||
| 6063 | ||||
| 6064 | if (IsNewFormat) { | |||
| 6065 | AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,do { if (!(MD->getNumOperands() == 4 || MD->getNumOperands () == 5)) { CheckFailed("Access tag metadata must have either 4 or 5 operands" , &I, MD); return false; } } while (false) | |||
| 6066 | "Access tag metadata must have either 4 or 5 operands", &I, MD)do { if (!(MD->getNumOperands() == 4 || MD->getNumOperands () == 5)) { CheckFailed("Access tag metadata must have either 4 or 5 operands" , &I, MD); return false; } } while (false); | |||
| 6067 | } else { | |||
| 6068 | AssertTBAA(MD->getNumOperands() < 5,do { if (!(MD->getNumOperands() < 5)) { CheckFailed("Struct tag metadata must have either 3 or 4 operands" , &I, MD); return false; } } while (false) | |||
| 6069 | "Struct tag metadata must have either 3 or 4 operands", &I, MD)do { if (!(MD->getNumOperands() < 5)) { CheckFailed("Struct tag metadata must have either 3 or 4 operands" , &I, MD); return false; } } while (false); | |||
| 6070 | } | |||
| 6071 | ||||
| 6072 | // Check the access size field. | |||
| 6073 | if (IsNewFormat) { | |||
| 6074 | auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( | |||
| 6075 | MD->getOperand(3)); | |||
| 6076 | AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD)do { if (!(AccessSizeNode)) { CheckFailed("Access size field must be a constant" , &I, MD); return false; } } while (false); | |||
| 6077 | } | |||
| 6078 | ||||
| 6079 | // Check the immutability flag. | |||
| 6080 | unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; | |||
| 6081 | if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { | |||
| 6082 | auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( | |||
| 6083 | MD->getOperand(ImmutabilityFlagOpNo)); | |||
| 6084 | AssertTBAA(IsImmutableCI,do { if (!(IsImmutableCI)) { CheckFailed("Immutability tag on struct tag metadata must be a constant" , &I, MD); return false; } } while (false) | |||
| 6085 | "Immutability tag on struct tag metadata must be a constant",do { if (!(IsImmutableCI)) { CheckFailed("Immutability tag on struct tag metadata must be a constant" , &I, MD); return false; } } while (false) | |||
| 6086 | &I, MD)do { if (!(IsImmutableCI)) { CheckFailed("Immutability tag on struct tag metadata must be a constant" , &I, MD); return false; } } while (false); | |||
| 6087 | AssertTBAA(do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne ())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1" , &I, MD); return false; } } while (false) | |||
| 6088 | IsImmutableCI->isZero() || IsImmutableCI->isOne(),do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne ())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1" , &I, MD); return false; } } while (false) | |||
| 6089 | "Immutability part of the struct tag metadata must be either 0 or 1",do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne ())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1" , &I, MD); return false; } } while (false) | |||
| 6090 | &I, MD)do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne ())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1" , &I, MD); return false; } } while (false); | |||
| 6091 | } | |||
| 6092 | ||||
| 6093 | AssertTBAA(BaseNode && AccessType,do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type " "should be non-null and point to Metadata nodes", &I, MD , BaseNode, AccessType); return false; } } while (false) | |||
| 6094 | "Malformed struct tag metadata: base and access-type "do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type " "should be non-null and point to Metadata nodes", &I, MD , BaseNode, AccessType); return false; } } while (false) | |||
| 6095 | "should be non-null and point to Metadata nodes",do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type " "should be non-null and point to Metadata nodes", &I, MD , BaseNode, AccessType); return false; } } while (false) | |||
| 6096 | &I, MD, BaseNode, AccessType)do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type " "should be non-null and point to Metadata nodes", &I, MD , BaseNode, AccessType); return false; } } while (false); | |||
| 6097 | ||||
| 6098 | if (!IsNewFormat) { | |||
| 6099 | AssertTBAA(isValidScalarTBAANode(AccessType),do { if (!(isValidScalarTBAANode(AccessType))) { CheckFailed( "Access type node must be a valid scalar type", &I, MD, AccessType ); return false; } } while (false) | |||
| 6100 | "Access type node must be a valid scalar type", &I, MD,do { if (!(isValidScalarTBAANode(AccessType))) { CheckFailed( "Access type node must be a valid scalar type", &I, MD, AccessType ); return false; } } while (false) | |||
| 6101 | AccessType)do { if (!(isValidScalarTBAANode(AccessType))) { CheckFailed( "Access type node must be a valid scalar type", &I, MD, AccessType ); return false; } } while (false); | |||
| 6102 | } | |||
| 6103 | ||||
| 6104 | auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); | |||
| 6105 | AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD)do { if (!(OffsetCI)) { CheckFailed("Offset must be constant integer" , &I, MD); return false; } } while (false); | |||
| 6106 | ||||
| 6107 | APInt Offset = OffsetCI->getValue(); | |||
| 6108 | bool SeenAccessTypeInPath = false; | |||
| 6109 | ||||
| 6110 | SmallPtrSet<MDNode *, 4> StructPath; | |||
| 6111 | ||||
| 6112 | for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); | |||
| 6113 | BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, | |||
| 6114 | IsNewFormat)) { | |||
| 6115 | if (!StructPath.insert(BaseNode).second) { | |||
| 6116 | CheckFailed("Cycle detected in struct path", &I, MD); | |||
| 6117 | return false; | |||
| 6118 | } | |||
| 6119 | ||||
| 6120 | bool Invalid; | |||
| 6121 | unsigned BaseNodeBitWidth; | |||
| 6122 | std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, | |||
| 6123 | IsNewFormat); | |||
| 6124 | ||||
| 6125 | // If the base node is invalid in itself, then we've already printed all the | |||
| 6126 | // errors we wanted to print. | |||
| 6127 | if (Invalid) | |||
| 6128 | return false; | |||
| 6129 | ||||
| 6130 | SeenAccessTypeInPath |= BaseNode == AccessType; | |||
| 6131 | ||||
| 6132 | if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) | |||
| 6133 | AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",do { if (!(Offset == 0)) { CheckFailed("Offset not zero at the point of scalar access" , &I, MD, &Offset); return false; } } while (false) | |||
| 6134 | &I, MD, &Offset)do { if (!(Offset == 0)) { CheckFailed("Offset not zero at the point of scalar access" , &I, MD, &Offset); return false; } } while (false); | |||
| 6135 | ||||
| 6136 | AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth == 0 && Offset == 0) || (IsNewFormat && BaseNodeBitWidth == ~0u))) { CheckFailed("Access bit-width not the same as description bit-width" , &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return false; } } while (false) | |||
| 6137 | (BaseNodeBitWidth == 0 && Offset == 0) ||do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth == 0 && Offset == 0) || (IsNewFormat && BaseNodeBitWidth == ~0u))) { CheckFailed("Access bit-width not the same as description bit-width" , &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return false; } } while (false) | |||
| 6138 | (IsNewFormat && BaseNodeBitWidth == ~0u),do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth == 0 && Offset == 0) || (IsNewFormat && BaseNodeBitWidth == ~0u))) { CheckFailed("Access bit-width not the same as description bit-width" , &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return false; } } while (false) | |||
| 6139 | "Access bit-width not the same as description bit-width", &I, MD,do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth == 0 && Offset == 0) || (IsNewFormat && BaseNodeBitWidth == ~0u))) { CheckFailed("Access bit-width not the same as description bit-width" , &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return false; } } while (false) | |||
| 6140 | BaseNodeBitWidth, Offset.getBitWidth())do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth == 0 && Offset == 0) || (IsNewFormat && BaseNodeBitWidth == ~0u))) { CheckFailed("Access bit-width not the same as description bit-width" , &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return false; } } while (false); | |||
| 6141 | ||||
| 6142 | if (IsNewFormat && SeenAccessTypeInPath) | |||
| 6143 | break; | |||
| 6144 | } | |||
| 6145 | ||||
| 6146 | AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",do { if (!(SeenAccessTypeInPath)) { CheckFailed("Did not see access type in access path!" , &I, MD); return false; } } while (false) | |||
| 6147 | &I, MD)do { if (!(SeenAccessTypeInPath)) { CheckFailed("Did not see access type in access path!" , &I, MD); return false; } } while (false); | |||
| 6148 | return true; | |||
| 6149 | } | |||
| 6150 | ||||
| 6151 | char VerifierLegacyPass::ID = 0; | |||
| 6152 | INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)static void *initializeVerifierLegacyPassPassOnce(PassRegistry &Registry) { PassInfo *PI = new PassInfo( "Module Verifier" , "verify", &VerifierLegacyPass::ID, PassInfo::NormalCtor_t (callDefaultCtor<VerifierLegacyPass>), false, false); Registry .registerPass(*PI, true); return PI; } static llvm::once_flag InitializeVerifierLegacyPassPassFlag; void llvm::initializeVerifierLegacyPassPass (PassRegistry &Registry) { llvm::call_once(InitializeVerifierLegacyPassPassFlag , initializeVerifierLegacyPassPassOnce, std::ref(Registry)); } | |||
| 6153 | ||||
| 6154 | FunctionPass *llvm::createVerifierPass(bool FatalErrors) { | |||
| 6155 | return new VerifierLegacyPass(FatalErrors); | |||
| 6156 | } | |||
| 6157 | ||||
| 6158 | AnalysisKey VerifierAnalysis::Key; | |||
| 6159 | VerifierAnalysis::Result VerifierAnalysis::run(Module &M, | |||
| 6160 | ModuleAnalysisManager &) { | |||
| 6161 | Result Res; | |||
| 6162 | Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); | |||
| 6163 | return Res; | |||
| 6164 | } | |||
| 6165 | ||||
| 6166 | VerifierAnalysis::Result VerifierAnalysis::run(Function &F, | |||
| 6167 | FunctionAnalysisManager &) { | |||
| 6168 | return { llvm::verifyFunction(F, &dbgs()), false }; | |||
| 6169 | } | |||
| 6170 | ||||
| 6171 | PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { | |||
| 6172 | auto Res = AM.getResult<VerifierAnalysis>(M); | |||
| 6173 | if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) | |||
| 6174 | report_fatal_error("Broken module found, compilation aborted!"); | |||
| 6175 | ||||
| 6176 | return PreservedAnalyses::all(); | |||
| 6177 | } | |||
| 6178 | ||||
| 6179 | PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { | |||
| 6180 | auto res = AM.getResult<VerifierAnalysis>(F); | |||
| 6181 | if (res.IRBroken && FatalErrors) | |||
| 6182 | report_fatal_error("Broken function found, compilation aborted!"); | |||
| 6183 | ||||
| 6184 | return PreservedAnalyses::all(); | |||
| 6185 | } |
| 1 | //===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file exposes the class definitions of all of the subclasses of the |
| 10 | // Instruction class. This is meant to be an easy way to get access to all |
| 11 | // instruction subclasses. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #ifndef LLVM_IR_INSTRUCTIONS_H |
| 16 | #define LLVM_IR_INSTRUCTIONS_H |
| 17 | |
| 18 | #include "llvm/ADT/ArrayRef.h" |
| 19 | #include "llvm/ADT/Bitfields.h" |
| 20 | #include "llvm/ADT/MapVector.h" |
| 21 | #include "llvm/ADT/None.h" |
| 22 | #include "llvm/ADT/STLExtras.h" |
| 23 | #include "llvm/ADT/SmallVector.h" |
| 24 | #include "llvm/ADT/StringRef.h" |
| 25 | #include "llvm/ADT/Twine.h" |
| 26 | #include "llvm/ADT/iterator.h" |
| 27 | #include "llvm/ADT/iterator_range.h" |
| 28 | #include "llvm/IR/Attributes.h" |
| 29 | #include "llvm/IR/BasicBlock.h" |
| 30 | #include "llvm/IR/CallingConv.h" |
| 31 | #include "llvm/IR/CFG.h" |
| 32 | #include "llvm/IR/Constant.h" |
| 33 | #include "llvm/IR/DerivedTypes.h" |
| 34 | #include "llvm/IR/Function.h" |
| 35 | #include "llvm/IR/InstrTypes.h" |
| 36 | #include "llvm/IR/Instruction.h" |
| 37 | #include "llvm/IR/OperandTraits.h" |
| 38 | #include "llvm/IR/Type.h" |
| 39 | #include "llvm/IR/Use.h" |
| 40 | #include "llvm/IR/User.h" |
| 41 | #include "llvm/IR/Value.h" |
| 42 | #include "llvm/Support/AtomicOrdering.h" |
| 43 | #include "llvm/Support/Casting.h" |
| 44 | #include "llvm/Support/ErrorHandling.h" |
| 45 | #include <cassert> |
| 46 | #include <cstddef> |
| 47 | #include <cstdint> |
| 48 | #include <iterator> |
| 49 | |
| 50 | namespace llvm { |
| 51 | |
| 52 | class APInt; |
| 53 | class ConstantInt; |
| 54 | class DataLayout; |
| 55 | class LLVMContext; |
| 56 | |
| 57 | //===----------------------------------------------------------------------===// |
| 58 | // AllocaInst Class |
| 59 | //===----------------------------------------------------------------------===// |
| 60 | |
| 61 | /// an instruction to allocate memory on the stack |
| 62 | class AllocaInst : public UnaryInstruction { |
| 63 | Type *AllocatedType; |
| 64 | |
| 65 | using AlignmentField = AlignmentBitfieldElementT<0>; |
| 66 | using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>; |
| 67 | using SwiftErrorField = BoolBitfieldElementT<UsedWithInAllocaField::NextBit>; |
| 68 | static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField, |
| 69 | SwiftErrorField>(), |
| 70 | "Bitfields must be contiguous"); |
| 71 | |
| 72 | protected: |
| 73 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 74 | friend class Instruction; |
| 75 | |
| 76 | AllocaInst *cloneImpl() const; |
| 77 | |
| 78 | public: |
| 79 | explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, |
| 80 | const Twine &Name, Instruction *InsertBefore); |
| 81 | AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, |
| 82 | const Twine &Name, BasicBlock *InsertAtEnd); |
| 83 | |
| 84 | AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name, |
| 85 | Instruction *InsertBefore); |
| 86 | AllocaInst(Type *Ty, unsigned AddrSpace, |
| 87 | const Twine &Name, BasicBlock *InsertAtEnd); |
| 88 | |
| 89 | AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align, |
| 90 | const Twine &Name = "", Instruction *InsertBefore = nullptr); |
| 91 | AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align, |
| 92 | const Twine &Name, BasicBlock *InsertAtEnd); |
| 93 | |
| 94 | /// Return true if there is an allocation size parameter to the allocation |
| 95 | /// instruction that is not 1. |
| 96 | bool isArrayAllocation() const; |
| 97 | |
| 98 | /// Get the number of elements allocated. For a simple allocation of a single |
| 99 | /// element, this will return a constant 1 value. |
| 100 | const Value *getArraySize() const { return getOperand(0); } |
| 101 | Value *getArraySize() { return getOperand(0); } |
| 102 | |
| 103 | /// Overload to return most specific pointer type. |
| 104 | PointerType *getType() const { |
| 105 | return cast<PointerType>(Instruction::getType()); |
| 106 | } |
| 107 | |
| 108 | /// Get allocation size in bits. Returns None if size can't be determined, |
| 109 | /// e.g. in case of a VLA. |
| 110 | Optional<TypeSize> getAllocationSizeInBits(const DataLayout &DL) const; |
| 111 | |
| 112 | /// Return the type that is being allocated by the instruction. |
| 113 | Type *getAllocatedType() const { return AllocatedType; } |
| 114 | /// for use only in special circumstances that need to generically |
| 115 | /// transform a whole instruction (eg: IR linking and vectorization). |
| 116 | void setAllocatedType(Type *Ty) { AllocatedType = Ty; } |
| 117 | |
| 118 | /// Return the alignment of the memory that is being allocated by the |
| 119 | /// instruction. |
| 120 | Align getAlign() const { |
| 121 | return Align(1ULL << getSubclassData<AlignmentField>()); |
| 122 | } |
| 123 | |
| 124 | void setAlignment(Align Align) { |
| 125 | setSubclassData<AlignmentField>(Log2(Align)); |
| 126 | } |
| 127 | |
| 128 | // FIXME: Remove this one transition to Align is over. |
| 129 | unsigned getAlignment() const { return getAlign().value(); } |
| 130 | |
| 131 | /// Return true if this alloca is in the entry block of the function and is a |
| 132 | /// constant size. If so, the code generator will fold it into the |
| 133 | /// prolog/epilog code, so it is basically free. |
| 134 | bool isStaticAlloca() const; |
| 135 | |
| 136 | /// Return true if this alloca is used as an inalloca argument to a call. Such |
| 137 | /// allocas are never considered static even if they are in the entry block. |
| 138 | bool isUsedWithInAlloca() const { |
| 139 | return getSubclassData<UsedWithInAllocaField>(); |
| 140 | } |
| 141 | |
| 142 | /// Specify whether this alloca is used to represent the arguments to a call. |
| 143 | void setUsedWithInAlloca(bool V) { |
| 144 | setSubclassData<UsedWithInAllocaField>(V); |
| 145 | } |
| 146 | |
| 147 | /// Return true if this alloca is used as a swifterror argument to a call. |
| 148 | bool isSwiftError() const { return getSubclassData<SwiftErrorField>(); } |
| 149 | /// Specify whether this alloca is used to represent a swifterror. |
| 150 | void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); } |
| 151 | |
| 152 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 153 | static bool classof(const Instruction *I) { |
| 154 | return (I->getOpcode() == Instruction::Alloca); |
| 155 | } |
| 156 | static bool classof(const Value *V) { |
| 157 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 158 | } |
| 159 | |
| 160 | private: |
| 161 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 162 | // method so that subclasses cannot accidentally use it. |
| 163 | template <typename Bitfield> |
| 164 | void setSubclassData(typename Bitfield::Type Value) { |
| 165 | Instruction::setSubclassData<Bitfield>(Value); |
| 166 | } |
| 167 | }; |
| 168 | |
| 169 | //===----------------------------------------------------------------------===// |
| 170 | // LoadInst Class |
| 171 | //===----------------------------------------------------------------------===// |
| 172 | |
| 173 | /// An instruction for reading from memory. This uses the SubclassData field in |
| 174 | /// Value to store whether or not the load is volatile. |
| 175 | class LoadInst : public UnaryInstruction { |
| 176 | using VolatileField = BoolBitfieldElementT<0>; |
| 177 | using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>; |
| 178 | using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>; |
| 179 | static_assert( |
| 180 | Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(), |
| 181 | "Bitfields must be contiguous"); |
| 182 | |
| 183 | void AssertOK(); |
| 184 | |
| 185 | protected: |
| 186 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 187 | friend class Instruction; |
| 188 | |
| 189 | LoadInst *cloneImpl() const; |
| 190 | |
| 191 | public: |
| 192 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, |
| 193 | Instruction *InsertBefore); |
| 194 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 195 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
| 196 | Instruction *InsertBefore); |
| 197 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
| 198 | BasicBlock *InsertAtEnd); |
| 199 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
| 200 | Align Align, Instruction *InsertBefore = nullptr); |
| 201 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
| 202 | Align Align, BasicBlock *InsertAtEnd); |
| 203 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
| 204 | Align Align, AtomicOrdering Order, |
| 205 | SyncScope::ID SSID = SyncScope::System, |
| 206 | Instruction *InsertBefore = nullptr); |
| 207 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
| 208 | Align Align, AtomicOrdering Order, SyncScope::ID SSID, |
| 209 | BasicBlock *InsertAtEnd); |
| 210 | |
| 211 | /// Return true if this is a load from a volatile memory location. |
| 212 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
| 213 | |
| 214 | /// Specify whether this is a volatile load or not. |
| 215 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
| 216 | |
| 217 | /// Return the alignment of the access that is being performed. |
| 218 | /// FIXME: Remove this function once transition to Align is over. |
| 219 | /// Use getAlign() instead. |
| 220 | unsigned getAlignment() const { return getAlign().value(); } |
| 221 | |
| 222 | /// Return the alignment of the access that is being performed. |
| 223 | Align getAlign() const { |
| 224 | return Align(1ULL << (getSubclassData<AlignmentField>())); |
| 225 | } |
| 226 | |
| 227 | void setAlignment(Align Align) { |
| 228 | setSubclassData<AlignmentField>(Log2(Align)); |
| 229 | } |
| 230 | |
| 231 | /// Returns the ordering constraint of this load instruction. |
| 232 | AtomicOrdering getOrdering() const { |
| 233 | return getSubclassData<OrderingField>(); |
| 234 | } |
| 235 | /// Sets the ordering constraint of this load instruction. May not be Release |
| 236 | /// or AcquireRelease. |
| 237 | void setOrdering(AtomicOrdering Ordering) { |
| 238 | setSubclassData<OrderingField>(Ordering); |
| 239 | } |
| 240 | |
| 241 | /// Returns the synchronization scope ID of this load instruction. |
| 242 | SyncScope::ID getSyncScopeID() const { |
| 243 | return SSID; |
| 244 | } |
| 245 | |
| 246 | /// Sets the synchronization scope ID of this load instruction. |
| 247 | void setSyncScopeID(SyncScope::ID SSID) { |
| 248 | this->SSID = SSID; |
| 249 | } |
| 250 | |
| 251 | /// Sets the ordering constraint and the synchronization scope ID of this load |
| 252 | /// instruction. |
| 253 | void setAtomic(AtomicOrdering Ordering, |
| 254 | SyncScope::ID SSID = SyncScope::System) { |
| 255 | setOrdering(Ordering); |
| 256 | setSyncScopeID(SSID); |
| 257 | } |
| 258 | |
| 259 | bool isSimple() const { return !isAtomic() && !isVolatile(); } |
| 260 | |
| 261 | bool isUnordered() const { |
| 262 | return (getOrdering() == AtomicOrdering::NotAtomic || |
| 263 | getOrdering() == AtomicOrdering::Unordered) && |
| 264 | !isVolatile(); |
| 265 | } |
| 266 | |
| 267 | Value *getPointerOperand() { return getOperand(0); } |
| 268 | const Value *getPointerOperand() const { return getOperand(0); } |
| 269 | static unsigned getPointerOperandIndex() { return 0U; } |
| 270 | Type *getPointerOperandType() const { return getPointerOperand()->getType(); } |
| 271 | |
| 272 | /// Returns the address space of the pointer operand. |
| 273 | unsigned getPointerAddressSpace() const { |
| 274 | return getPointerOperandType()->getPointerAddressSpace(); |
| 275 | } |
| 276 | |
| 277 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 278 | static bool classof(const Instruction *I) { |
| 279 | return I->getOpcode() == Instruction::Load; |
| 280 | } |
| 281 | static bool classof(const Value *V) { |
| 282 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 283 | } |
| 284 | |
| 285 | private: |
| 286 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 287 | // method so that subclasses cannot accidentally use it. |
| 288 | template <typename Bitfield> |
| 289 | void setSubclassData(typename Bitfield::Type Value) { |
| 290 | Instruction::setSubclassData<Bitfield>(Value); |
| 291 | } |
| 292 | |
| 293 | /// The synchronization scope ID of this load instruction. Not quite enough |
| 294 | /// room in SubClassData for everything, so synchronization scope ID gets its |
| 295 | /// own field. |
| 296 | SyncScope::ID SSID; |
| 297 | }; |
| 298 | |
| 299 | //===----------------------------------------------------------------------===// |
| 300 | // StoreInst Class |
| 301 | //===----------------------------------------------------------------------===// |
| 302 | |
| 303 | /// An instruction for storing to memory. |
| 304 | class StoreInst : public Instruction { |
| 305 | using VolatileField = BoolBitfieldElementT<0>; |
| 306 | using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>; |
| 307 | using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>; |
| 308 | static_assert( |
| 309 | Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(), |
| 310 | "Bitfields must be contiguous"); |
| 311 | |
| 312 | void AssertOK(); |
| 313 | |
| 314 | protected: |
| 315 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 316 | friend class Instruction; |
| 317 | |
| 318 | StoreInst *cloneImpl() const; |
| 319 | |
| 320 | public: |
| 321 | StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore); |
| 322 | StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd); |
| 323 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Instruction *InsertBefore); |
| 324 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd); |
| 325 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
| 326 | Instruction *InsertBefore = nullptr); |
| 327 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
| 328 | BasicBlock *InsertAtEnd); |
| 329 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
| 330 | AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System, |
| 331 | Instruction *InsertBefore = nullptr); |
| 332 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
| 333 | AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd); |
| 334 | |
| 335 | // allocate space for exactly two operands |
| 336 | void *operator new(size_t S) { return User::operator new(S, 2); } |
| 337 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 338 | |
| 339 | /// Return true if this is a store to a volatile memory location. |
| 340 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
| 341 | |
| 342 | /// Specify whether this is a volatile store or not. |
| 343 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
| 344 | |
| 345 | /// Transparently provide more efficient getOperand methods. |
| 346 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 347 | |
| 348 | /// Return the alignment of the access that is being performed |
| 349 | /// FIXME: Remove this function once transition to Align is over. |
| 350 | /// Use getAlign() instead. |
| 351 | unsigned getAlignment() const { return getAlign().value(); } |
| 352 | |
| 353 | Align getAlign() const { |
| 354 | return Align(1ULL << (getSubclassData<AlignmentField>())); |
| 355 | } |
| 356 | |
| 357 | void setAlignment(Align Align) { |
| 358 | setSubclassData<AlignmentField>(Log2(Align)); |
| 359 | } |
| 360 | |
| 361 | /// Returns the ordering constraint of this store instruction. |
| 362 | AtomicOrdering getOrdering() const { |
| 363 | return getSubclassData<OrderingField>(); |
| 364 | } |
| 365 | |
| 366 | /// Sets the ordering constraint of this store instruction. May not be |
| 367 | /// Acquire or AcquireRelease. |
| 368 | void setOrdering(AtomicOrdering Ordering) { |
| 369 | setSubclassData<OrderingField>(Ordering); |
| 370 | } |
| 371 | |
| 372 | /// Returns the synchronization scope ID of this store instruction. |
| 373 | SyncScope::ID getSyncScopeID() const { |
| 374 | return SSID; |
| 375 | } |
| 376 | |
| 377 | /// Sets the synchronization scope ID of this store instruction. |
| 378 | void setSyncScopeID(SyncScope::ID SSID) { |
| 379 | this->SSID = SSID; |
| 380 | } |
| 381 | |
| 382 | /// Sets the ordering constraint and the synchronization scope ID of this |
| 383 | /// store instruction. |
| 384 | void setAtomic(AtomicOrdering Ordering, |
| 385 | SyncScope::ID SSID = SyncScope::System) { |
| 386 | setOrdering(Ordering); |
| 387 | setSyncScopeID(SSID); |
| 388 | } |
| 389 | |
| 390 | bool isSimple() const { return !isAtomic() && !isVolatile(); } |
| 391 | |
| 392 | bool isUnordered() const { |
| 393 | return (getOrdering() == AtomicOrdering::NotAtomic || |
| 394 | getOrdering() == AtomicOrdering::Unordered) && |
| 395 | !isVolatile(); |
| 396 | } |
| 397 | |
| 398 | Value *getValueOperand() { return getOperand(0); } |
| 399 | const Value *getValueOperand() const { return getOperand(0); } |
| 400 | |
| 401 | Value *getPointerOperand() { return getOperand(1); } |
| 402 | const Value *getPointerOperand() const { return getOperand(1); } |
| 403 | static unsigned getPointerOperandIndex() { return 1U; } |
| 404 | Type *getPointerOperandType() const { return getPointerOperand()->getType(); } |
| 405 | |
| 406 | /// Returns the address space of the pointer operand. |
| 407 | unsigned getPointerAddressSpace() const { |
| 408 | return getPointerOperandType()->getPointerAddressSpace(); |
| 409 | } |
| 410 | |
| 411 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 412 | static bool classof(const Instruction *I) { |
| 413 | return I->getOpcode() == Instruction::Store; |
| 414 | } |
| 415 | static bool classof(const Value *V) { |
| 416 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 417 | } |
| 418 | |
| 419 | private: |
| 420 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 421 | // method so that subclasses cannot accidentally use it. |
| 422 | template <typename Bitfield> |
| 423 | void setSubclassData(typename Bitfield::Type Value) { |
| 424 | Instruction::setSubclassData<Bitfield>(Value); |
| 425 | } |
| 426 | |
| 427 | /// The synchronization scope ID of this store instruction. Not quite enough |
| 428 | /// room in SubClassData for everything, so synchronization scope ID gets its |
| 429 | /// own field. |
| 430 | SyncScope::ID SSID; |
| 431 | }; |
| 432 | |
| 433 | template <> |
| 434 | struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> { |
| 435 | }; |
| 436 | |
| 437 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)StoreInst::op_iterator StoreInst::op_begin() { return OperandTraits <StoreInst>::op_begin(this); } StoreInst::const_op_iterator StoreInst::op_begin() const { return OperandTraits<StoreInst >::op_begin(const_cast<StoreInst*>(this)); } StoreInst ::op_iterator StoreInst::op_end() { return OperandTraits<StoreInst >::op_end(this); } StoreInst::const_op_iterator StoreInst:: op_end() const { return OperandTraits<StoreInst>::op_end (const_cast<StoreInst*>(this)); } Value *StoreInst::getOperand (unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<StoreInst>::op_begin(const_cast <StoreInst*>(this))[i_nocapture].get()); } void StoreInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<StoreInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned StoreInst::getNumOperands() const { return OperandTraits<StoreInst>::operands(this); } template <int Idx_nocapture> Use &StoreInst::Op() { return this ->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture > const Use &StoreInst::Op() const { return this->OpFrom <Idx_nocapture>(this); } |
| 438 | |
| 439 | //===----------------------------------------------------------------------===// |
| 440 | // FenceInst Class |
| 441 | //===----------------------------------------------------------------------===// |
| 442 | |
| 443 | /// An instruction for ordering other memory operations. |
| 444 | class FenceInst : public Instruction { |
| 445 | using OrderingField = AtomicOrderingBitfieldElementT<0>; |
| 446 | |
| 447 | void Init(AtomicOrdering Ordering, SyncScope::ID SSID); |
| 448 | |
| 449 | protected: |
| 450 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 451 | friend class Instruction; |
| 452 | |
| 453 | FenceInst *cloneImpl() const; |
| 454 | |
| 455 | public: |
| 456 | // Ordering may only be Acquire, Release, AcquireRelease, or |
| 457 | // SequentiallyConsistent. |
| 458 | FenceInst(LLVMContext &C, AtomicOrdering Ordering, |
| 459 | SyncScope::ID SSID = SyncScope::System, |
| 460 | Instruction *InsertBefore = nullptr); |
| 461 | FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID, |
| 462 | BasicBlock *InsertAtEnd); |
| 463 | |
| 464 | // allocate space for exactly zero operands |
| 465 | void *operator new(size_t S) { return User::operator new(S, 0); } |
| 466 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 467 | |
| 468 | /// Returns the ordering constraint of this fence instruction. |
| 469 | AtomicOrdering getOrdering() const { |
| 470 | return getSubclassData<OrderingField>(); |
| 471 | } |
| 472 | |
| 473 | /// Sets the ordering constraint of this fence instruction. May only be |
| 474 | /// Acquire, Release, AcquireRelease, or SequentiallyConsistent. |
| 475 | void setOrdering(AtomicOrdering Ordering) { |
| 476 | setSubclassData<OrderingField>(Ordering); |
| 477 | } |
| 478 | |
| 479 | /// Returns the synchronization scope ID of this fence instruction. |
| 480 | SyncScope::ID getSyncScopeID() const { |
| 481 | return SSID; |
| 482 | } |
| 483 | |
| 484 | /// Sets the synchronization scope ID of this fence instruction. |
| 485 | void setSyncScopeID(SyncScope::ID SSID) { |
| 486 | this->SSID = SSID; |
| 487 | } |
| 488 | |
| 489 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 490 | static bool classof(const Instruction *I) { |
| 491 | return I->getOpcode() == Instruction::Fence; |
| 492 | } |
| 493 | static bool classof(const Value *V) { |
| 494 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 495 | } |
| 496 | |
| 497 | private: |
| 498 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 499 | // method so that subclasses cannot accidentally use it. |
| 500 | template <typename Bitfield> |
| 501 | void setSubclassData(typename Bitfield::Type Value) { |
| 502 | Instruction::setSubclassData<Bitfield>(Value); |
| 503 | } |
| 504 | |
| 505 | /// The synchronization scope ID of this fence instruction. Not quite enough |
| 506 | /// room in SubClassData for everything, so synchronization scope ID gets its |
| 507 | /// own field. |
| 508 | SyncScope::ID SSID; |
| 509 | }; |
| 510 | |
| 511 | //===----------------------------------------------------------------------===// |
| 512 | // AtomicCmpXchgInst Class |
| 513 | //===----------------------------------------------------------------------===// |
| 514 | |
| 515 | /// An instruction that atomically checks whether a |
| 516 | /// specified value is in a memory location, and, if it is, stores a new value |
| 517 | /// there. The value returned by this instruction is a pair containing the |
| 518 | /// original value as first element, and an i1 indicating success (true) or |
| 519 | /// failure (false) as second element. |
| 520 | /// |
| 521 | class AtomicCmpXchgInst : public Instruction { |
| 522 | void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align, |
| 523 | AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, |
| 524 | SyncScope::ID SSID); |
| 525 | |
| 526 | template <unsigned Offset> |
| 527 | using AtomicOrderingBitfieldElement = |
| 528 | typename Bitfield::Element<AtomicOrdering, Offset, 3, |
| 529 | AtomicOrdering::LAST>; |
| 530 | |
| 531 | protected: |
| 532 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 533 | friend class Instruction; |
| 534 | |
| 535 | AtomicCmpXchgInst *cloneImpl() const; |
| 536 | |
| 537 | public: |
| 538 | AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment, |
| 539 | AtomicOrdering SuccessOrdering, |
| 540 | AtomicOrdering FailureOrdering, SyncScope::ID SSID, |
| 541 | Instruction *InsertBefore = nullptr); |
| 542 | AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment, |
| 543 | AtomicOrdering SuccessOrdering, |
| 544 | AtomicOrdering FailureOrdering, SyncScope::ID SSID, |
| 545 | BasicBlock *InsertAtEnd); |
| 546 | |
| 547 | // allocate space for exactly three operands |
| 548 | void *operator new(size_t S) { return User::operator new(S, 3); } |
| 549 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 550 | |
| 551 | using VolatileField = BoolBitfieldElementT<0>; |
| 552 | using WeakField = BoolBitfieldElementT<VolatileField::NextBit>; |
| 553 | using SuccessOrderingField = |
| 554 | AtomicOrderingBitfieldElementT<WeakField::NextBit>; |
| 555 | using FailureOrderingField = |
| 556 | AtomicOrderingBitfieldElementT<SuccessOrderingField::NextBit>; |
| 557 | using AlignmentField = |
| 558 | AlignmentBitfieldElementT<FailureOrderingField::NextBit>; |
| 559 | static_assert( |
| 560 | Bitfield::areContiguous<VolatileField, WeakField, SuccessOrderingField, |
| 561 | FailureOrderingField, AlignmentField>(), |
| 562 | "Bitfields must be contiguous"); |
| 563 | |
| 564 | /// Return the alignment of the memory that is being allocated by the |
| 565 | /// instruction. |
| 566 | Align getAlign() const { |
| 567 | return Align(1ULL << getSubclassData<AlignmentField>()); |
| 568 | } |
| 569 | |
| 570 | void setAlignment(Align Align) { |
| 571 | setSubclassData<AlignmentField>(Log2(Align)); |
| 572 | } |
| 573 | |
| 574 | /// Return true if this is a cmpxchg from a volatile memory |
| 575 | /// location. |
| 576 | /// |
| 577 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
| 578 | |
| 579 | /// Specify whether this is a volatile cmpxchg. |
| 580 | /// |
| 581 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
| 582 | |
| 583 | /// Return true if this cmpxchg may spuriously fail. |
| 584 | bool isWeak() const { return getSubclassData<WeakField>(); } |
| 585 | |
| 586 | void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); } |
| 587 | |
| 588 | /// Transparently provide more efficient getOperand methods. |
| 589 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 590 | |
| 591 | static bool isValidSuccessOrdering(AtomicOrdering Ordering) { |
| 592 | return Ordering != AtomicOrdering::NotAtomic && |
| 593 | Ordering != AtomicOrdering::Unordered; |
| 594 | } |
| 595 | |
| 596 | static bool isValidFailureOrdering(AtomicOrdering Ordering) { |
| 597 | return Ordering != AtomicOrdering::NotAtomic && |
| 598 | Ordering != AtomicOrdering::Unordered && |
| 599 | Ordering != AtomicOrdering::AcquireRelease && |
| 600 | Ordering != AtomicOrdering::Release; |
| 601 | } |
| 602 | |
| 603 | /// Returns the success ordering constraint of this cmpxchg instruction. |
| 604 | AtomicOrdering getSuccessOrdering() const { |
| 605 | return getSubclassData<SuccessOrderingField>(); |
| 606 | } |
| 607 | |
| 608 | /// Sets the success ordering constraint of this cmpxchg instruction. |
| 609 | void setSuccessOrdering(AtomicOrdering Ordering) { |
| 610 | assert(isValidSuccessOrdering(Ordering) &&((void)0) |
| 611 | "invalid CmpXchg success ordering")((void)0); |
| 612 | setSubclassData<SuccessOrderingField>(Ordering); |
| 613 | } |
| 614 | |
| 615 | /// Returns the failure ordering constraint of this cmpxchg instruction. |
| 616 | AtomicOrdering getFailureOrdering() const { |
| 617 | return getSubclassData<FailureOrderingField>(); |
| 618 | } |
| 619 | |
| 620 | /// Sets the failure ordering constraint of this cmpxchg instruction. |
| 621 | void setFailureOrdering(AtomicOrdering Ordering) { |
| 622 | assert(isValidFailureOrdering(Ordering) &&((void)0) |
| 623 | "invalid CmpXchg failure ordering")((void)0); |
| 624 | setSubclassData<FailureOrderingField>(Ordering); |
| 625 | } |
| 626 | |
| 627 | /// Returns a single ordering which is at least as strong as both the |
| 628 | /// success and failure orderings for this cmpxchg. |
| 629 | AtomicOrdering getMergedOrdering() const { |
| 630 | if (getFailureOrdering() == AtomicOrdering::SequentiallyConsistent) |
| 631 | return AtomicOrdering::SequentiallyConsistent; |
| 632 | if (getFailureOrdering() == AtomicOrdering::Acquire) { |
| 633 | if (getSuccessOrdering() == AtomicOrdering::Monotonic) |
| 634 | return AtomicOrdering::Acquire; |
| 635 | if (getSuccessOrdering() == AtomicOrdering::Release) |
| 636 | return AtomicOrdering::AcquireRelease; |
| 637 | } |
| 638 | return getSuccessOrdering(); |
| 639 | } |
| 640 | |
| 641 | /// Returns the synchronization scope ID of this cmpxchg instruction. |
| 642 | SyncScope::ID getSyncScopeID() const { |
| 643 | return SSID; |
| 644 | } |
| 645 | |
| 646 | /// Sets the synchronization scope ID of this cmpxchg instruction. |
| 647 | void setSyncScopeID(SyncScope::ID SSID) { |
| 648 | this->SSID = SSID; |
| 649 | } |
| 650 | |
| 651 | Value *getPointerOperand() { return getOperand(0); } |
| 652 | const Value *getPointerOperand() const { return getOperand(0); } |
| 653 | static unsigned getPointerOperandIndex() { return 0U; } |
| 654 | |
| 655 | Value *getCompareOperand() { return getOperand(1); } |
| 656 | const Value *getCompareOperand() const { return getOperand(1); } |
| 657 | |
| 658 | Value *getNewValOperand() { return getOperand(2); } |
| 659 | const Value *getNewValOperand() const { return getOperand(2); } |
| 660 | |
| 661 | /// Returns the address space of the pointer operand. |
| 662 | unsigned getPointerAddressSpace() const { |
| 663 | return getPointerOperand()->getType()->getPointerAddressSpace(); |
| 664 | } |
| 665 | |
| 666 | /// Returns the strongest permitted ordering on failure, given the |
| 667 | /// desired ordering on success. |
| 668 | /// |
| 669 | /// If the comparison in a cmpxchg operation fails, there is no atomic store |
| 670 | /// so release semantics cannot be provided. So this function drops explicit |
| 671 | /// Release requests from the AtomicOrdering. A SequentiallyConsistent |
| 672 | /// operation would remain SequentiallyConsistent. |
| 673 | static AtomicOrdering |
| 674 | getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) { |
| 675 | switch (SuccessOrdering) { |
| 676 | default: |
| 677 | llvm_unreachable("invalid cmpxchg success ordering")__builtin_unreachable(); |
| 678 | case AtomicOrdering::Release: |
| 679 | case AtomicOrdering::Monotonic: |
| 680 | return AtomicOrdering::Monotonic; |
| 681 | case AtomicOrdering::AcquireRelease: |
| 682 | case AtomicOrdering::Acquire: |
| 683 | return AtomicOrdering::Acquire; |
| 684 | case AtomicOrdering::SequentiallyConsistent: |
| 685 | return AtomicOrdering::SequentiallyConsistent; |
| 686 | } |
| 687 | } |
| 688 | |
| 689 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 690 | static bool classof(const Instruction *I) { |
| 691 | return I->getOpcode() == Instruction::AtomicCmpXchg; |
| 692 | } |
| 693 | static bool classof(const Value *V) { |
| 694 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 695 | } |
| 696 | |
| 697 | private: |
| 698 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 699 | // method so that subclasses cannot accidentally use it. |
| 700 | template <typename Bitfield> |
| 701 | void setSubclassData(typename Bitfield::Type Value) { |
| 702 | Instruction::setSubclassData<Bitfield>(Value); |
| 703 | } |
| 704 | |
| 705 | /// The synchronization scope ID of this cmpxchg instruction. Not quite |
| 706 | /// enough room in SubClassData for everything, so synchronization scope ID |
| 707 | /// gets its own field. |
| 708 | SyncScope::ID SSID; |
| 709 | }; |
| 710 | |
| 711 | template <> |
| 712 | struct OperandTraits<AtomicCmpXchgInst> : |
| 713 | public FixedNumOperandTraits<AtomicCmpXchgInst, 3> { |
| 714 | }; |
| 715 | |
| 716 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)AtomicCmpXchgInst::op_iterator AtomicCmpXchgInst::op_begin() { return OperandTraits<AtomicCmpXchgInst>::op_begin(this ); } AtomicCmpXchgInst::const_op_iterator AtomicCmpXchgInst:: op_begin() const { return OperandTraits<AtomicCmpXchgInst> ::op_begin(const_cast<AtomicCmpXchgInst*>(this)); } AtomicCmpXchgInst ::op_iterator AtomicCmpXchgInst::op_end() { return OperandTraits <AtomicCmpXchgInst>::op_end(this); } AtomicCmpXchgInst:: const_op_iterator AtomicCmpXchgInst::op_end() const { return OperandTraits <AtomicCmpXchgInst>::op_end(const_cast<AtomicCmpXchgInst *>(this)); } Value *AtomicCmpXchgInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<AtomicCmpXchgInst>::op_begin(const_cast <AtomicCmpXchgInst*>(this))[i_nocapture].get()); } void AtomicCmpXchgInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<AtomicCmpXchgInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned AtomicCmpXchgInst ::getNumOperands() const { return OperandTraits<AtomicCmpXchgInst >::operands(this); } template <int Idx_nocapture> Use &AtomicCmpXchgInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & AtomicCmpXchgInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
| 717 | |
| 718 | //===----------------------------------------------------------------------===// |
| 719 | // AtomicRMWInst Class |
| 720 | //===----------------------------------------------------------------------===// |
| 721 | |
| 722 | /// an instruction that atomically reads a memory location, |
| 723 | /// combines it with another value, and then stores the result back. Returns |
| 724 | /// the old value. |
| 725 | /// |
| 726 | class AtomicRMWInst : public Instruction { |
| 727 | protected: |
| 728 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 729 | friend class Instruction; |
| 730 | |
| 731 | AtomicRMWInst *cloneImpl() const; |
| 732 | |
| 733 | public: |
| 734 | /// This enumeration lists the possible modifications atomicrmw can make. In |
| 735 | /// the descriptions, 'p' is the pointer to the instruction's memory location, |
| 736 | /// 'old' is the initial value of *p, and 'v' is the other value passed to the |
| 737 | /// instruction. These instructions always return 'old'. |
| 738 | enum BinOp : unsigned { |
| 739 | /// *p = v |
| 740 | Xchg, |
| 741 | /// *p = old + v |
| 742 | Add, |
| 743 | /// *p = old - v |
| 744 | Sub, |
| 745 | /// *p = old & v |
| 746 | And, |
| 747 | /// *p = ~(old & v) |
| 748 | Nand, |
| 749 | /// *p = old | v |
| 750 | Or, |
| 751 | /// *p = old ^ v |
| 752 | Xor, |
| 753 | /// *p = old >signed v ? old : v |
| 754 | Max, |
| 755 | /// *p = old <signed v ? old : v |
| 756 | Min, |
| 757 | /// *p = old >unsigned v ? old : v |
| 758 | UMax, |
| 759 | /// *p = old <unsigned v ? old : v |
| 760 | UMin, |
| 761 | |
| 762 | /// *p = old + v |
| 763 | FAdd, |
| 764 | |
| 765 | /// *p = old - v |
| 766 | FSub, |
| 767 | |
| 768 | FIRST_BINOP = Xchg, |
| 769 | LAST_BINOP = FSub, |
| 770 | BAD_BINOP |
| 771 | }; |
| 772 | |
| 773 | private: |
| 774 | template <unsigned Offset> |
| 775 | using AtomicOrderingBitfieldElement = |
| 776 | typename Bitfield::Element<AtomicOrdering, Offset, 3, |
| 777 | AtomicOrdering::LAST>; |
| 778 | |
| 779 | template <unsigned Offset> |
| 780 | using BinOpBitfieldElement = |
| 781 | typename Bitfield::Element<BinOp, Offset, 4, BinOp::LAST_BINOP>; |
| 782 | |
| 783 | public: |
| 784 | AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment, |
| 785 | AtomicOrdering Ordering, SyncScope::ID SSID, |
| 786 | Instruction *InsertBefore = nullptr); |
| 787 | AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment, |
| 788 | AtomicOrdering Ordering, SyncScope::ID SSID, |
| 789 | BasicBlock *InsertAtEnd); |
| 790 | |
| 791 | // allocate space for exactly two operands |
| 792 | void *operator new(size_t S) { return User::operator new(S, 2); } |
| 793 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 794 | |
| 795 | using VolatileField = BoolBitfieldElementT<0>; |
| 796 | using AtomicOrderingField = |
| 797 | AtomicOrderingBitfieldElementT<VolatileField::NextBit>; |
| 798 | using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>; |
| 799 | using AlignmentField = AlignmentBitfieldElementT<OperationField::NextBit>; |
| 800 | static_assert(Bitfield::areContiguous<VolatileField, AtomicOrderingField, |
| 801 | OperationField, AlignmentField>(), |
| 802 | "Bitfields must be contiguous"); |
| 803 | |
| 804 | BinOp getOperation() const { return getSubclassData<OperationField>(); } |
| 805 | |
| 806 | static StringRef getOperationName(BinOp Op); |
| 807 | |
| 808 | static bool isFPOperation(BinOp Op) { |
| 809 | switch (Op) { |
| 810 | case AtomicRMWInst::FAdd: |
| 811 | case AtomicRMWInst::FSub: |
| 812 | return true; |
| 813 | default: |
| 814 | return false; |
| 815 | } |
| 816 | } |
| 817 | |
| 818 | void setOperation(BinOp Operation) { |
| 819 | setSubclassData<OperationField>(Operation); |
| 820 | } |
| 821 | |
| 822 | /// Return the alignment of the memory that is being allocated by the |
| 823 | /// instruction. |
| 824 | Align getAlign() const { |
| 825 | return Align(1ULL << getSubclassData<AlignmentField>()); |
| 826 | } |
| 827 | |
| 828 | void setAlignment(Align Align) { |
| 829 | setSubclassData<AlignmentField>(Log2(Align)); |
| 830 | } |
| 831 | |
| 832 | /// Return true if this is a RMW on a volatile memory location. |
| 833 | /// |
| 834 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
| 835 | |
| 836 | /// Specify whether this is a volatile RMW or not. |
| 837 | /// |
| 838 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
| 839 | |
| 840 | /// Transparently provide more efficient getOperand methods. |
| 841 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 842 | |
| 843 | /// Returns the ordering constraint of this rmw instruction. |
| 844 | AtomicOrdering getOrdering() const { |
| 845 | return getSubclassData<AtomicOrderingField>(); |
| 846 | } |
| 847 | |
| 848 | /// Sets the ordering constraint of this rmw instruction. |
| 849 | void setOrdering(AtomicOrdering Ordering) { |
| 850 | assert(Ordering != AtomicOrdering::NotAtomic &&((void)0) |
| 851 | "atomicrmw instructions can only be atomic.")((void)0); |
| 852 | setSubclassData<AtomicOrderingField>(Ordering); |
| 853 | } |
| 854 | |
| 855 | /// Returns the synchronization scope ID of this rmw instruction. |
| 856 | SyncScope::ID getSyncScopeID() const { |
| 857 | return SSID; |
| 858 | } |
| 859 | |
| 860 | /// Sets the synchronization scope ID of this rmw instruction. |
| 861 | void setSyncScopeID(SyncScope::ID SSID) { |
| 862 | this->SSID = SSID; |
| 863 | } |
| 864 | |
| 865 | Value *getPointerOperand() { return getOperand(0); } |
| 866 | const Value *getPointerOperand() const { return getOperand(0); } |
| 867 | static unsigned getPointerOperandIndex() { return 0U; } |
| 868 | |
| 869 | Value *getValOperand() { return getOperand(1); } |
| 870 | const Value *getValOperand() const { return getOperand(1); } |
| 871 | |
| 872 | /// Returns the address space of the pointer operand. |
| 873 | unsigned getPointerAddressSpace() const { |
| 874 | return getPointerOperand()->getType()->getPointerAddressSpace(); |
| 875 | } |
| 876 | |
| 877 | bool isFloatingPointOperation() const { |
| 878 | return isFPOperation(getOperation()); |
| 879 | } |
| 880 | |
| 881 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 882 | static bool classof(const Instruction *I) { |
| 883 | return I->getOpcode() == Instruction::AtomicRMW; |
| 884 | } |
| 885 | static bool classof(const Value *V) { |
| 886 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 887 | } |
| 888 | |
| 889 | private: |
| 890 | void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align, |
| 891 | AtomicOrdering Ordering, SyncScope::ID SSID); |
| 892 | |
| 893 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 894 | // method so that subclasses cannot accidentally use it. |
| 895 | template <typename Bitfield> |
| 896 | void setSubclassData(typename Bitfield::Type Value) { |
| 897 | Instruction::setSubclassData<Bitfield>(Value); |
| 898 | } |
| 899 | |
| 900 | /// The synchronization scope ID of this rmw instruction. Not quite enough |
| 901 | /// room in SubClassData for everything, so synchronization scope ID gets its |
| 902 | /// own field. |
| 903 | SyncScope::ID SSID; |
| 904 | }; |
| 905 | |
| 906 | template <> |
| 907 | struct OperandTraits<AtomicRMWInst> |
| 908 | : public FixedNumOperandTraits<AtomicRMWInst,2> { |
| 909 | }; |
| 910 | |
| 911 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)AtomicRMWInst::op_iterator AtomicRMWInst::op_begin() { return OperandTraits<AtomicRMWInst>::op_begin(this); } AtomicRMWInst ::const_op_iterator AtomicRMWInst::op_begin() const { return OperandTraits <AtomicRMWInst>::op_begin(const_cast<AtomicRMWInst*> (this)); } AtomicRMWInst::op_iterator AtomicRMWInst::op_end() { return OperandTraits<AtomicRMWInst>::op_end(this); } AtomicRMWInst::const_op_iterator AtomicRMWInst::op_end() const { return OperandTraits<AtomicRMWInst>::op_end(const_cast <AtomicRMWInst*>(this)); } Value *AtomicRMWInst::getOperand (unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<AtomicRMWInst>::op_begin(const_cast <AtomicRMWInst*>(this))[i_nocapture].get()); } void AtomicRMWInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<AtomicRMWInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned AtomicRMWInst::getNumOperands() const { return OperandTraits<AtomicRMWInst>::operands( this); } template <int Idx_nocapture> Use &AtomicRMWInst ::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &AtomicRMWInst ::Op() const { return this->OpFrom<Idx_nocapture>(this ); } |
| 912 | |
| 913 | //===----------------------------------------------------------------------===// |
| 914 | // GetElementPtrInst Class |
| 915 | //===----------------------------------------------------------------------===// |
| 916 | |
| 917 | // checkGEPType - Simple wrapper function to give a better assertion failure |
| 918 | // message on bad indexes for a gep instruction. |
| 919 | // |
| 920 | inline Type *checkGEPType(Type *Ty) { |
| 921 | assert(Ty && "Invalid GetElementPtrInst indices for type!")((void)0); |
| 922 | return Ty; |
| 923 | } |
| 924 | |
| 925 | /// an instruction for type-safe pointer arithmetic to |
| 926 | /// access elements of arrays and structs |
| 927 | /// |
| 928 | class GetElementPtrInst : public Instruction { |
| 929 | Type *SourceElementType; |
| 930 | Type *ResultElementType; |
| 931 | |
| 932 | GetElementPtrInst(const GetElementPtrInst &GEPI); |
| 933 | |
| 934 | /// Constructors - Create a getelementptr instruction with a base pointer an |
| 935 | /// list of indices. The first ctor can optionally insert before an existing |
| 936 | /// instruction, the second appends the new instruction to the specified |
| 937 | /// BasicBlock. |
| 938 | inline GetElementPtrInst(Type *PointeeType, Value *Ptr, |
| 939 | ArrayRef<Value *> IdxList, unsigned Values, |
| 940 | const Twine &NameStr, Instruction *InsertBefore); |
| 941 | inline GetElementPtrInst(Type *PointeeType, Value *Ptr, |
| 942 | ArrayRef<Value *> IdxList, unsigned Values, |
| 943 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 944 | |
| 945 | void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr); |
| 946 | |
| 947 | protected: |
| 948 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 949 | friend class Instruction; |
| 950 | |
| 951 | GetElementPtrInst *cloneImpl() const; |
| 952 | |
| 953 | public: |
| 954 | static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr, |
| 955 | ArrayRef<Value *> IdxList, |
| 956 | const Twine &NameStr = "", |
| 957 | Instruction *InsertBefore = nullptr) { |
| 958 | unsigned Values = 1 + unsigned(IdxList.size()); |
| 959 | assert(PointeeType && "Must specify element type")((void)0); |
| 960 | assert(cast<PointerType>(Ptr->getType()->getScalarType())((void)0) |
| 961 | ->isOpaqueOrPointeeTypeMatches(PointeeType))((void)0); |
| 962 | return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values, |
| 963 | NameStr, InsertBefore); |
| 964 | } |
| 965 | |
| 966 | static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr, |
| 967 | ArrayRef<Value *> IdxList, |
| 968 | const Twine &NameStr, |
| 969 | BasicBlock *InsertAtEnd) { |
| 970 | unsigned Values = 1 + unsigned(IdxList.size()); |
| 971 | assert(PointeeType && "Must specify element type")((void)0); |
| 972 | assert(cast<PointerType>(Ptr->getType()->getScalarType())((void)0) |
| 973 | ->isOpaqueOrPointeeTypeMatches(PointeeType))((void)0); |
| 974 | return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values, |
| 975 | NameStr, InsertAtEnd); |
| 976 | } |
| 977 | |
| 978 | LLVM_ATTRIBUTE_DEPRECATED(static GetElementPtrInst *CreateInBounds([[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) |
| 979 | Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr = "",[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) |
| 980 | Instruction *InsertBefore = nullptr),[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) |
| 981 | "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) { |
| 982 | return CreateInBounds( |
| 983 | Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, IdxList, |
| 984 | NameStr, InsertBefore); |
| 985 | } |
| 986 | |
| 987 | /// Create an "inbounds" getelementptr. See the documentation for the |
| 988 | /// "inbounds" flag in LangRef.html for details. |
| 989 | static GetElementPtrInst * |
| 990 | CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList, |
| 991 | const Twine &NameStr = "", |
| 992 | Instruction *InsertBefore = nullptr) { |
| 993 | GetElementPtrInst *GEP = |
| 994 | Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore); |
| 995 | GEP->setIsInBounds(true); |
| 996 | return GEP; |
| 997 | } |
| 998 | |
| 999 | LLVM_ATTRIBUTE_DEPRECATED(static GetElementPtrInst *CreateInBounds([[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) |
| 1000 | Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr,[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) |
| 1001 | BasicBlock *InsertAtEnd),[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) |
| 1002 | "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 1003 | return CreateInBounds( |
| 1004 | Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, IdxList, |
| 1005 | NameStr, InsertAtEnd); |
| 1006 | } |
| 1007 | |
| 1008 | static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr, |
| 1009 | ArrayRef<Value *> IdxList, |
| 1010 | const Twine &NameStr, |
| 1011 | BasicBlock *InsertAtEnd) { |
| 1012 | GetElementPtrInst *GEP = |
| 1013 | Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd); |
| 1014 | GEP->setIsInBounds(true); |
| 1015 | return GEP; |
| 1016 | } |
| 1017 | |
| 1018 | /// Transparently provide more efficient getOperand methods. |
| 1019 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 1020 | |
| 1021 | Type *getSourceElementType() const { return SourceElementType; } |
| 1022 | |
| 1023 | void setSourceElementType(Type *Ty) { SourceElementType = Ty; } |
| 1024 | void setResultElementType(Type *Ty) { ResultElementType = Ty; } |
| 1025 | |
| 1026 | Type *getResultElementType() const { |
| 1027 | assert(cast<PointerType>(getType()->getScalarType())((void)0) |
| 1028 | ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0); |
| 1029 | return ResultElementType; |
| 1030 | } |
| 1031 | |
| 1032 | /// Returns the address space of this instruction's pointer type. |
| 1033 | unsigned getAddressSpace() const { |
| 1034 | // Note that this is always the same as the pointer operand's address space |
| 1035 | // and that is cheaper to compute, so cheat here. |
| 1036 | return getPointerAddressSpace(); |
| 1037 | } |
| 1038 | |
| 1039 | /// Returns the result type of a getelementptr with the given source |
| 1040 | /// element type and indexes. |
| 1041 | /// |
| 1042 | /// Null is returned if the indices are invalid for the specified |
| 1043 | /// source element type. |
| 1044 | static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList); |
| 1045 | static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList); |
| 1046 | static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList); |
| 1047 | |
| 1048 | /// Return the type of the element at the given index of an indexable |
| 1049 | /// type. This is equivalent to "getIndexedType(Agg, {Zero, Idx})". |
| 1050 | /// |
| 1051 | /// Returns null if the type can't be indexed, or the given index is not |
| 1052 | /// legal for the given type. |
| 1053 | static Type *getTypeAtIndex(Type *Ty, Value *Idx); |
| 1054 | static Type *getTypeAtIndex(Type *Ty, uint64_t Idx); |
| 1055 | |
| 1056 | inline op_iterator idx_begin() { return op_begin()+1; } |
| 1057 | inline const_op_iterator idx_begin() const { return op_begin()+1; } |
| 1058 | inline op_iterator idx_end() { return op_end(); } |
| 1059 | inline const_op_iterator idx_end() const { return op_end(); } |
| 1060 | |
| 1061 | inline iterator_range<op_iterator> indices() { |
| 1062 | return make_range(idx_begin(), idx_end()); |
| 1063 | } |
| 1064 | |
| 1065 | inline iterator_range<const_op_iterator> indices() const { |
| 1066 | return make_range(idx_begin(), idx_end()); |
| 1067 | } |
| 1068 | |
| 1069 | Value *getPointerOperand() { |
| 1070 | return getOperand(0); |
| 1071 | } |
| 1072 | const Value *getPointerOperand() const { |
| 1073 | return getOperand(0); |
| 1074 | } |
| 1075 | static unsigned getPointerOperandIndex() { |
| 1076 | return 0U; // get index for modifying correct operand. |
| 1077 | } |
| 1078 | |
| 1079 | /// Method to return the pointer operand as a |
| 1080 | /// PointerType. |
| 1081 | Type *getPointerOperandType() const { |
| 1082 | return getPointerOperand()->getType(); |
| 1083 | } |
| 1084 | |
| 1085 | /// Returns the address space of the pointer operand. |
| 1086 | unsigned getPointerAddressSpace() const { |
| 1087 | return getPointerOperandType()->getPointerAddressSpace(); |
| 1088 | } |
| 1089 | |
| 1090 | /// Returns the pointer type returned by the GEP |
| 1091 | /// instruction, which may be a vector of pointers. |
| 1092 | static Type *getGEPReturnType(Type *ElTy, Value *Ptr, |
| 1093 | ArrayRef<Value *> IdxList) { |
| 1094 | PointerType *OrigPtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); |
| 1095 | unsigned AddrSpace = OrigPtrTy->getAddressSpace(); |
| 1096 | Type *ResultElemTy = checkGEPType(getIndexedType(ElTy, IdxList)); |
| 1097 | Type *PtrTy = OrigPtrTy->isOpaque() |
| 1098 | ? PointerType::get(OrigPtrTy->getContext(), AddrSpace) |
| 1099 | : PointerType::get(ResultElemTy, AddrSpace); |
| 1100 | // Vector GEP |
| 1101 | if (auto *PtrVTy = dyn_cast<VectorType>(Ptr->getType())) { |
| 1102 | ElementCount EltCount = PtrVTy->getElementCount(); |
| 1103 | return VectorType::get(PtrTy, EltCount); |
| 1104 | } |
| 1105 | for (Value *Index : IdxList) |
| 1106 | if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) { |
| 1107 | ElementCount EltCount = IndexVTy->getElementCount(); |
| 1108 | return VectorType::get(PtrTy, EltCount); |
| 1109 | } |
| 1110 | // Scalar GEP |
| 1111 | return PtrTy; |
| 1112 | } |
| 1113 | |
| 1114 | unsigned getNumIndices() const { // Note: always non-negative |
| 1115 | return getNumOperands() - 1; |
| 1116 | } |
| 1117 | |
| 1118 | bool hasIndices() const { |
| 1119 | return getNumOperands() > 1; |
| 1120 | } |
| 1121 | |
| 1122 | /// Return true if all of the indices of this GEP are |
| 1123 | /// zeros. If so, the result pointer and the first operand have the same |
| 1124 | /// value, just potentially different types. |
| 1125 | bool hasAllZeroIndices() const; |
| 1126 | |
| 1127 | /// Return true if all of the indices of this GEP are |
| 1128 | /// constant integers. If so, the result pointer and the first operand have |
| 1129 | /// a constant offset between them. |
| 1130 | bool hasAllConstantIndices() const; |
| 1131 | |
| 1132 | /// Set or clear the inbounds flag on this GEP instruction. |
| 1133 | /// See LangRef.html for the meaning of inbounds on a getelementptr. |
| 1134 | void setIsInBounds(bool b = true); |
| 1135 | |
| 1136 | /// Determine whether the GEP has the inbounds flag. |
| 1137 | bool isInBounds() const; |
| 1138 | |
| 1139 | /// Accumulate the constant address offset of this GEP if possible. |
| 1140 | /// |
| 1141 | /// This routine accepts an APInt into which it will accumulate the constant |
| 1142 | /// offset of this GEP if the GEP is in fact constant. If the GEP is not |
| 1143 | /// all-constant, it returns false and the value of the offset APInt is |
| 1144 | /// undefined (it is *not* preserved!). The APInt passed into this routine |
| 1145 | /// must be at least as wide as the IntPtr type for the address space of |
| 1146 | /// the base GEP pointer. |
| 1147 | bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const; |
| 1148 | bool collectOffset(const DataLayout &DL, unsigned BitWidth, |
| 1149 | MapVector<Value *, APInt> &VariableOffsets, |
| 1150 | APInt &ConstantOffset) const; |
| 1151 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1152 | static bool classof(const Instruction *I) { |
| 1153 | return (I->getOpcode() == Instruction::GetElementPtr); |
| 1154 | } |
| 1155 | static bool classof(const Value *V) { |
| 1156 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1157 | } |
| 1158 | }; |
| 1159 | |
| 1160 | template <> |
| 1161 | struct OperandTraits<GetElementPtrInst> : |
| 1162 | public VariadicOperandTraits<GetElementPtrInst, 1> { |
| 1163 | }; |
| 1164 | |
| 1165 | GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr, |
| 1166 | ArrayRef<Value *> IdxList, unsigned Values, |
| 1167 | const Twine &NameStr, |
| 1168 | Instruction *InsertBefore) |
| 1169 | : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr, |
| 1170 | OperandTraits<GetElementPtrInst>::op_end(this) - Values, |
| 1171 | Values, InsertBefore), |
| 1172 | SourceElementType(PointeeType), |
| 1173 | ResultElementType(getIndexedType(PointeeType, IdxList)) { |
| 1174 | assert(cast<PointerType>(getType()->getScalarType())((void)0) |
| 1175 | ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0); |
| 1176 | init(Ptr, IdxList, NameStr); |
| 1177 | } |
| 1178 | |
| 1179 | GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr, |
| 1180 | ArrayRef<Value *> IdxList, unsigned Values, |
| 1181 | const Twine &NameStr, |
| 1182 | BasicBlock *InsertAtEnd) |
| 1183 | : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr, |
| 1184 | OperandTraits<GetElementPtrInst>::op_end(this) - Values, |
| 1185 | Values, InsertAtEnd), |
| 1186 | SourceElementType(PointeeType), |
| 1187 | ResultElementType(getIndexedType(PointeeType, IdxList)) { |
| 1188 | assert(cast<PointerType>(getType()->getScalarType())((void)0) |
| 1189 | ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0); |
| 1190 | init(Ptr, IdxList, NameStr); |
| 1191 | } |
| 1192 | |
| 1193 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)GetElementPtrInst::op_iterator GetElementPtrInst::op_begin() { return OperandTraits<GetElementPtrInst>::op_begin(this ); } GetElementPtrInst::const_op_iterator GetElementPtrInst:: op_begin() const { return OperandTraits<GetElementPtrInst> ::op_begin(const_cast<GetElementPtrInst*>(this)); } GetElementPtrInst ::op_iterator GetElementPtrInst::op_end() { return OperandTraits <GetElementPtrInst>::op_end(this); } GetElementPtrInst:: const_op_iterator GetElementPtrInst::op_end() const { return OperandTraits <GetElementPtrInst>::op_end(const_cast<GetElementPtrInst *>(this)); } Value *GetElementPtrInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<GetElementPtrInst>::op_begin(const_cast <GetElementPtrInst*>(this))[i_nocapture].get()); } void GetElementPtrInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<GetElementPtrInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned GetElementPtrInst ::getNumOperands() const { return OperandTraits<GetElementPtrInst >::operands(this); } template <int Idx_nocapture> Use &GetElementPtrInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & GetElementPtrInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
| 1194 | |
| 1195 | //===----------------------------------------------------------------------===// |
| 1196 | // ICmpInst Class |
| 1197 | //===----------------------------------------------------------------------===// |
| 1198 | |
| 1199 | /// This instruction compares its operands according to the predicate given |
| 1200 | /// to the constructor. It only operates on integers or pointers. The operands |
| 1201 | /// must be identical types. |
| 1202 | /// Represent an integer comparison operator. |
| 1203 | class ICmpInst: public CmpInst { |
| 1204 | void AssertOK() { |
| 1205 | assert(isIntPredicate() &&((void)0) |
| 1206 | "Invalid ICmp predicate value")((void)0); |
| 1207 | assert(getOperand(0)->getType() == getOperand(1)->getType() &&((void)0) |
| 1208 | "Both operands to ICmp instruction are not of the same type!")((void)0); |
| 1209 | // Check that the operands are the right type |
| 1210 | assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||((void)0) |
| 1211 | getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&((void)0) |
| 1212 | "Invalid operand types for ICmp instruction")((void)0); |
| 1213 | } |
| 1214 | |
| 1215 | protected: |
| 1216 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1217 | friend class Instruction; |
| 1218 | |
| 1219 | /// Clone an identical ICmpInst |
| 1220 | ICmpInst *cloneImpl() const; |
| 1221 | |
| 1222 | public: |
| 1223 | /// Constructor with insert-before-instruction semantics. |
| 1224 | ICmpInst( |
| 1225 | Instruction *InsertBefore, ///< Where to insert |
| 1226 | Predicate pred, ///< The predicate to use for the comparison |
| 1227 | Value *LHS, ///< The left-hand-side of the expression |
| 1228 | Value *RHS, ///< The right-hand-side of the expression |
| 1229 | const Twine &NameStr = "" ///< Name of the instruction |
| 1230 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
| 1231 | Instruction::ICmp, pred, LHS, RHS, NameStr, |
| 1232 | InsertBefore) { |
| 1233 | #ifndef NDEBUG1 |
| 1234 | AssertOK(); |
| 1235 | #endif |
| 1236 | } |
| 1237 | |
| 1238 | /// Constructor with insert-at-end semantics. |
| 1239 | ICmpInst( |
| 1240 | BasicBlock &InsertAtEnd, ///< Block to insert into. |
| 1241 | Predicate pred, ///< The predicate to use for the comparison |
| 1242 | Value *LHS, ///< The left-hand-side of the expression |
| 1243 | Value *RHS, ///< The right-hand-side of the expression |
| 1244 | const Twine &NameStr = "" ///< Name of the instruction |
| 1245 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
| 1246 | Instruction::ICmp, pred, LHS, RHS, NameStr, |
| 1247 | &InsertAtEnd) { |
| 1248 | #ifndef NDEBUG1 |
| 1249 | AssertOK(); |
| 1250 | #endif |
| 1251 | } |
| 1252 | |
| 1253 | /// Constructor with no-insertion semantics |
| 1254 | ICmpInst( |
| 1255 | Predicate pred, ///< The predicate to use for the comparison |
| 1256 | Value *LHS, ///< The left-hand-side of the expression |
| 1257 | Value *RHS, ///< The right-hand-side of the expression |
| 1258 | const Twine &NameStr = "" ///< Name of the instruction |
| 1259 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
| 1260 | Instruction::ICmp, pred, LHS, RHS, NameStr) { |
| 1261 | #ifndef NDEBUG1 |
| 1262 | AssertOK(); |
| 1263 | #endif |
| 1264 | } |
| 1265 | |
| 1266 | /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc. |
| 1267 | /// @returns the predicate that would be the result if the operand were |
| 1268 | /// regarded as signed. |
| 1269 | /// Return the signed version of the predicate |
| 1270 | Predicate getSignedPredicate() const { |
| 1271 | return getSignedPredicate(getPredicate()); |
| 1272 | } |
| 1273 | |
| 1274 | /// This is a static version that you can use without an instruction. |
| 1275 | /// Return the signed version of the predicate. |
| 1276 | static Predicate getSignedPredicate(Predicate pred); |
| 1277 | |
| 1278 | /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc. |
| 1279 | /// @returns the predicate that would be the result if the operand were |
| 1280 | /// regarded as unsigned. |
| 1281 | /// Return the unsigned version of the predicate |
| 1282 | Predicate getUnsignedPredicate() const { |
| 1283 | return getUnsignedPredicate(getPredicate()); |
| 1284 | } |
| 1285 | |
| 1286 | /// This is a static version that you can use without an instruction. |
| 1287 | /// Return the unsigned version of the predicate. |
| 1288 | static Predicate getUnsignedPredicate(Predicate pred); |
| 1289 | |
| 1290 | /// Return true if this predicate is either EQ or NE. This also |
| 1291 | /// tests for commutativity. |
| 1292 | static bool isEquality(Predicate P) { |
| 1293 | return P == ICMP_EQ || P == ICMP_NE; |
| 1294 | } |
| 1295 | |
| 1296 | /// Return true if this predicate is either EQ or NE. This also |
| 1297 | /// tests for commutativity. |
| 1298 | bool isEquality() const { |
| 1299 | return isEquality(getPredicate()); |
| 1300 | } |
| 1301 | |
| 1302 | /// @returns true if the predicate of this ICmpInst is commutative |
| 1303 | /// Determine if this relation is commutative. |
| 1304 | bool isCommutative() const { return isEquality(); } |
| 1305 | |
| 1306 | /// Return true if the predicate is relational (not EQ or NE). |
| 1307 | /// |
| 1308 | bool isRelational() const { |
| 1309 | return !isEquality(); |
| 1310 | } |
| 1311 | |
| 1312 | /// Return true if the predicate is relational (not EQ or NE). |
| 1313 | /// |
| 1314 | static bool isRelational(Predicate P) { |
| 1315 | return !isEquality(P); |
| 1316 | } |
| 1317 | |
| 1318 | /// Return true if the predicate is SGT or UGT. |
| 1319 | /// |
| 1320 | static bool isGT(Predicate P) { |
| 1321 | return P == ICMP_SGT || P == ICMP_UGT; |
| 1322 | } |
| 1323 | |
| 1324 | /// Return true if the predicate is SLT or ULT. |
| 1325 | /// |
| 1326 | static bool isLT(Predicate P) { |
| 1327 | return P == ICMP_SLT || P == ICMP_ULT; |
| 1328 | } |
| 1329 | |
| 1330 | /// Return true if the predicate is SGE or UGE. |
| 1331 | /// |
| 1332 | static bool isGE(Predicate P) { |
| 1333 | return P == ICMP_SGE || P == ICMP_UGE; |
| 1334 | } |
| 1335 | |
| 1336 | /// Return true if the predicate is SLE or ULE. |
| 1337 | /// |
| 1338 | static bool isLE(Predicate P) { |
| 1339 | return P == ICMP_SLE || P == ICMP_ULE; |
| 1340 | } |
| 1341 | |
| 1342 | /// Exchange the two operands to this instruction in such a way that it does |
| 1343 | /// not modify the semantics of the instruction. The predicate value may be |
| 1344 | /// changed to retain the same result if the predicate is order dependent |
| 1345 | /// (e.g. ult). |
| 1346 | /// Swap operands and adjust predicate. |
| 1347 | void swapOperands() { |
| 1348 | setPredicate(getSwappedPredicate()); |
| 1349 | Op<0>().swap(Op<1>()); |
| 1350 | } |
| 1351 | |
| 1352 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1353 | static bool classof(const Instruction *I) { |
| 1354 | return I->getOpcode() == Instruction::ICmp; |
| 1355 | } |
| 1356 | static bool classof(const Value *V) { |
| 1357 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1358 | } |
| 1359 | }; |
| 1360 | |
| 1361 | //===----------------------------------------------------------------------===// |
| 1362 | // FCmpInst Class |
| 1363 | //===----------------------------------------------------------------------===// |
| 1364 | |
| 1365 | /// This instruction compares its operands according to the predicate given |
| 1366 | /// to the constructor. It only operates on floating point values or packed |
| 1367 | /// vectors of floating point values. The operands must be identical types. |
| 1368 | /// Represents a floating point comparison operator. |
| 1369 | class FCmpInst: public CmpInst { |
| 1370 | void AssertOK() { |
| 1371 | assert(isFPPredicate() && "Invalid FCmp predicate value")((void)0); |
| 1372 | assert(getOperand(0)->getType() == getOperand(1)->getType() &&((void)0) |
| 1373 | "Both operands to FCmp instruction are not of the same type!")((void)0); |
| 1374 | // Check that the operands are the right type |
| 1375 | assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&((void)0) |
| 1376 | "Invalid operand types for FCmp instruction")((void)0); |
| 1377 | } |
| 1378 | |
| 1379 | protected: |
| 1380 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1381 | friend class Instruction; |
| 1382 | |
| 1383 | /// Clone an identical FCmpInst |
| 1384 | FCmpInst *cloneImpl() const; |
| 1385 | |
| 1386 | public: |
| 1387 | /// Constructor with insert-before-instruction semantics. |
| 1388 | FCmpInst( |
| 1389 | Instruction *InsertBefore, ///< Where to insert |
| 1390 | Predicate pred, ///< The predicate to use for the comparison |
| 1391 | Value *LHS, ///< The left-hand-side of the expression |
| 1392 | Value *RHS, ///< The right-hand-side of the expression |
| 1393 | const Twine &NameStr = "" ///< Name of the instruction |
| 1394 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
| 1395 | Instruction::FCmp, pred, LHS, RHS, NameStr, |
| 1396 | InsertBefore) { |
| 1397 | AssertOK(); |
| 1398 | } |
| 1399 | |
| 1400 | /// Constructor with insert-at-end semantics. |
| 1401 | FCmpInst( |
| 1402 | BasicBlock &InsertAtEnd, ///< Block to insert into. |
| 1403 | Predicate pred, ///< The predicate to use for the comparison |
| 1404 | Value *LHS, ///< The left-hand-side of the expression |
| 1405 | Value *RHS, ///< The right-hand-side of the expression |
| 1406 | const Twine &NameStr = "" ///< Name of the instruction |
| 1407 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
| 1408 | Instruction::FCmp, pred, LHS, RHS, NameStr, |
| 1409 | &InsertAtEnd) { |
| 1410 | AssertOK(); |
| 1411 | } |
| 1412 | |
| 1413 | /// Constructor with no-insertion semantics |
| 1414 | FCmpInst( |
| 1415 | Predicate Pred, ///< The predicate to use for the comparison |
| 1416 | Value *LHS, ///< The left-hand-side of the expression |
| 1417 | Value *RHS, ///< The right-hand-side of the expression |
| 1418 | const Twine &NameStr = "", ///< Name of the instruction |
| 1419 | Instruction *FlagsSource = nullptr |
| 1420 | ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS, |
| 1421 | RHS, NameStr, nullptr, FlagsSource) { |
| 1422 | AssertOK(); |
| 1423 | } |
| 1424 | |
| 1425 | /// @returns true if the predicate of this instruction is EQ or NE. |
| 1426 | /// Determine if this is an equality predicate. |
| 1427 | static bool isEquality(Predicate Pred) { |
| 1428 | return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ || |
| 1429 | Pred == FCMP_UNE; |
| 1430 | } |
| 1431 | |
| 1432 | /// @returns true if the predicate of this instruction is EQ or NE. |
| 1433 | /// Determine if this is an equality predicate. |
| 1434 | bool isEquality() const { return isEquality(getPredicate()); } |
| 1435 | |
| 1436 | /// @returns true if the predicate of this instruction is commutative. |
| 1437 | /// Determine if this is a commutative predicate. |
| 1438 | bool isCommutative() const { |
| 1439 | return isEquality() || |
| 1440 | getPredicate() == FCMP_FALSE || |
| 1441 | getPredicate() == FCMP_TRUE || |
| 1442 | getPredicate() == FCMP_ORD || |
| 1443 | getPredicate() == FCMP_UNO; |
| 1444 | } |
| 1445 | |
| 1446 | /// @returns true if the predicate is relational (not EQ or NE). |
| 1447 | /// Determine if this a relational predicate. |
| 1448 | bool isRelational() const { return !isEquality(); } |
| 1449 | |
| 1450 | /// Exchange the two operands to this instruction in such a way that it does |
| 1451 | /// not modify the semantics of the instruction. The predicate value may be |
| 1452 | /// changed to retain the same result if the predicate is order dependent |
| 1453 | /// (e.g. ult). |
| 1454 | /// Swap operands and adjust predicate. |
| 1455 | void swapOperands() { |
| 1456 | setPredicate(getSwappedPredicate()); |
| 1457 | Op<0>().swap(Op<1>()); |
| 1458 | } |
| 1459 | |
| 1460 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1461 | static bool classof(const Instruction *I) { |
| 1462 | return I->getOpcode() == Instruction::FCmp; |
| 1463 | } |
| 1464 | static bool classof(const Value *V) { |
| 1465 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1466 | } |
| 1467 | }; |
| 1468 | |
| 1469 | //===----------------------------------------------------------------------===// |
| 1470 | /// This class represents a function call, abstracting a target |
| 1471 | /// machine's calling convention. This class uses low bit of the SubClassData |
| 1472 | /// field to indicate whether or not this is a tail call. The rest of the bits |
| 1473 | /// hold the calling convention of the call. |
| 1474 | /// |
| 1475 | class CallInst : public CallBase { |
| 1476 | CallInst(const CallInst &CI); |
| 1477 | |
| 1478 | /// Construct a CallInst given a range of arguments. |
| 1479 | /// Construct a CallInst from a range of arguments |
| 1480 | inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1481 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
| 1482 | Instruction *InsertBefore); |
| 1483 | |
| 1484 | inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1485 | const Twine &NameStr, Instruction *InsertBefore) |
| 1486 | : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {} |
| 1487 | |
| 1488 | /// Construct a CallInst given a range of arguments. |
| 1489 | /// Construct a CallInst from a range of arguments |
| 1490 | inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1491 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
| 1492 | BasicBlock *InsertAtEnd); |
| 1493 | |
| 1494 | explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr, |
| 1495 | Instruction *InsertBefore); |
| 1496 | |
| 1497 | CallInst(FunctionType *ty, Value *F, const Twine &NameStr, |
| 1498 | BasicBlock *InsertAtEnd); |
| 1499 | |
| 1500 | void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args, |
| 1501 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr); |
| 1502 | void init(FunctionType *FTy, Value *Func, const Twine &NameStr); |
| 1503 | |
| 1504 | /// Compute the number of operands to allocate. |
| 1505 | static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) { |
| 1506 | // We need one operand for the called function, plus the input operand |
| 1507 | // counts provided. |
| 1508 | return 1 + NumArgs + NumBundleInputs; |
| 1509 | } |
| 1510 | |
| 1511 | protected: |
| 1512 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1513 | friend class Instruction; |
| 1514 | |
| 1515 | CallInst *cloneImpl() const; |
| 1516 | |
| 1517 | public: |
| 1518 | static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "", |
| 1519 | Instruction *InsertBefore = nullptr) { |
| 1520 | return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore); |
| 1521 | } |
| 1522 | |
| 1523 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1524 | const Twine &NameStr, |
| 1525 | Instruction *InsertBefore = nullptr) { |
| 1526 | return new (ComputeNumOperands(Args.size())) |
| 1527 | CallInst(Ty, Func, Args, None, NameStr, InsertBefore); |
| 1528 | } |
| 1529 | |
| 1530 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1531 | ArrayRef<OperandBundleDef> Bundles = None, |
| 1532 | const Twine &NameStr = "", |
| 1533 | Instruction *InsertBefore = nullptr) { |
| 1534 | const int NumOperands = |
| 1535 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); |
| 1536 | const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
| 1537 | |
| 1538 | return new (NumOperands, DescriptorBytes) |
| 1539 | CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore); |
| 1540 | } |
| 1541 | |
| 1542 | static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr, |
| 1543 | BasicBlock *InsertAtEnd) { |
| 1544 | return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd); |
| 1545 | } |
| 1546 | |
| 1547 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1548 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 1549 | return new (ComputeNumOperands(Args.size())) |
| 1550 | CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd); |
| 1551 | } |
| 1552 | |
| 1553 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1554 | ArrayRef<OperandBundleDef> Bundles, |
| 1555 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 1556 | const int NumOperands = |
| 1557 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); |
| 1558 | const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
| 1559 | |
| 1560 | return new (NumOperands, DescriptorBytes) |
| 1561 | CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd); |
| 1562 | } |
| 1563 | |
| 1564 | static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "", |
| 1565 | Instruction *InsertBefore = nullptr) { |
| 1566 | return Create(Func.getFunctionType(), Func.getCallee(), NameStr, |
| 1567 | InsertBefore); |
| 1568 | } |
| 1569 | |
| 1570 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
| 1571 | ArrayRef<OperandBundleDef> Bundles = None, |
| 1572 | const Twine &NameStr = "", |
| 1573 | Instruction *InsertBefore = nullptr) { |
| 1574 | return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles, |
| 1575 | NameStr, InsertBefore); |
| 1576 | } |
| 1577 | |
| 1578 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
| 1579 | const Twine &NameStr, |
| 1580 | Instruction *InsertBefore = nullptr) { |
| 1581 | return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr, |
| 1582 | InsertBefore); |
| 1583 | } |
| 1584 | |
| 1585 | static CallInst *Create(FunctionCallee Func, const Twine &NameStr, |
| 1586 | BasicBlock *InsertAtEnd) { |
| 1587 | return Create(Func.getFunctionType(), Func.getCallee(), NameStr, |
| 1588 | InsertAtEnd); |
| 1589 | } |
| 1590 | |
| 1591 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
| 1592 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 1593 | return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr, |
| 1594 | InsertAtEnd); |
| 1595 | } |
| 1596 | |
| 1597 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
| 1598 | ArrayRef<OperandBundleDef> Bundles, |
| 1599 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 1600 | return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles, |
| 1601 | NameStr, InsertAtEnd); |
| 1602 | } |
| 1603 | |
| 1604 | /// Create a clone of \p CI with a different set of operand bundles and |
| 1605 | /// insert it before \p InsertPt. |
| 1606 | /// |
| 1607 | /// The returned call instruction is identical \p CI in every way except that |
| 1608 | /// the operand bundles for the new instruction are set to the operand bundles |
| 1609 | /// in \p Bundles. |
| 1610 | static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles, |
| 1611 | Instruction *InsertPt = nullptr); |
| 1612 | |
| 1613 | /// Generate the IR for a call to malloc: |
| 1614 | /// 1. Compute the malloc call's argument as the specified type's size, |
| 1615 | /// possibly multiplied by the array size if the array size is not |
| 1616 | /// constant 1. |
| 1617 | /// 2. Call malloc with that argument. |
| 1618 | /// 3. Bitcast the result of the malloc call to the specified type. |
| 1619 | static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy, |
| 1620 | Type *AllocTy, Value *AllocSize, |
| 1621 | Value *ArraySize = nullptr, |
| 1622 | Function *MallocF = nullptr, |
| 1623 | const Twine &Name = ""); |
| 1624 | static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy, |
| 1625 | Type *AllocTy, Value *AllocSize, |
| 1626 | Value *ArraySize = nullptr, |
| 1627 | Function *MallocF = nullptr, |
| 1628 | const Twine &Name = ""); |
| 1629 | static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy, |
| 1630 | Type *AllocTy, Value *AllocSize, |
| 1631 | Value *ArraySize = nullptr, |
| 1632 | ArrayRef<OperandBundleDef> Bundles = None, |
| 1633 | Function *MallocF = nullptr, |
| 1634 | const Twine &Name = ""); |
| 1635 | static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy, |
| 1636 | Type *AllocTy, Value *AllocSize, |
| 1637 | Value *ArraySize = nullptr, |
| 1638 | ArrayRef<OperandBundleDef> Bundles = None, |
| 1639 | Function *MallocF = nullptr, |
| 1640 | const Twine &Name = ""); |
| 1641 | /// Generate the IR for a call to the builtin free function. |
| 1642 | static Instruction *CreateFree(Value *Source, Instruction *InsertBefore); |
| 1643 | static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd); |
| 1644 | static Instruction *CreateFree(Value *Source, |
| 1645 | ArrayRef<OperandBundleDef> Bundles, |
| 1646 | Instruction *InsertBefore); |
| 1647 | static Instruction *CreateFree(Value *Source, |
| 1648 | ArrayRef<OperandBundleDef> Bundles, |
| 1649 | BasicBlock *InsertAtEnd); |
| 1650 | |
| 1651 | // Note that 'musttail' implies 'tail'. |
| 1652 | enum TailCallKind : unsigned { |
| 1653 | TCK_None = 0, |
| 1654 | TCK_Tail = 1, |
| 1655 | TCK_MustTail = 2, |
| 1656 | TCK_NoTail = 3, |
| 1657 | TCK_LAST = TCK_NoTail |
| 1658 | }; |
| 1659 | |
| 1660 | using TailCallKindField = Bitfield::Element<TailCallKind, 0, 2, TCK_LAST>; |
| 1661 | static_assert( |
| 1662 | Bitfield::areContiguous<TailCallKindField, CallBase::CallingConvField>(), |
| 1663 | "Bitfields must be contiguous"); |
| 1664 | |
| 1665 | TailCallKind getTailCallKind() const { |
| 1666 | return getSubclassData<TailCallKindField>(); |
| 1667 | } |
| 1668 | |
| 1669 | bool isTailCall() const { |
| 1670 | TailCallKind Kind = getTailCallKind(); |
| 1671 | return Kind == TCK_Tail || Kind == TCK_MustTail; |
| 1672 | } |
| 1673 | |
| 1674 | bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; } |
| 1675 | |
| 1676 | bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; } |
| 1677 | |
| 1678 | void setTailCallKind(TailCallKind TCK) { |
| 1679 | setSubclassData<TailCallKindField>(TCK); |
| 1680 | } |
| 1681 | |
| 1682 | void setTailCall(bool IsTc = true) { |
| 1683 | setTailCallKind(IsTc ? TCK_Tail : TCK_None); |
| 1684 | } |
| 1685 | |
| 1686 | /// Return true if the call can return twice |
| 1687 | bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); } |
| 1688 | void setCanReturnTwice() { |
| 1689 | addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice); |
| 1690 | } |
| 1691 | |
| 1692 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1693 | static bool classof(const Instruction *I) { |
| 1694 | return I->getOpcode() == Instruction::Call; |
| 1695 | } |
| 1696 | static bool classof(const Value *V) { |
| 1697 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1698 | } |
| 1699 | |
| 1700 | /// Updates profile metadata by scaling it by \p S / \p T. |
| 1701 | void updateProfWeight(uint64_t S, uint64_t T); |
| 1702 | |
| 1703 | private: |
| 1704 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 1705 | // method so that subclasses cannot accidentally use it. |
| 1706 | template <typename Bitfield> |
| 1707 | void setSubclassData(typename Bitfield::Type Value) { |
| 1708 | Instruction::setSubclassData<Bitfield>(Value); |
| 1709 | } |
| 1710 | }; |
| 1711 | |
| 1712 | CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1713 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
| 1714 | BasicBlock *InsertAtEnd) |
| 1715 | : CallBase(Ty->getReturnType(), Instruction::Call, |
| 1716 | OperandTraits<CallBase>::op_end(this) - |
| 1717 | (Args.size() + CountBundleInputs(Bundles) + 1), |
| 1718 | unsigned(Args.size() + CountBundleInputs(Bundles) + 1), |
| 1719 | InsertAtEnd) { |
| 1720 | init(Ty, Func, Args, Bundles, NameStr); |
| 1721 | } |
| 1722 | |
| 1723 | CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1724 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
| 1725 | Instruction *InsertBefore) |
| 1726 | : CallBase(Ty->getReturnType(), Instruction::Call, |
| 1727 | OperandTraits<CallBase>::op_end(this) - |
| 1728 | (Args.size() + CountBundleInputs(Bundles) + 1), |
| 1729 | unsigned(Args.size() + CountBundleInputs(Bundles) + 1), |
| 1730 | InsertBefore) { |
| 1731 | init(Ty, Func, Args, Bundles, NameStr); |
| 1732 | } |
| 1733 | |
| 1734 | //===----------------------------------------------------------------------===// |
| 1735 | // SelectInst Class |
| 1736 | //===----------------------------------------------------------------------===// |
| 1737 | |
| 1738 | /// This class represents the LLVM 'select' instruction. |
| 1739 | /// |
| 1740 | class SelectInst : public Instruction { |
| 1741 | SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr, |
| 1742 | Instruction *InsertBefore) |
| 1743 | : Instruction(S1->getType(), Instruction::Select, |
| 1744 | &Op<0>(), 3, InsertBefore) { |
| 1745 | init(C, S1, S2); |
| 1746 | setName(NameStr); |
| 1747 | } |
| 1748 | |
| 1749 | SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr, |
| 1750 | BasicBlock *InsertAtEnd) |
| 1751 | : Instruction(S1->getType(), Instruction::Select, |
| 1752 | &Op<0>(), 3, InsertAtEnd) { |
| 1753 | init(C, S1, S2); |
| 1754 | setName(NameStr); |
| 1755 | } |
| 1756 | |
| 1757 | void init(Value *C, Value *S1, Value *S2) { |
| 1758 | assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select")((void)0); |
| 1759 | Op<0>() = C; |
| 1760 | Op<1>() = S1; |
| 1761 | Op<2>() = S2; |
| 1762 | } |
| 1763 | |
| 1764 | protected: |
| 1765 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1766 | friend class Instruction; |
| 1767 | |
| 1768 | SelectInst *cloneImpl() const; |
| 1769 | |
| 1770 | public: |
| 1771 | static SelectInst *Create(Value *C, Value *S1, Value *S2, |
| 1772 | const Twine &NameStr = "", |
| 1773 | Instruction *InsertBefore = nullptr, |
| 1774 | Instruction *MDFrom = nullptr) { |
| 1775 | SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore); |
| 1776 | if (MDFrom) |
| 1777 | Sel->copyMetadata(*MDFrom); |
| 1778 | return Sel; |
| 1779 | } |
| 1780 | |
| 1781 | static SelectInst *Create(Value *C, Value *S1, Value *S2, |
| 1782 | const Twine &NameStr, |
| 1783 | BasicBlock *InsertAtEnd) { |
| 1784 | return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd); |
| 1785 | } |
| 1786 | |
| 1787 | const Value *getCondition() const { return Op<0>(); } |
| 1788 | const Value *getTrueValue() const { return Op<1>(); } |
| 1789 | const Value *getFalseValue() const { return Op<2>(); } |
| 1790 | Value *getCondition() { return Op<0>(); } |
| 1791 | Value *getTrueValue() { return Op<1>(); } |
| 1792 | Value *getFalseValue() { return Op<2>(); } |
| 1793 | |
| 1794 | void setCondition(Value *V) { Op<0>() = V; } |
| 1795 | void setTrueValue(Value *V) { Op<1>() = V; } |
| 1796 | void setFalseValue(Value *V) { Op<2>() = V; } |
| 1797 | |
| 1798 | /// Swap the true and false values of the select instruction. |
| 1799 | /// This doesn't swap prof metadata. |
| 1800 | void swapValues() { Op<1>().swap(Op<2>()); } |
| 1801 | |
| 1802 | /// Return a string if the specified operands are invalid |
| 1803 | /// for a select operation, otherwise return null. |
| 1804 | static const char *areInvalidOperands(Value *Cond, Value *True, Value *False); |
| 1805 | |
| 1806 | /// Transparently provide more efficient getOperand methods. |
| 1807 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 1808 | |
| 1809 | OtherOps getOpcode() const { |
| 1810 | return static_cast<OtherOps>(Instruction::getOpcode()); |
| 1811 | } |
| 1812 | |
| 1813 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1814 | static bool classof(const Instruction *I) { |
| 1815 | return I->getOpcode() == Instruction::Select; |
| 1816 | } |
| 1817 | static bool classof(const Value *V) { |
| 1818 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1819 | } |
| 1820 | }; |
| 1821 | |
| 1822 | template <> |
| 1823 | struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> { |
| 1824 | }; |
| 1825 | |
| 1826 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)SelectInst::op_iterator SelectInst::op_begin() { return OperandTraits <SelectInst>::op_begin(this); } SelectInst::const_op_iterator SelectInst::op_begin() const { return OperandTraits<SelectInst >::op_begin(const_cast<SelectInst*>(this)); } SelectInst ::op_iterator SelectInst::op_end() { return OperandTraits< SelectInst>::op_end(this); } SelectInst::const_op_iterator SelectInst::op_end() const { return OperandTraits<SelectInst >::op_end(const_cast<SelectInst*>(this)); } Value *SelectInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<SelectInst>::op_begin(const_cast <SelectInst*>(this))[i_nocapture].get()); } void SelectInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<SelectInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned SelectInst::getNumOperands() const { return OperandTraits<SelectInst>::operands(this); } template <int Idx_nocapture> Use &SelectInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &SelectInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
| 1827 | |
| 1828 | //===----------------------------------------------------------------------===// |
| 1829 | // VAArgInst Class |
| 1830 | //===----------------------------------------------------------------------===// |
| 1831 | |
| 1832 | /// This class represents the va_arg llvm instruction, which returns |
| 1833 | /// an argument of the specified type given a va_list and increments that list |
| 1834 | /// |
| 1835 | class VAArgInst : public UnaryInstruction { |
| 1836 | protected: |
| 1837 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1838 | friend class Instruction; |
| 1839 | |
| 1840 | VAArgInst *cloneImpl() const; |
| 1841 | |
| 1842 | public: |
| 1843 | VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "", |
| 1844 | Instruction *InsertBefore = nullptr) |
| 1845 | : UnaryInstruction(Ty, VAArg, List, InsertBefore) { |
| 1846 | setName(NameStr); |
| 1847 | } |
| 1848 | |
| 1849 | VAArgInst(Value *List, Type *Ty, const Twine &NameStr, |
| 1850 | BasicBlock *InsertAtEnd) |
| 1851 | : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) { |
| 1852 | setName(NameStr); |
| 1853 | } |
| 1854 | |
| 1855 | Value *getPointerOperand() { return getOperand(0); } |
| 1856 | const Value *getPointerOperand() const { return getOperand(0); } |
| 1857 | static unsigned getPointerOperandIndex() { return 0U; } |
| 1858 | |
| 1859 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1860 | static bool classof(const Instruction *I) { |
| 1861 | return I->getOpcode() == VAArg; |
| 1862 | } |
| 1863 | static bool classof(const Value *V) { |
| 1864 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1865 | } |
| 1866 | }; |
| 1867 | |
| 1868 | //===----------------------------------------------------------------------===// |
| 1869 | // ExtractElementInst Class |
| 1870 | //===----------------------------------------------------------------------===// |
| 1871 | |
| 1872 | /// This instruction extracts a single (scalar) |
| 1873 | /// element from a VectorType value |
| 1874 | /// |
| 1875 | class ExtractElementInst : public Instruction { |
| 1876 | ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "", |
| 1877 | Instruction *InsertBefore = nullptr); |
| 1878 | ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr, |
| 1879 | BasicBlock *InsertAtEnd); |
| 1880 | |
| 1881 | protected: |
| 1882 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1883 | friend class Instruction; |
| 1884 | |
| 1885 | ExtractElementInst *cloneImpl() const; |
| 1886 | |
| 1887 | public: |
| 1888 | static ExtractElementInst *Create(Value *Vec, Value *Idx, |
| 1889 | const Twine &NameStr = "", |
| 1890 | Instruction *InsertBefore = nullptr) { |
| 1891 | return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore); |
| 1892 | } |
| 1893 | |
| 1894 | static ExtractElementInst *Create(Value *Vec, Value *Idx, |
| 1895 | const Twine &NameStr, |
| 1896 | BasicBlock *InsertAtEnd) { |
| 1897 | return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd); |
| 1898 | } |
| 1899 | |
| 1900 | /// Return true if an extractelement instruction can be |
| 1901 | /// formed with the specified operands. |
| 1902 | static bool isValidOperands(const Value *Vec, const Value *Idx); |
| 1903 | |
| 1904 | Value *getVectorOperand() { return Op<0>(); } |
| 1905 | Value *getIndexOperand() { return Op<1>(); } |
| 1906 | const Value *getVectorOperand() const { return Op<0>(); } |
| 1907 | const Value *getIndexOperand() const { return Op<1>(); } |
| 1908 | |
| 1909 | VectorType *getVectorOperandType() const { |
| 1910 | return cast<VectorType>(getVectorOperand()->getType()); |
| 1911 | } |
| 1912 | |
| 1913 | /// Transparently provide more efficient getOperand methods. |
| 1914 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 1915 | |
| 1916 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1917 | static bool classof(const Instruction *I) { |
| 1918 | return I->getOpcode() == Instruction::ExtractElement; |
| 1919 | } |
| 1920 | static bool classof(const Value *V) { |
| 1921 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1922 | } |
| 1923 | }; |
| 1924 | |
| 1925 | template <> |
| 1926 | struct OperandTraits<ExtractElementInst> : |
| 1927 | public FixedNumOperandTraits<ExtractElementInst, 2> { |
| 1928 | }; |
| 1929 | |
| 1930 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)ExtractElementInst::op_iterator ExtractElementInst::op_begin( ) { return OperandTraits<ExtractElementInst>::op_begin( this); } ExtractElementInst::const_op_iterator ExtractElementInst ::op_begin() const { return OperandTraits<ExtractElementInst >::op_begin(const_cast<ExtractElementInst*>(this)); } ExtractElementInst::op_iterator ExtractElementInst::op_end() { return OperandTraits<ExtractElementInst>::op_end(this ); } ExtractElementInst::const_op_iterator ExtractElementInst ::op_end() const { return OperandTraits<ExtractElementInst >::op_end(const_cast<ExtractElementInst*>(this)); } Value *ExtractElementInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value>( OperandTraits< ExtractElementInst>::op_begin(const_cast<ExtractElementInst *>(this))[i_nocapture].get()); } void ExtractElementInst:: setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void )0); OperandTraits<ExtractElementInst>::op_begin(this)[ i_nocapture] = Val_nocapture; } unsigned ExtractElementInst:: getNumOperands() const { return OperandTraits<ExtractElementInst >::operands(this); } template <int Idx_nocapture> Use &ExtractElementInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & ExtractElementInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
| 1931 | |
| 1932 | //===----------------------------------------------------------------------===// |
| 1933 | // InsertElementInst Class |
| 1934 | //===----------------------------------------------------------------------===// |
| 1935 | |
| 1936 | /// This instruction inserts a single (scalar) |
| 1937 | /// element into a VectorType value |
| 1938 | /// |
| 1939 | class InsertElementInst : public Instruction { |
| 1940 | InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, |
| 1941 | const Twine &NameStr = "", |
| 1942 | Instruction *InsertBefore = nullptr); |
| 1943 | InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr, |
| 1944 | BasicBlock *InsertAtEnd); |
| 1945 | |
| 1946 | protected: |
| 1947 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1948 | friend class Instruction; |
| 1949 | |
| 1950 | InsertElementInst *cloneImpl() const; |
| 1951 | |
| 1952 | public: |
| 1953 | static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, |
| 1954 | const Twine &NameStr = "", |
| 1955 | Instruction *InsertBefore = nullptr) { |
| 1956 | return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore); |
| 1957 | } |
| 1958 | |
| 1959 | static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, |
| 1960 | const Twine &NameStr, |
| 1961 | BasicBlock *InsertAtEnd) { |
| 1962 | return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd); |
| 1963 | } |
| 1964 | |
| 1965 | /// Return true if an insertelement instruction can be |
| 1966 | /// formed with the specified operands. |
| 1967 | static bool isValidOperands(const Value *Vec, const Value *NewElt, |
| 1968 | const Value *Idx); |
| 1969 | |
| 1970 | /// Overload to return most specific vector type. |
| 1971 | /// |
| 1972 | VectorType *getType() const { |
| 1973 | return cast<VectorType>(Instruction::getType()); |
| 1974 | } |
| 1975 | |
| 1976 | /// Transparently provide more efficient getOperand methods. |
| 1977 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 1978 | |
| 1979 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1980 | static bool classof(const Instruction *I) { |
| 1981 | return I->getOpcode() == Instruction::InsertElement; |
| 1982 | } |
| 1983 | static bool classof(const Value *V) { |
| 1984 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1985 | } |
| 1986 | }; |
| 1987 | |
| 1988 | template <> |
| 1989 | struct OperandTraits<InsertElementInst> : |
| 1990 | public FixedNumOperandTraits<InsertElementInst, 3> { |
| 1991 | }; |
| 1992 | |
| 1993 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)InsertElementInst::op_iterator InsertElementInst::op_begin() { return OperandTraits<InsertElementInst>::op_begin(this ); } InsertElementInst::const_op_iterator InsertElementInst:: op_begin() const { return OperandTraits<InsertElementInst> ::op_begin(const_cast<InsertElementInst*>(this)); } InsertElementInst ::op_iterator InsertElementInst::op_end() { return OperandTraits <InsertElementInst>::op_end(this); } InsertElementInst:: const_op_iterator InsertElementInst::op_end() const { return OperandTraits <InsertElementInst>::op_end(const_cast<InsertElementInst *>(this)); } Value *InsertElementInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<InsertElementInst>::op_begin(const_cast <InsertElementInst*>(this))[i_nocapture].get()); } void InsertElementInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<InsertElementInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned InsertElementInst ::getNumOperands() const { return OperandTraits<InsertElementInst >::operands(this); } template <int Idx_nocapture> Use &InsertElementInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & InsertElementInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
| 1994 | |
| 1995 | //===----------------------------------------------------------------------===// |
| 1996 | // ShuffleVectorInst Class |
| 1997 | //===----------------------------------------------------------------------===// |
| 1998 | |
| 1999 | constexpr int UndefMaskElem = -1; |
| 2000 | |
| 2001 | /// This instruction constructs a fixed permutation of two |
| 2002 | /// input vectors. |
| 2003 | /// |
| 2004 | /// For each element of the result vector, the shuffle mask selects an element |
| 2005 | /// from one of the input vectors to copy to the result. Non-negative elements |
| 2006 | /// in the mask represent an index into the concatenated pair of input vectors. |
| 2007 | /// UndefMaskElem (-1) specifies that the result element is undefined. |
| 2008 | /// |
| 2009 | /// For scalable vectors, all the elements of the mask must be 0 or -1. This |
| 2010 | /// requirement may be relaxed in the future. |
| 2011 | class ShuffleVectorInst : public Instruction { |
| 2012 | SmallVector<int, 4> ShuffleMask; |
| 2013 | Constant *ShuffleMaskForBitcode; |
| 2014 | |
| 2015 | protected: |
| 2016 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 2017 | friend class Instruction; |
| 2018 | |
| 2019 | ShuffleVectorInst *cloneImpl() const; |
| 2020 | |
| 2021 | public: |
| 2022 | ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, |
| 2023 | const Twine &NameStr = "", |
| 2024 | Instruction *InsertBefor = nullptr); |
| 2025 | ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, |
| 2026 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 2027 | ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask, |
| 2028 | const Twine &NameStr = "", |
| 2029 | Instruction *InsertBefor = nullptr); |
| 2030 | ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask, |
| 2031 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 2032 | |
| 2033 | void *operator new(size_t S) { return User::operator new(S, 2); } |
| 2034 | void operator delete(void *Ptr) { return User::operator delete(Ptr); } |
| 2035 | |
| 2036 | /// Swap the operands and adjust the mask to preserve the semantics |
| 2037 | /// of the instruction. |
| 2038 | void commute(); |
| 2039 | |
| 2040 | /// Return true if a shufflevector instruction can be |
| 2041 | /// formed with the specified operands. |
| 2042 | static bool isValidOperands(const Value *V1, const Value *V2, |
| 2043 | const Value *Mask); |
| 2044 | static bool isValidOperands(const Value *V1, const Value *V2, |
| 2045 | ArrayRef<int> Mask); |
| 2046 | |
| 2047 | /// Overload to return most specific vector type. |
| 2048 | /// |
| 2049 | VectorType *getType() const { |
| 2050 | return cast<VectorType>(Instruction::getType()); |
| 2051 | } |
| 2052 | |
| 2053 | /// Transparently provide more efficient getOperand methods. |
| 2054 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 2055 | |
| 2056 | /// Return the shuffle mask value of this instruction for the given element |
| 2057 | /// index. Return UndefMaskElem if the element is undef. |
| 2058 | int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; } |
| 2059 | |
| 2060 | /// Convert the input shuffle mask operand to a vector of integers. Undefined |
| 2061 | /// elements of the mask are returned as UndefMaskElem. |
| 2062 | static void getShuffleMask(const Constant *Mask, |
| 2063 | SmallVectorImpl<int> &Result); |
| 2064 | |
| 2065 | /// Return the mask for this instruction as a vector of integers. Undefined |
| 2066 | /// elements of the mask are returned as UndefMaskElem. |
| 2067 | void getShuffleMask(SmallVectorImpl<int> &Result) const { |
| 2068 | Result.assign(ShuffleMask.begin(), ShuffleMask.end()); |
| 2069 | } |
| 2070 | |
| 2071 | /// Return the mask for this instruction, for use in bitcode. |
| 2072 | /// |
| 2073 | /// TODO: This is temporary until we decide a new bitcode encoding for |
| 2074 | /// shufflevector. |
| 2075 | Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; } |
| 2076 | |
| 2077 | static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask, |
| 2078 | Type *ResultTy); |
| 2079 | |
| 2080 | void setShuffleMask(ArrayRef<int> Mask); |
| 2081 | |
| 2082 | ArrayRef<int> getShuffleMask() const { return ShuffleMask; } |
| 2083 | |
| 2084 | /// Return true if this shuffle returns a vector with a different number of |
| 2085 | /// elements than its source vectors. |
| 2086 | /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3> |
| 2087 | /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5> |
| 2088 | bool changesLength() const { |
| 2089 | unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType()) |
| 2090 | ->getElementCount() |
| 2091 | .getKnownMinValue(); |
| 2092 | unsigned NumMaskElts = ShuffleMask.size(); |
| 2093 | return NumSourceElts != NumMaskElts; |
| 2094 | } |
| 2095 | |
| 2096 | /// Return true if this shuffle returns a vector with a greater number of |
| 2097 | /// elements than its source vectors. |
| 2098 | /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3> |
| 2099 | bool increasesLength() const { |
| 2100 | unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType()) |
| 2101 | ->getElementCount() |
| 2102 | .getKnownMinValue(); |
| 2103 | unsigned NumMaskElts = ShuffleMask.size(); |
| 2104 | return NumSourceElts < NumMaskElts; |
| 2105 | } |
| 2106 | |
| 2107 | /// Return true if this shuffle mask chooses elements from exactly one source |
| 2108 | /// vector. |
| 2109 | /// Example: <7,5,undef,7> |
| 2110 | /// This assumes that vector operands are the same length as the mask. |
| 2111 | static bool isSingleSourceMask(ArrayRef<int> Mask); |
| 2112 | static bool isSingleSourceMask(const Constant *Mask) { |
| 2113 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
| 2114 | SmallVector<int, 16> MaskAsInts; |
| 2115 | getShuffleMask(Mask, MaskAsInts); |
| 2116 | return isSingleSourceMask(MaskAsInts); |
| 2117 | } |
| 2118 | |
| 2119 | /// Return true if this shuffle chooses elements from exactly one source |
| 2120 | /// vector without changing the length of that vector. |
| 2121 | /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3> |
| 2122 | /// TODO: Optionally allow length-changing shuffles. |
| 2123 | bool isSingleSource() const { |
| 2124 | return !changesLength() && isSingleSourceMask(ShuffleMask); |
| 2125 | } |
| 2126 | |
| 2127 | /// Return true if this shuffle mask chooses elements from exactly one source |
| 2128 | /// vector without lane crossings. A shuffle using this mask is not |
| 2129 | /// necessarily a no-op because it may change the number of elements from its |
| 2130 | /// input vectors or it may provide demanded bits knowledge via undef lanes. |
| 2131 | /// Example: <undef,undef,2,3> |
| 2132 | static bool isIdentityMask(ArrayRef<int> Mask); |
| 2133 | static bool isIdentityMask(const Constant *Mask) { |
| 2134 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
| 2135 | SmallVector<int, 16> MaskAsInts; |
| 2136 | getShuffleMask(Mask, MaskAsInts); |
| 2137 | return isIdentityMask(MaskAsInts); |
| 2138 | } |
| 2139 | |
| 2140 | /// Return true if this shuffle chooses elements from exactly one source |
| 2141 | /// vector without lane crossings and does not change the number of elements |
| 2142 | /// from its input vectors. |
| 2143 | /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef> |
| 2144 | bool isIdentity() const { |
| 2145 | return !changesLength() && isIdentityMask(ShuffleMask); |
| 2146 | } |
| 2147 | |
| 2148 | /// Return true if this shuffle lengthens exactly one source vector with |
| 2149 | /// undefs in the high elements. |
| 2150 | bool isIdentityWithPadding() const; |
| 2151 | |
| 2152 | /// Return true if this shuffle extracts the first N elements of exactly one |
| 2153 | /// source vector. |
| 2154 | bool isIdentityWithExtract() const; |
| 2155 | |
| 2156 | /// Return true if this shuffle concatenates its 2 source vectors. This |
| 2157 | /// returns false if either input is undefined. In that case, the shuffle is |
| 2158 | /// is better classified as an identity with padding operation. |
| 2159 | bool isConcat() const; |
| 2160 | |
| 2161 | /// Return true if this shuffle mask chooses elements from its source vectors |
| 2162 | /// without lane crossings. A shuffle using this mask would be |
| 2163 | /// equivalent to a vector select with a constant condition operand. |
| 2164 | /// Example: <4,1,6,undef> |
| 2165 | /// This returns false if the mask does not choose from both input vectors. |
| 2166 | /// In that case, the shuffle is better classified as an identity shuffle. |
| 2167 | /// This assumes that vector operands are the same length as the mask |
| 2168 | /// (a length-changing shuffle can never be equivalent to a vector select). |
| 2169 | static bool isSelectMask(ArrayRef<int> Mask); |
| 2170 | static bool isSelectMask(const Constant *Mask) { |
| 2171 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
| 2172 | SmallVector<int, 16> MaskAsInts; |
| 2173 | getShuffleMask(Mask, MaskAsInts); |
| 2174 | return isSelectMask(MaskAsInts); |
| 2175 | } |
| 2176 | |
| 2177 | /// Return true if this shuffle chooses elements from its source vectors |
| 2178 | /// without lane crossings and all operands have the same number of elements. |
| 2179 | /// In other words, this shuffle is equivalent to a vector select with a |
| 2180 | /// constant condition operand. |
| 2181 | /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3> |
| 2182 | /// This returns false if the mask does not choose from both input vectors. |
| 2183 | /// In that case, the shuffle is better classified as an identity shuffle. |
| 2184 | /// TODO: Optionally allow length-changing shuffles. |
| 2185 | bool isSelect() const { |
| 2186 | return !changesLength() && isSelectMask(ShuffleMask); |
| 2187 | } |
| 2188 | |
| 2189 | /// Return true if this shuffle mask swaps the order of elements from exactly |
| 2190 | /// one source vector. |
| 2191 | /// Example: <7,6,undef,4> |
| 2192 | /// This assumes that vector operands are the same length as the mask. |
| 2193 | static bool isReverseMask(ArrayRef<int> Mask); |
| 2194 | static bool isReverseMask(const Constant *Mask) { |
| 2195 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
| 2196 | SmallVector<int, 16> MaskAsInts; |
| 2197 | getShuffleMask(Mask, MaskAsInts); |
| 2198 | return isReverseMask(MaskAsInts); |
| 2199 | } |
| 2200 | |
| 2201 | /// Return true if this shuffle swaps the order of elements from exactly |
| 2202 | /// one source vector. |
| 2203 | /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef> |
| 2204 | /// TODO: Optionally allow length-changing shuffles. |
| 2205 | bool isReverse() const { |
| 2206 | return !changesLength() && isReverseMask(ShuffleMask); |
| 2207 | } |
| 2208 | |
| 2209 | /// Return true if this shuffle mask chooses all elements with the same value |
| 2210 | /// as the first element of exactly one source vector. |
| 2211 | /// Example: <4,undef,undef,4> |
| 2212 | /// This assumes that vector operands are the same length as the mask. |
| 2213 | static bool isZeroEltSplatMask(ArrayRef<int> Mask); |
| 2214 | static bool isZeroEltSplatMask(const Constant *Mask) { |
| 2215 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
| 2216 | SmallVector<int, 16> MaskAsInts; |
| 2217 | getShuffleMask(Mask, MaskAsInts); |
| 2218 | return isZeroEltSplatMask(MaskAsInts); |
| 2219 | } |
| 2220 | |
| 2221 | /// Return true if all elements of this shuffle are the same value as the |
| 2222 | /// first element of exactly one source vector without changing the length |
| 2223 | /// of that vector. |
| 2224 | /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0> |
| 2225 | /// TODO: Optionally allow length-changing shuffles. |
| 2226 | /// TODO: Optionally allow splats from other elements. |
| 2227 | bool isZeroEltSplat() const { |
| 2228 | return !changesLength() && isZeroEltSplatMask(ShuffleMask); |
| 2229 | } |
| 2230 | |
| 2231 | /// Return true if this shuffle mask is a transpose mask. |
| 2232 | /// Transpose vector masks transpose a 2xn matrix. They read corresponding |
| 2233 | /// even- or odd-numbered vector elements from two n-dimensional source |
| 2234 | /// vectors and write each result into consecutive elements of an |
| 2235 | /// n-dimensional destination vector. Two shuffles are necessary to complete |
| 2236 | /// the transpose, one for the even elements and another for the odd elements. |
| 2237 | /// This description closely follows how the TRN1 and TRN2 AArch64 |
| 2238 | /// instructions operate. |
| 2239 | /// |
| 2240 | /// For example, a simple 2x2 matrix can be transposed with: |
| 2241 | /// |
| 2242 | /// ; Original matrix |
| 2243 | /// m0 = < a, b > |
| 2244 | /// m1 = < c, d > |
| 2245 | /// |
| 2246 | /// ; Transposed matrix |
| 2247 | /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 > |
| 2248 | /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 > |
| 2249 | /// |
| 2250 | /// For matrices having greater than n columns, the resulting nx2 transposed |
| 2251 | /// matrix is stored in two result vectors such that one vector contains |
| 2252 | /// interleaved elements from all the even-numbered rows and the other vector |
| 2253 | /// contains interleaved elements from all the odd-numbered rows. For example, |
| 2254 | /// a 2x4 matrix can be transposed with: |
| 2255 | /// |
| 2256 | /// ; Original matrix |
| 2257 | /// m0 = < a, b, c, d > |
| 2258 | /// m1 = < e, f, g, h > |
| 2259 | /// |
| 2260 | /// ; Transposed matrix |
| 2261 | /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 > |
| 2262 | /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 > |
| 2263 | static bool isTransposeMask(ArrayRef<int> Mask); |
| 2264 | static bool isTransposeMask(const Constant *Mask) { |
| 2265 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
| 2266 | SmallVector<int, 16> MaskAsInts; |
| 2267 | getShuffleMask(Mask, MaskAsInts); |
| 2268 | return isTransposeMask(MaskAsInts); |
| 2269 | } |
| 2270 | |
| 2271 | /// Return true if this shuffle transposes the elements of its inputs without |
| 2272 | /// changing the length of the vectors. This operation may also be known as a |
| 2273 | /// merge or interleave. See the description for isTransposeMask() for the |
| 2274 | /// exact specification. |
| 2275 | /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6> |
| 2276 | bool isTranspose() const { |
| 2277 | return !changesLength() && isTransposeMask(ShuffleMask); |
| 2278 | } |
| 2279 | |
| 2280 | /// Return true if this shuffle mask is an extract subvector mask. |
| 2281 | /// A valid extract subvector mask returns a smaller vector from a single |
| 2282 | /// source operand. The base extraction index is returned as well. |
| 2283 | static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts, |
| 2284 | int &Index); |
| 2285 | static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts, |
| 2286 | int &Index) { |
| 2287 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
| 2288 | // Not possible to express a shuffle mask for a scalable vector for this |
| 2289 | // case. |
| 2290 | if (isa<ScalableVectorType>(Mask->getType())) |
| 2291 | return false; |
| 2292 | SmallVector<int, 16> MaskAsInts; |
| 2293 | getShuffleMask(Mask, MaskAsInts); |
| 2294 | return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index); |
| 2295 | } |
| 2296 | |
| 2297 | /// Return true if this shuffle mask is an extract subvector mask. |
| 2298 | bool isExtractSubvectorMask(int &Index) const { |
| 2299 | // Not possible to express a shuffle mask for a scalable vector for this |
| 2300 | // case. |
| 2301 | if (isa<ScalableVectorType>(getType())) |
| 2302 | return false; |
| 2303 | |
| 2304 | int NumSrcElts = |
| 2305 | cast<FixedVectorType>(Op<0>()->getType())->getNumElements(); |
| 2306 | return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index); |
| 2307 | } |
| 2308 | |
| 2309 | /// Change values in a shuffle permute mask assuming the two vector operands |
| 2310 | /// of length InVecNumElts have swapped position. |
| 2311 | static void commuteShuffleMask(MutableArrayRef<int> Mask, |
| 2312 | unsigned InVecNumElts) { |
| 2313 | for (int &Idx : Mask) { |
| 2314 | if (Idx == -1) |
| 2315 | continue; |
| 2316 | Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts; |
| 2317 | assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&((void)0) |
| 2318 | "shufflevector mask index out of range")((void)0); |
| 2319 | } |
| 2320 | } |
| 2321 | |
| 2322 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 2323 | static bool classof(const Instruction *I) { |
| 2324 | return I->getOpcode() == Instruction::ShuffleVector; |
| 2325 | } |
| 2326 | static bool classof(const Value *V) { |
| 2327 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 2328 | } |
| 2329 | }; |
| 2330 | |
| 2331 | template <> |
| 2332 | struct OperandTraits<ShuffleVectorInst> |
| 2333 | : public FixedNumOperandTraits<ShuffleVectorInst, 2> {}; |
| 2334 | |
| 2335 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)ShuffleVectorInst::op_iterator ShuffleVectorInst::op_begin() { return OperandTraits<ShuffleVectorInst>::op_begin(this ); } ShuffleVectorInst::const_op_iterator ShuffleVectorInst:: op_begin() const { return OperandTraits<ShuffleVectorInst> ::op_begin(const_cast<ShuffleVectorInst*>(this)); } ShuffleVectorInst ::op_iterator ShuffleVectorInst::op_end() { return OperandTraits <ShuffleVectorInst>::op_end(this); } ShuffleVectorInst:: const_op_iterator ShuffleVectorInst::op_end() const { return OperandTraits <ShuffleVectorInst>::op_end(const_cast<ShuffleVectorInst *>(this)); } Value *ShuffleVectorInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<ShuffleVectorInst>::op_begin(const_cast <ShuffleVectorInst*>(this))[i_nocapture].get()); } void ShuffleVectorInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<ShuffleVectorInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned ShuffleVectorInst ::getNumOperands() const { return OperandTraits<ShuffleVectorInst >::operands(this); } template <int Idx_nocapture> Use &ShuffleVectorInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & ShuffleVectorInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
| 2336 | |
| 2337 | //===----------------------------------------------------------------------===// |
| 2338 | // ExtractValueInst Class |
| 2339 | //===----------------------------------------------------------------------===// |
| 2340 | |
| 2341 | /// This instruction extracts a struct member or array |
| 2342 | /// element value from an aggregate value. |
| 2343 | /// |
| 2344 | class ExtractValueInst : public UnaryInstruction { |
| 2345 | SmallVector<unsigned, 4> Indices; |
| 2346 | |
| 2347 | ExtractValueInst(const ExtractValueInst &EVI); |
| 2348 | |
| 2349 | /// Constructors - Create a extractvalue instruction with a base aggregate |
| 2350 | /// value and a list of indices. The first ctor can optionally insert before |
| 2351 | /// an existing instruction, the second appends the new instruction to the |
| 2352 | /// specified BasicBlock. |
| 2353 | inline ExtractValueInst(Value *Agg, |
| 2354 | ArrayRef<unsigned> Idxs, |
| 2355 | const Twine &NameStr, |
| 2356 | Instruction *InsertBefore); |
| 2357 | inline ExtractValueInst(Value *Agg, |
| 2358 | ArrayRef<unsigned> Idxs, |
| 2359 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 2360 | |
| 2361 | void init(ArrayRef<unsigned> Idxs, const Twine &NameStr); |
| 2362 | |
| 2363 | protected: |
| 2364 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 2365 | friend class Instruction; |
| 2366 | |
| 2367 | ExtractValueInst *cloneImpl() const; |
| 2368 | |
| 2369 | public: |
| 2370 | static ExtractValueInst *Create(Value *Agg, |
| 2371 | ArrayRef<unsigned> Idxs, |
| 2372 | const Twine &NameStr = "", |
| 2373 | Instruction *InsertBefore = nullptr) { |
| 2374 | return new |
| 2375 | ExtractValueInst(Agg, Idxs, NameStr, InsertBefore); |
| 2376 | } |
| 2377 | |
| 2378 | static ExtractValueInst *Create(Value *Agg, |
| 2379 | ArrayRef<unsigned> Idxs, |
| 2380 | const Twine &NameStr, |
| 2381 | BasicBlock *InsertAtEnd) { |
| 2382 | return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd); |
| 2383 | } |
| 2384 | |
| 2385 | /// Returns the type of the element that would be extracted |
| 2386 | /// with an extractvalue instruction with the specified parameters. |
| 2387 | /// |
| 2388 | /// Null is returned if the indices are invalid for the specified type. |
| 2389 | static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs); |
| 2390 | |
| 2391 | using idx_iterator = const unsigned*; |
| 2392 | |
| 2393 | inline idx_iterator idx_begin() const { return Indices.begin(); } |
| 2394 | inline idx_iterator idx_end() const { return Indices.end(); } |
| 2395 | inline iterator_range<idx_iterator> indices() const { |
| 2396 | return make_range(idx_begin(), idx_end()); |
| 2397 | } |
| 2398 | |
| 2399 | Value *getAggregateOperand() { |
| 2400 | return getOperand(0); |
| 2401 | } |
| 2402 | const Value *getAggregateOperand() const { |
| 2403 | return getOperand(0); |
| 2404 | } |
| 2405 | static unsigned getAggregateOperandIndex() { |
| 2406 | return 0U; // get index for modifying correct operand |
| 2407 | } |
| 2408 | |
| 2409 | ArrayRef<unsigned> getIndices() const { |
| 2410 | return Indices; |
| 2411 | } |
| 2412 | |
| 2413 | unsigned getNumIndices() const { |
| 2414 | return (unsigned)Indices.size(); |
| 2415 | } |
| 2416 | |
| 2417 | bool hasIndices() const { |
| 2418 | return true; |
| 2419 | } |
| 2420 | |
| 2421 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 2422 | static bool classof(const Instruction *I) { |
| 2423 | return I->getOpcode() == Instruction::ExtractValue; |
| 2424 | } |
| 2425 | static bool classof(const Value *V) { |
| 2426 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 2427 | } |
| 2428 | }; |
| 2429 | |
| 2430 | ExtractValueInst::ExtractValueInst(Value *Agg, |
| 2431 | ArrayRef<unsigned> Idxs, |
| 2432 | const Twine &NameStr, |
| 2433 | Instruction *InsertBefore) |
| 2434 | : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)), |
| 2435 | ExtractValue, Agg, InsertBefore) { |
| 2436 | init(Idxs, NameStr); |
| 2437 | } |
| 2438 | |
| 2439 | ExtractValueInst::ExtractValueInst(Value *Agg, |
| 2440 | ArrayRef<unsigned> Idxs, |
| 2441 | const Twine &NameStr, |
| 2442 | BasicBlock *InsertAtEnd) |
| 2443 | : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)), |
| 2444 | ExtractValue, Agg, InsertAtEnd) { |
| 2445 | init(Idxs, NameStr); |
| 2446 | } |
| 2447 | |
| 2448 | //===----------------------------------------------------------------------===// |
| 2449 | // InsertValueInst Class |
| 2450 | //===----------------------------------------------------------------------===// |
| 2451 | |
| 2452 | /// This instruction inserts a struct field of array element |
| 2453 | /// value into an aggregate value. |
| 2454 | /// |
| 2455 | class InsertValueInst : public Instruction { |
| 2456 | SmallVector<unsigned, 4> Indices; |
| 2457 | |
| 2458 | InsertValueInst(const InsertValueInst &IVI); |
| 2459 | |
| 2460 | /// Constructors - Create a insertvalue instruction with a base aggregate |
| 2461 | /// value, a value to insert, and a list of indices. The first ctor can |
| 2462 | /// optionally insert before an existing instruction, the second appends |
| 2463 | /// the new instruction to the specified BasicBlock. |
| 2464 | inline InsertValueInst(Value *Agg, Value *Val, |
| 2465 | ArrayRef<unsigned> Idxs, |
| 2466 | const Twine &NameStr, |
| 2467 | Instruction *InsertBefore); |
| 2468 | inline InsertValueInst(Value *Agg, Value *Val, |
| 2469 | ArrayRef<unsigned> Idxs, |
| 2470 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 2471 | |
| 2472 | /// Constructors - These two constructors are convenience methods because one |
| 2473 | /// and two index insertvalue instructions are so common. |
| 2474 | InsertValueInst(Value *Agg, Value *Val, unsigned Idx, |
| 2475 | const Twine &NameStr = "", |
| 2476 | Instruction *InsertBefore = nullptr); |
| 2477 | InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr, |
| 2478 | BasicBlock *InsertAtEnd); |
| 2479 | |
| 2480 | void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, |
| 2481 | const Twine &NameStr); |
| 2482 | |
| 2483 | protected: |
| 2484 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 2485 | friend class Instruction; |
| 2486 | |
| 2487 | InsertValueInst *cloneImpl() const; |
| 2488 | |
| 2489 | public: |
| 2490 | // allocate space for exactly two operands |
| 2491 | void *operator new(size_t S) { return User::operator new(S, 2); } |
| 2492 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 2493 | |
| 2494 | static InsertValueInst *Create(Value *Agg, Value *Val, |
| 2495 | ArrayRef<unsigned> Idxs, |
| 2496 | const Twine &NameStr = "", |
| 2497 | Instruction *InsertBefore = nullptr) { |
| 2498 | return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore); |
| 2499 | } |
| 2500 | |
| 2501 | static InsertValueInst *Create(Value *Agg, Value *Val, |
| 2502 | ArrayRef<unsigned> Idxs, |
| 2503 | const Twine &NameStr, |
| 2504 | BasicBlock *InsertAtEnd) { |
| 2505 | return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd); |
| 2506 | } |
| 2507 | |
| 2508 | /// Transparently provide more efficient getOperand methods. |
| 2509 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 2510 | |
| 2511 | using idx_iterator = const unsigned*; |
| 2512 | |
| 2513 | inline idx_iterator idx_begin() const { return Indices.begin(); } |
| 2514 | inline idx_iterator idx_end() const { return Indices.end(); } |
| 2515 | inline iterator_range<idx_iterator> indices() const { |
| 2516 | return make_range(idx_begin(), idx_end()); |
| 2517 | } |
| 2518 | |
| 2519 | Value *getAggregateOperand() { |
| 2520 | return getOperand(0); |
| 2521 | } |
| 2522 | const Value *getAggregateOperand() const { |
| 2523 | return getOperand(0); |
| 2524 | } |
| 2525 | static unsigned getAggregateOperandIndex() { |
| 2526 | return 0U; // get index for modifying correct operand |
| 2527 | } |
| 2528 | |
| 2529 | Value *getInsertedValueOperand() { |
| 2530 | return getOperand(1); |
| 2531 | } |
| 2532 | const Value *getInsertedValueOperand() const { |
| 2533 | return getOperand(1); |
| 2534 | } |
| 2535 | static unsigned getInsertedValueOperandIndex() { |
| 2536 | return 1U; // get index for modifying correct operand |
| 2537 | } |
| 2538 | |
| 2539 | ArrayRef<unsigned> getIndices() const { |
| 2540 | return Indices; |
| 2541 | } |
| 2542 | |
| 2543 | unsigned getNumIndices() const { |
| 2544 | return (unsigned)Indices.size(); |
| 2545 | } |
| 2546 | |
| 2547 | bool hasIndices() const { |
| 2548 | return true; |
| 2549 | } |
| 2550 | |
| 2551 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 2552 | static bool classof(const Instruction *I) { |
| 2553 | return I->getOpcode() == Instruction::InsertValue; |
| 2554 | } |
| 2555 | static bool classof(const Value *V) { |
| 2556 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 2557 | } |
| 2558 | }; |
| 2559 | |
| 2560 | template <> |
| 2561 | struct OperandTraits<InsertValueInst> : |
| 2562 | public FixedNumOperandTraits<InsertValueInst, 2> { |
| 2563 | }; |
| 2564 | |
| 2565 | InsertValueInst::InsertValueInst(Value *Agg, |
| 2566 | Value *Val, |
| 2567 | ArrayRef<unsigned> Idxs, |
| 2568 | const Twine &NameStr, |
| 2569 | Instruction *InsertBefore) |
| 2570 | : Instruction(Agg->getType(), InsertValue, |
| 2571 | OperandTraits<InsertValueInst>::op_begin(this), |
| 2572 | 2, InsertBefore) { |
| 2573 | init(Agg, Val, Idxs, NameStr); |
| 2574 | } |
| 2575 | |
| 2576 | InsertValueInst::InsertValueInst(Value *Agg, |
| 2577 | Value *Val, |
| 2578 | ArrayRef<unsigned> Idxs, |
| 2579 | const Twine &NameStr, |
| 2580 | BasicBlock *InsertAtEnd) |
| 2581 | : Instruction(Agg->getType(), InsertValue, |
| 2582 | OperandTraits<InsertValueInst>::op_begin(this), |
| 2583 | 2, InsertAtEnd) { |
| 2584 | init(Agg, Val, Idxs, NameStr); |
| 2585 | } |
| 2586 | |
| 2587 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)InsertValueInst::op_iterator InsertValueInst::op_begin() { return OperandTraits<InsertValueInst>::op_begin(this); } InsertValueInst ::const_op_iterator InsertValueInst::op_begin() const { return OperandTraits<InsertValueInst>::op_begin(const_cast< InsertValueInst*>(this)); } InsertValueInst::op_iterator InsertValueInst ::op_end() { return OperandTraits<InsertValueInst>::op_end (this); } InsertValueInst::const_op_iterator InsertValueInst:: op_end() const { return OperandTraits<InsertValueInst>:: op_end(const_cast<InsertValueInst*>(this)); } Value *InsertValueInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<InsertValueInst>::op_begin (const_cast<InsertValueInst*>(this))[i_nocapture].get() ); } void InsertValueInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<InsertValueInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned InsertValueInst::getNumOperands() const { return OperandTraits <InsertValueInst>::operands(this); } template <int Idx_nocapture > Use &InsertValueInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &InsertValueInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
| 2588 | |
| 2589 | //===----------------------------------------------------------------------===// |
| 2590 | // PHINode Class |
| 2591 | //===----------------------------------------------------------------------===// |
| 2592 | |
| 2593 | // PHINode - The PHINode class is used to represent the magical mystical PHI |
| 2594 | // node, that can not exist in nature, but can be synthesized in a computer |
| 2595 | // scientist's overactive imagination. |
| 2596 | // |
| 2597 | class PHINode : public Instruction { |
| 2598 | /// The number of operands actually allocated. NumOperands is |
| 2599 | /// the number actually in use. |
| 2600 | unsigned ReservedSpace; |
| 2601 | |
| 2602 | PHINode(const PHINode &PN); |
| 2603 | |
| 2604 | explicit PHINode(Type *Ty, unsigned NumReservedValues, |
| 2605 | const Twine &NameStr = "", |
| 2606 | Instruction *InsertBefore = nullptr) |
| 2607 | : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore), |
| 2608 | ReservedSpace(NumReservedValues) { |
| 2609 | assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")((void)0); |
| 2610 | setName(NameStr); |
| 2611 | allocHungoffUses(ReservedSpace); |
| 2612 | } |
| 2613 | |
| 2614 | PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr, |
| 2615 | BasicBlock *InsertAtEnd) |
| 2616 | : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd), |
| 2617 | ReservedSpace(NumReservedValues) { |
| 2618 | assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")((void)0); |
| 2619 | setName(NameStr); |
| 2620 | allocHungoffUses(ReservedSpace); |
| 2621 | } |
| 2622 | |
| 2623 | protected: |
| 2624 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 2625 | friend class Instruction; |
| 2626 | |
| 2627 | PHINode *cloneImpl() const; |
| 2628 | |
| 2629 | // allocHungoffUses - this is more complicated than the generic |
| 2630 | // User::allocHungoffUses, because we have to allocate Uses for the incoming |
| 2631 | // values and pointers to the incoming blocks, all in one allocation. |
| 2632 | void allocHungoffUses(unsigned N) { |
| 2633 | User::allocHungoffUses(N, /* IsPhi */ true); |
| 2634 | } |
| 2635 | |
| 2636 | public: |
| 2637 | /// Constructors - NumReservedValues is a hint for the number of incoming |
| 2638 | /// edges that this phi node will have (use 0 if you really have no idea). |
| 2639 | static PHINode *Create(Type *Ty, unsigned NumReservedValues, |
| 2640 | const Twine &NameStr = "", |
| 2641 | Instruction *InsertBefore = nullptr) { |
| 2642 | return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore); |
| 2643 | } |
| 2644 | |
| 2645 | static PHINode *Create(Type *Ty, unsigned NumReservedValues, |
| 2646 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 2647 | return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd); |
| 2648 | } |
| 2649 | |
| 2650 | /// Provide fast operand accessors |
| 2651 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 2652 | |
| 2653 | // Block iterator interface. This provides access to the list of incoming |
| 2654 | // basic blocks, which parallels the list of incoming values. |
| 2655 | |
| 2656 | using block_iterator = BasicBlock **; |
| 2657 | using const_block_iterator = BasicBlock * const *; |
| 2658 | |
| 2659 | block_iterator block_begin() { |
| 2660 | return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace); |
| 2661 | } |
| 2662 | |
| 2663 | const_block_iterator block_begin() const { |
| 2664 | return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace); |
| 2665 | } |
| 2666 | |
| 2667 | block_iterator block_end() { |
| 2668 | return block_begin() + getNumOperands(); |
| 2669 | } |
| 2670 | |
| 2671 | const_block_iterator block_end() const { |
| 2672 | return block_begin() + getNumOperands(); |
| 2673 | } |
| 2674 | |
| 2675 | iterator_range<block_iterator> blocks() { |
| 2676 | return make_range(block_begin(), block_end()); |
| 2677 | } |
| 2678 | |
| 2679 | iterator_range<const_block_iterator> blocks() const { |
| 2680 | return make_range(block_begin(), block_end()); |
| 2681 | } |
| 2682 | |
| 2683 | op_range incoming_values() { return operands(); } |
| 2684 | |
| 2685 | const_op_range incoming_values() const { return operands(); } |
| 2686 | |
| 2687 | /// Return the number of incoming edges |
| 2688 | /// |
| 2689 | unsigned getNumIncomingValues() const { return getNumOperands(); } |
| 2690 | |
| 2691 | /// Return incoming value number x |
| 2692 | /// |
| 2693 | Value *getIncomingValue(unsigned i) const { |
| 2694 | return getOperand(i); |
| 2695 | } |
| 2696 | void setIncomingValue(unsigned i, Value *V) { |
| 2697 | assert(V && "PHI node got a null value!")((void)0); |
| 2698 | assert(getType() == V->getType() &&((void)0) |
| 2699 | "All operands to PHI node must be the same type as the PHI node!")((void)0); |
| 2700 | setOperand(i, V); |
| 2701 | } |
| 2702 | |
| 2703 | static unsigned getOperandNumForIncomingValue(unsigned i) { |
| 2704 | return i; |
| 2705 | } |
| 2706 | |
| 2707 | static unsigned getIncomingValueNumForOperand(unsigned i) { |
| 2708 | return i; |
| 2709 | } |
| 2710 | |
| 2711 | /// Return incoming basic block number @p i. |
| 2712 | /// |
| 2713 | BasicBlock *getIncomingBlock(unsigned i) const { |
| 2714 | return block_begin()[i]; |
| 2715 | } |
| 2716 | |
| 2717 | /// Return incoming basic block corresponding |
| 2718 | /// to an operand of the PHI. |
| 2719 | /// |
| 2720 | BasicBlock *getIncomingBlock(const Use &U) const { |
| 2721 | assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?")((void)0); |
| 2722 | return getIncomingBlock(unsigned(&U - op_begin())); |
| 2723 | } |
| 2724 | |
| 2725 | /// Return incoming basic block corresponding |
| 2726 | /// to value use iterator. |
| 2727 | /// |
| 2728 | BasicBlock *getIncomingBlock(Value::const_user_iterator I) const { |
| 2729 | return getIncomingBlock(I.getUse()); |
| 2730 | } |
| 2731 | |
| 2732 | void setIncomingBlock(unsigned i, BasicBlock *BB) { |
| 2733 | assert(BB && "PHI node got a null basic block!")((void)0); |
| 2734 | block_begin()[i] = BB; |
| 2735 | } |
| 2736 | |
| 2737 | /// Replace every incoming basic block \p Old to basic block \p New. |
| 2738 | void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) { |
| 2739 | assert(New && Old && "PHI node got a null basic block!")((void)0); |
| 2740 | for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op) |
| 2741 | if (getIncomingBlock(Op) == Old) |
| 2742 | setIncomingBlock(Op, New); |
| 2743 | } |
| 2744 | |
| 2745 | /// Add an incoming value to the end of the PHI list |
| 2746 | /// |
| 2747 | void addIncoming(Value *V, BasicBlock *BB) { |
| 2748 | if (getNumOperands() == ReservedSpace) |
| 2749 | growOperands(); // Get more space! |
| 2750 | // Initialize some new operands. |
| 2751 | setNumHungOffUseOperands(getNumOperands() + 1); |
| 2752 | setIncomingValue(getNumOperands() - 1, V); |
| 2753 | setIncomingBlock(getNumOperands() - 1, BB); |
| 2754 | } |
| 2755 | |
| 2756 | /// Remove an incoming value. This is useful if a |
| 2757 | /// predecessor basic block is deleted. The value removed is returned. |
| 2758 | /// |
| 2759 | /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty |
| 2760 | /// is true), the PHI node is destroyed and any uses of it are replaced with |
| 2761 | /// dummy values. The only time there should be zero incoming values to a PHI |
| 2762 | /// node is when the block is dead, so this strategy is sound. |
| 2763 | /// |
| 2764 | Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true); |
| 2765 | |
| 2766 | Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) { |
| 2767 | int Idx = getBasicBlockIndex(BB); |
| 2768 | assert(Idx >= 0 && "Invalid basic block argument to remove!")((void)0); |
| 2769 | return removeIncomingValue(Idx, DeletePHIIfEmpty); |
| 2770 | } |
| 2771 | |
| 2772 | /// Return the first index of the specified basic |
| 2773 | /// block in the value list for this PHI. Returns -1 if no instance. |
| 2774 | /// |
| 2775 | int getBasicBlockIndex(const BasicBlock *BB) const { |
| 2776 | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) |
| 2777 | if (block_begin()[i] == BB) |
| 2778 | return i; |
| 2779 | return -1; |
| 2780 | } |
| 2781 | |
| 2782 | Value *getIncomingValueForBlock(const BasicBlock *BB) const { |
| 2783 | int Idx = getBasicBlockIndex(BB); |
| 2784 | assert(Idx >= 0 && "Invalid basic block argument!")((void)0); |
| 2785 | return getIncomingValue(Idx); |
| 2786 | } |
| 2787 | |
| 2788 | /// Set every incoming value(s) for block \p BB to \p V. |
| 2789 | void setIncomingValueForBlock(const BasicBlock *BB, Value *V) { |
| 2790 | assert(BB && "PHI node got a null basic block!")((void)0); |
| 2791 | bool Found = false; |
| 2792 | for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op) |
| 2793 | if (getIncomingBlock(Op) == BB) { |
| 2794 | Found = true; |
| 2795 | setIncomingValue(Op, V); |
| 2796 | } |
| 2797 | (void)Found; |
| 2798 | assert(Found && "Invalid basic block argument to set!")((void)0); |
| 2799 | } |
| 2800 | |
| 2801 | /// If the specified PHI node always merges together the |
| 2802 | /// same value, return the value, otherwise return null. |
| 2803 | Value *hasConstantValue() const; |
| 2804 | |
| 2805 | /// Whether the specified PHI node always merges |
| 2806 | /// together the same value, assuming undefs are equal to a unique |
| 2807 | /// non-undef value. |
| 2808 | bool hasConstantOrUndefValue() const; |
| 2809 | |
| 2810 | /// If the PHI node is complete which means all of its parent's predecessors |
| 2811 | /// have incoming value in this PHI, return true, otherwise return false. |
| 2812 | bool isComplete() const { |
| 2813 | return llvm::all_of(predecessors(getParent()), |
| 2814 | [this](const BasicBlock *Pred) { |
| 2815 | return getBasicBlockIndex(Pred) >= 0; |
| 2816 | }); |
| 2817 | } |
| 2818 | |
| 2819 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 2820 | static bool classof(const Instruction *I) { |
| 2821 | return I->getOpcode() == Instruction::PHI; |
| 2822 | } |
| 2823 | static bool classof(const Value *V) { |
| 2824 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 2825 | } |
| 2826 | |
| 2827 | private: |
| 2828 | void growOperands(); |
| 2829 | }; |
| 2830 | |
| 2831 | template <> |
| 2832 | struct OperandTraits<PHINode> : public HungoffOperandTraits<2> { |
| 2833 | }; |
| 2834 | |
| 2835 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)PHINode::op_iterator PHINode::op_begin() { return OperandTraits <PHINode>::op_begin(this); } PHINode::const_op_iterator PHINode::op_begin() const { return OperandTraits<PHINode> ::op_begin(const_cast<PHINode*>(this)); } PHINode::op_iterator PHINode::op_end() { return OperandTraits<PHINode>::op_end (this); } PHINode::const_op_iterator PHINode::op_end() const { return OperandTraits<PHINode>::op_end(const_cast<PHINode *>(this)); } Value *PHINode::getOperand(unsigned i_nocapture ) const { ((void)0); return cast_or_null<Value>( OperandTraits <PHINode>::op_begin(const_cast<PHINode*>(this))[i_nocapture ].get()); } void PHINode::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<PHINode>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned PHINode::getNumOperands () const { return OperandTraits<PHINode>::operands(this ); } template <int Idx_nocapture> Use &PHINode::Op( ) { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &PHINode::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
| 2836 | |
| 2837 | //===----------------------------------------------------------------------===// |
| 2838 | // LandingPadInst Class |
| 2839 | //===----------------------------------------------------------------------===// |
| 2840 | |
| 2841 | //===--------------------------------------------------------------------------- |
| 2842 | /// The landingpad instruction holds all of the information |
| 2843 | /// necessary to generate correct exception handling. The landingpad instruction |
| 2844 | /// cannot be moved from the top of a landing pad block, which itself is |
| 2845 | /// accessible only from the 'unwind' edge of an invoke. This uses the |
| 2846 | /// SubclassData field in Value to store whether or not the landingpad is a |
| 2847 | /// cleanup. |
| 2848 | /// |
| 2849 | class LandingPadInst : public Instruction { |
| 2850 | using CleanupField = BoolBitfieldElementT<0>; |
| 2851 | |
| 2852 | /// The number of operands actually allocated. NumOperands is |
| 2853 | /// the number actually in use. |
| 2854 | unsigned ReservedSpace; |
| 2855 | |
| 2856 | LandingPadInst(const LandingPadInst &LP); |
| 2857 | |
| 2858 | public: |
| 2859 | enum ClauseType { Catch, Filter }; |
| 2860 | |
| 2861 | private: |
| 2862 | explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues, |
| 2863 | const Twine &NameStr, Instruction *InsertBefore); |
| 2864 | explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues, |
| 2865 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 2866 | |
| 2867 | // Allocate space for exactly zero operands. |
| 2868 | void *operator new(size_t S) { return User::operator new(S); } |
| 2869 | |
| 2870 | void growOperands(unsigned Size); |
| 2871 | void init(unsigned NumReservedValues, const Twine &NameStr); |
| 2872 | |
| 2873 | protected: |
| 2874 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 2875 | friend class Instruction; |
| 2876 | |
| 2877 | LandingPadInst *cloneImpl() const; |
| 2878 | |
| 2879 | public: |
| 2880 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 2881 | |
| 2882 | /// Constructors - NumReservedClauses is a hint for the number of incoming |
| 2883 | /// clauses that this landingpad will have (use 0 if you really have no idea). |
| 2884 | static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses, |
| 2885 | const Twine &NameStr = "", |
| 2886 | Instruction *InsertBefore = nullptr); |
| 2887 | static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses, |
| 2888 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 2889 | |
| 2890 | /// Provide fast operand accessors |
| 2891 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 2892 | |
| 2893 | /// Return 'true' if this landingpad instruction is a |
| 2894 | /// cleanup. I.e., it should be run when unwinding even if its landing pad |
| 2895 | /// doesn't catch the exception. |
| 2896 | bool isCleanup() const { return getSubclassData<CleanupField>(); } |
| 2897 | |
| 2898 | /// Indicate that this landingpad instruction is a cleanup. |
| 2899 | void setCleanup(bool V) { setSubclassData<CleanupField>(V); } |
| 2900 | |
| 2901 | /// Add a catch or filter clause to the landing pad. |
| 2902 | void addClause(Constant *ClauseVal); |
| 2903 | |
| 2904 | /// Get the value of the clause at index Idx. Use isCatch/isFilter to |
| 2905 | /// determine what type of clause this is. |
| 2906 | Constant *getClause(unsigned Idx) const { |
| 2907 | return cast<Constant>(getOperandList()[Idx]); |
| 2908 | } |
| 2909 | |
| 2910 | /// Return 'true' if the clause and index Idx is a catch clause. |
| 2911 | bool isCatch(unsigned Idx) const { |
| 2912 | return !isa<ArrayType>(getOperandList()[Idx]->getType()); |
| 2913 | } |
| 2914 | |
| 2915 | /// Return 'true' if the clause and index Idx is a filter clause. |
| 2916 | bool isFilter(unsigned Idx) const { |
| 2917 | return isa<ArrayType>(getOperandList()[Idx]->getType()); |
| 2918 | } |
| 2919 | |
| 2920 | /// Get the number of clauses for this landing pad. |
| 2921 | unsigned getNumClauses() const { return getNumOperands(); } |
| 2922 | |
| 2923 | /// Grow the size of the operand list to accommodate the new |
| 2924 | /// number of clauses. |
| 2925 | void reserveClauses(unsigned Size) { growOperands(Size); } |
| 2926 | |
| 2927 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 2928 | static bool classof(const Instruction *I) { |
| 2929 | return I->getOpcode() == Instruction::LandingPad; |
| 2930 | } |
| 2931 | static bool classof(const Value *V) { |
| 2932 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 2933 | } |
| 2934 | }; |
| 2935 | |
| 2936 | template <> |
| 2937 | struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> { |
| 2938 | }; |
| 2939 | |
| 2940 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)LandingPadInst::op_iterator LandingPadInst::op_begin() { return OperandTraits<LandingPadInst>::op_begin(this); } LandingPadInst ::const_op_iterator LandingPadInst::op_begin() const { return OperandTraits<LandingPadInst>::op_begin(const_cast< LandingPadInst*>(this)); } LandingPadInst::op_iterator LandingPadInst ::op_end() { return OperandTraits<LandingPadInst>::op_end (this); } LandingPadInst::const_op_iterator LandingPadInst::op_end () const { return OperandTraits<LandingPadInst>::op_end (const_cast<LandingPadInst*>(this)); } Value *LandingPadInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<LandingPadInst>::op_begin( const_cast<LandingPadInst*>(this))[i_nocapture].get()); } void LandingPadInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<LandingPadInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned LandingPadInst::getNumOperands() const { return OperandTraits <LandingPadInst>::operands(this); } template <int Idx_nocapture > Use &LandingPadInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &LandingPadInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
| 2941 | |
| 2942 | //===----------------------------------------------------------------------===// |
| 2943 | // ReturnInst Class |
| 2944 | //===----------------------------------------------------------------------===// |
| 2945 | |
| 2946 | //===--------------------------------------------------------------------------- |
| 2947 | /// Return a value (possibly void), from a function. Execution |
| 2948 | /// does not continue in this function any longer. |
| 2949 | /// |
| 2950 | class ReturnInst : public Instruction { |
| 2951 | ReturnInst(const ReturnInst &RI); |
| 2952 | |
| 2953 | private: |
| 2954 | // ReturnInst constructors: |
| 2955 | // ReturnInst() - 'ret void' instruction |
| 2956 | // ReturnInst( null) - 'ret void' instruction |
| 2957 | // ReturnInst(Value* X) - 'ret X' instruction |
| 2958 | // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I |
| 2959 | // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I |
| 2960 | // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B |
| 2961 | // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B |
| 2962 | // |
| 2963 | // NOTE: If the Value* passed is of type void then the constructor behaves as |
| 2964 | // if it was passed NULL. |
| 2965 | explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr, |
| 2966 | Instruction *InsertBefore = nullptr); |
| 2967 | ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd); |
| 2968 | explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd); |
| 2969 | |
| 2970 | protected: |
| 2971 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 2972 | friend class Instruction; |
| 2973 | |
| 2974 | ReturnInst *cloneImpl() const; |
| 2975 | |
| 2976 | public: |
| 2977 | static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr, |
| 2978 | Instruction *InsertBefore = nullptr) { |
| 2979 | return new(!!retVal) ReturnInst(C, retVal, InsertBefore); |
| 2980 | } |
| 2981 | |
| 2982 | static ReturnInst* Create(LLVMContext &C, Value *retVal, |
| 2983 | BasicBlock *InsertAtEnd) { |
| 2984 | return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd); |
| 2985 | } |
| 2986 | |
| 2987 | static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) { |
| 2988 | return new(0) ReturnInst(C, InsertAtEnd); |
| 2989 | } |
| 2990 | |
| 2991 | /// Provide fast operand accessors |
| 2992 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 2993 | |
| 2994 | /// Convenience accessor. Returns null if there is no return value. |
| 2995 | Value *getReturnValue() const { |
| 2996 | return getNumOperands() != 0 ? getOperand(0) : nullptr; |
| 2997 | } |
| 2998 | |
| 2999 | unsigned getNumSuccessors() const { return 0; } |
| 3000 | |
| 3001 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 3002 | static bool classof(const Instruction *I) { |
| 3003 | return (I->getOpcode() == Instruction::Ret); |
| 3004 | } |
| 3005 | static bool classof(const Value *V) { |
| 3006 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 3007 | } |
| 3008 | |
| 3009 | private: |
| 3010 | BasicBlock *getSuccessor(unsigned idx) const { |
| 3011 | llvm_unreachable("ReturnInst has no successors!")__builtin_unreachable(); |
| 3012 | } |
| 3013 | |
| 3014 | void setSuccessor(unsigned idx, BasicBlock *B) { |
| 3015 | llvm_unreachable("ReturnInst has no successors!")__builtin_unreachable(); |
| 3016 | } |
| 3017 | }; |
| 3018 | |
| 3019 | template <> |
| 3020 | struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> { |
| 3021 | }; |
| 3022 | |
| 3023 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)ReturnInst::op_iterator ReturnInst::op_begin() { return OperandTraits <ReturnInst>::op_begin(this); } ReturnInst::const_op_iterator ReturnInst::op_begin() const { return OperandTraits<ReturnInst >::op_begin(const_cast<ReturnInst*>(this)); } ReturnInst ::op_iterator ReturnInst::op_end() { return OperandTraits< ReturnInst>::op_end(this); } ReturnInst::const_op_iterator ReturnInst::op_end() const { return OperandTraits<ReturnInst >::op_end(const_cast<ReturnInst*>(this)); } Value *ReturnInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<ReturnInst>::op_begin(const_cast <ReturnInst*>(this))[i_nocapture].get()); } void ReturnInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<ReturnInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned ReturnInst::getNumOperands() const { return OperandTraits<ReturnInst>::operands(this); } template <int Idx_nocapture> Use &ReturnInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &ReturnInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
| 3024 | |
| 3025 | //===----------------------------------------------------------------------===// |
| 3026 | // BranchInst Class |
| 3027 | //===----------------------------------------------------------------------===// |
| 3028 | |
| 3029 | //===--------------------------------------------------------------------------- |
| 3030 | /// Conditional or Unconditional Branch instruction. |
| 3031 | /// |
| 3032 | class BranchInst : public Instruction { |
| 3033 | /// Ops list - Branches are strange. The operands are ordered: |
| 3034 | /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because |
| 3035 | /// they don't have to check for cond/uncond branchness. These are mostly |
| 3036 | /// accessed relative from op_end(). |
| 3037 | BranchInst(const BranchInst &BI); |
| 3038 | // BranchInst constructors (where {B, T, F} are blocks, and C is a condition): |
| 3039 | // BranchInst(BB *B) - 'br B' |
| 3040 | // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F' |
| 3041 | // BranchInst(BB* B, Inst *I) - 'br B' insert before I |
| 3042 | // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I |
| 3043 | // BranchInst(BB* B, BB *I) - 'br B' insert at end |
| 3044 | // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end |
| 3045 | explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr); |
| 3046 | BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, |
| 3047 | Instruction *InsertBefore = nullptr); |
| 3048 | BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd); |
| 3049 | BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, |
| 3050 | BasicBlock *InsertAtEnd); |
| 3051 | |
| 3052 | void AssertOK(); |
| 3053 | |
| 3054 | protected: |
| 3055 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 3056 | friend class Instruction; |
| 3057 | |
| 3058 | BranchInst *cloneImpl() const; |
| 3059 | |
| 3060 | public: |
| 3061 | /// Iterator type that casts an operand to a basic block. |
| 3062 | /// |
| 3063 | /// This only makes sense because the successors are stored as adjacent |
| 3064 | /// operands for branch instructions. |
| 3065 | struct succ_op_iterator |
| 3066 | : iterator_adaptor_base<succ_op_iterator, value_op_iterator, |
| 3067 | std::random_access_iterator_tag, BasicBlock *, |
| 3068 | ptrdiff_t, BasicBlock *, BasicBlock *> { |
| 3069 | explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {} |
| 3070 | |
| 3071 | BasicBlock *operator*() const { return cast<BasicBlock>(*I); } |
| 3072 | BasicBlock *operator->() const { return operator*(); } |
| 3073 | }; |
| 3074 | |
| 3075 | /// The const version of `succ_op_iterator`. |
| 3076 | struct const_succ_op_iterator |
| 3077 | : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator, |
| 3078 | std::random_access_iterator_tag, |
| 3079 | const BasicBlock *, ptrdiff_t, const BasicBlock *, |
| 3080 | const BasicBlock *> { |
| 3081 | explicit const_succ_op_iterator(const_value_op_iterator I) |
| 3082 | : iterator_adaptor_base(I) {} |
| 3083 | |
| 3084 | const BasicBlock *operator*() const { return cast<BasicBlock>(*I); } |
| 3085 | const BasicBlock *operator->() const { return operator*(); } |
| 3086 | }; |
| 3087 | |
| 3088 | static BranchInst *Create(BasicBlock *IfTrue, |
| 3089 | Instruction *InsertBefore = nullptr) { |
| 3090 | return new(1) BranchInst(IfTrue, InsertBefore); |
| 3091 | } |
| 3092 | |
| 3093 | static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, |
| 3094 | Value *Cond, Instruction *InsertBefore = nullptr) { |
| 3095 | return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore); |
| 3096 | } |
| 3097 | |
| 3098 | static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) { |
| 3099 | return new(1) BranchInst(IfTrue, InsertAtEnd); |
| 3100 | } |
| 3101 | |
| 3102 | static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, |
| 3103 | Value *Cond, BasicBlock *InsertAtEnd) { |
| 3104 | return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd); |
| 3105 | } |
| 3106 | |
| 3107 | /// Transparently provide more efficient getOperand methods. |
| 3108 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 3109 | |
| 3110 | bool isUnconditional() const { return getNumOperands() == 1; } |
| 3111 | bool isConditional() const { return getNumOperands() == 3; } |
| 3112 | |
| 3113 | Value *getCondition() const { |
| 3114 | assert(isConditional() && "Cannot get condition of an uncond branch!")((void)0); |
| 3115 | return Op<-3>(); |
| 3116 | } |
| 3117 | |
| 3118 | void setCondition(Value *V) { |
| 3119 | assert(isConditional() && "Cannot set condition of unconditional branch!")((void)0); |
| 3120 | Op<-3>() = V; |
| 3121 | } |
| 3122 | |
| 3123 | unsigned getNumSuccessors() const { return 1+isConditional(); } |
| 3124 | |
| 3125 | BasicBlock *getSuccessor(unsigned i) const { |
| 3126 | assert(i < getNumSuccessors() && "Successor # out of range for Branch!")((void)0); |
| 3127 | return cast_or_null<BasicBlock>((&Op<-1>() - i)->get()); |
| 3128 | } |
| 3129 | |
| 3130 | void setSuccessor(unsigned idx, BasicBlock *NewSucc) { |
| 3131 | assert(idx < getNumSuccessors() && "Successor # out of range for Branch!")((void)0); |
| 3132 | *(&Op<-1>() - idx) = NewSucc; |
| 3133 | } |
| 3134 | |
| 3135 | /// Swap the successors of this branch instruction. |
| 3136 | /// |
| 3137 | /// Swaps the successors of the branch instruction. This also swaps any |
| 3138 | /// branch weight metadata associated with the instruction so that it |
| 3139 | /// continues to map correctly to each operand. |
| 3140 | void swapSuccessors(); |
| 3141 | |
| 3142 | iterator_range<succ_op_iterator> successors() { |
| 3143 | return make_range( |
| 3144 | succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)), |
| 3145 | succ_op_iterator(value_op_end())); |
| 3146 | } |
| 3147 | |
| 3148 | iterator_range<const_succ_op_iterator> successors() const { |
| 3149 | return make_range(const_succ_op_iterator( |
| 3150 | std::next(value_op_begin(), isConditional() ? 1 : 0)), |
| 3151 | const_succ_op_iterator(value_op_end())); |
| 3152 | } |
| 3153 | |
| 3154 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 3155 | static bool classof(const Instruction *I) { |
| 3156 | return (I->getOpcode() == Instruction::Br); |
| 3157 | } |
| 3158 | static bool classof(const Value *V) { |
| 3159 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 3160 | } |
| 3161 | }; |
| 3162 | |
| 3163 | template <> |
| 3164 | struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> { |
| 3165 | }; |
| 3166 | |
| 3167 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)BranchInst::op_iterator BranchInst::op_begin() { return OperandTraits <BranchInst>::op_begin(this); } BranchInst::const_op_iterator BranchInst::op_begin() const { return OperandTraits<BranchInst >::op_begin(const_cast<BranchInst*>(this)); } BranchInst ::op_iterator BranchInst::op_end() { return OperandTraits< BranchInst>::op_end(this); } BranchInst::const_op_iterator BranchInst::op_end() const { return OperandTraits<BranchInst >::op_end(const_cast<BranchInst*>(this)); } Value *BranchInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<BranchInst>::op_begin(const_cast <BranchInst*>(this))[i_nocapture].get()); } void BranchInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<BranchInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned BranchInst::getNumOperands() const { return OperandTraits<BranchInst>::operands(this); } template <int Idx_nocapture> Use &BranchInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &BranchInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
| 3168 | |
| 3169 | //===----------------------------------------------------------------------===// |
| 3170 | // SwitchInst Class |
| 3171 | //===----------------------------------------------------------------------===// |
| 3172 | |
| 3173 | //===--------------------------------------------------------------------------- |
| 3174 | /// Multiway switch |
| 3175 | /// |
| 3176 | class SwitchInst : public Instruction { |
| 3177 | unsigned ReservedSpace; |
| 3178 | |
| 3179 | // Operand[0] = Value to switch on |
| 3180 | // Operand[1] = Default basic block destination |
| 3181 | // Operand[2n ] = Value to match |
| 3182 | // Operand[2n+1] = BasicBlock to go to on match |
| 3183 | SwitchInst(const SwitchInst &SI); |
| 3184 | |
| 3185 | /// Create a new switch instruction, specifying a value to switch on and a |
| 3186 | /// default destination. The number of additional cases can be specified here |
| 3187 | /// to make memory allocation more efficient. This constructor can also |
| 3188 | /// auto-insert before another instruction. |
| 3189 | SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, |
| 3190 | Instruction *InsertBefore); |
| 3191 | |
| 3192 | /// Create a new switch instruction, specifying a value to switch on and a |
| 3193 | /// default destination. The number of additional cases can be specified here |
| 3194 | /// to make memory allocation more efficient. This constructor also |
| 3195 | /// auto-inserts at the end of the specified BasicBlock. |
| 3196 | SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, |
| 3197 | BasicBlock *InsertAtEnd); |
| 3198 | |
| 3199 | // allocate space for exactly zero operands |
| 3200 | void *operator new(size_t S) { return User::operator new(S); } |
| 3201 | |
| 3202 | void init(Value *Value, BasicBlock *Default, unsigned NumReserved); |
| 3203 | void growOperands(); |
| 3204 | |
| 3205 | protected: |
| 3206 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 3207 | friend class Instruction; |
| 3208 | |
| 3209 | SwitchInst *cloneImpl() const; |
| 3210 | |
| 3211 | public: |
| 3212 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 3213 | |
| 3214 | // -2 |
| 3215 | static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1); |
| 3216 | |
| 3217 | template <typename CaseHandleT> class CaseIteratorImpl; |
| 3218 | |
| 3219 | /// A handle to a particular switch case. It exposes a convenient interface |
| 3220 | /// to both the case value and the successor block. |
| 3221 | /// |
| 3222 | /// We define this as a template and instantiate it to form both a const and |
| 3223 | /// non-const handle. |
| 3224 | template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT> |
| 3225 | class CaseHandleImpl { |
| 3226 | // Directly befriend both const and non-const iterators. |
| 3227 | friend class SwitchInst::CaseIteratorImpl< |
| 3228 | CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>; |
| 3229 | |
| 3230 | protected: |
| 3231 | // Expose the switch type we're parameterized with to the iterator. |
| 3232 | using SwitchInstType = SwitchInstT; |
| 3233 | |
| 3234 | SwitchInstT *SI; |
| 3235 | ptrdiff_t Index; |
| 3236 | |
| 3237 | CaseHandleImpl() = default; |
| 3238 | CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {} |
| 3239 | |
| 3240 | public: |
| 3241 | /// Resolves case value for current case. |
| 3242 | ConstantIntT *getCaseValue() const { |
| 3243 | assert((unsigned)Index < SI->getNumCases() &&((void)0) |
| 3244 | "Index out the number of cases.")((void)0); |
| 3245 | return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2)); |
| 3246 | } |
| 3247 | |
| 3248 | /// Resolves successor for current case. |
| 3249 | BasicBlockT *getCaseSuccessor() const { |
| 3250 | assert(((unsigned)Index < SI->getNumCases() ||((void)0) |
| 3251 | (unsigned)Index == DefaultPseudoIndex) &&((void)0) |
| 3252 | "Index out the number of cases.")((void)0); |
| 3253 | return SI->getSuccessor(getSuccessorIndex()); |
| 3254 | } |
| 3255 | |
| 3256 | /// Returns number of current case. |
| 3257 | unsigned getCaseIndex() const { return Index; } |
| 3258 | |
| 3259 | /// Returns successor index for current case successor. |
| 3260 | unsigned getSuccessorIndex() const { |
| 3261 | assert(((unsigned)Index == DefaultPseudoIndex ||((void)0) |
| 3262 | (unsigned)Index < SI->getNumCases()) &&((void)0) |
| 3263 | "Index out the number of cases.")((void)0); |
| 3264 | return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0; |
| 3265 | } |
| 3266 | |
| 3267 | bool operator==(const CaseHandleImpl &RHS) const { |
| 3268 | assert(SI == RHS.SI && "Incompatible operators.")((void)0); |
| 3269 | return Index == RHS.Index; |
| 3270 | } |
| 3271 | }; |
| 3272 | |
| 3273 | using ConstCaseHandle = |
| 3274 | CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>; |
| 3275 | |
| 3276 | class CaseHandle |
| 3277 | : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> { |
| 3278 | friend class SwitchInst::CaseIteratorImpl<CaseHandle>; |
| 3279 | |
| 3280 | public: |
| 3281 | CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {} |
| 3282 | |
| 3283 | /// Sets the new value for current case. |
| 3284 | void setValue(ConstantInt *V) { |
| 3285 | assert((unsigned)Index < SI->getNumCases() &&((void)0) |
| 3286 | "Index out the number of cases.")((void)0); |
| 3287 | SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V)); |
| 3288 | } |
| 3289 | |
| 3290 | /// Sets the new successor for current case. |
| 3291 | void setSuccessor(BasicBlock *S) { |
| 3292 | SI->setSuccessor(getSuccessorIndex(), S); |
| 3293 | } |
| 3294 | }; |
| 3295 | |
| 3296 | template <typename CaseHandleT> |
| 3297 | class CaseIteratorImpl |
| 3298 | : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>, |
| 3299 | std::random_access_iterator_tag, |
| 3300 | CaseHandleT> { |
| 3301 | using SwitchInstT = typename CaseHandleT::SwitchInstType; |
| 3302 | |
| 3303 | CaseHandleT Case; |
| 3304 | |
| 3305 | public: |
| 3306 | /// Default constructed iterator is in an invalid state until assigned to |
| 3307 | /// a case for a particular switch. |
| 3308 | CaseIteratorImpl() = default; |
| 3309 | |
| 3310 | /// Initializes case iterator for given SwitchInst and for given |
| 3311 | /// case number. |
| 3312 | CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {} |
| 3313 | |
| 3314 | /// Initializes case iterator for given SwitchInst and for given |
| 3315 | /// successor index. |
| 3316 | static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI, |
| 3317 | unsigned SuccessorIndex) { |
| 3318 | assert(SuccessorIndex < SI->getNumSuccessors() &&((void)0) |
| 3319 | "Successor index # out of range!")((void)0); |
| 3320 | return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1) |
| 3321 | : CaseIteratorImpl(SI, DefaultPseudoIndex); |
| 3322 | } |
| 3323 | |
| 3324 | /// Support converting to the const variant. This will be a no-op for const |
| 3325 | /// variant. |
| 3326 | operator CaseIteratorImpl<ConstCaseHandle>() const { |
| 3327 | return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index); |
| 3328 | } |
| 3329 | |
| 3330 | CaseIteratorImpl &operator+=(ptrdiff_t N) { |
| 3331 | // Check index correctness after addition. |
| 3332 | // Note: Index == getNumCases() means end(). |
| 3333 | assert(Case.Index + N >= 0 &&((void)0) |
| 3334 | (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&((void)0) |
| 3335 | "Case.Index out the number of cases.")((void)0); |
| 3336 | Case.Index += N; |
| 3337 | return *this; |
| 3338 | } |
| 3339 | CaseIteratorImpl &operator-=(ptrdiff_t N) { |
| 3340 | // Check index correctness after subtraction. |
| 3341 | // Note: Case.Index == getNumCases() means end(). |
| 3342 | assert(Case.Index - N >= 0 &&((void)0) |
| 3343 | (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&((void)0) |
| 3344 | "Case.Index out the number of cases.")((void)0); |
| 3345 | Case.Index -= N; |
| 3346 | return *this; |
| 3347 | } |
| 3348 | ptrdiff_t operator-(const CaseIteratorImpl &RHS) const { |
| 3349 | assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((void)0); |
| 3350 | return Case.Index - RHS.Case.Index; |
| 3351 | } |
| 3352 | bool operator==(const CaseIteratorImpl &RHS) const { |
| 3353 | return Case == RHS.Case; |
| 3354 | } |
| 3355 | bool operator<(const CaseIteratorImpl &RHS) const { |
| 3356 | assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((void)0); |
| 3357 | return Case.Index < RHS.Case.Index; |
| 3358 | } |
| 3359 | CaseHandleT &operator*() { return Case; } |
| 3360 | const CaseHandleT &operator*() const { return Case; } |
| 3361 | }; |
| 3362 | |
| 3363 | using CaseIt = CaseIteratorImpl<CaseHandle>; |
| 3364 | using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>; |
| 3365 | |
| 3366 | static SwitchInst *Create(Value *Value, BasicBlock *Default, |
| 3367 | unsigned NumCases, |
| 3368 | Instruction *InsertBefore = nullptr) { |
| 3369 | return new SwitchInst(Value, Default, NumCases, InsertBefore); |
| 3370 | } |
| 3371 | |
| 3372 | static SwitchInst *Create(Value *Value, BasicBlock *Default, |
| 3373 | unsigned NumCases, BasicBlock *InsertAtEnd) { |
| 3374 | return new SwitchInst(Value, Default, NumCases, InsertAtEnd); |
| 3375 | } |
| 3376 | |
| 3377 | /// Provide fast operand accessors |
| 3378 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 3379 | |
| 3380 | // Accessor Methods for Switch stmt |
| 3381 | Value *getCondition() const { return getOperand(0); } |
| 3382 | void setCondition(Value *V) { setOperand(0, V); } |
| 3383 | |
| 3384 | BasicBlock *getDefaultDest() const { |
| 3385 | return cast<BasicBlock>(getOperand(1)); |
| 3386 | } |
| 3387 | |
| 3388 | void setDefaultDest(BasicBlock *DefaultCase) { |
| 3389 | setOperand(1, reinterpret_cast<Value*>(DefaultCase)); |
| 3390 | } |
| 3391 | |
| 3392 | /// Return the number of 'cases' in this switch instruction, excluding the |
| 3393 | /// default case. |
| 3394 | unsigned getNumCases() const { |
| 3395 | return getNumOperands()/2 - 1; |
| 3396 | } |
| 3397 | |
| 3398 | /// Returns a read/write iterator that points to the first case in the |
| 3399 | /// SwitchInst. |
| 3400 | CaseIt case_begin() { |
| 3401 | return CaseIt(this, 0); |
| 3402 | } |
| 3403 | |
| 3404 | /// Returns a read-only iterator that points to the first case in the |
| 3405 | /// SwitchInst. |
| 3406 | ConstCaseIt case_begin() const { |
| 3407 | return ConstCaseIt(this, 0); |
| 3408 | } |
| 3409 | |
| 3410 | /// Returns a read/write iterator that points one past the last in the |
| 3411 | /// SwitchInst. |
| 3412 | CaseIt case_end() { |
| 3413 | return CaseIt(this, getNumCases()); |
| 3414 | } |
| 3415 | |
| 3416 | /// Returns a read-only iterator that points one past the last in the |
| 3417 | /// SwitchInst. |
| 3418 | ConstCaseIt case_end() const { |
| 3419 | return ConstCaseIt(this, getNumCases()); |
| 3420 | } |
| 3421 | |
| 3422 | /// Iteration adapter for range-for loops. |
| 3423 | iterator_range<CaseIt> cases() { |
| 3424 | return make_range(case_begin(), case_end()); |
| 3425 | } |
| 3426 | |
| 3427 | /// Constant iteration adapter for range-for loops. |
| 3428 | iterator_range<ConstCaseIt> cases() const { |
| 3429 | return make_range(case_begin(), case_end()); |
| 3430 | } |
| 3431 | |
| 3432 | /// Returns an iterator that points to the default case. |
| 3433 | /// Note: this iterator allows to resolve successor only. Attempt |
| 3434 | /// to resolve case value causes an assertion. |
| 3435 | /// Also note, that increment and decrement also causes an assertion and |
| 3436 | /// makes iterator invalid. |
| 3437 | CaseIt case_default() { |
| 3438 | return CaseIt(this, DefaultPseudoIndex); |
| 3439 | } |
| 3440 | ConstCaseIt case_default() const { |
| 3441 | return ConstCaseIt(this, DefaultPseudoIndex); |
| 3442 | } |
| 3443 | |
| 3444 | /// Search all of the case values for the specified constant. If it is |
| 3445 | /// explicitly handled, return the case iterator of it, otherwise return |
| 3446 | /// default case iterator to indicate that it is handled by the default |
| 3447 | /// handler. |
| 3448 | CaseIt findCaseValue(const ConstantInt *C) { |
| 3449 | CaseIt I = llvm::find_if( |
| 3450 | cases(), [C](CaseHandle &Case) { return Case.getCaseValue() == C; }); |
| 3451 | if (I != case_end()) |
| 3452 | return I; |
| 3453 | |
| 3454 | return case_default(); |
| 3455 | } |
| 3456 | ConstCaseIt findCaseValue(const ConstantInt *C) const { |
| 3457 | ConstCaseIt I = llvm::find_if(cases(), [C](ConstCaseHandle &Case) { |
| 3458 | return Case.getCaseValue() == C; |
| 3459 | }); |
| 3460 | if (I != case_end()) |
| 3461 | return I; |
| 3462 | |
| 3463 | return case_default(); |
| 3464 | } |
| 3465 | |
| 3466 | /// Finds the unique case value for a given successor. Returns null if the |
| 3467 | /// successor is not found, not unique, or is the default case. |
| 3468 | ConstantInt *findCaseDest(BasicBlock *BB) { |
| 3469 | if (BB == getDefaultDest()) |
| 3470 | return nullptr; |
| 3471 | |
| 3472 | ConstantInt *CI = nullptr; |
| 3473 | for (auto Case : cases()) { |
| 3474 | if (Case.getCaseSuccessor() != BB) |
| 3475 | continue; |
| 3476 | |
| 3477 | if (CI) |
| 3478 | return nullptr; // Multiple cases lead to BB. |
| 3479 | |
| 3480 | CI = Case.getCaseValue(); |
| 3481 | } |
| 3482 | |
| 3483 | return CI; |
| 3484 | } |
| 3485 | |
| 3486 | /// Add an entry to the switch instruction. |
| 3487 | /// Note: |
| 3488 | /// This action invalidates case_end(). Old case_end() iterator will |
| 3489 | /// point to the added case. |
| 3490 | void addCase(ConstantInt *OnVal, BasicBlock *Dest); |
| 3491 | |
| 3492 | /// This method removes the specified case and its successor from the switch |
| 3493 | /// instruction. Note that this operation may reorder the remaining cases at |
| 3494 | /// index idx and above. |
| 3495 | /// Note: |
| 3496 | /// This action invalidates iterators for all cases following the one removed, |
| 3497 | /// including the case_end() iterator. It returns an iterator for the next |
| 3498 | /// case. |
| 3499 | CaseIt removeCase(CaseIt I); |
| 3500 | |
| 3501 | unsigned getNumSuccessors() const { return getNumOperands()/2; } |
| 3502 | BasicBlock *getSuccessor(unsigned idx) const { |
| 3503 | assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!")((void)0); |
| 3504 | return cast<BasicBlock>(getOperand(idx*2+1)); |
| 3505 | } |
| 3506 | void setSuccessor(unsigned idx, BasicBlock *NewSucc) { |
| 3507 | assert(idx < getNumSuccessors() && "Successor # out of range for switch!")((void)0); |
| 3508 | setOperand(idx * 2 + 1, NewSucc); |
| 3509 | } |
| 3510 | |
| 3511 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 3512 | static bool classof(const Instruction *I) { |
| 3513 | return I->getOpcode() == Instruction::Switch; |
| 3514 | } |
| 3515 | static bool classof(const Value *V) { |
| 3516 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 3517 | } |
| 3518 | }; |
| 3519 | |
| 3520 | /// A wrapper class to simplify modification of SwitchInst cases along with |
| 3521 | /// their prof branch_weights metadata. |
| 3522 | class SwitchInstProfUpdateWrapper { |
| 3523 | SwitchInst &SI; |
| 3524 | Optional<SmallVector<uint32_t, 8> > Weights = None; |
| 3525 | bool Changed = false; |
| 3526 | |
| 3527 | protected: |
| 3528 | static MDNode *getProfBranchWeightsMD(const SwitchInst &SI); |
| 3529 | |
| 3530 | MDNode *buildProfBranchWeightsMD(); |
| 3531 | |
| 3532 | void init(); |
| 3533 | |
| 3534 | public: |
| 3535 | using CaseWeightOpt = Optional<uint32_t>; |
| 3536 | SwitchInst *operator->() { return &SI; } |
| 3537 | SwitchInst &operator*() { return SI; } |
| 3538 | operator SwitchInst *() { return &SI; } |
| 3539 | |
| 3540 | SwitchInstProfUpdateWrapper(SwitchInst &SI) : SI(SI) { init(); } |
| 3541 | |
| 3542 | ~SwitchInstProfUpdateWrapper() { |
| 3543 | if (Changed) |
| 3544 | SI.setMetadata(LLVMContext::MD_prof, buildProfBranchWeightsMD()); |
| 3545 | } |
| 3546 | |
| 3547 | /// Delegate the call to the underlying SwitchInst::removeCase() and remove |
| 3548 | /// correspondent branch weight. |
| 3549 | SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I); |
| 3550 | |
| 3551 | /// Delegate the call to the underlying SwitchInst::addCase() and set the |
| 3552 | /// specified branch weight for the added case. |
| 3553 | void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W); |
| 3554 | |
| 3555 | /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark |
| 3556 | /// this object to not touch the underlying SwitchInst in destructor. |
| 3557 | SymbolTableList<Instruction>::iterator eraseFromParent(); |
| 3558 | |
| 3559 | void setSuccessorWeight(unsigned idx, CaseWeightOpt W); |
| 3560 | CaseWeightOpt getSuccessorWeight(unsigned idx); |
| 3561 | |
| 3562 | static CaseWeightOpt getSuccessorWeight(const SwitchInst &SI, unsigned idx); |
| 3563 | }; |
| 3564 | |
| 3565 | template <> |
| 3566 | struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> { |
| 3567 | }; |
| 3568 | |
| 3569 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)SwitchInst::op_iterator SwitchInst::op_begin() { return OperandTraits <SwitchInst>::op_begin(this); } SwitchInst::const_op_iterator SwitchInst::op_begin() const { return OperandTraits<SwitchInst >::op_begin(const_cast<SwitchInst*>(this)); } SwitchInst ::op_iterator SwitchInst::op_end() { return OperandTraits< SwitchInst>::op_end(this); } SwitchInst::const_op_iterator SwitchInst::op_end() const { return OperandTraits<SwitchInst >::op_end(const_cast<SwitchInst*>(this)); } Value *SwitchInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<SwitchInst>::op_begin(const_cast <SwitchInst*>(this))[i_nocapture].get()); } void SwitchInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<SwitchInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned SwitchInst::getNumOperands() const { return OperandTraits<SwitchInst>::operands(this); } template <int Idx_nocapture> Use &SwitchInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &SwitchInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
| 3570 | |
| 3571 | //===----------------------------------------------------------------------===// |
| 3572 | // IndirectBrInst Class |
| 3573 | //===----------------------------------------------------------------------===// |
| 3574 | |
| 3575 | //===--------------------------------------------------------------------------- |
| 3576 | /// Indirect Branch Instruction. |
| 3577 | /// |
| 3578 | class IndirectBrInst : public Instruction { |
| 3579 | unsigned ReservedSpace; |
| 3580 | |
| 3581 | // Operand[0] = Address to jump to |
| 3582 | // Operand[n+1] = n-th destination |
| 3583 | IndirectBrInst(const IndirectBrInst &IBI); |
| 3584 | |
| 3585 | /// Create a new indirectbr instruction, specifying an |
| 3586 | /// Address to jump to. The number of expected destinations can be specified |
| 3587 | /// here to make memory allocation more efficient. This constructor can also |
| 3588 | /// autoinsert before another instruction. |
| 3589 | IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore); |
| 3590 | |
| 3591 | /// Create a new indirectbr instruction, specifying an |
| 3592 | /// Address to jump to. The number of expected destinations can be specified |
| 3593 | /// here to make memory allocation more efficient. This constructor also |
| 3594 | /// autoinserts at the end of the specified BasicBlock. |
| 3595 | IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd); |
| 3596 | |
| 3597 | // allocate space for exactly zero operands |
| 3598 | void *operator new(size_t S) { return User::operator new(S); } |
| 3599 | |
| 3600 | void init(Value *Address, unsigned NumDests); |
| 3601 | void growOperands(); |
| 3602 | |
| 3603 | protected: |
| 3604 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 3605 | friend class Instruction; |
| 3606 | |
| 3607 | IndirectBrInst *cloneImpl() const; |
| 3608 | |
| 3609 | public: |
| 3610 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 3611 | |
| 3612 | /// Iterator type that casts an operand to a basic block. |
| 3613 | /// |
| 3614 | /// This only makes sense because the successors are stored as adjacent |
| 3615 | /// operands for indirectbr instructions. |
| 3616 | struct succ_op_iterator |
| 3617 | : iterator_adaptor_base<succ_op_iterator, value_op_iterator, |
| 3618 | std::random_access_iterator_tag, BasicBlock *, |
| 3619 | ptrdiff_t, BasicBlock *, BasicBlock *> { |
| 3620 | explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {} |
| 3621 | |
| 3622 | BasicBlock *operator*() const { return cast<BasicBlock>(*I); } |
| 3623 | BasicBlock *operator->() const { return operator*(); } |
| 3624 | }; |
| 3625 | |
| 3626 | /// The const version of `succ_op_iterator`. |
| 3627 | struct const_succ_op_iterator |
| 3628 | : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator, |
| 3629 | std::random_access_iterator_tag, |
| 3630 | const BasicBlock *, ptrdiff_t, const BasicBlock *, |
| 3631 | const BasicBlock *> { |
| 3632 | explicit const_succ_op_iterator(const_value_op_iterator I) |
| 3633 | : iterator_adaptor_base(I) {} |
| 3634 | |
| 3635 | const BasicBlock *operator*() const { return cast<BasicBlock>(*I); } |
| 3636 | const BasicBlock *operator->() const { return operator*(); } |
| 3637 | }; |
| 3638 | |
| 3639 | static IndirectBrInst *Create(Value *Address, unsigned NumDests, |
| 3640 | Instruction *InsertBefore = nullptr) { |
| 3641 | return new IndirectBrInst(Address, NumDests, InsertBefore); |
| 3642 | } |
| 3643 | |
| 3644 | static IndirectBrInst *Create(Value *Address, unsigned NumDests, |
| 3645 | BasicBlock *InsertAtEnd) { |
| 3646 | return new IndirectBrInst(Address, NumDests, InsertAtEnd); |
| 3647 | } |
| 3648 | |
| 3649 | /// Provide fast operand accessors. |
| 3650 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 3651 | |
| 3652 | // Accessor Methods for IndirectBrInst instruction. |
| 3653 | Value *getAddress() { return getOperand(0); } |
| 3654 | const Value *getAddress() const { return getOperand(0); } |
| 3655 | void setAddress(Value *V) { setOperand(0, V); } |
| 3656 | |
| 3657 | /// return the number of possible destinations in this |
| 3658 | /// indirectbr instruction. |
| 3659 | unsigned getNumDestinations() const { return getNumOperands()-1; } |
| 3660 | |
| 3661 | /// Return the specified destination. |
| 3662 | BasicBlock *getDestination(unsigned i) { return getSuccessor(i); } |
| 3663 | const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); } |
| 3664 | |
| 3665 | /// Add a destination. |
| 3666 | /// |
| 3667 | void addDestination(BasicBlock *Dest); |
| 3668 | |
| 3669 | /// This method removes the specified successor from the |
| 3670 | /// indirectbr instruction. |
| 3671 | void removeDestination(unsigned i); |
| 3672 | |
| 3673 | unsigned getNumSuccessors() const { return getNumOperands()-1; } |
| 3674 | BasicBlock *getSuccessor(unsigned i) const { |
| 3675 | return cast<BasicBlock>(getOperand(i+1)); |
| 3676 | } |
| 3677 | void setSuccessor(unsigned i, BasicBlock *NewSucc) { |
| 3678 | setOperand(i + 1, NewSucc); |
| 3679 | } |
| 3680 | |
| 3681 | iterator_range<succ_op_iterator> successors() { |
| 3682 | return make_range(succ_op_iterator(std::next(value_op_begin())), |
| 3683 | succ_op_iterator(value_op_end())); |
| 3684 | } |
| 3685 | |
| 3686 | iterator_range<const_succ_op_iterator> successors() const { |
| 3687 | return make_range(const_succ_op_iterator(std::next(value_op_begin())), |
| 3688 | const_succ_op_iterator(value_op_end())); |
| 3689 | } |
| 3690 | |
| 3691 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 3692 | static bool classof(const Instruction *I) { |
| 3693 | return I->getOpcode() == Instruction::IndirectBr; |
| 3694 | } |
| 3695 | static bool classof(const Value *V) { |
| 3696 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 3697 | } |
| 3698 | }; |
| 3699 | |
| 3700 | template <> |
| 3701 | struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> { |
| 3702 | }; |
| 3703 | |
| 3704 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)IndirectBrInst::op_iterator IndirectBrInst::op_begin() { return OperandTraits<IndirectBrInst>::op_begin(this); } IndirectBrInst ::const_op_iterator IndirectBrInst::op_begin() const { return OperandTraits<IndirectBrInst>::op_begin(const_cast< IndirectBrInst*>(this)); } IndirectBrInst::op_iterator IndirectBrInst ::op_end() { return OperandTraits<IndirectBrInst>::op_end (this); } IndirectBrInst::const_op_iterator IndirectBrInst::op_end () const { return OperandTraits<IndirectBrInst>::op_end (const_cast<IndirectBrInst*>(this)); } Value *IndirectBrInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<IndirectBrInst>::op_begin( const_cast<IndirectBrInst*>(this))[i_nocapture].get()); } void IndirectBrInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<IndirectBrInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned IndirectBrInst::getNumOperands() const { return OperandTraits <IndirectBrInst>::operands(this); } template <int Idx_nocapture > Use &IndirectBrInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &IndirectBrInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
| 3705 | |
| 3706 | //===----------------------------------------------------------------------===// |
| 3707 | // InvokeInst Class |
| 3708 | //===----------------------------------------------------------------------===// |
| 3709 | |
| 3710 | /// Invoke instruction. The SubclassData field is used to hold the |
| 3711 | /// calling convention of the call. |
| 3712 | /// |
| 3713 | class InvokeInst : public CallBase { |
| 3714 | /// The number of operands for this call beyond the called function, |
| 3715 | /// arguments, and operand bundles. |
| 3716 | static constexpr int NumExtraOperands = 2; |
| 3717 | |
| 3718 | /// The index from the end of the operand array to the normal destination. |
| 3719 | static constexpr int NormalDestOpEndIdx = -3; |
| 3720 | |
| 3721 | /// The index from the end of the operand array to the unwind destination. |
| 3722 | static constexpr int UnwindDestOpEndIdx = -2; |
| 3723 | |
| 3724 | InvokeInst(const InvokeInst &BI); |
| 3725 | |
| 3726 | /// Construct an InvokeInst given a range of arguments. |
| 3727 | /// |
| 3728 | /// Construct an InvokeInst from a range of arguments |
| 3729 | inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3730 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3731 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 3732 | const Twine &NameStr, Instruction *InsertBefore); |
| 3733 | |
| 3734 | inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3735 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3736 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 3737 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 3738 | |
| 3739 | void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3740 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3741 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr); |
| 3742 | |
| 3743 | /// Compute the number of operands to allocate. |
| 3744 | static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) { |
| 3745 | // We need one operand for the called function, plus our extra operands and |
| 3746 | // the input operand counts provided. |
| 3747 | return 1 + NumExtraOperands + NumArgs + NumBundleInputs; |
| 3748 | } |
| 3749 | |
| 3750 | protected: |
| 3751 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 3752 | friend class Instruction; |
| 3753 | |
| 3754 | InvokeInst *cloneImpl() const; |
| 3755 | |
| 3756 | public: |
| 3757 | static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3758 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3759 | const Twine &NameStr, |
| 3760 | Instruction *InsertBefore = nullptr) { |
| 3761 | int NumOperands = ComputeNumOperands(Args.size()); |
| 3762 | return new (NumOperands) |
| 3763 | InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands, |
| 3764 | NameStr, InsertBefore); |
| 3765 | } |
| 3766 | |
| 3767 | static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3768 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3769 | ArrayRef<OperandBundleDef> Bundles = None, |
| 3770 | const Twine &NameStr = "", |
| 3771 | Instruction *InsertBefore = nullptr) { |
| 3772 | int NumOperands = |
| 3773 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); |
| 3774 | unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
| 3775 | |
| 3776 | return new (NumOperands, DescriptorBytes) |
| 3777 | InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands, |
| 3778 | NameStr, InsertBefore); |
| 3779 | } |
| 3780 | |
| 3781 | static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3782 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3783 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 3784 | int NumOperands = ComputeNumOperands(Args.size()); |
| 3785 | return new (NumOperands) |
| 3786 | InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands, |
| 3787 | NameStr, InsertAtEnd); |
| 3788 | } |
| 3789 | |
| 3790 | static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3791 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3792 | ArrayRef<OperandBundleDef> Bundles, |
| 3793 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 3794 | int NumOperands = |
| 3795 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); |
| 3796 | unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
| 3797 | |
| 3798 | return new (NumOperands, DescriptorBytes) |
| 3799 | InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands, |
| 3800 | NameStr, InsertAtEnd); |
| 3801 | } |
| 3802 | |
| 3803 | static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, |
| 3804 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3805 | const Twine &NameStr, |
| 3806 | Instruction *InsertBefore = nullptr) { |
| 3807 | return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, |
| 3808 | IfException, Args, None, NameStr, InsertBefore); |
| 3809 | } |
| 3810 | |
| 3811 | static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, |
| 3812 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3813 | ArrayRef<OperandBundleDef> Bundles = None, |
| 3814 | const Twine &NameStr = "", |
| 3815 | Instruction *InsertBefore = nullptr) { |
| 3816 | return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, |
| 3817 | IfException, Args, Bundles, NameStr, InsertBefore); |
| 3818 | } |
| 3819 | |
| 3820 | static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, |
| 3821 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3822 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 3823 | return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, |
| 3824 | IfException, Args, NameStr, InsertAtEnd); |
| 3825 | } |
| 3826 | |
| 3827 | static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, |
| 3828 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3829 | ArrayRef<OperandBundleDef> Bundles, |
| 3830 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 3831 | return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, |
| 3832 | IfException, Args, Bundles, NameStr, InsertAtEnd); |
| 3833 | } |
| 3834 | |
| 3835 | /// Create a clone of \p II with a different set of operand bundles and |
| 3836 | /// insert it before \p InsertPt. |
| 3837 | /// |
| 3838 | /// The returned invoke instruction is identical to \p II in every way except |
| 3839 | /// that the operand bundles for the new instruction are set to the operand |
| 3840 | /// bundles in \p Bundles. |
| 3841 | static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles, |
| 3842 | Instruction *InsertPt = nullptr); |
| 3843 | |
| 3844 | // get*Dest - Return the destination basic blocks... |
| 3845 | BasicBlock *getNormalDest() const { |
| 3846 | return cast<BasicBlock>(Op<NormalDestOpEndIdx>()); |
| 3847 | } |
| 3848 | BasicBlock *getUnwindDest() const { |
| 3849 | return cast<BasicBlock>(Op<UnwindDestOpEndIdx>()); |
| 3850 | } |
| 3851 | void setNormalDest(BasicBlock *B) { |
| 3852 | Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B); |
| 3853 | } |
| 3854 | void setUnwindDest(BasicBlock *B) { |
| 3855 | Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B); |
| 3856 | } |
| 3857 | |
| 3858 | /// Get the landingpad instruction from the landing pad |
| 3859 | /// block (the unwind destination). |
| 3860 | LandingPadInst *getLandingPadInst() const; |
| 3861 | |
| 3862 | BasicBlock *getSuccessor(unsigned i) const { |
| 3863 | assert(i < 2 && "Successor # out of range for invoke!")((void)0); |
| 3864 | return i == 0 ? getNormalDest() : getUnwindDest(); |
| 3865 | } |
| 3866 | |
| 3867 | void setSuccessor(unsigned i, BasicBlock *NewSucc) { |
| 3868 | assert(i < 2 && "Successor # out of range for invoke!")((void)0); |
| 3869 | if (i == 0) |
| 3870 | setNormalDest(NewSucc); |
| 3871 | else |
| 3872 | setUnwindDest(NewSucc); |
| 3873 | } |
| 3874 | |
| 3875 | unsigned getNumSuccessors() const { return 2; } |
| 3876 | |
| 3877 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 3878 | static bool classof(const Instruction *I) { |
| 3879 | return (I->getOpcode() == Instruction::Invoke); |
| 3880 | } |
| 3881 | static bool classof(const Value *V) { |
| 3882 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 3883 | } |
| 3884 | |
| 3885 | private: |
| 3886 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 3887 | // method so that subclasses cannot accidentally use it. |
| 3888 | template <typename Bitfield> |
| 3889 | void setSubclassData(typename Bitfield::Type Value) { |
| 3890 | Instruction::setSubclassData<Bitfield>(Value); |
| 3891 | } |
| 3892 | }; |
| 3893 | |
| 3894 | InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3895 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3896 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 3897 | const Twine &NameStr, Instruction *InsertBefore) |
| 3898 | : CallBase(Ty->getReturnType(), Instruction::Invoke, |
| 3899 | OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, |
| 3900 | InsertBefore) { |
| 3901 | init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr); |
| 3902 | } |
| 3903 | |
| 3904 | InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3905 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3906 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 3907 | const Twine &NameStr, BasicBlock *InsertAtEnd) |
| 3908 | : CallBase(Ty->getReturnType(), Instruction::Invoke, |
| 3909 | OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, |
| 3910 | InsertAtEnd) { |
| 3911 | init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr); |
| 3912 | } |
| 3913 | |
| 3914 | //===----------------------------------------------------------------------===// |
| 3915 | // CallBrInst Class |
| 3916 | //===----------------------------------------------------------------------===// |
| 3917 | |
| 3918 | /// CallBr instruction, tracking function calls that may not return control but |
| 3919 | /// instead transfer it to a third location. The SubclassData field is used to |
| 3920 | /// hold the calling convention of the call. |
| 3921 | /// |
| 3922 | class CallBrInst : public CallBase { |
| 3923 | |
| 3924 | unsigned NumIndirectDests; |
| 3925 | |
| 3926 | CallBrInst(const CallBrInst &BI); |
| 3927 | |
| 3928 | /// Construct a CallBrInst given a range of arguments. |
| 3929 | /// |
| 3930 | /// Construct a CallBrInst from a range of arguments |
| 3931 | inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, |
| 3932 | ArrayRef<BasicBlock *> IndirectDests, |
| 3933 | ArrayRef<Value *> Args, |
| 3934 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 3935 | const Twine &NameStr, Instruction *InsertBefore); |
| 3936 | |
| 3937 | inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, |
| 3938 | ArrayRef<BasicBlock *> IndirectDests, |
| 3939 | ArrayRef<Value *> Args, |
| 3940 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 3941 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 3942 | |
| 3943 | void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest, |
| 3944 | ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args, |
| 3945 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr); |
| 3946 | |
| 3947 | /// Should the Indirect Destinations change, scan + update the Arg list. |
| 3948 | void updateArgBlockAddresses(unsigned i, BasicBlock *B); |
| 3949 | |
| 3950 | /// Compute the number of operands to allocate. |
| 3951 | static int ComputeNumOperands(int NumArgs, int NumIndirectDests, |
| 3952 | int NumBundleInputs = 0) { |
| 3953 | // We need one operand for the called function, plus our extra operands and |
| 3954 | // the input operand counts provided. |
| 3955 | return 2 + NumIndirectDests + NumArgs + NumBundleInputs; |
| 3956 | } |
| 3957 | |
| 3958 | protected: |
| 3959 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 3960 | friend class Instruction; |
| 3961 | |
| 3962 | CallBrInst *cloneImpl() const; |
| 3963 | |
| 3964 | public: |
| 3965 | static CallBrInst *Create(FunctionType *Ty, Value *Func, |
| 3966 | BasicBlock *DefaultDest, |
| 3967 | ArrayRef<BasicBlock *> IndirectDests, |
| 3968 | ArrayRef<Value *> Args, const Twine &NameStr, |
| 3969 | Instruction *InsertBefore = nullptr) { |
| 3970 | int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size()); |
| 3971 | return new (NumOperands) |
| 3972 | CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None, |
| 3973 | NumOperands, NameStr, InsertBefore); |
| 3974 | } |
| 3975 | |
| 3976 | static CallBrInst *Create(FunctionType *Ty, Value *Func, |
| 3977 | BasicBlock *DefaultDest, |
| 3978 | ArrayRef<BasicBlock *> IndirectDests, |
| 3979 | ArrayRef<Value *> Args, |
| 3980 | ArrayRef<OperandBundleDef> Bundles = None, |
| 3981 | const Twine &NameStr = "", |
| 3982 | Instruction *InsertBefore = nullptr) { |
| 3983 | int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(), |
| 3984 | CountBundleInputs(Bundles)); |
| 3985 | unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
| 3986 | |
| 3987 | return new (NumOperands, DescriptorBytes) |
| 3988 | CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, |
| 3989 | NumOperands, NameStr, InsertBefore); |
| 3990 | } |
| 3991 | |
| 3992 | static CallBrInst *Create(FunctionType *Ty, Value *Func, |
| 3993 | BasicBlock *DefaultDest, |
| 3994 | ArrayRef<BasicBlock *> IndirectDests, |
| 3995 | ArrayRef<Value *> Args, const Twine &NameStr, |
| 3996 | BasicBlock *InsertAtEnd) { |
| 3997 | int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size()); |
| 3998 | return new (NumOperands) |
| 3999 | CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None, |
| 4000 | NumOperands, NameStr, InsertAtEnd); |
| 4001 | } |
| 4002 | |
| 4003 | static CallBrInst *Create(FunctionType *Ty, Value *Func, |
| 4004 | BasicBlock *DefaultDest, |
| 4005 | ArrayRef<BasicBlock *> IndirectDests, |
| 4006 | ArrayRef<Value *> Args, |
| 4007 | ArrayRef<OperandBundleDef> Bundles, |
| 4008 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 4009 | int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(), |
| 4010 | CountBundleInputs(Bundles)); |
| 4011 | unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
| 4012 | |
| 4013 | return new (NumOperands, DescriptorBytes) |
| 4014 | CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, |
| 4015 | NumOperands, NameStr, InsertAtEnd); |
| 4016 | } |
| 4017 | |
| 4018 | static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest, |
| 4019 | ArrayRef<BasicBlock *> IndirectDests, |
| 4020 | ArrayRef<Value *> Args, const Twine &NameStr, |
| 4021 | Instruction *InsertBefore = nullptr) { |
| 4022 | return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, |
| 4023 | IndirectDests, Args, NameStr, InsertBefore); |
| 4024 | } |
| 4025 | |
| 4026 | static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest, |
| 4027 | ArrayRef<BasicBlock *> IndirectDests, |
| 4028 | ArrayRef<Value *> Args, |
| 4029 | ArrayRef<OperandBundleDef> Bundles = None, |
| 4030 | const Twine &NameStr = "", |
| 4031 | Instruction *InsertBefore = nullptr) { |
| 4032 | return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, |
| 4033 | IndirectDests, Args, Bundles, NameStr, InsertBefore); |
| 4034 | } |
| 4035 | |
| 4036 | static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest, |
| 4037 | ArrayRef<BasicBlock *> IndirectDests, |
| 4038 | ArrayRef<Value *> Args, const Twine &NameStr, |
| 4039 | BasicBlock *InsertAtEnd) { |
| 4040 | return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, |
| 4041 | IndirectDests, Args, NameStr, InsertAtEnd); |
| 4042 | } |
| 4043 | |
| 4044 | static CallBrInst *Create(FunctionCallee Func, |
| 4045 | BasicBlock *DefaultDest, |
| 4046 | ArrayRef<BasicBlock *> IndirectDests, |
| 4047 | ArrayRef<Value *> Args, |
| 4048 | ArrayRef<OperandBundleDef> Bundles, |
| 4049 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 4050 | return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, |
| 4051 | IndirectDests, Args, Bundles, NameStr, InsertAtEnd); |
| 4052 | } |
| 4053 | |
| 4054 | /// Create a clone of \p CBI with a different set of operand bundles and |
| 4055 | /// insert it before \p InsertPt. |
| 4056 | /// |
| 4057 | /// The returned callbr instruction is identical to \p CBI in every way |
| 4058 | /// except that the operand bundles for the new instruction are set to the |
| 4059 | /// operand bundles in \p Bundles. |
| 4060 | static CallBrInst *Create(CallBrInst *CBI, |
| 4061 | ArrayRef<OperandBundleDef> Bundles, |
| 4062 | Instruction *InsertPt = nullptr); |
| 4063 | |
| 4064 | /// Return the number of callbr indirect dest labels. |
| 4065 | /// |
| 4066 | unsigned getNumIndirectDests() const { return NumIndirectDests; } |
| 4067 | |
| 4068 | /// getIndirectDestLabel - Return the i-th indirect dest label. |
| 4069 | /// |
| 4070 | Value *getIndirectDestLabel(unsigned i) const { |
| 4071 | assert(i < getNumIndirectDests() && "Out of bounds!")((void)0); |
| 4072 | return getOperand(i + getNumArgOperands() + getNumTotalBundleOperands() + |
| 4073 | 1); |
| 4074 | } |
| 4075 | |
| 4076 | Value *getIndirectDestLabelUse(unsigned i) const { |
| 4077 | assert(i < getNumIndirectDests() && "Out of bounds!")((void)0); |
| 4078 | return getOperandUse(i + getNumArgOperands() + getNumTotalBundleOperands() + |
| 4079 | 1); |
| 4080 | } |
| 4081 | |
| 4082 | // Return the destination basic blocks... |
| 4083 | BasicBlock *getDefaultDest() const { |
| 4084 | return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1)); |
| 4085 | } |
| 4086 | BasicBlock *getIndirectDest(unsigned i) const { |
| 4087 | return cast_or_null<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() + i)); |
| 4088 | } |
| 4089 | SmallVector<BasicBlock *, 16> getIndirectDests() const { |
| 4090 | SmallVector<BasicBlock *, 16> IndirectDests; |
| 4091 | for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i) |
| 4092 | IndirectDests.push_back(getIndirectDest(i)); |
| 4093 | return IndirectDests; |
| 4094 | } |
| 4095 | void setDefaultDest(BasicBlock *B) { |
| 4096 | *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B); |
| 4097 | } |
| 4098 | void setIndirectDest(unsigned i, BasicBlock *B) { |
| 4099 | updateArgBlockAddresses(i, B); |
| 4100 | *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B); |
| 4101 | } |
| 4102 | |
| 4103 | BasicBlock *getSuccessor(unsigned i) const { |
| 4104 | assert(i < getNumSuccessors() + 1 &&((void)0) |
| 4105 | "Successor # out of range for callbr!")((void)0); |
| 4106 | return i == 0 ? getDefaultDest() : getIndirectDest(i - 1); |
| 4107 | } |
| 4108 | |
| 4109 | void setSuccessor(unsigned i, BasicBlock *NewSucc) { |
| 4110 | assert(i < getNumIndirectDests() + 1 &&((void)0) |
| 4111 | "Successor # out of range for callbr!")((void)0); |
| 4112 | return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc); |
| 4113 | } |
| 4114 | |
| 4115 | unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; } |
| 4116 | |
| 4117 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4118 | static bool classof(const Instruction *I) { |
| 4119 | return (I->getOpcode() == Instruction::CallBr); |
| 4120 | } |
| 4121 | static bool classof(const Value *V) { |
| 4122 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4123 | } |
| 4124 | |
| 4125 | private: |
| 4126 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 4127 | // method so that subclasses cannot accidentally use it. |
| 4128 | template <typename Bitfield> |
| 4129 | void setSubclassData(typename Bitfield::Type Value) { |
| 4130 | Instruction::setSubclassData<Bitfield>(Value); |
| 4131 | } |
| 4132 | }; |
| 4133 | |
| 4134 | CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, |
| 4135 | ArrayRef<BasicBlock *> IndirectDests, |
| 4136 | ArrayRef<Value *> Args, |
| 4137 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 4138 | const Twine &NameStr, Instruction *InsertBefore) |
| 4139 | : CallBase(Ty->getReturnType(), Instruction::CallBr, |
| 4140 | OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, |
| 4141 | InsertBefore) { |
| 4142 | init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr); |
| 4143 | } |
| 4144 | |
| 4145 | CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, |
| 4146 | ArrayRef<BasicBlock *> IndirectDests, |
| 4147 | ArrayRef<Value *> Args, |
| 4148 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 4149 | const Twine &NameStr, BasicBlock *InsertAtEnd) |
| 4150 | : CallBase(Ty->getReturnType(), Instruction::CallBr, |
| 4151 | OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, |
| 4152 | InsertAtEnd) { |
| 4153 | init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr); |
| 4154 | } |
| 4155 | |
| 4156 | //===----------------------------------------------------------------------===// |
| 4157 | // ResumeInst Class |
| 4158 | //===----------------------------------------------------------------------===// |
| 4159 | |
| 4160 | //===--------------------------------------------------------------------------- |
| 4161 | /// Resume the propagation of an exception. |
| 4162 | /// |
| 4163 | class ResumeInst : public Instruction { |
| 4164 | ResumeInst(const ResumeInst &RI); |
| 4165 | |
| 4166 | explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr); |
| 4167 | ResumeInst(Value *Exn, BasicBlock *InsertAtEnd); |
| 4168 | |
| 4169 | protected: |
| 4170 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4171 | friend class Instruction; |
| 4172 | |
| 4173 | ResumeInst *cloneImpl() const; |
| 4174 | |
| 4175 | public: |
| 4176 | static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) { |
| 4177 | return new(1) ResumeInst(Exn, InsertBefore); |
| 4178 | } |
| 4179 | |
| 4180 | static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) { |
| 4181 | return new(1) ResumeInst(Exn, InsertAtEnd); |
| 4182 | } |
| 4183 | |
| 4184 | /// Provide fast operand accessors |
| 4185 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 4186 | |
| 4187 | /// Convenience accessor. |
| 4188 | Value *getValue() const { return Op<0>(); } |
| 4189 | |
| 4190 | unsigned getNumSuccessors() const { return 0; } |
| 4191 | |
| 4192 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4193 | static bool classof(const Instruction *I) { |
| 4194 | return I->getOpcode() == Instruction::Resume; |
| 4195 | } |
| 4196 | static bool classof(const Value *V) { |
| 4197 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4198 | } |
| 4199 | |
| 4200 | private: |
| 4201 | BasicBlock *getSuccessor(unsigned idx) const { |
| 4202 | llvm_unreachable("ResumeInst has no successors!")__builtin_unreachable(); |
| 4203 | } |
| 4204 | |
| 4205 | void setSuccessor(unsigned idx, BasicBlock *NewSucc) { |
| 4206 | llvm_unreachable("ResumeInst has no successors!")__builtin_unreachable(); |
| 4207 | } |
| 4208 | }; |
| 4209 | |
| 4210 | template <> |
| 4211 | struct OperandTraits<ResumeInst> : |
| 4212 | public FixedNumOperandTraits<ResumeInst, 1> { |
| 4213 | }; |
| 4214 | |
| 4215 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)ResumeInst::op_iterator ResumeInst::op_begin() { return OperandTraits <ResumeInst>::op_begin(this); } ResumeInst::const_op_iterator ResumeInst::op_begin() const { return OperandTraits<ResumeInst >::op_begin(const_cast<ResumeInst*>(this)); } ResumeInst ::op_iterator ResumeInst::op_end() { return OperandTraits< ResumeInst>::op_end(this); } ResumeInst::const_op_iterator ResumeInst::op_end() const { return OperandTraits<ResumeInst >::op_end(const_cast<ResumeInst*>(this)); } Value *ResumeInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<ResumeInst>::op_begin(const_cast <ResumeInst*>(this))[i_nocapture].get()); } void ResumeInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<ResumeInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned ResumeInst::getNumOperands() const { return OperandTraits<ResumeInst>::operands(this); } template <int Idx_nocapture> Use &ResumeInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &ResumeInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
| 4216 | |
| 4217 | //===----------------------------------------------------------------------===// |
| 4218 | // CatchSwitchInst Class |
| 4219 | //===----------------------------------------------------------------------===// |
| 4220 | class CatchSwitchInst : public Instruction { |
| 4221 | using UnwindDestField = BoolBitfieldElementT<0>; |
| 4222 | |
| 4223 | /// The number of operands actually allocated. NumOperands is |
| 4224 | /// the number actually in use. |
| 4225 | unsigned ReservedSpace; |
| 4226 | |
| 4227 | // Operand[0] = Outer scope |
| 4228 | // Operand[1] = Unwind block destination |
| 4229 | // Operand[n] = BasicBlock to go to on match |
| 4230 | CatchSwitchInst(const CatchSwitchInst &CSI); |
| 4231 | |
| 4232 | /// Create a new switch instruction, specifying a |
| 4233 | /// default destination. The number of additional handlers can be specified |
| 4234 | /// here to make memory allocation more efficient. |
| 4235 | /// This constructor can also autoinsert before another instruction. |
| 4236 | CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, |
| 4237 | unsigned NumHandlers, const Twine &NameStr, |
| 4238 | Instruction *InsertBefore); |
| 4239 | |
| 4240 | /// Create a new switch instruction, specifying a |
| 4241 | /// default destination. The number of additional handlers can be specified |
| 4242 | /// here to make memory allocation more efficient. |
| 4243 | /// This constructor also autoinserts at the end of the specified BasicBlock. |
| 4244 | CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, |
| 4245 | unsigned NumHandlers, const Twine &NameStr, |
| 4246 | BasicBlock *InsertAtEnd); |
| 4247 | |
| 4248 | // allocate space for exactly zero operands |
| 4249 | void *operator new(size_t S) { return User::operator new(S); } |
| 4250 | |
| 4251 | void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved); |
| 4252 | void growOperands(unsigned Size); |
| 4253 | |
| 4254 | protected: |
| 4255 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4256 | friend class Instruction; |
| 4257 | |
| 4258 | CatchSwitchInst *cloneImpl() const; |
| 4259 | |
| 4260 | public: |
| 4261 | void operator delete(void *Ptr) { return User::operator delete(Ptr); } |
| 4262 | |
| 4263 | static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest, |
| 4264 | unsigned NumHandlers, |
| 4265 | const Twine &NameStr = "", |
| 4266 | Instruction *InsertBefore = nullptr) { |
| 4267 | return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr, |
| 4268 | InsertBefore); |
| 4269 | } |
| 4270 | |
| 4271 | static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest, |
| 4272 | unsigned NumHandlers, const Twine &NameStr, |
| 4273 | BasicBlock *InsertAtEnd) { |
| 4274 | return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr, |
| 4275 | InsertAtEnd); |
| 4276 | } |
| 4277 | |
| 4278 | /// Provide fast operand accessors |
| 4279 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 4280 | |
| 4281 | // Accessor Methods for CatchSwitch stmt |
| 4282 | Value *getParentPad() const { return getOperand(0); } |
| 4283 | void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); } |
| 4284 | |
| 4285 | // Accessor Methods for CatchSwitch stmt |
| 4286 | bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); } |
| 4287 | bool unwindsToCaller() const { return !hasUnwindDest(); } |
| 4288 | BasicBlock *getUnwindDest() const { |
| 4289 | if (hasUnwindDest()) |
| 4290 | return cast<BasicBlock>(getOperand(1)); |
| 4291 | return nullptr; |
| 4292 | } |
| 4293 | void setUnwindDest(BasicBlock *UnwindDest) { |
| 4294 | assert(UnwindDest)((void)0); |
| 4295 | assert(hasUnwindDest())((void)0); |
| 4296 | setOperand(1, UnwindDest); |
| 4297 | } |
| 4298 | |
| 4299 | /// return the number of 'handlers' in this catchswitch |
| 4300 | /// instruction, except the default handler |
| 4301 | unsigned getNumHandlers() const { |
| 4302 | if (hasUnwindDest()) |
| 4303 | return getNumOperands() - 2; |
| 4304 | return getNumOperands() - 1; |
| 4305 | } |
| 4306 | |
| 4307 | private: |
| 4308 | static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); } |
| 4309 | static const BasicBlock *handler_helper(const Value *V) { |
| 4310 | return cast<BasicBlock>(V); |
| 4311 | } |
| 4312 | |
| 4313 | public: |
| 4314 | using DerefFnTy = BasicBlock *(*)(Value *); |
| 4315 | using handler_iterator = mapped_iterator<op_iterator, DerefFnTy>; |
| 4316 | using handler_range = iterator_range<handler_iterator>; |
| 4317 | using ConstDerefFnTy = const BasicBlock *(*)(const Value *); |
| 4318 | using const_handler_iterator = |
| 4319 | mapped_iterator<const_op_iterator, ConstDerefFnTy>; |
| 4320 | using const_handler_range = iterator_range<const_handler_iterator>; |
| 4321 | |
| 4322 | /// Returns an iterator that points to the first handler in CatchSwitchInst. |
| 4323 | handler_iterator handler_begin() { |
| 4324 | op_iterator It = op_begin() + 1; |
| 4325 | if (hasUnwindDest()) |
| 4326 | ++It; |
| 4327 | return handler_iterator(It, DerefFnTy(handler_helper)); |
| 4328 | } |
| 4329 | |
| 4330 | /// Returns an iterator that points to the first handler in the |
| 4331 | /// CatchSwitchInst. |
| 4332 | const_handler_iterator handler_begin() const { |
| 4333 | const_op_iterator It = op_begin() + 1; |
| 4334 | if (hasUnwindDest()) |
| 4335 | ++It; |
| 4336 | return const_handler_iterator(It, ConstDerefFnTy(handler_helper)); |
| 4337 | } |
| 4338 | |
| 4339 | /// Returns a read-only iterator that points one past the last |
| 4340 | /// handler in the CatchSwitchInst. |
| 4341 | handler_iterator handler_end() { |
| 4342 | return handler_iterator(op_end(), DerefFnTy(handler_helper)); |
| 4343 | } |
| 4344 | |
| 4345 | /// Returns an iterator that points one past the last handler in the |
| 4346 | /// CatchSwitchInst. |
| 4347 | const_handler_iterator handler_end() const { |
| 4348 | return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper)); |
| 4349 | } |
| 4350 | |
| 4351 | /// iteration adapter for range-for loops. |
| 4352 | handler_range handlers() { |
| 4353 | return make_range(handler_begin(), handler_end()); |
| 4354 | } |
| 4355 | |
| 4356 | /// iteration adapter for range-for loops. |
| 4357 | const_handler_range handlers() const { |
| 4358 | return make_range(handler_begin(), handler_end()); |
| 4359 | } |
| 4360 | |
| 4361 | /// Add an entry to the switch instruction... |
| 4362 | /// Note: |
| 4363 | /// This action invalidates handler_end(). Old handler_end() iterator will |
| 4364 | /// point to the added handler. |
| 4365 | void addHandler(BasicBlock *Dest); |
| 4366 | |
| 4367 | void removeHandler(handler_iterator HI); |
| 4368 | |
| 4369 | unsigned getNumSuccessors() const { return getNumOperands() - 1; } |
| 4370 | BasicBlock *getSuccessor(unsigned Idx) const { |
| 4371 | assert(Idx < getNumSuccessors() &&((void)0) |
| 4372 | "Successor # out of range for catchswitch!")((void)0); |
| 4373 | return cast<BasicBlock>(getOperand(Idx + 1)); |
| 4374 | } |
| 4375 | void setSuccessor(unsigned Idx, BasicBlock *NewSucc) { |
| 4376 | assert(Idx < getNumSuccessors() &&((void)0) |
| 4377 | "Successor # out of range for catchswitch!")((void)0); |
| 4378 | setOperand(Idx + 1, NewSucc); |
| 4379 | } |
| 4380 | |
| 4381 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4382 | static bool classof(const Instruction *I) { |
| 4383 | return I->getOpcode() == Instruction::CatchSwitch; |
| 4384 | } |
| 4385 | static bool classof(const Value *V) { |
| 4386 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4387 | } |
| 4388 | }; |
| 4389 | |
| 4390 | template <> |
| 4391 | struct OperandTraits<CatchSwitchInst> : public HungoffOperandTraits<2> {}; |
| 4392 | |
| 4393 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value)CatchSwitchInst::op_iterator CatchSwitchInst::op_begin() { return OperandTraits<CatchSwitchInst>::op_begin(this); } CatchSwitchInst ::const_op_iterator CatchSwitchInst::op_begin() const { return OperandTraits<CatchSwitchInst>::op_begin(const_cast< CatchSwitchInst*>(this)); } CatchSwitchInst::op_iterator CatchSwitchInst ::op_end() { return OperandTraits<CatchSwitchInst>::op_end (this); } CatchSwitchInst::const_op_iterator CatchSwitchInst:: op_end() const { return OperandTraits<CatchSwitchInst>:: op_end(const_cast<CatchSwitchInst*>(this)); } Value *CatchSwitchInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<CatchSwitchInst>::op_begin (const_cast<CatchSwitchInst*>(this))[i_nocapture].get() ); } void CatchSwitchInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<CatchSwitchInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned CatchSwitchInst::getNumOperands() const { return OperandTraits <CatchSwitchInst>::operands(this); } template <int Idx_nocapture > Use &CatchSwitchInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &CatchSwitchInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
| 4394 | |
| 4395 | //===----------------------------------------------------------------------===// |
| 4396 | // CleanupPadInst Class |
| 4397 | //===----------------------------------------------------------------------===// |
| 4398 | class CleanupPadInst : public FuncletPadInst { |
| 4399 | private: |
| 4400 | explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args, |
| 4401 | unsigned Values, const Twine &NameStr, |
| 4402 | Instruction *InsertBefore) |
| 4403 | : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values, |
| 4404 | NameStr, InsertBefore) {} |
| 4405 | explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args, |
| 4406 | unsigned Values, const Twine &NameStr, |
| 4407 | BasicBlock *InsertAtEnd) |
| 4408 | : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values, |
| 4409 | NameStr, InsertAtEnd) {} |
| 4410 | |
| 4411 | public: |
| 4412 | static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args = None, |
| 4413 | const Twine &NameStr = "", |
| 4414 | Instruction *InsertBefore = nullptr) { |
| 4415 | unsigned Values = 1 + Args.size(); |
| 4416 | return new (Values) |
| 4417 | CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore); |
| 4418 | } |
| 4419 | |
| 4420 | static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args, |
| 4421 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 4422 | unsigned Values = 1 + Args.size(); |
| 4423 | return new (Values) |
| 4424 | CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd); |
| 4425 | } |
| 4426 | |
| 4427 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4428 | static bool classof(const Instruction *I) { |
| 4429 | return I->getOpcode() == Instruction::CleanupPad; |
| 4430 | } |
| 4431 | static bool classof(const Value *V) { |
| 4432 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4433 | } |
| 4434 | }; |
| 4435 | |
| 4436 | //===----------------------------------------------------------------------===// |
| 4437 | // CatchPadInst Class |
| 4438 | //===----------------------------------------------------------------------===// |
| 4439 | class CatchPadInst : public FuncletPadInst { |
| 4440 | private: |
| 4441 | explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args, |
| 4442 | unsigned Values, const Twine &NameStr, |
| 4443 | Instruction *InsertBefore) |
| 4444 | : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values, |
| 4445 | NameStr, InsertBefore) {} |
| 4446 | explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args, |
| 4447 | unsigned Values, const Twine &NameStr, |
| 4448 | BasicBlock *InsertAtEnd) |
| 4449 | : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values, |
| 4450 | NameStr, InsertAtEnd) {} |
| 4451 | |
| 4452 | public: |
| 4453 | static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args, |
| 4454 | const Twine &NameStr = "", |
| 4455 | Instruction *InsertBefore = nullptr) { |
| 4456 | unsigned Values = 1 + Args.size(); |
| 4457 | return new (Values) |
| 4458 | CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore); |
| 4459 | } |
| 4460 | |
| 4461 | static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args, |
| 4462 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 4463 | unsigned Values = 1 + Args.size(); |
| 4464 | return new (Values) |
| 4465 | CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd); |
| 4466 | } |
| 4467 | |
| 4468 | /// Convenience accessors |
| 4469 | CatchSwitchInst *getCatchSwitch() const { |
| 4470 | return cast<CatchSwitchInst>(Op<-1>()); |
| 4471 | } |
| 4472 | void setCatchSwitch(Value *CatchSwitch) { |
| 4473 | assert(CatchSwitch)((void)0); |
| 4474 | Op<-1>() = CatchSwitch; |
| 4475 | } |
| 4476 | |
| 4477 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4478 | static bool classof(const Instruction *I) { |
| 4479 | return I->getOpcode() == Instruction::CatchPad; |
| 4480 | } |
| 4481 | static bool classof(const Value *V) { |
| 4482 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4483 | } |
| 4484 | }; |
| 4485 | |
| 4486 | //===----------------------------------------------------------------------===// |
| 4487 | // CatchReturnInst Class |
| 4488 | //===----------------------------------------------------------------------===// |
| 4489 | |
| 4490 | class CatchReturnInst : public Instruction { |
| 4491 | CatchReturnInst(const CatchReturnInst &RI); |
| 4492 | CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore); |
| 4493 | CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd); |
| 4494 | |
| 4495 | void init(Value *CatchPad, BasicBlock *BB); |
| 4496 | |
| 4497 | protected: |
| 4498 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4499 | friend class Instruction; |
| 4500 | |
| 4501 | CatchReturnInst *cloneImpl() const; |
| 4502 | |
| 4503 | public: |
| 4504 | static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB, |
| 4505 | Instruction *InsertBefore = nullptr) { |
| 4506 | assert(CatchPad)((void)0); |
| 4507 | assert(BB)((void)0); |
| 4508 | return new (2) CatchReturnInst(CatchPad, BB, InsertBefore); |
| 4509 | } |
| 4510 | |
| 4511 | static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB, |
| 4512 | BasicBlock *InsertAtEnd) { |
| 4513 | assert(CatchPad)((void)0); |
| 4514 | assert(BB)((void)0); |
| 4515 | return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd); |
| 4516 | } |
| 4517 | |
| 4518 | /// Provide fast operand accessors |
| 4519 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 4520 | |
| 4521 | /// Convenience accessors. |
| 4522 | CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); } |
| 4523 | void setCatchPad(CatchPadInst *CatchPad) { |
| 4524 | assert(CatchPad)((void)0); |
| 4525 | Op<0>() = CatchPad; |
| 4526 | } |
| 4527 | |
| 4528 | BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); } |
| 4529 | void setSuccessor(BasicBlock *NewSucc) { |
| 4530 | assert(NewSucc)((void)0); |
| 4531 | Op<1>() = NewSucc; |
| 4532 | } |
| 4533 | unsigned getNumSuccessors() const { return 1; } |
| 4534 | |
| 4535 | /// Get the parentPad of this catchret's catchpad's catchswitch. |
| 4536 | /// The successor block is implicitly a member of this funclet. |
| 4537 | Value *getCatchSwitchParentPad() const { |
| 4538 | return getCatchPad()->getCatchSwitch()->getParentPad(); |
| 4539 | } |
| 4540 | |
| 4541 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4542 | static bool classof(const Instruction *I) { |
| 4543 | return (I->getOpcode() == Instruction::CatchRet); |
| 4544 | } |
| 4545 | static bool classof(const Value *V) { |
| 4546 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4547 | } |
| 4548 | |
| 4549 | private: |
| 4550 | BasicBlock *getSuccessor(unsigned Idx) const { |
| 4551 | assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")((void)0); |
| 4552 | return getSuccessor(); |
| 4553 | } |
| 4554 | |
| 4555 | void setSuccessor(unsigned Idx, BasicBlock *B) { |
| 4556 | assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")((void)0); |
| 4557 | setSuccessor(B); |
| 4558 | } |
| 4559 | }; |
| 4560 | |
| 4561 | template <> |
| 4562 | struct OperandTraits<CatchReturnInst> |
| 4563 | : public FixedNumOperandTraits<CatchReturnInst, 2> {}; |
| 4564 | |
| 4565 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value)CatchReturnInst::op_iterator CatchReturnInst::op_begin() { return OperandTraits<CatchReturnInst>::op_begin(this); } CatchReturnInst ::const_op_iterator CatchReturnInst::op_begin() const { return OperandTraits<CatchReturnInst>::op_begin(const_cast< CatchReturnInst*>(this)); } CatchReturnInst::op_iterator CatchReturnInst ::op_end() { return OperandTraits<CatchReturnInst>::op_end (this); } CatchReturnInst::const_op_iterator CatchReturnInst:: op_end() const { return OperandTraits<CatchReturnInst>:: op_end(const_cast<CatchReturnInst*>(this)); } Value *CatchReturnInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<CatchReturnInst>::op_begin (const_cast<CatchReturnInst*>(this))[i_nocapture].get() ); } void CatchReturnInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<CatchReturnInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned CatchReturnInst::getNumOperands() const { return OperandTraits <CatchReturnInst>::operands(this); } template <int Idx_nocapture > Use &CatchReturnInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &CatchReturnInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
| 4566 | |
| 4567 | //===----------------------------------------------------------------------===// |
| 4568 | // CleanupReturnInst Class |
| 4569 | //===----------------------------------------------------------------------===// |
| 4570 | |
| 4571 | class CleanupReturnInst : public Instruction { |
| 4572 | using UnwindDestField = BoolBitfieldElementT<0>; |
| 4573 | |
| 4574 | private: |
| 4575 | CleanupReturnInst(const CleanupReturnInst &RI); |
| 4576 | CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values, |
| 4577 | Instruction *InsertBefore = nullptr); |
| 4578 | CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values, |
| 4579 | BasicBlock *InsertAtEnd); |
| 4580 | |
| 4581 | void init(Value *CleanupPad, BasicBlock *UnwindBB); |
| 4582 | |
| 4583 | protected: |
| 4584 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4585 | friend class Instruction; |
| 4586 | |
| 4587 | CleanupReturnInst *cloneImpl() const; |
| 4588 | |
| 4589 | public: |
| 4590 | static CleanupReturnInst *Create(Value *CleanupPad, |
| 4591 | BasicBlock *UnwindBB = nullptr, |
| 4592 | Instruction *InsertBefore = nullptr) { |
| 4593 | assert(CleanupPad)((void)0); |
| 4594 | unsigned Values = 1; |
| 4595 | if (UnwindBB) |
| 4596 | ++Values; |
| 4597 | return new (Values) |
| 4598 | CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore); |
| 4599 | } |
| 4600 | |
| 4601 | static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB, |
| 4602 | BasicBlock *InsertAtEnd) { |
| 4603 | assert(CleanupPad)((void)0); |
| 4604 | unsigned Values = 1; |
| 4605 | if (UnwindBB) |
| 4606 | ++Values; |
| 4607 | return new (Values) |
| 4608 | CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd); |
| 4609 | } |
| 4610 | |
| 4611 | /// Provide fast operand accessors |
| 4612 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 4613 | |
| 4614 | bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); } |
| 4615 | bool unwindsToCaller() const { return !hasUnwindDest(); } |
| 4616 | |
| 4617 | /// Convenience accessor. |
| 4618 | CleanupPadInst *getCleanupPad() const { |
| 4619 | return cast<CleanupPadInst>(Op<0>()); |
| 4620 | } |
| 4621 | void setCleanupPad(CleanupPadInst *CleanupPad) { |
| 4622 | assert(CleanupPad)((void)0); |
| 4623 | Op<0>() = CleanupPad; |
| 4624 | } |
| 4625 | |
| 4626 | unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; } |
| 4627 | |
| 4628 | BasicBlock *getUnwindDest() const { |
| 4629 | return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr; |
| 4630 | } |
| 4631 | void setUnwindDest(BasicBlock *NewDest) { |
| 4632 | assert(NewDest)((void)0); |
| 4633 | assert(hasUnwindDest())((void)0); |
| 4634 | Op<1>() = NewDest; |
| 4635 | } |
| 4636 | |
| 4637 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4638 | static bool classof(const Instruction *I) { |
| 4639 | return (I->getOpcode() == Instruction::CleanupRet); |
| 4640 | } |
| 4641 | static bool classof(const Value *V) { |
| 4642 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4643 | } |
| 4644 | |
| 4645 | private: |
| 4646 | BasicBlock *getSuccessor(unsigned Idx) const { |
| 4647 | assert(Idx == 0)((void)0); |
| 4648 | return getUnwindDest(); |
| 4649 | } |
| 4650 | |
| 4651 | void setSuccessor(unsigned Idx, BasicBlock *B) { |
| 4652 | assert(Idx == 0)((void)0); |
| 4653 | setUnwindDest(B); |
| 4654 | } |
| 4655 | |
| 4656 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 4657 | // method so that subclasses cannot accidentally use it. |
| 4658 | template <typename Bitfield> |
| 4659 | void setSubclassData(typename Bitfield::Type Value) { |
| 4660 | Instruction::setSubclassData<Bitfield>(Value); |
| 4661 | } |
| 4662 | }; |
| 4663 | |
| 4664 | template <> |
| 4665 | struct OperandTraits<CleanupReturnInst> |
| 4666 | : public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {}; |
| 4667 | |
| 4668 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value)CleanupReturnInst::op_iterator CleanupReturnInst::op_begin() { return OperandTraits<CleanupReturnInst>::op_begin(this ); } CleanupReturnInst::const_op_iterator CleanupReturnInst:: op_begin() const { return OperandTraits<CleanupReturnInst> ::op_begin(const_cast<CleanupReturnInst*>(this)); } CleanupReturnInst ::op_iterator CleanupReturnInst::op_end() { return OperandTraits <CleanupReturnInst>::op_end(this); } CleanupReturnInst:: const_op_iterator CleanupReturnInst::op_end() const { return OperandTraits <CleanupReturnInst>::op_end(const_cast<CleanupReturnInst *>(this)); } Value *CleanupReturnInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<CleanupReturnInst>::op_begin(const_cast <CleanupReturnInst*>(this))[i_nocapture].get()); } void CleanupReturnInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<CleanupReturnInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned CleanupReturnInst ::getNumOperands() const { return OperandTraits<CleanupReturnInst >::operands(this); } template <int Idx_nocapture> Use &CleanupReturnInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & CleanupReturnInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
| 4669 | |
| 4670 | //===----------------------------------------------------------------------===// |
| 4671 | // UnreachableInst Class |
| 4672 | //===----------------------------------------------------------------------===// |
| 4673 | |
| 4674 | //===--------------------------------------------------------------------------- |
| 4675 | /// This function has undefined behavior. In particular, the |
| 4676 | /// presence of this instruction indicates some higher level knowledge that the |
| 4677 | /// end of the block cannot be reached. |
| 4678 | /// |
| 4679 | class UnreachableInst : public Instruction { |
| 4680 | protected: |
| 4681 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4682 | friend class Instruction; |
| 4683 | |
| 4684 | UnreachableInst *cloneImpl() const; |
| 4685 | |
| 4686 | public: |
| 4687 | explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr); |
| 4688 | explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd); |
| 4689 | |
| 4690 | // allocate space for exactly zero operands |
| 4691 | void *operator new(size_t S) { return User::operator new(S, 0); } |
| 4692 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 4693 | |
| 4694 | unsigned getNumSuccessors() const { return 0; } |
| 4695 | |
| 4696 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4697 | static bool classof(const Instruction *I) { |
| 4698 | return I->getOpcode() == Instruction::Unreachable; |
| 4699 | } |
| 4700 | static bool classof(const Value *V) { |
| 4701 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4702 | } |
| 4703 | |
| 4704 | private: |
| 4705 | BasicBlock *getSuccessor(unsigned idx) const { |
| 4706 | llvm_unreachable("UnreachableInst has no successors!")__builtin_unreachable(); |
| 4707 | } |
| 4708 | |
| 4709 | void setSuccessor(unsigned idx, BasicBlock *B) { |
| 4710 | llvm_unreachable("UnreachableInst has no successors!")__builtin_unreachable(); |
| 4711 | } |
| 4712 | }; |
| 4713 | |
| 4714 | //===----------------------------------------------------------------------===// |
| 4715 | // TruncInst Class |
| 4716 | //===----------------------------------------------------------------------===// |
| 4717 | |
| 4718 | /// This class represents a truncation of integer types. |
| 4719 | class TruncInst : public CastInst { |
| 4720 | protected: |
| 4721 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4722 | friend class Instruction; |
| 4723 | |
| 4724 | /// Clone an identical TruncInst |
| 4725 | TruncInst *cloneImpl() const; |
| 4726 | |
| 4727 | public: |
| 4728 | /// Constructor with insert-before-instruction semantics |
| 4729 | TruncInst( |
| 4730 | Value *S, ///< The value to be truncated |
| 4731 | Type *Ty, ///< The (smaller) type to truncate to |
| 4732 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4733 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4734 | ); |
| 4735 | |
| 4736 | /// Constructor with insert-at-end-of-block semantics |
| 4737 | TruncInst( |
| 4738 | Value *S, ///< The value to be truncated |
| 4739 | Type *Ty, ///< The (smaller) type to truncate to |
| 4740 | const Twine &NameStr, ///< A name for the new instruction |
| 4741 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4742 | ); |
| 4743 | |
| 4744 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4745 | static bool classof(const Instruction *I) { |
| 4746 | return I->getOpcode() == Trunc; |
| 4747 | } |
| 4748 | static bool classof(const Value *V) { |
| 4749 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4750 | } |
| 4751 | }; |
| 4752 | |
| 4753 | //===----------------------------------------------------------------------===// |
| 4754 | // ZExtInst Class |
| 4755 | //===----------------------------------------------------------------------===// |
| 4756 | |
| 4757 | /// This class represents zero extension of integer types. |
| 4758 | class ZExtInst : public CastInst { |
| 4759 | protected: |
| 4760 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4761 | friend class Instruction; |
| 4762 | |
| 4763 | /// Clone an identical ZExtInst |
| 4764 | ZExtInst *cloneImpl() const; |
| 4765 | |
| 4766 | public: |
| 4767 | /// Constructor with insert-before-instruction semantics |
| 4768 | ZExtInst( |
| 4769 | Value *S, ///< The value to be zero extended |
| 4770 | Type *Ty, ///< The type to zero extend to |
| 4771 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4772 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4773 | ); |
| 4774 | |
| 4775 | /// Constructor with insert-at-end semantics. |
| 4776 | ZExtInst( |
| 4777 | Value *S, ///< The value to be zero extended |
| 4778 | Type *Ty, ///< The type to zero extend to |
| 4779 | const Twine &NameStr, ///< A name for the new instruction |
| 4780 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4781 | ); |
| 4782 | |
| 4783 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4784 | static bool classof(const Instruction *I) { |
| 4785 | return I->getOpcode() == ZExt; |
| 4786 | } |
| 4787 | static bool classof(const Value *V) { |
| 4788 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4789 | } |
| 4790 | }; |
| 4791 | |
| 4792 | //===----------------------------------------------------------------------===// |
| 4793 | // SExtInst Class |
| 4794 | //===----------------------------------------------------------------------===// |
| 4795 | |
| 4796 | /// This class represents a sign extension of integer types. |
| 4797 | class SExtInst : public CastInst { |
| 4798 | protected: |
| 4799 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4800 | friend class Instruction; |
| 4801 | |
| 4802 | /// Clone an identical SExtInst |
| 4803 | SExtInst *cloneImpl() const; |
| 4804 | |
| 4805 | public: |
| 4806 | /// Constructor with insert-before-instruction semantics |
| 4807 | SExtInst( |
| 4808 | Value *S, ///< The value to be sign extended |
| 4809 | Type *Ty, ///< The type to sign extend to |
| 4810 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4811 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4812 | ); |
| 4813 | |
| 4814 | /// Constructor with insert-at-end-of-block semantics |
| 4815 | SExtInst( |
| 4816 | Value *S, ///< The value to be sign extended |
| 4817 | Type *Ty, ///< The type to sign extend to |
| 4818 | const Twine &NameStr, ///< A name for the new instruction |
| 4819 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4820 | ); |
| 4821 | |
| 4822 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4823 | static bool classof(const Instruction *I) { |
| 4824 | return I->getOpcode() == SExt; |
| 4825 | } |
| 4826 | static bool classof(const Value *V) { |
| 4827 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4828 | } |
| 4829 | }; |
| 4830 | |
| 4831 | //===----------------------------------------------------------------------===// |
| 4832 | // FPTruncInst Class |
| 4833 | //===----------------------------------------------------------------------===// |
| 4834 | |
| 4835 | /// This class represents a truncation of floating point types. |
| 4836 | class FPTruncInst : public CastInst { |
| 4837 | protected: |
| 4838 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4839 | friend class Instruction; |
| 4840 | |
| 4841 | /// Clone an identical FPTruncInst |
| 4842 | FPTruncInst *cloneImpl() const; |
| 4843 | |
| 4844 | public: |
| 4845 | /// Constructor with insert-before-instruction semantics |
| 4846 | FPTruncInst( |
| 4847 | Value *S, ///< The value to be truncated |
| 4848 | Type *Ty, ///< The type to truncate to |
| 4849 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4850 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4851 | ); |
| 4852 | |
| 4853 | /// Constructor with insert-before-instruction semantics |
| 4854 | FPTruncInst( |
| 4855 | Value *S, ///< The value to be truncated |
| 4856 | Type *Ty, ///< The type to truncate to |
| 4857 | const Twine &NameStr, ///< A name for the new instruction |
| 4858 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4859 | ); |
| 4860 | |
| 4861 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4862 | static bool classof(const Instruction *I) { |
| 4863 | return I->getOpcode() == FPTrunc; |
| 4864 | } |
| 4865 | static bool classof(const Value *V) { |
| 4866 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4867 | } |
| 4868 | }; |
| 4869 | |
| 4870 | //===----------------------------------------------------------------------===// |
| 4871 | // FPExtInst Class |
| 4872 | //===----------------------------------------------------------------------===// |
| 4873 | |
| 4874 | /// This class represents an extension of floating point types. |
| 4875 | class FPExtInst : public CastInst { |
| 4876 | protected: |
| 4877 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4878 | friend class Instruction; |
| 4879 | |
| 4880 | /// Clone an identical FPExtInst |
| 4881 | FPExtInst *cloneImpl() const; |
| 4882 | |
| 4883 | public: |
| 4884 | /// Constructor with insert-before-instruction semantics |
| 4885 | FPExtInst( |
| 4886 | Value *S, ///< The value to be extended |
| 4887 | Type *Ty, ///< The type to extend to |
| 4888 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4889 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4890 | ); |
| 4891 | |
| 4892 | /// Constructor with insert-at-end-of-block semantics |
| 4893 | FPExtInst( |
| 4894 | Value *S, ///< The value to be extended |
| 4895 | Type *Ty, ///< The type to extend to |
| 4896 | const Twine &NameStr, ///< A name for the new instruction |
| 4897 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4898 | ); |
| 4899 | |
| 4900 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4901 | static bool classof(const Instruction *I) { |
| 4902 | return I->getOpcode() == FPExt; |
| 4903 | } |
| 4904 | static bool classof(const Value *V) { |
| 4905 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4906 | } |
| 4907 | }; |
| 4908 | |
| 4909 | //===----------------------------------------------------------------------===// |
| 4910 | // UIToFPInst Class |
| 4911 | //===----------------------------------------------------------------------===// |
| 4912 | |
| 4913 | /// This class represents a cast unsigned integer to floating point. |
| 4914 | class UIToFPInst : public CastInst { |
| 4915 | protected: |
| 4916 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4917 | friend class Instruction; |
| 4918 | |
| 4919 | /// Clone an identical UIToFPInst |
| 4920 | UIToFPInst *cloneImpl() const; |
| 4921 | |
| 4922 | public: |
| 4923 | /// Constructor with insert-before-instruction semantics |
| 4924 | UIToFPInst( |
| 4925 | Value *S, ///< The value to be converted |
| 4926 | Type *Ty, ///< The type to convert to |
| 4927 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4928 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4929 | ); |
| 4930 | |
| 4931 | /// Constructor with insert-at-end-of-block semantics |
| 4932 | UIToFPInst( |
| 4933 | Value *S, ///< The value to be converted |
| 4934 | Type *Ty, ///< The type to convert to |
| 4935 | const Twine &NameStr, ///< A name for the new instruction |
| 4936 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4937 | ); |
| 4938 | |
| 4939 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4940 | static bool classof(const Instruction *I) { |
| 4941 | return I->getOpcode() == UIToFP; |
| 4942 | } |
| 4943 | static bool classof(const Value *V) { |
| 4944 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4945 | } |
| 4946 | }; |
| 4947 | |
| 4948 | //===----------------------------------------------------------------------===// |
| 4949 | // SIToFPInst Class |
| 4950 | //===----------------------------------------------------------------------===// |
| 4951 | |
| 4952 | /// This class represents a cast from signed integer to floating point. |
| 4953 | class SIToFPInst : public CastInst { |
| 4954 | protected: |
| 4955 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4956 | friend class Instruction; |
| 4957 | |
| 4958 | /// Clone an identical SIToFPInst |
| 4959 | SIToFPInst *cloneImpl() const; |
| 4960 | |
| 4961 | public: |
| 4962 | /// Constructor with insert-before-instruction semantics |
| 4963 | SIToFPInst( |
| 4964 | Value *S, ///< The value to be converted |
| 4965 | Type *Ty, ///< The type to convert to |
| 4966 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4967 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4968 | ); |
| 4969 | |
| 4970 | /// Constructor with insert-at-end-of-block semantics |
| 4971 | SIToFPInst( |
| 4972 | Value *S, ///< The value to be converted |
| 4973 | Type *Ty, ///< The type to convert to |
| 4974 | const Twine &NameStr, ///< A name for the new instruction |
| 4975 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4976 | ); |
| 4977 | |
| 4978 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4979 | static bool classof(const Instruction *I) { |
| 4980 | return I->getOpcode() == SIToFP; |
| 4981 | } |
| 4982 | static bool classof(const Value *V) { |
| 4983 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4984 | } |
| 4985 | }; |
| 4986 | |
| 4987 | //===----------------------------------------------------------------------===// |
| 4988 | // FPToUIInst Class |
| 4989 | //===----------------------------------------------------------------------===// |
| 4990 | |
| 4991 | /// This class represents a cast from floating point to unsigned integer |
| 4992 | class FPToUIInst : public CastInst { |
| 4993 | protected: |
| 4994 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4995 | friend class Instruction; |
| 4996 | |
| 4997 | /// Clone an identical FPToUIInst |
| 4998 | FPToUIInst *cloneImpl() const; |
| 4999 | |
| 5000 | public: |
| 5001 | /// Constructor with insert-before-instruction semantics |
| 5002 | FPToUIInst( |
| 5003 | Value *S, ///< The value to be converted |
| 5004 | Type *Ty, ///< The type to convert to |
| 5005 | const Twine &NameStr = "", ///< A name for the new instruction |
| 5006 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 5007 | ); |
| 5008 | |
| 5009 | /// Constructor with insert-at-end-of-block semantics |
| 5010 | FPToUIInst( |
| 5011 | Value *S, ///< The value to be converted |
| 5012 | Type *Ty, ///< The type to convert to |
| 5013 | const Twine &NameStr, ///< A name for the new instruction |
| 5014 | BasicBlock *InsertAtEnd ///< Where to insert the new instruction |
| 5015 | ); |
| 5016 | |
| 5017 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5018 | static bool classof(const Instruction *I) { |
| 5019 | return I->getOpcode() == FPToUI; |
| 5020 | } |
| 5021 | static bool classof(const Value *V) { |
| 5022 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5023 | } |
| 5024 | }; |
| 5025 | |
| 5026 | //===----------------------------------------------------------------------===// |
| 5027 | // FPToSIInst Class |
| 5028 | //===----------------------------------------------------------------------===// |
| 5029 | |
| 5030 | /// This class represents a cast from floating point to signed integer. |
| 5031 | class FPToSIInst : public CastInst { |
| 5032 | protected: |
| 5033 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 5034 | friend class Instruction; |
| 5035 | |
| 5036 | /// Clone an identical FPToSIInst |
| 5037 | FPToSIInst *cloneImpl() const; |
| 5038 | |
| 5039 | public: |
| 5040 | /// Constructor with insert-before-instruction semantics |
| 5041 | FPToSIInst( |
| 5042 | Value *S, ///< The value to be converted |
| 5043 | Type *Ty, ///< The type to convert to |
| 5044 | const Twine &NameStr = "", ///< A name for the new instruction |
| 5045 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 5046 | ); |
| 5047 | |
| 5048 | /// Constructor with insert-at-end-of-block semantics |
| 5049 | FPToSIInst( |
| 5050 | Value *S, ///< The value to be converted |
| 5051 | Type *Ty, ///< The type to convert to |
| 5052 | const Twine &NameStr, ///< A name for the new instruction |
| 5053 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 5054 | ); |
| 5055 | |
| 5056 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5057 | static bool classof(const Instruction *I) { |
| 5058 | return I->getOpcode() == FPToSI; |
| 5059 | } |
| 5060 | static bool classof(const Value *V) { |
| 5061 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5062 | } |
| 5063 | }; |
| 5064 | |
| 5065 | //===----------------------------------------------------------------------===// |
| 5066 | // IntToPtrInst Class |
| 5067 | //===----------------------------------------------------------------------===// |
| 5068 | |
| 5069 | /// This class represents a cast from an integer to a pointer. |
| 5070 | class IntToPtrInst : public CastInst { |
| 5071 | public: |
| 5072 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 5073 | friend class Instruction; |
| 5074 | |
| 5075 | /// Constructor with insert-before-instruction semantics |
| 5076 | IntToPtrInst( |
| 5077 | Value *S, ///< The value to be converted |
| 5078 | Type *Ty, ///< The type to convert to |
| 5079 | const Twine &NameStr = "", ///< A name for the new instruction |
| 5080 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 5081 | ); |
| 5082 | |
| 5083 | /// Constructor with insert-at-end-of-block semantics |
| 5084 | IntToPtrInst( |
| 5085 | Value *S, ///< The value to be converted |
| 5086 | Type *Ty, ///< The type to convert to |
| 5087 | const Twine &NameStr, ///< A name for the new instruction |
| 5088 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 5089 | ); |
| 5090 | |
| 5091 | /// Clone an identical IntToPtrInst. |
| 5092 | IntToPtrInst *cloneImpl() const; |
| 5093 | |
| 5094 | /// Returns the address space of this instruction's pointer type. |
| 5095 | unsigned getAddressSpace() const { |
| 5096 | return getType()->getPointerAddressSpace(); |
| 5097 | } |
| 5098 | |
| 5099 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5100 | static bool classof(const Instruction *I) { |
| 5101 | return I->getOpcode() == IntToPtr; |
| 5102 | } |
| 5103 | static bool classof(const Value *V) { |
| 5104 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5105 | } |
| 5106 | }; |
| 5107 | |
| 5108 | //===----------------------------------------------------------------------===// |
| 5109 | // PtrToIntInst Class |
| 5110 | //===----------------------------------------------------------------------===// |
| 5111 | |
| 5112 | /// This class represents a cast from a pointer to an integer. |
| 5113 | class PtrToIntInst : public CastInst { |
| 5114 | protected: |
| 5115 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 5116 | friend class Instruction; |
| 5117 | |
| 5118 | /// Clone an identical PtrToIntInst. |
| 5119 | PtrToIntInst *cloneImpl() const; |
| 5120 | |
| 5121 | public: |
| 5122 | /// Constructor with insert-before-instruction semantics |
| 5123 | PtrToIntInst( |
| 5124 | Value *S, ///< The value to be converted |
| 5125 | Type *Ty, ///< The type to convert to |
| 5126 | const Twine &NameStr = "", ///< A name for the new instruction |
| 5127 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 5128 | ); |
| 5129 | |
| 5130 | /// Constructor with insert-at-end-of-block semantics |
| 5131 | PtrToIntInst( |
| 5132 | Value *S, ///< The value to be converted |
| 5133 | Type *Ty, ///< The type to convert to |
| 5134 | const Twine &NameStr, ///< A name for the new instruction |
| 5135 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 5136 | ); |
| 5137 | |
| 5138 | /// Gets the pointer operand. |
| 5139 | Value *getPointerOperand() { return getOperand(0); } |
| 5140 | /// Gets the pointer operand. |
| 5141 | const Value *getPointerOperand() const { return getOperand(0); } |
| 5142 | /// Gets the operand index of the pointer operand. |
| 5143 | static unsigned getPointerOperandIndex() { return 0U; } |
| 5144 | |
| 5145 | /// Returns the address space of the pointer operand. |
| 5146 | unsigned getPointerAddressSpace() const { |
| 5147 | return getPointerOperand()->getType()->getPointerAddressSpace(); |
| 5148 | } |
| 5149 | |
| 5150 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5151 | static bool classof(const Instruction *I) { |
| 5152 | return I->getOpcode() == PtrToInt; |
| 5153 | } |
| 5154 | static bool classof(const Value *V) { |
| 5155 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5156 | } |
| 5157 | }; |
| 5158 | |
| 5159 | //===----------------------------------------------------------------------===// |
| 5160 | // BitCastInst Class |
| 5161 | //===----------------------------------------------------------------------===// |
| 5162 | |
| 5163 | /// This class represents a no-op cast from one type to another. |
| 5164 | class BitCastInst : public CastInst { |
| 5165 | protected: |
| 5166 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 5167 | friend class Instruction; |
| 5168 | |
| 5169 | /// Clone an identical BitCastInst. |
| 5170 | BitCastInst *cloneImpl() const; |
| 5171 | |
| 5172 | public: |
| 5173 | /// Constructor with insert-before-instruction semantics |
| 5174 | BitCastInst( |
| 5175 | Value *S, ///< The value to be casted |
| 5176 | Type *Ty, ///< The type to casted to |
| 5177 | const Twine &NameStr = "", ///< A name for the new instruction |
| 5178 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 5179 | ); |
| 5180 | |
| 5181 | /// Constructor with insert-at-end-of-block semantics |
| 5182 | BitCastInst( |
| 5183 | Value *S, ///< The value to be casted |
| 5184 | Type *Ty, ///< The type to casted to |
| 5185 | const Twine &NameStr, ///< A name for the new instruction |
| 5186 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 5187 | ); |
| 5188 | |
| 5189 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5190 | static bool classof(const Instruction *I) { |
| 5191 | return I->getOpcode() == BitCast; |
| 5192 | } |
| 5193 | static bool classof(const Value *V) { |
| 5194 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5195 | } |
| 5196 | }; |
| 5197 | |
| 5198 | //===----------------------------------------------------------------------===// |
| 5199 | // AddrSpaceCastInst Class |
| 5200 | //===----------------------------------------------------------------------===// |
| 5201 | |
| 5202 | /// This class represents a conversion between pointers from one address space |
| 5203 | /// to another. |
| 5204 | class AddrSpaceCastInst : public CastInst { |
| 5205 | protected: |
| 5206 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 5207 | friend class Instruction; |
| 5208 | |
| 5209 | /// Clone an identical AddrSpaceCastInst. |
| 5210 | AddrSpaceCastInst *cloneImpl() const; |
| 5211 | |
| 5212 | public: |
| 5213 | /// Constructor with insert-before-instruction semantics |
| 5214 | AddrSpaceCastInst( |
| 5215 | Value *S, ///< The value to be casted |
| 5216 | Type *Ty, ///< The type to casted to |
| 5217 | const Twine &NameStr = "", ///< A name for the new instruction |
| 5218 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 5219 | ); |
| 5220 | |
| 5221 | /// Constructor with insert-at-end-of-block semantics |
| 5222 | AddrSpaceCastInst( |
| 5223 | Value *S, ///< The value to be casted |
| 5224 | Type *Ty, ///< The type to casted to |
| 5225 | const Twine &NameStr, ///< A name for the new instruction |
| 5226 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 5227 | ); |
| 5228 | |
| 5229 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5230 | static bool classof(const Instruction *I) { |
| 5231 | return I->getOpcode() == AddrSpaceCast; |
| 5232 | } |
| 5233 | static bool classof(const Value *V) { |
| 5234 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5235 | } |
| 5236 | |
| 5237 | /// Gets the pointer operand. |
| 5238 | Value *getPointerOperand() { |
| 5239 | return getOperand(0); |
| 5240 | } |
| 5241 | |
| 5242 | /// Gets the pointer operand. |
| 5243 | const Value *getPointerOperand() const { |
| 5244 | return getOperand(0); |
| 5245 | } |
| 5246 | |
| 5247 | /// Gets the operand index of the pointer operand. |
| 5248 | static unsigned getPointerOperandIndex() { |
| 5249 | return 0U; |
| 5250 | } |
| 5251 | |
| 5252 | /// Returns the address space of the pointer operand. |
| 5253 | unsigned getSrcAddressSpace() const { |
| 5254 | return getPointerOperand()->getType()->getPointerAddressSpace(); |
| 5255 | } |
| 5256 | |
| 5257 | /// Returns the address space of the result. |
| 5258 | unsigned getDestAddressSpace() const { |
| 5259 | return getType()->getPointerAddressSpace(); |
| 5260 | } |
| 5261 | }; |
| 5262 | |
| 5263 | /// A helper function that returns the pointer operand of a load or store |
| 5264 | /// instruction. Returns nullptr if not load or store. |
| 5265 | inline const Value *getLoadStorePointerOperand(const Value *V) { |
| 5266 | if (auto *Load = dyn_cast<LoadInst>(V)) |
| 5267 | return Load->getPointerOperand(); |
| 5268 | if (auto *Store = dyn_cast<StoreInst>(V)) |
| 5269 | return Store->getPointerOperand(); |
| 5270 | return nullptr; |
| 5271 | } |
| 5272 | inline Value *getLoadStorePointerOperand(Value *V) { |
| 5273 | return const_cast<Value *>( |
| 5274 | getLoadStorePointerOperand(static_cast<const Value *>(V))); |
| 5275 | } |
| 5276 | |
| 5277 | /// A helper function that returns the pointer operand of a load, store |
| 5278 | /// or GEP instruction. Returns nullptr if not load, store, or GEP. |
| 5279 | inline const Value *getPointerOperand(const Value *V) { |
| 5280 | if (auto *Ptr = getLoadStorePointerOperand(V)) |
| 5281 | return Ptr; |
| 5282 | if (auto *Gep = dyn_cast<GetElementPtrInst>(V)) |
| 5283 | return Gep->getPointerOperand(); |
| 5284 | return nullptr; |
| 5285 | } |
| 5286 | inline Value *getPointerOperand(Value *V) { |
| 5287 | return const_cast<Value *>(getPointerOperand(static_cast<const Value *>(V))); |
| 5288 | } |
| 5289 | |
| 5290 | /// A helper function that returns the alignment of load or store instruction. |
| 5291 | inline Align getLoadStoreAlignment(Value *I) { |
| 5292 | assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&((void)0) |
| 5293 | "Expected Load or Store instruction")((void)0); |
| 5294 | if (auto *LI = dyn_cast<LoadInst>(I)) |
| 5295 | return LI->getAlign(); |
| 5296 | return cast<StoreInst>(I)->getAlign(); |
| 5297 | } |
| 5298 | |
| 5299 | /// A helper function that returns the address space of the pointer operand of |
| 5300 | /// load or store instruction. |
| 5301 | inline unsigned getLoadStoreAddressSpace(Value *I) { |
| 5302 | assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&((void)0) |
| 5303 | "Expected Load or Store instruction")((void)0); |
| 5304 | if (auto *LI = dyn_cast<LoadInst>(I)) |
| 5305 | return LI->getPointerAddressSpace(); |
| 5306 | return cast<StoreInst>(I)->getPointerAddressSpace(); |
| 5307 | } |
| 5308 | |
| 5309 | /// A helper function that returns the type of a load or store instruction. |
| 5310 | inline Type *getLoadStoreType(Value *I) { |
| 5311 | assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&((void)0) |
| 5312 | "Expected Load or Store instruction")((void)0); |
| 5313 | if (auto *LI = dyn_cast<LoadInst>(I)) |
| 5314 | return LI->getType(); |
| 5315 | return cast<StoreInst>(I)->getValueOperand()->getType(); |
| 5316 | } |
| 5317 | |
| 5318 | //===----------------------------------------------------------------------===// |
| 5319 | // FreezeInst Class |
| 5320 | //===----------------------------------------------------------------------===// |
| 5321 | |
| 5322 | /// This class represents a freeze function that returns random concrete |
| 5323 | /// value if an operand is either a poison value or an undef value |
| 5324 | class FreezeInst : public UnaryInstruction { |
| 5325 | protected: |
| 5326 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 5327 | friend class Instruction; |
| 5328 | |
| 5329 | /// Clone an identical FreezeInst |
| 5330 | FreezeInst *cloneImpl() const; |
| 5331 | |
| 5332 | public: |
| 5333 | explicit FreezeInst(Value *S, |
| 5334 | const Twine &NameStr = "", |
| 5335 | Instruction *InsertBefore = nullptr); |
| 5336 | FreezeInst(Value *S, const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 5337 | |
| 5338 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5339 | static inline bool classof(const Instruction *I) { |
| 5340 | return I->getOpcode() == Freeze; |
| 5341 | } |
| 5342 | static inline bool classof(const Value *V) { |
| 5343 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5344 | } |
| 5345 | }; |
| 5346 | |
| 5347 | } // end namespace llvm |
| 5348 | |
| 5349 | #endif // LLVM_IR_INSTRUCTIONS_H |
| 1 | //===-- llvm/Support/Alignment.h - Useful alignment functions ---*- C++ -*-===// | |||
| 2 | // | |||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | |||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
| 6 | // | |||
| 7 | //===----------------------------------------------------------------------===// | |||
| 8 | // | |||
| 9 | // This file contains types to represent alignments. | |||
| 10 | // They are instrumented to guarantee some invariants are preserved and prevent | |||
| 11 | // invalid manipulations. | |||
| 12 | // | |||
| 13 | // - Align represents an alignment in bytes, it is always set and always a valid | |||
| 14 | // power of two, its minimum value is 1 which means no alignment requirements. | |||
| 15 | // | |||
| 16 | // - MaybeAlign is an optional type, it may be undefined or set. When it's set | |||
| 17 | // you can get the underlying Align type by using the getValue() method. | |||
| 18 | // | |||
| 19 | //===----------------------------------------------------------------------===// | |||
| 20 | ||||
| 21 | #ifndef LLVM_SUPPORT_ALIGNMENT_H_ | |||
| 22 | #define LLVM_SUPPORT_ALIGNMENT_H_ | |||
| 23 | ||||
| 24 | #include "llvm/ADT/Optional.h" | |||
| 25 | #include "llvm/Support/MathExtras.h" | |||
| 26 | #include <cassert> | |||
| 27 | #ifndef NDEBUG1 | |||
| 28 | #include <string> | |||
| 29 | #endif // NDEBUG | |||
| 30 | ||||
| 31 | namespace llvm { | |||
| 32 | ||||
| 33 | #define ALIGN_CHECK_ISPOSITIVE(decl) \ | |||
| 34 | assert(decl > 0 && (#decl " should be defined"))((void)0) | |||
| 35 | ||||
| 36 | /// This struct is a compact representation of a valid (non-zero power of two) | |||
| 37 | /// alignment. | |||
| 38 | /// It is suitable for use as static global constants. | |||
| 39 | struct Align { | |||
| 40 | private: | |||
| 41 | uint8_t ShiftValue = 0; /// The log2 of the required alignment. | |||
| 42 | /// ShiftValue is less than 64 by construction. | |||
| 43 | ||||
| 44 | friend struct MaybeAlign; | |||
| 45 | friend unsigned Log2(Align); | |||
| 46 | friend bool operator==(Align Lhs, Align Rhs); | |||
| 47 | friend bool operator!=(Align Lhs, Align Rhs); | |||
| 48 | friend bool operator<=(Align Lhs, Align Rhs); | |||
| 49 | friend bool operator>=(Align Lhs, Align Rhs); | |||
| 50 | friend bool operator<(Align Lhs, Align Rhs); | |||
| 51 | friend bool operator>(Align Lhs, Align Rhs); | |||
| 52 | friend unsigned encode(struct MaybeAlign A); | |||
| 53 | friend struct MaybeAlign decodeMaybeAlign(unsigned Value); | |||
| 54 | ||||
| 55 | /// A trivial type to allow construction of constexpr Align. | |||
| 56 | /// This is currently needed to workaround a bug in GCC 5.3 which prevents | |||
| 57 | /// definition of constexpr assign operators. | |||
| 58 | /// https://stackoverflow.com/questions/46756288/explicitly-defaulted-function-cannot-be-declared-as-constexpr-because-the-implic | |||
| 59 | /// FIXME: Remove this, make all assign operators constexpr and introduce user | |||
| 60 | /// defined literals when we don't have to support GCC 5.3 anymore. | |||
| 61 | /// https://llvm.org/docs/GettingStarted.html#getting-a-modern-host-c-toolchain | |||
| 62 | struct LogValue { | |||
| 63 | uint8_t Log; | |||
| 64 | }; | |||
| 65 | ||||
| 66 | public: | |||
| 67 | /// Default is byte-aligned. | |||
| 68 | constexpr Align() = default; | |||
| 69 | /// Do not perform checks in case of copy/move construct/assign, because the | |||
| 70 | /// checks have been performed when building `Other`. | |||
| 71 | constexpr Align(const Align &Other) = default; | |||
| 72 | constexpr Align(Align &&Other) = default; | |||
| 73 | Align &operator=(const Align &Other) = default; | |||
| 74 | Align &operator=(Align &&Other) = default; | |||
| 75 | ||||
| 76 | explicit Align(uint64_t Value) { | |||
| 77 | assert(Value > 0 && "Value must not be 0")((void)0); | |||
| 78 | assert(llvm::isPowerOf2_64(Value) && "Alignment is not a power of 2")((void)0); | |||
| 79 | ShiftValue = Log2_64(Value); | |||
| 80 | assert(ShiftValue < 64 && "Broken invariant")((void)0); | |||
| 81 | } | |||
| 82 | ||||
| 83 | /// This is a hole in the type system and should not be abused. | |||
| 84 | /// Needed to interact with C for instance. | |||
| 85 | uint64_t value() const { return uint64_t(1) << ShiftValue; } | |||
| ||||
| 86 | ||||
| 87 | /// Allow constructions of constexpr Align. | |||
| 88 | template <size_t kValue> constexpr static LogValue Constant() { | |||
| 89 | return LogValue{static_cast<uint8_t>(CTLog2<kValue>())}; | |||
| 90 | } | |||
| 91 | ||||
| 92 | /// Allow constructions of constexpr Align from types. | |||
| 93 | /// Compile time equivalent to Align(alignof(T)). | |||
| 94 | template <typename T> constexpr static LogValue Of() { | |||
| 95 | return Constant<std::alignment_of<T>::value>(); | |||
| 96 | } | |||
| 97 | ||||
| 98 | /// Constexpr constructor from LogValue type. | |||
| 99 | constexpr Align(LogValue CA) : ShiftValue(CA.Log) {} | |||
| 100 | }; | |||
| 101 | ||||
| 102 | /// Treats the value 0 as a 1, so Align is always at least 1. | |||
| 103 | inline Align assumeAligned(uint64_t Value) { | |||
| 104 | return Value ? Align(Value) : Align(); | |||
| 105 | } | |||
| 106 | ||||
| 107 | /// This struct is a compact representation of a valid (power of two) or | |||
| 108 | /// undefined (0) alignment. | |||
| 109 | struct MaybeAlign : public llvm::Optional<Align> { | |||
| 110 | private: | |||
| 111 | using UP = llvm::Optional<Align>; | |||
| 112 | ||||
| 113 | public: | |||
| 114 | /// Default is undefined. | |||
| 115 | MaybeAlign() = default; | |||
| 116 | /// Do not perform checks in case of copy/move construct/assign, because the | |||
| 117 | /// checks have been performed when building `Other`. | |||
| 118 | MaybeAlign(const MaybeAlign &Other) = default; | |||
| 119 | MaybeAlign &operator=(const MaybeAlign &Other) = default; | |||
| 120 | MaybeAlign(MaybeAlign &&Other) = default; | |||
| 121 | MaybeAlign &operator=(MaybeAlign &&Other) = default; | |||
| 122 | ||||
| 123 | /// Use llvm::Optional<Align> constructor. | |||
| 124 | using UP::UP; | |||
| 125 | ||||
| 126 | explicit MaybeAlign(uint64_t Value) { | |||
| 127 | assert((Value == 0 || llvm::isPowerOf2_64(Value)) &&((void)0) | |||
| 128 | "Alignment is neither 0 nor a power of 2")((void)0); | |||
| 129 | if (Value) | |||
| 130 | emplace(Value); | |||
| 131 | } | |||
| 132 | ||||
| 133 | /// For convenience, returns a valid alignment or 1 if undefined. | |||
| 134 | Align valueOrOne() const { return hasValue() ? getValue() : Align(); } | |||
| 135 | }; | |||
| 136 | ||||
| 137 | /// Checks that SizeInBytes is a multiple of the alignment. | |||
| 138 | inline bool isAligned(Align Lhs, uint64_t SizeInBytes) { | |||
| 139 | return SizeInBytes % Lhs.value() == 0; | |||
| 140 | } | |||
| 141 | ||||
| 142 | /// Checks that Addr is a multiple of the alignment. | |||
| 143 | inline bool isAddrAligned(Align Lhs, const void *Addr) { | |||
| 144 | return isAligned(Lhs, reinterpret_cast<uintptr_t>(Addr)); | |||
| 145 | } | |||
| 146 | ||||
| 147 | /// Returns a multiple of A needed to store `Size` bytes. | |||
| 148 | inline uint64_t alignTo(uint64_t Size, Align A) { | |||
| 149 | const uint64_t Value = A.value(); | |||
| 150 | // The following line is equivalent to `(Size + Value - 1) / Value * Value`. | |||
| 151 | ||||
| 152 | // The division followed by a multiplication can be thought of as a right | |||
| 153 | // shift followed by a left shift which zeros out the extra bits produced in | |||
| 154 | // the bump; `~(Value - 1)` is a mask where all those bits being zeroed out | |||
| 155 | // are just zero. | |||
| 156 | ||||
| 157 | // Most compilers can generate this code but the pattern may be missed when | |||
| 158 | // multiple functions gets inlined. | |||
| 159 | return (Size + Value - 1) & ~(Value - 1U); | |||
| 160 | } | |||
| 161 | ||||
| 162 | /// If non-zero \p Skew is specified, the return value will be a minimal integer | |||
| 163 | /// that is greater than or equal to \p Size and equal to \p A * N + \p Skew for | |||
| 164 | /// some integer N. If \p Skew is larger than \p A, its value is adjusted to '\p | |||
| 165 | /// Skew mod \p A'. | |||
| 166 | /// | |||
| 167 | /// Examples: | |||
| 168 | /// \code | |||
| 169 | /// alignTo(5, Align(8), 7) = 7 | |||
| 170 | /// alignTo(17, Align(8), 1) = 17 | |||
| 171 | /// alignTo(~0LL, Align(8), 3) = 3 | |||
| 172 | /// \endcode | |||
| 173 | inline uint64_t alignTo(uint64_t Size, Align A, uint64_t Skew) { | |||
| 174 | const uint64_t Value = A.value(); | |||
| 175 | Skew %= Value; | |||
| 176 | return ((Size + Value - 1 - Skew) & ~(Value - 1U)) + Skew; | |||
| 177 | } | |||
| 178 | ||||
| 179 | /// Returns a multiple of A needed to store `Size` bytes. | |||
| 180 | /// Returns `Size` if current alignment is undefined. | |||
| 181 | inline uint64_t alignTo(uint64_t Size, MaybeAlign A) { | |||
| 182 | return A ? alignTo(Size, A.getValue()) : Size; | |||
| 183 | } | |||
| 184 | ||||
| 185 | /// Aligns `Addr` to `Alignment` bytes, rounding up. | |||
| 186 | inline uintptr_t alignAddr(const void *Addr, Align Alignment) { | |||
| 187 | uintptr_t ArithAddr = reinterpret_cast<uintptr_t>(Addr); | |||
| 188 | assert(static_cast<uintptr_t>(ArithAddr + Alignment.value() - 1) >=((void)0) | |||
| 189 | ArithAddr &&((void)0) | |||
| 190 | "Overflow")((void)0); | |||
| 191 | return alignTo(ArithAddr, Alignment); | |||
| 192 | } | |||
| 193 | ||||
| 194 | /// Returns the offset to the next integer (mod 2**64) that is greater than | |||
| 195 | /// or equal to \p Value and is a multiple of \p Align. | |||
| 196 | inline uint64_t offsetToAlignment(uint64_t Value, Align Alignment) { | |||
| 197 | return alignTo(Value, Alignment) - Value; | |||
| 198 | } | |||
| 199 | ||||
| 200 | /// Returns the necessary adjustment for aligning `Addr` to `Alignment` | |||
| 201 | /// bytes, rounding up. | |||
| 202 | inline uint64_t offsetToAlignedAddr(const void *Addr, Align Alignment) { | |||
| 203 | return offsetToAlignment(reinterpret_cast<uintptr_t>(Addr), Alignment); | |||
| 204 | } | |||
| 205 | ||||
| 206 | /// Returns the log2 of the alignment. | |||
| 207 | inline unsigned Log2(Align A) { return A.ShiftValue; } | |||
| 208 | ||||
| 209 | /// Returns the alignment that satisfies both alignments. | |||
| 210 | /// Same semantic as MinAlign. | |||
| 211 | inline Align commonAlignment(Align A, Align B) { return std::min(A, B); } | |||
| 212 | ||||
| 213 | /// Returns the alignment that satisfies both alignments. | |||
| 214 | /// Same semantic as MinAlign. | |||
| 215 | inline Align commonAlignment(Align A, uint64_t Offset) { | |||
| 216 | return Align(MinAlign(A.value(), Offset)); | |||
| 217 | } | |||
| 218 | ||||
| 219 | /// Returns the alignment that satisfies both alignments. | |||
| 220 | /// Same semantic as MinAlign. | |||
| 221 | inline MaybeAlign commonAlignment(MaybeAlign A, MaybeAlign B) { | |||
| 222 | return A && B ? commonAlignment(*A, *B) : A ? A : B; | |||
| 223 | } | |||
| 224 | ||||
| 225 | /// Returns the alignment that satisfies both alignments. | |||
| 226 | /// Same semantic as MinAlign. | |||
| 227 | inline MaybeAlign commonAlignment(MaybeAlign A, uint64_t Offset) { | |||
| 228 | return MaybeAlign(MinAlign((*A).value(), Offset)); | |||
| 229 | } | |||
| 230 | ||||
| 231 | /// Returns a representation of the alignment that encodes undefined as 0. | |||
| 232 | inline unsigned encode(MaybeAlign A) { return A ? A->ShiftValue + 1 : 0; } | |||
| 233 | ||||
| 234 | /// Dual operation of the encode function above. | |||
| 235 | inline MaybeAlign decodeMaybeAlign(unsigned Value) { | |||
| 236 | if (Value == 0) | |||
| 237 | return MaybeAlign(); | |||
| 238 | Align Out; | |||
| 239 | Out.ShiftValue = Value - 1; | |||
| 240 | return Out; | |||
| 241 | } | |||
| 242 | ||||
| 243 | /// Returns a representation of the alignment, the encoded value is positive by | |||
| 244 | /// definition. | |||
| 245 | inline unsigned encode(Align A) { return encode(MaybeAlign(A)); } | |||
| 246 | ||||
| 247 | /// Comparisons between Align and scalars. Rhs must be positive. | |||
| 248 | inline bool operator==(Align Lhs, uint64_t Rhs) { | |||
| 249 | ALIGN_CHECK_ISPOSITIVE(Rhs); | |||
| 250 | return Lhs.value() == Rhs; | |||
| 251 | } | |||
| 252 | inline bool operator!=(Align Lhs, uint64_t Rhs) { | |||
| 253 | ALIGN_CHECK_ISPOSITIVE(Rhs); | |||
| 254 | return Lhs.value() != Rhs; | |||
| 255 | } | |||
| 256 | inline bool operator<=(Align Lhs, uint64_t Rhs) { | |||
| 257 | ALIGN_CHECK_ISPOSITIVE(Rhs); | |||
| 258 | return Lhs.value() <= Rhs; | |||
| 259 | } | |||
| 260 | inline bool operator>=(Align Lhs, uint64_t Rhs) { | |||
| 261 | ALIGN_CHECK_ISPOSITIVE(Rhs); | |||
| 262 | return Lhs.value() >= Rhs; | |||
| 263 | } | |||
| 264 | inline bool operator<(Align Lhs, uint64_t Rhs) { | |||
| 265 | ALIGN_CHECK_ISPOSITIVE(Rhs); | |||
| 266 | return Lhs.value() < Rhs; | |||
| 267 | } | |||
| 268 | inline bool operator>(Align Lhs, uint64_t Rhs) { | |||
| 269 | ALIGN_CHECK_ISPOSITIVE(Rhs); | |||
| 270 | return Lhs.value() > Rhs; | |||
| 271 | } | |||
| 272 | ||||
| 273 | /// Comparisons between MaybeAlign and scalars. | |||
| 274 | inline bool operator==(MaybeAlign Lhs, uint64_t Rhs) { | |||
| 275 | return Lhs ? (*Lhs).value() == Rhs : Rhs == 0; | |||
| 276 | } | |||
| 277 | inline bool operator!=(MaybeAlign Lhs, uint64_t Rhs) { | |||
| 278 | return Lhs ? (*Lhs).value() != Rhs : Rhs != 0; | |||
| 279 | } | |||
| 280 | ||||
| 281 | /// Comparisons operators between Align. | |||
| 282 | inline bool operator==(Align Lhs, Align Rhs) { | |||
| 283 | return Lhs.ShiftValue == Rhs.ShiftValue; | |||
| 284 | } | |||
| 285 | inline bool operator!=(Align Lhs, Align Rhs) { | |||
| 286 | return Lhs.ShiftValue != Rhs.ShiftValue; | |||
| 287 | } | |||
| 288 | inline bool operator<=(Align Lhs, Align Rhs) { | |||
| 289 | return Lhs.ShiftValue <= Rhs.ShiftValue; | |||
| 290 | } | |||
| 291 | inline bool operator>=(Align Lhs, Align Rhs) { | |||
| 292 | return Lhs.ShiftValue >= Rhs.ShiftValue; | |||
| 293 | } | |||
| 294 | inline bool operator<(Align Lhs, Align Rhs) { | |||
| 295 | return Lhs.ShiftValue < Rhs.ShiftValue; | |||
| 296 | } | |||
| 297 | inline bool operator>(Align Lhs, Align Rhs) { | |||
| 298 | return Lhs.ShiftValue > Rhs.ShiftValue; | |||
| 299 | } | |||
| 300 | ||||
| 301 | // Don't allow relational comparisons with MaybeAlign. | |||
| 302 | bool operator<=(Align Lhs, MaybeAlign Rhs) = delete; | |||
| 303 | bool operator>=(Align Lhs, MaybeAlign Rhs) = delete; | |||
| 304 | bool operator<(Align Lhs, MaybeAlign Rhs) = delete; | |||
| 305 | bool operator>(Align Lhs, MaybeAlign Rhs) = delete; | |||
| 306 | ||||
| 307 | bool operator<=(MaybeAlign Lhs, Align Rhs) = delete; | |||
| 308 | bool operator>=(MaybeAlign Lhs, Align Rhs) = delete; | |||
| 309 | bool operator<(MaybeAlign Lhs, Align Rhs) = delete; | |||
| 310 | bool operator>(MaybeAlign Lhs, Align Rhs) = delete; | |||
| 311 | ||||
| 312 | bool operator<=(MaybeAlign Lhs, MaybeAlign Rhs) = delete; | |||
| 313 | bool operator>=(MaybeAlign Lhs, MaybeAlign Rhs) = delete; | |||
| 314 | bool operator<(MaybeAlign Lhs, MaybeAlign Rhs) = delete; | |||
| 315 | bool operator>(MaybeAlign Lhs, MaybeAlign Rhs) = delete; | |||
| 316 | ||||
| 317 | inline Align operator*(Align Lhs, uint64_t Rhs) { | |||
| 318 | assert(Rhs > 0 && "Rhs must be positive")((void)0); | |||
| 319 | return Align(Lhs.value() * Rhs); | |||
| 320 | } | |||
| 321 | ||||
| 322 | inline MaybeAlign operator*(MaybeAlign Lhs, uint64_t Rhs) { | |||
| 323 | assert(Rhs > 0 && "Rhs must be positive")((void)0); | |||
| 324 | return Lhs ? Lhs.getValue() * Rhs : MaybeAlign(); | |||
| 325 | } | |||
| 326 | ||||
| 327 | inline Align operator/(Align Lhs, uint64_t Divisor) { | |||
| 328 | assert(llvm::isPowerOf2_64(Divisor) &&((void)0) | |||
| 329 | "Divisor must be positive and a power of 2")((void)0); | |||
| 330 | assert(Lhs != 1 && "Can't halve byte alignment")((void)0); | |||
| 331 | return Align(Lhs.value() / Divisor); | |||
| 332 | } | |||
| 333 | ||||
| 334 | inline MaybeAlign operator/(MaybeAlign Lhs, uint64_t Divisor) { | |||
| 335 | assert(llvm::isPowerOf2_64(Divisor) &&((void)0) | |||
| 336 | "Divisor must be positive and a power of 2")((void)0); | |||
| 337 | return Lhs ? Lhs.getValue() / Divisor : MaybeAlign(); | |||
| 338 | } | |||
| 339 | ||||
| 340 | inline Align max(MaybeAlign Lhs, Align Rhs) { | |||
| 341 | return Lhs && *Lhs > Rhs ? *Lhs : Rhs; | |||
| 342 | } | |||
| 343 | ||||
| 344 | inline Align max(Align Lhs, MaybeAlign Rhs) { | |||
| 345 | return Rhs && *Rhs > Lhs ? *Rhs : Lhs; | |||
| 346 | } | |||
| 347 | ||||
| 348 | #ifndef NDEBUG1 | |||
| 349 | // For usage in LLVM_DEBUG macros. | |||
| 350 | inline std::string DebugStr(const Align &A) { | |||
| 351 | return std::to_string(A.value()); | |||
| 352 | } | |||
| 353 | // For usage in LLVM_DEBUG macros. | |||
| 354 | inline std::string DebugStr(const MaybeAlign &MA) { | |||
| 355 | if (MA) | |||
| 356 | return std::to_string(MA->value()); | |||
| 357 | return "None"; | |||
| 358 | } | |||
| 359 | #endif // NDEBUG | |||
| 360 | ||||
| 361 | #undef ALIGN_CHECK_ISPOSITIVE | |||
| 362 | ||||
| 363 | } // namespace llvm | |||
| 364 | ||||
| 365 | #endif // LLVM_SUPPORT_ALIGNMENT_H_ |
| 1 | //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains some functions that are useful for math stuff. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #ifndef LLVM_SUPPORT_MATHEXTRAS_H |
| 14 | #define LLVM_SUPPORT_MATHEXTRAS_H |
| 15 | |
| 16 | #include "llvm/Support/Compiler.h" |
| 17 | #include <cassert> |
| 18 | #include <climits> |
| 19 | #include <cmath> |
| 20 | #include <cstdint> |
| 21 | #include <cstring> |
| 22 | #include <limits> |
| 23 | #include <type_traits> |
| 24 | |
| 25 | #ifdef __ANDROID_NDK__ |
| 26 | #include <android/api-level.h> |
| 27 | #endif |
| 28 | |
| 29 | #ifdef _MSC_VER |
| 30 | // Declare these intrinsics manually rather including intrin.h. It's very |
| 31 | // expensive, and MathExtras.h is popular. |
| 32 | // #include <intrin.h> |
| 33 | extern "C" { |
| 34 | unsigned char _BitScanForward(unsigned long *_Index, unsigned long _Mask); |
| 35 | unsigned char _BitScanForward64(unsigned long *_Index, unsigned __int64 _Mask); |
| 36 | unsigned char _BitScanReverse(unsigned long *_Index, unsigned long _Mask); |
| 37 | unsigned char _BitScanReverse64(unsigned long *_Index, unsigned __int64 _Mask); |
| 38 | } |
| 39 | #endif |
| 40 | |
| 41 | namespace llvm { |
| 42 | |
| 43 | /// The behavior an operation has on an input of 0. |
| 44 | enum ZeroBehavior { |
| 45 | /// The returned value is undefined. |
| 46 | ZB_Undefined, |
| 47 | /// The returned value is numeric_limits<T>::max() |
| 48 | ZB_Max, |
| 49 | /// The returned value is numeric_limits<T>::digits |
| 50 | ZB_Width |
| 51 | }; |
| 52 | |
| 53 | /// Mathematical constants. |
| 54 | namespace numbers { |
| 55 | // TODO: Track C++20 std::numbers. |
| 56 | // TODO: Favor using the hexadecimal FP constants (requires C++17). |
| 57 | constexpr double e = 2.7182818284590452354, // (0x1.5bf0a8b145749P+1) https://oeis.org/A001113 |
| 58 | egamma = .57721566490153286061, // (0x1.2788cfc6fb619P-1) https://oeis.org/A001620 |
| 59 | ln2 = .69314718055994530942, // (0x1.62e42fefa39efP-1) https://oeis.org/A002162 |
| 60 | ln10 = 2.3025850929940456840, // (0x1.24bb1bbb55516P+1) https://oeis.org/A002392 |
| 61 | log2e = 1.4426950408889634074, // (0x1.71547652b82feP+0) |
| 62 | log10e = .43429448190325182765, // (0x1.bcb7b1526e50eP-2) |
| 63 | pi = 3.1415926535897932385, // (0x1.921fb54442d18P+1) https://oeis.org/A000796 |
| 64 | inv_pi = .31830988618379067154, // (0x1.45f306bc9c883P-2) https://oeis.org/A049541 |
| 65 | sqrtpi = 1.7724538509055160273, // (0x1.c5bf891b4ef6bP+0) https://oeis.org/A002161 |
| 66 | inv_sqrtpi = .56418958354775628695, // (0x1.20dd750429b6dP-1) https://oeis.org/A087197 |
| 67 | sqrt2 = 1.4142135623730950488, // (0x1.6a09e667f3bcdP+0) https://oeis.org/A00219 |
| 68 | inv_sqrt2 = .70710678118654752440, // (0x1.6a09e667f3bcdP-1) |
| 69 | sqrt3 = 1.7320508075688772935, // (0x1.bb67ae8584caaP+0) https://oeis.org/A002194 |
| 70 | inv_sqrt3 = .57735026918962576451, // (0x1.279a74590331cP-1) |
| 71 | phi = 1.6180339887498948482; // (0x1.9e3779b97f4a8P+0) https://oeis.org/A001622 |
| 72 | constexpr float ef = 2.71828183F, // (0x1.5bf0a8P+1) https://oeis.org/A001113 |
| 73 | egammaf = .577215665F, // (0x1.2788d0P-1) https://oeis.org/A001620 |
| 74 | ln2f = .693147181F, // (0x1.62e430P-1) https://oeis.org/A002162 |
| 75 | ln10f = 2.30258509F, // (0x1.26bb1cP+1) https://oeis.org/A002392 |
| 76 | log2ef = 1.44269504F, // (0x1.715476P+0) |
| 77 | log10ef = .434294482F, // (0x1.bcb7b2P-2) |
| 78 | pif = 3.14159265F, // (0x1.921fb6P+1) https://oeis.org/A000796 |
| 79 | inv_pif = .318309886F, // (0x1.45f306P-2) https://oeis.org/A049541 |
| 80 | sqrtpif = 1.77245385F, // (0x1.c5bf8aP+0) https://oeis.org/A002161 |
| 81 | inv_sqrtpif = .564189584F, // (0x1.20dd76P-1) https://oeis.org/A087197 |
| 82 | sqrt2f = 1.41421356F, // (0x1.6a09e6P+0) https://oeis.org/A002193 |
| 83 | inv_sqrt2f = .707106781F, // (0x1.6a09e6P-1) |
| 84 | sqrt3f = 1.73205081F, // (0x1.bb67aeP+0) https://oeis.org/A002194 |
| 85 | inv_sqrt3f = .577350269F, // (0x1.279a74P-1) |
| 86 | phif = 1.61803399F; // (0x1.9e377aP+0) https://oeis.org/A001622 |
| 87 | } // namespace numbers |
| 88 | |
| 89 | namespace detail { |
| 90 | template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter { |
| 91 | static unsigned count(T Val, ZeroBehavior) { |
| 92 | if (!Val) |
| 93 | return std::numeric_limits<T>::digits; |
| 94 | if (Val & 0x1) |
| 95 | return 0; |
| 96 | |
| 97 | // Bisection method. |
| 98 | unsigned ZeroBits = 0; |
| 99 | T Shift = std::numeric_limits<T>::digits >> 1; |
| 100 | T Mask = std::numeric_limits<T>::max() >> Shift; |
| 101 | while (Shift) { |
| 102 | if ((Val & Mask) == 0) { |
| 103 | Val >>= Shift; |
| 104 | ZeroBits |= Shift; |
| 105 | } |
| 106 | Shift >>= 1; |
| 107 | Mask >>= Shift; |
| 108 | } |
| 109 | return ZeroBits; |
| 110 | } |
| 111 | }; |
| 112 | |
| 113 | #if defined(__GNUC__4) || defined(_MSC_VER) |
| 114 | template <typename T> struct TrailingZerosCounter<T, 4> { |
| 115 | static unsigned count(T Val, ZeroBehavior ZB) { |
| 116 | if (ZB != ZB_Undefined && Val == 0) |
| 117 | return 32; |
| 118 | |
| 119 | #if __has_builtin(__builtin_ctz)1 || defined(__GNUC__4) |
| 120 | return __builtin_ctz(Val); |
| 121 | #elif defined(_MSC_VER) |
| 122 | unsigned long Index; |
| 123 | _BitScanForward(&Index, Val); |
| 124 | return Index; |
| 125 | #endif |
| 126 | } |
| 127 | }; |
| 128 | |
| 129 | #if !defined(_MSC_VER) || defined(_M_X64) |
| 130 | template <typename T> struct TrailingZerosCounter<T, 8> { |
| 131 | static unsigned count(T Val, ZeroBehavior ZB) { |
| 132 | if (ZB != ZB_Undefined && Val == 0) |
| 133 | return 64; |
| 134 | |
| 135 | #if __has_builtin(__builtin_ctzll)1 || defined(__GNUC__4) |
| 136 | return __builtin_ctzll(Val); |
| 137 | #elif defined(_MSC_VER) |
| 138 | unsigned long Index; |
| 139 | _BitScanForward64(&Index, Val); |
| 140 | return Index; |
| 141 | #endif |
| 142 | } |
| 143 | }; |
| 144 | #endif |
| 145 | #endif |
| 146 | } // namespace detail |
| 147 | |
| 148 | /// Count number of 0's from the least significant bit to the most |
| 149 | /// stopping at the first 1. |
| 150 | /// |
| 151 | /// Only unsigned integral types are allowed. |
| 152 | /// |
| 153 | /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are |
| 154 | /// valid arguments. |
| 155 | template <typename T> |
| 156 | unsigned countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) { |
| 157 | static_assert(std::numeric_limits<T>::is_integer && |
| 158 | !std::numeric_limits<T>::is_signed, |
| 159 | "Only unsigned integral types are allowed."); |
| 160 | return llvm::detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB); |
| 161 | } |
| 162 | |
| 163 | namespace detail { |
| 164 | template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter { |
| 165 | static unsigned count(T Val, ZeroBehavior) { |
| 166 | if (!Val) |
| 167 | return std::numeric_limits<T>::digits; |
| 168 | |
| 169 | // Bisection method. |
| 170 | unsigned ZeroBits = 0; |
| 171 | for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) { |
| 172 | T Tmp = Val >> Shift; |
| 173 | if (Tmp) |
| 174 | Val = Tmp; |
| 175 | else |
| 176 | ZeroBits |= Shift; |
| 177 | } |
| 178 | return ZeroBits; |
| 179 | } |
| 180 | }; |
| 181 | |
| 182 | #if defined(__GNUC__4) || defined(_MSC_VER) |
| 183 | template <typename T> struct LeadingZerosCounter<T, 4> { |
| 184 | static unsigned count(T Val, ZeroBehavior ZB) { |
| 185 | if (ZB != ZB_Undefined && Val == 0) |
| 186 | return 32; |
| 187 | |
| 188 | #if __has_builtin(__builtin_clz)1 || defined(__GNUC__4) |
| 189 | return __builtin_clz(Val); |
| 190 | #elif defined(_MSC_VER) |
| 191 | unsigned long Index; |
| 192 | _BitScanReverse(&Index, Val); |
| 193 | return Index ^ 31; |
| 194 | #endif |
| 195 | } |
| 196 | }; |
| 197 | |
| 198 | #if !defined(_MSC_VER) || defined(_M_X64) |
| 199 | template <typename T> struct LeadingZerosCounter<T, 8> { |
| 200 | static unsigned count(T Val, ZeroBehavior ZB) { |
| 201 | if (ZB != ZB_Undefined && Val == 0) |
| 202 | return 64; |
| 203 | |
| 204 | #if __has_builtin(__builtin_clzll)1 || defined(__GNUC__4) |
| 205 | return __builtin_clzll(Val); |
| 206 | #elif defined(_MSC_VER) |
| 207 | unsigned long Index; |
| 208 | _BitScanReverse64(&Index, Val); |
| 209 | return Index ^ 63; |
| 210 | #endif |
| 211 | } |
| 212 | }; |
| 213 | #endif |
| 214 | #endif |
| 215 | } // namespace detail |
| 216 | |
| 217 | /// Count number of 0's from the most significant bit to the least |
| 218 | /// stopping at the first 1. |
| 219 | /// |
| 220 | /// Only unsigned integral types are allowed. |
| 221 | /// |
| 222 | /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are |
| 223 | /// valid arguments. |
| 224 | template <typename T> |
| 225 | unsigned countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) { |
| 226 | static_assert(std::numeric_limits<T>::is_integer && |
| 227 | !std::numeric_limits<T>::is_signed, |
| 228 | "Only unsigned integral types are allowed."); |
| 229 | return llvm::detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB); |
| 230 | } |
| 231 | |
| 232 | /// Get the index of the first set bit starting from the least |
| 233 | /// significant bit. |
| 234 | /// |
| 235 | /// Only unsigned integral types are allowed. |
| 236 | /// |
| 237 | /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are |
| 238 | /// valid arguments. |
| 239 | template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) { |
| 240 | if (ZB == ZB_Max && Val == 0) |
| 241 | return std::numeric_limits<T>::max(); |
| 242 | |
| 243 | return countTrailingZeros(Val, ZB_Undefined); |
| 244 | } |
| 245 | |
| 246 | /// Create a bitmask with the N right-most bits set to 1, and all other |
| 247 | /// bits set to 0. Only unsigned types are allowed. |
| 248 | template <typename T> T maskTrailingOnes(unsigned N) { |
| 249 | static_assert(std::is_unsigned<T>::value, "Invalid type!"); |
| 250 | const unsigned Bits = CHAR_BIT8 * sizeof(T); |
| 251 | assert(N <= Bits && "Invalid bit index")((void)0); |
| 252 | return N == 0 ? 0 : (T(-1) >> (Bits - N)); |
| 253 | } |
| 254 | |
| 255 | /// Create a bitmask with the N left-most bits set to 1, and all other |
| 256 | /// bits set to 0. Only unsigned types are allowed. |
| 257 | template <typename T> T maskLeadingOnes(unsigned N) { |
| 258 | return ~maskTrailingOnes<T>(CHAR_BIT8 * sizeof(T) - N); |
| 259 | } |
| 260 | |
| 261 | /// Create a bitmask with the N right-most bits set to 0, and all other |
| 262 | /// bits set to 1. Only unsigned types are allowed. |
| 263 | template <typename T> T maskTrailingZeros(unsigned N) { |
| 264 | return maskLeadingOnes<T>(CHAR_BIT8 * sizeof(T) - N); |
| 265 | } |
| 266 | |
| 267 | /// Create a bitmask with the N left-most bits set to 0, and all other |
| 268 | /// bits set to 1. Only unsigned types are allowed. |
| 269 | template <typename T> T maskLeadingZeros(unsigned N) { |
| 270 | return maskTrailingOnes<T>(CHAR_BIT8 * sizeof(T) - N); |
| 271 | } |
| 272 | |
| 273 | /// Get the index of the last set bit starting from the least |
| 274 | /// significant bit. |
| 275 | /// |
| 276 | /// Only unsigned integral types are allowed. |
| 277 | /// |
| 278 | /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are |
| 279 | /// valid arguments. |
| 280 | template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) { |
| 281 | if (ZB == ZB_Max && Val == 0) |
| 282 | return std::numeric_limits<T>::max(); |
| 283 | |
| 284 | // Use ^ instead of - because both gcc and llvm can remove the associated ^ |
| 285 | // in the __builtin_clz intrinsic on x86. |
| 286 | return countLeadingZeros(Val, ZB_Undefined) ^ |
| 287 | (std::numeric_limits<T>::digits - 1); |
| 288 | } |
| 289 | |
| 290 | /// Macro compressed bit reversal table for 256 bits. |
| 291 | /// |
| 292 | /// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable |
| 293 | static const unsigned char BitReverseTable256[256] = { |
| 294 | #define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64 |
| 295 | #define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16) |
| 296 | #define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4) |
| 297 | R6(0), R6(2), R6(1), R6(3) |
| 298 | #undef R2 |
| 299 | #undef R4 |
| 300 | #undef R6 |
| 301 | }; |
| 302 | |
| 303 | /// Reverse the bits in \p Val. |
| 304 | template <typename T> |
| 305 | T reverseBits(T Val) { |
| 306 | unsigned char in[sizeof(Val)]; |
| 307 | unsigned char out[sizeof(Val)]; |
| 308 | std::memcpy(in, &Val, sizeof(Val)); |
| 309 | for (unsigned i = 0; i < sizeof(Val); ++i) |
| 310 | out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]]; |
| 311 | std::memcpy(&Val, out, sizeof(Val)); |
| 312 | return Val; |
| 313 | } |
| 314 | |
| 315 | #if __has_builtin(__builtin_bitreverse8)1 |
| 316 | template<> |
| 317 | inline uint8_t reverseBits<uint8_t>(uint8_t Val) { |
| 318 | return __builtin_bitreverse8(Val); |
| 319 | } |
| 320 | #endif |
| 321 | |
| 322 | #if __has_builtin(__builtin_bitreverse16)1 |
| 323 | template<> |
| 324 | inline uint16_t reverseBits<uint16_t>(uint16_t Val) { |
| 325 | return __builtin_bitreverse16(Val); |
| 326 | } |
| 327 | #endif |
| 328 | |
| 329 | #if __has_builtin(__builtin_bitreverse32)1 |
| 330 | template<> |
| 331 | inline uint32_t reverseBits<uint32_t>(uint32_t Val) { |
| 332 | return __builtin_bitreverse32(Val); |
| 333 | } |
| 334 | #endif |
| 335 | |
| 336 | #if __has_builtin(__builtin_bitreverse64)1 |
| 337 | template<> |
| 338 | inline uint64_t reverseBits<uint64_t>(uint64_t Val) { |
| 339 | return __builtin_bitreverse64(Val); |
| 340 | } |
| 341 | #endif |
| 342 | |
| 343 | // NOTE: The following support functions use the _32/_64 extensions instead of |
| 344 | // type overloading so that signed and unsigned integers can be used without |
| 345 | // ambiguity. |
| 346 | |
| 347 | /// Return the high 32 bits of a 64 bit value. |
| 348 | constexpr inline uint32_t Hi_32(uint64_t Value) { |
| 349 | return static_cast<uint32_t>(Value >> 32); |
| 350 | } |
| 351 | |
| 352 | /// Return the low 32 bits of a 64 bit value. |
| 353 | constexpr inline uint32_t Lo_32(uint64_t Value) { |
| 354 | return static_cast<uint32_t>(Value); |
| 355 | } |
| 356 | |
| 357 | /// Make a 64-bit integer from a high / low pair of 32-bit integers. |
| 358 | constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) { |
| 359 | return ((uint64_t)High << 32) | (uint64_t)Low; |
| 360 | } |
| 361 | |
| 362 | /// Checks if an integer fits into the given bit width. |
| 363 | template <unsigned N> constexpr inline bool isInt(int64_t x) { |
| 364 | return N >= 64 || (-(INT64_C(1)1LL<<(N-1)) <= x && x < (INT64_C(1)1LL<<(N-1))); |
| 365 | } |
| 366 | // Template specializations to get better code for common cases. |
| 367 | template <> constexpr inline bool isInt<8>(int64_t x) { |
| 368 | return static_cast<int8_t>(x) == x; |
| 369 | } |
| 370 | template <> constexpr inline bool isInt<16>(int64_t x) { |
| 371 | return static_cast<int16_t>(x) == x; |
| 372 | } |
| 373 | template <> constexpr inline bool isInt<32>(int64_t x) { |
| 374 | return static_cast<int32_t>(x) == x; |
| 375 | } |
| 376 | |
| 377 | /// Checks if a signed integer is an N bit number shifted left by S. |
| 378 | template <unsigned N, unsigned S> |
| 379 | constexpr inline bool isShiftedInt(int64_t x) { |
| 380 | static_assert( |
| 381 | N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number."); |
| 382 | static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide."); |
| 383 | return isInt<N + S>(x) && (x % (UINT64_C(1)1ULL << S) == 0); |
| 384 | } |
| 385 | |
| 386 | /// Checks if an unsigned integer fits into the given bit width. |
| 387 | /// |
| 388 | /// This is written as two functions rather than as simply |
| 389 | /// |
| 390 | /// return N >= 64 || X < (UINT64_C(1) << N); |
| 391 | /// |
| 392 | /// to keep MSVC from (incorrectly) warning on isUInt<64> that we're shifting |
| 393 | /// left too many places. |
| 394 | template <unsigned N> |
| 395 | constexpr inline std::enable_if_t<(N < 64), bool> isUInt(uint64_t X) { |
| 396 | static_assert(N > 0, "isUInt<0> doesn't make sense"); |
| 397 | return X < (UINT64_C(1)1ULL << (N)); |
| 398 | } |
| 399 | template <unsigned N> |
| 400 | constexpr inline std::enable_if_t<N >= 64, bool> isUInt(uint64_t) { |
| 401 | return true; |
| 402 | } |
| 403 | |
| 404 | // Template specializations to get better code for common cases. |
| 405 | template <> constexpr inline bool isUInt<8>(uint64_t x) { |
| 406 | return static_cast<uint8_t>(x) == x; |
| 407 | } |
| 408 | template <> constexpr inline bool isUInt<16>(uint64_t x) { |
| 409 | return static_cast<uint16_t>(x) == x; |
| 410 | } |
| 411 | template <> constexpr inline bool isUInt<32>(uint64_t x) { |
| 412 | return static_cast<uint32_t>(x) == x; |
| 413 | } |
| 414 | |
| 415 | /// Checks if a unsigned integer is an N bit number shifted left by S. |
| 416 | template <unsigned N, unsigned S> |
| 417 | constexpr inline bool isShiftedUInt(uint64_t x) { |
| 418 | static_assert( |
| 419 | N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)"); |
| 420 | static_assert(N + S <= 64, |
| 421 | "isShiftedUInt<N, S> with N + S > 64 is too wide."); |
| 422 | // Per the two static_asserts above, S must be strictly less than 64. So |
| 423 | // 1 << S is not undefined behavior. |
| 424 | return isUInt<N + S>(x) && (x % (UINT64_C(1)1ULL << S) == 0); |
| 425 | } |
| 426 | |
| 427 | /// Gets the maximum value for a N-bit unsigned integer. |
| 428 | inline uint64_t maxUIntN(uint64_t N) { |
| 429 | assert(N > 0 && N <= 64 && "integer width out of range")((void)0); |
| 430 | |
| 431 | // uint64_t(1) << 64 is undefined behavior, so we can't do |
| 432 | // (uint64_t(1) << N) - 1 |
| 433 | // without checking first that N != 64. But this works and doesn't have a |
| 434 | // branch. |
| 435 | return UINT64_MAX0xffffffffffffffffULL >> (64 - N); |
| 436 | } |
| 437 | |
| 438 | /// Gets the minimum value for a N-bit signed integer. |
| 439 | inline int64_t minIntN(int64_t N) { |
| 440 | assert(N > 0 && N <= 64 && "integer width out of range")((void)0); |
| 441 | |
| 442 | return UINT64_C(1)1ULL + ~(UINT64_C(1)1ULL << (N - 1)); |
| 443 | } |
| 444 | |
| 445 | /// Gets the maximum value for a N-bit signed integer. |
| 446 | inline int64_t maxIntN(int64_t N) { |
| 447 | assert(N > 0 && N <= 64 && "integer width out of range")((void)0); |
| 448 | |
| 449 | // This relies on two's complement wraparound when N == 64, so we convert to |
| 450 | // int64_t only at the very end to avoid UB. |
| 451 | return (UINT64_C(1)1ULL << (N - 1)) - 1; |
| 452 | } |
| 453 | |
| 454 | /// Checks if an unsigned integer fits into the given (dynamic) bit width. |
| 455 | inline bool isUIntN(unsigned N, uint64_t x) { |
| 456 | return N >= 64 || x <= maxUIntN(N); |
| 457 | } |
| 458 | |
| 459 | /// Checks if an signed integer fits into the given (dynamic) bit width. |
| 460 | inline bool isIntN(unsigned N, int64_t x) { |
| 461 | return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N)); |
| 462 | } |
| 463 | |
| 464 | /// Return true if the argument is a non-empty sequence of ones starting at the |
| 465 | /// least significant bit with the remainder zero (32 bit version). |
| 466 | /// Ex. isMask_32(0x0000FFFFU) == true. |
| 467 | constexpr inline bool isMask_32(uint32_t Value) { |
| 468 | return Value && ((Value + 1) & Value) == 0; |
| 469 | } |
| 470 | |
| 471 | /// Return true if the argument is a non-empty sequence of ones starting at the |
| 472 | /// least significant bit with the remainder zero (64 bit version). |
| 473 | constexpr inline bool isMask_64(uint64_t Value) { |
| 474 | return Value && ((Value + 1) & Value) == 0; |
| 475 | } |
| 476 | |
| 477 | /// Return true if the argument contains a non-empty sequence of ones with the |
| 478 | /// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true. |
| 479 | constexpr inline bool isShiftedMask_32(uint32_t Value) { |
| 480 | return Value && isMask_32((Value - 1) | Value); |
| 481 | } |
| 482 | |
| 483 | /// Return true if the argument contains a non-empty sequence of ones with the |
| 484 | /// remainder zero (64 bit version.) |
| 485 | constexpr inline bool isShiftedMask_64(uint64_t Value) { |
| 486 | return Value && isMask_64((Value - 1) | Value); |
| 487 | } |
| 488 | |
| 489 | /// Return true if the argument is a power of two > 0. |
| 490 | /// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.) |
| 491 | constexpr inline bool isPowerOf2_32(uint32_t Value) { |
| 492 | return Value && !(Value & (Value - 1)); |
| 493 | } |
| 494 | |
| 495 | /// Return true if the argument is a power of two > 0 (64 bit edition.) |
| 496 | constexpr inline bool isPowerOf2_64(uint64_t Value) { |
| 497 | return Value && !(Value & (Value - 1)); |
| 498 | } |
| 499 | |
| 500 | /// Count the number of ones from the most significant bit to the first |
| 501 | /// zero bit. |
| 502 | /// |
| 503 | /// Ex. countLeadingOnes(0xFF0FFF00) == 8. |
| 504 | /// Only unsigned integral types are allowed. |
| 505 | /// |
| 506 | /// \param ZB the behavior on an input of all ones. Only ZB_Width and |
| 507 | /// ZB_Undefined are valid arguments. |
| 508 | template <typename T> |
| 509 | unsigned countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) { |
| 510 | static_assert(std::numeric_limits<T>::is_integer && |
| 511 | !std::numeric_limits<T>::is_signed, |
| 512 | "Only unsigned integral types are allowed."); |
| 513 | return countLeadingZeros<T>(~Value, ZB); |
| 514 | } |
| 515 | |
| 516 | /// Count the number of ones from the least significant bit to the first |
| 517 | /// zero bit. |
| 518 | /// |
| 519 | /// Ex. countTrailingOnes(0x00FF00FF) == 8. |
| 520 | /// Only unsigned integral types are allowed. |
| 521 | /// |
| 522 | /// \param ZB the behavior on an input of all ones. Only ZB_Width and |
| 523 | /// ZB_Undefined are valid arguments. |
| 524 | template <typename T> |
| 525 | unsigned countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) { |
| 526 | static_assert(std::numeric_limits<T>::is_integer && |
| 527 | !std::numeric_limits<T>::is_signed, |
| 528 | "Only unsigned integral types are allowed."); |
| 529 | return countTrailingZeros<T>(~Value, ZB); |
| 530 | } |
| 531 | |
| 532 | namespace detail { |
| 533 | template <typename T, std::size_t SizeOfT> struct PopulationCounter { |
| 534 | static unsigned count(T Value) { |
| 535 | // Generic version, forward to 32 bits. |
| 536 | static_assert(SizeOfT <= 4, "Not implemented!"); |
| 537 | #if defined(__GNUC__4) |
| 538 | return __builtin_popcount(Value); |
| 539 | #else |
| 540 | uint32_t v = Value; |
| 541 | v = v - ((v >> 1) & 0x55555555); |
| 542 | v = (v & 0x33333333) + ((v >> 2) & 0x33333333); |
| 543 | return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; |
| 544 | #endif |
| 545 | } |
| 546 | }; |
| 547 | |
| 548 | template <typename T> struct PopulationCounter<T, 8> { |
| 549 | static unsigned count(T Value) { |
| 550 | #if defined(__GNUC__4) |
| 551 | return __builtin_popcountll(Value); |
| 552 | #else |
| 553 | uint64_t v = Value; |
| 554 | v = v - ((v >> 1) & 0x5555555555555555ULL); |
| 555 | v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL); |
| 556 | v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL; |
| 557 | return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56); |
| 558 | #endif |
| 559 | } |
| 560 | }; |
| 561 | } // namespace detail |
| 562 | |
| 563 | /// Count the number of set bits in a value. |
| 564 | /// Ex. countPopulation(0xF000F000) = 8 |
| 565 | /// Returns 0 if the word is zero. |
| 566 | template <typename T> |
| 567 | inline unsigned countPopulation(T Value) { |
| 568 | static_assert(std::numeric_limits<T>::is_integer && |
| 569 | !std::numeric_limits<T>::is_signed, |
| 570 | "Only unsigned integral types are allowed."); |
| 571 | return detail::PopulationCounter<T, sizeof(T)>::count(Value); |
| 572 | } |
| 573 | |
| 574 | /// Compile time Log2. |
| 575 | /// Valid only for positive powers of two. |
| 576 | template <size_t kValue> constexpr inline size_t CTLog2() { |
| 577 | static_assert(kValue > 0 && llvm::isPowerOf2_64(kValue), |
| 578 | "Value is not a valid power of 2"); |
| 579 | return 1 + CTLog2<kValue / 2>(); |
| 580 | } |
| 581 | |
| 582 | template <> constexpr inline size_t CTLog2<1>() { return 0; } |
| 583 | |
| 584 | /// Return the log base 2 of the specified value. |
| 585 | inline double Log2(double Value) { |
| 586 | #if defined(__ANDROID_API__) && __ANDROID_API__ < 18 |
| 587 | return __builtin_log(Value) / __builtin_log(2.0); |
| 588 | #else |
| 589 | return log2(Value); |
| 590 | #endif |
| 591 | } |
| 592 | |
| 593 | /// Return the floor log base 2 of the specified value, -1 if the value is zero. |
| 594 | /// (32 bit edition.) |
| 595 | /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2 |
| 596 | inline unsigned Log2_32(uint32_t Value) { |
| 597 | return 31 - countLeadingZeros(Value); |
| 598 | } |
| 599 | |
| 600 | /// Return the floor log base 2 of the specified value, -1 if the value is zero. |
| 601 | /// (64 bit edition.) |
| 602 | inline unsigned Log2_64(uint64_t Value) { |
| 603 | return 63 - countLeadingZeros(Value); |
| 604 | } |
| 605 | |
| 606 | /// Return the ceil log base 2 of the specified value, 32 if the value is zero. |
| 607 | /// (32 bit edition). |
| 608 | /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3 |
| 609 | inline unsigned Log2_32_Ceil(uint32_t Value) { |
| 610 | return 32 - countLeadingZeros(Value - 1); |
| 611 | } |
| 612 | |
| 613 | /// Return the ceil log base 2 of the specified value, 64 if the value is zero. |
| 614 | /// (64 bit edition.) |
| 615 | inline unsigned Log2_64_Ceil(uint64_t Value) { |
| 616 | return 64 - countLeadingZeros(Value - 1); |
| 617 | } |
| 618 | |
| 619 | /// Return the greatest common divisor of the values using Euclid's algorithm. |
| 620 | template <typename T> |
| 621 | inline T greatestCommonDivisor(T A, T B) { |
| 622 | while (B) { |
| 623 | T Tmp = B; |
| 624 | B = A % B; |
| 625 | A = Tmp; |
| 626 | } |
| 627 | return A; |
| 628 | } |
| 629 | |
| 630 | inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) { |
| 631 | return greatestCommonDivisor<uint64_t>(A, B); |
| 632 | } |
| 633 | |
| 634 | /// This function takes a 64-bit integer and returns the bit equivalent double. |
| 635 | inline double BitsToDouble(uint64_t Bits) { |
| 636 | double D; |
| 637 | static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes"); |
| 638 | memcpy(&D, &Bits, sizeof(Bits)); |
| 639 | return D; |
| 640 | } |
| 641 | |
| 642 | /// This function takes a 32-bit integer and returns the bit equivalent float. |
| 643 | inline float BitsToFloat(uint32_t Bits) { |
| 644 | float F; |
| 645 | static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes"); |
| 646 | memcpy(&F, &Bits, sizeof(Bits)); |
| 647 | return F; |
| 648 | } |
| 649 | |
| 650 | /// This function takes a double and returns the bit equivalent 64-bit integer. |
| 651 | /// Note that copying doubles around changes the bits of NaNs on some hosts, |
| 652 | /// notably x86, so this routine cannot be used if these bits are needed. |
| 653 | inline uint64_t DoubleToBits(double Double) { |
| 654 | uint64_t Bits; |
| 655 | static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes"); |
| 656 | memcpy(&Bits, &Double, sizeof(Double)); |
| 657 | return Bits; |
| 658 | } |
| 659 | |
| 660 | /// This function takes a float and returns the bit equivalent 32-bit integer. |
| 661 | /// Note that copying floats around changes the bits of NaNs on some hosts, |
| 662 | /// notably x86, so this routine cannot be used if these bits are needed. |
| 663 | inline uint32_t FloatToBits(float Float) { |
| 664 | uint32_t Bits; |
| 665 | static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes"); |
| 666 | memcpy(&Bits, &Float, sizeof(Float)); |
| 667 | return Bits; |
| 668 | } |
| 669 | |
| 670 | /// A and B are either alignments or offsets. Return the minimum alignment that |
| 671 | /// may be assumed after adding the two together. |
| 672 | constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) { |
| 673 | // The largest power of 2 that divides both A and B. |
| 674 | // |
| 675 | // Replace "-Value" by "1+~Value" in the following commented code to avoid |
| 676 | // MSVC warning C4146 |
| 677 | // return (A | B) & -(A | B); |
| 678 | return (A | B) & (1 + ~(A | B)); |
| 679 | } |
| 680 | |
| 681 | /// Returns the next power of two (in 64-bits) that is strictly greater than A. |
| 682 | /// Returns zero on overflow. |
| 683 | inline uint64_t NextPowerOf2(uint64_t A) { |
| 684 | A |= (A >> 1); |
| 685 | A |= (A >> 2); |
| 686 | A |= (A >> 4); |
| 687 | A |= (A >> 8); |
| 688 | A |= (A >> 16); |
| 689 | A |= (A >> 32); |
| 690 | return A + 1; |
| 691 | } |
| 692 | |
| 693 | /// Returns the power of two which is less than or equal to the given value. |
| 694 | /// Essentially, it is a floor operation across the domain of powers of two. |
| 695 | inline uint64_t PowerOf2Floor(uint64_t A) { |
| 696 | if (!A) return 0; |
| 697 | return 1ull << (63 - countLeadingZeros(A, ZB_Undefined)); |
| 698 | } |
| 699 | |
| 700 | /// Returns the power of two which is greater than or equal to the given value. |
| 701 | /// Essentially, it is a ceil operation across the domain of powers of two. |
| 702 | inline uint64_t PowerOf2Ceil(uint64_t A) { |
| 703 | if (!A) |
| 704 | return 0; |
| 705 | return NextPowerOf2(A - 1); |
| 706 | } |
| 707 | |
| 708 | /// Returns the next integer (mod 2**64) that is greater than or equal to |
| 709 | /// \p Value and is a multiple of \p Align. \p Align must be non-zero. |
| 710 | /// |
| 711 | /// If non-zero \p Skew is specified, the return value will be a minimal |
| 712 | /// integer that is greater than or equal to \p Value and equal to |
| 713 | /// \p Align * N + \p Skew for some integer N. If \p Skew is larger than |
| 714 | /// \p Align, its value is adjusted to '\p Skew mod \p Align'. |
| 715 | /// |
| 716 | /// Examples: |
| 717 | /// \code |
| 718 | /// alignTo(5, 8) = 8 |
| 719 | /// alignTo(17, 8) = 24 |
| 720 | /// alignTo(~0LL, 8) = 0 |
| 721 | /// alignTo(321, 255) = 510 |
| 722 | /// |
| 723 | /// alignTo(5, 8, 7) = 7 |
| 724 | /// alignTo(17, 8, 1) = 17 |
| 725 | /// alignTo(~0LL, 8, 3) = 3 |
| 726 | /// alignTo(321, 255, 42) = 552 |
| 727 | /// \endcode |
| 728 | inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) { |
| 729 | assert(Align != 0u && "Align can't be 0.")((void)0); |
| 730 | Skew %= Align; |
| 731 | return (Value + Align - 1 - Skew) / Align * Align + Skew; |
| 732 | } |
| 733 | |
| 734 | /// Returns the next integer (mod 2**64) that is greater than or equal to |
| 735 | /// \p Value and is a multiple of \c Align. \c Align must be non-zero. |
| 736 | template <uint64_t Align> constexpr inline uint64_t alignTo(uint64_t Value) { |
| 737 | static_assert(Align != 0u, "Align must be non-zero"); |
| 738 | return (Value + Align - 1) / Align * Align; |
| 739 | } |
| 740 | |
| 741 | /// Returns the integer ceil(Numerator / Denominator). |
| 742 | inline uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) { |
| 743 | return alignTo(Numerator, Denominator) / Denominator; |
| 744 | } |
| 745 | |
| 746 | /// Returns the integer nearest(Numerator / Denominator). |
| 747 | inline uint64_t divideNearest(uint64_t Numerator, uint64_t Denominator) { |
| 748 | return (Numerator + (Denominator / 2)) / Denominator; |
| 749 | } |
| 750 | |
| 751 | /// Returns the largest uint64_t less than or equal to \p Value and is |
| 752 | /// \p Skew mod \p Align. \p Align must be non-zero |
| 753 | inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) { |
| 754 | assert(Align != 0u && "Align can't be 0.")((void)0); |
| 755 | Skew %= Align; |
| 756 | return (Value - Skew) / Align * Align + Skew; |
| 757 | } |
| 758 | |
| 759 | /// Sign-extend the number in the bottom B bits of X to a 32-bit integer. |
| 760 | /// Requires 0 < B <= 32. |
| 761 | template <unsigned B> constexpr inline int32_t SignExtend32(uint32_t X) { |
| 762 | static_assert(B > 0, "Bit width can't be 0."); |
| 763 | static_assert(B <= 32, "Bit width out of range."); |
| 764 | return int32_t(X << (32 - B)) >> (32 - B); |
| 765 | } |
| 766 | |
| 767 | /// Sign-extend the number in the bottom B bits of X to a 32-bit integer. |
| 768 | /// Requires 0 < B <= 32. |
| 769 | inline int32_t SignExtend32(uint32_t X, unsigned B) { |
| 770 | assert(B > 0 && "Bit width can't be 0.")((void)0); |
| 771 | assert(B <= 32 && "Bit width out of range.")((void)0); |
| 772 | return int32_t(X << (32 - B)) >> (32 - B); |
| 773 | } |
| 774 | |
| 775 | /// Sign-extend the number in the bottom B bits of X to a 64-bit integer. |
| 776 | /// Requires 0 < B <= 64. |
| 777 | template <unsigned B> constexpr inline int64_t SignExtend64(uint64_t x) { |
| 778 | static_assert(B > 0, "Bit width can't be 0."); |
| 779 | static_assert(B <= 64, "Bit width out of range."); |
| 780 | return int64_t(x << (64 - B)) >> (64 - B); |
| 781 | } |
| 782 | |
| 783 | /// Sign-extend the number in the bottom B bits of X to a 64-bit integer. |
| 784 | /// Requires 0 < B <= 64. |
| 785 | inline int64_t SignExtend64(uint64_t X, unsigned B) { |
| 786 | assert(B > 0 && "Bit width can't be 0.")((void)0); |
| 787 | assert(B <= 64 && "Bit width out of range.")((void)0); |
| 788 | return int64_t(X << (64 - B)) >> (64 - B); |
| 789 | } |
| 790 | |
| 791 | /// Subtract two unsigned integers, X and Y, of type T and return the absolute |
| 792 | /// value of the result. |
| 793 | template <typename T> |
| 794 | std::enable_if_t<std::is_unsigned<T>::value, T> AbsoluteDifference(T X, T Y) { |
| 795 | return X > Y ? (X - Y) : (Y - X); |
| 796 | } |
| 797 | |
| 798 | /// Add two unsigned integers, X and Y, of type T. Clamp the result to the |
| 799 | /// maximum representable value of T on overflow. ResultOverflowed indicates if |
| 800 | /// the result is larger than the maximum representable value of type T. |
| 801 | template <typename T> |
| 802 | std::enable_if_t<std::is_unsigned<T>::value, T> |
| 803 | SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) { |
| 804 | bool Dummy; |
| 805 | bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; |
| 806 | // Hacker's Delight, p. 29 |
| 807 | T Z = X + Y; |
| 808 | Overflowed = (Z < X || Z < Y); |
| 809 | if (Overflowed) |
| 810 | return std::numeric_limits<T>::max(); |
| 811 | else |
| 812 | return Z; |
| 813 | } |
| 814 | |
| 815 | /// Multiply two unsigned integers, X and Y, of type T. Clamp the result to the |
| 816 | /// maximum representable value of T on overflow. ResultOverflowed indicates if |
| 817 | /// the result is larger than the maximum representable value of type T. |
| 818 | template <typename T> |
| 819 | std::enable_if_t<std::is_unsigned<T>::value, T> |
| 820 | SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) { |
| 821 | bool Dummy; |
| 822 | bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; |
| 823 | |
| 824 | // Hacker's Delight, p. 30 has a different algorithm, but we don't use that |
| 825 | // because it fails for uint16_t (where multiplication can have undefined |
| 826 | // behavior due to promotion to int), and requires a division in addition |
| 827 | // to the multiplication. |
| 828 | |
| 829 | Overflowed = false; |
| 830 | |
| 831 | // Log2(Z) would be either Log2Z or Log2Z + 1. |
| 832 | // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z |
| 833 | // will necessarily be less than Log2Max as desired. |
| 834 | int Log2Z = Log2_64(X) + Log2_64(Y); |
| 835 | const T Max = std::numeric_limits<T>::max(); |
| 836 | int Log2Max = Log2_64(Max); |
| 837 | if (Log2Z < Log2Max) { |
| 838 | return X * Y; |
| 839 | } |
| 840 | if (Log2Z > Log2Max) { |
| 841 | Overflowed = true; |
| 842 | return Max; |
| 843 | } |
| 844 | |
| 845 | // We're going to use the top bit, and maybe overflow one |
| 846 | // bit past it. Multiply all but the bottom bit then add |
| 847 | // that on at the end. |
| 848 | T Z = (X >> 1) * Y; |
| 849 | if (Z & ~(Max >> 1)) { |
| 850 | Overflowed = true; |
| 851 | return Max; |
| 852 | } |
| 853 | Z <<= 1; |
| 854 | if (X & 1) |
| 855 | return SaturatingAdd(Z, Y, ResultOverflowed); |
| 856 | |
| 857 | return Z; |
| 858 | } |
| 859 | |
| 860 | /// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to |
| 861 | /// the product. Clamp the result to the maximum representable value of T on |
| 862 | /// overflow. ResultOverflowed indicates if the result is larger than the |
| 863 | /// maximum representable value of type T. |
| 864 | template <typename T> |
| 865 | std::enable_if_t<std::is_unsigned<T>::value, T> |
| 866 | SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) { |
| 867 | bool Dummy; |
| 868 | bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; |
| 869 | |
| 870 | T Product = SaturatingMultiply(X, Y, &Overflowed); |
| 871 | if (Overflowed) |
| 872 | return Product; |
| 873 | |
| 874 | return SaturatingAdd(A, Product, &Overflowed); |
| 875 | } |
| 876 | |
| 877 | /// Use this rather than HUGE_VALF; the latter causes warnings on MSVC. |
| 878 | extern const float huge_valf; |
| 879 | |
| 880 | |
| 881 | /// Add two signed integers, computing the two's complement truncated result, |
| 882 | /// returning true if overflow occured. |
| 883 | template <typename T> |
| 884 | std::enable_if_t<std::is_signed<T>::value, T> AddOverflow(T X, T Y, T &Result) { |
| 885 | #if __has_builtin(__builtin_add_overflow)1 |
| 886 | return __builtin_add_overflow(X, Y, &Result); |
| 887 | #else |
| 888 | // Perform the unsigned addition. |
| 889 | using U = std::make_unsigned_t<T>; |
| 890 | const U UX = static_cast<U>(X); |
| 891 | const U UY = static_cast<U>(Y); |
| 892 | const U UResult = UX + UY; |
| 893 | |
| 894 | // Convert to signed. |
| 895 | Result = static_cast<T>(UResult); |
| 896 | |
| 897 | // Adding two positive numbers should result in a positive number. |
| 898 | if (X > 0 && Y > 0) |
| 899 | return Result <= 0; |
| 900 | // Adding two negatives should result in a negative number. |
| 901 | if (X < 0 && Y < 0) |
| 902 | return Result >= 0; |
| 903 | return false; |
| 904 | #endif |
| 905 | } |
| 906 | |
| 907 | /// Subtract two signed integers, computing the two's complement truncated |
| 908 | /// result, returning true if an overflow ocurred. |
| 909 | template <typename T> |
| 910 | std::enable_if_t<std::is_signed<T>::value, T> SubOverflow(T X, T Y, T &Result) { |
| 911 | #if __has_builtin(__builtin_sub_overflow)1 |
| 912 | return __builtin_sub_overflow(X, Y, &Result); |
| 913 | #else |
| 914 | // Perform the unsigned addition. |
| 915 | using U = std::make_unsigned_t<T>; |
| 916 | const U UX = static_cast<U>(X); |
| 917 | const U UY = static_cast<U>(Y); |
| 918 | const U UResult = UX - UY; |
| 919 | |
| 920 | // Convert to signed. |
| 921 | Result = static_cast<T>(UResult); |
| 922 | |
| 923 | // Subtracting a positive number from a negative results in a negative number. |
| 924 | if (X <= 0 && Y > 0) |
| 925 | return Result >= 0; |
| 926 | // Subtracting a negative number from a positive results in a positive number. |
| 927 | if (X >= 0 && Y < 0) |
| 928 | return Result <= 0; |
| 929 | return false; |
| 930 | #endif |
| 931 | } |
| 932 | |
| 933 | /// Multiply two signed integers, computing the two's complement truncated |
| 934 | /// result, returning true if an overflow ocurred. |
| 935 | template <typename T> |
| 936 | std::enable_if_t<std::is_signed<T>::value, T> MulOverflow(T X, T Y, T &Result) { |
| 937 | // Perform the unsigned multiplication on absolute values. |
| 938 | using U = std::make_unsigned_t<T>; |
| 939 | const U UX = X < 0 ? (0 - static_cast<U>(X)) : static_cast<U>(X); |
| 940 | const U UY = Y < 0 ? (0 - static_cast<U>(Y)) : static_cast<U>(Y); |
| 941 | const U UResult = UX * UY; |
| 942 | |
| 943 | // Convert to signed. |
| 944 | const bool IsNegative = (X < 0) ^ (Y < 0); |
| 945 | Result = IsNegative ? (0 - UResult) : UResult; |
| 946 | |
| 947 | // If any of the args was 0, result is 0 and no overflow occurs. |
| 948 | if (UX == 0 || UY == 0) |
| 949 | return false; |
| 950 | |
| 951 | // UX and UY are in [1, 2^n], where n is the number of digits. |
| 952 | // Check how the max allowed absolute value (2^n for negative, 2^(n-1) for |
| 953 | // positive) divided by an argument compares to the other. |
| 954 | if (IsNegative) |
| 955 | return UX > (static_cast<U>(std::numeric_limits<T>::max()) + U(1)) / UY; |
| 956 | else |
| 957 | return UX > (static_cast<U>(std::numeric_limits<T>::max())) / UY; |
| 958 | } |
| 959 | |
| 960 | } // End llvm namespace |
| 961 | |
| 962 | #endif |